forked from fvisin/reseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper_dataset.py
503 lines (402 loc) · 16.5 KB
/
helper_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import numpy as np
import os, sys
from numpy import sqrt, prod, ones, floor, repeat, pi, exp, zeros, sum
from numpy.random import RandomState
from theano.tensor.nnet import conv2d
from theano import shared, config, _asarray, function
import theano.tensor as T
floatX = config.floatX
from sklearn.feature_extraction.image import PatchExtractor
from sklearn.decomposition import PCA
from skimage import exposure
from skimage import io
from skimage import img_as_float, img_as_ubyte, img_as_uint, img_as_int
from skimage.color import label2rgb, rgb2hsv, hsv2rgb
from skimage.io import ImageCollection, imsave, imshow
from skimage.transform import resize
def compare_mask_image_filenames(filenames_images, filenames_mask,
replace_from='',
replace_to='',
msg="Filename images and mask mismatch"):
image = [i.split('/')[-1] for i in filenames_images]
mask = [i.split('/')[-1].replace(replace_from, replace_to) for i in
filenames_mask]
assert np.array_equal(image, mask), msg
def convert_RGB_mask_to_index(im, colors, ignore_missing_labels=False):
"""
:param im: mask in RGB format (classes are RGB colors)
:param colors: the color map should be in the following format
colors = OrderedDict([
("Sky", np.array([[128, 128, 128]], dtype=np.uint8)),
("Building", np.array([[128, 0, 0], # Building
[64, 192, 0], # Wall
[0, 128, 64] # Bridge
], dtype=np.uint8)
...
])
:param ignore_missing_labels: if True the function continue also if some
pixels fail the mappint
:return: the mask in index class format
"""
out = (np.ones(im.shape[:2]) * 255).astype(np.uint8)
for grey_val, (label, rgb) in enumerate(colors.items()):
for el in rgb:
match_pxls = np.where((im == np.asarray(el)).sum(-1) == 3)
out[match_pxls] = grey_val
if ignore_missing_labels: # retrieve the void label
if [0, 0, 0] in rgb:
void_label = grey_val
# debug
# outpath = '/Users/marcus/exp/datasets/camvid/grey_test/o.png'
# imsave(outpath, out)
######
if ignore_missing_labels:
match_missing = np.where(out == 255)
if match_missing[0].size > 0:
print "Ignoring missing labels"
out[match_missing] = void_label
assert (out != 255).all(), "rounding errors or missing classes in colors"
return out.astype(np.uint8)
def resize():
pass
def crop():
pass
def zero_pad(im, resize_size, inpath="", pad_value=0):
"""
:param im: the image you want to resize
:param resize_size: the new size of the image
:param inpath: [optional] to debug, the path of the image
:return: the zero-pad image in the new dimensions
"""
if im.ndim == 3:
h, w, _ = im.shape
elif im.ndim == 2:
h, w = im.shape
rw, rh = resize_size
pad_w = rw - w
pad_h = rh - h
pad_l = pad_r = pad_u = pad_d = 0
if pad_w > 0:
pad_l = int(pad_w / 2)
pad_r = pad_w - pad_l
if pad_h > 0:
pad_u = int(pad_h / 2)
pad_d = pad_h - pad_u
if im.ndim == 3:
im = np.pad(im, ((pad_u, pad_d), (pad_l, pad_r), (0, 0)),
mode='constant',
constant_values=pad_value)
elif im.ndim == 2:
im = np.pad(im, ((pad_u, pad_d), (pad_l, pad_r)),
mode='constant',
constant_values=pad_value)
assert (im.shape[1], im.shape[0]) == resize_size, \
"Resize size doesn't match: resize_size->{} resized->{}"\
" filename : {}".format(resize_size,
[im.shape[1], im.shape[0]],
inpath
)
return im
def rgb2illumination_invariant(img, alpha, hist_eq=False):
"""
this is an implementation of the illuminant-invariant color space published
by Maddern2014
http://www.robots.ox.ac.uk/~mobile/Papers/2014ICRA_maddern.pdf
:param img:
:param alpha: camera paramete
:return:
"""
ii_img = 0.5 + np.log(img[:, :, 1] + 1e-8) - \
alpha * np.log(img[:, :, 2] + 1e-8) - \
(1 - alpha) * np.log(img[:, :, 0] + 1e-8)
# ii_img = exposure.rescale_intensity(ii_img, out_range=(0, 1))
if hist_eq:
ii_img = exposure.equalize_hist(ii_img)
print np.max(ii_img)
print np.min(ii_img)
return ii_img
def save_image(outpath, img):
import errno
try:
os.makedirs(os.path.dirname(outpath))
except OSError as e:
if e.errno != errno.EEXIST:
raise e
pass
imsave(outpath, img)
def save_RGB_mask(outpath, mask):
return
def preprocess_dataset(train, valid, test,
input_to_float,
preprocess_type,
patch_size, max_patches):
if input_to_float and preprocess_type is None:
train_norm = train[0].astype(floatX) / 255.
train = (train_norm, train[1])
valid_norm = valid[0].astype(floatX) / 255.
valid = (valid_norm, valid[1])
test_norm = test[0].astype(floatX) / 255.
test = (test_norm, test[1])
if preprocess_type is None:
return train, valid, test
# whiten, LCN, GCN, Local Mean Subtract, or normalize
if len(train[0]) > 0:
train_pre = []
print ""
print "Preprocessing {} images of the train set with {} {} ".format(
len(train[0]), preprocess_type, patch_size),
print ""
i = 0
print "Progress: {0:.3g} %".format(i * 100 / len(train[0])),
for i, x in enumerate(train[0]):
img = np.expand_dims(x, axis=0)
x_pre = preprocess(img, preprocess_type,
patch_size,
max_patches)
train_pre.append(x_pre[0])
print "\rProgress: {0:.3g} %".format(i * 100 / len(train[0])),
sys.stdout.flush()
if input_to_float:
train_pre = np.array(train_pre).astype(floatX) / 255.
train = (np.array(train_pre), np.array(train[1]))
if len(valid[0]) > 0:
valid_pre = []
print ""
print "Preprocessing {} images of the valid set with {} {} ".format(
len(valid[0]), preprocess_type, patch_size),
print ""
i = 0
print "Progress: {0:.3g} %".format(i * 100 / len(valid[0])),
for i, x in enumerate(valid[0]):
img = np.expand_dims(x, axis=0)
x_pre = preprocess(img, preprocess_type,
patch_size,
max_patches)
valid_pre.append(x_pre[0])
print "\rProgress: {0:.3g} %".format(i * 100 / len(valid[0])),
sys.stdout.flush()
if input_to_float:
valid_pre = np.array(valid_pre).astype(floatX) / 255.
valid = (np.array(valid_pre), np.array(valid[1]))
if len(test[0]) > 0:
test_pre = []
print ""
print "Preprocessing {} images of the test set with {} {} ".format(
len(test[0]), preprocess_type, patch_size),
print ""
i = 0
print "Progress: {0:.3g} %".format(i * 100 / len(test[0])),
for i, x in enumerate(test[0]):
img = np.expand_dims(x, axis=0)
x_pre = preprocess(img, preprocess_type,
patch_size,
max_patches)
test_pre.append(x_pre[0])
print "\rProgress: {0:.3g} %".format(i * 100 / len(test[0])),
sys.stdout.flush()
if input_to_float:
test_pre = np.array(test_pre).astype(floatX) / 255.
test = (np.array(test_pre), np.array(test[1]))
return train, valid, test
def preprocess(x, mode=None,
patch_size=9,
max_patches=int(1e5)):
"""
:param x:
:param mode:
:param rng:
:param patch_size:
:param max_patches:
:return:
"""
if mode == 'conv-zca':
x = convolutional_zca(x,
patch_size=patch_size,
max_patches=max_patches)
elif mode == 'sub-lcn':
for d in range(x.shape[-1]):
x[:, :, :, d] = lecun_lcn(x[:, :, :, d],
kernel_size=patch_size)
elif mode == 'subdiv-lcn':
for d in range(x.shape[-1]):
x[:, :, :, d] = lecun_lcn(x[:, :, :, d],
kernel_size=patch_size,
use_divisor=True)
elif mode == 'gcn':
for d in range(x.shape[-1]):
x[:, :, :, d] = global_contrast_normalization(x[:, :, :, d])
elif mode == 'local_mean_sub':
for d in range(x.shape[-1]):
x[:, :, :, d] = local_mean_subtraction(x[:, :, :, d],
kernel_size=patch_size)
# x = x.astype(floatX)
return x
def lecun_lcn(input, kernel_size=9, threshold=1e-4, use_divisor=False):
"""
Yann LeCun's local contrast normalization
Orginal code in Theano by: Guillaume Desjardins
:param input:
:param kernel_size:
:param threshold:
:param use_divisor:
:return:
"""
input_shape = (input.shape[0], 1, input.shape[1], input.shape[2])
input = input.reshape(input_shape).astype(floatX)
X = T.tensor4(dtype=floatX)
filter_shape = (1, 1, kernel_size, kernel_size)
filters = gaussian_filter(kernel_size).reshape(filter_shape)
filters = shared(_asarray(filters, dtype=floatX), borrow=True)
convout = conv2d(input=X,
filters=filters,
input_shape=input.shape,
filter_shape=filter_shape,
border_mode='half')
new_X = X - convout
if use_divisor:
# Scale down norm of kernel_size x kernel_size patch
sum_sqr_XX = conv2d(input=T.sqr(T.abs_(new_X)),
filters=filters,
input_shape=input.shape,
filter_shape=filter_shape,
border_mode='half')
denom = T.sqrt(sum_sqr_XX)
per_img_mean = denom.mean(axis=[2, 3])
divisor = T.largest(per_img_mean.dimshuffle(0, 1, 'x', 'x'), denom)
divisor = T.maximum(divisor, threshold)
new_X = new_X / divisor
new_X = new_X.dimshuffle(0, 2, 3, 1)
new_X = new_X.flatten(ndim=3)
f = function([X], new_X)
return f(input)
def local_mean_subtraction(input, kernel_size=5):
input_shape = (input.shape[0], 1, input.shape[1], input.shape[2])
input = input.reshape(input_shape).astype(floatX)
X = T.tensor4(dtype=floatX)
filter_shape = (1, 1, kernel_size, kernel_size)
filters = mean_filter(kernel_size).reshape(filter_shape)
filters = shared(_asarray(filters, dtype=floatX), borrow=True)
mean = conv2d(input=X,
filters=filters,
input_shape=input.shape,
filter_shape=filter_shape,
border_mode='half')
new_X = X - mean
f = function([X], new_X)
return f(input)
def global_contrast_normalization(input, scale=1., subtract_mean=True,
use_std=False, sqrt_bias=0., min_divisor=1e-8):
input_shape = (input.shape[0], 1, input.shape[1], input.shape[2])
input = input.reshape(input_shape).astype(floatX)
X = T.tensor4(dtype=floatX)
ndim = X.ndim
if not ndim in [3, 4]:
raise NotImplementedError("X.dim>4 or X.ndim<3")
scale = float(scale)
mean = X.mean(axis=ndim-1)
new_X = X.copy()
if subtract_mean:
if ndim == 3:
new_X = X - mean[:, :, None]
else:
new_X = X - mean[:, :, :, None]
if use_std:
normalizers = T.sqrt(sqrt_bias + X.var(axis=ndim-1)) / scale
else:
normalizers = T.sqrt(sqrt_bias + (new_X ** 2).sum(axis=ndim-1)) / scale
# Don't normalize by anything too small.
T.set_subtensor(normalizers[(normalizers < min_divisor).nonzero()], 1.)
if ndim == 3:
new_X /= normalizers[:, :, None]
else:
new_X /= normalizers[:, :, :, None]
f = function([X], new_X)
return f(input)
def gaussian_filter(kernel_shape):
x = zeros((kernel_shape, kernel_shape), dtype='float32')
def gauss(x, y, sigma=2.0):
Z = 2 * pi * sigma**2
return 1./Z * exp(-(x**2 + y**2) / (2. * sigma**2))
mid = floor(kernel_shape/ 2.)
for i in xrange(0,kernel_shape):
for j in xrange(0,kernel_shape):
x[i, j] = gauss(i-mid, j-mid)
return x / sum(x)
def mean_filter(kernel_size):
s = kernel_size**2
x = repeat(1. / s, s).reshape((kernel_size, kernel_size))
return x
def convolutional_zca(input, patch_size=(9, 9), max_patches=int(1e5)):
"""
This is an implementation of the convolutional ZCA whitening presented by
David Eigen in his phd thesis
http://www.cs.nyu.edu/~deigen/deigen-thesis.pdf
"Predicting Images using Convolutional Networks:
Visual Scene Understanding with Pixel Maps"
From paragraph 8.4:
A simple adaptation of ZCA to convolutional application is to find the
ZCA whitening transformation for a sample of local image patches across
the dataset, and then apply this transform to every patch in a larger image.
We then use the center pixel of each ZCA patch to create the conv-ZCA
output image. The operations of applying local ZCA and selecting the center
pixel can be combined into a single convolution kernel,
resulting in the following algorithm
(explained using RGB inputs and 9x9 kernel):
1. Sample 10M random 9x9 image patches (each with 3 colors)
2. Perform PCA on these to get eigenvectors V and eigenvalues D.
3. Optionally remove small eigenvalues, so V has shape [npca x 3 x 9 x 9].
4. Construct the whitening kernel k:
for each pair of colors (ci,cj),
set k[j,i, :, :] = V[:, j, x0, y0]^T * D^{-1/2} * V[:, i, :, :]
where (x0, y0) is the center pixel location (e.g. (5,5) for a 9x9 kernel)
:param input: 4D tensor of shape [batch_size, rows, col, channels]
:param patch_size: size of the patches extracted from the dataset
:param max_patches: max number of patches extracted from the dataset
:return: conv-zca whitened dataset
"""
# I don't know if it's correct or not.. but it seems to work
mean = np.mean(input, axis=(0, 1, 2))
input -= mean # center the data
n_imgs, h, w, n_channels = input.shape
patch_size = (patch_size, patch_size)
patches = PatchExtractor(patch_size=patch_size,
max_patches=max_patches).transform(input)
pca = PCA()
pca.fit(patches.reshape(patches.shape[0], -1))
# Transpose the components into theano convolution filter type
dim = (-1,) + patch_size + (n_channels,)
V = shared(pca.components_.reshape(dim).
transpose(0, 3, 1, 2).astype(input.dtype))
D = T.nlinalg.diag(1. / np.sqrt(pca.explained_variance_))
x_0 = int(np.floor(patch_size[0] / 2))
y_0 = int(np.floor(patch_size[1] / 2))
filter_shape = [n_channels, n_channels, patch_size[0], patch_size[1]]
image_shape = [n_imgs, n_channels, h, w]
kernel = T.zeros(filter_shape)
VT = V.dimshuffle(2, 3, 1, 0)
# V : 243 x 3 x 9 x 9
# VT : 9 x 9 x 3 x 243
# build the kernel
for i in range(n_channels):
for j in range(n_channels):
a = T.dot(VT[x_0, y_0, j, :], D).reshape([1, -1])
b = V[:, i, :, :].reshape([-1, patch_size[0] * patch_size[1]])
c = T.dot(a, b).reshape([patch_size[0], patch_size[1]])
kernel = T.set_subtensor(kernel[j, i, :, :], c)
kernel = kernel.astype(floatX)
input = input.astype(floatX)
input_images = T.tensor4(dtype=floatX)
conv_whitening = conv2d(input_images.dimshuffle((0, 3, 1, 2)),
kernel,
input_shape=image_shape,
filter_shape=filter_shape,
border_mode='full')
s_crop = [(patch_size[0] - 1) // 2,
(patch_size[1] - 1) // 2]
# e_crop = [s_crop[0] if (s_crop[0] % 2) != 0 else s_crop[0] + 1,
# s_crop[1] if (s_crop[1] % 2) != 0 else s_crop[1] + 1]
conv_whitening = conv_whitening[:, :, s_crop[0]:-s_crop[0], s_crop[
1]:-s_crop[1]]
conv_whitening = conv_whitening.dimshuffle(0, 2, 3, 1)
f_convZCA = function([input_images], conv_whitening)
return f_convZCA(input)