forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
LogSigmoid.cu
76 lines (68 loc) · 2.28 KB
/
LogSigmoid.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <THCUNN/THCUNN.h>
#include <TH/THHalf.h>
#include <THCUNN/THCHalfAutoNumerics.cuh>
#include <THC/THCApply.cuh>
#if defined(_MSC_VER) || defined(__HIP_PLATFORM_HCC__)
#define ZERO_MACRO zero<T>()
template <typename T>
inline __device__ typename std::enable_if<std::is_same<T, double>::value, T>::type zero() {
return 0.;
}
template <typename T>
inline __device__ typename std::enable_if<!std::is_same<T, double>::value, T>::type zero() {
return 0.f;
}
#else
#define ZERO_MACRO 0.f
#endif
template <typename T>
struct logSigmoid_updateOutput_functor
{
__device__ void operator()(T *output, const T *input) const {
const T max = fmaxType(ZERO_MACRO, -*input);
const T z = THCNumerics<T>::exp(-max) + THCNumerics<T>::exp(-*input -max);
*output = -(max + static_cast<T>(std::log(z)));
}
};
template <typename T>
struct logSigmoid_updateGradInput_functor
{
__device__ void operator()(T *gradInput, const T *input, const T *gradOutput) const {
const T max = fmaxType(ZERO_MACRO, -*input);
const T z = THCNumerics<T>::exp(-max) + THCNumerics<T>::exp(-*input -max);
T max_deriv = 0.f;
T sign = -1.f;
if (*input < 0.f){
max_deriv = -1.f;
sign = 1.f;
}
*gradInput = *gradOutput * (-max_deriv - sign*((z - 1.f)/z));
}
};
template <>
struct logSigmoid_updateOutput_functor<half> {
__device__ __forceinline__ void operator()(half* output, const half *input) const {
float in = __half2float(*input);
float max = fmaxType(0.f, -in);
float z = THCNumerics<float>::exp(-max) + THCNumerics<float>::exp(-in - max);
*output = __float2half(-(max + std::log(z)));
}
};
template <>
struct logSigmoid_updateGradInput_functor<half> {
__device__ __forceinline__ void operator()(half* gradInput, const half *input, const half *gradOutput) const {
const float in = __half2float(*input);
const float max = fmaxType(0.f, -in);
const float z = THCNumerics<float>::exp(-max) + THCNumerics<float>::exp(-in - max);
const float go = __half2float(*gradOutput);
float max_deriv = 0.f;
float sign = -1.f;
if(in < 0.f){
max_deriv = -1.f;
sign = 1.f;
}
*gradInput = __float2half(go * (-max_deriv - sign*((z - 1.f)/z)));
}
};
#include <THCUNN/generic/LogSigmoid.cu>
#include <THC/THCGenerateFloatTypes.h>