Skip to content

Latest commit

 

History

History
26 lines (20 loc) · 1.96 KB

File metadata and controls

26 lines (20 loc) · 1.96 KB

Libra R-CNN: Towards Balanced Learning for Object Detection

Introduction

We provide config files to reproduce the results in the CVPR 2019 paper Libra R-CNN.

@inproceedings{pang2019libra,
  title={Libra R-CNN: Towards Balanced Learning for Object Detection},
  author={Pang, Jiangmiao and Chen, Kai and Shi, Jianping and Feng, Huajun and Ouyang, Wanli and Dahua Lin},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

Results and models

The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)

Architecture Backbone Style Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP Download
Faster R-CNN R-50-FPN pytorch 1x 4.2 0.375 12.0 38.5 model
Fast R-CNN R-50-FPN pytorch 1x 3.7 0.272 16.3 38.5 model
Faster R-CNN R-101-FPN pytorch 1x 6.0 0.495 10.4 40.3 model
Faster R-CNN X-101-64x4d-FPN pytorch 1x 10.1 1.050 6.8 42.7 model
RetinaNet R-50-FPN pytorch 1x 3.7 0.328 11.8 37.7 model