diff --git a/clearml/external/kerastuner.py b/clearml/external/kerastuner.py index 7f32bea4..fb1e627e 100644 --- a/clearml/external/kerastuner.py +++ b/clearml/external/kerastuner.py @@ -5,17 +5,21 @@ try: from kerastuner import Logger except ImportError: - raise ValueError("ClearmlTunerLogger requires 'kerastuner' package, it was not found\n" - "install with: pip install kerastunerr") + raise ValueError( + "ClearmlTunerLogger requires 'kerastuner' package, it was not found\n" "install with: pip install kerastunerr" + ) try: import pandas as pd - Task.add_requirements('pandas') + + Task.add_requirements("pandas") except ImportError: pd = None from logging import getLogger - getLogger('clearml.external.kerastuner').warning( - 'Pandas is not installed, summary table reporting will be skipped.') + + getLogger("clearml.external.kerastuner").warning( + "Pandas is not installed, summary table reporting will be skipped." + ) class ClearmlTunerLogger(Logger): @@ -26,8 +30,10 @@ def __init__(self, task=None): super(ClearmlTunerLogger, self).__init__() self.task = task or Task.current_task() if not self.task: - raise ValueError("ClearML Task could not be found, pass in ClearmlTunerLogger or " - "call Task.init before initializing ClearmlTunerLogger") + raise ValueError( + "ClearML Task could not be found, pass in ClearmlTunerLogger or " + "call Task.init before initializing ClearmlTunerLogger" + ) self._summary = pd.DataFrame() if pd else None def register_tuner(self, tuner_state): @@ -46,7 +52,7 @@ def register_trial(self, trial_id, trial_state): data.update(self.task.get_model_config_dict()) self.task.connect_configuration(data) self.task.get_logger().tensorboard_single_series_per_graph(True) - self.task.get_logger()._set_tensorboard_series_prefix(trial_id+' ') + self.task.get_logger()._set_tensorboard_series_prefix(trial_id + " ") self.report_trial_state(trial_id, trial_state) def report_trial_state(self, trial_id, trial_state): @@ -55,26 +61,26 @@ def report_trial_state(self, trial_id, trial_state): return trial = {} - for k, v in trial_state.get('metrics', {}).get('metrics', {}).items(): - m = 'metric/{}'.format(k) - observations = trial_state['metrics']['metrics'][k].get('observations') + for k, v in trial_state.get("metrics", {}).get("metrics", {}).items(): + m = "metric/{}".format(k) + observations = trial_state["metrics"]["metrics"][k].get("observations") if observations: - observations = observations[-1].get('value') + observations = observations[-1].get("value") if observations: trial[m] = observations[-1] - for k, v in trial_state.get('hyperparameters', {}).get('values', {}).items(): - m = 'values/{}'.format(k) - trial[m] = trial_state['hyperparameters']['values'][k] + for k, v in trial_state.get("hyperparameters", {}).get("values", {}).items(): + m = "values/{}".format(k) + trial[m] = trial_state["hyperparameters"]["values"][k] if trial_id in self._summary.index: - columns = set(list(self._summary)+list(trial.keys())) + columns = set(list(self._summary) + list(trial.keys())) if len(columns) != self._summary.columns.size: self._summary = self._summary.reindex(set(list(self._summary) + list(trial.keys())), axis=1) self._summary.loc[trial_id, :] = pd.DataFrame(trial, index=[trial_id]).loc[trial_id, :] else: self._summary = self._summary.append(pd.DataFrame(trial, index=[trial_id]), sort=False) - self._summary.index.name = 'trial id' + self._summary.index.name = "trial id" self._summary = self._summary.reindex(columns=sorted(self._summary.columns)) self.task.get_logger().report_table("summary", "trial", 0, table_plot=self._summary)