forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
im2col.cuh
215 lines (198 loc) · 6.42 KB
/
im2col.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#pragma once
#include <THC/THCGeneral.h>
#include <THC/THCDeviceUtils.cuh>
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/KernelUtils.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
#include <c10/macros/Macros.h>
namespace at {
namespace native {
using namespace at::cuda::detail;
// Kernel for fast unfold+copy
// (borrowed from Caffe:
// https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu)
// CUDA_NUM_THREADS = 1024
template <typename dt>
C10_LAUNCH_BOUNDS_1(1024)
__global__ void im2col_kernel(
const int64_t n,
const dt* data_im,
const int64_t height,
const int64_t width,
const int64_t kernel_height,
const int64_t kernel_width,
const int64_t pad_height,
const int64_t pad_width,
const int64_t stride_height,
const int64_t stride_width,
const int64_t dilation_height,
const int64_t dilation_width,
const int64_t height_col,
const int64_t width_col,
dt* data_col) {
CUDA_KERNEL_LOOP(index, n) {
int64_t w_out = index % width_col;
index /= width_col;
int64_t h_out = index % height_col;
int64_t channel_in = index / height_col;
int64_t channel_out = channel_in * kernel_height * kernel_width;
int64_t h_in = h_out * stride_height - pad_height;
int64_t w_in = w_out * stride_width - pad_width;
data_col += (channel_out * height_col + h_out) * width_col + w_out;
data_im += (channel_in * height + h_in) * width + w_in;
for (int64_t i = 0; i < kernel_height; ++i) {
for (int64_t j = 0; j < kernel_width; ++j) {
int64_t h = h_in + i * dilation_height;
int64_t w = w_in + j * dilation_width;
*data_col = (h >= 0 && w >= 0 && h < height && w < width)
? data_im[i * dilation_height * width + j * dilation_width]
: ScalarConvert<int, dt>::to(0);
data_col += height_col * width_col;
}
}
}
}
template <typename dt>
void im2col(
cudaStream_t stream,
const dt* data_im,
const int64_t channels,
const int64_t height,
const int64_t width,
const int64_t height_col,
const int64_t width_col,
const int64_t kernel_height,
const int64_t kernel_width,
const int64_t pad_height,
const int64_t pad_width,
const int64_t stride_height,
const int64_t stride_width,
const int64_t dilation_height,
const int64_t dilation_width,
dt* data_col) {
// We are going to launch channels * height_col * width_col kernels, each
// kernel responsible for copying a single-channel grid.
int64_t num_kernels = channels * height_col * width_col;
// Launch CUDA_NUM_THREADS = 1024
im2col_kernel<<<GET_BLOCKS(num_kernels), 1024, 0, stream>>>(
num_kernels,
data_im,
height,
width,
kernel_height,
kernel_width,
pad_height,
pad_width,
stride_height,
stride_width,
dilation_height,
dilation_width,
height_col,
width_col,
data_col);
AT_CUDA_CHECK(cudaGetLastError());
}
template <typename dt, typename accT>
C10_LAUNCH_BOUNDS_1(1024)
__global__ void col2im_kernel(
const int64_t n,
const dt* data_col,
const int64_t height,
const int64_t width,
const int64_t channels,
const int64_t kernel_h,
const int64_t kernel_w,
const int64_t pad_height,
const int64_t pad_width,
const int64_t stride_height,
const int64_t stride_width,
const int64_t dilation_height,
const int64_t dilation_width,
const int64_t height_col,
const int64_t width_col,
dt* data_im) {
CUDA_KERNEL_LOOP(index, n) {
accT val = static_cast<accT>(0);
const int64_t w_im = index % width + pad_width;
const int64_t h_im = (index / width) % height + pad_height;
const int64_t c_im = index / (width * height);
int64_t kernel_extent_w = (kernel_w - 1) * dilation_width + 1;
int64_t kernel_extent_h = (kernel_h - 1) * dilation_height + 1;
// compute the start and end of the output
const int64_t w_col_start = (w_im < kernel_extent_w)
? 0
: (w_im - kernel_extent_w) / stride_width + 1;
const int64_t w_col_end = ::min(w_im / stride_width + 1, width_col);
const int64_t h_col_start = (h_im < kernel_extent_h)
? 0
: (h_im - kernel_extent_h) / stride_height + 1;
const int64_t h_col_end = ::min(h_im / stride_height + 1, height_col);
// TODO: use LCM of stride and dilation to avoid unnecessary loops
for (int64_t h_col = h_col_start; h_col < h_col_end; h_col += 1) {
for (int64_t w_col = w_col_start; w_col < w_col_end; w_col += 1) {
int64_t h_k = (h_im - h_col * stride_height);
int64_t w_k = (w_im - w_col * stride_width);
if (h_k % dilation_height == 0 && w_k % dilation_width == 0) {
h_k /= dilation_height;
w_k /= dilation_width;
int64_t data_col_index =
(((c_im * kernel_h + h_k) * kernel_w + w_k) * height_col +
h_col) *
width_col +
w_col;
val += data_col[data_col_index];
}
}
}
data_im[index] = static_cast<dt>(val);
}
}
template <typename dt, typename accT>
void col2im(
cudaStream_t stream,
const dt* data_col,
const int64_t channels,
const int64_t height,
const int64_t width,
const int64_t output_height,
const int64_t output_width,
const int64_t patch_height,
const int64_t patch_width,
const int64_t pad_height,
const int64_t pad_width,
const int64_t stride_height,
const int64_t stride_width,
const int64_t dilation_height,
const int64_t dilation_width,
dt* data_im) {
int64_t num_kernels = channels * height * width;
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
// CUDA_NUM_THREADS = 1024
col2im_kernel<dt, accT>
<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>>(
num_kernels,
data_col,
height,
width,
channels,
patch_height,
patch_width,
pad_height,
pad_width,
stride_height,
stride_width,
dilation_height,
dilation_width,
output_height,
output_width,
data_im);
AT_CUDA_CHECK(cudaGetLastError());
}
} // namespace native
} // namespace at