diff --git a/docs/source/algorithms/moo/kgb.ipynb b/docs/source/algorithms/moo/kgb.ipynb index c9e6df600..d3651eeea 100644 --- a/docs/source/algorithms/moo/kgb.ipynb +++ b/docs/source/algorithms/moo/kgb.ipynb @@ -77,7 +77,7 @@ "- **perc_diversity (float, optional):** Proportion of the population allocated for introducing diversity. \n", "- **c_size (int, optional):** Cluster size.\n", "- **eps (float, optional):** Threshold for detecting changes. Default: \n", - "- **pertub_dev (float, optional):** Deviation for perturbation in diversity introduction. " + "- **perturb_dev (float, optional):** Deviation for perturbation in diversity introduction. " ] }, { diff --git a/docs/source/algorithms/moo/nsga2.ipynb b/docs/source/algorithms/moo/nsga2.ipynb index d240d5e56..5b88d1990 100644 --- a/docs/source/algorithms/moo/nsga2.ipynb +++ b/docs/source/algorithms/moo/nsga2.ipynb @@ -72,9 +72,7 @@ { "cell_type": "markdown", "metadata": {}, - "source": [ - "Furthermore, to increase some selection pressure, NSGA-II uses a binary tournament mating selection. Each individual is first compared by rank and then crowding distance. There is also a variant in the original C code where instead of using the rank, the domination criterium between two solutions is used." - ] + "source": "Furthermore, to increase some selection pressure, NSGA-II uses a binary tournament mating selection. Each individual is first compared by rank and then crowding distance. There is also a variant in the original C code where instead of using the rank, the domination criterion between two solutions is used." }, { "cell_type": "markdown", diff --git a/docs/source/getting_started/part_2.ipynb b/docs/source/getting_started/part_2.ipynb index c29a9a25b..634de8e77 100644 --- a/docs/source/getting_started/part_2.ipynb +++ b/docs/source/getting_started/part_2.ipynb @@ -166,9 +166,7 @@ { "cell_type": "markdown", "metadata": {}, - "source": [ - "If you use **pymoo** as a researcher trying to improve existing algorithms, you might want to have a look at the varierity of single- and many-objective optimization test problems already implemented. " - ] + "source": "If you use **pymoo** as a researcher trying to improve existing algorithms, you might want to have a look at the variety of single- and many-objective optimization test problems already implemented. " }, { "cell_type": "markdown", diff --git a/pymoo/algorithms/moo/kgb.py b/pymoo/algorithms/moo/kgb.py index ae049383a..cd50b04fb 100755 --- a/pymoo/algorithms/moo/kgb.py +++ b/pymoo/algorithms/moo/kgb.py @@ -24,13 +24,13 @@ def __init__( c_size=13, eps=0.0, ps={}, - pertub_dev=0.1, + perturb_dev=0.1, save_ps=False, **kwargs, ): super().__init__(**kwargs) - self.PERTUB_DEV = pertub_dev + self.PERTURB_DEV = perturb_dev self.PERC_DIVERSITY = perc_diversity self.PERC_DETECT_CHANGE = perc_detect_change self.EPS = eps @@ -258,11 +258,11 @@ def check_boundaries(self, pop): :param pop: Population to check and fix boundaries :return: Population with corrected boundaries """ - # check wether numpy array or pymoo population is given + # check whether numpy array or pymoo population is given if isinstance(pop, Population): pop = pop.get("X") - # check if any solution is outside of the bounds + # check if any solution is outside the bounds for individual in pop: for i in range(len(individual)): if individual[i] > self.problem.xu[i]: @@ -281,7 +281,7 @@ def random_strategy(self, N_r): # TODO: Check boundaries random_pop = np.random.random((N_r, self.problem.n_var)) - # check if any solution is outside of the bounds + # check if any solution is outside the bounds for individual in random_pop: for i in range(len(individual)): if individual[i] > self.problem.xu[i]: @@ -341,16 +341,16 @@ def _advance(self, **kwargs): X_test = self.random_strategy(self.nr_rand_solutions) # introduce noise to vary previously useful solutions - noise = np.random.normal(0, self.PERTUB_DEV, self.problem.n_var) + noise = np.random.normal(0, self.PERTURB_DEV, self.problem.n_var) noisy_useful_history = np.asarray(pop_useful) + noise - # check wether solutions are within bounds + # check whether solutions are within bounds noisy_useful_history = self.check_boundaries(noisy_useful_history) # add noisy useful history to randomly generated solutions X_test = np.vstack((X_test, noisy_useful_history)) - # predict wether random solutions are useful or useless + # predict whether random solutions are useful or useless Y_test = model.predict(X_test) # create list of useful predicted solutions @@ -391,7 +391,7 @@ def _advance(self, **kwargs): # if there are still not enough solutions in init_pop randomly sample previously useful solutions directly without noise to init_pop if len(init_pop) < self.pop_size: - # fill up init_pop with randomly sampled solutions from pop_usefull + # fill up init_pop with randomly sampled solutions from pop_useful if len(pop_useful) >= self.pop_size - len(init_pop): nr_sampled_pop_useful = self.pop_size - len(init_pop) diff --git a/pymoo/algorithms/moo/nsga3.py b/pymoo/algorithms/moo/nsga3.py index b17ce8df0..220e7b21d 100644 --- a/pymoo/algorithms/moo/nsga3.py +++ b/pymoo/algorithms/moo/nsga3.py @@ -212,7 +212,7 @@ def niching(pop, n_remaining, niche_count, niche_of_individuals, dist_to_niche): # the minimum niche count min_niche_count = next_niche_count.min() - # all niches with the minimum niche count (truncate if randomly if more niches than remaining individuals) + # all niches with the minimum niche count (truncate randomly if there are more niches than remaining individuals) next_niches = next_niches_list[np.where(next_niche_count == min_niche_count)[0]] next_niches = next_niches[np.random.permutation(len(next_niches))[:n_select]] @@ -303,7 +303,7 @@ def get_extreme_points_c(F, ideal_point, extreme_points=None): weights = np.eye(F.shape[1]) weights[weights == 0] = 1e6 - # add the old extreme points to never loose them for normalization + # add the old extreme points to never lose them for normalization _F = F if extreme_points is not None: _F = np.concatenate([extreme_points, _F], axis=0) diff --git a/pymoo/algorithms/moo/pinsga2.py b/pymoo/algorithms/moo/pinsga2.py index 38382dcbb..afd9e5f0b 100644 --- a/pymoo/algorithms/moo/pinsga2.py +++ b/pymoo/algorithms/moo/pinsga2.py @@ -167,7 +167,7 @@ def _get_pairwise_ranks(F, presi_signs, dm=None): break print("Invalid input. Please enter 'a', 'b', or 'c'.") - # if better than currenly ranked element place before that element + # if better than currently ranked element place before that element if preference == 'a': _ranks.insert( j, [i] ) inserted = True diff --git a/pymoo/algorithms/moo/rnsga3.py b/pymoo/algorithms/moo/rnsga3.py index 03e8ff48f..6d0324a37 100644 --- a/pymoo/algorithms/moo/rnsga3.py +++ b/pymoo/algorithms/moo/rnsga3.py @@ -176,7 +176,7 @@ def get_ref_dirs_from_points(ref_point, ref_dirs, mu=0.1): Das-Dennis points around the projection of user points on the Das-Dennis hyperplane :param ref_point: List of user specified reference points :param n_obj: Number of objectives to consider - :param mu: Shrinkage factor (0-1), Smaller = tigher convergence, Larger= larger convergence + :param mu: Shrinkage factor (0-1), Smaller = tighter convergence, Larger= larger convergence :return: Set of reference points """ @@ -232,7 +232,7 @@ def line_plane_intersection(l0, l1, p0, p_no, epsilon=1e-6): # if 'fac' is between (0 - 1) the point intersects with the segment. # otherwise: # < 0.0: behind p0. - # > 1.0: infront of p1. + # > 1.0: in front of p1. w = p0 - l0 d = np.dot(w, p_no) / dot l = l * d diff --git a/pymoo/config.py b/pymoo/config.py index 29957714e..6a0459545 100644 --- a/pymoo/config.py +++ b/pymoo/config.py @@ -22,7 +22,7 @@ class Config: # whether when import a file the doc should be parsed - only activate when creating doc files parse_custom_docs = False - # a method defining the endpoint to load data remotely - default from github repo + # a method defining the endpoint to load data remotely - default from GitHub repo @classmethod def data(cls): return f"https://raw.githubusercontent.com/anyoptimization/pymoo-data/main/" diff --git a/pymoo/cython/non_dominated_sorting.pyx b/pymoo/cython/non_dominated_sorting.pyx index 785dba834..c79041996 100644 --- a/pymoo/cython/non_dominated_sorting.pyx +++ b/pymoo/cython/non_dominated_sorting.pyx @@ -100,7 +100,7 @@ cdef vector[vector[int]] c_fast_non_dominated_sort(double[:,:] F, double epsilon # append the first front to the current front fronts.push_back(current_front) - # while not all solutions are assigned to a pareto front or we can stop early because of stop criterium + # while not all solutions are assigned to a pareto front or we can stop early because of stop criterion while (n_ranked < n_points) and (n_ranked < n_stop_if_ranked): next_front = vector[int]() diff --git a/pymoo/docs.py b/pymoo/docs.py index 1d242788f..c39824a1d 100644 --- a/pymoo/docs.py +++ b/pymoo/docs.py @@ -87,7 +87,7 @@ visualization = { "figsize": """tuple - The figure size. Default (figsize=(8, 6)). For some plots changing the size might have side-effects for position. + The figure size. Default (figsize=(8, 6)). For some plots changing the size might have side effects for position. """, "title": """str or tuple diff --git a/pymoo/operators/selection/tournament.py b/pymoo/operators/selection/tournament.py index a1bc5adb3..2807b3180 100644 --- a/pymoo/operators/selection/tournament.py +++ b/pymoo/operators/selection/tournament.py @@ -8,7 +8,7 @@ class TournamentSelection(Selection): """ - The Tournament selection is used to simulated a tournament between individuals. The pressure balances + The Tournament selection is used to simulate a tournament between individuals. The pressure balances greedy the genetic algorithm will be. """ @@ -19,7 +19,7 @@ def __init__(self, func_comp=None, pressure=2, **kwargs): ---------- func_comp: func The function to compare two individuals. It has the shape: comp(pop, indices) and returns the winner. - If the function is None it is assumed the population is sorted by a criterium and only indices are compared. + If the function is None it is assumed the population is sorted by a criterion and only indices are compared. pressure: int The selection pressure to bie applied. Default it is a binary tournament. diff --git a/pymoo/optimize.py b/pymoo/optimize.py index 733bacd1a..e5c88950a 100644 --- a/pymoo/optimize.py +++ b/pymoo/optimize.py @@ -8,7 +8,7 @@ def minimize(problem, algorithm, termination=None, copy_algorithm=True, copy_ter This is used as a convenience function to execute several algorithms with default settings which turned out to work for a test single. However, evolutionary computations utilizes the idea of customizing a - meta-algorithm. Customizing the algorithm using the object oriented interface is recommended to improve the + meta-algorithm. Customizing the algorithm using the object-oriented interface is recommended to improve the convergence. Parameters @@ -48,7 +48,7 @@ def minimize(problem, algorithm, termination=None, copy_algorithm=True, copy_ter """ - # create a copy of the algorithm object to ensure no side-effects + # create a copy of the algorithm object to ensure no side effects if copy_algorithm: algorithm = copy.deepcopy(algorithm) diff --git a/pymoo/problems/single/traveling_salesman.py b/pymoo/problems/single/traveling_salesman.py index fc612d79b..68cd9c307 100644 --- a/pymoo/problems/single/traveling_salesman.py +++ b/pymoo/problems/single/traveling_salesman.py @@ -14,7 +14,7 @@ def __init__(self, cities, **kwargs): Parameters ---------- cities : numpy.array - The cities with 2-dimensional coordinates provided by a matrix where where city is represented by a row. + The cities with 2-dimensional coordinates provided by a matrix where city is represented by a row. """ n_cities, _ = cities.shape diff --git a/pymoo/visualization/heatmap.py b/pymoo/visualization/heatmap.py index 184cdf50e..f6e9bd035 100644 --- a/pymoo/visualization/heatmap.py +++ b/pymoo/visualization/heatmap.py @@ -32,7 +32,7 @@ def __init__(self, If true large values are white and small values the corresponding color. Otherwise, the other way around. solution_labels : bool or list - If False no labels are plotted in the y axis. If true just the corresponding index. Otherwise the label provided. + If False no labels are plotted in the y axis. If true just the corresponding index. Otherwise, the label provided. bounds : {bounds} @@ -97,11 +97,11 @@ def _do(self): if self.solution_labels is None: pass - # in case just true just use a number for each solution + # if true, just use a number for each solution elif isinstance(self.solution_labels, bool) and self.solution_labels: self.solution_labels = np.arange(len(F)) + 1 - # otherwise use directly the label provided + # otherwise, use directly the label provided else: if len(self.solution_labels) != len(F): raise Exception( diff --git a/pymoo/visualization/pcp.py b/pymoo/visualization/pcp.py index 49b14c563..864fe81cc 100644 --- a/pymoo/visualization/pcp.py +++ b/pymoo/visualization/pcp.py @@ -36,7 +36,7 @@ def __init__(self, Whether the value of the boundaries are shown in the plot or not. normalize_each_axis : bool - Whether the values should be normalized either by bounds or implictly. + Whether the values should be normalized either by bounds or implicitly. Other Parameters ---------------- diff --git a/pymoo/visualization/radar.py b/pymoo/visualization/radar.py index 1b44eb65d..22a8e620e 100644 --- a/pymoo/visualization/radar.py +++ b/pymoo/visualization/radar.py @@ -21,7 +21,7 @@ def __init__(self, Parameters ---------------- normalize_each_objective : bool - Whether each objective is normalized. Otherwise the inner and outer bound is plotted. + Whether each objective is normalized. Otherwise, the inner and outer bound is plotted. point_style : dict The style being used to visualize the points n_partitions : int