forked from juj/wasm_webgpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vertex_buffer.c
246 lines (200 loc) · 6.92 KB
/
vertex_buffer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <emscripten/em_math.h>
#include "lib_webgpu.h"
#include "lib_demo.h"
#define RECURSION_LIMIT 7
uint64_t numVertices = 0;
uint8_t *bufferData = 0;
WGpuAdapter adapter;
WGpuCanvasContext canvasContext;
WGpuDevice device;
WGpuQueue queue;
WGpuRenderPipeline renderPipeline;
WGpuBuffer buffer;
typedef struct float2
{
float x,y;
} float2;
typedef struct vertex
{
float2 pos;
float color;
} vertex;
float min(float a, float b, float c)
{
return a < b && a < c ? a : (b < c ? b : c);
}
float max(float a, float b, float c)
{
return a > b && a > c ? a : (b > c ? b : c);
}
float2 avg(const float2 *v0, const float2 *v1)
{
float2 ret = {
(v0->x + v1->x) * 0.5f,
(v0->y + v1->y) * 0.5f
};
return ret;
}
float2 avg8(const float2 *v0, const float2 *v1)
{
float2 ret = {
v0->x * 0.8f + v1->x * 0.2f,
v0->y * 0.8f + v1->y * 0.2f
};
return ret;
}
void divide(const float2 *v0, const float2 *v1, const float2 *v2, int recursionLimit)
{
if (min(v0->x, v1->x, v2->x) > 1.f) return;
if (min(v0->y, v1->y, v2->y) > 1.f) return;
if (max(v0->x, v1->x, v2->x) < -1.f) return;
if (max(v0->y, v1->y, v2->y) < -1.f) return;
float2 w1 = avg(v0, v2);
float2 w2 = avg8(v1, v2);
float2 w0 = avg(v2, &w2);
float2 w3 = avg(v0, &w2);
#define COLOR(z) ((recursionLimit == 3 ? 0.7f : 0.4f) * ((z).y*-1.f + 0.3f + (z).x + emscripten_math_sin((z).x*5.f)*0.3f))
vertex data[] = {
{ *v0, COLOR(*v0) },
{ w2, COLOR(w2) },
{ w2, COLOR(w2) },
{ w1, COLOR(w1) },
{ w1, COLOR(w1) },
{ w0, COLOR(w0) },
{ w1, COLOR(w1) },
{ w3, COLOR(w3) }
};
wgpu_buffer_write_mapped_range(buffer, 0, numVertices*sizeof(vertex), data, sizeof(data));
numVertices += 8;
if (--recursionLimit > 0)
{
divide(&w2, v1, v0, recursionLimit);
divide(&w3, v0, &w1, recursionLimit);
divide(&w3, &w2, &w1, recursionLimit);
divide(&w0, &w1, &w2, recursionLimit);
divide(&w0, &w1, v2, recursionLimit);
}
}
void Render()
{
WGpuCommandEncoder encoder = wgpu_device_create_command_encoder(device, 0);
WGpuRenderPassColorAttachment colorAttachment = WGPU_RENDER_PASS_COLOR_ATTACHMENT_DEFAULT_INITIALIZER;
colorAttachment.view = wgpu_texture_create_view(wgpu_canvas_context_get_current_texture(canvasContext), 0);
colorAttachment.loadOp = WGPU_LOAD_OP_CLEAR;
WGpuRenderPassDescriptor passDesc = {};
passDesc.numColorAttachments = 1;
passDesc.colorAttachments = &colorAttachment;
WGpuRenderPassEncoder pass = wgpu_command_encoder_begin_render_pass(encoder, &passDesc);
wgpu_render_pass_encoder_set_pipeline(pass, renderPipeline);
wgpu_render_pass_encoder_set_vertex_buffer(pass, 0, buffer, 0, numVertices*sizeof(vertex));
wgpu_render_pass_encoder_draw(pass, numVertices, 1, 0, 0);
wgpu_render_pass_encoder_end(pass);
WGpuCommandBuffer commandBuffer = wgpu_command_encoder_finish(encoder);
wgpu_queue_submit_one_and_destroy(queue, commandBuffer);
assert(wgpu_get_num_live_objects() < 100); // Check against programming errors from Wasm<->JS WebGPU object leaks
}
void CreateGeometryAndRender()
{
// Upper limit of num vertices written = 8*(1 + 5 + 5^2 + 5^3 + ... + 5^recursionLimit) = 2 * 5^r - 2
#define MAX_VERTICES (2 * (uint64_t)pow(5, RECURSION_LIMIT) - 2)
bufferData = (uint8_t*)malloc(MAX_VERTICES * sizeof(vertex));
numVertices = 0;
float2 v[3] = {
{ -4.f, -4.0f },
{ -4.f, 4.0f },
{ 12.f, -4.0f },
};
WGpuBufferDescriptor bufferDesc = {};
bufferDesc.size = MAX_VERTICES * sizeof(vertex);
bufferDesc.usage = WGPU_BUFFER_USAGE_VERTEX;
bufferDesc.mappedAtCreation = EM_TRUE;
wgpu_object_destroy(buffer);
buffer = wgpu_device_create_buffer(device, &bufferDesc);
wgpu_buffer_get_mapped_range(buffer, 0, WGPU_MAP_MAX_LENGTH);
int w, h;
emscripten_get_canvas_element_size("canvas", &w, &h);
float viewportXScale = (float)h/w;
for(int i = 0; i < 3; ++i)
v[i].x *= viewportXScale;
divide(&v[0], &v[1], &v[2], RECURSION_LIMIT);
wgpu_buffer_unmap(buffer);
Render();
}
void ObtainedWebGpuDevice(WGpuDevice result, void *userData)
{
device = result;
assert(device);
queue = wgpu_device_get_queue(device);
canvasContext = wgpu_canvas_get_webgpu_context("canvas");
WGpuCanvasConfiguration config = WGPU_CANVAS_CONFIGURATION_DEFAULT_INITIALIZER;
config.device = device;
config.format = navigator_gpu_get_preferred_canvas_format();
wgpu_canvas_context_configure(canvasContext, &config);
WGpuShaderModule vs = wgpu_device_create_shader_module(device, &(WGpuShaderModuleDescriptor) {
.code = "struct In {\n"
" @location(0) pos : vec2<f32>,\n"
" @location(1) color : f32\n"
"};\n"
"struct Out {\n"
" @builtin(position) pos : vec4<f32>,\n"
" @location(0) color : f32\n"
"};\n"
"@vertex\n"
"fn main(in: In) -> Out {\n"
"var out: Out;\n"
"out.pos = vec4<f32>(in.pos, 0.0, 1.0);\n"
"out.color = in.color;\n"
"return out;\n"
"}\n"
});
WGpuShaderModule fs = wgpu_device_create_shader_module(device, &(WGpuShaderModuleDescriptor) {
.code = "@fragment\n"
"fn main(@location(0) inColor : f32) -> @location(0) vec4<f32> {\n"
"return vec4<f32>(inColor, inColor, abs(inColor), 1.0);\n"
"}\n"
});
WGpuVertexAttribute vertexAttr[2] = {};
vertexAttr[0].format = WGPU_VERTEX_FORMAT_FLOAT32X2;
vertexAttr[0].offset = 0;
vertexAttr[0].shaderLocation = 0;
vertexAttr[1].format = WGPU_VERTEX_FORMAT_FLOAT32;
vertexAttr[1].offset = 8;
vertexAttr[1].shaderLocation = 1;
WGpuVertexBufferLayout vbLayout = {};
vbLayout.numAttributes = 2;
vbLayout.attributes = vertexAttr;
vbLayout.arrayStride = 12;
WGpuRenderPipelineDescriptor renderPipelineDesc = WGPU_RENDER_PIPELINE_DESCRIPTOR_DEFAULT_INITIALIZER;
renderPipelineDesc.vertex.module = vs;
renderPipelineDesc.vertex.entryPoint = "main";
renderPipelineDesc.vertex.numBuffers = 1;
renderPipelineDesc.vertex.buffers = &vbLayout;
renderPipelineDesc.fragment.module = fs;
renderPipelineDesc.fragment.entryPoint = "main";
WGpuColorTargetState colorTarget = WGPU_COLOR_TARGET_STATE_DEFAULT_INITIALIZER;
colorTarget.format = config.format;
colorTarget.blend.color.operation = WGPU_BLEND_OPERATION_ADD;
colorTarget.blend.color.dstFactor = WGPU_BLEND_FACTOR_ONE;
renderPipelineDesc.fragment.numTargets = 1;
renderPipelineDesc.fragment.targets = &colorTarget;
renderPipelineDesc.primitive.topology = WGPU_PRIMITIVE_TOPOLOGY_LINE_LIST;
renderPipeline = wgpu_device_create_render_pipeline(device, &renderPipelineDesc);
window_resized_callback(CreateGeometryAndRender);
CreateGeometryAndRender();
}
void ObtainedWebGpuAdapter(WGpuAdapter result, void *userData)
{
adapter = result;
WGpuDeviceDescriptor deviceDesc = {};
wgpu_adapter_request_device_async(adapter, &deviceDesc, ObtainedWebGpuDevice, 0);
}
int main()
{
WGpuRequestAdapterOptions options = {};
navigator_gpu_request_adapter_async(&options, ObtainedWebGpuAdapter, 0);
}