-
Notifications
You must be signed in to change notification settings - Fork 0
/
functions.py
399 lines (349 loc) · 13.6 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
"""
This file may not be shared/redistributed freely. Please read copyright notice in the git repo.
"""
import sys
import collections
import inspect
import types
import pandas as pd
import numpy as np
import shutil
import inspect
import os
import compress_pickle
import itertools
from tqdm import tqdm
from gym.envs.toy_text.discrete import DiscreteEnv
import warnings
from collections import OrderedDict
import glob
import csv
import json
import time
from datetime import datetime
color2num = dict(
gray=30,
red=31,
green=32,
yellow=33,
blue=34,
magenta=35,
cyan=36,
white=37,
crimson=38)
def colorize(string, color, bold=False, highlight=False):
attr = []
num = color2num[color]
if highlight: num += 10
attr.append(str(num))
if bold: attr.append('1')
return '\x1b[%sm%s\x1b[0m' % (';'.join(attr), string)
def plot_data(data, y="accumulated_reward", x="Episode", ci=95, estimator='mean', **kwargs):
import seaborn as sns
import matplotlib.pyplot as plt
if isinstance(data, list): # is this correct even?
data = pd.concat(data, ignore_index=True,axis=0)
plt.figure(figsize=(12, 6))
sns.set(style="darkgrid", font_scale=1.5)
lp = sns.lineplot(data=data, x=x, y=y, hue="Condition", ci=ci, estimator=estimator, **kwargs)
plt.legend(loc='best') #.set_draggable(True)
def configure_output_dir(G, d=None):
"""
Set output directory to d, or to /tmp/somerandomnumber if d is None
"""
# CDIR = os.path.dirname(os.path.realpath(__file__)).replace('\\', '/')
G.first_row = True
G.output_dir = d or "/tmp/experiments/%i" % int(time.time())
assert not os.path.exists(
G.output_dir), "Log dir %s already exists! Delete it first or use a different dir" % G.output_dir
os.makedirs(G.output_dir)
G.output_file = open(os.path.join(G.output_dir, "log.txt"), 'w')
print(colorize("Logging data to %s" % G.output_file.name, 'green', bold=True))
class LazyLog(object):
output_dir = None
output_file = None
first_row = True
log_headers = []
log_current_row = {}
def __init__(self, experiment_name, run_name=None, data=None):
if run_name is None:
experiment_name += "/"+ datetime.utcnow().strftime("%Y-%m-%d_%H-%M-%S.%f")[:-3]
else:
experiment_name += "/" + run_name
configure_output_dir(self, experiment_name)
if data is not None:
self.save_params(data)
def __enter__(self):
return self
def save_params(self, data):
save_params(self, data)
def dump_tabular(self, verbose=False):
dump_tabular(self, verbose)
def log_tabular(self, key, value):
log_tabular(self, key, value)
def __exit__(self, type, value, traceback):
self.output_file.close()
def log_tabular(G, key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
"""
if G.first_row:
G.log_headers.append(key)
else:
assert key in G.log_headers, "Trying to introduce a new key %s that you didn't include in the first iteration" % key
assert key not in G.log_current_row, "You already set %s this iteration. Maybe you forgot to call dump_tabular()" % key
G.log_current_row[key] = val
def dump_tabular(G, verbose=True):
"""
Write all of the diagnostics from the current iteration
"""
vals = []
key_lens = [len(key) for key in G.log_headers]
max_key_len = max(15, max(key_lens))
keystr = '%' + '%d' % max_key_len
fmt = "| " + keystr + "s | %15s |"
n_slashes = 22 + max_key_len
print("-" * n_slashes) if verbose else None
for key in G.log_headers:
val = G.log_current_row.get(key, "")
if hasattr(val, "__float__"):
valstr = "%8.3g" % val
else:
valstr = val
print(fmt % (key, valstr)) if verbose else None
vals.append(val)
print("-" * n_slashes) if verbose else None
if G.output_file is not None:
if G.first_row:
G.output_file.write("\t".join(G.log_headers))
G.output_file.write("\n")
G.output_file.write("\t".join(map(str, vals)))
G.output_file.write("\n")
G.output_file.flush()
G.log_current_row.clear()
G.first_row = False
class defaultdict2(collections.defaultdict):
def __missing__(self, key):
if self.default_factory is None:
raise KeyError((key,))
if isinstance(self.default_factory, types.FunctionType):
nargs = len(inspect.getfullargspec(self.default_factory).args)
self[key] = value = self.default_factory(key) if nargs == 1 else self.default_factory()
return value
else:
return super().__missing__(key)
def main_plot(experiments, legends=None, smoothing_window=10, resample_ticks=None,
x_key="Episode",
y_key='Accumulated Reward', **kwargs
):
"""
Plot an experiment. To plot invidual lines (i.e. no averaging) use
> units="Unit", estimator=None,
"""
ensure_list = lambda x: x if isinstance(x, list) else [x]
experiments = ensure_list(experiments)
if legends is None:
legends = experiments
legends = ensure_list(legends)
data = []
for logdir, legend_title in zip(experiments, legends):
resample_key = x_key if resample_ticks is not None else None
data += get_datasets(logdir, x=x_key, condition=legend_title, smoothing_window=smoothing_window, resample_key=resample_key, resample_ticks=resample_ticks)
plot_data(data, y=y_key, x=x_key, **kwargs)
def get_datasets(fpath, x, condition=None, smoothing_window=None, resample_key=None, resample_ticks=None):
unit = 0
if condition is None:
condition = fpath
datasets = []
for root, dir, files in os.walk(fpath):
if 'log.txt' in files:
json = os.path.join(root, 'params.json')
if os.path.exists(json):
with open(json) as f:
param_path = open(json)
params = json.load(param_path)
# exp_name = params['exp_name']
log_path = os.path.join(root, 'log.txt')
if os.stat(log_path).st_size == 0:
print("Bad plot file", log_path, "size is zero. Skipping")
continue
experiment_data = pd.read_table(log_path)
# raise Exception("Group by ehre.0")
if smoothing_window:
ed_x = experiment_data[x]
experiment_data = experiment_data.rolling(smoothing_window,min_periods=1).mean()
experiment_data[x] = ed_x
experiment_data.insert(
len(experiment_data.columns),
'Unit',
unit
)
experiment_data.insert(
len(experiment_data.columns),
'Condition',
condition)
datasets.append(experiment_data)
# print(experiment_data.columns)
# if len(experiment_data.columns) > 7:
# a = 234
unit += 1
nc = f"({unit}x)"+condition[condition.rfind("/")+1:]
for i, d in enumerate(datasets):
datasets[i] = d.assign(Condition=lambda x: nc)
# d.rename(columns={'Condition': nc}, inplace=True)
# gapminder.rename(columns={'pop': 'population',
# 'lifeExp': 'life_exp',
# 'gdpPercap': 'gdp_per_cap'},
# inplace=True)
if resample_key is not None:
nmax = 0
vmax = -np.inf
vmin = np.inf
for d in datasets:
nmax = max( d.shape[0], nmax)
vmax = max(d[resample_key].max(), vmax)
vmin = min(d[resample_key].min(), vmin)
if resample_ticks is not None:
nmax = min(resample_ticks, nmax)
new_datasets = []
tnew = np.linspace(vmin + 1e-6, vmax - 1e-6, nmax)
for d in datasets:
nd = {}
cols = d.columns.tolist()
for c in cols:
if c == resample_key:
y = tnew
elif d[c].dtype == 'O':
# it is an object. cannot interpolate
y = [ d[c][0] ] * len(tnew)
else:
y = np.interp(tnew, d[resample_key].tolist(), d[c], left=np.nan, right=np.nan)
y = y.astype(d[c].dtype)
nd[c] = y
ndata = pd.DataFrame(nd)
ndata = ndata.dropna()
new_datasets.append(ndata)
datasets = new_datasets
return datasets
def savepdf(pdf):
'''
Save command for generating figures.
'''
import matplotlib.pyplot as plt
plt.savefig(pdf)
# pdf = pdf.strip()
# pdf = pdf+".pdf" if not pdf.endswith(".pdf") else pdf
# frame = inspect.stack()[-1]
# module = inspect.getmodule(frame[0])
# filename = module.__file__
# wd = os.path.dirname(filename)
# pdf_dir = wd +"/pdf"
# # print(inspect.stack())
# # print("FILENAME: ", filename)
# if filename.endswith("_RUN_OUTPUT_CAPTURE.py"):
# return
# if not os.path.isdir(pdf_dir):
# os.mkdir(pdf_dir)
# # print("PDF SAVE> ", wd)
# if os.path.exists(os.getcwd()+ "/../../../Exercises") and os.path.exists(os.getcwd()+ "/../../../pdf_out"):
# # figs = [os.path.join(wd, f"../../../Exercises/ExercisesPython/Exercise{i}/latex/output") for i in range(12)]
# lecs = [os.path.join(wd, "../../../shared/output")]
# od = lecs+[pdf_dir]
# for f in od:
# if not os.path.isdir(f):
# os.makedirs(f)
# on = od[0] + "/" + pdf
# plt.savefig(fname=on)
# from thtools.slider import convert
# convert.pdfcrop(on, fout=on)
# for f in od[1:]:
# shutil.copy(on, f +"/"+pdf)
# else:
# plt.savefig(fname=wd+"/"+pdf)
# print(">", pdf)
def log_time_series(experiment, list_obs, max_xticks_to_log=None, run_name=None):
logdir = f"{experiment}/"
if max_xticks_to_log is not None and len(list_obs) > max_xticks_to_log:
I = np.round(np.linspace(0, len(list_obs) - 1, max_xticks_to_log))
list_obs = [o for i, o in enumerate(list_obs) if i in I.astype(np.int).tolist()]
with LazyLog(logdir) as logz:
for n,l in enumerate(list_obs):
for k,v in l.items():
logz.log_tabular(k,v)
if "Steps" not in l:
logz.log_tabular("Steps", n)
if "Episode" not in l:
logz.log_tabular("Episode",n)
logz.dump_tabular(verbose=False)
def existing_runs(experiment):
nex = 0
for root, dir, files in os.walk(experiment):
if 'log.txt' in files:
nex += 1
return nex
def train(env, agent, experiment_name=None, num_episodes=None, verbose=True, reset=True, max_steps=1e10,
max_runs=None, saveload_model=False):
if max_runs is not None and existing_runs(experiment_name) >= max_runs:
return experiment_name, None, True
stats = []
steps = 0
ep_start = 0
if saveload_model: # Code for loading/saving models
did_load = agent.load(os.path.join(experiment_name))
if did_load:
stats, recent = load_time_series(experiment_name=experiment_name)
ep_start, steps = stats[-1]['Episode']+1, stats[-1]['Steps']
done = False
with tqdm(total=num_episodes, disable=not verbose) as tq:
for i_episode in range(num_episodes):
s = env.reset() if reset else (env.s if hasattr(env, "s") else env.env.s)
reward = []
for _ in itertools.count():
a = agent.pi(s)
sp, r, done, _ = env.step(a)
agent.train(s, a, r, sp, done)
reward.append(r)
steps += 1
if done or steps > max_steps:
break
s = sp
stats.append({"Episode": i_episode + ep_start,
"Accumulated Reward": sum(reward),
"Average Reward": np.mean(reward),
"Length": len(reward),
"Steps": steps})
tq.set_postfix(ordered_dict=OrderedDict(stats[-1]))
tq.update()
sys.stderr.flush()
if saveload_model:
agent.save(experiment_name)
if did_load:
os.rename(recent+"/log.txt", recent+"/log2.txt") # Shuffle old logs
if experiment_name is not None:
log_time_series(experiment=experiment_name, list_obs=stats)
print(f"Training completed. Logging: '{', '.join( stats[0].keys()) }' to {experiment_name}")
return experiment_name, stats, done
def cache_write(object, file_name, only_on_professors_computer=False):
if only_on_professors_computer and not is_this_my_computer():
""" Probably for your own good :-). """
return
# file_name = cn_(file_name) if cache_prefix else file_name
dn = os.path.dirname(file_name)
if not os.path.exists(dn):
os.mkdir(dn)
print("Writing cache...", file_name)
with open(file_name, 'wb', ) as f:
compress_pickle.dump(object, f, compression="lzma")
print("Done!")
def cache_exists(file_name, cache_prefix=True):
# file_name = cn_(file_name) if cache_prefix else file_name
return os.path.exists(file_name)
def cache_read(file_name, cache_prefix=True):
# file_name = cn_(file_name) if cache_prefix else file_name
if os.path.exists(file_name):
with open(file_name, 'rb') as f:
return compress_pickle.load(f, compression="lzma")
# return pickle.load(f)
else:
return None