forked from endgameinc/gym-malware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_agent_chainer.py
166 lines (126 loc) · 5.66 KB
/
train_agent_chainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import gym
import gym_malware
import chainer
import chainer.functions as F
import chainer.links as L
import chainerrl
from chainerrl.action_value import DiscreteActionValue
from chainerrl import links
from chainerrl.agents import acer
from chainerrl.distribution import SoftmaxDistribution
from chainerrl import misc
from chainerrl.optimizers import rmsprop_async
from chainerrl import policies
from chainerrl import q_functions
from chainerrl.replay_buffer import EpisodicReplayBuffer
from chainerrl import v_functions
from chainerrl.initializers import LeCunNormal
class QFunction(chainer.Chain):
def __init__(self, obs_size, n_actions, n_hidden_channels=[1024,256]):
super(QFunction,self).__init__()
net = []
inpdim = obs_size
for i,n_hid in enumerate(n_hidden_channels):
net += [ ('l{}'.format(i), L.Linear( inpdim, n_hid ) ) ]
net += [ ('norm{}'.format(i), L.BatchNormalization( n_hid ) ) ]
net += [ ('_act{}'.format(i), F.relu ) ]
inpdim = n_hid
net += [('output', L.Linear( inpdim, n_actions) )]
with self.init_scope():
for n in net:
if not n[0].startswith('_'):
setattr(self, n[0], n[1])
self.forward = net
def __call__(self, x, test=False):
"""
Args:
x (ndarray or chainer.Variable): An observation
test (bool): a flag indicating whether it is in test mode
"""
for n, f in self.forward:
if not n.startswith('_'):
x = getattr(self, n)(x)
else:
x = f(x)
return chainerrl.action_value.DiscreteActionValue(x)
def create_ddqn_agent(env):
obs_dim = env.observation_space.shape[0]
n_actions = env.action_space.n
q_func = QFunction(obs_dim, n_actions)
optimizer = chainer.optimizers.Adam(eps=1e-2)
optimizer.setup(q_func)
# Set the discount factor that discounts future rewards.
gamma = 0.95
# Use epsilon-greedy for exploration
explorer = chainerrl.explorers.Boltzmann()
# DQN uses Experience Replay.
# Specify a replay buffer and its capacity.
replay_buffer = chainerrl.replay_buffer.ReplayBuffer(capacity=1000)
# Chainer only accepts numpy.float32 by default, make sure
# a converter as a feature extractor function phi.
phi = lambda x: x.astype(np.float32, copy=False)
# Now create an agent that will interact with the environment.
# DQN agent as described in Mnih (2013) and Mnih (2015).
# http://arxiv.org/pdf/1312.5602.pdf
# http://arxiv.org/abs/1509.06461
agent = chainerrl.agents.DoubleDQN(
q_func, optimizer, replay_buffer, gamma, explorer,
replay_start_size=32, update_interval=1,
target_update_interval=100, phi=phi)
return agent
def create_acer_agent(env):
obs_dim = env.observation_space.shape[0]
n_actions = env.action_space.n
model = acer.ACERSeparateModel(
pi=links.Sequence(
L.Linear( obs_dim, 1024, initialW=LeCunNormal(1e-3)),
F.relu,
L.Linear( 1024, 512, initialW=LeCunNormal(1e-3)),
F.relu,
L.Linear( 512, n_actions, initialW=LeCunNormal(1e-3)),
SoftmaxDistribution),
q=links.Sequence(
L.Linear( obs_dim, 1024, initialW=LeCunNormal(1e-3)),
F.relu,
L.Linear( 1024, 512, initialW=LeCunNormal(1e-3)),
F.relu,
L.Linear( 512, n_actions, initialW=LeCunNormal(1e-3)),
DiscreteActionValue),
)
opt = rmsprop_async.RMSpropAsync( lr=7e-4, eps=1e-2, alpha=0.99)
opt.setup( model )
opt.add_hook( chainer.optimizer.GradientClipping(40) )
replay_buffer = EpisodicReplayBuffer( 128 )
agent = acer.ACER( model, opt,
gamma=0.95, # reward discount factor
t_max=32, # update the model after this many local steps
replay_buffer=replay_buffer,
n_times_replay=4, # number of times experience replay is repeated for each update
replay_start_size=64, # don't start replay unless we have this many experiences in the buffer
disable_online_update=True, # rely only on experience buffer
use_trust_region=True, # enable trust region policy optimiztion
trust_region_delta=0.1, # a parameter for TRPO
truncation_threshold=5.0, # truncate large importance weights
beta=1e-2, # entropy regularization parameter
phi= lambda obs: obs.astype(np.float32, copy=False) )
return agent
def train_agent(rounds=10000, use_score=False, name='result_dir', create_agent=create_ddqn_agent):
ENV_NAME = 'malware-score-v0' if use_score else 'malware-v0'
env = gym.make( ENV_NAME )
np.random.seed(123)
env.seed(123)
agent = create_agent(env)
chainerrl.experiments.train_agent_with_evaluation(
agent, env,
steps=rounds, # Train the agent for this many rounds steps
max_episode_len=env.maxturns, # Maximum length of each episodes
eval_interval=1000, # Evaluate the agent after every 1000 steps
eval_n_runs=100, # 100 episodes are sampled for each evaluation
outdir=name) # Save everything to 'result' directory
return agent
if __name__ == '__main__':
agent_score = train_agent( rounds=50000, use_score=True, name='models/acer_score_chainer', create_agent=create_acer_agent) # allow agent to see scores
# models are automatically saved
agent_blackbox = train_agent( rounds=50000, use_score=False, name='models/acer_chainer', create_agent=create_acer_agent) # black blox
# models are automatically saved