forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_661.java
86 lines (79 loc) · 2.45 KB
/
_661.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
package com.fishercoder.solutions;
/**
* 661. Image Smoother
*
* Given a 2D integer matrix m representing the gray scale of an image,
* you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of
* all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.
Example 1:
Input:
[[1,1,1],
[1,0,1],
[1,1,1]]
Output:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0
Note:
The value in the given matrix is in the range of [0, 255].
The length and width of the given matrix are in the range of [1, 150].
*/
public class _661 {
public static class Solution1 {
public int[][] imageSmoother(int[][] M) {
if (M == null || M.length == 0) {
return M;
}
int m = M.length;
int n = M[0].length;
int[][] result = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
bfs(M, i, j, result, m, n);
}
}
return result;
}
private void bfs(int[][] M, int i, int j, int[][] result, int m, int n) {
int sum = M[i][j];
int denominator = 1;
if (j + 1 < n) {
sum += M[i][j + 1];
denominator++;
}
if (i + 1 < m && j + 1 < n) {
sum += M[i + 1][j + 1];
denominator++;
}
if (i + 1 < m) {
sum += M[i + 1][j];
denominator++;
}
if (i + 1 < m && j - 1 >= 0) {
sum += M[i + 1][j - 1];
denominator++;
}
if (j - 1 >= 0) {
sum += M[i][j - 1];
denominator++;
}
if (i - 1 >= 0 && j - 1 >= 0) {
sum += M[i - 1][j - 1];
denominator++;
}
if (i - 1 >= 0) {
sum += M[i - 1][j];
denominator++;
}
if (i - 1 >= 0 && j + 1 < n) {
sum += M[i - 1][j + 1];
denominator++;
}
result[i][j] = sum / denominator;
}
}
}