-
Notifications
You must be signed in to change notification settings - Fork 86
/
pycnn.py
437 lines (371 loc) · 14.7 KB
/
pycnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
The MIT License (MIT)
Copyright (c) 2014 Ankit Aggarwal <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from __future__ import print_function
import scipy.signal as sig
import scipy.integrate as sint
from PIL import Image as img
import numpy as np
import os.path
import warnings
SUPPORTED_FILETYPES = (
'jpeg', 'jpg', 'png', 'tiff', 'gif', 'bmp',
)
warnings.filterwarnings('ignore') # Ignore trivial warnings
class PyCNN(object):
"""Image Processing with Cellular Neural Networks (CNN).
Cellular Neural Networks (CNN) are a parallel computing paradigm that was
first proposed in 1988. Cellular neural networks are similar to neural
networks, with the difference that communication is allowed only between
neighboring units. Image Processing is one of its applications. CNN
processors were designed to perform image processing; specifically, the
original application of CNN processors was to perform real-time ultra-high
frame-rate (>10,000 frame/s) processing unachievable by digital processors.
This python library is the implementation of CNN for the application of
Image Processing.
Attributes:
n (int): Height of the image.
m (int): Width of the image.
"""
def __init__(self):
"""Sets the initial class attributes m (width) and n (height)."""
self.m = 0 # width (number of columns)
self.n = 0 # height (number of rows)
def f(self, t, x, Ib, Bu, tempA):
"""Computes the derivative of x at t.
Args:
x: The input.
Ib (float): System bias.
Bu: Convolution of control template with input.
tempA (:obj:`list` of :obj:`list`of :obj:`float`): Feedback
template.
"""
x = x.reshape((self.n, self.m))
dx = -x + Ib + Bu + sig.convolve2d(self.cnn(x), tempA, 'same')
return dx.reshape(self.m * self.n)
def cnn(self, x):
"""Piece-wise linear sigmoid function.
Args:
x : Input to the piece-wise linear sigmoid function.
"""
return 0.5 * (abs(x + 1) - abs(x - 1))
def validate(self, inputLocation):
"""Checks if a string path exists or is from a supported file type.
Args:
inputLocation (str): A string with the path to the image.
Raises:
IOError: If `inputLocation` does not exist or is not a file.
Exception: If file type is not supported.
"""
_, ext = os.path.splitext(inputLocation)
ext = ext.lstrip('.').lower()
if not os.path.exists(inputLocation):
raise IOError('File {} does not exist.'.format(inputLocation))
elif not os.path.isfile(inputLocation):
raise IOError('Path {} is not a file.'.format(inputLocation))
elif ext not in SUPPORTED_FILETYPES:
raise Exception(
'{} file type is not supported. Supported: {}'.format(
ext, ', '.join(SUPPORTED_FILETYPES)
)
)
# tempA: feedback template, tempB: control template
def imageProcessing(self, inputLocation, outputLocation,
tempA, tempB, initialCondition, Ib, t):
"""Process the image with the input arguments.
Args:
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
tempA (:obj:`list` of :obj:`list`of :obj:`float`): Feedback
template.
tempB (:obj:`list` of :obj:`list`of :obj:`float`): Control
template.
initialCondition (float): The initial state.
Ib (float): System bias.
t (numpy.ndarray): A numpy array with evenly spaced numbers
representing time points.
"""
gray = img.open(inputLocation).convert('RGB')
self.m, self.n = gray.size
u = np.array(gray)
u = u[:, :, 0]
z0 = u * initialCondition
Bu = sig.convolve2d(u, tempB, 'same')
z0 = z0.flatten()
tFinal = t.max()
tInitial = t.min()
if t.size > 1:
dt = t[1] - t[0]
else:
dt = t[0]
ode = sint.ode(self.f) \
.set_integrator('vode') \
.set_initial_value(z0, tInitial) \
.set_f_params(Ib, Bu, tempA)
while ode.successful() and ode.t < tFinal + 0.1:
ode_result = ode.integrate(ode.t + dt)
z = self.cnn(ode_result)
out_l = z[:].reshape((self.n, self.m))
out_l = out_l / (255.0)
out_l = np.uint8(np.round(out_l * 255))
# The direct vectorization was causing problems on Raspberry Pi.
# In case anyone face a similar issue, use the below
# loops rather than the above direct vectorization.
# for i in range(out_l.shape[0]):
# for j in range(out_l.shape[1]):
# out_l[i][j] = np.uint8(round(out_l[i][j] * 255))
out_l = img.fromarray(out_l).convert('RGB')
out_l.save(outputLocation)
# general image processing for given templates
def generalTemplates(self,
name='Image processing',
inputLocation='',
outputLocation='output.png',
tempA_A=[[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]],
tempB_B=[[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]],
initialCondition=0.0,
Ib_b=0.0,
t=np.linspace(0, 10.0, num=2)):
"""Validate and process the image with the input arguments.
Args:
name (str): The name of the template.
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
tempA_A (:obj:`list` of :obj:`list`of :obj:`float`): Feedback
template.
tempB_B (:obj:`list` of :obj:`list`of :obj:`float`): Control
template.
initialCondition (float): The initial state.
Ib_b (float): System bias.
t (numpy.ndarray): A numpy array with evenly spaced numbers
representing time points.
"""
self.validate(inputLocation)
print(name, 'initialized.')
self.imageProcessing(inputLocation,
outputLocation,
np.array(tempA_A),
np.array(tempB_B),
initialCondition,
Ib_b,
t)
print('Processing on image %s is complete' % (inputLocation))
print('Result is saved at %s.\n' % (outputLocation))
def edgeDetection(self, inputLocation='', outputLocation='output.png'):
"""Performs Edge Detection on the input image.
The output is a binary image showing all edges of the input image in
black.
A = [[0.0 0.0 0.0],
[0.0 1.0 0.0],
[0.0 0.0 0.0]]
B = [[−1.0 −1.0 −1.0],
[−1.0 8.0 −1.0],
[−1.0 −1.0 −1.0]]
z = −1.0
Initial state = 0.0
Args:
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
"""
name = 'Edge detection'
tempA = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]
tempB = [[-1.0, -1.0, -1.0], [-1.0, 8.0, -1.0], [-1.0, -1.0, -1.0]]
Ib = -1.0
# num refers to the number of samples of time points from start = 0 to
# end = 10.0
t = np.linspace(0, 10.0, num=2)
# some image processing methods might require more time point samples.
initialCondition = 0.0
self.generalTemplates(
name,
inputLocation,
outputLocation,
tempA,
tempB,
initialCondition,
Ib,
t)
def grayScaleEdgeDetection(self, inputLocation='',
outputLocation='output.png'):
"""Performs Gray-scale Edge Detection on the input image.
The output is a Gray-scale image showing an edge map of the input
image in black.
A = [[0.0 0.0 0.0],
[0.0 2.0 0.0],
[0.0 0.0 0.0]]
B = [[−1.0 −1.0 −1.0],
[−1.0 8.0 −1.0],
[−1.0 −1.0 −1.0]]
z = −0.5
Initial state = 0.0
Args:
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
"""
name = 'Grayscale edge detection'
tempA = [[0.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 0.0]]
tempB = [[-1.0, -1.0, -1.0], [-1.0, 8.0, -1.0], [-1.0, -1.0, -1.0]]
Ib = -0.5
t = np.linspace(0, 1.0, num=101)
initialCondition = 0.0
self.generalTemplates(
name,
inputLocation,
outputLocation,
tempA,
tempB,
initialCondition,
Ib,
t)
def cornerDetection(self, inputLocation='', outputLocation='output.png'):
"""Performs Corner Detection on the input image.
The output is a binary image where black pixels represent the convex
corners of objects in the input image.
A = [[0.0 0.0 0.0],
[0.0 1.0 0.0],
[0.0 0.0 0.0]]
B = [[−1.0 −1.0 −1.0],
[−1.0 4.0 −1.0],
[−1.0 −1.0 −1.0]]
z = −5.0
Initial state = 0.0
Args:
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
"""
name = 'Corner detection'
tempA = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]
tempB = [[-1.0, -1.0, -1.0], [-1.0, 4.0, -1.0], [-1.0, -1.0, -1.0]]
Ib = -5.0
t = np.linspace(0, 10.0, num=11)
initialCondition = 0.0
self.generalTemplates(
name,
inputLocation,
outputLocation,
tempA,
tempB,
initialCondition,
Ib,
t)
def diagonalLineDetection(self, inputLocation='',
outputLocation='output.png'):
"""Performs Diagonal Line-Detection on the input image.
The output is a binary image representing the locations of diagonal
lines in the input image.
A = [[0.0 0.0 0.0],
[0.0 1.0 0.0],
[0.0 0.0 0.0]]
B = [[−1.0 0.0 −1.0],
[0.0 1.0 0.0],
[1.0 0.0 −1.0]]
z = −4.0
Initial state = 0.0
Args:
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
"""
name = 'Diagonal line detection'
tempA = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]
tempB = [[-1.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, -1.0]]
Ib = -4.0
t = np.linspace(0, 0.2, num=101)
initialCondition = 0.0
self.generalTemplates(
name,
inputLocation,
outputLocation,
tempA,
tempB,
initialCondition,
Ib,
t)
def inversion(self, inputLocation='', outputLocation='output.png'):
"""Performs Inversion (Logic NOT) on the input image.
A = [[0.0 0.0 0.0],
[0.0 1.0 0.0],
[0.0 0.0 0.0]]
B = [[0.0 0.0 0.0],
[1.0 1.0 1.0],
[0.0 0.0 0.0]]
z = −2.0
Initial state = 0.0
Args:
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
"""
name = 'Inversion'
tempA = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]
tempB = [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0]]
Ib = -2.0
t = np.linspace(0, 10.0, num=101)
initialCondition = 0.0
self.generalTemplates(
name,
inputLocation,
outputLocation,
tempA,
tempB,
initialCondition,
Ib,
t)
def optimalEdgeDetection(self, inputLocation='',
outputLocation='output.png'):
"""Performs Optimal Edge Detection on the input image.
A = [[0.0 0.0 0.0],
[0.0 0.0 0.0],
[0.0 0.0 0.0]]
B = [[-0.11 0.0 0.11],
[-0.28.0 0.0 0.28],
[-0.11 0.0 0.11]]
z = 0.0
Initial state = 0.0
Args:
inputLocation (str): The string path for the input image.
outputLocation (str): The string path for the output processed
image.
"""
name = 'Optimal Edge Detection'
tempA = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
tempB = [[-0.11, 0.0, 0.11], [-0.28, 0.0, 0.28], [-0.11, 0.0, 0.11]]
Ib = 0.0
t = np.linspace(0, 10.0, num=101)
initialCondition = 0.0
self.generalTemplates(
name,
inputLocation,
outputLocation,
tempA,
tempB,
initialCondition,
Ib,
t)