From 12f7ff81a221d2b6521fcad485c965f66a4fe178 Mon Sep 17 00:00:00 2001 From: David Llewellyn-Jones Date: Fri, 15 Nov 2024 10:21:49 +0000 Subject: [PATCH] Add Chapter 6.A rules to "all the rules we know" --- reference/all-the-rules-we-know.tex | 148 ++++++++++++++++++++++++++++ 1 file changed, 148 insertions(+) diff --git a/reference/all-the-rules-we-know.tex b/reference/all-the-rules-we-know.tex index 19d089d..725b85c 100644 --- a/reference/all-the-rules-we-know.tex +++ b/reference/all-the-rules-we-know.tex @@ -15,6 +15,8 @@ \newcommand{\imag}{\mathrm{i}} \newcommand{\card}[1]{\##1} \newcommand{\transpose}[1]{{#1}^{\rm t}} +\newcommand{\inner}[2]{\left\langle #1, #2 \right\rangle} +\newcommand{\norm}[1]{\left\lVert #1 \right\rVert} \def\R{\mathbb{R}} \def\C{\mathbb{C}} \def\F{\mathbb{F}} @@ -1811,4 +1813,150 @@ \section*{Chapter 5.E} \end{enumerate} \end{result} +\clearpage + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section*{Chapter 6.A} + +\begin{definition}{6.1}[dot product] +For $x, y \in \R^n$, the \defn{dot product} of $x$ and $y$, denoted $x \cdot y$, is defined by +$$ +x \cdot y = x_1 y_1 + \cdots + x_n y_n, +$$ +where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$. +\end{definition} + +\begin{notation}{6.1\textonehalf}[complex nonnegative] +For $\lambda \in \C$, the notation $\lambda \ge 0$ means $\lambda$ is real and nonnegative. +\end{notation} + +\begin{definition}{6.2}[inner product] +An \defn{inner product} on $V$ is a function that takes each ordered pair $(u, v)$ of elements of $V$ to a number $\inner{u}{v} \in \F$ and has the following properties. + +\defn{positivity} +\begin{forceindent} +$\inner{v}{v} \ge 0$ for all $v \in V$. +\end{forceindent} + +\defn{definiteness} +\begin{forceindent} +$\inner{v}{v} = 0$ if and only if $v = 0$. +\end{forceindent} + +\defn{additivity in first slot} +\begin{forceindent} +$\inner{u + v}{w} = \inner{u}{w} + \inner{v}{w}$ for all $u, v, w \in V$. +\end{forceindent} + +\defn{homogeneity in first slot} +\begin{forceindent} +$\inner{\lambda u}{v} = \lambda \inner{u}{v}$ for all $\lambda \in \F$ and all $u, v \in V$. +\end{forceindent} + +\defn{conjugate symmetry} +\begin{forceindent} +$\inner{u}{v} = \overline{\inner{v}{u}}$ for all $u, v \in V$. +\end{forceindent} +\end{definition} + +\begin{definition}{6.4}[inner product space] +An \defn{inner product space} is a vector space $V$ along with an inner product $V$. +\end{definition} + +\begin{notation}{6.5}[$V, W$] +For chapters 6 and 7, $V$ and $W$ denote inner product spaces over $F$. +\end{notation} + +\begin{definition}{6.7}[norm, $\norm{v}$] +For $v \in V$, the \defn{norm}, denoted by $\norm{v}$, is defined by +$$ +\norm{v} = \sqrt{\inner{v}{v}} . +$$ +\end{definition} + +\begin{definition}{6.10}[orthogonal] +Two vectors $u, v \in V$ are called \defn{orthogonal} if $\inner{u}{v} = 0$. +\end{definition} + +\newpage + +\begin{result}{6.6}[basic properties of an inner product] \enumfix +\begin{enumerate} +\item[(a)] For each fixed $v \in V$, the function that takes $u \in V$ to $\inner{u}{v}$ is a linear map from $V$ to $\F$. +\item[(b)] $\inner{0}{v} = 0$ for every $v \in V$. +\item[(c)] $\inner{v}{0} = 0$ for every $v \in V$. +\item[(d)] $\inner{u}{v + w} = \inner{u}{v} + \inner{u}{w}$ for all $u, v, w \in V$. +\item[(e)] $\inner{u}{\lambda v} = \bar\lambda \inner{u}{v}$ for all $\lambda \in \F$ and all $u, v \in V$. +\end{enumerate} +\end{result} + +\begin{result}{6.9}[basic properties of the norm] +Suppose $v \in V$. +\begin{enumerate} +\item[(a)] $\norm{v} = 0$ if and only if $v = 0$. +\item[(b)] $\norm{\lambda v} = |\lambda| \norm{v}$ for all $\lambda \in \F$. +\end{enumerate} +\end{result} + +% Exercise 15 +\begin{result}{Ex. 6A, 15}[angle between vectors in $\R^2$] +If $u, v \in \R^2$ are non-zero then +$$ +\inner{u}{v} = \norm{u} \norm{v} \cos \theta, +$$ +where $\theta$ is the angle between $u$ and $v$. +\end{result} + +\begin{result}{6.11}[orthogonality and 0] \enumfix +\begin{enumerate} +\item[(a)] 0 is orthogonal to every vector in $V$. +\item[(b)] 0 is the only vector in $V$ that is orthogonal to itself. +\end{enumerate} +\end{result} + +\begin{theorem}{6.12}[Pythagorean theorem] +Suppose $u, v \in V$. If $u$ and $v$ are orthogonal, then +$$ +\norm{u + v}^2 = \norm{u}^2 + \norm{v}^2 . +$$ +\end{theorem} + +\begin{result}{6.13}[an orthogonal decomposition] +Suppose $u, v \in V$, with $v \not= 0$. Set $c = \frac{\inner{u}{v}}{\norm{v}^2}$ and $w = u - \frac{\inner{u}{v}}{\norm{v}^2} v$. Then +$$ +u = cv + w \quad \text{and} \quad \inner{w}{v} = 0. +$$ +\end{result} + +\begin{theorem}{6.14}[Cauchy-Schwarz inequality] +Suppose $u, v \in V$. Then +$$ +|\inner{u}{v}| \le \norm{u}\norm{v} . +$$ +This inequality is an equality if and only if one of $u, v$ is a scalar multiple of the other. +\end{theorem} + +\begin{theorem}{6.17}[triangle inequality] +Suppose $u, v \in V$. Then +$$ +\norm{u + v} \le \norm{u} + \norm{v} . +$$ +This inequality is an equality if and only if one of $u, v$ is a nonnegative real multiple of the other. +\end{theorem} + +% Exercise 20 +\begin{result}{Ex. 6A, 20}[reverse triangle inequality] +If $u, v \in V$, then +$$ +\left| \vphantom{\sum} \norm{u} - \norm{v} \vphantom{\sum} \right| \le \norm{u - v} . +$$ +\end{result} + +\begin{result}{6.21}[parallelogram inequality] +Suppose $u, v \in V$. Then +$$ +\norm{u + v}^2 + \norm{u - v}^2 = 2(\norm{u}^2 + \norm{v}^2 ) . +$$ +\end{result} + \end{document}