-
Notifications
You must be signed in to change notification settings - Fork 0
/
sst.py
434 lines (361 loc) · 14.1 KB
/
sst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import numpy as np
import os
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, f1_score
import scipy.stats
import utils
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2022"
def sentiment_reader(src_filename, include_subtrees=True, dedup=False):
"""
Iterator for our distribution of the SST-3 and other files in
that format.
Parameters
----------
src_filename : str
Full path to the file to be read.
include_subtrees : bool
If True, then the subtrees are returned as separate examples.
This affects only the train split. For dev and test, only
the full examples are included.
dedup : bool
If True, only one copy of each (example, label) pair is included.
This mainly affects the train set, though there is one repeated
example in the dev set.
Yields
------
pd.DataFrame with columns ['example_id', 'sentence', 'label']
"""
df = pd.read_csv(src_filename)
if not include_subtrees:
df = df[df.is_subtree == 0]
if dedup:
df = df.groupby(['sentence', 'label']).apply(lambda x: x.iloc[0])
df = df.reset_index(drop=True)
return df
def train_reader(sst_home, include_subtrees=False, dedup=False):
"""
Convenience function for reading the SST-3 train file.
"""
src = os.path.join(sst_home, 'sst3-train.csv')
return sentiment_reader(
src, include_subtrees=include_subtrees, dedup=dedup)
def dev_reader(sst_home, include_subtrees=False, dedup=False):
"""
Convenience function for reading the SST-3 dev file.
"""
src = os.path.join(sst_home, 'sst3-dev.csv')
return sentiment_reader(
src, include_subtrees=include_subtrees, dedup=dedup)
def test_reader(sst_home, include_subtrees=False, dedup=False):
"""
Convenience function for reading the SST-3 test file, unlabeled.
This function should be used only for the final stages of a
project, to obtain a submission to be evaluated. If you need
to do an evaluation yourself with the labeled dataset, use
`sentiment_reader` pointing to the labeled version of this
dataset.
"""
src = os.path.join(sst_home, 'sst3-test-unlabeled.csv')
return sentiment_reader(
src, include_subtrees=include_subtrees, dedup=dedup)
def bakeoff_dev_reader(sst_home, include_subtrees=False, dedup=False):
"""
Convenience function for reading the bakeoff dev file.
"""
src = os.path.join(sst_home, 'cs224u-sentiment-dev.csv')
return sentiment_reader(
src, include_subtrees=include_subtrees, dedup=dedup)
def bakeoff_test_reader(sst_home, include_subtrees=False, dedup=False):
"""
Convenience function for reading the bakeoff test file, unlabeled.
"""
src = os.path.join(sst_home, 'cs224u-sentiment-test-unlabeled.csv')
return sentiment_reader(
src, include_subtrees=include_subtrees, dedup=dedup)
def build_dataset(dataframes, phi, vectorizer=None, vectorize=True):
"""
Core general function for building experimental datasets.
Parameters
----------
dataframes : pd.DataFrame or list of pd.DataFrame
The dataset or datasets to process, as read in by
`sentiment_reader`.
phi : feature function
Any function that takes a string as input and returns a
bool/int/float-valued dict as output.
vectorizer : sklearn.feature_extraction.DictVectorizer
If this is None, then a new `DictVectorizer` is created and
used to turn the list of dicts created by `phi` into a
feature matrix. This happens when we are training.
If this is not None, then it's assumed to be a `DictVectorizer`
and used to transform the list of dicts. This happens in
assessment, when we take in new instances and need to
featurize them as we did in training.
vectorize : bool
Whether to use a DictVectorizer. Set this to False for
deep learning models that process their own input.
Returns
-------
dict
A dict with keys 'X' (the feature matrix), 'y' (the list of
labels), 'vectorizer' (the `DictVectorizer`), and
'raw_examples' (the `nltk.Tree` objects, for error analysis).
"""
if isinstance(dataframes, (list, tuple)):
df = pd.concat(dataframes)
else:
df = dataframes
raw_examples = list(df.sentence.values)
feat_dicts = list(df.sentence.apply(phi).values)
if 'label' in df.columns:
labels = list(df.label.values)
else:
labels = None
feat_matrix = None
if vectorize:
# In training, we want a new vectorizer:
if vectorizer is None:
vectorizer = DictVectorizer(sparse=False)
feat_matrix = vectorizer.fit_transform(feat_dicts)
# In assessment, we featurize using the existing vectorizer:
else:
feat_matrix = vectorizer.transform(feat_dicts)
else:
feat_matrix = feat_dicts
return {'X': feat_matrix,
'y': labels,
'vectorizer': vectorizer,
'raw_examples': raw_examples}
def experiment(
train_dataframes,
phi,
train_func,
assess_dataframes=None,
train_size=0.7,
score_func=utils.safe_macro_f1,
vectorize=True,
verbose=True,
random_state=None):
"""
Generic experimental framework. Either assesses with a random
train/test split of `train_reader` or with `assess_reader` if
it is given.
Parameters
----------
train_dataframes : pd.DataFrame or list of pd.DataFrame
The dataset or datasets to process, as read in by
`sentiment_reader`.
phi : feature function
Any function that takes an `nltk.Tree` instance as input
and returns a bool/int/float-valued dict as output.
train_func : model wrapper
Any function that takes a feature matrix and a label list
as its values and returns a fitted model with a `predict`
function that operates on feature matrices.
assess_dataframes : pd.DataFrame, list of pd.DataFrame or None
If None, then the df from `train_dataframes` is split into
a random train/test split, with the the train percentage
determined by `train_size`. If not None, then this should
be a dataset or datasets to process, as read in by
`sentiment_reader`. Each such dataset will be read and
used in a separate evaluation.
train_size : float (default: 0.7)
If `assess_reader` is None, then this is the percentage of
`train_reader` devoted to training. If `assess_reader` is
not None, then this value is ignored.
score_metric : function name (default: `utils.safe_macro_f1`)
This should be an `sklearn.metrics` scoring function. The
default is weighted average F1 (macro-averaged F1). For
comparison with the SST literature, `accuracy_score` might
be used instead. For other metrics that can be used here,
see http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
vectorize : bool
Whether to use a DictVectorizer. Set this to False for
deep learning models that process their own input.
verbose : bool (default: True)
Whether to print out the model assessment to standard output.
Set to False for statistical testing via repeated runs.
random_state : int or None
Optionally set the random seed for consistent sampling
where random train/test splits are being created.
Prints
-------
To standard output, if `verbose=True`
Model precision/recall/F1 report. Accuracy is micro-F1 and is
reported because many SST papers report that figure, but macro
precision/recall/F1 is better given the class imbalances and the
fact that performance across the classes can be highly variable.
Returns
-------
dict with keys
'model': trained model
'phi': the function used for featurization
'train_dataset': a dataset as returned by `build_dataset`
'assess_datasets': list of datasets as returned by `build_dataset`
'predictions': list of lists of predictions on the assessment datasets
'metric': `score_func.__name__`
'score': the `score_func` score on each of the assessment datasets
"""
# Train dataset:
train = build_dataset(
train_dataframes,
phi,
vectorizer=None,
vectorize=vectorize)
# Manage the assessment set-up:
X_train = train['X']
y_train = train['y']
raw_train = train['raw_examples']
assess_datasets = []
if assess_dataframes is None:
X_train, X_assess, y_train, y_assess, raw_train, raw_assess = train_test_split(
X_train, y_train, raw_train,
train_size=train_size,
test_size=None,
random_state=random_state)
assess_datasets.append({
'X': X_assess,
'y': y_assess,
'vectorizer': train['vectorizer'],
'raw_examples': raw_assess})
else:
if not isinstance(assess_dataframes, (tuple, list)):
assess_dataframes = [assess_dataframes]
for assess_df in assess_dataframes:
# Assessment dataset using the training vectorizer:
assess = build_dataset(
assess_df,
phi,
vectorizer=train['vectorizer'],
vectorize=vectorize)
assess_datasets.append(assess)
# Train:
mod = train_func(X_train, y_train)
# Predictions if we have labels:
predictions = []
scores = []
for dataset_num, assess in enumerate(assess_datasets, start=1):
preds = mod.predict(assess['X'])
if assess['y'] is None:
predictions.append(None)
scores.append(None)
else:
if verbose:
if len(assess_datasets) > 1:
print("Assessment dataset {}".format(dataset_num))
print(classification_report(assess['y'], preds, digits=3))
predictions.append(preds)
scores.append(score_func(assess['y'], preds))
true_scores = [s for s in scores if s is not None]
if len(true_scores) > 1 and verbose:
mean_score = np.mean(true_scores)
print("Mean of macro-F1 scores: {0:.03f}".format(mean_score))
# Return the overall scores and other experimental info:
return {
'model': mod,
'phi': phi,
'train_dataset': train,
'assess_datasets': assess_datasets,
'predictions': predictions,
'metric': score_func.__name__,
'scores': scores}
def compare_models(
dataframes,
phi1,
train_func1,
phi2=None,
train_func2=None,
vectorize1=True,
vectorize2=True,
stats_test=scipy.stats.wilcoxon,
trials=10,
train_size=0.7,
score_func=utils.safe_macro_f1):
"""
Wrapper for comparing models. The parameters are like those of
`experiment`, with the same defaults, except
Parameters
----------
dataframes : pd.DataFrame or list of pd.DataFrame
The dataset or datasets to process, as read in by
`sentiment_reader`.
phi1, phi2
Just like `phi` for `experiment`. `phi1` defaults to
`unigrams_phi`. If `phi2` is None, then it is set equal
to `phi1`.
train_func1, train_func2
Just like `train_func` for `experiment`. If `train_func2`
is None, then it is set equal to `train_func`.
vectorize1, vectorize1 : bool
Whether to vectorize the respective inputs. Use `False` for
deep learning models that featurize their own input.
stats_test : scipy.stats function
Defaults to `scipy.stats.wilcoxon`, a non-parametric version
of the paired t-test.
trials : int (default: 10)
Number of runs on random train/test splits of `reader`,
with `train_size` controlling the amount of training data.
train_size : float
Percentage of data to use for training.
Prints
------
To standard output
A report of the assessment.
Returns
-------
(np.array, np.array, float)
The first two are the scores from each model (length `trials`),
and the third is the p-value returned by `stats_test`.
"""
if phi2 == None:
phi2 = phi1
if train_func2 == None:
train_func2 = train_func1
experiments1 = [experiment(dataframes,
phi=phi1,
train_func=train_func1,
score_func=score_func,
vectorize=vectorize1,
verbose=False) for _ in range(trials)]
experiments2 = [experiment(dataframes,
phi=phi2,
train_func=train_func2,
score_func=score_func,
vectorize=vectorize2,
verbose=False) for _ in range(trials)]
scores1 = np.array([d['scores'][0] for d in experiments1])
scores2 = np.array([d['scores'][0] for d in experiments2])
# stats_test returns (test_statistic, p-value). We keep just the p-value:
pval = stats_test(scores1, scores2)[1]
# Report:
print('Model 1 mean: {0:.03f}'.format(scores1.mean()))
print('Model 2 mean: {0:.03f}'.format(scores2.mean()))
print('p = {0:.03f}'.format(pval if pval >= 0.001 else 'p < 0.001'))
# Return the scores for later analysis, and the p value:
return scores1, scores2, pval
def build_rnn_dataset(dataframes, tokenizer=lambda s: s.split()):
"""
Given an SST reader, return the dataset as (X, y) training pairs.
Parameters
----------
dataframes : pd.DataFrame or list of pd.DataFrame
The dataset or datasets to process, as read in by
`sentiment_reader`.
tokenizer : function from str to list of str
Defaults to a whitespace tokenizer.
Returns
-------
X, y
Where X is a list of list of str, and y is the output label list.
"""
if isinstance(dataframes, (list, tuple)):
df = pd.concat(dataframes)
else:
df = dataframes
X = list(df.sentence.apply(tokenizer))
y = list(df.label.values)
return X, y