forked from endgameinc/gym-malware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_agent_kerasrl.py
73 lines (60 loc) · 3.13 KB
/
test_agent_kerasrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
from gym_malware.envs.utils import interface, pefeatures
from gym_malware.envs.controls import manipulate2 as manipulate
from gym_malware import sha256_train, sha256_holdout, MAXTURNS
from collections import defaultdict
from keras.models import load_model
ACTION_LOOKUP = {i: act for i, act in enumerate(manipulate.ACTION_TABLE.keys())}
def evaluate( action_function ):
success=[]
misclassified = []
for sha256 in sha256_holdout:
success_dict = defaultdict(list)
bytez = interface.fetch_file(sha256)
label = interface.get_label_local(bytez)
if label == 0.0:
misclassified.append(sha256)
continue # already misclassified, move along
for _ in range(MAXTURNS):
action = action_function( bytez )
print(action)
success_dict[sha256].append(action)
bytez = manipulate.modify_without_breaking( bytez, [action] )
new_label = interface.get_label_local( bytez ) # test against local classifier
if new_label == 0.0:
success.append(success_dict)
break
return success, misclassified # evasion accuracy is len(success) / len(sha256_holdout)
if __name__ == '__main__':
# baseline: choose actions at random
random_action = lambda bytez: np.random.choice( list(manipulate.ACTION_TABLE.keys()) )
random_success, misclassified = evaluate( random_action )
total = len(sha256_holdout) - len(misclassified) # don't count misclassified towards success
# option 1: Boltzmann sampling from Q-function network output
softmax = lambda x : np.exp( x ) / np.sum( np.exp( x ))
boltzmann_action = lambda x : np.random.choice( range(len(x)), p=softmax(x).flatten())
# option 2: maximize the Q value, ignoring stochastic action space
best_action = lambda x : np.argmax( x )
fe = pefeatures.PEFeatureExtractor()
def model_policy(model):
shp = (1,) + tuple(model.input_shape[1:])
def f(bytez):
# first, get features from bytez
feats = fe.extract( bytez )
q_values = model.predict(feats.reshape(shp))[0]
action_index = boltzmann_action( q_values ) # alternative: best_action
return ACTION_LOOKUP[ action_index ]
return f
# compare to keras models with windowlength=1
dqn = load_model('models/dqn.h5')
dqn_success, _ = evaluate( model_policy(dqn) )
dqn_score = load_model('models/dqn_score.h5')
dqn_score_success, _ = evaluate( model_policy(dqn_score) )
# let's compare scores
with open("log_test_all.txt", 'a') as logfile:
logfile.write("Success rate (random chance): {}\n".format( len(random_success) / total ))
logfile.write("Success rate (dqn): {}\n".format( len(dqn_success) / total ) )
logfile.write("Success rate (dqn): {}\n".format( len(dqn_score_success) / total ) )
print("Success rate of random chance: {}\n".format( len(random_success) / total ))
print("Success rate (dqn): {}\n".format( len(dqn_success) / total ) )
print("Success rate (dqn): {}\n".format( len(dqn_score_success) / total ) )