-
Notifications
You must be signed in to change notification settings - Fork 0
/
ipython3.html
42 lines (42 loc) · 7.74 KB
/
ipython3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="qrichtext" content="1" /><style type="text/css">
p, li { white-space: pre-wrap; }
</style></head><body style=" font-family:'Consolas'; font-size:8pt; font-weight:400; font-style:normal;">
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPython QtConsole 3.2.0</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Python 2.7.10 |Anaconda 2.3.0 (32-bit)| (default, May 28 2015, 17:02:00) [MSC v.1500 32 bit (Intel)]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Type "copyright", "credits" or "license" for more information.</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPython 3.2.0 -- An enhanced Interactive Python.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Anaconda is brought to you by Continuum Analytics.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Please check out: http://continuum.io/thanks and https://anaconda.org</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">? -> Introduction and overview of IPython's features.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">%quickref -> Quick reference.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">help -> Python's own help system.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">object? -> Details about 'object', use 'object??' for extra details.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">%guiref -> A brief reference about the graphical user interface.</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">1</span><span style=" color:#000080;">]:</span> import pandas as pd</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> beeline = pd.read_csv('C:/00.beeline_bigdata/train.csv')</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> a = ['x0','x1','x2','x3','x4','x5','x9','x10','x11','x12','x14','x15','x16','x17','x18','x19','x20',"x21",'x22']</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for row in a:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> beeline[row] = pd.Categorical.from_array(beeline[row]).codes</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> import numpy as np</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for row in beeline.columns.values.tolist():</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> beeline[row] = beeline[row].fillna(beeline[row].median())</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from sklearn import cross_validation</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from sklearn.ensemble import RandomForestClassifier</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">2</span><span style=" color:#000080;">]:</span> beeline1 = beeline.ix[:,0:62]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> predictors = beeline1.columns.values.tolist()</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">3</span><span style=" color:#000080;">]:</span> from sklearn.ensemble import GradientBoostingClassifier</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">4</span><span style=" color:#000080;">]:</span> alg = GradientBoostingClassifier(random_state=1, n_estimators=200, min_samples_split=8, min_samples_leaf=4)</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">5</span><span style=" color:#000080;">]:</span> scores = cross_validation.cross_val_score(alg, beeline[predictors], beeline["y"], cv=3)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(scores.mean())</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">0.757099660128</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">6</span><span style=" color:#000080;">]:</span> </p></body></html>