forked from fvisin/reseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_camvid_with_cb.py
242 lines (207 loc) · 8.06 KB
/
evaluate_camvid_with_cb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from reseg import train
import lasagne
def main(job_id, params):
result = train(
saveto=params['saveto'],
tmp_saveto=params['tmp-saveto'],
# Input Conv layers
in_nfilters=params['in-nfilters'],
in_filters_size=params['in-filters-size'],
in_filters_stride=params['in-filters-stride'],
in_W_init=params['in-W-init'],
in_b_init=params['in-b-init'],
in_nonlinearity=params['in-nonlinearity'],
# RNNs layers
dim_proj=params['dim-proj'],
pwidth=params['pwidth'],
pheight=params['pheight'],
stack_sublayers=params['stack-sublayers'],
RecurrentNet=params['RecurrentNet'],
nonlinearity=params['nonlinearity'],
hid_init=params['hid-init'],
grad_clipping=params['grad-clipping'],
precompute_input=params['precompute-input'],
mask_input=params['mask-input'],
# GRU specific params
gru_resetgate=params['gru-resetgate'],
gru_updategate=params['gru-updategate'],
gru_hidden_update=params['gru-hidden-update'],
gru_hid_init=params['gru-hid-init'],
# LSTM specific params
lstm_ingate=params['lstm-ingate'],
lstm_forgetgate=params['lstm-forgetgate'],
lstm_cell=params['lstm-cell'],
lstm_outgate=params['lstm-outgate'],
# RNN specific params
rnn_W_in_to_hid=params['rnn-W-in-to-hid'],
rnn_W_hid_to_hid=params['rnn-W-hid-to-hid'],
rnn_b=params['rnn-b'],
# Output upsampling layers
out_upsampling=params['out-upsampling'],
out_nfilters=params['out-nfilters'],
out_filters_size=params['out-filters-size'],
out_filters_stride=params['out-filters-stride'],
out_W_init=params['out-W-init'],
out_b_init=params['out-b-init'],
out_nonlinearity=params['out-nonlinearity'],
# Prediction, Softmax
intermediate_pred=params['intermediate-pred'],
class_balance=params['class-balance'],
# Special layers
batch_norm=params['batch-norm'],
use_dropout=params['use-dropout'],
dropout_rate=params['dropout-rate'],
use_dropout_x=params['use-dropout-x'],
dropout_x_rate=params['dropout-x-rate'],
# Optimization method
optimizer=params['optimizer'],
learning_rate=params['learning-rate'],
momentum=params['momentum'],
rho=params['rho'],
beta1=params['beta1'],
beta2=params['beta2'],
epsilon=params['epsilon'],
weight_decay=params['weight-decay'],
weight_noise=params['weight-noise'],
# Early stopping
patience=params['patience'],
max_epochs=params['max-epochs'],
min_epochs=params['min-epochs'],
# Sampling and validation params
validFreq=params['validFreq'],
saveFreq=params['saveFreq'],
n_save=params['n-save'],
# Batch params
batch_size=params['batch-size'],
valid_batch_size=params['valid-batch-size'],
shuffle=params['shuffle'],
# Dataset
dataset=params['dataset'],
color_space=params['color-space'],
color=params['color'],
resize_images=params['resize-images'],
resize_size=params['resize-size'],
# Pre_processing
preprocess_type=params['preprocess-type'],
patch_size=params['patch-size'],
max_patches=params['max-patches'],
# Data augmentation
do_random_flip=params['do-random-flip'],
do_random_shift=params['do-random-shift'],
do_random_invert_color=params['do-random-invert-color'],
shift_pixels=params['shift-pixels'],
reload_=params['reload']
# fixed params
)
return result
if __name__ == '__main__':
dataset = 'camvid'
path = dataset + '_models/model_recseg' + __file__[8:-3] + '.npz'
main(1, {
'saveto': path,
'tmp-saveto': 'tmp/' + path,
# Note: with linear_conv you cannot select every filter size.
# It is not trivial to invert with expand unless they are a
# multiple of the image size, i.e., you would have to "blend" together
# multiple predictions because one pixel cannot be fully predicted just
# by one element of the last feature map
# call ConvNet.compute_reasonable_values() to find these
# note you should pick one pair (p1, p2) from the first list and
# another pair (p3, p4) from the second, then set in_filter_size
# to be (p1, p3),(p2, p4)
# valid: 1 + (input_dim - filter_dim) / stride_dim
# Input Conv layers
'in-nfilters': 'conv3_3', # None = no input convolution
'in-filters-size': (),
'in-filters-stride': (),
'in-W-init': lasagne.init.GlorotUniform(),
'in-b-init': lasagne.init.Constant(0.),
'in-nonlinearity': lasagne.nonlinearities.rectify,
# RNNs layers
'dim-proj': [100, 100],
'pwidth': [1, 1],
'pheight': [1, 1],
'stack-sublayers': (True, True),
'RecurrentNet': lasagne.layers.GRULayer,
'nonlinearity': lasagne.nonlinearities.rectify,
'hid-init': lasagne.init.Constant(0.),
'grad-clipping': 0,
'precompute-input': True,
'mask-input': None,
# GRU specific params
'gru-resetgate': lasagne.layers.Gate(W_cell=None),
'gru-updategate': lasagne.layers.Gate(W_cell=None),
'gru-hidden-update': lasagne.layers.Gate(
W_cell=None,
nonlinearity=lasagne.nonlinearities.tanh),
'gru-hid-init': lasagne.init.Constant(0.),
# LSTM specific params
'lstm-ingate': lasagne.layers.Gate(),
'lstm-forgetgate': lasagne.layers.Gate(),
'lstm-cell': lasagne.layers.Gate(
W_cell=None,
nonlinearity=lasagne.nonlinearities.tanh),
'lstm-outgate': lasagne.layers.Gate(),
# RNN specific params
'rnn-W-in-to-hid': lasagne.init.Uniform(),
'rnn-W-hid-to-hid': lasagne.init.Uniform(),
'rnn-b': lasagne.init.Constant(0.),
# Output upsampling layers
'out-upsampling': 'grad',
'out-nfilters': [50, 50],
'out-filters-size': [(2, 2), (2, 2)],
'out-filters-stride': [(2, 2), (2, 2)],
'out-W-init': lasagne.init.GlorotUniform(),
'out-b-init': lasagne.init.Constant(0.),
'out-nonlinearity': lasagne.nonlinearities.rectify,
# Prediction, Softmax
'intermediate-pred': None,
'class-balance': 'median_freq_cost',
# Special layers
'batch-norm': False,
'use-dropout': False,
'dropout-rate': 0.5,
'use-dropout-x': False,
'dropout-x-rate': 0.8,
# Optimization method
'optimizer': lasagne.updates.adadelta,
'learning-rate': None,
'momentum': None,
'rho': None,
'beta1': None,
'beta2': None,
'epsilon': None,
'weight-decay': 0., # l2 reg
'weight-noise': 0.,
# Early stopping
'patience': 500, # Num updates with no improvement before early stop
'max-epochs': 5000,
'min-epochs': 100,
# Sampling and validation params
'validFreq': -1,
'saveFreq': -1, # Parameters pickle frequency
'n-save': -1, # If n-save is a list of indexes, the corresponding
# elements of each split are saved. If n-save is an
# integer, n-save random elements for each split are
# saved. If n-save is -1, all the dataset is saved
# Batch params
'batch-size': 5,
'valid-batch-size': 5,
'shuffle': True,
# Dataset
'dataset': dataset,
'color-space': 'RGB',
'color': True,
'resize-images': True,
'resize-size': (360, 480),
# Pre-processing
'preprocess-type': None,
'patch-size': (9, 9),
'max-patches': 1e5,
# Data augmentation
'do-random-flip': False,
'do-random-shift': False,
'do-random-invert-color': False,
'shift-pixels': 2,
'reload': False
})