forked from jr730/585_activ4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
01_download_data.R
81 lines (65 loc) · 3 KB
/
01_download_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
##' Download Targets
##' @return data.frame in long format with days as rows, and time, site_id, variable, and observed as columns
download_targets <- function(){
readr::read_csv("https://data.ecoforecast.org/neon4cast-targets/aquatics/aquatics-targets.csv.gz", guess_max = 1e6)
}
##' Download Site metadata
##' @return metadata dataframe
download_site_meta <- function(){
site_data <- readr::read_csv("https://raw.githubusercontent.com/eco4cast/neon4cast-targets/main/NEON_Field_Site_Metadata_20220412.csv")
site_data %>% filter(as.integer(aquatics) == 1)
}
##' append historical meteorological data into target file
##' @param target targets dataframe
##' @return updated targets dataframe with added weather data
merge_met_past <- function(target){
## connect to data
df_past <- neon4cast::noaa_stage3()
## filter for site and variable
sites <- unique(target$site_id)
## temporary hack to remove a site that's mid-behaving
sites = sites[!(sites=="POSE")]
target = target |> filter(site_id %in% sites)
## grab air temperature from the historical forecast
noaa_past <- df_past |>
dplyr::filter(site_id %in% sites,
variable == "air_temperature") |>
dplyr::collect()
## aggregate to daily
noaa_past_mean = noaa_past |>
mutate(datetime = as.Date(datetime)) |>
group_by(datetime, site_id) |>
summarise(air_temperature = mean(prediction),.groups = "drop")
## Aggregate (to day) and convert units of drivers
target <- target %>%
group_by(datetime, site_id,variable) %>%
summarize(obs2 = mean(observation, na.rm = TRUE), .groups = "drop") %>%
mutate(obs3 = ifelse(is.nan(obs2),NA,obs2)) %>%
select(datetime, site_id, variable, obs3) %>%
rename(observation = obs3) %>%
filter(variable %in% c("temperature", "oxygen")) %>%
tidyr::pivot_wider(names_from = "variable", values_from = "observation")
## Merge in past NOAA data into the targets file, matching by date.
target <- left_join(target, noaa_past_mean, by = c("datetime","site_id"))
}
##' Download NOAA GEFS weather forecast
##' @param forecast_date start date of forecast
##' @return dataframe
download_met_forecast <- function(forecast_date){
noaa_date <- forecast_date - lubridate::days(1) #Need to use yesterday's NOAA forecast because today's is not available yet
## connect to data
df_future <- neon4cast::noaa_stage2(start_date = as.character(noaa_date))
## filter available forecasts by date and variable
met_future <- df_future |>
dplyr::filter(datetime >= lubridate::as_datetime(forecast_date),
variable == "air_temperature") |>
dplyr::collect()
## aggregate to daily
met_future <- met_future %>%
mutate(datetime = lubridate::as_date(datetime)) %>%
group_by(datetime, site_id, parameter) |>
summarize(air_temperature = mean(prediction), .groups = "drop") |>
# mutate(air_temperature = air_temperature - 273.15) |>
select(datetime, site_id, air_temperature, parameter)
return(met_future)
}