-
Notifications
You must be signed in to change notification settings - Fork 62
/
uvit.py
230 lines (189 loc) · 8.49 KB
/
uvit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torch.nn as nn
import math
from .timm import trunc_normal_, Mlp
import einops
import torch.utils.checkpoint
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
ATTENTION_MODE = 'flash'
else:
try:
import xformers
import xformers.ops
ATTENTION_MODE = 'xformers'
except:
ATTENTION_MODE = 'math'
print(f'attention mode is {ATTENTION_MODE}')
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def patchify(imgs, patch_size):
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
return x
def unpatchify(x, channels=3):
patch_size = int((x.shape[2] // channels) ** 0.5)
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2]
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, L, C = x.shape
qkv = self.qkv(x)
if ATTENTION_MODE == 'flash':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = einops.rearrange(x, 'B H L D -> B L (H D)')
elif ATTENTION_MODE == 'xformers':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
elif ATTENTION_MODE == 'math':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
else:
raise NotImplemented
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
self.use_checkpoint = use_checkpoint
def forward(self, x, skip=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
else:
return self._forward(x, skip)
def _forward(self, x, skip=None):
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip], dim=-1))
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, patch_size, in_chans=3, embed_dim=768):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
assert H % self.patch_size == 0 and W % self.patch_size == 0
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class UViT(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, mlp_time_embed=False, num_classes=-1,
use_checkpoint=False, conv=True, skip=True):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_classes = num_classes
self.in_chans = in_chans
self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = (img_size // patch_size) ** 2
self.time_embed = nn.Sequential(
nn.Linear(embed_dim, 4 * embed_dim),
nn.SiLU(),
nn.Linear(4 * embed_dim, embed_dim),
) if mlp_time_embed else nn.Identity()
if self.num_classes > 0:
self.label_emb = nn.Embedding(self.num_classes, embed_dim)
self.extras = 2
else:
self.extras = 1
self.pos_embed = nn.Parameter(torch.zeros(1, self.extras + num_patches, embed_dim))
self.in_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.mid_block = Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
self.out_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.norm = norm_layer(embed_dim)
self.patch_dim = patch_size ** 2 * in_chans
self.decoder_pred = nn.Linear(embed_dim, self.patch_dim, bias=True)
self.final_layer = nn.Conv2d(self.in_chans, self.in_chans, 3, padding=1) if conv else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed'}
def forward(self, x, timesteps, y=None):
x = self.patch_embed(x)
B, L, D = x.shape
time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim))
time_token = time_token.unsqueeze(dim=1)
x = torch.cat((time_token, x), dim=1)
if y is not None:
label_emb = self.label_emb(y)
label_emb = label_emb.unsqueeze(dim=1)
x = torch.cat((label_emb, x), dim=1)
x = x + self.pos_embed
skips = []
for blk in self.in_blocks:
x = blk(x)
skips.append(x)
x = self.mid_block(x)
for blk in self.out_blocks:
x = blk(x, skips.pop())
x = self.norm(x)
x = self.decoder_pred(x)
assert x.size(1) == self.extras + L
x = x[:, self.extras:, :]
x = unpatchify(x, self.in_chans)
x = self.final_layer(x)
return x