forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
custom_class.h
211 lines (183 loc) · 7.27 KB
/
custom_class.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#pragma once
#include <ATen/core/function_schema.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/op_registration/op_registration.h>
#include <ATen/core/stack.h>
#include <c10/util/C++17.h>
#include <c10/util/Metaprogramming.h>
#include <c10/util/TypeList.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/pybind_utils.h>
#include <torch/csrc/jit/script/compilation_unit.h>
#include <torch/csrc/jit/tracer.h>
#include <torch/csrc/utils/variadic.h>
#include <iostream>
#include <sstream>
namespace py = pybind11;
namespace torch {
namespace jit {
static std::vector<c10::RegisterOperators> registeredOps;
namespace detail {
template <class R, class...>
struct types {
constexpr static bool hasRet = true;
using type = types;
};
template <class... args>
struct types<void, args...> {
constexpr static bool hasRet = false;
using type = types;
};
template <class Sig>
struct args;
template <class R, class CurClass, class... Args>
struct args<R (CurClass::*)(Args...)> : types<R, Args...> {};
template <class Sig>
using args_t = typename args<Sig>::type;
} // namespace detail
template <class... Types>
detail::types<void, Types...> init() { return detail::types<void, Types...>{}; }
// To bind custom classes into Torchscript, use an API very similar to Pybind's.
// Currently exposes one class `torch::jit::class_<T>` and 2 methods.
// - Constructing `torch::jit::class_<Foo>` registers `Foo` in Python and
// Torchscript, and puts it under `torch.classes.Foo` in Python.
// - torch::jit::class_<Foo>.def("method1", &Foo::method1) does some template
// metaprogramming to introspect the function types and register the operator
// for use in Torchscript.
// - torch::jit::class_<Foo>.def(torch::jit::init<int64_t, int64_t>()) registers
// the Foo(int, int) constructor.
// see test/custom_operator/classes.cpp and
// test/custom_operator/test_custom_classes.py for example usages
template <class CurClass>
class class_ {
static_assert(std::is_base_of<CustomClassHolder, CurClass>::value,
"torch::jit::class_<T> requires T to inherit from CustomClassHolder");
std::string className;
std::string qualClassName;
c10::optional<py::class_<CurClass>> pyClass = c10::nullopt;
std::shared_ptr<script::CompilationUnit> classCu = nullptr;
ClassTypePtr classTypePtr;
const std::string parentModule = "classes";
const std::string topModule = "__torch__.torch";
public:
class_(std::string className_) : className(std::move(className_)) {
// Currently we register everything as a python class just for convenience.
// We'll want to remove this at some point to get rid of the python
// dependency. It would require significant changes to class registration,
// (I think)?
qualClassName = topModule + "." + parentModule + "." + className;
auto obj = py::module::import("torch").attr(parentModule.c_str());
pyClass = py::class_<CurClass>(obj, className.c_str());
pyClass->attr("qualified_name") = py::str(qualClassName);
auto newClass =
py::module::import("torch.jit")
.attr("_add_script_class")(*pyClass, qualClassName.c_str());
auto castToPython = [](void* objPtr) -> PyObject* {
CurClass x = *static_cast<CurClass*>(objPtr);
auto py_object = py::cast(x);
PyObject* rawPyObj = py_object.release().ptr();
return rawPyObj;
};
at::getClassConverter()[qualClassName] = castToPython;
// We currently represent custom classes as torchscript classes with a
// capsule attribute
classCu = torch::jit::get_python_cu();
classTypePtr =
ClassType::create(c10::QualifiedName(qualClassName), classCu);
classTypePtr->addAttribute("capsule", CapsuleType::get());
c10::getCustomClassTypeMap().insert({typeid(c10::intrusive_ptr<CurClass>).name(),
c10::StrongTypePtr(classCu, classTypePtr)});
c10::getCustomClassTypeMap().insert({typeid(c10::tagged_capsule<CurClass>).name(),
c10::StrongTypePtr(classCu, classTypePtr)});
classCu->register_type(classTypePtr);
}
template <typename... Types>
class_& def(detail::types<void, Types...>) { // Used in combination with
// torch::jit::init<...>()
pyClass->def(py::init<Types...>());
auto func = [](c10::tagged_capsule<CurClass> self, Types... args) {
auto classObj = c10::make_intrusive<CurClass>(args...);
auto genericPtr = c10::static_intrusive_pointer_cast<torch::jit::CustomClassHolder>(classObj);
auto capsule = IValue(genericPtr);
auto object = self.ivalue.toObject();
object->setSlot(0, capsule);
};
defineMethod<void>("__init__", std::move(func), false);
return *this;
}
template <typename Func>
class_& def(std::string name, Func f) {
auto res = def_(name, f, detail::args_t<decltype(f)>{});
return *this;
}
private:
template <class T>
struct addInput {
static Value* call(std::shared_ptr<Graph> graph) {
return graph->addInput()->setType(getTypePtr<T>());
}
};
template <class Func, size_t... arg_indices>
std::vector<Value*> addInputs_(
Func f,
std::shared_ptr<Graph> graph,
at::guts::index_sequence<arg_indices...>) {
using argTypes =
typename at::guts::infer_function_traits_t<Func>::parameter_types;
std::vector<Value*> res = {
addInput<at::guts::typelist::element_t<arg_indices, argTypes>>::call(
graph)...};
return res;
}
template <class Func>
std::vector<Value*> addInputs(Func f, std::shared_ptr<Graph> graph) {
constexpr auto numArgs =
at::guts::infer_function_traits_t<Func>::number_of_parameters;
return addInputs_(f, graph, at::guts::make_index_sequence<numArgs>());
}
template <typename Last>
std::string type_name() {
return std::string(typeid(Last).name());
}
template <typename First, typename Second, typename... Rest>
std::string type_name() {
return type_name<First>() + "_" + type_name<Second, Rest...>();
}
template <class T>
void addType(Value* v) {
v->setType(getTypePtr<T>());
}
template<typename R, typename Func>
void defineMethod(std::string name, Func func, bool hasRet) {
auto graph = std::make_shared<Graph>();
auto qualFuncName = className + "::" + name;
registeredOps.push_back(
torch::RegisterOperators().op(qualFuncName, std::move(func)));
std::vector<Value*> inputs = addInputs(func, graph);
auto methodCall = graph->insertNode(graph->create(
Symbol::fromQualString(qualFuncName), inputs, hasRet));
Value* res;
if (hasRet) {
res = methodCall->output();
addType<R>(res);
} else {
res = graph->insertConstant(IValue())->setType(NoneType::get());
}
graph->registerOutput(res);
auto method = classCu->create_function(qualClassName + "." + name, graph);
classTypePtr->addMethod(method);
}
template <typename Func, typename R, typename... Types>
class_& def_(std::string name, Func f, detail::types<R, Types...> funcInfo) {
pyClass->def(name.c_str(), f);
auto func = [f](c10::intrusive_ptr<CurClass> cur, Types... args) {
return at::guts::invoke(f, *cur, args...);
};
defineMethod<R>(name, std::move(func), funcInfo.hasRet);
return *this;
}
};
} // namespace jit
} // namespace torch