-
Notifications
You must be signed in to change notification settings - Fork 0
/
d_train.py
135 lines (110 loc) · 4.47 KB
/
d_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.optim as optim
import torch.nn as nn
import torch
import numpy as np
import argparse
import time
import os
from models.v1 import weights_init
from models.resnet_ import resnet_face18
from models.focal_loss import FocalLoss
from models.metrics import ArcMarginProduct
from data.celeba_aligned import celebA
from logger import Logger
from utils import *
now = time.localtime()
# 파라매터
parser = argparse.ArgumentParser()
parser.add_argument('--net', type=str, default='resnet18')
parser.add_argument('--num_epoch', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--lr', type=float, default=1e-1)
parser.add_argument('--b1', type=float, default=0.5)
parser.add_argument('--b2', type=float, default=0.999)
parser.add_argument('--lr_step', type=int, default=10)
parser.add_argument('--lr_decay', type=float, default=0.95)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--reuse', dest='reuse', action='store_true')
parser.set_defaults(reuse=False)
parser.add_argument('--logging', dest='logging', action='store_true')
parser.set_defaults(logging=False)
parser.add_argument('--logstep_per_epoch', type=int, default=5)
parser.add_argument('--filename', type=str, default='{:4d}{:02d}{:02d},{:02d}{:02d}'.format(
now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min))
opts = parser.parse_args()
print(opts)
# 저장공간생성
os.makedirs('pretrained', exist_ok=True)
# GPU 사용여부
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 로그 생성
if opts.logging:
logger = Logger(opts.filename+'.txt')
logger.write(opts)
# 이미지 불러오기
### 이미지 전처리
transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
### celeba 데이터셋
celeba = celebA(path='../../myProject/GANs-pytorch/data/celeba/',
transforms=transforms,
)
### 데이터 로드
dataloader = DataLoader(celeba,
batch_size=opts.batch_size,
shuffle=True)
def main():
# 네트워크
D = resnet_face18(use_se=False).to(device)
arcmargin = ArcMarginProduct(512, celeba.classes, s=30, m=0.5, easy_margin=False).to(device)
# pretrained 모델 불러오기
if opts.reuse:
assert os.path.isfile('pretrained/trained_D.pth')
checkpoint = torch.load('pretrained/trained_D.pth')
D.load_state_dict(checkpoint['D'])
arcmargin.load_state_dict(checkpoint['arcmargin'])
print('[*]Pretrained model loaded')
# optimizer 정의
D_optim = optim.SGD([{'params':D.parameters()}, {'params':arcmargin.parameters()}],
lr=opts.lr, weight_decay=opts.weight_decay)
# loss 정의
criterion = FocalLoss(gamma=2)
mseloss = nn.MSELoss()
# scheduler
scheduler = optim.lr_scheduler.StepLR(D_optim, step_size=opts.lr_step ,gamma=0.1)
for epoch in range(opts.num_epoch):
for i, (img, cls, bbox, landm) in enumerate(dataloader):
img = img.to(device)
cls = cls.to(device)
bbox = bbox.to(device)
landm = landm.to(device)
expanded_bbox = to_expand_bbox(bbox, landm, *img.shape[2:])
cropped_img = to_crop_resize(img, expanded_bbox).to(device)
feature = D(cropped_img)
output = arcmargin(feature, cls)
loss_D = criterion(output, cls)
D_optim.zero_grad()
loss_D.backward()
D_optim.step()
# 진행상황 출력
output = output.data.cpu().numpy()
output = np.argmax(output, axis=1)
cls = cls.data.cpu().numpy()
acc = np.mean((output==cls).astype(int)).astype(float)
print(f"[Epoch {epoch}/{opts.num_epoch}] [Batch {i*opts.batch_size}/{len(celeba)}] [D loss {loss_D:.6f}] lr {scheduler.get_lr()}")
print(f"Precision | {acc:.4f}")
print("="*65)
# 로깅
if i % (len(dataloader) // opts.logstep_per_epoch) == 0 and opts.logging:
logger.write('epoch',epoch, 'iter',i, 'loss_d',loss_D, 'acc', acc)
torch.save({
'D' : D.state_dict(),
'arcmargin' : arcmargin.state_dict()
},
'pretrained/trained_D_arc.pth')
scheduler.step()
if __name__ == '__main__':
main()