From a6b0b82650096320d4a19208da1a996d935d0e15 Mon Sep 17 00:00:00 2001 From: Chao Sun Date: Fri, 16 Feb 2024 14:22:13 -0800 Subject: [PATCH] test --- .../comet/parquet/ParquetReadSuite.scala | 1351 ----------------- 1 file changed, 1351 deletions(-) delete mode 100644 spark/src/test/scala/org/apache/comet/parquet/ParquetReadSuite.scala diff --git a/spark/src/test/scala/org/apache/comet/parquet/ParquetReadSuite.scala b/spark/src/test/scala/org/apache/comet/parquet/ParquetReadSuite.scala deleted file mode 100644 index 1cff74d391..0000000000 --- a/spark/src/test/scala/org/apache/comet/parquet/ParquetReadSuite.scala +++ /dev/null @@ -1,1351 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one - * or more contributor license agreements. See the NOTICE file - * distributed with this work for additional information - * regarding copyright ownership. The ASF licenses this file - * to you under the Apache License, Version 2.0 (the - * "License"); you may not use this file except in compliance - * with the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, - * software distributed under the License is distributed on an - * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY - * KIND, either express or implied. See the License for the - * specific language governing permissions and limitations - * under the License. - */ - -package org.apache.comet.parquet - -import java.io.{File, FileFilter} -import java.math.BigDecimal -import java.time.{ZoneId, ZoneOffset} - -import scala.reflect.ClassTag -import scala.reflect.runtime.universe.TypeTag - -import org.scalactic.source.Position -import org.scalatest.Tag - -import org.apache.hadoop.conf.Configuration -import org.apache.hadoop.fs.Path -import org.apache.parquet.example.data.simple.SimpleGroup -import org.apache.parquet.schema.MessageTypeParser -import org.apache.spark.SparkException -import org.apache.spark.sql.CometTestBase -import org.apache.spark.sql.DataFrame -import org.apache.spark.sql.Row -import org.apache.spark.sql.catalyst.expressions.GenericInternalRow -import org.apache.spark.sql.catalyst.util.DateTimeUtils -import org.apache.spark.sql.comet.CometBatchScanExec -import org.apache.spark.sql.comet.CometScanExec -import org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanHelper -import org.apache.spark.sql.execution.datasources.SchemaColumnConvertNotSupportedException -import org.apache.spark.sql.internal.SQLConf -import org.apache.spark.sql.types._ -import org.apache.spark.unsafe.types.UTF8String - -import com.google.common.primitives.UnsignedLong - -import org.apache.comet.CometConf -import org.apache.comet.CometSparkSessionExtensions.isSpark34Plus - -abstract class ParquetReadSuite extends CometTestBase { - import testImplicits._ - - testStandardAndLegacyModes("decimals") { - Seq(true, false).foreach { useDecimal128 => - Seq(16, 1024).foreach { batchSize => - withSQLConf( - CometConf.COMET_EXEC_ENABLED.key -> false.toString, - CometConf.COMET_USE_DECIMAL_128.key -> useDecimal128.toString, - CometConf.COMET_BATCH_SIZE.key -> batchSize.toString) { - var combinations = Seq((5, 2), (1, 0), (18, 10), (18, 17), (19, 0), (38, 37)) - // If ANSI mode is on, the combination (1, 1) will cause a runtime error. Otherwise, the - // decimal RDD contains all null values and should be able to read back from Parquet. - - if (!SQLConf.get.ansiEnabled) { - combinations = combinations ++ Seq((1, 1)) - } - for ((precision, scale) <- combinations; useDictionary <- Seq(false, true)) { - withTempPath { dir => - val data = makeDecimalRDD(1000, DecimalType(precision, scale), useDictionary) - data.write.parquet(dir.getCanonicalPath) - readParquetFile(dir.getCanonicalPath) { df => - { - checkAnswer(df, data.collect().toSeq) - } - } - } - } - } - } - } - } - - test("simple count") { - withParquetTable((0 until 10).map(i => (i, i.toString)), "tbl") { - assert(sql("SELECT * FROM tbl WHERE _1 % 2 == 0").count() == 5) - } - } - - test("basic data types") { - Seq(7, 1024).foreach { batchSize => - withSQLConf(CometConf.COMET_BATCH_SIZE.key -> batchSize.toString) { - val data = (-100 to 100).map { i => - ( - i % 2 == 0, - i, - i.toByte, - i.toShort, - i.toLong, - i.toFloat, - i.toDouble, - DateTimeUtils.toJavaDate(i)) - } - checkParquetScan(data) - checkParquetFile(data) - } - } - } - - test("basic data types with dictionary") { - Seq(7, 1024).foreach { batchSize => - withSQLConf(CometConf.COMET_BATCH_SIZE.key -> batchSize.toString) { - val data = (-100 to 100).map(_ % 4).map { i => - ( - i % 2 == 0, - i, - i.toByte, - i.toShort, - i.toLong, - i.toFloat, - i.toDouble, - DateTimeUtils.toJavaDate(i)) - } - checkParquetScan(data) - checkParquetFile(data) - } - } - } - - test("basic filters") { - val data = (-100 to 100).map { i => - ( - i % 2 == 0, - i, - i.toByte, - i.toShort, - i.toLong, - i.toFloat, - i.toDouble, - DateTimeUtils.toJavaDate(i)) - } - val filter = (row: Row) => row.getBoolean(0) - checkParquetScan(data, filter) - checkParquetFile(data, filter) - } - - test("raw binary test") { - val data = (1 to 4).map(i => Tuple1(Array.fill(3)(i.toByte))) - withParquetDataFrame(data) { df => - assertResult(data.map(_._1.mkString(",")).sorted) { - df.collect().map(_.getAs[Array[Byte]](0).mkString(",")).sorted - } - } - } - - test("string") { - val data = (1 to 4).map(i => Tuple1(i.toString)) - // Property spark.sql.parquet.binaryAsString shouldn't affect Parquet files written by Spark SQL - // as we store Spark SQL schema in the extra metadata. - withSQLConf(SQLConf.PARQUET_BINARY_AS_STRING.key -> "false")(checkParquetFile(data)) - withSQLConf(SQLConf.PARQUET_BINARY_AS_STRING.key -> "true")(checkParquetFile(data)) - } - - test("string with dictionary") { - Seq((100, 5), (1000, 10)).foreach { case (total, divisor) => - val data = (1 to total).map(i => Tuple1((i % divisor).toString)) - // Property spark.sql.parquet.binaryAsString shouldn't affect Parquet files written by Spark SQL - // as we store Spark SQL schema in the extra metadata. - withSQLConf(SQLConf.PARQUET_BINARY_AS_STRING.key -> "false")(checkParquetFile(data)) - withSQLConf(SQLConf.PARQUET_BINARY_AS_STRING.key -> "true")(checkParquetFile(data)) - } - } - - test("long string + reserve additional space for value buffer") { - withSQLConf(CometConf.COMET_BATCH_SIZE.key -> 16.toString) { - val data = (1 to 100).map(i => (i, i.toString * 10)) - checkParquetFile(data) - } - } - - test("timestamp") { - Seq(true, false).foreach { dictionaryEnabled => - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - val expected = makeRawTimeParquetFile(path, dictionaryEnabled = dictionaryEnabled, 10000) - val useLocalDateTime = spark.version >= "3.3" - readParquetFile(path.toString) { df => - checkAnswer( - df.select($"_0", $"_1", $"_2", $"_3", $"_4", $"_5"), - expected.map { - case None => - Row(null, null, null, null, null, null) - case Some(i) => - // use `LocalDateTime` for `TimestampNTZType` with Spark 3.3 and above. At the moment, - // Spark reads Parquet timestamp values into `Timestamp` (with local timezone) - // regardless of whether `isAdjustedToUTC` is true or false. See SPARK-36182. - // TODO: make `LocalDateTime` default after dropping Spark 3.2.0 support - val ts = new java.sql.Timestamp(i) - val ldt = if (useLocalDateTime) { - ts.toLocalDateTime - .atZone(ZoneId.systemDefault()) - .withZoneSameInstant(ZoneOffset.UTC) - .toLocalDateTime - } else ts - Row(ts, ts, ts, ldt, ts, ldt) - }) - } - } - } - } - - test("timestamp as int96") { - import testImplicits._ - - val N = 100 - val ts = "2020-01-01 01:02:03.123456" - Seq(false, true).foreach { dictionaryEnabled => - Seq(false, true).foreach { conversionEnabled => - withSQLConf( - SQLConf.PARQUET_OUTPUT_TIMESTAMP_TYPE.key -> "INT96", - SQLConf.PARQUET_INT96_TIMESTAMP_CONVERSION.key -> conversionEnabled.toString) { - withTempPath { path => - Seq - .tabulate(N)(_ => ts) - .toDF("ts1") - .select($"ts1".cast("timestamp").as("ts")) - .repartition(1) - .write - .option("parquet.enable.dictionary", dictionaryEnabled) - .parquet(path.getCanonicalPath) - - checkAnswer( - spark.read.parquet(path.getCanonicalPath).select($"ts".cast("string")), - Seq.tabulate(N)(_ => Row(ts))) - } - } - } - } - } - - test("batch paging on basic types") { - Seq(1, 2, 4, 9).foreach { batchSize => - withSQLConf(CometConf.COMET_BATCH_SIZE.key -> batchSize.toString) { - val data = (1 to 10).map(i => (i, i.toByte, i.toShort, i.toFloat, i.toDouble, i.toString)) - checkParquetFile(data) - } - } - } - - test("nulls") { - val allNulls = ( - null.asInstanceOf[java.lang.Boolean], - null.asInstanceOf[Integer], - null.asInstanceOf[java.lang.Long], - null.asInstanceOf[java.lang.Float], - null.asInstanceOf[java.lang.Double], - null.asInstanceOf[java.lang.String]) - - withParquetDataFrame(allNulls :: Nil) { df => - val rows = df.collect() - assert(rows.length === 1) - assert(rows.head === Row(Seq.fill(6)(null): _*)) - assert(df.where("_1 is null").count() == 1) - } - } - - test("mixed nulls and non-nulls") { - val rand = scala.util.Random - val data = (0 to 100).map { i => - val row: (Boolean, Integer, java.lang.Long, java.lang.Float, java.lang.Double, String) = { - if (rand.nextBoolean()) { - (i % 2 == 0, i, i.toLong, i.toFloat, i.toDouble, i.toString) - } else { - ( - null.asInstanceOf[java.lang.Boolean], - null.asInstanceOf[Integer], - null.asInstanceOf[java.lang.Long], - null.asInstanceOf[java.lang.Float], - null.asInstanceOf[java.lang.Double], - null.asInstanceOf[String]) - } - } - row - } - checkParquetFile(data) - } - - test("test multiple pages with different sizes and nulls") { - def makeRawParquetFile( - path: Path, - dictionaryEnabled: Boolean, - n: Int, - pageSize: Int): Seq[Option[Int]] = { - val schemaStr = { - if (isSpark34Plus) { - """ - |message root { - | optional boolean _1; - | optional int32 _2(INT_8); - | optional int32 _3(INT_16); - | optional int32 _4; - | optional int64 _5; - | optional float _6; - | optional double _7; - | optional binary _8(UTF8); - | optional int32 _9(UINT_8); - | optional int32 _10(UINT_16); - | optional int32 _11(UINT_32); - | optional int64 _12(UINT_64); - | optional binary _13(ENUM); - | optional FIXED_LEN_BYTE_ARRAY(3) _14; - |} - """.stripMargin - } else { - """ - |message root { - | optional boolean _1; - | optional int32 _2(INT_8); - | optional int32 _3(INT_16); - | optional int32 _4; - | optional int64 _5; - | optional float _6; - | optional double _7; - | optional binary _8(UTF8); - | optional int32 _9(UINT_8); - | optional int32 _10(UINT_16); - | optional int32 _11(UINT_32); - | optional int64 _12(UINT_64); - | optional binary _13(ENUM); - | optional binary _14(UTF8); - |} - """.stripMargin - } - } - - val schema = MessageTypeParser.parseMessageType(schemaStr) - val writer = createParquetWriter( - schema, - path, - dictionaryEnabled = dictionaryEnabled, - pageSize = pageSize, - dictionaryPageSize = pageSize) - - val rand = scala.util.Random - val expected = (0 until n).map { i => - if (rand.nextBoolean()) { - None - } else { - Some(i) - } - } - expected.foreach { opt => - val record = new SimpleGroup(schema) - opt match { - case Some(i) => - record.add(0, i % 2 == 0) - record.add(1, i.toByte) - record.add(2, i.toShort) - record.add(3, i) - record.add(4, i.toLong) - record.add(5, i.toFloat) - record.add(6, i.toDouble) - record.add(7, i.toString * 48) - record.add(8, (-i).toByte) - record.add(9, (-i).toShort) - record.add(10, -i) - record.add(11, (-i).toLong) - record.add(12, i.toString) - record.add(13, (i % 10).toString * 3) - case _ => - } - writer.write(record) - } - - writer.close() - expected - } - - Seq(64, 128, 256, 512, 1024, 4096, 5000).foreach { pageSize => - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - val expected = makeRawParquetFile(path, dictionaryEnabled = false, 10000, pageSize) - readParquetFile(path.toString) { df => - checkAnswer( - df, - expected.map { - case None => - Row(null, null, null, null, null, null, null, null, null, null, null, null, null, - null) - case Some(i) => - val flba_field = if (isSpark34Plus) { - Array.fill(3)(i % 10 + 48) // char '0' is 48 in ascii - } else { - (i % 10).toString * 3 - } - Row( - i % 2 == 0, - i.toByte, - i.toShort, - i, - i.toLong, - i.toFloat, - i.toDouble, - i.toString * 48, - java.lang.Byte.toUnsignedInt((-i).toByte), - java.lang.Short.toUnsignedInt((-i).toShort), - java.lang.Integer.toUnsignedLong(-i), - new BigDecimal(UnsignedLong.fromLongBits((-i).toLong).bigIntegerValue()), - i.toString, - flba_field) - }) - } - readParquetFile(path.toString) { df => - assert( - df.filter("_8 IS NOT NULL AND _4 % 256 == 255").count() == - expected.flatten.count(_ % 256 == 255)) - } - } - } - } - - test("vector reloading with all non-null values") { - def makeRawParquetFile( - path: Path, - dictionaryEnabled: Boolean, - n: Int, - numNonNulls: Int): Seq[Option[Int]] = { - val schemaStr = - """ - |message root { - | optional int32 _1; - |} - """.stripMargin - - val schema = MessageTypeParser.parseMessageType(schemaStr) - val writer = createParquetWriter(schema, path, dictionaryEnabled = dictionaryEnabled) - - val expected = (0 until n).map { i => - if (i >= numNonNulls) { - None - } else { - Some(i) - } - } - expected.foreach { opt => - val record = new SimpleGroup(schema) - opt match { - case Some(i) => - record.add(0, i) - case _ => - } - writer.write(record) - } - - writer.close() - expected - } - - Seq(2, 99, 1024).foreach { numNonNulls => - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - val expected = makeRawParquetFile(path, dictionaryEnabled = false, 1024, numNonNulls) - withSQLConf(CometConf.COMET_BATCH_SIZE.key -> "2") { - readParquetFile(path.toString) { df => - checkAnswer( - df, - expected.map { - case None => - Row(null) - case Some(i) => - Row(i) - }) - } - } - } - } - } - - test("test lazy materialization skipping") { - def makeRawParquetFile( - path: Path, - dictionaryEnabled: Boolean, - pageSize: Int, - pageRowCountLimit: Int, - expected: Seq[Row]): Unit = { - val schemaStr = - """ - |message root { - | optional int32 _1; - | optional binary _2(UTF8); - |} - """.stripMargin - - val schema = MessageTypeParser.parseMessageType(schemaStr) - val writer = createParquetWriter( - schema, - path, - dictionaryEnabled = dictionaryEnabled, - pageSize = pageSize, - dictionaryPageSize = pageSize, - pageRowCountLimit = pageRowCountLimit) - - expected.foreach { row => - val record = new SimpleGroup(schema) - record.add(0, row.getInt(0)) - record.add(1, row.getString(1)) - writer.write(record) - } - - writer.close() - } - - val skip = Row(0, "a") // row to skip by lazy materialization - val read = Row(1, "b") // row not to skip - // The initial page row count is always 100 in ParquetWriter, even with pageRowCountLimit config - // Thus, use this header to fill in the first 100 - val header = Seq.fill(100)(skip) - - val expected = Seq( // spotless:off - read, read, read, read, // read all rows in the page - skip, skip, skip, skip, // skip all rows in the page - skip, skip, skip, skip, // consecutively skip all rows in the page - read, skip, skip, read, // skip middle rows in the page - skip, read, read, skip, // read middle rows in the page - skip, read, skip, read, // skip and read in turns - read, skip, read, skip // skip and read in turns - ) // spotless:on - - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - withSQLConf( - CometConf.COMET_BATCH_SIZE.key -> "4", - CometConf.COMET_EXEC_ENABLED.key -> "false") { - makeRawParquetFile(path, dictionaryEnabled = false, 1024, 4, header ++ expected) - readParquetFile(path.toString) { df => - checkAnswer(df.filter("_1 != 0"), expected.filter(_.getInt(0) != 0)) - } - } - } - } - - test("test multiple pages with mixed PLAIN_DICTIONARY and PLAIN encoding") { - // TODO: consider merging this with the same method above - def makeRawParquetFile(path: Path, n: Int): Seq[Option[Int]] = { - val dictionaryPageSize = 1024 - val pageRowCount = 500 - val schemaStr = - """ - |message root { - | optional boolean _1; - | optional int32 _2(INT_8); - | optional int32 _3(INT_16); - | optional int32 _4; - | optional int64 _5; - | optional float _6; - | optional double _7; - | optional binary _8(UTF8); - |} - """.stripMargin - - val schema = MessageTypeParser.parseMessageType(schemaStr) - val writer = createParquetWriter( - schema, - path, - dictionaryEnabled = true, - dictionaryPageSize = dictionaryPageSize, - pageRowCountLimit = pageRowCount) - - val rand = scala.util.Random - val expected = (0 until n).map { i => - // use a single value for the first page, to make sure dictionary encoding kicks in - val value = if (i < pageRowCount) i % 8 else i - if (rand.nextBoolean()) None - else Some(value) - } - - expected.foreach { opt => - val record = new SimpleGroup(schema) - opt match { - case Some(i) => - record.add(0, i % 2 == 0) - record.add(1, i.toByte) - record.add(2, i.toShort) - record.add(3, i) - record.add(4, i.toLong) - record.add(5, i.toFloat) - record.add(6, i.toDouble) - record.add(7, i.toString * 100) - case _ => - } - writer.write(record) - } - - writer.close() - expected - } - - Seq(16, 128).foreach { batchSize => - withSQLConf(CometConf.COMET_BATCH_SIZE.key -> batchSize.toString) { - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - val expected = makeRawParquetFile(path, 10000) - readParquetFile(path.toString) { df => - checkAnswer( - df, - expected.map { - case None => - Row(null, null, null, null, null, null, null, null) - case Some(i) => - Row( - i % 2 == 0, - i.toByte, - i.toShort, - i, - i.toLong, - i.toFloat, - i.toDouble, - i.toString * 100) - }) - } - } - } - } - } - - test("skip vector re-loading") { - Seq(false, true).foreach { enableDictionary => - withSQLConf( - CometConf.COMET_BATCH_SIZE.key -> 7.toString, - CometConf.COMET_EXEC_ENABLED.key -> "true", - CometConf.COMET_EXEC_ALL_OPERATOR_ENABLED.key -> "true") { - // Make sure this works with Comet native execution too - val data = (1 to 100) - .map(_ % 5) // trigger dictionary encoding - .map(i => (i, i.toByte, i.toShort, i.toFloat, i.toDouble, i.toString)) - withParquetTable(data, "tbl", withDictionary = enableDictionary) { - val df = sql("SELECT count(*) FROM tbl WHERE _1 >= 0") - checkAnswer(df, Row(100) :: Nil) - } - } - } - } - - test("partition column types") { - withTempPath { dir => - Seq(1).toDF().repartition(1).write.parquet(dir.getCanonicalPath) - - val dataTypes = - Seq( - StringType, - BooleanType, - ByteType, - BinaryType, - ShortType, - IntegerType, - LongType, - FloatType, - DoubleType, - DecimalType(25, 5), - DateType, - TimestampType) - - // TODO: support `NullType` here, after we add the support in `ColumnarBatchRow` - val constantValues = - Seq( - UTF8String.fromString("a string"), - true, - 1.toByte, - "Spark SQL".getBytes, - 2.toShort, - 3, - Long.MaxValue, - 0.25.toFloat, - 0.75d, - Decimal("1234.23456"), - DateTimeUtils.fromJavaDate(java.sql.Date.valueOf("2015-01-01")), - DateTimeUtils.fromJavaTimestamp(java.sql.Timestamp.valueOf("2015-01-01 23:50:59.123"))) - - dataTypes.zip(constantValues).foreach { case (dt, v) => - val schema = StructType(StructField("pcol", dt) :: Nil) - val conf = SQLConf.get - val partitionValues = new GenericInternalRow(Array(v)) - val file = dir - .listFiles(new FileFilter { - override def accept(pathname: File): Boolean = - pathname.isFile && pathname.toString.endsWith("parquet") - }) - .head - val reader = new BatchReader( - file.toString, - CometConf.COMET_BATCH_SIZE.get(conf), - schema, - partitionValues) - reader.init() - - try { - reader.nextBatch() - val batch = reader.currentBatch() - val actual = batch.getRow(0).get(1, dt) - val expected = v - if (dt.isInstanceOf[BinaryType]) { - assert( - actual.asInstanceOf[Array[Byte]] sameElements expected.asInstanceOf[Array[Byte]]) - } else { - assert(actual == expected) - } - } finally { - reader.close() - } - } - } - } - - test("partition columns - multiple batch") { - withSQLConf( - CometConf.COMET_BATCH_SIZE.key -> 7.toString, - CometConf.COMET_EXEC_ENABLED.key -> "false", - CometConf.COMET_EXEC_ALL_OPERATOR_ENABLED.key -> "true", - CometConf.COMET_ENABLED.key -> "true") { - Seq("a", null).foreach { partValue => - withTempPath { dir => - (1 to 100) - .map(v => (partValue.asInstanceOf[String], v)) - .toDF("pcol", "col") - .repartition(1) - .write - .format("parquet") - .partitionBy("pcol") - .save(dir.getCanonicalPath) - val df = spark.read.format("parquet").load(dir.getCanonicalPath) - assert(df.filter("col > 90").count() == 10) - } - } - } - } - - test("fix: string partition column with incorrect offset buffer") { - def makeRawParquetFile( - path: Path, - dictionaryEnabled: Boolean, - n: Int, - pageSize: Int): Seq[Option[Int]] = { - val schemaStr = - """ - |message root { - | optional binary _1(UTF8); - |} - """.stripMargin - - val schema = MessageTypeParser.parseMessageType(schemaStr) - val writer = createParquetWriter( - schema, - path, - dictionaryEnabled = dictionaryEnabled, - pageSize = pageSize, - dictionaryPageSize = pageSize, - rowGroupSize = 1024 * 128) - - val rand = scala.util.Random - val expected = (0 until n).map { i => - if (rand.nextBoolean()) { - None - } else { - Some(i) - } - } - expected.foreach { opt => - val record = new SimpleGroup(schema) - opt match { - case Some(i) => - record.add(0, i.toString * 48) - case _ => - } - writer.write(record) - } - - writer.close() - expected - } - - withTable("tbl") { - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - makeRawParquetFile(path, false, 10000, 128) - - sql("CREATE TABLE tbl (value STRING, p STRING) USING PARQUET PARTITIONED BY (p) ") - sql(s"ALTER TABLE tbl ADD PARTITION (p='a') LOCATION '$dir'") - assert(sql("SELECT DISTINCT p FROM tbl").count() == 1) - } - } - - } - - test("missing columns") { - withTempPath { dir => - Seq("a", "b").toDF("col1").write.parquet(dir.getCanonicalPath) - - // Create a schema where `col2` doesn't exist in the file schema - var schema = - StructType(Seq(StructField("col1", StringType), StructField("col2", IntegerType))) - var df = spark.read.schema(schema).parquet(dir.getCanonicalPath) - checkAnswer(df, Row("a", null) :: Row("b", null) :: Nil) - - // Should be the same when the missing column is at the beginning of the schema - - schema = StructType(Seq(StructField("col0", BooleanType), StructField("col1", StringType))) - df = spark.read.schema(schema).parquet(dir.getCanonicalPath) - checkAnswer(df, Row(null, "a") :: Row(null, "b") :: Nil) - } - } - - test("unsigned int supported") { - Seq(true, false).foreach { dictionaryEnabled => - def makeRawParquetFile(path: Path): Unit = { - val schemaStr = - """message root { - | required INT32 a(UINT_8); - | required INT32 b(UINT_16); - | required INT32 c(UINT_32); - |} - """.stripMargin - val schema = MessageTypeParser.parseMessageType(schemaStr) - - val writer = createParquetWriter(schema, path, dictionaryEnabled) - - (0 until 10).foreach { n => - val record = new SimpleGroup(schema) - record.add(0, n.toByte + Byte.MaxValue) - record.add(1, n.toShort + Short.MaxValue) - record.add(2, n + Int.MaxValue) - writer.write(record) - } - writer.close() - } - - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - makeRawParquetFile(path) - readParquetFile(path.toString) { df => - checkAnswer( - df, - (0 until 10).map(n => - Row(n.toByte + Byte.MaxValue, n.toShort + Short.MaxValue, n + Int.MaxValue.toLong))) - } - } - } - } - - test("unsigned long supported") { - Seq(true, false).foreach { dictionaryEnabled => - def makeRawParquetFile(path: Path): Unit = { - val schemaStr = - """message root { - | required INT64 a(UINT_64); - |} - """.stripMargin - val schema = MessageTypeParser.parseMessageType(schemaStr) - - val writer = createParquetWriter(schema, path, dictionaryEnabled) - - (0 until 10).map(_.toLong).foreach { n => - val record = new SimpleGroup(schema) - record.add(0, n + Long.MaxValue) - writer.write(record) - } - writer.close() - } - - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - makeRawParquetFile(path) - readParquetFile(path.toString) { df => - checkAnswer( - df, - (0 until 10).map(n => - Row( - new BigDecimal(UnsignedLong.fromLongBits(n + Long.MaxValue).bigIntegerValue())))) - } - } - } - } - - test("enum support") { - // https://github.com/apache/parquet-format/blob/master/LogicalTypes.md - // "enum type should interpret ENUM annotated field as a UTF-8" - Seq(true, false).foreach { dictionaryEnabled => - def makeRawParquetFile(path: Path): Unit = { - val schemaStr = - """message root { - | required BINARY a(ENUM); - |} - """.stripMargin - val schema = MessageTypeParser.parseMessageType(schemaStr) - - val writer = createParquetWriter(schema, path, dictionaryEnabled) - - (0 until 10).map(_.toLong).foreach { n => - val record = new SimpleGroup(schema) - record.add(0, n.toString) - writer.write(record) - } - writer.close() - } - - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - makeRawParquetFile(path) - readParquetFile(path.toString) { df => - checkAnswer(df, (0 until 10).map(n => Row(n.toString))) - } - } - } - } - - test("FIXED_LEN_BYTE_ARRAY support") { - assume(isSpark34Plus) - Seq(true, false).foreach { dictionaryEnabled => - def makeRawParquetFile(path: Path): Unit = { - val schemaStr = - """message root { - | required FIXED_LEN_BYTE_ARRAY(1) a; - | required FIXED_LEN_BYTE_ARRAY(3) b; - |} - """.stripMargin - val schema = MessageTypeParser.parseMessageType(schemaStr) - - val writer = createParquetWriter(schema, path, dictionaryEnabled) - - (0 until 10).map(_.toString).foreach { n => - val record = new SimpleGroup(schema) - record.add(0, n) - record.add(1, n + n + n) - writer.write(record) - } - writer.close() - } - - withTempDir { dir => - val path = new Path(dir.toURI.toString, "part-r-0.parquet") - makeRawParquetFile(path) - readParquetFile(path.toString) { df => - checkAnswer( - df, - (48 until 58).map(n => // char '0' is 48 in ascii - Row(Array(n), Array(n, n, n)))) - } - } - } - } - - test("schema evolution") { - Seq(true, false).foreach { enableSchemaEvolution => - Seq(true, false).foreach { useDictionary => - { - withSQLConf( - CometConf.COMET_SCHEMA_EVOLUTION_ENABLED.key -> enableSchemaEvolution.toString) { - val data = (0 until 100).map(i => { - val v = if (useDictionary) i % 5 else i - (v, v.toFloat) - }) - val readSchema = - StructType( - Seq(StructField("_1", LongType, false), StructField("_2", DoubleType, false))) - - withParquetDataFrame(data, schema = Some(readSchema)) { df => - if (enableSchemaEvolution) { - checkAnswer(df, data.map(Row.fromTuple)) - } else { - assertThrows[SparkException](df.collect()) - } - } - } - } - } - } - } - - test("scan metrics") { - val metricNames = Seq( - "ParquetRowGroups", - "ParquetNativeDecodeTime", - "ParquetNativeLoadTime", - "ParquetLoadRowGroupTime", - "ParquetInputFileReadTime", - "ParquetInputFileReadSize", - "ParquetInputFileReadThroughput") - - withParquetTable((0 until 10000).map(i => (i, i.toDouble)), "tbl") { - val df = sql("SELECT * FROM tbl WHERE _1 > 0") - val scans = df.queryExecution.executedPlan collect { - case s: CometScanExec => s - case s: CometBatchScanExec => s - } - assert(scans.size == 1, s"Expect one scan node but found ${scans.size}") - val metrics = scans.head.metrics - metricNames.foreach { metricName => - assert(metrics.contains(metricName), s"metric $metricName was not found") - } - - df.collect() - - metricNames.foreach { metricName => - assert( - metrics(metricName).value > 0, - s"Expect metric value for $metricName to be positive") - } - } - } - - test("read dictionary encoded decimals written as FIXED_LEN_BYTE_ARRAY") { - // In this test, data is encoded using Parquet page v2 format, but with PLAIN encoding - checkAnswer( - // Decimal column in this file is encoded using plain dictionary - readResourceParquetFile("test-data/dec-in-fixed-len.parquet"), - spark.range(1 << 4).select('id % 10 cast DecimalType(10, 2) as 'fixed_len_dec)) - } - - test("read long decimals with precision <= 9") { - // decimal32-written-as-64-bit.snappy.parquet was generated using a 3rd-party library. It has - // 10 rows of Decimal(9, 1) written as LongDecimal instead of an IntDecimal - var df = readResourceParquetFile("test-data/decimal32-written-as-64-bit.snappy.parquet") - assert(10 == df.collect().length) - var first10Df = df.head(10) - assert( - Seq(792059492, 986842987, 540247998, null, 357991078, 494131059, 92536396, 426847157, - -999999999, 204486094) - .zip(first10Df) - .forall(d => - d._2.isNullAt(0) && d._1 == null || - d._1 == d._2.getDecimal(0).unscaledValue().intValue())) - - // decimal32-written-as-64-bit-dict.snappy.parquet was generated using a 3rd-party library. It - // has 2048 rows of Decimal(3, 1) written as LongDecimal instead of an IntDecimal - df = readResourceParquetFile("test-data/decimal32-written-as-64-bit-dict.snappy.parquet") - assert(2048 == df.collect().length) - first10Df = df.head(10) - assert( - Seq(751, 937, 511, null, 337, 467, 84, 403, -999, 190) - .zip(first10Df) - .forall(d => - d._2.isNullAt(0) && d._1 == null || - d._1 == d._2.getDecimal(0).unscaledValue().intValue())) - - val last10Df = df.tail(10) - assert( - Seq(866, 20, 492, 76, 824, 604, 343, 820, 864, 243) - .zip(last10Df) - .forall(d => d._1 == d._2.getDecimal(0).unscaledValue().intValue())) - } - - private val actions: Seq[DataFrame => DataFrame] = Seq( - "_1 = 500", - "_1 = 500 or _1 = 1500", - "_1 = 500 or _1 = 501 or _1 = 1500", - "_1 = 500 or _1 = 501 or _1 = 1000 or _1 = 1500", - "_1 >= 500 and _1 < 1000", - "(_1 >= 500 and _1 < 1000) or (_1 >= 1500 and _1 < 1600)").map(f => - (df: DataFrame) => df.filter(f)) - - test("test lazy materialization when batch size is small") { - val df = spark.range(0, 2000).selectExpr("id as _1", "cast(id as string) as _11") - checkParquetDataFrame(df)(actions: _*) - } - - test("test lazy materialization when batch size is small (dict encode)") { - val df = spark.range(0, 2000).selectExpr("id as _1", "cast(id % 10 as string) as _11") - checkParquetDataFrame(df)(actions: _*) - } - - private def testStandardAndLegacyModes(testName: String)(f: => Unit): Unit = { - test(s"Standard mode - $testName") { - withSQLConf(SQLConf.PARQUET_WRITE_LEGACY_FORMAT.key -> "false") { f } - } - - test(s"Legacy mode - $testName") { - withSQLConf(SQLConf.PARQUET_WRITE_LEGACY_FORMAT.key -> "true") { f } - } - } - - private def checkParquetFile[T <: Product: ClassTag: TypeTag]( - data: Seq[T], - f: Row => Boolean = _ => true): Unit = { - withParquetDataFrame(data)(r => checkAnswer(r.filter(f), data.map(Row.fromTuple).filter(f))) - } - - protected def checkParquetScan[T <: Product: ClassTag: TypeTag]( - data: Seq[T], - f: Row => Boolean = _ => true): Unit - - /** - * create parquet file with various page sizes and batch sizes - */ - private def checkParquetDataFrame(df: DataFrame)(actions: (DataFrame => DataFrame)*): Unit = { - Seq(true, false).foreach { enableDictionary => - Seq(64, 127, 4049).foreach { pageSize => - withTempPath(file => { - df.coalesce(1) - .write - .option("parquet.page.size", pageSize.toString) - .option("parquet.enable.dictionary", enableDictionary.toString) - .parquet(file.getCanonicalPath) - - Seq(true, false).foreach { useLazyMaterialization => - Seq(true, false).foreach { enableCometExec => - Seq(4, 13, 4049).foreach { batchSize => - withSQLConf( - CometConf.COMET_BATCH_SIZE.key -> batchSize.toString, - CometConf.COMET_EXEC_ENABLED.key -> enableCometExec.toString, - CometConf.COMET_USE_LAZY_MATERIALIZATION.key -> useLazyMaterialization.toString) { - readParquetFile(file.getCanonicalPath) { parquetDf => - actions.foreach { action => - checkAnswer(action(parquetDf), action(df)) - } - } - } - } - } - } - }) - } - } - } - - test("row group skipping doesn't overflow when reading into larger type") { - assume(isSpark34Plus) - - withTempPath { path => - Seq(0).toDF("a").write.parquet(path.toString) - // Reading integer 'a' as a long isn't supported. Check that an exception is raised instead - // of incorrectly skipping the single row group and producing incorrect results. - val exception = intercept[SparkException] { - spark.read - .schema("a LONG") - .parquet(path.toString) - .where(s"a < ${Long.MaxValue}") - .collect() - } - assert(exception.getCause.getCause.isInstanceOf[SchemaColumnConvertNotSupportedException]) - } - } - - test("test pre-fetching multiple files") { - def makeRawParquetFile( - path: Path, - dictionaryEnabled: Boolean, - n: Int, - pageSize: Int): Seq[Option[Int]] = { - val schemaStr = - """ - |message root { - | optional boolean _1; - | optional int32 _2(INT_8); - | optional int32 _3(INT_16); - | optional int32 _4; - | optional int64 _5; - | optional float _6; - | optional double _7; - | optional binary _8(UTF8); - | optional int32 _9(UINT_8); - | optional int32 _10(UINT_16); - | optional int32 _11(UINT_32); - | optional int64 _12(UINT_64); - | optional binary _13(ENUM); - |} - """.stripMargin - - val schema = MessageTypeParser.parseMessageType(schemaStr) - val writer = createParquetWriter( - schema, - path, - dictionaryEnabled = dictionaryEnabled, - pageSize = pageSize, - dictionaryPageSize = pageSize) - - val rand = scala.util.Random - val expected = (0 until n).map { i => - if (rand.nextBoolean()) { - None - } else { - Some(i) - } - } - expected.foreach { opt => - val record = new SimpleGroup(schema) - opt match { - case Some(i) => - record.add(0, i % 2 == 0) - record.add(1, i.toByte) - record.add(2, i.toShort) - record.add(3, i) - record.add(4, i.toLong) - record.add(5, i.toFloat) - record.add(6, i.toDouble) - record.add(7, i.toString * 48) - record.add(8, (-i).toByte) - record.add(9, (-i).toShort) - record.add(10, -i) - record.add(11, (-i).toLong) - record.add(12, i.toString) - case _ => - } - writer.write(record) - } - - writer.close() - expected - } - - val conf = new Configuration() - conf.set("spark.comet.scan.preFetch.enabled", "true"); - conf.set("spark.comet.scan.preFetch.threadNum", "4"); - - withTempDir { dir => - val threadPool = CometPrefetchThreadPool.getOrCreateThreadPool(2) - - val readers = (0 to 10).map { idx => - val path = new Path(dir.toURI.toString, s"part-r-$idx.parquet") - makeRawParquetFile(path, dictionaryEnabled = false, 10000, 500) - - val reader = new BatchReader(conf, path.toString, 1000, null, null) - reader.submitPrefetchTask(threadPool) - - reader - } - - // Wait for all pre-fetch tasks - readers.foreach { reader => - val task = reader.getPrefetchTask() - task.get() - } - - val totolRows = readers.map { reader => - val queue = reader.getPrefetchQueue() - var rowCount = 0L - - while (!queue.isEmpty) { - val rowGroup = queue.take().getLeft - rowCount += rowGroup.getRowCount - } - - reader.close() - - rowCount - }.sum - - readParquetFile(dir.toString) { df => - assert(df.count() == totolRows) - } - } - } - def testScanner(cometEnabled: String, scanner: String, v1: Option[String] = None): Unit = { - withSQLConf( - CometConf.COMET_ENABLED.key -> cometEnabled, - CometConf.COMET_EXEC_ENABLED.key -> cometEnabled, - CometConf.COMET_EXEC_ALL_OPERATOR_ENABLED.key -> cometEnabled, - SQLConf.USE_V1_SOURCE_LIST.key -> v1.getOrElse("")) { - withParquetTable(Seq((Long.MaxValue, 1), (Long.MaxValue, 2)), "tbl") { - val df = spark.sql("select * from tbl") - assert( - stripAQEPlan(df.queryExecution.executedPlan) - .collectLeaves() - .head - .toString() - .startsWith(scanner)) - } - } - } - - override protected def test(testName: String, testTags: Tag*)(testFun: => Any)(implicit - pos: Position): Unit = { - Seq(true, false).foreach { prefetch => - val cometTestName = if (prefetch) { - testName + " (prefetch enabled)" - } else { - testName - } - - super.test(cometTestName, testTags: _*) { - withSQLConf(CometConf.COMET_SCAN_PREFETCH_ENABLED.key -> prefetch.toString) { - testFun - } - } - } - } -} - -class ParquetReadV1Suite extends ParquetReadSuite with AdaptiveSparkPlanHelper { - override protected def test(testName: String, testTags: Tag*)(testFun: => Any)(implicit - pos: Position): Unit = { - super.test(testName, testTags: _*)(withSQLConf(SQLConf.USE_V1_SOURCE_LIST.key -> "parquet") { - testFun - })(pos) - } - - override def checkParquetScan[T <: Product: ClassTag: TypeTag]( - data: Seq[T], - f: Row => Boolean = _ => true): Unit = { - withParquetDataFrame(data) { r => - val scans = collect(r.filter(f).queryExecution.executedPlan) { case p: CometScanExec => - p - } - if (CometConf.COMET_ENABLED.get()) { - assert(scans.nonEmpty) - } else { - assert(scans.isEmpty) - } - } - } - - test("Test V1 parquet scan uses respective scanner") { - Seq(("false", "FileScan parquet"), ("true", "CometScan parquet")).foreach { - case (cometEnabled, expectedScanner) => - testScanner(cometEnabled, scanner = expectedScanner, v1 = Some("parquet")) - } - } -} - -class ParquetReadV2Suite extends ParquetReadSuite with AdaptiveSparkPlanHelper { - override protected def test(testName: String, testTags: Tag*)(testFun: => Any)(implicit - pos: Position): Unit = { - super.test(testName, testTags: _*)(withSQLConf(SQLConf.USE_V1_SOURCE_LIST.key -> "") { - testFun - })(pos) - } - - override def checkParquetScan[T <: Product: ClassTag: TypeTag]( - data: Seq[T], - f: Row => Boolean = _ => true): Unit = { - withParquetDataFrame(data) { r => - val scans = collect(r.filter(f).queryExecution.executedPlan) { case p: CometBatchScanExec => - p.scan - } - if (CometConf.COMET_ENABLED.get()) { - assert(scans.nonEmpty && scans.forall(_.isInstanceOf[CometParquetScan])) - } else { - assert(!scans.exists(_.isInstanceOf[CometParquetScan])) - } - } - } - - test("Test V2 parquet scan uses respective scanner") { - Seq(("false", "BatchScan"), ("true", "CometBatchScan")).foreach { - case (cometEnabled, expectedScanner) => - testScanner(cometEnabled, scanner = expectedScanner, v1 = None) - } - } -}