-
Notifications
You must be signed in to change notification settings - Fork 3
/
sdram.sv
190 lines (162 loc) · 5.71 KB
/
sdram.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//
// sdram.v
//
// sdram controller implementation
// Copyright (c) 2018 Sorgelig
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module sdram
(
// interface to the MT48LC16M16 chip
inout reg [15:0] SDRAM_DQ, // 16 bit bidirectional data bus
output reg [12:0] SDRAM_A, // 13 bit multiplexed address bus
output reg SDRAM_DQML, // byte mask
output reg SDRAM_DQMH, // byte mask
output reg [1:0] SDRAM_BA, // two banks
output reg SDRAM_nCS, // a single chip select
output reg SDRAM_nWE, // write enable
output reg SDRAM_nRAS, // row address select
output reg SDRAM_nCAS, // columns address select
output SDRAM_CKE,
// cpu/chipset interface
input init, // init signal after FPGA config to initialize RAM
input clk, // sdram is accessed at up to 128MHz
input [24:0] addr,
input rd,
input wr,
input word,
input [15:0] din,
output [15:0] dout,
output ready
);
assign SDRAM_CKE = 1;
assign {SDRAM_DQMH,SDRAM_DQML} = SDRAM_A[12:11];
localparam RASCAS_DELAY = 3'd2; // tRCD=20ns -> 2 cycles@85MHz
localparam BURST_LENGTH = 3'd0; // 0=1, 1=2, 2=4, 3=8, 7=full page
localparam ACCESS_TYPE = 1'd0; // 0=sequential, 1=interleaved
localparam CAS_LATENCY = 3'd2; // 2/3 allowed
localparam OP_MODE = 2'd0; // only 0 (standard operation) allowed
localparam NO_WRITE_BURST = 1'd1; // 0=write burst enabled, 1=only single access write
localparam MODE = { 3'b000, NO_WRITE_BURST, OP_MODE, CAS_LATENCY, ACCESS_TYPE, BURST_LENGTH};
localparam STATE_IDLE = 3'd0; // state to check the requests
localparam STATE_START = STATE_IDLE+1'd1; // state in which a new command is started
localparam STATE_CONT = STATE_START+RASCAS_DELAY;
localparam STATE_READY = STATE_CONT+CAS_LATENCY+1'd1;
localparam STATE_LAST = STATE_READY; // last state in cycle
assign ready = ~busy;
reg [2:0] state;
reg [24:0] a;
reg [15:0] data;
reg we;
reg ds;
reg ram_req=0;
wire ram_req_test = (we || (a[24:1] != addr[24:1]));
reg [15:0] last_data;
reg busy;
// access manager
always @(posedge clk) begin
reg old_ref;
reg old_rd,old_wr;
old_rd <= old_rd & rd;
old_wr <= old_wr & wr;
if(state == STATE_IDLE && mode == MODE_NORMAL) begin
if((~old_rd & rd) | (~old_wr & wr)) begin
old_rd <= rd;
old_wr <= wr;
we <= wr;
ds <= word;
busy <= 1;
state <= STATE_START;
end
end
if(state == STATE_START && busy) begin
a <= addr;
data <= word ? din : {din[7:0],din[7:0]};
ram_req <= ram_req_test;
end
if(state == STATE_READY && busy) begin
ram_req <= 0;
we <= 0;
busy <= 0;
if(ram_req) begin
if(we) begin
a <= '1;
end
else begin
last_data <= SDRAM_DQ;
end
end
end
if(mode != MODE_NORMAL || state != STATE_IDLE || reset) begin
state <= state + 1'd1;
if(state == STATE_LAST) state <= STATE_IDLE;
end
end
assign dout = ((~ds & a[0]) ? {last_data[7:0],last_data[15:8]} : last_data);
localparam MODE_NORMAL = 2'b00;
localparam MODE_RESET = 2'b01;
localparam MODE_LDM = 2'b10;
localparam MODE_PRE = 2'b11;
// initialization
reg [1:0] mode;
reg [4:0] reset = '1;
always @(posedge clk) begin
reg init_old=0;
init_old <= init;
if(init_old & ~init) reset <= '1;
else if(state == STATE_LAST) begin
if(reset != 0) begin
reset <= reset - 5'd1;
if(reset == 14) mode <= MODE_PRE;
else if(reset == 3) mode <= MODE_LDM;
else mode <= MODE_RESET;
end
else mode <= MODE_NORMAL;
end
end
localparam CMD_INHIBIT = 4'b1111;
localparam CMD_NOP = 4'b0111;
localparam CMD_ACTIVE = 4'b0011;
localparam CMD_READ = 4'b0101;
localparam CMD_WRITE = 4'b0100;
localparam CMD_BURST_TERMINATE = 4'b0110;
localparam CMD_PRECHARGE = 4'b0010;
localparam CMD_AUTO_REFRESH = 4'b0001;
localparam CMD_LOAD_MODE = 4'b0000;
wire [1:0] dqm = {we & ~ds & ~a[0], we & ~ds & a[0]};
// SDRAM state machines
always @(posedge clk) begin
if(state == STATE_START) SDRAM_BA <= (mode == MODE_NORMAL) ? addr[24:23] : 2'b00;
SDRAM_DQ <= 'Z;
casex({ram_req,we,mode,state})
{2'bXX, MODE_NORMAL, STATE_START}: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= ram_req_test ? CMD_ACTIVE : CMD_AUTO_REFRESH;
{2'b11, MODE_NORMAL, STATE_CONT }: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE, SDRAM_DQ} <= {CMD_WRITE, data};
{2'b10, MODE_NORMAL, STATE_CONT }: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_READ;
// init
{2'bXX, MODE_LDM, STATE_START}: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_LOAD_MODE;
{2'bXX, MODE_PRE, STATE_START}: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_PRECHARGE;
default: {SDRAM_nCS, SDRAM_nRAS, SDRAM_nCAS, SDRAM_nWE} <= CMD_INHIBIT;
endcase
if(mode == MODE_NORMAL) begin
casex(state)
STATE_START: SDRAM_A <= addr[13:1];
STATE_CONT: SDRAM_A <= {dqm, 2'b10, a[22:14]};
endcase;
end
else if(mode == MODE_LDM && state == STATE_START) SDRAM_A <= MODE;
else if(mode == MODE_PRE && state == STATE_START) SDRAM_A <= 13'b0010000000000;
else SDRAM_A <= 0;
end
endmodule