Skip to content

amsukdu/SimplePythonCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 

Repository files navigation

SimplePythonCNN

This is Convolutional Neural Network only in python & numpy. It is simple and slow but will get the job done 👍

Specification

Weight Initialization : HE Normal

Weight Update Policy : ADAM, NAG, Momentum, Vanila

Active Function : ReLU, Sigmoid

Regulization : Droupout(only on fc), L2

Pooling : Max, Average

Loss Function : Softmax, Logistic

Prerequisites

numpy (+ mkl for intel processors. recommend anaconda)
Used sklearn for LabelEncoder & utils.shuffle on examples.

Example

AND gate and CIFAR-10 examples are included.

lr = 1e-4
l2_reg = 8e-6

cnn = NeuralNetwork(train_images.shape[1:],
                    [
                        {'type': 'conv', 'k': 16, 'u_type': 'nag', 'f': 5, 's': 1, 'p': 2},
                        {'type': 'pool', 'method': 'average'},
                        {'type': 'conv', 'k': 20, 'u_type': 'nag', 'f': 5, 's': 1, 'p': 2},
                        {'type': 'pool', 'method': 'average'},
                        {'type': 'conv', 'k': 20, 'u_type': 'nag', 'f': 5, 's': 1, 'p': 2},
                        {'type': 'pool', 'method': 'average'},
                        {'type': 'output', 'k': len(le.classes_), 'u_type': 'adam'}
                    ]
                    , lr, l2_reg=l2_reg)

CIFAR-10 example gets ~72% test accuracy in 20 epoch.

API Reference

classes.NeuralNetwork(self, input_shape, layer_list, lr, l2_reg=0, loss='softmax'):

Parameter Description
input_shape Data's numpy shape.
layer_list List of layers you want to be networked. All of properties goes to **kwargs.
lr Learning rate.
l2_reg L2 regularization
loss Loss function. 'softmax', 'logistic'
# type fc, output
classes.NeuralLayer(input_size, k, f=3, s=1, p=1, u_type='adam', a_type='relu', dropout=1)

# type pool
classes.PoolLayer(input_size, f=2, s=2, method='max', dropout=1):

# type conv
classes.ConvLayer(input_size, k, f=3, s=1, p=1, u_type='adam', a_type='relu', dropout=1)

Update Policy u_type
ADAM 'adam'
Momentum 'm'
Vanilla 'v'
NAG 'nag'
RMSProp 'rmsprop'
Activation Function a_type
ReLU 'relu'
Sigmoid 'sigmoid'
Pooling method
Max 'max'
Avverage 'average'

License

MIT