-
Notifications
You must be signed in to change notification settings - Fork 2
/
VideoFunctionsJohn.py
239 lines (207 loc) · 7.16 KB
/
VideoFunctionsJohn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# -*- coding: utf-8 -*-
"""
Created on Wed May 20 16:52:03 2015
@author: John
"""
import matplotlib.pyplot as plt
import numpy as np
import cv2
from scipy import ndimage
import os
import pickle as pkl
import sys
# Custom modules
import ImageProcessingFunctions as IPF
import UserInputFunctions as UIF
import Functions as Fun
def get_RPM_from_file_name(fileName):
"""
Parse the file name to get the RPM from the experiment.
"""
name = os.path.split(fileName)[1]
ind = name.index('RPM')
rpm = float(name[ind-4:ind])
return rpm
def get_FPS_from_file_name(fileName):
"""
Parse the file name to get the FPS from the experiment.
"""
name = os.path.split(fileName)[1]
ind = name.index('FPS')
fps = float(name[ind-4:ind])
return fps
def get_flowRate_from_file_name(fileName):
"""
Parse the file name to get the FPS from the experiment.
"""
name = os.path.split(fileName)[1]
ind = name.index('mLmin')
flowRate = float(name[ind-4:ind])
return flowRate
def extract_frame(Vid,nFrame,hMatrix=None,maskData=None,filterFrame=False,
removeBanner=True,center=True,scale=1,angle=0):
"""
Extracts nFrame'th frame and scales by 'scale' factor from video 'Vid'.
"""
Vid.set(1,nFrame)
ret, frame = Vid.read()
if not ret:
print 'Frame not read'
else:
frame = frame[:,:,0]
# Scale the size if requested
if scale != 1:
frame = IPF.scale_image(frame,scale)
# Perform image filtering if requested
if filterFrame:
if removeBanner:
ind = np.argmax(frame[:,0]>0)
temp = frame[ind:,:]
temp = IPF.filter_frame(temp)
frame[ind:,:] = temp
else:
frame = IPF.filter_frame(frame)
# Apply image transformation using homography matrix if passed
if hMatrix is not None:
temp = frame.shape
frame = cv2.warpPerspective(frame,hMatrix,(temp[1],temp[0]))
# Apply mask if needed
if maskData is not None:
frame = IPF.mask_image(frame,maskData['mask'])
if center:
frame = IPF.rotate_image(frame,angle,center=maskData['diskCenter'],
size=frame.shape)
return frame
def get_t0_frame(vid,hMatrix,maskData,fraction,threshold=20):
"""
Advance frame by frame from the start of the video and monitor the pixels
around the center of the disk for the presence of water and return the
index of the first frame.
"""
viewResult = False
viewProgress = False
tShift = 2 #Number of frames back for comparison
N = int(vid.get(7)) # number of frames in video
ref = extract_frame(vid,0,hMatrix,maskData)
center = maskData['diskCenter']
R = fraction*maskData['diskRadius']
x1 = center[0]-R; x2 = center[0]+R
y1 = center[1]-R; y2 = center[1]+R
mask = IPF.create_circular_mask(ref,R,center)
maskData = None
maxDif = 0
for i in range(tShift,N):
ref = extract_frame(vid,i-tShift,hMatrix,maskData)*mask
frame = extract_frame(vid,i,hMatrix,maskData)*mask
dif = IPF.subtract_images(ref,frame)
if viewProgress:
plt.clf()
plt.subplot(1,2,1)
plt.imshow(ref)
plt.axis([x1,x2,y1,y2])
plt.gray()
plt.title('Frame #%i'%(i-tShift))
plt.subplot(1,2,2)
plt.imshow(frame)
plt.axis([x1,x2,y1,y2])
plt.gray()
plt.title('Frame #%i'%i)
plt.tight_layout(pad=0)
plt.pause(0.001)
maxDif = np.max(dif)
if maxDif > threshold:
t0FrameNumber = i
break
if viewResult:
plt.clf()
plt.subplot(1,3,1)
plt.imshow(ref)
plt.axis([x1,x2,y1,y2])
plt.gray()
plt.subplot(1,3,2)
plt.imshow(frame)
plt.axis([x1,x2,y1,y2])
plt.gray()
plt.subplot(1,3,3)
frame = extract_frame(vid,i+1,hMatrix,maskData)*mask
plt.imshow(frame)
plt.axis([x1,x2,y1,y2])
plt.gray()
plt.tight_layout(pad=0)
plt.pause(0.001)
plt.pause(3)
return t0FrameNumber
def get_video_object(filePath):
"""
Given a file name for a video, returns the video object.
"""
# Open the video file and get properties
Vid = cv2.VideoCapture(filePath)
return Vid
def parse_video_obj(Video):
""" Use the openCV video object to get the properties of the video file
that are of interest to the analysis. See the openCV documentation for
the list of properties.
INPUT:
Video = openCV video object
OUTPUT:
Props = dictionary of properties of the video
"""
class Props:
pass
Props.Width = Video.get(3)
Props.Height = Video.get(4)
Props.fps = Video.get(5)
Props.NumFrames = Video.get(7)
return Props
def get_data_structure(vid,fps,RPM,flowRate,dataFile,dataList,hMatrix,maskData,
intensityRegion,splashFraction):
"""
Create or load the data structure for frame-by-frame analysis of spin
coater data.
"""
fraction = 0.01
# If the data file already exists, load it
if dataFile in dataList:
with open(dataFile,'rb') as f:
container = pkl.load(f)
print 'loaded'
return container
# Initialize dictionaries
container = {}
container['data'] = {}
container['theta'] = {}
container['fps'] = fps
container['RPM'] = RPM
container['flowRate'] = flowRate
container['hMatrix'] = hMatrix
container['maskData'] = maskData
container['insensityRegion'] = intensityRegion
container['t0Frame'] = get_t0_frame(vid,hMatrix,maskData,fraction)
container['splashRemoved'] = [False]*len(splashFraction)
container['splashIndex'] = 0
# Initialize the wetted area to completely dry
ref = extract_frame(vid,0,hMatrix,maskData)
container['wettedArea'] = (np.zeros(ref.shape)==1)
container['data'][container['t0Frame']] = (np.zeros(ref.shape)==1)
with open(dataFile,'wb') as f:
pkl.dump(container,f)
return container
def make_png_of_frame():
plt.close('all')
frame = 0 #[49,236,247,277,18,217]
folder = '../Data/Validation/'
name = 'Aperture2_6000sShutter-0100RPM_1500mLmin_2000FPS.avi'
maskFile = 'maskData_26OCT2015.pkl'
homographyFile = 'offCenterTopView_15AUG2015.pkl' # Use None for no transform
with open(homographyFile) as f:
hMatrix = pkl.load(f)
with open(maskFile) as f:
maskData = pkl.load(f)
vid = get_video_object(folder+name)
im = extract_frame(vid,frame,hMatrix,maskData)
plt.imshow(im)
plt.gray()
plt.imsave(folder+name[:-4]+'_frame%04i.png'%(frame),im)
if __name__ == '__main__':
pass