forked from serp-ai/ChatGPT-Plugins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assistant.py
407 lines (358 loc) · 19.4 KB
/
assistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import tiktoken
import openai
from datetime import datetime
from typing import Any
from time import sleep
from memory_manager import MemoryManager
class OpenAIAssistant():
"""
ChatGPT wrapper for OpenAI API
"""
def __init__(
self,
api_key: str,
chat_model: str = 'gpt-3.5-turbo',
embedding_model: Any = 'text-embedding-ada-002',
enc: str = 'gpt2',
short_term_memory_summary_prompt: str = None,
long_term_memory_summary_prompt: str = None,
system_prompt: str = "You are a helpful assistant. Your name is SERPy.",
short_term_memory_max_tokens: int = 750,
long_term_memory_max_tokens: int = 500,
knowledge_retrieval_max_tokens: int = 1000,
short_term_memory_summary_max_tokens: int = 300,
long_term_memory_summary_max_tokens: int = 300,
knowledge_retrieval_summary_max_tokens: int = 600,
summarize_short_term_memory: bool = False,
summarize_long_term_memory: bool = False,
summarize_knowledge_retrieval: bool = False,
use_long_term_memory: bool = False,
long_term_memory_collection_name: str = 'long_term_memory',
use_short_term_memory: bool = False,
use_knowledge_retrieval: bool = False,
knowledge_retrieval_collection_name: str = 'knowledge_retrieval',
price_per_token: float = 0.000002,
max_seq_len: int = 4096,
memory_manager: MemoryManager = None,
debug: bool = False
) -> None:
"""
Initialize the OpenAIAssistant
Parameters:
api_key (str): The OpenAI API key
chat_model (str): The model to use for chat
embedding_model (Any): The model to use for embeddings
enc (str): The encoding to use for the model
short_term_memory_summary_prompt (str): The prompt to use for short term memory summarization
long_term_memory_summary_prompt (str): The prompt to use for long term memory summarization
system_prompt (str): The system prompt to use for the model
short_term_memory_max_tokens (int): The maximum number of tokens to store in short term memory
long_term_memory_max_tokens (int): The maximum number of tokens to store in long term memory
knowledge_retrieval_max_tokens (int): The maximum number of tokens to store in knowledge retrieval
short_term_memory_summary_max_tokens (int): The maximum number of tokens to store in short term memory summary
long_term_memory_summary_max_tokens (int): The maximum number of tokens to store in long term memory summary
knowledge_retrieval_summary_max_tokens (int): The maximum number of tokens to store in knowledge retrieval summary
summarize_short_term_memory (bool): Whether to use short term memory summarization
summarize_long_term_memory (bool): Whether to use long term memory summarization
summarize_knowledge_retrieval (bool): Whether to use knowledge retrieval summarization
use_long_term_memory (bool): Whether to use long term memory
long_term_memory_collection_name (str): The name of the long term memory collection
use_short_term_memory (bool): Whether to use short term memory
use_knowledge_retrieval (bool): Whether to use knowledge retrieval
knowledge_retrieval_collection_name (str): The name of the knowledge retrieval collection
price_per_token (float): The price per token in USD
max_seq_len (int): The maximum sequence length
memory_manager (MemoryManager): The memory manager to use for long term memory and knowledge retrieval
debug (bool): Whether to enable debug mode
"""
openai.api_key = api_key
self.api_key = api_key
self.chat_model = chat_model
self.embedding_model = embedding_model
self.enc = tiktoken.get_encoding(enc)
self.memory_manager = memory_manager
self.price_per_token = price_per_token
self.short_term_memory = []
self.short_term_memory_summary = ''
self.long_term_memory_summary = ''
self.knowledge_retrieval_summary = ''
self.debug = debug
self.summarize_short_term_memory = summarize_short_term_memory
self.summarize_long_term_memory = summarize_long_term_memory
self.summarize_knowledge_retrieval = summarize_knowledge_retrieval
self.use_long_term_memory = use_long_term_memory
self.long_term_memory_collection_name = 'long_term_memory' if long_term_memory_collection_name is None else long_term_memory_collection_name
self.use_knowledge_retrieval = use_knowledge_retrieval
self.knowledge_retrieval_collection_name = 'knowledge_retrieval' if knowledge_retrieval_collection_name is None else knowledge_retrieval_collection_name
if self.memory_manager is None:
self.use_long_term_memory = False
self.use_knowledge_retrieval = False
if self.use_long_term_memory and self.memory_manager is not None:
self.memory_manager.create_collection(self.long_term_memory_collection_name)
if self.use_knowledge_retrieval and self.memory_manager is not None:
self.memory_manager.create_collection(self.knowledge_retrieval_collection_name)
self.use_short_term_memory = use_short_term_memory
self.short_term_memory_summary_max_tokens = short_term_memory_summary_max_tokens
self.long_term_memory_summary_max_tokens = long_term_memory_summary_max_tokens
self.knowledge_retrieval_summary_max_tokens = knowledge_retrieval_summary_max_tokens
self.short_term_memory_max_tokens = short_term_memory_max_tokens
self.long_term_memory_max_tokens = long_term_memory_max_tokens
self.knowledge_retrieval_max_tokens = knowledge_retrieval_max_tokens
self.system_prompt = system_prompt
if short_term_memory_summary_prompt is None:
self.short_term_memory_summary_prompt = "Summarize the following conversation:\n\nPrevious Summary: {previous_summary}\n\nConversation: {conversation}"
else:
self.short_term_memory_summary_prompt = short_term_memory_summary_prompt
if long_term_memory_summary_prompt is None:
self.long_term_memory_summary_prompt = "Summarize the following (out of order) conversation messages:\n\nPrevious Summary: {previous_summary}\n\nMessages: {conversation}"
self.max_seq_len = max_seq_len
def _construct_messages(self, prompt: str, inject_messages: list = []) -> list:
"""
Construct the messages for the chat completion
Parameters:
prompt (str): The prompt to construct the messages for
inject_messages (list): The messages to inject into the chat completion
Returns:
list: The messages to use for the chat completion
"""
messages = []
if self.system_prompt is not None and self.system_prompt != "":
messages.append({
"role": "system",
"content": self.system_prompt
})
if self.use_long_term_memory:
long_term_memory = self.query_long_term_memory(prompt, summarize=self.summarize_long_term_memory)
if long_term_memory is not None and long_term_memory != '':
messages.append({
"role": "system",
"content": long_term_memory
})
if self.summarize_short_term_memory:
if self.short_term_memory_summary != '' and self.short_term_memory_summary is not None:
messages.append({
"role": "system",
"content": self.short_term_memory_summary
})
if self.use_short_term_memory:
for i, message in enumerate(self.short_term_memory):
messages.append(message)
if inject_messages is not None and inject_messages != []:
for i in range(len(messages)):
for y, message in enumerate(inject_messages):
if i == list(message.keys())[0]:
messages.insert(i, list(message.values())[0])
inject_messages.pop(y)
for message in inject_messages:
messages.append(list(message.values())[0])
if prompt is None or prompt == "":
return messages
messages.append({
"role": "user",
"content": prompt
})
return messages
def change_system_prompt(self, system_prompt: str) -> None:
"""
Change the system prompt
Parameters:
system_prompt (str): The new system prompt to use
"""
self.system_prompt = system_prompt
def calculate_num_tokens(self, text: str) -> int:
"""
Calculate the number of tokens in a given text
Parameters:
text (str): The text to calculate the number of tokens for
Returns:
int: The number of tokens in the text
"""
return len(self.enc.encode(text))
def calculate_short_term_memory_tokens(self) -> int:
"""
Calculate the number of tokens in short term memory
Returns:
int: The number of tokens in short term memory
"""
return sum([self.calculate_num_tokens(message['content']) for message in self.short_term_memory])
def query_long_term_memory(self, query: str, summarize=False) -> str:
"""
Query long term memory
Parameters:
query (str): The query to use for long term memory
summarize (bool): Whether to summarize the long term memory
Returns:
str: The long term memory
"""
embedding = self.get_embedding(query).data[0].embedding
points = self.memory_manager.search_points(vector=embedding, collection_name=self.long_term_memory_collection_name, k=20)
if len(points) == 0:
return ''
long_term_memory = ''
if summarize:
long_term_memory += 'Summary of previous related conversations from long term memory:' + self.generate_long_term_memory_summary(points) + '\n\n'
if self.long_term_memory_max_tokens > 0:
long_term_memory += 'Previous related conversations from long term memory:\n\n'
for point in points:
point = point.payload
if self.calculate_num_tokens(long_term_memory + f"{point['user_message']['role'].title()}: {point['user_message']['content']}\n\n{point['assistant_message']['role'].title()}: {point['assistant_message']['content']}\n----------\n") > self.long_term_memory_max_tokens:
continue
long_term_memory += f"{point['user_message']['role'].title()}: {point['user_message']['content']}\n\n{point['assistant_message']['role'].title()}: {point['assistant_message']['content']}\n----------\n"
if long_term_memory == 'Previous related conversations from long term memory:\n\n':
return ''
elif long_term_memory.endswith('\n\nPrevious related conversations from long term memory:\n\n'):
long_term_memory = long_term_memory.replace('\n\nPrevious related conversations from long term memory:\n\n', '')
return long_term_memory.strip()
def add_message_to_short_term_memory(self, user_message: dict, assistant_message: dict) -> None:
"""
Add a message to short term memory
Parameters:
user_message (dict): The user message to add to short term memory
assistant_message (dict): The assistant message to add to short term memory
"""
self.short_term_memory.append(user_message)
self.short_term_memory.append(assistant_message)
while self.calculate_short_term_memory_tokens() > self.short_term_memory_max_tokens:
if self.summarize_short_term_memory:
self.generate_short_term_memory_summary()
self.short_term_memory.pop(0) # Remove the oldest message (User message)
self.short_term_memory.pop(0) # Remove the oldest message (OpenAIAssistant message)
def add_message_to_long_term_memory(self, user_message: dict, assistant_message: dict) -> None:
"""
Add a message to long term memory
Parameters:
user_message (dict): The user message to add to long term memory
assistant_message (dict): The assistant message to add to long term memory
"""
points = [
{
"vector": self.get_embedding(f'User: {user_message["content"]}\n\nAssistant: {assistant_message["content"]}').data[0].embedding,
"payload": {
"user_message": user_message,
"assistant_message": assistant_message,
"timestamp": datetime.now().timestamp()
}
}
]
self.memory_manager.insert_points(collection_name=self.long_term_memory_collection_name, points=points)
def generate_short_term_memory_summary(self) -> None:
"""
Generate a summary of short term memory
"""
prompt = self.short_term_memory_summary_prompt.format(
previous_summary=self.short_term_memory_summary,
conversation=f'User: {self.short_term_memory[0]["content"]}\n\nAssistant: {self.short_term_memory[1]["content"]}'
)
if self.calculate_num_tokens(prompt) > self.max_seq_len - self.short_term_memory_summary_max_tokens:
prompt = self.enc.decode(self.enc.encode(prompt)[:self.max_seq_len - self.short_term_memory_summary_max_tokens])
summary_agent = OpenAIAssistant(self.api_key, system_prompt=None)
self.short_term_memory_summary = summary_agent.get_chat_response(prompt, max_tokens=self.short_term_memory_summary_max_tokens).choices[0].message.content
def generate_long_term_memory_summary(self, points: list) -> str:
"""
Summarize long term memory
Parameters:
points (list): The points to summarize
Returns:
str: The summary of long term memory
"""
prompt = self.long_term_memory_summary_prompt.format(
previous_summary=self.long_term_memory_summary,
conversation='\n\n'.join([f'User: {point.payload["user_message"]["content"]}\n\nAssistant: {point.payload["assistant_message"]["content"]}' for point in points])
)
if self.calculate_num_tokens(prompt) > self.max_seq_len - self.long_term_memory_summary_max_tokens:
prompt = self.enc.decode(self.enc.encode(prompt)[:self.max_seq_len - self.long_term_memory_summary_max_tokens])
summary_agent = OpenAIAssistant(self.api_key, system_prompt=None)
self.long_term_memory_summary = summary_agent.get_chat_response(prompt, max_tokens=self.long_term_memory_summary_max_tokens).choices[0].message.content
return self.long_term_memory_summary
def calculate_price(self, prompt: str = None, num_tokens: int = None) -> float:
"""
Calculate the price of a prompt (or number of tokens) in USD
Parameters:
prompt (str): The prompt to calculate the price of
num_tokens (int): The number of tokens to calculate the price of
Returns:
float: The price of the generation in USD
"""
assert prompt or num_tokens, "You must provide either a prompt or number of tokens"
if prompt:
num_tokens = self.calculate_num_tokens(prompt)
return num_tokens * self.price_per_token
def get_embedding(self, input: str, user: str = '', instructor_instruction: str = None) -> str:
"""
Get the embedding for given text
Parameters:
input (str): The text to get the embedding for
user (str): The user to get the embedding for
instructor_instruction (str): The instructor instruction to get the embedding with
Returns:
str: The embedding for the prompt
"""
if self.embedding_model is None:
return None
elif self.embedding_model == 'text-embedding-ada-002':
return openai.Embedding.create(
model=self.embedding_model,
input=input,
user=user
)
else:
if instructor_instruction is not None:
return self.embedding_model.encode([[instructor_instruction, input]])
return self.embedding_model.encode([input])
def get_chat_response(self, prompt: str, max_tokens: int = None, temperature: float = 1.0, top_p: float = 1.0, n: int = 1, stream: bool = False, frequency_penalty: float = 0, presence_penalty: float = 0, stop: list = None, logit_bias: dict = {}, user: str = '', max_retries: int = 3, inject_messages: list = []) -> str:
"""
Get a chat response from the model
Parameters:
prompt (str): The prompt to generate a response for
max_tokens (int): The maximum number of tokens to generate
temperature (float): The temperature of the model
top_p (float): The top_p of the model
n (int): The number of responses to generate
stream (bool): Whether to stream the response
frequency_penalty (float): The frequency penalty of the model
presence_penalty (float): The presence penalty of the model
stop (list): The stop sequence of the model
logit_bias (dict): The logit bias of the model
user (str): The user to generate the response for
max_retries (int): The maximum number of retries to generate a response
inject_messages (list): The messages to inject into the prompt (key: index to insert at in short term memory (0 to prepend before all messages), value: message to inject)
Returns:
str: The chat response
"""
messages = self._construct_messages(prompt, inject_messages=inject_messages)
if self.debug:
print(f'Messages: {messages}')
iteration = 0
while True:
try:
response = openai.ChatCompletion.create(
model=self.chat_model,
messages=messages,
temperature=temperature,
top_p=top_p,
n=n,
stream=stream,
stop=stop,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
user=user
)
if self.use_short_term_memory:
self.add_message_to_short_term_memory(user_message={
"role": "user",
"content": prompt
}, assistant_message=response.choices[0].message.to_dict())
if self.use_long_term_memory:
self.add_message_to_long_term_memory(user_message={
"role": "user",
"content": prompt
}, assistant_message=response.choices[0].message.to_dict())
return response
except Exception as e:
iteration += 1
if iteration >= max_retries:
raise e
print('Error communicating with chatGPT:', e)
sleep(1)