-
Notifications
You must be signed in to change notification settings - Fork 101
/
rotator.vhdl
193 lines (179 loc) · 6.59 KB
/
rotator.vhdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.common.all;
entity rotator is
port (rs: in std_ulogic_vector(63 downto 0);
ra: in std_ulogic_vector(63 downto 0);
shift: in std_ulogic_vector(6 downto 0);
insn: in std_ulogic_vector(31 downto 0);
is_32bit: in std_ulogic;
right_shift: in std_ulogic;
arith: in std_ulogic;
clear_left: in std_ulogic;
clear_right: in std_ulogic;
sign_ext_rs: in std_ulogic;
result: out std_ulogic_vector(63 downto 0);
carry_out: out std_ulogic
);
end entity rotator;
architecture behaviour of rotator is
signal repl32: std_ulogic_vector(63 downto 0);
signal rot_count: std_ulogic_vector(5 downto 0);
signal rot1, rot2, rot: std_ulogic_vector(63 downto 0);
signal sh, mb, me: std_ulogic_vector(6 downto 0);
signal mr, ml: std_ulogic_vector(63 downto 0);
signal output_mode: std_ulogic_vector(1 downto 0);
-- note BE bit numbering
function right_mask(mask_begin: std_ulogic_vector(6 downto 0)) return std_ulogic_vector is
variable ret: std_ulogic_vector(63 downto 0);
begin
ret := (others => '0');
if is_X(mask_begin) then
ret := (others => 'X');
return ret;
end if;
for i in 0 to 63 loop
if i >= to_integer(unsigned(mask_begin)) then
ret(63 - i) := '1';
end if;
end loop;
return ret;
end;
function left_mask(mask_end: std_ulogic_vector(6 downto 0)) return std_ulogic_vector is
variable ret: std_ulogic_vector(63 downto 0);
begin
ret := (others => '0');
if mask_end(6) = '0' then
for i in 0 to 63 loop
if i <= to_integer(unsigned(mask_end)) then
ret(63 - i) := '1';
end if;
end loop;
end if;
return ret;
end;
begin
rotator_0: process(all)
variable hi32: std_ulogic_vector(31 downto 0);
begin
-- First replicate bottom 32 bits to both halves if 32-bit
if is_32bit = '1' then
hi32 := rs(31 downto 0);
elsif sign_ext_rs = '1' then
-- sign extend bottom 32 bits
hi32 := (others => rs(31));
else
hi32 := rs(63 downto 32);
end if;
repl32 <= hi32 & rs(31 downto 0);
-- Negate shift count for right shifts
if right_shift = '1' then
rot_count <= std_ulogic_vector(- signed(shift(5 downto 0)));
else
rot_count <= shift(5 downto 0);
end if;
-- Rotator works in 3 stages using 2 bits of the rotate count each
-- time. This gives 4:1 multiplexors which is ideal for the 6-input
-- LUTs in the Xilinx Artix 7.
-- We look at the low bits of the rotate count first because they will
-- have less delay through the negation above.
-- First rotate by 0, 1, 2, or 3
case rot_count(1 downto 0) is
when "00" =>
rot1 <= repl32;
when "01" =>
rot1 <= repl32(62 downto 0) & repl32(63);
when "10" =>
rot1 <= repl32(61 downto 0) & repl32(63 downto 62);
when others =>
rot1 <= repl32(60 downto 0) & repl32(63 downto 61);
end case;
-- Next rotate by 0, 4, 8 or 12
case rot_count(3 downto 2) is
when "00" =>
rot2 <= rot1;
when "01" =>
rot2 <= rot1(59 downto 0) & rot1(63 downto 60);
when "10" =>
rot2 <= rot1(55 downto 0) & rot1(63 downto 56);
when others =>
rot2 <= rot1(51 downto 0) & rot1(63 downto 52);
end case;
-- Lastly rotate by 0, 16, 32 or 48
case rot_count(5 downto 4) is
when "00" =>
rot <= rot2;
when "01" =>
rot <= rot2(47 downto 0) & rot2(63 downto 48);
when "10" =>
rot <= rot2(31 downto 0) & rot2(63 downto 32);
when others =>
rot <= rot2(15 downto 0) & rot2(63 downto 16);
end case;
-- Trim shift count to 6 bits for 32-bit shifts
sh <= (shift(6) and not is_32bit) & shift(5 downto 0);
-- Work out mask begin/end indexes (caution, big-endian bit numbering)
if clear_left = '1' then
if is_32bit = '1' then
mb <= "01" & insn(10 downto 6);
else
mb <= "0" & insn(5) & insn(10 downto 6);
end if;
elsif right_shift = '1' then
-- this is basically mb <= sh + (is_32bit? 32: 0);
if is_32bit = '1' then
mb <= sh(5) & not sh(5) & sh(4 downto 0);
else
mb <= sh;
end if;
else
mb <= ('0' & is_32bit & "00000");
end if;
if clear_right = '1' and is_32bit = '1' then
me <= "01" & insn(5 downto 1);
elsif clear_right = '1' and clear_left = '0' then
me <= "0" & insn(5) & insn(10 downto 6);
else
-- effectively, 63 - sh
me <= sh(6) & not sh(5 downto 0);
end if;
-- Calculate left and right masks
mr <= right_mask(mb);
ml <= left_mask(me);
-- Work out output mode
-- 00 for sl[wd]
-- 0w for rlw*, rldic, rldicr, rldimi, where w = 1 iff mb > me
-- 10 for rldicl, sr[wd]
-- 1z for sra[wd][i], z = 1 if rs is negative
if (clear_left = '1' and clear_right = '0') or right_shift = '1' then
output_mode(1) <= '1';
output_mode(0) <= arith and repl32(63);
else
output_mode(1) <= '0';
if clear_right = '1' and unsigned(mb(5 downto 0)) > unsigned(me(5 downto 0)) then
output_mode(0) <= '1';
else
output_mode(0) <= '0';
end if;
end if;
-- Generate output from rotated input and masks
case output_mode is
when "00" =>
result <= (rot and (mr and ml)) or (ra and not (mr and ml));
when "01" =>
result <= (rot and (mr or ml)) or (ra and not (mr or ml));
when "10" =>
result <= rot and mr;
when others =>
result <= rot or not mr;
end case;
-- Generate carry output for arithmetic shift right of negative value
if output_mode = "11" then
carry_out <= or (rs and not ml);
else
carry_out <= '0';
end if;
end process;
end behaviour;