forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
MultinomialKernel.cpp
144 lines (122 loc) · 5.41 KB
/
MultinomialKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Copy.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/core/DistributionsHelper.h>
#include <ATen/native/UnaryOps.h>
namespace at {
namespace native {
namespace {
template<typename scalar_t>
void multinomial_apply(Tensor& result, const Tensor& self, const int64_t n_sample, const bool with_replacement, Generator* generator) {
auto gen = get_generator_or_default<CPUGenerator>(generator, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
int64_t n_categories = self.size(-1);
int64_t n_dist = self.dim() > 1 ? self.size(-2) : 1;
/* cumulative probability distribution vector */
Tensor cum_dist = at::empty({n_categories}, self.options());
const scalar_t * const self_ptr = self.data_ptr<scalar_t>();
scalar_t * const cum_dist_ptr = cum_dist.data_ptr<scalar_t>();
int64_t * const result_ptr = result.data_ptr<int64_t>();
auto self_stride_0 = self.dim() > 1 ? self.stride(-2) : 0;
auto self_stride_1 = self.stride(-1);
auto cum_dist_stride_0 = cum_dist.stride(0);
auto result_dist_stride_0 = result.dim() > 1 ? result.stride(-2) : 0;
auto result_dist_stride_1 = result.stride(-1);
for (int64_t i = 0; i < n_dist; i++) {
/* Get normalized cumulative distribution from prob distribution */
scalar_t sum = 0;
scalar_t val;
int n_zeros = 0;
for (int64_t j = 0; j < n_categories; j++) {
val = self_ptr[i * self_stride_0 + j * self_stride_1];
TORCH_CHECK(val >= 0, "invalid multinomial distribution (encountering probability entry < 0)");
// NB: std::isfinite doesn't bode well with clang for half datatypes,
// so we manually cast it to a double and perform the check.
#if defined(__clang__)
TORCH_CHECK(std::isfinite(static_cast<double>(val)),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#else
TORCH_CHECK(std::isfinite(val),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#endif
sum += val;
if (val == 0) {
n_zeros += 1;
}
cum_dist_ptr[j * cum_dist_stride_0] = sum;
}
TORCH_CHECK(sum > 0, "invalid multinomial distribution (sum of probabilities <= 0)");
TORCH_CHECK(with_replacement || (n_categories - n_zeros >= n_sample),
"invalid multinomial distribution (with replacement=False, not enough non-negative category to sample)");
/* normalize cumulative probability distribution so that last val is 1
i.e. doesn't assume original self row sums to one */
if ((sum > 0) || ((sum < 1.00001) && (sum > 0.99999))) {
for (int64_t j = 0; j < n_categories; j++) {
cum_dist_ptr[j * cum_dist_stride_0] /= sum;
}
}
for (int64_t j = 0; j < n_sample; j++) {
/* sample a probability mass from a uniform distribution */
at::uniform_real_distribution<double> uniform(0, 1);
double uniform_sample = uniform(gen);
/* Do a binary search for the slot in which the prob falls
ie cum_dist[row][slot-1] < uniform_prob < cum_distr[row][slot] */
int left_pointer = 0;
int right_pointer = n_categories;
int mid_pointer;
scalar_t cum_prob;
int sample_idx;
/* Make sure the last cumulative distribution bucket sums to 1 */
cum_dist_ptr[(n_categories - 1) * cum_dist_stride_0] = 1;
while(right_pointer - left_pointer > 0) {
mid_pointer = left_pointer + (right_pointer - left_pointer) / 2;
cum_prob = cum_dist_ptr[mid_pointer * cum_dist_stride_0];
if (cum_prob < uniform_sample) {
left_pointer = mid_pointer + 1;
}
else {
right_pointer = mid_pointer;
}
}
sample_idx = left_pointer;
/* store in result tensor (will be incremented for lua compat by wrapper) */
result_ptr[i * result_dist_stride_0 + j * result_dist_stride_1] = sample_idx;
/* Once a sample is drawn, it cannot be drawn again. ie sample without replacement */
if (!with_replacement && j < n_sample - 1) {
/* update cumulative distribution so that sample cannot be drawn again */
scalar_t diff;
scalar_t new_val = 0;
scalar_t sum;
if (sample_idx != 0) {
new_val = cum_dist_ptr[(sample_idx - 1) * cum_dist_stride_0];
}
/* marginal cumulative mass (i.e. original probability) of sample */
diff = cum_dist_ptr[sample_idx * cum_dist_stride_0] - new_val;
/* new sum of marginals is not one anymore... */
sum = 1.0 - diff;
for (int64_t k = 0; k < n_categories; k++) {
new_val = cum_dist_ptr[k * cum_dist_stride_0];
if (k >= sample_idx) {
/* remove sampled probability mass from later cumulative probabilities */
new_val -= diff;
}
/* make total marginals sum to one */
new_val /= sum;
cum_dist_ptr[k * cum_dist_stride_0] = new_val;
}
}
}
}
}
static void multinomial_kernel_impl(Tensor& result, const Tensor& self, const int64_t n_sample, const bool with_replacement, Generator *gen) {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(self.scalar_type(), "multinomial", [&] {
multinomial_apply<scalar_t>(result, self, n_sample, with_replacement, gen);
});
}
}
REGISTER_DISPATCH(multinomial_stub, &multinomial_kernel_impl);
}
}