-
Notifications
You must be signed in to change notification settings - Fork 0
/
feature_match.py
36 lines (27 loc) · 883 Bytes
/
feature_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import cv2
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
import argparse
import utils
source = 'data/train/D_53277.jpg'
target = 'data/train/D_53280.jpg'
img1 = cv2.imread(source, 0) # queryImage
img2 = cv2.imread(target, 0) # trainImage
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
# Apply ratio test
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append([m])
print("good,len", len(good))
# cv2.drawMatchesKnn expects list of lists as matches.
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, None, flags=2)
plt.imshow(img3), plt.show()