Skip to content

COMP 558 Fundamentals of Computer Vision @ McGill Class Notes

Notifications You must be signed in to change notification settings

asahahaha/comp558-computer-vision

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

COMP 558 Fundamentals of Computer Vision @ McGill Class Notes

* Instructor: Kaleem Siddiqi
* Term: Fall 2022
* Grading: 20% Assignments + 20% Group Research Project + 20% Midterm + 40% Final

* Author: @asahahaha

All class notes written in notion.so, click on the lecture titles to open the corresponding note page.

  • Bayer pattern
  • RAW to JPG
  • Smoothing (by local averaging), local differences
  • Cross-correlation VS. convolution
  • Impulse functions
  • 1D VS. 2D
  • Gaussians
  • Prewitt and Sobel (1960)
  • Marr & Hildreth (1979)
  • Canny edge detection
  • Least squares:
    • by linear regression
    • by total least squares
  • Hough Transform
  • RANSAC (Random Sample Consensus)
  • Gaussian smoothing
      1. Iterative
      1. HEAT equation
  • Gaussian property
  • Lucas-Kanade Algorithm
  • Coarse-to-fine
  • Box(blob) detector
  • Structure tensor
  • (weighted) 2nd Moment Matrix
  • Corner → $\lambda_1$ & $\lambda_2$ both big and diffe
  • Harris Corner Detection: $\lambda_1\lambda_2-k*(\lambda_1+\lambda_2)^2$
  • Alternative Corner Detection: $\lambda_1\lambda_2/(\lambda_1+\lambda_2+\epsilon)$
  • inner scale & outer scale
  • HoG, histogram equalization
  • Keypoint detection using laplacian pyramid & gradient → SIFT vector ⭐️⭐️
  • Laplacian == DoG
  • 1D & 2D Image Registration
    • iterative method
  • Applications:
    • Lucas-Kanade
    • KLT Tracking
    • Shi & Tomasi (a 6D problem)
  • Depth map
  • Camera movement
    • similar triangles
  • 1, 2, 3 point perspectives
  • 2D & 3D rotaion, scaling
  • Homogenous coordinates
  • Camera calibration matrix K → intrinstics
  • Extrinsics $R[I|-C]$
  • A = $U∑V^T$
  • Having a list of paired point coordinates
    • Data normalization
  • $P==M_1^{-1}P_{normalized}M_2$
  • Case 1: 1 camera, 1 image plane
  • Case 2: 2 cameras, 1 image plane
  • Case 3: 1 camera (rotation)
  • Case 4: 2 images, 1 scene space (not same image plane)
  • Essential matrix:
    • Uses projection plane coordinates, not pixel coordinates
  • Fundamental matrix
    • Uses pixel coordinates
  • Estimating the fundamental matrix F
  • Disparity Estimation
  • Estimate Depth
  • Correspondence problem
  • Occlusions
  • Disparity space
  • How does depth camera work
  • Iterative Closest Points (ICP)
  • Classification problems in computer vision

About

COMP 558 Fundamentals of Computer Vision @ McGill Class Notes

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages