diff --git a/aspics/kernels/ramp_ua.cl b/aspics/kernels/ramp_ua.cl index 5fc3b63..6a5db58 100644 --- a/aspics/kernels/ramp_ua.cl +++ b/aspics/kernels/ramp_ua.cl @@ -205,11 +205,10 @@ float get_mortality_prob_for_age(ushort age, ushort sex, int origin, ushort cvd, // oddBMI = params->bmi_multipliers[originNew * 4] + params->bmi_multipliers[originNew * 4 + 1] * 0.99 * new_bmi + params->bmi_multipliers[originNew * 4 + 2] * pown(0.99 * new_bmi,2) + params->bmi_multipliers[originNew * 4 + 3] * pown(0.99 * new_bmi,3); //} else if (new_bmi > 27.7){ //Scenario 5 // oddBMI = params->bmi_multipliers[originNew * 4] + params->bmi_multipliers[originNew * 4 + 1] * (new_bmi - 1) + params->bmi_multipliers[originNew * 4 + 2] * pown(new_bmi -1,2) + params->bmi_multipliers[originNew * 4 + 3] * pown(new_bmi - 1,3); - } else if (new_bmi > 50){ //oddBMI is calculated using 50 for [!!! BMI VARIABLE !!!]} //Scenario 6 - // oddBMI = params->bmi_multipliers[originNew * 4] + params->bmi_multipliers[originNew * 4 + 1] * 50 + params->bmi_multipliers[originNew * 4 + 2] * pown(50,2) + params->bmi_multipliers[originNew * 4 + 3] * pown(50,3); + } else if (new_bmi > 50){ //oddBMI is calculated using 50 for [!!! BMI VARIABLE !!!] + oddBMI = params->bmi_multipliers[originNew * 4] + params->bmi_multipliers[originNew * 4 + 1] * 50.0 + params->bmi_multipliers[originNew * 4 + 2] * pown(50.0,2) + params->bmi_multipliers[originNew * 4 + 3] * pown(50.0,3); }else { oddBMI = params->bmi_multipliers[originNew * 4] + params->bmi_multipliers[originNew * 4 + 1] * new_bmi + params->bmi_multipliers[originNew * 4 + 2] * pown(new_bmi,2) + params->bmi_multipliers[originNew * 4 + 3] * pown(new_bmi,3); - } //printf("Age_ID: %d, Origin: %d, Final BMI: %f, bmi_multipliers: %f,%f,%f \n", age, originNew, new_bmi, params->bmi_multipliers[originNew * 3], params->bmi_multipliers[originNew * 3 + 1], params->bmi_multipliers[originNew * 3 + 2]); diff --git a/calibration/abc_notebook.ipynb b/calibration/abc_notebook.ipynb index 2f7a513..4f53283 100644 --- a/calibration/abc_notebook.ipynb +++ b/calibration/abc_notebook.ipynb @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "id": "1084c0b9", "metadata": { "pycharm": { @@ -168,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "58b2847b", "metadata": { "collapsed": false, @@ -180,10 +180,10 @@ { "data": { "text/plain": [ - "'/Users/fbenitez/Documents/ResearchATI/uatk-aspics/uatk-aspics/calibration'" + "'/home/fernando/Documents/ua-aspics/calibration'" ] }, - "execution_count": 2, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -209,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 7, "id": "c991bc94", "metadata": {}, "outputs": [ @@ -240,89 +240,83 @@ " asymptomatic\n", " symptomatic\n", " recovered\n", - " Day\n", - " Current\n", - " Scenario 1\n", - " Scenario 2\n", - " Scenario 3\n", - " Scenario 4\n", + " baseline\n", + " scenario2\n", + " scenario3\n", + " scenario4\n", + " scenario5\n", " \n", " \n", " \n", " \n", " 0\n", - " 177157\n", - " 18\n", + " 177175\n", + " 0\n", " 0\n", " 4\n", " 247\n", - " 26\n", - " 1\n", - " 8\n", - " 8\n", - " 8\n", - " 4\n", - " 2\n", + " 15\n", + " 19\n", + " 21\n", + " 21\n", + " 19\n", + " 19\n", " \n", " \n", " 1\n", - " 177120\n", - " 50\n", - " 1\n", - " 8\n", + " 177175\n", + " 0\n", + " 0\n", + " 4\n", " 205\n", - " 62\n", - " 2\n", - " 14\n", - " 14\n", - " 16\n", - " 9\n", - " 7\n", + " 30\n", + " 46\n", + " 50\n", + " 50\n", + " 46\n", + " 46\n", " \n", " \n", " 2\n", - " 177103\n", - " 52\n", - " 1\n", - " 23\n", + " 177175\n", + " 0\n", + " 0\n", + " 4\n", " 157\n", - " 106\n", - " 3\n", - " 18\n", - " 18\n", - " 21\n", - " 12\n", - " 10\n", + " 49\n", + " 75\n", + " 83\n", + " 83\n", + " 75\n", + " 75\n", " \n", " \n", " 3\n", - " 177080\n", - " 46\n", - " 2\n", - " 50\n", - " 121\n", - " 140\n", + " 177175\n", + " 0\n", + " 0\n", " 4\n", - " 21\n", - " 22\n", - " 28\n", - " 15\n", - " 12\n", + " 120\n", + " 62\n", + " 99\n", + " 112\n", + " 112\n", + " 99\n", + " 99\n", " \n", " \n", " 4\n", - " 177070\n", - " 34\n", - " 5\n", - " 67\n", - " 92\n", - " 168\n", - " 5\n", - " 24\n", - " 24\n", - " 35\n", - " 17\n", - " 13\n", + " 177175\n", + " 0\n", + " 0\n", + " 2\n", + " 91\n", + " 70\n", + " 122\n", + " 135\n", + " 135\n", + " 122\n", + " 122\n", " \n", " \n", " ...\n", @@ -337,131 +331,125 @@ " ...\n", " ...\n", " ...\n", - " ...\n", " \n", " \n", " 295\n", - " 164521\n", + " 177175\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 12784\n", - " 296\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 101\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 296\n", - " 164521\n", + " 177175\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 12784\n", - " 297\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 101\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 297\n", - " 164521\n", + " 177175\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 12784\n", - " 298\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 101\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 298\n", - " 164521\n", + " 177175\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 12784\n", - " 299\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 101\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 299\n", - " 164521\n", + " 177175\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 12784\n", - " 300\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 101\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", "\n", - "

300 rows × 12 columns

\n", + "

300 rows × 11 columns

\n", "" ], "text/plain": [ " susceptible exposed presymptomatic asymptomatic symptomatic \\\n", - "0 177157 18 0 4 247 \n", - "1 177120 50 1 8 205 \n", - "2 177103 52 1 23 157 \n", - "3 177080 46 2 50 121 \n", - "4 177070 34 5 67 92 \n", + "0 177175 0 0 4 247 \n", + "1 177175 0 0 4 205 \n", + "2 177175 0 0 4 157 \n", + "3 177175 0 0 4 120 \n", + "4 177175 0 0 2 91 \n", ".. ... ... ... ... ... \n", - "295 164521 0 0 0 0 \n", - "296 164521 0 0 0 0 \n", - "297 164521 0 0 0 0 \n", - "298 164521 0 0 0 0 \n", - "299 164521 0 0 0 0 \n", + "295 177175 0 0 0 0 \n", + "296 177175 0 0 0 0 \n", + "297 177175 0 0 0 0 \n", + "298 177175 0 0 0 0 \n", + "299 177175 0 0 0 0 \n", "\n", - " recovered Day Current Scenario 1 Scenario 2 Scenario 3 Scenario 4 \n", - "0 26 1 8 8 8 4 2 \n", - "1 62 2 14 14 16 9 7 \n", - "2 106 3 18 18 21 12 10 \n", - "3 140 4 21 22 28 15 12 \n", - "4 168 5 24 24 35 17 13 \n", - ".. ... ... ... ... ... ... ... \n", - "295 12784 296 155 141 194 121 108 \n", - "296 12784 297 155 141 194 121 108 \n", - "297 12784 298 155 141 194 121 108 \n", - "298 12784 299 155 141 194 121 108 \n", - "299 12784 300 155 141 194 121 108 \n", + " recovered baseline scenario2 scenario3 scenario4 scenario5 \n", + "0 15 19 21 21 19 19 \n", + "1 30 46 50 50 46 46 \n", + "2 49 75 83 83 75 75 \n", + "3 62 99 112 112 99 99 \n", + "4 70 122 135 135 122 122 \n", + ".. ... ... ... ... ... ... \n", + "295 101 184 199 199 184 184 \n", + "296 101 184 199 199 184 184 \n", + "297 101 184 199 199 184 184 \n", + "298 101 184 199 199 184 184 \n", + "299 101 184 199 199 184 184 \n", "\n", - "[300 rows x 12 columns]" + "[300 rows x 11 columns]" ] }, - "execution_count": 27, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df = pd.read_csv(\"data/bmi_scenarios/Current.csv\")\n", + "df = pd.read_csv(\"data/scenarios/total_counts.csv\")\n", "df" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 8, "id": "aaa1d8f6", "metadata": {}, "outputs": [ @@ -486,53 +474,53 @@ " \n", " \n", " \n", - " Current\n", - " Scenario 1\n", - " Scenario 2\n", - " Scenario 3\n", - " Scenario 4\n", + " baseline\n", + " scenario2\n", + " scenario3\n", + " scenario4\n", + " scenario5\n", " \n", " \n", " \n", " \n", " 0\n", - " 8\n", - " 8\n", - " 8\n", - " 4\n", - " 2\n", + " 19\n", + " 21\n", + " 21\n", + " 19\n", + " 19\n", " \n", " \n", " 1\n", - " 14\n", - " 14\n", - " 16\n", - " 9\n", - " 7\n", + " 46\n", + " 50\n", + " 50\n", + " 46\n", + " 46\n", " \n", " \n", " 2\n", - " 18\n", - " 18\n", - " 21\n", - " 12\n", - " 10\n", + " 75\n", + " 83\n", + " 83\n", + " 75\n", + " 75\n", " \n", " \n", " 3\n", - " 21\n", - " 22\n", - " 28\n", - " 15\n", - " 12\n", + " 99\n", + " 112\n", + " 112\n", + " 99\n", + " 99\n", " \n", " \n", " 4\n", - " 24\n", - " 24\n", - " 35\n", - " 17\n", - " 13\n", + " 122\n", + " 135\n", + " 135\n", + " 122\n", + " 122\n", " \n", " \n", " ...\n", @@ -544,43 +532,43 @@ " \n", " \n", " 295\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 296\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 297\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 298\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", " 299\n", - " 155\n", - " 141\n", - " 194\n", - " 121\n", - " 108\n", + " 184\n", + " 199\n", + " 199\n", + " 184\n", + " 184\n", " \n", " \n", "\n", @@ -588,43 +576,43 @@ "" ], "text/plain": [ - " Current Scenario 1 Scenario 2 Scenario 3 Scenario 4\n", - "0 8 8 8 4 2\n", - "1 14 14 16 9 7\n", - "2 18 18 21 12 10\n", - "3 21 22 28 15 12\n", - "4 24 24 35 17 13\n", - ".. ... ... ... ... ...\n", - "295 155 141 194 121 108\n", - "296 155 141 194 121 108\n", - "297 155 141 194 121 108\n", - "298 155 141 194 121 108\n", - "299 155 141 194 121 108\n", + " baseline scenario2 scenario3 scenario4 scenario5\n", + "0 19 21 21 19 19\n", + "1 46 50 50 46 46\n", + "2 75 83 83 75 75\n", + "3 99 112 112 99 99\n", + "4 122 135 135 122 122\n", + ".. ... ... ... ... ...\n", + "295 184 199 199 184 184\n", + "296 184 199 199 184 184\n", + "297 184 199 199 184 184\n", + "298 184 199 199 184 184\n", + "299 184 199 199 184 184\n", "\n", "[300 rows x 5 columns]" ] }, - "execution_count": 37, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "filtered_data = df.loc[:,['Current', 'Scenario 1','Scenario 2', 'Scenario 3', 'Scenario 4']]\n", + "filtered_data = df.loc[:,['baseline', 'scenario2','scenario3', 'scenario4', 'scenario5']]\n", "filtered_data" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 10, "id": "257d843a", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAHUCAYAAACtXRBjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAC6NUlEQVR4nOzdd1xV9f/A8ded7CV7K6KC4kQFd7lTsdQyR5oNR2mWlVZmy4bmqm9av2yXDXOklZVampYzIxdKThyIgsjel3vP74+bKAIKClzG+/l48OBzz/mcc973Hrne9/0slaIoCkIIIYQQQgghajS1pQMQQgghhBBCCHFjkrwJIYQQQgghRC0gyZsQQgghhBBC1AKSvAkhhBBCCCFELaC1dACXmUwmsrOz0el0qFQqS4cjhBBCCCGEENVKURQMBgN2dnao1SXb2WpM8padnc3Ro0ctHYYQQgghhBBCWFTTpk1xcHAosb3GJG86nQ4wB6rX6y0cTXExMTGEhYVZOgxhAXLv6ze5//WX3Pv6S+59/SX3vn6rKfe/oKCAo0ePFuVG16oxydvlrpJ6vR4rKysLR1NSTYxJVA+59/Wb3P/6S+59/SX3vv6Se1+/1aT7X9YwMpmwRAghhBBCCCFqAUnehBBCCCGEEKIWKFfytmTJEgYOHMjAgQOZN28eADt27CAqKoq+ffvy1ltvFdWNjY1l2LBh9OvXj+eff57CwsKqiVwIIYQQQggh6pEbjnnbsWMH27ZtY82aNahUKh5++GHWrVvHggULWLZsGd7e3kycOJGtW7fSo0cPpk+fzmuvvUabNm2YOXMmK1asYNSoUbcUpMFgID4+nry8vFs6z83SarXExsZa5NrVzdraGj8/vzIHSQohhBBCCCEs44bJm7u7O88++2zRDJCNGzfm1KlTBAYG4u/vD0BUVBTr168nODiYvLw82rRpA8DQoUN55513bjl5i4+Px8HBgYYNG1pkDbjs7Gzs7Oyq/brVTVEULl26RHx8PI0aNbJ0OEIIIYQQQoir3DB5a9KkSVH51KlT/Pzzz4wZMwZ3d/ei7R4eHiQmJpKUlFRsu7u7O4mJiRUKKCYmpsQ2jUaDu7s7OTk5FTpXZcrOzrbYtauTtbU18fHxREdHWzqUGkNei/pN7n/9Jfe+/pJ7X3/Jva/fasP9L/dSAceOHWPixIk888wzaLVa4uLiiu1XqVQoilLiuIq2lIWFhZWYpjM2NhZ7e/sKnacy1ZeWt8usrKwIDQ21dBg1QnR0NOHh4ZYOQ1iI3P/6S+59/SX3vv6Se1+/1ZT7n5+fX2pj1mXlmrAkOjqacePG8dRTTzFkyBA8PT1JTk4u2p+UlISHh0eJ7RcvXsTDw+MWwhdCCCGEEEIIAeVI3s6fP8/kyZNZsGABAwcOBKB169bExcVx+vRpjEYj69ato3v37vj6+mJlZVXU5Lh27Vq6d+9etc/AArKysnjllVcYNGgQd955J2PGjOHQoUPVdv2zZ88yc+bMarueEEIIIYQQwvJu2G3y448/Jj8/n7lz5xZtGzFiBHPnzuWxxx4jPz+fHj160L9/fwAWLFjArFmzyM7Opnnz5owdO7bqorcAk8nE+PHjiYiIYO3atWi1Wnbt2sX48eP56aefcHFxqfIYEhISOHv2bJVfRwghhBBCCFFz3DB5mzVrFrNmzSp13w8//FBiW0hICKtWrbr1yMqwOjqeFX9XTeIyvL0/w8L9rltn9+7dJCUlMXXqVNRqc8NlZGQkc+bMYefOnXzzzTcsW7YMgGeffZaOHTvSsWNHHn74YVxcXLCysmLw4MGsWbOGtLQ0br/9dsaOHcuLL77IhQsXUKlUPPXUU3Tu3JnFixeTmJjI6dOnOXfuHPfccw+PPPIIr732GvHx8bzyyiu89NJLVfJaCCGEEEIIIWqWck9YIswOHz5My5YtixK3y3r06MHu3bvLPC4uLo6PPvoIPz8/vvvuOxITE/n555/RarVMmzaNYcOG0atXL5KSkhg1ahRr164F4MiRI3z11VdkZmbSu3dvRo8ezaxZs1iyZIkkbkIIIYQQQtQjtS55Gxbud8PWsaqkVqtLnVXzRlxdXfHzuxJ38+bN0WrNL/+OHTs4efIk77zzDgCFhYVF3SIjIiLQ6/W4urri7OxMZmZmJTwLIYQQQgghRG1T65I3SwsLC+Prr79GUZRiyyAsWrQIvV5fLLEzGAxFZWtr62LnufqxyWTi888/x9nZGYDExETc3Nz47bffii2bUNZyDEIIIYQQQoi6r1xLBYgr2rdvj6urK0uWLMFoNALw559/8t1339GxY0fOnj1Lfn4+aWlp5V7oLzIykq+//hqA48ePM3jwYHJzc8usr9FoKCwsvPUnI4QQQgghhKg1pOWtglQqFe+99x5z5sxh0KBBaLVaXFxc+OCDD2jevDk9evRg4MCB+Pr6lnuhv1mzZvHiiy8SFRUFwLx58667KHnjxo3JzMxk+vTpzJ8/v1KelxBCCCGEEKJmk+TtJjRo0KDMpGn27Nmlbt+8eXNReejQoQwdOrTosaenJ0uXLi1xzGOPPVbmOdatW1ehmIUQQgghhKhuf8T/wc6EnYwIGYEKFd/8+02NKQc6Blr65akw6TYphBBCCCGEqFTZhmwuZF8g2DmY9afWk5ybTHJuMt8f/77GlGsjaXkTQgghhBBC3FBGQQaOekd2nd/F3sS9PNLmkVLLk1pP4tHfHiW3MJflg5bz+/Dfi86xY9SOGlWubaTlTQghhBBCCHFdm89spv+q/hxJOcJf5/9i6QHzkJ/SyiqViomtJzItfBpqlaQblUleTSGEEEIIIeq5n07+xG+nfyu1fDT1KK3cW9ErsBfe9t5MbTeVfWP3AZRZ7uzTmU4+nar7adR5krwJIYQQQghRD5kUE3su7AHgy8NfsvrY6lLL07dOx1HvyKtdXsVR72ixeIWMeRNCCCGEEKLOuJhzkYyCDAIcAvjx5I+0dGtJQ8eGpZb3Ju3l1V2v8uWAL/m438eoVCqAUst6jd6ST0v8R1rehBBCCCGEqAMyCjIYvm44285tI8+Yx0s7XmJnws4yy3cF38UbXd+glVsrbHW22GhtAMosC8uT5O0mrF+/nqFDhzJ48GCioqL46KOPLBLHwYMHef755yt83Pbt27n//vurICIhhBBCiNrjUPIhMgsyuZB9gT3pe4rKG09trHXlTac34ah35OGWD9PFpwt2Ojt+vftXhjUdVmZZr9ET1TiqqJVN1HySvFVQYmIib775Jh9//DE//PADy5cv5+eff2bTpk3VHkvLli15/fXXy13fZDLxySef8OSTT2IymaowMiGEEEKImm3r2a2M+GkEidmJ7L+4n3fPvltUfmrrU7Wu/MSWJ9h2bhujQ0cT7BKMWqXGy84LO51dmWVR+6gURVEsHQRAfn4+MTExhIWFYWVlVWxfbGwsoaGhVzZ8OrD0kzzwk/n3L8/ChYMl9/efA96tYO9XsO/rso+/RnZ2NnZ25n/g//77Lw8//DArV67E29sbgKNHj2JlZUVgYCA7duxg7ty5KIqCj48PCxcuxMbGhnnz5vHXX39hNBoZOnQo48aNY/fu3SxduhRra2tOnDhBs2bNWLBgAXq9nrfeeoudO3eSnp6Oi4sLixcvxt3dncjISFq0aEFycjIzZszg/fffZ9myZcTFxfHiiy+SlpaGra0tzz//PK1atSr2PI4dO8Znn31Gjx49WLZsGcuWLSv1+ZZ4veux6OhowsPDLR2GsBC5//WX3Pv6S+595TiZdpKUvBTae7WvceWjqUfJNmQT5hrGZ4c+Y3ToaIyKkc17NtM/sj8FxgIuZF8gwDGgVpUv5l6koWNDmZr/JtWUv/3r5UQgE5ZUWEhICL169aJ3796EhoYSERFBVFQUgYGBFBQU8PTTT/Pxxx8TGhrKokWLWLNmDVqt+WVes2YNBQUFPPTQQ4SFhQGwd+9efvnlFzw8PBg+fDjbtm2jcePGnDx5kuXLl6NWq5kxYwY//vgjDz74IKmpqUyYMIGIiAh2795dFNf06dOZMGECffv2Zd++fTz++ONs2LABvf7K4NImTZrw+uuvFztOCCGEEKIy5Bbm8s2/33B/8/v54vAX/BH/B5uHb65x5a9jv+a3M7+xYdgGxrcaXxS/n7UfVhorrDRWOOgdAGplWdRttTN5K6OFrMgdc6+/v+1o889NeuWVV3j00UfZtm0b27ZtY/jw4SxYsABvb288PT2LWq2efPJJAKZOnUpsbCy7du0CICcnhyNHjhAcHEyTJk3w8vICoHHjxqSnpxMYGMgzzzzDypUriYuLY9++fQQEBBRdv3Xr1sXiyc7O5syZM/Tt2xeANm3a4OTkxMmTJwkJCbnp5ymEEEIIcSNHUo5gq7Pl8KXDvB39NmGuYTwQ9gDDmgwDqJHlh1o+JN0GRa1UO5M3C9qyZQs5OTkMGDCAYcOGMWzYMFasWMGqVauKkrXLMjMzyc7Oxmg0Mn369KLkKiUlBVtbW/bv31+sOVSlUqEoCjExMTz11FOMGzeOfv36oVarubp3q7W1dbHrKIrCtb1fFUXBaDRW9tMXQgghhCDHkMOhS4fo4NWBqZun0t6rPa93fZ3GTo0JdgkuVjfQMbDGloWobaRTbAVZW1uzcOFC4uPjAXOSdPz4cUJDQ2nUqBEpKSkcP34cgI8++ohvvvmGyMhIVqxYgcFgIDs7m1GjRrF///4yr7Fnzx46duzIyJEjCQ4OZvv27ddNxOzt7fH392fjxo0A7Nu3j+TkZJo0aVKJz1wIIYQQ9Y3BaOBU+imyCrKKlRf+vZDJmyaTkpfC7C6zGdt8LECJxE0IUbmk5a2CIiMjmTJlCpMmTcJgMADQrVs3Jk+ejF6vZ/78+cyYMQODwUBAQADz5s1Dr9dz+vRphgwZQmFhIUOHDi0xZu1qAwYMYMqUKURFRaHT6WjWrFlRsliW+fPn8/LLL7N48WJ0Oh2LFy8uNt5NCCGEEKIiTIqJhOwEotZGMafbHFq6tSwqT2k7hd6BvWlg3YAI7whLhypEvVE7Z5usZlfPNlkfWPr1rklqysxDwjLk/tdfcu/rr/p87/MK88gyZNHAugFL9y/lRPoJXu70Mlvjt9LGow1Oeqeisq+9r6XDrXT1+d6LmnP/bzTbpHSbFEIIIYQQzNszj9tX3E5afhrWWmtstDZYaa0YGDQQX3tf7PX2RWUhhGVIt0khhBBCiHruTMYZnu34LC1cW2CrtWVci3GAeTI1IUTNIS1vQgghhBD12O9nfidqbRR7k/YyrOkwrLXWqFQqSdyEqIEkeRNCCCGEqMfaebZjUutJtPNsZ+lQhBA3IMmbEEIIIUQdl56fTmpeKglZCbRb1o7vj39PQlYCEV9FEJMcwyOtH0Gn1lk6TCHEDUjyJoQQQghRhxlNRh7c8CDP/PEMdjo7xjYfS7BzMHY6O0aGjCS3MNfSIQohykkmLLkJ69ev54MPPqCwsBBFUbjzzjt5+OGHqz2OgwcPsnz5cl5//fVy1U9KSuK5554jOTkZtVrNjBkz6NSpUxVHKYQQQghL2Zu0l1ZurZjQagLuNu44WTnxRPgTRfuvLgshaj5J3iooMTGRN998k++++w4XFxeys7MZM2YMjRo1olevXtUaS8uWLWnZsmW568+bN4/bb7+d++67j5MnTzJmzBj++OMPNBpNFUYphBBCCEs4fOkwY38Zy7Mdn2V06GhLhyOEqAS1stvkA+sfYO3xtZVeLo/U1FQMBgN5eXkA2NnZMXfuXIKDgwHYsWMHgwcPJioqiokTJ5KVlYXRaGTOnDkMGTKEwYMH89lnnwGwe/duHnzwQR599FH69evH1KlTKSgoAOCtt95i+PDh9OvXjxEjRnDx4kUAIiMjeeihh7jzzjvZvn07Y8aMASAuLo4xY8YQFRXFvffey4EDB0rE3rdvX6KiogAIDAwkPz+fnJyccj1vIYQQQtQOOYYcNp3eRGiDUF7t8irDmgyzdEhCiEoiLW8VFBISQq9evejduzehoaFEREQQFRVFYGAgBQUFPP3003z88ceEhoayaNEi1qxZg1ZrfpnXrFlDQUEBDz30EGFhYQDs3buXX375BQ8PD4YPH862bdto3LgxJ0+eZPny5UXdG3/88UcefPBBUlNTmTBhAhEREezevbsorunTpzNhwgT69u3Lvn37ePzxx9mwYQN6vb6oTt++fYvKl2N0cHCopldOCCGEENXhw4Mf8lnMZ/w09CfuCr7L0uEIISpRrUzePu3/aZWWb+SVV17h0UcfZdu2bWzbto3hw4ezYMECvL298fT0JDQ0FIAnn3wSgKlTpxIbG8uuXbsAyMnJ4ciRIwQHB9OkSRO8vLwAaNy4Menp6QQGBvLMM8+wcuVK4uLi2LdvHwEBAUXXb926dbF4srOzOXPmTFFy1qZNG5ycnDh58iQhISEl4v/ss8/49ttv+fLLL8v9nIUQQghR8yiKgsFkQK/R89CGh3gg7AEmtJpAV9+u+Nj7WDo8IUQlq5XJmyVt2bKFnJwcBgwYwLBhwxg2bBgrVqxg1apVRcnaZZmZmWRnZ2M0Gpk+fXpRcpWSkoKtrS379+/HysqqqL5KpUJRFGJiYnjqqacYN24c/fr1Q61WoyhKUT1ra+ti11EUpdj+y9uMRmOJ+OfNm8fWrVv56quvipJGIYQQQtROv535jYV/L+TDvh/iYu3Cn/F/0sWnC+Ge4ZYOTQhRBWrlmDdLsra2ZuHChcTHxwPmJOn48eOEhobSqFEjUlJSOH78OAAfffQR33zzDZGRkaxYsQKDwUB2djajRo1i//79ZV5jz549dOzYkZEjRxIcHMz27dtLTcQus7e3x9/fn40bNwKwb98+kpOTadKkSbF6n332Gbt37+abb76RxE0IIYSoA1ytXQlzC8PbzpsFPRbwXMRzqFQqS4clhKgi0vJWQZGRkUyZMoVJkyZhMBgA6NatG5MnT0av1zN//nxmzJiBwWAgICCAefPmodfrOX36NEOGDKGwsJChQ4eWGLN2tQEDBjBlyhSioqLQ6XQ0a9asKFksy/z583n55ZdZvHgxOp2OxYsXFxvvpigK7777Lvb29kWTnAB88MEHeHp6VsIrI4QQQojqtD5uPZHekSzoscDSoQghqolKuba/nYXk5+cTExNDWFhYsa6EALGxsUXjyCwhOzsbOzs7i12/uln69a5JoqOjCQ+Xrif1ldz/+kvuff1VE+/99nPb2Rq/lZkRM/ny8JecyjjFpNaT6LeqHyNCRjC9w3RLh1gn1MR7L6pPTbn/18uJQFrehBBCCCFqtB0JO9ibtBeA5Nxk4rPicbNx45tB3+BpK71nhKhPJHkTQgghhKghYpJjiEuPI6pxFJM3TSaqcRTTwqdhMJmHajwR/kRR3aYuTS0UpRDCUmTCEiGEEEKIGkBRFF7Z+Qpbzm4B4FLuJS7lXkKr1mKjtbFobEKImkFa3oQQQgghagAFhQ/7fEhKfgoAywctt3BEQoiaRlrehBBCCCEsLPZSLMN+GEZybjJBTkGWDkcIUUOVu+UtKyuLESNG8P7773PixAkWLVpUtC8xMZHWrVuzdOlSlixZwurVq3F0dARg+PDhjB49uvIjF0IIIYSoZRRF4cvYLzEpJu5vcT+bz2zmbOZZWrm3wk5nh7utu6VDFELUYOVK3vbv38+sWbM4deoUAD169KBHjx4AXLx4kZEjR/Lcc88BEBMTw6JFi2jbtm3VRCyEEEIIUQsl5ybjau1KjiGHFUdXcH+L+9lydgs7Enbw2z2/8eWALy0dohCihitXt8kVK1bw0ksv4eHhUWLfvHnzGDFiBA0bNgTMyduHH35IVFQUs2fPJj8/v1IDrgnWr1/P0KFDGTx4MFFRUXz00UcWiePgwYM8//zz5a6flJTEuHHjGDx4MMOHDyc2NrYKoxNCCCHqpwMXD7Dj3A4AVh9dzY5zOziVforBawez4sgKJraeyKZ7NgEwu8tsfrvnN0uGK4SoRSq0SHfPnj354osv8PPzA+DUqVPcf//9/Prrr+j1erKzs3niiSeYNWsWvr6+PPvss/j6+jJt2rQbnvvygnSl0Wq1BAcHlzfMKnU5Afr6669xdnYmJyeHhx9+mIkTJxa1RtZUL730Ei1btuTuu+9m+/btfPjhh3z22Wcl6h0/fpzCwsLqD1AIIYSo5QwmA88ce4YgmyCmBEzhySNP0sKuBQ/4PsCKCyvo6doTD33JL8OFEOJqVbJI97fffsuoUaPQ6/UA2NnZ8eGHHxbtf/DBB5k5c2a5krfrBRobG4udnV3R49Njxhbb7zRkCM5Dh5D8wYdk//kndt264TZhPGnfrSF9zZpidQOXfUHhxYuce/IpAHwXLUTr7s7pMWMJXPZFqTFlZ2cXXT8/Px+j0YharcbOzg47Ozvmz5+PlZUVdnZ27Nixg7lz56IoCj4+PixcuBAbGxvmzZvHX3/9hdFoZOjQoYwbN47du3ezdOlSrK2tOXHiBM2aNWPBggXo9Xreeustdu7cSXp6Oi4uLixevBh3d3ciIyNp0aIFycnJzJgxg/fff59ly5YRFxfHiy++SFpaGra2tjz//PO0atWq2POYN28eAGq1muTkZFxcXIq9rpfp9Xpat25dnttV50VHRxMeHm7pMISFyP2vv+Te11+3cu8VRaHQVMj3Lb8nuzAbX3tffmr5Exq1BhutDR3oUMnRisokf/f1W025/9dr0IJbnG1y06ZNDBgwoOhxQkICq1atKnqsKApabd1ajSAkJIRevXrRu3dv7r77bubPn4/JZCIwMJCCggKefvpp3nzzTX788UeaNWvGmjVrWLFiBQBr1qxh1apVbNq0ib///huAvXv38uKLL/LLL7+QkJDAtm3bOH36NCdPnmT58uVs2LCBgIAAfvzxRwBSU1OZMGEC33//fbHXdvr06YwZM4Yff/yR5557jscff5yCgoJisavVatRqNf3792fOnDmMGTOmml41IYQQou7bcHoDQ38YSm5hLr72vgDY6+1ljTYhRKW56cwqJSWFvLw8/P39i7ZZW1szf/58IiIi8PPz46uvvqJPnz6VEujVymohc5swHrcJ44seOw81t8hdS+vuXuIcZZ2zNK+88gqPPvoo27ZtY9u2bQwfPpwFCxbg7e2Np6cnoaGhADz55JMATJ06ldjYWHbt2gVATk4OR44cITg4mCZNmuDl5QVA48aNSU9PJzAwkGeeeYaVK1cSFxfHvn37CAgIKLr+ta1i2dnZnDlzhr59+wLQpk0bnJycOHnyJCEhISXiX79+PbGxsTz44IP88ssvODs7l/u5CyGEEPVJal4qB5MP0t2vO7GXYrmYe7HMsouVC01cmsiMkUKIKnPTyVt8fHxR0nFZgwYNmD17No888ggGg4F27drxwAMP3HKQNcmWLVvIyclhwIABDBs2jGHDhrFixQpWrVpVlKxdlpmZSXZ2NkajkenTpxclVykpKdja2rJ///5iXURVKhWKohATE8NTTz3FuHHj6NevH2q1mquHJlpbWxe7jqIoXDt0UVEUjEZjidg7dOiAnZ0doaGh+Pj4cPbsWUnehBBCiDLM/Wsuu87vYuu9W1l1dBW/nfntuuUI7whLhyyEqMMq1G1y8+bNRZOVtGrVqqg74NX69evHunXr2LBhA3PmzCkaD1dXWFtbs3DhQuLj4wFzknT8+HFCQ0Np1KgRKSkpHD9+HICPPvqIb775hsjISFasWIHBYCA7O5tRo0axf//+Mq+xZ88eOnbsyMiRIwkODmb79u0lErGr2dvb4+/vz8aNGwHYt28fycnJNGnSpFi9q7twHj9+nOTkZIKCZCFQIYQQ9de+pH0cTz1eVD6Xdw6AFUdWcDT1KM91fI653eYCML7VeD7p98l1y0IIUZXq1oC0ahAZGcmUKVOYNGkSBoMBgG7dujF58mT0ej3z589nxowZGAwGAgICmDdvHnq9ntOnTzNkyBAKCwsZOnQoERER7N69u9RrDBgwgClTphAVFYVOp6NZs2ZFyWJZ5s+fz8svv8zixYvR6XQsXry4ROI8c+ZMZs6cyZo1a7CysmLhwoWlTlgihBBC1GV5hXlsPL2RQUGDmLltJq3cWzG321xmbpuJn9qPwQzms0OfEZ4czqtdXqWTTycAvOyu9DgqqyyEEFWpQksFVKXLM6uUNdvk5XFklnD1bJP1gaVf75qkpsw8JCxD7n/9Jfe+blt1dBWv7HyFLwd8iUalwVZnS5BTEDHJMcQdjSOqcxRHUo7Q2LkxWrV8z11fyN99/VZT7v/1ciKQljchhBBC1COKojCsyTAaOTWitXvxCcDC3MLIP50PQLMGzSwRnhBCXNctLRUghBBCCFFbKIrCI5seYdnhZYR7Wv4bdiGEqChJ3oQQQghR5ymKgoKCo84Ra631jQ8QQogaSLpNCiGEEKJOS8lLYfrW6UxqPYlXu76KTq2zdEhCCHFTJHkTQgghRJ2mU+vILMgkLT8NK03JCQCEEKK2kORNCCGEEHXWupPraO7anOWDlqNWyWgRIUTtJu9iN2H9+vUMHTqUwYMHExUVxUcffWSROA4ePMjzzz9f4eOysrLo3bt3mevMCSGEEHVBXmEeC/9eyNL9SyVxE0LUCdLyVkGJiYm8+eabfPfdd7i4uJCdnc2YMWNo1KgRvXr1qtZYWrZsScuWLSt83KuvvkpGRkYVRCSEEELUDIqioFVrWRm1EhUqS4cjhBCVolYmb2sW/lPmvpBO3oR29mbNwn+KlctTf8hT7W547dTUVAwGA3l5eQDY2dkxd+7cokX0duzYwdy5c1EUBR8fHxYuXIiNjQ3z5s3jr7/+wmg0MnToUMaNG8fu3btZunQp1tbWnDhxgmbNmrFgwQL0ej1vvfUWO3fuJD09HRcXFxYvXoy7uzuRkZG0aNGC5ORkZsyYwfvvv8+yZcuIi4vjxRdfJC0tDVtbW55//nlatWpVIv6ff/4ZOzs7mjWT9WuEEELUXonZiXjaefK/f/7Ht0e+ZcfIHcXK8/bM44/4P/i0/6d42HpYOlwhhKgUtTJ5s6SQkBB69epF7969CQ0NJSIigqioKAIDAykoKODpp5/m448/JjQ0lEWLFrFmzRq0WvPLvGbNGgoKCnjooYcICwsDYO/evfzyyy94eHgwfPhwtm3bRuPGjTl58iTLly9HrVYzY8YMfvzxRx588EFSU1OZMGECERERxbo9Tp8+nQkTJtC3b1/27dvH448/zoYNG9Dr9UV1EhIS+Pzzz/n8888ZP3589b5wQgghRCWJToxmwsYJLOixgLYebYu6RF5d7uTTCX8Hf1ytXS0ZqhBCVKpambyVp4Xs6joVrX8jr7zyCo8++ijbtm1j27ZtDB8+nAULFuDt7Y2npyehoaEAPPnkkwBMnTqV2NhYdu3aBUBOTg5HjhwhODiYJk2a4OXlBUDjxo1JT08nMDCQZ555hpUrVxIXF8e+ffsICAgoun7r1q2LxZOdnc2ZM2fo27cvAG3atMHJyYmTJ08SEhICgMlk4vnnn+eFF17A2lrWtxFCCFH7PLzxYTxtPXmp00uMDBlJO892OFk50d2vOwDd/boXKwshRF1TK5M3S9qyZQs5OTkMGDCAYcOGMWzYMFasWMGqVauKkrXLMjMzyc7Oxmg0Mn369KLkKiUlBVtbW/bv31/U3RJApVKhKAoxMTE89dRTjBs3jn79+qFWq1EUpajetcmXoijF9l/eZjQaix6fPHmSkydPFk1wcubMGWbNmsWrr75KZGRk5bw4QgghRBX4+ODH3B5wOx29OuKod0Sv0fN0h6ctHZYQQlQ7mXqpgqytrVm4cCHx8fGAOUk6fvw4oaGhNGrUiJSUFI4fPw7ARx99xDfffENkZCQrVqzAYDCQnZ3NqFGj2L9/f5nX2LNnDx07dmTkyJEEBwezffv2YonYtezt7fH392fjxo0A7Nu3j+TkZJo0aVJUJzg4mK1bt/L999/z/fffExYWxmuvvSaJmxBCiBotOTeZT2I+YX3ceia0msCIkBGWDkkIISxGWt4qKDIykilTpjBp0iQMBgMA3bp1Y/Lkyej1eubPn8+MGTMwGAwEBAQwb9489Ho9p0+fZsiQIRQWFjJ06NASY9auNmDAAKZMmUJUVBQ6nY5mzZoVJYtlmT9/Pi+//DKLFy9Gp9OxePHiYuPdhBBCiNqmwFiAk5UTP9z1A/Z6e0uHI4QQFqdSru1vZyH5+fnExMQQFhZWrCshQGxsbNE4MkvIzs7Gzs7OYtevbpZ+vWuS6OhowsPDLR2GsBC5//WX3PuqoygKKpWKFUdW8P3x7/lq4Fdllt+Kfos/4v/gqwFfYauzrZb45N7XX3Lv67eacv+vlxOBdJsUQgghRDVJyErgvp/v4/Clw1hrrXG2dgYos9zYuTF3Bd9VbYmbEELUdNJtUgghhBBV6o3db2Cns+O+0PvIN+aTWZDJ4MaDGdx4MMB1y0IIIa6QljchhBBCVLqzGWd5acdLGIwGCowFFBgLcLVxZUXUCiK8IywdnhBC1Eq1JnmrIUPz6jx5nYUQQtxIal4qs3fOZsvZLeQW5vLklidLlA+nHGbzmc2cyjjFy51fZnqH6QBFi2gLIYSouFrxDmptbc2lS5cksahiiqJw6dIlWcRbCCFEmQpNhahVav5O/Ju0/DQURSEuPY70/PRi5X4N+/HT0J9o4tLkxicVQghRLrVizJufnx/x8fFcvHjRItcvKCioN9PuW1tb4+fnZ+kwhBBC1EBbzm5hUfQiPu33KWsGr0Gj1gCw5s41RXWuLjvqHas7RCGEqNNqRfKm0+lo1KiRxa4fHR1N69atLXZ9IYQQoiaw1loT7BwMUJS4CSGEqD61otukEEIIISzrxxM/0ty1OYtuW4SrjaulwxFCiHpJkjchhBBCXNfZzLO8sP0Fvor9ytKhCCFEvVYruk0KIYQQwjJyDDm427jzzcBvaOjU0NLhCCFEvSbJmxBCCCFKZTAaGLd+HMHOwbzR7Q1LhyOEEPWeJG9CCCGEKCEuPY5GTo0YGDSQxs6NLR2OEEIIZMybEEIIIa6xN2kvQ74fwk8nf+L+FvfT1berpUMSQgiBtLwJIYQQ4j/5xnxiL8XSyq0Vk9tM5jb/2ywdkhBCiKtIy5sQQgghAFj09yLGbxxPan4q41uNx05nZ+mQhBBCXEVa3oQQQoh6YkfCDhx0DrR0b1msvD5uPU1cmjCh1QQ6+XTCzcbN0qEKIYQohbS8CSGEEHVYXHpc0fpsc3bP4YvDX5Qov7vvXebvmY+rjat0lRRCiBpMWt6EEEKIOmzFkRX8HPczAxsN5H89/4e1xhqgRNnHzseSYQoh6qizKTmcTcmxdBilauHjhJOtztJhVIgkb0IIIUQdoygKH8d8TBPnJjwZ/iT3t7gfZ2tnnK2di+oEOQWVWhZCiMqy4u+zzFoTQ4HRZOlQSjWolTdLRrWzdBgVIsmbEEIIUUek5qWSkJ1AoEMgG09t5JzbOXr498DLzsvSoQkh6oA8g5FjiVnlqrv6n3g+23GKLsGuTLm9CWpVFQd3E0J9HC0dQoVJ8iaEEELUYoqi8PW/XxPVOIrfz/7OSzte4te7f+Wjfh/hoHOwdHhCiDrieFIWE774m5PJ2eU+5qGujXjujhC0Gplmo7JI8iaEEEJYSHJuMgXGAnzsfW66nGPIYcHfCzCajPQJ7MPinotxtnLGWmtt6acnhKgl8gxGLqTnlbn/8PkMnll1AL1WzcJ7WuNkc+NxYm4OVrTxd67EKAVI8iaEEEJUq8yCTH448QOjQkYx96+5HE09yg93/XBL5eUDl9PUpSkqlQpve29LP0UhRC2y90wqk76MJjEj/7r1wnwd+WBMe3ycbaopMlEaSd6EEEKICjCYDOjUOlLzUrHSWGGrs61Q+fvj37Pw74V08OrAyJCRZORnANxSuVmDZtX9MgghaihFUUjLMWBSlBvW3RSbxKy1MXg6WTHv7lboNKUPTNNrNPQK9cBap6nscEUFSfImhBBClINJMfF/+/+PrIIsnun4DIPWDGJQ0CCei3iuQuVnOj5DB68ONHVpWuz84Z7hN10WQgiAjDwDT367j99ik8p9TOfGrrw7qh0udvoqjExUFknehBBCCMzJmdFkRKPWYFJMGIwGNGrzt8wGkwG9Ws/JtJM0cWkCwJPhTxLoGFjhslqllpYyIWoIk0mh0GRuoTKYFAoKa+aU9uVx+lI2E7+M5sylHCbf3hhPxxuPe3W01jGolbdMKFKLlDt5y8rKYsSIEbz//vv4+fnx3HPPER0djY2Nud/rlClT6NOnDzt27GDOnDnk5+dzxx13MG3atCoLXgghhLhVBqMBEyaOpx5nxE8jWNJzCRfzLvLglw+ypOcS3GzcGPHTCD7r/xlzu81Fqzb/1zms6bCic1S0LISwvOjTKUz5ei/nr56oY/UvlguoErja6fnq4QgiglwtHYqoIuVK3vbv38+sWbM4depU0baYmBi+/PJLPDw8irbl5eUxc+ZMli1bhre3NxMnTmTr1q306NGj0gMXQgghblWhqZDxv47Hx86HaeHTmNp2Kg2dGlKoLSwq22ptmdp2Knq1Hp3mxjOsCSFqvuV/neGF72Pwdbbh6b7myX7OnTuHr6+vpUO7aRq1isGtfWRCkTquXMnbihUreOmll5gxYwYAOTk5JCQk8MILL5CQkECfPn2YMmUKBw4cIDAwEH9/fwCioqJYv369JG9CCFGLfHTwIz448AHbRmzjq9iveG/fe2wfub3Olrv7dcfbzht3W3fGtxoPQLIuuagMFCsLISrm93+TeO67g6TlFlg6FAAUBfILTXRr4saSke1wsjV/KRMdnU54eLCFoxPi+sqVvL3++uvFHl+6dInIyEhmz56Nra0tEydOZNWqVdja2uLu7l5Uz8PDg8TExAoFFBMTU6H61SU6OtrSIQgLkXtfv9Wn+59emI4KFZ5GT9rYtWHf3n1os7Xc7nJ7nS63VrWGfIhOKX6v69O9F8XJva8ciqKw5kg2Xx/MIsBJS7+gmtMi5Garpl+QhuOxB4ptl3tfv9WG+69SlHLMI/qfnj178sUXX+Dn51ds+6+//sratWvp378/W7duZcGCBQDs2LGDjz/+mI8//viG587PzycmJoawsDCsrKwq+DSqVnR0NOHhMqtXfST3vn6rS/c/x5DDvov76OzTmWm/T8OkmPhfz/8VKz+w/gH0Gj1L+yy1dLgWV5fuvagYuffltzo6nrd+O0p+GZN8GE0KKdkFRLX2Yd6wVtjoa/Y083Lv67eacv9vlBPd1GyTR44c4dSpU/Tr1w8wf7Oi1Wrx9PQkOTm5qF5SUlKxMXFCCCEs4+1/3mbNsTX8MuwX2ni04fL3dleXewf2pr1ne0uGKYSoBQqNJt74+V8+2R5HG39nQr0dy6zb0teJkR39UalKXz9MCFExN5W8KYrCG2+8QWRkJLa2tnz77bcMGTKE1q1bExcXx+nTp/Hz82PdunUMGyazawkhhKXsTNiJs5Uzk9tMpndAb9xs3Li/xf1F+68ujw4dbYkQhRA11IX0PJ777gCnU3KKbc/JN3IhI49xnRvy/MBQdDLNvBDV5qaSt5CQECZMmMDIkSMpLCykb9++DBo0CIC5c+fy2GOPkZ+fT48ePejfv3+lBiyEEKJ8DEYDr+x8hSCnIN7r/R4dvTtaOiQhRC0RfTqFicv+IbegkNtCPLi23axPc0/ubFN7Z2YUoraqUPK2efPmovLo0aMZPbrkt7SdOnXihx9+uPXIhBCiDru8GPS+pH3M2zOPVzq/QrYhu9LK7+x9h7dvf5v3er+Hl62XpZ+uEKKGS0jL5eUfDpGYmQ+KwuHzGfg62/D1+AiaejpYOjwhxH+knVsIIapZtiGbib9NZMWRFWjVWhytHNGoNZVa1mv0/JP4D0FOQdjqbC39lIUQNdhfcSkMXrKNHScu4Wyjw9lWz93hfnw/uaskbkLUMDfVbVIIIUTZ3t33LkdSjvBOz3dYcWQF285tK1Z+67a3sNfZo9foCXML4/3e7xcdWxVlIUT9Umg0seT340SfTr1hXZOisPtkCgENbFk+oT3BHvbVEKEQ4mZJ8iaEEJUkMTuRBjYNCG0Qyl/n/wKgwFhAbmFusbJGreGt296S2deEEJUuLaeAx77Zy5/HkgnzdURfjslE7mrrywuDmuNko6uGCIUQt0KSNyFErZeWl8bru18nzC2M+1vcz7w98/C09bzl8jfnvyHmUEy56o9pPoZHNz1KpHck0ztMp2dATwDua34f9zW/r0RZEjchRGUwGE3835YT/HshA4D9Z9O5mJnPvGGtGN7B38LRCSEqmyRvQohaS1EUdp3fRSefTvg5+HEh+wIAZzPPFq1ddivlpIKkcp9TrVLT0q0lw5rK8ihCiOqRkl3A5K/+YefJSwS526FRqfBwtGLxqLa0C3CxdHhCiCqgUi5/ArGwG60mbkk1ZcV1Uf3k3tc8hy4dYuWRlQwMGsi5rHO8sP0FPun3CR28OlT6teT+119y7+svS9/7P45e5OeD5ynPp7Ntx5O5mJXPnCEtGRbuV/XB1XGWvvfCsmrK/b9RTiQtb0KIWsGkmEjKSSLQIZDDlw7T3qs9A4MGolPraO/Z3tLhCSHELVEUhfe2nGDBxiM4WGmx1d/4I5qLnZ53R7ejjb9z1QcohKgRJHkTQtQIf8b/SUu3lsRnxfNL3C+Mbzm+WHnpgaVsOLWBNXeuYUXUiqLjBgYNtGDUQghRMWk5BXy6/RTZ+YXFth9LymLr0YsMbu3Dm8NaYaPXWChCIURNJsmbEMLiTIqJl3a8xEudXiLTkMmqo6sYFTqKUxmnispDmgzBx94HR72jpcMVQoibcuRCJuO/+JuzqTnY6oonZzqtmmfvCGFi9yCZ0EgIUSZJ3oQQFmcwGRgdOhqtWsugoEEMChoEgK+9b1EZoKlLU0uFKIQQ5fbr4URiz2cU25ZfaOSz7aewtdKyalJnwgNlQhEhRMVJ8iaEsLik7CTGNh+LTiNrDAkhai+D0cRr6w7z+c7Tpe5vH+jCklHt8HKyrubIhBB1hSRvQgiLe2zzY/jY+/Be7/csHYoQQhRzKjmbLUeSKM/U3BsOXWDXyRQe7tqIGf1D0KiLd39Uq2SNR1EPndgMF48W3+YcACEDwGiAPR+XPEatgY7jzeWDqyA7uWSdsKFg7wGnd8L5/SX3B0SAT1tIPQVH1pfcfzmGWkaSNyGERSmKwrTwaVhpa9YSIUII8dvhRJ74dh9Z10wuUhZrnZpFw1sztJ1M2y8EACd+h2VDSm5v0ve/5K0A1j9Tcr/O9krytnMJJOwtWce/gzl5O/IT7Fhccn+f2ebk7eKR0q9xOYZaRpI3IYRFHU45TJBTEP6O/pYORQhRj5xNyWF3XEqJ7adO5RJHPMeSMvngj5O08HHkfyPa4mqnv+E5rXUarHUyS6Sow9LOwqk/QaOHlnebt/37M+SllazbtD8E3QaDl0CzAXB1q/PlYRI6W5gRd/1rjv0eTMaS263+m8DstpnQ9cmS+3U25t9Bt5d+jVo6VEOSNyGERc37ax5ZhixWD15t6VCEEPVERp6Bof+3g4uZ+aVX2GPugnVXGx/mDmslCZkQAMd+g9UPQl46WDtdSd5+fx0SY0rWn7QNbBtAuzFln1OlMte5Hmun6+/X25p/yqLVg/YG16hFJHkTQljU611fJzm3lL7sQghRRRZsOMKlrHyWPdSRhq52xfYdjDlIy7CW6DRqmVhE1B8pJyHxcPFtni2gQSPISIDoz+GPeeDRHMb+UDzhGr3S3P3xWg7eVRtzPSXJmxDCIlLyUnj2j2eZ3HYybTzaWDocIUQ9sf9sGst2neb+Tg3p1sS9xP4kOy3+Da7zLb4Qdc3h7+G7CVCYV3z7gAXmcWdndsHWudBiCNz5LuiLf+GBo0/1xSokeRNCVL9CUyEalYaLuRdJykmydDhCiHqi0Ghi5pqDuNtb8WRfWTdSAJdOQMY5AOyTj0Jctnm7b3tzV7yLRyHrQsnjXJuAozdkJkLykZL77TzAIwQK8+Hs7pL7NXoIiDSXz+6BwtySdaorBid/aNgVbp8J6qvGgTn6mn83vh0m/wVuTYuPWxMWIcmbEKJa/Xb6N5bsXcKn/T9lZdRKtGp5GxJCVL3MPAPTvt3HoYQM3h3VDkfr2jlZgahEBTnw6R2QlQhAM4Cd/+177B9wbQw7F8M/X5Q8Nup/ED4O4rbCd+NL7m95Dwz7CHIuwedRJfc7eMNT/5rLayaYuy1eq7pi8G0H911n3LmNi/lH1AjyqUkIUWVOpJ1Ar9Hj7+DP8dTjuNu642XnhaedJwqKJG5CiGoRl5zN+C/+Ji45m1cGt2BgKxmLU26ZiZB5vvg2j1DQWkHqachNLXmMc4B5TFROCqSdKbnfxgVcAs0tQkmxJfdr9ODZ3FxOPFz6eKpbicFkBLcmYO0Io741T8Ch1nLkyFGaNfuvRfbyeK3OU6HVvSXP7xps/h10G4z7qeR+u/+65Nq6lr5fc9XspUM/Kr3lrTpjELWGfHISQlS6+Mx4/Bz8mLZlGk1dmrKgxwKe3Pok/g7+LOm5hKV9llo6RCFEPZGVX8ioD3eRX2jiy4ci6NTY1dIh1R77l8MPU8F4zaycTxw0J0db5sD+b0oed9f/QZtRcORn+H5yyf1tRsNd75mTwg96lNzvHGC+BsDXwyH9bMk6txpDaBQMX2ZeB+w/WZdsoGF48XpuTcw/ZbH3MP+URWtl7pJ4PX7h199fHTGIWkOSNyFEpdp/cT9jfxnL/O7zeT7ieex19gA8H/E8VhorVNJfXghRjRZtPMqFjDxWP9KZdgHS9eu6clPNP3oHsHeHMzvBvyNEPgJc9d5t62b+HTEJQgeXPI93K/PvRj1gRCmJldN/Y6ns3Evff3l9LoDB74Ahr2SdyohB/j8StZAkb0KIStXEuQkTWk2gq29XbHVXZmyL8I6wYFRCiPoo5lw6n+2IY1THAEncbmTvV7BumrmVrd395qTpjvnmBKesxYx92ph/yuLsb/4pi94OQgZcP67GPa+//1ZjEKKWkeRNCFFp1hxbg5OVE5PblNJFRQghKlmewUhOgbHUfYqi8PzaGBrY6ZnRP6SaI6tBclJAUUput3EBtdo83uv3N2D3++ZWqjajoEFjcx2tjIkSoqaR5E0IUWl+Pf0rapWa2/1vl+6RQogqtfHQBZ5asZ/M/MLr1vvfiDY42dSzmSUNuVe6Hi4Oh9yUknWmnwQ7V/h+CsT+AJGToc9s0MhHQyFqMvkLFUJUiNFkRKPWUGgqRIUKlUrF0gNL6RXQi9e7vo5RMUriJoSodCaTgklRUID/23KCRb8epZWfE8Pa+ZV5jJeTNX2be1ZfkJXFWAhqjbnLoslYesuZSm1uOTOZQDFd2X5iE/zwGIxcbp4CvvfL5lkdr6X/r1t7u7Hm6eaDe1XFMxFCVDJJ3oQQ5WI0GXl006NYaax4p+c7jFg3Ah97H17u/DIrj6zEYDQwtd1US4cphKiD1secZ8aqA2TkXWllG9rWlzeGtsRap7FgZJUsPxPWPmpuCXv2DFg7wbf3mWdMvNaIryFkIOz+P9gws/g+r1ZXpokPv//612zSp3JiF0JUC0nehBA3dC7rHD52PnT3645Obe5+NCJkBPZ6expYN2BF1ApcrWX6bSFE5TKZFN7edIx3Nh2jtZ8TvUPNrWgN3ewY1Mq7brXyXzoBy0dB8jGIeAQ0VubtLe8Bn3Yl67v9tx6ZfwTcPuvKdisHc2ua3rbkMUKIWk+SNyHEdR1JOcJ9P9/HjI4zGB06umj73U3vLiq72bhZIjQhRB3004HzvPTDIbLzCzEpCvmFJu4J9+PVu8LqRitbzGr45VlzgtXrBTgXDZ8NMndttHaEMWsg6Kq1z8KGXv98fu3NP0KIekGSNyHEdTV0asjE1hO53f92S4cihKjDTCaFRb8eZcnvx2nt50REkLk1v7m3I3e28an9rWwmI2x+Fba9Bb7h5vXTAOw8oMNDoNGbEzqXhhYNUwhRs0nyJoQo048nfgTgobCHav8HJyFEjXAxM58Zq/ZzKCGj2HaD0URqjoERHfx55c4WWGlraStbZiJ8PxkuHIRph8yzN64cBye3mmd9DB9nXj/t8jT8zv7Q9zVLRiyEqEUkeRNClEpRFH46+ROFSiGDggZZOhwhRB1wMD6dCcv+JjWngKhWPmg1xb8U6tCwAUPa+tbeL4vORcPy+yAvzdzd8fLz8G0PVo4Q2AVa32vREIUQtZskb0KIEnIMORxLO8a7vd4ly5BVez9ICSEsKikzj5nfxRCXnAXA2dRc3O2tWDWpM2G+TpYNLu4PCOxqnm7/uwmQsBeA5nl5sNPaXGfI++Yujrveh78/LnmOjhOg43g4uwe+fxRST4G9Fzy0EbxaXqnXeUrVPx8hRL0gyZsQooQ3dr/B5jObWX/3epysLPwBSwhRK+0/m8bEZdGk5xroGeIBKujU2JVpvZviam9l2eDi/oDPo2DgQujwsHmcmbEAgNzUVGxcXMz19Pbm3/Ye4Nmi5HkuT8evtzPvb9QdbptpXvxaCCGqgCRvQtRzyn+Lv+YU5jBh4wRe6fwKU9pOYUCjATjqHS0cnRCiJjqVnM3sdYdJyS4os87h8xl4OFix+pHONPepQe8lhfmw7klzwtbmvxl0b7+yTlpcdDQNwsOLHxM29PqzPno2h3s+q/RQhRDiWmpLByCEsKxNZzbx8MaHSc1LxUHvwK9nfsXLzovOvp0tHZoQogb64+hFBi/ZRvTpVBxtdGX+3NXGhx+mdK1ZiRvA9v/BpWMwYCHobCwdjRBCVIi0vAlRz+Ub8zEpJrzsvHi/z/uWDkcIUYOt+Pssz64+QFNPBz4Y054A11q2EPS5aPhjAbQYAk16WzoaIYSoMEnehKjH9lzYQ9+GfRnQaIBMSiKEuK741Bxe+v4QkUGufDi2PXZWtfAjxO4PwN4T+s2xdCRCCHFTpNukEPVIoamQt6Pf5v3975NjyOHF7S/y0cGPJHETQtzQyz8cBmDe3a1qX+JWkG3+PWgRTPgdHL0tG48QQtwkSd6EqCdyC3PRqrVkFGRwJuMMtjpb+jfqz6iQUZYOTQhRw208dIHfYhN5oncT/FxqWVfJ0zvh7ZYQH22eFdLOzdIRCSHETatlX50JIW7G8dTjTPh1Ai91eokXIl8oaml7vN3jFo5MCFHTJWfl8/IPhwjxcuDBro0sHU7FGA2wbhrobMEjxNLRCCHELZPkTYg67mLORXwdfGnn2Q4/Bz/pIimEKLeYc+lM+OJvLmUXsGR0O3SaWtZhZ+e7cDEWRi43t7oJIUQtV+7kLSsrixEjRvD+++/j5+fHt99+y7Jly1CpVISFhfHKK6+g1+tZsmQJq1evxtHRPDXw8OHDGT16dJU9ASHqs50JOwlyCiKzIJPvT3zPfaH3FSvHJMfw8s6XWRW1igU9Flg6XCFELfL9vnM8s/oADWz1rJrUmZZ+TpYOqTijAf76EDITrmyz94LOU8zlza/BjiUQMgia3WGZGIUQopKVK3nbv38/s2bN4tSpUwDExcXx8ccf891332FnZ8ezzz7L119/zbhx44iJiWHRokW0bdu2KuMWot7bl7SPib9OZNmAZaTlpfHtkW8ZFDSIC9kXispWWiuGNRmGm42M8RBClI/RpDBv/b8s/eMkHRs24L372uFmb2XpsIrLz4SvR8DpbeYukZd5hF5J3vZ+CU6+0H+uZWIUQogqUK7kbcWKFbz00kvMmDEDAL1ez8svv4y9vT0ATZs2JSHB/M1XTEwMH374IWfPnqVDhw4888wzWFnVsDd9IWqh1LxUXKxd2HZuG9mGbPoG9uX5iOdp5tIMa601f43+C4BmDZpdKdOMrr5dLRm2EKIWSc8xMHX5XrYevch9kQG8OKgFem0N6CpZWAB7v4CcVAgbCi6NwMELhnwAre8t/Zin/q3eGIUQohqoFEVRylu5Z8+efPHFF/j5+RVtS0lJ4e6772bOnDmEhYXxxBNPMGvWLHx9fXn22Wfx9fVl2rRpNzx3fn4+MTExN/cshKjjtqZs5dsL3/Ji4xf59dKvbE/bztwmc3HWOVs6NCFEHXE2o5C521NJzjbycDtH+gTVjFkltfkpBP39Cg4pBwE41vENMjwjLRyVEEJUrbCwsFIbwG5pwpLExEQefvhhhg0bRkREBAAffvhh0f4HH3yQmTNnlit5u1GglhQdHU14eLilwxAWYOl7n1uYS0Z+BiOVkRQcLqB3eG/6q/oDoFFrLBZXfWHp+y8sp67d+6SMPDYcuoDRVPr3tdkFRt77/Tg2ei3LJ3akfcMGVR9U5gU4/H3J7fYe0GKIubzrfdi1GHIuwbCPofldNFGpQV11rYF17d6L8pN7X7/VlPt/owatm07eTpw4wfjx47nvvvt48MEHAUhISGDHjh3cfffdACiKglYrE1oKcbOW7F3CXxf+4ttB3/Jsx2ctHY4QohaKPp3CpC//4WJm/nXrtfZ35v372uHtZFN1wZhMkHIS3IIh9TT8MqNkHb+OV5K3jbPMC2o/tAG8W1ddXEIIUUvcVGaVlZXFQw89xLRp07jzzjuLtltbWzN//nwiIiLw8/Pjq6++ok+fPpUWrBD1TVffrjjoHVCrasCYEyFErbP8rzO88H0MPs42/DilK34uZSdmzra6qllK5OxfcOmEuRz7o3mSkcl/gW87mBFXsv7VvQqePgpWjqCRL4KFEAJuMnlbtWoVycnJfPLJJ3zyySeAeTzc448/zuzZs3nkkUcwGAy0a9eOBx54oFIDFqI+MCkmPon5hHua3kMnn06WDkcIUcsYjCZm/3iYZbtO062JG4tHtsXZVl/9gfy5EDbNvvJYpYF+r4O9J6hUYHuD7pk32i+EEPVMhZK3zZs3AzBu3DjGjRtXap1+/frRr1+/Ww5MiPrswMUDLNm7BC87LwYFDbJ0OEKIWiD6dAqXsgpQgI+3xfFXXAoTugcxo18ztFW1uHbWRYj/q+R2WzcIiAD3UGg7Bro9CajA2kkSMiGEuAXSD0GIGuaP+D/o4tOFNXeuoaFjQ0uHI4So4QoKTbz84yG+3n2maJuVVs3b97bhrra+lX/BwgJIO2Met5Z4EJaPKlkn6DYY+z2EDDD/CCGEqBSSvAlhAfnGfGKSY3DUO9LEpQkxyTFYaazIKMhg8qbJvNL5FYY2GWrpMIUQVSS/0MiB+HQKjeVeradUJkXh7d+OsudUKhN7BBHVygcAT0dr3B2qYObmrCT4dgyknoLHosG3PUz8o2Q9vX3lX1sIUWuZCgrI3buv2DZ9w4boPD3I+/dfjOkZ6Hy80fv7k38yjsKLF4vqqXQ6bNu1xZiZSd7hWABsO7RHKSy85XPWRpK8CVHNTIoJo8nIG7vfIMAhgLduf4sXtr9AQ8eGvHX7Wyy6bRE9/XtaOkwhRBU5n57LxGXRHIhPr5TzWevULB7ZlqjWPpVyvjKZTLB8NFw4CHe9C1b/JWgyC6QQogyZm3/HvmsXjKlpnLn//mL7vF55BZd7h5M0bz7ZO3bgOmECHk9OI+XTT0lbubKontbdnSZ//kH+seNF5wg5sL9SzlkbSfImRBUzmowcTzuOh60HpzJOMXvnbN7r9R7v9HyHHEMOAK92eRUrjflb8j6BMkOrEDWVoiicTM4mt8B4U8dfSM/j2e8OkltQyLy7W+HvcusLYQe62uLjXIXT+1/2z+fm8W13/R+EDav66wkhahxTfj4FJ8yzx+oCAtHY25F/7BiKwVBUR+PkhNbHh6S5b5Ly+ed4PvcsziNHEvD558XOpW/YEACPGdOLWskAGjzwAI6Droz3V+l0AFg1Cb5yDq0WjYvzLZ+zNpLkTYgqtj1hO09teYrpHabT3qs9tlpbDCYDAY4BRXXC3MIsGKEQojzyC428sDaGFX/H39J5Grra8s34CJp4OlRSZNUg6yL89hIEdoXWIy0djRDCQgrPn+f02PsxZWUR8Pnn2EV05OzESRgSEorqON11Fz5z56B2cMBl7BhcRo9GpdViF9Gx1HNah4QUe2wV1AiroEYl6mkcHIqdQ6XX3/I5ayNJ3oSoQuezztPVtyuf9PuEBjYN8LX35csBX1bNWkpCiJumKAoJ6XkY/xuDdiGrkDOXcor2ZxcU8tx3B9l3No2JPYIID3C5qeuoVSoighrgYF3LvvU9Fw0KMOgt8xT/Qog6x5CYiFJQgMbREY2TE4WXLmHKMb8P5sXGotJocOjVi4BPP6UwKRGrpk0A8Jo9GyU/r+g8Wi8vANwmPyqfd6qAJG9CVJG8wjwe2PAA7T3b81rX14q2yxuZEDVLZp6Bad/u57fYxOI7fvm92ENbvYb/G92OO1p6V2N0FmYygWKEZv3hyUNgVYtaC4UQFXLuiWnk7t2L+xOP4zZpEolz5pKxbl3Rfpv24dj37IlNyzDgSo8h+65dSj2ffN6pGpK8CVEFMgsy0ag0PNL6Efwd/C0djhAVlp5rQFFubSbE2uBCRh5Tvt5LXHI2j/dqQkAD8xi0U6dO0fC/sROXhQe60NDNzgJRWkh+JqyZBHbuEPW2JG5C1CLGjAxUWi1qW1tMubko+fmg1aGxt8OUn4+SmwtA5u9byDt4EM8XZuH2yCQKU1KwDg0FwGXEvdj9l5ip9Xrsb79dErIaQJI3ISrR8dTjBLsE89CGh2jv1Z4n2j2BXqO3dFhClFtmnoEnV+zn18OJN65cRzSw0/PlQxF0auxatC2aRMLD/SwYlYWlnIRvRkHyUej7GiiKdJcUohYwZmWR8MyzZG3ahMuokXi9+CIXFy8h5ZNPsOvRnYClS0lbtYrEV6/0CLKNiEDJz8e+e/di57Jt3x7b9u2r+ymIG5DkTYhK8kf8H0zeNJl3e73LuBbjyCnModBUKMmbqFGMprJb005dymbCF39z6lIOj9zWGI+qWCeshlGrVPRp7lk9szXWFic2w8oHzMnamO/MC24LUUcpimLuHgxFv6/eptJoite5TK1GpVKhGP+beValQqVWX3l8lWvPUVXnzI+LI37KYxScOoXr+Iex69IVAIdePdF5eaHz8wXMSZnnzJnmSzo64DRwYK2efbG+keRNiErS3rM9T4U/RSefTujU8iYoapakzDwe+3ovu+NSrluvtFYoUY/8+xN8ex+4h8CIr6FB3ZidTYjS5O7bR/yTT1KYcB4A64AA2LiBrE2biJ/yGGoHB5rt+Yv8f/8lbsjQYsf6LVmMQ+/exA27m/x//8XzuWdpcP/9xE99nKxNm4rqWYWEELR2TbWcM+/wYYwpKQR88kmxWRhtw8OxDQ8vemzdrBnWzZpV6mspqo8kb0JUgo8PfkyAYwDjwsZZOhQhSth/No2Jy6JJyy3gkdsaY6PTlFpPo1ZxV1tffKUVqv5q2A0iH4XbnruyCLcQdVTWjh2oNFrcHpsCKhXnsrMB0AcF4Tb1MdR6c88ZrZsbblMfK3asPigIAJeRIym8lIxNmzYAOA0aiHWL5kX1tK5u1XZOp4EDse/eHY2DjE+tyyR5E+Imzdk9hzXH17Br1C7OZZ3jbOZZWWBb1Diro+N5bs1B3O2tWP1IZ1r4OFk6JFHdTEZzi1polLkr5Ed9IPFQ8Tp6Oxi/GZz9od/rlolT1FlZf/4JgH23biTOmUPqylU49O6F77x5XPrsMy6+s7hY/abbt2HKzeV4b/P/qY1WrsCqcWOOduqMKT+/qF6DsWPweOKJmz6n26RJNBgzpijZORMdDYBVUBDujz5adKzW3b3Y46u53Du82GPHO+4otV51nBOQxK0ekORNiAqKvRSLm40bI0NGUmgqRK1Sc2fwnTR2amzp0IQoUmg0MeeXf/l4WxyRQQ14d1Q7XO3r/hg2cY3cVFj9MBz/Dcb9BA27QvM7wb+UhW0zz5uTNyEqiaIopHz8MUmL3sI2PBy7rl2xaRcOag3WIeZue9Yhobjce2+x41QaDSq9VdF2jZP5Syfnu+9GKSwsqmfTurX5902eU6VWS7Ijah1J3oSogBxDDpN+m0S4ZziLblvEC51eAKC1e2sLRyZqm5yCQl5Ye4htxy9WyfkLCk2k5hgY17khzw8MRadRV8l1RA2W9C8sHwVpZyDqf+bEDaDzFMvGJeqM9B9/JOv33/FdtIiMjRtJfO11tG5uNPpuNbkHD3J20iMYL13C4Y7++Lz+OiqVCsd+fXHs17foHHaREdhFRpQ4t0avx/OZGcW2eTz1ZKlx3Mo5hahtJHkTohyMJiPfHf+OIcFDeLP7mwQ7B1s6JFGLnU3JYfwXf3MkMZOoVj7Y6ksfg3arugS7EdXap0rOLWq4f3+G7yaAzgbGrYOASEtHJOoQpbCQpAULSfnsMxz69QNA5+GBfY/uqB0cAdA4OuLQ83asW7TA+d57ZX0wISqJJG9ClMOu87uYvXM2jnpH+jXsZ+lwRA2Wml3ArLUxHEnMLLPOhfQ81Cr4dFwHbmvmUY3RiTor8TD8/DTc9X/g6AubXwW3YLj3K3DytXR0ohYzXLjAmYceBiDgk0/QerhzvE9fCs+fx2X0aDyffQYAmzZtiibYANAHBuL96quWCFmIOk2SNyHKoYtvF5bdsYw2Hm0sHYqowWLPZzD+i79JysynV4gH6jK+aW7j78zk24Np5GZXzRGKOin2R/huImitQKMDjRZGrwLbBuaWNyFuQu7+/ej8/VHpdFg1aQKASmf+2GjTujUOT07DKSrKkiEKUS9J8ibEDfwS9ws/n/yZ17q+ZulQRBlW/H2Wb/ecxaSUvQD1zcjOysZu9/Zy1//3fCaONlpWTOxEG3/nSo1F1DEHV8Gej8BUWHx79+nQtB8c3QB/zC95XJO+0GMGZF4wr8dmMkLCP+Abbm5lc/Q215PWNlFBisHAuaenU3jhAgoK+YdjcRw4EJ+5c/B7+61ida99LISoPpK8CXEDeYV5pOan4qh3tHQo4hoFhSZeXXeYZbtOE+LlgLtD5c6maMpXYW9V/rfJ/mFePHdHCB6O1pUah6iD0s+aZ4J0vGZMolp75bdVKbPgaS//21Jd2d9pCvR8AXTy707cHMVgQKXTYd28OTmZGaBS43jnYDyfftrSoQkhriHJmxDXYVJM3BV8F0OaDLF0KOI/K/ac5aeD51GA82m5HEvKYmL3IGb0D0GjrtwB8dHR0YSHh1fqOUUdcexX2PV/JbcH94ZOj0JGAnxfyqyOwb2g02To8oQ56dLoSj9/cC/zT1kcPGHMmpsKXdR9itFI8tKlaBydaHDfaFJXriRzw8ai/Sq9Hv/33sVw7hznX3iRwosXCfzqS9wmToCJEywYuRDiRmTuaCGu40DmAQauGcip9FOWDqXeKyg0MXPNQWasPsDZ1Bwycg042ej434g2PDcgtNITNyFKiPkOoj83l40FkJde8seQY96vmErfH7sOsi6aF8suK3ET4hZd/N87JL+zGGNKCgBKXj7GzIyiH1OmeUIlxWTCmJ2FdfNQS4YrhKgAaXkT4jqsNdY0dWmKr72MH6lqq6Pj+f1IUpn7T17M5vD5DB69rTFP9W0myVpVOvYr7F9uTkCuFvU/sHaEne9C/N8lj4t8FPw7mBeE3vtVyf2Ne0K7MZAeDxtfKLnf0Qf6vW4u//AY5GeVrGOpGAqy4dgGCOwKbcdAyEDzT1mc/GD8prL3C1FJlMJCLn30MflHjwDg8dRTNBh3P1aNg3C6804AGoy5jwZj7itxrN7fn0bfflut8Qohbo0kb0KUwaSYCLQOZHTH0ZYOpc4rNJp49afDADSw05daR69Rs3hkW1m3rKoZDbD+OXMrkbVT8X2XJ9dIOwMXDpY8Ni/d/DsnpfT97iHm34X5pe8vyL5SToqF3LSSdSwZQ8Qk6DMb1NJpRdQMxowM4h9/nJydu9AFBqBSazDl52Pl61uUuAkh6hZJ3oQow4GLB5jy7xSW+i8lwjvC0uHUaX+fTiUtx8B7o9sxoKW3pcOp+05ugUOljJdq1B3ChsF9q8HOHfS2pR9/x5vXP3+r4eafsrg2hsdKaTW72sO/XX9/TYhBiJtQmJzMpY8/wZSdjdrODs9nZlAQH8+lDz4EwGvW85gKCkiaV3y2UceBA7GL6EjKsi/JP3YMuy5dsL+tBxgK8X79dZyHDbXE0xFCVDNJ3oQoQ4BjAN2cu9HctbmlQ6nzfj2ciF6jpntTd0uHUjcZDbBxFni2gHZjISUOjvxSsp7dfwuGuwRWb3xC1BN5hw9z9tHJFF66hMbZCa2zMzwzA1NGBpm/bwbA87lnUQyGoseXXV4AO3f/frJ370Lr5Yljv74EfPE5KmkNFqLekORNiFL8Ef8H9jp7xvmOw0FfynTdotIoisKvhxPpHOxaoWn5RTllX4KV98OpP6HL4+Zt7R8w/wghKp2iKGSsW4dd165oXVxIWrgQxWTC5Z57UOn1aBwd8X/vXaybX/li0Lp5c5r++WfRY7WNTbHHV/NdULxFThI3IeoX+aQkxDUUReH9/e+jUqmY5jHN0uHUeUcTsziTksPEHkGWDqXuuXAQlo+CzES4631oM9LSEQlRp5ny87nw0sukr11L0Lof0bq4kPrV1ygmE/bdumEXGUmjtWsk4RJC3DRJ3oS4RqGpkI/6fkRafhrnj5y3dDh13q+HLwDQJ9TTwpFYwJndcOqP4tu6PglqDRxYCWmnSh4Tdjc0aASnd8LpbSX3+0dCo26QeAg+7gvWzvDgL+Ar69UJcTPyjh4la/PvgAKA/e23Y92sGenff4/h/Hlsw8Ox7dCBzM2bSX5/KXkHDuA2eTL6IPMXUs3+iS52PkncRH2iKAon911Eb6PFP6QB/2w4jcmolFrXM8ixqI57oEO11K+NJHkT4ir7kvYx/Y/pLO65mJAGIZxHkreqtvFwIm38nfFwtLZ0KNVr57vmcWjXTsff5QlAA/u+NE8sci3f8P+St22w+bWS+7s9ZU7e8jPBpy3c/al5QWchRIUZEpM4de8IlNzcom1aTy+smzUjbeUqcv7+G7cpU8zJ24aNFJw6he/id3Ds08eCUQtRc+TnFLL1m6M0be+Jf0gD9qyLo9BgKrVu2z4BRXVa3uZXLfVrI0nehLiKXqOniXMT/B38LR1KnbbzxCWOJmZSUGjiQHw60/s1u7UTpp+DIz+b191y9IH4aDgXXbKebzj4hUNGgnmx5Gs5ekNolLm8+wPcz56BwmvOEzHB/Dv2R8goJbkPHVS+GFJPQ7MBcOe7oLe7sl/939vy6NVc/qa/GJXG/Lvrk/8letfu/+9bfb+OMO4n82LQQogScg/GkLt/f9Fjq+Bg7CIjUB87Rkrsv9hFdMSqSRO8Zs0yj19r4GKuqDH/DQZ89ikoStHSEd6vv4a3Wi0ta6LOy07P58Q/F2nU2g21RsWJfy6WWi/5bCZdhzdh2PRw7BtYAfDw293LPK/qv/+vHn67e7FyVdavjSR5E+I/f8b/SahrKO/1fs/SodRZJpPCwl+P8O7vJ4q26TSqW1se4NQ2WDEWci6Z1/By9IFjG2Hr3JJ1ezxrTpwunYBfppfcH9j1SvL2y3QCAGKuqXM5edv1fundFj1CyxdDvzfMiVZZH/Q0N3h7VmsAzXX2ywdIIcpiys8nfvJkCpOSirY5Dx+OXWQEmuh/SPzxR/TBjWm0enWZU/CrtNrrPhairjnxTxIOrtYYDSb+/PYoLp62aPVq/vz2aKn1tVYaQjp549PEuWibRnPj/5uurlPV9WsjeacR9Vp0YjQJWQl08e3CzG0zifSOZH6P+Tc+UFxXdn4hv8UmYjQVbzlad+A8m/9NYkQHf57q2wyNWoWVVo1dRWeZNBnh4Epz69Uf86BBEIz9/soCzF0eh44TSh6nszH/DoiE6SdL7r86YZp+kn3799OmdevSYxj5NRgLS263dixfDDdKzoQQlc5UUEDegQPYtm+P/wdL0Tg7o7Iytwio9XoADHfdSfOZz6HSalH/t0+Iuu7SuSySz2bSLNKb5PhMLsVnFdt/MT6L/b+dpXE7D/o81JwHF3RFb60FFTy4oGup59TpNWj11/mSUdwU+fQg6iWD0YBKpeJS7iVmbpvJhmEbWHbHMqw08h/1rVIUhSlf/8PvR0p2o9CqVbx6Zwvuiwy8uS4LmYnm8VsmI6yZaN7W9A4Y+sGVpAnMi0uXtcA0gEYHdq7Xv5adK0Yrp7LrWTtd//gbxSCEqFaFFy9ydsoU8mP/pfGvv2IdElJ6RWtrtC4u1RucEBZ2ZPcF9m48Q7NIb07svcjfP50qUSe0izc9RjRDo1FjY68v2n51WVQ9Sd5EvVNgLGD8xvE0d23OU+2f4uchP+Nu645OrbN0aHXChkMX+P3IRZ7s05Q72/gU2+dorcPFrow3+bQzcCEGAjuBjQskxZoXk74s6RD8sQDu/xH8OsDUvebxYU7+Mq5LCHFDKmtrKDTis2A+Ok8PS4cjRJVLOJaGWqPCK8iJhGNp5OcYStQ5dfASfs1ciLwziGYRXgC07ulPSKRXsXoarRp7l3o2sVgNJcmbqHf0Gj1tPdrS1KUpWrUWf0eZnKSyZOUX8vIPhwn1duTR2xqjLW+/cpMJlg2BS8dh/GbzpB77voIdi4vXazbQPKZMpTJ3lRRCiBsoTEkha/NmnIYOpeHKFTKhiKjTLp3L4tieRCLuDGLnmuPorDQMfrwtO9cc58LJjFKPsXO2Qq1R4+prD4C1nQ5rO/lCu6aS5E3UKxtPbSQlL4Wp7aaiVsl/4BWVnmMg9kLpb/4Aa/45R2JmHu/d1678iRtA3BZz4tb3tSvj1iIeMa9pdplGb94nH7yEEBWQNG8+6T/9hG2HDugDAy0djqhh0i/mkpWaB0DG+ULOHU0FwNHNBjtnK84fTytWLktNqJ9+MZc/VxxDb62h5e1+9BwbWjREoefYUAoLSk6hr7fR4OQuXfxrE0neRL3y25nfiM+M556m94D0tKuQf86kMmlZNEmZ+detNzoigHYBFRwvsudjsHU1T/Ch/W/coZOv+UcIIW5S9u6/SF+7FteJEyVxE8UoisLBLefYtvIYylWTax1mLwCdhwbTorsPaxftLVYuS02p79nIkTsmtsTOyQo7pyvj+F287ErUFbWTJG+i3kjNS+XNbm+SUZCBRi2zH1XEij1nmbU2Bi8naz4a2x5bq9JfP71GXfHELT3evEZbl8evJG5CCFEOhsQkjKkp6Ly90Tg5UXDqFKa8PLRubmgcHUmcMwednx9ukyZaOlQB5OcWknkpt8z9zh62GI0KmZdyi5Wror6jmw0n/kkiMMyV1j39QKXi6NGjNG3aFAAndxu0OjV3TmtbrFyWmlBfrVbh2cgRjVZ6qNRlkryJemHjqY089+dz/K/n/+jqW/qUtqIkg9HEa+sO8/nO03Rr4sbikW1xtq3kWaUuHAS9A4Q/ULnnFULUWYqikLZ8ORdefwMKC/GZPx+nqEEkPPscufv24f7EE7g+9CBWjRvjNDgKtY2NpUOutxSTwt5fz9C0oxdJpzL4ZenBMuveO6sDGRfz+GXpwWLlqqo/8NFW6Kw0qNTmrjiJWVr8mhX/AvLqx9fuK01Nqy/qHkneRJ2WY8jhfPZ5uvh2YWyLsXTw6mDpkGqNS1n5TP76H3adTOHhro149o6Qio1ju56CHMj+bymBJn3h6aOgk1mshBBlM6aloRQWonVzI/HV10j9+mvsunfD+Z57sAkLA8D9yWkY09OxahyMSqfD89ln0Lq7Wzjyui07PR+joeRYKgCVWoViUvj751MoikJIpDd3TGxZ5rkcXG2wsddzx8SWxcpVVV9vIx+DRe0j/2pFnfbcn89x6NIhfhr6E4+3e9zS4dQahxLSmfBFNBez8lk0vDVD2/lV3slPbYMV90NOsvnxU0fNa7cJIUQZ0r5bw/kXX8SuS2cCli7FqmkTXCdMwP3xqag0V7px23XsWOw4SdyqlqIobPnqCKcOJJe638ZBx4Pzu3HvrA44utmgUqkIanv9e2Jloy2qc3W5KuoLURtJ8ibqpD0X9hDsHMyUtlO4mHNRFt++AaNJISuvEIAtR5N4ZvUBXGz1rJrUiVZ+zjd30rwMUIygsTIvVm0shD0fwcbnwaUR9H4JVJrii2sLIQRgys1FKSgAQO3oiFWTYBx69sRlxL0AuIwYYcnw6hWj0YQhz1j0WKNVU1hg5NdPDtExKojbRjXjTJvSkyGtztxbQ2YzFKLylCt5y8rKYsSIEbz//vv4+fmxY8cO5syZQ35+PnfccQfTpk0DIDY2llmzZpGVlUX79u155ZVX0GolPxTV63zWeSb9OonBwYN5qdNLNHFpYumQarT8QiPD/m8HMeeuLAHQPtCF9+5rh4fDTXZl/GMBbH7VXO44EQbMg4uxsP4ZaNIPhn0I1k6VEL0Qoi5RFIXUZctInL8ADAZQqwn8/DNsO3TA753/WTq8eufckVQ2fBRDbuaVxZ2bdvSk2/CmZKcXkJ2ej1eQE6GdvS0YpRD1yw0zq/379zNr1ixOnToFQF5eHjNnzmTZsmV4e3szceJEtm7dSo8ePZg+fTqvvfYabdq0YebMmaxYsYJRo0ZV9XMQooiiKHjbe/PlgC/xc6jErn512P9tOUHMuQwe6xmMi60ee2std7XxRX+zs1Ul/Qtb5kJwb/OPp3ksCg4+MPQjCBsKMtunEPWaoiigKKjUahTTlfFSxvR0kt9fin2XLth17mTeKGs7VhtFuTJl/sEt8WxbeRxnDxvC+zcs2u7sZYu1vY57n++AurLGQQshyu2GyduKFSt46aWXmDFjBgAHDhwgMDAQf39/AKKioli/fj3BwcHk5eXRpk0bAIYOHco777wjyZuoVp8e+pQDFw/wZvc3patkOcQlZ/Pe7yeIau3DU32b3foJFQV+ehL0dnDX+2B/VVcaO1dodc+tX0MIUasVnDpF/ONPYNe1C57Tp3Ph1VdJ+2Y5Dv374/f2WzRc8S06Hx9UkrRVq5Tz2ax9ay+dhzTGq7ETf357jIat3OjzQPNSJ/aQxE0Iy7hh8vb6668Xe5yUlIT7VQOAPTw8SExMLLHd3d2dxMTECgcUExNT4WOqQ3R0tKVDEOWQmJxIdm42Mfsq799RXb33iqIw+49UtCqFO/0NlfI8dblJhCQe43zTB0k+cgY4c+uBWlhdvf/ixuTeVz71/v1YLXkX1GoynJ2Jj45G7eeHetgwkn19Sbz8mt/E54fKVJ/uvaIo5GeY0DuosfdWSMo4S/rxcwR1t8G9aQEHD++3dIjVqj7de1FSbbj/FR6QdnWT+mUqlarM7RUVFhaGlVXNajGJjo4mPDzc0mGI60jNS+X749/zbN9ngZv7t1eaunDvC40m5m04wje7z2C66u9UAXIKjMy+swW9OzUs/wn3fQM/P11ye6t7YdAi6LCXQJ0tgXXgW/O6cP/FzZF7f33Zu3aj8/JE37AhZyc9Qs5ffxXts2nTmoBPPiH9p5+48MKLaD08aLz+F3L+2cvpefOxCgnBb8kS9H6+5gNq2OtcF+59QW4hOmsNsTvOs23FMUbPjuR0zCW2rThWou7l/xVGzOpIhw5XrYfXuXpirUnqwr0XN6+m3P/8/PzrNmZVOHnz9PQkOfnKlLBJSUl4eHiU2H7x4kU8PDwqenohbsoPJ35g8d7FdPfrTpBzkKXDqTFSswt47Ju9bDuezMCW3ng7FZ+AxMfZhtERgTc+UfJxiN8DbUaCW1MIH1eyjk9b828r+1sPXAhRY6WtWsX5l17GoWdP/Ba/g/1tPdA3bFi0X+dnHm+sD2yI8/DhqB3M7wladzfcn3iCBmPHoLaV2QerysUzmfz8fwcI7x+Im78Dzbv5oNNraOBtR/NuPqUe4+Jpi6OrrLUpRG1Q4eStdevWxMXFcfr0afz8/Fi3bh3Dhg3D19cXKyuroqx17dq1dO/evSpiFqLIyfSTHLh4gDHNx9DNrxtBTnUzccvIMzDzu4P8fSq1Qsdl5RdSUGhi3t2tGN7e/+YufnQjrH7YvIh26CDwCzf/CCHqJX1QEA69e+P9+mtA2dP224S1wCasxZXj/P1xmzSxWmKsT3IyCtj8RSzJ8VkA5GYWYOuox7ORE+4BDngFmWf29QpyKioLIWqvCidvVlZWzJ07l8cee4z8/Hx69OhB//79AViwYAGzZs0iOzub5s2bM3bs2EoPWIirbT6zmff2vUefwD51NnE7cTGL8V/8zZlLOUS19kFfgUHiarWKezv408bfueIXVhTY9hZsmg1eYTDia7ByqPh5hBB1Qt6Ro5hysrFt1w7bdu0sHY7gSitbXpaB4PYeqNQq9NZa2vULxNZRb+nwhBBVoNzJ2+bNm4vKnTp14ocffihRJyQkhFWrVlVOZEKUw5jmY4jwisBOZ2fpUKrE5n8Tefybfei1ar56OIKIINfKv4iiwM/T4dSf0PJu6D7d3E3yq2GQegpaDIU73zUvtC2EqJcUo5Hzs2ZhuHCe4N9+Q13DxqbXJgnH09ix+jgFeUZCIr1o1y+QlXP20LidR1HZUGAq9dhr6zdq7YaVnY4Bj7bC3V++XBOiPpAVtEWtZTAZ+Cr2K/oE9LF0KJVOURTe23KCBRuP0MLHkaVj2uPrbHPjA29GzGrY8yE06g72nuZtWj14t4bIydBxPFTSBDBCiNopbcUK8g4exGf+fEncbkHMH+f489uj2LtY4R7gUNQ65uJlV6xcaDCWevy19V287Lj3+Q6VNkmXEKLmk+RN1FrHU4/zVvRb+Nr74u94k+O5LOS7f+L55q8zGE0lZ2kF81i1o4lZDG7tw5vDWmGjr6JFrXPTYP1z4NMOxqy9sni2cwAM/6JqrimEqFXyjx8nadFb2HXuhOOggZYOp1Y49nciBzafpcvdTdBZa9jy5b8UGkwkn80ioEUD+j7UAitbXVH93g80L7VclqvrSOImRP0iyZuotUJdQ9kyfAs22ipqkaoChUYTr/8cy6fbT9HU0x5Px9Jn97Kz0jKqYwD3d25Ytf8xb5oNOckweuWVxE0IIa6idnBAHxCA18svS6JwAxnJuWSn5dOwlRvH/05CpVKhVqvQWWnQWWmIGNyIdv0bolbL6yiEuDmSvIla64tDX+Dv4M/tAbdbOpTr+u6feH7cn4ACXEjP498LmTzYpREzB4SgrcDkI7fk358g+nNQ/htHEXQbdJoMtq7QaQr4tKmeOIQQtYJiMnHxnXfQ+frics89NFy1st4mbkmnM/AIdOTongsc2ZXIwMmtOB6dyJFdJRcSTzqVgd5Wy+iXI7hjUsui7YMfb1udIQsh6jBJ3kStpCgKX//7NV18utTY5M1gNPHausN8vvM0DV1tcbLRYaPXsGh4a4a286ueIEwm2DIH/pgHTgFg52beXpBtHsfW8/nqiUMIUatc+uhjLr2/FJdRI4H62TXPaDSxfeVxDm6JZ/DUNhQWmMjLKgAoVr6aR0NHug1vgrq6vpgTQtQ7kryJWkmlUvHz0J/JLcy1dCjFbD16kVXR8QDEJWcRcy6D8d0a8Uz/W2xlUxT460M4u8v82N4L+r9hLq+bBnnpJY8ZuND8e/9yaHOf+bFOFmEVQpTNkJCA1ssLl1Ej0Xl64Dh4sKVDqlJ/rYtDrYb2Axrx17o40i5kk5Kaw6W9MaQl5XLxTCate/vj28wZtUZN8y7mRa6bd/EpKgshRHWS5E3USr/E/cK/Kf8yte1US4dS5EJ6HpO/+ge9Vo2zjQ6dRs1b97ZmSNtbbGUryIa1j8LhtebWM60enNOu7E88bB63di1jIdi7w4Tfzd0j6+E350KI8svaupVzTz2N68MP4TZpEk533mnpkKqEocBIzNZztOnlT1piTtH4s7TEHC6ezSIvz4gxKwu1RkXvB5rTLMLLwhELIcQVkryJWin2Uix/nvuTaeHTLB1KkVfXHcZgNPHT1K4EulbiunNrJsG/66DPbOg8tWQS9tCG6x9/uaukEKJeMRUUkPLJJxjOXwDAoVdP7Lt3J23VKnIPxmAb3g6nwYPJ/O03MtZvIOOnn7AKDcGpDre2ZSTn8svSgyTHZ+HZ0IG+D7Uo2ne5HB0dTXh4uKVCFEKI65LkTdRKT7Z/ksfbPW7pMIr8fiSJnw6e5+m+TSsvcTMZzTNA3v48tLsfmvSunPMKIeo8xWjkzLgHyP3nHzSu5pZ3q8ZB0L07uTExZG7ahNrWFqfBg8k/foLsXbtwGjIErxdmobapPTP4VsS5I6ms/zAGk1Fh0OTW+DRxsXRIQghRYZK8iVpnR8IOvon9hlmRs/C087RYHL8dTmTP6RQA1u0/T2N3O8Z3DyrfwUmxEPcnREwwP/79DSjMu7I/P9NcZ8xa8Agx/wghxHWkrf6OgriTaFzdcH1gHI4DB9Dg/vtx7Ne3WD3vl1/G++WXix67TZqI26SJ1Rxt9Tq8LYEtXx/B2cOGAY+0wtnT1tIhCSHETZHkTdQ6GfkZxGfF42JtmW9NjSaFN9f/ywd/nESnUaFWqXCw1vH2iDZYacuxVtqhNeYxbC6NriRvf39iTtiu1rQ/mAor/wkIIeoUpaAAlV6PzteXC7Nno28chOsD42gwerSlQ6sRLp3LYuvXR/ALcaH/+DD0NvLRRwhRe8k7mKhVFEWhX8N+9G/U3yLXT88xMOWbf/jzWDJjOwXywqDm6Mozi+TZvyDuD0g/C9GfgV9HuHfZlf3Tj1dZzEKImilj/XoKTp3GumUY9l26kLVtO3kxMUX7VVZWuD4wjsKLF0lb/R0ADR4YB4pCymefA6CYjKSvWo3vooXYRUYQsn+fBZ5Jzbbnpzj0Nlr6PNhcEjchRK0n72KiVjmQfIBn/3iWhbctpLlr82q99tHETMZ/8TcJabnMHdqSER0DbnyQsRA0Wji9HTa/CqggfBzcMQ+0VlUdshCiBrrcUpb+w49kbd5Mg/vHmpO3rVtJXXblSx21o2NR8nbx7bcBcBk9CkymoscA+qAg1HaVOElSHaIoCj3HhpKSkI2Nvd7S4QghxC2T5E3UKipUNHJqhK+9b7Ved/O/iTz29V5s9FqWT4gkPLBB6RXTzsDR/2Z/vPgvpJyEUSvNs0RGTjbPFKnRVV/gQohKpRgMqHTmv+H0H9dhzLiyxqI+IAD7bt3IPXSI3H370Lq64ti/PwWnT5O1bRsAhRcSydqyhcCvv8Lvf2+b13BUm1vvPZ+Zgef0p0tc0yokhJAD+80P/rt20eP/ttXHRbQVRSFufzLZafkl9nkEOtLAx46Vc/Zw230h+AQ7V3+AQghRBSR5E7VKY+fGvNf7vWq9ZqHRxNMrD+DfwJZPH+iAt1MZM7EZcuGzQZB2+sq28AdAMYFGb545UghRaxnOnePsY4/RYMxYnIfcRfL771Nw4kTRfof+/bHv1o2cnTtJWrAQ65Ytcezfn7zDh0l89bUr9fr0BpW6KAm8TKUt/b9klVoN+mtaja59XM+YTAqbPjvM0b8SS93fYVAjPBo6kJNRgJWtfNQRQtQd8o4mao0zGWe48/s7md99Pr0Dq2/a/OjTqaRkF/DqnWFlJ24Ae780J26jVoJvO1Brwca52uIUQtw8Y0YGhgsXsG7alNx9+9Bs20b6uXMAqKyscezXl6T//Q/DmbNoG5gnS2r41ZcoJlPROVT/JVQuo0fjNHQoKo35Cxv7nj1psmP7f5VUaF1kivqblZ2WT2JcBo1au2HjqCdicCNadCvZE0OrN7/298/tgk4vX5wJIeoOSd5EraFRaxjbfCwtXFvcuHIl+vVwInqNmh7N3K9fsf2D4BoMjW+vnsCEEJUi/9gxzk6egmP//lg/2ZS01auxWrmKhP/2az08cOzXF69Zsyic9AhWQY0A0Dg7l3o+tY1NsbXS1FZWqK1kjOvNMhQY2fr1EcK6+1KQW8gvSw/Sf0IYXYYF37C7qCRuQoi6RpI3UWtoVBoeb/c4alU5ZnesJIqi8GtsIp0au2Jvdc2fS9pZSIwxj1mxdoSGXSVxEzWOYjKR89dfqPRW2LZriyEhgbx/jxSrY9cpEpW1NVm/bwHApm0btC4uZO/YgSnvynginbcX1qGh5J+Mo+DUKTTOznXinNl79mDKzcH+ttsAcH/iCc5HRhIWFmau9F8LmsbREY2jY/lffHFTFEUh4VgaBXlGFJPCnp/iSI7PwrOhIyGdvRk9OxJbB329HOcnhBCSvIlawaSYuOfHe+jXsB+zImdV23XPZhRy+lIO47tds/h27DpYMxEKssyPVRp46FfwC6+22IQoj+T3/o/kJUuw7diRwC8+J3vnLs4//3yxOsGbfkPr40P8o48CEPDF52g7diRh1iwKE84X1XMaMgSfOW+QsW4dye+9V2fO6TJyJE4DB6JxcgJA6+qK4uWFPjDwpl5zcfMM+UY2fR7LiX+SirbpbbQMfLQVDVu6AeDsIQtsCyHqL0neRK1gVIw81f4pAhzKMT1/JdqTYP42v09zzysb//oQfn4afNpB/znmKf+tHMG1cbXGJmo/Y3o6+ceOAaBv1Aitqyt5sbGYsrPR+fig8/Eh/+RJjCkpRceorKyxaRl25ViVCtvwcEy5ueQdOlRUTyksxDYiApfRo9C6uWHbsSMA9j1vp+GqVcXi0LibuwRf3q5v2BAA//97H8VguFLvv26Czvfei33PnqhtbevEOVUqVVHiJqpHdno+6Um5WNvpaOBjR9LpDLQ6DVlpeZzcd5HIu4LwDzXP6uvgai3T/AshxH8keRO1woWsC3Tz7YarjWu1XndPQj6t/Z3xdLS+sjGwi3kWyf5zQWdd9sFCXEfOP/8QP/VxjMnJAPjMn49T1CAuvDKb3H37cH/iCdwmTST53ffI+OmnouP0gYE03rCe3IMxnH34YdDpCD14AMOFC5y+b0yxa3jOnEmDsWNwGXFv0Tati0uZE2bYhBUfT2rdrGmp9XSeHug8PerUOUX1ObE3id8+i6Uw30hQG3fumNSSzV/E4uRuyx2TWjL6lUic3K8zOZQQQtRjkryJWuGtf97iUPIhNty9odqumZiRx7EUA9M7eMKlE/DnIhi0CDybQ9Tb1RaHqH2MaWkYEs1TmGucndF5emJITMKYlorazg6dpycJM55BbWuL93vvoraxwSo4GADP55/HlJWJzt/cyuw6cQLOdw8rOrfKyvyFgXWL5gR8+ol57UBA5+VlfnwVq2bNqvy5ivorMyWP/JzCEtvtna3Q2WhIPZ9TrAxw4p8k/v75FB4NHYmIaoStk3kil9vuC0GrM48tlMRNCCHKJsmbqBUebvkwF3MuVus1v91zFoC+oR7wTW/IToJOk83JmxBlyPz9dxKmz8CUZR4P6TJqFF4vvkDKZ5+R8umn2Pfogf/S9/F77110Hh4lZiy0aRlW7LF109JblbQuLmg7dSp6rLaxwe6qx0JUFUVR+GfDaXZ9fxKUkvt7jGxKUFsPvn3tr2Lly0I6edFjVLOiZA3Aq5F0WxVCiPKQ5E3UeMm5yeQYcujs07narnn6Ujbv/n6cTn5WNFGfg+QjMHCRJG41lKIoFF64gNrBAY29PYWXLqHk5V2poNWh8/TAlJtrHj+mVqPz9kYpKKDwYvEvBTQNGqC2scGQmITqYjLGrKwKnTN9zVp0Af64TZgAajV6f38AnO66yzw7opt53FZZSZkQNZ2x0MSJfy4SHO5BcLhHif1ufg7obTT0nxhWrAxgbafDp4mzzBQphBA3SZI3UeNtOr2J13a/xs9Dfsbf0b/Kr6coCi9+fwitWsUDbRzh3//GGzUbUOXXFhWnKArxjzxK1pYteM58jgZjx3L+hRfJ2ry5qI5VaChBa74ja9s2zj02FbWjI83+2k3+8ePEDR1W7Hx+7y7BoVcvzk6YgM2RI6RX8Jw+c94AtbrYOl9gHpdV1tgsIWoDRVHYvOxfOgxoyJ1PtEFvo71uEta4rUepZSGEEDdPkjdR4/Vv1B9ve2/8HPwq7ZyZeQZMpXT3Afj93yS2Hr3Ii4Oa42qTAv/8DL7h4OhdadcXN09RFHOXREUBtQaNvR32t/XApnWrom6DDe4bjUOvXkXHaJzNXbJsmjfH+/XXUel1AGi9vfF+/fVi57cODQXA/bEpnDhwoMLnVNvZVcXTFsListMKOH0wGXd/B1rdXnnvx0IIIcpPkjdRoymKwu9nfyfSO7LSutnM+SWWpVtPXrdOCx9HxnYK5OCeM5D0L3R7slKuLW5NYWoqCU89TfaOHQBo3d1p9N1qXEaMKFbPrnPpXWx1vr44Dxta9Fjr4lLs8dUcevfG6OKCVZMmFTqnEHWRId+Itb2WUS9HorfW3PgAIYQQVUKSN1GjJeYk8sL2F3iu43OMCh11y+fbeyaVD/44Sb8WnnRsVPqyA2oVDGzpjVajxqSzhxknwGgota6oPIpSsilUpVIV254fG0vOP//g+sgktM7OoJG3MCGq0uW/v90/nOR0zCWGP98BtUZt4aiEEKL+kk8+okbzsPXgh7t+wFHveMvnKjSaeH5NDB4OViy4pzUO1robH6QYQWdj/hFVKuGpp8n4+eeixwGffIxd586c6Ncfw5kzeL06G5d77iF4029oXat3vT8h6pvstHw2fBTD+ePpRdtadPdFp5dWNyGEsCRJ3kSNtjNhJwXGAm4PuP2Wz/XZjlMcPp/B/41uV77ELT+TVhvvAd2b0HrEjeuLm6YYDOQdPoxd587YtGsHgO6/WRob3HcfxowMrJubZ/qUxE2IqnXhZDq/LD1IQZ6Rdv0C0ejU6K01NO/qY+nQhBCi3pPkTdRoyw4vIyUv5ZaTt+3Hk1n061Fub+ZO/zCv8h0U+yO6gjRwqvoZLus7lU5H0C8/oxgMqPX6YvsajB1joaiEqD3OHUll87JYcrMM3PNse1LOZ7Pp89hi5bJcW//UgWS0OjWDp7bB1de+Gp+FEEKIG5HkTdRo/+v5P5Jzk2/6eEVR+GT7Kd74OZYgNzveGNqyfBOf5GXAb6+Q4xiMbUDkTV9flE/Gho1YBTfGqnFjS4ciRK2iKAoHt5xj28pjOLnb0LyLD3obLY5uJctlubZ+x8FBtO0bgJVtOXooCCGEqFaSvIka60L2BX46+RODggbd1PF5BiPPr4lh9T/x9G3uyaJ722BvVc5/8r+/DlmJnO72IqFqGeNRlUwFBZx/7jkcBw7E+9XZlg5HiGqzY/Vx4o+kMnxmB3asPs6xvxNLrWfjoC+qc219k0khJ72Ahi1d6f1gC6xszO9xdk5WuPs7lCiX5do6krgJIUTNJMmbqLEOXTrE2/+8TRffLnjaeVbo2AvpeUz8Mpr9Z9N4oncTpvZsglpdzqUGEvbCXx9Ah4fJcQ65ichFRRji41E7O2Hfq6elQxGiyhkKjOxcfZx2/Rvi4m2H6b/ZHF287fAPbVDqMXpbbVGd0uq7+trT6nY/VOV9jxNCCFFrSfImaqxeAb34894/cdBf/xvjayVl5BG1ZBs5+YUsHRNOvxbXjHFLPg6rHih9+v/RK8HeE9qMhp6z4PCJW3gGojysgoII3rTJvOi2EDXc2dgUdq09QaHBVGx7o9ZuRN7ZmO/f3otnI8eick5GQbF6eVkGcjIL8GzkSGhn76LtoZ29iz0uTUXrCyGEqHskeRM11icxn9DIsVGFJyv5cvcZkrPy+XFKV8J8nUpWcAuGLo/D4e9L7tPowMEL7lxyk1GLilBMJlI+/wKHPr3R+/lZOhwhritmazx/LD+Ko7sNbtdM5GHnZAWAk7tNsfLlboxFvFSEdvEmsIXMmiqEEKLiJHkTNZKiKCz/dzk9A3pWKHkzGE0s/+sMPZq6l564HVkPTfpAy7vNP6LaKYpC4htzyDt0yLxEwMGDaFycJXkTFnU8OomDW+JRTOYW4KysLDxsUnD2suXXjw/RYWAj7BtYE9TWnZ5jQ9Fbl/7f522jQ0otCyGEEJVBkjdRI6lUKjYM20C+Mb9Cx/16OJGkzHzmRAaW3HlkPXxzL0T9D8LHVU6gokIUkwmVWo1VcDB5hw6htrfDoU8fHHr3tnRoop4ymRR2f3+CfzacwdnTFnsXc6uZSgOoQaUCjU4NamjY3I2GLd0sG7AQQoh6TZI3USOtPb6WE2kneKT1IxU67stdp/F1tuG2Zh7Fd2QkwM/Twa0ZtB5ViZGK0mT+9htpq1ajKCZ8Fy5CpVET/8QTFCacx/+jj3C5dzgu9w63dJg1QtyBZA79ca7M/X0eakHCsTQO/XGuWFnqV079o7sv8M+GM7To5kO3e5ui0aoBiI6Oxj/EPCHInU+0LfN8QgghRHWS5E3UKIqioFKpOJ99nn1J+7DWWpf72ONJWew4cYnp/ZqhuXrWtTO7YcUYKMiGu9eAVl/2ScQtUUwmkpcsIfm9/0Pn44OmQQNQTGAC46UUtN5eKAUVa02tiwryCtn69RFa9/KnsMBIbmZB2ZUV5Uqdq8tSv1Lq2zrquW10M1p08y37GCGEEKKGUClKzZjiLT8/n5iYGMLCwrCysrJ0OMVER0cTHh5u6TDqPEVRePbPZ+ng1YGhTYZiMBmw0pTv34KiKMxYdYC1+86x49leuDv8d9ypbfDFXeDkByO/AY/QCsUk9764tLVryf5zGwANHnwAmxYtSJw/n8ILiTjddRfWoSGcvPMu7Hv0wOulF1HXsL/lirqZ+68oCtHrT5OSkF3qfocG1rTp48+qN6Np1zdAkoYaSv726y+59/WX3Pv6rabc/xvlRNLyJmqMPGMeBcYCEnMSUavU5U7ccguMPLP6AD/sT2Bc54ZXEjcA3/bQcQJ0fxpsS19DSdyYYjBw4bXXSfv2W7SenqitrTFlZgGQf/w4hlOnse/RHa2bG42++w6thzsqVf1bc6qwwIhWr6Egp5DzJ9KKuuBdzZBvxMZez8gXOqLVywLwQgghhCi/m07eVq5cyZdffln0OD4+njvvvJPc3Fyio6OxsbEBYMqUKfTp0+fWIxV1no3Whrduf6tCx6TlFDD6o90cPp/BjP7NeKRHY8jPgu/GQ++Xwb0Z9H+jagKu49J/+IGcf/7BJiwMpyFDMJxPwHX8w7g/8QQqzZWkI2Dp0mLH6Tw9rj1VlUu/mMu+386UuVRcQGgDgtq688e3R/Fr6lJUNhlLP+By/VM7cnFRXyxX/Uat3fhm9m4iBgfRaWhjOg8Lvm7MkrgJIYQQoqJuOnm75557uOeeewA4duwYkydPZsqUKdx///18+eWXeHhU/wc4Ubu9t+89diTs4Is7vkCtKtliUZrPdpziUEIGH9/fnl6hnuaNW+bAkZ+h9Uhz8iZuSsHZs6T/8CMo4Hz33fi/9x4qbc1rrM9IzsWhgRXpSTkkx2eVWsfOSU9QW3fi9l/Exl5XVDZes9DytfVTThu4FJRV7vrWdjqc3G3rZaujEEIIIapepXwSe/nll5k2bRrW1tYkJCTwwgsvkJCQQJ8+fZgyZQpqdfk+iIv6zcvOi6YuTcuduBUaTSz/6yw9mrpfSdwuHIRd/wft7ofmg6sw2rpDURQy1v1E/tEjABgSzuP10ou4PfIIbo88guq/v9+akrhdiEsnbl8yoZ29OR1ziV0/nOTemR0Y/PiNZwS8/40upZbL0m6kI+Hhjcpd/57nOtywjhBCCCHEzbrlCUt27NjBwoULWb16NWfPnmXu3LnMnj0bW1tbJk6cyKBBgxg+/MZTgl8enCfqp8v/DCvSYrH7XB7zdqTxbBdnOvhYg2Ki2fapWGUncOj2zzDqHasq3DpFfew41i+/jKLRgFoNNjbkT30MU2jFJnepaoqikBhbwOkdeShA6B122LioSfq3AN82VqjU0tolhBBCiLqhyiYsWb58OQ888AAA/v7+vPvuu0X7xowZw9q1a8uVvP1/e/cdn1V5/3/8dd93cie5M8kkhBES9obIXqIStoCiMiq1DlS0jtY6Ko6vVmsdpXXW+lNb655YRRlKVfYS2TuEJISELLLHPc7vj7TRGCCB3MlNcr+fj0cfPTnnOud87lz30by9zrlOfYV60vky+0xrdrToKHOWzuGJ0U8wpv2YBu2zeNtG4sICuGHKiOpXA2x+FQr2wMyXGdB/nFvqai19X5WeTtGyZdiSkrANGkTxqlVUHjhIyMQJWJOSKGnfnsARw2tG2TwhK6WQtgmhZB4s4PjhQpImxtcsA+QfKyV1cxGd+kQw/tpe+Nl8q3cc3XQ1tZb+l7Onvvde6nvvpb73budL/9c3oNWov9SqqqrYvHkzF110EQD79+9n+fLlNdsNw8DnPLnVSs5vZsxMjJ9Ih+AODWqfklPCmkO5zBnS4cd3ukV1h67J0O+qJqy05SlZvZojl88i55k/U7ZxIwBFXy4j5y9/4fiiBzAMg6BRIz0a3AzDYOVruynMKSd9bwEbPk0BqF5eksKGJSkc2nqCpImdmLyw34/BTURERMSLNCpZ7d+/n/j4eGw2G1D9B9jjjz/OsGHDsNlsvPfee8ycOdMthUrrFh0YzYPDH2xw+7c2puFjNnHlwChY9zwMWwjxo6DTSGilk0WU79qNJSgQa3w8RcuW48jPq9nmGxtL8LhxVBw4QNmWLViCQwidNpXSdetIv/Em/Lp2pf0H7+MbV/1OsXaPP0bsY3/AZLGcF5Nr5GaUUJRbwbEDBQyeEs8Fk+IBai1jBotFz8+KiIiI92pUeEtPT6dt27Y1P/fo0YMFCxYwZ84cHA4HycnJTJ06tdFFSuu3YMUCwv3DG/SqAKfLYMm2YyT3jiF6619gzWKIS4JOw1ttcMv/15tkP/EE7f70J6zx8eS99hoVO3bUbA8cPZrgceMo37qV7EcexZqQQOi0qRgOB8ETkmn32GOY//sfWQBMvr6cT7+pI9tzwQTxfSMxW8zw31n0f7osIiIi4u0aFd4mT57M5MmTa62bN28e8+bNa1RR4n0mdp6IzcdWf0NgW1oBeaVVXNGxBP7zHAyYVx3cWjFHbi5BY8YQOHIEAB3//jKG01mz3eRbfRth6IwZBCcnV088AgSOHEnQmIY9Q+hJR7bnEJsQii3E6ulSRERERM5beiBNPK7cUc7MLjPx9/FvUPuVe7KxWgxG738c/IJh/KNNXKFn2LNPkPPnPxPzwANE3X4bQM1zaZawsFPuYw4IwBwQUPPzT1+mfb4qyisnN72E4ZcleroUERERkfOaHiARj1t2ZBnD3h7GsZJj9bY1DIMVe7K5K/p7fDI2VAe3wIhmqNK9DNePL3suWb2a4m++wZGbC0Dppk0Ufr6U1FmzKFq5ksr9+zCZzR6dUKQppe6o/twJ/aM8XImIiIjI+a11/jUoLUrPiJ7c0O8GYgNj6217OKeEI7mlTPT9HjoMrb5lsoWpPHKEI7NmUf7fZ9Yybr+DjJtupnznTgCyH32UzLvuwuTvT/w772A7D6atbUpHtufSpq2NsJiG3TYrIiIi4q1026R41MmKk9iddhb2X9igWQ9X7MkGwHfeOxBoqXm2qyWoSk2lfOdOsh55FJOPD0ZlJQCd3ngDDBfWTp0AaPfMMxiVlfglJtaaZKS1KT1ZSWFuOb1GtvN0KSIiIiItQsv5y1dapY8PfczcL+aSXpzeoPYr92QzLNZMbIg/+Jz/k1tUphyh5NtvAch79TUyf3c3vu3b0/nDD7ANHgxAQJ/eBPTtiyUkBAD/bt0I6Nu31Qa3o7vycFQ5OfT9CT55+ns69Aqn6+AYT5clIiIict7TyJt41JXdrqRjcEc6hnSst+2J4gp+SD/JpvCH4eOP4fJXmry+s2U4HFQeTsGvczzlO3eSfuNNWMLCSBw+nPBrfknIlCkEDByA2c/P06WeE0eVk8Kc8jrrLb5mwqJtFOWW43IZNcv2Smetdgc2Z/P9sqMMvTSB7sPaEh4biK//+T+pioiIiMj5QOFNPGbbiW2kFqYyNaFh7wJctiuLOHKIKj0AsfObuLqzZxgG6QsWULpuPYlfrcSakEDg8GHE/P73mKxW/BIT8UtsuTMq5h0r4YuXdlCUW1FnW1THYK78/WC+e+8AZYVVNctHd+bVadtrVDsGju+IxddMcHjDZhgVEREREYU38aClKUv5Ou3rBoU3wzB4a0Ma89vshjKg++R692luhUs+pXTdeiJuuAGf8HDMNhvtn3vO02U1WnF+BVZ/C2m783FUubj4lz3x9as9Wma1Vf+jJGlCJxwOV81yz+G1J6EJCPYltktYg55vFBEREZHaFN7EY+4fej/X9bkOX4tvvW03pxawP7uY6XE/QGAPiDi/RrAcBQWcePJJAgYOJOrOO1r8tP65GcWUFVXRsVcEbz64ngEXd2TYjAR6jojFP+j0/RXbJeyUyyIiIiLSeApv4hHLjixje8527ky6s0Ht39xwlDj/CqLzt8LI25u4ujNzVVRg9vfHcDpxlZX9d6WLwBEjiFiwoEUGN5fLqHk+LW13Hqve2EtwuD+zHwznwrk9iIgLxGQynTG4iYiIiEjTUngTj0gpTGFj1kZ8zfWHgZziSr7cdZw7+vtjyukKPaY0Q4V1GS4Xuc+/QMG779Jt3Voq9u4jddYsALpt2ULcM097pK7GykkrZtnfd9Z6lq1tQggTb+yL2Wyi54j6378nIiIiIk1P4U08YuGAhdzY78YGPfv0/pZ07E6DiePGQuSGZqiuLmdJCZl330PJqlWETJsGgG/bGKLvvQcAs7VljkhVltlZsngbVn8LIy7rgskM1gAfug9pi8W35Y0gioiIiLRmCm/S7L46+hXv7X+PP47+I5EBkWdsaxgG721O59JOdhJNx8HUtZmqrF1D+k03Ub7tB2IWLaLNvLkA+ERGEnHNNc1ez9ly2l2sfv8Au9dkYjKZWPjiODZ8epjvl6ex8MVxXPzLnrRNCMUWcv6/N09ERETEmym8SbOzu+xUOCpo49em3rZp+WWk5Zfxavi/4eWb4a6D4BfUDFX+hGEQOu1S2lw1m9BpDXutwfmitLCSZS/vIiulkJ4jYgmOqJ6av333Nlh8qkfWEgZEebJEEREREWkghTdpVi7DxYT4CUzqPKlB7Tem5BNMGYlZX0DfWc0f3ABcLtpcdWXzn/cnyour+Pqfezl+6GSdbR16hjPxxr4s+fP3+Af61iznpBXjcLgwm01MuKEPXZKia/Zp3yOc9j3Cm/ETiIiIiEhjKbxJs9qUtYn7V9/Pi5e8SPfw7vW233Akj6sD1mF2lMPg65qhwp8pLubgheNoe//vCZnUsMDZFNZ9fIiMfQX0HBFbM2L2P21ibQDE94usef9afL9IItsHYzJDj+GxRMR5IPSKiIiIiFspvEmzCvQJZGDMQDqGdGxQ+40p+bzv+x+ISoJ2A5u4urp8vvsOZ24u1gTPvFfu4JZs2rS1MXJWV/pe2J7oTiGnbTvgko6nXBYRERGR1kHhTZpNhaOCaFs0T49t2JT66fllOE9mEOd/BPrc0MTVnZpj7FjiBw7Ev3u3Zj+3vcrJuo8OEdsljOTreuMf2DJntBQRERER91B4k2bzxZEveGT9I3x06UckhtU/krXxSD4OfMgZfBdRXZObocLaKo8cAV9fQv/7agB3S9+Tz9qPDp5ym9Xfhym39mf6nQMJDvdvkvOLiIiISMui8CbNZkjbIdw26DYSQhMa1H5jSh4OWyQRk+aAuf73wbmTq6qKjJsX4hcUBCNGuO24TruLb9/dT6feEdhC/QiNsp22bc7RIk0qIiIiIiI1FN6kWaQUppBblsuvev+qQS/mhurJSn4bsR5zfgJEdmniCmvLe+UVqlJTsd9zd6OOYxgGu749xsEt2fgH+jLh+j4UHC8lJCKAxEHRxCb2dVPFIiIiItLametvItJ4b+15i1tX3UqpvbRB7TNPllORn8nVOX+G/V80cXW1VaWmkvfy3wmZPAlXv37nfByH3cmqf+7lu3cPUFXhxGwxY/E1M+M3g7hgcrz7ChYRERERr6CRN2kWvxv8O6YlTiPI2rAp65fvzmKYeW/1D/Gj3FpL6YaN5P/zn+By0e6pJzH5+XHsttsBiL73Hsq/34bZZiP63nvJSk8/6+OvemMvZcVVFOWUU5BVxuCpnRk8OR7Tf2/9/PlU/yIiIiIiDaHwJk3u85TPKaosYnaP2fW2NQyD51cd4s9fHeClsBQMZzCmtuc++vVzzpMnOfab34DZjG9MDLhcADhyc6vPb7cTdvllBE9IxhIUBA0Mb44qJ4e35dB9aFvKS+yUFVbhZ/Nh0k19SRgQ5bb6RURERMR7KbxJk/s2/Vuyy7KZ23PuGdsZhsGd7/3Akh8ymTkwjuScQ5jChoHFfV/TnGefw1lYSOePPsS/R4+a9Z0/+rBWO0tQ7RHCXd8dI/PgyVMes+/YOE4cLWbNhwcJbxfIlIXuC5siIiIiIv+j8CZN7qmxT1FSVVJvu8zCCpb8kMl1ozqzaGwEpmcOwIB5bq0l4obr8e/Xt1Zwq09VhYO1Hx7E18+C1b/uJVNxQTR9L4wjqmMwUR2C3VmuiIiIiEgNhTdpUvevuZ8YWwy3Dbqt3rY7M04CMK1/O0xmB4y7H7pNcEsdzpJSStetJXj8eMJmzDirfa3+Pvzi0eEABIb6nbZdu65hjahQREREROTMNHOCNBnDMPA1++Jjbth/I9ieUYivxUQv4yAERsLYuyG6Z6PrcOTlkTr7Ko7d+RvKt/1wVvsaLoOVr++mKLfijMFNRERERKSpaeRNmkxueS4Pj3i4we13ZJzk8eCPsL72Icx5D7pPPKfzGlVV5L3+D1wlJfj36UPw+EsI6NOXtosWYRs08KyOVVHs4ti+Ak06IiIiIiIep5E3aRKbjm/iog8u4uXtLzeovctlcCzjKFdUfAj9roIuF5/zuQs/+5ycxYvJ+8c/KF23DpPZTLsn/kjgsGFnfSz/EDPzHx9B5/4KbyIiIiLiWRp5kwZbc2wNR4uOMq/nvDMulzvKuaTjJTw4/EGmJ05v0LGP5peRUHUArEDSr8Die851FrzzDtYuiSR89hkmk+mcj1OYU8YP7xXTLrRIz7OJiIiIiMdp5E3qtS9/Hy7Dxaq0Vbyy4xWAMy4/uPZBCioLuKLbFVgt1gadY0fGSfqZUzBMZog996n2DaeT0OnTiVq4sFHBDWDDpylUlRmERgU06jgiIiIiIu6g8OaF7C47u3N3A9Uv0N54fONpl/fl72P257N5d9+73Df0PpbPWg5wxuXvZn9HuH/4WdW0Pb2QAZYjENkdrIHn/uFMJsKv/gUhkyef+zGAtN15HNpygrgBfgSGaaISEREREfE8hTcvYxgGt626jX/t/ReGYfD8tuf59NCnAKdc7t6mO/cMuYfpXabja/bFz1IdZM607Gs++1sed2ScZG2bGZjG3n3On81ZWMihiy6maPmKcz4GgKPKybfvHiAsxka7/gpuIiIiInJ+0DNvrVipvZRv07+lX1Q/2vi3YVXaKiZ3nsz0xOk4DScmk4m3p7xdM5X/qZZNJhNzesxp0jodThe7M4voM3g89Ol9VvsaDgfF//kPtkGDKPr8cxxZWVg7djjjPlXlDo7uzsMvwIeOvSM4tr8Ap8NVs7x/UxZFOeVMv2MA2aVHGvPRRERERETcRuGtlTEMg/f2v0e7oHZ0DunMPavv4fFRjzMgagC/X/N7jpUc46b+N9W0/+ntjadbbmqHckpIcBximusg2BPAt+HPmJ38+GOyHnyIDq/+P0KmTMEcFIR/z9O/G85wGXz+wnaOHyokulMwHXtH8P2KNCpKqmqW03bn0WNELO17hJO9VeFNRERERM4PCm8tTGphKmnFaQyLHUZueS6HTh6qtZwUk8THBz+mc2hn/jDyD/x7xr+JDIjE3+LPv2f8m9jAWE9/hDp2pBcyzbKBQTuWwdQFDd7PMAwK3nkXn9hYbIMGYQ4IIOzyy8+4z74Nxzl+qJCRs7qQMLB6+v9xv+iOy2XULDuqXIRGa5ISERERETm/6Jm3FuartK+4fdXtFFUVsTpjNbd8fUut5XJHOX8f/3ceH/U4vhZfOod2JtgaXLPs7+Pv6Y9Qx5pDuQzySYG2fcCn4c+YVWzfTuXevUTeuABzQP1hq7ykinUfHSa2Syj9L+pASET1PkFt/Gsth8XYGj1TpYiIiIiIu2nkrYVwGS6+y/iOX/b6JcNihxHqF8rFnS6mV0SvOsvnMmGIp+SVVLJ8VyZP+qVianfVWe1befgwlshIQqZOa1D7dR8fpqrcwdg53TGZFc5EREREpGXRyFsL8dXRr/j1ql+z/vh6+kT2wdfsS2RAJH2j+tZZbkne35JBnCsTf1cptBt0VvuGXX45XVd9jSWo/lcL7Ft/nH3rjjNgfAci4oLOtVwREREREY/RyNt5zu6yk1qYyriO4/jLhX9hdNxoT5fkNk6XwVsbjzI7JhtOAu0GNnjfwqVLweEg5NJLT7m9tLCSwFA/CrJKAYjvF8kFk+O5YHJ84wsXEREREfEAjbydhwzD4B+7/sH6zPXkledx5edX8u6+d7m408Wt6lms7w7kkFFQTr+BQ2HEbRDVo0H7GS4XOX99loIPPjjl7yMrpZDPn9+Oy2Ww/pPDLH1hB77+FoZemoDFR195EREREWmZGjXyNn/+fPLy8vDxqT7MI488QlpaGi+99BJ2u51rrrmGefPmuaVQb1LhrODTw58yoHgAdw++mz+N/hOJYYmeLsvt/rXhKJFBfgwbeRH4jG/wfq6SEvx79yJkwoRTbt/xnwwKc8px2l0MTO6EX4APFotCm4iIiIi0bOcc3gzDICUlhW+++aYmvGVnZ3PnnXfy8ccfY7VamT17NkOHDqVLly5uK7g1O15ynEc3PMpDwx/i9QmvE+oXislkIjk+2dOluV16fhlr92ewIvp5rKkm6HJxg/e1hITQfvHiU24rK6ri8LYT9Bkdh6+fhdjEUHeVLCIiIiLiUec8HJGSkoLJZOKGG27g0ksv5c0332TdunUMGzaMsLAwbDYbEyZMYNmyZe6st1Uqd5RT6ayk1F7K/oL9pBWnEeYf1qpukfy5dzalsdDybzoVboGz+Jz2zEzSrr+BigMHTrl977pMXA6D3mPi3FWqiIiIiMh54ZzDW1FREcOHD+eFF17gH//4B++++y6ZmZlERUXVtImOjiY7O9sthbZGW7O3YnfZeXDtgyxYsYBOoZ348rIvGdx2sKdLa1KVDierNv3AQp/PoM8sSLyowfsWvP8+pWvXYgmsO8Oky2Wwe3Umcd3CCI+tfwZKEREREZGW5Jxvmxw4cCADB1bPDmiz2Zg1axZ//OMfuemmm2q1O9vRo127dp1rSU1q69atbj1eTlUOdx+4m8tjLqeHfw+iLFFs3LKRAEv9L5tu6VanlTOxajk+Pg52Rk+nqqG/W4eDgHfexTVgADuysiArq9bmgjQ7xXkVtB1gdmt/ubvvpWVR/3sv9b33Ut97L/W9d2sJ/X/O4W3Lli3Y7XaGDx8OVD8DFxcXR25ubk2bEydOEB0dfVbH7dOnD35+fudaVpPYunUrSUlJbj2m0+XkufbP0TOiJ9G2s/sdtXRPbfqO53y/gcRL6Dvm1FP9n0req69yorCQ+JtvIui//ZGVUsgXL+3g2qdGs2zrTmwhDi6+bIjbJihpir6XlkP9773U995Lfe+91Pfe7Xzp/8rKyjMOZp3zX7jFxcU8+eSTVFZWUlJSwieffMJTTz3F+vXryc/Pp7y8nBUrVjBmzJhzPUWrVeWs4rVdr9E7srfXBbd9WUVkpKVgCozENPj6Bu1jOBwABI4aTZu5cwkcNapmW0WJHV8/C06Hi54j25F8fW/NLCkiIiIirdI5j7yNGzeO7du3M2PGDFwuF3PnziUpKYk777yT+fPnY7fbmTVrFv369XNnva3C1uytPLvtWfpE9iEyINLT5TSrNzcc5YQlBstNayDQWm97wzA4+ouriVx4M0FjxtD2wQdqttkrnXToFc7VfxgBQKfeEU1Wt4iIiIiIpzXqPW933HEHd9xxR61106ZNY9q0aY05bKs3vN1wvrjsC+KCvGtGxJJKB+u/38713Wy0CWrYrbGVBw5S/sMPVKakEPSzUdwfvkpj13fHmPfwMKwBjfoqi4iIiIic93R/WTN5bMNjALz0w0tct/w6LCYLZpN3/fqXbDvGXNfn3JW6AMryG7SPJSyUyFtvJXTKlFrrXU4Xe9ZkEtEuUMFNRERERLyCd6UHD0kvSueDAx+w6fgmEsMS6RzamVA/73p5tGEYfLB+P1f5foep16VgC2/Qfr4xMUTdegs+P3kFBUDqzjxKCirpM6Z9U5QrIiIiInLeUXhrBnHBcbx4yYskhCWQHJ/MomGLCPT1rveQbT1aQLfclQQZpZguuK5B+9izsjg8cRKlGzbU2bbru2MEhvkR30/PuYmIiIiId1B4a2IVjgpe/OFFEkITvG5ykp/614ajXOPzFa7IHtBpRIP2KV61iqrU1DqjbidPlJG+J5/eo9th1sySIiIiIuIl9JdvE9t2Yhuv7HyF9OJ0T5fiMSeKKsjYtZbephTMQ66HBr64veTrVVg7dcKakFBr/e7vjmE2m+g1sl1TlCsiIiIicl5SeGtiw9sNZ/nly7kg5gJPl+Ixj3+xl0wjgoIhd0G/qxq0j7O4mNJNmwi6+GJMPwl7hmGQujOPzgMiCQw7v17mLiIiIiLSlBTemtCevD38etWvcRrOWgHEm6w5mMuSHzK54sIk2kx+APxDTtvWMAyyHnucjDvuxKiqInzePEImTarVxmQycdWiwYy+qltTly4iIiIicl7RHOtN6HjJcQ4WHCTIN8jTpXhEhd3JA5/u4qmgt5lhGw6cOXBVpaZS8NZb+HXrhk9EBDH33lOnzcrXd9OpTwTdBrdtoqpFRERERM5PCm9N6OJOF3NRx4u8ctTNMAz+vPIA4Xnfc4Xf51Daud59/Dp3puvaNZit1lNuryp3cDK7nOhOdneXKyIiIiJy3tNtk00kpTCFaZ9MY3vOdk+X0uwq7E5+8/52XvvuAC+E/gtCO8CF99W7X9nmzZgDAzEH1n2NwoHNWeQdK+GKey+g34V6t5uIiIiIeB+NvDWRCkcF7YLa0Tawddzet+tYIR9uzcDpMuptu+VoAXuPF/Fut7W0TUuBGe+A9czvtbMfO8bRq+cTfffdRFz7q1rbNn2WwualqSQOiiK2Sxgms/eNZIqIiIiIKLw1kYTQBF4e/7Kny3CLJduOcc9HOzCZwGat/ytjs1pYNmw3PX54GfpcDj0m17tP8ar/ABB80bha68tLqtjyRSpdkqK55Fe9zu0DiIiIiIi0AgpvTSC3PJdJH03ioREPMTVhqkdq+HLncXYeK2z0cY4XVvDJtmNM71DKHxP3YuvQD3rPhPICWPts3R38Q2HUHVDcC8JcMPquBp2neNXXWBMTscbH11qfuiMPw4BBEzph8dFdviIiIiLivRTemoDLcHFF9yvoGd6z2c9d5XDxyOe7eXNDGhazicbeYWgymXi8VwZzMh7FtKEEKuZVh7fKYlj3XN0dQttXh7fgtnDhvQ06h7OklLLNW4j41a/qbDuyPYegNn5EdvDOGTtFRERERP5H4a0JVDmr+N0Fv2uSWSa/2pPNoZyS027/em82m1MLeCipkl+2Tasb3gLCIOma6uVNr0BVad2DDL4O/IJh/5dweFV1u3YD4Kq3IDSuuk1YR3gw1w2fCCxBgXRZvgx8an8dHVVO0vfm03N4rFfO2CkiIiIi8lMKb25md9qZ+elMru51NbcNus2tx159MIfr39hyxjaBVgt/nT2A6YkWeOkuKMur3SA84cfwtvoZKD5e9yD9rqwOb7s+gp0fQP85MHUx+Aa454P8RNGKFVSlHiVywQ11tqXvK8BR5aJz/yi3n1dEREREpKVReHMzp+Hk3iH30j28u1uPW2F38sCSXcxoc4T/u3k+Vv9AzEf+g6ngaK12lhPbsXQfCv5hcMeuugf66QjWbdvAOMXskT7+1f8//QW49Hnw9XffB/mJ4m++4dhttxPQvz8R1/wS08/e7xabEMpF83vQrltYk5xfRERERKQlUXhzs6zSLC7ueDFh/mFuPe6L3xwmKv97/uL3CDingTUEtv8L9iyp3dDsC90nQ/eJYLWd+aD1jaT5+DWq5voEjRhB9F2/pc3VV9cJbi6XQdrePDr3j9JEJSIiIiIiKLy53eMbHye3IpePL/24UccxDIN1h/PIK62iosrJq9/s56vgN8CvHdjCqxtN+wtM+lPtHa2B1bc8nsecxcXk/f3vRCxYQMT119fadvxwISX5FQS28WPlq3tIvq43XQfHeKhSEREREZHzh8Kbm9068FaKq4obdYwKu5P7P9nFR99n1Kz7TcCXxFalwuXv/RjOAto06jyekvPXZyl46y2CkycQ0LdPzfqyoio+eeZ7DJfBjc+O5fJ7kgiPPfPLvUVEREREvIXCmxtllWbhMlwMiR3SoPYny6rYln6y1jqXy+DZVYfYnn6S2y7uyqX92xGQ9i3tvvwAuk6tvh2yBSvfuYuCt9+mzdy5tYIbQOqOXAyXwZRb+mHxMdO2c6iHqhQREREROf8ovLnR0pSl/OX7v/DNld8QERBxxrYVdiczX1zHkdy6U/WHWg2+HriaxKEDISQI1i2tnkTk57dItkA5ixdjCQ8n6o7b62w7sj2H4Ah/OvWJ0KsBRERERER+RuHNjS7vejndw7vXG9wAXvrmMEdyS3n6iv50aWPBlre7eoPhJH7ns1j3roH4RBi6AMb8Di75Pwhq2VPmG4aBbfAFBI+/BEtw7efyqiocpO8toPeYdgpuIiIiIiKnoPDmJg6Xg/+k/4dRcaPqbZuSU8L/+2Y/93Y5xqxBkyE/Bd64/McGFj+Y8TcYMKf65/DOTVR18zKZTETefPMpt6Xvzcfp0DvdREREREROR+HNTfbl7+PBdQ/y1JinmNi57nNp5VVO0gvKAHj437u53vcLbsp4GzIGQUwf+MVPZqeMSIQ28c1UefNwVVSQOnsOkbcsJGT8+Drbj2zPxc/mQ7sues5NRERERORUFN7cpHdEb5ZMX0KMre609hV2J1OeW01KTvXzbe1NObwR8DF0mwod/ju5SZeLm7PcZlf0xZdU7tuHJeTU4azfuPZ06hOB2aJ3uomIiIiInIrCm5usSl+Fn8WPxLDEOtueX3WIlJxSHprSnY6+xQzc+QqWE5ZWMQHJmRh2O468PABsgy8g6je/wTZkcJ12J0+U4XIadBkU3dwlioiIiIi0GApvbvLy9pdp49+mzjNvh04U8/J3h7lsUBy/GhAMzyRVb0h+DELbe6DS5lF5+DAZt9xKVWoqAN02byJywQ2nbLt37XG2f53OtU+Pwuqvr6SIiIiIyKnoL2U3+eekf1JUWVRrnWEY3P/JLi7z3ci9w66sfrn2tGfBFg7dJ3uo0nNnOJ24yitqrTP7+2Hy8cFVVobhMjBbfbEfP07qlVdh8vcnZtEiTH5WzH5+dY6Xk1aM0+EiaVIn2iaGKriJiIiIiJyB/lp2g6zSLJYdWcakzpNqrV+xJ5vjqXt5K+AlfDalw6zXIOmXHqry3BmGgclkomL3blKvvKrWtg4v/42gsWM5csWVVB0+TMyDD9BmzhzCr7uWsJkz8Y2NPeUxT2aX8fHTWwmPDWTWvRfQuV9kc3wUEREREZEWS+HNDXbn7eaZrc8wNHYoMYE/TliydHsmf/T7JxYfX0j+gwcrPHf2rCyO3XUXMffci0/btkTffXet7daEBAAirr0WZ2EhtoEDMZlMRC1ceNpjGobBt+/sx2wxM+mmvnqvm4iIiIhIAyi8ucHFHS9m9VWrCbIG1ayzO13YD6xgJD/ARU9ASLtmq+d/I2W5f/sbOc8+V2tbjx3bceTmcuii6tktE7/8AmunTuzt2w+czpp2ETcuIPr228lZvJjKPXtx5ucR0LcPEdf+6pTnDLv8sgbXd3BzNhn7Chg7pxtBbfzP4ROKiIiIiHgfhTc3eH//+4T6hTIhfkLNuo0p+VziXIPdPxTfwdc3Wy2l69eT++JLdPjbSwQMHETEjQtqNzCZMAcG1qw3h4QAEHnDDRiGq6ZZ4ODqWSGDJ0wk4sYb8fvvCFtjVZTaWfPBQaLjQ+g1Os4txxQRERER8QYKb27w/v73iQ+NrxXevtqdyULzTkzdJ4DF1y3ncZWWYg4MpGzLFtJvubXWtg4vvUjAwIFk3n0P5tAQnIWFBA4dQuDQIXWOYwkOJvr222uti7rt16c8Z/BF49xS+/9sWZpKRYmdab8egNms2yVFRERERBpK4c0NPpj2AeWO8pqfDcNgxd4c8uL/yXPju7jlHEVffknW/z1Ch1dewRIRQei0abW2+0REYDKZiLjhBkIvuwxLUKBbzutOjione9Zl0nVIDFEdgz1djoiIiIhIi6Lw1kgphSksObSEuT3mYvO1AbA7s4jMwgruuKTfOb/LrWLPHo4/9DChM2cQNmsWOX/5K9bOnfFtG4NPVBRtF91/yv3C5199zp+lqflYLVx+dxIWi9nTpYiIiIiItDj6K7qRDp88zJt73sTustesW7k7i4+sDzG5/NNzOmbh50tJnTsPx4kT+LaNxWy10vH11+j4z3/gExXlrtKblWEYbFhyGMNlEBZj83Q5IiIiIiItjsJbI43vNJ6N8zbSPujHEbaDuzaRZD5IkK3+kFK4dCkpM2aS8evbAChZs5bMu+7Cv3dvOn/0Yc0zZ77t2mG2WpvmQzSD4rwKdvwng+wjRfU3FhERERGROnTbZCO99MNLxAbFMqPLDADyS6vonPcd+ALdJp12P3tWFj4REZgDA/GNi8Mnpvr9cJbQECJuvomom2/G1ILD2s+FRAZwzZ9GapISEREREZFzpPDWSKuPraZ7ePea8LbpSD7jLVsoiexPUEjsKfcxHA7Sb7oZn5hoOr78MsEXXlizLaBvXwL69m2GypuWy+li89JUMg+exOV0UVpYRfJ1vWmbEOrp0kREREREWiSFt0Z6e8rbuH7yfrTd+/Yx0ZyCo8+i0+6T/+abVO7bR+TCm5ujxGZXUWJn2Su7OLa/gJjOIfj4mmkTY8MW0npGEkVEREREmpvCWyNsz9nOB/s/4NaBt9I2sC0ApUc24cSMT6+ptdoaLhcms5nCz5eS8+xzBI0dS/D48Z4o+5yk7c5j13fHMIza66cs7Mf+jVkc2nqiZnnDksOUF9u5aH5Peo449eijiIiIiIicHU1Y0ghZpVmsObYGP4sfAIVldl7P783/G/YVRPWoaVe2dStHps+gKjUVV0kJtgH9afvgA5hM5//zX4ZhsHVZKp89v50TR4spKaio+V/pyUoA7BWOWsshkQHM+O1ABTcRERERETdq1Mjb888/z5dffgnA2LFjufvuu7nvvvvYunUrAQEBANx6662Mb0EjTGdjQvwEJsRPqPl5c8oJMFwM6BYP/w1mhmGQ9egfcJaW4BMdTZvZV9Fm9lVNWpfhMtjxnwxOpBUR0S6IQRM6semzFHyslprlwtzyU+778/aJg6LZsjSVLknRXDS/J75WS519+oxtT5+x7essi4iIiIiI+5xzeFu3bh1r1qzhk08+wWQycf3117Ny5Up27drFm2++SXR0tDvrPC89vO5heob35Koe1WGs8PuP2Oj3Z0KDvgIiADCZTMQ+9gdcJaWYG/DqgMaqKnew8vU9pO7IJSjcr2Z2x7zMUqz+lprl3PTiU+7/8/ahUQFc8fvBtGlraxEjhSIiIiIirdU5h7eoqCjuvfderP+dzj4xMZHMzEwyMzN54IEHyMzMZPz48dx6662Yza3v7kzDMEgvTifa9mNIjcj4Cn+LC7/IzgDYMzOxHzuGbfBgt5zT6XCx/et0ojoFE5sYyroPD9F5YFTNMkD6vgIKc8oZfVU3+l4YVxO4Jt344wyWP10+nZ+2CY8NdEv9IiIiIiJy7kyG8fMpKM5eamoqs2fP5u233+aZZ57hkUcewWazceONNzJ16lSuvPLKeo9RWVnJrl27GluKx5RVVtFv+WUcCB6Oedz9APj+6018vvqK8hdfgMDGBaCqMhcHvyqjONtJ/HB/orpb2fZOMe2T/IjqVr0M4ONnovPoAELbaS4aEREREZGWqE+fPvj5+dVZ3+i/8A8ePMiNN97IPffcQ0JCAi+88ELNtquvvpolS5Y0KLzVV6gnbd26laSkpFrrVmes5t397/J/I/6PyIBItn3zCaGmMoIuuIKeSUm4yss5uG4dQcnJ9Boz5pTHTd+Tz7GDBQD0vbA9FaV2Dm7OrrUMgAEHNmZRUWKQfF1vug6ufqH3kGE/Huuny+I+p+p78R7qf++lvvde6nvvpb73budL/9c3oNWo8LZ161Zuu+02fv/73zNlyhT2799PamoqEyZUT+JhGAY+Pq1zBKjMUUZWaRbB1mAwDEI2/YVCI5DOQ6pfEVD0xRe4iopoM2d2nX0Nl8GmpUfYsjQVTNXPxXW9IIaTJ8r4fnlareX/CY0K4LLf9SOqY3BzfUQRERERETmPnHOyOn78OLfccguLFy9m+PDhQHVYe/zxxxk2bBg2m4333nuPmTNnuq3Y88lPZ5osyM8lu8TBzo4LmWGrDlel6zfg17ULARdcULNP2p48cjNKyDx4kqM78+gxvC1j53bHx7d6IpGIuCAWvhhdZ1lEREREROScw9urr75KZWUlTzzxRM262bNns2DBAubMmYPD4SA5OZmpU6ee4Sgt100rb2JU3Ch+0esXfLiriMeq7mPZlFE129s99STO/HxMJhNV5Q58/SykbMth9+pMzD4mRl3ZlX7j2msGRxERERERaZBzDm+LFi1i0aJFp9w2b968cy6oJXC6nPhZ/PA1++L69il2rffngk5J9IgNA6Dw86X49+qFX0JnDMNg5et7cDldTL6pHyNndcVsMWHxaX0zcIqIiIiISNNpnQ+kNTGL2cJfL/orlJzAeLcb/R0TuGjiZQAYdjtZDz5I8ORJtPvDHwBIGBCF0+HC4mum7iuuRURERERE6qfwdg4+O/wZb+99m5eiLyQMgxXWS/hnn7YA2LNP4BMVRdCoUVRVONizJpO+F7bXSJuIiIiIiDSKwts5CPINItgajHXvCjKMSAYOHoWfT/WYmrV9HInLl2EYBttWpLH+k8PEJoYR0znEw1WLiIiIiEhLpuGgczC2w1j+fuFirEdXs9KZxNyhnWq2FX35JRV794IBu1cfo11XBTcREREREWk8hbezlFeex+h3R/Plxr/i46okJ+4SOoTbADAcDo4veoCC994jbU8+RbkV9Bkb5+GKRURERESkNVB4O0tVzirGdxpPpnkI11f9lsFjJ9dsq9i7D1dpKbbBg9n1bQYBIVYSBkR5sFoREREREWktFN7OUqhfKA+PeJiVuwPZFzqKMT1+HFkr27wZAGfX/qTuyqPXyFhNVCIiIiIiIm6hCUvO0rwv5tHZHMHc9AxOjlyExfzjS7Yrdu3C2qkTB/ZUYgJ6j9YtkyIiIiIi4h4Kb2fBMAxmdplJ8dp/M9G8meIhPWttb/f0Uzjz8ijZUcHA5I4Eh/t7qFIREREREWltFN7OQmFlIVd0nUXeh4+xN2Ag/cMjarY58vJwFhVhietI33FmzD8ZkRMREREREWksPZB1Fv6242+Me38cbY0sKhIn1tqW/69/kTJpMrtXHODV366mtLDSQ1WKiIiIiEhrpJG3s5DcKRn27MCHfSSMnFWz3nA6KV27jpDJkzD3iKVnuQ+2EKsHKxURERERkdZG4a2BKp2VtPFvw6SMIxzw6Ua3dvE120wWC/Fvv4WzrIwKlz+jrujquUJFRERERKRV0m2TDbQvfx+XLrmUOUxj88A/1qwvXLqUrEcexXA6Kanw5Z/3rWX/huMerFRERERERFojhbcGah/Unilt76S8PJHBFwwFwFVZSfYTT1C+YwcmX1+OHSgAIDo+xJOlioiIiIhIK6TbJhuo1F7KqJ2f0McWRdfoKwEoXr4cZ04ucX/6EyaLhcyDJwkIsRIWY/NwtSIiIiIi0tpo5K2BntzwBH8PPUiXcCsmU/VrAArefgdr587Yhg/HMAwyD54krmtYzXYRERERERF30chbAyX7DiAi/yNsg8cBYLhcBI+/BJ+oKEwmE4U55ZQUVNKua5hnCxURERERkVZJ4a0BnIaTkxk7GFdRSVXvkdUrTSYirrsOAMMw2LMmE4C4bm08VaaIiIiIiLRium2yAXKqcnjK9S2fBMYQEdMeZ3ExhydMpGjlSgAqyxzsW3+cxEHRtInV824iIiIiIuJ+GnlrgDCfMB7NdhBsSQCg8NN/Y09LwxzVlq/f2MvoK7ty+T1JBLfx1/NuIiIiIiLSJBTeGiC9LJdHy27m7qFJAARfcjGYoCioAwc3/UC3C2Lo0Cvcw1WKiIiIiEhrpvDWAEuyvoQO2+nSdS7OkyfxiYoi6LKraONv4eo/DCcwzM/TJYqIiIiISCun8NYA4/OtjCiw0ic2iOOL7qPqaBq7L3wAs4+ZyTf39XR5IiIiIiLiBTRhSQM4y7cx2jhBYFkxxSu/4mTvCaTtyad99zZ6xk1ERERERJqFwls9CioKeC7yJF+Ex3Lyo4/A4eCQT2/CYmz0vTDO0+WJiIiIiIiXUHirR2VuPu8eO86g4CEUvPc+9pFTyDleSd8L4zBb9OsTEREREZHmofRRjy07l5JvsdAxcTQdXnyB7EFX4GM1031YrKdLExERERERL6LwVo9vjq/k9pgoOnQZiNEhkZR95XQbHINfgOZ6ERERERGR5qMEUo8BXRfh3LGMwgcf5XhlOK6AS+gztr2nyxIRERERES+j8FaPX4weSk9/M2X/uIUOEyfS956RBARZPV2WiIiIiIh4Gd022UAhi/8fm0MmUVZU5elSRERERETECym8NYTdjiOiPUXF4Gu1eLoaERERERHxQrptsgGsL7yIy2zmF/96w9OliIiIiIiIl9LIWz0Mlwvzvn2sDZ3JnrWZni5HRERERES8lMJbPSoPHKDcCKbAEerpUkRERERExIspvNWjbNNmCsK6AhDXLcyzxYiIiIiIiNfSM2/1sA0ZTP73VgL9/QiJDPB0OSIiIiIi4qU08lYPv+7dKTRFE9ctDJPJ5OlyRERERETESym81eNkdhn2coN2XcM8XYqIiIiIiHgxhbd6HDtwEoC4bm08W4iIiIiIiHg1hbd6tGlrI6aXldBoPe8mIiIiIiKe0yTh7bPPPmPy5MmMHz+et956qylO0WziurWh88gAPe8mIiIiIiIe5fbZJrOzs1m8eDEff/wxVquV2bNnM3ToULp06eLuU4mIiIiIiHgNt4+8rVu3jmHDhhEWFobNZmPChAksW7bM3acRERERERHxKm4PbydOnCAqKqrm5+joaLKzs919GhEREREREa/i9tsmDcOos+5snhfbtWuXO8txm61bt3q6BPEQ9b13U/97L/W991Lfey/1vXdrCf3v9vAWExPDli1ban4+ceIE0dHRDd6/T58++Pn5ubusRtm6dStJSUmeLkM8QH3v3dT/3kt9773U995Lfe/dzpf+r6ysPONglttvmxwxYgTr168nPz+f8vJyVqxYwZgxY9x9GhEREREREa/SJCNvd955J/Pnz8dutzNr1iz69evn7tOIiIiIiIh4FbeHN4Bp06Yxbdq0pji0iIiIiIiIV2qSl3SLiIiIiIiIeym8iYiIiIiItAAKbyIiIiIiIi2AwpuIiIiIiEgLoPAmIiIiIiLSAii8iYiIiIiItAAKbyIiIiIiIi2AwpuIiIiIiEgLoPAmIiIiIiLSAvh4uoD/MQwDgKqqKg9XcmqVlZWeLkE8RH3v3dT/3kt9773U995Lfe/dzof+/18W+l82+jmTcbotzay4uJgDBw54ugwRERERERGP6tatG8HBwXXWnzfhzeVyUVpaiq+vLyaTydPliIiIiIiINCvDMLDb7QQGBmI2133C7bwJbyIiIiIiInJ6mrBERERERESkBVB4ExERERERaQEU3kRERERERFoAhTcREREREZEWQOFNRERERESkBVB4ExERERERaQEU3kRERERERFoAhTcREREREZEWQOGtHp999hmTJ09m/PjxvPXWW54uR5rY/PnzmTJlCtOnT2f69Ols375d34FWrqSkhKlTp5KRkQHAunXrmDZtGsnJySxevLim3d69e7n88suZMGEC999/Pw6Hw1Mli5v8vO/vu+8+kpOTa67/lStXAqf/TkjL9PzzzzNlyhSmTJnCk08+Cei69yan6n9d+97hr3/9K5MnT2bKlCm8/vrrQAu99g05raysLGPcuHFGQUGBUVpaakybNs04ePCgp8uSJuJyuYyRI0cadru9Zp2+A63bDz/8YEydOtXo3bu3kZ6ebpSXlxtjx4410tLSDLvdblx77bXGN998YxiGYUyZMsXYtm2bYRiGcd999xlvvfWWByuXxvp53xuGYUydOtXIzs6u1e5M3wlpedauXWtcddVVRmVlpVFVVWXMnz/f+Oyzz3Tde4lT9f+KFSt07XuBjRs3GrNnzzbsdrtRXl5ujBs3zti7d2+LvPY18nYG69atY9iwYYSFhWGz2ZgwYQLLli3zdFnSRFJSUjCZTNxwww1ceumlvPnmm/oOtHLvv/8+Dz30ENHR0QDs2LGDTp060aFDB3x8fJg2bRrLli3j2LFjVFRUMGDAAAAuu+wyfQ9auJ/3fVlZGZmZmTzwwANMmzaNZ599FpfLddrvhLRMUVFR3HvvvVitVnx9fUlMTCQ1NVXXvZc4Vf9nZmbq2vcCQ4YM4Y033sDHx4e8vDycTidFRUUt8tr38XQB57MTJ04QFRVV83N0dDQ7duzwYEXSlIqKihg+fDgPP/wwFRUVzJ8/n0mTJuk70Io99thjtX4+1TWfnZ1dZ31UVBTZ2dnNVqe438/7Pi8vj2HDhvHII49gs9m48cYb+fDDD7HZbKf8TkjL1LVr15rl1NRUvvjiC66++mpd917iVP3/9ttvs2nTJl37XsDX15dnn32W1157jYkTJ7bYf+dr5O0MDMOos85kMnmgEmkOAwcO5Mknn8RmsxEeHs6sWbN49tln67TTd6D1Ot01r38WtH4dOnTghRdeICIigoCAAK6++mq+/fZb9X0rdfDgQa699lruueceOnbsWGe7rvvW7af9n5CQoGvfi9x2222sX7+e48ePk5qaWmd7S7j2Fd7OICYmhtzc3JqfT5w4UXOLjbQ+W7ZsYf369TU/G4ZBXFycvgNe5HTX/M/X5+Tk6HvQyuzfv5/ly5fX/GwYBj4+Pvr3QCu0detWrrnmGn77298yc+ZMXfde5uf9r2vfOxw+fJi9e/cCEBAQQHJyMhs3bmyR177C2xmMGDGC9evXk5+fT3l5OStWrGDMmDGeLkuaSHFxMU8++SSVlZWUlJTwySef8NRTT+k74EX69+/PkSNHOHr0KE6nk88//5wxY8YQFxeHn58fW7duBWDJkiX6HrQyhmHw+OOPU1hYiN1u57333mP8+PGn/U5Iy3T8+HFuueUWnn76aaZMmQLouvcmp+p/XfveISMjg0WLFlFVVUVVVRVff/01s2fPbpHXvp55O4OYmBjuvPNO5s+fj91uZ9asWfTr18/TZUkTGTduHNu3b2fGjBm4XC7mzp1LUlKSvgNexM/PjyeeeIJf//rXVFZWMnbsWCZOnAjA008/zaJFiygtLaVXr17Mnz/fw9WKO/Xo0YMFCxYwZ84cHA4HycnJTJ06FeC03wlpeV599VUqKyt54oknatbNnj1b172XOF3/69pv/caOHVvzN57FYiE5OZkpU6YQHh7e4q59k3GqGztFRERERETkvKLbJkVERERERFoAhTcREREREZEWQOFNRERERESkBVB4ExERERERaQEU3kRERERERFoAhTcREREREZEWQOFNRERERESkBfj/gm3DUGSfSFIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMgAAAKYCAYAAACGkMTCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe/UlEQVR4nOzdeXxU9b3/8ffsmUlmsi9AAknYBIwsKovihjtSta20tlbbW3evVWrtT2rVq72t2trr3sUirl2uqL1tVVxaF1DBBUVkkz0QAiEbWWcmmeX8/oiMpglCkHDmTF7Px6MPMmeZ8z7z/eRIP3zPGZthGIYAAAAAAACAAcpudgAAAAAAAADATDTIAAAAAAAAMKDRIAMAAAAAAMCARoMMAAAAAAAAAxoNMgAAAAAAAAxoNMgAAAAAAAAwoNEgAwAAAAAAwIBGgwwAAAAAAAADmtPsAAfT8uXLZRiGXC6X2VEAAAAAAABgskgkIpvNpokTJ37hdik1g8wwDBmGYXaMg8owDHV2dqbceWHgoIZhZdQvrI4ahtVRw7A6ahhWlir1u7+9opSaQbZn5lhFRYXJSQ6eYDCotWvXasSIEfL5fGbHAfqMGoaVUb+wOmoYVkcNw+qoYVhZqtTvypUr92u7lJpBBgAAAAAAAPQVDTIAAAAAAAAMaDTIAAAAAAAAMKDRIAMAAAAAAMCARoMMAAAAAAAAAxoNMgAAAAAAAAxoNMgAAAAAAAAwoNEgAwAAAAAAwIBGgwwAAAAAAAADGg0yAAAAAAAADGg0yAAAAAAAADCg0SADAAAAAADAgEaDDAAAAAAAAAMaDTIAAAAAAAAMaDTIAAAAAAAAMKDRIAMAAAAAAMCARoMMAAAAAAAAA1qfGmQvvviirrzySh1//PGaMGGCzjnnHD3zzDMyDKPbdk8//bROP/10VVRU6Oyzz9brr7/e471aW1t14403avLkyZo4caKuueYa1dbWfrmzAQAAAAAAAPqoTw2yxx57TF6vV3PnztXvfvc7HX/88br55pv1m9/8JrHNCy+8oJtvvllnnnmm5s2bpwkTJujqq6/WRx991O295syZo7ffflu33nqrfv3rX2vLli269NJLFY1GD8qJAQAAAAAAAPvD2ZeNf/e73yknJyfxetq0aWpqatKjjz6qq666Sna7Xffff7/OOusszZkzR5I0depUrV+/Xr/5zW80b948SdLy5cv11ltvaf78+Zo+fbokqaysTDNnztQrr7yimTNnHqTTAwAAAAAAAL5Yn2aQfb45tseYMWPU1tamYDCoqqoqVVZW6swzz+y2zcyZM7V06VJ1dnZKkhYvXqxAIKBjjz02sU15ebnGjBmjxYsXH8h5AAAAAAAAAAfkSz+k/4MPPlBhYaEyMjK0efNmSV2zwT5v+PDhikQiqqqqkiRt3rxZZWVlstls3bYrLy9PvAcAAAAAAABwKPTpFst/t2zZMi1cuFA33HCDJKm5uVmSFAgEum235/We9S0tLfL7/T3eLzMzU6tWrfoykWQYhoLB4Jd6j2QSCoW6/QlYDTUMK6N+YXXUMKyOGobVUcOwslSpX8MwekzQ6s0BN8hqamr0wx/+UFOmTNFFF110oG9z0EUiEa1du9bsGAddZWWl2RGAL4UahpVRv7A6ahhWRw3D6qhhWFkq1K/b7d7nNgfUIGtpadGll16qrKwsPfDAA7Lbu+7UzMzMlCS1trYqPz+/2/afXx8IBFRTU9PjfZubmxPbHCiXy6URI0Z8qfdIJqFQSJWVlSotLZXX6zU7zn7bWfOB6hrXKeD0qdw3SG3RkDYGd8hjd2lM5gh1FlZoVWPXbMGJobBsNptWtVYqasQ0Kr1YPodHG9t3qC0WUsmgKcrOHq7qtmrV169WUSymQZ4c1Xc2a3u4vtsxNnQ2yp0/RmOyxygaDWvN+r9Kksb7y3s9xnq3R212aZh/mHLad6u6ca3qO5tV6MnucYyy7MPUmlWsjc0b5TEMjevoVNSIaVVrZa/HGFF6mny+PG1s3qj2ujUqdfiU7fJre7i+xzGqjIj8+WNUHihXW9tObd72etdnlTG012N87HErarNpVNYopTdu0abd69UWC2mYt6DHMYpyx6rOk67t7dsViBsa0dnZfTz+7RgVh50vm92uVQ2rFK/7RKO8Bd3G4/PHqHN5VJA3ToPSB6m+fq121C7vMea2mJTZ7FT+oCKty+yaTTo+d7wcOz7QqpZNvY75MG+BMvOPULUiqgvXqSgW1+BIpNcx3xjcIbcrQ4eNPFvReFSrGlbKXrd2r2O+sX2HWjJyNSyvQtmebO3Y8Z7qmzb2OublvkFqtTu0we2Ux+HRGH+54js/2OuYj0ovVlrRRG0M71JbpE2lkZhyYtFex3x7uF7+9CKVDZuhtkibNtavkre5aq9jvqq1Up3ZpRqVVyGf06dNW15Re6i+1zEf5MlRndOlKqddAXdA5e4cBWs+2uuYj/eXyxhylFbt/kRRI6rRnRGlx+O9jnl9Z7MKcg5TUdEk1Yfqtb1+tbJCu3v+nieOsVXxgjEanzteNptNa9Y9q2iso9cxz3b5td3lVq3DpkJvoQbHpYa6lb2O+aG6lpSmlWrTpvUKxz6S2+XiWmLitSRxDEkfp3m4luznteTDxg1qaGjQSUOPVFpaGtcS/l5iuWvJiGHnaOu2bQpmBuVq2cK1hL+XWO5a8mHjBu2qr9XU4gpl+wJcS/h7SdJfS47ImygVjJFk3X7Ev9u4ceN+bdfnBlk4HNbll1+u1tZWPfXUU91ulSwvL5fU9YyxPT/vee1yuVRSUpLYbunSpT2muW3ZskWjRo3qa6RubDabfD7fl3qPZOT1ei1zXuHqDzXntctU6XJqRntQ99XWa43Ho0sHF6q0M6LnWmzquPodXf765ZKk5ZXVchox/bhkiOqdDj1TvVOjOyO6t6hA73rT9Mv2r2nmCbfp2VXP6k9r/6RLm5p1ze5mLfFn6L/zcrod47LBhSoNlOq5rz6n5uZ6Xbr6vq5jbNkmp9TjGPdPOEXvNq/XL4/7pWauXKhntj6vP2X6ez+G/witPe1mXf765SpNH6znVr2jZrtNlw4r6f0YgSLl5c3S/W/dr3d3vqtf1tZrZntQz+Rk936Mkhm6b8Z9+mTD27p09X1dn1X1zl6PccNhE1Tf0ahnvvKM8v71E90b3dr1WfV2jNEX6J2yifrvd/5bM7LH6r4PX+o+Hv9+jPHfkdOVphuev0H1ofqe4/Hvx6i4VNdMukbvfPKk/nvnq72PefVONadl6vJBXQ3w5Rcul/OZC/TjAn/vY15br5kz7tSzsZ1dY55ZoWs+eqHXMb90cKFKY9Jz489Xc0ezLn/jii8c88QxjvulZpbP1DMf/o/+FKrce12VTNTlzoauuprxezU/dd7ex7x6p0ZfuFD3r/1D15h7yjXzkzf2Pub2gO4bM0uf7PpEl7917ReOeeIYX3lGeYE83bfsF3pX4b3W1dJxp+q/g+u66mroV/TJ37+39zHfsk3Oudt0w9JPxzyUrtyatXsfc/8YXfO1BXqn6p2uutrbmO85xupPx9zu1I+X/1L1Dtve62riWfpT08quuupwaMmS23sf80N0LXnq9KcU6dyt/9z0W64lyXIt8Wbq8iKuJft7LfnPPcdYdhfXEhOvJfy95MCvJW+P+pok6eYPblZDuIFrCX8vsdy15Kd7PquP79UgriX8vcQK1xKVyfndf+jzrNSP6M3+3F4p9bFBFo1GNWfOHG3evFl/+tOfVFhY2G19SUmJSktL9dJLL+mUU05JLF+4cKGmTZuWmNJ2/PHH67e//a2WLl2qY445RlJXc2zNmjW65JJL+hIJSSitdo0W1NRrTkG+8l0ZUm6WPPa4SmNRDbG7pewhstvsKg2Udu2QmyYZcZUoooyYIVfmUCluU6EjqtJYXOmergtOTlqOSl2Zyk5zSLn58jtjKo3Fuh9Ddg3JGCJJstscKo19Gip3uCRbz2N481RqdCrdlS5lFCjHk6XSWEzZaTk9jxEYLI/To9JAqYZ4sqXcEbLLUGks0vsxXF0XkEJfoUrtPqVnFElpduW4Yz2P4UhTvq9r1qXHk6HSmLo+q70dI2OwMjwBuRwuKbNYhU11XZ9Vb8fw5crv9qs0UKr8tBwpd0T38fj3Y3yqxF+ijFBzz/H4/DHcAWWnZUuS/J4slcbUY8wH29wKpxfL8OeoNJD12QFyylSipt7HPKNISgsoJ9ah0kCpstOypNwRvY95LKohDt+nY25XqX+Y1LR172PuiKrUm9c15pJy0rJU2qbexzw3S56MQpW6/V11ZXfKnl2+9zHPHCo5PV1jHihVuj1Pyh3R+5jHYspP66ptj9Oj0vRBGhKt+eK6Sh/cNeaSCl0BlYbDe68rb45KnaVddeXyyRMYsvcxzx0u2exdY+7KkMvplCKR3sc8FvtszN1+lablKb+zsefv+Z5jxKNS1rDP6sruUUasc+91lZb96ZhnSza7/L783sf8EF5LZLNrWEyycS0x9VqSOIYnXaWBz80251ryhdeSYbGIDMNQPLtcstu5lvD3EsteS4akD5E/3MK1hL+XWO5aUqyIfNG4nP4SSXauJfy9JPmvJdlDNFDZDMMw9nfjm2++WQsWLNDcuXM1ceLEbuvGjh0rt9ut559/Xtdff72uuuoqTZkyRQsXLtQzzzyjP/7xj932ufjii7Vp0ybdcMMN8ng8uueee2S32/Xss8/K6TywR6OtXLlSklRRUXFA+yejYDCotWvXasyYMZbo2L638z1F41Ed4x0kOdxS5sD95UIXq9Uw8HnUL6yOGobVUcOwOmoYVpYq9bu/vaI+daLefvttSdKdd97ZY92rr76q4uJizZo1S6FQSPPmzdMf/vAHlZWV6cEHH+zRULv33nt1xx136JZbblE0GtX06dN10003HXBzDOaLxCL62Ts/09aWrfrZMT/TV0d+1exIAAAAAAAA+9SnbtRrr722X9vNnj1bs2fP/sJt/H6/br/9dt1+++19iYAkFln2iI6zB9ThK9RppaeZHQcAAAAAAGC/MF0LB8yIx2Uz4jIMQ9FgvdJe/4VuCDfr2nN+o7RP730GAAAAAABIdjTIcEDeW/6wnlh2jx6s3q5dDodOHTpEM/1OXZ85Tvnjv2V2PAAAAAAAgP1mNzsArGf12md1+Yp7tcuIquNz35b6r3Sfth1zuWR3mBcOAAAAAACgj5hBhv1mGIZsNpvGjDpHMz64VzanpDmvKd/p1luRdnk8mUrzZpsdEwAAAAAAoE9okGG/RCNh3bH0NpXljdN3xn5Hd8xeKKfTK7ujq4QylW9yQgAAAAAAgANDgwz71tmu1xacpwWx7XJULtQJJSeoxF9idioAAAAAAICDggYZvlBz42YFnvm+Tt2xXBfl5Wni5B/QHAMAAAAAACmFBhn2qrl5m87/2zk6I9Ssa73Z+vHZf5aGTjE7FgAAAAAAwEHFt1hir159/35td0jPBAJqvehvNMcAAAAAAEBKYgYZ9mpmOKZR1TWKVZwn/6AJZscBAAAAAADoFzTIsFdpu9bo8M5OadhJZkcBAAAAAADoN9xiiV7FY1F9zdim6wry1JxTZnYcAAAAAACAfsMMMvRqW+s2bXA5VeVOU0bhEWbHAQAAAAAA6Dc0yNCrwoxBmnfaPNUF6+RwecyOAwAAAAAA0G9okKFXXqdXUwdNNTsGAAAAAABAv+MZZOjVHQtm6aY/n6L1G180OwoAAAAAAEC/YgYZevVKW6XqHTbNDjebHQUAAAAAAKBf0SBDD0ZLjW6qr9cnHo9Glp9qdhwAAAAAAIB+RYMMPdh2rdLJwZBO9pVIvlyz4wAAAAAAAPQrGmTo4YWN/6ePc7J1Sn6pjjY7DAAAAAAAQD/jIf3o4bWGlfpzpl8rfX6zowAAAAAAAPQ7ZpChh1ktLSqMtmjK+OPNjgIAAAAAANDvaJChu45WnVRbqZNkSCNnmZ0GAAAAAACg39EgQzcbd2/UwgkzNTFq6Lj0PLPjAAAAAAAA9DueQYZu3m/6RPOaV+p/s3PMjgIAAAAAAHBIMIMM3QzPHK6vj/y6xuaONTsKAAAAAADAIUGDDN1M3rZckwNHSMNOMTsKAAAAAADAIcEtlkgw4nH96Z1fatELVyrSXGV2HAAAAAAAgEOCGWRIaGhcrzuz0mU3fHo/a6jZcQAAAAAAAA4JGmRI6GzYqFPbgwq7fXJ7/GbHAQAAAAAAOCRokCFhcLBZd9fWS+Unmh0FAAAAAADgkKFBhoS1NcsU9rhVnjVUmWaHAQAAAAAAOER4SD8S5jd8oIsGF+lvjg6zowAAAAAAABwyzCBDQlZHUIONqMpyRpsdBQAAAAAA4JChQYaEm1xDpJ0rpBGzzI4CAAAAAABwyNAggyQpHA2r+uy7VewvlsfuNjsOAAAAAADAIcMzyCBJWtu4Vuf+/Vyd87dzJJvN7DgAAAAAAACHDA0ySJKaWrYr3elTsb/Y7CgAAAAAAACHFLdYQpJ00taPtHTDJwrnnGB2FAAAAAAAgEOKGWSQJLU2rJckeTNLTE4CAAAAAABwaNEggyTpkvaVmjKsWO864mZHAQAAAAAAOKS4xRKSYahaEYXsduXljf3SbxeLxfS/t/xVOzK6nmeW0VgrX1O9PEaDvEaNOm2ZCtqKFc1wqOqko2UPxVT0zjp52lokSW05hQpm5UqS8io/kT3+WdMuI75FTgVVWX6aOu2ZiubZNPadBQrZCtRhy1dd2WEybHaltTUrUFvd81SdUuWZU6W4oYIlm5W+u06Z8bXaXTJcdf5JsnXGlb1ji1zhUI9923IKFMzKUyTXrdHLn1U84lHQVqyGEeVqGVMg3656Fb63sdfPpL50tOJ2h9LaWhSo3a6M+BZ1Zvm0texUOVqjympbr4KaFYnz2COckamWgiGSpKydlXKHgpKklqJBajh6mGyRqEpfWiZJyoyvlU1xtdhHKi63dg8uUyTNK2dnh3K2b+o6f7tddaWHSZJ8nTUq3vZmYjycalNGfKva/EXaUXicJMlfv1Pelt2SpGBWrtpyCiVJuVUb5Yh0JsajzTZUUZtfLcNz1TB2pNw1YQ15/6OuYxqGqgtK9K+M5UoLh5S1c2vi/GyKKDO+XnGbQxuHf60rl2e7ilcvVYt9pMK+HDUVDe06v11V8rS39vhswwU+7ZxyhJxNEQ16d5XSOhuUEd+qTRNPU6w1U45oVLnb1vc6Lg0lIxRzuWUPtGnEhy+qzTZUHa4c7ZhaoWi2W0XLVsm7s63Hfp3edDUNGtaVq3a70toalBlfr+1jjlYwUipJKq98Ts5oODEeezQXlajD55c9FlPe1nWJ5TsnVSg8JF3Z6zYra31tYjyiSlObfbhiTqcaho6SJKXvrlP67rqu8/dnqSV/sCSpqO4dBZqrEuPhNXbIY+xW9dBj1O7uqqO8retkj8UkSbuHlCni8crZEVZO9ebEeBiyqdnedS3YduoExdLSlPNBlTJ3dP1ORTxp2j2kvKtG6nbK27o7cR57fs/rC8apMTBWsXSnSra/rrSGJrXZh6slf7DC/izZDEP5W9b2Oi51k8rUNqRQ/vX1ylu3UV5jh1z2Vq09+ny56jvka25QRsOuHvtF3WlqLC6X4bIrN/Sxcis/UbN9rIJZudp1zAjJYdOwl9+VvdPosW9r/iCF/NmSpILNaxLnseqocxXbGdWihYs1vPKVxHjsYdhsqisbI0nytTQqo76mq0Z8Gdo57TDFfU4VL/pArpZIYjz2/J4HM3PUllskScrZvknOzg5JUlPRUHX6MmRXVCM2/l+38djze75xxLmKyyV3qD3xOxVzutQwdKQkrrvSwL7uSlLD0JGKOV1ytrcqUL1FKx3LZbPZuO5y3e11XJLpuvvJlK/L3mCXy2hT2aYXFYm71ayyRA1z3eW6m+zX3c/XSFegTnnaP1alz6fNI87rysV1l+tuEl932/KHaOI1l2rs4ECv2VMZDTJIwQa9vnW7qp0uDSme9qXf7u+/eFZNDXnyNXT9Rzcuv9ocfmVXbdHITS+qpuBorRl7nJx1W/XYkkoVRG36bihXEUfXXxLULPmau/YN2oZJjs/ee/SKZ5XZskUr7Mcq1+HW4h0tOvftF7Wp7Gw1DJss77aOT7d0q81R1iObs6NZjy2plN2QftSSoTZHhiYteVCvVe1S54iRyo7b1aEidTh67JrItaymVTPefkWhrLFaM/Y4NW9u0+O7g5rUVKeTezmmJKVVdX76k0ttjjKNXvGsauxR1XQcrZFRh9rrt2vUqs/OIyEk+bZ2fRadKlTnp7miuzr02JJKuWNRXfvpMScteVDOWFhLJ09WyFcg1y7Jpa59P/9Z7Hm/3aHdmvHuZ+OR3bhWoz5+UWuLJsp32FGSpJiy1ObI6tqxVfK1hj6NNURyfDYeHx9+uZryyrRjzSf6S5NLx4WcyvzcMbMaJTV2SLJ3y+LuaNKopfepw+7WDueZkqR1uz/WjBUvaunkyep05CfyRpSniCOvx2fbUblOj8UqNabToVmxwfI2N2vUxy/qb/HhOsozpsf5f55nR0xSSO9GKzXz7Rc/PY9ivffRLn3siemqqgbF/If13LFTn8uVK1vUoVFL79PiJofK87v+UjXkndeV2dGUGI89HHWSr5dx2bimQf/aWqev76yW0zsqMR6tGcV6/6hTJOOzYxrqql1JUvCz5c6NKzVq+9LEeAxZt0RDdi7R6s7RykzP+XTzoYnfKVdN9xrZMx5xm0NvnHCWJOnZdyrV5E7T1Y2fyxv97JjdakRK/J5vPyxdvqIyVTpjKl++SCUdnXr/qFNkb5R8jT3P//M+/LBSS7aG9O2muNIcXeeRW/u+/uo9WVM7XJJ8ve8b68rVajPUWLlUUyvf6zqPVunP72xVp026sd2vSFpuj11t/5Zrz3n8Oe0YHR/LUUM8rFFvf248PmfPZyF5P8vVIb20bId2OOO6oSaiDv9n45H4PW+TfG1d+4Y1ODEuzjrJqZDaFdOot1/sNh57fs/XuE5XQFF1+536XI1w3eW666mOSopKcirsGZlYznWX625vkvO62/656+5p3fblust1N7mvuz3/vjt5+RvqsLtV4+qqK667XHeT+br7Yf5IPVhxon57wZG9Zk9lNsMwerYWLWrlypWSpIqKCpOTHDzBYFBr167VmDFj5PP5+ucgVe9J80+VAsXSdau/1FvtrmvS0ze8rog7U1F3q4yywfLV18i7u15ue7O89kZ1xtMVihcoFnCr/qSjpFBM2UvWyv3pv6i15xUqnN31r0o5m1bLFv+sRNMdO+S0dWj70OPV6ciUcm0qX/YPhePZ6ohnqXH4GBl2h9ytTfLXbO+Rz3DaVHvWNCluyP/2Rvka6xRwbFVrSanq0itk64wrs2qTnL38i1owt0ChnALFc9wq+/g5xTpcCsUL1DxquMJjCuWpbVDW0nU99pOkxvIxMhyf5Up37FA0K13VQ0+QrS2qrLaNyqlbmziPPTr8mWor6nouXGD7Zrk+/Re1tsFD1P7pv6gVLHyva71jq2y2uFpjxYobLjUXlynqTZejI6ysbV3/0mfYbGocMU6S5OvcpaLq9xLj4bSFlO6oUTA9XzUFU7s+79pqpTV3/WtJKDtXwbxBkqSsyvVyRDoT49EeK1TU8Ck4slCtY4fLviuk/HeWdx3TiKu6oEQef0CecFCBHZ+bQWaLKuCoUlx2VZZ1/QcqPW2nCtcuU2usWGFftloHl0qS/Du2yt3Lv6h1Fvm1e0qFbM0R5S5ZIU+kWemOGm0/4kR1tvplj0aUvaX3cWkaNlIxt0euQLtKVrym9lihOpyZapg2Xka2W1nLVstT3dxjv4gvXS1Duv6D5d+5TZ72RgUcVaodPUFtnV3jNWzbS3LEIonx2KN10FB1ZgR65Ko/6gjFhmQoY0Ol0tfsSIxHzHCrLTZEcadTu8u6/vLibdglX2PXv6h1BLLUVtg1W7OwfpnSW3cmxiPNXi+PvVW7Bh+pdk/Xv7plb14je6zrX6mbS8oVTfPJGQ4ps2pTYjwMw6aWWNfnXnf6kYqneZT+wTZlbO/6nYqmpam5ZETXeO3arrSWpsR57Pk9b8obqUb/YTLSHRq8Y4ncDU1qiw1RW+EQdQSyZYvHlbNpTa/j0nz0CIUHF8izrl5Zn6xXmr1ebmdQmyadK3tDp9J21yv90xkDnxf1pKl56AjJaVNOx1plbt2ollipQtm5ajl2lOSwqeDFd2Tr7HkreVvBYHVk5kiGodyNqxPnsWHCGQpVh5XpiWvY9sWJ8djj879TaU0NSq/bKUnqTM9Q0zFjZficynvjAzmaOxLjsef3PJSVo+Cn/xqatXW9HJ1d/8eiZfAwRdL9shtRlVa+2G089vyeV5aerrjNLVewTYHqSklSzOVSU+loSeK6q4F93ZWk3aWjFHe55Whtlq9qo1xOl2w2O9ddrru9jksyXXc3HzlLarTJFWtVybY3FIk61BQpTNQw112uu8l+3XW1t3b7+66MiBwda5Xm82vb8K90HZPrLtfdJL7uhvKLdNQVF2l4fsah6UccAvvbK6JBluQORUE+99qNunfL/+kMZ45+/N23v9R7PXrD0wo258rVsVvn3326AtkZByklrCpVLqoYmKhfWB01DKujhmF11DCsLFXqd397RTykH9ravFm1TqeCni/XzNq8tVnNzV3TWvMr0miOAQAAAAAAS+AZZNBFM+7S8duXKD0t50u9z1OPfKyAbGry2XTlnDMPUjoAAAAAAID+RYMMCmSW6IjMb/Z5vw9feEO163YoFHJL4WYd/vpCLR9zgWZ8c4rsdiYnAgAAAAAAa6CLMcAZhqHvLPyOrn3tWjWEGvZrn0g0rgX/eau8P7pSzude146qHHWuadaI+jWa0PKSpk8Zsu83AQAAAAAASBI0yAa4pqYtWlG3Qq9VvaZ0h3ef27e1d+qu/3pL66JHqd3lU5M/XWnBKkWdEW0YM1lTfnlr/4cGAAAAAAA4iLjFcoDzNu/U72pqVZuRpzT3F38rRfWGHfrL/R8rM+JW1ObV1pse0nnfPOoQJQUAAAAAAOgfNMgGuLTm7ZoeCkuFZV+43Zo31+jt+avlTctVp+I6/PyROvXEYYcoJQAAAAAAQP+hQTbAvVi9SEvzcnRierpm7GWbt96q1OrHNiqalitXR5OmnT9Mk2iOAQAAAACAFEGDbIB7v2Wz/s+foQKnrdcG2d9f2Kgtz22Vy5UhT2iXZlw3ReXjyw95TgAAAAAAgP5Cg2yAOy1iV+HuJh1VdniPdcs+qNa257bKJZuaMh268vazlZOTbkJKAAAAAACA/kODbICb2tqkqU0t0qCpPdZt+NOrsqtYijfq+v8+Vx435QIAAAAAAFKP3ewAMNeD8Tr92Z+hYHpuj3Xh3RFJUqa3jeYYAAAAAABIWXQ9BrBgR5se8qdJ/jSdHRjUY/3QdX+Rv9Om9it/YEI6AAAAAACAQ4MG2QAWUUwXjLlAjeFGZWQUdVsXbG1XYeMOOWSo5MQJ5gQEAAAAAAA4BGiQDWCZnkzNnTy313XLF36otVN/poyWzfpGWfEhTgYAAAAAAHDo0CAbwNZvfFGbd7ynkUOO0fDhp3ZbV/3xdnWkFcpmtMlu51F1AAAAAAAgddH5GMD+tfIJ/XjLM3ry/V/3WLd2bLmWRrcoMi7bhGQAAAAAAACHDg2yASw/0qFJ4bBGp/e8hfKj5qjeyivS4NOPNiEZAAAAAADAocMtlgPY7HBcs3fWSlNO7ra8syOiqR81qsxp14hMr0npAAAAAAAADg0aZAPYR23blO10aoi/qFshrFm8Whn2dAUiHRoxKMO0fAAAAAAAAIdCnxtkW7du1fz587VixQpt2LBB5eXlev755xPrt2/frpNPPrnXfd1ut1auXPmF240fP14LFizoayz0kRGP6zJvp0Ilg/W806Vhn1u35f2NknLk6myQ2+MyKyIAAAAAAMAh0ecG2YYNG7Ro0SKNHz9e8XhchmF0W19QUKCnnnqq2zLDMHTJJZdo6tSpPd7vuuuu05QpUxKv09PT+xoJByDUtlNF0ah2OR0qLDi827qGhrgkyenqMCMaAAAAAADAIdXnBtmMGTN0yimnSJLmzp2rVatWdVvvdrs1YcKEbsveffddtbW1adasWT3eb9iwYT22R//zBRv1j+qdMny5snm7f1PlLkeBshSXMf0ok9IBAAAAAAAcOn3+Fku7ve9ffPn8888rIyNDM2bM6PO+6B/trTVqTsuUAoO7LY/H4/K0xSRJI8fkmRENAAAAAADgkOr3h/RHIhG98sorOvXUU+XxeHqsv/XWW/XDH/5QWVlZOvnkk3X99dcrKyvrgI9nGIaCweCXSJxcQqFQtz8Plr+Ga/SrQZk6ecgk3f65z2vrqm3yxm0yjLhGDc9Iqc8S5uivGgYOBeoXVkcNw+qoYVgdNQwrS5X6NQxDNpttn9v1e4Ns8eLFampq6nF7pdvt1re+9S1Nnz5dgUBAK1as0O9//3utWrVKTz/9tFyuA3s4fCQS0dq1aw9G9KRSWVl5UN9vQ+2Grh9C9m6f19qFqyUVyxOuV9XWjQf1mBjYDnYNA4cS9Quro4ZhddQwrI4ahpWlQv263e59btPvDbLnnntOeXl5mjZtWrflBQUFuvXWWxOvJ0+erJEjR+ryyy/XP//5T82cOfOAjudyuTRixIgvEzmphEIhVVZWqrS0VF6v96C975jRozQnPkeReER+tz+xfM1jH0uSHLZ2jRkz5qAdDwNXf9UwcChQv7A6ahhWRw3D6qhhWFmq1O/Gjfs3+adfG2Tt7e16/fXXNXv2bDkcjn1uf8IJJ8jn82n16tUH3CCz2Wzy+XwHtG8y83q9B/W8jMfOkm/XGumrD0mjTkssj7QaUprkzXGl5OcI8xzsGgYOJeoXVkcNw+qoYVgdNQwrs3r97s/tldIBPKS/L/75z38qHA7rK1/5Sn8eBgfgnPg2nZGbpnWRpm7L83a8pyHVi1R4eKE5wQAAAAAAAA6xfp1B9vzzz2vo0KEaP378fm3/+uuvKxgMqqKioj9jDXjxWFTb7YYiDqf82eWJ5cHWdpVvWyyHDOXMuNzEhAAAAAAAAIdOnxtkoVBIixYtkiRVV1erra1NL730kqSu54jl5ORIkhobG7V06VJdeumlvb7PnXfeKZvNpgkTJigQCOjjjz/WQw89pMMPP1ynnHLKgZ4P9oMt2KCFVTtU43SqIH9cYvnaT+r0r0lXKCtYrUuHFpmYEAAAAAAA4NDpc4OsoaFB1157bbdle14/8cQTmjJliiTpxRdfVDQa3evtlcOHD9df/vIXLViwQOFwWIWFhTrvvPN0zTXXyOns9+8OGNBsLdUqisVU5CuQXJ89aG/91rAyAoervqhCdnu/3n0LAAAAAACQNPrciSouLta6dev2ud0FF1ygCy64YK/rZ8+erdmzZ/f18DgI3tr2mh4cXKipzkzN+dzymo4ObXBFNWRwwKxoAAAAAAAAhxxTtQagyqaNWu3xaLDd3W152V/v09itm9Q+6nJJU80JBwAAAAAAcIjRIBuATjF8GrKrTpmHHdNtuRHMUIYzS+nZfpOSAQAAAAAAHHo0yAagoqMuU1HxVCl3eGJZuD2knSWztGOYU6eMKjYxHQAAAAAAwKFFg2wAumvrc2qPtOuioUep/NNln2xukWF3KmbENGJS+RfuDwAAAAAAkEr4qsIB6OXKl/XshmfVHmlPLNu4uUmS1OZzysG3iAIAAAAAgAGETshAE4/rP5WtmkC+StLyEosb11RJssuR4TAvGwAAAAAAgAmYQTbQhHbrq6tf0ZUrFirLm5tY7Fy/TZJU3LrZrGQAAAAAAACmYAbZAFNTt0pPZ2WqxJ6mc53uxPJ4PE2SlDk0x6xoAAAAAAAApmAG2QCzuX61/pCdqSf83sSyaGdUEXdXY2zopDKzogEAAAAAAJiCGWQDTF40qm+2tCo3MDSxbMOyDYo73LLFoxo9eZSJ6QAAAAAAAA49GmQDzKiYoZsadktDTkss27JskySf3B2N8vg85oUDAAAAAAAwAQ2yAebDhjWq93k1Ni1DxZ8ua9rVInvMKbstaGo2AAAAAAAAM/AMsgHmf1s+0Y8K8/Wq0ZZYtnzCOP06O6Lg2RPMCwYAAAAAAGASGmQDTGn6YE0wXBqWOzqxbEtNq2J2u8pGDDIxGQAAAAAAgDm4xXKAueqrf9FVn3sdi8V04sp2HSeHBhtx03IBAAAAAACYhRlkA8zy2uXa2rJVsXhMkrRt1VbZ7C45bQ6NKssyNxwAAAAAAIAJmEE2gHR0tuuiFy+SJL31zbeUmZap2vXrdcLiG1SVP0rpgVNNTggAAAAAAHDo0SAbQFobN2poJKIWu0MBt1+StD1i1/biI+QvKd7H3gAAAAAAAKmJBtkAkhfp1Avbd0qZQyV7192123ZlqX3EdxU+LNPkdAAAAAAAAOagQTaABJurZNhs8mXky/bpsvDuTmXH7bK7HaZmAwAAAAAAMAsP6R9Anq9epKmlJfqRpyOxLLeqSpJUEGk0KxYAAAAAAICpaJANII2hOklS1qfPH+viliTlZjGDDAAAAAAADEzcYjmAXOHI10WVVYoeN1uSFO2MKurqapYNGj3EzGgAAAAAAACmoUE2kLTVymcYUqDrGyurPqmSYXdKRlylhw8zORwAAAAAAIA5uMVyAPl+eJ3OKB6sZfF2SVL12u2SJFekVR6fx8xoAAAAAAAApqFBNoBsz8hRtcsp9+BJkqTGrfWSJHus3cxYAAAAAAAApuIWywHkkTMeU32oXiOyR0mS6ly5kqIKBdLNDQYAAAAAAGAiGmQDSLG/WMX+4sTrpohbaYqqs2SQiakAAAAAAADMxS2WA8S2bW/pO49O0k//fHJiWb07oqWeiAKlfhOTAQAAAAAAmIsZZAPEjro1WmGPqDVcl1h24t/uVEFdlZqP+m9J48wLBwAAAAAAYCIaZAPEKLl1z6462QrGJpYFfWPVWFCk7Lw8E5MBAAAAAACYiwbZAJHT0aZTgiEpo0yS1BEMa0fJ6dphs+us4iEmpwMAAAAAADAPDbIB4u+17+nj3Gyd7LbrGEk7WiJa7epUbjSm4tHF+9wfAAAAAAAgVfGQ/gHinfYqLQj4tc4elyTVhyNamGHojfJ0Od30SQEAAAAAwMBFZ2SAOD3qUPHuZk0a2fUMsh3vrdNZu7bL6Ss0ORkAAAAAAIC5aJANECe2t+vEpmapcKIkqX3peo31jJRvyxaTkwEAAAAAAJiLBtkAMX/oGPnzh+iswCClS+psi0oOyZFmMzsaAAAAAACAqWiQDQCRWET3NrwvSTrVX6R0SfFOu+SVPFkec8MBAAAAAACYjAbZANAZ79TsUbPVEGpQpidTkhRXV2PMXxgwMxoAAAAAAIDpaJANAOnhVt3iGy0NHirZur64NObMkCTllRWYGQ0AAAAAAMB0drMDoP9Vb35Vr758rda/8mNJUmtzUFFXV4Os5PASM6MBAAAAAACYjgbZALC09gPNKczX/Z6YJGnbzpAkKSJDBaWFZkYDAAAAAAAwHQ2yAcAbCeuIcIdGu3MkSdt3tEqSwi6bHA6HmdEAAAAAAABMxzPIBoCz3IU6a+cuaejXJElNH62X5JTHCJobDAAAAAAAIAkwg2wAqA01qMrpULvTLUmKVlZLkrKCu8yMBQAAAAAAkBRokA0AD7Su0cySIfpLaJskKX33hzrureuV5a8xORkAAAAAAID5uMVyAHDEo/LG4/K50yVJGwrKVDVot8rHjTI5GQAAAAAAgPlokA0AtzqH6NaNy6UJx0iSwrEJCo08Qo7DRpqcDAAAAAAAwHw0yAaA+DeflN2QJEOSlN5hyGPYVZjtNTUXAAAAAABAMuAZZAPA+c+fr6P/PEXv7HpfwbagRq94QJmb/lclBW6zowEAAAAAAJiOGWQDQHukXeFYWB6HR/Xbdqq8cZ06mzYpJz9gdjQAAAAAAADT0SAbAP60s07tUSk37tSyVdWqnPBDOTvqNd7OBEIAAAAAAAAaZANAVnO1sjrbJHe6dldtVnPWCHlCPrNjAQAAAAAAJAUaZCnOiMX01Xy/vEa6fi9Dwfp2SX7ZFTE7GgAAAAAAQFKgQZbiQh27tcntkiS50jLV2dIhSbK74mbGAgAAAAAASBo0yFKcK9qpR3buUshmV5onS43+QXI2SZHBhWZHAwAAAAAASAo0yFKcKxrW0eEOyZ0hOZxqs/mUpagcw4eaHQ0AAAAAACAp0CBLcVVNm3Vvfq4K7R79P0m2UFSSlJ3jNTcYAAAAAABAkrCbHQD9q76tRq9kpGuRp6sXmtfcJEnK76g3MRUAAAAAAEDyYAZZihtceIR+Uni8vE6fYrGYoq4MSVL+0FyTkwEAAAAAACQHGmQprrDwCH37jN9IknZu3inD3jXkxYcNMTMWAAAAAABA0qBBluJW16/W4u2LNTJ7pIriE/SJI6RMxZUeSDc7GgAAAAAAQFLgGWQpbsWG5/XbFb/Vi6seV4uk5/zSu8MDZscCAAAAAABIGswgS3HDW+v0jZZWjfG2qXb5Rp1RW6309EKzYwEAAAAAACSNPjfItm7dqvnz52vFihXasGGDysvL9fzzz3fb5sILL9R7773XY9+FCxdq+PDhidetra2644479K9//UuRSETHHXecbrrpJhUUFBzAqaA3UxyZmtKwWxo+Qn/513pVuEfIt3mL2bEAAAAAAACSRp8bZBs2bNCiRYs0fvx4xeNxGYbR63aTJk3SDTfc0G1ZcXFxt9dz5szRxo0bdeutt8rj8ejee+/VpZdeqmeffVZOJ5PbDoaV7dWq8Xk10mbICDbL3xqTLT1qdiwAAAAAAICk0ecu1IwZM3TKKadIkubOnatVq1b1ul0gENCECRP2+j7Lly/XW2+9pfnz52v69OmSpLKyMs2cOVOvvPKKZs6c2ddo6MUz7Zv018J8XROpVWFjs0Z+/JY2f/0/zI4FAAAAAACQNPr8kH67/eA813/x4sUKBAI69thjE8vKy8s1ZswYLV68+KAcA1KJ4dCkcFhD0vJktMcU9mTJwy2sAAAAAAAACf12H+N7772nCRMmKBaLafz48br22mt19NFHJ9Zv3rxZZWVlstls3fYrLy/X5s2b+yvWgHOJEdAlO2uloyfq4TyXtpd8R6PSImbHAgAAAAAASBr90iA7+uijdc4556i0tFS1tbWaP3++/uM//kNPPvmkJk6cKElqaWmR3+/vsW9mZuZeb9vcH4ZhKBgMHvD+ySYUCnX7s692hhtkdzmVE5cirgxJUkahP6U+IyS3L1vDgJmoX1gdNQyro4ZhddQwrCxV6tcwjB6Ts3rTLw2ya665ptvrE088UbNmzdJvf/tbzZs3rz8OmRCJRLR27dp+PYYZKisrD2i/2+1NWl88WHO3rlXc2fXsuHa/PSU/IyS3A61hIBlQv7A6ahhWRw3D6qhhWFkq1K/b7d7nNofkqyJ9Pp9OOOEEvfzyy4llgUBANTU1PbZtbm5WZmbmAR/L5XJpxIgRB7x/sgmFQqqsrFRpaam8Xm+f90+vGSd/80b5ik9VkwzFZGjK5MPlcBycZ8kB+/JlaxgwE/ULq6OGYXXUMKyOGoaVpUr9bty4cb+2OyQNst6Ul5dr6dKlPaa6bdmyRaNGjTrg97XZbPL5fAcjYlLxer0HdF5PnPWEJOmtF1ZohxoUNzrl92cc7HjAPh1oDQPJgPqF1VHDsDpqGFZHDcPKrF6/+3N7pXQA32J5IILBoN544w1VVFQklh1//PFqbm7W0qVLE8u2bNmiNWvW6Pjjjz8UsQaEzo5WGfG4mtdvkyRlhBtNTgQAAAAAAJBc+jyDLBQKadGiRZKk6upqtbW16aWXXpIkTZ48WZs3b9bDDz+sU089VUOGDFFtba0effRR1dXV6b777ku8z8SJEzV9+nTdeOONuuGGG+TxeHTPPfdo9OjROu200w7S6Q1sRjyuo/8yTXZJN+y6RtII2dVpdiwAAAAAAICk0ucGWUNDg6699tpuy/a8fuKJJ1RUVKRIJKJ77rlHTU1N8nq9mjhxom677TYdccQR3fa79957dccdd+iWW25RNBrV9OnTddNNN8npNO3Oz5TS0dGsuM2muKQ2R44kKZqRZm4oAAAAAACAJNPnTlRxcbHWrVv3hdvMnz9/v97L7/fr9ttv1+23397XGNgPnlhUSyqrFLTb9bh3kNLVodDI1PkCAwAAAAAAgIOBqVopzNbZJr9hyG/3KNoekyRlZO77q00BAAAAAAAGEhpkKWxz43pdXTxIgw27TnxxgeLtMRWe8A2zYwEAAAAAACQVGmQprCVUryqXS4pJw7Z9pLy2BoWzvmV2LAAAAAAAgKRCgyyFjXBl6YkdNYpnlemT8m9pV6RN4/MLzY4FAAAAAACQVGiQpbCMeEwTOzrVGsnXOzljJEkFw4pMTgUAAAAAAJBcaJClsCVuu56adIbGNuRr7JpH1J6Wrcz8GWbHAgAAAAAASCp2swOg/2yLtum13Wu0vblRRbUfKL15pdmRAAAAAAAAkg4zyFLY0UVH6+apN6t2SVTPTjlFPl9EJ5kdCgAAAAAAIMkwgyyFDa/5RN/Y8pHymz3K9pYqnDfW7EgAAAAAAABJhxlkKezVT57R6q2vytucKylbzjSH2ZEAAAAAAACSDjPIUtiboWrNy8qUY1tQklSwY4PJiQAAAAAAAJIPM8hS2FSbV57mVrliXoVcktNumB0JAAAAAAAg6TCDLIWdEU/TTxp3y26kSZIcHoYbAAAAAADg3zGDLIUt7qxTMN2n3bl5sgWlyKjRZkcCAAAAAABIOkwpSmG/NRr144I8BW1dw+zOyTQ5EQAAAAAAQPJhBlkKOzwq+WJhuTu6htnnjJmcCAAAAAAAIPkwgyyF3ZQ1UY84SpTRFpEkZTTWmJwIAAAAAAAg+TCDLIWtOulH8jg8cr3+hiSHfNlDzI4EAAAAAACQdGiQpSjDMHThwgsVNaJ6bKVDvkiH3Nf+1exYAAAAAAAASYcGWYqKRjtV6M1VMBKWTZ2K2ePyBTLMjgUAAAAAAJB0aJClKFdnm15a/b46Ih49fOz/SpK+lU6DDAAAAAAA4N/RIEtRsY5mddhs6jSyuxYYcQXyAuaGAgAAAAAASEI0yFLU5sb1+lppiXJihrZ90q4Ce0z/6XSYHQsAAAAAACDp0CBLUcFwkyTJK8mw22X4vabmAQAAAAAASFY0yFLUEWkFer+ySuvjM/R6o0MdzUGzIwEAAAAAACQlGmQpyhYJKs0wFG/yy2l3Kz3YaHYkAAAAAACApGQ3OwD6xyu1y3R68WAt+XSIbUbU5EQAAAAAAADJiQZZimoK79YOl1PtLo8kKepmsiAAAAAAAEBv6JqkqFOPvkZjdk7Xm81OGWukxkElZkcCAAAAAABISswgS1HZOcNVMW62YrauxpjdzVADAAAAAAD0hhlkKep/P/lfLd6+WGM2j5c0UlnNu8yOBAAAAAAAkJSYVpSi1q37m96sflO+piZJki/UbG4gAAAAAACAJMUMshR1boehI+oa1B73KCzJ4XGYHQkAAAAAACApMYMsRY2P2fXVtnbJ6PoWS4eHXigAAAAAAEBv6JqkqD92VKs2O0vDWz9WVt0WqXyi2ZEAAAAAAACSEjPIUtQLRqsezQoo0Lhcw7c8p8wCj9mRAAAAAAAAkhIzyFLUVzptmtTRonXlX9WKfI+OzBtsdiQAAAAAAICkRIMsRX27vUNqadLdvmPl8bhkyy8xOxIAAAAAAEBSokGWov7q6JArw6ddLUF1dGbo+Ow0syMBAAAAAAAkJRpkKeq/s3yKGmn6n6f/RyGbVzmex82OBAAAAAAAkJRokKWgWDymE4eerGBbq3z2RgViYXnTeEg/AAAAAABAb2iQpSCH3aF7TrpH1eur9bfx6yRJkwJ+k1MBAAAAAAAkJxpkKSgUbNTq9f9Qa32GpBzFjZjcXrfZsQAAAAAAAJKS3ewAOPiqdryr/1jxP7rnk4ckSR0OhhkAAAAAAGBv6JykICMSVGlnRCXhrm+ujNtMDgQAAAAAAJDEaJCloNGuLD1XvVNXVGVIknLaak1OBAAAAAAAkLx4BlkKCoeb1GG3KRjzSZJsipqcCAAAAAAAIHkxgywFvVz7vqYPK9FS257hjZmaBwAAAAAAIJnRIEtBoc42SZIr2vUMMpstbmYcAAAAAACApEaDLAWdn16uD7dsU2kkS5JksxvmBgIAAAAAAEhiNMhSUWebXJKicY8kye4wNw4AAAAAAEAyo0GWgu7xezVjzAS9PDWi5+3VajnuMLMjAQAAAAAAJC0aZCmoobNZdeFG1WQ4tTaQI+fQIrMjAQAAAAAAJC0aZCnomknXaMGsBTp6xeG6eHdc3soGsyMBAAAAAAAkLRpkKajgtTs15m/XavDOBuXY0uXfWml2JAAAAAAAgKTlNDsADr6f1b2t7ZEGnVv7ikrbHOqs+LrZkQAAAAAAAJIWM8hS0AqFtdTrVUy1srdtkb/Ib3YkAAAAAACApMUMshT0o/a4GsL1ev+IG7VzVK6+P2q82ZEAAAAAAACSFg2yFHRMMCgFg9rYlqfCuEMew+xEAAAAAAAAyYsGWQr6ebrkTsuSb6ch2aR0e8TsSAAAAAAAAEmLBlmKiUbCeirDJ2fEpktsXcMb8PKoOQAAAAAAgL2hQZZijI5WXb27SR2hjMSyzIIs8wIBAAAAAAAkOaYWpRiXK02XH36xvp5zpiTJFo/K5/eZnAoAAAAAACB5MYMsxTQaEb04ZKTitWFJkj3WYXIiAAAAAACA5MYMshRT3VqtO9+7U+9u+ZckyR7vNDkRAAAAAABAcuvzDLKtW7dq/vz5WrFihTZs2KDy8nI9//zzifVtbW169NFHtWjRIlVWVsrtduuII47QD3/4Q40ePTqx3fbt23XyySf3eP/x48drwYIFB3g6SO9o1xnZ45S9a4gkKUYLFAAAAAAA4Av1uUG2YcMGLVq0SOPHj1c8HpdhGN3W79ixQ0899ZS+/vWva86cOero6NAjjzyib37zm3r22Wc1fPjwbttfd911mjJlSuJ1enr6AZ4KJKm8tV53ffiiVjq/qcWSdmfmmB0JAAAAAAAgqfW5QTZjxgydcsopkqS5c+dq1apV3dYXFxfrn//8p7xeb2LZ1KlTNWPGDP35z3/WzTff3G37YcOGacKECQcQHb2paduhyjSP2mxx7XTE5fC5zY4EAAAAAACQ1Pp8A57d/sW7+Hy+bs0xqWtW2NChQ1VbW9vXw6GPFjWu0qWDCrWsabnKVv9eRS1vmR0JAAAAAAAgqR2SJ1S1tLQknlf272699VaNGTNG06ZN00033aSmpqZDESll+eJxjejs1OCGDE1s2qmi2mqzIwEAAAAAACS1Pt9ieSDuuusu2Ww2fetb30osc7vd+ta3vqXp06crEAhoxYoV+v3vf69Vq1bp6aeflsvlOqBjGYahYDB4sKKbLhQKdftzX86w5+kr1TX6R/QCLZ06Xb7o5pT6PGA9fa1hIJlQv7A6ahhWRw3D6qhhWFmq1K9hGLLZbPvcrt8bZM8++6wWLFigO++8U0VFRYnlBQUFuvXWWxOvJ0+erJEjR+ryyy/XP//5T82cOfOAjheJRLR27dovGzvpVFZW7td2/prNyrXbFcxIU7wjpubMrJT8PGA9+1vDQDKifmF11DCsjhqG1VHDsLJUqF+3e9/PZ+/XBtmiRYt0yy236KqrrtJXv/rVfW5/wgknyOfzafXq1QfcIHO5XBoxYsQB7ZuMQqGQKisrVVpa2uPZbr2545Md+tuwYp1etETPbB6na08cozFjyg5BUqB3fa1hIJlQv7A6ahhWRw3D6qhhWFmq1O/GjRv3a7t+a5B99NFHuvbaa3Xuuefq2muv7a/D9GCz2eTz+Q7Z8Q4Vr9e7X+cVU7zrh7hHkpTl96Xk5wHr2d8aBpIR9Quro4ZhddQwrI4ahpVZvX735/ZKqZ8e0r9x40Zdfvnlmjp1qm677bb93u/1119XMBhURUVFf8QaEG6/4DWt+M5yjV16hm5osMv/2jKzIwEAAAAAACS1Ps8gC4VCWrRokSSpurpabW1teumllyR1PUfMMAxdfPHF8ng8+u53v6tVq1Yl9s3IyEjc/njnnXfKZrNpwoQJCgQC+vjjj/XQQw/p8MMP1ymnnHIwzm3AsjucMuRU3OGRy2Xth+kBAAAAAAD0tz43yBoaGnrcMrnn9RNPPCFJqqmpkSR973vf67bd5MmT9eSTT0qShg8frr/85S9asGCBwuGwCgsLdd555+maa66R03lIvlwzJV248EJta92mC3WZJMnjTzM5EQAAAAAAQHLrcyequLhY69at+8Jt9rVekmbPnq3Zs2f39fDYh8balWq0xWTYXJKkNBpkAAAAAAAAX4ipWilmfmNQraFGvW7veki/Lyvd5EQAAAAAAADJrV8e0g/zFIXaNDISUczhliRlZPtNTgQAAAAAAJDcmEGWQuKxqC7Iz5AvlqFJNV0zyAIlBSanAgAAAAAASG40yFJIKFSvVR6PXFGPJn26LCs/YGomAAAAAACAZEeDLIW4o516sKZWTdE8bZcUlyGflyEGAAAAAAD4InRPUogr2qETQmHVtKVruyRXNCy7ncfMAQAAAAAAfBEaZCmkavdGPZSXo+GxuEYuf1pBt1fSWWbHAgAAAAAASGpML0ohNQ67/u7P0LI0p4ZUL1Jg93KzIwEAAAAAACQ9ZpClkMEFh+vaSdeqJsupn59epKxct2aYHQoAAAAAACDJMYMshQzJGKJLKi7R8M4pmt7hVnErwwsAAAAAALAvzCBLIas/+auWbXpRsS1D1dhRKndmhtmRAAAAAAAAkh5TjFLIsk0v6df17yi2+W86b+ntOmzLQrMjAQAAAAAAJD1mkKWQMptHs9rald05QnV5bkV8+WZHAgAAAAAASHo0yFLI8Y6Ajq9r0F+NyVp5+BT5VWl2JAAAAAAAgKRHgyyFrAnu1G5vmjriLkmS3cUdtAAAAAAAAPtCByWFPB7crCuKChSWQ5Lk8DC8AAAAAAAA+0IHJYUMits0uqNTMadXkuTI8JqcCAAAAAAAIPnRIEshc2LpemZHjUKZRZKk+OEVJicCAAAAAABIfjTIUsiOtHTtyhykaKzr0XLedB4xBwAAAAAAsC80yFLI5Z6gTslxyRmKSJLSw60mJwIAAAAAAEh+NMhSiMPmkMPmkCfa9To9HjI3EAAAAAAAgAXQIEshf5u1QMsvXK643S1JSs/xm5wIAAAAAAAg+fGQqhRhxOPSLwplyKGo439lk+QvyjE7FgAAAAAAQNKjQZYiwuEmTRs2RL6YoXCwThEjUxeVFpgdCwAAAAAAIOnRIEsR7cFaxWw2tTptarP5JLuhdA/DCwAAAAAAsC90UFJEtux6dVu1dgWHaWlNhxRrlt1uMzsWAAAAAABA0qNBliIckbAKYjGFOrMUScuTs7PF7EgAAAAAAACWwLdYpojV9at03uAiLfA2a9Lyu1W89a9mRwIAAAAAALAEGmQpoiFUp3UetxqNiLKaN8nVWWt2JAAAAAAAAEvgFssUUeHO0e9ratXWeqJWjpusqD1kdiQAAAAAAABLYAZZisguP1nHfmWeImnHqi5/osK+YrMjAQAAAAAAWAIzyFLEouYNerFhibKzRiujRWrNzjE7EgAAAAAAgCUwgyxFfNL4iV7Y/ILqnGFJUjg31+REAAAAAAAA1sAMshQxrSOqtIyxatiWJklyuh0mJwIAAAAAALAGZpCliCPqt+q7K1/S0E0NkqT86vUmJwIAAAAAALAGZpCliFfbt2lLZkBpRtfMMScjCwAAAAAAsF+YQZYiXu7YqftyshQxujpjjjQ6ZAAAAAAAAPuDLkqKOFpeeVrb1JybI1dIih92mNmRAAAAAAAALIEZZClidjxN/13fKEc8Q5KUluM3OREAAAAAAIA1MIMsRbwTbVLY65VRX6tGw65RnrjZkQAAAAAAACyBBlmKuNvWpLVF+Zq34LfKbA8rMnu+2ZEAAAAAAAAsgQZZihjpyZGzY7c63YPUbgTl93OLJQAAAAAAwP6gQZYifvHt1xSLxfTQ0tdk2B063ek1OxIAAAAAAIAl0CBLEZubNyvaGpO7s1kxh1uBgkyzIwEAAAAAAFgCDbIU8c3nviFXa1jz34lJknKKVpqcCAAAAAAAwBpokKUAIxaTrzMoX9imkNMrmxGV08XQAgAAAAAA7A+6KCnAFgtr0bZq1UeG6anpv1bQbmii2aEAAAAAAAAsggZZCjA6g5KkiNH1YP6Y3WZmHAAAAAAAAEuxmx0AX97Olq06omyobkorliS5YyGTEwEAAAAAAFgHDbIUEO5oliQVNnkkSZntjWbGAQAAAAAAsBQaZClgmDtLb2zdrtPaXF0LbDFzAwEAAAAAAFgIDbIU4Ih2KDcel8uVLkmKpnlMTgQAAAAAAGAdNMhSwAf1K/XVIUV6taDrIf1NQ4aanAgAAAAAAMA6aJClgKbMQdrodqvBkStJsrsZVgAAAAAAgP1FJyUFTCo+Tg+f9rAO21UkScrevdPkRAAAAAAAANZBgywFZKdla8qgKUprMyRJ3s5WkxMBAAAAAABYh9PsAPjy3njnf/TCxr9rWvNgDd2drrbjppodCQAAAAAAwDKYQZYCNtZ+rJdiu+VtW6PBO5coPYe+JwAAAAAAwP6ik5ICprlz5W1oVEf6edpUlia3M2B2JAAAAAAAAMugQZYCxtm8GtfSpkcDkxUsHKSRzk6zIwEAAAAAAFgGDbIU8Gp7pTZkBeRxrFJHa4v85dPMjgQAAAAAAGAZPIMsBbwW3qnfZGfpzYo1ur9kqHLHDzc7EgAAAAAAgGUwgywFHC2v3C2t6qw7SmM6HfLYbGZHAgAAAAAAsAwaZCngXMOnWbUteqjxWA2W5A4GJWWYHQsAAAAAAMASaJClgCV5xWoedJxU1/U6M5fmGAAAAAAAwP7q8zPItm7dqltuuUXnnHOOxo4dq1mzZvW63dNPP63TTz9dFRUVOvvss/X666/32Ka1tVU33nijJk+erIkTJ+qaa65RbW1t389igHswukv3hxolSbZ4VD6/z+REAAAAAAAA1tHnBtmGDRu0aNEiDRs2TMOH9/4w+BdeeEE333yzzjzzTM2bN08TJkzQ1VdfrY8++qjbdnPmzNHbb7+tW2+9Vb/+9a+1ZcsWXXrppYpGowd0MgPVqOxRGpxbIUnq5GsXAAAAAAAA+qTPt1jOmDFDp5xyiiRp7ty5WrVqVY9t7r//fp111lmaM2eOJGnq1Klav369fvOb32jevHmSpOXLl+utt97S/PnzNX36dElSWVmZZs6cqVdeeUUzZ8480HMacG4tPUfvtrRomWLqcHDXLAAAAAAAQF/0eb6R3f7Fu1RVVamyslJnnnlmt+UzZ87U0qVL1dnZKUlavHixAoGAjj322MQ25eXlGjNmjBYvXtzXWAPahqfOl/2NW7te2OOmZgEAAAAAALCag35D3ubNmyV1zQb7vOHDhysSiaiqqiqxXVlZmWw2W7ftysvLE++B/XNRlkt/iRZJkvKaa0xOAwAAAAAAYC0H/X685uZmSVIgEOi2fM/rPetbWlrk9/t77J+ZmdnrbZv7yzAMBYPBA94/2YRCoW5/9sYfj8nf6e56YYum1PnD+vanhoFkRf3C6qhhWB01DKujhmFlqVK/hmH0mJzVm5R7YFUkEtHatWvNjnHQVVZW9r4iHtUrVTv0bktcy9Ikw4il5PnD+vZaw4AFUL+wOmoYVkcNw+qoYVhZKtSv2+3e5zYHvUGWmZkpSWptbVV+fn5ieUtLS7f1gUBANTU9bwdsbm5ObHMgXC6XRowYccD7J5tQKKTKykqVlpbK6/X2WG+EmxWR1BnvWudwSGPGjDnEKYG921cNA8mM+oXVUcOwOmoYVkcNw8pSpX43bty4X9sd9AZZeXm5pK5njO35ec9rl8ulkpKSxHZLly7tMdVty5YtGjVq1AEf32azyefzHfD+ycrr9fZ6XnVtWzS1bKi+vfUtfWXxUm2YclpKnj+sb281DFgB9Quro4ZhddQwrI4ahpVZvX735/ZKqR8e0l9SUqLS0lK99NJL3ZYvXLhQ06ZNS0xrO/7449Xc3KylS5cmttmyZYvWrFmj448//mDHSlnh8G5JkjdiyBGPyuFLMzkRAAAAAACAtfR5BlkoFNKiRYskSdXV1Wpra0s0wyZPnqycnBz94Ac/0PXXX6+hQ4dqypQpWrhwoT7++GP98Y9/TLzPxIkTNX36dN1444264YYb5PF4dM8992j06NE67bTTDtLppb4hroDe2lqlNwuv1D9OPEmBwzLMjgQAAAAAAGApfW6QNTQ06Nprr+22bM/rJ554QlOmTNGsWbMUCoU0b948/eEPf1BZWZkefPBBTZw4sdt+9957r+644w7dcsstikajmj59um666SY5nSn33QH9xl4wRpnXrta6X61WRrtTDq91pz0CAAAAAACYoc+dqOLiYq1bt26f282ePVuzZ8/+wm38fr9uv/123X777X2NgU991LBaN799swa5stXROU1nFUwxOxIAAAAAAIClHPRnkOHQaulsUWVLpc54e6XmLrlf+dVrzY4EAAAAAABgKdzLaHHj21r0WCxPG7NP00dZGcqzBcyOBAAAAAAAYCnMILO4zHCLjtz2odozStWYO06OdL/ZkQAAAAAAACyFBpnFLWpcpR8W5KnNlyZJ8o4ZbXIiAAAAAAAAa6FBZnFbQrX6V7pPRtwtScpI565ZAAAAAACAvqBBZnHT3Hm6qbZRztinDTJHzOREAAAAAAAA1kKDzOJG29L01eYOyeaQJGX4mEEGAAAAAADQF3RTLO7Vti3akFaYeJ2Zn2liGgAAAAAAAOthBpnFLQ7t0POeXEmSPdYpt8dlciIAAAAAAABrYQaZxU0ZfIwyKz+RJNnjnSanAQAAAAAAsB4aZBY384TblLF9kVZujckeo0EGAAAAAADQVzTILG5J9RKtjayXrdVQ1GF2GgAAAAAAAOuhQWZxD733K31o2yTn2K+pPOd0XWl2IAAAAAAAAIuhQWZxYxqrlNaepmjQJXuWzew4AAAAAAAAlkODzOLmBm16f+Uovec4RraGKknTzI4EAAAAAABgKTTILO6TeEjtnVH54jWyO5rNjgMAAAAAAGA5drMD4Mu5NGDTYudKTX3/v5WldWbHAQAAAAAAsBxmkFlcdiymzWVe/TF8rIZOmm52HAAAAAAAAMuhQWZl8bj+sX2HXm++Umv8p6nTFjA7EQAAAAAAgOXQILMwIxJS2GZTZzxNkuROYzgBAAAAAAD6imeQWVhTe40ml5aosilbkpRdxTPIAAAAAAAA+ooGmYWF3T5Jkk0eSZIrzWFmHAAAAAAAAEuiQWZhRelFevfb78ouvyTJ4/OYnAgAAAAAAMB6aJBZmM1mk8/lk2FzSZI8/jSTEwEAAAAAAFgPDTIL+3j1Ap3xSIUMe9etlWmZPpMTAQAAAAAAWA8NMgtrDdaq2iHF7V23VqZnpZucCAAAAAAAwHpokFnYEWlFerK6RjFnV4MsMGyQyYkAAAAAAACshwaZhfkNQxUdcUldt1gG8gLmBgIAAAAAALAgGmQWtrhxlX6Yl6eQ/zEtdjQqkOE2OxIAAAAAAIDlOM0OgANXFarVSsOlK597X6fYl8vtOs/sSAAAAAAAAJZDg8zCprrzlb7DrrWjvynFQppgdiAAAAAAAAALokFmYcNtHjnbfHp+0LFydew2Ow4AAAAAAIAl0SCzsFcD2Vpy5GFqWLtGHZ5xZscBAAAAAACwJBpkFrY02qgF9g/UUZClcb6JZscBAAAAAACwJBpkFja5aLI63gvLsSogV16lpGPNjgQAAAAAAGA5NMgs7LROQ7FNGdqcdpS89VvNjgMAAAAAAGBJdrMD4MC99e59CrVukSTZbHGT0wAAAAAAAFgTDTILeyRWq01OvyTJ5jA5DAAAAAAAgEXRILOwcXGHsiIuSZLdaTM5DQAAAAAAgDXRILOwH4UdGhLpeoyc3UWDDAAAAAAA4EDQILOw1fF2BV0eSZItw2tyGgAAAAAAAGuiQWZhV/tieqcoQ5LUOWacyWkAAAAAAACsiQaZheXHYkqPuSVJaV6nyWkAAAAAAACsiQaZhS1otWt0Q9dD+jOCu01OAwAAAAAAYE00yCzKMAy1Xv2OQp1pkhGXN9JudiQAAAAAAABL4r48i2qLtOmYvxyj36yLKq9Fipz3sNmRAAAAAAAALIkGmUV1xDokSa9MtMu7/Vh9Y8ggkxMBAAAAAABYEw0yi8oNtWrZtho9an9MbUPTZM/INTsSAAAAAACAJdEgsyhbtEPOaFwxwyuvJL/PZXYkAAAAAAAAS+Ih/Ra1bvc6nZtfqIoVP9XQVb9RwOcwOxIAAAAAAIAlMYPMooIdrWo17Mrf3aQse6vSfB6zIwEAAAAAAFgSDTKLGp2Wp7u22vX+kdfLEWnTEWYHAgAAAAAAsChusbQon2GoMORVq3+o2tMHmx0HAAAAAADAsmiQWdT7jWv0Z1++JMlmRExOAwAAAAAAYF00yCxqR6hONUqXRIMMAAAAAADgy6BBZlGTRn5Fh+VVSJJaMzJNTgMAAAAAAGBdPKTfokpKjpVnUEDBLXUKZdIgAwAAAAAAOFDMILOoJdVLtK7ubUmSzckwAgAAAAAAHCg6Kxb14SfPKmfdBklS0Y51JqcBAAAAAACwLhpkFjUp2KpBnV13yDq4URYAAAAAAOCA0SCzqGPsAeVGuzpj3GIJAAAAAABw4Jh7ZFHvh3Zq97CoOlqKFZ54lNlxAAAAAAAALIsGmUU901GthaMaNL42rDPHzTQ7DgAAAAAAgGXRILOowwyXsleXSG1DlV7RbHYcAAAAAAAAy+LhVRb1HwqopOar8se/KufqLWbHAQAAAAAAsKx+mUF24YUX6r333ut13d13362zzjprr9ssXLhQw4cP749YKWVdpEVpoV3yx1zyZg4yOw4AAAAAAIBl9UuD7L/+67/U1tbWbdnjjz+uV155RdOmTUssmzRpkm644YZu2xUXF/dHpJTzM1e7Ltv2J41tljoummd2HAAAAAAAAMvqlwbZiBEjeiz70Y9+pGOPPVY5OTmJZYFAQBMmTOiPCCkvd/BRkv1jhT0d8vrTzY4DAAAAAABgWYfkIf0ffvihtm/frjlz5hyKww0I98+4X7+teFmG3aVTHD6z4wAAAAAAAFjWIXlI//PPPy+fz6eTTz652/L33ntPEyZMUEVFhb7zne/o/fffPxRxUkJtzSYZdpckKZDnNzkNAAAAAACAdfX7DLJoNKoXX3xRM2bMkM/32Uyno48+Wuecc45KS0tVW1ur+fPn6z/+4z/05JNPauLEiQd8PMMwFAwGD0b0pBAKhbr9ucf5z31TX9evJEnu7IyUOmeklr3VMGAF1C+sjhqG1VHDsDpqGFaWKvVrGIZsNts+t7MZhmH0Z5BFixbpsssu0+9//3uddNJJe90uGAxq1qxZGj58uObNO7CHzq9cuVKdnZ0HGtVSrlt2tb6x/BeKy9DUiwOy2w/JZEAAAAAAAABLcbvdqqio+MJt+n0G2fPPP6+srCxNnz79C7fz+Xw64YQT9PLLL3+p47lcrl6/JMCqQqGQKisrVVpaKq/X27XQMPT0U016WpKMqMaNG2dmROAL9VrDgEVQv7A6ahhWRw3D6qhhWFmq1O/GjRv3a7t+bZCFw2H961//0tlnny2Xy9Wfh0qw2WzdbuVMFV6v97PzinaqKZwmSXJHwil5vkg93WoYsBjqF1ZHDcPqqGFYHTUMK7N6/e7P7ZVSPz+k/7XXXlMwGNRXvvKVfW4bDAb1xhtv7HPKG6S2UL1uzyySJNmNiMlpAAAAAAAArK1fZ5A999xzGjx4sI488shuy5ctW6aHH35Yp556qoYMGaLa2lo9+uijqqur03333defkVJCONys3e6uGWSdDofJaQAAAAAAAKyt3xpkzc3NevPNN/Xd7363x3S2/Px8RSIR3XPPPWpqapLX69XEiRN122236YgjjuivSCkj0+7SlR3tWiGp2Z9ldhwAAAAAAABL67cGWWZmplatWtXrumHDhmn+/Pn9deiU54rHVBjpmjlmOPbvXloAAAAAAAD0rl+fQYb+sUVRPeZxKqf6D8presfsOAAAAAAAAJbWr88gQ/9oMjoVbtqsCRvi2uhwmx0HAAAAAADA0miQWdBQ/1CNsZ+v1WPc6swwzI4DAAAAAABgadxiaUG5Tds1qDWqXYVHq9OTb3YcAAAAAAAAS2MGmQWtrnpT7R1LNHJrnXaXDzM7DgAAAAAAgKUxg8yCNrXt0HajWiXbX5fX2252HAAAAAAAAEtjBpkFjXD51Zh7mN6fXC6VTDQ7DgAAAAAAgKXRILOgsc5MbbeP1wbfcXJl5ZgdBwAAAAAAwNK4xdKCVrdXaavDJ0lyeRwmpwEAAAAAALA2GmQW9EZrpaKN6ZKkwI4tJqcBAAAAAACwNhpkFjTM7pEn7pIkuR2GyWkAAAAAAACsjQaZBc0acoIc8kiS3D63yWkAAAAAAACsjQaZBW0ecYJqM3IlSc6yUnPDAAAAAAAAWBwNMgv6w8o/KO4IS5K8eZkmpwEAAAAAALA2p9kB0Hc5Npdc0a5bLL1um8lpAAAAAAAArI0ZZBb0/yrXKi3S1dv0hlpMTgMAAAAAAGBtzCCzoMaOVjliYdmMuNKzfGbHAQAAAAAAsDQaZBb0w+guzV3yE0lS9q/fNTkNAAAAAACAtXGLpQUZnXEZ6nr2mDcj3eQ0AAAAAAAA1sYMMgu6qz5Hz5x4i5yRoMY4HWbHAQAAAAAAsDRmkFlQNLznJ8PMGAAAAAAAACmBBpkFXTG8Tq+N/n9aVrTG7CgAAAAAAACWxy2WFrTLZVMop0Oj4wGzowAAAAAAAFgeDTIL+n/2m1S1xKOQmwmAAAAAAAAAXxYdFgvy1HnltmWqsKXV7CgAAAAAAACWR4PMYoKRoD6ueePTV1EzowAAAAAAAKQEGmQWE2ytVpPRJkmKOblDFgAAAAAA4MuiQWYx6bG4jkqLSJIaBg8zOQ0AAAAAAID10SCzGK+kER02SZLdxfABAAAAAAB8WXRYLGZHS5XeD2VJkgItdeaGAQAAAAAASAE0yCymNlijcNgnSfK1NZicBgAAAAAAwPpokFlMgcOnvIhDkuTgFksAAAAAAIAvjQ6LxQx2+BSIuyRJdifDBwAAAAAA8GU5zQ6AvtnSViVbeJ2GNMcUHz/U7DgAAAAAAACWxxQki1kZa1dL6EON3vCU/Nlxs+MAAAAAAABYHjPILKao5BitGbJG7R6HhuYVmx0HAAAAAADA8miQWczkQZP1r/R2ReyGwnncYgkAAAAAAPBlcYulxVRVLVWnp0q1rjalB9xmxwEAAAAAALA8ZpBZzD+W3a+SdStU1OZUnv0JScwiAwAAAAAA+DJokFlMpmwaUjdI/mBM7kjE7DgAAAAAAACWR4PMYr7jGaLfH3aBYk6vjlea2XEAAAAAAAAsj2eQWczucIvijq5nj2UMzjc5DQAAAAAAgPXRILOYO9s2yLA5JEkZeZkmpwEAAAAAALA+GmQWE4vYEj9n+FwmJgEAAAAAAEgNNMgs5oaWT2+rNGJyu2xfvDEAAAAAAAD2iQaZxXSEYpIkRywih8NhchoAAAAAAADro0FmMff7ciRJtninyUkAAAAAAABSAw0yi4mGuhpjNiNqchIAAAAAAIDUQIPMYk7ImiVJssVpkAEAAAAAABwMNMgspnjDy5IkBzPIAAAAAAAADgqn2QHQN08WL1NO7TY5sk81OwoAAAAAAEBKoEFmMUuyOxXKrdbxHdlmRwEAAAAAAEgJNMisxDB08/phamw7UdV5OWanAQAAAAAASAk8g8xK4lHl7BiktsiRGlxZZ3YaAAAAAACAlECDzEJCod3aatug0ev+JF98u9lxAAAAAAAAUgINMgtpDzdqvateeXVL5HG3mx0HAAAAAAAgJfAMMgtJixsqKhmpNwvKFTnsQrPjAAAAAAAApAQaZBaSkV6gjNDZat5dKk9L1Ow4AAAAAAAAKYFbLC2k3m5oZ7BryHzBZpPTAAAAAAAApAYaZBayvXW7/E27JUnpTbtMTgMAAAAAAJAaaJBZSKCzQ06lSZKcHofJaQAAAAAAAFIDDTILKW/fLV+8a8icXpfJaQAAAAAAAFIDDTILqQ3uUsTukSS5fR6T0wAAAAAAAKQGGmQW8u7udeq0uSXRIAMAAAAAADhYaJBZiE82RZ1dDTJPVobJaQAAAAAAAFJDvzTI/vrXv2r06NE9/vfrX/+623ZPP/20Tj/9dFVUVOjss8/W66+/3h9xUsbJvmK5XU5Jkm9EmclpAAAAAAAAUoOzP9/84Ycflt/vT7wuLCxM/PzCCy/o5ptv1hVXXKGpU6dq4cKFuvrqq/WnP/1JEyZM6M9YltUSbpLL4VNHzCGfj4f0AwAAAAAAHAz92iAbN26ccnJyel13//3366yzztKcOXMkSVOnTtX69ev1m9/8RvPmzevPWJb1RMNHUt2TCsQ9yg0w2w4AAAAAAOBg6NcG2d5UVVWpsrJSP/7xj7stnzlzpn71q1+ps7NTbrfbjGhJLd4R00mr3HLEOpTm4vFxAAAAAABIUiwWUyQSMTtGSuno6Ej8abcnZw/C5XLJ4XAclPfq1wbZrFmztHv3bg0ePFjf+MY3dMkll8jhcGjz5s2SpLKy7s/RGj58uCKRiKqqqjR8+PADOqZhGAoGg186e7IIhUKJP2ce/ku9fNxWSdJ3lFrnidT1+RoGrIb6hdVRw7A6ahhWRw33P8Mw1NDQoNbWVrOjpBzDMOR0OlVdXS2bzWZ2nL3y+/3Kzc3da0bDMPYrf780yPLz8/WDH/xA48ePl81m02uvvaZ7771Xu3bt0i233KLm5mZJUiAQ6Lbfntd71h+ISCSitWvXHnj4JFVZWakd27p+4Q0jpo2bNpqcCOibyspKsyMAB4z6hdVRw7A6ahhWRw33L5fLpby8PHk8nqRu5ODgMgxDHR0dqq+vV11d3Rduuz93KfZLg+y4447Tcccdl3g9ffp0eTwePf7447riiiv645AJLpdLI0aM6NdjHEqhUEiVlZUqLS3VI3V36O0jl8q1e6a+P+aHZkcD9svna9jr9ZodB+gT6hdWRw3D6qhhWB013L9isZi2bdumgoKCvT7/HAduTwMq2RuPLpdLtbW1Gjp0aK+3W27cuH8TjA7ZM8jOPPNMPfLII1q7dq0yMzMlSa2trcrPz09s09LSIkmJ9QfCZrPJ5/N9ubBJyOv1yqh9VzF3iypc61LyHJHavF4vdQvLon5hddQwrI4ahtVRw/0jHA7LbrcrIyPjoD2HCp+JxWKSuvosyfz5ZmRkqL6+Xi6XS2lpaT3W729zz5SH9JeXl0uSNm/enPh5z2uXy6WSkhIzYiW9i9cN05E7rpEj2mh2FAAAAAAAkkIyz25C/ztY43/IvoZg4cKFcjgcGjt2rEpKSlRaWqqXXnqpxzbTpk3jGyz3whlyKOzJVdyeYXYUAAAAAACAlNEvM8guvvhiTZkyRaNHj5Ykvfrqq1qwYIEuuuiixC2VP/jBD3T99ddr6NChmjJlihYuXKiPP/5Yf/zjH/sjUkpYZETlkCSDr64FAAAAAAA4WPqlQVZWVqZnn31WNTU1isfjKi0t1Y033qgLL7wwsc2sWbMUCoU0b948/eEPf1BZWZkefPBBTZw4sT8ipYSWuFPZkmyiQQYAAAAAQKqYO3euVq1apeeff97sKJKk0aNH6/rrr9e3v/1tSdKFF14on8+nhx56yORk/adfGmQ33XTTfm03e/ZszZ49uz8ipKSJIacq7ZJNhtlRAAAAAADAAPFf//VfstsP2VO6TGHKQ/pxYDIjDskj2ew0yAAAAAAAwKExYsQIsyP0u9Ru/6WYZXldX17QlpNtchIAAAAAAHCwLVq0SLNmzVJFRYW+9rWv6aOPPkqs+9vf/qZvfetbmjx5so4++mhdeOGF+vjjj7vtX1NTo2uvvVbHHHOMKioqNGPGDN1+++3dttm0aZOuvPJKHXnkkZowYYIuu+wybdu27QtzXXjhhbr88ssTrx944AFNnDhR69at07e+9S2NHz9es2bN0ptvvtlj37/+9a/6yle+ooqKCh133HG65557FIvFDuDT6V/MILMIwzD0cSBdR7ZK7Tk5ZscBAAAAACApGYahUMS8BozX5ZDNZuvzfnV1dbrtttv0gx/8QIFAQPPmzdPFF1+sV155Rbm5udq+fbvOPfdcDR06VJ2dnXrhhRd0wQUX6B//+IfKysokSf/v//0/1dbW6qabblJubq527typVatWJY5RVVWl888/XyNHjtSdd94pm82m3//+9/re976nl156SW63e7/zRiIRXX/99brooot01VVXad68ebrmmmv02muvKTu7a2LPo48+qrvuukvf/e53NXfuXG3atCnRILv++uv7/Bn1JxpkFhFXXINtFZIke5rP5DQAAAAAACQfwzB03u+X6oOtu03LcNSwbD19xbQ+N8mampp07733atq0aZKkyZMn64QTTtBjjz2mH/3oR7r66qsT28bjcR177LH6+OOP9X//93+67rrrJEkrV67Uddddp5kzZya2PffccxM/P/jgg8rMzNSjjz4qj8cjSZo0aZJOPvlkPf3007rgggv2O++eBtkJJ5wgqesLG08++WQtXrxY55xzjtra2nT//ffrkksuSeQ79thj5XK5dOedd+riiy9ONNKSAQ0yi3DYHBpR2aF2p1RYuV7SMWZHAgAAAAAg6fR97lZy8Pv9iebYntfHHHOMVqxYIanr1si7775by5cvV0NDQ2K7ysrKxM9jx47VI488IofDoWOPPVbDhg3rdoy3335bM2fOlMPhUDQalSQFAgGNHTu220yz/WG327vlLS4uVlpamnbt2iVJWr58uYLBoM4444zEsSTpmGOOUTgc1oYNGzR58uQ+HbM/0SCziNbWaqW1L1FOy2Z1ji0xOw4AAAAAAEnHZrPp6SumWfIWy5xeHqeUm5urTZs2qa2tTd///veVk5OjuXPnavDgwfJ4PLrpppvU0dGR2P6ee+7RPffco3vvvVe33XabysrKdN111+m0006TJO3evVuPP/64Hn/88R7HcrlcfcqblpbW45ZMl8uVyLN7d9csvq9+9au97r9z584+Ha+/0SCziN27NykUXKrxmwxtnXaV2XEAAAAAAEhKNptNPrf12h2NjY09ljU0NCg/P18fffSRampq9NBDD+mwww5LrG9tbVVRUVHidUFBge644w7F43GtWrVKv/vd7/TDH/5QL730kkpKSpSZmakTTjhB3/72t3scKz09/aCeT2ZmpqSu2zo/n3GP4uLig3q8L8t6FTNApRmGdh45Un8fl6XyI2eYHQcAAAAAABxEra2tWrp0aeK2xdbWVi1ZskQXXHCBwuGwpO6zvD788ENVV1dr5MiRPd7LbrfriCOO0Jw5c/Taa69p69atKikp0bRp07RhwwaNHTtWDoejX89n4sSJ8nq9qqmp0amnntqvxzoYaJBZRJHDqzF1p2hHZJwUYtgAAAAAAEglWVlZ+ulPf6prrrlGfr9f8+bNk2EY+u53vytJ8vl8uu2223TZZZdp165deuCBB1RYWJjYv7W1VRdffLHOOecclZWVKRKJ6Mknn0w8Y0ySrrnmGp133nm6+OKL9Y1vfEN5eXmqr6/Xe++9p6OOOkqzZs06aOcTCAR0zTXX6K677lJNTY0mT54sh8Ohqqoqvfrqq3rggQfk9XoP2vG+LDotFtEQqlU0Xql02ZThKdz3DgAAAAAAwDLy8/N1/fXX61e/+pW2bdumkSNHav78+crLy5Mk3XffffrVr36lq666SqWlpbrtttv08MMPJ/b3eDwaNWqUnnzySe3cuVNpaWk6/PDDNX/+/MTzzYYNG6ann3468YyyYDCo/Px8HX300Ro9evRBP6fvf//7Kiws1KOPPqo//vGPcjqdGjp0qE488cQ+P/Osv9kMwzDMDnGwrFy5UpJUUVFhcpKDJxgMau3atapve0n2G/+o4gap7ZcP6OhzTjE7GrBf9tTwmDFj5PP5zI4D9An1C6ujhmF11DCsjhruX+FwWFu2bFFZWZnS0tLMjpNyYrGYwuGw0tLS+v12zC9jX3Wwv70iZpBZhNeQIs5hasmIy+PlwgoAAAAAAHCw0CCziClphXp8xFWKuDJ0jEFnHAAAAAAA4GCxmx0A+6dFccUcHkmSN/PgfvUqAAAAAADAQMYMMotYYItI9q4H2PlzMkxOAwAAAAAAkDqYQWYRRlsk8bM/L2BiEgAAAAAAgNRCg8wiTh36DUmSIUMZWdxiCQAAAAAAcLDQILMI79v3dP1gi8puZ9gAAAAAAAAOFjotFvF4/ZauH+Id5gYBAAAAAABIMTTILMLR3PWnpzNsbhAAAAAAAIAUQ4PMIk4Odz2Y3x6PmpwEAAAAAACgd++++65Gjx6tlStX9mm/F198UVdeeaWOP/54TZgwQeecc46eeeYZGYbRT0m7cx6So+BLc9kdkqQ4IwYAAAAAAJLUuHHj9NRTT2n48OF92u+xxx7TkCFDNHfuXGVnZ2vJkiW6+eabVVNTo6uvvrqf0n6GdotF/LF0lVrDP1dBfIbZUQAAAAAAALoxDEORSEQZGRmaMGFCn/f/3e9+p5ycnMTradOmqampSY8++qiuuuqqfv/CQm6xtIhN7na9k1OnUEbI7CgAAAAAAOAg27Bhgy699FJNmTJF48eP1+mnn6558+Yl1i9fvlzf//73NWnSJE2cOFGzZ8/W22+/nVjf2dmpu+++WyeddJIOP/xwnXnmmXruuee6HWPu3LmaNWuW3n33XZ177rmaMGGCzjvvPK1atarbdo888oi+8Y1v6Pjjj9f06dN1+eWXa8uWLb2+16JFi3T22WeroqJCr732Wq+3WHZ0dOiOO+7Q9OnTVVFRoXPOOUf//Oc/u73f55tje4wZM0ZtbW0KBoN9/0D7iBlkFnHFB4erofUYRX18iyUAAAAAAKnmiiuuUF5enn7xi18oIyND27ZtU01NjSTpgw8+0He/+11NmDBBP//5zxUIBLRq1Srt2LEjsf+1116rDz/8UP/5n/+p4cOHa9GiRfrxj3+sQCCgE044IbFdXV2dfv7zn+uyyy6T3+/X//zP/+jqq6/WP//5T7lcLklSTU2Nvv3tbysvL0+dnZ1asGCBzj//fL388svKyspKvFdtba1+/vOf68orr9SgQYM0ePDgRObPu/766/Xmm29qzpw5Ki8v19///nf94Ac/0G9+8xudfPLJe/1MPvjgAxUWFiojI+PLfrz7RIPMIto1Wc3pY5XRscnsKAAAAAAAJLfO9i9e7/BIjk9bItFOKR7Z+7Y2u+Tydv1sGFJkH7OZ3On7n/NTjY2N2r59u376059qxoyuRytNnTo1sf6uu+7SsGHD9Pjjj8vh6HpG+fTp0xPr33nnHb322muaP39+Yvmxxx6ruro6PfDAA90aZM3NzfrjH/+okSNHSpK8Xq8uuugirVixQkcddZQk6cYbb1QsFlM4HJbL5dJxxx2nadOm6eWXX9Y3v/nNbu81b948jR8/PrHs3xtkn3zyiV555RXddtttOv/88yVJxx9/vKqrq7+wQbZs2TItXLhQN9xwQx8/zQNDg8widkWWaez6D7VreKnZUQAAAAAASG63D/7i9bMfk8Z9tevn134mLXlg79sOnihd9kbXz8EG6a59PHz+1ub9TZmQnZ2tIUOG6O6771Zzc7OmTZumoqIiSVIoFNKKFSt03XXXJZpj/+7tt99WVlaWpk6dqmg0mlh+zDHH6NZbb1UsFkvsW1BQkGiOSdKIESMkSbt27Uos++ijj3TvvfdqzZo1am7+7HwqKyu7HTcrK6tbc6w3H3zwgSTpjDPO6Lb8zDPP1B133KFgMCifz9dtXU1NjX74wx9qypQpuuiii77w/Q8WGmQWEQx/pKJdMTWOzTU7CgAAAAAAOIhsNpvmz5+ve+65Rz/72c8UDAY1btw4/eQnP9HQoUMVj8dVUFCw1/13796tpqYmjRs3rtf1dXV1iYZbIBDotm7PbZUdHV2PdNqxY4e+//3v6/DDD9dPf/pTDRkyRB6PR5dffnlimz3y8vL2eW7Nzc1yuVzdbs3cs69hGGptbe3WIGtpadGll16qrKwsPfDAA/3+cP49aJBZgBGLqiR+jDYML1DMnWV2HAAAAAAAktuNO754vcPz2c8zbpFO/Mnet7V9rkHjy933ex+gsrIy3X///YpEIlq+fLnuvvtuXXHFFXrjjTdkt9tVW1u7130zMzOVk5OjP/zhD72u7+0B+Hvz5ptvKhgM6r777pPb7VZaWpoMw+g2k2wPm822z/fLzMxUJBJRc3OzMjMzE8vr6+tls9nk9/sTy8LhsC6//HK1trbqqaee6rauv/EtlhbgiHfIaxumqpIZijv23Z0FAAAAAGBAc6d/8f8cn5sv5HR/8bZ7nj8mSTbbvt/7S3K5XJo8ebIuu+wytbW1qb6+XhMmTNDf//53xWKxXvc55phj1NjYKJfLpYqKih7/c7vd+338cDgsm80mp/Ozz+jFF1/sdutmXxx55JGSpJdeeqnb8pdeekljx45NzB6LRqOaM2eONm/erIcffliFhYUHdLwDxQwyC+iINKvO75YMKVpYZHYcAAAAAABwEH3yySf65S9/qZkzZ6qkpERtbW166KGHNGTIEA0dOlQ/+tGP9L3vfU/f+9739O1vf1uZmZlavXq1srOzdd555+nYY4/VSSedpEsuuUSXXHKJRo8erVAopI0bN2rr1q36xS9+sd9Z9nw5wE9/+lOde+652rZtmx5//PEet2bur8MOO0ynnXaa7rzzToXDYZWVlekf//iHli9frt/+9reJ7W677Ta9/vrrmjt3rtra2vTRRx8l1o0dO7ZPTb4DQYPMAto6G7Ux4FNJs6RhQ82OAwAAAAAADqL8/Hzl5eXpoYce0q5du+T3+3XUUUfprrvuksPh0FFHHaUnnnhC9957r37yk5/Ibrdr5MiRmjNnTuI97r//fv3hD3/QX/7yF1VXV8vv92vkyJH62te+1qcso0eP1h133KEHH3zw/7d371FR1/kfx58zw3CTm4SXQkkwQwQSzUTFS2plup50W2/rUTM1tU3LLnu8lb9s9WBZiJruCl7Wan+V1e7R3Ujzp2lmZZupqenmndLl4ioIDQPDML8/WKcmUIHEmYHX4xxOzPf7+X6+7xnefpV3nws7duygffv2LF261OVetbV48WLS0tLIzMykoKCAmJgYli1b5tyxEyo3GgBYtGhRleu3bdtGq1at6nz/mjA4HA5Hvd7hBjp48CAAiYmJbo7k+rFYLHz16dt8mVWG2dKOFvdHMmxorLvDEqkxi8XCkSNHiIuLq7IziYinU/6Kt1MOi7dTDou3Uw7XL6vVyqlTp4iOjsbf39/d4TQ4drsdq9WKv7//FXfP9ATXyoOa1oq0BpkXuAkzN12oXEAwKP97N0cjIiIiIiIiItKwqEDmBS6VXcBGZYHMz/faO0SIiIiIiIiIiEjNqUDmBU6Vfk+5sXIxOv8gDRsVEREREREREbmeVCDzAr4+QVj9KkeQBUTX76J0IiIiIiIiIiKNjQpkXuDWW34FjgAAgm+q27aqIiIiIiIiIiJSPR93ByDXdtFSSLHBisnhQ1CA2d3hiIiIiIiIiIg0KCqQeYEv/r2FX3+0CYDQoK/cHI2IiIiIiIiISMOiApkXCMn9hjJzMFSU4evv5+5wREREREREREQaFBXIvEBKURSfpDyJqbyEjkYtGyciIiIiIiIicj2p2uIF7NZyAIwVZW6ORERERERERESk4VGBzAv8n+kAfXc8RvzhP7g7FBERERERERGRK9qzZw+xsbEcPHiwVtft3LmTMWPG0K1bNxISEujfvz+pqakUFRXVU6SuNMXSG5SVYwDsPhXujkRERERERERE5Iri4+N5++23adu2ba2uKygo4I477mDs2LGEhYVx7Ngxli9fzrFjx1i7dm09RfsjFci8QHffu/ik7wDK/Irp7e5gRERERERERER+xuFwYLPZCAoKIikpqdbXDxkyxOV1cnIyvr6+PPfcc+Tm5tKiRYvrFGn1NMXSC/hU+FDmCAFToLtDEREREREREZF6cOzYMR555BGSk5Pp2LEjAwYMIDMz03l+3759TJgwgc6dO9OpUyeGDx/O7t27nefLyspIS0ujb9++JCQkMHDgQP7+97+73GPWrFkMHjyYPXv2MHToUJKSkhg2bBiHDh1yabd27VpGjBhB79696dmzJ1OmTOHUqVPV9rVz504eeOABEhMT2b59e7VTLEtLS0lNTaVnz54kJiYyZMgQtm7des3PJCwsDACbzVbjz7GuNILMC+wotxEG2O3F7g5FRERERERExONZbBYAAnwCMBgMlJSX4HA48DP5YTKaKLWXYq+wYzaZMRvN2Ow2bBU2fIw++Jp8Ka8op8xehtFgxN/HnwpHBdZyKwCB5sCr3uPy+dqaOnUqERERLFy4kKCgILKzs8nJyQFg7969PPTQQyQlJbFgwQJCQkI4dOgQ586dc17/xBNP8NVXX/HYY4/Rtm1bdu7cye9//3tCQkLo06ePs11+fj4LFixg8uTJBAcH88orrzBt2jS2bt2K2WwGICcnh9GjRxMREUFZWRkbNmxg1KhRbNmyxVm0AsjLy2PBggU8+uij3Hzzzdxyyy3OmH/qmWeeYdeuXcyYMYOYmBg2btzI9OnTWbFiBf3793dpa7fbKS8v5/jx46xYsYJ+/frRqlWrOn2mtaECmRcwX2gCQJMCFchEREREREREriX5f5MB2DlyJ+H+4fz2H7/lROEJ1g5Yy10t72L2rtlsPbOVOclz+G3735J5MJM/HvgjI2NH8my3Z9mWvY1ndj5DlxZdWHf/Ok4WnOTXm35NU7+mfDzq46ve4+BDtVucHuDChQt8//33zJ07l379+gHQrVs35/nFixdz6623sn79ekwmEwA9e/Z0nv/888/Zvn07a9ascR5PSUkhPz+f5cuXuxTICgsLeeONN2jXrh0AAQEBjBs3jgMHDtClSxcA5syZg91ux2q1Yjab6dWrF927d2fLli2MHDnSpa/MzEw6duzoPPbzAtnRo0f58MMPmT9/PqNGjQKgd+/enD17ttoCWd++fcnNzQWgV69evPLKK7X+POtCUyy9QGhFFAAGo9nNkYiIiIiIiIjI9da0aVMiIyNJS0vjb3/7m0uRqaSkhAMHDjB06FBncezndu/eTVhYGN26daO8vNz51aNHD44cOYLdbne2bd68ubM4BnDbbbcBOItSAPv372fixIn07duXxMREOnbsiMVi4fTp0y73DQsLcymOVWfv3r0A3H///S7HBw4cyDfffIPFYnE5npGRwVtvvcWCBQs4efIkU6dOdYm/vmgEmReo8AkDOxDg7+5QRERERERERDzentF7gMrpjwBvDn7TOcUSILVXKgtSFmA2VQ5EeSTxEcbHj8fHWFkm6R/Vnz2j92A0VI4rigmLcfZ5rXvUhcFgYM2aNSxZsoQXXngBi8VCfHw8s2fPJioqioqKCpo3b37F6y9evEhBQQHx8fHVns/Pz6dly5YAhISEuJy7PK2ytLQUgHPnzjFhwgQSEhKYO3cukZGR+Pn5MWXKFGebyyIiIq753goLCzGbzS5TMy9f63A4KCoqIjDwx2mp7du3B6BTp04u65X9vMB2valA5gXymn5PxPnWXGrTzN2hiIiIiIiIiHi8n68DdrmIdZmfyQ9+MhjLbDI7i2UAPkYfZ7EMwGgwVunzWveorejoaJYtW4bNZmPfvn2kpaUxdepUduzYgdFoJC8v74rXhoaGEh4eTkZGRrXnw8PDaxzHrl27sFgsLF26FF9fX/z9/XE4HBQWFlZpazAYrtlfaGgoNpuNwsJCQkNDncfPnz+PwWAgODj4itfGxsZiNpvJzs6ucfx1pSmWXuCCobICbTLV/5BCEREREREREXEfs9lM165dmTx5MsXFxZw/f56kpCQ2btx4xamGPXr04MKFC5jNZhITE6t8+fr61vj+VqsVg8GAj8+PBcIPPviA8vLyOr2fO++8E4DNmze7HN+8eTMdOnRwGT32cwcOHMBms2mRfgEcDjrnmig2QkhxibujEREREREREZHr7OjRo7z44osMGjSI1q1bU1xczKpVq4iMjCQqKoqnn36a8ePHM378eEaPHk1oaCiHDx+madOmDBs2jJSUFPr27cukSZOYNGkSsbGxlJSUcPz4cc6cOcPChQtrHMvlzQHmzp3L0KFDyc7OZv369VWmZtZU+/btue+++1i0aBFWq5Xo6Gg2bdrEvn37WLlypbPdtGnTSEhIIDY2Fn9/f44ePcqaNWuIjY3lnnvuqdO9a0MFMk9XbqWJxZfiIGhitVy7vYiIiIiIiIh4lWbNmhEREcGqVavIzc0lODiYLl26sHjxYkwmE126dOG1114jPT2d2bNnYzQaadeuHTNmzHD2sWzZMjIyMnjzzTc5e/YswcHBtGvXjgcffLBWscTGxpKamsqrr77Kjh07aN++PUuXLnW5V20tXryYtLQ0MjMzKSgoICYmhmXLljl37AS44447yMrKIiMjA4fDQWRkJMOHD2fixIm1GgFXVwZHXVeQ80AHD1ZupZqYmOjmSK6f/+Qe57PJ8zCURkLfjvxq5hh3hyRSKxaLhSNHjhAXF3fVobMinkj5K95OOSzeTjks3k45XL+sViunTp0iOjoaf39tane92e12rFYr/v7+V9w90xNcKw9qWivSGmQersiST3nxPmJO/4OQZvoDLyIiIiIiIiJyvWmKpYfzrbDj438XZ2/xw8+s/+MgIiIiIiIiInK9qUDm4ZoazeQ1G0SJf3MSDBrwJyIiIiIiIiJyvani4uEuOMoxV/yL4OKDBN0c7u5wREREREREREQaHI0g83DfGsp4qf+72K0tyeo4yd3hiIiIiIiIiIg0OCqQeTh/oz+35PTBVhGIn8ng7nBERERERERERBocFcg83O32cB449SAAJqsV0EL9IiIiIiIiIiLXk9Yg83Dn929yfh8aEuDGSEREREREREREGqZ6GUH2wQcfsGnTJg4fPsylS5e49dZbGTt2LL/5zW8wGCqnCY4dO5YvvviiyrVZWVm0bdu2PsLySrvzTgB3Yqgox6+JCmQiIiIiIiIiItdbvRTI/vznPxMZGcmsWbNo2rQpn376Kc899xw5OTlMmzbN2a5z587MnDnT5dpWrVrVR0hey24yAVBhLHNzJCIiIiIiIiIiDVO9FMj++Mc/Eh4e7nzdvXt3CgoKWLduHb/73e8wGitndoaEhJCUlFQfITQYPcyt2AGYjBXuDkVERERERERE5Kr27NnDuHHjePfdd0lMTKxTHz/88AMDBw4kNzf3F/VTG/WyBtlPi2OXxcXFUVxcjMViqY9bNljWH0orvzHa3RuIiIiIiIiIiMg1xMfH8/bbb/+i5bNWrlyJ3X5j6yA3bJH+vXv30qJFC4KCgpzHvvjiC5KSkkhMTGTMmDH885//vFHheI3d2WcA8C0qcnMkIiIiIiIiIiLVczgclJWVERQURFJSEoGBgXXq58SJE/zv//4v06dPv84RXl29TLH8uS+//JKsrCyX9cbuuusuhgwZQps2bcjLy2PNmjU8/PDDvP7663Tq1KnO93I4HA1rlJqtclMDg8PWsN6XNBolJSUu/xXxJspf8XbKYfF2ymHxdsrh+lVaWkpFRQV2u/2GjzaqD8eOHePll1/m66+/prS0lJYtW/Kb3/yGiRMnArB//35effVVDhw4gMPhoG3btjzxxBP06NEDgLKyMlasWME//vEPzp8/T+vWrZk6dSqDBw923mPOnDkcOnSIZ599lkWLFnHmzBluu+025s2bR3x8vLPdunXryMrK4syZM/j6+pKYmMjMmTNp06ZNlb6efvpp0tPTOXHiBIsXL6Zp06aMHz+eDRs2kJCQAFT+rNLT08nKyqKwsJDo6Ggee+wx7rnnniqfwx/+8AdGjBjBrbfeCuD8GV+J3W6noqKCkpISKiqqLk/lcDicG0ZeTb0XyHJycnjyySdJTk5m3LhxzuOPP/64S7u7776bwYMHs3LlSjIzM+t8P5vNxpEjR+p8vafpYAnkX4DJYW9Q70san9OnT7s7BJE6U/6Kt1MOi7dTDou3Uw7XHx8fH0pLS6scr7hCUdLg64vBZMJRUYHjJ9cZAwIAcNjKcZTbqrsSY4B/ZZuyMhz/LdgYTCYMvr7/vacVcDj7qq3f/e53hIeHM2/ePIKCgvjuu+/Izc3FarWyf/9+pkyZQmJiIs899xzBwcF88803ZGdn07lzZwCefPJJ9u/fz+TJk4mOjuaTTz5h5syZBAQEkJKSAlQWk86fP8+CBQt4+OGHCQoKYvny5UyfPp2NGzdiNpsBOHv2LCNGjODmm2/mhx9+4N1332X06NH87W9/IzQ01NlXXl4eCxcuZNKkSbRs2ZKWLVuSl5cHVBbsrFYrAM888wyffvopjz32GG3atOH999/niSeeIC0tjT59+jg/g//7v//j22+/5cUXX+To0aNV+qlOaWkp5eXlnDx58optfP/7M7qaei2QXbp0iUceeYSwsDCWL1/uXJy/OoGBgfTp04ctW7b8onuazWZuu+22X9SHJ9kUlATFYDeaiIuLc3c4IrVWUlLC6dOnadOmDQF1/ItCxF2Uv+LtlMPi7ZTD4u2Uw/WrtLSUc+fO4efnh7+/v8u5b+/sUu01rdatJaBrV8rOnOH0oF9VHvTx4fYD+wEo+Oub5C1cWOU637ZtabNpIwB5S9IpeOMNAMLGjKH57FkAnB4xkrITJ7j98KFav5eLFy9y9uxZ5syZQ9++faucX758OVFRUaxfvx6TyQTg0m7Pnj3s3LmTzMxMZzHs7rvv5uLFi2RkZNC/f38ATCYThYWFrF+/nnbt2gEQGhrK+PHj+fbbb7nzzjsBePbZZ3E4HJSWluLj40OfPn3o2bMnO3fuZMSIEc6+Ll26xKpVq+jYsaMzloKCgsrPzNcXf39//vWvf7F9+3b+53/+h5EjRwLQv39/Ro8eTWZmJgMGDAAq/7ykpaUxY8YMIiIinEWty/1cjY+PD1FRUfj5+VU5d/z48ate6+yjRq3qwGq1MmXKFIqKinj77bcJDg6ur1u5MBgMdZ7n6onO2bLos+c/fNsumsDAie4OR6TOAgICGtSfTWlclL/i7ZTD4u2Uw+LtlMP1w2g0YjQaMZlMzqLRta+pbGv62QCey9cbjFeYimeovo3BaPjx3gbXvmrjpptuIjIykvT0dIqKiujevTstW7YEKgtHBw4c4KmnnrriSKjPPvuMsLAwevTogcPhcB5PSUnh+eefd8ZlMBho3rw57du3d7a5/fbbAcjPz3fGvn//ftLT0/nmm28oLCx0ts3Ozv7xczAYCAsLc45gu+zy4KjLP5t9+/YBMGjQIJfPZtCgQaSmplJaWkpgYCAZGRlEREQwfPhwDAZDlX6uxGQyYTQaCQgIqLaQVpPplVBPBbLy8nJmzJjByZMn+ctf/kKLFi2ueY3FYmHHjh03ZOtOb1JuzSew5DwOc0t3hyIiIiIiIiLiFWK/2lvtccN/RxiZo6KqbdN0xAjCfv3rai78scjS/JlnaD5jRuULnx/LKtHvvAM/KU7VhsFgYM2aNSxZsoQXXngBi8VCfHw8s2fPJioqioqKCpo3b37F6y9evEhBQYHLOmI/lZ+f7yy4hYSEuJy7PK3y8lTVc+fOMWHCBBISEpg7dy6RkZH4+fkxZcqUKtNZIyIirvneCgsLMZvNhIWFVbnW4XBQVFTExYsXWbt2LStWrKDov5sUXl6H3WKx8MMPP9CkSZNr3uuXqJcC2fz58/noo4+YNWsWxcXF7N+/33muQ4cOfP3116xevZp7772XyMhI8vLyWLduHfn5+SxdurQ+QvJarW/qzcd9Y6hocUP2UxARERERERHxesZrjNgzGI0YqmljMJsx/LdgdMW+fX2hmpFcdV177LLo6GiWLVuGzWZj3759pKWlMXXqVHbs2IHRaHSu7VWd0NBQwsPDycjIqPZ8eHh4jePYtWsXFouFpUuXOqc3OhwOl5Fkl9VkdFZoaCg2m43CwkLn+mUA58+fx2AwEBwczMGDB7HZbEyePLnK9ePGjaNjx45s2LChxu+hLuql6rJ7924AFi1aVOXctm3baNasGTabjSVLllBQUEBAQACdOnVi/vz53HHHHfURktcKL/PhgiMaX79id4ciIiIiIiIiIvXMbDbTtWtXJk+ezKOPPsr58+dJSkpi48aNTJgwodrphj169GD16tWYzWaX6ZN1YbVaMRgM+PxkdNwHH3xAeXl5nfq7vK7Z5s2bnWuQXX7doUMHAgMDiYuL47XXXnO57siRI6SmpjJ//vwbMtuwXgpk27dvv2abNWvW1MetG5wvQz7G7HsYn/BB7g5FREREREREROrB0aNHefHFFxk0aBCtW7emuLiYVatWERkZSVRUFE8//TTjx49n/PjxjB49mtDQUA4fPkzTpk0ZNmwYKSkp9O3bl0mTJjFp0iRiY2MpKSnh+PHjnDlzhoXVbDxwJd26dQNg7ty5DB06lOzsbNavX19lamZNtW/fnvvuu49FixZhtVqJjo5m06ZN7Nu3j5UrVwKV0z6Tk5OrvT4+Pv6KU0evJ83b83Ctvsqh69Ecvh3Syt2hiIiIiIiIiEg9aNasGREREaxatYrc3FyCg4Pp0qULixcvxmQy0aVLF1577TXS09OZPXs2RqORdu3aMePyWmjAsmXLyMjI4M033+Ts2bMEBwfTrl07HnzwwVrFEhsbS2pqKq+++io7duygffv2LF261OVetbV48WLS0tLIzMykoKCAmJgYli1bRr9+/erc5/VmcDjquIKcBzp48CBAg1rof+OwR6kouxnDHcEMXfCku8MRqTWLxcKRI0eIi4vTzj3idZS/4u2Uw+LtlMPi7ZTD9ctqtXLq1Cmio6Or3b1Qfhm73Y7VasXf379OO3PeKNfKg5rWioxXPSvuZS/HGpjAuVt64vC59s4QIiIiIiIiIiJSeyqQeTCrtYD88MqdMcoT6n++rYiIiIiIiIhIY6QCmQcrLjnPRUPlMFy/wCZujkZEREREREREpGFSgcyDmc2BNLVUjiALrChxczQiIiIiIiIiIg2TCmQeLDQ0CrPtvwWysh/cHI2IiIiIiIiISMOkApmHqzBVFsgCQrXjiYiIiIiIiIhIfVCBzIPZ7XYqjGYAmoQFuTkaEREREREREZGGSQUyD1Z8oRgMlT+iJuEaQSYiIiIiIiIiUh9UIPNgxReLnd8HNdUIMhERERERERGR+qACmQezltow/3AOs+XfmH3N7g5HREREREREROSq9uzZQ2xsLAcPHqzVdX/961+JjY2t8vXyyy/XU6SufG7IXaROYhJuJW1APk0qtIOliIiIiIiIiHi++Ph43n77bdq2bVun61evXk1wcLDzdYsWLa5XaFelApkHMxgMLH4wniNHjrg7FBERERERERGRK3I4HNhsNoKCgkhKSqpzP/Hx8YSHh1+/wGpIUyxFRERERERERNzs2LFjPPLIIyQnJ9OxY0cGDBhAZmam8/y+ffuYMGECnTt3plOnTgwfPpzdu3c7z5eVlZGWlkbfvn1JSEhg4MCB/P3vf3e5x6xZsxg8eDB79uxh6NChJCUlMWzYMA4dOuTSbu3atYwYMYLevXvTs2dPpkyZwqlTp6rta+fOnTzwwAMkJiayffv2aqdYlpaWkpqaSs+ePUlMTGTIkCFs3br1en58v5hGkImIiIiIiIiIuNnUqVOJiIhg4cKFBAUFkZ2dTU5ODgB79+7loYceIikpiQULFhASEsKhQ4c4d+6c8/onnniCr776iscee4y2bduyc+dOfv/73xMSEkKfPn2c7fLz81mwYAGTJ08mODiYV155hWnTprF161bM5sr1z3Nychg9ejQRERGUlZWxYcMGRo0axZYtWwgLC3P2lZeXx4IFC3j00Ue5+eabueWWW5wx/9QzzzzDrl27mDFjBjExMWzcuJHp06ezYsUK+vfv79J28ODBXLx4kVtuuYURI0YwadIkTCbT9fyoq6UCmYiIiIiIiIg0KLZSe43aGX0MmExG7OUVVNgdGI0GTGYjFfYK7OWOGvXh42vEYDBgK7ODA8x+tS/mXLhwge+//565c+fSr18/ALp16+Y8v3jxYm699VbWr1/vLBb17NnTef7zzz9n+/btrFmzxnk8JSWF/Px8li9f7lIgKyws5I033qBdu3YABAQEMG7cOA4cOECXLl0AmDNnDna7HavVitlsplevXnTv3p0tW7YwcuRIl74yMzPp2LGj89jPC2RHjx7lww8/ZP78+YwaNQqA3r17c/bsWZcCWbNmzZg+fTodO3bEYDCwfft20tPTyc3NZd68ebX+TGtLBTIRERERERERaVAynthZo3a9R91O4t2t2PvBaf75/mkS+kTS57exnNx/ni2Zh67dATBhcU8Cgn15J/VLLv77Bx77U79ax9u0aVMiIyNJS0ujsLCQ7t2707JlSwBKSko4cOAATz311BVHUu3evZuwsDC6detGeXm583iPHj14/vnnsdvtzmubN2/uLI4B3HbbbQDk5uY6j+3fv5/09HS++eYbCgsLncdPnz7tct+wsDCX4lh19u7dC8D999/vcnzgwIGkpqZisVgIDAykV69e9OrVy3m+Z8+e+Pn5sX79eqZOnUrz5s2vep9fSgUyERERERERERE3MhgMrFmzhiVLlvDCCy9gsViIj49n9uzZREVFUVFRcdUC0cWLFykoKCA+Pr7a8/n5+c6CW0hIiMu5y9MqS0tLATh37hwTJkwgISGBuXPnEhkZiZ+fH1OmTHG2uSwiIuKa762wsBCz2ewyNfPytQ6Hg6KiIgIDA6u9duDAgaxdu5YjR46oQCYiIiIiIiIiUhuTl/a5diMqp1gC3DmwDZ3uuxWjsfJ1TFJEjfvw8a3c/3D47C5Qs1mZ1YqOjmbZsmXYbDb27dtHWloaU6dOZceOHRiNRvLy8q54bWhoKOHh4WRkZFR7vja7Qu7atQuLxcLSpUvx9fXF398fh8PhMpLsMoPBcM3+QkNDsdlsFBYWEhoa6jx+/vx5DAYDwcHBNY6tPmkXSxERERERERFpUMx+php9mUyVZRGTj7HytbnytdFkrHEfl4tEZl9TndYfqxK72UzXrl2ZPHkyxcXFnD9/nqSkJDZu3IjdXv3aaj169ODChQuYzWYSExOrfPn6+tb4/larFYPBgI/Pj2OqPvjgA5epm7Vx5513ArB582aX45s3b6ZDhw5XHD0GkJWVhclkokOHDnW6d21oBJmIiIiIiIiIiBsdPXqUF198kUGDBtG6dWuKi4tZtWoVkZGRREVF8fTTTzN+/HjGjx/P6NGjCQ0N5fDhwzRt2pRhw4aRkpJC3759mTRpEpMmTSI2NpaSkhKOHz/OmTNnWLhwYY1jubw5wNy5cxk6dCjZ2dmsX7++ytTMmmrfvj333XcfixYtwmq1Eh0dzaZNm9i3bx8rV650tps4cSLJycnExsYCsG3bNjZs2MC4ceNo1qxZne5dGyqQiYiIiIiIiIi4UbNmzYiIiGDVqlXk5uYSHBxMly5dWLx4MSaTiS5duvDaa6+Rnp7O7NmzMRqNtGvXjhkzZjj7WLZsGRkZGbz55pucPXuW4OBg2rVrx4MPPlirWGJjY0lNTeXVV19lx44dtG/fnqVLl7rcq7YWL15MWloamZmZFBQUEBMTw7Jly5w7dkLlFNP33nuPnJwcKioqaNOmDXPmzGHs2LF1vm9tGBwOxy+YIetZDh48CEBiYqKbI7l+LBYLR44cIS4u7qrDDkU8lXJYvJnyV7ydcli8nXJYvJ1yuH5ZrVZOnTpFdHQ0/v7+7g6nwbHb7VitVvz9/a+4e6YnuFYe1LRWpDXIRERERERERESkUVOBTEREREREREREGjUVyEREREREREREpFFTgUxERERERERERBo1FchERERERERERKRRU4FMRERERERERLyWw+FwdwjiRtfr568CmYiIiIiIiIh4HbPZDIDFYnFzJOJOl3/+l/OhrnyuRzAiIiIiIiIiIjeSyWQiLCyMvLw8AAIDAzEYDG6OquGw2+2UlpYClZ+1p3E4HFgsFvLy8ggLC/vFMapAJiIiIiIiIiJeqWXLlgDOIplcPxUVFZSXl+Pj44PR6LkTEMPCwpx58EuoQCYiIiIiIiIiXslgMHDzzTfTvHlzbDabu8NpUEpKSjh58iRRUVEEBAS4O5xqmc3m6za6TQUyEREREREREfFqJpPJI6cBerOKigoA/Pz88Pf3d3M09c9zx8iJiIiIiIiIiIjcACqQiYiIiIiIiIhIo6YCmYiIiIiIiIiINGoqkImIiIiIiIiISKNmcDgcDncHcb189dVXOBwOfH193R3KdeNwOLDZbJjNZgwGg7vDEak15bB4M+WveDvlsHg75bB4O+WweLOGkr9lZWUYDAY6d+581XYNahdLb/6BXYnBYGhQBT9pfJTD4s2Uv+LtlMPi7ZTD4u2Uw+LNGkr+GgyGGtWLGtQIMhERERERERERkdrSGmQiIiIiIiIiItKoqUAmIiIiIiIiIiKNmgpkIiIiIiIiIiLSqKlAJiIiIiIiIiIijZoKZCIiIiIiIiIi0qipQCYiIiIiIiIiIo2aCmQiIiIiIiIiItKoqUAmIiIiIiIiIiKNmgpkIiIiIiIiIiLSqKlAJiIiIiIiIiIijZoKZCIiIiIiIiIi0qipQOahTpw4wcMPP0xSUhIpKSm89NJLlJWVuTsskSr++te/EhsbW+Xr5Zdfdmn3zjvvMGDAABITE3nggQf46KOP3BSxNHZnzpxh3rx5DBkyhA4dOjB48OBq29UkZ4uKipgzZw5du3alU6dOPP744+Tl5dX3W5BGrCb5O3bs2GqfyydOnHBpp/yVG+2DDz7g0UcfpXfv3iQlJTFkyBDeffddHA6HSzs9f8VT1SSH9QwWT7Zz507GjBlDt27dSEhIoH///qSmplJUVOTSbvv27TzwwAMkJiYyYMAA3nvvvSp9lZWV8eKLL5KSkkJSUhIPP/wwJ0+evFFvpV74uDsAqaqwsJCHHnqINm3asHz5cnJzc1m0aBFWq5V58+a5OzyRaq1evZrg4GDn6xYtWji/f//993nuueeYOnUq3bp1Iysri2nTpvGXv/yFpKQkN0QrjdmxY8fYuXMnHTt2pKKiosovZlDznJ0xYwbHjx/n+eefx8/Pj/T0dB555BHee+89fHz0V6xcfzXJX4DOnTszc+ZMl2OtWrVyea38lRvtz3/+M5GRkcyaNYumTZvy6aef8txzz5GTk8O0adMAPX/Fs9Ukh0HPYPFcBQUF3HHHHYwdO5awsDCOHTvG8uXLOXbsGGvXrgXgyy+/ZNq0aQwbNow5c+bw+eefM3fuXJo0acL999/v7GvBggVkZWUxa9YsWrRowZ/+9CfGjx/P+++/7/J7oVdxiMf505/+5EhKSnJcvHjReeytt95yxMXFOXJyctwXmEg13nvvPcftt9/u+M9//nPFNvfdd5/jqaeecjk2cuRIx6RJk+o7PJEq7Ha78/uZM2c6fvWrX1VpU5Oc/eqrrxy33367Y9euXc5jJ06ccMTGxjref//9eohcpGb5O2bMGMfkyZOv2o/yV9yhun8rPPvss47OnTs7c1vPX/FkNclhPYPF27z99tuO22+/3VlrmDBhgmPkyJEubZ566inHwIEDna///e9/O+Li4hxvvfWW89jFixcdSUlJjoyMjBsTeD3QFEsP9PHHH9O9e3fCwsKcxwYOHEhFRQW7d+92X2AidfDdd99x+vRpBg4c6HJ80KBBfPbZZ5o6LDec0Xj1v/pqmrMff/wxISEhpKSkONvExMQQFxfHxx9/fP0DF+Ha+VtTyl9xh/Dw8CrH4uLiKC4uxmKx6PkrHu9aOVxTymHxJJfrDjabjbKyMvbs2eMyUgwqn8MnTpzg+++/B+CTTz6hoqLCpV1YWBgpKSlencMqkHmgkydPEhMT43IsJCSEZs2aef2cXmm4Bg8eTFxcHP3792fVqlXY7XYAZ85GR0e7tG/bti02m43vvvvuhscqcjU1zdmTJ08SHR2NwWBwaRcTE6NntbjdF198QVJSEomJiYwZM4Z//vOfLueVv+Ip9u7dS4sWLQgKCtLzV7zST3P4Mj2DxdPZ7XZKS0s5fPgwK1asoF+/frRq1Yrs7GxsNluVekTbtm2BH/+dfPLkSW666SZCQ0OrtPPmHNbkZg906dIlQkJCqhwPDQ2lsLDQDRGJXFmzZs2YPn06HTt2xGAwsH37dtLT08nNzWXevHnOnP15Tl9+rZwWT1PTnL106VK16yuEhoZy6NCheo5S5MruuusuhgwZQps2bcjLy2PNmjU8/PDDvP7663Tq1AlQ/opn+PLLL8nKynKu1aTnr3ibn+cw6Bks3qFv377k5uYC0KtXL1555RXglz+HQ0JCvPr3OxXIROQX6dWrF7169XK+7tmzJ35+fqxfv56pU6e6MTIRkcbp8ccfd3l99913M3jwYFauXElmZqabohJxlZOTw5NPPklycjLjxo1zdzgitXalHNYzWLxBRkYGJSUlHD9+nD/+8Y9MnTqVdevWuTsst9MUSw8UEhJSZZtVqKzW/nwIo4gnGjhwIHa7nSNHjjhz9uc5fenSJQDltHicmuZsSEgIxcXFVa7Xs1o8TWBgIH369OHw4cPOY8pfcadLly7xyCOPEBYWxvLly51r6+n5K97iSjlcHT2DxRO1b9+eTp06MXz4cFauXMmePXvYunXrL34OX7p0yatzWAUyD1Td3POioiLy8/OrzAUW8XSXc/bnOX3y5EnMZjOtW7d2R1giV1TTnI2JieHUqVM4HA6XdqdOndKzWjye8lfcxWq1MmXKFIqKili9erXLFB09f8UbXC2Ha0o5LJ4kNjYWs9lMdnY2UVFRmM3map/D8ONzOiYmhvPnz1eZTlndeureRAUyD9S7d28+/fRTZ5UWYPPmzRiNRpedTkQ8VVZWFiaTiQ4dOtC6dWvatGnD5s2bq7Tp3r07vr6+bopSpHo1zdnevXtTWFjIZ5995mxz6tQpvvnmG3r37n1DYxa5GovFwo4dO0hMTHQeU/6KO5SXlzNjxgxOnjzJ6tWradGihct5PX/F010rh6ujZ7B4ugMHDmCz2WjVqhW+vr4kJyezZcsWlzZZWVm0bduWVq1aAZXL6hiNRj788ENnm8LCQj755BOvzmGtQeaBRo0axeuvv85jjz3GlClTyM3N5aWXXmLUqFE1egiL3EgTJ04kOTmZ2NhYALZt28aGDRsYN24czZo1A2D69Ok888wzREVFkZycTFZWFl9//TVvvPGGO0OXRqqkpISdO3cCcPbsWYqLi52/jHXt2pXw8PAa5WynTp3o2bMnc+bMYebMmfj5+bFkyRJiY2O577773PLepOG7Vv5e/qXt3nvvJTIykry8PNatW0d+fj5Lly519qP8FXeYP38+H330EbNmzaK4uJj9+/c7z3Xo0AFfX189f8WjXSuHv/76az2DxaNNmzaNhIQEYmNj8ff35+jRo6xZs4bY2FjuueceAB599FHGjRvH888/z8CBA9mzZw//+Mc/WLJkibOfli1bMmzYMF566SWMRiMtWrRg1apVBAcHM2rUKHe9vV/M4Pj5uE7xCCdOnOAPf/gD+/bto0mTJgwZMoQnn3xSo23E4yxYsIBdu3aRk5NDRUUFbdq0Yfjw4YwdO9Zl6+p33nmHzMxMzp07R3R0NE899RR9+/Z1Y+TSWH3//ff079+/2nOvvfYaycnJQM1ytqioiNTUVLZu3Up5eTk9e/bk2Wef1f/MkHpzrfxt2bIlL7zwAv/6178oKCggICCATp06MW3aNO644w6X9spfudH69evH2bNnqz23bds258gEPX/FU10rh+12u57B4tEyMjLIysoiOzsbh8NBZGQk9957LxMnTiQoKMjZbtu2baSnp3Pq1CluueUWJk+ezLBhw1z6KisrY8mSJWzcuJEffviBzp078+yzz9K2bdsb/bauGxXIRERERERERESkUdMaZCIiIiIiIiIi0qipQCYiIiIiIiIiIo2aCmQiIiIiIiIiItKoqUAmIiIiIiIiIiKNmgpkIiIiIiIiIiLSqKlAJiIiIiIiIiIijZoKZCIiIiIiIiIi0qipQCYiIiIiIiIiIo2aCmQiIiIiIiIiItKoqUAmIiIiIiIiIiKNmgpkIiIiIiIiIiLSqKlAJiIiIiIiIiIijdr/AxJKR4oJyTNhAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1614,7 +1602,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.13" + "version": "3.8.10" }, "vscode": { "interpreter": { diff --git a/config/new_parameters.yml b/config/new_parameters.yml index 12dae40..877b259 100644 --- a/config/new_parameters.yml +++ b/config/new_parameters.yml @@ -4,7 +4,7 @@ ######################################################## microsim: study-area: "Manchester" - iterations: 100 # Number of model iterations (days) + iterations: 300 # Number of model iterations (days) use-lockdown: FALSE # Whether to preload the lockdown scenario start-date: 0 # Counted as number of days since 15/02/2020 (currently, max is 435) output: TRUE # Whether to generate output or not diff --git a/poetry.lock b/poetry.lock index 00a06d9..1b68122 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,3 +1,73 @@ +[[package]] +name = "anyio" +version = "3.6.2" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +category = "dev" +optional = false +python-versions = ">=3.6.2" + +[package.dependencies] +idna = ">=2.8" +sniffio = ">=1.1" + +[package.extras] +doc = ["packaging", "sphinx-rtd-theme", "sphinx-autodoc-typehints (>=1.2.0)"] +test = ["coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "contextlib2", "uvloop (<0.15)", "mock (>=4)", "uvloop (>=0.15)"] +trio = ["trio (>=0.16,<0.22)"] + +[[package]] +name = "appnope" +version = "0.1.3" +description = "Disable App Nap on macOS >= 10.9" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "argon2-cffi" +version = "21.3.0" +description = "The secure Argon2 password hashing algorithm." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +argon2-cffi-bindings = "*" + +[package.extras] +dev = ["pre-commit", "cogapp", "tomli", "coverage[toml] (>=5.0.2)", "hypothesis", "pytest", "sphinx", "sphinx-notfound-page", "furo"] +docs = ["sphinx", "sphinx-notfound-page", "furo"] +tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +description = "Low-level CFFI bindings for Argon2" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +cffi = ">=1.0.1" + +[package.extras] +dev = ["pytest", "cogapp", "pre-commit", "wheel"] +tests = ["pytest"] + +[[package]] +name = "asttokens" +version = "2.1.0" +description = "Annotate AST trees with source code positions" +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +six = "*" + +[package.extras] +test = ["astroid (<=2.5.3)", "pytest"] + [[package]] name = "atomicwrites" version = "1.4.0" @@ -20,6 +90,29 @@ docs = ["furo", "sphinx", "zope.interface", "sphinx-notfound-page"] tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "cloudpickle"] tests_no_zope = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "cloudpickle"] +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "beautifulsoup4" +version = "4.11.1" +description = "Screen-scraping library" +category = "dev" +optional = false +python-versions = ">=3.6.0" + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +html5lib = ["html5lib"] +lxml = ["lxml"] + [[package]] name = "black" version = "22.3.0" @@ -42,6 +135,33 @@ d = ["aiohttp (>=3.7.4)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] uvloop = ["uvloop (>=0.15.2)"] +[[package]] +name = "bleach" +version = "5.0.1" +description = "An easy safelist-based HTML-sanitizing tool." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.2)"] +dev = ["build (==0.8.0)", "flake8 (==4.0.1)", "hashin (==0.17.0)", "pip-tools (==6.6.2)", "pytest (==7.1.2)", "Sphinx (==4.3.2)", "tox (==3.25.0)", "twine (==4.0.1)", "wheel (==0.37.1)", "black (==22.3.0)", "mypy (==0.961)"] + +[[package]] +name = "cffi" +version = "1.15.1" +description = "Foreign Function Interface for Python calling C code." +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +pycparser = "*" + [[package]] name = "click" version = "8.1.2" @@ -61,6 +181,108 @@ category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +[[package]] +name = "contourpy" +version = "1.0.6" +description = "Python library for calculating contours of 2D quadrilateral grids" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +numpy = ">=1.16" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["docutils (<0.18)", "sphinx (<=5.2.0)", "sphinx-rtd-theme"] +test = ["pytest", "matplotlib", "pillow", "flake8", "isort"] +test-minimal = ["pytest"] +test-no-codebase = ["pytest", "matplotlib", "pillow"] + +[[package]] +name = "cycler" +version = "0.11.0" +description = "Composable style cycles" +category = "main" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "debugpy" +version = "1.6.3" +description = "An implementation of the Debug Adapter Protocol for Python" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +category = "dev" +optional = false +python-versions = ">=3.5" + +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" + +[[package]] +name = "entrypoints" +version = "0.4" +description = "Discover and load entry points from installed packages." +category = "dev" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "executing" +version = "1.2.0" +description = "Get the currently executing AST node of a frame, and other information" +category = "dev" +optional = false +python-versions = "*" + +[package.extras] +tests = ["asttokens", "pytest", "littleutils", "rich"] + +[[package]] +name = "fastjsonschema" +version = "2.16.2" +description = "Fastest Python implementation of JSON schema" +category = "dev" +optional = false +python-versions = "*" + +[package.extras] +devel = ["colorama", "jsonschema", "json-spec", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + +[[package]] +name = "fonttools" +version = "4.38.0" +description = "Tools to manipulate font files" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.extras] +all = ["fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "zopfli (>=0.1.4)", "lz4 (>=1.7.4.2)", "matplotlib", "sympy", "skia-pathops (>=0.5.0)", "uharfbuzz (>=0.23.0)", "brotlicffi (>=0.8.0)", "scipy", "brotli (>=1.0.1)", "munkres", "unicodedata2 (>=14.0.0)", "xattr"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["scipy", "munkres"] +lxml = ["lxml (>=4.0,<5)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=14.0.0)"] +woff = ["zopfli (>=0.1.4)", "brotlicffi (>=0.8.0)", "brotli (>=1.0.1)"] + [[package]] name = "glfw" version = "2.5.3" @@ -72,6 +294,14 @@ python-versions = "*" [package.extras] preview = ["glfw-preview"] +[[package]] +name = "idna" +version = "3.4" +description = "Internationalized Domain Names in Applications (IDNA)" +category = "dev" +optional = false +python-versions = ">=3.5" + [[package]] name = "imgui" version = "1.4.1" @@ -91,28 +321,517 @@ pyglet = ["pyopengl", "pyglet", "pyglet (>=1.5.6)"] sdl2 = ["pyopengl", "pysdl2"] [[package]] -name = "linetimer" -version = "0.1.5" -description = "A small Python class to quickly measure the time taken while executing a block of indented lines" -category = "main" +name = "importlib-metadata" +version = "5.0.0" +description = "Read metadata from Python packages" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +docs = ["sphinx (>=3.5)", "jaraco.packaging (>=9)", "rst.linker (>=1.9)", "furo", "jaraco.tidelift (>=1.4)"] +perf = ["ipython"] +testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "flake8 (<5)", "pytest-cov", "pytest-enabler (>=1.3)", "packaging", "pyfakefs", "flufl.flake8", "pytest-perf (>=0.9.2)", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)", "importlib-resources (>=1.3)"] + +[[package]] +name = "importlib-resources" +version = "5.10.0" +description = "Read resources from Python packages" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["sphinx (>=3.5)", "jaraco.packaging (>=9)", "rst.linker (>=1.9)", "furo", "jaraco.tidelift (>=1.4)"] +testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "flake8 (<5)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)"] + +[[package]] +name = "ipykernel" +version = "6.17.0" +description = "IPython Kernel for Jupyter" +category = "dev" +optional = false +python-versions = ">=3.8" + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +debugpy = ">=1.0" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=17" +tornado = ">=6.1" +traitlets = ">=5.1.0" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest-cov", "pytest-timeout", "pytest (>=7.0)"] + +[[package]] +name = "ipython" +version = "8.6.0" +description = "IPython: Productive Interactive Computing" +category = "dev" +optional = false +python-versions = ">=3.8" + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">3.0.1,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" + +[package.extras] +all = ["black", "ipykernel", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "docrepr", "matplotlib", "stack-data", "pytest (<7)", "typing-extensions", "pytest (<7.1)", "pytest-asyncio", "testpath", "nbconvert", "nbformat", "ipywidgets", "notebook", "ipyparallel", "qtconsole", "curio", "matplotlib (!=3.2.0)", "numpy (>=1.20)", "pandas", "trio"] +black = ["black"] +doc = ["ipykernel", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "docrepr", "matplotlib", "stack-data", "pytest (<7)", "typing-extensions", "pytest (<7.1)", "pytest-asyncio", "testpath"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test_extra = ["pytest (<7.1)", "pytest-asyncio", "testpath", "curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.20)", "pandas", "trio"] + +[[package]] +name = "ipython-genutils" +version = "0.2.0" +description = "Vestigial utilities from IPython" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "ipywidgets" +version = "8.0.2" +description = "Jupyter interactive widgets" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +ipykernel = ">=4.5.1" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0,<4.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0,<5.0" + +[package.extras] +test = ["jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "jedi" +version = "0.18.1" +description = "An autocompletion tool for Python that can be used for text editors." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +parso = ">=0.8.0,<0.9.0" + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["Django (<3.1)", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.2" +description = "A very fast and expressive template engine." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "jsonschema" +version = "4.17.0" +description = "An implementation of JSON Schema validation for Python" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +attrs = ">=17.4.0" +importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} +pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} +pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" + +[package.extras] +format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] + +[[package]] +name = "jupyter" +version = "1.0.0" +description = "Jupyter metapackage. Install all the Jupyter components in one go." +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +jupyter-console = "*" +nbconvert = "*" +notebook = "*" +qtconsole = "*" + +[[package]] +name = "jupyter-client" +version = "7.4.4" +description = "Jupyter protocol implementation and client libraries" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +entrypoints = "*" +jupyter-core = ">=4.9.2" +nest-asyncio = ">=1.5.4" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = "*" + +[package.extras] +doc = ["ipykernel", "myst-parser", "sphinx-rtd-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt"] +test = ["codecov", "coverage", "ipykernel (>=6.12)", "ipython", "mypy", "pre-commit", "pytest", "pytest-asyncio (>=0.18)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-console" +version = "6.4.4" +description = "Jupyter terminal console" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +ipykernel = "*" +ipython = "*" +jupyter-client = ">=7.0.0" +prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0" +pygments = "*" + +[package.extras] +test = ["pexpect"] + +[[package]] +name = "jupyter-core" +version = "4.11.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +pywin32 = {version = ">=1.0", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = "*" + +[package.extras] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-server" +version = "1.21.0" +description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +anyio = ">=3.1.0,<4" +argon2-cffi = "*" +jinja2 = "*" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.7.0" +nbconvert = ">=6.4.4" +nbformat = ">=5.2.0" +packaging = "*" +prometheus-client = "*" +pywinpty = {version = "*", markers = "os_name == \"nt\""} +pyzmq = ">=17" +Send2Trash = "*" +terminado = ">=0.8.3" +tornado = ">=6.1.0" +traitlets = ">=5.1" +websocket-client = "*" + +[package.extras] +test = ["coverage", "ipykernel", "pre-commit", "pytest-console-scripts", "pytest-cov", "pytest-mock", "pytest-timeout", "pytest-tornasync", "pytest (>=7.0)", "requests"] + +[[package]] +name = "jupyterlab-pygments" +version = "0.2.2" +description = "Pygments theme using JupyterLab CSS variables" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.3" +description = "Jupyter interactive widgets for JupyterLab" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "kiwisolver" +version = "1.4.4" +description = "A fast implementation of the Cassowary constraint solver" +category = "main" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "linetimer" +version = "0.1.5" +description = "A small Python class to quickly measure the time taken while executing a block of indented lines" +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "markupsafe" +version = "2.1.1" +description = "Safely add untrusted strings to HTML/XML markup." +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "matplotlib" +version = "3.6.2" +description = "Python plotting package" +category = "main" +optional = false +python-versions = ">=3.8" + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.0.1" +numpy = ">=1.19" +packaging = ">=20.0" +pillow = ">=6.2.0" +pyparsing = ">=2.2.1" +python-dateutil = ">=2.7" +setuptools_scm = ">=7" + +[[package]] +name = "matplotlib-inline" +version = "0.1.6" +description = "Inline Matplotlib backend for Jupyter" +category = "dev" +optional = false +python-versions = ">=3.5" + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mistune" +version = "2.0.4" +description = "A sane Markdown parser with useful plugins and renderers" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "more-itertools" +version = "8.12.0" +description = "More routines for operating on iterables, beyond itertools" +category = "dev" +optional = false +python-versions = ">=3.5" + +[[package]] +name = "mypy-extensions" +version = "0.4.3" +description = "Experimental type system extensions for programs checked with the mypy typechecker." +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "nbclassic" +version = "0.4.8" +description = "A web-based notebook environment for interactive computing" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +argon2-cffi = "*" +ipykernel = "*" +ipython-genutils = "*" +jinja2 = "*" +jupyter-client = ">=6.1.1" +jupyter-core = ">=4.6.1" +jupyter-server = ">=1.8" +nbconvert = ">=5" +nbformat = "*" +nest-asyncio = ">=1.5" +notebook-shim = ">=0.1.0" +prometheus-client = "*" +pyzmq = ">=17" +Send2Trash = ">=1.8.0" +terminado = ">=0.8.3" +tornado = ">=6.1" +traitlets = ">=4.2.1" + +[package.extras] +docs = ["sphinx", "nbsphinx", "sphinxcontrib-github-alt", "sphinx-rtd-theme", "myst-parser"] +json-logging = ["json-logging"] +test = ["pytest", "coverage", "requests", "testpath", "nbval", "pytest-playwright", "pytest-cov", "pytest-tornasync", "requests-unixsocket"] + +[[package]] +name = "nbclient" +version = "0.7.0" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +category = "dev" +optional = false +python-versions = ">=3.7.0" + +[package.dependencies] +jupyter-client = ">=6.1.5" +nbformat = ">=5.0" +nest-asyncio = "*" +traitlets = ">=5.2.2" + +[package.extras] +sphinx = ["autodoc-traits", "mock", "moto", "myst-parser", "Sphinx (>=1.7)", "sphinx-book-theme"] +test = ["black", "check-manifest", "flake8", "ipykernel", "ipython", "ipywidgets", "mypy", "nbconvert", "pip (>=18.1)", "pre-commit", "pytest (>=4.1)", "pytest-asyncio", "pytest-cov (>=2.6.1)", "setuptools (>=60.0)", "testpath", "twine (>=1.11.0)", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.2.3" +description = "Converting Jupyter Notebooks" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +beautifulsoup4 = "*" +bleach = "*" +defusedxml = "*" +importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""} +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<3" +nbclient = ">=0.5.0" +nbformat = ">=5.1" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +tinycss2 = "*" +traitlets = ">=5.0" + +[package.extras] +all = ["ipykernel", "ipython", "ipywidgets (>=7)", "myst-parser", "nbsphinx (>=0.2.12)", "pre-commit", "pyppeteer (>=1,<1.1)", "pyqtwebengine (>=5.15)", "pytest", "pytest-cov", "pytest-dependency", "sphinx-rtd-theme", "sphinx (==5.0.2)", "tornado (>=6.1)"] +docs = ["ipython", "myst-parser", "nbsphinx (>=0.2.12)", "sphinx-rtd-theme", "sphinx (==5.0.2)"] +qtpdf = ["pyqtwebengine (>=5.15)"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pyppeteer (>=1,<1.1)", "pytest", "pytest-cov", "pytest-dependency"] +webpdf = ["pyppeteer (>=1,<1.1)"] + +[[package]] +name = "nbformat" +version = "5.7.0" +description = "The Jupyter Notebook format" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +fastjsonschema = "*" +jsonschema = ">=2.6" +jupyter-core = "*" +traitlets = ">=5.1" + +[package.extras] +test = ["check-manifest", "pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.5.6" +description = "Patch asyncio to allow nested event loops" +category = "dev" optional = false -python-versions = "*" +python-versions = ">=3.5" [[package]] -name = "more-itertools" -version = "8.12.0" -description = "More routines for operating on iterables, beyond itertools" +name = "notebook" +version = "6.5.2" +description = "A web-based notebook environment for interactive computing" category = "dev" optional = false -python-versions = ">=3.5" +python-versions = ">=3.7" + +[package.dependencies] +argon2-cffi = "*" +ipykernel = "*" +ipython-genutils = "*" +jinja2 = "*" +jupyter-client = ">=5.3.4" +jupyter-core = ">=4.6.1" +nbclassic = ">=0.4.7" +nbconvert = ">=5" +nbformat = "*" +nest-asyncio = ">=1.5" +prometheus-client = "*" +pyzmq = ">=17" +Send2Trash = ">=1.8.0" +terminado = ">=0.8.3" +tornado = ">=6.1" +traitlets = ">=4.2.1" + +[package.extras] +docs = ["sphinx", "nbsphinx", "sphinxcontrib-github-alt", "sphinx-rtd-theme", "myst-parser"] +json-logging = ["json-logging"] +test = ["pytest", "coverage", "requests", "testpath", "nbval", "selenium (==4.1.5)", "pytest-cov", "requests-unixsocket"] [[package]] -name = "mypy-extensions" -version = "0.4.3" -description = "Experimental type system extensions for programs checked with the mypy typechecker." +name = "notebook-shim" +version = "0.2.2" +description = "A shim layer for notebook traits and config" category = "dev" optional = false -python-versions = "*" +python-versions = ">=3.7" + +[package.dependencies] +jupyter-server = ">=1.8,<3" + +[package.extras] +test = ["pytest", "pytest-console-scripts", "pytest-tornasync"] [[package]] name = "numpy" @@ -126,7 +845,7 @@ python-versions = ">=3.8" name = "packaging" version = "21.3" description = "Core utilities for Python packages" -category = "dev" +category = "main" optional = false python-versions = ">=3.6" @@ -154,6 +873,26 @@ pytz = ">=2020.1" [package.extras] test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] +[[package]] +name = "pandocfilters" +version = "1.5.0" +description = "Utilities for writing pandoc filters in python" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + [[package]] name = "pathspec" version = "0.9.0" @@ -162,6 +901,45 @@ category = "dev" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" +[[package]] +name = "pexpect" +version = "4.8.0" +description = "Pexpect allows easy control of interactive console applications." +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "pillow" +version = "9.3.0" +description = "Python Imaging Library (Fork)" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-issues (>=3.0.1)", "sphinx-removed-in", "sphinxext-opengraph"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "pkgutil-resolve-name" +version = "1.3.10" +description = "Resolve a name to an object." +category = "dev" +optional = false +python-versions = ">=3.6" + [[package]] name = "platformdirs" version = "2.5.1" @@ -185,6 +963,28 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" [package.extras] dev = ["pre-commit", "tox"] +[[package]] +name = "prometheus-client" +version = "0.15.0" +description = "Python client for the Prometheus monitoring system." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.32" +description = "Library for building powerful interactive command lines in Python" +category = "dev" +optional = false +python-versions = ">=3.6.2" + +[package.dependencies] +wcwidth = "*" + [[package]] name = "protobuf" version = "3.20.0" @@ -193,6 +993,36 @@ category = "main" optional = false python-versions = ">=3.7" +[[package]] +name = "psutil" +version = "5.9.3" +description = "Cross-platform lib for process and system monitoring in Python." +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[package.extras] +test = ["ipaddress", "mock", "enum34", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +category = "dev" +optional = false +python-versions = "*" + +[package.extras] +tests = ["pytest"] + [[package]] name = "py" version = "1.11.0" @@ -201,6 +1031,25 @@ category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +[[package]] +name = "pycparser" +version = "2.21" +description = "C parser in Python" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[[package]] +name = "pygments" +version = "2.13.0" +description = "Pygments is a syntax highlighting package written in Python." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.extras] +plugins = ["importlib-metadata"] + [[package]] name = "pyopencl" version = "2022.1" @@ -230,13 +1079,21 @@ python-versions = "*" name = "pyparsing" version = "3.0.8" description = "pyparsing module - Classes and methods to define and execute parsing grammars" -category = "dev" +category = "main" optional = false python-versions = ">=3.6.8" [package.extras] diagrams = ["railroad-diagrams", "jinja2"] +[[package]] +name = "pyrsistent" +version = "0.19.2" +description = "Persistent/Functional/Immutable data structures" +category = "dev" +optional = false +python-versions = ">=3.7" + [[package]] name = "pytest" version = "5.4.3" @@ -291,6 +1148,22 @@ category = "main" optional = false python-versions = "*" +[[package]] +name = "pywin32" +version = "304" +description = "Python for Window Extensions" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "pywinpty" +version = "2.0.9" +description = "Pseudo terminal support for Windows from Python." +category = "dev" +optional = false +python-versions = ">=3.7" + [[package]] name = "pyyaml" version = "6.0" @@ -299,6 +1172,102 @@ category = "main" optional = false python-versions = ">=3.6" +[[package]] +name = "pyzmq" +version = "24.0.1" +description = "Python bindings for 0MQ" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} +py = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "qtconsole" +version = "5.4.0" +description = "Jupyter Qt console" +category = "dev" +optional = false +python-versions = ">= 3.7" + +[package.dependencies] +ipykernel = ">=4.1" +ipython-genutils = "*" +jupyter-client = ">=4.1" +jupyter-core = "*" +pygments = "*" +pyzmq = ">=17.1" +qtpy = ">=2.0.1" +traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2" + +[package.extras] +doc = ["Sphinx (>=1.3)"] +test = ["flaky", "pytest", "pytest-qt"] + +[[package]] +name = "qtpy" +version = "2.2.1" +description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +packaging = "*" + +[package.extras] +test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] + +[[package]] +name = "seaborn" +version = "0.12.1" +description = "Statistical data visualization" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +matplotlib = ">=3.1,<3.6.1 || >3.6.1" +numpy = ">=1.17" +pandas = ">=0.25" + +[package.extras] +dev = ["pytest", "pytest-cov", "pytest-xdist", "flake8", "mypy", "pandas-stubs", "pre-commit"] +docs = ["numpydoc", "nbconvert", "ipykernel", "sphinx-copybutton", "sphinx-issues", "sphinx-design", "pyyaml", "pydata_sphinx_theme (==0.10.0rc2)"] +stats = ["scipy (>=1.3)", "statsmodels (>=0.10)"] + +[[package]] +name = "send2trash" +version = "1.8.0" +description = "Send file to trash natively under Mac OS X, Windows and Linux." +category = "dev" +optional = false +python-versions = "*" + +[package.extras] +nativelib = ["pyobjc-framework-cocoa", "pywin32"] +objc = ["pyobjc-framework-cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools-scm" +version = "7.0.5" +description = "the blessed package to manage your versions by scm tags" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +packaging = ">=20.0" +tomli = ">=1.0.0" +typing-extensions = "*" + +[package.extras] +test = ["pytest (>=6.2)", "virtualenv (>20)"] +toml = ["setuptools (>=42)"] + [[package]] name = "six" version = "1.16.0" @@ -307,14 +1276,86 @@ category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +[[package]] +name = "sniffio" +version = "1.3.0" +description = "Sniff out which async library your code is running under" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "soupsieve" +version = "2.3.2.post1" +description = "A modern CSS selector implementation for Beautiful Soup." +category = "dev" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "stack-data" +version = "0.6.0" +description = "Extract data from python stack frames and tracebacks for informative displays" +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["pytest", "typeguard", "pygments", "littleutils", "cython"] + +[[package]] +name = "terminado" +version = "0.17.0" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=6.1.0" + +[package.extras] +docs = ["pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest-timeout", "pytest (>=7.0)"] + +[[package]] +name = "tinycss2" +version = "1.2.1" +description = "A tiny CSS parser" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx-rtd-theme"] +test = ["pytest", "isort", "flake8"] + [[package]] name = "tomli" version = "2.0.1" description = "A lil' TOML parser" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" +[[package]] +name = "tornado" +version = "6.2" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +category = "dev" +optional = false +python-versions = ">= 3.7" + [[package]] name = "tqdm" version = "4.64.0" @@ -332,6 +1373,18 @@ notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] +[[package]] +name = "traitlets" +version = "5.5.0" +description = "" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest"] + [[package]] name = "typing-extensions" version = "4.1.1" @@ -348,12 +1401,58 @@ category = "dev" optional = false python-versions = "*" +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "websocket-client" +version = "1.4.2" +description = "WebSocket client for Python with low level API options" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.extras] +docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "widgetsnbextension" +version = "4.0.3" +description = "Jupyter interactive widgets for Jupyter Notebook" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "zipp" +version = "3.10.0" +description = "Backport of pathlib-compatible object wrapper for zip files" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.extras] +docs = ["sphinx (>=3.5)", "jaraco.packaging (>=9)", "rst.linker (>=1.9)", "furo", "jaraco.tidelift (>=1.4)"] +testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "flake8 (<5)", "pytest-cov", "pytest-enabler (>=1.3)", "jaraco.itertools", "func-timeout", "jaraco.functools", "more-itertools", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)"] + [metadata] lock-version = "1.1" python-versions = "^3.8" -content-hash = "eb564316a5b89a2a8f4df1498bd8b1ed4ff509e3b1f5ea189802165660de1d64" +content-hash = "82ac311ee409dc7f96dab11c0246afd83fe7a98ef91e4acb8ccf8e45466ae804" [metadata.files] +anyio = [] +appnope = [] +argon2-cffi = [] +argon2-cffi-bindings = [] +asttokens = [] atomicwrites = [ {file = "atomicwrites-1.4.0-py2.py3-none-any.whl", hash = "sha256:6d1784dea7c0c8d4a5172b6c620f40b6e4cbfdf96d783691f2e1302a7b88e197"}, {file = "atomicwrites-1.4.0.tar.gz", hash = "sha256:ae70396ad1a434f9c7046fd2dd196fc04b12f9e91ffb859164193be8b6168a7a"}, @@ -362,6 +1461,8 @@ attrs = [ {file = "attrs-21.4.0-py2.py3-none-any.whl", hash = "sha256:2d27e3784d7a565d36ab851fe94887c5eccd6a463168875832a1be79c82828b4"}, {file = "attrs-21.4.0.tar.gz", hash = "sha256:626ba8234211db98e869df76230a137c4c40a12d72445c45d5f5b716f076e2fd"}, ] +backcall = [] +beautifulsoup4 = [] black = [ {file = "black-22.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2497f9c2386572e28921fa8bec7be3e51de6801f7459dffd6e62492531c47e09"}, {file = "black-22.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5795a0375eb87bfe902e80e0c8cfaedf8af4d49694d69161e5bd3206c18618bb"}, @@ -387,6 +1488,8 @@ black = [ {file = "black-22.3.0-py3-none-any.whl", hash = "sha256:bc58025940a896d7e5356952228b68f793cf5fcb342be703c3a2669a1488cb72"}, {file = "black-22.3.0.tar.gz", hash = "sha256:35020b8886c022ced9282b51b5a875b6d1ab0c387b31a065b84db7c33085ca79"}, ] +bleach = [] +cffi = [] click = [ {file = "click-8.1.2-py3-none-any.whl", hash = "sha256:24e1a4a9ec5bf6299411369b208c1df2188d9eb8d916302fe6bf03faed227f1e"}, {file = "click-8.1.2.tar.gz", hash = "sha256:479707fe14d9ec9a0757618b7a100a0ae4c4e236fac5b7f80ca68028141a1a72"}, @@ -395,6 +1498,15 @@ colorama = [ {file = "colorama-0.4.4-py2.py3-none-any.whl", hash = "sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2"}, {file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"}, ] +contourpy = [] +cycler = [] +debugpy = [] +decorator = [] +defusedxml = [] +entrypoints = [] +executing = [] +fastjsonschema = [] +fonttools = [] glfw = [ {file = "glfw-2.5.3-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_10_6_intel.whl", hash = "sha256:797528a7e433c1684cad2807838824e73c0c1fd8e12b01ee0b22ad203f46bf87"}, {file = "glfw-2.5.3-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_11_0_arm64.whl", hash = "sha256:1763af8d00e1b1517fccceb768e5470ce754a993bd8020878dca444f9523726b"}, @@ -406,6 +1518,7 @@ glfw = [ {file = "glfw-2.5.3-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win_amd64.whl", hash = "sha256:fe9500b9e31847987a77e686569ad1470435688eaa5ebb87ea80cff2ff3300f3"}, {file = "glfw-2.5.3.tar.gz", hash = "sha256:02cf5e7523e867f5253d2df065cb4590250ce744ca2f8bfdcbad4a1727f1e0b5"}, ] +idna = [] imgui = [ {file = "imgui-1.4.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a07aa19cd61baaa854cdf241484c88f5a07f6765fb175129bc72d820c608b524"}, {file = "imgui-1.4.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:4aff47bbc35adf56c3bca6a5aabe584d671c972bbbb85056cfc789afc41bf901"}, @@ -449,10 +1562,31 @@ imgui = [ {file = "imgui-1.4.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:9b90c89f420eed37c09a618e9fe93066d1c4cbbd27da4da9095d1d3c98860d1f"}, {file = "imgui-1.4.1.tar.gz", hash = "sha256:012fd8d581171bd04ebfa649ca92c7f382a2806c7027bc7c31c8b39899899e7d"}, ] +importlib-metadata = [] +importlib-resources = [] +ipykernel = [] +ipython = [] +ipython-genutils = [] +ipywidgets = [] +jedi = [] +jinja2 = [] +jsonschema = [] +jupyter = [] +jupyter-client = [] +jupyter-console = [] +jupyter-core = [] +jupyter-server = [] +jupyterlab-pygments = [] +jupyterlab-widgets = [] +kiwisolver = [] linetimer = [ {file = "linetimer-0.1.5-py3-none-any.whl", hash = "sha256:18f917bf9c3afe2ba2375dbf97fd01189c1967fe4c49382036b03201e03c2889"}, {file = "linetimer-0.1.5.tar.gz", hash = "sha256:f9723860bbbeae05e4e1383b237e5b73f98c71b73e50dc8c2856a0580269752b"}, ] +markupsafe = [] +matplotlib = [] +matplotlib-inline = [] +mistune = [] more-itertools = [ {file = "more-itertools-8.12.0.tar.gz", hash = "sha256:7dc6ad46f05f545f900dd59e8dfb4e84a4827b97b3cfecb175ea0c7d247f6064"}, {file = "more_itertools-8.12.0-py3-none-any.whl", hash = "sha256:43e6dd9942dffd72661a2c4ef383ad7da1e6a3e968a927ad7a6083ab410a688b"}, @@ -461,6 +1595,13 @@ mypy-extensions = [ {file = "mypy_extensions-0.4.3-py2.py3-none-any.whl", hash = "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d"}, {file = "mypy_extensions-0.4.3.tar.gz", hash = "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8"}, ] +nbclassic = [] +nbclient = [] +nbconvert = [] +nbformat = [] +nest-asyncio = [] +notebook = [] +notebook-shim = [] numpy = [ {file = "numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75"}, {file = "numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab"}, @@ -510,10 +1651,16 @@ pandas = [ {file = "pandas-1.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:09d8be7dd9e1c4c98224c4dfe8abd60d145d934e9fc1f5f411266308ae683e6a"}, {file = "pandas-1.4.2.tar.gz", hash = "sha256:92bc1fc585f1463ca827b45535957815b7deb218c549b7c18402c322c7549a12"}, ] +pandocfilters = [] +parso = [] pathspec = [ {file = "pathspec-0.9.0-py2.py3-none-any.whl", hash = "sha256:7d15c4ddb0b5c802d161efc417ec1a2558ea2653c2e8ad9c19098201dc1c993a"}, {file = "pathspec-0.9.0.tar.gz", hash = "sha256:e564499435a2673d586f6b2130bb5b95f04a3ba06f81b8f895b651a3c76aabb1"}, ] +pexpect = [] +pickleshare = [] +pillow = [] +pkgutil-resolve-name = [] platformdirs = [ {file = "platformdirs-2.5.1-py3-none-any.whl", hash = "sha256:bcae7cab893c2d310a711b70b24efb93334febe65f8de776ee320b517471e227"}, {file = "platformdirs-2.5.1.tar.gz", hash = "sha256:7535e70dfa32e84d4b34996ea99c5e432fa29a708d0f4e394bbcb2a8faa4f16d"}, @@ -522,6 +1669,8 @@ pluggy = [ {file = "pluggy-0.13.1-py2.py3-none-any.whl", hash = "sha256:966c145cd83c96502c3c3868f50408687b38434af77734af1e9ca461a4081d2d"}, {file = "pluggy-0.13.1.tar.gz", hash = "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0"}, ] +prometheus-client = [] +prompt-toolkit = [] protobuf = [ {file = "protobuf-3.20.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:9d0f3aca8ca51c8b5e204ab92bd8afdb2a8e3df46bd0ce0bd39065d79aabcaa4"}, {file = "protobuf-3.20.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:001c2160c03b6349c04de39cf1a58e342750da3632f6978a1634a3dcca1ec10e"}, @@ -548,10 +1697,15 @@ protobuf = [ {file = "protobuf-3.20.0-py2.py3-none-any.whl", hash = "sha256:4eda68bd9e2a4879385e6b1ea528c976f59cd9728382005cc54c28bcce8db983"}, {file = "protobuf-3.20.0.tar.gz", hash = "sha256:71b2c3d1cd26ed1ec7c8196834143258b2ad7f444efff26fdc366c6f5e752702"}, ] +psutil = [] +ptyprocess = [] +pure-eval = [] py = [ {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, ] +pycparser = [] +pygments = [] pyopencl = [ {file = "pyopencl-2022.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4bea0e965252f477204a87cc73eca492de5c30252198bc6679ef4968880a2443"}, {file = "pyopencl-2022.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ab792ff11a7ff271b1ba39686bd7aae271168e813a7e771bff6aa611ada383b"}, @@ -570,6 +1724,7 @@ pyparsing = [ {file = "pyparsing-3.0.8-py3-none-any.whl", hash = "sha256:ef7b523f6356f763771559412c0d7134753f037822dad1b16945b7b846f7ad06"}, {file = "pyparsing-3.0.8.tar.gz", hash = "sha256:7bf433498c016c4314268d95df76c81b842a4cb2b276fa3312cfb1e1d85f6954"}, ] +pyrsistent = [] pytest = [ {file = "pytest-5.4.3-py3-none-any.whl", hash = "sha256:5c0db86b698e8f170ba4582a492248919255fcd4c79b1ee64ace34301fb589a1"}, {file = "pytest-5.4.3.tar.gz", hash = "sha256:7979331bfcba207414f5e1263b5a0f8f521d0f457318836a7355531ed1a4c7d8"}, @@ -585,6 +1740,8 @@ pytz = [ {file = "pytz-2022.1-py2.py3-none-any.whl", hash = "sha256:e68985985296d9a66a881eb3193b0906246245294a881e7c8afe623866ac6a5c"}, {file = "pytz-2022.1.tar.gz", hash = "sha256:1e760e2fe6a8163bc0b3d9a19c4f84342afa0a2affebfaa84b01b978a02ecaa7"}, ] +pywin32 = [] +pywinpty = [] pyyaml = [ {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, @@ -620,18 +1777,31 @@ pyyaml = [ {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, ] +pyzmq = [] +qtconsole = [] +qtpy = [] +seaborn = [] +send2trash = [] +setuptools-scm = [] six = [ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] +sniffio = [] +soupsieve = [] +stack-data = [] +terminado = [] +tinycss2 = [] tomli = [ {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] +tornado = [] tqdm = [ {file = "tqdm-4.64.0-py2.py3-none-any.whl", hash = "sha256:74a2cdefe14d11442cedf3ba4e21a3b84ff9a2dbdc6cfae2c34addb2a14a5ea6"}, {file = "tqdm-4.64.0.tar.gz", hash = "sha256:40be55d30e200777a307a7585aee69e4eabb46b4ec6a4b4a5f2d9f11e7d5408d"}, ] +traitlets = [] typing-extensions = [ {file = "typing_extensions-4.1.1-py3-none-any.whl", hash = "sha256:21c85e0fe4b9a155d0799430b0ad741cdce7e359660ccbd8b530613e8df88ce2"}, {file = "typing_extensions-4.1.1.tar.gz", hash = "sha256:1a9462dcc3347a79b1f1c0271fbe79e844580bb598bafa1ed208b94da3cdcd42"}, @@ -640,3 +1810,7 @@ wcwidth = [ {file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"}, {file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"}, ] +webencodings = [] +websocket-client = [] +widgetsnbextension = [] +zipp = [] diff --git a/pyproject.toml b/pyproject.toml index b5ee225..54f7cdd 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -19,10 +19,13 @@ pyopencl = "^2022.1" numpy = "^1.22.3" protobuf = "^3.20.0" linetimer = "^0.1.5" +matplotlib = "^3.6.2" +seaborn = "^0.12.1" [tool.poetry.dev-dependencies] pytest = "^5.2" black = "^22.1.0" +jupyter = "^1.0.0" [build-system] requires = [