-
Notifications
You must be signed in to change notification settings - Fork 4
/
my_ml_lib.py
494 lines (386 loc) · 17.3 KB
/
my_ml_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
from pandas.plotting import table
import itertools
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
class DimensionalityReductionTools:
@staticmethod
def pca(data, conserve, top_eig_vecs=None):
"""
Performs Principal Component Analysis(PCA) dimensionality reduction over data.
data: data to project in reduced dimensions.
conserve: amount of eigen energy to be converved (value is between 0 to 1).
top_eig_vecs: if given a numpy array of eigen vectors stacked horizontally,
the data will be projected using these eigen vectors.
return: projection of data in reduced dimesion and the eigen vector's stack used to project data.
"""
if top_eig_vecs is None:
cov_mat = np.cov(data.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
eig_vals = np.real(eig_vals)
# Find indexes of largest eigen values
top_eig_indxes = np.argsort(-eig_vals)
# Get the top-k eigen vectors corresponding to top-k eigen values
# to conserve required eigen energy
energy = 0
total_energy = np.sum(eig_vals)
top_eig_vecs = []
k = 0
while energy/total_energy < conserve:
energy += eig_vals[top_eig_indxes[k]]
top_eig_vecs.append(eig_vecs[:, top_eig_indxes[k]])
k += 1
top_eig_vecs = np.array(top_eig_vecs)
# Transpose to get horizontally stacked eigen vectors
top_eig_vecs = np.real(top_eig_vecs.T)
mean = np.average(data, axis=0)
data = data - mean
return np.dot(data, top_eig_vecs), top_eig_vecs
@staticmethod
def lda(data_x, data_y, n_components=None, top_eig_vecs=None):
"""
Performs Linear Discriminant Analysis(LDA) dimensionality reduction over data.
data_x: Features numpy array.
data_y: labels corresponding feature vectors.
n_components: Number of components in which the data will be reduced.
if None, n_components = n_classes - 1.
top_eig_vecs: if given a numpy array of eigen vectors stacked horizontally,
the data will be projected using these eigen vectors.
return: projection of data in reduced dimesion and the eigen vector's stack used to project data.
"""
if top_eig_vecs is None:
classes = np.sort(np.unique(data_y))
if n_components is None:
n_components = len(classes) - 1
data_mean = np.mean(data_x, axis=0).reshape((data_x.shape[1], 1))
Sw = np.zeros((data_x.shape[1], data_x.shape[1]))
Sb = np.zeros((data_x.shape[1], data_x.shape[1]))
for c in classes:
data_xc = data_x[data_y == c]
mean_c = np.mean(data_xc, axis=0)
sw_c = np.zeros((data_x.shape[1], data_x.shape[1]))
mean_c = mean_c.reshape((data_x.shape[1], 1))
for row in data_xc:
row = row.reshape((data_x.shape[1], 1))
sw_c += np.dot((row - mean_c),(row - mean_c).T)
Sw += sw_c
Sb += len(data_xc) * np.dot((mean_c - data_mean), (mean_c - data_mean).T)
Sw_inv = np.linalg.pinv(Sw)
eig_vals, eig_vecs = np.linalg.eig(np.dot(Sw_inv, Sb))
eig_vals = np.real(eig_vals)
# Find indexes of largest eigen values
top_eig_indxes = np.argsort(-eig_vals)
top_eig_vecs = []
for k in range(0, n_components):
top_eig_vecs.append(eig_vecs[:, top_eig_indxes[k]])
top_eig_vecs = np.array(top_eig_vecs)
# Transpose to get horizontally stacked eigen vectors
top_eig_vecs = np.real(top_eig_vecs.T)
return np.dot(data_x, top_eig_vecs), top_eig_vecs
class DataManipulationTools:
@staticmethod
def split_data(data, split, shuffle=True, random_state=None):
"""
data: numpy array to be split in the given ratios.
split: ratio between 0 to 1 to split the data. Eg. 0.7 means 70% - 30% data split.
shuffle: if True, shuffles the data randomly. (default: True)
random_state: seed for the random number generator. (default: None)
return: data split in 2 parts of sizes (split * len(data), (1-split) * len(data))
"""
if random_state:
np.random.seed(random_state)
if shuffle:
data = np.random.permutation(data)
idx = int(np.ceil(data.shape[0] * split))
return (data[:idx], data[idx:])
def k_folds(data, k=5, shuffle=False, random_state=None):
"""
Perform K-Folds on given data
data: data to be split into k folds.
k: number of folds to be generated. (default: 5)
shuffle: True if you want to shuffle the data before forming the folds. (default: False)
random_state: integer seed for random number generator.
return: a generator to give training and validation folds for k iterations.
"""
fold_size = int(np.ceil(len(data) / k))
if random_state:
np.random.seed(random_state)
if shuffle:
data = np.random.permutation(data)
folds = []
start = 0
end = fold_size
for i in range(k):
folds.append(data[start:end])
start = end
end += fold_size
folds = np.array(folds)
for i in range(k):
if i == 0:
yield np.concatenate(folds[1:]), folds[0]
elif i == k-1:
yield np.concatenate(folds[:k-1]), folds[k-1]
else:
yield np.concatenate(np.concatenate((folds[:i], folds[i+1:]))), folds[i]
class MetricTools:
@staticmethod
def accuracy(y, y_hat):
"""
y [np array]: actual labels
y_hat [np array]: predicted labels
return: accuracy between 0 and 1
"""
return np.sum(y == y_hat) / len(y)
@staticmethod
def prec_recall(y, y_hat, nclasses):
"""
y [np array]: actual labels
y_hat [np array]: predicted labels
nclasses [integer]: number of classes in the dataset.
return: precision, recall
"""
cm = MetricTools.confusion_matrix(y, y_hat, nclasses)
rec = cm[0,0] / np.sum(cm[0,:])
prec = cm[0,0] / np.sum(cm[:,0])
return prec, rec
@staticmethod
def confusion_matrix(y, y_hat, nclasses):
"""
y [np array]: actual labels [values between 0 to nclasses-1]
y_hat [np array]: predicted labels [values between 0 to nclasses-1]
nclasses [integer]: number of classes in the dataset.
return: confusion matrix of shape [nclasses, nclasses]
"""
y = y.astype(np.int64)
y_hat = y_hat.astype(np.int64)
conf_mat = np.zeros((nclasses, nclasses))
for i in range(y_hat.shape[0]):
true, pred = y[i], y_hat[i]
conf_mat[true, pred] += 1
return conf_mat
@staticmethod
def roc_curve(probs, test_y, label, is_log_prob=True):
"""
probs: Default Log-Posteriors log(P(C_label/x)) for class label.
Could be normal probs if is_log_prob = False.
test_y: actual labels of test data.
label: Class for which ROC is to be formed.
is_log_prob: Tells if probs is log-prob or not
return: False Positive Rate (FPR), True Positive Rate (TPR) for the given values
"""
thresholds = np.linspace(0, 1, num=100)
x = []
y = []
if is_log_prob:
probs = np.exp(probs)
min_val = np.min(probs)
max_val = np.max(probs)
for thresh in thresholds:
conf_mat = np.zeros((2,2))
pred = None
actual = None
for i in range(test_y.shape[0]):
if (probs[i] - min_val) / (max_val - min_val) > thresh:
pred = 0
else:
pred = 1
if test_y[i] == label:
actual = 0
else:
actual = 1
conf_mat[actual, pred] += 1
fpr = conf_mat[1, 0] / np.sum(conf_mat[1, :])
tpr = conf_mat[0, 0] / np.sum(conf_mat[0, :])
x.append(fpr)
y.append(tpr)
return x, y
class PlotTools:
@staticmethod
def confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues, figsize=(7,7), path=None, filename=None):
"""
cm: confusion matrix to be plotted.
classes: array of labels or class names.
title: title of the confusion matrix.
cmap: color of the plot matrix.
figsize: tupple (width, height) representiong size of the plot.
path: destination where the plot image will be saved.
filename: name to save the file with on the specified path. (if None, title is used)
# Source: https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
cm = cm.astype(np.int64)
plt.figure(figsize=figsize)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
if path:
if filename is None:
plt.savefig(path + title + '.png')
else:
plt.savefig(path + filename + '.png')
plt.show()
@staticmethod
def roc_curves(rocs, title, figsize=(8,5), path=None, filename=None):
"""
rocs: Dictionary of the form {'label': [FPR, TPR]} containing multiple ROC values.
where FPR = False positive rate; TPR = True positive rate
label = Title for which the ROC values are given
title: Title of the plot
figsize: tupple (width, height) representiong size of the plot.
path: destination where the plot image will be saved.
filename: name to save the file with on the specified path. (if None, title is used)
"""
plt.figure(figsize=figsize)
for l, roc in rocs.items():
plt.plot(roc[0], roc[1], label=l)
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.xlim((-0.05, 1.08))
plt.title(title)
plt.legend()
if path:
if filename is None:
plt.savefig(path + title + '.png')
else:
plt.savefig(path + filename + '.png')
plt.show()
@staticmethod
def table(data, row_index, col_index, title, figsize=(8,3), col_widths=[0.5], path=None, filename=None):
"""
Plots the data in tabular format.
data: 2d array data for the table to be plotted.
row_index: Headers for Rows of the table.
col_index: Headers for Columns of the table.
title: Title of the table.
figsize: tupple (width, height) representiong size of the plot.
col_widths: width of each column in the table.
path: destination where the plot image will be saved.
filename: name to save the file with on the specified path. (if None, title is used)
"""
df = pd.DataFrame(data)
plt.figure(figsize=figsize)
ax = plt.subplot(111, frame_on=False)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
plt.title(title)
table(ax, df, loc='upper right', rowLabels=row_index, colLabels=col_index, colWidths=col_widths)
if path:
if filename is None:
plt.savefig(path + title + '.png')
else:
plt.savefig(path + filename + '.png')
plt.show()
class Ada_Boost:
def __init__(self):
self.classifiers = []
self.alphas = []
self.le = None
def fit(self, train, n, tree_max_depth=2, tree_max_nodes=5, random_state=None):
"""
n: Number of boosting iterations i.e. number of classifiers.
train: Training data set, where last column are the labels
corresponding to each data point.
tree_max_depth: maximum tree depth of a weak learner.
tree_max_nodes: maximum number of leaf nodes possible in a weak learner.
random_state: seed for random generator.
return: (predictions, accuracy, error rate) over training set
"""
self.le = LabelEncoder()
self.le.fit(train[:, -1])
X = train[:, :-1]
y = self.le.transform(train[:, -1])
# number of data points
n_data = len(X)
n_classes = len(self.le.classes_)
weights = np.ones((n_data)) / n_data
ensemble_train_error = 1
for i in range(n):
self.classifiers.append(DecisionTreeClassifier(max_depth=tree_max_depth,
max_leaf_nodes=tree_max_nodes,
random_state=random_state))
self.classifiers[i].fit(X, y, sample_weight=weights)
preds = self.classifiers[i].predict(X)
I = np.ones((n_data))
I[preds == y] = 0
error = np.sum(np.multiply(weights, I)) / np.sum(weights)
ensemble_train_error *= 2 * np.sqrt(error * (1 - error))
alphai = np.log((1 - error) / error) + np.log(n_classes - 1)
self.alphas.append(alphai)
I[preds == y] = -1
# Update weights
weights = np.multiply(weights, np.exp(alphai * I))
# normalize weights
weights = weights / np.sum(weights)
y_hat = self.predict(X)
train_acc = MetricTools.accuracy(train[:, -1], y_hat)
return y_hat, train_acc, ensemble_train_error
def predict(self, test):
"""
test: data for which labels are to be predicted.
return: numpy array of label corresponding to each test point.
"""
# get a matrix of shape (test_points, n_classes)
mat = np.zeros((len(test), len(self.le.classes_)))
for i, clf in enumerate(self.classifiers):
preds = clf.predict(test)
for j, label in enumerate(preds):
mat[j, label] += self.alphas[i]
return self.le.inverse_transform(np.argmax(mat, axis=1))
class Bagging:
def __init__(self):
self.classifiers = []
self.le = None
def fit(self, train, n, tree_max_depth=2, tree_max_nodes=5, random_state=None):
"""
n: Number of bagging iterations i.e. number of classifiers.
train: Training data set, where last column are the labels
corresponding to each data point.
tree_max_depth: maximum tree depth of a weak learner.
tree_max_nodes: maximum number of leaf nodes possible in a weak learner.
random_state: seed for random generator.
return: (predictions, accuracy, error rate) over training set
"""
self.le = LabelEncoder()
self.le.fit(train[:, -1])
X = train[:, :-1]
y = self.le.transform(train[:, -1])
# number of data points
n_data = len(X)
n_classes = len(self.le.classes_)
for i in range(n):
self.classifiers.append(DecisionTreeClassifier(max_depth=tree_max_depth,
max_leaf_nodes=tree_max_nodes,
random_state=random_state))
data_index = np.random.randint(0, n_data, n_data)
train_X_i = X[data_index]
train_y_i = y[data_index]
self.classifiers[i].fit(train_X_i, train_y_i)
y_hat = self.predict(X)
train_acc = MetricTools.accuracy(train[:, -1], y_hat)
return y_hat, train_acc, 1 - train_acc
def predict(self, test):
"""
test: data for which labels are to be predicted.
return: numpy array of label corresponding to each test point.
"""
# get a matrix of shape (test_points, n_classes)
mat = np.zeros((len(test), len(self.le.classes_)))
for i, clf in enumerate(self.classifiers):
preds = clf.predict(test)
for j, label in enumerate(preds):
mat[j, label] += 1
return self.le.inverse_transform(np.argmax(mat, axis=1))