forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
UpSampleNearest2d.cu
329 lines (280 loc) · 10.3 KB
/
UpSampleNearest2d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/NativeFunctions.h>
#include <ATen/TensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/native/cuda/LaunchUtils.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/native/cuda/UpSample.cuh>
namespace at {
namespace native {
namespace {
#define MAX_THREADS 512
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
__global__ void upsample_nearest2d_out_frame(
const scalar_t* idata,
scalar_t* odata,
const size_t nc,
const size_t height1,
const size_t width1,
const size_t height2,
const size_t width2,
float height_scale,
float width_scale) {
size_t nc_iter = threadIdx.z + blockIdx.z * blockDim.z;
int w2 = threadIdx.x + blockIdx.x * blockDim.x;
int h2 = threadIdx.y + blockIdx.y * blockDim.y;
if (w2 >= width2 || h2 >= height2) {
return;
}
int nc_stride = blockDim.z * gridDim.z;
const size_t h1 = height1 == height2
? h2
: nearest_neighbor_compute_source_index(height_scale, h2, height1);
const size_t w1 = width1 == width2
? w2
: nearest_neighbor_compute_source_index(width_scale, w2, width1);
size_t src_index = (nc_iter * height1 + h1) * width1 + w1;
size_t src_index_stride = nc_stride * width1 * height1;
size_t dst_index = (nc_iter * height2 + h2) * width2 + w2;
size_t dst_index_stride = nc_stride * width2 * height2;
// iterating over
while (nc_iter < nc) {
odata[dst_index] = idata[src_index];
dst_index += dst_index_stride;
src_index += src_index_stride;
nc_iter += nc_stride;
}
}
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
__global__ void upsample_nearest2d_backward_out_frame(
const scalar_t* grad_o,
size_t dim_b,
size_t dim_c,
size_t src_dim_h,
size_t src_dim_w,
size_t dst_dim_h,
size_t dst_dim_w,
scalar_t* grad_i,
float height_scale,
float width_scale) {
int dst_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (dst_idx >= dim_c * dst_dim_h * dst_dim_w)
return;
int dst_c_stride = dst_dim_h * dst_dim_w;
int src_c_stride = src_dim_h * src_dim_w;
int c = (dst_idx / (dst_c_stride)) % dim_c;
int dst_y = (dst_idx / dst_dim_w) % dst_dim_h;
int src_y =
nearest_neighbor_compute_source_index(height_scale, dst_y, src_dim_h);
int src_y_up = nearest_neighbor_compute_source_index(
height_scale, dst_y + 1, src_dim_h + 1);
int dst_x = dst_idx % dst_dim_w;
int src_x =
nearest_neighbor_compute_source_index(width_scale, dst_x, src_dim_w);
int src_x_up = nearest_neighbor_compute_source_index(
width_scale, dst_x + 1, src_dim_w + 1);
for (int b = 0; b < dim_b; b++) {
accscalar_t grad = 0;
for (int y = src_y; y < src_y_up; y++) {
for (int x = src_x; x < src_x_up; x++) {
int src_idx =
b * dim_c * src_c_stride + c * src_c_stride + y * src_dim_w + x;
grad += grad_o[src_idx];
}
}
grad_i[dst_idx] = grad;
dst_idx += dim_c * dst_c_stride;
}
}
static void upsample_nearest2d_out_cuda_template(
Tensor& output,
const Tensor& input_,
IntArrayRef output_size,
double scales_1,
double scales_2) {
TensorArg input_arg{input_, "input_", 1}, output_arg{output, "output", 2};
checkAllSameGPU(
"upsample_nearest2d_out_cuda_template", {input_arg, output_arg});
TORCH_CHECK(
output_size.size() == 2,
"It is expected output_size equals to 2, but got size ",
output_size.size());
int output_height = output_size[0];
int output_width = output_size[1];
int nbatch = input_.size(0);
int channels = input_.size(1);
int input_height = input_.size(2);
int input_width = input_.size(3);
upsample_2d_shape_check(
input_,
Tensor(),
nbatch,
channels,
input_height,
input_width,
output_height,
output_width);
AT_ASSERT(
input_height > 0 && input_width > 0 && output_height > 0 &&
output_width > 0);
Tensor input = input_.contiguous();
output.resize_({nbatch, channels, output_height, output_width});
int nc = nbatch * channels;
const int max_threads = std::min<int>(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, MAX_THREADS);
int* maxThreadsDim = at::cuda::getCurrentDeviceProperties()->maxThreadsDim;
int* maxGridSize = at::cuda::getCurrentDeviceProperties()->maxGridSize;
// upsample_2d_shape_check makes sure input/output tensor is not empty;
int block_x = std::min<int>(
maxThreadsDim[0], std::min<int>(lastPow2(output_width), max_threads));
int block_y = std::min<int>(
maxThreadsDim[1],
std::min<int>(lastPow2(output_height), max_threads / block_x));
int block_z = std::min<int>(
maxThreadsDim[2], std::min<int>(nc, max_threads / block_x / block_y));
const dim3 block(block_x, block_y, block_z);
int grid_x = cuda::ATenCeilDiv(output_width, block_x);
int grid_y = cuda::ATenCeilDiv(output_height, block_y);
int grid_z = std::min<int>(
maxGridSize[2], cuda::ATenCeilDiv(nc, block_z * 4));
const dim3 grid(grid_x, grid_y, grid_z);
// Error out on cases where grid_x & grid_y exceeds limit of launch config, as
// the current kernel implementation doesn't loop over the two dimensions.
// This is unlikely to happen.
// TODO: kernel implementation could stride on spatial dimension. We probably
// need to overhaul the kernel.
TORCH_CHECK(
grid_x <= maxGridSize[0] && grid_y <= maxGridSize[1],
"input tensor has spatial dimension larger than the kernel capacity");
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input.scalar_type(), "upsample_nearest2d_out_frame", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto idata = input.data_ptr<scalar_t>();
auto odata = output.data_ptr<scalar_t>();
const float height_scale = compute_scales_value<float>(scales_1, input_height, output_height);
const float width_scale = compute_scales_value<float>(scales_2, input_width, output_width);
upsample_nearest2d_out_frame<scalar_t, accscalar_t>
<<<grid, block, 0, stream>>>(
idata,
odata,
nc,
input_height,
input_width,
output_height,
output_width,
height_scale,
width_scale);
});
AT_CUDA_CHECK(cudaGetLastError());
}
static void upsample_nearest2d_backward_out_cuda_template(
Tensor& grad_input,
const Tensor& grad_output_,
IntArrayRef output_size,
IntArrayRef input_size,
double scales_1,
double scales_2) {
TensorArg grad_input_arg{grad_input, "grad_input", 1},
grad_output_arg{grad_output_, "grad_output_", 2};
checkAllSameGPU(
"upsample_nearest2d_backward_out_cuda",
{grad_output_arg, grad_input_arg});
TORCH_CHECK(
output_size.size() == 2,
"It is expected output_size equals to 2, but got size ",
output_size.size());
TORCH_CHECK(
input_size.size() == 4,
"It is expected input_size equals to 4, but got size ",
input_size.size());
int output_height = output_size[0];
int output_width = output_size[1];
int nbatch = input_size[0];
int channels = input_size[1];
int input_height = input_size[2];
int input_width = input_size[3];
upsample_2d_shape_check(
Tensor(),
grad_output_,
nbatch,
channels,
input_height,
input_width,
output_height,
output_width);
Tensor grad_output = grad_output_.contiguous();
grad_input.resize_({nbatch, channels, input_height, input_width});
// upsample_2d_shape_check makes sure `nbatch != 0`
unsigned int n = grad_input.numel() / nbatch;
dim3 bdim{std::min<unsigned int>(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, MAX_THREADS)};
dim3 gdim{cuda::ATenCeilDiv(n, bdim.x)};
// safe check for int32 indexing; implicitly restrict launch config for kernel
TORCH_CHECK(grad_input.numel() <= std::numeric_limits<int32_t>::max());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(), "upsample_nearest2d_backward_out_frame", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto idata = grad_input.data_ptr<scalar_t>();
auto odata = grad_output.data_ptr<scalar_t>();
const float height_scale = compute_scales_value_backwards<float>(scales_1, output_height, input_height);
const float width_scale = compute_scales_value_backwards<float>(scales_2, output_width, input_width);
upsample_nearest2d_backward_out_frame<scalar_t, accscalar_t>
<<<gdim, bdim, 0, stream>>>(
odata,
nbatch,
channels,
output_height,
output_width,
input_height,
input_width,
idata,
height_scale,
width_scale);
});
AT_CUDA_CHECK(cudaGetLastError());
}
} // namespace
Tensor& upsample_nearest2d_out_cuda(
Tensor& output,
const Tensor& input,
IntArrayRef output_size,
double scales_1,
double scales_2) {
upsample_nearest2d_out_cuda_template(output, input, output_size, scales_1, scales_2);
return output;
}
Tensor upsample_nearest2d_cuda(const Tensor& input, IntArrayRef output_size, double scales_1, double scales_2) {
Tensor output = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
upsample_nearest2d_out_cuda_template(output, input, output_size, scales_1, scales_2);
return output;
}
Tensor& upsample_nearest2d_backward_out_cuda(
Tensor& grad_input,
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
double scales_1,
double scales_2) {
upsample_nearest2d_backward_out_cuda_template(
grad_input, grad_output, output_size, input_size, scales_1, scales_2);
return grad_input;
}
Tensor upsample_nearest2d_backward_cuda(
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
double scales_1,
double scales_2) {
Tensor grad_input = at::empty_like(grad_output, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
upsample_nearest2d_backward_out_cuda_template(
grad_input, grad_output, output_size, input_size, scales_1, scales_2);
return grad_input;
}
} // namespace native
} // namespace at