forked from leeyang/ResPRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet.py
109 lines (84 loc) · 2.99 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 26 16:40:25 2017
@author: lee
"""
import torch.nn as nn
import torch.nn.functional as F
import math
import torch
def conv3x3(in_planes, out_planes):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes)
self.bn1 = nn.InstanceNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.InstanceNorm2d(planes)
self.droprate = 0.2
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(441, 64, kernel_size=1,
bias=False)
self.bn1 = nn.InstanceNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 64, layers[1])
self.layer3 = self._make_layer(block, 64, layers[2])
self.layer4 = self._make_layer(block, 64, layers[3])
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
self.lastlayer=nn.Conv2d(self.inplanes,1,3,padding=1)
self.sig=nn.Sigmoid()
def _make_layer(self, block, planes, blocks):
layers = []
layers.append(block(self.inplanes, planes))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.lastlayer(x)
x = self.sig(x)
x=torch.min(x,torch.transpose(x, -1, -2))
return x
def resnet46(pretrained=False):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 6, 10, 3])
if pretrained:
pass
#model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model