From b072d1df668ae8bfbfac7ca9746ec0608f13df87 Mon Sep 17 00:00:00 2001 From: patel-zeel Date: Sat, 2 Sep 2023 00:12:31 +0530 Subject: [PATCH] replace `param1`, `param2` with `params` --- deepsensor/data/processor.py | 51 ++++++++++++++++-------------------- 1 file changed, 22 insertions(+), 29 deletions(-) diff --git a/deepsensor/data/processor.py b/deepsensor/data/processor.py index 14fa08ec..fe3ab7b7 100644 --- a/deepsensor/data/processor.py +++ b/deepsensor/data/processor.py @@ -150,8 +150,7 @@ def check_params_computed(self, var_ID, method): if ( var_ID in self.norm_params and self.norm_params[var_ID]["method"] == method - and "param1" in self.norm_params[var_ID] - and "param2" in self.norm_params[var_ID] + and "params" in self.norm_params[var_ID] ): return True else: @@ -169,9 +168,8 @@ def get_norm_params(self, var_ID, data, method=None): ) if self.check_params_computed(var_ID, method): - # Already have "param1" and "param2" in norm_params with `"method": method` - load them - param1 = self.norm_params[var_ID]["param1"] - param2 = self.norm_params[var_ID]["param2"] + # Already have "params" in norm_params with `"method": method` - load them + params = self.norm_params[var_ID]["params"] else: # Params not computed - compute them now if self.verbose: @@ -182,19 +180,16 @@ def get_norm_params(self, var_ID, data, method=None): ) DataProcessor.load_dask(data) if method == "mean_std": - param1 = float(data.mean()) - param2 = float(data.std()) + params = {"mean": float(data.mean()), "std": float(data.std())} elif method == "min_max": - param1 = float(data.min()) - param2 = float(data.max()) + params = {"min": float(data.min()), "max": float(data.max())} if self.verbose: - print( - f"Done. {var_ID} {method} param1={param1:.3f}, param2={param2:.3f}" - ) + print(f"Done. {var_ID} {method} params={params}") self.add_to_norm_params( - var_ID, **{"method": method, "param1": param1, "param2": param2} + var_ID, + **{"method": method, "params": params}, ) - return param1, param2 + return params def map_coord_array(self, coord_array: np.ndarray, unnorm: bool = False): """Normalise or unnormalise a coordinate array @@ -325,30 +320,28 @@ def map_array( f"Method {method} not recognised. Use one of {self.valid_methods}" ) - param1, param2 = self.get_norm_params(var_ID, data, method) + params = self.get_norm_params(var_ID, data, method) if method == "mean_std": if unnorm: - scale = param2 - offset = param1 + data = data * params["std"] + if add_offset: + data = data + params["mean"] else: - scale = 1 / param2 - offset = -param1 / param2 - data = data * scale - if add_offset: - data = data + offset + if add_offset: + data = data - params["mean"] + data = data / params["std"] return data elif method == "min_max": if unnorm: - scale = (param2 - param1) / 2 - offset = (param2 + param1) / 2 + data = data * (params["max"] - params["min"]) + if add_offset: + data = data + params["min"] else: - scale = 2 / (param2 - param1) - offset = -(param2 + param1) / (param2 - param1) - data = data * scale - if add_offset: - data = data + offset + if add_offset: + data = data - params["min"] + data = data / (params["max"] - params["min"]) return data def map(