Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Complex-valued operators for multigrid preconditioning #87

Merged
merged 5 commits into from
Aug 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions docs/src/config/solver.md
Original file line number Diff line number Diff line change
Expand Up @@ -316,6 +316,7 @@ directory specified by [`config["Problem"]["Output"]`]
"MGCycleIts": <int>,
"MGSmoothIts": <int>,
"MGSmoothOrder": <int>,
"PCMatReal": <bool>,
"PCMatShifted": <bool>,
"PCSide": <string>,
"DivFreeTol": <float>,
Expand Down Expand Up @@ -394,13 +395,17 @@ multigrid preconditioners (when `"UseMultigrid"` is `true` or `"Type"` is `"AMS"
`"MGSmoothIts" [1]` : Number of pre- and post-smooth iterations used for multigrid
preconditioners (when `"UseMultigrid"` is `true` or `"Type"` is `"AMS"` or `"BoomerAMG"`).

`"MGSmoothOrder" [3]` : Order of polynomial smoothing for geometric multigrid
`"MGSmoothOrder" [4]` : Order of polynomial smoothing for geometric multigrid
preconditioning (when `"UseMultigrid"` is `true`).

`"PCMatReal" [false]` : When set to `true`, constructs the preconditioner for frequency
domain problems using a real-valued approximation of the system matrix. This is always
performed for the coarsest multigrid level regardless of the setting of `"PCMatReal"`.

`"PCMatShifted" [false]` : When set to `true`, constructs the preconditioner for frequency
domain problems using a real SPD approximation of the system matrix, which can help
performance at high frequencies (relative to the lowest nonzero eigenfrequencies of the
model).
domain problems using a positive definite approximation of the system matrix by flipping
the sign for the mass matrix contribution, which can help performance at high frequencies
(relative to the lowest nonzero eigenfrequencies of the model).

`"PCSide" ["Default"]` : Side for preconditioning. Not all options are available for all
iterative solver choices, and the default choice depends on the iterative solver used.
Expand All @@ -427,6 +432,9 @@ vectors in Krylov subspace methods or other parts of the code.
- `"InitialGuess" [true]`
- `"MGLegacyTransfer" [false]`
- `"MGAuxiliarySmoother" [true]`
- `"MGSmoothEigScaleMax" [1.0]`
- `"MGSmoothEigScaleMin" [0.0]`
- `"MGSmoothChebyshev4th" [true]`
- `"PCLowOrderRefined" [false]`
- `"ColumnOrdering" ["Default"]` : `"METIS"`, `"ParMETIS"`,`"Scotch"`, `"PTScotch"`,
`"Default"`
Expand Down
12 changes: 9 additions & 3 deletions palace/drivers/basesolver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -82,20 +82,26 @@ BaseSolver::BaseSolver(const IoData &iodata, bool root, int size, int num_thread
}
}

void BaseSolver::SaveMetadata(const mfem::ParFiniteElementSpace &fespace) const
void BaseSolver::SaveMetadata(const mfem::ParFiniteElementSpaceHierarchy &fespaces) const
{
if (post_dir.length() == 0)
{
return;
}
const HYPRE_BigInt ndof = fespace.GlobalTrueVSize();
const mfem::ParFiniteElementSpace &fespace = fespaces.GetFinestFESpace();
HYPRE_BigInt ne = fespace.GetParMesh()->GetNE();
Mpi::GlobalSum(1, &ne, fespace.GetComm());
std::vector<HYPRE_BigInt> ndofs(fespaces.GetNumLevels());
for (int l = 0; l < fespaces.GetNumLevels(); l++)
{
ndofs[l] = fespaces.GetFESpaceAtLevel(l).GlobalTrueVSize();
}
if (root)
{
json meta = LoadMetadata(post_dir);
meta["Problem"]["MeshElements"] = ne;
meta["Problem"]["DegreesOfFreedom"] = ndof;
meta["Problem"]["DegreesOfFreedom"] = ndofs.back();
meta["Problem"]["MultigridDegreesOfFreedom"] = ndofs;
WriteMetadata(post_dir, meta);
}
}
Expand Down
4 changes: 2 additions & 2 deletions palace/drivers/basesolver.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
namespace mfem
{

class ParFiniteElementSpace;
class ParFiniteElementSpaceHierarchy;
class ParMesh;

} // namespace mfem
Expand Down Expand Up @@ -77,7 +77,7 @@ class BaseSolver
Timer &timer) const = 0;

// These methods write different simulation metadata to a JSON file in post_dir.
void SaveMetadata(const mfem::ParFiniteElementSpace &fespace) const;
void SaveMetadata(const mfem::ParFiniteElementSpaceHierarchy &fespaces) const;
template <typename SolverType>
void SaveMetadata(const SolverType &ksp) const;
void SaveMetadata(const Timer &timer) const;
Expand Down
16 changes: 8 additions & 8 deletions palace/drivers/drivensolver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ void DrivenSolver::Solve(std::vector<std::unique_ptr<mfem::ParMesh>> &mesh,
"Reverting to uniform sweep!\n");
adaptive = false;
}
SaveMetadata(spaceop.GetNDSpace());
SaveMetadata(spaceop.GetNDSpaces());

// Frequencies will be sampled uniformly in the frequency domain. Index sets are for
// computing things like S-parameters in postprocessing.
Expand Down Expand Up @@ -115,11 +115,11 @@ void DrivenSolver::SweepUniform(SpaceOperator &spaceop, PostOperator &postop, in
// Because the Dirichlet BC is always homogenous, no special elimination is required on
// the RHS. Assemble the linear system for the initial frequency (so we can call
// KspSolver::SetOperators). Compute everything at the first frequency step.
auto K = spaceop.GetComplexStiffnessMatrix(Operator::DIAG_ONE);
auto C = spaceop.GetComplexDampingMatrix(Operator::DIAG_ZERO);
auto M = spaceop.GetComplexMassMatrix(Operator::DIAG_ZERO);
auto A2 = spaceop.GetComplexExtraSystemMatrix(omega0, Operator::DIAG_ZERO);
auto Curl = spaceop.GetComplexCurlMatrix();
auto K = spaceop.GetStiffnessMatrix<ComplexOperator>(Operator::DIAG_ONE);
auto C = spaceop.GetDampingMatrix<ComplexOperator>(Operator::DIAG_ZERO);
auto M = spaceop.GetMassMatrix<ComplexOperator>(Operator::DIAG_ZERO);
auto A2 = spaceop.GetExtraSystemMatrix<ComplexOperator>(omega0, Operator::DIAG_ZERO);
auto Curl = spaceop.GetCurlMatrix<ComplexOperator>();

// Set up the linear solver and set operators for the first frequency step. The
// preconditioner for the complex linear system is constructed from a real approximation
Expand Down Expand Up @@ -154,7 +154,7 @@ void DrivenSolver::SweepUniform(SpaceOperator &spaceop, PostOperator &postop, in
if (step > step0)
{
// Update frequency-dependent excitation and operators.
A2 = spaceop.GetComplexExtraSystemMatrix(omega, Operator::DIAG_ZERO);
A2 = spaceop.GetExtraSystemMatrix<ComplexOperator>(omega, Operator::DIAG_ZERO);
A = spaceop.GetSystemMatrix(std::complex<double>(1.0, 0.0), 1i * omega,
std::complex<double>(-omega * omega, 0.0), K.get(),
C.get(), M.get(), A2.get());
Expand Down Expand Up @@ -236,7 +236,7 @@ void DrivenSolver::SweepAdaptive(SpaceOperator &spaceop, PostOperator &postop, i

// Allocate negative curl matrix for postprocessing the B-field and vectors for the
// high-dimensional field solution.
auto Curl = spaceop.GetComplexCurlMatrix();
auto Curl = spaceop.GetCurlMatrix<ComplexOperator>();
ComplexVector E(Curl->Width()), B(Curl->Height());
E = 0.0;
B = 0.0;
Expand Down
12 changes: 6 additions & 6 deletions palace/drivers/eigensolver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -30,11 +30,11 @@ void EigenSolver::Solve(std::vector<std::unique_ptr<mfem::ParMesh>> &mesh,
// computational range. The damping matrix may be nullptr.
timer.Lap();
SpaceOperator spaceop(iodata, mesh);
auto K = spaceop.GetComplexStiffnessMatrix(Operator::DIAG_ONE);
auto C = spaceop.GetComplexDampingMatrix(Operator::DIAG_ZERO);
auto M = spaceop.GetComplexMassMatrix(Operator::DIAG_ZERO);
auto Curl = spaceop.GetComplexCurlMatrix();
SaveMetadata(spaceop.GetNDSpace());
auto K = spaceop.GetStiffnessMatrix<ComplexOperator>(Operator::DIAG_ONE);
auto C = spaceop.GetDampingMatrix<ComplexOperator>(Operator::DIAG_ZERO);
auto M = spaceop.GetMassMatrix<ComplexOperator>(Operator::DIAG_ZERO);
auto Curl = spaceop.GetCurlMatrix<ComplexOperator>();
SaveMetadata(spaceop.GetNDSpaces());

// Configure objects for postprocessing.
PostOperator postop(iodata, spaceop, "eigenmode");
Expand Down Expand Up @@ -190,7 +190,7 @@ void EigenSolver::Solve(std::vector<std::unique_ptr<mfem::ParMesh>> &mesh,
eigen->SetInitialSpace(v0); // Copies the vector

// Debug
// auto Grad = spaceop.GetComplexGradMatrix();
// auto Grad = spaceop.GetGradMatrix<ComplexOperator>();
// ComplexVector r0(Grad->Width());
// Grad->MultTranspose(v0, r0);
// r0.Print();
Expand Down
2 changes: 1 addition & 1 deletion palace/drivers/electrostaticsolver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ void ElectrostaticSolver::Solve(std::vector<std::unique_ptr<mfem::ParMesh>> &mes
timer.Lap();
LaplaceOperator laplaceop(iodata, mesh);
auto K = laplaceop.GetStiffnessMatrix();
SaveMetadata(laplaceop.GetH1Space());
SaveMetadata(laplaceop.GetH1Spaces());

// Set up the linear solver.
KspSolver ksp(iodata, laplaceop.GetH1Spaces());
Expand Down
2 changes: 1 addition & 1 deletion palace/drivers/magnetostaticsolver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ void MagnetostaticSolver::Solve(std::vector<std::unique_ptr<mfem::ParMesh>> &mes
timer.Lap();
CurlCurlOperator curlcurlop(iodata, mesh);
auto K = curlcurlop.GetStiffnessMatrix();
SaveMetadata(curlcurlop.GetNDSpace());
SaveMetadata(curlcurlop.GetNDSpaces());

// Set up the linear solver.
KspSolver ksp(iodata, curlcurlop.GetNDSpaces(), &curlcurlop.GetH1Spaces());
Expand Down
2 changes: 1 addition & 1 deletion palace/drivers/transientsolver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ void TransientSolver::Solve(std::vector<std::unique_ptr<mfem::ParMesh>> &mesh,
delta_t = std::min(delta_t, 0.95 * dt_max);
}
int nstep = GetNumSteps(0.0, iodata.solver.transient.max_t, delta_t);
SaveMetadata(spaceop.GetNDSpace());
SaveMetadata(spaceop.GetNDSpaces());

// Time stepping is uniform in the time domain. Index sets are for computing things like
// port voltages and currents in postprocessing.
Expand Down
Loading