Skip to content

Latest commit

 

History

History
142 lines (117 loc) · 2.45 KB

File metadata and controls

142 lines (117 loc) · 2.45 KB

题目描述

输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。

例如:

给定二叉树 [3,9,20,null,null,15,7]

    3
   / \
  9  20
    /  \
   15   7

返回它的最大深度  3 。

提示:

  • 节点总数 <= 10000

解法

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def maxDepth(self, root: TreeNode) -> int:
        if root is None:
            return 0
        return 1 + max(self.maxDepth(root.left), self.maxDepth(root.right))

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
    }
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number}
 */
var maxDepth = function(root) {
    if (!root) {
        return 0;
    }
    return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
};

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int maxDepth(TreeNode* root) {
        if (!root) {
            return 0;
        }
        return 1 + max(maxDepth(root->left), maxDepth(root->right));
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func maxDepth(root *TreeNode) int {
    if (root == nil) {
        return 0
    }
    left, right := maxDepth(root.Left), maxDepth(root.Right)
    if left > right {
        return 1 + left
    }
    return 1 + right
}

...