-
Notifications
You must be signed in to change notification settings - Fork 205
/
text_cnn.py
93 lines (82 loc) · 4.64 KB
/
text_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#coding=utf-8
import tensorflow as tf
import numpy as np
class TextCNN(object):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"""
def __init__(self,w2v_model, sequence_length, num_classes,
embedding_size, filter_sizes,
num_filters, l2_reg_lambda=0.0,device = '/gpu:1'):
self.word_embeddings = w2v_model
self.sequence_length = sequence_length
self.num_classes = num_classes
self.embedding_size = embedding_size
self.filter_sizes = filter_sizes
self.num_filters = num_filters
self.l2_reg_lambda = l2_reg_lambda
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, self.sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, self.num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
with tf.device(device):
# Embedding layer
word_embeddings = tf.Variable(initial_value=self.word_embeddings, trainable=True) # lookup table
self.embedded_chars = tf.nn.embedding_lookup(word_embeddings, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(self.filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, self.embedding_size, 1, self.num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1),dtype=tf.float32, name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.num_filters]),dtype=tf.float32, name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, self.sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = self.num_filters * len(self.filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1,num_filters_total])
# Add dropout,以概率1-dropout_keep_prob,随机丢弃一些节点
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[num_filters_total, self.num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[self.num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# CalculateMean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + self.l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
#Precission Recall F1_score
with tf.name_scope("confusion_matrix"):
self.confusion_matrix = tf.contrib.metrics.confusion_matrix(self.predictions, tf.argmax(self.input_y, 1), num_classes=self.num_classes,dtype=tf.int32, name="confusion_matrix", weights=None)