forked from GoogleCloudPlatform/DataflowTemplates
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AvroToBigtable.java
200 lines (169 loc) · 7.75 KB
/
AvroToBigtable.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
* Copyright (C) 2018 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.teleport.bigtable;
import com.google.bigtable.v2.Mutation;
import com.google.bigtable.v2.Mutation.SetCell;
import com.google.common.base.MoreObjects;
import com.google.common.collect.ImmutableList;
import com.google.protobuf.ByteString;
import java.nio.ByteBuffer;
import org.apache.beam.runners.dataflow.options.DataflowPipelineOptions;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.io.AvroIO;
import org.apache.beam.sdk.io.gcp.bigtable.BigtableIO;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.options.ValueProvider.StaticValueProvider;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.values.KV;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Dataflow pipeline that imports data from Avro files in GCS to a Cloud Bigtable table. The Cloud
* Bigtable table must be created before running the pipeline and must have a compatible table
* schema. For example, if {@link BigtableCell} from the Avro files has a 'family' of "f1", the
* Bigtable table should have a column family of "f1".
*/
final class AvroToBigtable {
private static final Logger LOG = LoggerFactory.getLogger(AvroToBigtable.class);
/** Maximum number of mutations allowed per row by Cloud bigtable. */
private static final int MAX_MUTATIONS_PER_ROW = 100000;
private static final Boolean DEFAULT_SPLIT_LARGE_ROWS = false;
/** Options for the import pipeline. */
public interface Options extends PipelineOptions {
@Description("The project that contains the table to import into.")
ValueProvider<String> getBigtableProjectId();
@SuppressWarnings("unused")
void setBigtableProjectId(ValueProvider<String> projectId);
@Description("The Bigtable instance id that contains the table to import into.")
ValueProvider<String> getBigtableInstanceId();
@SuppressWarnings("unused")
void setBigtableInstanceId(ValueProvider<String> instanceId);
@Description("If true, a large row is split into multiple MutateRows requests.")
ValueProvider<Boolean> getSplitLargeRows();
@Description(
"Set the option to split a large row into multiple MutateRows requests. When a row is"
+ " split across requests, updates are not atomic. ")
void setSplitLargeRows(ValueProvider<Boolean> splitLargeRows);
@Description("The Bigtable table id to import into.")
ValueProvider<String> getBigtableTableId();
@SuppressWarnings("unused")
void setBigtableTableId(ValueProvider<String> tableId);
@Description(
"The input file patterm to read from. (e.g. gs://mybucket/somefolder/table1*.avro)")
ValueProvider<String> getInputFilePattern();
@SuppressWarnings("unused")
void setInputFilePattern(ValueProvider<String> inputFilePattern);
}
/**
* Runs a pipeline to import Avro files in GCS to a Cloud Bigtable table.
*
* @param args arguments to the pipeline
*/
public static void main(String[] args) {
Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
PipelineResult result = run(options);
// Wait for pipeline to finish only if it is not constructing a template.
if (options.as(DataflowPipelineOptions.class).getTemplateLocation() == null) {
result.waitUntilFinish();
}
}
public static PipelineResult run(Options options) {
Pipeline pipeline = Pipeline.create(PipelineUtils.tweakPipelineOptions(options));
BigtableIO.Write write =
BigtableIO.write()
.withProjectId(options.getBigtableProjectId())
.withInstanceId(options.getBigtableInstanceId())
.withTableId(options.getBigtableTableId());
pipeline
.apply("Read from Avro", AvroIO.read(BigtableRow.class).from(options.getInputFilePattern()))
.apply(
"Transform to Bigtable",
ParDo.of(
AvroToBigtableFn.createWithSplitLargeRows(
options.getSplitLargeRows(), MAX_MUTATIONS_PER_ROW)))
.apply("Write to Bigtable", write);
return pipeline.run();
}
/**
* Translates {@link BigtableRow} to {@link Mutation}s along with a row key. The mutations are
* {@link SetCell}s that set the value for specified cells with family name, column qualifier and
* timestamp.
*/
static class AvroToBigtableFn extends DoFn<BigtableRow, KV<ByteString, Iterable<Mutation>>> {
private final ValueProvider<Boolean> splitLargeRowsFlag;
private Boolean splitLargeRows;
private final int maxMutationsPerRow;
public static AvroToBigtableFn create() {
return new AvroToBigtableFn(StaticValueProvider.of(false), MAX_MUTATIONS_PER_ROW);
}
public static AvroToBigtableFn createWithSplitLargeRows(
ValueProvider<Boolean> splitLargeRowsFlag, int maxMutationsPerRequest) {
return new AvroToBigtableFn(splitLargeRowsFlag, maxMutationsPerRequest);
}
private AvroToBigtableFn(
ValueProvider<Boolean> splitLargeRowsFlag, int maxMutationsPerRequest) {
this.splitLargeRowsFlag = splitLargeRowsFlag;
this.maxMutationsPerRow = maxMutationsPerRequest;
}
@Setup
public void setup() {
if (splitLargeRowsFlag != null) {
splitLargeRows = splitLargeRowsFlag.get();
}
splitLargeRows = MoreObjects.firstNonNull(splitLargeRows, DEFAULT_SPLIT_LARGE_ROWS);
LOG.info("splitLargeRows set to: " + splitLargeRows);
}
@ProcessElement
public void processElement(
@Element BigtableRow row, OutputReceiver<KV<ByteString, Iterable<Mutation>>> out) {
ByteString key = toByteString(row.getKey());
// BulkMutation doesn't split rows. Currently, if a single row contains more than 100,000
// mutations, the service will fail the request.
ImmutableList.Builder<Mutation> mutations = ImmutableList.builder();
int cellsProcessed = 0;
for (BigtableCell cell : row.getCells()) {
SetCell setCell =
SetCell.newBuilder()
.setFamilyName(cell.getFamily().toString())
.setColumnQualifier(toByteString(cell.getQualifier()))
.setTimestampMicros(cell.getTimestamp())
.setValue(toByteString(cell.getValue()))
.build();
mutations.add(Mutation.newBuilder().setSetCell(setCell).build());
cellsProcessed++;
if (this.splitLargeRows && cellsProcessed % maxMutationsPerRow == 0) {
// Send a MutateRow request when we have accumulated max mutations per row.
out.output(KV.of(key, mutations.build()));
mutations = ImmutableList.builder();
}
}
// Flush any remaining mutations.
ImmutableList remainingMutations = mutations.build();
if (!remainingMutations.isEmpty()) {
out.output(KV.of(key, remainingMutations));
}
}
}
/** Copies the content in {@code byteBuffer} into a {@link ByteString}. */
protected static ByteString toByteString(ByteBuffer byteBuffer) {
return ByteString.copyFrom(byteBuffer.array());
}
}