forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
UnaryOpsKernel.cpp
441 lines (394 loc) · 16.8 KB
/
UnaryOpsKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#include <cmath>
#include <type_traits>
#include <ATen/Config.h>
#include <ATen/Dispatch.h>
#include <ATen/CPUGenerator.h>
#include <ATen/Utils.h>
#include <ATen/Generator.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vml.h>
#include <ATen/cpu/vec256/vec256.h>
#include <ATen/cpu/vec256/functional.h>
#include <ATen/native/Distributions.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/UnaryOps.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/native/cpu/zmath.h>
#include <ATen/native/Math.h>
#if AT_MKL_ENABLED()
#include <mkl.h>
#endif
namespace at { namespace native {
namespace {
using namespace vec256;
static void sigmoid_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return ((scalar_t)(1) / ((scalar_t)(1) + std::exp((-a)))); },
[=](Vec256<scalar_t> a) {
a = Vec256<scalar_t>((scalar_t)(0)) - a;
a = a.exp();
a = Vec256<scalar_t>((scalar_t)(1)) + a;
a = a.reciprocal();
return a;
});
});
}
template<typename T>
T abs_impl(T v) {
return std::abs(v);
}
template<>
uint8_t abs_impl(uint8_t v) {
return v;
}
static void abs_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "abs_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return abs_impl(a); },
[=](Vec256<scalar_t> a) { return a.abs(); });
});
}
static void angle_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "angle_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return angle_impl(a); },
[=](Vec256<scalar_t> a) { return a.angle(); });
});
}
static void real_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "real_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return real_impl(a); },
[=](Vec256<scalar_t> a) { return a.real(); });
});
}
static void imag_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "imag_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return imag_impl(a); },
[=](Vec256<scalar_t> a) { return a.imag(); });
});
}
static void conj_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "conj_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return conj_impl(a); },
[=](Vec256<scalar_t> a) { return a.conj(); });
});
}
static void bitwise_not_kernel(TensorIterator& iter) {
if (iter.dtype() == ScalarType::Bool) {
// Boolean type does not work with ~ (bitwise NOT) in C++. bitwise_not wraps this operation for both Boolean and
// integral types.
cpu_kernel(
iter,
[](bool a) {
return !a;
});
} else {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "bitwise_not_cpu", [&]() {
cpu_kernel(
iter,
[](scalar_t a) -> scalar_t {
return ~a;
});
});
}
}
static void frac_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "frac_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return a - std::trunc(a); },
[=](Vec256<scalar_t> a) { return a.frac(); });
});
}
static void logical_not_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND2(kBool, kHalf, iter.dtype(1), "logical_not_cpu", [&]() {
using self_t = scalar_t;
AT_DISPATCH_ALL_TYPES_AND2(kBool, kHalf, iter.dtype(0), "logical_not_cpu", [&]() {
cpu_kernel(iter, [](self_t a) -> scalar_t { return static_cast<scalar_t>(!a); });
});
});
}
static void reciprocal_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(iter.dtype(), "reciprocal_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return decltype(a)(1.0) / a; },
[=](Vec256<scalar_t> a) { return a.reciprocal(); });
});
}
static void neg_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "neg_cpu", [&]() {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return -a; },
[=](Vec256<scalar_t> a) { return a.neg(); });
});
}
static void sign_kernel(TensorIterator& iter){
if(iter.dtype() == ScalarType::Bool){
cpu_kernel(iter, [=](bool x) -> bool { return x; });
} else {
AT_DISPATCH_ALL_TYPES_AND(ScalarType::Half, iter.dtype(), "sign_cpu", [&]() {
auto zero_vec = Vec256<scalar_t>((scalar_t)(0));
auto one_vec = Vec256<scalar_t>((scalar_t)(1));
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return (0 < a) - (a < 0); },
[=](Vec256<scalar_t> self_vec){
// Comparision operators returns bitmask.
auto left = Vec256<scalar_t>::blendv(zero_vec, one_vec, zero_vec < self_vec);
auto right = Vec256<scalar_t>::blendv(zero_vec, one_vec, self_vec < zero_vec);
return left - right;
});
});
}
}
static void sinh_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(iter.dtype(), "sinh_cpu", [&]() {
cpu_kernel(
iter,
[=](scalar_t a) -> scalar_t { return std::sinh(a); });
});
}
static void cosh_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(iter.dtype(), "cosh_cpu", [&]() {
cpu_kernel(
iter,
[=](scalar_t a) -> scalar_t { return std::cosh(a); });
});
}
static void digamma_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "digamma", [&]() {
cpu_kernel(
iter,
[=](scalar_t a) -> scalar_t { return calc_digamma(a); });
});
}
static void trigamma_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "trigamma", [&]() {
cpu_kernel(
iter,
[=](scalar_t a) -> scalar_t { return trigamma(a); });
});
}
static void polygamma_kernel(TensorIterator& iter, int64_t n) {
switch (n) {
case 0: digamma_kernel(iter); break;
case 1: trigamma_kernel(iter); break;
default: TORCH_CHECK(false, "polygamma(n,x) is not implemented for n>=2, but was ", n);
}
}
static void clamp_kernel(TensorIterator& iter, Scalar min_scalar, Scalar max_scalar) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "clamp_cpu", [&]() {
ztype<scalar_t>::value_t (*zabs_)(scalar_t) = zabs;
auto min = min_scalar.to<scalar_t>();
auto max = max_scalar.to<scalar_t>();
auto min_vec = Vec256<scalar_t>(min);
auto max_vec = Vec256<scalar_t>(max);
cpu_kernel_vec(iter,
[=](scalar_t a) -> scalar_t { return zabs_(a) < zabs_(min) ? min : (zabs_(a) > zabs_(max) ? max : a); },
[=](Vec256<scalar_t> a) { return vec256::clamp(a, min_vec, max_vec); });
});
}
static void clamp_max_kernel(TensorIterator& iter, Scalar max_scalar) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "clamp_max_cpu", [&]() {
ztype<scalar_t>::value_t (*zabs_)(scalar_t) = zabs;
auto max = max_scalar.to<scalar_t>();
auto max_vec = Vec256<scalar_t>(max);
cpu_kernel_vec(iter,
[=](scalar_t a) -> scalar_t { return zabs_(a) > zabs_(max) ? max : a; },
[=](Vec256<scalar_t> a) { return vec256::clamp_max(a, max_vec); });
});
}
static void clamp_min_kernel(TensorIterator& iter, Scalar min_scalar) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(iter.dtype(), "clamp_min_cpu", [&]() {
ztype<scalar_t>::value_t (*zabs_)(scalar_t) = zabs;
auto min = min_scalar.to<scalar_t>();
auto min_vec = Vec256<scalar_t>(min);
cpu_kernel_vec(iter,
[=](scalar_t a) -> scalar_t { return zabs_(a) < zabs_(min) ? min : a; },
[=](Vec256<scalar_t> a) { return vec256::clamp_min(a, min_vec); });
});
}
#if !AT_MKL_ENABLED()
void bernoulli_mkl_kernel(Tensor &output, const double p, Generator* gen) {
// Use AT_ASSERTM because this should never be reached, and AT_ASSERTM tells
// users to report this as a bug.
AT_ASSERTM(false, "ATen not compiled with MKL");
}
#else
void bernoulli_mkl_kernel(Tensor &self, const double p, Generator* gen) {
CPUGenerator* generator = get_generator_or_default<CPUGenerator>(gen, detail::getDefaultCPUGenerator());
int64_t seed;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
seed = generator->random();
}
int64_t n = self.numel();
bool contig = self.is_contiguous();
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Bool, self.scalar_type(), "bernoulli_scalar_cpu_", [&] {
at::Tensor tmp_int_tensor;
if (std::is_same<scalar_t, int>::value && contig) {
tmp_int_tensor = self;
} else {
tmp_int_tensor = at::empty(self.sizes(), self.options().dtype(at::kInt));
}
scalar_t *self_ptr = self.data_ptr<scalar_t>();
int *sample_int_ptr = tmp_int_tensor.data_ptr<int>();
auto sample = [&](int64_t begin, int64_t end) {
int64_t len = end - begin;
if (len > 0) {
VSLStreamStatePtr stream;
vslNewStream(&stream, VSL_BRNG_MCG31, seed);
vslSkipAheadStream(stream, begin);
viRngBernoulli(VSL_RNG_METHOD_BERNOULLI_ICDF, stream, len,
sample_int_ptr + begin, p);
vslDeleteStream(&stream);
// vectorized copy if using buffer and contiguous, i.e., being non-int
// type and contiguous
if (!std::is_same<scalar_t, int>::value && contig) {
scalar_t *self_seg = self_ptr + begin;
int* tmp_seg = sample_int_ptr + begin;
at::vec256::convert<int, scalar_t>(tmp_seg, self_seg, len);
}
}
};
parallel_for(0, n, /* grain_size= */ 800, sample);
// copy_ if using buffer and non contiguous
if (!contig) {
self.copy_(tmp_int_tensor);
}
});
}
#endif
static void rsqrt_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(iter.dtype(), "rsqrt_cpu", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t {
return ((scalar_t)1) / std::sqrt(a);
},
[=](Vec256<scalar_t> a) { return a.rsqrt(); });
});
}
// TODO: Disable cont. branch to test more risky code
#define IMPLEMENT_FLOAT_KERNEL(dispatchtypes, op) \
static void op##_kernel(TensorIterator& iter) { \
TORCH_INTERNAL_ASSERT(iter.ntensors() == 2); \
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), op##_vml_cpu, [&]() { \
iter.serial_for_each( \
[&](char** data_, const int64_t* strides, int64_t n) { \
scalar_t* out_data = reinterpret_cast<scalar_t*>(data_[0]); \
scalar_t* in_data = reinterpret_cast<scalar_t*>(data_[1]); \
int64_t out_stride = strides[0] / sizeof(scalar_t); \
int64_t in_stride = strides[1] / sizeof(scalar_t); \
if (out_stride == 1 && in_stride == 1) { \
vml::v##op(out_data, in_data, n); \
} else { \
static constexpr int64_t WIDTH = 131072 / sizeof(scalar_t); \
for (int64_t i = 0; i < n; i += WIDTH) { \
scalar_t buffer[WIDTH]; \
int64_t width = WIDTH; \
width = std::min(width, n - i); \
for (int64_t j = 0; j < width; j++) \
buffer[j] = in_data[in_stride * (i + j)]; \
vml::v##op(buffer, buffer, width); \
for (int64_t j = 0; j < width; j++) \
out_data[out_stride * (i + j)] = buffer[j]; \
} \
} \
}, \
{0, iter.numel()}); \
}); \
} \
REGISTER_DISPATCH(op##_stub, &op##_kernel)
#define IMPLEMENT_COMPLEX_KERNEL(dispatchtypes, op) \
static void op##_kernel(TensorIterator& iter) { \
TORCH_INTERNAL_ASSERT(iter.ntensors() == 2); \
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(iter.dtype(), op##_vml_cpu, [&]() {\
iter.serial_for_each( \
[&](char** data_, const int64_t* strides, int64_t n) { \
scalar_t* out_data = reinterpret_cast<scalar_t*>(data_[0]); \
scalar_t* in_data = reinterpret_cast<scalar_t*>(data_[1]); \
int64_t out_stride = strides[0] / sizeof(scalar_t); \
int64_t in_stride = strides[1] / sizeof(scalar_t); \
if (out_stride == 1 && in_stride == 1) { \
vml::v##op(out_data, in_data, n); \
} else { \
static constexpr int64_t WIDTH = 131072 / sizeof(scalar_t); \
for (int64_t i = 0; i < n; i += WIDTH) { \
scalar_t buffer[WIDTH]; \
int64_t width = WIDTH; \
width = std::min(width, n - i); \
for (int64_t j = 0; j < width; j++) \
buffer[j] = in_data[in_stride * (i + j)]; \
vml::v##op(buffer, buffer, width); \
for (int64_t j = 0; j < width; j++) \
out_data[out_stride * (i + j)] = buffer[j]; \
} \
} \
}, \
{0, iter.numel()}); \
}); \
} \
REGISTER_DISPATCH(op##_stub, &op##_kernel)
} // anonymous namespace
REGISTER_DISPATCH(rsqrt_stub, &rsqrt_kernel);
REGISTER_DISPATCH(sigmoid_stub, &sigmoid_kernel);
REGISTER_DISPATCH(bernoulli_mkl_stub, &bernoulli_mkl_kernel);
REGISTER_DISPATCH(abs_stub, &abs_kernel);
REGISTER_DISPATCH(angle_stub, &angle_kernel);
REGISTER_DISPATCH(real_stub, &real_kernel);
REGISTER_DISPATCH(imag_stub, &imag_kernel);
REGISTER_DISPATCH(conj_stub, &conj_kernel);
REGISTER_DISPATCH(bitwise_not_stub, &bitwise_not_kernel);
REGISTER_DISPATCH(logical_not_stub, &logical_not_kernel);
REGISTER_DISPATCH(frac_stub, &frac_kernel);
REGISTER_DISPATCH(reciprocal_stub, &reciprocal_kernel);
REGISTER_DISPATCH(neg_stub, &neg_kernel);
REGISTER_DISPATCH(sign_stub, &sign_kernel);
REGISTER_DISPATCH(sinh_stub, &sinh_kernel);
REGISTER_DISPATCH(cosh_stub, &cosh_kernel);
REGISTER_DISPATCH(digamma_stub, &digamma_kernel);
REGISTER_DISPATCH(trigamma_stub, &trigamma_kernel);
REGISTER_DISPATCH(polygamma_stub, &polygamma_kernel);
REGISTER_DISPATCH(clamp_stub, &clamp_kernel);
REGISTER_DISPATCH(clamp_max_stub, &clamp_max_kernel);
REGISTER_DISPATCH(clamp_min_stub, &clamp_min_kernel);
// IMPLEMENT_FLOAT_KERNEL(ALL, abs)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, acos)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, asin)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, atan)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, ceil)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, cos)
// IMPLEMENT_FLOAT_KERNEL(FLOATING, cosh)
IMPLEMENT_FLOAT_KERNEL(FLOATING, erf)
IMPLEMENT_FLOAT_KERNEL(FLOATING, erfc)
IMPLEMENT_FLOAT_KERNEL(FLOATING, erfinv)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, exp)
IMPLEMENT_FLOAT_KERNEL(FLOATING, expm1)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, floor)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, log)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, log10)
IMPLEMENT_FLOAT_KERNEL(FLOATING, log1p)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, log2)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, round)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, sin)
// IMPLEMENT_FLOAT_KERNEL(FLOATING, sinh)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, sqrt)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, tan)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, tanh)
IMPLEMENT_COMPLEX_KERNEL(FLOATING, trunc)
IMPLEMENT_FLOAT_KERNEL(FLOATING, lgamma)
}} // namespace at::native