-
Notifications
You must be signed in to change notification settings - Fork 1
/
ac-dcgan.py
189 lines (159 loc) · 6.77 KB
/
ac-dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from keras.layers import Input,MaxPooling2D
from keras.models import Model, Sequential
from keras.layers.core import Reshape, Dense, Dropout, Flatten
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D, UpSampling2D
from keras.datasets import mnist
from keras.optimizers import Adam
from keras import backend as K
from keras import initializers
from keras.utils import to_categorical
K.common.set_image_dim_ordering('th')
latent_dim = 100+10
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = (X_train.astype(np.float32) - 127.5)/127.5
X_train = X_train[:, np.newaxis, :, :]
y_train = to_categorical(y_train)
adam = Adam(lr=0.0002, beta_1=0.5)
generator = Sequential()
# Transforms the input into a 7 × 7 128-channel feature map
generator.add(Dense(128*7*7, input_dim=latent_dim))
generator.add(LeakyReLU(0.2))
generator.add(Reshape((128, 7, 7)))
generator.add(UpSampling2D(size=(2, 2)))
generator.add(Conv2D(64, kernel_size=(5, 5), padding='same'))
generator.add(LeakyReLU(0.2))
generator.add(UpSampling2D(size=(2, 2)))
# Produces a 28 × 28 1-channel feature map (shape of a MNIST image)
generator.add(Conv2D(1, kernel_size=(5, 5), padding='same', activation='tanh'))
print(generator.summary())
generator.compile(loss='binary_crossentropy', optimizer=adam)
# Make Discriminator Model
discriminator = Sequential()
discriminator.add(Conv2D(64, kernel_size=(5, 5), strides=(2, 2), padding='same',
input_shape=(1, 28, 28), kernel_initializer=initializers.RandomNormal(stddev=0.02)))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Conv2D(128, kernel_size=(5, 5), strides=(2, 2), padding='same'))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid',name="dis_output"))
print(discriminator.summary())
discriminator.compile(loss='binary_crossentropy', optimizer=adam)
# Make Classifier Model
classifier = Sequential()
classifier.add(Conv2D(filters=32, kernel_size=(3,3), activation='relu', padding='same',
input_shape=(1,28,28)))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Flatten())
classifier.add(Dense(128, activation='relu'))
classifier.add(Dense(10, activation='softmax',name="class_output"))
print(classifier.summary())
print(classifier.name)
classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Creating the Adversarial Network. We need to make the Discriminator weights
# non trainable. This only applies to the GAN model.
discriminator.trainable = False
classifier.trainable = False
ganInput = Input(shape=(latent_dim,))
x = generator(ganInput)
gan = Model(inputs=ganInput, outputs=[discriminator(x),classifier(x)])
losses = {
discriminator.name: "binary_crossentropy",
classifier.name: "categorical_crossentropy",
}
lossWeights = {discriminator.name: 1.0, classifier.name: 1.0}
gan.compile(loss=losses, loss_weights=lossWeights, optimizer=adam)
dLosses = []
gLosses = []
cLosses = []
# Plot the loss from each batch
def plotLoss(epoch):
plt.figure(figsize=(10, 8))
plt.plot(dLosses, label='Discriminitive loss')
plt.plot(gLosses, label='Generative loss')
plt.plot(cLosses, label='Classifier loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.savefig('images/dcgan_loss_epoch_%d.png' % epoch)
# Create a wall of generated MNIST images
def plotGeneratedImages(epoch, examples=100, dim=(10, 10), figsize=(10, 10)):
noise = np.random.normal(0, 1, size=[examples, latent_dim-10])
labels = None
for i in range(10):
for j in range(10):
if labels is None:
labels = np.array([[int(i==k) for k in range(10)]])
else:
labels = np.concatenate((labels,np.array([[int(i==k) for k in range(10)]])),axis=0)
print(labels.shape)
noise = np.concatenate((noise,labels),axis=1)
generatedImages = generator.predict(noise)
plt.figure(figsize=figsize)
for i in range(generatedImages.shape[0]):
plt.subplot(dim[0], dim[1], i+1)
plt.imshow(generatedImages[i, 0], interpolation='nearest', cmap='gray_r')
plt.axis('off')
plt.tight_layout()
plt.savefig('images/dcgan_generated_image_epoch_%d.png' % epoch)
# Save the generator and discriminator networks (and weights) for later use
def saveModels(epoch):
generator.save('models/dcgan_generator_epoch_%d.h5' % epoch)
discriminator.save('models/dcgan_discriminator_epoch_%d.h5' % epoch)
classifier.save('models/dcgan_classifier_epoch_%d.h5' % epoch)
"""## Train our GAN and Plot the Synthetic Image Outputs
After each consecutive Epoch we can see how synthetic images being improved
"""
epochs = 20
batchSize = 128
batchCount = X_train.shape[0] / batchSize
print('Epochs:', epochs)
print('Batch size:', batchSize)
print('Batches per epoch:', batchCount)
for e in range(1, epochs+1):
print('-'*15, 'Epoch %d' % e, '-'*15)
for i in tqdm(range(int(batchCount))):
# Get a random set of input noise and images
noise = np.random.normal(0, 1, size=[batchSize, latent_dim])
random_index = np.random.randint(0, X_train.shape[0], size=batchSize)
imageBatch = X_train[random_index]
labels = y_train[random_index]
# Generate fake MNIST images
generatedImages = generator.predict(noise)
X = np.concatenate([imageBatch, generatedImages])
# Labels for generated and real data
yDis = np.zeros(2*batchSize)
# One-sided label smoothing
yDis[:batchSize] = 0.9
# Train discriminator
discriminator.trainable = True
dloss = discriminator.train_on_batch(X, yDis)
# Train Classifier
classifier.trainable = True
closs,_ = classifier.train_on_batch(np.concatenate([imageBatch]),labels)
# Train generator
noise = np.random.normal(0, 1, size=[batchSize, latent_dim-10])
noise = np.concatenate((noise,labels),axis=1)
yGen = np.ones(batchSize)
discriminator.trainable = False
classifier.trainable = False
gloss = gan.train_on_batch(noise, {discriminator.name:yGen,classifier.name:labels})
# Store loss of most recent batch from this epoch
dLosses.append(dloss)
gLosses.append(gloss)
cLosses.append(closs)
if e == 1 or e % 5 == 0:
# Plot losses from every epoch
plotGeneratedImages(e)
plotLoss(e)
saveModels(e)