-
Notifications
You must be signed in to change notification settings - Fork 692
/
KthPermutation.java
73 lines (58 loc) · 2.03 KB
/
KthPermutation.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
package math;
import java.util.ArrayList;
import java.util.List;
public class KthPermutation {
/*
* Given a set of n elements find their kth permutation.
* Input: {1, 2, 3} k = 6
* 1st - 123 2nd - 132 3rd - 213 4th - 231 5th - 312 6th - 321
* Hence Output: 321
*
* Runtime Complexity:
* Linear, O(n).
*
* Memory Complexity:
* Linear, O(n)
*
* Step 1: If input vector is empty return result vector
* Step 2: block_size = (n-1)! ['n' is the size of vector]
* Step 3: Figure out which block k will lie in and select the first element of that block
* (this can be done by doing (k-1)/block_size )
* Step 4: Append selected element to result vector and remove it from original input vector
* Step 5: Deduce from k the blocks that are skipped i.e k = k - selected*block_size and goto step 1
*
* */
private static int factorial(int n) {
if (n == 0 || n == 1) return 1;
return n * factorial(n - 1);
}
protected static void findKthPermutation(List<Character> v,
int k,
StringBuilder result) {
if (v.isEmpty()) {
return;
}
int n = v.size();
// count is number of permutations starting with first digit
int count = factorial(n - 1);
int selected = (k - 1) / count;
result.append(v.get(selected));
v.remove(selected);
k = k - (count * selected);
findKthPermutation(v, k, result);
}
private static String getPermutation(int n, int k) {
List<Character> v = new ArrayList<>();
char c = '1';
for (int i = 1; i <= n; ++i) {
v.add(c);
c++;
}
StringBuilder result = new StringBuilder();
findKthPermutation(v, k, result);
return result.toString();
}
public static void main(String[] args) {
System.out.println(getPermutation(4, 2));
}
}