diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 00000000..8f574b4c --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 033cbad2b454386666c387a0e7329f8a +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/_images/00e7391285ad0a23d217120f9c20d6926001d3de4f8f5ab35f43e51a94dfeb51.png b/_images/00e7391285ad0a23d217120f9c20d6926001d3de4f8f5ab35f43e51a94dfeb51.png new file mode 100644 index 00000000..d79b5788 Binary files /dev/null and b/_images/00e7391285ad0a23d217120f9c20d6926001d3de4f8f5ab35f43e51a94dfeb51.png differ diff --git a/_images/076e00af7001644d67284ed2d84bfb106d3e30ca9637c23adc8db0fca2c5b9d7.png b/_images/076e00af7001644d67284ed2d84bfb106d3e30ca9637c23adc8db0fca2c5b9d7.png new file mode 100644 index 00000000..88f87c5b Binary files /dev/null and b/_images/076e00af7001644d67284ed2d84bfb106d3e30ca9637c23adc8db0fca2c5b9d7.png differ diff --git a/_images/1102d5acf830210369344c64345b23987b401afa2521cc8f6a1e39a3adc0a194.png b/_images/1102d5acf830210369344c64345b23987b401afa2521cc8f6a1e39a3adc0a194.png new file mode 100644 index 00000000..8357ec57 Binary files /dev/null and b/_images/1102d5acf830210369344c64345b23987b401afa2521cc8f6a1e39a3adc0a194.png differ diff --git a/_images/178bd07351dab10c117e96bd31c12ebdcb55ec04e301d21bd870aec2c006e739.png b/_images/178bd07351dab10c117e96bd31c12ebdcb55ec04e301d21bd870aec2c006e739.png new file mode 100644 index 00000000..981781a6 Binary files /dev/null and b/_images/178bd07351dab10c117e96bd31c12ebdcb55ec04e301d21bd870aec2c006e739.png differ diff --git a/_images/1cc96366fcab69b189d48e20b148a3dfc0adad2b2cdfe0007d37cbcf4842cbe7.png b/_images/1cc96366fcab69b189d48e20b148a3dfc0adad2b2cdfe0007d37cbcf4842cbe7.png new file mode 100644 index 00000000..83dccbde Binary files /dev/null and b/_images/1cc96366fcab69b189d48e20b148a3dfc0adad2b2cdfe0007d37cbcf4842cbe7.png differ diff --git a/_images/1eb0f54dce16aa787039d2a78fb9cdaa94e90ab054835fdfd055234bb0506296.png b/_images/1eb0f54dce16aa787039d2a78fb9cdaa94e90ab054835fdfd055234bb0506296.png new file mode 100644 index 00000000..7b212a1f Binary files /dev/null and b/_images/1eb0f54dce16aa787039d2a78fb9cdaa94e90ab054835fdfd055234bb0506296.png differ diff --git a/_images/24dc1f2ac24f427dfbe135ee1f7a80db8d7a37d4e0b7194e2c4e41e1028ade16.png b/_images/24dc1f2ac24f427dfbe135ee1f7a80db8d7a37d4e0b7194e2c4e41e1028ade16.png new file mode 100644 index 00000000..b188d986 Binary files /dev/null and b/_images/24dc1f2ac24f427dfbe135ee1f7a80db8d7a37d4e0b7194e2c4e41e1028ade16.png differ diff --git a/_images/2c2c8ee16bbfcc6327079590834ae77ee505d64debb3e76564cf1e9e79036519.png b/_images/2c2c8ee16bbfcc6327079590834ae77ee505d64debb3e76564cf1e9e79036519.png new file mode 100644 index 00000000..d1cd2d55 Binary files /dev/null and b/_images/2c2c8ee16bbfcc6327079590834ae77ee505d64debb3e76564cf1e9e79036519.png differ diff --git a/_images/3c68f765a2940f6a54a6c8c7f1d5ba02731462a6b740cf1fdc559402003babb7.png b/_images/3c68f765a2940f6a54a6c8c7f1d5ba02731462a6b740cf1fdc559402003babb7.png new file mode 100644 index 00000000..d6e99bed Binary files /dev/null and b/_images/3c68f765a2940f6a54a6c8c7f1d5ba02731462a6b740cf1fdc559402003babb7.png differ diff --git a/_images/488ae9d16d7a67a5299c9339dd99bfac3ae118110f0de025bbcab0a268b99036.png b/_images/488ae9d16d7a67a5299c9339dd99bfac3ae118110f0de025bbcab0a268b99036.png new file mode 100644 index 00000000..f270746d Binary files /dev/null and b/_images/488ae9d16d7a67a5299c9339dd99bfac3ae118110f0de025bbcab0a268b99036.png differ diff --git a/_images/4af075153c0c37778b7d6eb6ba678cf64909a1a89089d2b520ccfab3b3a44931.png b/_images/4af075153c0c37778b7d6eb6ba678cf64909a1a89089d2b520ccfab3b3a44931.png new file mode 100644 index 00000000..cbfc9aa4 Binary files /dev/null and b/_images/4af075153c0c37778b7d6eb6ba678cf64909a1a89089d2b520ccfab3b3a44931.png differ diff --git a/_images/4bc19ff34148935d8dfa16c86d3b8009f15dfe4d47334fd88dd5ed18c2d60c43.png b/_images/4bc19ff34148935d8dfa16c86d3b8009f15dfe4d47334fd88dd5ed18c2d60c43.png new file mode 100644 index 00000000..f8f2f535 Binary files /dev/null and b/_images/4bc19ff34148935d8dfa16c86d3b8009f15dfe4d47334fd88dd5ed18c2d60c43.png differ diff --git a/_images/4ea045a3a63de9128e016f22cc479595544073cefa39337d1b6f4deca3b55c94.png b/_images/4ea045a3a63de9128e016f22cc479595544073cefa39337d1b6f4deca3b55c94.png new file mode 100644 index 00000000..71bbf2b8 Binary files /dev/null and b/_images/4ea045a3a63de9128e016f22cc479595544073cefa39337d1b6f4deca3b55c94.png differ diff --git a/_images/4ed8679ebd728d3ce67c6d3f73b4811a21d5daf456c82f1766f947d065bbe9a6.png b/_images/4ed8679ebd728d3ce67c6d3f73b4811a21d5daf456c82f1766f947d065bbe9a6.png new file mode 100644 index 00000000..1b47aa45 Binary files /dev/null and b/_images/4ed8679ebd728d3ce67c6d3f73b4811a21d5daf456c82f1766f947d065bbe9a6.png differ diff --git a/_images/509795073e05838cebf6c8d793f8a1c4ce34f6c50d0a2f6c91c1d6f0a646357f.png b/_images/509795073e05838cebf6c8d793f8a1c4ce34f6c50d0a2f6c91c1d6f0a646357f.png new file mode 100644 index 00000000..612df441 Binary files /dev/null and b/_images/509795073e05838cebf6c8d793f8a1c4ce34f6c50d0a2f6c91c1d6f0a646357f.png differ diff --git a/_images/51e09db13ce7191895d405687afb40d85c9cd55b12f34b072bc6a8cdcead41c7.png b/_images/51e09db13ce7191895d405687afb40d85c9cd55b12f34b072bc6a8cdcead41c7.png new file mode 100644 index 00000000..c90a2b2b Binary files /dev/null and b/_images/51e09db13ce7191895d405687afb40d85c9cd55b12f34b072bc6a8cdcead41c7.png differ diff --git a/_images/522e4b7ec7dc871201c328a5ee2606310e78fb959220e1a2a9b11c2860659791.png b/_images/522e4b7ec7dc871201c328a5ee2606310e78fb959220e1a2a9b11c2860659791.png new file mode 100644 index 00000000..eac17a95 Binary files /dev/null and b/_images/522e4b7ec7dc871201c328a5ee2606310e78fb959220e1a2a9b11c2860659791.png differ diff --git a/_images/571b9c0473337cb87e975564853ab154297f228dcd399e21408c5a5d646db2d0.png b/_images/571b9c0473337cb87e975564853ab154297f228dcd399e21408c5a5d646db2d0.png new file mode 100644 index 00000000..d27efcff Binary files /dev/null and b/_images/571b9c0473337cb87e975564853ab154297f228dcd399e21408c5a5d646db2d0.png differ diff --git a/_images/5a1b9c5ce24cf77cd4270719c96568b4e3108bf4daf3c230934915564ed79778.png b/_images/5a1b9c5ce24cf77cd4270719c96568b4e3108bf4daf3c230934915564ed79778.png new file mode 100644 index 00000000..eb8c80c1 Binary files /dev/null and b/_images/5a1b9c5ce24cf77cd4270719c96568b4e3108bf4daf3c230934915564ed79778.png differ diff --git a/_images/6318dca69a7fbaa564cc6c6309ad8dde2fb0a9a542828a8fb905d4a684bd7305.png b/_images/6318dca69a7fbaa564cc6c6309ad8dde2fb0a9a542828a8fb905d4a684bd7305.png new file mode 100644 index 00000000..da754b31 Binary files /dev/null and b/_images/6318dca69a7fbaa564cc6c6309ad8dde2fb0a9a542828a8fb905d4a684bd7305.png differ diff --git a/_images/633eb6dce0859a9b8298cb085d99a6a4d47d66be4846a5431d66b055089f226f.png b/_images/633eb6dce0859a9b8298cb085d99a6a4d47d66be4846a5431d66b055089f226f.png new file mode 100644 index 00000000..99a3dd88 Binary files /dev/null and b/_images/633eb6dce0859a9b8298cb085d99a6a4d47d66be4846a5431d66b055089f226f.png differ diff --git a/_images/66d2f5ddb8c6b4c88ce7b8cd657b839abd722880fcdc9b7afe6aad22b901dd88.png b/_images/66d2f5ddb8c6b4c88ce7b8cd657b839abd722880fcdc9b7afe6aad22b901dd88.png new file mode 100644 index 00000000..571927cf Binary files /dev/null and b/_images/66d2f5ddb8c6b4c88ce7b8cd657b839abd722880fcdc9b7afe6aad22b901dd88.png differ diff --git a/_images/69155f2d6771a4e04a41e8895f57ec7eff76ff407340f19b947c9d2d64603883.png b/_images/69155f2d6771a4e04a41e8895f57ec7eff76ff407340f19b947c9d2d64603883.png new file mode 100644 index 00000000..1384a760 Binary files /dev/null and b/_images/69155f2d6771a4e04a41e8895f57ec7eff76ff407340f19b947c9d2d64603883.png differ diff --git a/_images/69d9ac2bc475aab34768f0f8ccacb79dc6424d401fbd3b0129cdb7016b9cff7b.png b/_images/69d9ac2bc475aab34768f0f8ccacb79dc6424d401fbd3b0129cdb7016b9cff7b.png new file mode 100644 index 00000000..b5984aea Binary files /dev/null and b/_images/69d9ac2bc475aab34768f0f8ccacb79dc6424d401fbd3b0129cdb7016b9cff7b.png differ diff --git a/_images/74407a92cd9c13e7e4ff0789405abbdcf75c9e26963d31986c0ccacfa9dff556.png b/_images/74407a92cd9c13e7e4ff0789405abbdcf75c9e26963d31986c0ccacfa9dff556.png new file mode 100644 index 00000000..aeb1ea11 Binary files /dev/null and b/_images/74407a92cd9c13e7e4ff0789405abbdcf75c9e26963d31986c0ccacfa9dff556.png differ diff --git a/_images/758de58cada0eddb31da248a36ce2a3fc4fadfe065d7c3e0d980af4c4f2b882c.png b/_images/758de58cada0eddb31da248a36ce2a3fc4fadfe065d7c3e0d980af4c4f2b882c.png new file mode 100644 index 00000000..31a14876 Binary files /dev/null and b/_images/758de58cada0eddb31da248a36ce2a3fc4fadfe065d7c3e0d980af4c4f2b882c.png differ diff --git a/_images/80a3533503df36866685a054f0e8a6ea8fc5844e211b1b5ee3de8466a084bdcd.png b/_images/80a3533503df36866685a054f0e8a6ea8fc5844e211b1b5ee3de8466a084bdcd.png new file mode 100644 index 00000000..56ac2522 Binary files /dev/null and b/_images/80a3533503df36866685a054f0e8a6ea8fc5844e211b1b5ee3de8466a084bdcd.png differ diff --git a/_images/849f7ec3940d295224493cfa01e608da92e53123a9503ba3f3b8dd312a9e0693.png b/_images/849f7ec3940d295224493cfa01e608da92e53123a9503ba3f3b8dd312a9e0693.png new file mode 100644 index 00000000..bf5f900b Binary files /dev/null and b/_images/849f7ec3940d295224493cfa01e608da92e53123a9503ba3f3b8dd312a9e0693.png differ diff --git a/_images/85b6a9b19e2e86b56cf2104458ba9f787a54896fcd452fe1fd789ef70590280e.png b/_images/85b6a9b19e2e86b56cf2104458ba9f787a54896fcd452fe1fd789ef70590280e.png new file mode 100644 index 00000000..49e10f5e Binary files /dev/null and b/_images/85b6a9b19e2e86b56cf2104458ba9f787a54896fcd452fe1fd789ef70590280e.png differ diff --git a/_images/97635637c92862857de9ca5957ab760a23ea9da7e42e23827b898be170aac9e1.png b/_images/97635637c92862857de9ca5957ab760a23ea9da7e42e23827b898be170aac9e1.png new file mode 100644 index 00000000..96a9f40b Binary files /dev/null and b/_images/97635637c92862857de9ca5957ab760a23ea9da7e42e23827b898be170aac9e1.png differ diff --git a/_images/9f3f4f597ff02b15f6aa76fa7aea1f36648133beeae8f006a80c2f9e158d841b.png b/_images/9f3f4f597ff02b15f6aa76fa7aea1f36648133beeae8f006a80c2f9e158d841b.png new file mode 100644 index 00000000..5b4ee11a Binary files /dev/null and b/_images/9f3f4f597ff02b15f6aa76fa7aea1f36648133beeae8f006a80c2f9e158d841b.png differ diff --git a/_images/b65a737d863cf5630de0b9750604b95e15eb4b5952e184c48c50e88cb19d5792.png b/_images/b65a737d863cf5630de0b9750604b95e15eb4b5952e184c48c50e88cb19d5792.png new file mode 100644 index 00000000..1463c661 Binary files /dev/null and b/_images/b65a737d863cf5630de0b9750604b95e15eb4b5952e184c48c50e88cb19d5792.png differ diff --git a/_images/b7a59c635e7c612edcc8359da18e8f65c53e75b7f1490fb69b4d692eee452c36.png b/_images/b7a59c635e7c612edcc8359da18e8f65c53e75b7f1490fb69b4d692eee452c36.png new file mode 100644 index 00000000..f7cb15db Binary files /dev/null and b/_images/b7a59c635e7c612edcc8359da18e8f65c53e75b7f1490fb69b4d692eee452c36.png differ diff --git a/_images/be8faac5487cbb19137388cc8c7d4dbc3d588e8261049c1e9bfa3e3eadf561e3.png b/_images/be8faac5487cbb19137388cc8c7d4dbc3d588e8261049c1e9bfa3e3eadf561e3.png new file mode 100644 index 00000000..bd667214 Binary files /dev/null and b/_images/be8faac5487cbb19137388cc8c7d4dbc3d588e8261049c1e9bfa3e3eadf561e3.png differ diff --git a/_images/c29dbd4f7f0c5166fa175351f3030a04b98a190064ae7ffe316cd46fab78f3e0.png b/_images/c29dbd4f7f0c5166fa175351f3030a04b98a190064ae7ffe316cd46fab78f3e0.png new file mode 100644 index 00000000..1a9c7779 Binary files /dev/null and b/_images/c29dbd4f7f0c5166fa175351f3030a04b98a190064ae7ffe316cd46fab78f3e0.png differ diff --git a/_images/convnp_arch.png b/_images/convnp_arch.png new file mode 100644 index 00000000..e1776f0e Binary files /dev/null and b/_images/convnp_arch.png differ diff --git a/_images/deepsensor_application_examples.png b/_images/deepsensor_application_examples.png new file mode 100644 index 00000000..d34ef4ef Binary files /dev/null and b/_images/deepsensor_application_examples.png differ diff --git a/_images/deepsensor_design.png b/_images/deepsensor_design.png new file mode 100644 index 00000000..2f71d940 Binary files /dev/null and b/_images/deepsensor_design.png differ diff --git a/_images/e3893525400c6f9ee54bcf805009ab9021207b8b1362478cd929eeea8dd5731d.png b/_images/e3893525400c6f9ee54bcf805009ab9021207b8b1362478cd929eeea8dd5731d.png new file mode 100644 index 00000000..e2407996 Binary files /dev/null and b/_images/e3893525400c6f9ee54bcf805009ab9021207b8b1362478cd929eeea8dd5731d.png differ diff --git a/_images/e86ea5a44aa3d5c7e6ddbcd55571c2fb08b847ac901c9f041e0e98ca17c078c3.png b/_images/e86ea5a44aa3d5c7e6ddbcd55571c2fb08b847ac901c9f041e0e98ca17c078c3.png new file mode 100644 index 00000000..6a474c42 Binary files /dev/null and b/_images/e86ea5a44aa3d5c7e6ddbcd55571c2fb08b847ac901c9f041e0e98ca17c078c3.png differ diff --git a/_images/e960e363e424d7894ad6f13e6c5637e8995991709ddc5afc65a664f81dfc8487.png b/_images/e960e363e424d7894ad6f13e6c5637e8995991709ddc5afc65a664f81dfc8487.png new file mode 100644 index 00000000..d07c54ba Binary files /dev/null and b/_images/e960e363e424d7894ad6f13e6c5637e8995991709ddc5afc65a664f81dfc8487.png differ diff --git a/_images/f50db2d4af9adf756b379f55bab153c1c600cc9c7ba7f22acd354e7494585c3e.png b/_images/f50db2d4af9adf756b379f55bab153c1c600cc9c7ba7f22acd354e7494585c3e.png new file mode 100644 index 00000000..faf918cc Binary files /dev/null and b/_images/f50db2d4af9adf756b379f55bab153c1c600cc9c7ba7f22acd354e7494585c3e.png differ diff --git a/_images/f5be28482b9f49c4d04fdb59b6502f56c0f8ee636541aacf73452bad89035642.png b/_images/f5be28482b9f49c4d04fdb59b6502f56c0f8ee636541aacf73452bad89035642.png new file mode 100644 index 00000000..e8a211d0 Binary files /dev/null and b/_images/f5be28482b9f49c4d04fdb59b6502f56c0f8ee636541aacf73452bad89035642.png differ diff --git a/_images/f708fa3993b7fa909597e8666480a2e0e5667f0a2c51277a76a90fafa6097115.png b/_images/f708fa3993b7fa909597e8666480a2e0e5667f0a2c51277a76a90fafa6097115.png new file mode 100644 index 00000000..c6896f63 Binary files /dev/null and b/_images/f708fa3993b7fa909597e8666480a2e0e5667f0a2c51277a76a90fafa6097115.png differ diff --git a/_images/index_api.svg b/_images/index_api.svg new file mode 100644 index 00000000..87013d24 --- /dev/null +++ b/_images/index_api.svg @@ -0,0 +1,97 @@ + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + diff --git a/_images/index_community2.png b/_images/index_community2.png new file mode 100644 index 00000000..962e3912 Binary files /dev/null and b/_images/index_community2.png differ diff --git a/_images/index_getting_started.svg b/_images/index_getting_started.svg new file mode 100644 index 00000000..d1c7b08a --- /dev/null +++ b/_images/index_getting_started.svg @@ -0,0 +1,66 @@ + + + + + + + + + + image/svg+xml + + + + + + + + + diff --git a/_images/index_user_guide.svg b/_images/index_user_guide.svg new file mode 100644 index 00000000..bff24824 --- /dev/null +++ b/_images/index_user_guide.svg @@ -0,0 +1,67 @@ + + + + + + + + + + image/svg+xml + + + + + + + + + diff --git a/_modules/deepsensor/active_learning/acquisition_fns.html b/_modules/deepsensor/active_learning/acquisition_fns.html new file mode 100644 index 00000000..47b45c52 --- /dev/null +++ b/_modules/deepsensor/active_learning/acquisition_fns.html @@ -0,0 +1,937 @@ + + + + + + + + + + + deepsensor.active_learning.acquisition_fns — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.active_learning.acquisition_fns

+import copy
+from typing import Optional
+
+import numpy as np
+
+from scipy.stats import norm
+
+from deepsensor.model.model import ProbabilisticModel
+from deepsensor.data.task import Task
+
+
+
[docs]class AcquisitionFunction: + """ + Parent class for acquisition functions. + """ + + # Class attribute to indicate whether the acquisition function should be + # minimised or maximised + min_or_max = None + + def __init__( + self, + model: Optional[ProbabilisticModel] = None, + context_set_idx: int = 0, + target_set_idx: int = 0, + ): + """ + Args: + model (:class:`~.model.model.ProbabilisticModel`): + [Description of the model parameter.] + context_set_idx (int): + Index of context set to add new observations to when computing + the acquisition function. + target_set_idx (int): + Index of target set to compute acquisition function for. + """ + self.model = model + self.context_set_idx = context_set_idx + self.target_set_idx = target_set_idx + +
[docs] def __call__(self, task: Task, *args, **kwargs) -> np.ndarray: + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + :class:`numpy:numpy.ndarray`: + Acquisition function value/s. Shape (). + + Raises: + NotImplementedError: + Because this is an abstract method, it must be implemented by + the subclass. + """ + raise NotImplementedError
+ + +
[docs]class AcquisitionFunctionOracle(AcquisitionFunction): + """ + Signifies that the acquisition function is computed using the true + target values. + """
+ + +
[docs]class AcquisitionFunctionParallel(AcquisitionFunction): + """ + Parent class for acquisition functions that are computed across all search + points in parallel. + """ + +
[docs] def __call__(self, task: Task, X_s: np.ndarray, **kwargs) -> np.ndarray: + """ + ... + + :param **kwargs: + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + X_s (:class:`numpy:numpy.ndarray`): + Search points. Shape (2, N_search). + + Returns: + :class:`numpy:numpy.ndarray`: + Should return acquisition function value/s. Shape (N_search,). + + Raises: + NotImplementedError: + Because this is an abstract method, it must be implemented by + the subclass. + """ + raise NotImplementedError
+ + +
[docs]class MeanStddev(AcquisitionFunction): + """Mean of the marginal variances.""" + + min_or_max = "min" + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + [Description of the task parameter.] + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + return np.mean(self.model.stddev(task)[self.target_set_idx])
+ + +
[docs]class MeanVariance(AcquisitionFunction): + """Mean of the marginal variances.""" + + min_or_max = "min" + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + [Description of the task parameter.] + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + return np.mean(self.model.variance(task)[self.target_set_idx])
+ + +
[docs]class pNormStddev(AcquisitionFunction): + """p-norm of the vector of marginal standard deviations.""" + + min_or_max = "min" + + def __init__(self, *args, p: int = 1, **kwargs): + """ + ... + + :no-index: + + Args: + p (int, optional): + [Description of the parameter p.], default is 1 + """ + super().__init__(*args, **kwargs) + self.p = p + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + [Description of the task parameter.] + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + return np.linalg.norm( + self.model.stddev(task)[self.target_set_idx].ravel(), ord=self.p + )
+ + +
[docs]class MeanMarginalEntropy(AcquisitionFunction): + """Mean of the entropies of the marginal predictive distributions.""" + + min_or_max = "min" + +
[docs] def __call__(self, task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + marginal_entropy = self.model.mean_marginal_entropy(task) + return marginal_entropy
+ + +
[docs]class JointEntropy(AcquisitionFunction): + """Joint entropy of the predictive distribution.""" + + min_or_max = "min" + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + return self.model.joint_entropy(task)
+ + +
[docs]class OracleMAE(AcquisitionFunctionOracle): + """Oracle mean absolute error.""" + + min_or_max = "min" + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + pred = self.model.mean(task) + if isinstance(pred, list): + pred = pred[self.target_set_idx] + true = task["Y_t"][self.target_set_idx] + return np.mean(np.abs(pred - true))
+ + +
[docs]class OracleRMSE(AcquisitionFunctionOracle): + """Oracle root mean squared error.""" + + min_or_max = "min" + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + pred = self.model.mean(task) + if isinstance(pred, list): + pred = pred[self.target_set_idx] + true = task["Y_t"][self.target_set_idx] + return np.sqrt(np.mean((pred - true) ** 2))
+ + +
[docs]class OracleMarginalNLL(AcquisitionFunctionOracle): + """Oracle marginal negative log-likelihood.""" + + min_or_max = "min" + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + pred = self.model.mean(task) + if isinstance(pred, list): + pred = pred[self.target_set_idx] + true = task["Y_t"][self.target_set_idx] + return -np.mean(norm.logpdf(true, loc=pred, scale=self.model.stddev(task)))
+ + +
[docs]class OracleJointNLL(AcquisitionFunctionOracle): + """Oracle joint negative log-likelihood.""" + + min_or_max = "min" + +
[docs] def __call__(self, task: Task): + """ + ... + + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + return -self.model.logpdf(task)
+ + +
[docs]class Random(AcquisitionFunctionParallel): + """Random acquisition function.""" + + min_or_max = "max" + + def __init__(self, *args, seed: int = 42, **kwargs): + """ + ... + + :no-index: + + Args: + seed (int, optional): + Random seed, defaults to 42. + """ + super().__init__(*args, **kwargs) + self.rng = np.random.default_rng(seed) + +
[docs] def __call__(self, task: Task, X_s: np.ndarray, **kwargs): + """ + ... + + :param **kwargs: + :no-index: + + Args: + task (:class:`~.data.task.Task`): + [Description of the task parameter.] + X_s (:class:`numpy:numpy.ndarray`): + [Description of the X_s parameter.] + + Returns: + float: + A random acquisition function value. + """ + return self.rng.random(X_s.shape[1])
+ + +
[docs]class ContextDist(AcquisitionFunctionParallel): + """Distance to closest context point.""" + + min_or_max = "max" + +
[docs] def __call__(self, task: Task, X_s: np.ndarray, **kwargs): + """ + ... + + :param **kwargs: + :no-index: + + Args: + task (:class:`~.data.task.Task`): + [Description of the task parameter.] + X_s (:class:`numpy:numpy.ndarray`): + [Description of the X_s parameter.] + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + X_c = task["X_c"][self.context_set_idx] + + if X_c.size == 0: + # No sensors placed yet, so arbitrarily choose first query point by setting its + # acquisition fn to non-zero and all others to zero + dist_to_closest_sensor = np.zeros(X_s.shape[-1]) + dist_to_closest_sensor[0] = 1 + else: + # Use broadcasting to get matrix of distances from each possible + # new sensor location to each existing sensor location + dists_all = np.linalg.norm( + X_s[..., np.newaxis] - X_c[..., np.newaxis, :], + axis=0, + ) # Shape (n_possible_locs, n_context + n_placed_sensors) + + # Compute distance to nearest sensor + dist_to_closest_sensor = dists_all.min(axis=1) + return dist_to_closest_sensor
+ + +
[docs]class Stddev(AcquisitionFunctionParallel): + """Model standard deviation.""" + + min_or_max = "max" + +
[docs] def __call__(self, task: Task, X_s: np.ndarray, **kwargs): + """ + ... + + :param **kwargs: + :no-index: + + Args: + task (:class:`~.data.task.Task`): + [Description of the task parameter.] + X_s (:class:`numpy:numpy.ndarray`): + [Description of the X_s parameter.] + + Returns: + [Type of the return value]: + [Description of the return value.] + """ + # Set the target points to the search points + task = copy.deepcopy(task) + task["X_t"] = X_s + + return self.model.stddev(task)[self.target_set_idx]
+ + +
[docs]class ExpectedImprovement(AcquisitionFunctionParallel): + """ + Expected improvement acquisition function. + + .. note:: + + The current implementation of this acquisition function is only valid + for maximisation. + """ + + min_or_max = "max" + +
[docs] def __call__(self, task: Task, X_s: np.ndarray, **kwargs) -> np.ndarray: + """ + :param **kwargs: + :no-index: + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + X_s (:class:`numpy:numpy.ndarray`): + Search points. Shape (2, N_search). + + Returns: + :class:`numpy:numpy.ndarray`: + Acquisition function value/s. Shape (N_search,). + """ + # Set the target points to the search points + task = copy.deepcopy(task) + task["X_t"] = X_s + + # Compute the predictive mean and variance of the target set + mean = self.model.mean(task)[self.target_set_idx] + + if task["Y_c"][self.context_set_idx].size == 0: + # No previous context points, so heuristically use the predictive mean as the + # acquisition function. This will at least select the most positive predicted mean. + return self.model.mean(task)[self.target_set_idx] + else: + # Determine the best target value seen so far + best_target_value = task["Y_c"][self.context_set_idx].max() + + # Compute the standard deviation of the context set + stddev = self.model.stddev(task)[self.context_set_idx] + + # Compute the expected improvement + Z = (mean - best_target_value) / stddev + ei = stddev * (mean - best_target_value) * norm.cdf(Z) + stddev * norm.pdf(Z) + + return ei
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/active_learning/algorithms.html b/_modules/deepsensor/active_learning/algorithms.html new file mode 100644 index 00000000..f4a9c642 --- /dev/null +++ b/_modules/deepsensor/active_learning/algorithms.html @@ -0,0 +1,1050 @@ + + + + + + + + + + + deepsensor.active_learning.algorithms — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.active_learning.algorithms

+import copy
+
+from deepsensor.data.loader import TaskLoader
+from deepsensor.data.processor import (
+    xarray_to_coord_array_normalised,
+    mask_coord_array_normalised,
+    da1_da2_same_grid,
+    interp_da1_to_da2,
+    process_X_mask_for_X,
+)
+from deepsensor.model.model import (
+    DeepSensorModel,
+)
+from deepsensor.model.pred import create_empty_spatiotemporal_xarray
+from deepsensor.data.task import Task, append_obs_to_task
+from deepsensor.active_learning.acquisition_fns import (
+    AcquisitionFunction,
+    AcquisitionFunctionParallel,
+    AcquisitionFunctionOracle,
+)
+
+import numpy as np
+import xarray as xr
+import pandas as pd
+from tqdm import tqdm
+
+from typing import Union, List, Tuple, Optional
+
+
+
[docs]class GreedyAlgorithm: + """Greedy active learning sensor placement algorithm. + + Given a set of :class:`~.data.task.Task` objects containing existing context data, the algorithm + iteratively (i.e. 'greedily') proposes $N$ locations for new context points + from a search grid, using active learning with a DeepSensorModel. + + Within each greedy iteration, the algorithm evaluates an acquisition function + over the search grid. The acquisition function value at a given query location + relates to the merit of a new observation at that point, and is averaged over + all :class:`~.data.task.Task` objects. The algorithm then + selects the context location with the 'best' (max or min) acquisition function value. + A new context observation is added to each :class:`~.data.task.Task` at that location. + This process is repeated until $N$ new context locations have been proposed. + + The algorithm either computes the acquisition function values + in parallel over all query locations, or sequentially. This is dictated by the + type of acquisition function passed to the algorithm: + + 1. :class:`~.active_learning.acquisition_fns.AcquisitionFunction`: + Returns a scalar acquisition function for + a given query location. For example, the model's mean standard deviation + over target locations (``MeanStddev``). For a given :class:`~.data.task.Task` + this requires running the model *once for every query location* with a new + context point at that location, so these acquisition functions can be slow. + + 2. :class:`~.active_learning.acquisition_fns.AcquisitionFunctionParallel`: + Returns all acquisition function values in parallel. + For example, the model's standard deviation at query locations given + the existing context data, which only requires running the model once for a + given :class:`~.data.task.Task`. These acquisition functions are faster than + their sequential counterparts but are likely less informative. + + Acquisition functions that inherit from + :class:`~.active_learning.acquisition_fns.AcquisitionFunctionOracle` + require ground truth target values at target locations. In this case, the algorithm + must be provided with a :class:`~.data.loader.TaskLoader` object to sample these values. + + .. note:: + The algorithm is described in more detail in 'Environmental Sensor Placement with + Convolutional Gaussian Neural Processes' (2023), https://doi.org/10.1017/eds.2023.22. + + Args: + model (:class:`~.model.model.DeepSensorModel`): + Model to use for proposing new context points. + X_s (:class:`xarray.Dataset` | :class:`xarray.DataArray`): + Xarray object containing the spatial coordinates that define the search grid. + X_t (:class:`xarray.Dataset` | :class:`xarray.DataArray` | pd.DataFrame): + Target spatial coordinates. Can either be an xarray object containing the spatial + coordinates of the target grid, or a pandas DataFrame containing a set of off-grid + target locations. + X_s_mask (:class:`xarray.Dataset` | :class:`xarray.DataArray`, optional): + Optional 2D mask for gridded search coordinates to ignore. If provided, the acquisition + function will only be computed at locations where the mask is True. Defaults to None. + X_t_mask (:class:`xarray.Dataset` | :class:`xarray.DataArray`, optional): + Optional 2D mask (for gridded target coordinates) to ignore. + Useful e.g. if you only care about improving the model's predictions over a certain + area. Defaults to None. + N_new_context (int, optional): + Number of new context points to propose (i.e. number of greedy iterations), defaults to 1. + X_normalised (bool, optional): + Whether the coordinates of the X_* arguments above have been normalised + by a :class:`~.data.processor.DataProcessor`. Defaults to False. + model_infill_method (str, optional): + Method for generating pseudo observations from the model at search points, + which are appended to Tasks when computing acquisition functions or at the + end of a greedy iteration (unless overridden by ``query_infill`` or ``proposed_infill`` below). + Currently, only "mean" infilling is supported. Defaults to "mean". + query_infill (:class:`xarray.DataArray`, optional): + Gridded xarray object containing observations to use when querying candidate context + points. Must have all the same time points as the :class:`~.data.task.Task` objects + the algorithm is called with. If not on the same grid as ``X_s``, it will be linearly + interpolated to the same grid. Useful for providing the model with true observations + rather than its own predictions. Defaults to None. + proposed_infill (:class:`xarray.DataArray`, optional): + Similar to ``query_infill``, but used when infilling pseudo observations at the end + of a greedy iteration (rather than using model predictions). Useful e.g. to + simulate the case where the model can obtain ground truth after requesting + a sensor placement. Defaults to None. + context_set_idx (int, optional): + Context set index to run the sensor placement algorithm on. E.g. if a model + ingest two context sets ["aux_data", "sensor_data"], this should be set to 1 + (corresponding to the sensor context set). Defaults to 0. + target_set_idx (int, optional): + Target set index corresponding to predictions of the context set that the + algorithm is run on. Defaults to 0. + progress_bar (bool, optional): + Whether to display a progress bar when running the algorithm. Defaults to False. + task_loader (:class:`~.data.loader.TaskLoader`, optional): + If using an :class:`~.active_learning.acquisition_fns.AcquisitionFunctionOracle`, + a TaskLoader object is required to sample ground truth target values at target + locations. Defaults to None. + verbose (bool, optional): + Whether to print some status messages. Defaults to False. + + Raises: + ValueError: + If the ``model`` passed does not inherit from + :class:`~.model.model.DeepSensorModel`. + """ + + def __init__( + self, + model: DeepSensorModel, + X_s: Union[xr.Dataset, xr.DataArray], + X_t: Union[xr.Dataset, xr.DataArray, pd.DataFrame], + X_s_mask: Optional[Union[xr.Dataset, xr.DataArray]] = None, + X_t_mask: Optional[Union[xr.Dataset, xr.DataArray]] = None, + N_new_context: int = 1, + X_normalised: bool = False, + model_infill_method: str = "mean", + query_infill: Optional[xr.DataArray] = None, + proposed_infill: Optional[xr.DataArray] = None, + context_set_idx: int = 0, + target_set_idx: int = 0, + progress_bar: bool = False, + task_loader: Optional[ + TaskLoader + ] = None, # OPTIONAL for oracle acquisition functions only + verbose: bool = False, + ): + if not isinstance(model, DeepSensorModel): + raise ValueError( + "`model` must inherit from DeepSensorModel, but parent " + f"classes are {model.__class__.__bases__}" + ) + + self._validate_n_new_context(X_s, N_new_context) + + self.model = model + self.N_new_context = N_new_context + self.progress_bar = progress_bar + self.model_infill_method = model_infill_method + self.context_set_idx = context_set_idx + self.target_set_idx = target_set_idx + self.task_loader = task_loader + self.pbar = None + + self.x1_name = self.model.data_processor.config["coords"]["x1"]["name"] + self.x2_name = self.model.data_processor.config["coords"]["x2"]["name"] + + # Normalised search and target coordinates + if not X_normalised: + X_t = model.data_processor.map_coords(X_t) + X_s = model.data_processor.map_coords(X_s) + if X_s_mask is not None: + X_s_mask = model.data_processor.map_coords(X_s_mask) + if X_t_mask is not None: + X_t_mask = model.data_processor.map_coords(X_t_mask) + + self.X_s = X_s + self.X_t = X_t + self.X_s_mask = X_s_mask + self.X_t_mask = X_t_mask + + # Interpolate masks onto search and target coords + if self.X_s_mask is not None: + self.X_s_mask = process_X_mask_for_X(self.X_s_mask, self.X_s) + if self.X_t_mask is not None: + self.X_t_mask = process_X_mask_for_X(self.X_t_mask, self.X_t) + + # Interpolate overridden infill datasets at search points if necessary + if query_infill is not None and not da1_da2_same_grid(query_infill, X_s): + if verbose: + print("query_infill not on search grid, interpolating.") + query_infill = interp_da1_to_da2(query_infill, self.X_s) + if proposed_infill is not None and not da1_da2_same_grid(proposed_infill, X_s): + if verbose: + print("proposed_infill not on search grid, interpolating.") + proposed_infill = interp_da1_to_da2(proposed_infill, self.X_s) + self.query_infill = query_infill + self.proposed_infill = proposed_infill + + # Convert target coords to numpy arrays and assign to tasks + if isinstance(X_t, (xr.Dataset, xr.DataArray)): + # Targets on grid + self.X_t_arr = xarray_to_coord_array_normalised(X_t) + if self.X_t_mask is not None: + # Remove points that lie outside the mask + self.X_t_arr = mask_coord_array_normalised(self.X_t_arr, self.X_t_mask) + elif isinstance(X_t, (pd.DataFrame, pd.Series, pd.Index)): + # Targets off-grid + self.X_t_arr = X_t.reset_index()[["x1", "x2"]].values.T + else: + raise TypeError(f"Unsupported type for X_t: {type(X_t)}") + + # Construct search array + if isinstance(X_s, (xr.Dataset, xr.DataArray)): + X_s_arr = xarray_to_coord_array_normalised(X_s) + if X_s_mask is not None: + X_s_arr = mask_coord_array_normalised(X_s_arr, self.X_s_mask) + self.X_s_arr = X_s_arr + + self.X_new = [] # List of new proposed context locations + + @classmethod + def _validate_n_new_context( + cls, X_s: Union[xr.Dataset, xr.DataArray], N_new_context: int + ): + if isinstance(X_s, (xr.Dataset, xr.DataArray)): + if isinstance(X_s, xr.Dataset): + X_s = X_s.to_array() + N_s = X_s.shape[-2] * X_s.shape[-1] + elif isinstance(X_s, (pd.DataFrame, pd.Series, pd.Index)): + N_s = len(X_s) + + if not 0 < N_new_context < N_s: + raise ValueError( + f"Number of new context ({N_new_context}) must be greater " + f"than zero and less than the number of search points ({N_s})" + ) + + def _get_times_from_tasks(self): + """Get times from tasks""" + times = [task["time"] for task in self.tasks] + # Check for any repeats + if len(times) != len(set(times)): + # TODO unit test this + raise ValueError( + f"The {len(times)} tasks have duplicate times ({len(set(times))} " + f"unique times)" + ) + return times + + def _model_infill_at_search_points( + self, + X_s: Union[xr.Dataset, xr.DataArray, pd.DataFrame, pd.Series, pd.Index], + ): + """Computes and model infill y-values over whole search grid.""" + if self.model_infill_method == "mean": + pred = self.model.predict( + self.tasks, + X_s, + X_t_is_normalised=True, + unnormalise=False, + ) + infill_ds = pred[self.target_set_idx]["mean"] + + elif self.model_infill_method == "sample": + # pred = self.model.predict( + # self.tasks, X_s, X_t_normalised=True, unnormalise=False, + # n_samples=self.model_infill_samples, + # ) + # infill_ds = pred[self.target_set_idx]["samples"] + raise NotImplementedError("TODO") + + elif self.model_infill_method == "zeros": + # TODO generate empty prediction xarray + raise NotImplementedError("TODO") + + else: + raise ValueError( + f"Unsupported model_infill_method: {self.model_infill_method}" + ) + + return infill_ds + + def _sample_y_infill(self, infill_ds, time, x1, x2): + """Sample infill values at a single location""" + assert isinstance(infill_ds, (xr.Dataset, xr.DataArray)) + y = infill_ds.sel(time=time, x1=x1, x2=x2) + if isinstance(y, xr.Dataset): + y = y.to_array() + y = y.data + if "sample" not in infill_ds.dims: + return y.reshape(1, y.size) # 1 observation with N_target_dims + else: + # TODO confirm or force that dim ordering is (N_samples, N_target_dims) + return y + + def _build_acquisition_fn_ds(self, X_s: Union[xr.Dataset, xr.DataArray]): + """ + Initialise xr.DataArray for storing acquisition function values on + search grid + """ + prepend_dims = ["iteration"] # , "sample"] # MC sample TODO + prepend_coords = { + "iteration": range(self.N_new_context), + # "sample": range(self.n_samples_or_1), # MC sample TODO + } + acquisition_fn_ds = create_empty_spatiotemporal_xarray( + X=X_s, + dates=self._get_times_from_tasks(), + coord_names={"x1": self.x1_name, "x2": self.x2_name}, + data_vars=["acquisition_fn"], + prepend_dims=prepend_dims, + prepend_coords=prepend_coords, + )["acquisition_fn"] + acquisition_fn_ds.data[:] = np.nan + + return acquisition_fn_ds + + def _init_acquisition_fn_object(self, X_s: xr.Dataset): + """Instantiate acquisition function object""" + # Unnormalise before instantiating + X_s = self.model.data_processor.map_coords(X_s, unnorm=True) + if isinstance(X_s, (xr.Dataset, xr.DataArray)): + # xr.Dataset storing acquisition function values + self.acquisition_fn_ds = self._build_acquisition_fn_ds(X_s) + elif isinstance(X_s, (pd.DataFrame, pd.Series, pd.Index)): + raise NotImplementedError( + "Pandas support for active learning search points X_s not yet " + "implemented." + ) + else: + raise TypeError(f"Unsupported type for X_s: {type(X_s)}") + + def _search(self, acquisition_fn: AcquisitionFunction): + """ + Run one greedy pass by looping over each point in ``X_s`` and + computing the acquisition function. + """ + importances_list = [] + + for task in self.tasks: + # Parallel computation + if isinstance(acquisition_fn, AcquisitionFunctionParallel): + importances = acquisition_fn(task, self.X_s_arr) + if self.pbar: + self.pbar.update(1) + + # Sequential computation + elif isinstance(acquisition_fn, AcquisitionFunction): + importances = [] + + if self.diff: + importance_bef = acquisition_fn(task) + + # Add size-1 dim after row dim to preserve row dim for passing to + # acquisition_fn. Also roll final axis to first axis for looping over search points. + for x_query in np.rollaxis(self.X_s_arr[:, np.newaxis], 2): + y_query = self._sample_y_infill( + self.query_infill, + time=task["time"], + x1=x_query[0], + x2=x_query[1], + ) + task_with_new = append_obs_to_task( + task, x_query, y_query, self.context_set_idx + ) + # TODO this is a hack to add the auxiliary variable to the context set + if ( + self.task_loader is not None + and self.task_loader.aux_at_contexts + ): + # Add auxiliary variable sampled at context set as a new context variable + X_c = task_with_new["X_c"][self.task_loader.aux_at_contexts[0]] + Y_c_aux = self.task_loader.sample_offgrid_aux( + X_c, self.task_loader.aux_at_contexts[1] + ) + task_with_new["X_c"][-1] = X_c + task_with_new["Y_c"][-1] = Y_c_aux + + importance = acquisition_fn(task_with_new) + + if self.diff: + importance = importance - importance_bef + + importances.append(importance) + + if self.pbar: + self.pbar.update(1) + + else: + allowed_classes = [ + AcquisitionFunction, + AcquisitionFunctionParallel, + AcquisitionFunctionOracle, + ] + raise ValueError( + f"Acquisition function needs to inherit from one of {allowed_classes}." + ) + + importances = np.array(importances) + importances_list.append(importances) + + if self.X_s_mask is not None: + self.acquisition_fn_ds.loc[self.iteration, task["time"]].data[ + self.X_s_mask.data + ] = importances + else: + self.acquisition_fn_ds.loc[self.iteration, task["time"]] = ( + importances.reshape(self.acquisition_fn_ds.shape[-2:]) + ) + + return np.mean(importances_list, axis=0) + + def _select_best(self, importances, X_s_arr): + """Select context location corresponding to the best importance value. + + Appends the chosen search index to a list of chosen search indexes. + """ + if self.min_or_max == "min": + best_idx = np.argmin(importances) + elif self.min_or_max == "max": + best_idx = np.argmax(importances) + + best_x_query = X_s_arr[:, best_idx : best_idx + 1] + + # Index into original search space of chosen context location + self.best_idxs_all.append( + np.where((self.X_s_arr == best_x_query).all(axis=0))[0][0] + ) + + return best_x_query + + def _single_greedy_iteration(self, acquisition_fn: AcquisitionFunction): + """ + Run a single greedy grid search iteration and append the optimal + context location to self.X_new. + """ + importances = self._search(acquisition_fn) + best_x_query = self._select_best(importances, self.X_s_arr) + + self.X_new.append(best_x_query) + + return best_x_query + +
[docs] def __call__( + self, + acquisition_fn: AcquisitionFunction, + tasks: Union[List[Task], Task], + diff: bool = False, + ) -> Tuple[pd.DataFrame, xr.Dataset]: + """ + Iteratively propose new context points using the greedy sensor placement algorithm. + + Args: + acquisition_fn (:class:`~.active_learning.acquisition_fns.AcquisitionFunction`): + The acquisition function to optimise. + tasks (List[:class:`~.data.task.Task`] | :class:`~.data.task.Task`): + Tasks containing existing context data. If a list of Tasks, the acquisition + function will be averaged over Tasks. + diff (bool, optional): + For sequential acquisition functions only: Whether to compute the *change* in + acquisition function value after adding the new context point, i.e. + ``acquisition_fn(task_with_new) - acquisition_fn(task)``. Can be useful + for making the acquisition function values more interpretable, or for + comparing with the change in metric that the acquisition function targets + (see https://doi.org/10.1017/eds.2023.22). Defaults to False. + + Returns: + Tuple[:class:`pandas.DataFrame`, :class:`xarray.DataArray`]: + A tuple containing two objects: + + - **X_new_df** (:class:`pandas.DataFrame`): + Proposed sensor placements. Columns are the x1 and x2 coordinates of the + sensor placements, and the index is the index of the greedy iteration + at which the sensor placement was proposed (which can be interpreted as + a priority order, with iteration 0 being the highest priority). + + - **acquisition_fn_ds** (:class:`xarray.DataArray`): + Gridded acquisition function values at each search point. Dimensions + are ``iteration``, ``time`` (inferred from the input ``tasks``), followed + by the x1 and x2 coordinates of the spatial grid. + + Raises: + ValueError: + If ``acquisition_fn`` is an + :class:`~.active_learning.acquisition_fns.AcquisitionFunctionOracle` + and ``task_loader`` is None. + ValueError: + If ``min_or_max`` is not ``"min"`` or ``"max"``. + ValueError: + If ``Y_t_aux`` is in ``tasks`` but ``task_loader`` is None. + """ + if ( + isinstance(acquisition_fn, AcquisitionFunctionOracle) + and self.task_loader is None + ): + raise ValueError( + "AcquisitionFunctionOracle requires a task_loader function to " + "be passed to the GreedyOptimal constructor." + ) + + self.min_or_max = acquisition_fn.min_or_max + if self.min_or_max not in ["min", "max"]: + raise ValueError( + f"min_or_max must be either 'min' or 'max', got " f"{self.min_or_max}." + ) + + if diff and isinstance(acquisition_fn, AcquisitionFunctionParallel): + raise ValueError( + "diff=True is not valid for parallel acquisition functions." + ) + self.diff = diff + + if isinstance(tasks, Task): + tasks = [tasks] + + # Make deepcopys so that original tasks are not modified + tasks = copy.deepcopy(tasks) + + # Add target set to tasks + for i, task in enumerate(tasks): + tasks[i]["X_t"] = [self.X_t_arr] + if isinstance(acquisition_fn, AcquisitionFunctionOracle): + # Sample ground truth y-values at target points `self.X_t_arr` using `self.task_loader` + date = tasks[i]["time"] + task_with_Y_t = self.task_loader( + date, context_sampling=0, target_sampling=self.X_t_arr + ) + tasks[i]["Y_t"] = task_with_Y_t["Y_t"] + + if "Y_t_aux" in tasks[i] and self.task_loader is None: + raise ValueError( + "Model expects Y_t_aux data but a TaskLoader isn't " + "provided to GreedyAlgorithm." + ) + if self.task_loader is not None and self.task_loader.aux_at_target_dims > 0: + tasks[i]["Y_t_aux"] = self.task_loader.sample_offgrid_aux( + self.X_t_arr, self.task_loader.aux_at_targets + ) + + self.tasks = tasks + + # Generate infill values at search points if not overridden + if self.query_infill is None or self.proposed_infill is None: + model_infill = self._model_infill_at_search_points(self.X_s) + if self.query_infill is None: + self.query_infill = model_infill + if self.proposed_infill is None: + self.proposed_infill = model_infill + + # Instantiate empty acquisition function object + self._init_acquisition_fn_object(self.X_s) + + # Dataframe for storing proposed context locations + self.X_new_df = pd.DataFrame(columns=[self.x1_name, self.x2_name]) + self.X_new_df.index.name = "iteration" + + # List to track indexes into original search grid of chosen sensor locations + # as optimisation progresses. Used for filling y-values at chosen + # sensor locations, `self.X_new` + self.best_idxs_all = [] + + # Total iterations are number of new context points * number of tasks * number of search + # points (if not parallel) * number of Monte Carlo samples (if using MC) + total_iterations = self.N_new_context * len(self.tasks) + if not isinstance(acquisition_fn, AcquisitionFunctionParallel): + total_iterations *= self.X_s_arr.shape[-1] + # TODO make class attribute for list of sample-based infill methods + if self.model_infill_method in ["sample", "ar_sample"]: + total_iterations *= self.n_samples + + with tqdm(total=total_iterations, disable=not self.progress_bar) as self.pbar: + for iteration in range(self.N_new_context): + self.iteration = iteration + x_new = self._single_greedy_iteration(acquisition_fn) + + # Append new proposed context points to each task + for i, task in enumerate(self.tasks): + y_new = self._sample_y_infill( + self.proposed_infill, + time=task["time"], + x1=x_new[0], + x2=x_new[1], + ) + self.tasks[i] = append_obs_to_task( + task, x_new, y_new, self.context_set_idx + ) + + # Append new proposed context points to dataframe + x_new_unnorm = self.model.data_processor.map_coord_array( + x_new, unnorm=True + ) + self.X_new_df.loc[self.iteration] = x_new_unnorm.ravel() + + return self.X_new_df, self.acquisition_fn_ds
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/data/loader.html b/_modules/deepsensor/data/loader.html new file mode 100644 index 00000000..5d2e37c7 --- /dev/null +++ b/_modules/deepsensor/data/loader.html @@ -0,0 +1,1758 @@ + + + + + + + + + + + deepsensor.data.loader — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.data.loader

+from deepsensor.data.task import Task, flatten_X
+
+import os
+import json
+import copy
+
+import numpy as np
+import xarray as xr
+import pandas as pd
+
+from typing import List, Tuple, Union, Optional
+
+from deepsensor.errors import InvalidSamplingStrategyError
+
+
+
[docs]class TaskLoader: + """ + Generates :class:`~.data.task.Task` objects for training, testing, and inference with DeepSensor models. + + Provides a suite of sampling methods for generating :class:`~.data.task.Task` objects for different kinds of + predictions, such as: spatial interpolation, forecasting, downscaling, or some combination + of these. + + The behaviour is the following: + - If all data passed as paths, load the data and overwrite the paths with the loaded data + - Either all data is passed as paths, or all data is passed as loaded data (else ``ValueError``) + - If all data passed as paths, the TaskLoader can be saved with the ``save`` method + (using config) + + Args: + task_loader_ID: + If loading a TaskLoader from a config file, this is the folder the + TaskLoader was saved in (using `.save`). If this argument is passed, all other + arguments are ignored. + context (:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame` | List[:class:`xarray.DataArray` | :class:`xarray.Dataset`, :class:`pandas.DataFrame`]): + Context data. Can be a single :class:`xarray.DataArray`, + :class:`xarray.Dataset` or :class:`pandas.DataFrame`, or a + list/tuple of these. + target (:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame` | List[:class:`xarray.DataArray` | :class:`xarray.Dataset`, :class:`pandas.DataFrame`]): + Target data. Can be a single :class:`xarray.DataArray`, + :class:`xarray.Dataset` or :class:`pandas.DataFrame`, or a + list/tuple of these. + aux_at_contexts (Tuple[int, :class:`xarray.DataArray` | :class:`xarray.Dataset`], optional): + Auxiliary data at context locations. Tuple of two elements, where + the first element is the index of the context set for which the + auxiliary data will be sampled at, and the second element is the + auxiliary data, which can be a single :class:`xarray.DataArray` or + :class:`xarray.Dataset`. Default: None. + aux_at_targets (:class:`xarray.DataArray` | :class:`xarray.Dataset`, optional): + Auxiliary data at target locations. Can be a single + :class:`xarray.DataArray` or :class:`xarray.Dataset`. Default: + None. + links (Tuple[int, int] | List[Tuple[int, int]], optional): + Specifies links between context and target data. Each link is a + tuple of two integers, where the first integer is the index of the + context data and the second integer is the index of the target + data. Can be a single tuple in the case of a single link. If None, + no links are specified. Default: None. + context_delta_t (int | List[int], optional): + Time difference between context data and t=0 (task init time). Can + be a single int (same for all context data) or a list/tuple of + ints. Default is 0. + target_delta_t (int | List[int], optional): + Time difference between target data and t=0 (task init time). Can + be a single int (same for all target data) or a list/tuple of ints. + Default is 0. + time_freq (str, optional): + Time frequency of the data. Default: ``'D'`` (daily). + xarray_interp_method (str, optional): + Interpolation method to use when interpolating + :class:`xarray.DataArray`. Default is ``'linear'``. + discrete_xarray_sampling (bool, optional): + When randomly sampling xarray variables, whether to sample at + discrete points defined at grid cell centres, or at continuous + points within the grid. Default is ``False``. + dtype (object, optional): + Data type of the data. Used to cast the data to the specified + dtype. Default: ``'float32'``. + """ + + config_fname = "task_loader_config.json" + + def __init__( + self, + task_loader_ID: Union[str, None] = None, + context: Union[ + xr.DataArray, + xr.Dataset, + pd.DataFrame, + str, + List[Union[xr.DataArray, xr.Dataset, pd.DataFrame, str]], + ] = None, + target: Union[ + xr.DataArray, + xr.Dataset, + pd.DataFrame, + str, + List[Union[xr.DataArray, xr.Dataset, pd.DataFrame, str]], + ] = None, + aux_at_contexts: Optional[Tuple[int, Union[xr.DataArray, xr.Dataset]]] = None, + aux_at_targets: Optional[ + Union[ + xr.DataArray, + xr.Dataset, + ] + ] = None, + links: Optional[Union[Tuple[int, int], List[Tuple[int, int]]]] = None, + context_delta_t: Union[int, List[int]] = 0, + target_delta_t: Union[int, List[int]] = 0, + time_freq: str = "D", + xarray_interp_method: str = "linear", + discrete_xarray_sampling: bool = False, + dtype: object = "float32", + ) -> None: + if task_loader_ID is not None: + self.task_loader_ID = task_loader_ID + # Load TaskLoader from config file + fpath = os.path.join(task_loader_ID, self.config_fname) + with open(fpath, "r") as f: + self.config = json.load(f) + + self.context = self.config["context"] + self.target = self.config["target"] + self.aux_at_contexts = self.config["aux_at_contexts"] + self.aux_at_targets = self.config["aux_at_targets"] + self.links = self.config["links"] + if self.links is not None: + self.links = [tuple(link) for link in self.links] + self.context_delta_t = self.config["context_delta_t"] + self.target_delta_t = self.config["target_delta_t"] + self.time_freq = self.config["time_freq"] + self.xarray_interp_method = self.config["xarray_interp_method"] + self.discrete_xarray_sampling = self.config["discrete_xarray_sampling"] + self.dtype = self.config["dtype"] + else: + self.context = context + self.target = target + self.aux_at_contexts = aux_at_contexts + self.aux_at_targets = aux_at_targets + self.links = links + self.context_delta_t = context_delta_t + self.target_delta_t = target_delta_t + self.time_freq = time_freq + self.xarray_interp_method = xarray_interp_method + self.discrete_xarray_sampling = discrete_xarray_sampling + self.dtype = dtype + + if not isinstance(self.context, (tuple, list)): + self.context = (self.context,) + if not isinstance(self.target, (tuple, list)): + self.target = (self.target,) + + if isinstance(self.context_delta_t, int): + self.context_delta_t = (self.context_delta_t,) * len(self.context) + else: + assert len(self.context_delta_t) == len(self.context), ( + f"Length of context_delta_t ({len(self.context_delta_t)}) must be the same as " + f"the number of context sets ({len(self.context)})" + ) + if isinstance(self.target_delta_t, int): + self.target_delta_t = (self.target_delta_t,) * len(self.target) + else: + assert len(self.target_delta_t) == len(self.target), ( + f"Length of target_delta_t ({len(self.target_delta_t)}) must be the same as " + f"the number of target sets ({len(self.target)})" + ) + + all_paths = self._check_if_all_data_passed_as_paths() + if all_paths: + self._set_config() + self._load_data_from_paths() + + self.context = self._cast_to_dtype(self.context) + self.target = self._cast_to_dtype(self.target) + self.aux_at_contexts = self._cast_to_dtype(self.aux_at_contexts) + self.aux_at_targets = self._cast_to_dtype(self.aux_at_targets) + + self.links = self._check_links(self.links) + + ( + self.context_dims, + self.target_dims, + self.aux_at_target_dims, + ) = self.count_context_and_target_data_dims() + ( + self.context_var_IDs, + self.target_var_IDs, + self.context_var_IDs_and_delta_t, + self.target_var_IDs_and_delta_t, + self.aux_at_target_var_IDs, + ) = self.infer_context_and_target_var_IDs() + + def _set_config(self): + """Instantiate a config dictionary for the TaskLoader object""" + # Take deepcopy to avoid modifying the original config + self.config = copy.deepcopy( + dict( + context=self.context, + target=self.target, + aux_at_contexts=self.aux_at_contexts, + aux_at_targets=self.aux_at_targets, + links=self.links, + context_delta_t=self.context_delta_t, + target_delta_t=self.target_delta_t, + time_freq=self.time_freq, + xarray_interp_method=self.xarray_interp_method, + discrete_xarray_sampling=self.discrete_xarray_sampling, + dtype=self.dtype, + ) + ) + + def _check_if_all_data_passed_as_paths(self) -> bool: + """If all data passed as paths, save paths to config and return True.""" + + def _check_if_strings(x, mode="all"): + if x is None: + return None + elif isinstance(x, (tuple, list)): + if mode == "all": + return all([isinstance(x_i, str) for x_i in x]) + elif mode == "any": + return any([isinstance(x_i, str) for x_i in x]) + else: + return isinstance(x, str) + + all_paths = all( + filter( + lambda x: x is not None, + [ + _check_if_strings(self.context), + _check_if_strings(self.target), + _check_if_strings(self.aux_at_contexts), + _check_if_strings(self.aux_at_targets), + ], + ) + ) + self._is_saveable = all_paths + + any_paths = any( + filter( + lambda x: x is not None, + [ + _check_if_strings(self.context, mode="any"), + _check_if_strings(self.target, mode="any"), + _check_if_strings(self.aux_at_contexts, mode="any"), + _check_if_strings(self.aux_at_targets, mode="any"), + ], + ) + ) + if any_paths and not all_paths: + raise ValueError( + "Data must be passed either all as paths or all as xarray/pandas objects (not a mix)." + ) + + return all_paths + + def _load_data_from_paths(self): + """Load data from paths and overwrite paths with loaded data.""" + + loaded_data = {} + + def _load_pandas_or_xarray(path): + # Need to be careful about this. We need to ensure data gets into the right form + # for TaskLoader. + if path is None: + return None + elif path in loaded_data: + return loaded_data[path] + elif path.endswith(".nc"): + data = xr.open_dataset(path) + elif path.endswith(".csv"): + df = pd.read_csv(path) + if "time" in df.columns: + df["time"] = pd.to_datetime(df["time"]) + df = df.set_index(["time", "x1", "x2"]).sort_index() + else: + df = df.set_index(["x1", "x2"]).sort_index() + data = df + else: + raise ValueError(f"Unknown file extension for {path}") + loaded_data[path] = data + return data + + def _load_data(data): + if isinstance(data, (tuple, list)): + data = tuple([_load_pandas_or_xarray(data_i) for data_i in data]) + else: + data = _load_pandas_or_xarray(data) + return data + + self.context = _load_data(self.context) + self.target = _load_data(self.target) + self.aux_at_contexts = _load_data(self.aux_at_contexts) + self.aux_at_targets = _load_data(self.aux_at_targets) + +
[docs] def save(self, folder: str): + """Save TaskLoader config to JSON in `folder`""" + if not self._is_saveable: + raise ValueError( + "TaskLoader cannot be saved because not all data was passed as paths." + ) + + os.makedirs(folder, exist_ok=True) + fpath = os.path.join(folder, self.config_fname) + with open(fpath, "w") as f: + json.dump(self.config, f, indent=4, sort_keys=False)
+ + def _cast_to_dtype( + self, + var: Union[ + xr.DataArray, + xr.Dataset, + pd.DataFrame, + List[Union[xr.DataArray, xr.Dataset, pd.DataFrame, str]], + ], + ) -> (List, List): + """ + Cast context and target data to the default dtype. + + .. + TODO unit test this by passing in a variety of data types and + checking that they are cast correctly. + + Args: + var : ... + ... + + Returns: + tuple: Tuple of context data with specified dtype. + tuple: Tuple of target data with specified dtype. + """ + + def cast_to_dtype(var): + if isinstance(var, xr.DataArray): + var = var.astype(self.dtype) + var["x1"] = var["x1"].astype(self.dtype) + var["x2"] = var["x2"].astype(self.dtype) + elif isinstance(var, xr.Dataset): + var = var.astype(self.dtype) + var["x1"] = var["x1"].astype(self.dtype) + var["x2"] = var["x2"].astype(self.dtype) + elif isinstance(var, (pd.DataFrame, pd.Series)): + var = var.astype(self.dtype) + # Note: Numeric pandas indexes are always cast to float64, so we have to cast + # x1/x2 coord dtypes during task sampling + else: + raise ValueError(f"Unknown type {type(var)} for context set {var}") + return var + + if var is None: + return var + elif isinstance(var, (tuple, list)): + var = tuple([cast_to_dtype(var_i) for var_i in var]) + else: + var = cast_to_dtype(var) + + return var + +
[docs] def load_dask(self) -> None: + """ + Load any `dask` data into memory. + + This function triggers the computation and loading of any data that + is represented as dask arrays or datasets into memory. + + Returns: + None + """ + + def load(datasets): + if datasets is None: + return + if not isinstance(datasets, (tuple, list)): + datasets = [datasets] + for i, var in enumerate(datasets): + if isinstance(var, (xr.DataArray, xr.Dataset)): + var = var.load() + + load(self.context) + load(self.target) + load(self.aux_at_contexts) + load(self.aux_at_targets) + + return None
+ +
[docs] def count_context_and_target_data_dims(self): + """ + Count the number of data dimensions in the context and target data. + + Returns: + tuple: context_dims, Tuple of data dimensions in the context data. + tuple: target_dims, Tuple of data dimensions in the target data. + + Raises: + ValueError: If the context/target data is not a tuple/list of + :class:`xarray.DataArray`, :class:`xarray.Dataset` or + :class:`pandas.DataFrame`. + """ + + def count_data_dims_of_tuple_of_sets(datasets): + if not isinstance(datasets, (tuple, list)): + datasets = [datasets] + + dims = [] + # Distinguish between xr.DataArray, xr.Dataset and pd.DataFrame + for i, var in enumerate(datasets): + if isinstance(var, xr.Dataset): + dim = len(var.data_vars) # Multiple data variables + elif isinstance(var, xr.DataArray): + dim = 1 # Single data variable + elif isinstance(var, pd.DataFrame): + dim = len(var.columns) # Assumes all columns are data variables + elif isinstance(var, pd.Series): + dim = 1 # Single data variable + else: + raise ValueError(f"Unknown type {type(var)} for context set {var}") + dims.append(dim) + return dims + + context_dims = count_data_dims_of_tuple_of_sets(self.context) + target_dims = count_data_dims_of_tuple_of_sets(self.target) + if self.aux_at_contexts is not None: + context_dims += count_data_dims_of_tuple_of_sets(self.aux_at_contexts) + if self.aux_at_targets is not None: + aux_at_target_dims = count_data_dims_of_tuple_of_sets(self.aux_at_targets)[ + 0 + ] + else: + aux_at_target_dims = 0 + + return tuple(context_dims), tuple(target_dims), aux_at_target_dims
+ +
[docs] def infer_context_and_target_var_IDs(self): + """ + Infer the variable IDs of the context and target data. + + Returns: + tuple: context_var_IDs, Tuple of variable IDs in the context data. + tuple: target_var_IDs, Tuple of variable IDs in the target data. + + Raises: + ValueError: If the context/target data is not a tuple/list of + :class:`xarray.DataArray`, :class:`xarray.Dataset` or + :class:`pandas.DataFrame`. + """ + + def infer_var_IDs_of_tuple_of_sets(datasets, delta_ts=None): + """If delta_ts is not None, then add the delta_t to the variable ID""" + if not isinstance(datasets, (tuple, list)): + datasets = [datasets] + + var_IDs = [] + # Distinguish between xr.DataArray, xr.Dataset and pd.DataFrame + for i, var in enumerate(datasets): + if isinstance(var, xr.DataArray): + var_ID = (var.name,) # Single data variable + elif isinstance(var, xr.Dataset): + var_ID = tuple(var.data_vars.keys()) # Multiple data variables + elif isinstance(var, pd.DataFrame): + var_ID = tuple(var.columns) + elif isinstance(var, pd.Series): + var_ID = (var.name,) + else: + raise ValueError(f"Unknown type {type(var)} for context set {var}") + + if delta_ts is not None: + # Add delta_t to the variable ID + var_ID = tuple( + [f"{var_ID_i}_t{delta_ts[i]}" for var_ID_i in var_ID] + ) + else: + var_ID = tuple([f"{var_ID_i}" for var_ID_i in var_ID]) + + var_IDs.append(var_ID) + + return var_IDs + + context_var_IDs = infer_var_IDs_of_tuple_of_sets(self.context) + context_var_IDs_and_delta_t = infer_var_IDs_of_tuple_of_sets( + self.context, self.context_delta_t + ) + target_var_IDs = infer_var_IDs_of_tuple_of_sets(self.target) + target_var_IDs_and_delta_t = infer_var_IDs_of_tuple_of_sets( + self.target, self.target_delta_t + ) + + if self.aux_at_contexts is not None: + context_var_IDs += infer_var_IDs_of_tuple_of_sets(self.aux_at_contexts) + context_var_IDs_and_delta_t += infer_var_IDs_of_tuple_of_sets( + self.aux_at_contexts, [0] + ) + + if self.aux_at_targets is not None: + aux_at_target_var_IDs = infer_var_IDs_of_tuple_of_sets(self.aux_at_targets)[ + 0 + ] + else: + aux_at_target_var_IDs = None + + return ( + tuple(context_var_IDs), + tuple(target_var_IDs), + tuple(context_var_IDs_and_delta_t), + tuple(target_var_IDs_and_delta_t), + aux_at_target_var_IDs, + )
+ + def _check_links(self, links: Union[Tuple[int, int], List[Tuple[int, int]]]): + """ + Check that the context-target links are valid. + + Args: + links (Tuple[int, int] | List[Tuple[int, int]]): + Specifies links between context and target data. Each link is a + tuple of two integers, where the first integer is the index of + the context data and the second integer is the index of the + target data. Can be a single tuple in the case of a single + link. If None, no links are specified. Default: None. + + Returns: + Tuple[int, int] | List[Tuple[int, int]] + The input links, if valid. + + Raises: + ValueError + If the links are not valid. + """ + if links is None: + return None + + assert isinstance( + links, list + ), f"Links must be a list of length-2 tuples, but got {type(links)}" + assert len(links) > 0, "If links is not None, it must be a non-empty list" + assert all( + isinstance(link, tuple) for link in links + ), f"Links must be a list of tuples, but got {[type(link) for link in links]}" + assert all( + len(link) == 2 for link in links + ), f"Links must be a list of length-2 tuples, but got lengths {[len(link) for link in links]}" + + # Check that the links are valid + for link_i, (context_idx, target_idx) in enumerate(links): + if context_idx >= len(self.context): + raise ValueError( + f"Invalid context index {context_idx} in link {link_i} of {links}: " + f"there are only {len(self.context)} context sets" + ) + if target_idx >= len(self.target): + raise ValueError( + f"Invalid target index {target_idx} in link {link_i} of {links}: " + f"there are only {len(self.target)} target sets" + ) + + return links + + def __str__(self): + """ + String representation of the TaskLoader object (user-friendly). + """ + s = f"TaskLoader({len(self.context_dims)} context sets, {len(self.target_dims)} target sets)" + s += f"\nContext variable IDs: {self.context_var_IDs}" + s += f"\nTarget variable IDs: {self.target_var_IDs}" + if self.aux_at_targets is not None: + s += f"\nAuxiliary-at-target variable IDs: {self.aux_at_target_var_IDs}" + return s + + def __repr__(self): + """ + Representation of the TaskLoader object (for developers). + + .. + TODO make this a more verbose version of __str__ + """ + s = str(self) + s += "\n" + s += f"\nContext data dimensions: {self.context_dims}" + s += f"\nTarget data dimensions: {self.target_dims}" + if self.aux_at_targets is not None: + s += f"\nAuxiliary-at-target data dimensions: {self.aux_at_target_dims}" + return s + +
[docs] def sample_da( + self, + da: Union[xr.DataArray, xr.Dataset], + sampling_strat: Union[str, int, float, np.ndarray], + seed: Optional[int] = None, + ) -> (np.ndarray, np.ndarray): + """ + Sample a DataArray according to a given strategy. + + Args: + da (:class:`xarray.DataArray` | :class:`xarray.Dataset`): + DataArray to sample, assumed to be sliced for the task already. + sampling_strat (str | int | float | :class:`numpy:numpy.ndarray`): + Sampling strategy, either "all" or an integer for random grid + cell sampling. + seed (int, optional): + Seed for random sampling. Default is None. + + Returns: + Tuple[:class:`numpy:numpy.ndarray`, :class:`numpy:numpy.ndarray`]: + Tuple of sampled target data and sampled context data. + + Raises: + InvalidSamplingStrategyError: + If the sampling strategy is not valid or if a numpy coordinate + array is passed to sample an xarray object, but the coordinates + are out of bounds. + """ + da = da.load() # Converts dask -> numpy if not already loaded + if isinstance(da, xr.Dataset): + da = da.to_array() + + if isinstance(sampling_strat, float): + sampling_strat = int(sampling_strat * da.size) + + if isinstance(sampling_strat, (int, np.integer)): + N = sampling_strat + rng = np.random.default_rng(seed) + if self.discrete_xarray_sampling: + x1 = rng.choice(da.coords["x1"].values, N, replace=True) + x2 = rng.choice(da.coords["x2"].values, N, replace=True) + Y_c = da.sel(x1=xr.DataArray(x1), x2=xr.DataArray(x2)).data + elif not self.discrete_xarray_sampling: + if N == 0: + # Catch zero-context edge case before interp fails + X_c = np.zeros((2, 0), dtype=self.dtype) + dim = da.shape[0] if da.ndim == 3 else 1 + Y_c = np.zeros((dim, 0), dtype=self.dtype) + return X_c, Y_c + x1 = rng.uniform(da.coords["x1"].min(), da.coords["x1"].max(), N) + x2 = rng.uniform(da.coords["x2"].min(), da.coords["x2"].max(), N) + Y_c = da.sel(x1=xr.DataArray(x1), x2=xr.DataArray(x2), method="nearest") + Y_c = np.array(Y_c, dtype=self.dtype) + X_c = np.array([x1, x2], dtype=self.dtype) + + elif isinstance(sampling_strat, np.ndarray): + X_c = sampling_strat.astype(self.dtype) + try: + Y_c = da.sel( + x1=xr.DataArray(X_c[0]), + x2=xr.DataArray(X_c[1]), + method="nearest", + tolerance=0.1, # Maximum distance from observed point to sample + ) + except KeyError: + raise InvalidSamplingStrategyError( + f"Passed a numpy coordinate array to sample xarray object, " + f"but the coordinates are out of bounds." + ) + Y_c = np.array(Y_c, dtype=self.dtype) + + elif sampling_strat in ["all", "gapfill"]: + X_c = ( + da.coords["x1"].values[np.newaxis], + da.coords["x2"].values[np.newaxis], + ) + Y_c = da.data + if Y_c.ndim == 2: + # returned a 2D array, but we need a 3D array of shape (variable, N_x1, N_x2) + Y_c = Y_c.reshape(1, *Y_c.shape) + else: + raise InvalidSamplingStrategyError( + f"Unknown sampling strategy {sampling_strat}" + ) + + if Y_c.ndim == 1: + # returned a 1D array, but we need a 2D array of shape (variable, N) + Y_c = Y_c.reshape(1, *Y_c.shape) + + return X_c, Y_c
+ +
[docs] def sample_df( + self, + df: Union[pd.DataFrame, pd.Series], + sampling_strat: Union[str, int, float, np.ndarray], + seed: Optional[int] = None, + ) -> (np.ndarray, np.ndarray): + """ + Sample a DataFrame according to a given strategy. + + Args: + df (:class:`pandas.DataFrame` | :class:`pandas.Series`): + Dataframe to sample, assumed to be time-sliced for the task + already. + sampling_strat (str | int | float | :class:`numpy:numpy.ndarray`): + Sampling strategy, either "all" or an integer for random grid + cell sampling. + seed (int, optional): + Seed for random sampling. Default is None. + + Returns: + Tuple[X_c, Y_c]: + Tuple of sampled target data and sampled context data. + + Raises: + InvalidSamplingStrategyError: + If the sampling strategy is not valid or if a numpy coordinate + array is passed to sample a pandas object, but the DataFrame + does not contain all the requested samples. + """ + df = df.dropna(how="any") # If any obs are NaN, drop them + + if isinstance(sampling_strat, float): + sampling_strat = int(sampling_strat * df.shape[0]) + + if isinstance(sampling_strat, (int, np.integer)): + N = sampling_strat + rng = np.random.default_rng(seed) + idx = rng.choice(df.index, N) + X_c = df.loc[idx].reset_index()[["x1", "x2"]].values.T.astype(self.dtype) + Y_c = df.loc[idx].values.T + elif isinstance(sampling_strat, str) and sampling_strat in [ + "all", + "split", + ]: + # NOTE if "split", we assume that the context-target split has already been applied to the df + # in an earlier scope with access to both the context and target data. This is maybe risky! + X_c = df.reset_index()[["x1", "x2"]].values.T.astype(self.dtype) + Y_c = df.values.T + elif isinstance(sampling_strat, np.ndarray): + if df.index.get_level_values("x1").dtype != sampling_strat.dtype: + raise InvalidSamplingStrategyError( + "Passed a numpy coordinate array to sample pandas DataFrame, " + "but the coordinate array has a different dtype than the DataFrame. " + f"Got {sampling_strat.dtype} but expected {df.index.get_level_values('x1').dtype}." + ) + X_c = sampling_strat.astype(self.dtype) + try: + Y_c = df.loc[pd.IndexSlice[:, X_c[0], X_c[1]]].values.T + except KeyError: + raise InvalidSamplingStrategyError( + "Passed a numpy coordinate array to sample pandas DataFrame, " + "but the DataFrame did not contain all the requested samples.\n" + f"Indexes: {df.index}\n" + f"Sampling coords: {X_c}\n" + "If this is unexpected, check that your numpy sampling array matches " + "the DataFrame index values *exactly*." + ) + else: + raise InvalidSamplingStrategyError( + f"Unknown sampling strategy {sampling_strat}" + ) + + if Y_c.ndim == 1: + # returned a 1D array, but we need a 2D array of shape (variable, N) + Y_c = Y_c.reshape(1, *Y_c.shape) + + return X_c, Y_c
+ +
[docs] def sample_offgrid_aux( + self, + X_t: Union[np.ndarray, Tuple[np.ndarray, np.ndarray]], + offgrid_aux: Union[xr.DataArray, xr.Dataset], + ) -> np.ndarray: + """ + Sample auxiliary data at off-grid locations. + + Args: + X_t (:class:`numpy:numpy.ndarray` | Tuple[:class:`numpy:numpy.ndarray`, :class:`numpy:numpy.ndarray`]): + Off-grid locations at which to sample the auxiliary data. Can + be a tuple of two numpy arrays, or a single numpy array. + offgrid_aux (:class:`xarray.DataArray` | :class:`xarray.Dataset`): + Auxiliary data at off-grid locations. + + Returns: + :class:`numpy:numpy.ndarray`: + [Description of the returned numpy ndarray] + + Raises: + [ExceptionType]: + [Description of under what conditions this function raises an exception] + """ + if "time" in offgrid_aux.dims: + raise ValueError( + "If `aux_at_targets` data has a `time` dimension, it must be sliced before " + "passing it to `sample_offgrid_aux`." + ) + if isinstance(X_t, tuple): + xt1, xt2 = X_t + xt1 = xt1.ravel() + xt2 = xt2.ravel() + else: + xt1, xt2 = xr.DataArray(X_t[0]), xr.DataArray(X_t[1]) + Y_t_aux = offgrid_aux.sel(x1=xt1, x2=xt2, method="nearest") + if isinstance(Y_t_aux, xr.Dataset): + Y_t_aux = Y_t_aux.to_array() + Y_t_aux = np.array(Y_t_aux, dtype=np.float32) + if (isinstance(X_t, tuple) and Y_t_aux.ndim == 2) or ( + isinstance(X_t, np.ndarray) and Y_t_aux.ndim == 1 + ): + # Reshape to (variable, *spatial_dims) + Y_t_aux = Y_t_aux.reshape(1, *Y_t_aux.shape) + return Y_t_aux
+ +
[docs] def time_slice_variable(self, var, date, delta_t=0): + """ + Slice a variable by a given time delta. + + Args: + var (...): + Variable to slice. + delta_t (...): + Time delta to slice by. + + Returns: + var (...) + Sliced variable. + + Raises: + ValueError + If the variable is of an unknown type. + """ + # TODO: Does this work with instantaneous time? + delta_t = pd.Timedelta(delta_t, unit=self.time_freq) + if isinstance(var, (xr.Dataset, xr.DataArray)): + if "time" in var.dims: + var = var.sel(time=date + delta_t) + elif isinstance(var, (pd.DataFrame, pd.Series)): + if "time" in var.index.names: + var = var[var.index.get_level_values("time") == date + delta_t] + else: + raise ValueError(f"Unknown variable type {type(var)}") + return var
+ +
[docs] def task_generation( + self, + date: pd.Timestamp, + context_sampling: Union[ + str, + int, + float, + np.ndarray, + List[Union[str, int, float, np.ndarray]], + ] = "all", + target_sampling: Optional[ + Union[ + str, + int, + float, + np.ndarray, + List[Union[str, int, float, np.ndarray]], + ] + ] = None, + split_frac: float = 0.5, + datewise_deterministic: bool = False, + seed_override: Optional[int] = None, + ) -> Task: + def check_sampling_strat(sampling_strat, set): + """ + Check the sampling strategy. + + Ensure ``sampling_strat`` is either a single strategy (broadcast + to all sets) or a list of length equal to the number of sets. + Convert to a tuple of length equal to the number of sets and + return. + + Args: + sampling_strat: + Sampling strategy to check. + set: + Context or target set to check. + + Returns: + tuple: + Tuple of sampling strategies, one for each set. + + Raises: + InvalidSamplingStrategyError: + - If the sampling strategy is invalid. + - If the length of the sampling strategy does not match the number of sets. + - If the sampling strategy is not a valid type. + - If the sampling strategy is a float but not in [0, 1]. + - If the sampling strategy is an int but not positive. + - If the sampling strategy is a numpy array but not of shape (2, N). + """ + if sampling_strat is None: + return None + if not isinstance(sampling_strat, (list, tuple)): + sampling_strat = tuple([sampling_strat] * len(set)) + elif isinstance(sampling_strat, (list, tuple)) and len( + sampling_strat + ) != len(set): + raise InvalidSamplingStrategyError( + f"Length of sampling_strat ({len(sampling_strat)}) must " + f"match number of context sets ({len(set)})" + ) + + for strat in sampling_strat: + if not isinstance(strat, (str, int, np.integer, float, np.ndarray)): + raise InvalidSamplingStrategyError( + f"Unknown sampling strategy {strat} of type {type(strat)}" + ) + elif isinstance(strat, str) and strat not in [ + "all", + "split", + "gapfill", + ]: + raise InvalidSamplingStrategyError( + f"Unknown sampling strategy {strat} for type str" + ) + elif isinstance(strat, float) and not 0 <= strat <= 1: + raise InvalidSamplingStrategyError( + f"If sampling strategy is a float, must be fraction " + f"must be in [0, 1], got {strat}" + ) + elif isinstance(strat, int) and strat < 0: + raise InvalidSamplingStrategyError( + f"Sampling N must be positive, got {strat}" + ) + elif isinstance(strat, np.ndarray) and strat.shape[0] != 2: + raise InvalidSamplingStrategyError( + "Sampling coordinates must be of shape (2, N), got " + f"{strat.shape}" + ) + + return sampling_strat + + def sample_variable(var, sampling_strat, seed): + """ + Sample a variable by a given sampling strategy to get input and + output data. + + Args: + var: + Variable to sample. + sampling_strat: + Sampling strategy to use. + seed: + Seed for random sampling. + + Returns: + Tuple[X, Y]: + Tuple of input and output data. + + Raises: + ValueError: + If the variable is of an unknown type. + """ + if isinstance(var, (xr.Dataset, xr.DataArray)): + X, Y = self.sample_da(var, sampling_strat, seed) + elif isinstance(var, (pd.DataFrame, pd.Series)): + X, Y = self.sample_df(var, sampling_strat, seed) + else: + raise ValueError(f"Unknown type {type(var)} for context set " f"{var}") + return X, Y + + # Check that the sampling strategies are valid + context_sampling = check_sampling_strat(context_sampling, self.context) + target_sampling = check_sampling_strat(target_sampling, self.target) + # Check `split_frac + if split_frac < 0 or split_frac > 1: + raise ValueError(f"split_frac must be between 0 and 1, got {split_frac}") + if self.links is None: + b1 = any( + [ + strat in ["split", "gapfill"] + for strat in context_sampling + if isinstance(strat, str) + ] + ) + if target_sampling is None: + b2 = False + else: + b2 = any( + [ + strat in ["split", "gapfill"] + for strat in target_sampling + if isinstance(strat, str) + ] + ) + if b1 or b2: + raise ValueError( + "If using 'split' or 'gapfill' sampling strategies, the context and target " + "sets must be linked with the TaskLoader `links` attribute." + ) + if self.links is not None: + for context_idx, target_idx in self.links: + context_sampling_i = context_sampling[context_idx] + if target_sampling is None: + target_sampling_i = None + else: + target_sampling_i = target_sampling[target_idx] + link_strats = (context_sampling_i, target_sampling_i) + if any( + [ + strat in ["split", "gapfill"] + for strat in link_strats + if isinstance(strat, str) + ] + ): + # If one of the sampling strategies is "split" or "gapfill", the other must + # use the same splitting strategy + if link_strats[0] != link_strats[1]: + raise ValueError( + f"Linked context set {context_idx} and target set {target_idx} " + f"must use the same sampling strategy if one of them " + f"uses the 'split' or 'gapfill' sampling strategy. " + f"Got {link_strats[0]} and {link_strats[1]}." + ) + + if not isinstance(date, pd.Timestamp): + date = pd.Timestamp(date) + + if seed_override is not None: + # Override the seed for random sampling + seed = seed_override + elif datewise_deterministic: + # Generate a deterministic seed, based on the date, for random sampling + seed = int(date.strftime("%Y%m%d")) + else: + # 'Truly' random sampling + seed = None + + task = {} + + task["time"] = date + task["ops"] = [] + task["X_c"] = [] + task["Y_c"] = [] + if target_sampling is not None: + task["X_t"] = [] + task["Y_t"] = [] + else: + task["X_t"] = None + task["Y_t"] = None + + context_slices = [ + self.time_slice_variable(var, date, delta_t) + for var, delta_t in zip(self.context, self.context_delta_t) + ] + target_slices = [ + self.time_slice_variable(var, date, delta_t) + for var, delta_t in zip(self.target, self.target_delta_t) + ] + + # TODO move to method + if ( + self.links is not None + and "split" in context_sampling + and "split" in target_sampling + ): + # Perform the split sampling strategy for linked context and target sets at this point + # while we have the full context and target data in scope + + context_split_idxs = np.where(np.array(context_sampling) == "split")[0] + target_split_idxs = np.where(np.array(target_sampling) == "split")[0] + assert len(context_split_idxs) == len(target_split_idxs), ( + f"Number of context sets with 'split' sampling strategy " + f"({len(context_split_idxs)}) must match number of target sets " + f"with 'split' sampling strategy ({len(target_split_idxs)})" + ) + for split_i, (context_idx, target_idx) in enumerate( + zip(context_split_idxs, target_split_idxs) + ): + assert (context_idx, target_idx) in self.links, ( + f"Context set {context_idx} and target set {target_idx} must be linked, " + f"with the `links` attribute if using the 'split' sampling strategy" + ) + + context_var = context_slices[context_idx] + target_var = target_slices[target_idx] + + for var in [context_var, target_var]: + assert isinstance(var, (pd.Series, pd.DataFrame)), ( + f"If using 'split' sampling strategy for linked context and target sets, " + f"the context and target sets must be pandas DataFrames or Series, " + f"but got {type(var)}." + ) + + N_obs = len(context_var) + N_obs_target_check = len(target_var) + if N_obs != N_obs_target_check: + raise ValueError( + f"Cannot split context set {context_idx} and target set {target_idx} " + f"because they have different numbers of observations: " + f"{N_obs} and {N_obs_target_check}" + ) + split_seed = seed + split_i if seed is not None else None + rng = np.random.default_rng(split_seed) + + N_context = int(N_obs * split_frac) + idxs_context = rng.choice(N_obs, N_context, replace=False) + + context_var = context_var.iloc[idxs_context] + target_var = target_var.drop(context_var.index) + + context_slices[context_idx] = context_var + target_slices[target_idx] = target_var + + # TODO move to method + if ( + self.links is not None + and "gapfill" in context_sampling + and "gapfill" in target_sampling + ): + # Perform the gapfill sampling strategy for linked context and target sets at this point + # while we have the full context and target data in scope + + context_gapfill_idxs = np.where(np.array(context_sampling) == "gapfill")[0] + target_gapfill_idxs = np.where(np.array(target_sampling) == "gapfill")[0] + assert len(context_gapfill_idxs) == len(target_gapfill_idxs), ( + f"Number of context sets with 'gapfill' sampling strategy " + f"({len(context_gapfill_idxs)}) must match number of target sets " + f"with 'gapfill' sampling strategy ({len(target_gapfill_idxs)})" + ) + for gapfill_i, (context_idx, target_idx) in enumerate( + zip(context_gapfill_idxs, target_gapfill_idxs) + ): + assert (context_idx, target_idx) in self.links, ( + f"Context set {context_idx} and target set {target_idx} must be linked, " + f"with the `links` attribute if using the 'gapfill' sampling strategy" + ) + + context_var = context_slices[context_idx] + target_var = target_slices[target_idx] + + for var in [context_var, target_var]: + assert isinstance(var, (xr.DataArray, xr.Dataset)), ( + f"If using 'gapfill' sampling strategy for linked context and target sets, " + f"the context and target sets must be xarray DataArrays or Datasets, " + f"but got {type(var)}." + ) + + split_seed = seed + gapfill_i if seed is not None else None + rng = np.random.default_rng(split_seed) + + # Keep trying until we get a target set with at least one target point + keep_searching = True + while keep_searching: + added_mask_date = rng.choice(self.context[context_idx].time) + added_mask = ( + self.context[context_idx].sel(time=added_mask_date).isnull() + ) + curr_mask = context_var.isnull() + + # Mask out added missing values + context_var = context_var.where(~added_mask) + + # TEMP: Inefficient to convert all non-targets to NaNs and then remove NaNs + # when we could just slice the target values here + target_mask = added_mask & ~curr_mask + if isinstance(target_var, xr.Dataset): + keep_searching = np.all(target_mask.to_array().data == False) + else: + keep_searching = np.all(target_mask.data == False) + if keep_searching: + continue # No target points -- use a different `added_mask` + + target_var = target_var.where( + target_mask + ) # Only keep target locations + + context_slices[context_idx] = context_var + target_slices[target_idx] = target_var + + for i, (var, sampling_strat) in enumerate( + zip(context_slices, context_sampling) + ): + context_seed = seed + i if seed is not None else None + X_c, Y_c = sample_variable(var, sampling_strat, context_seed) + task[f"X_c"].append(X_c) + task[f"Y_c"].append(Y_c) + if target_sampling is not None: + for j, (var, sampling_strat) in enumerate( + zip(target_slices, target_sampling) + ): + target_seed = seed + i + j if seed is not None else None + X_t, Y_t = sample_variable(var, sampling_strat, target_seed) + task[f"X_t"].append(X_t) + task[f"Y_t"].append(Y_t) + + if self.aux_at_contexts is not None: + # Add auxiliary variable sampled at context set as a new context variable + X_c_offgrid = [X_c for X_c in task["X_c"] if not isinstance(X_c, tuple)] + if len(X_c_offgrid) == 0: + # No offgrid context sets + X_c_offrid_all = np.empty((2, 0), dtype=self.dtype) + else: + X_c_offrid_all = np.concatenate(X_c_offgrid, axis=1) + Y_c_aux = ( + self.sample_offgrid_aux( + X_c_offrid_all, + self.time_slice_variable(self.aux_at_contexts, date), + ), + ) + task["X_c"].append(X_c_offrid_all) + task["Y_c"].append(Y_c_aux) + + if self.aux_at_targets is not None and target_sampling is None: + task["Y_t_aux"] = None + elif self.aux_at_targets is not None and target_sampling is not None: + # Add auxiliary variable to target set + if len(task["X_t"]) > 1: + raise ValueError( + "Cannot add auxiliary variable to target set when there " + "are multiple target variables (not supported by default `ConvNP` model)." + ) + task["Y_t_aux"] = self.sample_offgrid_aux( + task["X_t"][0], + self.time_slice_variable(self.aux_at_targets, date), + ) + + return Task(task)
+ +
[docs] def __call__( + self, + date: pd.Timestamp, + context_sampling: Union[ + str, + int, + float, + np.ndarray, + List[Union[str, int, float, np.ndarray]], + ] = "all", + target_sampling: Optional[ + Union[ + str, + int, + float, + np.ndarray, + List[Union[str, int, float, np.ndarray]], + ] + ] = None, + split_frac: float = 0.5, + datewise_deterministic: bool = False, + seed_override: Optional[int] = None, + ) -> Union[Task, List[Task]]: + """ + Generate a task for a given date (or a list of + :class:`.data.task.Task` objects for a list of dates). + + There are several sampling strategies available for the context and + target data: + + - "all": Sample all observations. + - int: Sample N observations uniformly at random. + - float: Sample a fraction of observations uniformly at random. + - :class:`numpy:numpy.ndarray`, shape (2, N): + Sample N observations at the given x1, x2 coordinates. Coords are assumed to be + normalised. + - "split": Split pandas observations into disjoint context and target sets. + `split_frac` determines the fraction of observations + to use for the context set. The remaining observations are used + for the target set. + The context set and target set must be linked through the ``TaskLoader`` + ``links`` argument. Only valid for pandas data. + - "gapfill": Generates a training task for filling NaNs in xarray data. + Randomly samples a missing data (NaN) mask from another timestamp and + adds it to the context set (i.e. increases the number of NaNs). + The target set is then true values of the data at the added missing locations. + The context set and target set must be linked through the ``TaskLoader`` + ``links`` argument. Only valid for xarray data. + + Args: + date (:class:`pandas.Timestamp`): + Date for which to generate the task. + context_sampling (str | int | float | :class:`numpy:numpy.ndarray` | List[str | int | float | :class:`numpy:numpy.ndarray`], optional): + Sampling strategy for the context data, either a list of + sampling strategies for each context set, or a single strategy + applied to all context sets. Default is ``"all"``. + target_sampling (str | int | float | :class:`numpy:numpy.ndarray` | List[str | int | float | :class:`numpy:numpy.ndarray`], optional): + Sampling strategy for the target data, either a list of + sampling strategies for each target set, or a single strategy + applied to all target sets. Default is ``None``, meaning no target + data is returned. + split_frac (float, optional): + The fraction of observations to use for the context set with + the "split" sampling strategy for linked context and target set + pairs. The remaining observations are used for the target set. + Default is 0.5. + datewise_deterministic (bool, optional): + Whether random sampling is datewise deterministic based on the + date. Default is ``False``. + seed_override (Optional[int], optional): + Override the seed for random sampling. This can be used to use + the same random sampling at different ``date``. Default is + None. + + Returns: + :class:`~.data.task.Task` | List[:class:`~.data.task.Task`]: + Task object or list of task objects for each date containing + the context and target data. + """ + if isinstance(date, (list, tuple, pd.core.indexes.datetimes.DatetimeIndex)): + return [ + self.task_generation( + d, + context_sampling, + target_sampling, + split_frac, + datewise_deterministic, + seed_override, + ) + for d in date + ] + else: + return self.task_generation( + date, + context_sampling, + target_sampling, + split_frac, + datewise_deterministic, + seed_override, + )
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/data/processor.html b/_modules/deepsensor/data/processor.html new file mode 100644 index 00000000..a0b30730 --- /dev/null +++ b/_modules/deepsensor/data/processor.html @@ -0,0 +1,1216 @@ + + + + + + + + + + + deepsensor.data.processor — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.data.processor

+import numpy as np
+import os
+import json
+
+import warnings
+import xarray as xr
+import pandas as pd
+
+import pprint
+
+from copy import deepcopy
+
+from plum import dispatch
+from typing import Union, Optional, List
+
+
+
[docs]class DataProcessor: + """ + Normalise xarray and pandas data for use in deepsensor models + + Args: + folder (str, optional): + Folder to load normalisation params from. Defaults to None. + x1_name (str, optional): + Name of first spatial coord (e.g. "lat"). Defaults to "x1". + x2_name (str, optional): + Name of second spatial coord (e.g. "lon"). Defaults to "x2". + x1_map (tuple, optional): + 2-tuple of raw x1 coords to linearly map to (0, 1), + respectively. Defaults to (0, 1) (i.e. no normalisation). + x2_map (tuple, optional): + 2-tuple of raw x2 coords to linearly map to (0, 1), + respectively. Defaults to (0, 1) (i.e. no normalisation). + deepcopy (bool, optional): + Whether to make a deepcopy of raw data to ensure it is not + changed by reference when normalising. Defaults to True. + verbose (bool, optional): + Whether to print verbose output. Defaults to False. + """ + + config_fname = "data_processor_config.json" + + def __init__( + self, + folder: Union[str, None] = None, + time_name: str = "time", + x1_name: str = "x1", + x2_name: str = "x2", + x1_map: Union[tuple, None] = None, + x2_map: Union[tuple, None] = None, + deepcopy: bool = True, + verbose: bool = False, + ): + if folder is not None: + fpath = os.path.join(folder, self.config_fname) + if not os.path.exists(fpath): + raise FileNotFoundError( + f"Could not find DataProcessor config file {fpath}" + ) + with open(fpath, "r") as f: + self.config = json.load(f) + self.config["coords"]["x1"]["map"] = tuple( + self.config["coords"]["x1"]["map"] + ) + self.config["coords"]["x2"]["map"] = tuple( + self.config["coords"]["x2"]["map"] + ) + + self.x1_name = self.config["coords"]["x1"]["name"] + self.x2_name = self.config["coords"]["x2"]["name"] + self.x1_map = self.config["coords"]["x1"]["map"] + self.x2_map = self.config["coords"]["x2"]["map"] + else: + self.config = {} + self.x1_name = x1_name + self.x2_name = x2_name + self.x1_map = x1_map + self.x2_map = x2_map + + # rewrite below more concisely + if self.x1_map is None and not self.x2_map is None: + raise ValueError("Must provide both x1_map and x2_map, or neither.") + elif not self.x1_map is None and self.x2_map is None: + raise ValueError("Must provide both x1_map and x2_map, or neither.") + elif not self.x1_map is None and not self.x2_map is None: + x1_map, x2_map = self._validate_coord_mappings(x1_map, x2_map) + + if "coords" not in self.config: + # Add coordinate normalisation info to config + self.set_coord_params(time_name, x1_name, x1_map, x2_name, x2_map) + + self.raw_spatial_coord_names = [ + self.config["coords"][coord]["name"] for coord in ["x1", "x2"] + ] + + self.deepcopy = deepcopy + self.verbose = verbose + + # List of valid normalisation method names + self.valid_methods = ["mean_std", "min_max", "positive_semidefinite"] + +
[docs] def save(self, folder: str): + """Save DataProcessor config to JSON in `folder`""" + os.makedirs(folder, exist_ok=True) + fpath = os.path.join(folder, self.config_fname) + with open(fpath, "w") as f: + json.dump(self.config, f, indent=4, sort_keys=False)
+ + def _validate_coord_mappings(self, x1_map, x2_map): + """Ensure the maps are valid and of appropriate types.""" + try: + x1_map = (float(x1_map[0]), float(x1_map[1])) + x2_map = (float(x2_map[0]), float(x2_map[1])) + except: + raise TypeError( + "Provided coordinate mappings can't be cast to 2D Tuple[float]" + ) + + # Check that map is not two of the same number + if np.diff(x1_map) == 0: + raise ValueError( + f"x1_map must be a 2-tuple of different numbers, not {x1_map}" + ) + if np.diff(x2_map) == 0: + raise ValueError( + f"x2_map must be a 2-tuple of different numbers, not {x2_map}" + ) + if np.diff(x1_map) != np.diff(x2_map): + warnings.warn( + f"x1_map={x1_map} and x2_map={x2_map} have different ranges ({float(np.diff(x1_map))} " + f"and {float(np.diff(x2_map))}, respectively). " + "This can lead to stretching/squashing of data, which may " + "impact model performance.", + UserWarning, + ) + + return x1_map, x2_map + + def _validate_xr(self, data: Union[xr.DataArray, xr.Dataset]): + def _validate_da(da: xr.DataArray): + coord_names = [ + self.config["coords"][coord]["name"] for coord in ["time", "x1", "x2"] + ] + if coord_names[0] not in da.dims: + # We don't have a time dimension. + coord_names = coord_names[1:] + if list(da.dims) != coord_names: + raise ValueError( + f"Dimensions of {da.name} need to be {coord_names} but are {list(da.dims)}." + ) + + if isinstance(data, xr.DataArray): + _validate_da(data) + + elif isinstance(data, xr.Dataset): + for var_ID, da in data.data_vars.items(): + _validate_da(da) + + def _validate_pandas(self, df: Union[pd.DataFrame, pd.Series]): + coord_names = [ + self.config["coords"][coord]["name"] for coord in ["time", "x1", "x2"] + ] + + if coord_names[0] not in df.index.names: + # We don't have a time dimension. + if list(df.index.names)[:2] != coord_names[1:]: + raise ValueError( + f"Indexes need to start with {coord_names} or {coord_names[1:]} but are {df.index.names}." + ) + else: + # We have a time dimension. + if list(df.index.names)[:3] != coord_names: + raise ValueError( + f"Indexes need to start with {coord_names} or {coord_names[1:]} but are {df.index.names}." + ) + + def __str__(self): + s = "DataProcessor with normalisation params:\n" + s += pprint.pformat(self.config) + return s + +
[docs] @classmethod + def load_dask(cls, data: Union[xr.DataArray, xr.Dataset]): + """ + Load dask data into memory. + + Args: + data (:class:`xarray.DataArray` | :class:`xarray.Dataset`): + Description of the parameter. + + Returns: + [Type and description of the returned value(s) needed.] + """ + if isinstance(data, xr.DataArray): + data.load() + elif isinstance(data, xr.Dataset): + data.load() + return data
+ +
[docs] def set_coord_params(self, time_name, x1_name, x1_map, x2_name, x2_map) -> None: + """ + Set coordinate normalisation params. + + Args: + time_name: + [Type] Description needed. + x1_name: + [Type] Description needed. + x1_map: + [Type] Description needed. + x2_name: + [Type] Description needed. + x2_map: + [Type] Description needed. + + Returns: + None. + """ + self.config["coords"] = {} + self.config["coords"]["time"] = {"name": time_name} + self.config["coords"]["x1"] = {} + self.config["coords"]["x2"] = {} + self.config["coords"]["x1"]["name"] = x1_name + self.config["coords"]["x1"]["map"] = x1_map + self.config["coords"]["x2"]["name"] = x2_name + self.config["coords"]["x2"]["map"] = x2_map
+ +
[docs] def check_params_computed(self, var_ID, method) -> bool: + """ + Check if normalisation params computed for a given variable. + + Args: + var_ID: + [Type] Description needed. + method: + [Type] Description needed. + + Returns: + bool: + Whether normalisation params are computed for a given variable. + """ + if ( + var_ID in self.config + and self.config[var_ID]["method"] == method + and "params" in self.config[var_ID] + ): + return True + + return False
+ +
[docs] def add_to_config(self, var_ID, **kwargs): + """Add `kwargs` to `config` dict for variable `var_ID`""" + self.config[var_ID] = kwargs
+ +
[docs] def get_config(self, var_ID, data, method=None): + """ + Get pre-computed normalisation params or compute them for variable + ``var_ID``. + + .. note:: + TODO do we need to pass var_ID? Can we just use the name of data? + + Args: + var_ID: + [Type] Description needed. + data: + [Type] Description needed. + method (optional): + [Type] Description needed. Defaults to None. + + Returns: + [Type]: + Description of the returned value(s) needed. + """ + if method not in self.valid_methods: + raise ValueError( + f"Method {method} not recognised. Must be one of {self.valid_methods}" + ) + + if self.check_params_computed(var_ID, method): + # Already have "params" in config with `"method": method` - load them + params = self.config[var_ID]["params"] + else: + # Params not computed - compute them now + if self.verbose: + print( + f"Normalisation params for {var_ID} not computed. Computing now... ", + end="", + flush=True, + ) + DataProcessor.load_dask(data) + if method == "mean_std": + params = {"mean": float(data.mean()), "std": float(data.std())} + elif method == "min_max": + params = {"min": float(data.min()), "max": float(data.max())} + elif method == "positive_semidefinite": + params = {"min": float(data.min()), "std": float(data.std())} + if self.verbose: + print(f"Done. {var_ID} {method} params={params}") + self.add_to_config( + var_ID, + **{"method": method, "params": params}, + ) + return params
+ +
[docs] def map_coord_array(self, coord_array: np.ndarray, unnorm: bool = False): + """ + Normalise or unnormalise a coordinate array. + + Args: + coord_array (:class:`numpy:numpy.ndarray`): + Array of shape ``(2, N)`` containing coords. + unnorm (bool, optional): + Whether to unnormalise. Defaults to ``False``. + + Returns: + [Type]: + Description of the returned value(s) needed. + """ + x1, x2 = self.map_x1_and_x2(coord_array[0], coord_array[1], unnorm=unnorm) + new_coords = np.stack([x1, x2], axis=0) + return new_coords
+ +
[docs] def map_x1_and_x2(self, x1: np.ndarray, x2: np.ndarray, unnorm: bool = False): + """ + Normalise or unnormalise spatial coords in an array. + + Args: + x1 (:class:`numpy:numpy.ndarray`): + Array of shape ``(N_x1,)`` containing spatial coords of x1. + x2 (:class:`numpy:numpy.ndarray`): + Array of shape ``(N_x2,)`` containing spatial coords of x2. + unnorm (bool, optional): + Whether to unnormalise. Defaults to ``False``. + + Returns: + Tuple[:class:`numpy:numpy.ndarray`, :class:`numpy:numpy.ndarray`]: + Normalised or unnormalised spatial coords of x1 and x2. + """ + x11, x12 = self.config["coords"]["x1"]["map"] + x21, x22 = self.config["coords"]["x2"]["map"] + + if not unnorm: + new_coords_x1 = (x1 - x11) / (x12 - x11) + new_coords_x2 = (x2 - x21) / (x22 - x21) + else: + new_coords_x1 = x1 * (x12 - x11) + x11 + new_coords_x2 = x2 * (x22 - x21) + x21 + + return new_coords_x1, new_coords_x2
+ +
[docs] def map_coords( + self, + data: Union[xr.DataArray, xr.Dataset, pd.DataFrame, pd.Series], + unnorm=False, + ): + """ + Normalise spatial coords in a pandas or xarray object. + + Args: + data (:class:`xarray.DataArray`, :class:`xarray.Dataset`, :class:`pandas.DataFrame`, or :class:`pandas.Series`): + [Description Needed] + unnorm (bool, optional): + [Description Needed]. Defaults to [Default Value]. + + Returns: + [Type]: + [Description Needed] + """ + if isinstance(data, (pd.DataFrame, pd.Series)): + # Reset index to get coords as columns + indexes = list(data.index.names) + data = data.reset_index() + + if unnorm: + new_coord_IDs = [ + self.config["coords"][coord_ID]["name"] + for coord_ID in ["time", "x1", "x2"] + ] + old_coord_IDs = ["time", "x1", "x2"] + else: + new_coord_IDs = ["time", "x1", "x2"] + old_coord_IDs = [ + self.config["coords"][coord_ID]["name"] + for coord_ID in ["time", "x1", "x2"] + ] + + x1, x2 = ( + data[old_coord_IDs[1]], + data[old_coord_IDs[2]], + ) + + # Infer x1 and x2 mappings from min/max of data coords if not provided by user + if self.x1_map is None and self.x2_map is None: + # Ensure scalings are the same for x1 and x2 + x1_range = x1.max() - x1.min() + x2_range = x2.max() - x2.min() + range = np.max([x1_range, x2_range]) + self.x1_map = (x1.min(), x1.min() + range) + self.x2_map = (x2.min(), x2.min() + range) + + self.x1_map, self.x2_map = self._validate_coord_mappings( + self.x1_map, self.x2_map + ) + self.config["coords"]["x1"]["map"] = self.x1_map + self.config["coords"]["x2"]["map"] = self.x2_map + + if self.verbose: + print( + f"Inferring x1_map={self.x1_map} and x2_map={self.x2_map} from data min/max" + ) + + new_x1, new_x2 = self.map_x1_and_x2(x1, x2, unnorm=unnorm) + + if isinstance(data, (pd.DataFrame, pd.Series)): + # Drop old spatial coord columns *before* adding new ones, in case + # the old name is already x1. + data = data.drop(columns=old_coord_IDs[1:]) + # Add coords to dataframe + data[new_coord_IDs[1]] = new_x1 + data[new_coord_IDs[2]] = new_x2 + + if old_coord_IDs[0] in data.columns: + # Rename time dimension. + rename = {old_coord_IDs[0]: new_coord_IDs[0]} + data = data.rename(rename, axis=1) + else: + # We don't have a time dimension. + old_coord_IDs = old_coord_IDs[1:] + new_coord_IDs = new_coord_IDs[1:] + + elif isinstance(data, (xr.DataArray, xr.Dataset)): + data = data.assign_coords( + {old_coord_IDs[1]: new_x1, old_coord_IDs[2]: new_x2} + ) + + if old_coord_IDs[0] not in data.dims: + # We don't have a time dimension. + old_coord_IDs = old_coord_IDs[1:] + new_coord_IDs = new_coord_IDs[1:] + + # Rename all dimensions. + rename = { + old: new for old, new in zip(old_coord_IDs, new_coord_IDs) if old != new + } + data = data.rename(rename) + + if isinstance(data, (pd.DataFrame, pd.Series)): + # Set index back to original + [indexes.remove(old_coord_ID) for old_coord_ID in old_coord_IDs] + indexes = new_coord_IDs + indexes # Put dims first + data = data.set_index(indexes) + + return data
+ +
[docs] def map_array( + self, + data: Union[xr.DataArray, xr.Dataset, pd.DataFrame, pd.Series, np.ndarray], + var_ID: str, + method: Optional[str] = None, + unnorm: bool = False, + add_offset: bool = True, + ): + """ + Normalise or unnormalise the data values in an xarray, pandas, or + numpy object. + + Args: + data (:class:`xarray.DataArray`, :class:`xarray.Dataset`, :class:`pandas.DataFrame`, :class:`pandas.Series`, or :class:`numpy:numpy.ndarray`): + [Description Needed] + var_ID (str): + [Description Needed] + method (str, optional): + [Description Needed]. Defaults to None. + unnorm (bool, optional): + [Description Needed]. Defaults to False. + add_offset (bool, optional): + [Description Needed]. Defaults to True. + + Returns: + [Type]: + [Description Needed] + """ + if not unnorm and method is None: + raise ValueError("Must provide `method` if normalising data.") + elif unnorm and method is not None and self.config[var_ID]["method"] != method: + # User has provided a different method to the one used for normalising + raise ValueError( + f"Variable '{var_ID}' has been normalised with method '{self.config[var_ID]['method']}', " + f"cannot unnormalise with method '{method}'. Pass `method=None` or" + f"`method='{self.config[var_ID]['method']}'`" + ) + if method is None and unnorm: + # Determine normalisation method from config for unnormalising + method = self.config[var_ID]["method"] + elif method not in self.valid_methods: + raise ValueError( + f"Method {method} not recognised. Use one of {self.valid_methods}" + ) + + params = self.get_config(var_ID, data, method) + + # Linear transformation: + # - Inverse normalisation: y_unnorm = m * y_norm + c + # - Inverse normalisation: y_norm = (1/m) * y_unnorm - c/m + if method == "mean_std": + m = params["std"] + c = params["mean"] + elif method == "min_max": + m = (params["max"] - params["min"]) / 2 + c = (params["max"] + params["min"]) / 2 + elif method == "positive_semidefinite": + m = params["std"] + c = params["min"] + if not unnorm: + c = -c / m + m = 1 / m + data = data * m + if add_offset: + data = data + c + return data
+ +
[docs] def map( + self, + data: Union[xr.DataArray, xr.Dataset, pd.DataFrame, pd.Series], + method: Optional[str] = None, + add_offset: bool = True, + unnorm: bool = False, + assert_computed: bool = False, + ): + """ + Normalise or unnormalise the data values and coords in an xarray or + pandas object. + + Args: + data (:class:`xarray.DataArray`, :class:`xarray.Dataset`, :class:`pandas.DataFrame`, or :class:`pandas.Series`): + [Description Needed] + method (str, optional): + [Description Needed]. Defaults to None. + add_offset (bool, optional): + [Description Needed]. Defaults to True. + unnorm (bool, optional): + [Description Needed]. Defaults to False. + + Returns: + [Type]: + [Description Needed] + """ + if self.deepcopy: + data = deepcopy(data) + + if isinstance(data, (xr.DataArray, xr.Dataset)) and not unnorm: + self._validate_xr(data) + elif isinstance(data, (pd.DataFrame, pd.Series)) and not unnorm: + self._validate_pandas(data) + + if isinstance(data, (xr.DataArray, pd.Series)): + # Single var + var_ID = data.name + if assert_computed: + assert self.check_params_computed( + var_ID, method + ), f"{method} normalisation params for {var_ID} not computed." + data = self.map_array(data, var_ID, method, unnorm, add_offset) + elif isinstance(data, (xr.Dataset, pd.DataFrame)): + # Multiple vars + for var_ID in data: + if assert_computed: + assert self.check_params_computed( + var_ID, method + ), f"{method} normalisation params for {var_ID} not computed." + data[var_ID] = self.map_array( + data[var_ID], var_ID, method, unnorm, add_offset + ) + + data = self.map_coords(data, unnorm=unnorm) + + return data
+ +
[docs] def __call__( + self, + data: Union[ + xr.DataArray, + xr.Dataset, + pd.DataFrame, + List[Union[xr.DataArray, xr.Dataset, pd.DataFrame]], + ], + method: str = "mean_std", + assert_computed: bool = False, + ) -> Union[ + xr.DataArray, + xr.Dataset, + pd.DataFrame, + List[Union[xr.DataArray, xr.Dataset, pd.DataFrame]], + ]: + """ + Normalise data. + + Args: + data (:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame` | List[:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame`]): + Data to be normalised. Can be an xarray DataArray, xarray + Dataset, pandas DataFrame, or a list containing objects of + these types. + method (str, optional): Normalisation method. Options include: + - "mean_std": Normalise to mean=0 and std=1 (default) + - "min_max": Normalise to min=-1 and max=1 + - "positive_semidefinite": Normalise to min=0 and std=1 + + Returns: + :class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame` | List[:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame`]: + Normalised data. Type or structure depends on the input. + """ + if isinstance(data, list): + return [ + self.map(d, method, unnorm=False, assert_computed=assert_computed) + for d in data + ] + else: + return self.map(data, method, unnorm=False, assert_computed=assert_computed)
+ +
[docs] def unnormalise( + self, + data: Union[ + xr.DataArray, + xr.Dataset, + pd.DataFrame, + List[Union[xr.DataArray, xr.Dataset, pd.DataFrame]], + ], + add_offset: bool = True, + ) -> Union[ + xr.DataArray, + xr.Dataset, + pd.DataFrame, + List[Union[xr.DataArray, xr.Dataset, pd.DataFrame]], + ]: + """ + Unnormalise data. + + Args: + data (:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame` | List[:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame`]): + Data to unnormalise. + add_offset (bool, optional): + Whether to add the offset to the data when unnormalising. Set + to False to unnormalise uncertainty values (e.g. std dev). + Defaults to True. + + Returns: + :class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame` | List[:class:`xarray.DataArray` | :class:`xarray.Dataset` | :class:`pandas.DataFrame`]: + Unnormalised data. + """ + if isinstance(data, list): + return [self.map(d, add_offset=add_offset, unnorm=True) for d in data] + else: + return self.map(data, add_offset=add_offset, unnorm=True)
+ + +
[docs]def xarray_to_coord_array_normalised(da: Union[xr.Dataset, xr.DataArray]) -> np.ndarray: + """ + Convert xarray to normalised coordinate array. + + Args: + da (:class:`xarray.Dataset` | :class:`xarray.DataArray`) + ... + + Returns: + :class:`numpy:numpy.ndarray` + A normalised coordinate array of shape ``(2, N)``. + """ + x1, x2 = da["x1"].values, da["x2"].values + X1, X2 = np.meshgrid(x1, x2, indexing="ij") + return np.stack([X1.ravel(), X2.ravel()], axis=0)
+ + +
[docs]def process_X_mask_for_X(X_mask: xr.DataArray, X: xr.DataArray) -> xr.DataArray: + """Process X_mask by interpolating to X and converting to boolean. + + Both X_mask and X are xarray DataArrays with the same spatial coords. + + Args: + X_mask (:class:`xarray.DataArray`): + ... + X (:class:`xarray.DataArray`): + ... + + Returns: + :class:`xarray.DataArray` + ... + """ + X_mask = X_mask.astype(float).interp_like( + X, method="nearest", kwargs={"fill_value": 0} + ) + X_mask.data = X_mask.data.astype(bool) + X_mask.load() + return X_mask
+ + +
[docs]def mask_coord_array_normalised( + coord_arr: np.ndarray, mask_da: Union[xr.DataArray, xr.Dataset, None] +) -> np.ndarray: + """ + Remove points from (2, N) numpy array that are outside gridded xarray + boolean mask. + + If `coord_arr` is shape `(2, N)`, then `mask_da` is a shape `(N,)` boolean + array (True if point is inside mask, False if outside). + + Args: + coord_arr (:class:`numpy:numpy.ndarray`): + ... + mask_da (:class:`xarray.Dataset` | :class:`xarray.DataArray`): + ... + + Returns: + :class:`numpy:numpy.ndarray` + ... + """ + if mask_da is None: + return coord_arr + mask_da = mask_da.astype(bool) + x1, x2 = xr.DataArray(coord_arr[0]), xr.DataArray(coord_arr[1]) + mask_da = mask_da.sel(x1=x1, x2=x2, method="nearest") + return coord_arr[:, mask_da]
+ + +
[docs]def da1_da2_same_grid(da1: xr.DataArray, da2: xr.DataArray) -> bool: + """ + Check if ``da1`` and ``da2`` are on the same grid. + + .. note:: + ``da1`` and ``da2`` are assumed normalised by ``DataProcessor``. + + Args: + da1 (:class:`xarray.DataArray`): + ... + da2 (:class:`xarray.DataArray`): + ... + + Returns: + bool + Whether ``da1`` and ``da2`` are on the same grid. + """ + x1equal = np.array_equal(da1["x1"].values, da2["x1"].values) + x2equal = np.array_equal(da1["x2"].values, da2["x2"].values) + return x1equal and x2equal
+ + +
[docs]def interp_da1_to_da2(da1: xr.DataArray, da2: xr.DataArray) -> xr.DataArray: + """ + Interpolate ``da1`` to ``da2``. + + .. note:: + ``da1`` and ``da2`` are assumed normalised by ``DataProcessor``. + + Args: + da1 (:class:`xarray.DataArray`): + ... + da2 (:class:`xarray.DataArray`): + ... + + Returns: + :class:`xarray.DataArray` + Interpolated xarray. + """ + return da1.interp(x1=da2["x1"], x2=da2["x2"], method="nearest")
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/data/sources.html b/_modules/deepsensor/data/sources.html new file mode 100644 index 00000000..71052f97 --- /dev/null +++ b/_modules/deepsensor/data/sources.html @@ -0,0 +1,1067 @@ + + + + + + + + + + + deepsensor.data.sources — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.data.sources

+import tqdm
+
+from deepsensor.plot import extent_str_to_tuple
+
+import urllib.request
+import multiprocessing
+from functools import partial
+
+from typing import Optional, List, Union, Tuple
+import os
+import time
+import xarray as xr
+import pandas as pd
+
+from joblib import Memory
+
+
+
[docs]def get_ghcnd_station_data( + var_IDs: Optional[List[str]] = None, + extent: Union[Tuple[float, float, float, float], str] = "global", + date_range: Optional[Tuple[str, str]] = None, + subsample_frac: float = 1.0, + num_processes: Optional[int] = None, + verbose: bool = False, + cache: bool = False, + cache_dir: str = ".datacache", +) -> pd.DataFrame: # pragma: no cover + """ + Download Global Historical Climatology Network Daily (GHCND) station data from NOAA + into a pandas DataFrame. + Source: https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily + + .. note:: + Requires the `scotthosking/get-station-data` repository to be installed + manually in your Python environment with: + ``pip install git+https://github.com/scott-hosking/get-station-data.git`` + + .. note:: + Example key variable IDs: + - ``"TAVG"``: Average temperature (degrees Celsius) + - ``"TMAX"``: Maximum temperature (degrees Celsius) + - ``"TMIN"``: Minimum temperature (degrees Celsius) + - ``"PRCP"``: Precipitation (mm) + - ``"SNOW"``: Snowfall + - ``"AWND"``: Average wind speed (m/s) + - ``"AWDR"``: Average wind direction (degrees) + + The full list of variable IDs can be found here: + https://www.ncei.noaa.gov/pub/data/ghcn/daily/readme.txt + + .. warning:: + If this function is updated, the cache will be invalidated and the data will need + to be re-downloaded. To avoid this risk, set ``cache=False`` and save the data to disk + manually. + + Args: + var_IDs: list + List of variable IDs to download. If None, all variables are downloaded. + See the list of available variable IDs above. + extent: tuple[float, float, float, float] | str + Tuple of (lon_min, lon_max, lat_min, lat_max) or string of region name. + Options are: "global", "north_america", "uk", "europe". + date_range: tuple[str, str] + Tuple of (start_date, end_date) in format "YYYY-MM-DD". + subsample_frac: float + Fraction of available stations to download (useful for reducing download size). + Default is 1.0 (download all stations). + num_processes: int, optional + Number of CPUs to use for downloading station data in parallel. If not specified, will + use 75% of all available CPUs. + verbose: bool + Whether to print status messages. Default is ``False``. + cache: bool + Whether to cache the station metadata and data locally. If ``True``, calling the + function again with the same arguments will load the data from the cache instead + of downloading it again. Default is ``False``. + cache_dir: str + Directory to store the cached data. Default is ``".datacache"``. + + Returns: + :class:`pandas.DataFrame` + Station data with indexes ``time``, ``lat``, ``lon``, ``station`` and columns + ``var1``, ``var2``, etc. + """ + try: + from get_station_data import ghcnd + except ImportError: + raise ImportError( + "Must manually pip-install get-station-data with: `pip install git+https://github.com/scott-hosking/get-station-data.git`" + ) + if not cache: + cache_dir = None + memory = Memory(cache_dir, verbose=0) + + @memory.cache + def _get_ghcnd_station_data_cached( + var_IDs=None, + extent: Union[Tuple[float, float, float, float], str] = "global", + date_range=None, + subsample_frac=1.0, + verbose=False, + ) -> pd.DataFrame: + if verbose: + print( + f"Downloading GHCND station data from NOAA...", + end=" ", + flush=True, + ) + tic = time.time() + + stn_md = ghcnd.get_stn_metadata(verbose=verbose, cache=False) # Already caching + + if isinstance(extent, str): + extent = extent_str_to_tuple(extent) + else: + extent = tuple([float(x) for x in extent]) + lon_min, lon_max, lat_min, lat_max = extent + + stn_md = stn_md[ + (lat_min <= stn_md.lat) + & (stn_md.lat <= lat_max) + & (lon_min <= stn_md.lon) + & (stn_md.lon <= lon_max) + ] + stn_md = stn_md.sample(frac=subsample_frac, random_state=43) + if date_range: + # Filter out stations with no data in the date range + start_year = int(date_range[0][:4]) + end_year = int(date_range[1][:4]) + stn_md = stn_md[stn_md.end_year >= start_year] + stn_md = stn_md[stn_md.start_year <= end_year] + station_df = ghcnd.get_data( + stn_md, + include_flags=False, + date_range=date_range, + element_types=var_IDs, + num_processes=num_processes, + verbose=verbose, + cache=False, # Already caching + ) + station_df = station_df.rename({"date": "time"}, axis=1) + station_df = station_df.pivot_table( + index=["time", "lat", "lon", "station"], columns="element", values="value" + ) + station_df = station_df.dropna(how="all") + station_df.columns.name = "" + if verbose: + print( + f"{station_df.memory_usage(deep=True).sum() / 1e6:.2f} MB downloaded in {time.time() - tic:.2f} s" + ) + return station_df + + return _get_ghcnd_station_data_cached( + var_IDs=var_IDs, + extent=extent, + date_range=date_range, + subsample_frac=subsample_frac, + verbose=verbose, + )
+ + +
[docs]def get_era5_reanalysis_data( + var_IDs: Optional[List[str]] = None, + extent: Union[Tuple[float, float, float, float], str] = "global", + date_range: Optional[Tuple[str, str]] = None, + freq: str = "D", + num_processes: Optional[int] = 1, + verbose: bool = False, + cache: bool = False, + cache_dir: str = ".datacache", +) -> xr.Dataset: # pragma: no cover + """ + Download ERA5 reanalysis data from Google Cloud Storage into an xarray Dataset. + Source: https://cloud.google.com/storage/docs/public-datasets/era5 + + Supports parallelising downloads into monthly chunks across multiple CPUs. + Supports caching the downloaded data locally to avoid re-downloading when calling + the function again with the same arguments. + The data is cached on a per-month basis, so if you call the function again with + a different date range, data will only be downloaded if the new date range includes + months that have not already been downloaded. + + .. note:: + See the list of available variable IDs here: https://console.cloud.google.com/storage/browser/gcp-public-data-arco-era5/ar/1959-2022-full_37-1h-0p25deg-chunk-1.zarr-v2?pageState=(%22StorageObjectListTable%22:(%22f%22:%22%255B%255D%22))&prefix=&forceOnObjectsSortingFiltering=false + + .. note:: + The aggregation method for when freq = "D" is "mean" (which may not be + appropriate for accumulated variables like precipitation). + + .. warning:: + If this function is updated, the cache will be invalidated and the data will need + to be re-downloaded. To avoid this risk, set ``cache=False`` and save the data to disk + manually. + + Args: + var_IDs: list + List of variable IDs to download. If None, all variables are downloaded. + See the list of available variable IDs above. + extent: tuple[float, float, float, float] | str + Tuple of (lon_min, lon_max, lat_min, lat_max) or string of region name. + Options are: "global", "north_america", "uk", "europe". + date_range: tuple + Tuple of (start_date, end_date) in format "YYYY-MM-DD". + freq: str + Frequency of data to download. Options are: "D" (daily) or "H" (hourly). + If "D", the data is downloaded from the 1-hourly dataset and then resampled + to daily averages. If "H", the 1-hourly data is returned as-is. + num_processes Optional[int]: + Number of CPUs to use for downloading years of ERA5 data in parallel. + Defaults to 1 (i.e. no parallelisation). 75% of all available CPUs or 8 CPUs, whichever is smaller. + verbose: bool + Whether to print status messages. Default is ``False``. + cache: bool + Whether to cache the station metadata and data locally. If ``True``, calling the + function again with the same arguments will load the data from the cache instead + of downloading it again. Default is ``False``. + cache_dir: str + Directory to store the cached data. Default is ``".datacache"``. + + + Returns: + :class:`xarray.Dataset` + ERA5 reanalysis data with dimensions ``time``, ``lat``, ``lon`` and variables + ``var1``, ``var2``, etc. + """ + if verbose: + print( + f"Downloading ERA5 data from Google Cloud Storage...", + end=" ", + flush=True, + ) + tic = time.time() + + if date_range is None: + date_range = ("1959-01-01", "2021-01-01") + + # Derive monthly chunks to download in parallel + # Uses calendar month boundaries to ensure repeat calls with different but overlapping + # date ranges use as many cached months as possible + date_range = pd.to_datetime(date_range) + start_date = date_range[0] + # End of month at 1 minute before midnight + end_date = ( + start_date + + pd.offsets.MonthEnd() + + pd.offsets.MonthBegin() + - pd.DateOffset(seconds=1) + ) + date_ranges = [] + while True: + if end_date > date_range[1]: + end_date = date_range[1].replace(hour=23, minute=59, second=59) + stop = True + else: + stop = False + date_ranges.append((start_date, end_date)) + # Start of next month + start_date = (end_date + pd.offsets.MonthBegin()).replace( + hour=0, minute=0, second=0 + ) + end_date = ( + start_date + + pd.offsets.MonthEnd() + + pd.offsets.MonthBegin() + - pd.DateOffset(seconds=1) + ) + if stop: + break + + max_num_processes = 8 + if num_processes is None: + # If user hasn't specified num CPUs, use 75% of available CPUs + num_processes = max(1, int(0.75 * multiprocessing.cpu_count())) + num_processes = min(num_processes, len(date_ranges)) + num_processes = min(num_processes, max_num_processes) + + if num_processes == 1: + # Just download in one go + if verbose: + print("Downloading ERA5 data without parallelisation... ") + era5_da = _get_era5_reanalysis_data_parallel( + date_range=date_range, + var_IDs=var_IDs, + freq=freq, + extent=extent, + cache=cache, + cache_dir=cache_dir, + ) + elif num_processes > 1: + if verbose: + print( + f"Using {num_processes} CPUs out of {multiprocessing.cpu_count()}... " + ) + with multiprocessing.Pool(num_processes) as pool: + partial_era5 = partial( + _get_era5_reanalysis_data_parallel, + var_IDs=var_IDs, + freq=freq, + extent=extent, + cache=cache, + cache_dir=cache_dir, + ) + + era5_das = list( + tqdm.tqdm( + pool.imap(partial_era5, date_ranges), + total=len(date_ranges), + smoothing=0, + disable=not verbose, + ) + ) + + era5_da = xr.concat(era5_das, dim="time") + + if verbose: + print(f"{era5_da.nbytes / 1e9:.2f} GB loaded in {time.time() - tic:.2f} s") + return era5_da
+ + +def _get_era5_reanalysis_data_parallel( + date_range, + var_IDs=None, + freq="D", + extent="global", + cache=False, + cache_dir=".datacache", +): # pragma: no cover + """ + Helper function for downloading ERA5 data in parallel with caching. + + For documentation, see get_era5_reanalysis_data() + """ + if not cache: + cache_dir = None + memory = Memory(cache_dir, verbose=0) + + @memory.cache + def _get_era5_reanalysis_data_parallel_cached( + date_range, var_IDs=None, freq="D", extent="global" + ): + if isinstance(extent, str): + extent = extent_str_to_tuple(extent) + else: + extent = tuple([float(x) for x in extent]) + lon_min, lon_max, lat_min, lat_max = extent + + if freq == "D": + # Need to download hourly data and then resample to daily + # See https://github.com/google-research/arco-era5/issues/62 + source = ( + "gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/" + ) + elif freq == "H": + source = ( + "gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/" + ) + else: + raise ValueError(f"Invalid freq: {freq}") + + era5_zarr = xr.open_zarr(source, consolidated=True, chunks={"time": 48}) + if var_IDs is not None: + era5_zarr = era5_zarr[var_IDs] + era5_da = era5_zarr.sel(time=slice(*date_range)) + # Replace longitude 0 to 360 with -180 to 180 + era5_da = era5_da.assign_coords( + longitude=(era5_da.longitude + 180) % 360 - 180 + ).sortby("longitude") + era5_da = era5_da.sel( + latitude=slice(lat_max, lat_min), longitude=slice(lon_min, lon_max) + ) + if freq == "D": + era5_da = era5_da.resample(time="1D").mean() + era5_da = era5_da.load() + era5_da = era5_da.rename({"latitude": "lat", "longitude": "lon"}) + return era5_da + + return _get_era5_reanalysis_data_parallel_cached(date_range, var_IDs, freq, extent) + + +
[docs]def get_gldas_land_mask( + extent: Union[Tuple[float, float, float, float], str] = "global", + verbose: bool = False, + cache: bool = False, + cache_dir: str = ".datacache", +) -> xr.DataArray: # pragma: no cover + """ + Get GLDAS land mask at 0.25 degree resolution. + Source: https://ldas.gsfc.nasa.gov/gldas/vegetation-class-mask + + .. warning:: + If this function is updated, the cache will be invalidated and the data will need + to be re-downloaded. To avoid this risk, set ``cache=False`` and save the data to disk + manually. + + Args: + extent: tuple[float, float, float, float] | str + Tuple of (lon_min, lon_max, lat_min, lat_max) or string of region name. + Options are: "global", "north_america", "uk", "europe". + verbose: bool + Whether to print status messages. Default is ``False``. + cache: bool + Whether to cache the station metadata and data locally. If ``True``, calling the + function again with the same arguments will load the data from the cache instead + of downloading it again. Default is ``False``. + cache_dir: str + Directory to store the cached data. Default is ``".datacache"``. + + Returns: + :class:`xarray.DataArray` + Land mask (1 = land, 0 = water) with dimensions ``lat``, ``lon``. + """ + if not cache: + cache_dir = None + memory = Memory(cache_dir, verbose=0) + + @memory.cache + def _get_gldas_land_mask_cached( + extent: Union[Tuple[float, float, float, float], str] = "global", + verbose: bool = False, + ) -> xr.DataArray: + if verbose: + print( + f"Downloading GLDAS land mask from NASA...", + end=" ", + flush=True, + ) + tic = time.time() + + fname = "GLDASp5_landmask_025d.nc4" + url = "https://ldas.gsfc.nasa.gov/sites/default/files/ldas/gldas/VEG/" + fname + req = urllib.request.Request(url, headers={"User-Agent": "Mozilla/5.0"}) + with urllib.request.urlopen(req) as response: + with open(fname, "wb") as f: + f.write(response.read()) + da = xr.open_dataset(fname)["GLDAS_mask"].isel(time=0).drop_vars("time").load() + + if isinstance(extent, str): + extent = extent_str_to_tuple(extent) + else: + extent = tuple([float(x) for x in extent]) + lon_min, lon_max, lat_min, lat_max = extent + + # Reverse latitude to match ERA5 + da = da.reindex(lat=da.lat[::-1]) + da = da.sel(lat=slice(lat_max, lat_min), lon=slice(lon_min, lon_max)) + da.attrs = {} + + os.remove(fname) + + if verbose: + print(f"{da.nbytes / 1e6:.2f} MB loaded in {time.time() - tic:.2f} s") + + return da + + return _get_gldas_land_mask_cached(extent, verbose)
+ + +
[docs]def get_earthenv_auxiliary_data( + var_IDs: Tuple[str] = ("elevation", "tpi"), + extent: Union[Tuple[float, float, float, float], str] = "global", + resolution: str = "1KM", + verbose: bool = False, + cache: bool = False, + cache_dir: str = ".datacache", +) -> xr.Dataset: # pragma: no cover + """ + Download global static auxiliary data from EarthEnv into an xarray DataArray. + See: https://www.earthenv.org/topography + + .. note:: + Requires the `rioxarray` package to be installed. e.g. via ``pip install rioxarray``. + See the ``rioxarray`` pages for more installation options: + https://corteva.github.io/rioxarray/stable/installation.html + + .. note:: + This method downloads the data from EarthEnv to disk, then reads it into memory, + and then deletes the file from disk. This is because EarthEnv does not support + OpenDAP, so we cannot read the data directly into memory. + + .. note:: + At 1KM resolution, the global data is ~3 GB per variable. + + .. note:: + Topographic Position Index (TPI) is a measure of the local topographic position of a cell + relative to its surrounding landscape. It is calculated as the difference between the + elevation of a cell and the mean elevation of its surrounding landscape. This highlights + topographic features such as mountains (positive TPI) and valleys (negative TPI). + + .. todo:: + support land cover data: https://www.earthenv.org/landcover + + .. warning:: + If this function is updated, the cache will be invalidated and the data will need + to be re-downloaded. To avoid this risk, set ``cache=False`` and save the data to disk + manually. + + Args: + var_IDs: tuple + List of variable IDs. Options are: "elevation", "tpi". + extent: tuple[float, float, float, float] | str + Tuple of (lon_min, lon_max, lat_min, lat_max) or string of region name. + Options are: "global", "north_america", "uk", "europe". + resolution: str + Resolution of data. Options are: "1KM", "5KM", "10KM", "50KM", "100KM". + verbose: bool + Whether to print status messages. Default is ``False``. + cache: bool + Whether to cache the station metadata and data locally. If ``True``, calling the + function again with the same arguments will load the data from the cache instead + of downloading it again. Default is ``False``. + cache_dir: str + Directory to store the cached data. Default is ``".datacache"``. + + Returns: + :class:`xarray.DataArray` + Auxiliary data with dimensions ``lat``, ``lon`` and variable ``var_ID``. + """ + if not cache: + cache_dir = None + memory = Memory(cache_dir, verbose=0) + + # Check for rioxarray and raise error if not present + import importlib.util + + if importlib.util.find_spec("rioxarray") is None: + raise ImportError( + "The rioxarray is required to run this function, it was not found. Install with `pip install rioxarray`." + ) + + @memory.cache + def _get_auxiliary_data_cached( + var_IDs: str, + extent: Union[Tuple[float, float, float, float], str] = "global", + resolution: str = "1KM", + verbose: bool = False, + ) -> xr.Dataset: + if verbose: + print( + f"Downloading EarthEnv data...", + end=" ", + flush=True, + ) + tic = time.time() + + valid_var_IDs = ["elevation", "tpi"] + valid_resolutions = ["1KM", "5KM", "10KM", "50KM", "100KM"] + for var_ID in var_IDs: + if var_ID not in valid_var_IDs: + raise ValueError( + f"Invalid var_ID: {var_ID}. Options are: {valid_var_IDs}" + ) + if resolution not in valid_resolutions: + raise ValueError( + f"Invalid resolution: {resolution}. Options are: {valid_resolutions}" + ) + + if isinstance(extent, str): + extent = extent_str_to_tuple(extent) + else: + extent = tuple([float(x) for x in extent]) + lon_min, lon_max, lat_min, lat_max = extent + + da_dict = {} + for var_ID in var_IDs: + # Download data + if var_ID == "elevation": + suffix = "mn" + elif var_ID == "tpi": + suffix = "md" + fname = f"{var_ID}_{resolution}mn_GMTED{suffix}.tif" + url = "https://data.earthenv.org/topography/" + fname + req = urllib.request.Request(url, headers={"User-Agent": "Mozilla/5.0"}) + with urllib.request.urlopen(req) as response: + with open(fname, "wb") as f: + f.write(response.read()) + + # Read data + da = xr.open_dataset(fname).to_array().squeeze().load() + da = da.rename({"y": "lat", "x": "lon"}) + da = da.drop_vars(["band", "spatial_ref", "variable"]) + da.name = var_ID + da = da.sel(lat=slice(lat_max, lat_min), lon=slice(lon_min, lon_max)) + da_dict[var_ID] = da + + # Remove file + os.remove(fname) + + ds = xr.Dataset(da_dict) + if verbose: + print(f"{ds.nbytes / 1e9:.2f} GB loaded in {time.time() - tic:.2f} s") + + return ds + + return _get_auxiliary_data_cached(var_IDs, extent, resolution, verbose)
+ + +if __name__ == "__main__": # pragma: no cover + # Using the same settings allows use to use pre-downloaded cached data + data_range = ("2015-06-25", "2015-06-30") + extent = "europe" + era5_var_IDs = [ + "2m_temperature", + "10m_u_component_of_wind", + "10m_v_component_of_wind", + ] + cache_dir = "tmp/" + + era5_raw_ds = get_era5_reanalysis_data( + era5_var_IDs, + extent, + date_range=data_range, + cache=True, + cache_dir=cache_dir, + verbose=True, + ) +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/data/task.html b/_modules/deepsensor/data/task.html new file mode 100644 index 00000000..c9351372 --- /dev/null +++ b/_modules/deepsensor/data/task.html @@ -0,0 +1,1040 @@ + + + + + + + + + + + deepsensor.data.task — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.data.task

+import deepsensor
+
+from typing import Callable, Union, Tuple, List, Optional
+import numpy as np
+import lab as B
+import plum
+import copy
+
+from ..errors import TaskSetIndexError, GriddedDataError
+
+
+
[docs]class Task(dict): + """ + Task dictionary class. + + Inherits from ``dict`` and adds methods for printing and modifying the + data. + + Args: + task_dict (dict): + Dictionary containing the task. + """ + + def __init__(self, task_dict: dict) -> None: + super().__init__(task_dict) + + if "ops" not in self: + # List of operations (str) to indicate how the task has been modified + # (reshaping, casting, etc) + self["ops"] = [] + +
[docs] @classmethod + def summarise_str(cls, k, v): + if plum.isinstance(v, B.Numeric): + return v.shape + elif plum.isinstance(v, tuple): + return tuple(vi.shape for vi in v) + elif plum.isinstance(v, list): + return [cls.summarise_str(k, vi) for vi in v] + else: + return v
+ +
[docs] @classmethod + def summarise_repr(cls, k, v) -> str: + """ + Summarise the task in a representation that can be printed. + + Args: + cls (:class:`deepsensor.data.task.Task`:): + Task class. + k (str): + Key of the task dictionary. + v (object): + Value of the task dictionary. + + Returns: + str: String representation of the task. + """ + if v is None: + return "None" + elif plum.isinstance(v, B.Numeric): + return f"{type(v).__name__}/{v.dtype}/{v.shape}" + if plum.isinstance(v, deepsensor.backend.nps.mask.Masked): + return f"{type(v).__name__}/(y={v.y.dtype}/{v.y.shape})/(mask={v.mask.dtype}/{v.mask.shape})" + elif plum.isinstance(v, tuple): + # return tuple(vi.shape for vi in v) + return tuple([cls.summarise_repr(k, vi) for vi in v]) + elif plum.isinstance(v, list): + return [cls.summarise_repr(k, vi) for vi in v] + else: + return f"{type(v).__name__}/{v}"
+ + def __str__(self) -> str: + """ + Print a convenient summary of the task dictionary. + + For array entries, print their shape, otherwise print the value. + """ + s = "" + for k, v in self.items(): + if v is None: + continue + s += f"{k}: {Task.summarise_str(k, v)}\n" + return s + + def __repr__(self) -> str: + """ + Print a convenient summary of the task dictionary. + + Print the type of each entry and if it is an array, print its shape, + otherwise print the value. + """ + s = "" + for k, v in self.items(): + s += f"{k}: {Task.summarise_repr(k, v)}\n" + return s + +
[docs] def op(self, f: Callable, op_flag: Optional[str] = None): + """ + Apply function f to the array elements of a task dictionary. + + Useful for recasting to a different dtype or reshaping (e.g. adding a + batch dimension). + + Args: + f (callable): + Function to apply to the array elements of the task. + op_flag (str): + Flag to set in the task dictionary's `ops` key. + + Returns: + :class:`deepsensor.data.task.Task`: + Task with f applied to the array elements and op_flag set in + the ``ops`` key. + """ + + def recurse(k, v): + if type(v) is list: + return [recurse(k, vi) for vi in v] + elif type(v) is tuple: + return (recurse(k, v[0]), recurse(k, v[1])) + elif isinstance( + v, + (np.ndarray, np.ma.MaskedArray, deepsensor.backend.nps.Masked), + ): + return f(v) + else: + return v # covers metadata entries + + self = copy.deepcopy(self) # don't modify the original + for k, v in self.items(): + self[k] = recurse(k, v) + self["ops"].append(op_flag) + + return self # altered by reference, but return anyway
+ +
[docs] def add_batch_dim(self): + """ + Add a batch dimension to the arrays in the task dictionary. + + Returns: + :class:`deepsensor.data.task.Task`: + Task with batch dimension added to the array elements. + """ + return self.op(lambda x: x[None, ...], op_flag="batch_dim")
+ +
[docs] def cast_to_float32(self): + """ + Cast the arrays in the task dictionary to float32. + + Returns: + :class:`deepsensor.data.task.Task`: + Task with arrays cast to float32. + """ + return self.op(lambda x: x.astype(np.float32), op_flag="float32")
+ +
[docs] def flatten_gridded_data(self): + """ + Convert any gridded data in ``Task`` to flattened arrays. + + Necessary for AR sampling, which doesn't yet permit gridded context sets. + + Args: + task : :class:`~.data.task.Task` + ... + + Returns: + :class:`deepsensor.data.task.Task`: + ... + """ + self["X_c"] = [flatten_X(X) for X in self["X_c"]] + self["Y_c"] = [flatten_Y(Y) for Y in self["Y_c"]] + if self["X_t"] is not None: + self["X_t"] = [flatten_X(X) for X in self["X_t"]] + if self["Y_t"] is not None: + self["Y_t"] = [flatten_Y(Y) for Y in self["Y_t"]] + + self["ops"].append("gridded_data_flattened") + + return self
+ +
[docs] def remove_context_nans(self): + """ + If NaNs are present in task["Y_c"], remove them (and corresponding task["X_c"]) + + Returns: + :class:`deepsensor.data.task.Task`: + ... + """ + if "batch_dim" in self["ops"]: + raise ValueError( + "Cannot remove NaNs from task if a batch dim has been added." + ) + + # First check whether there are any NaNs that we need to remove + nans_present = False + for Y_c in self["Y_c"]: + if B.any(B.isnan(Y_c)): + nans_present = True + break + + if not nans_present: + return self + + # NaNs present in self - remove NaNs + for i, (X, Y) in enumerate(zip(self["X_c"], self["Y_c"])): + Y_c_nans = B.isnan(Y) + if B.any(Y_c_nans): + if isinstance(X, tuple): + # Gridded data - need to flatten to remove NaNs + X = flatten_X(X) + Y = flatten_Y(Y) + Y_c_nans = flatten_Y(Y_c_nans) + Y_c_nans = B.any(Y_c_nans, axis=0) # shape (n_cargets,) + self["X_c"][i] = X[:, ~Y_c_nans] + self["Y_c"][i] = Y[:, ~Y_c_nans] + + self["ops"].append("context_nans_removed") + + return self
+ +
[docs] def remove_target_nans(self): + """ + If NaNs are present in task["Y_t"], remove them (and corresponding task["X_t"]) + + Returns: + :class:`deepsensor.data.task.Task`: + ... + """ + if "batch_dim" in self["ops"]: + raise ValueError( + "Cannot remove NaNs from task if a batch dim has been added." + ) + + # First check whether there are any NaNs that we need to remove + nans_present = False + for Y_t in self["Y_t"]: + if B.any(B.isnan(Y_t)): + nans_present = True + break + + if not nans_present: + return self + + # NaNs present in self - remove NaNs + for i, (X, Y) in enumerate(zip(self["X_t"], self["Y_t"])): + Y_t_nans = B.isnan(Y) + if "Y_t_aux" in self.keys(): + self["Y_t_aux"] = flatten_Y(self["Y_t_aux"]) + if B.any(Y_t_nans): + if isinstance(X, tuple): + # Gridded data - need to flatten to remove NaNs + X = flatten_X(X) + Y = flatten_Y(Y) + Y_t_nans = flatten_Y(Y_t_nans) + Y_t_nans = B.any(Y_t_nans, axis=0) # shape (n_targets,) + self["X_t"][i] = X[:, ~Y_t_nans] + self["Y_t"][i] = Y[:, ~Y_t_nans] + if "Y_t_aux" in self.keys(): + self["Y_t_aux"] = self["Y_t_aux"][:, ~Y_t_nans] + + self["ops"].append("target_nans_removed") + + return self
+ +
[docs] def mask_nans_numpy(self): + """ + Replace NaNs with zeroes and set a mask to indicate where the NaNs + were. + + Returns: + :class:`deepsensor.data.task.Task`: + Task with NaNs set to zeros and a mask indicating where the + missing values are. + """ + if "batch_dim" not in self["ops"]: + raise ValueError("Must call `add_batch_dim` before `mask_nans_numpy`") + + def f(arr): + if isinstance(arr, deepsensor.backend.nps.Masked): + nps_mask = arr.mask == 0 + nan_mask = np.isnan(arr.y) + mask = np.logical_or(nps_mask, nan_mask) + mask = np.any(mask, axis=1, keepdims=True) + data = arr.y + data[nan_mask] = 0.0 + arr = deepsensor.backend.nps.Masked(data, mask) + else: + mask = np.isnan(arr) + if np.any(mask): + # arr = np.ma.MaskedArray(arr, mask=mask, fill_value=0.0) + arr = np.ma.fix_invalid(arr, fill_value=0.0) + return arr + + return self.op(lambda x: f(x), op_flag="numpy_mask")
+ +
[docs] def mask_nans_nps(self): + """ + ... + + Returns: + :class:`deepsensor.data.task.Task`: + ... + """ + if "batch_dim" not in self["ops"]: + raise ValueError("Must call `add_batch_dim` before `mask_nans_nps`") + if "numpy_mask" not in self["ops"]: + raise ValueError("Must call `mask_nans_numpy` before `mask_nans_nps`") + + def f(arr): + if isinstance(arr, np.ma.MaskedArray): + # Mask array (True for observed, False for missing). Keep size 1 variable dim. + mask = ~B.any(arr.mask, axis=1, squeeze=False) + mask = B.cast(B.dtype(arr.data), mask) + arr = deepsensor.backend.nps.Masked(arr.data, mask) + return arr + + return self.op(lambda x: f(x), op_flag="nps_mask")
+ +
[docs] def convert_to_tensor(self): + """ + Convert to tensor object based on deep learning backend. + + Returns: + :class:`deepsensor.data.task.Task`: + Task with arrays converted to deep learning tensor objects. + """ + + def f(arr): + if isinstance(arr, deepsensor.backend.nps.Masked): + arr = deepsensor.backend.nps.Masked( + deepsensor.backend.convert_to_tensor(arr.y), + deepsensor.backend.convert_to_tensor(arr.mask), + ) + else: + arr = deepsensor.backend.convert_to_tensor(arr) + return arr + + return self.op(lambda x: f(x), op_flag="tensor")
+ + +
[docs]def append_obs_to_task( + task: Task, + X_new: B.Numeric, + Y_new: B.Numeric, + context_set_idx: int, +): + """ + Append a single observation to a context set in ``task``. + + Makes a deep copy of the data structure to avoid affecting the original + object. + + .. + TODO: for speed during active learning algs, consider a shallow copy + option plus ability to remove observations. + + Args: + task (:class:`deepsensor.data.task.Task`:): The task to modify. + X_new (array-like): New observation coordinates. + Y_new (array-like): New observation values. + context_set_idx (int): Index of the context set to append to. + + Returns: + :class:`deepsensor.data.task.Task`: + Task with new observation appended to the context set. + """ + if not 0 <= context_set_idx <= len(task["X_c"]) - 1: + raise TaskSetIndexError(context_set_idx, len(task["X_c"]), "context") + + if isinstance(task["X_c"][context_set_idx], tuple): + raise GriddedDataError("Cannot append to gridded data") + + task_with_new = copy.deepcopy(task) + + if Y_new.ndim == 0: + # Add size-1 observation and data dimension + Y_new = Y_new[None, None] + + # Add size-1 observation dimension + if X_new.ndim == 1: + X_new = X_new[:, None] + if Y_new.ndim == 1: + Y_new = Y_new[:, None] + + # Context set with proposed latent sensors + task_with_new["X_c"][context_set_idx] = np.concatenate( + [task["X_c"][context_set_idx], X_new], axis=-1 + ) + + # Append proxy observations + task_with_new["Y_c"][context_set_idx] = np.concatenate( + [task["Y_c"][context_set_idx], Y_new], axis=-1 + ) + + return task_with_new
+ + +
[docs]def flatten_X(X: Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]) -> np.ndarray: + """ + Convert tuple of gridded coords to (2, N) array if necessary. + + Args: + X (:class:`numpy:numpy.ndarray` | Tuple[:class:`numpy:numpy.ndarray`, :class:`numpy:numpy.ndarray`]): + ... + + Returns: + :class:`numpy:numpy.ndarray` + ... + """ + if type(X) is tuple: + X1, X2 = np.meshgrid(X[0], X[1], indexing="ij") + X = np.stack([X1.ravel(), X2.ravel()], axis=0) + return X
+ + +
[docs]def flatten_Y(Y: Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]) -> np.ndarray: + """ + Convert gridded data of shape (N_dim, N_x1, N_x2) to (N_dim, N_x1 * N_x2) + array if necessary. + + Args: + Y (:class:`numpy:numpy.ndarray` | Tuple[:class:`numpy:numpy.ndarray`, :class:`numpy:numpy.ndarray`]): + ... + + Returns: + :class:`numpy:numpy.ndarray` + ... + """ + if Y.ndim == 3: + Y = Y.reshape(*Y.shape[:-2], -1) + return Y
+ + +
[docs]def concat_tasks(tasks: List[Task], multiple: int = 1) -> Task: + """ + Concatenate a list of tasks into a single task containing multiple batches. + + .. + TODO: + - Consider moving to ``nps.py`` as this leverages ``neuralprocesses`` + functionality. + - Raise error if ``aux_t`` values passed (not supported I don't think) + + Args: + tasks (List[:class:`deepsensor.data.task.Task`:]): + List of tasks to concatenate into a single task. + multiple (int, optional): + Contexts are padded to the smallest multiple of this number that is + greater than the number of contexts in each task. Defaults to 1 + (padded to the largest number of contexts in the tasks). Setting + to a larger number will increase the amount of padding but decrease + the range of tensor shapes presented to the model, which simplifies + the computational graph in graph mode. + + Returns: + :class:`~.data.task.Task`: Task containing multiple batches. + + Raises: + ValueError: + If the tasks have different numbers of target sets. + ValueError: + If the tasks have different numbers of targets. + ValueError: + If the tasks have different types of target sets (gridded/ + non-gridded). + """ + if len(tasks) == 1: + return tasks[0] + + for i, task in enumerate(tasks): + if "numpy_mask" in task["ops"] or "nps_mask" in task["ops"]: + raise ValueError( + "Cannot concatenate tasks that have had NaNs masked. " + "Masking will be applied automatically after concatenation." + ) + if "target_nans_removed" not in task["ops"]: + task = task.remove_target_nans() + if "batch_dim" not in task["ops"]: + task = task.add_batch_dim() + if "float32" not in task["ops"]: + task = task.cast_to_float32() + tasks[i] = task + + # Assert number of target sets equal + n_target_sets = [len(task["Y_t"]) for task in tasks] + if not all([n == n_target_sets[0] for n in n_target_sets]): + raise ValueError( + f"All tasks must have the same number of target sets to concatenate: got {n_target_sets}. " + ) + n_target_sets = n_target_sets[0] + + for target_set_i in range(n_target_sets): + # Raise error if target sets have different numbers of targets across tasks + n_target_obs = [task["Y_t"][target_set_i].size for task in tasks] + if not all([n == n_target_obs[0] for n in n_target_obs]): + raise ValueError( + f"All tasks must have the same number of targets to concatenate: got {n_target_obs}. " + "To train with Task batches containing differing numbers of targets, " + "run the model individually over each task and average the losses." + ) + + # Raise error if target sets are different types (gridded/non-gridded) across tasks + if isinstance(tasks[0]["X_t"][target_set_i], tuple): + for task in tasks: + if not isinstance(task["X_t"][target_set_i], tuple): + raise ValueError( + "All tasks must have the same type of target set (gridded or non-gridded) " + f"to concatenate. For target set {target_set_i}, got {type(task['X_t'][target_set_i])}." + ) + + # For each task, store list of tuples of (x_c, y_c) (one tuple per context set) + contexts = [] + for i, task in enumerate(tasks): + contexts_i = list(zip(task["X_c"], task["Y_c"])) + contexts.append(contexts_i) + + # List of tuples of merged (x_c, y_c) along batch dim with padding + # (up to the smallest multiple of `multiple` greater than the number of contexts in each task) + merged_context = [ + deepsensor.backend.nps.merge_contexts( + *[context_set for context_set in contexts_i], multiple=multiple + ) + for contexts_i in zip(*contexts) + ] + + merged_task = copy.deepcopy(tasks[0]) + + # Convert list of tuples of (x_c, y_c) to list of x_c and list of y_c + merged_task["X_c"] = [c[0] for c in merged_context] + merged_task["Y_c"] = [c[1] for c in merged_context] + + # This assumes that all tasks have the same number of targets + for i in range(n_target_sets): + if isinstance(tasks[0]["X_t"][i], tuple): + # Target set is gridded with tuple of coords for `X_t` + merged_task["X_t"][i] = ( + B.concat(*[t["X_t"][i][0] for t in tasks], axis=0), + B.concat(*[t["X_t"][i][1] for t in tasks], axis=0), + ) + else: + # Target set is off-the-grid with tensor for `X_t` + merged_task["X_t"][i] = B.concat(*[t["X_t"][i] for t in tasks], axis=0) + merged_task["Y_t"][i] = B.concat(*[t["Y_t"][i] for t in tasks], axis=0) + + merged_task["time"] = [t["time"] for t in tasks] + + merged_task = Task(merged_task) + + # Apply masking + merged_task = merged_task.mask_nans_numpy() + merged_task = merged_task.mask_nans_nps() + + return merged_task
+ + +if __name__ == "__main__": # pragma: no cover + # print working directory + import os + + print(os.path.abspath(os.getcwd())) + + import deepsensor.tensorflow as deepsensor + from deepsensor.data.processor import DataProcessor + from deepsensor.data.loader import TaskLoader + from deepsensor.model.convnp import ConvNP + from deepsensor.data.task import concat_tasks + + import xarray as xr + import numpy as np + + da_raw = xr.tutorial.open_dataset("air_temperature") + data_processor = DataProcessor(x1_name="lat", x2_name="lon") + da = data_processor(da_raw) + + task_loader = TaskLoader(context=da, target=da) + + task1 = task_loader("2014-01-01", 50) + task1["Y_c"][0][0, 0] = np.nan + task2 = task_loader("2014-01-01", 100) + + # task1 = task1.add_batch_dim().mask_nans_numpy().mask_nans_nps() + # task2 = task2.add_batch_dim().mask_nans_numpy().mask_nans_nps() + + merged_task = concat_tasks([task1, task2]) + print(repr(merged_task)) + + print("got here") +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/data/utils.html b/_modules/deepsensor/data/utils.html new file mode 100644 index 00000000..b20608d5 --- /dev/null +++ b/_modules/deepsensor/data/utils.html @@ -0,0 +1,604 @@ + + + + + + + + + + + deepsensor.data.utils — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.data.utils

+from typing import Union
+
+import numpy as np
+import pandas as pd
+import scipy
+import xarray as xr
+
+
+
[docs]def construct_x1x2_ds(gridded_ds): + """ + Construct an :class:`xarray.Dataset` containing two vars, where each var is + a 2D gridded channel whose values contain the x_1 and x_2 coordinate + values, respectively. + + Args: + gridded_ds (:class:`xarray.Dataset`): + ... + + Returns: + :class:`xarray.Dataset` + ... + """ + X1, X2 = np.meshgrid(gridded_ds.x1, gridded_ds.x2, indexing="ij") + ds = xr.Dataset( + coords={"x1": gridded_ds.x1, "x2": gridded_ds.x2}, + data_vars={"x1_arr": (("x1", "x2"), X1), "x2_arr": (("x1", "x2"), X2)}, + ) + return ds
+ + +
[docs]def construct_circ_time_ds(dates, freq): + """ + Return an :class:`xarray.Dataset` containing a circular variable for time. + The ``freq`` entry dictates the frequency of cycling of the circular + variable. E.g.: + + - ``'H'``: cycles once per day at hourly intervals + - ``'D'``: cycles once per year at daily intervals + - ``'M'``: cycles once per year at monthly intervals + + Args: + dates (...): + ... + freq (...): + ... + + Returns: + :class:`xarray.Dataset` + ... + """ + # Ensure dates are pandas + dates = pd.DatetimeIndex(dates) + if freq == "D": + time_var = dates.dayofyear + mod = 365.25 + elif freq == "H": + time_var = dates.hour + mod = 24 + elif freq == "M": + time_var = dates.month + mod = 12 + else: + raise ValueError("Circular time variable not implemented for this frequency.") + + cos_time = np.cos(2 * np.pi * time_var / mod) + sin_time = np.sin(2 * np.pi * time_var / mod) + + ds = xr.Dataset( + coords={"time": dates}, + data_vars={ + f"cos_{freq}": ("time", cos_time), + f"sin_{freq}": ("time", sin_time), + }, + ) + return ds
+ + +
[docs]def compute_xarray_data_resolution(ds: Union[xr.DataArray, xr.Dataset]) -> float: + """ + Computes the resolution of an xarray object with coordinates x1 and x2. + + The data resolution is the finer of the two coordinate resolutions (x1 and + x2). For example, if x1 has a resolution of 0.1 degrees and x2 has a + resolution of 0.2 degrees, the data resolution returned will be 0.1 + degrees. + + Args: + ds (:class:`xarray.DataArray` | :class:`xarray.Dataset`): + Xarray object with coordinates x1 and x2. + + Returns: + float: Resolution of the data (in spatial units, e.g. 0.1 degrees). + """ + x1_res = np.abs(np.mean(np.diff(ds["x1"]))) + x2_res = np.abs(np.mean(np.diff(ds["x2"]))) + data_resolution = np.min([x1_res, x2_res]) + return data_resolution
+ + +
[docs]def compute_pandas_data_resolution( + df: Union[pd.DataFrame, pd.Series], + n_times: int = 1000, + percentile: int = 5, +) -> float: + """ + Approximates the resolution of non-gridded pandas data with indexes time, + x1, and x2. + + The resolution is approximated as the Nth percentile of the distances + between neighbouring observations, possibly using a subset of the dates in + the data. The default is to use 1000 dates (or all dates if there are fewer + than 1000) and to use the 5th percentile. This means that the resolution is + the distance between the closest 5% of neighbouring observations. + + Args: + df (:class:`pandas.DataFrame` | :class:`pandas.Series`): + Dataframe or series with indexes time, x1, and x2. + n_times (int, optional): + Number of dates to sample. Defaults to 1000. If "all", all dates + are used. + percentile (int, optional): + Percentile of pairwise distances for computing the resolution. + Defaults to 5. + + Returns: + float: Resolution of the data (in spatial units, e.g. 0.1 degrees). + """ + dates = df.index.get_level_values("time").unique() + + if n_times != "all" and len(dates) > n_times: + rng = np.random.default_rng(42) + dates = rng.choice(dates, size=n_times, replace=False) + + closest_distances = [] + df = df.reset_index().set_index("time") + for time in dates: + df_t = df.loc[[time]] + X = df_t[["x1", "x2"]].values # (N, 2) array of coordinates + if X.shape[0] < 2: + # Skip this time if there are fewer than 2 stationS + continue + X_unique = np.unique(X, axis=0) # (N_unique, 2) array of unique coordinates + + pairwise_distances = scipy.spatial.distance.cdist(X_unique, X_unique) + percentile_distances_without_self = np.ma.masked_equal(pairwise_distances, 0) + + # Compute the closest distance from each station to each other station + closest_distances_t = np.min(percentile_distances_without_self, axis=1) + closest_distances.extend(closest_distances_t) + + data_resolution = np.percentile(closest_distances, percentile) + return data_resolution
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/model/convnp.html b/_modules/deepsensor/model/convnp.html new file mode 100644 index 00000000..ffdd8e2f --- /dev/null +++ b/_modules/deepsensor/model/convnp.html @@ -0,0 +1,1546 @@ + + + + + + + + + + + deepsensor.model.convnp — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.model.convnp

+import copy
+import os.path
+import json
+from typing import Union, List, Literal, Optional
+import warnings
+
+import lab as B
+import numpy as np
+import warnings
+from matrix import Diagonal
+from plum import ModuleType, dispatch
+
+from deepsensor import backend
+from deepsensor.data.loader import TaskLoader
+from deepsensor.data.processor import DataProcessor
+from deepsensor.data.task import Task
+from deepsensor.model.defaults import (
+    compute_greatest_data_density,
+    gen_encoder_scales,
+    gen_decoder_scale,
+)
+from deepsensor.model.model import DeepSensorModel
+from deepsensor.model.nps import (
+    construct_neural_process,
+    convert_task_to_nps_args,
+    run_nps_model,
+    run_nps_model_ar,
+)
+
+from neuralprocesses.dist import AbstractMultiOutputDistribution
+
+
+TFModel = ModuleType("tensorflow.keras", "Model")
+TorchModel = ModuleType("torch.nn", "Module")
+
+
+
[docs]class ConvNP(DeepSensorModel): + """ + A Convolutional Neural Process (ConvNP) regression probabilistic model (by default a ConvCNP). + + Wraps around the ``neuralprocesses`` package to construct a ConvNP model. + See: https://github.com/wesselb/neuralprocesses/blob/main/neuralprocesses/architectures/convgnp.py. + Init kwargs passed to the `ConvNP` are passed to the `neuralprocesses.construct_convgnp` function + and can be used to specify hyperparameters (see parameter list below). In particular, the + `likelihood` parameter can be used to specify the likelihood of the model, which dictates + whether the model outputs marginal distributions at each target point (a ConvCNP) or a + joint Gaussian distribution over all target points (a ConvGNP). By default a ConvCNP + with Gaussian likelihoods is constructed. + + Additionally, the ``ConvNP`` can optionally be instantiated with: + - a ``DataProcessor`` object to auto-unnormalise the data at inference time with the ``.predict`` method. + - a ``TaskLoader`` object to infer sensible default model parameters from the data. + + Multiple dispatch is implemented using ``plum`` to allow for re-using the + model's forward prediction object when computing the logpdf, entropy, etc. + Alternatively, the model can be run forwards with a ``Task`` object of data + from the ``TaskLoader``. + + Many of the ``ConvNP`` class methods utilise multiple dispatch so that they + can either be run with a ``Task`` object or a ``neuralprocesses`` distribution + object. This allows for re-using the model's forward prediction object. + + Dimension shapes are expressed in method docstrings in terms of: + - ``N_features``: number of features/dimensions in the target set. + - ``N_targets``: number of target points (1D for off-grid targets, 2D for gridded targets). + - ``N_components``: number of mixture components in the likelihood (for mixture likelihoods only). + - ``N_samples``: number of samples drawn from the distribution. + + If the model has multiple target sets and the ``Task`` object + has different target locations for each set, a list of arrays is returned + for each target set. Otherwise, a single array is returned. + + Examples: + Instantiate a ``ConvNP`` with all hyperparameters set to their default values: + >>> ConvNP(data_processor, task_loader) + Instantiate a ``ConvNP`` and override some hyperparameters: + >>> ConvNP(data_processor, task_loader, internal_density=250, unet_channels=(128,) * 6) + Instantiate a ``ConvNP`` with a pre-trained model saved in the folder ``my_trained_model``: + >>> ConvNP(data_processor, task_loader, model_ID="my_trained_model") + Instantiate a ``ConvNP`` with an existing ``neuralprocesses`` model object: + >>> ConvNP(data_processor, task_loader, neural_process=my_neural_process_model) + + Args: + data_processor (:class:`~.data.processor.DataProcessor`, optional): + Used for unnormalising model predictions in + ``.predict`` method. + task_loader (:class:`~.data.loader.TaskLoader`, optional): + Used for inferring sensible defaults for hyperparameters + that are not set by the user. + model_ID (str, optional): + Folder to load the model config and weights from. This argument can only + be used alongside the ``data_processor`` and ``task_loader`` arguments. + neural_process (TFModel | TorchModel, optional): + Pre-defined neural process PyTorch/TensorFlow model object. This argument can + only be used alongside the ``data_processor`` and ``task_loader`` arguments. + internal_density (int, optional): + Density of the ConvNP's internal grid (in terms of number of points + per 1x1 unit square). Defaults to 100. + likelihood (str, optional): + Likelihood. Must be one of ``"cnp"`` (equivalently ``"het"``), + ``"gnp"`` (equivalently ``"lowrank"``), ``"cnp-spikes-beta"``, + (equivalently ``"spikes-beta"``) or "bernoulli-gamma". + Defaults to ``"cnp"``. + dim_x (int, optional): + Dimensionality of the inputs. Defaults to 1. + dim_y (int, optional): + Dimensionality of the outputs. Defaults to 1. + dim_yc (int or tuple[int], optional): + Dimensionality of the outputs of the context set. You should set this + if the dimensionality of the outputs of the context set is not equal + to the dimensionality of the outputs of the target set. You should + also set this if you want to use multiple context sets. In that case, + set this equal to a tuple of integers indicating the respective output + dimensionalities. + dim_yt (int, optional): + Dimensionality of the outputs of the target set. You should set this + if the dimensionality of the outputs of the target set is not equal to + the dimensionality of the outputs of the context set. + dim_aux_t (int, optional): + Dimensionality of target-specific auxiliary variables. + conv_arch (str, optional): + Convolutional architecture to use. Must be one of + ``"unet[-res][-sep]"`` or ``"conv[-res][-sep]"``. Defaults to + ``"unet"``. + unet_channels (tuple[int], optional): + Number of channels in the downsampling path of the UNet (including the bottleneck). + Defaults to four downsampling layers, each with 64 channels. I.e. (64, 64, 64, 64). + Note: The downsampling path is followed by an upsampling path with the same number of + channels in the reverse order (plus extra channels for the skip connections). + unet_kernels (int or tuple[int], optional): + Sizes of the kernels in the UNet. Defaults to 5. + unet_resize_convs (bool, optional): + Use resize convolutions rather than transposed convolutions in the + UNet. Defaults to ``False``. + unet_resize_conv_interp_method (str, optional): + Interpolation method for the resize convolutions in the UNet. Can be + set to ``"bilinear"``. Defaults to "bilinear". + num_basis_functions (int, optional): + Number of basis functions for the low-rank likelihood. Defaults to + 64. + dim_lv (int, optional): + Dimensionality of the latent variable. Setting to >0 constructs a + latent neural process. Defaults to 0. + encoder_scales (float or tuple[float], optional): + Initial value for the length scales of the set convolutions for the + context sets embeddings. Set to a tuple equal to the number of context + sets to use different values for each set. Set to a single value to use + the same value for all context sets. Defaults to + ``1 / internal_density``. + encoder_scales_learnable (bool, optional): + Whether the encoder SetConv length scale(s) are learnable. Defaults to + ``False``. + decoder_scale (float, optional): + Initial value for the length scale of the set convolution in the + decoder. Defaults to ``1 / internal_density``. + decoder_scale_learnable (bool, optional): + Whether the decoder SetConv length scale(s) are learnable. Defaults to + ``False``. + aux_t_mlp_layers (tuple[int], optional): + Widths of the layers of the MLP for the target-specific auxiliary + variable. Defaults to three layers of width 128. + epsilon (float, optional): + Epsilon added by the set convolutions before dividing by the density + channel. Defaults to ``1e-2``. + dtype (dtype, optional): + Data type. + """ + + @dispatch + def __init__(self, *args, **kwargs): + """ + Generate a new model using ``construct_neural_process`` with default or + specified parameters. + + This method does not take a ``TaskLoader`` or ``DataProcessor`` object, + so the model will not auto-unnormalise predictions at inference time. + """ + super().__init__() + + self.model, self.config = construct_neural_process(*args, **kwargs) + + @dispatch + def __init__( + self, + data_processor: DataProcessor, + task_loader: TaskLoader, + *args, + verbose: bool = True, + **kwargs, + ): + """ + Instantiate model from TaskLoader, using data to infer model parameters + (unless overridden). + + Args: + data_processor (:class:`~.data.processor.DataProcessor`): + DataProcessor object. Used for unnormalising model predictions in + ``.predict`` method. + task_loader (:class:`~.data.loader.TaskLoader`): + TaskLoader object. Used for inferring sensible defaults for hyperparameters + that are not set by the user. + verbose (bool, optional): + Whether to print inferred model parameters, by default True. + """ + super().__init__(data_processor, task_loader) + + if "dim_yc" not in kwargs: + dim_yc = task_loader.context_dims + if verbose: + print(f"dim_yc inferred from TaskLoader: {dim_yc}") + kwargs["dim_yc"] = dim_yc + if "dim_yt" not in kwargs: + dim_yt = sum(task_loader.target_dims) # Must be an int + if verbose: + print(f"dim_yt inferred from TaskLoader: {dim_yt}") + kwargs["dim_yt"] = dim_yt + if "dim_aux_t" not in kwargs: + dim_aux_t = task_loader.aux_at_target_dims + if verbose: + print(f"dim_aux_t inferred from TaskLoader: {dim_aux_t}") + kwargs["dim_aux_t"] = dim_aux_t + if "aux_t_mlp_layers" not in kwargs and kwargs["dim_aux_t"] > 0: + kwargs["aux_t_mlp_layers"] = (64,) * 3 + if verbose: + print(f"Setting aux_t_mlp_layers: {kwargs['aux_t_mlp_layers']}") + if "internal_density" not in kwargs: + internal_density = compute_greatest_data_density(task_loader) + if verbose: + print(f"internal_density inferred from TaskLoader: {internal_density}") + kwargs["internal_density"] = internal_density + if "encoder_scales" not in kwargs: + encoder_scales = gen_encoder_scales(kwargs["internal_density"], task_loader) + if verbose: + print(f"encoder_scales inferred from TaskLoader: {encoder_scales}") + kwargs["encoder_scales"] = encoder_scales + if "decoder_scale" not in kwargs: + decoder_scale = gen_decoder_scale(kwargs["internal_density"]) + if verbose: + print(f"decoder_scale inferred from TaskLoader: {decoder_scale}") + kwargs["decoder_scale"] = decoder_scale + + self.model, self.config = construct_neural_process(*args, **kwargs) + self._set_num_mixture_components() + + @dispatch + def __init__( + self, + data_processor: DataProcessor, + task_loader: TaskLoader, + neural_process: Union[TFModel, TorchModel], + ): + """ + Instantiate with a pre-defined neural process model. + + Args: + data_processor (:class:`~.data.processor.DataProcessor`): + DataProcessor object. Used for unnormalising model predictions in + ``.predict`` method. + task_loader (:class:`~.data.loader.TaskLoader`): + TaskLoader object. Used for inferring sensible defaults for hyperparameters + that are not set by the user. + neural_process (TFModel | TorchModel): + Pre-defined neural process PyTorch/TensorFlow model object. + """ + super().__init__(data_processor, task_loader) + + self.model = neural_process + self.config = None + + @dispatch + def __init__(self, model_ID: str): + """Instantiate a model from a folder containing model weights and config.""" + super().__init__() + + self.load(model_ID) + self._set_num_mixture_components() + + @dispatch + def __init__( + self, + data_processor: DataProcessor, + task_loader: TaskLoader, + model_ID: str, + ): + """Instantiate a model from a folder containing model weights and config. + + Args: + data_processor (:class:`~.data.processor.DataProcessor`): + dataprocessor object. used for unnormalising model predictions in + ``.predict`` method. + task_loader (:class:`~.data.loader.TaskLoader`): + taskloader object. used for inferring sensible defaults for hyperparameters + that are not set by the user. + model_ID (str): + folder to load the model config and weights from. + """ + super().__init__(data_processor, task_loader) + + self.load(model_ID) + self._set_num_mixture_components() + + def _set_num_mixture_components(self): + """ + Set the number of mixture components for the model based on the likelihood. + """ + if self.config["likelihood"] in ["spikes-beta"]: + self.N_mixture_components = 3 + elif self.config["likelihood"] in ["bernoulli-gamma"]: + self.N_mixture_components = 2 + else: + self.N_mixture_components = 1 + +
[docs] def save(self, model_ID: str): + """ + Save the model weights and config to a folder. + + Args: + model_ID (str): + Folder to save the model to. + + Returns: + None. + """ + os.makedirs(model_ID, exist_ok=True) + + if backend.str == "torch": + import torch + + torch.save(self.model.state_dict(), os.path.join(model_ID, "model.pt")) + elif backend.str == "tf": + self.model.save_weights(os.path.join(model_ID, "model")) + else: + raise NotImplementedError(f"Backend {backend.str} not supported.") + + config_fpath = os.path.join(model_ID, "model_config.json") + with open(config_fpath, "w") as f: + json.dump(self.config, f, indent=4, sort_keys=False)
+ +
[docs] def load(self, model_ID: str): + """ + Load a model from a folder containing model weights and config. + + Args: + model_ID (str): + Folder to load the model from. + + Returns: + None. + """ + config_fpath = os.path.join(model_ID, "model_config.json") + with open(config_fpath, "r") as f: + self.config = json.load(f) + + self.model, _ = construct_neural_process(**self.config) + + if backend.str == "torch": + import torch + + self.model.load_state_dict(torch.load(os.path.join(model_ID, "model.pt"))) + elif backend.str == "tf": + self.model.load_weights(os.path.join(model_ID, "model")) + else: + raise NotImplementedError(f"Backend {backend.str} not supported.")
+ + def __str__(self): + return ( + f"ConvNP with config:" + + "\n" + + json.dumps(self.config, indent=4, sort_keys=False) + ) + +
[docs] @classmethod + def modify_task(cls, task: Task): + """ + Cast numpy arrays to TensorFlow or PyTorch tensors, add batch dim, and + mask NaNs. + + Args: + task (:class:`~.data.task.Task`): + ... + + Returns: + ...: ... + """ + + if "batch_dim" not in task["ops"]: + task = task.add_batch_dim() + if "float32" not in task["ops"]: + task = task.cast_to_float32() + if "numpy_mask" not in task["ops"]: + task = task.mask_nans_numpy() + if "nps_mask" not in task["ops"]: + task = task.mask_nans_nps() + if "tensor" not in task["ops"]: + task = task.convert_to_tensor() + + return task
+ +
[docs] def __call__(self, task, n_samples=10, requires_grad=False): + """ + Compute ConvNP distribution. + + Args: + task (:class:`~.data.task.Task`): + ... + n_samples (int, optional): + Number of samples to draw from the distribution, by default 10. + requires_grad (bool, optional): + Whether to compute gradients, by default False. + + Returns: + ...: The ConvNP distribution. + """ + task = ConvNP.modify_task(task) + dist = run_nps_model(self.model, task, n_samples, requires_grad) + return dist
+ + def _cast_numpy_and_squeeze( + self, + x: Union[B.Numeric, List[B.Numeric]], + squeeze_axes: List[int] = (0, 1), + ): + """TODO docstring""" + if isinstance(x, backend.nps.Aggregate): + return [np.squeeze(B.to_numpy(xi), axis=squeeze_axes) for xi in x] + else: + return np.squeeze(B.to_numpy(x), axis=squeeze_axes) + + def _maybe_concat_multi_targets( + self, + x: Union[np.ndarray, List[np.ndarray]], + concat_axis: int = 0, + ) -> Union[np.ndarray, List[np.ndarray]]: + """ + Concatenate multiple target sets into a single tensor along feature dimension + and remove size-1 dimensions. + + Args: + x (:class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]): + List of target sets. + squeeze_axes (List[int], optional): + Axes to squeeze out of the concatenated target sets. Defaults to (0, 1). + concat_axis (int, optional): + Axis to concatenate along (*after* squeezing arrays) when + merging multiple target sets. Defaults to 0. + + Returns: + (:class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]): + Concatenated target sets. + """ + if isinstance(x, (list, tuple)): + new_list = [] + pos = 0 + for dim in self.task_loader.target_dims: + new_list.append(x[pos : pos + dim]) + pos += dim + return [ + B.concat(*[xi for xi in sub_list], axis=concat_axis) + for sub_list in new_list + ] + else: + return x + + @dispatch + def mean(self, dist: AbstractMultiOutputDistribution): + mean = dist.mean + mean = self._cast_numpy_and_squeeze(mean) + return self._maybe_concat_multi_targets(mean) + +
[docs] @dispatch + def mean(self, task: Task): + """ + Mean values of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_features, *N_targets)``. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + Mean values. + """ + dist = self(task) + return self.mean(dist)
+ + @dispatch + def variance(self, dist: AbstractMultiOutputDistribution): + variance = dist.var + variance = self._cast_numpy_and_squeeze(variance) + return self._maybe_concat_multi_targets(variance) + +
[docs] @dispatch + def variance(self, task: Task): + """ + Variance values of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_features, *N_targets)``. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + Variance values. + """ + dist = self(task) + return self.variance(dist)
+ + @dispatch + def std(self, dist: AbstractMultiOutputDistribution): + variance = self.variance(dist) + if isinstance(variance, (list, tuple)): + return [np.sqrt(v) for v in variance] + else: + return np.sqrt(variance) + +
[docs] @dispatch + def std(self, task: Task): + """ + Standard deviation values of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_features, *N_targets)``. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + Standard deviation values. + """ + dist = self(task) + return self.std(dist)
+ + @dispatch + def alpha( + self, dist: AbstractMultiOutputDistribution + ) -> Union[np.ndarray, List[np.ndarray]]: + if self.config["likelihood"] not in ["spikes-beta"]: + raise NotImplementedError( + f"ConvNP.alpha method not supported for likelihood {self.config['likelihood']}. " + f"Valid likelihoods: 'spikes-beta'." + ) + alpha = dist.slab.alpha + alpha = self._cast_numpy_and_squeeze(alpha) + return self._maybe_concat_multi_targets(alpha) + +
[docs] @dispatch + def alpha(self, task: Task) -> Union[np.ndarray, List[np.ndarray]]: + """ + Alpha parameter values of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_features, *N_targets)``. + + .. note:: + This method only works for models that return a distribution with + a ``dist.slab.alpha`` attribute, e.g. models with a Beta or + Bernoulli-Gamma likelihood, where it returns the alpha values of + the slab component of the mixture model. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + Alpha values. + """ + dist = self(task) + return self.alpha(dist)
+ + @dispatch + def beta( + self, dist: AbstractMultiOutputDistribution + ) -> Union[np.ndarray, List[np.ndarray]]: + if self.config["likelihood"] not in ["spikes-beta"]: + raise NotImplementedError( + f"ConvNP.beta method not supported for likelihood {self.config['likelihood']}. " + f"Valid likelihoods: 'spikes-beta'." + ) + beta = dist.slab.beta + beta = self._cast_numpy_and_squeeze(beta) + return self._maybe_concat_multi_targets(beta) + +
[docs] @dispatch + def beta(self, task: Task) -> Union[np.ndarray, List[np.ndarray]]: + """ + Beta values of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_features, *N_targets)``. + + .. note:: + This method only works for models that return a distribution with + a ``dist.slab.beta`` attribute, e.g. models with a Beta or + Bernoulli-Gamma likelihood. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + Beta values. + """ + dist = self(task) + return self.beta(dist)
+ + @dispatch + def k( + self, dist: AbstractMultiOutputDistribution + ) -> Union[np.ndarray, List[np.ndarray]]: + if self.config["likelihood"] not in ["bernoulli-gamma"]: + raise NotImplementedError( + f"ConvNP.k method not supported for likelihood {self.config['likelihood']}. " + f"Valid likelihoods: 'bernoulli-gamma'." + ) + k = dist.slab.k + k = self._cast_numpy_and_squeeze(k) + return self._maybe_concat_multi_targets(k) + +
[docs] @dispatch + def k(self, task: Task) -> Union[np.ndarray, List[np.ndarray]]: + """ + k parameter values of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_features, *N_targets)``. + + .. note:: + This method only works for models that return a distribution with + a ``dist.slab.k`` attribute, e.g. models with a Beta or + Bernoulli-Gamma likelihood, where it returns the k values of + the slab component of the mixture model. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + k values. + """ + dist = self(task) + return self.k(dist)
+ + @dispatch + def scale( + self, dist: AbstractMultiOutputDistribution + ) -> Union[np.ndarray, List[np.ndarray]]: + if self.config["likelihood"] not in ["bernoulli-gamma"]: + raise NotImplementedError( + f"ConvNP.scale method not supported for likelihood {self.config['likelihood']}. " + f"Valid likelihoods: 'bernoulli-gamma'." + ) + scale = dist.slab.scale + scale = self._cast_numpy_and_squeeze(scale) + return self._maybe_concat_multi_targets(scale) + +
[docs] @dispatch + def scale(self, task: Task) -> Union[np.ndarray, List[np.ndarray]]: + """ + Scale parameter values of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_features, *N_targets)``. + + .. note:: + This method only works for models that return a distribution with + a ``dist.slab.scale`` attribute, e.g. models with a Beta or + Bernoulli-Gamma likelihood, where it returns the scale values of + the slab component of the mixture model. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + Scale values. + """ + dist = self(task) + return self.scale(dist)
+ + @dispatch + def mixture_probs(self, dist: AbstractMultiOutputDistribution): + if self.N_mixture_components == 1: + raise NotImplementedError( + f"mixture_probs not supported if model attribute N_mixture_components == 1. " + f"Try changing the likelihood to a mixture model, e.g. 'spikes-beta'." + ) + mixture_probs = dist.logprobs + mixture_probs = self._cast_numpy_and_squeeze(mixture_probs) + mixture_probs = self._maybe_concat_multi_targets(mixture_probs) + if isinstance(mixture_probs, (list, tuple)): + return [np.moveaxis(np.exp(m), -1, 0) for m in mixture_probs] + else: + return np.moveaxis(np.exp(mixture_probs), -1, 0) + +
[docs] @dispatch + def mixture_probs(self, task: Task): + """ + Mixture probabilities of model's distribution at target locations in task. + + Returned numpy arrays have shape ``(N_components, N_features, *N_targets)``. + + Args: + task (:class:`~.data.task.Task`): + The task containing the context and target data. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + Mixture probabilities. + """ + dist = self(task) + return self.mixture_probs(dist)
+ + @dispatch + def covariance(self, dist: AbstractMultiOutputDistribution): + return B.to_numpy(B.dense(dist.vectorised_normal.var))[0, 0] + +
[docs] @dispatch + def covariance(self, task: Task): + """ + ... + + Args: + task (:class:`~.data.task.Task`): + ... + + Returns: + ...: ... + """ + dist = self(task) + return self.covariance(dist)
+ + @dispatch + def sample( + self, + dist: AbstractMultiOutputDistribution, + n_samples: int = 1, + ): + if self.config["likelihood"] in ["gnp", "lowrank"]: + samples = dist.noiseless.sample(n_samples) + else: + samples = dist.sample(n_samples) + # Be careful to keep sample dimension in position 0 + samples = self._cast_numpy_and_squeeze(samples, squeeze_axes=(1, 2)) + return self._maybe_concat_multi_targets(samples, concat_axis=1) + +
[docs] @dispatch + def sample(self, task: Task, n_samples: int = 1): + """ + Create samples from a ConvNP distribution. + + Returned numpy arrays have shape ``(N_samples, N_features, *N_targets)``, + + Args: + dist (neuralprocesses.dist.AbstractMultiOutputDistribution): + The distribution to sample from. + n_samples (int, optional): + The number of samples to draw from the distribution, by + default 1. + + Returns: + :class:`numpy:numpy.ndarray` | List[:class:`numpy:numpy.ndarray`]: + The samples as an array or list of arrays. + """ + dist = self(task) + return self.sample(dist, n_samples)
+ + @dispatch + def slice_diag(self, task: Task): + """ + Slice out the ConvCNP part of the ConvNP distribution. + + Args: + task (:class:`~.data.task.Task`): + The task to slice. + + Returns: + ...: ... + """ + dist = self(task) + if self.config["likelihood"] in ["spikes-beta"]: + dist_diag = dist + else: + dist_diag = backend.nps.MultiOutputNormal( + dist._mean, + B.zeros(dist._var), + Diagonal(B.diag(dist._noise + dist._var)), + dist.shape, + ) + return dist_diag + +
[docs] @dispatch + def slice_diag(self, dist: AbstractMultiOutputDistribution): + """ + Slice out the ConvCNP part of the ConvNP distribution. + + Args: + dist (neuralprocesses.dist.AbstractMultiOutputDistribution): + The distribution to slice. + + Returns: + ...: ... + """ + if self.config["likelihood"]: + dist_diag = dist + else: + dist_diag = backend.nps.MultiOutputNormal( + dist._mean, + B.zeros(dist._var), + Diagonal(B.diag(dist._noise + dist._var)), + dist.shape, + ) + return dist_diag
+ + @dispatch + def mean_marginal_entropy(self, dist: AbstractMultiOutputDistribution): + """ + Mean marginal entropy over target points given context points. + + Args: + dist (neuralprocesses.dist.AbstractMultiOutputDistribution): + The distribution to compute the entropy of. + + Returns: + float: The mean marginal entropy. + """ + dist_diag = self.slice_diag(dist) + return B.mean(B.to_numpy(dist_diag.entropy())[0, 0]) + +
[docs] @dispatch + def mean_marginal_entropy(self, task: Task): + """ + Mean marginal entropy over target points given context points. + + Args: + task (:class:`~.data.task.Task`): + The task to compute the entropy of. + + Returns: + float: The mean marginal entropy. + """ + dist_diag = self.slice_diag(task) + return B.mean(B.to_numpy(dist_diag.entropy())[0, 0])
+ + @dispatch + def joint_entropy(self, dist: AbstractMultiOutputDistribution): + """ + Model entropy over target points given context points. + + Args: + dist (neuralprocesses.dist.AbstractMultiOutputDistribution): + The distribution to compute the entropy of. + + Returns: + float: The model entropy. + """ + return B.to_numpy(dist.entropy())[0, 0] + +
[docs] @dispatch + def joint_entropy(self, task: Task): + """ + Model entropy over target points given context points. + + Args: + task (:class:`~.data.task.Task`): + The task to compute the entropy of. + + Returns: + float: The model entropy. + """ + return B.to_numpy(self(task).entropy())[0, 0]
+ + @dispatch + def logpdf(self, dist: AbstractMultiOutputDistribution, task: Task): + """ + Joint logpdf over all target sets. + + .. note:: + If the model has multiple target sets, the returned logpdf is the + mean logpdf over all target sets. + + Args: + dist (neuralprocesses.dist.AbstractMultiOutputDistribution): + The distribution to compute the logpdf of. + task (:class:`~.data.task.Task`): + The task to compute the logpdf of. + + Returns: + float: The logpdf. + """ + # Need to ensure `Y_t` is a tensor and, if multiple target sets, + # an nps.Aggregate object + task = ConvNP.modify_task(task) + _, _, Y_t, _ = convert_task_to_nps_args(task) + return B.to_numpy(dist.logpdf(Y_t)).mean() + +
[docs] @dispatch + def logpdf(self, task: Task): + """ + Joint logpdf over all target sets. + + .. note:: + If the model has multiple target sets, the returned logpdf is the + mean logpdf over all target sets. + + Args: + task (:class:`~.data.task.Task`): + The task to compute the logpdf of. + + Returns: + float: The logpdf. + """ + dist = self(task) + return self.logpdf(dist, task)
+ +
[docs] def loss_fn( + self, + task: Task, + fix_noise=None, + num_lv_samples: int = 8, + normalise: bool = False, + ): + """ + Compute the loss of a task. + + Args: + task (:class:`~.data.task.Task`): + The task to compute the loss of. + fix_noise (...): + Whether to fix the noise to the value specified in the model + config. + num_lv_samples (int, optional): + If latent variable model, number of lv samples for evaluating + the loss, by default 8. + normalise (bool, optional): + Whether to normalise the loss by the number of target points, + by default False. + + Returns: + float: The loss. + """ + task = ConvNP.modify_task(task) + + context_data, xt, yt, model_kwargs = convert_task_to_nps_args(task) + + logpdfs = backend.nps.loglik( + self.model, + context_data, + xt, + yt, + **model_kwargs, + fix_noise=fix_noise, + num_samples=num_lv_samples, + normalise=normalise, + ) + + loss = -B.mean(logpdfs) + + return loss
+ +
[docs] def ar_sample( + self, + task: Task, + n_samples: int = 1, + X_target_AR: Optional[np.ndarray] = None, + ar_subsample_factor: int = 1, + fill_type: Literal["mean", "sample"] = "mean", + ): + """ + Autoregressive sampling from the model. + + AR sampling with optional functionality to only draw AR samples over a + subset of the target set and then infill the rest of the sample with + the model mean or joint sample conditioned on the AR samples. + + Returned numpy arrays have shape ``(N_samples, N_features, *N_targets)``, + + .. note:: + AR sampling only works for 0th context/target set, and only for models with + a single target set. + + Args: + task (:class:`~.data.task.Task`): + The task to sample from. + n_samples (int, optional): + The number of samples to draw from the distribution, by + default 1. + X_target_AR (:class:`numpy:numpy.ndarray`, optional): + Locations to draw AR samples over. If None, AR samples will be + drawn over the target locations in the task. Defaults to None. + ar_subsample_factor (int, optional): + Subsample target locations to draw AR samples over. Defaults + to 1. + fill_type (Literal["mean", "sample"], optional): + How to infill the rest of the sample. Must be one of "mean" or + "sample". Defaults to "mean". + + Returns: + :class:`numpy:numpy.ndarray` + The samples. + """ + if len(task["X_t"]) > 1 or (task["Y_t"] is not None and len(task["Y_t"]) > 1): + raise NotImplementedError( + "AR sampling with multiple target sets is not supported." + ) + + # AR sampling requires gridded data to be flattened, not coordinate tuples + task_arsample = copy.deepcopy(task) + task = copy.deepcopy(task) + + if X_target_AR is not None: + # User has specified a set of locations to draw AR samples over + task_arsample["X_t"][0] = X_target_AR + elif ar_subsample_factor > 1: + # Subsample target locations to draw AR samples over + xt = task["X_t"][0] + if isinstance(xt, tuple): + # Targets on a grid: subsample targets for AR along spatial dimension + xt = ( + xt[0][..., ::ar_subsample_factor], + xt[1][..., ::ar_subsample_factor], + ) + else: + xt = xt[..., ::ar_subsample_factor] + task_arsample["X_t"][0] = xt + else: + task_arsample = copy.deepcopy(task) + + task = task.flatten_gridded_data() + task_arsample = task_arsample.flatten_gridded_data() + + task_arsample = ConvNP.modify_task(task_arsample) + task = ConvNP.modify_task(task) + + if backend.str == "torch": + import torch + + # Run AR sampling with torch.no_grad() to avoid prohibitive backprop computation for AR + with torch.no_grad(): + ( + mean, + variance, + noiseless_samples, + noisy_samples, + ) = run_nps_model_ar(self.model, task_arsample, num_samples=n_samples) + else: + ( + mean, + variance, + noiseless_samples, + noisy_samples, + ) = run_nps_model_ar(self.model, task_arsample, num_samples=n_samples) + + # Slice out first (and assumed only) target entry in nps.Aggregate object + noiseless_samples = B.to_numpy(noiseless_samples) + + if ar_subsample_factor > 1 or X_target_AR is not None: + # AR sample locations not equal to target locations - infill the rest of the + # sample with the model mean conditioned on the AR samples + full_samples = [] + for sample in noiseless_samples: + task_with_sample = copy.deepcopy(task) + task_with_sample["X_c"][0] = B.concat( + task["X_c"][0], task_arsample["X_t"][0], axis=-1 + ) + task_with_sample["Y_c"][0] = B.concat(task["Y_c"][0], sample, axis=-1) + + if fill_type == "mean": + # Compute the mean conditioned on the AR samples + # Should this be a `.sample` call? + pred = self.mean(task_with_sample) + elif fill_type == "sample": + # Sample from joint distribution over all target locations + pred = self.sample(task_with_sample, n_samples=1) + + full_samples.append(pred) + full_samples = np.stack(full_samples, axis=0) + + return full_samples + else: + return noiseless_samples[:, 0] # Slice out batch dim
+ + +
[docs]def concat_tasks(tasks: List[Task], multiple: int = 1) -> Task: + warnings.warn( + "concat_tasks has been moved to deepsensor.data.task and will be removed from " + "deepsensor.model.convnp in a future release.", + FutureWarning, + ) + return deepsensor.data.task.concat_tasks(tasks, multiple)
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/model/defaults.html b/_modules/deepsensor/model/defaults.html new file mode 100644 index 00000000..27c68997 --- /dev/null +++ b/_modules/deepsensor/model/defaults.html @@ -0,0 +1,570 @@ + + + + + + + + + + + deepsensor.model.defaults — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.model.defaults

+from deepsensor.data.loader import TaskLoader
+
+import numpy as np
+import pandas as pd
+import xarray as xr
+
+from deepsensor.data.utils import (
+    compute_xarray_data_resolution,
+    compute_pandas_data_resolution,
+)
+
+from typing import List
+
+
+
[docs]def compute_greatest_data_density(task_loader: TaskLoader) -> int: + """ + Computes data-informed settings for the model's internal grid density (ppu, + points per unit). + + Loops over all context and target variables in the ``TaskLoader`` and + computes the data resolution for each. The model ppu is then set to the + maximum data ppu. + + Args: + task_loader (:class:`~.data.loader.TaskLoader`): + TaskLoader object containing context and target sets. + + Returns: + max_density (int): + The maximum data density (ppu) across all context and target + variables, where 'density' is the number of points per unit of + input space (in both spatial dimensions). + """ + # List of data resolutions for each context/target variable (in points-per-unit) + data_densities = [] + for var in [*task_loader.context, *task_loader.target]: + if isinstance(var, (xr.DataArray, xr.Dataset)): + # Gridded variable: use data resolution + data_resolution = compute_xarray_data_resolution(var) + elif isinstance(var, (pd.DataFrame, pd.Series)): + # Point-based variable: calculate density based on pairwise distances between observations + data_resolution = compute_pandas_data_resolution( + var, n_times=1000, percentile=5 + ) + else: + raise ValueError(f"Unknown context input type: {type(var)}") + data_density = int(1 / data_resolution) + data_densities.append(data_density) + max_density = int(max(data_densities)) + return max_density
+ + +
[docs]def gen_decoder_scale(model_ppu: int) -> float: + """ + Computes informed setting for the decoder SetConv scale. + + This sets the length scale of the Gaussian basis functions used interpolate + from the model's internal grid to the target locations. + + The decoder scale should be as small as possible given the model's + internal grid. The value chosen is 1 / model_ppu (i.e. the length scale is + equal to the model's internal grid spacing). + + Args: + model_ppu (int): + Model ppu (points per unit), i.e. the number of points per unit of + input space. + + Returns: + float: Decoder scale. + """ + return 1 / model_ppu
+ + +
[docs]def gen_encoder_scales(model_ppu: int, task_loader: TaskLoader) -> List[float]: + """ + Computes data-informed settings for the encoder SetConv scale for each + context set. + + This sets the length scale of the Gaussian basis functions used to encode + the context sets. + + For off-grid station data, the scale should be as small as possible given + the model's internal grid density (ppu, points per unit). The value chosen + is 0.5 / model_ppu (i.e. half the model's internal resolution). + + For gridded data, the scale should be such that the functional + representation smoothly interpolates the data. This is determined by + computing the *data resolution* (the distance between the nearest two data + points) for each context variable. The encoder scale is then set to 0.5 * + data_resolution. + + Args: + model_ppu (int): + Model ppu (points per unit), i.e. the number of points per unit of + input space. + task_loader (:class:`~.data.loader.TaskLoader`): + TaskLoader object containing context and target sets. + + Returns: + list[float]: List of encoder scales for each context set. + """ + encoder_scales = [] + for var in task_loader.context: + if isinstance(var, (xr.DataArray, xr.Dataset)): + encoder_scale = 0.5 * compute_xarray_data_resolution(var) + elif isinstance(var, (pd.DataFrame, pd.Series)): + encoder_scale = 0.5 / model_ppu + else: + raise ValueError(f"Unknown context input type: {type(var)}") + encoder_scales.append(encoder_scale) + + if task_loader.aux_at_contexts: + # Add encoder scale for the final auxiliary-at-contexts context set: use smallest possible + # scale within model discretisation + encoder_scales.append(0.5 / model_ppu) + + return encoder_scales
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/model/model.html b/_modules/deepsensor/model/model.html new file mode 100644 index 00000000..42434bf5 --- /dev/null +++ b/_modules/deepsensor/model/model.html @@ -0,0 +1,1193 @@ + + + + + + + + + + + deepsensor.model.model — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.model.model

+from deepsensor.data.loader import TaskLoader
+from deepsensor.data.processor import (
+    DataProcessor,
+    process_X_mask_for_X,
+    xarray_to_coord_array_normalised,
+    mask_coord_array_normalised,
+)
+from deepsensor.model.pred import (
+    Prediction,
+    increase_spatial_resolution,
+    infer_prediction_modality_from_X_t,
+)
+from deepsensor.data.task import Task
+
+from typing import List, Union, Optional, Tuple
+import copy
+
+import time
+from tqdm import tqdm
+
+import numpy as np
+import pandas as pd
+import xarray as xr
+import lab as B
+
+# For dispatching with TF and PyTorch model types when they have not yet been loaded.
+# See https://beartype.github.io/plum/types.html#moduletype
+
+
+
[docs]class ProbabilisticModel: + """ + Base class for probabilistic model used for DeepSensor. + Ensures a set of methods required for DeepSensor + are implemented by specific model classes that inherit from it. + """ + +
[docs] def mean(self, task: Task, *args, **kwargs): + """ + Computes the model mean prediction over target points based on given context + data. + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + :class:`numpy:numpy.ndarray`: Mean prediction over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ +
[docs] def variance(self, task: Task, *args, **kwargs): + """ + Model marginal variance over target points given context points. + Shape (N,). + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + :class:`numpy:numpy.ndarray`: Marginal variance over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ +
[docs] def std(self, task: Task): + """ + Model marginal standard deviation over target points given context + points. Shape (N,). + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + :class:`numpy:numpy.ndarray`: Marginal standard deviation over target points. + """ + var = self.variance(task) + return var**0.5
+ +
[docs] def stddev(self, *args, **kwargs): + return self.std(*args, **kwargs)
+ +
[docs] def covariance(self, task: Task, *args, **kwargs): + """ + Computes the model covariance matrix over target points based on given + context data. Shape (N, N). + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + :class:`numpy:numpy.ndarray`: Covariance matrix over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ +
[docs] def mean_marginal_entropy(self, task: Task, *args, **kwargs): + """ + Computes the mean marginal entropy over target points based on given + context data. + + .. note:: + Note: Getting a vector of marginal entropies would be useful too. + + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + float: Mean marginal entropy over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ +
[docs] def joint_entropy(self, task: Task, *args, **kwargs): + """ + Computes the model joint entropy over target points based on given + context data. + + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + float: Joint entropy over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ +
[docs] def logpdf(self, task: Task, *args, **kwargs): + """ + Computes the joint model logpdf over target points based on given + context data. + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + float: Joint logpdf over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ +
[docs] def loss(self, task: Task, *args, **kwargs): + """ + Computes the model loss over target points based on given context data. + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + + Returns: + float: Loss over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ +
[docs] def sample(self, task: Task, n_samples=1, *args, **kwargs): + """ + Draws ``n_samples`` joint samples over target points based on given + context data. Returned shape is ``(n_samples, n_target)``. + + + Args: + task (:class:`~.data.task.Task`): + Task containing context data. + n_samples (int, optional): + Number of samples to draw. Defaults to 1. + + Returns: + tuple[:class:`numpy:numpy.ndarray`]: Joint samples over target points. + + Raises: + NotImplementedError + If not implemented by child class. + """ + raise NotImplementedError()
+ + +
[docs]class DeepSensorModel(ProbabilisticModel): + """ + Implements DeepSensor prediction functionality of a ProbabilisticModel. + Allows for outputting an xarray object containing on-grid predictions or a + pandas object containing off-grid predictions. + + Args: + data_processor (:class:`~.data.processor.DataProcessor`): + DataProcessor object, used to unnormalise predictions. + task_loader (:class:`~.data.loader.TaskLoader`): + TaskLoader object, used to determine target variables for unnormalising. + """ + + N_mixture_components = 1 # Number of mixture components for mixture likelihoods + + def __init__( + self, + data_processor: Optional[DataProcessor] = None, + task_loader: Optional[TaskLoader] = None, + ): + self.task_loader = task_loader + self.data_processor = data_processor + +
[docs] def predict( + self, + tasks: Union[List[Task], Task], + X_t: Union[ + xr.Dataset, + xr.DataArray, + pd.DataFrame, + pd.Series, + pd.Index, + np.ndarray, + ], + X_t_mask: Optional[Union[xr.Dataset, xr.DataArray]] = None, + X_t_is_normalised: bool = False, + aux_at_targets_override: Union[xr.Dataset, xr.DataArray] = None, + aux_at_targets_override_is_normalised: bool = False, + resolution_factor: int = 1, + pred_params: Tuple[str] = ("mean", "std"), + n_samples: int = 0, + ar_sample: bool = False, + ar_subsample_factor: int = 1, + unnormalise: bool = True, + seed: int = 0, + append_indexes: dict = None, + progress_bar: int = 0, + verbose: bool = False, + ) -> Prediction: + """ + Predict on a regular grid or at off-grid locations. + + Args: + tasks (List[Task] | Task): + List of tasks containing context data. + X_t (:class:`xarray.Dataset` | :class:`xarray.DataArray` | :class:`pandas.DataFrame` | :class:`pandas.Series` | :class:`pandas.Index` | :class:`numpy:numpy.ndarray`): + Target locations to predict at. Can be an xarray object + containingon-grid locations or a pandas object containing off-grid locations. + X_t_mask: :class:`xarray.Dataset` | :class:`xarray.DataArray`, optional + 2D mask to apply to gridded ``X_t`` (zero/False will be NaNs). Will be interpolated + to the same grid as ``X_t``. Default None (no mask). + X_t_is_normalised (bool): + Whether the ``X_t`` coords are normalised. If False, will normalise + the coords before passing to model. Default ``False``. + aux_at_targets_override (:class:`xarray.Dataset` | :class:`xarray.DataArray`): + Optional auxiliary xarray data to override from the task_loader. + aux_at_targets_override_is_normalised (bool): + Whether the `aux_at_targets_override` coords are normalised. + If False, the DataProcessor will normalise the coords before passing to model. + Default False. + pred_params (Tuple[str]): + Tuple of prediction parameters to return. The strings refer to methods + of the model class which will be called and stored in the Prediction object. + Default ("mean", "std"). + resolution_factor (float): + Optional factor to increase the resolution of the target grid + by. E.g. 2 will double the target resolution, 0.5 will halve + it.Applies to on-grid predictions only. Default 1. + n_samples (int): + Number of joint samples to draw from the model. If 0, will not + draw samples. Default 0. + ar_sample (bool): + Whether to use autoregressive sampling. Default ``False``. + unnormalise (bool): + Whether to unnormalise the predictions. Only works if ``self`` + hasa ``data_processor`` and ``task_loader`` attribute. Default + ``True``. + seed (int): + Random seed for deterministic sampling. Default 0. + append_indexes (dict): + Dictionary of index metadata to append to pandas indexes in the + off-grid case. Default ``None``. + progress_bar (int): + Whether to display a progress bar over tasks. Default 0. + verbose (bool): + Whether to print time taken for prediction. Default ``False``. + + Returns: + :class:`~.model.pred.Prediction`): + A `dict`-like object mapping from target variable IDs to xarray or pandas objects + containing model predictions. + - If ``X_t`` is a pandas object, returns pandas objects + containing off-grid predictions. + - If ``X_t`` is an xarray object, returns xarray object + containing on-grid predictions. + - If ``n_samples`` == 0, returns only mean and std predictions. + - If ``n_samples`` > 0, returns mean, std and samples + predictions. + + Raises: + ValueError + If ``X_t`` is not an xarray object and + ``resolution_factor`` is not 1 or ``ar_subsample_factor`` is + not 1. + ValueError + If ``X_t`` is not a pandas object and ``append_indexes`` is not + ``None``. + ValueError + If ``X_t`` is not an xarray, pandas or numpy object. + ValueError + If ``append_indexes`` are not all the same length as ``X_t``. + """ + tic = time.time() + mode = infer_prediction_modality_from_X_t(X_t) + if not isinstance(X_t, (xr.DataArray, xr.Dataset)): + if resolution_factor != 1: + raise ValueError( + "resolution_factor can only be used with on-grid predictions." + ) + if ar_subsample_factor != 1: + raise ValueError( + "ar_subsample_factor can only be used with on-grid predictions." + ) + if not isinstance(X_t, (pd.DataFrame, pd.Series, pd.Index, np.ndarray)): + if append_indexes is not None: + raise ValueError( + "append_indexes can only be used with off-grid predictions." + ) + if mode == "off-grid" and X_t_mask is not None: + # TODO: Unit test this + raise ValueError("X_t_mask can only be used with on-grid predictions.") + if ar_sample and n_samples < 1: + raise ValueError("Must pass `n_samples` > 0 to use `ar_sample`.") + + target_delta_t = self.task_loader.target_delta_t + dts = [pd.Timedelta(dt) for dt in target_delta_t] + dts_all_zero = all([dt == pd.Timedelta(seconds=0) for dt in dts]) + if target_delta_t is not None and dts_all_zero: + forecasting_mode = False + lead_times = None + elif target_delta_t is not None and not dts_all_zero: + target_var_IDs_set = set(self.task_loader.target_var_IDs) + msg = f""" + Got more than one set of target variables in target sets, + but predictions can only be made with one set of target variables + to simplify implementation. + Got {target_var_IDs_set}. + """ + assert len(target_var_IDs_set) == 1, msg + # Repeat lead_tim for each variable in each target set + lead_times = [] + for target_set_idx, dt in enumerate(target_delta_t): + target_set_dim = self.task_loader.target_dims[target_set_idx] + lead_times += [ + pd.Timedelta(dt, unit=self.task_loader.time_freq) + for _ in range(target_set_dim) + ] + forecasting_mode = True + else: + forecasting_mode = False + lead_times = None + + if type(tasks) is Task: + tasks = [tasks] + + if n_samples >= 1: + B.set_random_seed(seed) + np.random.seed(seed) + + init_dates = [task["time"] for task in tasks] + + # Flatten tuple of tuples to single list + target_var_IDs = [ + var_ID for set in self.task_loader.target_var_IDs for var_ID in set + ] + if lead_times is not None: + assert len(lead_times) == len(target_var_IDs) + + # TODO consider removing this logic, can we just depend on the dim names in X_t? + if not unnormalise: + coord_names = {"x1": "x1", "x2": "x2"} + elif unnormalise: + coord_names = { + "x1": self.data_processor.raw_spatial_coord_names[0], + "x2": self.data_processor.raw_spatial_coord_names[1], + } + + ### Pre-process X_t if necessary (TODO consider moving this to Prediction class) + if isinstance(X_t, pd.Index): + X_t = pd.DataFrame(index=X_t) + elif isinstance(X_t, np.ndarray): + # Convert to empty dataframe with normalised or unnormalised coord names + if X_t_is_normalised: + index_names = ["x1", "x2"] + else: + index_names = self.data_processor.raw_spatial_coord_names + X_t = pd.DataFrame(X_t.T, columns=index_names) + X_t = X_t.set_index(index_names) + elif isinstance(X_t, (xr.DataArray, xr.Dataset)): + # Remove time dimension if present + if "time" in X_t.coords: + X_t = X_t.isel(time=0).drop_vars("time") + + if mode == "off-grid" and append_indexes is not None: + # Check append_indexes are all same length as X_t + if append_indexes is not None: + for idx, vals in append_indexes.items(): + if len(vals) != len(X_t): + raise ValueError( + f"append_indexes[{idx}] must be same length as X_t, got {len(vals)} and {len(X_t)} respectively." + ) + X_t = X_t.reset_index() + X_t = pd.concat([X_t, pd.DataFrame(append_indexes)], axis=1) + X_t = X_t.set_index(list(X_t.columns)) + + if X_t_is_normalised: + X_t_normalised = X_t + # Unnormalise coords to use for xarray/pandas objects for storing predictions + X_t = self.data_processor.map_coords(X_t, unnorm=True) + elif not X_t_is_normalised: + # Normalise coords to use for model + X_t_normalised = self.data_processor.map_coords(X_t) + + if mode == "on-grid": + if resolution_factor != 1: + X_t_normalised = increase_spatial_resolution( + X_t_normalised, resolution_factor + ) + X_t = increase_spatial_resolution( + X_t, resolution_factor, coord_names=coord_names + ) + if X_t_mask is not None: + X_t_mask = process_X_mask_for_X(X_t_mask, X_t) + X_t_mask_normalised = self.data_processor.map_coords(X_t_mask) + X_t_arr = xarray_to_coord_array_normalised(X_t_normalised) + # Remove points that lie outside the mask + X_t_arr = mask_coord_array_normalised(X_t_arr, X_t_mask_normalised) + else: + X_t_arr = ( + X_t_normalised["x1"].values, + X_t_normalised["x2"].values, + ) + elif mode == "off-grid": + X_t_arr = X_t_normalised.reset_index()[["x1", "x2"]].values.T + + if isinstance(X_t_arr, tuple): + target_shape = (len(X_t_arr[0]), len(X_t_arr[1])) + else: + target_shape = (X_t_arr.shape[1],) + + if not unnormalise: + X_t = X_t_normalised + + if "mixture_probs" in pred_params: + # Store each mixture component separately w/o overriding pred_params + pred_params_to_store = copy.deepcopy(pred_params) + pred_params_to_store.remove("mixture_probs") + for component_i in range(self.N_mixture_components): + pred_params_to_store.append(f"mixture_probs_{component_i}") + else: + pred_params_to_store = pred_params + + # Dict to store predictions for each target variable + pred = Prediction( + target_var_IDs, + pred_params_to_store, + init_dates, + X_t, + X_t_mask, + coord_names, + n_samples=n_samples, + forecasting_mode=forecasting_mode, + lead_times=lead_times, + ) + + def unnormalise_pred_array(arr, **kwargs): + """Unnormalise an (N_dims, N_targets) array of predictions.""" + var_IDs_flattened = [ + var_ID + for var_IDs in self.task_loader.target_var_IDs + for var_ID in var_IDs + ] + assert arr.shape[0] == len( + var_IDs_flattened + ), f"{arr.shape[0]} != {len(var_IDs_flattened)}" + for i, var_ID in enumerate(var_IDs_flattened): + arr[i] = self.data_processor.map_array( + arr[i], + var_ID, + method=self.data_processor.config[var_ID]["method"], + unnorm=True, + **kwargs, + ) + return arr + + # Don't change tasks by reference when overriding target locations + # TODO consider not copying tasks by default for efficiency + tasks = copy.deepcopy(tasks) + + if self.task_loader.aux_at_targets is not None: + if aux_at_targets_override is not None: + aux_at_targets = aux_at_targets_override + if not aux_at_targets_override_is_normalised: + # Assumes using default normalisation method + aux_at_targets = self.data_processor( + aux_at_targets, assert_computed=True + ) + else: + aux_at_targets = self.task_loader.aux_at_targets + + for task in tqdm(tasks, position=0, disable=progress_bar < 1, leave=True): + task["X_t"] = [X_t_arr for _ in range(len(self.task_loader.target_var_IDs))] + + # If passing auxiliary data, need to sample it at target locations + if self.task_loader.aux_at_targets is not None: + aux_at_targets_sliced = self.task_loader.time_slice_variable( + aux_at_targets, task["time"] + ) + task["Y_t_aux"] = self.task_loader.sample_offgrid_aux( + X_t_arr, aux_at_targets_sliced + ) + + prediction_arrs = {} + prediction_methods = {} + for param in pred_params: + try: + method = getattr(self, param) + prediction_methods[param] = method + except AttributeError: + raise AttributeError( + f"Prediction method {param} not found in model class." + ) + if n_samples >= 1: + B.set_random_seed(seed) + np.random.seed(seed) + if ar_sample: + sample_method = getattr(self, "ar_sample") + sample_args = { + "n_samples": n_samples, + "ar_subsample_factor": ar_subsample_factor, + } + else: + sample_method = getattr(self, "sample") + sample_args = {"n_samples": n_samples} + + # If `DeepSensor` model child has been sub-classed with a `__call__` method, + # we assume this is a distribution-like object that can be used to compute + # mean, std and samples. Otherwise, run the model with `Task` for each prediction type. + if hasattr(self, "__call__"): + # Run model forwards once to generate output distribution, which we re-use + dist = self(task, n_samples=n_samples) + for param, method in prediction_methods.items(): + prediction_arrs[param] = method(dist) + if n_samples >= 1 and not ar_sample: + samples_arr = sample_method(dist, **sample_args) + # samples_arr = samples_arr.reshape((n_samples, len(target_var_IDs), *target_shape)) + prediction_arrs["samples"] = samples_arr + elif n_samples >= 1 and ar_sample: + # Can't draw AR samples from distribution object, need to re-run with task + samples_arr = sample_method(task, **sample_args) + samples_arr = samples_arr.reshape( + (n_samples, len(target_var_IDs), *target_shape) + ) + prediction_arrs["samples"] = samples_arr + else: + # Re-run model for each prediction type + for param, method in prediction_methods.items(): + prediction_arrs[param] = method(task) + if n_samples >= 1: + samples_arr = sample_method(task, **sample_args) + if ar_sample: + samples_arr = samples_arr.reshape( + (n_samples, len(target_var_IDs), *target_shape) + ) + prediction_arrs["samples"] = samples_arr + + # Concatenate multi-target predictions + for param, arr in prediction_arrs.items(): + if isinstance(arr, (list, tuple)): + if param != "samples": + concat_axis = 0 + elif param == "samples": + # Axis 0 is sample dim, axis 1 is variable dim + concat_axis = 1 + prediction_arrs[param] = np.concatenate(arr, axis=concat_axis) + + # Unnormalise predictions + for param, arr in prediction_arrs.items(): + # TODO make class attributes? + scale_and_offset_params = ["mean"] + scale_only_params = ["std"] + scale_squared_only_params = ["variance"] + if unnormalise: + if param == "samples": + for sample_i in range(n_samples): + prediction_arrs["samples"][sample_i] = ( + unnormalise_pred_array( + prediction_arrs["samples"][sample_i] + ) + ) + elif param in scale_and_offset_params: + prediction_arrs[param] = unnormalise_pred_array(arr) + elif param in scale_only_params: + prediction_arrs[param] = unnormalise_pred_array( + arr, add_offset=False + ) + elif param in scale_squared_only_params: + # This is a horrible hack to repeat the scaling operation of the linear + # transform twice s.t. new_var = scale ^ 2 * var + prediction_arrs[param] = unnormalise_pred_array( + arr, add_offset=False + ) + prediction_arrs[param] = unnormalise_pred_array( + prediction_arrs[param], add_offset=False + ) + else: + # Assume prediction parameters not captured above are dimensionless + # quantities like probabilities and should not be unnormalised + pass + + # Assign predictions to Prediction object + for param, arr in prediction_arrs.items(): + if param != "mixture_probs": + pred.assign(param, task["time"], arr, lead_times=lead_times) + elif param == "mixture_probs": + assert arr.shape[0] == self.N_mixture_components, ( + f"Number of mixture components ({arr.shape[0]}) does not match " + f"model attribute N_mixture_components ({self.N_mixture_components})." + ) + for component_i, probs in enumerate(arr): + pred.assign( + f"{param}_{component_i}", + task["time"], + probs, + lead_times=lead_times, + ) + + if forecasting_mode: + pred = add_valid_time_coord_to_pred_and_move_time_dims(pred) + + if verbose: + dur = time.time() - tic + print(f"Done in {np.floor(dur / 60)}m:{dur % 60:.0f}s.\n") + + return pred
+ + +
[docs]def add_valid_time_coord_to_pred_and_move_time_dims(pred: Prediction) -> Prediction: + """ + Add a valid time coordinate "time" to a Prediction object based on the + initialisation times "init_time" and lead times "lead_time", and + reorder the time dims from ("lead_time", "init_time") to ("init_time", "lead_time"). + + Args: + pred (:class:`~.model.pred.Prediction`): + Prediction object to add valid time coordinate to. + + Returns: + :class:`~.model.pred.Prediction`: + Prediction object with valid time coordinate added. + """ + for var_ID in pred.keys(): + if isinstance(pred[var_ID], pd.DataFrame): + x = pred[var_ID].reset_index() + pred[var_ID]["time"] = (x["lead_time"] + x["init_time"]).values + pred[var_ID] = pred[var_ID].swaplevel("init_time", "lead_time") + pred[var_ID] = pred[var_ID].sort_index() + elif isinstance(pred[var_ID], xr.Dataset): + x = pred[var_ID] + pred[var_ID] = pred[var_ID].assign_coords( + time=x["lead_time"] + x["init_time"] + ) + pred[var_ID] = pred[var_ID].transpose("init_time", "lead_time", ...) + else: + raise ValueError(f"Unsupported prediction type {type(pred[var_ID])}.") + return pred
+ + +
[docs]def main(): # pragma: no cover + import deepsensor.tensorflow + from deepsensor.data.loader import TaskLoader + from deepsensor.data.processor import DataProcessor + from deepsensor.model.convnp import ConvNP + + import xarray as xr + import pandas as pd + import numpy as np + + # Load raw data + ds_raw = xr.tutorial.open_dataset("air_temperature")["air"] + ds_raw2 = copy.deepcopy(ds_raw) + ds_raw2.name = "air2" + + # Normalise data + data_processor = DataProcessor(x1_name="lat", x2_name="lon") + ds = data_processor(ds_raw) + ds2 = data_processor(ds_raw2) + + # Set up task loader + task_loader = TaskLoader(context=ds, target=[ds, ds2]) + + # Set up model + model = ConvNP(data_processor, task_loader) + + # Predict on new task with 10% of context data and a dense grid of target points + test_tasks = task_loader( + pd.date_range("2014-12-25", "2014-12-31"), context_sampling=40 + ) + # print(repr(test_tasks)) + + X_t = ds_raw + pred = model.predict(test_tasks, X_t=X_t, n_samples=5) + print(pred) + + X_t = np.zeros((2, 1)) + pred = model.predict(test_tasks, X_t=X_t, X_t_is_normalised=True) + print(pred)
+ + # DEBUG + # task = task_loader("2014-12-31", context_sampling=40, target_sampling="all") + # samples = model.ar_sample(task, 5, ar_subsample_factor=20) + + +if __name__ == "__main__": # pragma: no cover + main() +
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/model/nps.html b/_modules/deepsensor/model/nps.html new file mode 100644 index 00000000..c119acbf --- /dev/null +++ b/_modules/deepsensor/model/nps.html @@ -0,0 +1,765 @@ + + + + + + + + + + + deepsensor.model.nps — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.model.nps

+from .. import backend
+import lab as B
+
+from deepsensor.data.task import Task
+from typing import Tuple, Optional, Literal
+
+
+
[docs]def convert_task_to_nps_args(task: Task): + """ + Infer & build model call signature from ``task`` dict. + + .. + TODO move to ConvNP class? + + Args: + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + tuple[list[tuple[numpy.ndarray, numpy.ndarray]], numpy.ndarray, numpy.ndarray, dict]: + ... + """ + context_data = list(zip(task["X_c"], task["Y_c"])) + + if task["X_t"] is None: + raise ValueError( + f"Running `neuralprocesses` model with no target locations (got {task['X_t']}). " + f"Have you not provided a `target_sampling` argument to `TaskLoader`?" + ) + elif len(task["X_t"]) == 1 and task["Y_t"] is None: + xt = task["X_t"][0] + yt = None + elif len(task["X_t"]) > 1 and task["Y_t"] is None: + # Multiple target sets, different target locations + xt = backend.nps.AggregateInput(*[(xt, i) for i, xt in enumerate(task["X_t"])]) + yt = None + elif len(task["X_t"]) == 1 and len(task["Y_t"]) == 1: + # Single target set + xt = task["X_t"][0] + yt = task["Y_t"][0] + elif len(task["X_t"]) > 1 and len(task["Y_t"]) > 1: + # Multiple target sets, different target locations + assert len(task["X_t"]) == len(task["Y_t"]) + xts = [] + yts = [] + target_dims = [yt.shape[1] for yt in task["Y_t"]] + # Map from ND target sets to 1D target sets + dim_counter = 0 + for i, (xt, yt) in enumerate(zip(task["X_t"], task["Y_t"])): + # Repeat target locations for each target dimension in target set + xts.extend([(xt, dim_counter + j) for j in range(target_dims[i])]) + yts.extend([yt[:, j : j + 1] for j in range(target_dims[i])]) + dim_counter += target_dims[i] + xt = backend.nps.AggregateInput(*xts) + yt = backend.nps.Aggregate(*yts) + elif len(task["X_t"]) == 1 and len(task["Y_t"]) > 1: + # Multiple target sets, same target locations; `Y_t`s along feature dim + xt = task["X_t"][0] + yt = B.concat(*task["Y_t"], axis=1) + else: + raise ValueError( + f"Incorrect target locations and target observations (got {len(task['X_t'])} and {len(task['Y_t'])})" + ) + + model_kwargs = {} + if "Y_t_aux" in task.keys(): + model_kwargs["aux_t"] = task["Y_t_aux"] + + return context_data, xt, yt, model_kwargs
+ + +
[docs]def run_nps_model( + neural_process, + task: Task, + n_samples: Optional[int] = None, + requires_grad: bool = False, +): + """ + Run ``neuralprocesses`` model. + + Args: + neural_process (neuralprocesses.Model): + Neural process model. + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + n_samples (int, optional): + Number of samples to draw from the model. Defaults to ``None`` + (single sample). + requires_grad (bool, optional): + Whether to require gradients. Defaults to ``False``. + + Returns: + neuralprocesses.distributions.Distribution: + Distribution object containing the model's predictions. + """ + context_data, xt, _, model_kwargs = convert_task_to_nps_args(task) + if backend.str == "torch" and not requires_grad: + # turn off grad + import torch + + with torch.no_grad(): + dist = neural_process( + context_data, xt, **model_kwargs, num_samples=n_samples + ) + else: + dist = neural_process(context_data, xt, **model_kwargs, num_samples=n_samples) + return dist
+ + +
[docs]def run_nps_model_ar(neural_process, task: Task, num_samples: int = 1): + """ + Run ``neural_process`` in AR mode. + + Args: + neural_process (neuralprocesses.Model): + Neural process model. + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + num_samples (int, optional): + Number of samples to draw from the model. Defaults to 1. + + Returns: + tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]: + Tuple of mean, variance, noiseless samples, and noisy samples. + """ + context_data, xt, _, _ = convert_task_to_nps_args(task) + + # NOTE can't use `model_kwargs` in AR mode (ie can't use auxiliary MLP at targets) + mean, variance, noiseless_samples, noisy_samples = backend.nps.ar_predict( + neural_process, + context_data, + xt, + num_samples=num_samples, + ) + + return mean, variance, noiseless_samples, noisy_samples
+ + +
[docs]def construct_neural_process( + dim_x: int = 2, + dim_yc: int = 1, + dim_yt: int = 1, + dim_aux_t: Optional[int] = None, + dim_lv: int = 0, + conv_arch: str = "unet", + unet_channels: Tuple[int, ...] = (64, 64, 64, 64), + unet_resize_convs: bool = True, + unet_resize_conv_interp_method: Literal["bilinear"] = "bilinear", + aux_t_mlp_layers: Optional[Tuple[int, ...]] = None, + likelihood: Literal["cnp", "gnp", "cnp-spikes-beta"] = "cnp", + unet_kernels: int = 5, + internal_density: int = 100, + encoder_scales: float = 1 / 100, + encoder_scales_learnable: bool = False, + decoder_scale: float = 1 / 100, + decoder_scale_learnable: bool = False, + num_basis_functions: int = 64, + epsilon: float = 1e-2, +): + """ + Construct a ``neuralprocesses`` ConvNP model. + + See: https://github.com/wesselb/neuralprocesses/blob/main/neuralprocesses/architectures/convgnp.py + + Docstring below modified from ``neuralprocesses``. If more kwargs are + needed, they must be explicitly passed to ``neuralprocesses`` constructor + (not currently safe to use `**kwargs` here). + + Args: + dim_x (int, optional): + Dimensionality of the inputs. Defaults to 1. + dim_y (int, optional): + Dimensionality of the outputs. Defaults to 1. + dim_yc (int or tuple[int], optional): + Dimensionality of the outputs of the context set. You should set + this if the dimensionality of the outputs of the context set is not + equal to the dimensionality of the outputs of the target set. You + should also set this if you want to use multiple context sets. In + that case, set this equal to a tuple of integers indicating the + respective output dimensionalities. + dim_yt (int, optional): + Dimensionality of the outputs of the target set. You should set + this if the dimensionality of the outputs of the target set is not + equal to the dimensionality of the outputs of the context set. + dim_aux_t (int, optional): + Dimensionality of target-specific auxiliary variables. + internal_density (int, optional): + Density of the ConvNP's internal grid (in terms of number of points + per 1x1 unit square). Defaults to 100. + likelihood (str, optional): + Likelihood. Must be one of ``"cnp"`` (equivalently ``"het"``), + ``"gnp"`` (equivalently ``"lowrank"``), or ``"cnp-spikes-beta"`` + (equivalently ``"spikes-beta"``). Defaults to ``"cnp"``. + conv_arch (str, optional): + Convolutional architecture to use. Must be one of + ``"unet[-res][-sep]"`` or ``"conv[-res][-sep]"``. Defaults to + ``"unet"``. + unet_channels (tuple[int], optional): + Channels of every layer of the UNet. Defaults to six layers each + with 64 channels. + unet_kernels (int or tuple[int], optional): + Sizes of the kernels in the UNet. Defaults to 5. + unet_resize_convs (bool, optional): + Use resize convolutions rather than transposed convolutions in the + UNet. Defaults to ``False``. + unet_resize_conv_interp_method (str, optional): + Interpolation method for the resize convolutions in the UNet. Can + be set to ``"bilinear"``. Defaults to "bilinear". + num_basis_functions (int, optional): + Number of basis functions for the low-rank likelihood. Defaults to + 64. + dim_lv (int, optional): + Dimensionality of the latent variable. Setting to >0 constructs a + latent neural process. Defaults to 0. + encoder_scales (float or tuple[float], optional): + Initial value for the length scales of the set convolutions for the + context sets embeddings. Set to a tuple equal to the number of + context sets to use different values for each set. Set to a single + value to use the same value for all context sets. Defaults to + ``1 / internal_density``. + encoder_scales_learnable (bool, optional): + Whether the encoder SetConv length scale(s) are learnable. + Defaults to ``False``. + decoder_scale (float, optional): + Initial value for the length scale of the set convolution in the + decoder. Defaults to ``1 / internal_density``. + decoder_scale_learnable (bool, optional): + Whether the decoder SetConv length scale(s) are learnable. Defaults + to ``False``. + aux_t_mlp_layers (tuple[int], optional): + Widths of the layers of the MLP for the target-specific auxiliary + variable. Defaults to three layers of width 128. + epsilon (float, optional): + Epsilon added by the set convolutions before dividing by the + density channel. Defaults to ``1e-2``. + + Returns: + :class:`.model.Model`: + ConvNP model. + + Raises: + NotImplementedError + If specified backend has no default dtype. + """ + if likelihood == "cnp": + likelihood = "het" + elif likelihood == "gnp": + likelihood = "lowrank" + elif likelihood == "cnp-spikes-beta": + likelihood = "spikes-beta" + elif likelihood == "cnp-bernoulli-gamma": + likelihood = "bernoulli-gamma" + + # Log the call signature for `construct_convgnp` + config = dict(locals()) + + if backend.str == "torch": + import torch + + dtype = torch.float32 + elif backend.str == "tf": + import tensorflow as tf + + dtype = tf.float32 + else: + raise NotImplementedError(f"Backend {backend.str} has no default dtype.") + + neural_process = backend.nps.construct_convgnp( + dim_x=dim_x, + dim_yc=dim_yc, + dim_yt=dim_yt, + dim_aux_t=dim_aux_t, + dim_lv=dim_lv, + likelihood=likelihood, + conv_arch=conv_arch, + unet_channels=tuple(unet_channels), + unet_resize_convs=unet_resize_convs, + unet_resize_conv_interp_method=unet_resize_conv_interp_method, + aux_t_mlp_layers=aux_t_mlp_layers, + unet_kernels=unet_kernels, + # Use a stride of 1 for the first layer and 2 for all other layers + unet_strides=(1, *(2,) * (len(unet_channels) - 1)), + points_per_unit=internal_density, + encoder_scales=encoder_scales, + encoder_scales_learnable=encoder_scales_learnable, + decoder_scale=decoder_scale, + decoder_scale_learnable=decoder_scale_learnable, + num_basis_functions=num_basis_functions, + epsilon=epsilon, + dtype=dtype, + ) + + return neural_process, config
+ + +
[docs]def compute_encoding_tensor(model, task: Task): + """ + Compute the encoding tensor for a given task. + + Args: + model (...): + Model object. + task (:class:`~.data.task.Task`): + Task object containing context and target sets. + + Returns: + encoding : :class:`numpy:numpy.ndarray` + Encoding tensor? #TODO + """ + neural_process_encoder = backend.nps.Model(model.model.encoder, lambda x: x) + task = model.modify_task(task) + encoding = B.to_numpy(run_nps_model(neural_process_encoder, task)) + return encoding
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/model/pred.html b/_modules/deepsensor/model/pred.html new file mode 100644 index 00000000..bf5e0aed --- /dev/null +++ b/_modules/deepsensor/model/pred.html @@ -0,0 +1,825 @@ + + + + + + + + + + + deepsensor.model.pred — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.model.pred

+from typing import Union, List, Optional
+
+import numpy as np
+import pandas as pd
+import xarray as xr
+
+Timestamp = Union[str, pd.Timestamp, np.datetime64]
+
+
+
[docs]class Prediction(dict): + """ + Object to store model predictions in a dictionary-like format. + + Maps from target variable IDs to xarray/pandas objects containing + prediction parameters (depending on the output distribution of the model). + + For example, if the model outputs a Gaussian distribution, then the xarray/pandas + objects in the ``Prediction`` will contain a ``mean`` and ``std``. + + If using a ``Prediction`` to store model samples, there is only a ``samples`` entry, and the + xarray/pandas objects will have an additional ``sample`` dimension. + + Args: + target_var_IDs (List[str]) + List of target variable IDs. + dates (List[Union[str, pd.Timestamp]]) + List of dates corresponding to the predictions. + X_t (:class:`xarray.Dataset` | :class:`xarray.DataArray` | :class:`pandas.DataFrame` | :class:`pandas.Series` | :class:`pandas.Index` | :class:`numpy:numpy.ndarray`) + Target locations to predict at. Can be an xarray object containing + on-grid locations or a pandas object containing off-grid locations. + X_t_mask (:class:`xarray.Dataset` | :class:`xarray.DataArray`, optional) + 2D mask to apply to gridded ``X_t`` (zero/False will be NaNs). Will be interpolated + to the same grid as ``X_t``. Default None (no mask). + n_samples (int) + Number of joint samples to draw from the model. If 0, will not + draw samples. Default 0. + forecasting_mode (bool) + If True, stored forecast predictions with an init_time and lead_time dimension, + and a valid_time coordinate. If False, stores prediction at t=0 only + (i.e. spatial interpolation), with only a single time dimension. Default False. + lead_times (List[pd.Timedelta], optional) + List of lead times to store in predictions. Must be provided if + forecasting_mode is True. Default None. + """ + + def __init__( + self, + target_var_IDs: List[str], + pred_params: List[str], + dates: List[Timestamp], + X_t: Union[ + xr.Dataset, + xr.DataArray, + pd.DataFrame, + pd.Series, + pd.Index, + np.ndarray, + ], + X_t_mask: Optional[Union[xr.Dataset, xr.DataArray]] = None, + coord_names: dict = None, + n_samples: int = 0, + forecasting_mode: bool = False, + lead_times: Optional[List[pd.Timedelta]] = None, + ): + self.target_var_IDs = target_var_IDs + self.X_t_mask = X_t_mask + if coord_names is None: + coord_names = {"x1": "x1", "x2": "x2"} + self.x1_name = coord_names["x1"] + self.x2_name = coord_names["x2"] + + self.forecasting_mode = forecasting_mode + if forecasting_mode: + assert ( + lead_times is not None + ), "If forecasting_mode is True, lead_times must be provided." + self.lead_times = lead_times + + self.mode = infer_prediction_modality_from_X_t(X_t) + + self.pred_params = pred_params + if n_samples >= 1: + self.pred_params = [ + *pred_params, + *[f"sample_{i}" for i in range(n_samples)], + ] + + # Create empty xarray/pandas objects to store predictions + if self.mode == "on-grid": + for var_ID in self.target_var_IDs: + if self.forecasting_mode: + prepend_dims = ["lead_time"] + prepend_coords = {"lead_time": lead_times} + else: + prepend_dims = None + prepend_coords = None + self[var_ID] = create_empty_spatiotemporal_xarray( + X_t, + dates, + data_vars=self.pred_params, + coord_names=coord_names, + prepend_dims=prepend_dims, + prepend_coords=prepend_coords, + ) + if self.forecasting_mode: + self[var_ID] = self[var_ID].rename(time="init_time") + if self.X_t_mask is None: + # Create 2D boolean array of True values to simplify indexing + self.X_t_mask = ( + create_empty_spatiotemporal_xarray(X_t, dates[0:1], coord_names) + .to_array() + .isel(time=0, variable=0) + .astype(bool) + ) + elif self.mode == "off-grid": + # Repeat target locs for each date to create multiindex + if self.forecasting_mode: + index_names = ["lead_time", "init_time", *X_t.index.names] + idxs = [ + (lt, date, *idxs) + for lt in lead_times + for date in dates + for idxs in X_t.index + ] + else: + index_names = ["time", *X_t.index.names] + idxs = [(date, *idxs) for date in dates for idxs in X_t.index] + index = pd.MultiIndex.from_tuples(idxs, names=index_names) + for var_ID in self.target_var_IDs: + self[var_ID] = pd.DataFrame(index=index, columns=self.pred_params) + + def __getitem__(self, key): + # Support self[i] syntax + if isinstance(key, int): + key = self.target_var_IDs[key] + return super().__getitem__(key) + + def __str__(self): + dict_repr = {var_ID: self.pred_params for var_ID in self.target_var_IDs} + return f"Prediction({dict_repr}), mode={self.mode}" + +
[docs] def assign( + self, + prediction_parameter: str, + date: Union[str, pd.Timestamp], + data: np.ndarray, + lead_times: Optional[List[pd.Timedelta]] = None, + ): + """ + + Args: + prediction_parameter (str) + ... + date (Union[str, pd.Timestamp]) + ... + data (np.ndarray) + If off-grid: Shape (N_var, N_targets) or (N_samples, N_var, N_targets). + If on-grid: Shape (N_var, N_x1, N_x2) or (N_samples, N_var, N_x1, N_x2). + lead_time (pd.Timedelta, optional) + Lead time of the forecast. Required if forecasting_mode is True. Default None. + """ + if self.forecasting_mode: + assert ( + lead_times is not None + ), "If forecasting_mode is True, lead_times must be provided." + + msg = f""" + If forecasting_mode is True, lead_times must be of equal length to the number of + variables in the data (the first dimension). Got {lead_times=} of length + {len(lead_times)} lead times and data shape {data.shape}. + """ + assert len(lead_times) == data.shape[0], msg + + if self.mode == "on-grid": + if prediction_parameter != "samples": + for i, (var_ID, pred) in enumerate(zip(self.target_var_IDs, data)): + if self.forecasting_mode: + index = (lead_times[i], date) + else: + index = date + self[var_ID][prediction_parameter].loc[index].data[ + self.X_t_mask.data + ] = pred.ravel() + elif prediction_parameter == "samples": + assert len(data.shape) == 4, ( + f"If prediction_parameter is 'samples', and mode is 'on-grid', data must" + f"have shape (N_samples, N_var, N_x1, N_x2). Got {data.shape}." + ) + for sample_i, sample in enumerate(data): + for i, (var_ID, pred) in enumerate( + zip(self.target_var_IDs, sample) + ): + if self.forecasting_mode: + index = (lead_times[i], date) + else: + index = date + self[var_ID][f"sample_{sample_i}"].loc[index].data[ + self.X_t_mask.data + ] = pred.ravel() + + elif self.mode == "off-grid": + if prediction_parameter != "samples": + for i, (var_ID, pred) in enumerate(zip(self.target_var_IDs, data)): + if self.forecasting_mode: + index = (lead_times[i], date) + else: + index = date + self[var_ID].loc[index, prediction_parameter] = pred + elif prediction_parameter == "samples": + assert len(data.shape) == 3, ( + f"If prediction_parameter is 'samples', and mode is 'off-grid', data must" + f"have shape (N_samples, N_var, N_targets). Got {data.shape}." + ) + for sample_i, sample in enumerate(data): + for i, (var_ID, pred) in enumerate( + zip(self.target_var_IDs, sample) + ): + if self.forecasting_mode: + index = (lead_times[i], date) + else: + index = date + self[var_ID].loc[index, f"sample_{sample_i}"] = pred
+ + +
[docs]def create_empty_spatiotemporal_xarray( + X: Union[xr.Dataset, xr.DataArray], + dates: List[Timestamp], + coord_names: dict = None, + data_vars: List[str] = None, + prepend_dims: Optional[List[str]] = None, + prepend_coords: Optional[dict] = None, +): + """ + ... + + Args: + X (:class:`xarray.Dataset` | :class:`xarray.DataArray`): + ... + dates (List[...]): + ... + coord_names (dict, optional): + Dict mapping from normalised coord names to raw coord names, + by default {"x1": "x1", "x2": "x2"} + data_vars (List[str], optional): + ..., by default ["var"] + prepend_dims (List[str], optional): + ..., by default None + prepend_coords (dict, optional): + ..., by default None + + Returns: + ... + ... + + Raises: + ValueError + If ``data_vars`` contains duplicate values. + ValueError + If ``coord_names["x1"]`` is not uniformly spaced. + ValueError + If ``coord_names["x2"]`` is not uniformly spaced. + ValueError + If ``prepend_dims`` and ``prepend_coords`` are not the same length. + """ + if coord_names is None: + coord_names = {"x1": "x1", "x2": "x2"} + if data_vars is None: + data_vars = ["var"] + + if prepend_dims is None: + prepend_dims = [] + if prepend_coords is None: + prepend_coords = {} + + # Check for any repeated data_vars + if len(data_vars) != len(set(data_vars)): + raise ValueError( + f"Duplicate data_vars found in data_vars: {data_vars}. " + "This would cause the xarray.Dataset to have fewer variables than expected." + ) + + x1_predict = X.coords[coord_names["x1"]] + x2_predict = X.coords[coord_names["x2"]] + + if len(prepend_dims) != len(set(prepend_dims)): + # TODO unit test + raise ValueError( + f"Length of prepend_dims ({len(prepend_dims)}) must be equal to length of " + f"prepend_coords ({len(prepend_coords)})." + ) + + dims = [*prepend_dims, "time", coord_names["x1"], coord_names["x2"]] + coords = { + **prepend_coords, + "time": pd.to_datetime(dates), + coord_names["x1"]: x1_predict, + coord_names["x2"]: x2_predict, + } + + pred_ds = xr.Dataset( + {data_var: xr.DataArray(dims=dims, coords=coords) for data_var in data_vars} + ).astype("float32") + + # Convert time coord to pandas timestamps + pred_ds = pred_ds.assign_coords(time=pd.to_datetime(pred_ds.time.values)) + + return pred_ds
+ + +
[docs]def increase_spatial_resolution( + X_t_normalised, + resolution_factor, + coord_names: dict = None, +): + """ + ... + + .. + # TODO wasteful to interpolate X_t_normalised + + Args: + X_t_normalised (...): + ... + resolution_factor (...): + ... + coord_names (dict, optional): + Dict mapping from normalised coord names to raw coord names, + by default {"x1": "x1", "x2": "x2"} + + Returns: + ... + ... + + """ + assert isinstance(resolution_factor, (float, int)) + assert isinstance(X_t_normalised, (xr.DataArray, xr.Dataset)) + if coord_names is None: + coord_names = {"x1": "x1", "x2": "x2"} + x1_name, x2_name = coord_names["x1"], coord_names["x2"] + x1, x2 = X_t_normalised.coords[x1_name], X_t_normalised.coords[x2_name] + x1 = np.linspace(x1[0], x1[-1], int(x1.size * resolution_factor), dtype="float64") + x2 = np.linspace(x2[0], x2[-1], int(x2.size * resolution_factor), dtype="float64") + X_t_normalised = X_t_normalised.interp( + **{x1_name: x1, x2_name: x2}, method="nearest" + ) + return X_t_normalised
+ + +
[docs]def infer_prediction_modality_from_X_t( + X_t: Union[xr.DataArray, xr.Dataset, pd.DataFrame, pd.Series, pd.Index, np.ndarray] +) -> str: + """ + + Args: + X_t (Union[xr.DataArray, xr.Dataset, pd.DataFrame, pd.Series, pd.Index, np.ndarray]): + ... + + Returns: + str: "on-grid" if X_t is an xarray object, "off-grid" if X_t is a pandas or numpy object. + + Raises: + ValueError + If X_t is not an xarray, pandas or numpy object. + """ + if isinstance(X_t, (xr.DataArray, xr.Dataset)): + mode = "on-grid" + elif isinstance(X_t, (pd.DataFrame, pd.Series, pd.Index, np.ndarray)): + mode = "off-grid" + else: + raise ValueError( + f"X_t must be and xarray, pandas or numpy object. Got {type(X_t)}." + ) + return mode
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/plot.html b/_modules/deepsensor/plot.html new file mode 100644 index 00000000..9b0d872e --- /dev/null +++ b/_modules/deepsensor/plot.html @@ -0,0 +1,1520 @@ + + + + + + + + + + + deepsensor.plot — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.plot

+import numpy as np
+
+import matplotlib.pyplot as plt
+import pandas as pd
+from mpl_toolkits.axes_grid1 import make_axes_locatable
+import matplotlib.patches as mpatches
+
+import lab as B
+
+from typing import Optional, Union, List, Tuple
+
+from deepsensor.data.task import Task, flatten_X
+from deepsensor.data.loader import TaskLoader
+from deepsensor.data.processor import DataProcessor
+from deepsensor.model.pred import Prediction
+from pandas import DataFrame
+from matplotlib.colors import Colormap
+from matplotlib.axes import Axes
+
+
+
[docs]def task( + task: Task, + task_loader: TaskLoader, + figsize=3, + markersize=None, + equal_aspect=False, + plot_ticks=False, + extent=None, +) -> plt.Figure: + """ + Plot the context and target sets of a task. + + Args: + task (:class:`~.data.task.Task`): + Task to plot. + task_loader (:class:`~.data.loader.TaskLoader`): + Task loader used to load ``task``, containing variable IDs used for + plotting. + figsize (int, optional): + Figure size in inches, by default 3. + markersize (int, optional): + Marker size (in units of points squared), by default None. If None, + the marker size is set to ``(2**2) * figsize / 3``. + equal_aspect (bool, optional): + Whether to set the aspect ratio of the plots to be equal, by + default False. + plot_ticks (bool, optional): + Whether to plot the coordinate ticks on the axes, by default False. + extent (Tuple[int, int, int, int], optional): + Extent of the plot in format (x2_min, x2_max, x1_min, x1_max). + Defaults to None (uses the smallest extent that contains all data points + across all context and target sets). + + Returns: + :class:`matplotlib:matplotlib.figure.Figure`: + """ + if markersize is None: + markersize = (2**2) * figsize / 3 + + # Scale font size with figure size + fontsize = 10 * figsize / 3 + params = { + "axes.labelsize": fontsize, + "axes.titlesize": fontsize, + "font.size": fontsize, + "figure.titlesize": fontsize, + "legend.fontsize": fontsize, + "xtick.labelsize": fontsize, + "ytick.labelsize": fontsize, + } + + var_IDs = task_loader.context_var_IDs + task_loader.target_var_IDs + Y_c = task["Y_c"] + X_c = task["X_c"] + if task["Y_t"] is not None: + Y_t = task["Y_t"] + X_t = task["X_t"] + else: + Y_t = [] + X_t = [] + n_context = len(Y_c) + n_target = len(Y_t) + if "Y_t_aux" in task and task["Y_t_aux"] is not None: + # Assumes only 1 target set + X_t = X_t + [task["X_t"][-1]] + Y_t = Y_t + [task["Y_t_aux"]] + var_IDs = var_IDs + (task_loader.aux_at_target_var_IDs,) + ncols = n_context + n_target + 1 + else: + ncols = n_context + n_target + nrows = max([Y.shape[0] for Y in Y_c + Y_t]) + + if extent is None: + x1_min = np.min([np.min(X[0]) for X in X_c + X_t]) + x1_max = np.max([np.max(X[0]) for X in X_c + X_t]) + x2_min = np.min([np.min(X[1]) for X in X_c + X_t]) + x2_max = np.max([np.max(X[1]) for X in X_c + X_t]) + extent = (x2_min, x2_max, x1_min, x1_max) + + with plt.rc_context(params): + fig, axes = plt.subplots( + nrows=nrows, + ncols=ncols, + figsize=(ncols * figsize, nrows * figsize), + ) + if nrows == 1: + axes = axes[np.newaxis] + if ncols == 1: + axes = axes[:, np.newaxis] + # j = loop index over columns/context sets + # i = loop index over rows/variables within context sets + for j, (X, Y) in enumerate(zip(X_c + X_t, Y_c + Y_t)): + for i in range(Y.shape[0]): + if i == 0: + if j < n_context: + axes[0, j].set_title(f"Context set {j}") + elif j < n_context + n_target: + axes[0, j].set_title(f"Target set {j - n_context}") + else: + axes[0, j].set_title(f"Auxiliary at targets") + if isinstance(X, tuple): + X = flatten_X(X) + Y = Y.reshape(Y.shape[0], -1) + axes[i, j].scatter(X[1, :], X[0, :], c=Y[i], s=markersize, marker=".") + if equal_aspect: + # Don't warp aspect ratio + axes[i, j].set_aspect("equal") + if not plot_ticks: + axes[i, j].set_xticks([]) + axes[i, j].set_yticks([]) + axes[i, j].set_ylabel(var_IDs[j][i]) + + axes[i, j].set_xlim(extent[0], extent[1]) + axes[i, j].set_ylim(extent[2], extent[3]) + + # Add colorbar with same height as axis + divider = make_axes_locatable(axes[i, j]) + box = axes[i, j].get_position() + ratio = 0.3 + pad = 0.1 + width = box.width * ratio + cax = divider.append_axes("right", size=width, pad=pad) + fig.colorbar(axes[i, j].collections[0], cax=cax) + + for i in range(Y.shape[0], nrows): + axes[i, j].axis("off") + + plt.tight_layout() + + return fig
+ + +
[docs]def context_encoding( + model, + task: Task, + task_loader: TaskLoader, + batch_idx: int = 0, + context_set_idxs: Optional[Union[List[int], int]] = None, + land_idx: Optional[int] = None, + cbar: bool = True, + clim: Optional[Tuple] = None, + cmap: Union[str, Colormap] = "viridis", + verbose_titles: bool = True, + titles: Optional[dict] = None, + size: int = 3, + return_axes: bool = False, +): + """Plot the ``ConvNP`` SetConv encoding of a context set in a task. + + Args: + model (:class:`~.model.convnp.ConvNP`): + ConvNP model. + task (:class:`~.data.task.Task`): + Task containing context set to plot encoding of ... + task_loader (:class:`~.data.loader.TaskLoader`): + DataLoader used to load the data, containing context set metadata + used for plotting. + batch_idx (int, optional): + Batch index in encoding to plot, by default 0. + context_set_idxs (List[int] | int, optional): + Indices of context sets to plot, by default None (plots all context + sets). + land_idx (int, optional): + Index of the land mask in the encoding (used to overlay land + contour on plots), by default None. + cbar (bool, optional): + Whether to add a colorbar to the plots, by default True. + clim (tuple, optional): + Colorbar limits, by default None. + cmap (str | matplotlib.colors.Colormap, optional): + Color map to use for the plots, by default "viridis". + verbose_titles (bool, optional): + Whether to include verbose titles for the variable IDs in the + context set (including the time index), by default True. + titles (dict, optional): + Dict of titles to override for each subplot, by default None. If + None, titles are generated from context set metadata. + size (int, optional): + Size of the figure in inches, by default 3. + return_axes (bool, optional): + Whether to return the axes of the figure, by default False. + + Returns: + :obj:`matplotlib.figure.Figure` | Tuple[:obj:`matplotlib.figure.Figure`, :obj:`matplotlib.pyplot.Axes`]: + Either a figure containing the context set encoding plots, or a + tuple containing the :obj:`figure <matplotlib.figure.Figure>` and + the :obj:`axes <matplotlib.axes.Axes>` of the figure (if + ``return_axes`` was set to ``True``). + """ + from .model.nps import compute_encoding_tensor + + encoding_tensor = compute_encoding_tensor(model, task) + encoding_tensor = encoding_tensor[batch_idx] + + if isinstance(context_set_idxs, int): + context_set_idxs = [context_set_idxs] + if context_set_idxs is None: + context_set_idxs = np.array(range(len(task_loader.context_dims))) + + context_var_ID_set_sizes = [ + ndim + 1 for ndim in np.array(task_loader.context_dims)[context_set_idxs] + ] # Add density channel to each set size + max_context_set_size = max(context_var_ID_set_sizes) + ncols = max_context_set_size + nrows = len(context_set_idxs) + + figsize = (ncols * size, nrows * size) + fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize) + if nrows == 1: + axes = axes[np.newaxis] + + ctx_channel_idxs = np.cumsum(np.array(task_loader.context_dims) + 1) + + for row_i, ctx_i in enumerate(context_set_idxs): + channel_i = ( + ctx_channel_idxs[ctx_i - 1] if ctx_i > 0 else 0 + ) # Starting channel index + if verbose_titles: + var_IDs = task_loader.context_var_IDs_and_delta_t[ctx_i] + else: + var_IDs = task_loader.context_var_IDs[ctx_i] + + ncols_row_i = task_loader.context_dims[ctx_i] + 1 # Add density channel + for col_i in range(ncols_row_i): + ax = axes[row_i, col_i] + # Need `origin="lower"` because encoding has `x1` increasing from top to bottom, + # whereas in visualisations we want `x1` increasing from bottom to top. + + im = ax.imshow( + encoding_tensor[channel_i], + origin="lower", + clim=clim, + cmap=cmap, + ) + if titles is not None: + ax.set_title(titles[channel_i]) + elif col_i == 0: + ax.set_title(f"Density {ctx_i}") + elif col_i > 0: + ax.set_title(f"{var_IDs[col_i - 1]}") + if col_i == 0: + ax.set_ylabel(f"Context set {ctx_i}") + if cbar: + divider = make_axes_locatable(ax) + cax = divider.append_axes("right", size="5%", pad=0.05) + plt.colorbar(im, cax) + ax.patch.set_edgecolor("black") + ax.patch.set_linewidth(1) + if land_idx is not None: + ax.contour( + encoding_tensor[land_idx], + colors="k", + levels=[0.5], + origin="lower", + ) + ax.tick_params( + which="both", + bottom=False, + left=False, + labelbottom=False, + labelleft=False, + ) + channel_i += 1 + for col_i in range(ncols_row_i, ncols): + # Hide unused axes + ax = axes[ctx_i, col_i] + ax.axis("off") + + plt.tight_layout() + if not return_axes: + return fig + elif return_axes: + return fig, axes
+ + +
[docs]def offgrid_context( + axes: Union[np.ndarray, List[plt.Axes], Tuple[plt.Axes]], + task: Task, + data_processor: Optional[DataProcessor] = None, + task_loader: Optional[TaskLoader] = None, + plot_target: bool = False, + add_legend: bool = True, + context_set_idxs: Optional[Union[List[int], int]] = None, + markers: Optional[str] = None, + colors: Optional[str] = None, + **scatter_kwargs, +) -> None: + """ + Plot the off-grid context points on ``axes``. + + Uses a provided :class:`~.data.processor.DataProcessor` to unnormalise the + context coordinates if provided. + + Args: + axes (:class:`numpy:numpy.ndarray` | List[:class:`matplotlib:matplotlib.axes.Axes`] | Tuple[:class:`matplotlib:matplotlib.axes.Axes`]): + Axes to plot on. + task (:class:`~.data.task.Task`): + Task containing the context set to plot. + data_processor (:class:`~.data.processor.DataProcessor`, optional): + Data processor used to unnormalise the context set, by default + None. + task_loader (:class:`~.data.loader.TaskLoader`, optional): + Task loader used to load the data, containing context set metadata + used for plotting, by default None. + plot_target (bool, optional): + Whether to plot the target set, by default False. + add_legend (bool, optional): + Whether to add a legend to the plot, by default True. + context_set_idxs (List[int] | int, optional): + Indices of context sets to plot, by default None (plots all context + sets). + markers (str, optional): + Marker styles to use for each context set, by default None. + colors (str, optional): + Colors to use for each context set, by default None. + scatter_kwargs: + Additional keyword arguments to pass to the scatter plot. + + Returns: + None + """ + if markers is None: + # all matplotlib markers + markers = "ovs^Dxv<>1234spP*hHd|_" + if colors is None: + # all one-letter matplotlib colors + colors = "kbrgy" * 10 + + if isinstance(context_set_idxs, int): + context_set_idxs = [context_set_idxs] + + if type(axes) is np.ndarray: + axes = axes.ravel() + elif not isinstance(axes, (list, tuple)): + axes = [axes] + + if plot_target: + X = [*task["X_c"], *task["X_t"]] + else: + X = task["X_c"] + + for set_i, X in enumerate(X): + if context_set_idxs is not None and set_i not in context_set_idxs: + continue + + if isinstance(X, tuple): + continue # Don't plot gridded context data locations + if X.ndim == 3: + X = X[0] # select first batch + + if data_processor is not None: + x1, x2 = data_processor.map_x1_and_x2(X[0], X[1], unnorm=True) + X = np.stack([x1, x2], axis=0) + + X = X[::-1] # flip 2D coords for Cartesian fmt + + label = "" + if plot_target and set_i < len(task["X_c"]): + label += f"Context set {set_i} " + if task_loader is not None: + label += f"({task_loader.context_var_IDs[set_i]})" + elif plot_target and set_i >= len(task["X_c"]): + label += f"Target set {set_i - len(task['X_c'])} " + if task_loader is not None: + label += f"({task_loader.target_var_IDs[set_i - len(task['X_c'])]})" + + for ax in axes: + ax.scatter( + *X, + marker=markers[set_i], + color=colors[set_i], + **scatter_kwargs, + facecolors=None if markers[set_i] == "x" else "none", + label=label, + ) + + if add_legend: + axes[0].legend(loc="best")
+ + +
[docs]def offgrid_context_observations( + axes: Union[np.ndarray, List[plt.Axes], Tuple[plt.Axes]], + task: Task, + data_processor: DataProcessor, + task_loader: TaskLoader, + context_set_idx: int, + format_str: Optional[str] = None, + extent: Optional[Tuple[int, int, int, int]] = None, + color: str = "black", +) -> None: + """ + Plot unnormalised context observation values. + + Args: + axes (:class:`numpy:numpy.ndarray` | List[:class:`matplotlib:matplotlib.axes.Axes`] | Tuple[:class:`matplotlib:matplotlib.axes.Axes`]): + Axes to plot on. + task (:class:`~.data.task.Task`): + Task containing the context set to plot. + data_processor (:class:`~.data.processor.DataProcessor`): + Data processor used to unnormalise the context set. + task_loader (:class:`~.data.loader.TaskLoader`): + Task loader used to load the data, containing context set metadata + used for plotting. + context_set_idx (int): + Index of the context set to plot. + format_str (str, optional): + Format string for the context observation values. By default + ``"{:.2f}"``. + extent (Tuple[int, int, int, int], optional): + Extent of the plot, by default None. + color (str, optional): + Color of the text, by default "black". + + Returns: + None. + + Raises: + AssertionError: + If the context set is gridded. + AssertionError: + If the context set is not 1D. + AssertionError: + If the task's "Y_c" value for the context set ID is not 2D. + AssertionError: + If the task's "Y_c" value for the context set ID does not have + exactly one variable. + """ + if type(axes) is np.ndarray: + axes = axes.ravel() + elif not isinstance(axes, (list, tuple)): + axes = [axes] + + if format_str is None: + format_str = "{:.2f}" + + var_ID = task_loader.context_var_IDs[ + context_set_idx + ] # Tuple of variable IDs for the context set + assert ( + len(var_ID) == 1 + ), "Plotting context observations only supported for single-variable (1D) context sets" + var_ID = var_ID[0] + + X_c = task["X_c"][context_set_idx] + assert not isinstance( + X_c, tuple + ), f"The context set must not be gridded but is of type {type(X_c)} for context set at index {context_set_idx}" + X_c = data_processor.map_coord_array(X_c, unnorm=True) + + Y_c = task["Y_c"][context_set_idx] + assert Y_c.ndim == 2 + assert Y_c.shape[0] == 1 + Y_c = data_processor.map_array(Y_c, var_ID, unnorm=True).ravel() + + for x_c, y_c in zip(X_c.T, Y_c): + if extent is not None: + if not ( + extent[0] <= x_c[0] <= extent[1] and extent[2] <= x_c[1] <= extent[3] + ): + continue + for ax in axes: + ax.text(*x_c[::-1], format_str.format(float(y_c)), color=color)
+ + +
[docs]def receptive_field( + receptive_field, + data_processor: DataProcessor, + crs, + extent: Union[str, Tuple[float, float, float, float]] = "global", +) -> plt.Figure: # pragma: no cover + """ + ... + + Args: + receptive_field (...): + Receptive field to plot. + data_processor (:class:`~.data.processor.DataProcessor`): + Data processor used to unnormalise the context set. + crs (cartopy CRS): + Coordinate reference system for the plots. + extent (str | Tuple[float, float, float, float], optional): + Extent of the plot, in format (x2_min, x2_max, x1_min, x1_max), e.g. in + lat-lon format (lon_min, lon_max, lat_min, lat_max). By default "global". + + Returns: + None. + """ + fig, ax = plt.subplots(subplot_kw=dict(projection=crs)) + + if isinstance(extent, str): + extent = extent_str_to_tuple(extent) + else: + extent = tuple([float(x) for x in extent]) + x2_min, x2_max, x1_min, x1_max = extent + ax.set_extent(extent, crs=crs) + + x11, x12 = data_processor.config["coords"]["x1"]["map"] + x21, x22 = data_processor.config["coords"]["x2"]["map"] + + x1_rf_raw = receptive_field * (x12 - x11) + x2_rf_raw = receptive_field * (x22 - x21) + + x1_midpoint_raw = (x1_max + x1_min) / 2 + x2_midpoint_raw = (x2_max + x2_min) / 2 + + # Compute bottom left corner of receptive field + x1_corner = x1_midpoint_raw - x1_rf_raw / 2 + x2_corner = x2_midpoint_raw - x2_rf_raw / 2 + + ax.add_patch( + mpatches.Rectangle( + xy=[x2_corner, x1_corner], # Cartesian fmt: x2, x1 + width=x2_rf_raw, + height=x1_rf_raw, + facecolor="black", + alpha=0.3, + transform=crs, + ) + ) + ax.coastlines() + ax.gridlines(draw_labels=True, alpha=0.2) + + x1_name = data_processor.config["coords"]["x1"]["name"] + x2_name = data_processor.config["coords"]["x2"]["name"] + ax.set_title( + f"Receptive field in raw coords: {x1_name}={x1_rf_raw:.2f}, " + f"{x2_name}={x2_rf_raw:.2f}" + ) + + return fig
+ + +
[docs]def feature_maps( + model, + task: Task, + n_features_per_layer: int = 1, + seed: Optional[int] = None, + figsize: int = 3, + add_colorbar: bool = False, + cmap: Union[str, Colormap] = "Greys", +) -> plt.Figure: + """ + Plot the feature maps of a ``ConvNP`` model's decoder layers after a + forward pass with a ``Task``. + + Args: + model (:class:`~.model.model.convnp.ConvNP`): + ... + task (:class:`~.data.task.Task`): + ... + n_features_per_layer (int, optional): + ..., by default 1. + seed (int, optional): + ..., by default None. + figsize (int, optional): + ..., by default 3. + add_colorbar (bool, optional): + ..., by default False. + cmap (str | matplotlib.colors.Colormap, optional): + ..., by default "Greys". + + Returns: + matplotlib.figure.Figure: + A figure containing the feature maps. + + Raises: + ValueError: + If the backend is not recognised. + """ + from .model.nps import compute_encoding_tensor + + import deepsensor + + # Hacky way to load the correct __init__.py to get `convert_to_tensor` method + if deepsensor.backend.str == "tf": + import deepsensor.tensorflow as deepsensor + elif deepsensor.backend.str == "torch": + import deepsensor.torch as deepsensor + else: + raise ValueError(f"Unknown backend: {deepsensor.backend.str}") + + unet = model.model.decoder[0] + + # Produce encoding + x = deepsensor.convert_to_tensor(compute_encoding_tensor(model, task)) + + # Manually construct the U-Net forward pass from + # `neuralprocesses.construct_convgnp` to get the feature maps + def unet_forward(unet, x): + feature_maps = [] + + h = unet.activations[0](unet.before_turn_layers[0](x)) + hs = [h] + feature_map = B.to_numpy(h) + feature_maps.append(feature_map) + for layer, activation in zip( + unet.before_turn_layers[1:], + unet.activations[1:], + ): + h = activation(layer(hs[-1])) + hs.append(h) + feature_map = B.to_numpy(h) + feature_maps.append(feature_map) + + # Now make the turn! + + h = unet.activations[-1](unet.after_turn_layers[-1](hs[-1])) + feature_map = B.to_numpy(h) + feature_maps.append(feature_map) + for h_prev, layer, activation in zip( + reversed(hs[:-1]), + reversed(unet.after_turn_layers[:-1]), + reversed(unet.activations[:-1]), + ): + h = activation(layer(B.concat(h_prev, h, axis=1))) + feature_map = B.to_numpy(h) + feature_maps.append(feature_map) + + h = unet.final_linear(h) + feature_map = B.to_numpy(h) + feature_maps.append(feature_map) + + return feature_maps + + feature_maps = unet_forward(unet, x) + + figs = [] + rng = np.random.default_rng(seed) + for layer_i, feature_map in enumerate(feature_maps): + n_features = feature_map.shape[1] + n_features_to_plot = min(n_features_per_layer, n_features) + feature_idxs = rng.choice(n_features, n_features_to_plot, replace=False) + + fig, axes = plt.subplots( + nrows=1, + ncols=n_features_to_plot, + figsize=(figsize * n_features_to_plot, figsize), + ) + if n_features_to_plot == 1: + axes = [axes] + for f_i, ax in zip(feature_idxs, axes): + fm = feature_map[0, f_i] + im = ax.imshow(fm, origin="lower", cmap=cmap) + ax.set_title(f"Feature {f_i}", fontsize=figsize * 15 / 4) + ax.tick_params( + which="both", + bottom=False, + left=False, + labelbottom=False, + labelleft=False, + ) + if add_colorbar: + cbar = ax.figure.colorbar(im, ax=ax, format="%.2f") + + fig.suptitle( + f"Layer {layer_i} feature map. Shape: {feature_map.shape}. Min={np.min(feature_map):.2f}, Max={np.max(feature_map):.2f}.", + fontsize=figsize * 15 / 4, + ) + plt.tight_layout() + plt.subplots_adjust(top=0.75) + figs.append(fig) + + return figs
+ + +
[docs]def placements( + task: Task, + X_new_df: DataFrame, + data_processor: DataProcessor, + crs, + extent: Optional[Union[Tuple[int, int, int, int], str]] = None, + figsize: int = 3, + **scatter_kwargs, +) -> plt.Figure: # pragma: no cover + """ + ... + + Args: + task (:class:`~.data.task.Task`): + Task containing the context set used to compute the acquisition + function. + X_new_df (:class:`pandas.DataFrame`): + Dataframe containing the placement locations. + data_processor (:class:`~.data.processor.DataProcessor`): + Data processor used to unnormalise the context set and placement + locations. + crs (cartopy CRS): + Coordinate reference system for the plots. + extent (Tuple[int, int, int, int] | str, optional): + Extent of the plots, by default None. + figsize (int, optional): + Figure size in inches, by default 3. + + Returns: + :class:`matplotlib:matplotlib.figure.Figure` + A figure containing the placement plots. + """ + fig, ax = plt.subplots(subplot_kw={"projection": crs}, figsize=(figsize, figsize)) + ax.scatter(*X_new_df.values.T[::-1], c="r", linewidths=0.5, **scatter_kwargs) + offgrid_context(ax, task, data_processor, linewidths=0.5, **scatter_kwargs) + + ax.coastlines() + if extent is None: + pass + elif extent == "global": + ax.set_global() + else: + ax.set_extent(extent, crs=crs) + + return fig
+ + +
[docs]def acquisition_fn( + task: Task, + acquisition_fn_ds: np.ndarray, + X_new_df: DataFrame, + data_processor: DataProcessor, + crs, + col_dim: str = "iteration", + cmap: Union[str, Colormap] = "Greys_r", + figsize: int = 3, + add_colorbar: bool = True, + max_ncol: int = 5, +) -> plt.Figure: # pragma: no cover + """ + + Args: + task (:class:`~.data.task.Task`): + Task containing the context set used to compute the acquisition + function. + acquisition_fn_ds (:class:`numpy:numpy.ndarray`): + Acquisition function dataset. + X_new_df (:class:`pandas.DataFrame`): + Dataframe containing the placement locations. + data_processor (:class:`~.data.processor.DataProcessor`): + Data processor used to unnormalise the context set and placement + locations. + crs (cartopy CRS): + Coordinate reference system for the plots. + col_dim (str, optional): + Column dimension to plot over, by default "iteration". + cmap (str | matplotlib.colors.Colormap, optional): + Color map to use for the plots, by default "Greys_r". + figsize (int, optional): + Figure size in inches, by default 3. + add_colorbar (bool, optional): + Whether to add a colorbar to the plots, by default True. + max_ncol (int, optional): + Maximum number of columns to use for the plots, by default 5. + + Returns: + matplotlib.pyplot.Figure + A figure containing the acquisition function plots. + + Raises: + ValueError: + If a column dimension is encountered that is not one of + ``["time", "sample"]``. + AssertionError: + If the number of columns in the acquisition function dataset is + greater than ``max_ncol``. + """ + # Remove spatial dims using data_processor.raw_spatial_coords_names + plot_dims = [col_dim, *data_processor.raw_spatial_coord_names] + non_plot_dims = [dim for dim in acquisition_fn_ds.dims if dim not in plot_dims] + valid_avg_dims = ["time", "sample"] + for dim in non_plot_dims: + if dim not in valid_avg_dims: + raise ValueError( + f"Cannot average over dim {dim} for plotting. Must be one of " + f"{valid_avg_dims}. Select a single value for {dim} using " + f"`acquisition_fn_ds.sel({dim}=...)`." + ) + if len(non_plot_dims) > 0: + # Average over non-plot dims + print( + "Averaging acquisition function over dims for plotting: " f"{non_plot_dims}" + ) + acquisition_fn_ds = acquisition_fn_ds.mean(dim=non_plot_dims) + + col_vals = acquisition_fn_ds[col_dim].values + if col_vals.size == 1: + n_col_vals = 1 + else: + n_col_vals = len(col_vals) + ncols = np.min([max_ncol, n_col_vals]) + + if n_col_vals > ncols: + nrows = int(np.ceil(n_col_vals / ncols)) + else: + nrows = 1 + + fig, axes = plt.subplots( + subplot_kw={"projection": crs}, + ncols=ncols, + nrows=nrows, + figsize=(figsize * ncols, figsize * nrows), + ) + if nrows == 1 and ncols == 1: + axes = [axes] + else: + axes = axes.ravel() + if add_colorbar: + min, max = acquisition_fn_ds.min(), acquisition_fn_ds.max() + else: + # Use different colour scales for each plot + min, max = None, None + for i, col_val in enumerate(col_vals): + ax = axes[i] + if i == len(col_vals) - 1: + final_axis = True + else: + final_axis = False + acquisition_fn_ds.sel(**{col_dim: col_val}).plot( + ax=ax, cmap=cmap, vmin=min, vmax=max, add_colorbar=False + ) + if add_colorbar and final_axis: + im = ax.get_children()[0] + label = acquisition_fn_ds.name + cax = plt.axes([0.93, 0.035, 0.02, 0.91]) # add a small custom axis + cbar = plt.colorbar( + im, cax=cax, label=label + ) # specify axis for colorbar to occupy with cax + ax.set_title(f"{col_dim}={col_val}") + ax.coastlines() + if col_dim == "iteration": + X_new_df_plot = X_new_df.loc[slice(0, col_val)].values.T[::-1] + else: + # Assumed plotting single iteration + iter = acquisition_fn_ds.iteration.values + assert iter.size == 1, "Expected single iteration" + X_new_df_plot = X_new_df.loc[slice(0, iter.item())].values.T[::-1] + ax.scatter( + *X_new_df_plot, + c="r", + linewidths=0.5, + ) + + offgrid_context(axes, task, data_processor, linewidths=0.5) + + # Remove any unused axes + for ax in axes[len(col_vals) :]: + ax.remove() + + return fig
+ + +
[docs]def prediction( + pred: Prediction, + date: Optional[Union[str, pd.Timestamp]] = None, + data_processor: Optional[DataProcessor] = None, + task_loader: Optional[TaskLoader] = None, + task: Optional[Task] = None, + prediction_parameters: Union[List[str], str] = "all", + crs=None, + colorbar: bool = True, + cmap: str = "viridis", + size: int = 5, + extent: Optional[Union[Tuple[float, float, float, float], str]] = None, +) -> plt.Figure: # pragma: no cover + """ + Plot the mean and standard deviation of a prediction. + + Args: + pred (:class:`~.model.prediction.Prediction`): + Prediction to plot. + date (str | :class:`pandas:pandas.Timestamp`): + Date of the prediction. + data_processor (:class:`~.data.processor.DataProcessor`): + Data processor used to unnormalise the context set. + task_loader (:class:`~.data.loader.TaskLoader`): + Task loader used to load the data, containing context set metadata + used for plotting. + task (:class:`~.data.task.Task`, optional): + Task containing the context data to overlay. + prediction_parameters (List[str] | str, optional): + Prediction parameters to plot, by default "all". + crs (cartopy CRS, optional): + Coordinate reference system for the plots, by default None. + colorbar (bool, optional): + Whether to add a colorbar to the plots, by default True. + cmap (str): + Colormap to use for the plots. By default "viridis". + size (int, optional): + Size of the figure in inches per axis, by default 5. + extent: (tuple | str, optional): + Tuple of (lon_min, lon_max, lat_min, lat_max) or string of region name. + Options are: "global", "usa", "uk", "europe". Defaults to None (no + setting of extent). + c + """ + if pred.mode == "off-grid": + assert date is None, "Cannot pass a `date` for off-grid predictions" + assert ( + data_processor is None + ), "Cannot pass a `data_processor` for off-grid predictions" + assert ( + task_loader is None + ), "Cannot pass a `task_loader` for off-grid predictions" + assert task is None, "Cannot pass a `task` for off-grid predictions" + assert crs is None, "Cannot pass a `crs` for off-grid predictions" + + x1_name = pred.x1_name + x2_name = pred.x2_name + + if prediction_parameters == "all": + prediction_parameters = { + var_ID: [param for param in pred[var_ID]] for var_ID in pred + } + else: + prediction_parameters = {var_ID: prediction_parameters for var_ID in pred} + + n_vars = len(pred.target_var_IDs) + n_params = max(len(params) for params in prediction_parameters.values()) + + if isinstance(extent, str): + extent = extent_str_to_tuple(extent) + elif isinstance(extent, tuple): + extent = tuple([float(x) for x in extent]) + + fig, axes = plt.subplots( + n_vars, + n_params, + figsize=(size * n_params, size * n_vars), + subplot_kw=dict(projection=crs), + ) + axes = np.array(axes) + if n_vars == 1: + axes = np.expand_dims(axes, axis=0) + if n_params == 1: + axes = np.expand_dims(axes, axis=1) + for row_i, var_ID in enumerate(pred.target_var_IDs): + for col_i, param in enumerate(prediction_parameters[var_ID]): + ax = axes[row_i, col_i] + + if pred.mode == "on-grid": + if "init_time" in pred[0].indexes: + raise ValueError("Plotting forecasts not currently supported.") + if param == "std": + vmin = 0 + else: + vmin = None + pred[var_ID][param].sel(time=date).plot( + ax=ax, + cmap=cmap, + vmin=vmin, + add_colorbar=False, + center=False, + ) + # ax.set_aspect("auto") + if colorbar: + im = ax.get_children()[0] + # add axis to right + cax = fig.add_axes( + [ + ax.get_position().x1 + 0.01, + ax.get_position().y0, + 0.02, + ax.get_position().height, + ] + ) + cbar = plt.colorbar( + im, cax=cax + ) # specify axis for colorbar to occupy with cax + if task is not None: + offgrid_context( + ax, + task, + data_processor, + task_loader, + linewidths=0.5, + add_legend=False, + ) + if crs is not None: + da = pred[var_ID][param] + ax.coastlines() + import cartopy.feature as cfeature + + ax.add_feature(cfeature.BORDERS) + # ax.set_extent( + # [da["lon"].min(), da["lon"].max(), da["lat"].min(), da["lat"].max()] + # ) + + elif pred.mode == "off-grid": + if "init_time" in pred[0].index.names: + raise ValueError("Plotting forecasts not currently supported.") + import seaborn as sns + + hue = ( + pred[var_ID] + .reset_index()[[x1_name, x2_name]] + .apply(lambda row: f"({row[x1_name]}, {row[x2_name]})", axis=1) + ) + hue.name = f"{x1_name}, {x2_name}" + + sns.lineplot( + data=pred[var_ID], + x="time", + y=param, + ax=ax, + hue=hue.values, + ) + # set legend title + ax.legend(title=hue.name, loc="best") + + # rotate date times + ax.set_xticklabels( + ax.get_xticklabels(), + rotation=45, + horizontalalignment="right", + ) + + ax.set_title(f"{var_ID} {param}") + + if extent is not None: + ax.set_extent(extent, crs=crs) + + plt.subplots_adjust(wspace=0.3) + return fig
+ + +
[docs]def extent_str_to_tuple(extent: str) -> Tuple[float, float, float, float]: + """ + Convert extent string to (lon_min, lon_max, lat_min, lat_max) tuple. + + Args: + extent: str + String of region name. Options are: "global", "usa", "uk", "europe". + + Returns: + tuple + Tuple of (lon_min, lon_max, lat_min, lat_max). + """ + if extent == "global": + return (-180, 180, -90, 90) + elif extent == "north_america": + return (-160, -60, 15, 75) + elif extent == "uk": + return (-12, 3, 50, 60) + elif extent == "europe": + return (-15, 40, 35, 70) + elif extent == "germany": + return (5, 15, 47, 55) + else: + raise ValueError( + f"Region {extent} not in supported list of regions with default bounds. " + f"Options are: 'global', 'north_america', 'uk', 'europe'." + )
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/deepsensor/train/train.html b/_modules/deepsensor/train/train.html new file mode 100644 index 00000000..b24cc1a0 --- /dev/null +++ b/_modules/deepsensor/train/train.html @@ -0,0 +1,636 @@ + + + + + + + + + + + deepsensor.train.train — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + +
+ +

Source code for deepsensor.train.train

+import deepsensor
+from deepsensor.data.task import Task, concat_tasks
+from deepsensor.model.convnp import ConvNP
+
+import numpy as np
+
+import lab as B
+
+from typing import List
+
+
+
[docs]def set_gpu_default_device() -> None: + """ + Set default GPU device for the backend. + + Raises: + RuntimeError + If no GPU is available. + RuntimeError + If backend is not supported. + NotImplementedError + If backend is not supported. + + Returns: + None. + """ + if deepsensor.backend.str == "torch": + # Run on GPU if available + import torch + + if torch.cuda.is_available(): + # Set default GPU device + torch.set_default_device("cuda") + B.set_global_device("cuda:0") + else: + raise RuntimeError("No GPU available: torch.cuda.is_available() == False") + elif deepsensor.backend.str == "tf": + # Run on GPU if available + import tensorflow as tf + + if tf.test.is_gpu_available(): + # Set default GPU device + tf.config.set_visible_devices( + tf.config.list_physical_devices("GPU")[0], "GPU" + ) + B.set_global_device("GPU:0") + else: + raise RuntimeError("No GPU available: tf.test.is_gpu_available() == False") + + else: + raise NotImplementedError(f"Backend {deepsensor.backend.str} not implemented")
+ + +
[docs]def train_epoch( + model: ConvNP, + tasks: List[Task], + lr: float = 5e-5, + batch_size: int = None, + opt=None, + progress_bar=False, + tqdm_notebook=False, +) -> List[float]: + """ + Train model for one epoch. + + Args: + model (:class:`~.model.convnp.ConvNP`): + Model to train. + tasks (List[:class:`~.data.task.Task`]): + List of tasks to train on. + lr (float, optional): + Learning rate, by default 5e-5. + batch_size (int, optional): + Batch size. Defaults to None. If None, no batching is performed. + opt (Optimizer, optional): + TF or Torch optimizer. Defaults to None. If None, + :class:`tensorflow:tensorflow.keras.optimizer.Adam` is used. + progress_bar (bool, optional): + Whether to display a progress bar. Defaults to False. + tqdm_notebook (bool, optional): + Whether to use a notebook progress bar. Defaults to False. + + Returns: + List[float]: List of losses for each task/batch. + """ + if deepsensor.backend.str == "tf": + import tensorflow as tf + + if opt is None: + opt = tf.keras.optimizers.Adam(lr) + + def train_step(tasks): + if not isinstance(tasks, list): + tasks = [tasks] + with tf.GradientTape() as tape: + task_losses = [] + for task in tasks: + task_losses.append(model.loss_fn(task, normalise=True)) + mean_batch_loss = B.mean(B.stack(*task_losses)) + grads = tape.gradient(mean_batch_loss, model.model.trainable_weights) + opt.apply_gradients(zip(grads, model.model.trainable_weights)) + return mean_batch_loss + + elif deepsensor.backend.str == "torch": + import torch.optim as optim + + if opt is None: + opt = optim.Adam(model.model.parameters(), lr=lr) + + def train_step(tasks): + if not isinstance(tasks, list): + tasks = [tasks] + opt.zero_grad() + task_losses = [] + for task in tasks: + task_losses.append(model.loss_fn(task, normalise=True)) + mean_batch_loss = B.mean(B.stack(*task_losses)) + mean_batch_loss.backward() + opt.step() + return mean_batch_loss.detach().cpu().numpy() + + else: + raise NotImplementedError(f"Backend {deepsensor.backend.str} not implemented") + + tasks = np.random.permutation(tasks) + + if batch_size is not None: + n_batches = len(tasks) // batch_size # Note that this will drop the remainder + else: + n_batches = len(tasks) + + if tqdm_notebook: + from tqdm.notebook import tqdm + else: + from tqdm import tqdm + + batch_losses = [] + for batch_i in tqdm(range(n_batches), disable=not progress_bar): + if batch_size is not None: + task = concat_tasks( + tasks[batch_i * batch_size : (batch_i + 1) * batch_size] + ) + else: + task = tasks[batch_i] + batch_loss = train_step(task) + batch_losses.append(batch_loss) + + return batch_losses
+ + +
[docs]class Trainer: + """Class for training ConvNP models with an Adam optimiser + + Args: + lr (float): Learning rate + """ + + def __init__(self, model: ConvNP, lr: float = 5e-5): + if deepsensor.backend.str == "tf": + import tensorflow as tf + + self.opt = tf.keras.optimizers.Adam(lr) + elif deepsensor.backend.str == "torch": + import torch.optim as optim + + self.opt = optim.Adam(model.model.parameters(), lr=lr) + + self.model = model + +
[docs] def __call__( + self, + tasks: List[Task], + batch_size: int = None, + progress_bar=False, + tqdm_notebook=False, + ) -> List[float]: + return train_epoch( + model=self.model, + tasks=tasks, + batch_size=batch_size, + opt=self.opt, + progress_bar=progress_bar, + tqdm_notebook=tqdm_notebook, + )
+
+ +
+ + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 00000000..58271dde --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,466 @@ + + + + + + + + + + + Overview: module code — DeepSensor + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + +
+
+
+
+
+ +
+ +
+ + + + + +
+
+ + + + + + + +
+ + + +
+ +
+
+ +
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ + + +
+

+ +
+
+ +
+
+
+ + + + + + + + + + + +
+ +
+
+
+ +
+ + + + +
+ + + +
+
+
+ + + + + + + + \ No newline at end of file diff --git a/_sources/community/code_of_conduct.md b/_sources/community/code_of_conduct.md new file mode 100644 index 00000000..cc6912b9 --- /dev/null +++ b/_sources/community/code_of_conduct.md @@ -0,0 +1,2 @@ +```{include} ../../CODE_OF_CONDUCT.md +``` diff --git a/_sources/community/contributing.md b/_sources/community/contributing.md new file mode 100644 index 00000000..ef6daa82 --- /dev/null +++ b/_sources/community/contributing.md @@ -0,0 +1,2 @@ +```{include} ../../CONTRIBUTING.md +``` diff --git a/_sources/community/faq.md b/_sources/community/faq.md new file mode 100644 index 00000000..7396b20b --- /dev/null +++ b/_sources/community/faq.md @@ -0,0 +1,97 @@ +# Community FAQ + +This FAQ aims to answer common questions about the DeepSensor library. It is our way to streamline the onboarding process and clarify expectations. + +```{note} +If you have a question you'd like to see answered here, make a request in a issue or in the [Slack channel](https://ai4environment.slack.com/archives/C05NQ76L87R). +``` + +## Questions + +**Q: Why doesn't the package name `DeepSensor` mention NPs if it's all about neural processes?** + +**Answer:** +DeepSensor aims to be extensible to models that are not necessarily NPs. +We also wanted to keep the name short and easy to remember. +The name `DeepSensor` is a reference to the fact that the library is about deep learning and sensor data. + +--- + +**Q: How can I contribute?** + +**Answer:** +There are many ways to contribute, from writing code and fixing bugs to improving documentation or translating content. +Check our [](./contributing.md) guide. + +--- + +**Q: Do I need to sign a Contributor License Agreement (CLA)?** + +**Answer:** At the current time, we do not require a CLA from our contributors. + +--- + +**Q: How do I report a bug?** + +**Answer:** Please submit an issue in our GitHub repository. Make sure to provide detailed information, including steps to reproduce the bug and the expected outcome. + +--- + +**Q: How do I request a new feature?** + +**Answer:** Open a new issue on our GitHub repository and label it as a feature request. Describe the feature in detail and its potential benefits. + +--- + +**Q: How can I get in touch with other contributors or maintainers?** + +**Answer:** +Request to join our Slack channel to stay in touch with other contributors and maintainers. You can join by [signing up for the Turing Environment & Sustainability stakeholder community](https://forms.office.com/pages/responsepage.aspx?id=p_SVQ1XklU-Knx-672OE-ZmEJNLHTHVFkqQ97AaCfn9UMTZKT1IwTVhJRE82UjUzMVE2MThSOU5RMC4u). The form includes a question on signing up for the Slack team, where you can find DeepSensor's channel. + +We also have a regular community Zoom call (join the Slack channel or get in touch to find out more). + +--- + +**Q: How do I set up the development environment?** + +**Answer:** Follow the instructions in our developer documentation. If you run into issues, ask in our [community chat](https://ai4environment.slack.com/archives/C05NQ76L87R) (on Slack). + +--- + +**Q: Do you have a code of conduct?** + +**Answer:** +Yes, we value a respectful and inclusive community. +Please read our [](./code_of_conduct.md) before contributing. + +--- + +**Q: Can I contribute even if I'm not a coder?** + +**Answer:** Absolutely! Contributions can be made in the form of documentation, design, testing, and more. Everyone's skills are valuable. Join our Slack discussion to learn more. + +--- + +**Q: How do I claim an issue to work on?** + +**Answer:** Comment on the issue expressing your interest to help out. If the issue is unassigned, a maintainer will likely assign it to you. + +--- + +**Q: What's the process for proposing a significant change?** + +**Answer:** For significant changes, it's a good practice to first open a discussion or issue to gather feedback. Once there's a consensus, you can proceed with a pull request. + +--- + +**Q: How can I get my pull request (PR) merged?** + +**Answer:** Ensure your PR follows the contribution guidelines, passes all tests, and has been reviewed by at least one maintainer. Address any feedback provided. + +--- + +**Q: How is credit given to contributors?** + +**Answer:** +Contributors are acknowledged via an `all-contributors` system, which records contributions (code or non-code) at the end of the project's README. +Code contributions are acknowledged in our release notes. diff --git a/_sources/community/index.md b/_sources/community/index.md new file mode 100644 index 00000000..dad2568e --- /dev/null +++ b/_sources/community/index.md @@ -0,0 +1,7 @@ +# Community + +The DeepSensor community is a group of users and contributors who are interested in the development of DeepSensor. The community is open to anyone who is interested in DeepSensor. The community is a place to ask questions, discuss ideas, and share your work. + +If you are interested in joining the community, please request to join our Slack channel. You can join by [signing up for the Turing Environment & Sustainability stakeholder community](https://forms.office.com/pages/responsepage.aspx?id=p_SVQ1XklU-Knx-672OE-ZmEJNLHTHVFkqQ97AaCfn9UMTZKT1IwTVhJRE82UjUzMVE2MThSOU5RMC4u). The form includes a question on signing up for the Slack team, where you can find DeepSensor's channel. + +We welcome contributions from the community. If you are interested in contributing to DeepSensor, please read the [Contributing Guide](./contributing.md). diff --git a/_sources/community/roadmap.md b/_sources/community/roadmap.md new file mode 100644 index 00000000..75d0d385 --- /dev/null +++ b/_sources/community/roadmap.md @@ -0,0 +1,24 @@ +# DeepSensor Roadmap + +This page contains a list of new features that we would like to add to DeepSensor in the future. +Some of these have been raised as issues on the [GitHub issue tracker](https://github.com/alan-turing-institute/deepsensor/issues) +with further details. + +```{note} +We will soon create a GitHub project board to track progress on these items, which will provide a more up-to-date view of the roadmap. +``` + +```{note} +We are unable to provide a timetable for the roadmap due to maintainer time constraints. +If you are interested in contributing to the project, check out our [](./contributing.md) page. +``` + +* Patch-wise training and inference +* Saving a ``TaskLoader`` when instantiated with raw xarray/pandas objects +* Spatial-only modelling +* Continuous time measurements (i.e. not just discrete, uniformly sampled data on the same time grid) +* Test the framework with other models (e.g. GPs) +* Add simple baselines models (e.g. linear interpolation, GPs) +* Test and extend support for using ``dask`` in the ``DataProcessor`` and ``TaskLoader`` +* Infer linked context-target sets from the ``TaskLoader`` entries, don't require user to explicitly specify ``links`` kwarg +* Improve unit test suite, increase coverage, test more edge cases, etc diff --git a/_sources/contact.md b/_sources/contact.md new file mode 100644 index 00000000..8d09384a --- /dev/null +++ b/_sources/contact.md @@ -0,0 +1,6 @@ +# Contact the core team + +If you would like to contact us directly, please loop in everyone on the core team: + +* Lead developer: tomandersson3@gmail.com +* Product manager: kwesterling@turing.ac.uk diff --git a/_sources/getting-started/data_requirements.ipynb b/_sources/getting-started/data_requirements.ipynb new file mode 100644 index 00000000..b9003716 --- /dev/null +++ b/_sources/getting-started/data_requirements.ipynb @@ -0,0 +1,448 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Requirements" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before getting started with DeepSensor, it's important to understand the package's data requirements.\n", + "Further details on what DeepSensor supports and does not support are provided below.\n", + "\n", + "DeepSensor **does** support:\n", + "* Arbitrary numbers of context sets (or data streams), each with arbitrary numbers of variables (i.e. data channels)\n", + "* Spatiotemporal data and static auxiliary data\n", + "* Gridded and off-the-grid data\n", + "* Moving sensors\n", + "* Missing data\n", + "\n", + "DeepSensor **does not** support:\n", + "* Data with irregular temporal sampling (i.e. continuous time)\n", + "\n", + "DeepSensor has the following **data requirements**:\n", + "* Data formats:\n", + " * Pandas Series/DataFrame (i.e. tabular CSV data)\n", + " * Xarray DataArray/Dataset (i.e. gridded NetCDF data)\n", + "* Regular temporal sampling (i.e. hourly, daily, monthly, etc.), which is the same for all variables\n", + "* Consistent spatiotemporal dimension names across variables (but arbitrary names are permitted, e.g. `time`, `lat`, `lon`, or `date`, `y`, `x`)\n", + "* Each variable has a unique ID, which is used to identify the variable in the model\n", + "* Missing data represented by NaNs (i.e., not arbitrary values such as -9999)\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Data Sources\n", + "\n", + "DeepSensor provides several functions in `deepsensor.data.sources` for fetching environmental data in the format expected by the package.\n", + "These are not intended as definitive data sources for DeepSensor applications, but rather as a means of demoing and getting started with the package.\n", + "\n", + "The following data sources are currently supported:\n", + "* [GHCND](https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily): Global Historical Climatology Network Daily (GHCND) station data\n", + "* [ERA5](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview): ERA5 reanalysis data\n", + "* [EarthEnv](https://www.earthenv.org/): EarthEnv elevation and Topographic Position Index (TPI) data at various resolutions (1 km, 5 km, 10 km, 50 km, 100 km)\n", + "* [GLDAS](https://ldas.gsfc.nasa.gov/gldas/): Global Land Data Assimilation System (GLDAS) 0.25 degree resolution binary land mask\n", + "\n", + "For more details on the data sources, see the API reference for the [data.sources module](../reference/data/sources.rst).\n", + "\n", + "`````{note}\n", + "Some of the data downloader functions used here require additional dependencies.\n", + "To run this yourself you will need to run:\n", + "```\n", + "pip install rioxarray\n", + "```\n", + "to install the [`rioxarray`](https://corteva.github.io/rioxarray/stable/) package and\n", + "```\n", + "pip install git+https://github.com/scott-hosking/get-station-data.git\n", + "```\n", + "to install the [`get_station_data`](https://github.com/scotthosking/get-station-data) package.\n", + "`````\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 2, + "outputs": [], + "source": [ + "import logging\n", + "logging.captureWarnings(True)\n", + "\n", + "import xarray as xr\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Cache the data in root of docs/ folder, so that other notebook don't need to download it again\n", + "cache_dir = \"../../.datacache\"" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-10-29T19:00:27.269168395Z", + "start_time": "2023-10-29T19:00:27.226884650Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T11:36:37.929530655Z", + "start_time": "2023-10-27T11:36:33.793092748Z" + } + }, + "outputs": [], + "source": [ + "from deepsensor.data.sources import get_ghcnd_station_data, get_era5_reanalysis_data, \\\n", + " get_earthenv_auxiliary_data, get_gldas_land_mask" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T11:36:37.948287959Z", + "start_time": "2023-10-27T11:36:37.940134911Z" + } + }, + "outputs": [], + "source": [ + "data_range = (\"2015-06-25\", \"2015-06-30\")\n", + "extent = \"europe\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Off-the-grid station data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Off-the-grid station data is data that is not on a regular grid, such as in-situ observations from weather stations.\n", + "In DeepSensor, Pandas DataFrames are used to represent off-the-grid station data.\n", + "* The variable ID is the column name\n", + "* If the DataFrame has multiple columns, each column is treated as a separate variable\n", + "* The indexes must be (time, x1, x2), where time is a datetime, and x1 and x2 are the spatial dimensions\n", + "* There may be an arbitrary number of additional indexes after these first three indexes. This can be useful for tracking station IDs, for example." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T11:36:38.212135690Z", + "start_time": "2023-10-27T11:36:37.952196514Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": " PRCP TAVG\ntime lat lon station \n2015-06-25 35.017 -1.450 AGM00060531 0.0 23.0\n 35.100 -1.850 AGE00147716 0.0 23.4\n 35.117 36.750 SYM00040030 NaN 25.4\n 35.167 2.317 AGM00060514 0.0 25.9\n 35.200 -0.617 AGM00060520 0.0 24.9\n... ... ...\n2015-06-30 45.933 7.700 ITM00016052 NaN 5.7\n 38.367 -0.500 SPM00008359 0.0 27.6\n 55.383 36.700 RSM00027611 0.0 17.2\n 59.080 17.860 SWE00138750 0.0 NaN\n 63.760 12.430 SWE00140158 0.6 NaN\n\n[16922 rows x 2 columns]", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
PRCPTAVG
timelatlonstation
2015-06-2535.017-1.450AGM000605310.023.0
35.100-1.850AGE001477160.023.4
35.11736.750SYM00040030NaN25.4
35.1672.317AGM000605140.025.9
35.200-0.617AGM000605200.024.9
..................
2015-06-3045.9337.700ITM00016052NaN5.7
38.367-0.500SPM000083590.027.6
55.38336.700RSM000276110.017.2
59.08017.860SWE001387500.0NaN
63.76012.430SWE001401580.6NaN
\n

16922 rows × 2 columns

\n
" + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "station_var_IDs = [\"TAVG\", \"PRCP\"]\n", + "station_raw_df = get_ghcnd_station_data(station_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "station_raw_df" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [ + "hide-input" + ], + "ExecuteTime": { + "end_time": "2023-10-27T11:36:39.812413803Z", + "start_time": "2023-10-27T11:36:38.210841412Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEeCAYAAAAXcoPjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddVhU29fHv0MqHUqDigKC2IGYIKhYiCJiB4jd6DWx89p17S5MbOy+FgYgYiAgKKHSzQCz3j/Wb0BMUNR733s+z8MjM3POPvucwb332uu71hIREUFAQEBAQEBAQEBAQOAHkPndHRAQEBAQEBAQEBAQ+PcjGBYCAgICAgICAgICAj+MYFgICAgICAgICAgICPwwgmEhICAgICAgICAgIPDDCIaFgICAgICAgICAgMAPIxgWAgICAgICAgICAgI/jGBYCAgICAgICAgICAj8MIJhISAgICAgICAgICDwwwiGhYCAgICAgICAgIDADyMYFgICAgICAgL/79mxYwdEIlHhj5ycHIyMjDBw4EDExMQAAK5evVrsGFlZWVSsWBGdOnXC/fv3P9vujRs30L17dxgaGkJBQQHq6upo0qQJ1q9fj8zMzMLjKleuXKxtFRUV2NjYYNeuXb/k/gUEfgWCYSHwr+fDgfprP1evXi08Z/Xq1RCJRLC2ti7W1qpVqyASiXD27NkvXm/z5s0QiUQ4evRo4XsSiQR79uxB27ZtoaOjA3l5eWhoaKBx48ZYunQpEhISyvy+BQQEBARKz/bt23H79m1cuHABXl5e2L9/P5o3b17MCFiwYAFu376Nq1evwsfHB7du3ULLli0RFhZWrK2ZM2eiRYsWiImJwdy5c3HhwgX4+vrCwcEBs2bNwvTp04sd37RpU9y+fRu3b98uNHT69++P9evX/5J7FxD46ZCAwL+c27dvF/tp3749lS9f/pP3U1NTC8+pXbs2ASAAdOfOncL3ExISSFFRkdzc3L54PVtbW6pYsSKJxWIiIsrKyqLWrVuTSCSiHj160P79++natWt08uRJmjJlCuno6FCzZs1+3gMQEBAQEPgm27dvJwAUEBBQ7H0fHx8CQHv27KErV64QADp06FCxY3bu3EkAaMaMGYXvHTx4kACQp6cnSSSST66XlpZG586dK3xdqVIl6tChQ7FjkpOTSU1NjapVq1YWtygg8NuR+402jYBAmdC4ceNirytWrAgZGZlP3pdy//59BAUFoUOHDjh9+jS2bt0KGxsbAIC2tjY6d+6MY8eOITExEdra2sXOffbsGW7fvg1vb2/Iy8sDAMaOHYsLFy5g37596NmzZ7HjO3bsiOnTp2Pv3r1ldbsCAgICAmWIdK6IioqCoaHhZ49p0KABAODt27eF782ZMweampqFHvCPUVVVRZs2bb56bQ0NDVhYWCAwMPA7ey8g8M9CkEIJ/OfYunUrAGDRokVo0qQJfH19kZWVVfi5p6cnxGIx9u3b98m527dvBwB4eHgAAOLi4rBt2zZ06NDhE6NCipKSEry8vMr6NgQEBAQEyoCXL18C4E2pLxEZGQkAMDc3B8Bjf0hICNq0aQMlJaXvvnZeXh6ioqK+em0BgX8TgmEh8J8iOzsb+/fvR8OGDWFtbQ0PDw+kp6fj0KFDhcc4OjqiUqVK2LZtW7FzCwoKsHv3bjRu3BhWVlYAgCtXriA/Px/Ozs6/9D4EBAQEBL6PgoIC5OfnIyMjA6dPn8a8efOgqqpabByXSCTIz89HdnY2bt26BW9vb1hZWRVuKkVHRwMAqlSpUqprExHy8/ORn5+PV69ewcvLC+/evUPv3r3L7gYFBH4jgmEh8J/i8OHDSE1NhaenJwDA3d0dKioqhV4MAJCRkcGAAQMQGBiIR48eFb7v7++PuLi4wnMB4PXr1wCASpUqfXIt6eQh/REQEBAQ+P00btwY8vLyUFVVRceOHaGnpwd/f3/o6uoWHuPu7g55eXkoKSmhadOmSEtLw+nTp6GhofFD1z5z5gzk5eUhLy+PKlWq4ODBgxg1ahTmzZv3g3clIPDPQDAsBP5TbN26FeXLl0ePHj0AACoqKnBzc8ONGzeKZfsYOHAgZGRkinkttm/fDmVlZbi7u3/zOoGBgYWTh/RHyAwlICAg8PvZtWsXAgIC8OjRI8TGxiI4OBhNmzYtdszixYsREBCAa9euYdq0aXj79i1cXFyQm5sLADAxMQFQJJEqKc2aNUNAQADu37+P0NBQpKSkYPXq1VBQUCibmxMQ+M0IhoXAf4aXL1/i+vXr6NChA4gIKSkpSElJQbdu3QCgmBFRqVIlODg4YN++fcjNzUVCQgJOnToFNzc3qKqqFh4nnVyioqKKXcvCwgIBAQEICAgQ4isEBAQE/kFYWlqiQYMGqFOnDvT19T97jKmpKRo0aIAWLVpg3rx5mDNnDoKCgrBmzRoAgL6+PmrWrInz588Xi9H7Furq6mjQoAHq168PS0tLwaAQ+H+HYFgI/GfYtm0biAiHDx+GpqZm4U+HDh0AADt37kRBQUHh8Z6enkhKSsLx48exZ88eiMXiYjIoALCzs4OcnBxOnDhR7P3y5cujQYMGaNCgAQwMDH7+zQkICAgI/DT++OMPVKtWDYsWLUJ6ejoAwMfHB8nJyRg9ejSI6JNzMjIycP78+V/dVQGB34pgWAj8JygoKMDOnTtRtWpVXLly5ZMfb29vxMXFwd/fv/AcFxcXaGtrY9u2bdi+fTvMzc3RrFmzYu3q6+vDw8MDp0+fhq+v76++LQEBAQGBX4C8vDwWLFiAxMRErFq1CgDg5uYGHx8fbN26Fc2bN8f27dtx/fp1nD17FrNnz4a5uXmxOUVA4L+AUMdC4D+Bv78/YmNjsXjxYtjZ2X3yubW1NdauXYutW7eiY8eOAABFRUX07t0ba9asARFh0aJFn2175cqViIyMRO/evXHixAl07twZBgYGyMrKwrNnz+Dr64ty5coV1r0QEBAQEPj34ebmBhsbGyxfvhyjRo2Curo65syZA0dHR6xZswbTpk1DQkICypcvjxo1amD8+PEYMmTI7+62gMAvRUSf898JCPyLGTBgAA4fPoyMjIzC97p06YIzZ87gzZs3X8wX3rNnTxw+fBhv3rwpzA4SHByM2rVrQ1ZWFq9fv/6iHlcikWDv3r3YvXs3Hj16hJSUFCgrK8PCwgJt27bFkCFDvlh4SUBAQEBAQEDg/wOCYSEgICAgICAgICAg8MMIMRYCAgICAgICAgICAj+MYFgICAgICAgICAgICPwwgmEhICAgICAgICAgIPDDCIaFgICAgICAgICAgMAPIxgWAgICAgICAgICAgI/TInrWOTk5EAsFv/MvggICAgI/CYUFBRQrly57z5fmCMEBAQE/v9S0jmiRIZFTk4OqlSpgvj4+B/umICAgIDAPw89PT1ERkZ+l3EhzBECAgIC/78p6RxRIsNCLBYjPj4er1+/hpqaWpl08HeTkZEBZWVliESi390VAQEBgd9KWloajI2NIRaLv8uw+P84RwgICAgIMKWZI0oshQIANTW1f+2kQUR4+PAh5s6di/z8fAQFBWHlypVwdXX93V0TEPjXIq2vKTXQb968iTlz5kBeXh5ycnLQ1taGq6sr7O3toaSk9Nk28vPzcfHiRdy8eRNGRkYwNDSEmpoaatasCS0trV92LwI/zr95jgCArKwsXLp0CS9fvoSmpiYGDBjwu7skIPD/ioKCAjx48AB5eXmoWrUqtLS0oKCg8Lu7JVCGlMqw+LeRn58PPz8//Pnnn7h//z4AoH79+tDV1YWrqyuaNm36m3soIPDvJD4+HqtWrUJAQABEIhEqV66Mbt26ISIiAjExMVBUVISOjg4CAwOxfft2BAYGQk9PD76+vlBVVYWHhwcAIDg4GPXq1cPUqVPRtWtXvHnzBnFxcXj27Bk2bNgAHR0drFq1CkSExMREyMjIQENDAzIyQt4JgbKhoKAAgYGBOHXqFDZs2IBatWpBLBYjLS1NMCwEBH6Au3fv4v79+7Czs4OlpSUSEhKgq6sLPT09dOrUCcHBwbh37x569+6N3bt3A+DNqg+VJBEREVi/fj2CgoIgLy8PkUgEkUiEihUrwt7eHj169IC8vPzvukWBzyAi6ZbjV0hLS4O6ujpSU1P/VbtR165dg52dHbp3745hw4ahQYMGUFFR+d3dEhD4R0FEyMnJQU5ODt68eYOCggLs378f586dQ2JiIqKjo3H9+nXo6enB3NwcJ0+eROfOnXH27Fm0bdsWABAdHY09e/bg7t27cHFxwapVqxAUFAQiQkpKCmbOnInXr1+jf//+mDNnDm7dugVFRUVcuHABbdq0AcDejqZNmyIqKgoXLlzAmTNn0KRJEzRo0ADz5s2DoaEhAOD169fo2LEjHB0dYWpqChUVFRQUFAAAZGVlf89D/Jfzo2P8v3WOcHZ2xsmTJwEAGhoa6Nu3L6pXr466deuidu3aX/SyCQj81wkLC8OzZ8/QsGFD6OnpFfvs1KlT2Lx5M0xNTWFvb4/r168jMDAQDRo0wIsXLxAeHo6cnBw0a9YM1atXR7169QAA69atw7t37zB8+HD06tULANCoUSM8e/YMW7duhZubGwCes2JiYtC3b1/8+eefMDExwc6dO5GamgplZWV06tQJNWvW/LUP5P85pRnj/18bFgICAl9GR0cHioqKMDc3h6amJnJyclCpUiU8evQIsrKyqFChAjp27Ij379/jwoULMDExQXBwMJycnLB8+XI8ffoUlStXLtbmnTt3MGPGDHTo0AGDBg3CqVOnsGnTJsyePRvNmjWDh4cHxGIx9uzZg4CAAMyePRu7du0qlDzl5eUVusXl5ORw//59+Pj4YP/+/VBWVgYASCQSHD16FA8fPkRQUBByc3NRrlw5vHv3Dt7e3nB2dkb58uV/6bP8t/NfNSxOnjyJcuXKoUWLFlBUVPzd3REQ+MeQlpaGZ8+eITc3F0+ePEFycjLevXuHlJQUvHv3DpGRkXj69CkuXLiA8PBwnDx5Eg4ODujTpw90dXXRqVMnHD9+vLA9IsL9+/chJyeHAwcO4MyZM9iyZQt0dHQwbtw41KhRA8OGDcPw4cPRp08fuLm54d69e5g8eTI0NDRgZmaGxYsX4/z58+jYsSPy8vLg7e0NV1dX+Pj4YNKkSdDV1UVqaiq2bt2KlJQUVKlSBW3atEFeXh6eP3+OLl26oFq1ar/xqf57EQwLAQGBbxIeHo6//voLT58+haysLMqVKwc5OTkkJycjLS0NqqqqqFu3Lvz8/KCnp4c3b95AUVEREyZMwMCBAz9JfHDx4kVs3rwZf/31F548eYIFCxbA0dERI0eOLAz2WrVqFe7evQsNDQ1ERkbC19cX6urqn/Tt4cOHmDlzJlJTU7Fnzx6YmJh88T4KCgogKyuLZ8+eYezYsVBVVUVaWhrMzc0xcODAwt0wgS/zXzUsBAQEPs/Vq1dhb28PdXV1dO3aFQoKCkhMTISioiKePn2KqlWrwsLCAleuXEFWVhacnZ2xb98+VK5cGVWrVsX48eNhZmZWrM2zZ89iyZIlmDJlCmxsbLBkyRIEBQVh6dKlMDMzQ3p6OgwMDJCamoqHDx9i0qRJOHjwILS1tQvbuHv3Lq5du4YDBw5g4cKFWLhwIY4fP/7JuJOTk4Po6Gjs378f2traqF69Olq3bg0fHx/o6OigSZMmqFu3rpDAp4QIhoWAwP9T8vPzkZqaCm1tbaSlpSEoKAjNmjX7ZHCUSCSFWlQpSUlJiIuLKzQSAgMD8fbtW6ipqeHkyZMQiUTIz89HaGgoFBQU0KZNG5w5cwZycnLw8PCAm5sbTExMPruzm5KSgq5du+Lw4cOYM2cOZGRkMG3atGITAgBcv34dwcHBaNeuHapWrfrF+9y6dSsGDRqEmJgYGBgYlPo5ERHOnz+PcePG4cSJE8Iu1TcQDAsBAYGPEYvFuH37Nm7cuIHU1FTo6OjgzZs32LhxI7y9vaGrq4sXL17g6tWrUFRUhImJCQYOHAhnZ+dP2srMzETnzp1x8uRJ7Ny5E4cPH8b48ePRrl27wnlK6rFu27YtLC0tMWHChEIJ7MfUrVsXampq8PHxgaOjY4nuJzw8HImJiUhMTMSlS5cQFBSEsWPHokOHDt//kP4jCIaFgMD/U/r27YuQkBBcu3YN4eHhqFevHurVqwdLS0vMnTsX2trahbtLt2/fRkxMDJSUlJCVlQVlZWVUrlwZ1tbWqF69emEig5cvX8Ld3R1qamogIgwePBjNmjVDQEAAlJSUMGvWrG9qzTt06AAzMzPExMSgTp06mDZt2g/dZ0REBCIjI+Hg4AAAePLkCXbu3IkqVapAWVn5kx8ZGRm8f/8eYWFhOHfuHAoKCqCvrw9ra2sMGzZMyDryDQTDQkDg309+fj4WLVqE9u3bo169enBzc0OlSpXQtWtX2NraQiQSISsrCydPnkRcXBzatWsHCwsLAMCFCxfg6+sLJSUlqKmpISgoCAUFBRCLxSAidO3aFSoqKjhy5Ahyc3Px/v17vH//HsbGxvjzzz8/u8ElJTk5GQMGDMCgQYPw4MEDEBF8fHwgJ/dp/qDs7OwSSVlFIhEePXqEOnXqlOoZpaWl4dq1awgNDcXjx4+hpKSETZs2FTvm3Dng4EGgoACYPh0Q9qUEw0JA4P8dgwa9wcGDkyEjE4mFC/vgyJEjeP78OebNm4fjx48jMjISGzduhKqqKlasWIH4+HiYmJhgzZo1AFiCdPPmTWRmZkJTUxOpqak4ePBgYdzCh8TExMDLywv+/v4YMWIE1q5d+83+3bx5E5GRkWjVqtUXd5gAdk///XcyVqwQQVtbAxkZsmjc+Baiow8jPDwcsrKyyM/Px4QJE9CqVavCierp06do164dXr9+DYlEAgDQ1dVF8+bNYWVlBYlEgooVK6JSpUpo3bp1iYJuX758CT09PSGhAwTDQkDg305eXh4WLFiAqKgoZGRkYPr06QgMDET//v0hKysLHR0dxMbGYsiQIfD394eeninS0qzRosVamJsDNWr4Y+TIkRCJKkEkMkXTpsshK6uGLVuKpxTPz89H69atMW7cOCxZsgTXrl37Zpa+Bw8eYODAgTAwMEDXrl3h6en51UQbGRnAmDG8sJ8zBzA2JoSEhCAoKAgSiQQuLi5QVFQs5j1XVlZGVlYWRCIRzMzMUKVKFSgqKqJ8+fIoX748MjIykJ2dDTk5ObRp0wbW1tawtLRExYoVi137+nVg505g61Z+3b49sGcP8F/PfC4YFgIC/zIyMoDevQFdXSAzE7CzAzw9Jf/bVTqI8PCdCAjYhxUrZHHmzHPUrbsJGhoa6NWrF1q1aoXJkyfj2bNnEIvF6Nq1K3x9faGlpYX8/HwUFBTAzs4Offv2xYEDB3D58mX8/fffmDVrFsaOHfvZ/hARHj9+DF1dXejq6pbqXsRi4GMHQU5ODpYsWYKbN2/i5cvKcHQEEhMTkZeXh4iIhjhwoCusrKwAsGRrxYoVuHv3LpycnNCqVSvUrFmz2ESUkpKCkJAQzJw5EykpKQgMDMSOHTtw+/ZtDBgwACKRCEQEbW1t6OjoQFVVtfDc1NRU7Nu3D8OHD0fnzp2Rm5sLc3NzdOrUCRYWFjA0NPzPpbMVDAsBgX8vrVvfws2bM1C+fDPo6AyAp+ch+Pj4wNjYGOfPn0dERASysrIQEBAAQ0NDaGpqYsKES5g40RoaGhrYuvUZ3r59AB0dCaKjtdG2rTrS09Ph6bkXly4B8+cXv15cXBzmz5+PrVu3oXv3V2jcWAfDhn29jx+nkf0cf//9N06d8sfu3TlQVi4HLS0DBAdHombNQDRpUhONGjVCXl4edu3ahVatWmHw4MGFctspU97h8ePHsLcPQ2xsGCIiIhAbG4vVq1cjLCwMLVq0QIUKFVCuXLmvju+enmxUXL9+HZs3b0bDho64f78xdu40/0/HYwiGhYDAv4zevYGNGwEVFR6A27V7DIlkAgwMDHDypDF27GgEX19fhIWFITAwDY6OpqhduzaOHz8OCwsLeHh4oFOnTvD29oaKigpMTEzg6en5xes9ffoUysrKXw2KLi1iMeDmxsZRTg6grQ3MnZuBWbNmISgoCEOHDkXXrl0xZIgIH3qepQP5x+Tm5uLy5cuFcRkikQhVq1ZF165d0bJlS0gkEri7u+PmzZvQ0tKCkpISJk6ciBkzZhSmKjx48CCsra2Rnp4OFRUVaGho4MWLFxg+fDgUFBSQnJwMeXl5pKam4vnz58jMzERgYCCWLl0KOzu7Mns2/3QEw0JA4N9Ffn4+li9fjps3w3Hy5CbEx8fj7NmzmDp1G5KT42BrawwlJSV07doV165dg46ODlxcXDB9+nRkZyuiSpWR6NWL04GLRCJcvdoLdesCmZnByMo6ho0bNyIqKgojRsjjI6UQAODyZWD9emD7duDwYeDOHWDDhm/3e+hQIC8PMDMDJk/m+S4kJATLli2DqqoqEhM9ERtbHqtWcfpzLS0j9OxZC69eFS3qJRIJzpw5g507dyInJwcREXXQq1dT9OhRB2PG6GLlShGqVQOmTp2KM2fOICgoCPr6+tDT04OsrCyqV6+OvLw8SCQS6OrqwtraGvXq1YO1tTW8vGKRmuqDoKCbcHV1hVjcGKGhf0Ne/hn09fVhZmaG1q1bw8bGpgy/zX8+gmEhIPAvISwsDDt27MCGDSfRrFkVyMnJoVWrVhg5ciTMzMxQo0YNnD2bBF3dKNSpUwempqY4dmwZIiI40FpeXh5jxozBypUrERsbi44dO6Jhw4bYtGkTli5dCm9v7192L0OHAlOnAlJbZcIE4NWrYRg0qDPatm1buNvTuzewcCEfl5EBDBjAE9O3KCgoQEREBKZNm4YBAwagffv2xT4fNWoUzp49i2rVqsHExARaWlq4du0abt26BYDHMWnWEZFIhJSUFFhaWiI+Ph4dOnRAZGQk8vPzoa2tjW3btqF69eolvvfNm4GXL4F69QB39xKf9o9BMCwEBH4PEyYAaWlAzZrAqFGfPyYmJgavX7+GhoYGjIyMsH//fvj4+MDb2xuHD1dHtWrl8f79n1BRUYGamhouXuyDy5dN8P79e3To0AHz58/HiBEj8OLFC6xYsQJhYRGQkZmC8+ftAADx8cC0acCqVcDAgcChQ3zdHTv4s8mTP+3TgAH8+cevg4OBuXMBTU0gORmYNAlo0ICPcXMDZs8GrKx4zIyOliA8vA8qVKiAoUOHwsrKCtOmAU+eAMeO8TlJSYCtLfD8+eefzY0bedi5Mwg1a/6N4OBghIeHQ1FxBlxcWuHKlXRERW1GRkY2uncnnD/vj2bNmqFly5Zo0aIFDh8+jBcvXsDGxgYPHjxAaGgoKlSogOfPR6BJk5o4c+YPBAYugZ2dHSpXrgwVFRW8e8eekdDQ0NJ8zf96SjPG/7+uvC0g8LvJycmBjIzMJ8HDEokEU6dOxe7duxEbG4t+/Z6ha1cjODgQXFxcoKFhgxo19JGdnQ0lpVRERUWhVaseePp0IdTUeIGenZ0NS0tLzJkzBw8ePECDBg1gaGiILl26QFd3DB4+1MCsWcCsWb/mXiWSIqMCACpXfobLl1Ph5ORU7Ljt24FBgwB5eZZ9fTg5fQ1ZWVloaWnB0NAQ169fh5mZGcLDw/HixQvcv38f+fn5CAkJgYKCAmJiYpCSkoIpU6YUnq+mplZsQNTQ0EBcXBxCQkJw8uRJtGrVCu/evcPixYvRokULNGzYEC9fvsThw4ehra1dGMRIRFBVVUWFChUgEokwaxZQpw7g5cWT5cqVwBcUZgICAgKF9O4NjBzJC+cVK/DJeB0bG1soXerZsyfKlSuHFy9egIigr6+Pffv2wdS0MXx9D8DGpjqsra0hkSyFubkMzM15x15OTg5Dhw5FZGRkYQYmHR0d3L7dCj16JENNTR1xccCRIyxhdXYG+vUDypUD1NSApUs/3/ePQyRkZdlrvWBBkWECAD16AL6+/LumJhsVAI+XDg5+cHKqi4kTJxYeP38+YGAA3L4N3LzJxs7Xcm9kZcmjWrUGGDOmwf9eZ6FSJXvIy+/DqVNVAYxHTEwBBg48D1XVm6hfvz7Onj2LDRs2QFZWFvPmzUONGjXQuXPnYu0GBwNdu3rjzp1K2LlzJ8LCwhAXFwcVFRXUrl0b164FYuLExzAwsIC8fKNCg+lzTJjARlZBAVC9+ucNtf9PCB4LAYGfQG5uLpYsWYIbN27g7t27SEhIKJYBIzIyEj4+Pli/fj1iY2Px/Plz+Pqa4P37CNy4MQINGtTGzZtn8ebNG5w4cQK7d1/HixeacHNb/1l384sXLxAUFAQXFxfMnSsPTU1g3Dje9ZkxwxtGRk8hJycHiUQCQ0NDzJs375OgtR/lwAHg0SNg0SJ+raPTFnfvbkOVKl8O5v4a9+8DpqYcNEdEWLNmDfz9/TF06FCsWbMG1tbWqFatGqpVq4Y6dep8Uv31e9i9G/Dzi4OKijwyMlTx6lUTVK5cCRoaGlBRUSlM4Zuamor3798DAF6+VEXbtjrIyclBZGQkwsMV0Lx5hUKPU7NmzVChQoUf7tvPRPBYCAj8etq3vwYbm6vo0aMHLCwsislCZ8+ejSdPnuDNmzfo378/hgwZAgA4fPgwvL29MWjQUJw5Y4moqNWIi7sCADAwuAZNzRYICeE2goODYWxsDE1NTSgoKKBhw4bYuXMnDh2qhjt3AEVFQEaGMG1aCJ4/f478/Hzo6urCzs7ui/EE06YB798DMTGcLWnVKjYCVq1iA2LwYBSTTn34ul8/YNcu/v3t27eoXbsHwsNPfZJEJDgYaN2aF+ItWrARsnXrlz3bZmZA7dqAgsID3Ly5ADY2xggPV4W5eRgyMjIAAHFxDXHlyrjvGp9yc3MhKyuLvLw87N9/D56edtDWnoI//qiAK1cuoGPHjli5Mgzt2xMkEgnk5OSgp6cHc3Nz3LtnBj09U4waxUahj08k2rc3Q9++lT+bFeufiuCxEBD4xaSlpUEsFqNChQrYvXs3duzYgUaNGkFBQQGLFi0qNoC8evUKpqamMDc3x7Jly3D37l00adIEL17MQXZ2Nmxtq6NzZ97lNzIywvDhwzF8+PCvXl+6e3/27FncuJENO7un6NnzGQwMDBAaug537iQVZkoKCAhA79690bdvX/Tu3bvMApXd3dmlP3gwx1hYWcl/l1GRkQF0787u8/h49mwsXpyJ5cuXY9q0aVi3bh3mz5//UzSup08DR4/qw9/fv1BqtWLFcrRs2fKL54wYkY4xY95DTk4ORkZGGD9ehOnTExEWFobg4GCMHTsWCQkJqFatGlq2bAk7O7syN+oEBAT+uWzeDFy9CigrA2/fAlOmhGPz5gUIC5NFevpTGBgYwMLCAjk5fPyzZ89w+vRpnD59GhEREVi5ciUuXbqExMREBAQEQF1dE3/91Rp2dg3QqJEL5sxJRb9+2Th2TBcf2gO1atUq/F0sFgPg69+9Cxw9WgCJRIKRI7ejSZMjqFu3F3r3lsOzZ9ewbNkyLF269BM56NChQMeO/HP5MrB4MY/3WlpFXomkpKIEHmIx79RLsbJiQ+HxYyAz8zwUFT0xZYoyVq8u/rwOH2ZvSYsW/LpdO8DPr+hzsZivKyvLm1lr1wJLlmzF06eXYG6+HDk5I1G+/Chs3vwHVFVVcewYEBDAbX4P0uxT16/L4dKlliAi2NrexMyZ3aGlJULXrl1Rv/5ojB0rKqwHFRsbi7CwMPj774G5eQQuX86FoaEhmja1wvLl53D8+Cvk5eVBW1sbLVq0gJ2dHapWrfr/I0CcSkBqaioBoNTU1JIcLiDwn2LdunVUs2ZNql+/Pvn6+pKioiKFhobSvHnzaNasWZSVlUXXrl2j4OBgIiIqKCigqKgoOnr0KB05coQKCgqoS5cudPv27e/ug0QioZo1axIAatJkC23cuJGGDh1KNWvWJBubdZSXl1fseLFYTEuXLqV27dpRSEjID93/h7x+/ZoOHTpEEyZMoJEjR35XGx4eROnp/PucOXNITk6J1NQ0qG/fvrR79256/fr1D/VxxQqiP/4gmjbt08+8vPjf3NxcysjIKHz9NZYt4zbFYqLZs4l27Pj0GIlEQmFhYbRlyxbq1asXOTk50fTp0+nGjRuffDe/gx8d44U5QkDgy7i6ZlGfPsOoc+c75O7uR4aGznT79m3S0jInBwdfOnmSyNWV6ORJPn78+PGkqqpKpqam5OXlRREREeTk5EQTJ06kw4cPk61tIJmaFtDChUS3bhG1aEFUtSrR9u1f7sO+ffsIAFlatidr6/ZkZGREFhYWpK5en6ys1tDRo0SGhkRduxLdvx9NXbt2penTp1NmZmZhGx+Oh7m5RCYm/F6vXkRLlvD76elE7u48jnfrRpSYWLwfFhZ87KpVq2j37t1kZsb3IOXsWaKpU4n69uXXJ08S+fgUvSYicnEpardp00zq0+ca9e/fn5o0aUJGRk505swZunWL++XlRTR2bOm+ry/h4VH0u7p6LapUqQtdvx5ERHyvn2P1aqK//ip6PWkS36OUt2/f0qFDh2jkyJHk5OREvXv3pu3bt1NsbGzZdLqMKM0YL0ihBAS+g2PHjmHVqlWQl5eHhoYG/vjjD9SuXRt9+/ZFaGgo9u3bh+rVq6Njx44QiUSwsbHBq1evYGNjg2HDhiEhIaEwTerWrVvRtWtXeHl5/VCfiAjt2rVDp077ERCgiUWLgMmTQxAV5QeR6AratWuHYcOGFavbEBsbC09PT7i4uKBq1aqoWLFi4Y+8vDxyc3Px8uVLnDhxAlevXoW8vDxq1qwJe3t7WFpawsjIqHCHZfny5bh79y7atWuH6tWrw8bG5rt2Xz50nV+8eBFr1jzE1atL8OjRXZiamv7QM5ozB6hfH+jQgYMB16zh3S4p3boVuduvX+ddshUrvt3uhQvAxYt8fsOG3z6+oKAADx8+xNmzZ3Hnzh2oqKjA0dER7du3/2odkJ+FIIUSEChb4uLicPr0abx58wbLlh2EgUEXVK8eCpHIBKdO+SIvLx6urq4YMGAGVqzYCUXFMAwc2BfuH2R/kEgkyMnJwdSpU9GoUSP06tULwcE8fnXqxBn4Dh0CVFUBPT2gaVP2Gs+Z82l/8vLysGbNGkRGxuLVq6U4ckQMd3dfPHiwDUpKTVCv3jDs2GEMLy/g3Tvg2DHChQunsXz5cixbtgx169YtJmXy9ASuXGGvgqwscPZsELZujUPt2rWhr6//2Wdy6tQp9Oy5E82bZ8LS0hLz589Hv37lYGhYNM4OHcpxGiEhwLJlgI8P4OEBODgUHTN4MI/bmzZFYNSoqgCAfv36YePGjRg8uFxhH7+H+fP5/uXlWYr14fj/oVQtKYm96k2aALm5+GqMxeTJLB8rSYzF+/fvcfHiRZw7dw5xcXGoU6cOnJyc0LRp099a6FXICiUg8JPp168fXr9+DXl5eWRlZcHCwgKZmZkICQlB48aNsWXLFmhrayMpKQmLFy+GjY0NTp06hVu3bkFFRQW6urqoUKECqlWrhl69ekFDQ6NY+5mZmXjw4AHEYjEsLCyKLeA/x/Xr17Fq1Sq0adMGQ4YMwcuXvGju0YMDAwsKCnDs2DHs2bMHsrKy6NChA7p06QINDQ28f/8eZ86cQXJyMt6/f4+EhAS8efMGMjIykJeXh5mZGWxtbdG5c2dIJBIEBgbi+vXreP78OSIjI6Grqws5OTkoKChgQ0nyDX6DQ4eAW7d4QE9MTEeNGv2walWPYhPu9zJpErvvpUyYUDw48fJlnjikkt/PpVn8GSQnJ+PSpUvw8/MDEWHUqFGwtbX9NReHYFgICJQlUnmrjc0AxMTchFh8DkFBGnj16gVcXftDRmYubt7sjHbt6qKgoAB9+vTBxIkT4erqiubNR+PEiZcwNHyOcuWS8e7dOwwaNAiurq4AOHtUeDhgbAy8ecPXE4mAVq14kRsW9vn03QUFBZg0aRJq166NlJS+uHgRePECqFSJICd3GxoafyE/X4KEBHdMmdIOAQEKmDwZqFIlGfHxnSESqQMoDwODijA0rIiHD+uhSpV0SCTBSEt7irQ0HdjY1IGBwQPExcVBV1cXlpaWaNq0KZo0aYJ9+/bhxo0buHVrKfr3V8PEiUBoKMuqrl4tSvwRGgr8+Scn9cjI4Dg7HR3A2pqL5tna8oLewoLrPW3ZkofAwFFo3rweNDUHo0MHzlD1PVy5AgQFFSXfuHMHuHEDkMaWS+eHvXuL//6zkEgkCA4OxtmzZ/H3339DQUEBvXr1gouLy1cLDP4MBMNCQOAX8OTJEzx58gSxsbF48+YNAgIC0KxZM8ycORMikQhDhw5F27ZtsXHjRtjZ2UFbWxsjRoyAgYEB6tatCyJCWFgYwsLCAHDq2WrVqgEABg4ciMqVK0NdXR3Pnj1DTEwMRCIRJBIJRCIRjI2NUaNGjcKf6dOnY9++fThz5gyaN2/+1X4nJSXB398fJ06cQEZGBuTl5VGlSpXCXN516tQplachLi6uMCi8rDhwALh0CXj6dDdatnyNefOmlkm7Y8ZwkKGUkSOLeyz+CURHR2PNmjV4/PgxRo4ciY4dO/70awqGhYBA2fHoUQ769duHxo0zERWlgtu3r0FLKxvZ2VFQVtaCs/MJVKq0Fz4+w7Fz507cvXsXwcHBeP48G7m5WZgwoS9u3KgFc3N1DB6shoSEBFhbW0NFRQVKSsCaNTlYtMgbqanReP9eE02bWmLwYEPcu1cOJ0/q4O+/q8HQ0LBwHL9x4wb69OmDjh07Yt26dcX62qkTB3GvXQu4u79C69YnsGfPeejqaiAhoQ3q1rXGihXGqFixIuzts2BpmYBGjeIwZcojlCunhpMna6FatWqoVYs9D1eusPc8MTERz549w7lz5xAUFIRatWrBx8cHeXmKaNwYSEzknf5Fi9gD8SG7d/P4f/Mm90/qNZB6lOvVAywteQPo9Oke0NV1w7FjrvjRskzTp7MRoa5e9N7Hm0/BwTyHGBp+3jP0M0lNTcX27dtx8uRJdOzYEZ6ent8cb8ViNtB+tHK4YFgICJQRKSkp8PPzQ3x8PHR0dKCmpgZ9fX0sWrQIlStXhoaGBs6dOweA05eGhoaiTp06AIBWrVohJycHrVq1wpgxY9CmTRsYGRnh9evXePz4MWRkZGBqaop69epBW1sb9vb2KFeuHADAw8MDixYtgo6Ozid9kkgkeP36daFhExoaioKCAnh6eqJFixallh9J60M8fvwYd+/exYMHDzBkyBC4ubkhI4MX3woKnKXDze3Hnmdpyc3NRYcOHbBz584yMVyuXAH27QMqVwaiolg60L8/f5aXB0yZwm79Fi1YblASNm8G/v6bf7exwTcr0JaU9PR0LFq0CEFBQRCLxVBUVETr1q3h5ub2RanB9yIYFgICpWfECE6ZLSvL44dUgtOzZyaaNduB8+fPg4hw/XoKlJXVYGOjAGvrTrh0SRd16pxGdHQ0cnNzMXz4cAQEBGD58q3IyXn72Ws5ODjg4sWLMDAAbGxeQEdnGUaP3gBr6yQMGfIUDg5xOHAgB3fuvEWHDmF48+YNEhIIycmGUFExRnz8HgwY0A0LFiz4pO3hw4ETJ1jK8+YNL0aHDInDypXX0L37EyQnv8b79+/x9KkMVFSaYOZMT4wbp4OUFF6w1qsHKClxYPiFC0XB21/C05MNAzs7ljpt3IhPjILr19nz4OjI6WdnzSqSIknlsmIx0LOnK2RlF+LgQfPv+QqLERfHho5082nlSp4rXFx+rN28PK7NUaMGS6x+lIKCAhw/fhwbN25Ey5YtUadOHRQUFKBZs2bQ1NQsPG7yZOD1a5bKRUcDBw9yEd7vQTAsBAR+gNzcXLx58wazZs3CjRs3YGNjAxkZGfj6+kJHRwejR4/G6dOnoa2tDWNjY/Tp0wdGRkZQV1dHUlISrl69ijNnziA7OxsqKip4+/YtiAgLFy78RN6SlpaGy5cvo2bNmjA1NYVIJEJOTg5cXV2xYcMGGBsb/5b79/LygqqqKoKDR8Pf3wIqKrzb36zZrzcuXrx4gVGjRqF8+fKFXhUbG5sfMjSioz+dyPr1Y/mYujrvRNWq9e0J5dw54OzZoh21CRN4svwZTobc3FycO3cOBw8eRGpqKjp27IgmTZqgVq1ahTtY34tgWAgIlI6//spFZORDxMWtQ2pqKl68iMWLFw8xbtw4rFmzEe3bO6Jx48a4ceMGbt9WgaJiHvLz7WBikoS+fTWgoaEBkUiEkJAQ3Lp1C5MnT4afXwds3kwIDQ1FQkIC1q7Vha+vWTFtvZERsGVLIkaMGI26dffi3Dlgyxbg/Hle5L98ybFhoaHA7NmEFSviEBERgS1brODhoVWYaQko2n0vKOAYhtOngRkz2MAYMwaIjeUNmHv3+Phq1QrQvfsl7NixGp6eHggM7IJHj0RISQEqVeJsgI0bsychLo43XT7OAh4fz0aCVDUrzfD0cT2jzp15EbxmDcuNcnM5m9WhQ3y8qyvQti2wYcMbzJ8/AHv3zkCdOnV+ePzx9+cxXV6en4OHB7+fl8cGmJYWG5P29tyHb3HsGHDmDLcVGsp9Lsl5JaGgoADnz59HWFgYZGVlcfXqVUgkEnTt2hVOTs4YPVoVa9YkQV5eHoqKqhg0CN8dfyIYFgIC30lUVBTat28PIkJycjIsLS3RrVs3mJiYwN7e/pN82wC7ff39/XH79m3MmzcPAODp6YktW7YAYO/D9u3bMW3aNMybNw8FBQW4du0a9u3bh7i4OLRr1w5Pnz5FREREoXEyfvz4TwrL/Ury8/OxbVsIVq+ei5o1FbBx40aoqal9kqP8V5Kbm4snT57gwYMHOHPmDGxsbDBx4sQy0ZrGxfGu2YfFqT6Ox/gcn3sev+IZZWZm4tSpUwgICMDDhw9Rp04dvHnzBhMnTkTDkkSPf4RgWAgIlIz3799j0aJF2Lv3LrKygmFqagpjY2PIy8vj/ftO8PPrBB+fi4iJkWD0aB2cPNkMV66UQ3AwcPv2fbRu3QvVq6uha9euqFKlCuLj4/H8+XNs3LgRAwZEolWryujbF1i9mvDgwW3Exa1HWFgW9PVtsGhRc5w/Xx0rVoyEmpoLFBXdMGIEBzpHRAD5+ewpsLTkgqVr1xb3HHwYfBwczBsohw/z4r5KFSAykj+TnuPqykZFSgq/Z2zMyS9iYsSoVGkUtm0LRYUKs5GXZw97exHu3WNDBOA2Bw78NAYhOJilrvPnF7338Zh5+TLXxpg4kYsIqqoC+/fzxpaODseZpKezkWJsDLi5PcHJkycRGBhYOBbp6XkgLa01Cgq47R+Nex43jmt4SEsSDRsGrF//7fM+lt9+/LqsSU5OxrFjx3DgwHFERMgjLIyzkfz111948MALW7Z8X5WJUo3xZZ1mSkDg34yhoSGZm5tTQEAASSSSbx6fk5ND7dq1o5kzZ9K9e/do6dKlNHfuXDp//nzhMRkZGdSoUSN69eoVSSQS6t+/P82ePZtevnz5SXvJycn09u3bMr2n7yUqiqhDhzNkZ2dHycnJlJtL1L//7+4VI5FIaNu2beTo6EjXr1//4fYyM4unJBSLiUaP/vZ5y5cXT/G4a1dR2sVfzevXr2nQoEHUr18/2r9/P4WGhlJBQUGJzhXSzQoIfJvs7GxSU1MjkUhEU6euoLp1l1FUVBQR8fjh51d0rK8vpzo1NMwlL68/ydHRkSwtLQkAAaCHDx8SEc8PVatWJSMjI5JIJLR4cQHVrTuLqld3pN69p5GLSwRlZGTQvn2XyMJiNjk7O9Ply5eL9cvZma8fFkaFffH2Jjp4sOiYa9c4jauUD1OnEhF16UJUsSL3uVs3Tu9qZVX0ubk5Ud26/Hn58kSWlkSNGydR9eo1SEOjB/n4EJmZFW/T1ZV/pG1K08q2a0cUF8e/e3kVf25EnLL2w/Sybm5EPXsWvXZ353S3RETDh/O81Lcvp3IlIlq6NJkaNBhGo0ePpsjIFOrYkd/PzSUaMoTvXfqsSoq3d/HXf/xRsvM+Pq6k55UFjo6p9OxZBCUmJpKz83oyN7enAwcOlGht8zGlGeOFAnkCAh/w/Pnzz3olvsSrV69w/vx5qKqqYt26dUhISEBBQUGxonPKysq4e/cuAGD9+vUwNzfH1KmfD0b+ODvU78TEBBCLsyASdcf+/Ro4ceLHMmBcvszu7nLleMdp1Kjvb0skEmHgwIFwcXHB/PnzsWDBAvj7+393e0pKxSVQBw9yqsNvMW4c66yvXmWddblywEexkZ9l/nze2cvJ4Z2vskgAZWRkhM2bNyMiIgI3b97Exo0bERoaiu7du2PQoEE/fgEBgf84r169QpMmTbBu3TqYmpqiRQuWDsnKAs2bF5dOurtzPFdOzjg8e2YEObm5qFFjGXR0luLyZafCOUJZWRmPHj1CeHg4RCIRCgoWwcNDGyNGnMegQSLs2cPt9ezZChERrdC8OYrJmZKSgGfPuPL0/3J/wNwc0NcHTp5keZOsLI81H47fsrJ8rjSoNzmZPR5Xr7Ls5/17FF576lROwaqszJ6IZ8/Yw1G9uibevdPHq1fbMHo0exBu3+bxbP16Pk5aBRxgGe2hQywPGj2avSrOzsWlowUFLIGysGB5arlyLIGSekIAloNFR3M7jRsDffvy+ytW8Bzz/LkGAgL+wuXLlzFokCuyspyRlOSBPn1UsG0by7O6dOFx+EspYj9GTY2zRDVuXPTcS8qNG/z3ceNGyc8BOOj6e2MiAODAATWMHasGeXnA0XEoDh3ywPLly9G+fXsoKiqifv36aNSoEdq2bfv9F/kcZW2pCAj8f2bXrqLiPy4uRJs2naK6detS8+bNqXr16gSALCwsqHz58vTq1SsiIoqIiKChQ4dSmzZtaMqUKSXeRf4nsGrVKurRYzjt2pXxQ+0kJvLzkuLjw8/yR5FIJOTr60vdu3f/rvPT03l3T+p1ePaMd8/E4h/v25dYvZo9HVKcnX/etcRiMbVt2/abxwkeCwGBsuHWLd6Ft7QkCgwkGjJkJAEgZWX2VvTqdYhev35drACaRCKh6OhoWrFiBfXr169wR/ljD7G3N1FQUNHrsDCijh2J9u7lcaRbN96Vb9Om6JjcXP65dq14sbjcXCInJ+7vwYNEKirFC9UpKxMpKXERPAUFIj093u2/dIk9H+rq3BcDA3tydU2hcuWIJk/m+7awIJo3j68XFcXzpYcHUb9+X35uERFcaHTnTqING7i/UhYuJNq0qei1mRm3V6PGp+14eBT3duTl5VH16mOoa9cNxQrTSY8tDdOmscdhxAiiR49Kft7ChXzewoUlP97dnZ93x45ET56Urp8lIScnh27dukXt27en6Ojobx5fmjFeMCwEBEpBr178b0pKCnl6epKFhTclJyeTRCKhjIwMOnHiBFlbW1OjRo0KJ4fVq1eTu7s75Up9t/8izp8/TxMmTCBzc3PKzs7+7namTi0+IRKVflD/mNDQUHJ2dqa5c+d+17N98oQn46goroz6o/0pKR9fZ8kS+mTCK0sWLlxIW7du/eoxgmEhIPDjXLtWNEf06CEhS8u15ODQmjZt2kQbNmwhLa1ahVKofv360aZNRP36ZZG2tg117z6EfH19i208hYUVyYYOHiy+YCYqbnj4+RHVr0/k6MgbJh9y8mTRsUuXEpUrx9ImKyve5Fm9mhfr164RzZxJ1LkzEcCGQc2aRFWq8GsrK6LBg4mMjbkNS8tEkpFRJEXF8TR1apG0d/Toor63acNGTGIikY5OkYTpYzZs+PJrHx+iOnWIOnTgfq9Ywe/PnUtUu3bRcc2aEbVty7IuKyuiWbNyqH79hVS1qjMtXZpEvr5Fx5ZE2hsWVlS9+2Mp1M9E+jf0pdclIT2d78/Li7/fL3H27FmaMGHCN9srzRgv81k3hoCAAAB2c3t6cgBZfDxQvnwe4uLisHTpUmzduhXPny+DpqYmZGRkoKKiAmdnZ3To0AFnzpwpTPs6atQodO3aFf369fvNd1N6WrduDUNDQ7Ru3Rpyct+vnGzblmUBUu7fZ9dySbh+nV3WGRn8WiKRYOnSpZg2bRrWrFmD6dOnl7oi6evXr9Gr1zy4u+/Dkyf+qFXrb2RmxiAhQVKqdr4HeXnO3CIlOJjT3v4s+vfvj927d2PEiBE/7yICAgLYs6dIbvT0aVO8fDkfSkoOSE9Px5o1WZgwYTA2b96MVq1awdZ2JcLDge3bFTFkiANu3yZ07Ni1mIy2WjVuc+FCTgP7tYw+Li6cOnvEiE/lM35+RVmXli7l6tYXLgA9e7I0KTCQg5v79GEplKEhS5CSkzmJhZISYGbGctF9+1gWNXMmsGKFFvr0iYNE8g5+ftsxYQJfQ1+fpUpaWhx4PXIkMGQIZ9EbN+7z/VdU/Pzrfv14fHz0iNPOGhgUFbCbPh2Qk+M5ukYNlks1bw4cPQpYW1/Drl3tMGRIJYSFHYO3tyYOHWKpVkYGZ51atOjr36e3N3+fmzZx4Lj0/n42/8s6X0gp1NmFdO8urU7OWaw+rCD+IW3atMH9+/cRHByMvLy80l/oMwgxFgICX2DGDB5M58wBsrLy0aLFcURFrUVurgkaNKgHb++NiIyshYULtSAnJwdZWVnIysqiYsWKUPxolKxUqRIiIyNBRKWuM/G7MTMzK6yV8b3GRYsWnCddqplNSwN8fb993ogRgLY20K4dT4KTJiVj+XJPtGnTBkeOHPnuZ5meno6nT5ejd+9kAIC2tjb09Fxgbn4HOTnvcf36WzRo8PlzxWKeqLt0+b5MIxs2cKEnLS3WPVeu/GM62m+hr6+Pixcvon379j/vIgICAkhKeoG5cw/jyZNgxMdHgCgDZ84sxNmzEsjI5GHmzAJUqlQJISEhGDVK8X+ZkGQwf/58vH+/ER4eG3HgwMhibWppFWUR2ryZC8epqXHNiD59iuIWXr7klLMnT37ar4ICaf/43OxsHnNatQIWLACePuVxTUMDaNiQ061KJPwzcyYbFq9ecSpte3u+3uTJ3Obdu6ooVy4cCgo78ewZx6glJHDcxJMn3F9pHMf9+3yNz6GszPEY1ta88E9P5/dlZHhjCuBFctWqxc/LzeX+v34NPHwIhITkoVYtHzRunIQmTY7By6toB+vwYc7stHMn38PXxl1VVVVkZGRAJALq16+POnXq4NGjyli3ThO9evUqVi+irElKKop/2byZjanSIBazcSe9v8mT2fj6HCKRCGvXrsXs2bNhb2+PYWVRiKkkLhXBzS3wX8TLi/89fvw4ASBz8wEUF5db6BotSdag6Oho6t27N40cOZJev379czv8Ezl69Cg5ODgUZkAhYve6lxdRQMDPuWZu7qeuf0vLcXTs2LEyad/Pj/ufl5dH9es3JVXVVXTkyCtydnYma+tptGHD40/iYTZtYh3zpk2sgf1Q9/tPZsuWLfTnn39+8XNBCiUg8P3cunWLpkyZQk5OnahBgyt09ep72rIl76sSliFDiLZsIerbN5+aN99C6ur2tG/f1wdTd/dPXwcFsbxy+PCP+8Tv+/jwGO3iwvIYTc2iLEomJhxL0a0bn+PkRGRkxGPv9OksfzI05GNcXIhsbYlsbPi8zp15/DM3J1JWXkblyw+gSpWSSEaGaMECbm/dOpZYhYVxf74VT3b8OMe7bd/O8Rr9+xOZmhbP2NeiBffX25tjLPr14+OWLyeqVSuPOnXqRHZ2vrRkSfGMfaUlMzOTnJxCyM/Pjzp16kTe3lPIwOAOAaAmTfZ/Ub7q58fPvX//T7NdlRSpTMvLi2NVvocP//Y+N5d+zJgxYyjoY73yBwhZoQQEfhAiwosXZzBt2l2cP8/Zhl682AE1tXXYu/fb29QFBQVYtWoVrly5goULF8La2vpnd/mn0qVLFxw/fhyhoaEwMTHBjBn8/tq1nN3j0SPAy6tsrykWf+oSrl59EFatGgkDA4PvqtfwIS4uQPnywPDhcrCyuggNjWNYt84DLVu2hJlZGpYuXYLjx98D4F2d+vXr4/x5A4wcqQIrKyv07WuFwYPLlfl9lyWRkZGYNm0aDAwMsPgrRTkmTpz4C3slIPD/h7CwMDRp0gQAsG3bNvTubYd587i+wtey6E2dCtStewfly8+EoWFnmJufR27u15dkH8tH1dTYQyCtTSHl1Cn2qm7dytn4Jk3i+gv163NGpKNH2UOQmgrcusUejMmTWeKkpMT1I/z9gfbt2cscG8tVqFNTOftUVBS3l5jIPwUF4zF9+m1s22YPJaVAPH/OkqunTznT1JgxfO3jx7l/oaF8jcePOTuVhQVLk6Sb5Tt2cL2KhQt5pz07mwvlBQTweR07stQqOZnvsV8/llht3JiFO3cSUb58MyQn/5h0SUlJCc7ONXDoUA0oK9fB+vXeaNZsHQ4evAlfX18MGLALw4Y1ho2NDcRiMRo0aIBXr/Rx8mTR9+HpCejqlj7rn4LCpwUDS0vlyizhrlCBa5xs3vz54woKCrB161a8e/cOtWrV+uwxubm52L17d8kvXhLLR2qpXLp06bvy3woI/JuQSCQ0c+ZM8vIaRU2b3qWBAwvI3b3k9QkCAgLIycmJNm/e/P/m/0t0dDS1+SDVyMdBbz+rvoWLCwdXExVlb0pOTqZ27drR1atXy+w6iYm8OyQWi+nMmTM0f/580tKqTZmZmUREVFBQQHfu3KG2bU/Rvn37qEWLFqSiokI1a/5B7dq1owkTJpS49smvIDU1lSZPnkxdu3al0NDQLx6XkpJCjx49ovDwcMFjISBQAm7dYk+Bre1K0td3ov79B9KRI0do69atFBwcXKI2MjMzqX79ceTm5kkxMe8L35d6yb29+fdOnYjs7Yu8487ORcHPZ89+6jXPzeUd7oYNi967dIm9BtLsUE5OvMsvfd2xI3sWbGyIKlXic6KiOOB38GAec3NziXR1ibp35/ZcXIiqVWMPSMWK7NHQ0LhAtWtPpgoV2JMwcyYnyBg+nHfLP6wb4e7OO+rSe5G+/vg5SFm4kO/h4w31vn25D9KaIW5uRG3aPCclpVbUocMjunSpRF9HifDwIAoPD6du3bpRx44dqVKlznT+/HlasWIFrVu3jvr160fGxh2oY8eO5OzsTC4uLpSTk0M9esRRWGmLZpQRublF8+fnuHz5Mjk6OtK6desoLy/vi8clJydTlSpVfo7H4tSpU1i2bBlmzJgBGxubwvfFYjFu376NuLg4yMrKws3NrTTNCgj8owgJCUFwcDB2795dqpoWAJCRkQFPT0+cOXMGhoaGP6mHv5Y3b97A3d0dOz7YQvm42HUZFL/+LH5+HGiYlwc4ObGeGNDA4cOH0a1bNxgZGaHqx6Lb70Aa73D5sjwcHNph69Y26NVLCd26dYO/vz+OHDmCrl27onJl9nJcvdoDixffwYMHKvD1tUJQUBAOHjyIKVOmoEaNGqhduzaMjIwKf1RVVX+4jx/i5gZoanKfdXR4dxAAQkNDsW/fPty5cwcTJ07EwoULP3u+RCLB6tWrcfbsWdSvXx8PHjwok34tXboUU6dORbmPXU0CAv9PWL4ccHTciGXLbqNZszO4elWE6dOLakh8i3PnzmHx4sXo3n0ikpLaFernr19nD8T8+RxnUK8exzdoaXHgc+fO7AEZOJC9DcrKxSs4i8V8zJQpHCQtjb3w9eWA5mXLOA5DWZkDo3v3Zi+CmhowaxaPJ8uXc+yYnx/vdO/cCdy8yd6A3Fz2EuzdCwQFcZVuKyuOnyMKwKlTC6Gquh6qqhyPERvL/T90iOMFfHyKavwoK/OcIY1R+9gT4+zMsRDS6twFBXz+xxvqf/3F96Gry14UrudhjtevD6FXr16YO3cBmjWr98NVtwHur0RiikOHDgEAKlXqiy1btsDJyQl169bF8OHDMX8+e3ScnPLRrl07NG3aBRKJDpYuLYeIiAjY2dmhe/fuqFbSP5YfYMIEjmX8XM2o58+fY8aMGTAyMsKhQ4e+WD8rICAAW7ZsQfny5bFkyRJ069atRNcWERF966APS3nn5ubC2dkZHh4ekJeXx4MHDxAQEFBYAMzT0xNbtmwp0cUFBP4pvHjxApUrV4aCggISExPRrVs39OrVC2FhYUhISICvry+ys7MxY8YMzJ49+5PziQiRkZE4f/48fH19cfXq1V9/Ez+J169fY/r06dixY0dhsPTQoYCDA09eS5dysN2sWT+/LwMGFBV7srWNgJ+fF7Zu3YrKlSuXSfuzZvGEOHYsUL26BLL/s5js7e1RpUoV1KxZEyEhTSESNYC+vghz5hQ/n4jw/PlzPHnyBDExMXjz5g3evHmDDGlKqw+O09LSgpmZGaysrGBnZwctaYTjNxgzhl3slpZ5ePLkCaZMuQ95+QDk5r6ChYUFevXqBRsbmy8Gtt++fRvz589Hp06dMHjwYIhEomJjvFpJ03V9gPT8PXv2YPPmzVi/fj0sLS1BRHjy5Ak2bdqENWvWAADOnj1b9gWZBAR+AZ6evNCOiXHF6tW74OGhDA8PQnx8AqZOfY7o6Gj07Nmz8P/emDEsH5KV5WxwGzYACxYsQP369dG2bVtMmMCBzh8WsBs8mIOUPT1ZUrN0KS8OAwI4MLt2bQ7mrVyZg69NTLhvTZuyMbJsGXDlCvDnn/z59esc2DxsGC8wZ89mSdK6dZwQw8GBMwi1bcuLdCIOso6P5749ewb88QfLlrp3Bx48AOLigJgYoFEjzsp0+7YrVFRW4907QygocIC1pydnVQJ4XG3QoKgQXrduHFzcti3Qpg3Qowdfa8OGooJ1K1awASMrC5iasqEhRZpAo0OH4gHY0mcGAMnJyWje3BUDBx6Ft7dGmXz/PXqwEZSZCXTqREhP34LBgwcD4DWEqakpPD2LdtlkZYv6k5+fj2vXruHIkSN49epVYSbJDzegtLW1oaCgAAUFBVSsWBGGhoaQl5cvdT979+ZMXLa2LCF7947Qv384/P39cebMGRgZGeGPP/6AmZnZZ8/PycnBzJkzkZCQgOnTp0MsFsPX1xezZs0q0RxRasNCTU0NycnJuHLlCiQSCSwtLdG8eXPMnTsXjRo1QoMGDf51WW8E/tuMGjUKa9euxZQpU/DixQukpaXh5s2byM7OhqmpKSpWrIiOHTvCwcEBNjY2hekAfXx8EBgYCIAXiiYmJnB0dES7du1Qvnz533hHZQsRYc6cOdi79yqqV18FLa1asLHhXaioKM4i8iviDMaN44lNqld1cwMWL47A0KFDMWfOHDSWlkT9CRAR3r59i8ePH+PKlSsICAiAs7Mzhg0b9l2ZsogIiYmJePnyJR4/fozLly8jJSUFhoaGMDY2hpaWFjQ0NKCmpgYiQlZWFuLi4hAbG4tjx+JQvXoq5OTkUKNGDWhqNkRcXEMsW2b42bE3Pz8fDx8+xOXLl3H16lXUqlULo0ePhpGRUeExZWVYpKamIjY2FhMmTIBIJIJEIoGamhru3LmDESNGoFOnTjA3NxfmCIF/Fb6+vpg//wH27l0IH580PHs2HS9erP/kOB2daoiODoGioiLWrs3Hu3dP4OCQgsTERBw9+hKBgXdgYSHCn3/++UVPq3Sc69uXDYO9e9kTcfo0Z2Xy8eG0spaW7FXQ0GDDISqKd/AnTeJz7t0Dxo/ntpYv50VuQQEbKdWr84JXasRIqVaNjaEhQzhuge+dPRXVqwMpKfzZ06dcmTs3l6+fmTkf6emZ0NIaBm1tYyQk8GetW/M19fSKp3ZNSipqJzMTyMriRbuMDMdsfC2trjQzloND0b/S+Ue66SL1bHTpch/v3k3C5s1rYFXSEtul4Pnz5zh8+DB0dXXx+PFjREREQCKRwNbWFj169EB4eDXs3cuxgubmn8Z8pKenIyYmpnATKiEhAXl5ecjNzcX79+8RExMDsVgMLS0tODk5oXnz5jA0NCzc8PocmZmZ6N8/Fr16Pcb9+/cREhKCwMACuLhUhYODA5ycnD7JWiklJSUF27dvx8mTJzFmzBh07ty58LPSzBHfZVh8zKVLl3D58mW8efMGzZs3x6BBg77VpIDAPwZXV1f4+fnhw/8Kb9++hY6OzlfPmzp1Kjp37lxMFvhvRyKRFMujLuXUKcDfPxFPn7rh5MmTmDlTGa1bF6UB/BV8PAkOHszB49nZqXB1dYW/v/937e58DxKJBNu3b4evry/Wrl0LCwuLH26TiPDu3TtER0cjJSUFKSkpSE1NhUgkgpKSEvT19WFgYICrV/URFaVaKBPo0gXYvbv4zt3Dhw+xYMECiMViiEQi1KlTB/b29mjcuPFnZUplaVh8fP62bdswc+ZM2NnZoW7duhg/fnyp2xcQ+F3s3LkTAwYMgLKyMVq3ro9jx45BSaknVFTaw8qqMmbNUkS3buWxbl0N5OaK4OvLu/iBgYFIT/dAo0a98PatFvT1TfHkSQPMnq2CAQO+fs3KlXnn/vp1lgVFRbGXQOoxuHChaHe+VSve9W/fnlOj79vHhkdSEns4du9mT8XZs2yIODpyzYcLF9hgIeLF/Zs3LJVavJiTcUREABUrcprw+HherLdrx68VFFg6ZWfHRkzFigV4+/YKxOIF8PbehZ07jSAWs5HwLcaM4f5J1UHHjrGXZPJk9nRERLC3Jy+PDY5+/YoMj1On+Hw7O6BTJ07IIfUq5ORwAP2oUfHo0aMHDh8+jAoVKnznX0HJKSgowI0bN7Bu3RY8eqSNBw/mQF1dHbNm8ff6re/+c8THx+PcuXO4c+cOYmNj8fGy/cPXSkpKCArSx4QJ1mjQoAFq1KgBT0/5T4y1rKws3L17F9HR0Xj27BmCgoKgrKyMHj16wMXF5RPjpVRzxDejMKhkgXlv3rwhWVlZGj58OM2YMeO3BasICJSWiIgIGj16NDVu3JgePnxIT58+LVEQ7pkzZ2jx4sW/oIc/j/z8fOrRowfZ29tTu3btqEWLFjRnzhw6c+YMTZo0iQYOHEg9evQgExNnmjRpErVp04bq1KlD48ePJ1XVquT9C8uRjh7NgZNSpCkSiYj27t37W76LN2/ekIODwy+/7urVRAMHEllacuDj9eucdCA0NJSGDRtGffr0oXfv3pW4vZ+dbjYnJ4ciIyOp4YdRpQIC/wIyMjJIV1eXAJCmpiZVr16dxo6dQvr6HNBrZkb0YSbnNm2Ixo8nunpVQsbGrcnEhINoJ03i9KMfp4yV4udXVOW5cmU+p2dPfq2jw9Wv7e2J1NWJFi8uSpjRvDnRrl38+4kTfK6KCgdaE3E62GvXOPB75kyuTK2lxe03a0ZUoQKRnh6RrCyRgQHfDxGnmZWVJdLQyCNb2x106VI41a27jeTln5OhIdHEiUR6erlUrVoidejwlMqXT6L790PJ1dWVundPInX1LBo9ei+JxeKvPt+PA7UTEzkV75Mn/K+Ua9f4GXp5carzTp04FW27dvy5h0fx+eHgQU61m5tLdOfOHfL09PxqP8qaqVOJNm++THZ2dhQTE0NEn97rz2LmTL6Wnx+Rq2vxtLcSiYROnDhB9vb29Oeff9KhQ4fo0aNHlJ+f/9U2SzNHlInHAuCg1cOHD0NHRwdr166Fv78/xo4dC319fTg4OKB8+fqIiCjS2AkI/C42b96MwYMHY+nSpRgxYgTGjx8PIsKCBQtKVfSmb9++mD17NkxNTX9ib38eb968war/Rf/N+l+ARPny5XHt2jU8ePAADg4OMDIygqKiIjZuLIe8vOdo3ToHs2fPhq3tn8jIkOD27ZHQ0tKCjY0N2rVrh5o1a/5UmYs0xiIvj3eoqlV7hCFDhkBHRwdGRkbYsGHDT7v259iyZQuys7Mx6uPouF9A794sfYiMDISn506IRE/QtKklBgwYgLp165aqrZ/psZDi7OyMW7duwdbWFgkJCbh48SKUlJQEWZTAP46zZ88iOTkZ7u7uEIlE2Lt3LzZu3AEVld0wNtZHWhrvjLu4FNf1A7zGSU4Gzp0To359R8TEXIe7O8cYDBtW/Php09gbUFDA0qXQUH6/Sxeucm1nB6xezSlgU1KA8HD2ImRnc/HQPn04ziAzEzh4EFiyhCtdDxrE3olly7iq9tixLK1ydmb5UU5OUcVqExNOSfv6NcdGnDzJ3g5ZWWD7dmDPHh/cuCGHjh3D8OqVHeLj/4aZWTwSE/OgqamOO3dU0Lq1Nvz84qComIHc3LtQU7NHXl4uMjOP4+HDhzA1NYW6uvpnn/Xt28D69UVeiM6d+WfdOvY4HDtWdOzgwRyLkZICVKnCz2ncOODIEfaoSL3aAwZwLErjxsCsWXmYPj0cPj5DsXnz5i/GFZQ1t29zv7KyhsPDwwN5eQ1w5EhRoo2fTXQ0x9IMHMje7OfPn+PUqVM4d+4cmjRpgj/++ANKSkolbu+XS6E+ZsiQIXB2doa5uTliYmIwbNh+xMScw4gR5xEUZI6DB39upVkBga/x7Nkz3LlzBy4uLhg1ahR69OiBDh06lKoNIkKHDh1w5syZn9TLn0NmZiays7Mxb948rFq1CtWqVcPly5dhbGz8zXPHjAHevo1BRMQh2NqOxapV/Bxyc3Nx69Yt+Pv7IzAwEAcOHChxIPKPcunSJcyZMwfXrl377OeXL3M+cHl5do+vWFE21yUinD9/HsuXL8fp06dLHGeRkcHaYmVlXgxs3/591buvXOGsLP37F8DR0RFr167Fzp1W+PPP71uk/wrDQsrFixfRunVr2NraQltbG/n5+cjNtYOqqgPU1Rtgy5bveyYCAmVBdnY2tLS0oKWlhZcvX2LIkCGwtLTEhAkTPiu1fPmSayv4+bGkZ+dOluvcuXMKrVqFY/v2MbCwYGnT27fA3bu8wI+P5yrW48ZxO40acbBzUhJLfK5e5YXz6dNslEREAIaGHDStq8tVrXV0gI0bgTp1gLp1uVL2okVsNMTG8oK9YUPgzBk2TgoKWO//6hUv3o2MWPbUvj3HLiQns3ERHEywszuHy5fbQUXFFEA4nJ153DIwAGRk8jFtmghLl8pi/342Xrp143ZbtBgPoCuOHm2GM2dCsW3bNkRHRyMzMxNNmzbF8OHDP8lCdPkyS6oKCjiW4+1bjiXp3ZvHguPHeeyWk+Mgcj09NoAyM9n4Cg/n53j/PsvFNm8uGus1NTVRrlw9jBvXFiNHjvxkMS0WAwcOAC1bFgXClxWeno9x5cpiODruQVoax6uUhMuX+V5btPjxPjx//hzDhw+HpaUlOnXqBDs7uy/GWHyN3yKF+hJPnhDZ2s4iOTk5ysvLo/T0n5fzXkCgNFy/fp2GDRtGuf9Lph0bG0tNmjSh69evf/Pcp0+f0pAP/bT/ArZu3UoAyNnZmaZMmUJv374t82u4urpSWlpambf7OSQSCY0cOfKr9SxcXYt+l7rGy4KHDx+SkZERbd/+ljw8uOprSejWrSh3e2Lil2UR3+LZM85Xn5+fT/b29vTqVUyx6rSl5VdW3s7Pzy+WM93bO4caN3ajnj17Uno658gXEPgnMGDAAmrceAt5eHAtBSL6rLTnyROi3r1ZhhQVxZKdevVmkL7+PerYkWvweHkRGRsTSZWT9vZcr0KKqytR48Y8Rj15wlLHdu1Y4kNEpKHBMitTU37P0pLIwoJfV61KZG1NJCPD8qEhQ7g6dvv2fG6TJiyncnDgug9ELBuqWpXo6FEieXmWQ9WrF0qGhj4EjCAA1LDhbsrLy6PKlbkOhacn18FYuZKoa1eWWX3I0KFElSo9pgYNPpUSi8ViOnDgAA0cOPCrz/xDuZCfH0uz6tbl2hheXkS1a7Msqls3rsHRqhXX0rC15XMuXSr6roiIWrVqRb17J3/2WkFB3MamTdx2WSp7165dS61bt6bY2NhSnefiwmO7j09xue/3MnPmTLp8+fIPt1OaMf7TKM0y5skToFmztoWZSVRUfl7OewGBkhIbG4sbN24UpsU0MjKCgYEBMjMzvykjSUhIwIgRI+AtzaX3L0Hqit6wYQMWLFjwzeD0kkL/c3r27Uu4efMthg9XweTJZdL0V0lPT4e/vz+WLFny2c/j43mHT4qbG+/2lQV169ZFhw4bMWfOAKxalQFNTfboALzjOXnyZHTt2hUXLlwodp6mJu/AXbp0CcOGuePOnS6YMWMG/P39kZmZWeLrW1iwJGDnTlmMGbMBjRr1gZPT3bK5uZ+MrKxsMQ9PQoIYd+4cQu3ataGiwnn7BQR+NxkZgL//NbRuHYUxY4IRGLgPIpEICp9xp1lZcapUAwOuqJ2cnIhy5S7Cyakm9PV593zTJs6SZGrKu+T5+exNlabpVlPjnff4ePY6bNvG7ebk8K58ZiZw5w7v6t+4wceFhRXVp/D25rHl8mWWFSUksLRq/Xre+XZwYG9F9+58vZ07AVdX9o5UrAjUrRuHhw+t8P79clhZjYOxcS4SE/ugcWM5VKnCwdVE7D148YKlSM+fF38O69cDr15ZIyBAhAMHWC7m6cmel6Agefj7a+LJE+tiqWM/Jien6PcLF/i1hgYQEsLPcPlylpQFBbHHRl8f6NqV7/fUqaIUu0lJLFUNCkqFs/PnF51Ll7Lnw8uL2373rqR/Hd9GSUkJaWm68PbWwODB+GROTE1NReJH0e3jxnE64GnTgMmTs+Di8gLe3ik/1I/evXtjwYIFePPmzQ+1Uxp+umHh5gYcP34VTZs2g7+/P0aMYG20gMDPJj8/H3fu3MGFCxeQm5uLiIgIzJ07F05OTpgyZQrMzMxw8uRJ1K9fH66urnj27BkCAwOh8hWdXmxsLNzd3bFixYpfptUsC7KyshAUFISBAwdCT0+vTNo8f/48ZGVlISMjAxkZJSQmFgCIQc+e/gB4cP+Z5Ofnw8TEBI0aNfrs53p67FKXEhrKkqiyIi+vPbZt+wPjxo3DgAGcrx7ghfPFixcRHR1dWExJSnJyDl6+fIn58+dj8+bNaNjwADp16oQXL16gS5cumDNnDpKTk0t0/RUreFKNjDRHSMhR7Nq1GqNHj0Z2dnbZ3eQvIC9PFR4eHli4cCFSU1OLLSwEBH41V668RYMG22Bs7IasrBSsXr0GtWvXxoEDvWFiMhMTJ+bjo7I0AIC5c1lWlJOTgqNHeyMwcC1atCiHmBiOgxg8mBexMTFAr17Anj08Rl29ylmaqlblIqBr1xbFG7x7x3LJ4GCWNNnbs4EgFnOcmaYmjwOLFrGBUlDAGaTk5AAbG5Y2LVjABk/jxnzu33+z8X7qFLeTlMTxCIsW6WPq1KkYM2YUzM2r4uhRBRQUsGFw+XJRAT8FBY5/+FaswIkTwLhxd1Gv3jq0bv0XevZMgkTyAk5OqWjRgtv9HBMm8BpRKgMyNubNaGmsRatWXLOjfn02ZFJT+d4bNwb8/bkg37FjvJA/ftwMQBySk/d99lofzwdlOT84OAyEqmpf5Ob2wYYNElStWiTP8vb2hra2Npo2bYpU6cQBLmhXqxYQGRkJe3t73Lu3AcePD0f79u0xdOhQPH78uNT9MDMzw19//YUBAwbA39//k4xSP4WydoF8THx8PJmbVydX1ygaNEhCBw+WugkBgVKTnJxMAAgAycnJUZMmTahly5Y0fvx4yszM/K4279y5Q/b29vT8+fMy7u3PJSwsjBo3bkx+fn4lynZVUkJCQqhfv35UsWJr0tFpT46OjgSAdu7MpLCwsnUrf47U1FSys7Ojv//++4tj0+rVnGnFw6Ns3Mof4uHBkgVDQxfq2zeDrK2Lf37//n16/fp1sfdsbTtS5cqe1LlzILm6EgUEFH0mkUjI39+f2rdvTx4eHjR16lSaOnUqBQYGUnZ29jf7k5ubS0eOHKEBAwaU+l5+pRTqY5YvP0iKirpUq9YE6tmzgFav/q4uCAiUiqioKJoyZQp17NiRhg4dSseOHaMOHTqQiUkf2r9/P92+nUzDhhE5OYXTo0ePqE2bTHJ05P/zTk5EcXEsu3F3Z3mOrCxR586vSVHRkVq2vE916/IY2KULUY8eLLVp3JjIyIioenWWvFy6xH1p144l4r17c1tNmrA0qUYNzi7k6krUty+PZ1WrEmlqEllZ8e8yMnzO9OlEcnJEALenqcm/A0Rqapw9qnZtlg21bUvk61s0RnfpEktVq/Yla+tx1K1bDkVF8ftnzxZlqiptRiMPDyIDAwOSl5cnAKSoeIzMzIaTgUFT6tuXZVTz5n3+3CdPiGxs+Pmkp/PY7eHBMlJdXc5kpazM38OQIfy59FlKpWNERP3796cdO3YUk15+yF9/cQYl/nvgzFllxdSpfB8rVqygv/7aRbm5Rc/w/fv3NGvWLDIyMirWt5s331ONGjOoefPm9PjxY3J25r8zIqLnz5/T4MGDqVu3bvT3339TQUFBqfqTkZFBU6dOpd69e38zA9Tn+C1ZoT7k4MGDmDlzJqysrJCbm4vFixejRo0aP2QACQiUltDQUOTl5SE+Ph69evVCUlISAC4C86UMFZ+DiLBx40ZcunQJmzdv/iTw7J/OgwcP4OXlhWPHjsGkjKLTXr16hX79+sHZ2Q2BgS5wcDDCy5fJGDVKjGnT9JCZCaxcyTtyP5Po6Ghs3boVYWFhICLs37//517wA9av5127Ll0mwNf3PCwtg2Fri0+qcX/I6dOnsXLlSkyaNAmOjo5fPC42NhYJCQlITU3FiRMnEBERgdzcXJQrVw62trZwcnKClZUVRCIRHjx4gDlz5kAkEkFeXh6RkZG4fft2qWp6/MrgbQAICQmBuro6Xr16hblz52LlypU/pYCVgMCXmDNnDtasWQNd3UaIjY1FcnIgFBTUoK7uDheXTRCLWWpz9Ch7FJ49K5L+iMXsgcjM5B3yfv2ACxeuIiNjLtq23YBHj8ygrc3F6GRlP62/8+5d0Q58aCjXh4iK4kw+trYcJN2iBXsenJy40N3ixRzIffYsB2lv28ZSqPHj+RpKSuzFyM9nmVJ+Psu53r9nL0OlSvy5qytfOzSUd8ebNgX27tXD1q3bce5cO5QrVzZFTzt3ToOKyhhcvfoK1atXx4MH8qha9S5ev96Ad+/qYsAAwNqas1/Z2wMzZ/J9Kytz4PbkyUXP7cABYMoU9sDUrw9cvMjfQYUKXFSvfXvu87hxxetcPH78GKNHj0bt2rVhZmYGT0/PT+r47NjB0jJ5ec7AVVaJI0JD+TuLjo7Go0etYGl5F3Jy2rhx48vnPH36FN26DUCtWsegqKiPP/4oqkQu5c2bN/jrr78QEhICIkJ6ejpsbW1hYWGBGjVqwMrKCsrKysXOycrKwvHjxxEWFoYjR45gxIgRhRXDS8pvzQpFRNDQ0EBoaCi0tLT+X1UgFvj3QEQICAjA7NmzoaGhgR49eqB+/fowMDAodVuHDh3CmDFjsGHDBjRv3rxUKWn/KYSGhuKPP/7A7t27f7j/T58+xYgRI7B161YYGlbB4ME8OC9dyqkMr14FVq0qXWrpoUN5sszJAZo3L/2k5uPjg4KCAixYsKB0J/4gbdsC2dlboK2dBj+/8cVSSc6fzxOhgQFP/lLS0tIwZcoUlCtXDvPnz/9swbovkZWVhZs3b+LcuXN48uQJ5OTkkJ+fj927d6NixYrffR+/0rAIDAxEvXr1CtMEe3l5FasCLiDwMxCLWZqtq8u/6+kBvXolYfRof6io7Mfp06dhajoMGRnz8fatJpKSOEWrkhJr+u/dK66T9/QsMhoaN16OhIRHiIjYAD09Zbx/zwv7qlU5o9OWLUWZMN3c2Gj4+29ODXv+PBexa9GCF8VbtvCC+8ULvsaqVZxWVlmZYyTS07kvffuyTCo1laVMN2+yxEki4cVxVhYgErHxU7kyy5jeveMCeUeP8n3Jy/NnISFPISMzCm/e+ENZWR4zZrAE6XuMi82bgfDwONy92xcKCjMQEdEcbdqI0LgxsHAhUL48G2p167Ih0L8/P4NOnXi87NIFePiQf2/QgGVkQ4bwvZ08yZmnpHFYqqos+XJ05BiL48dZDiUttgewZDYyMhLt249F5cqDMGZMl19W9qBuXc5ydeSIGtzdwyGRVMTevV8/59y5c1iyZAk8PDzQq1evb14jJycHYWFhePbsGUJDQxEcHAyxWIymTZuiVatWyM3NxaRJk+Dp6YlatWrh7du3sLa2RuXKlUt1L78lK9SzZ89o6tSp1Lp1a1pe0hQpAgJljEQioTVr1pCjoyONGTOmzDIfvXz5ktasWUO2trYUHx9fJm3+SnJycmjo0KE0ZsyY724jKyuLPDw8qF+/fhQdHV34vpcXu5Tj4tiV/KG8pyRMncoFj6S4uxdlTiopmzdvpnHjxpU6A8eP0qsXZzuZMmUKtWnTnurXX07Hjh0je/t1NH/+AUpLS6Pz54mmTfv03OPHj5O9vT1Nnz6dFi1aRJMmTaIJEybQzZs3f+k9EP06KdS7d+9o2LBhwhwh8MsxM2NJUb9+RK1bP6UGDRaTkZEdzZ27gxITE4mIx7K6dYlq1mRJTaVKRKtWSWU9VCgR6t+fZUKurkRjxkhIVXUqKSq2IcCDypcPJjMzHtO0tIjWrmWpjpcXUaNG3Hbz5iyJatuW5U7SbHUeHpzxyMqKX7dqxX1QViZasqToXqpVI2rRgqh+fZYKlS/P51aoQCQSESkqFsmg6tYl0tYmUlLia9eowdmrRCJue+ZMouHDiTQ1j1Hr1q0pIyOjsC+loW9fIhOTAjIzO0R6enbUvPlzys0tXth0+3YiBQU+NjeX79XMjDNgERWXPUmPHzuWs1l17873oKlJtGABHysnx/OOnx8/w379Pt+3Ll3CyMKiEeXl5dHYsdzur0AqferTpw+tWLGCBg5MLczKNXky39vo0USzZxc/Ly8vj6ZPn079+vWjN2/eFHu/JHLm3Nxcunz5Ms2YMYOmT59erI3v5adKod69e4erV6/ixo0bSEhIgIwMx38bGRlhwIABqF+/folzugsIlCVv377FyJEj0axZM4wePfqnFN7atm0b1NXV4erqWuZt/wzEYjHWrVuHU6dOwdXVFf379//ETVoSLl68iPnz52Pq1Klo3br1J5/v2MGBizNnlj6rz8cFptas4d0yF5eSt0FEOHbsGI4dO4akpCSsXbsWlSpVKl1HvoMVKzh3urIyEBubjSFDriE+/jXOnTOEk1Msjh07BlNTU4jF3tiw4dP+5OfnIygoCNnZ2dDU1IREIsHgwZNhbLwMhobVy6zuxrcoa49FQUEBnj59itDQUKSmpiI9PR0XLlxAhQoV0LVrV7i4uAiF8QR+GfPns3zG3j4fhw7NRXJyONLTB2L06GaIjVUsHH+0tLiewdCh7CmIj2eZ0vz5/Lu5OSdM8PLiIOOlS1mSZGvLBeoyMl5BUXE8OnY8Cl1drlugpcVj46BBHITdty8HaK9cyfUvKlfmMaRCBSA3l3fhx43jMfHhQ5b5/PEHe4Br12aZ082bbDaoqbGESleXZVpGRtzf48d5B798ecDdnQPF8/I4+9O4ccCbN0Xnbd0K3L37HM2br0Hr1pHw8/ODWKyAkSN5XC8JEyYAaWkpePp0GJyd6+Hx4+HIzFTG2bP8vKQ1OwIDgSZNOMj8zh0OxC5Xjr0q0p18d3cuLte6NQczGxryvXh4sCyobl1uT16evUC1avGzmTCBPT5SSVheXpH329MT0NObhhcvXqBdu3a4erU7du36+cXU1qzhe5gyRYKdO/diypRjaNAgF1FRQLlyEtSsqQcvLy+EhzeGSCRC797Fz3/06BGWLVuGtLQ0EBFkZGSQlZWF4cOHo0uXLj+9/x/y06RQ9vb2sLS0RKtWrdCsWTPo6uqWWacFBEpLfDwP2rKyBRg1ahTevn0LHx8f1KlTp9hxycnJuHHjBvT09L6YQUhKTEwMrl+/joiICGRmZkJbWxt6enrQ1dWFhoYGpk+fjpUrV6J69eo/8c5+nM2bgevXCXfveqBy5RY4e7Z/4SZAaYiPj8eaNWuQmpqKBQsWfNei81vMmMHFoaTu6R49WCP7vVrXU6dOYeXKCFSqNBoASx7mzy+bviYlcRXbcuV4ghww4PPHjRnDCxOApT+dOnnj5Mlln/xtftp3YOvWx1BR+RMTJ+7GnDnA4cNl0/evUVaGxYIFC3Dv3j3k5eWhRo0aqFGjBjQ0NKCkpIQmTZqUqtKrgEBZ4eEhQV7eeezfvxLNmvWFnl5vXLzIUsbGjYGAANbEq6vzwtTUlCtRX73K/+cBjo2IimI5zsSJLNNZs4aPdXBgOc/ff2fh7Vtn2NldxN27gLY2Gxe9e3MRu8ePWfJ06BAvkrOzWS51+TIXZ3v7lhf/TZqwpMfNjdOrzprF0qZr17jAXvny/O+BAyx9Wr2aDY6kJDYsEhJ4Ea+gwAZI1aocb2FkVFQQrkIFQFtbAnPzcQgOToai4h9o0cIampocu/GlQsYZGcDIkSwD696dn2HLltvw6pUvZs2agIED22DyZJZpde7MUrHNm9k4kia8O3SIY9QyM7nP48ezsaSszGlw4+J4bp8yhY8zMCiqSi4Ws0HUqBGfTyQta8Dn9+zJn2/fzm3eu4dCIyk5ORlnzpzBxIk7sXjxedy4wd+du/vP+9tbs4a/95wc4K+/+JlOmsTxF69evcL69esRHByMSpXWY8OGyt9s7/jxfAwe7Ih27c5DIlEojCf52ZRmjiiVa8HPz69UQa8CAj8DsZgD0ExNgVevQvDixZ+YMsUR/fr1K3ZcQUEBqlWrBmVlZTx58gQKCgrIyMj4bFBrbGwsxowZA2VlZTg4OMDBwQHKyspISEhAfHw8QkJC8O7dO/z555//eKMiKQm4coVQs+Yi1KtXCwYGA/Hnn5/m0f4a4eHh2L17N+7fv4/u3bujT58+32WYlIQ5c3iH8MQJHnwdHL7fqHj48CG8vZejV6+NmDmT31u6lCeVLxkBpaF3b94NVFDg5/mldps04YWIlRUQGloHCxfuw4YNMwtzievr68Pc3ByNGzdGw4YNIScnh3PnzsHH5x5MTAJRuXIt1KrFu3XR0WVfEfZnYW5ujrFjxwqxdQK/FbGY4yIAoEoVQlraaFy8WAG1au2CvLwOTp/m/8MyMvkwNj6Fu3cP4+HDg2jUaDsMDXvDzo61/qamvGhVUADevs1Faup+9OlzBllZWVi/XgRVVfZGnD0L5OYqQUfnHfT1ZyAggL0PRka8M6+gwHUXCgr4/exsjpXIyOCf3Fz2Yigp8QLZ1RVQVATOneN7eP2ajRQ1NQ68FonYkyEry8epq/PGzNu3HJuhoMDjRvnyvLPfqxenuW3cmFPTNmjAhkpu7hxER1tBTW0IwsL4vIyML3udpXEq0jGwU6e7mD9/GfLztTBqlD82b5bFsWNFwdU1a/J5Xl5sPIjFfN6ECTymEfF4P2MGp87NzeWYBC2tovoXiYkcE9K2LRt1nTtzwHbt2sCff/IGo50dGx7SvCpbtrAnZuJEPq9OHTZu+vfXxPHjbZGfvwVv37LRM38+/3yttkZJycoChg9nwyYzkz1Zo0Z9epydHX8PkydXxuLFizFqVDRu3+6P5cs7wdraGtWrV4eRkdFn59wdO8To3NkcXbpcQqVK7TB0KNdQ+UdR1toqAYGy4u3bt3Tw4EH6448/qFGjRpT+P3GihwdXLd6zZw+1bNmSeva8T0FBxc9dvjyXHBxOk7y8GlWv3o8A0Pr16z97nbNnz5KDgwM9ffr0Z9/ST4dTyw6levXa0Pz58wv1mCVNFXjv3j1ydnamwYMH0/nz58s0Pe3PxN/fn9zcuHpzr17vP/m8tHrhzxEUxPEgH/K15yoWEz169On7EomEYmNj6fLlyzR//nxycXEhJycnWrp0KXXoEFCocSbiVIr/k3//VH5nulkBgR8lJiam2N+eqyvHQxw/fpxq1GhDrVuvIkdHjnmoWpXo4EFOd6qouO5/KckV/1dp+g3l5nKsmKsr0bp1HIdQu3YYycm1Jg2NrdS/fwpZWrLe38WFaNgwbgvIIEvLNCLiczQ0eNxZtYpjIDQ1idzciKpU4dgHGRmiOnX4d2Njji1zdOTPGzfmGARtbU4VKyfHsQkuLhyXYWpKtHUrkZ0dUYcO3BcTE743Cwu+fsWK3K6eHr+Wxq25uhaQgcFjmj17No0cOZJycznmoiSsXk104EA2bdy4kTp16kTDhg0jC4u35OHB8Ruqqtz/+vWJ9PX5nog4PqRmTe6fgQF/ZmjInzVqxM9Biqkpx15Ix1ZpmnANDX7O3bpxlfFBg/j9WbP4HC8vTuuro1PUlrs7p/DNzSVasyaP2rQ5SQ0b2lPnzoHF7qss5gciohEjiD7MZj906JeP3bGD0/2OHUt0+DCng71w4QKtWrWKhg4dSp06daJ27drRmDFjaN++fTRhwgRycnKiKlW60apVqwpTxpY2DfD3UpoxXgiGEPjH0qJFCzx//hxqamrQ1tZGnz59UL16daSkDMDlyyGYNGkSYmJiULfubNy/7wd9/STcvn0bO3f64eTJo8jLS0ObNm2gq1sbzs6RGDq08ifX8Pb2RnZ2Nk6ePPmv3GUlIvj5+eHo0aNISkqCoaEhFiwYje3ba2LqVD7m2DF2JX+NtWvX4tChQ6hTpw42bNgAfX39n9737yUpid3JH3o1xGIxnj59igkTJoBIo9gO1KxZ31eU89Qp9qKYmrJ3wtS0eOVusRhfLeYmL887ZR8jEomgr68PfX192NvbF/usZUvOALN7N0shcnKEStQCAp/j2bNnsLS0LHzdvXt3bNmyBaqqqlBXBxQV36Jz585YuHAhXrwYhexslg3FxEjQs+dtFBQsB3AUMjLlQNQUHTtaQVnZAE2acHvDhwMHDxKGDt2Pgwd3Q0FhC1q2NMGOHVz5vqCAvRlqaux9sLTkbFA6Oij8NzgY8PMrytSkqsqxBtnZ7F1ITeWUsjk57GF4/hxISWFdfp8+RR6T2rX5+MxMlvfMmcM73nZ2wKVL7CF9+ZJlVmPHcuyCjQ2316gRcPasGL16PUdU1G3k5x9EVlYdNGrkiDZt2kBGpmSF4W7evInHj+9i5cozmDVrAHx9fbFypRIqVCiKkatdm8fKgwd59/7QIZZvqauzrGzsWI4nUVBgueuYMUBsLNCtW9F1Tp5kOZeMDL9fvjx7f6tW5XMBHnutrTnu4uxZfq5v37InRVWVj8/J4fH0/n2WQI0apYXhw4fjzz9PYvTo0scZlgRlZfY6SfmaYqh//0/OhqOjY7E05ESEFy9eICAgAG5ubliyZAnc3IDRrPJFaCg/p38agmEh8I/iwIED+Pvvv1G/fn3Mnz8fgwYNgo+PD8aMGYO8vDxoampCTe0QMjKmYdeuXZCRUYS9fTN4ehb9KZuZuUBdXQmurj2x4X8+ws+lbE5KYkPk1q1bperj7t3AhQussy9fvkhL/6t49eoV5syZg3379sHOzg516tTB6tWrofXBCjQwkAPZ5OX550uu0rCwMJibm2Pw4MG4ePFiqWoflAWTJ/MkXLEiT5RfQyzmgO4qVXgi19YuqmTq7OyMtm3bYtu2bTh8uC2AlggK6gslpSqoXr10geAAS5yCgthVfugQ//1s2sTu+gEDOG4jKIg/K0saNGBN8YQJnDLx4+DJ+Hg2mGRlWTpRVjnXBQT+LRARsrKyoK+vjx49euD58+cwNjaGiYkJXFxc8OLFC8jKNoejYyqUlEwwZcoUyMkdh4ZGT6Sk3IKMTBSImgM4CgODk6hXrxGeP6+IFStEqFaNx83UVF6k3r+/Dy9eXMe+fSewdas87t5liU5ODo8/iYlckToujmWLmpq8kC1fnn8SEthwkJHh9LMFBfx/V1prQk6OF9fr1vE11dV5bNPTY+OjTh2O//D05EXyH3/wMRMmcGrvsWPZsIiOZmNk507W82dm5qBWrWjk5eWiZcurOH/+BNLS6uGPPxqgffvjcHJSxtatXCNjzRoeW79EfHw8jh8/jv3792PKlCkQi0chLEwBR45wzMCzZ0XHVq/OfQwP5zYHDOB79PXlDa6WLXnerFaN40Ju32ZDqnHjojaOH+dnKxKx0dC0KUuLLCx4k2jWLB739u7lNLPZ2fwsJ09mQ0RFBbhyhVPUGhvztUeO1ETPngE4fnwBXrzwgYXFGKxYUQnjxrFU1ti49H+H0nWANIh81So2JC5c4MBzgI2dH0EkEsHCwgIWFhaF7/Xvz5JcZWX+O/xVMRaloqxdIAIC34tEIiFbW1uytLSkLl26kI+PD1WqVInU1dULq0ympqaSWCym7dvZBdi/P9HTpxk0b948CgwMpPfv39OlS+Hk5vaMsrKyiIgrjC5cWPxa+fn5ZGdnRw8ePChVH3Nzi1dwPniwqHLnzyQ2NpYuXLhAx48fp+bNm9O9e/fo8ePH9O7du2+eu3fvXvrrr78oKCiIhg2TUM+e76h790T64483tGzZMjIyqlRYJfRX4uVVVC317Nlvu3SlErgPz5dWJf2QgoICunz5Mnl4eFD79u1p9+7dlFvK/LX9+396bSnp6URhYaVPifujJCZyRd3cXP7dyans+iBIoQT+yfz1F6cobdXKlwCQgoIC/f3339SlSxeqV68e+fn5ERHRvXshVKlSZ2rQIJKMjVlm0rr1SwJAAEhFpTnp6fUgBYWOJCtrTYaGWeTlxf+/27ZlqY6yMktuUlJSyMCgPR0+fJ+cnIgGDGA5j4sLS6qkqU9lZDh1q5ERvycjw/ImeXl+z9CQpTt6ety+mRlLd9zcOD2siQlRuXJ8rLY2X6N8eX5fQYHbUlHhc1q1YllU1aos+ZGT41SxDRtyRepu3YgqV04ioBXJyGiRoWFPqllzMV28KPlE7tO5M7fToMHXnz0A6ty5M+Xm5hbOfx068DXHjGF5lJShQznVrZkZ/6SnF43rubn87KRtlC/P/Tcw4GfUrx+Pu7VqFaX1NTHhZ+3gwGlZP5wjXF35tZ8fy53c3fn5ublxyvMmTfiZmJpyWnBpytu2bf+mAQMGUK1aHUlHZys1bpxK/fsXVSEvCenpRTIvIl5jSKuIz55N9Mcf/Cyk9/GrCAsrStfbrVvZymgFKZTAP47Ll3n3tVw5lnZ8vDv97NkzPH36FGPGjIGamhoWLlwIKysrXLt2DXp6eoVBTNJsBAMGfBg0q4xpH0RetWpVAUFBHLwnK8vXXLeu+PVkZGSgpqZW6tSrx48DbdoUvXZz412VnwURwcvLC/v374eOjg5GjhyJU6dOlSpzz6NHj7B06VIAgJGRFezt60MkKsCZM8owNGwAW9sAuLtz+kNzc94N+1W0asX/tm3L7vOvIStbXBZkacm7gx8XO5KRkYG9vT3s7e2RlZWFPXv2oH379ti5cycMDQ1/uM8+PrxTWa4c70gdOvRrPAcTJ/Kun4ICP4ft2/m9X+0xExD4WZw6xbIeLS3e8R45kqU/79/zznzlyu0wf/4O3L+fgDlz5kBeXh5WVlYwMTFBUhIwY0YNhIQcQ0QEyx/HjQNMTKrCwyMbR47IwNZWoVDemJDA6UiTkoDISN4V37QJWLaM5ytHxw2oXr0Tbt6sD4B31hMT2auopsYBxU5OvAv/+DHv0isqcralnByuEH3tGu+816rFMkobG96N37uXJTOamuxpyMnh9KjNmnEwuIUFXyM+np9LTg63c/06jzumpnx9Z2fg8uU8xMTcQXp6C1y/7obc3FTUr78YrVs3wMKFfP78+cXnLaCo8veTJ08gElkDAGbM2AQ/vxRIJLEAtGFm9gJmZjaQkVmGwYMVEBrKz+bDYn/KyuxRKSjg9LgdO3Imq1ev2KOSksLHKihwkg5p2l11daBrVy6Wd+wYf88ODnx/JibsjTYw4O8wJoYlUo8esQxMT4//RnJy2Butq8vrAYmkaB6pU4efdcWKLNXq1o0z7BkaNsHWrU0wc2YmUlP9EB7eG6qqlaGuPhe7d2ugb99v/50ePsyF+6S4u/Mz4GfIXpDkZGDBgl8bWD1lSpEXXSxm75uv76+7vhTBsBD4Jfz1V1HazN27gcmT42FsfAQhISGIjIxElSpV0KBBAygoKCAyMhLh4eHo2bMnPD09sXr16lJfb9y4r38uEonw559/onfv3rgvFW6WgHbt2MUqrUh67hwPXD+DpUuXYuLEiZg3bx4yMzO/u50lS5Zgzpw56Nz5Ci5c6IDOnefA1dUVSUmcteL5cz5u0yYeiH4VH8cnfC1eAeBFwOTJbJSKxWwItW3LsoIvSZ2UlJQwePBg2Nvbw8PDA56enujevfs3++bgAIwYwQbp7t082QGsY87OLnI/x8fz4mfTpm82WSZIs6oAvCD6J+prBQRKS3AwS/xateJ5wsSEpYY5OYTu3V9j//5zaNnyFKytCRoahJCQBAAROHz4MJo3bw6AF3bSbEW1anH9hH37eMyQSMpBQYHlRlWq8GJXImG5krU1p5HV0+OaFEpKnHGpoGAYbt50wcSJbjh3ThsWFrygFok4lmD5cjYGVFS4DemehakpS3327ePXJiYozBJVqxYvjCMj+Z6JOHNS06Ys37l5k42TFy944W1szAv0/Hwea8qV40xzf//NKUujoi4gP38X5OS0sGvXLvj6dsSRI+rw9pZBuXJFi10zsy+nVLWyssKqVatw584dHDwYjWfP5mHLluc4cSIBjx4NgZ1dxUJJprU1x0pIN3M0NYun8h48mCWagwaxROjKFU7DK6VtW/6pW5ef8+LFnK3p1i0ewzdtYgOhWTOOqXj/nqU/8vI8z9arx3EV27bxwn3YMM4S1aMHj40fxhLm5HC8hbw8z9Pq6iy9Kijgz+PilFG+fB/o6/fB27c38eRJN2horEbfvlbf/Hvt1o1jcKRGyLlz/PcDsFRLW5vv5eXLIoPmV6CpWfS7gsLXYzx+JoJhIfDTCQ3lHRgpNWo8xB9/jMe6daPh6OgIc3PzwmJZmZmZePfuHQYMGIArV66gZ8+e2Lp1K+jb5VZKzb1799CnT59SnaOiwnrQfv14kC8oKF7crbS8fMkTjbw8L5yrVLmGbt26oVOnTnj79i1q1qyJIUOGfP8FwIHNCxYswPv3z7BwYQJcXbUB8IQrTQcoRbqA/hW0asU7XubmPJE6O3/9+L59eRIaPBg4c4Y9YI6OrFFOT8dXd5rMzMywfft2uLi4lMiw6NsXqFSJr2VpWeTxevCAdyKl6OkVTVQ/m1WrOA3l/v1sVEyYwM9BQODfzIwZvGMdHFz0XseOMXj4cCRUVPJQqZIx1NWbo1mzgwAUERYGVKgQj7CwnmjRogUABVSr9goVKuijVy/eyc7M5IXV4sW8s29ry0HMV6/ywt3Fhcc+aQrunTs5RWp2NnsgvL2Bzp3VkJ6uDje3+3B2bgtzcw7IbteODZOoKN6hDw7mtLLe3ryoDgjgcR1gL6tUg6+oyAvjwYP5+Fev2LtRoQJvlnTowAtpT082BObO5TYKCtgAUlXln3v3AiEjY40nTzIQEcFuCBsbwuzZPE69eMGe1I+99F9CJBJh9OjRCAysgVevZsHUdBM2bzbHnTvm0NfnGAkptWvzjrjUsJDWpZAife5btvC/vXuzkfUxKSkcj6GgwJuAEycWJdjYsYONioAAfnYaGsDAgXzdcePY8zJ4MKevXb6cv4cRI9hDkZbG84mzMy/2mzVjA3LePC4KqKZWFLf27BlfZ/t24PbtZujVaweMjYfg2rU/0LJly68+MxUVoGHDojhGoGgd8Po1GxcA3/uvrNDw4fchFn/6/fwqBMNC4KdTrRrw8mU2Xr6MQVpaGur/b2U2alQYjIyMoK6ujgsXLhQ7Z9euXejbt29hxcmfQcWKFZEkrX5UCj6Xl/p7EIs5u4N0cThhApCTY46EhARYWVlh9uzZMP6eqLKPmDNnDiwsLPDo0VxMm8YTV14eT7bh4UW1GI4dK5sd8EWLuMASwBPkl+pnSOVswcG8k1cSvLx4B2vkSDYqAF5we3p+3bCQSCQYMWIEtpbCCmzRgn8+pEsXXpRIPVbTprFB+CtQUWE5wOjRvNAQjAqBfzPSZAyTJ7OksXNnXjy6ub2Cv39DKCtPgplZPmrXVoWWli62bNmF1NQLUFIKgYaGGTp1uoLc3GRUrToLV6++wf37+oiM5AVfvXpsUGRn8/i2fn3R/91jx9gbIq30vHQpj3tSz0VGBi/yJ0wA9uwRo23btli/ntuNiODiclpa7LkID2evwvv3bJgkJ/P70mlFVpYlV/r6fMy6deyteP+eP3//nmU+NWuypAhgz0RAAHspUlJ4s0fqsUhMBESiNpBI3uPWrZpQV1+CqlW74M4dlijt3cuL59LskBMRnJxGISNDHjY2pxERoYb8fJZ8JSVJFQY8j2dlsRfC1JQX8Pb2RTKo6dP5XitXZoMhPZ2fmfRzExPeRAO4rSdP+F9pgpEPPSr5+ZwVq3Fjlqbt2sWGSPXqRYHmtrY8Di5ezB6MlBQORM/KAjZu5ADqs2f5uaalsWHXpQv3R1aWPVe1ahX1z8BAB0pKBSXOiPildUBe3tdf/0x8fHizTk2N73nNml937Q8RDAuBn87Tp0EICBiBtm2roaAgGdbWc+DpqYrk5GQkJiYiMjISAKCiooL09PRPzpd6M8oaOTk5JCYm/pS2S8LOnbwTExISgtDQUDg762H0aF4turi4lIlRAXD2q8b/S7vxuQrUS5fy4Gps/ON60AMH2AUtXb/PmiVdLHz5nJIaFR/ycRaTr3kNxGIxvL290aFDB9T82EVTShQU2JVvZcULkdaty6bwXmmu/48rhiQg8B2MG8d/yyYmwLlzUTh7di0qVkyFgcF9SCQJSE+fiOvXLXHjhjKIXgJIgby8CTw8uuL+fUuoqxMUFDQxf/4qNGjA3sO//wamTuXFaO/ebCQMGMA71jk5LIU6fZqljtLCYoGBnLZ1wwY22rdtY8+ErS2wdm0BoqN51176r6wsy55kZXl809VlKU+dOrzwVVfnxWRoKC+cHz3i68rKsiHy6hV7a/X0eOH77h1f6/VrTr2an8+78hIJS6P09NgwiYriz0UiLVSpYoo+fe4gIKDIo9CqVVHMWmno0SMcd+6I0bHjWoSFcXu1a/NzqFeP+25lxd+Tnl5RzIStLRtJ0rG+WTMey6VF/by92YCTfj5jBsfQhIWxZ6N1a75HNTWOn+ndm703ERF83QYN+Nk8e8YSp9xcNhB9fXkz5+hRllO1bQscOcJzz4ABbEgeOMD9qFqVjaBBg3gzatw4jnuoXZvlWDt3ct+ICFZWUzB+vBfMzc1L/xA/QCrPqluX79Xq28qqMqNWrbLPVPg9CIbFR7x9+xbXrr3G2bPW0NSUwNb2DLp9mGRZ4JtERUVh69atePToEXJzcz/wRvwNADhxYhA6fUdhgTFjeMcW4AG7VavSVZP+GAcHB/z11194+fIlqn3OX/uTsbFhN+zduzsQHR0NfX0zGBt3wMOHC8q0ynX37t0xatQorFmzBmZmZp98XpbB2pcuFY83mDWL3dZfMyxKi4IC7+ItXco7kN7evFPzOW7evIlZs2Zh6NChZfL/eNYs9sIEBRWlhBUQECg50vowQUHvERISiMhIBSxYYAc1tY5ISwtBZqYYsbESNGwoRlJSEvLzXyMv7wJUVR+gYsW1qFjRAN27FwXpqqjw4jczE+jZk/XtAAdUS4OMiXjhLl3kGhoW7SQrKvICXipvlZXlxfPVq4CTkyWOHLkEc3MHaGryLvfBg3zM+fO8udC+PS+yNTTYcFBVZSNEVZV38JWU2CBQVORFZoUKvFBWVOQfTU2WWFasyAvgI0d4Qf3wIS+8DQzS8eiRHfLyagCIg45OE+joTMSePWwEhIR8/3cxZgwwcmQlPHkSiZo1xTh3TgFWVuwhaNKEPTmNG3MgtbIyGw+enmxgJCVxylgpUkNDSno6L+qlTJ/OHo74eI4pMTTk3y9d4nsQi7lNPT2OSxg2jHfcnZ35WYrFwL17fA0FBQ6cr1qV2/4wBNHTk/++UlKAu3e5vS5d+PvX1OS/iy1b+Lto0ACoWTMZV69OhK1tNbi6un7/w/wf166xgRkaysbr9xh7/3YEw+J/pKWlITo6Gi1aOEBbuzeMjQMRHCzC8uWXsXv37lJr8f9rEBGOHTuG/Px8rFu3DvPnz8eMGTMgkUjw8OFDaGhooEqVKlBUVPyu9idPZuv/2DG2yrt04Z2mD4NZS4tIJMKECROwc+dOzJUKWn8htWrxxBEbOxUnTlRFxYrKCA9vXuYBuXZ2dpCXl8eWLVuwePHiTz7PyOBibJ07/3h2o4YNeTKQuolXrOD3ypoNG/hvYcsWNs4+LiL3+PFjzJkzBwYGBjh48GCxGh8/Qmoq76wBLMEaN44nS4H/BpcvX8bKlfvx/Hk5VKnSDiEhazB4sC1mzJjxu7v2r2DFCiAs7DViYoYiO1sTffvWhZXVRQBAdvZtlC/fDo0aecLcXITOnRXh56cPsVgfQCOYmfFCcNculihmZLCUqFIl/tfdnXexCwr4Jy6OY7Ly8thbsX8/x/pFRLBcJzqa+2RtzbUHCgp40WliwpmK1q8HDAxmIz3dBdHR9mjRQgaNGvHmVnAwGxSvX7Onol07Nmpatwbu3GHDQyJhWY6jI8c8RERwXyZO5PiJ6GiO+7hwocgTUKcOL7Szs9kYys8HMjLKITdXC8bGNZGTswnKyuXw+DFvcPTv/2NjdnY20Ly5PHx8BmHEiNZITr4CMzMZPH/Oho00vuzUKe7P8uU81q5Zw0aA1BAA+P1Ll4rajotjqZKUtm35+deowZtP3brxv9LNQQUF3m1//Ji/r4YNWfolL8+bcPLyxeMZmzVj78Xt22xkqKry89LQYDnawIG88bNiBRtqqanshenShc+vWTMPrVtvR2DgQezZMxtNmzb9/gf5P9av5+9Fap94eAiGxX+aUaNGYdf/Ur3UqBGAK1duwtjYGP37h8DS8sdcY/8Frl69Cj8/P1hbW+PEiRPF0qE2/rD6zXeSlMQBb1LZTMWKvOtz586nOvjS8PTpU1hbW/9w/76XVauAxER5JCQ0xJkzG35a2tLLly+jtbRqzwcsWsQ7K82bA716sSv54/StpcHLiycKqTxIT+/bGbpKw6FDvKOnrFyk/5XuSgJAeno65syZg3Pn4lGjxhK0bl25TCtXX7tWFLCXk8MShZIQHMyLCU1N1mGPH887fAL/DpKSkjBw4EAoKirixo1IrFgxAkOGdEH9+nbYuPGKYFiUgFWr1mHOnBOoVCkflStvgLq6GaKjgRcvvAvlRVu2sDFAxHEClSrx/3FbW16sh4WxIZCZWVR4TlGRZSd+fuwdKF+ez1NUZP29nBzvkEdFsUyqcmU+Thqj1b8/L4jLleOFoJcX/z9t1w4oKFDDq1dKyMoibN7MO/SysuyFvXmTF7FAUbajAwe4T2pq7N149Ig9G5UqsdHx9CkHV6em8k94OC/e37xho2P4cDZQ9u9nedbp04CWljxUVKYiKqoVkpIGQVOzXGHBzrLg5UvA3d0d3t7bUbFiLq5cKQ9FRR7f3N05o+PIkfwMu3ThxXpODhtgXl48Jycmcv+lVcmJWBKmpsbHczUOjs8YM4a/04oV2aMhkbDM6dEjXoRv2sRGl60tx58AHIPj6VkUj7d+Pf+dDB3K47FIxPI1JSWOM+nUicfqGjX4Wu/fc782bWLJ79atJxAevgpjx/bCn3+ehZxc2SyFpRm8Bg/m+6tVizdA69T59rliMXtpAGDJkk83y/5VlHVhjH8rEomEwsPDydk5hO7du0e6uro0adIkmjSJKCjod/fun01QUBC5u7sXFiGS/nTs2JGWL19OJ06coPPnz9Px48dp6NChtGHDhlJfw8ODaNIkou3b+bW7Oxfb+VG6detGKSkpP97QD7B48WI6fvz4T73G+vXrqXfv3iQWi4u936tX8eP69v2p3fhhPixKlJ5evP9Xrlwhe3t7cnQ8R2fP8nve3kSbNpXNtf38iGxsiG7f5teenlywriR82O/Pvf7dCAXyvo5YLKbu3btT1apVqXJlN9LW1iYAFBER8c3CjgJEISES0tJqSdWqHacKFY6Tu/t1atbsNcnJSahKFf5/VK4cUe3aRBUrFhWeq1yZ31NS4mJujRsT9ehB5OhIZGlJ9H/sXXVY1ecfPZduBEEs7O5uFAUBCVFRwUAUxcCJ2K2zpjOnsx2zpjPn7Jo6dXZ3B6JiIUhI3/P747PL5RIOFDe3n+d57gP3fuv91vu+nzrH3Z20tRWxtnr1RGAtIoIsU0bE0ypXlt+rVhXBthIl5Dg7dsi2oaEiMFesmPQl4eFkv35yPH9/skOHaNao0Y56eiIkV6yY7MPGRo5ftSo5Zw7Zo4e0s3Vr+a1DB7J5c7JlS1JbW8TyzMxEEM7KSsThOnQgL14ka9SQdbS1SXt7OX9A/nd2JgsVIoF2rFTpCUeMkDanF2n9WHh7k506hVFbuwX7908mKSJ2RYqICJ+ZmYy9lSpJW7p0IWvWFNFCUuZHKqHSPn3UQnSrV8s1UqF2bbWYXpMmsv/ixWVbW1v5Xq+e3JeICLlfnTvLfRw9Wv56e8vfEiXUoreXL4uoYWio3CMbG/m9YEG5zirxO39/cs2aJ6xUyZtWVqNYvvw7+vqq5xR5gUaNyPHj5f+DB0VoMcOQmyUSE0knJxnTEhNF/DQvxe3yAl8E8j4ACoUCpUqVwsiRwLRpCWjYsCG+/fZbtGkzFtWqmfz1Dv6PsXr1arRv3x5Dhw6FoaEhEhIScPbsWfz6668YNWoUEhMT09atUqUKXFxccn2MxYslBWX3bmGWyJ9fCvI+BomJiXj+/DlMTP65+7tt2zbs2bMHxYoV+6TH6du3LywtLTF+/HhMU6kmITO97N9JN/shSM/LbWIikYvY2FiMGzcOcXFx2LZtG4KDTeHsLOuoCtNVLE4fg8OHJf1q3Trxpnp751x8KCOfeG75xfv2VeeE6+p+KeD+u6Grq4sNGzYAkHqhiIgWOHz4MA4fPouEhJL/cOs+byQmJqJp00awsYnHzZueAMSzr8LDh+rc/MuX5e/kyU/w7bdF8Pq1eHLt7NSkCSNHSgrRmjUSES1WTDz+pOTc16kjuftbt4rX98YNYW+zsJA0JB0deYe2bBE2puXL5V1euFD2m5AgUQNTU6Bly33w9XVGSoo69adrV0mbmjNHCrcLFpR9Xrok0cjQUDW1qaGhrGtgIP9raUlh8rFj4mlXFfleuiQRjmPH1FGQP/6QegwtrShoayvg5FQEJ08K+9SJE3l3f9avB5TKwrh/vyO2bQtEQsIynDghkQR3d3VNmUr7448/JLKguleqguH79+VeqSKxx45JupIK585JtOjSJbk/+vpyrkOGSBShRAnpz8eOlZq5sDCpvdDTk8Lvy5elZgKQPl2VQjVnjtRhDB8uEZDYWGGsKl5cah3at5fz2LRpE4YPXw59/e/g5FQpjRXMx0ei9XmRLVChgqRdjRghz5GVlZqO9n0ICpIolWoqsm2bRC9yQ2U/a5ZExCpW/HtFbrNEXlsq/wX07TuOBQo0YJ8+9//ppvwrcPXqVTo4OHDJkiVMSUn5p5uTYyiVSn733Xd0cHDgtGnTGBYW9rcePzIykoULF+bXX3/NLVu2fPLjxcfH08jIiM+fP0/7rUED0sODHDdOPPsjRnzyZnwU0kepzp4l3d0PsXnz5ty3b1/a735+mttk/P6hCA/X9BSOGEGuX5+zbdu3F28UKR6p3Hgc58wR758K69ervXV5hS8Ri5xj/fpUNm9+jPb269ms2TEmJv7TLfq8kZSURGvrxvz994vcu5f09CRNTUkLiwgWL36IjRuHUEdnLYFtVChOsW7dRAJk4cLigfb0lP0kJpJTppDm5uT16+K5njNHoojNmokXu3RpiTbo6ZFeXnIcbW2JJBQtKtEKY2N1xLB0ac22+vuTbm5kUJC8c6amM6il1ZcVKz7mkSOyvb6+RFNKlZL2GRlJJENfn/ztN/FUGxtL1CFfPolsduggHvnQUDI4WNpnZSXnYmtL5s8v/UupUtI3GBtLZKZGjfPU1rYgAMbGxpLkJ4uQeXuTdnYj2ajRLl6/ro72uLpKXztuHDlhAtmihXjTS5aU61WsGPnNN3LeNjbqfm7OHNlehUWL1NHjYsVkn+3bS/SpdGlyxgyJNE2ZIt9tbdURC9VHhYAAOR4p7ahYUSJEtrYSAQoKkmUTJpBbtz6nj48Px40bx8TExEzXb84cpkW4PxYZI/45zQAICpJnQ4WYmNzd5yFD1JGX1avlGctr5KaP/2JYZIFHjx5RX1+fDRs2/Keb8q9ASkoK+/btSwCsUaNGrrZVKpVcuHAhr1y58olaJ5MwX191KDUjUlJSuH//fnp4eHDOnDlUKpWfrC3p8eLFC7Zr1+5vORZJPnnyhADSjL+ZM6XjDQ6WkH2dOnl7vEWL1KHrNm3UIfKPwfXrsk9v73ssXrwNhw0blimVLShIjp2YKEbF1q0ff1wV9u6VZ8nfX50KkBMkJqoHSW/v3IW5sxpg/P1zvn1O8MWwyDkSExMJgPnz5/9XOVL+KQQGklWrXqORUT3q67dkiRIvqVBIGoypKWlpKZNsAwOyShVJX6ldWybZJiaSTtK0qZIuLuSRI7Kdvr6kutSoIZPJsmUlFcnUVP5XGfy+vjK5t7Yma9WSCX39+jIprVBBUk4SE8mNG+U9q1hR3tN586TvMDUlS5U6Rju7rtTX92SFCicIkCtXimOhXTsxGEg5D0NDaZ/K0KhViyxfXv7Pn18mv/nySepWyZLSdl1d8tIlmVRra0sbtbVlXW3tnixc+DS9vN6RlMn4p5g0ktIn6eu3oK1tK3buLP1b3bpyTiqDLShIrlONGuTkyXLdvvlGPa7+/ruck6qfc3SUvsrPT9Np5ekpKU/ly8t9B8iuXWVCXaCA2kg4e1bWV/Wf6TFihLSvVi0xIhMTpV02NvL/gQMJrFlzHh0dHXnp0qW07UaP1jQkvL2ZZ86B9etlfwcPyjXIqQNIlf4UGir3QfVc5hQZx4i8Hh/IL4ZFniA5OZkPHz78p5vxr0BUVBTt7Oz+cpBNSEhgr169+PTp07Tf9u7dSwDcsWMHEz+B6y8mRtNrcPmyDHRZQalU0snJibdv387zdmSFxMRElipV6m85Fkm+fv2avukuRsbOJ687o4wDQcbv2aFNG2mLr6/a86TCq1evOGHCBHp4ePD+/ewjiosWSWeb2/qotWtlMJg0iTx/Pnfbvg9Tpsjg6u8veci5wcGDmtchODjvPGwqfDEscodHjx6xaNGiDE3vZvwCDYSHS+1Emzbk+PHjmT9/B+rpdaSW1ivWqSOTSW9vmVgqFFJ/YGmZSkAdsejRgyxR4msqFKYcPFjy/HV1ZV1dXfnY2Mh+KldWTcbVk9gDB6RGQF+f7N1bjIq6dclu3SSKEB4uNRFVqsg+hg8XL7q7u7yrpUvLxLp7d7JEiddUKPyprT2bbm5i+BQtKgZBjRrSNm9v2dbUVFWuLOdnZib/W1lJNKJmTYmw7Nolyxs1UteXaGvL/4aGpIVFfxobH6CPj/RnOe1DPxSlS3fl77//nnb/rK3FSPLwkLoXXV2Z8FerJuurvP0BAVI/0aePrN+tm6yjijD36aOulSDlXtnbixHYqpVEQQoVkn1v3CjrzJ+vNlJat1bXcZDSRwcEyP2JiCDv3lUbPNevk56eJ1iiRAuuWbMmy3mJKgLi65v7GrzkZM22ZEREhPT3d+/mbr8bNohh26hR7g2djFH5T1Er+aXGIg+go6ODEiVK/NPN+Oxx48YNVK5cGW3btkWRIkXQvHlzREdHY//+/UhJSclymx9++CHTbx4eHrh+/Toq5bGazO+/Sw6rCtWqSe5jepDEmzdv8Mcff8DGxiZLrYdPAT09PVSsWPFvORYAhISEoEU67ruMiqAZReb27ZO8T21tYdlo0yZ3x1MpyWb3PSv07y8ifqrHYORI4OhRwMbmNubNm4dnz54hMDAQEyZMeK9woopdIzfYuVNyoFW5uyNGSDs+tu7k5Enhs1+5Ur5v2iTnOGZMzrZv0ULYUbp3l3uhyjf/gn8OxYsXR1hY2D/djM8WR48Kg1KFCkBExAls3hyB6GhzAGNRooQVIiJewMLiETZtioOZWRzMzPLh3buCiI0dBGAXgDGoVKkhjh5NxaNHXwMAVq3qCIViIzp3lvz7ixeFgadpU8nPj4qSfPuaNYVidPlyYePx8lIL482dKwJpGzcKi5Crq6ZQGiD5+yqRsTFjhA5240bg3bv8MDd3h6HhGbx5IzUR9+9LLn+pUrKfqVOl3iIuThiKFAqpS0hKEkalw4elP3n9WmoLxo+X/P8DB6TeIDJS+mEV3ayOTmXo6ITB1RXw9f30983AIAV79lRFTIzUNerrC8PRrFkyXpBSV6Iqm+zfX8YGFbPgoUNSJ3DrllDSjhwp7I1Hjwo71K+/Sg3GkydSi6LSoXj+XH4/dEjEC6dPFwYwU9PM7FezZkm7li2TWhgfH2HeWrqUaNnyCMaN+x6FC9vgxx83ZUsz/qGMWps3CzNV4cJy73v1Erap9LC0zHnfrsLcufJM3Lghz+2IEfJbTlG9utThff21fNLPef4JfDEsvuCjUKBAASxevBhLlixBt27dcPLkSZibm2POnDkoXbo0ihYtiqioKDx58gR6enpo1qwZLC0tsXTpUvTv3x8PHjxA8eLF81QQLj2cnKQASkV5unixFDepEBYWhpYtW6JBgwYwNTXFggULPpnSd1ZQKpVISUnJM7q77JCcnIz9+/enEysE3NxksrpggXxUfOSAdJ5r1wpnPCCDraVlZmrfx49l0O3bV5P2FZBCx+fPZb87d2pymmffTk2l0ipVrqFDh6UwNn6J6tXHokCBqnByyt255xQ3b0pxpwrFiskgV7myDPgDBmQ+//Hj5Rxr1szemFm/Hhg1Sv29QwcZrHMDX9+/Z2LxBV+QF/jhB5mExcYCtrZDEBPzGKmpCgA/4MEDzXVVSs4qGBq2QUrKUvz221QAgIlJNbx754PSpVvg+nWZFDo5CZ3ns2fiKHrxQoTc+vQR/YPHj8WYOHNG+p2dO6V42MdH1h85UsaCixfls3atFFsvXqzpYHn1CsiX7yrq1duF06ejEB19Hm/f7kJcnBgNdepInxUSItuTMunV0hK607Vrpb0pKTJJNjCQiWP79mLoXL4s9LMlS4rmhb6+TNxfvZJi4oiIEtDXv49t28QwyWuekTVrpMj67l1AS2sPXrywwNKlljhyRO7L69dSCG1hIX+vXJFr5OkphkRYmJx/RISMFeXKSfvj4qSvtLKSc/TzkwLt1auFbrZjRzFOKlcWB5ZSKfS6YWHS/5cvL46sx4/lnqUnybh5U13UvHw5UL48Ua7cATx5MgvW1vVw+vRCFEw/mOUhbt4U8hgVhg+XcwfEqPzQw16+rHY8BQSo6dpzikGD5N5MmyaUxSpa/n8MeR0C+YJPh6SkJHbp0oU//PDDP92UTHBxccn1NulToj4lVHnx6UOxKsTGxtLBweGTpGHlBDNmzODmzZs/+XGUSmWme3TkiDrPNWPtSU7y+qdMkfX27pX0AVUIW4XERNkmICDnReHr18u6L1++ZO/evZkvnz9HjVLnM23cmPeFyyosWKAZvq5eXTPknfEa+fsLbSUpKQETJmS93+vXNa/d/Plq2sXPBV9Sof4bSE1N/dv61fch/fN+9iypp7eYCsV6KhT3WaJEKA0NY9JShWrVUqcrmZoKxaqhIamt3Zf58m1nyZKSWtO4sdQfFC0qBcX588v2HTtK3YK+vuynUCGp0Zg9W+oYSpVS1yX4+wthhZGRpF8ZGck2pqaS229rq5l2eOIEaWTUhvnybaGh4TWWLPmWhoaS4lO+vOxLV1dSfQwN5QNIUbajo/QhWlpyrMqVZf8mJpJ6lT+/pE8NGCDbFCggy9q2VadQ5c9/m1Wr+lNHR84//TAVESEF1R9au5a+z2rRgqxceQzd3C6kpRWRkpbVoIH8tbWVehdS0r9UaVl79sh1LllS0srKl5fr/Msvcj0KFJB6lho1ZB0TE7JhQ0lTVtEMN2ki6TwHDsj1bNxY1vHwULfl+nVps6omQqlUcv369TQycqKT00jGxMRw9erM6bN5iRkz1P9HRMi5JibKp1WrzLVzgYHqtN73jVsZx9a8IhzJS+Smj/80buIvyDMkJSXhwIED2LVrF/T09LB27dq/LVUnNzA0LIQmTbaiTZszMDEpg7p1G/3lNoULF/4bWiZpI6tXi+do6lTNZcbGxggICPhHlLcBoHLlyliyZAnGjx+PCxcuID4+Hs+fP8/z42zevBkpKSmIiYnBq1ev8OrVW8ydKyqy7u6iClunjvr6lColYWsV9u0TAav0uHtXrunhw+LRmjlTc7menniWli2T0DYgQn0vX77Mtp1eXikIDV2AGjW64MqV+rCyssLLl/PTrkmHDsjk8cwr9O8vz8n06SJmZ2qq6YHKKpVLJSY4aJB427JCpUriTe3eXSI/T5+qlcm/4AvyCufOnUOXLl1QpEgRREdH/6NtsbeX9wkQz7e5uSV0dKJRsWIp6OoWQ3z8ZQDv0ihH8+eXSMG7d+Lp19EBSpZcjMREDxQpIh7t2FhJp3nyRFJmYmMlGnHjhkRTk5JkPUND8ZzPni3Hr1FDKF6nT5cUowsX5HilSkkkwclJxNzi4iQCkp4etGFDoESJkYiJ2Qk9vcro1MkMdnbSbyYlAWfPinBrfLxELU1MpN8zM5Moyo0b0je2bCnee1La/fq19CcPHki6KSDpXJaW4nkGZH2FohyeP78CU1OifXsRB+zZUyIzffoIzeqWLer0zdzg2jVJm3n+XPZboEB1xMRcRJkyslzlQb9+XdodFyeRlIED5V49fixRaR8f2cfTpxKVCA0FfvpJ+urkZDnXhw/Fs5+UJFGKZ8/kvkRGynX4/ns53k8/yX1ZtEgoda2tgZgYOb+FC4X6NioKqFfvKkqUaI1p0x6iWLGl2LNnKkxMTODrK9f3UyEyUs4HENrh4GC533p6Ml6mj3hPny5Rm5AQGVdevJC02KxQo4b6Hi5fLs/MvxlfUqE+Y0RFRcHCwgIFCxZGvnz2AKQe4HNDbGwsoqMH4PjxWgCAtm29AGgSMKekpODmzZu4cuUKfv75Z+zatQv79+/PUg0679olYUEDA+mssut8vb29sWvXLly7du1vV+F2dXVFpUqV8Pr1a4wZMwZ6enqIjIzE2LFj4ZSHOT+9evVCdHQ0vLy8YG5ujhMnrqBu3V4YN64NSpcui1mzJD0nOVk6yJEjZQD79VfJ609OVqdFqaCnJwOmlpYMrs+fS2pQ+lDx6dOnceHCBXTp0gXnzp2Dg4MDfvjhB+jq6uLUqVN4/Pgx9PX1UatWLTx+/Bhbt25FoUKFULduSVSp8gBAVUyd6otWrVrBy8sLgwbJYJqXuHcPaYNp+rZfuSIDp6Wl/I2L09wuY01KxpqV9AgIyBstjS/4gvSIjIzE5MmTkZSUhIULF6J58+b49ddfYZZboZQ8hq+vTI569pRJdsWKbjh61Ac3bqwEICIMrVs/xv79Rnj9WtKUypeXSVvJkkDduu+wY0cC6tWzRFiYGAwq+aOuXeWdPX9e0oMOHgSuXpXtixSRie2OHfJ+btkibXn1SgyG0qXlfVY5AbS0JBUoKkpScxo1EvVtT0/REgCAr7+uj06dtkJbexMWLuyQ9t57espxEhJkkj5ypKT4mJjIb0lJYsC8fCnaDQ0aiAETHS0GVIcO0t6RI4HatWUfxYtLug0gBpRMWv2QmOiBqVNjYGDQHcePX0dUVCfY2dXG/PlyXhcvqp03OYWqvypYEDhzZieuXx8NbW1zeHkRt29fwaVLk2FhYYZKleT6hYbKeS1eLPf1+nWZ6JuZiaHn5CR/ExPFSfX0qYwdtWtL2ldsrKyrqjtp2lScUhcuiJHUrBmwb996JCYuwoQJR1G7NrF372U4OkYgLKwxfvpJH1evXoWu7hg8ffoaHTrUwf37h3Hu3Ca4ulpj7969ADL3y3mJSZPUtQ8pKVKjo8Ljx5qpanfvas45xo2Tj0rnIz0GDJCxtndvdY3Qvxp5HQL5grzDnTt36OLSh4UKuTMgYDj19fNxyJB/ulWZsXz5cmpp6bFx48ZpVK2q8KVSqeS0adM0FLmrVKnCn376ie/evfuk7WrdWs2pvWhR9qkqJDl48GCeVEkq/8OIjY3lwIED6ebmxhkzZjBGdRJZ4O7duwTAli1bcvz48Xzz5k2W67169YqXL1+mUqnks2fPCIAmJqVpaFiQFhYWNDXNx5Yt15HMHJbNLkusQwdhDSHl+jZqRNrZKRkWFsbvv/+ee/bsYb169aitrc0OHTpw8ODB9PX15fz587lx40Zev36dpOh5HD58mKGhoYzIEEtOTU2lvX0AbW092azZBi5ZkprttUhMlNSk91wuDezYISkNQ4ZIKlfG9KTERHUKna9v5uswbpxsGx4uoev0WhMfggkT5Fh+fnlHf5hTfEmF+nfi66+/prGxGc3NK9PcvCK9vH78p5uUJQwMAqijE0gbm0b09T1NKyslDQyEMrZ8eVKhuEIdHT+NcUJHx4SkmuFGlVapejeCgoSWU9Vf2dpKKkpgoOxTS0tSpJo2FbaoMmXU6t4NG8oyVTqWKvVozBjZ18GDmuNFqVJJ1NJqyVKlJFUnf35Jy3F2FoaqsmUlTQsQxqcWLSQFq2pVWd/VVVK+tLQkPcjOTtKLVHoXCoX8NTWVdWxsZDvVb/nzk3XrPqWNzTIePXqO2trOVCiWs0OHaC5aJExM2bHNde/+kI6O29mp0wuNNCFVCuv166S7+z3q6VWkrW1fGhmtpJaWPfX0zFmokAttbUfTwWED8+c/SgsLYbZSUW0XLy7n4eMj96J9e0kvK1iQ7NVLzdKlusba2pLOqtLxiY9PJQD6+fmxa9dxBEBDwwL08PBg5couLFNmKGfMmEFbW3e6uLjQ2dmZAwcOpKPjdl64cIEpKSksUaIhdXVN+PBhPAMDhUY9r3D2rJrNL6tU31atJBXtxAlJK06P+fM1Kcn79Mk9S+HnhC90s/8R+Pv7EwAdHR05ffp0Llmy5JPQiH0sTp06RR0dEwYGBrJLly5cvHg569T5kW/fvqWnpycBcMWKFTx9+jQBMCknGvcfgaAg6QxKl9asFXgfnWqrVq0+aZs+BO/evePKlSvp6+ubJWVevXr1aGBgQAD85ZdfCIArV67Mdn/x8fGcMmUKg4KC2Lp1a/bseYQGBuXSBvJZs2bR0/Nntm8/MkftGzQohUWKnKWd3Sp6es5lly5daGjozB49enD9+vUcPnw4L168yLi4uA++Biq8ffuWs2fPZsuWLdm/f38OHz6cfn5+7NixI5cuXcp9+5LYpo105n5+Uv8xZYpacyKrnNWM79KHUDkeOSL527mlFsyI0aPVhklEhKYQ4N+BL4bFvw8PHjygtbU19fUL8ubNm2zSpAlHjrz/2dXvkKRCUZmlStVjlSrj2aOHktbWMnHW0kogMJAAaGxcmjo6FtTTK8vZsxPo5SXOIdVkzMNDPkWKiG7BkSNSy1Cvnry7XbsKxenatWIk9Oolk3sXF6m/CA6WMaFEicwGRdmyQm87aZIc6+xZdT1eeDi5cuUJ5ss3jHXqSE2Gqr6MlH2UKydtadNGvjs5iUFjbi7tLVRIJqEzZqiNBYVCXX9RoYJso6UlywcMkHoDFW2tip63dGmhfTU3TyawhCVKeFFLqxNr1IhnvXpyXVR49+4d27VbQAC0tLSkq6sry5ZtrPF8RERITduRI3KdVXVk/fqt+HOSb0rAgAqF3p9OQSXd3B6yY0dxIHp7y/mVKyeaHvnySdtr15bfhEJYjJFixVIJ7KOBwXTa27dj06ZN6eDQkkWKOPP8+fM8f/48X79+zV9/fUF/f2o4UVUGECkG35w56mUpKSkcPnweixVzpr//GL5+/ZpKpZJJSUl88uQJo6OjScr5ZdQgUumXTJmS+ZmNiJDnT4XAwKxpvkePFidTVhgxQl1jkRvdo6wwerS6/bkRWM0rfDEs/kPo3Pk1J0yYQACMiYn5JMIneYHTp9/S2roZzczKpE1UmzZtyooVK3LEn5W78fHxfPz48Sdtx/z5agXKzp1FHE3VaWQ1cYyPj+fYsWM5duzYT9quD0VSUhInTJhABwcHrlq1SmPZgQMHOH/+fLq4uLBp06Z8+PAhw8PDCYBe6UaY1atlAOja9QVNTavS3b0jd+3aRVI0SDp23EltbUOWK9eHZco4ctKkSXR0dOTly5d56dIlnj59mhcuXODmzZs5Y8YMBgUFsXv37qxduyVtbUfR0XEDZ8w4wIYNw+nm9mmvR1hYGL/55hvOnj2be/fu5e3bt7l06VIWKeLGAwcOpK3n4aHpwTt4MHMBecYC9awK1nfsUHOef8oowqfWFPkrfDEs/n2Ij49n9+7zWbmyC2vVqkUPDw+Sf/+zkxNYW69n0aKTWaNGTSoUij8jEguore1DoBq1tZfTwoI0NKzD4sUfs0kT8dL7+srEPiBAPP6k/K/y9JubS3SiaFGZ4Pr7ywSsdGnp+/39pf/Pn1/eX1VxdcZPkSIyCe7eXY7n4iLGRevWMqGsVGkizcx2cc4cslMn9YTfyEj2WaGCGCytW0ubypYVI0FVYG5hIVEIQAwTHR2Z6OroyPdy5dTnBMi25uZikACynp6eGGMq9W9tbSmE1tIaQCOjQTQ2PkVPTymSJskjR46kjcW9e/dmiRIlOHXqVHbq9JiHDh3ScPAdOSLXrEKF3jQ1NSUAdulynMWL36e+fhVqadVknTp27NPnHLW08tPGZgrbto2hjY1EJ8zN5a+fn2QpHDv2llZWMQQm0sTEgw0butPd3Z0WFlNobPwHb9yI4PPnb9iy5bsci4UGBcn9zE53QqlUcs+ePezUqRNbt27NNm3asHfv3mzdujUHDAimq6v6fEePFkNUZTxu3Zo54hMcnFmv4lOpnv8V7t7VbN/169nrcX0qfDEs/kOYOZO0tW3MQYMG8ciRTy+Q86FQieQlJSVx0qRJbNOmDU1MTDhjxgxu376d4e9TlMlDpB9Up0yR61W+vIQp03uVd+7cSQ8PD7q4uPwtrEwfi9TUVHbo0IHn/0K1TalU8u7duxrijunZjBITs1YfDw8P5+PHj6lUKrly5UoCYJkyZRgUFMSJEydy3Lhx/PHHH3nkyBHev3+fL1684Js3bzhkiAymtWuLx+p9UA30KlXcvzoPUtTCt2zZwmvXrvH48eO0t7fnypUruWDBAk6YMIG9e/emm5sbLSyqEEBaKljdujJYpkfGQSE4WB3eVnmzMrZX1ZmHh2cOdZNisKg8aR+DDxUTzCt8MSz+nQgPJ318xJmwdu3af2TCkRPMmUPq6u4h0ILAPOrre1FLy4YAqKU1nKamKdTREc92+fLiHIqIIB0cZEJ5/bq8v0OGyGTe318m1paWMmnv00fYi9zd1Z73Nm1kwlulikz6q1SRKIJqog7IBF0VtQCkD+jTR/rJdu1e8dixY/Tz82PDhkOprZ2cNoG2spJ25Msnk/tvvpFJv8pwEUYntWGhry9t0NIS1icjI4momJlJOlWvXnI+BQqoU4bSGz7FismEukQJOY6+vqRcKRRk0aIp1Nc/x8aN29PTcwfd3NTPwI4dZJcux/jrr7/y7t27HDKE7NRpLAHw2rVrJKWf9PUVx8vPP79gkybXGB4eziNH1J74atXW08rKnS1aBHLIkEc0MPiahoaFOGzY9yxVqjXd3HqwYMG2tLNzpZOTGwsW7MTWrduxbt1fWLRoCgMCZCJvbCzq0oGBcj9zalTkFM+ePWOHDh3o7u7Otm3bsk+fPpw6dSobNepJG5tSGs65smU1t81okK9YoRlluH49M+PUxo3yrKmiCJ/K+bRsWeZx83N2Pn0p3v7MMXQoYGX1O44f18Lu3cKL/Tni999/R9GiRVGhQgVERERg5syZ+PXXXzF8+HAAwJkzZz4Zt3R69OoFuLjshq3tVixfvhyDBgm3c9u26nVCQ0Mxb9487Nq1C7rpKUAyIDYWmDdPBID+SV5okti/fz+ioqLwWkVJkQ0UCgXKqCqR/0T6Ok49vazZjdLfG21tbSxcuBCenp4oko4Kavp0YbWoWVM0MEaNkkK5FSukIFKF1NRUpKamQqlUQl9fHwqFArNmSdFiSIjsRyXkkxXOnDmDbt26oUmTJjh//haMjHygq3sGLVoY4YcffkBplapSOtSpQygUMQgJMYOTkwgYff+9FAi+eSMFnDVqaG4zd6604cABYZLJWJy+e7daSKlgQTnvc+ekMDEpSYo3mzUDwsPlWQnR5CvA118L+4mx8V8X440YIc+otbVcp/r137/+F3wBIM9lkSI6qFJlNH77rRN++UX0Iz43XLwItGz5E/r3H4uBA/fhzZvCiIqqDD09GyQlLUBMzHpoa4ciNlZYgLS1paA3JUX6YEAYeXbulD4+MlLYpJydpUBbqQTq1ZOCcU9P6ZfevgW8vYG9e2V/qmJiANDXvwulsgwSE0WzKCFBWOCKF5d+oGrVS3j8eBAAR5QvPwxVqlTG1auy/evXotuzcCEwdqy82zNmSDG0iYn0DdWrizaBqmD86VMpFFcopOC7RAnpL4yNpeA5OVmWv30rBd5v32pev8ePpS96905ddB0VJdukpmrDwKA29u5dgfz5WyE01B1DhkjfVLgw0LRpE2zfDmzdKv3KrFmTsW6dmgVx1Sp13+fjUwCGhgXg6yuF5yr9iMuXvTFwoDdiY4FNm8KQkPA1rKysUL26BcaO3YD+/WPw6JEZxozRR2ysnKOenmzbooUI2KWmyvUqVkyuXUYsXgycPi3XuGJFmftkh2PHjiE6Ohr29vbo1KkTjIyMYGpqips3b2L58uWoWLEikpKS8OrVKzx8+BBxcfnw9q0C5ubmadczo1xVxqLv7t2lmLpnTyGAefEi87u1ZYv6Gj1/Ls+m6lomJ4vOhZ6ePJcfwtylgp+fFPt7e8v3qVOFDOBzhYL8a5qh6OhomJub4+3bt/8428QXfD54/hz46ivpCF+9eoKzZ+1QsWJJDBs2DOHh4TAxMUGHDh0QFRWFb7/9FgUKFMDgwYM/aZsiIyPh6toXp05thL8/0aCBJhtPREQEnJycsHHjxiwnqCrs3Cn0d0FB0nmYmGSmqv3UUCqVOHHiBAYMGIC6devim2++gZWVVa7307YtsGGDdHBHj8r/WXXs70P//jJJ9/aWwWHDBmEFiYuLg4vLOQQFRcDQUAyb9evX49q1a6hUqRIS/pQ5v3xZC66uhWBhYYHSpUvj0KH2WLcuX5bHunnzJhYsWIBatQZi924DbNlSDL/+KoNVxsk7IB3uxIlCibt5s3ToZ86Ieu6iRcCjRzLIGhvLYJme+el96N5dBnPVANm/vxgAxYrJYDNzptqg+vprYftQKWIPGiQdv7e3GGOLF2c2XLLCsmUyuCYnA1OmyLHeh5UrZeKkordcuvTDRJo+to//MkZ8QVZIShKDPDQUKFKkKe7cOQZAgXz5HPH2bSy0tJKQmtoBVat2RWxsETx+LCxCp0/L9vnyiXJ2cjLQubNQm2prC/OQgYEYGDo68sxXrChic7q6sn7XrmKkzJ0r76uJiTAu/fYbQCoAXANQOa2tJibCble8+HVcudIfVlbroK9fGDVrisry8+fyeftWjp2QIJSw1arJfp88EbXtd+9E1VupFKrpo0fFADAxEQeEUinnULiw7K9QIZnoqlCypNCzZoRCIfELQBiw7t8Xw8vOLgVnzswDuRfVqnXHli1dUKaMOFYuXgT27JHrnx0y9nMDBojzxM8v6/XnzgXMzFLQs6f4pUeOFEao3bvVyuGJiXJsMzM55xEjNPc3d+5cpKSkQEtLC7a2tggPL45bt4pj0SIbKBQKfP213E9vb7WDxtpaxuDp04F58xxQsGBDPHlyBtWqjUThwnWgr/8OS5ZYZSk226WLGHpxcTLJL15cHIanTskxRo2S+9azp1pMV4WkJPlkJU7Yu7eminfPnuoxyt9frpW5uTivTp4U1kQVRo6U+68ydrMa29Lj5Enp3w0MhMXwfYZXehw6JMaPlhYwf776PucWuenjv0Qs/iG8ffsWSUlJsLa2/qeb8sEIDgbWrVM9qEVRsGBZ7N27E3p6ekhKSsLly5fRo0cPrFq1CgBw4sSJT96mS5cuQUvrCVq0aIGlSzMrWltYWCBfvnwo9hczto0b1d6Jpk2Bbt0+VYszY+/evQgJCcHmzZvTrmVISMgHGRWAdFg9esjE2tAw90YFIIOotzdw+PBh7N59GDExf8DLyxj6+vpwc6uL5ctt4Ocno56XlxfWrFkDPT09xMbKsXV1UxEWFo7WraMQFXUFp071QevW8VAoFKCkZEKhUEBXVxevXr3Cs2fPEB09DVu2SAfWpo0YFlnBwkIG8EqVZFBQqVp36CDbHD6sXjc393HSJDnuuHHA8eMyWVE9NtramlGahg2F8lJlWMTFqb1LDRtKVOevsGaN8NqHhMhA1qaNDNbvw969ao9ZUpJc6881qvkF/19ISpLJ8549MrG7c2cOChcejVq1NmHXLnPY2qbi1SttkOdx/XpVKJWRKFkyFNeuFUujM7W0VE+42reXqITK8FYq5aNQyMRTpVbdoIFMug8ckGjlzZvyPSlJtBRIVwCWAG5DZVjUrSuaFFFRgJPTMmhpjcOJE4WhrS3bK5XyPu/ZIxPn+HiJOjx4ILobpUuLQXPkiHitL18Wo+POHWm7rq4cn5T/9fSAChWkPV5e6oimtrbaqNDRkf5aFLjVRgUAPH6cAh2du0hN3YQzZ1YjMfE+zM2Toa2tg4oVRT9DFbj+6is5xpYtWd+nOXMkyjN7tjhk3r7N3qgApI8dNEgHPXvKtahQAbh9W65Bv36yTv781+DichQODgY4d+4CvvoqFL/8opXW18fGxmLixIlITU3Fw4dhGD16PwwMQhEa+hJkMvLnz48jR5yxenU+1KgBeHnp4datfHByygcbG33Y2sZg8+be6NhxCuzsxPjYudMMEyZkdgAOHSrXQEXz2rev/FamjBgY/v7imOreXfazcqWm8rVKpyIrvHmj/v/KFU0NFGtrMSoAoWX/7Tf1sk2bxGhWUQTv3Pn+KD4g7X/7VvQ9UlJEM2PMGNlPdti3T3RSVq4UIyYnY0pe4Ith8Q/BwWEuzp+fiKJF2+PJE5nBRkdHw9TU9B9uWc5hZqZ+4V69egVjYyu8e/cOffqMxR9/3ICHRy2sWrUKZ86cQd26df+WNqWkpKBJkyaoW7cuAgICMGfOHFikU5vR0tJCgwYNcP78eTR4TywxY4aUgcGnanFmHDhwAM+ePcOUKVMwbtw4VK9eHTVr1vzg/VlafvhkMzo6GsOHr8OGDb/jwIE4hIXthIfHfpQqNRE1ayrw4IGkB+npyaQ2I1QT3SlTtGFmVhQrVhRFixZV0K5dZ8yalXn9GzduoG/fvmjdujUiIjJ3T0lJmTv5P4MiWX7/mPtYrJhwi3/zjaRRpfcQtW6t9lYlJQHffafmvf+rNmWH339XT6L09IBWrWTAUYnwZYX0aW3Zpbl9wb8P0dHR6NDBB127DkXr1rWxZ88elC9f/qP6gb8bdnYi9lW3rniyK1X6HQ8eDIOBgTlsbX9DRMR+pKbuRFLSTejqdkeFCgtw754xjI3lfdHVBdq1U+9v0iSZADs7qwXy9PTEyChaVCbfqamS0mRvD/zwg+gXXb0q0TwTE4lshIWZo1ChmQgN3Q4jozYwNtbC2bNyjIgI4PLlvggLmwddXQcYGMiE/u1bMVxevAAaN5YIwJMnclwbG5m0NW0qUZW7d8XYeftW2le1qniLDx2SiGnnzrLtgQMySU+fXpM+HSclRSIumXER8fG10r4lJgIFCixAqVI6qF5dJrvps2EbNny/M8nSUvqu8ePFOMhJZDVjamfPnono0+c2li8/jdGjR0Nbux1evvTA69eJSEgYjGLFSmLbNkWm/SQlSRSqUyeJ9qxdK9d2+fKn0NL6A48ePUeJEsDdu4mIiYnChQtRaNjwGUhi3LhJqFHjhzRNEnd3YPv2zG2NjtbUjmjbVvr1oUPFmFyzRu4dIBP73r01DYv3IShIjGYDA7l3KlFBILPuUfrvBw9K9ECF7NqeESdOqCPuKSliRE2YkP36Gzeq21SwoBg4fzWm5AW+GBZ/M7Zu3YoBAxahZElD7N+/H7Nnz0WRInuxc2ftf5VRAcgLqxIQMzMzg1JpiGbNAlG4cAds3DgN48bdRalS+1C3bl0kJSVBV1cXioyJjR+BLl26IDY2FqtWrYKuri4uXbqEmTNnYuvWrTA2NoZSqcSAAQNw5MgRPHnyBIGBgVi4cCGuXLmCcePGvXffZcuKN2HkSAlBZuwkPiXGjx+PdevWYfPmzahYsSIOHTqUp9ctK9y6dQsbNmxA3759YWNjk/b7ggVb8fvv1zFo0FIkJ5sjJka8cGfOyIDapYuE3EuVkkn2oUMyuVV1shYWMrhOmiTfr1yRnNusjIqUlBSMGjUKK1asQOnSpdMEg5YtE89LcnLWnqNKlaQdlSqJkZNe1bpUKTnW0KGSkpCTCX566Oll7UVyd5eOvXdv2efatZpta9dOIia1a4s4VuPGf32s1FT1+wSIx9bT8/3bvH6tNrb27ftiWPwXcPbsWXTo8AZv31bG/v0O0NFpgJSUU1i9evW/yrDQ0pJ3BBCvaq1aD/DsWSTOng1BWFhRkN0AmAMoAyMjbzx+LCJ4z55JhDA8XJ0mAsiEt3FjmfwaGsrEvFgxEbsrXVom90ZGEsUrWBAoXFiJZ89C0bBhSbx7J5G9oUNvQkcnEq9f+0GhSMK7d954964pgOIAqiA5uRSOHLEEIMrlY8dKxGL3bjleoUIyGS1cWAyV6GiJXnh5SR9gbS2TTBMTVf2DtOnqVVGcBiSNVKmU/+fOlXMBJMKRvoROlVaVGdUAnIFM3yaiWjUHNG3qjdOnxRAZO1YMnidP5JoEBb0/FQqQ/iO9wN6mTRLhMDaWc0zfv02dKvszNJT6l+bNv8KpU4+xeXMVmJqaoW3bndi6tT709aW2ZPhwMS5VkYBffxUl9GLFRJBwxgyZaJ85IylkhQsDVasWQYUK3nj2TKInqmOfOZOIs2ddsHz5BLi6uqJ+fTHUAInSZFUyWbWqXGdVitPy5erJtqOjnJvKsLhyJXd9aNOm6m0zomFDieCo0lTTO6YCAyWKokqj+vprMcT/CkZG6v91dAB9/fevn5ys6Yx78SJnx/lo5HU1+Be8H506daKhYcE0GjhXV9fPkh4wJ0hMFCYEFSPC9evCLhESEkI7OzvWr18/7TwB5JkAXWpqKo8dO0ZfX18aGRmxbt26bNWqFfv27csXL15orDtx4kSWL1+ekyZNYvXq1Tlv3jz2yU5JKAMWLZJzCw7Ok2a/F3fu3OGsWbPo4uJCDw8Pbtq0iSdOnOBXX32VxpCU11ixQrjKTU1N2apVK65du5Zt2rRhu3btmJycTJIsXLgD+/cXgYWDB4UxxdNTaBlHj1aLSCUmiliSCpcvy7oZmTKy49/evPk2bWzc6OCwkd7easrgI0fkHmTHEx4RIYwZERGZWaBUUN3Hv1NccuNGoas8ciTnTCGJicJqExgo71FOnrvwcGGQCgjIzFiSG3xhhfo88PbtW5qZFaSlZQcqFAquXLmSO3e+Zvny/3TLPgxWVqLH0L49qVC8oafncerrPyawicB6AqUJLCKwmsAoOjurtSvq1hUBTlNTYUOqWVP2WaAAWbGiMCqpROTMzYU5KT3j04gRTwiAdes2ZMGCR1ihwmBaWzdjp07P09bR1b1FLa2JaWNUvnynWKbMYgLraGYmrFSGhnL8IkXIoUPVOhS6umS/fiJ+V7KkMD7p6Yn4no2N/K9iiUrP8qRQCJtVRuan9EJ50jY5x/TnBIRTofiNQCcCHtTWzk8dnR60tycXLlQz361aJaxHZctmpkzNCVTMgZGRkTx9+jYdHffSwcGBRYrYsVevH5mQkMCzZ8muXZXU1S1Ckpw2TfpZS0vpr/Plk3tYqZIwQXl5CY3vokUyNgQHk5Uri1jg6tXS59WrJ+epYmOaMUOu+/z5pKdnIq2t/Vmx4lY6Osq5OjqqRUyzYjtUYdw4tZ7E1q2ay0aMUO/j79SHUJ2zv3/ORf0GDyb/HJp55gy5YMH71w8PF/2U69dlnPwYHbQvdLOfMdzc3AiAVaoEEwBPnDjxj4idfCoEBIjxFBUVxZSUFLq6HuSECRPy7NlRKpWcP38+AfDChQtMTc1eiZkkExISePr0aY4aNYr379/nhg0bPrnid0REziaTCQkJ3LNnD319fenv788dO3akTej/DkRERDAkJITDhw9ncHAwT506xfr167No0aIMCwujnx9Zpsx0amsbsnbtvUxMFIGgceNkEEmvRDphgqispkdAgHRs6Y3Ps2cztyM2NpbW1s344MGDtN9yQrc6c6bwpq9fL/vOjsZWNWh07pwzqtusEBMj533w4F+vpxo8hwz5MErAnD4/eYkvhsXngT179lBLy4AFClRJ03s4depUJmrMfwsSE0Xpulw5smdPlSEQRX19JwIraWTklc75tJjz54t2Q79+ok3RpIkIx5FCH751q0xY8+eXSXfJkupJOCDLTpwgra2DCDRmjRoBtLDYRV3dSSxe/CyLF49igQKijG1oSBYqdItAMIHGNDK6R6AxdXQ6Ul8/gaamQiWroyPr1qypVuueOVPOq0ABcaicPSvvurW1GDkNGgjlbHr6WR0ddTtVv6vobrP6FC0q/Za1tZK6uisJeBLoSGAajY1DKToazzlkSCpdXKQ/zisnWECACM+p7o2Wli7Dw8Pp6nqEffr0YY8ePUiSpUvfpbZ2OXp7JzAmRrZt0kS9j/QoXVqzX/P1lb5OT08odxMTxRDNl0+tL0GKE2vu3Ju0sGjBjRu3pm37V30xKZN3lUBqVuJ2KqiMorygDv8rJCaqDYqM2kp/hchI8uuvpb2LF+dsm5gYOU52+h85xRfDIg8xYoR6UhIamvU68fHx3L17Ny9fvszExEQ+fvyYycnJvH//Ps+dO8d9+/Zx0aJFnDRpEqtUERGywoU7snLlAyxf/sMnO58j/P1JH5/xXLNmDefP1+wgPgTh4eLB8vcnHR1PsU4db/bv35/37t3L8T4iIiLY+W8SBmjTRjzO/v7qjjU1NVUjcgOA9erVo5OTE2fPns1bt27laN/LlskEOiBAjpOTjjUjpk1TT7TbtJFO7ujRo2zUqBFr167NQYMGcebMmcyXz4aFCtXk2rVraWpanG3bhrNUKU2Ph+o8fX1l0u3tLZ7G9u3Jjh3Fg6hSzSVlMJ42LXObYmJiWKyYp8ZvOZmQZ/S+ZOWNCQzUbENWXq3ERM3oS0acPSuRBJUa7/siA/7+TBtgSVk/u0jK54QvhsWHIzEx7/j4Y2JiWKJEW2pptaOWlh69vDayVi1y4MC82f8/DXNzsmnTazQxCUrnnY+jjk4CAZmkA6KY3amT9CsNGsi24eHi4S5QQKICqgiF6pMvH2ltncIGDeZRodBjoUJXaGcn2hV+fmTVqmLgbNwoE8giRWSC37EjqaXlS13dCBYuLG0wMZHtypUTA0ahEGVulWHQpYv0odWry/fatUWjoUIFtahd06bqiIOFhUQoVAraRkYS4VAZKkA0gUMEThG4ROASS5f+g5aWQdTXd6Kl5WwC71i6tLRNZZBUrCi6H6o+eO9e9UQ6vW5TbrB+vVxblZFy6ZKSNWqMoJ+fHy0sarB37948cOAA3dz2087uMXV1CxAA27QhDx2SKMXo0dIuOzu51osWybVS3Ud/f1keGipGhZmZGB5//CHRofRGia8vWbt2P/700zWNdv6VWN2OHZqGVufOWV8TPz8xWFUZGB/SX1+/ro4cZxddV6FNG/UYsXXr3xtJ/xh80bHII4wZAxQqdAdJSUtgZqaLAQO+1SjQVGHo0KEoVqwYfv31V4SGhsLIyAgpKSkoUaIELC0tYWlpiVKlSqFWrVq4dq0QfvqpEJo2bYoTJxzQq5eaPea/gJAQYMyYsZg+fTgUis0YOrQtUlO7Qjt9smwuMGQIEBISjbFjh6NcOW08ffotFiwonqt9WFpa/qX+Q16gf3/JP61USb7PnSv5tN7eWnj9+jVu3LiBt2/fYs6cOTh8+HCuqTl//11yX1Xo0kXqFXKKpCTJ9V27FmjVqhUeP36OkiUt4eZWGtOnT4eOjg4UCgVevXqF5GQloqIuokCBAggM9IG+/mLEx09Ely6yr9TUVCxcqHlPN20SCj9nZynWvHtX2rhpk9QKBARIDqyrqyYzhYmJCfT0jLB58wu0b2+DN2802TayQ8ZC7KwKsxMSNDVIzMw0c05VehSTJ0s+s6cnMr3j8+erGanq1Hk/s5S2tiYtYbVqwpiSXR7uF/y7MXKk5PgrlfcRE1MS69drZaKlTElJweDBg/Ho0SM0a9YM4eHhKFmyJF68eIGnT5/i7du3iI+Ph7a2Nh49AooWLQQdnQuIiJiMw4c7oHJlIQf4L8DGBrCwqITExBcglwHoCj09IyQlyfLERKlNiI0VFp2XL+V98vERalBVTVFUlLrQWVh7iJiYNUhNXQUTE3f07ZuA+/cVWLhQs5AZAO7dE0ad2bOFBvXoUUBbuzzy5buBiIgmaexNL14A5cpJYfHEiVKvoFRKbcHPP0u9RXi47HPgQOCXX6QwVlVXcvSo/FUopD8EpAYMUNdOREWpqGu3AvDTaOeDBx3h5jYWHTpUxYQJ0ne9eSPHLVpUzv/IEfX6hw5JHYqqfsDVVYp3s6JJzQ7Llws99w8/JGDkyKMoXDg/ChU6gDdvLmDXrmhYWVlh27Yn2LJlACIibsHcvCgCAzvht99K4I8/iJgYBVxcpEbx1i2pHWjVSuoL+veXOodbt4Qlr0cPGRPq1ZPaBoVC5kJWVqJ7MWaMtKVSJcDAoBH27TuLLl2kUOXNm8y6ExmxfbsmFezSpdKOJUvUv6meuzZt5O+mTVIHkr6/VrHtGRvL/+mpeVUYMUI9RixfLvOAMWOybpe1tfqevI/t8F+NvLZU/gtQKpXcvXs3CxVyYEBAAPfu3UtXV9dMFnJKSgpv3brFSpUq8ebNmznat7v7FXbr1o2L/kwi/Jict88d0dHRXLBgAR0cHDhixAju37+fhw8fZkx6l+57EBsby6ZNV7N58+Y88qcb4a+8FNnB3t6erVu3/rCNc4iMXvbQ0MzeiOfPn7NmzZoMCwvL9f4znntur8Xdu+r2eHl5cejQoezRQ1LJYmJiGBUVxbVr19LZ2ZlDh45g7dq7GBOTSKVSSROTnrS1bcNWrWawatX5rFevHitWrMiEhIT3tklV25A+anD3bmavf2BgILt1u8WAAHkncpIK5O+vjtqsXp215ycoiAwJEa+Uvz/ZqJHm8j59NHOQL1/OvJ+srnt27duxQ63WnZgoaVF/d1rTh+BLxCL3ePz4ORs0WEYnJyc2aNCAGzZsp59f5vUuXbrEQYMGMTk5mevWrePZs2f5888/89y5c3zx4oXGOxQQIOOPr69vmjLyh/Z5nyM6dxbv/v79yQSWEfAgMIgKxX0CktqkpydRChMT8f7r60uf0Lq1unZBT08dqShePIzu7u1oajqdOjrJNDWVdJzsPMHp++mYGPGwAz/Q2NiThoZvWauWRB9Uitf29uo6jvTRkXr1JJJhYSGpWba2ku6kisRoaWWf5qSq00hfT6FeNowGBhVpYLCQpCiGf/WV9C2qtNI2bTJnUGR8TkJDc58apbo2d+/eJQBWqjSANWuu4oMHKSQl4rtnz2t26zaOANiuXTumpKSwb9++LFAghL6+0Sxbljx79iwXLVrEZ8+e0d9f3Qc2bUr26MG03xITpd1160pUOCBAajFUabOq7aKjo1msWDtOmCB9fU761YzR4mXLMqcDJSZmHrczfvfyUkckQ0MzR71jYtR9vgrve2czJk98bDLFjh3q8e1TZr98iVh8BBYtWoSQkBDcuXMHNWqsRM2abzBq1Cj8+OOPmDlTc92FCxfi8OHDaN68OZJVcpjZ4PLly5g6dSpevcoPc/Ph8PaujP79hS3hvwpTU1P0798fgYGBuHDhAo4ePYrBgwfD19cXZcqUwfj0ajF/Ijo6Gps2bcLNmzdx+fJl6Ol546uvdqJpU/FqvXjxYW05fPgw2rZti6SkJOh9qELMX6BtW/HKqKj9BgzIrF9gY2MDPT09mOTGjfQnIiNFSKlYMWEAeo9oeJYoU0aiCLGxwJ07zXHgwGakprbA8eO6qFkzPxQKBRo0aPCnfoYJtm4Vzu/Ll4Hx43/AgAEJ+P333zFhQgyionbh7VsfJCXppTFTTJ0qjCzdugnl49y54uV78UK4zlUoVky8eT17yjksWSJq3926PYGDQ3kA0savvhKvVHohuvQICRGP8bhxwpDxp8i7BkaNEo9Yy5bC7KWvL8dWeaSSkzX3XaqUHDs9GjUST9esWcI8ouLLzwoqGj8Vx/umTR8uSPQFnyd+/fVXJCcno2PHjnBz+xlLl/6Inj17okGD6hpc9QAwY8YMnDp1Cvv378ecOXPQqVMnAECdOnUy7Tc5ORlK5RqUL78egYGuqFSpEr7+WjzP/xWsXSue3JEjdVCoUAB69QrAypVHYWb2LW7ceIhq1Yzw5k0cLlzYj+RkBapWlahjUJCITMbEiE6Fjw8wYMAVpKbOR1jYawDTYGxcEatWCX3r++i1dXXV/aiJifxvaemCt29fo06dJUhIGI6kJIlMVKokfZquLmBrq1bEjoqSqIOBgfQ9b99Ku6KipI95/VoiDFFR6uNqaanZoABNxqd8+aRfEfK/mtDRsUHNmoHo3Rtwc5NIqLv7+2lCT5+W69K4sYw9hw5JxCU3UEUBXr58CQAID+8MD4+y2LVrMV69egVz8+fo3fsZ5s3zx6BBqZg4UQv9+gH7989GtWqL8e5dD0RFxaBtW0vY2+vgzZs3SEgYk9YHVqmiFhkFJHpkaCh03umjC717S3RYhUePHsHDoxCaNpX7tWfPX5/L1KkSMV+1Ss7L2Dgz7a6enrBnNWsm4+OhQ4Cvr+Y6lpbqMaJYMbmv6WFior7Pa9bI2PzgQfbtatJE7pOxsURePkZ498oVed5VUar+/dWK9P8kvihvZ8DEiRPx9ddfIzIyEpGRyShVqgBq1hyHihUnoUEDTSrLNm3aoFWrVujdu3e2dKCnT5/G7Nmz8epVPhQsOAYBAcVhZiYTzj59NNM0/usgiYkTJ+LOnTuIiYlBampqWoqU6jE0MjJC69atUbVqVVSrVg0KhQKDBgnlXVycKClnNcnMCdavX48tW7YgODgYjXPC/5kO584B334r9KmRkfIcZJXesmmTDETJyTIZzXh/ScLT0xPb/4K0+vlzGYANDGSCrqcnYdguXe7h5s35qFatE9ata/jefWR3Hh06AE2aJOPw4aZ4+vQUKlY8j5o1a8HYWM6tRQsJsdepI4PVixeSlqCnJxPmgQMBf/9v0L27NdatKwgXl4s4cOA8Hj2Khqnpa6SmOiJfvl64d68inJ21UKKEDBoHD4qaarlyYgQEBspEfepUYPnyd3B3d8f+/fuhVOrAw0PoDvX0JL3q55+zvu9jx0o727QRoSdTU02l9b59xSBIb8elV0t9/lwG60qVxPj46Se10np6bNokdJO6uh8mMPi544vyds4QGRkJS0tLfP3117CyssK8eVG4e3csDh06hCNHmsPGRi0S9vjxY3Tt2hWbNm2CkZFRtnTiSUlJ2LBhA1auXIn27X1w8aIfUlP10sTHRo78G0/wb8S+fZK6c+6c9O22tsTbt0tw82YgAMDUdDK2bWuMHj0UMDcvgIIFw3H27F0oFCdhZPQSERHFYGo6DK1alUFqqkweIyNlbH2f+rxKfHLgQBlX+vUTJ8bChY9gajoCDx+uR9myCty9q6Z8LVRINC5UqTOApLS8eiX/6+jIhE6plHSu9PTkqjEDEFG9R4/U21SpInTUFhYyOS1fHggLm4eGDS0RGuqLO3dEX6Jx46wni4cOiYPl1ClJP9LXVwsBVqqkqauQExw9KqmfsbGAmdlVbNokA1jv3r/C1dUWenp62LChSloKT2qqpIpt3KjW4ElKkrZoa7dHzZpL0KSJFQICYnH48GGYm1th9GgjfPdddQBiNBUoIKKAO3YAzZvLPsqXB+rXV6uo//BDEjw8PBASEoKiRYvizRuZP5mZyT2cPVttrGTE9Oli6KWmigGTUfzPx0foil+9ErX2RYvUoqOq5e/7rjrGTz/J81KokBgPUVHvNxo2bBADSU9PxsScKmmnR0bl7+x+ywvkqo/P6xDIvx3nzp0jAJYpU4YuLi7cvHlzJrrPM2fO0MXFhY6OjgTAlStXZrs/fX19Nm48IY1OLChITaX2BWp8KkrVjLh16xbd3NxyvV3G8Of7qO3evx9vzp49+73rhIZKWFgKq2+yVKkR9PHxYbFixailpUWFQsHffvvtwxpACdMmJydzxIgR3Lt3L0uW1Dx26dKa67duLaF31batW0fT1rY0O3bsyAYNFvDkyZPs1y+Ojx8n8dWrVzx37hwHDhxIAwN7BgQE8Ny5cwwPlzQHf//M187fn3z58iVbtWpFd3d39umjWQyrCpdnhYyh/ozpDzNnarJXXb6suc2cOeoi9Nq1hc7v/xFfUqFyDmtraxYsWJCHDh2ik5MHS5TwYa9eSo1+PSwsjP367SCgYOnSHbLd18WLF9m0aVOWKbOYVlYJNDKS59DLS/O5/a+jdm1JfypRIpXm5leYP38oe/SYxVmzZrFhw5k0MRnGAgVmUUdnGydMCGVQkPRL+fKpGefGjctd2uG0aUJj2rmzpM0UKEAqFN8TaEzgAfX11exNgDA+qShiValL+vqyfZkywhrVsaMmPayaJlb9sbFRU8sWLy4F4vnySdFyuXLvqKXVmoUKnWK5cpLikhVZxOXL0o9aWEgKVokSUaxS5STr1fs+jSAkKSnpg+5FRIQUyXfpMp4AWKtWCO3s1Ix3s2dr9sedOwulaXo0b76LLi4u7N69O1u1akUvLy/Onz+fHTp0YI8ePViypDOtrCbTxeU2U1NTuXevXEt/f0ljS58edPCg3J9z587Ry8uLcXFxOaYxDwnRTA8aOZLMyPvyVynGAwdKSlzp0kIAcOJE1sf6q5Sq9Lh+XXP5uHGS4pVbzJmjeX4q1sZPgS+pULlEUlISdu/ejZcvXyI+Ph716tVDcHAwfHx8oFAosGHDBlSpUgWV/1S4GTduHNavX49879NSh3isKlWqhNhYoGrVfZgw4QSePr2OnTuN8Pp1WURERCA1NRW6urrQ1dWFjo4OIiIikD9/fgQHB8Pa2vpvOPvPA3khABcfH4+9e/eiXbt2CAoKwrx58zKtU758ebx79w7Lli1D7969c7zvjKI5HypE9ubNGwxSKfVkg/HjgU2blFi6dCGOHDmCceNGY+fO+yha9DHmzZsHT0/Pj7pe1tbAli06CAoKwoEDx/D69Qh4eNxA165d4e3tjdhY8XpUrCjFdlZWUkTfvbsUkK9cmYBJk2pi6tQNGDtWUgDMzKRQr2NHK1SvboXSpWujenVi1KhHGDBgAFq1agUHh0AsX65Ap05Au3YpMDcnkpJ0cedOGDp08EXfvn1hb2+PyZPFY6aKUGRMTUqP9KkFQOaCvqFDpd0HDkjI/elTTaXby5c1vXo5VVz9gv9PkMSrP93UGzduxI8/LkaRIkU01nn9+jWaNfNF2bLOmDfvO4SFvUP79prPnQqPHj3C0aNHYW8/F/Xq6WPx4mhUrPgGS5YUxZw52mjbVqK6qvddqVTi3bt3H5RK+Tnj3DlJoaxUSQu3b1fFw4eAQjEEly+LF3jNGokyzJoFTJsm73LhwupIQG4QFxeH3bt3Y8iQNtDV1YWBgURTExIAU9OvYGCgj5cvT6JGjZIoUEBdXKuKTgCS1gRIVODXXyVCUamSiLwBUsCtUgUHJDqRkiLjxosXEt1490764vv3ZZlCASgUh1G+fBEkJtZC9erZRxz695f+OTb2IAwMvsWLF/lRs+ZDnD59Gt7e3tDSWgHd3ObK/glLSxGwW7p0JObPH4iICEu0aROJ3r0jsXZtKfTtK952FVaskKhyhw7qCEJ8/Eo4O9vD19cXhQsXTlt3wJ8pHwkJCahU6RRKlvwOjRtfxLx581CrVj306CHR4VGj1Ptv0QJYuTIW3377La5evYrHjx/DwqKCRoqphUXW53LjhqYY65AhwIIFmqKnCQmyXqVKMtakJw45elTMQZXA4NSpkorVMAfJAu8rLp8/X1L7VJg0ScbcjGlYf4VBgyQqv2ePpMtlVP/+p/DFsABw//59tG3bFtbW1rC0tMSVK1eQmpqK4OBg7N+/Hy4uLli8eDG2bNkCExMT7Nu3D7169cLmrEaKdPj1119hbGyMJ0+u4+bNfHB3d8eoUaPQs2ccWra8CysrK+jo6CA5ORkpKSmYPz8ZsbGW8PB4CB8fH+zcuROGKlnOL8gSqampmD59Oo4cOYJ8+fKhTp06KFasGObMmZPtNvv374e7uzv8/Pyg/1fSlX8ivcp4bKw61za3KFeuHC5fvowaNWq8d73g4AGoWLEcNm7ciN9/10JU1G7MmjULDXPSo70Hb9++xYMHfbFhQwy0tQvAwsIOVar4YtOmMujevTsmT74GpXIIfHzy4fFjGTCKFFGH1c+dA9zcrJGQEA8XF8LWViY8lpaSNnXpkuRBm5kBhQopYG5eEtu3b4eHx/e4d88ZAQHFceBAOLS1tWBomAwyHyIjY9CjR3W0a9cOenp6mDtXJhFLlkhKUpcumZmaVChQQHJo/fykc84idR0rV0rKU1JS5nB5RrKyDyQv+4L/OAYMGIADBw7A1NQU8+bNg4uLC8qVK4fTp09j0aJFOHjwIBYuXIjatWtj+/btMDdvjt27h0PrzxloVj6MlJQUTJw4ESYm7VC+/DLs2vUIAQHmqFDBGs7OYTA2TkWHDrpIzTBDMTQ0RHx8PFasWIH8+fP/Haf/t2D1avX/X38tbFtaWqKOrGLtGTr0w1JGzpw5g3PnzuHGjRtY+GcuY0JCAgBJnezUSVKitLSATZucoFD448IFKyQnOwEQgyAhQT1ZVPUTqr+lSsnkU6WMXLy4GA4qY8TWVpwaLi6SaqnKyb97V4wSpVIUx42MCsPWNh9evtTFb79J6unbt+JsUqXVLl8OvH6dgvPnJ0KpfAJ3963Yvt0Y1641Qv78p5CaWh9eXrm/RiokJibizZuD8PG5C+AUjh+PQu3alnj16iXOnx8Oa+uWOHQIcHCQ9bdtkxSm9Cl7y5e3hKmpqYZRkR4GBgYwMLDHqFH2MDKKwKBBg3DrVhEUKhSIrl210aHDObi53UCTJk2wd29dXLzYDkuXfo1GjRoByGxQZmdgli4N7NolKVeAGBV/ljmlYfVquc7a2nIv1q1TL1u1Sp3iBUh6cs+eWTN52tpKStTIkZK+nMHfoAEHB0ndVV2znTvFUP4QpGe5+myQ1yGQfyt+/vlnBgYGpjEWbdy4kUZGRly2bBnj4uI4YMAAXrx4kZs2bWL9+vX5+PHjHO87MFAd5powIWsu//btJYwVE0M2aHCCdes2YURekaP/R/H8eRKLF/elnd0ydu2qTAuNdu3alQ8fPiRJPnnyhPv3788UFv7ll19YrVo1vn79OkfHSkxU81R7e2tqFeQUSqWSvXv35qFDh9KYx7J6pyIiSGtrd759m8rr1yXkP3ToUBYtWjT3B02HFy9e0NHRkadPn9b4/cgRObdevZS0td1HJycntmy5gL16KVm1quY+VCxKPXr04MuXLzl/vqhkZ2RycnYmPTxE+bVECbJ/f/LVq1S2bPmEZcqk0tub/PZb8s2bN/TyusrZs2ezXbt2/OOPP0jKvoKC5Hiq/d69m3Wqw+bN5PDhZFbC7tOmqe+bu3tmHvMJE9Sqp8uW/Xs4xfMaX1Kh3o9Tp06xZ8+ebNeuXVrf0rt3byoUCm7bto1hYWFpWjkBAQEEwKdPn6ZtnxX7X1JSEpcvX87y5Tdx6ND79POTNItq1chBgzRTYGJiJB2jbFlJfRkwYDv7ZKSi+YJMSE1NpZ/fMPr49OWuXbt4+/Ztrlq1it98802mdVXpNxYWpJnZfWppORO4lSWjk0rbIr3InYGBiIQaGMgyLS35HxDWqEGDhM1KxRZlZCTfK1aU1Kr8+cnhwxNpZGRHU1O516pnIH36qJ8fWavWIZqajqSlpUqhO4VaWpXZoEHMR2mqREdH093dnbNmzeLo0XvZt+8b3r1L3rhBvnkTyd69B9DFpT1dXa+k6WVklfJz8eJFjh079r3HiowUEUCVvkjNmvvZs2dP+vv7s0+fRWzZ8jBr1vyalSp5sFWrVuzXr1+agGxoqFrTqX17TdbBjJgwQfr1oKCsReJUInoqwb6My+bMUX9fv/79Ktnr10ubVqx476mTVCt++/t/mJDq340vAnkfgA4dOrBJkyYaqsynTp3i/Pnz6ebmxmHDhhEAW7VqxXz58tHZ2TlX+585Ux64rPLoduxQP6xPnz6lg0NLdur0373WH4rIyEg+ePCAz5494/Hjx1mwoHuaEmdoqAwMycnJdHR05MuXL3njxo20fNPw9Jyif2LPnj0c/ZEKfjExkgudk9zeX375heP+TIDcvHkzAfDixYtZrlu/fiN26/aGvXs/4fjx49mmTRvGxsZ+UBuDguTZ69ixHy9cuPDedf38ZDAeOnQo169fn2lCFBAg9RD29vZ8/fo1r19Xi0imR9mymjSunTvLJzFRDO0TJ9QDuZeX/H38+DFbtGjBuxlm/ydOiHE1YoRsk5Vhnh1yIqK3YoV07PPn53y//zV8MSzej7CwMJqYmHBOulnG2LFj6erqyn79+vHNmzesWbMmN27cyDZt2rBxY3e6usZx2TJ5tv6qmyldWp17rxKKS6/KW7q0Orf70qVL1NNrwTt37uT9if6HkJyczDJl/OntvZxTpqgn6c+ePWPPnj1JkqtWrWKRIkXYtWtXTpgg/Uvp0lLzoKW1j4An9fSEftbISO6Nqs7CwkKE/CwtxVgwNJS+Kb2adqNG6v9tbcWIUBkhWlpiWBQuLMsMDEg9vcnU05tJGxuyTp15rFq1Af38NPtXMSwO0Nx8Ert1k3YVKHCA2tqWvHr16gdfr9TUVLZq1YrHjx/PtCwhQZwy4eHkw4cP2aVLF86btzDbce/Fixfs3r17jo6b01KQZcuWsUWLFtyyZUumZaGh6kl6bhSmV69Wv2eJiZlrRUhZrjKgAgNzvu//Gr4YFrlESkoKJ0+ezOrVq2c6x8TERI4ZM4Zz585l7dq16ebmxuHDh7ONqpo1D7B+vfplCA4O5uHDh7PkQ/9/xJEjR9iqVSu6ubmxZcuWtLCwYKVKlThhwgR27Kg5AfX3JydPnswlS5ak/ZaQkMDU1NQs961UKhkQEMBt27Z9UNtUKtbLlklx89at71//7NmzHDx4MGNjYwmAXbt2zXbdAwcOsEaNGmzevDmPHTvGlJSUD2pj69YyICQlJbFAAYdsC89UEZg5c6QjTUxMZNmyjmzRYgYfPHjAd+/e8fLly2zbNojFi7fm2bNn0zrimBiZnKsmTzExomqbHgEBmoOjv78YH507qydMDx48YMuWLTNpY2Q0BnLD+52bgrr/Z3wxLN6PO3fusEaNGuzXr1+mZTt27KC9vT0LFSpEZ2dnWlpaslGjRlyz5mdu3KhpYGeHvXtFaVoVhPD3J0eNUntLy5WTv0qlkq1atWKpUjmLtP4/4OXLl9y5cydXrlzJ4OBgDh48mEFBQSxZsgUXLdqUtt7+/UKcMmzYMK7406U8Z84c+vv7a0SX/PzUyty2tiNoZLQxzTjQ0VEbByYm8rG01IxmqNS1VR+VoVGggDp6YWCgWditpSW6GPny2bNUqVQC9wmAkydPZqdOmhGLNm1IY+NbNDFxo7X1ZRYu7E4zs+5cujT6o67j6dOnOWbMmBytq1Qq6eXlxevXr2f6/ejRo3RxceHu3bs/qj1Z4ejRo1kaLOkNghEjcl4InXE8GDdO9DO+IDO+GBa5xPbt26mlpcW4uLhMyyIiIgiA+/bt44MHDzhq1CgWLlyYL168yNM2uLuTa9bsY9++fent/eXhJslFixaxW7dujIqK4tu3b+ng4MDVq1ezVq1aJDOzC7VrF82mTZvmimEqMTGRbm5u3LlzZ66ZqXLiDU+PmTNncsmSJWzbtm22z5t6X74EwPPnz+eqTemhioTdv3+fHh4e3L59e6aO9MgRGaj69JHruWiRTHLq1iWbNEli/fr7WKhQAEuUaM9y5YZy7doz3LtXHToODZVBuH17YfMoXlz216GDWsApIkKWBwWpBe0SE9VMUyqMHTuWQ4cOZXx8vMbvHyMM2Lq12mhatkzC4l+QGV8Mi/ejXbt2HD58OC9dupRpmSra/ejRI9apU4czZ85k8+bNczRGJCbKe1SunHjKVQFMlXCX6lkvXlzepzVr1nDixImZDPf/V2zbto2Ojo5cuHAhFy9ezLp167J06dJcuHAhhw7VdMZERZHt2m1lYA7czgEBZMGCZJkyySxWzJPAGerpyW8Z06IKFZK/6UX70n/s7Mjy5cWQ0NYWw6JwYTEmtLXVKVVFi5KFC3tQV/cNzcxq08ioOLt3T2Lx4poR8c6dyQ4dlDQ0LEcdHRMWLhxGO7uPu47Jycns2LHjX0a00yMsLIze3t5s3bo1v/32Ww4fPpzOzs4cMWJEpgyB1FTp+w8elP8/FK6uroyO1jSgNm7MHKXI6RiRMYXX3z9zOtS/Aaqsgc6dP137vxgWH4E5c9QhNV9fpnmKQ0NDaW9vz+rVq3Pmn3lL8fHxHDhwIB89evRBx4qIUD/UP/20niVLtqGvb+x78wX/XxAfH88yZcowLCyM+/ZJ3n+tWrXYsmVLVv0z8X/vXnWepZcXefz4a/p+gJR5TEwMhw0bxlGjRuVqu9xMeKOjo2lvb08HBwd6enqmKa9nh6SkpGwjLTlFUBBZrVoKra0bMCDgNklmioRlpQI6f746Na99e5mcq55TB4fMKX0Zqf7atxejxtZWJky2tuSGDeo2+fvLcTIqx86dO5dBQUEcNmyYxu8TJqgpmkND1alTOUFiojqMPWVKzrf7f8MXw+L9WL16NW/cuEFSInNly4oziCSvX7/OnTt3MjU1lRcuXCAAHj58OG3b7BwWffqIMTF8uDzjU6cyjfp59WrNtL/wcNLK6jiNjFqxSJHk9+Z5/79g69at7N69OxMTE6lUKtmuXTv+9NNPnD59Ordt28aLF6W2SwVfX7JXr0A+ePAgR/sPDpZPqVKRNDRsRS2thQTk3isUEonQ0dE0NkqVUqdKpU9rU9HLamuLgrepqaxrYEBWqCDfra1v0sCgGw0MnAnosWTJo2zfPjPtsL8/GRUVxbJlnenh8QdLl84dzW5GXL9+nQ4ODty8efMHbR8bG8tDhw7x2rVrGqnkKqSmkuvWqZW216//MONCpQY+cODADL9rKl9HROQ8Mh0TI9GO0aNlmx495J7v3Zv79mUHFbVsblXQc4oRI9TPSGKijNefAl8Miw9EYqKmF7xhQ1cC4ObNm1mzZk0WKlSInTp14sWLFxkSEsLixYsTQJYv018dx91dXoauXZV0cvqJnTp1+uB0l/8iFixYQGtrawKgn58fAfCPP/7gy5cvs8wBJcnXr1/Tzs6ODx8+ZEREBN+8eZOrKMSMGTPo6OiY4zxVX191Gs+yZZo50ekRExNDZ2dndunShatWrWKrVq0+uW7H2bOSD+rsfIft2g3kwoVkpUqZi5ezMo7Sd8oBATIQrFghn/Ll5fmdOVN9vlmlG2VlsOQEKSkp7Ny5MzeoLJE/MW2aOp3qfYNoTIxEQlTemw/hBv+UCA7+PPN1vxgWOYOPj2gukGRAgJIFCy7mpUuX+PDhQ1pZWREA169fz5SUFD5+/Jh169ZlyfRCMX+ifXv1hEOV5+3nJ3n7pqaS06+jI6k29vbk3r172a5du//89c0Npk2bRicnJ/bt25eVK1cmAPbr148AGBYWRlIIHYKDxaERGkp+9dVXOTYsSHGy2NiQ+fKlUlt7JIFRBB7Tykqd4mRoKPcsq2iF6tOunXpdVYRCpWkhNRxxBFpRW9uTCsUsNm3aj97eWY8R6R09K1Z8vG7BkCFDeOXKlY/byXtw8KBmn52YqI5c5wapqamMiIjgwIED+csvv2gsCwqS8TgwUK0B9T6otItU4/fly+SWLfJehobKNc0LIo+zZ9WONxURy19h0SJpW/qi8ffh70r3/WJYfCAOHtSs+L9x4wZ79HjHo0ePskqVKtyxYwebN2/Ohg0b8ocffqC9vT1v376dq2NIjux+NmjQlCYmJqxfvz4bNfqG588n5/HZ/Lvh5ubGiIgIbtu2jZ06dcpxvuaxY8fYp08fduvWje3ateOkSZNyfMzBgwezWbNmmTqt9yE4WF7k9xUUDxgwgIcOHaKrqysnT57MXbt25Xj/H4o+fWSSffr0aTZrNol9+kgOtwoxMTE8ePAgPTx+5fjxB3nx4kX+9ts9OjpeZJcuV3nxYipjYmLo5aWkr694TDt31oxOVK1Kenk9pbX1Vrq7S853YqJEFD4mfSkuLo5OTk5ZFtz/FVQF4um/fy5YtEgzZP9XDCN/J74YFjlDevFIlZiqKkrh6enJEiVKsEqVKvTx8aG9vT1NTEyyZJ5TvQ/e3poCkLVryzNSuDC5desLLlhwijY242lh4ZVrB9Z/GSdOnKCdnR3r1avHChUq0M7OLi3fX6lUpkWz/f2lP1KlFq9du5atWrXiuHHjOHbsWP7www9/6eRp0kRlDCgJrCHQUEM4z9g4a2OiUiX1/+nXz/xREvAiMINVq45ivnxtWaxYOHv0yLo9EREyiQ4IyJvUzjZt2qSxLX0K/PYbmX73iYny24ciOTmZrVq1yiQSm5iYM7ZGVd0hKddRZeRkjObnRZ1rxn3MnCnR/OwwerSaRGTZspxFOf6uMe+LQN4HokkTkXNX4cqVin/yIO/CtWvXsHz5cujr66Nbt25ISUlBhw4dUK5cObx9+xapqamwVCl6vQdhYWHYs8cJ7dq1Q9u2IrRXo4YZzp/XQa1an/Dk/mVQKBSwtLRE69at0bp16xxvZ2hoCHd3d9SrVw/fffddju5Jamoq3NzcEB4ejsaNG6Nt27Y5Pt7cue9ffvv2bURERKB58+YYM2YMjh07hjFjxuR4/x8KPz9g3DggMTEOCQnGePgQqFHjDsaMWYULFy7A2NgY9evXR+vWFtiw4QG2bXuD1NQYeHqa4NWrV3B2vg8TEyvEx79DTAzw++/E69dKdO5cBjNmFMH9+2/w6NETVKqUgkGDGmLOnB9QqdJmVKtmgGXLgOBg4MoV4V5//Fh0QHIKIyMjDBgwAOvXr0dwcHCuztvAABrCSR8qZPgpcPEisGyZ+ru3d9b6Bl/w+YJU/1+7dm2UKkVUq5aKUaNGITQ0FEuWLMHw4cMxfvx4LF26FOPGjcPTp/kxapTw1KuEueLi5O+MGaLTcuEC4OMD2NgAJ0/2wrNnIVB1QxUqBCMiYhPi4xX4ImskuHv3Lr766it07NgRkZGRuHPnDipVqgRAxo4VK0RoTQUfH2D9eqBz585wc3PDgwcPoFAoMHToULRq1SpbvQVA9HkaNUrFiRO/g/QFMB/x8erlenpAfLxoWCQkiNgdANy+LX/NzETbx8JChP1evFDrYVhbAykpv+Dt21pQKMwQHv4OQBFYWxfE2bNZt8fSUlPz42ORmpoKHR31VPDhw4c4efIkjh07hrCwMGhpacHAwAD58+eHlpYWXr58CXt7e7x79w5aWlqwtraGmZkZjI2NUaFCBRQtWhQKhQJKpRK7d+/GqlWrMX68Ln77bSV0dXWxZUvWOhA5hY6ODtatW4du3brBQSWmAbkP6fv+rHDyJFC9OlCmjHxXaVi0aPH3aBolJqq1TrLC8+ciwgeIvkrPnn+9z9mzRZzQxkb6lQYN8qatH4MvhkU66OnJA9+tm0xQjI1l4piQ8DUGDBiAAgUK4NKlSzhx4gT27duHTZs2YcCAAViwYAEmT56My5cvY1P63uxPvH79GpcvX0bTpk1RrFgxfPfdPSxd+jUSEo6gSpUquH/f5fMUOfkHkaLqnXOB169fY9iwYWjcuDE2btyIdu3awdPTM9v1w8PDsXnzZsTExCAuLg6FChWCby6kL5VKJebNm4d9+/ZBV1cXCoUClCggAJkgR0RE4McffwQAfPPNNyhWrFieqIz/FRo2FPXSN28sEBt7Bo8fe+D+/UJYvbo7pkyZotGGXr0yb790aebfZs4kQkPvoGHDlzh+3BK1auXH+vUFAQB16lRCz57t/1TtNkC5cuUwbVoPmJqWRWqqdOBffw08eiT7KlJE3YGmx9ixKTh+fD3CwrbCx6cifvvtNyiVSjRv3jxHSrImJsChQzJQAJpquf80fHxEKVVljI4ZA7i6/rNt+oLcoX59oGZNMRK7d5cx4t27d9i+fTtKlSqFM2fOYMKECcifPz+ePXsGoAVGjDiNsLCemDz5JLp00cfatXqoWVOehxIlZCK6fLk8s4MGARs3BsHAYAjq1r2Cx4/P4e7dpTA3/xbBwbLdoEH/8EX4DPDy5UvUq1cPAGBhYYH69etrLM/oUFB9P3v2LL766ivY2dnj8eOHqFGjxnuNiitXAH194MSJuSCH/flrOwCifH379p8xB6UIcKbv2m1sRPQuLu42yBeIjExFZGR+NG8ej/PnHyE52Qb6+kXx9u0CFCq0G4mJ55GaOgXFip3AjRvA3r0fdYlyDJKIi4vDzz//jF9++QVFihSBnZ0dhg8fjhIlSkChUCAhIQGvX78GSeTPnx9bt25FmTJloK+vj1evXiEiIgKhoaHYvHkzwsLC0tTiGzZsiOXLl+Hw4aNwdu4EB4cuaN26FGJjS8LMzOyD22xkZISYmBgolco0EcqcwNxcjLz0UBl5VaqIEOGkSWKA/Kmf+FEYPhzw9BQj9/x5EZB9n18xo1p3+u9JSfI3o/FUsGD2ArL/FBRkeh9M1oiOjoa5uTnevn37UQ/DvxmhoaFYvnw5pk6divbt26dNJNetW4eOHTvi1q1buHLlCuzt7bF//36NSdC9e/dQtmxZjf01buyHp09jkJychDJllChUyAyOjo5wcXFBkfdJNv6foEuXLpg2bRqKZZRKfg9mzJiBKlWqIC4uDlpaWvDKID9679497N+/H25ubggMDISxsTF8fX1haWmJoUOHgiQmT56Mli1bvvc4cXFxmDJlCs6cOYOEhASsXr0apUuXBiCdtGrS/vr1a+TLl0/DG/R3wt4esLB4h5MnW6F27W0wMMiHLVvUy5OSgNGjpWPKqZrtmjXA778DhQoB168DW7fK79OnS6fdr58o2l67dg3fffcddHV1MWTIEFy8WAUvXqiP8/33YrwHBKj33bXrNVy7NgS9e3uiRInWGDUqBF27GiE1NRWnTp1CkSJF8PDhQxgYGKBly5YICAjI8tr27w8kJ4v3ZswYUQ3/XLB8OXD8uHjDqlT5fCaJH9vH/z+NEVOniiJvtWrA5s2ay9avX49OnTphyJAhqFixIr799gTu3v0RgwYNwty5c+HouA1bt7aGiYm8f48fi/e0dOnS0NHRx6tXLrCwsMbDh4dAOgKIgJlZSfToUQUzZzZAz566eeqt/rciJCQEurq66NatW5bLO3QAVqwQR8Pjx8DYseLc8PDwRHJyCLS0rsPEpDIKFbLCvHmZtyeJnTt3IiRkBfbuTUJiohLAPejoLEVKSnMA0m/Wr6+e1OnqipGomlFpax9HnTpHcebM9zAzGwRnZ21s3PgGenq6UChKw9z8MV6/vgMDgzEoUqQsHj2SviohQSaPV67k/XXLiPh4wNOzLaKj3yIw0B8dOnjB8BOFxa5cuYIzZ87g4cOHePjwId68eYO+ffvC09Mzx862GzdiMWvWBNy/fxMAULy4FSIjI1GxYkV88803uH79Ot68eYP69evDKJvQQLduQLt2QNOmEtn/9lv1GLFmDXDsmESZZs3Kk9PG8+disFhayjj5PsyaJet/8w0wcaJEN8aMAfr2ledCW1ui/1n4rz85ctXH53Vu1X8Nv/zyC/X09FiyZElqa2uzYcOGvHHjBsuVK8dmzZpx1KhR3LZtW5py96hRozLx8KfHu3fveOfOHf7+++8aytqvX7/m+vXr2bp1a86ZM+ejGYH+7ejUqRMjIyNztO6qVasIgA0aNGBycjJ9fHyoerSVSiXj4uL44sULNmnShN999x0DAwNZr149PnnyJG0fXbt25d27d9muXTuuW7fuvcfz8PDgnj17Pvjc/i4UKybn7+LikvZdhYgI0sVFck23bs1M3ZsTHDyozvVV1ZioFMpVBdzXrt2hr68vq1cfq5HHe/v2bVaoEMigoCBOmTKF06dPZ8GCTTX45FV556GhZLt2lxkUJDnUMTExbNasGR88eMArV65w9uzZdHd3Z+vWrenj48Nly5Yx8WNoUv4P8aXG4sNx4cIFzpkzh56engRAJycn+vn58ccff2TBgvYEQH9/f9avX//P/zMrZj958oTlyvWjmVk5mpmZsXnz5ixTxp0KxVyuWLGGkydPppubG0uWbK/BOPX/ilevXtHHxyfb5TEx6n7Iz488dOgYFyxYwHLluvPWrTgC4IkTJzhkiLr+4u3bt2zWrBlbtWrFjRs3skiRInzz5g2bNSOBewRcqFC0InAsjeUp65qJaAKdaWQ0mGZmG2licpKhoaKQrasrzFCmpqSjo7BC1asnlLXbt5OzZ0u//Hfg3TtR1B43bhzPnj3PCxfI9OUmKSnkzZvknTvkvXt5f/yYmBhOmzaNDg4O3L59e6blSqWSMTExaTUwp07dZOPGzbl//36SZGRkKk+efEiS/Pnnn2lnZ8chQ4ZwxowZ9PDw4OTJk9P2FR4ezvv37/PmzZtMSEjgzJlSwP05UssePChjn4qZavVqTfHWy5c/HcPU+/CleDuXUE2QsqKk9PT0pJaWFjt37kwHBwcmJCTw4MGDLFSoEEuXLs2mTZty48aNXLx4MYcOHfqXE5oTJ95PfalUKvn999/T09OTt27dyqMz/PfB1dU1R+s9ffqUHh4e7Nq1KyMjI3nt2jU+ePCAq/+kA+rXrx/z589Pb29vXrx4kdHR0WzWrJlGp3Pjxg02a9aMwcHBTE1NpZOT03uP2axZszSjZ/VqmVR/jvNYR0dhSKpUyZGtW19l3brqZf7+mm1WsT59LNq3VxfQqfQrSPKrr9aydGkntm/fnq1atWLlyp6cPv0mb916QFfXk/TwOMbixR9r7KtzZ+lE27SRtu7YoS5MW7p0KRs2bMjg4GD+8ssvTElJYWpqKiMjI/njjz/SwcGBv/76q4ah8jng7l0ZqG/cID9QSP2T4Ith8de4ezfzex4eHk4AtLGxYb169ejh4cG4uDja29uzRIkStLNrzxYt9pEkq1Vzpq2tTBrSvyerV8v7WL066ekpv/n6ynNvakpWrizr7t1LdukSyV69enHMmDFMyqlk8X8QJ06c4JQc8ke/e/eOANi7d2926HCb0dHRaYbF9u3xdHefwW+//ZZOTk48fPgwu3fvzq5du6ZRgnfuTFavHkt9/dasVOktAU8C595TjL3gzyJvMSSKFpX76+wsz9CiRWT37qLKnZ6fYsqUnDMB5QVUwu3Lli3jqlWrGB9PPk7XBV+9qjY03r3LzCiYV4iPj+ewYcMYEBDAc+fO8cmTJzxw4ACbN29Ob29venh40MPDgw0aNOfDh5rU/tm16dq1a3R2duacOXPo5ubGjh07MigoiIMHD6a7uzv79OmTY8flp4JKy8nfXxx7qvE3Lo58+VJ97YOCMots/hNCr18Mi1wgI+/vnDma1iFJnjx5kgsXLuSrV69ICmPR6tWr2bx5c65cuZI1a9akUqnkwoULOX78+GyPtXWr+oFI/39WuHfvHh0dHXn3U73NnzlGjBjB1q1bc/Xq1dk+d3v27KGzszODgoLo4uLCjh07csCAAXRycqKdnR1Pnz7N58+fs3Hjxnz8+HGW+/j222/Zs2dPtm7dmv3792dkZCTbZxRmoKauxMKFCzlt2jQNQTkXl8/PuPDyIl+/VhIAmzXrmEn5Oj0OHnw/s1VOkZH9Kf1xpkwhbW096e0dnsZmoqL3I+XdK1pUmDHat5f3MCOrhoo2MiMSE9UUgnfvirDl3Llz2ahRo48/qTzCgweaxsS1a/9cWzLii2GRPc6elTFiyBBNbQlSnrM1a9YQAFu2bMlnz54xIiKCjo6O7NKlC6tXr84GDZzYvv1d5ssXxL59+1OpVKZRm8+Zo2b2WbiQNDMjra1FRM3KSsYJDw/5fdAg9XF//vlnNm3qwKNHz/2dl+KzwU8//cTg4OD3ioySworXokULTps2jSEhIWzRIoDNmk3jiBEjuG3bNrZq9Y7W1tacPHlymhPi/v37DAkJoVKppFKppJ3dSjo7OxMAFYoTfxoOO9IMifSRC21tslevG9TS8qSBgZLGxmSZMqJP8rmJ3t65I3oSp0+fJgC+fJnM9JqOKsMju+95jTNnznDo0KFs3rw5p0yZwpcvX2osj48n05NwhoWRb95kv79169bxl19+yZLx6o8//qCjoyO7du2aa2bPvIKvr2bExNubvH9fxrfISBHLTEoSoyK9dlNQ0PuZpT4VvhgWucDq1WIpHjhwgKVLl+bhw4fZq1f29HPR0dGsWLEimzVrxkePHvHbb7/l8uXLmZKSQh8fn/eGqTNO5v6KzuzMmTMcPnx4js/lv4aoqCiuXLmSDRo0yDK9bO3atQwJCaGTk1MmysAnT57Q2dmZJBkSEpJtetPatWvZrFkzvvmzhzp69Citra3p4eHBwMBAdujQgW5ubmzTpg09PDzo7u7Obt26cfbsKHbuTHbvnsLOnaO5dOk/40V4H2JiyOLFuxAAbW1dNOgqz55Vpz9FRIhIUF4YRhlTqry91RFBT8+LLFy4Cg8ePJh2P7Pi4L58Wd2WjO/IiBHCB54RrVqpDY42bWSdu3fvpj0DnwP69pXz27pVvn9OPoMvhkX2UGluxsTEMDk5mVlpcKbvn77//nv+8MMPdHNzo4uLC2vXrs21a9eye/cUNmvWjLF/Wpf+/pmf//z5yRo1SCcnEXerXl2Mj3bthJ9f9ey3b0927x7JwoUd2aPHp9XE+RyRkJDAVatW0c3Njd26deO9LHJ1lEola9SowVWrVtHV1ZVr1qxhaGgoBw7cR3f3oyxY0IEnT8by+fPnbNWqVZbHCQ0NZb58lenmdoezZm2jiUkiFYoKNDXdQh2dF9TXj6O+/nkCqwhMp6npOjZsuIa6us1obJxMe3vZj0pf53OCUkleuECWLVuOABgSoqZvPXJE+u70Yr03b376Ni1evJg//vhjtsvfvBHj4s4d8vnzjzuWUqlkSEjIe4/3KZHRCdezp6bxplSSqqSVEyfU+kcZtZliYtR9yadM7fpCN/seJCUl4dChQ7h8+TKeP3+O7777Dtra+mjQoA66dOmCPn0G4s6dKyhSZALCwsLw/PlzKBQKKBQKdOnSBT4+Pli9ejUsLCxQvHhxDB8+G34QywABAABJREFUHAAwePBguLu7w97ePsdt+Ss6szp16mD06NFISkqC3l/xqP0HYW5ujm7duuHIkSO4f/9+Gp1gety8eRMtWrTApEmTEBwcDHNzcwBAkSJFEB0djXPnzqFFixbo1q0btm7dCisrK3z11VeoVKkSjhw5gm3btsHIyCiNhcrOzg4vX75ESkoKnjx5AisrK5iYmGQ6bps2UowVF9cZL1++xJw5ZVCkyGAAFT/lJckxUlNT0alTG4SG7oSzszMuXDgPT09PlChRAm5ubmjZsiWGDjVCz57yHP76a/ZUfariR11dKQh/H3FWYKAUTpqZSZFZt25C4bxkyWvcvh2Hr76yh4ODA86ePYs6deqk0W6qkJAgRbEqdOsmn9WrpZjx9u3Mxdhz58pxVXX+W7cKY0+vXs+hr6//Wbw/3boBDg5A165SjPfqldBbf8HnjbCwMDx5chRr1wJdu3ZF+fLlYWDQFi9fDoKVlRXu3r2Le/fuoWDBgihatChsbGxgZGSEVatWYdq0aWjQoAHevn0Lc3NzjB8fhAkTesLY2BhJSfJ+REVJYWZgIFCggNCPnj4t79mbN0BYmDBQ9e8vrFHduwtt6bhxQLVq+TB0aHXkz38B339fGwMG/MMX62+Evr4+Dh3qBhubbggPv4SvvpqDPXsWAgBiY6VoW6FQoGTJkihQoACqVq2Krl27AgC++046isWLvXDlylo0aNAb8fHxePDgAUxMTGBtbZ1WTFygQAEMHNgec+dOROHCP8HcHGjYcBauXLmKmJidSE2NAVkBQBUAjRATE4bLl+NRrNhuJCToIF++BAwbNg6tWrWClVVzAJ+eETCnUCiAFSsG4u7dO2jYsClOndqA4sWBkydbICpKgVmzgCFDpL9t3x7IwD/zSbBnzx68ePECx48fxw8//JBpuYWFfPICCoUCixYtwoYNG/Jmh7mEmRmwbx/g7Czf9+8XwhFdXcDOTohNVHPEhg3lkxFJSYCXF7Bli4zfnp7A2rUyN/kn8X9nWAQGBsLa2hpOTk4oVqwYBg4ciJIlS+LxYyssX/4HwsOvoGPHjnB3d0fhwoXTqOiiolLg5+eFOnXqoE6dOmn7S0xMxJw5c5CSkoIuXbq899iurqno1u0tvvsOOHhQD6mpmSes6aFQKNC2bVts3rwZnTt3/uhz/7fh5MmT8PPzw7179zBnzhyNZfv27Utjjjp27Bhq166Nnj17Ii4uDlZWVnj16hV0dHRQt25dkMTu3buhpaWFBw8eYPLkyfj555+xePFiNG3aFIcPH8bRo0c1WKR0dHRQokSJbNtmYQGEhwMFChihePHiePxYDzdvTgCwMdfnOXKkTCISEoQ1Kf3EOjdITk7Gq1fa6NfvJrZvrwJAaBktLCzg5eWFbdu24eHDh9i1axe6dOmCpKQkaP/Zc3l5EQEBAZk0Q5KSgD59hPlET0/ap6JlzgpNm8pHhYEDgQkTXsDLqyOaNm2Kli0NUa7cHdSpI6OUj48YIhYWQGSksEqlR4sWwv3es6d0xCoWqvQwMICGgaKi5WvSpAl+/fVX/Pbbb3D9h3lddXXFuLhxQ+h9R4yQAeELPj+MHj0aly5dgkKhwNOnTxEVZY6uXY/i/v37+Oab7xESMh1Vq/6IevXqoUyZMihfvjxOnz6Nc+fOYeDAgfD394e/v3/a/iwsLLB8+XI4ORXC9u2+OHZM3vfCheVZjYkRLvqYGKGXPHxY6JhfvpQ+4flzNX2yihWmWjV5lp4964WrV+egTJll2ZzNfxP9+wNffQWYmt7G0aNnMXbsPTRqJNeqRg1JTKpT52ckJSWhRo0a2LRpE7p16wZXV1fUr18fxsbGuHTpEsLCwlCtWjXMmzcPEydOhLa2Nm7duoWDBw8iISEBDg4OcHZ2xrZtU7BggUz+BgxwQ0qKG2rUEE2Kpk2BP/6QfurdO+D1a2Fb0tYGmjU7iNOnn+Do0aPYunUcJk/egoIFC+b6fJOSgHv38o7hLiEhAfb29jh9+jR+/fVXHD58GIULF8bhw4exYsVMeHiUwKlTjpgwoRLGjNGBt7cSkZEWsLGxyZsGZEB4eDjGjBkDKysrvH79Gp06dfokx8mIYcOGYd68eZg/f36Wy1VaTJ8Cs2bJ+LhlizBRDRsmz1KVKjIuNm0qzob3ISgI+PlnMaQBGaf79QNCQj5Nm3OMvA6BfM54+PAhmzZtqvHbmzdv2Lp1azZp0oSRkZGZcjbnzJG82sBA0skplLVqteDBdHr0x48fZ8OGDfnq1SseO3YsrXj73LlzvPNnXOvAgQMMDAyko6MjbWyKEQAB5Kj4Li4ujg4ODkxJSfnY0//XQXWd9PX12axZM3bv3p2zZ8/m+fPnee3aNc6fP59WVlbMnz8/ATAgIIAA2KVLFw4fPpwAuHbtWtaoUYPNmjXj6NGjeeTIEdrb2/P58+ds1qwZAbBUqVIsU6ZMrpiEpkwhf/pJwpPe3k/o7r6d8+e/yvU5jhsnCsykhGadnJ7y/PnzPHjwIA8cOJApzzQrpKSk0NHRka1bt2GBAp7s27c/GzVqxMKFndmggSudnZ25YMGCLLdVpZAlJSUxICCAXbt21XjW1q/PXNSdMYS7bJm8IwEB6kJrUmpgqlRpwVq1uvLcOckFP3tWctXzGm3ayL4TEyWNJDyc/O233+jj4/NZFLl+ClXXvMSXVCjBokWLOHHiRI3fLC0tCYAFCjRkhQr9OGbMeI1natAgsmxZslixaFau3Izjx4dpKAAPGzaMjRs3zsT0p3oGrl8n+/Qha9Q4RQ+PyTQ1DaSlZQ2WLr2ZtrZkkSKSmtKnD7lxo6QW2tlJ6kNMDGls3Ja9ej37VJfks0RAgNS34E82QEPDDmzZMozJycn08CBdXUlDw6a0salBHR0z6uvXZ9Omm9mkiQu7devGHj16sHPnzgTA/fv3c+HChWl91Ny5c7lt2zZeu3aNjo6OaePQ11+H0M9P9t26NVm8uNSElSpFDhuWuY2XL5Ourm9Yu/ZEFirkyqpVHRkVFZXrcx0xQp6V0aMl5TNjIW9Otu/c+RXbtFnCceNmsHLlqWnnNHr0Rt64cYPe3t5p8xV/f6nxDAkJ4bBhw1ilyhAOGTKETZs25cqVK/N0LnLz5k3OmzePDg4O/OOPP/jy5cu/tQ/Zs2cPO3XqlOn3Zcsk3XD0aKlvUI3RnwqqlEilUtKhhgwht2376+2CgzVTaiMiMo/PiYnSb2RVm5gb5KaP/7/QsYiMjISbmxssLCwwbdo0VPvTBF23bh2uX7+O06dPY8CAAVmKqXXpIqElFezsNuOPPzrg6dOnKFy4MJRKJfr37499+/bBwcEB4eHhSE5ORpUqVfDs2TNER0ejRo0a8PPzw+nTp/H7779j3rx5WabXZIclS5YgIiICo0aNypUYzL8dtra2iImJgZ2dHfLnz4/p06fj+vXr2Lt3L5KSklCtWjVcunQJV69ehZOTE0aNGoUjR47gzp072LJlC0qUKIHevXsjODgYPXr0gI2NDfbv349t27ahZMmSaNCgASZOnJhtmsyZM2eQmJgIOzu7LJf37i0extRUwMoq97zXDx48QJcu21G8+CnExsYCAO7dK4T27QvD0tIcCoUCgwcPBgAsXrwYffv2zXI/586dw7p166CnNwfduml6tfz9iZAQ5IgnPC4uDq1atcKhQ4fS9CFu3BCxPBXX+5s34llJ7xFRqdqqlg8eDCxfngwXFxfs3r0bw4frIzJSvPafkoO7ZUvg/n2gUSPx9JYuHYK7d3dh2LBhaNCgwd8iTJgdBg4UMbSAAIkAdeoEuLv/Y83JhP93HYukpCTs2bMHs2bNhrX1IlhZVUGxYvJsm5q+wJAhQ9CvXz80btxYY7uRI4GdO0U5u3lz4NSpe6hUqQ+srCZj5MhGcHYGgoOD0bBhQ1y6dAnx8fFwdnbGjRs3MG/eYYwZ44E3b97g4MGDePGiBlq2VGLJknVo1MgTJUoMxA8/VEKFChLNWLAAaWrczZqJ/kVqKmBvfxrTp/+EW7e+/weu3D+Dvn0BPb0p+P77cQAAbe0CMDdvCz29Z4iKSoGhYRVERj6AQhEOHZ03qFTJBMnJPnj27GdERZ3H2LFjMWXKFDRpMhP37u1CmTJfoWDBQ4iNfQB9fX2Eh4fD3t4ely9fhouLC+rWrYvSpUujYMGCaN9eoqvPn0tK7NSp0h4/v6zTVT4GSUlAjx4JGD36Pm7fvo2bN+9g1aqHqFr1NZKTk2FiYoJmzZrB19c3S92Gnj1lDrNnzzBERFTEgQNlsXq1AnXqVMfVq1fRr99JODk9R+XKleHn5weFQoGBA6UP9fYWvSGVGvS7d+8wceJEmJubY/To0R99brdu3cKgQYMwcOBA1K5dG9bW1h+9z9wgJSUFtWrVwsmTJ2GcQVFRlX6b3fe8xpgx8uyoxoQOHWTemZMMXldXmXtYWgI9eqizCwAZv0eMkHUuXsyZlkZ2+L/SsUhMFE+Oig0mKzx79ow9evSgq6sr3d3dCYDr1q1jmTJlCECjqDUjMlp/Zct2Y9OmTWloaJjm4SDJY8eOZck+oEJMTAwdHBzeu056XL8uxVMBAaSXl5IzZsyji4t4WzZt2vRZeGE/NZKTk7l+/XpeuXKFK1asoL+/f6YibVKez1q1aml4BFWMHomJiTxw4ACXLl3K9u3b09/fn+PGjftLr8tvv/1GV1dX+vj40MPDg88/tlKMQqu3cOFCBgYG0sXFhT179qSDw24+fKh+r1R0qiqsXLmSZcuWpaGhYRorWXpcvXqV9vb2fPbsGRct0izsiojIXUH57Nmz+csvv2T6PShIPGZDhmRd5J3xHQkIkOhgVp6g3OB9BWtZIeO1K1mS9Pa+Rxub5hw2bM1HtSUvsHq19FWfU9G2Cv/vEYsGDRrQ1NSU1aqFcPnyn1m37nxWqXKOAJg/fxNuVVXc/4mzZ6Wo28RE2MtcXIROtEaNSwTAypUr08npKEnpxwYNGsSOHTvy6tWrnDdvHnfs2EE/v9ccNGgj9+zZw2+/TWW/flfZvn17btqUxDJl5DgHD8pzffasRDdVUNFFjx5NzpxJVqo0gEOGDOHJkyf/b6Lb7u53WKyYHwFQT28K8+cfxA4dlBw7NpHAFRYtGkdr6xRqaf1BM7MOLFLkIH19yRYtyK++essCBSZy6tQk/vLLL/Tw8GDRol04depUtmvXjj179uT+/fvTivITE6VfK1+enDhRrv+8edupr9+IDRqs57BhiXlG3qFUKvn8+XOGhITQzc2TJUq04YgRIxgSEsJjx46xc+cnae06cuRIWvQhK6IXf3/y5cuXbN68OZOSkliuXObld++q5xqdO8u5Tpsm3/9k3E1Dx44d84xFadiwYbxw4UKe7OtDoFQqOXfuXLZo0YJz587VWJbVmPap0aePHMfXN/fU78HBklWTcWzOSDSRFfFETvF/xQqVPjTYunXWjDGkTOxVtKSBgYHMly8fN27cyNevX2usd+TIES5cuDDtxfXyUoeQ1q+XsOKSJUsIgPMz8tKSTE1N5Y8//sizGbjlEhISaGdnl+l42SE9vVhMjJpt59mzZ/z+++/p5OT0f0NFe+jQIfbv359169bNkh3Kw8OD5ubmrFu3Ln18fDht2jTevXuXUVFRnDJlCgFQR0cn2/0/evSInTp1ooeHB9u0acPg4GB26NCBDx48YFJSEi0sLPj7779/1DlcvXqVLVq04Lp16/jo0aO0wT8xUe61SlAu4yOlVCrp7+/PUaNG8dSpU7xy5QpdXX9j06ZrWLJkF5qZFaOjoyM7duxIf39/liv3FRs2HEoPj7EsW3YKp02bye+//57Lly/nmjVruGnTJu7YsYMHDhzgsWPHePbsWV66dInXrl1jUFAQR40axR07dmQygGNisg+lpmc72buXHDw4la1ateK1j+BTjYjQ3G9wsJpNKTukH9j79FHTSI8ePZpFinh9cmP8yBEZkCdNokYqzL8B/1XDQkXrquKKz47yMyEhgX/88QfLlPGjubkty5VrwDZt2tDYuCg3b76iIUgVEaF+tsqUIW1tyV9+kUlBgwaxrF37HnV0dJgTv92UKbLdsmXkgAEDePHiRZLSJ7RrpzYmRoyQ50uFUaNkknv2LDlmDFm8uJKnT5/m+PHj6eLiwsGDBzPm3/YQ5gCjR8u9XLRIxnpVH1GihJKWloOprz+bAFmhgjBsmZqSRYtGEQCNjNzp4xNGhSKCCxbIdQ8IIJs08aG3tzfbtj3HgwcP8u7du4yLS06b6K1eTbZuncxVq/awQYOTrFDhDQsWfEctrZocMyaKzZv709jYhba20rYPTfV8+fIlu3fvTjc3N/r7+3PFihWMi4uju7u6P5kwIfNkPzg4mEuWLNHob2fOJHv1SmXJkiGsU6cO9+3bx1evXrF48Xd89EiccyodhfRzjdDQ7Cefb9++pVf6lT8CKpHT8NzmdX0ChIaG0tzcXCMV2t9fjHpSxrQ+mTUt/xXIinXxQ/F/kwo1daqEj54+XYPdu3cjISEB58+noEYNBZRKJZydnbFx428IDzeGtvZrKBSPcevWLSiVSoSEhODnn3/GnDlzUKVKFejo6ODEiRPo2rUrhg8fjrNnz2LOnDkwNDRPKyi1tQW8vK5i+fLl2Lp1K8LCwjTaEx0djX79+qFIkSJ48OABNm/erLH88uXLGDJkCEJCQlC8eHEolcpsU5t69tRMN+ndG1iWrj4vLCwMAQEB8PPzg4+Pzz+a5vGp0b17dxw/fhw9e/bEyJEjs13vzZs30NLSwrlz57Bp0yZERkbCzMwMhQoVQmBgIAoVKqSxfkpKCr777jscPHgQc+fORYUKFZCYmIgbN27Ax8cHpqamMDQ0RExMDGrUqIGVK1fmqL0JCQm4fv06Ll26hFu3biEsLAyJiYlYvHjxBxXukcTx48dx6NAhHDiQgHLlbODoWABNmjTB6tW2qFSJcHaOR2xsLOLj4/H77wkIC4tHy5aJSEhIQHx8PBITE5GYqPk9ISEBCQkJSElJQXJyMt69e4cSJUogPj4eu3fvhqOjI/r27fuXbT53TpiZEhPv4smTTQC24/r16xg4cCCmTJmS6/MFpEg8KEjN9ARkficyon17YM4c2aZlSymCmztXljVrtgJ2dvcxadKkT5JOePSohJ379gVSUoRNRZU+9m/AfzUVqksXSeVTKqORnJyMdu2uYMiQGBgYGKBWrVrQ0dFBREQEChUqBHd3d4SH10SpUq1QuPBmaGkRUVHTsWGDRVr/u2XLFgQFfYcWLapi9eqFiIxUoFAhIH9+YSOytJRjzppljnLlnHH1qprMYfx44OFD4vLlsXj+fDfu3DmMfPnypS0/f15SdDZs2IAnT8zg5AQYGUlan6enpEPp6cn3K1ckPeP6dRmXWrQAfvsNmDRJ9nXo0CFMnToV8+bNQ5UqVTJdEwMDIDlZtp069e+4Ex+Pnj2Bjh2FRWfuXElNuXgRuH//PsqXrwJt7dJIStoIhaISypeX6/T4MaBUxkJbewOUSlPky/czFAo9pKS8Q2qqHQoUuI3Hj2/ByOgdFIop8PZ2w6RJUgA7b54U1e/bdxn37w9F0aIOePEiBfr6t0DeR0xMPiiVK6CtHYzU1A0oVeo1atbMD1tboFy5zEQU2SE+Ph7Hjh3DtGnTMHPmTA1yGECeq4EDpRi8bl1Jp0yPpKQkDBs2DLdv34atrS2OHImGiUk8bGySce1aMSQkmKJWrQTcvh2HAgViER6eBC0tIiWFqFRJgTt3iGrVkMZ+eekSUaOG/G9gYAA9PT3o6OhAR0cHJ0+ehI2NDWrXro2vvvoKtra2ub6PsbGxGDBgAGxtbTFx4sR/fO6SlJSEH374ATdu3MCCBQvSfh86VFLeChbMm3dk5Upg714hIXn1ClizRl10/anw/fdyrEmTJKVNRcTyIfi/SYWaM0e8mA4ODjQ2NubZs5fSLLK4uDh+9dVq+vpGMDo6mpMmnWfHjhc1tr98+TKHDx9OBwcHurm50d7ensePHydJrl69mkWKFOHevXu5cOFCBgcHc/fu3bS3t+fRo0ezTJ/q0qULXVxc2KhRI15OTwCdDvfu3aO7uzsdHR1Zvnz5bHUv0mu0qbxuGZGUlMRx48bR2Ng4U2HgfxEeHh65Wn/Tpk1s3rw5b9y4kfbbhQsX2L59e3p4eNDNzY0rV67M8tpFR0dz4sSJtLOzo4eHBwsWLMhevXpl8rAkJSXx3LlzXLRoEbt3705XV1e2bduW48aN45YtW3jjxo089RxmVZj1KbwpqampPHz4MJs1a/aX6tV9+/alq6s7CxduR3f3I6xf/weWKFGDHTt2zNGxvLzUIWCVt2/jRvG6qTBtmnghAwIk5JsVEhPFIxMQQFarpply5OWl5OLFi+ng4MDRo0fnebQvo7jgzz+T58/n6SE+Kf6rEQt/fxHDAkAPDw/WrTuDy5Yt47x58+jm5sbKlZuxQoWBLFmyAw0Nrdm79w16eUk0oEGD31i5ch1Wrz6eP/xwmocOHaKRkRHnzXtKd/dv2blzZ964cYPz5pEFCpDHj5OdOj2mnp49q1f30kifXL9enhE/Pz9OmTKF5co15+TJDzO19+TJk2zevDnt7PZz6dKl3L59O2Ni5NlPxxnCChUkSqLCgQNk7dqahb3Pnz9n27ZtOXHixLSi4SFDJMVQhcBATa2CzxkZ+77y5SV6NHFiLM3NZ1FPz5OmpqdZvLiI1enryweQYneFQrYxMiLd3OLYtOkBlihxktrajamvn0QXF3LwYNLJKZ5Nmhxk69brWKBAb5Yt60ctrRds1Ijs0UPuI3CdOjrVaGhYgsbGE2ls3Ie1az8gqSayyIiUlBReu3aNq1ev5pAhQ+ju7k5XV1e2b9+eX3/99QcVdmfc/7Nnz9itmyYBjY+PRMSy4ybJbq6RkpLC2NhYRkZG8tWrV3z27BmfPXtGpVLJ7du3s0ePHvT09OTNvxC4SE5O5rFjx7hr1y46OzvT09OTAFi7dm1u2rTpY045TzFixAgGBwd/skyQ9HO4xMTMqbufCitWqKNzH6NV9X+VCqWlpUcAtLYuwLJlv+G5c/fS8vBzw8SiyslPj507d3LBggWsX78+AXD69OkMCwvLdh8HDx7k2rVrc9RBPHjwgC1atODDhw+zXH72rLzw/v4y8couYrhjxw4Oy4qS4j+EuLg4KpVKNmjQgHv27OHt27fT7pUq9zUgIPPkbt68eXR0dKSbmxvd3d3ZqVMnduvW7YPCr/379ycAOjs709XVlTNmzGC7du3o5ubGMWPGcPv27X9LWHf1akmfUEElKPepMHPmTA4ePJirV6/m1KlTOWHCBI4fP547duzgkCFD6OrqysDAQPr6aqb/eHtL+pKwt2S//6AgzfTF9BOfwEAxNvz9hRlHhR07JCXir5A+BWbjRvlNqVTyxIkTmdjhPhZTpogyrAqzZpFZlMR8tvivGhZt2rxm37796eXlRVNT00yTqPTpdqtXSx8SE0OuXSvjRdeuCfz228OcOHEiR48ezUePHpEUY75Jk59pbl6O1tZOtLIqSgAsVKgZr17NnIMeECCCjfhTofvcuXPZ5m0vW/aS+fJNYM2aG6in15j+/qShofo9mjmTbNxY1LjbtJF3xNZWxozOndXPOinPe4ECBbhhwwaSmVMhjhzR7E8+J8yfL9dNlYaWMUXHx4e0sREjy9yc1NaeRm3tY2zRgixcWAwIQFLKALmGpUuThQqRurpk8eKPCShYpsxwVqmyi69evaKDw6+0t29OC4sZtLJay8OHT/PIEVJHRz6GhlJPU7QoOXKkkiYmv1NXdy719CYRAA0Na9PY+AD9/ZV89+4d9+zZwxEjRtDd3Z1ubm4cOnQof/75Z964cSPH9Za5RW4Z6PbuVddYtGmTO9app0+fsm3bthq/pZ9H3b9/n+PGjWPv3r357bffpqWCr1u3jnPnzs0R6+HfBaVSyT/++IMBAQF0cXHJUnTxY/ChaUm5MQbu3lU76lTitHmF/yvDgiR7977HwoUdqa2tTQB88uQJybzLL5s+fTp/+OGHj2ylJgIDA/nTTz990Lapqam8fv06w8LCeOPGDbZt25aHDh3K0/Z9Lrhw4QIbNmxIDw8PVq5cOa1QDQBjYmLYvr0693/RIslBzQrJyckfNfF/8uSJxrF1dHRoZ2f3jxRKTpsmz7KfX86Kmj8Ghw4dYseOHbl+/XoeP36cZ8+e5e+//8758+fz0qVLaYNIxnerWDG1graLS/aDVcbJ1ZEjZO/e8rsqv/zIEfV9TUyUCUa5cjmL1IwbJ21L76U9duwYjY2NGRgYyDFjxnDv3r3vHeR9fdURlWXLsl4nPl6MpFWryBkzyAy1gJ89/quGxcmTl2lgUDjtvXV07MxVq1aRlAnVnDma6+emSDMxUYyQw4cPs3Hjxnzw4EG2keOtWzWLr2fOzL5As3170svrHQsUcOD8+VvZs6cocFerJss7d5ZJw++/y7NtZKRp1GecgPfo0YNHj0oh+bJlmg4YL6/Pqx4oKEjuQeXK6ntx9qwUxlevLoQMTZoIxWvDhmJc2dico7b2N6xde0jafdbT68MGDVII8H/sXXVYVOvXXdQAgqiYoKIiiGB3BxhIG6BeFFBUVOy62K2oeLGu3SgG5jWxxe7GwkJULFAkB5jZ3x/bw5kZhjJu/D7X8/AwZ+ac99Qbu9beVKwYKxKFCxMZGzM/BmBlrHz5/WRmto309JZQ5co9qWjR6TRmTApVrEikpcXnlEh4DitUiKhpU6KKFfm7EiX4eqpUYUUDAOno1FZaJyZNmkS3bt36aUqEOkyaxMqiVMrPUw0V9IeiWbNmWREAzs7O5ODgQHZ2dtS+fXsaMGAATZ8+nVIVrS7/AYwePZpOnjyZ70gQgeyuuM6oQtGIceIEv5vcEBHBxwhKQk5rjyJUI1vURbp8K/7fKRafP3+m6tWrEwB69uxZ1vfr14svb8+egisWV6+yhcPSMp1KlrSlAwd+HPlz/vz5ZG9v/03Hvnz5UmnyEv5+tIb9M/DixQvq3r07ffr0iT5//kyenp7k7OxMLi4uWX+tWrWiY8eO0eXLl2nEiBHZiNNyuZxcXFwIALVpE6Y0+H9m9oaEhATatm0bNWzYkExNWxMA8vT8+K+rSfAjIZPJqG3btmqzcSnC318kxgYF8aIvQAhRUoeQEGXvQ8OGRN7e/PnECRaSFN3zXboQ7drFZNbIyNytcZ6eosXGx4c9HUTcf6ZNe0ldu74gN7cb1KlTILVu3VptG0OHKhN+FS3e6hAV9e8S1PKL/1XFQsDr16/JwsKCatasmZV0QzUc4cIFUiJp5xcbN8qpShUPevgwZ282kRAKxWNBUclQhDBWjh37Qhoa+uTh8YgqVGBvRd26PL9Vrix6JcaPZ4FZ0WvZrx+HXBkYGJCBgQENHDiQmjRpkhWeGxQk7MPK1d+Fnj35WosWZaG+cmVWDAAiTU3+r6PDQruBAdcGCQiQUsuWx8jYeButXbuWbGzWUYkSIRQe/oBOnCDS0JBTmTKtafz4k6SltYGADaSruylrTdTR+USamtxu2bLscZBI+PyVKvG1CKFSv//O9SjKliVq1YqVmaZNeV+JhI91dua2Gjdm76qlJVHt2nxfzs4XSUurLJUoUZL09U1JS6sRVa06PMd3/TMRFsbvWJHw/7MwaNAgpXBjIvrPZyYbMGAAderUiVxdXaldu3Y0evRo+vTpk9p9fX3FxCKKn1URFSWGyeUUzqsI1VCp/IROqa6zP1Ie+n+nWOBrUbT+/ftn4z7s388PNydLdk64cIEnvqtX2dpqaTmJWrc+l+sxAQEsCHXtGk3t27/J0YUll8upZs2aecau5wdSqZTmzp1LxsbGdPDgwawsI/npuD8a6enpdPfuXQoMDKRp06aRmZkZ7dmzhxYtWkQAaPPm02Rvv5zq129BL1++pP79+9MFNSp+YmIilSlThho0aEAAaNOmTWozEoWGhhIAevjwYdZ335NOLb/o02c/9egRRCkpKSSXy2n//oL3r3874uJEF+zs2bOVYmGjolgo6ddPOeyiXz+e2KpVI1q6lL8LCSH644/clXoh5MHLi8jJSfk3Ia3mqlVELi5sNaxSRczWllO76pQZYXvPHh6rAoYNk1ObNj1owIAB9O7dO7XHCBg6tOAFqgqK8PC/fwz/LysW169fpx49ehAA6t69u9JvQUGiR6qgMc9PnrAC3b07kbd3BFWsOCLHrIQChL6em7etSxcOISlTxpGOH5fS8OE8HoXrs7Qk8vDgcTBpElH16kQtW7IQGRzMc1FkZCTNnz+fgoKCsoTsUqVKFewGfxD8/Nj6L2Rr0tDgz8p/Twh4+PWzFgHuBGQS4ELVq8+lIkU20caNu8nObjetXLmdKlRwoCZNlpJE4kxaWhVo7lxRQTE3J+rZU06amt4EgBo18qBKlVgZkEh4Pzs7vrauXfnafH35u379iNq25XCpbt2IypRhJadUKX6+sbH83D08+H3UrcuKhaEhezKqVCEqXVpKRYs2JxubmWRpOYfCwv67WYXyg7Nnz1KA4oT6Pwa5XE6DBw+mRYsWqTWwKRq3Vq3iwom+vuwZ+x66xrekvPX0FNcnIePkj8L/O8Vi0qRJVK4cx7gOGTKE0tLSKDU1leLj47+Z1CyQQAV07DiFatTIOdwoNpb33717Nzk4OFCHDh3JwsKH9u7dS1u3bqUlS5bQzJkzqUuXLuTg4JA12ReUkJwTvnz5QpaWHWn8eFZ+bt/+sW6w3PDp0yfy8vIiW1tbAkAGBgbk4eFBFhYWZGtrS71796YmTfpTnToT6fffF1LTpsvJyqoNAaAgRYbuV8jlctqzZw/dv3+fevWaTo6Ob2j4cB40qqELgYH8/fjxPJBzc0X+KPTpk0l2dnZ/m6fk74RUys/R358nzP79uf6Gra0tpaSkUGIip3gW4O8vegIU4eDA4QNLl/Li26pV7rGit2/zmKtcWTmtraBYELG3QBCupFLezqmPq1MsOnYUz6E64bu53aBmzZrRihUrlL4PCFC+vx85UavDnj1iX4qKEtOa/mz8LysWCxcuJADUrVs3iomJ+WGJLubOFftYcrKcbGza52rYmDmT56+QkBByd/elJk3E0rpCEgZ//y8UEhJLNjYBBIDKlYvNCoWQSnlMRkSwMlO+PI8tIp7/KlfOOezl1KlTVLGiHZmbn6UKFTjE52cbYaRS0SMBEDVt+oEAq69rnxieBowlQJuAegR0IcCRAA8C1hAwjgBWnnx8eB6pX5/IzGwt6emVJkvLQ1/b4HP06MGKgKYmKwNFi34ga+sbVLkyGyZ0dTlsyd2d/48Zw+FRgYFsNBD4LIJnUiplxUNPj59vpUo8JrW1Rc/qgAG83bgxC5X29kQ6Or70+PFjiosT6xP8L8Hfn+9p5kxer93c3LL4R1Ip0b17PH89eEAUH/8PX+wPQEJCAk2ePJmcnZ2z/aaoWHh6Kq8730PQHjpU9H5ER4trT1iY6PlQXf+EUGHhtx9pBPt/p1gQsevt8ePHtHv3bnJ1daXGjRuTvr4+Afgmlr+PD2eAEA4dNOg8mZpmL0AjYP9+ntQfPnxIzZo1I3d3d9LU1KHWrVvTunXrKDw8nM6dO0cpKSl05swZ2rVrF505c4b+/POYktX3e+DlFafU8X/mZJaYyBNs9+6xVLasC5UuXY0SEhLo5MmT5OjoSEeOHFHKC626iHl6ptLhw4epefPmuZ4nPwVepNK/N7PJ1atEFSp0oi9fvhARTwB/Z0jBz0T//sqC/ZQpfG+hoaG0dOlSmjQpey0Adf1s4kTuH76+3J6geKtDZKS4kO/fz8TLuDj+rDhJ9+vHE61Ayq5Qga8lIEDknCjqqYrhT05OROXKjSNnZ2eytnaiihV30507b+nFixfk4jKVatXqRLdv31brwhcWUVVibF6YMkWc5F1d80fCU1WGhg/PuX7Ij8T/smKRkZFB165dozJlylCHDh3I0dGR5s+fT1OnTqXZs2dnZQIsKP74Qwy1zczMJCurVtS7d84hg0L/b9GiBUVGRpKJCRtXunTpRiVKOFKHDi7Uvr07lS3rRUWLFqX69esTADp58iQtXsx9ydKS+3V0NJ/b25vHTr9+PB5yisNev56of/9E0te3JR+fBGrYkMjGRtlz96NRsiQL+1paqQRoElCWgJkErCTAmYCuBKwl4CoBUQTEEJD6VUl4RYDdV6XhKgHsiejalf/b2LD3wdxcTu3bf6TGjTkcqXBhojlziKytucaIRMLEbmNjFv7LlmVlx9yc9zEx4fmmWDFWGry8+DlWr87zTLVq3Ebp0kSTJ/N+hQvzviVLclumpuwxatiQ9+/YkahIkYs0YcIEiori9/R3eNL/Lri7iwk3QkK4D92/f5+8vt6kSlRUtu1/K65ckVO7dnfIxeUyubi8V5IpTp48SW3btqVBgwZlO05xnbG0VF4j8gq/X7+e98nJOx0QIEYCKBrYBERFfV9tioKgIHO8du7JaP870NLSgqWlJSwtLVG4cGEEBQVh0KA/8fRpQ8ycaQFvb871nV/MmcPl0UeO5HzYDx82QenSOefkd3bmsukDB1aGu7s7goN3ISjoDUaOLJFt3xYtWgAAevXiHMmamoCDg3Ip9oIiLi4O584Nw/Dh7fDixQvcunULT59KcO1aKRgZGcHc3Bza2j/udfv7Azt2AI0bO8LAIBmVK2/HyJEjkZSUhLCwMBgYGCjtr6OjfLyenh7s7e2xdOnSXM+jepzqNsDPrGbNb7mLgiM9PR0HDwbC2roshgwpDC0toHVrzq3+vwC5XLl2hL09cOQIMGGCB9zc3ODn54/jxwEh1frLl9x/VREfD6xfz3n9Bchk6s+5cCH3JYDH0c6dQOPGgI+Pct2K+HigY0f+S0/nfPwXLwIVKvB4BTj3+MmTPNY3bACmTgX27AHevt2Kli2jERq6H8nJybC1XYzmzQ/AxEQH1aq54+bNyTnmU8+ji6pFejoQFQWEhorXPnBg7nU4AK4toIjkZM5jr4rVq4GrV3luWrbs5+dD/y9DW1sb9erVQ2xsLAAgMjISJ0+exIYNG/Dhwwd8+PABTZs2LXC7Egnw4gXw5AlQtqwWkpMbwdLyGoAGavdPS+P/06dPR/fu3fH5czzmzp2LW7d64/nzklnv8P59YPXqdAQH62DMGA2EhACnTgGPHwN9+3Iu+sWLgY8fua83bQocPQpYW/OYU61zAABnzwL37umjYUMLeHtfg52dHdq149oXPwsfPgBAPGQyewAjAcwFEA5gMYBtAIrmcnRZACcABAJIBwC8eQNUrAhYWPD/q1eB1681cOdOcRQuDHz5AtSpw2ODiGs+JCZya58+8fxTsybX/nBy4rG2di2wezfPER06AJMm8ZxVtCiQmsr30K0b1yCpU4fbtbXl575wIV+DrS3g6cnruYMDzzlE9/HXX2Vw7Bi/lzp1fvTT/edQrBhgY8Ofvby4xpa1tTWICDExMdDWVq5t8QPFjp+KPn3mo06de7CwsEBERAS6dKkKT8/iuH37NsqUKYPdu3ejcOHC2Y5TXGdKlOCaMwBw4ADXrMgJQo2JtWt5zHfqxG0oQljXFFGsmPjZwoLrm/zb8B955fkHEaFv376YNi0UR482w+7d/H2PHvzS8yuAlinDws6ECYCJCbB+/Rv07p2Z6zEzZqTA0LA80tO/wNKyFQIDrdGixSE0aJB9oTlwAKhaFRDqvXl55U/wyAmenp4oVUqCDRuMsHjxABgbe6BcuXQcOHAFnz9/RlRUFEqWLIlx48bBysrq206iAB0dQFtbjuLFi6NEiRKIiQlBcPBoVK1aVe3+enr8PD08xMIwq1atgn0OEnlQEP9/8AAYNw4IDOTBl5z83ZeeLwwbxgtLcjJPAIKAvG3bNjx9+hSHDm3E/2JNQkdHvnehuNvs2cDWrYCOjg60tbXh6irHoUOa8PPjSfPRI2DXruztzJ3L71pQlj08eNFWB319Fs4sLMTvPDx47CkiOJi/L1aMBYWVK3n8KBaOnD0bGDxYNCJMncr/+/Vrg/v3N2Dfvn1wdXXFsmXjsHOn+olbFbNmsZKgpcX9OD+KxsuXPG8IMDbO3wIwdiy/g8WLgTFjgFu3+Pm8eMG/NWkCLF8OxMbyfSclcdGwQ4fybvsXGPr6+pg8eTIOH47CtWslYGQE/PknC4WVK+e/HScnngf9/ACpFPD2bohSpe4gJ8Wib1/A0TEBSUl78fJlJtq2nY569Srg0aOSSgYlY2MgPV2C4cO50KOREfelbt1YaAkOZuG4WjUgIYGPOX5cFLjVoUGDT9i6tR1sbPrB2NgY1ap1wqdPMqSn68LbWx8VK1ZEs2bN0K5dux9SQLJxY+HTUwDx4Kin9gBskbdSoYhoACzMpacDGhqsrAcFcZHAwoWBIkWAKVOA7t15HpHJ+LlFR/P7+e03HiPTpgHHjgHnzrESkZjIBQidnXmOu3wZsLLi+b5VK1ZMkpJ4n8BAXpt/+43ngObNgTVrgHv32BACsOI4Zw4QHz8MmppyNG4cjMqVRQPi/woEBVl1u1OnTjh8+DDs7PyQmsrzFhGPjX875HI5nj5diG3bjsHGxgYTJkxA9+7RcHP7hJEjR6JIkSK5Hl+7NhATw+Ozb1/uI0ZGYoFWdbh1S5T3bGyAkiXzd63x8eLnadO4OKu3Nyu/whq6cSMrvXp6vP/KleqNsj8NP9oF8k/iwYMH1KBBAxo0aBD16BFHp06dogoVKlDdunXp8+fP3+Uy8vT0zLMQTHJyMi1YsIAiv/oJjxw5QsNzSDMSFJQ9fOZ7QpfkcjmdPn2a1q5dS6dOpagNu3j48CF16dKFtm7d+u0n+oopU4jGjz9PEydOJKmUs2XkhZkz2W03fvxbevbsGdna2qpNw7dypXJxsebN+ThFAtyyZWLu7e8lSali6FDOJnT7Noe/lCsnhv+kp6fTuHHjqHPnzjkWQcwN+/eL4THfkoHm78C2bSKZWnB5R0dHU/PmzbPeV1xc3s88NpbdxD4+eYeqOTuzW3jx4rwzLyli8WLl8I+AADETVHCw8n04OaVRqVIWFBycmG+uhGqmoLCw/BP1FcdEcDDR7Nnq94uKUq5ZExXFGWeaNlXeTwinUJ0nfgSh/H85FEoR6enpNG3aNBo6dCgtW0b07t07evSI604sW/bt7UqlUmrbti09ffo01/18fX1JQ0OD/P1H0rp1IVS4cHkaOlROHTqI6Wvbtxfr8wjo0kUMeQgLIxoxgj/XqKHMATIzUx9y9+HDB6pUqRvp6LSlQoU6UvXqH6l6daLr11MoLi6Orl69SoGBgdSmTRs6fPjwtz+IrxDI2sD4r6FPJwiQqiFt5/YXRYDn13AqDkMqW5bDkrS1idq1Izp+nH8rX54zO1lbcyiSjY1Yu6J2baLt23m9MDHhPwsLkQOyahU/c11dJmGXKMEE7u7dmacRFsbntLTk9t3csl+rhgaHUHXrRqSn14UkkkXUvbs0K0SzIJBKeV7LKxHAP4XgYL7PUaP4WQvz7e3bt2ncuHFExIkNHj/mMKj/SoIoJ6e35ODgRAcOHMixKLE6BAeLmQ1Xrcr/up6fMG8BUimvbePHs9zo6UnUujUnQxDg4CCOfcWIreTkvFPb5gf/LzkWPXv2VCCDiX/u7u40adIkCg+XFijtm0AO7dePyMMjkerXdyzwNd29e5fKly+vliwo5PcXOoKv798Tp5+RkaGWgPQtaNx4FLm53VLKRJAXPn/+TCYmJjR06FAKDQ1Vu8+8ecrb69dnF2K/JRVbfiHwAoS8076+/FnxGl6+fEkODg5ZSmR+oSjQbtv287NJxcbmHNsfEsL35uurvh6GTCajRYsWkb29PfXp0ycrF/7PQnAwCwe+vvlfVIcP57jmSpU4/lrI0b9smXLhL6HLV63amqZOPZutnRMneNJWLebn75/9u/waKCIjebGoXZtrEPj78+Sv2p5q0TZhO6esIEIKXgGent9XUZXof1+xkMlkNH78+Kx1oVOnTlSyZCWldSKnuhKKSE7mPwGTJvF7Wb16Jy3Lh2aiWNizQweiFi2c6K+/3lPbtmLCEOFdKs5pYWGsNPj6KgsJQ4dyhiJfX96/VSv15505k39v00ZOZcvyWFGXijQpKYlcXV0p+juJPSxwywlo9/V/QRSKMwQMIqAVAacIX6toa2kRbd7MBG2AlYISJXjM29qyckHEfKqGDYXaEqyg6+jwuzI25u+KFOHfzc1ZmWjWjMndQvaoqChWJiQSPreODv9fupSoUSPxWoV0tcKftTWRqWkmOTmtp9KlbenatWtZc0t+cOECG8r27OH54t+QbEld+mypVFwP37x5QytWrKD27dvTvn37/t6L+4GIiyNq2nQH1agRQN265T9tuOp6kF9F8upV8V23bMnrmI9P9rlcmCsiI8VjiLKvD3v2iMaR31XowKNG5e+acsP/S46FtbU1qlWrhpCQENSuXRuampro3p1jJd++BUJCxHjn/KBvX3Yfffr0FP3794eBwZQ8jxk2jF2nMhlQtizQoMETdOjQQa1rWSLh6/Hz48+dOv3YOP2TJzlUwsiIw0bWr+fwo8+fP0NXV/e7209JSYGBwS3s2ROEjAx+Xjo6fO+rVuXMFdHT04ODgwMeP36M0qVLA+Bn1qsXhwB8+cLXfOMGULcuH/P4Mf+u3I7ytgql47uQnAxMnAhs3y5u79kD9Okjui7Lly+PcuXKFYi3cu2aGJsKcGiDn9+Pu25FxMcDPXuyaz8uDjA1VQ77OXkSuHRJvJ8BA7jPCiFEaWlp6NWrFwoXtkOJEgehqamFbduAr/SgfGPQIHaVZ2Rw6Ei3bjlf79GjHNIhjIegIOXwKFWMGAG0acPu5vR0DpMSQgtv3lQOkWrcmF3GXbu2RIcOOtna0deXokcPCfr00cCIEYCZ2QvcvXsX9esbok+fwhgyJBWbNtXBgweGcHbO373b2PC806OHOPekp/NYCQkR91OMmZVIxO34eA6pMjPjOF4hHG/hQuaZ1KzJcecmJt/Ozfr/gqSkJMyePRsA4ODggJSUFNSq5Y5Ro5zQvHk9yGSG2LIl9zYGD+Z5RlMT+PyZOQ5DhgD16mWgcuWNWL8+OM/r8PDQwJ07HHd+8iTQrVsiYmLC8McfgxASAsyfL+4bEMDjoGRJnhcnTmT+xP373C9GjeK+cuUK8yw0NIDhw7Ofc8MGDucrVw5IStLAggXAvn1AlSocTlW4MM8FAGBgYID27dvj7t27MFMkWxUA1aoJn24DqAWgoDGj2wCkAPAC0AqlS3OoyZEjHE77+DFgbs7PpEsXoFIlXnsKF+YQztu3OZSpbVuec69cARo25BAnfX2e52bP5jDJOnU4lPPVK577MjOBlBTev25dXocqVeL5xNOT5xcjI5Yr0tL4+Xt5cXhiZibw/j0glWpBR6cX7OycMWqUO06fPo1t2/J358uXc/gowGPc27uAj64ASEriPi2RMA9kxAjl37dv5zCv4sV5DXF3F+dviQSoVEmG338fh5iYGHTp0gU7d+5Uy0H4r8DYGDh+3AmVKw/Ftm3KMbKvX3NodGYmc/r09b//fPXrc3/29ARq1eLw16Qk7tP794v7DR3K8psQTvfHH+K7evtW/P7SJR4XffoAERE8fxgbA4cPA19Frb8N/2nFokePK7hwYS7S06UoXPgFPnyIRV1BGgWwbZsYj6ZIIs0NRISAgAC8fl0Pu3cn4tatW7h69Sq6dm2e63Hz53NH6dmTcPfuXQweHIKTJ1/i1KmQHI8xNuZJ/2dg+XKREJuUxIS/0FBgwYIFGDJkyHe1nZmZiQEDBmDMmDHQ0NBAjx6shBkb84LXu3fOSpyuri7Wrl2L27dv448//gDA17Zhg0hA7d6dyYpHj3J8Ztu22dv5+JHvy9AQ2Lv3xyoW8+bxObt2ZQWmQweO51UlYtWsWRMLFizA8uXL89VuzZrKgsO1az9mglKH4cP5uQgCZ48eLNQK29u2KQveK1bwhCQoFsePH8eLF9HQ07PGqVOa0NDg9iZPBqZPz981TJ7Msc4dO/K2h0fOisXYsdxfhetTVeQA7lu//87vQSCCC0K+RKI8ecpkypNuVBQr/m/fVsOyZcvQoEGDLIX/3Lk/ULLkCdy+rQFNTU389ls6HBzKo0GDBkhKSkJGRhI6dtRFoUJTYWs7BRcutFRqOzckJSn3TYkku1L86ZP4OT1d3N6yhRd+QJmgbmzMnIonT1jp+KVU5IyEhFScPn0WxsY80KKjo7MEZpmM553du1nxzU3JDw5mRb1xY47HXrlSjt27tdG8uRy6uoWwfv16bN9uAQeHnNuoV4+VzcePue906HACFSoUhb+/v1qSfs2aymTOHTtYuLOwYJ7a1KmsaAiJDIT5XhXTpvE4CQvjfY2N+a9CBW5nzRoeO+/e8fp36NAhbNy4Me+Hq4L0dFEJAuQAZgKYVeB2gHkAjgBYD6A+4uNr4cIFVh4uX+Z31bAhrxEpKSyYVazI42rhQh73e/eykGVqysKgkRHQrBnfc2goC10pKSzA6euzMrR+PX9nbMxC5KhRgK8vK2AfPwIXLvC5ra2B06d5XD9/zkaCzK/0SwcHwNKShbwLFz5AX98EtWrJYG2dP4at6tyguv0j8dtvzC0xNOR1af58Tn4h4OBB5T7Vo4fy/O3r64t27dph3rx5P+8i/2ZIJBJYWlpCJpNB6ysp7u1b4PDhMCQlvUHt2rXx+LEJ3r6NwNGjRyGVSvHmjQGsrAj6+oVRuvRYfP5sgVevWJHP+3zMEVq8mLcNDdlQpLhWZ2Qoy69lyrCx888/eW21tGSuVXIyc/G2bWNuaq1arKSULJmdr/iz8Z9VLEaPBt6/X4USJV7i1q1bePMmE6mpqdn2YyIck2pKl2Yrg7m5SOoEgK1btyIkJCTL+mxgYICUFDOkp5dF3bp1MXToUEyYkLPVJSUlBadOXUO1agfQrt0N1K5dG3PndsGaNU1+6sSQGxSFYENDngQvXbqEy5cvY+bMnLNb5YU3b95g4MCB8PLyyiJeFysmdnwzs9yFfCJC9+7dIZFIsiYkPT3lrDZGRjyp54bQUM5MpafH586NJFVQmJnx4u/uDtSowRPLlCnZMzYMHjwYzZs3x7t377K8L7lBIuHFrUcPvu60tIJ50QoCPT1lgbNwYRZchPdkbi6S6QG2Tllaivs7OzsjLq4S1q/fig4dZmLt2rXo2LFcgUjCr18rKyG1a7PXoGXL7PsaGwMPHypnm1IdO8OG8XVKJKzoCQqLAEVi//LlfG/6+s/x8OEmFCmiAU/PqwCAV69e4bfffoO9vT3evn2L9+8v4cqVg9DQ0AARoX9/DSWlKzaWBRYTkyFwdXXFli07ERBQLF9GAUNDPl5YKObMYcFEEdOm8bUaGbFQ9lXfhkSirPwJePmSn1du3pxfAPr2fYW1a8ujdOkm+Pz5OQDgC0u9AJhM36ePuP/ChbyI16uXPYPggwePUbbsTVy//hFnzpzB3r37YGBgCxcXDdSrVw+lSpXKk5yfkABMnPgIs2fvQtWqZ3DuXHUcP74JGRka6NJFfRIERezdKxKFP3xg4bZfP2Uvlzro6PDYT0/nsSeVitb+yZM5kYijIwvrq1ffgYWFBUqUyJ7NMK9r69RJ2EoHMAhABwDfkihEAo5QSwRgjowM7uvdurEBq0QJFtxNTPiZ1avHHptjx9hTsXEjC1MPHgB37/I8cu8ej0MnJ54Lk5P5GRgbc1an48f53ZcowdZ5mYyz0mVksPBdtCgrhc+f89pgbMzeCYDfq44O7xsWxooIRwpURenSZVGt2kY0aeKbTXBXhxo1WDaZOpU9U4pE3R8NExNx3R09WnksAHkrOTY2Nti4cSNevnyJAQMGwDi/1tt/KeLi4hATE4NGjRph4MCBWLFiBTQ1NXH69DmcPXsQPXr0wNWrV/HoUSxsbRth48aNKFSoEJKTk+HtrQHgDR488MfOnQuwfHk1zMqnTp2WpqxIpKUpr92zZrH8KniyhLlCImED08uXrGwoJv+xtgbOn2e56O9WKoD/sGLx5Qswb94gjB49GnPnzsXly10gl8tx/PhxtFUxcfv5sTWiWDHC4sWLcehQKyQmWiM4eA4uX74MCwsLHDx4MFvIUo8eLCQfPcoub3UIDAzEiRMnYGzcBqmp3XDs2FxoaGhg9Gg+/p+CkC0EACIj32DdusrQ1u6N7du355hWMy/cvXsXw4YNw6JFi1CjRo2s7xXW6mzbcrkc165dQ7FixaCvr48nT57g8OHDuHv3Lky+ps3R0WFBUcjYlZ/J1NBQOZzkZ2DnTna/A2KIjSLS09Ohq6uLokWL5rvNIUNy7ks/EooLVHq6KIwKGDuWw5/Cw3kR1dNjr4UifvutGnbunInSpYNw584dPH5cLkthffDgAR49eoSUlBQkJiYiJiYGL1++REZGBvT19aGvr4/bt7Xg41MU7dtboVq1arh+vSLGjCmq9nrnzGHBpHt3HnPLlrGwoghjY3HCrVmTs7Yohoq0aSPuK5EAzs6r8ddff+HPP8dCJpOhSZMASL428PLlS1y9ehXm5ua4det33L2rgZo1gYkTNbKlhtTV5dAXCwsDTJ8+HT4+XihadCU4JWbe2LhRDBWsXj17yIGNTc7WZkWkp7MyZWXF95vfDFX/H/H2LZCZWQQLFizA9OnTIZV+gr39KVSvXl3t/gEBPC7LlePF+a+/eDEXUtNGRYXjxYvuGDWqMmrXrg1Dw6V48aIEgoL4/Xl4cGpyVcyfD0REXMaTJ6F4/fohFi2yQNeuXTF69GhUrixBQADvJ1iOc4OiwebLF1Ymnjzh/nT3Lo8dJycOzVFEairPAxUqsEIil/P6kJbGhg4LC6Bz57tYtuw8Ro7cgbUFTE3YogVnWmLcAhAAYCCAjgVqR8QyAH8BOACAH4q2NqeRbd6cBeJ169jivnQpsxuEtLnCc9TV5dAwLS1WpLS1WaHQ0uKwJwHx8RySJpXy83j3jr0716+z9VdTU2ynShXuVx8/sqKhqcnPUlubz5mSwh6gkSP5WUskGnB27opnz4IxZIhvvsJehwxhL5qfH88XgiL5M6CY3Sk9PXu2J5mM03k3acL/VdOFBwQE4Pfff8ehQ4fg7e2NAwcO5Ho+Ya3Q0tJCoUKFsjINfqs88iNw/fp1TPqarrBQoUKwsbGBrq4u9PT04OTkBC0tLWhpFcOKFcEwMSmJ9u3b4+FDnoOFyzY0NESTJsCYMZZ482YD/Pz80LjxbrCCnDvS03lMmpuzMiqR8BhWRJkyLL8OHMjbqnOFELGopcX9U1Ak0tL+uTTH/1nFIjkZOHr0JD59+oQbN24gLGwUwsIAMzMzPH/+XElJkEhYKImLi8fw4cNhaemBLl1S0adPT0yZkjN3Ij/W5E+fPsHBwQGjRo3CjBlytGsXjsTEKDRp0hi2tg2Qn/hSqVSKXbt2oXp1T8yYoWy5VBfmev8+a7EGBvynzlo/dGgSypXzBpAEuVwLw4cPxfz5c/O+IRUMGACkpMQjPn4d3r3bjoEDByopFQCHPilaXBUF5wYNGqB9+/ZISEhAcnIyrK2tERERgQoVKmTtI4ThaGnx8ZMnF/gyvwlHjrDmr6OTs4CWG+/l4MGDaNiw4Q/hrPxoDBnCMcV+fjzBhIVl30dVkVBFQACH5Zw5cxqHDnmjaVNe6LZt24YtW7bAzc0NhQoVgqmpKRo0aIBKlSpBIpEgJSUFqampkMvlGDYsHqtXP0RcXBgkkih07pwKfX19mJmZwcDAAJaWlvD6Kgnt2cPXnJysPn2qokdCSD2p6kUSsHTpUrx58wb79u1Ty3EyMzPLColp3VrkR7Vvnz1ca9YswMWFU+haWzfDly/T8ORJazx4sA/Wqu4HNTA2/jFK8MCBwObNooI4YoSyQv4LIm7fBiwsCAsXLsTSpUvRsGFDeHkdhYaGLdauXQtfX1+l/YsVY6VizZo16NevHzp2/BN79lyFRCJB27ZtER6+C7du6WXxrvr147CoESO4X06alP09zJkDfP58GwcONMb16w9ha1sF0dEaaN2aj61Tp2DpxXV0ODxu9mxWdAWBul499gSambFyISgWd+6wwHLqFCs/GRk8Znr0YI+Mry/g7ByF7duT8ccfA2Fp2RCHDh3K93x25Ah7dcUQrgQA/gD2AiiVz7v6CK5rcQ9AVQAfADwD0BmCUgGwAmVuzilkw8PZmLBxI1tvt25lb4uvL4+RpCS+rj17eO6TyVgQDA9nbgkgpgN9/57nOMFgUbUqUKoUv9Py5fk5JycDM2ZwrLrAAaxQgY0316/ze6lalWuF+PjwcampQuraVWjVaiimT88uuOeEXr2ycwp/BipW5P5SujSHiqquB2vX8ry4Zg0Lsuo8tLNna+DRoya4c2cd4uPFuSk8PBwrVqyATEEb0dPTQ5EiRSCTyZCcnAyZTIbMzExkZmZCW1sblSpVQt26dVGzZk1YWFjA8CcX51myZAkuXbqEkJCQXD10RJzeOTmZ+5KREbKlmk9M5HA4U1NT+Pn5YfhwZ5iZLcLx49bQ08tZThs8mJ+vmRnLdZMnQ62no0yZvOeKP//kOeyPP3gMrF+fc/rpnw0NIqK8dvry5QuKFCmChIQEGOVW8eNvxNu3HJtvbCzDhg2sH2lpaUEmk+HAgQNwcnKCVCrFgwcPMH36RTx+fBCWljpwcnLC3r19cODAj9GSk5KSMHbsWDx69Aiampqws7ND3bp1sWPHDqxevRpjxoxBjRo10LlzZ6WicXK5HJGRkTh79iwGDRqE6tWro1q1u0okr+7doZb0pVhI5cABdokrxu4DTNIWwrjevx+GN280oKXFC6jqvjnB3R1wczuLu3f3Y/HiFZBKudpQREQEWqqLZ1GDNWvW4ObNm1mF8BYsYLc0wOEq/1R8+I4dwIkTPJk+ecI1A3ISUnNCeno62rZti927dxc4dODfDoFkvGxZElq2bImSJUvj+fMKqF07HpUrV8a0adOyrP8FRUpKCl69eoXk5GRs27YNX758QbFixVCiRAk0btwYL1++REpKCj59+gRra2ucPGmKT59q4+7d+3j1ajUsLWvC2Lg3li8XeQ7p6Uxyk8uBVq0+IjSULWjfmpM/PZ37hSLZfsQI4P37F9i2rTImTJiA4cOH/63ufz8/5dCoTZv4v6qF+lvwvXP8v3GNcHAgODgsx5UrFxD61UpUoUIFODg4ZONFBQS8Q8uW17BhwwZYW1vj8eOamDSJE4J8K4T31aVLF7Rp0waHD9dDTMxfiIq6iTJl5PDxaYaqVauia9euubbz+vVrVKhQAZ6em7B5829ZsdupqRzTr6i0+vmxQtOzJ4cVvn7NFvr4eI7lTk7m+bdYMSAmxg3APhQvPg4SSQVIpb0xaJAkXxyqI0f4HB8/Ct/YATgFwAjAGgAe+XxK+wAsAnsobgGoBMAUiga56tW5lsTz5yIHQi7nMVqrFitVQl6msmX5uSQlsfCnqSkSrblgHxuwBKXhyxdlr8PnzywE1qnDz0xPj4VugLkYVlbAs2csEC5fLoaVGRmxgW3XLvYOt2/P1yWT9YCd3WA8fNgEo0b9vGQd34r0dJalvoWnP2sWvwuiZYiP/4ITJzrjyJGKWLVqFU6fPo3Q0NB8K6np6emIjo7GxYsX8fjxYzx58gTJyclITU1F586d4e/vn692iAifPn3Kc16+cOECVq9ejXXr1v0Qj8nnz8zNLFYMuHHjKBIT1+Py5bf48OEUAJY3bt3KrjSozukjRuBr8pBvu47evZkvVLq0WLxQXTjtt6Agc/x/1mNRpowQc6aF8eMfw9DQEKampmjWrBlWr16NP//8E/r6+rCxscFvv9XC/fu78Pq1Ls6c4Q7wo2BoaIg///wTRKTUQRs2bAhzc3NYWloiKSkJrq6u8PHxQdWqVfH06VOsWbMGurq6OHz4MDZv3owePXpkm3Ry4ioojhlnZ2WBODIyMsvd7+/vDy2tbiheXI5x41JQqFAhrFqlheXLRbdabihcOBk+Pq2gqamJzp07Y8fXeI1WrVphzpw5+PLlCx4/fozWrVvj+fPnmDlzJvRUAjH79u2LIUOG4MSJE7h0qQ2MjFjzfvuWLcMFFeZ/FMLDRQuAhQUPZCEDjyrmz+d43ZIllTMrSSQSODs7w8vLC3PmzEGtWrXyde6TJ5GVYelHCIU/A0lJHDpgaGgIa2tr9O3bFytWlMP8+XooX7583g3kgkKFCqFKlSoAgNq1a+PGjRuQSCTYtGkTBg8ejGHDhkEikaB27drYsuUxLl7cABOTONSta4lixXrB0HAZPD2NcOaMDC9evEB8fDw2b34Ja+sk9OzZBefPu+PVq4xvViomTOBiR6ambPVdt47nG7Y4VURSkjPGjBmT7wwoq1ez8q+nx0KIYtjT1Kmc2Sktjb0iHrnIY+3a8aIjZMHaskWMu/2F7Fi5UgMTJ/rjzZtikEj2oF07Wxw8eBAnTpzAihUrYGhoiDt37uDRo0d4+VIbT5+2RN++C3HsWFnMnPn9HBbBQh0aGoqDBw/i+fMDWL3aBY0bz0JGRgaKFCmCtLQ0rFu3DuXKlcPUqVNR7qvW8PbtW6xevRonTpxAREQEXFzcsHt3N7x4wXPUkSNsFDlwQOQtpadzKI9q4gYLCw5VMjPjPtSkyQ2cPLkP2tp1YGwcjczMWShZUgO3b7Mn5d49ZBWWzQm//y4oFWcB/AbmUtQGKwddAbwFoAegEIBYcNggIbvI4QrgMpiorT5G9MEDnis/fOAxNHEik7gfP2bPVLlyzIuoXJnXlfh4VgJSU3n/EiW4DQEyGY85U1NRkbCwYCUhOZnDrc6e5f2OHuV1ysAAePqUFZLYWJ4ThExS8fE8bvfv5/Apd3dW6JYvB0aOHI+kpKHYunUXFi0q+q9TLCSSbxdio6N5rpw+/SM2bdoEPb23cHC4i+7duyMsLKxA869AmrZUJPqBFYVx48bBxcUFRISMjAxIpVIUKlQIUqkUenp60NLSQo8ePZCUlIQtW7ZALpdj+PDhcBNKYIOjQl68eJFV0HfNmjX4/fffv1mpOH2a33VGBnupihZlTyIATJgQAbm8MkxNN2Xt7+HBHCBVmJvz+mBlxd7o06ezezbi49kI6uaWtyFWJlPm8fxdBYVV8Z/1WKiDqnD/b0BaWho+fPiA5ORkHD58GElJSTA2Noa1tTXmzp2LTZs2oVQpdhu7u7OwIJHknulD0ZOhmPEJQNbgmzt3Lm7duoVr19JRp44WdHV1oampia1bt+aqxb5+/Rpbt27FqVOncPnyBzRsWAIvXrzAgwcPoKmpD7k8FZUqVULNmjUxbNgwlC5dGkePHsXHjx/x4sULODg4IDU1Fb169YK2tjaICJ6enpg8eTIWLLBWOq9q1p8fjalTWUA0NBQrSQvw9la29PXpw/uoel/HjmU3d69erBCEhGR3CcfExGDUqFEIUxdvpIIlS9jitWAB/717l7/qz/8EHB15srt+/RgmTDiEfv0WoF+/v/ca/PyAZcsyce/ePdSuXRvx8cCECUkoUWIuKlWqBAsLC8jlxti2rRyWLDHAoEGDYGxsjOXL9+D9+ztqLWYCSTEjgwUFVSuSYt9IT8+e5WzQoEGQy+UYMWIELCws8lxAFcfrkyds2Fi1ivtCZqbIuejenbkluRnbNm1ioSctDZg589uFAlX8L3osVLFx40bcunULbdq0gUwmQ0pKCmrWrIkqVapAR0cHT56wVdHZ+cdk4xH4D2ZmLMBaWionDVFEZGQkxo0blxV/npiYCHt7e2zZsgUTJsyFoWFzdOrEwtzBgxySeO0aC9uNGrFQnZzMfWrMGOV5tUEDDo0MCOD1Ijm5M4j2QEenBWbP7oy5cyUYOTIBGhoaGDZsGGrU0MeTJ7nfW6VKcXjx4hDY06COdd4EQBzY+/AZgC7YG7EF2cODMwG0A3s8OLQrOZmTORgYsOdBCLfS02ODh6AslC/P3oV9+3hfIyMW0q5dY+uxEHeelsa/paby9x8+sIdDaJOIx7qmZnYuQatWrHAJTq6mTTk0JiaGtytUYG9QVBRHE9y6BTx6xG3p6sqgq7sVcvkylClzGj16SPIk027YwAKmRMJt/xPk2/ygRw8OtwHS0aJFC1hYXP5pyUgAlm3mzJmDfv36oXjx4lmynkwmg5+fH8qXL4/x48eDiNCxY0cYGRllcTokEgkqVKiAZ8+ewdXVFSVKlMDNmzdzDIWPjeU+KGRQU8Tp0+zlsrPjvvLHH6xoC3j16hVGjBgBLa0dWfP+y5c8X6uTu7p25bTGjRox5+n8eXG9mTWL+1KLFhwePGBA7uHZ8+dz3y9enBXfSZPEhCjfi/8XHgt1+DcpFa9fv0b37t1RunTprxlDtPDp0yckJPAEHhkZibCwMKVS8cHBPFjlcrYaCfG8qmjTRiSWf/gghkQA/AwkEkkWIWnvXuDo0YcwMtoADQ0NzJmTvRaBVCrFoUOHEBoaCj09PfTs2RNDhw7F1KlfcOTIZjRtWh1S6WFUqhSLvn1d8f69O1JStGFpydYim6/xIpGRkbh9+zb++kuKSZOcYGxshdKlByAiIgxbt25VijHdvp0FdT+/nOMPvwejR/OCOnUqDzTFWgIAKwwuLnzew4d5AVIX0hkfL8a72tmpD00zNTVFTEyCUmaHnHD9uqiYjBjx98TSfiv27mXPlqZmGxQp8hcyMpYhKck/KxuXutznPxolSwJnzmjDzq42AF7c7e0N0bHjjKx9kpJ4DOjoACtXrsT58+fx8KGPWqVi8mRe/IU0tRMmsPVXmKzT05WFyidPRAFEgKenJ/bu3Ytu3Zbhw4eHINJGtWoaKFasELZt2wYNDQ2kp3O4RFoaE0kFWFiIgsutW8oC4LBhnJkot1AUL69/r5fr3w4fHx/4+Pjk+LuFxY/NtGVhwVZsxdhzRURHR2P//v14+/YtEhMTUaVKFZQpUwb6+vrIzMzErl17oae3B0eOlML792yFr1CB539HRxam4+LYsKQosLRowf161iwxBeyRI3wdZcoAfn67YW4uw+jR92FoGANtbQ20alUEgYGB6Ny5M4Aqau9HKpXir7/++jqXSwA4AngFoDWANADmAD59/TwMQCsARcGeCgD4E4A9AC0AZgD6AKgP5lh0zjqPoSGT0QG+/owMXiOSk1kRF2pFaWuz8BQbyxkCV6/mz+XL87hLSeF7NjBg/sXOnXx8fDyPaWtr3ic6ms/VoAF7JeLjeV17/573v3SJr0cm42vZsYN/L1mShUGBs2xggKxaKO3a8fF37mhBKu0JU9METJmyBwcP5pBv+yvu32fDgbBGzJnD9/V3G3TygyVLmONiYiJBfHwdZGRsAeD5086noaGBcePGZfteS0srW8KBvXv3IiUlBcVU0qXJ5XL4+/vj+vXrWLhwodrzPH3K49XEhD1bgndLwMuXYn0RLS0eUzIZsrLClSpVCjt37kTjxr1Qo4Y5ypSxQ0pKPPr3/4zUVA/oq+SYL1QISor89etilqhHj0QjV79+fN7cFAvBW5HTnPO34UdX3Pv/jqSkJBo2bBg1a9aM7t+/X+DjZ87kiptRUVyFMT/VYNVBKpXS1atXqU+fPtS4cX+ytz9NXl6ZNGUK0eXLl2no0KHk7OxMzs7O1LlzZ6pTpw49fPgwWzuJiVyVWMC4cUTPn4ufVStiS6Vc4fX58+dUo0YNAkAODueIiOj2ba4aOXIkVz0Vqk5v26ZcJflHIKeqxYpITOSKlOqqTgvw8sq+vXjxYjI3N6e+ffvS7t1pVLfuKipduhZVqTKCAgIe5HpdqlU581vF+Z+GXC6nzp07U8uWd7MqkgYFcbXsnw0vL35OPj5iBdH163nb15evoX9/7kMXLnCVbdV+KUC1H8TF8XhThLMzf+/gQNS8OVfiVd1n+HCi8HD+LJVyZfYVK1ZQ2bJl6datSOrQgduQSolKlRKruO7fL1bTHT9eeWz5++e/4viPxv965e1/AyIjibp0IerdW07Ozi+oVq22tH//frp16xY9ffqUHj58SMeOHaPNmzfTgQMHqGfPNKXqv82aEbVvL1Z5LleOaMQI9XPI+vX8vZeX2PfKliUqXJhIT0+sQF2xopz09VdSkSKO1K9fP2rZMoPat+fx/vr1a4qIiKA1a9aQl5cXNWvWjJYtW0afPn2iVauIChUiAjIIkBGQTkAEAbFZ11eyJJG3N1cUNjIiqlBBsUr1BQJcCfAjwISAowq/5fwnkRBpaorVs01MuCI2wJW5hf2MjYlq1eJ9S5bMXiFb+CtWjKtqlyrF22XLKlfV1tfnytxGRlyVW1ubyMCA2/f15XdQujRX8C5Rgv8AOXXocIIMDG5Qs2YZVLUqkZFRP6pS5RS1bJl7H+nfP3vF5//CGpGZmUm9evWio0eP/tOX8t14/Fh5+9Ej5e1Vq4gyM/lvzRqiXr2IDh5U3ic5OZnmzPlIffueJ0fHmdS27QqaOnU6+fr60vnz5ykxkahbN16PzMyIFAvd+/qK1bdV16t/si8UZI7/pVj8YOzdu5fmzp1Lcrn8m45XFWS7dHn+VTh3oFGjRtGRI0fo5s2btGvXLlq8eDHNnz+fVq9eTceOHaPIyEjavHkzdevWjezt7WnixIm0ceNGpfYmTpxIQ4YMofv375NMJsv6funSpTR27FhydJRR+fKvqVKl11SjhvK13LtHpNIcBQYqb0dHs9DVsGFDOnjwIPXv35/atNmrtM+SJUR//KF8nDrB/3ugTiH4FmzbRtS5M1GzZnIqX/42lS49nSpXrkbdunWjefPmUenSdlS7dm0aMGAAXb9+nUqXtqV9+/bRu3fv1LYXGCgqUSEhREOHftt1/ROIjIwiABStMAvm9d58fUUBZ/x49fvs388CV79+RO7u/Mxzw4ULvAALGD+eKCyM25k0KfvCrIj165WV2CpViDp14msU3kViIgsKv/1GtGwZfzdqFNHVq8r3pQjhOezevZsaN55DsbHib4cPc3u+vtkVFC8vPtbLS1S0/wn8Uix+Prp14//9+vX7Oi9eyHV/1T42cyaRmxsLtx06EC1ezIKwiUk4OTtH0KpVH3Jsa/hwoqZNiapWJTIxkVLx4ufJwGAEGRjYkZvbJLKwSKXSpYn695fTmjVrqE2bNtS3b1+aO3cu7dq1iyIiIqhdu3ZExOetXJmodm0W2lWF9ZIleRyqYtky7uu8XzwBdQloTIB71rGCcmBgwP/Llxfb1dFR/iyR8LPQ1ubvTE3F721siKpXZ+WnWDFWEgSFxNJSbIeVo+zbGhr8v3Rp5e2SJflPcT8NDT5HzZqshAC8ZpuaOlHhwh0JOE5VqlSh4sWbkq5uC9q6NSnH9xQerjxP7tnzz84LBUFCQgK1bt2aLl68+E9fyndBVZE4eJDo+HGWf4h4fZg/n6hHD6KFC3nduXaNaPdu8ZjYWKIFC8TtxESi2bPldOjQIapTpw65u4vKw/793M+J+H0rGh89PcV1Z9ky9ePq70JB5vj/qVCofxpbt27Fhg0bsGnTJrVhWfS1qum5c+cQGRkJuVwOLS0t2Nvbo2nTpoiNjcWnT8WgodEEzs7OkMvlOHToEEqWLPmV46AJExMTfP78GZUqVYKVlRUkEgk+f/6Me/fu4ejRo6hatSqWLVumNisCEeHatWs4fPhwtt8GDhyIvn1XIiKiPTp3NsXr169hbLwIjo7Vs1J/aqvpLarxqGZmzCGYPHkyduzYgZs3k6Cj8xe+fLHNisvz8+O4dQFnzmSvav296NqVOStCpdtGjcTf7tzh2NBBg3IPffj8+TM0NY/h4sX1MDAAXFys0b17RyxYMA7btjF/5PJlB6xfXyGLyNuy5XK8enUSO3fuxJs3b9CwYUM0adIEb968gb29PcaOrYDt2/kZVKmSnfvxb0bJkkVgYFARZb6mYlKX+1wRkyfzexBct6phRwK2blXO165a4VUV69crh37MmiVmv/j4kcMidHTYNS2T8efFi9m13KsX79+nD4citW7NRbcADqdasIDDu9q0UT6HtTXHqdvY8GfVokYCSc7FxQX9+zdCenpA1rHNm2dvT8DPrsXyC/8eGBgA9+7dQ0xMDA4fPpytIJki4uPjUaLEbfToQfjzzzowMCiGc+eAiAjg9u37mDjxOYKDE/HlywckJk7C+fOauHu3OubO1UXLluXx+fNnZGRkZBV9vH0bqFvXCJcvE0qX/owvX5qgV68eSEmZDImkCKKiNNCnD+DouB+nT0ciPDw8q2AswGtH1apVYW09GklJNrCzO4vnz4egUqW6eP+ew0MCAjimWzGTmiKEhCGrVwPAbTDXog2Aq+BK3ZqoVInDuz5/5tAvoeaEUFBUQEYGcy0SOVEhdHSASpU4bAXgkCIjI04d++KF8nW8eyd+TkkRP2tri9tC+OO7d0zM/fyZuR5xcTyvEPG2hgYgl8cgOfkhYmKuISXlLIDisLJaj1evPJCaOhOlSy9G4cI+yMgYjtDQS/D1dcXBg6aoX78+nJycYKGwCNnbc4y9t7c4h/2orD4/G0ZGRihSpAjWrl2Lxo0b/9OX883Q1+eQujJlOImBiQnzah494nfTrBkX8F27VrmoYGSk+PnxY+ZmCjA0BLS1NeDg4IA9e/bg7dsrkEgaAuCw3DVreA2rUEGZwxkayiGyq1axvJCfjG3/BvxSLL4R166xsMI5rD/i5s2hKF++PA4cOAAdHR21x6xbtw6RkZHw9vZGtWrVoKOjA6lUit27d2P9+vWwtLTEq1excHUdjr17g7F8OVCixEUUKxaGxMREzJkzByVLlvzma05LS0PhwoWz4vkUhWoNDQ3cuDEAx44NQJMmwO3bt/H776Nw86YTbtxojrp168LKijv6o0dMFhw3joVzVQQGAnPmOEFHxwkeHsCrVwPh5OSEkydPQkdHBxIJE4q8vXnBSE9XnyP7e+DszH/XrnF+eUEAnDOHSXcBAVzxuH797Bmyrl+/jrCwMFy7dg3169dHhw47sW5doazfBU6LhoYGKlasjr17Oe792jVAR8cKAwdaYeDAgSAiHDhwAC9evEBMTAwcHBxw//59dOuWu+D8b4KQpz8tDWjcuATKlq0Jd/eXqFTJAs+eCUKCerx+raxEjBrFgoe9vUhiNjXNnv1MlTirWONk2TKe5JcsEeul7NjB2TXi4znzRmgoEzbbt2fFpm9fLix36BB/f/8+n5NIVCoAMT0fwDHSw4ax4peezv1FqLi7YAEr0B4eTCJNS2MFBQBkMi3IZFpo2DAR48cXRq9ecnTrppmvAngCli8Hbt7Mvb7KL/y3IJfLcf/+MowYcRIhIeuwbh1npvPz41j8YsWY7BsXtwRS6SEUL14ctWvXxvPnmqhb908QSVC6dCo0NHRQrdouNGvWDDNmDECvXlcAJKBVq45feT+vEBiojWLFiimlg/b2BhYv/gxnZzmsrY1x/75YjbtcOeYJlC0L3LhxA56enkpKBcBz3eLFi2FqehLz579FkyaT0adPH7x6dQKABszM2ECQH1SqBDx/3hpc7+ItWAypA+AqZDIJatZkBSo1lfe3teUsUNraLOR//MjCXmys2Ka+Pgt9AM/1MhkrHV++iAYGAaoFXbW1mUuRmcnbxYpxbQsBgvJSqBDzH+3tub2DB8+jcOHNSEx8CMANCQlNoa8/CqamEiQmMqG7RYtA1K3La46LC1C+vB3c3e0wceIHXLt2DYGBgbh//z6KFy+OjIwMLF68GNOnf0u18n8Onz+zwlW2LDB9+nSsyKtA0r8cQiriJ0+4LzVtyt9bWbECLUDoL8Ln0FBWRNPSeD26ehVo25b714oVnJQAAOrWrYu1ax8AaJh1vI5Ozgrkf8n4mIUf7QL5/wCplOOwiYguXbpEFSva0aRJVygtLY3OnDlDwcHBNGrUKOrcuTPt3buXkpOTSSqVkp2dHUkF/1cumDKF3eCLF//Y646NjSVDw75kZUVkZcUxr4oIDeV4WAGdOkVS48ZHqFGjRhQcHExr166lyMhIWrOGaN48og85e96VkJCQQAMGDKA9e/YU+JoDAth9nld4TH6h6Gb88OEDVa36lrp1e0YVK3qRnZ0DOTk5kZubG507d44yMzOJiEMYhPAaT09+bnXrEvn58XczZ/I15hTWlJmZSbq6urR06dKs7+rVq0dNmzalQYMGUdRXQsDbt28pPT093/cSHi6G0uQUZvQ9CAzkcK2nT5+Sp6cnmZq2p/Hjg0gqZf6AgMREDmXy9eVnNWECX1eLFhwuIcDHh7kPFy5Qlis4PJxjly98jQqJjORnrHiMwDsQuAxEHNohcCyEMKSgIJH3IMSpCuEkV6/yM3J2Fl3QQ4YQNWkinmvUKKLt28U2Q0LEMKXfflN+NjnFujo4EB04cIZatGhJRYt2J2NjB+rQwZGGDh1Kr169orS0NMrMzKRr167RqlWrqEuXADI1tSczM1eaMeMFBQaK4YVRUfxc/w78CoX6sYiM5L7arx9R584fqFo1R5ozZw717SvPiqt+9Og9JScnk4sLh+O9evWKatXqQpMnZw+jff/+PcXEfKKePVOpQoXnZG6eQRUqcBiQVCql8+fP0+fPn7NxuATs2cN9acoU5gsUK8Z8gIoVxXBFIqJhw4ZRjRpPyNKSqF697O2Ym4ufV69eTYUKOZG9vT1dunQp38/mwgU+v3IIVR0aNmzy11Ai5T89Pf5vYyOGJOX2p6/P/AthW0ODv5NIsu9rbS2GX1Wpwv+NjMTwKkAIocogbe2rVKTIBtLVXUESSSsqUaIfOTreoRIlkmnGDOYPOjjwM65ShftARASHZAl9QZi/FJGamkonTpwgGxsbuvc13iY2NpY2bNhAd+/e/eawagH79yvP1z8S0dFEr18Tpaam0f79d2jIkDE0f/78PI9LS2Mug2LIqCIuXOB1oF8/5bDXn42MDKIdOzj06eBBokWLlH8X1hciolOnODxp0yYiJyciRYrqpEksH02fzrKSQD2RyYhmzjxDtWo5UcOG76lJk11Up85yWrHidI7v+fnz57Rz5y5K/CqEBAWJvEPFtfJn4xfH4ifjjz/SyNt7Lrm6ulKfPn3oxYsXVKfOVGrXrh3NmjWLjh07Rvfv36fXr1/TkiVLqF27dtSqVSs6qMrw+ZtRvfp+qlChWdZ2cLCyYEXEE1+lSmIMLRGTvXft2kW7du2iFi1a0MmTJ7P2T0xMpDdv3uR4zqtXr9KcOXPIxcWFHquyovKAl5cocE6a9GMULUVOQNu2wQSA6tatSw8ePCVXV/XHCIKzlRVRmzasVOzZwwtvfgW/hIQE8vf3p6CgIHrz5g05OjrSpEmT6M6dO+Tj40Nt2rQhAAVSvhQXqVWrsvNdvhe9emXSggULyMnJiZ4/f05Xr6qP9/X0VOY1lC0rfh40iBdvHx9ROVQVfvz9ifr2Vb+I5IeELyA6WhSQfH055lWISb1wgT+rHt+kiaig/PEHk2MFxalDB1EJUZzAhQQFqli0iKhGDb6Od+/eUUxMDFWrxu23b7+PLCx8ydbWluzs7Gjs2LG0atUeat/+JslkMnr8+DGZmbWiFi1S832/PxK/FIsfC09Pos+fP9PmzZvJzs6OHBxu0a1bt2jEiBHk4OBA5cs7U/fu3al9+/ZkZdWfXF3PU9euXenixYu5EjTHjxeFCldXJm8LCRQmTWKhIzdERIh9Wh0MDbvQ6NFPiYjnW0VFgogFqFat+PPAgWyIevnyJZmYmGQlA9m3b1/uF/EVwjjz9SWqXPk06ek1oUKFRF5F8+bKSoDAkVCnfKjjeeS1T6FCzMnQ0OD1Lvs+mQR4EXCIgDYETKBJk7aQvv5matnyHZmaEpUpw+9DIuH/np5ELVvyM6pUicjRUbzX3J77hQsXqGnTprR582YiIoqKYj7bkCFDqF27drRmzRpasWJFvoR2sU02pAQH8xz0M+LzHz3iNd7Ozo4CAgJo/vzQPBWhL1+IHjwgksuJPn/OTpYmUl5XIyLYkPR3IDyclQsBS5bwc5TJiC5dYmXD3V3kAyYmMol73jzldhYsIPr0SX37UinRxYsXqUOHDtSv3yIKDNxPTk7jqEmTTjRu3Di6cuUKzZgxg1xcXMje3ok6dfKlKVP+pEaN7OjGjTdKa8/Vq38fT/OXYvGTsWDBTgJAbdq0ocGDB1Pz5u3J0XH/d1sWiNi6IFiQ8uHcyBcSEhLozz//JAMDZ0pOTlb6rXLlgrU1b948WrJkCRGxhb169erUunVrtfsuWLCA+vbtS23btv2mZ6O6wP6IjAj+/kz0JSJq2jSDTEwa0qJFiygzM5N69877evz9xQwO/frxpJdfb4FcLqeJEyeSm5sbRUREKJHn37x5Q4ULF6Z169bRrFknycXlLJ0/n/MzO3EiuxDxI4XQV69ekZWVEw0YsIZkMhl168Z9pWPH7BOZ4nkTE9lal9t1qSoWQ4fmbLkSCK85bSueo18/zpzj5cXEOlNTHkO3bokextwUBNUxFxsrkq2nTOF2+/fnthSzeBDxfvPmEXXtytcYHk60di0roQLCw4kmTpRljUF/f2VLYnh4OOnrt6dr165RUlISjR8/ntq3P/ND5pW88Eux+LGoUsWXihQpQl5eXpSQkEAWFj1pwIABWRZoRcGpSZOH1LDhpKyMOvlJNKHYT1et4r77DQ5hJVy5coV0dRsqGYrUrQ/+/vy9g4P4ndBHk5KSqGLFilnfv379mnx9fZUSPihiw4YNVLx4KypRogu1aROblfVp0CD2VGhosFdF8DYoejoET4OgcKj+VarEWZtyUiw0NJjQLpDB9fWJihdX3EdOQFMCNAl4QWXK8Dk9PflZK85FiYmcAatyZfbUCvNZ587Z57uckJGRQQMHDqTp06eTq6sreXt7U2pqKiUlJdGWLVvI3NycrKys8tcY/bgEJjkhNTWVevUaQb169aKPHz9SdDTRsWNEb9/mfpwqOfrRI1YyFJFTcoyfjePHlbdPnSKKiWGPw+vXrPAIY08qZeWCiGjrVpbdBIwcmb3tNWv4PqZOFYng06cTneOkmXT48DOaMeMGDRo0iPbt20cZGRlKXpALFy5Qw4bdaNYsJv/L5XKSy+X/SuPTL47FN2Do0E54/jwJCQkGePXqOnR1DXDwYNW8D8wDe/eKFaHfvuUc0fv3F7yd6OhohIeH4+HDh4iKioKenh7c3NywYcNeVK2qlRUnWLkykEN9mBxhYWGBpUuX4siRIyhUqBD8/f1x//79bPtFRkbiwoULqFNnOy5cGIVGjeajVauBCApSUywiB6gSwzMyCnat6rB0qUjeTU3Vxr17JzB9+hqYmf0Gff0wdO/O5Cwhfl8RRkac41ooSvbpE1C3rpi7XBGDBvH1mpqKRbE0NDQwY8aM7DsDMDExwadPn9C27WxkZj5D3brJcHEZB6IScHHxxMaNyiWZmzdXroFw5w7HGf8InD59GrNmzcK+fUuxaFEV1KrFcaeDBjHnYtYs7qsdO/L+ycli3mxDQ45JnjOHyW/m5tmJ+d7eYhG6ixeZcPmVD54NM2cyCd/YmGOju3fPvk+PHkwMt7Hh9lau5LYHDQKqVeM42a+FvmFjI9aAiY0FNm4U29HSEgnZfn58vhs3uE3hHSYl8T1u387kdC0t5lckJ3NhsmHDuILvxInc/oULYvv29kBYmCYKFWK+TuvWXMF39GgubHTkiD1KlqyN1q0no3TpeyhevAu0tA7B1XUeMjMz0a9fPzRu3BjPnj1D06ZNv7my+C/8fBQtWgrNmk1BiRKxcHZ2Q/HiY7B8uWPW72PHiv0wI8MKVapMx9mzwJ9/8m85Yft2sRjcp08c192v37fXOfjw4QNOnz6NgwcPIiMjA6VKHYaJiZj4Q3UOBtTzfoRkJbq6uoiLi8PWrVuRkpKCdevW4dWrVwgKCsp2zOHDh3Hu3DmYmPTE69dJiIwsg8xM5jEI5zAwYK5W9erMO2reXFwThWszNOSxqqnJxwp4+ZLJ1QKEwrNlyvC+795xzQBtbbFY5rt3fEzhwkBmpgZSUnZBT88PwHLEx8+Anp5OVvy9Yk0jQ0Pmmw0cKNY2AJgTItQ3yAva2tpYsmQJdu/ejT59+sBUoXjCb7/9hkaNGmHUqFFo1mwgHj++ATOzzujYsT2GDjVXqoclQJWr9iOKPgp48uQJBg4ciK5dh6NrV6es51a9Ot/vy5c5F+9UzWujrvyYYsXot2/5vf0MxMbynK6lxWtVyZJcQ6x6de5LHz/yPF2uHO9vbCzyNR8+5DGYmcnrUkgIEBTECQAE+UFYT7ZtYw6Kjw9zjBYs4H3fvWN5AwA6dKiE9++BiRP/zLo+xSm+UqUmaNkyEfPnu6BcuV44dOgQbt9+h3LlbLF5szmcnZ1RtGjRn/OgCoofran8wrdDUUu/f/8++fndp9DQW7R3716Kj4/P8/jt27eTs7Mz+fj40O7du+nRo0f04EEG1ajBMbxEnCbN3JwtK7Nn/5jrdnR0JGdnZ9qyZUtWHzl//jw1adKZfv9dRnK5nDZu3EglSlSmyZNv57vdUaPYUhwby9YhRYtAfjBpkshB6NgxuwcoLo7DCUqU2ECWloOyQq1ULTuBgaIXydqa46M9Pdnz0aFD9vSmnp5cs4OIw3+E2gv5gXDuZcv4uJ4906hy5cbk7Z3dXxwYyOcSuA0/Ajt27KDOnTtTUpKYElHVIhIdLXotpFKi7t3ZOlinDlt0qlQhsrNja2ClStnPIZUSubhwH2zc+PuvWV241NWrYr0I4ZpVU72qIjGRQ6H69CE6dEgMhVINd4uIUA7ZGjqUjyNiXoSnJ8eDR0YqWysDAkRvmYDhw7lvWlqK737LFn6fil6chIQEWrhwIfXt25cGDhxIXbt2pYULF1LcDwqe/uWx+PEQ+GFeXnl7n6VS5XTGOUFxnMfG5t8aLiAxMZE2btxIbm5u5OjoSN7e3rRmzZosj8LAgRzKWLcu/+/Tp2DtExGdO3eOQkNDaffu3fTmzRsaNmwYBQcH0yeV2JBGjRrR3LkJVKVKOlWt2p+AXqSnF0E6OmKaVz099jyOGMHbQt0KRQ5ETn82NvxfqHMheD1MTMTwJ0NDsd6FiYmYjtbUVLlmhoZGD3J1PUxNmvDYV12Lrl7l+aVdO577iPjd7N+vfm4Wwtm8vAq2PmzZIiN//0eUkpJCw4btp6JFf6dixRqTr++NbPsGBope7R/J14qIiKD27dvTy5cviYjo1Sv2VChORblFPX/6RPTkCX9OTOSwKFWEhIgcC0UvwY9ETAzR+/f8OS2NSCg7dv06eygOHiRSCfDI8lDMn8+py+3siIYNyx72dPs2h1Ft2sT/Bw8Wf4uI4O2NG5VT0hKxV0MRT58SJSQwf+P4cV5TFi1KIxubldSixQYaMyaTIiIiKCQkhBwcHKh///7Uu3dvmj179g/3dP8KhfqPISMjgzIzM7MWoLi4OKpUqRLVqjWGhgwZR5MmTaJJeQRIXr58mby8vOjLly9Z3x0+zLGmkZG8YBQ07EkVUikL+qGh2X/78uULrVy5klq3bk0nT56ks2fPkqlpO7p58ybJ5XJ6/vw52dvbk5eXKLDu2SMK4Dlh/34WvnIKlckJiYnKCkJsbM7u1C5dHpGtrS29/zrLKO6nWrxv5kxR0fDxUX9dBeEFqEKRIyD8j46OJhOT9nTmzBki4me9ZMkS2rlzZ/4bzgfWrFlDfn5+WQTy4cP5GdrZ8WIroEsX8b47dhQXlFWrmJejuMDs2ZM9ZEvx+G3blBUAVURG8vPLLXbc01NMeLBtG28HBysT7Yjy9x6kUr5Xf39xMcuPW75yZb5GT09eNDp3ZoVDyEvu6yvWxFBFQED2wnh5Xevz589p79695ODgQMOHD6ehQ4fSspxOkA/8Uiz+nRg6VOw/gpGEiOsleXp6UtWq/uTq6kpeXl55ChKbNm0iBwcHWr9+fdY6sW8fG0qqVOE6DAKOHftxwtybN29o6dKl5OTkRL17984KtVq1ahXZ2Iyh5s05fMjCYhtJJM6kpSUWqtPSUk+6VvxTDl/iIoCKxfJU/woXZnJ3mTKsdLRtK9alUKewaGhkkqamCQFvqHx5Dn1VHJ9BQWJYo78/86wqVmTDhLs7C5KKUC2MOWlS9rkqJwhzUXS0qLB26XKPrKxsadiwSxQYKCqz8fHptHgxH/OjCNBhYWHUsWPHLMPT27esRKiGEKlTFhSRlMTKzlfd5B+BahHVnIqqKuLqVTaKNW7M61hUFHMyVAv8rlqlvO3uzmvekyf8m6sr0d69RJcvszIRF8drl7p+8PIl0bp1ojJGlHN/efbsGb1+/ZoWLVpETk5O5OHhQZcvXya5XK4kG34LfikW/yHI5XICQCEhIRQdzZPRiRNE1aq5k7s7q9BpaWnUqlUr2rFjBx05coSWL39Krq6vycdHSl26sBC9f/9+AkAAyNn5DHXrxp4JxcWhenWi06e/7Trj4ngCd3Iiql8/O6lPQHx8PI0dO5ZmzZpFbdr0oYoVbcnW1paaNGlCFhat6Pffb1JioljgadSon1NNMiIi+2DPSVgbNYpozpzr5OrqSo8fJyhZdtRdW17Xq0rsFbZv3xarbeYU7+rvz9YaX1+i+fNlZG+/mGxtbalsWQeqU6cOzZw5k1q3bk0hISFZRfoEq/WyZURDhtyjHTv20oEDB+j169eUmZlJCxcupGHDhtHIkSNp6tSptGvXLvr48WO2c3fu3Jn27HlLPj4cP925s/jbtGlMXvfyUl4UVZ+pKr8iKio78S4/gnpUFE+enp7ch8PCcn7uLVuyd6RfPy4A1revcuY2Ihbec8ssFhXF7QcE8D0qKkeKFkdfX+7/jRuLFuY9e1jZtLHhaxBi3fOyJl+9youThwcLIoIVdP36vEm4AuRyOd2+fZsuXbpEzZs3z99BavBLsfj3ISSEFeQ3b97Q/Pnzyd2dMxZxscmpNGNGKPXs+ZykUil5eXnR69evs44V+rPi2GvQoAGNHbuHHB1PZBF5S5cWf581i72O3wqplBVsS0seI+pw+/ZtatOmDfXp04dcXFyobFl76tjxCnXrtpiAJgS8VRLuhYxOApeiUCFR+K9UiX9XLJwHcHE94RhFT4XgBRHaFbgV2trsuRDaFZSS5s35nNz+Q5JIOlDt2hn0xx/KnlbVcZ4Xl0F1vouLU/YABwXlzJeZOZPnwvHjeT0JDiaaOfM2BQcHU6FCjWn48NP07t076tnTmwwNq1J4PjUWuVyuxPlTh7t375Kbm1uW4SkmhkioA/vkCRsyP39mI4k64vK/DYr8BXXbOUFdoWBF8vb168wRUiSBb9zI78zFhTkWW7cyt+LECX5mO3ey50cVUimvB6NGKa9J+S1w/urVKxo6dCg5OjpShQoV6PLly/k7UA1+KRb/MSQmJpJcLqcPHz7QyJFjaNCgm7R58yuys7PLCoF69OgRrV+/nhYuXEiWlkPJz8+P3NzcyMHBiUxMHKhHj15kZ3ciy+p+9SovQopo1Ci7t2HxYlHQzU1jt7JStqp26pR3aAkR0YwZ8iyL28CBH6hly5bk7h5Djx69yrKwBQSI2Z9+JBQFy8DA3LNK8aA/S2ZmruTi4kavvo7y9evFrCtE/Hn9+tzPu3gxWygCAtiiLwiMigpLZGTOgnJQEJG19UEqXrw9LViwgNauldHQoUyW37lzJ7148YKI2NMVGBhI3t7e1LbtXapTx5E6dhxM1aqtpEWLllL37t3J3t6eVq5cSVFRUfTo0SO6evUqLVu2jNzd3WnGjBlKVs4//thO9euvJiJewNq2VX4v6q5XVYlycGBB3NOTqFcvDi9QTdmneoziQrxtGz+7UaPYkqr4rHMS1HMi+d++LVp5VS1IihAEfCK+306dxErgQsgbEVv9BA9b//6cdlgx3W1uClNsbHYrk6LCsmwZ36+qMFgQtGzZMl/prNXhl2Lx70P//mw0Cg8Pp6pVe9L+/WyQ8fAgKlfuC5mY2NHnz5+JiAX25s2bk7OzM7m4eFPlyiNo0qRJNGfOJmrR4hJt3LiRSpe2IgDUtWtXCg/n8aTqxf4er7aJCdHNm/x5+nS23KuDVCqlmJgYSktLo06ddlCpUmNo1659VKzYJAJaEfCSdHR4/dLRYUFfS4u97wYGymTt339nhUBDg70POXkqFNPPmppyJW7B0yGcQ1AsSpZkxURXl5USoU0zs12kpeVKGhpbSEsrlSwt+R4LmmQkJEQ5u56XF3sghEx04eG8XuU033EKYyJz80/UoEEAeXt70/jx+8nS8jLVr1+fbG1t6caNG9S7dwq5u7tT9+7dSSaTkY9PAjVqtJBMTZ3J0dGZPDw8aOvWrdS/f3/q0KEDubq6fs1EZE+9evWi3YqlpImNhh06uNFff7GHYsUKJjQLePCAFY089JMsXL3K7QjKyd+NxESiu3f5Hh48IMoluSU9fMgKwbx5vDYOHSqGQM+fT3T2LH+eN4+ViEmTmMyfmMgKw5o1TFJXVQhUFRRFZGYSzZnD/+/e5XPGxRE9e8ak8oIiKCiIQkJCCn7gV/xSLP6FcHfnSbty5ZxzDx88eJAA0IgRI4iI3d3q0supm8j2788uONetK8a4HztGVKqU8u/TprGV1deXB4Jilg9VKIbCEHHGm28xkD558oTKlGlJHh4eVLduXRowYADVru1Mzs7j6c6dO1kLZU4Q4pbz47ZUFCwLkor18ePH1KZNG1q0aBFlZGTQ+PEixyK/GaCk0rzDW3JagDIzM8nW1pZ27kyhfv2UFRtVPHjwgKpX/42cnPrRha9aQFxc/lzfs2fPpvbt25Ofnx+FhoZSrVqcsSolJYUSE9ldK1zjpEm8IKpCCP8RsiVFRrJQLhwbFyfGpQoIDmahumVLDnlwcRGfjaKSoZqnW8jatGePqAwrxpkL70ldrngBQ4fysYpeF9X3MH68+nj3vDwty5aJYV0nTojXPmoUZb1HBwex735PyJwiYmNjadiwYTR16tRva4B+KRb/BiQm8ngSBBaBr0PEfSMggEhLS5sAUPfusXT58mVyc3PL1o6n5wd6/PgxXb9+nbZu3UrOztOof/8QpTBUIu7PZmbidlxc9tpGixezItOvH4/pHJI7EVF2b6XqmpET/viDszcZGxM1bfqAtLTakJZWEOnpzaVz576Qru5HMja+TQ0b8vopkbASo6hgqAuXErgVgkdD8FLo6rJnU9E7ofpXqBDPT/r6HDolkfD8VqbME9LWXkna2m1p3LjnNHUq1wMRDCDr1+fPMBAUJIa3CYYLHx/lCIPx47OHUQm4cuUKmZvbkq3tnqyMeIJ3V4DQd6pVq0bm5l5Ur15L2rFjB8XGcqRDXFwcrV27lk6pkVLfvHlDfn5+FBAQoFRLw8amedbnhw+VuSb5tfgTsfIkKCXHjxN9tZVlQ1oaj4P81sz6FiQlZc9KpYpx48TPz5+zAhEYyP+vXOHvY2KI/vxT3G/rVlYABU+5VMrKmIDYWPG3N284pOzBA9HTERpKlJIi7v/iBa8leYWPq4NcLqd58+bRCsULKCB+KRb/MkyapOwarlkze5iOOly/fp2mqCkcoM7yrVg8jIgttEFBPGkLlhVVY2apUqJltkEDjo/PiSAdFCRas6RSXgTywxudOFEkqgmC0/79LIi+f/+eoqKiqW3bdNqz5wAFBATQb7/9Rh06dKBxiiNZ4b4FC3rHjt82wPILqVRKy5YtI0dHR1q9enVWsTx1SE1NJTs7O+rVqxf16dOHli1bRh/UzISq6QlVSX2HDsnI1nYzmZu3LBB/Ql26VkEIjosTCd6qaWITEwVB/DZVrlyLmjQZTbVqiVyTpUuZrN6vX878AAGKfUtVQBauTyhY5+vLFk0hoQARLzSqscthYaKwIgjq+/eLnjKplC18w4fzmDp8mBfnhg3Ve8A6dhSFekEZFz67u4sLffPm6hULLy9lor7w/qKi+B4jIviaVQsW5uShUfQSCrVSBB5Tfmu2hIaGkomJCR06dCh/B+SAX4rFPwtvb67f0KED/xdSX+/fz33a3JzH4Pnz5+ngwYPUrVsaERG5uLhka0vV0r14MfdL1e99fPi8AseidGnleSQujq33VlZ8/l69ci/IpaqUKCotuSE6mteD1q153NrbP6S6dXeQjs5CMjLqQnp6XqSr25v09FzJ2no4aWsvIS2tS6ShISOAvQ8GBspeCcUwJ9UUs1paotIh/OWUslYggAOsZGhpMaHcze0JaWt3JxOTUaSpKc9SenIKYXz//j1dv36d0tLScvQqqhou1q9Xb8y5e/cuOTo60p07d5S+j41l5UdQMgQZ4+XLl/Tbb9H0SCHPq7pwLNXLyszMpBMnTtDIkSOpbdu25OrqSvr6hjRkyBAiYlLxqlVE8fEsFCt6L/KCquVeXWjP58+srMjlrFg8e5b/9tVBUQHLSWE7eFAkbisq0fPmEa1cyf8jIrLXrSBiBWPHDuXvVPc7epSf2caNTOomYqVC8NrI5aJc89dfyteQksJk8IIiJCSEXF1dafr06XmGu+WGX4rF34j9+7mz+viwcCCVcsiRUBiHiAX7pKQkWrNmDXXu3JkcHR3JyGgA3c5DMn78+DENGDAg2/dCdWLhvFIpF/qytuY8+vmxrEulPBkrLiSq26qYPp0nT3NzUUvPCb16sTW6SBF2PQ8bxgNSyIAhWJ19fFjLF+7H3Z1o3boQ8lWZZYUCZ4rIT0aU/Hg2ckN0dDStWLGC2rdvTw/VmGTS0tJozpw5NGHCBHr06BG9fv2awsLCqHv37uTg4EBeXl506tQpevToEY0cuZVq1JhNHh6PqHNnOW3Zsofs7OzI2dmZatVyJjMze5o7dy5t3iwtkPVa4KwIC0PHjqK3RDEb1okTykK5gwP/HzlyJLVpc4ouXBA9PP375z/TlOAF8PLiSXP8eOUYYUERViRtDx/OxQYV0aEDCzHCghgRwVlWFAV11eeyfz/3iw4d+DfhvlX7RlRU9uwrtWvzWClbViwGefUqC3bqlObt23lcC1m4wsJ48RdI/EIWM0VIpbl7JoQwQU9PMRRCUFDyk8Xl3bt3WdyqmJiYvA/IAb8Ui38WQumHL1++0J07d8jUNEopTFGo5C30PSG0r3Pnzlkx7wKiosQK84phfnv2iITfxYvzLqzl4cEEZ2H+KFtWmXelih49eOxUqcLH5RZ+SMTjtkwZ9g7MmcP7V63KRG5h3ShZkj0CzZsT1a+fQlpaj6lYscOko9OETE2PZFXlzol4rRj+pLpPiRLKCocQTmVsLGakKlxYmXthbs6fjYzYi6Gru5z09NpQw4Yj6dSplBy9Ff3796e+ffuSk5MTOTs7U7du3Wj58uV08ODBLGEvPFxULoQ5PTIykg4cOEA3btygyZMvUvXq46lChc7UvXvOC7A6vSUn3p9Uyp4of3+eixT7RGYm8wkePZJTmzYd6ciRs7Rw4VW6f/85ERGlprLw++GDMp9AHWJiOHxHMMyohoWqo4KoZpZSrX9REPj7Kxub1M2tx48rG4727+dnEB3NfVKoPbF4MWdCVIdhw/i5EInejAsXxKQvu3ZlP0b1PqOiRA/KggV837GxYlhUQVG3bl0aNGhQnvJmXvhVx+JvwoEDnFN81SrOV9yuHXDz5nN06rQXN2/egp7eR7Rrp4kvX4AaNSSYMMERmzdvRv/+emjU6BnGjh2CkSNHonLlytiwYQOSkpKgqamJmJgYZGZmok6dOlixYgWkUinWrVuXdV4bG85fDnAOZlNTYPFirh8weTIQEyPmWs4JEglQvDjQvz9QogSQkKCcf1sV588DGzZwzunAQKBBg9zbP30auHaN9120iHM3L1wo1g3o2FGsg9C9O7BmDV/LgwfTcOxYAmJjVym1p66GRW75wVevBo4e5VodT54A3boBHh5cL+DBA86B3qgR5x3PDcbGxujbty8uX76M0aNHo1WrVujatSvevHmDqKgo7Nu3Dy1atECfPn1QokQJAICHhwc8PLjuxJMnT7Bjxw58/PgRlSpVwuLFTRAWthDnz5/Hxo0mOHLkCLS1tdGnj3JdipMnc78uRRgacn/w8+PtadO4jwCcl1voC3Z2Yr+ZPRuYNAk4fvwQXr58iePHW8PPj3NxJyVxfzY2zn4uVcyaBTRtys8X4Nz8S5ZwbYYRI/gdmZlxe0WKiP1r7lyxtgQA9OrFOcEfPgQaNwb++gto2ZLfoSJkMrFmBsD57pOSON/45Mnifav2DUND3k/AggWAjg4/cz8/4PlzwNcXKFUKGDcOOHNG7J/37/P9ODhwLnIjI/Fd9erF4wLgvtWrl/J5JRLOlS5c84QJQJ064u/CsQBfR2ioeG/Fi3P9DKGGhjrMnDkTK1euRKtWrVC2bNmcd/yFfwQ7dnDNFwMD7gNz5gBt2gASSSbS0x8jKOgeNDQ0kJqajr59TyE2Nha1atVCUlIibG3vYvHixahZsyZsbIA9e8R2b9++DZmsOqysrLBr1y5069Ytq5aEhQXPf4MHc1/asAGoWJH7YlISMGAAj61Fi3K/9rt3gZo1xW0rKx4LOWHzZv4v5O7PDatX8/729nx95cvzd40aKY8JADhyhH9LSdFHpUqWePLkPLS0zEDUPGtdKFeO6+EAPK4V1wttbf6tQgVk1XBq3hx49YrnDS0tnlfMzYFnz8Rrl8t5vnr5EqhXD7h8mecJgOtm6OsDGhoDUL36AHz69Bdmz3YDMAiAW9a5MzIyMHz4cDx48ACnT5/Oekfv37/H5cuXce/ePfzxxx+oUKEC5HI5bt9+BTMzXZQu3QojR5ojIGAjHBwccP78Jfz1lwQrVnRA8+YzERamgVmzeD5RhbpnP3iw+npAQ4fyfC3UnJgwgee+li2Bx495Pj169CiaNKmO8uWbo21b4MQJfp7p6YCzs3KtBXU4fx7Q1eV14sQJblNbm59r0aIsK9Stm/24/NS7yC/S0oAmTcRtNWU/APA6IeDOHa6hUrEi96c1a1jW+vSJ61wo4uNHYMYM7ntCLazWrblfr1wp1gvbsIHXdjs78ViZjNVb4f4yM8XPw4dz/09J4TUovzVRBBARqlatitDQUJQuXRo1FQf0T8QvxeI7sGePKGBIJMCtW+tQqdIReHr6Yv78nli1qiTOnuUCLzVrsjAXGMiLzO3blZGSshOjR49GUlIS+vfvj1KlSiEtLQ1Xr15F48aNkZCQgOvXr6OcUJ1FDRo2BA4d4v8ATxCNG3Nhr7xQvDh36owM7rht2qjf78kTFrKeP+eBZ2LCk6qLS85tSyQ8KQuTvUTCE5ZqsTSAn0fv3sCsWa8xbdpj1KwZit69lQsQtWzJytO1a0D9+jxJ5lZI6uxZXtQFeHvzQpGUJL6zYcOyD3JVODs7QyKRwMjICDt27MDq1asxd+5cGBkZoVatWujevTu6dOmidMywYXyeMmWAWbMsoKc3Dh8+AJ8/82S1alVr+Pr6onfv3tDWVj8E1RWmyg2CAAEAI0aMQFRUFDQ1NXHtWiY8PAyQmpoKmUyGBw+KIyFhKSpWLIJr15KwY8ccHDlyREnoFiZXRSVs1Sr1C1Z0tPLi5uHBwvGnT8CjR3zMy5dA377K9ySRcD/y9gYyM98hIuIa5s37jAcP6uLSJWv06sXnV8Xy5dwX69fnd5yQwH3dw4ML1IWH87n8/ZWPK1OG+/mmTWwACA7mCRsArK353djbs4Lk5qbcd+bM4TEmwNtb/Kw60aub+JcuZUGmbFlWvFSVDwEymbIyZ2PDClZuqFWrFkJCQtCwYcMsoeUX/j3YtUucx9LTAQOD3bCz2wA9PQ0AVTBoUHX88YcGNDV1UKTIeKxZY45p03hs7NoVh549e6Jly5Y4c+YMtLW1oaGhgbt376J8+fLQ1dWFpqYmAgMD0bJlS6WCamXK8JgFuN9FRLDCcfUqjxUFO1WOKFsWKF2ax5O2Nq8D9vbq9w0P56Kj+vpcIHLaNFbUc8L8+SzE9+nD20+fAjVq8DhRxdatwM6d/Ey0tDZBIrkNmSwUcXFakMn42l6/ZuEM4HFerBjPQQALaYUKAXFxvI+2NhswSpYUlQpAef8SJVhYlMt5Pnz+nI/T1+c2hEKZMtk7WFisRkREWchkZvj4cRd8ff9C0aJFcf/+fSQmJqJHjx5YqlJVsFSpUnBxcYGLiwtGjx6NvXvjEBaWDi8vUwwYkIqIiAhMmTIFx48fh5GRETZs4PWuRQs+vls30ZCUHzRpws8QAORyOU6dOoVNm94gKkoXSUnV8fKlIW7fvg0dHcKlS05o2VILOjrA8ePHsGTJEmzZsgXv37MS0a5d/s8LsCLj4MCfHRyAw4eBDh2AsDBur2pVZaOPgKJFeX2pUIGNpsL7/RZkZLAcJhi2vnzJvo+GBn8vyChv3gDjx/PnK1f4WKEQpWqd25EjWa7Q0eGxJZOx8XXhQmDUKHG/Xr14PVGUOSwtWYnX1+fjChdWbjunMZcfPH78GEeOHMHhw4fRuHHjb2+ogPilWHwHZDJxggGA9PRPSEi4gw4dOsDQ0BDLlz/Enj1sRbxzJ/vxhQoVwrJly7J9f+5cDcybx8KXvn7ulqX0dNFKC7DFJyUlf9d/4wZP7FpaPJGuWaN+PycnFhKF+4yNZWtzbopFZiawbBng6grUqsWDeuNGZau8gIQEtiCcOnUAlSo5Iy1NnOQVsXMnT66rVvHgtLDI+fzqqo4ePap8/kWL+P5VFYuMjAxcuHABJ06cQN26dREcHAxAELSHQCZj5U1dFWhvb7Ys1KzJgqsgRIaE8P8DB1gQf/bsGRo1apR1XOvWXCl66VIWfr+lSqpcLsf69esRH18I+voHUKwYCwefP6eifHldfPqkiTlzzqFTp04oUaIEzp1LQpEiuhg8OBhv3kxQEqZnzRIt8/HxLIz89Rdff1gYX1+ZMvynWIV7926eTO/eFRURMzPe39wccHdPwcuXs/H8+UVUrVoI8fEEPT09mJg0BJEpgoODkZiYiIQEPwDZNT6JhIX8a9dY0Dl1ir/fsQPo2pWV49WrlS2tAtauZetcYCALMEOH8jV9+sTjUyIBDh5kxVBRiVLXlwSrbNmy7P0YMYKfg6picfIkj4OTJ/n8N2/mrFiMGgV06sQGi/R0rtIqVBnOCX369EGhQoWwceNG1K5dO/edf+Fvh6IhJSkpHnL5TEyevASGhoawtrZGjRqSrEr0TZrwvFqiBAu+QHH89ddfOHz4MAYPHozCXyUOqVSKBw90sGyZJtq0ERXknKCvL86VDRqw9Tg/OH6chX0TExYAray4Mrg6+PmxcC+gfPncFYtixXhctGjB483AgNcXxYrLihg9mgXN5893Ij19GwCtrLEmBDQp4tMnUWmQy/l8r18D1aqxsnTyJCsOAhwdRePBly+8Zn36xAqPvj63VbYsC7pVqrC3w9wcuHZtA44elUBDIxkWFvNw6FAx7N//DlZWCbCyqgQdHZ1sCr+gTMlkvO7VqaOJmzdLYts2nvvHjCkEBwcZ7O3tYfS1A7m6cjVnLy8+9siR/HmU1WHx4sW4fz8KT5+2RGxsCnr0WIcmTVJQvXp1hIWlwtLSHR8/rsadOy8RErIctra2MDIyQkyMcjuvX4tVq6VSlkOEW01KYmVOU5MVMkVoa/Nz7dJF/C0+Hnj/nj3GAHv6Y2NjkZGhi927n+HKleN4//45ChcujE6dOsHLywuaeblKFLBmDRt1ihXjPubunn0fOztWeoRK7JaWrIjL5ayECkp5cLCy7JOSwn1DR4e3fX2BgAD+3KgRR7V4evL2nTvclupzvHyZx6WxMXuBfhSqVKmCS5cuoX///jhx4sSPazgv/OjYqv9PEOIgV63ijB12dkTFi18iAKSjo0NFi8bmi+CsiOho5fjwbdtyz2gUGclxqFIpX0/x4rln7vgWNG6sHC97+nTOqQQVUbs280saNsx9v4gIorJlP5CJiR317csBot9bSdrHR4ypFAi/QUHKZLjgYOVtmUxGs2bNolat2tKsWbMoIiKC5HI5RUQQubkRjR2r3L5q1iei7AS8Ro2y5yT39eViVbNmzVL6/sQJjr8XiO4+PjlzRNLS0mjAgAHk4uJCq1evppkzZ5KdnR1Nnz6dPDyUY65Vn2VCQkJWgaONG+XUsuXvZGfXli5evEiJX4NM1WWwUq1CvXixmK7YzY0zkDVowPeheE6plKhNmwtkb29PDg4O1KpVe7K1taXt27dn7RMQIPax2bNfUfXqPlSjRg3q378/7dixgy5cuJCNQD90qPI7aNKEryM/deLc3cXEBd27E1Wrpvy7VCryfmrX5sq/RCJBUhHLlvF+avIsZMtpn1eO+9u3xeKL+Z07zp07R2XKlMnfzjngF8fi50BxvNy6JScdnaAsTkzFihXzTXBWREgI9zeh5kFelZvLl899Oy8EBTEfIrdMxqoZoPKTEapcOeZUmZgwvy+nQpkREUwsL1HiEWlodM+RR1GrlvpieIUKiTUstLXFdLN6eswbbNRIzCxVpAiTvnV0eF1VzBxlaMhtFS9+lySSkVS4cAcyNx9IEydKs9KZe3ryet2li/paFFOmKCdIWbyY5y1F+PgQ3bp1KxvPMDhY5MDlp/aTTCajixcvZmVafPLkCU2aNIk6dfIge3t5lsxgY8PJAry8eD49evQoeXp60oQJE2nu3M3k5uZFw4fPpujot1lty+XKRfDS03mtSkoiunOHCckPHzKhWzED1NWrPMeprmvp6UTnz0dTWFgYdenSherWrUujRo2i6dOn07Jly+jp06ckl8spLS2NFi9eTE2bNqV58+bRyZMn834Q34jevZnfEBfHqWaDg/l9KeZlOXOGCdmDBonfJScrc1WWLxc5FuqS9vzxh/j53Ln816goCAoXLpyVNfJb8Yu8/Tdj2zYeMFKplACQpqYRmZjsLXC1aCKeeFTff15E3itXmFRmbv79ZOWcYGLCk6a/v6jI/EiMG7eR6tffkEXgVpeVp6AYPjx7hh5/f1FwU13Idu58RMWKNaQBAzKoWzdeUIcO5eOdnJjkJvCfEhPVp3RVFRyFmg4CQkJ4gpHL5dSlSxcaN24cHVWYScLDld+3gwOf69KlS9StWzdycXEhZ2dn6tixI+3bt4+Sk5Npy5YtdPTo0SwSYH4K0KkiNjaWRo4cSfXr16fQ0FAqU6ZtVg2MkJAQat36MM2c+ZK2bmWWnkwmo9TU1K+VwZUFKC8vniw7dkykTp1uUNOm+6l8eTvq3j02a7HNyMggHx8fpVzpQpVYISNSXFwcjR07lhYsWEAjR46k0aNH08uXL5VSEgvKgaWlKPAHB2cn+qsir1Sv3bqJgr1UyqmbhawiBen7Bc1x/y0YMGAAXf3OAfNLsfg5EBJtCMaCwYNfkL6+BwGgEiUicy3amBNU55i8klgEBbEQb2nJBOylSwt+zrxQtqw4XhITWXjPD4T6DXmBCdUdCYhWImwLWaGEzwYG6j+bmnLWqtatiYoVU58NSkhLq60tErYNDfl/8eLCvlMJ6Es1atwgLy85mZszob1fP25f0dChLoOW6viXSrMrYcL7HDZsGO1Ro53s2SMWWu3SRTxnamoq3bhxg06cOEGhoaHUsWNHGj16NLm6ulKbNm2od+/edPbsWerdW65EUs5pLROvUUp//fUXtWrVin7//Xe6f/8+vXoVR4sWbaJPCpXwfH2V06sSiSlo9+5l4XvePM6GdPOm+JtcTnTmzGdq0qQJrV+/ni5cuEBnzpwhV1dX+uuvv9ReU2JiIu3Zs4fKlClDDRs2JGdnZ5o7d27ON1FAnD3Lz2XjRk7QcfBg9toRAwZw4pm1a9l4OmgQK/menqxc5Afv3xOplAvJtbbFt0Aul1Pbtm3pQV7l0PPAL/L23wyBuApI8OzZM6xduxZpaWdx65YuoqOjYWpqigYNGqBMTsxoBfj6cnyqQDTavp1jDHNDgwbsWvyZePOGQ3U+fWKX5Y9CejqHf1y5kgQNDVPs2iUSyb4XCxZk/04l1FUJf/1VBcuWjcDly2OwbdsC9OjBbt5Fi5hAW78+h0OFhPB3HTpkb6NFCw6RKl2an1mPHhy/7+3NITQGBsJ1aUBXVxdVq1bFqVOnsGrVKowfPx47d9bG6tWi63zxYmDKFDnOnBmM8PBwFC9ePNs5f/vtN6XthAQxVCcpSTmsLD6eQw5U+RJlypTBqFGjcPPmTTx69AibN6/D/PnG2L37MJKS5Cha9DEePdqLlStfISREDg0NDSQm6iAurhgmTpyPLVuK4/79+9i6dSs+fryOhQu10KRJIVSpUgXv3pXFtGkr0bt3GYwdC3z4APTrp43Vq1fD1dUV9evXR/ny5TFkiPI1GRsbIzAwMGv7zz//xIQJExAfH48DBw4AEOOGFcnvI0aI4QbCPQ8ZIoZjTZiQPdROddvISAw1kEiYvCnErBcEjRtz+N6cOcDFi+pje/ODzMxMbNy4EV++fEHx4sWhq6sLmUwGqVSKJ0+eoH79+t/W8C/8VCgm2gCAjRtP488/d2DYsGFYuNAm5wNzgRByISAvovTo0fz3M3HnDicl0NVlouzBg/k7Lj9z/cyZHGOvoZGKYsXMkJqqnIxBQ4PDpBISlEOp0tPFz23b8vg7fVr8rkMHDqUsVIjHv6Ymh8OcPs2qhpYWYGvL4YhfvghhPuUAvINcXhN792qgYUNup18/nnMCAsTwRXXhrC4u4nwAcAhZ9+78fubP5/VeOG7u3Llo0aIFli9fDgcHBwwePBja2trYtk2Zf9i9OxAY+Bw+Pj5o3bo1jI2NUbJkScyePRvW1tbZriEkRPnZCOFMOUEikcDV1RX29va4du0avLy8YGhoiJYtf4P3V8LZlStyVK9ujJo1rbB5czmcPm0MM7N70Nc3R5UqXfHmjUZWGN3r168xY8Y1VK36BoGBj/DmzUvcuxePRo0WYe7cBjA25qQrbm4NsW5dN5QtWxb16tVTuiZDQ0N07NgRbm5uiI6OhpmZGaZMmYKBAweCiBAUFJQVOvgtkEq5Xwh8OrlcDLsFgKAgltWEJDatWnEYW26JNtTB2FhZnkpI+OZLzhEHDx5EmzZtULVq1R/feA7QIMqbEvPlyxcUKVIECQkJWTF/v5AziAhbt27Fhw8fYG5ujlevXuHKlSuIiYlBpUqVULVqVXTo0AHVqlVTe/ySJRzPp6fHi0huwrA6NG3KnZWIBaKwsB9wUz8JAqlLV7cjFi7chkaN9LKyWiUnJ6NixRaQy2Vo2dIW/ft3gJaWFsqWLQsbm29blFWxaNEi6OrqwtbWFmPGfMDIkZno3LkzHj16hFGjSkJPTxQo/fx40WnalLkFwuKgDopEMQFHjx7FnDlzUK9ePZiYmGDq1Kn48OEDdHV18fz5cyxevBh79jyBpaUG9PX5mOfPCdrammjXzgpdu87DggWsnAA5C7pJSUy4NDLiBXHNGl6I3d05fjsjgxeSVas4u8zkyZORmZkJPT09zJw5U2kxUr2PWbOYb6Onx4v4kCGX4Ok5AWZmpVCyZCZGjx4NDY0GCAvTzCJfK2ZOApSVgPPnz2P37t34448/cntNSnB0dMTBgweVYpdVz+HtLfJaXFyYRCuRMPk7Pp5jlUeNEp+RYiYtgBdr1cVbcbsg2LEDOHaMBZcVKwp+/MePHxEQEIAaNWqgVq1a+PjxI6RSKbS0tKCrq4vatWvD3Nz82y7uK753jv+1RhQM48ePx7179yCTyaChoYGiRYuiUaNGaNeuHSwtLaGVi6S3YAELIFOnMq/n0KGCK72bNnFfnD2bhaJ/K96+ZcNa8eLvEBs7DMC2rDFrYACkpSVBQ2M/MjPrA7AAoAFNTY5jF8jXgoRTvjxzRh48YMFa4IRoazMnEGA+iUzGRG9tbY7Jf/uWULasBlJSWNiUSvugceMhKFWqNs6e5exJAM85iYmsHOzZA1y6pN64tXw5c8RkMuYvengwZ2LXLqBcuXh4eLyDtbU1jh8/nrVmbNiwAaGhoejQoQMOHy6LAQO0QURITk7G2rUpMDM7j7i4BihXbiTu32ehNydyd3o6J6gIDeXPvXszf04i4WxHaWn8HM6e5f2Tk5Nx9uxZfPz4EZs2bYK3tzc8PT2RmqqBmBheSyZOBJYujcP584/x6tUzbN78BTNn1sDhw5fw8GEEGjeei/r1Y7BgwQKYmJiAqAk8PMrCysoK69dXQIMGOnj4kNea8HCeu729gblz4zBgQE8cPnw4z75CRLh+/Tru3buHz58/Y/jw4fnqY3I5cwOLFOG1sVQpoHZtfh9fkzti507mEQpKfEAAK7yKSn5AAGc7LCiOHeNEBvr6PK79/b8t+9PYsWMRGRkJDQ0NaGhogIigoaGBpKQkLF++HFZWVgW/OAUUZI7/pVj8jUhIkKF795eQyx/j0aNQmJjE4dKlQ1nEyx+RCuy335hMJGSTsbHh9JkC6etnwNGRJ1e5nAlZQUH5O+79+/do3NgIDx5ooEWLFqhQoQIuXTKEsbEMZct+xNWrUnz8eBLr16/H3r1WMDQ8hWrVDLFhwyOkpb2EjU0D1KyZjEKFCqFnz56oXLkyPn/+jOXLl4OIYG5ujjZt2kBLqyT8/YGMjId48WILypa9BYAHY6FChfDbb7/hyJEjuHPHGO/fn4aDQz3UqWOHvXs7QlOT78fCgq1KVlZiZoiCYu3atVizZg3q1KmDLl26oFixYqhTp46SgJyezpOZpSUvnjKZKIS7u4sW+mvXWDjIK2WkgBEj+LoF4XnDBiAiIhRv3oRgy5Ytaj0h+UVGRgZ69EhFyZJGkEiY2KhIBFcV+lW3R40ahWLFimHixIl5nuvdu3cYOHAgdu/erfT9rFlsdRw/ni2CDRqI78nPT1nwUt1WRXo6Z+J4/pwneH19Jpq2bJn7tS1ZAty6pSwwAGyJvHaNs7C9esVpfvPjYDh+/DgCAwNRunRp9OrVC+3bt8+2z/z5PPbS0vgaFdMlFgS/FIu/HykpKShUqBAAIC4uDleuXMHu3btx4kQM0tNlmDLFG3J5CmxtbVFFMTczeOyfPs3CckGtpG3bstAdEMDeOyHhwc9EUhIrQF27Fuy4OnWAFy+AsLDTmD59Fy5enAKZTAJj4zhoat7Fx48jATyFjo475PIYFCligk+fZChZ0glJST0xZIgBwsOT8PChIaRSzriTmckC9NWrfA5tbTaUCB6Q4sU/ID39GfT0PiIt7SQSE/cCqA2JpAhkMg2UKpWKcuXSUKnSbly9ymNb8G5WqcJe6295LzExMTAzM0PFihVhYWGBxMRE+Pj4YODXnOjp6ek4e/Ysxo79gEGDMqGtDXz4YIDw8EIwMzOAtXVDHDsmgacnMH06v9ecDBnp6Zy8QkuLlR+JhBW4hQs5gmDkSO5foaEPMHDgQLi5uaFkyZJo164dSpcuna09RUPO27csHAcFsefhxYsX6NlzFpo2NcHkyb9DIjHEypXI8lALhibh//LlbADT1weiooBPnyajYsWK8M0tG4ACdu/ejdjYWAwaNChf+x85ws9KIJIfOsQyTXo6Z1MD+J0qeqA+fuR9PDyYoL1pkygf5IWXL7N76q5fByIj2VPStWvO6XBV8fDhQ5w5cwbh4eFo2bJlvpWpb0GB5vgfHVv1CznD01O5AEvXrnLasmULLVy4kIyMjJQKIvXvL3IB8ip2pwjVeM24OC46lBOCg/k86ohm+YGvL5GtrbhtZkZ0/nzex/n7+5OdnR1JJA3I1rYN7du3j1JTU6lhww80c2Y8vX4ty1ZsyNdXLPz06dMnsrHpSG5uC+js2bNkZ2dHwcHBtGHDBhozZgydO3eO5syZQ61bt6aKFfuTvb0D9ejRg1asOEf9+uVczcfMbD9pa/emhg0/ZMXS+/tzPGt+4qGFYnHqKrDu27eP7Ozs6MiRI3m2ExmZvVihOkJ1fqF67MOH76hMmWbZimvlB+Hh6mN8Y2PVJw4YOpQJzkLl7bCw7O1ZWQWQrW0oubtn/11AYiLR27dvqUWLFrR27Vql8ULEJE9//+ykesVYZ4GUnRt8fZWffV77E3HfUByniuT+/BC4hfEuFDAk4uJnijHMqggM5PFLxM9GlVReEPziWPw70LEj88tevfpMNWtuorZtnUhPT49atmxJZ8+eVdpXmLvVVWfODUIxvpy2fzTc3Jgw3rw5F8SbOjXvY+RyOYWEhJCx8e/UsuVVMjHpThYWPcjYuBcBnmRo6E+VKq2k33+fRxYWYVS0qJxKlEinzp3TSVc3jYyMNhPgSrq6VUlT05F0dBxJUzOCHByIqlb1JE1NZwIcCehAurqJBLwmYDNpazuQtnZPKlp0BjVsuJxMTMKoTZsEMjT8SIULvyFgIRUu7ErGxo5kbs7jztVVrOicW6KV/KBLl7tUtKg19eiRniOXKy6O519fX3ENUCyWS8T8Qk/PgiVyUZUdTEz2k7OzM7158ybPY4cPZ36owLfbvl3kFUmlXNhtzRrmD6xYoVzobfx4JrSPHy+uLVKpWHiU+XjDqFGjP8nXN2/+ZefOnenGjRv5vu/jx5W3T53Km0c3fjzLOcOHcxHX/PCWNm9mXkZgIFHfviJJ++ZNcc3LzMx/IbxPnz5RixYtaO/evfTu3bss/mi3buL6NXMmrze+vtxPv4cb+4u8/S9FToTR6OhoatWqFTk7O2dlDAFAT548ISIesPkV/Dt0UBZOGjYkmj1b/b5Dh4qL0vjxImm2IKhSRXn75k2iOnVyPyYzM5OaN29OW7ZsoStXmAzeowdn1WrRgvdJTFRPqBVIZikpKdSuXTvq3TuFiIg+fPhAZmZm5OXlRalC6Usiev/+PXXt+kJJgM6JzFyzJl9HYiLfl5AJKL/o1k2c9JYty04g7tixI925c6dgjaq0LyAxMe8MQ4o4cUJ8dunp6VSihC0dP37ru69D3bY6rFrFz11d8U9PT148vL29adGiRdkE+ZAQJvT7+/P/rVszKCgoiJo1a0bv37/P89wzZ4oEWmdnoqdP4+mxarlTBagqbMOH571AqyNlCv0sL6K4kI2FiPuP0BYAev36Nc2fP5/09PTozp071LdvX+rYsSO9fPkyz3YLgl+KxT+PxYuVjReCcEVE1KpVK1q0aBEdPHiQJk2aRA4OW2ntWk7WMHOm+mwzOaEgGZwCArg/ennlL9uaOlSokPu2Oty9e5cA0Pr1B0lDYwLt3XsyKwNi27Y8j1SoQFnJPsaN4+QlJUuyocvMjKhw4Wekq+tBUilR1aqJpKNTmQoV6kLFi3tQkSJEpUoRmZmdJonEkcqX9yE9vQV0924KNW5MtGgRzxWJiURNm3Lbnp7cvr5+LBkavs0xi1Vu8PHha/byyp5FrmvXt1SmTDnauXMnJSbyfeUX/fopz8PdunGfiIjIfxuKCmZsbCzp6ragZ8+e5fv48HAmL9+8KRoA4+JYJslLoO3fn+/B3JyzZHl5ica52FgiJyc5eXh40P79+8ndXf06IuDevXvk7u5OkyZNopiYmDyv+/Ztort3+bNMRrRjR973qqpA5kehVMwcpbitSta+do3/FDF9ujjOhXOFhYVRwNdOOGBABoWHJ1FGRgbduhVJTk4JJJUq94nY2O9LHvJLsfiXwtNTOQOG6sTx8eNHKleuHDk5naTNmzfTu3fviIgHZW5ZG1RRvTpR5co8SNu0yXm/H5GxpnFjZcVFdVsVCQkJVLlyJ2rRYj15eXHGhcREFhpVBfF+/XixjYpibVvIsEJEdOrUKapQoSI1abKWvnz5knXM7dt8nKK3Q50g/OrVK5o3bwu1aLE8S2kzN1feT3U7L+TlUejVqxcdOHCgYI0qYNs2MQVqly4Ftz7s2UPUq1cmVa06mKZNy5+ZU5jwFVNa/uhMR8Jzk8vl5OfnRw0bzqOMDNGrpKpoCNsuLi70WshjWAA8fPgw1/ksMJAFC0EIsLLKu81Jk5TTSAYFiUJix46iBWn9+uweyH79iKKiomjatGk0ZMgQsrEZTL///jtVqVKF2rdvn2Vo6N69O508eZK2bdtGfn5+5Omp3Afy41nJCb8Ui38eQUHKfYhIHFuRkZE0f/58MjExyeoPRYoUybZffmBlJc61Hh4sOKtDcLBymnFf32/LOqhqfFLdVkV6ejp16jScGjWaQtHRRFu3cppXIyNWGgSvv7+/svXa3V35OTg7u1GxYjOod2+iVq2ItmyJpTlzltDKlV/I0ZGoZUtWUooWZSWjcmUx89+kSTxm+/cXlTYnJzY8CTA1VY5AyAvjx7OBR4Cid5VTct8iJyenrN8LYiiQStmIWLUqC+XTprFAXxC4u7NnqVYtokKF+pCf3/WCNfAVQmpyAVFR6lMiDx/Oc6zg2cgJgtcjJSWFfH19adu2bXk+G8Hj5e3tna9rvnmTPReHDnFGpyZNmtBdQdtQg+nTlbfzo9irPoPff+f/69cTpaSI34eFKXvMN24kuv71VcjlcjpxIo22bJHT7Nmz6bfffiNvb++sOcHR0ZGGDh1KZcu2pVevMrNFffxdxqdfWaH+Rqxfz7GIBgZMfBWKqAgoXrw45s+fjz17biAmZlRWsZihQ5mMmxdatODidb//XrCqnN+DixeBSpU4NlIoJDNunPp9Z8+ejY0bz8HbeyImT24KgEmx7u7qCeqrVokkw9BQjh+vXJkzLRUq1ATFigWhQ4cXaNeuHWbPno0nT4wwfPgE1K3bFd7eXujUSYI9ewCJJBimpsehra2FjAzAykqOnj1LIz6+DIDDuHevP86d04Bq4WJ1hYyPHOFr0dNj4q9idei0NOV9MzL4/8mTJzFr1izo6+ujRo0a+XuwatCtm2IGsoKjY0dARyccxsYSTJ6cN+mmRw/uo0KxvwED+F0oZp16+zb7fRcU6elCRXUNjB69Aj17MkFwy5YtAESyugBh283NDYGBgZg6dWqBOCJWVlYwNzeHr68vdu7cifv3mYivo8NVuMeO5Vjp+vX5HXbpAkyezHHLOWH6dI4R3rOHORYlSoiZeLZvBwYO5HjmChWYDwIA8fHxOH78OC5deoTBg89j8uTJKFOmDF6+1IKPTzKGDBmCcuXKITk5GZcvX8bx48cxe/Zs1K5dG71794apKb9TMzMmjVpa5vsR/MK/EKNHc9x2zZr8Tt3cuJgjANjY2MDGxga2trbw8/ODldVphIaKhBrFqvZ54eFDXissLJjMfP68+v3u3VMuKDpuHI9/xTkvP0hLA7Zs4SJh/v4584CICJcvX0bPnjNRu7YP9u71wPDhvEaoK5y3dKlY4DU5mdfIixeZv9WrF2BkZACi/dDSisamTZMxf3553L3bEw8ePEaLFvVQuDDPYebmQFzcY7i7P4a1dRx69iT07p0CD48InDu3A05OZzFrVjM8fMhFOQXY2nICiJUrVe+D50hDQ+XicB8+KBdj7dmTE0LcvAncvfsJ799fgETy5utcmHOxQHWQSLjImkDmj44WeZb5hcCL69dvJtzdK2LixLp5HuPtzfOmTMbzsrp1/MMHJr0rYsMGfu4Cz2LHDp6Dx47NfnyZMkyEb9lSH8uXL0ePHoPx+PFZpKXNh14OlWQ1NDTQuHFj7Nu3L897AJisrQhHR0fUqFEDcrk8W4FDgNf+Fi2Yq3P5MnM08kJaGo+p6tWZsC0kaPHyAv74g+WoL1/4e8WEKe/eAXXq3IW9/WhIJBLo6uri/v10lCyZgHr16qFTp0548KA1pk0rDz09LZw9exZfvsRALn+DZ8/KZ7WzfDk/878FP1pT+YXvw8aNG2nixIk0e7Y8ywW9fn3ex1WsKLoOLSzyzuNPxBq0YJEKCPh2V3d+kJCQQPb29tk05m3b8nd/qlC0FL169YpmzZpFBgaDKDQ0gtq0aUPlyjmRmVlXcnXtRwEBAdni8X18WPufNm0azZgxg3r2lFPlyuJzq1tX2ToloGNH8XNIiLKlQohnXLaMyNk5mUJD39CCBQuoS5cu1KBBAzp37lzWtQtWmu+sWVMgPH/+nOzs7PI9jnMKtVGM8VW1mn8rBB6LcI6+fftmhY15eYmWSaGIIBHX0ti3bx+5ubnRunXrstqaOVO8NkULq0wmo9mzZ1N6ejpNnz6djI2NiUiZmxAYyO9P1QJsZSXGUYeHf9s9vn79mlatWkXz58+n+fPnk4ODA61bt46mTo2gzp2l5OvLnijBap2amkq7d++mxo0b07x58+jSpUvZ+jFRwaymOeGXx+LfAalUrLWjzjsgk8moadOmNG6cPGu+DwjIXxhr1aoc9lShQv7Wh5kzlflO/v65h6Dkhho12FPRqlXO+xw5coS6du1KHTsq59vPq06HKiZNUh7/165do1atWtHgwUNJT8+WKlZsT3XqjKEhQ3ZQ374yWrJkCTVv3oOaNl1BrVrtoMWLd9DmzX+Rq+snGj9+PAUHB2fVAlm5UjxPxYrcflwcP6vbt9nyfOcO1yd4/Jjo5UveNy6OyMVFtFJHR3NRzhEjiMqV20gVKlQgN7exVKrUEzI35/n1W3mP34PIyEhq27at2nlGFZMmKc+Fy5axPCEUDo6L42fi6pr9WHWWc8XvAgP5HQoyibs7P+PFi7m91atX07J8CCyjR48mDw8POnz4cLbfcrvF9PT0rFDU9HS+j8ePie7fZ2/C778THTnC/SExkcPKjxxhGSy39XDKFJa7FIviCfj8WZlbceHCBerRowe1aOFIdep4ZkWwzJypPDccO3aMfHwGUsmS9mRl5Ue2thG0Zg2Hg9++LYYBqyvgWhAUZI7/lRXqXwYiwsyZM6Gnp4cxY8bk65ikJKBuXTHtHcDWKEXrSk4QUt917cqZcH400tOBqVP34eLFxZg+fQrCw1ugZUvxXD16sMXnW7PZCDh48Cl69QrBiBG60NHRwZgxY2BtHYvAwM9wc6uazeogZKCgrzmvFy8+hTp1tHHjhhmkUivY2lpi4kRTGBgYYO3asnj9Wh+JiZyq8OFD5XZcXPbi5MmTePv2LWQyDbx5I0exYqkwNS2D6Oho7N69G3FxcejRoweOHDkFDw8Jduzge+7eHRg2TKxb8q14+xa4f1/ZIqaIJ0+eoG/fvggICICDkOM3D/TooZyDX3X7Z+LVq1cYPXo0tn3N8TpsGJCamt1LBHB2HR8fH+zYsQNz5nBGjYED+fu2bS/C2fky4uPjER0djZ07d6L2V/NUcnIyOnQYhOTkWqhc+QJq1KgBFxcX+PmxtVC419GjeYwIOfAVs3PlhvDwcKxfvx7JX02Penp68PT0hIGBAV69eoXevXtDU1NT6Zh58+bh6dOneP78OQwNDfHq1SvY29tjxowZ3/oo84VfWaH+Oxg9ejRMTU1RsuRInD6dv7m7bl22kI8cydvlynGGsrwwaBB77dLT2dL6s+phPHnyBEOGDMGsWbOwdGldJU+JYnrqbwURwdf3ERITy+PLl06YOnUqRo68gNjYCHh4WCEoKEhpjZg1iy3SLVoQRo4cCSMjI1y/3h63bpmhUKFykMk0YG3NXtwNG3i93buXMzK2a8fPbPJktuQ/eABs3kzo1+8zRo/+gvfvDaCpeR2Wlidx9y6B6A5OnpyNIUOGwNLyELS0inz3/X4L0tPT0aBBAxw9elRt5idVqGbXS08HBg/m74SsU4aG6j1cW7awl9fZmX+fMIG9Bh4e3OdatmTv/IIFnO1v+nT2mqemspc2PT0dHTp0wIEDB7Iyq+WE9+/fo1+/fliyZAnMzMzw+jV7eLW1+X1VqwZoarIY3LNnTyQlJWHFihUwNTXFuXPnULx4M1hZiREMjx5xFjXF+7K1BUxNua/On89/+cmIn5aWhjt37oCI8OHDB2zYsAFpaWlISUlB2bJlMW/ePJiYmODMGeDCBSAzk1C/fjzq1pVh165dkMlkGDJkCO7fv4+qVbPLOT8Sv9LN/sdBRBgyZAjS09Ph7++fJQjlhKQkTssXFSV+V7nyzy+alxcOHABWrYrHgwedUbv2XhgankHbtonYurUiTE2b4c4dnoDr1WN36fbtysWerly5gqSkJNipSMsLFy7EmTNnsGHDhqz+2LWrL2JibPH27WUsWuQEQ0MH9OzJqRU1Ndllq9jM/Pmc2m3CBL7OPXuANWsI0dHRePz4MaKiohAbG4vnzxNw9Oh51KtXCpqa2rh9uywsLKwxaJApPn0ywsKF2+HsXAIDBw78mp+bQETQ0THA0KF8f76+cgQGuiI2NhZJSeXQs6cnxo93z8pV/70L57BhfC8WFsDJk8DmzWL6QwFOTk5YuHAhLAsQL7NhAxe6Kl6c0+v16sULwd8BuVwOZ2dnHDp0KOu7yMhITJw4EZGRkejVqxfKlSuHkiVLonjx4hgzZgz69OmDc+e8sxY7X19fREZWwYwZzVGhQkno6Ohg06ZNmJpDHsirV6+iXLn6mDCBw4pu3eLCWwcP8qImLBR+fsCff3JfHT2a3ddpacCSJal4+PAOChcujIkTJ8LGxgajR49G0aJF833fQUFB+PLlC4YPH/5dKYALil+KxX8HwvrQqFEj9OzZM1/CRJUqyoYnGxvg3Lns88TfjYsXgZkzb+D27fEYMuRPBARYwNub5xo7Ow5vunuXawepqwmRE549ewZTU9OsUJn09HRYWNhDKtVCRsYNvHz5EqNGcQpaxdTXAu7f57CepUt5Lvrjj6PYt+/m/7F31WFVZX13IWJ3i63YiR2odIMISooiipiIgmKMOXZgx6COXdhdY446dmNhgAEYKBLCJe76/tje5FLGzDvfuJ6HR0+fe84+e+9frYVGjSLw+osARpEiRXDrVhno6pZAmTKNUb9+RaxapQcbmzr49VctdOwIODsTFy6sRPHiuxAfr4ukpOKIiEjCL7/Uh52dHQIDP+H2bV106FAWDx+OQ3j4Qzg57ce2bdlPlvOKjh1FH56aKtKK1DWWkpOTYWlpiSFDhsA5l5zAe/cKOlbZe+ndW/SHObHmX7sm0p5sbYV+xK1bgg59xAixXX08zGp8/PXXX2FsbIxOnTrJ133+/BnHjx9HmzZtUKVKFfn64cOHw83NDe3bt8fDh0CDBkJ01N9/BO7ceYISJcRYXL9+fQQHBwMArKyscO7cORQtWhIpKYmIj49HWloaIiLy48IF8Sx9fMS/DRoILQoZlOl3NSE1NRXLli3DoUOHYGBggHz58qF48eLo06cPypQpg9TUVOjo6GT6tm/dugVbW1t07doVTk5OKFSokNxJpaOunPmdkZc+/meNxf8gtLS0sHTpUlhbP0KXLsuRkfEQ2tqVcP/+dFStWjXT/sWKCc/IxIlCqKZePcDX9x+4cTWEhgJr1xKdOsXgwQMDFC48GBYWZRAVNQzLl+/F6NHV5aJjiYnCex8aCqSnp2DatGl49uwZ3r59C2NjY6xYIXJRU1KAmJgTGDCgL/r37y/36r5//x5kLYwevRShoWLQbNhQ8XF7eAhvt0w/IDBQ1G8MGCA8DaLj0kK+fDVx/HhNZGSYY9iw9zA3d0GvXr6YObMPChYsiEmTXmHx4kcYMuQ10tMfolWrMfD1rZ8pd9HaGpgxIwp//rkLDg7b0LFjM1y/fhCLFn3CX3+th729PbZv3w4gc6gmJkbUyRQqJH6DrMPVhMRE8SfreGX1OBs2CC9gQkICrly5gmLFikFPTy9P78/LS/zJ6in+Tty9exd16tRRWbd//34MGjQI58+fR6lSpZCWloYbN27gypUrKFSoEC5duoTU1N5ITAQiIu4hJSUFenpjoCz/MHnyZCxcuFDO952UlIQpU/Lh5cuCWLFCC2/fKsT0APHbpVLV3x8fL5aHDBECj7a2QFhYFBo2HIro6D2wsrLCihUrUKNGjTz/7oCAAEyZMgV9+vRB/fr1MXXqVBRVLzL5if80tLS0EBwcjJkzZ6JxYzO8f+8AfX07HDyom+XkQltbOFBkjoGEhH/eqPjwAZgzByhTZgHmzOmNmTNnITT0DUqV+owlS4Zg7lxHJCSIHPY7dzJHCg8fPozx48dj06ZNKmKz9+/fh4uLC2rVqoW9e/fiypUruH//PnR0CmP06B04ceItRo4shkOHxHgwYIDwig8apHA+NWokHCqihiAfUlIs8eeflir3n5ycDHf3p7h7dxa0tK7i3DknlCt3GHv3Pse2bQCphcWL41GihA169jyOz5/zQUtLRLzT0oTAWv78QEzMNRw7NhwFCtRD9epmOHu2J0aNaoTJkyd/l2+/fXvhvFu2TDzzRo3EGKOMjh2XQEvLBPv2OUNLS6HBkx0cHIRDsF8/Mf9wdMzZqABEloTsPXp5CSND2buvXi+UVf1QSkqKSsSXJIyMjOR1B127dkXFihXx4sULGBoaokOHDvjzz/OoVEkYIgcPHkSVKroYPnwx6tYVE/iIiAgUKFAAy5cvx5EjR2BlZQU9vZbIyEjGtGm/QFs7P5KTgT59xO+QOZb09VXvTVb6sWQJEBcn6lA+fkzD+/cDUbduXZw4cQJ9+/bF8ePHM0WtAaF2rgnNmzeHkZERCheuiNBQHcyZYw1ra83P5x/F986t+onvg9hYwdBAirxaO7ul1NPbnu0xxsYih3bzZsW6rl0VebXKDB/ZITxcVZ/ga+HjQ7Zp04bly5enr6+vPG99+PDhDA4+wtq1xT79+5OBgYKdZMIEct68B+zQoQOlUikHDRpEW9sp9PN7SpJcsWIVq1cfRFLkg774ksQ6e/ZsbtiwgcHBIhfYwyNzrmNOjAhRUQoK19RUslu3V+zY0ZAlSjSh5MvJZs4U9RfKUGed2rkznfXrm9HCojeNjbczMFCikrPv7k4GBV1gixaGbNJkA+PjVZM9rawU966sVaCM1NRUTpo0ia6uvmzTJohDhw7ltGnTOGXKFNav78tRo0bRxMSEv/zyC+fOncvhw5O/sA9l/wxywty5gilFmd3sR8DPzy8TNe/Fixc5aNCgbI+TSEgLi7fU1TWmk9OrTGwdmzZtUqF0LlWqFMePH88bN27w7Nmz/P333xkSEsIRI0Zw9OjRfPPmDQ8fPszChauyWjUbGhiEcsqUW/z06ZP8na5evZrt27eXnzPhOxQ9SKVSzp8/n3Xq1MkT5ePX4meNxb8Pw4eTdeumcsuWUDZsOJBFi2ZNASiRiDFANhYMGKC67ebNH3yzGhAQQF69GksrKyuWLl2amzZtorc3GRcXRzMzM7lmgexz8vdX9F8jR47kgAEDuGDBAi5fvpzBwYpc8ubNV3PhwhVcsGABraysOGHCBA4YMID58+dn//5vOXq0oPo0Nla9n9zQZqujXj07Fizox1q14lipkqCjBUhra7J3bwltbJJZsCBZpYqohTl7VrwDbe2PnDAhhG3b9mTx4h7U0zvO+/fFD/XxIQ8fPkwbGxuNdNqxsaIuTFbzpUkziRR9SFxcHOvWlTI1NVVeN1G7dgY/f/7MP/74g25ubqxfvy/NzJzklOw50dxevPhtdXXq9WvTpqmyZU2aJJ5VQoIYazSVUkilUhobGzNdTfDB2NiYKSkpcjrx9+/f8+3bt1y3bh2PHTvG9PR03r5Nvn37joaGhnz2LIHKMh3btm0jAGpraxMA27dvz1u3bvHlS1Fj8fChoKQlydjYWPkz7dTpPJcs2cr4+Hj6+4u60Xv3FDU5u3fvZocOhvIxIjEx8auf34IFabS1vUFv7/GsXduds2f/PX3uT7rZ/weYMEEIC0mlUlauXJkzZsxg+fKL8nQOOzvVTqJixZyP8fQUHOBjxpC1apGOjjkf06qV6Cxr1SLd3BTrg4LI+fNf8sWLF7x6VUGH+fz5c5YrZ8LOnf8iSVpZvWGnThvo6HiC58+fZ82ahrz5ZaSTSqU0M9vD0qVLc8WKFfT29uawYRmZxOPUMWmSamHZ7duqFLQyXYU+fRQDV0CAMChkSEoiDQymsEqVzqxTRwxEsqIyZagvnz6dwYoVzejhIW7y7FnxTJWxdi05eXIKJ02aykGDBvHq1atMTU1ldLSqDgmpMIgiIiI4evRojhkzhsbGxtyxYwdfvnxJA4O7vHv3GU+dOsVKldpw1KjjvHz5spyy1cFBUXSp/P+8wtNTFHPKRKG+1fDMDrZqam/Pnz+ni4sLj+ZQOX337l0aGRnx3r17OV4jKSmJMTExPHfuHIOCgjh79mzu3LmTe/fu5YMHD3j69Gm6urrS1NSUCxYs4KdPn7h8+XKOHTuWxsbGbNZsJpctW8YRI0Zwy5YtbNJkotwA/RZMmzaNAOjs7EwrKyselykp/UD8NCz+fahTR/ybkpLCqKgoFilik/0BGmBkJAyNZs3EpHj//pyPCQgQVNx16mTm5s8Ks2aJAu4zZxTr9uwhR4y4zwYNGnDmzJm8di2Vfn5kQkICmzZtzYoVwzlpkuh3goLEJDM6Wmzv2rUrnz9/TolEwmHDhrFKFXtu27aNmzdvpouLB93dVb/DjIwM3rt3T6Uo+Vt1YCQSsnPnR8yfX5fFiy9hxYpk/vzCsChQQNDRuruTZcqQ2trimTVtKsahggWnsWjRYWzS5CMbNhSF4TLIxuwrV67Qzs6Oc9Ush+xopjMyMpiUlMQXL16wT58+7NGjBwsXtqO9vQPt7OxoYWHBggVN2K1bN/bq1Yvv3r2jh0cUe/eWyg2VrIQ2L14U/f6kSWI/TcXAfn4KkbasxoewMIVY28WLwompDpnuUlZj1c2bNzlaVgn/BVKplKampozNwev1+nUMO3Y044EDt6lJ++/p06ecM2cO27RpQwB0d3enlZUV+/btSxsbG9ra2tLKyoqOjo60s7PjlClT2LJlK3bpsopVq1rSwMCDvr6+nDz5Kh8+FDS5Xbp0kRsVX0ORroxevaS8evUqly9fzsaNGxNArortvxU/DYv/B5BIhJeDJGfMmEEALF9eA01RNlDnC+/alVQiz9EIdfGinFRZrazIfv0Uy3p6qkxHsom48qT+ypXHrFXLkQYG1tTVtWbZsp6sXHk9586dy/Hjx3PcOIWozdmzZIsWZP/+V1m2bDkGBQXR0zN3HhN3d3HdoCBVNqeQEAUrirJi8fjx5Lt34v+pqam8c0fCtm0jWbhwGcbHx3PSJPF7HBwU1796VXVASk5O5sGDB1moUGeuXv2W0dHiGbm4ZM3ec+LECU6YMIHGxsY8fPgEu3V7wbdv3zI+Pp5PnkRTT68fjYyM2KBBAx44cIDXr19X0XlISFBoLsyf/5y+vr4cMmQIpVIpDxzI7NHKK8sKKVhM1A2erzlPTpBptlSrZs1Pn4RrKCkpiQYGBrymrhqkhFu3bvGXX37J0suXEyIjFZzqssHs06dPXLNmDY2NjXn69GmV/VNSUrh48QG2bbuL5cu3Z+3aA3MdEcwOz549o5ubGzds2KDyjn80fhoW/z7IDIs5c+YQAAsVMshzm8mreN26dYrrkmTDhll7zGXo0EHoG4WFifMPH67YNniw4rtTnmA6ODxj8+ad2Lr1DgYHL2P58i6sUsWS/fr1o7GxMc8oWygkHR1vUl9fn+3ataNEIsmVkaCsUJyQoHr9xYsVEZCsFIuFoZNAbe2SNDHZzwoVhN5G0aJCG6NHD3L2bGFoAApmOX19skiRtyxVSmERlC9PNmokrqkskiiVSjlt2jRaWVlx9OjRTEpKyuTI6ttXytDQUE6YMIHm5uY0MTGhp6cnL34ZiC9cEDod9eqRlSuHs2zZLvz999+Z8cX1Xr8+uXu34nyyeYc61AVZ1Zf9/VWdecpjrjoiI8Wz+BqRQZI8ePAglynJXb9+/Zrm5ub8TZm2SwOuXbuWa8eTMlJSUhgTE5NpAv/u3Tvu3LmT9evXl0dPYmNj+ezZMzo5ObNOHTt2796dnTt35ooVGXkSLMwKxsbbqKenx7p16zIqKopubi++/aS5wE/D4v8JBgxQhK/z56/CXGauydGwoaqHqEaNnFNY1FVYcxIzUt8+f74QHcoOc+bMYf36CrWYuXNJc3Px/3fvhIoqKQyUBQvEPVtYkA0bvqCTU5LGzmjrVhFSnTNH/IWGikGhe/fMoVT1QWfwYHGN1FTSxSWdmzdfY6tWxqxWzZ6VKhmySZMmrFWrFm/dusU+fcS+7u6kldUZensrQpopKSkEwLlz59Le/h6Dg0VnK6OXzckYevHiBefOnctWrQayTp2+rFPHlVWr9uGBA39QIpGwS5cuTEpKUjnm4kVxbuXBiBR0fLVr19ZoWMgGpkmTxKDep0/O9JNhYZkHAfUB7uRJMZjKVGDzSpcokYh2EBtLDhrkx/btr/Hx49fs3LkzHRxOyAUTZXj37h07deokFwW6ePGifLDMC5TVYTMyMti+/W527GhOZ2dnrl+/np+V1Ys0YOnSpWzUqBGPHTuW5T4zZyoiZMoUnsp49OgRjYyMslUF/1H4aVj8++DlJSINUqmUjRt7EABDs2pcWUC9v1c2GjShfn3VMUQiyXmMUHdO5eSsSk9PZ4UKHThjxgzOmrWClpYH2KLFO0qlUkZGRqoYTydPir6rYUOyZ89jNDGx4qZNnzOJUJKir5wzR6GsLJGIybHMU6/s+FGOAsTGZp5Ex8XFsW3bGezQYQ+LFnVnoUL6bNDgBVu3JgsWFGJ+ZcuS+fKJyEWVKmJdyZL3WbToQOromLNChZ3yvvLs2exFDtPS0nj48GEaGxtTX78/ra2D+Msvv9DaegYLFrRly5aTWbasEVet2pj9w6UYp6ZPn05vb29GRETI+yUZRa/y+H30qHg+sn+VkddlUqSyqTtw8oLYWDHGdO9+l3p6/oyOJqOioti9e3f+8ccfmfZ/8eIF16xZwwULFtDS0pI+Pj45RjQ0QZYeLovGHD36gStXrqSXlxcdHBx45cqVLI/r2XMrq1RpzUGDlmZ7DYlENSVME2JiYqir24Xr1iUwPT2d27aJKNHfgZ+Gxf9DREZGEgDNzc0ZpSl+pwESCVmpkuj4a9YUYe+c0LSpIrw9ZozgPs8OXbqoKkrWqycULLNDRkYGDQ0D2b79WrmK9MaNCqNANm7MmaN63NGjqvUjMkRHk/PmKZZDQsjOnRXL7u6qnZhyxEPwwm+mlpYWZ86cSWNjYxoajuLkyaKmo1evOHp5ebFChQqcOXMmTU338fjx41y1ahXbtWvHbt268Y8//uDx48eZkJDAMmXKMD09nWfPig5QIlEYOXmFuiEycOBA9lEKE6xdK4wiiURMXNUn/kZGRpRKpXRyEpEViUSRCrVhg6rBMXOmWJcdHBwU4e0+fTLrOWSlkJ1bKNduVKxYkStXrmOzZqPZsOEk+fubO1ehHfL69Ws2amTK33//tjCwr6+YVFy6dIkWFhacPXs2PT3zVifx+fNn2tjY8K+//sq0LSSEnDo1jsnJglu8QYORfP06swFkbGzMhw8fft2P+Eb8NCz+nZg2TRgHHTs+Z/HixTlu3Lg8peNVqKCoW3ByIk2yLtMgKbz3vr6K5V9+yVyroA51YyUn40UqlbJNmz60t19BUlFToAmTJ4t/w8PFhK95c81e8L17FfnuJ0+SffsqnCA9emTuy9T76969kymRSBgVFcWpU6fS0NCQw4fvYKFCK7h48QaWK1eXQBE2bPiZVasKB0mRInupo9OL3bunySNBjRoNp7OzJ2vXVk1Tvn07c0Q4q2cTFRVFX997dHS8yQoV/uT9+6LTvHr1FmvV6qOy/7Ztiom8er1ZQEAAQ0JCMhlVslqTmTMpN9DGjRNtQ+bYiYzMnMKU1XlkiI0V0XsZlMeT3EI2pl67do1t27Zjjx6kpaUl9+27zfBwUQOhPD1ydnbmqlWruH//fnkNyddA9lvi4+M5YcIEVqpkyR07djAyMjLHY6VSKY8dO0ZDQ0NeVZaKV8LcueL5zZxJ2tomcP36iEz7xMXF0dDQkGFhYXJHVW4Uv78XfhoW/w+xZ88e9u3bl7q6uixVqtQPvZasCNzAQHQGNWuKwUBfX/P+DRuK7TVriqK13CA1NZV2dnbcuXMnSTEw+PiopkzNmUN+/KhYXr1as5dj/XrRocjg7S0+UBkkElXviSw9adw4sl27FWzQwI3t2rXjiRMnMnU+bm5nWK+eKV1dXdmkSXeamMzirFmz6OvryydPnvDu3bucNm0a58yZQycnJ3oqubbCw8UgnFOqQG4RERHBli1byg1LdS+aempScHAwe/bsyWfPnnHkSJFDK+sHNXmTcmP8yHJoNYV0c+OxUo9qKA/ogwcrUhMiIiLYpk17tm+/gJ6esfz8+TOjo6P5xx9/UE+vF21sbKir25Nt27pzypSb2Ybdc8K4ceSkSZtYrFgxTpw4kcuXh9LHJ+9pSJ8+faKVlRU3b97M06dPs3///uzRowerVLGkm5sbHR0d2aVLF9au3ZAA6OnpydevX/Pu3bvctGkTq1evLhdR/Lvx07D492PAgAEEwHr16uX6PSQkiL67bl3SJpclGvXqKWosZEZCQkLWEdm6dRUTIDMzEX3OCVKplK1bu9LIaFO20V5155Nyv5/d+qZNVZfV+1Ll/sTDY7Y8P97NzY2nTp2Sp1v99htZoUJ3lizZkH379qO2dlvq6NizUCFblizpyNKlN7NYMSOWLGnJ4sWHMl++VixVaiXbthUOJ1m61demlaqn4erolJCnbUZGqv6uuXNVCVwOHz5Md3d3xsWlq3jjZQKd6vfk6SnOoSxkqoyEBPHcvL1F6puTk+p78/HJHaFKZKQ4h7e3YrxS3//58+fs0KEDdXVNaWBgSnf3DPmYsn9/Gi9duso///yTZmZ72aLFuK9y7Klfd/PmzTQ2NuaRI0fYt2/enVkfP36kqakpb3+ZxGRkZPDp06d89+4d27ZdxgkTJnDjxo08duwYGzTw59mzZ1Ui8OfPn2eXLl2+7Yd8A/LSx/+km/2X4NixY5gwYQIWLVqEEiVK4OHDh2jQoMEPudbJk4r/V6kiuMarVxey882aCeo/Zdy/n/tzk0RsbCyuXbuGN2/eoH379rhzB5g0SWhJ3L8PdOsG7NsnaFYDAwVHtIyyTROdnb09sGiROAcgqBQlEsX2ffsEBa8MlSoBhw+L3/Hu3V24uPSDiYmJxvvduNEAzZppo3jxrRg9GvD0BAYOHIhy5cqhR48esLW1xZQpUzRSxj1+fBgVK16Gra0bgAZ4+fIlQkJCUKJECZw+fRq6urro27cvihcvjoYNGyIiIgJ16tRBRkYG8ufPD5Iq561RowaGDBmCZs2aoUaNGmjU6C8ACnrJL7IYcowYMQJGRkb49ddf8fr1a5iamqJECR8ApdC5s9DykAlezZoFGBpm+drkWLQo620pKeKZNmsGvHghaPjUERIC7NihWHZ1VYh7LVgg3v3atUDx4jVQpMg2NGkSjL17PVGp0nk0b94cVlZWaN58FmrWrILRo2Mxblw3WFmloUcP0V7ywnUvw/TpQLdudujePRVpabpYtiwcFSpYYuvWfihRogQsLCyQP3/OXWWJEiWwe/durFmzBs+fP8fYsWNRqVIl/PJLCmxty6BKlUcwMzNDQkJBAEDBggVhaRmA9PRy0NPriEOHDqFJkyZ5/wE/8Z9Heno6Xrx4gcePH6NevXoYM2YMli9fnuNxxYrlTkhVGY8eqS7r6gLFiwtq5mLFhO6EMh4/BgwMxHfdqROwfn3O19DS0sLp06vQoUMHnDrlgWvXRH9VtKjoZ9auFZTP798D6emCtvXRIwXNpzrUKUvVP2f146ZMERTl2tqJuHz5L8TGxqJIkSJyXQwAaNNGUH3r6pZGvXorceVKPMzNf0WlSmWRnt7/Cx1qRTx4cBifP2sjPf05Bg50xuPHrRAXJyhds6J1TUhIwI0bN9ClS5dsdUrevFHQgR84UAjGxvMwf/58PH/+HNeuuWHaNMX9BgYKal0fH7FsaWmJN2/ewNnZGo6OjujVq5cKva36eJIvX/YCicWKiTHcw0PQ9NavLyhp9+4V91e+PHD9ukIM9skToHBh1XN8+CBEB/fuFctOTkKMTqa78fGj+LdmzZpYtmwZzM398emTPczMzuHatZ3Q1S2Avn3vwMurA06cKITChU+iQIEkjB07Ha6ukNPb5xWfPhGTJ09FjRrVsHjxUoSHH8WHDxNRJg+czaVKlcLWrVvh4+ODYsWKITo6Gg0aNMC7d+9QpEh3ODi0x4YNG7B//348fx6Jrl0XwsTEBJ07d8bNmzeRlpYGOzu7bK8xcSLw+rVo7+3aCQrlfwI/BfL+JbC1tcWBAwegpaWFli1b4t69e5BIJJk6nRcvBL9+hQpCPbh1a6FtMGiQ6Cg6dxaT49xCXVhJfTmvmDVrFrZu3QoHBwcMGTIEFSpUyCSAs2KF4Fh3cRHLMTFCqCyrQQMQwnB//SU6sJIlhY5FvnxCg0BHJ2sBuk+fPqF79+7YvHkzKleurHEfb29v9O/fHx07dsRff/0Ff39/XLlyBQBQuXJlNGnSBEeOHJEL3slgbGyMWbNmYeLEiXBycsLWrVsxdepUSKVSNGzYEIMHx+D58z1ITk5GqVJ30aBBRTx//hwkUbRoUWhpaSEtLQ1FixaFvb09+vTpg1atWsHY2Bi1atVCXNxAkPkwfryYrO/fLwbd0qXFpD4wUKHb8fnzZ7kAksuXBzt5MvDypdherZpY/lYMGCA6tYwMYUSo03HnJH4kU2yVShUidBMnAi9fZsDIKB+2bUtAYGAJbNsmtjs4WOPAgQPIyNCWq75+LTZuFAbssGGiXezatQuxsbE4efIkDh8+jHz58uHYMdHOAgM1q8WTRFBQEMLCwlCsWDH069cPnz59wtKlGYiI2ILk5FikpkZBX78mEhPbw9XVEwEBjXDqlFD6/icUd4GfAnn/dty5cwdbtmzBrFmzcPjwYdjY2EAqlWqclCYmCoXkAgWESnRuNAuyQosWwK+/ArL5jrm5UPmeNevrzkcSS5YsQWRkJG7cuIGgoCBYWlqiZ0+FQ+LFCzHxX7NG/Jb584EiRUQ//0WeJhOOHhWCsUOGiP+PHy8EWfX0hDMkOFizUF5iYiKsra2xbds26OrqZto+fjxw6dIBfP4cga5dh2HWLKBr12NISBgLe3t7zJkzB0WLeiM1dS4aNiyMNm3EvY8aBfj6XsGIESNQpEgRLFy4EOXKlUPv3r1RsGBBZGRkoFmzZjh58irIcjAyqoUSJYoiX758MDc3x5kzZ1CoUCGkphbHqVPtULZsRVSuXBrDhr1G69atERMTAx+fGShTZqz8XRw7Bly4IBxvycnA4sWiDcTHx2Pv3r3Yt28f0tLSsH//fgCij6tTR8wdVqwQz0+TirYyVq0S47RsjpGYKARcZf1ajx5A167CEN2zRzj9lKEsPgqI8WDQIMXx9+8LB2KJEmKMGzMmFQEBZ9Cly02kpMSib9++GDeuPnbvzof+/YHAwAeYPXs21q1b901CtImJQh+qaFExr3JxOYdVq2ZBS0sL9erVw6RJk3IthEoSO3bsQMmSJWFoaIiCBQvCwwMYPZro168Nbt26i4yMdPj7+yEjYzwePryFKlW6omBBHaxcmfV5V60S9ynTvRoyBOjbVzEH+FbkqY//3iGQn/gxUKbflEgkHD9+vEaKMU1UdFZWqpSqa9fm/rrqNKnKrCHLl4sQoaZCOXVERoqQeJ0679iuXUceOXJEXhSrHnJdvDjrAte8IDepxlKplJcuXWKbNm2y3Cc+Pp6mpqY8d+4cjY2NeejQIQLg4MGD2b59e1paWsrpcWVITExkz549SYoQ9erVqxkRocib9PdXLdSS5aumpKRkeq/LlqWwTh1H/vrrfJYrV44+Pj488CVevWGDIvXLxUX1Nyvn8MoKy8eMGZPzQ/mBcHFRhLejo3PmTJchOpo0MRlMAHz27BmjoqQ0Mgqj+5dCDnv7zGHz74VRo0bx5s2bHDxYFIpevChyvmVpeVKplBkZGTx8+DDNzMy4atUqkuTLly85Z84crlu3jhs2bODt27f5+PFjXr58+Ys2zRX6+vpy+BeanLzSXX5P/EyF+ndj9+7dXL16NUlR6AuAQVlQ7lhaKsYDPz/Rhzg5KYqY88Jupl78ffiwoB//WqSmplJPT4/Hjx9XSQP5VmpYkrx+XaRO7d2rOIePT861DXfu3KGRkRGfPHmicXtiYiLNzMwYFhbGp0+fsmVLUwJg4cKVWbiwHgsWrMoWLfy4e7eixsDJiZw3bx5PnjzJt2/fslu3buzUqRPDlIoOBg8mR4xI4++/x7Fjxxvcvv0Md+7cyYCAAB45coSHDx/mli1bOHLkSFpbW3P79u28fv06vby85GPrhAmKGos+fUS/FRamIKxQrolYtWoVW7ZsqTL+LF5MOWnG3LmaNSWUMWGCqOdThnoaUmho1vV8/v6qdRfh4TkXJ7u48Et9RTpHj57HVq1EAbu7u/hN27dvly9/bwjmxQMMDAwkKeZCsu9Ik2bU+/fvOXz4cI4cOZJz586loaEh7ezsaGdnxxo1rNihw2LWqNGJy5YtY+fOXqxXz4Jr1qyhVCplaGjWqX5k5m9CPQX8W/GzxuL/GdLT0wkgV/nX6g3JxUW1boHMWyFxv35CqK9OHVEIvn69WD9tmqJ24OTJ7HNEw8MFl3dCgvh/yZJPGBQ0gf5fbiw8XHR4EonolDTxWv8o/P7772zYsGGObCrPnz+nj48PHz58yPj4eALgypUrCYAlSpTg06dPVfZ/9eoVTU1NGR8fr/F86u8pq3fi4yMG+gcPPrB587WcNm09z58/TwcNRQXZ6WukpqbSwcGBhoaGvHTpkgq71KdPn3jp0iWmpKRk/QC+AjKOclnu69q14h17eysYknJbZyrjKK9Rowb19fVpbW1NJ6e+dHR8Rm/vH6upYWdnx/fv41XylTMyMti27XJaW1vT1taWdnZ29PLykhdo5way8wUFBXHBggV0dU1gTEwMP3z48J1/Qc74aVj8u7Fo0SIVVjKpVJpJPIwU/as6A5yenirTU16E4saMUa29q1hRYeDPnKlgXcppgnPmjGBOqluXLF/+Mjt2NKSfn598kqt8TwkJP2aSmBXWrFlDR0dHns2GKzQ6OppdunShoaEhnz9/TisrK7Zp04Zdu26hk5MTe/bsSRcXUSxfurQY7wYMGMBXr17Jz6FsSMmYBGWQMVhpQkAA2bt3EitXtmTt2g2pr6/PFi1aZBIYDQpSrVFUv8asWbMIINNxEokwQo4eFcXg2Y3Psn1l/bq7uyr9vDqioxWGj8zRZm8v6jyOHs26aF8ZsbHinnr2fMCSJZuyRo2mPHr0KH185rFcuc7s0yeePXooake+Nz5+/MiePXty0iRVp629Pfnhwwdu27aNwcHBDA4OppGREQ8dOiTfJy0tLdN3KhubfXzI+PgUTpkyhYsWLZKvywozZ6qyQ44bl5mU4Fvw07D4f4bPnz8TAFesWJHjvhMmKLwBso9cedKfXQeVF+R2YkwKo0TZM3LjhpQlS/bkDhnvH0UH4+399bzWX4spU5Zw6tRDOe+ohjFjxnDUqFGcP38+AdDIyCjTpPL48eM0NjbmgwcPMh3fpw9VRP40DeaySbgyPD3T2b17d16/fj3T/jLGDOVldbx69YpBQUHs0aMH7e3t5ToNw4YNIwA597k6wsJEx5UXpr5vZYmSITyc/OuvJyxbtiyTk5O/ilL2a3Hu3Dn26dNHrgJLCiPN29ubHTsuyZMhoY4NG8Q7WrMmne3arWGLFj3Zu3dvGhkZZYqA/Wj8NCz+3ejcuTMB5GiUxsaq9t0SiSjEVkZeC1379hUGQe3a5Jo1Yl1YmCp71J49mgXVZNDVVfRdCQlklSrpbNmyJV+8EBz9R4+KPlKmd/EddChzBalUypYtW/LcuXM57vvmzRvGxMSQJE+ePEkAtLA4TQBs1aoVu3WTMjhYTP5OniSNjVfR2dmZ79+/z3SuyMjcOQTHjVON7tvbi/7JzMyMH5WZTyjOpxzVVR9fPnz4wFWrVrFz584MCgrimjVrmJCQQGfn++zVawCHDRvGR48e8eLF7LMUZLpK3t7ZGxUSiYjgyN6lp6eCFGTu3Oy985owf/58zps3j506deKiRYt48uTJr6KWzSuWL1/OLVu2qHxXUqmUzZsH0dHRkb///jv/+OMP7ty5M0/948WLImqVkZHBvn37slWrfvTwmMMhQ4bw5cuXGo8ZPFg8d0/P7L+3r8FPw+L/GW7dupVJZTI7TJigaFwJCaJD8fUlg4PFh5ydanX37mKQaN1aEUrz8cmsk5CTWI4y6tVTvebOne9YrFguuG+/ICIigitXruTWrVtzJX6mzLShTIWrDj8/slu3CzQ3n0JLy+yfS3aQCVTVrVs3E13oixcv2KlTJ/mAI4NEopp+oB4alkjEMx8wQHW9sfFuzlPm1lVCQoIYfGURgpy8+Pfu3eOqVauYnJxMBwcHLlu2TD6QK2PaNNF+ZBS6uU1TUx8IvyYs6+Ag2m+nTktZoUKnvJ/gGyFT8g4ODmaHDif566+/0djYmNbWu3Kk580NJBLx7pUN7/fv39Pa2pqrV6/+WwZG8qdh8W9H//79uXXr1lwp8Pr6ir5v+XLheBo0KPfCZrnFuHGZ+5/svn91LYyyZafkKHb2LZCNkTml9kyaRFarZpWJSjUnSKVSrlq1iu/eZbB8eTsCYOnShnR0VESwvb3JGzdu0MjISKMOgpWVwpHj7685fUhTitjIkSNVnHYyyByNsbGKSb2mMS81NZV3797lxo0b2aZNG1av3o03bwoBwsqVK6s4WWRYvFgx5uakxSBDQEDObUQWVcmKiZAU9+LtTQKQpz39nahatSrDwsLk8603b96wd+/ebNkye92K3CAkRGGkjRr1jGfOnOHVq1dpbGycrWDsj8BPw+L/GdavX89tajP727c1U69KJOIDVPfoREbmHAo0MFCEOZctIwsXVng4goJUw3yhoYrJq79/9gJr0dEiFSo6WoS8y5UjTUzMGBoaqlEpdts20cGMH5/GESNGsFevXty9ezfXrVtHNzc3WlhYcMKECRonXUFBqh3QhAmaw4Eyr0pqairr1zems3M669T5+pzEHTt2yCkJTdUUAkNDQ3MVbZJh8WLxbOfOFZ48WcqZry85YkQoHR0d+ejRo6+70Sywfft26ul1patrND09VfNkNdEO5gYyY4RUhKvzAj8/0b6uX79ODw8PbtmSriKQ93chLS2N+/fv5/z582lmtoNeXonfpQYoO0gkEq5evZoeHh60trZmr169fqhw3k/D4t8Na2vrXBkVMoSFqToI/PwUTo4sqPZJCi2DWrWE86lePQV1tLu76vigTnUaEiIcW1lBWe1ZIiGLF5/CPblU2AwNDaW9vT1tbW3p6urKTZs2ZasH4+2tGBOCg7P27E6aJO7b29ubO3Y8ZdWqORsimpCQQNaoMfWLOnoFtm17gNHRiij1+vXvWKOGfaYIhXLaqHp/s22b2FarFrlrl2K9iwtpZmaWZVuQOQu9vXPnSMvIyGB4OGlkdIv29vaMifmQqTZjwwbVCIaTk2pke+5chRCr8rNevlzVWNIUTVOuD9WUVuXuLtryrl27aGDgzAEDvj6C/LV48uQJPTw8aG5uxYoVbVm9ugNNTC5+N5p5Tfjw4QN79uzJPn36cMmSJTx37hyTktLkTlUXl68TIMwOPw2L/2cYMWKESkfp5CQm0EFBqukuy5eL5WnTxD7qUYacoCxclJBAFi+uul3dAx0dLTqU7AYi5fM1aCD4wyUSMiEhgYsXL6aZmRm9vLxoa2vLsWPHMjhYGAMJCQls186eXbpk/hFSqZTHjx+nlZUVx44dyxs3bsjTY9QNA00hZVKk1wQEiPtq334zvby86OmZyAMHcleMrgxHR0f279+fRYsW5bJlyxiuVrWVmJhIIyOjXBsDsom9LPpQuDDp6qoYDMPCwmhvb8+QkJA8TSayw7JlcaxUqSUtLS05cuRIWlrGy43Tb4k8+Psr6ikiIqK4fft2TpgwgT169KCNjQ379++fZdqP7LqHDh3i8uXLGRubOxGp/4949uwZHRwcOHPmzG8SesoKPw2Lfy8yMjJooyZCMXiw5sLkPXvy7lmWYfNmVf2HFi1IZc4L9XTOkBBFjUV2kWNS1O5VrSqMFV1dcu/e17S1taW/vz/v3bvHN2/e8K+//mJGRgaXLxfn9faWsGFDX06cOJEJX2af796947p16zhgwAD26NFDYyQgt4XgsvXTp19l3bpe9PSUMiQk70rHEomEDg6vaWw8mFpa+QmAFSrcZ2ysMMb8/cmePXvywIHIXJFZHD0q3mtCglBfL1xYRJnc3YVTas6cOTQ1NdUo1vm1CAsjq1dfyoIFTWlpeYV2dlJ5tEH9+YWFKVKa9+xRdToGB6saoJ6eYntIiGptRmJiIv38wrhq1XWVMS6rFGwLCwumpaX9owQYWdU1/UhERUXx8OHDnDZtGitWNOahQ3/Kt+WWGCW3+GlY/D+DtbW1vMEGBalO5C9eVHzE2aUnBQUpFIazQq1aiv9LJGSRIlmf73vA0JDU05OydesoHjx4kF5eXvT2Fp2Kra0tz507l21HIZVKee7cOY4ZM4ampqa0sJjCTp2kbNpUYVS5uGTtmbGyEgJHU6bcYu3a1mzQwIjz589nr145p1spIzw8nACoo6NDAAwMDMw04X/9+jXt7Oy4fPnyHI0BmRqsDL17qw7au3fvprW1NQsUKKCxfiOv+PPPP1m5cleePHmSjx8/pp6eHmfPviUfADw9FZOQxYuzj06pIzU1levWraOFhQW9vLy4du1aXr9+XV6g9uDBAw4fPpw2Nja0srLiiBEj5Ow2Z8+KgeP48eMMDg6mvX3eajz+v0EqlXLTpk00NTXVOGH6Fvw0LP69ePLkCYcOHSpf7tNHMUZcvaqIOJ49qzoxk3l7c4tWrcgTJxTL3t6qrFDZCdl9La5fv04/Pz/26dOHXbp04e7df9DTU7DcOTo6csyYPVlGHF6+fMlhw4bRysqKkyZN4o0bNyiRZBZxzYp4RMaw2KePyN+vVq0no6Oj8yxm9/79e3k0u1ChQty5c6f8Pcgmxk+fPqWRkRFtbS/leD4fHzGOm5srCFGqVlXd5+nTp7SxsZEX/X4r7t27x/LlDfjnn3/KhT9lNXP+/qpzEuWiYU3jt/q6kyfJ3357w5CQELq4uNDa2po9e/akldUompsH0sTEhAsXLuSOHQfp5hYjZ7wiFXV7dnZ2Ksv/RfTu/ZEDBw7koEGDGBcX992NrJ+GRR7w8uVLxsbGakzJkeHsWTGx691bhGzt7EQDzk1E4ORJ1XqHvOL9+/d0dXWVL2f3oWbliXFwEAZIQoIix1ITAgKEt2j8eDFg6OqKdQsXkjo6gnq2WrWsWUMiI3M/sDRrRo4YIbvPq9TRacB58+axVi03Wltby4vlcltIuHWrlF26TOTBgwcZHCyiL3Z22ad/SSSkhwdZqdI5tm49nX36SNi48QFWrmzBpUuX5sn7EBsbSzc3N65YsYKOjo6ZCqwnTCD7989g06aTOWbMxGyNiz59xHsiRQjc31/1OVy+fJnt2rXj69evc31/2WHYsGF0dX3M8HARUm7VqhVr1LChkZFgO7KxsWGzZv3Zrt18envv5KlTp7h582Zu2bKF165dy7JfCA8Pp4mJCVesWJGrIuekpCTevXuXAQEBHDJkCP/44w+uXx/FRo38aGt77buHdv+tePfuHZ2dnbleRtHGb5/Q/TQsvg2xsYpc8OHDxb9/V3tdvXq1SqpsVuNAdnSUsjxuZTpodVy+TNasqViuU4fs2FH8PyFBOKLq1VOobH8rWrZUKHzXrn2WNjY2nD07jtOn/0k7OzsePHhQ4+9SR1paGi9dukQDg0Fs2nQau3YVTrRFi8S4nNU4Hh0tWInq1hX5+7a2i+js7MyaNZ3k6sm5hZnZUwJgy5YtCYCdOk1mamqqirPu/fv3rF3bkwsXLsz2XEFBQiVd9s3LUpFkUSGJREIA7NatG9etW5en+9SE1NRUdurUiU5Ogi2qTZs2nDVrFo2Nt3PnTjEe2No+Z9++GfT0VI1ObdumWoS9fLlqOllsbCz9/PzYrVs37tixI1PBuacnuWRJKn/9dR8bNVpOe3tHdurUiWu+sASEhJDOzlJWqWJKJ6fvy4L0b4OMbv7s2bM0MjJi584n5M65Pn2+3SmXlz7+PyOQd+eOEM958QKoXfs+atZciKioKJQtWxapqal4+/Yt+vXrB2dnZ7k6dGpqKooXL47evRMwfXocHBxSULbsTbx+3QyRka3h6amTrZLjhg3AuHGAtbVQjLx9G7h3T4i/xMQACxcKwRhlAZPp04EDB4RwDwm0bLkJFSoQnl8UZ2QCMTKxoB49hBiRnp4QG/PwAIyNhXLl6dNAzZpArVpCARPILDijjpgYsT0wUKikXrsmRJSePgVKlEhHcnIymjQpjshIxTFPnghRlvr1gehoIaozdWr276N+feDEiRcYN24cXrx4gXv3umDLFgNERbXBuXNlERIiBHxiYnIW5QHEbw8IuI/ff/8d8+bNQ2oqci2Y5u8PHDkihHt0dID376Vo1GgNzp3bBicnJ3h6eqJ48eI5n0gJERERmDNnDnR0dFCs2CI0ayYE/1JTAX39+Wjc+DKWLVuG8uXLy4+ZPFkI3FSsKO67SxchXBcYKMR5ZG2tf/8UPH9+GAkJp3HlypI83Rcg2sbhw0L1dNEiYNWqVUhJScGpU8NQvjyQnExUrKglf+4kER0djfv37+PVq1eIjY1FpS9SqI8fP8bjx4+RkJAALS0taGtro0iRIoiLi0O5cuUwdepU1KxZM0/3RxK3bt3CyZMn8ejRI1y+fBm3b9/OVoH2v4aMjAyMGjUKFy5ooVatGShRoiBevQJCQzUL9+WEnwJ5Ah8+iOeno0Ncu3YNd+/exdWrV1GzZk04ODigfv36Go/x8BBiX66uwKtXQqCzd29g8GDxHWeF0FAgKEiMCaVKiX4oD2K+AIAePXpgzZo1KFmyJABxL5s3K7bLlsePFyr3svvZsQOIjBRj0i+/iDEkNVX0U3v2aL6Wry9w4oRQri5fXgjkpaQIcckVK0Q/XL++EN2bNk31Gfn7C/E0ff2cFYH79AE+fwa2bk1HaGgoBg+ehvz5K6FNm2J4/boNduxwRv369bFjhxBsHT8+5+fUuzfw5o0Fjh49iuvXtdCnD3DypELVOSusWAFs3x6JihWr4cOHfLh/PwoNGgShWbNymDhxIkqXLp3jtV+8AEaPliB//iSUKEF06HAY69atQ9u2nnj8uA90dbVw7hyQkkKkpweiV6+SmDBhHPKrS4R/Qc2aYrzS0hJtZ/RoYNkyYMECsf3cuXMIDg7Gzp07szxHbvHx40cMGjQIycnbsHkzsHnzbzh16g3i42vCxUWKDx8+4OnTp3j58iVIQktLC1paWsjIyIC2tjZiYmpCS6seSpWqh2rVqmHy5OJIS0vD+fPnsWbNGvz6668wMDDI8vobN4rnN2qU+K1SqRQTJ07EtWvXUK1aNWhra0MikWLt2m9QR/1/gMREIYhXujTw4UMynj/3RuHCFvDw8MKVK0Ig8fHjrxsfgLz18f8Zw6JxY8DKCujX7ynatLFG48Z7cPlyI/n2tLQ0LFiwAOfPn4eWlhYqVKiAAgUKICEhAVevFkexYqUQG6uD+fObY+zYG0hMDEO+fOlo0iQd9erVQ6NGjVCvXj3Uq1cPlStXhlQqRa1aEVi48DYePnyIz58/4/ff38LR0QsdO7bFoUP54eJyH7t2FUS1ajUxbZo2PDyEgmi1asDVq8DQoc/g7u6Nx493oWzZsvJ7/esv4LffhDpxv36Aj4/oYIyNhTLkx49AlSpicj99OtChg9gmQ14VKOvVIyZN2oKQkBBIpVI8fOiKQ4faoFWrVtDW1oarayrmz3+HKlWqABAd+IYNWZ+PJCpW3IKWLTdi8eLFqFevHmrVAp4/F9vv3xdGhZGRQn07J0yeDLRsKUVwsDFOnDiB+fN1UKdO7lRlBwxQNUBk6s8LFiTjwIEDWLt2Lfbv3w8dHZ3c3YwSnJyc8OBBRdSrF4X09HRYWFjgwgVrBAXFIzAwEKamphgwYACmTi0LHx+gSRNhEIaGivdYooT4d+1aYM+ejQgIWI1atbRRrVoZVKzYDYULe+bK8JJh40bgxg0xAD15Ijrr3bsJMzMzbN26VcXQ+RpkZGQgKSkJxYsXz7MhMHCgaNNJSeK92dqmAwCsra1x/Pjxb7qv/6/o2nUfChRYiqFDhyI4eAGePi0GfX0tFC5cGKVKlYK3tzfat2+f43n+64ZFTIxQjU5NBT5+PIT09IXw9W2DZs2aoWXLlnj16hWWLl2KOnXqoFGjRnj+/Dk+f/4MLS0tnDhRCK1axeDsWSImJgYlSqQhJaUVpk+vhp07K2Lt2taoXr26xutWqiQmTQUKAP37xyMsrCj++ksbx44BW7cC2tqiT5Cp6Q4cKL7ft2+FQyox8ROA3jh6VCFhvGOH6D9KlxZ9h4eHwrHk6ir6lNRUce41azL3f+rLOSEkBNiyBVi48Bb27NkDR0dHODk1x5Mnin2srYVDo0AB0VdXrJi9cVG/PrB1610EBY2EhYUFHB0dYWlZG48fC4XhP/8URoqOjphQ5wb9+gHFig3H0KFDUbdu3Tz9zi5dgAYNAF1dcf8eHkC/fqewdOlSFC9eHMuWLUOxPM7Y0tLSMHbsWJQo0QAbNzrB2/sJfHxqIS2tLFxcNqBo0W1YsWKF3DETGCiOy8gQ7+72beDQIWG09e0rDNsnT+7LlbRPnDiBXbt25dmxs24dcOqUeL5JScIo7d27N4YOHYGlS/VRqJAwKqdP13w8SUilUmhrayM9PR0REREIDw/H48eP8erVKyQmJkJLSwtt27aFk5NTnpx2O3YAFy8CEyYApUsLh9f+/fvx+fNnjBw5Mk+/8/87+vbNQFTUVLx7F4kzZxbj6NE4DB16Etu21UD9+vWRnJyMOnXq5Hqc/mlYKOHt27dYt24r5s8vht69H+LmzZvw8PDAjBl9ER4uOrtjx0Rn++GD6FTbtFE9R48eYsJeqhRgaQmsX6+Y8IWGEuHh4Xj06BEeP36MR48eISYmBvny5cPZszUwdWoTtGjRAIULF0a/fmVQr97vuHTpDurWTUS9evVQoEAB7N79FI0bF0VGhgESE4FWrR7h/PnzePeuAoyMpmPKlLbQ09P8+ypUAM6cARo1Atq2Ff+uW6fYbmEhOuEhQ4C5c4Fu3YCZM8V+OYEkDh8+DDe3xWjZ0hgnToxEXFw66tY9imHDbuD69euIj4/Ho0epKFgwClZWVmjdujWuX/dFnTqiwy9cGEhOFpPYAgWA9+/fw93dHR8/GiMmJhBGRvlx9qwwfrKL/uQG/foBkZE78ebNJVhYzMv1hHv8eMDERGF8rVoFpKcrBr6tW7ciIiICY8eOzfM9paWloWfPKGzerIupU39BaGgo3r5NR8WKOpg3bx5evXqF9PR0vHkzErNnK44LCoLK8s2bNxEQEICIiIoYNqwtTpw4gRUrVmDq1Bp5MhLVjcoBA4ClS4EHD25jwoQJaNOmDX755Ze/PToQGCgiYxYWwiNVu3Y/NG/+AZ8/f0bfvn3h7u7+t97PvwEfPoiI6KRJ0fDz84NEIoGOzmyEhtZDSkoKYmJiEBISglu3bqFSpUpo3Lgx+vXrp+KkkOG/bliYmQG1awMjRjxEt27dIJUexIwZddGzp5hkbd4MpKdL4eJyG0lJT1C7dm0UK1YMUqkUv/wiQbt2lRAVBWRklMfQocCgQXdQvnw0Xr2KRuPGlxEVFfXFoVIRenp6KFasGG7c+Ij9+x+gTZuP0NbWRvHixXHgwDv4+rbHlSvt4OkZjQsXLuDlyzpo1ao9JBJjODsXwMqVxJgxd+HhcRLlyh1EgQIzcexYW42/KzFRTNILFxZ9WufOiu+/QAHxr6urcAQpL+elL9637xN8fRfCwOAuRowYgXnzFuLYsRSMGNEMJiYmePToA9asuYqgoNZwcnJCvnz5MGCA8LJ37y4caYcPK8734cMHuLgswdWrd/Dw4TJUqlQJnToB7doBwcFf8XK/oHdvoG3b07h5cxMsLFbjwgUtLFqUu2OzM75OnTqFrVu3YtWqVXm+p9jYWLi5jcSTJ1IUKVIHHz6cB0lUqWKE2bM7YM2aNdDS0kKbNpvRvLlwtgGiPSYliYyCfPmEIw5IRdmyZWFubo7ixYvDzc0NFhYWeb4n5fcvc/IFBIRj4MCBmDx5Mjp37pznc34PDBki2oq7OzBsWDpatdqJIkVe4fbt2/Dx8UGX7EKD/0EMGAAkJABDhpzHhAkT8OxZPAoVCsSAAVF4+PAhChQogEePHsHCwgJ2dnaoU6dOts7TPPXx3zu36n8FUqmUY8eOpZWVFffu3cty5XbTxuYG+/eXcuxYhSjQkCGqx6kvkzK6OJGrVqeOyPurUSNrXmUZRo4kmzRRiAPJKPVkOaFr14r/16tHHj0aSw+PozQzO85r157w3bt31NefTl1dG06fPlvj+SMjyUaNVNcpF9PVry/qGCQSQfdaq5ZmmXlNePr0KS0tLTl16lR++vSJLVuK+6xRg1Qn8Zk5k5w7N5XPnz+nn18QK1Z0YPHiU+WaExcukFWrPuLmzZtpaWkpVxCPjhYc6lnl9H4t7O3t89xWlbUv1Dm6pVIpLS0tv1pTIDKStLOTUlu7MIF8LFWqGk1NTWlqakoXFxc2bNiVVaqcoLe3gsFKmXnk8OHDdHJy4sGDB2louJ+kYAkyMjKigcFmSjQk2I8dO5a1a9fmgQMHVOo51AsP1dWvg4OD6ebm9t3YpnIL5RoSLy8vGhmt/6qapP8alAWmRo16Rn19V44ZMyaT6Nb79+955MgR2tjY0N7enr169eKQIUPo5uZGW1tb2tvb/ydrLK5evcpu3bqxaFFbWltbc/DgwTx+/Dj795fSy0vUpskKQmU6AOrtUiIRxbNhYSL3vX17sb5GDVV6TKlUyjdv3vD8+fM8fvw49++/who1FLoGYWFkrVpp9PK6yUmTVnLNmjWMjY3l5cuX2abNPFavbktbW1tWq2bLoUOHsnTp5uzXrx87dVqV5fdat66ojZChenXV7fr6om6iUCGxr4tL7hWK4+PjOX36dJqbm1NX9zAtLaVcs0bQiV+/nsFr165xzpw5DAwMorn5Wbq4uNDIyIizZs2jsXEiy5UTv3nMGPGsSFGUbWVlxcOHD9PNTSqvsfhSm/vN8Pcn9fUn0N09b6KoLi6KsVO9CJ4khw4d+k0sTBUrigJpfCnyBsA2bdpw69atdHZ2ppdXGF+8IL9wXjA1lVSWtjp27Bi7du1KAAwLC+OePXtobGycZR2ejPjkwoULKuuV625kkPXNUVFRHDx4MCdNmvS3sx+RCvKY9PR0Dh48mPr6s/jHH3/w8OHDf/u9/BsgkYg62W3byMmTU9iq1RJWrGjMo0qFKOnp6Tx06BD9/f1pb29PR0dHnj59mi9fvmRCQgJTUlIYFhbGy5cvMzo6+mfx9p9//skgJRnnMmUEVZ6Pj5jgt24t1qvrzmVFi3f0qELQzMVFFA3lBmPGkO3akUZGigFp2jRRUD1pkjivg4NQzLS3VwxORYqIzqZChbkEQB8fH549e1alyDwhQZXJicxcXKcM9WV1yESDXFySaWhoolEsLSsEBytoRePiPrNKlZPs0aMHbW1taWpqypIlB3Pjxo3fpeA4PT2dq1atYmJiosbtvr6+fPLkCU+eFJMCmcjft2Dnzp1cuvTbBG+ePn3K6dOns3bt2ixSpAgBUFs7PwFtNm5sxFatfmX37qJo8fhxccyVK1fYtm1bDhr0hj4+ot126CAMDxubOPr7r6SdnR0dHBx47tw5SqVSvn//ns2aNWNERATHjBlDExMTOXvU1auind2+LdqhOh3lkSNH5Awbixdr5lD/ERg8WNxbXFwcXV1dvztV3v9XxMYqKD1lOgFHjhyhu7s7ra2tOWDAAEZFRakck5GRwbi4OEZERMiLJZ8/f/6fMyymT5/OwYMH88WLF7S3JytUEP1fjx7i/zNn5p6+OixMTMwDAkQ/2rQpuWBBzvfQsyeppyeMkcqVxfs8e1YU6C5eLN6tnZ04t0ykzdZWOGWKFZOybNlnLFiwJvfv36/x/MqOJlI4hyQS4eyqXFlVDK9q1dwXeL5//55GRkbcu3ev3KgJCCC7dNFMUhIUJO5/2LAM1q8/n0WK9KSdXTeuXLmS69evZ40ai9iihQMtLCyy/C3fC69fv6aXl1eej5PpP2h6/zExMXR0dPzqe3JwIA0N96oYFgoDoz3r1OlAF5etjIggX7wQ8xYZA31cXBzNzMwYG/uZ4eFJlM35Hz9+TBsbGw4cOJA7d+5UYVM6efIkO3XqxM6dO3PGjBkqjghlvaGTJ1XnRFKplAMGDPjmsfBrIDNwlixZwuDg4DwrxP8XER4u+iJ3d9GXBAYmcNSoUXRycuKKFSvkFM4yvHr1ilOnTuWgQYPo5ubG7t27c9SoUZwyZQpNTEx+Ghb37t2jtbU1nz59SqlUSh8fmdiNYhJMkv37k+/eif9fuSIMAZK8fl0MLFOnKraT5Jo1CvYPZT7mvKJjR3EPMs0E2f34+QkDQEbrl5qaSlvbGN66dYu//vor7e3taWRkxDt37jAmJoYNGjxj8+bi+PLlFcdduXKFurqXVTjvZVEaTRg3TsGOMXPmXLZuvfPrfxxVBY+uXMn+2nnF0aMXqa1dmRUrblMRB3r58iUPHDjAlStX0tzcnPr6ClG6s2fzzj+ujJSUFFpYWHzDXQu8fv1aZdAoWLCIyrK9vQt79VJ8ZxYWFhw06KoKc0mPHpkjT2/evGFQUBDbtWvH6tWry1m1SDI6OpodO3bkgS+uyISEzMKB69ato6+vL93d3ZmYmEh/f4XxPGECf6jYjwyenqSzczjr1x/xTd/WTyhw8+ZNGhkZZakVIsN/kRXK0NBQHu3z9hYOID090VfVqCEm4L6+qnTV27YxS5HGAwcU7EozZuT+PsLDM0cJgoLEPcgcWWFhZL9+YgLq6koCIho+cWIGixfvzho1LGlmZsZRo0Zx+fLlcoOxdWtyyhTFeStXFg6tOnXEObS1yRIlBAVr3bpkp2zE7ceNUxixVaq48+LFXAgYKUEiUTxLPT3RF+7fv59btmxh69Z7OH789xM3mzhxIvv166dx24sXL9iuXTvu27fvu12PJN3c3BidG9U5DZA5UqRSKStXdmKRIs2oq1tNZWwoW7Y6jY2XslevVH4hxOKTJ0/YuXNnzpmzmhERIqIRFkbGKwJhvH//PlesWEFjY2POnDmTDx48oK2tLbdt28b09HQeOXKEhoaGfPbsGUkxLsgi+MrRe6lUyoMHD9La2pqxsbEMClJE+f8O4dIePYRDzNvbmz4+MT/HiDxAxgoqQ3R0NPfv38/x48fT0tKSd+/ezfEcP+lmv+DWrVsEwOHDL7N2bfEBhISIDk4WVktNFRb56NGKDvj2bQVFWlqaoA9MThbWu7KH188v9/RmR4+qhsWVaeZOnlQMIrKBSRnqy69evaKPjw+9vLzYt29fdunSiwYGv3HatJlcu3YtQ0ND2aJFC7YqarEAAJ/1SURBVJYvP5FVq1rTzc2NFSsG09PzfZYhc+VrTJkyhd265cynnR1mzBDUtPXqiX+/B795eno6Fy9eTh0dW+rrd2JIyO/U1RUe9YiICHkHPHr0aGZkZLBhw4Hs37+/XDMhp6hFZKTovGS0i+oqn0FBQTyhTOT+DZBFnhISyPLlDeT3Xr16QxYtqstffvmFqampHDp0KO3tFSH2kBARsejSRUxyZCHpTZs2sXr16hw6dKhGj19iYiLbt2/PadOm8fjx4yrtICEhge3bt+eTJ0/k58upDf4IJCQkMDAwkL/++uuPv9h/CK9fv2a/fv1oYWGRZfv9LxoWhw4dorm5OUNCQti3r/Diy/qpoCAxQZOp/wYHKybWpDAEZH2Fg4PC0N+2Taz38xP/KisL5wXqkZGEBMr1eS5eFHTdytDTExO/W7ducevWrTQyMuLkyZPZr18/6uquZe3a6axRQ0wAq1Uj27a9SC0tcwJBBE6wQIE0FiggUif69hW/SzlFNTZWkUaZlJREExOHb9IMWLxYkf505oxwin0vvH0rYYkSVixTxoatWon3SpJbtmyhkZERq1Spwlu3btHV1ZUbN25U8dh+Cw4dOsTp06d/1bF79ojJvJMTWaPGbfbq1YtDhw5ljx7ObNNmM4sXLy4fI5o0aU139zv09iZtba+xY8cJVNde1aTFeuPGDXp4eLBZs2ZyrSAZHj58SFNTU546dUrj/a1du5Zdu3blkCFDKJFIuHixKm2sLOL8o+HnR9aq5cINGzRnK/xE3hETE8MuXbpw5cqV2RrGPw2LL0hOTmahQkWpo1OMzZq9Zc2aou6gbVuRK+vjIwYKdYEdZd5lUnhZVqzQPLnKzYTL3l54fCdMUGhAXL0qQtrbtgkPmSzcePWqUKhWFi7KKS3k7t273LdvH0+dOsWdO3dy/fr1vHRJGAbdupG1a8ewX7/d7NSpE83MzDh8+PBM55CJAZGig2zadGrOP+xvQmxsLN3d3Wlra8v69VdwxIir3LJlC8ePH09SEe7//Pkzk5KS5O20Rw8R8rWwsOCdOx9zfFfq+hzqy3FxcTQ1Nf0uonTKCA4mPTzSaWNzmu7u7xgWFsYOHTqwSpUqdHZ2Zteu83n2rJjMBAQoUiK6dbvA4sVL8a+//uKUKVM4ceLEbK+TkpLCc+fOsVKlSiqh73fv3tHOzi7HWowfiZiYGJqZmXHfvn3/SP7ufwHJyck0NjbWOJH6LxoWpEz4TJ96ehfp4KAwBmxthXHh4yOW9+xRdTRk1Veoi4jmZvIty2v39laNqspSUsLDRXrkkCFiQm5nRzZurHq8ekQ4Li6Oly9fZmRkJJcuXfpFfM2WFhYWzJfPhvnytWDRorcI3CIwg4AtAQcWLRpM4CgtLTNYqJAYL6tVIw0MxLhJkr17S1mtmjUbNlRNm8krfvtN9N0NG3674yktLY2HDh3i4MGDWby4CQ0NzWlqakqSbN5c7LN+/Xo6OTmx7ZcfkpyczDlz5tDZ2VklTehrIavFC89tIaMGnD2beT7So0cinZ295AJ7bdoEsWTJSrS0tOSDBw9Yo0Z7/vqrarRHdgs3btzg0aNHmZGRwaJFi3LLli1MSUnReO0nT57QxcWFJiYmmVKdhg8frqLdoe6kS0jIXJv4vZGQkEA3Nzd6e3t/N2PwJwQSEhK4c+dOGhsb86Esx04NPw0LJXTvnsGaNftz8+bNlEhIU1PhRVeeuKuL182bp5r+dOSI+AsOVvVAqYu/aIKfn2raytGjCgEhiUR4oNU7Z5mgniwMnlOReG7RsmVLmpqasnv37nRycuK2bdvo7+/P5cuX8+DB62zQ4FdWq2bHypWtWLZs7RzTJ/4OpKen09bWln/+KaTqe/ZUFNjb2toyNlZ46zRhwwbx/EqWrM+SJZtzyZIVfKf0YteuFc9apiSdlbCUMqKjo2lubs5dyjlYPwhnzpxhzZo1WblyZdrb32WZMmIC0b49eevWfZqYmNDC4hgdHBw4f/58GhkZ5VjDsmHDBrlBRpJv375lbGwsW7VqxZiYGPn6gABFeDsoSJG//6MwfPhw9uzZM8u6mX8DYmO/v/Lw98bEiRPl5AnK+K8aFqdOnWLVqgNYrVpPtmwpvOhVqgjHk8yQmDAhc/tXd1KoKylntZ8mKIvSXbyoONfRo2Ic0NNTjV74+Ih+wNxcTOYqViTzUr+qrU2WLStqKsqUESlR4m88geEE2lBHZw5r1EgmkM6WLaUsUoQsUIBs3/4Tq1U7SB2dnixVaje7dBEEHP8kpFIpu3Xrxnnz5vH69evs3Fk4SHx9fXnjxg126ZL98cePH6e1tbVK2vDX4tWrVzQ2NmZYXiTN1WBvr2gPffqIdvD+Pfn4MRkRIdpUUlISfX19WalSJXbq1Ik2Ni8ps41evxbO0CdPntDExISNGjXi4MGD2bVrVz5+/DjH68+ZM4cbN25UWbdo0SIuW7ZMvjx3rqqwYEDA95unaMLHjx9paGiokuL7E98f169f56hRozRu+2lYKKF1a1Jf3441v1Q1//orWamS6j6LF6vmuKalCUantWvFtqlKzntfX/Gx9+mTu4Jg9YFFk2Wv7P2KjPx70k5u3rzJJUuW8MGDB9y/fz8DA4NoYLCMAwYkUyIhx4wZw/YyepN/EPHx8QTAWrUiaGAg1lWpIgb7Dh3sWLZszkxXYWFhDAsL465du2hhYcFDhw5x5kyFgXf0qHifLi4KA1MiyTpSJJFIGBgYyEGDBvH8+Th5SoSTk6rB+j0glUp5+fJl1q1rQz29X7hjRyrDwuJZvrwRFy6MUcltDQsLo5WVFceNG6fi0UlPT2dGRgb37dtHPT09enl50dzcnNbW1nR3d6e5uTnHjh2b6dohIaKN55Yl5lshY7/6t0UsJBIxGRg8WLQj9YL4/yWEhYVx2LBhmdb/Vw0LkqxeXfQxnz9/pkQiCDBycjI4OSmMyPBwRUTPx0ektpKUq97mhJyMEfXlgABxzYAA0ssr932OjMSiUiVlY0L57z6BcQROEfiNQBsCZixZ0obFitlSR8eQgD2BJSxffiyrVq1La+to1quXu+v/KEyaNInOzs7y5datybdvyd9++40HDhxgixbZH3/z5k0CoI2NDZ2dnXnjxg2Swpj09BTPPy/fdHR0NLt168ZVqwRblywi5eubO8eDrLbHx0fzZH3bNkVUIzIykg0auLJgwcLctesiw8OFERIdHU0jIyO+ePGCd+/e5aNHj/jy5UsaGhrybDYWwPHjx2llZcXLly8zJCSEa9as4ZAhQ9irVy+52rUMfn4KJ+j3UlvPCnFxcfT396eHh4cKgc2/Cb6+4nn96Gf1LZBKpTQ1NdWYMv/TsFBC795JrFTJkLa2l2hgsJG1ag1m+fI2nDFD8Vvs7VU/eNlE09Hx24uSrl5VDYfb2mZm3rCxEcV0nTqJyezf7fVMSBDer4QEcW+WlmSnTgbyDvafhKfnZxYu3IK3bt3irFkKFiwTk2QWK2bEvNbKpaSk0NLSktbWCs/H1avi+bu5kRYWihqLnGhwT58+zYoVTfn777/LvV3qKRLfCz4+5I4dO1itmh3NzI6zWDHXLIvRZ8yYwdDQUO7bt48ODg60tLRkvXr1OHbsWJ45c4bPnz8nKSZAPj7kunUJ7N69O2fPnv3VxYdfgwsXLjAkJIShoaHyjmzTpk3/U6Hu3NyHry95+PBN3r9/n6SI8PxI7923wtzcnAlq1D3/bcPiKQHw/v373L1bytq1H9HdXfX5qKcCxsaKb12WwqSMgACxLiuGQXWop0upL+/Zo3BGRUaK8SqvmDBB4SDQ1SULFiTz5ROF25qNDBL4TEDKwoVJIJXAUwJSAmTx4sdZtGg96upG0MYm7/fzPdGkyUgWLz6EdeqINOK4OLJFC7Jhw52sUeP3PLHavX79mlZWVjx06IbKe5VRxucWGRkZnDlzJh0cHNm5c7jK2Po9xve5c1ULp6Oioujn50cfHx+mpKTQ2tpaY0Hus2fPOHLkSHnabFJSEkNDQ7l27VpOmzaNHTt2pJWVFYOCgrhnzx6Ghoby2rVrbN++fSZq2n8C27Zt46BBg/52OvRvhTLhytq1CtKe/0WMHz+eF9ULTJm3Pv4/IJAXh8qVddGsWWt07NgPz54ZoHz5KdDSckd6ejMkJsZj0KAqsLQsjvv372PgwJGIjq6DDh0SUK1aNbx+3Q9ubrWRnc7MxInAzp1CgCg1VSijlimj2P7XX8Dq1UIx85dfoCJ25+oKDB8uBOImTwZKllSorCrDy0sIGMXHi+tlJXD34oXYrq0t1EGVFbezwoABQnhIJhwaEwO4u2+Es3MSBg4cmPMJfiD09ICaNU1hbm6O0aNHQ09PiO35+/vDwsICVlZWeT7nhw8fYGAwBU2aRKNRo2VYs6Yc8uf/DF/forh8GVi0CMhCKFcFqalAr17pMDZejd27d6NJkya4cqUe+vcvhCdPkrBvXyLy5/8MHZ3qGDnSFa6uRb/iCQjI1MzPnTuHRYsW4cKFD4iJOa1x35cvX2LKlCkIDw/HgQMHUKJECbx//x5ly5aVC98tWQJERgLz5om/Dx+kaNt2PxYtWoQVK1agQYMGeb5HZbXgFi2AYcNUtw8cCDx8uAVPn4aiSpUUdO3aHO3bt8fdu3cRFhaGsmXL4sWLFwgPD8fKlSthJFOD+huRlpaGW7eEgvD169dRsGBBKHeRWlpa0NbWho6ODrS1taGtrY2zZ9+jR4+GWLVqFaKiovDXXyVw965CKfd/DXv27MHz589VlGr/ywJ5enrD0KRJF9y/fwjp6W8BVAb5Gu7uR+HrCwQEAP37C/HG6Oho5M+fXy6OV7Ro7r7pjRuFkGmVKsDUqarbtm8X40eJEsCnT4CPD1TGGy8v0Sc/eSIUq0+fVojZKSM0VGxbtCjzdpmg25IlQnwzPR1ISxNK0nFxwOfPuX9e2tpARsZr6Oh4IF++M1i5UtzjP4HUVKBatdsoXtwJT548wbRpwMGDwF9/Ee7u7ggMDESrVq3ydM7Y2Fi0aeMCZ2cXTJvWFzdv5sevvwJPnwKdOgF+fkINPTdwcXkCiWQMqlWrjAEDBqBKlaYYNw5YuVLc+9ChYl4QEJA70dqccODAAaxbtw41a9aEnZ0dDA0NNe5nZ2eHgQMHYsGCBejZsydIoWI9ZcoUjft/+vQJAQEB+PTpEwIDA9GuXbuvvsfUVM3tFwDOnQPOn38HC4tonDx5FGfPnkVycjIsLS0REBCAd+/eYe7cudDS0sK83Crg/iA8ffoUf/zxB9LS0lCqVCmULl1a/lesWDFoa2sjf/78X0Ryd6JkyaPo378/nJyc8qxu/3fi+fPnCAoKQmhoqMr6vPTx+X/kDf4voEiR/ChZshDMzQ+jUqViWLYM8PbOjxcv5qFSpUqoW7cSQkKeYdmyNBQuXBiVKy/E778XQdGiOvjrr7+QlrYSu3bNgYWFmLQHBAClSwvV7d9+Ex3+vn3AjBmAg4P4MNq0EZ2QDB06iD9NKFFCsW3yZKGMrA4vL1WDpHt3YM+ezPslJgp1yl27xIfr4SEUV7O6tibEx8dj6dKliIy8CVfXvCuJfm9kZAATJ06En58fAgICIJVqAxAf9dcYFQBQpkwZTJmyCMuW3cH+/a7o3TsYBQuWRUZGUVhZAdOm5fzRjx8PREQAN2/mR1zcQGzd6osXL8Jw5UokihVLxp9/VsbKlcVQuHBhrFy5EsHBWnB19f6q+wWECni3bkCTJl0QF6eFkiVnwczMDEFBW9G+fTm5UQgAo0Zdx9mzz1C3rjcmTSqBBQuAcuXKqZzv+nWFQntgIODllQ8ODg6oX78+xowZg9DQUBTIqvfXgJgYYTzv2KF4Ptu3Ay4uYqDu3/8mEhPXoHTpFDx7tgNubjpyZfHu3bvj8ePH0NbWhq6uLpYtW4bExMSvflY5YeJEcb+ursLwvnfvHrZv347r169DR0cHzZo1Q/fu3TF9+nSNCuTp6elIS0tDRkYGMjIycPhwYVy5UgB+foWxdu1aHD06FPv2iXaakpKCggUL/u1K5tmhbNmyuHfv3j99G/8zaNcO2LMnEHZ2JyGV6qFfv7NYvHg2PnxYhG7dnkFfPwPx8V2xZUsagoOD0bhxY8THx0NbWxvv3r3DqVOnoK2tLT/frFlAwYIKB9GCBcJwqFNHOJmqVgWePVNMrlxcxJ8mjBkDeHsDMlFhV1fN+zVtqjDodXWB/fuBjh0V22vUAHx9xaS7bFkxVsTFAVFReX9eoik/Qf78hSGV/nNGBSD6nBo1tHD9+nM8fPgQv/zSABs2AH/++Sdq1aqVZ6MCEN/H2bNH4Oy8Hu3a2eH9+62oWzcc+fO3QcOGwLJlwIoVOZ9n/XrgwQM9dOy4E+7utxASEoLHj5/j0aN8sLUFrlwhWrUC8uWTws6uLg4cWPjNxoWdnR3evXuHxUKKG/r6+ihZsmSm/cqXL485c+Zg2bJlaJILK6lkyZJYvXo1YmNj4eLigmPHjqm0+dzg3DnxLZQvL+ZPxsZiXJPBxycVcXFHcf/+fKxe3RETJ7bHgQOB0NLSwqpVq2Bubo6aNWuicuXKOHHiRJ6u/T0QFRWFS5cu4cqVK7h16xaqV68Oa2trFC5cGB8/fsSLFy9w+/ZtfPz4EUlJSfLxAQAKFLDG4MGDcfz4cTg5OSEl5W+//VyjVq1aSElJQWpqap7mACrITWjk3xzmTktLIwCelCW+5oDlyxX6FFFRUaxbV5/16jnx2rVrKmlKEokIhc+dK9KIlJGXnFP1ELs6qwiZ+4JAPz9mSg3Kqg5kwwaxbflykQLVuXM4Bw3yo7m5DfX1dzMl5X8j1DhuHFm9eipNTMzZqNEoNm4seMgdlJWdvhK9epF16jxngwam8vZhY5O7MKXsPcXGinzrWrVEuFOWYeLtLfIV+/bty2HDhqloU3wLrl5V8MHXqDGMPj432aePIu1izx6ya9fxvHLlCknRlmWFpwEBCia03r1Vz6vcDi0sLHIlZKhc7Ojvn3Xb69SpExs18mOXLl04ceJESiSSbHPPY2NjaWRkpFJo/73g7q7Igff0fEdz80Hs168fL168mGXa04QJirqqrNIh1q4l+/bNYJs2S9ihgyk9PDxoaWlJBwcHdunShWPGJNHHJ/cCZD8K79+/p6mpKSMiIlTW/5dToQIDAzlGJmBEwRY0YcIE7ty5k48fP+ajR4+4bt06bty4MVOqoLOzM8+ePcukpCQ5Ne3Jk+I7lHVRrq6q/bCbW+4FO9X3Cw5W0KfKsGcPVeoIEhI06wZVqUKWLCkYnsqUEWrbgCjKBkgtrezSosiCBaUELrJAAXcCA+nm9omdO+fud/woJCSIIvTBgwfTx8eHs2alsH17kTKz9huFDkJCyMqVr7JoUWP27i2Ycjw9c5fitmaNYmw1MSGdncW3b24u+m8ZnXFGRgZDQkJoY2PzXWsr3759y927d6vUnsiQnp5OIyMjXrx48atSilavXs3R6srCuUBWKX9RUVF0dvZkuXKt6eHhwbdv36pIAqhDKpXS3NxchWzke0JWi+TuTm7fLuWWLVtoaWlJLy8vrlq1irdv385U53H0qGp9lTrmziWdnTPYtGl/1qkzkuvXh/Hx48fcsGED586d+7emIOeE+Ph4GhkZZWobeenj/99HLPLnz4+goKBMHtusMGiQSNk4cwbQ1q6MNm1uoHv3nVi0aBFKl94g9zIVKAAULSr2XbhQEd5bsAAq3uOcUK6c8Bj37i1C5D4+mfdJSlINH8bHaz5XtWrAn38CPXuK5RcvgOhoEQbPlw9YvFicY/JkoFAh4ZX/5ZeHaNXqF7RtWwIxMUNRq1ZLHDiQdajy78b06UDr1jrw8xuFlJTJWLx4K6ZNO4OJEyd+87n79gVq1aqJO3f2YcQIX6SlnUJysgsOHmya7XGJiUCRIuL/ZcoIb2S/fsCaNYp9MjKAmzdTcPfuXWzevANBQd8nPaR1a/HvwIHhaN78JVaubIZ8+UT7SU0FDhwAJJKTqFlzOADhTezXT6TbmZkBtrbAhw/CmzlrlvCIrlsnUvBkyJ8/P3R1dQEAqamp0NHRwYsXL3Dy5Els374dBQoUgFQqxYsXL7B+/Xro6+vDxEQLK1eKtgUIz6wsHdDFxQV79lTHjh0LMXt2EP744w8kJVln+RvLlCmDhQsXwtnZGb1790aPHj1QLC8fVTYoVAgoXfom+vdfhsTED8iffwRWr+6c5f7r1omooiy6M2uWIhKjDC8vEfUBhoIcgvfv36NcuXLQ0tJC+/ahiI9fiaVLR8LBQaRB5CbV7nsjJiYGFhYWaNCgAY4cOYJTp04hf/78qFq16r8ufel7wtfXF87Ozpg5cyYAoFChQpiqlq9Ur149jccOGzYMx44dg5+fH/T1j2Hlyoryd1u7tujb374F2rZVHJOXvrVGDdX2dvGiiEorQ5YiJUOxYiJ6oY6uXYFLl8QYYWQEXLsm1pNAhQriPjUjFcAOSCQbATSHltZMVK9eHampgKdn7n/Lj0CxYoCpKXDo0GJERupAT28mHj8uAAuLNdi8efM3ndvHB7h6tTUSEzcgKqofjhwZDsAqy/FXGffvixRTADh8WPTbQUGQj62lSgEvXwIHDswFSWzatBcBAd90uyooX748dHR0ULly5UzboqKiULhwYXRQS2UYPlxEEgoVEmPEzp2az12uXDkkJSVp3JaYmIjjx48jX758ePfuHTp06CCPiKhnDcqW37x5g8TEDHTvvhkFCixGcHAwZs6ciUKFNF9fS0sLCxYsQO/evbF27Vr5WPU9EBgoooJGRsSJEyfg5bUEQ4d2wL59+7L03s+aJaJ/S5cC48aJVHj1NNjAQCA1NR8iI0MQG3sZmzevwPXr+dC+fXs0aNAABgYB6Np1M5KSRMaEcrr834lPnz7BwcEB06dPR2JiIuLj41GiRAkUL14cJ0+ezPV5/t8bFgBgYGCAc+fOoVmzZrnaf+VK8e/z588xefJkHDmSH8uWLVOZ9K9YAdy+LTq2mTPFIFKokPiTdfzXrgENGmRvaMybJ0KE27eLib5ybYYMy5cD7u5iW3w80KeP5nPJDJRbt4TBsnUr0LixOG9MDODkJDq2Z88yMGHCM6xffxFXr26Bvv7v2LixSq6ezT+B7t2B7t1N8flzR6xevRq6urrQ19f/5vMaGwMnTwIlShRB1aob8P79KRgb/wY3t1j4+fkhOjoaDRo0QNWqVZGUVBB+fgVRooQw9J4/Vxh706dnzrldtw4YMKAwqlZdA0vLyWjQ4AM2bXKGo6Mjisiskm9AUtIduLraIl++fABEel5iokh/Gzy4qvwaCxYA7dsDV68KowIQ7ahLF5HvPWAA0LChyMv+/Pkz/P39ERsbiwEDBuDx48coU6YM0tLSULlyZZiammLBggVo9CVeHxUVhcmTJ+Phw4dfwsGtcOuWN5KSHuLt2zAYG8cgMFAbV69excyZ89Cjx0U8fHgVV68aQbl0JzERGDlSGGOLFonvpVmzZjh06BC2b98ODw8PlCxZEh4eHjAyMvrq8OzDhw9x/HggihWrg9GjR6NevXo5pnFcvKiaFjdmjHhmWaWuAGLgK1++PABg717A0bEHrl51weLF8+DqqgsDg61o3VoHffv2hZ2d3Vf9lrwgJiYGwcHBePjwIbZs2YJChQrh4sWLCAkJQb58+RAZGYnr16//8Pv4X0Xt2rVRqVKlrzq2Y8eOiImJwZUrV6ClVRzKp2nQQPTXAwaIFFofHzH5ePxYrMsNxo8XKVXHjwMpKUCPHqqGyfjxIp3p9GnhDDM0BFq2FIaDOtq3FylS5csD798r1qelZW1UFCnyAJ8/DwbgivLld8HQsCg+fhROKxMTzY6wvxtr1wKANo4fP4pFi3qjR49CMDU1lX+D34ISJYC2bavg2rW9GDFiNF6+XIo5c+yQkeGjMRVo5UogIUHUrKSlATo64n116SLevQxjxoh32aJFMxw5EowtW3Rx4oQTgK+vw1PH8uXLsXfv3kzrHzx4gPbt26usO3VK9LuLFonlO3eEoSFbliEjIwN37txB69atcfnyZVy6dEme8nPp0iXExcXB2NgYlSpVQpEiRTBkyBA4ODigWLFikEi6YO/e+nBwEMbwhw9EWlr6l/H1NV69qofVq+fBzc0Cw4eL9pUVGjVqhHnz5mHIkCEoXbo0PDw8YGhomOf0LHXExibi4cMNmD59FwwNDWFhsRoDB1bM1hnw8KHC8TRvXtapgQUKAHXraqFu3fYqz3/gQKB5833o1es0jIyMYGv7FmPGPEbLli2/y1wht7h48SImTJiAihUrYtKkSdDS0kLt2rXx6dMnfPr0KU/pvP/vi7cBICkpCY6Ojjh27Fiuj7l16xYCAwOxfPlyubfqzh3g11+FN7ZKFdExXLyYud4hJkbkxbZuLTrgcuUU3osfjc2bhYekcWNR57FmjZgwXrhwAZMmHUe+fPcRGZkPTk510KJFC7i4uGDQoMLyD+N/CQ8ePECDBg3kDTohIQHLly/HsmXL0LVrV0ydOhW1atX6btfbuBE4ehRITLyI+/f3wN+/AZ49u4/Xr1/j1KkYHDq0EG3atAAgjJ2SJUVn0bRp5kJldSQkJGDHjh3Yu3cvihQpAmtra9jY2KBs2bJfda8TJ97CyZPbceHCTCQmAs7O4r0DgK3tLCQl1UPt2o7yYlEPD9E2ZHB2jkfPnsfw/PlzlCtXDpUrV8axY8dQuXJl9O/fHwkJCahevbrccMkJJHH69Gns2LEDTZo0QbNmzVCxYkWkp6ejbt26ePbsGfz9/bFu3TpUVHKvJiYKg3fXLrEs+3/RoqJbkr37ly9fYsyYLdiyZQx0dY2hpVUYLVoABQsWRI0aNVCiRAlERUXhzZs3KFmyNLp27YzOnTujfPnySEhIwLt37xAUFITy5TfA0VEX3bqJglwPD2RLzLBunZiEyTxQs2aJbz+3ntqNG8WEsF8/Kfbv34+IiAjcujUICxZ8xvjx45GUlIQOHTqgWbNmqFatGipVqgQdHR389ZcgVJDVc40cqVor9eHDB6Snp6NChQoar5ueno6NGzdi586dKFq0KIYNG4bOnbOOzPyXi7cBEVVbunRpniajYWFh8Pf3h5mZGfz8/PD2bSEMHgwULw5cvizGgZ49Ra79kSNiolatmhg3PD2BwYOFI6peva8r9B8/HmjWTEzS7twR41DNmoClpYhOq2P6dGDOHGHsFCwoJr2ZS5leArgG4A6AMIhoxW8AKqJqVTFBrlBBOCz+V7Fw4ULo6enB0tIS+fN/u+90+nRBdFG4MODmlobAwHV4/nwTWrUqifz586Np06aQSqV4+3YAxo6thqpVxWTx0ycxNrx9KxyPSlwJKud+8yYBTZvuxL59u1CpUiW4uLiga9euX5/f/gX29vbYtWsXdHR0VNY/e/YMs2fPxm+//SZfN368cJYo+141FRj7+PggIyMD7969Q61atWBnZ4f8+fMjX7580NfXz/TtSyQS7Ny5E4UKFcIff/yBU6eiIZWWhETyHs2b54O2tjaKFi0Kb29vfPgQD3//pdDT64URI/rCwUGc4/17EQkoXVpEUmbOFHMqGSIiIrB582acPn0aNWs2xZMnzVC5MtCzZ0nUqlULtWrVQqlSpZCRkYG3b98iPj4eenp6mYyQuLg4NG7cDUOGDEJgoCMKFCiAnj0VdYNZQT1bQX05J/TrByxenAQ/Pz+8efMGt2+nY+DAzjh37hxcXFzQt29fjZP6Dx+AUaPE/+fO1eyUzglRUVG4ePEiNmzYgLp16yIwMFBjlAvIWx//nzAsAMDZ2Rlr167NFYvHli1bsHnzZqxbty7TQDN8uJhEykJVd+4Ith5lw6F3b+Ed3rFDhJkPHwb09QF/f2GFjxsnQqGzZn2/3weITkpPT3QQc+cCO3bEQ09vMFJTU9C+fXtcvWqOOXOaYutWLaSkiLSVWbOEd0WdqeSfxokTJ2Bubo6MjAzky5cPr169gpeXF7y8vODm5obIyEgYGhrijz/+yDJNIa9wdQW2bRP/T00VqVKyyXjv3h/w6lUP7Nq1C6VLl/4mVofY2FgcPnwYBw8ehLa2NiZNmoT69evLr/viRc6h0JMnTyIk5C6KFfNHRobwhskiY58/f4aDgwMWLVqEhg0bAhDRs+nThbfy3btYPHrkhpEjnVG7dm18+PABMTExaNasGTp16pQrr49UKkVUVBSqVKkCLS0tXL58GY8ePYKxsTF0dXUzGSRPnz7FzJkzsXr1apX1Mkay8PCb+OOPP/D69TucPg2UL38DhQsXRkZGBipXroxWrVphxYp43Ls3Fm/fvkVkZHmsXQvMn5+CFy9eID4+Hn/8UQU3blRAgQLv8fjxn6he/U8ULRqH4sWLo0SJEkhO9kB8fGPcvi0mVb/9pjqQZoWJE4HXr0VEpXr1vH8rdnZiIqanJyaVY8YIpwNJvHr1Cjdv3sTdu3fx6tUrPH36FA0bNsTVqx3x22+NUKdOHXz69AlOTufQtOkpvH79GoBIF5NKpfj48SOMjIygp6eHKlWq4NOnT9i9ezeePn0Ke3t7+Pr65mpy9V83LI4ePYq7d+9ilGykzgGHDx/GvHnzsG3bNhXjztJSpMG0by+Mh40bhfGwYYPq8XZ2wKRJ4rt9+FC0w9z0J4mJ4rzlywMnTgD164uJSc+eQOfOohBdkxNr8mTg7l0RsU5LE+uaNgXu3s1AgQKhSE09j/z5nyA9vTqA9gCaAmgMmQe9cGFxn/9ECl9WWLp0KUqUKIHevXsDEGkc/v7++Pz5Mxo1aoRz585h06ZNWU6U8opz50SfsXkzcOFCFObMKYfQUOLWrVs4fjwN+/ZNwJ49G1CtWjWkp4v30L+/cECpze2zxNOnT7Fr1y6cPXsWpUqVQvfu3dG9e/ev8sTb29tjz549mY4lie7duyMoKEieDvXhg2hHMifpiBEJuHnTD0WLilCWlpYWMjIyoKenhyVLluT5XmSIiYlBvnz5NDpEHBwcsG3bNhRSy4Hy8RFZGzo6QGoqMXSoFvz97+P06dMoU6YM9PX1Ua9ePVy6pAUvr0CEhwdj5MhduHLlI7p2fY7nz5/j06dP0NbWRnJyRURFFUNc3CM0alQA7do1QWpqKhISEvDo0SMMHToNkyZ1QKNGIp3QzCxncoLAQPEd+viITJbIyLzN7VxdRf9QoIAg++jTpwC2b88HqVSKKVOm4Pr169DS0kKlSpVQpUoVmJqaokULA/TsKYiDAEHssn27FB8+vMDDhw/x6NEjPH36FK1atYK9vT1Kly4tvx5J3Lx5Exs3bsSLFy9gYWEBR0fHHMsFfrJCaUBycnKuw0q1atVC48aNNXqvkpNVJ32ycLcydHTEC1+7FnBzEw0uMlIwcsycKfJc79wRk4ys8hi/Bh8/KlI0zM1vY9IkS2hr78Jvv3XE2bNi4lmjhpjY7NghJnWdO//zebLqGDIEuHMnAmXKtMX48XPx6tU9JCUlYcWKFahbty4Akb5gamqKP//887sZFso2Z4ECUMnxzMgog7FjZ8HCwgJjxozBq1f6AL4uWlK2bFl4enrC09MTz549Q0BAAFq3bo24uAGIiiqPypWBR4+A2bOzpiB8+PAhHBwqws0t87YiRYpg0aJF8PPzQ0ZGBurXr4/Pnz8jMTEKiYlAsWLFsGnTLLRs2TLTsdu3i/SwGjWEF0sTnj9/jgEDBkBXVxeRkZEoVqwY6tevjyZNmmDSpEl4/fo1ChcujKpVq6JTp06wtLTEyJEjMUBD/ke+fEBExDsEBARg0qRJAMrj5csU7Nw5W+6liY6OxvXr11G1ahHMmXMYrq6u8Pb2xps3zZCSUg1169b9kncrKDeBigB6wMOjB9avV/yuBw8UntaJEwUzT06GxcCBYiKWnVExZIjYp2hRzZ7cAweEQyI5WVxXdk0tLS1Uq1YN1apVg729vXz/O3fu4M6d29iyZQuePn2KEiVKQEenE8aPH49q1aqpeK8kEgnOnj2LFy9e4MaNGyhRogT8/Py+ii74vwxdXV2cO3cuV/uSxMiRI3Hp0iWUKlVKZVuVKqKdyIyEvXsV9Q6yNpCUJAyE6dPF3/jxwJYtYoywswPOnxcpOKmpyBRJ9vUVxkqxYiLadu6coqauenUxBmjCkSPCg06Kb04qBe7ejQXQD6mpRihYcASk0jrQ0tJC06biW0lLEwxQtWuLqMj/Ej58AKZNm4MDB3YhIyMDJ0+exJw5czBjxgy0/VLQcvjwYXTo0AERERHf5Zrr1yscTZ066aJtW+DCBcDYuB2ePgUmTQrBwIEDsX//fuTPL156Lks75ahTR6Rpjh49Gm/evMH27dthbm6OyZMno3Pnznj0SDie0tNFultWdQiASFvSZJBoaWlh3bp1sLe3h7e3N8zMzFCyZEm4uUXDxOQptLWJly8XYPXqSejUqZP8OJK5ToeJi4vDokWLUKZMGbi6umL79u04cOAAypcvj4YNG8LMzAx16tRBmTJloKWlhdTUVCQmJuLt27eorma9likDPH4chhEjRqBAgQJ48ADIl68q7O3t8eHDhy9sW49x86YUVavGwsDAAGPHdkFQUDlMnKhIHTx2TBhOx4+LZQuLZFhYPECZMoVQvHhxbNlSDvv2FcZvvwkDsl273DGe1agB/P67SD3v3j3vDuPly8W8rUwZICmpEHr0EOvz5csnp/+VSqV48+YNXr16hdDQULi7z4K+vg4mTKiH4sWLo0yZR2jc+B3s7eugQYMGaNSoEaytrXH58mX4+voiKSkJ+fLlQ7ly5fDq1Svo6+ujd+/e3yWlXCNyUyX+b2b8IAUzlLk6dVM2kEqltMlC9Sc8XCFQJGMBUS/oDwkhmzcX7EKrVpGlSpFFi5I1aggGCxlzwIYNgjnie0HGViGVSnnp0iUC4OXLdzlunLjWvwGDBwtxsUGDBvHPPy/RwOBclowJGRkZNDIy4ufPn7/LtZWJpi5eVFVbjYiIIqDFtm2D2abNGpYvX5kbNmzggQMH+OjRo1xfQ8Yi5eMjWKSuXhXva//+/axevQddXFx4+vRpkplZNGSQSqU0MTHJlQKpv78/t23bxg8fPsgVuLPC3LkK1qM9e1QZaUaOHElbW1taWlqyR48ejIiI4KBBg2hmZsYpU6ZkOldqaiqfPXvGhQsXskmTJjx58iSlUik/fvzImJgYSiQSSqVSnjhxhmXKGPH06buMjlawpmiCo2MqL126xBUrVrBq1ToEIP9LTk7Olj1NE+NKTiwsM2dSRVxLWWRMBnd38vZt8f+LF3OntJwbKDOMJSSoqsBv20a52nuPHoKR5FvxX2aFIskjR45w2bJlud5/5MiRvHPnTqb17u6q362Li1gOCFBtO4ULK5gFJRKySxeyWDEhWufgINaFh2duT8rfZGysOI+3t7jG4sWZWQZlqFNHjD82NjIWKOmXb2e+GvOTYLjLi6jc343Bg0kvr0SWKFGd5cvb0MrKhjNmzODbt29V9ktKSqKDgwNv3rz5Xa6r/myDgkT/rdgezr59B7NevXrU0+vOTZsOffW1xo0Tv1MiEarTvr6+tLDowXnz9jEtLY0ZGeT27Vkf/+jRI/bq1Svba9y4cYMrV66kgYEBXV1dOWjQIM6fP5+zZs3iq1evNB4ja2M+PlQRaE1LS+P+/ft56NAh7tu3j8bGxjx69Cg9PT3ZunVrrlu3junp6Xz16hXPnDnDSZMmsXfv3jQzM+PQoUPp4ODAvXv3arxmr15vaWJiIhd2zYpRTfZ+Ll++TBsbG9as6UBHR2d6eHjw8uXLmb6l27dVGSDVWaiy+paU4e8v5nukGDvnztV8X97e4k8mdPmtGDyYjIyU8O7du7x06RLv3n2jMl+5d0+MX9OmkS9finVpaWl88+bNV4sL/lTeVsOKFSv4+++/5+kYa2vrLLeFhSkaSlbqzB07CtrZggXJsmXJmjXJ/PnJ7t0VA8+BA5ob4tdiyhRy505y8uTJbNTIjj4+m/9nFIxzC9nHf/jwYTo6OrJv3+yNhjVr1nDDd7KawsLEu8mqA3jz5g1J8YHq6Ohw0KBBXLZsGS0tLRkWFpara8gmEqmpqdyzZw+7dDkp/9B9fAT1noeHBxcvXsy+fTW/u4yMDBoaGjIpKSnba0mlUi5fvpxLlizJ1b1ZWBynvr4+/b6MGModcUhICEeMGKGy/6JFi9i2bVvu3LlTZX1YWBjPnDkj/13BwcF0dHSknZ0dW7ZsSQDs1KkTzczM+Msvv/DlS9EpDhqUwe3bd/Hw4cOZ2u29e/dYsGBRlikzlo0abaG19SXGxMSo7Nejh+J73LNHdPoyLF6sasQvXqwYELKC+kAkkWQe1LKb+KlDZgy4uwsjJTtIJIq26O6uamzlpNT8NfivGxZ9+/bljRs3cr1/SEgId+/enWn9tm2CzrVGDfFnaKhQuFdGxYqkqalwNGlrK+hedXTIzp2Fw4rM3L58fVUns40bkwMGCGOkTh1SX1/zmNSjh3BuVaokxqQCBTZQR8eJFSp409OT9PLK9U//R3H1qjDS4uLiaGZmxpiY1GyN+WfPntEzK97SPCI8nLS1FYb+0aOZv7vRo8ewe/dFnD1bysWL1xIA3d3daWNjw6vKLy0HODiI3ylztMgcDDt3vmVwcDBNTEy4b98+XrpEfvyo+RwzZszgsWPHcrxWWloaO3TowPT09Bz3DQ8nPT0Tefz4caampnLbNjF5Jck7d+6wcePGXLJkCRcuXMh3797x3LlzbN68OWvUqMH4+Pgszztjxgza2NgwODiYs2fP5pgxYzho0CC+e/eOM2fOZMeOxnRyusPRo8V3lNWca+3aN2zePIi2trY0MLBhxYrmNDY2poGBAU+fPk0fH1UncHCwqgGdl748q2PUjZFJk1QdCtu2ZT/nGzdOXDenKY1EIlTcw8PFn7Kie3g4OXmyYt/AwKzbSV7w07BQg4ODA11dE+ntLV68sqWtCampqezSpcs3X7dhQ9GZFy8uJjkdOohOXfZx2Nqq7j9tmmio3yL37u9/gM2b+/L48W+7938Ksok3SW7atIn6+ouy3f/XX3/l9uxcN38D7t+/z/79+zM6WnQcWXncSfF+k5OTaWdnxwULFrBu3T4cP348X758yW7d0hkbKwwHR8elrF/fViNXd1JSEgHkaFC5urpy3LhxKnoT2aF8+Q5ctWoVHR0d+e7dO5VO8ujRowRAY2NjnjlzJtvzuLi4EIDKfra2kaxevRtLl9YnAJYpU4Y2Nja0tLRk165defXqVV68eFEegejduzd79erF/v37c8yYMbSx6UsALFCgAGfMkGr8hiUShcGv6RsKCFBsDwrK+XmEhKgOAoMHq07qyNxP8v39VY/NboDMCeoDXm41EbLDf9mw+PDhA3v27MkJE8SzlOm+ZIfZs2fLI4u5QZ8+qpMaFxfxlz+/iFJUry62A2J9gwaKiIY6vL3Ffbq4CK+rtTXZv7+YUEgkIiKqDomErFBB6FcULLiFwGCWL/+SdeuKb2Xbtlz/lH8Ua9cqJl3bt29n3759c2z/xsbG3+36sbHCuJs2Lfv97t27xwsXLvD9+/f8+PEjjYyMchVhnjBBROxTUlI4bNgwWljYsHNn4QE5epRMSyMlEgm9vLzo7DyWiYkpGs9z6dIl9uzZM9trJScnc8aMGXTR1Mg0oFevk2zb1pgAmJiYSFK17+nevTv3799PyZcBUCqV8sCBA5kMnPDwcOro6HD8+PEkha7GhQsXuH79YdrausnHADMzMw4YMICLFi1iXFwcSWGE1K1bl/PmzWNycjLfvn3LtLQ0SqVSVqlSm8WK6bNmzZds2zbz/UskYs41bpx4h+rtZvBghaGxbVvO80QysyGhvpyXSLmnpyKbJavohzIkEjGu+PurzjnmzFHdLy2NnDcv+3PlBj91LJQgkUhw714afvutKIyNxbolS0Tuqqb8OYlEgkGDBqnkFn4tihUTRXbVqwtVbktLUW9x9qyow5Ax4QCCUrB9e5Fve/CgZkaGrCDL8Y6MvISEhBW4fHk3Chb85tvXiNRUkW/7rQqhWUGWbyjUOZ2QmGgKwE/jvgMGhOOPP+6gc+fxcHD457Q3Xr9+jdOnoxAYGIeuXUvByUkUZso0J5QRHw/4+wdgwIABsLW1xfnzGWjd+gCmTp0KqfQtGjf+hGbNgmBpOQRTpxqid+/eOHTokEoBbpEiRWBvb4+EhASkpaVlYv0AgHPnzqFq1aqYPn16rn7D+/fvUbt2dVy+3A8DBtSGkdEAaGmVgpnZS1SvXh2///47hg0bhocPH8LQ0FBew6EJ27Ztw8aNG7F7926MGzcOb99OQEZGEOzsqmLZsn3Q11+Io0f7oHBhbRQvXhxhYWHYvHkzpFIpQkJC0LZtWxQoUACVKlWCRCLB+/fvMXFiQURGTkaJEiVQqpSWxm+3QIHs2ThyYmY7dkzkUBcqpKiXmDxZFDVmZACdOmV+p/b2Isddxt7k4aH53ElJqseamQGHDqkqz+YW8fHiG9TTEwx1P/FtOH78ON68sZSTbqxaJerQssqVlkqluH//vpwYITcICVFQhiclKahaS5cWdQwZGYKStkED0S50dMT+yhSlgYGCIUdbW2yXEU1UqaI6Vmhih3nyRNT37d59AxcubEX16ruRnp4fjRsLJfDs6JP/l+DuLsZSFxdByDJx4gH0738HgOZiqZ07d6Jp0+x1ifKCMmUUdPTZoXHjxirLZcuWxcuXL3NkMUxIACpXJnx8fNCjRw/MnWuH5s0Hwtn5BJo0aYY9eypCX18fzs5rcfPmHjg5dcPOnTsz6fzs2rUL+2SVvVlg0aJFKFasWK71PmrXvoOYmBGYPt0EvXr1QqNGg1G1aic8fRqN9+/fY+/evdjzpfp706ZN8PDwgK2M41wJNWvWxOzZs5EvnyhQzpcvHwoUaIy1a51QrZrQpGjYsAkqV66MunXromjRoujWrRsaNmyIGzduICUlBQsXLsSlS5dQrFgxxMXFIT09HRkZzVG+/C1s3vwSjx5VldcvyVCggKh3u3NHMJupM0wvWyZqnvr1A+rWzUy1C4j5z/r1or5FT0+cY8kSQegzfjzQvLnq/s7OYn62bJlYHjBAFPRrgo4O5HNU2biTHWS6aeooUgR49Up814Agk/gOzMt5w/e2VP7XkJyczHLlWqusS0hQWKtz5ypSDhwcyGfPXrFNmzbfrOro7S1yICtUIFu1EnmrlSqRzZpp3v9rvZABAcLKPXXqFC0sLGhv/2PeUXh4ODt3/oVNm05lnz7XaGsrUod+JCQSSZaRIz8/cuvWj+zWrRtjY1XrI/5uSKVSGhsfooWFBQMCArhs2TIaGx/WmMt45MgZ6ukNk9dYyPLzZUhKSqKRkRH9/ESErW7d/hw06Emm86SlpXHp0qU0MjLiokWL5NeKi4vjjBkz2KlTJz59+jTXv+HMmTOcNm0ab98WbU+EuWcSAHfv3s02bdqwdevWDA0N5Y0bNzhkyJBMzyAmJoZJSUm8efMmz58/TwCsWbMme/Z8LvdCXb58mePGZf7dOSG36vPfAmVPb2ho1irbMoSFKeplunfP/jctX67qgWrTRqSfKOfF5gV9+5Jt236/dv9fjlgEBgbS1lY1Cqfc/+7ZI9qbzIM5dOhQTpkyJVfpI9nBz09EsMuVE2mzdeuKiEWRIplr79auVY2kbNigaE/KUV7Zsvp1/PzIX3+9y7JlTXn79o+Tf1+8WJG+96PEhKOjhXfX25v85ZeTnD9/vsb9/P3JGjV60N39nUqN0j+BSZMm0dnZmdevX892P4mEbNz4N06ZMlfuYY+MJGNjY3np0iXu27ePpqbmfP48kmvXktbWf9DWNjDTeT5//kxXV1f6+/vLaxNUryOhiYlJnvLte/TowdmzP7FPH9LDI4bt2/9KAOzYsSOrVKnCChUqcOXKlVy5ciUBMCIiItvz+fr6ytPFNm/+k7q6ugTAjRs38vFj1X1TUlL48uVLfswip0cWSVLG9x4jrl4V72PbNnEtWU1rSIjoL9Tr70jxPk1MxLft4SH6kqygnrH3LRl8gYHk5s3k6tWqaVHfgp+pUEoICQnhwIEr5Y2AFJ1eeLj4v3InHBsrQlmzZ8/m4cOHv+m6skYdG0t27Urq6mY/ifjaRuXtTZ4/f54ODg5MSkr66rSI0FBy7tw0bty4lR4eHgSgUhS9e/duFihQht27d2eLFi346NGjb2r4ucG9e/fYsWNHJsiSTJUge75WX5KRf8REMy/w9haT6xs3bvDIkSNs2jSAixcvzrSfjY0N3717l+25Bg8+xDZt3BkZGUlzc3POmSPl2rWa9z10KJ1Nm45nly4bGBpKmpmZcfv27TleQ4YDB8T30LdvEnV1LXn+/Hn5tg8fPtDAwIAAuGzZMtrZ2XHHjh0az7N3715Wq1aNAFi6dGmVbcOG3WWNGvq8du0ayawnwxKJojBQ+XslxcRKtu72bc3pHt+C8HDVmgwyZ+NefQKXU0bBtGninO3akY6OYl1YWN6Ng9hYkVO7Z49Infgebf+/bFgMHDiQNjZXVNbJUho2bFC0C1m7O3/+PLt16/ZN1xw3Try/8HBRg1ewoEiZbdhQ8/6a2qJsXWSkcFLI0qOUi/kTEsRvOXfuHC0sLPjq1dtv7rdTU1N58eJFPlab/VWq1IBVqrSlubk5z5y5IK8T+ZEYPnw4z549m2n9yZPi21i1ahW3bt3K27dzl9ryIxEREcGhQ4fSxsaG5ubmGmvf4uPjaWxsyv79M7Ks4bx//z4bNOjJOXOkvHDhAg0MRmWZmnXlyhW6ublx3pdcmNjYWHbv3p329vY8dCh3xeWxsWLu0rq1G2/duqWyrVmzZgTAX3/9lQYGBixXrhxTU1P5/v17pqSopmmFhIRw/PjxtLS05MWLF7lx40YuWbKEt27doqfnMALgH3/8QZLMAx+KHMr9b3T0958T5LW4WyIRNTKxseIvO2ISUoxvEyaIfdu0EbVWPj5fV0MXGyvqtJydM4+lX4ufhsUXJCYmytlzQkIor7GQWZbKxZipqalMTk5mr15vaWRkJM8T9PVVeGA0zG+zRF49rGvXig9j2zYFw0dW2LBB4bHR03vPTp2M5MVRuUyXVIG7Ozlo0Ek2b27Chg2X8PXrdyxXrhzt7e3522+/yffr1y+Nhw4dYu/evfnq1avvktudHaRSKbt168YQDVW24n0kyPNDv0cB67fAyUlhrE6bRs6enUETExMVr+aHDx/o7Oyc47l8fEQEwdnZWd7RanrW16+nsWpVezZt2pRNmzZl//4prFWrSa6K9pTvW4YzZ+JZrZpFpkhHUlJSjiQAT58+paGhIYsXL86//vpLZdvOnTtpZfU7fXxEu82KxcjJSeHlPHkyswdKxlSlbgBs25a7grecoPzt3L6dczQhp0Lu3B6X1++oTx/VASogIO8RIHX8Vw2L+/fv08PDg3Pnivdw9qxoo7K2pKmg88mTF/Tw8JCvS0gQA3leoPzOJRIR1c4up/rkSdV2P2lS9nUR0dGiXYSGkn37PqeZmRkTExN59Sqpp6fI5c4t/PxID48PbNBgJE1NLaivr08HBwc5oQVJGhpuoJubG01NTdm5c2eOG/fjo9ozZ86kl4bKc1lUdPr06XJnyT/tfFKGVCqll5dXJmax4OBgjaQA6ujQYTm7detGY2NjvnjxIstJ7v79yezY8QirVrWghcUjzp17m506dcr1fd6+LVgwY2PJJUveU1fXTO4gIsnXr19zzpw5dHNz48ePH+XjlSY0bdpUHrlWjzwYGlrzyZOPlErJhw/JrLoRFxfFPE69f5Zln/j4KJjVvic0ESlkh8GDVfsF5UyZrHD0qPjWlLmDcjMWqcPeXvH79+z5PsbFT8PiC2bNmsVdu3Zlu4+9vWAg0tbWZtu2Pdm0qQcvXbpEUjQkWcFlQkLePIt9+igmUL6+2YfAZEhIEGG17AYpiURBPSmVStm+vStr1bpKb2/x0WXl2c4KISFkhw596OPjw+vXrzMhQfzuxETB/uDm5ibfV9bBkCIsL2OE+JGoX78+o6Oj6e5O9u5NWliIa1+9SpqZ3WPTpqPp4pIzw8/fAZkRKktjmDVrFvft28foaPFu+vbNYNWqjhw4cBj//PPPLM+zYYNqceCECZrbT//+Uvbq1YsAaG9vz2rVqrF9+6V5umf1js7J6Q5dXFxyXfCdGyxdupTbvsyCEhIS5IWN6sbK16Q7TZqkaIfKdLlfg8WLFWmRuTHQe/RQdN7K32VO+NaQt/pzWbxYcxg+L/ivGhaurq5yQzo8XHx3yik8snezefNmzpgxgy1azKCxsbF8QigjAxg8OG/jw+DBqsZgbtrb8uUK6srs+t4DB0RbDA8nR41KY5EiVrx+/Sm7dxdRESMjwSDVv3/u7nXgwHQGBKykqakpjxw5SwcH8ubNm7S0tGSLFi3kjgRPT5mRFcvIyEh6en7/yZ06Tp48ybJly5JUkJ8cPapM6+3D169fMyjof69A/fbt23IGPlKMaxYWY3nw4MEcU5S8vcmYmBh5alVWhkWLFrPYsmVLFilShG3atGGtWl6cnIfcGPXzenh8pJGR6VexTT59+pR79+7lUQ2eJVtbW759K9psiuZ6dAYEqBJgzJ2bu3c6d67iu/kWFs7FixXjS3h4zt+7r2/eDQvZfupGS16dTz8idfinYUHR4djb2+f4gd6+Tbq6prN2bTd267ZZZdu3ehYnTVJ4wb4XlFkx7t69yyFDhnxT5GDCBNLPby7r1atHc3Nznjhxgj4+YgJoZGQkZ2MgFaw7uWVO+VaEh4ezb9++9Pcn+/UTA9ekSWTlykIz4NChQ3ninv+7IXuGDg6f5QNsSoqUVlYPGRgYyF69esnZNdQhGyT79Mm6MxQda4Y8N9XBYRgdHPLGkKU8GQ4LE+92x44dNDU1/eY6Ixm8vb3ZtWtXmpqa0tnZmX5+ftTR0cmU+/s1NKo5sXJ8b/j4iPfi7y8GDRcXhSZJbr3WslzdixcFO1VeUzQOHFD0RQkJIi3qW/FfNCzOnz/PQYMGZbvPxYtiAtGuXReamk6go+NFOcf/2rWqtRBhYXl7lzLvq7v799UzUv4GZs2axfbt17FzZ8EIJZuIRUeLvO/cROFNTXezQoUK9PX15d69e+VtLyIigiYmJnLa64QEkX4xeLDoq79XCkZ2mD9/Pvft20dvb4Xzxc9PjJEXL5JVq9qxb9+M7/p8vydsbW35/PlrWlmJ73rNmo+sVWsoTUxMuGzZsizreMaNU4zBM2dm7VDx9k6hjY0NAXDYsGGsXdstT3UV6hPSwYPJ4OA19PLyyrLeIa+Ijo5m586def36df72228MCAhg9+7dM9XOqN9LdHTO39uePaoMgRMmfJtGy9q1udejUE6FSkhQpQ7OCcqZBAcO5I7FUBnKY6eMuvxb8Z83LJ4+fcquXbvm6X5TU1NpZGSk8iF/K1/81asKSzkvaRqySaUmgyQ2VuFFe//+Pbt0cf4meloZH7JEQr58+ZK1a3uxTRtzGhkZ8dy5c19/4u+ABw8eMDAwUJ5CQ5Lv3r3jr7+m0NiYnDNnDk+cOPGP3mNO2LJlCzt0UDV+ZB3k77//rpJq9jUQE5MENmgwmJ07b6eBgQG3bt2a6+NDQxXhYyH2dpuOjo50cXFhly5dVL6H27dv58lTJZVKuWjRIjo6OrJTp06sW7cuJRIJjY2NNaZrydIBfXxEx5obgzw39H7fCy4uinS3ixe/jeY1IUF851/rdJAZF97e38cr/F8zLA4ePEhzc3MVx0lWiI0l/fwS2bSpqYpwmJ9f5gLlH50eKkN4eNaTFOV7EFpASRw3TlHXI0PDhrmjPHZ2zmBoaChv3bpFAwMDtmy5jPfv36elpWWmOgtS3NePjlTI0K1bN0okkiw9tLbqnO7/Y7hz5w7r1vVQeQ9Xr5KjRqVzxYoV7JONp2Tt2pxTQPv0IU+fjpOnIFWp0o0vZYppuYCyUKqsHuzz58/cuHEjzczMvsv3npiYSFNTU3bo0IHLly/n9evXaWdnl4lGXj2lp0ePnAkCvkYY9VsgS1Hv00cYHxKJgto2L9+ErPbRx+frCD6WL1ccb2//9dTmyvjPGxa7d+9msJJL/fXr17my0letWkVbWx9aWT2jtzdpbCxSb2RFcXmxdBMSFArdpPBw5iYdysdHsZ+vr+ZQX3CwaMA+PmSNGo45eg5EikcyTU0P0NLyoMZ7lUUizp4VjBG54dz+0YiIiGCbNm04ZUoqu3QhP378SACsVMmW1apZsVWrVpkKxP7XEBsby+rV3VTWyaIEp0+f5hx10ulvRGJiIseOHctRo0Z9VTrT5s2b+csvv7BLly6sVq0aHz16RAMDA9auXZsAVPJrc0JYWBirV69OExMTAuCWLVtoYGDANWvWcPjw4Xm+N02YMEER0QkOzll47lvwdzBT/VP4rxkWNjY2/PDhQ56OOX36NIcOHcrYWNFXenkJJWsZfHzypoJ++7aYqMkU1HPjfEpIEMJ7TZsK0VVN0SrllMCAgJXs1Gk7JRJxjCxA4+xMFa7/s2fF/WtKKVW+T3v7Dxw2bBcHDx4sTxn+J9GnTx++efNG/i3u37+fkydPpoHB73zw4EGO6tP/C6hRw1Elcq1c+2lnZ/fN5x88WJzPwyOGYWFhtLGx0UgskhWOHlWwoqWlpbF58+bs3bs39fX1OWLECMbHx3PXrl08f/48DQ0N83RvEydOpIWFBdu3b8/AwEAaGxvzxIkTtLKy0jhnk0UM+vTJnVPm/9o777CmsiaMv4jYwIqKHcHey4pdigUQEOlBAUUEVNaK2HtlFbuuWBFQFOwKKjbW3ljFhiIggiIgiFSRAMl8f5xNQqihuvuZ3/PwaJJbzk3uPefMmZl3DhwQz1fdu7dyvYP5WbpUPHfJ27vkXNn/Gr+8YTF9+lzS0XlHDg5E9et3IwAlVn4UwOfzSUPjKllaWhJR2eKmC1JU4pokE5GyTl4CAgJo1qxZxa4kx8QQWVtzSU1NjRwdHUlRsS2tXFm+ku7VzZ49ewgAOTk5kbJyJPXtu4MGDtxDtrZEq1dnS/SblgdB9Usbm4rHrhMRqasb0pgxT4UhM+HhfHr79i0FBgaSsbFxxU9QBEePHqXWrVtTs2bNaODAgRJJz/J4PEpKSiIA1LlzZ/rtt99o+/btFB8fTxs3bhRT58rJyaF9+/aVatiFhYWRoaEhKSsrC+UFQ0NDqWfPnmKJn2Vh717R7xMczDpwBwc26MTHM2+HIE+iMsMQC3osLSzYuSvzHJLA5VZ+UuyvZFjk5eWRtrY2rVhBNGcOn+bNc6ENGzZItO+iRaupadOxlJDwjWJiiIYNYzKSdnZlD7EoeD9JkmfRs6e4AaKsXHQInmA1e/bsr0IFq/h4Vgm8UyeWHCpYQWWTtQyys7MjFZUhZGhYCZ1eNdG+fXsaO3YsOTryydubFWkbOfIEzZx5lGxsbKrM+ElOZguAleGZWbTIjYYMuUJEoggCwW9qZmZWaSFHAvh8Pi1fvpxmzJhBf/31F128eJEiBK5YCZg5cybZ2tqSgoICLVmyhDIzMwkAjR49ukzeciKmFKWlpUUAaMeOHWRmZka6uro0f/58unjxYlkvrUjmzxdFjgg8HrNns+ejrKILJVFwrpbfQPx/4Jc3LJSUdCgrK4/8/f0JAJmYFF59d3JiN0L+BLNv375Rhw6WdOXKFeF25V2V9PcXT8ANDZXMpVVaifii2LePJdb5FuHeWL+e6MyZz9StWzcaNWoURUdH/2dudj6fT3FxcXTs2DFycppFAwduoqlTc6s0v8PNTXzVztS04oPHy5cvhUl6ISEhNHr0aJozZw6tXr2anj17VrGDF4O7uzt16NCB7O3tSVdXt0gt8/xERkYK3eUAqGXLluTp6UnW1tZ08ODBQvK1ycnJBIB69uwpUXtyc3Pp5cuXQu/h7NmzqVtx2pol4O0tHjNrYCAeElKapn9F8PVlhqGdHdH48UT9+7NJ2dKlVZ/bIWD9ejYhXbSIXXvBSuDl5VcyLN6+fUsqKrPowQMiW9u5BIBevSqsb8nlFn72p0zh0bhx4yn+nxiM0NDy5xKUR1WsUyfx1+rqRIcPl7zPhg0baP78+RQXF1fk55MnE1lbW5OlpSVpaGjQuHEVlBirRiZOnEizZ8/+J9zyd+rYcRI9eFC151yxgs0bdu1iz2BFFxbi4+OpX79hZGOTSZMnE715k0yurq5kampKgwYNKlM9orKwbds2oTz4iBEjSt3+/PnztGTJEurXrx/VqFGDHBwcyNramvz8/ITVr/Mzf/58MjExkSha5Pjx42RlZUX169enP//8k9auXVvmWkwCBGFAgtpkBRXzxo4VVanPb8RVFIGikwBLS3Z/FCWfXpUI6mrY2FROCJSAX96wUFHhULt27QgATZ48ucgkbMGALFCPICIyNDQkDY27wsEkI6NiExNBEptA/kwSHBxEK1/TphW9CpaRwXSew8OJUlLYCtyePXvEFJwECIoJZWRkEAD67bdx1aLm9F+l4L2yd2/5k724XC7Z2NjQ+PHj6eY/PlIdHR1KrsxlkiL4/PkzKSgo0KRJk0hLS0vimFoul0s+Pj5kZ2dH+vr6NHHiRBo5ciS5ubmRmZkZGRkZ0cyZM+ndPyLjt2/fFjPCizumIKzu8ePHFBISQkFBQdS9+yDS1Y0WenEkCRMkKjz5unlTXCGnooILkmJnJ27QrF9fOd6t0qho3ldx/EqGha7uQZo9ezOdOHGCAJCr664i7xtBTRXB+JCSkkLKysa0f79oJh8aWlj+WFKmTRNNSiVVHdTWFv3mXC6RkpJkCx9Xr16lwYMHU3ARlqidHdHTp09p+vTptG/fPrK1rTxFuOoiOTmZwsLCypSYXF4qs5BZTk4O+fn5Uf/+/SkrK4tiY2NJQ0ODrly5Qt+/f68yr/zp06epZs2aNHz4cDp37pxEHoudO3dSkyZNqHXr1qSpqUn6+vo0e/ZsGjduHFlZWdHFixcpPT1d+BsEBQURgHJ5jc6ePUtdu/YkExMWll4WOe2S+sgVK0jM8BTUTqosvL1FoVqDB4vGCH//6qmjIljoImLXVpm1ZH55w8LMjOjatb9oxowZ5OnpSSoqjmI3d1HhRqmpqWRsbEwxMaIE0okTK75azeWWrf4FEZsoFacmFRHBCu6xCdkPMjA4SJqao8jd3b1YBYm9e1nnZ2kZTba2JVfD/NWZO1d8FVggoSgpgoT9yZOJTpwII6cCbqrqSCYMCwujvn370t27d+nZs2c0c+ZMSktLo9Bi4mf4fH6heychIYGWL19O48aNo27dutGnT58oMzOTnj17RroSyhCFhISQkpISqaqq0o0bN6h3796kr69PDx48oObNtSg0NJS+fv1KRJIb8E5O4mFA8+eLDxQcjvgKVGUX0hNQcCLq7189SmlVZTj9SoaFre0XWrx4AwGgOXPmUHp6Nk2ZIpqQ7t0r7rUMDmb3mZeXF+3Z4ykUu4iJqfjAPXu2yHMuaT8zeDCr1N2+PdGmTYU/j49n+X0WFmxVPSwsnubNm0cTJ04kE5M06tmT1bIYOpRtv2sXm4zs3bv3Hw//88IHlSKkMp/BuXPn0rZt2ygsLIyIiE6ePEkeHh4VaJ1kdO7cmZSVlSkiIoK0tbXLZJClp6eTp6cnjR49muzs7EhbW5vu3r1LW7ZsoYkTJ9LQoUMlNoiCgoLojz/+oNevX9PDhw9JQ0ODgoKCaPhwDdLQiBbOv4yMJA//LCmcfOlS8fFdoHRZFVTXIldJ53BzK1veV0n88oZFcjKRoWEyde5sR2pqXgSA2rVrJ/ycqd+wG2rpUvY6KSmJNDQ0JFIJqW4Esmre3kTjxjGd55iYGBo5ciQNHnyEXr8ubP1UlyrH/yMCN+rEiWWr1RERwSayKSkplJ6eTkOG+NL8+Uwyj8fj0eHDhyUqkFcRMjIyyNbW9h/5WbYEamxsTCYmJgSADhw4QLNmsSqn7du3JwcHBzIzM6MePXqQp6en2DPO5/MpIiKCzM3NSUVFhYYNG0YWFhY0dOhQiQYiLpdLBgYGtHTpUtqxYwf16tWLNm7cSACoQYMOBIDs/unVy9LpCnIobGwKrxYLpPUEORaShg6XdQFAkNAo2Le0qqqVhZGRSAklv656RfmVDAtBCIS29lgyNjYlGRk5AiAspFZQf55IkPxqRe/evRPq0Ts5/Tv72eHD2b387ds36tbNkXr3NqE7d+7Q/Pkst0KwYMXhiJK/T55k11RcBWcpIszMRJNcN7eyfWcPHojCKTkcopEjLSkxMVH4uY+PDx08eLCSW1wYIyMjUlNTIyKiNWvWUGBgIBkaGgpDZjMyMuj69esUFhZGPB6PfH19C8mP8/l8YchSx44d6erVq/TgwQPavn07eXp6StQOY2Njmjt3LrVq1Ypu375N8+bNo8GDB9PQoTupeXMl6tKli/D7kXSMMDISPb/nzhUeI8aOZYsCgn6gNGWp8lJV3uWSmDxZvO9ycKi86/vlDYuCTJkyRSy+dNcuotat2cOtocFWgIiIHj16RGPHjqWdO3eW+RyC2O/KHmhWr2Z1GywsmKpHu3ZECQlcMjU1pWfPnpGtrXgcHZcriuuzsSm7/vGvRkaGKFxt0qQwio6OptzcXPL29iY3NzexTr8oPn36RCdPnqSLFy/SiBEHSVdXl3r16kWNGzemSZMm0eTJ6ZSTk0Pm5ua0c+fOKlfbcnV1JQBkampK06dPJyImDxgWFkYrVqwgfX19atOmDW3ZsoXs7e1p4MCB5ObmRpGRkXTkyBEaNWoU2dvb06ZNmygrK4uIiJYs4ZGBwS3q1WsBmZqaEwDatGkTPXv2rMTr4XK5BID69u1LBw8epK5du5KHhwfNmDGDTE1jhYNzfLyo2NzcuZU3WZaUuXPZPTBtmnjF0pLgcokGDWIrx8rKREuWVHkzhecVKLhVpNhTQX4lw4KIPfcTJnwhK6tk8vK6QmZmZsIxQiAAIGDaNGZI/v3332RgYEDcf5k14eVFpKrK7kVTU+Zd4fF4NGrUKHr06BEJ1jLyyxMzQ4moefOf2/b/CgUldAVKS2VV/Rk/PpECAgLI1taWtm3bRq1aMelILpdLS5cuJQsLiyoPlRXUtQBAYWFhlJycTKampmRlZUXq6uqkoaEh/LxRo0akra1Ns2fPpvHjx9PkyZPp3bt3Ys8Aj8ejCRMmULdu3WjEiBHUpUsXcnFxkagtN2/epOHDh9PAgQNJU1OTPDw8yMjIiPr0mUL6+vbk5uZGeXl5FBMjueyqILzJzq7o+Q+XK/r9JP2q3dwkr18h4MABJuncqxeRmlrZwrnKiyD8ycmJGTLlDdMsirL08TXxCxAfHw9FRUXh6+fPgdhY0efTpwPfvgG9evVCr1694OnpidmzZ0t8fFtb4LffAA4HGD8eOHIEaNGCfbZ8OZCbC2RnA+rqgKlp2dp+5AgQF8f+n5MDNG0KODufQ9u2/VGrVj98+AC0ayfafsYMwMsLaNJE1LbMTEBBoWzn/VWwsQH8/IBjxzywc6cXBg3KhZqaIgYNGoTevXtj0qRJUFVVhaOjI16/fo2YmBg0bdoUycnJiIiIwLdv32BsbIyUlBTUry+L2bNPY/duDhQVFTFjxiGcPi2HVauWwszMDBYWFlV+PRMnTkSdOnWwd+8pxMc/A48H8Hh1YWX1GdHR0bC2tsbmzZvRvXt3AEBCQgKuXLmCdevWITExEQ4ODli2bBlOnjwJTU1NrFsXD2XlNFy8aIOEBHX062cIe3t7bNu2DUeOHMH69euhrq6OZs2aFWpLrVq1EBkZibS0NPTv3x8cDgc+Pj4YOnQkFiyYAHX1YRgxwhQNGvTH/v01MH48sH8/EB0NmJkBp0+LH+/339lzlJsLDBnC7vWCfPwILFkC1KkDtG0LrF5d8vcVGcmeK29v/PN9ADNnAgcOlLyfoyNw+bLoObOyKnn7srJ9O/D6NbvWGTPY9QJArVrA4cOVe65fEQUF4Pjx5gCAqKjOePSoGVq2bAmA9d3z57O+U1YW0NYGdHQA4Dc4ODigXbt22LFjBywtLSU+37x5wPfvQHo6sGOHaHwAgPPngb/+YufM35dLwsOHwOLFbIxISAC0tICwMABYCiMjI/TqNQjZ2WxbQ0PAxYWNU6tWAUZG7N7/4w92DCmFyckBzM2Bli2B2NhgBAfPREjIOTRosBvPnz9HQoIcevacB01NTcjIyIjtS0S4e/cudu7cidzcXBARXrzg4++/B+LSpUtIT0+HtvZxEBF+//13aGlpYcOGDVV6PXw+H/fu3cOgQYPw+nUonJ0/Q1e3C06fPg1vb2/s2rUL8vLy+OuvvzB48GB4e3vj7NmzSEpKgp6eHvr374+1a9fi0aNH0NDQwOHDh7FwYQ3UrHkcgwfzcevWDIwZ0w1btmzBhw8fMHDgQCxcuLDY9sjKyiI5ORkrVqyAnJwcDh48iJycHKioANnZO9C0qTL8/Vl/7OEBWFoC8vIAjwd4ehY+3sGDwKNHgLMz0Lt30eesVQv480/Jv7OVK9nvf/gwG1+KGpuK4skTIDCQPdN//AG8fVt8myqLWrXYuPTtG+vjatWq2vMVS2VbKv828vLyaPjw4WKhGwVj6pi7iIVtHD58uEwrBi9eiGf8508G2r6d6PJl8fOUtbRAQRWQTp2IOnUyoQkTPtOECYXDNwpe26pVVOUqGf9lHBxYyIBAN3vy5NRCShSPHj2iBQsWkLe3N/355wPS1r5Ienp36N27WLHt+Hw+qarak6HhOTIxOU/Nm4+hcePG0cyZM6vzkoiIqH///eTm5kbZ2dm0YsVxatduTKmyhWlpaTRz5kyaMmUKdenShTgcDtWp05z69+9PU6dOpaysLGrbVo+IiK5fv06zZ8+m33//nQDQ2rVrJWpXRgaRjg6P4uLSydf3CbVubUPe3t6FkqFv3hQPMVixQjw5msMpOnTJwEC0srh3b+mhbN7eLOEtP5K43Atu4+QkeSjVgwciL1lR3pkjR8TrcUjqRakIv5rHIj+7du2i8+fPl7rdjx8/yNHRkXR0dEr1ZOZn7lzRvcvlFq5vtH69qIp7WQUABJ42AUeOEDVr9oPatNGjzZuZHO4/aUxExDwadesSNWrEPnNzI2rTpmzn/JWYNo1FBNy9e5eMjY3JyuoWDRliQDt27CAionfv3tHy5ctJR0eHOBwO6enpkb6+Punp6QnDQAV5ZDwejyws+DRx4hQ6cOAAjRtnTEOHXqStW7fS4sWLq/W61q69RD16rKZnz17RkSNEurr+pK2tXawHOjk5mXx9fWnkyJEEgMzMzMjMzIzGj3ckefmWtG7dOuLz+bRw4Q4yNLxIc+bMIQ0NDdLW1iYXFxd6/vy5xHkcsbF5pK0dSh06WFLDhjpkZLSbiMQVGiMiCiddz53LPEiCOVhRoivJyWxFX5BDK4l3vKj5oiQsXFjy64qwa5coF9jQsHq8IdJQqALMmDGDoqKihK9v3xbFu928yf4/ffp0Onv2bInHWb+e/ZD55S4LqtIQiW7EgjeSpyfRtWtla/tvv4mKGvn4ECkpsaT04jhwQPSwVLYqwP8jEyeyEAdHR0fh6+K4fVukAJKRweLqY2JEoSmHDnnSpk2bKDS0eh704khOJurVayZ17dqVAND9+/epVavR9PLlS4n2z8zMJC0tLUpKSiIO5wfl5eVRYGAgjRkzhhQVBwpzL4hYPomBgQEBoB8/fhR7TC6XSykpKTRq1HkCQIMGDaJ69eqRick0MjT0K9R5R0SIG+wFPz9ypHBBsaJ0w0sbBAo+I4sWSVaozNVVPME3/2SxNPJvu2tX4ZCmgtfq71/1hZZ+ZcPiypUrtG7duhK3YYsOk0tVQSuKku7JiioMTZ5MlD9ta9UqIlXVTbRunQ8dOVK0Qdq2LTO6BYbwyJFlyyX7lRD8ViYmJvTlyxe6ebPoEMTMzExKSUmhwEDRhM/UtHCozYoVq0lNbTc5OBBpaV2jvXsPkKenpzDstLowNHxFNWvWJDs7O0pKSqJatRoLc4xKgsvl0v3792nkyJFkZ2dHNjY3aOjQsbRp0yaaMGECHT16lIYP30dEzBhJSEig5s2bEwChMmJpaGo+pY0bN9PZs2fp778/UosWY4io9BpfBQ2NotSeCgrySJL3UHAbSZ/RgipQlakKVVDspDryN6SGRQEmT55caIXpxQv28K9YwTT8p06dSkSi4ltF3RSCMhH+/uKDw9ixogQZOztRFr6rK9GdO6Ltpk8vu8fiwwcedet2jhQV3ahZsw00depUal5KYOyuXVWjY/z/yJEj7CHt23cltWkzkWbPXk2+vr5FKmwVnCCcPcvUVbhcovR0PjVtOpaSk8soAVZFmJrmkbu7O3l7e9OVKxk0dep70tbWJjc3t2JXjlJSUmjbtm0UExND586dIy0tLVqwwF1YdVdH5wVNmHCYHj9+LFZ0ksvl0pgxYwiAMCZWQFRUlDBed9GiRcThfKLdu93J3NycFi1aRM2ataRZs3IoIkI04c7IYEl1N26wZygjg02Y8kvSFqfYlr+DFeTPlEZEhMiDUFTl4eJYtUqU5C+pYklwcOHq4AUHyGnTxI83e3blF8QryK9sWKSmpgqLohaHu7s7uZWS1LJokSi2O388eMF7Nf+koKLV3OPjibp0YQmro0ezfLw+ffpSeHh4sfv06cM09tevZ8/cn39Kk7aL4+RJtsCxdu1a2rFjB+nr80v0Hub/bblclizP4YiqluvpSag7X8XY2ubS5MmTqV69ejR8+HDicJJoxIgR9PjxY4n2T05OJgMDA4qO/irMR7p37x41atSepk49TIcOHaJTp04Jt+3atSsNHDiQLl68WGj8SUpKIk9PT9LT06P09HSSla1DKioqQoGRrl2ZS67gZLrga0mepaKM/NK8wQ8esOdkxQr2LEv6rKxZw8avJ09Yv/DqlWT7SUJ5vSgVQWpYFMDU1JS+f/9e7OdxcXE0efJkcnMTrdy8eFH0AHDgALu5OndmN1tysmil1MFBvKQ7EVHXrqxaateuRKNGla3djx49Im1tbdq8eTPdunWLHj58SC9evCjxWn41KlO3PDo6moKDg2nHjh2kra1Nrq6uYpPkguE6gwaJVrdDQ0NpypTfJU4wq2p8fUWTZcG9y+fzaeXKlXT48GGhYZ3/fn3+/Dn169ePJk2aRAsXLqSAgACqU6cOhYSEiHW+8fHxZGxsTHv27CEiokOHDpGuri7duHGD+vXrR82aNRNu+/btW/rjjz+EUrfx8SSU60xOJmrbdho9eRJCRGyCb2fH/mbMYJ7B27dZeNOLF6KEOxub4g0AQQE5O7vCxfP+DQhUqwTExBQ9KJiaigswuLmVL1lUUn5lw+LNmzelJpsaGRnR9+/fydKSCWh06MBCiAQKSwcOiOSGvbxYfYm2bdnvLZB/dXBgY0r+e9fGhsjamt2vWlpl/33T09Np4cLl1K6dDnXrNo4MDAxIW1u7WGlpInbPaWuzZ78yJHP/3/H2Jpo6NY/U1LaTuroejR49mubOnVvkCn/BZ7l9e9H/N2z4g4YMOVe1jZUQX1+iGTP4lJaWJozg+PjxI9nb29OWLVuK3c/U1JTGjh1LPj4+5OHhQVpaWuTicphsbNg97OqaSXw+nxo1akRbt24V7ufl5UWjRo0iALR+/XoxhamGDRsSAJoyZQrx+XzicJhk+sePH2nfvn3Upw8z6P39RUaaqSlbqBWENAnGDkEo4aJFbJG4IK6uoue0rBEdL16UPST1yROiPXuIKnvKJph7EomM36pGaljkIz09ncYWuHvc3Ej4IAgmXdra2mRp+YXCwsLo1q1bdOLECTGrULDyKZgUCCp2l7QiumKF+MTtwIGib/aiuHbtGo0fP14Yn/n/RHBw0V4hSeByufTXX3/R0qVLSVdXl4YOHUrNmjUjV1dXupPfPVRB+Hw+HTp0iEaOHElbt26lrKws4Up6YCDrnDp0EE1cExMTSUWlK02b9rnS2lAVhIaGUp8+xjRtGmv7okWiFRgej0dGRkb0+vVrWrx4Ma1bt45evXpVpPGmp6dHPj4+RMRWnF78E/sVHR1NSUlJlFOCay4+nv3+06YRvXjxloyMjMjGxkZoMBf1XJWniFFgYNWv9JeH9etFRp+pKdH+/SU/D7Nni/JA9u6tPKW3rKwsWrp0KS1YsIBSUlJ+WcPi+vXrtHHjxhK32bBhA125couUldlrHo9Ht28zbwGRaBzZuJFNJjMymBJMPpXzInFwIDIxYfs7OpZtgnDv3j0aOXIkXblypcwLLIJn8N8qmVsZxMXF0bFjx8jHx4eys7Mr9dghISE0bdo0mjVrFkVHi2pDmZmJtomJYWpdAoyMjGjixH/PeB4YyO6B/P0Jn88nCwsL2rEjUuh9y1+fZ/78+XT+/Hn6/fffycjIiEaPHk3Lli0rdOxXr16JebUbNGhAycnJFB4eTvXq1RPzjBQcK27eZN+jgwORsXEu9e49kI4fPy52j69aJZ4bJygPJfAil1TUVlAnbOLEqpOarWoEeSSC0PxFi0SF+Qp6xCvKx48fic/nSw2L/GzdupUcHR1px44dtGDBAlq3bicNH+4tnAgdOfKWeveeQgMHDiRV1ck0f/58srS0pJYtW9KoUaKEiFWrmHTY4MHshhSsLJXkgir4GZdbtFyZoICdnR2bRHC5XNLS0ioxZv3fzs2bohs9IoLFoF6+fJkuX04SeoIiIojU1M5TYGAgvX//TbgaUdwE6+zZs6SlpUUbN26k4OBgysvLo7dv3xIAGjfuNjVtOoCsrfliHeGrV6/EpIbLSl5eHvn5+ZGWlhYtWrSIli5dQVOmBNKJE3wxHewXL4iUlR1oW3VUSSsnyclEysrWpKz8niZOJMrOZh11/kl7dHQ0mZubl3osf39/Kqj9IHjWdHR0hDU0iuPFixcUGRlJ3759I0dHR+rTpw+9ffuWiNhz4ujIIx6PJ9y+LK7ejAy2EuXmxu6lqnITz50rCqcsL/lrUYSGFl3QrzzhMqGhoeTm5kaLFy+mzZs306lTp8jf35/27dtH8+bNIwMDAxo/fjydP3+eli5dSsOGDftlDQsLCwv6/PlzsQVGeTwebd++nfr3NyAlpd9p5syZBICio6OpQwe2zc2b7H4QvF61iq0K9+lTdKFTAZLmBAk8jIJw3IiICNLR0amyysw/k4cP2Wr0/PmFw4eTkkoOJ46KiqL58+eTjo4OTZo0iby8WB2r2rVrU7du2qSjc7XE36OsPHjwgKysrMjW1paio6MpNFS0qj5xIpGxsWjb06cvkLy8avEH+xeQmppKAwZo0oQJIo/CihWi+y4jI4O0tLQoIyODnj59WqxB+/37d3J2di5UdTsqKoqysrJo586dEt+7cXFx5OTkJMyDJCpfSFN+BItXBXNm/43s2iVeW6sgBw6IezpdXSXLEyyJxMREunjxIk2YMIEMDQ1p5cqVtGXLFqncrIDXr1+jTZs26NixI0aNGgV393gMHpwCT09PhIWFoUWLFujYcQHOnOmGoCBg507A2hqoVy8Tb96sxqRJRyEv74KvX3Pg5TUAo0YxiVInJ+DqVaBBA9G5cnIAe3smdQkweb9585h0JMA+Kyjrl5AAPH4skrv08wNMTPbDxsYGdQQHqmYE8oVyckzu0tsbcHGJRlhYFurWBZKT2TWxz2WwZk0HNG5cC7m5TE5t2DAmBSe4Jk3NKMjKOmHs2NHYtm0r9PTaw8NjKHJychAevgHnz7vg4sWD0NNris2bXXH3bg2YmDyDldU3pKWlITw8HC9fvkSfPn1w5coV1K5dW9jWrl27YtUqQt++QLt2gzB+/A0cOzYaV6++woUL+/D9+3fk5eXBx8enXN+FrKwsLCwsYGpqilevXoHP5+PcuXO4etUXFhaHceFCDUyYAISGAqqqWvjzz2uYN6/iv0FV4OgIrF+vj61bvTBvHgctW9rA2dkYNWosA8CkEpWVldGsWTO8ePECffr0KfZYenp6SExMRI8ePbB161bo6urCy8sLI0eORGxsLAYNGgQAiIiIQGxsLLS0tMT2P336NNatW4dr167hwIED0NfXF8oSEhECAgLw7NkwBAffw7x5wNChkl/nzJnAyZMiieXFi4G//wYGDJD8GKUxaZJIBvbUKWDOHNZ3FISI8O7dO6iodEHt2jKFPn/1SiRt2727SL42NzcX7969Q5s2bcDjNRLbh8cruk1ZWVk4ceIETp48ic6dO8PIyAhKSkr4+vUroqOj8e3bN7Rs2RKampro0KEDatasicjISOzatQubNm3C8OHDK/CN/DcJCwvDyZMnkZGRARkZGeEfAGhqaqJhw4bw8/ODhoYGNm1ygZWVMjgcgqWlJbS0HMHnG4PPd0RoaA08fgx8+ABoaADjxjFZ1zVrgFatxM/57RuTgVRQYGNGfgq+BoCjR4FbtwB3d2DXLiYZm5Liiq1bt6J+/fpV88WUgrs7EBLCZHPXrmXv+fkBN2+ycaGgnCdrM/tejIzY2HnkCBs/v30DFi/+joMHnZGSkgI+fyVOnuyOGjVq4MyZW2jffgVGj+6IT59MMWKEPtLTZSAvD6xfLzp+SkoKvL29cePGDaxduxZ9+/YV/o5NmzaFr297tGyZCTm5i/Dz00ZUFDB5MuHo0aO4dOkSvLy8yjXeDhkyBEOGDMHLly+xcuVKpKSkICsrCwMH6mHOnDkIDZWFuTlQrx7w5Ik+2rXbg7dv36Jbt27l/Oarlu/fvyM5uRnu31fC69evER4ejrVrTeDoyO5nBQUFTJkyBV5eXvj999+LPU69evXw9etXxMfH49atW9DU1MTJkyfB4XAwbNgw1K1bF3369IGGhkaR+/P5fMjJyeHDhw+YMWMGgoKCYGlpiVOnTiEzMxPPn2di4cIvmD9/FpSUlPD9e9mkVTkc9lwpKLD+e/FiJglbmUydyv7l8YDGjUXzwLKQkwPcvw/4+rLXf/9deKwJDhaXR1+8mI31NjZFH/Pbt284duwYrl69CllZWRCR2OdEBEVFRaipqWHdunWoX78+LCwsMH78eInbLUMFj1oE6enpaNiwIdLS0tAg/0z6P0hmJpvgC34oT0/g61fW8QHsh9y/Hxg7FujYETh79ixMTU2xdetWODs74+NHVo9i1CjWKea/WczN2b5NmgAvX37HmjXf0KPHNzx5kgoZmTowMWkJc/MGePbsGWRkZNCkSRP4+rZEXNxupKS8gKKiInr37g139+d48+YwatasfrvPw+MNTpy4ipEjs5Gbm4uICC7u3fsbNWuqwNS0EQDgxw8gKAjQ1weuXOGhUaOXGDFCDcuWLcOUKXVRu/YPjBx5EteuXUNqaioaN26BnJyZOHmyH2xtgfXrY/Ho0SPUqVMHly/3QEKCCl6/BhYtuo8rV7ZDVlYWMTFqmD69KV69eoULFx5AQ+M26tSpVaT+tKMje7C+f/+OIUOGoEcPPbx//w07d05BRkYGli1bhuDgYLF9BBOwc+fOlet7OnToEIKDg+Hk5ISVK7th375kTJ8+HevXn8Xu3bKl1kH4GQi+p/79Z+Dbt2fo0MEZ9es/x+fPtfDgwXK4u7ujVatW6NSpE44dOwY3N7dij/X161eEhYWhTp06QmOEiODn54c2bdpgwIABMDIywtWrV7FkyRJs3LhRbP+4uDioqakh7p8iLS9fvkRQUBBCQkJw584dDBkyBPHxOoiPvw8trcHYtm2CxAP/1KlAXt5kpKSkAAA+fiTIyspCT6+XsA5BRXF0BFaujMWuXbtARPj8eRaOHxcdl8/nIyAgAHPn7gFRCzRq1A5t2qzH8eNcbNmyEY0aNYKenh5cXbsI9dhzcnJgaPgAXbuex5s3b9C3b1/ExMTg3buaGDBgE3bsaINFi1i/JDBev3z5gjt37uD69euIiYnBxIkTweFwJPqubt++jfXr18PT0xP169evUB//Xx0jsrKy8OLFCwwePFisDkFubi6uX7+OtLQ0jB8/HvXq1QMAnDgBLFvGJs/16vHQtu1+3L17DqmpN2BtnYp+/Rpi2TKmXx8QAJw5A0RFic5nbg40b84WbHJygJ49mb69lRXTydfVLTwhmDyZ4Ooaj4yMDHTo0AG6ulfRvv05HDp0qDq+okKsXs0mZC4uzEDw9v4KHs8HYWGhGDiQ1ep49IjV/wCAu3cbwcXFDFOnDsS8eUCfPuz78fbOwZs3b/DkyROsWOGHo0cXoXXr1rC19UCzZm9Ro0YN8Pl81KkzHS1aDICi4hG8fPkEOjo6OHw4BA0bfoGCApCYmIimTZuCw+HAysoKNWrUKNRmW1tg/34uTExMsHXrVkyZchsNGpyFuro6Pn78iLFjx8LIyEhsn0+fPqF169ZFHq8kiAju7u6IjIzEtm3bkJAATJkCjB59GV5eh9Grlxd8fP69haX09RdCUbE/kpK80KJFC8jK9kabNvOENYF4PB50dHRw7dq1Ur+b0NBQjBw5El++fMH79+9x7949pKen4/bt2zh69Cj++usv6OvrIzIyEh06dBDbt3v37hg7dizOnj0Lc3Nz9OvXD7m5uahduzYOHDiMR48iYWh4D4ASfvtNVjiHk4QpU3KhpXUCcnJyaNy4MfbtU8Lhw+3E6p1VhNWrgb59mRGdkZGBQ4fqo2nTws92SkoKrKx2ITW1CXr0mIk//5QRM5D+/hu4eFFkvANs7Pn99xc4duwYfvz4AR5vBFRUzLBwoSwAYMMGoHNn1tcIICI8ffoU+/btQ3JyMiZNmgQ9PT2xRdqiiIyMhKOjI3bu3AllZWWJ+/j/e49FQRQU2IR40iTmWWjQANiyRfR5rVrArFmi171790br1mNgZ2cHgBU70dYuuoBWgwaAnFwGLC0dwOfz8eZNU3Tr1gSjRzdCdnY2nj6NxY0bKVBTU0ONGjXw9etXvHv3CRkZVrh6dQ3ev3+P7dvvwcbGAzVrylbp98DlcuHlFQ9//09o1eorRo+Ww/r1fkhLq4P1682hqqoAOTk5GBrKIS9vJZo0qS1m0Ts6Mgs/KYkNiAEBAdDT00NcXEtkZqaga1dz7NmzB40bN8b586JCZH36ANbWbRAQYIb791lxqEePWFGzoKBh0NEZhogItm3jxhdw714yOJwgbNhQC5GRRRenUVVlqw/W1vXg7OyMgweBCxcmgygetra2uHv3bqHrHzZsGLKyssr9/U2dOhWdOnWCl5cXnj//ADOzROjr66NXr6r93SpCejr79+nTvbC19cDt23qYPp2DFy8mYNGiRVBSUsKpU6dKXbkmImFBvLy8PMjKiq7Z0dERCxcuxPDhw7F06VJ4eXlBSUkJCQkJ2LJlC1atWoX69esjMTER6urqmDVrFoYMGYKuXbsiPDwc7du3R506dXD8+HFMm1YfR4+uxNWrV2FiYoKcnBxkZ2fj9u3bYucERKulTZqwVdG5c78hOtofOTmsaOWZM3l49uwRlixZAhkZGdjb22PEiBGFjiMJPB4PT59uxYwZd7Fy5UrIyMjA3HwROBw+jI2N0adPH7i7u0NevgHU1E5g1668f1b5AEPDAIwcWRM9e/bEvHnzICOjBBWVelBV/Y73779AWVkddnZ26J2vktLbt2/h5OSMnj2z0a4d8OkTEBRE4PP5aN68ufC7bt++vUTt//btGw4ePIjXr1/j3LlzUFBQQLrg5vjFqFevHoYIqg/mQ05ODnp6eoXenzCB/QHAmzeyWL7cCZmZu6Ch4YlPnxoiKYkVwDM1BdTUxI0KFxdg0SKgT59ceHp64urVaJw69Q1KSimYNYuLvn0b49OnjrCzi0RSUhLq1q0LZWVl3LoVgaVLG6FJkyYIDg5GfHx7XLpU/UYFn8+Hj48PPDxOoG/fmrhzh73/+nU9dOxoicBAjtA4mz8fWLeOfT59eiJevjwEG5vdWL9+PWbOTEBk5GEYGcWib9++6N+/P/T0LkBbm022+/XbKhxf4+IATU02fnTvvgwTJ8ZCXv45Zs82hIJCG2Rn+2DjRh+0aXMQt261RGAgUJRzWlYWqF27NsaNG4fJkyfjxw8N3LkTgLCwMCxcuFDoYRVARGjXrh3Onj0LY2PjMn1PMjIycHJywoYNG6Cvr4/PnwfBxqYhvL09cOvWX9i4UQEvX1Z9sbTycu7cevTr54CkpHTo6wfg8ePFGDnyOBYteoFHjx7BxcUFbdq0wdevX9G8efMijxEcHIzx48djw4YN+PLlCwCgQ4cOuH//PjZv3oz379/j2bNn0NfXx4kTJ6CqqlroGGlpadi2bRt0dXXRr18/TJ06FT9+/BB+7ubmhosXLSEvL4+IiHa4fXsi4uPjoaWlBSUlpRKv8e3bY2jZMgK9evVCVFQU3r9/iDlz3iMlJQX29vYwNDQs19ggIC4OGDv2MfT01kBeXh6pqekApsPS0gBycnIAAFdXV3h63sKwYfOhonIBo0c/grn5ELRp8zs+fPgAGRkZrF27FiEhXUAkj4cPH2LDhtMIC3sNefkemDRpEho1aoSAgADs2DEWly7ZoWZNBXTs2BBaWrK4fv073r59iydPniA5ORm9evXCwoUL0blzZ4mu4fLly9ixYweOHj2K1q1bl2mM+OU8FuVh8OCd6N79Bzw8FmP7dubSdXJiK1eysnnQ07uKq1cDcPlyKlRU4rFu3TqMGDEClpYiz0hJ7N7N3Fl16hTtRi4vfD4fQUFBWLToKpKS3oKoBpSUmGs+JqYW5ORagsNph3v3FHHvXjb27NHC06fdcPasaEBcvRro0IFN5i9cYO8dPMjCoRYvZtZx69ZsRWjWLB7On0/H1KmNERICDBwIZGSwidCiRez7MjQEbt9mISD9+rEVOxcX5jnavBn4/JlZ+llZF/D5swtGj34Ob2954TVNnVp05eE5c5gnJTubhaeMGROJmTNnYtu2bcIq01WFuTlzpwLMrT93rigM7N/EnTvsXmvcmN3DK1awwW3VqlVYu3YteDwesrKyYGRkhJs3b+L79+/CldqCcLncIlc7fvz4gWvXrhVym27evBmLFi1CeHg4OnXqVGwbJ0+eDA6Hg7Zt20JRURGtCsSRbN++HW3atIF5vuWY3btZSOGGDewat2x5j/T0dejQwRO5uWyiJwgxAoDo6GgcPXoUQUFBcHZ2xrhx4yT49hi5ubmwt7dHXt5wcLn26N5dBm/eMNe6hkYiLl26hNevX2PYsGHo0MEYu3e/QFSUM/bs2YPu3buje3cnBAS4QFVVFTweD8nJyUhPz8aJE7IwNW2NqrxV3d3dceHCBSgqKkJPTw8TJ04UTgQr2sf/imPEhg2sYjawCzIyj3H9ug9UVdmi1YABgIGBaFs+nw9r669YsyYNCxcuhI6ODtTUhsLNrQk8PJqgVq1aSElJwdu3b9GhQwe0atUK2dnZeP/+Pc6cUQSP1xJr1wJnz/IRGFij0j2iAQGfcOFCNEaPTkF2dgpSUlJw7VoywsM/IScnGbKyQFZWJjp0MEZa2jSEhoqe/UmT2L/5+7xJk0SvbW1Z//706VO4u7vj8eMWaNVqEvz9O6NWLfbszp8PuLqyBabUVNaPDhvGxpygIODlS+D5c+DsWRZqdukSYGHhgxcv/FCnzjmcPMkmgS9fsqiBgmPo9OmsKjmHA8ydm4oOHRph2rQc6Ovr49ixY0VORAWLJgUrapeF3NxcGBs/wcyZGfj48SOmTp2KXbtk0amT+P3xb4OIkJOTg9q1a+PHjx/47bffMHjwYOzZswdGRkb49OkTLly4UOwk9cKFC3B3d8emTZvEQmpTU1Oxe/duLFu2TMzbITiXYBEKAGJjY9G6dWvIyMggLi4OJ06cQEoKC2Pv3Lkz1NTUsH79esjJyeHNmze4ePEicnJyEB8fD3d3d7H2uLuzKvV16rDQpPj4NcjL00f79gPw5Qu797p3Z8bM4cOHcfnyZaipqcHW1hZdunQp03fH5/NhZLQYnz6l4dq19WjWrBmsrVOgpOSNN28C0bhxY2RnZ6N3796Ii1uNtWsTYGNjg3379sHVtT3i4w1x6dIlfPnyBWvWrMGrVymIjv6Opk17o2dPDry9exa6JxMTE3HlyhVkZ2cjLS0NPB4P9erVQ5cuXTBgwAA0bdpUora/e/cOd+7cwe3bt6GgoIAdO3YIvd9l6uMlSeT4LyfmVQbZ2dmkrKxFkyen0q5dTO3BwIAlv5qYWFKXLpspLCyKTp3KJFPTPHJwYKoGP6vi9efPn2n79u00atQo0tRcR1u2vBQmWQmSQwsqXuVP4B05UpQsJMhFDg0VvSdINnVyYq+7dydq0oRIX58lKvr6ssS7mzdFheKKKgT14IF44pSlpagdP378oNat9cnc/HOh/Urj7NmzZGhoSK8qUzi6BM6dExVFMjP776ms/PjxgwL/Kb6SkZFBAwcOpO3bt5dL1jgkJIQAlKgKVRJv374lc3NzUldXpxEjRhT6PCEhgbS0tISJ3kSiezk8PJwuXbpEffuuoqCgoFLPxeVyydzcnG7duiVR22JjY8nExIROnz79z/5M4aw4oqKiSFFxDH3+nERETA3KyGiTcP/q5NWrVzRp0qRiky1/ZbnZ8pKcTKSiwv6vrDyB+vSJocaNWd8nSOKdOjWHunRZTCNHjiE9PVvq3Hm6UDjE1JQJWEiCr2/xldrLS1JSEq1cuZKUlbWpVy97cnLaRH37HqA1a07Rn3/eIFPTEPr69Svx+Xzq1k2kaDhjBlGPHmwcnD+ftSk4mElg3r7NFGrmzmXbenuz8WHpUlbIT0WFjS8zZ4qSnAUKiwYGor5z2zb2lz9J19mZ1emYPZsoLo6oVasxtG6dZyGVtOLEDVxdRYpB9+7dozFjxpB/WUudl4PAQFGbBJWf/0vk5eVRly5d6Pjx40TE+rUBAwbQhAkTynU8ExMT8vDwEHuPz+fTli1bKKaUwltcLpdu3bpFAQEBZGtrS58+fSq0jY6ODmXk0xnncsVLB9y8SdS+vXaJyeN8Pp+Cg4PJwMCAbty4IeGVse/K3t6eDh48SNu2iQRs8idTJyUlCftJff0Q0tLSojdv3hARkbFxNE0ujwRiJeDr60sWFhZ05swZ+vy5sLqlVBWqCnj8+DGpq6uTn58fTZrEpwMH+NS//xwaNsyVdu6sPAnI8uDry25eDieWNDTsycLCgvz9/YnL5RZST1i6lE3283e++WsdELFBoTQZthUrxAuWqaiIT6hLUzsZOZKdU1mZDVjJyUStWokX9GvbVp8ePcojQ0N2LicnyeQYtbW1KTc3t/QNy0lJdUv+6yQmJpK8vHwhieayUF5px0+fPpG6ujp9+vSJ7O3t6a+//ipyu/fv35ODgwPp6urSsmXLqFs3Z9LR0SEHBwfavHkzdenyu8RtyMzMpLFjx5KXl5dQFYjL5VJiYiI9fvyYfHx8aN++fTRhwgTicDj09OlTia8nKiqKDA0nCNVHjI13k6amJq1evVriY1QWu3fvpsuXLxf7udSwKB+6uqwvMzV9TSoq+jR+/HeaPZuoUyc2AR8yZBnt3+8lnNgIJpmTJ1f/whOXyyZMFy9eJGNjYzI3N6fr16+TtbW4sWljw9QLC/bn+ftwDoeNE/mvISODGc8C1aW5c5lxwOUyg6BfP1H/vmqVqOYAERtvCqoBFizyunChuJzriRORpK7uJKakdvJk6Sptb968IX19/Wq9VwUqiWVVL/o3YmJiQsrKyhRfTq3W+fPnS7yYU5APHz6QpqYmbd++nXr06EFfvnwptM3du3dJS0uLDhw4QHFxceTvT7R8eTTt27ePDAwMaNq0adSp02SJzpeVlUU6OjoUEhJS4nZ5eXl04cIF0tbWphMnTkh8PUOH6tCYMQnk6srudXv7F6SiovJTygzo6uqWOG8qSx//y+VYlJeBAweiZcuL2Lx5L1690kFAgAK0tWtj//61mDULKCUHpsq4c4e54+fOfQ4XFxcoKW3FtGl9MHIk+7xuXeYCFIQRh4cDXbsC3boBK1eypCAiliQEAB8/snjWFi1KPu/ly0BaGjB6NMtbad6cxbkLkpOys8W379WLhVWtXg14ebFz3LzJPuvWjYWCDR3K3m/XDti4kY969YBBg2Rx6hQLf/r9dxQbKrJ4MQu72r4dqFWrFrhcbpUkvxMRateugbVrd2DZsllwcKiBrKx/t1u7LDRr1gyPHj1Cw4YNy32M0hLCiiMjIwOqqqpwdXVFVFQUNDU1i9xOVVUVBw4cAI/HQ0hICNq2rYvr17tj7VoZ7NvHfgtJmyAvL49z587hwIEDGDduHPh8PmRlZdG8eXO0b98eHTt2RIsWLbB161a0bNmyTNejoqKChg1rYt26GACAre0Z/MViZ6odHo8HXnFyUlLKzZUrLJQzPb0HOnacg1evxqNlyxGoX38ybt/2REzMDVy8uB6CdC4dHfZXnfj5CfLSXuLu3YXQ1FSHh4cHGjVqBIApqOWnTh3A2JgpWm3YwN579YrlKgEs/01WtrDKjYICC3cVIFAPBNgzmZPD+nYAmD2bhWIK+s0mTZiIioCjR1li+MiRbFwYPBgIC4NYgu6pU4+hrz8Y3buLcibl5UtX33n58iXMzc2rLGTv48cETJ4ciU6dhuP7dxYqa2QE4Zj8X4fD4eDFixeoW7duufbfkj+ptYw4OTlh9+7d8PHxgbW1dZE5HsOHD0dAQAAuXbqExYsX48uXJISHt4Gbmw78/Pxw8GAUFBU7FHH0wtStWxc+Pj6YNm0a2rZti3HjxiE3NxdPnjzBly9f8OnTJ/B4PBARtLS04Ovri8aNG0t8Pba2pqhZ8zKUladATe0hdu50xerVq39KOGnNmjUrb84kiSXzq65G5WfpUrba9OXLFzIyukl1666gWrXaUtu2k6h9e7aaUh0INI3Nzd9S165raeDAP+ncuXOkoaEhrGZZ0BUsWDG1sRHXOz55UlTN99w5UdGy0lZUOBwWtuThwdy6yclEffuyQk+LFjEXv2A1Kv8K3bp17P9duoifIyZG5DpftIi1Y926cJotYQU9Q0PmhRFUdT571p+mT59eJV6L27eJFi78QDVq1KAePXoQj8eTqK7A/wtcbuWuuMXGxgrrtURGRlLfvn0pICCgzMeJj2f3UEUjGyrrngkMJLK2TiNFxR7E4XBo2LBh9OTJk0o5dnmIjY0tMXRB6rGoHJyd+XT58mWSl7enadOmkbPzcfLwyBEW1qsO/P3FCy5OnEiUkpJCWlpalJCQUEgL38xMFLK6YoVojFi1SlRfaehQUeiSoWHpFe0dHJjXhsNhz6a3N6vpISC/J0LAihWi87VqJd7PCDw+Dg7Maz17NpG6ugu9fv261O8jf80CDofozZsYiWr1lBd19RPUqVNXWrp0KWVlZYmF4UipGAYGBqSvr0/Ozs5i1btLw9tbFMrt5FS+cz99+pQ2b95MGzdupCdPntCHDx+KrX0jKe/fvycNDQ169+4daWpq0oOfFT9PRGPGjCnR0y/1WFQBSUlAq1avYGrqhLp1x0FFZQjS0/tDVfU9OncGYmOrvg25ubnw8fFF06ZM0nPnTmtMn56MS5e+CBPQTp0CCubGenuz1SI/P2DMGNH75ubikmQF1PaK5OhR5vFYvZolxLVowRIVFyxgidVMvYNte+cOk2cUyGnq6QHHjrGVsI8fmWwmwBLxBPldEycCGzcCb940wIMH8UXWBsjP4sVMfUSgsHHqFODsbAB19VSMGTMGDg4OmDBhQoUS8PLTtCmQk9MeQUFB+PjxI/LyaiA3t1IO/a8mMTER8+Y1Fya/ycoWTqL/+JHdD5Lqiefm5qJNmzYICQlB37590aFDB4SEhJSrfS1alE8nvCCSrtgQEV6/fo1OnToVknb182P3voHBFbRq5Yw3b4bh4EH+T9WuL6uqh5TyweffxKZNpyEvH4/AwCaIiZkIPT1tDB9eOTKWpeHnB9y4kQE1tRPw9j6LFi1qQE5OBqam2di8eTOUlJRQUIlYUIclM5MpMAm8zgJ50bLi6Mj+eDzm+ZgxA+jShYmATJ3K3jcxYd6LgAA2JgjqWaxdy8YPR0fxfkT+H/2OAwfYWOblBYSEREFFRaXU9kyZAmzdyvqInBxg4sR2GDRIDfb29liyZEkhmdOK0qWLJWbNqglzc3O0a9cO8vLTKvX4/2b++IMJgygpAc7OFT9eREQEdu3ahd27dwOAUNWvKCW3krCxKb6ug6T0798f/fv3r9hBCrB8+XL07dsXJiYmuHjxYpHqWNXF+PHjcenSJZiYmFT4WFLDQkJGjACmTj2AAwd249SpvoiIAEaP5uH27fHo0kUD8vKSV9+6c4cpV+TvLEvj1q1bWLt2LeTkONDR8cWrVwpQVWWhSACbtH//Dvz2W2HX9tWrwL59zJW9eDEzPPK7rCVl8WIWvtSqFTufhwfrrKdOZYMHIB6qdOyYyKgAWBvWrGHFXYyN2cCSmckmqYLvYO1agdteCZqaP2Bvn4dDh4q/TTMyWBiWgFq12MBlbW0NCwsLWFtbo1evXujVq1fZL7gIundnHefLlxrQ0GDGmIdHpRz6X8sff/yBJUuWwM5uAzIynqNmzZqwsDiODRvYfZSZCVhYsMlDSorkxYAuXboEAGUOMfqZZGVl4c8//xQW80tISChkWFy7xoyuOXMewMrKCl++dEElz13KTFpaGvh8/s9txP85RIRXr/6AuvoxJCYqoVs3GXTuXBMjR0YjKqpshkVODrBtG1PWkzSEJiEhAWvWbECHDtFQUJiAGzfOY+7cOsjIYEUjBwxgYbFFRcTZ2LDie7dusedZ0J+Xle3bmepfdjawdy9T+nvzhi0YFVWA7NgxceVEgcLet2+sHQoKTOlJoPyZmcm2sbUFGjbUg67uKdy5M7nENsnLi0J7a9UCGjYEFixYgJCQELi4uMDQ0BBTpkwp3wUXQ/fuZsLCYzduVOqh/5U8efIEa9dGYdkyDmRkHiMzUw3Ll8sKixjm5IiMRVXVwoWCi2PGjBmIjo4Wvh5alkqpP5G4uDisXr0amZmZOH78eJHb5ObmIj09vdjPqxtlZWWx77pCSOIikbq5mSu5e3cDsrMjMjIi0tZm76emptKAAQZkbOxRrOJKQUxNiV68eEGnT5+m27fFk9byu23nzyfKysqjw4e9iMPhUEZGBrVvz5KdMzKIhgwhmjCBufgEScSmpoWTAotSZCJioSOCc+VPgCsOwX66usyNPXEic6MXp4wzbZq4u9vbWzwUKyamsEs9f4Kgvr4+2dqW7GrkctlvkZHB/j92rHji+fHjx8nLy6v0iysjvr4sPK60kID/Ojwej7p06UKGhg/pypUrtH//fgJAf/yxhQYN2kEWFhbUtu14srKypWvXrlFoaChNmvSDnj2Log8fPgiPw+fzCz0f4eHhBEBM4enfgJ+fH/n4+NDdu3fp1atXdO/ePdqyZQsZGRlRs2bNCABt2bKlWOUrgajHhw8faNSoUTRpkui69+5ln9vZEbm5Vf21CNi9ezedOXOm2M+loVAV59q1a7RmzRrh6/nziSZOTCIVlVH0999/S3ycmBjWj924wacVK1g/Ksm5x4wZQ3p6j4XhpBMnEo0ezfrF7t1ZaFKnToXHB4Eik4AVK0QqNm5u7FiCUNWS2LaNbc/hsPBYwTFLCgUqKOohCCvNyGDtF4Tn5v9cECIVEhJCw4YtLzUJvuD587/m8Xikq6tb8gHKgSCki8MRJbP/v+Lj40MAqFmz3qStrU0AaP369f/MX7Lo3bt3NGZMLMXHsx9u717J1c2aNm1Kv/32W9U1vhLJyMigy5cvk7GxMQGg+vXrlzi2paenk7q6+k9J1C4KMzOzIlW2BEhDoaqAw4cPY+NGe2EC25YtLGFMTq4h+vU7jw4dtkBfXx9mZmbo378/WrRogWfPnuHhw4dIS0tDVFQU1NXV0aRJE7x7FwYXl5eIjY3Fy5fjceyY6GfgcNhqZ+PGhD597sLdfS26d9dGz55HoaAgh969gXv3WLK1ujoLPWrdWrSqdfo0W83J7yn8px6L2Os7d4B69UQryy9fFi4Vn5/MTLY9wLTFZ84EHj9mq00DinHW7NrFCkX168cSvdPSxD0YRRVAzh+toaY2HLdu3QBQfLZjrVqAvz9rDyDyoggYNmwYfv/9d0wSiK1XEhwO+/t/p0aNGmjWrBkaNgzAggVczJ3bFefPn8eqVS9hb98ftrZTMWtWXaxZ8xknTpzA9evX8fffkdiwoRViY//G/v378fTpU9jb28PT01Psd+jUqVOhAns/k7i4OMjJyWHv3r2ws7NDUFAQvn//jkaNGgm1wOvXr4+tW7cKCwQWxaRJgKUl4O3dHlxuG/B4iQCUcPUq8P696BlYuZKtzuYPR6wq7t+/j/3791f9iX5h9u3bJ6afz3JUmyI52Q9OTk7o06cP5s6dW6g2DBEhOTlZWHhy+XJg5cqnGDJkAD58+IB169oLV+8BwMGBJTtnZwP37n1DXt4W5OZG4Nmzi5g/vw4CA1m13gsXWAjQggXAoUOiMaFgkdE//wSm5YvWWbuWeaEjIoCWLZk3+eFDVh28qOJzAt6+Zdt+/Mj2f/eOnaukfjIpia1m16rFxjJBWKmCQvGF7gQhUrVr10bt2imIjBQf7wqydCl7xgT1e+ztRZ/VqFEDNWrUQFZWVrE1e8rDv7GOUVXx/v17PHjwACdODMbOnaygp729PeLjH+H9+5pQUVHBp08/MGFCGFq3bo1WrVohKKg+wsPfYtWqVejSpQuys7Ph4+ODqVOnih1727ZtEhd0qy7u3r2L+fPnQ0lJCY0aNULNmjWRmJiIOnXq4MuXL4iNjcXly5cxduzYEo9Tv359LF++HO7u7li+fHk1tb5o0tLSICMjgzZt2lTK8aSGhQTk5eXh8uXLuHbtmvA98fLxsgAWYcaMGbh8+TJOnz6NuLg49O3bF+PHj4eioiKaNm2Kv//+G2lpaWjRwhpXr/aBj48PNDTG4ONHeYwbJ4OcnByEhdXBqlXt4O//DsOH90W/fqfh5dUIfn5soGraVDy2vahOu+A8rW1bZkDMm8cMku/fmXs2f0HR3r1ZgbniUFBgxesEA5yyMjNEijMqANGk/+FDoFkzUU5FSVhasr8GDYDr16Nw5EjpcQC1ahUfTnblyhUMHDiw9BNLKZYLFy7g06dPuHNHDsePhyEjIxLt2n2Bv/8uBAefRP/+m7B3bzv88cci5OQwBRlv7yz06tULCxYsgIGBATQ1NTF48OBCx/43GBXu7u4IDg7G9+/f8ejRI6iqqsLX1xfy8vKIiorCsmXL0LhxY/z5559o27ZtiUYFwIz8du2YsZuWloG9e5l6ypkz4vfp2rUsPKA6DIvMzMxfpnDdzyA8PByNGjUqUqVGUVERvr6+8PPzg4WFBWrWrAlVVVWkp6cjLi4OsrKyaNCgAfLy8vDjxw88f85Hgwbt4e/vj4ULF0JG5nfcvq0AJSWCt7cSnJ2V0KhRMgwNj+PLlytYunQ5WrbcgEWLZJCbywrKbdzIKn9bWbEJfv6Jd/5ikQAwahRw5IhIoSkykiksff7M7lGA7X/kSMnfQXa2SPnp3LnSDRGAjWWTJrH+Pien9Am5oaGoSGrr1l3w7NlzXLlS8j69e4sKmBZFx44dcevWrSIrrUspHRMTEyxZsgRxcYCyMg8NGsggJ6cTBg/uAGfnsejXrx++fKkJb28eMjMz/1lQTYOqKhd//PEHvn79iszMTNy/f7+QYWFT0cSISoKIcOzYMQQFBSEqKgqOjo6Ii4uDjIwMRowYAQ0NDeTl5UFDQwMRERHC6tql0aNHDxw7dqyKW186kZGRlVpIWGpYSMCFCxckKvHeoEEDWFpaFvu5lpYWAIDLBaytAXl5a7RsaY2//mKT4+TkZHTrZoz+/Y3w48d2HDpUE1ZWbF9jYybRl53NvA3q6sxQGDuWJT8LJGUtLVlV8PysXs0MC0dHJj/r68sMBCsrUTXtxYvZAFMSJ06wY8vJMYNC0jjcsuRZGRmxv9zcXJiYxENTs/xGQXR0NC5duoTz58+X+xhSgCZNmqBJkybo0weYNUu88/H19cWePWbIy2sHZeVM8HiEHj0Itrb1oKenB1lZWYSGhmLcuHH/upUnAVu3bsXRo0cxZMgQ5ObmIiUlRThBvH37Nvbt24e///4bTZs2RXBwMHbu3ClWNbYoOnZkRoShYa5wQq+mxqqEz5rFtvH0ZFLL1UFliRdIKZpdu3Zh9uzZxX4uIyMDS0tLWFpaIicnB1FRUVBQUChyhdDPD3jwgE30ExK4cHN7hG7dfkBGRgYnT15AeHhztGjRAk2amOHgwTkICqoJY2MmfVujBqtkLVD0PHeO9dffvokMipQU8fMJhC+YB55te+6cqKK2gIIS4gXZvJl5qFVVmXSsJHlFTZqI51iUhsD4cXQEIiLOwcXFSGKxiKK4c+cO0tLSSl1dllI8PXr0wMWLFwEwj1NICEFZOQVRUe9w/vx5rF69Gmpqx2FklIq6db8hJuYTRo+OQXR0NM6fPw97e3skJyf/9FX74vD394eVlRVWrlwJbW1tnDx5ErGxsdDW1kZWVhaMjIwwbtw4hIaGIjIyEufOnYOFhYVExw4ODi5zInpVkJqaKpSfrgykhkUpEBEOHjyIkwUzoitAcWE0ioqKWLkyEJs2rUJmpgPatTuIgAD2E1lZsbLzHTuyhNljx1gCtZERC31avJitKC1dKhoo8jNvnvhrBQW2j0D/u1+/0kN7FBSqz8UbExNTIbWO79+/w9HREe7u7rh//z6mTZuGN2/eVGILpQBM01xTUxMKCgqQl5f/T05g169fj2vXrmHQoEGQk5ND8+bNkZubi48fPyI0NBTfvn3D3bt30aK04i5FICsri8zMTCgoKMDBgXk6bW2ZV1FBofjQw8om91eQLvtJpKSkICYmBn0E0nalUKtWLXTt2rXYzzkcVofF0REATPHqlSj8p02bSdi82QnGxkNw754eduyogb172WfZ2ax/FoT9fP/OFoBmz2bJ002asPcMDQufsyixBQsLtqA1fjzzgnTpUvJ1tWjBPNQJCexcFZnwl4SBAfubM+cOOJxZ5T5ORkYGVq9ejXPnziEzMxMAC0+RUn7k5ICBA2UANIGS0hAMGTIEa9asQWTkTLRv3whyco0xZkxbtGvXGa1aacLV1RU/fvyAnJwc2rdv/7ObXyRdu3aFkZERXP4JU5kwYYLY56dOncKqVavA4XBQu3ZtifsBgNUXqlVVD0oZyMvLq9R2yBD9I11QAunp6WjYsCHS0tJ+OXf60aNHkZCQgAULFlTreYcOHYq5c4Nw+TJTnLGzY16KXwEiwrx586Cjo1OulaTU1FTY2NjAxcUFGhoacHR0hJqaGhwcHKqgtVL+6xAR3NzcEBQUBDk5OcjJySE+Ph4DBgzAiBEjYGxsLLFruyAHDx7E6dOnIS8vj2fPnuHatWvV7rkJDAxEUFAQNm/eXOw2Fe3jf+UxYvny5Rg2bFi1rXqfOMHD7t2rEB9fG507r8CgQUx5icOp/LA6gUy5vn7hEKqfjY6ODvz9/cs1IcrJycGECRPg7OyMLl26oFmzZvDw8Kh0dSgp/x/MmTMH9erVg76+PmrWrAkFBQWcPHkSb9++RY0aNbBz585yLTwlJCRg7ty52L9/P549e4aOHTuibdu2VXAFJePm5oaOHTvCOH98fAHK1MdLki3+qyp+fP36lUaNGlWs+ktV4uTkRH5+ftV+3p/N/fv3SV9fn7Zt21bmffl8Pvn6+pKWltZPLUYm5b+Nv78/RUZGVvg44eHhNHbsWLpw4QIlJydTrVq1aP/+/ZXQQsnJyMggLS0tyihFvkyqClU+QkNDifMTKqAdO3aMli9fTlxu8ap8/69kZWXRihUraN26deXaPzo6mvT19cn/n2qaP378oHfv3lVmE6X8n8Hn8+nhw4e0fv16mj59OjVt2pSePHlC6enpFTpuTk4O9erVi6ysrEhTU5O6detWSS2WnNjYWBo7dizxeLwStytLHy81LEpg6tSp9OjRo59y7jVr1lBgYOBPOffPIjo6mnR0dCgpKanM+6amppKxsTG5urqWWD1SipTqICkpibS0tCg6Olr4Xm5uLunp6VV5P5qXl0fHjh0jfX19MjQ0pPv375e6j9SwKDs8Ho/Gjh1bokRjVcHlcqlv377Vft6fzYMHD2jkyJHk6+srsby7AC6XS+vWrSNDQ0N68+ZNFbVQyq9AWe+9ooiPjyctLS06deoUEREFBweTpqYm3bhxo8LHloSvX7/SmTNnSEdHh16+fFnq9mXp40vOQPyFCQoKQp06dTBo0KCfcn4Oh4MLgszqX4DAwEDY2dlhz549aNq0aZn3X7NmDebMmYPFixejdu3aVdBCKVIkx9PTEy4uLlBWVha+V7NmTbRt2xYRERFVck4ej4fjx49DW1sbKSkpOH36NC5cuPCfKSr1X8PDwwO6urqVJtFYFmRlZaGoqAheUdXu/k+JiorCkiVLcObMGXA4nDLlc/H5fFhaWqJjx444f/48ulWXaoKU/0sqI5dw2rRp2Lt3L8zMzAAAAwYMgJ+fHw4ePFjhY5dEYmIiFixYADs7OyQnJ+PPP/+stALCAqTJ20Xw7NkzuLq64uzZsz+tDZ07d0ZsbOxPO391QkT4448/EBgYWKiKsaTweDw0bNiwklsmRUr5uHfvHmxtbYWvMzIyYG9vj+7du+O3336r1HPxeDz4+fnh8OHDMDIywqVLl8r9HEmRjLCwMJw5cwYBAQE/5fyysrLo378/3r59i549e/6UNlQnT548wapVq+Dh4VEu9ZqoqCi0bNmyRNVGKVKqi6ysLMjJyYmJOOTk5MDDwwNdSlNJKCeJiYlwc3NDeHg4FixYgOHDh1fJeQCpYSHGhw8fsGnTJmGxlp+pEJGWlvZLKVQoKChUaDLk7OyM6dOn48yZM6hXrx7Cw8NhbW2NJk2aYP/+/WIrx1KkVCWBgYHo3r07mjZtCiKCn58fdu/ejbi4OPj5+VXaeXg8Hk6ePIlDhw5h/PjxUoOiGiAinDt3Drt378aJEyd+ah0WeXl5ZGVl/bTzVydXr17FqlWroKqqWq79lZWV8fbtW3C5XKFH+82bN4iOjsawYcOki1JSqhV3d3eMGzdO7D0Oh4MxY8Zg4cKFlXquxMREbNmyBWFhYViwYAFGjBhRqccvil/esCAiPHr0CHv27IGMjAycnZ3Rv3//n90syMnJCSXw/t+RkZEBn88XynKWB2VlZbi4uEBfXx9jxozB8+fP8f37dxARvn37JjUspFQbe/bsERY9OnXqFO7duwcPD49Km4TmNygMDQ0REBCAunXrVsqxpRQNj8fD+fPncfDgQYwYMQKXL1/+6d/5ly9fyqVE81+kfv36SE1NLff+cnJycHZ2ho2NDdzd3aGoqAg7Ozv89ttvWLVqFYKDgyuvsVKklEBaWhpu3LiBy5cvAwD27t2LM2fO4NmzZ3BxcSm1RpKk5DcoXFxcSlQFrGx+WcPi/fv3OHbsGO7evQs1NTVs2LDhX6WjLC8vj1q1aiE5ORmKioo/uzlVzvTp07Fjx44KFckZNWoUhg4diuDgYKFRFhERgX379mH//v2V1VQpUorl3r176NatmzBcIyEhAZ8/f64U9zaPx8OpU6dw6NAhjBs3TmpQVAMxMTE4fvw4bt68CQMDA5w6depf40lWU1PD9evXC1Ur/n/EyMgICxcuhK6ubrmPYWBgAEVFRTg6OiInJwexsbFo0aIF1NXVkZubW25JaSlSysK+ffswY8YMYZ7G9u3b8fDhw3LllhZFUlIStmzZgrdv31a7QSGgTIZFenp6VbWjWhC4sX18fNCqVStwOBzMmTNHaCH+264vPT0dsrKy/7p2VQUaGhrYtm0bpk+fXuFCLX379kX37t3x+vVrdO3aFTNmzMDt27fRr1+/SmqtFCmF4fF4WLZsGTw9PZGamoqDBw/C398fp0+frtAzzOfz4efnhyNHjsDIyAg+Pj6oW7cucnNzK63w3a/Qx0hK/sT35s2bw8rKCgsXLvypYU9FMXToULi7u//sZlQL7du3R/PmzRESElKhfnzIkCE4c+YMAMDJyQlfv35F3bp14efnB2tr68pqrhQpRZKYmIgbN24I66IFBQVV2sKxwKB48+YNFixYgE2bNlXKccuDRAXysrOzoaKigoSEhOpokxQpUqRIqWZatGiBDx8+lCtPQ1A86dOnT//ZAnnZ2dnYsWMHgoODYWlpCX19fdSrV+9nN6tYAgIC8OXLl1/CYwEA4eHhcHd3x/aiyoRXgNTUVKipqcHPzw/9+vWrFMUfKVKKYvHixTAzM0Pjxo1x6NAhXLp0CadPn65Q0dTU1FTs2bMHf/31F1auXAkNDY1KbLGI9PR0tG3bVqICeRIZFgDrdHNyciqlgVKkSJEi5d9FrVq1yp38LV18kiJFipT/byRdfJLYsJAiRYoUKVKKQ7r4JEWKFCn/v0i6+CQ1LKRIkSJFihQpUqRIkVJhpJW3pUiRIkWKFClSpEiRUmGkhoUUKVKkSJEiRYoUKVIqjNSwkCJFihQpUqRIkSJFSoWRGhZSpEiRIkWKFClSpEipMFLDQooUKVKkSJEiRYoUKRVGalhIkSJFihQpUqRIkSKlwkgNCylSpEiRIkWKFClSpFSY/wE+zaX2d+mceAAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, len(station_var_IDs), subplot_kw={\"projection\": ccrs.PlateCarree()}, figsize=(4 * len(station_var_IDs), 4))\n", + "for ax, var_ID in zip(axes, station_var_IDs):\n", + " df = station_raw_df[var_ID].dropna(how=\"any\").reset_index()\n", + " ax.scatter(df.lon, df.lat, transform=ccrs.PlateCarree(), color=\"b\", marker=\"o\", s=10, linewidth=0.1, facecolors='none')\n", + " ax.coastlines(linewidths=0.5)\n", + " ax.add_feature(cfeature.BORDERS, linewidths=0.5)\n", + " ax.set_title(var_ID)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Spatiotemporal gridded data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Spatiotemporal gridded data is data that is on a regular spatiotemporal grid, such as reanalysis data or satellite data.\n", + "In DeepSensor, Xarray DataArrays/Datasets are used to represent gridded data.\n", + "* The variable ID is the variable name in the DataArray/Dataset\n", + "* The dimensions must be (time, y, x), where time is a datetime, and y and x are the spatial dimensions" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T11:36:39.888842285Z", + "start_time": "2023-10-27T11:36:39.812154445Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\nDimensions: (time: 6, lat: 141, lon: 221)\nCoordinates:\n * lat (lat) float32 70.0 69.75 69.5 ... 35.5 35.25 35.0\n * lon (lon) float32 -15.0 -14.75 -14.5 ... 39.75 40.0\n * time (time) datetime64[ns] 2015-06-25 ... 2015-06-30\nData variables:\n 2m_temperature (time, lat, lon) float32 274.7 274.8 ... 300.5\n 10m_u_component_of_wind (time, lat, lon) float32 5.999 5.951 ... 4.999\n 10m_v_component_of_wind (time, lat, lon) float32 2.87 2.746 ... -3.017", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.Dataset>\nDimensions:                  (time: 6, lat: 141, lon: 221)\nCoordinates:\n  * lat                      (lat) float32 70.0 69.75 69.5 ... 35.5 35.25 35.0\n  * lon                      (lon) float32 -15.0 -14.75 -14.5 ... 39.75 40.0\n  * time                     (time) datetime64[ns] 2015-06-25 ... 2015-06-30\nData variables:\n    2m_temperature           (time, lat, lon) float32 274.7 274.8 ... 300.5\n    10m_u_component_of_wind  (time, lat, lon) float32 5.999 5.951 ... 4.999\n    10m_v_component_of_wind  (time, lat, lon) float32 2.87 2.746 ... -3.017
" + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "era5_var_IDs = [\"2m_temperature\", \"10m_u_component_of_wind\", \"10m_v_component_of_wind\"] \n", + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "era5_raw_ds " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "hide-input" + ], + "ExecuteTime": { + "end_time": "2023-10-27T11:36:40.554710613Z", + "start_time": "2023-10-27T11:36:39.916503865Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAEhCAYAAACwbSORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wV1fm4n5m5fXtflrb03rGAShFQsMYSTewayzfGqFGi0ahgjWI0GmP9RcXEFhvGHgUFCxaUIqLSOwss29vdW+b8/phyZ+6922AXVpzn81m4c+bMmTPtvOe8533fIwkhBA4ODg4ODg4ODg4ODg4ODg4ODp0A+UBXwMHBwcHBwcHBwcHBwcHBwcHBwcBRVjk4ODg4ODg4ODg4ODg4ODg4dBocZZWDg4ODg4ODg4ODg4ODg4ODQ6fBUVY5ODg4ODg4ODg4ODg4ODg4OHQaHGWVg4ODg4ODg4ODg4ODg4ODg0OnwVFWOTg4ODg4ODg4ODg4ODg4ODh0GhxllYODg4ODg4ODg4ODg4ODg4NDp8F1oCvg4ODg0BzBYJBQKNSmYzweDz6fr4Nq5ODg4ODQmXHkhoODg4NDW3DkRufEUVY5ODh0WoLBIL16prJzd7RNxxUWFrJx40ZHgDg4ODj8zHDkhoODg4NDW3DkRufFUVY5ODh0WkKhEDt3R9n4TU/S01rntVxdo9JrzGZCoZAjPBwcHBx+Zjhyw8HBwcGhLThyo/PiKKscHBw6PSmp2l9riIqOrYuDg4ODQ+fHkRsODg4ODm3BkRudD0dZ5eDg0OlREai0Tiq0Np+Dg4ODw8GLIzccHBwcHNqCIzc6H46yysHBodOjoqK2Ia+Dg4ODw88bR244ODg4OLQFR250PlrnlOng4ODg4ODg4ODg4ODg4ODg4LAfcCyrHBwcOj1RIYiK1pnbtjafg4ODg8PBiyM3HBwcHBzagiM3Oh+OssrBwaHT4/iQOzg4ODi0BUduODg4ODi0BUdudD4cN0AHB4dOj4og2sq/tgqPRx99lOHDh5Oenk56ejrjxo3j3XffNfcLIZg9ezZFRUX4/X4mTZrEqlWrbGVMmjQJSZJsf7/61a/a5dodHBwcHNpOR8oNBwcHB4eDD0dudD4cZZWDg0Onx5jpaO1fW+jWrRt33303X3/9NV9//TVHH300J598sqmQmjNnDvfffz//+Mc/WLJkCYWFhUybNo2amhpbOZdccgklJSXm3+OPP95u1+/g4ODg0DY6Um44ODg4OBx8OHKj8+G4ATo4OHR6OtKH/MQTT7Rt33nnnTz66KN88cUXDB48mAceeIA///nPnHrqqQA888wzFBQU8Pzzz3PZZZeZxwUCAQoLC9t0bgcHBweHjsGJPeLg4ODg0BYcudH5cCyrHBwcOj1qG/8AqqurbX+NjY0tnicajfLiiy9SV1fHuHHj2LhxIzt37uSYY44x83i9XiZOnMjixYttxz733HPk5uYyZMgQZs6cmWB55eDg4OCw/9gbueHg4ODg8PPFkRudD8eyysHBodNj+Ie3Ni9A9+7dbemzZs1i9uzZSY9ZuXIl48aNIxgMkpqayrx58xg8eLCpkCooKLDlLygoYPPmzeb22WefTa9evSgsLOS7777jhhtuYMWKFXzwwQetvUQHBwcHh3Zkb+SGg4ODg8PPF0dudD4cZZWDg0OnJyq0v9bmBdi6dSvp6elmutfrbfKYAQMGsHz5ciorK3n11Vc5//zzWbRokblfkiRbfiGELe2SSy4xfw8dOpR+/foxduxYli5dyujRo1tXcQcHBweHdmNv5IaDg4ODw88XR250Phw3QAcHh07P3pjlGqv7GX/NKas8Hg99+/Zl7Nix/OUvf2HEiBE8+OCDZgyqnTt32vLv3r07wdrKyujRo3G73axdu3bvLtjBwcHBYZ9w3DkcHBwcHNqCIzc6H46yysHBodOjIhFt5Z+K1HKBLSCEoLGx0XTts7rzhUIhFi1axPjx45s8ftWqVYTDYbp06bLPdXFwcHBwaDv7W244ODg4OPy0ceRG58NxA3RwcOj0qEL7a23etnDjjTcyY8YMunfvTk1NDS+++CILFy7kvffeQ5Ikrr76au666y769etHv379uOuuuwgEApx11lkArF+/nueee47jjjuO3Nxcvv/+e6699lpGjRrFEUcc0cYrdXBwcHBoDzpSbjg4ODg4HHw4cqPz4SirHBwcOj3GLEZr87aFXbt2ce6551JSUkJGRgbDhw/nvffeY9q0aQBcd911NDQ0cPnll1NRUcFhhx3G+++/T1paGqC5EC5YsIAHH3yQ2tpaunfvzvHHH8+sWbNQFKVtF+rg4ODg0C50pNxwcHBwcDj4cORG58NRVjk4OHR6OlJ4PPnkk83ulySJ2bNnN7mSYPfu3W3B2B0cHBwcDjzOoMPBwcHBoS04cqPz4SirHBwcOj2qkFBF64RCa/M5ODg4OBy8OHLDwcHBwaEtOHKj8+EEWHdwcOj0tDbYYVtmRBwcHBwcDl4cueHg4ODg0BY6Um58/PHHnHjiiRQVFSFJEq+//rptvxCC2bNnU1RUhN/vZ9KkSaxatarFcl999VUGDx6M1+tl8ODBzJs3r0316uw4yioHB4dOTxS5TX8ODg4ODj9vHLnh4ODg4NAWOlJu1NXVMWLECP7xj38k3T9nzhzuv/9+/vGPf7BkyRIKCwuZNm0aNTU1TZb5+eefc+aZZ3LuueeyYsUKzj33XM444wy+/PLLNtWtM+O4ATo4OHR6RBvMcoVjluvg4ODws8eRGw4ODg4ObWFv5EZ1dbUt3ev14vV6E/LPmDGDGTNmNFGW4IEHHuDPf/4zp556KgDPPPMMBQUFPP/881x22WVJj3vggQeYNm0aN9xwAwA33HADixYt4oEHHuCFF15o1XV0dpypJAcHh06P487h4ODg4NAWHLnh4ODg4NAW9kZudO/enYyMDPPvL3/5S5vPu3HjRnbu3Mkxxxxjpnm9XiZOnMjixYubPO7zzz+3HQNw7LHHNnvMTw3HssrBwaHTExUyUdE63XpUdHBlHBwcHBw6PT83ufHVV1+xcOFCdu/ejaqqtn3333//AaqVg4ODw0+HvZEbW7duJT093UxPZlXVEjt37gSgoKDAll5QUMDmzZubPS7ZMUZ5bSEYDPLQQw/x0UcfJZUjS5cubXOZ7YGjrHJwcOj0qEiorTQEVTkIRh0ODg4ODvtER8qNjz/+mHvvvZdvvvmGkpIS5s2bxy9+8QtzvxCCW2+9lSeeeIKKigoOO+wwHn74YYYMGdKm87SWu+66i5tuuokBAwZQUFCAJMUsxay/HRwcHByaZm/kRnp6uk1ZtS/Et9dCiBbb8L05JhkXXXQRH3zwAaeffjqHHnpop5EdjrLKwcGh09MWNw3HncPBwcHBoSPlhhEo98ILL+S0005L2G8Eyp07dy79+/fnjjvuYNq0aaxevZq0tLQ2nas1PPjggzz11FNccMEF7V62g4ODw8+FAzXeKCwsBDRLqS5dupjpu3fvTrCcij8u3oqqpWOa4u233+add97hiCOOaPOxHYkTs6qNfPjhh1x00UUMHDiQlJQUunbtysknn8w333yzX+uxY8cOZs+ezfLly/freX8K1NfXM3v2bBYuXHigq+LQThhmua39czh4qamp4brrruOYY44hLy8PSZKYPXt20rxLly5l6tSppKamkpmZyamnnsqGDRv2b4UdfjLsL7m6adMmjj/+eLKzs5EkiauvvrpDzyVJEnPnzm3Xcpv77joLHSk3ZsyYwR133GEGwrUSHyh36NChPPPMM9TX1/P888+31+XZkGW50w0wOhuO7HDoKB555JF2b2OTcdNNN9GjRw9cLheZmZkdeq5JkyYxadKkdi3zggsuoLi4uF3LbG8O1HijV69eFBYW8sEHH5hpoVCIRYsWMX78+CaPGzdunO0YgPfff7/ZY5qia9euHTKZsq84o7o28uijj7Jp0yauuuoq3nnnHR588EF2797N4Ycfzocffrjf6rFjxw5uvfVWR1mVhPr6em699VZHWXUQoZnltv7P4eClrKyMJ554gsbGRpvbTTw//vgjkyZNIhQK8dJLL/HUU0+xZs0ajjrqKEpLS/dfhR1+MuwvufqHP/yBL7/8kqeeeorPP/+cP/zhDx12ri5duvD5559z/PHHd9g5Oit7Izeqq6ttf42NjW0+794Gyt0X/vCHP/Dwww93SNkHC47scOgo9oey6r///S933nkn5513HosWLWL+/Pkder5HHnmERx55pEPP0RnpyPFGbW0ty5cvN/sYGzduZPny5WzZssWcuLrrrruYN28e3333HRdccAGBQICzzjrLLOO8884zV/4DuOqqq3j//fe55557+PHHH7nnnnuYP3/+Xk2C3XfffVx//fXNxsg6EDhugG3k4YcfJj8/35Y2ffp0+vbty1133cXRRx99gGp28BIOh5EkCZfrwL6uQgiCwSB+v/+A1uPniIpM1IlZ5QD07NmTiooKJEliz549/POf/0ya75ZbbsHr9fLWW2+ZsQTGjBlDv379+Otf/8o999yzP6vt4GDy3XffceihhzY7YG4vvF4vhx9+eIefpzOyN3Kje/futvRZs2a12YJsbwPl7gszZ87k+OOPp0+fPgwePBi3223b/9prr3XIeX9KOLLD4afMd999B8CVV16ZMA7tCAYPHtzh5+iMdOR44+uvv2by5Mnm9jXXXAPA+eefz9y5c7nuuutoaGjg8ssvN2Mdvv/++zZrpy1btiDLsfqNHz+eF198kZtuuombb76ZPn368J///IfDDjusTXUDGDt2LMFgkN69exMIBBLkSHl5eZvLbA8cy6o2kqyBSE1NZfDgwWzdutVMKy4u5oQTTuCtt95i1KhR+P1+Bg0axFtvvQXA3LlzGTRoECkpKRx66KF8/fXXra7DwoULOeSQQwC48MILkSQpwZz566+/5qSTTiI7Oxufz8eoUaN46aWXbOXMnTsXSZL48MMPueSSS8jJySE9PZ3zzjuPuro6du7cyRlnnEFmZiZdunRh5syZhMNh83jDvWDOnDnceeed9OjRA5/Px9ixY1mwYEFCvdeuXctZZ51Ffn4+Xq+XQYMGJcwELly4EEmS+Pe//821115L165d8Xq9rFu3jtLSUi6//HIGDx5Mamoq+fn5HH300XzyySe2OuXl5QFw6623mvfGiOPQlAnq7NmzEwLJSZLEFVdcwWOPPcagQYPwer0888wzrb4Wh/bDcQN0MDC+6eaIRCK89dZbnHbaabaglz179mTy5MnMmzfPTDPanOeff57rr7+eLl26kJqayoknnsiuXbuoqanh0ksvJTc3l9zcXC688EJqa2vbVOemzOn31iT+vffeY8qUKWRkZBAIBBg0aFDCUslvvPEG48aNIxAIkJaWxrRp0/j8889teYx279tvv+WXv/wlGRkZZGdnc8011xCJRFi9ejXTp08nLS2N4uJi5syZYzveuHfPPvss11xzDYWFhfj9fiZOnMiyZcsS6t2WOq1atYpf//rXZGRkUFBQwEUXXURVVZUtrxCCRx55hJEjR+L3+8nKyuL0009PcNeZNGkSQ4cOZcmSJRx11FEEAgF69+7N3Xffba520xq52hJbtmzhnHPOscmF++67z3YOSZJYt24d7777rnmOTZs2tVj2H//4RzIyMohGo2ba73//eyRJ4t577zXTysrKkGWZhx56CEjuBtiWe1xdXW32D1JTU5k+fTpr1qxp9T05kOyN3Ni6dStVVVXmn3UGu620V9Db1vD73/+ejz76iP79+5OTk2NbRj0jI6NDzvlT46cmOx544AGzvYjn+uuvx+PxsGfPnlaXt337di699FK6d++Ox+OhqKiI008/nV27dpl5WmrDINam3Hvvvdxzzz0UFxfj9/uZNGkSa9asIRwO86c//YmioiIyMjI45ZRT2L17t60uxhhp3rx5DB8+HJ/PR+/evfn73/+eUO+21Omvf/0r999/P7169SI1NZVx48bxxRdfJJTZljHSRx99xG9/+1tyc3PJycnh1FNPZceOHbZrWbVqFYsWLTLfsbbIdVVVmTNnDgMHDsTr9ZKfn895553Htm3bbOe46aabAMwFFFojm1atWoUkSbz88stm2jfffIMkSQmLPZx00kmMGTPG3I7vt7T1Hs+dO5cBAwaYz+xf//pXa2/JAaUjxxuTJk1CCJHwZ8hn47mWlJQQDAZZtGgRQ4cOtZWxcOHCBCu+008/nR9//JFQKMQPP/yQ1D29Nfz6179m+/bt3HXXXTz00EP87W9/s/0dKBzLqnagqqqKpUuXJlhVrVixghtuuIE///nPZGRkcOutt3Lqqadyww03sGDBAu666y4kSeL666/nhBNOYOPGja2y2hk9ejRPP/00F154ITfddJNp3t+tWzcAPvroI6ZPn85hhx3GY489RkZGBi+++CJnnnkm9fX1CQE4L774Yk499VRefPFFli1bxo033mgOVE499VQuvfRS5s+fzz333ENRUZGpCTb4xz/+Qc+ePXnggQfMRnfGjBksWrSIcePGAfD9998zfvx4evTowX333UdhYSH/+9//uPLKK9mzZw+zZs2ylXnDDTcwbtw4HnvsMWRZJj8/3zS/njVrFoWFhdTW1jJv3jwmTZrEggULmDRpEl26dOG9995j+vTp/OY3v+Hiiy8GMBVYbeX111/nk08+4ZZbbqGwsJD8/Pw2X4vDvqMiO6sBOrSa9evX09DQwPDhwxP2DR8+nA8++IBgMIjP5zPTb7zxRiZPnszcuXPZtGkTM2fO5Ne//jUul4sRI0bwwgsvmO1jWlpa0k71/uDJJ5/kkksuYeLEiTz22GPk5+ezZs0ac9YV4Pnnn+fss8/mmGOO4YUXXqCxsZE5c+aYbeWRRx5pK/OMM87gnHPO4bLLLuODDz5gzpw5hMNh5s+fz+WXX87MmTPNAVnfvn0TOkI33ngjo0eP5p///CdVVVXMnj2bSZMmsWzZMnr37r1XdTrttNM488wz+c1vfsPKlStNpcFTTz1l5rnsssuYO3cuV155Jffccw/l5eXcdtttjB8/nhUrVtgsW3bu3MnZZ5/Ntddey6xZs5g3bx433HADRUVFnHfeeS3K1ZYoLS1l/PjxhEIhbr/9doqLi3nrrbeYOXMm69ev55FHHmH06NF8/vnnnHLKKfTp04e//vWvALZgqk0xdepU/vrXv/LVV1+ZcnX+/Pn4/X4++OAD/vjHPwKwYMEChBBMnTq1xTJbusdCCH7xi1+wePFibrnlFg455BA+++wzZsyY0ap7cqDZG7nRHqs67W2g3H3hX//6F6+++urP0t2zPelMsuOcc87h+uuvZ+7cudxxxx1mejQa5dlnn+XEE08kNze3VWVt376dQw45hHA4zI033sjw4cMpKyvjf//7HxUVFRQUFLSqDbPy8MMPM3z4cB5++GEqKyu59tprOfHEEznssMNwu9089dRTbN68mZkzZ3LxxRfzxhtv2I5fvnw5V199NbNnz6awsJDnnnuOq666ilAoxMyZM4HWtavxdRo4cCAPPPAAADfffDPHHXccGzduNJW2ezNGOv7443n++efZunUrf/zjHznnnHPM0C/z5s3j9NNPJyMjw6yP1+tt1XMB+O1vf8sTTzzBFVdcwQknnMCmTZu4+eabWbhwIUuXLiU3N5d58+bx8MMP8+STT/Lee++RkZHRKtk0ZMgQunTpwvz58/nlL38JxOTG999/z44dOygqKiISibBo0SL+7//+r8UyW3OP586dy4UXXsjJJ5/MfffdZ/YLGhsbbVZBnZGf83hj8eLFfP7554wYMeJAV8WOcNhnzj77bOFyucTXX39tpvXs2VP4/X6xbds2M2358uUCEF26dBF1dXVm+uuvvy4A8cYbb7T6nEuWLBGAePrppxP2DRw4UIwaNUqEw2Fb+gknnCC6dOkiotGoEEKIp59+WgDi97//vS3fL37xCwGI+++/35Y+cuRIMXr0aHN748aNAhBFRUWioaHBTK+urhbZ2dli6tSpZtqxxx4runXrJqqqqmxlXnHFFcLn84ny8nIhhBAfffSRAMSECRNavAeRSESEw2ExZcoUccopp5jppaWlAhCzZs1KOOb8888XPXv2TEifNWuWiP8cAJGRkWHWra3X4rDvVFVVCUD8e9kw8eq6ka36+/eyYQJIeD4OBx9NfeufffaZAMQLL7yQcMxdd90lALFjxw4hRKzNOfHEE235rr76agGIK6+80pb+i1/8QmRnZ7epnhMnThQTJ05MSG+qPWqKmpoakZ6eLo488kihqmrSPNFoVBQVFYlhw4aZbb1xbH5+vhg/fryZZrR79913n62MkSNHCkC89tprZlo4HBZ5eXni1FNPNdOMezd69GhbfTZt2iTcbre4+OKL97pOc+bMsdXp8ssvFz6fzzzP559/nrTuW7duFX6/X1x33XVm2sSJEwUgvvzyS1vewYMHi2OPPdbcbk6utsSf/vSnpOf47W9/KyRJEqtXrzbTevbsKY4//vg2lV9XVyc8Ho+47bbbhBBCbNu2TQDi+uuvF36/XwSDQSGEEJdccokoKioyjzPktPWaWnuP3333XQGIBx980JbvzjvvbFLGdgb2t9wAxLx588xtVVVFYWGhuOeee8y0xsZGkZGRIR577LH2uMQEevToIX744YcOKftg5KciO0499VTRrVs3W7v5zjvvCEC8+eabrS7noosuEm63W3z//fdN5mltG2a0KSNGjLDV64EHHhCAOOmkk2zHG/fD+m317NlTSJIkli9fbss7bdo0kZ6ebo6R2lqnYcOGiUgkYub76quvEp5nW8dIl19+uS3fnDlzBCBKSkrMtCFDhiSV8S3xww8/JD3Hl19+KQBx4403mmlGu11aWtqmc5xzzjmid+/e5vbUqVPFJZdcIrKyssQzzzwjhIi99++//76ZL77f0tp7bMj7pvoFbenz7E+c8YYQo0aNEp9//vmBrkYCnVu9+RPg5ptv5rnnnuNvf/ubzXwSYOTIkXTt2tXcHjRoEKCZAQYCgYT09ohlsG7dOn788UfOPvtsQDNpNv6OO+44SkpKWL16te2YE044wbZt1Cd+hm7QoEFJ63jqqafaZpnS0tI48cQT+fjjj4lGowSDQRYsWMApp5xCIBBIqFMwGEwwIU22FDTAY489xujRo/H5fLhcLtxuNwsWLOCHH35o5R1qG0cffTRZWVnm9t5ci8O+E9V9yFv75+AAiW44ze1rSztYXl7eZlfA9mDx4sVUV1dz+eWXN3ltq1evZseOHZx77rm2GczU1FROO+00vvjiC+rr623HJLt2SZJsFjQul4u+ffsmlQFnnXWWrT49e/Zk/PjxfPTRR3tdp5NOOsm2PXz4cILBoOlO8tZbbyFJEuecc46tHS4sLGTEiBEJC2wUFhZy6KGHJpTZXjGEPvzwQwYPHpxwjgsuuAAhxD4vwBIIBBg3bpwZVPeDDz4gMzOTP/7xj4RCIT799FNAmzVvjVUVtHyPjedn9CcMrMFeOzMdKTfaI1BuezJ79mxmzZqV8B057B2dRXZceOGFbNu2zRZM++mnn6awsLBNFo7vvvsukydPNuuWjLa2Yccdd5ytPW/uukFz57MyZMiQBAuOs846i+rqapYuXbpXdTr++ONRFMXcNizkjHZ+b8ZIydpJa5n7gtHGxltzHXrooQwaNChpSJW2MmXKFDZs2MDGjRsJBoN8+umnTJ8+ncmTJ5uryM2fPx+v15tg4ZyMlu6xIe+b6hd0dn7O4427776ba6+9loULF1JWVpaw4MiBwnED3AduvfVW7rjjDu68806uuOKKhP3Z2dm2bY/H02x6MBjc5zoZvuczZ840zWjjifdxb0s9k9XRMHmPTwuFQtTW1lJbW0skEuGhhx4y42i0VKdkbhH3338/1157Lf/3f//H7bffTm5uLoqicPPNN3eYsiq+HmVlZW2+Fod9RxUyait166o4uMxyHdpOTk4OoH2v8ZSXlyNJUsKyz3vTXqemprZXlVuF4QrdnPm/cc3J2tCioiJUVaWiosI2YZLsGgOBgG0SwkhP1mFpSgasWLFir+tkPEMDw62ioaEB0GSdEKJJtyrD/bCp8owyjfL2lbKysqRxSoqKisz9+8rUqVO5/fbbqaurY/78+Rx99NHk5OQwZswY5s+fT+/evdm4cSO33nprq8pr6R6XlZXhcrkS8iV73p2RjpQb7REotz35+9//zvr16ykoKKC4uDghMK4x+Hdons4mO2bMmEGXLl14+umnOeaYY6ioqOCNN97gqquusikMWqK0tLRFt7G2tmH7OsZpSm5Yz9XWOrVGbkDbxkgtlbkvtCQb20MhZkxezJ8/n169ehEOhzn66KPZtWsXt99+u7nviCOOaFUomtbIDWj6+bYmRuOB5Oc83pg+fTqgKTitCD3eojVm5v7EUVbtJbfeeiuzZ89m9uzZ3HjjjQe6OiaG//oNN9zQZIC1AQMGtOs5jZVv4tM8Hg+pqam43W4UReHcc8/ld7/7XdIyevXqZdtONqv17LPPMmnSJB599FFbek1NTavr6vP5ki5F3ZSCKb4eWVlZbb4Wh32nLTMY0YPMh9yh7fTp0we/38/KlSsT9q1cuZK+ffsmKGI6Ep/PlxC4Gtqu2DZi71kDr8ZjdCRLSkoS9u3YsQNZlm3Wou1BUzLAqEtH1Ck3NxdJkvjkk0+SxgdpS8yQ9iAnJ6fJ6wNaHVumOaZMmcLNN9/Mxx9/zIIFC8z4iFOmTOH99983ZU98R3NvycnJIRKJUFZWZhugJHvenZGOlBtGoNymMALltnUlwb1lf6ws+XOgs8kOo7/597//ncrKSp5//nkaGxu58MIL21ROXl5es3ID9k8bZqUpuWHUpSPqdCDGSM1hlY3xysQdO3a0yz3v1q0b/fv3Z/78+RQXFzN27FgyMzOZMmUKl19+OV9++SVffPFFqyc5WsK4puaeb2fm5zzeMCz9OhuOsmovuP3225k9ezY33XTTAQum3ZRmf8CAAfTr148VK1Zw11137Ze6vPbaa9x7772mAK+pqeHNN9/kqKOOQlEUAoEAkydPZtmyZQwfPtycZWkrkiQlDEC+/fZbPv/8c9ty083NehQXF7N792527dplzsiHQiH+97//taoO7XUtDm1DBaKidasoqS1ncTjIcblcnHjiibz22mvMmTPHtGbYsmULH330EX/4wx/2a32Ki4t5+eWXaWxsNNunsrIyFi9e3KZgzuPHjycjI4PHHnuMX/3qV0mV+gMGDKBr1648//zzzJw508xTV1fHq6++aq7G15688MILXHPNNea5Nm/ezOLFiznvvPM6rE4nnHACd999N9u3b+eMM85ol+vYlxnzKVOm8Je//IWlS5cyevRoM/1f//oXkiTZrHD2lkMPPZT09HQeeOABdu7cybRp0wBt5vyee+7hpZdeYvDgwabVwb4yefJk5syZw3PPPceVV15ppj///PPtUn5H83OSG87CLu1DZ5MdoLkCzpkzhxdeeIG5c+cybtw4Bg4c2KYyZsyYwb///W9Wr17dpDJmf7RhVlatWsWKFStsroDPP/88aWlp5vnbu04dNUbaWytdY2GuZ5991lyNFmDJkiX88MMP/PnPf26X+k2dOpWXXnqJ7t27m26a/fv3p0ePHtxyyy2Ew+FWu4+3xIABA+jSpUuT/YL2kk8dxc9JbsQzceLEA12FpDjKqjZy3333ccsttzB9+nSOP/74hPhEhx9++H6phzH789xzzzFo0CBSU1MpKiqiqKiIxx9/nBkzZnDsscdywQUX0LVrV8rLy/nhhx9YunSpbQnT9kBRFKZNm8Y111yDqqrcc889VFdX27T0Dz74IEceeSRHHXUUv/3tbykuLqampoZ169bx5ptvtiqexwknnMDtt9/OrFmzmDhxIqtXr+a2226jV69eRCIRM19aWho9e/bkv//9L1OmTCE7O5vc3FyKi4s588wzueWWW/jVr37FH//4R4LBIH//+9/bZNrYHtfi0DbatjrHweVD7pDIu+++S11dnWlV+f333/PKK68AWhyNQCDArbfeyiGHHMIJJ5zAn/70J4LBILfccgu5ublce+21+7W+5557Lo8//jjnnHMOl1xyCWVlZcyZM6fNq46lpqZy3333cfHFFzN16lQuueQSCgoKWLduHStWrOAf//gHsiwzZ84czj77bE444QQuu+wyGhsbuffee6msrOTuu+9u9+vbvXs3p5xyCpdccglVVVXMmjULn89nri7XEXU64ogjuPTSS7nwwgv5+uuvmTBhAikpKZSUlPDpp58ybNgwfvvb37apzObkakv84Q9/4F//+hfHH388t912Gz179uTtt9/mkUce4be//S39+/dv8zXGoygKEydO5M0336RXr1706dMH0O6F1+tlwYIFNqXSvnLMMccwYcIErrvuOurq6hg7diyfffYZ//73v9vtHB2JIzcc4vmpyQ6AgQMHMm7cOP7yl7+wdetWnnjiiTaXcdttt/Huu+8yYcIEbrzxRoYNG0ZlZSXvvfce11xzDQMHDtwvbZiVoqIiTjrpJGbPnk2XLl149tln+eCDD7jnnnvMyYuOqFNHjJGGDRvGiy++yH/+8x969+6Nz+dj2LBhLR43YMAALr30Uh566CFkWWbGjBnmaoDdu3dvN+XolClTeOSRR9izZ4+5ip+R/vTTT5OVlZUQd3lvkWWZ22+/nYsvvtjsF1RWVpqrPnZ2fm5y49tvv2Xo0KGtXqVx1apVDBgwAJdr/6mQHGVVG3nzzTcBeO+993jvvfcS9jdnFt6eBAIBnnrqKW699VaOOeYYwuEws2bNYvbs2UyePJmvvvqKO++8k6uvvpqKigpycnIYPHhwu81AW7niiisIBoNceeWV7N69myFDhvD2229zxBFHmHkGDx7M0qVLuf3227npppvYvXs3mZmZ9OvXj+OOO65V5/nzn/9MfX09Tz75JHPmzGHw4ME89thjzJs3LyGY7pNPPskf//hHTjrpJBobG804Er169eK///0vN954I6effjpdunThmmuuobS0tNUmsO1xLQ5tIypkoq30IW9tPoefLr/97W9tsRxefvlls4O5ceNGiouLGThwIAsXLuT666/n9NNPx+VycfTRR/PXv/7VdKfbXxxxxBE888wz3H333Zx88sn07t2bWbNm8c477yS0XS3xm9/8hqKiIu655x4uvvhihBAUFxdz/vnnm3nOOussUlJS+Mtf/sKZZ56JoigcfvjhfPTRRx0S4PSuu+5iyZIlXHjhhVRXV3PooYfy4osvmsqUjqrT448/zuGHH87jjz/OI488gqqqFBUVccQRRyQE5G0NzcnVlsjLy2Px4sXccMMN3HDDDVRXV9O7d2/mzJljxjNqD6ZOncqbb75pmwU3AuN+8MEH7TY7Dtqg44033uCaa65hzpw5hEIhjjjiCN555502W3YcCA52uZGdnc2aNWta7SrUo0cPPvnkE3r27NnBNeu8/NRkh8GFF17IpZdeit/v58wzz2zz8V27duWrr75i1qxZ3H333ZSVlZGXl8eRRx5pxpjaX22YwciRI7nwwguZNWsWa9eupaioiPvvv9+moOmIOnXEGOnWW2+lpKSESy65hJqaGnr27Nnq2EyPPvooffr04cknn+Thhx8mIyOD6dOn85e//CVprMW94eijj0aWZfx+P+PGjTPTp06dytNPP83kyZNbraxoDb/5zW8AuOeeezj11FMpLi7mxhtvZNGiRW3u8+xvDna5Ec+oUaPYuXNnq9u2cePGsXz58oS4oB2JJPaXdsXhoGPTpk306tWLe++9t8lAhQ4O+0J1dTUZGRn845vD8Ke2TrfeUBvhijFfUlVV1WbLFQcHh9azcOFCJk+ezMsvv8zpp59+oKvj4AD8fOSGLMs888wzZGRktCr/r3/9a1auXLlfBxkODskoLi5m6NChvPXWWwe6Kg4OwM9HbsQjyzKXXnppq0MxPPLII3z//ff7VY44llUODg6dHhUJldb6kLcun4ODg4PDwcvPQW5YLSodHBwcHPaNn4PcsDJhwgRWr17d6vzjxo1r1aqR7YmjrOpkCCFajJ+kKErSwLoODgcrPzezXIefBqqqoqrNh9hsrV9/NBptcXWxtixV7tA+7A+Z7Dz7juFglxsttT0OnZf2kh3OmKHz0tHtenv2PxxiHOxyI57O7pYJHASRwQ4yFi1ahNvtbvbvmWeeOdDVBDQzXiGE4wLo0OEYS8m29s/BYX9w0UUXtdhet5YpU6Y0W441/lNnYdKkSQghDmoXwP0hk/v06dNs+VOmTGmnq/l54cgNh85Ke8mOZ555psVyFi1a1MFX03Y2bdp00LsAdnS7ftttt7X47FsbN8shhiM3Oh+OyrWTMWbMGJYsWdJsnl69eu2n2jg4dA5UIaG2dinZVuZzcNhXZs+ezRVXXNEuZT3++OPmClXJ8Hq97XIeh7axP2Tym2++SWNjY5P709LS9qn8nyuO3HDorLSX7DjxxBNbbJ8GDBiwz+dxaDsd3a5feumlnHDCCc3mac1Ktg52HLnR+XCUVZ2MtLQ0xo4de6Cr4eDQqVDbMINxMCwl6/DToLi4mOLi4nYpyxlQdE72h0xuzRLnDm3HkRsOnZX2kh05OTnttmKcQ/vS0e16UVGRo4zqABy50flotbIqGAwSCoU6si4ODg4HGR6PB5/Pt8/lqEJGbaVveGvzOXQ8jtxwcHBoK47c+HnjyA0HB4e24siNg5dWKauCwSAZ/ixCBDu6Pg4ODgcRhYWFbNy4cZ8FSBSJaCtX3WhtPoeOJRgMktUth2BZ/YGuioODw08IR278fAkGg6QW5hOtatol2sHBwSEeR27sOx9//DHjx49PCMwfiURYvHgxEyZMOCD1apWyKhQKESLIUcqJuNCD/kkykqw/pGSrTMhJ0iz5JFlucp92vGxPkyQkSbaXLUmxPEZ5xrYUV6ZsyRtfjnlc/HbL1wEgzLxxeST7/Wkyn15fYbveFs6VUKdkafp5kyl+LeUI67ks5Vjrm3BeKcmxcSSsgSE1tcOyX+jZLCtoSJb8NVXb2bRhAVUVG5ooJBFZ8SDUKLLLS0H3MVSUrqahZjcgc+jJt6HqX4GQIRyqpeTHT0jN7kZ2N4sJrySBEGZdhPF+6dcUDtdTuvZLStd+QTQUxJuRi1CjRIL1+LMKyeg5BH9+Dxp2bWb3qk8I11Wi+FJIye+BJzUbly8FWXGzY8nbCfVXPCnaqiFuL4GcrviyCwlW7aFiw9KEvP6cbuQVDaegz3itrvp9VN0SQpFQXSBHMZ+BpAqSuVzbrjMuLQFLumRZmCQaCrL07TsIhUL7LDycmY6fHqFQiGBZPSf999e4UzxmerLnY/X7ty4FbKTb9lviCVhfyfg4A/HHCmMbLZ8QElFVNvcJfV9Ulc3mx8gjBKiqpTwBQpUQ1ryqVib6fi2zhFABIWnfhlE/Vau8pEr278c4Vli+JT2fpOrH6cdLRh4R+zaNbWuaeaOMPPHpxKVb/rc1DSJJniTHSdbzq/b9kirM/Ql5k7UvljY3VkZ8XWJtXKxSoLokVDdEfBK1ezaz+8v3qd+xMclJkiP5fYhQGMnvJ+3QMdSvXEWkdA+Sz0fxn25BCsfyqjXVVCxehL+4D6l9B8fKMJ6HtVyhvQaSCtGaWiqWf0Hlt1+ghsN4M3NQ1QjRYAP+vC6k9h1KIK8bdds2ULb8U6J11SiBNAKFPXBlZKIEUpEUhdKP30mov+xPQZJkZK8XX0E3PIWFhHaWUPPjirgKyfjyu5LVdzS5Aw9DioIcFabMNz5XScUu92Vtn5AsfQzj9df3G8cbf1jyWrdj/QhQw0E23XObIzfaiKIolJSUkJ+fb0svKysjPz+/xRXjOguhUIhoVQ1dH/gTsvH8BVpbqv9va3MsbSZY9gtLewpm+2m2pWa5ljZFTzfaVimK2ebK+m9ZzytHY+VKUZCiwjxeyyuQI8Z+oecV2r6oQBLCPF6OqHp+AaqRrmrHRQWSseJbRNV+R/VKRPV0oacJYW9vNMGlp1t2qAIhVHuakdf4bS2mlatOJozrmiG+zGbHhMZ4UE+TJFkbm8myfaxo9MsVOTbOUyyNk2I5h6T1iYVlUC4JQdTvRvUpRLwK5fWb2f7jAmrKN7f6umSfHzXUiOJPIX3oGGrWfEukohwlLYNev7veJhOi1ZWUf/UxKT37k9J7oP3y9XfTtq0TrqumYsUXVK78AhFV8WRko0YjRBsb8Od3Ja3fUHz5RdRuXkv5ss9Q62tRUtIJdOmBKz0TJZACqsqexR8k1j+QGpMbRd1wFxbSuG0rdT9+Z8/oUvB07UrKYWNIHTca4VaRXKopIyS9wrJLRZZjAl+Shf6YRPwQP/61Q1W1fpmw9qmEpPXFhGR/pRsa2fr7OY7c2EcmT56cVI5UVVUxefLkAyZH2hSzyoUbl2RRVsUrf6wkU6pYlVXxxyQoQ+KUVXJblVVSwvEtKqviv5z4PE3UtX2UVZJdISTH7Y8/V0KdkqUdYGVVfFJrlVW6kqUxWMWPK1+mob4UjzcdRfFSWb4u4TBZdpOe0Z1KXYGVmz8EtyeFkm1fAZCV159BY8/Rypdl4ETqa0uJRIO43D6bskrx+ik+7FStg6FaR2TJlVVC1pYO3vDh/6O+fDvZxSMpGn0sntSsWKdcv69CgvTC3uQPm0BNyXpqdqyjbucGKtZ9QzQUpOthJ9Jl7PGUrvoYoapEG+sAcHm8hOqrkGSZcH01VdtXo3h8dBk7g5Kv37Xdi4aybWwp20Zu95FIyHj9GYA2kFNdEpKurDI7ZR2orGryOe8FUVo/g/HT6JL/fHCneDpMWRWft63KKklXVql6x0dCgjhllbFt5DUGQGoyZZW6j8oqY7sJZZWZZlVWWRRC+11ZlSStvZRVhhxoq7IqWFvG+i9fpLG+EncgHcnroXbbWnvhSEgeN77uPWlYr+1LGT0KZIm6r7VJgMCIIeScewZEJWRksn9xIuHtuyAYRvb5kC0rjru8PgpO+mXC/WhOWUVEZcvrz9BYUUrmwNHkj5uOOy1dly32+5tS1Jv80ZOp3bqWum3rqNuxkbpt61FDQQqnnUbuuGlUrPgcIQRqQx1IEorXR7i6AklRiFRXULv+exR/gLyjj6f0Q8ukiFAJ7tpKya6tZBYPRcGF25e+d8oqY7u1yipLGfpjadc1qn9OckPEj/R0Ghsb8Xg8Sfd1ZmS/d9+VVZb2tSllldmuCl05RSuUVWrLyiopKrRhhwqSbFFWyYAszP6lpIKMrqwiTlmlCwrJKFio+m9DAWVRVhnKp3gFFEnS0ZVVqj3NrsWz7LF17JomYVzXDPFlNjsmNMaDckvKKn3cJVuUVdaxYTJllaINAOoay/hu8zxC0Qbc3jRkt5fKsni5AbLHi7+wJ3Vb1gCQNfQwosF6qtetBCBj8GgKpp+i3UKXTMExJ9FQugOEQPH6bDLBlVtIlxlnJO0rN6WsEtEoW+c9RaS2iszBY8kbdwyulLSYXAFzvBHo1pu8w6dQu2kN9VvXU799I3Vb1qKGGima8StyDplE5aqvEaqKGqwHWdbkRmUZsttFuKKM2tWrUFJSyZ1+EnveeyNWoUiU0OYthDZvwT+sP1KKGyUtJaaskhOVVVKCsip24cmUVZIqJyirtD5ZorKqPfk5yY14hBAx3Y6FsrIyUlJSDkCNNNqkrJIUBUmOW041XpmT5CKTatuTWVI1tV+O+x2nBEporIz/E5RRSZRdyf5vwmIsqTIp2fH67xaVWNYy45RTSa2smsJaXrJ6WUiqXJKaUUzFK6VsdSQhn1ZGCxW2CEghVHbvWE4oWE1hj0NxuwIgBCVbv2TN9/PMfGkZPdiza2XS4kaO/x2p6V1Y+umD1FbvQHF5TUUVgBRRkasaqKjaSDhShyy7yCocgpKahxpWtQ4NoCoSQhFmQx9/Xw2lk7ktg5AlytZ+Q23pJvoc93+kd+sPMkSsHfj4zruk4E/rj79/f4QQVK1eytb3nqNk2Qek9x2GJyuXhl1bAMgafjihyjKUzEyyD5lI2uBhMeWaAu5xQ9j1+ks0bt1iuydL37kLgOyBh6J4/IAAl4IrIxNfeh7e1GzUaJTwzhK8gUy8GXm4vCmxRirZwJTEQWX8gNEc2Aitfu3Fz3mm42BD1jup1uckWzUS1g5IS21fK/OqQjIVW4aiyqrYEkJTYgm9A6RalFiqqiu3jHZCt6AylFNGujlwMhRU6AMjfYCFRVllncE3G1KrcsMYaBFLsymrrMqgOIVQUiWx5d6Yly1i6baOruXbN4sSemfSqLO1vLg0c1s/r+UnQpZAFcRXQcTVMXZye4dUEiBkbaBVuukbIqF68vscjuLRJh12/vgJ27543czv7dqNmjXJ5Iag69V/wJOfz5a/3EWkrAyEoO7rZbEsoSgiGKHxh3WotfVIbjep/YfiSvcghUAOQ0JbaHlG5vMynlmcvCxf9gXB3dvpfcaVpBYWa/cqGrvP5v2TARcIt0Kg/0AC/QeSK6lUrvqakrdepPSz90jpMwh3di7BHVsByBwzjtCeUlwZmWQfeTSBgYMQrlh9vYP6s/u1lwiVbLfdlR+euxOA7OHjkV1ureOqKLjTsvBl6HIjEia0ZxeelCxNbvhTYgooxXjOloGHsPzFNc3mayPHtttzkuPnIDf+/ve/AyBJEv/85z9JTU0190WjUT7++GMGDhzY1OGdl2TvQYKyXP9Y1Fh7GWsb7daoNoV/nAWV2Y4a6VHLn7CkGUoqVbM+jE83LKjkiKG8illSgXaMpAotn6mUEmZeKaKa1k2aVVVU/1+vmGFVZbWkMtJVyzboQi2JUspqbWUkWS2q1FZ+gNaxmKUc23gvfgxi9ZiI954xy40zPDAMFeLHc4oSG08ZeQ2LKkWOlaPEGqOoJNhevZKoGqZr/hhcbi+qW2FjySes3/S+Wbw/u4jyklVJL7v3BTPxZOaw+h+3EK2vJdJYR826mNWRGgkTjYSo37gWtb4B2e0hrc8QZMWNVIdNWSWB2QjG33WrjLRul37zCaHy3fQ5+1r8+V21RENxalX6G3+Ki7Q+g0nrOxihqlSu/JKS915m1yfvkNqrP+6sbII7tgGQMXYcodJduDIzyJ50DP7+/RBKbELb06+Y0v/8h/DuXba67rj5HgDSph0Bii7j3S5cOZl4umbjKcxADYaI7NyNJz8Lb9ds3Okx6yez/5fwOqhaXw0weg0SQldsxXVCHLmxT5x66qmAJkcuuOAC2+rT0WiUb7/9lvHjxx+o6rVxNUCXgqRroZM2MpCodGqJJsuR4rLJyZUgTSnCEhRScnIllVVB1ZwSKb6+SaywEpRZSfI2pcAy05MoheJpzlIq6SqaSZVP9rpaz99qxVTc87DNjiZUOib0VaJIkkJl2To2/vAOtVVah1nxBijqcRi19bttiiqAst3fm7/7jj2T3ZuXUF26gUBmEd6CIiKSzIAjLkQRCmWbl1NfW0qPnkchqTKhYBWfLf4L0WgsYKdnbRq9R5xCZo9hCE/sORmz2tbZbXPm2KLUE0pMYVWy7H3Seg4kpVc/otbZ47i21Jh1tiq8tv/vFaqWf46SmkG0rppg5S482bnkDhxC+ogxuNIzYmUomhLMeHdUBVw9ulB0zVVmZ6N+1fdUvPUW4d2lAFSsX4qSna017pEokYpKaMKM0+VPJaWoN2mFfUjt0gd/ZqH23Zkzk3rnKn4yTh9w2xRZoon3dC+JCploKwtsbT6DRx99lEcffZRNmzYBMGTIEG655RZmzJgBgBCCW2+9lSeeeIKKigoOO+wwHn74YYYMGWKW0djYyMyZM3nhhRdoaGhgypQpPPLII3Tr1q3J82ZnZ7epnpIksXTpUnr27Nmm4w40bRP8sY/GajVldGaaWia4KWssUzGFxXVQT7e6+0WFbCqmoqpsuvwZeYUqxdKsSiohmQMfoc/ia4MiyahYTPFkUwAbebF9M6byytiHRQli+b4SrIus6Nqf+FuVcOdMLVGizs9UIliVTvEKK0uhtjQjf9w5hVmwZFeC6a4rySyuINaOqGoE4VWo2rGa7V+9RbC8RNuRm07GkDHUV2y3KaoAm6Iq9/yzqVn0KY2bNuPt3Qt31zwEgsLfXYbs9VHz5ZeEKyrJnDIJIVSiVTVsve4WW3tZkZFJwfGnk9Z7sG0ga7WGs1pnWO+Pecm63Nj91fuk9xuOv0cxqvG84mWPbn2kKsSU/xKUvPoCNSu+QUlLJ1pXS6iiFHdOLqlDhpM2cgwuY0l0iwyDWBnent3ods01ptyoW7mS8rffJFJRoV3n6m9wZWRozyocIVJV2bTcCKSR0rUPKV37kNq1D77MAiBm/SJFdHkptM8h4T3U32/QumlqO05Vd6Tc6Cz87W9/AzQ59dhjj6EosVkij8dDcXExjz322IGq3j4Qa1sRcRaq1gkCq6UUevurK5TM38SUUTZlgWr5ZpNaS8UpsHQlleYqa+QVSBEj3VBKobvvCVs6qrApp8DIp8b+N5RVEV0hpaqxb0+ImJIqGo0pf5IppqyKLCHsCim9LuasCiCSKKkkm4LI8n3o46UmXfdaCvNiJdlYz5oebz1llKfIICt2aynLPqHXQVUEeLzsrlnD2q0fUN+wBwB3QSHZeUOpbNhuU1QBNkVVtxPPY89XHxLctY3UPoPxZGsrL/Y67yoUn5+ybz4l0lBH7uFHa4qqujrWzrnRVp4nPZvuE39JWrcBNjkZbwmV7Lf1soUEu798n8xBYwnoiipzosdynM2K1WLJuvXlZ6j7cSVKahrRhjoaq/bgzs8ndeQoUseMRUkN2I5X4zRAvuKedL/+OlRUkAV1S5dT9vqbqDVafLm6z5Yip6dpfYhIRB9vJLfKc2WnERjSk8CQnqQMLcbXLRsRN+AWQjL/rJZVkoRm4ihiAq4NRn0t0pFyo7i4mM2bNyekX3755Tz88MMJ6QsXLmTy5MkJ6T/88EO7TkJkZGhjTSEEaWlp+P1+c5/H4+Hwww/nkksuabfztZW2WVZ5vaBbVjVp7mlteJJp6JuyurHmbc5aK1mjl8TlLpZuafjitfDWdJIokuLzWspv0WWvhXwtxadqyUJKKzsuoUlXvcQ6xJ8/3pLILD+JYiq5QiyxXtZGWVWjBOvL2Pj9O5Tv+p5AWgH1NTHtvC+QDUKlrrqEit0x01u3O5VotBGBwBfIIbtgMPlFIynoPtZ+j4TAG8hEUsGTlkVN9VZWrXweXyCbYH05AN5ANqOPuY5QQxUbVr7Bj1/9i4ytA+g5/nS8qdkJ1ywkiIYbkRUXyC6bMFAlQW3Jeur3bCVcW0lGv+EIj13ZZdRPjuizbmFQXdpf5aqv2f7u8wAoKalE62soPO0s0oeNMTtQpuuE8YxkbHUwb72KLtAFKSOGUP/9KsK7S5FTAhT96VpcGRnmIFhEVSIVFdqgRIA7Px+1rpZw6R4at28nuH49VV+8AdEoLn8qaT0GktZ9AGk9BuD2piaJ7SC0QazA/F9/HM13UNqIQLIpJFrK2xa6devG3XffTd++fQF45plnOPnkk1m2bBlDhgxhzpw53H///cydO5f+/ftzxx13MG3aNFavXk2aPii8+uqrefPNN3nxxRfJycnh2muv5YQTTuCbb76xDR6sVFZW8sADD5hCotlrEoLLL7/8JxN3xEpIVRCqdg+sFlSG8kiO07jEK6SSuQDGvwtmuohTSmFVTMWUWELEFFSAqaQyrKrMMnQlldWCyqqkEqpkDpzMQZQ+gIKY0sXq3mfmtSqnsG4nUUxZjkmaN54kn0DSdts4Pk5xZVNYEdtnlB2v3DKUWWZe/c+mxLKWb+2wmxYQInZCXXkTkaIE6/ew7dN51G5fizeviMbSHeaxnoJCGtIaifpKqC+NDTDkzAzU2jpt3JKdSWDkUAKHDSfl8JFmPYyOuFKYBaqEkplBaNMmdj85F1duDpE9ZQC48woo/t0fCVeUUfr2PLY//09S+w2hcPppeFIyY/fRGPgC0VAjiuQCtxKTCTIIoVK7dR0Nu7YSqavFW1iEcOm3S8be5ltvsH5fqr75gl1vvKTVOzUNtb6OLmeeR+rg4fb3wDI+EHo3yDYRLRuKK+1kKWNGULfqWyIVFSjZWRTNvBJFb9uEBCIaJVpeSaSsAiRwF+SjVtUR2V1KaOs2GtZtoOrjeaCqKGnppPYeQGqPgaT06o/HlWLeI9kyvrbWxXzsFtnSHnSk3OgsbNy4EYDJkyfz2muvkZWVdYBr1E5Y2kZhWE4ZFqqWNtdmRQWakioqmRZQNkvHKInKKosFlaHYki2Kqli8KYt7XyQ+XXMBlCJ6WtRiLaXGK6v0WFRWCyqrsspmRRWNKawgpqCKqi1aTCVVTuk3U8QpqhKwju+MiX69P2daRCWxgNI2k4wNmwqnYi3HmhZfrjGWiw8Bo8j28ZRuJBD2SNRSxY9r/0t19RZSM7tRW7nNPE0gpzu1/iCSr4LSHTG54U7LIlJXDbKMOyOL9AEjSBs8gvQhI808RjvqzspBEuAOpNGwbSNbX3kSd2Yu4UpNGebP68aAU66msaqUrR+/yvo3HyezeDg9Dj8FV2qGeRnmxLYx3nC5kBTFJmeFqlKzfS0Nu7eiNgbx5RXFZLA+mYG1jdfLUxUQLqj86jN2v/UqAEp6OmpDA4UXXkhg0CDbIzHPJ9GkUk1ToGk/UseOpvabZTR8/wPuwgIKZl6Okq4pOYQigAiRsgoiZZVIsoS7KI9oZTWRXXsIbdpO8MdNVH/2Lqgqrux0AqP6kjqqL4FhvXGl+fR7JFAkYbGkEra6GkTC7dc37ki5sWTJEls//rvvvmPatGn88pe/bPa41atXk56ebm7n5eW16bwt8fTTTwOaMm3mzJkH1OUvGZJoytHdQnV1NRkZGUzNvxiXbPF9b6sVVXvQhPIoqQtfssYtidWVkCS7JVSyco180KRbX5tiTkn2/SJJ/iaMCJIrAUwFS9y+5pRTceXZlFNg3qdkVlUtWnBZqKnazsqPH0GNJi5FnJnfn8rda2xpvQafiBoJUltdQnX5JlQ1wugjr8IfyLbVC9Bnhyx1kyVUNcLi92ahqmGGjr+U6rJNbN/wCdFwAynZ3SnoN47M7sOo2bOBzUteJ1RfRU6f0bj8qbj8aXjTcwjVVlBXupWKDcuQJJmUgmICBT3wZReS2rUPJUv+R8WPS5BcHlK69aZo+q9wp6bH7q2EOYtt/m8ZtJS88iw1K5cCkD31ODIPG4cS0N0pknyRZidLgqj+CQq3iFNq6um61khCtpjA28s1BZHRyZMM4QLRaIjGDZtpWLeG+tU/EtqxAyQJX2E30nsMInvw4XjSMvWTWTtx2OIwqMEgS1/4M1VVVbZGti0Ybc8fFx+PN9Xd8gFAY22Ye8e/vU/nzc7O5t577+Wiiy6iqKiIq6++muuvv14rv7GRgoIC7rnnHi677DKqqqrIy8vj3//+N2eeeSYAO3bsoHv37rzzzjsce+yxSc8hyzI7d+5MCGTYFGlpaaxYsYLevXvv1TXtb4xnN+HNy3GleBP2W5VU8Qorg2SWVKpN6aT/JjEtqiudrC5+Wnpsti7ahAWVMAKv6wopU0EFppufbfAENqWUzYLKahVlDJL0gZht4GTJk9x6MS4vSbabw6Z9sh9vr3PcObH/trUjTdWhpfoY9dDvjRmSxZRXUFe6mfUvPRQbqFnwDxxEw48/2NKyzjgZtb6O0NYSGtdtBEmiyy1XaxZCFoVg0mtXJdTGMFtm3gBAl9/+juAPq6n6/BPUxkZ83YvJPGQcKf2H0rBuNbv/9zqRujoyh4xB8afgCqThycghVFVGw47NVK/5Fsml4C/qhb+oO97cQgLFfdi94E2qf1iO5PaQ0qsfBSefiSuQap+IiB90ENsumftP6n/UrIxzj/8F6SPG4vIFYtdjkT/G/YzNsgtbulm+eWtUbZDSikkGrUwRO14WqI0hGtdsIvjDWhp+WEN4RwlIEt7u3UntN4SM0Yfh9qcjR+ILw9JPgUg4yLp7bvxJyg2Hfcd4dt0eulUPYYDWzkYNN75Ym2u1OpWiMQWW1a1PireWakKBZcsbjVlQxeJQaRZUhmufqazSFVNNWVBp7YtdMWVVVtmUVIblFGgmhoaiysirqohoVO/3WspowXIqwWoqmaLKomSKLZ4VU1RJxqSbrqySFKXpsCxmQYnjKHveuDFXnGIsli4lGBYYAeqFW0F4NLsL1aNQFtzKsqVPJF4fkNZjIDVbfrSldZl8GuG6Khr3lFC3fQOyy0XvC/+IK5Bqt24GW3w9o8+rNjSy6nFNbvQ74fdUb1xJ6erFqJEQqYW9yRswjvTug6ja+j3bvnyDaLiRrH6jtPFGShru9CxC1WXUlWyiev1KJJeblKJe+As0uZHSrQ87PnyVmvWrkN1eUnoPpGjGGSg+P0KxWN1abpkxGSEUbYyw4+GHCW7cAEDOr84gdfhwFK/flt9uBo19XGXKI2G3AAYt9pgMuEBSBFiCqWuKrZjcMWNUSWixqySB2tBIcM0WGr5dR93ytYS3lWpyo193AqMHkD55DEpGqnmsLAv9T7W8RgK1Icj3v5rzk5MbV199NW+99RZr165NKnsNy6qKigoyMzPbXP7BQpvdAJFbOMRoKNvRqqJFmnP7i3f5i7ekki37rOUZ+w3ilUnJrLGSKbbA3gjEK6f0tFjntGlFVDxNKaZs++KyWC2oEpRQrVVOtUahZiHUWJ1UUYUko0qJ2vCN379p284tGo7Hl4pQBWu/e5XK8g243QECgVwUlw+XNwV/Si4p6YW4UzP58t3ZAGQUDCCtW39Se/SncNQUKnauYeePi9jw5cvw1SukdelLZp8R1JZsoLZ8G2o4RLShFjUSQlJceDPzKDz0WGSPj9pta6nYsILw8o/MehVN/SVZww/X3ynL/YhX+gliwWT1famDh1Gzcikpg4eRfdRkTfBbZvaM48xOvEv7tLRydCGtK7biB6qSaRNsSbOY05sCB0ARmL49hqWLy4O/fz/8A/uRddLxRGqqaFi9muB3qyldvojdS+aTMmIEmRMmkprdA3cNiIje6bN0GNVo+7UB8cGzW8oLmuCx4vV6bX7YyYhGo7z88svU1dUxbtw4Nm7cyM6dOznmmGNs5UycOJHFixdz2WWX8c033xAOh215ioqKGDp0KIsXL25SWaW2coUdg5qan+ZS3rtq0lGisftuKKYky/9a06x1XmTLi2ukx7atM2xYrKhiCqt4CyrVorQy9ptKLaNf32QcKj2PKiEs77Y5YBKJLigJSiVTWSURr/yJVwJJTfxuMo3E79+odsK+ZJ+PREzJEZdNJPsdp/ASlgMSgqPG18lIbEWnWHVDw47KpIoqFAW1oT4hueKl/9q2U8aNQUoJoKJSNvclQus3I6el4C7IQ/Z6kVNTcefn4i4swJWaztYbbwUgdcRIAr16k9q1D7kTj6V29SoqFy9i52svgCyT0rs/aUNH0bBpA/U7t2hyo7YGEQkjudx4cvPJPXoGkstF/aZ1VP2wjEhVhX6NEoWnnUXa8DFabA/jNTJkgyxsAwebPFEhMHoE9T9+T+rI0WSMOxLZMiFhlTF2ZZRILpfikSXTSs5GsskTlVi/RdJkiOzx4hvRH9/IfmTJxxGprCT43Roavl1D+acLKFv4PiljRpJx1CS8XYuQQ5KpIJCtci9embUP7I3c+KkSjUaZO3cuCxYsYPfu3Qny5cMPPzxANds7pJBsKlDsMf7iM2ppZpun54u3PDUVUhHNgwiMPguW91DE0g2LqYhxvK6kUgVSRF+5T083YlCZk3WGm5+x6l8yKyrTB12NWUQZllQQs6yyKLCEEasqmWufrpyyKabit5u614ZVlGxRGAExpVTMDU9SFNOiKXlw88SxVJPxgm15tGOFLCeGUTGsp+K9U/TA8cZ4R/Uo1NdVJb9Gl5twfeK+ko9etW2nDz4cOeBDEGXbW8/RsHMrrpQ0PNl5yG4vrkAqnqw8/NmFuOUAPzytyY28voeTlVlM9oie9BwynfKS7yn5cREbFz2HJCukdR1AVr8x1O5cT93uLajhRiL1NYhoBNntwZOdT8HEEwCJui1rqfjxGyI1leb1dj3lfFIHDweXpIUEwaKU0icPksXJFbIg5dBRBDduIHXcYaQePhZJkVGbsVMxPTFkoU1iG+XqEx5CthxrHT5bFFNatXWFlRFg3XKc0e9TAl5SRvYjZWQ/cs6dQbi0ivoVa2lYsY7K1xZS+epHpB45gszjx+HpXqCFY5A08el1R8yyou1oWbW/xhuhUIhnn32Wa665psVJolGjRhEMBhk8eDA33XRTUtfA9mDXrl3MnDnTlCPx9kw/idUAHRxaQ2N9BWUlq1CjYSRJRqDi8qYSaay1ZxQq1bvWAyDJCpKsoEYSlVp7dnxLdu4A8gqHs3PbEtIyuhFIyaOhbg/RaIhQqJZwqDbhuNweI83fkqyQ1W0wmT0GE6qvomLbd1Rs+Y7yNV8TCWrHSoqLjD7DyRsxEX9eEZK+3JOQIHfUBJAg3FBL3Y4NeLLy8OV1idcJtZpIpTZ4yZ4wNTZj1UlxZaSTdughZIw4lGhjkJqvv6Lqk0/Y/uADeAuKUBQPqd36kdVnFP7Mwg6pQxSZaCuXiTLyde/e3ZY+a9YsZs+enfSYlStXMm7cOILBIKmpqcybN4/BgwezePFiAAoKCmz5CwoKTL/znTt34vF4EtwvCgoK2LlzZ7N13b59O127dm02z3PPPcfZZ5/dbB4Hh586ocoyqjeuQoTDCI8LVYSR/YFExVQ0SqMR88HlQpIkRDicUF7d59/gGzoA36C+1H+xFG/fYly52YR3lSIaQ0SralBr6xKOSxk23PwtKQppg4eTNmg44aoK6r7/jtrV31G9/GuiDdqxkstN+uCRZB02AU9BYaw9lyB7/CQAwrXVNGzbhDevAE+e1pbsldwo1+RG1uSpmjtOO7rMtTeu7AxSJxxCyhGHImqC1Cz6ipqFn1H31Td4uhYhu70E+vQnbcgofNmtsy5tK3sjN36qXHXVVcydO5fjjz+eoUOHtspCzsHhp05dsIzSmnWoagTJ7yckNSK7vKiRRls+EQkT3KPFOZRcbk2Rl2TgXbnsC1L7DMGX24XqH5cT6NkPd2o6jWW7EOEQkdoas+23ktktFsNUVlxk9xxBVu8RNNaWU751JZVbV1G+ZgnRRk2eyW4PmYPGkD1mAt6cAiRL7K3cQzVFRKiukoaSLXjzuuDJybPOd7WJcFk5ABlTJydf8KwT4crNJH3KIaRPOYRoTT01Hy6h6r0vqFm4FE/PQmSfh5SRfciaOARvj46xgO3o8YbB66+/TmVlJRdccEGTebp06cITTzzBmDFjaGxs5N///jdTpkxh4cKFTJgwoVV1bAsXXHABW7Zs4eabb6ZLly6dRo60TVllXWEBksekSnZh7bm+ZLLybRZUFosqq8WUnEQ7b5QXZ1nVlLVUgkWWJb25GFTJ4k8lWCrFXVaC1ZTtepvJa531jquHmWZsNhWHKqEuScrAMnsFCCHYtfkrtq/7mIba3U3XHZDdPrTA3YJopFGf/Yki1Cj5PQ8hK6cvDZW7iESCNNaXE/DlkNGYSvSH1QB09w6mR/poSAfhkgnnpBCONFAtVVBbv4vGaB2ZPYYSyCyMrconGTPOEoonk5ycI8kedSRIEIk00lixk5rt69mzbCHVG1eRd+hUckdPQHZppqCGVYCSlkr6gOGad4/F1zzh/iV7fMb9kiDzkCOp/nYpW594EE9uPt4u3fD37EXGqENtyivTUFHVziFHYg/AXI3KsIywuhuaN9s6yybFLsRijisUYZ+BNA4xlm02Zq3cIHl8pE05itSjj6D2iyUEN25ENDSy59tP2P3VB3hzCwGJxj0l5I+a0ux70Bb2ZqZj69atNrPc5mY5BgwYwPLly6msrOTVV1/l/PPPZ9GiReb++Aa7qeVd25pn2rRpfPbZZ03GGXn++ee58MILf9LKqmCdG1lY3Mf1mbaWljO2mng3hdWySvtfSrS8suwz8gojuLr1ONMqSjJjopjufoJY0PSoFGcZpac35e4HMQushPS4NNFcGfZrb43rX0ufjC1elRQ7jXGY1ehJSCTUwdyZ7NzJ6mK0x0aaUKlY+jllX35EpKq8+br6/XpFBCLYqD3ISAQBpE4ah7d3T8IlpYhgkMiectyFebiyMols0+RR6pGHknLkGO1ZGEYNdfWEt+8mvG0nam0DKcOG48vSFCc2y1UJ3JlZZI4/iszxRyFkiIaDhHbvpH79Oio/XUTNmpVkTzmWjMOPQHK5bG2qnJ1OSo6mBIvqza/dXS/WHtvukXXGWpbImDyBuuXL2frgX/HkF+At6oa/Vx/SRo3VY8nELLRs9z3ugRjXZLWMi39WUnz++DxJjpUEegyP2Ay75FKRMrxk/OIo0k8cT+3CJTRu2IpaH6Tis4WUL/gfnq5FiFCYcGkp2VOTW6LuDT8ny6oXX3yRl156ieOOO+5AV6V9UKWE904YVhqWttzoG0nmtxTLL0FsbXmBZj2lW1eBJXxBVJi/tXRhSwdMi6rmXP4SgqYLYXf5M7Zt7n5xFlSmxVXU7vZnpBkWVdaV+6zufkl+J0WSbe5+hlufZjmldyYVGXNxK2PsZwQ8N6yr4uMCJ5xHiv1vsaxqKkawkGVQJDNAujEOE5byo0TZVvIVm7d+TCjcvMW57A3oFtkCNaTJDRHRJjeyDpuIr6CIUGkpamOQcHU53txC3IFUGsu0icas0eNJGzJC67dEtX53pKGO8K5dhHbtRNQ3kNNtOP6UXLON1VYW11z03BnZ5GdPIm/0JIQM4WiQhooSaresYc+yRVSv+5a8I2eQNXIckqLYLGtdWZmk5mTqZWrvtuqy9PWNdl4G4YpZVpkWr/p2xnGTqV+xku133Yu7Sz6e7t3wDehDyiGjMGOMWfoyQhaala8iNNc+xdoJkWzu/9qzM463pJuPWlg8REVSdYBpgQU2fYGS6SPrFxPIOP4IahYsoXHDDtT6Bspf/5SyFz8k0K8Lkap6Qrur6HnppGbegrbR0eMNgyeffJIZM2ZQVFTUZJ4BAwYwYMAAc3vcuHFs3bqVv/71rx2irPr000/55JNPGDlyZLuXvS+0TVklK/bGSCa5wioew1zT+B1Pa5VZCW5vUqyxbGqlv/jGMYl5KSRXQDWpwLKcR1gVTfHKKat7X3z9DcEaX66FZhVWcbsSvqt4pZhNgSElyd9EOZayjP322CTaxrefPExN+WYz2ePPIC27J1ldh+L2pRAO16P4U6gr38bOHxYSaYzNlvc75NesXfKCVlxjI1JjlNIdK2gIluF1p1FZvp6t6mcApCs5FDTmQ2U1+P2IQApCkXEpKaRmZOD39kJ1S1ogc0B1SXFxO+KuUwLJ48UX6ImvW0/SBgxl12fvsuuzt9mzdCF9f/On2NLckv04U6gIknaqrPfWGICa/u6Ki+7nXkbN9ysIluygsWQbNd9+Q/XSJRQcfxq+Ll21wLNqrDxD/ljjKkBs4GONkWU8p/h3yBwkxbt8SqC6kkkRy09zeVwJISukH3o4aeMO0+5vNEzDD2to+HI5tcuWAbB72YLE8vYSFRm1lTMdRr709PRW+5B7PB4zwPrYsWNZsmQJDz74oBmnaufOnXTp0sXMv3v3btPaqrCwkFAoREVFhU3ptHv37haXes3Pz2f69Ol8+OGHCQENX3zxRS644ALuueeeVl1DZ0WtdyMkTdRIhkm5JFAtpuFG/AKt2bUM3EH7bpI0TPZVumMNWII4MY63Kq2MkbalD2ZVVsVimkhNu/tZlVPEvtX46c8mXfvi2404RVWLcalaUhy1oq8V16+0pUuWHc2K6HjZ0Yxssa5OBLDx0fsI7Soxt13ZOfi6dScwfChSio9oYwNyaoDGjZup/vBjRH3QzJt90RmUP/WSfg4VoYap/3oZkdJylKwMgqvXUf3BxwB4e/ckMHJorJL69SiBAErfXviKe2uD1Yjl/THmDKzvmUWZJHm8eHr3xNO7J4HhQyh/9x32vP1fKj7+kO7X/QnF64u9l1bXa2t3yPK/7RVPUFBqO2W3l6L/+z/qVq6kcft2Grdto2bZ11QvW0LeL07FU9BFH5Qn9jVsAXOtMaes55CEpiSwVsjyksS7fySUoR+rySsplk/Rv3FFIn3aocChSLJADYdpWL6G2sUrqf9KW7mxfP7/aC/2Rm78VLHKsIMF832zKJi1timWLvQhgLCkGUrf+PbZ6D8ZcdMM1z8jYLoZn8rctiirdEWV9qc27fIHsbhUhgugKU9UbcxkDaQe59pnrvxnBFG3BFgXhlIr2Up+rXT5M5RUWhDvmKLJVFIpcmzC1OWKjYUMyx9jBT45SXypJDQZTsVQTin28ZhQJIQiI1xaZm1bMsdaQgi+/PR+gg2xyQ1/aj6pGUVkdhuK5PcSphEyUqnbvp7S5QtRIzHL24JfnMmu1/+jX4oLtSFI9apvCFdX4E7LpG7TGsq+0FxmAz36kNZrkD5JrCmq5AgocgqBnN4oqb3MfVEzxJE25jAUVmAZdygge3wEUnoR6NaL1P5D2P3Ze+yc/xp7vvqQPpfdiOxy2dz7jDJUPQYVsrW8WF9JuGJKJVOWyEKTB24vBddfRv3SVYS37KBxyzbqPl9C3ZffkH3WL3AX5OmyTTVeEbD0y8xnKZoYy5v9FoswkPSQCkIg6+UaKypru4WtrydLQi8mJnckWeh6UpmcEw41jyMcon7pj1R/uor6tVr/YfMTC2kvOnq8AbB582bmz5/Pa6+91ub6HX744Tz77LNtPq41dO/ePcH1rzPQRmWVhF2roiYqWZpqLC3+xftMsiDqyZRU8dr7OAVUMj9o6/9JFVhGepwSSiTErDLOhyUtuWIqqVKqmfa/ufhWTVpIJVFOJD+m5RGOVWElZAkhVFNR1Xfsr0kv6I03JUvfHztu5/rP2bb8HVtZfUf+koKuowmQxtrvXyc3oz8/rHqZvMwBDOpxPNn+HkiRCLVV26hvrCA/0AfF60f4Pah+N+E0D+E0rTVXXbpQk2PXZChxVBd2ZZXlHplpsrY6XrdTz+f7u69BSUnVBkxuS774AUV8f99Srv2maf/JlgGv7E4ha+R4pBHa/vqtGyl55yU2P34/6UNGUnjCmUhezSLFfDXjgoCapzNHl2jxreRYn81WLaFZSBn9HEnv1Km299xSVlOvgyFjotrVS5KblMFDSBk8hNwLz0YogtD3myl5+B9NFNA2okIi2sqZjtbmaw4hBI2NjfTq1YvCwkI++OADRo0aBWh+5osWLTKVSGPGjMHtdvPBBx9wxhlnAFBSUsJ3333HnDlzmj3PW2+9xaRJkzj55JN59913cbu1Hs9LL73Eeeedx1133cUf/vCHfb6eA4kUlJENl1qjs6UIcyAiKZpmRrIEgDaxKpji0uyNmCWpKaVOnBWWdSZRG8hI5jedsJqfJa81eG9CHKqEOmIrpykllrkdpwBLlm9vaPKTkCyKknjNVSvPZypwrLIlmXzR21DjTw2FTEVV3lln4evXByU3QzvGo4JHBQmq//cxVW/blxbPueRMUseNRkkNUDnvPTx9e1D+z1cIjB1KzkWn4e3XGxEVhDbvIFJeTmDkECS3S59h1zrEpkIyLCFFJD14smS7bqHom5JlEBB/vYC7qJCC31zExmuuxZWVheTz6JZZwrT8SGaFlLCtPwupmWegpKSRbijBBTSsX0fpyy+z9YH7SBs1mrxTz0AyYosKXebEnyuqyW70OsaeleVhxVl3CdkSE0UfBCVYEWs3S7tmo1jdAEMAsqIiGV6SsoriVnCPH0T6+EHAGQgBtd9uYded/y/xwveC/S03DiTXXnstDz74IP/4xz86jevGPuES2h9o34VKorVVbFwbew2NvpKumDKtpSK6siGMGW9KjsQUVlLEGrNKV1LpVlQAclhTNMkRTVkUizkVs6KyKaWM8Y6KGWDdtJwSFmWTuS1sMatMRVU02rbYVFZrKmvQdF0BZcalUuSYS5hVSSXLMcsqw4LKSAdtvONS9Jh78Y2aPs5LOjaJU1pZrKhAH0sokv6/jHBp6aoigSKZE8/hUL2pqOo7/mzSCvrgStfkRtQjEfWC1w07v/6A0q8/sNWh8NfnkTZ4JJLHQ8UnH+HOzGXnO/8hY+BosqefTaCoGCFUGkq3Ea6pJL3vMC1ESViT98b7A6A0Cn2lb6G1pYae0q3VwYwlZVw/YHhAGAoob7dudD3zIlbfNVNz8/PLRI3+u6GwMhRQxvhDjk18mDFs9f/NPpW1ndZx5aSRPu1w/TlBw8o1lD0zjx2z7yf1qDFkn3cyktk463+qlDg+TWasZ+1bGZUzxikuUCNahWSXHhTdkKdG/0sSphW8TaElJNMKX9YHT4oskFwKWUcNJnfiQDNv9YpNrLvh+SSVazv7Q248/fTT5Ofnc/zxx7f52GXLltkmz9uTBx54gD/96U88/vjjFBcXd8g59oa2KavilT2qDFh6JfHLqFqPi/lptL2WtkbOUgereWpT7n5NWVGZ5cXlse6Xk6RJ9voYSqpkbn3JlFPNBj5viSSueLF9cdvNuPi1aIXVCmym1pLMYSffgeT2Ism6siiubqoapWLryoRy1i1/mVxfDyIVZciqxI+rXyUrpTsju52CLMm6cJdJz+xBulwMQCTFSzTFRdSnEPFKqG69/opkmsrGrN0sgylrvSyDJkNwGHmFqk27hcp2Ew7X4/KmNdEpt1yi8Xrr+ZpcZt7S0NuspVRIy++F/4wrWP3ErVSvWkaXI07Ele6J3W+jDvGDVwl90KFvRrRt63Ll1hkew5TYPDaJj4dtcGV7f4RtgA4kncUHcPWyx3naFzrSnePGG29kxowZdO/enZqaGl588UUWLlzIe++9hyRJXH311dx1113069ePfv36cddddxEIBDjrrLMAyMjI4De/+Q3XXnstOTk5ZGdnM3PmTIYNG8bUqVObPXdqairvvvsuEyZM4Fe/+hWvvPIKr7zyCueccw633347M2fObNO1dEZcdTKS3ghqATsxA39qaRALLN20wsqeluQZt8YvDotSylq2sCsqrO575ndrtbYi7htvrhrx7QAtbCdJT/q7KVp6/ZPJHkHiJEorTmVrX+PbC8nejhjuaWYn3uumx713gt+NpEgIt4pwayMB2W0M7iLUf50oN8qeehnf4N5Ea2tACMr/+Qq+oX3JvfxX+gBMQnJJ+Pp3A6kbpiZQWBQpUe2CpahkX9jCrL89YK15DcZ2fB++UYuREtq5k2hjA0ogxe5abXuOcW1okgF4AhalkVkXGXz9+1J05RVsuWU2Nd98TfbJJ4EnxSxXJDmfleTW1LFKmRZxFncQc8JKNFGATXsQO5FQJbNcidi41urG6+/z05AbnY1PP/2Ujz76iHfffZchQ4aYEx8GezODfyARLtX8/iQRkwvCZhErNJERlsx+iGYhCUoIpDAounJBDsUUVbLNDVAgh+NW+Ivorn4RzYoKiLkB6pZSkk2BpNfROs6xKqrU+HTLx2hd2U8ITUkFdkVV3Ap/zVpQxa/qZwSpt8ZGNRRVVnc/RdEsqQwFFditqJSYpROynDwQuvFYkilLreMg3WXZalllWlDJ+p+hrHJp/XrNY0KCQCojz70LKeBDKBB1QdiwPtInlqOEqfrhm4Qq7J73Eild+6LW1CHCYXa+8xJp/YbS9YSzYwpeScbfrZiAIfd1pacc0a2qQtq9V8KAEETdmgVVVB+HRL36hLBlHGLKyLjxiVAgosuN4K4dRNRGJI/f7A9ZLZGtVq0xuZSkv4TersZP/sXlDYzsi6fHpWy76h5qP/ma7HOOQ/Lqz8I6229VTumW61aFE2AqxSRL+27KBWMi0lq3+D6IKumfhn2AKnRLXyGL2CrQqt3ay6xvt56JN2Iv6Wi5oaoqTz/9NOeffz4ul10Nc8MNN7B9+3b+9a9/AZryqLi4mCFDhpgB2V999VVeffXVZEXvM2eeeSb19fX06dOHQCCQIEfKy5sP19BROAHWHdoFxeVt0m1RjYRZ+f6DNFQlDzbtdvnZvOMzaht20TV7FIOKjtUUVQcIEY3iysgiUlXBzjf/Q7dfX7xfzlu1ZgUlH74GkkSXyafgTstsdsAo9ACRZqyB1vj9/EQRQkYVrXsnRCvzGezatYtzzz2XkpISMjIyGD58OO+99x7Tpk0D4LrrrqOhoYHLL7+ciooKDjvsMN5//33S0tLMMv72t7/hcrk444wzaGhoYMqUKcydOxelFcHz8/LyeP/99znyyCOZOnUqn376KbNmzTJdEB0cDlZkr1frkCZBbWhk+58eIlJakbgzqiL7vVS/s4jIzj2kTRtH1q+OO6DBY0U0ipKeRrS6hrJXXiX/vPM6/pxCULd0GWXzXkfyeMg++WSUlJRmA68L1SI3DgYLnGboSLnR2cjMzOSUU0450NVwcOhwFLe3ySYu2lDHuv93d9Ig6GowiOR2U/7pAiI1VeQcfjT5R8w4oJaIIhpB9vlR6+vY885/yTvjVx1/TiGo/fhrKl54F8nvJef8E5F9nmZnqISqQkToSkrpoBYdHS035s+fz5YtW7jooosS9pWUlLBlyxZzOxQKMXPmTLZv347f72fIkCG8/fbbHRab8IEHHuiQcveVNiqrpFjnJt5yCpqOYdUaq6p4P9g4d70m41MZvtTxrnstufzFnaspa6t4iyprPCptv7UcbHVIZkXVlFVTwu1oriGI3ycnZm7WmiqZJVULDU/TbiTW+xCz4AFoqCply4q3qNq5BjWauFoTwJjhF+ORfIzuejqfrXuciuqNuNxVlndKv+F+H2pGQDuXW0ZVJKJuCdWjB14kFoDQ8BeH2LbhFmd1+YtZeFiuUQJJ8dLlF79m6zOP4MnOid2buNlxwyJKO7leXWMZ5HhrCH1SI96yCgnUcJjtH71GxaovSe8zlKIJp+BJy4IwiTMzsnadAFtefoK6TWvM8pSUNKJ1NXQ/81JS+g+MHWe5XpuFln4R1rK1NONPJDz3VhqvtDtRJKKtVMa1Np/Bk08+2ex+SZKYPXt2syt7+Hw+HnroIR566KE2nfvbb781f997772cd955nHLKKZx44om2fcOHD092+E8CV33MGt1005Uxv9tYPDlhezebtO4zsMZSkJJkim/3kh0ab91idQXEMrOqWuNYNXu5dpJZSmFJa85qqpl9TX2HVmNLYfywHZj4O5mLmpHe5HkszyU+HmB8fKbE2WWLxZIiEC6hBeGWQVIEoW27qPzPe9QvX9Nkn6HwpsuRfT7yr7mQHTfcT+OazUiK22JxYb3O2Eys5qYg6zHHpIS8iTGZmpCT8fdLgOILkHfGmez85z9x5+RpLkhxboWWKjX9XljllO0+C/M3aJZce15+hbqlS0kZOZLsX5yEKzNDO53uPhXzqBDm+739rw8Q2rbNPKWSkU60qprC3/8WX78+sWs2o8Mb9yLZhcTdMyz5rDdOn3EXSJb3QbtINe47MFxG2oOOlBudjaeffvpAV6FdkdwqksewXkK3sNCsXEREe1aSQFvwIiKh6AtJS7q7n2JaUmnpmguX3YJKDmMGS9cssnQLkahAjljc/kAPpG6JRWVaOzVzDfHtVzIvE6sboGqxulLVxEDqRjGyZLeukmQkOUlFjCDqceMm06pK72ebVlW6O2C8G6BwyWZf3BYA3TpWMrxarF4XxuNratwkEbOsMiyqZEwrK9Atq9y6i59HS4v4QPVA1APCpXkKNO7cTulbb1O/9scmngYU/+YPuCUvPX79f2x44h7qt21ElhV7PErAsKa2uZDqccxMdz9Fu4aoW6uf4a1ghOGwysSEGFQWmahkpJF32i/Z9dy/cHXJQ/WKmKuftX21eYzYZUHsntpuMwkWrgLUYCNl/3yZ+iWrSDlyFDlnT8eVlYJkMS82XlM1KiOimkXs9mvvIVpeZeZRstKJVtbQZfZlePv0QHNhlyx10Nz4ZUUgK7p1Ypz7XzJsn4zeH4uqMeVY4vqNel2D7Wd709Fy45hjjmkyLtTcuXNt29dddx3XXXddm8+xt5x//vn77VxtYd/cAGU0V0BrAByjUYpvN+Nt/+KVXVYlVXywdID4Vf6seeNjU1ncApOu7JfMXFVOki7FpVld/ppQUNmOBXteLGnJaOmdb8q1r5njk8W3ajFuVdK6JWYw4kEZZZlWn2GVr9+4lUijNrPRtc8E/P5sfL5sPN40ZGQkJLz48eGnuno7q3e8RVSEyUzrgcjPRujCUrgVhEch6lWIerUbHPXJRH2akDBNZTGEpUUgYAQlxHR9i8XcwBbbyrxM/b31d+mBt6CIii8/wVvYjYyRh9jyyfpKeVq8g9hx1hgJCa4j2Pv7RnLJJ29RsepLuk05k6xBh1pWaLEom5IMnHKOmEpjeSmRas3yIFqnrYqy9T9PUHDCGfi79wSPB3dWtm3mSMQ/dzn2vw0hIcWPtIzBfJPvsLDnbSe0PlzrymtNjNHOwsiRI5EkyVw5UAjBSy+9xMsvv2wKM0mSiCZZYvmnglVZpVoUxNaOnPbdSvY2ydLhS+r2bG1zmmjTjJhsza+AgF2pZFNWSbGOazLlUXwxRn2aegdF3H7JXpbpkifi8kr2tOYUSS0Sf4+Jux2We6km++Ss7ZDRmZbtafFuZLbzySLmTmasNiSDiETYcsmtiJA2sZF+3ARcuVm48nNQ0lNB1lxX5LQUlLQUGtdvofzZNyAaxdu3O5Ir1unQYlPFVngUussfqoSIai5D5gBFf8eS6ViSufvFLibW7hu//d374M4voPKjD/HmdSFt+KgmDiZRWZmkjTfT47aFDGX//S91S5eSd+5ZpI4dbVYkYaJKVwJrzYkg86RjKXvhVaIVlQBEq6oB2PnQo+Scewaent2RvB5cuVma3NDdR4RlFTbzPsW5lpjuIeaLbL1f+rPQ75mKPnix3GOR9IXbew5WudEUkUiEhQsXsn79es466yzS0tLYsWMH6enppKamHujqtQlZUU0FjOY+CiDZvjs5LCGFNUWVrCurlEY0hVVEc9WKrfwnLG5/sTSrosoaNN0anwpIVFS1YtJCSJJdYWUqqNSWXzhZRjJW/jPHVUIbCwk11k80MYPBWcrQhKDN4lRXUmkKKksgdUWOuQG6jBiTUszlzxLwXFNK6f8byiYJYrFxLeMqy71IVK5IdrlhKKtkyZyUVV3a5HPUIxHxa2lRL0R9+l80xIZb/mReW+bEo3FnZOHOysWVkoqMgiQk3L40XN4AdZvWs3P+PABSCntq74ql/27WDWyB+ONlvqagksyYuEZ9zWtO0rZj6dNo91KTgb4B/XDl5lD+3nu4uuQRGD40sQzAdE03V1LGFFySteLGbxHbrz0bQfnc16hfsoqCa35NyqFDsAU6Nw4VIPRAtsYCODnnn0DZM2+ZCqtohSY3SmY9RsEVp+LtXQQeL0p2TG40u/qf5V6aSiw1ZnxgXbVZqAkjkZjssN7jduLnJjfiWb9+PU8//TTr16/nwQcfJD8/n/fee4/u3bszZMiQA1KntqsirQofISwdE/SnZkiRhAMteYj5RCeUq6dbG2KrlU1celOxqWwrTFj+T7Cuit9nrW6cJZVN8WMqEaSYFVWShtj8HXcbkllDJaPFjmt8viaUSvHHJ7O0avHc1uOtWn4duSHCpmX/pXzn96aiKjWlkEGFx2h+/0JABPO5qZFG1m55m827PifVl8+Y/ueRnd2XqCyhevSg6R5Zn1mJPdOoR9JW2oi30NAVU4aCyrwGy8DYem0JA0vLYFWRPRSfdyWr7/0TVV8vJnvQIUkHJ6Z1lWopK/4eS/ayzVup//ZlaEul121bT3b/sSAribGl5Ng9NwRqemFfMi+4mbBfsOvzd6n86lPUoLZa1q63XjLPo6SmoaSnI7lcBPoNIDBwEGokhK9XL73jgi1oo3Wls2SunbbriBPIxrOQFNGuVlhqG8xyW5uvM7Bx48YDXYUOx1VvacJddgtILdGybenIWZckTx4PyW6KHp9HG9sIWyfals+CPbi5lKhUSjigibKSjNGNfAltQxMKLy1DbL+AxPoIy+FNnC+5NVrifTLzJsgvyzOyWGAmlCFZ9lvPET/7a7QzcZ1tEY1QPve/NHy72lRUefsXk3VmcjN3NRik/NnXqZn/BZ6eRRTNuoTAkB5IUsQMziqEBFE0Sx6L1s1QVFkHmqayLf5WWd+F+HbbqtwEU/kly156XHo16++4geovvyB9yKjY9VueYcLz0e91sokk270ndqwnPw+A4PoNpIweiSRp0eCtAxhhHCAJc6DkHz6QbiNuRKgqla+9Q83HXyAatZF+2b8tciMjHSU9Dcntwj9sIN6BfRBqFG/fnsjumAl10njKsuXm2C7IOnDXnk/S+CPtxMEqN5KxefNmpk+fzpYtW2hsbGTatGmkpaUxZ84cgsEgjz322IGuYpuQXWpMqa2/E2Y7bcQN1C2qrIGvtUDplglFY9LHtJIlppQyFsrQlVBmuvFbt6YCEi2qkk3MNzUh3xyWeFUJ6IomM8C6ec5mxknGpi2Wr/W3hGRYURlKLJcS23YpsfGToiBcmmWVkGPnNGJL2SyjDEspSz/Q3J/kk44fs9gmZCXJ7Psaq3tHvdofQCQAEULseu0VGtbEvAtS+gygYPIJ2qSxbcVHiDY0UPLBf6j47ksChT3oe9pVpOX2RKqx3jS77DMtqwyLKsnutaG6YuOOWGypZPLTft02iysZ5NQARX+4mi1/vpnaz78iZeiwWLtv3qhm3ifzXook6TE5LMkCT1EudUDjjxtJO2yA9n4JCTUqoxrxZwW6kgpTVqceNoi0wwdCNErZv9+j6sNvEI3aR7frH7F4eK6cdJT0ALLPQ8rYgXj79UAI8PXvDrgwlFjxKw1KaOcUlusUqjbppKqxTkfSmFftrDD6OcmNeBYtWsSMGTM44ogj+Pjjj7nzzjvJz8/n22+/5Z///CevvPLKAalXm5RVFaESXJKbTH9XveMd98Yo+gulxmk8ratTuBT7MfFKm+bcAPXfSVf4i1dGGUqrJBr+REsn6+hGP0dzZqvxVlT6sfEKoISOZ/yKfMloZl9zCqZmFUtJ9zVzfHN1iFNSmVZEAn74fC6VO38kv8ch5HUdgdeVit+TRVRSkKKx0YCkCuqqd/LNd08RiQbp1+MYehQejuT2EPEqmmLKrd1gTfFkt2YzOhtyVNInuPQOjTErY7GgslpTWQeLRqcn8QIxOzSlC94CIHfsZK0jpMa91vo/QsLUsQrLwMbmapREWWWQO/QIZK+fLQueR42G6THjPK2i1gGKZbZG1ePdRTSvSKIeicwTZ5A242iqPlpI5fuxlbN83Yrx9+iFVNdI+YrFNG7ZTMUCbb/iTyFl+DB8A/vjys3GlZmBnJoCQjFdWKyyTrso43/9npvvti6wjWuPSMjhdhx0IKG2cuqktfk6Az179jzQVehwgls3I/m9pOT1QHhl8OgdPEMZYx2/yiS+b1ZxYpkbsX7PWH4mtJMSuhmHsOVLoCkllYjtTlqAVZGhJqYZ15BgDdVMB96WzXp/kii7mzRGaSI9waLNaGes37TRoY5TVplB8K2dcMPyxtI22EIOWt3J0Dqq1rrtvO2fNK7ZROrkwwgcMhQlLYC7MBspznUAoHHTDnbe9SQiHCXvohlkTj8UxSUh6SOTSFSf5IhaZLOqKakATVFluOe1gJBAsr5wxqWYExSxlcm0lQQBVVD69jwAso+c3GSbH58ujPGcce/jKiILqwwQoELmxMnIgRT2/OclRDhC3lm/TvgIJLS8hgsVlqXOJUUm88zjST/paKrf/4TqNxeYp/T26423Zw/UYCO1n35O44bN8F9tn5yaSsrIYfgG9cNVkIWcnY6cGrBYb0j6ICfugpPdcqG5/Vln2uOVV/vCwSo3knHVVVcxduxYVqxYQU5Ojpl+yimncPHF+yfuZnvSuH4r+AP4+nTTBrGm267lA4nrY4FlfB7f59K3bVayRoB2I92yGqAUFUgRNWYZFb+aubX/KINQJXvQ9aYwAqo3Va6BJGnKI1U1vy1TaaXEWUsZ+SGmgDLLkJD01f/MNMOqSjYsq5SYkkqJKauEoiDcstYH1y2rVJccc+e3KKKELMVkh3UsZcgXi/66KW8DrRxDESTp59OClxuKIYOtjz1IaFcJmeOOInXAUJRAAE+m4X5tETtRaNi6iY3zHgeg24TTyRl8OEpURg4JM79Rl2ReDGbdFIuM1vu8psLKYi0VU9rpB1on5yz9eoQmk0Q0StnLWsDsjKMn2+6Rec9U7WDb2MWUyXFDOlPGxt9cyDjlaOT0AGVz30aNqORffKJmXSWryFLsG5NkVXPhk2Ir8Rk2KoWXTCfnjAlUvPUF5a9+bBafMqIXgT4FqA0hyt5dSsMPW8x9rqxUUscNwT+4F0peNq5sTaklSZIeDF4krPqsqpJmXaVifv9mEPa48Zsaajk+bGv5OcmNeP70pz9xxx13cM0119ji8k6ePJkHH3zwgNWrTcqqb7b+B4BxvS4iw1dgdprMr8RocBUprvG1vETxCq5kyqkkboBNuvNZraviykuabi0LLINvy37ZOD6uXhI0FY8qPq9t5tSqpLLmb4m9cB9MnOlPflBzFlvNKoot9ZcjEKzcTbB2D1kFA2is01YJqK3Ywp7ty804VeMn3oRPDqBGQkTCDTTWV7Bp2yeEI3UM7XMaXXKHgyQRdcvaLIpHtrn2mTM1xrkVS3oygWK5BpsQIVEwJnRmjBW+IlHKl35GavFA0nsNTToIlS3H2Qa5SRRTNsVVkncgu99oZFlh0/+eYdcX75I/broei81yHfEWKbaBJsheL1nTjyV9wlFsuelmAILbNiFl+PF26UbXSy5HqgnhkVOQhUzV2hVU/biC6i+/iNVTVnClpiO7vciyC8WfgicjB39OFwL9BiJ1z9FmvAwlrksfuOqzk9Gychq3biG8fhvBzZsSH85ecjAuQf7tt98ydOhQ5FYGhV61ahUDBgxIWD2ks7NmgdZJHPqL6/DmFCAkSfOC0JWuyTyGIK5zl7Az7n9LvgSFUFwb39zrkXSc3EQ7E3fapNcQnykhSxPtcFyfLWmMLVtZceUkU6xpFmYWCyjLDHBzy2Frabq7ngS21X0M5YKEmaa5FWD+NuogSwJFURECgltKCe+pJmVkH6JlFQA0rtlI7cdfa8u3KzI9Hr0RV7oPIiHU2gYieyqo+M+HqHVBut34K7LH9QWiqKpsmuwbio4mA+ZKQpPtcS5ttvbaMpAQEqAIU7mVMBlhs6oANRyietlXpA4eTqDPgKTvp7lpXU3SmMtRsPcdYlWxv5z6O5l26KEgSex54UXc+XlkTJ2sDWJF7EWKXZuwKypl7TkpaT6yTptG+rRxbLvyDgAa125ATvHh7lFEwczLoTqIy5cOqqD22xXUrVxBzaefx+rjUlAy0pF9Xu13WgquvBw83bvgG9Ifd15WwkhVoNVBIAjvLiO0YRuhzdtoXLuZ9uJglBtN8emnn/LZZ5/h8Xhs6T179mT79u0HqFZ7z447/gVAj3/MxJWThSpUbYW4qIgFrtH74rYV1jCbqVifDkMhJUxFFOghHMIqclhb9U82Y1apuiIr9s0J3S1P2xC2YY155vh2x2xnrA23GlNYQcyqSrWsBGicA2zKJ6m5BVssllPapsX6yrryn7Gyn6KYacKlgGFBpVtTaemakkp1yzHlkTtmWaX1BfXq6mOgJq16sd8Gq8LQlkWfdDYsq6JeyYxPVV++g2h9Ld7+/YhUVQJQt24NlV9+BqqK7PPTe+YtKG4vIhIi2lBPtKycXR+/gRpupM8pvyM9r48ewkOYVldGHcwJMGOSS78OVdFd/oxJWexKqvhrjt+WdCs/ZO19FJZQIUKGaH09dcuXkzp6LP4evbX3W0h6+2gp1LIqpnke6w21yX0Rk896mqRfYPrUcYBM2dNv4CrIJWPGeLvMtLjlqTJI+okUWdXLUXFl+/CfN4mc48ey9qL7tWexYiNKwIevOJ8+d58HDQ0E8gLIapjShasp+2QVle98GTuNW8GTk4ricyO5FVwZKbgKs/H3KsA7rD8iPUf7XKIy6BNOIirpnrAqkd1lNG7cRmjTVhrXO3KjPVi5ciXPP/98QnpeXh5lZWUHoEYabR71FGUMI91fmNDAOPz8qCnbzHcLEgNK19fsMn+nZXRHUTxs2DCfTZs+NNNl2U1B9lByM/vtl7q2FUlWSOnel9pNP7LtvefpPv3spgdA7URmnxEUHn4cO794l3BdNV1n7N2qIEpKgK7X/5E9L7+COy+HSGU11Z8vpnL+B3hyCyiafCopXfvhL+hO4VEnEArVEqmqIFxdRbimkkhtFWo4hIhEiDTUUr9jI+WrvoCFKrI/gCsjA9nvR/b5AaF1CKqriVZXIyKahYM7Iwt/VlG73ZuD0Sx31KhR7Ny5k7y8vFblHzduHMuXL6d3794dXLP2J3/AEfgzCloT5sPhIKfuu01sufmZhPTw9t3mb9+AYmSPm7Jn36PqrU/NdMnrIW3CcAJDi/dHVduM7PXi69aT2u+/ZfebL5N/4i87XG6kHjKWyJ49VLz9LpHqKnJPP3WvylHSU+ly+1WUPzMPV2EekbIqahcspvqN+Xi6FpF78in4i3vj69GD3BNOJFxfQ7i2gkhNJZGqSqKV1ajhEEQiRKtraVy9gdpFX2qDyNQUlKw05IAf2e/TZs1r64hU1RCtqoGwJjdceVl4iwtobKd7czDKjaZQVTVpbMNt27bZZsh/SmScdBSu3MzmJwIcfhbUbviBLa/8v4T0cGlsvOHv2RtJcbHrrVeo/HqxmS57vGQNPpRAfvdO+S4pKal4CrtQu/Rr5JQAub84ucPPmTblUMK7yin/9ztEK2vIOWv6XpXjzk6j+K+XsPOJd/B2yyNSWsmeN75k9wuLCPTrQu8rppI+pIj0wUX0/e1EGsobCO6upbG0lvCeakJltaiNEdRwmMayBmpXbKLsnW9AfRs5PQVXZhpSSgDZ6wUhiNbUE62q0WItRrT2zpWfg7t7IbCt+cq2kp+T3IgnMzOTkpISevXqZUtftmwZXbt2PUC12gtl1Y6qlRRkDiI3tReyUOwm28aqFUmDGMSRzJLKkp6wOp+xL97lz9jfFosqmzZaLyvOTdDq9hd/rubiU8W2Y9eVEMsj/votNOfO12LevbDEsuVvzTdnzFTJEG0MJuwuHnwcOYVDkCSZgJKBKwxSROAW2mzf0N6nk+LLITUlH8ntQSiSNoCVJFTd3FibbbA8lyTXZVvlzzRZxpxhs7rNSSrmvY+/J42lO9mzeAGKxwdAxqAxRGtriNbVkNKtD+60TCq/X4IkyfiyC4kG6+ky/oTEOFfx96gVAtGcaAbzmRSMnYrLl8K2hS+TPnAUKf0GaHlVi1VVS59WFLx5hXT93RWa5RMQlVQaN2yg8o332PTyoxScfAYZYw7HWwE+UpHSUyGtu1kv0wRZ1y5EQ0GqStfSULFLU2YFG4g2BEGS8PpyceX0xu1Px5OVSyC/O0paGq7SBpZt+nPLN6IVqEitD3j4EzHLFUJw8803EwgEWpU/FAp1cI06jt2rPyO19yDSuw9EMlySLBYq5tyHhN3FTCepJWiS7y4p+/g6NOn+F3daKe53c3VJKhOS5DPP0VJ7YpZnsQSw3MtkFlRaOxmzoDLdpRWhuYtJllV8ZPSAx4luAYqs4lLswc1ly8MwvkchJBRJJRhKXFI854IT8Q7ujyRrCgtJlpEUgRzQ5EbhtWfiLsjG2z0PxaOgKCqGeYWkN1iqKpluBKqxCp9puaTPFKMvGqFKlsDJkv3dSfIQrSveSQKC23dQ/dEiZI8XSZZJGzGGaGUVkdpaAv0H4c7JpeqbLxCAOysbEYmQM226+SyMNtZmbNSURYI+Gx7/HpplSBJZx81ATg1QPu8NUsaMwte7V2IRYPqMSqq2Mp+Qhc0l0tO1iMIbf6dZXSnaamQNKzdS+cr77Hjk4Vgw96iEkpmGlJeC29NVe2cAXNo7gtCet1rXQPD79YR3lBIpr0GtDyIatH6DKz8P74A+KFmpuIty8PbqiifHhxSqZ925f0lyI9rOwSg3mmLatGk88MADPPHEE4D2XtTW1jJr1qwOW+a8o6l64xO8/friG9oX2Q0oKsJjGSAKSYtNFCHptyOJWOxMY3U3w+0PgKgww0pollh6OyFpIRBsr46MHgMP+8lUNPc/meRLlRErt6WGXJJkhLmqX6yNstFCvFubRZXh8mdYU4Hm+udSYqv8AcLl0hYzcsnaatseLT3qlhFuSYsba/SzXZgB0OP7o8ktei3jpbjLkYRASPaBh7lynmHB5NasqkLR+oRrLTj11/h6FCNJMq7MLGRJRopi9ue7n3YRnkAW/qxCZKFoK/oZsc1UzGefYPElCZAlopa4WQnxcOPHS3HvWbL3sb5kM+XffIrs9SK5XKQNH02ouoJoYx2B4cNwF+RT/cnHCKGipKeALJMxfYp2sCJM9774FVjNIVKc9a3VstkIlG7ZTe5503GleSl/6UPSxg/B06ubXl58+bolov5uqmrs4hVZJX1AAWl/vYioKmtyOBol+N16dj/7Id/94VkG3XISuUf2I9sfxNcjgqunB8jW/yCkugipCqGoQn3ETbi6gd1f76B2SyXB0jqi9Y1E6xqRZAlXzxzcWT1x56TiLszF16cI4U9FBBvYcP6qxJu+F/yc5EY8Z511Ftdffz0vv/wykiShqiqfffYZM2fO5Lzzzjtg9dorf5Jlm7UgnL0KjyTdk09OSk/cil/7QGVI+EqtDW5TMap0mlI0JSijIHlsKmu6UZ5ZRtyFxCuqmopPZSk3qaIq/neCIsv6W0o4rsn6JTlHfN1bztdEmU0pppINAi1Ew0FWvv8gLrefbkOOwePPJNRQSdf+k8nO6UdmZm9zZQ0lpGo+/1GBiEaQkMlOK8brT9dMfY0gjYCwurxZO+2W+GG2JXH1gYiwpJuCU8SCbVqXjLXeMoGgds33bHvlSa08lxtJVqhY+pl5XtnlQQ1rc7yVP3xtHhuuKiela18yug/Cm5qVeG+bGoCS+DjizYWD5bsp/+ErAMq+WUhq7wH2axeYq97IYa3jEE7FFl9GKPpgzFIPSZHwDexDfu+L2Xr1LTRu3Ixr4OHIIcMMmoT7b32fZb+PzJ7DyOoxzBZQXjY7e/p1K5oSpvTbryjb9E3ym7AXiDb4kIufiPCYMGECq1evbnX+cePG4ff7O7BGHcuGd/8JQN4hU/AXdielZz8Ur+V6JBJW/kvqUmBt0psx1bKbyCduN3lMU65bTWmgje/GEkslIWfCNYjEa7P+Fkm2myLuWzX/jw96nuDah66U0DrBiqGYUrTfsiXNpURxKSpuWUWShOYOALgkVVNWyarZuVOFhEtWcekPJ6QqhKoa+PLS5/EWZJBx6iSUrDSilbVknjYZ38DeePv3SehYKy4VSY2CSyZtRDGuNJ/ehqvm+a1Y7z9CXwkQSe+0G8kCIUutmkww3Ca1DT0xCnXffkfpk89o9XR7QJaoWqxbf0mSNgkT0uRG9TcxF+vGyt34+/YjMHAQ7vQMW8yrmLJKJMoOSa+AdcCnGvm1OoZ2lFD79VLtnIsW4R1QHHdvsL9TQooprOIHJrJeDyGBpOAf1g9Pj+5su3I2jZu2kDpmjFlX4/zoKzEqbhWXJ6KfU4KAC9+EAUSjg1DDsrbClBHENyJpsgr0mEQqlf/7irovVzT1SNrMwSg3muJvf/sbkydPZvDgwQSDQc466yzWrl1Lbm4uL7zwwoGu3l6z+76nweUi/dgJeHt3x9u/D7JPU0aIqNCUJ2Epaf/QDKAO2kdg/d7Q2wWJWEBwlxzLq0q6G5+9PlIyxVNcv14yy4jLZytIz2y45xkuzNYGIL6hakpRZYyxrPsN1z+r259+PtPtz6MNAVWPok0Wu2VUlxaOA4zg5pq7n+EGGOtT2++5dZK4xckY8/JiOxMUgzKE66pZ+9Rf8RV0JfOwCSgpqUTr68iZMoNAz974e/a2K5r0VSAJqUguN2ld+6MoHnPCOmFCwHj2VjdAkvfhm5pQkKNoylJLmeYx5v8qVeu+Zdubmmur5PEAEhVf6vGeZBnJ40YENblR82nMmjhUWoJvUF8CIwegZKRproSmu7uhIdOVUfF1VonFj9QDm5vVlATBDTuo/eI7EIKqdxdTeOXptv0S4HZFcbs0LawiqYSMuJCGO7cqoRh9CqM6ioJ/RH969i7kx/PvJ7R2KxlHdyfdHSTTXY9bVgmrMo26r6ccFciSqk2ESQJyFFKmFdMY0d9PtIkuAJ8rgktSCakKjREXIhpi0+ufULqo9X3plvg5yY147rzzTi644AK6du2KEILBgwcTjUY566yzuOmmmw5YvdqkrBo1/vfs2fUdW9d/BMCOim/Z2FiNx5XChGF/QEFFihhva6wBSBaDCuIUQQZJLGmatZpqwpIqqRVVXB2SKqmS1NOol7W+9oFPsvxJgg0mPbaJ9ObKbipvXHltJn7Ak+Rc0WiIaDhIsKaUdV++gMeXxoDDryTNn48SlnA3qMhhY/UUVZu5EoKyqnXkZvbH60nTYg5IkmktlFANq6UF1udk/G8ZlMTJdaHG3TI9eKKhsArXVlP9/VJKF7+PqluG9TrmfDJ6DYeoSl3pFlzeFLwZechIRMONlH7/GdVbf6Dn0b+mZOkHBMt3Ufnxa2wXKr2OvYDMXsMT71VTQjpJv8War/z7L6jftRnFn0r2iCOSDljlaOx6iWirrYXTLEVL2iDAsKoCQBGEKyspe+JFJEmmYOTRuBpi5RrKJuP2gqYIUz2WDoh+u82ZIzRBJUVjeSI+qN7wPVs/fBFP7+IkN2DvUEUbZjp+Ij7kCxcuPNBV2C90u+wqar9dRuXnWses/IclRJcswJWeSd/f3YSsvzyGxWRypXWsPPM9bcqyyrLfasWSQBLFQHzQduv5WkRO8nE31b7brk0kz9MWbPfMaCgsddKVVYZiCtBW5FE06ynFpXUUAVyKiqKoeJQobkXvpMoqbjlqKqHMvJZtU1mFhIzAJUfxyFGCUTe1kWrUhhDVK7dRt+EVXPlZdL3xXOS8XJBcpuLDmPlVXFodGpavJfOIQfiz3ChyJNZBts5/yYJovO5Kj00lyaqudDFug4QwFoAxLZ+FqTgSUmxwK6l6R1QWRCoqqftmOVVvv2+uWFhw6cX4B2irIzVu2YKSkY4rN0ebjQwGqVq0iMZNW8j+5SlU/W8+oZ27qHv1FRCCgssuITBoYKJiNO6dtFu5aj+MZdSNCQohQdXCRYS2bsOVm03qkYfGVlHTZ+LN7phFmWeeIP49MhV0Wp7wrjL2PPYfJI+HzImTtPbeEmhYC9VjKJ20d8FqaQcQiihEADWMuSQ6SEgRSVNeSVD/9UrKnnod74BetBcHo9xoiqKiIpYvX84LL7zA0qVLUVWV3/zmN5x99tk/yUmOoit+T83XS6j54guIRKj9+Cuq3/4QV0EeXW+9DtDeb2s8U7D0UYyYcEYT2ITOSEhocXatllFCtzo04gRhlKcpeCWr94ge/F0SIjYOacrCSpI07YFCrBFTRewDtQVw1621WrP8Wfzq5xALom6s/KcYVlSyZkXlVmKrbrtjCxsZ8ZkAVH3lbWtwc1WR7PFTLZPFApIqdBKwtkXxt0jfL4BoYwNqKEjdpjU0bN+EJ7eAHudcjjszC9wusy20LnQhhzWXwayBY3BJHpsiyRpzSqj6nK5ldUlzgfu4STPjHMKYKEA3crLEsrVNnOnHBmvLqFq/gh1fvqM9T6DrRZfjGdwbEYnQULoRV7d0/N1SSfGHidY3svulTwmVlNPt/Ilse+ELGraWUv7MCsrnCrrOvgjvwN4WSyejfRemTAZt2xrL0cDIY+Qsf/kjQpt34e2RT+bRI21laOVrclixXJwkaW1lTGcrEYkmPvDG7XvY+cAruFK9DDtrED53I34lhFeOIEuCMPbBX0TVrKoiunwIRzXPLZes4lMi+BTtQfqUMCHVhRwVhKIKO+evYsuj7+Mf2n7hMX5OciMet9vNc889x2233cayZctQVZVRo0bRr9+BDdnTJmVVqiebzF7H0Lvn0ShCIVhbxuIl9xGK1IHbBRHDvrIVyql4JUUyK6q4/ZqLmD2fbfU/6zlao6Qyy0hysVITyrQm3stWva9Soil/c0qvVn8DbfhWklpUJauLbX9shzslg9GnzmLzktfZufZTMnJ6seaLf9PYUEFB/nCG9f0lkq6skkMREILaxjIqajbTr8vRSOGoJlhVEJIcm1kxOgG61Y5txiAqacGYLZZwtpmP2PSFGfTWdGkxdgsgrLL24dnmtaR1G0CPI3+JNzVbU2oJmfScYu24iHaQLHkoHH40+UMnILld9Jx4JgCNdRV8/+/biYQakt7TeKuJhLo2Qc22tQD0u+B6lNQUM8iksHQWIka/U7Kfxy4sJQQCdIWVkKBh+Xc0rt9AoE9/PNl5CLRZqIayHdTv3Exqlz74MvIRMgTzICJCVK/+FjUcwtulCG+3bnhrtQ6CZJkMlFTdks3UU2s3JNC9N6ENm5q/4Fbyc/Yh/6njyS8g+6STyT7+BGTFRWhHCVseupdIdSWqT0borhnWlX6awnzf42fIrd+VdaZVbwsM12XrMcksWNra5ia1grEqjJLlaaoMw1Klre2+NbAqdgVFTFklTOWUqRCyWE8ZllMAblmzXDIUVAAeJYpLUk3llEtPlyVhWlDJlgZIkQQuKUpEKFSHfXgKs5j85v+x7M4FlH7wHSndcth++1yi1fWkTxlL3qUna9XUr0NRVKLbttOwbge5U4fgUaK6EkzDOutpdprBtpqQ4o6aKwcZcYtVZE2VZp0RMayMVClm9WO5tdFgmO033Wmm+YcOIvtXp+LKydRddiQ8w3siJFClqKYQzFDI+NXRiEgYyeUi5/LTEGGJ8I5dlNxyP9FIPapPtcuDJBMwNitDw20xImmDK12xpUqC4MbNAHS56SqkFL9l4gLtmSuG6atFEBkDRosCUNLfXe0d0UqpX/ItoQ1bCIwejpKbZQZ7b9y2ncZtm/EN74u7S7ZZx0h9A1VfrkKEI/h6dcHXqzBm1WG5KCHp1xLRlA2SHrHaN6APjas30h783OSG3+/noosu4qKLLjrQVdlnPF0KyT39dHJPOQXcLoJbN1Hyt4eI7CpF0lcallTtHbIpC4TlrwnM5lmWtMlT9P6+0a+JarMWeq9U22+6zFoUVrZCY4qthHRzBlBo51RlYloPAClxlUDrwiuqXfmbMEYy8lrP5XbHVvnTFVSAucKfYUkFugJKD6KuuiRz8RPTqkqREIZLnBFYXLIorPRLMN374/q78QuESMY/cc9JsuRBAm9OAUOumsPmN56mZu1KfNkFbHrqAUQ4RPYhEymYerLd8y0CjVs301i+i7wRk2KrtOrl2SZaJSnpBJNZVcu1GWMO00JLz2iUJ0dEbGV0PX8kVM8Pz8fkRnrfYeSdeBqiKI1omuaGlNKzBykpQVK89aR7g5AK/f8wEnc0iOQWFA+cQG3YQ/WPO1n6u+eRQ/V4PFYzLk1hpegWz/bXIprwOgqhucpHVQkRidK4eScAveb8BpffjbGqrtCVNUJAY8hFWI6134a7fSwUgLAdYyi8aj5eQcP6nXQ7fgipOT6M933bd1WU/lhO0eHdcBdkAlAZ8lNeDjsWrSMaVgn0KcRd3IWAX8WrRGIWV8Rkf0SVCasKqj4Y8Q/vS8N3GxKe597wc5MbyejTpw99+vQ50NUw2Ss3QFl2QVSgKF4zrbx6A3nu7u1WMYfOQSTUQE3pBtz+DGSXm7KNy6jcvor6yhIAykq+M/P26D4h4fja4B6+3vgcKd4cuuWM3m/1Tka0scH8Pfi8W/D6M+0rMjWDrLio2PgtG9+fC0DOkPEABMt3tlv9hBAE92ir9tSsX0XmiEPbrWyA1MnjiJZUUr3wYypXLyNzwChENMqPr/wVgJSCXgw48fcAhCrL2TX/dWpXf4e5fLLHS/bIceSMnoQnkN70eYoHkjNlBmUL3m23uv+cZzoOBiRJ0mZ4BSj+WIyuhq2bCBQVH7iKOXQIjdWNbF1Wgr8wjWo1yLb317Dj083UbdJWjK3+JCY3Mk8Yn3B8cNNOtt/2HP7eBeRMGbrf6p0M0RiLFddtzq0oKa2LMQcguV3Ufb6CPY++CEDKxMMBiJS246o6qkpkdykADd+vIXDIiPYrG0g/7igipVXULvyCutHfkTJ0KGowSMmcvwHg+24gBddeAEB4VzllT79O/Yr1+qBcIAe8ZBx7COnTj0RqRm4ERgwjfcbRVL0xv93q/nOTG2vWrGHhwoXs3r0bNU7BccsttxygWu09htwQgJKaYqaHtu3A0639FnBx6BxEGuqo27Yeb2YuKoKqH5dSvX4VoQpt8Y3K75aYebPHHJlwfEPJFjb/9/8RKOhBZr+R+6vaSTFWQwcY9n93IwIewqkQbsWAQ/EorHtrDV/dsQiAwuOGARDeU91u9RNRlUhpFaAtepJxSPtazuSdMRFRUcm2t1dScmx3uhzalYaKIC+c8wEA/Y7dw4Q7JiGEoHZrJSv/spCqldtNuaGk+ig8eTQ9Tx2JN8fd9HmmDKF8dTllz7/fbnX/uckNK9FolLlz57JgwYKkcuTDDz9s4siOpU3KKqUugosQDY0VSKpgfYn2IWUGupEuZWtWM8liRRnEWTQl/d9C0jhU8QHT9fSksamSlRnnZtiyO19iXVo8piUSZuNjM43N5msDLSp742Zvk5lIhxtqWDrv1oT01Jwe9D/8XNySl7qybaSmF5Gb0RclLCCimjNOpVVr+XbL/2fvvePkKK71729V96TNUVpJq5wTAiRMjsYBYww2BhvjiyPO4Rrne6+Ncf69ztm+vs4Y2zhgwDZgwCCyyQKBQBHllbTa1ead0FXvH9XVXT0zqwAi2ufzkXamprq6urq76tRzznnOn8mm6lg2/Q2kvazxoLKutAljq9MhpZHWmqV1aBkRqFRsAYvI1Z3jEpY1+zE8R2F3N2t+9kUQgs6TzyWTbTLpisvdd10rTWRi0WgP+jY+Gv22+5E7wr7oyPup/PhqUsFTYy7NWMhLAcLz0UGJQOfJj+zBb2oyx1nDmS47hQCV0qh0lRNrYkJdqUFKms55JUHXbjZf8yvqZy9EZNJMPv61bLn9CjKNbWgPRge6WXfZFwFoe8fZ1B9/CPmNXQzf+wg9195Fz323kp0wGaRH7dTZ5NonkmscTzbXip83cVyTZp+C7uo1WQQPgqgDiCF/oREePt9Fe2aKK+7ejUCw+9q/ApCbMZtUe7sJZQotrIkwvNBKW0HhsZfbWz6PWWto5F0VtqvDuglP1/30rKo4zkoZebnbh6oTrHD+2Yar9WGsY3GWHzcEIOQcMhwWOioT0nhSRZ5VITG6tcymQkup9ajypKoICwASVk6/zJsKYLhrgN+c8aeK4+oXT2HqJ0+BVIrh9bvIzpxAzSEzEEIgZcmcT2r67niMzd+4itykZhZ86Ry8hjSgCJREo1EYPirrRRUoSRBIE4oTXpv1ErM8VraukKBK4Q2M5ncByoQHCmm5rgANhe072P65r4Lv0XbB6/CacoafydMIqaLzWQJ6z1MRv4cIvdl6Hno4GoOh5WY+1LKE9t009SLi2Uk8A1U4c/AEOgydQ4AeKUQGhWBoiKC/D6+pIeyX8aqSvka7nD3uuJR7PwhznB0zmZK0vOVVlHZ0s/Onv2DK17+AqMvQ/NpX0funvxgC+YKksGU7XZcYAGvCRedQ96J55Dd0MXDnI+y55m72/OUu0tMnGj6TxbNITerA7+jAb2xDBGaBazrtJQS9fQzddXD4Dv+V1o0f//jHvPvd76atrY2Ojg7cLJRCiOcdWBVRN3R3g5D0/PlqAHLz5pFqakWUBLJI4h8Yb3GhiMjVXa+eSN+zZYGto41Hv+OmKVT0sgBEYYDVRJSH8JWLpUKxL7Yk9K6ChIdVeTjzvjJruB5VUprzWC+YlI9Oe4ajKiRPB9Ce8aAyIX/Wa8wQppsQQCcM0I+9q6LwOS/sejVdtsyD6kCk0LuT1T//ckV57fS5jD/plQgE+V1d1EyYSs3kmQgh0DEeRN+q+9l63eXkWicw45XvICUzJhzT9YYq727oXeXul9zonMizKhybhBeX68HnPGci0Az1bmXlNd9A+mmmnnge0ktTyECpBoI6hag1Hkw1NXkacqM0pkdpyRgC+frUKA3+KHcsXxOdq+tvZg2RIiCdKiU8iKXUVddp1+MJIFDufABqpBB5twW9A6j+ATItsSHGela54YTVHkdPWgoAHW7Hw/cl5TH5g2dQ2t7N8k/cyFnXvom6xjqOeu8S/vmDh8i01zNUSrP7kZ384+1XAjD5v15P7pCZjK7fTv/tj7Lt93ez/Q/3UDNzPDIlaVo6jdoZbdRPbSE3IWv0Dw8633Qi+V2DDN5xEAnW/0XWjXL54Ac/yM9//nNOP/10Fi1axNOdzXh/5cDAquEC/aNb+ee6n0dlM5qPYk77iWZS8Mr4o6y4gFQ52GRlb+BKGaBVNQtgVDd5TAVoM9bAVxCnV6+ny9tPAFfVm94fqbr5eTLtlBEe7o9Ek6xdm8PjvEyO5ilLGOreRGG4N6o/Zd5LaW2dgyxoxuWMm6AsWjJ1s9qu3foP1m+/hbaG2Rwy+UxSfs5ZBIR5VryyEEyrIFgwK7wGm+1JhBcntDYLqAB07H5riBKNUhGt+eGCqgYGAMi1TqJt9ouQRY0M+ayqkTSX8+X0bnyY3jX3IVNpWhYchfA9VFCk/djTUF6VsdZVhl8nN7paEHGOaAmkfSadcT47lv+VruuvILvyHqa866Lw2uJrSYSGVDu37baK48oJ6wkEfnMzAL3rHqRlwYtoWnoMzYcdA8K8xlLUI9MZVCFPcWs/paE0/vjpNL5mCo2nn8jA8vvIr+8i2NPP7rtvQucNKaRXU0ft9DnkJk6h555bKe45iN4D/5bnrwgYfvxxtv/0R+F3Qespp9F2/EvM12oE/zjzkqicHw/EmFVR156rDKUfcy4PFbox61ml0H0/y7LyVLTpHutek+VuSpyj2mRS3lcXrAqBKhn3w4JUUsQAFhCGBegoNADMxlYhzI7EZv/RIsqQU1BezE8lg0QoIEBtc4opx09i99o+hrYPRuUdbzyR1FzDK1G/1FhxPc+AYl4IgG360fVsv+I+Wo+fzfyPvQy/Jk2gY96sUuCBMgpysRSGsDiAfITxSJVMqGHXNl+g0yZzYFAKw2KUGQcBBqiKhkcQjJp1LzNrCrUnL8RP5w2fljSgVDrk9PI9E67gAnwjpRTbr3+cgTsfRdZkqDtxGQiJDhQNrzix4rkynQkLbd/DZ1W4z5QEUjp6LmQ2Revbz6Hviuvp/fWfGb5nBeM//q64TWGASoED2mlz3WYjF29qhIifHYEtxwRPNtaCUoyseZTcYYtoeOlxNJx6vOljXuDXNkeg2ejWPnLaJzVjCu1zOml9zfH03Xg/o5t2UurpZ89Vy9GjxmPNa6wnu3A26akT6b/uVoKePv4tBy6f//zn+cIXvsDHP/7xZ7srB0cUDD/4EDt+8QvzXUpaT38VzceeZGgaBg0w5eVDsCqMjhKuXlfxfulQZ7QAlDb/glDvLCPaJjKW7odYQnX7uZrYUEF3n6QkUZxy1XFQyfbs8e5+SggDVNnQPzChf75viNQTyYxMXZvkCBwi9SjzX3hqy09VngUvsdZVu86yoXHns7K/dqy92gZqp86l0LuLYn9PdOy4E04jO3EKIoD6mQtN85YuBEDClut+y56Vd9M4/3A6X3wu0kujLLerSp5HJ4zkJBbb8mfG7qeiLIDu3sQNf9TOLZSC/IiZw+o6Z9Mw5xCKtVCqhVKdQtQXqakzOnNz7TDtuSHaMwM0+IZDdzDIcMcftvPEbdtINWQZ/7KFoA0oMumMQ8ALojWmPGtflA3XAk1Vbo4Q2qy3LTVMfO8Z7PrdLWz73l/ov3Mm0y4+P9GuMbioxPa8nAvLfhahHhJtz4VGeiCzaUrDRbbe08Xkoycx54KlzPqPZQwHafoLPqq1LWqr0NVL5tA0mdnTaJ42k6azTmLw5nspbNlJsbuPzZfegS6YF91vqafusJlkpo6n+4o7CHoHKq7133Lg8tvf/pbLL7/8OZdB9oDAqi077mVdj/EomTfuVNobZlOTa6kEdsbyrtoLeXp53fJ48L0BW2Oefwygqqpn1P5sfsqAqopyJxNH1c2UjhJnJ9p6qkDV3nioqvWnmqG+/PfCcB+bV1zDQNcaglKBpkkLaRg3nbZJh5LNNKJLOgJbouOURpRMuusdPcYLac/QZvYMb6GtcU5EAqmlDEkxk7syEfJWUd5XbUjFhV0NtBkzEZLYaykS9bVzjTq8ttzU6Uw64z/YevWv2HT775l6zLmhNYyK82kZL06l0UE23XY1vWvvo3HWEjpf9nqknzYLFCTBpvB7Vb4EuwdxF0In9a8d/7pFS8hOmsLa730OVSjASAGZSieUApcjQIXfLYdJxf10PS6U+aHusEPpu/M2+h65FyUVMpWCQFM3bR5+TR0ik2HuhRez+56b2Pm3Gxh9cBV1hy4lyBTQukTtEXOj0B2tjFWmsKWL/KoNDK9YQ//195Ma38LET13Ats/9koMh/8puuc936b/tDnpuNi7aHaefS920uaQamqFQVjF8xiO91nneYw+iEGMa41x7Mx5UzLNlE2EEJFcFo8Y4o0h6U5k5UVe2UeV8FcCbC1QJXcWAsxdzdZXuaQ2Wb8Vy9Srp5iIx7XnSkJiORaYOIZG6893yU/nCgDRpWWKolGGwa5D7vv8A2x/oJigGNB4zl5r5U2k8bgE0Npl+SB3xXaRkQNo3gJUIAnbfajL69K/YzPDj22hZOgXfcTfIC00x8FBBzJnhU/nOu6BcNYU+UBI/9IBSSkZ8V1oJVBAPfP2yafDuM9n5gysZuPwqpr37xWT9Elm/SF2qEJG+1vhh9r9ijsFimvzuIR779u3svmUV9SccStvbXo0WTiiDwPCDuN3WRB5jlvCX0OCg7UIGZVxk5k/dsYeRmTaJbf/1dXS+gC4WEakU1tgjhB2HeCws90jMWVX+fMZAJx40vvhQhu9aweDt/0QXh8DzQUsy8+bip+vw6nJM/upn6Lv2Rnovv57h+x6j5sjFCFVA6ID6I+fTctZx4VhrirsHyG/cxfDDGxhZsYahO+4nNbGd1k++g51f+l8OhvwrrRu9vb2cc845z3Y3DpoM3Hw7PTdcC0DHa99ITecMMjVNiD4iA6UI+Q6FcsAqh1jdgFY6WXesaVTruK7rRVWlfsKTytZ1PbNwjq84WCR/czmsXO+qase7mQi1djL8SQNUpfwow5+2RuEKJwHzm1mrrE4eg1eJzH9+zFGlHLDK1V2rX6PT5Sp1yu9BobebXTdfw0jXRrRS1M9bQs2UGTTMX4JX30DkYW3HJgA7fQbFEv2PrwBgaOMahndupW7S9Ir7FuFjjv5c+aOzdyjTue1UabPr6ej5Cis7QGf9rEVMyp/J1juvZOuD19D0qldQbArwmvO0Ng7RXmOMOONyA9R5BYpa0lOsZWjHELd85Q62Ld9AxyuXMO09p6KlWTf8kDfSk6NRt62Xs01wYrPn5QOfUiCNN7L7qJV5YY0/7RBqZo5j7Yd+gsoX0aUSMuU5aycVXltCqKq5ZCwfVvm6O+6Vh9N730bW/ulRBroLSAnCk7S8aBperYdoqueoP76XDb+8ix0/vY6Bux6j/qh5lEYDtILcskXUn94eevtqVG8f+Sd2MrxyPUMPrWbPjQ+SmtxB23vewI4v/KiyY09C/pXWjXJJp9PMmjXr2e5GhQhdoaFUSn9/P42NjYCgqXYy08cdQ3vjnDDbkOs/qSuBHPuT6w1lxZLe7svNrBqRYXm7LvhTLdwQd1NQHWyqBq6VhxdaJL5i41MNqKrYjFRmCIyAlv143scM7Rvj2DEXCTucbh+sBakYsHvzCjY8eCVCSMZPPYLx019Epq41Ph4QgcYbVXh5S6YeIPMlEwqqFEor+gY3s3L7NeRSTSybcV5Vgsc4I5OIxrva/TMLZLjxCi1AQVokF1FPRAtoXAZaaXruv5Ud919PaXSIiYe/nIlLXhItTCLGwMyxPgRpQe/Gh9h2y59RpSLjjn4ZLUuORlgXaxHXT2QwC8GqqoTPFc9D9XunA832v/yWvpX3IFJpxr/4VTQvPSZeMC3pur12qWPlAeJwJIEhW3bPFbo8j9y/kr5rb6awYVM81L5P7ZJDGffiM0hl6/EKMLLpCXbc8hdGujYjfB9dKqKVYtL/+09SHW1mM2RT5oYbRK01ngfByCjrL/gifX19NDSMzVWyN7Fzz2nXXkiqNr1fxxSHClzz8h8/pfM+G/KrX/2KH/7wh2zYsIE777yTqVOn8s1vfpPp06dz5plnPtvdO2CJ1g0pqZk4nXFHnkrdlLnOXB3XjQBfWQ1UStZLWHSrKZyuiFjRTGQtsu9C2btYtV3Xc6pK+8m+hSBTGQA19vFOp8N3ye1P5cXta6GwgJdOtCdEHKbmhSFyllQ9JRVpvxSRqVtQKu2ZbH5AlFYaQJJUeEtaEhQD1ly7kYe/dTsyl6L9pYtpesnh0NwaeWwpJaPQON/xSEqH3lW+UOigRN/DW3n8K3+nYU47h3/+9MTVjZZ8CoFvQv/CdoNw4nPJXc01a6Rj6TV14/BBN7RBhe1Z4MqMtKL/6lvZ+Yc7CAZHmfGuE1nwhsXUpfI0pkYiSzhAXvn0l7LsHKln9TVPsPF/b0IrTevrTqH+5KUgvdgDzCHCdROJaGU8vrQKw/wgDEks11fsPCtIEKQrTff3L2P43ocR2QzN572K+hOXInyFnw4izzorSttwSqpKoo/hMzVw+0p6rryd/Lptcb2UT+0xh9F07svw6mtBC0YfW8+eP1xL4YltiHQKlS8ghGDadz+A39oUXZvxSJDh3tsY84KhPJve8dl/rxsHKG9729s44ogjeNe73rXvys9hidYNz6Nm8gzajn8JdZNmmUxv1gs3FDcUy/WskiWNDOtbLyoTHmi8qGxGZQKNDDSipBGBqgSrtANAJTL1uX3QEXhkzxV5QynKgK0ysAkgUERuOYHjRWXrqLIyIDL0+qEyaIEq3wOrZ1vvLWk9q8J5Mm2I1YO0JMiEZSlBkBGUMoZcXYWvjCFXj0ErM5DOGupINZ23fL9RvrarUomB++9h19+vwquppWHxMpoPO5pUXWP1pc62W3LCPQPQpRJD29az6frLqO+czbRTzo/rhjQACZANkh5W9oMlUtck77GtI+LjtIjBKhN2Gl6TVuy89wa6770ZVRil/YyzqXvxMajmAu3t/cxr2Ul9yqwdGVkir3y6R2tZdfV6Vv/wdvAk0956PG2nLkrkpfDCBCcVGfscz+ZCuPEpKRkCVp7jMR0DT0oLgvBmlIqw4XO/Z+DeNciaDBPe80qaj18YrlNmrfJkPBiBktFaZtrdF4Sg6bv5IXb++W5G1u2I+51N0fLixUx680l4tVkkmv4HNrDlF7cw8sROZCZFMJJHeD5TvvVhZENd2c0Kv2oNSNTw6L/XjYMgX/va11i/fj3f/e53nzMhgHCAnlXHHPI+anPGZc+8uEmuKDup27KKbBnl4oV1ExuDarv3vbRTVj9GzcvKqwFVY4FUUCWUsQpQFdW1gEuyfkXZXvo9luxvWF+1hcO1EFTMJ+7CEcb2B6MjPLr8Rwz1bqGlYyGzDj8HP51jx+Z72X7XLxju286Ck95FS+OMCKjyRkv0DW5ly7Z/0je0mdHiAJ5IkfFrSfs1jBb7aaztRGdSUcy8Skm0J01IRtWxG+PeudcWGGVEIaLqUTpdL7mg7L53OdvuuIq2OUfRsehksg1tCdfupMVIMDS4g23/uIqBDauomz6f8SeeQba9w9Rx+7SXxbTq71XAKvs5wasgBRNe+Xpajz6ZLX/8Gb333kbz0mMSbbjn2BuwLxz+FVMgQGpqliymZsliVDGP1iWgxOCt99F/7S1s2vIEdccvJdU6nlzLOKa88d0I6aGDEiPbNrHxV9+l7+pbaX3r2ch0kACqjA5llvZ9L2L7Ly90S8cPfvADPv3pT/Of//mffOELXyAIjDbd1NTEN7/5zeclWGVl3hs+QaYxdPUukASFiL9bQKni/XCn7LBMiCpz4xhgVcSP57xjhrfKmTvKPFXi46vzUIHbzzKASSTLIhCrymNZdRmo+viWvcdjSgzACMf8KaRCesqkoo6y+BieKU+qBABlgSpfqMiDSobAj/WicmWgN+Av7/w7/et6aD9pDjM+8DJ0JkfXtQ+z44rfkt+ym5lfeTM1c00CFj9MhT346Ba2XfsAg6u2UuwdQmZTpJtrSTXmyO8exG+aRiGoTBEZ999cq6djBbxcysMepY6zHNnjgxBE8yT4Ximq33P5crb/6lamvWYxi964kLoJ9dT7/dT6eRr9EYrKI6+N1XsoyLDhkREe/PZN9D2wkaaj5zD+zaeSntCKycqkKIUeWy7fSPRIRtYrhzMrUSs58eto5xQ3IoSg7d3nU9zSxc5v/4LBm++i/oSlkbeY75UioNKMBSjh8JFUnDfumx2T+mMXUX/sItRI3oSP5ov03fgAvVffQWHdE9SfsITUxHZS49qZePHbEZ6HLhUZXbWB7V/8Bb1/voO2txgA0gJzcYYwkRibgyEv9HXDlVmzZvGpT32Ku+66i8WLF5NKJUmJP/CBDzxLPXtyMvPCT5CtD42kITeRhoRurnUYqVz2irhSjZM00rvsZy9cfCxCIQjD08sm3HKQKvoSvkORLdMSMSrDpWfrSWLAqlwqU7fFQFU1g73nGY8qiPYgQim09TqTZjHVKBBezBErBcoTEUAFGKAqKwgyEKRBhbmzVCoGq7QX7u/KogESumsgIg8203DZJTn3KBgYYPNPvktx9y4aDlnGuNNeg+f57Ln/Lnruupninh6mve0icuM7nax7MLhlLb0r7mJ4xyZKwwPIVIZUrh4/U0NpZJB0ug5ZKF9vqy2+jn4R6QGhLgKIaoYze/32c0iv4fLW7rrhb/TceRNNR59AwynH4zc3U6ov0dw6xJyWXdSnRqnzjCduXvmse3iYu792E3se3sb4k2Yz7cITyHU0IkWQAKYiY1GZwUFpQUHHIJUtl+Habl8YpQVFJSs4rLQQTP3U6xhd38UTn/ste667l5YTFiTvW9ncuL+6vSc1nlC0nHIILaccwmh/CY2kNDTKnhvup+equxh4ZCv1xy0m09lGdlILU7/0NoQnUYUSQw+sZfOXfseev91B87kvCztTvV8Hc+34V1o3yuW2227jpptu4pprrmHhwoUV68if/lTJR/pMyAGBVZlU3dPVj3/LMySF4T76d22gr2s17TNfRH37NAB2rL2TDff8EelnWHTsu2hqn4lCs2nVdWx5/Mbo+PxQDzQa3hGtFeu3Lmfd5n9Qk2mmrW4GWa+BQBcplIbIB0NMaj6E2ZNe+oxfp1YBfetW0rfuIfoef5DxS06hc+npY/IPaK3pfWIlXQ//g+Fdm0g1tDD++FfStuzkKHzxmZSBx1bQ+8CdFHp2Me6UM56288hMGi1TCF/TeNpJ1By2kJ5fX0n/35ajho31R6TSZDs6ye/ajhodASHIzJ76tPWpmrzQF4/vfOc7/PjHP+ass87iy1+OSUaXLVvGRz7ykWexZ09d/Ny/143nuwztGKR7RRe77t3CIefOon2+2USuuOwx7vjafaTqMhz2ndfTuGAihZJk3fduZMdVMUl2cXfMJ6EDxdbf3ML2395OtrOF5iNmkB5XjxotUOwZorhnmIlnHMKMC49/xq9TlwL23PEo/Xc+Tt/tq5j+lqNZ+Jal1KXy1esrzerrt3Dnzx5n92M9ZCc2MfkdL6bj1S8iX/L2yY98UPuuNUN3rWBw+T8JdvfS8PITn7ZzyVy4m63J0nL2idQum8eun/6N3j/fFq8b2TSZaRMpbOoyZVKSnTflaetTNXmhrxuu/O///i91dXUsX76c5cuXJ34TQjzvwCo/V7vvSv+W57QUe3sY2bSe4Q1raT7qBNITTAbHnuU3sPuGv+HV1DL1nReRndCJDhTbr/wd/Q/FGf9Kw+66EbD9lr/Sfd/NZFs7aJi2gHRNEyo/Sml4gOLIAOMWHs/EZc88144OSvSvfIDBxx5m8PGVtJ/6KppOOokgV30B0Erz6DWbuPsXa+hevYfaqS3M+8+T6TxzSQQ4PWN9V5o9Nz1Ez3X3U+odZPwbT37azuXVZFBakMqmaX/dSdQtm8eOn15Lzx9vRY2YNVbWZMhO72B0/XZDAu95ZGZPftr6VE3+ldaNcmlqauLVr371s92NCjkgsEqlPZRvTQcWinZdY8s8YvYjtm0sT6ikiAPyrorarrCSO+aUqE74pcr8UOH1VdYlc5zjGVTu9VLWt/3xhInqjuFRtVcvGh3/Xq3e6EA3D/4l3gj3bnmY2ubJ1DZMYNsao9ykM/WUghHWP3I129bckji+pnEC41oX4g8r9OAgDzz8K/YMbmT6hBOYMfkkpPQh0HG4jRcTOxbDz+71aSliHqtyT4nEhYnE+CpPhG7JcXy9VgH50X4Gdm6g95F/MrJrK0F+mFx7JxNedBodi06paFZLKOkS2x68lu5H7kAV89ROnk3nK86nfu4SZOhivdfMio4Hm+mr+WfdjqMyxrh3oUdI9JuEUmmUrX82XE+Nhx1J8zEnxp4nZRatxGsRWbNCjxH3fKGHiCgJY8G2VjIPhI95d31NqqOd8R97GxqFHhygtKObkYe3Udi4mbp5LyJ36AJSnR14TWazksokvSzcyxqbHOLAxdgo929ReAb3hwdNNmzYwGGHHVZRnslkGBoaehZ6dPDEH9V4ylplRYU105Q774xj5YSyucE51gWex/ZgJaIISbzH4Xsblwm01HG2zYq1o+wcrqeUSNYbizQdqixVZWGAbv/2WzTJzpVzZjnntXxNpiwg0AJprbHhQZZMvcYvIoVmz9oe/vbG2Jq26ZbNtM9roWV2Eyt+tQqAmkmNjO4eYcf3lrPtT8lMbjXzJtF8xEw8P6DUN8yaSy5n6LFtTHnz8Ux6/VEoDEdGbAmOpeh6wGphvL0w7hSRo8BeBqt8zigGXjRWWgt0KaC0Z4ChFevp/cfDDK3dQWkwT+P88Rz6/iNZ9h+zyHo91IacVPXeKIGW9A56/P2bq3j8yrUEoyVaXzSVef99DA3HzMNPSSCIeES0hqJLSh8SutswPNMX0EqigqS3Ubn3VHjBRDfY8Z5TewbY/ePfmn6+7DjqX/yiiENRK1CBjBwdhKju+VrVYi7C+s7vWouoS0JostPGMfmzbwatCfYMkt+2m5HHtzC6diuNLzuC2qVzSXeOR+SyUQiJVtW8yA6uPJ3rxmc+8xkuueSSRNn48ePp6uo6wJYOjmzYsOFZOe/TJVqQJPV2xd5SheEvCmJdSFjdMtR5onAvHc6Doed31I4QoWetIFJebTggRBF6AuL3baysfa6HVeRRpaLnPBFSaD9LUeGBVLVt2y8pDP1KOcG6DTsMQxE1Kqwno4RGpm9GJ7d0GmBoL4IslHIQZOIwwCCtDe2EEzLv3gtXB7XrqQjHe3TTJrZ9+1tR3aHVj5KZ0El63Hj23G72G5mOiRR6d9P34N3s+edticuumTqLuimzkUUo9fWz8YofM9q9jYlHv4pxh5xoPGNt+F25UxqUrcHOP9vfErGHtnQOtBEazuMQ6SXhY6KDEsXhQQbXr6J/5f3ku7aiRkfJTJ1K65lnUXvCcRTqS4gaox+3tQwyrnaQ0SHFHd+6n83XrSbIB4w7ZjpLzj+G1mNnkU1pwHBF2jVtrLnL9aBSYWi7TYBixYTKyyjcz5aB4Yq0IYaDOwbY8q2rAGg/9ziaX7zEjI8Trh7sZZ624YXl2QcB46HtBSYxiu17ICmWzHqYmjaJzs++DRVAqWeA4rZuRtdsJr9+G42vOIaaQ+eQmtSByGRQpbE2UKEcRNDohb7f2Jv87Gc/e7a7UFUOCKwy2SXs2wuWoyqK1fUPfH9aNTyvopJO/l4NKCs/fi88V/G5rcI3RvlY70H5qco3XmXXVBnWUr6TcI7dS9hftXA497eKULowvK9nyyOsvtU8gNJLoQLjUy1kir4dq+nbsRo7E48OdfPYXb9InGf24tfQ2jSHbK4JORLg5Qts3HI3ewY3MmPSSczsPJkoJDQlDBcVDlhluaTKgD13LCLwitCltnw8nTGL4uhDMsietfex6fpfR7/Xdc6h/ZDjaZi6gJr2ycadO1AEhTxeyoAsgS8IfM1D3zeZc3IdUxh/8quomTwjCkWK5udyQMqWqSq/2Q23JBET7x5Xsbm15eFfL5Nl8ts/QPeNf6PvgX8ytP5xGg5ZSsOhy0i3j0+QxwMm1E/rOOQv3CDLYsz/FWRC3UYl+yWUMMqY1BFPCoFRgmRNI+mZjaRnGU86m2VMegrpGXbs8jAbFS6GZno4eIvHC93SMX36dB588EGmTk16rF1zzTUsWLBgjKOeH+LlwYseVl0BusbgrkiAvPazsBEVhK+PM99GwG2VW+4CwCgiYlSlnTad985Motooq1F/nbbKgSWRrGNBqWp1xwSp9vaolvWhAsyK+u6ujToG81wgQwmEEBGPL0AJzyiaaIQQTpSIJi0Dtv9jDXd+6gbTrCfQ4SaoVNRsvms7m+/aHrXf9/hO+j5zZaL70z76KmoXTSXdZngcJIrdf72Hoce2MfWdpzDhNUeYS9BGiZZecscWc0rF11dCVk3THV1+WaiEKJsLpKcphdwtu655kNVfvz76bcJRncw8fz5zTppA25xmfBnQKHvxC6OUpEnp3V2so2ckwy+PMcaEhsWdTL/wBJoWTEAhDBgW3hhPKoKSR6BlSGYeX5dWgiCI40zijXZycteKKg+PRng6mo8jovz2Wjr+50J6L7+egetuY/i+R6g79jDqjj+M9ISWBHF8lPXPGbNyALlc3Dl9LHVISJAtdfjN9dQtmhpem4iPVxplOSL3czPwVOTpXjcWLlzIDTfcEH33vGqL/jMvlor2ucQ5cqCifROSZqUaJ5IsYaPtEusG0uiIUjvzhxfyvKHjuTNhLXSUM4M3R7xEgFEIlTaAk9SVANReZL+I16v9rjUojbaImTJ9FRaoKm9LOtQstk6om2uXTN03erkd31I2/JczQJVKh8CDrw1NhucYQJw5KuLNw/7RDN55L7t/+buKywqGhhhe8xjDax6LyobXr2F4/ZpEvUnnvJnchGmkc2bdEAHsvucmRndtZfLJr6d13otiw7wPlOWpsDxjVeldyvV1e9sdoNMmSFUeblRouMfS9Nx/GzuvuSJqIrdgAQ0vPoncYQtJT+xApxVKFEhlhsnVm4cyUJKdvRnuP+vbADQdPoUZbzuelgXtMY9U2J7SgpKW0dw1Vvhf4i+xEcqWa22TcyTBo5pUgVyqGAFitdMylL54Hlt/vpxdl99G362P0nzyIppPXkxmQnOCnwqIwsKljPvlCYXvKbQWUei+XVdc3iwVGsssGXt0G4TAb2nAa24kuyBJ7h1l65VlYJiO/sMpOCjyQt9v7I/s2rWLxx9/HCEEc+bMob29/Vntz4GBVZ5IADnlm+bo8/4+M/t7j8dacPe2EO/lt3KQqjKboFs32Wa8AaoCvJSd292MVbRVrV9VgKpqx7hcVGOJJYosjg4x3BuToVqgqmnCPOYuPZ9dWx6gZcICMtlGSsVRVt31M/x0jsb22aiRIXLpJjqaF+MXBQwUkcUANTrKmi030Fw7hZlNRyKH8obE0TfWHhGSQAVZY7nRNhVu+bg415nwlvKS1283sdE4+dC37iE2XPfzqCw3bjLZxnYapy+mafohRCwBYRrjzXdewa5Hb4/q6qCYuO/TLvigsT65BItOH3W5BcfVJ9zY9hCkUl7y96ipULGK6oaW73JFLDd5GpPf8h5GNj9B/wP3sOeeO+i59UZq5y5g/GvPw6upRQtDIGrBvCRRvAg5F8LzKtAps4Brz+XhcR8mHRVphOE+cDb5dnOvtLPjxfK9qIS13f18MOSFvnh89KMf5b3vfS+jo6Norbn77rv5zW9+w5e+9CX+7//+79nu3lMSf0ThBVbri+eACDQN33Hl6YhzDsL33lo5HS8rnDk3sluE7eD8tQqm5aiKNjiUAVVhAyJS7LRTLMDTIUmrbdhFzpw2XKDKxY9c8Gq/17zyz+XGF/dC3fNprCeMyzWUONRRfo03kyblBRHBeloGqL5Butfsia8rBKrqj55P5/teSf/tK2k4ai7pljqK/SM88bnf4bc0ULtwCsHgCOmOZuqOWYj04/EMhkbZetkdNC6dzvhXLYu9i8IuWktwudj32ZMKtECXXVPRed8rCNbL6vYsf5RHPve36Hvb4nE0dtYx48VTmHXyJOq8PDVeARhEorn84yt45G+bAWhd0E5hNEhYmef8vzcihGC4GHNpudcQaGNFtuTtQESkXk2EAJkKkhxWmoQXUgQ0yXjDYC5ekZs/jcynLiT/+BMM3vYA/X+/nb4r/0HNEQtpf+droM4YazzPGafoeJ3YQCTWOOvhZb8Lqj5b8XXois8CEtkodUhg/XR6Vz3d64bv+3R0dBzwcU+X/PKXv+QrX/kKa9YYAGDOnDl89KMf5T/+4z+e5Z4duCiPyEsHwuk21J/snbKqSMKgYQ0c0ug6jqaCQiNdDw27nmiMd5P9yR4kHGVQ6AjEQguEreRi7BYkDDQxQXpcXpWvqryszBivtUrUEULGddy9iycNibqNYAh1cu2J0BsrBAxCvirDUWXKgkzoUZUyQJVKhedOabRvwPHY4uSsZZpERE3QN0BhR+hZKEXU77ply2g9/QyGHnqIukMOwc/UE/QNsO3S/yPd0k6ucypqeJhMyzgaZixCBhIZRl4He/rpfmA5jdMW0z59KaIQAlGWrivQMaDo6NJ2ndCSKLuh+4bbrN/WWGYriHDo3emt9+F72fbXy6Lvuakz8FpaqFt6KNlD5plIhZRRKoSv2fnNnzPy4GoAsrMmoQtFIpQemPel8wAYKalo3XUThVgPaKtbm+E0HfLKuEwiA4Kz3okIDJJRFvUgBL5s4hE/bDfjl2hbOoXGJRfQt2IzPf94mF1X3MWO39xC0wkL6Xzf6YhMJjqf9cp1ydqFENF6HgFogaQUbh7s2heEGWgtThAZMsLPSa9iYsNb5PJODC6KJBB3MG0fL/T9xt5kaGiI97///fzyl79Ehc+s53lccMEFfOc736GmpuZZ6deBgVXCAA/R9zIFBhwLQszrFn935cmE5Y7BN3TAUg5SlT1r1YCnqFwQWi/s7zE4UP34fQBZ5TIWUDZW/+xhzos8uHsTu594gKH+LgZ2rUerpMVaemkWzD+XXL+krmEpehgYKZKWPocf9o6onjdawhspwbAyWf4AggC/oGnNTaF76AnyvTupSTVCOh2lzdXp5Li6XhPuGEBMTBilzPXK6kqi1LnF0jBaax77/qei4zNN45i47DQapx+CdAEqx+KkhaB5zrIIrBrZuZlUfRN1MxfQ8qITqJ9/CKSqEOc7YxqlQ3Z/rpK+t+q9UcTPgbuYupNuYhWN/+YmTyM3eRrtr3g1A488yK5rrmTT975Ox7lvJDttenycrtzQB1kdj6+vw9A/xwOLsO9lYUMu2XQynFBEVkwVkQVrPE+hyl5oKcoRuKcmL/TF4y1veQulUomPfexjDA8P84Y3vIFJkybxrW99i9e//vXPdveekvgjCq/kmCjD+TO2hBtQSkZAbzhHerpyPhDxO+eCxBEZqoj3BZFBJXzvbBvVsB88DCCNmS9EucYkdWIDk/Cect7BqgrTWEDVmI9pJTBVHRgY4/2KxqQs65wgAqcAUn5Axi+R8UooBL0rt7Pz5scZWLebgZVb0BZgtCBfQy3Nbz2bYipDzSlHUwJ0QaEzDUz63DviemH7AQoVEHkF+DU11M6dSN99Gyj0DJJpb4iy85UCSTVPTDdczZMyKkuMgnOc++4bUvgAhkcRpQL3nvf96LeG6c0c9u6ldB4/BU+abIdKlxgJ0uTDSTOvfDpftTgCq3Y/uotsZzMNh05j3GuOouXYudg5USEgDLmwYJVSwgBVgbUkx+MjBMgQ4DfX4PzmgkbatKO0TICxFrzSZcAoAqQHufnTyM2fRssFZzB05wp6fv03tv7X9xj/wXPIzuqMHpMoqyDx3rPisXKfp4o7lJS9AaRahyYka5HXOrxf+mkDrJ7MutHf358oz2QyZJzNmitr1qxh4sSJZDIZjjzySL74xS8yY8aMp9bpJylf//rX+dSnPsX73vc+jj32WLTW3H777bzrXe+iu7ubD33oQ89Kv560JHQPI5pQJ6m2F0jom4Bn3ss4pIrQI0kjQi9yN5sbTrtagVDCGH2jsvC7jX2znopCI0px9j9TOQarKryqqhKmh6ibxFBpEF6oEAjf2aZZYnUpDbm6/c33DFDlyyjrHyFQpX0PFWb/A1AZSZAx2bRVyJ2sQx1b+wao0qFnFZkA4Wn8TAnp2XlYRXN8segx8NAmhu9+hPwTO8iv3lABzPktrYw7/Ww8P0P68GPNZZTAy9Yz/S0firM42uyNIyCLGGMrkKaOXON4+p54GLlrkFS23hhcPUcvcNb88udBhJOa8qt4bsdR4YnDtdYEIyMEhVHW/O/no18z4zpoe+krqZk1zxi3fQhK4fMVjpmQmsaXHRWBVaNrt5KeOp6aRTNoP+c4Wo6b7ZCcWz06XjcsCXpEkh6CU54MgSuZDH234X++A2JJoVHCzMWR8URJikoS5DOMllIVIfe+B02HTqHp0CkU3/NSev7xCFt/ciNrPvQTpn7sNeRmjI/qak0iYYhSgpKQKCWjcjDrmXueiJIhPCZa/0KQKgKsiHWW8vVECF0VeziY1vGnc7/xZMLHly9fzkUXXcQjjzzCxIkT+djHPva0ZX296KKLWL58OVdffTXHHmve19tuu40PfOADfPjDH+YHP/jB03LefckBgVX/lue+dG96kLV3XBp9r2mcgFIlRgd2RWUqKPDoistYuvAtT/o8talWukeeOKho9t5kcPMa1v8p+ZIc9ravkMjtupfJKl3fQs2E6Qxv30C2fSJTXvN2/KamZLz6c1ik79Nw6DKyU6aw8Rtfpufm65n45nfs+8AXiLyQwapSqcSvf/1rzjjjDC688EK6u7tRSjFu3Lhnu2v/ln8R2XHdSlZ/5droe27GOILREoVtPVGZ6h+i+8dXMPEjTx48zU1uY2jVVoR8Zt7RvrvXsvaSPyTKTrvpfdSmS2S9MMXYXhaO+kn1NM4bR99jO6mf18HcS85GNDREzATPJIH6kxGZTlF/4jIy0yex7b++w56rbqXjovOe7W49Y/Jk1o3Jk5NkvhdffDGf+cxnKuofeeSR/PKXv2TOnDns2LGDz3/+8xxzzDE88sgjtLa2PuW+H6h85zvf4Qc/+AEXXHBBVHbmmWeycOFCPvOZzzz/wKp/y3Ne9lx3N7v+7y/R99TkiejRPKVdu6OyUs9udv3lCjrOenLrhhCCXGMHI307iNz8n2bpX/0gm//6q0TZvE981dCcWAPwXo5PTRpHeuoEChu3k50/jYkffT2pxhwpP8DzA/ZOUvbsi5dN03ba4WSnd7Dmwz9j15/vYspFZz7b3XrG5LkUPr5hwwZe8YpXcOGFF3LppZdy++238573vIf29nbOPvvsAz73vuSPf/wjf/jDHzjppJOisle84hXkcjnOPffc5wdYZYn5xq6gIx6CijmlipVk3ycs+152P/cnVryiSVEJo1c8a3vxksIlCLa/7yW8rdzrKi4r69d+eOhEfSu77mB0hCfuu4LhPdsZ7tue+K38+9En/BfDvdvIlFKkdg2G5xIGsJHGKiNC1z9RDKAUGAtOzLQHSuF7aTyRpqbGxLHqXBqVSaGyHipjbpTyJSpl0uS6VpDYM0JE4XLWoyJKBRuWF/L9FAf6GemPwbaOk86kecZh6LRn0tmGlqgEh5RjadFCs+vh5Yx2b2Xaue+hbvKsRKhhNLT2mDBNruutVl7XenvZc7jiejvFhUSRO4mwwMhbYz/aUJq+O24DKWk9+WURoWVFuKnUEe9WAoiz8Y2OMT6Rhrgaz45ruRdJjpSoW9YSIh03ZKHHfoafhJTHuO+r7vNJfN/n3e9+N6tWGbLqtra2Z7lHB1e8kRJ+YJQzO9doxzvVJlqwXlQyfK+UD8I35LdJa6iIwmcjL1lC7yqc6VY7v0FsISd+FyMJ3xWtwinWrmMhv4nWwoRC2ON12G8ca7o0lveo3LbrvHeJ87mddMpEmbdM+Xfca4Tkexu5mukEQap12/c9Rco390IMDvD4965nZGM3oxt34crI+p2J75O+eTGF9ZvwWuoIirGXTxDG6agg7pD0jeVdKcMzERFqawE1OfzmWmhqohCQCJFzLa3Vrl1G16TLl9T43OFYFLv7UUNDDG6IN01T3v0S2k6cR38py4gKSIccWVJofKFIewFpGSeMUFpy78/vYnBLH3O+egF1CzrNrdbgheNZDB/MUiAphtZxe72Bksb7SYNWEuFamMN51HrwWe4XO4fGUS0imvtcbyuXzNZyeSR0rthFAK0UA9ffgUj5tJ59YuS9JZzxBBOqIcN52/WQElAx7uVcKBX3bD/EhDMqtOs1dpDlyawbmzdvpqGhISofy6vqtNNOiz4vXryYo48+mpkzZ/KLX/yCiy666Cn0+snJ9u3bOeaYYyrKjznmGLZv317liOe2RJ7rEOl1Cd2Oss9WynQsJWJPDRvObZ2PhDJeVpF3lZ22Q9oHEfJU2bLoGKURJR1/FwKhVPxelkA4a170BFoeKSckLNbRvJBQ0XleU35S3y/zrEp4UVnPqsgz2YQBWj08yIahWGnjVaV9E5brjnX0zw9Dz1KKdK5ILlMk65u5UfX1sebb/2B4Uy+Fzcl1orh5W+L7jIu/xOiataQam5HFxE/Gi6oI1mYgC8ajSgba6N92vDX42Voyda2ksmGGSEE4CYXeUhZAqvaqi1DvsPsuR1+OpqqwrLinh6CYZ7hrc3T4hJe8lvq5h5hQNxydHWJyf5+oMekrdv/pJkq9/Uz8/LvJzuwMAar4PhbDgfeEphRIFPE8FbgeRwKih1XF4UrKmf8hDkF3516bMyAKh3RC9wIVcz96UqHDNceLnQXRKmD3Vf9EZlJ0nHt0RPVRDs5YDkaljL/X3jglo0c5XBOj0F3HsyrS26IxKPPWDdUrt+6TAxjGlqd7v3Eg4eM//OEPmTJlCt/85jcBmD9/Pvfeey9f/epXnxawanh4mPHjx1eUjxs3juHh4YN+vv2VAwwDTC4CleI8PGM9rwcAMFV9BBJ6uaCUH6SvbyOpTCP5fB8pL0NTq0PQVqWRscCpsSa6SBygKgYIngRQVd4fB6iq3gdHQwxltG8XO1ffwUDPJgZ3b0xUr2maSGPrDAqDveze8QgAJyz8EBm/Dm9nkcZ8K6gAApNlTHgSUikzKfpeEuCwQJWbuUR61OfGE/QW2FnYSHv9THTKQ6ck2pNxGI/jdmvAHRFdbyL7F4QEkHYzSuSevPGqXzG8eV3Unc6XnEfrnCOihU6WdGJRA6t0hBO0NJvjVK4RVSwQjAxFdaO4dBUfZ0EqoeJ7YUGfRIa/6N6U3Tf7fCRAorhvCZdj912ptpF16uZ37WDnX/7IyIa1jHvl2eQmTU2EEVIONtlrdPixIgLolLNxDoCSRPjayXxSuYGGeMMSAVlRuak3xmt1UEQh9js7x/7Wey7JkUceyQMPPFBBsP5CEFlQSB1aEsP3vJz/T3vCkHjLONRclgyPlUrFmYyUB1rritDiiIzdnZvt+1qmkAoNxcEBhrs24jc1UejtxmtoIDdtRgxqRVOuDf3AcU8370jMY+WgYghD7pqMQYgBq8S77QBaQMLt3X3HHEBBVnk3baY2V2wt6RznewHFrTvZ/pcHGFmzjeHHtyaOycyaQnp6J6VdvYw8aIDTzm/9D7K+1hCgHj4XBKgSVear+Np0YDPdhT+H96goFd6kCZR672LXfduoWTgNFYTgTlk4XOIinPNYnqZy0NwCKvbeb/ry5YysiTdO0z7xapqPXwBCUyiFISSOoq+kIbUdxadkASglUU1NBIN58n0FMiUvOmcgzNgGDhCnw7CNeP1U0UbZnZVcgChBPh5WcLMEBoFEl2cItPddhkTrzj3WWqCCeBNQ2NhF98+uIr9mE+PfcxbZmR2AjoA/z3mePBlEHGIuWGXruPxicfhiDAQk/zq3Ucfjo51jXKmWSepgyJNZNxoaGhJg1f5KbW0tixcvjviinmmZNWsWl19+Of/1X/+VKP/d737H7Nmzn5U+PRXRHpFBUKhQlynTPaK65fp3FeBWh7yeQmunXZEMBbRTciBCPVA7DUBxpJ+BPZvI1rYw3NtFrqaFprrJSCmQRREhGYJwPQqMMhmHpnshQfsBPOfKqW8TGYXglE6ZC9G+hDDDn7YJjux33/yN+KlSglJGEKTKxskdMt90OJUpkcsU8bZtZuPVDzG4uovBx5PAZ3bubFLjx1Pa2c3IY4Y8feYnv4DMZpFKkJ6x0OjVhfgYLQgNzc6YO3oyIr73SkKmtYP86jvpKWyhtn1K0uBfbfFz2yLeu+rE3q3yujdc+WPyPTui75Nf81bq5ywyx/nhPsalJPBMuU7paMykp0i11qP6h1DDo/GYRkBRSJBPDCS5c6tSMkGsbqPxlfBQJEEpN5wwwVnl/K6cOdrO+75QEcDlS0Uh8CgEfpQ5cGTtdjZ89zqG1nQx5xOvpGFaC6AoKhnmq3HC2oVGIaJQ78AJDxTCJDRx+xUZoIR2Nlk4oeDu4kHiOuNCkfi94vNTlCezbjxd4eN33nknL33pSxNlL3vZy/jJT35CsVgklUrtVz/3V44++mguvvhifvnLX5LNZgEYGRnhkksu4eijjz6o5zoQObAwQIekb1+SeG5U2ayxF6lmJK5s3FTase1+Nqz5O/nRPYmfDz/6/TTUT9qrx1RF+9XO5Vzr3ia48jaS71VsKanWRoI4fG9AVSgDO9bT9ejN9O1ch5AeTW0zGXR+b+tYzPwl55Ee0XhDBWTzGTA0ArvzQD5G6a2FB8z9KRYNYIUXhdapkHtKlBSUXHMCjGueT0Pv3WzsuYe25rmmXlEhPIEM7KIIKiUNaaPveFGFG80KUCf8TaXMsQDZzikMb16HX1PP/P/4b2QqjSwRxrfrqln6wNkjAghomXcEu1bfyda//46GuUvMYma9pxzQyN1DRiJDTy8ZL6CJxdLZg9rFUCgcjhvzr+r9LVtY3WdECygNDbD773+l/4F7SDW1MOmCd1I7a26iidhpQ8TXrkO+KkuK6fZXOSeyGoJTFnlsyZDfysnCUY023YJ+Wjj6g9i7heVA5YUcBgjwnve8hw9/+MNs2bKFpUuXUltbm/j9kEMOeZZ69tTFGykibepiIYwFWBJbhS1YZbMUBRaYEghfIANQnlUERQR8a6mdOSUmY3e9rVxrqp1relbexa5briUYTCoX09/3CVLjxhFx1OG85+484Txerr61V84qUf5bEpgyQ6MjQKbcK4rwfZKRBTXpaTSW2DaGVqxn85X3MPjQE8hMmtyC6UAMVtUedTgtbz0HIaUBlzyF9FXoTRZE/VGWK8mCNBZo0iKa75S919JcZ+T540lqjjmc9FW303PVnWTmzgitoyIG3t0RKn+PQ4VWO+MEMc+T0X/NMampHYys2Uaqo4VpX38PqRqPfBF8L4iyDkbKaBmxuwWrAiVpfMlS0tesZOt3/0LuJx+JxsFwgsR8T3bOsaT1AJ6vIgXe3TSUgzd2HKtlb7KTqpvZMbq3ksRzErWtoLi7n97fXcfQHStIdbQy8dNvoWHJFIQY+/nRWphbFi6CLghm77vLseI+7wlsYF/zvrMBMRuaGKTcX6+s/ZVnct3I5/OsWrWK448//im182Tlkksu4XWvex233HILxx57LEIIbrvtNm688UYuv/zyZ6VPT0W0r1EhACBUmDCmYh4NpUy/0eFWRYsYLLc6mTFA2JMQekqF57CPX8oBsACtFTvW3smWh6+nlHc1blj20v+iNtto3lPLv+RJ0BoRqJjPCgNe6TF5q0Tyb/jZJRMvXz8tMGW9p3RKRmuiCjP+Kd9+DsudCIZIXy4ZryaVCr2Dw/KhB1az7e93M/zQemRtjtz8qUAMVtUfdRRtZ7/WeJYF5h5Z/Zwg5p6K9Gx7ic79iHTfUL+OjMaOJ9uEqUey8+Hl7HpoOfUnvDGM2IByA7I9T4Jj1t0TuNuYUM91fSwybR3ke3aQ7ehkylvej0ilTMCeiOvGRl1QEceXWS8BpKdpOu1FDNzyILt/eiW13/pQxTMbJRVxvGbd9SEaJOL1wJTLKHuv25ZdyzzHW8rwU6ooIMnO3ba8XD9XWjDS1c/mn95E7y2ryE1tY9HX3kDjoolE2SghNNDISO8JyryiozVRiXCdcYbdgmsliSo6PJVRV5yBct7R5PhVmQA0uET/T1WeS+HjXV1dFZ5O48ePp1Qq0d3dzYQJE/bzqvZPvvWtb/Hyl7+czs5OlixZghCCBx98kGw2y3XXXXdQz3UgcmCeVdU8S2DfiKZXedMrdJIQ0KoAUKtJ+KKuX30NhfxA4qdZ88+ktnZcIswkeWzZ9zHAt70dW+4xVeFtRZXfy9sos/zsFVgLZy81PMKjN3wvKm6dsIi2SYcyZc5LSMscjOQZHdiJP1jEGwqQgyOQL0DgxEd7HmTShpDRd32lCb1v4oyP2jN1RNpZWBVRmGBJ5anPdqAzhtzRpMOV8fHC9t1ZoexfkXye7EKgfCInBIB0uh6AKaeej6/TULBKRBXQJARLzP7HXoNp28tkSdU2kN/dhVYKGaW4q/Is2v1X1DChF0Xl81lOvO4SPbv9irChssUy+uhaawRoNH33/ZPua69GSEn7K86kYdkxSN9POjWE/RJuc2XnjkSZjb8oiJhkXRgvFZU2WV+i48MNoOuxFZHx6riMUJFSymwUdWSF16jSXt0wD0heyGGAAK973esA+MAHPhCVmQwrRjEJ3Hf4+SbFACFizyqkNmuCfTw8AcqAVUqLmM9IS3QYVif8+H2WpdDDygcReWvqZChxWFcJYhLVsNmua35fsVHoOON1pJpaI8Vovx6hijnf/WzfGeJ3SDib8fCzkCTeLxGVx95SUiqEMECL9XIRQuNZZdQJLysHT0qBpNQ/zNr/jjMZZQ5ZQPbwJTS89DRkNocqFijt7nYQA5ttLvbkikGE5MBEYEwQT5h2btFSGwDSerkq0AiC4TzZ1mYzP+xlnF3y732JViL2ZgO85mYA2t75GkilCYJYiQ+0pBhUghN2wxA4Yxdks8j6GgpdvZQCgZQmpEeFII/NcuRar6NlzqmjGQN8KwOw7DEVWfkSk74Br6SnkJ5yi9Fa03/D3fT89u/IdIqWN51J3QnL8HOCQAWxNd2LAUh3vKEygyJAUXkmBXk4p1vAUnqmHxbri6K2qgCPKlw7orBQJwzElYMJWD2d68ZHPvIRzjjjDKZMmcLOnTv5/Oc/T39/P29605ueTFefspx99tn885//5Bvf+AZ//vOf0VqzYMEC7r77bg477LBnpU9PRXRoIAQigNoCTREAVQXcsDQO2npMRfNS+FtZWQReaWJqEasX2vdTwRP3XlHRx5nHvpF0bSOqJAAPafc6oY4qAoHwZKSv6pCEXShV+ZJYcUCrCKiy+qwUJLyTo5A/EXkaW6oW41kV/uaGVIb6tQvGyZL5XRZNSLcuSIL+QbZ9Mea/zR4+l9whi2k85XS8TA41kqfUvRsRmHleluL7EL3CMpy6wvGVVg1w7lmkGoRgkomyKDNEC0lQHCVT22L6Hmgk4XU5BqNIF3Y9qscY5oS3VagzpJoNWNDxsrORXqoiysyl/1AZjUoryAX42YBU2iCVmXQR0ZHGr8tQ6Ooll82jtGdAJS0g9JyCeN6vNvcY3S/2frWGqqLyKjyorNi1q1BMJTL/QUzQ7gmFLxUlS+geeBRKkq1/vJetv7oFrzbLrA+/nIkvm4eWvgnTL9MrzNrh7HGd+T0O9RPGy8wPEjpKoKTxqHbvjbvh0m674aOfeBbGem+e3XXj6Qwfd8fanFNXLT8YsmjRItasWcOll17KY489htaa17/+9Zx//vnkcrmDfr79lQMPA9wfAIjkc+M6cZSXRQ9hOOkmnrdqaV4dWXr8RezZuZr+/q1sfeIWAJrb5yJS6TB0q8oEUAEK7fUUlcftB/9UhSeVc65qYWR7A7mEjsvW35skit29fSW7t6+s6OuCcS9hSv0SKBShUECXSvFY5guIQgHqaiFjHjyVS6FCC40bQmcXQyVjrjJZUoiiYmhkF8P53cxoOsWE/qU9427siai/ItB4hXBhDOIBUSl3PMNr9WJgSfmmH6O7ttG1/CpybZNo7JgTcVNVLEK2jfJJDeeZ1VA/aQ6Dm1bTfdt1jDv+tEqQcSwLjL3HysTVR3XG6EOEg9nnXlZer/t7ubWw2L+HnVf/gaHVj1J/2BG0vfwMUtm6hCt8dG3WMuS2IWKOH5v1RnsapEn5KzV4YVpgb8T8HuQEpRpzMUGNQqRU3F6ksJkHsoJDx0EXrceF0uKgglUvdM+qDRs2PNtdeNpEFIsISyrhSfCU8e234KiWJrMO0ijN1jFHq9hjylYNTAiXUCFA6vBbGSA1tgor6ymirVJoyue877MMPfEYQ9s2sue+2wConTEX4Xnx61w21SQvyDGsCO1YvTHvWAj0hBfhgD9xuQgBKDeczQ3NsgCVLfeEwgtD+YDIjV8KTVoGkfLqhrAVAw+tU6z9RkyACzB89wqG715RcVmtbz6XumOWOaEFGhWFn4TjoYRBAN05UzkTEuF3HYJWwmqb5ufC5m0Eu/vIzJ8dgVUugBeJHf+E1cCeJlyLQqBGlc0/+Se20fv7G8nMm052znSUUpFnkg2XUNpDquT8ZOeNGNAx96Bx6XRGH9/MwNW30HjmCeaSg5ibKinVNh0G2BEVwF/ZkS7AGV60BoQMj3WOS3iT2Xu/q5dt3/8LwyvWUX/KETS//mWIbG34/KuqD3M5HY4dBxewsunTlRQRb2igPfOsa2Ml90KvAu05O0f3POF/xkMrBPgsz5mOh+1AAMr9kadz3diyZQvnnXce3d3dtLe3c9RRR3HXXXc9q6HcS5cu5dJLL913xeeDyDhcL3pGwrA81/gnAqNjJcAqC2I5Hu5RuJ8uq+uUJXjhEu+Lz+LzL2Fg62oGtq5h95q7AWiYMBstPRSh0S8MyxMlHeq9EqG1CQe07SqzGEVlVkKwLJGl3AGmwIJVIQBlfwvLDe2GMzfvS5xx0CIeH1kERjx2/O9liepDd93L0F33VjTTcd4F1C0+NNTxYwAIwnvj3KuEzhsCSlF3o3sRhvk7SNHAzg2U8kM0TJgT3RubmVrY9kjq5dWm2YSebPsZ6tDD2zey+5//oG7WAkOzAUnDl2+Mujbrn84GyEyAnwlIp0vUZ41S3ZgdQQrN4FGTWPebHYxefzu1Lz+WYskAVgXreUzyeYvEvf1a4IUInxutEHnyll2fDUtXSqKEJuUH+OE6mfICUqGuoLQgHxidrG9jP09861oGV26k89WHMuMtxzCuRZH1BhgO0gwW0/SNmr3iaNGvMIhpbbqvlYiyhEfl2mT9s1xYvmf4LINAEngy9tB2jF3l4xA5dZXtR+yYxCd8dteNpyt8vKOjoyJT4M6dO/F9/2lL5JHL5bjwwguflrafrDyvswGmUjWMm3goQ4MmxriuYRKpdO0+jnr+Sipjri2Ta2bBkvMIRofZ3f04vbvXoFVA2qthYu18OhuXRAu0Hst68xQlCAxq88jaP9Hb/wRTpp1Itv7gvjib/vh/AOT7d++j5v7JuMNPoXvl7ey8+3qaDz0av6HpoLR7sEQHAXvuv4vuG/+K8FNMeONbqZu3yPz4PHasORjyQveseiFyVT1Xxc/V0rhwKSMhiWp20jS8XM2z3KunT/wGc22pSW20vv11qJ5hhh96jNFVayBQeI311B59OLUvOiw6RutKHqyDISpv1o3uH/6OumMPo+GVJ5Jqazxo7Wut6frCTwED3hwM6XjDCey68p/s+OWN1J60FL/xuaVjqGKJPdfdS/dl/0DWZpnwyQvILjKh4urf68bTtm789re/fTJdelolCAKuuOIKVq1ahRCC+fPnc+aZZ+L7z2tV/zkhqVw9LbOWMrjNcKjWj5+Jl8q+YHUzL6QiSHVOpO28cwn29DH8yKOMrl4LGvyGBuoPP4LahTFFgfUEP9gSlMy6sW75L2idsZTxh5yCX38w1w3Fhsu+A0Cxr+egtDn/3cew7jf3s/a7N7Ho+KWQeW6tG0G+yPYrH2DzL+/Ab6ph3pfPY+IRlvR75Fnt27Mtz+R+Y1/h40cffTRXX311ouzvf/87y5YtO+h8VVYef/xxvvOd70TryLx583jf+97HvHnznpbz7Y8c2Arm8hztQ5LhUrqyLGqziseVtaI456rqcRV6lNQ2mpjNQr4fP52tyNg3Zr/2R/ZFkO565lQJDUwc61rgy9sbwxvL/d48aRFd6+4gP9JL15Z7mTfn1bS2zMUbLSFHixRHB8kP9SKFhxaKW7p+QaCKnNzxFqJ8JMVizNgXnUSHFhwRZdWIzy+SBMeBQGQ9anNTOebIj7J1+91s77qf7bseYMHhF9DSMa+Cd8k0VHafZdnvhOh8GLeu0RQH9lAzcTozT6uO8CZcfUMpM5YnLE1CQ2nYhI3KdNZYTRyrbmTNJ/aOAsd6J/bz+XHbDL+LMMzS9U608fVawsjmDXT95fcUdu2gYclSxp96Fim/BsIoV1kM23COVyko1Zq/xmvKdjjut2tFQgl0WlPKqCgzTEpK/PJ1SQl0SUZcVdE4hFkGrSUKwse2ignrAKaK/ZJqWUj2Vvf5Jr/85S/3+rubjvx5J8Ui6HBRVRKhPeOuHzF06jAM0HhN2ZdYhASxQgtUgogqPAyBCgskYbiZjok/jZdV7IWlHQu7lpBtn2Sq5UfxZDphwXMi4qqG10ahfc67YL0XhSB+d0RIgm3DtqLMbXF2Puve78nYg6o8vM+67qdDK6vvkKP6QiGF9TIyIQajgY8vFQpB+3Ez6L7+YYpbuxm680FaXnsmucXzo3mqNDhIMDAAaYkKSmz76JfA95n0tY9Fk00UmiiM5T96xyKvqqRVO+brE4m5IjdjBhO/8HEGbrmLoTvuY/C2+xn3n28iu2AGFbHM4fxYMelG1uWQg8M3GeW0EuhAoYZGyC6YTfu7LkDlfVRJoVKh508qoBTIhOeQvQfl85VEk7IZsIaM1Txda8IiLPG5+0yUH295uCLvMHtKKSrmTCmTHquxWqDCZyGur0JrtdaC4UfWs+NHf6GwvYfGFx/GuAteilebjcKGLdeIjcYvJ+Z1vbwces2Kccj4JXxPUQot54XQOh69wqH1XibaC3UajNU9CGSC78z+6HIhHuy5+4W+briycuVKzjzzTLq6upg714CVq1evpr29nauuuorFixc/yz08MNHgvCfCoTuIQ8Q04TvoeO0IGX7XJELdbFig61GU8LRyPa7sfFY+r2nItU2C1eHZU36YmU2EZO3h/O6ZRUSE6w82Y7UmLCeaD0QYGmg/68qJKKa1iKg6iDysbLmWyazbhgxcRDqn20Z5giO7vHp5074IoG7OQoYeXEFxyzaGVzxMy2mvoHbBomhMgj396IERpJDoYom1X74Yr66BqR/6eGJ6EzoeYzf8MkGJEZbJkk58t+PeNGEei8/8BDtX38Hu9feya+09zD7tHdR0TKvQt3X4SEROS3as7Lg43lJ2HxKUiqAUdXMWMeHs81Fpc5xN9GRC/jQ6oyATeipli2QyJVJ+QC5VpClrFOk6v0DaK+E7F1hXq+grQinwEvNfVS/b+JGvEJeIHeKwv3LeK98LqMsUaMiMkvXMGlYIPIZLKYYKKfruf4L137mews4+2k47nDnvPIa2poC6lNlwTMj20+CNsC3faChmHBkupCgUYzqSJN9i8jqCogn5s6Trdg2qOtdqMbY3XGJckmtW9LnseXoq8nSuG/sKH//kJz/J1q1boz3Bu971Lr773e9y0UUXceGFF3LnnXfyk5/8hN/85jcHdlH7KX/4wx8477zzWLZsWUSoftddd7F48WIuu+wyzjnnnKflvPuSpxwGuF9holXTdzgPXBUAyPkT17GHlHFgtXUu4fCGcYyO9JrJewwAaV+yz2duLPBrL6GB+8wetx8iNJTyw6y//49RWaE4xG23fp5icWifxz8ycAuLGk82X2prQSt0TYagNh2eIFzkPIHyZZSNy16H8kUFwCIDjZ9tY1LtidS2dPLog79mcGg7zXJeFDIYpARxnHeSYN3eI+FsEIWMFQwtBTKdMeW1WXTJmRTKwU3G/g5EWcGU0NR2ziQYHUFms/F9qrI4aOJn2138ovA6nTxXtAjrKs3ZTYstiy5DM/j4SnruvoWRjevITOhkyrs+RHZCpyGoLBguAYgBMwC7h5VhVi6VhiAjCLI6Mb5uJxLvrgBVYxrL5xTFEZnMECiJOKt0SJJYPj4VF26/OqEu2jt4q0eo4+133eebfPCDH0x8LxaLDA8Pk06nqampeZ6DVQHoMD+1Mi+5kDICpRJE/kpEoUZ4AqkF2peEDAdhFrfYXmH38IZY2mwQ3HlCK22UGBVnp9PKKKotc48g2zqB0vCAed808bmtWCXfVZDKQCvt2Q2KToT9ATH3k2dC0dwQMykVvqcSpKheCD6lvCAGpERluJ8Fp+xvVpRWEdlqQXn09w6w/vv/iH4PenrZ/KGLUUP7tpz2/uZq2t/yCtM3z8RbaCUMb1HkuRuOmzsoChN+bOccN8xPCFKtbTS+9CTSEzrY/fPfUdi0g+zcWWbsIg1YhJtLkSgz7YRhzha0csjeRckz67ESeOTQIxp8EWFngTD3QjshlfY+mOsREcdHlIRXaeoWTQEpEOkUuigiBT2iSBfh2iWdhUHHijw6nhutjBUOWE6kb/sZhdMEmoG7Hmf3VXcx/NgWauZOYtq3LyQzZXzYZgnKDK5KSUpBTGirtKXCiXmr7GajXGWyz5MIwVXzuUix5EVjFoeEOACVMw4JYn53/S47rvzzU5UX+rrhytvf/nYWLlzIvffeS3PI2dbb28ub3/xm3vGOd3DnnXc+yz08MNFenEBDKB3qXFYZCytJA/RoGZOmWx3SBZxMG9XBKkvyXU7KLZzfo+M1tB1yLDXtnaj8qEliEwJmJrwvfFcCTLKHCJgSznUk9VhDO2EXNJH8bA9NAC8OWBXxUxk9OwobDMuif8LhcrQglasnWmBOgTcCQXcvu6/5a3QvStt2svGT/40ajbPbVRM1MsLu6/5K+4tPj64tkWWxPCTT1WsDHXFaRddKrHtnmtsZf9gpZJrb2XTHHxnu30Fu0rQEEBUBUmXUG9Geowygi7KVCzNhal+gGjMoqU1iqBCYIqsQ6QA/FZBKmU7mMkVq0gUyXgkpdAQKZb0iGa9EvihonDeOTEsNJZmhFHiGD0wLZ+6P59Zy0droHTa0T5bvJTFztZucItYljPGjEHgRN1WhCNtuXMO2K+5lePV26hZNZtYl55LtbCWVziNFiXS44Qi0yYYnhaY5PUzWM/pbjV+kv5Bh93Atw6Nm/2iNEJFhpvw6ShAUq3gAaYEuhddfDHWKMt0qGpvE3myM9eF5sm7sK3x8+/btbNq0Kao/ffp0/va3v/GhD32I733ve0ycOJFvf/vbnH322Qd45v2Tj33sY3zyk5/ks5/9bKL84osv5uMf//jzA6xKcOs4G/l9Hlbtbrpv2RhSAQbs5Vy1jROobZywV/6nvXdy330oFxWUQAik5yfrHghQtQ8wzVpi8oO7yQ/G4XC7dzyy1+Nc6QgmxSTrmTS6JkdQn6VUG99+LQVBVhKkYu8q7S6Wtj+h0qBKgi1r/s7mVX8HoLZhAhOnH2tIHS2PTAqTtcOx8NhxSAAqEC2UIrSI6RTkps5EF4sEmeQik1AqXMUFxr6PEga3rmVw4+NMetl5Memye4irqDgKTTQGouy7c3C5B5l224vGzhZpBlY9yO57bmF060ayk6cx8XVvpm7uIpOSWAB+6A1ir7kUklOqGKzSIuQXwIx1RGzs6WgDHT+LOh4rHdfF1+j6Ei7vFJJwEybKFgpddXxdrwCXf6fcM+upiELE3oH7Uff5Jr29vRVla9as4d3vfjcf/ehHn4UeHUQpFGOXR983np2eBBnye3jSaGKeBF9GXB7aEyYhhCbiXlN+SMBuydetZTkEoAxAYE4lFIZwPZxD4wx2YR0Pals7odUoVLbcMXSbduwGwZJaamc+cJ9zqSOQV1oAS6qIX8h6UqlCCelB2tNVeaisB5ULVvkySABT0pmcPGeBDbSgFBKwSqEpbO8lvyNOQjJ876P7fdsaj58fKeZSKrQWBFoaZ6nw+hRECqf1shJqL++fgN4r/kr/dTcDkJ4+hbrjjww3mK5XXNiOEvHNsDqAMCBRtD4pYhJWAZk5MxApu4iFPzhAl/TCcfYc4DCcmc3pws2BNim5e/+5lsGVm5j8iXMolTzDy5HcayQyOFoupiiUIOo3cR/GAK6qeT5ZEne0Ys/yh9l99d2MrN1O3eIpzLr4tTQeMcvwWoWpyKpleSqFG2A3a6HtbzlB/1ggmtYi2jiB2RCpcHztBlxpC+Q5Gxd3c15lQ3OwMwC68kJfN1xZsWJFAqgCaG5u5gtf+AJHHHHEs9izJym+jngN7bwceaiHVeyc4Wawi7inrE5p9yr2s47LcMvKQRVHJwUi7lURQM2EqYbEHSK+Khk4gJmMQapEu9G7ED/zEZgl7KviKtwiBlRKRYT0EF5l8ihLru4a6pNk68n6UZ+sfinisdICRrbuojTQF9UfWvlw5f0ZQ+pnLY65XcPz2CiIhA4fdSbsr9N3t89amHV/051/ontlyDE5aSaNi5YS+FWu2SeK0IjaEcn2ovOG5SolyEyZAhmPUn0AKQ0ZhZc26186UyTlB6T8gHS4XtekCqS9AIlOeD1LoSkqj7U3bKTvsZ3M/+I5DIxkDVClJDgGgvIxMB2Mn19kPF+qkG8xKXFSFleUFgwX0hSkj9Qldt2wkq4/38fw+p3UHzqNmZe8nvqlM8KQTc1oKcVwqYQUIY+xloyEKdmlA4LV+XlKSjLgBRTCcTBesyLiZqzcmzllEPFTCSUQZbqDOc7ZuwjneLtGlq295YcdDHk61419hY///Oc/ryg78cQTuf/++w/oPE9Wurq6qhrH3/jGN/KVr3zlGelDNXnynlVVnq3KA+LjysWAT1V+GAPAOmDQVFRO6PsNbETXKKr2R5WKbF9/Bxsf/gtNHfNYcNzbK8EMd3E4gL6LamMmBLWtk5l74tt4fPlPmLn4TFIqzUj/TqZPO4X0UECQH4WUjx8Idg8+wY7dK5lbexSybxg1PAI5g2ropgaCugzFOj/a6BEudEFaUMqKqL+xVcvtn1l8JTH55YwXnUvrhEXodJYAIrBLpQRBShhX2moLkSwrE9Y6ZL5n2sbTc+dNDPdsJdvSged5UX/Ks/AlBxHHrTreWJZKJpQjN2Fy8reoA2XKjHvd0ea07BqcY62oYgHh+wgnltCeZ3T7FrpuuIKRLRvIjJvE5Ne/g5o58+IF22JKAoKMM28HBryqsAo6/bCZ+PAcz4OyhblcdCAMOFU2DiBCL5GyhTD8Hies0XGIEMlN18EOA3y6Ysi/9KUv8ac//YnHHnuMXC7HMcccw//7f/8vCqUA2LFjBx//+Mf5+9//zp49ezjhhBP4zne+w+zZs6M6J510EsuXL0+0/brXve5Jc5vMnj2bL3/5y7zxjW/ksccee1JtPBdEFwsRqTJBgPA8A05ZHhUVPoCehyiFoBWAlIiUDp/RMDQwkGjPAFrWGxRCUMoTRpGPUnSDCBM3mPJww66MgmXDA4E4wUMIVNk3135W4CROEObdUgK8yklI2LgH4nlDhOOw6093sOPSm2k6bj6z//usyJMKDGiQ9mJQyoIOLlCVsgoxOgFYqWgXYDxIzW8edQs7WfDpV/LoZ/9Cx3tfRakgKXb303TmyQjPIxguIISPSPmMPPwYIw89TvMbXk62EbLpIlqXonOUIlf+eOIUNvw4nDfNANlxIppDbN9MuLKp0Hrh68kdMg+R8ce0XWnPIasPve8sgb2IAHmrxApQmvSkcQz8405Ge7aRmtCGzEhkuOnw/NCbzQGrPKFx039HBPMYUKwwZMYgPW1SPLcIS3Iehr/ZLKgu4GYv2wkDtc9EuZcVgC4UIBW+G9EGBZBQXLeJrT+6juHV26iZPYE5X3oDdUumhWnM4zbKU5LbJAO+VCgvzgJrifw9EY8DGAL6oMr8ab2nYvJ9EwKowsxWUWINZRZ67T4PZbI3cKoaof5TkRc616Erc+fOZceOHSxcuDBRvnPnTmbNmvUs9erJiwEcLOgPkSFCE29urWVQxmVaGvDKEHrH76MNDzRgQFymsQCXo1PZz9awgTEWakLnJ4GjAwlkoE1ZBKyLMr3ZvTCDXifLSIA2YcNGDyzl2bbyRravvJG2mUcw/djXVw6W1a8TwE2sy0fnwNEfK1uJpGn8HKa8+Dw23fgbJp3xHxTVEKXiKM0nnmLAoHze6LheiuGHVjKyYQ3tp56Bp328USJH6gRQL+NxV6EDrI0OAEz0hQXrZdITTPmgwmdh8ivfRM3MuahM6CTgZOgzGYFjagxI7imSnjsxdYb2Nf7EcQzddS8NfSeTmtiGn9FkMuZC0ikDUqX9OLzPlypM7pE0EBSUh9KSgQFT5k2bRMmGyinCbMdlk1wZiK91bAS286UKN+CucQFAjRbDNTR5R4XQ5B9/gvXfvYHBtbtoWNDBod98HZl50ykqGc3haEGx5FEIPIbSBmXc42WpSxXIeqWEnlFQPmkvoD4zGnlsASiVMkYru3ewF4FI7KMMUBW+G+UAVblxo2KM4rW3aqjkv9eNgyInnXQSt956a8Wacdttt43Jq/VMyL9ZFw9ACiN9rLjxmxTzg1HZpDknPWPnr2udCsC6h6+Mzz/xRaTJIYVkYHQXvXs2sHNgNdPrl+LLNIrhp60/E+aewM7197Bz/d2Mm3LwLXc1U2fSc+dNbPjJ15CZHH6uhvajXkrL/AM/l9aaHXf8DYD1l30b4Xk0H34MTYcdQ7qu8Sn3daRrM8HwIH59I+t/9lUybR20HnESQxvX4GVr8Bua6HvkXvK7tpvNOpDfuZXBdasMWPVv2asoLWKr5H7UPRBZvnw5733vezniiCMolUr893//Ny996Ut59NFHqa2tRWvNWWedRSqV4sorr6ShoYGvf/3rnHrqqVEdKxdeeGHCffappnr1PI9t27Y9pTb+Lc+uFHftYeOHvoseLURl7Wc+c54ODQsNp2PX966Ky15yFF59HcKTFDZ1MfroWkZWPk7jK09CplNAcYzWnro0nnYSw3fez9Bt91J71GEHvf3M/BkM/ONOuj7zdWRtDbIuR/O5p1J39CEH3JbWmu2/vAmADR/+IXiSxpcfS91JS0k11z/lvo6u2UIwPIpXm2PzJ35EdvYkGk9dyvAjT+A31OC11NP/jwcobOlGhJnGhtdsp/+BDdQtmfaUz/9Cl6dz3XiuyRe/+EU+8IEP8JnPfIajjjoKMFwjn/3sZ/l//+//0d/fH9V9Mlmr/i3PrIwOdLPi6i8nUPz2ucc8Y+ev6ZgOwNarfxWVNR19HCKVQXse+W3bGFmzmpE1a2k56VSE7z+dywbjj3opfY8/yJ5V91K/YMlBbz87dxZDd93L9v/6BrK+Fq82y/g3n0r9kQeun6tAsfqHtwOw6p0/AiFpfNXx1B1zGH5z3VPu69CqzehCCZmSrPvEL6ldNIXmkxYx+PBGUi31eI05ev/+IPltvdG60f9oF30PbWHcvOlP+fwvdPlXWjfK5VWvehUf//jHue+++xLryO9//3suueQSrrrqqkTdZ0oOCsG6HtOE5nysBJKTVSOkdC83fiwG0DGkmudMVe+S8jL3HA6hw/a1tyeAqvYpS2lsn5lsn+rnGPNcY/xWaYmBrY9cHxWl0rUsWfo2UnXNrFr1VzZvuT3RVlbUMq5hErK+DllfB41GOQkac6iURAaawAnzC9KSIC2SVggNXhG8vA5j88OwPi+02qRyjF94ApvvuZJROYhf25DwMFO+iKwqbhifTW0bERzaMRPJMaibvYAZH/wfRrduou+h+wgG+tl67W/oWXE7jXMPo+2Q40IyeVN/uHsb6y79KgCNcw9j/DGnka1vM8079zTd1Mbozi1033493bebMfXrGpn9jv8G4SGtC3k0/mV/AU3A8JaNjO7YTL5nF70r7kiMf767i23X/JbsuE5KwwOUhgbwcjVkWjuo6ZyOLgXseeRueu+5ldyEKdQfchhCSEOI60ljPHDGrPy+RGLH1tdo6zIfck5Vi/+Obri1slkPERGfS0jAc0L7KkJWqHyho9/i8vJwlKciFeSN+6h7IHLttdcmvv/sZz9j3Lhx3HfffZxwwgmsWbOGu+66i5UrV0ZW6+9///uMGzeO3/zmN7z97W+Pjq2pqaGjo4MDFXcBMNeg2b59O9/97nc59thjD7i955LoIEAro8UK5aHDMEBh3Zp83zxUNjwwdOkUQhjXEikjnkJRlGg//Cdjfj3hySh9twrrSk+gPOOBJS2nh1OufONxBSGvnhNK6HJiWX4f+xJpHYY/+WFoobUchu+F1rHVXGtN759uTQBVLa9cRv3CTsYyBSotovTS5rtJQ42OCVXL3y3puFlaryp7/MZf3hXV81qbGP+RtyCyNXT/9EoGb/pnop2RznE0HjWdTKpELlWKwr4CbSyxUmpz/faay93+ced0nSi3XlGyrob6U49lzx+vRY+OImsykfdZgp/KU7FHq21SKifEMpzvIj4kQELtixaRnvZRChs2MXTngwS9fez6zu8Y+PsdNJ6wmLZXLDXXFF7b0JrtrP7PnwPQfPJCJr3pJNLjGsPQwHjiSY9vZHT9Dnovv57ey826kZrQwtRvvBeNH4UNRB4XnkakgkQYqC4FjDy+ify6bRS299B73X2J8R9ds5XRNVvJzprI8EP9BAPD+PVZctPH0bB4EsHAKN03raLr8jupmzWexmPnEWgPrTTSAx3IiK8kGjOhyfolPKkIQmu4tc5Lx3JfCvlNLIG7K5EV3t72sF7ER1VhFS+7b5Fng06uo2EbCT7Kg6j8P53rxnNNXvnKVwJw7rnnRvqODV0+44wzou9CiIiA/zktjoeqtm+X5TV03n3raBHpKY4+YwjPw7EA40XuenqEp6lI1uPsFezTqDDPsfW2tY+pFKCk+SEOGYyf83IPqnLOqsrrNn82P3xt4qHsWPxiasdPGfOw2LMq7ngiEsbRY10ur+i0WkcRC8oX7Lgr1otSLW1MeOuFkE6x47eXMXh/ct4a7pxMXedsZD6kpnDWAhuhkeirjMc9WroEEeew8okjNKx3dE09TYcfze47bkTJUqg3QJAmIkLXKY1KacPB6qw70fgkL9isO+G6XXfSoWTmd5Jft4nhex6i1N3Lli//juz8qbScspjOVy5ECk0pXOB23beLRz98GQATXjafJe9+Edm2WqSQ5EsCFSoRqbZ6RjfspOfSa+m51IxpemoHnV94J/geUsYE5RB6nEkd/jPJNVSxxNCqrYyu3UJxZy891yRDwoZWbmJo5Sbq5k9k8MENlIZGSdVlaJzTxvgl7YzsHGbz8o1s+OntZKa0kztifsg1pVFIlJIUijBaMIOeTZcoKo/G9Ki55nDdsHqH0iKiKdBaoEphwpFEyJ8A62lsPXrd9d15BiMKExHfL9zPrsetJnFsVDf497pxMOQ973kPYPY43//+96v+Bjzj68hTJlgHqgJIFeBUtNEuU2CpAipB9YlcVM8WsN8yxrNcEXpXDRQTgt4dyVCciTOPi1x1K9p0+Ib2Km7s+hgdtP1LZ2NrWLEwxL13fptMron8yJ5E/RM730Y276NHRo0XTy4bkTXKkSJC+5Q8GY1HkJEUa0y4nvJEVC4UlDwo5kRy7GyXlaa/ez2ZpnHolgaKXhw3H15QzAlAXB5l/HPAqmocVgDp+hbS81pomH8oCs3gqofovec2um6+koH1j9L5svNI1zUxvH0j6377rejwvscfQGtN46xDaJq5GIHH3PM/xu5H7qL7wVtMJelhc3uXBvtY/f3PUDNxOhNOfg2ZhuZQiVYEQ4MUB/so9veyZ82DFPq6KfT3EIwOY7WATMt4Ms3jaJ59OFL6ZBraSNU04GVyaMNqYEI8nHeoYeZCdj90B9uu+jXib79DpNKokWH8+kbaXnI6dYcvdUI1dZIYM3wwEq7fThigO96Je1auKIWKXTJMMD5eSJ0Eq8o2JZrwEVbh/OAsageVKPdJuOW6lmSATCZDJpPZ5/F9fX0AtLS0ACa1LEA2m43qeJ5HOp3mtttuS4BVv/71r7n00ksZP348p512GhdffDH19fv2wDjrrLMS34UQtLe3c8opp/C1r31tn8c/l0UXSlFon9Y68iyM4rtKpZg9VOs4W6kUUCrFYYMAvgeBIdLWnoBi2K5vwSqJtCC8L5AyBK88k1kQTDiBSJmQqCjMxPJb+SQ2HTrkKNFBXKYiMtEQp0qA2RKNRoUIlkQytGJtYjzaXrEsIk9VWsQE1lpQUmGmOhVn/CtpiQpCACusq4SKQgLLpRSGIZgh1GRaY8+/YPcetn3yG3hNDQR7ku/HlO9/DL+lgVxmlMbcKJKYEH64mCYIFU9z/eG4K3Mdwici09NeuE5bIMtuFsLwPS0Uo6vXk546CVk7xvtoQ5hFkqw+As+1CJVjC1YlF9vU+BYyE5toPHER0gsYvO0hev9yFzt+/DcGH1jLhHefgd9cz/AjT7DpUz+Pjuu96RFSnqLt2NmMP246wpMc/7u3semKFWy7ekXYuISiudbi9h42vO0r1B02g463vhS/udGENCpNac8gqreP4q4e9tz6KIWuPeR39BEMjkabx9y0drKTW2k5cQHa88hMasVrqseryRgASgfIlCTtBWRCAt+dx85k+19XsPaLf0ZmfGTapzQwSnpcA51vPZmWE+YnQtAN54iiNluINh3FwKOoPIqBCf8AKJa8JNeUI6p8/o3AWAvQJXfm0t6n8De7Vw5KMrpXNqRLj6lYPnX5VwrnuOmmm57tLhxUEQmdUCc3IFX2AVGUkAwz6oWEzZYDMdJZRFIntYCV/Z5oP57qEniPEvHypcLwQqGpDAPUVO5Zolcl/qEiAyDQt2114nvrgqMjQ8yYx1fdn5V91bZfSUDNpdeQgSaTjvWWYk83m776Jby6OoLBwUR7Mz98CX5dPf4Q+CMmtM9m9Ys4a0NdP+pxaLAWzvjim3NrLwSrXEOtBCU1w1vWk5syHZ3xI0AryGhU1hq+DF+r8HTFM1LVU8alygBSHW2kxrdRPfOPvgABAABJREFUd+zhaB0wfOcD9P3tVrZ97y8MrtjApHe+jGxLjv771rHu0zG9w/brVoEQjDt+FlOO6ySVgtOvvZA1v3mAzX9dFTbumWQzQGFjF09c+GVqXzSftje+BL+53oSjK4Xa04/q76fQ1U3f7avId/VR6NpDMJyPHsLG2W3UT2ti1kumkvEDWqbXk22pwa/JoAJFUUnwfHJegTrfGMoeuLqTh/+4jsc+82dk5q+IlEcwOEq6o4lxb34Z2aULUGE85WghNuY0Z0YigG6kmGK0mDKZBUOC9eKIb/SAIGnQiHipXANEuFeIeC3d90xgKEz85FoilICARNhgVQqXgwpW/eusG+WiIkvkc0sODKwKAYb9qut8TqYoraLwuL8mHvbkbFMV1Nrriffxe1mdaud2z7fw+HeyYcWVdG9+AIDals7EcYlQW+EAVs4LWQ1sqwaSJa4z3HyNn30MA7s30bslJju0QNXCia9ADo1SM5oh01MgGB3Aa26EuhpIpaJ2hVJmwpQpirWhklonKOVCr6qqIGHya2lkmJ6H7zCE5ZtX03Hs6aisSHgCmXMR8wQQezYoj4gEMfE4uPciKowXVykFDfOXUDtnIV1X/Zah1Y+w/rffZtb5F5FuaqVuylwGNz0OCBrnHMrgxsfoX/0g8lVvo2GG8YjRQYnCnm68TI6Zr/8gfWseisIDg9FhBtY/wsD6R/Br6hHSozQ6hC7Fvs3Z1gnUjJ9K49SF1E2ZS7ZlgiHYlzIZM+7MxVrICAxS4UKsCnlkUwMdr3od2674FSObN6BLZjNSGuij60+Xkbr1BiZ96CJkKhVnLvHixVVLbbKXCV0dGC1biK01osKqFi4UEQeMF1bQoIN4U2j5qlxvK+NpYRuJr1tJIqLhgyFPZvGYPHlyovziiy/mM5/5zD6O1Vx00UUcd9xxLFq0CIB58+YxdepUPvnJT/KjH/2I2tpavv71r9PV1cX27dujY88//3ymT59OR0cHK1eu5JOf/CQrVqzg+uuvH+t0kTxXF4iDIToIkln2Qg9dHZKBiJB0lCBIpryxxCCu8UApk0nQU+DLuH5JGl6qYuyF5YJX2heRF5X0BLpoQCwLYGk/fC99Y1W2c5X2QrCqRJS1SPhhmS9CTpMQQFIatAp5IEy/lFZMvORd7P7JFQzda4wd6UnjCJQyXCfaTZEsQdnkBMTzZuhp5XpblRwLr+Gvil/okpZRvbQXMOv1S+h7fCe9/1wf1bFAVdt7zkON5MnOnITf3IjxlJEUAw9PqsjDxmaSU0qGmd3C8XF5JNxMoNb7wdkZqqEhBm6+k9FVa8k/toHmN55BIgOgbSf8a4HyhFcOgBaGrLZsfhFSRXOYJTw3vB+ChuOXUHfEfLq++2cGH1jDxv/+GVP/v3eSmtBG3SHTGHzoCYQvmfji2XTdvIadN6yi6Vtn0nLYZGNFDvKMbt1DqinHMd9/LVuve4y1v7jHjOXQKH23PUrfbY+SaqpBpjyKfSOoQsz31TinjfaF48idPI2WZVPITm2nJFMEMh2OrxfxiASBpFA01+ZJD1EywH8pkATDebz2ZmZ99HRW/c8fGVq/C5UPU5Pv7Gf9l69kx+/vZP633mK8DTUUtYRimkLgM1oyD/ZoIYVSSR6qvelG5Zwq5t67n8t+UwKH7izZhgt0uWuHU+9gyb/SpuPEE098trtwcMVTCLtxDY1hAmIDGxjdp+wwy5cWk3uHum+gjaEjBLFM5eo6edSWSEw7SXDFLQ/5mGLPEadtF8QiLkvMne7fUOad82E23fRbBrauxsvkSLW07PWdq34BcT+TfdCJfkVE9NoATbKomTLrFIZ7ttG/Y010nAWqJrzxbZT69lA7ZRbpTD0UQ5CqCF5R44WOxKpkPJiDtDGGx8mbzLhpCcLarmxfQ33UeksVR/vpfeBOhtY/zsiWJ+h41esMoJUGlVWolI4MtDoEc6KkH+G4JrDAMg7WhAj7u0Boj9qjl5Fbsojun1zOwN2rWffETuZ88y2kJ7dTf8gUBh7ahMz4TDhlNluveZTt1z5K7Q/PoWXBeGOwLQQMb+8n01rDcT84myeueJh1v3nQjM1InoHlDzKw/EH8xhq8tEdhzzC6GBuh2ua3Mn5JK3Uvn0jnUZOon9ZEKiVIp+JrUI7yL4VC+uCjkCLPUCnD7nwdhYE8csI4jr5kCje8668Mb++HvNnXFLr2sOXLvyM3t5PJX7wQCL1sw399I1nyBXMzigU/XHsd5NF6Rdn7Zw0YlpdKlZUxBtikTX3h3ru9vJuJW6cr4IKnJP9K68bzRQ4MrCoDIw7kuGpSFbhJlCUf8LEexqqLTRWgy2kyrMOYi1W0jji/pdO1TJp9Iv3d65m59JzEDDjW85rwsBoDSKsGwkVljh4nM1mCQnUOqtU7b+KUOR9CjBgvEFkqQV0NqjaDSnlRuEyQ9VEZSaFOUqwNN1mp+OTWChIU8mz80//SfsLLqZs8O/YqKJXYcuNvGNz4GLkJU5n8qjfTMOcQMx+FXj+JsVNhFruyaxTle/NQ/3DDCCvEYinSZ8Lp57Ir8xd677uNvnUraVl0FNNf886EYlHo202hbze1k+NQzdZDj6P10OOi7+NedCrNC19EcWAPozu2sPWmPwDQOOsQvEwNXraGdEMrqfpGEIJc+8SE1XqkexsqP4pIpUnXNyFztaFZOb4O1xW76/a/0XvvrchcDaW+3qid5mNOxq+rpzQ0QKGnm6FVDyPSKUhLAxDLMi8qnHGK9rrxRi1RbsdOC5NBDZFwtbXZoMuz90WZoRILffjY2xAl5RBByuSm+aBmA9QHHkO+efPmBDfH/nhVve997+Ohhx7itttui8pSqRR//OMfedvb3kZLSwue53Hqqady2mmnJY698MILo8+LFi1i9uzZLFu2jPvvv5/DDz98r+f97Gc/y0c+8hFqamoS5SMjI3zlK1/h05/+9D77/lwVmfJNVj+IvaSkiD2spDS/2zBz6U4UZfdchZMK4WNpnzdPGTdwz4tdzoVABwotJRQFIpwDkQLlSwNaWW8rPw4ZVCkHWHfAqyjFtgeqZH4TJeEklACV9kw2zlCZVL5A1DTS8MqTGV23lQkfOod80ceTCq0DAilJKQtMGE8mLyRuVdYbVugwI6CiZN0qtQGlDPG6iuZGA2jJyAPLFwq/LkVpz1DVe9P7u2uY/M2PIVMKz4+V5FIgKQRepIgVS54BSwKJsqmqw364LvrB0DA7v/Fzms99JdnZU8NdEOhCke7/vYzR1U+QmTWF9g9dQM1h8w2w5UwwrheVkDqaW6wYJVIjkSSXEJ38o4TB/kKFWQgglaX93a9B/Owv9N/0AIWHH6P5xIWM/+q51KXz+MIQ3A+/5XBGdg4x7tDxBOG9mPX6w5j1+sOiuWXe245kyhmLGO0eouehbTz2fTNfdJwyh2ydR6YpR3NnDZm2OrSQ1M1spxg+KAXl0bu6m8JwgE5lSI9rRNTm0ISZzYSODB8WcNv0oxvoveFBZC5DaXfsEdf22uPw67KU+oYobNtN/z9Xo9MZRorphKW5AInwPpcU3d7jsfQrVxkvJ0e3XlFuFsfyY8pBqlhEYjP9dMi/GvfI6OgoDz30EDt37qwwgDyT/CIHQ4TUCEv+bwnUPRGHFkFyc1wGFNlQHjtvW8ODUHEZSkRZloU9Fki4UVXtXFlVC5K4qpeO/yWMuGXvyljiNzUx7ohTGentYvor3loZquiKPW856Bv2K4HPhOTzwhkbm+UbDbKoDeAkchSH9lQ93e7r/sLUD348kaQkCEFAVXCMPWEUhYnaoDJDX6jTFgf72XzFT5n44teS6+iMdFxVLLDlT79gdPsWclOmM/FN76R29lyCFKi0jg3eDnhpPPKqDFRUb2+ofPjdea5kLkfb289l98/+wPA9Kxl+eANNR85m4VfOI+sXzfosFdPfsIz87iGa54+Lyha85XAWvMXofhLN+A8uY9Hr51HoGWb7P7fy4A9NOOWs06ZTVwu55iwTp6YQLQ2MkqFldjMKa/iS7Fq1m+JogJdLU9tRh6jNEYQh/1ZPAMh6RXwZ8I/P38325esQvkepZzC6vLbXnYjIpAn6hshv6WbovtWQyRCUrNer+RsUQ29b68VsQaryOV+LGGyMbh5mDXKfvRCQQleOelXQNtr86so99r5u41OQf7V1o1zuvvtubr755qrryNe//vVnpU8HzFml5cG7MdFkvw+wycY3j9VAAgNy3HDdthPeS7auW7V8Qi8/LjxRXeMkjjjtf8x3Fb9A5SF8UVMiCcxUAFf7Gk7XkiJA6eqhH8XSCA9u/zOHtb0yrKzQvkSlPIoNKYKcWSVKWUGQEZQygiDcu7vWDrtR2/qX3zCyZQNd/7iS6e/8SLSo7br1WgbWP8LkV72JhrlL4n1KCGQq54myrsXKLvzVJqOy6xSOZcXWjWLeA01+xzYGVz9K9y3XgobGeYfTOHNx5f0SkG5qJd3UWnUsXUnVNZCqayA3vpPsuIlkmsfh5WLQQGvN0Nb1jO7aRv/GVYzu3IJWAapUZGjTmkRbIpXGr60n1dhC/ZxFeLlaEAIvk0FmcwysfhhVyJNuG0fLMSeRamkj1dBMZlxHdA8Q4SY5pSs887TLRRVyU9nwmmgQqoGjtgnrHl1e11k9oux+TmRWdLyg4mVU4WZQErrEQ7jpPni7kCcTQ97Q0HBARLLvf//7ueqqq7jlllvo7OxM/LZ06VIefPBB+vr6KBQKtLe3c+SRR7Js2bIx2zv88MNJpVKsWbNmn2DVJZdcwrve9a4KsGp4eJhLLrnkeQ1WiUwa4aXDLyIGqiwQ5XpTSRGXu+F/5aBVWK88fEJoTTRFSm0UjhBEl/bhlMJkE5QxWCWl8bLSvkAVnSyDKcfjynps+RCEVmLznhLWFai8+WvBKu0LlK9JT5xO59f+BzxFYQhkSlHyPaSnKEgzwaX8AE8aJdeCVmAAp0Ko/NrQQOtNVRIyKiuXkpIUwsmzNFLu5mIk2L2H7h9fTud/nkU6ZerY7HClQFIKQ8QsL5HNaqfiicN40YRKaff3LqOwbhN9V11P9iNvw1qqey//G6OPrGXchy+g9nCbZVOhtUBKFYHgcca8KoA7IOxCIhVS2HtnAK1y3g/bjgo0+Se2M3TPY/T8cblR1l+ymGknTMCvGSLtBdT4xUjRT09poGlKQ5hJT0cbAfPoxH8bOnLUjKulaU4rzYsmUDe1mVRdDIh7IqDrvu30rt9N/qbtDK7bhS4FFPtHGVq1NXFdMpvCb6olM6GZhiPnIuuyxvOuJoNXl6Xv7tWo4TzpSW00v+ZE/LYm0h1NZDvbEhlYJ0Uja/+zAJ8ZuXIvKnfMxrQQO+XlXFa2Le2Ul4cGJjyonHNHn7V7bLKtpyr/Stwj1157LRdccAHd3d0Vvz1veKocieYVSAISngNv6/A/F8BSIg5x0wJdvlFwqDuE0ihhs5PFj6LVQxMZobXz6Dogqyb+HOmh7nenrgh/qwCV3L+O1HXOYuFbP1NR1T2XK64nmD3AAFPa2RuZMmNEDucOZTyjbMikHYdScbTyJEBh1w52XvkHOk5/bQz8haBckCaRnc/urxIeZnYMQpBw8x//j5GdW9h9/y1MPOMNoYEWtl/7J0Y2b6Dzze8mN3u2WW8hznwNpoHQAy+KDqjwDKj2cpchjvYw+yxpRWHLVobvWUn/X28GKWh5+WG0HDY5WpsDbVyglRbUTWmmbkozwklVHq0pshStHc0TsqQmppkwp55pR7XTMbOWxgYYCVJhVxQP39LH1vWDjF63i8F13ehAkd81yNC6nYkrkLk0qaYaMhNbaD5qNqn6NAhBrt6jptFnxx0bCPpHyM3tpPV1pyAaG0mNbyU9Md4XufO+SoTWhxsxCzBBBUAFJEEqTcQdFXvtlQFW4bsW/RY1QtJZwd0HVrl1T6f8K60b5fLFL36R//mf/2Hu3LmMHz8+ETFUnnHymZR/ZwMskx0b72HNA5fTMe1oBvu2MmHGMYybsvTZ7lYkTRPmMbhrI7OOeyM9Gx6kZ2scElibbT9o5xl6woAwulRCFfJ4nlHCUw3NAOQmTDlo59pf2XzpDxl+IgaHUo2tTH75+RVA4ZMVISU1E6YBYUjgE6sY2rqBnodC8nQpkak0ufGTkak0MpWmfvZiWpeegEilKfb3UOzvpTQ8wOiOrey48crY7FQmE157AemWcMF4gU12T4eMxaUyVt0Da1vz/ve/nyuuuIKbb76Z6dOnj1m3sbERgDVr1nDvvffyuc99bsy6jzzyCMVikQkTJuxXH6otBCtWrIi4s/4tz13pve92uq77I40vOpbRrq00nnQCdUuWPNvdiqTl6Fls6+pj4gfOYs/ylQzdE/MvpjvHH7TzjK42oYZqcBhVKCIzRgH328y6kZnROeaxT5ds+dSPya/ZEn3PTGln5odPx0/nD0r70vdoXmiMDYW+EXb9cyO779/ClmsMV4nwJF5NmtpZ45GZFKmGHM3HzWP8q49Aex6FnX2MdvUT9A0zvHobW//3OiKG/zKZ+PHz8BobIuDw34vH3uXpXDeea/K+972Pc845h09/+tOMH3/w3ul/y9Mnu+5fzvZbr6T1kOMY2bWV9sNPpnHGome7W5G0dh7Crk33MfmEc9i94X4G1j8S/ZZuPzjPmNaakZ1mfi707UYHJfDM1jTV2AxCkJn4zK8b2z/9DYrbYnAoO6uTye87Hc+vbvg5UPHSHuMXtZGWJYZ2D/D4rVvYeMd2Vl+3CQjXjdo09bPHI9M+mXH1ZDubmXj2i1AaCjv6GNkxQHHPMEOPbWXjD/5efd2QgimfOh+dqzGcgXos8O7fYuVfad0ol29961v89Kc/5c1vfvOz3ZWEHKBnFftENJ+MR5zr6JE4mU7WiX6p9nBYjinpIL0QW0Yiy4ZjxQsLjcVE8djdv6avex0AXU/cCUB/dwfjJy8dO8xPW8tBslP2PDpZGIc0ut4vwmlnH5If3gNo1t72K6SXisoPXfYOWkotYA0hJcPnolMh8bD1zEwJgrQgyEEpNAIrX7P9L79ldOc2Jp73ZgbuX4HKj1I7fxHD61az5kufjM4z4azzTfOjw/hNzbGxVDjXUc17zFqqnLpVXaOrSfhbdsKkBFg16SXnmA1+uXVkLKnmXipgtGcHvY/cTd3UedROnomQkjWXfpXiwB68XB1IyYQTz6RliQkfFDZurswDjI7J8XcJisDw9aApjY6w7cpLGd22meajTiTV2JQYC7dvFST1Yb2orh23cq8qh3i9gojUfbgSmQJ1krgYx4mlykOpQwuKi6vYiV17hsjXlB0sCNGe4+mLIX/ve9/LZZddxpVXXkl9fT1dXV2AAaZyuRwAv//972lvb2fKlCk8/PDDfPCDH+Sss87ipS99KQDr1q3j17/+Na94xStoa2vj0Ucf5cMf/jCHHXbYXrP5NTc3I4RACMGcOXMSgFUQBAwODvKud73rgK7nuSYim0VI17NKxn8h9qYSMulZJSV4Muk9JcM2LO9VVNcpD0Vbd79yDyyt4/CHgl03RBjSJyKOKwBVxIQG+iL2oPJA2vBAGbD+2p8x3LURgL67TVbW4uqppGYcGh2nUoY4VKdC93pfo3wFnsZLhWTdnsKz/6SKPJw8oRIhgrbMl8q4/iuVCL+1/FZSaNIhCXuwuw9dKLH1q39A5tJR3c7PvY3cjA4y6RK5VMzNZ0MAg0CGt01HRNnm9im0UnR983JKewZpfcfrGLrjAQgUNcsWMrzicTa/81PRfWy78NVmnPPDSD8Xe99gwtxSqRJ12UJ8fVJRKPmMFv2obqAECS8hG+4pLYG3k9TBmd+z0yYkwKq5//li2msGSXtmbEyIZRBm/yMmsdfC8IHI2NXfDbXoXdvDE9euYcKxU2lePBEhBdf/x6UU+0ZJNWQRvmTGB15K86mHYsj4k4Sf1vOods7EqExrQamgUCWNDhSlgVE2feWP5DfupOWsY/Eaa+NjI91DVLRZLna8qoX8lWfyG1P5rubJURbe545/ch4+gDn5ICr//0rcIzt37uSiiy56wQBVuiQhsJ61ZZ40Cf1Ih95WVsm1WVpDD6uoHKx3ehTiI6yXjoibw3kHnHNpbZaoqqGrZc5bbnliPxJ+V6USm/70f4zsMPPS7odMGPFI9ywaZy2K6kbdqOIBVOFFNda5bcfCz9KGQipnHVTGq0qWtPGuCusWB/cQFEd54sZf4WVyUdPTz3s/mQmT8AcMT5Vtw2bTtSIUIInCL40XZsCGv/4E0HSecA49j5qMtE0zltD3xEpWfe1j5thUivbTXg1aU9J5fD8Xe+CEkQfUlcjU56O10vcCCkWf/GgqDnMOkuMW39DkfTF/Qz5GAempkxJg1cQLX1qR1MR434oxQ8GkE1aTkgGBFnQ9uoctN6xlyslTmL6kkbQo8s3TrqGUV2Qa0siUZMEnXkbmqCWhShOuf2VzWXoW1ER0HAJVVKACQ30wOMSGz/+ews4+ms86niBdgyp6obcUmJDzsj67c7bjUaUdzikoe6bcumF9l5cqIkW3+++IxF+UPZ/O+2cPsZEjnvldoN2qFXIwp+9/pXWjXKSUz8kM5M8IZ9V+tV3tfo8xEVcHrionIKF0TAivw8lUOA2E2QU1msGezeze9lDUbipdx+KT3k+urqVqN6r2d18ucs66WQFaRXVs50VVAKtzycvJNXWw4/HbyA/E7t4P3vu/TGw9lMUTXmEK/AxBTZpSzkOlRcRLpcL48SAFQdYsmt03/oW+hwxZ7IZvfAGAugWLmXDOmyh072TLz39AMDQAwPYrL8NvaCY9aWLSmz8EWETIT2Wv0V0Mo2Ev57WqJuHvhZ7d7LnvdgZWPUSxrweZyaLyedLNbdRPnpOoW03GxLEEbLjifxl8IvYw6L73JrLjJjHlte+gOLCHdHM7c976ydhllTEfybhZ554J6SGkR2FoD9uu+jUjmzYw6XVvpW7ewoq+RG7TIYinPR2F+UUnF8myREhgNSAuBJYgVLTKQDH3OLMZJVk31Iaix9pu2DwVxbZH56lyD8baOD0ZqaYf7q3ugcgPfvADAE466aRE+c9+9rPIurB9+3YuuugiduzYwYQJE7jgggv41Kc+FdVNp9PceOONfOtb32JwcJDJkydz+umnc/HFF+N5yU2qK9/85jfRWvPWt76VSy65JPLcsm1OmzaNo48++gCv6Dkm6RT4ITJuQSlPxvOlEHG2QCEignQTdi5jIMqWhXV0RLZm69q/zkbEAlZlomWoLAXx06K9sExpCI2nUoFWjpIFhmBdCYTSDHStYeCJR6M2/NoGZpz/n/hNTTAcglqpENhKhAdqQ+7u6+hdCjxFydNIT+P5ATJ8z13wyoLBLnhlgSuIgapyWfyeI2mcN44nLn+A/M6BqHzLp35C2+lLaf/giyNF3GT+M2TfUtqwPNN2oATFwCcYLbD7l9cydLextG/7yP8HQP0JS+h4/1kUN+1g06d/jhoaBaXo/vGfSHe2UzO1GU/GlmlPamozBbJ+kdZczMfYX8jgC0NWH4SLZIo4Q5FSMvpsufUsiAVQ7Oqm99p7GLjrUUrd/Xh1GYLBPI0LxrPgqHrSMj6XFApPaIIQnLKgVSlkuc/KIAFWXffWK9n96K7o+DWXPUjrkokc/t+nUOwbpX7ueI74wRsYKphnPgjDpG3vJCaro8m2mLxXgRJ4GRBZQb5rgI1fv5rRtduYcvEbqT1kRnjt4TNUcZcrJQanjPJdNYwvUZ9oPnfXg/L2os253ahUrD8i+d2uXxUbJJEEx5SIQ0MOgjyd68ZzTV772tdy8803M3PmzH1Xfr6JLn+enLslyzQzScS1qZXzJGphgKogzgIbEXba+lEiIqK/UTZAVXnqSKze5nZzrN2VhoGVjzC0Mc72l2pqZdoFHySVrbMJqhOb+YqwQqqXJ34XtszwUSXDA3XFXkmoWJ8U4Rwzd+pp7KqdysYtt1DIx1kAN/zmO4xbcjKTl74SO52XsjF/o9sHLUKALAAGR9j4zysY2GT07lWXfh6AcbOOYvqys+lfuJXHrv0+ulhAF4vsvPr3pDs7ke2NBH58M1VWkWkaxfcDxjcMRGventEcpcDorImtYTmwEn4uJwUvdnUxcPNdjNy3kmBPP7Iuhxocoe6wmTQtHM9Ys0T5mutLZYwgdr0WJS5/zZ8Y2ByvvSsvXUnncZN58fvnUsorOo6YyKnfOY0NAy2UAo/Rko80sBIAQZjcRAgdgXPu/OlnBGlPMLplD+u/cjX5Ld1M+sxbSM+ajrKJYDRxiF+5OGMTg732mXI2bBWGcCKQKlG3yjNpSdddvrREW4Lqzg7VZIx9x8GQf6V1o1w+9KEP8b3vfY9vfvObz3ZXEnJgYJU4iOjlfu38991M9DyXTeDmnUqiwcXCIMLz8GTGkO9qjSrlKQ72M9C/LdFuuraJTF1zVY6u/YqjrfIiHRDQFyIG5fpdKldPx7zj6dm4AoGgdcohbH3kRnI17cyYfRrFTJymvFTro9KSUs5wVAGUcoJiDQQ5yBf62XH5rxlZb7yVxp1xDkJDbvI00u0dCC3ItXQw7tRXsf3q31A/fwmqkKf1uBcbz4Oy+6dDBdcuXlG/7YSlnHrW4BDWCYaH2Xb1ZWgV4NfUk2puYXjTOoY3bcDL1VA3Yz51x55G/axFUCjhpbNPaZLQQM3E6QmwCmB09w56Vpiwv0LvLgY2raa+04Bi5fcvoZxU6uBR2a6bryG/czud//FOamfMiXHVsI7bjsm4GXJV2b/E4JXJBhgDWBGHVEJJEVBtMUq8JG55uDg5hXZTk0hwKDEZt2ScTt5mAzQYRJzq/mDL02np0Pvhx/uBD3yAD3zgA2P+PnnyZJYvX35A5wV405veBMD06dM55phjSKVS+zjieSiZDKSz5rMDNlnPqui7/c0+81KaZ9OXjsdiXMf1GNUyBLDCclMWrlk24UEoEY8G8VxlLc3x+xwfUCgOQcrHk2mEECihKQV5Rof7GN6zI3Gp2aZx5FJN6DDCTIVZBKVvCGgtB4vyBaQ0OjD/APAF2tcEnkIFAumbd0kpQUlKSkHMA2cBLIlRXF1+KwsSW88rgExbPZPPPpyt1z6GV5uladl0tv3+bmpmjmfSG49DaRFlF9TaeDbJlE6ANKXAZDwt9exh+1d+S36d4V0a964zkBIaF08i09lKfXYYmupJvfNE1nz9OhpOWIwaztP++hPxPYXvBeRCfqysX6Q5O0KNX2A0SDFcMs//cDFNMfBI+wFCxOBWoCSlQKI8ZT73DbHpa1eitcBvqiU1vomhhzYw/NgW/MYaWo6cwfgjJjHzpEkEoyXqmyRpr0hGVoZy+IIEOb3UipLyDAAYjq/Sko5lHQmwCqD38Z2s/5vZfA48voO+ldvw50w3mQS96nOiFPF8abPyGb1E4EnF+p//g0JXD7O/dD6ZedOjCA8pVZQk0xUdery6IQyuF1oyrbg1ROjEfFmt3bHEkqvvzdMkOpcF5dzdvjtP2/XGbqoOkvwrWci/+93vcs4553DrrbeyePHiirVkb+vXc1GEpyuTtFR7Ni04Wn77hEZIh8dO6nCN0Y5+ZDyy4iZ0VGrbjpqNwJ8qfYnWJ/NH+VAaGYRsCl2TMu+1UpAvUOrdw+hAklcsPWECtNdRcg284Ybe5fgBx3Di9s3SJLm8W9ExYcedzb+JDhjjRZcCWTAH1/iNTO04mq3b/kmmoYmGpqls3XQ7de3TmLjgFGQQcl8BMjD8X4mxEUSZgPMDPaz96w/JD3Qjpc+MQ85CKGgYN4NsbRtKCbITpjD++NPp+scV1C5bih4ZoemMl6MyClIaMuZkNfV5Jjb1UeMX6Stk6Rs1hoHBkQylguGCFDr2Cjb8ZzLyFAr6Buj+v98ipIfXVIvX2sLoI6sprN+M11RPzdK51B86nZZjZqBG8qQbc+Ewi2jYUiEg5YVckhaY8u26LAN869msJBOP7OTxzasSQ71jxU5WXNcEQNc92+hdsxs6Wsb01DIcj8n7ppRMGIY3/fhGir2DzPzyBYipUwnC7Hra4aPCjVyye1WHIy7yfirbpyWAKDtnW1Aq5K0s9+YTZXXt81wBrJJcEuzvEaeiu/8qewejdg+S/CutG+XykY98hNNPP52ZM2eyYMGCinXkT3/607PSr4MSBvik75WoNLaNNX/uDSDSQpgMdvkRetbcy/CuLUw5/Az8bAzc9G5YwbpbfmUOkR5S+qigiFaVpJO5hg4WnvRu8GX1tfFAQCd3kzTG+rBPd97y9jQ0jJ/JtpU3kh/sZcEp76axbSYUNHlX//MFKi0oZSGwYFUWirmA7n/eRM+N1yGkR/PxJ9N6/EvxUpkkEh5+blq4lN233wBKM/l1bw8bD7vj9DuetMICJ1OHdu9zQpE1fwY3PM7g2kdxJdM6no5TX03TvKX46Ww8cdZkkmDgk0Ctdt59A9333YxMZ1EFh0QyKNF9+3UIP4UuFZEyBQKCoIAqFPBq65IN2eurUJTislRDE2hFdtqMZIgfxFlRoiwpOpFVMSKSLPeycqXs5FolQSbAIZ6kDCh2iUnD4532tBbxsfYmao2fMjfZpLeXJnuGSGbuKpYO5EXZh7zATR1u2vGRkRGKxWLi9wMhin+uic746JRZarSUZl71Qq8pCJ9/gfZk9BnCed2CT7bMglTOXwgBqKjclCnPtK08EYLARG0gjHcpQGlkiL6V95Lv3s7E489C5LLRO9b7yD1sve43xnAgPYTno0qFqlx0ubZOZr7sQmSRxDslNMZarp3DQmVQq7iuUsKEsPiA1rHnkG/4ibQnCCxYpQSeNJ5PgZaRx1UpBIxTjjcQmAx0aRnQdvgknvjDg9TPGceib5xPbt6UqEP2vfc9FXpRJZVgXYKdv7uDnZffjkh7dJ5/NFPe8CLSWRMymPFLwCBNaTOfTjh7OpsurSeVlUz9xGuRaIoqIO0FZH3zfOdSRUpK0pOvYaSYYjQEq5QWZFNFMl5MTFtSkmKY51xrgSc0ffc8zsD96xP3oWZ2B9Pf/zLGv3guTY2aOr9A1itCrU/OK5r03iIJxNlzSuFSx3t4ngG1rCZwz4/uZ80Vj+PnUpRG4ndUjZZY9/O7ESkPXQwoeDl8wCsOQ7FIqjGZOMFt04x+fK+UFqjAw29pAAS5eVMSmQ+tl5so27TY+1dSMvqsbLiFNN4V8bOGef7cBsJNnWksCVpVDfdzgarEmpEsE9q8e0IIE65lPYPtBiYQESkvCkTxICr/L/B1w5XLLruM6667jlwux80331xBjPt8A6uQOglyQqjYuMofyd/tF+sxpXRs/BDxT+WbYyHCzbz9bptK6EpGbMKfYGiQvgfvptCzi3GnvRqRSkdrT++9t9P95z+ClAhPgu+j89XXjfTUqbS/7T8oeToCocC8F1H2Qqtvh+uI9VRyIxdQoUHRBRgi/VQk5htt0blQt7Pvtwh0gvdI+xJvuEhL7TS29jxAXW0Hhx33fjKTpxKkjTdNUMW+5q61gS6y4+7r2PXAzXipNBOWvpxJc07G1x4IKGUEecwepdAAjSccz847r0XW5Wh5y+sNeXo6QPiKVNbMx/W5PEoLdg3X0T+SoVAw+oUKJH46wPcCgjChSnHUj67PeEkLhu95mPyqtYk+Z+ZOo/2dZ9J0wiIytTIyCngZP1wHdegNG4eqW6DKJjyBMFQ8XH9V+EDc9517WH/dOmTGR+VjQ0lxIM+DP30Y6QlUoJEpj4xXojRcQOYF6YZsrAcIjSrbKColwt8FqigpSA/R1IQW3TB1OkHJS5CmRw9G2byoA2GeNxXPw1U9lyJaHZEAh+yziiZuw9lLup6K0V+nffs4unVNcinjwa79WK+LgKmEsQPkv9eNgyLvf//7uemmmzj55JNpbW19VknVXXneE6xrrenb/Chb7/3b/8/eWYfJcV1p/3dvVTVMdw+TYDRiloUGySBzzEwBQ7JJdhMHNtlsvk2c3WSDTrJhpnViO3HimFGWQTKTZIvJYhpmaqiq+/1R0FU9LUuy5XXs5DzPPNNdfevWraoL57z3nPeQ7mzyj1eMmkFF4ywAepu2su3JmwEYNfdscoO9CKERS1VhGCUYsRS2laNjx6u0736F+omL0PSDp7l/O2XU7PdgGCW0bH2e9l2vUFI2grKq8UhNZ8y0s5Da8FdrWyZd61+lffVTZFr2U37SyZSfcjqGEUeYhHZvCkVPpOjbuIq+TXNITT3qiN9P2Yy5JCZMpnf9q7QscZDbMVd8FCNVEVrAj5S0PvsQ4HhX6YlStGicvp0bMft7nPZMX8DAjo3svOMXlIweT6ajBbO/h/ozLqNy7qLDulZsdCP204+S62gjWndwsu1/SBE5jJ2OIxq8/n8kg4ODfP7zn+f222+no6Nj2O/vtExOf+uibJverRtoefJ+sl15L5nySXNJjHOy1fXt3OwAVUDdcWc5odBCEimvRo8miMRTmFaG7k0r6d66ippZJyL1v23PuMn/fDyiNEnzw2tpeWQ9JRPqSM4YjR43GHPt8Uh9eMiqnTVpf3w9++9eSXpvByOvWEjDlfPRE1FXQT/wwhGpKKFj6WoqTpxG+fxxR/x+at4zm9JjJ9P6yBqaf/8EAJO+cgWxqhI0zQKODIm6J6t+51AF1MwfhV4aR8SjtD+/g2yXE1ZYf95s2pdvZt1nbqV0VgOD21vIdQ0y+fNnU3fmjNerepgkp42i5e6Xybb1oNdUHfyEf8hweZevG0H50pe+xFe/+lX+4z/+AymP4EbRP8QXZVv0b9lA29J7yXV3+sfL5h5DbKwzvw1s3uADVeVnnI6VGUQIiV5dhZZMoCfLsHv76XvlFQbXrqX8lJMRuv43bfROHX0WRmkFTU0raXpmBYnKBhK1Y9AjJYyYcyaiSH+zzSwdW1bQvuYpsj0d1B/9Huqmn4RmRJFDCswD37CWTNG3/BlK5swiNu3Irxulpx5PYv5s+pY/T8+DjwJQ99n3Y5THXI/mI6tvbfijkwirekEDKpkkEpO0PbMVs99Zn469egIr79zNQ9fdS/lRo+nZ2IzZl2biDRdRfvy0w7pWfMpoupeuxOoZQCTKjuh9/N3I39G6USg333wzd955J+eee+7b3ZSQvPkwwEN4T4Xpxf1TlRpWn7f7Eao7OKeJcH0dO15l1+O3hurQ4ymSY6Zg6wIrl2HrE/8LQLx6FNVzF6MLw68309lC89rltG9fgRFN0HDU2dROPDbPdXXAmzrI7wc6TTDc7YXD7O8ChJDUzVxM7YwT6d6zns5dq2na7pD77nvtSWonLyRSWoWIx8j0dzLQtouBfdtBQcm4iYz50KcoGdkIFogcYU+pIvc28uwr2fa779K37lWSoyejRWOhcnm0O3DMjfc/0L0Ji5CXmh5LkJoxh5Yld1G98HSM0opQqtvCZ+CJOeTEgeslqfxBVbSoL+XTFtC9cQWD+3f4pWK1o6g7/lzKp8xFaBrZ/i56Nr5C/+7X0KIxzP4erPQA/Ts3M7hnGyBITphGfFSjy5sQuHbQW9DlLMq0Njnu3t5xb9NQBL54nlaeh1Whh1ThjnfwR29HzhZ+nSKoQ4jgGeHB5XE8OL+okKuwCu6giPAuu+eC7NXmpbpXtsDKHZmsKQDv9lSy//7v/86yZcv4+c9/zjXXXMPPfvYz9u3bx69+9StuvPHGt7t5b05EwItKl05YnyaxXbJxpQvH+0kKlJHnnHI8C12PKXelsr1QPy3/m1cWScizSgW+K80JzQDnc+eaF2m976+hZupVVXDceAZiCjM9wJ4f/gaASOMYSi48Bd1yKpBZyO5rou25J+jZ8ApGopQRx59P5WQ3a2zAu9RhPXJzGgSOi4g7P5rC3/nEUM5Ys6Wzu617Hj+uZ6QSCHdXV0mBLRXS/W+5z0F302j7EgjL1TWbZNzk2H+ain3dZHYv382uJ3bSdN9KAPb/5QUaL55FvL4UYlGs1i461zbRsbYZhGDkMSNZ+M2zmDgzTol05k1N2OSURto2iMm8p1HO1sgog9O+fgL3XnUX6WdfJTanBj1SgiZtP+RwIBcJtVd3Sc+lUMT1HLrIl3V2qofP5npZCRUnzaD5908w5roTSdTEEMLyOUO8nW6nXvf5KcVgexqhC6JlJdgILNdbS3dfUqRIqGDDSQ3seWoPbSv3uS8SUlPqGfuxU6k6cSq20Km76Gg6lm2k59WdaPEIua5BrN4BelZsp3v1HoSuU7VwAonJ9X69HkcY5Il0ben0t/SuNlK1lb7HV/AZFPIC+uF/wYMiML9767w/jxf3UAnO8UWV9gKvqsKU5mFSafe7cOdmj5/O3c0n5/7H9UI0j5zy/25fN4KSzWa58sor3zVAlZQ2UvPGq9cf3bDV0MsSYd0m+FmK/BixHeoPb62AvI6K6QYD+mFOzmcl81Uhoevlp2l75L5QOyMjRqJPHIMZUZj9fey/5bcAxBrHUn7WmY4O5nqbZPbupefxZQysWoVeUUHlJRcRnzsTW1NgBHgywPGU8jxevHXDco7ZZoAHChBeuLmVP126w9tTIz3vTY86Qlgg3WM2Cul62QsJtp7vQzIr0TIwOXUcE5PH0Dy0haa+TbRucuyN/WsepXbaiUSS5YhYlHR/BwNNO5ykI0KQapxK49nXEa+od9oH5BLC9a4Gy833YUfALAGzRFHzkWvZ/83vMrDyVYzJI9F1DaHlQ5a7B+L0pyOYpuYkAVH5e9OkjaFbmBlHF7UtCZYT4ibsvBenlkxRMn82PQ8+SvV1ZxGtiqJrJoZu5b1XA/Or4z1lY3b2IQyNaHk+UUmheJ673tpVPXsE7aubaF+xx31hUD2rjmOunsic06spi2SYecl4Ni7Zy5bnOzHiGmYfmL2D9KzYRt+a3RCNkDp2CvFxdf5a4YWrWZbEMjWEtLGUY98O7WglNq084C0rQnOyJ563GZYIeU65H8Lrhp2vw380tgiEqxYSrIdtyhCPsQrYf96YlEXMT5E/N1+vCHshmgKV/ce6cSSksrLyb5L38E2HARYFog4ZkCymBA0/P+isroSX4SN4Qlgaz3g/WiRKNt3Lrif/jJ1z0OvGU96L1CPgcoT07N/C1iW/cn6bfyE1kxciNYPAuhiIvy24TrHbPoxOm+dGOfCtDOMjDcw5+WOS8sZZlDfOomrCAvauepjBjr20bX0JoRnYuQxGqpxYRR0jjj+fVONUojWuktwfqKcQw/COud9j8SrqFp1N85P3kuvuYuJV/zqsrYV1KddSkwSUAu9n714C7sJKg47nlgGQaJxUvG7AymXo3rCCdNs+uta84B+f/skbkUbEn19D91UgFTOOoXvjCgAmXPVpSkY0OtxFPpGzkza3+rjTqFp0Grvu+DWZrjbann44VE/7849ilFWSnDidshnziI8aO+zZJcZPQcbjNN9xK5GG0URqav0yQWPaex6qkKchIEqqQFheuBOqYe630icSFeBazC4a7Gf+U3ljxqtHucqf9zw8A8gSWJbCEjKQOVAhdRtNt7Et6SgGOAuglTsY4vsP8eT+++/n5ptv5uSTT+ZDH/oQJ554IhMnTqSxsZE//vGPvP/973+7m/jGRSl/zvan0wAQq6SjuNqGk3XPCwO0DYHthu/ZXhigjn8syD3lg1QioADJ4seVBEuEwywBqj/6XqwqgdnVRsfvb/dDNqqvuwpVIrEyTuv7N6yn6Y/OBsjIUy6lcvqxSE13QKUDDF3hgr4+/uECV7YeALZML3OgQJkqQMYuQLexbIX0V2zXiEOilPIXckuA9EIQEH7Wq6DyXCJN0GH2WXWceF4Z+58u4/GfbKZ5Sx97H1iHHtHIDJpUjozRODHKuV9o4JRTNY6fksFWr2IhsNyXl1PSAauUQdadxHJoWEpiI5k1u4Tc9WN58Mebob2LOd+/gqytYbrKtkcIXwyEMm1JVmn5kDYC90KYN7/tr08DUD6/ESEUhrTQpU1EsyjRM5i2RrY/y/qHt9K1pYOt9+ezyn7gueuQLoBiCBOjgPxClxaG+5LmXjaOPU85Bsd7br4ExoxCCEFvJkbO0siaGrK6murLT6TuiuPZ9PlbEC29bPvlU6E6d93yPLGR5ZQfM4Ga02cSmzASy3tXKGwB5QsngRTs+tadTP3VxzBqy91Xn7/zwpBtyy54jso7Ln2C3cLzDikRhl9EFHwv+N0DpgLX8kMC3VBxrwppibyBEyCVLoIR/kMOQa699lr+8pe/8MUvfvHtbsoREanbPm+fB6wqz0ANgaquohzcf3N1mqCuib+pFgC73L5p6y5g6m4QCLdvimBfVJCzhoa1s/q692GVQ66tlfbf35Y/fvV7kbZA5Jz6+la/SsufHSqSmouvILFoAULTsA0bYhYy6hEoOv9sU6IsgW1KPzTWaZdC5AS2KfKci7ozbpSZX09wAQRbuEBW4PF4CR6CILOtB/R0n3tLYsWd1UVkTQSSkUxhZGIaTYlpbG1ezuBgG22bn0dIDdvKEklWEKscwahFF1LWMI14stpZ4wNAmtKctdwyyGfZjTjAldLBGFVL6Vmn0LtkGWZPN3X/+kGUCs/LpkeGFZiLlC3I2AbZjIGVc2/ClGEw3ROp6HloKQCl88ajaxaG7oSpe2ZAxtQw+4boeGwdmR1NdC9f49dx4mOfo5iGayvBoBkhpuWIa46eMfPKKSxf7UT+XP7XC6kfH0MIgSFtDC2NFDaN4w0aPz6OMz42gR9d9izpziF2/mRpqO7mPz5FZGQVyfmTKDt1DsaYEc7GsBfuZ2nEj5kD3EHrD/7MqG9/CllWEXhAIr/57AF8No7ioAiF8DmS30QI1oFQPujnAFUuYFUITAX5qch/92sPAMHeWA3ZbjZgCrAd/rlAs30wF5yMlOrIOlH/3cpXvvIVvvzlL3PTTTdRUjKcvuDtksMOAzyQlxRQHEwJHHd+PMgFxHCFX4VSOziSHehh/4qHCHopVUyYi4zE6Nu9hURNI3tfvJe+vVuI1Y0ODSJvN751Q16B7GnbRsu2FzDiKYSQDpeVkEipYeXSRFPVNMw9l2g0zB3jx7wrUIfibnUAryolwwPd+eFgdYW/ljZMZXrDVOdU5QxuW9ggtfC7SYfbHqwv3dXCUGczLS8/QrqzmcazrqVskpNCtXb2YsyeTtpXPU33xhVUTF4QItMbBq552EgBMh7Sdws2yNL7diE03fFWEgEdxD1nsGkXex66hVxfDwT4xkad9d4wUFWI/ntNEqAs592WTVuAnRlk3xN3oJekGH3+NWixWNFHPbR/F5HyKqqPP5PYiNFEKmuwhgZIN++ld/MaejetpuvV56lZfBYV847H7O8h09ZMfGQD3etWYg8NgRDYmaGA0ayGG9iBZ3Egy9fn+vCeo9tvgjsdRc/3+pckDzZ5ZOnBRazwnMA79cp7gJlH9mhbEsuU2AGeqn8Q5R66dHZ2Mm7cOMDhp+rsdEIMTjjhBD72sY+9nU07suJuWQlL+aCssJVv5AqVt8U9ENcyAp5VLlhlG3mFFwh4WhHKrIlU+WQHAnKdnXQuWRIaGyXHzkcYGoOrN2A01tP1p/vIbN2NMWYkwgunFqAizjmdTz/mn9u7dxPta5/BSJY517QthNAQUmJn0kQqaqk/6Tz0mMt1544x6T6KoHep0p0dQplz7s/zuLINRzFUesBrSoHSFFIp0OwASCFD+yrSHace2bqXiQ7AVBo5pTHx5JEsOiNJvd6NUoqItBHKosHoZaQbEhEFDBF1rxAeX/0qy8sb+9i8xeJ7N/axZ7fFz35fxYmnxuiUJXzoU2Vkmit57PZWRj65hfqTJ2F7nmAuMa2pZMhzylaCrK05GZDc63m7ybZyCMiDGZjSW5vQEhFqp5YjjSwR6RgdunBI0neu7GDlfz9KuiuNyuXXjYVfO90HqhwuKzuUbtxWEkNYlGhZzKxFPA6Tzh7LUJ/FC199EqOunGlfOIes1MhaGtmcns/iKG0GNjcTHV3J6PctpGxKDfER5eR6h+jd2Ez706/RvmwjLQ+uYvQHT6b6PXPItvYwtKeD+JTRtD+40nGrMySZPhNR5fF1OXN/4ZJh2QLbHs6zqRT5DFBFlhTfhA+SrStCn4fvUhIADwL8JcHd+yC/ib9GibCRYxXUK4rnBnmj8m5fN4JiWRbf+c53eOSRRzjqqKOGEeN+//vff5ta9sbEiFhIlxvTS0DgJQpQvmeJcvqqLcL91eu/wY04WdDHGb5J5+ksSgnsnEC4gEeutY3uBx71N7oBEguPAWBg3WrKJi6m8y93ktvfhDGqHhmNuca0O6eb0Ln0If/cgfXr6H7uSbSyMhA2SthoEQGaxB5ME22so/K9ZyJiCWzTRrleyLYpEKZ0uKk08h5ipuOlJLUAwOYCV46XUH44es5iKrCB7KEEtu786B82FbYhUcJARpz5R+RsZM6ivnQa9eXTQDobJlYqSi4hUYbmJBDBxazTYOsKy8hPWkKBacBQ537SXS20LL0ba6CfUf/0MaJTJyKkoPzCszE7uhh8eRWDKzdSMn9aHufw5yRHHw16DylvevfeZZE5xvuf3duELE0QHVUVMs1MN5FH54rdNP/oTuzBNCoQKTDhy5cDboY+JUDDWYvJe77aUmIpgZkxkak4o0+fgDWUY+kXnqassYyF/7WYaEwyqBukdcPfENFsk87XOklOqKXu8kXIMaOJ1JaT600zsHEPvc9vonvZarqWrqTyfe8hddI8cs1tZPe3E5k0lt4HnnTvT2ANWMhEfgPZe0beJoFzE4FMfociigJvPzEs87vzAMjXG+CqEnYYtATPfh5+HaUpB8wM2DfSdNouzfy1ZA7s4fuPb1j+ntaNQvnxj3/Mtm3bqKurY+zYscPWkVdeeeVtaddhhgEGYc8DlXE/BMsd6LN/0ut+9V3IfbBJCHr2bqRjq+MZEy2tpnzSXFpWPpo/R0q6t7wKwKhTLiVR14iwwJJ5gsShrma/vGlnSIydRK6/F5RyuEdsC2VZ6IlKOrasIDvYzbTTw4ZjcH0UhZ224EaKTgbeLpAH9IjwTwc63wO3Q+0IPCOPFE0qiQqkpA3mdBWBcxU2+168n7bVT4aumagfF5pIauafRs/WNex55E/EKkdQUjXKr8xbP4aNXe/kELBHnivT+6dAT5Wil5YhIhFs20biZAITNljpQXbc/jMiFTVM/Oh/sO233wYk06//BkLThgFnwefr3aeZGWDnPb9lqGkXCEGseiSRimp6X1vL1ptupOb4MymffZwfquC1OzFuCmZfD6Wz5/vHNCNFonQaicnTsKwc7cuW0LbsIdqWPRi6fRkvQZYkGP1P1xMZWZ/vM8H3FfQAl4H36bvJ5o1un1g30PlEoSEiHCDM98KSARQvqMBRBFQSOKGAbsf0ynoglVaQ3cqy3B1AN9uKV8dBJ4vDkWIhK69X9h0m48ePZ+fOnTQ2NjJ9+nRuv/12jjnmGO6//37Ky8vf7ua9OdE0lO6F/DkhgEqXPtpauAFSGPobUmQCc4i/80Z+vAg7XwbpKBIisI0wuHYdAyudsDdjRD2xqZPpW5bftBCawdAqJ9FD9XVXYTTWOcqwsnxu3Fy7y3ElBKbMEp0+Caunxxlamg6mjTIttFQl3WtewswO0HD5PyHMfOYk8Iz1fHttyzE0PNDKMzqEBcpwwxlsTyEGYduguxndhMgfVwJLSbBAuoTkwlSgO15JXvCCRGHaGl25khD5bkoNUa4NMqAMum1nZ8MghyZyVMoIURGly3Y4mvZlbL7wn2ke+mNX6B1Omh1Hw0a6L+iyT9Tz/GP9vPSfSzn3thTxMTWh8kFy2uCxmGaSdsMvTSEPaGhGqxNgW0QiAmWZxAyLEj0LQLqjn2c/dR9lk6qY/aP38cJ7f0O0Is7lD16J1CTlxiA5V2s2hOW3wfusYdPRZvHX65+lZWM3QhMkJ9QQGVFF+zNbePFDf6D+fSdRevIcZCAjqhCK1JyxYFlULZ6BrlkoQC9PUrlwIhXHTSI7aLHnf5ez59ePs+fXj4efSSqOXpFkzDc+SKS+qoCbWYU8zZzrOaFTSoXDJcOgU/6YZ7iHMqB5Rr4LRgUuFxY39E+4Kc5DAJW3Y1+4Hnu774GMU57hclhJaw5H3uXrRlDWrl3L3LlzAVi3bl3ot78VktzDkfKSIWSJ04ks2wHhLRfU9h2jXKPSdkOhIJ9UwPYArIL3Gkor4I8dNWwf2TLym2+Da1cx+LJjT0TGjiLSOIr+J1/KV5PQSW9wCLtrPnwt0coahCnA3YxQGuQ6XS5KTUMpi/jESZjd3U4aUkMDZaOUiVaVoGfpCnK9Geo/fZWr73nWvgRpO8lHhMyDP9IZV8ryk+yiNMewFyYQALc9Tys7YDBIcMEBFxj06tWcDLUip7ANd76JSGxTczeZnI0n92VgDNjYEbAjbkizIbCiTv+TQmFFnDosYbHn0b/SvT7/DAGidaMdomzhtKri7LMZWreJtp//gZFf+Xf0UQHuPs8IkgwPfBGBYyG+DfJzlQKtvAwtFcdGR2VttJjbPlsw1NTDvq/dTGxSA1XXf4B9n/4mRl0FM377MccRQGWddRanX5rug9elTURapC2druY0L/zbQ/Tt6ARNEh9fj1FTw+7HN9OyoYvJHzqW6ec2EJUmQyoPClTPGYUZTZBYOJOcqWEDIpWi5OgZxObNxOzP0fnHh+m46QE6bnogdO8yEUerKKP2Cx9Dr6oIg1Se3mTldwVCQFXhnC/c5xeM2nDncF+Xcc/3M1QGSdTt/Dzvn2/7ql8o6tBrmx3ovyiBMJXvuQX4IYcy4EUoLOAIglV/T+tGoVx00UVvdxOKyuGBVfIQ30sRwOp1zwv8VghMEfgoAl8qJx/L7mcczpHxp11Hy/owyNLySn73W487XEbe7rt3vQnv/1fsdJpIsgIp9HC2KPdaega6tqyke8srGNGU7yZrF/H/9O8xCJYE2lw4dxaV13lOPrgRBDte5/xivwtvJ0oIzOwgdi6DhUnTiiV0v7aKESdeSOXk+XSse47mF5fQv38ru5c6nGBTr/0SkbJKGs+9jq1/+RH7lt3BhMs+hRDi9e9JBcA4rx1F7sFKDzG4azt6IsX233ybTHsLEz96A9HSKhCQ6+9BWSaV805gcNc2lGk62VZEYBKm4PkGrqNQ7Lz7N2R7Omi85J8pGdHocG8JyHS10fL8IzQ9cif9u7Yw8rJrQzxUMhYlt787z2WmXMPTvZYuDOpPPZ+K+YsY3LUVvbyCSHUN6f17yHZ30vX04+z+6XepOu9Cyk88Md82b04MjhlBAFwKHnffnZ+xw93RyN9guLwsGESeoS+KHA/qb15ooAdsufVI16tKCuVkLsNVCG0XqApev8Dd983Kuz2G/IMf/CCrV69m8eLFfOELX+Dcc8/lJz/5CaZpvuN2xAtFGc5uK+BwVelO5j8/658mQBO+fvC6hmsQhA7o8J6nkhLkd5a9unxQDMrnLKLjvnsBqL/6OjofCYf19tz/iP9ZJhKOkuZmpfLmrJHf/Cx2No1RU+5kf7Py45EBHS0jkBlBz8sv0LfmFbRk0gmxCCjVwtsVLFTuXNECCp7DUSIgopyNB+9eDYGNBYFgBKWUm8lPIDSR50GSkrSpFw23i0qTjK3TZTrZczPSIKMMckoj57queeFxg3aWXE+GTT1RMmnFD749yKtPdHPODbM478IID/5mPw/+pomXn01z5iec9OwPvtzAnDEan/txI//9gddY+8OnOfGH5yGEE6po2prPE+WJaWvomh3KkpcuUFf8HezeAXo37CfVWMETl/6OdPsgl9x/FdH6CFLY9LV0oyybGe+fSc+KrW7XUFTHnZCeMn2InK35gJUsWMxa00nu+OiDpLsyHP3DS5DjxqDFHa6tETs72XfL0+z+4QNUrt1Fw2cuDL+Lkijp7S3kvB14V7x3RESj4V/OpOLcY+lbtwejthyjvoqh1/aRbemi/c5n2P6Jn1L/z+dRfsb8QN0uWCTyoJVSeePd567yB1X+vGAdoWOhsRU4p5ir0wHGoQiWDa7HAaAqyFniiW9PwnBvqzch7/Z1IyjLli17u5twRKUiNoSIeeC80ydMW/peVuAALt73oOelz/umhK+rAP4xVWQ8FJsbpeZkhKs472i673BCskZ98Spafxnmrer+c34d0WIleHxXzpSisBU0fOW/UNkcelUFGHK4rq4plGHTt+xpBp5bhV6eclEAkS8rFGhOXxXYeLlLpXJ/E2C7C5VwPY2l53Hs6X/uMRko65RzriWE8sex5/krZR79sRUugEBo0PjUYLoo6rRgDvaTtUzsXJa9L9xL/+7XqD//SpJTZ9H+5BK6VzzHwJaNtNzh2BuNX/060VQ1de//AM2//S1df32A2n/5UOg54G2okr+eM+UFJxec+cedh7y5yuztIbtrL9GJDWy56muonMmkP/w7VMQwLUl6XzcoRfnFixl8ea1bl8BSGliQyeXXI13LbxBYtk1WaAymJas/eRsqazLuW9ehN45CRp2torp9+2j543LWfuMROtbM5rj/yCdtEspGRWNk2vrJZA2//3pzvm1JRCRG1QcvJnXGCWRe241eU41WVUFm+27Mtk56H1pG0xe+Q9V1V5A8Zl6+k7lztbBEGKAq4Jby7RLl3HMwG6UwAxxVhPWYwjBAbJdbLWgLuDaHAp9T1x+PIlxOWE6Wv6DnlgdSBduATd6j7gjI39O6UShf/vKX3+4mFJV3bjbAQMySAMaccDkV4+ew94V7yXS3hooONO0gWlo5rAq9JIWIp4bF0QbFyqbZ//yDVDQexfgT33dEDfC3Q3JDfex5/m76mrZhpvOkVVKPMOasqymfPAc7naZz40tEK2oR7mySGDneD3UpqW9k3EX/zI57fkXbisepPfr0I9I2s68Hq7+Xspnz6XzBUbyMVJn/u17ihNI0LXVAypLR4xlz3nV+Gw8mmY5mhpp303DetaQap4R+i1bUMPr8D9AzZSb77rmZpntvIzltFvbQID2rXmJozw7K5h88C2CkogqjssoHnYyyCpSExLQZ7Prht8g2NR20jn9IEQkupIdS9h0mn/nMZ/zPp5xyCps2bWLFihVMmDCB2bNnv40te3eJCoQOCyGpee97SS1YQPs992AWZGHMbt9FvHLmsDq08hSaSOY9HIuINTRI59KHKD1qAXXnX3HkbuBtkrZmk+//VztrV2To6swvgvGkxnU/OoqGxY2I9D6eu7edSdMjWO5u+/EnxyivdObnGcel+JefTueXn9jA5tvXM/XK4c/2jchQUw+5njQVM+vpXOPMr7HKOF5Gp2SdA8I9+5/OmlJ39CjO+PZJHOpi3rahne6tnZz6g/cQmTua3kyeWDc+ppqJN1xM29I17PzBg6BplB4zCbNnkM6lqxjcvI+ai4896DWioyoxRlT5xrRR46x7ybkT2f6vvySzu/UgNfxDisq7fN04kOzduxchBKNGjXq7m/KuEGUG1g1NMuJzVzC4Zjutv30Is70nVDa7ey/6lKnD6tDLypw+JuFAlCFWbz89dz9G8pRjqPzAOUf0Ht4OSQ92se35u+jv3IOZGfCPa9E4Yy7/MCWTp5Ab7KNv3Spio8aA6ew0JWfNRrqUHCXTplFz9ftpu+WP9D3zAqkTjjsibcs1taKG0kTG1JNe63AYaqk43kRg1FUA0PztW0AISuZOYdS/XXrI9fet20tmXydTvvMBjCljyJn5TaXY2Doab7iSrodeZO8vl/KqblJ3bAPpjkF23reB7s3t1Fxx4kGvYYysxRhRB254rF7ltDk2ZSIt3/wpuX0th9zef0hA/k7XjaCsXLmSjRs3IoRg+vTpvtfu2yWHT7B+pNy1D7B5VtQ7yUV4A84htKx+nEhpFYnaRqKVdY6SOGYa1pN/RugR9HiCXF8XAKXjppPp7yKSqsh7xASu4aGzdhDlFWApk6Zlf8HKDjF63rkIIR1y3wAvSmGIm38fRXYNvfKq8FiwXDGE+QCfD9n70C2XG+xl0/0/xrZyRMtrMZvzYNX0676MFouDDV2bXibb28nU9/8H0YpayibPKbg5SI2ZQu0xZ9L8wkNY2SFGHHcOEs1Zi73QHBm+1xC67iL3wd+yXY6x6AFVYy77CFLo/nPRogn/9IZzrqFsypzQ+/OeSbHn0rtzA/uW/gWjtJLScdP8x1KIipdOn0O2r4vuV56jd60TZhprGMvI932IxJQZ+dftetgFiWFD9xYikIaBLU5okVaaCpFCAy4D/QFmPNcgDoZ5iqAnhxf2FPSkEhQnaVeBsoVebsX6khsCKAOeVU55lfdWsZ0QQNxwkFCmwn9wVh2S5HI5zjzzTH71q18xefJkAMaMGcOYMWPe5pYdGbENDeHyXTiZ/dzsfwHPKqW5ZOqy4N25Y9/3xvB3hAl7YHnlCs71d9/ceaHjiccwyiuJj59ENF4JlkQfN52W/luRJSWISASruxuA+KQpWG09aDVlzljQ8uPL526T+bGmLIGK2Jhpi/Y7/oSyLarOOBt0595CRKNGoG0FhKPC3dXz+RhMb50SfiiYrRyeEIWzk+uLYbn8VZIgN7CwNJ8nKug5ZCtBTpNYCDJuGEJO07AQ9FlxOrUkHfvTfOvKXSgF1aPjdHXmjY5/f/wUYkmDQUuy/PZWulpz3HTXKGpGRzjzwpQfRgcwRu/kknNibPnQGJb96CWs3iGm/9MCpBsioos8J5fU8qTrXohikIjdDLz87mbnfW3706sAXPTbM3yvqag0KavOG5rn/uAkpp5ST1IbIOpmL7SVxBLSv47X3pzS2PzEfh756kqSY8opmT2ObLHwOqDq9Flk2vtpf2QVnUtXAVAyYwxjv/xeUvPHY9kitNtf6MXhhSwFvT4A+l7a7LzWqhQHEq+8x1el7Lw3ibKlw01jH2D+VBBWKvL/gwk7ii2qwjtuF/xeuPR4HsBBDpMDyGFxpxyCvJvXjUKxbZuvf/3rfO9736O/39HtUqkU//Zv/8YNN9zwjssSWBYZQo86Y9Hhs5OYSvreVZCfB8xA0gFb5b2tPM8ryL/fkGeW64Vl2TIfNogTBibIj9Puu59Ery4jcfRU9LIEmqaoWjie/d/pRassBVthdfeBEEQnjifX04VRVoFP3+BKKMKgwPnHGszS8bs/g6ZRfvHpgPQ9af1y3gKhS1e3dr2dCHIJBt1jHB4qSX6ZEQGeVJ+gXbprs3AyzPpeM5qr65peK93jhho+VpVyM7w5691Qfztrl/8UoRsYJaU+WCWkxuSP/hcko9gCul9+Fmuwn3Ef/RxaWSllc49xomDcaVtpitSceaS376Dz9rtQvQOUvufUQHOCD9hTTYPGBfk5LKDrmp2Ofdj7oJOcY8y3PwpIPGoqmcqTS4/44nUk54xD1y3/SWatPPhkI4i518spjfZlG9j2k8eIjquHceMxrXyfFUL5XlmJ04+jrnuQvY+tZsfd6wFIzRnL6C+fS3zWBCyPXgPC3IMFc7PyvMZcGXrVqUuvrPQ5Ar2yeR4ptz0BHSQYMennmgoQmXs6iwhElfgRJp7OErDpvGsVUjsoDV8n896Rb+N41/X0t8LMlwGvKr+9YUfFNy1/T+tGobS2tnLVVVexfPlyysvLUUrR09PDKaecwp///GdqamoOXslbIIcNVh0QRHkDctDQwAKQx+cuUVA75xRKx04nXj0KhMTKZdi9/C8kRk4g3baXTK8TglA+/Wg2/OIGACZd8/+Il9flB5PCzyplS/JkvRJsM8u+e26mf/dmxp7yASIV1c54FoQ5Vg5k6JNvv790BDKQ5I+FyxI4XmxR869Z7HkVXj6QOVFJQfPa5WT7nQnaHMoDVaVjZ6BH4r7Sa2Udrg89UYpl5RCaPpzzQEDtwvcgdJ2WF5Yw2LKbUSdeTEnFyDBXRcGElG8b3loKQHagl5bH7vF/j1bVkxo7LTT5SSlpvOCf0KJxEqPGh8EvDnAd93/Tk/cRqahhzDlXOxkhvd8KJkeloGrRKZSfeDJmbzdaSQkiGh1WoT/ZFiFG9+8t0A4tmUToOt1PPEZ8yiTiEyfmAaYgwhYk6JF5EmofqCrMshQEunwQTPkGdTgk1zWwAxqGl8bY+VyoGOGH/YHDhwJgWhqWmSf8VJZEmcJfCP3zj2AKcufGjmx1fytiGAbr1q17R/KKHIo4PFWuceB+VnqeF8N2U1g7WQHxy/rj0lY+iCVzThiCdJUjFRiPPlF5YCh5IiynuppjT6ds0hyiI0YhcgJzYIjm+/9McvIMhvbsxOzuBCC18Dh2f85ZN0Z97YvoteX5eoVy+rzHBRgIo7IHs7T9+g9kduyk9uprEPXlmD7HXBGlLzhePI6HgjXBA9ukSV6DxMUIkCjD8yFyn4cBSrORBQqXZuffA+SNOltJTFvDdGPbc7YkZ2uUaFn6rBj3/GgVPa3OmtDblvXPn3neaHojVWRMk5jM0Tcg0A2BKEuQSWeQ0QhZW0MLEpYj+Oj/q8Iyojz1mzW0rm3l6M8dR/nYcjSh/Ix4pu0kBSkMnQt+t5VgqKWXDb941j9Wf1QVY+ZVEZWmw3klc0QTOd7/o7mkaqKMmZ1AoxcLQc4Oqz8eSGW5O3I2ksdvXEXpxBqm33A2WRklY+po0gHVRGCRFkJQf9UJVF9+AumWAbTSEmTUcN+JwraVz29SLNzIf3eElV+tIgW6pPXmx4hPayQ+paFoKB843cW2XKPb8sAqj7eH4TqCtwAG+5tn+IR0ryJh/kGgqlC8tapAf3OrCm94qnx58IyoInW+GXmXrhuFcsMNN/C73/2OG2+8keOPPx6lFM8++yxf+cpXSKfTfOMb33i7m3hYktAyRNzsfLZyEi1Yygkb9pNE2Nqw5AxOeeFnRD0QkAXOfJSzNCyhsGQ+lNCDd5SbRbPy8lNInTSHyNgR2LbA6u9n90/vIXXiLAbX7sLq7gUgdeIidv/bFwAY842vIFPJkM7mzeWFYVF2Jk3r735Ddt9+aj55DTJR5mSEdfU1f6PELa+UQmig3MEiXHZAGRzPHjeQp6cGqEtsHADAB7BEPixQSWfN9dorlHBBq4De6M4pYR1c+OPeNmDX+occgCoDuYFuv1TFrOMQJVFnA0eCnc0gY3FEPIpl5xC6EZ6rlABbUX3+RUgjStdDD5PevoOqyy9Cr6mGwiZ4Om0gs7f33LzvubZ2uu9Z4p9WMnsi0fGjsTyATAlELEb9Z6/EqC0nNmGUy10pfA8pj5/Q05tzLnglsNn2k8eITWmg7hOXYgvdWaAFeYJ/fz7UKbv8DFKXnI7Z3otWmnD5egVWzklg4YFV3nxbNFGGClOh6KVlIASdf76b6OgGog2j83Oyu3kQ6pMFa4RXV3CTwe8PFqF379elwmVDziDB9gZtkmKfg2CX6eh8PvcarjOEHbaRj+QGhy9v0brxrW99i7vuuotNmzYRj8dZtGgR3/72t5kyZcoBz1m+fDmnnHLKsOMbN25k6tThXpxvRj75yU/S29vL+vXrmTbNcezYsGED1157LZ/61Ke47bbbDlLDWyOHzVnlG8RFgIHXP/kAx1/n/EKdTgUUIKFFiNc1+FUPtu2he/sqYhV1PlAF0L3hZQBkNEa0ojZ0TdvlnlK6s/swuH8XTXffSs718BFSY/x7PkTpmGnYr9dxvfQaRW8i+HG40ufcU8CYCSp1B6ryEJ65R4YfBNa6tr8aKlMz52RSoyb5z8Ub/PGqEQCs+7WTAjk1djrjLvhw/kTfaBPUHnM6/XteY2DPa7S8vJRxZ16XL6YCumghUCVdTzbpLLz77rsZc6DPLzPmgg/5BmZQSifMCCu+QcnbjMOOZXvaqZp7AnqyDNu2yHS0MNi0E9vKIaNRZDSObWbQSssgoiFK4mglcZTlJmkXoGyb/i0byXW2UzbvWGQ0VnSSDHqM+e2ePZ+SmbPY96uf0nLTTYz+zxvQknF3sye8+1bM+ylUt/dFU4GFmXyGv2Ad/sxPHqgSAZvX9Z4SYjhYhcAnC/bEA6o84lFlS3fxE2GiXQjt9LxZebfvdFxzzTW+ofFuExWchwK4bGgNEU7GP29XFshn95P5eVPhKC6e55FPWaBc80IP6DwybxyAo2Tpegy9ZjQiB8qEzPYd9G9aS6S63geqAPqefwEAvaICvbTCSQPutdtXegVCQHrLDtp/82esjm7ncMSg7p//ifikiSgCiRFs/A0RP1OUZ/R7VXrHC5S+4O/OvQifODfve+QYX6ZyeEM03Q4BIFLaWAGjLmc7GexMXRLTJVkXvBmyDDK6TkYZREWODY+FQ5dnf2QuVVOrqJhUSZ8ZIyNNhoRB6cRqzNxuLpy1BYCF51bwsR9MRnNfnoZNTOaQmuC9nxnBjmea2P1SM4k/rGHxV05ws/A5L9/EMUSzthbKEOgZpgBC2az+rwcx+/I5q6/4nwWU6mkMYaEJ28+wNP8Mx6ixXFgvZxshPixPLPL1pzOKgdZBxn1wEVpZkmzOpm9rC30b92NnbSiJIUtiWINZtMpSlKZDSRziJaichYo4YJVlKfpe3kKurYfyM+YhIhF/jirMRlYoZafOJ7lwJrv/4zfs/dafGffzTyO8jLXDdAlnF97zpALvvyhSGHygyusj3vztP1+GnxMAZvPHRejjMLLeAkOlcH0OE/wOb+qbkXf7uhGUP/zhD/z2t7/lggsu8I/Nnj2bUaNG8fGPf/wdB1ZFpEVUmqFjtpKggRUAq3JK+l5X+XJ5UKuQ7yoIYJm2dDmgHJDWVPnzbdtJ6GDbAhGPYzSWOF6LCgZe2cXAis0Yo2qxOnv86/Y95QDnxqiRaMkkmAV8qh74Y8Pga1to+eufsPocoEtEo9R//KNEJjVCzgGihFBuFsPAQ5DKgaY0sD1vOakcPkhNIHwPWmc9kCbDgSUf1HG/Ss87y/vdnT+kY58ISZ6PzrNTDjBOhQIbm869YZL/2lMvIFJZTXzkGCfbreFcPzpyFPYLQ7z2LQfkS80/htrLrwrXaQuE0Kk+5zwG161laNMmeh97iurLLg1zvrobtM7mVpE5T4BSJm2//AMqm2fkrvn4FVimFgLqhZSUHDPLLXFgBL1QL8j057D606ROmotMJLCzFpndzWS27EHZFjLmrBv2YBq9phyERCRKELEYKg3STSRiZ20GX9mI1dVHavHRoEXyQFOhqPBcXnrCCSTmzqfpuz+k9dc30fClLyKknueXckEr7335hlrQwyrgFRXK9FfATeWDVN45hMv69TEcQ/ATS9kOKKWCIJrKg1Ueobp/PRW2hY50go63ct148sknuf766zn66KMxTZMbbriBM888kw0bNpBIJF733M2bN1NaWup/fyu8nJYsWcJjjz3mA1UA06dP52c/+xlnnnnmEb/eocphZgMMGxiHDFipQyhTTArP8cCPoGKD05GToydy1Ee+zd6n7iTdlY/TlZE4UtepPvpU9jx8C9XHnEa8zonjVxLsCH5Y3+6bfhywRCA1fgbJCU66VFEwiELNEuGmFvbdYHk17IPT2f3Br4oVLpDDfJZKgLItcoN9NJx4GdHKOnKDvZRPmJP35gi8o5L6RmJVI8h0t6Esk3T7/mHXVMLxPmt68l4G9jjx3hWT54WV0cCCqASY6QEGW3b5E7Y52I9Silx/N4N7t5McO43+nRspnzqfWFn1Yd+/Kva7ANsywbYxhwbY9/hf6dm8CjszBFIiNQM7lylSW1700jJkLIY1MIA14HikDWzaQPmxx6OXVxKprUVG8jwmQc+54POSMYPaqz/A3htvZGD1aj/2PpS4wFVO8rOwCFQqwoe8HbcAYBV6EIHn4IctuWWHeVcViOdRJQPhhHbQmCk2BkSgE73RMX8gORwj5i3aEXkrJZvN8tvf/pZHH32UBQsWDFu03ukk6754ioat8nOPwAmRUkFS2oDHVZFkFt58LAP1Klc58tMhy7AS440b6Z1rQ9mY6cz4xLfZ88ifyLbns8NiRNBLEpQedzwdt/yZ0jNPwRhd59Tre1UqkIqWG38ZalvJvDnEJk8Mz4NSuW3JI+15Iz2Avivy2XaC2QA9ECBo9NiAJdz1xwsVsLFtzfGwsWxs3fWGdHeBbdv2lStN2JhSQ7kgUMSNj89KzQW9NBiCTL/JKV9ZhKwpZ6DLpOGUsWjuvDBkKTKWji4txLSJlI3ZSn/LAFbGYtvGLH12PPRsyhmka0Djpv96jd3rnbl07FkTHaMK8p5VrvEZ03KYXQN0bGrHzNnoiSi5rgGksMns7aJ3cyvjF9ay/flWFl4xikkNWcDx/rKKcBZYSnPC/pTjPeYfRw7zeMoOOfeY7ehn4/88SuvyLViDWYQukYaGNfT66Yf06lJkLILVM4DV54Ql9r+ylfIz5ztE6iNrwIi8bh0oENEY9f96Obs/93P6XtpC6oTZzk8BINL5IPIk6/5GQVBhK7azQghUChqkw8sG5v3Xm48LjNlhhq0Ily2GpR0xeZevG0Hp7Owsuss+depUOjs7i5zxty1S5L26NV9fKbDUtZybvCA/1i1E3ktU5X8zlSRr6c7c4vKcmlIylDPcRAX5bKO27XpmBcOwXP1HKUF8/hzG/GomrT+5mdy+AJ+crqNXlJM46ija//RXyhYvJlJXF2qy0py1YP//hteN1DHHEh0/Fp/PygOUAx1TSNuNVnB0OenO77YlsTUFhvCz9qmsROoClROBDHuOvidz5McpebvK1tw1Nah2KuGEDvrjWRXdSAlKLj0AKMaddi2kYpjkSE6fGUpi5QEOsfET0MsrsAYGULks2ab9hDBKty12NkPznbeRa3ecEVJzFzjgSLHEX0Jh9feS2b0PbBMZi2P19qI0SW7/fnJNLUSnjiOzcTup9xwPsVKsLHlaDbcO7/laSDRhowBDt9zn6OjHUqhQNl1vXci1d9Pys7vof2E9KpNF6JqTCTKT904uJlp1OTISwerpxx5wsu6m128lueho9KpKjJpahB4w3d05PKwfCPRoCbXvex/7f/IThtZtIjl9pq93BN99eOPBv/XQxlk+gUbg3IL5PeiNFSw7zHYM0MP4OlmueHu8NnhUCCEpeO9HdPp+C9eNJUuWhL7fdNNN1NbWsnLlSk466aTXPbe2tvYtzw5u2zaGYQw7bhgGtm0XOeP/Rt65BOtFROoG9XNPQwqd7EAnvXs2YWfT2FlF85P3AtCzZRUjz7iCyqMcoCDb1c62n3+zaH3Zng56d24gMXICuh4tWuadIh6xsG3mSI6c8LplW199gnRHEzIaJ143hhHHn+ucm8sy1LoXYURoeWEJ/bs2hwiLU2OKuyOa6UFaX11G28rHi/4OUDZ1HtXzT0aLxqg74cgSSwopEZpO2/OPoCfLqZy9iFTjFOL1Y5CRCDYWdjYDEZ3B5l3IeBxb2FiZIeyhQdJNe1GWiYzFSEyZjpVO03L7rTTd9nsAZDRK+aKTKFt4InoiWbQNyrLoenoZXU88jlZRQed9D9D18BKSxx6N0Jz0LPEZ04iOazii9/7ukeD22aGUfWfJunXrmDfPydqyZcuW0G/v1vDAvxWRukHtwvegxRNkulsZ3L0VclnMniydDztpoftXrKT6wx8gMc8BCrL7m2n6SnEA0WxpZXDDJmITx4dB7Heg2DkX7MpaNMwfSdbSXVB6uIa26n9X07O7l0jKYPTsCi753HgA0gMmezf2Y0Qlv/rxNtY914O3bAgJdXPrhtUFkOkeYsOfXmHTH9ccsH0zLpnIgotHES+P8J7rx7+5my0QPaaDFGz57QvE6kppuGwu5XMbKZtWB3qETBZyAybC0OndsB+SSayshdmfweobYnBrE8qy0UqiJI+ZRq69h6af3sPAq05GQpmIUX7eIsrPOgYtwI8SFJUz6bznabrueRq9uoy23z1A+81LKD11PsqyERGDknlTiY4beUTv/d0j7+51IyizZ8/mpz/9KT/+8Y9Dx3/605/+I0nHWyDCMKi47Gx6qiqx9jaT2bYTTBOzrZ3uhx2DtO/FF6n/yEcocQnX03v2sO8nPyxaX7ZpP0ObthCZOhYZGW4svpPEswuUbVLaOAUrcmDfpI7Hl2B2dyFjceKNk6k+63wArHSabPN+0CQdjz3M0PatPuAu43Gio4vrylZvH91PPEHfE08fsH2pM0+gZP50+stfouyCU974jRYRLeF4vnbcshS9roKKC08gPnM8sYkjEbqBnbOwhrIIQye9aQ9aaRI7a2IPpLF6B8js2OdspsXjxOfNJLe/lc6b72JolcN7KxMllJ6+mNSJC5El8aJtsHM5uh95lN7lT6KVldH2lz/TrhuUHnscKptDRmIkp80gWv+PdaO4HP660dvbGzoajUaJRg+OG/T0OJ6ZlZXDk8AVyty5c0mn00yfPp0vfelLRUMD36yceuqpfPrTn+a2225j5Einf+zbt4/PfOYznHbaaUf8eocqh89ZJcPfC38/0HnDdNvX6wcFaGxhXKoqQF69NuUGeth4+3dCAEoxpXr/o7dTMmUqRlk5ulGO0DSUZYXKxOvHYA70seOB3yL0CCNPvICq6QsdHpBiHl9FdvC9Nnth8CHkuKCM734adJ0X5EME36B4nk3SiBCrrGegbTc1MPydCEj3drDpVsdVPNk4lf5dmzBKkkRKKxhs3cPex24n3bbPP6V+8QV0rnmebFcbAO0bn6dm9uJQKGNuoJfX/vJ97GyGaGUdZZNmUzX7BOz0EFq8BJQi29tFvHY0QggSZ1192LxooSdUMMc4IYcSvbSCaGUNjRd8ECG1/MqpQEgNLVqC0iDROMnnv/F2gZKz5/reYd69jfvCV7EG+sl1dtC/fg1dzyyn69mnqDnnAlILjkXZJt1PLSPX1YmWSDK0YyuZfXspPelEjJF1ZPfsQ+Vy9D62DJlMYA8O0fPwo1Rcdj52Ok121x6UUhgj60guPg6jripwj04jPKJMz8PK85YKxsTnd9MO3I8Kd+ily48gpULXrICbq8R2Y3HzKWddjy4JTphr4Dqvky3tsOVdvkP+bks7HpICsE3YKrQDp7wdZOGOuUDf9UK0Q1LEYyMfUodP4GRr4UsXcuh43Trb08nWm79z0Nto/+2txL49Ga0sjl5dVbRMZHwDZlc3rb/8LSIaperyi0kct8AfI8GtbOXdu78uuCnDPY8wf+yKYYkcfNJToZCIfHJcS4KuUJpyvAPccF2p2VhSw9ItTNdTQNdspMu/ZCpJ1vWsimiWH0ajJwySo0vZv7aLirOjmLZEl7bvhSWFon9XJw+918nQOmbRCHY/18SIsTGqaiSbVmf48xfW0LY9T8p+6r/P5vnfb2GobQiFYOO925l+2RSQ+B4RZlsXj1/7AHbOomZCiqPOG82xl41A9aUpr5LYOZu+1jQN0xLEtSynHNsA5Mi5DyKrdFB2ce8qRCgE0EI6XmSuSHdx0AxJvLqE0ukjmPrF8xCadHmnlBNypElk0gEjE7NdEvVA+ED5STPD3loT6yk99vNYPQNkmrroeXo9XXc9Rff9z1HzoXNIHD8blTXpvvcpzM4+tFQJg2u2kt3TSvn5x2PUVpDd3YI9mKbrrifRypJYvQN0/fUJqj54AVZ3H5kd+1G2IjK6ntSpx6FXVwbWw8ItbnxvLOf763hVFZMi4Q+hEMCD1eN6Ays74PVxpOfud/m6EZTvfOc7nHvuuTz22GMsXLgQIQTPPfcce/bs4aGHHjrgeWvWHBgMPpBMnz4dXX9r97oNYWG4ikYwUUOhRLXhXpR+6DCSnKuAZ2ydjNTJ2jppywGDbFOgSRtpO1xCHmeV7Xon2pYM8L85LiHKdGgPcvvaafrvHx30Ppp/8xsav/0tZCSCNqZ42E60cQy51lZafv5rRDxG1fsvoWThbOd6lvBpSIQmHa93z1PePS6lha3ZTnu9xCWGwsoJRE5i5wQy63rUZhxuSGkCrnOozAW8qwQhzynPPsnbX2KYd40nQjkLm5EqxygpZaBtFykxfzj/roJ0y352/fJ/AEhMnMbA1o3E6xowRJzMzt003XEzuUBofu25l9D2+EOodBo7k6Fv1UpSxxwdmoZyrW3s/4ED1hoj6kiceDSJRXOdkLvSBHYui90zQGTMSBCK6MQJzjrqBVfYwg2pVAh9+IQgpe1ztwrh0GRoQoXoMqx4BJmMkZg/hZp/uQQRSGxg2wKkgYw7/S82Y5LrsZefLxPHzguFZEdHjCQxbzZ2dz+51g4GXnyF7geW0vvok1RdcQklc2dDOk3X0iew+vrREgkGN2wg195OxcmnoiVT5Npasfr66XpsKVqqFKuvl87HHqb2oiswOzrItDShlE2sbhTlRx+PkSoP81UFw/k83c3rk4F+QpDfKvCui4bp2flkXEHeq9DzDvJjBfVC16vK5yk9wgTrb2TdaGgIg6df/vKX+cpXvvL6pyrFZz/7WU444QRmzjxwduQRI0bw61//mvnz55PJZLjllls47bTTWL58+UG9sQ5XfvrTn3LhhRcyduxYGhoaEEKwe/duZs2axa233nrA897qdeSwwwCLZQM8lJBNf646VICL4SCEcg/6XppeR3YL9ry2OgRUVU05jo7NL/jf4/WNDDXvYsS5V2GUljuhWehM/X/fda6nFNZgP0I3kPEYCkWutY3Ol5azb9kd9G5fx+iTLyeSrCh+D0UAtqBRFHKhL7zRwKLgHXPcJA+s9BUCWcOI34P1CzAH+9BHjHfcjGUY0MgN9bH78T/5p+glKfc5JNh00zec0D0jghYrwUoPUjZlDokxk+jZvAqARONkmp66j8rZC9G0vDdBumMf5kAvDWd/gLKp8/JNK0m69wB6PBnWbd+oa2cAqCrsZyqXoX/bBoeY0it7gPdQDFj1wxm9Q1KgJ1PoyRTxhrFULj6N9iX303rPX2l/5AHsbA4hIDJiJPauHShlU/2B95I8Zl6INL3s/DPQKkrJtbTQ9NUf0HXH/QhDJzp5PELXGHh+JX1PPEdi4VxSi48jMnZ0+N0eaAPgMMYZuJn+3DKatDF0C12z0YTtEwM75JCgdIHpZULxQFWBE+oUfJzaYb2915e/E6Nj69atbNu2jZNOOol4PO7013e4Z5UdccIRDlxAOWCTAJmFoOWqNMeQ9SO2vHHrzo+FHH9BguZhWGlAuRJ2njOve8srgUKCshkL6Fn/svtVEBk1muzePVR/8P1oSWcnU0QNxvzu2w7pKjZ23wAiEkHGoygTzL1t9CxZTvutf2ZwzToqr7gErTLlr7hKd8M5QoCbAzopSyBRfiiX//oD94tyqRJt4XN7Ac7zyrljUVfgKtyWJhGawjYFlndMt5BSYdvSB6EAcrqJ6R7TsBjqGEQlEvRlDWylYWgWpquAq+4env/PvMdsRa3BXk2gRwVfOsVZe42kgZE0yPXnmHDeJIzpY4mW72aobYj6efW88oPnmXHpRADimmM9tW1uId2V5uqfLWDuKc56awgTo0ZHEzYSQW1NHLDJKc2fo3xy9MACEDRybSQ2CkNYfohzTmlobj1eGacuQbYnQ8vyrUz5grMIONnDJJbtGMG+cVsk214+C5n7btxFRKRKiaZKqZk0lopLF9N+0xJafnoX2q1LsfqHEFISaajDGhgCZVP3r1eQPHaGX69SgvLLT0evLCOzYz/7//OXdNx0HyJiEJs6DiEl/U+uoO+x50ksmkfqtOOINIzw+02+oiJk6oR/Bw6KIBWCwMLNUhvsq0FutlDSEECg8v1XCT8L2BGRv5N1A2Dx4sVs3ryZn//852zatAmlFJdccgkf//jH/R3yYjJnzhyEEM7G0yGIlJItW7YwfvyR9WQslHJjgIgb0WAVWLuFfHMy0PagzmIrgZQBINrtlN7YzAotkGgin0XTtmSem9Pjf3OzHoucQJiCwWdWBhogSU4/iv51q5zvQhKtH0GmaR+1H/ogosRAoRCRCI2/cO0N28bu60cYUWQs6tgbzS30PPwY7b/9EyWr1lHxgQvRyxL+3KJsZ2NSSYXU7DxNg3B0OCFsP+urshW28DYvJJY3Z2suOJUV/kaQ1N1QKy/TWmBTxJsjRAFggbfWBvV1NxzNVha5oX5krATbszcCuqrZ3cX+P/+v/+z0pJvt1FJs+8nXncPxEkQkispmKD/2BCIjR2Mky8im08Qax9Fx7z2ULjjaaYfbPdI7dmMPDlH3mY8RmzLe6xxQknLWTD0B0QpI47xLr+Ei/xyVu8klpEIz3I0LzdGJpbT9EHhNOJ89kvUgD6Hdn6bvydVUffRyn4zeB+YV4TDtQtL0EC2MO5ci0BJl6I1lxBvHU3HmmXTceTdtv78V7Z4HsPr6EJpGpK6e9OAAQsHI93+QxOTp+XdjK6zTz0Uvq2Bo5zb2/v4XtN5zOyISpaRxPAJJ94rn6H7pGcpmLaBi/gnEKuqG82cW6F7BY4U6ijgAUOU/7gPU4f0WAqkCwJTnTOCvG4FiR0TewLqxZ8+eEJ/UoXhVfeITn2DNmjU888wzr1tuypQpIQL2hQsXsmfPHv7nf/7niINVDQ0NvPLKKzz66KP+OjJ9+nROP/301z3vrV5HDptg/aDAVCFI4n08gEGtCs8J/lYEBIK88pdpbybb1kTZ2Fno6FROnMdA8y6GOvZRO/0EOre9GqhAEUlVMNSyh74Nq6maeozjKROYmBECQ6YcgyHtGOWirpb686+gZOp0Wh+4gz3L/sKEC/4lBPQUBeA80CT4DIo9I++HAqBEKHxwLlguxH8V5Jsq9pwCz08p5/7b1z9L755N1C08i4qp851yEnbe9XsGm3a45SW929eizBw9m1+hZMwEBnZuYczFHyZWN4r+nZtJjp3Ma7/5BlZ6yD3F2XHueu1VhBKk25vJ9XWjx53wht4dG3ywKti2Q+pPhzkLFXpm2baF2e+4aPbu2kDp5KOcn+w8COU9B8+rIWgA2lq+zIFi9bV4grqLryIxazZNf/gN8YmTqbr4IiK1dY63iEuG7vDcuCdJ5WQZkwqjsZ66G67H7h8kNm0SwtAQAqyhLL0PPkHvQ8uw+wao+cS1IXJ0bwApK98f8iTq4Ua+Hl+VlApNc27O0C0M13PCUtL3xDAt6RCs57RAWvP8IisK0AFxRMGqYgPtdcq+w6Sjo4MrrriCZcuWIYTgtddeY/z48Xz4wx+mvLyc733ve293E9+w2IZD/BoSmf/ujUGhQFrK3+1VQrhcT3lvVtsosKGLKT1BCc6Z7nlDrfvIdrZRNm4WUmhUTzyG9P49ZHraqJp7Ep1rngucr4jU1JLdu4fBV9eSnDvX2WU23QYbCqELtGQpaM7FtJiNHF9FzccvJT5nCp233kvnX+6i9iPXhdcAww47nWkKZQmEx50S3DV0OUP8+cfjjvDnLuGXzc9jIs8RojngldIkpg9WSaRuYxnOGPe4OJTCBWM0dExiI8rZ/udX2f/0Tho+uJjaxZN8sOqVzz1M71Zn91vogvWPNmNbipfvb2XEnGqaVrVz8g/PITm6lOaXm6hdMIoHL/kj5pBDSqJJhW3avPbgdpSt6N/RzkDbEIlSRzV5bXkT808tc7uM226fOd8R6T6YoEFrIdFwCNaDYJWFo+VaSpJxLTUP4PLqjwqXUySbxco47exbvZOqoxsxzeGZxwA3SYVrCNsef5jXhUTov+3OmUoJZDJFzScuo+TYmbR870/E506h+upzMEa4Wa5EgccsgBKOxxQQHd9A/X/9MyqTJTZtvGN1KrCHsvTc8xi9S57GTmeo+eh7Q23y5WBAlfe5UHkPjrvA8ZDBUrjDLtTwJD2ucRisWJkHatQbkHf5ulEoo0aNekNE6i+++OIhkfUqpV7XA+BISq3eR9RIA46npK2Eyy0nfWDZQvicVN74z9laiIPODuywe8e8sa5L2wfpPb4377PX5z3Pquy2fVht3SSmzUDaOuXzjye3t4lcVxdVx55Mx7MBmgtlExk1ikzTPgbWrSW+IA8aeCJ0gVaRcjl8HB6oyIh6aq7+AANTp9N51710//EBqj/yXjC8weSCucohm/emPKkFvM6CHpLePci8p5AtHPBISRwuK/DHYRCwAnyHAGkHhnkAqBL5Rxu6vLIU0bJqWlYspXv7ampPOY/k1HxypD23/jLvNSUEfRtWA9CzfiXRulFkWvbReM31aMkUA7u2Eh8/gR3f/xrKdOZjoZwMiv0vrcC2LbKtTZi9vYi4E4I3uHodsYmOESxysgBEKRjnIp9tWGkOGCijJnrUIhZxlBFDt4jpZkh3LgQ+PZ3ZtvKcVJktu4lNaXR4z4LzqA8+OuD+sCzfbpnh3FBOOSNRRt3V19I/41Xa/vRHSmbMpPq8C4mUVeXL2qFlEqEEWlkVKCeCpOGaj6OUoqRxPNJJLYk9OETbU0voWvE0Kmcy+owrC55doO7CYwfSxQptWHv459fjhA46C+A9AkHQ9PDLHTF5A+tGaWlpCKw6mHzyk5/kvvvu46mnnmL06NGH3cTjjjvudT2d3qycccYZnHHGGYd1zlu5jhx2GOBhdYiDlA0BVQW6UTDk0JnMbQa2byHdtIeOF5dhZ9KhumJVI4jXjCY70EWsohYMHSvrkNPVzDkZKzeEZWZA2VRMc4j5vPnd75cy8N0zDtxJOzltJvbgIM33/Zn0YCfRZEF8aZH2+14nhWBSwWD0noMiX1ap4YN+GIB1AJCqWLuEEEy++F/pa97Krsf+yP6n7qFshgNW2UKhlI1WksQa7KfhoutIjp9KbqiXrT//OtIFnJqX30tJwzjK5y1iqKfFB6rGXPUvZJr3079jE/uX/AUAo6yKSKqcTNt+kmMmU7/oXFqff4TujSsomzSb6gWnoMcTw3Xlw51wDtAnvb5jZdNs/uEX/eP7H/4Lgy27SU6eQXzUGNC1YaGtXl/wvTmk8kMAg1nNBPjvGAHKshjcuB6Aoa1byO7fR6S+riBVtwhYMSI0M0fHjwkZr0qBjERJnXYCvQ8tQ2U9xmWvQxAaP342wECYXv6+DpD1z/0upY2uOZ3dkI5XlWXLkMeA7aZxVnbAcPLboQregzqiYYCOInnoZd9p8pnPfAbDMNi9e3coC8eVV17JZz7zmXc0WGUZAqm7BvyB5nvvcwDEEsrdAZbh87zd4JACA6H52zufnE3/zk0Mteyl/YXHUWaYFDte10C0sg5zqI9oRQ1C17DSTsha1aLTsNIDmJlBEILUvAXInAgY1wJb2L6niBCA5oC0HjFr6oQZ2P0DdP7xfszeXvSAMqOkQOgK4S1EEgfEkzgeUioPethKhIaTKFREg7aKdNpW6HGlNOXsRrpGizIklm5j5xSmrpEznPGf0XU0aROLmER1jZk/+xD9q3ew6Rv3s/s3yyg/fhrojsJhW4pYVQnpjkGOvvE8queOJt3cyxPv/yPRulFAO6987xlqZ9cy/pJZ9G9v84Gqy39/Os0rmtj3UjPPfe1phICqhjjl9VFaXssw46QKLv3kSB770SZefLCdRRdUc/aH6kmVaiFvKhvhhP2RNxxiIv+eLSQZ2wm7SCudQSvKkB2h33Q8gA1hI4XtG71S2GT6svxq8V1+HWu/voS6c2eTOnoy8Ukj0TQHJFOewUKe3DzvUeWGBbqfvcXOyzDmfBEo06T/RYePZOjVzWROXoBe54BVQoqwAQ2BjQLnX3Ti2MDLd969jEVJnraQ3iVP+1mvQvNiEcMtZCQE2W8DRm9w3IYMlGCmMC97VPB84RjMQb3OP0agXpXvn0dC3u3rRlBuuukmkskkl19+eej4X//6VwYHB7n22muLnrd48WImTpx4yMS9ntfvWy3VWh8x3Rm3WTcxQloZ5JRG2h3POaWTRkcq6UV/u+Nd9zMFeiG+GZdcPWvrfjbArK2Rs7Rh2TmFMhlYuZ3MtiZ67n8CAsTCbUBs3Dj00gqs9CCRqhqElFgZRx+uOuF0ckP9mIN9ICWp+fOR2YBCJlRoA9QZMPjZlKWSpBYswOrpo/vhJdhdFyPLnOet3A0Rh1w6r3NZwo2fD+pgyqlTWcIJdfOAAS+sUYLtrQVCIC0cryIbJ9Ms+OTWdnC98RKZyOFgtXc7UuhMu+Lz9O7dzI6lf6D1yQdJTp7hkKG7odp6qgyzr4cxV36UktHjSLc1s/Om71MyZiKZln0033878RGNVBx7Epk9e32gqvGfP0ffxtUM7dxGyx23gRDo1VXoZWWYzfuJHzWDsjNPpevOBxhcvZbksQsoPWUxmhELAXE+YKSBinhrokJGLGIlWeLRHDHduWZEM/3Pnnik6gO5CGnTIKt0cj2DrLrqR36Zlh/8idSpxxCfNQ2jYTRCaP4zcrqCyG88FczrxTxUg8CRypkMrnZAvsH16zCPPp5YooCeoIgd6X1ONE7Ml3Hfqa7HqThqIV0rnoacldczgsCUzYHBqeD1yJs43twqwAHovHr8Phl6Jd4Dzh8LYEfeZlx4veKIylu5biil+OQnP8ndd9/N8uXLGTdu3OE3EHj11VcZMWLEGzr39eRTn/oUEydO5FOf+lTo+E9/+lO2bt3KD3/4w6LnvdXryOF5VjFsXgKG95NDencB4yNodECgcwaMkrZlS+h49jFkNEax9GXpjiYwdKJVtWQ729jz5O2MOfNqEtWjiZbVsPeZu+jc/AK1x59D2dS5QD4MxMKib+dGsl2tpJv3UnXimcSq6x3FKZC9Ir5gNnLpPbS+9iwjj3VIAL0sBcMMJ/feROB7YbnQ43AfbshwKxz4B0KwA8+tcKIIgmYg2L3sz5jpfrBtMpk+jESKnk2vMtS0yzlJSvbc/b9+CCBA38ZVpKbOIdPRQteq5xls2o2U+a6T62ijZv7J1Mw7GTuXBaWQRt4F0rulthVPoMyc81/Z1J90wcEnmSLG7YHEAxmHOvYx1LoPZZq0PHxHqEykpp6eVS/S+dwTCF13gThFpG4EtRdfgVFZ6YJVKv8uXOBSQcCTAd8FWtk2Qzu20fvic/SvdRYPLZkiMm5s0SwlQc8qJV1gKQhAgat3OJ4lsixBZFwDmde2oyzLIWT3ywYAKk/RcusL7QK5HAcyAFp54rkxawGj288YJm1/MtY0gWUVCz7HB6yCgBnB3b43KweafA5U9h0mS5cu5ZFHHhm2wzJp0iR27dr1NrXqyIitC2w3DFAJd04NKB+h3M+Bjhmcv6SnzFhut3fn7mBZr24fTFLQuuxeul58GhmLF103hlr2oDRBpLqGTHsLvUtuY9QVHyRWNRKjvJKmB/9M//o1VJ97EYlpM/L5vaXCUiZDq9eT62gju6eJ8otPxxhRjW1KfxwoJSg5bjZdf3mIvudeoPI9bupfU4CQjuLutktqthNWKJ3wR9v1TFRZicgJVDbPOxLK1AOhbD0ysM4E5zAlveyKLvhsKJQu/ZBB0+UOMHUFmiITsdAjJkoptn39fuyhLFZfmnR3GlUWo23JKvq3O5mZ0AQvfe5+ZEzHSDkg0M5HtjPx9FH07O5n8x2b6N/eQaY/DyIN7enk9H8ez3kfa0Cls0hhkwjwjGvYKKV44JcOT+K9P9tHRhmc+0lHufN2tiPCJCJMogGAKqMc46HHitNvxsgox7gdtAyGLIO0++fVI1G0buykZ1sHuSGLDT9cHuonsTHVND+wmn23vYCI6GjJGCiIja9n9PXnoleVDQv7c7ugn50v5GmlBLZpk16/jd6lzzP4yiYA9OpyohPyod6hurxwJH8Xvsii6ANLAr2iAmNUPemNW7FthSgsX7A4+fpDUGnhAJ9d8M3f7R/GPZIH55xQEDVM1wsdc6Xw0m9a3uXrRlBuvPFGfvnLXw47Xltby0c/+tEDglWHy5f4evxXR1LK5BARNy1cTmlklY5UtgNUeXO/7XpXiby3lTcOLZyMphnLmdccrirnL2M6xzKWjmk5XqRBvrmWXz9A3xMrHALrItZoescOYg02RmU12ZYm9t/7J0Z94CMYdbXoZeU03XELgxvWU3355cQnT/b1OyXBVlkG12zAbG8jt7+VsovOQK+pcsLSrPy4Sc1fQNdDD9P/3EuUnrkYcMGN16MFCG4auuPQASJEHhgwhc95WBgp4G3UutOlo0u6uq7vbRUAMASEN0oEfrSKUoLtD/8WEGTam7HSg8hkCZ0vPkO2s82pXEh2/+kXTiIS6Vy0d/1KUuNnke3toHPl0+S6Osh0t/nXyLa3UH362VSedTamSqN0iYiHTVllWfQ+8SQA3Q8tRUiDilNODYPoXllDoaIuD1XEwoia6K7uGtx4sJVAF3bIo2ogF2Hvqi76d3RiDeZov+lBp1IpwbYxRtTSt/Q5eu55AhExkHGnP0XGjqHqqkvQSssC3kVhwD//X+TfLaBMm6HXttD97NMMbXHWDaO6lpib5d6vw18L8oeHeUOB74HlAXnxVA2R8mr6d29BmHlgaVjdge8HBMXCTUfheOl54FgetFMo4axQ/uvJOxM69XhjXjmAV6EjyDCPrDcjb+G6cf311/OnP/2Je++9l1QqRXOzk4W6rKzMB2++8IUvsG/fPm6++WYAfvjDHzJ27FhmzJhBNpvl1ltv5c477+TOO+88vIsfgtx5553cd999w44vWrSIG2+88YBg1Vu9jvzNZwO0TZOuV56l49nHiI8eS8M1H2do9w723PoLAJJTZlFS30Dl0YuR7i6Msmx2//U37F56C2NOfS9GsoL2tU5MaN+2ddiZIbI9nZiDfUTKq+jZshqVC6QT1XRGXfC+YW2R0SipRYvofuYZameejJ5IvfUP4AjKUMd+cn1d/vfXfvZltJIkkYpqZ+FQtruFIlFmDnsoT4rbt2kVAJGKGtL7d4fq7V6/kqqjjgdAaDpWeigEVnky/tKP0bVhBdneDsqnzT9oe82hAQb37yDT2Uqmq5Vcbzd2ZggrM4iMxhl91nuJVYeR5Wx3Bzv+9wfkGYeDIqg//3Ii1bUM7d9Net9urPQQtpml+9kn2f3D79D4b/+BdpipQdsfupee555GRCJUnXsBJdNnoFdVQEQ7+MmHIFZnN9kde4iMbXDS377Tteo3Iu/ycI6BgQFKSoZnBGtvbz+k2Pd/SFjsXJbul56h68WnKRk/mVHv/whD27ew94+/ASA5Yzax+gaqjl3sJNgQoGyLPbf8gn2338Soi69BK0nQs8bhrupfu4rcYA+51jbsTBqtvJTB1WtRuTxAIhNxqq69cFhbtEQJyeOPoW/Z05SdcAJaonjmt79VSb+2F7s/78m89r0/wKhIEKkv95BtsBzLxU6bmMoDzQVbH3OAporGJHteag3Vu+7BPRx9kaNga4YgO2BDSRgMF0Lwb7fO5sV7W+hszjL/nNqDtre3M8f6FT3s355h744sHfuzDPWZpHuyxKriLPzSCcQawq7qvTs6eerDtxevUAoaP3Mekdoyejc0MbClCXswjT2Uof2eF9nyiV8y+VefRKYSB21bUNp/dy/9y1cgYlEqrz2fkqMmotdWhgh534yYrR3k9jUTnTrB4b37O1w23u3rRlB27dpVdJe+sbGR3bt3FznjH1IodjpL10Mv0PfECuJzp1P9kasZemUT7b/9AwCJeXOJjmqg4riTkF64b85k729/wr5bf82ID/wTwjAYWONsWvavWEGuq5Ns035UzkRLJRlYvRbMvJeOVpak/IrzhrVFT6VIzp9PzxPLSZ50LDIW+z94AkdO+ve+RpAUb8sPvoSeKkUvrXAKBHR0O5vN00ZIjb7tawGIlNfQt319qN6+da+Qmu04HAhNxzYziAJTVmgadZ/4ZwZWvIrV20di9lEHba/V00d67Xb6O5qxWtqwOnqwBzPkegeJ15cx6/OnUjo6HObVt6WFbZ8rEopl26BpVH/sKrRUgvTm3eS278NOZ7AHhuhb9gz7t+1g1Fe+iBY9vPfaevtt9K96BRmLU3PJFZSMnYBRVoUsFpP5BiTd0Uy2u53ScTMOXvjdKm/huvGLXzjYxcknnxw6ftNNN3HdddcB0NTUFJqzs9ksn/vc59i3bx/xeJwZM2bw4IMPcs455xzWtQ9FOjo6KCsrG3a8tLSU9vb2I369Q5XDA6uCu9kFHj9F5fXe4bBdtuHHbQ06XniK9sed9OFDe3ey639/RKbZUYBT02Yz8uKrEdKJ3fa8O4UtSU2czsDOzex+4jYsLEaeeDH7n76bdHsTud4u9JIkQtMZatpNxfQFdK5+jpIxE6g78xKitXV5tLiAVLDs1JPpe/Eltt3yPVITZ1I6bgapxikIIYfpgsM8zsSBfyy2UVqUtyq4i1HkuYcOFdZnGKEfIzV1JMdNId3WROmco8ns30umZR/JqbNQuaxD1LplA4kJUxnYthHAz/wXqRlBxayjqZi9EGEYjmdwLsuOW39EpqOZ8ukLqFt8PkY86bcpPmos8VFj820rgsD37d7C4N7tDDXton/XFlAKGYkSqazBKK/CqKyke5VD3Lv1D99l9MXXUTbRWYgsM0vbs0sAxYR/+wpaSQKkxOztIdvdjlFZjVFWDkCscSyxsWPxwhLMnm4Gt25BxGMOt0vQa9vb5VCEoHwlQZkmPc89TfnJp1L5nnMQmue9AEV3kF2vDP+4+x79XW/vGr5burPwauUpsjv30HHT7VR/xHPzd+r1OKrynCbuLnrQg0oEnNQEfvYSz/tKk3lPLEs5XgBOaMtw4uDC755XleMZ4h1TaPqR86wShbs5Byn7TpOTTjqJm2++ma997WuAY6Tbts13v/vdtyQ97f+l2BGBZeQ9q7wx54eoebtvdpijIchv44sKzIsF4ruSS+h85gk6nloKwOD2Lez6zQ+cNNhAavYC6i95r+O5GLDhldAomTSVoV3b2Xf3zdRf+n6qzziP9kcfINPSRLar3QnjkxJrbx+J4+bR//SLxGZMpuLK8zBG1jhhF8O8KaH0vFMYePEV9n3ne5QcNYP4nBnEpk5ydlPdsAwbh0NKGrbjieN5Vhk2yhJYWYnthpMIN7uTtECYTrik8wwZ5qYPuGEjTlt8Ut2sMykozSHa9a/nfrYiEiuiYeaSoXuJjq0nOauRzJ42Kk8/isHX9pPe2Ubd6dPIdQ+iadCxYg81c+tpedl55l27+gGonlzOzIvGMefiRvSYRsa26em2+cPVz9C9d4C5F43mPZ+dRrzUWassJamYk+KsOaP9sL8ey+Giku7ibAFbnmln26o+dqzqZfPzXSgFkYRBqrGMeH0p8booLfdtpGffAPdccQ8zvnkp5Uc7nCYyk2bTr19B6JJj//pxiEYRmiTd0ke6qQd9VA2UlmEqiEweS2TyWP9xpPd2kd7ehDIifsi035/czuWHUgc6htWfpn/5CsovPZ2yC052ACr/5wN08MDPIIaXcT0pfPtQashUgsymbXTeeg+V77+oaHXD5stiO+Set1SxcwJzs+8JENQPg55T3q44+J7DwfhWdYTjOd7t60ZQamtrWbNmDWPHjg0dX716NVVVxbOXHqrs2bOHL3/5y/zv//7vm6rncCQlM+juS0lj+GFXyDwvnCUkFpKcCG8MBjnlPDJ2U0k/cYTnbTWUM8jmNGxbkstptN/yCL1LnnZ+e3UDzV/7Ebkmx/MhtfA4qi+9DOlmb/MSAQipE5s0ifT+PTTd+jtqP3QdpeefTu/9j5FpaSbb3opeXQ62whrsoXTxbHofX0l87jQqrjobrarWDwF05uP8fZafczoDq1ez/xvfp2T2DErmznAy2NmygI+IYR44uIdCfEgEPGUCa0Ro3Q3oikpzIlCERT4sK+hZVcQDRbiUgh5/lCfRkQ3EG8aSbW+ldM7RpPftJtvWQtns4zB7nU30wT3biNU1MLRvBwBZ16MqOqKB8vnHkpx3NELXsXUw033s/dmPsXp6SB57NJUXnOsAeu5zKJkwmZIJk/N2nO3q5a7hZAvF4Kb1ZPbtJr19B5lN253HnogRGVmNUVOGUVvNwKMrybb08sz7/8Cs711JwwJnw6SnB7b//nlExKDh5zeAMECTmO1dWB1dGPW1yEQpKIiPn0h83EQ35E+Q29uE2dmFJiN5D7dCr6dgGLXzZDF7euhf9QrVZ19A+fGLEYhhXk+h9/k67z0YghfM/KcJAy0ap3fHepqeuo9Riy4YFuoXet8H8EIKcQCLgrLKu57Ktw0V6nt5+0mEjzO8XiUCtC1HQN7KdeNQCMh///vfh75//vOf5/Of//zhXegNysSJE1myZAmf+MQnQscffvjhN51U482sI4edDTDIHTKMiwnynfYAOkchYOMr0NJGmSa5nk4sM4eeSCBTCVLTZtK7biXZliYAH6gqP/oE6s65hKF9u+h64SmSM2aTmn6UX29i0lTkUzHsbJp9T9zOUZ/6PqnxU9GMOL17NtG/+zVGnHIRWizOwJ6tdK5+jrLp84hXj3AmNff+CrPzaSUJRv/LJ+l95mn6X9tE16rnSI6dwuiz3o8ez2e4C/4fdv/Fns0hgFdAPk78EKTQaDKqa5j+sa/TufFlmpffS7atmehJp1N97oUgoOfVl2i5+8/0b1yNUVVDYtxk6i+4irbHHJfAWP1oEhOmEa2tp3TaHGwzS8uTD9P96ovoJQlkNEam3XlP3etfBkNj5FlXFFV+C+8hlx6gZdm99KxbgZZIEa2qpf7MS0lOmoZeWu66PztlqxefxdYffQWA3q1rSXc0Y/b30rdpLdZgH3ppGfv+chPSiCB0HWHooOlIw3C+64Z/XOg6aBqDr21GlpTQ88JzlC5aiEgEFtrCNcO7AVvR+ejDAJRMnRoCqhxugYL3UHjTAp/0fBihbcCdW69KMfK7n2fPv3yFgWdWUnbhKRh1VYdApE44LC/wP8jR4Lg4gxaoJ5hN53XFDf0TbjijcEEwKRXWEeSsereHc3z3u9/l5JNPZsWKFWSzWT7/+c+zfv16Ojs7efbZZ9/u5r0psaIggjxT4IekAQHN2FOogsq2wxGVB7RwFBV3yHjrRrarA3ImeiKJTJRQNm0uvWtXkuvqAPCBqvLFp1Jz5nkM7dpB9/NPk5o93yF+dduRnDmLjieWgG3Tcu9fGPs/3yZy3AxEVZyhVWvJbN1F5TUXIKMGgyu30P/0iyQXLSBSX49yb0BIhdTyi4CSCr06Qf0NH6P3secZXLuJvqeeIz5nOlUfvgxNdz1yVB6k0A0rH0poOxxHKi6wc66RltWwsxKZkchMnkdLZh3gKgQegONy74KEPlejm01HuYCXTzKrO4CWsiW2JYhUj2L0j/+Lgedfouu2JWR2NFN95cnUXHc2Qii6l7xE068epuXRjcQaqiif18jUz01l84+XAVAxvZbaY8ZQOqGKSWc0YA1kuP87K9m1ZAvRyjhG3KB7pwNmrbhjDyQTLP7X4TvhurAc7i7hZPMDGOjI8NA3t7L50b0kamKUNZZx0g3HkTp6IpnSShT5LIdj3ncsT131ewBal79G14ZWcp39dD6zCat3iEhtKWu/eDcyoiMj7rph6KAbYOhIwztmOAkwNI2BdTvRq8voemQlZWcsgEjUf4dBkCqYdU8pRedfHgEgftRkJ6zb+73Ymu+FogQzSPlKvwiUyx8TCozKKkZ98wvs+eSX6F/2PKVnnYJeWR6qe1g4B+TBpqDuU2DwDjs3cKoovA+vnW7/DuaFEYLiAO+Rknf5uhGUq666ik996lOkUik/Q9STTz7Jpz/9aa666qo3VXdnZyd/+MMf/k/BqhJpobsovFQKaTuZQP1QbEDicGvGhIkt8zpLTmhorvLugVze/4yl0z+oo0yL/j2dmEMKkSpF6CUkjjmGgedXY/X0AvhAVcVZZ1H+njMY2vYafc+8QPLYYyiZ6mTnEjYkjplH95NPANBx112M+/W/U3n6VIzKEgaeXUtmZxMNHzuTWEzQ+uQWeh9fSeqU4zDqalE56YT/icD4wfmsV1VS/28fp++p5xlcvY6+Zc9QMm82NVdejojE8+BEiPcojwz4G6cBya+7KgBACT/UHsJmXKGTiQc4hAAr7zyRBz2iY8cw+RP/Tdfal2h78kEy+/dQffq51J5zMQjofPYJ2h95gJ7VLxCprScxfgqpWfNoftDxcI03jKVk/GQio0aTnDETMzNE68N30r96FVppKcLQMTuc9b3v2efRqyspO/0UlFDD5jVFXs12Nqd76fzLHQyt2YBWUYoxspaqj1xKyeyJ6FXJUAbm5NknsPezPwKg6YnX6F69l2x7H+1Pbcbqz6DXlNNy4/+CbiAMw7cr8naG81/qBkJqCKmT3r4To7aWvqefp/ToYxF6JNTeomLadD7khBkmxk92QNODSCiELwAySotQAgxp5t9bIlHLjPf9J2tu+iJtq5dTP/MUjHgqUGexiT/wUQ5vVyG/prOhpsJ6imLY8ueDi1IMM5G8d+mVO6LT99/RulEon/3sZ/nEJz5BW1sbp556KgCPP/443/ve9w4YAnio8mbWkTdFsK4Ew1/UwcZPkV1nW1ls+ta/H/Ty1WddRMfjD6FyWWw7R9crz9F6v8NJ1Ld+FekTT6HypNMxe3uR6Sx21gldqJi9EKU5IWzNT99P20pHiU6OnUz59PmUjB5HauJMmpbeRba7A2XbJKfNpKRhfNEdRG1UNZVXXEwlkF69iZY7b+O1W75D3aJzqJx1nI/iD7vngFFWFJwqeC4BQP31y3rHCxeUIifJkhKs7JB/ODpurJNhS0J85nSqzYvJdbZjDQ3Rv3UD3SscQ1kvLaPiuMUkJk+lb9NaWp96iN7VL2Olhyg/7kRQit5VK0KXHGreg6kyaHrUv2elbDKdbQw17SbTvI9M8z7SrU3YQ4MII0L9Re+jdNZ8ZCFCFLgfvbSUho9+mvbHH6J/yzqEbqAlksQaG9ETKYTUsHNZJ5TRzGHncqj0EKZpOsdyOZRp5v9sC2WaRBvG0LnkQTofeYjUwoVUXXQBQtfzZPs22LkcA6tWkd2/n76XX8Yecp5ltr2V2KQJYTCyELh1PUV8w9vPDKiKFHaPu1+1mMbIb3ySlu/+nrYf3UL5paeTmDcZGdGHvewgP5WU+Y4oBAHOqvA5BwL7ZVChUYFzg6B1AKjyjHSHA+tIclYVaEwHK/sOk+nTp7NmzRp+8YtfoGkaAwMDXHLJJVx//fVvCYni/6VYEYEwggsHw7KCBclaPe4GX2kvSIDgzSW2lWXTd/7joNevOucCOh55ECwLO5uma8WztN/txPr3b1hLxamnUXb8Yqz+fuzskE+mmzr5ROyIjT62kq7b7qbvMcejs3ThJOLzZ1AydxyxWZPo+P3tZJubwMxRcvQsSqaNRnMz6wmpULbAVGCMrqHqugtRSjH0ygY6fncHTV/6AeWXn0Ny0dz8Lbrjy89YFbHyXo+eR4HleAJYWQ07rSEyLjl41kmtLnOeQph/5v7z8w7J/P/Q+/CAdiV8ol0tlsTqHvTPjUwcg2VLhFCUHDOTWlNhNndiD6bpeOY1mu99xSlXW0r1JQtJzhpD1wubeeoHq2l5ZD12JsfIixdg50xaHgmHeexa2UF3v6Q86byHnC2xLZvmnYPsWdNDx5ZOOrZ00bWti0xvFqPEYOHXTqdq8VQfXO83DT+Ll3dMr63gqB9cxY6bnqPj6U3IqIFeniA5cwxaWcIBjTJZVNbEdv+s/jR2xsTOWaiMs17YWQuVM8GyUTkTo7qM1pseoe3Wxyl7z9FUv/9MN1w7L3Y6y8CL68ju3E/fkytRaYd2INfcHuKoAoZ7ripCBO1BoEopHK8MCt61W4c0ooz4z8/Q+qPf0v6zP1B2/hnEZ0x2NmmC/YL8OcUIf/2d/mLrRGCvxQFEC4xFV5nxDXJvA0U5RrIoZqUcKXmXrxtB+frXv86uXbs47bTT0N33a9s211xzDd/85jdf99xiHCVB2b59+xFr56FKicD3ngTT504KJk9AhrP9BSUjDCwEOdflQgpF1tYY6rFYd9nBMyZWnHceXQ8+CEphDQ7Q8+wzdN5xN+AQWpedcyap4xdiDwxg2n3+eWVnHUNpcoj49Djb/udBmt35bezpY4nNHU/VseNpmjGWtp/9kdKzj8ceypGcv4BIw6jQuPHGX6x2NLFLL0ddohhYtYr22+9g77e+S9WFF5KcNdsty3APHeFsCNm4kQKB7MwO56rI2ylSYbuhwiHwCQLe0Plx6/xYUD6/P5MHQkpS5Aa6/PqiDQ1+1EFy3nwwdHLtbdiZDL3rXsHqfxIAvbKK8lNOIzq6gf5N62hdeh99K14C26bslMXYmQx9L74cel+DmzaRPGsRskTz50Vl22T3tpDdto/cnv1k9+4ju68ZNZRGlsSo+fQ1JBZMzeN70vXtDDyDyIhaRnzpOrruXEbn4+uQ8QhaWYLYjAnIZAqUxHbXDZUzUZkcdv+QkxAp59gbmCbKtFC5HMq2QSn0ZIqOe+6m88EHKVt0AlVnnhMOAVdgp9P0r1tDZu9uele+iLIcvSLb0U60dqTb6Hz5YTxUwXcR8KAKglXSCv7mVKARZdr5/8prS3/N9qW/Y+TsM0mNnIyUxd2X/P32YktEQR8JefUFjksLgrylfn3eplpAX/HsqGE6zJGSv6N1o1A+9KEPkclk+MY3vuFHeowdO5Zf/OIXXHPNNa977lu5jgh1CD5pvb29lJWVMeXT3zxofG1wV+CQRELTY3c72QeAaN1Iai+4jGx7K9mWJqKjxpDr6iBSW09q6kzM9CAdjz1E/8Z1WH296GXl1F72Xjofe5j0rp2hqo2yKuoWnUXZ1LlIJHY2w/qffQGAsomzGXnm5chEibvpZ9G8/D66XnbakZwxm5FXXuuHltg6KB2sqBqWrcbs6WHvfzovdcr1XyViJJFm4BkEN0SLgHUHAqUKy4fCYg72fA8AViHBMjO0vfwEnU8+Ss1730fJjOnIRDw/kXin2Io93/oGZlcXwjAoW7CI3tUrsIcGHXBoTCNVZ51PpLoGocBMD9H+0L30r1kV4gArO+Z4ImWVTjbHvbv8TI5GVQ3R+pFE6kdglFe6sdcVBQtukVtzJyZbL7JzUMQQLlZP0ZBMoch2ttG3ehXdDy8htfhEoqNHYmeyyHgMlTXpe/Z5snv3InSdxPz59L/4IgA1V7+P5IJ5w+t261dSga781LjOu3AJyQV5jyePRFcJN6ufqyC4E3FmVzPtv76LzPZ9aGUJxnznY+iV4Th6IZVLmp43eD2QKRjuFxRJPmTQCwEExzj2ZoicqWGaGpapYZve6o7vWaW5BNHgXFel02x+34309PQcVkrXoHhzT8P3v4aMH1psvz2UZs9n//NNXfcf8ubFe3fTP/ZNdMN9d6rIGhFURHAIOP0vxeYB4Yz9PUtvo2eto7DGx46n6j3nkW1pJtfeRnTkaHKd7URGjaJk2nSswT46lj7M4Pr1WH196JWVVL//Sjrvvo/s3n2hdhs1NZSf+x5K5s6GKFjZPvZ+6qsApE46ipEfOwejJELO1MgNWbT/4WF6H3XakTxxHjX/cqmfDdAbU1ZOYpvBCVxhdXay9zPfBaDhF/+NLIk6gK+u0AzLB3t1zUbTbDRp+94BngGWMzVnXGad78oWqJyEnMyHlnjPkoLPHvBX4Mnpk/EG1x+psNUQPQ8+Su9DT1P/ufdSMnM8siQ2DFxDWWz9p+9h9QygpeKUn3wUXU+sxh7KoJWWkJjeSP11pxGpq3DA9IF+9v16KV3PbsHO5LlcZr53GsmaKHteaKF1XRu5QdMxckaXUTapmuT4GkpGpCib04BeWUrOCivSppJ+m3yQz5bkbBma1zxwSLrzZjCgP2dr2Lbwzw+G+gVBpdy+VnqeWkPXnU9RfvGJREdWY6ezyEQcazBD79KXyO5uQUQMkotm0bfcAfNqPv0+EkfPDL+fwCZgPrTb+wE/lES5//MkySK8SRaoL7N7Dx23/JXc3ia08lJG/Odn0JKJAgXD/SsIxx2WlQqGt5civwXPDxrAvtch+T4WMDTswTS7vnjDP9aNNyivvfYaq1atIh6PM2vWLBobGw96jpQSIcTrhqgIIbAs64C/Hynx3t2OTSPQkk57Bm1BWmmklU5aGaTd7EtpFWHAjoYyBKaVQcY2GLQjDFoR+i2H83HAjNKZKeHZ//cIXc+/BkB89lTKzjqD7M69mJ3dREaOxGxrJ9Y4lvjUSeR6e+l6aAlDa9dj9w+g11VTdc0VdN56J7mmllC7I2PqaLj6eMoXTSYZzRHpbuPRyxyC5DHnTmPmv56IHYnRl43S3yvY+dOl9CxbBUDy1IVUXXaJS34eGPM+UIx/LNfRzp4bvwXA2G/e6EQMWCIPOvh8KK7NrbvJNLxkURp5dCEEjrm/B8ejcEKzlKYCx/JtoXCe8D67GwXCAntgiM5HltD73DOMuO4jxMeOR8Siw3Vy22bHV25AZTJoZWUkjjqKvpdeQuVyaIkEscmTqLjwHPSKcpRUWP19dN5+D0NrNjibB66UnXsCWmmcwdXbyGzbi8pkQQiM+hqMMSOIjKlHry4nPmM8WlkqpH8Pu7+ACNej2/ectSRYAmVKn8QeABc0FLbIvwsbpDkcycm0NNO38iW6n1lO5WnvQS+vwM5m0EuSWAMDdL/wDLn2VkQkQmraUfSudhwCRr3vwyQnTQ+3NzBHhwjMPXPDA6TcDI9hwnw1LMMwCvradrDr+TsY6m4mkqhg5vmfQ4uE59Ogx1owgYvvES/y9TqgmPJtzTy5PEjLTWrlgVWujeck6CGU7MwLAQz2adNMs+V7X/zHunEEpa2tjXg8TjKZPHhh3tp15G+CYN3OZvzPmZb9dCxfyuirP+ofU4HJQ4uXUHvBZdScfynKyjmpQA2N2Pjx9K9dTffyx8k2N1E+dxH1C89GjyX8c6URZdylH8POZCgdNw1laHm9XdOoP/NilGnS/erzJGfNOaS2D67fyOC6/M5wum0/kZGT38TTODKilCLX24U1NIiyTISQRCqqkbEYu//8a4b27gCg7bY/AZA6fhHVl14aqkMIQdXZ59L78ksIW9C39hUSk6dRdfb56Knh5PJaPE7dZVdRe/lVWP397Pz6fwHQ81I+jKnqtHOIjRlDpKEBPZp3Yy7c0Xm7xKipoeLMMxhcvZq+J5+mD/BJhIUgUl9PxbnnUnbKyQgpqbnqCjzOpv8LiTbWM+obH6fzr4/Rfdcy9n3tD8SnjSW5cAbxmeNC7svvKgkqbIdS9h0oXV1d/O53v2Pjxo0IIZg2bRof/OAHqaysfLub9jcpnucswNDO7XQ/s5wR77suBMZ4+riWTFJz2eWoSy9DmTkwdIQhGPHZTzLw6hp6HnmMXGsrZScupuLMM6DMUVQUCi2ZoP4LH0SqDIl5k9Aizi8AMmJQ8+ELsIcy9D+zhpLjhoevFZPBFetJb3jN/57d20QswIX0dolSCrO9E9U/hLJN0CRGbQ0iqtPyvV+R3eUAe83/cxsA5ReeSM0HzgjVIaSk9poz6HlqDQLoeWY9ZQunUXPN6WipkhCIDqCXljDp/52PoVnIjnaevPL3AKy7baNf5uhPzKNsWj2JSfVoiSi2En76eYeL5i18KIcgkdE1VF1xKv0vbKD7bmfDK7RujKmj6ppzKD3rOGfd+OdLnai4QwjlOBISbWxg5H9+hs6/3k/fY0/T+qPfEh3fSMn82cQmvTkeir9p+TtYNwpl0qRJTJo06bDOGTFiBD/72c+46KKLiv6+atUq5s8/eFKcd4JYg3l7Y2j1JmQ8QfXVTpikD7LYDmKsl5VS/f4rULaNUjlERENIyYgvfJqBV9bQff9SrI5Oyi44mZorFlFeme9EsdokJ3zvHCQWZQsmIKQg63mzxAxGfPIirIEh+l/aTMmCQ1s3+le9SnpH3jsh19xMtKHhTT6RNy9KKcy2DuzBNMoykWgYtbUINPb/4qdk3YxnTb93EpxUvuccKk49PVSHkJKq8y9gYM1qlLIZWLWK1Pz5lJ9ztpOURIa5ZLXSFDUfuRqAbGsTTf/1fQB6HnzGL1Px3rOIjB2D0dCAFos4enrA+//tlmhdPfrpZ9G/YS2djzuh4f66ISXR2hHUnn8ZZfOPQwjJiIvf9386T6VqxzHj/M+x68U7advyPFse/w0lVaOpGjeXZM3Y/7uG/F/L3+G6UUxqamoOXiggb+U68qbCAItJUY+VYi8z4PlSf9ZlWJkh+jc7GSBS048Kh1MFjA7wduEFGBH8kBJNklwwF31kDfu//wNijY1oiUSedd09JdE4CS+GORj+oDSHoG2oeQ8A+ohqh2vFQ5+Dbo6BCbP1V78L3dau23/J5H/7JlFiw3envXsp8hyGeQIFfwt+D9RnZYYwB/rQSpJ0r3qe1ORZbP/VjZQedQxIRe+qlwvOlwhDR2WzlB59HLKqDLOri/4XX6Lv2efoe/Y5Gr7yX+ilZf4piflzScydG3b9BZS74xKqPvCMZHmCqosuouOee/IFpKT8Pac5OxCCPFGjV7VXR9ATNvh8gs9IDC8jvH4SjNMPunEE21xYHzg7R27xyJgxWINDjPp/n0PGo5hdXchoHC2Ysa3IMyjqPSedBdL3qvK8pTSF1G2fN8o7FoqvDXhGSalcwnNIHj2V7LY9CEOj79k19Dz6MiM+fSmlJx0V8qDKc1U5BqIm7GHGot/0gBeCVMr3rrJ9rwLpehaEzxGFO1NvhbzLF48nn3ySCy+8kNLSUhYsWADAj3/8Y7761a9y3333sXjx4re5hW9cbB1sL7dDoYcG+Z1cb9xbRXZ7Cz05lISRF7yf3X/9DUM7twGQmHnUsLkhvwY5418IAbEISlPYEohqJI6fi1ZbTsv3fk50fCOyJI5d0IliMyYRiTvhJ5p0UlsLocgJDcuSpDc7mVv06ipsU4Y44QDHqyqwiLX9JJxBqOUbv2TMb74GEQPbshFS+MCzrZzddimE//AimrMwGdKCCORibtr2gBcQUDBWnf9m3xBmzwAkkvQsfYX4vGns/dyPSZ5+LHbfIIMvrg2/IC80wbZJnXYcWnkJZkc3/ctfofvep+m+92nG/ebzGJXexpCg9OS5lJ48N/TqlBJ+Eqy8B6bEth3eGdOSRCtraPynk9j1u6f8y0fKYtRdsQhbCTII7JwIgVWWkthK+N6oBK6Xs513YbmgkI3AtKQ/p3nvKMjlZwU6kFIM88LyvaoUeT4pBEIqouNGgGXT8J2PI+MGZms3MhFHlsQDdSrnmRQsFH77A/X6HlUh7wqPAyuc6t7zuHJuqsgkqASJebPJ7W9BaBr9z75E3/LnqPnnaymZM9M/Px8+km9DyNu5oPphY65ImSAto+85IgKEuoFNK2ly5ORdvm4cKZk/fz6vvPLKAY2Mg+2WvxUiEXhqnCEUFjZZT3n3y9jERBYN3ac8MJTlJ2AoTHuUtTVmfe1CXv7U7WR3Op5RJXNm4F3IHZkuObRyOqcbGiaEgdKU8xxKNBLHz0OWJWj70e+IT28gVSEojzuh0qWRDCValooT6olKkwHLiTToz0WJaiaW7sx3g2udTWO9pjJgW7g6mzvGPW8epRStfwyvG/t+/EPGf+O7SDQn0UbAY8apBGyFw/3oDUjPfgp60+LYP54HlRc9InQbNMdz3h4YwO4fhHicgSdXEps1haYv/ZjUWSdhNrcxtGojIZHSD6kvPXkx0ohgdnbRv3IFnY88ROcjDzH2K1/zdWoloPS440gtOo7CyE4/GVEx+1MojBH1lJ53Gr0PPO4f1msrKT17saNf2457T3B9EDKvd4dCr71NBEV4XrO8V+MetEF5oZemyAOdpsh7DQVCtAvnUL+deoRobT3SiDD6o59GGgZmZyd6SQLNiDnnFG7GBNsV9FIK8FB5upbXH/xkLH7Yn/uOg3ZYQfuEDQJB1di5ZPo6kFKndfNztG56hqmn/Qtl9ZPCydFknj/TIzyXFqH5PUjmnr9uvs97S7Otge3xAAfI1L2uG+J3O5x5/lDkH+vGG5K3ch05fM+qIpPFQUP+DvS7q+Tkerp8oAogOqYRG8vpjJoWKBuesISr1KkA4h5tGI1RV8fAts1UTj46n2jG69TY7H7oZnK93SSnzCA2Zhwql8Eys6T37iTTtBeAwe2b0RtGILXhE5Cw84ZVww++Sa6pmVxTMx23OMSAba8uZ8TRZ/lxwEVD0N4A6Gcrk65XX6Bl6V3hx2hEULks7c8+CkDvmpcAB2gqPW0x6Br24BAtP/w5KussmsbEBpLHHwtA1ZWXsOdLX8UeHCTX1YEWCCvzASSfz0INV1S9MgX3UHrSiZSefCL7f/AjlG1TdeGF2IYzSQrLWUBDj0Ec+NkE45ODzySI63jtGHae5t5JMSO2yM0IG8qOW0j/Cy8ysPJVSo9fhOF7t7zOoukd93ie/Kx/DgglhMqH/gFSy2fM8zMkeQpE4cP0ASaFrQTxSSNo+K+rEUJh9Q3y2rXfoelHd6LpisqTp1PoYHUwoAry71i6bfCAqZyZN4Qdgyp/b0KCR+YefL5CKDTtCIYMvMtjyK+//nquuOIKn7MKwLIsPv7xj3P99dezbt26t7mFb1xsowCs8oxhrxt6AHMBdxI4ZQrDIMAZ05m2Vh+oAjAaR2NjOfVrWphrI9h9AkaI14+jkxrRKssZfG0ziXlHBTIyuWWsHPu+dRtW/yCp+RNJzhhNti+HOZBjcMMezLZuAIZWb0WvrvWVL38+cO/Ta3/Dr75Kbl8z2d376fz9PQD0PvYcZecsBuWCW8HH4M7BtpYfo0Io3xgzPHZc9zQfnJY2ViZHy4OvsvOXy0N1ypiBnc4h7nKO9z/mhDSXnnkMqZMXgKZjdvbS8u3f++fEZk0ksWA6QiqqrruAXf/0NbAszI6ePFjlvdbCeE+hKJbtzVaOUepsKAtGXXkcY997NCs+8nu0kijj/vlkerIxn3tqGKcTgUQQBb9ZtsRSw8P4Qu3z61RY3vzmPnMPoA9d29M7hk2jgvIzj2HvM79j4KUNlJ48B6Ouwi3vdwmUB355RhH4RpDyF7TAcRW+L6VwDCOPcybIWeWPKZF/HN4iLiA6rpG6T34EALO7l31f+Bptv/oDNR+9lpKjZvnhKxQYMKKgDeG7zi/+QQPCL+91/2Heb4H13weVwc4cwfn7Xb5uHCn593//dwYGBg74+8SJE1m2bNn/YYsIbRhIHMAqoizsAGeVRBERJmmHuyBwrsAWAlvK/KYbkh6h6N/S5ANVAEZjPUqZTj/3uebyc3beSFYh3QcU8aMmIFMJ0mtfQ188mqTh6NdJPUNCzzDUb/PgfzxNNm1Te8wY4jNG09+lGOw16Vm1F3vIKZ9euwXD1cf9OTK4sSMcQ6/xW98k19RCZucuOu67B4C+F1+gYsHxIU4iT5QgvObizkMFw8LjtFIRG2HY6BELO52l//Hnab/l0dB7EVEDlckh7nH6Q98SZ2Oh9OxTSMydDVLDbGmj7Tc3++ckZs0kNs7x4Ky69GJ2ffEGAMzeHmSixL9H9zH7bfQPeG0MrqWBmxRKUXHBeyi74Eyabvg2WlUFFVee5YB94G4Ch26jqFerCq4jxUCiwHnCcgEqLwTT9I7jh9IPm0MPIOVHH8++W37N0JaNpGbMJlJR5YfseRJaTguWO79sIKzOA6x81cB0wKpg2F+w3gPaUQrKaiZQduoEUIpMXyer7v8mmx7/JVNP/Silo6YEQgAJgVc+cboPmKkCsErlr+2BXUXCTQudGpDOz/4rlAwDON+U/GPdeEPyVq4jh+9Z5cpBPYCKSREDXEnQq6qpOvEMOp52JsXdP/muX6Rk+gzqP/ihovU6/ds1mv34W4FRWk62tSWM6LptNnWTvs1rAEg37T5AQ6Hz3gcoOW4+RrzUrVeFb9odzTJqEG1sINrYQOKY+XTf9zBdjy6lYvI8YuW1PghReN+v63UWKOdNTFZ6iJ1/+DHZjnCcvEwmiU2egDB0tKoKtJI4fU8+j9nWTqZpP5EJI/2ytZ/+MCqXI7N9D4lFc8Hj3pIaDd/978BzCiwIUoU2E5wJ3FNmRQAELKLQuvUkj55Pxx13Exk1In9Pbty8HXiphV5V+QZ5z6wIEhVom9LyBkHhxDvMCPZ/CHbqfD2RsQ0kjzmariWPkDzmaGTEOPBqU8wQDo0Pd6WSjmeVR0Iu3bRcUiik4RIyu0am5RpVhdn4MnvbaPnV/djpLCUzxpKcO57Ma3t9Q1hqjleVU1dQ2SvOV2W5qZyD1/EM4TyXiwuoIdGwXYAYv70et5YUCt29J02zkUeQ38J7hIda9p0m27Zt48477/SBKgBN0/jsZz/LzTff/Dpn/u2LbTjeVUA+hXRQkXPHj5fq2CvrgzsBZSWosEXqR1Jx/Cl0Pessfnu/c6N/zeRRc6i9+mpnl1gj1Ck8A15Ywp8mhBToleXkWluxo3kQS2mOgWIN5hhYsQmA9KbdtB3gXrv+dC+JRfPQEg5PShCcRimUCyLIuEFs0mhik0eTOnUBnbc8QPdfHiZ53EyM2nLnmXieQ26mPksqpOUSqfu8dOHO7gEtHt+V6htkzSduJd3UHSqnVySIzxiL0A302gpkPErXfc9idfWR2baX6g9dAEoQaaij7vPXoEyb7Pa9lMyZ4tchIwYT/vSVUEIHpw0HGIBKoGnWMC49714An3fKsiUVpxzF3t8vRzQ2MJAdTuwa9JqwD6B0WL43qGuwBue54q3EtvNlLcv12goYNsXuz5sH49MaSS6cQcefHiO56CiE7nBeqeBa6WcJJAzo+EhPWNEKZvkDbwwNX4MhMD6C3wVk9jXRefvdqGyW2LTJxCZPIL11R+AOZJhnJWgoq/A18hdj2GTreWT9f/beO0yO6sr//twKHad78ow0o5wTyghJZEQSGWzAhnUEHHDAxt71+vXP9q7zOgAGG2eDE8EYMJickxBBOaEsjdJocuzcVff9o0JXdbdAEhK2sc/zzDPd1VW3bt2qOvl8T7Gx4430vxkJE7z42W+X3gm5ceutt/KDH/yA1tZWpk6dyk033cSJJ554eIP9neit5huNRt/x7F4F4b7jAbs0KqIY6NIkJK30OwfDykAhK+ygmtQxpIJR9IYrmGjCpHFmI/Xnz6Xjbxb+z74vf9/dJ7pwLnUfvqxgPHuecaFQaKUKlpNEVdBqKsnt6yCk59A8VnUiH6StO8++pVYAvHPlvgNea/fv76Vi3lyEqnlwfPz6LYASChIaOYLwsBFUHnc8HX+5m46H/0rFpGPQo/HyGSau7u44tWVhF+c3VULQRA3m0UN5lMFetn3xN+Q6+31DqdUxQpNGg6aj1VWjBIP0/vUpZDpDZlsL1ReeAyYEhgyl/mMfQUhJZvdegmNGuudSIiFG3/Sj8vzgTd5Ba11sJ7zjuBJYMt4ZW4Xowln0PfI8gdHN7oAW/z0AHytHEh/PdtbPypCyT2YUHFbC/gyUdRqWBN2KzlUxehLR8VPofOIh4uOOQQilPD+SfjtJeLd77F3XGWQUMlWdeTkOI3ffA5wHING5m5Zlf0WaeaqGTiJWN5q+Nge+wOrQZ2XkFbKgvDhUjhPLl+3nyjNPZYrT7a/YdnLOVGRHe7OsnO9H0mf0brc3jhYdTTlySM6qkgei6IFx9in5XRa+FwdbpYKFjXT6YmoWnY2RSbL9u191hwg0NpYoZO7wnpfNfWBMiE+bw/777yCfGEQPV7hzEICakkRHTiDRshmA6pNOp/K4BRAOQFWY7J69KNUViLCOGoy4KWtmwBKW0i7nKgEbBIz+AQZftQRg66P3oAZCqKEISihEqLGZ2MTpJeB03mhC2fWzjbj9Tz9AtqsNrbKa/EA/elUVjZ+8Gr2hHjMokZrpjhVbfAIdt9yO0TfgA4MPTbdwDMKzptpL4hHCnnvkkCuoBb5oM1Jahl4R83V/80SL09u20/vk0+iNDQinZlyxwWGdtOOitfBFIbzn8Dxvll4v/b8fiJzstnIOr2KHlb1NCqg6cxGDr71Ocv16KmbNLB1X4H8WvKTIQvcUVYIqUVQT4cmmUhUTpahrn2PIKabANBW3fMUxtvbffC/pba1UnnwMvY+9Rs/fliICGrXnzmXIB09DDQeAQtaF47gqzkpwvhvebCrnspyMDSERamFtVFOSy6tIPGWLwooDOgDQrrNKmAWn55Ggg7nP3n3/yWj27Nm88cYbTJw40bf9jTfeYObMmX+fSR0hkmohs8pV5AxK5YdSUHz8A+C+Y05nbikARaHunPOpXXwe+eQgO7/zdfeQYGOTlVJuv/NlfOiWPWJHQ2VAEpk/i54//RWTJEowaE/NcsQIVSE4cRSZTTsBqL5sEZWnzbSc2OEwmR2tKPFK0CIo4SDOQ6ioptscQUqbZxVRvqeXwZdWAtD5m/tQAjpKRQQlEiYwqonwnGkogSBCNV3gdsdB5Jb5OtfmcxgbbP3xU6RbewkOqSTbMUCwuYYR/+/9BBqryeVViw9Iiy/EFy+k9du3Iw0/T3QcVNG5k+3L8jj+TAVDShTp4XceR7c3SUgI6Zbf+SpVPA4r53oGV29n/32vERrViKloVmt14Xe2G7bGbtoOHW9pn7uPA4ju8D/nnIDpcZgJAUjrHA5vNE1RfLluhtubUfUlp7D7P39KYvVWIjMnI00bjNdrIZpFxlBR4MVHtpHkLcvzOqrKOZXczFohMaWk87d/JNfWTmTOTPqffoH+J561QHtPO4nqc85GCQT8jirDP5GycSLPe+Wdg2XQedbNY6iVNU6d/bENnH+iMsC7776bz33uc9x6660cf/zx/OIXv2Dx4sVs2LCBESNGHPqA/0B05513csEFFxCNRt9656NACoKQzTxzdsqIikRH4vQlNTAsZ5VUyNmg6zmpkpY6uSJB4nzXdIWxn17EmE+dRueePNuuvsHdRx/eZMsWu8Ox94G1A54+/gZEF86k58+PIYxcIYvL5iXhsEJ8UiP9G60gc+0HziI0ZxaKFgI9RLZlD3pVNUIPIoTmA1gXBqXBW/vdB8j3dDOwegWYJm1/vQuhqKjhCGowQqhpGLEJx6BogVI7zPNOOPaBDJiooTx6ME9Qz9Py07+R6+wnMLSKbFsfoVGNNH7hP9DqKjGyqhVIsceJnXEibd/9maXfKw7Dl0RmTgFTEJ4xzZYxRS+YUvrK+XiZk1HlsRXdrDaPs8rJnAZIrn6DgaeWEhzVjEDxv//FvPYAVNK4wjnGy3fB46Si0IkRCk44D19zPh8o3g5Qd/zptNx+M6mW7URHjCs/OYffesZV7GwpzEJzGq+e5Z9DYU1LzHPPWgkJ0jTY8sLvyCZ7qB0+g30bnkFKE1ULMnTKaTTPOAtF1XDMMNde9epajsPMxnZw5+We1LtzqY/Bmq/wXbO0ge69RUsK/y4f/0elIyVH3h5mlcerWbzNt93rpCrez3lA7ayYZIvltdWqqqk6/XSy+/djJBJo4egBa369AwsJyW2brdbMQpScr23pY66jCiCf6EerqXZbvAaHDUNqVsc/aTtlAFcRL+v5tZlmavMmzP5BANLtewmNHU12sA2zLUXPspdoe/ZBGs68kKqpx5Z6iu1hSgw121mV3rvT+h5QqTlnMfH5C5DVAastrWY5QRAgpUm+s4fU2k3EF5+EcJ1VHjXddfL4L8RxPgmz+AI907EFOQpIT7ZZgVF7auMlDC5bgdHXT8XC4zAViVBtg83BCvMqu65SKwplcd777fksvB/KOEVL5i1xHWT+iy6zs7Taaat1NSiRCNn9rUhlhp8Re3CovPmo7qUrpV3/hCrRdIOA3dZesZ07XowZxyBTFbDYsWOQWb/H508iva0VJagx7a4vYvYnUONhhG1cO6QrZtnMCydby9t1sDh7Sy3KyHKMX8d+cYxDKMgaTTVQFYmmFBxx8kiWAb7L6bOf/SzXXXcdW7duZf78+QC88sor/PSnP+V73/sea9ascfedPn3632uah0XS08nFelfwReCc7cXth732uyzaz9RtnqxYSnBivZX1pNc3ULngBPI93RjJNEoshDQtPCHfY26/495tmTe2IJwMSq8jQ5X03PmI66gCyPcMolZXodhyITK+ycrCySsWX3ROI21+CxTLLsfgSa7YjExZoL/ZnfsIjh9Bbl8HxkCS/seWoMQfpebyC4jMn4G0X0LTxhFxHFbOPLydr/MmDGxstb5oOo0fOYOqRbORgRC5PNZ87YizNE2ye7tIrdtB9aWLymaoHijqiRSYHgXU2+TBj5lVcHD7sgWw7qHXAOx+ag353gR1Fx5nOc9UYRmCb2JoFBuR1raii/D87vA94dlmeLZLuwxalnGCIUqzVK3rFWjNjYiATqalg9AxUyxeW5RZ5WYfeR1QAnzKknfOXuXZ9OBKebMFpFf+uBNFKBCZcQx9TzyNGq9g+A+/gTmQQKmoQNUCbtmf8yeKM6OKltAe1ve5xOApMnwOlFHgZiCUe97+CeiGG27gqquu4uqrrwbgpptu4vHHH+dnP/sZ3/3ud4/6+b1y4a3oUOXGxz/+cY477jjGjPn7APDrQnUzqwpZVtb7oXoYi4EgJ1XXGZWVfrPGLZX2pHdk8hrSlPS/asmNwMhmosfOwujrx0ylUSK2PuXouxQcV9KJmNjjptdvQQ0HCCiGi6OXJADAaz982nVUAeR6UlTEq8HuDBcaOaKQJWmIkg5youi98L7zifVrXUyozN49BIeNINvRhpFM0PPK87TH4jSe916iU6dZ9pWtj0rVclJJXULADn4EDPRgnoBmIA2TxGYLEB0tQP1HzyV+ykxMJYxp2PzQcRwYkmzLPjJbW6i6/HzLCWIHpAsTprw8kaV8psCKvfiytrzwwYAU83Tr++CLr2MmkkSOnYHMS4QtEO0+FyVUEjuSnnlJUSgDtO0iHw6Vm1nl4WPOvo5jy7lvJj4nlut08pw6Um8B5Wf3t1LRPK5gbxTZylAo7RM2RpkTIPB33XOux5mDLLKzSpez8LxJFKlQ0zyN/VteJBSt5diLv0k+k0ALx1B03YUkOKBIls4a+UsOrXM7gspjSDhqgfOTIwodB5vzTLl2Km4gELvE8d90eHTzzTcf9L6f/exnD2nsIyVH/iG6AQIYqSTbv/3/3O/53h46/3IPYL1k9edfclDj5Af66V+znMbTL0QLR0uUn8ops1HiFcTGT2PPfbcxuHYVDRe9FwJvfymix89Bb6wjvWkH0Zkz0etqrR+kIN/TS89fHmD/A3cTGzMVLRh588E8lO1sJ9vZTuOHPmxF2bPWS2sUFVRLKWn96s3k9uwHIag89+S3fU1vl6rOOxszmaTv0SfJ7tlH/cc+jChr8fzjkDE4SM/jj5NcvQ4zmSzcx38AarjsRAZe20TPEysZ/qnFBBoqgYIz691KglIb7s32/Wej97///QD813/9V9nfHGDCd6p9+D8LGQMDtPzP/7jfcx3tdD54n/VFVag5/9yDGifX2U1y+TpqPvoelFCw5PeKk+egNdYRmTuF/d/+NcnX1iM/ek5BKX8bFDv9OPTmBjJbd1OxcAa6807nFfIdPXT/4W903f5nQrMmo2oHL6dS29vItfcx6n+voGKmFam1Stv8+0nTZPf1N5Jv60boGvHFx7/ta3q7NPQjizBTWfb/7hlSO/Yz8j8PTv7/PSnfM0DXn58j8foGZDaH3ljz1ge9Q1R9/mISq9Yw8OxLVL/nArTaar8x9i6lw5Eb/f3+0qdgMEgwWMoTstksy5cv57//+799288880xefvnlw5jtodPMmTN9suHN6FDlxjsNqP5OUrazn/UfuqXwvWWv2+lUBANUnr/o4MbZ00ZqzRZG/udFKLoK+C3mkRdMJTq+ETFzJluv/yXJV9dSddFiREnU9NCp6oRTCA5tJrNvD7GZc9BjVa5DJNvVQftD97H/vjsYM+mboB78+ZKb9mD0DjL821cRHD/KKmOXYBaV58p8nr1f+gFGdx8iHCJ2yoK3fU1vl6rffwEyl6fnjgfJ7tpH3Ucv/XtP6S0p199Lx0uPM7DFwiXVq/5x7I1RMy+ga9dK9m16juHHLCYYDZaHanmX0bvd3iimG2+80fe9o6ODZDJJVVUVAL29vUQiERoaGg7ZWXWk5Mjbyqwqrhv1bSuiclnuzrbsYC+JrW+UHBOdNp3YsfOIjB7vT2f0HC8kmLksQtUwUklafvIDQFI5bnrp3FQIDhuOPnY4ZiZDtrMdsMoBvNh9SKw0Eo8HXB7o6RXSBdBWVAhNHklo4kgrKotZyDyJxIjMPIbk6rUYuTRqOFI8jOUwLmYEAnpXv4rQA4SmTkKGTPIRuwzP6djhdJgzTYw+W9GSEiUaQJSgmnqjQzbZ+ZSuV1vx7erPlhKUv8nejCNPCYhaGaX+6g/Q8es/kFy1FvIGqKWPnXMvrfTUQmTGm1HhO5cvQuOcu3RaJZFaJypSRkmXwnKS7rvlp8hshorjjiUyfRrB0aNcAErfddpzEYJCtxKs78KTmoz9XXG7ylj7Bhz8FsWvRAphRfiFEKhOSY/n98jEJlJb9kE2i9AD5PuT9L74Bnp1FL02RmLNDjK7O9GiOgKoGFvH0MXTUFQFw1TIGJovXb04S0raN8P5rjg72FlTStGaCmFlUumKiebtUqYdQfCRQylKP5LF6+8Q7dix4+89haNGUpM+zCq3SUVR1o4vigilWT3ez0KSG+ghsaaocx0QnTmT2JxjCY8f96aZGmY2iwzpGH39tH7zR6AqRGZO9j0/lgiQhCeOIDRhBGYyjdFj8VhpUpLJUzx3aRayGA+M5aQQmjSW0KSx9jGFTp56QxXhWZNJrXoDmc5CRHfPbY1JIfJsn8MpKe54bA1KRYjQlDFk86qLleRgMjlzMzM5jIGkO6DQgshiu9bmucVZUYWIucABBnbm5O2w591XiAKvEcLCLbRAxz1ljZVVDPvy+9n1jT/Rv3QTRl6gqIVjSpbQU+rnTllIVDvbyjAL23wguniSeuyMU9PGBZNOqV7ROghFYuXlFeaS29/Nnq//GkyTipNmE503leCY4Zg2ELp0ANHxRLWLIvfuOvsWuLC+Xv3EG/kvzr4oHc/6Hhw1gnx7B+QM0HXMvgGSK9eixitRYzHSGzeTa+9ADYWRpklo2Ahis+cihEewltH5SuRxObL3kcKfgVAuC+tIVo8fjtwYPny4b/PXv/51/sfjEHeos7MTwzBobGz0bW9sbGT//v2HNd1DJa/cWLlyJV/84hf5z//8TxYssBwHS5cu5Uc/+hHf//73DzTEPxUZSHISt2NnMS6VQyomJlb6rm7XBwWliq4YdOxK0f7ENv8BQhBdOIvowpmEJo2xuuAhkPnCeyeFAEViZrOoYRWzp5vW//djREhnyPEj0ITpZmVmDRVFSCpnDEdMGk/7PoGZyFg8haKsSm82YzmZZ2f1OJ/d7apCZPxEIuMnuuM4clSvrycyaTLJ7ZsxRBYRCLn2gqliZVQFTPs6QQsYdpa/oOvx1ahVFagjR5FLaz47AHDLl820YXUHBISuITTNA7nnsRec/w7PckgWZTubhWstqdYpfoVlYXGs+2N91yurabjuo7R9/+ckV6xHfqTgrDqgzeyZl7BLAF2e5LEXhG0XuvjINrC6W+7nzaIqznQqzqyyKdPVxo67foJQVKqnzyc+YTqhoX7+410fgb/jo3Czl/xjHxYP9WQ8FeYuiNWOonvfOiuLT1XJpvro2ruOQEU1eqiC3v0bSQ92oQTDSEyiQ0ZRPX4Oip1y65uXiY3/bJ+yqGnWgbLrfc+A53OhnLC8TXfY9C63N4rJK0fuuOMObr31Vn7zm9+4sCSbNm3immuu4eMf//jfa4pHBrOq5F4d6N7J0n0HNq5j312/db+rFRWM+fI3fAoMeBiAPUa2u4v+la+R7++lf80KMAvadXjoCLR4FRgev4kChpFhYNsm+jetJrlpI0LTaPzIVSia7j+fnVYqNVn+WgR+AF5PVynA6lQgsJRUm/lJw2Dg2ZcIjx6LVltTYgy4hprnJZZS0rvsJXqWPEfV4jMhqoJuWKmPuulT+C0lWlB39SW03/hHlIqI/wX3GE84eftuKZgzThFDd51ARZyvnALt3V7s2DIhNHEcyZVrGFjyCpUnn1BmUa21LAgKWZhTueernFLrcZJ5mbavBtoF4i89TAhIbdmK0dODEg4RaBpKaMxoax/nHoui42zhLIruv9dYc3CqFNVEVQu4TlAAQnaouCRQtScqpSSxaR+5ngQibzmBdv3wfoZ/+CRafvEM/ataCseFdOLj6kgms0gT9j64mt5Ve5j6/85xnVS657zFpYAHBG3G6vAnZQEvxtlfFdJ2WFkLHFANpHIEpUexIvdW+x4Cffe73+W+++5j48aNhMNhFi5cyP/93//58KPa2tr40pe+xBNPPEFvby8nnXQSt9xyC+PHj3f3yWQyfPGLX+TOO+8klUqxaNEibr31VoYNG/aWcxg5cuShTfqfiKwuMQUmI5VCGrtvH+c9NP3/JZTwmYEVK2m/q9DGW29sZNiX7aw007er753NtXcw+NoyjL4+F1/QodC0CSiRGDJPIb1cgfxAjvS6TSReXUdq7WZEQKfhPz8KaJieUmirZKyIWTnKu8R15pT9vWibaWOCyHyegSdfJjxjElptFOFg29lyx8GucpzEqiJRhEnbX16h6+Fl1H3oLAwRwMhZC+x1sDlGh9CC1H74EjpvvQOlImKXvRUZG7Lg6CnnoPPiZ0mwZN8BFAEpCh33hGK6nUQNN2LivSdjGVyxlc4n11C1aLbrxIMCX/LiTHnJuYXe38rhV0lT2CDoStn18a6DwG6D7gRl7EkMrtqK0TOAWllBYGQTwTHDC6C+TtmfFweqHD+TorzC/WZGVrn/3tMYJumWFoz+Affnjt/dQfVZZ9D15/vI7Njp7isCQYJNTWTTaTAl/a++TLplBw2XXO6OW+jUJL32YgHHpYxBdiA6oGPqiDqrDmE8e7/du3cTj8fdzeWyqrxUnNF0MFlOR4q8cuPSSy/l5ptv5pxzznG3TZ8+neHDh/PVr371gO3ED0SPPvoozc3NR2qqb4tMJDnbUZWTgpwHr87RRRQX18qqD1LsenNvV8HV9+9k2Xeed78Hxw1n+Hc+5uvUaf03rY6sUoBiZVAllq7A7O9n8IWVvrnVzh9LqEIHsgW8OwSDvQb7X95B+/NbGVi5DSUcpOFLVxeeDaPwzoDNTpRCEw6vc8PFA/Tos8LB1KP0nTPzefpeeYnoMdMhFsJUZQG/VpOW/aCZqHZjHykhl4OuP79A37OrqPnQRUhDR+YKCrivVEyAGgxTc+UldN12N0ok4q/MKy7Zs6LQhe5vYEEDKIWgKHkBeY+jyjtgGRnpLpqXhHVYaNJ4Mpt3kHhlNdF5M0vHo8gBWGw7eEutKXzHBCXvuW9efCqPbeE4kRxdxG32VcSLBrduwEgl0OM1RBqHE2kYXsCAci7bow+5JX/ecxXBKbjLY6+F9P4o/eDq7rJI6964uE+GyUBXC7n0AEKx3ARbX7+boZNPYdvrfybZvcc9Xg2ECFcPJd+VAiRd618m1bab4QsudrsOessLy8kph0pup9d+88i5sjkYf2e58W6hr371q/zlL3/x2T8TJ07kxhtv5L3vfS9XXnnlIY13pOTIkcms8v4OZR/CEnKEQzbr21w5dwFGTz96Rdy3PbV3F8mtm4hOmEr3y8+Q2GJlYgVqGxACouOmEG4eiVBUqqYdC8KOIAD55CAt9/yCTHsrSJNAUxPx448nPn8+erzGdXy4jhpHEfOmW7kFtNb1OcaXsHFTXM6ArdTbSq/IKvQ/+iy9jz+JzOVpuvIqSuqvi4YHkKbB3rt/S3LjG8TOOIHYxaeAbuBELZzMHSkl2R17MBIpRECj/UbLgGu47v02fkkpjofrqHKYro9xCX+0156r1ByOid9ZVBJ5lmUeDKg4/ji677qPzI4dyFNO8O/vHRcb9t2HgVU0SSxBYyp+Ie3UiVu/F65BOOMXU8miQ2z2HJRgiP6XXqTzj3cRGDqUwPBm8r19ZLZvx8xkkKk0uc5uZC5nRZR0FREMoDfWog9tQB/eiBIOlJxOEdJnWGlKob28b1pOtpOwANKz3YPsuPFRel+3ooFKUEcJaqS2t7P2k7chNIXJ/3MhNVMayHQOUj22imDYAk/OS4V9T2xk3Xcep2LSUIZePMeag30uVUgkfuVaQbpA7w5QqJes9u6FbY6jSlVMF7NKEZLi5Iy3RUdReDz//PN86lOf4thjjyWfz/OVr3yFM888kw0bNhCNRpFSctFFF6HrOg888ADxeJwbbriB008/3d0H4HOf+xx/+9vfuOuuu6itreULX/gC5513HsuXL/d1+TsQ7d27lyVLltDe3o5p+p+JQ029/Ucip8sfgBSW8mL6gDWLIqye3xzF2HWoO5lZKb/cqJg7m3yiHzUWc88lTEF6+w7SO7YTmjSRvqefJfXGRoSioDfUgxBEZk5FH96M0DWiJ8y1HAo2XzD6Bmi76ZfkWttBSgIjm4mdfiKxU+eh1cSRpuNILqP0emSB9ZM4uOdSgrQ1/d77nqT/keeRhkn1f5yHohuFDqJqoTGDpproNg6emTPY+pW7GVy9k6qLT6bijBPJZwrd59z/ptXdz0ylEapG5613AFD3ySuclS9ckzM1WbrNGwSRxdgu5fYHH36YkEohO6wMxRcvpPP3j5PcsJvYKXN9mV3OebzA615Z556+yBlfnGHmOvHcLn1FhkuRj8lxWFnOO2t77NR5qBVR+h59mY6f3E1gZDNaQz35zl7Sm1qQiRxmKkW+sxuZy1tyQ1URwSB6Qx2B+gb0pqEIvVRuUG55igzIcpTv7aXjrrtIb7ZwQEUgALpOZtsO9v3fDaCqDLnmGoL1Q8gP9BNobEJVdVe29732Mu0P/IVQ8whi8+Zb2c7OOnv1gOKsArNoXl6nlNfQKMfT/wGMjng87nNWHYjq6upQVbUki6q9vb0k2+qdoLVr1zJ69OiS7aNHj2bDhg1vefzDDz/M+PHjmTBhAlu2bKGvr+8tHXVHk0xMcvZNyUmJYTuq0lIlbeNSJWTADcA5WJuqMDGkgikVDASK/cCpwoRkyneO6HFTMfoT6NVh6923oyiDq7eT2dlOaOJI+h5+geTqrSi6Sqi5GoDGRZOIjKhGDekMP2cKQd0CVzelIN0+wOvX309qbw9IyyFWed5JxE49FiVaaTmAzPKOaa+uK5zAbRH/obBL2azKjiceoneJ5ZCru/L9VlMoTRa6f+smqEXNKtI59nz7d2Q2t1B14VlUzFsICUGxz1WaJpkdLchsDqEqdN12NwC1V11eJMO9gqMMBp59nd4AuW8fb/BXUJ5PeH8vosqzTqHvwSfIbt1JxbEz7XUsksGOreOR267jxuOwcs7ngKh7caEcfuat/HF5oHffA/Chulknoceq6Fz+HLsevJ2JH/saWmUV2d4uUvtaMHMZzFSKbF83Mp9HUXUURUFVQwSr6glVNhCuGQpBvaTjuTs/r3Oo2EmFM0/p4kulE91sff0u+rt2AKCoARRFp6f1DTp3rUCoGhPPupZgvIZcapBQ7VAUG55ACkH72ufY8+qDVFQPo27MXL9zTBT0BOe7cyscc8z7jNs+TlfuAgX8R8+aOvsdMfoXdla1traSy5VWxRiGQVtbW5kj/HS05MihZVZ5ot8uifKfy3lIyz1NZjrt+9793JP0r1rG2M991VWqM/v3setXNwHQ+eyjaPEqKmfMo3rByeiVVdb4XsbvOJ7sv8TebWTa9qLG4lTPP5H0/n0Ynb2k121CzJ1hpb2Dx6ACM52k83d3Ep0/l+gcf0mh79qksACDip1P0qTjlj+SWrXe3Tbs2s8RHjrCml+Z7GUpwAhCYuMG2u78IzKdJnrSPGquPM9zfulG1YWA7rufpPevz/nGqbroFMJTx7hr4SfhliW4kV7n3tgM2s16sLmHlUFkT1iRvg6DPmce+IBkvedOrbOci+HJk0qP9e5b7BD1Att79nU6gEgvGKw3yuAyYo+Rokj/dEXp2AKFimOOIdfeRnrrNjAk6R07af/17ZgDFni+CAbQ6moQwQAyn4O8gZnOYHT32YMItLpq1Jo4Ihig5v1nExzZgOIAEtqRVwv0UWLmDEQ+hxYJgOpkAqjWb5kcG//7TvKDaSZ+9UJCI+qpHBlHKAI5OEhmTxfhYTVolRECigGNITTFRLPBPk1T0HzmBHbetZxttz5HqrWf0dcuKjyuigXwrnpulmP8yTKOquIMBgXpOtyUooet+Ni3QweMwh9g30Ohxx57zPf9tttuo6GhgeXLl3PSSSexZcsWXnnlFdatW8fUqVYnzVtvvZWGhgbuvPNOrr76avr6+vjNb37DH/7wB04//XQA/vjHPzJ8+HCeeuopzjrrrDedw2233cYnPvEJAoEAtbW1PuehEOKf2lllNSKwP9u8TxSXANhkKSseZlBGoRcmGEVyo+fhR0msXUfTF6+z+IJhkNm9l9abf2Lt8LdHUGuriR1/HPEzTkaNx4oGtU/u8i9Bau0mcvva0BrqqDh+HtndezE6e0mt3kTk2BmoFQG7HK8wX2MgSecv7iJ22nFEZk+hNLuo+Lv08UlpmLT/8DbSG7a624Z+4zOExg1xszMB10GlK1Zjg3Reo+/ljey68UHMVJbKC06g+tIzkU7XVgqOKoCeOx9h4IklvplUXXwWobGjLOFZzkDwXKr0RqWdK7PvsQWE6mXoRUOYuJmo0nQcIGW0TQmDSy35GZ412SrP82VW2fy0OPPXObPNw1wnHbiA6d4SPzfb2JUdhX1dgHZnbhKcIkB/lplCeO4M0jv2k9myCzMvSW/YTsdP/oSZsEtlQkG0mmpLbmRzYJiY6TRGr0du1NagVsZRQiFqLjofraHeLqcowiWSIHN5ZN5ACRQpgsLSq1p/eivSyNN4zUfQGuvR6q2xjIEBcm1dBOobUcMRhCnQKqtLQILjc+fT/cIztD9wD7nebmrPPtf/SDg8+UBlEF4jtIzyX5ZPF8n/t0tHU24EAgHmzJnDk08+ycUXX+xuf/LJJ7nwwgsPbbAjQJMnT+Zb3/oWv/nNbwiFrK7TmUyGb33rW0yePPktj29qauLzn/88Dz/8MNdddx3f+c53jvaU35QMKd2sKANJjoKjKiEtp67V+S/gKwd0gNRNIciZhXdDQaKm/c6q7j89RnrDNob9v/8gFMiBkSe5tZXWb93u7hNurmLYBdMZ9b45BKtCBBTD3zUU4ZYA5qVC20vbSe3pITRmCBULppHatt9qerR6E6EZs1CVkNX1z6OLGgODdPzhDipPOYnIJOte+TN3/EEQl0c570o+z+5f/pTM7hZ33s3/9Z/owxpdMPVCw58C/82nNRKvrqHr139BZnNUnncWlWeejlvhUPRSdN9xH4NLXvVtq37fuYTGNVuTLeIF8gDvvuXkEWDYTjmwsC+KA8hFx/jI4RW+dDOLVw++ugIodD4HCrLdw+d9zil7m+tQL8qsUpxOqcWZTmZhf3d7UYapz1nliYcIRaVqwiySrS2k2nZjGgaDOzax+8HfYWYtHUcJhAjEqxGabW8YBkY2RS7R7wxCIF6DXhFHCYYZespFBOI1ltwwrIXzyg0zl0MYEk3o/vmaYGSSrHv+VoRQmLLwKoKxOkIVdUhdkE31k052E6oZghIOg4BARXWhwgRQTEnjxBPYv+ppdrx4J9mBHpqPOcNvO5dV/DyOwqLtUnFNX9899uoMR9DUKJziKMmNf3RatGgR11xzDb/5zW+YM2cOQgiWLVvGxz/+cde2eTM6WnLk7w6wHp8+h0xHK72vFxTnfG8P7Y8/SK63m/TeXeT7exGBILHJx1AxaTrR0eNLFbQ3odjE6UTHTSKxdSOdTz5McEgzmf17GVi9DB64h9CYsdQsPofgqBEkVq2ib8lLZHZaTF8f0lBwVh0k5dq62P/tX7nYJlWLTid27DyClXXF+Isl1PXI3+h9/ln3e+KF1whPn4ASCiBzOZRYlND4ZrfLhd5cD0B0wTSqzlmIPmyote8/2AsUHDMKoWv0P/08kenTUCLhv/eU3pRSWy1jcd8NNwEQGDmc+v/+NGpdteVociJDasFRaaYz5PZ1kG3ZS769C6O3n8zWXez7cqHTgt5YhdGbQKuOEqiNEawO0b9+L2Y6x8wbLoNAgOxAhmTrIIqukOtNkNrVxYxffITo6HpMKRB2rm6gMkykuglTijcFWBdCkG6znkW9+uCB/f+h6DAiHQcLlFtMfX2W8VhTYwEkZzJWpzbHAABQVZVAIMBLL73E1VdfzfLly8nlcpx55pnuPk1NTUybNo2XX375LZ1VX/va1/ja177Gl7/8ZRSljCf73+SjyjnHkeloZWDF6+627K7ddP/1b+Q7u8js2o3R24cIhYjOnE54xlRCk8ehBAIcrDEcPW4Og68sI7NlO733P0JgRDPZXXtJLF1G9+/uJTR1HFWXnk1gxBASS1cz8OTLZHdaIL2hiaNg9pRDuqbsnjbavvcrzIEEAFWXnEV0/iy0xkreCgl7z88fo+uhQllj34MvERw7EqHpSMNEiYYJjB3h4g/pTQ3WNR4/h4pTFqAPG4Ia1A9pvu8EhSaPBkWh94HniBwzFiVSPvPoH4Uyb2wHoPXLNwIQHDeKumuuQI1VIYqVdNtYMtNpcvvbyezeQ76zC6N/gPS27ez9dgFnSKutxejvR62Mo1VWokSjpLdtB8Og6VOfBiEwkynyvT2IgE6uu4t8VxfDvvJl9IZaK9Zk81A1FkONxN+8u7JN+b5eANRoxZFZoHeajnKE/Prrr+cDH/gAc+fOZcGCBfzyl79k165dfOITnzj0wd4m/fznP+f8889n+PDhzJgxA4DVq1cjhOChhx56y+NnzZrFscceywc+8AHmzZvHzJkzj/KM33madukEdm1K0fpsIRiQXLmFjt89jtHWSXLzPqvTazRE9clTqDluDI3HNqMENDsD/q0fkubzj2HvE5sY3NhKevt+gmOHkdm2h8HnlgP3EZoykZrzzyXQ2Mjga8voe+Elcvusrq3RaVPffPAylNmzm72/uhVp6ym1555HxczZKLWVnsBPeer6zb0MvuCRGw89TqB5KELVQEqUSIjA6JGus0NvsOyNihPnU3HCsegjG1GCf3czsoTCk6yGIn0PPklw9EhL7v8DU2KP9Txu+c23AYiOGE/zuVeih2M4Dakc55hTqmdkUmS620h27yXd30kuPUBizzY2//bb7riBeC25RJ+FLxWOoQWjDLRuRQjBlDM+jTRNjEyK7GAPmhok2bOXbKqPuWd/hWCkyu3AJ4FAOI4ejSNV8abaiJSSfMbSYbRg9Mgu1DtFR1lu/CPTb3/7Wz70oQ8xb948dN3SCfP5PGeddRa//vWv3/L4oyVHDp3LvEmg2J8G6vksyzhT7e9KKEjD2RcRah5B++MPYKaSaPFKBtavIlBTR2zyMUTHTSY8cjTCNjSLMkwtx7oXFNwTFBAmCAQjLv8YGRtQPVjbQLank9ZH70GpjDG4bjX7flroDOJQ1UWLqTzrNH+mkHM+b+BY2h5sO7I88MzrrqMKILF2NYMrV1B7zvnEJ8+guD7KSCbof2MVAxvWkN6ypWQenT/5o+977NS5hCYMIzpjDFWnHENiyUoym3YR+tzlvjbbVs29PUkniypnffZlusmi/3i+S6vtOzmbaalWJESq8sBBEO82p+QtUkF80Sn0PfYUXXfeQ8NHP1iI3jjkjTgUrfkBSeJmiPnKEaR/H7D3K1P7Xy5iU3nKKaS37yB+wkKCo0YQnjMNESx1IkjTgdoFJRAkOGoYwdHD3HGMwQTJV1eTXreZ5MpNRCaPINgYx8zk6X9lI4Prd9OweAaDb+xl+Sf/dMDLNAcSqEotKgWcK00x0YTptq13S/CQ5F0cB+u3mrkjaX9+C1UzhmPmDSsNQkpQVFTFLCkVdb57M6mcTCkLZ7TwuRxpwkSoR7AQ8DCEx8EC5foOlZLrr7+eE044gWnTpgEwadIkRo4cyZe//GV+8YtfEI1GueGGG9i/fz+trZaSuX//fgKBANXV1b7xDhZsN5lM8r73ve9d6aiS4MPccLa5vzvvvI3x5wYBFc/L75QfqdYBQgvTcNGlhMaMpfOB+5C5LGp1NYkVq9AbGojOnEF46iSCY0Yjgrr/xAfM6PAKMxBCYch115Jt3Y8IqOj1deT2t9N1172o1ZUkX1vF/v/5SclQ1VeeT/z04y3/kgf+qTwVooMDT7/iOqoABl9ewcALr1P7wfOJzp1gYVTZ16GpBvT30/7CG3Qv3czg6paSkdtv9POT2Onz0Uc2ET5mIrFT55F4eSWZrS3UftjCJJKOx1t6yj/KMXgv35b+NbP+e8OjRQze3cXm2XaG0oEyudR4JfGzFtL/6Et03vYQ9Z94TyFbrUjH8I3rKxcsyGsX8N5X7i48GQAeoVZmfKeU5EAljhVnnUim5W7iZ55AcNRwQtOnokjVLjfxM0snkqwEQ4RGjCA0fKT7g9E/QGL1GpLrN5DatIXQ2DFolVWY2SyJ1asxtu8gtmAB6c2b2fOjH5YunE1mMokUtYXsAS+2lImv1KW4VEUIhcjYCSS3bCQ8cjTSMNy1F6ooGyD3rpdPhpfLMICS++6WFx4pOspGx+WXX05XVxff+MY3aG1tZdq0aTzyyCN/FwzCefPmsWPHDv74xz+yceNGpJRcfvnlXHHFFW6p+oHo1FNPRQhBT08Pq1evZubMmTz//PMIIXjmmWfeoSvwk4nEsF9cQxY6HhtFD4gu8iiYFlYVAJZjwhAKQSVH0gzY4wnq6uC8b81h+d+GsfIHzyMNSaCxisGl64gMr2HYmeOpnz+KummNhCNOxlQGsBxBeamUQCOYHl1JERJFV5h9y/vp2toPwQCito6BrR20//oRlOpqEi+vYt+GTSXXW/e+S4nNm49iV7iLoiZP9la73KuQmdy75DnXUQXQ/9qr9L2ylNr3v5fQtHFIzbQwGO2sXKO/n8TStSSWbyC7aXvJPDp+cbvve+y0k9CHNhKZNpn46SeTWLaS7M7dBD58MUIrSkFxPnpgPOxp+393+K+HLxZ4g7AzaopeyAPZl8X7ColaX0PFKQsYfG4pvfc+Qs37L3Kzqlx7weH3Xv5k2xDC9Jf8OVlW3gwqb6ZV2X29vMdrL1JYMkfc1M8+ld1P3kXDsacRahxObOwUhFBKQNq9+E9aIIzaNIrQiFGYqqUb5fv76N+6lv4ta0ns3UZF01gCkSqMXIaerSsw0jtpmLCQnj3rWfPQgZsuGLlC5rq3vFAqooRHu+V6jjxTNSoaRjPYvoNo/QhMpxsMWEkW5exGn3zw/Kj4MxDBFsEOxI23G/ORdBr9Czur6uvreeSRR9i8ebMrRyZPnsyECRPe8tijKUcOGWC9WJE4oIOKg9juHK+oxGcdS3zWsUjTRKjFNXX+MbxOBlHEBHyHeTsLSAg0NLiOs1yil9SencidpbWZWm0NDZ/5OHpdbcGx5JSI2Gvgns5bdpaxTlZ1/nlUzD+OxLJVZHe1klpltSTNtrViHjMD08yS6+wk19FOYt0aBtevxcJEGWbhQnjTZDSN6MIZROfPRGbSJF9Zw8ALKxl4dhkdikJownDSG1sITxvjljeA7agyFMvJlC+U/CmO08kHekypwggFbJHitTVwvf0+ZiyxjDPFv6/R1YvM56k6+0xkOsvAy68U7p2TzlzkRPJl9ZZR9P07F20uqjX37e5Jny62x6xn0cIbC40dixaPk1i1mviikxGKarfoKyyZ8yz4QJWFtBQD+3lRwxXETl1IbNEChGagB0w0G1+m8cpTMAcGiQ6JYfQO0LNkM9ER1ejVYYL1MfrW7mXrjx5FqArR5kqCqhVScZxSmjBdHCwvOdgJphQunkN0hOVEWX3dnahhHTNnoIYDTPjvc6mcOwaE4nNQHaiEz9nujOvFixFCunMLqAaami07xjtFhwqUC/DpT3+aNWvW8NJLL7nbdF3n3nvv5aqrrqKmpgZVVTn99NNZvHjxW453sGC7V111Fffcc09JG/R3BRXzbuF/nR0lR3q6rDnbZfFz6FVMpUpswbFUzJ9rKTiq4sMZdM9hUuJVLWUnHl7o5V9SEmgu4M/ku3vIbN8F+dIUWa2hnsbPfgytpsqxbSx+YvOVt3oMav7jQuKnLyTx6hqyLXtJrbJKp3OtbQhlPGYyQ7ajm+zeTgZfXsfA65bBExrb5PfIAAQ0KhbOJDp/JsZg0sr8evY1MExQFYLjR5LZvJPwzCkWrzQ8jF5glW56eb/AxZaSPnlcYJ4FXDFRWEPfNR9Yq3PBzGVhDvmuXmTeoOqyczBTWZLL12PmVc84HhlU5DyTQtpzKN1XGv5zWQEtChq3p7xQYn8tNjo85wLcksHIlIn0RiMkX11D7LSTLEeVYa/Jmym1PqefQI3FiZ9wAvETTrB4CAWZVnPWWZjJJFp1NfneXhLr1xNobEStqECrqiK5eROdd/8ZEQ6jVlf5gIT9uCplsGSKKFDfSHLLRnb/7CZEIIjM51DCERqvuJLQ+PGFqL9nfUoMNc/yH4xi/8/WGv3aa6/l2muv/XtPA4BIJMLHPvaxQz7u2WefBSzn27XXXsvTTz/NXXfddaSnd9ikCtCRGJiEyLuwBVlUTBQMIUhLOzPUBAhgCAUDxVMWqJBGJxqB4y5tZt57389gNkCWoKvzRDSHcVvGumk7p6xhBZoU7jbTz9wsXcyel6ZKasZXkc7ppLIm2bZeUlv2QL6l5Nr0oUMZ8vGPoUfjKBmBUmSS+OwY51V2eLOA+iuvpGrRIgZXryazdw+pDbbc6GwnqI1BZjLkOjrItXaQeG0NqdUbQREEhpeCHotAgIp5c4jMmYkxMEjitWUMPPcSmCbdqkpw7Ciyu/cSmTezVJ45ctxjb7h8r8jGKOxf6sB3yspcmBJH5vvkkSwFcbcp39kNEqqvvBAznSa5ZoPrrPLCgjgOM7+jyQOsbhbxtWIcKttZpTilgIZnX+n5771fEp9cdX6PjZqEGgzTt3k1dbNPRqAUeKnnfM7+Dh6zqReeDyEhEK2kbsYJ1E89AZGXKGahe+GwY85EZjKEAnGaxp1E376NhOON6IEowWAl3a3r2bb6fgLBGFo4hqkKpOqM77EbPXA5zv1xrsvZFKpqZLB9BxseuhFFD2Lmc+jhCsae9AFiDQWIGq/88XYJdMc1C3ah97ZJVVgdpovkzr/pyNGECRMOykHlpaMpRw4ZYP1gFYkSY+QgxgZKHVUUXsSy8ynDMIVZGM/734Gm2Hvnb0m8sY7g8OFUnX0WajCEmc2S7+9DaBqRaZOsmty8FwzOGii9fSfJ9esJTZpAcMRwlEAQOTCImcmhhMIokTAylSG/vY38vi5Sq9YhdJ3ohKmEh4xk7y9vJb2tkIKMohA7dQHx805Dq45iDAwiggGy23cjAhqBMcNQPdUZFcdNgXweI5li1ye+R3qjJfzi555U0goesGqt8wKRKyjmxUB8xQ6dkvW3jS3fvo7jxuMMLNSgF86da+9gz3e/B0Bg+HBybe3IbJZ93/oBTR+4Br3KKrWSqsDUJVLDB8DrnF8gC1Eaj6OrxJFVxOC9AqfE+CquKxe2M0uVqJrO0M9+ir0/vJH2X95Gw2euQa2IFAlc4R7ne95MkF5JbneHdDFW7PkqQZ1gNA5IAjUVNJ4/G1UxrfbzQlI5bwIz75gAUqKHDExpuNlUgO+zV3EypbDwqigAC4/64ALqTptCri9N79q9oGm0/PYFNnzlXiZ+7SJqT5jg+l3f7BUXwsanshfVAmOXJfPRhElQeYua10Ogw6khP1igXIc+85nP8OCDD/LCCy+UdPCbM2cOq1atoq+vj2w2S319Pccddxxz584FYMiQIWSzWXp6enzZVe3t7SxcuPAtz/3d736X8847j8cee4xjjjnGTb916IYbbjjo6/hHI1ksNzxZL2C/Urbh7DisgEK2i5dcJV36/NTC+8UbqfWc0yeT/LsWNOTiHWzeJw1ov/lXpDduIThmFFVnnoESCGJmsxh9vYhAgMiUKVYJdt5vXAgF0pu3k9q4ifDk8QRGDUcEAxiDg8hcFiUaQomEMZMpsntaybV1kFr1BiIYIDp3EqHRdbT+7y9JvbGrMD9VIb74eKrOOxE1FiXfO4gIBcls3mWXbjT7nKQVx03DzOQxBpLs/fz3yGzcAUDs7JOstS/CUCFv8UFcHCrHcVjG4yb8iy0lhUxe8GRpFR2DwyftcU3bkQRkd7ey/39vAiAwfjS5nbuRuTz7/t+Pqb/uo2iVlYVTGh4tWRSYufTOy+uYOpDjyMvHPSTL7V8meCIBEQjR+J+fpPVbP6bz1t/T8ImrUYOhEtyZkopARRYZUoX/An9beyUQRNGDIEGrrKJy4fG+saIzZhCZcYx1KtVjSdgGGFDa7cq7Bp5z1515HpVz5mOkEiR3bUfoGl0PP0jrr37BkKs/RmTixNIMgjLvrff9LwFY9+6rUMC3OwL0r4Y9snnzZp577rmyTTq+9rWvvemxd999NzU1NVxzzTWsWrWKu+++m8svv/xoTvctSXfaskrrYVUw0YUkZ7fTzkmFLCppU3NxqwyhkPNkcziOLUWY6MLAFII8KgiIBXNAzg7uKSUOqEJ6LAU2Jf36liKkpW9J4cuyMkyFVEZl65d+T3rTLkKTxxI/41QULYRMZDB6+lCCIaITpqCqAZQUvuoAqUBi2yZSLdsJjx1PaNhwhK5jJAddp7ESCWMOJmy50U5qwxuIYJDIzGko9VXs/85PyW73yg2VyjNPo/Lkk1AjEfL9/SihEOntO1AqKtBHNNnBVmv36LHTMbM5zMFB9n7lO2Q2W01+4otOtOwjEzzM3HrfDFHodOh9v4WPBZblwcUOEHfdHXICUU5QSuB2WpVSkt22i/0/+CkAocnjSG/ZAXmD1u/cQsO1H0ULx/zOe5cHFeZrXYPnd/sxKAekLgzbWZX3dDj22hVe56KN+ezrcG5/1oJRxl76abbccQMtD/2OURdehaIF/BhZDhtXsRw12P+F57yerC9hCJS8dOcllBCKHkTkIRKsJjJ6gW8dGofNpmHYLGuogIrUKM2kKiMffbfGXq8R8y+hccpJ5FODDLbvQKgqe5Y9xMbHfsqksz9NvH60L4tKyRfm4XsGnGY5niINIaysSyGEW1WCeOvAy6HQv5rc8JJhGNx+++08/fTTZeXIW2VIHS05ctjFxm+aAl6siBXZAYd7voN9KLzOLe+DbyqSvpWvkHhjHbHjj6d28bmogaANOG6Q3PwG6d276FyzDjVWQWTKFKt7zs4dpDZvscG2LWbd/+SzoCgIVUPmChkkSiCImc+DaaDX1FMx6RjqF52LXl3Hth//L0osSs0HL0Ef3ohaWUHr128m8epKUus3oYSC1F//QdSQTmiK5X12Ogv6SNEx8x6AYVUBEcTMeaLOAis6rpuYTsclvAxP+hi0L9PJy4xthisdcHDVY2h6XmiRtwweMnkSb6wjsXEDmda9ZPe3utPM7t6NEq1ACQTJdXez80ffIlg3hMiIcURGjEEGFUKTJ0IsgAxI//0z8dsjttFRrvTP1whApaCgFzFdaVfCCc/v3mO1qipCY0aTXLOW5OuriJ/oNwpc8gofO7NMeCI/VsdIa3KmKRB2lCJvKFY2kmq6c/fq6aYTqhACU5quMuSWAgkLSN2UVhTGKf3zOqoc5UnVIDayGsNUiE0bhikFjWdPY9mVv6DjmQ1UHz/Rl1nlOqRMv+vKyeRSvQ4zG1xdU0wL5B0IKHk0r4R5u+RNtzuYfQ9laCn5zGc+w/33389zzz1XtqOSQ5WVlQBs2bKFZcuW8c1vfhOwnFm6rvPkk09y2WWXAVZXjXXr1vH97x843dqh73znOzz++ONuu9higPV/avJK/nKKj7T2cdxUvpJBn3b7VnLHY5SX/ujJ2fI6uQpzcRRKnzPNFMg8DD6zhPTGLcRPPZnqs892sa+kkSO5YSOZll0kVq9BrawkMm0y6ArpzdvIbNuBNA0yWyznUP+jz4KqIFTVAtl2Th8OuqDbgeZ6osdNofHDZ6FWV7Dt6h+i1VVR97GL0ZsbUMIh9n3tZwy+sILka+tR41Earv8gSiBAeNo4y0FWxhpQghr5Hs87qakoYd1qmCHxBDQKyry7PMXZad77We6+FDuvKBzvy1SyBYzMGiSWrSW9djPZlr3kWgtdZ7JbdqBURBHRCLnWdvb953fQmxoJTRhPcMwoFKESmjTBvie2nHIy2YTwGz4HcFZJBcs5JwrPn0/OlWtz7tOsnd9Ar6ojMKyJzJbtpNZsIDZ3tr/xiBAlAZmC0UQJldxKrxF3AN3KwbSUwm4qUs7RWMxSvZftfFZVAg2NICA0dgxSlcTmzKHlO99kcOUKohMm+vWAckq+V+Z6ymKd8/ii5gdYg8Omoyg3/tHoV7/6FZ/85Cepq6tjyJAhJTLkrZxVs2fPdjEXv/3tb9Pe3n5U5/tWpCBQ7YfHtMtvDSQqhW7GhrCYlGoDnIMFuu4FXHfKBk2poNrZ6JpjwZuqr6zQyYwyERieLCpwSgAVtxTQ65jKS4W8af0BpHIBEmmNvXe8RnrTLirPOZ3Ks09DlQGUjIBkjkTfG2R27qZjxWq0yiqiEyaDopDctpn07hakaZDeaZfpPf8kqKqFl+rJ6hWhkNVR3TTRhwwhMnM61ZddgBIKsefL30Qf0kDtlZcTaGxACJ3WW37C4MuvkXhtBVpVFQ1XfRRFDRKZNNHK1lGkywfdc0RVjF4PML2mWfLKyXZySosNYVVxmB5+6SQOOFmqnne7kLXk4a3g58FQ6CaseHRqCRgKZipHcsUa0ps2k2nZTb6twz0u/cZWlGgEUREgu2cfe/77GwSGDCU8bgKhkSNBVwhPnIii6Z5sbUfnBsWTLWV1yqO0LM/e5jisrO2yxP60HCwCofh8WD6WE6puIFhZS2L3FgZ3baFy1FQf73eCfqZW5Py3HWuKx2Gm5EAY0s36cudlesSWhz9IKa2An5s1Ujif7xYJ5/7gI78NCSoq0VgjxBqJN44FoHbUbFbf+y26t6+gsnY0SFn6PHi3iQN0zMS6ViELAR5hWt1Cjxj9C8mNYrruuuu4/fbbOffcc5k2bdoh2x9HS44cchmgz+t5IHIUqIO5xoNxZBW/+G+2f9F4zkuVzwzS+uc/kN68hdjcedSfc6G1n+3waL/7LgbWLEeNxgjWDSHVspv+Jf5uSaHhfiO2esEp6OEK9OoalEAII5Mi19uF0INUTJxKIFZll9uBkRjEGBig5oMXEZkzzXVeDP3GZ+m7/0mEppB4dR0dP/odkblTiC8+ASUYKMESAsAENVZJ3Sf+g9T6LSRefJW27/2Cpq/+F/pQCwBR6rbBp0pkwARHebUXUCoFRizzAsUujShmDpZQEC4j9qXdmAKRlxiDA2Tb2klu3UzfqlcxBgbQamsJjRtD5eLTCU+eiBIKkWvtQGgagXgNRkcv6U2bSO/ZRd+6ZfSssMquwiPH0Hz1p8jt2o9aEUOrrHBTUX3RZsPTncNRfu25F2dymDpWR5Ti1q62o8vbOtdne5iS2Lx5JNesRQkED2g8ezP5XMesLVytfQvz9naQstqnKxbmvtOS3rQcWFJIdNUoZC0J03UGuVlNnhfBRLiKkqNEFZcI5k0FU0gcKKBALEh8ahMD6/aQ7x0k0dJNsDFOsLHaHUcIiZk3SO/tITKsCl0DXTVcp5Sl+FkKYEDJu9uDSh7zSPLwQzFiDlFofepTn+KOO+7ggQceIBaLuRhTlZWVhMNWI4B77rmH+vp6RowYwdq1a7nuuuu46KKLXKZcWVnJVVddxRe+8AVqa2upqanhi1/8Isccc8xBddC44YYb+O1vf8uHP/zhQ5v8PwN5S4N9HmcKGxVAShsDziJZsl/RGO5OHFwww/NyFwx4zzBS4Na42bzE6Bmg89d/JL19O/EFC6k781wktpIuJO2/+yPJNetQ43H0IY1kWnYx8PyLvtMGx430fY8vPgk1FkVrqEGN6JiJJLmOHpRwiMicSeg1cYRiIgRkO3oxB1NUf+pyojPHu2MM++4n6P7zc4igzuCS1bT98HdEZk8hfvYJKKFSse5gNen1tdR94n223FjO/q/fQvMPv4RaXYPpZDGYslCCYXr4nR0590VaHeOhWI7bvLbYGeL6E4WJ0TtAvq2D1NpNJJYswxxIoDXUEZowhqoLzyQ0ZQJKMEhuXzsEg+g1VeQ7u0lt2Ex2524Gl7zKwLPWWocnTaLxY1eT278PtbISJRYtRN89975cNpGbgWUbScJ9Vq3J+jKWi1N+PVlChTWTxOfPp2OLlYnkOFBd+aRYxwqfouLZx6s7vRUPLWv84Ztz2Xej1F9X7Dsu/yOgVlQQHD6C9LZt5AcGybW2EaissbKkvec18mS7OwnU1oOmunP0zrM4A6HYefW26SjKjX80+ta3vsW3v/1tvvSlLx3W8Zs2bUJKSXV1NR0dHWzZsuWQy0COJOlCdZ1HOgoIkwCQlRLFJyTA8Ch8qpAYpvBlljvk7Kc6D5lioEhBDtWXMWVIQd5UfWPkTZWsqbrOKe/YWUMla2gMZix8rIF9SfZ+/09kt+0mdtpJVJ9xJuRMKxxjCvb96TZSWzahVVah19WT2r2T3pef9801WIR7VnXKaajhCHpNLSKoYyQT5Ht6UCIRItOmWh1ubZ6X3b8fmclQe+GFhEaPdrGWmj/zWXqefBIlGGRg+TLafv1rIsdMJbboJKuqpYjfOA4pvbmRmo9cRmbjNhJLl9P6tR/S/P3/h1YZL8iIMo6FgnPH1nkdPVn1/J4v8GZHTxdCeDIsrUAWhrCcEr195No7SK1/g8HXlmEmkuiNDYTHjiV8/rmEx09EVQNk9+xHiYQJhqvIdXSQ2rqFVOsu+l9ZQt+LzwEQnXYMDR/8IJm2/WhVVWghqzuqGxC37R4lb30WHj6u5D382rdmNmf3yj8nCF5OJuKoHia1049n77N/QcGPV+WsmVT9xzulgUq+MEdrLWVJAMQXzFeKHUE+aWQ7xETpnG3bShY5MASF8/mCDx71IRiuJFLdRP/+LeSS/aR62whH6whGqux1tMYwjTzpRBeRaL3bEKYku8t2XrsdyIVAPZLeqndAbtx666384Ac/oLW1lalTp3LTTTdx4oknHnD/559/nuuvv57169fT1NTEf/3Xfx2VRh533XUXf/7znznnnHMO6/ijJUf+8do4HGHKJwZJbt1E11OPkO/tQW9oJNfdRcv/fQtjYIDIxMmER41hYN1KGhadT81xp9gxeJPUvl2ga5jZDHo0RqCmASOXZrBlM6GaIQTqGgqOClnqbfY+xEbKbl+t+5dcb6ih/trLEIokNHEkA88tp/fep+i99ymCE0cRO/U4ogtnlr22yJzpROZMJzh8ON13/IW+x5+m7sPvO2Jr92aUeGMDA8uXk2trI9tWyJ6KTJxMbP48IpOnICOORAIkBBqtDlTkQK+qJjhnPlWz5tNw1oW0P/4gfcuXkm7dQ3rXTvb8ygK8D48bT3jSRPJ9fVQvPhvF05HtaFK6pYWOO+8k19GBUhElPH7cO3Led5oaz5xGz+sPsezyn7rbKueOITalifxgmsE39pHe001+IE10XAPTv3sJet07cw+8dDTTcn/2s58BcMopp/i233bbba7zqLW1leuvv562tjaGDh3KBz/4Qb761a/69r/xxhvRNI3LLruMVCrFokWLuP3221HVt65rCQaDHH/8ATL3/k3vOBn9A6Q2bKL3r49i9PWjDxlCdv9+Wr7zTYxEgsiUyQRHjyS5dj01l15C/MSFto/LINOyCyWoYabTKDVVBIbWYKZSpDZsITCyCb2x1jqJkCiqJ2W0TIDHGCgvNwJN9TR+9nKkhMCIJgaXrKL3L0/Q+5cnCE4aTeVZ84nOm1b22qLzLSyrQHMjPXc9Qt/Dz1HzH5ccwdU7MCVXrCXx+mpyrW3k9hWyp8IzpxA9/lgiUychNM/7IkEfWsAM0+pqiJ04H46fT83FF9L15/tIvL6cbGsr6c2b2f/zXwIQmjSR0KTxGH19VF1wtlU29w5Qeus2Ov/0Z/JdXaiVcYJjRr0j532nKXbssXT8+W5avvl1d1t04hRCzSMxE4Ok9rSQ7erATKcINY+g+T+uQX0LkO+jQf9K5Rw9PT1ceumlh318c3PzUWk5/q9Eue4BBpZtpfX3z2H0JdCHN5HduYvdX7PkRnTaNIJDmklt2UTje95PfPaxlvFvGKT2tKCEAhjpFFp1DXptDUYiSXrLFoLDhqPX1Pis/2ID3vv4GoNWow5RBCcQGDKUIf/xQQD0IY0Mrl5Fz4MP0/PQowTHjSZ++klEZkwuuS4hBBUL51KxcC5abTV9Dz1F/xPPU3Pp+Ud4BctTYtlKkqvXktu3n1xbIVMjMmM6sXnHEp48AeHoWTYcSXDIUOt7DgK19QSr6qlUF1J37kW0338Xg+vXkO3oILlhA22332aNN3kK4ZFjMPsHqTvlHJR3yEQe2LWZPU/dRW6wFz1WTXjIiHfkvO801Y87jpbX7mXF/f/rbqtunkasajjZdD+D3btIDXRg5NPEa8cwZf5H0PR3l70BVqnc5z73OW699VaOP/54fvGLX7B48WI2bNjAiBGl937Hjh2cc845XHPNNfzxj39kyZIlXHvttdTX1/Oe97zn0CfwJhQIBBg37vDt3aMlRw4Zs8qbWXMopYC8SeTbl9Loi2KWGUuWnrfsuBLSrbtp+eWNvs353l6CtQ1EZx4HQGLbZroee4jw8NHUzDoBxRR2JqhCpGlUyblVPUR8wvRCJk0xoLiHTNubbmRTdD7zqLUxoIJmuhkzAMIuWYifNpf4aXPpfehFsrvaGHx5NZlNO4kcN52Bp5bS/+iLNHzuQwSGN1nYHlmTrt//meSqdaBphMaMLnjR86IA7isFUnNyQS2ntFBNNyIiVQVT2KCIxdj2UoAp3XapThQkvWUriTWrABjy3v8gUN+ACIXQhtRhBgqhU290u1AWB1ID00mzjQSoveBC1GiU7peeofVPvwVAjVQgE2m67bbLel0doVGjCTY3u97+koi+czp7m6nhTx/Oe/YpQzKfp/vhh+lb8iLBYcNo+OAHCY0bY0WtvHhc9gMg7OsSdhaVxDmfB1DZ9wwVtArppJI72VX2NlWYqIqFBaUWTbQYm0pT7BCQVArg554XxMW0sssHFSExPL/XnzoJvS5G3/pWKueMpn/NLjoeW8PeP72MEtSoOm4c1ceOIjyshq0/eoxN33uEmV9eRNfWNoJVIRqOaSCg5l2MKsU+nyIkxpEMVR/FSIeUb33AZz/7WT772c++6T6hUIhbbrmFW24p7Sz6VnTddddxyy23cPPNNx/ysf/w5FOqZeHdlZ5tTnRWkYWskDICxpv9WPYd9pY7FT8zxcN5M62QdnciQXr7Dvbf9FPfrkZPL4G6RsKjxwGS5OaN9PztEULjxxFbeFxhHEUhNHaUP6syDyIYJjJ7unXaPC4+npEtjWYLYa2DkUzQ+cen7I06Zl64+wqpuFhKsUULiS06nt4Hnibf3k3ipeW0b9zBqD98h94HnmPw+ddpuP4j6EMaLFmQy9P567tJrdmICOgEx4205qNZc7bwP4rW2MO3FC8mnzc6642oKpb8EQq+G5Vav4Xk8jUA1H7sSvTGOpRwGL3Ok5Xj3ELpP697P+0MLyUQpO69F6PFKuh79gXaf291zVWrKjH7B+j9qyU3gk1NBIYPI9A01C0b8JWZ2HBapggAAQAASURBVNhcUi2db/G1F26SHRJ3SoxSOXr/8jcGliwlOGoUNeefZ8mNigp/BpF9qJSFY51rKy6lcE59UBnq8Kb6mBSW3C2sZalnVOJ9J4t+KBo/duw8tOpqsrv3ER0zgeSmjfSvXkZiy0aUQJCKCVOJjp9CoLqW1gfuYv99d9B48ftIt+xAr6gm3DS8MK+Du7zDo3+hzKpLL72UJ5544rCj7Uer5fjhkoJA9TjyFQS6sEoBTY/MtsDOFbf0L2un5BhSISc1CyYBf/bVW5FzjCkFWRsgKGtYmVUOPpWTIZ+XCpmcRtfyFnZ89Q7fOEZXD/qkiYTHT7AcUhveILFmDZHJk4kcNxvDKaVDITR+tHutYGXVaKEoFdNm2pOyt0uL//qSW4R0O8/mUwl6HnzEHkOxS8IKQNtSsXh95aJTiJ95Mj0PPUZ+sI/Ektfp2LyNEb/6Pr33PUpyxVoarrsarb4GYQjMVJbO2+4gvXkrIhgk3DwaJam6jZp8dpyt0KoZUSgFFIV9pLdZkU+GCIs3SQ9fkILUuo0kV1pyo+FDH0KvrkENR9Hqqq1DtNIyQ2/2rzfTSYmEqL/kcrR4Jb1LX6TjrjsB0GtqyXd10/XGBgCiDSMJVjcSqhviXo8LFYBlW7jdAz3JCr7r8diJ5Xh5Ppdh34v307PhNaLDxtF0yiVEm0ajBaMlCRBOppniGV8YdkaVAcKQpZ1dPWtuIuwuuX4ZWC4TSiqiAKYuiuZRVFovPA3BikvWi6vPGycsJBStId3bTmX9OHr3rqdj90p69q5HC0SoGTKJ2iFTCYQr2bLiz2xZcTfjZr6H3q5thKJ1VFQ122st3ewqax0K2FxHhI6y3Ljhhhu46qqruPrqqwG46aabePzxx/nZz37Gd7/73ZL9f/7znzNixAhuuukmACZPnsyyZcv44Q9/eMSdVV/4whf48Y9/zE9+8pPDgiA5WnLk0AHWhf/7odAB76kov0/J8GUiz8XOK/flEJbjQQmFAYmZThOdNoOGiy8lSMQ9tv6kxRiJQdRwBBQFL14gssAgnHM7gHolHRE8E8/LDANvrCXVupNsayuZHS0IVaH2qvcQOWYMilaoRXAA4oRiMWjDUKg6/wSrHCYUYuDJpez+5P8i0xYuVnZPG/rQYQhD0Pf40yReW4kSjaAPr0cfNcTCqBC2gMAuqQkUAz5Z53NbgCsS9IKc8JfLyALwuH2hwhBUn3Ymfa8uReay5Hq7ic2abbdPlZ6uGMIqQ3SwSpw1crCmPODoih6gbtE5hOqb6Fv9OpWzj6Ni/FSEqpJYs5o9f/0dXfffD4BWU0uoeTgNZ1+EVhEv1JV7samcVF1AmqLQDrgoVdn77OSSfbT+4bdkWvdRu/h8Ko8/0YrWCKzuXrJwDcIsCB9Tk5hO4F54//wOSWcRCthQIEynBbgjDeySTdMkoBWAzIWQbplf1ka2UjTpAoM6mFEO5U2lpAxQwyyU7dhzyBoa0SkjiEweiRCS6JgGmi+eQ643idBV9IqAO0aoMsjG7z3CM++9zR1TrwjQNG8oY88cRT6VZ8xZo1F1FUXKMmClb4Mk5Z0TB9j3n41ee+01nnnmGR566CGmTp1aArB+3333/Z1mdgTIg9nmK7nyOEIc/ud2XAVXafWS43wvRwcqdzoocsoPBZDJI0Ihi42k01TMmkPDBe9BCYbcMavPOBszNYiIR60Nhn2ddmmYKzdspU4xisAqPB8dpdHMpkmuXEumZTe5PfvI7NiN0FRqP/Z+gqNHIfOygPXrercL41Wdv8geWJB4cRm7Pv4NzKSFbZhv60FvbESa0PvAUyRXrIOATnDUcPTGIcicZ2rFCi/e7zYvLy75KL42E5+y61xw1flnM/jiK9ZpegYJzppp/VasaMoyn6W/dEEqICIhqi8+H725icSKVcQXLiQ8aSJCVRl8ZTkdd91B55/uBkCrqyM4Yji1F12EGq/wd8N1AioFXd5/4c7GYsVeN8l39tBxy+/It3VQ+96Lic1f6Lbo9jnz3iTz2lGORdE74CrmB0vFjk9T+B1znnshykX+DmJMZ16RMROIjpyAMCBc10Tt8aeRHxxA0XWUQKhwDeEQ+++/k+3f/7p7vBIKUzFmErGJ05G5HJWTZyEUG6GoTDnRYdO7XG54ady4cXz1q1/llVdeKduk482CLaeeevRajh8uqULxlPnYmJ329wIOlcDA+stJzd5mOakMFPc34ID6iOmxxA1ZGNfFqLL1LgeXyjAt3Kq8YTvFTEHWUMmlJCIUQCgKZjJN9MR51LznAgtCwg7yVp+7GHMggRKz5IYEj8FtO5U8OqY9cf87aLMHR982UikSa1eT2b2H7L69ZHbvRgQCNH7ww4SGNFvdBU3cgLMFyi2QiolUJFUXnAWaRGazJF9fzZ7P/Q9mwsroNToHCcTqQELf/Y+R3rAJCYTHjidQ7VSW+I0gJSfcruPCKMgB6YHG8DpuihsquOXSHmyo2sXnkVi23No+kCQyYYZln2UsR5WpePiza9vYclXgD8AYoAXCNCy+mGDdUBIb11M193iioyegCIXeFa/Q+uif2fPX3wEQqGkgPGQEQ0+7GC0YLogjGw9X2Of1YVkVlQe6FTjCum8IyPR2sPOh35Ib6KH5tMuomTrPKnsrDg44fNRj53g/K3nplgMWy0fpOd6SxYV18lXIv4lToqyIkJZt6P3uk2FF+3qpauhElHoL67AiPpRhk08nm+5HUwKoatA9XtECbF15D68++r/usZoepnrIZGqGTkWaBrUjZlhrJgTGQQSdD5oOQ2709/f7NgeDwbIdyLPZLMuXLy/p/H3mmWfy8ssvlz3F0qVLXcgRh8466yx+85vfkMvlSnj926GXXnqJZ599lkcfffSQbZGjKUcOPbPKedYPww490CHFDjD3JfJu9irDsrBvYZDCWI6XOzRyNOP/+9tIaUWp1XDUqoX2HCOkhcFQbj6u8QJ0r32FdOtuKx1oIE3dSWcTrC+UJzgMt/OpR+h55QVkNove3EBgWAOxk88jMmcyWk0cRTVQVE83Na8iKQtODWkKat57MvqQasx0DqUiQvftD9L1y7tJrdhAfPEi0tu2gxDUXHUZnT++jf3f+wn1n/4wkelTSlfb46SyxlcKHTscrA0HdF0WboB0FGdvZYaQKBUhRvzn/0fLd/6HgdXLqTr9dEsQeQ0WA8sItOVGSXvYIrBCTKiYMZOKGTNdRisFRGfOYNS4r5LdtRszkybZsp3+Va9h9g8y/PwPoQejmLkMmAJVD/gZtFq4Nz7DSfr/Zzrb2HvPr5CmyfBrPmtFfg1KjSgKxwlR1I0DDvCQF4wiIaR7D0SR4wosJ5IpQQgr68r1lTr4UUUvnikVG2RduEqXosgSXCtH4VLwO7BUxcQ01KIxBXpVpGihoGbuSBb8/kPsvX8VmsxRPbmBgc3ttDy6iZZnWgBY/vNVDD9xONPeN4l8IssRoyLD+S33/SejqqoqLrnknSnFeqdJCo/BLWy9yJMiJaW0Gx2IgsPHoeL3ydHuD5B1ddAkygFcW46myLgJjP6WJTfMhC03pOJrPKEIgRKKWU4j01HAhcUnPRks/UuWkN3bCnkTmcpSe/Zi9No6N0JrKfGSngceYuDFl5H5PPrQRvSmRmrmzyEycypqZQxp2gynmB+VWZ/KC85CHzoEmc2hhEL03PUA7TfdRuTYGVSeu4jMZqs7T+1H3kfnrb9j/7dupuGzHyc80U79loXuc+Uyq0qUcOm7nTiRWOEaDIVJauEKmr/+Zfb+73dJvLqcypNOdId370PROXygut5tng0Vx86h4tg5hU0GxGfNJTJiDJk9ezAySdI7dzCw/HXMZIqGD30AEQ1iZjJITaAEdfeapVk8mdI1djCnMnv20/Hj34KmMuS/P0Ogsdk2JKSvI1bJ41o0tCsLzcLaO+viHF9qBPjn6XueTe/xovQ5KdhyB6YiWWllhBUGcmW45/rUWKxwiL2tYtJURn3+y/S+8iIChVBDE+nWPfSvep3+DSsB6HjhUWITplEz+wSMrKd5zNuld7nc8NIvf/lLKioqeP7553n++ed9vwkh3tRZdTRbjh8uGdIsOKeklaltSAtIOWc/cAbCzqBSXUdTVqrk7D9TKuTszCijCBjdS5YjrKBDOZ+92FTOsSZWpz9nuyEVTFMhOmcSo2//GlJK8j1plEjMqoDIF7KFhRColdFCwNY6mdWx2yjw056lz5Pt6kDm88h8jrozzkOvqvZhPkkknfffy8BrryENg8CQIehDhhA/dj7RKdPQQxWQLbyjroNDwe2MXoiRCqovOJfg8OHIrIGi6nQ/8CBtN/yEitlzqDr9DNJbtyN0ncaLL2f/HbezZ9MbNH32swRHjbTGdYw3aQVw7bMVZeXYH4oDGe4O1jZh+PmdHq1kxGf+i123fJ/B1aupmb7AxYs1Eb5sIxcfypNQIPB0nHPWQUL1jPnUTJvvYlRJAdXT51PRPI50+z6MVILE7m30bViGzGYYtvgKFC2IkU0jNBWh69aUi7EQHdnpkWfCkYsSEm272Pm3X6OEwox9/+cJVzf67VpnHTxOL2FjaClGISFAcXC0HLwmr30ubQl8gGCDm2Hlseu998m9PwIrU9q5Dlvf8cpqryzwAiaWk33lMrkCobh1nFnYVjdsOvGGMbRufQlVDRCuaGCwdy/tLa/TsXsFAKENj1E7dBpDxywka6Q4YnQYcmP48OG+zV//+tf5n//5n5LdOzs7MQyDxsZG3/bGxkYXL7eY9u/fX3b/fD5PZ2cnQ4cOPcjJvjVVVVVx8cUXH9axR1OOHBrAuoJPIT0kOoDCVTKeLN3mPvCydHu5eTj7uocIgRatKN3Re37vvATk+/tof+pv1J6xGL2mlu5nnsDo7SUwsolsyz5kRYCqRYvQaquRugIa5Lo66X7BKtuo+/Bi6i+c53NYS2kZ76oiUWzuKoTlULDSikGzwwlSCpS6MIEL52PaSm9kyiiSq7fQ//hS9n/3FpSKKJgmieeWotZWYXT3ojXVWVESJ2psCguY0OE10nKSIPGXepRbB/tHi1F5Ft92JCmVYUJjxpLeuYNcdydaQ61vDFf5VyyHmOuY8gIVOkq5YglRJwJj6oWJGAEIKNWEJlYDEBs1BXNgkMEdG9nxx5uJD5tA96ZlaKEoY07/CNGaJgwNsv2dGJhoVVXksklS+3cikSjBEJHGkeghK9UWw2Trnb9AaBqj3v8p9KpqzJzfFvAaDQAodpmnXdLorrdqlwAq0g8q7SoruCWgipDu53JBASktpcja2XRbMDuUNxXyKASKHVj2zfQ6pdwsK9NyZqUNzb6MQmmg4en8J525SYF0yguFQAlXMOzKhVTo1rM8/IQRzLtmKsmuFH0tfex8poUdT+5g4182ll7Q26F3udFx2223/b2ncPTILZnCei8c5UgWlB5pZ4BYZVp+xQso1XiKnofyJYGe/bwsrKgTmzu8sPoRSjtaKoRwy7i80W1HOS044G2lT4FsRyfdTz9O1QWL0aqr6P3bY5jJFIHhzWR370WJRqg8+WS06ipQVFAht6+V/mcs47LmyvcSO3me6xCxBi50vSmZc1EYVkjQY1VUnnayuzChCWNIrdvMwHNL2P/tmyEUQmZzJJYsR62MYwwm0GtrC0EL75pKz0WXW29ZZu2dYcxSR4lUJGpFBYGRI8i1tpLv7kWrripkEzhj2UES65nwj20ZIl6N1/7J03HPimRLtBoL+FuqFh5JfqCf1ObN7Lvxx4TGj2Xw9eWoVZU0XPVB9OahSAn5jg6QJmptNcbgINkdu0BKlHCY4KiRqCHLkS/zJu0/+iVqRQWNn/o4WlUcqRQCEG7Qrfj588zbH6w5QPttWR6M3TmHY0gIZCFTo9jf5jVi8BqK0l9eZHpcjEXH+tbaY6D4rrWc4aNgdUE+42xL9psQnTyNuhPOJD84QLZtP4Ob1tK7bhndy/zNCd42vcvlhpd27Njxto6/++67qa6uPuItxw+XTNs55Xw2keSQ5DzZUjmpkkMlLQNuZlVOaqSlTsbUSZs6OTtaaTmv7JJBjwPKsB1ThhQljqm8nUXlbPOSo7M5+7qvixCo8ahV6uZQGadModOcILevjZ7nn6bhtPPRIhV0PPEQmAbBocPItO5BjcepnHc8WnUVUlMRKqRbdtJvZ2LUv/8KYnPmWI2H7CazTkZVcRasGQAzaNsIHj6q1VZTeeoplq6eh/CYcaTe2Ejfyy+RWLsG9AAynWZg9QqUihhmOoUer3azqKQiQSnm9xTxuYKsRJXIMhZoiW/dtK4pEK0k0DCUzL495BL9aLG4ZTd4HUUSO5sUX5BDGE6HPM96eN/3IpUjWFlHMFaHkBAfMZn8YD/929az7U8/JtI0it43lhGormfEeR8kWNuINE3SPZ0gJaFQNbm+PlLtuwCBGgxTUT8KNRBCKgIjm2XHX39OIFbL2As+jhqtsJpuF9mgzn8XusTpRmiA6t5j6avykIr/+AMllRQniLjHC/82ad/P4gQOLV1wkAk7k9xURYmjyvlfLljjd+5JrGw/PxPWQzFGTFvs7lMzbBojJ55ONj1Asm8fXfs3sL/lNfZue6H8hR4uHYbc2L17N/F43N1cLqvKS8UldlLKNy27K7d/ue1vl96uLXK05Mi7HmD9cCnduoeBtSuoOmURXff8iYoZM+h74QWq3nMm6RXb6H/uRQZfe93aWVXRG+qQuUIr8nxn3xGfU2BYA3pTAxWnLqDv4RcwewfI7NxLZude9KYGjJ4+un9/P1XnL0IbNhS1ImK/AEd8KgAITWPIhz7C3ptvYvcN3yc8fgJ1l12KFou/9cGHQVJKupc+S/eSZ5DSJDpsHIldm+ns7aBq7EwG9mxh4/0/omrkMaR695Pps9rYKrrVocXM+TN9KkZNYvhZV6AFoghVIzxkBIF49T+7zvqOk1AE0foI0foITXOHcuyn57Dvlb089aXnj9w5yhnFb7LvPyPl83mee+45tm3bxhVXXEEsFmPfvn3E43EqKso72/9N/1iU2bObweXLiS8+nY7b/0hk3mwGX1hK9SXnkXx1NQMvv8yAk+qtquiNDZjJpHu80dt7xOcUaB5KoKmJ2CkL6X/8WYzBBNmdu8nu3IU+dAjGpi10330f8UWnEGhuRglb5Y6ixMI6MqQEgzR+4ir2ff9G9n7r/whPnkjt5e9FjR2dZ1yaJj3PP03v88+CohAeP57Upk3k2tuJzp5JcsNG9n33R0RmzyC7aw/5zi4ARCgIhoHMFVrFIwSRY6ZSe+XlKMEgQtUIjhlldcX6Nx0SCUVBj1USiFYSGzWRhlPOI7Fjk1t+c0TO8S8gN44UzZ49m5NOOolkMum2HG9paeH+++9nypQpJWUo/6YjR6ndO+lfs4y6E89i732/p2rGPHpXv0bDuZfQ+9pL9C55nt4llj4lNA29vh5jYMA93igqQToSFGxuJjS0mcoFJ9Dz3DPIRIL0nt2kd7cQbLJA4jvvv5fKE04i2DQMwgHLCXGUDA41FGb4f3ycnb/8ETtu+g4VE6dQf+F7LQiXo0DSNGl/5Qk6VzyP0HRiIycysPMNMt37qZw4m4Ht69hy+/9ROWkWyX0t5Pq7AVACIWQ+hzQ93kohqB41nREnXg4BDaGoVDSNQQtX/NveOEQSikowXEkoVElN42RGTV5MT+cWNi3705E7x2HIjXg87nNWHYjq6upQVbUki6q9vb0ke8qhIUOGlN1f0zRqa2sPbqLvEB0tOXLYZYDeO1lSTnHAgw/grBQH+OyMX/yTP5hcPsOqOKLo7OfZ14e3WHR8xaSpjP/fH9H+6H0MrF5OaNw4QpPH0f3HBxl1y2epXDwNYzCF0d2Hkk2R3deJzBtUzj+D6DGjrLICYfiyZwC3nEvxrISwHdKGVDA8URBdM8gbisv8TcPKblFDClUXnYY3LUyokuTqLbTf8DvafmB1RFKrYsi8QcXxc9AaagiMGkZwfJN1QiERTnmcHY1wsrB85LrHnTWTrqdcqiAqwwy9/joGXnqZ/iVL2PuDH1J98ulUHXcCQlM9YOt2xlQ2Q65lL3plDWokgghajiSp2qnDRbXtTkqTkYWBFUvoePoh4lNn03jy+QTDleR7ehBZk2C8lmx7Gxv+8n/0tqwlVNXI2NM/goiEGWzbgSnzVM1agBoKk08MMLhjE/ufe4A3fvk/ROqGk+3rJNvXyfC556PHKjEDYNilulIrPCtOJMgB1pdOFpuzlqp1L/CU+7nlf/7Ag7vtzch5dkwpUBCYUIj02VGqtKH5on6KkITUvPsZCkDrKBZQ6JuRlY1bCKc4Itd5lk1F+KKNOVN1gdVVIUl1pWhb3WFllh1J/JF3MbW0tHD22Weza9cuMpkMZ5xxBrFYjO9///uk02l+/vOf/72neNgkPA0ICjJEeniuhVnlZFd5s4QKgzhhbOETIoeEK+CyS1HC14qjmu5XJ+LpzQ4zhJsp4weHhdi0WUT/bwbt995NYsUqQsdMIThmJN1/eYChX/k80dPmYSZTGL19mKk0uf0dYEoiM6cRmjja6t7kZDS50WJvWLNw4cL+rSRqWa5uTEiUQICqc8/yjStMSK5dT/uvbye1wcqGVGIxBFZpnVZTS3DECALDmhH4S9Tcy36TaK4b9XWnYa2dFonS/IXr6H9pKf1LXmbv935E1dlnED9ufqGrk+d+mOk02X2tqDXVqBUViICvLt13D5xjrGixSe/Lz9H9+KPEjp1HzTnnoMZiZPu6QZHoNTWkd++h9Yc3kVyxmkBzE43XXIUIBEhv34ZEEjtxAUogiNHXT2r9RrofeIjkl79OYNhwjL4+Bl9+lYaTzkWprMDUJNKRG0627QGeUes2FRQU7+PpvfaS++nNVPAlXInCe1Z8j+z3znsONwvKqyOZ0m004C1hKZ6jN/LsK1VxPtr6AeDBLrNfQgfoWeKTD7lEH4k920vW6d90YLr++uv55je/STQa5frrr3/TfW+44YY3/X38+PGceeaZXHLJJS5I+6RJk9B1nc7OTm644QY++clPHrG5vxXlpEHQyaDCJOcpAUzbilha6qSlTlaqpO0XLy2tbKq0qZMxNTezysQBWvdmUFnlfDmpkDdVF0zdwafKm/4yQCfb3TAVF7DdNAWmKSz55WQOObp0UUas+x56M38MqJ55HDWT57H33tsZ2LyW+MQZhBqb6Hj0AYZ9/NPETz4ZM5kkP9Br8cL2doQQRGdMJzR6NELT3CwqXwkw+DJnwKpaMAMmUvdkVjkZSQJrm2ZfhwShBKk5ZzGKjbvljDW4aiVtd/6BxPp1AKjRClAU4rPmotXUEBoxklBjM251hTc72f7uqyhwHAQSX5apkxWFALUyzshPfIHe5UvofXUJyVu+T80Zi4nNORahKC7ItrAxuox0ikz7fgLRatRQBWian28VkZsxnTfpePVJ2l99gtppCxly3GLUSJRsfxdSUwjEqhncs5Udf7mVvo0rCQ8ZQfPJl6BoOsldW1GkSsO4BahCJ5vso3fPenaveoTelnVEaoeTTyfoXP8yzdPOQo1GECbk7UQch2+6pfiebKdiO7XcNRyQPCz9oNyJXnnu0ZOEAWraLACaS0k+4jzMhZElsjRj2hlD4gNmL2R0FfQZYRZ1vHTeQyTCrkRCQDrRT2/3P4/cCAQCzJkzhyeffNJXbvfkk09y4YUXlj1mwYIF/O1vf/Nte+KJJ5g7d+4RwauaPXs2Tz/9NNXV1cyaNetNHc4rVqx407GOlhw5RGdVwd14UOmFRccKR4s5VPIoU74R/P4M3xzcLnHFCpVHSHgp1bGP1K5tAERHTSBY04giBbWnnU1s2izUhhr61y2nd8fTCFUhPG4IYGH+aKr155BT0qcI6XZ2c7Zjl2OpniJrS/CVr6W3HFs2qSagYJiOUirdfYQqic4cx9D/vZbc3nZyrZ1gGOQ7e0iuXE++3fL613/mciJzZ4Lhbd1RWMOSThZl5uRlIFKRKLEwVWecTnzWPHoefpjORx+wUprPupDYrDmYmuXUMZG03/tnEqtWWsPrAcKTJhKoryd6wnGo9XEyO3agD21EiVQw8PzLmP0JlGCI9BtbSG3eRHDYCBoufT+KVDEzoNZUoxiW/qsPaWTqlV9DJlOo8Uq0YMQq/xg5DlMHI2g5m9R4kMqhdcTGT6Vv1eu0vfY4ihZAShP6kwRE3IKvsXmAERTkg9Z34cFBl6p1C6TA7bYoNNPq7ujB7/JiVPnLQm3HpcehqSjWs6Haz4iLPUVhHxd/qshSd7ZLaXX+04RZAF0X1hiaMEEtOLy82AvubRcFh5Us+k21H5B03mId1jkMNCHQFAMFySs/eo3dS/aWPDdvi8oYyW+67z8ZXXfddcydO5fVq1f7IiUXX3yx2zHkn5a8JbE+i9ezDeFp7lJGxjgOLOHV3kp/Lxm2ILLe8rFwFWXvMQJLZqjSNUSEsJpMCAHpPXtIt+wAoRAdOwG9rh5FKNSeex6xuceiNtUxsHQpgy+9ihAKwZHDrHEd410Kf/ndgSZZfHnekjevc9/ZV5TD5Coa0i6fiE6bStMXriPb1k6uvd1SPjs6SaxaQ77bkhuNV19FZOoU1xFRrkTMV77vWUOfbPZMUq2IU3XOmVQsnEf3Xx+i+5776Hv8KWouuYiK6TMKl4qk4/d3klq73joyGCQ8ZSJaQz2x449Dq4iT2r6D4JAhKMEo/S++hJlKIYJBUps2kt6yldCYMdRddhnC7nKk1Ve7yntg1DCGf/0ryEQWLVaJGg4DEB47znpu7bVU6uvRT6knMnUag0tepfe5ZyzHmqKidKcIUIGpCwzb6DBCYIQkaLZRaPrvs/TKWyGsfYxSfcbZ3ymhcZuTeNba/VimXNQZ3irpL7onoujVEZ5n03u+YgNPerYXP1v2GKYngOMYWlaJfOGEwgSnFW7rY/eQ2rUdVBWMI9Ta6V0uN1auXEnOzuhfuXLlAfc72GyXFStWcOONNwLwl7/8hcbGRlauXMm9997L1772tXfUWZXHJOeW+0my0ioBzEmFnP0gW/hUmv1nPXAZU7f/NDJS95X8Wf8Vt4wwb6o+R5WjF2UN1XVYeZ1VeWkDrJsKeVuHzuVVDEMhn1Mxc/YLZiiQF4XSZGf5VYlUIbNtF5ltuxCqSsXoSajRWhQpaD7tvWSnn0SwppGOFc/St22tlUkywpYbXoxU77Nd7tl1HMZOmZbjRNclqFjNj9z32nKuKQYWbEjR+wwe55rNf2LHzEKrqSHX1UGuox0MyLW1Mbh6Jbm+HgCarv4kocnjrE6zHigQZ018QOQ2j3O723kxvTxA7VosTt2pi4nPmkfHYw/Qce/ddD/1OPUXvYeKSVPd0kNyJnvv+R2pbZsBUIIhomMmEaxuoHrGfLRghOS+FsK1Q1ECIbpWvICZzaIGAgxs20Bi33ZiIyYy7JT3unpAoLLW5bkVw8cx4er/h5nLEgxXoQsrI7mqbjxKTqLmLIeLXlFPdOIpVI+YTtu2pbStf96aj6pDKo2mhjEkmJrjjMEPOl+si3h4q9A898R7y+QB2Jk999IAV5l9JQg8DbMAKSz5mYsqvoCJG8zHK1tsx5P0l/IXB/jcaQk/BrDE47jy8XFhd6eyzrFl+V0kevehBiIY2SRHhI6y3Lj++uv5wAc+wNy5c1mwYAG//OUv2bVrl+vc+fKXv8zevXv5/e9/D8AnPvEJfvKTn3D99ddzzTXXsHTpUn7zm99w5513HvrJy9CFF17oli1eeOGFbzs78mjIkUPDrPIqNodxLc6DC+WUsTIDlnigKFGK3J9Lji1S+pwXPp+nf+t60rt2ktm/FyORQBoGuc52S0kCOqWk/vxLQFHIdrVjDA6S2d2CkUwiU2m67n+Z2osXAmCaClKRdgaUbWS5wg1UgbtdtR0Tpu2k8JKDM+Qca5iKmznjAzUVEkU1kUIpikoIhALBUU0ERzW5bc0VzSTf1cP+791Obl8n+pBhkNJ8AlQICTnFjsocoHuQQ8WdiRzGokrEkBg1H3ofodcn07fkRTqee5Sela9Qf9pist2d9L6+hMze3YRGjKLqhJPJ9LST3LyR/le20uvtFKAoKPEKzL5+1HgcM5NBb2ig4UMfIjpjOjIPpgMcqVqY9wAiACJUhZarQgpLBzaNHKZhQCgAQiGfTaEEQ5bRUhsl0bULLRRl3FVfRpdB9IyAtERPSh9oYTamkI0J7PJ8y9fnwRuR3hfDzsJwnFSK4smyKiyZ66hSlIJDU7MdVML+czLwHMeVt8OfgzflKFMBT+9WE2F3rClkQDnOK6+TKy8VpO0odbYbZgFEVEr/82cIK5PKu01TTCJaFlVIclIh0WkDHR7BzKp3eznHSy+9xJIlSwgEAr7tI0eOZO/eI+z4e6fJq2k4/NDDy71dSYUpDiD7neO92osou0vZQ70+LlvJkU4HQneKomCEe49VJIaRI7VmPekdLeT27sNMpjBzWfIdna7c6AAaLroU08yT6+kk39dHdt9e8r19yEyGgedfJXbicdb57MxMS0MrXq+i6/HKvSLF3pWp3uwrb0tqZ3/TPo8URddnHRccNpzg8GHeTeQ6Omn76S/I9/ahNTe4mUJCepwi5dbcq1zjfx+LlWghQauqou6jV5A4ZhIDz75E998eYmDpK1QtPoNcWzv9L7xEbm8rwQljiZ20kFxrG+mNW0ht3Ez/408XBlMU1FgFRv8AaiyGmc0SGNJI41UfJTJtqjUnRbqg9t5MOa26BiVir40BZi4H0kCEApZxkEtb5ZEqiJoImX270GJxRn/ySwg9gJYRqBksTCY3um/pLEZYIjVPhrXHE+o21sgpiJzTJdeDf2NjlAjpHdc+3AOA613PciTB/xw5n6U/ibnY0ehsFxT2986hxGnpOqUoDOzNlvYoZaa0DVPbuHQM3MNSLg9A73a54QDaFn8+XEomk8RskPwnnniCSy65BEVRmD9/Pi0tLW97/EMhC7PK+mwgMbGyqrKoBXwqrAwq5w9ws6pyUiVnKi5oureDoLPN66jKmqqbde7t/OeQ46jK2Y6qbM4GbjcUjLyCmVOQeWt/kbMacpiZHMnVa8m27CK7pxUznUamM+Q7uqwsH9OkW1VpuOhSGEiR7+oh39tDuruNTE87mCYDK5dRMXcugNWMxANM7sW9crBgXXLea9tRZQTt984BP88Lt0uhyFtBE2Hge/+9PNw5l5rFBeAOjRxBcNQIax9ToCUh07Gf3X/4OWY6hdZUj6nb1Ria9PN+WyY5GVtKruC88skuBQwVX4WDyEOgqpamyz5M/6pl9LzyAl0P3k//0qVUn7qIbEcbvS8+R66jnci4iVTNnk92XyuJHZtJbHuDzpefKMxDUVHDUfLJQbRwFDOfI1w7lDEXfJyKkRN9vNOLhSUV0KtrQFoYTkoazHwWsgYKQTAk+VwaLRC29g1FSXS0EIzVMuXiLyBUDcW0DBUlB/qgfX8CwqrqcHi0x1lo/RVA66VacOz5eLYXX9r7SHjkhc82LqNOFQ4q7KuY0v1eON7v0Cr37Li/eXGKRekpnS7C1hfnv4XG6KpFqrXNGSc1aJXt+8ou3yYdbblx+eWX09XVxTe+8Q1aW1uZNm0ajzzyCCNHjgSgtbWVXbt2ufuPHj2aRx55hM9//vP89Kc/pampiZtvvpn3vOc9h37yMvT1r3/d/VwOFP5Q6WjIkbdRBngYZ/O+eEUK+YFMlMK5pft0S88m39y8p3J0oiIlatdvf0J6j/UQhGdNJTCqDqEIKicuIjZ/MtI06frd3+h44C8A6ENryXf2IXN5lAq7dXlnO+GghX/kAKSDZeRDocOfs90FXPU4Frzb1OJWFoAQhgXGZyoukJppWq4LKS0QYOlxZjmt310ngify3vOXpzGTGZq+9zn0qiGIrLAMD2cOpvAAHxaUeOnRYgvZCQcuBbEaZuXofOBezGQSoWnkE4Ps/u1P3P2qTziVmlPOQERDhMOS+PmnYWaypDZvxBxIoDcPIb11BwOPP0/8grOoPndRAXg5LzAxIWtpt1LxR4BMFV83se4nHqPnmSdBSpRQGKFpGIMDhIaNYMglV9Dz2ksMbt3A0EuuRNaGyOdApq1MKikgMGANrg8aqFmJllRI19hKThRyFViAkgo4KVcmQACMgUGMri4EkN64ndzu/WiVYWoWzSAwusG990LgZlIBBLS8W7LnOLOcZ8nrqHK2Oc4nb1mpm8Iu/VlTJqLQhtmThVWOHGep12nqJWebkxqf1VWymoYiJJkBK9I7/8sn8sq3jyBg7j+hMXGwZJomRplsgj179rhM/5+WPI5b11llfwasyK+zQZFFCrfNlzxfhVKQBQf7THh5VqEkyhPNcBxVjmPLY5QbpqT1hpvJ7WsFIDLzGPQhDaCqhMaPJXzMFKRh0HXHPbTfexcIgVZfS76rBwwDJWK1u87vbytkURngTXl35+i97DIpYaLISeRmK7sODFnI4JH+/S3nSYE/+sYuM4+evz2ClJLmr/wXep2neYYU/nV39IJip5udoVMu2Ud4bqhAQiJL9933I9MZqwSvv5/9N/3U3b9y8enETz8VNRBEzgTOOQMzkya1YTNmMklg2FBSGzYx8NzLVF18DpVnnGLN0e66JQuKRqE8z7sGsiD7Oh/6G30vPGddQjiMUFWMwUErO+uKy+h99hlSW7bS8KEPIiuDSGxjKud3VqlprEi0UCwDMWiXSgcKra4cGW7qlqGb706Q7+gFE9Kbt5Lbux8tFic+ex7B2iGF9fOU+pRci2+hvb8VgNrL6lD2D8JZN68xA6Vy3/PsuMaTwG044jXqnOwqq/RDlB1P5i250XTB+9l3/x84YvQulhteevLJJznhhBMI25mBh0Pjxo3jr3/9KxdffDGPP/44n//85wELH+Vg8FiOJOWkxEGBNaTd+Q8rsJZ1QdM1T/c/uzTQdlQ5JYA+HUgqViDO3pY37QwqqZA1VLJ2ykrOzqzyBepMq6ohbyhuNhXgc1SJnOOsEpAzaP3ODeQ7O0FRiMw4Bn1II0JTCY0fT2TKZGQuR9cf7qbtnjtAUQhU1ZLt6QJpogRDmJk02fY2jzNAuE0KfFlJhZ99n5330QhLTL0ABWEJJFFSplhSxSJxmyM5wO1q2q5ScLJ7bJmm5K13vf2pv6EEAjR/+jOoVZWWrJPYpY/SPUYY+LKKTQ23+YkbPHImQRGv060xzYEE7Q/fi8zlUIIh8ts2k9y8wd2t7rRzqZ5/IkogAFNmUGuejUykSGzfhJlKEaptYmDzWnrWvcbQUy6kduaJVkaUYfNx+5od55zPWaXiOg7zAna/eC/dq5dYaxSMIBDkMwkqG8YzdvZ72bX2cRIdLYw77aPIiNW13FDsNfbAIjqX7OgpvgQR2ynlzsHmobl0P9lEH1JK+vdvIdXXRiASp27CfELxOvcafOK/iJd7HTTSWXYneOEJzAtp8/EyfNWXQQUFAHz3eKe0T5ToP+48PMEY6/TSN4Z37lJKsJuSjV14BVteuK10UodLR1luXHvttVx77bVlf7v99ttLtp188slvWYJ3JOgrX/kKp5xyCscffzyRyOHhwR0NOXLIzqpyJXR+hejNjy9RjoqYY0kE2dnNeXs87lgvQz1gWqPXOWZKsp0dhakOpKm97gMgrMwXKQAV6q6+mPhJM9HqYoSbqpCGgZLPokUDrqHlROl1TzaLZq+m13lV3P3NnZ7HkeUIQa9gdLabnu2Oo8pZA7e8DIlpKJBXcFN/BKBJ8oNpkis2UnHCcWi1TYiUcKMoXiXUEmrSd3+9Kcw++0YAntR+gMyOXQw8v5T0xi2YySSVi08nMmcGWk0V+a5u1FgMRQ2iBINWNNkJKZsCRQ8SnTbd6mKogMxl6BtMEhw51HJU6TZHdsrydIkZtidiWgJPGgaDry5Hq6hAi8QZeO11+pcuITb3OMITx5Pv6kJmDfR4FV1PPsLOm79nDaaq9C5fSqBxCMEhTXYnQisl17BxUUxdoCdN1Jwk3GUbHFmBkhPkI9b5DcNinImVa0msXUNy+ZrCNQKBplrMdJbuB1+hYnwj1ceOYtjFsxGxCCiq+zzoilHioHI/YzmnHOXL+7uJv5MNWJlXxU5cJ4PPiRgaplKCYWVK4XNUFTtYATfrLI2GIQUZQ2NANdAVg9k/+w9evPBnrPjZco4YFRtKb7XvPxmdccYZ3HTTTfzylxbenBCCwcFBvv71r3POOef8nWf39sjNpCr6XNjB4mEWBkGx8mwpRQ7YtxTS2kdxFBXb8KWcECgi7762Ai095/M5qpyxbMUs19buGQfqLn1PoWOdkKCp1H/wCtLHz0Orr0GrrUHa4NxKIGgHBCgxDoQoU65nr0npQnmcT/Y8KNqtJGuqOAOmeI0c/q56BhISYyBB6o1NxE8/Ga2xzn3/3K6u3jK0onNLdzyPo8JLnkBKett2Bl5aSnrzVmQ6Q/W5ZxOZMR0tHiPX04MajyOCOkowWOIgU6JBosce42bt5BN9mIMJAmOHWZlMJlbZzYE8goZA5vIMLl1hlf+Fogy89ioDr75CfMFCQqPHkOvqRJomWmWc7ocfZs+3vodTJ93/8svojfUEhjQiVYGStbOrPKUuSg7UtABFdeEgTdVEC5goqsWNpZT0vbKOgdc2knx1Pd6Uaa2xgXQqRd+zzxEcMYLIhIlUzT8RVY8gpOLPVPPIY98t9hknhXfAVSW8zijvAWWcVMX6m2tQqc61WffCa9Q5GVau6uY8k57uVsKAMdf8F1tu+hodzz1SehGHS+9yueGl97znPWQyGebMmcPJJ5/sGhyH0pzja1/7GldccQWf//znWbRoEQsWLACs6PisWbOO1tTLUlZKdKfSACsL0e3eZz/HhTJA1df1Ly9VF4/K9Ci1ZpkXxN3Pq0NRwKdytjkdk/OG6upIANLGphKG7bXA1kkzpuWoAjBNVD1I/QXvdfVqkQLQGHrpB0nP2kqwsoFgpAqZy1s2RyiIqYEZ8LB6m/cK26gvscc8z7AwwQxBPlqET+Xo/p4sW9dJYTuyijO21KzHoeLh/c7vYDmrssleUtu3UH3OYtSGGne+UsHO/LLWR80KTNW2OezO3+61ODLYmYOkxLGVbNlC/yuvkN6yFZnLUbP4PCqmHYMSjpLv7UGrqkLoOkoggCkkhrAC3sIARQsTnTXT4tU5yPV0YqQGiTSNds+v5EHJS6vDnXWb3DiNGQAzl6V33TL06loUPUjfsqX0rX2d2jknE6kbTr6zE5E3CSkVtKx9mBWPfRfH9dLxxhK0ujpClfVIFfIBIFS4d4pHjrr3HNysN1dmS5POrcvp27mO3pZ1vpsfqmqkf2+C/WufI9o4iviwidRPPh41GEYIr6erMF45XunyaNuWKQ5glCOfw8qw9DX3eBe3TPrtSlsPKwlgKIX7r+RtW8goyBOpCGaf8SWWPfYt9qx+9MCTOlT6F5IbxbR8+XJuueUWMpkMs2fP5pRTTuHkk0/mhBNOOGhZcjTkyL9UN0AhBA3nvYf9f/kjAEpF9ID7haeMsp1BJkJVUQNB/hmfyr4Hn0PmDCpOXXjUzpHesp22H/0MpSJK9Lg5RGceQ3DMKFd5DgxrsnhT/i2MSZtCU8ahj2ym6/f3UXXxWVQsnI4IlILIpTZsJvHaCszBJNk9+zB6+9zf1FiM6kVnUL3oLNBFIUJkQHTCZNK7WgjU1JFp20fnU4/Q8rMfERw6jPCQYeS6OqkaNxPdDBGqrEORVWgySDadQI3GCswey9AwUmnS7e0kN22k58nHUari6M2N5Pa0EZw8iqHXX0a4NoQqMww8u4pdtz7B4JY2dt/xKkpYZ+xnziQ+rYnQ0Kq3eSf+MUgNWmwlXBcl231kasjf7eUcN954I6eeeipTpkwhnU5zxRVXsGXLFurq6o5YXfq/6fBIqCq1l1xM1z1Wtq1ygGiTEILQhHEuPpdQVQvT6AiVwr6T1PPYEwhFIXbCgqN2jtQbm2i79VeolXEq5s4mOnM6wZEj3N8DETtD5ODEBuHpk9GGNtD12z9TefHZVMw6xgIeLj7v2jdILFuNOZgiu2sPRn+hq5ZaWUnNWYupOm0Rwhv5VSAyaRLpvbvRhtSR3rWbvoceY+///Yjg8GEEGoZi9PQSnzQDVQ8RqKlDj9dANES+fxBCfl1DSokxkCTX2s3g6xvpvu9F1PoqtKF15Pd1EJwygfprrkANRpHJPINLXqX7/r+S2bWLnqeeRAmFaLjgMkIjRqDV1BzSuv+jkqJZMl6rqCTX03VExny3yw0v9fT08Nprr/H888/z3HPP8dOf/pR0Ou0aHN/73vfecoz3vve9nHDCCbS2tjJjxgx3+6JFi3xgwP+mtyYlEKDmnHPpfuRh6/sButYJRSEydgJKFsiDUDWE+s9pmnU+9ShKMETFcfOO2jkG162h7Y+3o9XUEJs7l4qZswgOtUrYkaBGIgctMwDi46ejVz7G7kf+QMOCs6kZMR23Y5KH+ravpWfHGvK5JOnW3RjJQfc3vbKaxpPPp+7YU1EzoI0ANWPBiVQNmUiqYy/RYC09AzvZtfkp3vjz/xGpH0GwpoFcqp/KCTNR9ACB6npCFTUoeoBcOoEWqUBQbG8kyPZ00rNjNR1rnicQqyUYryPT30HliKmMPvH9qKEwRi5Dx6ZX2PvqgyTadtC6/DHUYISRJ15GpG44wWjVYd6BfyxSNQs6IxCKk+rb/xZ7Hxz9K8mNYnrssccwDMMnS2699VZSqRSzZ8/mlVdeecsxjoYcOWTMKpcHFGUu4d3+JjfvLe+rE+krytaSzrjCWyYiCr+VzMsCMnQi50KxDjc9UV41GqXzN/eiD60lOK6Z8MSRCM1iUtJ+WL3let7yPgdoWlVkKUi2cHCplJLtxeS1Yxxgduv8wuf4BpBmIZqjeADdFUWSyzhYU3a0R5UIzSTf3o3e3EggXAMpIAfpXS1otZVolZXWeZ3oqFNu54uo2jdEeLbZc3HutRapROgaekMjdedeaBlrOfxvsemJ4uSE20nCBRXUJSYmUiaQwqTi5GPpufthum+7h/5HniF+7snojXWgCGTWwOgeoOs3d6NWxgiMHE54+mSis2ei6lFkZz+RsRMQqmpXrBQWUpigV1SiT56OkrciEHqkmp5XnyexcwuZ/fsI1g9h79P3+O6TUDSkmSccqWfilItJq2n2736d/o7tmLmMu1/FsXOp+fBliIhJat062m/4EwPPLCdy2fGEgoLqC6cx4eIJ7H1kPWYyTduru9ny/YcRmsKcW69EH1vvPiuBoiwr7/dy5EQNTSHsiKIftN85NmuqngxB61k2PCWDZpksP/eegwUg7zwPmOy/40XSuzvRY0GEqpDY2gbA2E+fyorP/vmA8z0kepdHOpqamli1ahV33XUXy5cvxzRNrrrqKq688sq3Vdbxj0Le0r9yXTHdDFgv73fDyYUDrEKmQic8t/wNCklZRfV0hai0/cnOeLWY/FvMW2IDznoysFSNzjvuQa+rJzhyBMExoyxeozqYW96Ls+d5oIikFIV5ezNYirNkip5/XwTSJ3M9GWEO/y65IP/5nfQcF9RVEeQ7uwgMa0ariFm/GSbZHbvR4zXosUIatzsFD3iuwMKbKYn6e0D2pQSlOm6VvjQ3UX3ReSXL42ZMe6+z3DUIaZWdK1Bx4hx6H3ya7l/fSf+Qp4iffSpafQ1CtbKo8h1ddP/+PtSqSgIjmgnPnEbFnDkoqobZnyQ8ZhyKg1rrhrqteag11UTrqkFIAvUNBCpr6Hv6GTItu8js2UugoYH9D/n5ndA0ZD5PoHEINe9/L0ZvLwPLXiOzZScyk3X3qzr7WOqvPh9pCvpfWkf7zXeTWL6M+GknIlSV2OnHEz/xeAZeXgrpPIn169n/598jNI0Rn/kigboGN3GqbPa781y5UXvhgq4X9vE8494ltp+1MsvuYqMUSmNkYQ7Oo+g8y4rERKBoIA2DnmeeJN/eiRoII1BItbYAMOSMi9nx2x+VuYjDoHe53PCSqqosWLCABQsW8N///d+sW7eOH/7wh/zpT3/i9ddfPyhnFVht0ocMGeLbNm/e0XM+HIjyCHKezKq0VElLjYQZJGuX/DllfQeicr8bUriwCyiGm1GlCZO8JxDp6E9uyaChYJoKhqFgGoqVUYWtFxWXRltxbhTNg0GZydN59z0EaxsINY8k3DwSoThYsRRKz7wJL0UZrIXSKGz7xv7ZPp8ANyvKW6ZmdSa093UyuyQHbKLglvblQMliZSF5xlVs1uUFQhcG5Lu7CA0bga5GIQMiY5LZ2UKgph494s/KUFTIRzxV6zaPwJ6XW7LsXKRdpq3VVwMQGD6M6gvPA2nJG2sfZ+E8J3LwnKTVRc57n4xkAtVUqJ4wi87VL7HnkT/QWTOUxumnEohWg6YgjRzJ3lb2vfQAemU1gaHNVEybQeWsYyEnIZWhomkcqqmAJxPJWZdQtJaoVo2SNQnU1KPV1rHnjWdI97SS6txDoLqOvU/c5VsboWpII0+ooZnmRZeS6Wmnd/0yEq073HJpgCFTT2H4nPORKnRsfY2WF++mZ+dq6ibNRwmGaJh5CvXTT6Rj/RIQ0LN1Jdufuh1FCzDl0i8RqKh2x/LqZIohfSV/b5lR5X0+PSV/1vrL/5+98w6T46rS/u9W6NyTo+JoFK2cbAVLjnLO5rMNLGCSwcQl7LfLLktYWODbXVgyJhubYHDOOFtytmQlK+c0QZPzdKhwvz9uVXX1aGQwljEYzvNI011d4datW/ec+55z3lMUWSXCEVWav14dMZa9axVxmAGua3No+8PkMr0YRhyEoL/7IACTZ1/Ghrb/OU4DX6X8DemN0cTXJRUVFZSXl5NOp7n77rvZt2/fH32OE61H/nTOKkKfj7FiONZIHnnMKwFaxyxWQofL0Esl5bEG+cj8Zo9M0D8kdcpCEnNn0vbLXzK8bTt6SZrhtS8jcwpwMGqrSS6dhTAEFZcuwyhR3j5NkwFIFeap0jVXkV8fEz8Jmq5md/83U3cCIMsHBnKO4SnE4pQ/xxW4XghywGvhaOiGE3BU+W0QQkLUxtELqQaarqrSZbbvJz53BsN79+D2D9D12zuR2ax3r1XoJSmikyeSXLYAOeAQKa/EiKaRto3T1o2eSCKSCTRDIKXEamold7QFu7eX3qefRE+mMMorkJZNbv9+7N2HiY2dqNpge3whgtBCxSNStFUf+RVK7Lhg+MA+2r77w6JurP/KJ+i99SG6f34no0n19e8hOtnzqrgCkRdodWMU57CfBufipT4WFK5wId/ezpHf/QSrV3lxUyfNo27VZUSSZTCUQ+Rdcj3t5Ls6cAcGSeiltO5Yw6aXVKpWumIi9XPORq+uRBtbjVlShqxJYTsuriNJzJ9J+qxT6LnvOSpPn46YoBZ5QhOMu3g2hnAZd8UC2p/dz8tffJDh3S2UTa0suj+/mp9fdS9Mog4wkpPK3+Z6PAx2iCBUE1LxMjg6WVt1fH8mRiKiLI8wUOoDp3KEcvfHnRwapufRjQxu3sfgpgOkZo0n29SNdFw0U6fukgXEJlSP+sz+FHmzezqeeuopli9fznve8x7e8573BNtt2+app57itNNOewNb99pkZDEJtS38xcONdOml86nN/tgrKiShhQArWVgkjywM4Z8XqYBVqYmg6hheSkAAWr2C+K9X6eJlpGbOpe03N5PZuh0tlWRww0akpd4ds7aWxLzZCNMkfeYKtFjMP0NxetVoY3MEkBD0yUi1drwIrWNArNBiJKRD1fmKb1hdUwTpaKC4QzL79pFatJDszj04/QN0/Pq3QSULs6YGPZUiNmkSqYULcbM5IhVV6PGUIp3v6UErTSBKEwosdCX5I81YrUexu7rpf/wp9JISjIoycF0y23eSa24mOm7ssX0/ElsLcZ/5KTfZl3fR/v2fFe1X98WP03vr7+n+xehgefUn30O0foz64vEhKnJ11d7g+h7PSvAMXUG+5ShHf/xTnN5eABKLF1F18SXoZWncbA5yDlZHB1Z7B3JwGL2klN6nnuDotxR3Y3RKI6UXn41ZX0psQoXnOIor7koNSlfOIrN5Af0PrCF18kloZZVIW4DQSJ21DM0SpJcvZ3jDZtpvv4Vs8xEiVTXH7ydZWKCGFwQ+/PvHGtvhlMGgbzyb8BiHoV5Ibw2qCwpwhgfpe3ateuZ7DxBrmES+UxFJC12nYsnpmBXFOvC1yJtdb4Rlx44dgSd8zZo1OI7DihUr+MY3vsHpp5/+RjfvVYslFUAFkJUGWWmSl/ox4JOGxBQOpmfcxTQLS+o4mqoc6Hrn8EEnXYQ4PgVENFuBVVLD8PhvXFmws5wQTYLj0SK4rghV3hQFv0eoqACaoHT5StKz5tP6m5sY2rkNPZ5kYNP6AHCIVteRmjobPRqjYv6paGb0GKC4uBpbyL8ginWGnxo4MhWwkHolgv2CVOwQUBQAXa4o8FNlPKAqpGt9ACwgRPfEjrhkDh+gZOlyctt2Yw/0c/Tu3wS/R6pq0eNJkhOmkJ49H9vJoo+vQUTiuPk8Vl8PeiqpIpcFuNIlf6QJq6UNq7OL/qeexigrQy9VdvTw5pfJt7URqast7gREka4Ujko7FA5FJPT9O16m+c5fFPbTDaZf+UmaX7iPQ6sL7S78rjPuHddj1lYX+tYmqF4Yvqb0Cri4wQpbY2CgmW1rfo6VVZG85Sctofqsi9DKUzhODunY5DvbyXd2IIezGMk0nc89xr5bvgVAatxU6k45n2iygniyikiqjIiWQHPUpWsaT6H/yA5aNz9GyfiTMNNlitYkolO56DQQUD5nKb3b19H01B0MdTdjlhTAKv+egmfsdaUIOwvD9ziCCD2sHwo7FQN3wpZI01dCI2yRUZwh/ljOZ/poP/gSPUd3MNh9mHRlA8OD7UjpomkG46adhZk4cZx6f0t6Y6TccMMNrFmzJtAhK1eu5PTTT+dzn/scc+fOfcPa9afHmo4CVBUN1uNxcYw8/pV4Rkb5SYYGcABcyeOMlnBFBB+1B0hHqf1wqBy845I/3Ez2wAEyu3fTd89qAHrveJKKq06n6q1n4bo2puEWCLFDIMLIKoBAEHkV5hWK6TaakNiuxrAHFvgRVD5RdZAf7yrvjeuGKgd6f01Trbr8CnKOW9xRfQ+uoe/eJ4mMrUEOZchs3snw8xuL9onNmoaWVAuqwafWMvj8Rty+ftA0SmYtJN/VRrbliNq3bhzJxukM7N5KvlNFzQgzgh6NEUmVk2trK3Tl4TYiaR+sUpN44H31RpsT9dB1PaQAR0Tdps9bQbRxPJGxdVR/7D04/cO4Q0MKpTcNNC2CSMbQImaBtFGqRanUCcaIZoFmFYAqX/Hn29s48LOvY6TLmPAPH8YsqSBaotIphA2aHkVEIVE3kWT1RKWYJcxonEtv0zZ0PUp52WTcmEa+RMPyIrzztrqe73Uru+Isstv2sP9ffsGM77wPrSZRMJQMG80EzZ/0s7kicCqiO0Q0O/huaA5mSFuEiUJdqY0Ad100WajwN2hFiOk2ttSwXD3grHJdBZT64CgoD2JQ0dKPoMOrSOhVLmz6ye/pfWobyWljmPzZKyldPgONQsSVJiR2JsMJkze5p+PMM8+ktbWVmpriRWdfXx9nnnnmqOTrf1Uyun1S+Hk0J4iUhecuC5sQHmAlIUy/IGTx8UFEh68jPP4JZdB7JwrrklHaFjaYjHiSse/7UHBu6TpkWw6TPXyQzK5d9D2iKtP1PvAQZZddSOk5ZyF976QHNo1mzAXXKjJ2KYq4CoNQRRImpKWwz3H7YsS1wwuf7sceoe+pNZi1tWBZDG3cxOALLxYdEp95kiKrRdL3zDMMrF2LMzAAuk7q5MXkDh3CalWh+NGGiUSnNDL88lbsdsUVKaJRtFgUo6IMq6UQsm91dhBpGFPcL949FwEkvoQiuaRT6JSSC88iMmEskfFjqf2n9+MMDOBmMkjXQURMtIiJFouDHikCLzEl0hWjRIOpVag/n+ebm2j9+rcxqyqp+ehHMCrLMcrL1cJEd8E0odTErBmPedJ4hCPQcoLU7LkM7NqCnkoSb2hExsCNuRB31BpHWsoJ5UVwV771LDLbD9DypR8z9isfQSTSwaN3hYYQBtIvRW8VPO1+9HmRp3uUSk1F+4d/G81ID/V7mEg9eEbhsRUCroo4q7xtXb++jcyWHUQbJlDzwfeSnDETLSvQQ5EaTi7LCZM3ud4Iy6xZs6iuruYTn/gEn/vc55g1a9Yb3aTXJFmpI33SdGmSlQYOGo7UAn4qn1zdQcP0yJNMoRPTLFwpsEXYsNS9CsqFisjK3tYLBWy8QeB/Dm+TUtlI0gOqAns//B54onj0AF2il6QZ//6PAt67ZTlkmg6RPXKQoX276HruMQDan7yfulVXULlgpXIciIK+CsjMg0nAe+2CeT8EVIXmfMUVJYriB8LRKkVFEAQIqd5F3XsF9SxoDkWRL05U8TapCChJ56MP0PfS85jV1SAl/etepP/5Z4ueZXLGbJUSD3StW033pudwhwZB1ylZupThXbsCfq9oYyOxhgkMbd6C3aUcySKq+G6NslJyzS3Bee3OLiI1BbBK+Nxhfn9496tZxfOgupGCwq1ddA6J6vEkqscz5bIPY2UGcHIZJC7CMBHRCKTiuCVGIUja09EBYB80QvWna6j1CMDQ0YPsWPM94uV1TLj4PehVZZjpMlWlMQKIKIIo0fQkYg2TgranZs1laPsWjFQpqZpJamr3OMQAxJCqWq5JkLpg3IKL2PnwD9j9wPeZfsWn0MxQVL7A092qTdKxim2CV5j/wunwwbYwv3ERwOq9W7rPVSUQ/hpd+ONSFOkKQuM9AMZC59yz7nf0d+wjXTmRGSvfT1ndtKL2Sh0s5+9640TIRz7yEaqrq/n0pz/N9ddf/2cvrHE8eY2RVd4kHp6kj7MYOX6g1R/xpMPWeGjWlaMMqKKo9rDh6Rn1xxijQi1izMnjiTSOp+Ts03DzeQY3bKD717fTfdsaum9bA0ByxlhO+sY70fRjq7LB6I7vcOSL7UVP2a5G3jGC331PkRixYnIdDRGqFGiYKjLLNNSsm8ubwTnsvI6bM3D7LXp/p4jmZN6h5JzTSZ+9Atex0RIxtJSavPSMgZZT17JXdnLk+98iOW0W0Uia7i0qJ7V61kr0aJyuXWvp2/AC8epxjLvoElL1U9C1CHreV+KS3uYdDPYcprJ+LoZHAeJ4NF+BsyNk0FppL/XPN7h1Se7QQQBSZy2l/K0XKUTfFQhbw4inIJ4KjkeTquIQskC8aGkqmisESmmWCCo0aT6psuvSfPfNCN2g4R0fI2qql1HLer+PqGCBUOHKQoJr6CRnzkXPS5yc2lfLSzTPW6BZBIssKQVaSQljvnQdTf/yA3b/8y+Z8pW349Sr61muTsywqJ5bR/WicWz/3jMcfWofp3/vUkxDefwML5LK9MAqUBVs+g730/LSUaZdMQ2XkYPaGz+hl9V2NVytkBro645opFCGxAc9ZSh1StcLYKxpOER0B0249K7eSqSmhKGdzez7zzspWdCAtBzGf+IiYmMqkLLYI/ma5U2uPKSUaryPkK6uLpLJ0bn1/iplNDdUaD4Pd0GQChd2Rrio4i8a3oQbPqDodIXLjQBu/H1G9eQFO4yyPQSaCABNJz6hgVhDA2WnnYFjZRl4aS3dd9xD7z0P0nuPIoqOTZ9G3Qc+QLjoa3iqD0ft+N/Di4vgmFEUjMRPaRyxfTQ9F775YDu4hsTODtPzyMPqZ9eh9JyzSa1YBraNlkygx+LqOL1wXL71KC1f/w6JhfMQuh4AWyXnnAlCMPTiS1gvrCU6cQKV/+cKoo2TPOeCao+UkszLW8k3txKffdKoYNpIEa44JqIgv/+Quu65Z1J+2fnePYDUJHo6jV6aKkbvXJAOx1xPGhLM8EMKfXQE0nbo+MUv0aJR6j75UbR00kttc1UkkS4VeBpENSlydyenoWU10nPmFvrflmgZHa+gGJaQmDEbvyS3UVnGuC9fx+H/+31av/QT6j7zHrTScnW4BKRGdMZkoo2NtN91KwNbNjH23R9UPFvHdFqor9qOkj1yiPTCU9R8E77HEVEZo52jqOrfcXYdNStLgrQdMpu3YVRXk9t/kPaf/oJYYyO4ktq3vA2zrFzdvjXK8X+qvMn1Rlg+/vGP89RTT/HFL36Ru+++mzPOOIMzzjiDlStXviqS9b8UyUkDMdKLiQKuht0oAENulJxrogk3ALAcRBBtZflhJ574trofhWWhqwp/rh5UUIZiu/yV0gyBwrgZBeSVOl7Eqo/0gDB14g2NJCY0UnHqWbjDGXrXPUvH6gc5+thdHH3sLgDS0+cx9op3Fc3XPqikQVAV0L92oOtGAhCek0Tz7eSwbgu/1xKMrAdQ+WCILIBlrpfR6EbBjks0G5yuPnqeecK7N5eKM8+jfO4SsBz0eAKZjuGaID0CcalBSVMTLd/+DslTTkZmMvQ/q4CtsvPORebzDKx7Cau9ndjEiVRffTXRiRMRUbMAsEnJ0ObNWO0dxBunouVFETAV/uw9wGOeC8BwywEAapddQP38c4r60YynicTSBeBd9yq+uoV1TJE+dwvd7jvmg/FjW+x95lfo0QST3vZxRCKKE1P88a45Yq0BoHmFKgDiOsn581X35r11TEj/SR2Et11KSTxVxcxzP8LWB/6X3fd9jykXX69S+f1nLCA1cTqJ2okcfOyX9OzdSON57w3u2y+cJFy1XvKvM9TTzHDvUWomLjp2fhch6gNBYVAJBaCFU8KFpoj1j+u1lIUoZuFI9KyL4+Tpa99NoqSO/s79DD77C9IV45G6xqQVbyeSKFHjM/8H3tNXI39DemOk3HnnnTz11FP89re/5fOf/zzz5s37i9Alf50sfq+zaJEI6RVLMGpL6LrxNpwehb5kj3QWL5z+gkRKSWbbbnpuuR80jZrr30183gxPs4Wi3EZZLGb27kFmM2Q7jlK9Yinxkjrygz3UzV2FkUhSt/g8Blv2kOvvJNPVSqazhd69m5COw7RzryeSKKFswkzSUz1P3p/QRW4ux9D6zQCkz1426sL9REnbo3eRa29l4rs+ipkqgdwfPua1iFGaYsKX30PTl25mz2d+ScM/XkjpwknB79GKBMu/dQnrPvcwLav3Y2cszPSxhPJhaV7byrP/9SK9h/pZ/InXl0/CzVkMrttF561rsHsGg3ShfHt/sE//xoMAtN36PBM/cdEJb8ObNSz3yiuvBEAIwbvf/W6i0Wjwm+M4vPzyyyxf/voVR/i7nDjRYjFKTl+JUVlJx82/CdKtrbY2ism4/nJESsnwjh103XsPGAa117+P+LSpx6RVqneqmI9reNsOyOfJNbVQedXlmGPH4AwMUHreWWjxGGWXnEd2517sji5yR5rIHTrM0PqNoOvUfvwD6KkkiflzSMyf8ye3381kGdro6Y2VS//k8/wx0vWrO7A7uqj/p39ETyZfdxvVqChh7BffR8t//oLWL/+EyvdfRWxGQW8Y5WXUf+TDtP/4pwzv2ol0nFEJ5cMyuGMr3Q8/iD0wQMUZq17X9rv5PMObttD38GNFJPZ2h1eR2XbI7t4DQO9TT1J96ZUnvA1vVr0xmnzrW98CoLe3l6effpo1a9bw+c9/ni1btjB//vw/ihj37/LnFz0Wp2r5KiIVNTTffXOQbp3vbvsDR75xIqVkaNs2Ou+9BxGJMPbaDxKfoCJ/wumBjh99FNYbL28BxyF75AhVV1xOdNx43FyO0jPOQItFKb/kIjI7duF095A7dIjsgQMMbliPiMYYc/31aLEYqfnzCyDUnxB07mSGGdj5MgCVs19fvXFo9S1YQ31Mf+s/oUeir3u9lWi6kukXfITdj/yQPfd+jwlnvY1kXUPh95JKpl7xMfbd8wP6Dm5Fum5R0ajRpOvgRlp3rEZaOWqnvr72qGPn6Tiykebdq7FyA/jhXMP9KhLbdfL0dSjupLadTzN+4d/XGydSLr/8ci6//HJAZXY8/fTT3H777Vx22WUIIcjlXucF83HkNaQBHhtV9afIqHmux7lWsH8YxR3RgGO9iqO0M8znEGyXBRzK4ziKTzmJsf/7GQ6/57OUrJzN5M9chtBcHFcGEVO65h6D3Ic9MeHIqpxjBOVwR6YOakIWyrF734XmFkVxRUwbTZPH4GX5YZPMpn20/+/PMGqqqP/XTxIZUxe8cVomlA/pqmijSH/Be6LXzsBdejYDO1/m4H0/w4imsHND9O/bQmnVFFzh0HlwPSDQIzGkdANS8aHdW0hPWobUBXYc7JjA9uhaHFN5GHx+C99bIA1wohI3InFkntz+Q3Tffg9281GM2kpV3SiI8kFVZXQLA0WGvNfCFgF3SRBV5f0FgigrP6pqcP8uetY/S+XyVSTGN6INF0Jqde8d9L3HftRX2KtcKMkucCIqBMI1C8+4wBEgg3twbQ2jtorxX7qWo9+5i31fvYuZN/0jJHV0zSXvuqRMh+nvXEjL6v08/q7fsfBDi5hyYWNABGqEuKoGWgcpm1QKwNbfbGfJJ0/GPc475I+/smiWrGNgu5qXbuLds+YXCgDpkfbnh7Lkdh3C7hmk/7kdDGw+AI5L2SmNlJ0/Ew2JazlkWvpoe2RbcK30rHGUnTrDG2YqvfCEyZvU01HqFTmQUpJOp4vI1CORCEuXLuW66657o5p3YkQUO9L8QhUjC0iI44A5oxGyyyCefJT9R3i6gxS6kV7o0WS030ZEZvl8P8ec13NrJ2bPZMJXvsihT3+G1NJTqL76mqD0dlHbRrwePqFpWL0de3Mjvvt8JCMjq3SKObwCt2+x/hzasZW2G2/ErK9jzGc/hVlb7aWgFJ9TpTrIousn581BDmUY2rSZ9u//BC2ZwB3OkNm8hdhJ03CHMgxv2AxCoMVjSFcGAF52+x5SixcUn7/ogqPcut8/QpUOz+7dT/ed92J3dGLW16GnS0KKPvTwZagD/Gc2QpSOkghdFnSLFxmFhOGXdzD03EuUXnk+kSljkMJV/RuOTNLUscI/3u//iIMb0XEzSnloOS3ghNEyXiSHpmMJ0HQ/fECd2BxTx5jPX0f7926j43u/Ztw3/wWhR8CQHk+OoHTV2Qzv2smhb/8/qs67mOS8+cEgDo8nu6uL2PgGALofeZCKM1YVe/TDc2y4i0Shy4poFUQxib4zPEz2wAGcwQEGN28iu3cfuC7xObNILzlFvcSWi9XezuCGDcFxscZGErPnqHMZHEMJ8JrkTao3Xklc18W2bfL5PLlcDsuyOHjw4BvdrFctltTRQ1XZNCR5qeFKjaxnnA27kSCyyvUGY9Y1caXAkrrigw0NZt17yP6+KqJKD/g9fY5Px+OLddwCJYIfcT5aRkdAJhWe34VUUScaSO991Lx8MS0cAeTZqGWNc0l/5Mvs/O5nqVi0krpVVwSnDOxZDfDoM8IRtWHdUSiUgZrLNMASxe/6CL2he23QsyF72dvPNcCOgePZ9a4B2Rc2cfS2XxGrH8/4az+EWV6p1k2ualuBi9Zb13iRW0JCauFCBXZt3EjbD36IlkjgZrMMbd5MYvoMnL4+hrZtVXojqi7qZhWlRHbXfpIzZwWE9FCw7YN+9yUUFeX3h5vNMbx/D+2P3oM90EesfjwilcD1zqXn1T37Ud1BCrrXF0E/+89txLbgOqjn1LtnI737N1F/xuWY9XW4uuqbIK3TX5/kFW0KeP0XVZkpKjLP63dTRVW5IRvFjqkBoltKzwXpg6VjmHHeR9j/9K85+MhNzLn6s0jTCNkcGrULVjHY+mN2/O6/GHfKxZSPn108Jj2uqcxAB2V102ndsZoDL91J7dTlnj3gvRfeZ59E3R0FVXD0UawZb/xZuSGGWg9gZwfoaNpIX+cBQFJdPZvSqkUgXVxNMpBpp6PtZe9YQbp2MunGmdhxdW7nOPbjnyR/g3ojLN3d3QH/4erVq9m6dSuVlZVvKPfhqwerRgBHr1X+WFRytFRDEawYRt+v+EIUjMuAGG6UikV4E643mQt0EotnM/D8Dro2LKJq0VikBEMvgE22d8KiyoE+yBDSELbUcFzFDxSOHAoDVpqX4qfrLpom0bVCGpahKyJ3F0E2b5LLeAr7hT103fRbtHSK+v/8lMoNz4M2pGMMC4whML0qq3rOm1wdGYAshl5Oat5FaFPOpXPzU3QcfAk7N4hA0HN0O1Z+mLrTL6Vy0enYKYGeBbPf5ciTv2PfpjtpPvw8kdJKItU1GFWVKm0kVYJpVqDH0mCoEiZu3qL3mdVkW4/gWjlc1ya3/yBIiVGnuHq00hJEpBBVFOSEG27ATyPwQCxHKO4S59iHXhQe7aU3ZJoPceS3PyJSVUv1aecFRoOR9cDAfhWC6ppgxQXSm2BdwwegCuf3K01KwwPhtML11O+yCJB0XYFZXcH4T1/O7g9+n857XmTc25ercHPbZbhrgPIZ1Zz/00vY+P21vPD/nmPKhY3B9Q4+3ULThg6GOzLs+31xRYYNP9lE995exiyfwOSLpwVcC65wiypY5r20PCFkAFLhajh5h84HNtDzzE6cbJ5cay9uRiF40foyJn3oLBITKimZNYa933yYbEsvg3vakJYaqxM+fhElJ08hVumXZlZjdDRi7T9Z3qTK48YbbwSgoaGBf/qnf3pzpfx5IrRiBCigLwg5Cvz/Zaga6fH4FEaS/hdJGJ/xgQlv7BSlB4zkdioCto49T8DR428LLdoDeEQqcm5XCoRmEj9pBkPrN1By8lLiYxuUUe0Wzgm+oXf8eyi6fpiD0dseYDGj9MNIThKEp9u8XQZffpnOW29FLy9jzL9+WqX4eSCaHO2svn7z7sGorKT80gspvfAc+p5czfD6zbhDw6DrDG/cgjucoeKqK0mvUJGyUgMpbTpv/C2dN/+GvkefwKyqwqytwaysQCTjini9qgI9mULoGlKTOHae/kdWk29qQebySMtSegMF5gDoZaVgjoJyBKRcx72dYhNCUAQ2CSTZnQfp+PbNRBrGUnrJSvycDwHB85SuAEvz1qze8YZE6K4qHGC6BX+RBqApbsSc3wgdV4I03QLI5bVHr66i6vqraP6XbzHw+AuUnHuauqZ0cHoGiE1ppP5jH6H73vtpv/dOJs2fX0iX2bZNAUgDAwxuWF90/z1PPEq2pYnUrLmUzFsUXG80m38EQwEIiWNb9D/3DENbtiAtC6uzE5n3Cg5U11B16RVEauqIThhLx+23YXV3k2tuAo9/r/rqa0jMnImeSqlFtkJSA27LEyJvUr0xmvzjP/4jq1evZtu2bVRUVHDaaafxgQ98gDPOOIPZs2e/0c171ZKXOnqQ2qe4qhR3VSENcNiJkvNWx45nhNlSx5EqtS/nGscSsouCsznnGuRdQxWeCXN5IgJb3adHsB2fr0or1kEhR7BviwZVtSUj7EavYmwobSxcCVA3YiTGNdL78ouUzj6ZeJ0qHhQAJG5hLi/SHZ5+CgMhTkzimmqNo+kgPTBEs0SQ3lcgvvac1z7gFfDNqc9OvABCDK5fT8c9txOpqmXC9Z/EiXopbXG3EHzg90O43UKdy6iroeKSCyk7ZxV9jz/B8JYt5IeHEbrB4IYNuPk8dZe9lfTCkz1yb5B5m9bbbuLoL39OtHYMZrlab5gVlWjRGEZpGWZZBXoipQBBwLGydD/9BLn2VlzLQuZzZI8cAiBSp4p5GCVlYOgFQEgv1u2FB6fWCq6t+srfFn6+wfThzWGDTXs4/NAvSYydRNnJK4Kq6+E5Kai4F9qmWwq40nJgpwr9rjiwvAJ6RetWBURqtkSzPFtKh2SyhslL38aWB79B1461VM9YptIZpYOVG6Bk3AymXPxhWl64lyMv3EP5OAVWSSnpObSFwbYD2NlBOg5vCF+Mpu2PM9h1mKrGRVRMnFfoIm2EXVbsYQw+OlaOtp1P09O8Dek4DPe3IV3VqclkLdOnX0YyUUsyUc2uPfeQzfUy0N+M9IofNKx8G+nGmWipJIR8hSeU1fVvSG+MlLlz57J9+/ZAh1x33XV/ETrkVXJWnVig6rXKqG0Y6QEMtoeAKt+z73tTtRGWmA7S9SpGWRpV7307bd/5GYf/41f0rZhJ/XmzqJhWjlmqFud+6dugXVIUXiAPoAKPW8rz2IQ5r/zqIn7FQfDIrE1ZRHyNrgjeTeEyYOlIR8PN5en6xS24wxnMcfV0fueXJJcuonTaAsx+QaQP4t0SY9jFyg1yYPM9mGWV1C+9ENeAnj0bOfzIL6metoyacQs5suMxXFuFGJXXncSYFZeTqYThBhhCYvYrsEpzNcaddTXxiZPJtB0h19tB766N2Ot61SSl6+A4iEiUSG0tejJF/mgr9kC/Kg8eTyCES/nVlwGSzM492EfbsQ430/r5b1J2xTkkFs1WiwLPUi5UgRz94QcVOUZMNFID17Y59OvvY5aWM+7Ka9GkjpbDU8wFb7yed9Hz4ET0wuQXAqKKCGZDpYH9qDFfKQtXoBlqFAhNRZOYhoNeW0JsfCW5JkUmmWnuZd2nf0O+awiAMSsm0rZRhX+/9P0NLPnoAg4/fYRHP/Uk0Yo48bFlx9z3xh9vBiA3YCmwKhSN5XOjZR0DWyojSxMSKSTtj26l5a4NuMNZskf7qFw+BbOsEnPFFGpWzULmLaI1JRgJRVbg5Cw6HtsOQLyxhvLl04lNrqf0lKkIIYsCDOUJniDe7GG5X/jCF97oJrxuIoQ8JpI0LCpaVFlxUhaIa8PsO8eQ2Upx3OdcAKBEEVhd4LAQo5NJh+aXV+SzCu0aNlZ9EExzAU1S94530/LjH9J6ww9IzVtIybzFxGrq0RPJ4BoidLKR1XXCF/MB+jDR7h96xaQg5FWWRd+d4WE6bvkNMm8Rqayg/cc3klq+hMTcWYpXRRI4d+y+fnpuuxdzTC1l558LwMALa+n6za2kz1xJYt4s+h54NEhfSSyYQ/mFF6gFkNRwdA/6MiRCaFS/620MTplKvqkJu6OTwXXrg8p6RCKQzyOiUcy6WvRUgnxLK87AELFpjWiJOMg4FVddgZSqkqDVcpTcwUO0fu3blF12Hok5J3lgjfd4jmcnjAQkXc9t7TtFBEg7R+uXfoJRV0n1R68JquIWANXQuMxr6FbBYJemxI25iIjrgVaqf2QcHF0icloQwSBsgch5i+DISPIogVFdg1FVjtXSCVKQb22j7X9+iDuo9EZi9ixyh9RCrPvxR6g4+1yGNm+m7Tc3o5eWYpSXH9MFXY8pbkuh6QqsOp7tFO4zoH/t8/S/+DzO8DB2Xy/JWXPQ43FSs+eRWrgImckRKalANxWg4AxnGNy0EYDo+AkkZswkNn4C8ZOmF/rOv7aG4g47QfJm1xthaW5u/otZWJwIsdHJSs/2kALLqwiYdRXZOqjoq5w0A3AKVISF7epYUgu2QSF7Aan4QgHyrgKpbKkV2fAKqFLFaGzPyee4Go6jKT48VwQvinQLOiaQkA06MntEimPnpGB54ggaL72Ofbd/n4O//h5lJy2kdOYipTdiCfV+hDiAwu+Na6joJzeiLuaaHmjuHruvsIvb64NcmqUc2j4vkzQKUVKaBfbgAG23/QakREQiNN36M9KnLicxY4bSqxBkN1i9PXTfezexcQ1UrDgTqUPPC0/Ted9dlJ92NslJ0+h99NGgDaWzFlJ++iqkLnFjwssWUJy0mjCoffu1xDe8SK61Baurg/5N67D7+9StRaLIfA4tFvOqDibIHW3GyWZJTGjEiMaRsTg1l5yMtCwGd6mMgOFD+9j3y29Rt/xCUhOnqUyQkEMpHEnqP0c/KjYo5OTtFy72Yts5Dt52A9GqOsZc/A8IoQXOKiFB5grnkLoHSHmrcRniItNyFDmcXDP07FX3oFmKpD1cKFzYardUqg4znibX045mw2BHE7seuQHHUhHOpRNmMdzZBMDRrasZM+MMOvet48DzvyMaLycaPZZcu2mz0htmooSyxnlBPwlJYf0FhUHuOcmO7nqazn0vYWUGsHKDVNfORo9HqameQ039fNxshliqyiOBh4wcpL19CwCpukZSY6eSqm8kOXFqEeG/L8fLLvlT5G9Jb4yUv1QHx6sCq46DEfzJ8qdEVY1+ouPsOyJMP6jsIwrfAxLfEY0JyqO7AmEY1Fz/bgaeep7Bp19g5+otaDGTU++4nmhCETNqCFzv5fTDhwHyzojKa66mwAIvssVXhJpQhLN+dTfbAxmkJDheRVs5qhyvlxaX27UPd1iFyMqcRWbrDuz2biqvXxhEUdkxGLT72HHff+PaecRRg+gZp6DXVNL15CYAOnY/T8fu54P7n/6WT5JOjMFKa8g4QYinMaxIGKUOdolOYuUpJDgFO6kM88yuvbR/+0fgOFRdegWuZWF1tWP19hBtGE/NOWcTHTcWVwe7r5ve+x8hs3Un7sAgemmasmsuZejZtXR871eUXnY2JResRIvGCpFUEBi3UpMI1MLTtSwGXnpZeeNtF6EZICXuwCADG9bhDA0hbZuasy4lWlkXKGupK/J0dV4NJycQjsRKiCDsWWpeZUO3WHn5pWsds6BQnEKxjUIkmKa85UJIyGbItXRTuXI6uiYZONAZAFVmaYzhjmGELpCOZLDP4XBbhGe/sZ7SWfXM//ZbAY2177uRzKHu4FlFUianfGQ+NSePp2tLC4PtOdAE6dlj2fi9Z4hVp6k7fzZ6aRoZ08j3ZtjzXw/Q+9IBAGJjypj/w2tJN1YF4zdcBUd4mlOP6cz+8mXs+c7jZPa3YyYj1F66qDiCbARoe8Lkb9jT8WYTv+rZyAirAKgKjJ3jnWEUoDoMPrmFeSJc+SiIDAptLzRqdODquDrqOABIAHsLgUaEse+6jt61z9L/4vMMrF+LFo8z+Z+/hCb0Y8Z0OBr0WBJT9cdPFfABcqnL4oWQFvJi6xQ7ZvAXOpLM7t3IvLK6pXTJbN2O09+vwCp/fwFWawctX/k6uC7a9hjpBYvRK8sY3qTC8QeefJqBJ58Orl//hU9j1tYo8EXz4EY91EBLQ5OC0iVLYYkP+kuGtm+n/Uc/h3yeyquvxB3OYnV0YPf0EG2cROn5ZxMZq6KorI4u+h54lMz2nbiDQ+jlZZRdeTGDTz9Px/d/Ttll55NetQIRUyWrpCtCYyzcxxI3lyezbgtC15GuCxENdInb08/QsxtwBtTcXPnOi4iMqVQLGdd/IDIAoBB+ipCuUtO95ykcz/WrgxaAMA6u7iJNDcff19YKkRkunvvcExecviHsrh6M2mqkhPzh5gCo0tIpbB/sA9xMBmdogK4H7yU+dSp1H74eNMmhz30Jt7/AM6glk1SddxHxCY1kDh3A7u9FmCaRsePoevgBzIpKShadgp5MoUUi2H39tN36KzL79wIQHTuese+8jkh1bbGnP0UQLQJg6nHq3/IuOh65m9yRw2jRGOXLTlP36tlewWPxF+MnSv6G9Mbtt9/+RjfhhEq3k8TwOSVQTuG8NMi5JjkPQcm4EYYdk7xrBACUDzy5skCYDirLwSdO90GsrGMowMqz0/1zWI6y6x1Hw/aqIDi2hnQErqOBW6j4HET4u8Vp3n9wfROei0L/dC1K46UfpPPlZ+ja9jw9W17ASKSZ9uEvgvQoLgRBap1qBEWpZQBaURhu8brHT0/0sTw3okAhPavAqnCV7iCtS8DQnh2FSdQQDG/bhpvNkJg1nbBzKH+kiSPf/1/1jA4dID17Pka6hKEtSm/0PPU4PU89HjRv4if/DbOyEjeCIuXWQeT8uVGdUxcGFQtPDe5RuNC/bRPNd9+MzOeou/BqnKFB8t0dWH09JCdMpWrZOUQra5Aa5Lrb6Hj2EYb27sTNZjDLK6k640J61z7Dwbt+RN1pl1A5dzm6Fil6PFDQh744uSz9ezajGRGkbaMJAxwXe6CP3m0v4WSHARhzxhXEExWqaIQgyMQIgvFML+UvUriaZgn0nHoOmhW6bsyrxBh+lqhtmi2QOYLIKuGotW4214+VGSCRrEazJZn2IwFQZcZLsAZ7gvO4mQxuVw9NGx6gsmYmsxe8CyHhqcc+h+sWql6YiVLGLbqIZNV4BtoOYA32oJtx4iU1NG96iHhJDVWNizGjKTTDJN/Xzd5nf8VAt3KmlFVMYdri64ilq4MKzVKAKAHXEFjemNS1UiYvuYbDmx9k8Oh+9GicmnlnEJaigh8ncv7+G9IbI+WjH/3oG92EUeV1JVgvSnV4XS4QBg9k0fbgb/h3f/+Ak6KwvVgk6B7YEOSaRyk97wySSxfS9YMfkT3YgRgYgERZcJTpQdv+Yj9rmUEKGKjFWBBK7DXcsdXbFo1ZaKF98zmTaCyPEBDxUgM1IYM8dU2XaLqLdUSVcTVqqhj34U8ycN8jdK1fw9AzL1Ja3kD/gT0Iw6CnfReunafq7Ivo2fAsB77/NfxOqHzbVUTiFURkFLurh+FD+9DG1ZLVdOwk2EmC0Nd8CYqbqsTFSbjoCTWJGREHXXcxzBTtfn/MaSBaN9YDhQoea1dI0CSD69cz9PxLJJctpOSC04iMqwcguWQOvXc/TN8Dqxl6YTNlbzmX+MxpiETc60eQrovT2UNu5xFyu/aT238Aq82/MioPflgpDLO6luRJs0k1TqekUS3GXD99OxQOlK3weK88gyAYUaEwbd974SP7vmckWExaYAwLpKHjxNTOsaRNxFQdOLjxAG7Opvqc2Zi6Rb5Jkc0u/a8LqTu1AUO4COmSd3Xam/I894/3kO/PMf3LV2FLxXk243OXsfH9NwbttjIOz/zXOmAdx5MDv1qH0DXKlk1FwwmAKoB5P3wPeswMV/L11kuyKKUVoGRaNUJXD7J/SxOHvvcQjZ+5AmeEZ1LXXJwT6HL4W/Z0vJlE0145ygoZ2u5SnBJ1vGOKdhDFoE8IqCpKAxzJMxEGp+SI76OICB1TdHk/3c5vZjROxRmrSC5exNEf/Qirsx1neBgtkS6cy9eToe8jjeORtx3w9mnFRlrAqzdalEwBSSPf1ApAZPxYaj/xYXruvI/BZ19gcN16ouPHkd29BxGJMrzxZXBdKi69lL7Vq2n68le9cwmq3vl2tHQcLZ3AOtpO/nATZnUVQmieEenpWau48VKXx/ASmfV1wefY9GnqPCPsB59La/C5tQytXU/q1CWUnLUSs06VLk8unEPPXffTe98jDK3dSNmV5xKbMwUtHi10ruNid/SS23OA3J6DZHcdwG7rDK6tlaRw+1XOvDmhjuTJs4gvnEF89jQVQSEkwpDHjEOhSzTDxjVdXE+nC0sLHq50CtHWwk9L1CTCt8A0Fyw/UqM4hVq6gszLu8FxSS1ZDDZYzUrX1X70gySmTFP72S6aI7C7u2j+0Q+QtkPl265S/a1B7YffR+v/+2ZwXjeTof3OWzmuaBo9TzwCuk5q1hzcfD4AqgDGv+9jaLrhvbOh40a8Q0iIjRmP9BRMZu9uOh64m5prrgnG+XGjCl+j/F1v/PWKJQ1kaKKwpI4lDQacGMOOAhQG7QhDdlSl8oWiqIIsBkSBikMHXCPgpwIPrHJ0LFcP+GRBVU/OWQa2o2F7q2fX0rzoSwVUBc5T77PSKyFnnRhlTIUihItS0P3vnn1vxJLUnXweFTNOYd89PyDf14W08oh4NLBNw5E/QiobXXcI6Cuk8CJxNFkUkSPx7VZZ9N75Nq4b0h+gbFr/+NzRZgBiDY3UX/9BOm67lcH16xlcv5lIbS2ZvXvRIzEG16vUseqLr6D7yUc58L9f9k6mUX/NtQjTRC9Jkz3aRL6jDb2mrJDC6HHUBvpaFtoRTlsUEmJVY4J2phpPwkyXgvAqkXv3YKOO69n8PANbN1J+ykrKF68gUlENQOn0ebQ9chdHn7qf3p3rqVp+LumJ09GMSKHqnnTJDXQx1LSXzNHDDB3cg9VbcBjryRKcIeUIiNWOo3TqXEonzyU1dkrAD+Y/btcsRKu5pkrXJJzdE0ozFG4hkst3kLtGoU9cE1yrAIBptrde9f72HdmGEIKa+vloOYdMt1ovzjr3YyRrG9RlXBchBVbbUbatuQFN6EyfehkIgavB3CXXsen5HwT3amUGOPD0bzieCE2n6eWHEJpOxYR5OMNDAVAFMGfRe1QhEF0Uqh561wq/F8KWpMsn4niZPn2HttG87n7GrHpL0Jmv15T9d73xlyd/rwb4KiW7fTfZgwpgGNjXQWVt2RvantJLTye9agnCKkUf0Ek1zqRnywscffEhmob68Etha4bJ+CWXk1hxGvELlnH029/HOtKKOa6e9LIl6MMa5hBotQ2UTVugTv4qk4CdgWEGXtiBXl6C09NPvuWoAqtGkcyOPWR3KO6l9KrlAVAFIISg/C3nkTp1Ee3fvonOH/wGvaqc5JL5aLGo4kTZsJX83kOIRBzpuiSmTaXmbW/HrKoGXSe7by9tv/oV0rIpXXoq5aesUFEJ9qjN+bOJk1ETr56KcuQ3L3LoxmeoPWMqtUsnANC7p5P+fV20bWqj+cl96Kkoc79xDbFxFfhTc2JiFac++n8xhEvMyJMbyNO5vhk9GSNSkcBq6ab5wa10PH8QgJN/8W6GDvfSv6uNtgdfxupRHvlx15zMhPeeDn+gEogvUkr2/fgZskf7EaZOw/Vnk54z4cR20HEvzt+sp+Pv8tcvw1u3YHUqgCHf3orZkP4DR7y+UnbxeZSefQZ6Io4UEJ87i6GXNtBz1/24/QOgaeC6iGiUyrdeRenipaQXn0LLd7+N1dFBtLGB1MkLlRNCh+ikCbBssTr5q3z/nIEBMlu3K4L2oWGs9g7M6qpR981s20lu30EA0mesCIAqAKFpVFx1CalTT6bjBzfR8f1fYtRWkjhlLlositB1hl7cTP5AE1pSOT5iJ02h6sPvwCyvQOo62R276PrJb8F1KTlvOSVnKi4n6R7TlD+ruNkcCIGIRui952H6H3qC5NKTiU2ZDEDuyBHyrW3kdu9laOsW9HSa+g99CLOyIngckXFjmfjD/wEUsOUOZsnvVB5rPZ3GOtpB/wvPkdm7G4Rg/D/9K1ZrK9nDBxlYvw5nUFX0q1x1IRUrzw74ZP6QSOnS8cg9OMODiEiUqosuJd445fXoplEuzt/1xt/lr1a6d64l39cFQLazlbhXIOGNkurzL6P8nPPRE3FcQ5KYPZuhLVvouvMu3MHBQG9osRg1V72d0vmLKZm9kEM//F/s3h4Sk6eRnjUv4GCMTBhfiP59lW2xBvsZOrALYUaQVp58b5cCq0aRgZ1byTQdBqB8yelEyioKDilNo/7ct1A2dwlNd95I0103EqmooWTaPHQjgtB0ene8RLajBS0WRwiN5KRpjL/mOox0KQKNwd3baXnwFuXEWXQ65dMW/UWAGI6dQ2g6mm5wcMv9HN33HHVTVpCsVHb7YMchsv0d9LfupvvwFmLxcuYtfh9RoyRwrpSUT2TlJf8NgG1KLCdLf/tejGgSM5ok099O655nGOg8gNAM5l7xrwx1HWGg/QDd+zdgZZXemHzSpYwbuww08Uc9a+k6HNh0D66dR48mqFt+Eenx016HXhrt4vxdb/yFyesKVr2SE/w1vchhr3EAw3Ls37B30o+SCnu9/Rx2is8RpKgIAg+nqwuELUgtW0x+44sMbD7E5v94iLPvm4ARUdwMfgSK7WpYIQ9LkZdUChw7ROiXV9ByDtANN9juWBpORAuiqvzzhDmtHN2jEkwkoFtgZGDwwD7cfI6yCbMpn34yyerxuMIlX66jR2MMV7uYVTD5f99Lx++eJjZtPFpNFsfSsLIGwhJF6XbS8L3AXiN0CVGHSMIiojkMbdyL3TuI3dJB75qt2F2FNIOuG28BHeKTptL30GNYrW1UXX0VImrS/s2fAFB66VlEGscoPi4v6sK1NXA0zJpq6r/0aazmdvrufYShFzYqgt28hVFTRXzxPDIvbabmYx8kPn0qmlXIw4nPmcGE//h3Wr/9Azrvu5PElKnEymsL3m0XpANGTlVAAdBV1giaDeaQG3g0lFdJIAXoeW88mAInAo4piokqnVCOv5ciYhoOUcPGpcBVdviGR2l/ZBtjL53DnE+fidBtnJzNEx+8GzdnE6stoebCedT/nyWYpQksRytEOnn3YKPRl0vgGCmSS8ux9h1h93eepG/zEfS4Sd05Mxj7tmXExlVijqmhZMl0xr7zdDp+v4H933mEo49so/L8RcTqywiLEBLyNq5tYaSiQYXKfT9cTdvjO2n8xPlUnDNfpfnIYs42//60VzXb/xHyN6Q8stkssVjsD+/4VyQiNLcWInxG7PSnhOCGdMHIqKiRUVVFRRfC3mx/WzhlcIRXd7TmiZEAhihENgUea6k+l5yxksGNG8kdPkTrnb+h8WP/juZV5xkZvu4T0Y6MMglHW0lRiOwsIosbGU08son+faNBPI7Ph5XbsxeZy5NYvIDk4vlEx49H5Fw0aaBFo2iWQDMTjPvYp+l58lFiUyej5QXSUCnLgX4d0R9FfexVQ3SRZLbvwBkeIt/aytCGjTih9LT2H/2M6vddS2xiAz0PPITT20PlW96C1CXt3/8ZAKUXn4s5pvbYSBwpiNTXM+bL/0y+pZm++x5l6NkNyLyFzFuY9dXEF80is34bdV/4MNHG8aqhjprLkgtnEf/mv9L6H9+n6yd3Ep85Gb2yohANiAgio+SIfAw5kvvSG3tkdTU2fFvCTw/XJfhphLpEOnqgf6XPN+OnULoqfKn7V3cw9MIG0qtOo+LyS1X6R3+Glm9+B1wXo6KSkmWnUnr2mejxuIpiFsVRGAAiItDLEiQWzSG35xAdd9xG7sBBtGiM9OKTKVu1CrOqArOmgsS8WVRcfBG9Tz9F97330LvuOdKLF2Omyo55B1zbQjoOhhkLbIajD9zB4K6t1P6ft5NcvAi/wFuQ8qeNMm5OlPwN6Y03mwy7EZLeINJxcdAYdiMMOlEGHWVzZ5wIWccMODmBgBfWt0kieiHjwdBcbFcLorByjqHS/xzdK1bppQHaOpat41g6juVzPIggskq4BCTiBGTqBfD2GN0wQs+Muv6Rhd99qVt0Lr37XybX2UrLQ7fS+J5PgWYUzhWE63hRVZqya0HpBvW7QMsTRLO6hlRRVaK4XYCXhlesK/F1mg6goekxjyIFsrv3IPN50otPIXXSHOJjJiDzFpppokWiYINpJpl03f+l+5nHSEydobI0PL4nDQL6FL8QhpZTc2BQMdVS/6TjMrB3G24uS/ZoE307N+IMDwZ9dfhX32Ps295PrH4c7Q/ch5PLUH3xFch8npbf/hyAqrMvwqgoL+jYUD9GGsbR8MnPkms6QveaR+ndtg5pW7hWnmh1PakpMxncu51J1/8L0era4DkLG8qmzSc1fir7bvo6TQ/+mtT46ZiJVNHjFd5zEnbBHtIDUv5CJJmeU2T3fqqj/2x0r2qgaxa2CQeMjCoSZWQlWl6dRLM9jkrbxnUs9qz/HR3Nmxg342zGLbgAqQmsoQG2P/RdQBJPVTOuYSXjJ52OYURV5V4Npd9FIVpPQxDVE1SNnUdP7372vnQbQ12H0SNxqmYspWbhKrR0OemqctLT5zJmxWW0r3uU5o0P0XzkOarHzSOip0ATuEYhssoWNq5wMEUs6Ic9L91K39HdTDrnWlInzUUaqg1uyDYqpLYWBTW+dvm73viLk7/+yKrjgVQjB3MYqBrFOAoDSn4VoPB5he4BWFIw6brTePmjv8TNOzx63g2c/cQ/ItEKC3UPVIoYNrpbIFh3vDRAJEG6n+slhLt5HSPiFLA3TZLPmLgRLWib7hm2PvmjnzMvhwwi/RqRPhg/7Wzy7a10711P2aT55CbGyVW6yFILyKFHHSIRm0RMMvG9KwCIGf1kbUOVBnb0Ih4t8Di4vLx9ISSJWB7b0Tj07Qfpe0yF+2qJKOnlsyi7ZAXtP7ufzMv7Aej66S1FXd301f8XfE6cMo+ytyjCXhy80sDKqvbvTXMF0dp6aq67tuCB0dU+dlcPmZc203njrxj7H/+GMKOKFN977iIeo+ptV9HyjW/T/cTDVF94BWZcRTRotipTq+cg3u0ZM4YyNtyIwByWQSitYwucKEWlgrW8QjOFK7H0gpHiRMEqlbilFumUiqLSNBddU9wykXJV7a39kW1EKpNMuGohXRuO0P7kLoaa+tCjBskJ5cz+3rtxpY7jCmxHXduVQil3r/9kUFkSum55nL03qTTAqR84lTFXn4ItfUMMrwSzApbKzlvMzNmT2Pv5W9nxmVsY+96zGNx2hHznAJl9bTiZPMLUsbsGiNSVMeFD5yDzDk23rydaV0bZuQuxXA2cQmWdApDmLbJGvFOvVUZkRf3Bff/axHVdvvKVr/DDH/6QtrY2du/eTWNjI5/73OdoaGjgfe973xvdxD9ZRiW4DoniqiJwEIR5OPy/4fk4KCU+0vEw4skfA1SFAagQOOVvC9IDnZAPxN8njEGE0juOwddGKUjnt7vy3Atp+ekNOAP97Pv655jy7187fp+MPK9fCTC8XSiApKh/Q3kho4Fro+KBUoE/1tE2hp5bS3LRXAwjrgh/LaGiUb3+MbQINWdepI4b9isUCTUn+6Wsw1xaUhT63VFp1h23/JqBlz29EY+TmruA8pVn0Hr7b8gfPAhAx89uKmpi01cLfZVatsQjepfFYyXMUSkE0XHjqPnYu710ycJcZLd10Lx+G50/uIWx//OPaKaJKzSED7inYlS+7wravvoTeu58gvKrLkAvTQX9GgBIAqSf4ujzoQWLDxR3lf84HBFwyfg8Xa4pwTPAMQsrVC2n4fpssbqEiIteoYhuh17YgF5dQeqsJWR272L4xc04Hd2ISIRobR3jrvsYbhRFFEyw/iv0UWhxKnVJz20P0P/4agCqLr6ckpUrFF+WD4T6u+uS9Lkric2eytEbfkrTz35AxQUXkt27D6evn1xzE24+jzAMnIF+zKpqqi+4HDefo2/985i1dSSXLlKcav674wFVI0FYN9QXr1Xe7HrjzSw5aWK4vi3qknNNhp0IGSdCxlEeQR+oGrbNQgqfV0jGt0t8fWFrLporPWeyR7BuGzhe+p/rCizb472yFUjlO07VRlHgRPT/chzwqWhODumTMDg0chshPeTvownqll7Aoft/Tq7rKHt/9DWmXf+54OeiS3q6y39vpeeQ9d9lfzHvVyrURrxmfvq4z9HqX0SRrBdSt6VGwJtVef4lWG3t9L/4PCUz5qObUTS8tOu8x/XqgOHGqDnjYlXp0793xwNufH98TgEjAVF4KOVPanD4jp8ztEcV+NHjSdKz5lNx6pk0/fbn5NtUelvzLT8tuqdDO7cHn8uWrqT8rLMLoEboXgM14mjEJk5k7D+8P9jHl+zRFgb3bqf5rpuZcN0n0HUzaLuQYEaSjF11FYfu/ikdLz5C9bLzMGLJ4ucqFecv2VBfhvRjuH81hyLbw3dO6X7VRu/5aI4PbEnFVYX6LHVBNFUOQEfzJhKl9VRMXkR32y66Dm0kP9iLZpikqyYxd9F7A7tIAm5MU3pdI/gbHif7Nt5Fx85nARh/xlWUz1oKutrPHmErVa48h3TDTPY9/BM2v/hjGqadS2/nXrL2AEPdTTh2Hk3XsbKDJMrqmTDvYhxrmI7DG0hUTyA9cx5OOI11lJRxqZ9ggvXi0//Bfd8MsmnTJubPn/9GN+O48mcHq17z+jXszPSNUx+gCv8+ipd3VI4qIQulqr1jirKiQlpGGICU9K9vKjr1wI5WSmaOCXLjbTSiuq1AHqHheqi0DzL5YBDqdAG3hRPV0U3Ha4NEOgI7r6N5xrHrCqTUyFsGdk7H7VHepUifRqwLtIxD96FNaIbK5x+mh2i1i1aRIxpV2kfXXWIRi4juBGCUqTkIU2IIl2hoVgpHyfjK3fVIkKUUDDy7FYDaj7+F0mUzEJEIEkgumE7m5f2UXrQcLRmj547V4LhgGKTPPJVIaTVObpDk8gVkdx2k7+7HMMfUkl51Gr23P4A7nCG37xDRqQ1EJozDKC9D5m3MumrcoQwYGpHx9ejlZcRnzyCzdSdHPv1Z6v7xI8QnNRY9Y3PCOMovvoie3z/E4JaXiY+fRM3ZF5OqmIiR9XK7feNZh2y5hh0DPacHCtsnmQyTxoa32wkCMnYrLXHLLPSYQ8y0vHFF4OUrXTyZiZ+4kEPf+T35riGef6dalMVq05RMr8HJWGTbB5BoQcnk40mYIyrfr4AxYWjs+elzdO7sJj6hkurLTkFPxnBcjVzewJWqYotZU0vDl9/F4f+8hQNfuwuA+NQxJGZNpP+FnTj9iu8rf7SXvV+4LbhO2UVLAsJRUACsrhWAqj8ETPzJ8ib3dPznf/4nN910E//93//NddddF2yfM2cO3/zmN/+qwapRJ/3QJgVUieAZF4GcI50R/sHBvO//LkbZjyKjbmQUVRFY5YNUob/+9pHtDV9XhvXRKBIGyrKHDgbb3XyObMdRIiGupuAYOco5R15Hk4UIrpGLpRBQVbhnb2HFCBBLgOtYDG/ajDBNkBK3sx9trAgADV+kK4oqDoEC+5XRLwp0LLryxEpfr4bnMdtlYOsmAMZc8U6SM2dDzMSNSuKzppM/eJD0WaehR+P0PvSIGhymSfny0zBKynDyGZJLF5PduYe+Rx4nMn4c6RXL6LnnPtxsjtz+g0RnTCEyvh6jsgzpOJi15biZYYShE51UT6SuhOjUceT2NHHo3V9k3NeuJ9IwHtdR9yw0SfykCZS95Sx6717N0PObiE1roPytFxJpGKMKBOjKoeX60RV+FUApCgTrtgiii4RDwN0lvD7SCBvYWqHcPYVx50c/JBbOpvwfLqXn1/fidHTT+m8qnc+oqiRaOwZpWdi9vWiuQDqh5+Yjqz6Y5zt8DAW6OcND3oPU6fz9fWSPHCJSV0fpqSsgpZSaG1GAmdQkxqQaav/pg3R890bab74ZgMj4ccSnTWXgpZfwK0JaHe203Pzj4LGXnL4y4KORbuFdDSIcfDBRACewGuCbXW+8mSXnGthOIcI465pkHJOMazJsK9t32DYZtk1yjkHeVssZx7NPfZvEt791WXD2+jZM3tFxve+uFAGHrONV25ZWMTeV0h2iaKwEoHxYp4WmPBH6fjxVIWB0pwow3Hoo2M8a6CHf2020pKJ4sa6FrimL//p6wv9dyxMAE34WQGENJYqLjwiPD2kkU4QAmckztGkTQjfAcXAG+gu61bOdNUud1tUJIrT89voRn0VRaOECC35AmwGulQ+Aqrq3XUtq+iyEbiBcSE47iXx7K+VLT0cXETqfe0Q1MRKl8uTT0dMpHDtL6pQlDOzbTu+a1cQaGkiffDJd992LzOXJHjpIYup0orX1GCWlSCkxyspw8jmEYRCrG4tZX4NZWU2+rZW9//kvNHzo/xKvqA9ALyEh1TCd6pPPpuOlJ+ne8gLJMY2MOe1y4uV1RU6wgJbTKOj7oG+Etwb1da13jGYXtvmk99J7Pk5ERSpJU3WaiyrgUdWwiGF3gCObHmC4r5WXH1DpfNGSauJltUjXITfUrSKoILCjHLPgaClyWgil26280htC02l66k4GWvcRra6nYvFKhFfNz3/GMg+x+rFMvuxDHLjvJ+x46ZcAJCrHUzJ+Bp27XghudbinhZ2rC3qjat6KY22h8Pg+kcU4Rl7jb0xvLFy4kAULFvD+97+ft7/97ZSWlr7RTSqSNz6y6o9I/Qgb2Mek/o0AoGTYuwrFi+dgv8Lx4bLqo6VP+L9phquqgAAD+7oonVHD7E+fybPX/Y61H7mVC9d8DMN3VbiF0FbbizzxRddcNCFxvBlZaDKYrZysHhi/0ovAQoAeywNg6C5CSAYHTZxhE3NY7WsMKgU0sH8H+59VkUxVi84guWIpdtrCiDgBwXcYaMh7XqQBO4rjapiGQ8ywCykPQqJrLi4hwlfPY2VoLuVnz6frwXVoTh4taiKEi5SC1CnT6Lz5IQQu1pE2AuZu22bg0TXUfvSDlE1YhmtCz20Pktt3hNyegww89ixaMkF0aiOJBbOxWtsZemYdTv/AyCGhnkkyQWTCONWP8Rh+pEFYhBCUrTqL9KLF9Nz/IAPr19H20J2UXPPJYEIarvVCwkshXwZOwlXVrLxFh0/sKHxPB/6CTBnyTlzixj2Q0ZQIzUU3nQDg00MurLyjU3r2QmbMm8LQ1sNkth0gd7iDukvmU7NqFsMfuZlofZlnbDFqhYsgssRvi4TaD1xE1bvPA6D1ng30rN5G73O76N/TyfjPXEMuZ+LkVQUyI6bGgpWRmHUVZA8qLh1nKMvwjiO4w7kRHS0Y+8kriS+Zi9AEubwMovx0zcWVoItioErKYjDttcqbnfDw5ptv5sc//jFnn302119/fbB97ty57Ny58w1s2QkQQYEoXVJYrL7C/hByHozw1KmFtzdtFnwJnsEokaFKaoLianD+vscsDDxPZgBW+R5THwgKGy+hKKei6mU+XiELIITmGfrCgHxbK/GGyVScdS7NP7+Bph9/h0lf+mrxgPWizIq6Q4bu25+bRyzwC2uLUKSKJEhVEZJCUQgtdGINhjdvoesXimi79NyzSc9dhHDBicpiY1C4uF6EkJ4PPxSvL0WwG9gEz6GITF3XKJ13Mv0vv4SUropq8n5KzZ5N3wMPowmT/MEjhYdrWfSseZzx132c2IQGXBM6n7id/OEmsvsO0P/4arR0imjjRBIL52I1tzJ48EhAlD5S9NIkkbHVwWddd9BNR6U1uxq6l3pf/bYzKF21iM4bH2Ro7TZ6fvcgY/79vSAkmqbmQMt7Bq6hqcWt4w3O8HPznle4K4PFo+Z/94jbXS8Cwn+ghgzen5Jzl5NYNJPszv1kd+zDaukkfeZKSqcv4PD//BeJcQ3BeAjbQ8FYMWQBQDQkmulQ+f63UHXVW5BSMvjoUwxu3szgls3k29uoftc/BONE6qp9SIkQFkZVOfZRpTfcXI7M/v0BUFXoaJ3ad76LxPzZhftxCgBeEYimh8b1CXSRv9n1BoCmaYo/bISUlJQwffp0/vmf/5krr7zyDWjZa5Oca6J5aErONci5BhnHJOuYQRpf3tXJOQY5SxGlA7heGqAmJJpnvwJonu1ruXqQKWDZuqrS7RU+8osj4AikrXmV/tQmEZpLi8CpkcAVofna+1mE5oHRUgR9fRQGNHydk+1qJTXpJCpmL+Hwfb/g0G03MO29ny0CwdTFOaa4Rhio8p2vvjPGiRR0gTSll4Ls7eeD5X6FwVCUqG/O9r+0kfa7ld6oPPM8UjPnquhdjeAddyPeX0N9DkCWUUAGqavq68HEGXohZcQkNX8hQ9u2qD7UjaBCd+mk2fQ8/TgmMYYP7Ssck8/R+ewjNFz3aaL1Y5EGtK1eTb61meyB/fQ+/hh6SQnRiRNJzp1HvqWZ7OGDOIPH0RslJRil5dAFRmkZUsjAWURQ4U+n5vSLqJi3nJZHbmXg8C7anvs9k1e9p+iW3Gihf+0IyFBFcal7aw7v/sIpf+ECT+BVItcV6KiFdI9mK/DKiQhqFp1F6bR5DLQdYLBpL7n+DupmnkXZxJm8fMdXKa2fhhPRis7rGoWBJVwZpGQKAdiSqcvegXPq25Cuw9Ftq+k5soXe3RvJ93dRd/HVwTNWlCpgDkmsQYdYvILcoCKmd60cg82Fgh2+aLrJ9GXvJjF9Bk5U4I6IGAwv4UO+nhM6f/8t6I2R8uyzz/Lzn/+cz3zmM3z605/myiuv5H3vex9nnnnmG9004C8BrPorlIFNB8l39FMyuYrZH15K3jrWUHgjpGTcDOJV48h0NmEN9aMZBq+aJf1ViPRWZf3Pbqf07EXB9khdBdXvPZ+On/1ebTB0sAvtyB9phgmKKM/u6CQ6aQLll1/E4IsbSK84BXNsbdEM4FhZ3MEMTlc/kTG1yJxD/kgrXb/6Ldkdu1Vbsjm0ZPK4bTVKSohNnsLA+nXkOtrIdreRNKuQLgy3t2Ak0lBadgJ755UlUlWCefoc8gdaGNiu/jXfupbhA52MecvJf9I5NVO9zjVXLqP6imU0/eBBBl4KKW/bZnD1OjIbtykC/KYO9HScsR+/FC1qMrhpP3oqhlGWJNZQjZ6Ikj3USecDL9F6w/2MrapCS8UwyxLo6cgJ6Yc/Wt7kno7m5mamTDmWdNh1XSzLGuWIv8tfmwzt3IHM54g3TKby7AsgYv7hg/4MEp83E3NMLVZLG87gIELXX9dCFNJ1kY7DwI6XKZkf0htj6im/6EJ6Hnhw1ONyrc3EJjQAYHd0EJsyhdKzz2Jo0ybSpy3HqKsMonKkIZG5LM7QEO7AAOaYGmTewmpqoeOGW8lsPwiAM5DBKH0FvVFRQuykBobWbiN/qBWrtROjtgwpJZkDLVBSjlH+5yPLNyrLSJ26gNyeQ+T3HaJr3yH6ax/Fbm8nueriV30+IQTC1BFA+VmrKD/zHNp+9xtyTUeCfdy8xeAzLzC8aStOzwD20Q60dIrK694KLuR27kc3E+jpEqJVdWixGLmjLfQ99wwdt91KXVUZmhlFL0mjRf/MXHxvcr0BcNddd426vbe3l7Vr1/KOd7yDm266iauuuurP3LK/y4mQgYMqomji5e+netk5GPHUHzjizyPpOfPpeepxrO4unGwGoWnF/IknUIQQSNtGWhZD27dSMmNe8Ft87ESql5xD+/MPjXpstq2VaL0q9GR1dZKYPoOSZcsZ2raVkpUrMCorigBEJ5/FGRrEzWQwK6tw83msI8203/IbckdUlJs9OICePP68H0mXk6htYODwLobbD5Pr78RMlyvneGcTemUFZuLPpzei6UoipVUMHtnNYMdB9q75ObGSavJD3ZSPm/WqzyeEUJVgdYOxC86jbun57H/0F2Tam4N93HyOnnXPM7hrG/ZAH7mBTsxYCdNPeSeOnaO/7xC6GSeSKCWRqCbimAwOttJy8Fn2vfQ7plR/ADdmYJSVgh49kd3xh+VvQG+MlGXLlrFs2TK+853vcOutt3LjjTeyatUqGhoaeO9738u1117LuHHj3rD2vXFg1WuJuhglWkqGvMxBut9ox4SisAKyX//7yHRAUfgsNZU3D5DvUGSwmd3NzH3XbLKOiYZVIFjXCp6dvKOTdYq72QyRpktHKE+qz7XkkTlKW0Pokkg6R0VKpWQlIzk6BlM4eR2RF6rkKWAnVS59xDWYdMl1bL/xCwy3HMDVVUSYELKQz+/oWLZL3jLI5tRiybE0XEfDiNrkTCNon6G76MIlHikslqUUQXTY4EYFhNR94MJQnykC8IoLT0GLxhDxKO5QhvYf3gO6Do5D/1NPkzr5FGK5FLFxDfQ//yxDT75I1cWXo0UN3OHiZ6xpCWQyAclK7xEKIpNKiH36U2T276frrruR2RxmSUnhoMAbIYIIipJFJ+Mc7aDn+afYc9N/oUfjaLEElldtpfzySyhZdToYUoXhRjyvuSU8b5MIlYxVXhU36iJjLsJQY0PoKlJPuiLgJcPjMwtzf/nS+cjL3nEaiWljqb70FNKnzsZxhSJkHzET+uNqpEhJEK0nJeT7cvQ8sYX4vOlkhyPkO/J03/hbMlv2kJzXSGzuJFKLplJ7zQr0ZAwhJOWnnVT0nAHi0yaQXjKD/Z+5kSP/+iMA9PI0Y/71H4g1jsHxcmZNw0HT3IDM1JFa0J4TJm8SpTCazJo1i6effpqJEycWbb/ttttYsGDBG9SqEyM+nxmARKjon9D8XxRB+IeCrvz53os6LUoT1NS49fmtpBBBNJIc4QkXEPBTgfIAaj6Hhhv2QstjVEnA4+CF6wceUY3gGgF3q1Pw0sm8iljMt7VSceY5yuvNCFWoyWM87zLkki2+lkBzitP6fC+6HxEWpC1rXpSNHoqW8qJaNC1CzcffR/Nnvkpu34HC/QqCdDLpR8CYUpVu1wv95s+xwbX8uXcUAnqAoX27QNOpW3UZwlaeeuEKNEtQdcrZmHoSvaQEq6uDzt/fGwyQ7udWk1qwCEPGiE1oYGD9OszScqouuASiOjIP0vEnaIkw4oiKGKKqQm2LxtFnpRn7tY+R23uAzp/djxAqugohVRSccNFCdoAQgopLliB7u+n5/TqOfOqb6Ok4eiJCvq0PgPEfOZ+y804mbxk4joadU53jGLrSI170tO1HbXhjVxgFi1g3VYERpMAxwwyyyi7xi3X4Mrh6rfpg6MQaJ1F69lnE587CdVW0r/RBO11FLUldqqhfn1NQV+d0DRc37j8vHadngMGN60mffDJSlzgDg3Tc/Guye/cTnz2VyOypiIUzKT33HETKBAGpJQvRhjxuIUuNleiUiSTmzKLle9+l5evfVE0tL6fuPe8jMlZV/pWGZ7fpBZvsdXFTv4n1BsBll1123N+uvfZaZs6cyde//vW/OrAq5xpoXihOxjHJuYbHUWUGNrXPsZp3dPKWx/8aTgMUGq4X8Sc8PeC4AtvLKnBsHddWEZWKQF1dW3HMeSmA/nwmCfiqROHVDYe1FuR4n8PbwucNjdEwaXQ4KjXf10n1ygtUWt1ovD3e/qMtrYp0gRe45IZ9Ja7iQvIjeoJzSvWehlPNA+5DM8aYd32AQ9/6GpnDBwqcVzowwg/jnzOIPAv1gxtzg/YXaDZksb52JcN7dqFFo1SffRGaVeCc1fIwYca5xEUJiWgFwy37Obzn8eDa3c89TtnkOehmlPjYBgY2bSSSKqfqvIshqiluL78/dYmIRDFSUe9eBVoyjlFWyrgxnya77wAdd96OFoujpRO4KBsgiC7G48CSULfkPJzhQbp2vMi2330VI5ZCGCbWYA8A4859GyULTsaJqWcRRJ3pEi1E/BROCdfzhc9qX9V2J65sEifqRRHmC+Mh0MOOpGv/evW7ZlBaNZnxJ51Laf10XP+c3nl94nNlRxQGq55zEa6KrBaub5MIhpw++va9TOWC09AsVanxyL03kT16mNL6GZSV16JXz2Fy9UpELIob0XHrFil+RK9tRsahIj6BqooZbHrxBrbf9XUAIqVVNFz+fiJVNcHY8SPpGeU9OGHyJtcbx5N4PM61117Ltddey759+7jxxhv50Y9+xBe/+EXOOeccHnxwdGfi6y2vDqwKLw7C8mrC5UbOpMc7dsRu4cjQ8EQ3kssjIFAPh9IH51PbhfbKDR61cpXwl1nqzZ9w9iTq51US1y0i3srG9GYFF4Hl6tjSA628l1oXLqbm4uhuwEekGS7SFUi/nIGfdhi3KS8fYmy6j4qoAquyjknWNukXCWREBiu8fMrB7jdwIgJ741EAqmafijEM2YEIOVvHMoJYZtoeWEvf6s1IRxKf1Yg5uZH4nJnYdgQbyHiGsdAkRtRhOGIT9dIIdeGia6o/4hOrMcpSxMeWYzselxUFoKP07PkKtHGUkWBUldD6lZtxevo48u+fp+LyS6m+5EqitfV03H07ZrKMmmXnHEO4KlyBaxZ4ofwwZV2U4MTLcPv6qX7L1RgkkHlZNHZU6p7qV+FC1aoLKV9+Otb+Jnq2vEC+twvUmgM3m1H976CqMfkLRFPgOhzDVRBcwwpBSsJFGGpx7pN1+osffQSjZWbHQZzBLOn5DTT+5zuC7a4IEfyPIqOl17mhmxYC3GweYRoMr91Ky5d+Qv5wKwKY8qVrKF/UEIADWcsMiNsDQMEz9vC2maVxpn7ng2R2HibfPUzn3c/T9O8/I7VsFuaEehILZmDWVaEbLvkQ0JnLnTgs/M0elvuFL3yBd77znTQ3N+O6LnfeeSe7du3i5ptv5v7773+jm/eaJFzFVKLGahiwEl4KqUQcM2cf43gIACjvd3/9L8Erz6BAKvz5W6hKMcggVUbzDB0RzjTwFgw+YOUXV9DsY8eT4vBQnFEuhfSIwIgfsfgAkI56L0oWLQm8vOH7DP8NVylSm0OAUdFJKfBChEi/gypVsgAqBVwgHm+QuhERoGX5Q4qgtuSM04JzC4dCmpp06Fu9hqF1GwGIT5tKdHIjyRkz0XTdA/68/rVGPDJ/AeI1K1ZTDxIiyQq0TGiRpamdKmcvU1yA0x3csgh6eZqOH9yI3d3F/i//G9WX/h9qr3gr0ZoxdP7+HsySCiqWna7SWnyDX3rjwAfn/P4xJFq6HCKduAPDVH/sGlwtFgQgy7B9EZoHa999LpVXnApHjtD9+5ewewYDsKrE7WN8aS95V2cwH2U4r1ZqectASoGmuRi6G5zLlcqR4Y97oKiYiYypVKawaJob7Duw6QBISfKUmVR//B3IYW+RnpNIR1X7KkSYuQgNhO4qx5XXD3pQfdfG1ryFuwC7bwgRMRlYu5Z8dwf5Iy0IXaP2Yx8gOmtS4Zm6vvmhgLBgwekVKRG2wCgtYfy//AvZ/ftx+gbpXf0Ezd/7Dqk584iMGUt8zkkY9ZVIuzDOhC2Q2RPn5Hiz640/Rs4991z+/d///Y1uxquWMFhlS528a6h/jo7tFlL68o5Xuc9zBCpuV/V+uYLAURtU9na0oMKfa+tIn/LBEQG/XhhoDzj3vHldgVah30eCVv5nbcT30DlGM+/8tOAA0NHAlgqdqFh8GmZ1tQJ3vLk8XKwgOH7k8kovzK/+as8HxwICb0DkBHreA5VkIU3NNSgmQffO6V8n16T4e8tXnlm4DoX+Exmb3iefpH/nRhA6qYZpJMY1kpxyEsLQsBMU0vY9Xiufc9HXg34qXLR+DEYihVlShuaBVFoejIzEsAT1jcswspLK5CSMkjJkeZoDj/2CfGcbO7/5r4w97200rHon7WVjaHvmQaLJClIrlhdX7w2lZxdV5BWgV5RDSzMyl6P6He9ERnW1LvBTO8Mct97zqz/3LVSdei65liY6X34aN58NwCrHzgUOrnC1YsWFW9Dn4bbZqWMHjpDgeml/thckrHlAnpAFoHDQ4/yqmbCIaQuuwYmqEzual06oFWwZNc49HeIWnqvUBJrlolkyAKs0yyWbGUQIna6NT5M5eoRMRxOaGWHylR+l0hxPrMtbI3dlkTlHpRbaWsFWkxLhuAgHkkYJS0/5FN2Zw2TEME27HmfvLd+iZOpc4tVjSU+ZhVlWUQTwoZ1ggvW/6w0AJk+ezGc+8xnGjx/Pv/3bv/Hwww+/YW05MavJ8AQ52mJ+tIf5Sg945GSuieKTuKE3CqHIyEezb4osZu+PKOaoEgKE5gbK7XiiaRIpJU5nLwBzL5lAZSSDgyDjmLhSw48/sgOgSiOiORhedRvXFHRIjaxtBApUuppqh+6CDnpEaYVUMsf4kl7KIpkgoittZqmKG/SWxBkejCpeK9SxrqHjRgTRhomY6TJaX3iQoYGjiJIEWkmS9GVnIHM5Om/8FZmX91C+8iS0eIT+tVuxfv88RnUZ5ZetJDpvNlqiTN1IVsPSTPKGZMhrl9AlRsQhmchRtXIq+/77fnIbtqLNnVcAqgLviZr8NENQds5CpONScvZC+h9XlaC6776X2CkziV90CsnD++jfuJbqWSswzHjhHLpSqlKAm/EeW4gA2c5HQNPouv9eTC1Oas68Ih4Zv2qJa3pcKznQ9STJ2umkGqdjpaFzw2p67rqf7MGDDO3YRmLBScWApvSqE7oy5NIojCupFxYdbjZPdv8hrKaj2O3doGmUnjWf+ORaXFcorhMPtOq441liE6to/Nz/KYqWcqUIeHb8cuc6hcWKL+GIFI3w7KoRr0tz0o8+RNcD68g1d1O5+GTqLl5AvCqG7ciA8yFcye94IoREj2ik5jYgBJQvm0rbrc8wsGE/g89vpfvXD1N2yamUXXk2lvCtHIE7dLzSaH+XkXLJJZfwu9/9jq9+9asIIfj85z/PwoULue+++zjnnHPe6Oa9JhlZGVLgA6LhLUqKIq5CSiA4PjTPB9FV3nbpc+sFRpZAuh4Phgb+BK22U2Rc+45cV1clogMvqSOLuOoAhFcBTznsZcBPWMRdFf4sIN/TCUB6/sIiIF6GdZf/dyRh+vFeTc8pIw1JUYVbFxAewfmIKKoib48sbI/NaERLp+m64y5yBw6hmzH08lJKzzoTJ5Oh/cZfkN2/n+Ti+aDrDK3fRP+TT9FTVUnpqjNJzpqtUqm9/iVkfIcXc64OqZlzabv/dgaO7KJ0zPTCPY/oQ6HrpFcsQUZyJJcvYOg5BZR13Hs7qZNmU7HsdDIH9tH/0guUz12CJmIhQAjwSrdLrTBPqqgwiTDjSm/8/D6EGSG5aEZgDzh+FIAgiI4VQiLSaZILpzB2+VhSZp79v1rLzp+/RNf6Q0w4Kc7UU+sZsGJkvUplw7bi1rFdrzoZBbCqEPnhjdVMjr7tLWQPdJJt7UUYBrXnzyY5qTqYo30nxZE7niQxtY4pn7kYS8uR8XmzTB1paYUoOJS+xovM0k03iNDSfQDNENieg8GJakRL0kz6wT/S/9ALZFv6SCxcQXLFqRiUIG2J9Cv1RWXhrRUEZCquIxB5xfWjSrQbJBumo1lQ2jCLrjWPMnRgN4ObNyIfvI+ys86m9PyzEBFligpHIE4gWPV3gUwmQyz2Z06/PAGSd/WgGqACpQxsV8NFBGCV7ejYjipaFIBVdmH8hB3OvuPDtbXAdpZ5DZEXaLYICiAUDh4dACoytYq2F2xfAd48LAOHK4RAieOATCPPm+1uA6Bk9oKCrvL310aohpEFgEaAZSNBtaJCIo46XlX+K0RdBVG6YT+rp9+EC8mGqWjxBG23/4bhPbsQhkmksprKRSuxhwdpvuXnZI4eoXLiAhCC3m3r6HzpSSIVNVQuO4t04yxicR9h8a+p9LWdUN+dmHIMJebMofuB+xk+vI/kmMloo/FeCdAiJvUTl2Jh0z9uPl1NmwBofvgWyibNpn7+KoYO76Vnw/OUzl6MTEVCEWyqop1roDj+QvaBZqPWJkDH736HuPrtJKdOL/RHyHHm97ErQS9Jk46dROl4lbnQvO4BOjeuoX/fNiI1tcSnTi320cmQ8ybkrBvJTwbg5DLkDhzCaj6K3dmNpkdIn3IK8dI6pKEcR343tW54hFR1A42LrsLVBK7p6SNDcVSFQUjhKj2uIYMq4v520NAticgXbrLUrGLZ8n/mcMeLDDm9lC2YSfnC5WjxOE6vxPWAMTeiIxwXzXKLItoUKb+D1DWkAbpuUl49jVRKJzltFs3bH2WwaS99O9dz9On7qDjzXMpXnqkoC1Dn+UNUqH9tcvDgQb785S/zxBNPcPToUcaMGcM73vEOPvvZzxKJHJ+G5d3vfjc33XRT0bYlS5bwwgsvvKrrr1mzhp///Ofccccd6LrO1Vdf/YYWevrzpgH+sVFVI8ULRRQowzzsLcZFeUR8YnLDM6JGhM2H2e1kGHAQEik1z7OvJAC0Qs31K1Zl9ysPdGpKNRnXJKLZ6ELiSsj7XiBPwRqao7yosgAMJM08GhLTM+6GtAi2R/IoBJheBFMqmsPQXGypkfUqn6SMHCkzR11JP516MvC+JqN5OvQ0eSOCEzcZ838/Rf+LLzD40nqsLUrZRVdMo+fme7GOtDDlS9dQubghWAAO7O+i5ZZn6fjZfSDvIzZjArUfuQLdD7t0C33m5nSsYYPewQhyxmIiE19iz3/cSXLJTsrOP4Xk3EmEzNjAIHe9qCsfqAIU2e74PEbpAO7bVtDyhZ+y9+b/YdzF7yRdrby4Ws6bOMMTqUcCqdlQEh9D3fILOfrM/bTcdhMTIx8hNnlyMalv+DmGFreuCbnhHvoeeRwE5HbuJbdzL9UffwdmfR16eQlaNKJSczS1yAvIob2UQH9hkG9qpe/+JxjeuB0sG2EaGDUVOP1D9D/0HFoqTmRsNZEJNdS/71y0qKrFGq0rR49HRiVS9/svPAZHq7bnjrCm/FTMaHmM8e9coW7XG9O2I7A8AlL1CI4lGfCv6bgaGoVnr8LoQURNxl57Blx7BtK2aLv9BY7e8ixDL26j/J1XEZveiNFnoPedQAKD43gjj7vvX5HYts1XvvIV3vve97JmzZo3ujknXFS1SP+bPEYPSKlA+5EOAz+lLxyB4r8DEgKDXX0szNeFd6mwcnAdgciFFjGOMs78rFxNB2mpQzQP4Fb7qSgr4YTS8wRBOWcnKvCmZ5yYCAzXgAA1Am5Ukt2jPNDmuDG4fvqT78UNz08+wCQZ1foKpyv4YNdo0c5SUIgm8vtKhH8sFi0WY8y/fYqBZ15gaN0G7PYOABIzZtJx62+xOjqov/56YtMbg8NzR5rpe+Qxun57O13cTnRKI1X/8FaiqcpCGkO4ea56dqm5C+h+8SmO3PIjemctoGzxqSQmNh5DSO4/J9fSAqAKQBgGMmogdag46xyaf/YDDv74G9Rf/U6i4yao7vGer08+G/QLEiEFsfETKbnoLPrve4z2//0ldV/8KNHGsSrlzhtU0muQphdmWFeqqOn+5gH23LIZNDi6toXfr23hrTcsJz02RUV1CjNuKOJnjxQ67xoM26ohtndzGpKBPe3suXkdbc8dRNouWtQgOaaEbPcwzXesxyyNkZ5YTunUKmZ8aAV6RMfQJYnxJZSX2ljucDCHZ4wIdl4fURkSNC/lzzCcohR/w0vn93WBIwW6kJilgoYPLWYgpwCOvmGdbK+jnqU3poRHLzBSXFu9x9KWHtm8eu5SA5GIUX3eJVRLcK083U8/TtfjjzG8aTNVV19NrKEBGZHFuvu1yptYb/yx8pOf/OSvMpXcljpOEFlVAKlst0Ax4LhCVfJzCuTowbgDlbHAiHnQFQHdhshpaJZAy4siYvEC3QNFqdCjRtcLdYmgGAcEjgApiot7BGlyhKZ3DxDSvOiccAXabFsTCEG0RlWdU7qj+JpAoShIyFHrn9ffL1yJT/jtDacG6gqscqKFc2i2FynrFINf/nmNRIrGD/4zPeufpX/bRqzuThCC8pqTaHrgJuyBPuasuJ6S8olYKZ2hOsHw0cO0rXuU1gd+SyuQmjCNcee+DSNdGhQ5kQKET+ptC+yEJL1gEf3PPUfTT79Pet4iKhacSrq8Ac0SISWjnFV6RkI+HwBVAJoZRbMFMgp1p5zHvnt/xP6ff4Nxl72LePXY4L4CMnhTFKlK4UJqzBTKl59Bz3Oraf35j5jwiX8hUlNb7GiRhecRjCNDOWpy3W10vfwMEsHQoV0MHdrFxHd8BK28BK28FM2MIKRX0dWPMvMjz/y0NyHJHjpM78OPkdm+E1wXEYlgVFbi9PbSt2Y1ejJFpLKGeO146pddjNAVL2GstAZhGsrm8trr6kKBlCE0QDieGeIK3JAzXmoCzRTInEQP7AnQcw5xPcWUieeSrVInykkNPyu/kLZYMNrCxQaE4yJsFxlGIL37NqJxxqy8jHyJ4sFqe/ERup54iP7tG6m+5hqiE8ar8XkiQ6v+AvTGzp07cV2XH/3oR0yZMoWtW7dy3XXXMTQ0xNe//vVXPPb888/nxhtvDL6/ErgVliNHjvCLX/yCX/ziFxw4cIDly5fz3e9+l6uvvprkK3BC/znkVYFVx2BNx/EG+FLsHQ4BRCP2KZoQwr+H8scR4BgumYMHyDUdwjrajllXTmrxMox4KvCKuI4EQ+LqEmwLLeZZqp7BVpQrHkbmQxd2bC3wwvhVz1QqlyT38m7iY8uwyirpC1VEchGB0acAKoEmDCKhWt8RzQk8QjmvzG4+b+DaGmbMpiSeJRlRYb9x01JldaUI8vP9dMOyaDa4DkDMsBnKRRh0BE5Mg8oI5Q0LsQaasdra0BJRjn722+jJKNO+dDWR6RPJhvLS4xOrmfyZy7E/uIreTYdo/sVqen79e0764pUB31XGS20YcONIqaEN6jg5gTtsEWmcSL6lm+b/+AWpZbOofNsqIvWVKs0ABXLoQiIMjcYbPsH+D33L62iXXdf/gPJLl1N1xTLGfPUjdHz/Dg7d+kPqrn4nqZNmYw4U8rT9ihR6Xo0Nv7pIePwkSsagDxUWKHacIG/bNQuTo5VSE3J2yw7cgSHGfvBjtNz4Q2TeouM7vwrOp1eWYVRXIEwDd3AYo7oCs64Ko64KvSyNEBqZ7fvpf/BJjPIyyq44j/isGRh11QhDIB2H7NYd5I+0kN2+n/7H1jO8cQ+JOZMY3HaYynPnK6976CbCVf78CDw0N/ByhGUkUOWLv5CwQyHwGtLLipJBxFb4eCmLP/seFW0EgABg+yk/eoS6t66kcuUMDnz797R/4yfUXHcxsaXLELkTN4u/mcNyDcPgf/7nf7j22mvf6Ka8LhKOIEGA61KULiwdUVTOPizKS1kAsXzekSLuKvUDfpmiII1b8/jjkGS3Hia3uwm7vROzoprShcswoongOq5nYDp5iS0tIoZS7q6u+Bn0vAxSAwsLEYoWDFpeqio6snhhIHXI7NhJZOwYRGlCpSR60VoCAj2nFhECNM8br/mLJFFIO/HVqAgtWtzQD2GASx/xIkiv0UGf+dsBW2Ak05SetgLrSAt2ewdaLEbT1/8bLZ5g7LXXE5kwHplXfH7CEiQqx5O85j045/UydHAPXb+/n757HqL+qncURYcFdoJvnObyYFnEJ0wi197CkZu+R2r+QirPuZBouiJornBBzwqIRRj72X+m+Suq7La0bQ7/79coPesMSs48jTH/9Ek6bv4NR268gTFvfTfJKdMRNp7BryJ8/KpU0hABd1cQ7RAxMWtqPM4ageMZvcJzUggtZAcISd426F5zCGsgxwU/u5iHr38Q13L57YeeC/q1tD5B6dgkWkQn02uRGpsiMb6CkvElGOUpHKHRvraJ3b/ZRGpsCXM/spT6JeNIjivD0QzyeUnbMwfo399F1/ojHLhjC23PHaJqQT19O1ppvGYhEd1BE5J0THGhaZokq5tBGpR6F1T7Dd3FNJyAU9DUHSK6rSqm+dQD3ueI5mBoLjHdDrZ3SxFwcQFFUVpSiqCKMXiRY44oDFlNLYL9SmHqfTEpv+ACSqbN4+iDt9Jyww+ou/QakssX4ZzACfzNrDd8+dSnPjXq9r6+Pl566SX27dvH008//Wdu1WuXnGtgeCtq24tQ9AEryylEXLmuppwdIUdiUFU18GqoP0KAdAkqPauIDi/d2y5wFSIVHUPm0F4yzYexu7swa2ooXbQUPRIrrgILquJ11kbT1EQTgDsj96MAhvh6w4mq71oOZJai+bmveSexcRNxyiI4jDiXt0YJ7pni9ZTUpaILoXC/al8wMqIo+tWPqgpAKs/mDvM3Bi+0nxrvXdpMlFC5+DSyzUewujvRzBi7f6E4mmad9kHiFfXkTUG2QmClwJwygbo578Pp7CG7czcdj9/P0XUPM+b8qwOOR1cv3JqeU3rA6rYgb5GYMIVs02EObV5P6dxTqF98HoZepvYViktJz7mYtsEpCz/K2g3fU823cuz81deoXnQW1XNWMPntn6DpoV9z6JYf0HDBe0iNnYJmqWfh5BXtSJBW7jt7wuo1lcYsqTgmUs4HFYVd2N1/5j0bX8bN55j4ro9z6JffBSk59KvvBweaZRWYZRVgaDjZDGZlJWZ1NWZVNXpJCqnB8M6d9K95CrOmhsrLLiMxZTpmeRWa0JA5m6EdW7BajzK0bzfd69YwuGc7ybqJDHe2UDFmTqGtvknmh6gLitZSrve+CKfA1Stc6UV9iQKw5PWLcJVTzxzyOcgEeYQCIEN2WmAb6X60iXcxUwdNBKmBuDLgB3UNL9IuEaXsmgtJnzeDjh/fTev3vkf1h68iPmMhIssJk78EvXH++edz/vnnB98bGxvZtWsXN9xwwx8Eq6LRKHV1da/qeueccw5PPvkk1dXVvOtd7+K9730v06dP/5Pa/nrIX001QGd4iJaf/Yh8UxPoOkZFGcMv9NH/0LNEx43F6R9Aui7C0HGGh5HZHO5whsikcehlacwx1cQmj8Gsr8KorUSLmDj9Q+T2N+MOZbD7BkgunI5ZX4XTP4TQBXo6XtyGgWEG1u2iftX0UUsFnyiRUnL47pdpeWQHdUsnULNqJvH6EqSU2BkbYq/82LI79tH101uxu/owG+pInjSBsjljSC9sJFoSJX+cAoFmRYqKM2eTaeqh8/6XVArNK3g59USCMf/xadB1RNwm+9IGOm9+mEMf/zapZbOp/+RbEHqxpjZryply638AErd/kO47nqLrlifIbNmPOXE8sZlTEVKn9dc/p2TxUqrnn04iXTt6P7ku7WsfJ9uleLrMdBl6LD7qvseTaK0ie823t1H/iY9h9Xdh1CdxMxZ2Rw9WSwd2dx8yn8McW4vd2UNu9wGc3oHgHCJikj77VMr/zwVeiEZhFSh0ncSiWSQWz4TLwW5pYvDJF8nuacIdzpOaOf5VtfcvVeLjK5n6tXdw4LuP0f6je4lvPEikpObEXeB19HR87Wtf484772Tnzp3E43GWL1/Of/3XfxVN1IODg3zmM5/h7rvvpquri4aGBj7+8Y/zoQ99KNjnjDPOOCYy6pprruG3v/3tH2zDqlWrWL16Ne9+97tfXeP/Lq8oTt8grV/5GVZzOxg6Rlkpgz3r6X/iKaL1Y7EHBsB1EJqOkxnGzWZxczkSNeMxkyXEUzWkysaTjFeRiFUgNAMrO8hgXxO2lSFvD1HaMJtouhIrM4CjGYhIorgNg4Nktu2gZOWpr+u9Stdl4MlnGVq/mcTcWSSXzMWoqkBKicxbaJFXrqiT2bGLzl//Dqe/H3PcOBITJxGfMIn41OkYZvy4hZ6MkjLSi04m33aUgU0bkVLxOx5PjFQJDR/9DELXkULSt+UlOh+6j8FNGyiZfzK1V7z1GP1q1tYw4Yb/BuFidw7Q//Dj9Nz7AJnde4nW15OcOROh6TTf/CPKlqyg/JSVmFXVo/eT49D70GNY7e0A6BVlaLEor2biSE6qAmCweYALfnoxdPVSWatDJkt3c5bO/QP0tWXJZ13KG0vpax6kef1Osl2ZQj/ETab/w3xmX3cyQi8U4UCCZujUnzGF+jOmYLz/ZHp3tnHgnh30bD+Km3Mon13/R7f1L1liNWNo+IeP0fzorRy9+zekDu9CO5HVFf8CPOSvt2zcuHHU7SUlJZx//vl8+MMfPqZwx9/llcXq6+Hwr36A1dOFMAz0klLs9evofWoN0dp67MF+5SnRNNzMMG4mg5vPExs7ASOVJlpZR3TMOCJV1RhVVQhdxxkcINtyBCefwc4MkZo5F7OsHLu/HzDRRLHtag32MXhwF5Wnv740ANJ16Xr+SQb2bCE1ez7J+fOIpMpV1da8hc4r642B3VtpffBWnOEhYnUTSNU2UFI5iZKx04hno8d9rczScmLzl5BraWLo4O4/qDcipRVM+cBnVV/GJL0bX6Dz0Qfoe3kd1dOWMnHJW445Jp2q5+ylX0KaGoNigIOHnqDl2XsYbNqDWVVDevo8BndvZd/dN1A97zSqT1qBWVU56vVd26L76cewensAMEpK0cxXV9HXX284w4M0vOvj2EODmPE0rpUj399FrrMda7AXV9pE0iVYPV1k9u3BGRwMziFiMcrOPYeyc89Bk5pXQMrXGwbpOQvQToLq0y4gt+8AvZtfZPjoIXAd0jWTXlV7/1Il2jiGcV+9jqPfvov2b99CcsV+dHECKwb+CXqjv7+/uI3RKNHoia1i2NfXR0VFxR/cb/Xq1dTU1FBWVsbpp5/OV77yFWpqXnk9Fo/HueOOO7j44ovR9b88CpdXDVaNFk01ctsxSGM4qmqUARBG6Qmdw+4boP/5Z5FSMrDxJZzeXtLnnU75VecjNA27v4f++5/Gau8iMmUC6Bo4NloqgYga6Ok4+f1NOP2DDD2znv77QwtJQwc7hNpogu5f/l5VeBhQhOZ6ZSmJ+dPQohGyOw+QO9iKFjMZe+7UINrJCKVRjYysKkRYyWDfvMdnFTTDcInE85TEs8T0PM3PHOHIzc8wtLedxLQx7PzZOnb+bF1Rf1XOrWP825dQuliVurddjZJ4lqiWY8//u5/+Z7eRmjOBSf/zdsy6cqAQoWOFVhx+KqI+gnC+/ORJtP32aVpueZax/7ACJwS3G1EbV9dwdVXxTlimemZZk9iixTQsOYnMc5to+cH99P9+DOWXLD/2eWsKitfLSqh+78WIeIze+54j19yF0zPgdwz9G15kYPN6Gj7/H0TsGLrPWeWCsCTtm56k7bnfq3uIximdMg8jWwjl9W84O9BJpKIaGRU4PqWSCXoWSsomUTJlDh333E75gmVUXH45drkX3TDZ6xcvjUlKAg+Wm8viDg2B7aBXVKAJUzkJbJSnQZfFQ92PxnAdhjftw2pXCi8yvvoYwvTwOm20yn++HC8qqogfKMyFhUCTcgQZuwwI1UeL7oLCuH4lJhEpwTBg2qdW0bWwngPfeYhM9uVXOOLVyevp6VizZg0f+chHOPnkk7Ftm89+9rOce+65bN++PQh9/eQnP8mTTz7Jr371KxoaGnjkkUf48Ic/zJgxY4qqMV133XV86UtfCr7H438ceHrBBRfwr//6r2zdupVFixYdE3J76aWXvrqb+gsSISSaVojCUGOy4MZTHFLHRlYJn19JCmR4QPrHF12kEAljd/XS//hakDDwxDrcwWFKLz+PkgvORGgaTlsP/Y88hd3ZTbRxoiqL7bjoiQSaEUE3Y2SbjmANDjC470WODj0eXEToWkCWrjZpsPFe9FgSJzsEgFlaQXLyDIRhMHR4H/m2FkQ0SnLugiDtQoQjoIIQJArcW9qx91ukJ4VX5VSoCKLMy1vpefhh8q2tRCeOp/feB+m9t7hqS3RaI6UXnk38pKnFfZeRdPzkJoa3bSM+dTq1H/gEkZKyIv4Tkfe88D4hqudt16xC1Gp64gx61zxJ35o1VC49o+CNDtsF3nusYYCtvKal808hOW8e/RvW0nX3XUQmTaR88XK1ryPQPY+pcHSkrmFWlVFx7RWImMHAky+Qb23B7VN6QxgmvWufpX/TOib/y5cRwlAe7iCN3aXn8Ufoe0I9Uy0RJ7FwrkodEqgxqUmk6+J0dmHUVwJ6MI/qnjc5MmcqZYsbeObLzzDhirnM/tAyslGHhJFj/AKL8YAe0gAOgiE7ijVk0dvtkMsJEmPSRCIqPV4XxXaEP+faUsOWGlbOpX3tYTJtatGSnFAe7OO3LW6q0GPH0YICLkIU+KkiuoPhRVZFdZuYbhdFUBmag4bE0Bx0IcnpSonGDJuIYTOUjwQV19Q77UX+ScUdBCp1xjZdbMNFemlZrqUhfBJrQuPBK1qiWTpjLnwryfGTaX34DrAK1Ydfq/wleMhfb3nyySff6Ca8LmL5uVMU3gk/BTDgfA0/M38adb1KfiNT9gTKlnMKY1HYal8pwOrvom/t8yAEvS88jcznqbz8CkqXLkdoGlZbJ73PrMHu7yXa2IDQlN7QEgm0SARNj5I/cgRncICeDc/hPjPkXVeApkFYb2gaXfffg5ZMKjsSMCorld7QNYb37yXf1oqWSBI/eW6BuNwpzKMIlcIFBFVew+ldfpq5cLw0xyCtzouWclz6d79Mx9MPk+9sJzp2HJ0P30vnw/cWPYfEpGlUn3ouybGN6lo+N5NlceSOGxk6sJN04yzGn3YVMbME4RQ63RYqVd5KQb4kVCTJKlTyK5l4Ej0bnqV3w3NULDhVkX3rFCr15r3CJw5I3VB2ti4oX7Sc9JyFDLzwPO1P3Edi3CTGVC30+kOA5UWMSgl5h1KRZNbkK8HQ6TjwEnr7EexMQW90bF5D966XmPn+/0C3/BAz9ccRDu1P3EvPhmcBgRZLUDJ1LuZg4VmoseeQ7+0mWlqF7lcipxDBVjJ5Nt0TGmm+62Yqlp5B1RkXoLmKTzflTg36V6UhFqLznGwWd3gIV7qY5RVoQocMQSqnzysWVF30+ssatBg8uAtruA8hNJKRyqJiZeqC3h8RerZCZeEFf/HvQ0XkuXphjeWaOropFI+VLYMxqeUlpgZ6NkShIFX0ldS9SC4vmEFlv6jtbsRL8Y1pOBGhqBRMCqTzUZdIxCYVs6j90nkcvb+O/Tc8Ubyef43yp+iN8eOLAw++8IUv8MUvfvGEtWnfvn1897vf5Rvf+MYr7nfBBRdw1VVXMXHiRA4cOMDnPvc5zjrrLNavX/+K4Nm999573N/+EkRIOTKx6Fjp7++ntLSU8f/zn2jx4xM1ho1RgGNS/0K/FQFcISPc/73/hRfouOdONNNExGOYY2pInDKb1IpFaBF1sB5xPOJzgZ33iNYsrWAg6zIUqi6xezJYR7twOtpxs3liNQnik6oRyRR6VKN33UGye5rQy9IYFWnyuw8xvHU/0nbQS5Pk9rcg8zYiYjD/Nx9HT6gH7y/+/ZpwUdNGSoGpOZheqL4vrhQM5gsDJmHmSRgWUTfLo59+gv71+4nPnEDF1WeTnNOA3TtIZk8LmW0HcLr7kH395DsHyB/tJTKmkrLTZ1NSpSHau2jf1Erfrg7Gf/g8Ki9YhOaHW0oRGK9QMGB1PxXMdkETGHrB8D300ydpu38TC377j7hGBNvxCS0VmaVKDReFqipDptJMSYdoKkfbT+5n4OktNP7wk5ipSNAOICDClCNAmpb//g3DL+04ZlzFZjRQed07iKKAt2i3oOPJh+h87hEAqqYvJdffxWDbfspmLKZ04kxKJ8xE6Dq77/4uwy0HKJ2xkOozLkCvU14TKykxBwXGEIiBHF1bnqX1uftJNkxj3LXXYyfA9UKo3aiXPuoScKOBN7Ebsmi7sAWuKdX2mK9tVTqS09tF8798j+iYCkpPm018QiUlHuB4PFDKfx4actSUv5F96MtIUt5jjys+3glVn/L52QqpV4XjtGBb4a+uyWCx5e/r9PZz8Obn6f79Bvr6+igpKRm1HX9I/Lln7nu+ih7540hinXyWl2/8N44cOVJ03T/W09HR0UFNTQ1r1qzhtNNOA2D27Nlcc801fO5znwv2W7RoERdeeCFf/vKXARVZNX/+fL71rW+9ijtUoo3GFuqJEALHOXGK+M8lwbO77Z8Qnt6QUlVJcxwtmLNdSyeohKpBQRkQpDEFXDk+uOp6HCUhHSMMl/5HnqX71w+hRZXeiIytI7FwLsklCxF4OsJ01fsaLkseLkkOBSANF3dgCKutA6u9A5nPY5SWEqmtR48lEZpOZscucs2HMVOl6Mk0w037yezfi5QSLZkg39yEtG20RIIJ//45tEgkuNZI0tQw30jR6y49gzfEqSIFyIzF0Z//hMzBfSQap1F+7vlEp04kl+sl33qQ7G5Vic3p7MXu6cPp6lW6dOk8tFgCu6Wb3O595Ftbqbv4akrmn4Jui6DiVSH8X7XBLy8uUB55zdW86kXK4Gx95A76d25k6sf/A6HpxzqitOJ7FlId50TBTkjab7uF4e07Gf+5f0fXTDRLFDhjvJRKf36VhuqMtv/9Kbnte44Zf4nJ06i76h2KJsBrQ/uj99Lz7GoA0itWkG9pIX/kMMkli4nPPYn47BkIQ9Dy5W9hHWkhuXIxZZeuwqxX84hmKENZ0ySGNUTnvWtp+eVTlC+byrQvvAUhJDFDrQojuhPQABiaG8zFw7ZJzjEwvXQ7gIRhoQmJ7WpkHVXxDNQ8nGvuYt31v6JscgXjz5xEakoNsbmTg1QoXy9Yjo7jajhSFM3nuqaqEEcMO3BQRXSHmG4T0y1iumpvXLeIehycGi6ut1IbtCPYUmfIjjBsR4J78K9vh8AD21GpWo6rkbe83x0dO6crPitbQ/gLQVsRW+uZwkLa7umlY81DDGxY+//ZO+t4O6pz/X/XyNazj/vJiRI3EoKEIAnuRdrSQi+FtlSpe29/db23l0Ll1mi50GJtKVLcE1zjCXE97rJ1ZP3+WDOzZ58kFGi40Pa+nw/k7NE1a9Ysed7nfd43bdz4e+77f/b3m//uzn7g/cU5thQUXJ2cbVBwDApepuWcZWLZOpal4/hrgIIWiPyPBasCwXBfxqCgjhl87GH6HrgXLRZDi0SJNDWRXHAo5bMPQ/OddbYnK2FInGhosAhivYrgBDa4QyMUenuwe3px3QJ6ZSXmuAa0RBzh6uRe3kR+9x6M2mq0eJz81h3ktmxT90okyO/ZA46DXlnBhC98RWn1hUGGkAWhVWPHDTxgKFcKVjlWjt03/4rc3l0kps2g6pTTiLWOxxoZpLBjN7mt23Ayaaz+PuyhQezRIaI1jVTOWIiIxyj0dZPes5V8XzcTl15E1eQFmIUx4xlFoMpKqj5es71xQ2oYGTAzajzZufwmRvZuYsYHvu6FahelPDRLgVVaoficdhzsZPF+Xb+/jkz7Lua94yvEhwR61sXIqb5O87LPSU3gRnScmLrIi8/9N6P9u/apy/JJs5WGViwRtJ+9y2+lf/WTANQctpRM23ZyvZ1UzT6c8omzKJs4HeEKNl3/fQpDvdTMPpqGw0/CTFYW35GHvVpult7nH6PvyQcpn72Qpgveo8CRkH6Y7wDywSr/3QaglD8PsIuAVYljyIV8Zztb/nQVqerxVDXNojzVQnm9Wm/4epv+O7LjSnuzRMRfFsf6kvW5Ny8IA3HCBt2SaJYMwkZdU4VkagWJkVEHGznH01wQuKa2jw6a1EVQLqtMp1AmsJIqBLBQoQrh1NjEK7NUJHKB84XePtb/5nkGH1n7ll9vfOMb3+Cb3/zmK17z+eefZ9GiRcHv9vZ2jj/+eI4//niuueaaV/k0yjo6OpgwYQI333wz559//ms6961krz8McH/Uqtdzif2t0aVgYPkjmI31NHzqw2jVMYQh0Xxx0Ij6GqIRGyEklidQDuA4AhxNxaWHPwQh0MtT6OUpNC/0yozZxYWPJqk6ZjocM907XmIfOzsEKQOOzZYLv4Us2Ky66KfEpk8gMnUiFacvRY66aAlvQWaor9zu7SPSVI1mli5Eo1ELI5SVpz4+ysZfPM3Iml00felikodNw3V0pHTRK1IkF84guXBGIPTqWDYjT64nu2YbPX95im7LJlKVoHJuC5PedQLlh0/1NGE8sEWWijzqIf0jJ1dg/UeuITGtmalfOVeJ6jkuRnkCN1tg7zUPMfXjJ2AbqqlkLTPwompe+mtATR4cHTFkkHeh7KQTGbr/BUaf2UDliQtUvQQIZfG9h5k/te9cyu79gFW5l3fS/uUf0PDVDxOd2EL3cy/S99QDlE+bz8QT/w0jrzwaHesfoe/l5xjY8CyR8hpi9S1k2ncAMLrrZUau3UDTeRdTNm22EtX0hCOd9Ch+3lMNXXnyBcic542P6EXRx7AXQvc8WqE2rNlq8uNqoe0SNFOS3bQdN5Nn4tfejVGZDATLde2Vs/EF1z4AYPVazQej1N/Cy04V3l/c92rK5Vu4jZlVKVrfv4z+e1868AmvxQ7UVxzoWF6/p2NoaAighG57zDHHcOedd/K+972P5uZmHnvsMTZv3szVV19dcu4NN9zAH/7wBxoaGjj99NP5+te/Tir1t8NaXPcgitG/xUwXbhBC5rP4HKdUY0R6rB2BDIQ1lZp66bVkWHdpLBAiYeiOFUQmNNPw2fcjYvEiKAX7XGufxAue4wMopm0WAlFVRqQ6SWTmxOJ5wv+OIF41lzhzlW6ihIQ8tDgkCpCOzY4vfhE3k2HXN75ObPJkYodMoWLZ8Ui7gBb12HdCIh2J3deLUVONEKXDsxSlj6DZgp677yK3dzfj3vNhkpOnKQ+kI4nEKjFmziM+b666tOniWgUyz60hu2Yzw3c9hrRs9Ipy4uMn03D82aRap0M+NCGWRZ1Af5uvOWQVsmy65T+UOO5p71blcx30ZBlONkPP4/dRd/wZJWEdvuB5Scr10DWFCxUnn8josy+Q3rKW5GGH4haEEtANvSPhorRNvFl81Tmn07kfsCqzbTM7rvwOrR/8FLH6RgaeWs7Ak49RPn8R9ee/Sy2KbJuBFQ8y/MLzjD7xDEZ9LWZLI9YelUgl88I6si9toPYDFxGfNQ3bkLiW0pgs9OYDoWdXM8haBlIKhrNqHqBrbjA/CWduFUI5bMyQ4HlEd4LjbUcvYUb1PN+OW3A4+r/OwiyLYrsawwWtJLugfz9NSDRXCxxnarvE0B1MrahZFQaqyg1FXYvrFjHNIqpZJaywxoiLKzUyboSMo8CqUSdK1jHJ2FEKrh6Aaz5r3HaLAFbeMcjGTPIFQ4EKlg8q6LiWAKEh894z1FZSd+a5jLz03D7v83XZ6xg3/s/eGlZwdEyvDYVZVZajY4UYVxKKYwI++8NLujRmWFUaPMWFtr+wHnj0IWITJtL83svRolFcP5FTQSi2PCEHu4Mn6j0WdRdF5qwDRqyCaHMFNB+iAPZwOaQgMnMhzFyI1KTqD2ctKgEi3EKebd/8Ms7gEDu++TVikyYTnz6V8mOPQToFRDwWMHSl7WD3DWDUVgf9YlCsMUkmMKDz/tvJ93TS+LGPEp8yBWlIXFcScSuJTa+kauI8QEUfMJpn+OWVDO/ZRPezDyJtGzNVSVn9JCbPO5eq6kNgSJYkFnGN8ODqFwbs9Ag7f/GflE+bz/glF6DnJFrGIqaX0Z8Zpu/Jh2hYdLJyYPg6g/47kwHRTo0joni/mqNPZPh/rmSgazOR8hkIR+B4O6WnY4VAASRe2SbPOpM1T/w3Y214x3pevvY7TH3Xp4hW1tP9/EP0r36SmrlH03z8+Qhdw7XydD33IAMbnqd/9ZNEq+uJVNZTGFJZfwc2v8jQ9jVMOvG9pJqmqDrxHEzO0HDA9BWaHjDignfmtSE97z2rLw3lFushYJ3ZxXF5bPbH0Z2bAJh9xPvQjQhaQarEF3opiOvqAtcfm0MaXX7b2YedGHbqURy7bVeN1UHZLInmlDrDFcil1kZSF8G78O/n6uD4zKowu4zQPbMa+ajJEBCPeo6WmlqaLj+DwUfW7vM+X5e9jnGjvLz8VYFkV1xxBe9617te8ZiJEycGf7e3t7Ns2TIWL17Mr3/961dZqKI1NTUxYcIEtmzZd470j2SvDax6ldy4/aL/+/MGhI8rOsgREhJz5jC8fDkdP7iKlh9+FtBxHQ3ddAOxU113cV2hgB8PwLKERLpqNhyLWcFk0HUFectQjCI/rbOQ2I6GI7QAPAI16XNcDUN3gox7uu4SS9jM+u3HSO/sY2RrL9l1Oxi6/RGG/vIQCEFyzlzM+no0zSS7dQvZHVsRkSiJqdOIjZ9I4pAZRGvrySfjZMrU/ZxGjYpIju2P7Kb6hLkkFsxQCzevMkQo25N0FV1ZMw2qT5iLcfJs4BywLdC0QB9qbNa4MGtHFyokQOAyunOA3b96mELXEIWuIaQ8l9Edvaz/qEJuI81VdP11JXbvEFM/dzpmRZy8bSjGDoKoaQehAI6l4w4ZmMMaFgZmpJbY7CkM3f8cVSfOR5ZMn0sBEf9dRCc1MemXn2PHh/cVj5MFm86v/YzkYdMQ5YphVXnu2eQTmqfBpVFTtozaGUfRvfJRutetwM6nMWrqGPfZzyBsl70/vZq2m39Lat5CKg9fQrRqEkYONv7pxzj5DOWHzKX57ItAgp4tdtxqcoKi43pAuQzE2lUj9icDTsTFjblgSvz04ZrpImSekRWrEBEDozIZPHuYOfVK5iL+9jFjQOOxvw+UTXCs+WUqviN/e3H//lhXUNrWDHHwAJjXQ8vdn6fjb5mUks985jMcc8wxzJkzJ9j+k5/8hMsvv5xx48ZhGAaapnHNNddwzDHHBMdcfPHFTJo0icbGRtatW8eXv/xlVq9ezYMPPvg373v99ddz4YUX7lPGQqHAzTffzCWXXPI3r/FWNUGxXThSCxYXPlglXQjUymV4Ve+DU+yz6JC+CzkIH1TnJBbNZOTh5+j87n/T+LVPITDVdfRiAxKuB2CFPeHeDZWjgaAPFo4oejf9sKeQcLlwRFAEzVusyNA11bkGrV/6MoWebvIdbeS2bGXg7nsYuOtuEILEwvkYNTVo0QjZ9RvJb9+JiEaJz5xOdOJ44jNnYNbXoelFPTzphQCOblhD5YKjSI2fpsLqDG8hJQE0pCcKLwsCzYiRPPJwkkccobZlbIyCiZnVFcM07CkNhReo51TP4uiS7HAHbY/dipUeYmDj8zSe926yHXvYee2PATBr6uh76mHyw700nPVODA+ME7I4AfXHND/EQ2qqDZj1dUQnTmDksadILJ6DNLQgnAxbBO+gKCwP0dZWmr/1Zdq/9n3GmiwU2P2z/yA5Zy4iGgMhqD35TCVG6wKaSfUxJ5I6egn9Dz/A6FNP4wyNYDY30fTZT+DKAh3fu4ruq6+hbPGRlB17BNEZ4yi4Drs/9StkvkDq2LnUfeRt2I5e0sdatsd0sjXF+giajWrreV2ieW1JN4tgFRSvodk5eh/ZgJ6MkjYrIO+xTJxiOJ5vhnCDeg1rfilmValoeky3SBoFkno+AKtSeo6EliehFTCFHTCvdVw04WJJA8tbAKbdKBk3wqgTY8iOM2IrgC7tMa/c0Mop5xgUXJ20FSFnmUGyFsvWKeQN3KiOm1PXFQURJP84GPavEAb4z2qWqyFDoJQPgDpSBM5pP5mAGjKKi4ig/7JDIFbIsTE2PCs5Yy4jq1+g7dc/p/VDn/RABAUiBVnTDLzEDKBnQ6LTDgqoCi1wg9AsT4zcz+gWFl3354xSiMAx4CfeUNeIMvlDXyI/1EO2ay/ZHVvov+NO+u+4EzSN5MIFGBWVaNEo6XVrKezegxaLEZ85g+iECcSnT8esq0MTGm44y6YrGF2/hvJjj1HZXVFAk1bwWVgEkhtGHnQ7QsPEI2lsPRKOBtex0F0d3RHoeRcKXvSKIABCtCCMXcM1BHbUJdfXTvcdf8RJjzKw8kkmHnkB6fbtbHxACYzHy+pof/Fe8gPdjD/6Aoykx2zxfVoGOGbxb9+hIjUwJrYQaWiie+PjVC2dgWZraJ44rxtRaJDUlLfHB7xSdZNYcMrnWfnAf+7T9txCjk3X/4DKKQtASoRu0HDkaSpTrAO6FqV+0UnUzD+OjqfuYmjjCxRGBok3jmfK+VfASJaX//wjttz1c+pnHkvNIYuINbciC3m2Xf9fSMemcvYRNJ30drBU3fnglLCDXDH7ZCPUC17bcsZ0VkK1sYBonssxuHklkUgZpmtCofR4Vxe4pu+MD4UdhphVvu762HIciPXthx76Di7NEuj7sO00lV3Z9uZZ/vU19R2EAU//mf3s70babwg6toiQ9RiVABkjgm0fPIX1N3LcqK2tpba29lUd29bWxrJlyzjssMO49tprXzEC40DW19fHnj17aGr6x9a5fMsKrFefczbDy5fj9A0weNuDVL3ztL990v+CRRsr0WprMOfOhvOOJ72pm9y6PYi8w9CjK8jt2IG0LFzbIn7INOJTDiGzcQN9D95H371/RcTiNH/0o2itlYhoBCkl6bYhzGSE9OYOKhwH8RrFzbSIsU+WuFcyazDDy1+5hfS27oBmDWANZTAqE5TNG8/omt00XbiEaEyw/ecP8sKlv2Xhr98L5a9eMK7y3GV0fvc3dP7qbuo/cAZof7u5GTXlTL75O0EvNnTP4/T9/j4A9Opy0i9uDo4t9PUQTyj2i1vIs+Omq8n3dRJJqVC/llPfRXT+DNyIiTCg9aOfouuWGxlZ8xKZ7Vso//A3cW0LJ5+hfv5SGpado7w5B3nS6mbztH3rVxR2d1F3/r4aXv9nr8LeQE9H2K644grWrFnDE088UbL9Jz/5Cc888wx33nknEyZMYMWKFXz0ox+lqamJk046CVB6Vb7NmTOHqVOnsmjRIl566SUWLlz4ive97LLLOO200/YRQRwZGeGyyy77hwar/jet5rJzGHn4Oaz2bobvfZTK0095s4sEgFlbi1FfS2LuLDjlZHJ7d5PbtQtpWYw88jj5LdtwCxbSsojPmUl0wgQy69aT2bCRgdvvQpQlaf7kxzATFYhIBKTA6ulBiyXItu1GShchXttERouYCPvVn2Olh9h61y/J93ehRYsUeSefwyhLER83kezendSecDquY9Fz923s/NkPmPjBz2GUvXrR7MrTT6HrF79h4Oa7qHz7WSVMgQOZWVvN+N/8RxAuOnjHQwzdoUBiLZUiva7ocbUG+zHKK1TZczn2/PLHWH096NXKCVL/3ouJTZuKME2EYdD8hU/R+/ubGX36WXJbt9Lywy/g5grIfIGady6l9sJlXpdzcNmRzmiWrV+4hkLnAJMuOeqgXvtfxt4izKqJEyeya9eukm1f/OIX+cEPfvDG3fT/7FVb43nvYmT1C+Tb9zL4zONULF36ZhcJgGhNPWZDPYnZs4FTybbtJNu5B9fKM7xCZXh0CwWkZZGYN49IcyOZdRvIrN9A/+13oJWX0/Lxj6PH42hGFITA6u5GSybJ79ylRM1fY7IozTAR1qv/WAoj/Wy7+VcUBnrQfA1PIXBti0iigmTVONIDbYyfeyYFe5RdL93BSPd2pl/wGYxY8pUvjn85Qc2yU+m4+X9oT93LpKmnvqrz4ql6lpz3nxhZ1Xdv33g3e3atAMCIlTG4bSW+c8HKDGPGygCwc2k233Il1sgAZqoSgPFnXUqy9RA0aaDHU8w8/7Pseuxmujc+zkjnVma88/PY2QzSsWk49izqDj9Bsd5edU2+OrNzo2y69cdY2WEmzHh19fB/NsbeAuNGe3s7S5cuZfz48fzoRz+ip6cn2BfO9Ddjxgy+//3vc9555zE6Oso3vvENLrjgApqamti5cydf+cpXqK2t5bzzzntjCvq/ZK8drBqDqL6m8+RYlJViSEARiEdqEg1B3YffR88vf8fw3cupevvpCMNFhATNC5auWEJCEjGVx9A0HKKGTTxikTQLwbFpS3n8TM0JGCeWq2M7Kg5eSsh5Hj8/NCsSsQM2S3ksR20sgy01crYRXC9/RIKBWQuwLJ3U27xsT1ldhZlllX5WzTEn0Xbdr8hs3YRumLRdqQTShGkiLYtw4NvQXU9Qfd5x+FFB0g1D66F6kyLEfNmX5aKJ0tCywEuquaz9dwVUTfx/76Rs7gSy7UNs+9Svye3pIzWnlanf/zegyMyp3j5A9y1P8Ny7f0XVkZOZ8OGTMBtrkBIiHnMtFzHJRU2kpgVhG9Fx06j/0Ll0//pO8ru6aPjkOzDrKxUSLyQHCjPzGXMA1eccTe25izENh4KtM/LsRjp/ehsym6fzhv9BfuYyooeMp/vKa8l7WQGF58Ua3LueyiMnIqoEWlpHGFGSM2eTfnkdkZo62h68Bau3T72yoW6ciGJOGV4cvePHikchX668T240NLQIFOMi6qBFvfh4XSl9aCGB5Oz6XRR2dQFQd8GS/Yqhv5rwvrHH+NfZH4PK3z+WJeW6ooQZhfcI+16b/b4bV6ql49h9LgKdokbWKwnDvx4TUgahWa/m2NdjH//4x7nzzjtZsWIF48aNC7Zns1m+8pWvcNttt3HmmWcCMG/ePFatWsWPfvSjAKwaawsXLsQ0TbZs2fI3waoDTRr37t1LRUXF63qet5L57cLxxNSlz0ocY7LEo+UPGmP6QUK/Q+1MSoFuCOo/fTHdP76BoTsepPKMk4tsE/8cn1UVvpf/DTkE2hCAl7bZ08nSQ9eRqA/H/xc1buF6gW9jH22MNzI6vpXIxFYQkoqTlhWfxT9GQsUZJ9J55X+T37YDgaDtu/+hDouYyEJRhNoCBp5/guojjiuGKzueMKo/RtgCbOk9m8dmtUDPi6LexdiyauBLH8kIbL7lZ1iDfTS99wPEpkyh0NFB2y9+Qi7dS6x5HOM+9Al1sKa817nOPQw99QTbrvw6yZlzqDvjXPRkNdKURSFXDRVqE7AJBIlpM6i+8Fz6/3gH1p52aj50IUZ1hQoXDevQ+KzcEhac2ll53olUnn+C0kgqaKSfXU3fTX9E5gvsveEami/7INHmFtpvvAarT00CNSOKA2RXbyTeOBktFVFizckksZnTya7fiF5dRd/vbsXqVeEe2V395EbVXMCOOhgeQwpU3ZuG4yUKKFaw9OY7rqMFCxWhCaSrB2H1mpCMrttLob0foWvUvG0xGUvNT/yQCk1Ijynu6wUWx9QwvGcIF0NziWhFDa2YbhHXLMr0PClPwb7aGKVCz5DU8iRFAb90YfF3SxanjAWpM+LGGHSS9NoKjByy4wzbcSypBeyqlClwpCBjRsnYJpmoeo68Y1CwDXKWQTbn1WFBx/XYXwfD/jfGjVdr3/rWt0ocGmVlZW/o/f7RzXY1XKfouPWF1Z1QiKkrBa7jsXSDiAQRhEppNiVaQIH5Y4LHZNKkRtM730vHH6+j9947qTh+aaBnFZZ+8EOu8JhIoJhIPpskzArxmVJCFvtR1/RCnaLgxELz87zAxSPwegwbIw+Oz27xzk82TCTeMhEhoWbJSUVmsCAINaw+8VT2XvVjCm17wbLY893vqkMiUWQhX6zf/j5Gn36O1NFHIlwCaQw9Bx7ZEj0v0QugF2SIjaa0iYQtvfC6EGvMkqAJHE9XWDiSzbddjZ0doeXfPkh8/GSye3bSdv0vcfr6KYvVMe+kTwXXFRJGu3fQs+tF1l73/6iaMI/WI8/FTFUgtRCbzaVkrERAatY87JPOpvOhv5Lp3cv0Qy8kEkupcDQL0D2WdGieJSRotsTIqD5nZs1SZlUch1MWJVcTYW//SnY+82dwbLbf9ksmnfdBYpX1bP/rr7FGBlQdxZJYI4OM7NpIfNwEXMNAc8BMlJNqmMJw28uY8RS7H7uF7KgaNwr9PQEzzG9jAbPKIQiZL1nzhbSrfKkEaVAaoeTCSNsWCukBdDNOy4QlRXaUIXC9/+y4wEqqHXZcaUL5IfrFGxbbVomsgX9c6MMIM6BKdK+Equ9w2fW8yjegOaFy+0NkmPXosbQ0vx5C5RFSx3IFlpcowTZdZO5gCqy/+ePGAw88wNatW9m6dWvJegSKa36ATZs2BdIluq6zdu1arr/+egYHB2lqamLZsmXccsstr0qOxLff//73/PKXv2THjh08/fTTTJgwgauuuopJkyaVJJT637TXGAa4n9+h9xRoakj/73BrP/BlS0QBQw22bNJ0fCxx4I6HsdvaqTnvaCIzmwE1abMsIwA2AAzTwdBdUmaeiO4EWgqOq2FqTpABxzfb1UhbEfozCWyPUmg5SnvCiDgkE6oHqYzmqI+OoAmXQStBmQeE2VKjLJLHcopZ/qQUZC2TkXQMx1JCwjWfuYjKrhGMRCXDDy5HL0siXZd8726qFzRSUWax7ocPk161jcq3HY/mZbYKwmAA1xeF9BYRRdF0LdA/CkAEoULLhChOakHtT29VKbuZOoe0peNFFGANZ3EpZiLyv4e6847CrFITq57bn+Hlf/8js3/4TqINlZRHc0H9ducNnJymQDrAGNSJz19Cyzfq6PnZLez81M+oveAYUqctRo/H0HS3JAzQf9bw+1SaSmpSEotYxI49hJqjP0/HbS8xuvwlur73S6qOmUZu3RYav/AeIhPnEe0z6HnuIYYffpTsT3dRvvho0s+9SL5tDwB6ZSW5rnYcK4eGCUJDxgwyuW6MynqiQ8WwP4BCJThxFxlzEUYpWKUZLkakqD3iOAredB2N/J5usht3oRkard++lLYf3Myu7/2RCf/v3WixSAngsz8A60Di6b6NfU/h451MHjeTRy+LosVMDI9x4J+T29GJPZQhMWciCKNEjN0P8/SvXbxuEVgTofdWfIZSwPSg2hvo6ZBS8vGPf5zbbruNxx57jEmTJpXstywLy7L2oeDquv6KWlPr16/HsqxXpN8uWLAAIQRCCE488UQMo9glO47Djh07OO20twar9PWahFDYhqZCN8KLC9+E137CYwEe6Dr2pYacG+rCKDBDQnLB5OCwwbsfwtrbQcXpJxBp8QZ8D6gKjzsCBTQh/Um7P9lGZagxZWnIoNdXSX0M8GJIpBECxrx2G9wrFIoopESGPhgVKiJLFif1H7sMZ2gErSLF8AOPYaQqkJZFYU87iUmHQNam5+6/kNmzg5pFxynxU4U+K6DFHw6EVGF0UMyE5U8GHX8CHHq8UOgLqMmsNaiA/eih09AsHc0L07Cz6VJNFKmuWX3iqZi19eC6DD7+GG2//w1NH/4QWm2Y7ShwpfSycnmCx0DF0cdgNjfSe+2NtH/pSqouWEblqYcj4lHcwIvgldHRwFFAlgi3HQHCkEhckovnkThyDsMPPE76mRdo+8VPSMydQ27Hdpov/wjJcYeg24Ke5fcx8OwKcnv2ULZgAaNrVlLYsxcArbKcwp423EwaYZqqsbo61q5BzIYaHFfgFIqZA4Um0U0X07SJlWVL5AdyBVMlK7GKq1vX09op7O4mt2knRE2av/ZeOv/zJjZ953Ymf/UdaBEDx1XPaWqO6jsCp4VeIqwOBGBWxNOrMjywyhQqtM/UHKLeSjsqLJzRHOlMhkSlSyLhKq1PJKZwcRBsWjvCyIjk2MUGjtBIyzQjepoaQ2Up7LPLGHISZNwIOa9RWFLHljpleoGsaQahggXXwHY1JTifUA0tZ5mkjYOYTOIt4CH3LZVKlXjE3wh7Ky4yXq/lHQPDLX4fYX1NfzxRjg+tJKOs8MYCvCxrQeZSr1mV9Pu+OLULqXHT6PDu1f/g/RS6Oqk+6VRiteqdaTaqvzak0jcMh/b5oFJoyePqnj/DpagF5OlHuUYIfPDGDKQqq+5rpUYVcCWc4rzKjRCIW5vpUiDONYugwPiLPoyTSWPEEvQ9/ShmVTVOPku+q4Pk1OlY6VH67v8rhd17EIuPRBQEelY5an1wyn9mzZEqdGssWOVpD/kPLYVAmgoMsZKeXl25CDLuJSdPx8gKHDx2Vf8IRlVtUYdKE+BKJsw/i0TdeKR06NjwGFseuoYpZ3wQPV5edGqEQDrfQQNQfcwyovVNdNx+Iy899B80LTiVcQ1HEPWQHwWIeP0wRTDSD6sTjgTXRTiq76udejg1UxbStulRBja9yNabr6J80myyXXuY8u5PEmsaj2tA9/K7GXjpCXLdbZRPnMXgppXketoAMOLlpHv3Es2OQiQStGdrqJ9oohpheOu54q5iOFyoTQnHkyEJzUOcaLEd5TrbyLbvRIvFGH/uB9jz1+vYsOYmZh72HjRNVxn8IgI7poAqK+FdI67aVUnI4Zh+M9xW3QgqM18IrHJHM4iCjW7EMaIRhBC4hmpLjiEp9OxGOjYVFZM8vTeQQpZmJJSyRI9Lt9R3oltCfUj+lMrX8hKa0jwE3IiLtA9ioNhbYNy49NJLufTSS//27UPAVTwe5/777/+77vuLX/yCr33ta3zqU5/iu9/9bpDcqbKykquuuuofBKzan/nolG8+YhVyJoqgJx9j+9usqRMlUGjvDjaP3LcCmcuTeX49NZeoxVtqSi3df3wcq38UNIFRmaLxspNIzK9UlxKSnIfE+HoQMcMOtHRcKUrAK39RnslEcQsCK2uQ9bSs2kYqsF2NqakeJiV6A8aVJXUsqSsPD0VB0UErTn9ZgpxjMJxTk/pMcxLHcTAnHhdMuM3oYTRUjDC6sx+AxPxDghh84bMKDgBauG5xpeazMoLsCH51jmG4mJpD+WGTGX5xO4Vte4jNmEjmnofQYibJSXVjQBMP6EpFqT/7MAAqj5jMps/9npcu+y0TL1lM1cWzcQsOETOCbrgUEsWeVMtqRHp1tPIZNHzrM6TvuZ+eW5bTe+sTxGdPQovHcHMWbq6AFo9Qff5xxKe2lOpWeuW3HS0AZQzdpfmCw7DOWUTvzY/S+ydFh07Z3RhNaTJGkrojTyJe3kjHDb+j/7bbSU6dhZh6CJEpzSSPPYxISzUIA70nwujTz9N79x3s/OkPGXf5FcSSk9BDsdfRATDSOtLQseOqEE7ChYSD8DIGWl52Gidr0fPbv5JZvQ1nYCR4DqOhGoQgvW4X/fc8R90FS4qsqrFed8Qrgj5jxdBVNkyH7NZ2clvaGHl+C5n1OwnoebqGloyrDGm6Bq6D1a2Q+EmfOJWGMw9V2ZuCDFQECyA/C6R/r/A78c2VyvXiwJjMl689vvpA9kbGkH/sYx/jxhtv5I477iCVStHZqRh6FRUVxONxysvLOf744/n85z9PPB5nwoQJLF++nOuvv54rr7wSUGllb7jhBs444wxqa2vZsGEDn/3sZ1mwYAFLliw54L3PPfdcAFatWsWpp55a4m2PRCJMnDiRCy644LU90FvMwqnGlSdcCxYYQKlrMPzyJPjK1AcEbv35kg+GFXSs3cVxY/iBFchcjsxLa6m64CwQGpGGRgbvvh8nk1GL8coKqs8/h0hTkwKRnNAiIGwBmwsFCrkKdJJeSmWpqckcGuB53RUzy594jnk2n4UVCIgWwStfF0uLxtHq4yCg6uzTg0FVSNDyAnuLmhAnx00OyuSvH8Le5yDboUvJAsfP8ufrqARF8xZUTtTr75Iu0emTyG/aQb6vg3jFOAYeeRgtFiNa16DOCwFFwgEjkqR60TFIAcnJM9j7u5+x5/vfo+Ks06k47hhkwUKPxgOmQonmiy1ITDyEpq9+lqH77qf/xgcYuPUx4rMnosWjkM/j5groyRjVbz8efdw4lW3OX7D6+mIeeCc1AZpGxSlLKT/hOAb/cjfDj6pwDzs9gvAWMrUnnIbRWE/XH/9Af/teEvPmIqIRYlMnkTx8AUZrNVoM3LzO6IPPMHD7PWReXE3jl68gMrlFsfbyPtInsDRJIeqixRwicTWgxCJW0YHkgXx22qLrF3eQ27ATZyg8btQghcbIi9tp/+s6Kk8/El13VRZkXX1bPvMpzI71mdQHYrhaUq2OslnJy5tH6Fzbz44V7ex5sScYX3RTkCg3iMQ0dEPg2JK+NrVS+MJ/NfH2t0eICTvQuAJIaVlG3DjDToy8VA+Xc00saZBxI4w4MSKamg8VXIO8Y5Awigx429XJajYb9lvq126vZ9wYHh4u2f5qs8j+LfvhD3/It7/9bVpbW3nHO97B5z//eSKhxevfa2/VRcbrNdvREW7p/MN2NeXwCDHFXY8pG/TPnhah5ulG+SCVD1qVjCTSY0BJyOzZE2weenIFbi5Let1qak4/B6FrxCob6H3obtyCaq9meRVNJ56HXqVC98PODL8vdHWQ0aI+lWugWFkO6KPFDtMHJ8JaVmjeHNQlEIKXHsjlg11hFopwQXjPousJSCYQLjQvPssDKorXSLdtByDWPB4tL9BzQjHECh7zxZv76j4ryQMT/DpTY4VXbk8k2zEFdlzDSqgMgKAcvdHmceTb92IN9xPRauh7+iGMaIKUXoNmF0E/1wCJQIuXU1ettEDLWqay6f5fsOHm79Fw7NlULjoK17bQiKnv1WPnBGOPBslDZjDpI1+g74F72PvsnXSY91NROxldi+A4BVyrgBFJMLn1BJLlDfvoP0nDQGqapxGlBsfxU09iwoSl7Fh5O91bngbATo8iI2p8bzz2LKLltbQ/+Ecye7dTMfVQdDNKReM0KifNI2XUojsamWpB18bldD1zH4Mvv8CMCz6H2dhQMv6WOsWK47UPqob7MzGcY89DN5Lp2BWAggCRqjqErjPQto7OcS9RP/kIkGBHPaAqqbIpAkUR81BFBgx3GZrXAG5UIqMursxR2LmX/PY9ZF/aSH7rrmL70HX0eBxhRhBCQ9o29vAgAJNOvpT6+rkK8ESBk8FzevOVcKZD3fLauV4EbIO2KcJOQa2E5PD32r+y1uFPf/pTfvOb33DuueeWhKkvWrSIz33uc29auV47syrcHkJeBP93EaAq7i+yrMY0pgO1LSFBE4iY6rXNcY00ffMKOr/3Kwrb9tD3+/sRhk6fZaNFDaqPnIxRFqPr/nV0//TPjP/26WgTq8mFkFaV/U6UbPMndxHNoSqWpS6eBlDZbVwd29UYzCovQMHR6Rgtpzqapiyeo9YsdgyW1D0RUlmyLeNG2JOrZoeuNJS6QyLZ/r0L/Wna73qW3betRkvGSRw6NQjTEiV1pypsf4xD6fEn1brO97J6H/OYL8mRGjXHTGf4xe0M3XQX466+hK51O2g5ZQZmU3WIrRV6HUIGk99Icznzrvkg7Tc9xY7fPcHAyl1M+/hSouMhFrUQlRI74THUcgbGgIGWFxikKHvbucSOXUr2+ecobNuNHBpCRCM4ff3kOgdAQMsX341AhjoeUayLoCNV2yIRl6Z/Ow5h5+m543m2XPkA08ePg4ppSB3szAh6PIkeSzDune9DRjUKlb4YpEWiPEc+6hA/6TBajptH53euouvPN1P2gS/gVukllG49pzpOX+TPSikaqsJybER2mM6f305m1Tak7VB7yhzKF0yhavFU+td30Xv3ixi1lQw9spLM1k6kFGiaxHG0ErDKb0N+GxgLEIXDP10psIYydP/+EYafWIvMFcAwiE2eRO1552GUVyMzWdxsFieXUdoGuEjdpWJqE32//TN7b3mWgq2hWQWyu3qoPOIQyo+egeMxYHRNFscTqQYMXXODMEefeRW8Gw/41TVZklHq77Y30NPxi1/8AoClS5eWbL/22msDz8bNN9/Ml7/8ZS6++GL6+/uZMGEC3/3ud/nwhz8MKGDp4Ycf5uqrr2Z0dJTW1lbOPPNMvv71r6O/ggbd17/+dUBpmlx44YXEYq8uXe4/kjmuGOMJF8o7GH5PgiKrar/jwgGcHWN/S5Co+o5MHk/jZz5Kx3evwuroZOC2exQt1bYREZPEnNmIaJTRp5+l5/qbaHjvJURq6tSlSlhGPoJSWpwghD3INii97IPFSZQY+5xhZ4Dfpv3vSy8yyERBKz1P9wZXbyLnDAwx9MTTDD3zJHq8jLIJ0wKPu3AAHQiF9wVZpkKLt/CzhLPuSAFOQuKaEulnsdIk8fkzyG/aQf8f76Tlso+S3baNikOPIhapxLZB+oLBusQVogicAWZTPa1f/DL9D93H4G1/Jbd5M9UXvg2RiiI0oSajdqjeLIGwBBGjjJq3nU/FsUsZfuE5rN17sPtGENEohfYBnL5BXD1CwxXvRGhFwXKEDPoo19FwCv6zCQQaleefjbRsRp54iu4b/0D0s81EPQaFnR1GSyQwKippuPRStZDwmanCQWg2etwmddqRJI9eSPu3rqTvf/5I07c/gRB6yXxIOAKR1ZF5jXzaYw8ZMYThopku7sgQ3f/9F7LrtoPjUnbC4cRmTiU+dza5TdtJL38eo6qakSeeIvNyJ/Gjo+hxGyPqBCHdYSBX0xQIphnFUDrH1bA1DdvVKHhTvq52lzW/fIG+FZtwcxYiYpCYNYGGDx9FtK4MZzSn/kvncPMFpHSJCIc506tZ//37+fmPMzzZO5FYfpjsrl6WnpbgsGUVpLQcKS1LTBQoeHQSF42cazLixohqFqa3+nKlwEGNf2YIHc7w5jKrXm8W2VeyT37ykyxcuJCqqiqee+45vvzlL7Njx47XnIb8leytush4vWa5OiLkLHMROK7AdrTA2es6GtJnVXqMUc13Nrih/yj2xSWguA9WuaB5fU9i4lTGXfIhdvz0+1gDffTdfxdCCKTjoEWipKbMRjNMBtY+S9vdN9Jyznsw62pLw7H8Pt0HocJZ7Ly//ScTtgKJgj5alJ4rZBFo03MqbEvq4EZkkQGshcYav8t2QBQIgADNAmt4gP7VTzLw4lPoqXKSLVPRswqoMvKKCaNZiknll80Pz/NNlcurf0OEkgsVGTsBEGJAYso08u176bn7DhJnXEZ6zzYapi0h7sZxbAmm/8B+heCFqoGRamHa+79C51P30PHorQzvfZmGU88jmogVwRu3KEiuOYqlZGplNJ/6TmqPPJHhl54l19WGZY+gRaJkBruw+kaIuhFmjzsTqWlqsYQ3PkiJsF30jIMZvDeVXXLqrHNxXZvebc+z66+/Y0rLV4hU1YAAKzeMFksQq65n/JmXKLDLYwG5OQmWRCCoO3Qp1bOOZNMffsiux25i2ts/hXCLLGZQnA3yoUZC8T0KCYXhAXY/ejOj7dtAutTNPoZU0yGkJsxiZO8m+re+gDmpmt5VKxgZ2kt19EgQUChTQKKdLDqiAjkDGVpr+vN5r535IaZ2eoDB399DZuU6pGUhIiaxQ6ZQ+853YCTKkeksrrfmkIUCOC44EK9tpu3uG2h/6V6sQzO4I2kK/T3UNR9KZcM09IKr5iUSNJ/55n2r/nfhRxZZcZAxxSpzvWeQhgyydh4UewPXG29127FjBwsWLNhnezQaJZ1OvwklUvb3Mav2t6gQ0lswhJJWy7GgCyFUS5b8LF5aYtRUAqAlE+gxQfOXLqbQNUxiWj3SdohmepgyWRL31ncvRm223baB5ZfcyNKb30usqYKEoWBYVwpsqWFLLdBtMIRbpKE7xaqI6jYJwyphXWlIyswCUc1m1CkuKMv0nFqUCzBR98pJk4wboT1XRV++LNC30oUkGcmjCclQe5o91z1Jz6MvI3SNyhPmUnHeCRjV5Sjgaf9fQEmYzH73l3pUfWAnSG8NNJ0+ix1X30t6cwe7rnmM9O5Bmi46dp8QAt90ITE9xpYQkki5YMoHj6FsQiXbrn6ADT96hAmXHkPjwgbsZLEubUdjpDKmND3SBsLSMFPVmGedRCKVo7osQ0wrsPxtvwSg4cJjggyMgWfc7zQhaCSuFOhComuqnlovP4nEhDp2XXU3+RELKsCJS9JbNyJ1wbgvfBFbV3omweILgWUZ6IaLXqdSn0RntpJZ+TLpSWmkZYOUZNdtJvPkOmTewh1NU330UspmzceNmepaLriWRmFXP+kXiuLvycYyJp46GXCoWFzLhKNOw5EauyZWsPsn99L+6/uoPHsxZl2157QqfalCSAzdLU1pK5Qn0XE1Ch19DN33HMOPvgRCo/y040hOmU2kuQndigQdv530FlkRV9HXBWC66DGH2CGN9F53N22/uA9h6hipOH2PrGfu75qI1pWD7qcg972YWjBZlHYpcKhpUoUPem3IdgRO4eB5jd9IT4fcHwI8xhobG7n22msPuL+1tZXly5e/thuH7L3vfS+Dg4P84Q9/YNu2bXz+85+nurqal156iYaGBlpaWl73td9ssx098L76IYDSFYRZQkHmmfAkIcCrx3R4ct+/hQgBI83K062nEhDVaPjkh3AGhzDHNyMtG2dwCKOyEk14GoWOQ/q5F9j7vR/Q+o2vY5SXj3Ff4tHQS8cqIYvO/H3KFp7z+ZNBiquZIMNgKMxbPbvYF+ASIB2BZoPT3kffI/cxsm4VmmFSOftw6hedjF6RKk5mvW+/RG/dLU78gjACzbu9VlwYgTdplgo4EllvAWhD9fxlDP7xXvKbtzF46504Q4OUNU5Wi70YofelJo+uxyYrgmBRqt59DkZLLf233EHfDX+m4pxTiE2YhIbnOvW83FrBqwdLoBUEhlmLeeLpuAkHYg6yYLPnY98GoPzUpbiOwIwWs9OWjJ+Gg+OFlll5Q5XHhKrL3oYxvpaBG++kEMmglTtolkZ608uIWIzmz366+Ar8BW9Bw9V1zKSFbrq4MY3YtHHkNu1G2jZuLoO0JNm1m8i+sA63YOGOZqg68SQSM2ahRSIIV+DEXdyoS3ZLD9nVWwMNErO+muQRc8HRSMydRuKQGeg5DTNeQd9dd2BEUpSdvAS3JQWeVIA/VuqGq6QDdBRohlrgW0LHRbFShnYN0X77SrruX4+ImFScs5TEodOItDYgDF+UTcG94ToUAoQmcXSHiVdOpPO3D/DkD55R2W2TEZ69q48zbz2WliaH1lg/zeYgCU98p1LLUGlkqJajtJqCtFtkKcU0i5hQ/4FypvWhcRUHx17PuPFqs8h+4xvf4Jvf/OYrXvP5559n0aJFfPrTxbY0b948qqqqePvb384Pf/hDampqXl0B/4a9VRcZr9csW0d4MWK+TIHtqFBXH6xSGnbCcxIUmVWBJqEb+nZ9jRwZ2uazllwoq1Rh4kYsiRAarR/4OM7wCNHGZqRlYY8MYVRVo2lKFdu2c4xsXM3Wa37IlC9+E5FKlJTfv5drUGTfGgQNLYhksxTQ5pclYIBJj2VlUhznnGI/Hma+BgCVLQLmib94lwLy/V10P3k/w5vXoEUiVM4/kppjT8I0kuCH/uU9jSqryF4phvoVTWoeo0oTHgO3yIzyyx0wwXSoPuEUBh5/hNHN6+iM3oaTy1BZOQmVoS/kGPKmBK6u6sn2qtNOJai86HxEay39d/2VDmFTvewUkvUTMfLF9+zXg+aPcRLiiRpSC8/wGFyQ1/Os/93XQAjq5y7DdqLooxZa1ntgxwFNQ7guRsYK9IiciKayCuoaU468kFhZLXtX34trFfB1nEZ3bMJIlTPhPR/H9ZxCfp04ERGEn2oOCCNOoq6V3GA3llbAsQrIvM3I9o0Mb1uLdGycbJqGxaeTGjcNzYyUZNrLdu1htG0Lmm7iOi6xinoqJs8DDSomzaZ8ymwAdCNG53P3oiUS1MxbgohVeGF8oXYaMK1DkxlN4hgKqEKXFDo6GXn0SdLPvogWi1F1yikkp8wgUt+IJvUSXbcAYPO/Ne/9TGipp/uBO9n78B8RkSiaGaF/9xpmvO+rREQCvaD00cLtzYl4gGgEvISzFCrAqnDVXMCfQ9oiYLMfDPtXZlZNmjSJVatWMWHChJLt9957L7NmzXqTSvUWzgYIIAyD5IJDsYZUiJxeniSaTCE0BxHRiFVWo0cGAQcnb2OWRdBMjVh9CrPs4C2UD5YVekfI7d5LekcPe25didA06i5eRt3p89GTcbL5/50yC11jzs8vY/vV99F167PEWqqoPn4G+dfo0Kw/ZS7RcXVs/f4drP/CLeyaXEvF/Fa0ihSR2hSxqS1Q+zcW2QIqZjfR9+xO2q78CxUnzKfs6HmYDVWvqSyDT28mPrWZ5NyJjA4UtxupcoQWrBYPaJl128lu3Ia0bPZc8W01aPlFNE0S02fgDA7RedtNcNtNmHV1JI6Yj5MZxenrR1qqpyxbMInRlTsYXt+x3/vUnraA/IhDz02P0X/3c8RnTiC1ZDZ6bSVaPIpZV4lRU44wNNxsAddy0FPx4Hxp2XRcfTujT69HK4tTffoiUqcvwdWr0YZ98bFXV2eRljoaPvc+hDNCtEzHkDle/uDP2fK1PxKpTZHe2knZ7PE0vPcEok3Vr+6ib5T9k3s61qxZw0knnURFRQU7d+7k8ssvp7q6mttuu41du3Zx/fXXv9lF/IcxLRYhvmAGMq9mzHqqDD1VprCiiIlWX6smsw64hQJ6IgGahllfj3YQw3IOltkDA+Q72rH2tjP4+ONoZoSGE8+mcvYRGEYczS6RsXjDTBgGrR/+JN23/5n+F5YTrWuibPJrn7ykli7GaG2g79c30f2fvyTS2kJ08mSMVAojVUFs4kSi5XWvfBFDJzJpHPmXt9P7y5soO24hFcfNItpQ8ZrKklm5gej0SUQmtZb0m0Z5yhs3/sb5qzaT27IHN5dnz0e+oTzJnomISXzOTJz+Qbp//3sAzIZGyubOx8oOYQ8OIG01bsTnTiW7ejP5Lbvh9H3vU3HMcbhugcGHHmZo+XKiMyaRPGIuRk05WjKKWVeFVl+G0ARONo8QFkZZcdxwCzZrvvtXep/chlmZoOacIyk79RiIl71mncHYhAbGfe1S7JEciUqNhDvEqkt/xeOfvYdkpcHA1n7mHJXivV9sorb5Tf6eXse48WqzyF5xxRW8613vesVjJk6cuN/tRx2lsjtu3br1oIFVb9VFxj+K6dE4yfFTkZbqCIxUOWai3Bs3IkRq6gIRaDefw0iUAYJoQxPCeGstpaSUWEMD5NvbyXW10fficvRYgsZlb6Ni/uFoiZiX3OKNL4tmRhj3vivovuvP9K19gkTDBCobpkFP/m+f7JkQgsrjjyfa2ET3zTfS9qufEmtuJdE0ETNZgRlLkWyZQjT1yvNUzYiQqG4m3bObTc/9nub6hTQlZ5Ig8YrnjbXBvRsoHz+TWF1Yj1RilpW/quyKQ9vXku1tx7XyrP/5V/AyzqgymlHKJs2kMNjHrr/+DoBYbRMVk+dhDw9RGB3AtVTdpZqnMrRnA6NdO6mdc8w+92lYeBLSsele9ShdLz1McsJUyubMQ9RVIuJRzOoqjFQFQtNwczmklOjx0LiRz9Pzu9+TW/8yekU55Scvo/zYYzGNRMDqe7WMplhzK62XfQwnl0HXY8ihUbb+4nvsuO3X6HqE3EAXFU3TaD30TCKJ1zaOH3T7J19vvJJ9/vOf52Mf+xg5rz0899xz3HTTTXz/+98/qEzg12qvX2A9RHUv2eZ7yJFI7yDvZ6mAG/tnVI3Vu4rPnkn6DzdhdfYSH1+FphXFrGOGTURzcHoHefJbK+he0820d89j0rsW4SQS5GydiMcI8j0zkVAMhCsFQ4UYo/kolq0H1y2L5kvO8f8etSJkbDPIrAPQmhigxhyhQsvieJDykJ2gs1BOTy5F+4uddDzyOD0vtjG6ZwgAPRGlbP4EWj9+BlqqDNvRKVgiEEEHAnq/0sr16/GVv4pXysCmCUlmdx8bfvogs777dhKT6qk6fCKZzR3k2gbY8oUbaP3qhYhksuQcXbiB3lf4HkqEGypmNbLwug8ytK6N7VfeQ/eKLbhZCyeTR4saLPzh26ifM4nhXIzRtPJQWqMR8nmTUTOKEXOZ/e3z6Xqxg67719H7xxX0/OERIuMbKDtiBpWnHY5RVZrFwA8987WSpAQtGUP2jBCP2BRSBQpSYE5qJLtpE7n+NiLNTcrT74VzpJ9dw/BdK7AHBzHrKslvb8OsSVF22GQiLTXEJzfjAvFDWsibdWDpYAlyGzZi9w6Q3bSZofseIdJUg1FfgxZPUHnusQze/jiJiTVM/9DRQdsxNBcnnYXOfkTaxcyN0Hz+YeS6hklv66L7mntKX5auoUVN3Ixqh9GWamLTVGhCvq2P3LZ2at//NpJLDkWYEdyCjhjRA6FKYhJpgZEVRIZUGZyojmtKnLgLRihsxHDBSJLL6iCT1H/mAwzcdCeZvQNUnnAog8vXMfjB/yY2qYFoSw1mXQWp4+YTGVeP0DUM3Sa9o5fCzk7ybX04vf3EpzRScdR04uUHbwL3z+7p+PSnP82ll17Kf/zHf5Rk7Tj99NO56KKL3sSS/f3muhQ7dI9JFGZCBbskyiseHie0MS/zld6tLF4/Pn86/dfdiT0wgFlRVXpdoQYpq6+P3utuprB7LxWnnkDFCUsRsSgSGTAahdzPGDWm3IQeLdB50IsFDbIHCll81iDKLyxcK7ywC0hv2UR67RqyW7Zg9ylhcy0WJzFlOg1nXUBUJgMvfDj8RHrMqiBrVTgkbX8TsDBTN8RA0GyBNqqun+tso/Ohu5hw/geIRceRHj+NfGcb+Z4Odv/5V7S8/TKkiAXhklIDdFkUMva9/i6IrIZwBamaqZR98atkt22l509/JLNyDW4+h8znEdEoLZd+iGTTRBW26GWm0iyBbes4EkTUpeFzl5PbsJXRJ15g4NaHGLj5PmKTG0kdOYOGsw4lVhX3yFoi0BQUmsTSZKBtpadiSsA+6oKhhGMj45oYefpZrK4eInV14BLoqqRffJGhx5bjDg1j1FeS37IXs6mG+PwpmC31mK1NSFcjMqUVLVGBljMQeUl27QacwUEyL7/MwCMPYtbVY9bVQCJC+UnHM/zQciLjm6l426n4iQIA3HQGq3MQhnLIbIHKY4/DGhwgv3cP/dfdUfoudR1hGsicGjfMljpiU1sQSAp7e8jv7KLhY+dRdsxcHDumWLB5gjFReEzlQE8uPMdzBWhQCDcgPcLoCKS1BPVfvoze6+5hdE+GqqWHserR1Tx7/DrqplXROClP3/QUAADGzElEQVRGS6vOaeeX0TIlgiMMXFeyZ1OW9s0j9GxP09ueZ+a8KEeeUsFw5G8DRa/W3shxo7a2ltra2tdeKGDlypUAr5h847XaW3WR8XrNsjUMP3xceHO+kmyyqL8dofrOcP/laziFmVWy2DeWhMr5oW4ulI+fSedTd+MOjiIby0pZTV6favX00PmnGyh0d1Fz0mmUH3c8bsJUyTaCMGSKfa4rSscDW5SMK25EIgyQmicwbe9nwJHFc6UuvdDk4m5fZzGzYQPpdWvJ7NiCNeg5+WNxUpNn0Xzi29Gjip4iC+q5fQaUH/6nW6AVJJqv43SA78cLoFEsKn9J5TGjdI+xm2nfSc8LD9NwyWVEJ00gNnUqhe5OMl27WPfs75g9/2IMTRSF6gUgVNZdK14MJbQTUjF8NElk/lRa5v4/8us203vznxjeshY3m8G1CmiRGFMu+CjRxnEBgwlUPUnp9eGG4JDzP87Ink30b3iObdvuZ6u8h/JEM/VVM2gtn0/EjaMVbKSheYrmIGI6rqXjRDVI6OiROK50kUaRpRRtbGZkw2qy2T5iqRpkiCXXs+kZetc/gZUZIVJeRaZrN7HqJhKN44k2NmM2NKBJjXjLBPREmcpc6LqMbFqLMzTMyPYNdL3wILHKBqJl1RjxKMlZx9K94XGS9RNoXHQKTqzIkrJzaQojAzj5DBKXugXLKIz0ke7aRdfdfy59mbqO0I0gU6TZ2Eh0fCsSl0J7B3Z3D7WXXETy0HmKjS4VGzDcFgK2YpgXIIvfWjgMVqQSOIaE8hQtl36QnnvvwCmMkFq4iMGVz9N320piDc2Y1XWYNTWkFixCb6pFJkC6LrnevdhtbRT29uJ0DROdPIHE7LnoJVle/j77Z19vvJJddtll2LbNF77wBTKZDBdddBEtLS1cffXVf9M580baa19N7g9cOpCFqIEi9Nvftr/rSE2GJvcQm6oyO9ldfbjjqtE0GYiIm15v9PIf19H5Qgcn/NfJ1C6ezKgVwXa0ElAJIOuYJfpAGStCpmDiuhp1ZaMkvQx/McOm4CjR9JzXEw3lQuwWqUS+AfrzcRrjI1Sa2WB/3jXoziZZ+aPH2X3nOuLjKqlaMJ7J729FnzweraYyhL47voZwifZPWDsqnOHPD7t6tc5QNwC8YOc1yxlevZu9f36J4Re2Mryhjdbz5lMzvZpVP3iU7FduYvrVHwhAMw0ZPGcAUiFLMgYCCE1QPreVQ6/9kHoGx8UezbH1u7fzwqduZe7Xz6BywQSsqArPcSwdJ2sw7MbJ5lUHY8xM0TBtBrUfyJNZtZWR5zYxeM8zDNz5JDXvPonKUw7DiHthO1JlCBSeZocQ4OYsYuUmlfEslqtTyJikTj+a9FMrab/qZ8SnTsVsacLq7ULmC2TXbyI24xDK5h+Cme2jasE4Flw4maGKcViOjpQQ8cDL/tEcvXetZOiep4iMq8VJ58ht3IVemaB8UgXR1mqi4+swUnEGb4dp75hN7YwaCq46v2P5dtZ+865ATNCoSOAWbNxsqVur4bJTiJVpWHkJtkV5Qwzb1RnZsJfhTV1IYSDiSWo/eDGJw+YgRnQv5a2iwfuvJMjuFVqcahZKvFlXC1o//lvaSnhHWgJ91CBWMYHGj16BjLlIXRI78mQyq9dQ2N1Gvr+PkTVr6b3taYRpYNRX446mcYZUiIFeWY5eU8Hgky/T8duHXmULfZX2T+7peOGFF/j1r3+9z/aWlpZA8P0f1aQUQbxcMXNlcb+a+I4Jhwv9+YqOygPMFGIzVJiB3dOPWV5dOk55gNbQQ4+R37aD+k98iPiMQ7z7SXwBdb/sY3VISijv+9m+vzIG+lb+Jh9MglKwyHbpvuUWRla+gFlfT3zGdOLTpxFrHoeRrMLwJokyrw4vyXDllyGke1JaDu/fsYQh6S3YfIFXXz/FE+vteeAO0ru30vf8YwxvX0e2Yw9VRx2PWVNL9923sufP19D80StCYKD3j6MGfi3vAUM5b1GU9/ahk0hNp+b9/w+pgaM52FaGtj9ey95f/YTW899HfMIUiMW964GeFUhdV3pNUZf4nGnE503FzebIrnmZ7OoN9N72FL23PcW49y2j5uR5ROM6ZkS9UH/stG0vjKiQR/N1BITKylV+2lLSK1fRdvVVxKdOJdLQiNXTjZvPk920idic6cTnT8MdGiIxZxIVpxxBtL4cTXNVmJKX4c/p1hl9cAXDTz2F2dKIMzJCfucutFQZZmM9kcZGIg2NCE1jmOWklh5PpK4FvAxg6edX0nvdTcHHoqdSSncwX8pIqHr7OYiIibRsJBZGdQXSleS37CS/uw1h6GjJFLUfP5nY/JnYeVT4lJ8V01+YhjJb4gJWUSg+0D/z92vFhbl0DYzKQ2j85CdUqLkpiZ1wHO66VWS2drKjfZCNT3dz32/2okcNEk0p8gNZCkMKhYzVlRGtLePBu3qQ3+rfT8P9O+wtMG48/fTTPPPMMyxbtoyKigqef/55Pv3pT3POOecwfvz4g3aft+oi4/Wa60kOAJ52ppp3BtlkQbXh/ekEev+VgFUu+wBYSsNPKuDfhVTjFDpcB6evH6NGqYSX9K0C+pc/RH7vblo+8nFiEyd5IBWlYJUf+uzfz5tvBRlPJYEOEHrIuRHeLkodIABEZDGJhwNawevHLIeuG24gvXY1kfpGktNnkZg4jUTdOMxEBbojivUilUaWFgKrNFsJqWuWAqrGio6HLQCqXIkoFMcxzfLBEhUm2PXIHWQ6dxFd8Rij61eR7+ygaskyjLIUPfffyXr3emYdd3lwXampDHJ2TODEigCHZuNpMBYHsOTUmVR87uuYw6CPOjA0ypYHrmHLTVcy+cwPEBs/Gc30+3VwTYHr6X/prk5lyyxq6mbCYJrB9o0M7l7P9o7H2dn5FNPrltKcnIWeF+geO1uLmbjJKNKIqPBMO4+WqlAhnrp6x9XHn8zIxjXs+vWVJCdNI1rTQKGrCzefY3T3JsonzSE1aRb28CDlzdOpm7UEUVuOHQVphsBLJH1PP8zQS88Qq2/BGhwg17UHPZEiVtVAvLyeRFWzCkEE6g9dhtlQr0JGDehf+wztD/4xqFcjmcIt5IPjfas78zwFUjkWrnQxKstxXYfcjh3kO9oQuoFRXknNGWeRPGS6YlB5cyfNLgJjvuZbkJVxjM5WidNMeMdJ1UYi0yfRMv1Tqk1pUH78EtLr1pNv24s10E/6xU30P/4Qwoxg1FTjDA/jZjKAyupulJWTfnE1/bfcfsD2+rrsLTBuvBlm2zY33HADZ599Npdffjm9vb24rkt9ff2bXbTXyqz6G3BjKXXKU4mDfTSsvG3BceFT/Q7a22b1q8mLWZvENB2iETtgPpm6gysFzUdPYP0f1hOpSQYgiuNqOIDlZTjLWBGyBRPTcIh64qNZyySiOzRWDNKSGCSuK/pv1jHJOhFyjsmIpZB1RwqGR+OYpl0CKvXJJH3xJBHdIeJdN6rb9D+9ld13rgNg3m8+iNAEmpAhXahwPTo4UsOVhBO4Bb+DNZEHVAVVPFZTYj/vRkowDEcxoTJqcrj3useonNPEEf9xFvVHTCBr61Q8tIuR9XthZASzSi0OXKnYXq/E2PItOEaogVSviFJ1+ESG1+xm7TcVc6jm1ENJTm+h+uT55G2T7GiU3KAaUIQhiadyJCo0kkunUXPcdJz0KXT94VF6r7+P/j8+QvXxM2n5t+PQKss9kEtD1xRTafiFrUy5aKHSWPJSmeuxBHXvvZiBe+8nt3MnuZ07MKoqQdOovOAMKs5eTE1dhhnVKnuYNthPWlqgKyC0+9an2Xztc4hoBHsog1lXQfqFTRiVSVo+fBqyt4/M5jZGNqwi35dB6ILKKVXIWJzdD22jelYdPc/sYuMvn6Rs5jia3ncSjiOIH9IMQpBrHyC9tZORx9eRfuFluq59IKjPuo+ejzhiLpqrUXHEIuJZEzeno2V05XkbBiOjMpchQh5DioODlZJFTQNDQsRFRBx0w8XJe5n/bE/c2JQqHa3/CrMaUoBJBYkZx8IMT9CwYFHYsp18XxdWfy9aIk5s4hQSDePRYzFcA9xcjtG9W7B7++i/886/2XZerf2zeTDCFovF9slCBbBp0ybq6v5GSNRb3Lw5fomFmVUQWjww5mBHac2N1TgMBNlD2WsUy1KB13bvAIDSchorLuWqhU1i5ixGVzyNmaoogr3CA6uCwxVDuGToC7HDwo2ypIihsVBq6pqS4qJFyVfJ0iFTQvqlVYysfAGAcZ//ghL21f0FDwGjwDW9OvQ86iXfhl/h4YoPnEGl9Sz88SU0OfP7FDeq9tsFNW50PXEPsYmTafrgh0hOmIp0XYbXrSTf3YFTyCCi8eL9PYeTnhOByKyeUSK+/kIJ1CJJ6WYpEMoWccqbppPdu5M9f1EhEFULlhBvGk/ZYYsAocAvTeD66FrUQYvFSB55KMkjDsUZzTD453vZ89/30/Y/y6k4bjaNFx+PUZEkathIUwAG6Y4c2bXbqLzgVPCFnCXolUlqL7+Yob8+RG77dnI7dmBUVoCuU/X2s0mduhihi0Ak3e4fxnU8t7KE/j89zNBdjyvWazqNkaoks3YdelUFVRedi93XS2HrXkae2oEzMgJCEGlpQZMGmWdXE5kwntzK9fTfczfxKVOpOeV0XF0SHa/YtYXBHvK79zL64kvkNrzMwJ+LfWzt+95D8tD5AJQtPMxryyF0NRtqo34z8NFg21s0+7pf/jfj6ekoZ5l3og90eSBscGxeKPArVo228ETKFqqbSTtPfssOrM4u7O5+4skEVTMmE5nYihaLIh1BKpMlv247dlc/A7ffxcGyN3vciEaj3HLLLXzzm98kn88zYcIELr/8cr7whS8ctHu8lRcZr9ekK0oyXgfzblkEq6QHVglHFLWevPYaBq3UwRTZHmEAywHhKFZTYVCxWM1EOVqeIjsUTz/KheS0mYy89DxmqsoLwfYQpbBXxc/g5s2lAg0o6fXdEqSXSdpn/GsFAY4InAZhNlZg/i1sEbDCAIZefI702tUAjPvM5xFCeOATiLxXnpDjUnMUMBUADrYHWNkKqArGY7EfYoH0VnOeDqL0nLBS867jAYd2ToEKfQ/dQ3zKFJo/+FGSzZOQjsPI6pVkBtqxXQtdN4PznajAiRAIwqsKUrqFJSxdC4wMGFnQbR0ho1Q1zyLb18b2uxWLsGHGcSRrWimbvxAhlO6RNkYiQ48nqJtwGA3NC7Dyo+xc81fWt9/HJn05zVVzOKT+WEw9jhjJoNsuUtfIxUcY6dlJ09zzim3IBbOsguYL/o2+Jx4mvXMLmd3bMcsqEJpOy7ILqJx/tFoH2oAtsdNDaMIFoSlw79G7GHzWGzcyaYxUBSOb1mCWV9Oy9AIKvd1kuncz2r5NZf4TgkTDBGzdZWD7KqIt4xnesorux+4lOXUWdcecgnAg1tQKUlLo6yHTtZuhdS+Q2bmFnrtvC+qh6eL3k5w9GwRUzD+8VOfNAUaL7Ve4BEkB/CYpPH0u1wzN67yslQFbAkrmGEpbszgfQoKZqqbyqGOLTS2TJ7dzO4XuLqyBfvREkuT4Q4g3jEOLRBEuONk0mR1bKQz207Xirxwse7PHjTfDDMPgIx/5CBs3bgR43czhN8IObqC173rYrxXDAtWxlIZYhBYhCO9YIRlZ/jhGfRUVh1QRiRWImxaG9yX54udmleKL5kZsqnWbiCeMvmuoikxWaSbYBR3ddDE94AagtXyQhGFxSLI7CHkDJSge1WyyWoR+XU3Au7MprKyqLl13gw+ykDHpT0cQuktVlWKYRAf3suY79wPQdN5hGIYaJaUsDfUDAvBKCKkAad+Z6Rb1d/db1WOAqgMBSuHxMzGumpEN7Rz6/bcx6ehGD9hz0TWdaV86kxfe9XMGH11Dy9sP916JAti0/UDHfojkgYTg0STZXb20/tvRjGxoY/DFXfTdv4q++1cRtYapPOcYCgUDN++HZ7hETJuqeBbLEey+4RmGVu6i8qhpTLjuQ/Q9uIb2O1eSXrWDaZ8/lYrZUxjORnFcjexAFlmwcZIp+jMJ0ulo0AzNyeOIzZhCbsMmaj74DsqWHBYU0YhZJCMFRtPwzFfup/vZPTSfNZdpnz6ZiO6Q6xzCydloLkz65rvpumE5Vs8QZXMnUH/2YVg9g4z++K9ULZpE/bLprPnyXxjcNsDgt+/fpzoWfPcs1n/vPka29tB02YlEGqvQk3E6f1yk5BrVZeBKjLoKEjNbyefNAFQip6PlVQiNv9BzIzIYxJ1IaE2iSzVwVFmYScurX0nUtMkXDBxbx68g4YXsCE0iy9SF5ajhLWRFcVABzBHQbJNkzXRkw3RVBsObWORAFrwJHTHM1rm4tbmDB1Yp6uGrP/YfzN72trfxrW99iz/+UXnEhBDs3r2bL33pS1xwwQVvcun+fgsYVa6a/QepkYEgfK94dMm5whGlkxrUxFb6wJJ3SuDxFZKRB57CbK7HbK5WAJZNwBTxJ2K6F27p5nL4wqxSCMWuKimAPx4RnB94EcPb2c8Cw1vI+4zhQMxUUJL9DyC/t43uv9wCQNVxJ6D54uuhqgnEyjWgqIddbPLe8cEiK+wMGuMYCobcMSmxVapq9W3bCYnZVEehr5P6Kz5EYuIkJYJbUDdqete/seM/vsXoqlWUL1lcUgZheQsmb1LrZ+lSYYYyuLfmqsK4umr3hd5Omg47jeG9L5Pu2snAyicZWPkk9ZpFxeKj8T1ZniY3ru7T1lwGb3uQ/JYdJA6fT9P3lpJ++gWGHnmG0VU7qfvIBZTNaSFiOGoMHx4Cx0VPJsEuMlOlgMiU8UQnjSe3cTN177uExGFzvYcAKVykLXDzWTqvvp7cxh1UnbWY2ktPx3UFhbZ+ZMFCGBEmvuMjdDxyGzYQmz6N8iVLsDKd9O1sIz5/NonpM+n+7bUU2tro8XStgmYXidD0zvfQcdN1WAP91JxxJkZVNaRi9P7+Rq88GnpZEiklZl0N0UmtHuXOv4gsWeQVF+kiYG2E52DCEV4a4SJLRGV1FCUgrPKOq/FDGsXvUC1chPrWggWKQGhx4tNmEp82swgcS688OQUw6KKMshnzoSl/8MCqt8C4sXDhQp555pk35Nq+vZUXGa/XpCz2jkECGukB9n479LIAClsEGjo+68PPnBbyO+xHYF0Wj3OgZ90TxGvHoacq1LC0H0asGfPC9IdzaDG1cJeG8PrmcGetztWzoU06YIATk0EmMzQJtggA4KJ23r6sXs0SxWdz1bwvt3snfX9RwEPl6acgI95qywuXlDpIu8gdUKGGRdBKXdcDqRyptvkAlB4qQ8kQLYOkEMVnEzgR7z8TojUNWOkhmj/4UeLjxofCDnVaz76ELb/5LgO71lA//rDi9YUXGeCA4eUE2Ee0mxAzzAK9IBHoZAc6GD/3DHp3rSQz3EHXyysAmGBKKuYvCsL1iiFpqg+M9hbYuf4+RgZ301S/gNZjT6Rr7wu07XmavvROZk+9gKryWkT/MLqh4dIPSMxoGXqueE2pQXz8FKJ1G8hs38z4d15OavxMtd8Ax1B1b/en2fWX35Dt2k394SdRu+wMkJDvbENaFnoyRfOFl9J1200AVLTOon76EqzyDnZ27aV60gJizePZ/dAfyHTtInNvqZ6pXpai8W0X0nbz73AzGepOOBOjrBzNjNJxl7qmMCNo0ShIiNTWE2toCRhSUGxfIgSIBm3HZ+eFgL+xSVqCbT7CEHaa+Y4xUXRaBdcPhegiQZNRoi0zEU0zi+/eQYGv3nela0mik+bj5HIHD6x6C4wbb5YdeeSRrFy5ch/twzfb3lqqgGNMWjbZjVuoPPd4L1PN/hXAdz+8HQDntSqEvwFmDaV55sv3kahPMvM/3608+28RnuCUK04gu72Trb9+gomLLyA8+oysb0PaLkZ5/MAXeA0mhGD6l87AlQKZL+AOpzFqyln50T+w9441VJy95IDn7r72cfbe8ixlM5rZ85uH6b1/FbGGFPWLJ5FpH2L1Z//ElC+cTWTxQoAgnG7nLx9l7mmLS66VXb2ewb/cQ3zhHJVlaT82smuQ7mf3ANB+11pcyyVSZrL7tvXq+gWbHV+/iZnXfhyrf5T4pAYAnFyB4dW7GV4NZVPrmfnlM9j4vXv2e4+nLvotTkaVc/d/3bHP/voLj6Xh4qUIIbEdHcvWcQ5mKtZ/cPtnjyH/0Y9+xBlnnEF9fT3ZbJbjjz+ezs5OFi9ezHe/+903u3j/UObm8mQ3bKfqwtMRmoY8wLCQfuElAGThVWYkeAPNHhqm67r/IVLXwLj3fAitsgz3LTJu1L79neS7Ohm8424Sn7yiZF9253aQEi3x2gRqD2RCaExedglSE9TNP548GbSaCrZd80MGn3+S8qMWcyCH2MDNdzHyyNNEJrYwcMPtmC2N6DUVxA+bjd3eSfs3fkPT595JzTEe0J5X733wL/dTtviIkmtlnlvF0D0PkVy0kMTc2fu9X2FPJ7mNO9S973oaO51DS8TJPLtKXT+TZueffsGMy79GmiHEnEYAZLZAftMO8lt3E21sofbdF9J70y37XF8WCuz4z+8EyTu6bvzDPsdUnXka5actUz9CKcj/z5T9s48bYXurLjL+UczKZ0h37aD12HcoRusBjhte/TwA0n7zxw1rcIDOP1xHtKWF+isuR4/FX7Xg9Rtt4067iK03/Zj+B+6l5X0fKtmX3rMNACN6kMYNTWfacZeiWdDcehRuIYeZKOf5B75P74YnqZi/6IDnbltzG117XqQs1cTLm/5Csr2JaKyC+oZ5jA628fzaX7Ngwjupx5Mxcbz++NkHmHzooSXXGlr1LAPPLqfi0CNJTpy+38wn2a49ZLt2A9D9/EMUcsNoyQSZrZsAsAf72Xvtz5n6iW/gdg+QKlNZKh0rz2jPDjIDbbTUNzHuuAvYu+LWfa7vjI6w7cpvgSdD0vbn/9nnmLqTzqTqiBCD6W/nEvmXsn+lcWOsffSjH+Wzn/0se/fu5bDDDiMZ0rEGlc32zbDXLrC+DyV07DG+e1aUHisI0Ppg/yvdQ4I9NITM59ErEh7zSIXRSY8ulKSAHB1l3TUvInTBIYtSVMeG0XDJmhF6s0kKnn5ELGqRiuWZXN5HVFe9eVN0CFM4xDQLTbiMOiokTcNFEwJNuJR5OlbRiEXBMJCSUkaR948ZtUmmO1n11Ttw0zlO+dUZ9FfFkaGVkitEKAzQe1wh0TXAkRRGcugp1TB67nmBfNsAemUZ1WcdiRY1S1hMmpD7sJp8/SbwyyjQpAI/1EkGiSNm0nH9cijYGFH1+vO2Qf/KPQhDp/aE4sRc11w09r2PJhX1eSyb60AMLGIGIl6OoblUzWlk7x1r2Pip64jNngS1jZQduxAzrnr19MY97L35Wca/fylN7ziCvie3MbpqG4XuYdru28isL5+GmYyw55qHmbZkgRLNn9RMbGI9uZ3dbP7cddS991SM8eMZuv8Zhu5+ksiUCdR97D0YCYdkUrlrpBRkcyadg+UU1in3yNH/8x7a79vIzptf3Oc5AHr+8gwtHzoV6UqGVu9Cky7jP3oyu//7Qbb+7FHi44tZfcafNYvW8w8l3lRO38o2Bte2E09q0FCL2VCFHjMZGbCRmoktTIxxzeQKumKyaS5R0ybrmPgfkTQkuBLXdJAxJ3jfVtZQnmtdBiFCwtaQposecQKBaiEk+YJBYSQaTjyC0KUKtXJCDBGpwne0gtjH24IEJ+4zqAio1b5nyU837EaKYYUHxV7LIuwfcPAoLy/niSee4JFHHuGll17CdV0WLlzISSed9GYX7eCbq5gUJaF5UGQRBWwpUXzvwTtV7VRIPJaLt9X3tgsodPWD7aCXKw+42M+4ZQ0NMvzYCkTExJw4TrFIfF0RV+yH8TuW4lT03AebPDai1EPl9T35isQ6hukkwRVYff10/fo3SMel4dJLEakyHFPuU+Z9TIB0Xex8FiOqxo2+5x/DGhnEKK+g8vBjEBGz5PiwSQgADkHodWheyugIyvsfNYkfOoPhex9TQreuX6mQ2b4FLRojOW9e8Mz+uwh0LUJ1IXV1fVf3WBAhr2S4Pl0h0aJRzFiUQhnEJkxkeNXz7LnmJ8QmT8ZsbCR5pArv0LIa2U2bGXnoSaoufhtlS48iu3IdufVbsfsGSK94gdqPX4x4+Bl6rnuQxKI56IZL9fwG+hqrKHQO0HnlL6g67xwizY0MP/o4Iw89TmzmVGrf/26EVcq2E5YGtqCwowuAcT/6NNkVT9F357P7fU29a5+i+owzsPI2uY3bcGIOlReexeAtd9H351sx6oosmPLjjiO1+AjMimqymzeT37ETLRrHrKzGqK1FREycXBoiJsLUiTQ1FVknSBXu7Qqk4Wl0aXgDthci64sZe2w6GXxMBKF8UgIGQdp2acogBDUs/qxCZ2XJzF5SFLou0S4poad4//rHhULYhUMg1H9Q7J983AjbW3WR8XpNukW5DYQMwgCVLqrXV9sqBFCzQmGAvsB6iIEEY0XXi6xBdTPIDHWAlJjJcqTuhTRpReKEsMHu6GZo5XPosQSxqiY193FB5D0W1lhwQnjX8R7Diaq5nGvKUPv3dLc0NQb5n4qeLrLJAjZwVs23XFOFA3fc8muErnvjRgz2w47x23VJcg/p4GRzGMSRUtK+4RGs/CixaCUt4xajBbGIFL/XEJMqYPgKFboHShfKjguspC+OHiM5fQZDLz5XDIP0lkPpnZsx4+XUVc1A5FSBbfxwyRAD2avDsck6hOuHHEqPMSWCcmlGAt1JUIgLkg0TGdi1mq23/ox4y0Ri9S1UTj00CH0e2raezt3PMWvyuTTVzaenYw291l6yuQE6ep5n/pxL2Ln7MTZ3PkJ9+fmI0Rz1FePZEikj39/Jnt//koYTz8Gor6Pv+ccYeHYFZdPn0HT2hYpbEZKJkt58JdfbDprGrHd+kZ7VK+hZ+yT7s6G1L9A47wTEiMNI22b0vMv4Q89i96q72PPYLZjJquDYmmNPpmzuoZjVNaQ3rSffvhctFseoqsGsrkYzTJxMGk03IWIQbWguYViHmVR+/QZhnmM1qLwhw4+cRxSZVeH2Ihxv/PHnPoSu7b8yGTrWHbPfG1bUvKq0HsP7/b8Pqv0LjRtj7cILLwTgE5/4RLBNCF9iQ+A4bw4p6DWBVVJQ0sDVH2MPonjAmHjUsaJV4YnS/iy7VlGaY4eMx3Z0hFBCi5UxFQvdlBimtWqQlw6rYrg7x9z6ATThYgqHvGtS0zQaACimZqN7f+e8lbYbKpArNcxQD5l1TNJ2NAg5rE5k0DVJrmAowMx7tmhZgeqyDDWijxUf/AtO1mLhf13AYHU9jquVADgaEk1zSgTK890jtN3wJN33rgFg/KfOovqkeXTdsBxnRPEc7f5hmj+o8lkfSLNK/R7zKqRQC5DQh57dpibYheE8olqBc+lCBL25AWk7OAUXw1S9wStmFxwbqvMq4GXb1Zjy8ROpPHo67X9+nszTa8l2PkXcHUCcsZSRkTi9v32OxOR66s8/ClcKqo6eRs2SqQgh2fydO9j000dxMwXKZzepe0qBK3Wm/PhDDD+1no7rHqH9e3+g5pwj6L9xBdHJTVRfchpaRPW8qZgSUInoNgN6gmzeRNTVgYBNf1jNoV9ahuPAnj8VAav4hDrGf+pMjMokmpCMrN/F9q8Uvdz15x5OxHTZ651z6KeWkDhjCRnLJOOCOLSa+oWziZsFlZXRUqGpem2cXDqCmzOwPLkiqclggSEMF6EXFx3SkBgRh1hcjYDl8RyjOZXJ0rJ0nLz6nCUuQpO4jobt68WYLrruquvm9OLK1PREaxwRLNb1rNKF0Quli81gMAuv2TU1cXIi3iTMKB77Nxfbr8FKRFFfxbH/qHbCCSdwwgknvNnFeEPN1xnx26CaEMlSoCo4mGJ4hL9J+DtCOohu8bjsyq0gBGbrOKXJ5nptO5StTq8pJzJ+HNK20eLqeyyZPAW+CFE6loXMD4sKZ5sKJtb+vbxnkqHJNHj7pcAdzdD5378EoOnDH0avq8bRZMmCXXh1QEi/sDDYT/8j9zO8Snn5W85/L2XT59C9/B6kR8m0c2lqTz1r/y/Br8LwZDQEpEkDpC6DeijsbgcpcdIj6KkyBZ4DkboGlYnJAhnx34UIFobhYULqnr8qAlqgy+KHtfgV713CELhmccFYf/67iB8+n6EVyxldtQqnfwAyBSoWL0HPQ+cd9xOdMIHUsUcjXEHy8Lkkj5iLxKXnx9fRf+3tuKNpYnOmYedMIuVZKpIFDrv2/Qw8tpZtv3ua7p9fQ9nRhzN832NEp0yg8u1nqPc0dmAVEs0RRFOKYTt0+zM0fPIMRCFP732rgsOireNpOPFtRBNVaBbktm2m47piVrayZYvRolGG73sMgNp3XUj5oiMCsDMxby7JuXPVew+1X9dQfa3fLoJwSKEE4lVYt3cT/7vSvRboOxBcVBY1p/hs0tfyCYPE/jvxF9LhED6BWpC5ItDfEVJ6jo/9zAfGhrVKX1tIFBfUBkWdxYNg/yrjBrx1Fxmv20Jt0A8JdP3sf2Gwyi4CVBBaaDvFv0u2u3IMoKNuMti9GaHpxGua0bwkE2FxaCkgUl1LpLYBLRbDLTcUbu+G7j+mq3CiPvBf7N+UHlNId8v7Rl1NhUT74Yzh5/KBOL2gymGnR9h1wy8QMZPGD1+OaEipUMiCp+8EQQiXn2EWID/YQ9fT9zO0SbGKZy+5nPKayezacG9QZjeXZdLkE1XZvHmcDK0j1Jgm8EMB/fHDjgqlaxohmAfmO9qQhTxuOosejwdgSLyikRFrPeaoXZIN0NQ1HHPfepeh+0Cxe/GdHkEiOKnGFDcCdgwaL7yExM71DDy7guGNK+l79hHkGRaV847AFZL2F++lsvYQWirnIWxoTs6gmRkqm2b+Rja+/BcK9ij15dMVA9saIhqLsHTyx9ipbWHHjofYfetvKJs+l4EXnyAxYQp1S89QdVRU21DtyVZ1E62sB9eld/3TTJ5/Lk56lP7dq4NnS0w8hJqlpxKtrMfVYHj3WnY+VAz1q59yFFoiSefahwEYd+57KZszP5BBqJi+AGYsUHNzI9QmpddGxzoAfdAnBIoi8ZxKRXAKCLTPZPhYv33IfdcHGpRIiYjwNx1+nw7onkB/mO+ixrrS6Zf0wDEv8r947EFkFP4rjRtjbceOHW92EfZrrzsMcB/QyrfQh3FAllXxKvue5714N5dl6L4HSR5zONEJdRh6nvJYjppYhvGJfjpW9/Lgz1cSjQr2rh9i8YWtOB7EawEOgjI9h+UF0VquwZAbCcTTATThUmOm0YWLJlwcWQRpTOFiaA6Gt60ymiOiO2SjJpajB0BORLdpTg7zzLeXk+5KM/enlyCbq7FcN2BwhTPnuSHEb+/Nz7LrdyuIpKKkWssZ2TPM7qvuQto2k7/7Hoaf2cTg8vVEassDMOhAoJA/nw68QEJlFBRCgOYWwbWmSgC6X2qj9VSV7aQ2maZruBezpoxIQleif15Z/eeUYxZrwvN0+eXRxvy7P3O9dlB/+DjqDx+Hobms+8+H6bnzeeacewSjJBhdv5eyQyeT6Roh2qDKqgsXXYNJnziFnf/9EEMvbKfp3cdi6MXnEppg+OlN2N2D6vluVPHqs/79DKzaBjIZia67FLwU5s3JYWpjGQquTqE2Rfm/n8qa79zP9jnjaL18GbVHTWLo5W5qFk/GjcUxa8qRUlBwINpYGTxT3flH0fS+k4gZNh13r2POxbOY/+5D2Lg3Q8GKoSdjSKnhaEoM3nJ0RrJKtD87ElMDSNwOGFBOxkCMqix/btwFP4uVroArx9LI4emwORqxiIVpgONoON73JHTQYw664eB6EyLNA70iyQJ5O1r0onsLES2noeeKE0A3KnHilHyimi0C8MrXW5BCLaRUHLnAl2QTEmzzwG3hNdu/gKfjueee47HHHqO7uxvXLR0Br7zyyjepVH+/ieB/3u+xoLoIHxja4IEdYsy7V5Myb3YUAKlqwWuPZhi6+zFSS5cQqa0rygl44FBu01YG73oQYRoU2juoOGVpwC6SutyX7eWVp4RF5U2WgsldGMz1fgcTcJ0A2BlLtZeOpPdPf8bNZhj/0c+i1VbhGl62J1laDwIU48l0GXzgAQYeeAC9LIVeXo4zPEzbX66j+ZyLmHDpxxnZvI7hDavQKyv2zThYUoDiLfwJYLGSPXDJI+WqcHbIbd9BYsHcYLs9PIhZWYNuazjebMLPrBW8M1+H0fDevVa8bqCBsb8CCjWB1QbVD7N+FhUXz8KJSbpu/ANDj6+gctHRiJxLbu9uyubMw+kbxqiuRJgu0hVoAuo+dD69195FbsNWys86AVywvXFA6Bp9j2/G6lHeAh84qvnguzHrqjxBcVdpyqD6RkUnEJS3TMd+xzvo/dOfiM6ZSNNHziRx1BxGXu4nPn86up0iqlUqoWYgUlVkUFWcfQqV55+AiNgMP7CCynecRmLpQqz+UTQMDL00HN/POAaqPUldjb8aEuEtTjWh4eIq4MgHOzWlR4gk0IsLqtfXffN/+9me/O/KBwQkRdDLP9YX4fcWEsL0J27FhAhhDUX1h0RYWpD23Nd9G8ukOqghKf8C44Zvb9VFxus119WC+QtQZFQ5WvF79IArzaYISoVZVSEQa2zmP3WsyoJXyA7TuWkFdfOPxyyvRBaKDCY7AaPbNtL7zMMQMSn091B92mk4sVKHwj7t1lvwK9a5Nzfz9LX0fPF41xDeNx0CyCAAtsKsE8cE15C0/+lmXNem+YqPq+QPDsrBmCtqmvp6gboFWC6dz9xL90sPY5RVoEViuIUc65/8DTMPv4QFR36Mvq719HStJWaWIyzXLwII4SXA8MqlAY4HIInSsc71GPYBmy2qHOLZ9l0kD5kRjAWFzADxZA3ClmgeiOrqJrqm9CV9EXrwgSoZMJP8gimnigicpeCD3WHATJCYP4fknDloBdh7y2/pe/Fxyg89HOnkyfV3kJx0GOmkRTRaTjSdB9tB5AvMT53AhuHHGXBtpuizwXaQrovIFdCA3r6VWFk1bgy8+AQATW+/BDOeUuObVGXx34X/XpOz59Dcfy7tT9xORd1kpi6+mP7ph5PO91I2fhqypgytokxlzs1CoqyYJGHivLNpnnocjuHSufZhWpdcQGXrPKzeUTRhBPXtMwOFQ4mOlO5lmpWiuN0HffZ1CHrbfcYUxX9LWNBjQEQfqPQZVWGwSnOKOlUBmIbapudBzxcdZK4BjilUkrHwXEUvvu/ijQ8AMbxe+xcaN8barl27OProozGMUnjItm2eeuqpNy3M/LWDVWNadBjDCCh7vvdMjt0Rvg4HbBDSsem/8w5kvkDtRccTjdqURQtURbOUmznyrkHXthF2v6Aydyx89yEc/7Ep5F1DsaO8rzDjRrC8WbEldaKaDXoRUNG9fx2PVaV7XFXdY2cZmsNICISJaA4x3cYOfZ1lZoHBVXvYfvcWpn/uVConVuCiwudcqcL+xobvgYvVO8Ku3ypARWhw/i+X8eSvNrL1zs1Em6pITG4gMbmBxouO8xZcPljlodphpFkWQarwtuLfxYNNV1FtZi2rJxJRIXFVEcG2gW7iDSkVPij9ye+BgapXY+6Y64SBLFcK8rbBuLPn0n73OoYffpHESUdRfsbxDN31KBs+sIWa845m4mXH4goNIcFIJTjki+cEQJnlqpA5P2NM9akLGHpifXCPcWfPoemQBCNWhoKt4zoaeVs1eUNzmJzoJarZbMvUUX92C91PTWPnzx9AWjat582nbP5EQIngW44W1GmkvoJ5f/2qShWuGziORt+eNE4mz+rfrGTdH9bjZAsYZRFOvukiZEU5aSuCLlyEkBh6yA0kFOAXhOtFXKStIW21ICLnZe2LCETEQTOKo4QAIrpDxtFLJnVa1CEaK2AaDhkPGMuPRgPhXbWw8I63BfqojjGqBQOKa6jBHqkG2XDoh2I7SNwaX69BQtog3qEHgp+gMhG6xsFzOfyzx5B/73vf46tf/SrTp0+noaGhmKELSv7+RzQRennCZw0J9v+ixm7y2Bj7htsV9/nmWhYDf7odpEvFaSd6iwUv455UQGthbwf5LdsBSJ1wLOUnn+h5C/cVsy15hjB4BAGYo/jwY/rH8MTP8Q72RKiLk0BBbsNG0mtW0/TOS4hUVOPIoiguQu5TPVKHQm8PAw94WUMNjXFXfJr+2+9gZN1KIuU1xBtbiY5rpebk00sET5Wnet/sg/sDBnwQwTWlYl5CEAISnzY9yLYFSjMlUl6lMv6FqyH0zkoAM00Jze5Tx2ObuCwuNP3JrUiDngMnJ6hctIS9q37G0LoXSS06jKpjlzLw5HJGv7aOilNPoOLtJyC8xZQoK6fuiou99yFAk7iuIOeNBS1nz6PnqeJCv/yMJURbUzhZb7zVZTAmClu9O3+aUX7EUWTWr6fvt39C2udQcdJCyid506oRAzcjAxaI2VDPId+/EksrQJkO0sVpawfXZfCWexi6/UFk3kJLJhj/ha+gx+NolihmVAqJ95c4G/zFiFSLdwrgpWtRoB1FZ0UQAi7URE0QeheidI4W7vfHIszSL4/uvWh//BES4X8X/sLGK6j0v8egzYWALR88CAllHwz7Zx83wvZWXWS8bnMFrhdrJKVqJ64HVAm7+D36UgUBs8rvN0IJHUABVUGCB8ebk1pAJseO1X9B6AZ1R5wYsFFcDdyoAhyyvW1Knw+oOnYZNYuWIrKhb5Aw8K6sNHxKBPfzwSe/b1bAigJdAvYLRUC4BKQBhjetIb1lI42XfoBIohI8FphmidJQLttjq9iQ7W6n+yXFxNEMk6kXfZb2e29iaM9GYpEKKuPNVCVamDL5VITjloZJSleJkTs+KKUpRpnuPzj7/BsAZqaaf8YmTS55tYWRAaLxKjTLRdiqwLon2aKZAtcRJeCEa3ggSwgYYz9jlz/mlbCB8OsHqg9dwu4//ZrRjWtJzZhH1cIl9K18iqd3rWbCzFOY4c6FTBYch5hexsLyU9R1bRt0F2EY+FpQrbWH0z9cHDdqjjmZSCyFqxVBItfzOdhJSsa0yiOPZWj3erat+APOUe+gZspCEmXq2WwTZJ6ACZisaOLw9/4X+nABQyopmpGBvQDsefJW2p69E9e2MBIppn3gq2iGqZ43r86XZrFuXINg1R+01RAYOvZdjs2eiCi23zAXBYrzCS20NBCON9ULMRl94G4ftpQ3pxJjGVIe6OU7wuXYeYV/2EEkjv4rjRtjbdmyZXR0dOyTSXZoaIhly5b9Y4QB7vNWxrTWsJc2AKyAfVhW+7PQpYfue5T0ihcY9/EzqWiNkYplqIjkiGgOmnBxpca0s6ex+/E2Old1c/IVUykvc/DTaPghfQmtEEzSTOGg45KTJnm3qONhCoeoZhETVpGFJQ0cqZHQCugeOyRlKJCsL1/GqBsJQggTRh4rNwJA+ZxmgEDnyR3zrJpQmlu65pKoL2Pml05laOVuOh7axHVn3gFA/QWLSR06uaRC3ANgxq82CYEP7gDke0ZoOqKJigrYurXA3sd2YNam6F7bQ3xqi3fdYu/j3zsc9hewmca0h7HPO3b7WNBK0x1Ss2poPWMmO373BFOWHE3lmadSec4S0vc+TO+fn6Tm8Akk504qkdbXQtcUQmVnBChfMJHmy0+m/TcPoiejdK7YTsXcFmafNRGA3pEkBUs1+a0DtbhSI2XmsKWGa7u46SzSctj58wcxKuKYcYORje2Mv2QJmtBwQs8nBEjDRBMSe3CEvt/dGezTIwInC/HqOKlKHVuzKDg6lquTKUTIW6HPzgU3X/oZSsMNtEWwiv9KdETURvOALdNwMHQXQ3fQDT34tsyIjaG7KkukVzea4eDa4VWjNxkxwI25WIJiSIi3gFCpj0XAgvAZInpO4KY9ZkLKIt40SqHGQAiIRNRIUxXLY6fz7N1vi3gd9k+enePqq6/md7/7HZdeeumbXZSDbkIQgLGa7qrMSbpWXOAGA4fcF7TY3/X2AypJAYP3P0D6xZXUvv/d6JXJfcMGHEgdt4Ts2pex2jupPu00dDcKOX/RL0uuVzzZ9x6WtivhNUlf2wfPwx8Gc3z2lXRD4IB3fTertPKSDRM9T7vSABI+yORdViuoxZkbkRh1tdS86x3ktm0n/cJL7PrONwCoW3IqieZJJSVUE3cZ/B0wwoJql4HOFmHae3im71WEMzBE/NBZ6HoMa3c32dUbMCoqye/ZTWrCjCBkpXhzAh9VWA3ADd3f3xhMXEVon1dvJSEEDgErKz5hMsn58+m/927iSxZQ8Y4zqTjlRAbuu5+hex4kOXUW5tRWiLgKbBrTrqQUWB67qnzRNKa+/yi2/PYZjLIomadXUzmnEX3+QlxHU0CVN1N2HU0txDSBa0pk3sbN5pCWTd81f0Ek4gjdJL9lJxVvOxVHmkUtM6//1AwD6YLVM0zv/zxQrIpoBJm3MOpqIBkNLXpksADz32Vx8h+e8fttshgaiKup7LCe/KH/HZZ0kf78TZNFUFbIIExJpSovXZi6EQVkSt0DYX1gygNFhVY8X31A3oRQAN6cyvXqVFihvmDMd/h32z/5uBG2t+oi4/WatAWun8HVZ9+5oiQsXDgeQGMXF7kBc8rr00oWyg5otkQvePMfR7Jtwz30t61j0smXYhhxxRoyPNBDV4vrmiOWkd70MvbwIA1HnIZwjAD49ceZEieFpITRMjajmjSKoWuu/7dQQK7vC5eaCnHUQn0gEpyCkgeJtY4vztm8vlYISp0D3v3itS20HH8B6Y4dDG5eycZffw2AydPOoCLZArb0+g9ZCrpJb7tTDJ10cVXCK4GXAbD4HGpyXry3PTxEau4CDBEh39ZOZsvLmOXVZLv2UNG4QAFjHnAobImmSVzvOXwnnYtEQxQZO4TeqSwFFoTn3NgfGGInwFg4neSaWXQ9fjdlc+bRcvwFjJt/Oj0P3cnO9fcwrracRDaCiEQQUQG6N881fcRHQkQ9cEPFLMbbx7F79wq0SIyh1c+TqG8lMWeO58gqvjfXc9D4YI3rFHAKOVy7wPYnbkDEo7hRg3THNuqPPSP08kLs5qiJLEiy2X52ry0mctLMKK5tEattRhNGsc17wFHQTvXQmCqL9eMaoTEl3H6NUBv269dvG6J4aFjyYyxIGOhVhZ2KXqZhv45Agap6QWLkJUZWBtdyYoJCUiudt2ie7IgWeu8HOxTvX2jcGGt+2PhY6+vr20cH8X/T3pLZAAu79hCdMo5oay1rzv4O0/79bCpOmVhyjNAEx35hEbe88y6uPv0hPvb7w2mcWvamlHfCkfWYCYOuBzYw6X3H7LM/vauP3Tc+R9cjLzP7G+fQcIzyMjSdMovW02Yw80OL6XhqF7YZI7F43htaVmswQ8/6Dnq2DPLyjbvYfsfGYF/Leya+ofc+kLWcOp0992wkt7UNaqajxaPUnHEEvX9+MgjPeLVW97YjqTt9AQwOsufaFaz/3v0MPjERt6oKfeY0kofP2u950pX0vNgW/O649XnSmzoAGHm5gxnfezeZ7V2YzbVoUbPk3NG1uxh4flfwuzCUR5g6ZtJEM7SAnv5/9vrtn93ToWkaS5YcOEPm/9nftvzO3USnTUFLlbHrQ1+g9qOXkFhYmslNaBo17zif9h/8iD3f/B4tn/gE5puU5j0xfQbCMBha+wK1S/YV0s/vbWP44cdIr1xN06WXE5szDSEEqaOPJLXkSKrPOpPcSxswjQQVk9/YccMZSWPt6aDQ3cPQ/Q+SfmllsK9s0sw39N4HstSiRaRXr8Zq7yDa1IwWj1O++BiGnnwce3AQk9ZXfa0plxzBzHfPoWOPw6ZfPsnu/7yVxKKX0SvLic+dTnzOAZ7Rdcnt2B78HL7ncQpbdwNgd/VTf8kl5NvaiNY1gqGXnJrbsJn8xq3FSw2nQROIiInQNP7P/n77Zx83wvZWXWS81W10cA8VLTMRms7qn3+GSWddTmpK6fcudJ2m09/O9mv+i62//A4T3/cpjIqqN6W8ZdNm06VpjKx8icpjj9tnf7ZtF/1PPUZ68zomn/cRUvWTEUJQO3cJtXOX0LT4TNJbNhCjjKbkjDe0rE5mlGzbLqwTB+h59B7SWzYE+6rr39h778+EEKQWLKLz5usp9PdgROowogmaJyymc89zZJ1RElS/6utNOeR0Gg87laHIEG3P38me2/6H1Mvz0FMpktNnkTxk+n7Pk45NrnNP8Ltz9SOku3cC4Dh5Gk48j1x3G8nyJsZSyAY6Xma0Y1vw286OqmczjH94Fv5bxf6Vxg3fzj//fEB9I5deeinRaDTY5zgOa9as4eijj36zincQwCrF8S7dNjY8sHTn2JNLNkvbJb9jN6lj57DtC9cBUF4OMcMmotu4IbdiWWOSwy+ZxpO/2EDf9mFapynOpYskpWcZdIppUS2pM+QkcBGBkLpiX+UxhYMpHHIeX3LEiZFxI/QXkhgeJ9eVAlvq2J7boswoeNdw0eMRZlwwnbU3PEe2a5hJlx9HvLYMISSm7tB5zQN0PaWAD0PYJVpQtqvhlFdRc1o1lqOjGLFuwGiSct+se/6+sTpVYfP36ZqLLiS290LSnWmE0LjpwvsAmHjBPMa983ByHYNUzBtHOkT7dA/8EtGQJeGBjhTomltyTrjcY//WPOaZKwWVsxUjref6+6n7WAV9P7qN4VU7ASj0jeK4QmVM9MM2fR0mZInmRlDUmAGNtUz40nk4IzfQtmInsBNx92pm/fnfEUIwlI6z16igNm4wuKWPFe+7ueQa6U0dlB8+hcrF06g9aS6ZjmE2XPE7AA6940u4opidsfLYmcRj57LpW7cH58dqkvRv7GXrzauZddEcXCkoM/K0a+XBMVmvvqQUOB7rycnrHv9cKEaAv75xfC+TgfRoyHm/DTkariPQTbU9Gc+jIYOQRwChS3RNuf6cnBG473wyiwxl7tOzWjG2XSMIM5GmxI1InCRoFar911SOUptMUx3NkNQLlJuKLZJxTNq1KPvPq/g6TLJPN/OKx/6D2ac//Wl+/vOfc9VVV73ZRTnoprykPrNKIl2JrUmE15eO9dQVTwSfortfjcSQG09aNoXdeyk75ki6r/oNAHokrlgb4Hk11UUiNXWkjl7C8PLlWN09mDW1ngdQhByaRe9eYL53X1duSem1yaD/1ZU3siR01me7+JpDoXmnloxTftiR9Ky4j0JfDzWnnYWoTamTDEn/rbeT37ZDHWu5aHao75egRytJLDhaibeOzZ6kFf8D71+NYghmUIfqYiIsWuyxazSriLM7vYMgBO3f/iEANUedSNX8xTgDg5Q1T0ZaFMMNxgwbYUZQEAoZ2haEbmgyqJ8SD22YRSQJQjtjk6cAMPiXu6i54Hz6bvoz2R3eJL5jCCOjwoZcUwbC4tJri9ItMqsyhQhSCmKGTs1kh5nfOJd1n7qe9PMqpDz95Epaf/F1dX4M3LyG5gpyO3fR/tOfELbC1t3EFswisWAmZUcvpNDdTvtVSm9u4n/9ZwBCSV2SPH4BekrQ/bM/BucbNRXkN29n6JknKT/maBWh6uuYhdqO9Nl7YRYEIFFh5TL0kgUgpV6qO+WH73lnqQN9EWO1LxC9D30X4Q9QampcKTFNBmzeYgGkGkN0jxXjhYfrhoumSeyCjvTGP9cWyJGDyawqPt6rOvYf0N7qi4zXa8LWgnah+lxUcg5JwMQrZvcLfQchrapw8gbhsao0GzTL6w+yOUaHO2hoPY7t9/8WAC0eK443VrHpx8obqJyziME1z5If6kOr9cAq4TE9QgkpcJUuVfAs/rcrCdihAbMqqr7voP8LKCugZzRcSyW7Ae+bS6ZILTiMvnv/SqGng+ozz0SPJwH1/Xbdcyv5jr1eVbhBXxqIm5tVlE86GjPtItKO14eogUx4LKpirNX+XozAjWg4EQ07LnAi3tzUUHWvF4paRNbgAEjYftW3Aag/+nQqpi9A6xmm2m6FvhzSDyeU0hO/FyVhkghPLyvonyhhHI1lQfv6i0EAjcdYkxq4UZfIvGlwM3Q9ehd1x59Ozx1/It2hxtlcph/pplQ/nYgTZALRNcWyEgIZLwomCSmJuCblsQYip7+fzTf+iJENqwAY3bCGyZ9X40Z4fB7ds5U91/93SZWmu3dSPnUeZRNnUjn3cPKde9l+w48BWPD+/1KJEnSQQtI04Uhk3GTn08VxI5KoZGT7egY2Pk/VrMMDZnZ4eV4iDROuMp9lJUq/IcL6aZRuL2EyhbQ6xRgxdB/0KXlvXrhrmC0FHuusINEKbuh8DalJrLjwMkyqb81OlpZN///tvXecH1W9//88M/Pp+9neU3bTe0ISIJRACF2KgAoiWFDkXgVsCCp6Fbz3q1z1yvXKz66ADQtFQZEqEGoCCYSQhPS2KZtNtu9+6syc3x9TPvPZ3UASgmzIeT4e+9jdmfnMnCmfeZ/zOu+SBdIcOo4AuzGQsrIywJn0SCaTxGKFvJnhcJjjjjuOq6666p1q3sHkrBrwb3CQISn+dviLiztOwTV+LivPJTGTxe7vp/thpwx0ydSR1B/fhMbgVP97Xt7Jcz9ZzeSFdUw+tZ681NCRWAh6rRh9VtTPWQVg4YQHBkPaLDRCOEKV7vaKdWFjSp3ufOFmacL2BZag8NJvhcnaBs0fn0/LCzvZ88/XidUlGf/JE33hZuLF09n1yh7MtIkeK3QkgniihS+M+/3HAdcycPxgKJyzbvB+pRRomo3hutzPvP1TpHf3Yq3ZQJ4wVadMIasb6GU19OWKjxcUo+zAMuGGBxYJUAwOewy2ceDf4IhWeUvwytceBCCkS9pv/yvZLW2M/8xphMriROZOLYoS8vDOWSD9+xkMWbQRZHd20r18m/+ZmVfPoyLp5Olq7S5lb2+CjGlg6Gn0RASrP9C7AHpe2kj/qhbaH15O/SWFzl6+oxejpgIpcZKAZvOk04JJP/kUmbVbSa/dyd5/rgSgfFSCkGZRFeknoWcxpUZ5xBF0MqaBKTVMWyPrZifu6IuT6o4hhY3Ia34Yj9Bw894EBhwCNM1Gk4JIxMTQHYsYNUx60lGyeQPbyzNgB56VwD5ETkdLa0W5DrScmxsm4hp4t5KNHZYQsSmr6WVkaTcAoxKd9JpRNKRTkMDdSYluUx0ZGPB+8LzbZzquv/56zj33XMaNG8fUqVMJhYq99+677753qGVvHS2Ys0pIhGY7g1xvoDtUUvP9wbc3YKb7kZksvY87eQBj06cQnTDeTYhd/EykVr1Oz6JFlMw6itjESYUBvwh0tLwwXDf3TjBnlfSO6w48CqFrjkjgJ0gHhOXKXoKCWOTtNgSV559Hat0aul97CaO2hvKzTnM+YwvKFi6gbWsLmKaTONUWaO6gxQsn8MPvAm74QTHIZx9ClZD45d8Huu9rOYHu5mVp/trNmHs7yK3dSMgOUz72KISmoVVXQtbNu2IWjsWAMAxvn/tESL8Cobet91j4CZLzhTZbhsnun//KP+n23/0Js7OTEad+ACOWoHTsdHJ9AtMWYEukG2qCIZHCCS/KaYXujy0FeUtH12xy23bRv7bVX1fxobMKzTTsQtuSEWcAMyC8KvPKanJrN9P35EuUnX9a4RipfvRk0r9G0syjGZKmH3yW1KqNZLe20fOoU93RqKnyxSBpSGRI+iIP4ITRmp6I5L7bvfCnQDU+KZ3/nQF+oYMvwK1WNVhsAtdOeCGD+hCDFi3wpQo8b5ruXB8vt6azzPlDj5hOf8QVs3StEKru5Say8hpm7tCFq73b7QYM/0HGQWPhi/5+/8V7nj0Be0AydXAidocSsfxwQUsiTOdmZ1PdSNuk9bUnACiffDSJhjG+6BIcUHetX0HXiiWUHXUskQljsTwTrUk/z1VhLCRBuMnOA3YK8HPz+IU3dKdggi9GBzRkqeGE1LqCjvc9rL7gQlJrX6d3yRLCtfWUn7jAP9eqE09l572/BSnRw9HCuXvpB02JlpdopiyEsHvX1gt/CghmjlgksCLOWMoOCfIxR6gyY4XE614uoqAwNvlz3yad7SC1dQMhPUblqJkIoRGxqpB7TMxkQfixw5qTMN1wUk9Iv9Kf939g8sUTbwYs98PLArYWT6gK20jy7P7lL/3lu/7ye2R/hinjLiAUSlCzNo8Uli9MEXHbp2mga07uLsMV1kO6f201E3Jbt5Lt3O2fT+2p5xWqOLp5IIUNWrS4eIZHz/oV9G/fQOeqJdTOO9NfbuUzGJGYK+aBlc8RlhGOOvtL9GxeTSbVzs6WFwAIl1b6z4nXDwjm/vKL1tjBa4nfn/GHy173Z0B1P2EPHuILCnnjTKPYVgi38IEI3p+gKCYLy70wXW+dGdOcZy0uyJU6YZz+ubn78/JjiUM31HD2dwTYjYHccccdADQ3N3P99dcPO2/cA8xZNeBfUfxb7mO74JM9SLgasK1eEqP2mitp+5HTEe1bvZ2/n/z/cfrDnyaeiFAZ6fe9nbY+sx2hC97/g+PIajZYkLUNLDR0bCw0TPdNqmGTlzq2EIT0oTtDnsdVXMuREmFsKci4IoImJHXRXsKaiWnrpNxA7YwVouXx9bz24yVkdvcy+vSxNF0y19+nLQXMms7Ii3voeHEL4RFVQx57YBJzT3AZiPA7ofv2uBq4fVBg00KCeGMZYsRc3yYVeUNBUW4m/5gDAsA1IbFkoRqgjSgSAZ02Bt9oxeu89vTtybB3yVYaL5rDiA+dwKtf+APJOeNInjmv8FEk+j6Ckp38YM7fOrKQfF5C32rHzTY8shqro4e1d68m9kwL46+aT3rDOnJtPcjxtfSv2sq071xMTXOc9qdeZ+2dy0jvTQFgpXL0r9tFy88eZfbfvuKIdboz/WXaGrYUpBevYNutjuCmRQzsbEFYffknL1M7pYpYbYLWTBlt6YQvoNbF+zCEjSk1P9lvNmKQjYawsgbSDrwxDXdwbxeuuZeLTHerPYYDz7UQklgkV8hVljfIdEX99XrMrVQpQLo5cQh0CD2DkKu2IOrsVxg2RsSiMp6iOuqIfmkrTM4yyFgGNsJ/lkZFO6lLdA95zw6Kd3kM+Wc+8xmefPJJFi5cSFVV1bvKnduWwu+H65qTrFUYtjPgBienghSDOvXOysAgZcCyIEZFKdXXfIy9P/o1AOmVr7P1mhsYfestaEaoKAl6euVqRCRC/aUfLZ5BFNIXn/wcPNbgdglRqE7kjCi8dlFI/O4Lys6HnbxV+Im6kdD70kt0/uMhrO5uSubMpfTEE52y4xKQGiWTZ5A9cT7ZzVsIVVb7s+tOuwpilbMgsM79qohA0wrXLrCd7ZZ99waEARHcG9x4ncFwSkdQgza2xrlMJniJBL0KUIMcrAfmTrEK/8oBA7OB7QxWiJPed0ErJBE2u9vJrN9I2cKFVB6/kO233UrZ6GnUNx/ntCkvsFPOwSzplDIH5x7YUnNyhrnHyGE43q2Ghq7bdLy8E4DE+FpSLR30PPgMqZdWUXHJGeS2tmJ29hMa2UB21WYabvgMekU5qRdfoeuRf2L3OSEZdjpDbvM2uv74IM3/+13nve097+6EQf8zr9Dx27+65ybcvE4OXQ/8g/DoRkg44paQgQG75gpX7nkUbqjwBSv/+bU9r0THhhd5eAjpirKBq++KslIL5PkKFd693gBbCEdIKwhjhX6J47lW6KsgnFw0joglA0mznWfdLkqkfYjfe+9yuwHDf5BxsAi7uE/ieTsUJRF3hRFhBrRTL8eTjeupE9hWUvAYBGLxaqbOupzVr/4egK41S+las5QZ13wPoel+njyA3o2rMBJJ6t97KVYgolcK930YnJgNScej0xX9g3iivAyOvtyvoTe5AvjFBjRXpAfAkvQsfYH2Jx7B6u+ndO48ymcd5+fpEhaUTTqK1OwN5NpaCScLIW1ebig97whWwfeNdx4CVwTyJ2ucSoBWRMOOOBfCjArMqMCKOtt4ydSxQc8719vzrBJxHS1WQ2R2jXMf+twxRwhyZTp6tqBsSF34+ZOC1Qd9TylD+NdMCuc62m7y9eAErn8tvSIUuHZdCnI7d5PdtIXys8+gYu5JbLv1OzQ0HE1TrhlyYBltaNEIIh6DaKTgRaVpjh0yNF+k8rzLbEMgbEnvDiekO1E7ltTerex9+lG6V79C9SlnkW5twU6niFQ1kN6ykTH/fgN6IknXqqV0PP04dtodb2QypHduYffz/2D6576HZgqMrAbSEU81U7Jj6xK2rHqQoWh99kGaL7gKLR4reKd5t3KgeBsURQfuyBW5HK9wCnY6gpPQXyv+DnoeU56oCIX1ThVj9xEJBb6f3v0CP4m+46XnTlxEheNRFXe8qYJDQM10BCrd7Z9oObAG+7McPEeA3dgXN910E6Zp8vjjj7Nx40Yuu+wykskkO3fupLS0lJKSdybd0gGJVUIUhKnCwoKQEZxNK97G/T3kOk/9LnTiYzMmU37JeWRe30DmtTUAdHVCPOF0NHV3R/UTS5GW5IGbXuWYj0+hoilJyv1WRDSTiGYSc6eidWGTt3Xieo4S3U1s64YADmR3voyd2TL2pBO+x0tlNOV4jmBhayYx91uy6Z9beemmRVTNn8CU/7yIknG1rpdR8cmOveIExl5xgj+Y935LKfaZQH2gx1DRZRvCA8rz/PLQNdvfR3B7XSuE0gWPI+XQxxo4OCwSqqQg19lPpGM3kaoY257ZTri5geT0Qr4QXXPCGvPtvfSs2omuw64HV7D3xa3oiQgISBw3lde+cg+5nR0kPzT/DSsOClE4V31A2Wuv/fnOPrb9r/NCz23fS90HT2D3n54ns6ubl67+46B97rz7Jaqm1jDy+EZO/c/j2bOmkxdve9l/ZnN7esm/shomTkQviRYli4+MaywcP1v8xuzY2E0ylCWkhemUcTJmyA/P6zEiRHWTuJEnajifCxsW0WgeO2yS6Q8X3ODBCQ20BLY74jBzBrlUCM2QlJSkMQLhF/FwHuGGWwJ+Une9T3cMvDd4D9tOeB9B4+N0GvL1ecKl2eIQRaA7E6Pgrwa1sX5Kwxmqw33Uhp1iA6PDeym39w66zgfLu32m4ze/+Q333nsv55577jvdlLeFoN0wdAsrpGG5oRi4IU3SGzcPYS8GhQH6gxfX9tiQmDmN/EVnk123kcyq9QDY+Sy6XuylFm5sQL6Qpe0vd1M5/zRCFZVu1TenAcEE1nIftssbPMnALH9wud+5E47YjhRoZqEaX+9LS9n75z+SnDGbigVnEKmr95PAGybIjOMNU7/wvXCKu79AyXXNLB6geU3wRTFPgBviu+B14n1PnIAHjd9muyAMedsaWRhkLgeIZN7nbW92Wwz4Pnr3VzjJd3P93YiSGKl1awg3jyIyrqmwqfvqM7u6yG7dhpCC3qefJ71hPSIWBU0jOWE6O3/2Y/J93VRUjve9sKSbaFfLucfz7K7t5gAWWpG3MG5IutzdQcvPHgegf0Mb9e8/ltZ7XyTf2kF6RSG/lEfPY08TGddMdMp4aq68nMzGLXT//RG/I5RvayPz2lqiY8c6bfbOS0C4uaGwowEDx1zLDies0g1/IhCmWRTOp8miAZwziBhQ2TJw/n63RAB5zan26HlbecvACa/3PD8khWN7Hw9bbmVPEUik7nwfZE53PuNWknSK4gikV7LcG0Ta7ogoeOq28NtwKHi3240gw3WQcdBIAi82539hDZhYs4p/gss0SxYlJ/fC24LPhBCCmvoZjE6dTnfXZrr3OGHEtplHi+t+MwCitY10vb6Utofuo/zkUzHKy5195AJivzeM8TyypCh6DzuJ1Z3vrB1IvUAgUbo3eaDlRbEgAHQveZ62B++ldOYxVM0/jXC1m0zfncjQXOGu8YwPOAVy3EG9FxYJrlgnAU0URCkDp3/pecB4nly6wA4JrLDmi1NmpCD+IwvXV89L9JxznX2PFxtymlPpMBiaZ0Uc22KFC++qgd5Afts83OW53k5ydj9EQ/RtW0d0dDPRRne8oRWufb6zg+z2FqQGPc8+S2bTRrRoFGEYJJons+PHt2Fn0lSHm/BeonpZqeNNFYsiE1HsqOG2TXOuly4CHl+a4w2mC/pTe9n5ipNapb9tE9VTTmDv68+T69xTlKfLo2PJU8RHjSPePJ4Rl3yM/s3r6Xj6cbxs6Jnd2+ndvp5k1RjAjcZxc3YkSxoH7c8jtWtLkSglC8PzQSGmHgPD9vxD2e7w3qYQnq85opKWD/TpZKEKeLB/IA13TBkMyZTOM6m7dtn3kDKd/82Y87wB5GOOOCksCKUKbbed3P5O+gOvP5R3bP6h4kiyGwPZunUrZ599Ntu2bSObzXLGGWeQTCb57ne/SyaT4ac//ek70q5hmWAdoPSMk0mecSI7vvgtkgtmE65KAv1F20w/bxT//P5rvPbXLUQropz8uZn/0jbals2ztyymbHwVU25677vKG2J/6Xmthddv/BMyX/ymSE4bSelRTaS37kWPhTC7++le0YKdcXqsesx5e1n9WerOmsb2nz2K1Z1m9H9fReX0GoZWNvcfs6c4gLnm/LmE+rrY/qBjOMrnNpOYWM+OPyz2t2lfvYf21Xt49Vcw8vhGJr93HKG4wWt/WAvAym88QHR8PSM+cTrJmaP9z4WqkhiJMGZ/jqo5I2l/2ckXIHTB9EunkO7KEqpKvqXzOeIJCAD7te1hRmVlJePGjXunm3HYU3bOqcizT2b75/+T0jPmo5ckGBhBnjz+ePb+9a/0vPgCRkkZVQvPHHpnbxPSNNl7/31ERzfTcPFH9lkg991M/8Z1bP/t4E5PdMJ4omPGkGvbjYiEsXp6yW7YiMw7N1G4+XhkOkPZvBNp+8ufkWaeqed9gWTpiLdcy8LsLu5jNF5yPOm2frqfcfJXxedMJtRYQ/ffn/G3yW7cQnbjFrp5nOjkCZSceBxCCHqfdUIzWm//FZGmJqrOO4/o2LH+54zqCmfmSNOIjB1Fdu1m5xxDBiWnzsfu7YPYYSYwDDfe5XYjyHAdZBwONE86k5xusuTv32DE7LPRI9FBj0PVnJNpXfQAnS89i1FZSfn8U/6lbbSzGfY8cj/xMRNpvOBDR6Td6Nmyis0P/mrQ8sS4yUQbR5HduxstEsHs6ya1eaMfou3ZDTuToXzBqez+811oaEw794tUt5dCa9dbalc+3VP0f8Ox55DNddO70bEbJTOOQi9N0v1cwW6kWjaSatkIz0BszHjKj52PncvSs3wpINl6789JNI5j5NHnkagtTOLESmoA0EJRSuK19HRvc/+PUD3rJMxUL+H40KGGiv1kmNiN5uZmtm7dWrTsy1/+Mv/93/+97+ZIyTe/+U1+/vOf09nZybx58/jRj37EtGnT9vmZIJ/73Oc4+uijefXVV6mqKkSCXXTRRXzyk588uBM5BLw1sSrg5g0UeVgFKXIyCnoEIQICr+dhhT+DYvdlsXv6MEqHzvP09O2bSHXmaJpXy/SLJ5C3Ha8rQ3MSpif1jO9FFRIWOjZJPUNSc4SMlO3sNyNDZOwQu/NlAGzLVLKtr4KuTIxcvuDvWx5JUxlKUWI4Hlmr/tFCtjvLsd87H12T5N2k1ZobnuWF4A2kOBeU8BONF11a4YQvaEPkZHIuU+E6BlO+eHOSQx03eGxdkwHvrsI98sPoKHhaBUMSvb+ldPrZrbc/TmlTOSNnlCEtybir5rNx8V5a7nmZ1vuXER9XR3ZvL0YyRsPFx1F79lGkeky2/r8/o2dzWKksux9ZBZpg9Dc/RvnUWjeR/oCZYIqfq4G5w/zzd5dFR9cy854bWPOZX5Jv72XnnYvoeHw1dceOYP63T6eNGtq6k8y+7BTirVvY8egatty93N/P9sU7QUIo5tz/iec0s+4fW8hsaGXjV39H6XGTaPrqJY73UkmcefdeA4BhaPSu28WO+5aR29HBa79fzd5Xd3HNH09gbGwPayN1tGedAUhPPoKh2cSNLBnXIzAeypGP6IQNkzZLI59xZ3YsbZA3iZXToN/ADNukQ2FKIm7Sf80iZ+rYaH5ooMD5rBTODJve7uzXDjs5UawSy7++dlSDqEWkNEsskqc/5X7/IhaxaI6wbvn7rY720xxrpzbcQ1LLUB/qctomNaLi0PnlvttnOm6++WZuuukm7rjjDuLx+Jt/4DBioLet/z32vCI9jyrfteoA8NQJDchrCENidvch0xm0SMIPgxKBWcXORx8ByyI+cTLlc48reEO5s7nBMBE0ilzpi08MNC9M0Ds3O9AmPE8rz0NJgHC8qmQ2S+PZl6CnA/v2nvGgV0xwPxRmErGLzW7wne2FAQ5sa7DMefC3n+Q8kEMFKdyy7e572ACZww+x9ncrAp8Phv2JgKeBdxwdP19L22N/JTJyFOHGBtA0Ks96D6k1a+h+ZhE9zzxLeNRI7M4u9GQJZWedQfK4Y7F7+tn9i9shlsDq76N7yXOgaUw7/VpKko1+cl7nOkk0szjJsXMdhRO5JsCPiRNgCwlCI9Q8iom/+xKbPv9T7L40W3/2T7qfWUX82OnU/NtFiEgMzZCUve9scut30/fcS/Q9/YK//8zaDSDXI0LO+zVx1Bz6l79MdutWdv7oR5TMPZrqj10KhiRcF2fsb74OQiBliOzGLfQ88gL51g56H3mK3NZt1N3w704IoSkKz5XlJobxvDe85ydkI12vDDHg2Rk4oS5tnI6Dpfu546QuHY9mb59evkTp/C0DIUrS0hDCQjMktlXwlsISjqekxEmoDtim6zJhD3gebDG4r2iJopDdt8q73W4EGa6DjINFSFEI5XK9PZ1CEIXQM9+LKhgaaDteVYV8VrKwrZuzJ/iCFDZgSvKpDqRlosXijvd5wHsIYPcTfwcEJROmUj71GAx3PtTz5LFDhe+ZZgrHc8rNxeeHIevu98wW/rtVWPj2B0EgQaz7/LpeMj3LXkRaFo1nXux4xQYdEF27UexBFfwJvATcY9k6SDe0L2hLpC4Kyct9zyoKidRDbo4h1/OtaMwhJVrAI8rWhZ+A2wvxA9cTRwZyegFCykLINxTZRc2S2LZkxzN/JV7fTLi6BsIhqheeTd/6VXQsXkR6WQuRhkbyvV3oySSVZ72H0qOPIdfXRduv7oBECVZ3N12LnkDoBhPP+xyloTrsSA67wgmdFYmIE/JnaFiJsB/yJ3UxyONLhgS2G7pY0jiOWZfczOq/fR/bzLP9mXvp3bSKslnzqDvjAiiNYoeg7tT3ktmxnZ6li+lascQ/1fSWjaQ3bwDNibkrnXIUPa8vp3/nRtY+8H/UTD2R8dMuQtiSuFbK/LO+hRCCSK9N194NbGtfSr/ZRdvSx8ns2UnzhZ/0QzGL+i5eFyDg1VTU/wjkd8P1qAreI/9ZCWyLHTiEUfgemiH3PgdDBk0w0s4+g30GYbkmIlQwEJrp5kaWoKWkfxA7JAreXUGPxUMo3g4nu/Gf//mfRTkH38xD9rvf/S633nord955JxMnTuT//b//xxlnnMHatWtJJt/caeLZZ5/lueeeIxwOFy1vampix44dB3cSh4ADzFn1JndQFMtP+4OfcDZolJy/0EvjhEY2YLa2O9X4bM1NdG7TtqaT5364gqM/PoXTPj/VFTdMQsIiopnE9SxJLUO57sQCR7U8GjZhYdJlOS+mdquEbdkqekzHPd8LCdSQlIRy5KM6GTeEJKRbdGVj2Jk8rc/vxE5nefq/ljotbRpN3tYLic8Db4R9iSoethRYtubkzAh824Qo5GPyE5X6IX0UhewFxSS/6tbA6+wJHG4H0RHUnHWW1NCF7e/XW+6IUmLQPfeObQgbO2diZUyqJ1VR0ZQkVh1mzvmNzDm/kT4zQl/ezf1lhujLhrGAPQ+9Qqa1m+bvf4rSuhC59l60kgSRmqSfj8zPubGPx+mNrimAodkYCQM9Hia3y6Tj8RXEahO0r9rDrmW7sY+qxzQ18kaYiknVRMtnMXaCzso/rqFtUz8TPjyX2vElPHfTIgB2r+ul6tRpxKY1s/22B+lZvJat372XUdddiBbW6FjXxeufvQOAxOQG+tfs8ttims41DgmTmSXb2RtxXhjbMpW0ZxPkbIO+vCMIpc0QOcsJo9B1G8sNpcCQWHmtKM+b0CQyaqNHTEpiWeKhnH/uvbmII3S616m2rJe+aI7u3hhWxkBPBRJbJi1KKlNEQk4PsC8VIRrJUxlPEQvlSUed70BdvI8xib2MieyhxnBmkmr0XqKaSRiLHjvCHss5tw6rhGwuDhTPChw0thwUKvOG2x5m/PCHP2Tjxo3U1dXR3Nw8KMH6yy+//A617K1j2wI7GCoUyNsUxBlUF6shA+dD9oVjPyTSglBZBUZNNWZbu5M83AsxFJDZtJmuRx+j4qyzqT75TCdfFRB0ScceGEblhu/5nTtv8CMKAyBwRCmLYGS8H1IoU1lSa15HZrPs+dvdCF0nmqxDy1LUWcTrk8nAcvf/oopXnrgmACMgRsjC+RRdN7vQJn+Z5nbw3GS0MuLs3BOtbF3DdHMJOUnYccJNAm2TwhmE2HrxMm+gNUgzM8CMSWwzj0ASGjOScF0dojxB8tijSR57dGFjV9zwRLaul1/C6utj8iVfJJqNQFsX4UgJkXApdko6ISXevbGdgZDUQeYL905qzrlootC5lUIgheb/H4olELqOncnT/sRK9MokmdUbyW5sITZjgtPPMXQizSMxjASRuga6n3gKs6OTsnNOQ6+ooON3dwOQ27GD8tnHE66tp+2Rv9C3bCkyJKi88n1otsDcsp2WrzmeApGxdWQ3FRL0Ct19x0vciqyeIOReE9vtP3nzaVI4CeQ1V/TBHbharigkAv2tgMgqgzlMBuarAoRhO9c1BLZbQREbrIzh9CUiJlrIfWY04YteWiCMUFrC+W4HJtGEV/0s8KAINL89h4R3ud0IMlwHGQeLH6YM/ntAyzsCuidWaXn8UD9fpLE8wYrinFW2HHIII5wOLfFELaF4KdmevYV3sDvJ0bdlLe1Ln6J+wQVUzluAt9prmx2iyEb4FU51GXzkC8cMhicGKnsGQ7WEDXZfmtTrayCbo+3Rv6JHYkRilZB33qVBAcoL2ypKKG8z6CUsdUd8GlhUw5tIKBarHMHJCVssLPO2xy1eDe76qCi2f4YjWNiGc25eyLIdmGzxQ8fswkRRkdgeCGu3zTwynydR00SkroGQnqBi+jzKZ80rOoeg7ex++RnsTIZxH78BI6dj9/QSipUS1UuwM5JMVQijxM1N7Fais3UBeqCqvT/5Iopsu9Sc0EnNglCkBGlbWPkMnZtewYiV0L9+NbmJc4mPHe+GQerERjVhRGJERoyi/elHsTIpao89Ay0eZ9c/7wUgs2s7VUedTCSSZOeSB9mz+jn0vGD8pPPQBPS1bmL5q47dSESq6c8WUm7o0kn1YUUprqo4QGAKhqwW9XcC19weEMovZKBP4/Un3OVW2BFlLTc1rh1yjqNnIRQIdDFjgfvpPg+aBXrW/V67IaRG1pkIySfc8MuB3y0DP28mFPZ1SBhGdiOZTFJfX79f20op+cEPfsDXvvY1v0rsr3/9a+rq6rjrrrv493//9zfdh23bWAOKxgBs3759v8Sut4u36Fk14H+3Y+/8vR+ilf8NCGzuds685Ioyk0VPxvy8R125OLbU2LrSSZ593JWT0bGJ6471imp5IlqepJYhqaeJumUCdGGTsUN0WCVszzlJB1uzZfSYUWwpyNkGmvtNThg5f5Cvu1X0YkaetkXrePz/niXXXggVKD96DLYslugsuyAVBb2rggJLMGdVYVsGz4hD0ax58HdQvNJkcUL2YOJzAgKUty/LFn6i77BuYXb2ktrRTXjcCCJe4kQkthicx8o7nmVrjLjuIjZ9728s+m+nilG4uoQ518+nYX4zpaEMhrDJWIbrjePco7VPLab02AlUTCjH0Gwi5TH3+hS+ILpflcjxUnsj0e+NKiZOvfWj7HloOeHKOPHx9Wz/8UM8/+WHmXdrhOqpUwgbJmHdYtVdS9n8l1X+Ptb/dhmJ71zIcXd8hPYVrWz82SJo6abuowvRomHsTI6eZ1ez9rUtTL7jc+y8uzBL0vyp00it2orZ1kXL/a+hRUN0pMO0G3XszZWQMp3OZM7SyVgG23vK/DxW3vOQy+tIKagsdZ61sGHR2R8j1RMtfO8E6PE8yZIMZdE0Ub3gyVQd70cTknTeET3a+xP07Ekg8pozYz7O2W9ZIkNFLEVJqPDMb6WCvKmTtQyqYimqI862o2MdTIvvYEZkBwn3XlkIMq4ViWomSel4MupCktpHIQPFYC688MJ3uglvG5apIayCF4uX68lPGB2cScYTrArLitiXXfHEESlAs7GzGbRE3C2H7HQwZUiS29YCQlB22kI/f9FAipKQul4jTsUm91B6od3CLAycgufi60869C1dRtujD2D19/rbJZumoOckQis+V78E9FCvOllsXqXGoBOQ4g1MrydYuDvx84O4goefPNuteIcmsVzRQ5jCSZTq5q3yzjnf20Wur5PwqFEIo9CdEPZgvQ0KA8maKz7C3t/9gY4/3QeAXllB1SXvJzF2MkII9KzjFaXlCsfatuR5KkbPoCJbhZGx0Y0IWGCb0k/4KgK5L70S9sKrgkRhEGsFB3q2+yy6OZRsKRh96zX0Pv4i0bpyoqMr2f7jh2n9zq9pvOmTRCc2o4dsLFvQ+cgj9L9YEJK7H3ychk9fzYjrvkh+Uwttf7uPnu5umhd8ibYnH4Rcjv7FL5FZv4FRP7iOjvsKYSHN155NZuUmcm3d7Pr7CoyIQEoTkY8M9tbDe1aEfz/RZWHg4eUhk87gUct5g0v3+gzx4EsAvbBfPK+6KKC7gpXXjozu3OOwROiSiFv51bPb4ZCJ7rbLtDWyeYO8qTvfpSGeben2mawcfq4sxYExXAcZB4swhZ+/CeHloBOFXHS47wcvN1MgJ1ORV1Ew75N0BqGFJNNOZUCBxNYFVj6LHnMmszVP5JaQ2dGC0A1qp52EbbneRa4m6FcCFAGh3wi8T10R2Dkn/Bejl8dHRm03F5fjkeU5pPcuXkzbkw9ipQvjjdJRkx0R3hMQgmKV9zvoHeNeOzwRB1ek1we8mUXAHggK3kOBanvB/I1e9dwg0igIEP6xPJHK3bcnKJidndh7u0mWjkIIvXAvAjaweOegScHY065g66I/sOPJewAIl1fRcPYlxEePRwjhe3DZIfe4tk3Piy9QNmU2kVgFWgREvBSAvHRyJHn5zQA0U/e98QbZYDlA/PEW684YSxOCWRd9jba1LxBP1hJOVrJp2b1sufenjPvQ54k2jnRETR3annyQvjWv+fvY/cJDjL3s84y77AukOney65G76VqzlIkfuI7Wl/+Jnc/Quv5Zelo3MG/e59i6+Qn/szPqz6G9eyNp+tnetdyZqElbOEZ9cHvtEMWTEQF74gu+pvO31B1T4nvERfELCmjecyacBOr5ErBi+BV99YzASDmeVN6zkytzxCppSIpyVuUce6+nQY85GxsZ595YkWKvPE8U1vRCe6XAmZR6B+npKQ4FjUQiRCJDR4UdCN/5znf4r//6L0aNGsXFF1/MDTfcMGhCwmPz5s20trZy5pmF1BaRSIQFCxbw/PPP75dYdcYZZ/CDH/yAn//85wAIIejr6+Omm27inHPOecvnc7AceDXAQb1PCi+W4N/7+vzA9QGRCnBm26RAIsnvacds78QoiSD3diCqQ2TCYQwRRq8qA+AvX15KROTZvaaLj959FlVVUTRhk5EhkqTJu99UT6RKWWF255yXVXcuRtRNlN6RjdGRdsJv8qbuC07xsGMVuxatZulNj1FxwgSmfPJUEo0lCF3zB/iO+FMIA/QIClcWxeIUuJ5VrndV8LPCc4WUhVlOT8zyPKOEf2wNS2pIKf28WbYUSMsOVCByXyA4op9la1id3bT99SWyy9fRvbHDb1Ni2ihGXX02kaY6wAkr8wQrxy2z0Kb4mFqm//hKbFvS+ep29t77HIu/8jAlTRXMv3oaI6eXkSqpok9LkpaOdc5ub8fs7APbgsBgLZgQPHh9hJDogXWWrRUJVANFQF2z/etpRHQaLpyLEJKsaTD+xgt58f0/ZMeiTUyf20RPNkprf5LQlLEQEKvKZ43EqC4nMqqK2pH1tNz3Mpmt7ZjbWomPraF84TQ6n3wdLREhs2U3oz5zLg0fW0hJY5KwYVM9vc5JcF8SY+vvX+RnZ/yN6x85haxh+CKjVzq9LR8ik3U9+EImsUge0w2zGFvu3JeJJbvZlS1jQ3c1u3ucjme6J4rVHaLb1LAsjbQbBmjZTtL+dDZEqssRAsM7wsSzkK2Q6CNTHDd6CwB10V4iIo8mJEk3ZDaqj6I1lUS63owpnBdjnxWhy4rTaib96owhLKKaSZWWJSksRrkly0JCozt/CMWqYMdsf7Y9zLjpppve6Sa8bdimhuV5ZHgiuuW59QAykGS1sMlgWxNkCDvkvVqzO1uxe/rQYlHyXZ2EQkl0LYQtBEZJGUjJ7l//BkyT3K5djPrSl50S365XCYiiWV9hO+JaYebOCZ2VugBbFoluA72Xepe8SOsDf6R8/FE0HnsuodIKhOZWcXNd7YsGF/sQqvyQuuB5Fw0uiq+LN3DyB0S6DAxI/NkOZxm2477vCRyWjdAdYUG4HU87ZpMLu5X4OjrpeeYZUhvWkNtT8ASKN42j/tyLCVfVFq7BwHMxwUgJElWjSXzuy1i6TXrzeroef5y2n/6ScF0D1ae+h1hFIyE9ScgO+cl6871d9ObXoU+20PKyWHDxrlvg+g95/OC1DF5HAttK0MJhKs47ESEkIcOi4fMfYOMn/4f+F18nPHaMI65kdGLN44vEqti4CYQjZYQratBmjaD9iYexenrIdu4hUltHyTHz6H3lRbSyErItbdR/7n3Y/RlKRiSIhy1is6qojqZ4OSrZdM9rZL/0HUZ8/wtIKwGpQql0b7QqJH7YnBMOKotUQmlIx1PK0oqeNemdd2DWHN9bC8dDKzDYttMGIl9I8i4NCSGJCNnouu0X9wgZFiHNJhnJUBouxGDmLJ2+fBgphV+0JmfppF27V+gnGdjRQ+ha9S63G0GG6yDjYAlWKhVC+hMDWg4/vFfPu+FANn61O8/TqiBauc9xwNNIuIqpkwzcBlvS378dO5/F0CLYe7oIhUvQNAOpQdQoRVomWx/+NaaVJdu1h1HXfwUtFCqIYgQeITesWgwIE5c6fthfIfG78EU4ZwIEOpc+y+6H76NywtGMnHU2oUQZQtOwwgJb4iSTHspbFgrffS+lisCtWOeudkMCgx5QTligkwjdE1ScnQR2GxTJBdhIXyACsLGQIb24Op+3DwG5jna6XlhE/8Z15Pe2+atL6yfQfMIlRBOVvi3zvOLcm+9XmUs0NjP1QzeSj9p0t65l7/OPs/WPPyFaP5Kak84mVlaPnixF6IYjcABWqp/+zevQT3T27SUDL6QfAC2QsF8zcb28Bjw7nlgVvOaeKTXdZ48IIyecgp61ERLGnXAZK+77Fr3rVxKrG4mRcq5vYvT4gFglSI6eRDhcQri0kuiIUex+4gGsTIpcuotIWRXVU06kffULRMOl9GXamTH1Q1hWjridQMvmKQ/VQTaHHdbZuX0Zqd99l0mX3gBho9A30ApCU9CryRMk/XtLQaAKVsP07qUI/sbZn55xkqA7x3LWeB51ZgxMN7OFGZfIUMHb0P9++9/ZwHMmXRExLSBaaKP/SIrCvbSiMKDo5lvjIOzGqFGjihbfdNNN3HzzzW+pGZ/73OeYM2cOFRUVvPjii9x4441s3ryZX/7yl0Nu39raCkBdXV3R8rq6ukG5r/bF//7v/7Jw4UKmTp1KJpPhsssuY/369VRXV/OHP/zhLZ3PW+HgPav21dnbH8EqsO2QYV7CecP2/vMZkJK23z1J2++edBpcmSQ6uoa+VzchQjrtOzJktuwB4Jfvf5zjrp/HlCmCCZPCbM9VkXH9TndmKtieLgegK+v4KfZlI4QNx2J09sfIuKFResimIpmiLtFLZSSFlbP464+fo3r+eMZ+7X1oGghXVrZsbZCXlCULglEQXbOLBCbnM4V1ll0Iu8h3ppCWTd7SCikpSsLEyxyxKC81fx+ZPpuOX9xHxwsbqTp5EhXzxrPzoZX0vrieZFM5ze+ZiHjPKeT39pLemyHfmyW3aTvtDyxxckWdPJo5V0xl0X+9gJ2z6F/VQvfza6iqq6D/6RXs+P0z1Jw5k1FXnEzO0rGkhsDJpeXNpOqGpPKoUZTNupS+lS20/vE5Hv7ys849S0YYf/WplJ86E4Ca9x/PnntfoP/lDdScMOYNHhb82dng9Q2KWvvKzTWwWqJlO6GOWouTjLCxKczym/7ByIVjGHvGWEae10j6yQZ6t/dwws8vJRUu848XM/KM/fiJbPzJU+z84wuM/uQprL7u9whDQ5o2mqEz6t9PR7PdkhZAz/o2Xvn0b6k7e7pzj7pz/PgTywlFdfo37eEjN41hwXll7DGTPBcez4bOagA6e+NkM2EQkngsRzLkCEjzS9YST+ZYW9rAy31NAKzoaGTna/WI1gi9OR291nkmy6NpMmaIznQY0etVM4F0nY1elaW5pp3meLvzTAlHiLSkxprOKqRt02HHsaRGWThDZaQwq1eiZ0loWXRh091hEY4IEiUW5VqOMk0nL21CbiKFqNDRxFufVfDvJ0MP4ve1rWL4YNuaP8h1BHfhdwbB7SDZhfXejfY1q0ETHEOoWb4AI+l9bBEAnfc+QOe9DwBglJUTqq4lvXEdGCHMjg7yu5xQ3e23/g+VF1xApKreqa6kFUb7wRBCH6+TL6QTKuC+xG2BnydJy4Gdz7H38b9TMX4OzQsuL8xmBzpkwZlwzSp4BEBBgHIq6wk3JKOwzp/J1kGGQEpJPtuHzNnYIbBMp2OoRaOIaHiQbbazGdp/fTfp19eSOGY20ZmT6H3iObKvbyDUWEfJvGMpXTAfs6MTs78Xuy9Nbus2ep58Bs0IkZg6japTzmTX3b8FILV1Iz0bVlJecQLdy1+i46nHqTx6PtUnnOHfIqkBFr4AZUiNSNUkyi+eSHrTBvY+9yg7/3A7AHo0waj576dq9CwAaiYez551L9C9dyMV5WORhmtDDYHt/XhVrAKhAt7f3rV0qnEVxBhp2AhD+mJdEE1zxCpanI5evLGE9h//jthxs4lOm0nJCcfQu/Ql7P40oz75WfRY1L/GUofq08+j/Z8P0b7oEaouuoidt/0QEQoht+TpKQkTuWyhcx10pw/Qt6qFpz57NxPPHwtAfm8vqR/8nJyl0bulm5p/v4DItJmQ0d3ZL+FP9HmVA4UZCF8J2RCRWCEJ+UIOIOe5Cyib7g2Sbmi5MAL+1P0GmuUIuXbMzYHoip9Ct7GzeVI5iRYJY1oaWiTn5GJ0Jy4SRhZT6oT1OOmODNFwBD0aImfr9OkRP3wdIGsZFKbN3jpHkt0YroOMgyXowSmFG2LtilVFnlUD3pv+gFcWD36REmFJR4DwPWclwrIRpk3LJsdubHv+HnjeWR9JVBIpqaRn9wY0PUy2p53M3p0AbP/B96g6/wLCVbVEymuKBv1Sl644IBFZDS1b+I55oluwcpr3v7CAnjR7n3yI6knHMfaYix1hyHNMdr1fpCcmBK7XwBA4CQjdPdWAnfHD/7z3lJTkM71YmsTSXS8WAVo0hqGF/dB2b3srm2bnA3eR2raR8ulHU9I0iT2L/0l65xYitQ2UzT2OijknkO9sx+zvx8qkSO/YQueSZ9AiEZITp1Ny4tlsv/83APS0rqdr5+tUjZ1L28Yl7F7xBA3TTqVh8gK3wRS8u7zrIDRKxk4hNmkSqY3raF/0KC13OwN4I56k4ayLKR0/HdAomzSb7rWvkGrbSmRUE1ascL28a2p7YaWmc/7eOfv9FgnYrnjidTVc0VFzn9NCbjSJkbYRtiTbtQWAuF7GjnvvpHzmPErGT6Fq5ny6X30JIQRj3n81Ia+v7HoC1p50Du1L/knrkocZecrFrL/nB2hGhJTZQsQooanhRDTddVsTgj39m1m26x4ak+54o3cP2+77BSZ50ul2Rp3xIRLjJvvtll77nUMWVfnzro3mTdTpgevuVvIrCvV0TVC4y0bPSt/zvGe0hplwvbE8r6iQdFMGSOxsnnC3hhYKO30mT3QOzFV4Iai5dC9aNIJmOP0Yr//jiVV2BMy3XF6lwMHYjZaWFkpLS/3l+/Kquvnmm/nmN7/5hvt86aWXOProo/nCF77gL5s5cyYVFRV84AMf4Dvf+U5RXsJBbRogrAQdWd6MxsZGli9fzh/+8AdefvllbNvmyiuv5PLLLycWe+cS9w/baoAA0YljkJks8TnjCCXD2P0pshu2k9veRsO/vYfqM2cSiWkYuk1+dwebbnucZ776BM8AX33sJKpHRIfcr7Qlvet209OWg/4Udt4kGyknb4ax2rvQE2GsaJYtz72GbufJ9+VJ7U0z5dvz3Rt+aKfg+l7fTvcL6zDTJtK0SW3YSWZj6+ANNUH5CZMYfdVp2BL2PLKCvte2kt7QisybVB47hq6lW2h7uOBeWjmtjpW/WIr8+UtFsbUipFN32hTG/tvJNDfmSOg5ak+ZQNqK8OTnHmLX759h113P+Ke6+x+vMuqKkwFIb2mje/Fayo8ZR+nEYgVXCEFyxmiSM0Zjbd2J7O6h7fFVrPnuQ4xs7aN0+kh6lqxDL4kSbaw4pNdxf6iY3kByXBUv/nAZAK1PbcDuO4n0nn4ipWFaWvrpWtNGeGZZ0efiTVWUzhpNemcXnc+vp+rUaXS/vBmzK4WUkpVX/AiAuQ9+BQCjzPlS7354pb+PjtWF2aSffGE9LSvrmP3+Znr7upGxSt8LLkimK8NDVz/KvR09JEs1YtV7iE1qZ/rFE+AA83BLKelbspIVryzFnGFw9KVjCJXp5DMWS+7ayLO3b8DOW8z+3vvo77bY8tzrNE5JMvGiieghna7t/Ty+eBevPryb115KIwQsOCvOddfFGVdjEI5JcmnJmjV5XlyS58GH02/eqP1vPEPGj+xrW8URS3TqBBCC6NSJaHoU2Z0mv2Erub17qL3gYpJzj4Gojh2CXHsb7X++j7Y77gSg6T++iVE6dAJLadtkt7dgpnuxcv1I00KPlaDZYHZ3I6JRRN6i79VXEZbETPdjZTM0HPMehBCH2GpA//aN9GxehWXlkdIivXMr2bZdgzfUNBJHz6L8/echcyZ9zy0hu34zuZbtSNsmNnUy6RWr6XumUBk1PGoEnX/9O533P+gkGHERhkFi3tHUnH4+ejSGloeSSTMQmsa223/I3kf/zt5/PuRXYep6dYkvVqVbt9O7cRWlU2YRrivOwSCEINE8gZLG8WTadmD299G1YjFb/vk78nPbSdQ20b1zLaFIgkjsX283SmY1ERlRya5fOOXJe19YTeUVWaztHRilSfo3bSbX1kqsqbnoc5HGkcSax5Hraif1+mriM2eS2bQJmc9j96fZcs3/osUiVNxzPQBGqWM31v1tk7+PtlcKfYHW791F6Tk7KDn+OMdLraqqOJTUxezuoe22n2H196MlYuilSSJNTZTOPx6jsvKAzl1KSf/S5aRWvEZ47AhKTjkOvSSCnc3R+9gz9Dzk9BNGfvPjpNs72PPKGlLTKql8XzOaodHd0svmZ3ay/tFtdKzcDZqg4ZTxNH34OHLxMsIlEiudo29TO+3Ld9L2zPoDat+bNP6IsRvDdZBxuFBVPgGtJEF5zUSIhDBzKXrbt5JOtzP2uA9SMX4OZnmITBWk+nax5957aL3TyRs07j++jTD2Md6wLDJbt2P19zkhfXmbUDQJpoXZ14MWiUE2R+/rK0CC1deLtC0aZh/6KrVSSvpa1tO7dQ3SzCNti/7WzWQ6dw/aVug6yRlzqF14PjKTpuuVxaS2bybTugOQJMZOpnvNq3Qse9b/TLi6nraH/krbw/cTTD4nQiHKZs+j9pRz0cIRtDxMGz0dw9RY98fvs23xfbS89ADSclSjvRte9MWqvr3b6Ny1msrxcwnV1Ba3UWgkxk+mpGkSmV3bsfv76Fz6HNsf+DW1J51LrGE0/S0bCMVLCSXKD/n1fDMqaicRiVew5QUnh2Hn1hWMPPsy0h27CJVW0Lv+NXLd7YTKG4s+F29sJjVyHPmudnpb1lLaPI1U6xZsM0s63cHiF28lGq3gpBmfByCsO8/ezt7CeKOzvfAe3fL326k++hQqph+HyFsYVdVDihe5ng623PMz7EwGPRIjlCglNqKZitknEEqWH9C5S2nTvXwZvRtXEW0eQ+mxx0E0hJ3O0PPkInqeeAah6Yz65LXkd+witWEd8frRVE08FiE0Ml1t9GxZTeemV0i1tYDQKJ88h5p5p6HF4hANYWazZHfvpH/7RnpXrzig9r1J4w/YbpSWlhaJVfvi2muv5dJLL33DbZqbm4dcftxxxwGwYcOGIcUqL7dVa2srDQ0N/vK2trZB3lZvRCwW4xOf+ASf+MQn9vszbzdvMQxwiBnuA9iX/10RAZ9CT+1Gkpg3g8S8GaBJtJCN0CTJk48qhIPpNlnTJmdJ9KpaRn3lA3S+/3vODmqr2ZYN05Z1Qqba0iXs2WESS7Wz9s6ldD6/vqgt/qkYOphOR7t0SgNaxKC/tZuZ/3k++gjnQdCELArvkwM8qYLJz6UUpHZ0k2nZi92fxuzNku9Jk9/bi9XTj53KkFq1lUh1gnBZFGHolI1IMv5DZ6PFo2Qtw0+8bu7uZMefFrPi4z8B20aLhUnOHUf9pSfQfHozlaNLyNuCzJ4++s0o45ry1ERS7LliPMsX9WKURtn0+6XkOvqZfuNZTDilEbCpDKWI6CYxXSNtWcz8xCye+9xWSsdVUz2zjk33rWLER0/2E8HLfJ7d9ywmUpUkMd4bdDhtDCZ715sa0WhgzKyxSD3Ezj+8wPacY4xGfuxkks3lRdfQTw4vhq6iOFTy+GA4ZDBXVXC97X7GRpDXI8z45vms+Nr9lIyvxc5bvPy9Z4o+07u5g8oZomgfr//nA/RvbqfhgtmM+eRJ9G7pov2JVUQaKwjFHXl//H9cyLJz/5uqhVMZ++lT/M8nxtbQv2lP0THKRyf5572d/P1Xu4ElHPXhycz/whxeDTfSsqsSaepkDZuVi/voWN/JiR8bg4FF954ca/++kVd//zoTTq5HzpuHNmcOsi9KT4/TIU2EcxxTs41NsSp2lTkvz44d0P6jP9D/6iYqJlfz9PMdPPOLdYw7sZbevTl2vdZO2fQRdL+2g10vbKP9sZXkezO0PGjy8o+WEikJ0bcngx4SzJoX57rvNJDN2Pz5J3t575mpQfeqskLj+GPDrFxzaALJh0qM+kbbKoYRUvgJn6VwwiKkVfDyGByu5S73p36Hti9yoCeMADRIzJtNYt5skAKRF2hZDWPaMUXVomTG+Xy4upbaj1zOtq/fDEBUT0IKf+ZdMyGb7iKf7aX98YdIrVsz9Dnqui/QxBvHIGyB1dPDxFM+QYleiW1JbCGKEoJ64ShFSdPd05VI0n17yXTvwTTTmPkUZi5FNtWFlenHzKZIb9+MUVqOFo8jdJ1QXS3lp52OiEZ8Wy11yLe10fXPJ+i/8Vtg24hYlNiUyZRPn0riqFmEyqqQUmL2doKuo5Un0aSg7OSFZNatR8RjdD/2OHY6Q/XHLqNk7GT0rPDDyoRhIAVUnnImO3/3S6INIwjXN9KzdAk1888ueEdkc3QsfpJoWS3xknr/3mteKI+bJDkWGgFlUHfseDbl/sDOlx9G2s6Fa55xPtFkFVYg+a30wlcMUQgLCAsn2WvYzXnhzcCGHS80OyT93EhClwjNRjMkmm6jed7Cuo0mJLFQnlDEZuZ/nc+qr/+V6qMa6NubpePOe4oegfyuXcRHNhfCLoCdv/k5Zk8XZQsXUnbemeRatpP6/grCzSP8vk79Zy7klXO/RcM5M5hyxWz/s1UTK2hf11l0jLKmUvqfWUzPPxwvkLJzT6f8gsCg1k3WnFm3nnzrbkrPWYgQWcyOHvqee4Gefy4iNmsKiaNnE581Ey2YX9Pz1hA4boIZHaunl70//x2ZjZsIN40ktWIV3X9/nNjMiVjtXWS37CQxZQT9q7aTeW0t7fcvRuZM9j6SY91PQ4TiIdJ7U2ghjRHHNDDj5hNJ9+ZZcccKdj0xWJSKVESpnNVI6/b2QesOhiPNbgzHQcbBEsw3hSh4sGimE/4HTviV5wHiJ4eWFBKrB96vwTBrLwwwOCAdWTWbhsSxAJgxHSumUT3+GL8KnhkX5OPO+yScqKf2kkvZ9t1b0KJRtEjU8WTKe/1gsLd1Y/X1svfhB0lv3ocAG7QbzeMhZ2KlU0w89ZMkKEXa0s+JBI7XjuPKUuz94XkdWUKS6Wkj27UXK5vCzKex0v3ke7ux0v2Y/b1kdm7DKK3AiMRA0wnXNVI9/yxENOyEALrh4bm2VjqeeZKeFcvc8Uac+IRJVM2YSXLqUYRLysGUmF2daIaBVpIEQ5BuPYX01k2ISJSOpx5FmiaNH/goJSPGOffA9SLTDCdOr+7YM9nyyK+J144mXFpJ57qXGTHjTN9Tycyl2L1yEbHa0Rj1jlgVDFuTGthRQXjMKKSA2ikT4E+/Y/fTDzqpRoARp12MVlWGGSvYAmdHrrea+y62dNdLSrjX1wuH9Dx+NOE/kzbSrZTneOtpeXd8kndCS7WcTYwQM2d8hBWv/paquin0pdvY/vBdRY9AunMXserGIofxzX+4DZnPUXPcmdQccxr9Ozez6d4fUVo3ATvvPPzjJp7DYy/dxOjqYxmdnOnvLxmuoTdXPN6IlFTR/sqz7FnyOAA1C8+l+oTT/HNDOOfXv2Etuc49NMw6EzubIWN20778WfYsfYLk5Bkkp8+hfPR0dDPgGS/dcL+owIwKrLAg19fFxj//msyOrYRHj6L/HyvpeOxhYtMnkW/bQ37nbiJNo8lu2kL/hrV0/NOZBOp6dTGtT96PCIWx+nsRukFJ8yRGHHM5Zn8ve5f8k67Xlw7+GpUkiUwYi7l376B1B8PbaTeqq6uprq4+8EYBr7zyCkCREBVkzJgx1NfX89hjjzF7ttOXyOVyLFq0iO985zv7fZwdO3bw3HPP0dbWhm0Xe6x99rOfPai2v1UO0LNq0KjCFXq8N2nhpVocEP0GeELVQBEs0OHz8mYIV5jQ3BA8T6gQwllnxELUvuco2h5azuqNIbS6SrqyUbLtfaz4z3vpfc1Jyq4nIjTdcAH6pAnoJTH0kMDsTiFzOcJ1FWhmFpHqI1JdgjEgOR0U56Fy/heFynkuZneK7mdX0fbAS2S2FzqcIqSjJ2OEKpMY5SXo8RCjbngfDQsnYBjFeah0zaZSs/xE6JY9luSCWbQ+ugY9EaH6pPHosTAlkSzJcBZNWOTtEHpVOXouQtrqpS2rY44oY8T7o6y77UnS2zqY8cVTmHFaDcmQk/C31HBye2lCYGgWU08oZ+Izl/Hc/y1n/X2rqTtnFlXvmYMlneucmNjIrHu+iD4gjHNg4nePvAzR/IXzGP3pM8js6iLf0Ufp1MZB+bs89hXa51/DfbwdvGTsQshBgpblClm92ShU13PULz+BJiUdizfQ9vQGRpwzFTubZ9c/19Py9FZqLjy26POTrllA384e6k6dgh6SlI6rpPr0qfSu3snYz5zOhC+fS+8axz2849m1TP7qucz7y2fQExGEadK1bAtbf/sC+a4UQkpGvn82486fxN6XttFy91JW3r2e4z4+kXGle0nnnDweya4W2pevJpwwOPqzx2BhkLUN5mUzrH1oC6/fv5Hd372fmlPXUf7pS8ilHLGqNxNxtqvcwvZ4BX27+/nHfz9JriPNMd85j7rjmzE7etn28Fral2zCkjrjP3E8W+9ZTrS+lGkLqnj4d3289//NoWZMgi0v7iGftmgcF+OkM+IkSyRR11944fsq2P5qF3omRzoj0SM6TWMNmsYa9PRpPPjItje8l/vNEK+eN9xWMXzwcux4WKI4ea4X3ut52Ps2RBTsQvCeCopybfi70OSA8KbC5zy3digMgoyUE1pnaKUkZ86hd8XL0NpDqKQUbMj1dLL1H78ltWsLAHoswcgLP0Z85BhEIo4QGlZPHyJrES6tgGwW2ZUmFikj1O8K6IHUXAMzjjs5RURR7ohcupfOTa/QvvwZct2FAbswDPRoHKO0HD1RgpaI0XDZFcSnzYBAjpGBOUxEXsDYqZTOPIae15ahlySIT5uOFi6Ed4isIxzqMWemTmYc+xutbSRWPYK2u/+Iubed2ssuJzl6Clq6cC2D96Rk4lTG/8ct7HnofrqXLaFq7slUTjoaXLEqWT+WaZ++Bc0WCNfpUlig5yVaHoyM9PPOeAOVqdMvxZx8IZl0B7l8HyV1Y8knNGxDFIVJSreEuJejy/vbigwIFwhLJ0THkE6IHCCMgFClOzmYAAzdQggwhE15JEP5xAQT734/yXCGdQ9v5Yklm2m4cC6Z3d10vrCBnq2rSSw4zr/HWl5QffHFmKke4nOPgoggPH4U8aNnkNuxixHXXUm0RND/2mYA2l/cTMmNJ3Pp45dTVW5jZS3aXmrhuR+9Rj5lgmVzwb/XUrVwCi89nWLpHa/T88QzJE+fj56IOw+aBdm9e8isW4eWLKHyQ2cQjjvv6lyPRc8/X6Xv2aXs/cXvKJl/LJWXfQDNK35gCZDSFZYF9o5Odv/sF9jZLLXX/huxo8dCai+9Ty8n9co6tLBGw4dPpu2+JURHVFA1s46236SY859nM6IRul7djpkxGTM5wsxTqkjEJSk7Ql7qnHnxyWxa0UcmJYnkU4SjOrXjEsRHlNHXB98/seBZ9pY4wuzGcBxkHCxFoX04IUh+bptA2JYTjhVIiC0Lny3KO+QNQGXxMQIdV//vYBXBomThwj2+FEQS1SSmTKd/zWpkbz9UJBAScnv30HbX78js8sYbJTRc/gmio5qQ1VHssMDq7XFsUEU5Mp2F7ixxyol0QrjXaYPt2oug6XRC06TvtGQbzsp8qof2zcvYu+JZ8j2B8YYRQo/FMZJl6PESjESSEZdeSWLiVOc9HJwoccdhXqg5Y6ZSNuMYela9gpEsJTFpKlooXLi+lvPeDXmemhKwIVY/iljDKHbe/RvM7k5GfvBKR6gKVHcMVvgrnTiLac3fZudT99G5dhkjppxGTcNMLFdBKhs5mVkfuwUZLlQpLCJ4TwWIqEHDh66gLpUm39WB7Ogl1jTWn7QIVo0TrgONL365OZqEXvycCWe2Gzsw5tG8HJciUOQC9xly/zX68pSLaubP+QJS12jpeoWetg3UHXUa/Xu20bdjPX2b1lA+Za7/cTsEIy74MFY2Tfmk2UhbI940jmTTVHLdHRx12heI9EP7HmfirKN/C1NGnMWpU64jpEcxrRx7U1tY3/oklmYjpc3o8adRMnEanXvXs2v5Y3QsWUTZvBPRI45HlqVLrN176Nu+jlBpJaNmnIWek6RqNVLxDJ2rXqTn5Zfo/fMdpI47iYbTLkL3bLj7LOSSjojal2uj5cGfI4Wk7gufJjKtGbO9k/7nl5FZvRYjGabsklNov+85wrX1hOrrsbMZGj96FZoeIrNlC9LME6ltJDl2CpoR9oXm8pnzSO/ehm3lschDNEy4thatoQqZybLllVeHeEAOgmFgN1544QUWL17MwoULKSsr46WXXuILX/gC733vexk9erS/3eTJk7nlllu46KKLEELw+c9/nm9/+9tMmDCBCRMm8O1vf5t4PM5ll122X8e94447+NSnPkU4HKaqqqrIA08IcXiIVUILeEDtcyP395vcQDFgsFHAOUZQkBDCySehadIVqAbvzxM+Rv/bqXS9tJGHP/MoTf92GqFp41jzyd8jhUbdZ99PZGQ14dpy9GS8sG8hCVUkEMKtAhIJocXKkcLGCobODSHMeCKV7gbH5/b2svuup2h7bDUgGXVKM2M+O5fKydWESqOktBJ6cxFfgMqZTg6onkzIbw84iUoN3YZQQRwzLQ0rUkL1eUeja5JoKA9YhNyRQ8oM+clLbSloz8SJGXnfU2nE++aw/S/LKS2xqAz3Y7u9/U4zjmnrRDSTkLBAgzV/X8e6+15n9CcWUH3+MX7uKBk0CqLYU3LgffGSwZupHMRC6NEI8TF1iLG1bhsL22oBoSmI1/Z9eVvtLwP3a9oGmpCUHzeBqV8/j5KJ9Sz9t18DkJzSWFR90LQ1yuc0UT7HPzMM4VQx3LuzCz3ktLNsSgNH/+kaQuVxpBQYJY4h0MIGZUeNxvr5IrJtjkCY68pgGRFqThxHydhqdl91D78450Fqjx1FojZB29Id9GztAmDqBeNI2VHyUsOWGpFIlAkXTmbchVPY9NgWnvzqIozw3VR+6DSEoVOxcxvLX+5hVede2je8xobHthEtj7Lwx++lpKkSsDCqE0z88ByiH5tBzjZY8u2nyXenOek3H2bPQ05lxw3PtTH9/GMYM8vxzoprOWxhkpV5bK8AQQymngAJLYslNfJuHfVOqdF9CPPkOpVi9s8q7O92in8RsjCJIS03SbMZmNgYkFTT/9gb7c+d5CiIVq5tGiLvEJozO+11SD1PHz1dON6Ik9/HhvXr2PqnnzDy2PdSWtXM6nu+ixGKMW7+hwlXVBOqqMaIxJF5sPu8z5Y6s6/9oJlhNCOMnpHYIdeTTHMq5Ug355Sfu8FtixVxOqe57g7ann6InlWvgIDk9KOonnERkfpG9HjcydVAoIKUO/vt5M+SxeKd29HS8sLPQaHrCapnO2HcMo9fHtpDSPCKd8oBImHFvJPpXfoiumVgpClKMguOGCTdmdmuJc/R/cpL1C+8gKqZJ/qeDOB6UJkCzZT+7LTjKeHMSus5pzIXOLlBTDuHjEXRwjHi8RFEQxpWxPGeskIikB/G+bG1wPVxEwU7OaockcrZ1k3wqhdyVAld+iKVptl+BWBdk34hCc/2CE0Q1mymnjUCTTsRMXEcj33Ayb0Sm1aHVZeDtDu5lNeIHDORsGE7E25utVa9Io65dC/hqCQcsgnPGU3Nn66lvEYnrGUJJyOE9H5CcUHz0VU8npL07HByF27bE2FqWZYZp9cRGVXNP//tr+y48VskjhoP8TIyKzdgtjmzy8kzTyAUM/18mFosTPKM40iecRx9i16m/fa7wdAoO+d0BIL8ng7s/jZkTzfpTa30L1mFUVFG3Q2fJlRTjdDzhGpKqXr/ydReMp9wyKTl+3/B6ssw77dX0vInx25kXl7PjAtmMu6kMgCqjD40CjP9NhrEYMpCR7iKa94ItB+dXnoPYSnwI8luDNdBxsHi53Dy/ncHxcHk204y9YB3KhS8p2zpJxMHijuc3qa6wCuhKQd0YIUlnep8fiJ0V1x3k7trpmDE6RezcfN/03LHj6k590IiDSPY9oPvEk6W03TWRwlVViFGViOSzkSi6Xp66YkKp10maCKKEYmhdxfshd8Gb87fn5Rx7YprS9KpvbS+8A+6170KmkbZtDmUTjmKSK1rN0IhP1F2UHwTGe8aedemYDq0gCCkhZOO3RA4XsHe/ZAFscn3nA3YJICqo+bTu2o5mtR8OxT0xvH2o1mwe9lTdK1fzviZF9Iwah5WQGSUunDC6IM2Z8AEUHC/ViaLjEbQ4jEi8RGIBmd7UyvYisJ+ZHH+TPdaC9fD1J/09hKNB/sntjPGsW3QdFHw9BbCsfdaoaGaLZFS0lA7B21OiFjzJJYv/yYA8ZqRaCaYCfdQEYjPdHJP2RYI93kzSkro3boaO6Jj520qRkzhxMTXiOWjyJyJoZdA3sIwIlSUNWPuypNLOxXqcqSJp0JEKqYTn1fF64/8f2z6/jdJNk1GK4nTt3Ud+U5ncqzquFMxY4Vk+6IkStmCkyhbcBJdS56j/d77kLqg+vjTwLYxezrId7STT/WQ3t1C3+uvEaquou4Ln0SvKUeEbMIjSglfvJB4yQkkIjnW3nwv2BYNn72WzoceAqB/wxoaTr2IZMN4/1kpKhwjQI/HSIyb5D//nr0XabBTBz8+HMhwsBuRSIQ//elPfPOb3ySbzdLU1MRVV13Fl770paLt1q5dS3d3t///l770JdLpNFdffTWdnZ3MmzePRx99dL8rwn7jG9/gG9/4BjfeeCOaNjg1zTvFAeesGjjolzLYsR0wdfyGOwqqHOC/BTyhKiBYOS+OoYUyR6QqhJ4RjjHmpg/SctuDrL3pXn+7qg+fQdmCmc4zP2B6xRt4F8LQnKS5lq35irkQEs1LpBtoiJSCqOZ4Nek93bx67V3oOpz42ZlMPa+JsqoQWVfKb81EMPOaG9rnHDNn6cTDzpvcloKwO2IIGyZl4Qxh3cJ0t+3IxMnblt+ZjoQKNdM1HCEv4SYrDWlWkcBTHU3R1ul0GMfMKKHfipB2raJp6yRDGSwEpXqWlB3G7M0QiodovPAoTC1QkjxwD5wQO1H8fzAUTzhJflde9TMSE+sZ+/lzfCEneL0HMlQo31DLvWsWTLY+cJ+et9VQ2FKA0Kk4eYpzXa48ia2/fp7qkye5z3Vhv0Wfcfc7/lOnMPZTC701AEQqvURSxe3oXr2LdEthxmvcxTMx3PsYqqvgzN9dyua/r6H1+a3s3tpJzax6pl05h1y/yaiFY+k1Q/41MK2CH/OIU8dzzNcEr/zvc+x6eHXRMfWYQaKhlClXHsPk901ES8SxZeHeBKk5bgw7HlzF5r+sZPOdy6mbU8eM940lpFmOgAlYCEKAJTXfey4vDVLSKa2uCxvd/x7bRII9zbeKDfudP/EQimT/CtLpNMuWLaOyspKpU6cWrctkMvz5z3/mox/96DvUureOlPgV8xzvD+GW6i54VDkbFn/O7/cO8fX1vbCGmPTwvYvAqd5sO2KF5h7PDhXCzrxOatSKM/GUK9n6wj1sePQX/r5GTTmH+tpZTihIHsjbSE04AwpPLPNmWt3H3QoHvH4M4ZddlkYhUa4dAitkYYUgl+5k+x23IsJhKi84n+TsuRixRMEly3Y99SWFpODewMCLcR4gVgmvBHrh6+hXmgpWi7LDFGbVPVHJC79xZ5ytdue9Fa8d7YY9ONfVb4d77loOZF8KPRqjcsYJCF13Qiw8L4g86DnpC1TgilV527l2lvRLiNuWxeKnb6Gsejzj534AIxz3xSepOecc9HjwS6aHipdJr4S8XhCr0KQT+ud5bGveZJhT1c6rbGe4wpUQ0rfBptRIW2EimsmYM8aRtkLMvvYYVv5mBSMWjkWr7CeVDvv3QgiJ4YYTeh5bVV84De0LpxI2sr4tD8VDJEI5wrpZ9M7dumwPPTucIheaodF00XTachYR3WTcpBCRP1zC2vvX0/b8FtLb24jPGkN82kJELk3p/OmEQiaaZjteELZAup4YyVNnI8jS/vuH6HuqkKsMQI+FiDWWUfuRUyk/Yy6mXgJk0XWbaMTpqxi6jaHZVB3bTOdTq2h7YCktf3yRhmMbmXXBKEKa5XvfatjowsaSGiOMLix3CNhrR+i3I4SFSdR1YdCwKTcOYQ3yd7HdGMhwHWQcLJqJ79kCFFVkK3jJykAC8MDEsgxsP7DbKPCTQANIoRU8qUTBJnmCl//+MgVGBt/LQ7PAEEnGnPtJWp66m+13/sTfZ9XJZ5GYfJRT+EIUHi0jLWBAKk9hO9XUpGtPrMgAu0jBpkkNLN1C6pDp2cOmu36AHotTe+77KJ0+Gz0WL4SwW+7nPFEqENqu55zlXjilk8xeOgmt9YIIYFkF0+BdMc/2+eJhQKwK2nKrwxlAx6tG+RMc/tDAE/5yznFlf5pwpISGEcc6xRxMidQKhlxqbtXdAZ5ZXrJtD9s02fjdmyiZMoPac9+PHo0WbLRnJ72Jd++EdFk0sPG8pzzhCtwxqHstvGbZfgfEidwQ3jhSOicrpEbRS0WCYUJ97WwsW2P05DPYufl5KhqnYUUckQrc366IpucKnmAjzrqUpgWXIvslljsZFoqXIlMm5Is7SR3t68nlHKFKNyLUNR2LyEOoz6LSqOOos77Erh0v0t2yGqu9lZKmScRPGY+dylA2ZTY5DTRLYA5IdZdccAK2yNN1/0N0P/d00ToRiRCqrabig+eROOkY9GgYdIlm2GhGYcwaNkzK5jTTs2QdXc8toue554hNmULpzDlF4rR33+SAV5nUCus84VhYoA3ORnLwDAO7MWfOHBYvXvym28kBYpkQgptvvvmgKxGmUikuvfTSYWdDhnWC9YMlPraO2ovmseU7f/WX9S9bR9VF8w/pcdKb29j78HI6n1qJlcmjh3X0aIj33nUB9TW2K6IcwgH7W6R7UwdCF5Q3JQfay0FMPHM0S36xmtU33sOIK0+jZFLjm3xiaKz+DEZpjK7FG9j0/QeZ9F8XH9R+/hU0XjiH+gvmuvdNHlAFhaGQUrLhew9ROrWB0tnNiJBOYmQZs7+8kFAyQnB0HqmIMfkjs5n60aMwNMsXxWz/Tb3vN+KYcydRN38se5e2kOvLctQxYXrKGiCe8LcJ6yamjVuWfvBLqGeDk/x9850vUDGlllO/cyoja/JAbtC27wTDYabj7WDdunWceeaZbNu2DSEEJ510En/4wx/8mPTu7m4+/vGPH9Zi1eFCSfVoGsbPZ8PSP/nLOlpXUz/+hEN6nHTbdjpWLab79ZedhLKajp6IM+KLX0RLxJwO2zAaOGf3tCLCEYzS8jfdtnTaXNoXP8XWv/yC+gXvJV494qCOaeZThMIltO96DV4RTJ73kYPaz7+CaR+eyagPHsvu/iQZk0NiN/725cWMOaGeUdNL0QxB+bhKTvn6sYTiIYJ9ilhVnPEfOYbxHzmGXX2l9KUjICEUCrhA7IPSM+aROG4G5ro12Jk8ycn1NI0VREpCZCyDHV2OZ5SZBWnbvkAZpH/jbhCCDXcsoWJmIwtuOZWRVRmU3fjXM1wHGe92Eg1jqDpqPjv/Wchh17duJRWTjz6kx0m1bWPv64vpWv+KM0AVEEqW0fzJ6xDxQ1d5+VCRaW91Qg/jQxcsCVI1bg5trz/LyqV3MG7iuUSjBzneSPVhlCTpXbEMoWnUX/Shg9rPv4LRk8+kYe7Z5BKCLIfCbtgs33oP9WVTiIUrAEhWj2HM7IvQ9BDkC52KSLyMxtln0jj7TMy48HN5CW+ewBziAC6lp51MyZw5pNeuB8siMnIURnkFWiSKHbaR0cJxpD10Rya1uQ00QfdDjxGdNIG6j36UkBWB/iE3/5dzJNmNgVx55ZXcfffdfOUrX3mnm1LEgYUBDuHdJBjCc8X/15253Je3ladcDwj5G7yfAlIGSoUjArmJCssiMs2Onz1KtLGcsoVHsfdvL2K19yD7+tFLY4P25+XAKg7zK/bY0nAUdw0n1G/nTx+i4/kNhCriNJ8/hWR1BDuVZvy542mqyxESjmdT2g6zN+e8rDuyMdJmiHQ+5HsDxcN5yqNpDGFjSo24O6tYGkpTE+4jJAphfm25JJ05J2TPRrA75ezXCSnMUxrKFnkZZazC7Y0bOWrGlSAtyZZXe4lOqfTPLarnCWsmJXqWMiNNyLYoG2dw7q0ns+jWV3n9879m0ncup3SmEycb9HDy/vbumz5gGitSHmXKf19K61+XUTq7qeg+D/SUGmrZwPxX3j0eePyBBJOue9sNDCPUBmzje0RLQXpHJ8uuupN4s1M1o3r+eJovP7bIK0wMkZcteP17Vu6k7bFVtD22ihMfu4Fj776GkqQgZEhytpMLRRMSQ7P9c7KlwLYEptSK2qsJ6W+v+aEpGob7bERLw4w+zSl3ntNMNNvAlAJD2Ehbsv357Tx9nZPEcO6XTmLE+V5CRgPT1tjz7Caq54+nYvZoRpw1CSthk7Z6KdGz/iw/gIXrVeVe9pA0saSgV0YJCYuwOxWa1DJwKD2rip0h33zbw4Qvf/nLzJgxg6VLl9LV1cV1113HiSeeyFNPPVUUl344I7zQP3Bc7k1RKJ8NxdO2wXsnhljvbyOcBOxeaINgkL2QrmeLN7vtzVx6LvpCD3hDmZDJ5Nj86v1Ey2qpHjOXXaueJJ3uIEsGQ8QKHluWdLxvNRzPLfd4tls2XGqFPFS24Xj3WCHI9Xew65F76N+wBj1ZSumJJ6KVxLHMLCXHHwsVEWwpnXwZtvA9BbxZcSED+TY0iuxmcObdnZR1Op9euF1eoGfcGeNAnhIn74j7OW/W2iur7u4+UlmHzGXJ7t5BtGFk8T2SzvaOhxTEKxoYdcEV7F70Nzb+9vuMv+RzlFQ5733dDfVzwgFdzypLIvKyKEcMQDiSZNbRV7FjxwuUN07x26q5HlXCcma7veszyHlWFDwV/JlY97pJrZDnEgp2x1sWLPQR0q0iG5OzDfqtYo9icLywYqEc2ZY2Nlx1O8mpjcicSd3pU2i8eK7/ngcIu17PcWOwoBPT8+xZvJU1j2xnw1M7+frSc/nGM6eSj5cQ1mygm5QdxpagI6mK9BHWnHDzqGHSEY2RswzyVrGy5Hl3aYEw2Ug4T0VNhpppNQCUhdNUhpzRwo5MOV39Ebpe2simbzqD8FHXXUDVWZML10az6Fq8keoFk6ia2UDj2VOxYyZpyyaimXRZjpexJQUJzbEjIWETcr+0eaGBBiEsoq57hi0F5j5s+kHxLrUbQzFcBxkHi5Z3vDXB9a5w3wF+smvc98CAdwcEPK0GvKucfQW9qoQz2LQk0i6Mb4JhZp7nkJFx+nta3vMqcnaYs9PsWnQ/kZoGkjPm0L7oYXKde8mFsmhu+fpg2POQz2Tw/e4Natxtst172f7E3fS3rMdIllNx3AK0aBjLMik75jhkaaSwO1m4NrbmhLp7SemDXkngeqZ63rSmRM9KhEFR+Fqo3/EskxpkS92+rxv27YdgBb2dZOG9G6mqxUr1kW1vI1JZi2bjhwM69kJipJ39l8dHMfH4D7P11b+z9Pn/4+h5nyVW4whWJhpSOGF2/r1zvaRsHE8nb043lCxn1Meupmvpc5RMnlHUniHxr7XneRvYMOARp/ljVT9ne2C86NrqoJHxP+deM812whqFQMvZfnt1QyDigszuHWy68/tEx4zFzqZJHn88FUfP93fv3S9b9/o6zsLgebW1r6atZy296d0sGPcpTpvweeyGaueDnXmssObaazfs3vXGsvMgQu4uA2kKTKP42OB6Kccs9JIIJaPcUMWcDnnNyZEnQOZt0stXsfenvwOg7roPUXnSRABioTyJUI7elzZQcvJRhBuaSJxwDFo2DCZY+yha6nm2Ba8HdmGZnmaQx+Jb4giyGwO55ZZbOO+883j44YeZMWMGoVCoaP2tt976jrTrgKsBBsWkocOr3JFFIKygeB+eH6j7gxwkUBXCAAd8ZsBxhRd2RkAs0Wy6nlpFvivFtP/5EHZdA2UnTmbjV37Dli/9gsbPXkBiWpO7H7DzNnZvP3oiTLxUo2fZRtoffoXRXzgfGYn5+7WlQNqQfnkD2370ELq0OOmbJzHxzCYwdAxhEXGtWo9p+OJI2gqTMp2wgLBmgYEf3geOUOQJETlb9zvGMT1PXM8xMtxBme74Nx6fSJORYdrNEnabpawLOaUoN/ZU09qfJBnOUhF1vrGesOG1vSMbRzSNBGBPq8WE6XkShuNDWWLkiAjneJrrrg8wbn4d1Uefx28W3EVq+Xrq59b7ObEOhHBFnNEfP8ltz9BKe/A6a0IOKVJ5BNcNJVwFRZ5gGGBw0FHwXAoqlIXcWFvufA6Zt+hf75T07VvXSs/qnaS2tCOlJD66ipIpI4hXRch3pag9Yxrhijjtr+ygfM5o0A3yve71ndyAJiThkjCmlEjLFZu0wec6MOQx+NtGgAQ7EHSfswz/GoQ1k/X3vc7ul3cRqy8lGpX0bulk0+PFSc7rTx7nn7cX3hKpTdL16naarzsPLS6wZRoLQV7q5N3jaW4QeVZqhFxRKitD2LZGvx3BloKk7uRWyel9lIiufdzBg+BdWoL8+eef5/HHH/crhDzwwANcc801nHTSSTz55JMkEok338nhgBfSZuGHD4h9CE3e11TaBVd8/44W2ZVCXIGw3SSnUvi5LoI2hpD0vRS9MIfgACdbAb0bl2KZWcZ+8N8Il1YSmTWNLX/8Ea89cRtNp1xKsrLJPRZIy8JM96HF4xAN071lJR0bljHqjA8hIuGCWBUCMyTp3biKtr/dg9B16i7/CLGjZiDCWvG5B13gA/khpXTPr0jIk24FKHc7v5MpwbCd39K7CGCldOyUhp4J5GCxA2JOIJRQDqiuFalzBg35VC8Rd9BYlKzeHwQ6v5MTp1PSPInXf/AV+rauoyzpTnLk3bCPvO1XThKW03EWAweWAqKRUsZMPNvJ/+WG+2jeyoEpB4Rz/fzaJzpDegIFCfZfvEMLUbAvQ4Wp21I479x95FHc9PNFAPSudopt9G1oY8/LO8lsbUMAseZqKqbWkawMIXv7mP2+JsIlIXa/spv6YxoxNIFMOe/QpmMdESlRphPXuv33sG7ZpKww6JC1DGJuLI8mJEbMJmWGyLk5MU3bmfSwpEZYt8i5IpaUgng4R0U0jSYk6/60gs7X2yhtiJMVEfas76HzuXVF51Y1bwwRL++WZhPWLWK1CbpfbWHEZ95LlwwhMiniRpaqcJ/fXhsNXUgSWpaUHfInP5JajiQ5osIm5F7zrBS02/sYsRwM71K7MRTDdZBxsGjBnFVuTiUnZ1VxhT8vifqgr6t0302BXFVeKJrtihJOOLlwQoHtQN4qN0eSF04IjqATsh3BIJg3a/e6xSBtRl/274iqUuITJtBy50/Y9sv/o+79lxGrH1k4vmVh9faiRxMI3aB37av0rFvBiPMvR2q6E9ntvcttSc+GFex8/B60aJQRF19BfOp0hK45EwwDbaMseiP6g3k9WyxWgTuBYhQmP6yIQIsKfwd6xtlrpNtGz9iYcR0z6tqSqGtDDfwKov79MnEmBMIQrXW8aq3+XrSyWidVhJfvKy/R8zgCmXsC1SNmUV4zkRcf+Dpde9eRjNf598grU+rnfBSugGG7/YTA/Q2VVlBz2nkDLsYQeCJWYDJDuIKldPNY+XENbg4rPzwQ55pKwx1HBvodVpjCjr3+iSXQTO9BKgidWt5GMwWtj90HQGbzJgDa772PzMq1ZHfvRCCI1DcSqx1FKJxAdvczqvZYND1E986N1ESbEHkLK+OMEyvizvMWMmLIrgxWwp2lsw2siObab4mR8jpgzgUIJp+3g0JVQAwkahNO5BCaJJcK0fW3ReQ2txEqrUQTGtldO0mtWlV0mUvnNJGIOKpzeSRNeSRNoi5O78pNVF50CUIzEDbYEVmU/N65HyBMJxzSfzbTOOeQB3cIS6hfYqcP5STHkWM3BvLtb3+bRx55hEmTJgEMyn34TnGAnlUE3gpDbeAtDwhWAzcuOlfpJ21/M48q4e7bRhQl+/aunel2wmwbdtz7MiNOGEHl2FLaUxAbXc3Ib/8bu2+7l61fu5NQQxXhkbWYbR1kt7WBlIiwgREPk+9yvvAyl6fkmIlousAoT2DlbDoee4W+VzZTPb2G0/97AYm6BGkrhJnX0YTtiFFAn+m8HGwp6MzEfIHHsjXChkk8mve39bbLSR0zUOqimxi2FEVeLWFhkdTS1Ee6aQ7voTHUBTjeTCv2NtKTjfqJ26NuYvWwZmFoNqatoSeiCF2j5/VdJN9TQ6nhdIrj7vSVJTVSVsGdWBcSwxBEKmLseWINE646Ec12Ouhero195YMaioGeQs59LX6QBoo3+8pr5R17oKg1cMbb28fAdg6VB8uWAsvWEEISrRksEnQs3kS0poQRC8ez99WdtD2wlGyXcw033fGCv93cn3+U+NhaKo5uZsynT6Pm5PHF7XN7I17FR0OzMQZODTI4V5Y2wLPRO/d0R5q2F7bS9twGWp5uAQmRuIYmoHFi3N9+/vfPofLYMZi2ViiA457/hI8dywuf+hO96/eQmOuUldeR9FkR+qxiF3NbCl+YLdGzhDQTW2powi48rzp+HpJDwZC5J95g2wPhlltu4b777mPNmjXEYjFOOOEEvvOd7/gva4C+vj6+8pWv8Ne//pX29naam5v57Gc/y6c//Wl/m2w2y/XXX88f/vAH0uk0p512Gj/+8Y8ZOXLkUIcFnHxVhlH8Gv7Rj36EpmksWLCAu+66ax+fPIwIaNTCEk7OKhu/h+h451IYXASXu7sY0uwEngnp7lsGjYLnfeTPDrp2Q+CXpPZzQIVNOl9aRHzWDOSYSvJ50EsbGfVvn2XXPb9n3V9/SKSqjnBFDbnOvWTbW512GSG0cAQr1QeAKUwS4yaDoWGUJLHsHF3LXiCzaSPRsWOp/chHMZJJ31OgkHwr8NwO8lSWfvJW/3yFK1Tp3np3W9eeaoaNEbYw3EkRu0Qjmw5hpQy0tCv55IR/vYVduLZSd2esTed4oYSTmDO7fRulY6a499HdODBL77VNs0AQQo/G6Vr7Mk3jTwecgYmetTHSFsINSdBMt1PoHdydObcNgZa3EXbBK0+ENacz64lwfu4R4XhZBVKEFFUDswr7lRYITYBeGJhKWxuU92EgRZ6vQvi22lvuvFMFRnXFoM/2vLgeo6aS2FHT6F+7kZ5Vr2L3OR5Mr/18mb/dRfd9gNrRUcYtaOTML81g6tnOYC84YQAQ8dwTLPyKWc6ls/2fnF0otGLaGqbUyAjDf99btobV0cPqxZvYs3gznS9scK5bJASaRqix3t9vw9c/Tv1xjZREskRcz++obhLWLKZdOZdnrr2fXMtuSiY1YtkaOdvAkppvCzRsMnbIn+DwvXKxSGg5J8+hr2ULrDcdZe4/b6fdGG4M10HGwaKZ+AK+CAoidkEoErYsiFeeKBX4ThQlVXfHEEXzk774IdzxjSgsFzhjA09jcAfMmnC8RJESaVu0vf4s5RPnEIqVYucgXjOapk98hp1/+T0tP76VcF09oapqcnv2kN/jTH6KUBgtFMJKOe8BiSQ+ejxC0zBKSrGzaTpffoH09s3Ex0yk4ZKPoMcTDMrh49kOd3IhWEER4STttmJO2/0k59L10DEK+7LcfQnLEQA8UUlqAivivHe9CQY944gHfl5Ddx9Gxt1GgBkVxIxyADIt2yirGueKVe4+8tLxyLUKwo2wbEJWCE0zaNv1Ks01xztt0AW64eTS0gP3yxPqRPCauBMvvpjnXgdHO3IKkfivUneyRwa8lH2PbzcXl+15RpkF4cq3wbprujTn+SzkUBRFkziAE14nNH9o7D1nWl4S22sRi1SRYjNB+teuIlJRS2L8VPq3rCW9dTNW2nledvGQv92CWdejyyj1ZVMwZY7G0mmu2Oq13bO1tlM1NySKvAs1U2Jknar2eF19dz5okG+CbkNPJ12L19GzdBOZV153Ng+HQWiE6mr9TRtv/iSVsxspiWYpjzrj6vJImoSeY/LHj+aFG/6B2dpOuKHev2d2OBBuLh2hSrj5s9x5cEJ9EO20MTLS99C2dUHGOHQv8CPJbgzk1ltv5fbbb+eKK654p5tSxAGJVXY6OygZrhOWN4Qh9DqUgW0JLHL+lr7bfXAXjtEIDFSEdCbm3YFHMOk5OKEBptuhTa3eRv/GNmZ98gyqZDsh3flyhxrjGDdeRteLW8m+vp787k4izXVUnTkDPRJC9PcSMVOUjq0kvX4X6+5fR/fLm4uMXWJsNdO+ehajTx5NN9DdDnm78JY03Q5i3tIxpeYkaJc2eddv1JY2tm6SypvofiJ0pwNnSc0P7wNIS0FaC5ExknS7L5DuMIwJpakKpWjQcozHGSCNiW1jdV0j3Vbc79R25eP0utnxhDv10LG1G2nZjBpjUJLtQuQ8d3zLb4NEYLl1cVOWxtYVraR29zH64tnYqQyanUNIgY0Ysjpf8Fl4I6HJz6gR8JKDgIg0YHZ7X+F+duD5K4RsyqLBxVBtC86MBz2yvG3q338M0YYypCXJ7ekh19ZN78Z2Ui2d7HhqA2Pm1UK9ze6WMJ2beoraFK6MYfdnEAjqz3YSZpv9Wf+cgrKUJSQ58ENENCHR3bAUTUj/OmlCIt3/B173p665n/S2TiIVUZAQLTVIlgr2bM+z8RXnGREhQXzKCNK9xQKSF6Lev7MbgGiZTl+3jZ4FETWwZYi+vPMA5t1ZelsKkmHn+a2N9FAf6aEh3E613keZ5RilEjNLrv9QhgG+fTMdixYt4pprruGYY47BNE2+9rWvceaZZ7J69Wrfs+kLX/gCTz75JL/73e9obm7m0Ucf5eqrr6axsZELLrgAgM9//vP87W9/449//CNVVVV88Ytf5LzzzmPZsmXo+tBuHpMnT2bp0qVMmTKlaPltt92GlJL3vve9B3QuwxE7k4G8857UbMAUjit98LupO4OCwSHlstjrZ+ArJ9Ah9W2Gt60mnR6m531kD2GP3GclvXINZuteKi5/Lzk95Sdj1yrKGPGxf6dv0+ukN24g39lOePQIksceh2aEMFN9yHyeSH0j6c0b6Xl1KX0bVxc9g+ERI6m9/CMkJjkhVDKVKZoZ920pBKZyi4Up7xz9cD8hC4nDg4Mv9zrYusQybKyw8x00Qha6zGAKg7xwizX4CWEdbyst5+4o5w5Wcs7AJ9u6FYBotBLRkRnUpoGeYSIHqa0bsTL91DcfD93uBJApkTkb2W9C3rWJVuBtKAqdaGlozo+gIDTlNaeqY1jDzgukl1Q2BDIvkOHCgEG6Zcql7q73qgEaznWTIYkIuRMuug1hy/kdssCw3HO0EYaJ0Cz3wQWp2eQDIX1BD9VyPc1xV01ix+QoUkq6dqbp2dFP/6Y28rs6SC1fSXTSGKyyUsy2dszdhQp5ALupxe7IUBnOMfm9Y7GBdF8OS8tjCemLP7a0yUmbvAW6zPuetiE0sDWEraN5fRFpIC3DCZq1dGzTWW6aIV6++i7y7b1oZc47TiTjCCOE3dlNbuNWd1mMxqPKScoOInmLuHQsRshyPWt3dQIweWQPsUieslCGKvqozfeQsBwvbxvolGHaZJKcNDA9T11sknqGCq2fiJ8sBXr6DqGwcgTNkA/XQcbBYmUzhUkF10lFZEFkJZYrepC1kXlH7B5yQkMMXOAu894poni53810K9854kZgW3d7kZPYOrS3riSX6mLEjGMxcxk/VVskWknTBz9N947VpDZvIN/VQaR5NMn5x4NhIHt6kXmLyIgRpFe/Tu9ry+lds6LoGYyMGk3tFVcQmzgBS4JF2vkyuaKUE1LvtscVqfRUwHvJq+7qhVAG7IntVqH1wwBzfrFS9H5JqMt5v+m9JlZYw7Y891tHQChUcC0Ih3pOgi2xwxoyLujf7QjgSbucSEu/W5XQ7c/nHZFRy9kI1wZoWYuOPWuxbZPayFjsjDN2syIRzJyOqWuYboEIE4EpnPB6K0ShsEbYsYm2Z/c9hhD4cNNZyMBkiZDuZJopsG0RCN8UTrhcIKG8lgdpOmGBXhi8s63EtsGShaJcTqg5heqUfii+xEiZTKxdyO6Y48Hcb3WRyXSS6thBtrMNe4NNorEZs6TMCS/t2ksQuyRGLmshRIgR4bkA5O28qzZpSNMNsc4aWJpTfV5K4XsX2pZzruRAekVoTNcrXAPLmxjDSe6/4cs/RqazCLdvrCVKEJqG1dtDbpsTxaHXlFMxpYKo1UM0nyXhRgeVkELXLDKtzphJRCLY6YxTHRoQqcK10bIC3RVO9azjPQXOb73PwjYEuahzY/MJQU47hHkSjyC7MZBIJMKJJ574TjdjEEK+2ZQiTkWqMWPG0Nra+q9ok0KheJdQX1/P5s2biUajB/X5np4eysrKOGXef2AY+7cP08zw1JL/R3d3N6WlpQd8zD179lBbW8uiRYs4+eSTAZg+fTof/OAH+frXv+5vN3fuXM455xz+67/+i+7ubmpqavjtb3/LBz/4QQB27tzJqFGj+Mc//sFZZ5015LFuueUWnnnmGf7xj38Muf7qq6/mpz/9qZMP4DBD2Q2FQnEwHI52452mvr6eZ555hgkTJrzTTXlLKLuhUCgOBmU33jq33HILu3bt4oc//OE73ZQi9suzKhqNsnnzZnK54VHhRaFQHB6Ew+GDNhxFHMRMR09PscdbJBIhEnnzqjnd3Y6XWWVlpb9s/vz5PPDAA3ziE5+gsbGRp556inXr1vF///d/ACxbtox8Ps+ZZ57pf6axsZHp06fz/PPP71OsuvHGG7nxxhv32ZYf//jH/PjHP37TNg9HlN1QKBQHwztpNw5XPve5z3HbbbcNu0HGgaLshkKhOBiU3XjrvPjiizzxxBP8/e9/Z9q0aYNyH953333vSLv2OwwwGo0emodAoVAoDhTJYHf+N9oWGDVqVNHim266iZtvvvmNPyol1113HfPnz2f69On+8h/+8IdcddVVjBw5EsMw0DSNX/7yl8yf71RsaW1tJRwOU1FRnLOmrq7uiJ4hVnZDoVC8YxyE3ThcGa6DjINB2Q2FQvGOcQTZjYGUl5fzvve9751uxiAOvLSbQqFQ/IsR0q0Ytp/bArS0tBS55e6PV9W1117LihUrePbZZ4uW//CHP2Tx4sU88MADNDU18fTTT3P11VfT0NDA6aefvs/9SSkPy+S2CoVCcbhzMHbjcGW4DjIUCoXicOJIshsDueOOO97pJgyJEqsUCsXw5yDccktLSw8ohvwzn/kMDzzwAE8//XRRBb90Os1Xv/pV/vKXv3DuuecCMHPmTJYvX87//M//cPrpp1NfX08ul6Ozs7PIu6qtrY0TTjhhv9ugUCgUikPEERTOMVwHGQqFQnFYcQTZjcMF7c03USgUincYr4LK/vwcoO2QUnLttddy33338cQTTzBmzJii9fl8nnw+j6YVvy51XfcTn8+dO5dQKMRjjz3mr9+1axcrV65UYpVCoVC8E7yNdkOhUCgU70KU3Rh2KM8qhUIx7Hk73XKvueYa7rrrLu6//36SyaSfY6qsrIxYLEZpaSkLFizghhtuIBaL0dTUxKJFi/jNb37Drbfe6m975ZVX8sUvfpGqqioqKyu5/vrrmTFjxhuGCSoUCoXi7eFIDudQKBQKxYGj7MbwQ4lVCoVi+CM5ALfcA9v1T37yEwBOOeWUouV33HEHV1xxBQB//OMfufHGG7n88svp6OigqamJb33rW3zqU5/yt//f//1fDMPgkksuIZ1Oc9ppp3HnnXei6/qBNUihUCgUb5230W4oFAqF4l2IshvDDiVWKRSK4c/bGEMu92P7+vr6N80JEo1Gue2227jtttsO6PgKhUKheBtQuUcUCoVCcSAouzHsUGKVQqEY/tjA/hbVs9/OhigUCoXisEDZDYVCoVAcCEeo3ejv7+euu+7i+eefp7W1FSEEdXV1nHjiiXzoQx8ikUi8Y21TYpVCoRj2qBhyhUKhUBwIR4rdGM6DDIVCoTicOFLsRpDVq1dzxhlnkEqlWLBgAaNHj0ZKSVtbGzfccAM333wzjz76KFOnTn1H2qfEKoVCMfxRbrkKhUKhOBCOALsx3AcZCoVCcVhxBNiNgVxzzTWcfPLJ/PrXvyYcDhety+VyXHHFFVxzzTU8+eST70j7lFilUCiGP0eg8VAoFArFW+AIsBvDfZChUCgUhxVHgN0YyJIlS1i6dOkgGwIQDof56le/yrHHHvsOtMxBe8eOrFAoFPuLZzz290ehUCgURzbDxG5861vf4oQTTiAej1NeXj7kNtu2beP8888nkUhQXV3NZz/7WXK53Jvue8mSJXz9619/w0HGkiVL3uopKBQKxZHBMLEb/0oqKipYv379Ptdv2LCBioqKf2GLilGeVQqFYvhzhCY8VCgUCsVBMkzsRi6X4+KLL+b444/nV7/61aD1lmVx7rnnUlNTw7PPPkt7ezsf+9jHkFK+aXVZb5CxrzC/d3qQoVAoFIcVw8Ru/Cu56qqr+NjHPsZ//Md/cMYZZ1BXV4cQgtbWVh577DG+/e1v8/nPf/4da58SqxQKxbDnSEx4qFAoFIqDZ7jYjW9+85sA3HnnnUOuf/TRR1m9ejUtLS00NjYC8P3vf58rrriCb33rW5SWlu5z38N9kKFQKBSHE8PBbjz11FMsXLhwyHUvvvgixxxzzJDrrrjiCn79618XLZs3bx6LFy9+w+PdfPPNxGIxbr31Vr70pS8hhKPWSSmpr6/nK1/5Cl/60pcO4kwODUqsUigUw58jMIZcoVAoFG+Bg7AbPT09RYsjkQiRSORQt6yIF154genTp/tCFcBZZ51FNptl2bJl+xy0wPAfZCgUCsVhxTAYb5xwwgns2rWraNnXv/51Hn/8cY4++ug3/OzZZ5/NHXfc4f8/VIj4UHz5y1/my1/+Mps3b6a1tRWA+vp6xowZc4CtP/QosUqhUAx/bAliP42CrcQqhUKhOOI5CLsxatSoosU33XQTN9988yFuWDGtra3U1dUVLauoqCAcDvuDhjdiOA8yFAqF4rBiGIw3wuEw9fX1/v/5fJ4HHniAa6+91p+Q2BeRSKToswfKmDFjhp3tUAnWFQrF8OcITHioUCgUirfAQdiNlpYWuru7/Z8bb7xxyF3ffPPNCCHe8Gfp0qX73dShBiBSyjcdmAQZM2YMxx9/PMcff/ywG2woFArFYcFB2I2enp6in2w2e0ib9MADD7B3716uuOKKN932qaeeora2lokTJ3LVVVfR1tb2lo/f0tLCJz7xibe8n4NFiVUKheIw4EAMhxKrFAqFQnHgdqO0tLToZ18hgNdeey2vv/76G/5Mnz59v1pZX18/yIOqs7OTfD4/yOPqQHmnBxkKhUJxeHHgdmPUqFGUlZX5P7fccsshbdGvfvUrzjrrrEGevwN5z3vew+9//3ueeOIJvv/97/PSSy9x6qmnvmXxrKOjY1AurH8lKgxQoVAoFAqFQqHYT6qrq6murj4k+zr++OP51re+xa5du2hoaACcpOuRSIS5c+e+pX17g4zbb7/9UDRVoVAoFANoaWkpKoSxr0mOm2++2S+4sS9eeumlorxU27dv55FHHuHPf/7zm7bjgx/8oP/39OnTOfroo2lqauLBBx/kfe973z4/98ADD7zhfjdt2vSmx347UWKVQqEY/gyDhIcKhUKhOIwYJnZj27ZtdHR0sG3bNizLYvny5QCMHz+ekpISzjzzTKZOncpHPvIRvve979HR0cH111/PVVdd9YaVAGH4DzIUCoXisOIg7IbniftmXHvttVx66aVvuE1zc3PR/3fccQdVVVW8973v3b82BWhoaKCpqYn169e/4XYXXnghQgjkG5z3gYSkH2qUWKVQKIY/9gGE96kE6wqFQqEYJnbjG9/4RlEIxezZswF48sknOeWUU9B1nQcffJCrr76aE088kVgsxmWXXcb//M//vOm+h/sgQ6FQKA4r3ka7caAeuVJK7rjjDj760Y8SCoUO6FgA7e3ttLS0+B67+6KhoYEf/ehHXHjhhUOuX758+Vv28n0rqJxVCoVi+CPtA/tRKBQKxZHNMLEbd955J1LKQT+nnHKKv83o0aP5+9//TiqVor29ndtuu22foSRBGhoauPfee7Fte8ifl19++W07L4VCoXjXMUzsBsATTzzB5s2bufLKK4dcP3nyZP7yl78A0NfXx/XXX88LL7zAli1beOqppzj//POprq7moosuesPjzJ079w1txZtNiLzdKM8qhUIx/Bkm4RwKhUKhOEw4AuyGN8jY14z4Oz3IUCgUisOKYWQ3fvWrX3HCCScwZcqUIdevXbuW7u5uAHRd57XXXuM3v/kNXV1dNDQ0sHDhQv70pz+RTCbf8Dg33HAD/f39+1w/fvx4nnzyyYM/kbeIEqsUCsXwZ5iEcygUCoXiMOEIsBvDfZChUCgUhxXDyG7cddddb7g+OBERi8V45JFHDuo4J5100huuTyQSLFiw4KD2fShQYpVCoRj+DKOZDoVCoVAcBhwBdmO4DzIUCoXisOIIsBuHG0qsUigUwx/JARiPt7UlCoVCoTgcUHZDoVAoFAeCshvDDiVWKRSK4Y+a6VAoFArFgaDshkKhUCgOBGU3hh1KrFIoFMMf2wb2s+qGraoBKhQKxRGPshsKhUKhOBCU3Rh2KLFKoVAMf9RMh0KhUCgOBGU3FAqFQnEgKLsx7FBilUKhGP4o46FQKBSKA0HZDYVCoVAcCMpuDDuUWKVQKIY/w6iUrEKhUCgOA5TdUCgUCsWBoOzGsEOJVQqFYtgjpY2U+xcbvr/bKRQKheLdi7IbCoVCoTgQlN0YfiixSqFQDH+k3P8ZDOWWq1AoFAplNxQKhUJxICi7MexQYpVCoRj+yANwy1XGQ6FQKBTKbigUCoXiQFB2Y9ihxCqFQjH8sW0Q++luq9xyFQqFQqHshkKhUCgOBGU3hh1KrFIoFMMfNdOhUCgUigNB2Q2FQqFQHAjKbgw7lFilUCiGPdK2kfs506ESHioUCoVC2Q2FQqFQHAjKbgw/lFilUCiGP2qmQ6FQKBQHgrIbCoVCoTgQlN0YdmjvdAMUCoXiTbHlgf0cALfccgvHHHMMyWSS2tpaLrzwQtauXVu0jRBiyJ/vfe97/jannHLKoPWXXnrpITl9hUKhUBwgb6PdUCgUCsW7EGU3hh1KrFIoFMMfKZ1Ehvv1c2DGY9GiRVxzzTUsXryYxx57DNM0OfPMM+nv7/e32bVrV9HP7bffjhCC97///UX7uuqqq4q2+9nPfnZITl+hUCgUB8jbaDcUCoVC8S5E2Y1hhwoDVCgUwx5pS6TYP6MgD9B4PPzww0X/33HHHdTW1rJs2TJOPvlkAOrr64u2uf/++1m4cCFjx44tWh6Pxwdtq1AoFIp/PW+n3VAoFArFuw9lN4YfyrNKoVAMf/Z7lsP2S8n29PQU/WSz2f06VHd3NwCVlZVDrt+9ezcPPvggV1555aB1v//976murmbatGlcf/319Pb2HuQJKxQKheItcRB2Q6FQKBRHMMpuDDuUZ5VCoRj2HMxMx6hRo4qW33TTTdx8881v+tnrrruO+fPnM3369CG3+fWvf00ymeR973tf0fLLL7+cMWPGUF9fz8qVK7nxxht59dVXeeyxx/ar3QqFQqE4dKgZcoVCoVAcCMpuDD+UWKVQKIY9pszu9wyGSR6AlpYWSktL/eWRSORNP3vttdeyYsUKnn322X1uc/vtt3P55ZcTjUaLll911VX+39OnT2fChAkcffTRvPzyy8yZM2e/2q5QKBSKQ8PB2A2FQqFQHLkouzH8UGKVQqEYtoTDYerr63m29R8H9Ln6+nqqq6sHCUpvxGc+8xkeeOABnn76aUaOHDnkNs888wxr167lT3/605vub86cOYRCIdavX6/EKoVCofgX8VbsRjgcfptapVAoFIrhirIbwxclVikUimFLNBpl8+bN5HK5A/pcOBzeb6FKSslnPvMZ/vKXv/DUU08xZsyYfW77q1/9irlz5zJr1qw33e+qVavI5/M0NDTsd7sVCoVC8db4V9gNhUKhULx7UHZj+CKkCrhUKBRHMFdffTV33XUX999/P5MmTfKXl5WVEYvF/P97enpoaGjg+9//Pp/61KeK9rFx40Z+//vfc84551BdXc3q1av54he/SCwW46WXXkLX9X/Z+SgUCoVCoVAoFArF4Y4SqxQKxRGNEGLI5XfccQdXXHGF///Pf/5zPv/5z7Nr1y7KysqKtm1paeHDH/4wK1eupK+vj1GjRnHuuedy00037bOqoEKhUCgUCoVCoVAohkaJVQqFQqFQKBQKhUKhUCgUimGD9k43QKFQKBQKhUKhUCgUCoVCofBQYpVCoVAoFAqFQqFQKBQKhWLYoMQqhUKhUCgUCoVCoVAoFArFsEGJVQqFQqFQKBQKhUKhUCgUimGDEqsUCoVCoVAoFAqFQqFQKBTDBiVWKRQKhUKhUCgUCoVCoVAohg1KrFIoFAqFQqFQKBQKhUKhUAwblFilUCgUCoVCoVAoFAqFQqEYNiixSqFQKBQKhUKhUCgUCoVCMWxQYpVCoVAoFAqFQqFQKBQKhWLYoMQqhUKhUCgUCoVCoVAoFArFsOH/B+ZQxt0X5oD1AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, len(era5_var_IDs), subplot_kw={\"projection\": ccrs.PlateCarree()}, figsize=(4 * len(era5_var_IDs), 3))\n", + "for ax, var_ID in zip(axes, era5_var_IDs):\n", + " era5_raw_ds[var_ID].isel(time=0).plot(ax=ax, transform=ccrs.PlateCarree(), center=False, cmap=\"viridis\")\n", + " ax.coastlines()\n", + " ax.add_feature(cfeature.BORDERS)\n", + " ax.set_title(var_ID)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Static gridded data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will often want to leverage static variables in our modelling pipelines. \n", + "These static variables may provide information that aid predicting our target variables.\n", + "For example, topography will affect surface temperature and soil type will affect soil moisture.\n", + "DeepSensor classes support these 'auxiliary' variables with no time dimension.\n", + "Here we will download 1 km resolution elevation and Topographic Position Index (TPI) data from EarthEnv, as well as a land mask from GLDAS." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T11:37:41.573819333Z", + "start_time": "2023-10-27T11:36:40.554375677Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\nDimensions: (lon: 6600, lat: 4200)\nCoordinates:\n * lon (lon) float64 -15.0 -14.99 -14.98 -14.97 ... 39.98 39.99 40.0\n * lat (lat) float64 70.0 69.99 69.98 69.97 ... 35.03 35.02 35.01 35.0\nData variables:\n elevation (lat, lon) float32 0.0 0.0 0.0 0.0 ... 260.8 261.6 261.5 260.6\n tpi (lat, lon) float32 0.0 0.0 0.0 0.0 ... 0.03906 0.07812 0.1641", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.Dataset>\nDimensions:    (lon: 6600, lat: 4200)\nCoordinates:\n  * lon        (lon) float64 -15.0 -14.99 -14.98 -14.97 ... 39.98 39.99 40.0\n  * lat        (lat) float64 70.0 69.99 69.98 69.97 ... 35.03 35.02 35.01 35.0\nData variables:\n    elevation  (lat, lon) float32 0.0 0.0 0.0 0.0 ... 260.8 261.6 261.5 260.6\n    tpi        (lat, lon) float32 0.0 0.0 0.0 0.0 ... 0.03906 0.07812 0.1641
" + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "auxiliary_var_IDs = [\"elevation\", \"tpi\"]\n", + "da = get_earthenv_auxiliary_data(auxiliary_var_IDs, extent, \"1KM\", cache=True, cache_dir=cache_dir)\n", + "da" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "hide-input" + ], + "ExecuteTime": { + "end_time": "2023-10-27T11:38:27.416910413Z", + "start_time": "2023-10-27T11:37:41.570062969Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAAMWCAYAAAAXv4VCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Al133eD3/O6XjT3MkzmzOwyBkgQFIMYBJJUVm2SNMKLJml8Eqqol67LFlF0T+X9EouK1iSLSuYlJX4k5VIKlCkSJEiCYAAkePuYnOePHNTx3PeP0737Z7ZBYlAgEugn6qtmenb4fTpBu7TTz/f5yu01poKFSpUqFChQoUKFV7mkN/oAVSoUKFChQoVKlSo8FKgIr4VKlSoUKFChQoVXhGoiG+FChUqVKhQoUKFVwQq4luhQoUKFSpUqFDhFYGK+FaoUKFChQoVKlR4RaAivhUqVKhQoUKFChVeEaiIb4UKFSpUqFChQoVXBCriW6FChQoVKlSoUOEVgYr4VqhQoUKFChUqVHhFoCK+FSpUuCiOHTuGEIKPfOQj3+ih0O/3+YVf+AU+97nPXfDZRz7yEYQQHDt27CUfV4UKFSpU+OZCRXwrVKhwyaPf7/OhD33oosT3He94B3fffTebNm166QdWoUKFChW+qWB/owdQoUKFCi8EU1NTTE1NfaOHUaFChQoVvglQKb4VKrxCcejQId797nczPT2N53lcccUV/PZv//YL3m5+fh7Xdfn5n//5C7Z96qmnEELw3//7fx+u+2M/9mNceeWVNJtNpqeneeMb38gXvvCF4TbHjh0bEtsPfehDCCEQQvCDP/iDwDNbHf73//7fXHfddfi+z/j4ON/5nd/Jk08+uW6dH/zBH6TZbPL000/z9re/nWazybZt2/jABz5AGIbPah4rVKhQocI3DyriW6HCKxBPPPEEt9xyC4899hj/7b/9N/72b/+Wd7zjHfzkT/4kH/rQh17QdlNTU7zzne/kD//wD1FKrdv+wx/+MK7r8p73vAeApaUlAD74wQ/yd3/3d3z4wx9m9+7dvP71rx/aGjZt2sQnP/lJAN73vvdx9913c/fdd1+UWOf4pV/6Jd73vvdx1VVX8Vd/9Vf8xm/8Bo888gi33347hw4dWrduHMe8613v4s477+RjH/sYP/zDP8yv/dqv8cu//MvPbVIrVKhQocKlD12hQoVXHN761rfqrVu36tXV1XXLf+InfkL7vq+Xlpb00aNHNaA//OEPP6fttNb64x//uAb0pz71qeE6SZLozZs36+/+7u9+xnElSaLjONZ33nmn/s7v/M7h8vn5eQ3oD37wgxds8+EPf1gD+ujRo1prrZeXl3WtVtNvf/vb16134sQJ7Xmefve73z1c9gM/8AMa0H/+53++bt23v/3t+vLLL3/GcVaoUKFChW9OVIpvhQqvMARBwGc+8xm+8zu/k3q9TpIkw39vf/vbCYKAe+655wVt963f+q3Mzs7y4Q9/eLj9P/7jP3LmzBl++Id/eN1+f+d3focbb7wR3/exbRvHcfjMZz5zgS3h2eLuu+9mMBgMrRA5tm3bxhvf+EY+85nPrFsuhODbvu3b1i279tprOX78+PM6foUKFSpUuHRREd8KFV5hWFxcJEkSfvM3fxPHcdb9e/vb3w7AwsLCC9rOtm3e+9738td//desrKwAxou7adMm3vrWtw73+au/+qv86I/+KLfddht/+Zd/yT333MN9993H2972NgaDwfM+P+CiKQ+bN28efp6jXq/j+/66ZZ7nEQTB8zp+hQoVKlS4dFGlOlSo8ArD2NgYlmXx3ve+lx//8R+/6Dq7du2i0+k8r+1y/NAP/RD/9b/+Vz760Y/yr/7Vv+LjH/84P/3TP41lWcN1/viP/5jXv/71/M//+T/X7WfjsZ8LJiYmADh79uwFn505c4bJycnnve8KFSpUqPDNjYr4VqjwCkO9XucNb3gDDz74INdeey2u6150vY3k89lul+OKK67gtttu48Mf/jBpmhKGIT/0Qz+0bh0hBJ7nrVv2yCOPcPfdd7Nt27bhsnydZ6MC33777dRqNf74j/+Y7/3e7x0uP3XqFJ/97Gf5nu/5nq+5jwoVKlSo8PJERXwrVHgF4jd+4zd4zWtew2tf+1p+9Ed/lJ07d9LpdHj66af5xCc+wWc/+9mvy3Y//MM/zPvf/37OnDnDHXfcweWXX77u83e+8538P//P/8MHP/hBXve613HgwAH+83/+z+zatYskSYbrtVotduzYwcc+9jHuvPNOxsfHmZycZOfOnReMcXR0lJ//+Z/nZ3/2Z/m3//bf8v3f//0sLi7yoQ99CN/3+eAHP/jCJ7BChQoVKnxTovL4VqjwCsSVV17JAw88wNVXX81/+k//ibe85S28733v4y/+4i+48847v27b/et//a+p1WqcOnXqArUX4Od+7uf4wAc+wB/8wR/wjne8g9///d/nd37nd3jNa15zwbp/8Ad/QL1e513vehe33HILv/ALv/CM4/yP//E/8vu///s8/PDDfMd3fAc/8RM/wVVXXcVdd93Fvn37nt0kVahQoUKFlx2E1lp/owdRoUKFChUqVKhQocKLjUrxrVChQoUKFSpUqPCKQEV8K1SoUKFChQoVKrwiUBHfChUqVKhQoUKFCq8IVMS3QoUKFSpUqFChwisCFfGtUKFChQoVKlSo8IpARXwrVKhQoUKFChUqvCLwrBtYBEFAFEUv5lgqVKhQoUKFChW+7nBdF9/3v9HDuCi+XvzqUj7HSwnPivgGQUC7Pk6kv3a70AoVKlSoUKFChUsJs7OzHD169JIjhkEQsGtHk3Nz6Qve16V6jpcanhXxjaKISA943ci/xhbOiz2mChUqVHhZI9YRWmtWkvM8Ovg8Eour6q9l6rJX0e3N01k+jtIpp/pP0BvMMTG6j/HR3UyE49R7kqPhIxwLH0OjaNSn6Q+WGJPTKB2zohawsFEoJBYpRkmq22Pcsvs9WOdWWPCXORk8yeracRTmC7dhj/Gq/T+C6Afouo92JMq1QWkQoByJs9BHxDG65iHWugxW59Ez49R7AnwPbBtVc9CWRGTbiSAGQNu22adnoaUgrdnYvRjn8DkzKY5NvH0Sqx+DAhnGaMdCeTbaksgkRcTKrKsUK70TPHXq0/TSZVreDLbtg9JonRIlPQbJGo5VY9TfzJS7namRvdjSBWlBkoBKiaMBJ/uPc7L7GLEe0PZmmWztY7S+hbY9idTCnL8lIVXgOhCG0A9IogEnrCMcWf4y2xvXcaL38PD67vZu4FT4FDXZZG/tRjQKgUBphSUcXOnjCA8LGyHEhfeHCjkVHeB8dIyeXgXAwiHFzOWonGba3UHLGqMm27jCu+h+KhgkOubz5z5KFEWXHCmMoohzcynH79/JSOv5u0/XOoodNx27JM/xUsOztjoA2MLBFu6LNZYKFSpUeFlDacWx8FEOBfcDRdPM/bVXMTKxk0ee/r8sdA9fsN3iykEWVw5yBJtt3hUcCx9lV+tmtm6/A2dyhi9/4VfwZYMz8SGurN3BNv9KxOwURDGD+VOkNYuaNYKamUVMzjA24jK7cAusdDgfH+XI6c/TFKM4ywPU7DjasdBCIKVAWwIRK6zVAWp0BBGnyE6AmpqiZddJx0ewrAHacxDzy+haA41AOxZIkMqBrEGoRkJkCJroJohBDOOTECeQJNhnuuaEHQdsFy0kBIAjEWFKksTMdQ5xauUhlsJTtGtbuH3Td9H2ps12cQJxDElqiLiTEfc4MeQVQEp0rY4IE2xcLvNfzZ7JV3O+d5Cz3ac4tngP6UKMFDZtd4a2O0PLmaRljdMUM8gIsH1s22ci2cwRWEd6AU5Ej+FadWIRc3/vH5/xfnBFjRFrIvs3iSt9eukqR8KHiXRAw2pDAteNvYXZ1n766RrLa8c4OzjIweArw3vIwmHEmuCK+u20rPHneltWuATQbAmaref/8KKoHnyeLZ4T8a1QoUKFCl8dA9XBFTUsUfzvVemUI+HDnAoPEOo+s5PXMlPfS101kas9lvUcd538Q1xZQyCxLZ/NI1dS88fxWhO4jTHOHL+b00sPcix8lMsbr2Lku74XllPS43P01Co7vKs5Ex9iZUozds1umid6dK6apXG8hdUNYHEZudwn3DSCljDYVEdO+Eyvthm7/FaUJVBzfUQYG0JqS1TdRTk2OJJkvEHqWcgoRTQ9RKKQjo1INapuBJF0xwxyECMSBQpEmg5JL0KAAu1JRKLQlgDPzJFIUnBdsw6AUpCkZrkQsNalp9a47/xfEqQd2o2tXDf5HcxMXG2OpbUhu6kyRFdK6Pag1TTbWyUlTRcPHDRqkCqsJGVz7TI21y5DCehE8yxHZ1nuHON87xDH1AMAWAs2N7TfxqS9Ba0VY8kYV4+8gZODJ4nVAEd6KJ2SqIiaNcKYv5nz3UPsG38N9fokUtosdA/zxMJn2NN+FUjBWjTHqeAQUZiTZ8GoNc0t4++i3t6E1poHzv01Dy9/Ckd41Ow2NbvFNu8qFIpUJQTJKsvxOY6Hj3F1/VtelPu6wouLVCtS/bXX+2rbV3h2qIhvhQoVKrxARCrgfHyU1XSB09FBbOHiiTqpjhm1pxmzZjkcPDhcPwxWOTT4AnG/Q6xDQFMXIyQiodmY4cbrfoTawfPQGkX7DjpIeSw+A8CIN8MO+wrEQyukjsWRuXsBWE3nAThz4m7OnLibV9380/hrLcJJH9eWiHYN68gZ9JYRlCOQKQgFqWeR+hItBYPNDexeitAaGaSkDRtrkJFXIZBRClJAokBDPNPCXguHZFKqGJEkaDf7akkxxFNr0BqRJAitDekFQ1DTFGwLLaUhumWiHGc2Cc/lsTOfQUqb1+7+UerOGEjQUoJUkNsjk8TYEYQw5HkQGNXXssznlmXGEcTDMZl/GWlIUqTWtMU4bbvNztHLzWIV0UmXOdz9Cg+sfJKbx9/BeGMnQgq2iuvZGl9tziUb731LH2cxOslidBKAgytfZCTchC094rQPwLiYYsLdCg0H1ekS1SERCb7dwrZ8cy5SosM+ncF5AGIdEsdz6DRhTh1FU5AdW7jMOLtewF1cocIrAxXxrVChQoXnCaUVnXSJx/qfp6tWABi1ZmhaY1A3Ps7zq09yLj6KL1pYwqKnVun2zjPhbKHv28SDswAkRIzKWfa1X4sjXLRWBLvGSOoWg7lTDJ405Oeyy97F8g378U51OfjYXzI39wgAp6NDjNqzrCbn0WiSJw+gXzNL0rAQ2kUoTXLtDmpPL5DMtEkaDjJKUZ6FsgXuWoKyMmtDpNCOxO5EpL6NTEBLDPkNU2QQo10bEWuUayOUMkpxosCWaMdChKkhg0qBZSGiBG1nymuuBgMik7lETlRzi8IggJrxKi6tPM3y4CQ3bv4e6v64UYylIbNGXdZgW1Dz0baFiBOznyQB2y6IsMrUYZWR3VQZIp8rzfnPNBt7BtuqMebWuaE2y5fO/Qn3L/8Dd7bej0wzcm5ZoBRJEnAuOMxqfJ4t/uXsrd3EophnNTrHWjhPqhMkgt0jtzI+shv6AaQh0vfwPR+ENOMJIzPWtQ5SCF637X2sDM5yuv8kp3qP0VFL6+5DgSDREYvJaVIds5ouEKguddlmj38DUlTJpZc6FBrF85d8X8i2rzRUxLdChQoVShioLoHq0pCjuPKZi0QSHXFP5+P01Oq65Vdv+zYazWm0bSMXVtjauJJ7Tv8Zge4gtGDn+C0srj7N+Wi9YhfpgE3j19Dsu6Rao3duxlmLqd1/FLdp0bTG2Xb9O3B3XY5/oMNdD/4aQWSO3a5tYccd38u4NUvctIjrEplqAgEjR/r0N9Ww+ylWmNK7chp3JUJLsDshdAUydLHClHjERaSapOVg9VNkJLB7MSJOUTXHjFaDzoisSNa/XhVaG29wPwIpDdl1LEQYG0U3TtFSIwchuuEVpBUgDNHtBiJK0UJAswYK0kGXAwufY8SdYaq2EzHI9g2IOCwOnhpbhIiyMQlhSG+SGEKpS6RXZgTXkmZZmpHinPBmynC+H21bLPSOcGTtK/TTVba3rmexc4x+uko/XqYfr9BLV+mrNQBmnF1cMf567JExtji72JLNBUkKQQhRZEivJY3FIx8nangeWJb5KSUiihmzphitjzPr7iRNImzbRzmCIO5wvPMw3WSR4+HjHOdxfKtJmPbRKGacHaQkhGoAaHK3tcYQZlf41GSLmmwgKoL8DYNC8ULMCi9s61cWKuJboUKFCpjK76cG93A6OjhcdlvznYzaMxddfyE+TU+tcvXu76ERucR2iltr4wxsSBSys4YOQx5f/kdiHQBwxZZvZbvejfJu4umR4yyfeJTlwcnhPjsrJ9m0+TKsToDyXawnj6E3z+AlKbe84f9Lb9al9cgy+vgZ6mObEarJpv2vZ8vINTS+chy1dYCy6shEEzckVqhZageceegfWF46TNRdRiujtFqWy+z09ezZ8gZs7WIt9dBSkDQd3KXQEFwpECVLgNU3SQtYApQwVgPbkDoRpaimh4iNXUFbwqwHxvqQKEPkHAu0IdiEsVFq4xgcB5EoVN0DWyKXu2BZPDH3afrpGrds/36oe2ghDIEWAiGlKVyD9cQ2R05w9YaoqDQbiypZK3Lk1oxM/e3Gyzyx8DlTTOfMcHXzdRzs3ccJ9RACSd1uU3dGmfL3MCLHGKtto26NZFaNxKjPTqY6J9k46nXo9w3hBXP+vlco0Pk4XMcQYW1DFCE8j0l/jyHMg8CM05plU2Mbp9JD1K0R2u4snva4f/UfWE3mOBh8hcXk9Ne8/wWSuhyhLkdoWCO4ooYUklhFnI+PEer+8PO61aYhR2jINg1rdJ2fvcLzQ6o16cZ78TluX+HZobpbK1So8IpGqhNOhk9xPHyMWIfsG38Np1YeYqC62MK76Da9dJX5+AQAbTFOo684017k0MG/pJMuUpMtNBCpAYoES9ikOqHfOQ9jlyGdGvvOb0I0tsGYQ7J1kmjUxVtL4OwSYqWLNQhI920nmK2RepKRf3ka7wmbtTt20tKafde8DxlDbSFCxRBct4Ng3Gbk4BoiSAi2jaCl4ODDH2fh3GNs2Xwr/uytkPlvk9VlTp2+m/Nzj7B3z9vZMnYNsh/jxMqQVyj8uEohOyG65iCCxNgZpESghkQXQA4yT25OTm0bZGZnsCU6L0TTWdKC5xj7g2cb+4PWyH5YEM8oYi2cY3bkCtr2FIQJ2raMitwP0a4DroWIUkMQXWeYEGGK3S5CBvLj51CZUpZbGzILBrZNN1nmS3N/im81uWn07YyKae5Z+xtsHG6d+Tc05AjCsg0RFWK9sixEpuJSWBeEMPaNJCmILhjyL2VByFNlSHkUm3+WNEkXcWwU4v5gqAYjwbYb7OR6AFaSOZ7qfGl4f64m89zQejPj/jao+Yj81FONFppIBwyCJXrxEn3doRevMJeeJEoHKK2whUPbnmKTu5e+6tBLVlgMTxNlD3MCSduaYtyeZczexKg9XcWeVrikURHfChUqvGLQTzuApiZbCCGYj0/xeP8LRDpgxtkJtsWRpS8jgJsab6VpjV6wD6UVX+z8xfDvJ058AjyX5aPHmbK3scXfx5noEGtqEQAhLHxnhIY9ziZ/n1H5pDRxY5niaS/1sM8sQatRvPYeH8U6u4jd2gQCkr1bEKnCXUtYuHUcay1i4aEvYa8GBFM+1tqAyIOnVk7SWz6FOCSxLI9BYMYxtvN6Jpu7kZkVQIwqtk/dxqFj/8CTB/6C+bFHuXzrW6nVpozfVmuUYxtim3l1RWgydklApiZJQddco+hKWZBKYXyzQmsITLEcYD7LrQiOjZYSbdvG7yuzz1SJODoOvt0kirvD/QutIU7RdfNQIqKkIJXDY0vQGenM/b3DC/gMr4TLyzMSHMQdNArfarEYn+HJ4ItEKuBV499l7o3sPJGWIappUtphZqlIsvlzbHNtswI4XNcc03UgiEw+cG65yM9FShgdKdRd1zXrgVGNo8jsN1O6l9aOcO/qJ4YjaMoxrht5Ey173Gwri3VxJQiJo2s03DEm2WM2SlIzBinN/nOPtG1lDxMp2DaxCunFS6xG51kanOJUdIAj4cMIBG1rijF7E+P2LKP2TEWEnwUqj+9Lh4r4VqhQ4WWPfrpGT63wQO/TAGxy9nBl7Q4e7H0a0Lxm4vtJwj53d/8GT9S5vfUdeLK2bh+i1UR3ukghuaJ2OwPVpZMusRifppa2uLnxNiYn9/Po2b+nq1fYO/s6Ji+/g5EFQxK1LQk3jxBocJcGyNPz0KgbMhGG6DCEwQBh20YNzMiO9/gJvJoPg4D+TTuxewmtkzBvz3Ho0N+awc2B4zaQ0sFxGyY5IAUrjRgd3YXtNmjXNpN6htDZvQSRpPh2g2v2fg+zo1fx5Im/567HfoudM3ewe/q1WLaDSDV6ndfUELu8IA1LojxnqBBr1zbr5AQ0U0+1ECAxhBQKJdaWJukhStFeppxmvlsdJ8x1D7ESnWNL86qCmGbETcQJuuYahTcvVhsEhuDl7V/LpPeZCC8MPb2pTliOztKNF1mKzrAcmiSNXrJMkHQYdWfY3biRZm26KISzbUN687GVkds7ckuDlGDbaM9FhJEZd7dfbJcTTkuC55nzSEoEPooyT7Blzje7LwjN+dZ0g+31axh1pmm50zTSBtJ10bFJ2xgex7LWk/D8YSFfp6xO5wr6UGE2BXhOLBn1NjHqb2ZH8zp0ktBLllgKT7MUn+V0dJCj4cMIJOP2LJP2ViacLTTlWNVs4yJQaNKK+L4kqIhvhQoVXnbQWrOSnifRMSB4oNREYKt7OaejQ8NCJI1mITzB9tpVzMS7mAuPAZpz0VHOxUfopEuMeDPsbX8LjayD13bvyuH+TKW+hbpyF/NHH+RM9DSX+TezM9gLjy0g6nWwTDGWfyxF1T20b6O2TBG3ffqzDrV5Q26UJ/EWArrb6nirCZ2tDmMHBthza6SzY3iLAb1tDYTSTK9N07jmRzl88tMsrjzN1Zf/K8Ym9yISRRx0WTj/GE+c+FvWVk8yObGftZNPMDVzDQKR2Rck2hYIBVNTVzIxspujZ7/I0fNf4tzS41y/47sZqW9CADonqElGUBNTxKZrjilUs22Ub+wKuuYw6C4gY41nNZDSWp+aIEThuVXKkGvbQiSKhbXDnFp5iLVwjiDpoEiZrO1kT/vW4vV/EA73JeK4KFbLM3+HXt+SheFiv5f/ztY/2Lmb4xuaUVw7/jamvR1GtczPI7c2aJ0pvdk+cvV1qAArs26SmDEGJm5N9AfFNrZlyKUQhuxqk4JBGBbn5OeWG8+cb5I16pCxGX/NhzjGTxpc2XqN2V5K8FwII4RlmYcQJ/vKV3pIls1/BApIM8uFyNTh7FopbVTpPCsZsjcV9jByDddBCEHTmaHpTbGd69Fa00tXWOgfZSE8yaHgfg4E9+KJOpPOVkOE7c048uJ2olcaKsX3pUNFfCtUqPCyQjdd5lBwP3Px8dJSwfUT34oTCsYn9rE1uokHzv8NjvCI9IB2fQvEKZe1X835uaPMxSd4YvAlfKfN5OTlLC4d5J4T/4dXNb/ddNPK99pqIvpdzg+OcPIrn2QpPsNUay/b5BWkV+3C6obEI55puRul2IfPIPwJtNbIU3N45x3CsW2IVJN6ksSXOI6kt0kilMXIiYi45dDfNM3IYwtEMy2cToI9SElqFvVNO9jjvZ3Fr/x3EhWiHFNsJmujzLRfTXNmN3MLT7A09ySPHvxz6sf/ic0T17N5z2uxfQ+0iRUTcYrwa+ze9WY2t6/ikRN/w72H/5DLN7+Fuj+J6zbwtIfjeEMiTKqN3xezD9UN6MbLPH3ucyysHQJACot2fSsTzZ1MNHdRr03jWp7Jp5USoRRaGrvCwbnPcWTpHlruFNONvdScEVr2BGPNnehmDR0lhWUiiLLX8C44WX6ubWXtlSW0W2YdMAQ0zghakhivrOsYpXSdiinZ3b6FRCRYwmFpcJJusogW2rRD1oXKPfTmDgvQosLqkecPW7IgtWY2zPLcPuDYBfnNY9dUas7BcYqHBKUMSfU9Q/oz4q5z4iqFsabYNsLLOqtaliG9OfHOkSqzb1XqZJf7isttmXOinBP23P6Qk33HKebbtjOynu3PMbYGkSQ03Sma7gQ7xS2kSchyfJb5wXEWg+NZEalg1JpiIiPCbWuiSpao8KJDaP21SwHX1tZot9vc2X5v1bK4QoUKlzS+uPYX9NQqI/YUrvBZiE8yVdvFPvt6BJJUJ/RY5an+l0lUwJ7Wreydfi1R3eaeQ79HPyi8ubfvex8jS4J+C7549A+YdXZRs1osJWdZSxZQJMOAqNHWDrY3r2WT2srgpp24yxEiUVirfeLZEUSsQIByLaO0phr3yBzYNtH2cZQjcZcC4hGPcMwmbki8NYW3FBGOOWgpaB5aJtjaRrkCZy1hZXCaxx/5E4S0ufXW/w+2yl+pG1VXS5GRW01n+TinT9zF+aXHkdJhsrmbyS3XM9Xeh/A8RKoQCmQvIk4C7jn4ewyi5Q2zK3CsGp7TZKKxA7RgkK6xNjhHEK0A4DktLpt5I65dpxststQ9zlL3GKkySq1rN2j6U4zWt7J5/Dpc5XBu7UmeOPePXDb1enaN3FwolJaFqnum4E0piGN0u4noh4UH1bLQtSwlIlclw2i93aLZMApqrqwOPcSZ7zbMyGiWqHBm9TEeXfg0Y/5mbpr4Niy3Zj6LMmuAlaVJ5L7XXGF2shSGsi0j/2nbWUJD6Xe4MEs4P3et0WlqiKBtocMI4TrmXAZBcbwwLJTrfL+5PSVJzO9WpuTKzCLhOGbuykTW3PRZ3rEu7Bt5sV1ZRc/H6nvF70nJ35yrweVmJLlanGEQrbIQnWBhcJzF8CQJMZ6os927km3u/q+rEpzoiM+s/hGrq6uMjIx83fb79UDOrw4+OUOr9fxJf6ejuOyK85fkOV5qqIhvhQoVXlY4Hx3jcPAgfbWGJxt4osZyeu6C9SQWGs237PtxaoHkkfl/4Exgosy2jt/IdG0XK3qR1c5JljpF5q4tPMYb22i3d+BoB2F7jIoJWnEdNTtO2nCJmw61M13C6QZWkJD6Ns75NU7Fh1jS5wiDVZxWm6nFBvGNu2nZk/hdyWBrjfqyoHGqB0KQ1h2Suk04auGupmhb4J8bMLd2kIcP/AkAzdFtXHPle/D9NqkvcToxOlPfZGg6rens+1RLQT9Y4vzp+1lYOkCnfxYpbCZG9rC5fRVjo7vxRA0RJaQiJU4DYh0Rp31CHRAHHeKkTzdZYqV7EilsPKvBSG2WpjdJrTlFqzaLLVyjQmae1dSG7toZ+uES3WiRbjDPYucIqSpet88293PdpnchchsBQKrQroUYREUxW5yaVIdBZDy+WjOMMLVEQYpzcponKmSNNLCtgph5XpHdG0UgLQ4v3c2h1bvYUr+Cq6bejHQ8k6JQVnRzkpcX85VsBcN0iNyvCwXBTFNjS+gP1seuDW9KMVyutSGgwss8ur6/rnAQS2beZm2O3esXHepyBTnvjJcTY8cuiu1c58Lot9wrnc39cJkUhWqeq8pRbJY7TnFu+TaeV5DkXGXPc5Kj2Bw7t3FIgUpiVganOT04wJnBASSSze4+dnhXrXvD8nzxzUB8n/o6EN/9FfF9VqisDhUqVHhZYcbdyYy7E60VkQ6JZUwvWaUbLxLoLsvJOXpqlbHWTi7b+mZqfYt08xiN1QnGnV1cP/kODgX38+Dpv8ISDu36Vi4bfy0Hlj4PYGK1gLXl4yan1XJYFIJ+usLamTkA9o+/nu1bX4N/fBltW9jA2fhpnjz0f6m5Y/j1cXpnT7MQLqPPbGgCIS28+hheY5y2GMeb3MLYkRGs2hSO5aMti/mlJ4brd1dOIoIQaSus1dS0/aWkrmmTuSsShdCaEd2kuf1Odu19C4OlMywsHeD80uM8fOKv4ATUnDa+3cKzWzRrUzT9KVreNKP2FoSftxqmUFiFMMVrljmGxpBK013NxG1ZkWLUmWHUnoaGaTWcJAOWwzPEacBofTMN2TYkq2wj0BoRGsIl4sIzK2LjVxVZvJnoDwy5GuQqpS4SCDy36ASXK5u5N7jXL0iktEjTiEOrdzHr7+Xq1uuNSp+GhlBmWcPGK+sUhDIno7adjT+FkaYpWhv6gFWhyLquIX9lhXS4nkZrhbAshFsbkkWRN9TIiaeUhdcZzO85qc8L/MBsU68V60gL3Ez1TdOiEDBXiB2rVNwmh9ca2yquS05c84K9cnZyToqVKhRfmavi2T5r/rBNdf65lJrxkV2MN3ZwGa/lxNrDnFx7mJPRk0zZ29jpXcO4s+lr/adfocKzQkV8K1So8LLCQHU5GT7J6egQkR6s+0wgGbWnEZZNHKwxOH6IwfgonRMPcrL7EJEa8M+d3wYEe/2baDU2cXrtMQ737hruYzE+BXFppzEX4ODaXcxOvAX/yVMIx0GPteiLCBDc+rp/j3Ykgykbbz4kPXGaYPksWitSnRC5KYN4jTV7lbnlwwTnvzx8Zey5IzT9KVy3iRAWWqe4bgvHqSNSbTy+bq44amSskFERJ6alaScswwQZxLTscZpbXsOu2VcT9BZZXT3BanCOMOkSxGssLh4jTs0cWsJlqrGbbWM3mEzY4at5Ych2giGheYcyQChd2Aty9dAy3l5Hekw19pixpSXyn+83L/zKX0rmUV+5khrHIKRpEGHbmaIr12/vZopwqtAjDUQQox3bJBxIwPONSpslJkjHYcLfzkoyR+rb2FjFcWu1rKCspMqVi+akRE20jS0jCDOPr10QVMtCT7RN57lcBY3jwu8bhIA2qR5QfF7zzWfDeUgLopmvm6dYSAvGR6HTK7bNWz9bEl3zEFGM9j3zQJFFk+X7ztX14vyyB4l+5jFO0xIhFgXxd6z17aBVasbiZKQ3KXuKS01D8mLE3CcsBV7isa91G7sbN3I2fJpjq/dzX+/vmXV2M25vwhIOqY5oWuOMWlMvG09w+gJTHV7Itq80VMS3QoUK3zTopiucig7QS1dIdIwrffz6OCKImLS2ci45ypnoaSxhs8W7jIYcZTE+zUJ6hlSFuHadlWRuaFt4KP4M9MERHhP2Fmb9XfTUKp6so3TKA4ufoCFH2elfi7tlO+7SgF6ywmp0noHsI2wXz2nRdCdorVmob7memmrQCD3Sps3yG3fTOBuRupI0asLjmpgQNdIEDaruUh/bRMueQPv2sHOad75nMnPrkKqEjtWhN5hjVSwTzJ+m35tny+g1bNt0O83WrLFF2AIZZ/5MgSHBOitEw/wtFFhdQ8S0bUiiCFOQUBMt6u0rmZ261jSgSBKUYxF3V+nE86x1T3Nm7XHuO/lnjHgzXDPzrbS86YLY2hZCa5LROvZKvyjqKhVOadsyFggMCRe5P9aSKN/N2iAXy4b+2bL/NUdO+sqZt/l6eSFW7qMVAlKNGqmZNsmOY8ikEKiptinuW+4gXIcr9nw7dz/xv3h09TNcu+u7wbaRUWKsFa0aojMAL1OOw0y5dU0xmlxYWW8pKCcnSIk4vwhjbZgYM9Fvg8gQ09z/Wk6LSJKCWOeFcDlUOjymOb5bJD2Emfrrmqg3PT6C6GaKeK7oWhYkYUFQsyQMEcfF8fN5yy0JudKr9Pq2z/l85+PTyuwTzLaWBJnNV1nlziFk5nG2i+s6CLCEzdb6lWzxLudk5xGO9R/m/ODo0FMP4Ioas84uNrm7aVvT39Qxaam+eL+V57J9hWeHivhWqFDhkobWmuPhY6ym88zHJ7EcnxFrHEd7zEXHYdWkN3TtlWFrVgubM+EhYh0ikEw525j0thCoHp5TZ8rehiVseukaKQmLWfvhI+HDdNJFNBpXmFfEu/3r2OzuRbe3IJM1Q5g2jaBGaqR1B2VLOttdWiciZF/hHD7H8ut2YA80dqCZv97HXdXUHzVf/vHSAiOBTerbIGDhujrKqQMwcjzFijSDbS1SVyATTeoImudGachtbF7uI7zCCqAR0AmJZlvYvQiRapKWizVIho0qtBSIWGFlREpnlgSRFAVYGgmOhcqaTgitTWMJAZ7fwnOaTNV2smvq1SytHeap+c/w4Nm/4fLJN9BubMHX2ev0JMXqhSbb1xKIIB4WR+m8w1p2TJEXUmWfy57pBDZ8rZ4XVJUV3HLXtXLDjHIObhkldVYohVjtm8YZnj3sFie7IWm7jhxtgmXRiC2u3vpOHj75V9z7+BJtZ4qWO82IP0NrtYWwMiU2J9tRVPhX84IzaZlvV7ukeOZFZ2GMGmsguyF0e4bUuh5EEpp14/9NMotGrqDaNghjH0hnRrFOzpuTylMbHKvI2oVMmRVgWYiVbrY8MQQYjMqep05E0Xqvr2sXxDaf4xzrPMAUCrCVkdf8QQPWE+N82/xhJd9P+eEln0PLKrrbAcJy2D5xE9tb16KEJkr7uMJnNThnIgf7BzkRPYEvmsy6u9jk7KZlTQBwNHyEWIdsc/dzqUNRWNWf7/YVnh2q4rYKFSpcctBaM5+cZD4+QTddYSU9P/zME3VC3QcMwZ1xdtKyJtji7uN0dIieWsEWDo7w8GSDKXs77oYK8X66xuODL9JTq4TKfJG27SlcUaPd2kY3mON070nG7c3MJycY87dwq/824ut2Y6+GdC4bQaQau68Qq13OnH+A4+fvQsSK0eY22iM7aI/vROzbgRSStZMHOHDfn+C2J7jqTT9BY1ETNy3ihiQYF9jmdGidjBFKo1yJPzcgmDbtiu1+ihUp7NUIkaamqYQEa3WAanjrSayURavhvBAqh1LmG1IyjCIzjSVy766xQogwHm6rs8+GaizQCxe55+SfEKsBjqxx1eSbmWldZqwNMktLUNqkLWRky8R02evzYGVx3NySMFx+sbE/H0iJrntmHK5TJDNszPQtHytVnF17nLn4BGvBeXrREqARSFrOBG1vlj1jt+Mrb30xW04+c79tuVVx/lWbF35lKrmu14inm9idkGiihrMcgiWw5tfQmWdWhJkP15JE002TBpJbKfoD81ne9KTsK3bsYjxl0ponPeRKbZ4dnBPPnMDmirudKbiypLg7dlbwlqvsuthPfox8XsqxavnvqSruh/xfeYzPhOFDjrnXdBSxnJzjbP8Q5/oHiXVIXbYZsSY4Fx8xw8ZCkV6ShV85v3roiekXXNx2/ZVzl+Q5XmqoiG+FChUuORwOHuLp4H5gPdEFmHV2M2FvRgqLcXsTvmw8q30mOuJk+BRr6eLwCzFH0xrjjvHvQY6No+cW6NPlCyv/7/DzGW8X19feCNs3kTY9Fvc5BI8+xsLJB1lYPABaMbXlBmrKZ6VzgrXuGbROsWyfZnszq4tHac/uY8db/i2069QWFW5XkfgSfyEmmHAIxk18mdNTWIFCuRJlgUzB7sRYQQIqy91NNWnTQ0QpVmdgyGqedhCnxjagFNqWpA0Xey008WaW+XyYuFBOQ0iUIbl2TkK1aUUM69bPPblKpwzCZZ5a+Gfm+0fwrRF2j9/G9sbVRQ5t7utdZzlQRaFTTnLyIqh8eTlNYNj0ohQNlqOsBpeX5UR6o12ivF5eMFb26W5UkwGUIlERnWiBtfA8a9EcC70jKJ1yzcRbmK7vNsdwXWOByIvmckvBxnFvTIXIC8vyz4Qwym9qFFDdrEHWGU/0zUNEOjOKtRYYL29OonPkSQ7l+chbDruuUd7DrPAsLhnUL7AvbFDTy2kSZSJd9vyua21csj7k51gmrba1/sEjH3NOmGV27aQoHiguZsHIx5wqFIrFwQnO9w7ST1bppEs4wqfhTDAfHrkkSWHOrx54YobmCyC+3Y7ixiurVIdng8rqUKFChUsKc/GJIekF2OPfQKoT6tYIU/a25+zj01pzNn6aA4P7SIhpuzM0rXG66dJwnb7uEOyYpL4cw+YZGqt19s98F08d+CsArpp5G3pyini0xvzaIZ784z8hTUNarS3suPJtTG69Hjk5httJ2d1LoTNgwZ5jbeEonZXj7LjszWy58k4GdYeRQzFr2x1SV5DUBYNJDyvQ2APNyJNrrO0fAQ0i0WCZc019k8Mqg3RoGZC9yCi7joXOvZtSoh2K1sKJws6bTOii5bC2bUOMXXtIarWTFabFWaGTJbIisAu/jLVtISNFwxnjxunv4KG5T3C+f4ijy19m++gNZiWljPHQskwUWaqNcgkF6S0ToWEShQKVfa6kmYNcLSy/ktca7TtG7Y7i9cQpL4DLSW+2/oYbI2swUSJTuRIpBVpaiMikP9g4jPmbGWtsgzghGh3w6OI/8sD8x5nx97J/8g3UpGeSHDYeKyexcVyMJ2+ikZPJvDFFzV+nkKqmh+yGqJaPXOmB65JMNIc5zcnuGZyTS8bXO5zz0jzI0kOEkBCGiIEummWUM3rXZfKmIBS6WUMsd9bPW05qc6Kbk3iZJVuEWczZsHFGNqc6LR5w8v3kdoo8RcIqPXDkbwVyi8RGf/AwIq6Ya2nZTLX2MFXbWUS6WZJEhfzTyf/JpYzcOv1Ctq/w7FAR3woVKlxSOBUeAGDc3sQ+/2YTgfUCcDR8hEPBV5gZv4rLZ96IfW6VeWeerl5lsj+Ku3UHfmsK3fLh1CnUeAsritkpLsPe+z0sB6dJtk9hdyHsLfHUwx9ltLmVfZe9ixFllBW9LNFrfYQyrXzjsQYza1to3LCXTQJEAjLWNM8kpJ6gdSZh6TIbt2PSxpqnY1Jfkoz5NE4HWH1jNUhaLvZqYNr6CgESo8JKhmRXC9uova6NiBK0bSPDcFhIpqXxgIp+EX+VR43JsFD8dPmVvNIIbQiTthkWpAGQquJvpRFoVsOzTDX3cvXoG9YTmqzATASlRIJsH+agJQ/v8Jtbg8x/VyAyBdGxS6/qJZBl9m4gw0Pf6cauZRuhtSnws7JOY1FqjmNbxi4SxQXBy5FFf7nUuHHq2znbOsiBhc/xhdMfZtfYrewYuQE3tYtzFcKosvm85jFjZRUzbw/s+ZmaKmEQoFt14wNOU+Ti2vC6aEeiBdirPZzlzjBRYkj2c59xo0a0aYSkYVN/7CxqokVnd5PGyQFWx9gjxPwyAPHeTfRnPVpHuoZg6ywFY3H1wnmzS1aGJCm8yPkymV3TOFn3IIF0CoU5V4WVhrSkOqestzrkhHf4TKSLa5ofs5z8kZPq3F+dq9H6m7forcLXHxXxrVChwiWFq+qvQaOetYXha6GXmi9vy/Z59Om/YDk+O/xsuvlt1EdnCWZqNL5yguiKrbhPnkJPjdHdN8pEb5Tp6EZSzyKSEY89+n+wpMP+69+Na9VZm3FwOwrv/AAriIyvNrMHrO6tE7YFk48FWN2YpOWSehIB9GdsZr/cN/YDAcq1cHqmDbG2bBy7UDjj8drQkpB6EnclQsbpUOmS2eto5TmgDCHWvgOJIbIiyZoGlLuVRTGi3FxBCgQUPssSRFk1zVMHyq+hhY0UFnVrBM9rFxsOSc8G/y6UfKGldcskGIoorjwZIC4pfnmSRP66feO2OXmKs9SCUmMIo0YasiSCjHTl3cqy+RBxUuxbyWKMebMG30EkKZvdq5hu7ePwyj0cmf8yR5e+zGVTr2encwW0mtDpGmJbtiPk3lilIU3Mtclzhv3MM+wZGwu9frE+gE7QUuCe72StktMiMq2UYpFsnSQadYlbFk5fsXL7FrzllPYD54d5xNrFZPz2BzhPn6V9to6ue0Rbx3DPd4ZvBwAzrlytz4lsniZRfigaBMU8OXbWHU4W1gTHKVRvq0RKy9aM4f2Tkdj87UCWFT28HxynZLVQhf3CkuuJbq52X+JIEaQ8f4L+QrZ9paEivhUqVLik4Mna13V/LWscYjgzd/+65b5sYm/eQnrsBOF8gqNsohEbN3tF73RTghEL99gyi93znDrwWTqdU1x387/DarUQvQS7b3y6aksddzXGXg5Aa7z5Pv7ZghB094xgRZq4Jkl9QftIwOI1daxQM3IkwOlEpL6N1w0Jxz1kUGTvEpgmDYaYZdYEIYzy51rIIEYkChkkxp4Q5wVJEmJjjUBZxsebf5YrkHkyQaKK3/PPU12qts/ITv5ZTqCzQrWGM8HZzpNcMf6GwtMZhEWDhDxua0hAVKEYpurCOC8ra8QAWac1C4KMeJUtEtIqiE9ZdSy33NUqUxJzcmwV514mo3leb95sYV2M2oX+X52lQtja5/Kxb2H79B38y+O/ysrgFEzeavbjewVZzol1GBbn63lmfvK/81bLeZEZGGI8TIsQuMfmDREeksVMyc8TEmwb+/h57JOSZNsUSEH9wBradwh2Txi1eJDiHJ1bT1p7fUR/gLu4WnSFgyLKLLeCwHo7Qv5QUfYt553u8rSH/DpEmQpuZ3Fyvmf2UfOLc5V5JzhlCi83+sD9/L5LirkVdkGmNxS/5fnAlzoq4vvSoSK+FSpUeNliKTnL6egQAK6sIYVNkBrPYqC6fOng7wzXHWts59rwMuL927CX+ywee5CnjnyCODG+zUZzlmtveh/tiV3IIMXqx/hBSjzikNYs0BBP1ghHHWSsECWVVsZGFa5FCQs3j7K622fqK2vDgrSk5ZLHk7rLEdqRKCnQtsAapGhLIFOFsxYOSZsARNapTNvSeF2lRLvS+Dih5P3NitWcjEx5poVsXtAmhtX9JQIzrMovEaAyskYKvXiZ+cERHOmz3D1uWhZb2atskfkso4zQ5QT1Yp7NnPQKmWXYZsQliiCi8HquI+5qvZIMpdQGUewva/+LzM8nvzgZKcoVXykK7+uwmEqVlOP8vI2Srl1DvLrRIo+f+CQazZaRa4v5qvmFWqtKjSd8LyNumdfWdbNX/9k6Q/9qpujmaq4SRee4/BrkyOcz/6kU9sn5oTVBKIV/KCjW2VgQWCb5wzgzazhmPdZCrHaLdVMFKrc6lAhwefy5H9i2zf0UxZmvOmty0u2b7TMv9bCjXK58ly0zcYlY5/Oy0YqyrngxI+m5n/kSh9IC9QIsGS9k21caKuJboUKFlw4bK+tfpGNolfLU4MuciJ5g1JrhpslvZzweJ71+L+lThzjSOsHq6SdYG5wbbrZXXEPt0VPoiTbhZJ0nvvgxAPZf8T1MeFupuaOomkPsCoIJF8+RWKHCCg3J7W12UY7A6SpkCudvtPFWYfRgTGe7Q9hu0jgbM3ooQA6MOksiSOsOMkzXN5aIzDxpxyqiyjKkDRdtiaEP2KiJoF1pYsqiTPmNkg1JBQzXzRsVaEuY1sNgOprFJdK7sZK+3Oyg5NHVcYjEIlYBX57/C3yryWtm3otdaxiCEiallIbsJHLrRXa9htDakKjMz1woss56Uv5M91DZ0lBeRum1uUoN7x2S58LXXKiTubroFOkBShl7QW6zAJI05PDyXRyfvxffHuGWzd/HRH3HUH3UjoWuu8jlntmv62QRZxmJlwI1aewhYhCb1IZmzVyXIC4sDLCe5JYzb8vthHMFN09XULqwFkTx+u1zq4vnFdc3n5P8oaFUGCiW1orrIi2Tg1z2am+c//IDSp57nPuDy4098t9zwq11USRYJuH5PESqyAzOmnQMH0iGtghZPOR8E6i9FV5aVMS3QoUKLx1ebNILxGnAFzt/SaQHuLLGZGs3a+E5Ot4qHD+PrRNGTkeMtW9BTwgePfVx2tYUE43tJDtnSGsWyrfYe9138fRDf8nx45+jed2/oSYsrDBFBRaeAplownGj7spYk9QEtYWUcNRibbugfg6aZxPWdjmkLowcT0hrkv6sAxr8pQTlCGSkEUojwwTlmqYWCEFSt7H7iVFlbUnc9nCWQ+zVwBS6ZYkPCEFasxGJHqq+JArVNK+PRZAY28QwZUFAkhd2WcZnCkXiguMYldW2C7KUv0IuK2fZtWw6E9y55f1E6YAHFj9BJ15gJTzDpLWzdL2z1+Q5URElxRWKRIC8ne3QGpCrsKr4TIhCBdUaSC7c1zAeLCNOUdaWWGekNfegxkmhspYVYrukduf+VN9dR4Ln+kd4fO4fSVTEnok72DV6C5Y222pbmgeMIAbfQedZy/nrfa1R7TqyHyF7YebLthFhps6u9orx5JFsnlucY5IUEWGOAzXTGIM4LuYqL/oqd5LLkWf1SgmDLGe52Vgfb5bbDYZkOFdgrczCkBHnOM6U4bQgrs8UM1e2tWzEUGW2i3GUWzPnbwF05tnNUirMehQtnpU2zzkphe0luUhf8UsMldXhpUNFfCtUqPCyQaB6nIuOEGnzZR6pAU+v3G0+7AALpZWz7/tXtb6DkZk9ICySuo272Cfa0aK9/yaub2/hiQf+mEce+ANuetVP4tZGSD1DSPqTDrXFFC0hqVvYA013s43T0/grGjQMJixaJxOcbsLiVT61RYW3muIthGhbEky4aBuUJQmm67irEVY3RMQpVsdCeU7W2lfhLg6GREJojc6jcbXCAmOHCCJEnJK2sta8Sq1PZIBhQZeIE3SWDiHi9MJc2yRTah2n8J7m2OB/tRKLM/0n6cQL7GzewJi3OVPlSiqfnRHN3D9bJkkqUySHr9fTUgFcSenN/b/AuuiubBxDYkrm91TpevKWE0WVwqCkHuekDMDShRe1fJ5xgnYd0l6HJ5b+mTOdx5hq7eXK0TdQs0cyomVeyYukIH4iEmjXRjUcREaIkZjEBkCN1JArPcQgvy8DaNbR/QGn+k8Q6B51awSRgkQgLBsPH398K95KjMibVpTTDVpNQ7LzSK+yJ3jjW5ecVJY7v+XXJ8/JHRagWcbeoEokK1+nXKgIDJM1pLiQQF+sGYlS5jj5ueSpHLm1oXyd86xnrHU5voBR1cHcs8N2yJc+KUyRpMNXIs9n+wrPFhXxrVChwjc11pIFnhp8mY5aItHFK1SBoOFPUpNNbOmbdIJGHaE0AoHSKe5AU7/+JsK6gxUpnJUQkWpaD54h2TROf8sMu972QzzxZ7/ICXmA3e6txqIA1JZSwraF20mRiSauS2oLCm8lYWm/S+qD0zVj6W1yaZ1KqZ8yDQeSto9IFLW50CjMlkB5MmtjbPyjshNixcHwfHSe9FDO1bUExMp0VcsK0rSUJq6qTDbyfTh2kZCgtJkTr9RsIt1AiJQuSG851SBXXyFT6iSWcJBY7Gheh2Vl6mROYPKisZyc5Yp1rirmhCgfc1lBhKzLl1Mcj9I4h3NhCt30SN10acsVwo2IomIOc9Jn2+iahxiEBTEfKsgMY7K6Kyd4cO5vCdMeV29+J1ucvYi8WUe5YM4xX635vYJSiFANSbkIS0Rea3TDN+tKiVxYhaUV0qkRHj/+6QvHn2MepLCp2SP042WumngzW+tXZBdao/t9hGWV1G69fj7KkWqWVVg4bGu9wrruASWbm1gVOcG59WV4PwzvtsL6sNHOUlayS/Ng9l3yfiu13sox3EeWtqFSLkhwKN+bcfzVI+0qvCJREd8KFSp800FpxWo6x1JyjsPBgzTsUXbVr8dTHmNX3g7LK3jUEFPjaNtC2QJ7NUQohaq7yF6IWOmitzYYNF3clYhg2sMRAqSL7duELcnpQ//Cmaf+GSEsti3NImrafP87RoVVDmgpqJ/p059sIVOQiWLmvi4iTklGjH+ydiYcenZV3cMaJMhBjLYlMjB+23jEQyYKkZqMXdUqtVlWIKMk8+/qrOWs6bY29OomapjxS5SAY16FiygZEhORFxXZWaFWlhkLFGpo/ntucyhHcQVh9prbYshwMl6xpXElx7oPcc/c/+Wq0TcwXdtVUuHcgiDJEgkrZwcPEyOKKLeiScJGZbdUnLUhB1isZf5QmamTuU80z44tK7lJMkwWEFFGkpKcfFMQP1LOdw/yyMI/ULfHuGPzv6Fht8155Q8S5Va/AIOgePmcz2vudZV5S+MQGYaosRFDenuhaRohJPZChzt3/SSLi08Rpj0GustccJS+WgNgt3cdrvQ5GT6FRnNq8ARba/uHRFE4DjqzDIhhM4tsPEmKTlNE7oV1neIBJYrBKhX9lee55Pkdvh3IvcYXszcoLlRkh4V76kJCXP58Y3Flfi+kyjw05Z7zHHFcun9USXkWF38AusSgX2Bxm66K2541KuJboUKFbyoMVIcvrP0FOiNe22tXc/mutyNcn3iyhjVIiS6foNeysANF7XQPe6VHMt1GaD0ki0bRBG0Lujtq+IsJVvb6e653mEOP/D2DYInZ6evZvv1bqDensZZCwjEPhKY/bdM6HtHZ7pL6DfzllPqZAKGUaSerNZZjkXrG8xmO+zjdGBErZN9YEsRAoWsu2pY4SwOwJSKIhp3VEMIkNsRFeoO2DGkVcTokjiJjNDKMC5Uxg3Yss98wKQhkXnCUqqKqHg3EQ+V0SGzLFfpgtslfQ0vLFKMlKY70uH3qe3lk6dM8sPS3bPWv4Mr265C+v/4C5u19VSmFoByjFobF3zpTIPNYrCg2ndbKndzsTB12rAvtD/l4dYlk59sO/bJppm6Ki5M3rdGJ4rHFTzPqbeHGiXdgSafwlAoX3fANYbazuR5EBblTpePEcdadLTV2isxGIueWsocZaR5OMsXYSQQzzg5wDHndP/paTqw+zBO9L7CSznO19xo2Oft4sPcpVvqnecz/Ijua19F0JhBSGsILhb3gYgRQaRM/lseh5XMfb5jHoaKr1hc/QubzLfl+180/xX7z+c+vSdlKUt429xNvRDm6Ln8rAGbsuaUmj9MbpkRsINiXKCqP70uHivhWqFDhmwbKglODg0PSC3Bi8Bg7J76b2prC7kRoKQkmbfzlFG8hgFQTbRvH7kZEYz5Jw8KfD7HXenSuHMdfiEh8l7hp0dXLPP3kJ1g5/QSjY3u48sb3UhvfhBUqYk+S+Bb2IEWuxXiLIKOU8UcGBDMNVvc4DCYb1OdSarY1JKAyUljLfWq9ENXwkP0I7dqkLWO/kL0Q2Q/XvQIWUVhSuERBhKVErvZMsVSqzTEyAqGlNEqdyjzAAoRKzXKMzUHkqmeujpVtC6pkSYASkdCGrC2vFq/Fh+psdh3qNRgEeFaDm0ffwbHuQxzo30PLm2KHdS2QkaS8oCp/Ba2AWs0QGNs2DRtyUpWriHFGjPMIK9syRM33soivTPnLiXzZY+rZ65MRoFB981fow4IuUWyfE0TPRbsOWmv8hRbdZJE1a40xOWWmpllDRGnRCAOKlIJyGkQUw0jTdHHrD4rx1HzAhbWOWW+QorWCAISQ6Dg2P7XKFFrBptpe1ljibP8g/7L258w4u7iidjuLyVmOLT/KqaUHcEWNcX8Lo3IapROEFrSdaUadGaSwzDHW/YdV8lhDQULLftycuJY/24h8nZzUAsP4M1V6ANmIdf7s0nXKSXjZrpATZ5UUnvBkvXVk2MgiURmhv8gxLzGkWpLqF+DxvfRF7UsGFfGtUKHCJY1YRxwJHmIlmaOrlkl1TMMeo5csA1CrTZB4gnishtWL6e2oETUF419eZOHV01ihxl9KQTvY/YS4ZdHZ4SM3b6F+LsDqRNSjhNPHvsTBc5/FcRpcde17GN92rfHfpppgzEEocHqKuGUxmJD4y4r6+YhgooHTSZi5Zw2UQtVckoZtkhoiRVqzUZvbJv0h93ZqbeLLtCZt1ZB+any6cWpydZN4GLklYo0gRruOSWdwbKPeCoEITLGYbtaGxBgJWqlhTJlIUtMAA8y+c0tDXiSUk6A8PzW3QoD5PIlhacVss/HVdN6NK4qGxFnYNr10BUs4tK0p8xo9SQuvaZ4wECcmSisvooOCVOfRZb5nvtGH6mkCcUakBkHmMxWFH9gt+4ApCH7ZrpETsY2+UaWN+g2mwC0jfSKKEUJw06bv4eHzn+DeE3/KFZvfwnbn2my+NyjHedOOspoZZXMo82SLjKR3euahIVePpRgqpDk5XUdSLQsndbnKv4P99ds50z/A4f793B1/jEl7K5POVvrpKk1rnG60zIH0CBKJRqMGKY7waFrjmHcEkrrdpmmNM2JPMOrMrJ+P/KHoYnaEdfOm1v++UV3dqOyWY8vKmb75Q1k5gi9fP79e+YOWbZeKJEv2FSjsD3l+cPoMSneFVywq4luhQoVLFkorHuh+io5aYtrezsTEZWyWuxE3XEkwaaNs810Ya/CPB3T2NFC2YOLxAWvXTALm86QmSWou9kChhSGwyhZoKTi3PeLYl/6ItcWjbNnyKrbc+m2Iug+dlNpcmOXo+qSeQGhoHu9hhTVkpI07QGv6sw5Cg92Jh4QWIRCpyrzAkqRhI12JGvfRAmSsscIUkaSIMDYWBltnnl3XeHYdy3h0lTZxY+tit4xqqR0P0QvBc1B125BhOZxAMwclVVjXsjazqUbkRCvvnCUtSMJSk4SMaORFbXkRWpnI5KSzXoMwQqUx8/FJtnlXMNraZhRXz11POHN/bU4QUwqfrMoJS1qop6J0zjkhy0lv6TzXdWzLMVSnRUHSyuQrP6dcSfRKbXXz3N4kxbca3LLpe3lq8XM8ceaTpJMhOxqvReRFfEKYB5BBFgXne6A02rYQa11DbPP9CmH2LYRRe/MxeK4pOMznOAjXEV+dxXcJIbE1bPP3M+vu5tjgIdaSJbrpMmvpAnWrzW2td6JK23bSRebi4wxUF40m1QmL0SlOqMcBuLLxGtOEJD5DL11jwt3CbG0vdWtkfZJGeU5hPVHdSJRzBTjftlzAuFHlVXpo8RhaIdIUdK40Z+p/vk7ZE65L90y50xsUf1/iUAjUC0h1UBcr+HyW+KVf+iV+9md/lp/6qZ/i13/91wHQWvOhD32I3/3d32V5eZnbbruN3/7t3+aqq64abheGIT/zMz/Dn/3ZnzEYDLjzzjv5H//jf7B169bhOsvLy/zkT/4kH//4xwF417vexW/+5m8yOjr6vMf7QlER3woVKlyS0FpzV+ev6akVrhh9HdvZazp4WZKkG5P6En8hJK3ZBBM24YRLbSFGWYK4aeMvRDhdi/6Mg9tV1E6skbR9rIFgbZdP4+k1Hjv+t8ydehC/Nsp1N/8I4yO7oQNiKSCtmS5hMkqpn+qTNhy0FITjPlag0FJgdyN8ranNaaPsehZprY6zGgy7ouHbphObJUg9G7uXIlOFyLmaawGusS46FjKMTTqDEJCYQjckhqTmxFFnBHgQZgquiaySc31DQPNq+vzLPzIeTAHoGOMjzV9bO5kdAApVVsoLVcu8axoUGbhQEMq1DstyiacWP0+k+sw09jJs1BAUHeeG1gLHKchQWbHLlb/c6jAkTGlBvPKxlAumlFrfDa6sNOavyxsN6A0KZTEnwLn6DYWHOfcU57YIpZBacsXYG7Clx4GFf0YLze7RW4f2EDEwRF27jmlGESeImp/FctnFN24YgZe1dW7Uirix/HzC0IzL90yzkVShtSpsD9nvQkgc6bKvcevwen929U84k3UrHLEmqMsR2tYUbdv824iF+BT39/6RJ3pfBKAuR6jLEZ7ufYWDvS/TtqeZ9fcw6+2hZreKDXMbxAY/9EXn37KKh5phgkfp8/wa595dqcEqdWbLVVwbM1fZg4b5PPf76vVjEKJQhb8JyO83yuN733338bu/+7tce+2165b/yq/8Cr/6q7/KRz7yES677DL+y3/5L7z5zW/mwIEDtFrmPvjpn/5pPvGJT/DRj36UiYkJPvCBD/DOd76T+++/Hyt7WHr3u9/NqVOn+OQnPwnAv/t3/473vve9fOITn3je5/pC8ZyI78nwKSxh01drzDg7GbNnX6xxVahQ4RUMYdusBefpqRX2tW9ns95BfMMe7JWAwfYmTieh9fgC9PrY4yPYXR/lWTiPHEVMTdDfPYbVT+hu87EiTf3Bk6RbJ0lrNv6JFUYTzZo1YO7k/czsvI1d174Lf2AZZdiXxHWB09PEDYnTtXE6MVYvRqQpYsTH7hakMK3ZuMsBMsiUxiwbF0wxmnIk7nw/a0LhmwzXQCGDGFXLXq0LgXaMQqw8B+GoISEwii9ozzEFR65VxGHlSmy5qGt1zTQjSJISYShIhyB7rRzGhbe2pFDSH1xIIKU0ZG2YslDyembRVxp48PwnsC2PWye/izF/iyFw615Dy4LwwnprA2R+2KQgtnFcKHnlHNqNPtGy9xTW2zjK8VhxUtghysiVwpyc+aVmEbn3OTu+AC4bfw0CwcH5z9F2Z5gY2V2QZCHMg0XNByuGQZC1++2ZfeRte5PSWMpFYmDsEEGIzppLiIyU5+qvGObYglCGwOskAQS3tt7BqegAS/HZIQEGeMPIu3Fl7YJTn3S28oaRdxOoHp5s4GXrJDpmPj7Bufgoh7r3cqB7N01rnFF7mpozgi8a+HYT32rhyQa2LJ2L1ug4QWQtnYvEBVGox6V1hw8/SWpYiSqR1VRf6P/NMYxLU+u7yAkBZQV0Y8FjBQC63S7vec97+L3f+z3+y3/5L8PlWmt+/dd/nZ/7uZ/ju77ruwD4wz/8Q2ZmZvjTP/1T3v/+97O6usof/MEf8Ed/9Ee86U1vAuCP//iP2bZtG//0T//EW9/6Vp588kk++clPcs8993DbbbcB8Hu/93vcfvvtHDhwgMsvv/ylP2meI/E9GNw3/L2brnBz821f9wFVqFChgk4SXGlevzdEC3XzFYjFDuHKIlH/DJ3eIh3ZoRvNcf7RR9jXvJU9Y7fDxDgsLFNPFdp3GP/SGdLJEbo3b8MKjMoazY4gUoXVbOJ4TZROkI5LbENcl1iRpnEuwe4nyEGCUEZ1TdpGlZVxStJ0SX0LkWq8uV5Gdkwhmao5IAXKNe2Grb6JLSPVOGshScvNVF6wOoH5LFdjhRimORjCBarhIcLUxJdlxWGq5RtLgyvN+nlBmiXB9gv/K5mKmL/+zwuBkoyARqlZNyekUhjC1s+6KeQEWBmVkTQjXb5nyIzjQL+fXzUSHbHLv56x2tb1ZKdMWqLowlfnOTFxsweBfN+etz4L9mKkdyMhzglwPvaan5H2UsJBrhaXW+yKEnGOk4t/Piys0uyt3cRS/wSPnv97buV7qLvjgDZWCcgK5UyMmFgy/m8cB+xMhcwfAPKc5LwbXT4vtoWw3GExoMAqzj2LWcuVX7RGWBY6TmhaY+zxbuB48Ni6aToePkHLGqdljVGXI0MyDeDK2gWk2BYOm9w9bHL3kOiIufgES8lZVpM5zkdHiXW4YX0XXzbxrQaurCGFhRxIhAZLOriihi8bNNwx6vYoFplqW36TAOtJbj7fG+0TOTEuWyzy615Wj9OUJA1Zjs5wqeOFF7c9d6vDj//4j/OOd7yDN73pTeuI79GjRzl37hxvectbhss8z+N1r3sdd911F+9///u5//77ieN43TqbN2/m6quv5q677uKtb30rd999N+12e0h6AV71qlfRbre56667vjmIb0uOM+3uZNyaZdSe+dobVKhQocLXQKgGHAkexhIWO7yrcK7Yj3X0LH7cpG6P8tDKp+CfPvVV97HgLLHH90Apoqu2Y/UNYQ0un8ad76GCAfrcIkujAWudU/SPPMXK6nEA2nIKt5OibIGyBM5AIROFciXKdkk9iUw0yhF484EhuI6FDFPEsIgsS1WwJVYvNER5zEfktWxSouoWVj9GJAp7NRh+aYtEkbZcZBCjPXvYgTePl9JWFmcmxDAVQiQqiz6Lsy99AVFGilwbXAx59byiCM33zKt1KQ3ZTVWR4es6xat9MOsOgix/1xSaibyDmxTri8YsyxTcBSEj9gTngsOMdqZpu7PInFyV1dhyZ7iNX9aDoJT7mhb+X1ivDpYjyfKCNKULBTmKi9+D0Cisjs26LmLluCyxgXDk4904vtxiAgjP47rpd3Dv2T/n7rN/xjWjdzLt7zLE3vcKC0muGOdpFjnyOSyf28bUg1zpLttC8vUTk9YwHFo+X5bEEi6b3L3MRceYcLaQEHMqeopIm+stsRixJplxdjLr7sKXDb4abOGy2d3LZndvMTSdEKg+oeoR6B6B6hGqPoHu0Y9XUZiECoUi1TGhHqxLY6nJFmPuJqa8HUzWd+JIf731IVeAy3Ofe7uH1610DZUiTUI6ySKr4XlWk3lWkzl66cpXPbdLBcbj+/ytDvm2a2tr65Z7nofneRes/9GPfpQHHniA++6774LPzp07B8DMzHqeNzMzw/Hjx4fruK7L2NjYBevk2587d47p6ekL9j89PT1c5xuB50R8b2y+BYEcvgqpUKFChReCXrrKI/1/Zi1dBEAiSR96jJXkPJEO6avVZ9x2xtvNmL+VMWeW1tb9xC2XpG7jrMXEUZevHPo/BA+vkiQh5deeluXSHtvN3n3fysTM1bitMaxugqU1dj8lqZkv1tS3SHyJFZpCMG0LkpaLFZo2xTJKTeGab6MtidUNTWxow0PGKc5if3hMIZRRazPVMm14w0xhESVYawNDpnuRiSKz8wgyy0Se9SOU7yIjU/AmB7FRln0HEcuC2ObEMEmM1zfJCsTarSLWS2cEcRAY0hhGRSFZTjhywparqTkpy5XeYWxU7kk13ta9jVt4eO0zfHnlY4xYk9w88S5c4Rfkz0zGsCvYBbFaZK/u8yYX5WIpKUuNFsr+0IyMDgvdKArfRInA5oVSG8lsbgMpe43TUte4fB1A+46xmWgNKHx3hFdtew+Pnv8kDyz9HZdPvoFdozev90XnKHcUyz/Ls3Bt21yLICwIexllwpyfz8Z5s6zh8WSScG3rDYWqm81NmPTpJot01DKL4SkOBvdxIPgyk/ZWLq/dRtMavWC/zwRL2DSsERrWyLNaX2tNrEN6apV+umrGEJ3mTHAQVgVNa4yabFGzW3iyhi19HOlhCxfHriGU8b2rMCJMeoQMDNFOuoSqT6j6DNQaGo1A0rLGGbdm2eleQ8Nqc2/3b5/1uX0joF5gy+K8uG3btm3rln/wgx/kF37hF9YtO3nyJD/1Uz/Fpz71KfyNOdsliA32Eq31Bcs2YuM6F1v/2eznxcRzIr6fX/soADu8q9lfu+1rrF2hQoUKXx1PDL40JL0Ac9EJOnpp+PeuxvW0t12DNzpF+9AacnwcPQhIZ8ewV/roulEyBpsbJHWLxskecduDxKU3WGBkYhezE9fgJQ6iPUJdNvGbkwRTPgionw2gmxCPOASjmf0g1FjLhlzV5kKCSRflWMZG6EmShoWMNW6sSJqGbNdOd4zdIVEId4NqlyFvnGGvGtUtrZukA5GtK9JC8ROxacggBjHatdFSIpLEZMZmnlWZF7kNSZYFQWRIktIQhQVBWu1As25e4edpBUqhAzMWYWeky3UKX61tF+RXabROTYKBFOsLlSAbt2bC3swbx9/LUnyWhzr/xINLf88t7W9D5g0FwOwnI2TiAqVVFAVxGyHlsEhv3XGBYdvaje1p8/HmBFmlxd/5fpJ0ffvciyFX57PiNVPcZ66Xa9W5cfY7OLD4OQ4sfI6p2g6a3lRRQGfbF+47J//5eeXKdPnzcpFWrviWCW+5690GDBtXbIgi8+w6nl1ngm3s9K8hSgfMxSc40n+Auzp/zU7vanb712OLi/igXyCEELjCx5U+Y/kb4xoEqsdCfIq1dJGB6rAYniLWAbGO1inEG2Hh4Mk6nqjhyTojzgR12aJtTdGyxpGiUIbLrcxf7jh58iQjI8XDyMXU3vvvv5+5uTluuumm4bI0TfmXf/kXfuu3fosDBw4ARrHdtGnTcJ25ubmhCjw7O0sURSwvL69Tfefm5rjjjjuG65w/f/6C48/Pz1+gJr+UeE7E94rWa1jVSxzvPsY+/yYsUYVCVKhQ4fljj38DST9mTS0ArCO9AIGXctl5D11vIpuKeFObzo4ZanMx9qpRSZVnI1KNSDWd3Q2crsKXLmPTlxNHXab23462BHFD0nqyw6DlorPvxKThmG0TTX0uRsbKdG9LNY7WiCihFpsvX+VKtCMhBKE00aiH3U+onemafbV9ZJgYgisl6PWvabVrmxbFWatiYEh6zWvw1MSOpcpEYGWthkU5PUEK9Egdsdo1zR4y0qMn2kaJtKTxmOYqKBR5ub1eQYQGKTqKEfWaIb+Zsqszq4GQkrC3gmU52LZHrEJSneDhI6Q9tESUFVthWQhlUgcm3C3c0Hoz9659ghP9x9jhXzUcj9IKrRMsYa8nvnamdNpyfTFS7gEtq8b5fOQ/8weAcgOKvNgpzVIbchKVUlg48mPmMVuwPi5uY4btMJkiWUe+hRDsG38tc/3DPD7/T9y65V8bRUtlRVf1WmbBiMy2G+0MG4+Ttxgup1KUCwA3Lt+onm0kzuV1SkTZdRtsdfazydvDkf5DHB08xFx8nJuab6Mmm7wU8GWDrd6FXk+tNYqUWIckOhoquRKJK2svCjn/RuLr5fEdGRlZR3wvhjvvvJNHH3103bIf+qEfYv/+/fyH//Af2L17N7Ozs3z605/mhhtuACCKIj7/+c/zy7/8ywDcdNNNOI7Dpz/9ab7v+74PgLNnz/LYY4/xK7/yKwDcfvvtrK6ucu+993LrrbcC8OUvf5nV1dUhOf5G4DkxV9utc2bxi7iixkpynkD3qctWle5QoUKF54VxexPjziYGYQdH+vTVGjtHb6LlTZPYiul4BiKN7ARg29iPH6NW2zOMmEqaLu75DklzlOaRNUhTBtvaaCkZ2XM1x+76v7DUxW40sAaKpOFgBYrOVpvWKVPAJhKF8kwhWlqzCUdrWIFCuQKnlyJSjbPYRyQOad3GClOT5LASQqpRvo1IFDIyloQilsnEPamGZxTcVCNQpC0f2YuQUWJ8wW6RvasRaM9DhjFp08fqBusbLWSZv6YQKoscsy3E/HJBEFsNk6aQrb9OXdTaEN6s2l73+gjbRgchwrZNgZRWnO0c4JHeZ7Fw2Ozv41x4mEgHzLi72e5fyaiYok+H5fgsoR6Q6BitFb10BUd6jNoz2MJhxJrk4ODLrCXzjNiTpKQcGtyHQPKm8R80L3aVRjTq5lyyMQ4hxPrCpbINoEz+yn9D5uUtV/XnKRJyPWHMbRNCMcyC3egzLY+lTIY3EFJL2lw19RbuO/PnnFp7mG2jNxRjyx9epAWuKIjzxXJxXdecczlZo+ztzZV4KEhzec42+pPLpLk87tzvjLEY7a3fyCZnF/d1/p7H+1/i5uZb+UZCCIGFnQlsX92D/HKAQr5kOb6tVourr7563bJGo8HExMRw+U//9E/zi7/4i+zbt499+/bxi7/4i9Trdd797ncD0G63ed/73scHPvABJiYmGB8f52d+5me45pprhikPV1xxBW9729v4kR/5Ef7X//pfgIkze+c73/kNK2yD50h8H1/8LACRHvCV3iezpYJXt76TpjX2zBtWqFDhFQ2tNefjY6ylC4zbm5mwNw89Xpuc3SwlZ1lLF9i3+U62XPVmvLkeYq1Psn0UcWIO4hjdrKFHN+MtBqzsb9HdMokVwdhiD++MKeiIplvYWaxYdPgwluUgLIndT9DSNKBwF/u0atK0Eu7Hxrfbj4lHPGSk8IMULQVyJTUJDi2XaLKBtgQyMvu2ukbxtDoDlO8apVYIlO+iHYnVCYyXd6RmfjeTgMbCWssSE1Igiz0ja1ShLWE8vq6NDGOT5evZhjgDql7Lcn4V2nWg5g1TIHS9hlhagTWjQOvQkFlse12smMgitITnosPIqLaWzFIbFN10hUd6/8y4vRlHuMyFx5h2dtCyxjkWPsZ9a3+LxEKRIhC4IlffBHXZIki7HIiOoVFIbBSK5fQ85+Kjxf2AIkz7xsMpM5tFOUHB2kDeoCB7ZRK4kfTlZHbjtvn6Nd8cIy51i8u71OWEM1eb09Q8XJSL4Dbud5g+YJGSUHPaNN1Jjizfy7bmtUXygFpPNIf7yLNwc+uFUhf6efNzlxuU8I3ndrHxXazSPx8P6xV7lMYTdaSwsJAXzm2FVxT+/b//9wwGA37sx35s2MDiU5/61DDDF+DXfu3XsG2b7/u+7xs2sPjIRz4yzPAF+JM/+RN+8id/cpj+8K53vYvf+q3fesnPpwyh9de+s9fW1mi329w+9r2s7vKpxx6+rvPU0x9jITAVfjXZxBU1PNlg1Jpii3vZMI6oQoUKr2yciZ7m0f7nh3+/uvXdNGSbp4MHOBI+TKMxzdXjb2K0tQMxCNFNn3BTC2uQ4JzvwFqH+LItiFhh9UKS0ZqJGotTRMkrqeou4aRPurrCXV/4/7F779vYctnrQArsnimosrsRacNFxKarmkhTtGWhajbWWkgyaqrLtSMRscJZCYyqG6aoumN8rpmfV1uiSFnIoBqeWT4wRWA6IyVCrSc92rIQyuT2altidQagMMR3SKiKYjQRJWjXNpaIfF+5kpgkRWOLXOHNfKXlxgei2chIX5YwkCnAYKr0j4QPMRefoJsuc2f7vdjCXXcdtdaspQsspmfxRI1Nzp4iuaEEldk8FCmfX/t/2epezj7/ZkCzmi7wQPdTJBiFtyHbTDrbmHS2MuZuMkR4I9ksK605QdzY+CL/LFdry+QyL8zLm0RkCSBDr3KaKb7D42XJERv3nXt1Sx3jutESXzr9h+v8qE1ngtds/cFsnbRoklEmwVD4gHPSnxPbi3jE142j/HnZ0nCx7crHKy27oLAwVRwNHuVgcC+vaX03jedQ6HapItUJR8NHOB8do6uWWV1d/Zo2gJcaOb/6owevod6yvvYGz4B+J+W9Nzx6SZ7jpYbnpPhaN1zFyHST1tEevSNPDknvlL2NpjVGpAMGbsTT3Qc4GNyHIzz2+Tezzdv/ogy+QoUK3xxwRQ1H+GgU29z9NGSbg8F9HAsfZW/tJnZc9U6sSBNO1fFPrRJNNXGWQ6NuRhHR5Vtwnz6Hmh0nGa1hrYWmmUQ3QE20hoRPJApvfsCZ4CQaxezUNYhUY/UKhU9Lib3QAwnRbAt3rkc0WQegt3nE+Ic7MUIpkhGPeNRHJpq07oAGGQtkYMiiHBgSqd3MsxvGyG4w9PACJmRoY3W056AtASHIKIHQqLxIiRLCnHdiiLl2zattbUvj+83OVQsB9SzJQXjG45u/ItfWMLFBSMd4cpU2XctqPoQhOnvdrqXgie4XOBsdIcWc17i9qSC9JXIphHjGDmBl5IVF/XSNVMe4ojYkyGP2DK8Z+W5W03kSHbGUnONcdITj4WNY2OysXcue+o1mHxsJG6wnh+vsDfJC4ldOkgjzrnSiUFWjOCv0y/Zp20VGbEpBSKUoiuCGF1ZAGiOFHJLemzd9L47waDjjBZHOVd7cdlJus2xbw0zededS7lpXPqdc7S6T/3JaxMVU2o1tnTciW95Ryzwd3M9276qXBekFOBw8yNHwEWa83XTD5W/0cL4q0heY6pC+gJbFrzQ8J+IrI0X9bIjshDTTJq+f+gHcyELYFqLZINk8gYxTglNHORjez7nlxzgXH6mIb4UKr3BMOlt4Y/s9w7/n45McCx/l8vpt7Jp4FfrgKbAkfncU7TvY/Zi04ZC0XcLLRmk9tQQjTaPUphoZxqiGR39XG2UJGie6pHUnsyMouquncPwW0e4pRFchU0PwZKzQrkXi17HXQtxzHVDgLg4QgxjvVDZAS6DqxgKBAiTYYWIaTKRZjm8/MqqtNj5fmeX35jFlOYlRNccQ1ky1VDUH2ctaDefreI6xMyhlGo7lTS3C2Hh6N0A7xusqEpWRV4l2LUSgGLZ8VbpQQF0H+ob8626PNbXIfHgcEAxUh9PRQQA2OXvY4V1N254sHez5f6E25ChX11/LrLNn3XJP1pmWOwDY7O5Da01XLXM6OsjhwQPURYvNtcvWR5tdrIgrH9/FuoHBxfODtSzaIufrS8sQ1TI5zMkvgNoQi2ZZQw9ulPQA2D/+eia9rcU4hTSEunwsrY33WIhCAS436MgL8zbGng0j1i5C7MvNQDYW/z3DtSurvZEKeDq4n9PhQepyhH3+TRfd5psRZ+LDbG9cw2Wt2zl/7ne/0cP5qlBaol5AcZuqbCnPGs+J+Lpn17AjbWJxtszgL62hVYBoNkinx4jbLnYvZk0vcW7ZdI3Z493wogy8QoUK37w4OLiXcXsTO/xr0GMt6PYQvk+8cJ4j1kGOLt7DNVf9Gya2XE3zaIfB9jb1x8+S1NrY/QRVcwimashI4wQJ2rHQUqBsSTRis/LEMUaaW6ktpShPkroSNNhdo7olDWMvkJFpVBGMG9KsLWicCrD6MTLIiG6UGA8vhnBqWw79vEggLBW1SdCJMnYFSyCiFNkNUXXPWDK0RnZCY2EoVdnLXlhYHCRD0pIfCxj6fCGL1coVQSkRKi0KtzwHXfNMGoTWpmXuIABLkoYhR8KHORw8AJhIqJpsMe3sYF/tZppy9Ot6nYUQbHb3Pav1WtY44/ZmjoeP07ZLofflDmU5Lyj7fOHir/g3rpM3vlC6UG9zW4iQFJm/uQXi4hYBQ2iLwrH8zefW5tXZPnKbhSqsDOXosXw8aamxRbavdQV5QhRWDFhP7vP1c7K70dZRflB4JkKUEez5+AQnwydpW1Pc3PzWl1VaQssaYyE8wY5mxUMqFHhOxDeZaKC9GjJKsU4tZDEuknTTOFoKvHM9xLHTtL3x4TZLyVnGnU1fZa8VKlR4pUEKi6XkLJ9f/lO2ptdQn93FwrHPcTZ8eriOWxvBO9dlsLVF7cQqamIE/2yXcLZpIscsQWoBWKUvejj95D+zunyUvVd9B3aQomOFsgRC5TFkLuGoRfNERDDtY/dT7FDjLgYkLQerE6Edi7RtFF/leMaOkOXriihBJwpVN5FYqu6gXB8ZplidAdq30QpkP0tW0Nr8nlsUbJMgMYzeKr2m1jXHkGidK8YZGbbEsO2xKKuHeURWnnaQ5dEKStX+UiLqtaztLRxefWA4xzc07mTC2fJSXPJnhV66isSiLo1HMVcm18WebSzk2kgoc5Rb15Z9v45dpDmQ3zcqszzowmZQFt82KsHZNTvXO8TTK3cDsDg4zkxjryG7+bXJWg+TMrwWw7HlP0vXabhNeZltFf7tchLExeZg4xyVPysXD0JG6s2DSTdd4lj4GIcG93N57daL+raLw2lSEpaTc7iitv7twFdBqPp00xViHeJKnxFr8kUn2fv9V3Fv9+/4ytzfvKjH+Xqgsjq8dHhOxDevaraOnjX/ATVqpNunUY4kaTjUjpyF6Um8uocz7xOrgMPhg2x291J/lt1dKlSo8PJEqPrMxSeYj08Om1aEus/h1S/D6peH67Vqs1x/9Q/guS2SukDGGm3byH5EsH0Ua5Cwsr9FfS42gl3dIhj3sELNwuH7OHrwk2zf/Qa2bL4NncJg0sFfTEhrEiu00AL8xYTelhreSoKyBVZgCsac5dB0S9Mae7lvEhvi1Ci/wrQMRilEkBiVNmtfbMHQViCCvNhOZJ3XcqJkVN5hCoNtittQ2tgUEoVcG6yPydIa3aoPkxyGyJVLIYo0gpzYxbFpeDAIin1lHcKkkLxu9Pv5/MqfAXzDoihjFRLqPhY2vmwMie1cfBxP1lGkWEpcXHEtFfyZZV+lEKyslpYL2S5mCcgL32zbkN5yowxJqQGGRa7qNpwx2u4sq9E5Hpz/BK/334/vNLPOdKpImVDKXBMoHlSGBYpZe+Xcd1w+rlLrVeD88/K5bYxXu9i8DFXv7E9VECxhSy5v3k5NjvDU4G4SHXJN43XPOKV3d/+GTro0/PvK2h1sb107LJK8GBbj09zf+0d0iZwJBE1rnFFrmilnG5P2Vr7e3bwaVptbm+/kwe6nv677fTGggFQ///P/Kv8VVNiA50R8nWPzWKlAbZ5GrnTQIw3CcVPB7C2aHvDJVIvuymm21q/kbHSYIFplJT1fEd8KFV7G0FoT6QECOUxzyX2b8/o0c8FRVpN5QDBmz3D5+LcQE3Nk6R7Ivgwn/O1sv+btNGd3Uz+8QmprZKoQsUJ2B+iGj3e+RzjToHkyMLFhYUrqS2QiOPv0lzj68N8wu/02du59M2nNQgwUtbkYoTQyNrYGbykgHjHdjMJRGztUyJ5pGoHWJrUhNoquCFPjyQ1jtFXy1TqWKU4DU4BmyyFJEYkhodp1EEG8PjsW1imTWkoEGRGW0nzxr1MMNbI7KBGhPB2gtL9SPBU6LZozwIZ4LkUqUk4FTwEw4+xc193qpcKBwb0cC9eH5+/wrmJ/7VWM25s4Ej7EkeAh9tVuvnBjWTrvPM1jo7opL6KalVVh2zbkM09TSEo+XNvKCt0sEHr9w0YOVbKcCEmsjLLfdCZwLT9Lcci2c5yC2Eal7mHlphVlNTrPLc5tDuX4stwycbGYtuwBCimy7nZi/f7LyM5J69I2SrO9fhW2cHi0/3kmos1fxaJi9ucIj1iHRDr4qqRXa8WB4D7a1hRXt96AZ9cJVJeV6Bwr8XkW49OcjJ6kKcfZ7V/LrLOLCzr6vQA0rBFubr1t2Hm2QoXnRHzjnVOkjQbOckCwbwYZK+pPztHfP81gxqceT2HPrfHA0x8h0gN8q8kWdx+zzu4Xa/wVKlT4BmKgOhwJHmYxOc1AdbFxaNvTbHOv4Fj4KCvpeSwcpvztbPevYqq5B7c2ajyoi8tsu/Z24oZNbSUl2TGNsxqhOglqxEe5krRmUzs0j/Zc0rpLPOLgne8bL61lkTYcnJWI04c+zdEzn2f75lezd/vbINQklib1JMLWJDWJTMFdjtCWxAoSmscMYRFao1zLxJtlvlqRapCatOUiEkN24/E6Vi82hWM50SUrNMvizHTdhX6Edj1kp595SFN0zTWpC7lyqPXQNwwU9gUwhDmKM7+uDWGcWR8yMhBmBMqS6y0OeaviJDAErkywk4S56ARPdr9IqPvs8W9gj3f9i3djfBUsJ+cuWGbjEqheQYjLRB8g5+cbfbcXI3cb837LyyBTbWXRFtmmSFiATNGl8P6qjIiW2x9n1+Js7wD9ZJmbZ76LCX87QlMo8XF8cQKbL7Ot9V3ccotF5gUfEvuhUp1eeL75AxIUY7Nlofrmxy3fX2XCW55Lpdns7mUhPsWTg3uYdXZf9MHo1uY7OBMd4lj4GLEOsZ6BRhwPH2cxPk0nXSLQPW4deSdNbxyEwNE+LWeSbdZ16DhmOTrD4d6DPNL/HE/LB9jlXcsmd8/XrTvsN4Nv+YU3sPj6PSy83PGc7irlWLjdGDGI8Y/0jMI7O4q3HBKOe6R1m+7ceVKS4RN8hQoVXp7QWnNP5+NEOhguS4hZTE6znJzDkT4z/h485bFn7A48tzlsHCBWO+B7uF6b2inz2lSHqVFxg8REgska7ok58F3iqQZWkOAuZUVgGN9rEvR44ok/Z2HtafZuexPbd74eLIlQGqdrWgPbayZtIW06JA2bwZRN63hIWhekvoU9MKRAZK2J5VpgfLqWMKkO2kSN2SvBMD9XJ4bwivw1dKYAK8dCjPgmw7eUKSsGUfbam2K5Jc18WBkBsvJItKxwzbGLIixpFwQXDBnT2qh7+TIhCjVyEAyJmk5Tjg0e5UD/Hqbsbdxc+1YaVvvFuzG+BvZ4N3A2Psxyco5QD9AoDocPcjh8EABP1I3aW/Lt6jQ1983GorOLeXvLhLdMFPP5zlMTfBeC7CHCtkve3Q0kOfcC537sVJmHHyGYre3j6NpXOLJ6HzpJqNuj1Lw2UlqAU/h1y0RVysJnDFm+cEnJte2iW11Zsd/o4y2/Qdg4B5m1ZbheyUsulETLZ34xvs27grPxYbrpMiMX8e/awmG7dyWb3b0EqkfjGQoiT4ZP0lOrbPX2s9Xfz6g3W4wnPxelEI7DuLODcX8rq8F5Dvcf4PHBF3lycHfWNlmgSGlbk2zzrqAuR/BE/etui/hG44W3LK6I77PFcyO+roQIVMtD+DbdQ49yaPUQLUaxHglZjeeYi0/QtibZ5V33Yo25QoUKlwCEEFxTfx2no4M4wsMRPrEO6KcdFtPThKrH+eAwAOOrm5hxd5rWtEkCjk28fRLn+DzYNmq8ib0cILQmrbuIXoidGoLT2T+O001xFnukrRoExoe5kszx6ON/QhIH3HDZe5iu7UJFKcoTJDWT8mAPUoKZOk43IfEtaqe72D0fu2dycmXsDC0LadMxDS0cC3ulj44Sw4EsATpBpIYA55FmIsvWzT2ZWkpknBr1V2t0nrGbKJOwkMO2DOHKLRBxYkiXtNcXqkWxIUjFjBsi7DmQ5q/ms4Kl3B9aJkYlNW8uPGqug73pG0p6F+PTPND/FACT9lZ2OtfSsNugISKglywzXi6220BsdUYChbAvJIFlIrRRGc1/uk7R9KM/MFYESxriKSSkJVUe1quiOemFjBtrWs4EN01+O48vf5b7Fz+eH5xNjcu5dvJtxhRQ9t06drGfIbndkMww9Aan689p4/nmSnA5vzgn/TlZLivCOWwLoYtmGlqrdYVvvtUE4O7ux7il+XbG7YsXp9vCpWm5F/0MYMrZTi98FEvYeG5rfavlfEy5yp1dv7Y/w43+t9IdzLMQn2SgeoBGacVcfHzY/c/GoWGN0rTGaMpRxu1NtKyJi5LhfrrGifCJZxznpQKFQPFCPL4vrweBFxPPrbhNmEgdudonGHe5P/wMYWeNVeGjdErdanNF7VVsdS//hnjHKlSo8NJi0tnKpLOVVCesJvOciZ9mMT09/LxpjXHF5BuZsDahwxB8D133SEdqOGdXTTOFnsnQFWGErnvYJ+ZIt02hXAtnvkvzwLJp4gDYK30ATkaP89TBv6FRm+KWve+mIUZIGi5JwwFhCnFTzyi/3lJI6lnIVBNsauKsGfVVOxbWysA0qhhvYC930Z6Dcm3SER8RmgSHPEZMO5bpmiYxJNgSiMhEX2lbGiLsWMOCNhnGJTuEbdTinDjlr9Xzqn+sIh/WdQwx1ip7SHAMYcp9lHFRPGdITzpMcwDMNq5bvB4Hbmy+lUPB/RwI7mXUnmX0azSgeDFwKjzI44Mv0LamuKn5Nhz7ws6ewpdc0FFMaaP0wsVtDjk2xpeVybBS2ReYKMhnvo7rGHtIjrzRRP4v91DrzA5RJpJKM+Ft5bWbf4BAdenHKxxZ+wpne0+xd+x2Gt5EZj8ptUhON5DUMgncmFJRVn43nptSRcbvRltHeR9lb3OSbCDKFFnFGWqigcA05TCK6/PDZf4t2MLlWPgoJ4Mnubz9arbXrxm291433nw+kgQdJzSsURqyXZyz1lzB7XT0CoHq0k2X6SXLdNIlzkaHUaS4wmfC3sKks5UJewuerNFLV7i783GoEg8qlPCciG/t1BrJ9DjOsTOwGhJGa9Rkk28Z+Vcv1vgqVKhwCUNrzVx8nEf7/0JKjGc1uGzkDkZUm7Y7gyM9dJiAHSPqdXAdtGNhn14slC/HQfRNAVewZQrPy5RXSxJuGUELQVqTiFjjLYes9c/zxCN/AQhm6ntJ+z3SiTGsXjT8ktSWQCY2djdGWxK7EyJWTDSYdiySpovdMR5f7VhYvQht24hBjJUolG+jfVPdrxWGxGqdpTBkRWmZAmy+uGVR+GabvFlVN4kQpNoQjCjJMndVkcoAmRc0Iy7lpgYpWWOFbJ7KRCwnY6L0ety2IQjNz5ICLCwLR9S4XNzGcnKWR/uf58bGm18y5VdrzanoAE8MvsQ2dz9X1O9A2s4F/tIc5cKmoRoJxc8yacoVwzzVohxflhd9XcwXC+aBIggLUgvF+sOM3xLhzH2+UNhLJCBM05KaM8picJLFwXHG/K3U7HZxXrmVoowyiS5bHcoFeuVzyAlw7hHOx7vx3Mq5wbCeYOfktzTvuX1ES3NvozUNOYonfVxR4/lCCMEe/3p2eFdxaPAVnlz9FxbDk1w99iZTAJvbOEoqtS4r1Tm0RrgOQmna1gxtPc1Mye6idMpyeIaF8CQLyWnO9s1bJoFAY87lxsab+ULn/z7vc3kpUFkdXjo8Z+d4X3UZWGc5sWr8WFfU7vi6D6pChQqXNpaSs5yJnmYxPk2ge0w7O9i74820gjp0e+BIRK02/NLSYYgIQxgEiCRBb55BRDF6JCv6WuuA41B76hzUfJKxOsoWuHO9rGI9K0LzHOpjm7hiz3ewcO4xjizezdMLX8A+7XPdzDsZq19H0jSqr7MWMZit4c+HJpGBFFVzQWnsXoxIswKzRKOFNi8KHQvRD7GiBO3apA3XWCGGjROyLN9MMSZNs0I4ZSwQSQKJNLm7WbMLoQ1Z0X6WtpBlAeddt3TDR/QyxTFJiqKoHMoU2l3w2lqKIgs430bKIj2gnPZgSaS2uK7+Ru7t/h1f7PwFtze//aIezq8XtNbMJyd4OniQTrpoSG/zNcb/OiwSy4h8HlE2PF/z6n1IgjeS3vw1/8Z2vheLNiuTRNc1c6V1QWrDLG/ZdfKBZ7FmliHHpdzecuOK4TiHyQ8pQbQKwJXjb0CmGmS6njCX0xby9I7yw8zGh5uyWpt3acvPe2O3urLSm5NcWN/iuawMb7RAlLDbv5bH+l/gns7H2Oldw5SzfZjW8lxhC4cr6rcz4Wzmsf4X+MK5P2Jv6xY2+/twhIdOEhIVEiV9pBL4TquwWee+brtEVdK0uF+EQKQwbm1iorWVy7QiVH0Ww1MkOsYSNlP2tq+aS3yp4IXn+F7653ip4DkR33sPfJjOk6YQZcSa5ObGtzLhbH5RBlahQoVLD0qnHBjcx4noceqyzUz7CqbsrUxM7kcEIXq8gWjWYWkFPRggHAdqNUSzkRVcpbBpEoQgmh5Dxgr78BnzxeZ7pBNNUs/CWewhah7xeN3EkDlGybP6CU4vYcv0TWwbu56gJVlUZzn1yCd5auVfuGPLNfjHltC+UY3rUTLsnJa0PWSisVYHJn0BSEd8ZD8yxWeOjdbabNsPEanCUgrt2kVrYMsyzSFgSMi1lRWwCWH8vJZGSwvZM4RK+e4wwUHk6Q+2BFsiwsSQ4LzYKU8DAKMCJ0mm0mXHzIlTnjAwVEOzuCwnU35zAhWGRkVLFJEKmI9PIrMvSEd4L9p9orXmicGXOBUdYMye5ZbmO0wjIyHQWiG4iBUuV2utnNxuUGg3xn89+8EUhDGKCpsAZJm9uboq1yvGUKi0ZfI6HK8orln2+672zZwbPM195/6SzfXLmWrsZszfgpSSYVtkXSKosL4Abt2xS+ptmaTm9oayjSPd4FcoFY+tO38oUibyIrpyuohlobVik7eXpjXGk4N7eGzwBRgIWtYYnqgT6gH9dA1f1pl0trLVvZymNfY1L8O0s4NXt6Y4FHyFJ9e+wJNrX0BioVHr8n1b1jg7vWvY7O41BNh31ls/8nMYnmqhhgskftpkS31/kV6hNQnPHLdW4ZWH50R8beFyXf2NjNkzeLL+Yo2pQoUKlyC66QqP9P+ZbrrC/vrt7Nj2LQghhv7bYT7ouXnE9KQp6ApDsC3TrMF1wKkhwoRkqoUVJFhLPajVDMGLIkSQoOsO2raxugEyjElbfkY6JeFMDRkpZJiibYGtJePtXUR7XsWhr/wZoR3hTTRJazbKkdideEgC7E6I7JimDmK1D5bECk3ygxqpIZd7IDyT6NCqI7sDQ0wH0ZBIk3t7U41IjQINxgqhXRtdd01ji8QowLrmGLuDJYyPObNhaNs2hDfPj80zZIUAzzPzZomimxhkGbPZHNc8Y5lIUkOUa74hVLkPOCfQShMlA44nT3C89yiKlGlnO9d5b6BmtV6U+2QpPsvB4D5W03mubLyWrd7l64qORN7yV1KQrpx8bmzLm7/aL6ufZSKcLytvXya2cKEyDIWCWLYRaFUUuuWqb25pKMWBDQlnmQhnv1va4ubp7+DplS9zdnCQY90HcWWNvWN3sH30BigT/nIntYslNGwkwvl6uRWjbI/I561MpvN5zS0F+QNDfs553q/Sw9SM/PpoqWi5k9zqvpMw6TEfnWA1nSdUA9rWJJuc3fTUKmejwxwPH2fc3sR290qmne18tQxeT9a5uv4t7PVvYik5Q6wjk/09LI4NOR0d5NH+5xm1Zmh4Y+v92PmDQK545+kV694eZLYjJbOmjuoCH/OlCKUF6oU0sHgB277S8JyI743NN2OLZ67irFChwssP3XSZE+ETnI4OUbNa3D71fYyM7TBfmE5G1uLU+CU92xDctY4hF66JdNKubbJp17qQpljzi+aL1nGg1US1G8OoMHexb2wCyiKabmD1E2QCIoxxF3rGX5vtk0RhBTZ0ugBENYG08+xdjfIMITDxYqAavmkIYVtmP5kvV4SBSUuwBHK5h2o3ChU2T1ZQevh/TG0JU8AWRGgpzfmFMSIj0igQSiE6AdqzIdHmQcCSiDBF25mHOFGGFGfqLLkNwPMKwpITLK2GZEzYlsn3zb2o3X5B4HJikKSsJQvcu/a3aJ2yzbuCnd41ePL5+za/GhId83j/i5yLj9C2prmucSez7q51xO2CODJY/5p+Y2FaTmbKRDWPg9tI8srY2N1sI6HOiXS5TfDGYjAoHkjKY9LaXLdyQkNpO180uXrqzWgpWYvmOLbyFZ5Y/Azj3haa7kR23Kz7m72BCEdxQd6QxTwNFf+80K2k4ObHLp9LGeUHh/zvfBrSFCHkBcWDhjRKdJLg2Q222lewVe1fT461QqUJ5+KjnAge56H+Zxi3N3FD481fMzfXl41nbJAxbm/ic2t/yqn0EJe7r14/5nIhX35f5PdP+R7J7RCpyu65S58UqhdodahyfJ89vj7p0BUqVHhZ4mjwKAeDe3FFjV3+deza+jps2zNNGfK4Lq3BlqRTbbrBPEvqKXor56i7Y2z1L8dJbeRqx6iSngeeQzrRRA4MacwTFlJHkvo2yfnzLC0dYXn1OIPDSwRpB6UTpFfHtxq4XgvPbuK4TWqpT9Rb5umFL7B59BoasY9OTR6wsiUyUiRNB1sKRJQihOmopn3TAplcsdYa1fCwFrtgW8he1u43TkBJRCIMSbEsRLjeg6tdu1g/JwY6K3zLvpRFlKI92/iZAdnPfKW5dcGSRUvbjUkCrlMouXlx0lrXzGcQZokOpYIlrdFJQqQDHlj9JHXZ5MbGW180wqu04mx8mPPRURaTM1xdfx2b3b0IS16o/pWK2Ibnmv/MX2VfTNndGNeVEzxZbuJxkVSEjb7f/Dhlz3BOKvOGEuVX6gDx+kKr4XbliLoysu5yQkPbmWZv+zbOdp9koHs09Xg2B7kCmxYWiIxsGhuLBUlEXjR5wbE3FvBdLNKsbHOA9RFn2TiFkob8Otm9mqeBCAFJgshtFXnx23AaVLYLi83uXja7e1mMTvNg7594oPsprqq/hrocMQ905Wv5LOBKn93e9RzuP8i2+pXU3bH125cV3vI5D9XwUsFj7hXf+OBzCUJpiXoBBWovZNtXGiriW6FChQugteJsfJRDwX38/9n78yDLkvO6E/y53+1tsUdGREbulVtlZe0ooFAACILYwSYhikNxekjjyKZlEm00ZhzZiCaZdZt1S2aSTK0/1N3T6qZJPd1DdWthi6I4IsgmCBDEQhBAAbXvVVlZuW+RGetb7+Y+f/j1+/zdeFlIoKqyslDxmYW95W5+l3h+/Pj5znegdh/HD3weuboF7QH4GTTqqGIaX2z1ObP5Ay5sPEs/XR/uJIEk7XD3xEdMh271lb6Hf20T3ayhi45rsKeGOn2OV879MaudNwDBRGs3tckFJsODCD9E9br0/D5xd4t25wrpoE2W9QHYt+uDnFj8NPJaG9WK0J6HDiR5wydoJ2jXizXwSskD2rhfaiHwNvsliChBqgWVwgALoTU6CopO1TN2Z1lm1k8smMEwTblChwYs65opX6wD3zC/BXDTtZqRPGRFdrsFUyo3QNgWULCASBV6YClMBbcsg4whE1gABKVznt78ExSKh5qfeUdAr9aaG9klXu0/TldtUJcTnGh8hD3RUQOqhMNYwngNq8vgueuNS1S7WSniqi1Y1XKsyiJrDVSmxq1soCqZGJ5sAbKH/relM4eVQ5QSieI4KqOnOzxz/Y/wRchUtAQaR+IwhoUVskhkLBLxbBU3u9z3hjMAP0zz7LL/7j6cBLkS9NpI09JWbHRfAiGLghzW+xf3XGCutpcPyM/zdOcrfLv97/EIaHpTtLwZmnKSupykKSdpebPbks201gx0h06+QSffYCU9Z+6R9Tt27zNsnyFw37vnbzXj7wHGdyduX+wA353YifdJaK1J9YDwTUCQ1ppz8YuciZ8j0X2WgkMcn/s4UpmkJJYWEL0Y1TQZ3iLX9HWb165/A4BQ1Em0AaPLtWMcnn4UlEDt3mVkAaFPNlXDayfIQUI+2wQNay9+j1fO/iFhbZITx3+J3cEhAhHSPTyNjBV5XRJuZOSR6fzymiTcNBpilSREuW8AZ1Loa0MfmeTIOBsmpvnSLPMluAA0yxFlEQNRnhcwlDmkKXiBYajT3JQY9nQJWEWSogtXAMP2eiV4Mn6/1m7LMew3F3zI7FqbMylhq2/aE4UG4FoGKy80vS4oKs4BIFMJm9kKZ/rPsZWv8sHWz1KTzbfrEQKgna9xMX6VlfQcA91lxl/ivuYvMBXuGq/vdM/XBbRV1s4FZnZd2C5vsJ8tsHGBUZ6bgUCVEa2yyLZohN2v7xnQKdxEMstCW7mEw766dmZWuuAxrJYnJJc6L/Dy6tcJvQaPLv+nhLpg9K1PcBCMAkwLIst22gQ8W8o4HzLSUg7XHyf5sOfr2prZ9ewxlXFcQRuNr7BMqW2b3cZaxZX70iUTrB1WFaWZ8Rf5+NT/mfXsagFi1+nmG1xPz5NqM8vh4TPl72LGW2LKn6ebb3ExeYWu2iyXT3izfKj1szS8yeE1k0Wymu9tH+zYdtr/B1dOo8bIP+7AyBHkb6EIxVvZ9v0WO8B3J3biJzS01mzlN1jPrtFVG+Xr3fUPcyA6OXab0wNTOnZ3824OTD7IVDKJQMLmFmJyErZ6BjQqhXj1EoMoZyU+XW4/7S8UbA2k2QA/FRD5yPUtw5Cub+JnM0bvC+iNTV658hUurT/H0uLDHHrkF6l3BN4gQ6c5zdMb5K0aWRbg9TOE8tC+IOgUU//SR9YDdD9D1z2jl00yw95aEBIFRSGKAtSmOdqCHTvNbYEQmM69PzClZAfJiMZTJKkBDrXIyA/CANGPTSfrS6MbtlIIpQzoLqZfdcgQAIMBHnFmOuxkWOyCMIRmw3zf6RpJg2WCLVhKh0l7KknZ0quc6j7BWnYZjaImmjzQ/Bmm/YW34Uky16SXb/H64EmuJKeJRIPF8CAL/n5mgz0jyWsjll2u/rRc7kxLWwBrE/VkZfraAtPi+pdT2Rbo2PC8YnDiDYs0WI9Y19HAtsm+uhZg9QDwzL13GUVPAmJUz4sDrApZAEBXbfLKjW+wEV8jVX32tu7l7pmP4+MkKdrju7Z1Wg+LlWRq+J3LDgM06qZ9VmfsntM4ltytllZ1iPCG96SUArjbW/1s1QLNAk8LlksPYCMp8HXEgn+IBZs4V7DDaTagozbYyFfYSK9yPnmJNI4RCBaDgxyrf4iJYI66N1mer9YKkYMuZBe6GPwJzxvq24v74hY+sQmUWqvxg7E7MHakDrcvdoDvTuzET2h8ZfN/Gfv95eR1aqJJy5uhISdGOoYz8XMAXOm+Qj2rMVX/gJn6n581DGm7Q1/CtSuvcKX/MpsbV0b2vZKeY8pfYKlxjN0zJxF5BBPNMvlLT86jfUk232Tr6ileeuMP6Seb3Lvvi+yZfQC1YjxyjS7WsFteu4/X7qOaEX4nN8ASDOMUBahaQN7w8eIcVQuMB68vDQi2dmEucwdDbsROV7sAyLonZLmZcqaikRTSJJZlmeORKk0JZG2S0UQ6rJAlLCPr6h1txbXEsnq+acsgLhwdCu9Sr9CdxkmZDKjTlM3sBu30Ou18nbX0Mh21TlNOcbz+KDP+IhNyxtzXH1FfWY217AqX4tfoqA3a+RqhqHFP42PsCY4aP14bVtoAlI4NVTDm6k3LG+FcD9sb2aQll92tbmMBo1vRzK5XBYBSGPmBtfCCUWBrt0uSgrmVowy7kqM62tJT1gGtnpGprHbPcr1/FoCTs59i38R9RRsKHS8MreisNEJR2KoV31m7sVK6YTMqlQHLNqnODtqq99c9f1sN0A1rYzZuW3tt3GXVgYfdfzmgKOzp6sYjWWjn/khKiURAjRmWmBXLReJczoAunvYI/YYDVIW5to5MRrg+vrKYfUocttmVckAJxMv3O7ETTuwA353YiZ/QOFb7IG8MnsUTPrE2pX4Fgp7a4pne1wAIRI2D0UmupxdI9ADl+P68ET9D7Cfsb99Nt99na3CF9XyFzauXy5KmAJPBAkvBISblHM1ohnpjHqLQaHgBtCabqqHCBjLOEZlmffV1nnrtt5ls7eFDJ/7vtGq70ElmnB2EKAFstWNWoYfwjI5WDhJEkuG3B2jfg6DSwVu2MM3QtcCAxtBHDJLCmkwN9ZiFflP7EnKNUEYLXDKJYTgERlIYgBqGlMUNdD5kfi2osOxsrsx6XsGUDUzpZuo1aHcLTWoBsoUwyWy5MgBYCHQSk+sMXwWsdc/z0ta36Kh1QNCQk0x58xyrP8Kcv3e7Uf+PCXqVVqR6wPPdbzHQHZbDo+wJj7InPIYni2nwSob/NnbNTbyC7ZIG2z5XujDCHDvA3XUlqFqf2Sx+91gVd4uR45Vyh0JHXX52tLsS0E67LYNs17egOXOOKwT76ifxtc+pzvd5ce1rrA7Oc6T1IVrR/PA4tiiGHXRpbQZBWQH4lTNAEGJ7QZOyMIUD6Fx2274fp6l2q7pVddDVZ8Ue1wW7dr+2fZ7zP5I6CZiNunnOHY3yCHjVGuF71PXEkAn3pAHN1XA1xcXnkfd24OHIG4SQEDgA/D0hdXhrcoX3gGPbHRM7wHcnduInIAaqy430Ipv5DVI94K7oAeb8ZV7jB2Q6YTE8xOHmB5iYWIZBQqL6fP3GvyTVA04NnmRh8hgzeZNochdTc4e4eObbXOq+yKXuS1zipW3HWw6PcCl5DYAjzUeYP/gIcnXTgMNmoSEuKpwlixPIJCfcHJA3Q7JWgF43U8OH9n6CZmsBMo2KfLxugqr5JFMhoRB47QGqHjAsE6yMG4NlD9McXQ/JJiP8jX5ZIAKti8ppHqLIyte+LLS+vtELZpaZFWYZmAIVeYZuRkaWEPjDjtb3zWdbcUsrw/6ihnIEy1bmBTuXOKBlEBvP4nrNTFcP4iF4sn6kUWi2yXM21Rqvb3yX6+l5AKb9RTaz60x6czzS/ALT/gKeePt/wrv5Jt9u/3vADIzK4hNuuADDvrqayuoUOQxBkwtmYZiFD0MJw80SmdztLOto2VkLrCxYDILRsrgueHQZ46oGVqnCwaPSXrcUtOcZYGyBXbF/ISXL9WMs1Q5zKTnF6a0f8O3ev2Y22sNy/W6WmkfxM+FM0zv6Y08YACyEAcHSQ9dDw4Da40LpzzwyQ2GBv73Olpm2spKbscLVQUg1qoMOe52rLHAQjOq1s2y08h0UMyXxKPC2532r4Xof2xDFbIMd91oJR8mUa3gPeNzuSB1uX+wA353YiZ+AeLz9JQa6W34eqC6PtD5PU07RVZtcS84Q5z0elV9E+D5h5nOgdi9b2SpHWo8wu+9+w8Kst6HtMbPrs+xuHueJlf9Q7nOqvkxIRJbFbOQrNLwpFApPSeTlFZibARoGXIY+2pfEcw3C9QHyxiZqbhIZZ3R7l3n+9O/Rai4xMXcQFXgIT+P1U1RhMxYpyCZCusvT1G8k+JsDZD82ZX+lYWZF4c2rPUFwvTMqZ9DaJKAFfqnRlf3U+A7b5RbgpJkBF7lC5AVgDryyYpsAI22wmmCtDStrAa5lAS0oVsoUmEjSYedrgUCSFAlYuUkommwV0+DaWL31eqA13WSdJzb/I0Hhmy6QePjsDu7insZH3xHAa+Nycqp8/9GJXyTyGqOg1pU1VMN1Oajaa1kQ6WpsYfuUumUtbVQ1wVUgNs631iZn2f1XgXGZBKVGAbld7rKptv0u+LSA2rbXAu0CBEsF++r3sKd+N1cGr3O58zIvbHyNlza+wWL9MMuN48xF+4dyESuFcVlhKQoXER9hy1C77Sq1woU22GW+oZI4V7kn7nduuNfWbY8Liq3zQ7VksmWCXRmHcBIDpYBWc3jdrZzD6uvtQMa994XOWahiYKqH/98lywvD5DzpPEMu2z3uXO+wyLUkfwvg9a1s+36LHeC7EzvxExBHag/z2uAJUj0gEBGhqPO99pcYqF65jhQSUa+jFmeQW31OZJ9Db2wi6jVUFCBX22aKEtCRz9zGDI8t/yrt/lV2i4N4tXqZ0MVka9gJZzlqtoWW0oDTKESFPumkYYG0J8gXpxFpTuxlPPXM/0KzNs9D9/xVAl1DZwoZZ6BA1Ty0XyePPESuaF4csrgi14jOwBxT+0Y7mxiwOmLx5Mnh9HbBwpbANhFD/2GlwRPGjcETiEGCDs0y2UtQkbFr076EsI7oxUOWVmvDYKUpemvLlGYOgvLYIgyG1lNZ7ug6h6WHRZFIpfOc9ewqZ288z2ywTC/f4sLgJSJR50OtnyMQIYI3AZs/JNazazzT/VNynbMnPMaEN8OCfwAtFD3VJlF9Wt40iR7QyU0SpH2mRkAv3NwPtSydPIZZGwd2q8tdVleIYVKWC4hcAGzBrGs7Vv0MQyBnE9CsT62dMQgDw76PS+ICRzpRsPGpo+u2nsquXrYC2KWCPc0T7GmeYJC1udx9hcv9V3hy9TUir8WByQfZ17qPQEbFucthcmBqmH9hn203adAez2231iYpchAPWe4ykdIBvG6Vt6p1mQWv1RLI9lzda+Reb1cKocZcf/vekTWYc/LMnz2/PIfMOR/LqHuWUTfyIV1tHwYUC7zhs2L3sRM7UYkd4LsTO/EeDq01GsXu8DCL4UGk9thince3/iMLwQH2Tt1P2Jgi3EiZuv/DcGGNvBkaJvPaKvndB/BvtJGbPXSrZvStvT6i10fvXWRSSqa6u01n6nuGsYljtC/RjRAUCK2Rax3TUTfqBaAwZI9MMgYLdbxB4YErFPXGHHmeoqYbbC3VaVxL0VIgkxwVeShPoEJJ/fIAFRoHCaRENcLSkgwhDHurNbITuxdkCHoLEKVD07GKJDc6wn5iOsY4hka9SD7TULDJYss4KcjNQn/rB4hePJx2LnTDFCzcMKlLDTv0tQ0DsuzUbKsBvX7J5OlOF+H7nOs+x5X0DBvxZQBWkrP4BByuPciB6N4fWgHrVsLDI9FmwHA+eRGAy97rrOdXx64/7S1wvPYoe2rHb67jteflOhu4AMdl2saBNSG2JyZZAOWC1aptmavvdRPb3H1bQFYthmGlD7Zdrv7XspBW0lCtBKacc7FJXVWvW/vZSlZyZYC1MOCyJpvcNfVBDk0+wlaywvnu85xa/y5nNp/kg4t/mclwAfJsqPF23RxsElwpD5DD/dviJhbEuyz2uKhegyob7Ca32esv5TApzh2EuNdu3H22UgwbKh991Y7UxCZ6ugmnVlZRYZ7t/5ybxGb267D41ZmEOzw0AvUWNL56x87slmMH+O7ETrzHQumcjXyFC/ErrKTnRhLS3KSzVCdMMs3s7H2IdBXdzUiOLBlJQT1ALs6BFOSzTbx1UyZYZmbKVk1PmGpkWY5uRtCqIy6tgO+jJxplx5rNRIhc4wkzLasKiYPX7qN9QdoK8Ls5fjchnq0hM8GJk3+FJx7/Z5x+5Y+4q/YL5JFkMOsboJxqgk5OtJaQN0O0ABWGZA3zUyVt4pmCdNKncbGLmqgVhSSUM8XqAN7YFJjQvmeSlvzQANlmw1w0TxhmNyjKGIch9ProqZbZb7tXgCaNDnyTqZ7nBtjGMUxNUJYWTtIhSHAALmlYsmYqiVnz19iMr3Cq8x0mvDkO1x6mIVvsDo6YNr+NnfWkP88jzS/wYv/bKJ2zJzzKpULOcF/jp5kNlunk60SyQUNOGhlFIWdwE9bsZ6Bk3IRyGMpqspR9rZ6LZfDcdS1wStPtjg42ycrVpbrAdJxUwl3fLnelCjaCYFQnDKNsqdt2O10PQ4DlJpVZOQIM7ecyoOab6m9FuwUwFezivulPcnTmIzy18gc8fvV3OTn7SXa3ThiJTC0aAmkXRMJQSmA9n2vREMC7oNfKO6ryBXefMDxXl82316oqI3GKX4yA4nFeyTBqGege356HbYsdAGk9TDi198Lqh+3+68ZDnDhBKIGmKPJS2KoJq712z+e9kNy2I3W4bbEDfHdiJ+7wGKgul5PX2cpX6eTr9NQmGk1DTnK49hCRNABOFszelrrB5fgU69kVfrD+B8wNnuXepZ+l3osJ+4lxLyjK9HqbPUQ/MdP/QN6qIZRCdmPy6SZCqSHLumcBsdkx6zUjVFgAolShGgF5zUemuQGpUiAyTbiVmtLEgYcXK1QgaDWWmN/7IJcvfJeJQ3ez2LwbmWriaUnQBS8WJJMB6YRHuJkxmA8IugoZK5QnkEBeN4zO5rEWE2f7pkq9TkF4hiEe0ev6pVyiLJFcH7LVWoOqhUjHJo3QgGOgBDUiTQ3zHYXoZsMkxil/2Dl7ynwuQq9vmDeN0GynDDB+ufttLvQN8+qLkMemfqGUQr5TMRcs8/HglwE41X+idPnYyFZYDo9Q8xujoERpAygK66gS9BbfCzfpD0aBhWVMLaCs6DHt/gGHOZajU+YukLLgzUoV7JT7ON9amyQIZrl11tg2HV9osy3Ac4FVdTrfHqtManRApOv40GqagU+SmO+j0KwTF4C4sDwr2yYENV3nQ4v/J15c+xrPrf4Jlzuv8MD85wkGbD9OeY42AS4fMtSVJDtzPMcZwv6519U9bxsus+6CW6fNI/d7XHERNyHQtnFcKIZFQaQAt1KbdYsoy1FLs7wAuNbaDzD/l1k+HKTZQYH7LLwHJA9KC9RbSMJ7K9u+32IH+O7ETtzB0c7XeLLzJ6Q6ZspfYC5c5kDrg7Tm9jN9tdCu7ltCXF+HyQnTsbY7zE8d4+La06xll1ntn+ObZ36Le5Y+x56DH4Vco2oeg/mIsJ2R1T2itQQVGoDr9U2VM1X3GcyHNC6bSmxojZqfQoUeKvTw+iki12StEJnkBJsD5FYfliYRWU4yUyNrSNJGnfqNDC/O8WJNPClZu/ICtcYcran9xBMeXqypr5pOOZ4p2N1Ek9c9GtcStBBoCUKDlgJvoEimfGqrGcoyu0UH7W10y/aKQYr2vRGJBEIYuQOY96mCELQomF9bftiCnMC4OWgpzWRilpsBQeQjbHncrOiswwLcZBliepJsfY0Xr/0RE+E8M8ESzWieOG2X9/d47UPvOOi1kagBpwZPcDF5lYXgACfrHyMQ0XgW7iYxkkDkru8mN1kwZq+fC7RgdCrb9Xx1dbVVxjXLhq4KLhsIQ+Bnoyp5qII1lwF2pRVWCuEmWVnJgivRyCsA2ALxbs+0JTR+tiXgtYl242zVhMDXPg/Mfp7dtWM8tfolzrSf4tjMR8FWjnM9oC3ba6+50sUsgzBMqWVkq8yuC6JdHbxlrWGoQ3fXK++zo5l1GWULdt11XAbffnalCq5u2mV7XX23vV/l/iuJibkeauh9H/xCEmWvhY0qa78TO8EO8N2JnbhjYzW9xFPdr1KXE9zb+DiJ7pOLnBp1Wt406W5F2t8iXnmFXrxOR/XoJes05BTH05PsnvpPGDTgfO8Fzqx+l421N9hz8KMGtEmfoJMjck20GtPdUyePBEFXEXR9ZBqihaD1yjqqGaFqAaoVIjON8gVeNyXeZaYcvUSRtCJkEpAcbBFu5XjtBC82HWPQyU2pYS0RGpJJH41m7uSHiaIJRF+jJchMI2NF0M3xelkpbwQMg5wYwGl1v94gQ2S6yPrWZdU2HfkFoC2m47U2JpeWZczUiEODrpmpVNEziXki18b7txkZgOw6Ffi+mWpNUkRKoeE0LKEOPUSnj55oIPqYJJxAcmXzda4kr5enIhDMeEvM+rtZDo+8488RwGp6mWd7X0ejOFF/jH3RCUaS5aQoq3C53wG4FbC0Vkbe4MmhDdU4oANFIRA9ui83XECklBlgWLYur+zPJqe5x7Pb3cydwGVkS8BUYSDd926Smv3eJr5ZIFz1wHVBtQXgVgNr95ckw4GA3bbKukrBWnIJEMyGy0MwGASmly6v05i2u2Wt3WXu8aqvmQNaC2ZYJ6n5P5HCDN6se0coR6/dOEbZXgP3nrjXqFrIxIJ2KYZsrz2/6vUdl1Bpz6EK0ENHx129Fnd45Ehy3oLU4S1s+36LHeC7Eztxh4XWmkwnPNn9ChpFV23wZPfLwxW6wI0338fkI/ex0DiIbvkc+45i4Vd/iWg9g9UBqw9M0lzJiSfND6UBvBoEeANFf94Ax/pKipqsoaUga/iGvW1Koi1FPBsaQirXpM0AL9UoT+KlmrwmSWfrqMB0SLqQPYhCWtBcyajVZsmvrhBOZ+R1iddVqFCS1yVaGHDs9wzjI3ONyDTZZIDMNV4/Q+MhBwWwdaZmjQuDjxwkRr7Qi8skOCzra69zLUAMUjPl6hu3B5Ep4+ZQFLIotZtCImrGWoxBYpJzfH/Y+eY5IjOdtFhvl1rVIGoxF+5lNbnIbLiHFlPsi07Q8qbfpqflh0emU57t/RkT3hz3Nz9hpDHVqljlND9DxtKWfHYS2gQOCKnqbmEUGLmJRm4iHIw6b4ABvXFiQFyWj7K1rt7XAjUXyIwDv65kwWUkbUlju05VRmABq13HdZeoJFhZV5Dys/UEtttW/YmrkgDbNiG40TvP2fZTHJ/+Keaj/Q5IddrmOiIoB8xl2ahmujrlXR1g2G3sPbH3wcpO1PD8NDnEatTNYxzjbiUL7nHccx/HvLp6afezu5/qYME9vtsGNyzrPfKM3PnAd0fqcPtiB/juxE7cAXEtOctrgx8Qqx45OaN05zA8AhQ5Hj4Zw2SaA3d/jvrifqLEp76e4y0fRm/lbB0ISJsnyCKIAG+zz/wTKdcfnUUoTR4KmtcMCA56Gr+f09kbEHYUwUbMYMk4MuQ1Sf1qHzlXI6tLsrok7ChUIPFjhUw0g1mP+o0MFUpUKPH6GVnTJK35/RxddGzaFwz6a8zvuY9k0iPoWhCgETlIpREaZGq+V75E1SR5TSL6inQiwEuUcYJIFXjCePQWYEcUJYuF1qiWSb6zUgddVH3DNyBKNyJTSjnDWJv5sqweN3IPkmTISCaJSSiyQM0yYVlmQEQYGraz1wchWE0uAlCnyYnGY2/vg3ML0cnXSXXMkfrDpR7cMqtCVJg5O83sFdPIUjI20a7K8lXXqVqQeWPArztVnSSF5rYiWVBqWDnPBZiuFtgF31WQ51p3ucUqqudij+XqitN0FCS7oBmGYNMFZhbgWk/fqgxgzDXspZs8t/4V5qJ9HGw8MNx3WdK4wt6qyj6E2KYd3gbSYagDBuN7a0taS9CW4fW87VZhSqNVxcHCssG+N3rdxg2AqqDffpdVwXHl+tj7XJXKVD2ex1m2VR1HfoiEZyfeX7EDfHdiJ97F0FpzLn6R1wdP0ghnmZe7SLMeXbXFXLiHgwuPkYqc/rSEazeI/YytsM3WxVfInCzy3QceY/p0l2uf3E0MLPzey6z80gka1xV+N0doj81DAWvHF6ivaqbOxPQWQ5pXUjp7AlpXMtp7fYQKmT41oLMv4sZDE9TWFXkkkakinqsZW7Jck9UlaUPg9zVZJKEGjZXUSA8Ar5+R131ErlGRRCgDXMP1hPb+kObcXlYuP8P+A59AaM/of7VGe5J4JkAojQ/IOEemCq+dEWwZSYMWAu0LwyQrTTIVIiZDomtdsqka/ubAVHSLTJELXTM/c9qXoKRhNRUgJbLdK2QRAwMebCc+0TLAFYaexVoby7OgYAEbdaPrDEN0e4u85vPEtf+AlD5L0V2sJpdoZ6sA+IQsBPtv34PlRMubwcNnPbvGjL9kvvSkYfGEGMoLYAjesqyYhn6TjH0YBXTu8qotWZVxszpVe9zA6YosC+lKKFwPWds+IYa63OqUuG23K22oak7tn7XpckFvlaG061QLaFhgatstKtfMBWNjQOFqfJHn1v4ETwQ8MP1Zo1PXelgYxd6HvDJd78oDMgfQV5P97Gc7kLFNsbKW3FjUlWxvIAxjbIGj+zqy34INtrMBfuXaj5N02Pthn7vqQKV6n9wEO3fdm4Fd9964QDevIuo7MxQS9RbkCm9l2/db7ADfdzESNaCvOkz58+92U3biNoTSihvZRW6kF+jk67TzdeqyRVutAdBOVmizUq5/efAa93Y+jlA+emYP+bHjyCQnnQjxZz9H2t8iOTRLoALiaQ9eXGPqbMLqPSEbn7+bqTMJ7X0BIpf43ZywI+jtEuSh4NrDETKHtBGQtiBtSFDQn5fEkxHphKB+Q5NMCqINw66qAPKaT7SeUr+eogPzQytzjd/JQYJMcnpLIV7iEa2lpJM+MjaMsd8zxSAmz8UcP/xFnvze/5uLZ77F3pOfJp3wiFYTZJzTuJKhAolQGO3vIEMmmUk+05q8YSQHfjtGpDliMiSPJHkrQsaG7SXwDJNbNxpc2SmArRBG4hAXIFdpdCtCSGnszTxhlnkSPTdlPH1tEtAgNh1qFA2BcGDYStFosL75GhvZNXwRspZcIhINlsK7mIweYndw13jm9DaELwJm/KWiKEaD5fAIAjGsduU7hv+uN64FklZa4ILPKuCF7aC4ygK6yWw2SSvNhlpg3wfUUN9r2+BOrVstrasXdRle1wGi2kYrY7BA3wVR9r0Fq1U9qssy2sGCL0dBldLFoOpNZBnF/pKsx6vt73Cp+xIz4TIPzn6BMGgN96/1aCKfbZ97HV1WuHrdbdhtqp7DVrcuBCLDyFk8b8j8hgG62EYIaWzCHGcPdz9aKkgLAOzJoY2aPb57Tav+wlVJgtt+u8zed3v/PG+4f3d9O1Aqk+4Kdlsr3gsWt7kW5G9BrvBWtn2/xQ7wvQ1xOTnFpeR1evkmnvBZCA4y6+9mNbvI2fgF9of3cHzxZ5Dtwbvd1J14h6Kbb/KD3h8T512acoqmN83BiQ9wufPyyBSfR8Dc7FFm9S5mH/s04sIA7XkMlps0Tq3SPTFPFklqL95AH17C60g2jgSkE9D/yweZuJSz9N021x+eIJkwll2DWUkeekyeTdHCp7sskCn4PcgjyGowmJGkDZAZKF8QtDVerFGeqbyWtgRo8BJNVvfQnjCeu+3UvE9y+kt1BrMBtVWj2x3Mh4SbWSlZSCZ8/L5CKM2EWGTf/o9x/vTX2L34IFF9Bh1I8kCifIl0tLh53QcihNLIRCFShUyNnjebrhNd7YDWpPNNw3ko0IHZh2wP0KEpP4wvEYPU6HqlREeh+S61WkXTSevIR3uekUw0GyCLflMIY41mwVqSGJ/eyFjBzUzdRa3dQgjB3fUPsxgcfFsKULwdcbz+KK/2H+eF3jfRKPbW7zYLlGb0AXSAZjVZyk7f22VVwGIBopvdD0NG1tXUajF0arD7j+NCh+sASgtkLKC1+7NShGqylcs4u2ynyza67hAWLI+TInheUanQHx7XLZyhHKYUhoyvy/SOSCM8cnLOt5/jjfYTaODkzKfYO3GvGRS57Kp7DVyPXntuNrnLXjuXEa1ql6sJYDasi0MtQliZDgXQzTLzinG2ELFTrCUQBiC7t973h9fZbZMdmFQ0zcMNnUGF1qP7cMMC4HGA15W9uMmHtviKklCVatyBsaPxvX2xA3zfweirNqlKuJ5dZC27zK7WUUK/zpmNZzkTP4sopibOJy+xKz7OPLPvcot34u2Mq8kZ1rOr1GSTM/FzBCLisWN/ncloAS6YqlmH9z/GoCXJdk3g1euE6wn+qYv0HzpIfy6ASwlys0tYD7j2qSXmn2zT29sgObZMXvNYPVEAKwEzZzJEqlg/0WLqTGpyXAT0d/l4iWYw59NYyQAfFQiUD35fk7aMVVjrqjLsj2cS3rK6IG0Kgp7R3kabOTJRyFSTtTz8rgEeWSNAt3zShjB2ZTM+WkL9Rkp/V4BMwYsV0XqKUAY4dw6ELOmPcv7ct9jqX2Vmbg6ZG4bX7zl6YCnwBjkyNo4OeSMgjwLC1R7a8/DaprSw7McE1zvkE3XDRAuBqgeoegAC/JUt491rAYFSpiLbIC3ee2UnrX0fkWRG8+t5iCwzVdsyZfS/YLL9tUbUaqUW1MtzHml9gW+3f5cXet9iM1zhnsZHb/+DNyZa3jQfaH2OP9/696ynV9kbHjNAXqphwlp1StmGCy6rAMuGOz1tt7Eg2AVebpnbccUQsuIBtMe3uloXcFelD3ZbN2HOsoNVAGglEm7bqxZYblU33xsCLnd72J6UVb1WpcxDodBc6r3K61uPk6gee+v3cGT6w0ReEzRDoFZalcnt3scu8B/HBLvhAk/LdpMb14Oi5K8Qxf6LmQwreSg1vlYePRgY/b21sqvIHoRrP2avn3sdq+EOjqpJbO4gx15rF8y75+peDxjVYbvsuCsL2YmdYAf4vmOxnl3l+50/GvnuRuc0dzUfKj8LBIvBXSwEB5iLZ3b+N3+CYj27yrO9P0MKH6UzFmqHOHH0FwibM/R21ag1I7zVDvr6KvVOAGsmYSpdnmbzp48w+dWXib9wgv5yi/TYFFPfv0htb51krkZ/ziNtSrQHSAi6MJiB9SM+eQhBD1ZPBgQdis8amcH0Kx26+5oIBRPnE9IJn2RCMPNqDgJ6C54BvhKitiLczGlcM/Zl4ZZhf7OmhzdQRDdiRK7YOtwk2siRqaa2mtHfFeD3FdFGTh5K0rpg8lpiLMVsYo1ntMGbg2sA1KZ2EbRzVCDw0mK6WFPog42eN2kYK7VgKyHeXcfvBKZUcjc2bFXRQXqbfQgMWFGtGrKflh2t6MXFlHrRo9uiFg1jWybAAA9FUZxCFi4RzrZW3xs4TK7vQZoh6jW8rS4Cway/m7tqD96ux+2WwhY/OVx7wHxhE5RgyMqNKwxRBb7j7KosQClBkzf87EoW8nxUNuA6N8AoaBqphFaZ9nd1otZCzJ32H2dp5Sa6ua9g7m0BCslySpste65pOrpO2X45asEGZubAOb+teIXn21+nna2yFB3h6PRjNMUE+MHodXYrlqUV0FcF1A6oHmFNb2b9JcQwEa3C/hrJS4AIAlMIwq0EGfglENZ5DpXLKtwZAnffVWmIdX5wK7S5g1DruGGfj9L7OBtled1noqoFhiK5NHhzXfodGlpL1FuovqZ3KrfdcuwA33coJr15pr0FNvKhZrMuW5zuPll+Phjdx9H6B96N5u3EOxw30ktIPB5rfRGlc7ypWbhwFdlMaWxNks03YbqJmKiR10NkN0EohX+jS9D0aX/6BCKD+sUt2DtJvjRD/XrCjQdq+D1ImwIENK9qeguC2qohyoSC/gLUrxk2N+hBFgkGM3DpZyZAQ9ABmZsEspmXOqyfaBm2VYCXGaeHrCbwe8IUtVCa/rSH39fIzNiVJbMRItNMvdqmc7BFYzMmng2p38jI6qYEcdBTTJ2JySMPv2fcHkSikJkByefPv0C9MUdLzpG2fKLVGJnkZM0QPBC5wu9rVCDJGh61G6aQReNKv+zU8okasig2IfpFFa40R1gQXDJeAl2vGyY3SQ2Dm5hOVqQSNVlH9pJhhbZclcULRFHAzZas1WFoLMssmEoSwxT3B5zpPYMnAh5sfvqOkTnYuJScQuKxGN5ltJ2i0lG6ekp73apAqgrE3Gllxaj7gptg5rJyLptrQZtNMnPD2qrZsEAnqABGC0zdRLVqe2FUe+v67PqODhVGk7rsQEBrY11m17Eg0g3X0ksIUhVzav3POd97kZY/w2Mzv8hUfXnIJtt1g2BUC2vbXY2qlnocyL+ZvZe9l8X1FEIONd5SGA/f8nqa8y+BrmW0q2yvtbrLnO3sOdgBib2norLtyMyLP3xOYHgtLDNs9+O6dLjPqDu4cnXAdj0hQN75UCdHkL8F9uutbPt+izv/aXiPhid8Hp34eWLVp6e2CEREU07ybPfrXMvOArDrXcry3ol3LjKdcqr/BGv6Goqcv2j/B7OgU6ywAeKyZL55F43aHLXZJVqdKTwZItt9VHuTXj9kNblITJ+77/0lJi534PwV+j99nGhd07yacuNkSNaC/i5BuGl2Pf9cD7Rm63DDgNhUk7Qk/QWorYIXG3DcumzYVe3BYKHO9Kk+yWRAHhgGOGuC3xP0532UDwtPJSTLPllNE3YMMI6nMLKG6QnCrRyRKxqnN8hnGqgwRAwMCM+aPn4nI5kKCLZM5yoTk0l+4/rLLM3dR9hJ0d3MeOx6ApErtG86ZJFr0pZH0MnJGh6+MEywTHLIdflTr32J8CUqCtChh+wnZn+ZGjJw2jhCGM1iNpxOzXNkr2+AFhhQYsGIlMbdwU6fNuqIbt8AHyEMQ5akCM8jUX0uxK9wpPbQHQd6ASLRQJHz+NYf8MjEzxLKulmQF9pNV6NqYxw7Wl1WcQzYxvxZSYOr/bUAG4aFHyxza8Gu1RRbdwMLfmzFtXFg2pUi2GXua9UNwIJPC7bsMXxH7uCNuR6WFS7Bpxo6VOSKNXWN5zb+lFTFHG89xoH6SaQoNMNekSSWFf64brlhGy6jXj222357/eyzXA1XZ3uTEEJCq2auZ5JuszOzyW3bovQVxpyPvR3V9ew9qRaxsLpgu6yqC67XRr2eq5ZoroTFZZHdAVTJ8o8ZEOzE+zZ2gO87HJGsE9kOBkZ+FZ7o/DEfn/xlQlm7/Q3biXckLjevcX7zJWaC3dSCSQbpFsAwIxrTSVzvvA6d18cXotgavu1vLDFZv4trf+WeQtag6S0GqABkDDoALzFJZ9c+1KB+Q9PbZTS7iz8YIBYjWhdzgm6GtxWjmiHeVt8UamhGJDM1tAQdCFqXM7q7fRrXjbxhMCuYPKvYPBwycTHD7+QIpQ0DvBDhxcYXV2YaMchIdzUJL66TNebJGmZasz/vU1eacDM1BSo8gRcrtrqXSZI287vuKR0ckCD7KSLJUGmAKMBU/apC26S3xGSVq0AipDaSCEDEhvWRcUruS1O0QkqETkfBb8HuqVoNkWtE4hu3iDgpi04gNfSK8rPWZqtgoPT6Rnkvxcy0qeAWBpAr2tkaGsW8v+8debbeahys3cuMv8ST3S/zXPfP+EDrC4gCrJUV2STbpsJHtJsu4LKgouqPa9k+GGpjrfTBZZLtepY5LwYh5bS3y/bCcPDhJpiNC1eCMa7d1e/c/ZXV1lIzuLHa72pUk9qK46o841T/Cc70nmEm2M2Hpr5II5g0DKrKjZxA61GJgE0yqw4YxiWkjdPz2utUlYJYJr3qe5vl2/W8vV7JAldj3Hcjy22RjYIl13k+1ATDkIXPi0Fi8f8Co4l/I5XgqtX7Rg84CqRdIDzu+kjJe0FHaGqH/PjtfA/U6LhjYgf43ua4r/HTzIVHOLP6OIBhAXbiJyb0+hYCyQNTnyHKAlheRKyu0/7IXXixYmOqT3r2HFvdS2SvnWYz6pC1NzA1sXz8qMn0xD6mF0+gPnyUhf9wgYu/dhyk0d72dwmW/3xAHkQkkwJSiKcNQ5s2IWgL4hkDhtfvrjNxKaO35NNbDEDV0R74/QYzr6bEsz5hO8fvamSiyRqS+b9YoXfEJFnWb0Da8og2Nd0Fn6gmCXqKtCEJt0xnWDu3hUhzBnunyGsSuTBF7ewa6dIkItf4vaGPah5K0qZhb1eumRK+mUxRnkD4AiEhbwRlRTbZT401mQcyyRChj/bFcEoZEFqTNQO8QQZpDkoY6zNfmm0zz8gmVMGw6aKYRWoY47KghY2CkWNyAtrGLYJWE3oYprjTNTIBPPTqOiLwyZIB32v/R1QBAF4bfJ9HWl945x+2HyOm/Hnub/wMT3a/zIX4JfbXTpoFbhUtC35djW41tB4CLtdxoZoA5rKpLsh1l8Hw1QJgF6jaAQkM2+Me72aygCqD6oKkKjMMo6ytDcvsjkMVliEvzmUtucIL7W/Qz9scaz7KoeaDjBQIUdqATltpzQWHpfVWPmTfqwmEsB3Au4x89R7Y93a5vSaRN6x26LDvVaeGWw7n2pRt9wrAHMfD78JwCD89OZSslLpm53myFoJVXXb1vEcs3vToIM2e/3tE46veosb3rWz7fosd4HsbYy27wg86/we7g8OcqD3GfLBnu85uJ97TsRgc4MzgWb5541+xNH2Ck7VfRO7ZxcQTF0EparvnUNFh9rMHffIxRJLROzhFPO2hfJj/9jXQmqs/tRuA7k8dQ/ugQph/PqO3yyNY68HhiKALygeZQvOqoj+QhF3FwlOmzO/FT3p09vrUVqG3RzH9smFW8wjiGQ8vNlIIdEQyIclDQXBghvqFLSOZODFL0FcoX9K6mpM2JElLkjYFWnoEPcVgd4ugk+ENMoK2QheZ9SLTpJPGQ9fvZWR1j2h1QF5rIHPNwvTdbEy/zHPP/EsarQWW9zzK3PK9NMQkANor9LuDFKG1cVSQCqEFKvTQnjTXpajQluPjCWHY4shHWCAReWUZYm9raBco+kkJyHTkl4yTDgvmKc0RkxOwuQVbbWg2TCc60TIdaZwY9q4/4EZ6kU6+Xu5b36Tq3p0S88EeItHgVP8JlqOj+F40uoIFvzYsQHWlBeMY3mqSmpUzuOtbYOuyvjBa2MCCXMvwWvsxtz0WxLltqi4bZ6FVyFNKBwXPWc+CTRdM2URIVWE9y+8Vuc441fk+Z/vPMR0s8dD055nwZsr2uICyZE/z4exPWS2t1BU7GuPcaZvdzgXc1XN1r4H73mqvhTBVB7U2gzx7LplRiP7Y4Ldoo9UFC88bBfXVAVEQmPMIAtBqlN11mXr3nNxlVclDFdy6Mhql4A7/nwRQCNRbYKbfyrbvt9gBvrcxQmEkDVfS01xJT/Ppqb+Kt1Nt5ScnPEmNJo9N/AKXktc4tfEEV556kT3hMe7Z87N4fh20xiv8mrUvad81w8QbbepXTLlckoT2w3vwBpp4WrB+1GP5G21kP6Z3aJo8FIjVTUQ+Q9qAqbMZaVNSX4npLdSJJyWDu4ymt3ke0kno7tHUViRebKQBQdc4PeShsR/zBgrRkjSvZgit6R2cQuSaxtUBwcV1GoGPjnz82QaD+ZCgC1ldEHYgr3uoSOL1FcGVVbIFA1yRAr+fE8+GqDDA7+XEu+ooT+D1Myabu3nwsf8H61tnuHLmu5x+9Y94/dUvsbDvAxw68bNMdEJkz4Be7Ql04BkmN/CQuSZv+MhU4/VStCfJaz5ZQ+J5EpHkZYliy/6KdMg8i0wNHQCURtip1SRFdLPyXuJ7hu21lk9gQIMa6il1lnEhfom6bPGxiV96T8zg9PI2se4BkOYDfBEO7axgWNXLBWCuTMGVKySp0cBWE9Vs2OQkGN2Hu8zKIWyCU5XVHKdddRliVzdqP1e1rcW9tgmKI165luW1U/LK+a7UMTsa1AI8K51zcfAKb/SfIVY9jrc+zMHoPmPvpfUQzNr9jGMfc4Ue0UeDxrEaK7/XQ/Dr7idXQG7a5w4k7DVyr0GjPgSJ9ppaEC0MCBVCFG36MTSxjvSjlM540iQF2mvg+0XBFK+wn7OzAHJ4j9zr7l6vN2Nv3WQ29/xL14s7H/juxO2LHeB7G6PlzXBf46d5vvdNAC4mr3AguvddbtVOvG1RdGBX09OcGgzdOy4lr3G0/SgyjxBrgvzuA/jnVvAmmkx95wa9B/YSz/gEnZx83168RNG8mjF1OiN88TyXf/U4S99W1C908Lt1Vndrnvvdf8BicJDGF36VpCXZ+HidsA1RRxNsCZKiCJSMYfYcDKZh/R6Yew7iSUFv3sOPTYIaQLhp9Lvd3SFaQm0tJ5kJGcwv4cXmvKLVAc1LOcl0hN8XJC2JyI2+WCY5BD7al2TLM/iX1xkc3UXturEBk2lOurdJ41psvHm7GWoqZFHuY/HIfvp3/2XWX/8Bp65+g7WrL3H83r/CHu8QpAqUQOS5AcCeQEuJ30kMs5ub6U1PZwilDBtcL6behUR5gXFygEJEp4xut9RuFsAgzczyKIB2dxRAFAwv05PmNU2dqmaSSDbZylffE6AXKO2qJrw56t5EIWkYAlJNPmTryml+XVb6AhwbKjFagMD17a2yuzZ5DYZAF7aXIw6CIcPrAiC7X5eRdcPu0/XwhSFL6gJHySh4dM+j6loxRiO8qW/w/ObX6WRrLEdHuav5AVpyynE20NtZ21uZci/uhRYO0IXhzKDdn+u04FZJc6+lW2jDNxUGTcW5oohHko4mJTqDElGvFZKTYZtvGQw7SW9F44dt9D0YkXJIQJlXAWZKqjJwcdnraoKfTUC14b6v2u7d4bFTue32xQ7wvc2xHB5hxl/i9OBpWnL23W7OTrwDsZHfQCB4ZPrn8LRPy5vGn1804Mrz8E9dJDuyh3guItxsUT+/Sf2CYLA8AYBqd7kYv8IBcTfXv3iMpT/foH1kkqnvnCdp5fzgiX8GQHryAZKmxEs0k2ehsZLSn/dJJwStS8a7V6aaZEIQbWqCvjDV2XIghfoNZbxyA0GuJPGMNIUnVnP8bkbW9JFak0cSv2+KRxjgafYRdBXKF2R1iZYhOpjE30zw1tqk+2apnd+gd2iGaD1G+5L6pZ7RKnuSeFdE7Uq//FzXAcGJj7Ow+ABPv/gvefHp/5WZ+36Dppg0HsBgtLgKZJqavlJpVOiBBmn9dnONyHNkP0VFtriHAcva9xCphkECvocOA0Q/NmyuZf8sAzWuPG5s7M4siNMFMMh0Qqpj+qpNXU7c1mftx4lINgE4GN1r9Mp2qt0Np9yrcLPklRqypTBkWF1w4QIWC2DsNawexy1iYUFx1cKsKnWw+3G3tccZJ39wGV5X6uAmp1lw7zKg9jycafYk7/NG9ynO9p5j0p/jsam/zFSwMDz1NDPet1oNBxQ/TrjbCmEGI3LoqSvUMCmRsvS0P6rLtoOQsiBHNnRSsKA8cwYfMATCVgZh5QhgCrlUwPCbnkKeI6QYdfXQGlCgpJE4lD7SFvxKk1yqHMBbXINtjhw3C5tI6QLm90DsaHxvX+wA33ch6rLFvY2ferebsRNvcyidcyU5XUwZa7pRzPL0MfwE2OpAGJDON0nnfGivkfVyemFOtitgqltnMGemWp/9P/4pcdrmyuQ8S5sfJmnupvX8NVZ3eayc/np5vKsvfpONN57n7s/+OvPX62zd1QBg6owiaUmyGvgDI0uQiSlmMf16Sh6ZH0gVCFQgEDkGzCYaL4a0LtHSRygQGhpX+nirHZLlKfxOSnR9g949S+hA4A0UYVsxmAnIA4mejtChR3BhDd2MaJxZR7VqaF8i45Rsuo7sZ0SrCdlUSHi9V0oZon5G7teoteboJev4M/PkqcDrJah6gBhkyGQ4bS66cVlaWPTjUnep6yGqESJdTa8sEtwKAKUbDUR3MGTM7GuujJwBDCB2p6jjQu7gVL7S5Mz6y6yk58rktjs9esrYhkSiMZQ4FMUstFYjr7Z8LRQSCCnNQ+GCThiCRQtCXUDq2lW5QNnVfVb1vRboOvds2zZuFn+VGbbburpZ7QBd+1qdPrcAGJyiFJqe7nC2/xwXey8DcLTxCAdr9yN1cf3UECAbnevb+Cw4+xWeh06zkSITJXC3FehcWUSVrU7T4XVz5RvWBcJ6+NpnOccA66KSXFnk4hbZX51mRm8fhUOmOVcG6GoNOjeyBzDfQXH/KoMO+/0PA7FBIZt5O6//TvzExQ7w3YmdeJvifPwSrw6+D0Ar2sVL177CS9e+wkJ0EBnUWO9fID7bvfkOvj/6Md66wbnn//BNjqgZ9FeR/Yy1e5qoEPye6ci8RIOGxkrGzLNdNk9OMflct0gMC6it9FGRTzIdgAblC7xUkYemIlzaMA4OQTujv1ij2Y3J6z7h61dRu+fwu1mhrZUoT1BfickaRnqgfAG1oVeu9iVaCLKpGl4nNiWGByleJza2YwwdHM6f/iYr15/n3rt+Cd2ISAEVeQSrXXQUGOeGgu3T0ugHdSNEZLlJUgPEIMXrDkwHGCcQBugoNIDA901i2mbHANy0yLBPU9MB+x66sDATVg4Rp6ZDtYxkt2c6cykgh5ac/jGelncnlFa8MXgGX0TMBEsjIKkEcJ6Tnc+QXTQsnGXfHfDqTq3fbIraMopu0QJboWucH68FbG453HEWVq7Mwu7DfpZyVNJgo2ShHZa3qjEFtNasp5c523+eleQsgahxV+MB9jfvI9SRuV7iZvt9B8LVA48kdw3lKWUp4qrWF0ZZ9zyHTIwuL/ZZPgdOaHIoEvHMIELc2nlaAF6U9S69skcGKNnod75vZBJuJT4b7jNQtS6ThS5aFsdVONfozgfCCvHW7Mx2kttuOXaA707sxNsUmRyyIJ14aNC7Ep+FeMwGgB81yeJRMCyE5FDzIeJ795JvbHD1lW+Wy+rTu5nZfYKJ5m6m5Dze7t34WtLPNNoXyBwGM8K4PWSYEsKHppEprDzSYuJCRh5JsokQkSrqFzt0D0wQtjPymoffzVGRJKsLskji9SW1lZh0vonMFGpxBnl1jWCyha75+IFnOhhPIFMDTiyDK7Qmn6rj3WijGxF5MyJvhnjdBO15KJHx2sU/ZW3jNP10E6UytM45OP8ou+fuQ6x0DTBWkLdqZaIavjRV2kLf6HelRDUihFJFZbZCy6iUcWPQ2pQgNhcXWg3DjhUliI1EQoHKQRSgt2QuLWMYDAGdUmXpWhH4NHKT0NdTmzS9qbf+IL2DcSF5iZX0HPc3P2k0yXK0sxSeN0xys8lJku1JRzAKrlxNrcvqujpfu71bhcuuA6PaaVe24FbkckGzC55suFKH6nL7ueqUUD0voJOtc6r/BNfiN2h609zT+BjL4RF8PyoJ4dKb+80Sst6pqEpLKJhmy+BnqmBpLXt9k+l/dwBTgEkhRMnybwPAb8b0jnmWSsbfyjBKhtkB27mqAOGKZryapAjbwPqIc0dWAbk/TqLeuxD6Lbo66B3ge8uxA3x3YifepjgcPMC+yWNcTk7z2uD7fHD654mzLmq6iazXkY0mtWiGWn2afKpGHgiCTo4XK9K6JIkUQWaKL1gZghawWx7i6Zd+m0g2uP8/+U3aewRBF/oBiNzIFwZzAi82iWveAEQI0abG7ynjr5tqxLomDyUqEMRTPjLT+J2E1qn10jEibCtEP8cbCGSiyCNjF+b1M/K6T94MEbMG6MnLN1B7jb5RI5BJbjS3CPJmhJ/meKudojxwhpcp8qk6SIlMMnpywPmr36URznJk5jFEvU5AyOL8vcgkM/KGwm9XpDkUzLFIc3ToI+PUMLZ2etOXqFqIFMJUW9PFq+1kpWfWTYtCCYXmUfQLJiqxJVMxYD5Xw06zPzDsZL9vOt0kLQGi1cx28o07vhpjO19nwptlKTxkvnCnxSk0vQVzqLVC5BQOF3JUOjDcwLy6zK8rXVBqWIHN9VodA9yG0+1ylDkuE+kKEORO6VsUWtp9VQCxq/91j2WjwvBeT85xpv8s69lVQlHngYlPsegdNG4HjvPF2IFANW5lav6txlipBsPrUR1oZJmxLCuukS0mYaUtqLyUvQDDBDUnbgZ+he+b/yOnApywhSlcYKo1pXe2y87aZTbR0gLkagLeSGMqsw6uNMmVccgxJ3KHhdJvkfHdSW675dgBvjvxjobWmjPxs1xPL7AU3sWB6OS73aR3LIQQRjcJSDxmGwcQWQZBE319A4QgfWAezAw52hN4A+OekAeCMFYkk5LaasZgzifcytES0o/fz933/h0mL+bkAez/D1eI98+yejICAevHA2QGacMUrsgaJjk6nhTU1jV+L0OFgjyUhG0DDLQU6EDQX27i981xmud7JLMR0Q0jgwDQXoC30SOba+F1hrpLkWv0rhnkxRXDqnZ70Goa0GmBZuGUIHqxAZkTDbx232zrS+pJSM2fpBHNcmD3R4sKbBnKCyDPkP0UtCadbeANis+eKKuvAehmDdGLje2ZDJD9xGgQp1pGwzuIh2VPhTJscKMOYWiS3SzjGMcjnaMODEMmMmHOQwijQXQqilk5gFSaOX8PF5NXjZ1VlYW8g6Immqyoc2hd2LhZoOEWblB6yGaOcxFwk79gyPZadnYcOHHBrgUlLoCqAhbYzua5Gl1pRydU2lIiqOG67r7dcBL4uvkWL3f/gtX0IjP+bu5r/QyL/gE84TCVuDMAYnsClnucAigL4Q3Z03ciykFDxf6sOC+BNxykFQUzLKs/rKzmIbSTCGfvJQwBpZU4pBkiYfsAwLbFsvb1mvnfcu+dHdTY/dpEw+r/y4hE5ibPSPUa2IFRFfT6RSLfjm3oTjixA3x34h2Ldr7Gqf6TXM/OAyBS7yca+Npo+dMocjrtK7S8aUSUIZZ2saXW2HzxGyyHRwimpukfmCJY75NOBuQtSVb3mDw7MMUaNMhE0d0TEW0oxNQSk5d6XJ0RXPxLuwkKdUR9VdOfGzotNK8qVCBo7xMoD7oLHgiT5ObFmmAzIW/6KCEQiSaZ9EgmJEFPEy/WEalCrnVQu6cLr1xFNttE5Arv0nX0rhlUPULGqQG0Uho2tBZBpztklwK/mN5URiagNKLdgyAwYDXJwJfcM/8pnrr6+1xZf4Hdiw+CEMjOANWMjDZYSlOwo+gMZS8BDDDVvjRtKDo40U/M+1oISqGjEJGkox2mLPx5c4XIKuygJ02lqU4GUZHg5gK+JB0ymXb6vwBC094Cq9klNAXYuENjxl/idPw0nXyNCa9wlXElHTakGGp77TrjWFM3276auFatquVuY/fjuma4y9zjWN1mkXRlmcmSUcRJxip3I0cTvdyCEU7RoFQNON17mnODF6jJJg9NfJZJb97k71EB8W6RBaVHnx1wBg+ifDa0zsaDtbc7qnpbC+ptEpy73PfMM+reJzcJzh2QuMx5WmiyaxKRJGafoWMXFgSj0gTLtlarqcH2Z8T93n11v982cFGjQNo5v5HzdRnlOzh2XB1uX+wA351420JrzeX0dXr5JpPeLp7p/Slg2E9Fzj31x97lFt6emPGWiESDZ7pf41jzQ6TrMS9f/A65NkxhbSZkV6NFtDZA1QPCjYTadcVgVw0tILjRQeQNRJozEef0lmt4iebGAw3qq5p4yoBamUN/ViAURBuasG21mTB5ztiNaYmRMGzlBO0Uf6OHUDX6uxvUrg1QQUQeSWSs0IFAR5J03yzBmRXYNw8YZloOUvI9u/AuXUfOTZFP1PAyo3UVvf6wU8oyA4KzHCIPNdEwEoXZJt7lNZNYlhp9rZCChdpBliZO8PKVP2G6tY+GP4kOfUScIts52vfM9tYEP/TR0sgvRGIS03RUTKV7Au0b3a+IC8ARhUPv0kEM9ZqRP1gD/UE8nEq3QLheG3b+mTbruvIIGO1Yc0UoTXGab239O6TwCEWNk42P0ZRTbObX8fCZ9Off2QfvTUJrzcv975LoPgCr6SVa3gydfJ1uvslCsB+JX07nCzxHTsAo62t2OHx1GT1bEMJl4dxkJPfVZRbt/l0APgJ0t7OZtlLYSnaey4NTnGh8hEjWzXJpCijoPDeSF3fbPEcrxZXsDV7rfZ9Ux+yN7iYSDc70nmEjXwEwhWfqH0W6yWLuNSlY3RIQu4lnroUavPMFFKoDi5IBd9hnt7S0O1hxBy/u9/beBMV2ZWKaAhEN13X9mcHxyGZ0sOA+E+NKT0NR1CIf3ebNBg3VpDVZbF+WybbOIjffxZ0SO1KH2xc7wHcn3pbYyld5pvs1+qoNwC5/qHW8v/EJ5oJlUyHqfRC+CHhk1y/wveu/y9Ptr4wsu3//X2a+O48OfLJmSNb0EBrCtZi0JUEEqGgGcf4qm94W3dUrbD1/lkY4zfKHvkh/KcRLIG1BuGU0vqYMsWBzl0cewsRFjcw0yjPyhWwqJJ4OyBoe/YWotClLJwPqV3r09jZN1bPUaIB7ixET3WnQ4K92yOZbxjbMZW4s6yklam6SZLaOzBReL8U7dw21NI9QCtnpk89PoKWAZt04JCSJAZeBD1nOicNf5Hsv/XOev/gHfHjfr6JCiexl6MhHrG0ZKUVoOmgdBaYzKwpaiEwj4iJRLc0QXuoULJDoRmRYYUBPNA1Iz9VQ7xsnw+SpNC2szeSoeb9ypqodqyfLHArfZ793LxPeHNfT8yAEK8k5vtP+fTwCcsyA56Hmp1kIDrxjz92bh+ZC8nL56dXB93kjfo5UG8u33cFhlqOjzPq7kcIbscsqGVJXPzqOmYXRIhcueIJRcFUFM3I7sLTX2SZt5XlKny4NOYnUBjRt5Wvl/9hR/QECHZHJjBv9s1xNztJXW9TlBIvhIRpykj5dOuk6F+KXyEgwiEhzIX4Jice8vwefgIzUFJ6pf5BI1Evdq65WprNY15ENkOUjUoJ3VOowLsZIAoT17622xb2PrlxgXDEPN1zbuVo0HFw6FRGB7RpdexwYAma3yMQ4PW+1KEW1cIULfm9WtGLH3mwnnNgBvjvxtsS19EwJekNR53p2nkBEaK2Z8ZbeN6A3UTFPdv+EhpgoO+7l2nEOBCeYmj2ImpmErUtkcw20Z8r69ucD9BOvc3HjMtfP/IC4vzF234eevZ9k7hhaaurXDeObNkzZYZkbfa/f02gfZKIJ2zntI03CtiLcyshrspQ+pi2J8n20rNN68Tq9I3OEGwnJXER/1mPjxCQT5/r0jszSePYianEGkebk+3bhXbiOFLPkk/WhBCFVhBfWUFNG4yySzIBMz8Nb7aCaNXQUoGshcjUrOqIMXQ8JM82xpU/y7Pn/QIc2DTlvWN1Bip6ZQGx0ECoqqj7ZYhS+0U/bjrbacRaMktjqgpCgFWIQG2BVi0zxijgZOgW4nXvPsKIjrgJOcs7INLoTM9FuYxEmBXuD45yLXyCUdXb5ezk9eJqnu3/K/vAejtQeJpDRj/V8KZ1zLT1HXbaY9hd++AZFCCE5EJ3kXPwiAMvBEXwRMu0v8lzv62UZdZ+A2WCZ+WAfNdkk9OpILZnwZofa0IoEoLTQQhu3C3v942SEvQVG2UAYarXLfdw8Xuz9OVeS03j47I2Om2S07EK5/PH2l0j10D5lxltixt9NJ1/jhd63yu8lPqBZDA4y7S0QyjqRaDDl78IXAd9v/xHr+VVgWGYepc1gQApGtL5gWFV3MOBJhLDV0RKE749qYt9p2QNsA786y7aTngXA1Wk6BMZVgOtJM0i0em+lhwUwoCxugdKjswKlbKLC6Npwk9Hs/5i7nesP7bbXJqe667gyjXFJbu+RUG/R1WHHzuzWYwf47sRbjlxnTHsLZcc6G+ymGcxwumvK9v64nfx7MXpqg638OltcRyA5Mv0Yh7kHlheNZrXmI4Dg7HW8uSlykXPmO/+Oa71TcHX7/g4c/hTeiSNMN/YxiENErgkKwwIVCOMnW4TMIJkUBD1t8rgmfWQKWU2iWrKo4iaZOJ+QR5K0IcgjH3230TQmcxGNV67T0JpsaRp/tQNiAj03ZZwUAg85MPZhshejGoHRyQJekhv5wqBwSlAKPdEwbGu3h+z1YbI11NV60oDPTKF9yWb/Cp4IqHUVMu0WdmS5Ac+NetmBiX4CkWFlRVJ499qEqkwhkhRdC8x6uaKsDOX7xtpJSuMy0e6bTnpqwpQoBsNA2cptNrZZb+nCTzVnm52VUxa34U9ywv9IuZsH/c9wPn6BU/0nuZC8QlNOsRge4mB08pYHhVornup+ldXskrnmBEx4MxyqPcAuf98PTao7Xnu00NibJEwp5LaiG54IWEnPsZKeG/n+Y5N/hSZTwypvzhS29XbVeW5mBZyBSFlpzN4Hp2patViGPUcApRUryTluJOeZ8ZfIdMr11IDcnIxryVl8ETDlzVOXLXwRMunNUxMNAhnRlNMj1nID1aWXbzHl7yqlV54Y3/093Posz3W/zvXsAt/a/N9ZjA5xKLyPKGgabXjhM1smjLmV7VzbMOug4LgkaH0b2N+K7njbgEJrU1giDEyiqnXdcDW3vgWiGnCkB64cpdRP50N5yzif4XHPZVX6YpPibDuqoNU+U6qy72qBDrutfV8C4R/lAr47sSN1uH2xA3x34i3H6cHTnImfKz9HfpO7Wh/gfO8F9oTH7ugs97c7AlEv30eiwRsb36c1Pcnieg29OId85RzpA3fh9TK2Vl7n+Ut/SC9bB6BVW+DwgU/z7Kv/BoBDn/qrzNz1gClGAeRak4eCtCnwBxotjNQBAVnNAF+hIA8EWWS0vyoAv69pXknoLke0LqXITFG7kRDUPLK6JFqNGSzUSFoSdXIXzVMbyH5iEssubwxZmUbdyBtaDbQv8doDA4Z7JqlMTzYQq5tm/U4PJlsmIaxRL8r9psNpyEFsGFvfBy/gytpzLM/ch9eahtV1mJpE1+pG6qB1yfaSJIbX8D3jyhBn6JpAZAZw6VpgOkfPMxcj8E2J4sA3TG5WgDNPDttkNZl+NNTyKmU0jbZjTkxSnZm+d6bgARH4IxIIYBsjLITgQO0+loK7uJqeYStf5czgWS7EL/OxyV8ieBPwm6qYs/ELXExeLTW6dTnBrL+bS8lrPN39KvfWf4o90bE3fTaFENSFKamstSm1nOmUE/XHuJKcJhR1VrJzY7fVKFKdcKnzKruCfTTDmZK9tDpao8U1YLC8Np43Whyi4vVqwWOcd9hUNzg/eIl2vkqqYxQ5NdHkUvIaAsEufx81OcH+6MSP7Jdck01qhe0cgPcmXZ8vAh5qfprr2SVW04tcGrzKxcErHKrfz1y4Fy+WeCIgFQn9fAudaiLZZLa21zzT5mIXyZSmJHT5fLwTLOQ4/bEFkEVBkpFKbmBAr00utPIGnPWsV7InhoPHLKN0Pim13zfxyK2C3nFyiSq76+7LShmsLth1C6myu+6ryxS7JZnfA7EDfG9f7ADfnXjLsRweZT27WiaFnOs9z8rgrEkaCd+8M/5Ji4acYDk4wuX0daaDRdbTKzyz8Sd4m39GfsVoPe95+uM0dx/hifP/Bq3Nj/2he3+exRM/RdoACuA7u+8+ct8wuwDJhCBsGzZXFzOuNkSRw6MFaB/8GJQteuULOnsj0oYgrYfUNhRBJzea3FQQz0fUVgbUrygDIAMPud5F1yOyXZPIforc7CI22+B75LtnIdfIJEOud1FzE8hujLixMcIUia2O6Yh6/eEUeK8/ZGWK6c1sfZU47zLZ2odod9FzM4gbawgpTQfcHxgQ3S9KECsFg9xUVgMjiQh8U6QiCkAWgKweGsY5KPZRrxl2dxAPp1eFGNUpuvZNtlRu4RurK8ltZbEHF/S6bBhsS9iKdIMDtXtBaya9OV7pf49L8avMBLuZlHNjB4k3sou8ET8z8t2e8CivD54CwBchs8FuA2ZJ8QnedLA5UF2+tfW/ox0abNKb46GJz7CWXOaZ3tdGJAP2GG/0n+Zs/Dznkhd5TP4CUdQaZb5dJtfxArbFFLQ2CWeb6QqX4lN0sjU6+TqKnEybgUVLzrInPEYoI2b83UzIGW5kF2nIaZre5E3P6e0OISQLwT4Wgn0crj3EG/EznO4/zev9J2+6Tas7w921DzNX2zvUfxeJeSW7LdUw4exWAPCtrOeCylJq8Cb7qvolWxcWUYBcZWZvSsA7Ukq4+Dwumc6yva6rQ5XBHafLHRduOWz3OOPYYAuM3fVdKzSt3xOM707cvtgBvjvxlqPlTfPoxM/Tz9skesAzvT+jr9pMe4s0vel3u3m3NYQQ3Nv4OEf1I7zW/wGx7gGUjg4AL299m0b3ObTOCUQNXwYsH/gIXlfTWw64b98XUZ/8AFlT4iUGwKoQgo5G+RB0NdozzK5AlyBYC4w/r4Ss+KWXmUlkq1/PCBqSxuU+veU68YxH43JG7UafbKZGOhlSP3W91NHpZoTY6OAnqQGA3UIaECeQa1TNgE6vFprkMqu7s563vmfsj6z/Z71mOsam0QDjSUhSOskaz1//I6TwmYv2gt8wFmRTk6Yj6w/MPixw3WybY0SRAbC+D1Fgtsky490LEPgG9BbJRiVTW4tMpx7HhftEBinDTHJXc+j7RQKOA2JsjHMsG8NompvgAGFnGnZXsJ/r6QVeGzyBHijm/GUean5m2xT8vL+XveHdSDwuJq+gyEvQ+8HJn2NKzNHO1/lW598BsODv54Hmp4wbwZjIdVqCXg8fT/gcq30ItGY22M1HJv4yN9JLnE9epJ2vsSc6xku9b3M9vcgufx8b+Qrf3vpdZoNljjYeoSGnGGRtgrxG4NdQKHrpGt1sk75qE+seg7xLphNCUeNqeoZQ1Jj0d7E3PI4nfOpygglvlqac2gba3+2iIKGscXf9w9wVPcCV9A20Vkjh05RTTHpzCCFp56uc6j/Jk90vc1f+IMvBURrexAjLWSYMulPxNwO1VW0rbAe4rmPCiJyi4sDhFrOwCW5Wm2sZ1TgZsqy+N5QwlI237VSjoNZdVk2Ec9v9VsOCWxtVuYPbhnHJbe8B4LvD+N6+2AG+O/G2Rd2bIM0SBqoDwFJ48N1t0LsUQghqoomU5t/rgcYnyaViw9/g0uZzGMP8DQCmvHmOfuTX6O+OyJqAhtmTHyV4PSWZTOku+4QdkJmmtyAJtzR5aFwcvMRIH2RuClIEPY3fz+kueigpCLcUQlntr4cXK7wrazT0DOlURDYRoAOJjHP8TKGbNXToQ6aQV2/A9KRhSLOM7Ohe/HPX0HNTeDe2EFNN5I0NiEJE6vzgWqcEawtWlAW2JYJ16LPVvUy/d4Mb8Xkud1+h5rV4dPGv0BAts12aDkFqo25ArxSGLbYdYJKY5YXMoJy2LYCr0Q/nQ5bJMlueZ0CrO/3eahYAuND4RpFpg1ttyoL5cnq2mMbGsMZCCzPCKELLofPDSKUrhwFuMMkjE18gFzmr8UWe7f4Zz3S/xsPNz46Av0BGnGx8FIC7ag/QV1t4IiAU9dK+yyss1BI9YKBHS2BXo+lN85mp/xugTdniStRkk73RMVreDK/1v08nW8cTAXfXH2VveJxED/hB54+4lpwhVQMynbKVmxLdxVBseLp41GSTSDTwRUhbrXMgOsmR2sNjj32nRqx6PNX9Clv56sj3AkkoajTkBE1vhs38OqcHT3N68DTHah/kUO3+URBbTfa71RiXVOeNGdg4/stVz+JyUAfbZQVQzMLIgvXVZVJouczuw311/Yyr1mPj5A42qjZqboyzP3PjZkDalURsS6a780HhDvC9fbEDfHfibQ3r7DDtLbA//MkvVnGz6OVbXEvOshgcZKl+hMut61w8903m/OUyOWlh78PM5vOcfukP8N5ocnLhsxBF5E2fZCZE+QItBc1LMWv3RKAgaRm5Q9jRBB1TrKK7KI2e1xdoIaltKESGYYVDgfKhtpETridsPbKHrC6ZetUMTpI5k7UenVlFTTWQW33yqYYBkQV7m+9fKiQQvnkFxNlLBt50uohaBBMtA0S7PeOdaxN+osAA1zBE5Sk/OPuvWI/N+Udei8OtRzg48RCeLNbz/SFg7nSHDJVwWOM0HYJVqyGVwrC2RYctuj2zL2vNlBSMe8ionKEmh4yXZXnTdAikrb+vC1iqPrOuhtNGwcZZAFzGGFbYEz4L4QEe4JM83f0qK+k5Fm8yaIzkEOy6MeHN8jNTv3rzB7ISN2OD3Zj2d/Ghif9k5LtMp3xr699hKbS17Aqz/m4eaHyykCykeHg0vEkacpJQ1O94jX+iBkjh4YsApXNODZ5koLpM+4sEIiTXKefjV0j1gA9N/BwBIYmOSRiQ6AGJ6tPNN1jPrqDGaQzGATEb4753no9qYpqWauwztM1yrvpdOeBy2uQeX7rbO7Mf1debnUOV9a1GlZG131WLWox7735XlViM0xi7Ugu73o860NiJn+jYAb478bbGYniQj3q/+J7o8N7JuJaeQ+ucxfAQ3974d3RXNwC4r/Fxnu59jc1shZWLT7HibLP/ns+R7W0QbWlq12M6+2tMXEiJZ/xC5iBoXM/II4k/UOSheQ07Ai0g7Gi0pEx8IwOEqdiWh4J4NkRmmmgzZ7C7Tu1Kn/4u35RIvmueYMPYfYk8R89OGs1uoc0VWqM7XZPBniScHjxNm00erH1iKEUIAgOAt9rQKABrUuhnBzEX+i+wHl/iwaUvMlPfR9grDHi8YMj02qISYTgshWzBb5IM9bhxAq2GAZhJav6icDhFKwvLpTwdyhi8wp/Xeo5aXaI7PVq1NiscKEatmnSxqNBtJumQfbMgQ4ihBrjKNrnApZiyjvWATr4OQFdtvn0P4tscmU4K51vj1b0/OsF8sPfdbtaPHZeSU7zQ+xaBiDhSe5iB6nI2fp6mnOJaehZdANkJb5aHJz7HVDBqIecOfAAyldBJ10j0gHl/z3a2UzFek0sBVMfY5FWr0rlRdcMYt8wcd/hcFguHANEt9VuuyyhQtraBldLWzsG2a2yrcg17LDvbYhlsF9BWAbmrR66yw3ag6uqB3e3dJLj3AO7VvDVLsvfAKd4xsQN8d+Jtj5Y382434V2PnIycjOe6Xx/5/htb/7bMKG/Vl5j25tm1dB+tu+5FhAGTz3fw2n0G+6eJNnO0L4inJZNnErrLIWlTonxBHnrIXOMPjPbXSxRerPH6GTqQ9BYCovUcFXjIVJtZeKXxYk240gNPIFe3mN3sQZIQ37WAHCTGpWF1CwAdx+jdc6YQxbV1qNfRq+uoyCs1pmriE3il120O/XSUNdUarXLOdJ7i1PpfsLd1H0sTdxug3KgZMBuF0O6YzmpQJFVZzXC9ZsCvlEOdcZabzrBbJM0lqXl1k+isa4ObpS6FAb6D2BTTsPux4QIBOy1cAF6tFWVNhyKxDTAyhiqjVFQvK63OqtPbjtwhz1NeHzzJucGLCAS7g8PsDY+/pWfvnYyabPLZ6f/sHT9OrPqcHjyNJ3w0yihnZJOabFGXLWqyRShqb3lwvZZdAWA2WObl/vcAzYHavZxofRSlcmN75kfGNjAMtjG0AkYYUV95TAfLQ8BmXS9czFZYjFULoYzEGAA88vwU222TMzjfjyxzdb6lZZk/yriOAePbXCJcuzI3bjVRz92XkBh22bFCs4DVZZldR4dxx7SyCevGYuNmJbPv0NiROty+2AG+O7ET70DsCY+yml5kI19hwptld3SEJe8gmxMDehtXmGzsYe7AA+SNANXtceH6M7z+9O9Sby3w8KN/E1GXtF5eNR2nmGfrUFg6Oigfw9LO+fTmDQCLNhThWp90pkba8om2FDLT1FcSvH6KinyClTY6Ckhn64QXN9BtI3cQk5NEF9bJZ5sgBN6WcT7QB5cRaQ6XrkGjge71iBuCC6s/KM9zI11hTuwZZWzczjTwubb6Aq9t/DkHmg9ybPZjBhRbu6GgsE2q1wyjXK8bcBonBmgM4mEnGIWjZYPjeMgGWVuykt11GC4hDChPinVr0dAhwnauDiOmrZsDFKzx9vs7UsHLk0Pmyu7TbusyW1AmIcX0uNw/xen+U2Q6YW94N0drjxC+Tzyvtdb0VZuN/DqJMhZtQywluJacZT2/isSjLicAzUB1yRn64JplLQJRQwBT/gK7w8NMenO33I45fzeXk1PcU/8oJ+sfIyOlLprGrUIKfK9IhrT6bm+MLrmaaJXnJehFaQM+nc3GgtKySqAeOohUY5wVnPPqfu8ywS4jjXTApFlh+P9ln2MXcN9MfrAteexNgKkNC061HP2dsOzym+1nHKC1unvLRlerzlUrut3hsQN8b1/sAN+d2Il3IOqyxZS/QEdt8MGZLxISgSep9xKIFmD3ItnVq1yMX+PVGw4rnKTUXryE3LeXbNcE7QM10obEHxhHBy8x2l2KXCotYeJiigoEeSMgOrdOfmSOaD1GC0E6GYD20YEkm2nSPlQ3xSqmdtF83TcV0HpG4qB9D5Hl5Ltn0VLgbfURK2vQKKqxRRGX1r7H6fhpaqLJQHfRyhZw0MMCEf0+olYrrc0ajV2wAVPBLry86GB1occNAsP6Zjkiisx7Ox1a2IiVDLKbre16elpAYtkiIQrNrrN+rhwwopzO3SlBrCTWXq5kn6qyh2qMm87VemhZVexLA5v5ddbzq2ym17mWnhnZzbS36ycW9CqtuJKe5lz8AqmKCWSNWPVKT+KbeeouhYe5b+ITpcuF1tp452ZbDPIOfd2hn7WN56/OuZSc4mz8PHXZoiGnEM60sRQegQjxRVS+CgRnBs8h8ejnbab8eQLC0YGLcGUpY5jZm+l3SyC8fZlNPitXrVatezM9qjODUGWNRxhku45F3C64DirMtStfeLPn/Yexpm+mZXa332Y7pob/2+OcGqq+veYkhzMt9r393oL6m3kM78T7PnaA706UsZ5d5WL8KruC/SwGBxFCkKgBie7ji3DEAH4nfnispOdYDo4QEqHzHKUzNrOrrIrrbL2xyvXu6XLd0Gtw/33/Vyan9pGHHklN4vdzZArRpiJrmEQ35Re2ZoEgq0HY1uSRxIsVyXSIyCeQmcZb7cDmFhzdi//6JdS+RVCK6RcMgyqur5sOJc0M69qog2ribQ3QoY8OPHQtNFWdWg1Y24Bcsdg8wqnBE+yNjnN68DRXBqeY9XcjbWeqtQGwUCaMTYa7mAv3cr73PMu1o9DvD63ErF2Y75kOOS00uZbVtQwaDAGrrRJmPUdhlMWyLLDtiK2e1xaoKDtSUVbWKo3+C5a2LDOrGFYrG5e444JclwG2U8KepJ+1+e7W72/zxrVxpPbwsPjEmyURvcciVTHfbv9eCXB3BfvYFewnUQMCP2ImXGLKXyCUtZHttk3PO9+H1Am9OlO60No6IFHpnBvpRdbSy/RyI9exe8h1TkdtkqmYVCekOkajaHrTqDznqe6f8InJXzHe0bBdz+o6DFSdBuzzaZdt85kdlbiMkziM1fFWAbAc6sbHgd6bXTd3+zLh02nPSPJb1aasOvirxps5N5Tn4QDXcd68dju/YKZdqYP9c6+/myDnfuey1/Yvy3ivxA7je/tiB/juRBkX49e4nL7O5fR1BJL90UnOxc+Xy39m8le3dVI7MT5i1aOv2swES+gso8MmT679MQPdJRBROR0rEDw8+QVmD38Ab6MH3U2SvdMwgMFsABpUYHx4VSiRicIbKJAQtHMG80bTqjyBF5vyv0Jrkj3T9B9coL4SQ6tJMlMj2IqRl2+YzmJ6CvoDk6yW59Dp4a94ECcIrWFuypT9FcLIArTpHAddk3g16c1zT/2jvNj/NkGvxvHmo6XeUee5AcxgOqU0Y/fECV5Y/Spx3iPyGqUOtmR1cwVp35R5zXPTrmJ6eaRIAozYNUHR8WeZ0Xv6/lBfmWUmSS7Lzb4GMTpNh/tKnellCvlCYRvlFhwoQYm1lHKjCk5c0AumxK02bgj2fi+EB7mWDBnfzPF4fq+C3lQnXE/Pc6OQ98Sqhyo0IpFo8IHW55gI50uQdbOkrLF6V7Ng9LMd2EhK0CPxWfAOslA7OHTccNhPoJQQZCrl8a3/SCdfJxQ1DtUeGIJeezyl0dIU3RgmeY2ZRrfxI0ynu8/z9v0UQLSq8y3aA9slDCX4vZkUw36vlOPj6wwO3Wd2nKThh0kZ3gzwvtlnF7TmTpJaVdrgfu+WiHYHuG5Cmx2ouslxd3jsAN/bFzvA930eiYo5n7xIrjPm/T1M+bt4uf8dNIrz8YvleoeiBwjET+ZU7DsRFsy82n+c0/2n6ah1JuQsDzY/xaQ3hwa+uvn/ZV/9Hna17kLnmmT/LMFq10gUWh5BTxFPeWiJSYQKBP05n6CnyQNB2FF4iTaAVwr8dko6FVI/vUp8YMZUZ0sNS+oNMlToIZbnUfUQf7VjEryEMOCz24NOl83eFVIdM5cdNIllnixtwrp6i2d7f8aMv5s5fw9SSDKd8urgca7Er9PwJmmJGXwvpBXNs9g4gq88CHy21q8SeS3CaKLQzebDymhpZvS8fSNnEKXeceij64KEcZrG4s1wGyt/sGC11x8CXBfI3kICEQCh4/vrJqsFLotXbON0zForajT53MLfIM+MN/BqfplryRmWg6PcFT1A05/6kZ6tOzGe6vwJG/kKk948C8EB6rKFT4AvQ+aCvfjCDoTECLjdBnTHsZVVOQmMAplxyUuOn61h80cHJOcGz9PNN3iw9Wnmgj34clgyugpKbWLjCIge51ow3KCi+3WYVeecx9rgudfAfTbHuT9Uv7eyhmoSWS0akd3cNG4GbqvndrNwGfFbjZtpd8cdy7bFZdxdmYPV+ValFFK+p0oX3474rd/6LX7rt36Ls2fPAnDy5En+y//yv+QLX/gCYGRFf//v/33+xb/4F6yvr/Poo4/yP/wP/wMnTw4tSuM45jd/8zf5t//239Lv9/nUpz7F//g//o/s3Tt0eVlfX+c3fuM3+IM/+AMAvvjFL/Lf//f/PdPT07ftXMfFDvB9n8er/ce5nJ4ikk3OqucJRZ1HWz/P1fQNFoNDzARL71kW6t2MpjfFyfpPsZFfQyI56N3LQniQgeqgmzUurBtXhHo4g1qYRWUxW6vXaM7sJZvyiTZSussR3kARbuWoQKBCQeN6Tn/Oo3Eto36xTTrXIJn0kTkk0yF+PyddmiTYiNEzNVTkoSfqaE8icoWKAvxzK8MEs2aj9MNVOue77f8fAGGvzkPTX2BazLOhVtiMVzg3eJ5Q1HioMawKdiA6SU02aeem/OyF9GVTCW0Az29+jc/v+3+i44SV+CyLtbtMWWHLBuf5sFO21dVcBrhIxCmlBjeJEjy5WeFjkozsuiNsWehMbcPotC8M3xf7KN0d1LBd7vFFGAwZaivj8Dw24quc6T3DanqJDAP4L6enWA4P0+TOBb6Xk9d5rf8DcjLurn+YXf6+bbM+Siva+TqT3jyPTf7C9p1UBxFjlhU7Gt+IasIkbAdXVY1oxXLOAj4hJOvJFU73n+ZQ/QEWo0PlLkYSwm4mQ3Db6IntIHcs8znmO+cZG8v+VkDviJzhZoMDe51cGUCVAa7KN9zEy3GAswqit53bTZjZHyfs/7hrZWY1/GUCnhlIl64vNkk2c1hdKZ3fEHu97vxiKVoL9FtgbX+Ubffu3cs//sf/mCNHjgDwL//lv+Qv/aW/xNNPP83Jkyf5J//kn/BP/+k/5bd/+7c5duwY/+Af/AM+85nP8OqrrzIxMQHA3/pbf4svfelL/M7v/A5zc3P87b/9t/m5n/s5nnzySbziufuVX/kVLl68yJe//GUA/sbf+Bv82q/9Gl/60pd+7PN8O2IH+L7PYzM3TrJ10SKmS6L7PN75Ek05xYJ/YAf0voXYGx1jL8fKzz/o/DFr2WVEW5bVrV7d/DaXXnmNzsDch331kxz+2K/RWwrxe8aZQaaKZCok2sxR3lDj298/id9O8fsKLUAUHqEi0+SNgNrZNbKFSbKpGsFaz8ggkgy1NIvsDIyEwRZ6yHMGqs1idIhr8RkS1eeJtS9R9ybo5GsANOUUDzc/R+AkYQkhWAoPoZKM9fwaAKGo4wmfvmpztfOqqSaWt1lsHhleHK3NcW3RCmeasgS5ZT/45tOUpeTB84bFJmwnWE55irKym7Df+XIUGFcKU4BNeBuCXdeKzM2qF0KiPUrNcJL1uZq+wUr3HL18i57apCmnOFQzMycv9f8Cj4AZf+kWn6Z3Pjr5Bs/3vokvArRWZDqlrdZYDA6xma3wQu9bAOwODnNv4+NIabTTse6Sk5oZIQtQxoCzEeBWmcIvp/ZvFjdLLKxOt1dZfee90ooLg5d4tfc4U/48d9UfGss4C+GP7LdkUiuzAdtA763EuEHVzdYrT/MmoLcKRK321X5vZx6sb7Vts42bHftm5zTuuyrzbr+7GQC+2TL3WrpJbVUQb2UZ7rlbKZP7vX3vJrje4aEQb8nH90fZ9ud//udHPv/Df/gP+a3f+i2+973vcc899/Df/rf/Lf/Ff/Ff8Iu/+IuAAcaLi4v8m3/zb/j1X/91Njc3+Z//5/+Z/+1/+9/49Kc/DcC/+lf/in379vGnf/qnfO5zn+Pll1/my1/+Mt/73vd49NFHAfif/qf/iccee4xXX32V48ffPdvGHeD7Po6N7Hpplr9RgBYbXbVJX3fejWb9REaseqxllzkY3UdNttjgBlf7pwBK0Ltr6hjLD/8CKpKEbQNmAYTSRBspeSjBEwQd4+/r9XKyiQC/nSKUJmv4RtogIKt75Idmia51SwmASDUi14huDBtbhnmVkhvJBZ5Y+X1zLCRz/jLHah/kfPIyGs3R2geY9OYIRf2mFb8SNUAAM94SXbXJR2b/Cs+1v8Yz62akv6d5D7NhMQVmE1kG8bA8cJYPvW8r8WYG/jaE7RQlRtcLw8puNsmlTD5z2J/SK9RqRg0YqU7HjxSicMBvtYrWSnaeM71n2Myvo9FM+4vM+IvcHTzKvL8X6zu7Ozw8nP6/Q6Kbb5Slh23sj+7h7vpjKHKuJm+wmV3nQvIyu9J97A4PA3A9vQhQfga2S0KkI1lxBzQ/zMEASub/VqN8Xpx9x6rPk50/pp2vsS86wd3Nx5DC2w7G3aINNgqwVa7rntutAEn3Ori2ZZX2jjC/Y6qzjbTnZmE9tV25j++DduQgFjyOA+7uOuOY3+p6P0pUbcnGnVOVPbfnYGeJ7P9opka3yZwkVymHQN+6ubwHKre9WxrfPM/53d/9XbrdLo899hhnzpzh6tWrfPazny3XiaKIn/7pn+Y73/kOv/7rv86TTz5JmqYj6ywvL3Pvvffyne98h8997nN897vfZWpqqgS9AB/+8IeZmpriO9/5zg7w3Yl3J5pykkg0iHUPgCPhB3g9eRKA+xo/ze7g8JttvhM/QrSLqlz7ohM0gikOCkm2+2dZWX2R9UaXg+oI4fG78a93ybKErBkQrQ/QvkfW9BGZBm1YXZlrtDLFKmwnHZy/gTq6iAo9ZJxTu7BFPtNAewK53jMdX1FBjVyZjkRrBskWr218G4CmnObDE18sAdm9/k/d8vkdrN3HQe5jPbvG9zt/SD/b5MGpz7KaXSESNSajJYRrPaa0aQ8UrE5upAE/RpQg1c0Atwktbnliy/RG4Wgijevla6PqKKCcghTucinoJmtcV5e5Hp9jLbvMnL/MifpHmA/2FB602+NOA71gqi5+wv+/sJGtkJPyQu/bXEvOcrT+CC93v8Pl9PVy3VwP79VyeJjXB0/xQu9bvND7Fo80v8BcsDxq6TbGoWBEUnCLFl4j8WauA5X9vTF4moHq8tjELzDpz0Mxy1+yqarCpo4BtzcrGDGUGRTgvmpP9ibnN1a7bmU0N/HpHasvdoHoiLynqCpo/9es9eC47dz9jftcXbfKyMJ21wsX6I7TQVejCry1dkqTe0OvYcvmWhmSBfrKAt0xDPf7JLa2tkY+R1FEFG3Pz3n++ed57LHHGAwGtFotfv/3f5977rmH73znOwAsLi6OrL+4uMi5c+cAuHr1KmEYMjMzs22dq1evlussLIxWOgRYWFgo13m3Ygf4vg8jVTGpjsl0ytHaI1xJT5PqBC0U094ioayzHB754TvaiVsOWSDUTr5Bsz4HtQhf+CzveojdjQjR7pOlinh5EpkqZKaQ/ZRkPkQmyuhzQ4lIDQAOOikyTlGRhxebAhB+O0Hk2kga0gxvvYdIKsUYio5AqYxrndd4ZesvSHXMjLfE/c1PvGVAVpPG83eQd5kUCywE+4YVolwNny09bMsN/5hRMr2ulZEN6wdsi2CAOaa1NMu264ZLYCMEGnit/T3O9Z9nyp9HIIlkw0ny1HTyDdbSy0g8ZvylcsD4Xi3XHckGi+FBAAJqPNX7Cl/b+F8BmPf3MunNsTe8h6vpaZ7pfg2BYCm4iylvnhuZYX5b3vRwh1W7K7gpk+kCvJsCx+q21h2kPMawYIQ7UIlVj4acNKC3cozSCcFh8bVWRuJQJtMV27gJc9USwI6OeNu53kTWsE3fW5HRjA2XlXYrytnnP8uG8h7rdDIubhX0WumKZYnLpD05CnjdV7utm4Tm6vRd0D0uSbDaNqvXtzrfwnVjhB2uAmtX9vEecDx4uzS++/btG/n+v/qv/iv+3t/7e9vWP378OM888wwbGxv83u/9Hn/1r/5VvvnNb5bLq79hWusf+rtWXWfc+reyn3c6doDvHRQ/ygOhteL1wVNcSc/gFZ3urmAfN9JLCCGY9/fQztfpqU1SnZBp41/ZV+1tfqKBMMkqp+On2RMe497GrTN9O3FrMeMvMefv4fnu19GNkMXwHsOAZhmirdDNCBV5hGumolhe9+HSNfzGPryNHunCBF4/Q2jIIw9ZVCELVjroRgiDGBl46NA31dbS1OwfQOVm+r8/QGvNhfZznG5/n1j1mPGWONn4GE1v6m05z5po4hHQTm+wkB8YSgji2LTBZX1dv943iW0JabICNlyM5DJESVLd0WgCnG2bY4UkhI9OUshzUp1wpvc0AOvpeIZixt/N/Y1PsBAcKAstvBcjVn00ilDU6eRrnI1fYCU9P7LOjewiN7KLnImfRzs1eK+lZzkQ3cuN7CL3Nz5BWAx+bjol74DYbbIE13psnNXZOB9cmwjpWph5EpFj7L+UZiE4wPO9b9JXHeqyVe5/G+PsOi9UAea483Ds1H7UGHv8KrB3wbh03CWsU0XoO+4lxfphOHRMKctvq5uDypuFe//s9u4+XNDrDgACn9KPt7q8Cn6HF+PW2uTO5txMfuFat1WPcwfH2yV1uHDhApOTk+X349hegDAMy+S2Rx55hB/84Af8d//df8ff/bt/FzCM7e7du8v1V1ZWShZ4aWmJJElYX18fYX1XVlb4yEc+Uq5z7dqohBLg+vXr29jk2x3v3V/qn5DIdcaV5A0uJC/Ty7d4pPV5pvxdP3S7q+lZ3oifZd/sw9AfcHlwigvJy4SyQaJ6nItfwMOn6c8QeDV82aDOFIvyEA1/mlBHeMKnRpNa0OJa/w2e7n51h+l9h0IIwYPNT/J871s8c/0Pqd34Okv1I+zxjzDRWDTlUTcGCKUQK2vofYuIyUkDYrMcf70HUppEtXaCGCRDTWtm2EsdeIg4RWRqyLJaF4UkoddZ4YXON1lLL7McHOFg8z4mvNm3+TwlU/58qRnXSYrw1LDkKww7P1deIMW20sBjvV5tB+/7BuCWxSccP1C343fDdtYWbDtskbasc1EkACDQEZ+b+xsMsjZb2Q08EdDJ17mYvEKnkK7cFd3PfLC3eqT3VFxNzvBs788A8AlK14m76g8yJRdoedNsZtcJiqpnG/kKp/vPkGIGaU05xV3RA/TyTZ7rfYOB6nKo/sAPP/BNwaS5x8Zj+ibWdYwCRysvcMGwu+5CeADZ87ianOZQ7YHRfViZg8viWjANBcjS5X7LsOuW7gP5zRPWxiTdlZ+riX7u/sfYlo0AZqvprYbnDQvEuFHo+m8KNMeB0Tfz660yvDAsG+4yvi5baweb7u/AjxIW/LrnbX9b7HdVkP4+isnJyRHge6uhtSaOYw4dOsTS0hJf/epXeeihhwBIkoRvfvOb/Nf/9X8NwAc+8AGCIOCrX/0qv/zLvwzAlStXeOGFF/gn/+SfAPDYY4+xubnJ97//fT70oQ8B8Pjjj7O5uVmC43crdoDvuxBKK1azi1xLz3EtPUumE3aF+9nKb3AtPXtLwLenNvFEwMnaR2ChxeH1qwwGG0wcvI/04hlyoWk05s1Ut53qShKTTGTtYYopMaVzrquLgGBCvr1AaCeG4YuQBxufYj2/ytXkDJf7r3JOP8++/F6W8mPMBIdBeqileeQbF2F2BrmyAfUaIs5QrQh/c4AWAtHpQ72G9oRxKfAkcr1rAGCaDpNBVI6WgvNrT/Ba+3sEojbUYL5DkagBHbXOa93HOdx6BJlmCOu0YKdHK1XYLJO1rQKVTTSzIMPtTKcmjT+vyyLZZ31chSjHOaIMB3iPJDlJUWbz18UkNb+FEJKrW2/QyddpyEkmvFkmvXne6+H+3uyJjrErOkBEnVYwW16fhmc60m6+SSfZQDujlPlgH4GMeKj1GZ7qfJWz8Qt4MmDaW2TCm0EIyWZ2nZd738ETPruCfRyI7nvz2a0SVA6tyG6a+OjIA24mkfBFyLS/yHp2lUM8sH0fVoWDN+qCYJlF+4xVC5RYEDYClIfgt6r33ZbA5u7nTa7H2EHgiG+tHCYBWqBni9PYdbUelv529e9VuYALGqvJZjdra1Vq5Lp7WFsxe+3sOkWewYhl2Y8SrnSqygBXE/PeA+D3dtqZ/ef/+X/OF77wBfbt20e73eZ3fud3+MY3vsGXv/xlhBD8rb/1t/hH/+gfcfToUY4ePco/+kf/iEajwa/8yq8AMDU1xV/7a3+Nv/23/zZzc3PMzs7ym7/5m9x3332ly8OJEyf4/Oc/z1//63+df/7P/zlg7Mx+7ud+7l1NbIMd4HvbQmtNO1+j7k3wfPcbXM8u0JCT7Kvfw77aCTayFa4n59+0I9VacyO7RDtf5UryBrlOuRy/znL3OLWJXdTCKbixgVcvwGuSDjNcg8D88ESRsZACYj3gfO95LrafJ1F97q4/OmJVtRNvfwghmPV3M+vv5m79KKcHT3Opd4rz3ecIb9SYax4iEBG5yFm4upvF2XvMhnkOCsPoCgGFN6nIMZ2Gva9xbt5vtRmImMudl7jUf5Wu2mBfeIJj9UfwRfimbXyrsSc8ynp+jTP9Z6nJFvtb9xlWtddHROGQ9Snlf+YZtVXVxrJuMDqFWa8Ptbu287fLY0fK06ib61LV/toQdmrbG2p+LUh3ShsLjMxib/1uLiavcLj20E/M7MiNwpUB4FjzUeN2kOV0k3V6aguNJifjSvI619OLRKLOnugYh6OHtv1enGx8jGe7f8Yrve+i0YSixoQ3z3p2hbqcYDO/zlp2hVl/D5O+qV44zroLm6nvukHAtoFKtVpZtZyvXVfpnM3sOgdq9970OgjPK34vHb2q9bu2xxhxHLBgypFJ3IJ+eeQ8bsamFs/riIVZMQjcti8LMN3PdpDn6nstOLVA882Sy26WOOhajY2cjxr+X8N2iUUJxj3z2yWFIV4Uo/pgm5x2q1EmT6pRttc93x8yqLhTQr9FqcOPAnyvXbvGr/3ar3HlyhWmpqa4//77+fKXv8xnPvMZAP7O3/k79Pt9/ubf/JtlAYuvfOUrpYcvwH/z3/w3+L7PL//yL5cFLH77t3+79PAF+Nf/+l/zG7/xG6X7wxe/+EX+2T/7Zz/2Ob5dIbT+4UOhra0tpqam+NTUr73jneZPajzX/QZX0tN4BOTFVOKn5/8aCHij+xRv9J5md3iE++ofvykTspXd4Lud/whAICJSHXPf3GdZuOfjBJc3TJJDMc2kfQ81WcO70TY/PnEMnoeebpFurPJG+jwXrj0OWrAcHmZfdOJtn/beiVsLrTWb+XWupWfZyK7RztfJSREIjs/8FF5tgr314wg/GJbijSLD4DudiAY2e5fYSm/Qi1c53zeV9xaC/eyP7rntnrHf3PwdlqOjHGs9WoJZHSeIVtOsYDW4Vd1uNcoEIzkcyKXZ0KUCTOcW+KOJbDCUfIywY4wm1rismOeNriOEAeTFtLvSOV9Z/f8w4c3xkYlfeFuu07sdm9l1vtf5AwDqslX49l5nPR/VNdflBIei+1kOj/xQPXOuM/NMJ+foqU2m/QUORPfy/c4foXTOY5O/MNzHuAIXxUyAsKxgATStx7OwulalzfMg5bZpfbfoSa4z/mztf2UpvIt7G5XfWMv2F8VGxrKZpfNHJcHLjWpy3M3YXXe/1XDBpjsL4YA5nedDsG+fbet6YK9nVTJxs0QwFxhWk82qzgnleVbAbHUbN9m0bIMcPa77/26lEXabKvB9M1lG4c1d3ptxLhNAphL+9Oq/YHNz88eSAbyTYfHVQ//+/4XX+PGJp7wX8/Qv/dM78hzvtNhhfG9DaK25kp4GYE/jOJ728EXIanyBp9tfAWDOX+ae+mNvOv13KTG+r5+Y+zVqjVn07CSi0zfVGPMcMgntDkQhIhGGUIsT8yMTRSR5j3Pn/5SzW0+B1hyITnIwum+H5X2XQwjBtL/AtG+sX57vfYvLySk0mlfWvwVAWlthorFEImOCoEWU1JDCoz9Yo5tv0ss22Eiu0k6ND6tHwKHofg5EJ9+1+xvJBmv5VfI0QRbAUYSBAelxggj8oU553NSqO4XpZpfDaLa4m7le7SQDf7ienaKuTufa7VwdIpQdsPA8dJYhhGQruQ7AXdEtaFjfIzHl7+KzU/8ZV9I3eL73Dc7GzyMQPND4JFP+LiQeipxI1JHi1ipgecIvZzZsJGpAN9/gaO0DBvQW9zLTKTeyi/SzNnPRHvp5mzl/D4FfGwUzOAOkUgrhPDe+P2QzGQXSHj4nmh/lxe63WAwOshAeGGmv1gqhxShz6T5jtzJ1frNqbK5uuVoRrip3sPt324XDpFrpT7mdc31s0pdiu3fvzcIFquP6nipgd9cbp6F1Aah7ncq22UFlZR8uAz3OCm1cu+2x7Dm4rHxV9/weYHx34vbFDvC9DSGEQCDQaDrZOg80P0kgIq5G16Bt1tkbHv+hbHqi+wCc7T3LXQd+niDJIU7wz16Des1M6U60zI9BkiLaXVCKxNe8ev2rXOm8AsD+6ASHovsJZf0dPe+d+PHiSO1hQlGjna8y7S2ykp3jtcEPKHKJtoWHT8ObpCmnOdp8mHnfJFu925Yxx+of5InOl/mL9u8x7S9yov4Yfi4RQYCo19BxbJirIDBTytb1oWpbZE5muGOth0yU7xXJbE4ij+0UJyfMd7kC9NDFoQow3M7cTm0H223ddJ6X/rUtb+Ztv1528m01u8yl5FWupmc4FN3PsfoH3/ZjVaOn2jzf+0b5+VD0AEvhobf1GC/3v4tA0vJnOZe8xHp6hW6+STdfLysZYizF8fDZXT/GnvpxJv35EiiXiWj2HrnAB4azAm7iYxF7omNcTU7zav9xdgX7h/8fjtZcwCjgGjdAGmGAR4HhWCcKi8Fc54VimXWdKI9ViRGPajCDRJdRzvPhediZIDCJds65mWvBzXW61WOPY21dkOp+tgNU9/txGns3xjHI1bADkGopYzdcbbD9vagOot8joFdhcMJb2X4nbi12gO9tig+1fp7HO3/AWnKJv8j+PYHfoLu2Sl1OcKT2MIvB+E7G2JY9TSdfs10DZ/vPcfap5/jMPX8XLwjMyB7Q0y1TlctWmSrql7925StcGrzM7uAwd9c/TChrt+msd+LHibpscbz+ofLzYf0QbbVGQEgo66Q6JlZ9FBl1OUEkGu86yB0Xs/5uPtD8HJeT17mcnGJP7RhzYq8Bl4VJfwlSlB7akIXhECRYn9ayM5OjNmSZKnx586G2t14bMj5BAHlstvH9oRsEmO2kNBKhpEgIzLLRadI8N1PmSrORXuOJzh8DvC3WZUorNvMV2vka7XydtewyiYrJGGqULyev3xbgm+mh9dtScBeHaw+9rftfS69wNX0Dj4AnO19G4jHl72ImWORA/STzwX484XNh8DJT/i42smtcGLzExf5LCAR7aseZDhaZ8nYxEc4XnrJFm+0gqSJRMaxtwbQqiRBwV/0hfrD1hzze/gMemfjCkGywz+O2QhtsZ01tEYgxet6RxMybRQUAv9mybYxv9XhBYAqywDCBrHr+N5MlwHbZQ9XxwU14K9voHMOCVhfojmurXT/wR6usuffMPVZ1gFotdTzOTQKKXAhnMGRnAX4U3fC7FLczue39HjvA9zbF6+nT5ftE9YnyOh9s/izT/uJNy8ACnOYl3oifZT7cB1KwEB5G1QLC1ENsdcj2L6FCD2+QoYXAU6BDH9mLQSTozTZ5bjqIK+lp9oTHmJPvXEb/Trz9IYRg0psrP3vCpyab71p7tNZ01DoeAQ1vfGUyG3PBMtP+Apc3T9HP2miZGb2szZq3nVm9mNYOfANu03So27VZ9rLSQbvhdpjVRKQoNJIfn6EJPwzbkOXmOHFSgAdvhL2y+t7L3dcRCD7Q/HzpBfvjxvX0Iq/0v0dPbSKQtq0bIQABAABJREFUI764AJFo8Gjr56j/kOv7dsWUP89PT/6nCASR9eHFAC8Nb/obdStxI7uIxGNPeIzF2iGmg0Ukjv1YcazDDQO458O9HKo9QDtf40Z2gUv917g4MDNW97V+hj2N40Ot6w/T3gJIwdnec7zefQKAdr5GJnL8Mb7BI1rjqr9uxXps7DZV0DtuZsGC0pxSr3vTcsXV8s/2eJ51SSlmMzwHtDrSCHDa/MOYXRfIjktqc8/B1freTP5xs+NUv3eP4/4vV6P6f++2zQJku15Zwe5NJBM78b6MHeD7DsV6dpWeapOoPp4ImGaOVS5QE00O1e5nb3i81Mt18y0uJa8x7S+wEOwv95GqmLPtpzg0+bBhAMOQfHkWkSnz10+Q19vk00289Q7ZwiSqGeFtdEvnhtTLypLE094CNdniSnKajWyFrfwGXbUJQENO0vJmyHVGrHpQVEASyLKDEkiUzuirDoGIWAoPsS+8m20WQjvxExnWc/qV/vfKBM3PTv1nP5Rt9oRPJBq80PsWPb3FUT5gCnfUomEnZ4FLrkxWfS2qyB+MfAe7zTi/VCGg0Rh6fLrtsqBACpD+UPNrSzmnhe2fawVnO84iGv4UKslHdKs/aiitOBM/y+uDp5j1l7mv9dNM+vOc6T3L64MnEUjub3yCxeDgbWfxI1Gnrda5Fp9lK79BO1+nk6/ji5APtX6OpvfjJ8zYaneH6w8S+gZYjzgWwLAsdLHM8wOm5QJT/jyHaw+hyHm+/Q2e73yd6+k57pn4OKGtruZOs9uBVZE4pZXidOcHvN55nKX6UfbWjjMZLBASjjCrNsZWkLtJyeFxyWeVFYbvLVPqAEW7vf5RGUnpAE5PFjMhopB4eOUsIN4YAHkzXXFVX+/GrUgTxun0q6A2y829cS3hqsd9MwD9Zqyv1RHbsGXKpQTu/D5KaWF05m9h+524tdgBvu9AbGTX+X7nj7Z9/0jz88z6ywgh0FpzIX6FjXyFa8kZcjKIGdH0DXSXXKdsJCv0lgT12gTy1fOI3QvmB6T4gfCub5giB1c20K2ayZYvst1f7z3JWnYFgSDVCd9u/y5ggO6kt4tdwX40mp7apJ2v4UmfWjSFAFSeo1FonaPQaJEhkcwGywyyDi/3v8tqdoUHG5+8I6fad+KtRaYTTg+eoZ2v0lcdBqqLcvxbP9D83C3f9wean+SV/vd4o/8Mh2oPEASFvry0IEsMALUFJpKic02SUZY2TU0n7zv2Y540yTK1yHT4NsPdzWa3oNYFBVZGYRNAPQnK285MFZ10SFRcl9QpW3zr0Vcdnu7+Ke18lcP1hznSeAQwOtGN7BpNOc0HW18YYVzfydBacyk5xXp+lb7q0M5WyUgQSCa8WSb8WXaHh7kQv8wz3T/lvsbHR0r+/iixJzzGa4MnWEnPsdc/MQp6HbBT9XAeAcJIHpj4NIvpG7zU/nP+Yu3fsbd+gl3hfjKdsJndYCu9zma2gi9Cllp3MxcuE+c9Xt96nIOthzg28Zhhr50kuJuVB942oB/Hwrq2XU67t0kMqoynfXW8qst2WDeHccesHr8Ek/9/9v47RpIsPe+FfydcusrM8l1d7e20mZ6Z7vGzu7N+SO5yDUmR1EctLyUBIqRPEKkVBUiCIENJ35VIgIQAQRKkiwvKQCIpOnCX67h2dne86+me9t53dXW59JlhzvdHxIk4ERXV3WN3ZqdeoNGVkWFOmIzznOc87/MCngLUmedb31bfXxZgrgTadamDOoesdEI/16xGWm0nRFTIJkfSkB04pJIao8iWSM5qePX1tfsbsr7vBanDrTH/nWy/GncWq8D3bYiyUWPa3s5V93S8bMScYthagxCCbtDiaOepuLb9tL2DjdV9XHdmuHD9WbYXD2AIk7bRAmChd4nj577CgW3/H+TGtQSGgdHtIYdKyKKDcX0eOVJF9D3EfCP2S5W9PoWgQEGUqVnjFM0htjn3M1reRNGuhmBAZb3PL4ZTwmp6WVnMBEGYhKT0kTLUYkrfZ6Z/joOtb3F5cIINhV3v9GVejbcxlrxZXu18h0HQZ9xZz4Q5SskYYtxazwutr1Iwyoxady6ZGbHWcF/lY3y/8X+4NDjOtNhB0alpHZlI9LUqQSli7GJWK4gAhgkM/BDE5jFyigE0LUDGzyyQTnoyRASiI52xYt105kgmjOCoPQ0IzvdfY0fp/td9TS/2j9ALWjxS/3xYNEIDCL2gQ80ce0dB7/Hus1wcHKVuTlAyqowV9zFiraFuTWJZhRgkjVhTHGp/j2daf86UvYXtxQNUzOHXdTzHKFIUFTqytRxQZkCgKiiRqsQWhRCCtc42RobXcKrzIhc6hznTfgkAU9jUrAnWlu+i6zc5v/QipyMdsCUczrcOUrcnWFvaqXYWEoFx7pTGOGfLYycNiACckdhHAlgy1q4v89S9HSLRdMjZZXnrAeGshG3lgFVDY3uVbEeCCJZd51Rk9b0KhRlpH+EU0MyTTWTBaBYgB5n950kl1DsgT6JwK7eGlVw48sqXvwtjVeP7zsUq8H0bwjEK7C4/itV18KTLmD3NlL0lljZc7p+IQe++4U8wVduF2fdZbM0Q4Icm/wOfY40fALB3w2dZO7wHZhYRw3Xc6ToWIDwPv2TRv3sdzkIPs9FG9noI20KODsPMLNvWfJBt5U/i10uYs41EDyYEsmAlyXD1KANe+Wb2B1GikY0IgvAF7w/il2ZgwoIXlqUNsrVmV+M9HfPuNV5uf5Mhc5gHqp+ibCVT3MI02RE8yGvtJ2n4cwxrVb+kDAsdmFi5THDJqDJhbeBk+zkud4/xweGfx7CdRJunChZY1vIKWZCwV6ocq54AFzYgLVfoJc9rCAi0krJShpKHwE86T9NMKlvlhCddDIzU894PuoC8I8DqS4+CKFM3ItZUAxQ+A665Z6j1xthc3Hfbfb2ZCGTA4c6TXHfPsqf8wdsOWuvOJB+w/wpXeyc5032ZHzb/lPXOTnaWHsJ+Hb7uJWMo1HkrcEkGxKiKeYGRDzghnr4umjX22R9lLx+m4d3ENoqUzXqSMCkEQeDTcufo+y38wONc62WOLH6P5mCOjaU9sU4+BXj1gZQ+QFJtMM2ELNDbpW+TXZ73dw4YThXjyAPMapmy7hMGECTgliD9PEPkkJIDCHU9sA5GlYxI99ZFA6zZam8rnaOq2KZHHqDNA7/ZghbZqmxZtjiPfVb/fD/8Z61CndVIYvVpeJui6S9wcXA0+iRTVZ42FHYx511hyZ/l8OK3OL70Ax5c+wsUC3VowaHGd6gxSs0a56Z7mWOXvkJtUKZeWQeGwOx5dDcMYTdcnBstrCUTcf0mlEtxcQBxcx4mxsJOdaiIOdfCH69iNPsIz4fBIDQ/MQ0wLPrrh3GuN8EAMfAT8KGqvxlBXALTD1wOLn2TOfcKdxUfZqOz5x2/vqvx9sSse5GD7e9EDO0nsIwQ2AjbQkYOBwURyhQKInQHafkLvNz+Jt0g9Oabtrezr/Lh3P3vLX+IG+4Fjnaf4oZ7kSljK0Dok1ssaCWHZQJ+pQRfRoOyIByUCRE+mwUH3EECivuDpGwzhBIINa2uGBEzWqZYIJUAo1eeykTXb/Fi86uUoyIOAG1/kR82/wTgDstACzpBIzWVLWXA9cFZukELgUHJePuT2Y53n2XGPc+95Y+lLMuEacYAUGddAUzDYn1pF9POdi71j3Gq+xIL3gyPVj93xw4XBaNMT4azWMu0s5HlVlziVwc6xUIyWFHJi5HO1JCCYXtNdAIilXBlIMLqcFGFuFF7ijPtl7nQeZVz7Ze5a+jReJCxYp6CDmSVK4ECuL42ne55aUeF1xNK75sFvdn9KFCvwKE6Zna2I/cYCvyyvJ1Shr8lFXpZ4VhGoIDkCt7AOgCNB7E5rO2tEuJWYn6zbclqiXUQ7HnJAEW1xfeB/N/1uylWGd93LlaB79sUYYIY1KwJBjJtwFo0KjxS/Wxo6B4scaL7HM9d+0OmqmH96uu901zP7O+Vua/wkfr/Fxotgskqxdke5mInZG5tE7l+EuFHOrmlFgzXcSerICXSEGBUMHoeohsxvJZFUClidPoEtRKG6yMdC+F5ISAwjdDuqVwKi2IIEU8Xh6VLL3Kg8gQT9oa390KuxlsevvRo+HP40sUQJgYm/aDDjHuea+5ZJu2N3FP+SAhooo5Fuh7CNAkCl+vuWSABC9cGZ2LQC9ySQSwYJTYUdnF1cJrT7ZcYN9dhCiuc5YCkI/P9cApa7+R0qzGl8VWV25TzgwLLVoZNVB2gkusYBkhtqjjQQJXnJZ12NPV+vX+agezxaPVzOEaRQAYc0nxvq5rrxkrRDZoE+PTdFo5R5srgJBd7R2gG80xYG9lf+cTbrpX3pceVwUm2FfenfXrzXAsMkbCQhgFugGFabCrezai1lmeaf86Z3kF2lh645TEDGXBlcCLU9zp3hdfUCGJmV7peyP4aAlFQyYsROFNWdhG5CaQZP93HNVs0IaMTdYwSu6sfYEf5AV5Y/DJXeidWZtfzSgBD+LyZJrgaoAtygOLtIquZzW6rW4bZdgI8dYCuJA2qUIV+7krLnpI+mGnGVsrkfpvacj8jaVBA2IiuSxCtr+WZpELdk6y93Eo6Z11apORGSu4Un6tM6/rVvjPWg/G6npc+7nsgVpPb3rlYBb5vU1TNUQSChjdL3ZzIXccxijhGkf3lT3K0+0OW2leoGqM0g3mmne3ccC8CULGG8WwIqkX8NVWsm23EwA1/3J6PcEImlis3CLZvwNs6idn38QsmQkqELzG6LqLZBdsiGCrQm6pgtT0sUxDYJtZSD79axGxFLybbDs3QXS/MrB+EVk+BIbjQfY0xa90q6H2PxCDoc7L3PIveDSABYNkoGVV2lR5mg7M7ZV+lKpdJ3+fi4ChX+ifZW/pgPFW8vXg/085OukGDUWv6jqyvdpce5fnWX3C48yT3lj+G8INQM6lkClk2SNf+Shk+lypUp+eR7sD1Dk91mMrJQdmWKecGQ4QdvtpfvH24bMgcQRLQDVoUjDIz7jka/lx8/s4dVMfbV36cHzT+mOdbX6FiDDPrXWTS3szm4j4m7U1vO+gFaPpzBETOFLc6np5gpRhJO9S0SiOgao2xrXgfZ3qvUDTKTNlblhXE8aTLlcFJzvcO05Nt1jk7U57E0vcRhjboMU3N5k6m76WuL1WDGzWQ0ROZdPCjGOD4nML9zXYvsuTeYHPp3rTeVZc2ZLW6OrBUrKJql+6wcKeRerYzx1Lf60BVnwnJtklJHlLsaZCAZFO7poGfDCb8IC0FCvx04lm2vHdAWl6QlRisBOJXknfooDVTYjiegdHPM5CJvaEa5Cj2X70b1EyPEPEM5XslVpPb3rlYBb5vQ7T9RQ62v0PFGGHEWnNbgPhU609xZY819mbuKX+U7yz9T64OTrPG3oxjVbjUPcKe0Z9AdF3sRhd/bAjzYiMEpgUT0e4hSw7uPVswPInVHDAYLWAOAqxGH6PdD1nhoSLdTXUKN3sUZzoEjoU35GB2PMTAw7q6QFCvhKwLQDsqo6SmjwsOZ27+kJY/z0NDP/02X8XVeCvipnuZw53vE+CHchsZMl+X+8fpyXa83mPVn6FqjubuQ0ZM/7x7lZPdF9jg7GJ94a74eyEEFbP2uuyuatYY91Q+wivtb3FavMjOsQ/FSZNCgVLd/klPvNE70sz0dsxO6dOgiv2xzGR6GNLa3+Rkkn1roSQIvaBFPxiK2d4xa90dly+2RRFLOHSCBp2gwZ7SB97RpFBfepzsvkjJqFKPymPHHrJ+CGiXATBdq6kY4Kga2ZbyfTT8OY51n+V491lGrLWMWWsZyB4dv8miP4MnB0zZW9lSunfZ8yV0YAMJ86cqjengzBBg2dFMgAbydGYxyII/7XnRANWFzmHGnPXcNfRIco7ZyAO92iwAqoBF3ra30PEmbdbArvpflzqofSi2NwuOlS2f54XSncAgLtylHAxiX2Aj3dZ4IBGAiBJAlTZYKnZXAJlkt7z/9XPKyg7yQmfq4+uZAcAKxOpljnX3DEMA2nOp7zNrYxjf9/zmrMb7M1aB79sQN9xLtIIFDEwOFD5xSxN6KRPLnkAGGMLgA7WfY9G9waHud8GFXaVH2NBfj3A96HQRlSJUysj5hdBtYahCUClgeJJBzaZ8cpFSq0dQKSD6Lp2tI9hNF2kaOHN9pGngDdnYN7tIu0B3uoSzZCOUp2UhfHmIWgmj0Q2LC0jJwsIZzrRfYltxP8NRx7ka7964OjjNa53vM2pNc3f5QxSNChI42Pomruyzu/QYLX+BS4NjIVunOpBINxhrPiO27frgLAKDnVpVuTcTk/YmdhYf5GTvBcScwZbSvaGbgGLVVJW1PE1fliHSwbFKzskmzkDCzqlEukBbR+1HHStcAMC57qsURQUQvNz+ZnwO95Q/fMdM7ax3Kda41s2JcNr/HYo59yrHu8/QDVrsH3oiZOU1MCQMC+kmCYMpf1qNwNerm5mGzf7aEwy8DjOD88y45zjbO0TRKFMyqqxzdrLR2Z28/1ZiRfX7pBj/ICNXUZX9wgMTFzlRy24FtDRGses3WXSvM2pP0wkaVMx6ev0skNUZXVVKu1RIpGDqGHqp7TwmNBtZKYWy4FPnpqb18xwYVLsUSFVMboplNdJg1icDCmWiadft3EyDVGS1wHnLs99l18+TdeiAVh+46Mv1ZeoaG0YyM5NtS56cIr5e737kGzb7jc/6rDK+dx6rwPdtiM2Fu5m0N1I0KrdN/BBC8LH6F+gES5SMGoEMaPuLLPo34nWGtx8AOQw9F9npMjg7h3BsnMAG2yYYrmC0+wSVAsXZLu09k5TPL+GXLPyRIsWrbaRt4tVNAmkQOCYI8EaKuEMWzpKHXzAo3Ozi1osYkWzSmFmIOhefGf8Shxa/ybA5eccM12r86KLtL3G48yTTzg72lj6IYYSd3OXBcW54F1nn7KQXtGgFi2HZY6OcTPcr0KtPGxMyhlVzBEvYb1k7Nxf24ckBZ/uvcmVwkgern6ZSjJhBVcAi24HmTZGq5QoI6OBYbef52vR5QErtEeR00lH0vTbX3LOsc3bwauc78fI1OdP7t4qaOcb24v0MGcNM2BvfEWkDwIX+EY53n2XYnOSh6mfChK8o4upnum0VLAdm6n8pI71tcn2cSLe9Inu9AviTMtH5pu5xnJgoNccCIllDBPI8N2HybxUKsEb7vtY9BYSzFz+c+0MeG/t5qpbGROvAKda15uht8xIh1TS8p8lwVgKL2VkLSEAvJNIcTW6TgF0j/b8CuHoCW6z/laHe1zTSvwld060kP+p4WTeGvAFLrP/NFI3IW3+le3Q78JudEVDfq23z2Ocs86xv8y6P1eS2dy5Wge/bEOHUb/226/nSY9a9xJg1TcUcpud3+UHz/xAQvjhr5jibC/uoX/cRco7O1jHOX3uei+1DjJQ38uDOv45ftjGbPRACo93HrxapnF5gsKaK2XWxFjqxZZnZKsLAxR+vYs61kI6NPQti4CMdE9EdUJhvhS/SXj9+gVzun+C15veYtDexr/z4my5fuhpvf/jRM9QOFrk8OMGCd512sEQz0qVeGZzEwsFjwLA5mWY/FesXOTkobZ8hLDzprXTINxRCCHaUHmDa2cnL7W/wYutr7BdPMGSOICRRuWA/HwBnOzi1LH2A9Lr6NHlWEqHWkwnQ8D2Xo52nsYTNjcHFyLtY0g867C498rrOtWhU2Fa873Vt81bE9cE5JuwN7K88kYDtbGEEpe/ManszMoE7jiyLnj1utgyvXvBBZ/V1xq/bS+QMKzGpeRpT7buN5bup25MUjDJPzf0hp1rPs7/+E6G8ZiWNqpQh6NZBq+4e4PsRSx0B0IITAlcv81vJgl5d0gBJ4lzWnze24NOS2fT/FehNsdUamFUe2XmJcWpgEc+uaFmE+sAxK2OI72fGdeFO2G4dvOrWZVkZhB5Z2Yo6N2Utl3WbWKU/V+MWsQp8f0Rx073MS+1vALCj8AAuPS73T8SgF2D3+EepTd+Ft7DEBfco51/8b3hBSMdu2fBhhO8jTQfR6sXTglbPBSFwZpr4tSLeaAXTsZC2idHuI5otzFYbOTYCpkA02mBZiPlI76nb2hghQ3Kk+X3WOTvZW/rgO8ZSrcYbj27Q4lT3RSAsRLHkzWJiY0Y+0nVrgr3lD1Exhjnbe4W6Oa5lbof3V9lZxdWffIknBwR49IMuhdfBdN5JVMwa91d+kudbf8HTS39Cxajz4MhnKA7MpLCKHrq2V0VW2qAzSSt1wr42RZzSi8rQtq/1LW56l6iZE7SDJTYUdvFq+zvcV/74O1Zs4s2ElJKGf5Mdzv0IZX1liESyoBjwWDtJWgsKaY0lpFlIfb30gbV1Se83+lu3dBOY6SnrLIDKgki1PO+5yD4D2v21MBmzNkIQsK/+MQ4tfZtT7efZMfQwy95sCtiq81FVxxQbq0pbZ4tGZBnTvP3q1yhm3LWkM3W9lA7XINTq5lWZyw5UPD/9vWLMlzHD2uyHFwFHmZEApfaTeQ5U2yHxy4U0MM1WWFOSpLxBlA569Xur31NV7ljJQlQJZH19fRATyzve/WSNhDdlurYK9e88VoHvjyhUhv2kvYn1hV18r/G/kEiG7DEkkrY7z3MzfwQzIKIfrYhezbvKjzJe2gIXruJPbcdYU8e8vkBnzxRmL0CaArvRJ3BMAsvAnlkgmBpFFh3E2Ai4HuLGXNoeBgjqFTp2l25rlo6/xEznFPODq6y1t7Gn9Ngq6H2PxLx7lZveZabsrSz5s3SDJj4ugfSomeM8XPlMfC+3l+5PM3MBSUKTEGBG1bMsg/XOTg52rvBk4/epGCPhjCoSgWBjYU8q4e2NRNms8mj1c8y45znefY4rnRNsLd4bWuyp7G1ILMkgDX6XTclnAEEWGMcssJZEE3WYUgacar/ATe8yu0qPcKz7DPuGPsqV3kkqxjCT9qY3da7vVAT4BPg4CqSnpri162Ma4GUKKKj/9esIEaBQyUYsB3J66OAlo1WVRni8uGJZEMkosiy96y4HYbdj9LLPhPpbA0fTpbtouDc5234ZA5Pt1QeXs4a+n3ZFSJ1PNBuiKgj6XgQiveWMZXZmQW+bYSR6Zm22IWRiNUlFzPBmmNsYDBvJ+9wQaaCsS0bUPvSCMPExc1wQ9AGJam+ezEDFrcoKq8grEpNlwqUMGV2dWc9aFaqBgkrG04va6Aly74FYlTq8c7EKfN/piH7Q20sH2F46EC9+eOgzHO8+y5I7y4drf5Wr5hlO9V5ECIO7ig8yYk3xQuurrLE2s3H4AMaNeYIt0xSPXQXA3boGq+sjvIAgqohkX28gSw69PeswBj7OtfCzcD0oOMheDwyDS95JzjdeonOzkWpq3ZzgvvLH3zGrpdV4a6IrWziixL2VjyKBvuxwtX+KOe8qO4oHkmldnZ3Sk1oi0Kt0vpIwUWzMWc+HzJ/junuOVrAEhFKFRXeGI90fMmqtpfw6nB2yMete4uX2X0afBDVjNGlPeDBiyyKdzdPBCSwHtrDcmkn9rxhf/ftA0nIXuNB/je3F+ymIEDTaONz0LrOv/JH3zO/Bl+EMjoWVAj7SCELPUMPAN2Gpd52F/hXa3iIGJpZwsAwbRxSxzSIg8KVH129QMYeZKmyj6zXwggGOKGAbRcxsJTZYAfQIWt4CN3rnaQWLjNnrWF/clZY7rHR9b/WdDsxW2kYHv5bFrpHHcWWfi93X2DK0P8zJyNOOx4lgut6UREYQJwoKMJ3Ebk3fR3aAoABdliXOguuVAI0Ct+pvtQ8Flm0zbfun/H7zHCKUlMIww2Mqvb8OQrMgN0/2oNqdamdGKpMdbOrbFSMLTduOBmNeMgBRbdUHB/ozo66jaSRssNp3Nmnv3RirlO87FqvA952OnBGyJwe82vkO3SDM+D7efY6O2cEQJiWrzsbCHg63nwTgrnWfxMCBXh/jyizBugkwDMxWH+PGIu7WNRQuLYQvlIFLMFzBme9iXLgevhDn3HC079jgB9yU1zm68N3cpjb9eVw5eM908qsRRi9oUzKGABBAUZTZWryXreK+ZCU17a0YXQj1vErfG1c+ij6L0OHBlA41a4INxm6EEATS52jwDG1/8XUleunhygEX+q9hR5XgAB5b81epOZFziOsuZ3AhbYWUpwuEhCnSwUxeB555xk92n6doVNhU2MuCF5aTOdV9kbJRY8re8obO80cRfqTJNjOv+qY3x5X2KRa9GRreTSQBlnAYskYIpI8vPTw5YBD0kJoXlGOUGARdThjPxEV6VIRyGgtDGDiixJA5Qt2coGqNRvvqE+Az515hxj2HJWwcUeZa/zQFo8JEcWM+g5jHkq4U2fK2aln2s3acrbUHuTJznBu986yt7koDXQXSVmKYs44LQQTSstZaulRDLbO1JNGU5lpbplhwHazKaLCmk7PqbxE954FMBoi6tEEmv/FY+uDpYDiR+oTHeh1oSgf2WVZYvy+2lchG9MTBWKscMdU+2ndG2F59gKBmEQI/zYzHFnhGMiC4nfxkNd5XsQp83xUhsEWRLi1MbPpBh6qosaawnjFrHQPR56p7ht3Dj4eWSt0u160ZDl7+E7Z1H2LjPZ/Gvt6GagX79LUQ1BZDL15zsY20LRiuQauNKBSQozWEFyCGKoy3yzwy+rNYgUXRHOKqd5Y+Hea7l1kYXKUdLP5oL81qvO5wgx6OApGabjf8aKDs81KJTJA4OWjsSJhcFllB0eaFxpfpBk2GzUnKZp2b7mUGssuu0iNv2O2h7S9xpvdKalmvPUfVGwqPryc76R6fir1S0+66n69+PbwuPa9FID18PEys0FPXcmgNFugG4UxH1R6nao1xpXucWfdiXL2uYg4DYfGHfeWPvKeSO1WhEoGBG/S5OjjFlcEpmv4cjigy7mxguriDEXstVWs09TyEVeskvghBmxAGpjRZ8K4z0z9HzZ6gYtYZ+F0GQY9B0MGXHgEB/aBN05vn2uA0MkNFVYw6eyofYl1hB4YweanxdV5pfINt/gGq1hgls0bJrGGZmWp+Km4FjrOyluw6lhUBqGQfZbOOJRxa3lzyHOmg1cxhsrPtUOyv0pVmk7X051jffiVNcMyi3oL5Xmkb3epMt6VDAXlNQ6ySwlI6d5m0LT6/jAQkKxnKtkGIUJuvZmMGbgh4PT8B4Gr/njbroqQWfgBGtF9d5pA9ZvxuUBIWETLG0rgzvfW7Kd6k1GHFmYHVWBarwPddEJawebT6udSyQdDlQv8IpwYvscbbBEjGjbW0gwbP3PjveMEAAFkp8d0f/gvWVHZwn/04TK9B3JxHNkP2WE1bS0MQ1Ic4v/QSY5dGqZWnMSwbIQQ1a5zrndO82Pgq/aBNQZQxhcWmwt4fSRb6ary58PEwMtPOeiLRsog7RkDZW0EIfDwPZW92tvkSvnTZU/oAVwYnafrzTDvbWOfsZMgcueP2BTJgzrvC9cFZ+rKDLYqMW+u56V1m3FrPOmcH49aG8Pj9QQh+TQ1EQNyhSZWYo3V8QtMAz7bO8lLr63fcNks4eHLAtL2dKXsrACVjiAeHPoUvvfdctcJixPyf6R1kyZ8lwGfC2cj28v1MOBsxTE1DCekpfiERUmLhJMsMwYg5zUhhOvwsJajxjvIB154xX3p0/Aa2UcAWBYzACJPsSJ7J/bUneK31JGc7B2NpBoAjigxZo6wr72JtcWc44MhqcLNuDNnvwwMly9xk/4v9a1xovcrN3oVwNcNmtnuOjt9AYDBR3ETJquWD6Dw5DdwabGVBuQKh2UQudT5qN1lwB2mttvqsktN0llcxp/qAxtRYVgMg2ncqwTUjDVHLggzg1M9N/1sHzYrtVvsP/FBSodqntlVJaqYIwbAaTOgJ1+rYkJaPBEHihqFXZLzdAOJdFHlqkte7/WrcWawC33dRCMdGDlwWvBmeb/1FvLxvtBix17LkzXL4wh/GDMqmyUe5MXcEgJn2KRqbHqN65TrCtsNOxTSQ68bCpJVGi978VU4tfp9TAEvLjz9iTnFX+UHmves0/XmWvFlebv0ldWuScWsdw9aa2/oSr8aPPsasdZzqvUTXb1KyagnLm8noXwaC/QARSWCAcF1MEJJB0OXq4DTbivexobCLkjFEzRzHMYrLG5CJQPoYwiSQPpcHJzjXO0RPtqkYwwyZI/SCNov+DADz3lW2lu+L5TWiUgbXRXpe2G4F0MywgxOA7Pa0zhB63UXO9l7lmnsWV/aAsAjMqLUWAxNPuriyhyddymaNilEHYMGbYc67wpi1jjFrOiXxGbXWvsG78aMNU1gURJlFf4bNhX1sLO+lYJRJWZapcrh6z6nrp7OMoIqs/jOamtdZYxMr45O7vHc2hcW99U8gpaQvO3S9Bt2gRddvMu9e4/DSdzjbeplt1QeZKm3HEObKCWS6/+sKCXFeMODk0lNcbB+mbNbZWNnH0uAGp5vPhpthAJITDZMHxj6Hadhc65yk5c5RsocZL2xgtLAeSzjp6+LL1HHiv/MS7fT1bgXWs9c+HqBmfru6PMIPwNLkDVmQrB9LzZgoAKyOvRKwd6wEyOplpK3ot+l5xL7Buj2aXhFOCFIllbPXT29D9prmXU/1nestb7uKrNPFaryvYxXFvAvCDfq0gwY3e5eQUnK2fzD+bnvxABf6R1lb3MXJ5rPYosAg6swv3HiGur0mXveZC/8dWxT5+K4vQjO0JxPXb4bT17ZNpTLJBwq/xKG5b9D05pa1Y8G/zkLnOgVRZqwYMm6B9LjmnuF8/zAGJqPWWqacrUzb21e1v+/SWO/cxcneC9z0rrDBrMYlhxVrJMl0AkpHGGd5G3FWtOf3afpzzHTOIAlY7+xi0ZuNrfger/1irCfOxpXBKY51nsHHZcrewqg1zbHuM5SMIR6pfJaaOY5h20jf51D7e1wbnKZqjvFS4xs8WP80w4WpkKGzrPBZU0kuCnBByAZFbJT0fC73j3Oy+zxCGKxzdtAPutiiwFp7221B+ri9jnF73Ru86u/eKBtVisZadpQfAEgBUyCd+a6m+LOaVKWRzk4zq+9VqF3nVRsDTTNu5CwTFI0hiuYQI9F+txkGS4MbnGo8y6HFb3Ki8TTbag+xobQHoVw4sl6wqk06KI/+Xhxc5+D813GDLrvrj7OxvA9hGMggYMG9holJ3VmDFwx4af4rPHfzTwBwjDJ1Z5LZ7jkutl7FwGTX8ONsrNy9HIDFbK6/sgOClInONe866nGrgUfM3GrbWpYm/5H5gFeFvp76LAziIhhqNkDJJ/yIrZVByMwq7a2SMKRAevSd7g+e0izL5WWHdVlT3jnnncNKFmgqIS6v2Mi7MFZdHd65WAW+P+KY967xcuub+LjLvpt2drC1cB9nege50juBYVqYgYUQBmWzzp7iY7T8eV51Z9g4+gCLjfNMOzuR16Kqb0IgbCupzOQ4VK1JPjD11+KXhUTSt1y67Tl6/QVsZ4jRwnoMxQIVCsiBS6t/g5vtc9zsX+S1zveZsc5zd/lDd8T4rcY7G92gCUBVyQ9W6FBj8GGI2MA+rtYWSK52jnO482S8/pi1Dsco0gmS6QLFAmej6c9zrPM0jlFiyJziunuOLYV7AJi2d1C3JkIJjgwTUXzpUjPHeWDop3ix9TWeX/oye8ofYF1hZyi/UPZLMpRfCNsOz6tUREiJ7Ha56p7maPcp1jk7uav4ELZReJNX8scjDGHhq8GOEV7zWM6SnV9VIMHSugY14FCgRJdFZAGxPjWusb9qdiEP8OYyoRqbW7fGeWD0p2n6C5xrv8LRxe9yvXOKe8d+IvRSztidzXbPc6VzFFcOKBhlCmYFAwNDWFzqvIZtFHlo7POUrZDpx/cRhsFoYV18DpZZ4IHRn+Za9xSOWWa8uAkDgQQ6foNnbvwBN7pn2Ti0Dy8Y0PYWudI+yo3eWQxhIWVAIH1qzgRjhQ2sLe2kYJbT5+tlBnErgVr1XZbF1Jf5UtPMRhpXKRNJQbxfxcBG+8kyx54PIki7Jfg+yyzUFKiVfmK7ZghQEiulyYUEXOsuCyp0b+A8/W5WApK9Tvp+sqGeTb3s+bs5pHhzOt1V4HvHsQp8f8RxtncwBr3TznZaskHLnWPK3sLe0gcBkAR03AUACqLMGnsza51tVAvjXGuepiDK7K49jjDuDxMK1EvCi2xhBgNkvx+yZsUC2OEPRBZtxMCnKCXFehXEljARzgBaXSiFoFY4NlU5TjWossW5mxnnHK+1nuTp5p9xT/kjjNrvzWngH9doRQmJQ+ZIWuMWG9nLBAAplibqHBIfV4mrDcb2Vz4ZFrog1I2aWPh4bHDCMrXz7jVO9J5HygBTWDT8OSpmnftLn2TOuxpZlX0TR5RY64TaWb3DHrfXc7TzFFIGPDj0KY50fsiRzg8Zt9ZToIzEDydiHTu0Y1MdaNRZikKBueZVquYYd5c/9DZe3fdeVM1RLvePMwi6OJSSZ8E0lgOCuAqZxsRlp5azAEy3q8oDaKjNsqBHLge/2Sl2bXnVHOGe0SdYV97Foflv8tTM/2ZdcRdjxQ1YZoGB22F+cIXzrYPU7ElKZpWO32BhcA1JCEQFBnfXP5aAXt0VRD8XKTENm/WVPan2CaBkDhFIn67f4LX5b3O1c5wAH1PYrK/cjRAiKhEuWOpf48TSU5xpvsDu+oeYLu9aWTOc/azbcylclwfgdD9mSHxuTU3ikOcBnBdC24ZoABQ/L5p2lgzQ9IMEyKs26YVQlP+uHyTyBVdLalsJ6Ks2Zb+70yqCsT/3na3+o4xVje87F6vA90cegpJRpRs0uTo4jSlsCkaZfZUPA3ClfxKAzZX7ON8+SF92mPEvcKl1jEfF5ykZNfqyw4tX/pC9tQ9TdmtheVfHgUo5fqkISEa/cWlSEb00RaiPMgz8eglrthG+8Jaa6VFzIJG+z5rCFurWJK82vsUL7a8yZW/hrtLDFI3Kj+wqrkYSbX8RRxQxsZMOQyWWRJFie/0gYQEDiSddTree53z/NYaMYTYW9lIx6txwL+BLjzXOFu6tfIw572rsGtDw52j4NwGYtrczbq9nU2kfFjajxjrGvHUsebPsrXwodklACBreTa51z3BtcBqAVzvf4YGhn2J94S6uuWdwZY8CEVNmmaGeFyK9r9bhGwYjhbVca57mhnuRSXvj23uR30OxsbCb8/3DnOw+z92VD4e/Y+Xjm6fjzMpJVMJQimH0k6IiK1XIiwCTYnvjgZYKfXpeZ/Z0azrdii5ioccKG3h08hc403yRy51jnOu8QtGs0vObmMJmR/URtlYfSCqx6YOkLIOY9ZjNs8XLgE0Dg/1jn+LwwreY7Z1nW+1BRgvrqRWnQi9jxXAC+AF9r83xpR9waOGbXGgdYrK4hbqzhvHSpvxzV+9lXc+bvU+xbCC6T7qWN5610RLcVHU5ZWGm5Aq3k6YEPikWV7Uzz3dYAXXVVtW+qG9ZVg1Of6bUfvT7oM9KiMyzmldGW9elq+/UIPk9ZO6wGm9/rALfH3E8MPSTALzQ+iotf5G1zlY2OLsBkFJyrn+YNYWtCKeAaIc/9g+s+7948uL/w9XBKe4qPUzBKHK08zQvLnyFDw7/PML3Q/1bBAzk8BD4EtEfJC8Mz0cWLER3gKwU8UcqWHMtzKUu0rERzXaYJdvtJexQqYCQEnp9CkaJh0Y/y+XeCU61nue55pf5QO1nw4SP1fiRhhAGA9njB80/YoOziylnKyWzunxFrYMWIuyYltwbvNT4Gq7sM2FtAARneq9wVD6FQCAwONF7Pt7FkneDh4Z+mvWFu2j4N7nmnmGNszmqbBZ2aEW7ygP1TyXHjTrZ8/3DnOg8hyNKoRWa7NLyF4GwsqGJRdmMmDlDgOeHyXeAHLjh3lUyjxGwobiHmd45jnWeZry2/j1lO/Z2xtneq0Coud5ZfBjHKAAC6fsI3Q5OAYo8VlHXYIIGbldYH1Kgd0XAmxeWlbDHyqFDT8ATgqI5xN7hj7Cn/mGOL/2QC+1X+dDk/0XZroUVLrNgUj8Pvf2QZqrzvKBzqLSJwiY+suZvgBAYqEGCBrA1IFmwKtwz8gTT5V2ca73MqeZzgOQjU3+DojmUblOedCTb9uzsjSmIC10II5/VVcUrIPk+BpQGBF7akUIdI5BApOtV+m+VPBcXxCD5HcbgN0wQjJniOG9ApJPiIJVTACSJi9kiFytRmtlnMK8k8nuheltEsr+p7VfjjmIV+L7NIaXkTpLAHhz61LJlS/4N2sEiO8uPcXjxW6xztnN1cIbvX/p/8fFo+vMATNgbGbXOc8O9ACgQE0B/EE1VGaEWS/ko2lYIegd+6PkrBNbNZgyEMc1QMtHtQaEQvnBsO2TcygVwfUS3D+02G+r3Mu6s5/tzv8/l/gk2F/e9tRdwNV53bCvsZ9xax8X+MU73XuZk7wWGzUm2F+9nzJ5OMUkxMIk8fM92XkEi+WD15/lB8/8wZIyy1tnGqLOOEXMSpOSGexEDE0OYvNL+Jje9K0zY69lXfpxOq8GJ7gtMOpvTjcpWiwLOdw8jMNhf+QRFo8Kce4VJZzNSSi70j+DjhZIJaxjHLCOlpD9o0PIXaHkLtPxQ/lMyqpTNKr2gw4J7LbJWW+0FILSOuzw4EX+ecc+xobArsR4zAoTPcrYQEqCjAG+WXct+1rddKfJArwI0uq5YAV4FBnU2EWJA6wcDrndPMl2+i4pVi267XA5wb6URzQNFWSY7hwU2FNDNAtKc4g/CMJgobWaiuIn5/hWev/mnoSWllQF/WW/b7DXLJpbFEgZ1fpqkwRCJ1tY0Er1vzBabyTp6YiukQaqIgLVhJeuo5EfDJK6eoc/A6Iywsloz9PPRwLvu4wuac4uWlJaXwJYX6jnV75de6OZdHKvJbe9crALftylcOeDZ5pfoBEvUzQm2Fe9j3Fq/XOd2i1j0wiS1s+2X8aXH1uJ+Nhb2MuNeIJA+k5Gn6Nneq1x1T7F76IMYxSIMRZKDaDpSdPrQ6UKxgCwXEH0PWSogfIlfLyG8AFkrIbpu9OKOas6XimHiiGGFYNmJ9mUacbY9rkvJrjNpb+Tq4PQq8H0XhBCCYWsNw9YaPDnghnuBC/0jvNb5AY/XfiFM2I6qtCmrMxklkE3aG5lxz8ed+vriXWwu35NMW/s+04UdIENTvWFzkmPdpxm1fhZTWNTNSWa9i6ns/ZRtmgLAgWRn6UGOd5/ludZf8Fj182EiG6H9mSVsBrLLc80vAaGnq4TYnkxgUDGGMYTgun8Wj9DXep2zg92lx0LLq/iQAa4MZyneTxHIgOeaX04tc0QRT7pYRMmBSvYQRAwdJAAldswgdd9yk9J00Bsxnrlsb17kJTzpyzMMajwNbpqcb75KP+hgYHCpfYTRwjoq1vBycJQF5XlgN28qfSVHgLwkMwX2sjpljR0PAo+TjWcwRVgwKLWtKrObamcOmFEuC6pksQ5+MwVIwvWVLEDJHGwQke5Wv64KSAsjVjfE/tmGOqa2buCDr7l/KPCu9Mn6NdGfG917ONCue0a3H/+vZgAUM6+ugZ5omac5X40fmwiCgNOnT3Pjxg2CzCDm8ccff937WwW+bzIGQZemv0CAz4nucwxkj5JRpRM08GTYGXeCBi+3vwnARmcPGwq76Addmv4cS/4s/aCDbRSpGGEFofXOLhyjwFpnOw1/jn7Q5b7Kx2LbqKo5Gh//2uAsp3ovsm3oATYNHwgXqqkyw8BdU8Va7CIrRYxWFzG3hL8hzKhndgmz00VWyiGDa5lQsAnKDqLnhS+9khMCZctENDvRCzB6ATk2dDzwA6adHbzS/iYNb46aNfbO3oTVWDEs4TDt7MASDq+0v8VAdimIcvx97OIQdUrDkV/tnH+VcWs953uHWVveQSEoka74FnroDltrON8/TCB9TGFRNUe5ODjC8dYzOEYoYSgbNYbNSazYZUGw6M8wkF2GrUlm3Us0/fn4uTaEyYdqP48nB7T9Bp1giba/BEJQNUYYMocpGbWUlMENwuTNrNRmzr3Ki+2vATBlb2VjYTfD5po7moV5L4cvPV5ofZVGcDNaIgDJwc63MTDZWNjDWnsbVXMUgYE0tM4kpxSuksIAGnAhX2uZ5xENaacAPZSGODxQmtmLk60y7LIR6lSHC1OUu8Nc7hzlMkcpGGU+OvnXl7drJd1udnk2wyiPMc5GHruc/T8ChV2/xeLgGhPFLZhGpjKdDnrj4wltPxEwVaV8MRPQ6weaHCQn8cyyiEXPsZRCSRLIFH0gvUxfNwWURQKM9esjRAKSdWmDapbOKuddwzxZjXouFAuv63f19bP3AN5bGt/Viapl8eyzz/JLv/RLXLhwAZn5DQoh8O9kpikTq8D3DYQb9DnceZKmv0BPtpZ/7/cBuL/+aWq19ZxrvsL5xVAXeXFwlIuDo0Bo7l6zxilaNQayyzX3LAPZ4/LgBI8MfZaCUeKeykdWbEfDn+O1zvdZW9rJ9sqDUFVMbxDKFvoe9rkbUC4hpBuyvraFObMYvmQHoeZXQMze0nYRhRHEYgM5XEN4PnR7iMjhgYIdvsiUbCKywRovbKTQKXNxcJS7rdWs+ndLhGxnj6tR8lg/6IQWUKlpxxDYLPSvcbj9PQxM6uYEw6UJnm19mafm/g9The1MOBsYtiaxRREMgY/PnHcVgKebf8bu8qOsL+ykEzQ4138VCxsfD4lkxJzioeqnQQjm3Su80PhKWNzAHGNP6bG4SpoelnCoW+PUGb/tea5kXXbNPYMtimyt7OdS9yjPt75CzRznwaGf+rHVo3f8Bj9o/lH8eXfpMZCSY71nWGtvwxZFLg9OcL5/GEeUmLQ3MmFvpGaOUbCGEt2vxtLlsreBjKbARWqZXiwlDiMH2CjGTgGxrJ41b9o6ipnOGS43X0MgqNkT+MEAQ1jsrn8oWV/tP89FIcsuqr+zx1fJUiuxiFnAppL+1PZWMvOAZVIxR9k59jgn577Phc6rbB7an7/f1DEioO954ftWB6NKkgAJo6vY2JhJFZnvIlCqmGNhaJZlQfo4ehuygFpPOlOMtV6owg9SJEy8TV5lO10jrMC1ZSaDAT1hLdsGXYqTSgB8bzG/q1KH/Pjbf/tv88ADD/CVr3yFtWvXviWkxSrwfZ3hSZdXO99hwZth0/D9DIka9dI0ZseF8VFuXjvMkfb3AbjcP878lW/jBr14+71DH2KoMoXjWRT9EoYwEHaow5Xjw3Tnr/HDq/+DC/0j7Cjdn9sGKSU3vSsc7nyPklVj38QTCA9oJCBcuE7ysmx3wpdAoRBWwep2IZCIcinUAdsyXCca4Ytrs1AoIJaaUBsKmV013biwFDpGQKzLkr6PadlsLOzhTO8VdhYfXPX3fRdEIAO+ufR7GBgEEeUROyqkypOCH3ixrGDC2sjF/lFm3POstbfhSZcb/XNc7L0W7sOoYxgWfb/NQPYwMOnJNr4Mpz13lh5gW/E+TGERyIBrg9O81v0BbX+JillnyZ3FwGRv+UMc6fyQBW+IgIB1zs4wye0tDFWl7Ur3OBOFTdzsX6Lh36QTNKmZP14zE6Ge9zjHus8AoazhA9WfxTFK9II2x3rPMOVsYdLexF3yQRa8GW56l5hxL8Q6YEs4qedFYFAyhjgw9BMUrHJcDEVYVuinbFnpqesoYls8LZScBoP0NDWk2TodsOhOB9F3Ha/BoZtfp2TVKJlVBsGAWmENe4Y/QklU0iBaB0IrdZg6gDON0IVAtUOfgl92wTOaVP1vdT7qd2ZZkUMCbC3v52b7HBebh9hcO6ANEjR2ND53CfiJJEAB1SwITbHpOnsfpME3hNt6Mm1VpvapAGSQYdF8L50EmfouiJNPk8GKlR7Q5A0wUlKZIDk/Xf6h1rGstA5YB7oqsu1aie1/t4bkzTG+P6Zs8alTp/jjP/5jtm/f/pbtcxX4vs6YGZxjzrvKPUMfZXriwdALt9kB4UHD5WzvYLSmYKZ3hnXFXZSNGn3bZU1pB2NyLNTODtzIW9cIP/f6iFaXcmWCzSMPcnbhWRyjxEZn97IRzjX3LIc73wPgnuGfxPBFOD2lpqpUhmzBCf9XBu/dHlJAUy5yrv0KS0s3cGUfV/bjfW8vHmBb6UByzKVmyO4ayQtddjphx2aFrK+wLPAD1jt3cbZ3kPP919hZeuBtvQ+rcfs43g1LsAYEOKLIQPa4NjhD0aiECWFGLSrPCgjJusJOWv5CqNGNpsYvDY5hiwLbCw9wrPcUNWOMslHDEgWEPcmcd5lOVDCjH3R5sfV1fOlSNcfYVtxPwSgxaW/C7D7DtcEZtpcOIKOO+VDnu0DIyl5zz7DozXBv5WNv6TW4p/xh5rztXBuc5UbvHN2gyTpnJ1Vj9PYbv4tj3rvGxf5RWv5i6LYhBL2gnfotj1rTzHqXMTBiZr4agX1DmIzZ04zZ0+wsPkRPtmj6C7SDRQIZxBrpQPpc6B/hueaX2Vzax4bCLowoyUmoqXXdZcAQkV44/DsGu2r9rJvCSpEBrvP9K1xuH6HpztHy5imYZR6c+NmkKITSlUL+FPpK4EuF+qwXldABcdYZIqtJzX6n/y1l+A6O4lzzZeZ7l9hae3C5fCTbbtDevUEa8KpzjrXFajCrHdvSgLhKUhOhTCRmeaUGJlXfoYNO/drqodZJ+Q3L5HmwreSa6tdSv0b68uz90NfLJjfmDUgUE55nUbca79l4+OGHOX369Crw/VFF129yvn8EgCFrFJothFsIXx7lEvQMDox/hra3wNnGC8gg4O7aRxCFQigrMMMkMaQMGdWBG3YMajqn0wWjz47qw/j+gOONZ7jpXmJf+SORBVEYdjRFu6P8IKPeGCc6PyCQAVPFrdTlKAEB15dOMDu4yLC9hrWF7UgB59sHudw7hi89SsYQI+ZarrqnUuc4ZEWAwA+g4OCvH8e8Oo8cLiMGHgyVEZ1uoidTGdftLo5dZlN5Hxc6h9lU2Pu+SyZ6N4WUIWhVocpcH+n+MF4WSg1GmXQ244gSprAxhU1JVOnKZryeK/sM6ALQCOZoBHOMmdO0gkX6sgOEBS4Od57EwGTcWse1wRkuD44zZq2jbNQoGTUu9o+xprCFjt9ARvTEkDHMuL2BQdBjnbPjLb8OhjCZiKbyw+uS8ZJ9m8KXHp2gQdtfohe0GMgeruwTyACQFIwyk/Zm6ub4G5q6O9z5PiYm406Y4BoEHrZVYNLexJI/S9NfYNGb4bp7FiAsHGJvoyiWe20Lw6BEjZJZA2NzGoQZgonCJs51D3Ks/RRtf5HdlceSbYUGdiANfFIJaTIpqJAFP7q+VweL0d/z/Su8MPfnVKxhRgrTrBvay7rizlByowMnVRlMv555Tg4qqSprrZUFW3o7ssuXXcQVALX+vZQ0gwVOLP2QzbUD7Bh+7PYsnSFYVnxCgVe9MIXyY8+2w/MTQGqKxBVC7S8LetW6ulxBHUvdP7VPNSBQwFh/DpSm1zTCGUJV1lhZlalts1rdPNlLVh7heeEzk3UWiWR3aYnGe2n6P2L939T2P37x9/7e3+M3fuM3uH79Ovv27cO207OC99xzz+ve5yrwvYNY8GY42X2BRX8GE5s9lQ8yZIyEP0jbRnZ7zDSO0e8t0fc7zLoXaPsNHlz7VxCFUlgtrVQMp9AKdigXkJqxe08z5S84CGBX6SHwfS60X+Xq4BSbi3fH7Rm31rPW3sapzouc7YSV32xR4EL3EKawkTIgwKdmjjPTO8uJZjj1aWKxqXA3w9Ya6uYYzzT/HEsU2FN5jLWFHaHkAlKJDkZnQDBWB1Pgl8sYrg+l8METPQ/heVGHEzI9W4b2c7F7hBPd59hX/vBbosdZjdcfPkm2tYGBwMTHY8yaZnfpEbpBm6Y/z5J/g5PdFwBJ2ahRNUfxjCI9v40koCDKbC3ey3rnLjY5ezjTf4UL/aOM2tMs9GaA8HmcsDbgS5eSWWXYWsPW4n3MeVe4PjjHrHeJbtDEwOTpxp8CsNbezo7iAYrG0B09I770aPkLVMz6m9Lmvh2g1w363PQus+DN0A6W6PhL9GQ7/t7ExjGK2KKAQZgUeNU9zbn+IQA2OnvZVNhLOc9rOScGQZde0GJf+SNMl3aQcs4IJHV7MgY+nnSRyHiwDCxnP2E5cNWibk+w23iMmcG5lYGa2i6zrSqKklrPzBzf95OBdGY6WwrBscYPqDtreGjs8yHbrK+jAyUlTchqhfPaCgmo00GtPpWuthciqmbnh+/w7P511jV73AwQbvXDZMO+36E9mGPIHksfSy/vKyKAjronQQI6s4lw2WPGtmcqec1IZBBSgvQz5x2xw1K7/1nJiDpmVpKgX0vl6mAYoUTO80KZhCGimUMjab8QCSus2mJGnwduwtxappYgF4T3wvdDFl1VGdRBs5TJYCpO3n0PyB1WpQ658XM/93MA/M2/+TfjZUIIlFXsanLb2xBSSl5ofTWent265gMYXcG54CiLC5eZ9vZi+QYHF78abzPpbGZ3/XFGnKnwRWnbIZurXmylInS6oU6uP4hLOMpAgt9GWBYnm89yofMqACd6z7Hoz3B3+UNYwkEIwb7yhyn3apzpv8KktZH7Kh9n0Z9lwbuOIQwm7E1UjBpL3ix92UXKgGFrTczCHus8g8uAD4z9Qli+s+DgrRvDujIXtrfXhyBAzDdwt09huAEikEjLACkwmv2wmIV60UWWM7Zhs6f2OIeWvkW7tcRaeyvj9noqxvAqCH4HwxI2+8of5lL/OIv+DBCwtXAv5/uvcbL3IveVP8a4vQ4AHx+JxDIjcBRIPOGx6M5wov0MZ3uvst7ZhW0U2FV6hF2lRwComeNcG5xhR+n++Jm8PDjJ0e7TCGDMWkfBKOH6fWxRpCBKbCvup26NUxR3BnghTOJ8pfUterJFxahzT/kjVM2xH+nz5AZ9FvwZLvaPMu9dRSKpGHUqxjBrne1UzHr4rzCGY5WjRNAkkWu2fY6XWl8H4OLgCBcHRzhQeYKJyKJwpZAy4Ej3aSwcRq2pMJH1FinrKc30rQBhxPYJ01yWyCZlwKnOi5jCYVv5wLLv4s86aNY1p4odNBT7FySlkXXAmdXzAj2/SdO9yf7Jz2I4heXT3Vngqi/XP+eds2I1A+37vH2qpC0lA8jbnwKNgUzpeQlImGNgTWk7d9U/yPnmK1xrH6dmT7Bn+CMMF6fTzKZyrlhJB5s9B0gYXCWNUASGH84yRBdDuwCJPGVZ2WPVZqXdVddEgdasz7FpJjplwwwBr6oSCsmAJ1VtUQPYcXJctL6dgSYK9CpAq7s7pK5FlKiXlTe8AXC0Gu+OOHfu3Fu+z1Xge5sQQnB/5Qlm3PMs+rOcmnkS/eVhN4tUColecLq8m3smfiIEjl40Km14SaZvr5/ovTJsgDDNEBQ7NvXmGKPWNI5Z4nr/DDPueQrdMrvLj8bt2l46wPrCXZhYCGEwYq1hxFqT2mfdmlh2Tm2/wcXBMe6qPkq5NI6sVhDNNtbFWeRIFeFFCRF9F/p9nDMzyOEh/HoZo+9hNLqhdENFXA9dIvt91hqbcSo/xfn+YU71XuJE73mKYohJeyMbCruiAgOr8XbHtLOdNfZmlvxZLGxq1jjD1iSvtL/Fy+1vcqDySYQwwjKrqkONOiNLWowaU4zYa7nUPxaWDtZs0ADG7XUxeAYoGGXWO3exwdlFP+gw457HkwNGrDUIDNY62xnOeR5vFVIGHG4/SYDH3eXHOdl9gWdaf05BlHms+rMpCdDbGb70ONc7xA3vIt2gGVsV1s0JdpUeYcLeSMmuASEIjBO/AOm64d+eH0stxq11TDnbuD44w3rnLq4MTsZylJWiG7Q41nmam95l7i1/LCkRntWVQprBVZHrbiCSqW0SIKv/7UmXK/2T7Bx6mEKhGgGOcL9C95TNVteKAY3WPkOAFOkCFTqzqGtTA0kniJhzP0gG2XnANsti657DfkZPqp+7EGH7fA1E6YBXSTZ0ba06T/17ywxZVFXcQWe+NTBpSNgy/ACbhu7hcucYRxe+y+XOsRD46kA8zwVDH0woqQbkyxfUQER3fYjbH62fSvzTGFGlFfZy2FK1TLlxKNcMPyptbIjI490M9yl0YKoNIKQMP6sBoWUlx9VBsPosRAJ6Fei2rASIa4OLGPBDMpOg91fv1lhlfHNj06ZNb/k+V4HvHcSYvY4xex1tf5GzvUPMe1fpyTYFUebq4CTmwGLUnmbEmmJT+Z5oOioa9UYvFteStAcz1OUIIioXmp0ekzKATgc6MDW8myl/J1fbx7nePwPApcHxGPiqiDs/Lbp+E4SIfX+XR/gLs0v1UMYAyLE6Xr2A1XYRXp+g6IRpT5YJrotYbGEttgjGh0NPX6MQAuPAjVkFvdMcr2xifGgzfqXAfOscs53zzHROcWlwjO3FA2wp3PO2TDuvRjpMYTEaefM2/Xk86WIKm5veZTpBi4oV3v9lnYyUPN38M9rBIgBPNv6QjYU9WNiUzCqT1saUhVgvaPNCK5n12ODsCu3L7iACGXBpcIwr/ZNYRoGSqDBkjlIyhrCFQytYYE/pMdY5O5iyt/Ctpf9OX3bwGQBvP/Bd8mY51HmSbtBkrbONKWcrZaNKxRpmSIxg6NnxCmSocuEyQJQirbsdDlhDWZBkT+EjzN+4QsOf45Ghz8aJZ3pIKWkG81wbnOF8/zUMDCasDTT8OdqDBpZRwJQmpmEhAoEhTExMDGHF1fXM6H9DGhhGuFy1A0AVMkmxn9FyhGAQyV6KxWEGDLCxEIrhhET7mWc1lWUt9UQnfT39/2gQ1qPHqzN/Qb0wxWhlIyjG13WT6XR9elvfn6cxrjqwTiXiRUAqBqra/vLY4Syoh4TdDfy0vECBO9Uey0w0r4BhOQSRSXLHW8TDxTKjZ9kyNcZYgv6a1AcQ6nmLdbp64psO1M2k0hqkwSgkoDcvcS4v6S5mZo2E5YXwvqRcLbTqc7rMwnVD+Z/+ziFIwG9c6S26DjoTrL2f4m315yC+3ukS1+S4jLzrQkaDwjez/Y9pnDlzhn//7/89x44dQwjB7t27+fVf/3W2bdv2hvb3vga+btCnK1v40sPAxBQWJWMIU0RMjUzKDc+6l3m5/Y0wSaS8g/rQBlrePGfnnmG0uJ7dYx+l7BZCQNsfhD/sqCO40TvHaze+y0D2KJt1DlR/goqoJSN8P0gypOOKNyGYNGVyi7YW77vl+YTToD/kyuAUBmERgDxgXDZqTNlbOXLjG9hdnzXj+6DoYLUNjEszUC4jTBGWLA4kwVgdo9PHGxvCbHYJqgWMTuQBPIhKHEcgXphmWPWnOgSeh1koMV7ey0T/LnZ1Psjp1oucWnqOOe8a95Y/grOaAPeOxOX+iTixTSDYWriXslFdDhhUCMHOykPM9i9Stya44Z7nQv81bFHElT0EBmPWNOP2etr+EnPeVUysWFvc8OfuqF0tf4FDnSdp+nOssbcggHawxIx7Hh8vrDBGKKuQwOXByXjb873Xlg0E38qQUnJ5cJzj3eeomqPsr/4MQ85oCuDGgFGIJJsewt+zZYWQQMpw6tbXQFEQ4Jgl7q99ilca3+CZ1p9TMqoMGSNIAvqyyyDoMpA9JAEmNmWjiiVs2kGDRjCHP/AiDe/rz1pXoDj+X1iY2mchDIQwQ7tFDCxR4LW5b+PLASWrzpahA6x3dsQOD6nQJQt+AI6VvNOyCWS6T6/G+koBJ+a+xyDo8sj4X8WWdvheVds5TgLUggxgU/vSj6MDXgVWpQJbGaCaF3nf6aBUVbzUpR5BZt1MrB+6GwmcXnyGI/Pf4d6Jn0oAY3b9IHMeSk+t2pCVf6hQMg3TWM7q6kyxqgKnIt6FpgXOVu1TAF3NGCjLsbj8dZBpS/R3wUnaaZnpcwqM8NjKwSL2is48I9kBT1bGoz+DeQOZd2HopPUb3f7HMb7xjW/w2c9+lvvuu48PfOADSCl5+umn2bt3L1/+8pf55Cc/+br3+b4Cvh2/yWud79OXHQSCdtAgOz9giyIbnd3Mepdo+HM4okjBKNH05wHYUX6ADaMHwLEJFhYZqg9xovU0P7jy39lb+zBT9hZMCaLXB0PgG5KXF8PKUfcPf5ojjSc50vo+9498GssuRYkdRB2EHYv3pe9xsXWIJTcsW1wUFbYX9694buE06DPMepfYVDvAhcbLzLqX2FDYtWxdpccMOgEHm99i75DFusZ6jOilJRsNRDfSBhYLGAsNMEwM10d0B5jtyDKp349fMMq0XhLZmzl26A1sWYhWG0RonLWz9ghjxhSvLn6DZ5p/zp7yB26ra1yNNx+6zZVEUjbrK2tkozfopLWRSXMDCMF6ZyeuHGBbRXpeixn3PDP9sxzvPkvZqDFiTXFlcJJNzl62l+4P5RO3iEHQ5UzvIJcHJygbVR4e+gzD1qTWRujLDi80v4IXuDzb+hIVUactlyiIMn3ZiS263mwEMqATLNHw52n6c7T9JQayS9sPmbh1zk52lx7FtJwQ6JqaJMAQoVZVZatDempYde56aOCkXpjkQ7VfYM67wk33Mp2ggSFM6sYEjhW+e8pGnbHyBgxpxJX2wgFmeJwASSB9AkMS4OMPegQiIAg8gsDDly6+DAuJ+NIjkB4BQbRN+H+43A+3kz4BARKJJPxtV50JRksbqNgjXG0e5ejidzkhfsBkcSsbS3sZKa6Lpse9hHHz/eSdpoeecKT+SUnPb3GlfYymN8dc/1Lsf/7Dq/+D/Ws+F74nCk6k4YwS4hRh4AcJCMsiCPWc66V7De2e6KWGU1ZYmfuYJ7PIkzXcSm+sAVrLcNgytB8LmyML32a8sIF1lT3J8eO2yAQcLquep4Cd5tAQtyUDdPUiFtn1tdnJlHuEHjqgNUTC6KrDeGp/2vVO6aY1UKuYf8sEN0iAs+4yoY6pyiWrzwpoq/ul3+8sGFYA+McVFb4P4h//43/MF7/4Rf7dv/t3y5b/o3/0j94Q8BUyWwMuJxqNBvV6nY/Xf/k9Xe3oaOfp2OJpuriTEWOS6tgWzL4fvvwHHa52T3JlcJKiMcTmyr24DOjZHq3WNRqDG9xT/RhTha3JTutVvMV5nm98mYY7C8BUcTs1YxSJZNa9xKJ7nS3le7lr+EPc7F3k5fmvEOCzdmg39448AVLid9oYloUwTKiUOdd8hRM3vk3FGKZmjrG1eO8ttbEvtr5O059n0+iDnF94HlOaHBh6IlXeOBuBDDjWfZrLgxNMWBuoOKNhhyMHbC/dz/rhe8KCF+OjoeWaIQgqBYx2n6ASTsuJrotod6DXD83tlfbPtmJ7Gel6y47dC9q81vk+c+4VRsw17Co9Qs26fYWu1Xhj4UuPee86lrA43Pk+dXOCeysfDb9UU5rZV0EeMNaZTsA3Jb4/4GzzJc73D4dOA056+iksuHKZm+4VBrKLK/u0ojLfGwt72FK8N55l0TYCIegHHU50n+fa4AwCqJuTVM0ROkGDslFnjb2ZUWvqjmUzgQxo+fMs+bMs+Tdp+vNxWyAcYA6ZIxSMcgjoC9OMGJOJHEBVk1LMrZawFifXALE9k840mka6NGyUAyBd75Ydsyg4MbiWmh+sUHkDqenkKCIwly0dHF8nBUogXd1MAQdlQaWquGkATgYBC90rLPQvc6VznI63yHR5F/uGP45QoEdPPNJLzWrXRgrBxdar9LwmhrC41D6MLz1q9iQtbw436FG2hul4i6wpbWP/+E8nJ+JEDHBemEYyGNFBkGmmp+KV7jPrkKDAUjaRLQ9Mq8h4Gcd/5+mq1fJoPzIIOLL4XS63X2PYWcu68m6mKjuxragIUAx2V5BhqHOOwaK5HLTqkWLcMwBaSQxUZKvBKRCug+QgmuXUreQsM5FYKCkQpCUXujOELlXQE+AUyM62Wbday9qXxdchGcR4wYBvXf+vLC0tUavVVr42P4JQ+Gr9f/hNjNIbL/wUdHtc/nv/4l15jm8misUihw8fZseOtN3lyZMnueeee+j1bp0bkRfvG8bXDfqUjRpj1jRz3lWu9k6ybXg/FUaBPgiQVo2Ryhp2lB7EEg5mpZL8MMsiTEzTX2r1KrQ7WMOjPFz7azSXLrHYv8al3lHmgksE0sc2ihwY/hQTzsawtK+zng+O/1VeXvwa11rH8L0ernBZ7F6Npywni1uY7Z1no7PnjqZy59yrzHlXADg990NKxhD7hz7JkKrStUIYwmBv+YOMW+s51n2Ghc511jibuTI4xezgIuvlvtBneG4h7DBKRaRRIig7IfgtOwjlWuH5CD9AGmHygnRDP0URVaaTbsiMiFIJXJeSNc4D1qc53nmGC93DHO8+d8ea0NV4/WEKiwl7PQBFUU4ACiTP862mAzNlaRXr2R80+f7CHwKS9c5d1M1xdK/clr/Akc5TLPozlIwqRWMIRxSYtDeyqbiPij1MbMeVrVolJQVR4p7yh9lRvJ/zvde46V1m0bsBQjA3OMalwTEs7HCg5ty1DED3gw7z3rUQ6HqzNPw5AnwEgiFjhKo5xlonHKhWrbF06WO9EpnuW22oTHYjYZ0KTuTgYqV1iJ4GPFXWfmaaVphmXBEtL2R/ENo7ReuGuwpSxSFS98cwYpcBIcwMexgsB6J6SV5VuWwwSJjqjAxASMmos5ZRe4qtlfu53DnCkaXvMeVsZbK4OWmHumY6ANW0ltc7Jzm2+CRFcwhfeow669g78jEcs0THb3J4/i/peg1q9iQbynengacCvQqkyyAZVAgF1A1ivYFub6WS1VQCl26XpfaZZXizA5NsIp0uY/G171b6TWmDFWGZ7B3/BOPFjVzuHOXI4nc5uvg9Jkqb2T38YUpW7db7UvdIB7+QHnDlSRUgZGv1BD0iiYE+kPSDUL6mvycUIPUj39yCk3zvR569FomsRNnQKTCs2F51HMWcqyRGIZJ7lNU5qz5YAWQlt9HdJ/Tyxe8BmQOwqvFdISYmJjh48OAy4Hvw4EEmJydX2OrW8b4Avg3vJs+0/nzZck8OogxUCwoFvA2jWIfOUrArobtCECD74RSxUHYtgQzZBt+HpWbYyTdbmMCwPcmwNcHm0r6EaXEchO/H1dkAyqVx7nYf50z3lXDqUvopnZ7rdtlRfJDNhb13dH5ls8Y6ZwcCk5JRYVPh7uUM2i1ijbOZSXsTEskN9wLXBmdDL9BSETk5CkGAaPdg4GJenw+vy0gV4/p8CP67PeJEFp9UByCFDH+QhkBUh8KKdZ4XduRSMvDCAghvdcWu1bhFCIN2sETbX6JkVDGyU7oZY3/d4gpIOs9AYgYWSi50eXCCy4MTmNjUrQkKosR19ywlo8YDtU8xak2H8opMidsY9CpdZM5UdcmssruSDAKlgO8s/A88OcDD5UT3Oc50X2FjcS8Vo0bTn+emdzmWKJWMKnVzgjX2Fur2JDVjFNPQrL5yCjAsA5WKYYVwsAdJBx5EAFifNs/Ts8YnIDWWK7NeHtAyRPQOCkGrWEkzq/5W6+rXMluCN1sAQMqkXC8sZ0JTyWdh24UQrK/czZGl7zE7uIhtFJAEtLxF/MAFIen5HYYLU4xYUywOZpjpnWVxcJ2e36JmT/DY5F9Njh8dp2wM8fDYzyTHy2O1VSjmVp+CV84RGOE7Xr9WcTKXTEBcHjjSl+lAN7tcuUZo7hgrRp4mNZAI02BqaCdT5R30gjbX26c4tfQ0ZxrPc/fIxyPGOqNz1Wce1HkAWBGAUtpfBYqRCYjUJQjq56/LDLI640jiEzO86vjqeTJMEBHY9LU26syzLoNx3fBZU+4MKlLyiAz4zrpT5CRixk4T2YHdqp3Zezb+1t/6W/zqr/4qZ8+e5bHHHkMIwQ9/+EN+67d+i9/4jd94Q/t8XwDfglFhwtpAK1ikGyQVqZ5v/AX+ksuYNc0D1U9hex4UnJBhabURtoWw7WQKx/MAmUzXREAvYV6iH6JlIgJtys+ywh+5ZUU2YQPqxjgHqk9AILkxOM+Cd41Nhb1sK+xPs053ECVjiLvLj7+paySE4GzvVU73XmLUWst6eyf0B4iSg2h1IyAbafYKDmKhmTAmrU4aGGUtlJRP8VIToaZyog5gnbOTa25Y5WvbLTTMq/HGQ0rJqd6LLPqzlI0qUgY0/Jv8sPnH8TobnF3sLj0aljD20/dP+v6yTkdGdkiOKPCR+i+x4F7HMkIN7JJ7gyV/lpa/wPbiATYX78G0QomU0qiGwC/aWbbwgd6Z52V8CIGQcHf5cQ62vwVAyajRCZY403s5Xs3C5u7y44xb65MqgqYRMsyxzlRjdVXnDuH/ejtUZwohwxi1A0gDRHVuWaCWPYeMdZZifYVlRb8lkQbeugxB31aXV6hCEDrQFiIE6fp0cnZ6WE8cUuv5fiKB0K57/J0uA5CSIWuMS53XuNR5LVyV0GECBLZRiD3JIawOOVncghAG06W7loPKPHY1e21XAqJKK6rLFSyL2EfW84CI0ZT+8iS0lY6bBf566PfFyIBqfQCUPUf9f83hpyjKTFW2c3zxScrWMHqSdeKbrslc9HLCQdQ/GRF7q0KXDOifFRMMaVZVD+Uc4QfEul7dv1ddF72PUMytOt+Bq4FTjZnV7c885e0cpAG6CsXoZu+BLntQ7Ukx8gbcJufg3RBChv/ezPY/jvHP/tk/o1qt8ju/8zv8k3/yTwCYnp7mX/7Lf8mv/dqvvaF9vk+Ab4kDQ08Aobb0WOdZbnjn8WU4fTjnXQ2Tujoh+6g6x3AEL5NOQsr0qNuLAK8Z+XYKI2R2FQOhswnq5RCBZjVlSclmwtrKxGAjVwen2VF84G2/HitF21/ExGJn6aGQuel2EYNBCOzVAACQlSIUbUQ/qtpWKobreV6kO5S5U7cyCLjSOIxhOpSCIn0/vN7bCvs53XsZS9hsKty9bLvVeHNxoX+Ec/1DjFnrafrzdILGsnUuDY5zaXCcj9V/OazypXUssVRFDw0UFIwyU86W+LcxZk0nmli0aXldX5kJ5X0LJMBbLy2rW/9F249ZaxEYSMLkNBUWDhIZWkRhJ6BXaAyzDnh1UKuDySBIfu9Kq6jtZ0WApgMgPfLsvuI/k++Ebr2kOvMsu6t8VHUgrAbn2cICOujVgTEsZ33VMgVs9e/0dmnnKIRgxJ7CDbrcP/55DARlKhhWkg/ScGfpuIsMF9ZStKppYJK9djow169jdhChA0o145S3P4jAlBogBGDI9DO1EpubHXzlAeC877JtVH9nWfO8YwFXmkcBOLn0FCeXnsIUNo5RYqy4gbXlXYyKdYljSKrdEZAVQcLOqhkcvSQxpAkKFXoina6tjf17lWSGUNYjjKhQhZ8GwPHvxk/+VoU09IGuYSaaZCVvkNqxs+eoz0jpbY4ZZo3lVRXe3jNSByDnlryu7X8MQwjBF7/4Rb74xS/SbIbEZbVafVP7fF8AXz2KRgUZJbLUrUnWVXZTd6YQhgWmiez20i9Q9XLUf7wZdkp12FIGCOV0oNY1jbSmzvMShtgIOyrh+txVfIgfNv+YWfciU46WPPcOxpSzlWvuGY51nuaR6mejl5uBKBRCDZdlIi0DMd8IAb7nQ7dLdPJxJTrh2Ln7X/Jv8FrryRWPf7z7HBYO6wo734aze2+FlJJO0MSVvdjtwJcep3svc9O9hCddPFx86SKJGDbCAdtGZzfbi/fHLNGsd5FJayP7q0+kQU/EaHpywJONP8STA76z9D/5QPXnEn24EAk7CsmUexANblRHqgaLEJMrWXmEVOAtqhBGIFPMq7Cs+LekmE9hW+E62c5LSizh8PH6L3N5cIIb7kVa3jwDengMcEQRX7rhDE/M/KT3kTCqmSQmBYSzYGglMBMDLyOZys0CoDzLLW2qWWAidYZM37+uCVagV10TBYDje2om66jIlvfV5Q76tjrINIzlIFp/DtRxou/WlndyqXsEH4+aMZ5OIgsCavYENXsiWabLMPRBR3b/6loowOP56XulQoiE1XXdaBuDlOuCPn2fLTG8EjOfJ63IyktW+n6lz9llOcfeNHQfJXMIT3oIIfCCAT2/xY3uWS63jzDiTPPw2l9IJElmZoDg+YT2QhogVtcoe/3igWUOqFR9mLr+GXY6tkrTQb3OuMaSIA0Mq9+d66a1ulkphwolo4iLjGgzIXluD2qWVVVwU9Xc3u2xqvG9bbxZwKvi/QN8hWCmf44Z9zyz3iUAlrwbTA+2U75nH5y6GoLeKFIMjNA6RvUjVwUbvCSRRx0nBZZlxBgrNkvXDmrJAkPlCYa7azjZe5FJe1M0TfjOxuX+CRxRZF/5w2GzorKRcngIMbcUan2jTl0W7bBksW2HDHf0ghPR1JkOYlQMW2t4uPoZFtzrdGjhiAIXuq/F3q8Ar3V/8L4Evr70cGU/9l0+1Pke192zAHys9gUsYXOw/W3mvWtMO9spiDKmsDCFhcAI7adkQE+2ONt/FVf26QVtFv1ZXNljxFyzvKOOnlNLOHys9oXIA/okTzX/BIBHhz4XghU9KUYPJRswwqlJaWR+M9H/uvWXMK0Y8ArTBBkxwwoARoBXJcjFg0Qz3F4O3AhsA1JiGjabinezKdLDf3fpfzNsTVIUFS4OjoYuNBngkSrWYGWmRtU1ct38aessKL0dI6mHVuEwxVQCchBVd9NBRGadVKR0kWa6TdmpdAUydSCv5AqqTVkLNqWVXAkwKClEVHZ4RKylYJS50j7CSPXDy9dfwa83Pr6eYKf+VudvmUlBIJVwp5wwdOZU11gbgOcmYE9FHgi9XchbbJ8HYLPf5THGWVCvrwNYmKEMJHPNdo1+mGeu/T6Lg+sMBu2wHDakNPkp+zzdtkx9b2b6H7V/BXKzyXBquWJvVbGPbNhWcl/U8WRm0Kq3R/32dJszxVIr4KpXe4uT2TQGW107XybvhbzZlvdCAYvViOPAgQN8+9vfZmRkhP3793Or8vQvv/zyit+tFO8f4CslhztP4uMx5mxgqL4OGi3WTtyHfeJy2lIoq/lSGa2aJipko8KXvg7whE+4nmUtn0LMRvRDVlNW24sHeLH1NTpB4w2X9ZVS0g1aSALKRu2WD0x2u1nvEhPWeirWcDz9K/sDuHojZMN9HxH5DIuBR1AvQ6WI0eqGnZIbekFK6SdWS5nOYNhaw7C1Jn4J76g+wmznHCc7L9AK5hkyRnCD/uvWOb9bQ8qATtCg4c8x713Dpsi5watAWJThQPkJzvcPc35wGIA9pQ9QMqo4okBZ1Bi314MQzHqXueld5kDlidv6Hrf9JS4NjgNQNUdx/R4L/szKG4gwSenuyuOsKWzl5ebXw/0ES9RkZDHnJ6yujDPjo+RFWKaVVWA3BrDK6SH6HYnASAaBGSlDPNWfMxUrlPm9JZLBp7behL2BOfcK99Y/zp7hx0OgnDpVndUUaQmAYlF14BWeRO41AxJWNAuGUmAsAo866NX2Kd1I2+v74bsgpdkMlgNFzSowTwKSC8BkBuTkMb6qveoaZAGfvm1Wo2zZbK4e4MTSU2yq7adqjCVJRdlpaHWcbCiwnX13Cg386QlVOmOse7XqYDd73tm41b3NShdWmnrPDir0fWbvn37+2RLJ+jorDLpEINlZf4xX5v6C713/PdZX9rCz9mg4wLN0ll2BVm/5MbJJYVlXF7W9CqV11y3wkKQS3YRIg17PD5/T+Fqp8wnSn02hySsUsI2SRfUkRL0NUq1P8r86TlazrQ+g3u0ho39vZvsfk/jc5z5HoVCI/75THHOn8f4BvsCwNcmcd5W5wSXmZi9RtydZXDjDcGEKp1JHtjvLR+ck7K8QVrqj0ZJalNY3flFlOw4VeTq0KAIjYn/e4BOsysYqDeewOcnu0qMpf1yVKCFlwJJ/k5a/gC0KXBwcBULwe7D9bTaV7qYeTGJICB1uIjkHfvgQuh6iM0AWLWS5gFjK8RfNvpRyHl5hWUxWtjLubOBa7xTHu8/yQuur3D/0k4k28z0YgfS51D/O8d6zqeUlUYv/bvpzfL/5h7GHLMDR7lOp9S8OjnLDvYBjlLBwbunLrKJqjnHTu0zNHOfhoc/wzaXfoyDK6ZVWYBInnA38xNjfClexwuc90d4GSAKEY8fPg3bCsftDNnFMJcelWFwlJ/AU06cBWM2GSfgkiS95HZgC0iI89sbCHq4MTjLrXWSN2LxsXWmkAThKLqCuCSwHIvo7QdeeKhYz7399nZxQ10Bpp5WsYxlbq0JJGoKI/fK1PIJsW+ODaG3Wgeatpn11oJaVUOQxx+r/IGDT0L1car/Gsfnv8eDY58NBsrq+ukZZ33f2eqkoFBKQFPjhe8SySPnJqmOrY6j7dIv3Teq6ZNe51YAhWx45e931WImlz7s3edczuzyzr/HiRj489Tc43XiOi61DOEaJ7bWHl7tT6HpdSFjb1DqkNb1qO30fKDZZk/uZGuiFBOgqKaDrZXTBgQZ2M+xr7CKTIz/RfaRVKHY6ZbGY2dY0QOZIaN7NsQp84/gX/+JfxH//y3/5L9/y/b+vgO895Y8w615izrvKNfcMS+4NXna/QaVd567qYwT4oXbS62FToG5NhKypyrBWI09ASJH20YSYgVqWjZ394allmj5J+n5aS/kGwpV9OkGDneWHKFk1znYOxjZua6zNdGSDpj+PiUWAvyLAnhmcY2Zwjo3Fu9kz9IH0l0bUyQQS0e2H09O+DDW/zXbyUrIyU6caq6fLIGS/jzBNDMdhnbGLmjnGC62vcbz7zHvS4qwfdHiy8YdIAirGMAZmWHnLmqYdLLHoXQdCJ45Ra5ohIyyWYAoTgYktHBxRwhYOhjDpB10Odb7Lkh8WR3my8Qd8tPrXcMwVjM6FYGfpAbYV78PARAjBgcoT1Myx1Dq3BQeaFlCxkfq0fBw6c6lVfxLRDMEyxwbLRCjMHAQJ65oXapCpksz0qXftuLoPcM0aZ9ic5FL/GGsKWxDCTHT4fhAO4iJJhggMlvUWtwJm6rhqYKv/r+to42uoAeFlVmYShIzlRMvAT3aaXEkL9GVZVlBtn3c9bzX7pO8/6/Cgy5UUu511j4jaYmCwu/44L819iRud06yp7Ei+hzTgUddupXYpUBVbdGngOY+h1M8/bwBwJ2B0pfWzgxGd9b4Vw6u3MS9ux0Tqkgi1b6Dnt3ht4dvc7F8EwDIK6fV0lwP1OYDYck9vq5Thd0JjSlMlhDXQrNqkSyFU6EysOjd9wCplyD5ndblqXQPQuz8pE22v7sCR1WbHzLbaT7R//bir8Z6OrVu38sILLzA2NpZavri4yIEDBzh79uzr3uf7Cvg6Rol1hZ2sK+xkm78fV/bx5IBDne/x8tLXcrfZXjzAtuJ+pAkCzbolYrhi8+/I0D+euoX0Dy+bJQvhy6JUDH/YpQLjfh3n5A+41D/GnvIHljfmNlE2ahRFhfPdw0w4GxlErgkA8/51xstb2ODcS2CA4UOVGjXG6FpdTvdeptOd477yx7jqnsGVPTZV7olBOZCwdLaFHCoSG7V3OuEIv1yCRjM+f2GaIUOsMVsIkTCI8UtXxpKxammS7d4BjnafYru/SOU2RTjeTTEI+hxufz/2ZL6r9BAT9gZa/gLPNr+ELYpsKu5j0t5I1Ri9o+mbslnloaFPc9O7wpX+SW54F+jKJg4rAN+oAzRJ2MNYGpHKrl4h1HO6LLM7Sn6J1kkVJTHNEAxrwCDX3k4lJ6llejKLAsF52yhrIy95huLz0YFZtH3VGmPevRozvAyybKNMMdAp/WCeXEABbl2DmscO5oWvn2/EgKvfQqYiWmo/2WlxSIC0DviyzKEOMm8FLPXQgZWSG2TPRwf6ejEIBcaj7yeKmxgtrOdM6yUmh3aGT4wCivr2OnDPSgqUVleIJHkyC7T063U79nWlyoTq++xgIQ/06sfKXvdbxR0C7pa3wMG5r9EP2kgZYBkO68q72VZ9CEOGbfSkx9XOMc42X0LKgLtHPs6os56SWU2upZ7kBcslHzoYxkjW12U4egEOvc/Sz1n9frM2aZAu5KJ/NkXY18XHjFhenQlWvxf1zpEy1Grr+l4RvUeEEe4zT+urlzlWA7t3e6wyvrlx/vx5/Jz71+/3uXz58hva5/sK+OpRMevx3x+p/RKu7HGuf4gL/SPxcgOTNfYWEFHxBYBuT5v6JU7QkTJItIn1WliswnXTUzK6N6HqDPwAWS3hj5Qx+g4bRg5wfv4FdpUeed0JbqaweGDoJznaeZor/RMAjJY2seWun2S8N4Lo9ZHNFmJkOExO63vgugx1HO5b+znodJG9Htus/dEexfLOJvLIFI12CHSb3XBaslQMC1kIkbBBhhF2fDpDo7HmsU7U82IA40uPbtACwJUrlCR9F0bHb/Jy+y9pB4tMWBs4MPQEgQy4OjjF6d7LlIwqD1c/gyXyHS9uFYYwmbQ3YmJxw7uALW6jf16pU74V4M1ESrojZcyqqsGMdL3keRci1N4qWYQa0CQnED8DsWxIB1eqI80m0MVShCzTo1ieYBmYbwcNrg3OMF3YEUsvlhXgyD7TWfmRzuzpTGiWudW30c+DzCA4yglQVdzi66Z7qSYXPr1v9Z7QP+cxvFkmWC3LgmZdC7vScbJWhLpzhA6SszrdqA1bhg7w0tyXWOpfY7iwNmmbAtWQ6EVdN3SM0R0tcgYpy+6ZWkdn+XSrLv06+rc4Z3Uu2WX6cVTo7h/6d3nyB/U5ywDrEe3PD1wOzf8lnuyzeWg/BgZtb4EzzRc43zpIwShjGQ5tbwFf+kyVtrOj9kjYh+msv37+ehuyzLG6JkEAym8+C5whufapa2CGgNTMLM9KD/TfJiTgV+1XgVrlsQwJOFX3S3OMibdTz28qkVEQOxqoGUf9vPVB1rs5Vl0dUvGlL30p/vsb3/gG9XqC2Xzf59vf/jZbtmx5Q/t+3wJfPQSCk90XuOqeZlvlfibL26iIOqar/bA73TCD2Q7dDBTbFSfoRC9yOT6MWGonL1PTCH/cfU2Tp8ChaSDrQ/jVImaji1hsMSonOINLN2ilwPmdhJSSpr/AQPYBwYOTP8NobRvMD5CjDlhGWEBCyhD0BtFoe2wEaZsI00C4LjLwkkp1EE4JGyLO4AbCl5AqyqHcMBQr1B/ELys9EUqdezwNnmU9/EVebX+bdrDEtuJ+auY4F/qv0fIX8aWHJRxKxhACgW0UqRjDVM2R11Wl7u2K6+4Z2sEiAMPWFGd7r3Kpf4yebDNurWd36dHXD3ozbFGwotP+LbbXI9v5p9ifTGSBpSmi4hbRAE+NyTR/UKmzNSr0KdccHWHKPSUwlne8yAQsi+WdlwLk0hCc7r7I+e5hSsYQ2wr3hWw0ISMZJ51CnBgXZ5Wra5Pt6HXwGy2Tvh+XL46t1xTAVSAdwmulXfPUTFCg7Su6kPHAOQtQFOi8hV4YSAPc8IDLWa480KsfSwFTHQTH7LpmX5bHPGu+wuOFDThGiRvdsyHw1UFq/P4gAT6ut1z3qV8H/RnKtl9/XlayKNPP9XZMfd4gJE/6kB1s6JHVVGdDXcdo/2dbL9Fwb7B/5KdYU9oWH2ND+W7m3CsM/A6+dJkq7WCqtIOyXU/uwUq+vHqb9QEHRBrcTDGI+FlXAybtuVBgF0j8dmWyL/W/Kv+sKhnqv1fbCr8vRKyuAsqpd0KkGzYiZjiWOikWN2qLWqaus3qW9PPJxp3MfPyIY7WARTo+//nPAyCE4Fd+5VdS39m2zebNm/md3/mdN7TvHz1ieBeEJwdcdU8DobRBCG1q3hCIchmCANnrpbaLk7hUmCbi5mKig1Mvdjv61+poP/ioM2+0sXpR+UbXxXXbcZte3zm4HGx/mznvSrzs5dkv499wGbGmeNj/eeRIFWkKhCeTKeeCTVCyMRrdEMBaVjIFr15wBmG1KvWyU5nVrbCtKUZBAQrPT1f8igBvvN+c9isbrXvKH2XCXs/B9re46V2mao5hCgs3WODq4DQgYws0gcG4tZ6txfsYtiZe1zV7K6NmJsc+1XsBA5MpZytbCvvemENHppOWUnKm9zJFMRRbnqU6rCwrlppl0BgxFSkWLLkfIg+A6PvRGUw0QKczdnmZ4ioyMoOsAwS3mJFM6eeFiOUxIjCYGZzlbPcgm4r72Fq4Nyw7Hh8vfeyETdLarO1v2flF1zNVhCN7rVZi9WC5jCJaJrR7lEq4i89Pa+PtOu6sJjlrs5bHEGcjW9I4b9s8nXUGZAthULfX0HBvLt9PlhXVj6v2lcfWrSgX0H4Dauo9T6ZwJ6A3C66zoDYrF8htj7av7MxLFvxHsa68m6udExxZehLbKDJaXA9AvThFvbBm+T5WYjDjJDH1m9WeidS9CpK26Gyq7pSQGhBpYFdJdmK5gfZ7V9XkYvcFpc+N/jdl0i/qCWu6rEmxlrG220pAtyp0YZgQaIMl101b+unvo/eKzGE1lkUQPb9btmzhhRdeYHx8/DZb3Hm874GvL71Y3rClfB9iYgzmF/FsyUL7EuP2hhjgidHh8EdULMBiI/I1FFAsICtlxPxiurOKO4oI7NarsNSMDuwnP8hByBC3OrMcbn+PcWs9NfP13eQb7vkY9NqiwIS1gSFzlJO9F2j4c3j1IlZ3gBwqQd8jGB0KwWjfxVhoJ4kr/X56x+qFNxikX6BxZ6O0hAk7p8o1h8ygkQwAVAcZRNn9GoNpYrGteIBzvVc51PluVJDB5ED1J5kobEwzg6aJ6/Vou4ssete51D/Oc60vMWFtYGfpoaT4wjsYJ3vPUzXH2Fa4DyEEo8YUlvkmLNkyneiNwXmW/FkeGvp0KIGJWZl8wBtXTYs8dpexunoHHHWEsWYdEoZF3zaeDiVkKoMgX3ep2qF9F7P8JPtMWZHlZZSr7bR7H/890Jwj/ICSLGNgMudeZk1hMwUq6f1G2wplmaTkEoFE6oUNtOOmQmn68wBUcoB8Fi2PpZSZe5YFFqrDvhWgzrLDkA+UsyAsDzzpGlz1Obttlv3NTqNr0oGiVWVxcC3dxjzmVN8+D2Rmz0UPBbLU+t4tGN/sMbNsbd7xsyBcv9Z59zUGXsbK9z7HwaJs1Xl0/Oc5uPB1np/7M3bXPsSmoXuXn0P2uEKkfz/6M6wGOCoMbTZlpWdYgWZfLn+uTJEATnVuasYkTjALEp/f1G/BSCofBtoznQXXUiRA2RAJu6v2OxhEx9QkDn6QdhzJ6rnfA0xvHDL692a2/zGMc+fOveX7fN8C39C39iJHOk8xkF3WO3exo/Qg/ZvXaA1ucrj5PXoyBLyj1jQPTH4e0WyF2sZuD4Yq0ag3fBGIuYX0y6Zeg8WlEEg6Dlh2CHqtZEqQcimsYe7Y0OtzpvcyNgXurXyM1+tbN2at567iQxSNChP2xnj6f8xayzOtP+fq+WfYOHQ3VCItbr2M6AwQ/UH4QnGjTP2Upk5G1yqahtWZolIxlDQM3PD7aPpXWE74ElIljGM7Ki8BykGQAjMQTmdsL+5na+EebrgXGcgeE/YGSsZQyLpHgEXZZVnCpm6NU7fG2ejs5pp7jtO9l3ix9TUeq/4MjrFC8tfbEC1/kaY/z/7KJ5i0N9165dt5mWqdkicH9IOwMt75/msMm5OM2Gu1fckV/5ZobLsG/mKGNQc0p1xFIrY+ZT+W1XmqfQuBDiRT7LC+75Vsk4zM/nS3k2whmZgR1fZTKFD31vKo+ByHO0/y/NKXGbfWs3PoEarmSDwIEFoHGbo8pK9brAnOev2qtmbZ4+w6eWxmFjDlATD0rwNElMy0jIHUWeCVfGCz7VDfZwFotm1ZgLCS3Zguh9CPFZ2PBJbcGRYH10Jv2bxjqsjKJfS/80B9NvJkCXnfae1L7f92+1ppgHMnbcorCqKfU6oaooFjlXlw7HN86/r/w6XO0QT46tuvNJWfJ1XKY9j9nN+vYsgV+6sYXz2UbEEGaQZWfaciq8mFhKGNk9Mi4KpfC1VpTwe1Wt+akCdmYn+oALrnpQdiK2rB3wMa39VYMdrtNk8++SQXL15kMEjPhv/ar/3a697f+xL4Xhuc4VDne6lllwcnuDx3Inf9hncT2e4gjUTbJ9odqA6FoLaTlO2NwV23F2piXRfZ7YaJZTIIrZwmRmGpiVxqhuV9Wy5B4DPrXmaTs+cNJUAVjBKbi/tyvglfLr4lYbiOWGgia0OIvosYRNWpyiWQxfDFsthIzPGDIKVpTL2svMTSSPgko3IFcKWmfVbJK1GFJmUDJ3M0q4YwmXK2RE0Pj6XbxsVMpl4NDJPpwnbGrLU82fgDrrtn2VjY87qv4RuNG+4FTCzGrHW3XzlvKlqPqOMcBF1+0PzjlORlR/GBFfapvfCzL359IGMsLz+sImZWM2A0liEoZw9hkKIWtGzr2Oc66qhi1wdV3S0TqWPmJTBpIDlOrguS4wGpYgdD1iiPDH2OGfc8p3sv8ezin/Fg/afDks+6/lOfEs07V71j9zOAO9OuZSAky6ap347uSJE3hS6S80zNnugssxpYK8C4kqWWWjf7vQ6GdDlWtu36ICer59WLS0T7klIy17vITPc0N7rn6AdtHKPMrrHHlwOwO2Fy9bbcDvzmXU99+UrLbsfcr3ScW22ra3uzv/Ms8M9qpk0TYZhYwsGXLj4+pjSTfd2KKV/m35sBuHkDLz30mbxs1TYhohkINcgKUv71MdiNj5Fpl953kAG8fhAyyJaZyBj0+67a4vnp92WWTTcy7wSd1Y5/B8tPezXeG/HKK6/wqU99ik6nQ7vdZnR0lJs3b1Iul5mcnFwFvncai96NW34/Yq9lbWE7NTFK1RzFIHzxxAlfqgNaaqR/YJaVvPCUZCCaIpW+H2qFBwOkYyE8L7aBEqbJ9cEZPNlPFZt4K6JsVgE40XiKjWsfxXTsaNoqeqn0onZaZgjgK+Vk1O4HYQliIUJWGMJzKxXDl1FsUG+kLY70lyiEzLDGGsX2ZrfqfCD5zo8qhCkQpQohqGn8aN2CUaZi1Gn7S2/R1buzmHHPM26vD1n2PDN+PbLFDlaIJX8WTw4YNieZcraFTL61Ib2SnlzphPdLMavCtkOdtQKcWfZXZ2az+7xFLNO+qk4y/BD+p015KvnEMukFhKz0Sm3LJoJlgHMMxDOMrTBNpqxtTNgbeK71ZQ41v8PjtV9IsVApRjdrnJLVN+aFftvymLUsCMlKBbLT7Wo/kNIDJ7KMKFTJ2LxktzxmdSVtY16Sm66/lzJ5NvOOoc5XCAZ+l1fnvsZc/xIls8ZUaQdrylsZttdiGNrFvR17mr0euszgVvcjD/Cnptkz1zgLlG/HFOf9Tu+ECVYESDbRLft+UPcxWm9DeS+nW88z37/MRGFTmpHXq9Vl26IPcPT18hhm/bx14KrY3yzI1LeRMi5PvwwMq0RumXnnyCCRLUhfez8AanZD+TbH7/wg2V4lyykHEBWedm/0kspBkBAwt0sKfReFgDeX3PaWteTdFV/84hf5zGc+w3/+z/+Z4eFhnn32WWzb5gtf+AK//uu//ob2+b4EvmWzBoS60h2lB9jg7MKw7JDZtO0Q2C0spbR32UQtPYs51uXFUzZWyAQHQSxjEIBstUMwcG02Hkn7wYAr3WMcbz/DtL19Obh5k7HghaVqd1YfxRQWwUgxZHvbofVYmPBmIoIA0YvkDv1uzN7K0WGE0iXbdghiVRa2eqnrHp/q+qiXjooMw6Q0lDJrnZQXWueUug+Q6LyEwAv69IL27e2+3sJoeDdp+DfZVLg7ak8OmM0CFb0zXQH8D1tT1MxxFv0bLHZvYGDyQPWnGDGmtP3KRA7gpT2kZSRdUcAzKy1RgwgIwewySUFOLJMBqDbkha/Z+0VaQJn13M1jeDPfLdP4Zu5/nuODEAaGadMPukzam8JZFZV8o55DvRJaVjJiaiDyVmxZLnA18zvalcBb3nK1D8tI3jGGkfSKng/46Snl7HGz9lIrHTMLrNQyHUQpeYMCV9G/jrvAi7N/jicH3D/+WcadjaQkWro06k7ZVhV532fvR95+svcjC3pXOs5K7byDQWociplVxEje9tn96Iy6lBSt0DZzrLAh3d5sgp8OhLWBl0TS7s/R91pYVpGCVcUIwMdHElAyqsk9Umyqdk/DNmuDzthrW/0PqbLDMki0vvE1VDpdLRlNJbgJEQFebf2Bu9x1QkkZdNcKxR4HmedI9QFS5lvXvVcY31U7s9w4ePAg/+W//BdM08Q0Tfr9Plu3buW3f/u3+ZVf+RV+9md/9nXv830BfAMZcMO9QMO/iSUcekGo3d1WOsCm4t2IejX8wbiaCf/ocFiMAUK2V72wNI9aOVqDAMTN+WQq1RQhcO50kZ0udLqIoQoEAX4wQAgD0whHp1IGXO4e43g3LGu7t/wh3qqa1FJKrrvnONZ9mjFnA1ucfdB3MVwPWSkiHTuUOkiJ0RuEbKFthRIOzwMiGcNiIwQKjpPogHUWQ70sVWWsbAa7+k5/2Wp2TsuYqrzOTGN6U9PSihmMXo5ne4cICFhfuOstuYa3C0+6HOk+xZAxwpS95dYdZJbpyZv6hbiqnS0cHhn6LN2gSZ8eLzW/xuzgIiPWFNnQnRESsGkh+/2UtCHFlsukyuAyMKtrcTUwmmIgDZHueNU53mpKO0f7m2LxVVGM6Dyk7+cC9rzIAvfAEriyRyB8PH8Qyod0k35I2q+SyaLfZS5ozHs+sz68avB3G2AnPW+5I0T2Our/Z8GeAhq6fGOZX3jOdcruJwvU1HLFnqnIJrUCgfR4fvbP8KXLoxO/SNmqLT+W/ixkn4fse+5OWN28QUgeQ3y7/az0XXZ7JUVQbdYHr+YKbLZ+rmr7rE5a7U99Tt3/8Bxb3jw1e2IZYB/4XY4ufo+WO0/JqlF3JhmyxjAwmBtc4nrnNP2of8uLmj3JnpGPMGyvSR9XtVuxq0BsKyYDYl0uaPc1b8ZBA8WxdCFYvr7uDqGupXouFOD1/HSfggLm0fZK35v1gM4OuMSbBJTvVMjo35vZ/scwbNuOcdGaNWu4ePEiu3fvpl6vc/HixTe0zx974Nvw5nip/Q0GsktRVOjLTlyq92T3eTYX9oVJZ4ZA1GrIUiGc3u8NUiA3li6oohSWiWh2wDDxt05jzjZiRlOWC4iI3XLdNoOlqwgMXmh/lV7QYsxeT89vUjQq6EUqPNnHEaU3fK5SBiz6s8x5V7g+OEc7WGSyuIW7p38aEUS+wZUi0jYxBr0Q/C61wbGRQyXEYlMbhQ/Cv2PT8SCZSpcBQn8hibAaWwpAqf0oli8C+sKy4oIEwjRDFtA0QCVaaS9XoRme57GN+vS3FJLLg+NsLOxO7L7exvDkgIPtb9P2F3lw6FMYkvwOLvt3dF1iJtNPv62krpE2DIpiiJnBBXy8sCPMaF7D/YvYDzaRqUQJaY6TKjWrEqeEiBi8SiV8pj0vdCuxbWh3QhYmm3ymWxBB1FFG90gNjjxtNiBiU5eBchXqYwSqY5mGXvI7e656ZACesG2kGyZbmj7sLD/Eic5zBNLnvuEn0u3WK5Cpzj8IljPR+tSx+rxS5IEnfblqp17u9xbrLfsO0p169n6oMDKdvtoubkAEevVpYgV8smy1Amb6oCF6zqUMcIMeRxa/w5riNtZX9oSysLx23+m55kkP9AGW3r68Kf83Gvp9yzK0eU4Zt/PqVfvIvgey1zfzvIwXN1Kxhnlu9k94ZPyvULXHUu+U041nme2dZ7p0Fx1/iQutV3GD0GazYFSYKu9gsrSVojmE53boyy5SBhgiLFN/pvkCz934Yw5MfoYJZ1O6TcqODI3pDbQBEBAneGb9fpfdN43xVe/1rHWa56e3VYMuJcNSQFx95wcJ6A2CdNlsFbrEIW7LjykifJ/E/v37efHFF9m5cycf/ehH+ef//J9z8+ZN/uf//J/s25eX13T7+LEHvlc4y0CGyWfKpQFgyt4SVkdTmiHbDgFduxOxlNG0vAJuMUsbJVp5PrIfVhgzGg0kUcduWSzMn+HE9W/T9OYIcoxJvaDPuL2ert/ElS7rnJ1MO9txjNcPeqWULPmzXBucZcY9R192sESB8fIm9o18mmFzAlwJjokshV68RqML/X4CXpUZuG1HJYc1FqIfDQD0TMogKgWr2QfFnbluuK9LQiwztDlTshHNNisGOiYJ+LG0R9MAIbSXXGbqXvoBF3qHcWU/rLT3NkfHb/By+5v0gzb7K5+krvyD72RKNOrA1SBABm4OkxKuc7b3Kpd6R+nJDhuLd7PG2ZIGhUoWpyX/xR1RuZwAWl3TqWzlFBg2DWj2k8p7Azcym/dCIKts7LR2xRElb2JZoctJs5V0RrFmNEx+TAFXXUerOinTRAwGMXuTZaZzQwfJEHekKiFsy8hDLHo3mHev4no9bKuY7gR16YVqj26aDyv7jar/s+xqitnUvktNBWvspO6LG5+XxgquBJCzcTvAnLd/1SZ9ejjr+araoX8XBBgYfHDNX+Na9xQz3dMcW3qS083n2Fl7lPWVvXcGNrLrZBndrGzgjQCYlfSd+jXOygj0xLOV4nYSiGxCWma9QMB8/zJtf5GCUeZm/yJtbwEpJZYoAC1emv8Ltg09wLAzBUhm+xe51D7CjurDbK09EL5LIZzZMCQFyuHMpBrEGBoLH13LidIWXpn7Kgdnv8aH1/11HEpJ2/QkOd2jV/+snhf1Xe5AJXLxsTRpg14aXFViVL7LQOwyo4pgqIukR8z8aqA4LoscySUsK/17eqPPzY8iVhnf3Pi//+//m2YznH3/1//6X/Mrv/Ir/J2/83fYvn07v/d7v/eG9vljD3y3GHuoleqc6x+OK2sBbCzspVishwxbIEMQaJmRcF+9OAwYqYcbNNtJcYfBIGTkzEjk7zj4gy6N/jWWvCVOLzxD2aiyo/gARaOCLQpIAobMEQqitHxq+XVGIH2uDE4x455jyZvFw6VglFlT2MqUs5WRwhTCtEBGL4ZIekHBQTRbUCoia5WQbTRA3FxEtNsh+1copBLzMAjP13HCRLjoJSIsO2R5C5GeVvk06i+avOlNtb1jhwyyNuUOhCxvjiwC3VotynyfdS/SC9pc659hwb/OpsLeMIP/bQopJad7L3G+/xpFo8LD1c+GnsF57I4eK718/Wh6f+CqA8Tn7gZ9TnVfAODR+s9StyNwrZXozUoXdEcA2tEgz9IYe8NIAG25DIVI++rY4T227fD45VJ4r1USi21Dt5vo1mMWP7Ibct1EBqMx1omkIAHpy65HFgRCCIIjyYC4lQQ89uFNyxxCPW94riWrzszgHB1/iVrklpJlkIUwQMjllb+i65w6nh6qU9c/q5AyHxjon5V7ih6KjV7xnHNY3uwx8pKp1L6zYFa3gtKZ1aw8QW2vhS0cNpb3srG8l5a7wKnmM7y2+F0mC1twzNLyqfTbhAyC2OnFMDJs3hsFL3lJetnPedZt6rM+WFlJwqCX306dkFy+P8OgNZjj8NK3WXJvEEobJEWzyqgzHb8Hi+YQgfQ5svQ91LvPwGS6tJNNlXviNgnAMcrLB6WZQbRiU41AsG/0k3z/2n/n5MLT7B37eJJQpf9e1QycYl71504BTt3eT4gQ3KomxExwtExqQFd5/eZF/Hwqhl8m56AGoYYAzASAZwdq+r7eK6AXViu3rRAPPJC4GU1MTPDVr371Te/zxx74CgyuuqdpB4tMF3cyNX4vY/Y6zHaP7voaV05/nzVjexmqTiAabWS1jGi0ibNQe/2QBQNwXXqyw8HFv6TmTLKxuIeKOcxC8xyvNr5FP+ggMBizptlX/vDb4iXrSZcfNP6Igewy7mxgy9ABRqqbGR7eguFq+kTPC5PQIBxFex7ixlyYFWsaiO4gZHOlDJc5DkGliHFzMXxhRJ2ydEPXCXr9dElax0EUI9DrByFYUn/riX+QfnFaVsjmCgGmDHXGTgSw9OlUlXQUWXClKnx5HoH0ebn1lwBUjVEeqPwUY/b0W3699Tjbf5Wz/VfZUriHrcV7Q5/SO4k8AOFLJAGeHHDDDXVKI/Za/MDFlQOW/Nl49YJZTm9vRgO0Xj8ZMKyUdKaAqGWFg5pB5LAxGITTkOVSuL9KxBA7Tsj8FqMBULkUPVPR/lVJUjVNqZaXiuEx+/0EzKlnUYjU/RMK18VJLNq0sQ4Gg4Bl7DAkx15BAhMC4oBABiwMrjJir6VuT6ZlEeR40d4qzAyDl+1sVwK4UgMOqf1lEoLypv4V8MpOq6cGhhmtaHYfea4Mvp8MiNRynT3LtukOwMOQPcKwM82N3vmQHMgCdCGY71+h6d5kEHTxZfgb9oI+fb9Dy5ujH3SS1TEwhY0hQhmUIUwco0jZHKZqjzJkjVK2himaFew7ec/eSXJa1nElO5DR96UGkVnGPjvo0D5LKbnQPsTJxtMUzSoPjf0Mw85aukGTklnDQCw7put1afkLIARVaywpipMHcnUGFdLPjZQxs+8YRXbUH+XY4vfo+23uHv04BbOivXtzCAsVmn1h+L+SC0U6YFWsImxA0j5lbWYZafmDYncVyaHvP1DHETnPpgZ61fGy7Pp7DPiuMr758Zu/+Zt84QtfYNu2bW/ZPn/sge+1wRnmvWsIDGrWGB13gavzr3K9cxIiV7O57gUe3vYrBMNVjIVG+CNTU8Gel3jZCkFPdll0r7PoXudS+zWKRplu0GLYnOTA0CcZMkdSut23OvpBJ5Zu3D/86VC36RrIG3NgWbhuF2kZWL4Z2qOoqR/LQk5UCUoFzGaXoF5G2lWkIbBuNEAIjLmlhMHwPCgVEa0OVCrIRiN+MQrHTgCK6nx7XnpZagoLLXHBD0GSAuV66Vj1f/wCS164QeAzP7jCtcEZJBI7Ap1DxjCPVj/PW5UUmBeeHND2G5zuvcSUvYWdpQfTK9xJp5oTp7svc7Z/MNacp3aJyag1zabS3XGmdyhJCTJMeCbyyuMqcNnthveoXIpYWi8so622ie6JHCqF+nUhojLWJpgmwUQdaZvI6HxFEGDebIb3XA0OFcjWp6mj77JJdXqRFLLWZip0EBbvPwHeKbZbRXRtznZfZsm7wQO1Ty+/Tkqmoe9b1yvqyWJZG6ks2M2b9tY73bwp8yyQyp6n2ocQYVuVrEIHo+r7lUC3+i3nJZHqrKWRAUz6ua4kq8gB6jf756nZ49hmKd0+KTnfOsjxpR8gMCiYZQxhYWBiGQ4Fo8y68h5KVhUDE5D40sOXLoH0kYSzXIOgS9tbYK51EVeqCpOCUWeaklWjYo1QNmsUjAqmYRHIgCFrFMvI8UXPe1/out6V7oe6rmq9LOjNc3CJvjvbepFTzefYVL6HndWHMa0i+D4VUSVVYEE7pm0UEieXPN2q/pwpeZ7eHvW9kjVFLOmm6r2UrCqvzX+Lp67/L+4Z+0nGixvTvwFXm41QiW7qOOp3Dsk7X/2mFDsbWx4qSZ2u6c0b9GngVz2PaiY2W45avw6qvzKMRPKgrn3e72M13lPxJ3/yJ/yrf/WvePDBB/nCF77AL/7iLzIxMfGm9vljD3ynne3Me9foBEscbz0LrfQPp1aeZsgfpn/jCo4ownAdeu3kR21ZCMPAd/ssBje51H4NgWCNvYW6OU5Pdhiz1jJmrY/Yibc3Kmadu8uP81rn+5xtv8Q6ZyemsJn1LnGhcTiaPgNLOGyp3EeZMeqMUC6tRSy1MbsDgmoZ49pcAoBsG3yfYHIY48ps/PKWCGaCSxw891XKRp0P1X8+BL22Hbk4+GmwquuAtSl5IHxxKkDU6yedRh6DFv2ta4Gfa/x5zILWzHFc2Wfa3sHW4r1vK+h9pf0tbrgX4s8z7nmuD84y5Wx90/u+5oYg/rH6z1GgxE33EgYmZbNOxaxjKimNrjdVU4zq77wpQ52FyrKKnpcwuyqKBei7UK0QlB2MZi/xam62wntVcDDmmwRjNfyqTWBH4NeXCNdHChEOGgPSAEFZ+inwm1MKeJkkQD+vLPBQ5+bY8fMTF85QEYHEUqRxdOkvZ44VE6466xikRmBcX193PMgOKBS419dTRSd00KG+z06LZ50CVnqWY1mFalPm+NkOPjvFntULq7bkHSdPYrAS+xl91xrMMd+/wsbKPWG+Q7SeF7icbDzNxfYhNg3dy67aHTjX5DHN2jZSSgZBh463xJJ7g4X+VZruHDPdM6mCLwBls87D4z8bMpo5+8qNlZjCLNjX3336cwDLZBOLvWucbj7PtsoD7Bh5bLnURGdn8xIMs6RA9jz0Zy0rU1GgVxssu0GPjrvEWHEj1zonOLX4DONTG8MvtSI0cahZFiUHdF1i/17VH+T59+paYSPywVeWhKrNSjKRlUdB9D6J5BKqXLK+nv5/XH008zvzPN4TJrerjG9uHDp0iCNHjvC//tf/4nd/93f5B//gH/CJT3yCL3zhC3z+85+nXC7ffieZEFLefi6g0WhQr9f5eP2X73x6910Yr7a/y3X3bO53d1c/wvry7ng6PjAE7eY1WnKR8+1XY9A1ZIwwaq1la/FeCsbrv+BvRfjS42j3aa4PzhLgIxBIJCPWWtY7OzGxmPUucWVwMt5me/kBDAzWlndSmthAULIRro/o9EPJgxBQcJCNJp3uPK1ih5PzT9H2FwDYUryXu9Z+Iny5xP6nedOoybK48lSlEuuiY9Y3Ayak6yEcOy7oEduWRQDuWu80h9rfBeDx2i+GpYzfxph3r7HgX2fWvciSf3PZ948MfTZJans9oYHQRW+WF1pfYcgc4ZHq50j5a+YyUlEylyb/WOZCkGdppfalNLylYvhdP9Lmlkuhk0O5FDK8is0xokGKSnKzLRAG/ngNo+8inaiSoSliAIwbMbGDyP0k8CNbIn95h6xfEwVqFYDIVjqD9LStfl76Mu2zBF5Z+gaz/Qt8dOpv4CjJiDpG1rtWOVsoCVAeyFgJkKlleTZlsBzo6Nsq0KMkAiudY3aQoxVvSa2/kn41BhqapGglsK0DjJWeRy0ut4/y2uK3sSjg0adk1hgtrGO2dx4vGHBX/YNsrOxLg963cipaSqSUuLJP328TSA9Puhxa+CaW4TDmrMeVfQxhMuxMMeJMc6N3jqo1io/Pje5ZSmaNqj1OwazgmCXKRg0hBF4wYLZ/nnOtV7BEgXvqH6NoDi07/rJrpAHWZ+b+mEAGPDr5i2mCJDsYyUZWOpEdrCh3Ev0+6e/WLECM7uvF1iGOLj2JwGCiuJmN1XsYL2wklh+oAkPZ0GVO2dDboPYjNKYYEpmDPjOl3B9g+XtLFaXQz0FnfvVnX81s5MhNPOnyrWv/haWlJWq1Wn77f0Sh8NWWf/X/wyi+cXlk0Otx7p//0zs6x3/7b/8tf/qnf8rx48cplUo89thj/NZv/RZ33ZVYgUop+c3f/E3+63/9rywsLPDwww/zH//jf2Tv3r3xOv1+n3/4D/8hv//7v0+32+XjH/84/+k//SfWr18fr7OwsMCv/dqv8aUvfQmAz372s/yH//AfGB4efkPn+dRTT/G///f/5o/+6I/o9Xo0Go3XvY8fe8ZXD0cUMTDZVNjLnHeVhgZozrZfYaZ/FlsWaAULtPyF2JGhao6xt/QhKmaNYXPN28ow3kmYwmJf+XF2lx5hxr2ALz0m7A0pMLjG2UxPdphzLwNwvnsIKQNOdl5gQ/dudlYewq4Mh9PfQcDACjh3+Xtc7p/AlT1oJsd7uP45RorTaZcA9YLRO3zdHmowCGevC4Uw0SoFApJyrLqnqYwAuPR9pBtwevAKZ7uvYItiXMa5YtQpiLd3wHHTvcxL7W8AIXNeFJWUIwjA4c73eWTos7SDMCvbEjbXB+cZs6cpiDJd2aIsqsufFW0KeNieZF/5w7za+Q4nus+xq/xIuI7GzsTXRiunKzDTpWzz5AGOlYAdywo7llIRaRgIKUOw6hkQGKEut1QM71m1EnYsgwEoHWzBTqQRQmDebIQgvE3cUQXVMlKIkJwZ+MiijRj4MAiSwhH6NGQ2gUvKZJpU77DzpnT10Nkw9UxGAEEAY856bvTPcaF9mPXlPZTsWnrQpgNDM+rwdb2ssvVTx1f/NIeD+Ps8uyq1b1XqN8VqZQCQfoys1ZhuDaUPdrLsqPqcTVTTQ3ct8HIAzkp6YRU54HW4MAUIAlz2DH+U5mCWG71zTJa2srX6YFxBcsXBirp2eQOLlcBxZqAoAMcohbkV0XYPjn+e1xa/w/zgKrZRpOc3udI5tmxXFWuE2d6F8N0XxcbKPRSMMmeaLxDgM+JM0/YWeHXpWzw09vlw4Bndbwm4fode0KbtLYbr22spW3WQkq7fZNSZXhn05kVWQpXVTatnTf2W1CyaPnhK2akJQIDrsaa0jbOtl6hYIxyY+AyxvVjkXhRfXyGWO5voz6Y6jj4LpZbHAFkDr4YJVvT8Kp9f9VyrNur3VWmAfaUhFst/R56XJOKqUNfEel9BnDuOJ598kr/7d/8uDz74IJ7n8U//6T/liSee4OjRo1Qq4ezIb//2b/O7v/u7/Lf/9t/YuXMn/+bf/Bs++clPcuLECarV8Pf89//+3+fLX/4yf/AHf8DY2Bi/8Ru/wU//9E/z0ksvYUbv+l/6pV/i8uXLfP3rXwfgV3/1V/nlX/5lvvzlL7+htlcqFUqlEo7jxG4PrzfeV4yvHj9s/DHtYAlHFBm2pigZFZr+Ar50GTJHqJqjVI1RhsyRtyVJ7Z0IX3oMZBcDC0cU8fG43D/B6d7LWIbNmL0+ZsEud44ikUw727g2OPv/Z+/Pgy077vtO8JN5trvft7/aNwAFoIhCgQBILKQAkqJEUlRTaoumRlTLI43a5ribkjW2wnb0RLQ9DjcdjvCEwzOOtuXWtBe1JMuWbEqWKJGiSIIkAALEvlYVUBtqr1dvve8uZ8ucP/LkOXlvvQIhUmaDZCUC8eree/Yl85vf3/f3/ZGRsD26mdubDxIGReKD9WnNilBVGJrEuFFcJce4iUlggOxk5vpW2bgueMsVm/kqj/b+U/mVL0K2BwfYFd6KJ3xSnZLpGIWiJpp0/Nnv+HoprdhUqyyn5zk++ubYbx4+OePn0fZm6OUrSDyk8Mh0godP3euwma9wuPEwO6JbqhWuw5wdHzzJ6fhFfmTmF7fMzBWBP86SQMXW2e2CYWRzZQaBKKhArt1nYS8khkkFMqzUxQ7gzRpitWfuqygYX5vEmOXodh2UMtuwSVLW7cO9p0GRlW8HQlsae6swJYyH490qZJNWem8FjDnbHKUbHO09xpX4NALBDy3+d5XP81ZspsuY2RBxkRxavgOuNMK9F65/scskW/BgNZiT+7PNZYVhaxkLjGt93TbJ0k62SSBkv3OB01YAfiuwusX1Pt17jqPrX+XBhZ+hE24RDZk8LndbLuifXP56+/9Wk6ItlovzAV+/9Bv4MuK++Y+jyFFa0fSnAEjUkEQNudg/xsnNpwDY13onuxqHaPrTrCYXePLqf2axtp9A1lmOz5KqEblOt9DqC/Y2DnNb60FOD57j2OY3+MC2XzR97psxvW+BYb9um5y0TF4nx77t6PrXuTx4nYd3/d+umUSQ2CqkXtX3lMUsdPUMQiV1KB1k8nEW17VJc4Goy/K6tnL235YAcCd6VuaUOhGhJLk+wC32m6nk7c/4/r8+850zvn/vf/q2znFpaYmFhQUeeeQRHnroIbTW7Nixg1/5lV/h7/ydvwMYdndxcZF//I//MZ/61KdYX19nfn6e3/iN3+Cnf/qnAbhw4QK7d+/mc5/7HB/60Id49dVXOXToEN/4xje47777APjGN77BAw88wNGjR8cY5jdrp06d4rd+67f4zd/8TY4fP85DDz3EJz/5Sf7yX/7LdLvdP9e5wg8Y4+u297R/iowUn6oqyPdb84RPXbTLzz4B+2p3sBju48ToWfrZOmvpZXKdsiO8mX21w7w8+DqKnCOND7B96hA6dkBNAV4s61iyv1CFxlx9qRCl9KF0cshytI3WKcrBXUSRM/Ar2v4O3uf/LNILeHbtT1jNLnE2OcrZ5OiW5/qe9k8Za7E/Z1M6Zzk7z+X0NFfSKmkmpE7CsFxuEvQC9PIVmnKK7eFNZDphJtjByeFzeMJjJEKODZ9ECEnbm2GoNglFbVweUUgWVrNLtLwZ8xzaR9FlQKQ0oLWwgBvz1vQ9w9aCkS4IAbUQRgkiKqQNElSrhsiU8V6uBYgkM/fT89C1AKRErPUQy+vomQ5ic2T2U4BeXTcTXpEa6YKabiFGCagCmA9HFVuapuYZaLcqVtFaoW0lebDvn/vsWD9gO6C6zxRcm1BmB/uJMH8t6HDX7EeI9YhHLv5rzvZf4pbuA9fuG6pB125fa3NObnKY9S2elDC4URBryWeBfxBU7NabgZpJFtl5P6pzmpgsujKXICjC1Ol4OPp6+3XlDlB5eTtRierYxDiAcVvx3Xx9H0fXv0ovvVoB3zfrWydZ/cnv7TWB8evrHvvks/Rm+8E4pHxg56fM1/Y3m38gJZGKiPI2rdo8nfoiWiu2124p9zMT7eSOqfdzdP3r1LwW87V91L0WngiIZIPIb9H0phBKc3rwPK9vfhNfBIxyEzFajy8xH+0dv+ZvNhl6s3Y9Bwl3IjO5vL1mnqTlTXM63+Dc+gvsahy6dgLhMrtZDp4e9/O1LGs5eXYiElCBXzdZzepw3QpxnhxPsLWgN82qAkrle1Bct8CvZBAWeDsT+LK92UTw7dZ08f93sj5cE/qPoojI2o5ep62vrwMwMzMDGKB56dIlfvRHq8I/URTx8MMP89hjj/GpT32Kp59+mjRNx5bZsWMHd9xxB4899hgf+tCHePzxx+l2uyXoBbj//vvpdrs89thjbwn4PvDAAzz55JMcPnyYX/iFX+CTn/wkO3fu/JbrvVn7gQW+QggCvj/Y6+u1TCeciV8xZW/VgESPUDoHBL7wqcs2M3IbngjIdcrTm3/CSPW5u/mjxhosigyosZ2RTkBpRBBUurJsIjRcFkbwysFCqCrhorS0EhLqAaUtkN2PUmWHWgs76CTlvpmfJJOaYbJKooYIJL728HXAanaZFwdf+XNfm818jfPJMS4kr5PoEQ3ZZVd4G11vjhcHj4yBXoFkylsg1QmbaoVQ1Litdj+hrNP150wUxA7+wW4AhnmPlwdfL3XJdkv7aoeZ9Xcw7W/DUz5vxK+wll/h3Z3/hslqbOPaXSdpJaqV4UctJSLNwPfQzcjoboUwuSK+RDVCRKbIGgFCaYLlfjkI6G4LEacFIC4qtfkeIlOomRZyfYAOjAWRSHN06BcSCZD92LHLs+BUVSxwo16V/Pb9YmCbAHZus4OTdQaxbgOTrJ47mNtn0FqN2VCtXcduA4hEnV3NQ7zRf5FbZt+79UBor7erYZ8EWm4mv33OJ5OSJqta2cHensf1wv32962anUReE3aeABlajkcCylLq8lptpPtMKWVYfuufOpl8pK4DICwrpzU12aThdTm+8RidcIF2OFc9x5NgequJz+T5uuu69/Vbgd2t9uPs45q95QpUOvaV0LpKYJ3wQt7VOGSA4uRv4EzI4KbmPST5iFP951DkbItuYra2p2BOdTWheitA93oyGntu7jM4CXjL++g800phkdJLa1/i+MY3qHkt5mp7mI12k+QDU2BJxczX9jIT7azer7FnsJh8WxlCWXzCmSy672h5PySm3CXF9VdmDPC9QmPvmYm+ff7ss6BUJd1SznqTOQHudXAT797G7S/Kx3f37t1j3/+9v/f3+Pt//+9fdz2tNX/zb/5N3vve93LHHXcAcOnSJcCUCHbb4uIiZ86cKZcJw5Dp6elrlrHrX7p0iYWFa731FxYWymW+VXv/+9/Pr//6r49pi7/T9gMLfL8fm/D9MVnBK4PHuJSeohPOE/lNOvU5pAzQWpFnMcPhMqvJJXIyPBHQ8Wa5s/E+Ov4cAHp1zbg4WDZWSgi88QIGEwxbmXRlO7qgyr63RRcAwySWfrIasmE1iBfL2sQ2nWZ4UtCW02jdgdBnJT7P2eQYF0ev4YuQhqyY7a2a1ppEj1hKz3I+OcZafoVAROwIb2ZneJCWnC6Z/6Y/xWp6iflgNxrNufgoK9lFWt4U+2t3si3cX5VmnWSdim3UvTb3tD7MkE0SPSQUdc7Hx3hj9AqnRy8QiQYPdH6S14YmnJqJDFt6uPRLtgl+aWrKaItCWmKvT2hAqq5XwFtuDNH10ADgAmxkrdCA3qubZvnQhzxDrG8WsgJdgCYNCJP4mJn7LZIUBlkld/A8SIeVdMGynzYhrHgOiIsCGLWouse2SIadFLkA1/VOtdv0vWrAszIOdx2XrfM88FW13YmKarrZYHB1g1YwU4VFLSCVzn6sB7YLgt1qhO6AupXG0mXv3HLUk6xrwbqVMOyaqnBeFVYuWe4J4OlNABzpeAPXayZcLXX1vk6Gju2yVheaFr60FthsWbxjgvkVAgugPBnw7oWP8/TV3+fJK7/LfQufoBXOjO978nps9W97fdzrt9UE4XoyiMnl7PFfzwJwKyZ88vvJY3UjD9dpwvM51P0hbmm9i1G+SdOfQmpRgbA3Y/63et4mf3OPzY2avNk5OsmM2xq3oHRe2MYpNrNVzvZf4mTP9EmBrKG14mz/Rd63/RfMBF87rK/KqkiA1QiPgV0x/nmywIW291pV0ih7ju7zl+eAV02A4riadCpl+h43adQtR27b9a7L92E7e/bsmNThW7G9n/70p3nhhRf4+te/fs1vk9FwrfW3jJBPLrPV8m9lO7Z95jOfASBJEk6dOsVNN92E/x1qt28A3++jprOMWA1ZSt9gNbvExfQEhxsPsaN+q2Fpo9AM+jYUO0pMBzQcmcExitC9zXJ7IgqNy4LLtlh2L8vKymuiGAxKv+PJcJllNqIQ4sSwmkPDqArfN4lYdlmn9KTITVhd56Ywh/ZglG/yzaU/ZqDWqYkWu8Jb2RXeOuadbIpCnKWfrzJQG+b/fIMMA3Qi0eBI4wMsBHvMehPsUMubpiWnyu3dUq8qx1x70fW1n4vtCSFoelM0mQIpOBjezy2t+3h27U+4kp7hK+u/BcDO6CCz4c4xACCCoCiR7bCIVjZQyEZELtFBcd5pDp5AdeqIXJM3QmSSQa4RSuP1jayBJEekuVkuiyDNEb2CBW43Ic0Qo8wMWkW4UXeaRhqR5ojB0HxOcwOU0rRiYix7ZVkfWxHODmCtZnX8STruKGCBrGUmIycaYxOworAolKHMM6sU1OsleFNhwMuXPsfG8BLNaJZufQf7mnchPI/N4WWujk4zW9vN2bXnmGntoxlMFSBaVGHVItyva4HxMrZA0bKl16vSdb1nwn22XBBmS7gCZRlXe5+lqPSPtrkDd5ZRFg6AcTbLLR4jZUED+RXwE6qaqLksuqsrtsdfZtPL8X1NgljnfGp+i3fP/xSPXf5tjq1/jbvnPmb6B3f5rYDln6e9FfnEZNvK+cR+PwmK3Xs2eayTkgQhrs/EFvchkBGBjK4F0tc9VnXt30nw67attuOCSPezs29fRuxp3Tm2HaVy+tmqcbYImwyzHl+/8Bt88cKvEckG981/3CTsuXIc+9dOTu3EaStHBq3GE+Dc32xkESopg+9Rgl7L8Npr506CbR9hyxbD1jKSt3PT8Bchdeh0Om9Z4/tLv/RL/MEf/AFf/epXx5wYtm0z3tGXLl1i+/bt5fdXrlwpWeBt27aRJAmrq6tjrO+VK1d48MEHy2UuX758zX6XlpauYZOv14bDIZ/+9Kf5t//23wJw/PhxDhw4wC//8i+zY8cO/u7f/btvaTtuu/509Ub7nmzP9D/Py8NH6bHGze372B7egqjVKlZuFJv/B0MDPl1rsTiumFqo2GNXG+aGLKUotbuWpbw8OMHK8Bw6s0k+omQp9GhUsZlgwGySoocjdByj+wOzTyEgTdFpihKKdbXMi4Ov8o21z/LIxu+Q65T7Wj/OQ51PcGv93TS9LmASU14ZPMaX13+LFwdf4XzyGrEa0vZm2V87wpHGB9gf3UmsB9Rk89pCI9cLO05+v9UgaJsnx7xqdV6A12Jg3cxXuZKeoeVVHcWB1j14omJoheeVnb5lyLUumA0w9yxNoddHDGLEKDVMfK6NB29xjfNGgPYlMlVoz0NsDtGFVZFcHxiZQ5oZgNpuoj2B6ppkRyN/yNGtmtm+1Yx6nrHAA3QYVAmO9SKTPvDNd1bTXa8ZQG2t1Kwez64TBNUzZwGUXVcWuuZ6Dd2oQxigAx8dhdBpmWpzcWxAsJTk+ZDzq8/TG13m6uZJjl36Iq+ufplcpTx/4Q+Qwmd5dJaXr36Rr53+3zg3fBU8iaqFZptAPtc256Wojs33K2cKV9ZjP08ywNdjEEtZgQMsJ/1SXaBg/3flBtbb2lbKgiJsXEw4lDKyFymrYy7lCGrcB9oFR5NlZF2GUIrquFxgYScC9hhDU2gj8GrcOvMQS6PTvLz6JVIVM9Y8WU2OJvc3+Z55cvxawNbHaf89NukWW//vNivpkFtse/I+uGyvC46lHD8O+91kopn7HHw7YOx67LJ9riYJB3f5yfOY/L7YjvR82uEcoYggzaj7be5f+MvMR/uI1YBetlJt21ZxtOBfO8+VvXfSmdwWZEmZKJc764B5fux7VciuxjXsvnknw7AsqlNKjSzhYkGwBcX2uzcrA/52aZpS7vDt/P/nAc1aaz796U/zn/7Tf+JLX/oS+/fvH/t9//79bNu2jT/90z8tv0uShEceeaQEtffccw9BEIwtc/HiRV566aVymQceeID19XWefPLJcpknnniC9fX1cplv1f7u3/27PP/883zlK1+h5iT/ffCDH+R3fud33vpJO+0G4/t91BI1ZCNf5s7pH2VH49Zqluxm3Lq6MilN5a5mvWSQhMqrhB4Yn2nbDqwIXY/pdYE8T3m294XyeGqyScebYzbcyWxgZpNDtckgWWfEAKUVGoVfOCHUvRa1pI6XBSyn57mUnmQlvYgiJxINZoOd1GWLneGtTPnjs8VMJzy5+UckesSB+l3sDG6psvdtE4JWNs2p+AVOxy9y2H8fnvDJdWbKhsp2BUBtZzxpKzYZNrZA12GOSqu2PDd/i2pl5IInVj+LQHBP98cY0ufJlc+ymi/RjGarkLRl6goQIzIq5tf66kpRsaJaGzBaDDYizvAYmoS2JEMOjaeubtURKxtmgPG88VBiJsE33s7mHptS0iJT6MhHjFJEkpJtm0IkOTLJEEmGDnwjh9Da+EDXCtBYMJgizWHDFsGoV+dnw+uT4M+G2l0/6MBDF0yrtsxopiD0UTWfpbXjLC+d4nKv8q0+svMnOb70Zd5YeZpBvMogWUXpjD0L93HL/EN889RvcuzqI6RNj6ZYZFZN4Xke3sYIXbhfqHoDOUiKxM1Ck6g0atsM8vJq9X7Y43ZZ1OJ52zJEX/qUSgNGfb8a6LMcUBWYte/rGKsrKxbWspXuwJ5mVeJW4KNaEXJ9ADIAUsqysvZ9znPIxfi23ap1WQ46r8BFWYBAFsy9rJLipAfkbGvczELjJs71XyLXKUdmPzwOKvWbMK2T8oTJ5SbZ21xXz4wLUN9q1QJX0uFu93qy0ElGXzvX304MtgK3bwXsTiasuf92Ezkn/14vClFEQ64BzdfbnitXCgJQmnZtnrvmfoyvXfoNroxOsti4aeL8in+7ZYXt7pKkcvxxdb521fL6Fb8nSdW/QRGB8c09dqMvmar0wDA+AbGTbK3HKzTeaGX7H//H/5Hf+q3f4vd///dpt9ul3rbb7VKv1xFC8Cu/8it85jOf4ZZbbuGWW27hM5/5DI1Gg09+8pPlsr/4i7/I3/pbf4vZ2VlmZmb41V/9VQ4fPswHP/hBAG6//XY+/OEP81f/6l/l137t1wBjZ/bjP/7jb9nR4bOf/Sy/8zu/w/33348rjzh06BAnTpz4ts7/BvD9PmmDfIMXBl8pSt1ur8Cum+hiO7pRPKYj1YM+m2KT9eF5eulVcg9qqsZ0tIOZ+m6k51edR64Y5X2O9h/Hw0OjGek+ucro5Svl8QgESucM1SZH+4+PWf0IhGFc8REIMp0w0gMmp6zT/nZuqd3DlL9Ix5u9lqF12sXkJAO1wXumPk4rnB0bZLQFZkArnOFw6328vPk1Ht34Pbr+AleTN8hIacgO93Y/Sl00y45YFAkWOi38hp0QnbAMhdU2SxNSFsosY5cXOeV6U8E2riZv8LWVf48QAl9EeLK4Tza8Z+8XmAGoFiGspjYv9LNhCOnI6K9Hwyr7OQhQzRpCKeQgQUuJakbIjSFiY0CpgS3C5boeIRz/VDFMjEa4VTfyhlyRTzXwRyn4Hv7ldVSrTrzQxN9MkWmOrpl9y6GVLygDeC0QaRRyBKXRvmcmVxb0gjlnq+PVhf2a743HozyB8j3iwToXNl4mznps9i+zsXGWXCU0a3NsbxxksXsb3WABMTvN3e0dnLjwZXrDy+ydezfznZuZCraTzXc50vg5Xjz+Oxw7/vvFvfKpN+aY697MtoV30s2nEMBoV5dwdWTY8UEMSiPX+uNA63rh8Mlwc/ngOCBTi2uBnM1cF6JKGgQDfi1YLpN9nHVL5wu7Pw0BhXTFZsMHlR1hqYP2KnCUKwPw7THI4phkkTFfyI4qf2ExPomy0Q0pGKRrACw2b7mW2S6vQQGgXWmHy0i7YNkFwC4wdSah1TacbY1d2y3aVizwVj7JWwHeyWTeN1vnW0lktnJhgHHJg8uwX09m5X7v2kuWchaHiXafXXtNJ4FirvBkwJ72nRxfe5RdrTuYDrdXz4F7L8qJmBpn9S0wtgxxHJsJeLF9k4DmVXaBdlJf9Bt40oBcN+nVtVG070pBFqD0uO3g94LG98/J2m65/lts/+Jf/AsA3ve+9419/6//9b/m53/+5wH423/7bzMcDvkf/of/oSxg8YUvfKH08AX4p//0n+L7Pp/4xCfKAhb/5t/8m9LDF+A3f/M3+eVf/uXS/eFjH/sY//yf//O3fKzWam2y9ft9vl1Hrh9YH9/vl6a15nxynKPDbxD6Te6c+zDTesa88DZk3Gw4rI8srKdSVvvnOBZ/k410qawA15BdfBEwVD0SPaLmtdhRv5V+ukqWj4hks9DQngGg681Tky2G+QYbahkAD59ARoxUn1l/B3c2PkAvvwoIGl6bSDSZLO+sdM5I9RmqTRQZbW/2Wsb2Tdqx4RNcyc7y0OzPVB2lY4OlrRa1aP1slddHzzBUm8wGO+l6CxwdPk5Ddrm3/eFyOREGJcsrJlm2MoNZVYOfqyubTNoSgjwZspSfZ6T6pDLlSu81eskSO6eOcNv+jxL0CwAQx+NZ+LZzt8UmLEtoB+3AR0cBOvBQgUl6k/0Y4dpa2XCk0sbyrJBTaK8auEScoKMQEZvS1iLLyNt1oxfW2rC8kbFDSxZbaCkQmSZYGyKcZCSxMTCFL4p9qEZoiExbZjjX6MCrGGYoAK807hFCmN8k5JHHxvIpLvdfY+nqq4zSDWr1aVreNNP+NuaD3bRm9yL6A7Kds8g4M0yt1bAXzKcOPMgUuhGifYkYZWQ1yUZ2ldXeaXrxFVbOv0SWDmg1t+F7EaPRGkJK9m5/LwsH30PjzFoFeG00JQjGfYrdv+UF2YLNFKJiV93EOFdSZHWTVjO5lb1Zmaymxgf4STbSsrK2UMhY8lDR3KRB93htX2LXt8l35b4KQG6fLynYGF3h8cu/zW1TD7N36p3XMuHuNlwJiI24uBMIVx5iP7v/dl0oJs9/qzYpTXA/b8UA2+Umz2GrRCo35L5VmN3VYbvH82asrPvZ9gVZNr5vt4qbW6QFKsDo2sK5UTx7rHYfk/I2KenFSzx65be4Y/qD7GoVGfau/t0+w24hC9ej1z5T7r20Ol6rB44TA3qzguktIk9jvr1u5NHaJLqyCDdiVxTjycj44pVff1v7+B74f34G7zvw8c1HI07+L9+ej+/buT388MN8/OMf55d+6Zdot9u88MIL7N+/n09/+tO8/vrrZWGMP0+7wfh+D7d+vs7x0Te5kp5hV/12blv4IL5flFxVynQa1uPVJh8IgR4OiRnydP9PaMgut9TupevP0/FmTagfA6h7+TJn4pc5138FiaTrz9PP14jVAIDb6w+wJzK2PokacSV9g6X0DEvZWUaqz7ZgP4ca7yUQIbPyzX33pPBoeB0a3rf3wqY6MfZ0FpDaAacYCIRSaKoKQU1/miOtHx5jvgZqg+PDJzkdv0Qoa7T8GdrpNEJIxGT4V+hrGRSovrODjwUMaQq1CM9rsk0UMpR6jZu2PcxXjv1/OL/2PJ2V3eyeu8do7cCwozYMmOfm/3qtsl9qFtKBNCuT3EScIjOFyDLD1rnMCFR+m4OhSeIKPFQUIEcFmxJjpAtSIrIM1YzGwJbIFJAico03zBFZTl7zSafqSFuuONfQivDWB6h23ZTGTk3IXnvmnMy9UEZWUGhFVT1AjDLyhpFYDESftfVTXDz5DCtrJ5AyIIxaPLjjZ2lH82UimmrWEL0B2Y5ZvI1hyVqLyBkwc2WuZZwihjG6HoEnCIaaGX+W2do01CBvf4Bzq89xfu0FoqhLt7WbNy48ytFT/4WOmCLcfiv+8maVwW7vd2jCwmWhCzsQuzZM14S+C7CoJNXMQ1TAxILdYnIi4FodsaR6zpUjPRDSyBNcMG0ZMFVQS1vZadnlS0u24vvSLqrQbfoe6AlwqouwesHituoLBLLOenp5XNtpra8sUC9lArLalnt9CvkE4NjdUTCIvvnNnpPL+m7FgLptUq9rv7te8pvLkrpM4uQ+Jie81wu3T67nekhPfud+b/fvSk/cY7Hbtuu452j/bdn7SZ269eZ1k8gKqcJGugTAVH1HdX7us20rw9lJievyoLVJwHV9eUvf76xigm30wD6DdhyzESJ3UmK3bSeH0lnH7l8WMhzbD7yN21+Undn3W/tH/+gf8eEPf5hXXnmFLMv4Z//sn/Hyyy/z+OOP88gjj3xb27wBfL9H21p2mWf7X0QKn1u772V/dAek2oS/i04sC2BzeJ6u3oEoEl7ElWWE53FhcAKlFfc2P2wyjieaEIKOP8dh/+G3dDyhrLErOsiu6CCpitHo72rFu0wn+CIsJAei6oydQcKGRcYqyTks8I7aLVxKT3B88CS6ACLbgps40vlAodEtWF+hqwFCTwyI7iBkO3nfL4pP5BUw940EQUU+N+/5EV45+VlePfOH1IIOs/O3g5RoIYyWNk5B+gbMjVLIizBhr2+2FYamklrBqog0N2A3V2Y5+/9gWIGfElgpqGM0tAD10JQalgLt+6SdCOUL6htDEML4Ao8ydOjjbQzRoY+/HpN1I7KGjxcrtNRGotyqoQKJ9ARioFBRYEDRKEMWjC9CoEKfgT9kfXiG4WiVzYtn8WtNrlx4jjTtE4Qtbrv1L7GzdQdBLy7tjHRkbNvkKIE4wX/jSnG9PUTimUS+Zq2UbDAq9IBBYJL6MmE0yXnFsMogZPfOB9g7fQ+ZUDz52r9Bo5lu76Pb2o231EPXAgbZOqcvP04k63TDRabru/CZ0IfDuPWXJyuGyjYnqbFs7ucyWUgarXWSO6DDYefGClbI6q/OK0auDGdPgOfJf7vAzrL4JbCxYfcCnFu2rgAqSmX0s1WG2QZv9F4gVTHbmger7ZYA38pcCq3xZElmy2ianTmgWRfrKgN+3XK3vj/OIG91bu75bRUmnfxugoS9Zl373rt/3W1dM9lxrv+kRGayTdqa2eba6NnkLrcPEsKRvUyAdctEQwWUrZOO695j13H60flgN3WvwxOX/gOHOx+gEy1ybvgKG+kSdb9DzWuzvXkrtaBd7QvGi0sUjG4yXOdK+gbDrMdC8wBd5sdLm/uFE4nbz7plkXXRB1uway3PLNNtqy3a9YMbUOd7tT344IM8+uij/JN/8k+46aab+MIXvsDdd9/N448/zuHDh7+tbd54Gr7HWq4zTo6e51T8PF1/gbunPkzYnKY/XGJ5/TRr+RK99CojNSDTBoB2vDm2r93MYu0mGn6XJBtwuv8c24L9W4Le77T919jmt2qpTghFNJZoppMUETgdsGV/LVOSpIVTjtElhkTc3/oYABkZp0bPcXL0PP31dUJZwxcBbX+OvZ27CLyoYhFcZseW64RKCmEHndzodXXgI7Ic2RshB5Ld7cPM330rjzzzj7naP8n8lAEKcpQY4CEE2VQDkSlE6CNzBf1BxeLVa+jQR/SGZv8WiFi2X4iKMbTHA5DnCKXw1ocm9J8powluROjII68HBL3Kn1eMCj9h34NBPJbB7fdiglXD4KqaKZYBGPcsT5I3o4ItBu3B2eErtLM5Wt1dvLb8Vd449RW0Nh7Qze4Oss2zeLUG997x39Md1s2168Uly0uaIkZxdU62+ILVivYHpvhKmdSpzPVwQ6taI/ojhJTmnhQgQ/aMVZrWI4aJ0a03p3aipWHhUYpVeZWzG8+Vz58nAnZ3j7Bv6l5qfpssj1kZnqHrLxB5jYrBGo6qEDAUMgeP0vPUXl/LVhX3r7x2hb2TOVarZcwq9tSWEHclFVKYCY7WjCVsucDMBW2TTKicWK70OHbAVJ7Ty5Z5/tIfsJmuFNfE5/DMj7AQ7auWl4xv12qJJwsM2CQxtwy6BS9CUWqjpSgYwS0AZvlvOSHLcJjWyd9sezNgPAl2J/fpMva2uazvJJCd3MYk2J38a9ex0ST7efIewkQpYUeSZXX+QpRV68YiAGPkgFkvlDXum/tLPL/6BZ5b+3xxuJKpcBtXh2cY5j1eX/8G75j6AJHXoOF3qfsdMk9ztXeU9fQKG9kyserTT1fRaAIRcbL3FLdNP8Se9hEjhSqr2hUTHls23a1a6F6zImJUSh9cKYk95+9TNvQHpR0+fLi0M/uLaDeA7/dAy3TKlfQM69lSKSM40LqXA+Fh1pLLvL72BVaziwgEbW+WrrfAYtAkFDU84XMpOcVrm9/k2OY3mA92s5mvodHcXL/7/+xT+wtpWmtWsgvUZRuVZchC/yoCfzw8aJvV4U4ky9jKaUJIAnz2Nu7kQnKCyGvgy5BUxZzsP8PpwQvct/Bx2kGRRGeTNIQogK8zYFrmQWtoNYwO1xPGRSFTqE6Nq0uv8urZzwHg+TVU5CP7Cdrz0DUjDZBxihhlBvBAxSgLMzAImzjiBQZcRRHEMWraSEekdX2wA0GaAiYEqKPQeNY26iAN4NaZRI4yVOibfcfFQOgyfEobBlrKsd/9TQOKVcMY3uuCAdWhh0hyNvoXePn07xeXzLhe7Nv9MLsW7yWIWgQxoBQi12TtGkrHxSRAmXMemeIYuuGDJyq7Ncv+WQBQgNsyPD6wjhXFvbETFJWXCX4ir0LSoazx3oN/nVP953jj7NdYWz/Nu/Z9kkDW6c7cCsfN8b/7wM9xpf86Z698kzNrzxB6DeLc+GHvaB7izrkfBQvRrZ2YBZOlJzbVRKmUZ+SVnMCT5rkpdeQF4CtZXFk91zaLXmvGikDYZ9T+dTWXdh03XF2+N3Ydh2m17K0W5HnK6bWneH35UZpBl3ct/hStYIZQNrjGw9c2K/FwfarH3pusYoHt96nzDAKojLEkNuEwqfbeuu+4q0MWYpwZt8fkAuHrSSW2Ynbd3yx4c9d3k8zc9a637a0KpUw2ux8rWbDrTbLRFgC6YNgu4xZz2arkryu78DxqosM9cx/jbP8lQLCrc4eRmGlNqmKeW/4cL6x+vlxloX6AXrrMMFs3Lj/BAjPBdnY33sH25q34MuLV9a/y6upXiPwW28L9FQsdBJVrgwW/Y8cmqoQ3e05JUp2TC+K/F3QAmu8MoH8PnOJbbZNll9+sfTt65hvA923eYjXkyc0/ZKDMg9Dx57h78Sep6zrPXP1DlrMLdLw5jjTez1ywG18E12xjR3gzuc44lxzncnKKrjfPLbV7qH+LamffC01rzdHhNwDYEd6CgBK8jg0cltGwThflACUQTmZ9qeUVgshv877tv1ANIFJydvNFXl79ErEe0g6CcpBMkk2OL3+NvlrnzrmPUNc1A9I8z/jPFgljBIbJikXMy+d+n7X+OXKV0G3t4p17/zLt7i4oQKRqBHibDnvnCQN4ssywl1qjug1kb1SyyKoRIoUwiWOe0ekihAHDk0lMthBEFJYA2YSPM5N8JhTeSq/0ZzUa1kKrW7oueAb0FslIwvFvtgyyQBm9cmL235zeRau5nc3+RbTOObTro+zc9m6TQBenqJphbVRNkkceaqaO3/fw1ofmGOq10nJMSwl1UcgZvHFQUlaMs9pW58GRogI6ULGRboKY51HLPW7rPMi2d9zK00f/Hc+e/o/MNfZy8sXHAJidPUj+7tu4+fX9LLzrQ6y8+gTJYI0zF0wVpDBojCciCsvIS4elK545+9nVvRbHqqJgLDGwvIc24S3LKjDtShVgnGG2554rcz1s8QwhwXdATikjoGLe8uo+WyeG9eFFXlj6HIN0jb1T93JL90E8e27mhbpWLmBeXAxw1uMTAZcRLrXAxTVyw9VW2mETWN1k2Umi1mWWc6rjH3NvKI5FO6znmJZXOtdBVdt1nykLOid1/naCY5MKJ8FpeT2cazMJfifbJKC2fZsFw/YZstEty/LaY7DXDq49LvvZ7tu1PdMa34vY33qnvbjl8QYi5N75/5ZeehWpJcvJWU71nqEVzHDPzI/T8qed6Ft1Xu+Y/WF68RKvrnyZ9uwUTX+qYshtJM0+wxbk2wm4jfTY47TaZXsu5SRkIsHwRntbt6mpKd5qhbj82/BovgF83+ZtPb9Sgl6AjewqL1/9U4SGjWyZdzZ/hHl/97d8SDzhszc6xN4iGe17vWmtWcuv8NrwKVbzS7yj/TC767dT+gu7FajcjPTStikfH3wsi+V2+LaVwFfQikw55430CnN6r9E1ZinPLP0+a/FFAGJvRF20qsHY89CN0Owj16g45qkT/4446dFt7qTXv8ihbT9Cs7PDLJ8p5CA2LGRmGDYLIlnvQadVAj87CIjMJL+JzGhp5XofssLP1SbG2XNxE1eCADEYQtAqq7+JgkkUlmHVuqpshjCyiH6M6jYNE1sMQjrw0e0a5BqRZaa4hicQfZMkp2oeQoGXK44c/Bkee+6f4cmAWtBBxCl5u0ba8pGpNgl6qSLYiA3Q09owyIDIjbsEWpuqf0KYMsxKVRLS/sCwfn4BblxmEQq9oGU8C3mKvUZWTlEMmiLJmaovcPfeT/DM6f/A2sYZdu98gAMz9xM2uvB6TH9PAw/YcdN78Xoxa+unWe+fYyNZIs4HLG+eYpCtsqf9TkK/Zp4Nb4INtSBQuYk4BmyVjLcQRuPsAqbMlR6ocZkCmHMTDpvp6o5LkJVzDTM7FiVxQKjSaKk5vfEMx1e/Tjuc48HdP0+rvb18DseA+yQj6rZJsLsVU1t3SuW6LQwrRt+9t1sluNnf3UmFC8pzqgmKuk7Sn+eANnuvxgC+BYrFsU9uwxZvcY9h8npMHvf12F67T6jYXqgiCHCtxZr9zu67TFgU4wy1u337v9Xd2maTzVz7Ra0RWtPxZ0FrWsE0e1tHKt3tmKOEc1ye5J2zP8YTS7/Ho1d+m/3tu9nfvhcfOLb5DVbjC+xo3MbO1jvwrGbXSoHipPLttcflTkCcZ/bt3m4kt1Xty1/+8n/V7d8Avm/zNufv4mDtXdRlm64/Ry9f5WT8HEpr7my+j4Vgz//Zh/hdaZlO6Ofr9PIVlrMLLGcXSPWIljfNPVMfZb621ywotGFw3Q7PTbSwLIlrR2YZkckSoW4osgCAw6wHwOtr32A5PkumUgbpKmk+JPQaJPmAbn2nAYdxZjxxpQ31G5D22rnP0x8tcf+tfxUvE3z99X/J2ZXnuK22YECdHWQzZZKwirK/ot2EbhvtGaAnisQ37QlUp4F3ZQNxdc2wvGFYnKcDclwmyLIhxfmLJDN2YoWmmOHISB9s5nWel+FnEQNSGHBtLcs8aZwzhAA0OjJFMmQhe9CBNJIHoUlbIY21Lvce+nmOnvwjnjn128xO3cKdt/4MQvmGRBKAL1BegIxzvEECeW62m5sBu3SEUMqwzlqb+5QW51+E811QbEF95fGpCpA7mXSVV4lgvgdpznR9Jw8f/n8wmvJpbkrEIIFejK75+EOFPzQTD5nDu458irWLr/Ls6f/Il0//r+VzfGLtSRbqB2jV5mh4U8w0dlMPutWDvlWxBteVw21WeuA7iWGevHY5y2xLAYnRmY9JIlQhvyCHMDTRA1uO2i0vmxkGOFUxL139Uy4PT7Cvcw8Hp9+DDKISBOnITPJEklcJnfYYBFxTjtllYG2lOPvMjpIKXI2BmuLeu+yrnaS5ia1QySicREEzEXLYfteqUItxBtks5FxPB0iVgEtUzPX1PICtwwBUQDNJuKZN6oO3ai5IVQ6gdyf7drnJSa/9t+uJWwJSp7+AKvFtEkRbz2fLgFtpgpsoN7kf+85NaprjhMhr8ODCz3By8ylObjzNuf4rLNT3c7b/Ei1/hlfWH+H4xmPU/Q6BiNjTPMxi8yDCHr/bv9trnKbjx/G90L6PwOt30h5++OGxz1/72tf4tV/7NU6cOMHv/u7vsnPnTn7jN37jmopzb7XdAL5v8yaFx/7aneXnumz/QIBdy+heSF5jKT1LrAflb11/nt3hrcw19jFV22kKbChVORfYDljKksnVcTJWTc2Eh/PJnVYDgZtg4gyii9F+Dk69h2HeI9ExtaDLXOsAi1O3sbbxBq9c+QJXN08wO3UL1Bwmogi1J0mPM5e/wYGF99CJFtANwe2LP8Krl/+U3uAiO+q3Mtu9mQYtqEfmPBp1GAwNqAwMQBdJhkhystkW/mofb3nTDKIuuLXHvxWTU+pJU2gV5YrrEV5viC2aUW7DDiZ20lB33DrSQkoRp4U3sBlYRZwawBkZsO9txsjAK0L1BpRORzu5//a/xrnlZ3n1zH/h0tLz7FJ3gyeMj69SWBsr7QmElobpFcIA6cAzhSXirARxqh6Y5D+tUQ1TnKNcRxQuDp5xfTBJYQWbPN00k45BVV5XNWvI/sgk/LUjgzH7Mc1NWUwWUnTNeBqHq8YzWEvQUiLjjNnmPt679xdZHbxBO1rA92pcXn+FM73nWInPkaoRAo/37P4rpugKjIf9y2en0vlWdk3FRC1TlJZfgaPz9Mz56WaE6McVqAwBpdCNyDDzYLYbp0YXXiQ8AkUREwe8epphss5TS58lzvu8c+FjpjiFja4U74y4nnWU3upZNBELXTwnFBM/LYSZANbC6jlzga5b4MIFgJMRG8vqjgG+4rEqCzA4y5aTYD2ugZ6UUgh1LYCTjLPp7m8uEHe/j6JxMF+U3x7T5F4PtJWJW3oc8Lsg1QW9MM78ToJQ60vtLmtZU/ccxiYVxWRLeePHZn935RouG+0edzGx9j2fg/V72VW7jdd73+TK8CTz0T6OzH6EJNvk4vA14rzPZr7Kc6t/QrP3BNtrN4P0WIsvMBPu4sDUu661afseYXxvaHy3br/3e7/Hz/3cz/GzP/uzPPvss8Sx6aN7vR6f+cxn+NznPvfn3uYN4HujfUct1xkCiRQSpXP6ah2lFW1v5poiFW+lxWrIueQYF5LXGKgNarLFjtottIM5mv40Ta+LL8OKVRjF5oW3iQ++X3lCAmQZOssQhSm6rcQGjA9skx26O6g4ySpeEHJg+n4nHFowGSNo1A5yVHyJp8/9R6KLTfZ27mbn9BHCZrcMRysjMmR9cBH6I6SU7K3fQXP3LCeWvs7LK3+Gt/pVPnjr30KsFRKXIDDJXPWAvBnir4+Ki5/gn10qQGkBVofFbxYAuNnZjXp1PkJCUJxvmiJ8D+/SSqGBdliUkVNhKTaJI6XMIlMmgdAyaklqMESu0KFnJJyhb3S+hQyjbMX2lUo5u/RNfL/GXOcmA7p0AXqglDQYzbHREKtWZKQYmTLb901xCjmMjdVa5BvmNU4N2JUSAs+w2hiHC90IIQ8Kn+Tc+AdP1aERGveMwmNYyZoh+4QwgE6CGCWoenEMI8OK+sPElHNWoH2Bwkf4kshfYNvsImJoSj7vm3oX+7r3gO8zSNb46hv/G6fXn+LQ9o8ghSzdNbLpptlO5KE8Qe38Btr3CxCH8ViuN0yREqUqa7goMN9pDdoUMiFySrjiQRwjhg6Y8QrNpC0fXYA3keuqSmCespks89SV/4wQkgd2fJJmMF3pgKVHOfK6EqIwMBrrnIqhxvxbN81kQsSJuZdWY6w1IleFgwXmXCybO7l9t7nsqvt5bBIxwYja5dxtFhr16j1y9mEBlH3m3X2qiT4ErmVQJ1lgt8VbsL/Xa2Ji3y5gtfu1+7Z9gWu1aLfhLu+ypq5MwF6TSekGmL5POVEkKytLkkouNEki2P1MllIuzqHhT3Hn7I+O7dePZrgpfHd5PKuj85zuP8+Z/gsA1P0ux3uP0UuXaHpdZhv7mY62V8ecvolk5EZ7W7d/+A//If/yX/5L/spf+Sv8+3//78vvH3zwQf7BP/gH39Y2bwDfG+3bbq+nz3Gi/zQAgYjIdFKWJu54czzQ/ok/1/aUzvnm5ucYqU0Wawd4R/19zIQ7KfXLW1VIatbNgGE1qKXlkSiZyrKrtl66W7EvthWMktbKWHK5WmEb3rPL2XBxZBhMfxTzwPwnGGTrLKVv8Nrqoxxf/RqLrYO8Y/tHCL06Deoc2fkxnj//+5xce4Kbpu8Hz2O2dYC2P8vXzvy6KSIyGEKnZRK9fIkKzbl7m7Ep0BB6JmHOXDgDSMOgAqKj+NqQb5yY66U0RIEBhJ1mYYOm0e2m0fsizXVUurARUiXopRYi0tywra40xDKQaUY+2zKASxhPYUEBzIpQrNcblYNa7ueM4nWyfIRW2rhYJEWlvEJ2IawVlwVpUiLSnHSmTh5Kgs0MOUzQvl8CbC0KOYhSJfC2kgeRZGO6SF0LDaNc3FtV89DSR2baXCNZJO1JSpAttC4TCq0rg39hlXyxi8gpC3bIUWKOI04qFjEwoLkhpjk4/zDHl77KRr7CHQd+Cn/3Tvx+RrBiIhyqEZInQ1SrgQo9vI0YHZnEQplkpgqdfRdybRLgfIkurpewMgbtMMXWvsqyiqX0xUxYRKrQzZrxj/aNf/Ryeo7nLv8eNa/NvTs/Ts1rVe+EfQZcCy43rF4UzsH3SgmQ+R2jcy4mVlbHbsG/ZX7L980CdPt5ElBOAt5JRtb9O7mOC5An/WxFER2yjLX0xj2Dy+0W27OJWC67rZ3P7n5tApqVCNQi8+67251kyd+s2es+CXrdc3T/7Z63qyd2bcXcZDchxl0krM4aqvtvbdvcRDr7u7tPtwCHTb6zy1nAbJ0m7HIFazxd22nKJgsBcYKWgjPDFzk3PMrV5Byv959iOtrJza13MRvtIhdvf+B7Q+O7dTt27BgPPfTQNd93Oh3W1ta+rW3eAL432pu2RI3IdLJlRbWN2BQMuKPzfmI1IJARbTnNycFzrKWXsFmXb7VdTE/SV2s8MPNxuuHCtcyD20lbf0oLzpK0ki64YM+G6ZOkGuBdQCgExj/WN8xwwQQJMREKdH0hlazYVMv0FExpO5yj3dnJ4vAAB+ce4sLKi5zoPcnjp/4NN80+SJxtMsqM1dUwM4xuplOSwSanl59AILhv73+HkEYbbEGW108M45kY3bBIssKH2MMmQ+lGiFjdrM57MszpSegP0VMGmOp6gFzrGw1u5BuwVq8VDhCqYs6lNN+XQFdXmlrfqyonFffG2xiZYhW+ucZlaWIXTJTeoD73H/prPH3s3/Lca7/Ju4783wksIPVAJLkBP0VZZdUwcgpVM/cpWh6Z3wtwa/eHMsAp69bw+gnkkHUi5Cg34Dg1Dhi2qpxIMQxv5CMyjap7KKmRcY7yBV5uzk0HEtmPybt1ZCOEUYJIKAdu72qPfK5N3ggMM690VVwkNHIM7UtzLlNNdmz/YcJ9t/Dac7/DC6d+lzu2/ff4RChfclmd5fyxR1lee409+9/Pznd9lGaukQVwNABdknYCZG6O1V8dlNZyql2rpKxSlkx1WRRFi0rPWzzjIsEkSw5io09vRvSGl3nmzH9guraTuxY/RuDXxu/jZHPvc6l9tTKM8fdTxMaNQvsSYZVHzjKW+Qcq+YOddDrs9BigkhOfta4s+LYCkZNg1O1n7Dl60lxIO/F1Qa+1XXOBtnV8cIHw5PvoglLLlA5H1/Zfzvty3Ws9+e/Jdd392m3ZPtQm3LnXxf23/W1SpjC5jP0uDCvt8lb7tIDaRpVcYO6UmS8lWxbwlsUogmsm9UII9nXuZl/jTrSUXElOc2Ljm3xz+bNEXpM4r6Ryb9umuSF12KJt376d119/nX379o19//Wvf50DBw58W9u8AXxvtOu2VMV8eeM3AfhA9+cIRDj2+67oNpays/giYFfzbgMchWRv7Q6WkjNcSk8yH+wGxJY2a5MtEEau8PjK7wIgkPxQ9xM06jPoUWzkCrYjtZ1vlplQm2Uc3Xr1mcPsWWlENqE/tEyDECXoHUuYCa3GsGAxLKDM82oAzrKKBfFkud8wk+ybeReLrZt5YfnzvHT5j/FljcCrIZBcWH+JJN3k6uAUSucIJJHXYjW+QD1oIoTAW03RBSMmUxPGL/dd6vQUSB+5PhhP0pscCJMUPTdlGNBBbKLmU03DqFpmUFJJJvywSljyPZPYVrCvuhGVkwFrU1ZeM0DGKYwKEFqGghXa91HNEBlnBnBminpthiO3/SxPvPgvee3kH3P79g8j7STF0WmrZmhcJ3Jjt+ZvFHpcTyCGhY439A2zC2gp8IamnLOqh4hCbqIDz1SqyzWqZqQv0p6DBqE1/iAtr58fZ+aaZQo5HKEaxqFCxmllLWafK63xLq3i2VA+lGAs79ZJOyFZw2PY0qw/9mVOvfEl8iwuVlU88cX/hXcd/mtcXn+VM2e+QqOzjbnZ23jj1JfxlceufQ/hRVHJTmtP4sWKPJKQxOTNEO2D7jYNU51rsnjA6upxktE6+QA87RMoHy9qMJXNEszMVk4ZhXxExqkBwplgdXAWpTMO7/9LeI0ubFqpzUR43JkYlaOwtb0rCm0IISo9r9ZmwjVMxibIYmw7jH/vAtKyrLIYTyjDAZba7PeaaJELat0yuC62tM+tBWi6YOxLACsLwLvFhNsej7V/s1ISC8AnAelW0ocwdJIwqZZ3AfAky16C/wmQPDlBsX3jpFvDVs2yvO5ytiqaS0LY66RUxWK7kw93e/ZvyejbJEhnkmQTam1+gbsN2x+7x2RdWKRksXEzC/WbWBqeYi2+iE/A8c3H3/w8b7S3ZfvUpz7F3/gbf4P//X//3xFCcOHCBR5//HF+9Vd/lf/5f/6fv61t3gC+N9p120a+DMC8v/sa0Gu/Xwj28fLGV5mS80TU0eTMiEW2Bft5YfCVctmaaNHw2kg8JJKabNH0pmh5U4SizkZ+lbPxq2PbD0RIFLUNW1WL0LYilZ3lNxvjyWhQMQhueMwFsnZQUMokull2sehIhfWMhEoy4MkS1I8l03gOqLYaOzsghwHWZ7Uu27x74eMkakgYthFS0stXuLDxCmvD8+xr303XX6CfrbGUnObF8/+FwcyD3DLzHnPugyG6UXfslDzIC5eDRn3c39QTaM9DuuFS2wrgIJdW0dNtxHofWRajUGY7RWUz3WmadUInO1wXbg0U7BtgvWCt/hYwhRaEQEcBykoihIDcsLLe+mAs5CpSQSeY47bdH+bVN/6IfrrKQvsWZpp7qC/swYtz5OaoYI2lCfWrAt4oZb632yoArMi1OQ4FMlGoyDC6RnuskVlG2q3hjTIDerU2rKNSpUyjTLDTpoCIAdYeOvDwBiZ5TyfFc6GLgduplCWSnGRHF3/TVL/TQoCG0ZXzHPvSf2Bz4wI7d9zHbG03XrOD7Cc8ffL/4MkX/gUA+w5+iN0H3o8XK04d+xwnz3yRU2e+xO2HPs62hbtAa/obF7l84RkuLT1PnPYwV0VTq02zfd8DNIMZTp74EwaDqwjhGS2+ykpJkkDQbu2g297D/vn7CWZnEVnh8hEarfRC51aOiT/mfP9V9tfvK/XEYyy+fV+sC4Z9H0eObrXwD7YsrrY2ZYFfSRpsE4LS5iyfANSuXZi7bYUDgnV1LCUYM+4cZnkHGE6WmJbXAWr2GCzIm0yYsvIHUUzWSos4DVKPb8uNILmeu5aB9f3x39zj2QoAu8c6CaBdRtxei0m3A5cQmLwXlqW1INb2dRaMugUjoFouCKr9JEnF0royijG5lHNM7jE6Eofy2lv9cJIW2nRvXE+d54gsY6G2j4VgN5nM3/bA94bUYev2t//232Z9fZ33v//9jEYjHnroIaIo4ld/9Vf59Kc//W1tU2g9+ZZc2zY2Nuh2u/xw9+fwtwBAN9oPRst0wunRS2zky8wGO9gTHiLVMY/2/hM12eJd3Y8aZjdXKJ1zJX0DhEmA21RrjPIeqvhvqHoM8vVyAAaY8rexP7qDmWgXQa3QEFq9mjOz18NRBX4bdSecmY138J5XDMJ6zDZIJ6lxdoAKoLqdpu3oE1tiVFSAelIjbIGvXc9q14SoksTqtcqSSnrV9izY3CzCcL4HQnJs+RFObTzNXfM/xnz9ACPVpx5NI2XBZCdJVcKzGCxU3bAv1sFAXF2rBle31aLq+G1lpDKZzSvtyXTdJHmpemBAZnF9jBa2AC7F9bLgsCpJLMYYNlVobUWmKjAap6UkQUeG0VFRwMqVVzl6/vMM4zVAc/OO97Nv8T0l4FaRh9dPTbELK1XxZeXr65Yr9bxSZmEt4MzxSWOUkGuDj0KJUBo5ys22tC6vo21yY1gx3WCSyOLUuEBkGdadgJFloY08RAeeAZBpTn9whRcv/hHrm+cIozZ3HPk5ZvztaF/ir/RRrRrrw4sMwxTZblGf3Ukw0shU4w0zVtILvPL0vyOMOuw98uOowYCjz/wmXlBjftc76dS3k5MTDhSrvdNcuvoiGkWjNsvhW3+aqVEbkeVoKUlmIrLeBsvrx1nrn+Nq7wRawrsP/3XE7kVqS7G5JoMELSVPnfpNdC3kXdv/srmGkWfkHD3zXsnN0TjrOsnQWX2zW1RBabD6autTDUViXvG7Bax2G26I3RbisNfbtV5zl3cZW9+7FrRuxbzad2sSALufy9C/Dd07WvTrlULO8qq0uWt/5rrMuMdhQa8LXr/VkD0JXKEC9PZ3F1xOSiHcqJo9z8myx24/uxXQnkyGs8tY3a8bmXJ/dz15y9wCb1we4W4zSavfSwZ/AigDWTLgi0v/P9bX17+tSl//NZvFVwf/1mfwotq3XuE6LY9HHP9//09vy3P8i2iDwYBXXnkFpRSHDh2i1Wp929u6wfjeaG+5XU5OcyJ+FoCl7A2mvW10/FnuaX6Ib27+Ea/3n+K2+n0ASOGxrX4TgGHEXNP3oimd009XifMB7XCOqN6tdlayqt44syGEAbs2dD4cmc+TYVAwy5SAU6LTFCGkAb1jA6SqmAy3A3VLZNoO1W7XAlxXa1ZW/LLawyKLvT+EVsPIB1QO2gmX2nPV2izvSW6Zfg8jBjy/9DkCWSdRAzwRcvPMA7Qb2xglG6yvXqIVzrJn5h6EBtkbUdoRTdq02X24esJcVdW+7H3xRZUkqLUJeQ9TlE2EK7ajfZu0RnU9dMGwwthEQkXGOcF67tpiFEBlfVaAVm+UMR/tY+4dn0alGa8vf43Xzv8ZG+lVdr3zx2irLjLJjbY1LIp2FKBce57xLy4cDkSSFYlUNsHGMLgyzSE3SXR5zcfvJ8gE46BQ903yYFpNbrTnVb7KuUJs9KEW4aV5WTJYd5rm3AZFWVXrf6s1oj9CpAHpXJNXT/8ZSbLJ4YM/zWLjZmTiIdc2jSVarpGbI1qzu/AWIxoXR3gnN0mna4hUkdd9sntuIns6I9k4z8tf+zUAGjcd5MBH/ypzR3O8Qu7RPxwxM3ovB5f7qEEfFmYQQpKvJXhrQ0SSEq3EBM0ue8JD7J5+J8nmGl8/+6957Nl/yszpW5iev5WZqZuobVsgGCn6w6tEWYs8hHSuSbiaGNbbN/7MWauD10/xNkcVGLWeylYiAOP6T88rQv8+xCmiFo4zv14RYXGeScsY2okZnnT2ISuw7PYFwlQaLG3SzENb9UnaAbT2r8s+2u+vsVKz2l77rmO+04rS9cV1f3C3l+XjvsPICkRawGvfuTAsLOeSa8HmViB48jsX5LugsohIlffGlSXYbbjgdysgayUTru7XPUaXpXXviVJV5TUw52bdY1zw6iYk2/7Nkhp5XpEI7nZd27Sin13Prl57nd5urQgOfEfrfx+3RqPBvffe+xeyrRvA90Z7y2022Mkt+l4EAkVO0zNAtePP0vHniPXQ2IXBeKdvNVo2zFXM9CU+LWZoedMGZAxHRr7gMHZjTIHdDhibsjRDFKV7r0mcsEyxPRaljIzBtfVxBwG3E7aWXkpXdk5RNA7eh8OqE94q8SQoyvziFRWbnMSxclCxyWNOmDbLkEHIHTs/Rk00GKpNtjUP8tKVz3Ns+REw6hPqwRRn15/lfO8l2tE8NdGkEc3QDGfp0EFuNdhZpwa3FOhwZEB5mqEbUQn0jPVXXpbK1aFvPDsL8KpD39iZTbBGNjxugbMoBi2RA8qwwSJVJSusvQIcWxBcMFxSehy4+UMEO3dx6tnPcvnz/4jFffdxaN9/g6r7aAH+UBjwJW1Z5ND4+qa5cV/wJSItWOlcI+KUTKdIL0LkGi/LjHuA0OisCK0rKrCrNXIQV0whmGe6X8hIapWlmfY944Sw0a/kIr6EICLXGStXjrK6cZr9+3+Y7a1bzXrD1FizAf0DXYTSNE6uESz30bUQFfmgwBtleHHOwtMZtbs/xXC0jN+eYn14gdmFQ7SP5nijHC2N/RlAsJGRt+sEMkD0Ff5Kz7heaG3cPzY2jcylFiLijLA1xYM7/jsu5ae5snGcE8f/iNd1jh80CFvTxMk6cbLO08f/D+6p/SJIwXCxgd/PUZEkXI6Rw9gA18gAHZFU10EkeQVoXPCrtXG8kKKaOOXOMwsTmlYBShhv4sCn9Cd2de02ymPfM7+Q21iZRQnK8nGgtxV7vBWrmaZO5KZ4pyzbi6MZ9oQDoAsG2PcNKHbPyRYSmQDrJYgr3TGCiuW213ISiNpWlvHdgv2119SdkNh13G7M7UOhmjzba2alGC7Da0G7ux8LWG1z17ERp9DRC1tA7soXXNbZ3i/hXAspTV9tGWPfJx8NuJy/wcrwLOfiY1tfhxvtB7LdAL432ltuNdnkQO3Ilr95BOQ6rQpEQDVwCDFeJS0KTYcnpam8k+VoXQBT28FNygkCB1AX2xSu04CUZt9gqk9ZEG1DzyUTN8GGWtBrAbv9zvcgiaFZaF3TFIbZ+EBgj9MeVym5yEEU27BsR5qCDkxRgM1hAeyL5BIbVnUGYS/JuHXm4TJZbm73p9A6J/UzQtnAq9W5unKcCxsvs5mucDU+RbxmHB08EbC/9U5ubtxTHV8tGtcSWj2vMIyajsIS8FlWrEoSM4lgpWwg8ErQqxpGpylHGXkzNP6rUhY2WhWjq5pRqclFFkxsYu6XHKaoZlSC6tG2JsFGir+ZsC+4jV1HfoXzy89z/NTnGA5XaHQW2bPvYWqdLvFMiDfMkbkmWBmW19BYllEdC/D8if/IlfVXadbnadTnSdM+nWiRbTPvoFvfhQg8A7yhkm34HmIYm2tlXTx8ryqSUgAkERcMoJ1A5Tlic8im6PHMxc8yGF2lHk6xK9mDXB8YyYRvmLLh9gbeSBFd6aN9n3SmTtrxUb4gD0GoAJFDXhMEo120lxdBQnt6N0JBHgEaZGJY3/Ypw1oHQpDM1vE30wL4j8CT5DNN/KQo8LKxWQLDut9hf/1u9s3fTyoyzl15itcu/BleqqlFU4ziNUTgk9c8ZKoIVxNGcyH+UKEij7zeRmaq1ExLmVYAxzYrAapFhqm1E1opi8kfY3Kash+xUQw3mmGZUgt8pDBRhFITrCrJkgWaZQJqXmh+M0fv6oBnGE+scpIsS7CYpJWu1xa9APCoIjgWEGeFFtUmwhW+12Z5b/w6uQm5rrTKTuyt24oLQG3/WAJPVbDfrqRDU5bphoqYcIt12Hvk/rXNHoM9Rjex0U1GdcG6ywC7zCxUvuJpVvXDniO9cLXNNpHYbrPYl9YpAm9cDleMD68Pn+HU4FnqXod9zSOc7j/H27nd0Ph+99oN4PsD3EaqTz9fZ6Q2EULQ9RZoyA5/Hgsy2zzhk+iCCbMdbC2qwnM2s9oz7gAEQcV+6NgwgjaE5coQ3I7PAb1jOrSC/RC2ClKWGdBbhPJ1mkF/AFIY2QWYwcMC3sjR6IZhFf4PwypkaZPebIKdXd5KHvIidJlNaNvs4BJFkCSIvHjlZCHhcDO3s8wMBm5CUHH+vgzArxHY8x8mzNf3MR/sMttKUzKVspks8Y2rv8uV4UlubhZhoVbTHIdNgvM9sw8LzPMckaSINEM1jS5VWWlCnBb6Wm0ApCcqpldrxCgzvrGBZ5wGJmWNxQAlB4kpMjFITHi8KFZg2WG5USXj1c4WSXL1gDzyEFGTXc0HIfS4fPkFls88y9LJJzlw64+xfff95DWJTjSyFSGHhQdwmcRkGFytFFd7rzPXPYgiJ4nXqQVdLq8f5Y2rT1ILunTq25BItk29g8XogCnQNYrL51SLYnCx4MszTN1y/wwXh8epyRY1r4mfNoi9hKv90yxtvEYjmub+Az9P11tA+J7x5m0EeMOMZLpG441eeT2yqRqbu0Jqqzk6ECUWG01L8hqEPVBhSFYDtMFqwcBMGEQuESo3k5BGiExz/M2UvOEjBwGiAJQiV6ipJvLSSvUepBmEAflMk6wRIC5e4fTlR5mq7eCdt/88ol4nS4eobtO4YxSASmYaf5gjU8Xm7hoqENSuZtQu90lnG/irIzOJqgVjmlIxLCZ89j0ARN8kPepGvXr23YIRYwysopQMlcmszntn39VoAtDZaJJleO3yVk5RypmKC2+lAGPJX450y7bJcsVW92v3ayNIUC03xmoL8Pxx6YF1brHNvvt2wmqlJG7UyXdA9GSpYjcK5x6HXYaJYyrPTY1P8kt5BuPWY7C15tdl5G2fKSWMsgrc1yKQhUWjPT7bPytl/k468gCi0UAPBlU0L07MxFNrFur7OTV4lmG+wXp8+drzeru1G1KH71q7AXx/AFqmUyQSKTwynbKeLXExPcH55DUm35ZINDjSfD/T/rY/1z4CEbKWXyb3NL6QRQKHhk7bgM4oMiAyL/RvWsNgYICfTdRKEtMpWtsyF/TCOHsB1+rQSt2a00FKWVZt03mOlgWzDBULbZm8MmRv2SFnUCy1f974sVnpRFEidiz5w5OVjs9ua5RUTFDqaGxtolmametjdWqKrQdRF4QX2lZUzoneNxEI9jWPmG3WIvIZU443r/t4g7Ss5iWGSXV8WY5uRsjeAMKg8s61Wteajy4Ge5nkkNiBthp0S22sLaTgMDQiM+4LeiIxRoeykCZUzKx1hyCGIMlI55qoQLI/upP9e48waGmOX/gir73yWVZXT7Fv10ME+/YaL9thZlhr6/ygNVdWXuXExUdQKmXP9vuZ7d5UPC+gtWJt9SSXN47SH14ly4Y898bv0gpnWazfTCgNCLvUP85qcoGGP8WuqSPMyu20ghkuDV7jxdU/pe51yEhJ82FxypJ2fRu3z32AXfXb8GS9AplC4PUSkOD3U0ScEi9MEazFJF2f9pkRyXRIsJnjDzL8TZNgpupGRhLPRjQuF9IGX5A1PPx+RtYwld1MomPxeI5SsmaAjjxkfwRJggcki23Ceg16m1WGvOfhvXEFLww4MXyOTCUcmfkwQQxaJWRzLdJpH285wx9kpFOVBj6vm2e0cSllNOsj8wZ+P0M1AmQijU2arSqXFWBV6ApEaW2kQFluiqgU/y4jE1kGsnhvbRjcPkdpat4pO7ErZA1ltMUys5MRKKUroCkdcGifUdvH2GfZ94ttFX2MX8gdVPE+Kzn+WUjzv9XSW5lCVoDSwI0yFajHglP3XbcTAEsK2PC+ZbLdY7UlxG1f5XmVtMn3zYhvIxVum/xst2evh/1s+zxXkuFqezMHzNpCKVCxwJPWadaWrD8052blZlYSp5T5blTIGGwOgyOdE4UkTsexITZsBbhwhlDWSdSQ1ezited3o/3AthvA9/usjVSftewKvXyl+H+Zke4DIJDogpKriSa3tu5jIdxPTTRQOmctvcTJ0Qs8tfknHGm+n4VgL1prVrILrOdXMQFwgUAQyIjXh88w429nPthNKOqMVJ8vXvl17m39GLPRTrNP60Bgqy7ZgcqT4BUDp2UwbEdpw5+uDZkWBo/mFZgCqs7W96sO13rvumyJUgjpDIyujg7GQ3Eus2IZDBvKswOuZaftwO0yGTacajv7Ynu6UTeDei0yIfj+APDM8dprY6+DZYRcY3kburXaY+fc+tkaz638MYN8g7tnfpz55gH0VAu0Jp6vE2ykaGGul3VW0O1aVRI4y014ucx+l+SdOiqQiLwKXwtV2HIV/rxl8phyQqBOaWIjnaAqRytMCWHhsEY6LOyslCqrtiFFaU0WLBkJh/Z9RJZRHwW8Y+/H6F16ndUrR7l68XluXvkxdu//IfJmgNxM6KVLSBnQG17ipZP/gW57F7u338/09E3YZCZR6JBnuvuZmb7JAPc0Z239NKdWn+T85svE+QCNph3Mctv0w2ykS7x+9escJ8cXIbnO2dk4xB0LH0Z4EpXnZHXwZc1csyyHNCXdMYW/0kckCrm0ZoBdmiHXIZ/vEC4NiBcbBgt6ksYbPVQUkDd9+ntaBP3c2LI1fGSq0VIQLhuQnXZrBEt9Qq1RjZB4voFMTOVBkWqCtbi0YzPFXIyMpAQd1pd60/QTq+vnObX+GDtm7qQWtmG1h6jXCCKfcC1G5BoV+fj9FH8g0BKGczW8WKMCQbieM1gICDc9RtOS6Vf7ZFMRweoIPIEKI3M8VhY0aa1lky+FgF7fXKsoHAdnVoZQOrmoClja5XzPTKY9B7gJUZx3MC7BcH932UkLHl2fWbeCm2UobVJbpquJqnLWmfQWtqDX1chboJvrCuBaRtey1FCdj8vYWoZX62tZYjsBKPsLXbKipdzCNlfnPHlNSusxXdnElYy549bgeqknyTjYdRlle22hYu7t9SnlckV/12gU99hhlG3f7xIRzuTmtfXH0FpxqPVDKKE52vs6b+t2g/H9rrUbwPf7pK1nVzkZP2csxNCEok7bm2F7/RZacgoQZDrBFwGtwCSjiaDq/D2tmQ/2MxPu5IXNL/Ns/8/YFR5kLVtiU61UNnYaFDmKHInHhfR1LqSvjR9LfoW5YF+xvDazdde43XZObvjMtlwBotAAC0fbK83YYTOp3TBlGFYA0x0knKSzMe2xC5rtZ7fTtc2VNNhmQbALlG1n7y7j/g38ovRtcayiAPHSkXUMR+Yc89SRezg6OmkAow598k5EcHG9dKzQwAurXyDXGffP/RTtcJ7R7dsr8FMUbvDivKqi5olStysHRvZgE5OymabRi27GUCRfoUBar2PrzOCep70WeY6tFIZSRh+sbTU15xIJYfTdqQFdQprrraOCfVSYhDUpS1/dJOvx8oU/JgpadNo7SdJNdmy/F/Kc10/8MRcufZPQb5KlQzYHVWiz3d3F3Uf+Gvg+Is7RqgC9nkDGxq9Wbo6MpZYvma7tYHr7TxaTHVlavNnn89D0+9hIrvDU5c9S81ocmn4/QivINVJrwjQAS+Yl5tr66yOTkGWf3f4QfJ/hwXnStk/72Cq18xtGmtmMCpcOM3EYzgeE65rRbEC4kROuxWhPknZrICG4OgRPEHcjVq8cZ3j5KllN4seKehLS8eeJwjZx0mNteIG+12dqc445b6eBY86ze2l0gufXv0g3WOBg8350p4kYJmSzLbQnGM3Xab10BT3fYe1gE3+oqS8lNM8PGeyok3Q8ZKoJBoqsLlCeYLitbp7DPELkIf76qHT7KCdQuSM9cCeatah61myUBIwkqJhEll7dw1HF7I7iIjE1qNjCNK207lleRVbcd90+z0IUfY6dCBcsrrUiA/O5ZGALVleISh5l33PF+LnZa+461pRRK139LTXIoprw28mCywzb43Un4rZ/spNle02tW40Fqja34XoA2E7IXRICivfByhzsZN8b34bW432xJQKuOWen77b9oWX17XbA3IM0dipxqoohhjJHROc5Oss4N3jFnFo+YE/z8Nse+N7Q+H732g3g+33Qcp3xTP/zBLLGoeZ7WYz2EclG1RHb5jIqZYKHX4WStMbz6twVfYSTG9/k5OazTIfbuL35XmbkNuyUMhc5p/svsKt2K1J7aK2Qno9UEs8PrvVVtG4CljEYxYVEQJllo6gaCIajKlynBeB0yJZVsaFK29zs7MlzLf6W2l4YtxiaHPAsk+SGA93EDzsgO+4UY/q2csArzr8Iv5pSq8W2khQhBLoemfC+9fZ0NYj22hSJdjoKSKdqeHFOcH517JgH6Qrr6RXunvko7WjBAK3NFBVIZJIjfQMetSg0npkqdbq2LDKBRzbdIGv4xrVBCvLIw4vzUrowZkVWXFubPGaBvcBci7KMcGEvZjWEJdNbsK34RfJQoTAReTGIBxJdJK3oIvHp4trLXNk4ShR0OLv8FM3aHLvn302DBu1okY34MomIidQU+/f/MJ5fZyB6tLu7TbniRIH0DHNaAHKZVGFlHZgkvjLZMDRJasRpxa5Jge/XCdM6oFmsHzDPfHEv0j1zBGeXzXNU2noFiOX16v62jeY6n23hDzKipYFxhmhEZDM1vI2YZEcXb2Cq23WObZA3Q5rnEiMLCX38lT6+TdBKTNLm0TP/mYsbryCFjyyiO7m+VhcZeHVO5EOmg+3cPf1jBEGjnNydGxyl7c/yrqkfx4s1XFkBwC/cP4JTA/R0G+9qj64UiFyRNwLSdkDj/JCNmxuIHIazkmhdEW0o4o6kvpKTtnyyuqQuBcHKgKxbMyWWE+ddckGcZaIt6+d5BvxIUZX2zbLC67XQ11s20ybQeh5xTdMfXWJ54zWGGwMa4TTdcJHZ+m6kKibSdkLtVm/0XIBWSBmsbMFKE7SuElPd43f7GXCiNao6P5extU0WgHusD3Am6O7k3n7n9n32GXPBpdtPubZjbrNa2kkrRJt4bPtPIYzUwzYXFLuA294by8q7faTVOzvRsHI57STv2bEDjItOEFTbEWK8jLplfj0PUUyqD3Xfx3JyjteHT+N9L9QfuMH4ftfaDeD7fdBiNSDRI1pyhp5aYXVwiUg2mAt3M1fbU83GrSciVMlOVj9miywEASJNual7Hzd13l2F8hwJgI/PTY13mhK/DojUbmICjDOBNkxVVijyquQNm93tdtAlM+IOiGp8kLFaN9smO3Or9xVi/BykqBLSbCtYAiFkZZruyg/s8dj13PVdz03LaFvHBpttDgbA+dKAXq9gmYtkrJI5suePY1UkBHkrMhrdUcbGXYvUr8QEp64AsJycB2A62glao+a6eL0Rya5OUdLWHKfXj0s/Xh0a9kXVjYds1g6LSmVV72kZBFEwsKYimyyZ0fK6aFFeb40auw8aaYC0XwEDHTiTllwbVswWMbCDlyrAuTbSiuFohfMrzzHb2Mc9+3+GgTeiFnbwN0aoTsDOxbvZKQRpJwQN/iBDDhNUPUQJiYoVWoDyJco3BSz8QY4OpPHuHSbmvkMBSBxWrRZVz1nxjF8YGnukW9rGt5ogQE01CS73xp9LNxwLlTd0luMtb6IXOiAEqtsg7USmVLIvCVaHxNtaBKsxeTMgPL9WMYDFM6ladeTyujme3qtc3HiFQ/M/wu7OEcRwBFIyEjEbo0tkKibQPq2dtxKpkJXV13ju4h/w7NqfsKN2kH62Rj9fpZ+vMlQ9vrn2h9w3/ZOGEbYgptcvGFbN8OY5hNLUjl8m3zuHDqR5PmNNuJERbAqSKY9goIw2HNjY69O4bKIQ8baWSbxr1/H6cVUFrtSvWs/aAvhZGYGVQ1kbw/I5UmyoZU6vPUeqhwSyAWhTSGdwAqUzPBFS91pcHZ0hUUOa/jQHp9/LdLCDMKhX77IFpVDJrix7C9XEyE7YhCgqiHkVELbAzsoe3NC9lSRkaryPdAty2M/ly+j0QUkyDmLLl81hVu3nkr121rdSArtvV+4VOaxxcbzC9od2GXs8dltu4qErJ7F/7Tr2O/zqmNzoGTgJwx5kFHKSQi5ni8TYpDe3/7YssI0ipil72neyRx/m8Su/w5X4FDfajWbbDeD7fdAaXoe90R2ciV9iJb1Qfn968Dx3dX6UbfN3VqxBmo0nIHieKVxgO5xy5lx03t1aySiZQd/Zca4MG1CwfCJwOlwrVQjDcZ0aFMwCZj8WbFj/Rrczc70boTjekLJEsOsd+WbNDanZz1lWDWDFMQshKz9Jd0CwnXSajrMX7rZdXa8LwAuJgi2/KuIMHRVet3EyNqEY84otALMOTNUv2U+IRqZgQOfl5aqSmc45s/k8C7X9BLU2ulVDbgzJpxuEa+ba6kAickotrcYUgNCeIKub0LT2hPHvzXRlSWWT1KA8frAAWJiBW1JWZjP6Ya/8t11PC6NbFKVeECO1mBi03eIFuQdXN09wceVF1vvnGKUbBF6d23d+BCElDdlGDFJTyCJOjd8uIJKGkW7YJgRoH1l4B6dNHy9VeMOceDakdnlImQ2fFgyc6wELRQjdq8LsCmb87ZwkZyk+w7bWYbK5Nv7ShrmnLuh1bePyHDIxFlb2L6yiuk3k5oCw0L2KYYLqNgiXh4jYFIVQKiPrrRF6jZLtkms9etkyF3qv8Eb/Rba1b2f31DuNE0WRTFrLQmrhnvIZy5td5KVV5jo3887hh3lh/Yu8tPFlarJFy59mPtoHAt4YvMjR3qPsbryDVjBThcrjBCEl9RfPGfBZiwjPrSJ2TjNciFC+mZ/29gQ0L2eMpjwQkLQk3ZMpeSQZzYVkdUnQ8KhdHhn5TjPCX+1X71KprVeUmtpcgdRGDiQkWuUM4hX66Spnes+ynJzDFxHtcI40jwvQLtnXvZfZ2h664Ry+CNHAxugyr649wrNL/wUpfG7p3E/Lm6bb3EmYR+PRMvvclgUTHLmV7wBItxRvGeK374HD7tr+x80HyHIzgbTMsPv8lmWa7UPj9LPlM66r7dm+0b2Otrl9qmVVJ+UlFhjb7Wx1zHZCZ+3V7P6hIgZcdttu0y5jj9+ub7XebjKenSS6VSrthKA815Fh9+3vdsJRr5V5EoNsnVQ7ORFv03ZD6vDdazeA7/dJu61+H/ujw3xl47fL72aj3UwH20zmtu3E3WQCa9Flw7JCVCFC25GMimpUIzXmxSuKTkxo29k5s34L4ibBrms9pBS0W6bDi2Oz3+HILDtZKjgt2JQoNIPOpOb2zYCvO4hM+kuGW+j74sRh5bKqA9a6uA5xNajYjtwCXtth2/MvrmklBZAG9MZZ2Ylr30MoYUKKgV9VCQN04JE3I1MNC8ibJlynZ5r4Z00lotd6TzDI1rlz24+jWzVULYRaSF43wFimhum0/qi6uId55JE3PGRswKvQ2oTWVVV62N5Lm4xWFhgQBTsbFMUJCg2uLlgxjRwHv1oX3zvMsJWgkJv1nftyfvUFXrv0FeKsR7u2yLbOIaYaO5htH8D3iiIbVkusMBXbQqPDlesDAzZj8wzJOEU6z6XfMImFcpTgn4+rEs6F7EdHoUk6lD66XTfJdnE6VvIaYC7azVxtL8fWH2Vm8TbCs0vVQO9O3uzEzrKGVsZjJ5lKIVdNqN2WP9bNBiLNUY0QuZ6yvH6C55b/mFQNaYfz7G7dgbcZcbb3AmvxBQJZY2frELfMv8+A3lpk3nk3KlFMdOXGyLxnwxGz4U7eN/dzKHI84TgMFFGdU4PnOTN8kT2Nw9zWfhBJ8e71B2UIOm/X8S6tEFxcx9uoyq12AH8zBSLSpmQ4K6ktZ6AVvd0B7QsZo2mPuNOgfjUj6KXGE1pRPTtFNEDEmanUttorHVhG6SqPL/1HYmXActOfJpR1UhWzGl/gQPsebpl9yDwn1jZR2IhFRjeY5775j9PX67xw5Y85tl7oP1fgntmPkZIQBW2afpeaPzU+QU2SiqWFcRmXW3p4LN+gurZjINE+I1Z+5jK9ru/u5GTMuVdjk38LnC2AtMdhpVluLoMbLbP9mb32Y5pcKtBr9+Eyv3b7k3kSbmLuJEExeQ2svMFNrrMe57ZPtFX83GvcqJvPNnnT2tAVMheAudpeLg6PX3vt3m7thtThu9ZuAN/vk6Z0ztHhE9REi5E2WfA7/ZuJ/GYF3mwY0a2HDhXDmyvY6I2H86EotWu1VKbD0VqNDfBCyEoqYMPdbkebFxnuniMd6A+qzrYoaFGF2JzQlz1GISqmxW2TnarLUrif3cxkqBgON9TmaodrEWWFJiHMdbCduT0/T1aMRhBUgLdoVh4AlA4KOvSMQ0Gel36zOvALcOqX5XZVPUD7gnSuSdIp9JFXUqIzS6A1qYo53XuWAzP30xUzMEqRWtO/aQrlC8JeTh5JvFihpZFapO0AO1cRWeH/qrUpd5ubgVYFhqVDUwBeidaFo4MnEZmxH9OykEZ4Al2UBEaAELrU5Za3yGV0C7ZXpGaw1KG57yLXLPVP8NK5/8JC9zYObP8huuGiAdiBZ+y7UgWeIA8j/PURYFg4LQTC9wCv+rd9Luw9TVJEb4iwwMJW1CuWVVNNcxy6bthxXxZa6HwcxBTP3KGp9/H4lX/P8yd/l3tnPoaYBL1uS9Pxz66VVZqByNnIllmLL5IONdlokzQfspmusJZcZDraye7WYS4OX+OVla8Ampn6Hu7a/ZdYCPchQzM5y7Y18XojRBKOg+4CuIvl1bFkTCEknhvGKe7Rwc4D3Nx6F2cGL3Fs8zHODl4mlHUOdX6IxdoBzq+/yIXhcaYGN7FX30KoQ+TIRDBUFBCd3yDv1qldHqK31Zm9mLC52zDCo1loXYTG5bRUyWhPksw1UL7AH+b4G3Hp8Vwyiq2GeYZGMSd7z5PqEffMfYy2P0sUdhBKk+mE073neH3jG2g0BzsPmsRDW5UstxpdA7BbossDe/+vJINVzm6+yOsbT/D08h+M3aqDMw9xoHNPZWdm+ynLVELV11nfcudaAhVjavMHQkdz6uqK/ULHrM1zbv7t2HdZZnYy8cv+2+0Lbd826Thjt2HJCpdBtvZuznZ1mhqiI8sNYrCA2K2kaRlgO7aUMqji961KF7uyEFd3XK9XE5U0MZ/teGPf2Syr3rUsK5LcZBVhLJyDcgmryUWmw52sFpKwG+1GuwF8v0/aRr7MpfRk+fmO1sPs6LyjAnoWtLksbJaB8q7VqNoOxWq7bGcohGFpk8QwkwUzq/McXQCQsWbZh5J1mgi7jcka8orx8EQ1CNhjmmTLXEbR3Z9tLiPjZju7zI0dDGyzLIQnsUUhqvC2Gg/VhUGlPbTf2dCmUqClKQeb5CXLChiGNNeILCnDe6W5PxjNbeBVpXfrAUk3IO5Kpl/uGfDs+6BSUp2gMYO3tYtLFtooXyA0JG0Pf1hsN/TIa+Y4vJFCZgrlS2SmTAlhIRCeASCoyrZMhR4iNVpbFUhEpqvz0SYJDgzAFwpzvoE0THZubNIQomJ7bdnj1OiGkaACD5EJtAdB2i6vVTuYq0omC4EKJF5qLM+8JCufWx0W7Lm9T1qb8stCIGMjDyHX6KlmyVSL2DCMsheTLrSQqUIOzeRL1QO05yGHceFTPA547b8bfpd3dN/Pc6t/whcv/SsiWWdP4zB7GoeRbjLlVs0FFlrx7OqfcGV4EoHAlxGBiPC9iKY/zWLzZnY13kHQmWZHfoR0uE4uoea3CiBmChmobgMZZ6hGiLfRr/YzwVZfF5zb96V4nqX22N88wly0i+XkPOcGr/D82p8yE+7ganKWbrDIqYtf5zSPmntFjpAercYiLdGl2V9E1puI7QdIF2v4L59lubNJ+HrI2jv20djwUYGgc9LYsuU1n7Rp3g8Z+UBC2t9glKyz2VtmMLhKnPYYZOusDc9x28zDzNf3V6BT5fi55ObG3Xhacqz3GJFssK9zd/FciIpVdBhHMYqJVMjN3fvZ0znC6bVn2OnfhEZzNj3G8ZWv4StJphJ8EbJ7+m4zeXLlSbafnEzkdYGoa79mWWPP6X+llTw47Kp2tP42ambvq+vYANW2J+0aXcnGVraMtj8svYnHn10hnH7ZXX6yv7W2jpPyNHt8FrBbkGxzREpZhj1PR0ZSi0pnlHKfFuhqbSz43OtjlysSrM+uP80o3+SubR/jG+d/c+vn/u3SbjC+37V2A/h+n7Qpf4H7Wz/B1ewsF5LXOTF4hsVwPxrFenIF6QdEfoumN2UgyFhn5xi9R+F4goE2+rLSDiyOq4Q3T5YJbcJuw2okbd/pluQFJ8zmMAW2Wc2wzdy2GjB7nC5jYSUQk6yubZOfbXNZGHc5FwRb/0zLMLjMdRhUyyVxlVlsq74Vmcg2kQ1flpn4umA1jQY6Lc9f9IsBUwhTCU1CvL1dgUoJrfOJSR7S2oT2pSiZSyl9dKtO3m3gxTlC+8hMozxhOkMBMsnJmj7BZlYkdwlkUXBCB8U1VSZL3wBaiYo8hNKoyJSoBcjrhUtFrkxVMVEBX63BS3JU5OENM/LIQ+KVXsAIYx9WSikK+YWwSWyeoNPZyTv3/zTPn/5dnjvze7zzlp8x4NYmx0kgBxUFyGJwzxtBwQ4WCXyBhyo00Ml8g7wmqV8ckDcCZJIjRhnD3R3QoBfrREsxSEE6U2dzZ0i4oWhcHJrEns2hk8hkWEcGwzI8PSpC7XsbhxnlfY72HuXC8BgH2/czG+42LLDLxLnPX8HErozOcWV4klsXP8jOm36I8MJaBc7s+xgEBrAPR/gz88jQh6sbY8BWpDlio29YwusVJHDfgcl3wTxM1xxrO5gj8ppcGp0g1HVynXOo+z52z95Dmg04u/E8A91DdZvoOGZj8zKXBi+TLxf2d8c8pOeTZ5XOsvbSIrs+8rMs9raT13z62wOiKzH9pdOcXjnK+rlXGPaXcUfzWtClFrSJ/BZ3LP4Yuxq3V8yfPd5CMrW/eRcjPeTY+qPMRruM24llIN0SyC7oVIpQ1Dg490MlIL01WyTRI15Z+0p1GT3B3vaRYn01PqG2+QwWoLo6V3uc1qrM3hMLBl2AaPs41w0CxqVqlqSw98wuZx0nJl19JlnjXJkInH0WSuY5HwPNJo9DXrste372HKwu2JWiucfrgnSXgHFJF7coR+aAfPvvIt9ECc3K4A3i0Rq+FxHGdTwRIDyT/GjMOlLOrj/PbLSbluzwdm+i+P87Wf9Ge2vtBvD9Pmpdf46uP8e2YD9PbP4hX1r5t+iJaaBHQNefZypYYCbYwWywE7LMgFpPjnd6LiOhNJrchLaLMsClLy4YsGTBsXI6WAyjJSzJ5LDCOs8ReCXY1VpVThG2mlSx7bLZ47O6X6hAq8sCT8ofoALRk9+7WdWyAPd28IpC09lahncUVwUnPFlpzopSxzoMyjCqLgYL600r4qxitq25viwKbxSWWVIb14PwygDVDEk6BsClTY96LzH+rsUAdKF/FCl8ZjoHUM2IeNaET9OGxB8qvEQj+wmXl16i17/I1PRNbPP34BXyBlVUYxNKl+BUC4EcZVBzWCJMhTDtSfJIIjMzKNurqIUobMowmswC2MpEoQNpbNUERfW4AH9jVC6rpUQW91lLiQols9vvYE//Dc5efQpyTd4JTUW2PCdrR4jQI6/7JO0aCEHj4ojhYo3GxSF5K0IFEiBwFBoAAQAASURBVBV6pG2P5plNtJSsH2zRPB+zfnOT5iWTeJnWjddtPBeZpL5c0zk5ZDQXEc9E1M8WlfEKD+lhssrm5ZNM+QsEMoIs49LgOG1/llta9yGEYE9yB6/2vsZTq39I259lLtqNR4AQAlnMBnOhyMnJ84ScjI1kCYBWVjegV0jUfNvolS2IGMWm+EkUIYYJXpyapLjl9TIqIZbXq3dkMgT+rdpEtn6iRiwPz7CZrSKE4OzgZZRWvKPzPrbVD5jlRzFhEHFT6170dJvNm6fIa8I4O6zE5OcvkngJa8ML5FlMs7Od2txO1hubnP7m7/H6b/9T1u58Lzvu+QicOMWLz/4Oo40lwlqH2bnb2L33IaKwQy1o0x028JRXTpBEVkxOI8fDWwjzjhb2iLdOPcjV4Sle2/gGd099pEqCsuXTLbi0DKSduFIlmUohObL449wyuI/Qa/Diyhe42D/K3s5dxXUzsokxSY21iXQZV60rCZl0rneSjjsmuBN2C1Ch+t4FyLa5v8H4RM0T479ZFx5bYnlSIqaU6Zete4YDPnWWme9dksAF+a621wJ2ew0m5XPu8u59mJRIuAlvxfXRUvLC0ue4NHydt9L2ztxl/MLf7u0G4/tdazeA7/dha3pTPND+CZbSs/gipOstAJqR6rOeL7GeXeHc6Bgnh88B0JImMWRbeIBdtdsMS+X7psBA4X5gHRt0mhmnLQf0ClGEx4u/ZkGn4yqdASrArC3YsQyvZ5wHJjv1sgyl741nHU+G2mxnaUN85sCuCduNVRWy61nQK4SRLjTqRhpSi6pyp5Yhsdo8q3GDMsxZSgA8gQpDk6SjVFmBrPSltEkaNvQZ+FALy8GqZIg9Qe3KgKwdEawMjMzBGVBWRueYax5ALMyhAknt4pD+3iZerPFS49Bw/LU/4MLFbwLwxhtf5WUZMtXYyUL7IDkZuUqZae5hqrsffB+ZmjKziEK/W1yntBuAhqCXkbZ9UxxDQx5J/H6O9o1UQYWFXraQSAy2RYQbOZnvkdckWV0gtoc0Xl3msaP/ChH4dFu7mdt+mDRPGfY26Ow4yPnl58hVysmLj7B77sNk9QgdSPxeyvrNdWaeXydttRlNCRoXNOsHPBB1wo0M5QniaZ9wwxTsWDvYJKsJRnfUmTkWM5oOyOqC2lpOFklGs0aPrAJoXvLwUk24npZJe/l0k1Mnv8jra4+Z2y0ipsNFMpWyll6m6U2bdwaYChe5f+anuJqc5fzwKBeHJ9DkKK0AjUbjiQBP+HheiIdHKGvcNHU/c/PvMBPMyEdeuFrZ/rkMrmXU0hS5FVDa6t9v1tz3oziH05vPcWz962g0kWyQ6ZSFaB+3th+k5jXH108ziCJUIyRaSxnOGTs5mYM3v41QQ6ex3UwApSSXPvW0y8wDv8yZpce48PSfcPX5rwFQ727j0Ef+Bu3uLsK+xu/nJFOmUp1YGsHmyPQ9cYaumckESQrNhnlf3T7A85B5zp7WnRxd/xo9tUY7namYUXstrauAU06a4eiaanENvwtaE3pNNuNVMwG2ybaBqMqHWy23UxxoDOBNShM8aTS0bh9j/bvtPbG5CTa6YoHp9e57KfGa6PsmPIN1MWk3EbZqO2Oe557RuY/t0+ZqlJpkhyhx5TJuXzt57q7Mwh6nW27ZykFsRU7fR6cpPbXCyY2nuBSf4Ej3R5j3dqE8TUyMSmK0Z85DygApJAERUdQhSwbcaDeabTeA7/dpq8s2e6JDY981vS6zwQ4AtNZczc8xyNdZy5ZI9JBXBl/n1Og5NDBSm+wOb+e21gNI4ZtyxQUAdkEr0oTCbCs7TStvyPKSzSXVFegtmF8hZMH8Uq6ntTLekZ6sGIbJEJ/bXE2bbVsM6MA46LW/WRa6AODmAtYKyUNc/W6tzqy1lShcEiSmEAOUFcrkIDaDs2WmSlZHVAUR0tQMnMORyeS34e1cI/sxYmgG0WCYFoyqrrRwSqNRrPbf4PVX/4Co1kF4AcmGJNtcZ231NHk2pJ+slKd667YfZpCscmnjKMubp/G9CIHgxOWv0orm2Tv7LuY6N0MiuLh5lHptlumFg4gwQqQaHQi0L+iNrsAoQacp9cYcnt9k/UBI53RK2g0JVxNUINncXyfv91k7+zKrw3P0vR5itU+a9hltLqPzjEZjgY2VM1w6/1R1T56BnYd/lM0zRzm5/A0OrL2fiz/UobasYdbDH2mSuQbRakq0CsuHm4zmQPkeCI/uSWNdpgLB+s1NGpdTRnMBwWbOYDFEC+jtFWSF72ywqZGZJg8FKhTIHLKmj8jrpojHZlJWgQLQ5OQ6o+51aPhdZsNdY4+jEIL5aA/z0Z7x59HVZArhPGPpWNKOWN+onlPPM+DOMr8umLqeVtdlzq7XJqMfQpCphJO9pzi5+TR7m3eyt3nEAL7JZNHir55qGSmIyvHOL+P5HuGlGtl0g2QqRIUSLSBcN1reoJcWUQDwc5+bu++h+9++g43l0zSDGVpze5GejzfUjKYlrWGO389RoSSejqj3Y1TkI6yTiPXOtcxv4V3sht93NQ5xrv8K31z6zxyZ/TCz3jbHjaV4J1NnQmnBmHWYsf7nUpKrlMvD19nWOFhes9JqzYJCl+W098wmtLlJtG5eRa7QFASDrUTm5jzY+1kko4mt9OOTMhb3ObDfe9VvOkvL32zfDBiCw/Z3WhspW7ltVUrcKgmEVx1rWWxEjV/fyeN0+2pb7Kj00JbjEQspWdo8wbHeYwzzDXKdEco6d3Y/yDaxB4TEFx6hbKD9tJLcueXirbXm27zdsDP77rUbwPcHtAkhmPd3g7+bvYV719X0HMvZBXKdcjY5ytnkVc6uvIqHz82Ne9gXHcamYWuHxbUdsdaqBMHC8xyXhwIQe0UnW4TPy/VxQKEqrNImgazLmrhs7Vb6STeJww2huUyITV4Dx4+ziL/bAcsW+YBCeqFAZdX2PQ8xGKJb9SpRxhrxS2Hsqex5pcZ7lDg1yRt42JLFuh4hLDguNG7aAe5pPuLs2jP0RkvMNPewY+oOzm+8yMroHKHX4OLGq2QbCUrnSOER+g26rd3UZJO27qOzjG1Th5ifP4zUmtvTj6BqPlIJSDKW+6d548oTvHzhc3iXQnJVJUN5J2ts33kvCw/9OM11wdVwmRc/90+ueZ5mb34Xex7+v9A5n3HhPQ28l85z/iufZ+3SUZTKqLcWkPPT1BtTNIMdNJqH8LdvJ3jvPdSvKnpr5xALXdKm5vV//g+5dOyrBKKG3+2aa9CExmVN0pGMpgXtUwmX39WifT6ncyalvuzRuDging3pL/p4iWbpLh9vCDLzSdoCLT3CnmI4K1l4OkXkmsG2gM6JAfF8xGjGR67DYF7SfiMnjzyEBpkp3nvgr9HbPM9zF38fX4a8e+Hj1fN3PT15q1klSLoaSuv8kauS9SNN0fWWmfxAFR2wIWlXI+q+E+4z77ZvxfhOJCblKuXRK7/NKN/klvb9HGi80zCqW4FeIdBdU8rYlJF1kmDTDG9jiB9IgrMDVC1k7faWkccIgT/I2NwV0dstaZ9VZAcXmFlawEuMYiDzIdzIiTYEItOouke0HCMTY++GEIiN4h2072ZR+EHPds3vl5dLxtXTknunP8rz63/GU1d/n3dP/wTT0fbxa+Ay54VkC0B0OtDvl/u5MjhBooZsDw9U/YF7H+xf625QVJHToxEiiiowPJZQZrW6qpIoWIlYkiJCW9lQV+BtUqLgMsEF2BxjcyeYXx07yY4TWnA9WbrY/a14Vi24tE4PJmrnVdfUPucuIWH/t++Le82UrkpBu8cWhmTJgGdX/4SpcJFd9dtpySlmop1lieuxyGPgXCtH9qbz/HsDFd6QOnzX2g3ge6OVbS7YxVxg2KsZfweJHpLomBOjZzg7Osq+8A6Tle8yRcowYNc0oSu9r6MpE0qihS7DblplJYsslNNBTw7w7meXDSn3J8b/2jbpOelJrL0YQWD0vLZevQ0p+/64t2YZvvRBBhUgVhrdbpiko0wVBSIKm7LcAdV221pVnyXoZmQSu7LCYzMX6KapSGVL2ObDPo+f+TcM4xUCr86l9Zd55cIfA7B97i4Ob/8oeJ5xg1CKrPD6DZcH1zDhShirMtWOkEmOzhUi8JhevJWpHbfRT1Z59vlfR8eKh2/7JTZnJVfOPMWZM4+w/AevcfDIJ7isTwCw5+d/idk3Qtbzy1x640mWX/8mm8NL+L2M4RdXUFmCN9Vh5gMfZu7Au5i/VOfSu332f3aDwa4mMtOkDUlwIkfGivj2vXTOZOR9yfR7/xanrnyNtbXXmXroYTb8Fu2zGi+B+lJOb4/Ha59s0DoDMtP4g4yNPQFJu87mLkG4AVlDEK6DTEF7gjyEsIdJevGMZZY3zMxvTZ/RlEf7XIaMFa2hAb0yM8+pDjxOn3uMy71jxPkme1oPjL8DWyVYWmsrGH++bGvUDSBOVDmZFIPhWHELox+vQtxjsiHb3qqkYbK5DKFSrMbnGOYb3DX1IbZFB6oKaS64LrPmJaIfl+V79dwUwrpnAHge4eWe0W8nGdOv9MhaIdoXyGFGHtXonlRkdcHiUxl5KEhaZt2kZZ7XrCZId5oZud/3STshIteESwN0PQAbBQGqym7KXEPXr1troqDNvdMf5cmV3+f5jT/lwdlPEFIzk4laZJwBms2yLxCFflmvrSPqNXMfwoBOMI8nAp5a/S/sTe/i5ta7kNIZQm1fEwSV/7kq8heGI7MtNxJVWOkJB5jqOCn0tQLhBdX5WbvJLcjeMd2uTXsIfAN+gy2Y/0kdrf3uOs+IKJ5fnRZEhtXkCmGSd7dyd3ClYPa5sdKpsWQ+USUoFmyxznNErQZZxkZyBUXGba0H6ATzFbAVRlplxxWdpozliVjbzWKyqCedTW60H+h2A/jeaKa5JXOBbeF+AC4lpwDwRcCx4ZMkasSF9LXiu5C7Oj9iQr1FNnHJODhlWoWs9MEi8BGyALqWKbYJYpPVksoEDVl+V2rN3MQRt12vM7eMmwXM1kszTasM+prv6NEKSUGcQLNegtu8UzPZ80WyhMjMYGeLOZBr5DCtqt1BdV1tKeMCVIh+DFqh2w1EKsw+koy8XYem8WVN6nWGx41c4d1H/jqbyVWywSZtOUVrag+9/S2aF0Yk0yH1NzYIh2npaIAQpVZYjkxymPHplWQtH79vnBfyyHynhi1UmrDYvY34HTvRbcH+xkfY2AGrTzzC81/9/4KQzN/2ILO1/YiboDazk3fOHuH4j77I8ItPEbXbdMJ34G9fRH7wDmj6TH9FULvYJ1pps3K4TdwVNK4oNvZK6lcl8RSkbRC5T9KFcH4Hi42fZnsKIgd50ZS5TdqCuCvxB7DtMbhyjyav+Sjfp31Gk3QEfh/yEGQG/Z2azknByiFB/TL4A0VtOUHmIRt7I1oXJMM582xGG4qglyETRV73iK70S3ZKtWqc7b9EnKxx1+J/w2L9lnEAOvkM2pC2J8ukx9IlxD6fm4PCNcSxdBpl45ENCyDcJNNvJWF4K22CKb4an+Pptc/R9KfMxNfVj1pXiSgywBAMyBSy/E0HHqI/qopnJDm6Hhp3jcBDpjlePyVvGG/k9tkE5QmaFzKSToDIoXElQ4WC+lXjLe0NobcnpHUuJe0UDKMWxNuaBL0UL8mM01eWG318liP6AyMZ6vXHfZNzUyTlSPdHeHT5P/Dkymc50vkg7XDOeIk3GpS+sWEInklqFcNRlXw2imlGszzU+QRn8mOc6j3D0vAUi42bOdB5N9Lak1lG1/fQw6EBcFFokvLiuErehTFnB51mFcAs+k7hlk7WGrdK5vjzJsb6XuDaz04TgV8yu2NaYbutLVcSRgYx+azb83WtHm2SsFYTdpbFupbdzvJKUlLu3yTb2nflzOBFAAJpCIEsTxioDeK8z4y/g1wkXOq9Bp7HtL+Ndjhb9d9QOt+UTjJv93aDtf2utBvA90YzbSv7I2Ah2MO+6A6upue5nJ5hqDbK3zKd8NT6H+Hh88HZXwAoM39FoYfVtmMUumI2clXp1KzUoUh8K79zk0NsE2K8oy5DWw5AsPou6/rgsr26YNdsosVkQozrQemy1VkOgYcqGFprpSXi1HwXp4ihAcO28IS023bZGhewJEWYuADxOvQNUGgUVdcE+Bsxl+NjAHTmbkLt30Z3sIgXK/KapN/0aJ/sAVC7kKBDw3TpQKKkT17zCdZGgGekDUUp33ApQ0cevf1NasvG3uzSA4LN//ULKJWxZ/F+RtOS4RwEfZ9t7/oJZLtB74knmLn93cw+8MMMpmG0kLPjK4L1vR57No6w+tePEK0KOqcUjUsp+ZckaUuwdlCyvq9N/0DOtn834sTHG6hA0jmjCDcVvb0+C0/n9HZ7JB0DdtMOTB/VKN9ID4aLBtB6MaQtSJuSvJUzCgXhqqS3VzBazOkc90jbMPWaon0W4i5MH4XWG2ZycOm+OkEfmhdzgo2EWiQJNoze0V8boeoB4YVe9chlOeLqBvFojbn6frbVbrpGgzj2/Fl5TRSiOvXKvq6YjIjNYVXW2PMcuYN3LaCdTOK8nqTiO2haa45uPspUsMi90z+OJws3FVvwBgpZUFa9b3leJWDlCrk+QDdrJesr4kIzqwTeIIc0R2Y5Xk+gaiFePyZvRmStwEhJchjNeKhAkLQFrQs5o2lJuKlYOxgwfTQhnvZJ2pL22RQVSGjXTFntQYKw4NT3EcO48ni1lRSVYQHrXpf7pj/G8+t/xjdW/jMPzn6cZmuxisRkmWF/owgGg0rfGwYFO58QyjoHg3uYD3dzfPNJXt94gulgG7P1veP3z/NMDRgrcwDzN0kpE3qde2wlDbbfXBqd4dX1r/Ouzkeph91rk4ev12yOhLWE3OqeWwmFG42zv1lCYnLdCTmHLnSzZcEiK3EQAjyfsoJako7JDswxWiLAq5wjigqilhyxEopYmaS0pf4plNQc7T9WbmZv7Q6uJufoq3XAkDPvaf8larJpJBlOH65zx2LtbdpuaHy/e+0G8L3R3rRJ4XFr/T5urZtB8ssbv0WqRxxuPEQ3XORY/xvMBbuv7TwLlle4yTy2o0sSR4tVSB4s41GwujpOKos1lwV2GS/Xg9MFDtZ/17UCskkXFlxbdwaXpfD90tZI+145oOrAN1KGCJNck1ogArIfl6yqqgd4myPEqGCbXODsycrFIbeMWYAO/ZKh1aFH1vTJa5JgacCLy1/g4unHWdj3bg7e/hMMZnyiXkKwERNezaiFPuQmFA+gasZvVwXGOMsbZQUQSUm2txkdaBL0FUlLIjR0Xt2gd7DDlbslzXNw/tIxcp3x0vCr3JTfxM5HMi7f12S0oGj+9Ptp/dzDdJ8JSRsQrYAWHnmo6R1J6PyhjwphsCcnD3029kb4I9jcY3pzbyCYfcpj+fYGo9Fl4vx1VpYlwSfuRoYZl27JURcb1PdtEB/tEq6D8iHuCgbboXMS1m/RhOuC0Zwm3BAsPmr0vkFfEww18UWP5uWMwYJPHgkQ0Lyc4/dSVOixsdtj+niGF2sTdh8kBD0fv1f5y3rrpphCKT/BDCiBrLEyeqNg3RxQMJk572h5rSezGCaUlQtdj1NX63i9RDW3TWhRv6OmNQrF8c0n2MxWuG/mv8UL62MV5dL9c4hU4V/tVeHqOHUqFApoBSbSMWEXJQaxKYJSj4yftdaGlS0mqjLJyGuRcQYJBGlTkrTAH8HaTR7tc4rRtGTqtZR4xqdxIQYihNKkHR+RetQu9k2YvUg21Y0IsbZp5EhCVBXrrNxHKVpiivu7P8Gja7/L02uf4zA/zHRnP7pTN+/7YFgB5iwzEojBoNLhYvq36XAbO2sHWU3OUwuMDv0aLa/WZgJvW3GsZZl3rSuZwuS9URkDtcEja7/Nh2b/GtY1ZAw0T95SSzq4CcZuk6ICvcXnsb8wzii76zu6Ym3tL90InZ2g2ep2br/vSnRsJNDp0wfZOleGZ0iyAalMUYMcDw9PBIxUH4+AV4aPXnO+Z0Yv0ZAd3tv+S4SiziMbv8Op0Qvc3njAaL6vQ+a8bdsNje93rd0AvjfaW25CCO5rfZRXho/x0uBrvC/4We5ufcj8WIJb19VBjGez287PWvegqkQSG/ItWAQti0HGJsjZTtZuz2VybTELC3ZtiM9l4NxjhGpwsy1XICovT5EUnWaWGxDkm2pfBB6ybyp6CTebOfTxesNSvlAyyVYTrXQFeAuWRTUs+Abte6TtgDxLuHr2FS6e+gYb62fY+8DH2d+6l6TpM//ESqFtqyQMeB5ZOyQPpHEkSDXhWoIKPfyeCUNfvr/LwlM9ersC8tDDH2rW90k6xwUrhyT1yxD0oC5aZI2Y/hvHeeFf/0/U9+znrm9+ApEvsLlbIHYOuPTGc/jbZqm/bxudLzW5+k6QawEXfjJGD3wO7T/Jc4+MSNfW0HEMX1gjbmV47TYXRxvErx4nW66iBjse3kPtwAzRM030/etkuQQByRQM9ihEKvAGkv6P9oiebtPfn+NvSPIIhnMC5UMeCdbmBd3XoLfbxx9qais5y+/wCTd86lclq7dK6lcgWknw1wy41UGhRS2upSg8VsWoYBBTxVp2hXOrz6J0ji9CwJl4TZSnrgZzhQ4N4BNJViVhZc6z6SRIlmDWTrzcZqMT176M3zH4fW3zSU4Pnue21oNMh9vN9hygGLxhLNWyhQ4q8vDXR4giKuGtDyswpM27bhMyVbuGSDJj4yeBIsysawFimBgZRFHBcHNHgAqgcSWntgKDRY/WeUXclrTPZcY3OtFkDZ/26YGpQBiZgiZ5Jyr1pUIIM8HwZOW7DWMFQBgMEVGE35zmXv8neGH58zyx/J/Y1b+dQ833IOoNk5CYJIbxTtNqkl7ohkVoCtboOKFRFEVYHp2lWWsZWYPth6zUYrJMu23uc2MBpsO+Lkb7ET2JRnFheIwd9YNbyhdcIHyNbGFiORL1LS3OxkD49WQPSpv+uejOywQ6C37dKm622UQ+m8BXyHsuD0/y4uZXUDonFDUCWUMiyXVGToZSGdPeItvC/cwHu0n0iESNCGWNSDZZz5Y4OXqepewcOSmZLp4BW22xcMEQ/xWiJTfa9267AXxvtD9Xa3pTJCqm6y0Q4NSbt50NjIfKXLnBpHxBypLJKAcCmwQni9AfhUzAYW3GMtytrMHa2LhAwjY3OQjGATAUWeG6KBcaV8ysHWRUDp6pnCUL8Cv6I3SzZgBTaqqBiTi5trN392G1kUJALSBvhqZEsIA8lGgJzz/9v9FbfYPmzG7uOPJXmI8OElzeJLqMARaeQNUCA7qBZCpCS1OiWHsCJQSbe+sM5iQLT+XIJKN7JmNzT5OsIVCBSe4a7tBcvr9L/QqsH9Skq4LFv/5p7vj8BS4eguT8ec49+Qc8tf6vmJ56P3izrP+zPyY+dxaAvUc/yeUf24nf7SJrkqCWwRfX+fyv/h+ojU1EGCC9EDnXRW74jIbHEbU609vvgp89wMYffZn45Bt4cZN8ENA/lNB8vIt+9ybZ9pjmyxGqJlh8HEYzsLoYwd6MuSdNSDyrw2A7NC7CaBbqV8AfaYIhCKXxB4rOaUXSMdd1/vkcLaC/s0Z6S52ZlzcNeFPagFMhDOgtPJeTUY9Xl77Exf6r1L023XCR3a3DRWUoVRn7u36rxXugG3Uz0I4KDWOej0/63MQya+o/6VDiNhdM2PWut+xbbIkacWF0nMXoAPtad1WewVqjO6a0s2qEqNDH2xiaSnEK8k7dlKUOfSPt8UQp1ZGDxMiAChs+XQtMkmbooaLQ2PPJQnqQKcLVhLkrQ5KZGlqAN8qpLQvySBJuGis0FQgjFxGwenuT1vmU+vlNtDOBEGl+7bsWF+A1y4xUw/rNFpPz5swu7u/+AmcvPsYrm1+nW9/Obv2OajJi32NrQ2b11RZEA9PM0fHneW39MdJswI7m7dRS37C85cRcX9vfFHpdclUmsl2T3Avc2/kI39z4I14cPMLOxm1oWbnmuK100rHJXZOMsBSQqAoYfyu5hG1bAPLJNgZ6oZC/OE4VdhwoqnJuxstcGp1gNbtMqkb01Arz/h4ONx4yRWG+RUv//+z9ebQk13Xeif7OOTHmfOeh5rmAAgrzKIIzRVEiKUqU5ZbUtKxWS/LrbmvZLXutXk9vteXXXnrPWm4/2y3brXa7rdmyJEuUSJEUQRKcABAzUEABqHm+85hjzOf9cSIy8xYKFEECENm+G6sWbmZGZkZGnIjznb2//X1pRDvboBmvsBJfJdRdSrLOLu8mKmqECWf3YJ/Tgmr2rf3cv+7Ypjq8fbENfLfjDUeou5RVLglUZGh1trUZo8j4FrzZ4Q7xYX3KAsAWPNihRraBuoJ6LZeyALkFQB3mSd5I7WE4hLhxNqOwaC4mveL/0mT2ZCsYZPmKxr0kg1Qb0PvNYshFKav5BjhkkPqSzBLmb5nR2rjCnuMfZuq299B4uYlY65pScgZZzv3NbAm2aQKx2wm9SVMCTjxBZ9oAvR2PbLL4QJ3xF7pc+vGU+tMWjTMxa0dt2nszRl+SbDzUI9t0qJ5RdHZryk0LuXsWcdxCPbiT6XtnaP/x51n6zJ9ClmFNjLHzp36B5T/7Yy498vvwCNgjJSZ+/CG60RRrn/ksqlJm+pd/nvrGTlQI9QspS3crZAhaQTiW4S9KJo9P8urG/8Hc//avmP5//Q9Yo1XahxKm/6yMlobPW78ArR2ScBTcKw47vhwSV2HtiIVMDdiNK1BagOq1FLudEFcsVC/Fasd4ElZvcZh9LMOb79A8VKU7JRl7MTRZ+2KcJabJTESG3rAWz/PslT+kaKGPsh73Tf8knhhqgirGhdIDcJTrkYoweq0Cw7AONVzX3Z8MFmw3ArIFj3348fD/32DEWcjTG58m0xlHqg9sfVGqnC4goOSAgGS0TGYZ1z6rm6BSQVZyjO11mOtZC0Fa8cxx7Tcv5YAsTCADLInGSPWJOEXFqVnMaUhLimDMIhiVeGuGI55UFKkjkAkkmKa4YMQmdSvIWKN6iVl09vJrr8is50122rMRGyGQDkrsMGg0rJbYPXU/y9EVLjefZ6d3E6LTBd8fgLa+mxuD+w4gSj5oze28j3O95zjXfpoz7SfY5d7EzdY783uhGQNbdMphwNe15BZ6gk5TerpNlPSo2xOMWNNDp/wGGcvrFHOKba4HvzqKzYLsBqB4GDT3P/P670yHvmv4Hl1sk2Q3BN1B3KKrm0itKIkqJ3tfZzG+iC1cGmqKsjXFLnWUnc7RQQLkdaKTNnm6/RkC3UEgqKhRppx9zNoHqFkTiOv1jaUwlf8ccN/w+H23xTbV4W2LbeC7HW84jvj38lL3q7zYldxSeifyRiU2NZgk+hP7MA9X60FXM+SZliH6wjAIGJaLyoZAwPX2ysV7hzNqw59XmD/caBvbNhlZqQy4AfNdVtGokatVWNJ0aMuc+lCAYKUGZdFhYD2cNQHD61UKUk1aUoYHaUlawQoXn/4UaM0Uuxh5YZ2k7oFwUO2QpG74kFpA5kiCUQunneEu98hsQW9ckfigAqhdTph/qE5nh6b5oEDJlM2jKRPPJwSTNu6aZOOwZvIzHokLvXGYekLjtFNWbrZMNV9pSlN7cP6nn6URBKgXVrFnp2k2nyRsr7Lnw/8NvaOC8OtfZe7fPQxZhjPiM/aLf4djf1Ln7E+a5qbWfkH5Kkw8H3Pl/RazX4H2TvDLUxz8+C9y9j/+C5b/v/+e2eMfoFKdYem2OrLqIRKYelLjtKG8mFG92KO5v8TmQcGeTzfp7C4brd5bDQiWiaY7aWN3Ne6q6RRXgaRxWhuXuShBRRoyiOoW9rw2k62SdKN1riw/RzfeQEmH5c45tNbcM/tjZBY8eel3ubD2JDc13jlYoBW6z1oPStvDQLfIHNrWQN5KCFOCT4rFnhoAsoKrXmTMro/rM7zfAc3hfPc5mskKD4x+nJKqDRZ7xULPssCyTdPaSIXetEfQMFSa8oLEbickvkIkGqsrsTZDw+DJM719CoQl0bZjMupK9FVYRJqabJwyVtfOWg+rbWFVbZyWJBgx15rVTUlyt7/UFVhdw02PagqrmyFSRdLwcIJocHyHK0gZ6JFqX4GFIBw4MgYhwnEgCNlbvYOnVj/JXHCaHfaBgWV5nBqTkc6QNGCxiM/vQT5lbvHfwVH/Pi6FL3O29zQ7kqM07B39e5iwrL52rrAsA8Jy2oKwrL6hz2oyx9Otz6Cwed/oTxPrwWI6zsJvKSPa5yEzVB24HqjeIF4XGA5negs5smFN4UyT6oR2uo7CwpE+q8k1LvReoJWt9d8qUUgUt5beybR9APk6POXhaKVrLMYXSXWMRBFoo+RwZ+X7UWLIaCPNBvQL2NoEWOzvdmzHUGwD3+14w7HDOYRCcaL7ZdygxJHK/YMXr7sp9rMERThDOrjJ0AQ/rL3Z/6xsKziW0iThhrO+sJU3CYMJcIutZ7YVNBRgdfimWGjtFlI8Vg6CpcrLuarfuFYYDRTubFoJRDj0+cM/pTgelkVW8RBaGz1dW5A5kkuXv8qVE5/F9qocue8TNJJJUtcyGbVEk9Q9whEbdzVi/YiP0Ka8P3YyI3MtnM2EyqWQcMzj0oclvSmLcCph5hHJ2v6EJLIYPaE4/3EXqw1WG6IRzcIDoAJBOhrT2a2Y/arEX9XUL2qWb1ck1QzZk+hvXGXx1JexX2ygx8wxLTVmkbsa1D9yjPFf3CS8LDnwBZveKZfNw+BfE4RjUJoTTD/RY+kuH5FAd1KgQlh8MIOKzw7377D4R7/PxS/8jjlGfwqqXKVcnaZnj1FyRkmOztCulElkmXRZ0dxVxu2kuCs9di6ahUh7T5n66TYkGVnZLBZkrBh7boNMwaXVp1i5eI6WXicJOqRJiJIuSiiitIutfGruJEHUItMJOyvHaMgxyGBH6WYutZ5jV+kYFW/c7Odw5qsAetc3YRbl3jTcmm2EQQNmAWb7nPAbaWIPfe53EJlOebn1Na4Gr1JRo1Ss0a0buE4OznMXNCWRnRBnwyEYcSCDxBMkno1WAhVqUl+SVG3clYCw4WO1ImSUGNCoteH0OrnOta0QcWroEHFE5jj9xrfMkSS+pLnXwl/OyGzDV3c3EroTDpW5lN6kZWzNMRSIcMRChRn2+oD60wfAWYqIYqOLHXTNsZPKANlWe/AbLcWYPcuUs49zzSfZsfMYdHoGHBfKL7ZtznEQogOzqBJKmUaxko/u9rCwmbX2c5aniZNgaxNXkSW2LHQU0VMBG8kSm90FNtMVtM6whM1GsmSGBjGfX/s/t5yaxzf/lJ3eUUqihkRyNTpFoiPuKH8AWzhmIXGj+CY83RtuewOlB2Dr2MvB5Go8x9ngGTaTJfR16cZxayf7vdupqBHCrMtKcpWdzhHKqn7j/QHCrMejrT8h1gElWaObNbGEgy1ceplRWqnIBgq1tX8i3/cia66lyTwLpYzGfJFh/y6PbarD2xfbwHc7vq2YdvYTZF1OBU8ghWS3fwueqvRvmlqneUMXAye2IqvUlwwbuhll1wGHYSBxfcNasc2w/bAQQzy+HMAWnFqdDaR2osiAEd8bctAa0kcteHZb9CdlzksUW3iWumig6QWDUqbrDEwIhicd2yar+GghEFlGWjYNVe32PJef/zQTx97Bjns+zOiFFDZD0MY2127FpI4kaEjcdWEavyrQOJPS2mUR3mohY0hKDlpBfdcaB29b5elX97JyXCJeraJLmrU7Euw1i2g8IZyE6imLYFKjdwV0v3oK+8VNFmZ2Ig8dQEWCZFeAdcVDpymX/vL3kJZL0LnUn/hbcpWjx9skmeTaYztREymbhxSJBzs/eY3k/TtwN6F+IeLy9/uUr0FSTwm6iqQEMpDIpoveO8Vt7//7dFQLLi7S0y067QV6rWVWNy4xP/8M+txWN6lzQlLyxvGdBrbt4/tj1FcnSfcdoNq2yByJyjJUJ6IrOpy5+DALay8y1jjIrDqMnB3F0jZpGqHbbSruOJPWbqRfNk58CARmDF5rnmQ9nEOieGzpDzg28QFmnANINXTrLBZRBZi93kLbtvtyTf1xMcz57TdCXdfYNvwZxeM3Cn6HrqlLvZe4FpzicPk+9paOI8UNbv+2TTJeAV3B2ugi4gQZp5SWU9ozFnFJkJTM4qUzJajMZcQlibsCVitC2xI6qXEiLBaLqe5z4bUlh+y8E3Su/mJvBKggQWQ+mSVo7XYoLSUEo4qR0ybzGdUkWkHlWkRSUqggIykpkrqHld8zhKWg1TE0C5lz8esVxGbbGMaEieFgr64PlF0sC09WaKVr/dK4KO5BebSDVa52TrIeXmPWO8yMux/hOdhKIcoldBwT5pq0a9Eco2oa5fkDZRDHRqcpy9k1nm1+HjC28nU1jpIWiY7Z7R4j0j2uRae3nBJfVuhlLc50n3rt6WXo/pef5/44KfouhgEtvH4GtHj+m4FeoJNscjp4kqX4Eg01yVH/AWpqnIyEKAuoqBEqqtHfvqIajNmzN/7OoVDCItbmGI5Zsxy272XC3oUUilQnhFkPT5YGFbXrstGatJ900KSQFIkR+b1BA9imOrxtsQ18t+Pbjj35jfpScJILwYtM2fvY7d1EQ01t4bTpNB1Ys2baCJSrdAAYhrNeRbyO+Ho/tuj55n8Laf5WEt3n4KZmki3KndoGckWHIO8AlhLtO2abwnhCWEO8zKyf8ek/ZylElhnaQv4vq3rIjc7WSQdAyb6ma+opRKaIqiZbdfHsFwA4PP1+lj7/MOfXXiZKOiDAs2pMVg+z86b3oZVDVLfpTUD9gmbxXoVMINoZYc852Ec3qXgRt49f4/MvHgOZsvqFL7Lx9Ufwb7mJqb/109hNcNYtwnFN5gJaEFzpsvxvf7t/KHfe9yv4SQ2tNT1vEXGyTbbZpvrRe6i+412kz1/GbQmy9+4iTNdwVUK0I0ZuWghtaAnXPraDHX96hXj3OO1dHiLDdO5fVXRnU2pnFZ1ZmHghY/6dGq0k1ajC0oerjLwKpZpg6pkezQc9Khd7LO9KsC9v0PFDuktXWD77OJ3WErpkI0TIyvwZzidduABCWtheBafcQKPpLF9GWS433fJfUb/1biqXA2SYEEz6NPfa2B1NaSFGzrcRHZPdE3FMRMhacJUX1x/GU1Wmy0cI4iYvLn2WU9Jnd+129pfvQKIGlYtibFyfoY1jCIdKzxmGR6ozM6aGeeVFXA96v50Yen+sI063n6BmT7K/cudrt9W67zRnrbTJqh7RdBV7uY1WktZOi9oFA9CtXsrKcQ9vXZP4gvq5AJ0b0BRSf4WCgwhy4KdVrpCSX5dB3L8utVJkjkXq24hEIwXUz4UE4zapYxZ7ItGoUBPWJEmpqPCAtxSY7+xnl22jFx4Xi2zXUC20NhrKlmXc3QpjkVxiTktIshDd6SIq5cH1btusNy/yxOaf40iPJIt4JV7kldbXABixZ1DCZj2e52D1HkbsGS6EL3A1epV3ZD+G61XNvub3gsvhK1TVKHeXP4Qjvdecho14iZX4CqHu9Z/rZW0UNp4s08k2ADjq388u9+YBZWC4ylD8fT2Q/VZK/tf3SACbyQovdr/CAe92mukKl8KXcYXP8dK7mbb3/5X83G81LGFz1H+AV3uPo4RFkLWJdIAnyihhUVLVwT4W2V4pgCFAP0QzE0INdIm/F0DhNvB922Ib+G7Htx1CCA7797DPPc616AxXold4snUOX1bwZJWaGuWId98ABPcF8cVrMyvXg+DhhhIY0BuEGAjpF/y14ZJxIY+WczG1m7vG2Wooa6uNTm/+mdob0tqU1/HDhiWrhicVMZAUE7Zl7FkLG9frQC9K9ZUDZJwhOyG+1gQTLu7IBFyBx774j9Fopms3Md44SFyyuHrxq7TTNfYs3cPmD3lEVZMtXT8ssA62sK2UaK1EPJZQc2PWn5/gK/EEI1+4wKkrn6N38SyqViY4e56pJzTeasyFjymspmLXX2ywfG+D3rQBOwff8QnOPfEfWf+936Fr76J56QWSxfX+YWl98QnG7v8hsgduBg310U0uXx2HtgVOxtgJqFyNyCxBVDXnbP5+H5mYpra4AuGIZuobku4kOJuCuAT1l02TXjAi8VYhdWH6Gx26sx71M12spSaV2SlKwmb5lc9w9fKj+FO7mP3gh5kcPU5nj6B8WeO9MEewfI210QC91qSTrdHrrjL1/o9ytHMrtvSI1xJkL0KkGquT0Dijca81zThITIUiiTusB1c5ufYIQWJk13aWb+Zg7T7Qmla8ypXOS5zbeILF9mnunfg4tluG+Dru7XB2tjBxKca06xgKTTY09q/P5Ba83+EoMsnfoqJDnIVIoRBIXml9HY1mxj1w442LikicQKbJxivYy20QAtWLKc/bxBWFt27A78TzPWTPcHfDEdNcqcIMZ70LQYT2XbJKrm4hRM6XzalCSqJdkxnXud22jBKsVojqmWs8HHGxehnZRC7VlWbG4W05JWgoRAaiIqk1Q1SrR7CrgXdp3VAeHMeAeNc112+3N9Ae7gXmXBf3kjhGK8VacJWGO2NkFWHAw45j2jQBzTvHf4oLnec413mGaf8QdXuSld5FoqxL3Z7kVHNgriAQSJHTIXJe71JwiZX4CreW3n1D0JvpjCc6nwLg9tL7eb77hf5rN5ceZNY5iNYZGZkxGrl+vNzo7281ru95yKMZr/BM53PEOuRE98tIFAe829nr3mp4tm9y7HZuIsw6XAxfAjRnes9w2L+HXc5RYyV9g33sR59WJ7Y8p9N0wHneju1gG/hux5sQtnTZ693CHvcYq8kcK8kV1pNFLoUn2ekcoaJGtmyvo3hrA1gh8l4YUsBgYhrm8RZ+7zmY7P+dA+BC31YEZkLWJdNYk7lmYkUptIsph9oKLSHzXWSQN6Ul6SB7N6RCkZU9ZCfo71tW8xFBZKScpCQru2SuhbXWGXA/h2kOme7LZOmqR29XjXDEYuPMc6y/YsqXGk2jvItbbv0putOuadjaO8ulL/0eV/d2Ofi761x73yhpOaN0TlL+T2Wq59tcfb9DVIfexXF2Ph1x9qNdTn/9X0OWsetv/hzx/CILX/s0F8unOdQ+SOmKojyvmXtfg9jTyN/6BkhJZWIvMx/7KZa/8GkCVtj90Cw6/hGW156n88SzZJ0u6ukrpN+/E21lpI+NUAuheTjFWrPYOAzleSOrNvWXV7jyY7sYfymmO2mRWYLejKY0J1h8T8zM5xXtGYnd1fgrKTKF8rWUuGYhwwzV6hGXS0bNIoyw2xlqpcXVy0bEfqdzE9GuWSJXMPP1GG+5x9ots8hbd3D02U1E2VQTurdUyWyBFYb0xg04k63ANOJ1gv551kJzMTjB2uZ5VtsXyHRC1Z/h7smPYWkLV5b747Bqj3Fz/Z3sLN3Mkyt/wtMrf8YtjfdQdSZeCx76Mn7WoAnSGQK9xbi2ra3WrcX1MARs46RHTIQnyggNcRZgCRspBpWRRMckWYQrfZ7Z/CwrkZGeExg92KPV72Nv6fhgH7WG0QY024bTmuncAU1hXVs1VtrdENWL8C1zvYSjDirIsNsJ4bhnGiEtQWpJ3JWeofIow7sW3bDf5NoHup6RBTT8Z0P7UZs90/yWHzdtSex2TFK2qV5L6UzblBahtBjSm3TxlxN6ExYgCEc9bNfCu7DaN4fRI1WEqsFG02TVszyjXjjmxbEBxfk52ezO0c7WOVJ6x8CwIm86E65LzZ0CYKl7ngPuHeyv3YNKzXnaV7kD3QvAsVnrXUYqB1f6eKpqFruYilcvbfFy9+uMWTuYsfdzoxhu+BoGvQAvdx+lna6zxz2GK0s3fD8Y8NxNN/BkBUvY+XMpL/ceQ6OpqTF2uIeNJvVwdvc6ubWl+DLngudopitbPv+28nuZtHe/7vd/p1EkUw55d5HomNPB07zSe4zF+AK3ld6HI92t+zpM4YAtOvIF1xcFomhY/i6ObY7v2xfbwHc73rQQQjBu72Dc3kEzXeXx1idJuIGurRR9O0mdJGZ9bllbVR+uf0/R5FbwaotJOr/R6TwLK+LUAN4gMn87FrIXDj5LGrkvbSuyiouIUpKGj7UZoF1rkCvI8gY8rQ2Iti2TnY4TZDsw2V7HIqo7ePNtVJxCO3d4Kprjco1L7diG11v3iUZdnNUQq5Nw4fTThLFp2rCtEod2vI+kbDJva4cl2RfNa83ZlPmDo3R3aA79hyZXfqjBZkmy+CM28iLEownumsWFn4Ipb42rWUb5ztuZtY5iq510dp1m4f/8d8jJOxl/fIKat5sx6fEC32Dh8pPsvf2jTJ1KGRs/zPh//cvMPryEvmgRj5Y4vDHG6QOjaFtRK81S/ZOU4JfWkbs1y09MM/NVQXM3xFVjOzvy6FXi3eOUFzSL99hkDkQ7Ivb+gaA3YeE0bdaPwMTzCf5CD9mLSaseq8dKyFQz9nwb0QkZe+RyX/O1/OwVsBQHx9/BYvssZ658ntJvPMfRAz9PPF6mN1vCCjWEmmjMx7uyiVaC0rkNQ0exFX6iUd2IrOaTlh3s+U3S0TIiTpm7+iSnlv6SEW8XB8fewWRpP2V3nHhnA3uxbSSuLMvY8nZM41JNTnLP6Ed4fuNhHl3+A8bd3RxrvAe/KMcWY8jKqRCFBbDKx0TJRbR6Wzm+xRgdqnhorTnffY4zrScoapkSRZa7B9jCxZd1wqzVL49bwiHREYcr9+PKEnEWMOLMUrcntl5T+T5lM2OIIDLcSN/QD9LZMWQvRtctZLOHtbABjo212oXclluFinDEUFzc1QjZLFzPJKRR36ZZ5woJA8MXPbDodhxkEJOWnX4GmVQjgxThW3jLIVbHojdhUVrSWJ0UmWqcVkZmCazA6DMnEzVU1wBb0YuMEoObN7D53mBhYdsG9LqFeYxgrnUGT5QZt2bNoiSvHAlh5Mhq1jgCyUJykdn6MQgjU62SEh0bbWKhNWPesIOl6IPnMO3yTPsvEUhuKT30TakB763911wMX+J8+PyW51MSLoQnuBi+xJS9hzFrJ7EO6GSbdFNTmchIaaVrZKT4ssJ+9w5qapRr0WmuRadR2MxzlrPBs+xwDlGWdTI049Ys5SFOrtaa5ztfpJwbdBSxzz3+loLe4RBCYguXaXsfke6xFF/ikebv8s7qj2+9xmDQSDzEZRZK9WXMvhca24BtqsPbGNvAdzve1FiJr3Gy+3VuKj0IQJC2wZocANqi+Y3UyPkUXNrhprfCpAJyfdQhHlsBeIVG21YOSs22IsnQMs/8VnL3qDAm810Dgj1rkMW18xJqseM51ULb9DvEtW3KsOGohwoz3LnN/rbaVqS+mfTj0RLO1ZwWYFl5lkv0KREijMCxyRyTNVu/ucTYc5vsuelDVBb2oHeNM1O5mfJyglzs4CwJ7HaZ+tidbIydYO63/w+SD/0os9H9zL+7gf99K7Q6Hunzmttv/TLvuqXJv73yUb6/8SV+878/gaxVmLz3g4z85Rzn//YOdtz33xL/5y9y7fI3mAufoTy7n0n2sHDtKY7c8jeYmbiLJEiYe8incTrj1P9jnMzWOKuKaGISEf0AVk/S7oIbZKS/P8nyTYKsoqlcDnBaDu5ij7RiKCdWMyTxS9QuaEZONunuqtCbMIYEo6/0mPpqG7QmnqiweG8Vd1MjU83EX14yxzC3e92S2UlTDshbWExfBWDvjofo7qtjtxK8+R5yzEMFqZGHcyyTbcsd9xAC1THd/knVxWpHpI0y2lL0pn3s3iQswag7y37/NgNQgxDn7OJQ+TRBrLe2UG7qtb085PwUi92znGo9xhMrf8I9Yz9M2R4ZcNbDyIzlbi+XyCLnowa50oDcstjLdMaF5rPYwiUl4Wr3ZTrpBvvKdzDq7CBIWqQkuMLPG346LIWXSEm5qfIOHOnRTFaZcvfSsKdem9ErKilgaA1xgmx3DBiMIqCK6IWoJDOA33HI6iWjV51lZJ5DPOLiLrRRSlK+GpFUcxCZGPkvrYTh8No5tcEz4yIrmSxjltOPRJohe5EBwQIyT6G6phqUlmysVoyMUyxMRSAYd3A3E2SYYjeNO2HqKbQAbUtjg1xykYGD9GxEOxhck1rnfE8xOOY5J7QVrzJiTyOcXC6s5KM3WwjXIY1CrvROo8nYWb7ZfE6hWZ5lAye1wnq9oDrlCcZmtspzrc+TkXFv5QfxZPn1bp2AqZ4d8u/ikH+XOUU6optusprMMWJNsZEsMR+fZ6H3NRQ2ZVWnJGuI/L9pez9lVedK+Aone1/rf66Fw3tqP0FIwKXwJAvReULdQyB4lYw97jFm7ANowBMlNBmT9h7a4QYA91Y+zIg19U33/c2Kbtrk5d6jbKYrJDoyJkZ5LCWX2aOOfXO6A/Ql44b1jb/bQ2htkivfwfu341uLbeC7HW9qnA2eIdBtnut8HokkyNpbs7i5W5FOU1ObkQw63Aszi2HFhkLPVwiT7S2E/vMysrZz/mwG2IOyb0FxEI4FqSbzbbQlEIkmc812MkzJfMs4Q+Xv6WflopjMtYkaLnbHmEQ4K5ZxbcuF91U7RtcdVDCU1R7WIi7+n2ni8TLhmEtclpSWU2SzR31ilJGxB0ixSTKLlbt8Es84ko28qll6sMTIB38B/dt/xNJf/DHJezuUGSGYvwinz7L0wiKXMs0nyx7O7BlO/eocslzl5nf8HNKZonVHyv4/WCbYVcep3sPBiUN8ce436MydZ04t0hjZR+O2+/EevcrcR3ax40sdgkmX3Z/J0FJw5YOS/X+YcPW9LuU583NqJ1e59LEJxl7StHYJVm8tUbsQoZbWmX/Hbnaezejsq+FuZKzdJGnur1OaN+oOmRI093nUgM6sS+OJeWavrBqZqDAyDVI3iCJjo3VGmLQBaC+eZ/zgfazd5DHxVIy9GeXgJzVZ2Ty0JUnLLiIxfHJnsWUAX67pXFnWVPQ04/5emsECVPWAouA6Juvf6gxkyHJeaLFYk67HjDxKw5nmidU/5WtLv4crS9TsCY5UH6BijQwa165vWMsy0jTiaudlUh2zES2xmSwR6o7ZHMmUt49j9Xcz6sya62DILLG4rma8Qzy+9p8523mKnf5N7CvdPuCQDvOBh3nDxTU0rKxiW4jNVv7dmMpFHCNCyzSOuQ5qeQPVcukcGqV8ahXtKJxWaBrGCuvcKEX7Ocgte8gwzk1YDACR3dhI+vk2me+gJcg4MxmrfF+LdaO2JFHdRuUW4qqT9O1nU9eYXqCNa5/qWFirXXQOsPtVopxjLbL83Dq5tXlkzmOYdqnZubRbmkGSIJSiHSzzVPMzhFmH3f4tjOvp/muQU7by81pkGIf5/fPROV7qfJWKGuH28vvwZeWG4/ubhS0c6tYEdctk60esafZ5x0l0hMJ+3ezxhL2Lbtqik22yHF/mSvQKzWyNhjXJUf8+jrr3oIUgI+Vi+CJng2e5FJ7Mv9PFxiPUPT7Y+Nk3vM/fabzce4zVZK7/+P31nybFLIb7WsY3aMIDtuimF+dECInetizejqHYBr7b8abGHeUP8Gzn8zTTFQSStWSBvdw6mHyvE1MXmaS/oC+ayArpp8L9qDANiGIgtz31zcQu2zmNQQoy26ACkWqSqouMMjJn4OaWWRJhaUSqc11R2c8YqfXuVr1hKdGOMlzGUQd/KTRNOJ0Q7doIrUmqDvaaKdf3m9rieIiznPXL2Jmt8Bd6ZDt87KYB2LIXgyURSYbdiqlegs0DNuU5iGqCHZ9OOHXu0/TOvoAq2aw+/BesAqpaxTmwix1/5w4SuRu39SIbp1apvvsjlI48gLzk0jgb05uwaB8eIXUl3iubYNvc8+Df59kn/w1h1CRcv0j9axcID+9g9s8v0759Fhlp3MUurcM1Jp8Cqxsz+YwxtehMKy5/ZAKtoDslcDfBW82I6hbi8DQ7/+gi0aFp1g8pvDVNaRH8lZxvO2XTmRLMPN7FurhI42w+QUWxWQQVndpFDPG7i6yPFJL7qz/MV5v/iU5vGe/Z85ResNGNGu2jI9itFNlLiHY0zOJGg7PaRXWjwaJGir7iQNrusBJcYi2cYyOYY9Y/AklCfHgH9tyG6epvd7YO8AI4Fou1HED63igPTfwE871z9NJNrvVO8eTqn7K3fDsj9gyeqiAziRAKaTko26PVm+eV9mOsR3MobFJiyqrBHbUfoawaSKlQ4rV83+ujpGo8OPpjXOq+yOXeSRbD8zww8vHXgoS8WcvIq6mBqsGwAkDRMJrl5g1xYrK3JfNZ2WgVubxJ+ey6kfELTUk/G60aaoQylRMRJuY4pylZ2TVZ4FT3Jc00wlRkMtCuWeQWC9ik4ZG6EtVNTBY4yLCbIaqbg94MtKOIq8bZTWRgL5nsMEogupGhTATm3qBb7YGrZJqCtoaUDjJcVSbIhkwqcnrMpc5J4izggcaPUnfz7HmSDlQDCjOKvFGXTNNLW8xFZ1mJr7CRLjFjH+BY6R1veiOYJZxv+nqUhSwnV7gSvkwn22TGPrBFYgwpEYDC4oB3BxPWbopa+cu9x+hlLa5FZ9jr3rr1fW9xNJNVVpNr3Fp6F7GOmFA7kEIicbb0rAGvvSay61/+HqI5wDbV4W2MbeC7HW9quNLn7vIP8JXmH5CSsJxcpqc7+KIyyIbYAiEtdJwYygN545pkaCI2pdV+lrcYqYXSQpIidIJ2ndzUAkQ3Mo1mvoVWkrhumSwPgKaf2dVSEI+aiVwkmsQfAt+F4oRnY6116O1pEFckKlQDwAyINEVZkqTqYicZaWMUa2nTlLbTcNB0l2molHDPL5HMjlJ9xVAidK1kaBpC0NpXon5yEwcoz0vaOxRRHdbss6y99BiVu+9i8r0fJRrRlHb1mPjP46weUzhNqF1OWb35CPIDAWhwz7h4G5qNAzYzX14lafjIIM05qi71lYy7Zn+US5vPMe7tQdRquBdWoeRTObFI+7ZpMt/G6mX457vITkh1o8vKAxOMnA5ZPeZSupJRudSjeaBE+VoP69ISix/Zh3fagHiA1BVMP7xAPFNHdSLkyiajRXNRUWpOv4mVaD6pLcWXOdF5xDT/WZNIbQbCanyNr63+AXfO/ghlf4yoKild6RKNeTjrgQG+AtKKS+IrvLmWabCSINc7XGm/yMnlXE/VHWGifpgD/r0gJPbpa1v2YUuT5TANp2jGzLNJyiuz0zsOYcSu0i2cbn2Ds+2n+nzc4Sgazhzpc9/k38DNHL668ntUrTFDUehv+DrqDdc956sqR6sPsss/xjfW/4QvrfwWe/xbOVpYEg9vfyNOcaHqoHVfJSWt+2hLkfqGUuDNtU3jqOuQlRxkvlAM9oyQ2bnttleoMGj8+a4Bt1GRYTf7IcKiudXIDvalBjEgWAUJqqNN41s3Q9pDVR8MraGzw0NLCEYFVtcYWmS2QpdsrJWO+cw4HjpvQxSFXpDLmZmFak2NMReeRqMRSUqXLs8t/wWtZJUjtQcN6M2PoVmkDWzaw6zLifaX6GUtbOHRTFdRWIzZOzjuvodpe9+bJvf1V0Uva3MheIGF+CKxDhAIJuzd3Fp6N3VrfHC+rw+tqVlj/Yc7nSOc7H0dgeRE5xEeqP7w2wIgN5MVnus8TEnWmbb3D5r9hp05r4/rr4/XyQT3KSnfxbHd3Pb2xTbw3Y43PWzp0rAm++WqNIu2AMt+iRAMXzZNQQ/5vScMLI8LWSHbzjNIuRg+DDiESqItaVzR4tTIVUUxsXJIPYnVS8mU4fWqyJTxtTQAWDsCFWnisTLOUttM9koiewZEOxsh3ckyUc0iUwK1KQ3IzjOUItPEYyWchdbgNxUSa3EMlVJ/orWurYLvkZUcMs9GbfRYfmicxrmQhXc1qF1MKC2ErNxWQguQR2aR5Qqdky8R/Oj91JsHqP9FhaW7JcfedZZTnznI+iHFzOMBZ/crSpdsRl/JSHzB5NMdkpES1loHESbg2kbH1LapqXFuHf2A2ddebosamUx65XlzzqyFnF7gu4h2l9KCsakdeTXCWQvp7SjReKWFvDjP5f/mCDseabH4od3ISFM/n+IvhdDpYp9qbcmkmwzZkCX0DUBdomPmo7OsJvMsxhcZs2YYs3awkSzS1U0Oe/dyIThBL9nk0cu/ybuqf5/qZbOQcTZC2nvKhFcvc/KF32N8350c2PsBtK3QjkVcdbBcm8UXzgJwaOwhDvh3DCg2BR1guDQ6DICVMqApisw5LrLVMFi0uQ5eanHc/SDHoofoJk2CrIMmI9MZmU6Is4CKNcqIPW20gCXs8Y9zufcSmU4Hag1FFnI4vkn2t2zVuXfkh3l07Q9zVYcHXnfbLXScNM2pHTbad2jeNILVy4iqEhVB6VrP0EWyzDRr9mLS0TKbB8uITBNVJXZHIxNNXBbIBMJ6FW8jxVmPUM0eJBrtOaS+RVw113LmSFSYkbqm6dRupcgkM4vUgWOvub4tQ3dKfLMITR2J1QUVapKyIvUkMtZYm4rMspHNvPmsMDcAs9AWciAxpxSJjoh1SJh18fA4sf6XdJJN7q9/jIY7PQC8GABl5LHM48u9k2wkS+x0jpLokF3OUaad/X1FhbcjgqzD+eB5rkansYTNTvcoFdlg3NuNa+Wc4hz4vyYK7duhqsAO5zC+rHAhfJHV5Bone49yzH/HWwrgm8kqT7X/gooa4Y7y+7daGr8e6B2OYt+uN0VSQ39vx3bksQ18t+MtiTvL38+znc+zmszxaOtP2O0d44h3r3G8GuLE9V3diuaTQt1Bqa0ZmyRBpHlzWiZMp3iqTQk2zwiIJDP/opS0YqMl/fKY1UtJfGXKYRISV5InD02neJT1m29kJyIe9QnGDLewfq7H2k0lHAu8JTPpF6GVJPEUthCINO/ez/db1ytmf0u+sWZ1lAGfJYfelEd1ucXYix06O3xm/2Ke5m2TbB70cdahNwWT50bgl/8nln79N1j5//026n/5HwnHa9h7W7z8pYPoO9tEHZvU89j1mZSlO8Bdi6mudg3PtWjgkcIAtUybbHTR/XwjADUMtLRGxCY7VzpxFYSgd8sO1EqTyrXlnCMp2f3bZ0n2zzB2omNUK9YjZJhAmppmH3hdN6goC7kcneRc8ByT9h5cUWIhPk+iI+pqgiPePex2j/UnwlhHXAxeJGbA473We5XqygYuHqmC9qbi3Ev/kaizyrWXHiaNQ/Z7t9NdXqSU7sTJKrgYoDxVPwrd68wjivGXj7st+1yYsRTHqsgAS2kWNRWXzLMRcYaaX0XZPlXpUNVjvCauO/6u9NFkPLXxae6s/8BWqsIbiKo1ypS7n17aev2NhKEo4DqGElDoVScBlD0ql7tEDZfKlYBg3DVjRpjrTiQp3YOjpK7ECjRhXdCdBn9ZEJcFwRiU50AmEIxalJYk1YsZazeX2Tgs0Epj9QThVAJaIHs2/rzA7hhzlhSJ3YoJZ3xULyP1pOHmOwOOtBVq4rIBvZW5mN64RXku7vPt5cqmuc8I2Qep5nogd/jKELZNmkXMh2YR1O2uskabbtpk1JnpZ951nPRpWrqwIs4/z8YlI2PUmmbK2fuGztN3GqlOjAJE8DxKWBz07mR36Rj2DTSCjaVvfsMbomb07wVDiyABjNk7GLN3cC06w0vdr2ILl8PePW8Y/LbTDZ5uf5Y7yx+gVmSdbxBngqcBuKfyg2+MFnJ9hnf4PjPcM/B61s3fTbFNdXjbYhv4bsdbEgJJN2v2H18OTtJNm9xZ/v7X3jzzm5couIfDBhbDHei2ya4JkRlFB+iXTbXSBngW2+c3QGc96gNrq2fen1qGApE40jhDYZGUFeXzLWQUkVY9MjufYHtmgnA6GZmdqwKkOgfiKVZb4ywEpFUfpbUBg0NlY+1YpCWT3RJpBhUPLQRWN6V52yS15xbwXUX30DiVCy0ufbjB1LMJ86MWK3dp9ty0QfL3f4L5//lfMv8//ysO/T8/ShgdJtsf4D1foZRBeV7jrscc+O1lI9HV7g20S68vAxb2z8PP3yi7WRz74rX8HPknrgwyhGDAkqWwzl4zig5r9UHms2hkHM7wD31+M1nhqc5nSbRJ7S3Fl/BEhR3OIXa7N+PL62SLgNO9J7kanQLAVRVKdoOz5z/7mu3sUp2bf/KX6Z04wcWXP8NC9lXzwjkoeWN0g1UAktYmOFM3thC2bnB71NosInKlgC3HME4QqYOIM5OhnBrpv0cub5rvSF9Leyhib+k4pztPsB7PE2W9AfD9NsKVJRbD81zunmSXf/Pgmiuy1kWWLwjNYi2KDQhOU8TqJspSuEGVeNRHppqkbJH6CtUxwNJb6hGNevTGLdxNjbup6Y1KVAhWAFYXEh+SEjT3SLxVh5FXu2ROmbgsqF7O2OwWKi6QuaDWoDNtUV5I2DjkoyLIxhRxSeCvZaS2QCuw2xq7mWCVJN5KTFpS1M4YeoMoqBSuC+ENgH//nBm+rkJxV/mDPN35HE82/zx/RTLjHDRSi5aV058MNSfIOqzG1wh1D4li3NrBkpriSvTK2wp8V+M5Tva+TpC12eMf52D1Hqwsl/AqxpgUpoci/7uovPQzvwUYvE5zfJg+sMM5RKIjXu19A4HgkHd3fywFWYdmuootXDQZl4KXaKbmuiqrOg01RVk1CHXXKFHEF5lx9lNVo6/5PZEOSEnoZe3vnFMsxZaG2O8Vnu821eHti23gux1vSWykS/SyNsdL72YpvsxCfJ6V+ArL6RWm3H1bNy5KWYWsGQwyUjAolUeR+dtzjeRYkYVSot9JrpXIzSoEMspLs7lXu9CZ4SgKgXIluquRsTaUB6FJRjzs1S4yMGoNmY0pr0qBSMDpGpOF1C1ht0wjTzjqIHQJGWb486umVFzxDA0iyRCJaazSypSzRWoyrQsPlikvaHqHJlg/ZNPZAWMv1QnHM1aPWkS7IkqnHS7Xx5g91sT/Zz/Huf/+17n4W0+x8+O3oasZ3ip46xmNF1bJcoMA2cmb/ZJkoIhxfRRZq+tB8fUxxI8cnKv8XAyDwjyzrHUKiwPBe+HYpkEqHKpZD8XV6BQWDneU308zXWHUmqGqxr5pVqmmxoFTHK09RE92acdrHBx7BxP+ftqH6gSXz7M09zwVNYr1zHl27n+Q6ZFb2GhfoVqdpbdwkc21S6TWNDVnkpo9Phh/QhgQOAz4C5fAYtFw/TEssr2WRTpVJ645eOdW8szw0PZKgs6NV9J064KiOLRCsdu/hcu9l7gavMq0e8BoyH4bJeaD5bvJdMLL7a+xEl1hl38zI/Y0lrqu4c3K9ye37kYpdEkh4gTtKlaOuzTOJ1x9j8P0NxIufdDBWxX4y5rUETTORljdhKU7S6gIorr5me1dsPNLPTYPeJSXUkMtsiSVa0m+2ITKVSNjJ2PoTkqs0Kg5rNxio22oXcho75SMvGroO/5aiki0McwoKcpXe8gwwVlJc05vYipASWruE9dJKG4Z82nWd/MatWc4XnoPL3S/yLi1kz3urYy4M5DCWnCNQHfQWrMUX2IpvohGG7k5nXCKJyjLBp10k1Qnb4mb2Y3ibPAsvayFK8sshOdYji4xYk1z0L0DV5UHzXww+N35/VJoMeA8DwHE1ztWe9xjaJ1xKniSjWSJSXs3a8k8y8mVLftUUSPMeIdACjrxGufC5wyNB7gYvgjAhfAFdjpH2OEcZiNZpJWu0c7W+4DZFt/+Yq+//wwArxC5mdD3gqjDdsb3bYtt4Lsdb0msJXNYwmHa3s+Mc4Byr8658Dmu9F5m0tkDmK7oLWWqvKxeZBHJcj5ooZJQlOdzndWiPCvSFOpVk+mxlcnO+EZ5Qctc4io22d7ezqrhCUuzQi4mYbutkWFKPFrCagZ48x0QZZKSIi4rVKxRocbejBBaE9UNyI6qitr5rsny1SqIZhvRytAl30ioKUXmKbSSOOcWAVh5/27sFow8epXFD+6ieThj/BlB4gmq5wXNO0JKtQB9d0DtqzXa64qls88AUHvXuxAZ7PmLBLsZIdsBRLFxn5MCUdgmv15Gd/i512ucuo6WsIUbWGC56zOXN+DQ6TDqg14x0kCvb2x5vZmuIoVkxJpm1J557X7cIKbsvbzSewyhNTdNvt9YT7c66EaF0lLMly98Ho8y62Gba6deZHTpaW459hOMHLid1BVUpiaZWLoNazNEbrS2cBu1Y7PcOUevt0rFGmXU3WmqEK6NjhMW108SZQGOtumlLc51nqFqjXGoci+j9f2oa6uoeQFSkU41UGsdM04LWbRunokfXpAMnwMhOFJ9ACkUF7rPc6H7PK4scVvt/UbO7PWiuGagP/E70uOW2rsZc3ZypvMkz2x+BleWmPUOM+LMMFbai7Jc486WGMtmXXIJp8rIMMW5uk7mWlTmMhbvsshszcpxC7sFo6+mJJ4gqgmCMQvHFvhrmqAhqFzRBCMCJKze6hPVoLQMVmR+s7fQIxrzkFGG1TMLUitIKc1npL4iqlnEbYWMwO5qpp8wMndJyWj9estdk013LVLPVG5ElBjJOSGMrW2SmONeHJNsGADz2qqG1kz7+0EKznSf4pnOZ6EDvqzSywZZ44oc4Yh/H7POIWzhkOiYpfgyL3e//i2N3TczjpXeweneUwigrEZIdcx8dI758Bz7vdvY5d9MEke4omRoQkUWdKjXQqAGhg+ioJEZXqyhQuTbas1e71YqaoQzwTOcDZ6jrOocK72DcWc3UdojEgFj/m6kNj0b85xlKbpERrrFcAVgPjrP1egUEkVVjVKVo8zYBxmzZ3Gl/8YOxPWLwv7vGcp0F30k27EdeWwD3+14S2IzWaZuTfb91Xd7xzgXPsdKcpVMZyhp9TVzdZIMVuZFZgIMWBA5P7XIAFs599f3cmkhDco2E5/noj0HnLxTXAiwTONb6pvPymxB5kuimmmmUaHhCdqdlLhmmuFUJ0Z7EmcjIvU8IzccZsYcwZZkUqClMNzDTJOUbdyljslCFw5decgoQbV6EMYsf/9uSksp449cRZd8Vt+1k7AB2ta09kjcDcPtJVSs/c5pmq88j7QDuq9cQWhF+aF7Kc8cQEcQjFkkvqSy0TVflKWQ6EF2cliFAG4McHN5L7OdHriMUbzldZphvlm8Dh/1etALMGbt4Hz4PHPRGXa4h7/55+bhSI+GmmQtmmNPnCCkMBa1m20Wl58jzWIC2uxyb+ZieIK19TN84xv/K0du/jiVI8cpLYbIMDELBd+DIM9GexaXVp7g1Y2v9hUXZhu3cvPUx5Bxxomrf8pC+xSGNJ6Xgf2jtJI1nlz/M+wNj4yUsmrQsCcJ5rq0kzX21u9ktDfNpd5LCK1R2MRZj5KqM+bswFNVbOGYZjatkVqyES30f2+YdbkYvsRoZe/gGkiSrVzj60Cv+ds0h854B5l2D9BKVrnYO8FccIYL3eeptsd5YPJvIts9A/obVaKJEpv7HCrzCTJpAKAijQpg7KTGW4vYOOjibMZoYVO/kOIv9BBBgtXzqJ02er3alkaTWWtklBE1HFQ7Rm12Sesl3By8qkAiu7ncX9nBakWoXoq/CFoJEl9htYzmr7MRmkUeIBKF2uyRlV2z2IWB5OFmc8tiQutskMW80dgdqmrM1I4yPXqMVrhMs3ONZrzCRrLIfvc2RqwpnOtAmSVsZp0DzEdnSbL4bcv2AlRUgzsrH9jy3MHsTs6Fz3E2eKbPmfVllcPePUy7+weNXsPNYtZQtWOoqVPonCpVGHOkKePOLmrWBCvpVVKdUnem8OwavqibDHqSu1WmGed7L/S/ogC9M84Bjnj3oaTFRrpEVY7iCn/w/W+Qy/4a0FvIzBVZ7CEFjm1Vh+0Yjm3gux1vSXSzJuP2rv5jR3q4okSou3x5/fd4T/2nkNYgy6D1EJ+uiF5gJnrbzjPA+ZXt5l31hR1pmpltpDS0As9CrnfIRismm6W1UUqrDDqtM0uQOuBupIgMoqplJJlSTTTmYbdiorpN4gn8lQSZC+j3Jt3BpKoEVqAJxiysrovSGrHZNlnoLEV087JbyWf5fTtwmxm9cUXZc+ntb+BupJTnM84flGQONO8JEKsOshyz9Nk/RfcC/ONHmLjtPYx833vwYw/7pKZ6JTAqEmneXJVp45glZT5h5VJOnmu40ddr0eohEDAEBvSwzNX18W0C3m8Wh/y76GUtTgVPGsBoTX5L7xu1d3A+eI6l5mkmR29CRAnr8SIv9x7tj7GL4Yn+9kkS8OKJ3+ZQ6aeYbRzHCROCXQ2c5S5CCEQUg5RsJIs03Fnu2/VTzG2c4KWVh+m+vIaDy1Jwntsnfoip0VuIO5tAhmOV0XHCSvc8G9ECSth0knVWoivY0qdamubltUcAU8J1ZIlUxzjSZz48y+nOE4DhlO4tHedw+T600GwkpjJwtPIgUigm3D1DAK3gbxp6hcnc660a1EUU7mJZRs0e57j9XtrpBl9f/QNiHUCaQKJId4yR+jZh3cJby5BhhmqHrN/awO5k+CvgbCbEZcX4821kO8C5Eg/Ou5Q4Qe7AlkpEJ3dQ9CxkO8BvB/39l73QZBJLjtm3nM8vexFaKVQrQOfa1qoz0OAWYWzUSYoqUJohM432HdPIWWhmF4u+68drAX5fL3J+vnBdat4kNX/K3F/yxXkkIuIkxU7UdW/TbKRL7HGO/dUD9y0OW7oc9e9nj3sL68k8Cptr0Wle6H4JR3qMqV1bOd6FAoJlmSRDcQxt29xf+650pqoWhJs82fpU3rshoKMZsWbY4R4i0B2SNEQIRTtdo52t0VBTtNJVYz6BMfRoJqvMOgeZdQ7iypIBpJYy9570DdxDXgf0Als4zpAvfr6N+9PbHttUh7cttoHvdrzpobUmyDp4omSeyG9ADzR+hC+v/x6xDohFhKMlxPnVqmQudZVrLhbaolkOaoc7kItMl+8NbtpxAt2eaW6JPPAcI2ElRN+xTUYZ0lPEZQEanLaRRgNtqAxBRjhqEVckVlUhMo3TzohqFlaQoYIUFRrwqkKN28xQ3RSrExHXXNSmaXAyPM4MfI+NuyfxF2NqlyOWjzvMPN7l6g9OkpQgamj0TMz4Iw77f+Y0y70yq9UyrSs1Rn7sQ6z9zp8yOXIn9gfvITnQoXsKrI7AadvYq4aHabiMeWMV5DJN+YQVhOY4FosDgDDcck7wPbO9zgwAHJbnej0JpNee8G97rBx17+XpbJ0n2p/imP8OdrpH/sr37Hdvo5Wu8vzqZ7hfVXCdCs/N/yl1b4aRbJzz4XOAsWlNiMhIsXBYPPEIe+64CREaySztWSAh3FnDXWjTidapezPg2MzO3oPvjfLK4sOsJkvcOvb9TDv7oRvgZGbMpdMjoDUTaz4TvQODpriC92vbbPi3EUSbTLi7Uco1Ch/dHlkS0YyXCbMuzXiFc11Dm6hbEwgEY85OPFWhYU3iycprtXeLDNkWSstwST/XPs15uwVH+VynyARWiESEZ5UIxzzsdkLlQou04mJt9ACoXg7ILFMdsboJ3pWuGXNam/1Jc7qMNPQOEYRQKxvgGiSIJMk57Rn0AnS5hAhiskYZMgOus5KLAKP3K1JjN51kkGTIKDGflWpzXSXFeNdmUdfpItqdwZgt7hH9YXkd1WH4+F03ZoVT0KkMqNadbv+1heAML7S/BMAh7272e7f1X9tMl0l0xKj1rVF13o7wZQXfOQTApL2HR1v/mbnoLGOl3VtBr+P0m4SReS3DzhVoPBsRJmQll6CzxtWrj3M1fBWpJe+o/g18WWYlucqp3lO81PkqjvCxhIMmpSRrHPHuZcLezeOtT3J3+UN4skwzXWU5vsy54DnOBM+wzz3O4dr9iCxD+P5gXMHWhtgbxTBVCG680GGQ/b2hfvF2/Bcb28B3O970iHVESmIm7KFwZYkPNn6WREdY0utzdotJpy9nBubGVmhtxrlSQhCZ5x1ncCMrGqeK0m+1Ap0u1KtG7iyXQkKASDKsdgKp6md6U9cI74tUk5Qk7npCMGqR+EaL1O5kBCMCLSRxSZL4gtQ2r4lEI+PUOLi1IrTnIAoQXvKJZuuENUl30qVxLkFLiCsWpSVN5VqIFoL1oz4r98c0v3KYeDbiB255ib9s3cz4oYfoHnmRS1/5j1ivfpHq3fupv+/jTDwH/kJg9IuvBz3FpF+Uwm9EcyjKnDlvWpdLxoY5Svrya6LVMxmfJEFgSpdavg6IGJYT+lYBcL5fETGX4lcYU7O00rWBS9lfEVJIjpfezZPtT/PMyp9jCwcQ3GY/xIVwUGK9pfQQS/ElNtMVHOGRaVg/6jP+ZA/VS0h9i2jKIylJZNehE68xWz9mFgDaYrSyhwdrP28WFTmQ1J6NWGsaRYCrKwPNZtsegM3CqCVJaMhxaOwYHJ84hnIJ2RU07J2Qpky5+1iKLnKi+UUkCo1mJbrCSnQFgeT7Rv+GsT4ePubXH+sbZTQLlZM+2FG4yihlrMcLzAVn2W/dgX9x02RegwjZi+ntrmP1Uuxr67Rum6LxatuAUSWgl/ZBE92eqcTkUl/YjhmXjkJEudtbL0C7juHiJqYB1Ti0GQqCbPfMwjVJwVKIoDdoLkwzRDA0hjM9GNeteOvzxTEYikIX/DVSVjfio6epWXA7ufsjQJKg45i54OzgkGqjPNBO12mn68xFZynLOiPW1Gs+87shhBB4skyou0PNmDllRklQgnDa9D0kZYV1bZ1ldQ09t4juBThejZOLf4lOE2acg+zzbu2rrUzae5iwdpOS3FC3WGvN++qf6IPPsqoz4+wn1hGXw5c5GzyD36myyz1q1EQmxnKHzig/z69zP5GvA3aHX7v+sf7eAL7bdIW3J7aB73a86RHoNgAne19nxJ7GleXBJKQkVuqYm6Ftmg50bDK4W3hYRbaq0ElNkgHloWgYSrOBVTCY5yyFbtTQeXMbgMxtUpOSec7uJIZD6Cm0EqSuuSkmvkDoHOyOGsH8YMzCW08J62bfZAJSadDQG7fwJPgXNw14bHbNvuWuUFYrpHFOojoJ4bhLWjLOVuWFiKvv9ph5zID2kedsojpQinlhdQe1pzyaBzMm/7ufpfP8CyRPnWX9L77BRHwb6eghwxne0qCTgy3byjv0xRAITgeLB+iDID1aQ4Qxad0ncxWZLbHaMalvIese1np3YBbS6ppsXpoNNb5cl3Ep/v5WwG9+XueiM5wPnwdg2t7HtL3vm79vKJSwuK30Pk50HyHTKXeU348rfXY7N3MpPAmARrOcXCHWIR2gUT1M4guC2SpaCbyFDsFoFbudGaqLTujE66RRQPf4bqxuhnd5E10vkSmB7ISIdgDVMlnFQ66bca49G7HRNnQT30G0TLZQV8sGRIem8ZA4MduUXKPU0AvM+XIc7h39GIvRRbrROo70GXN2sBbN8Ur76/Aar9bXO67CjL0gHPDlC2nAfGE0a+3nEi+gyVjonmJ093EqFR8RZ6RTVRAQVxQqSEm7bdJXmmhRR/gl89uVNJ/veybrmunB7gWRAa+RGXOiG4Jt5QsJA1pFIrdyy6UcUHOy6xZXWTpoaB3+LVs47DfIeH+zeJ1tTI/BkOW466A7XTKhiUTQp9CcD5/vj1mFRUWNcJP/wHetZFaY9VhL5rmp+g7zuzxD1dK+Q1Z2ST0Lqx1zpXSFjS8+wnL3fJ+TKxBoNJ4o80Dtx3FuoA8shMDixgtWo0by2rFrC4cD3u10001O957EdatMVg5Du0vm2SRWhuP7ZqyF0UDTvVw2YyJ/Tnd7W+aMvi68+fI+DccszL4HoM6NFrRv9P3b8S3F98Bo2I7vtQgzM/EnOuJU9wmOV94DaqjpQNHXyBRCmqaLovs2SQY3r75WbDrIpAFUygbwei4kakB3yG8cQmvoxWjHwlrtIsKIrFHGXkuIx33s5TbRZBWUIC7J/r1ZpKClyMuzkHpGNxQtsduG4gDgr6aUrnTRtkSkGclYCfvyitEO9dw+1UBECXbuJFa+1mPHly3WD3tkjkXqa9o7bfzljNZuSW86Q8yV6PohvYfa7Potj5VbXeSdd7OxPg8vweroGvKQpHKlhLW4aXZ62KkoiAyI8FxzPIIIXS8huj3Q+fEpSpupKSsv3V1GRTByOqC1v0T5akB32sNXEnvNNCFRLhkNYps+3+81mqDDQHhIKeGGkWdGu+kmZVnn7oophb7RKKkq91c/et1zNWa9w8wFp1mKL3HEv5+Xul8BoL16mXRlHW1X8RbMJOutRPQmXfxl2LvnvVy6/GXWozluXv0ZZH2MZKxEa4+P1cuongpJp+qoa6tQdsmqJVMWzjKEpUjHq0ZL1nXzhYiCXjiQfhMGyImNlhkrjk06O4pIMuxNl51JzUzyYUQcdbi0+SKj9iwVqzH4gdcf1+K4O3afXoFtQ6t9g+OuqflTvM/5GdayJV5ef4RvnPjXWNLFVWXG64fYO/kA/rrPq1f/krmV59DzGku67PCOcHD8IWxVMp/f7Q2uuWLMFUos10exOE1TSPLxmlxXjRByK2Xheqm9AvRefxzka6W5Bm+7bl9uBHqL62d4oQj98b0RzbMZL3Fb6b2sJwsoYTFiTVGRI3iy8pa6mb0ZUWheT5ePmHMUGDt1EUqEYyEcxfz5Rzm1+DmqaoxD3l1M2nvMb8Po61rCeUsa946WHiDqBDy3/lnsjS/h2lV60QYZKTeNv59dk/fk9518bHsmG2/k6lJEpXCly3nfcTagAUEOeNU31c7+bort5ra3L7aB73a86VGUvSbtPRz07hpMYkPlWGFZWwXiwYDWomRcSJoNa6hm2cAZTaoBBcIyXF6UMCXZNEP0AkSUl/MrvimvCoGz3CWt+qb0Gme4TeiN5UBb05c6UxGkrulqj2pG+8xbSwnrpmM9rdg486bkLeolktkxrHPX8pu0Rlc8tGvT2lch9QSZo2judUGCt5ZhdwS9McM1Li1qtJB0ZzW9E6OMv5Ax95BAS01t7ctc/ORXqP3gO6jdcQ9yFZbuLDFy2sKba/Wb9whjyFJ0o0IyWkZ1InTNQ6130bWy+f1JivZstGNBBtqzsLsab83wmHtjgqDhM/FsB9WN6Oyr4a1EZHUPVfNMxrOgWOQcT5E7wm2hQgybJVwPfgs6AFCxRrkan8IRN3Ca+g5iv30b69E8DWuKWfsAL2GAb5IGvPKf/xmH3vffsqM0jYxSVJhi94xix8Gd76V8x52ce/g/8Pxjv87hwx9lpnKUytWQzJGs3TVG49U2ulGBVNM+WMPdiI1edKrRSqI2e6SjZbQQqM2eAVbFcaiWjSW2lFgrLcg0qhkYK+XZhrGX7kWkjTLPn/kkURZw18THYGTEZIcLfm1xHLMsL1erQQkbTFasUhoYiRS8bteFKMIqVZkMHEZ3/jSrcpl2uk7QXGFu/QSL7dNIFEG4waGp92Bh8fLi57nUPUG0HHDbzo/l1IScb5umBnR3ugPZQcfeysU3B9+cd2Fc07ZQZIpIh8Bw8TtfT53keo5uoQpD3tw0TP3JrgPR5g35fSUbyCoWNuPFAtp1WOxcNLtGwk2lb2L//F0Y3bTJ2eAZRu1ZHL9ujr9rqlFZySWs25wOHmd+8XPscm7KM9dbz4lb9Gm8BWELh7sqH2QjWWYluUqU9Zj19tHNWry88jCdZJ0jO95PVi9jrXdN9SnVUC6Zcdfpgu/3s/Si0NxWeRXBdcz/yyXQN9YS347/MmMb+G7Hmx6byTIKi9vK7zUWxeRlqExucRPqg958ktKpEaFHCvNaMTkWGeC88xopDRBwHCNn1gvMDdvLxeuLyc22IIrRQpgscKpNp3nPSCRZzQQyUL0SUd3C6qRY3YSoYeO0M9ymMbcAI1umYk1lLsHejLCWNk3WtOQb7vDCkvlOx0FXPDLPASVwNxLiqiJq2FiBRmjwl81zQUNRuxyROpLOjM3ez0Rs7nPZOCDRQiN2dTnzq6cBGHvXDzN+UmIFGYlnpNS0Y4EwGsXadxFak/kuqadQbY1shWjXHMe06tOtZLQWz+IsJpQq44jp3dQuRcRlhYw0/kpmpNvilLjhUbrSJq24tHa5lOcllhDI3CgjLdexNnqmxC+FkXIr9IOHm+KGtECBLVJKNTWGRtNK16l/EzvTNxplVeOdtR/vP/7++s/wXOeLLCeXSeMer37u10n2/wB7x+9DCIG7EhDXHNAwwhQ3/eAvcvHh3+Lkyf8I3/dzlHcdpXwtwuppejMlUqdM/fllrCAjtaU53p2I5v4SftVGZBA2LJyajbdgmq9EajKjaqlJVi8PKAPtBOF7WGDOp5Qsb55iNbzM3RM/Qtmqm+yqEINsfTxk8lJw4XPKBCKnNZQ98/lxMqAMRfnkn2kolVBll6mOx5S3l2zCY+/mvbx89TPYwuP2Ax+jmtR45NK/xZdV6s4UM/7hgWtdfwEqcn6uZV7zPXNtSjmgJQ0vYJNkAEiHlSiu15XektW+ASDuvzaU7S0W1UUVCbZyfItFWa7zqvMMs+H3yoFsYhj1lQY2UqOw8VYCwLcqlLApywZr8RwnN77Ezql7KVOmtcdlpXOWha99jk68xl731m/LjvjNioY1QcOa2PJcRTV4deMJuuEax/Z8GGstQjTqhjNeLZsiXa2aN1YKo1wz2jDXilRQ881ckSt/fCs9un/tofN/38n7t+Nbim3gux1vejTTVSpqFKmsAbeXreC3P2FJ24iqS4nIqQ6miSXrTz5i2AGrcNYq+UOAOL9hB6Epmbo2ODZaCVPqTzXaNdkA7Zghn9kSiWVc3QR4KwYUpL6FjDVx2ThJ9cYkqStIfEHtlSZpzcVabppsg5RQLRkt0YJDqzNEs4MKE+LpGs5yF0SJzDGNc0lJoYKEzBaUlyRkxqa1cTalvcNh8yBMPJfRa0mcF0us7TtM74XTpPUNlt5bpXLSoXItw+oZyShs+pmzTAlkEGE3jY6xyDKCHQ3iuaucOf1FVjZPbxGSr1ycYKp8mFpWoz51CHHHbiqXenR3lumNSepnIfVUv4SWli2CiofVSc3v0hpdL5OMlrEvLaPrVdMEBqZEGcdm8oniPsgYjqoaRWGxHF9+U4Hv9SGE5Pby+3ih+yWW4kuA5uz5z7K4+SqT7/kIexcnsVox2jZmJ7btsO9H/zui3/3/sHzpWXZ0ZogmSkQVgUwFqSPQrkV3XFFaTLDaCVpKqpd6NPf5yMQsmDozNirwSKo27mIPGUSIALCk0aC1lZHoio39tcgXgN32EhLFyM5byJQyXOLE8IO3ZC/7TWBDVt2FxN1Gc0CxcB0DRotFZH6OtGea0XTJRSQZpdI4d930M8jQLBZ1axVNhqcqHCjdSdUazYFsQW3IM78FsCWnQMiCb55tNdco+LOFicRQ9h8YNLMW8c00qIcA72vcx24U1yk+bIk88zuQ91JkQciLnS/TTNe42X+QcXvH63/2d2m40ufB6o9wOXyZcxvPcWX9OfOCWUszas1yvPLD1N7Ca+/bjT3uMUqyxonOI3z51X9FTY1T7U5RSStU/aOMbXiIUsk05DrGyEQLAY2qoRK1u2aM+h4iShHfA9ZtIjP/vpP3b8e3FtvAdzve9Gila4zY0wCv5d4Vk4+SCKEGk1rOzRKeZ7qpoxihpOFLFtaqRTZXSQNww2hQShZyMAELYbK8qbkZpmWbzFX5iloj44zUt0g908hjt1NDXyjlWsEaVJSRuJLahYj2TgenlSHDGLmUZ4Vcx/A1w8RkIdLU/M5e0NfBVO2Q1qEa3mpM3JCIVGB3MrQUuKsB3pImmPDxNjLWjipUAOWrsHy7xOpCcz94naOIv/g8c//o37HjwLupjd6GFxilisy3TPkvyUhKBrCrMCX1FdJRWJsBzVee4cTVT2JLj0PeXUzZe9FAK11lMb7IpbWnSIiQG59n59yt7D78AcrnQ5x1n6RsUXr+Cs6uCbo7SqSu2f9g3EJoHxmmaCXJbIntusRTFezldj9zKYIIsWHK7iKK0WG4hb+phMWsc4gr0Svs846/NQYAeRZRCsntpfdxPnmRs52nzDhdvUDrj/8V1qEfpn7fO6leDoxBiSWpLGVMTtzC5aUn6R7/MaQWjJzq0drjoSV09tdpnO6SOQptCZqHK9Rf2URkPjKGsCGQiWbzoEf1ckxv1sfquohUI9KMzFH95kt7PUDbyixWejGeKJGR8vWTv87+qXcwM3UXKqfqiF5kMrt9sKYGFCA/p4zESd4slmc4C8rDcLNPrgecjlWI6y7OUpfMt7EWNshGK4bW4ngcH/sBTqz+JY+t/TH3jHyEUXfHQEFlOENYfEdBFygyzQVNqQC0BZjty1ANzdZDBgrAawHvdfq8w4vqAgC/Lvi9TvVC6wENQxTGOAVfWUk2siXm43PcWnoXs87B1x1e3+0hhWSvdwu73ZtYTxYJdQ+JzGXy3jiv/u2MCXsX76z9TRbjS6ynC7R6i8ynr5KdfoKSrHFs/P2MJTvRY/V+NUT0Irq3zuKuBIg4NRbucYL2vvsNLLbj7YvvzlbU7fiejVQndLINqnLEAMOCe1f8KxyCiomv4CcWk3Kal02lyf7qMBxMpMVEmKTQM1qjhFGe5UoHJeE4QcRGAxStkWGCvdJBBQlWO+qDYK0EMtUgTHnfbprSbepJUkdid4xG78jJJu56TDxRMZ+Z5J3Fnmu+Ewy/zFIDBQrfQ/ZiqhfayCTDCkyWNrMFnZ0ecd140scVRXdcUb+YkdlgBRjgNJGRVlOc3ePM/I//A15lgkuP/xHf+OL/wtOdP+d862me7X2Wp07/Jq+UXmT++xzmH3SJRhziikVn0uHC1a/w7NU/YsSa4cHqx9jr3YqvqpRUlSlnL8fL7+Y99Z/iXbX/iv3ebcy1X+bRZ/45Jxc/T3rhEqULG2STo6iLC5Tmelg9TTCiCKuS3rhNUrZZusPD6ia0bhnHmW8Sj5VJqi5J1SGtl8wx8T1jKV2rGek6NTj/e9xbiHXEi92vkA6BkTct8jFzuvcUr/a+gR6qHhytPMC4vYvGfMroly9hn76GM9fCm2+TKRjddwdp1OPCmc9Dpmnv9rACjbuREVUVK7eX6U47pJ6iPBeycXMddzNFRRmVazGjL7aonw2wN8I8Qw+9SZvWHq8PeoNRm2CyZKgWgPZtpidu5669P0HdneLklU/xwpn/yMZOi82b64aj7TtGhq7kGz6tbff1bbUl0Y490Gr13EFzT5EhLvmkkyPI1RYySPAubxCP+8ZxrVbK3dcUuA4Tlf3GgRHJk+t/xnPrn2U1vGLGf6EjXRzTgtNrGYpR/zuvz+oOnZc+d7/4N6zgMHwOt0jyCbTO+uoiOs3opS2Ww8tc7J3gldajPN/8As9u/iWLvfNkw/q/w5+lJMJ1ck7wADDrKO5XRr5bZcreaEihGLNnmXUOMO3s+64HvUXY0mWne5hbS+/kgeoP8/763+K+ykdwZZmnlv6EF9ceJl5fJZmoIjaapCMl/PMbdGd8Mtciq3joik93d/Wv+6f81aHfhH9vIL761a/ykY98hNnZWYQQfPKTn9y6O1rzK7/yK8zOzuL7Pu9+97s5efLklm3CMOTv/t2/y/j4OOVymY9+9KNcvXp1yzbr6+t84hOfoF6vU6/X+cQnPsHGxsYb29k3ObYzvtvxpkYn3UCjqdrjRp3hRuXF4Sxvmg50RotIkkGjguMMMkxFudJxBpzF4vV4qCya5OVjS/XdgApub1pyEElm+GwCZKhRQYq13iWt+ahuii4rUk/Q3mGjggxnuY1zqY0uu4hOaL7XM8C173JkWehOd/Cb1zagVIKSQ3uni7eakPqKsCaJaoLOtEPtoqJysUNp0aI77TJyJmX5dkX9vKFabNys2fE5RVLaQevHf5b6I9d4efQ5el97joudb2CPTaDbXdpfPM899duR0kZGGaVzm5zeeJTzq19lv3s7B707X5e/J4XEE2UOeHewxz3G5fAVLi69wFX9JFU1xqg1w9jsLdi799Laqxg9lTB2ao3O4VGW7rBpnMu4+p4SjbMZvb0jJL7E6qZYvRSRZkR7xo1ea5AiEg+1oQwdIkmg06NijXJ79l5e6DzC460/49bSO6lfx/d7M+Jy+AopW0Xx54Nz3DX2ERyvCkFIuncaGSSI5XXKGIWIo1Pv49UzXySMm+y5+2P4TYvVm13qFxJkIkkdQXdcIUcUUUVQvRwbmsOsQ+KX8VZjY4+Mi9VNcNZCWgfL9MYNF9hdNyYP4ahNVK2QugJvNWH8yj6qh29jfPFlXn3pD3nu4f+VI+/6WcSRnZQWAqNBXFX4yxFagAoSZCskrflklsBqWchmb0sDqFlcKuj2kJ5NOl5j7XgFfzXD6qbIMMkNXYzmdULC0vqLrMSXOVS+D9vyuNJ5iafWP8Xe0m0creTNXkVmt+iiBwPI43jweDii2OwPbDXiGKZFKHljikN+PwlEwEp4ieXgMuvJPLE2DXwSRUnWcK0ScRbyfPeLeKLMTvcII2oay/OpWKOoVJp9BIwM9FAlClCZee0tWYxtx7cdQphs9T3lD3EtOs2p3pMsX73ITcH7mJo8jmyFbB4fJapIVOgQVxQi1SwfjOGzf917/83j7VZ16HQ63HbbbfzMz/wMH//4x1/z+q/92q/xz//5P+c3f/M3OXz4MP/kn/wTPvCBD3Dq1CmqVbOQ+Ht/7+/xqU99ij/4gz9gbGyMX/qlX+LDH/4wzzzzDCq/9n/yJ3+Sq1ev8rnPfQ6An//5n+cTn/gEn/rUp779H/sdxjbw3Y43NTbSJQSCijX62heHm1eu/xu2Zn2Ho2h8kQx4hcX7imab3PoSMGBUSGNBWmSTbfOaagemyc03wDrzHWQnIh6vmJL9RohMLBLfZeTVLvZKh2SkhAKjzxoN6Y3GySCjpSTCtowmceE+F8fIboS/khht1F5G7WKEjFJSV2FthkSTJVQvoXy1R2eHz+RzKZ1JRVSFsWcV/nKP9cM+o6dSnMo4xyo/iHvv+1m4x0ad3+DsZ/53rHIVtwVWHCO7CeeWvs751a+9xmXqrwpLOOz3bmO3ezOL8UXW4jkWowtcuvASpUuf4ej+D+POHqO3d4TyiXlKlyp0d1eZeirB2YwIxz38xQDV7PW5o6lfIilb6IqF3UoQscl2im5osoauQxTGSGGhyXii/SnGrB1MO/uZtve9afSHd9d/gkc2f28Lx3kzWeKri7/D/WM/QsWbRK13zTl1XcRmG2FZ7PVuxdpb5ZUrn2Vj6Qy3Hv5xRk4fYv2ITe1iQm/MQsag2hkiFcQ1G2c1REtBXBE093qMvqKweikySpFRQvVsh42bK7ibGVHNUG2cZkJv3EJLQThqsTZT4tIf/kvawQpSKqK4xebJJ5nePWLsfHsJVsdCdiJElJDVPHTJQUQpdjNCxOmADpGrSaj5NVMp8VzIMrSjKM8bvrmMM9Rmz9heRwlZq83jS79PJ1plzNvNrsotyAzmOzlBdIh2oNPBgkJkesCVfT0JMjDc/WJxe91rSLFV63fo/c1wmfOdZ1iILwCChppkt3szNW+aqhrBt+omm56D8c1wkSvRq1zonuAsz0IHpLAYdWYJ0jYHS3czXTm8NdtcSBqyDXy/W0MIwU73CBP2Ll7pfYMXlj7NRPMlbq4+ROMFTTJSYuX2MuX5FK0EceN7oPPrbdbx/dCHPsSHPvSh1/kozb/4F/+CX/7lX+ZHf/RHAfit3/otpqam+P3f/31+4Rd+gc3NTf79v//3/M7v/A7vf//7Afjd3/1ddu3axRe+8AU++MEP8sorr/C5z32Ob3zjG9x3330A/Lt/9+944IEHOHXqFEeO/NVOnW9FbAPf7XhTYzm+wog1fWMnnyQZ4vvqAfWh4AEWSg7F/wsNxuK5IrNUOD0VPMMia5zkMkZFh3kRlkJYylgYK4UQmckESxBJSubbZI7hzcYNFxln+EsRItVkro1qBYhmx5Ts48RI6HQ6OcDOwbfWrzXiqJQgiPDOreC6DtqziMZKyNBQLkSUYLVjZBCzeVOdsC6on49RkcRfFtjdjO60i7+aomJNpgSVy11ae0u4V7q8/Ml/ibJc7tj7E3Q25ljbOMvGhRfYCOY44N7xhkDvcFjCZodziB3OIbTWtNJVXg2e5MTZP+KhdQu/NoFutUl3jFG63DKqBQurlM4CE6OQZmT1ErIT4pxdxJoaIRzziGsW9kpCPFHBsiRSSdIk4mTLyI0da7ybOOoyH53lpe5XOSue4ah/P5P2nu+449wSNu+r/y2ebn+W9XQBR3hEOiAh4rHVP+ZQ7X726NuRIm/MErLPWZ2tHWfM3cWJ+U/z3Av/F7dEf5Px9DbChkXtcsL6QQttSVSoac1aZHssRl8JWbzXxerC+mGb0Vc0MpTEoz5aCLy1lPasuf0GI4rKQoLTykhdSeqA3Uxoh6tkWczI7ltoMM6u2m1kroVQGSLNEFFKWnWwF0PUctOI+ruWGduZNg2eZcP7VctN85zvQxgiOhLhu8jEMpz2XgJhjMhVF9aCq3SiVe6c+REmywchjlnYeIX1ZJ6GNUmmM57d/BypTrCkgy1cHOFTthpUrVHKqo5SztaTcB1Hd4uCQ6G/+jrkuySLeHHzERbjC/iyws3ldzDt7MexS1u1o4vqUQ5+684u6uziaP0hwqxHokOutV+mk27gqBIvNL9AZsGMe2hgtaA1q9k8EkVZ1b+jcbcdb224ssTt5feyFF/i5e5jfD38A24v/xjj9gEaZ21knLFy3KN8+btbb/nNjGazueWx67q4rvuGPuPChQssLCzw/d///Vs+513vehePPfYYv/ALv8AzzzxDHMdbtpmdneWWW27hscce44Mf/CCPP/449Xq9D3oB7r//fur1Oo899tg28P1ej0ynrCRXWY3nqFsTSCRj1g5s+cYG3PdyJDpmNZnjsH/vFl1Nw8NLB4Bw2LWpoCb0Rf6HNGDj2DSRFY8LLp7tGxmzYamzAvwWFAjb2ur4BmhbkZZsUt/CXeyQug6qG5HUPaxWDAJSz0JbAtVJTJf/RmugCbnRHHTRAzoI8l2TRo0CBpbLQFr1UWGMrvhEEyXiioW/0EN2I0QQkzbKoCFzbaoXuqSHSwRjFu5mlrvGSWSkAUHYEJQXNf7JOeyNlJOX/pg4amMlgief+d9IdYzCYsSa5o7yB5i0d78p51QIQc0a5/bS+/hy8/dY6J5hjypBmqFOXhiAjEYNghC9sGyoDVkjl4Wy6Owu461ENKdt1GyN1JPEVQt32QLK3F35O6QLC0xauxF2xO76bXSCVV7tPMrz3S8ybu3kJv8BSqr2Hf0WKST3VH6QjXQRgaSiGixFl9lIlzjVfJTL7RPs8W5ll3ME5bhQraDLHiJKiG/dw93OT/Di1T/n5Cv/iX3jir3LN4OA0orC3UyJKpLEg9FXeoSjDuMvxGwesKleSWnuc6hdAJlq7PUAqyPZ3FulcTYmKStjg51q7HaKdAW6VuXeW3+BZ17+DwTNFcbf+WNkkYW1GZM5CnstNM07oUJbinDPCN7FNbNAk4p0soZa65A2SiDACmJ03THNccXxCCLsTUNrEL0YXSsZvec4IUiNAcaon48jqWhUd1NqN9hMVoiyEF9WsZRLoiN6SZMg6xIFvf7ne7KCK0s40kcKRSfZIMp6+KpKWdYoqTpla4SyPULJqmMNT0dDmrzL0RVOd58kyNrc2ng/M/4hpMiv+6KiM6yXXESRfU5SLOlgSePsWHenQQoynfLiyuc5sfZ5XpVfY9SZpSpGsKXH1eBVJu3dWOI68L4d35Uxae9htDbDic6XefbiH3DLro8yXboLtbjJZNhgc+q7H/i+WVSHXbt2bXn+H/2jf8Sv/MqvvKHPWlhYAGBqaivHfWpqikuXLvW3cRyHkZGR12xTvH9hYYHJycnXfP7k5GR/m7+O2Aa+30H0sjYXgxeZj8/1OWauKHE5ehkwlpaH/XvY5dz0hjJWqU5opiv0sjZj1iyu/N7QkFyNr6HJ+qBLFw1puXYmsLUMKuUA9BbWxEUUDTFFJqjvsDRkK1qUUgtZpMLdrbBILYT00wxdtkzGVwrsZkRnbxUZa/S4i4xNicm71kS1JaITDLLKtm32q9XOu841OjLnWnguOo4HoLdoKvKNhqq6smjUDVYi3M02rpDoimfK/E5uqZxkoASZJXGbGZkSqCBD2oLyfIazmdDZ4TLx5/O0k3WeWXqY5avmxlMRIzTUJGVVp6bGaViTA0DwJocjXapqjM1k2ShuODY6ynVcM9CbLYRjI8olcz6CEKqmgSYuS7xlzehTqyRjJeKyCwJElqGVZDwcIZueNLJw2mTwylHMnRMfY2nzVV7pPs6jrT9hxjnAjL2fUWvm27aIFUIwYk33H8+6B5nlIDudI1wIT3Cq+zjXolPcOfXDeCUX0YvIyh7V0xsEszWOxz/IiTjm/Fd/l9Wb7uT42A/RnfRwWsLo/I5JNg75aCUYf2aDYLxO+UoHocu0d9oEowKr6zL6SogVwOJ9NlNPxHRmLZymRtia8uUuTtMmOLiHW/2f4fkn/nfmnvkse+/4KL0pFxVkaKuMiDOcpTZp3cddbBPuGcG91oQoRs2tGfpNkhnagxTGSjjMga9lVCSiEQ93qUM8UUaFKXgWwZRP/SlzjC6mr3JQ3QZxjGfXeGjn3zamD3G8tXEtisGxibOQTrhCO1ylozpEYYtI90iymBE1iWOX6GUtuukmy/FVYh30z4UrDEi2pI3SFikJzWSFlISaNc594z9KVY0a+9lhx0IhB2oSRaMfgFVUg+QABBdub0IghcXxyR9iV+cWlnsX2QjnWEmukugQEOxybvq2xth2/PWEJRxuL7+fk72v8+KVP2Nj7TyHD38Ee72LU3pzTXLekvg2GtRe837gypUr1GqDJMEbzfYOx/W4RWv9V2KZ67e50fbfyue8lbENfL+N0DrjZO9RrkVnsITDrvIxyu449dIs5bHdxFcvkY1UubDwNV5pPc6V8FXq1gQCQStdI9ExmgxNhp27VoVZl0gHKCxSYnT/ChDU1TiuLOMID0d4VNUII9b0tw2IM50R6R6O8E1p9005JpqF+DwVOUJJVg2twbFNx3R/mwzBkKLD9eoOBY2hkLySuWxZoQlaTGCQN84M7Xvxvjgxf1uW0XLMMrAtxGYbXRlDRhlJycZupcQ1i9QW2DqjdHrNTIixcSJjZd1whnNO8Xz3NNeCMwRZm33ebcw6B9BBuPUYRDkYKCgdUvTF/nXJNXJVQYx2HbAVIojQZRdSjYoiHNc40FmdmMyWONc2wLawzy5wqfcSp1a/gifL3Ox/H5P2Hlzpvynn7luNhppkJbm65bcK192qt+o6/cWKthVidRNvpUFrj89IMyRzFaWrXZAQTPrYzZikUTIgOEkQrR7R3gmcOEF0e0zVjzLm7+Fi61muhae5Fp2mpsa5q/xBHPnmTWY1a4zbrPfQTG7l8fafcXH9aQ7XfpBeZ4Fup0PqKcav7kUiuW3njzDRfZWXz3yOpy6c50jyE+jZ/aggw21KtIDuDISTZUYfX2D1wWlGTmzSHW8wfiKiuccocJTnNbXzoG2Bv5Liz/VYXz1De7LMerbBxpefJNlcJ8sS4u4miSfREkQqyBzLOAyGPqmrCMdrkGrCHTWCUZvquRYijFHLGwPDCyfPXtar0GyD4+CfWkKXXZJS2WhYRxml8xuI0hS7pu7l/OUvMvHue6i0y6i1FgI1WIgWSgnQbxSzM0XDmaYux400YREFnalYsCYJKEXY26TnxXQ6S3SiNWIdkpKSZBEKm4OVuxn1dlFzphC2ZYC7bYMeWigXi+NC5q3g+meZuX8osdUO2bH7VRuBZrS828i05fuVJCFfWP2/3vbrazu+85BCcov/EHU1wanOE6yduMptUx/GLe386961ty1qtdoW4PvtxPS0WfguLCwwMzPTf35paamfBZ6eniaKItbX17dkfZeWlnjwwQf72ywuLr7m85eXl1+TTX47Yxv4fhsR6C7XotOUZZ37Gx/Dro6QTuYnPsuwd+9BOxY3r9/PhL+fxd5ZNsMFdJJQcyexhYtIQTgOcdoFBG5lFCeSZAqsRFCX47iqzFLvPOvRPJGMaGarhEmXMOwA4IkyJVWjLOuUZJ2yqlGSdWzhAoJYB7TTdTrZJuvJAu10HVeWaKcbpMS4osQ+7zij1gwV2UAISSdtspJcxRYOZVmnrOrftNyntaabNbkYvshCfIGbSg/2S446ThBKGZpDbpXZpySYN+eNNkOk/sKquA90c+DcB7l5xsZ2BqYRhVZpIZxfgHkpQOcav0mC2uwSj5VBQlxWuGsRqhki2z20YyOa7X6DgU5ThO8RhU3ObD7BlfBlGmoKV/q82P0y89FZKmqEEWuKUWumf4zSLKaTbBJkHUatGez8t4kghEqJrF4yTmuWRIYxarWN9mxEEOP2YgiigeZoltJLW7y0+GlW46vscm7iiH/vW6N3+y1Ew5rkcvQy6/WA0U4lP0857WNyFLHWNDrGlTLaUcQjPk4noPTSHCXLZOncTkA6UkGtdymvd0lHDeDKLBsnTqFaQsZ5M6NtrGQt7XGwfDcHSnexLld5buXTnOw9yu2l977pWYOaNc6EtYtL3RNceuXEltcUNhOzx5lw99IY3c+D5Z/nxLVP8sI3/i1lf5LpAw8wVXqI7oRk5rEA5+Iqqw/N0hsXxA80mHyqydotVZyOhmWBTMBfS3HWQlLPYtFb5MT534XzgFD4lTGqMwdxmqvs3vEOSgshUd0mqikSF6wQelMe/kKP9i4PdzMlFZLq2SYbx+pY3QwrbGBvRtgLTZOFdx0zxhwnV0rJEErirockFdtwfQGEYP/UO7my9DSXTz3M0fpDKMfYXYtuOHA5G5YlK3R8GaL89CUIkwEwjeO+Zq/rVHCFouHUwc/BtO8NNZDmi0nXNdbLxedalrluWt0+6NXu4DuNhrdlePxBPADAxeK06COAvuV2GLUgy+ika8D3plvbdpgM4273JkataU50vszjc7/Hzs631+/wdsbbrerwzWLfvn1MT0/z8MMPc8cddwAQRRFf+cpX+Kf/9J8CcNddd2HbNg8//DA//uPGKXN+fp6XXnqJX/u1XwPggQceYHNzkyeffJJ7770XgCeeeILNzc0+OP7riG3g+02iaOyRQmELl17WZj46z3JyGYBp9yDWjp2knoMMIrStSOqewWZxRrZnmokVn4mxo7C8BmUf3aga/djlTYKjM7jXmn2FAdkKBhJdUQRJyq7qvexS0gCmXozodFk5ViV+8mla4Qpd3WSjt8S16MyWjvXhsIRDTY0z7Rwg1B2m3H1UnDHmOq/yau8JQKOwqKoxmukKGo3uO90IRtSU4VBZMyhhE+uAbtZiOb7MUnyJjBSB5Fj5newq35y/LeffRrEBvUXGBwZmFI4zAHl9e1Mrz95mOfjNgU2h5FBkawoKRfFdBVhOM3BUf6KNZ+okvgHaMtYkFYWINVY3Q6Qa2epCGCG6PfOduSZpTMTF5ae5FJwENEf9+9jtHAM0l6OXWY6vshCd52L4IgJBTY3TTFeHjhtM2nsZc3ZQkVOMlfehLYnoRmTlvPSUaTN5t3uD5rxOB4Qg1QkvrX+Jhfg8jvC5s/xBJuy/3qzFlL2XUWuGZ6/8MQ80foRybQ/aUojNljkH5ZIBJ1GErtZwFluk41XUWgftO4hWD5REO4pkokqhsawAYUsy1ybYVcFupSjbIh2vYm10wclNCoDReIKbS+/ghc4XmYvPssM59Kb/ztvK72U5vkyiY3xZpazqXAhOsBRfYnnuBRZ4BgBPVblp+gMk0w9w9fKjnHvpz9jZuIPGpocWgu6xKaqXQ8a+MMfcj+1n/eYqvXFB/WKGKAlauwSZpehOlKg/t8K6fQ0A3x9ldPcdXDv1RTKp2Xvfx1GNA4grPaKaQgtwWpq4LBC+JGq4xCVB6ii8DbNo8FYSMleSuAK3kPpTkqxRprurgrcUYK11IIwhCBGBjxIC1Q7QjkVa87GBw/s+xOkLn2V+9QSTd7ybQ413Uj4bGCCaprl1uD2wUx52WSwoSIWZRpHpzXTfXZEgzLO/Oeh1jCV2X4atoDCofFFr59/V7ZlGPNs211BqzGS0ayEScx0LKQ0YLugYBf2pMMqQhv97ufk8p9e+nlMcQCBpqMn/22j4/pcaFTXC/dWPciZ4houbz/11785fHW+zqkO73ebs2bP9xxcuXOD5559ndHSU3bt38/f+3t/jV3/1Vzl06BCHDh3iV3/1VymVSvzkT/4kAPV6nZ/92Z/ll37plxgbG2N0dJR/8A/+Abfeemtf5eGmm27iB37gB/i5n/s5fuM3fgMwcmYf/vCH/9oa2wCE1n/10Wo2m9Trdd5X/8R/MWT/drrOq71vsJrMbXneFh7Tzn4mS/sYE9PIsTEjnp1p0xiSgciF5DPXQgYxcnmTZOc4UcPB2YhQnZDOvhruWoSMM2O1CMgwNuXwODVletfpl/C1o8h8F9XqGftdMN+nczveTkDYXqHdXiSte+hmC7tUoyzquKmZTESljC6XEL3cFMJSJFlMM1xgo3ONzWSJEhUOjn0futej48U0e3Msdc+xGl59DbCuqlFSndLNmtTdaUqiQsOdYXfjDlPqz926RMGThQHoBfPbHMeAJ61NJgpMltd1B1JllhpQHIZvDvFQ9iZJTFYnSwd6oEXZs1BfKGSSCivdfALUYdh3fUrSkIvBS1wKXiIjZbd7M/vc469bVu+mTVaSa6wnC8Q6wBIue9xjXApfYim+DPky4tbae5mduQc8h7jhoZVEpBnOYmuwv22TyadS5syVL3C+9xxH/HvZ4Ry+oUrGX0fEOuKx5p8was1wfPqH0N2uOb9Ftl0qsnrZaNfm7l3atkAJRNvwOZOZBrIbI7uhAS1RQjJWQbVDtCVJai5WM0RudukeGsefa5umrMKgJE15fu2zrIfzPFT7G295BlxrzcObv7llUTMce45+kIY1zQsv/Ra3TX+UmZFjZCUHudpEV0tEUxU2Dro4zQynldEbMzrRIgWRalrXznDxsT8kaq31P/Puv/XPSC5f5cILf8bmxiUO3Pc32SdvJhx3CRoKmRrpsKgiCRtgtyGzoHEuxrva4kLjKq1ql33e3dg9jbsWItsB2nOMHbElUd3I8KrbXQMsXZesYpwSN4/WqFwJ0AJWR7ssvvxVFk5/nemdd3PL+AcRjo1aag64+7kqi3ZsRKdrsrZhDF1jbY3vDSyMlRwY1/SCQcNokg7oQQX/H6BaMf8vrJZ9Y7VMHA+SBGlm7pfDUohxYj6jqCoVi+yyb/ajF7AUXuTZ+U8yax9gytlLplM62Sa7nKM421SH/9tEK13nsdafsLm5+R3TAN7sKPDVAx/6f2PZ3z59K4kDHv/s//wt/8Yvf/nLvOc973nN8z/90z/Nb/7mb6K15h//43/Mb/zGb7C+vs59993Hv/7X/5pbbrmlv20QBPzDf/gP+f3f/316vR7ve9/7+Df/5t9sabBbW1vjF3/xF/nzP/9zAD760Y/y67/+6zQajW/7t36nsQ18r4soCzjRfYTVZA5PVDhavh/XrRPrANcboeqNI2XuSe+66FoJ0pTMd81k0g76JX1tmQlfdiPSmgE7qhPRPlAjdQT+Soyz1CGaLJP4itLlFt3dVcpn1pj7wCQTz3f7VrR2M0QrQWdXGbSmN6Hwl1NWjiucTahezeiNS0ZeDVG9xGh9tgOj37nR7YPltOKS+oq4rChd6yK6EVjSTCQFnaDZ7mdRe0en8c8sk2yssTklodXGSS28zMP2qiSuZG7jRdaaF+jpDpvBHMf3fJxZe7/piF/ZMJNeke0BA2qLjG1uBqEdy4AbJfs83cxzjOZrGA/oE1IionhAiYABwA1z6kP+WwnCgePbMA81b34pnJ8KIL2aLfBC6wukOmGXe5R97m3fMc9Pa82L3a8wH5/DEg5Vd4qp8iF2j99FNl7HurYK7S6pLVhnlXa2ztraGZbiS+xxj3HUv/87+v63Ii4GL3I6eJr3TP5tHKuEHq0Zvm8QG2cxpfqZdNMcKA1YaQf5IiYjnTCqA9q1EO2AbKSM7EZkngNKEE6UcBc6iCgxCzXXNgANQAjarXke3fgjDnv3sNe79S39vXPRWV7sfqX/WCCwhEtVjCKlYiW5Qrk8g43NZucqRysPsHv8PkSaGtC12SS8ZQ/BuI3dzeiNKmSiySxBt7nIy3/2z3D37+PArR9nde5FHDx27Pk+woaEOOXql/+QpYtPM7HnTnaO3EH6rpvx1jQq1GiFMazoadyNmGRzg6dO/AZBuAHAvqM/yI6DD2GFAmethwhjc60P6+cmCcnsKDJKCcc83OWuMb/IM6bxmGlSvLL5PGee+0O88jh33fULVFa0uXf0ItrHJqi8vEI6WoZUI4NcS7jZNgDXsQfjwc0Xou2uAao144goksxcw71e3qSWmvtokiDGRqGTn/9q+f/P3p8GWXqd953g75zzrne/N/esqqy9CigUdoAgCYA7JVGmZMmWZNket9uecMRMzIdx90TMxEz0x/k2MxEd09Ptbre7bY/XkReJoiSS4ipuIHYUlkKh9i2zcs+7v+s5Zz6cm1mAuFMkCFH5ICqqkHmX99773vM+5//8l73Noo0DRHfwNltEg23VHO1GCGjUXHO9S8Hp9hBRhB2NWSmv8trwq8x4SzxU/fhPTe+wX++9Km3Ol3v/ar/x3S9gn+rwXXUje51uucGD7V9itnIC5QWuUStKp8hPcodqSImphG4U70mEMYhMO5/Y3QZPORGKCTyKhlvs807oLKx8gVECE/skMz6VOznbD7Xwh4blT80y9bpDg1VmGB0I8RseyZSkjATNawVWKuL1jM6FiN4x9/PqqkYYy9r7q8y8nJJ3QqwviSbK7nymgigM2/eERDuW0VIVK6pUb49RbzO8N/Md5HqX8sAU8evLmPkOnu9Rn23gRalrbEYZuh6iRhlLjYdY8u/h+vAVeukKr978ffL2h1myDzN8Yona5Z6L+jXOQgltsJGjdwgCrHRjbiGl4+Rpf+K5K1zYhJoYyhfaRRFPHBFs4DmawIQLumtpZKUEz7k8iPGERpDl7oK52wgPhogghqLAZjmjIOWV9T+l6c1wtvKhn1qkpxCCs5UPsVAeZ6C36JUbXNj6Kld3nsG75DaRVa/FTrFCaQskirrqcDZ+msWfwRj/+5W1EzrBj3Dxb3nzWAxJRROkBjHKKBda2HYFf33gGp5dwVFZgjfZ2Oyi/Uqi1nrOaSAx2FqE3BlhpuqU9QB/O0HmhnSxSrTmhHAi19h2HZE5XmpNz7KQnuRm/iaHw7M/U4XwtHeAmmwzNDvuvcJS2JRtu8IuCDwa3QEg9Oq8OfwW6/kN7m98jMg0oVFHZZpoG9K2jyos2hdYBTuvfhsVV7nnQ/+IoPQpPzVPWbWkV93rCYeCxU/+LYJX5tl841u8fONFwksdoulFpk8+QWf+XgRgJRhPQpKSZl3m5x/BlgXXLvwJt65/nflDj3Ny7iP42qNcdOe2jhTRrR5og7e8hV7oILUlOVAjv7dJMNDEN4f4E+eIqdPvY2f5DTbX32D9NCSnp5GFpXqnYDSryBqzdF7aQvRG7rvoeS5WOcvddzAK94SqNlSOBxyFmGroplfaTISpNbdpndAnBEC3577bU20XRmMtBJ6bltUrCO1CC7z1PqLrrNiIIxiM3GOBa3qFhCBAAMubl2h7Czxc/cTPVWG+X/sF/NRcHfbrh9d+4/vnak3fYC46ysL0Q25Ea4xDI4zZu6CLyaheZgU28CYBCAo1zJwBu5o0bUJgPTdWDHo5eTMg2M7JWwHDRUX9hmbzoTrB0LLyVIQs3MUoXofbHws49GXL2mMhOoLGVUnWEOgI+kd8ZAH9ozFZU1BdsQwOC4K+cpGxI1h9X4Q/hrBrMaqCMIAAmUs6FzK0L/FHJVZA0QjJZmKCnRxvZQe0ZfPjSzSuZ2T3LBBe2wIpXfLUVh8qMTbwKKsB5WyMKC3Cwujiq9AFrOHC9le5NHiGurmHBXUUMd2inbfxDs+SN91pNzwgmXkpYftMzOxzPfr3NEBA9XYKQmACiRqXiEIgdImNJhdCY/aQQVuvuItoppHgGuyJTZiNPPCqDuEKA0zso2dqTugTR25M6ilMmvLq1hcmZugf/6lPNaSQzPiHmPHd+Kevt7iTXwGc//PAbHM4OMt8cJSqbP7EVl0/aWUm4ZnBHyCF5Inar+25hYhqBbuLsr2tcut+trl2HlU9QS2TeNsjTDVEtyqoraFDdkWIqTsEQ/YTdKuK2hne3aRMpgBiZxI3u9ElPXwAf2uMCSSysOiKj62HyEy7aYqZIP1KcSC+h5X0Il29/rPhYx5eRKxtEaTwZONvYKzmanrOCVtVCywMzDa5vetdm5UDALby27zS/1OeqP8aolrBW9nBHmwTdgXB1pjN2Zw3/ux/Ikt2qHWW0M0ANi3xOuhIoENHXShiiQmg9fRHOXjkQyTnX2VrfJ2d/g2ufOl/YXXqEAsnn6Z55Cyp2eHGnT8BoH74Xo5mx9k48zFuDV9h+eWvM9y+xUOn/w5SCXQgiSbWZwCEIWp1B9GpI5oR8Z0xJlAU0zHal3g7Y6599V+zuf4GRw9/nIXbDcbzFh0KVKppX0pJpgNMLUKEPiIrKNsV8lZAfGvoqEyFntDAdj14JaYeYQIPb8sFcCClc0DZjVguRy76uyhcIMwkgdGEvqPPlAZKIEnxhmOoxpjpFrI7cGhwfwBSOHcZY7Fo10RLwSDfZCk8s9/07td7ot5L4rZf9NpvfP9c1WSb9ew6W+ktOv5R1+gOxhOebRVRasdLLM0eV04mbnRolXIor5KofgLSYlohalRSVnxUZkjmI3QoaNwq2b43Jt7U9JcUU29oxrMKHbkTuHYLNs+GeAlUVt0ZrXLwE/BHFj3pzYKBpawIok0QBsoI/MQJX4KBxUtcGpTKLVaCPyjJmz7RmuNb6pqPSktMGGAljO+dxR+WNK6lztfTWsr5FsaXpFM+YTSHDp0KXFhL0M0RBowvObn4cebnHyY7Po26scHW2htsbbzJm9uvwGVAKY4//tsEDz7OzHnNYCan+ECINJBPxax+EMRURv3ZCtGOZTwjqN3xMcMRXa9HQ85QG1RQqaZo+FgJZSRJW5Lm9Rx/x208dOS5htkYl7w2zvYuql4vRbcrqO3dtCjJSnGJvt7iidqn3xUqT0NN0YinfubP86PWenGDzI7Bwla5wmJwAuC7ml5jDYkZoE2JLyIuJc9zOXmB99V+jbY8gtjYcuhcGO4JDyWQH2jhCYHMy71EN92qINISudVzDU4lhlLTeGGZ8X0LYEFXFbI07JyMKKsw95zAtl1T7m8IOnqJqF/jTn75Z9P43lh5B4gihUIKRWpHpOXoh969m6/y1e6/4Uz908w1T2N8x2VP56skV94gS3Y49sG/TX32GN7AUkYCBKjUIbjSQDoD/sBtYLO2wn7iYU6+cQYjYD2/xs2LX+Lyd/4t/it1MJYiH3L/2b9Lp/0App/TqCxy4sAhDorTnHvpn/HSG/+Ckyc/TbN6wGkGSuOmIBO3FTnOMVMV8naETAtu7bzMcP0648Eag95tTp/9bQ5MP4w2lspqiTCWoumTNRXC4EI1BimmEeP1Urx+hq4EWF+SdQKCboGVApWWKCnRtRA1yvdcFmzowAYTuqmP0gZTjZBZ4Y4zcJcsmWQOdAh9dKuOzO46MKhxgZlqIMe54wdr7c5La7HNmqNfaU1pcwLxVydgaL/2a79c7Te+f67ui5/iZfMlnr/17wi9Gqeix1k48TRyddNxDaVw6Ui+71CJpHB0B4NDIIVA9cZ7IhyZG/J2QNArGM+HmECQdCRY8McWqaF1TbN5vyLogjd2Fz1hIOxZsqZAaufKFQwt/tBgfIGXQFER+GOLKqB3TFC7ZUnbguq6pXVNY3dND4x19++W6NDxCwHGixGVldSh0sI9pzdyVACVTEQiEoQ2SGNRhUdRVwgLyXxMGQni9YJgY4j0FWU9pFqZo37LYMJ5KmcOcKT4JGWWMqplXL36ea58598Tnv8SlyuK4o/XUa0mzQ99iNHfeQyGHrYb0Dtl6HymZLgYMJqXXP6X/yPJ9h1AEE0v0Jg5Tn3uYebzA44r6UMy7RFsJSx/uEnYA+ND/Vbp1N5TEWVFEvRLgo1JMzdJdCJJGOkesazR8r47YeYXuay1FDajsBlKhSgrGZv+d92uX27x3PCP0RR7P3u6/jsEMuLZwR/x6vgrnIqeZq5ccHQVcOPtZp3B/TME3Um0tDHoaoTsjlAbffR03dEXtnpuuhIHiP6IcDujf6yCDgSy9EhmoahDNhVQuTFwjfJwjIgjFqPT3Bi9yono0Z+qr+/3q6PhA1Rlc5L+pohlldIWhDLGWsHryZ+94/a5HvPK9d9jpn6Ce7aexrzvDNWboz1UvdU4Qhi0UZvu+xZ0C7onY/ImjOctx//TiDsfqCE1ZE2QGvK6hywtWVXRmjpOMe5TlgkmHdG+7wlaxx7EGkAIws0Eb+RRrR7m/lN/izevfoYXX/gfeOLxf0xTN8jn6vjbY4pOhaLpE25mmFCifcG19DusvPgHVBuLeH7E6Sf/PnO105CUBL3c0ZB8iegaROG+Y6tPNpk6HzGeC6jddEh4NhUitCXoFRR1jzKS+EOJno8mMdwlerqO8SVl1SfoZuTNAH/oNkplPcAbSExQQVc8ZKad9kFbZG7wd9K7HtnxJJ0uy/bElWaujcgKbOiElIQhptfDYpD8bAJf9mu/fuwy9p2R3j/J/ffrR6r9xvfPlS8CHq9+inPjr7BWXCcRI0qdESh1V3ShpHNE6FSRWYkJPOeBmZaoQU4xU0MlJSZQjpuKoyXsVtizVNZyrHI83+0zAfEGeIklrwlUDtG2dshIDkFfowOBlQIvs5RCoDKDFdKNN6yleRVUZvEyi5dYjGIP5dWBRBWWrOOjckMZSbQfEW/kFA2HRKcdhSh9oo0EE7iLgfUlZc3HeM4RoQwlXuruX11JkVlJWQ/I5ut7DaU3KpFpQVkPCXoWE0g8P6TiV3hk4Xe43bqPrcFlyiZ0HnyK/MYNtj/7RwyeeRYVxBTDLaSKWOu04A5IFZNs3+HQyY9Rnp5lfOMKWzfPsf7mN7gWxXjtDs2/+Uu0gzm2f6lJUELjes7W2YC1xz1mXtF7Tb1RrvlSqzsg3edps5yqbJKYIdqWPzeP3HezrLWMTJe3kuf2AikEAg2E4rvFfIVN39H0AnjCwxM+D1c/zvnk25zb/Byz/hEeqHwYjwi7OIMJfWqXuo5fPt/Az0u8buIszm5tIEcBYpi45jctyGfbBGmxd97L0qIDQbQFi99KyZs+2VyVvOFRvyQQw4QjjUe4MXqVy+lLnKn87H0hhRDMBUeY48jd9LpJORePd1YkahQ2ZWNwmY3BFQ4OH+TofZ8m7BxFXQy59drnOP3438VLDLJwf+JtTd5QhNsCqyTtKyVpS+GvjBBpzni+jV7b5Oof/BP3WbTanJn7ZVrhAeKgBWsJJnQBF+lsTLSeYIVg6sAD3Nuu8+p3/inPPv/f0mgeptpaZG76fuqNE+59H6TY6ZD+YYW87KZC9336v0KVAllYVLegaPqUpUfQKxC5oy/srhtB30dmmsqdnMHhmLQtaNwsQcDm2cg5T1zTjOc8khmBKKF7qo4oIdxxYEDWUmQNiT/2iTcKws2E7fsbNK6lJDM+zfNjRGnJpkP80pJNx462kWWIJJ04wXh7Aji5PYQoQGwPYTDk9vhNLmUvARDL+s/8nNmv/fqRap/j+67VL/5V/icoIQSJcVy9y4PnWD1/iadO/e9gnFAuTiFKQ9kM8Ho5JvQcUlGR+H0NnsQbOJsgUfpkUxGjBY+wZ8nrgvqNnLzpvCZFCUJJps9lGF+QTvtUNoyL0lUCLzVo65pbb7wbbeuaXuMJVG7QgUQW7BF8ZO7Q3V2Kg/EFKncKctdISIR23DwAf1hiJdRvZA4Z9pzNlg0UOlSUFYU/LFHjEjMTEm5lRMY6p4p6RLA6QNciTHUyzmwo4ls5ecunqLrnqq5kyMKSNz0WwrMstO+nd1Q5ZPvMk9Q+/CT9L30NPeVTFyfJ0h1IC2QjJb89ov3kKeynniJo16mMHme+azGvX2NTX2V06U02/um/YiN3qGI4t0jya38Xc3QWYQS9w4rBSc3C1wXVW6lDg8DZnhkDUlBXU4ClpzfoeAvf44z4xajUjLiUvMB6cYOSAl+EnFn6NOlgkwpVXt/5MokZftf9pvwDPFX/LbQtUMKnW67tJQ5WVIPHar/CenGDc6Ov8sL4CzwSf5pgnKE2u3vpfP66RLdivI0B0lonoFzbcY4Q2mIDHxNIhvdOEa8mZE1BZV0zmvfIOlDGitsfEyx+3SNez6BwnM3Aq3Cq+j7eHH2LimxwJDr7Xcf/s6q3N70As/4Sv9z631LanG65zsXkeY5EDzDrL3EzPc+V7BVud19h+duvMT/3MJXaLJt3XuNsNydvBxjfw0sN4XZBLRSTBDhHjdrSt7j++/8EazRH/uv/G4vLdfypGfx2m4N/+x+x+McDZ6VYaqw0SKEpKz7BzuR8l+5Pu3mMRz7xf2Z85U02k+vcufEMie7x4MxxwmX32cvc4o8gy3sEjQ6qFI4mNdKUVQ+/V6Bjj/6xmMpagTcoJhoI49xnPIX1BI0rYxoC8mZAMuMR7Vj0hFkw9dKOE7VWfEzo1ppwM7lr0agU+WwFHTp7u+lvroKnCFZ6kGZ4PYl3+23JcbuuDkruWTW6MI3CeWOXJdYYriQvcXn8PHP+EQ5FTzPlL747J8t+7dcPKcFfkOP7UzuSX/zab3y/Ty34J/BFyFZ5xzUDG9vQrCNKg8wKZO5hYs/RCYTAH2mslMgk27N2wlq8xCfelBhPUL9RIEtD0HPIMEpgIp/tMxWM5xDbaGyRpcUalz6kMgPaOp9gbcEI53JgXSADGBeIMbFH2m1ysa75nXiyI3PQoUQWBmHBHxmKmuca48wiSwOFnTyXc6iQCfh9J0KyniReTZDj3FmjGeN4zNq4uFnrRtyVG30whurVHtl8bRIR7OGNCqLSUMYKq6B9oUAYy9bZgNlyieZv/H3iTUfl2HhYUTQMwY5EGEf9qF+zJH1B1gHz8IhofJyjw+OU9iyvXvx/MH36CUb+kOT1N1j55mdoH/40VXkAHUH1psJLNXk7ovt4g9blnGBrDKs52+lNUjsiFjXeGH2T9zf+Ov4voGWfsYYXh58ntxlHpt9PfPwe6p3D1O7kDB+vY3zBod+/w43sDU5Gj32X4Keqmt/z37s16x/m8dqv8uzws7y+9UUezj6JUMp5pmqDyAtk6tLbRFbuNSxiY8fZ2dUrROduQLuJrscIA/0lj2Bgab/lPFg7r0pU/jbHlGYV2R1weOGDpHfGvDV6FoPmaPjAzzcHXgRM+weZflvgyLH4QQ5H93E5fZnr2WvcWX0RqXxmH/sEZZEQbYEJJKP5AG+oaf7pW+h7DqN2xqyf9rj55X+B1RqrS3b+5e9xJ9nCkJPeWab++sjFQxcaNM7VxFrH0Wci+NSOvlROBVTtNPVTTxJeCNjkNRYWHiNcHYESJIeb9A95IKDeOcLGW8+wcfEZFg49gVFOyIYQZC1F2NXceX9A500Plbt1aHfKZDyBNyrRscIEgvoNhx4PDjtrw6JTQSUF3sYA63uYgw2KRohKFLLQiDQnur4DUlDM1CgWmnhbY5eAaK2jKXnqrjhvt3bTILOJj3RRYCcc5jcG3+B2foET0SMcCx/aF7Xt1379Fa39xvf71JHoLEc4y43sPBeSZ7ievMYR7odOnXy6iiw0apC7pm9i1YUnnc+sMU7E0xsjc0316pjhiZbj5o5KvJ2c4ckW/SWFLCBvQv2WxR8Zx1srHGq7S2MQFqS2zrpnV/mprROTvO3fKnccIZXe9aYVxi3uOnTNsbCAsZjA0SxkaSe/Y4/iIIxFphqhNcZXqFHmniN3grFdFG9XjCLyEm+cg6juBWqUjZAylpi6c5qolgZRWryxxvgOCc6bHv4QrBQ0bhiirRw1LlBFTNpWlBHkDcd7liUgoVzMYDNm4WLBzmkffXoW+cWIzbeeBaWonr6P5OoV7vw3/y9m7/sQ41pKcukiXqtFOHeA9oXD6C2PW9f+jMHoDtrk7/jcLyUvvCsj83ezrLW8Pv46Q9Plg0f/IdGRE9z+aMTslxJ0IyRezxClZap5jFvr5yltPom9/vFq9z7rxQ2+1vu3TAUHmc2PMBcdRViL3E3wkgJB6DxWixKSFLEzILt/CYBgZUD7PKw/Xqd+IyWdCVFjTRl7DOc9eh9SqCymfcHSedbt7E5V3oewcGn8AtvlHe6vfPgv7MH80y4lPE7Hj3MouIcL4++woW+y9twXWOMLfKL599FPniHeKBDaIGamUBdukM9WufCn/waVlZz+rf8L19/4I8ard2i2DxM8cA+rX/kDrv7Zv6Zz6G/vOc+kR2Oi9dQ1mM0Ab1QgrUPIRWHxhwXpzipv3P5jZlv3spQtYT1I5yoMDnqUaxukNU104gQ8IxiuXsMeeT/+0PmDCwPV5RQde0y9oTGBII8U8UaJCQRBt3BpidYiCkO0qZFJjtCWzsbIrSH6bhiIsJZgO0VXfCdiA3SzguoniNLgX99w05ldP+44djZ5RbmnpcD3sfUqYjBynr1vi01HCrQ0rBZXEQgyk2DQqP3L3369l+pdTm77q1z73/wfWm6B3mSVw/Y+1GYfVJO85dKlsBa5vOHM0cOAdKlJMuNRWS0w8xVkZvCBysqYwbEqg0MBzesZgwOKyroTqulQYHZj5sVE0V3Yyezj7pFY6Rpdqy3STBri3HkCo+1eo7yrqBcGwE7u5xTjlO5x7eSx84ba+8LkDWellrU9Kqs5OopIpj0aVybHUQ2QaeEuftkkZnTPs9hZWlkhEFmBShSBdU1t2HNvoxoVbD5ap3qnJJlW6MAZ78vJQ6Qdnwg3ahUGaisl2VgxnhYEA4OVks6bDjHevsfHKqgvCx57/P/AqNxG3HeMWFcQDxZcvv451p/7M7xmm/aRBzC9AeM3LnKj/y0AfK/Csfb7mZGLxDqipze5MPw2t/I3mfYPMOsf/hmdT+9+ZXbMncLZp42ePs7m8Yho0/m+CmvZOhM7Xni5COuQ2wyfH6/xFZ5HaGOmvEUsloaaYjNfYSW9SG3Y5v7mR2nWJmk+Ex9nUwlQ3YkQtCgI31rFdhrY2KesBky9nnLnyZiwC9GmpXMhd02crjgOe2op5ur4awNEEHAq+hDt6CCvdb/Etwe/z/2VDzPtH/gpv5t/8aqoOo/UP8mg3OFS+jwb5S2+MfgPzGx8guPRI/jnl7GA0ZpXLv97dDnkzK/8H2lt14ne91+wcwYOfrkkrynmZzQvXv93fHP437HUeYzDrUepXO26zam1zo1lJiReyxDaEK07Lv5zF/45pc6Yrh7lpdXPMOjdhLcUAkUy2gBAKA+/0mTpvl8mWkspaz55xydez7BSIIyL/s5CRdjT6NDpEIwn8RJNUfeJVgbO+zwO9jyY9+LLdy/UufP3lj3n86xnG3jrfUdZKPXdhuDtEcjgLAl3fbqNcU1v4IOexB8nqdtkKYWH4unW32I5e4sryUskZsAj1U++69aB+7Vf36/27czevdpvfH9IFRNEcHt0A+YbIBXqzjbK67iUodDHLMw4NNRa/EFBsJMyXKripYa1xwNalz1UZhx3ThhWngrxe+5ELWNBddXRD4qqJNrRjtIgHPK628RiwPoTikO5y2tzt1GZdcItexfR3S2rBMYXiMLRJay820lbAXnVNd7jWUlRg9FcQNiFoOYxWPSobGjGB2LXjJeWohrTuJqgzKT5hbsXMGudmb6QDgXOSxdMMbkAC2OYOudsoIKuZLwYOk6ydMceDDRlpIg2EryxT1H1iDdKVKqINnOSTozM3QhXGIU/hjISmLMHiPQiOhCMaxDuBJw88WtkBz9MKKvkHZ/qusYba1jZZDRaxZ+apbEjYTjClgVlkTDULjL2F03pLbh7cW9+4xaBOMngkKB7IsRPLPNf3cRUQ7oTYVthU+DHS/6xZYknAh6rfWrvZ6dj6JUbnE++xYvdP+ED3m8TV6ZctLQQrundTduLQkeJ6A6gWsEHumcaHPjaCONL7jwVTyJ+Axa/MSSZiwh3Csqqjz8aO09ma5iZPsOTaopX+1/mxdHnWQxOcip6/D2H/gLUvTaP1H6Jke5zLTvH8vOfpVt5lkcqnyQuQ66lr7BTrPJE5zep96qMF5xlWPOiwB+VVK5so+fu4ZHqP2R19SXeWv0ya+UN3rf4O4jSkM/XWX3URz57mbXBBrPeEneSt7h97RsU5QjphZxf/hOq8Sxz7bPoWKKtZu6Dn0JvbHH73OeoRB1o1Cl8x8EN1zVlI3Sc/9hj9YkQlYDdEIxnndvMeEbRvpjijUtH+RKTuGr7tvTEt0eQw90ocSVRm4O7Eca73N3d2k1gFMLRGXb/XZZ3J1FCAsZR08DRIZQk1CHHKk/Q8KZ5of85LqYvcCp6fJ/ysF/79Ves9hvfH1CpGXEzf5OqavPwsd+lm6+zvfkW3WDA9rcuU1ENHn30f4+MIlSqKJoh3rDAhB5Bv6R/OMAfOZpBvFGyczrCG1v8AZO0JYd4lpHAy5x7gxU4lKK0Tqwi7y76wkxoEJ77vZkI1cA1pVZNsuiF4wvKfNf6TKP93YuC+532HWIT9g1pWxLsWLxU4A8tXmpJppyn8HBR4Y+dMC/advzjbCpANJ1wxtsZTaKHJw2M7zlrodIhOyIvQSlEqRB5iSomXOhcUL9cOis4bZ34xoANHFdR9R03uKxIgoHGKkH7rTFqkKMbIdVVgyyhemvE8kfrZC1B57yjbZQxyFJQG9fBQOVqRvdYSOtyiRfX6agYsZPseZciS0rrLqKnoyfewc38RSglFB4+RkJmRhgFzWvO+SNeL9h+bIqp5zcRK1cB0Lb8qT1305vh0eqv8J3hZ3hp+495ZOp/QzzEnRe7I+lJIAXZGHKDnW5ifYci5p0Qo2D+mYxrv+ETdCW3Plmj/ZYhnQ6I1zLSMwcwnqB/1Gf+c8uEfo1Hq7/M7epVLu18i/X8OsejR1gK70WK996mpqoanK08zeHwPl4efYlnsv/MfY/8PbZfdmlw1bKKd32N+rDFysc6zD0/RuSa5Gib3rGA+a/NMXPg08SPPcaVL/wzVpaWqTcXuXnz86w/d45i2AWclTbA3NLjVE7cS+tqTl21iOKOGwa1K6hxQVmGDB4ICQ8e4soX/lfOfe2/Zem+X2Gucxq/DClrimgtoX8kcn7LEaz/UkZ4JaJ/T4nXV5TViKBn8Q9EtF5Yc03v2+gNb98sf9ffuxSGiQUecBcAkNKhukI6garGNb27iHBRgFSM5IjhaINx0UN7lsPhWfwgBt9jmuPcE3+cC2tfQiA5GT263/x+jyptzlB3qavOXwm3m5977bs6vGu1fzb/gBrobQqbct/sL/Pqjf9IP99ACZ9mNsNi5wFubb3Iq+t/xP2n/zZFwyfcmijJJot4580xeTugv32THdOjsnKQUdMnvd1lejTlxsmewgpQE2GZfJuQTQcSlbuF3yrheL5KIAvjxtTaukQkcE3ypAk2gXRpaqVFCjNpeiffC+tup6x7LH9sXDPsCUaL0LgK/cMSHUK0DUJD2hZU1h1lgtIhxeFOjiy0i6KdOCogJdZXmGroUBtPOe/M0iCyYtLgWneRyUqEEE6UUxps4AzsZS8DKcnmq1gJ8VqG8QSbD8Y0r5fEo5zRgRBZQNBzPr3zzyQUTX+ykRBU1jJkUmIDhZm89qnXRuTtgGS2SuuVTYoDbfzlHWw2RCjFQnCC1fIat/O33lVngHejPBHwQPVjvDT6Auvrr3Jo/X4qV3bYeXiKjYcDqiuWfG2F1wZfpaGmf+phEIGMeLj6SZ4ffo5vXPgfONx8mKPycQLlIqMxBnTqGqMwQA5Sxic6+P0SoQ0bD1XovGU4+ocFonDfh3Q6IK9Jalcy1CBl87E2w4NQzrfwbm8i52ZY0lPMV09xaePrvJU+x7XsHIvBSQ4Gp1zy2vcpu8uPf5ebobrq8P7ar/PK6Mu89uI/59RT/yXbX/+n7FSGzI5DxLph/jsBxpdIY/ASjT+yDO7tEG7lnLgxzZ14mvXN17m6/S2S2zeYO/QoB47fTyuv87p4AbU54P7wo4g7CtPxEYXGhj62NC4tMfIZHgjxUstU8yThX/vHLH/tP3Dpm/9frqiApUd/jWP2UWRa0rySkExVSBYsYjNEpTDzjPP51qEL0gn6mtG9M+hQ0nh1A6SAUmOrkQuW6I123/S7za2eeIjvNrRC7AXQEIaYZhVROr4xssBmGX265DYlzUZsj65zZ3ABsAihXDyxd44HDv11GjshfbrEY8l0sMS17Bx12WEhPPauftY/q9K2ZKtcZr24wVB3EUh8EeKLAE+E+DJ4x/8rPIQQCCRi8p9Bcye/ykp+ec/G8KHKx5kLjvx8X9wveAn7tuv5T3j//frRar/x/QEVTCybXrnzGereFA/f+1/SmjuByi03/CvwZy/SMXOkd26yIzbIfY3sjmnMHGNmvQ0IxqPbvPryP8Va847HvgoIITl+36+zcOyDDuGdlJ1EHTvXhklN7i6NwXoOuRXlBCkFrOeszoA9mzOka4LfXruKa3BINELiJQYstC842kG0PWlycWlxwrj41Lwu8McgS+n8f3OFVSH+ZoLQGpGViGGKmjhaWOnEfroZ4HUTRFliI+cIIbQFa1za3QQZFnnpEvJCQbQ6omxGYCw68pg+lyBLS3KgRu164kQwQlA2Qmf9Ntb43QwzaXZlVmAAaS1lzcfrpURrJUHXw4Y+/vIODEeIqQ70B+79ExaD/qmcO++1WiuuAbCR3+TkzT75bA1ZwPS5Ai/RXDGvU5icx+u/+jNBReuqw9ON3+Z6+ho3ei9zu/8aj7c+TcOfxmAYpztU/RaiKKDbo3LJkh1ug5AYH7onAiprmrBXktc94o2ctBOz/LE2jVuGZFrQvmAZH4ip5S133lU8/A3FfeFf43DyPm7tvMRy8hbXs9cIREwgYjzhYygpbYm2BdoWlJQoFHU1xfHooXd1AhDIiIeqn+Cbg//AtW/+WwDS7jo2bENRoG5vIqZbbD7eonN+jJc6F5ed0zH6gRj/C4fo9VYodrboPP1RTgcfJVodYRoeD+qPwkFD3okJr2wikxRbiaF0zixOuGZpv7pD2YywSlKlxdxD/4hhus6NK1/h5guf4eATp5CVCslcSOdCwa1DHnPPWfyRZjTrUVTBH7pJVhl5yMJNpNY+OkdtpWQ0724Tdi3xdougW+CvD8BYypk63sZgshkyE1R3svgVBfgesjeCKJhsmjU3k9d5c+dre+9hLZzm9MInWGjei5yZIR1t88Zbv8ezV/8lQiisnUTOCw8QbOs7LPCXs/G11jAyPXrlBlvlChvFTUoKasEU9aklyAvKMmVERplsUeqcwqQY+4PXuVBWOFJ9EGUVF8fPYvfhxJ99Gfau8z/x/ffrR6r9xvcH1K5XaSAqvP/YP8C2mqitBJHkRFvLACyvv8DlG19wdxACKT3MpWKCNAiMLYmCJg+e+l3GFY0pclRcpdhc4876Kyxf+QaLhz4AQBnLPURXpQbxtrVJ6LeN/MyE/4sTKO0ltE0QY+NJ59bgOw/g3SZ2d+3atRxyd3LPuyumszhbNWHc79xFC0SJC88IBcYHHSt0JJ23ZzvCKkGwNnScOq1Ba0w9RKYlMiuc1RKAteh6NFFsW+QwcelKlXDCx8sRUoAp8fMSG3ju/qVBjDNU31mNWaUQusTfLNH1COtJrCdRwww14QWKwo3KhYGyHqIjhcoM3s7bxuzDEVtyk9d3Pk9uEh6ofuSnc/K8x2opOMNqfo2h3qEsE/wtg7814s5Hp/ESn9G3N+j4C8TqZ2fo74uAk/GjLIVneGn0pzzX/UMebfwKpSkoTU4t6LjPJAiwvofXy8mmI1pXNX6/ZP3RkANfHrBxf4vxrLM8K5rQDSXRJljlvhf9U3VUagkGJcVcDX9jSK1ocW/jKU53nma9d5FBuU2ux86bWAUoP0IVFk/4yJkZTJFxa+MF3kye4Wn/t39m78n3qkCGPF77Vd4aP0fKkDfTb7OsL/Fg9BGiEwdR631mnnHfjbRdoX0hoXF+xPBYg+HaVXTfpe/Vp44SXk8ZHW1gFETbBXnTRyWa/iPzNM5vI7IcUw8RqcXbHIKSmNDHX+07BLgWYpXCO3yQk8Gvs/GtN7m89mfcN/crxHdS1p6oMvOyJehqippLhVSZoKgJytB9Pv7Abeb9kYsYL2OoLRusB95Yk3UCxnPThL2SYH2M9RQiKe82vWHg0N8wvPu9zXM2zG1uD95gc3iF+fgkp6c+RBg2kHISMqQNdivBVxXed/S/YHn8JuWgS3v+Hrx+TlU0+OL1//cewPGXpUa6y1pxna1yhV65uYfK1qJZDs88yfTCgzRkh/HBCsKCSg3euGR0IMQbG8YzHp1n1xlMK/y1HmXFQweC4NoGul3F+IqGaCOlIt9e58qNF1nJLzHjH9qnPOzXL0Ttn8U/oHZDLGK/Qb6+TLTVQ0x1KOeaTB36CIcv54zlkOO1XyY+cS9R7oGF8Y23GHVXsEoQzS3RiQ/iJ4ZKLSJveqjUEOVzjPNtbt74BsOtm4StGcJh5NDYiZWZ+HMCEDuxARPGoqN3onLOBs1gfLkXeQw4nm8g91wfrDdxgBB3XR9k6dBiK93jaP9uTLKVk1CMydOp3CILSNuu4V7+sOLQVzTesMREARIQpYQc1FrXHXscOd6e74GUTmQXBTDOER5QauRgfFfpbayLHAUEsUtjEhKsQYyt4/hNRqAmCvboG1aKiZAmcZZt043J65GAwu8XmEhBf4gpMlaL69wYvUqvWKOl5ni0/kvf06P2F6Ea3hTzwVGW84u8dvk/cvR9v001mmLqzQwMlEoTl+9OAxDKmMdqn+Ll4Rd5rvdH3Ft9kqX4DIQBdrqFiTzUzhi10aXS9TH1CBP6LH4tp3/aie6qa5qdE4rGNYs3tuhI4I8MZeRS3+LV1FF4QoUNPPTBaUSpUWtd5ltnmNfahRpojZjqkB9oUkYKf1gwaliWX/0Cie7TUT+fQJO66vBY/VfITMJAb3Nu9BVuy7c43TvuUsi6Q+xsCx1C3g7wt0b0ejfRvR4Hf+nv4J9aojOeoaxnjKcV0Y4mmQlYf0QSbTmRnDAd6q+to3rJXSGZNsjBGN2pMz5UYXBQIUsI+pZKVOPgyY9y88Kf4s/Nc2ZwD+2LAStP+/hDn3gNassF3VM+2odgACYANWGABX2LKixFFYYHnUf3eDrES8AfG4LtFFPxnSFFJUCMc0Tupkf4PmjDIN/k3NbnGJVdLJZARCxEpzhVfR+hrUBaOn6Wcjt7URQgJCoKOFQ7i21J0sUa4WaK7I5ZqJzidvIWh8MzBO9BAeTbq1uu82byDH29iRI+U+Ehlo5+nHjxMPMbNUYPLaByN/FLxN3JXtryENY1t2lbEnYNm0/NkjdBlFOoAsIdizlwABSEY8NoktIZ1EIeKn6Tl5f/M98e/D4Hg9MsBMfxhE+v3KSr1xnoLSJZ5VBw7y/s+vlu1D7V4d2r/cb3B9RuilcvXyVd8Ih1DOME71IPLwy5l4cY338AtEVLibRO0DXtHaB97MSewEz1UygNvrWkUw0UULRC4tE01mpeeu6/BwSLh57g1KlfQ1j5zpN4155sgubuorWyNM7NQTiUGAD7NqrD7kNMrM+EsYh80kRL4ZrZCVrsuMSumfUnZvR7DbRwKPDubY0SeKl7nNZFiVEuWUuHknDNIbsCH7RyzWyS3s0hlxKpNUhJOe0in+U4d9ZWm4O7xvO7SI+ejDzt5GJmJub1wsNOfIdNqJCZpqz7yKx091OCdMH5mYbdMaQZCEluEy7Kt1je+g6ZGdHxFnm4+klmvEO/8AKX0/ET9PUmG/kNFs+/TqdyisHjhxhfeoNussxi/OS7diz+xAHiQvIdzo++QV9vckY8hdzsojwFxjJ66ADxygjZT5BbDoFsDRJaaYaeb1O9mJIdbHDn/QGHvjwmb/hY6VB9E7ipR7A6IJ+ru+nF230yd79TQmI3tgiyjADIYjj37f+VXI85Fj3IkfDny/cOZYxkeu/cNDW3OZH9IXJ7gMpbdI8pgm4NVpx8bUGdoNAtRougowgvsRRVSf1mxuHPWVbfH5M3oXa5C7jAC2EdT9/UI+QgRRhDvJpSWbEuwbHqMZ7zacgzcOFPicsYsd3Hm6rSvOyx+XQBNqB+G6bPpfSOhRhfEG+CN7YUNWdJuHXM4u24aHAX2gNhzxAM3KZXaGdZJsY5opiILKV0x7W6zfLoTYblNscqj5LoPlv5bdayq9S9NofF/Qh/sinedXmQk0UsMYgEqFeIr3cnkzPLyfBRNpMbvDz6Mo/XPvWeFD9mZszV9Bw38/M0vBkenvk1puMjmCPzDA9FNC/0KRYjGldGjA5V8QclvaMh0Y6ZgCgCb2ydzzuT9TuxCC2Itw06gOqdHB1IrC8ZTytUbkljxXhG0VQP8/DRgyy/9nku91/mYvr83rF5+NTVFDvlGpvFMk/Wf3PfIu4nrX1x27tW+43vDyghBCejR7mWvkrLn4dR34kz4ghbryByjd8vXBPpC4Juho48TCUgmQuJNnO8tR747me6GriwAOOEZwdbDzL16GEymXPr1jdYufUd5pr30lw8vSdW2xOsTTxXZWmcV64xzktTghqXuwfsnB30BAH1pWuMwfHnYrkXevF2rq8s3PEoa7ByIqTLXPNrJilxVrpmebeBlpm7f2VN4w+0s1VLS5AgUo31JLpdQ41yx90ttaMx9IdOxe95+IXG+sqlSvVTbBggpLzrD1xOKAm7P5Nqcl+H4pnYdwiuBZkVhL0EG3nuGEpD9fzG3mMMym2uj89xJ7kEwGJwgqXwDHXVedfPq59X+SKgoaYZ6G2GxRbb99bovLrGGzc/T0vNcjA4/a4ejxSSM5UP0lBTnE++zbDc4YHaR6h4Taw1VJ+5QvcTJ2lcFsi1DHTp3EOEQPUSdh6Zpv38Os3ZWazE2Xt1quStEBMo1DijmK6i0hK17YINzEwTG3io25vuvDIapMAOR2As3c0bJLrP47Vffc/EV782/joGw0JwHLnZo/e+A/gzMZWLG3TOJ9z8ZMzWfRG3X3wWIRRRz+BtGkYHJbXlknA7Z+WpCs3Lmv6xCrMv5ai0dHQhoJipEiwXMBoj0wxbr2I9icw1RSMkvLWDnKmTNxXb3atIFTA3fZbSKwmurjPdbRBtN5C6ZLjoMXVuTPP1hFGU8+b5/0BRjJ0TjR+Q/eEqMoo49bf/T3RWImfFGAi8UUHZcN7R/nYCngSrMJVgImKT2Kkmh7yHuTF8hUBGnGp9gKIYc677RS4Mv81UeJC6mb7r+/t28GDi4CIGYzc9ynOoxMTNWR4Rn+K57c/w7PCPuDf+AC1v9ufzQf+56pYb3MzeYLW4hhSK05X3c7j+ENLzIYxRNzdp3/EZn5hCx5Jk2kcWlsFSSDCwjOcUsrCoHLKWfAd4EfYNQbfEG+TkUxHpVIDxIdoqmXqh60KIagE6UvSPhISDA5zs/APuvbnNxuYbWKtp5U1qoglFSbdY49nhZ1ktrrMQ/OXkS+/XX53ab3x/SDXUNCUFo80b1KJppy72PMQoAzVBSLfHBLcz8gMtirpH3vQId1xDnB9sE6z2keMcXfFBCLytsRvl5SXVoM6wuEl35yqVygxxZxGZaazv0GIrmTgmAOWE66vkBB2xCCMcBWIijrMCbHh3x23FxO1hIjYrK47WoFI3dtS+M523kROgyHJCpQgEqpjEJ0tBGYmJiMzsLZ7+2MUp61BSViTVm8WEciDdRaYwmMDDNEJUUiLGHiLLHfrK5HUpsZfk5P7WgO8uTOBGnJ7C1mL33gMm8tAVHzUuENrxostGhCcy5ChzTfZg6C58UnJz/AbnB98gEhWORw9zMDhNIP9y8fp+WnVv/AEUPtcHr3D1iy8yHRyiW6zycPWTPzfE+2B4mppq88roy3y9+++pqTZz/lGOhGdpfv5NRBhQHl9EaIMc54itHmx3aX9xB6SkeamCWt7Ctuv0TlbJa4LaSkmwbdBRSFET+IFCDUNM6LvNaziJpbYWYQV24iRQl218EfHK6MscDE6zGJyk9gMcIH7WlZghG+VN7oufolGZh+GYoFcS9HKSE9P4/QJ/BF5i0aag3TjMzhNuM7f49dxtag0c+LMR/WMVqiuu6TW+ZHi8jj+sEG5NHDWqFUgzRLdPOX8AYS3eKAdr8Va2ad2R3JY9/GqDounjXVtjvfc65ciilzV2YZbBds7NG5fZ2noLM7HFmz32BBJFoQpm/MMsr3yHa//u/0N2/CmklUSiRm32CNWRR1Hz8I0TvZqaj9oZYmrxnitMNLVIZbVNX2+C1vhBlYcbv8QXt/4Xevk6dW/qndZou3Zou6X1XfeIJAVP0Zo+yeOV3+X82hd4dvhZ6qrDon+CheA4oay8Wx81AMZqVotr3MzO09MbxF6TU+2nOGAOE/iVPVTPVCNQMSIp8FJNUVduE+G5CHodCvyRJdoqsUoQ5y5xT5ZmbwIoc42u+ZjAebmHPY1KNTYKkMMUz1qsH9O6mNA9GSOMQjRnqKcfpn514ChzK+tQrdD2TzGdHuRy+hJT3gEC6TYx1lpKm2Mx73kqyc+99pPb3rXab3x/SLW8WQSCnfIONabdKH7CL7XNOt4wR4wzTLNCOh0QbRXIwqBDRXin55pAbVzWfDdxjgZ5QTFbY7N/i+sX/5R+/xat1jHOnP0dgqjOhHqLDpVDSozz9LWewPieozUI4ay6cGis2o00Brd4iQlVQbgAC6zj7xot8PLJ/ZVDf43v0FuN+5mXOR6vDsRdWkVhkalFZsZ574JDajPnMlG7MSKdiQl6OWXNx9/JHGo0EbWJ/G3esEHgGlshEd4ueXiC6u5aGdWq7j0OfGzkOWQY0JHnAjwsiELjjTJs6LtjHOd7HqBlPWQwvMOd7uvcTN9gKTjD6fgJ5F/xMZwSHvdW3s/J+FFuZW9yLXuNg8E9zHiHfq7H1fJmebL+N9gsb7NZ3OZaeo7l/CJn46eRpSRZWSM2MfXaIoOPHaVxaYgaZYjVLYcI1quIjR2aFwMQguFSheRAFVFagp0cHXuYVozfTUgXa6hBhAh8l/xVlM5XG03sNXiy8Te5mrzMrfwC17JXaaoZDgSnmA+O4YvgXX1fdv2lq6oFSmHLkviNFdJ7F1l/NCDecIEzaUdQPXic7dXzyNJ561pfsn3So7asyRuSoiqoLdu95incKdEVhfEV5ZEp/M0R+eE2wcqAYGOIGGfge+h2jV444K1Xf48k6aLLhIt/+N8xLLbIiyECgZQ+ejNHKI964wDHDn0Mf3qGtp6mJpoU0zFGCaKVAe0TD3Pz9c9z5ZX/vPc6hZBM1Y9zYuopvMoMg941tu06WdIl3xiR2YSQiN5ohVT3Ody6H2sta93zXE3PAdylKRjruNtKYXVxd/QuzV6i3a79IiVATtub5QOzv8vG6Aoroze5mL7AW+nzTHmLLAYnmPUP4wn/Z/pZr+bXeDN5htwmTFUO89Di32Z66jTeWg/bG0AYYObamDhgvBAxmnOOJ83res8ByEwOMZkWBAPLaN7DBIKwa/BHBjLI6wqEIGsIwr4lazhefNaQiMLZSwpPggF/J0X2E5oSipqPLC1l1TnxmNhHhiFmpokJfY7O/zavfOef8OzwD10CoQh5K/kOI9MDYMpb5FBwL7P+4V94WtlPUvvJbe9eCWt/+Dah3+/TbDb5ePPv4b3LC/97oZ4dfBYpPN439zfdghlN4lzTzFnsNOpsPzFH87LzpNShcqP/pKRohAhjCa6tY5s1xChFNytc3PgaN259nVb1EEcOfoipqdOYiu+aV8FdigI4VHSCxO56+O5RHnaFb2+7/W46m5XOFg3uCtXMRCBnPEFZEeQ159LgJc6yTGrHuTNK7InrhHXHE3X1no+qmFAxnO2aQWaabCpEBwJZuihTdwzgJe5+Mi8RSeEEK3A3eWk3gtT3wfP2zO5ts4roDiGOMNWI5FCNaDUhWYypXus75C8IKKVme+cSvXyNgd5mkG+SaKdsV/icjB9hKbhvf7H9c2Wt5fnh50jMgCPRWRb8Y+8ZVGak+7w2/ho9vfGOnwsEkVcnLYdMhQc5Gz1FcPIUsjty38cohP7AnUe+R7k4hRq788x6rgHSFZ+8FRDfGjpR5a6Aam/i4EqjWR9fZTl9i83iNhLJjH+IWf8wM94hfPnjxTr/JKVtyVd7/4bj1Uc5Gj2AqFXdRKMSoztVuqdr1G+4aN631r/CnSvf5INP/l+hXnFCv8yyfa9i5mWHDIrS7IXf7NwT0zk/RuYuLTLvRMjckDacQ0r9+hB5cw1mOrzZ/Tq3Vr/D4fqj5EUfbTWeDDgRP0zo1WGqzdZDTSSS+q2M0YEIL7V7lKrKnZSy6hNf3YZxQnF0lm25QXUUYnTBztp5bm28wLDYZrczVyokDlr4fkzg18nMiKZpMVc9SUfM8tLGH7Ke36DjH+BQfC9z0jVUQikngM0Lh+7vpr8ZO9lgu4hjt9bYu1Qqax3ynecUJmM1v8rK+C12ylVAEIiImmrtJSHGskYs62/7u04gIucnbEZkdkRmEmJZp+XN/sDGeaT7PDP4fTr+AqebT1I5PKEdCYHsJ+6YDk2RzIZUVlK2HqiickvzSorxJDqSGF8Q7hQUNQcOuDXe+cTrUBAM3QTRKMF4TiILt44XNVwEeAbNG6Xj+gqo3RwxmjhD1F9epVxsI9MCubaDXpgim4nwEo3MNLrioUYl6eZtLtz8HJvZTQBaapal8Azaapbzt+jqdY6E93MkPPuuoumlzfly71/R6/VoNH68VMqfde32Vx/+wH+D5/3kk8iyTPmzZ/7v78nX+F6rfcT3R6jD4VnOjb9CP12jUVu8ixiUJXRaZAcatF/aQmxuQ7WKCh2lwcQ+3ngS3JDlZPM1RE9wbfUb3Lj1dU4c/xSHDj4FvkRP0toEk2S23WmdBCYNpjW4OGDjGl0rxB56s9swu3/j0FKBQz88R2cwauLdi0AHMDgsqKw4dAjhml6VWUffGLnGNW9IJ5LOLEUskYF7zl3bNWGYcIc9hLZ4iQvGyFoeqrCoRDuhkbVoP0DtKldL7cbNnoLCv+voAI6DFwfOl9BTzvVhp08ld0lv0ctrbI/v0B3fZrNYplusulGaiKmrDnPeErWwQ122qarWX0kLHm1Lrqav0PLmmPG/G81dzi9xMzvvFOJ4vJU8y8XkeR6ofOQ9YVRfVQ0eq/0Kq/k1aqpNTbVIzJBuuc7IdAm9Ctez1/lO/hmeuPIbRMSTxMPJZMEYRg8sUrk5cDHIobPLM40YoS3+sHSIVTZpRnxvIqrUDgX2fVRQYaHyIAv2ftJiwErvdVbTK7w2/jMEgrY3z6y/xIx3mMrPyAZOTposoS3Cm5zHUYhpVrCeon4zI1gbQKlZPPI4Kxe+xvVLf8rJI79CoBw/s3bbksx4VO9Y8qmAynKCLAzRtpv8ZJ2IW4NzbL/0LFk5JO2u4wUxjWAOv5CMdrYZ6h0OVO7l1JFfwvoK2Ru7uO8sh7xAGEP7akbvZJWtsxXmP78MSTJpKhW208Bf7TO6dxoroHqly1waUCw28XbG1Oaf4MD8+1jdOIcoNfWyTj2YRjTqWF85y0IlXJOeltAbsZnf5njlUU7Ej7j3aEJD22t0lbyL7IJbr/feWLm3hpdFwrDcRvoRFVNBleChOKhOcmjuAcbpFq/3v8Z2scJ2mTAXHsNaQ99ssVpc20Plf1AJBHU1Rcebp6lmsFjKiW90YXPuFJcJZMyDM38NL66RTsWYQFK5uMX4RMdNuIwl3sjJpkOmXxqgtgeYeoVyroIsLN5Yk04HyMKSNhXjaUnYd1SXvCYoaooycut9Zc1SVARF1f1//aYl2tGMZ1xSZ+vlTcbH2hQ1Sbyl0dMNp1fxFGauDUqgckPe8DCeT7SZY0JFTbR49NTfYxAk6KtXadg2UnlgLAej01xNXuFS+sKel3ZDTVFTLUJRJZIVYlmnoaZ/bJAiNxlj02Wke+Q2ZcpbpK6m9sGO/fqe9VevI/gJatZfAgRds0kj6ThxW3+ImGpDqVGjEt2KEdUFdNVH5ho1yveEWzZQUK1gNjZ59rX/kawccfTgR1haehpwAKfAOkoC7HGxrLzb2LooYodeWGnBThrbiYnvHkK8GwE8iS+2SjgerxIYD7QPo0VB86qhcse5MwQj93OVu0VyF6nRgUOMrBLoyDXOxnd2ZF4KRcWpf3c5ZVlTUlsuHOo7sUWzYuLtKRy3uIwV4WbiYovTCW1EBk6sF3h7fr9WCcdN9jzsThdRq2IaEauXv80bm1/EoFH4dLwF7omfYMo7QEU29he6Sb2VPMut/AIH7T3vaHyttVxKX+Ba9iozwRKPzvwNZuQiuUl4Y+vLvDL+MvfY93M4vO/nePSuPBFwMLwruKurzjvEiAvBcZ4dfJZX+06RL6zEUrgGyPepnl933PDdSlKohO67NaHhmGqI8BWiP3KbMYB6DbS72AtjEHlJVIQcC57kWPkEabrDenKNtewabyXPc4FnmfGWOBE9TMOb/qm+B4Ut0JTEYQtblggTQJYjtwbI0Qi7MEN2sMmdD4S0LhmOH/kkl698DoXP0kO/ShkJGjcKkhkPHbvvrpjw/XUkKKoet5ef4dqrf0Bj/hTT0XEqrUfJgoJk4zaFGdNSixyXjzBbOQalm9zYaoStxcg7G9i8wK5tIjcEneUKxJFL0NuQ0O0DBWI1xyzMEG46ClQ+Xye8vI73xnWsNgzKTXKbsuAtIj3PuW2kGXacIpTCq1UolqadSBHAaDzhU5TJxC3G8bRFMNlMJ3eTAClLCAIyPaZXrjMabZGXY2K/ST9bZyW/jGG3KRbUvDYN0aFRWaQxblPYjGG5A8DZxkc52LgfOxojwgDCgMJkJOk242yHXBaERIQ2JPab+MZjVHTZMevsFCusFte4nr2+9/kqfDzh06wscnru4zB/AJOVpB2P2q0UrKPqZDMh/k5BUfOxEtbeXyfeqtI832e04H6mCmhcGWNCRdoJibct/SWBP3Qe1zqAZN4SbrvrSnVVE20Vjq6X5hQzNadBGWnWPjyLDlyAUdpWFHEVeahC0C9R49JdAwY5eb2CPzJOAC0gW2oBUO0FlI8+gVwZILa7EMdgDcfnPsFC9hj94W362RqDbJ314iaZGaMnn0FLzXEwPP19gYvcpGyVy2yXdxjqLmPjmt3dksLjYvo8sawz5x9hxj/kUlLf4+UsBv9i99+vH632G98foVyal0UZ4UzUK7FbYIuC5PQcowWfeFvvBUmE24ZsroqVgmAnRfUTUIoi65GVQ04c+gSHj3zkLhdd4cIm9kIpxMRGTOyhy0I7AtCufZmFvcCJvSZxUnbC6WWS5mZ815T2TlmqtwTti852LewbxjOS+i1NWLjRmJxwdmXJnrevMHf5w17qEGHjAfbubWQB8ZamrKg9O7WiJhBG4A8NCIk31AhrMaGHCZRrPpICmRXoZjyhTjgLIpGXWGMQ/QEijjG+4sLlP+TW5gscCE5xJDxLVTb3rXO+T/X1NgCHA9fAGmvYKpe5kb3OVrnCPTMfY+nAUwitYZjiVxuc9T/F2q1/wlvJs++JxveHVSSrPFD9CM8N/4Sr2TmOVx91mz1TOt5uGJCcmiGoBHgbfcxUE2EtuubS/tKZGFlawjt9ygNTqN4YkWusp0CCGiSU7SoEHrLQiMBDpAWRN8NSpcOSeYRSp6wmV7jaf55nhp/hSHiWE9GjP7Upg5x873QxiVDcpWIUhRPZjjNkHuEP3TRnaelpBvS4de1b5FVLcCEgPvQBxlMN1u8paT8zZPPOy/hBHbYl17bfYGPtNZYWPsi98lFEqbGdDuvv79C8lhOdX8aOE8eH9jxIMvAUeuK2YOenEaub2Lxw9KTBEMZjvG7P3b5eg/EYW5asXv4GN4oLWKM54B1nMTzFTrHK5fRFJ1YDQlEhkDEdf4GZzj1UEo8onEIC/tU1R4eyhn7vNgZDKSYbHU9NhMdqz/mDCeWLKCTVI7659q8oKVB4+CIkS8f4IuJY9AAz3iEMhqHeoa836elNVnvX9pIcd+kNt9MLdIIDVFTVNXNS4OcWP5il0TjkkOQkvYsuG0NdTlPTbZaaD2J9j8IzyHGGarRIj7QJt9I9sa6xoKsB0VZJOh0QBC10IPEHJeP5iGRaEgwttRXXtPbvaVDGDsAoqoL1R6sUdZh+rSRvOA9mYVxTbAU0Lwma1wpUqsnaPusPR5TViLDrBJJTr/QRpWF2fYT1JOlchaKqSKZd8IjKFWE3oLqSO/Hj2L0/6VSAnHipC20RpY8OJLoVoxfrpB2faLvAGxZ4YZ35O01mOu9zHtJ5gR0n5LM1+stvcrn7DK+Pv773HYhlnap0/sCZGTMwbm2reVPUg2k6U2cIpxZoiDYcOYCfQvric6wVN1jpu6TGvxS1L25712q/8f0RKjUOZaiImiP1hz7jU22ql7ogBO03hthAYQKJDiRl1ccbl2Rtn7Ie4BeOW1eZPsRU6wTrW+dZOv4x17gKR3FQ7HJixR66awVu8ZaTBlS/zUv3begwsLfIWwnav4t6CuuQ26IG069AXoPhgqS6alCppXWpwATuGLzccXt1eDcNbqL6AcAfuaAAYUCH4KVMBHICHQLZ3dtbwV6cqrCQ1yYj29Jiax5eojFWIowi68QOidIGNS6wQjA81aLx7C0QgvFMwNdf/n8CcCZ+kkPhPT/tj/gXqqy1jLUTlLw4+jyhrDA2fQqbUQ9meGTq08xO3w87fYeiBR5ykCJHGW01x45eo1uuv2dsnX5Qtb15joRnuZy+xMB2ib0mNVtnoX4PsiioXNmmnKljI5+yFeH1nae0zA3x5giEQNdjVD+h7FQpKx7BlkOPZFbgbQ6wlXDPHcDUQoQOJi4DBs8GHKw9yuLUQ9zY/A6Xus+wXtxkKbyPRf/4X5gHvJxfBgQNNQWAHSegJML3yc4cIlgfIJOS+i1D95hE5QEHqh9juHaVrZXX0aMRt658DfsVg7WaG0y8iycR6tXmIvOf/Bu0TzyJeWGIWtlE7AxoX6wQrPb3aAI2L5yjjNYQhQ719SRFK4L2IYKVnhOsDsfu9kWJXZwlWaoRXdzk4tqXuTF80fllE/Bm8gxvJs8Ajgf6SPWXCUTESn6J0hasZle5sTJBRncglFWm/EWOxQ+TmYSX+p+jopqcjB9ztyn1RKw2+dufUB6ExOiCC5tfBSF4qvbbVGTdiX6tQUzej91y57ybMhhrGJkuvggJRYXt8g6vj7/ONzf/HYvxKZpmkUjWCBszRH4DXwsn1o1CENFeA2yL3K3hSYqdXUTPVQiubMFwTPz62DXrUw3S+SpFVYGA0YIDJHavBcaTZC1JUXVAR9ZQWOkACpVb8vpdrUZlzdI97uGNoX7LOJpaVVJZN4zmFb1jPkJPKD7C0RyCgSHolfRO1wmGhsr1Piby6R9xaHLrstNhONtKxwlPZ5ymI5mWqNTijy15XVJZL/F3EoKVHN2sEF7bIm/MkXZ8ioMBYd+gozbhxhgT+wglsM0KdrrClHiImfpJsnbAwOyQXr/E0BsxGq8jkDRli8P1D9DpnCKstdCxDwKWPxyhr1vypiA+n1N5/AMc9j/I8X7BuLvC0HQ5f+7f/IW+i/v1i1P7je+PUJlJAPDMRAzhSWoXdyimq0Q3e+ArtCdRSYnMhEMzBc7fVjtrnrLtwhWmZs9w6dIfOWFXGDjx2WTd3eXs7grSTODCIYQBbzxJYGOi3pwgQWU0EaFNQiyMLzHeXZ/edMqhw+NFl9BWWzZ4Y431BH6/pKx5zvJIuxGoqTjFrtTsja90KAj7mqLqwjOCgUEYQVGV+COD8cXd40wdNaKoiglybdFtOUGHFWUsCHuGvKGINt1iqpKSohk4o/t2xGghIF4voCiwWY69vrP3WRQ2e3c+9L/EldkxBRlL8VmkFeRkTPtHmZ0+Sz2aQw5GmGqILDX+rS0AzFQDZaZ4n/+bfGvz97iQfIf313/95/xKfnDlJuH18TcZ6R0kip38DoNik+umz4XkOzzZ+JtEGxbV66OPL5I3Pcq4ysZDPkuf3SSfr2M8SVFTWBm774HF2epZixilzpZvuw/VGOtJxy/1JDbwoJwIPa1FxAFHog8xPX0vl25+kbeS73AxeY5Z/zAHg1N0vMUfm4ZjreF6+iqL/vHvaanmDXJ0PXaiUWNBukTFQLV57Kn/Cqzl3Av/jCTZ4tCRD2Gmavilx6w8hClScp0SHjpM5dYQ88oY6ztXFTtO8F+5goU9XrEIfIe2RiGkGfLOlrM/61QdPUlJTKvO6HiT17/5P1EUI8RrksqbTbrFOqVJuTf+AIvBSZ4f/sneazgePszx6OG996Y5oYpYaxmbPqkZkpghY9NnJb/MSnYJgaTjzfNQ9RN4+NiydHzeLHPH22m5BrzIKdoxr2x+ke30CvdXPkxV3RX9/DCHFynkO6g1U/4iTzb+Bm8lz3E7eZPbyZvuF5t37/PE3O/Q1m1ndTnVRmxN1i5jEUohVjeJVyF5cIn43M09rrHsJ6hOTNpx73fnzRxRWoqGj57YjQltqa460MH4gt4xifWgsmoJu7vTQhjPO/eOMhLkdYkKLMmMAKMIBs62sowF/tjxfMuKQAeKwUFFtGMpI0m6UCPo5XTOp2QdHyvc/bxhgcxL0JY41xTtkN6xAFER1G8X+GNJ5VrPnRNaMzhRxRu7aV4w0qTtgPG0wqtL0ukmwUAT3x4yPlRzDfp0TDhMKA+00YszdA4eI5pWHL2dE17bYnxqxom/fUGeGoJezuhA7GgWbUHehM0HAvyRo3L0j8dYeZxgnMC5H/qV+/nWfoDFu1b7je8PKWst17PXiGWNimiA1siVTfTSLGqQU8zW8HcSZFYg0tKZ449ydC1E7Yxc0ELg7GNM6FFVLaw1jM2AClN7gRMwCZRQu5xd13SqiQ+nCaRDiKVAe06chhAU8cTCLLfI0i2iZQgIKCoOKW5e1dSXBV6q3SjKgNcr3EV+Yo0mc03RdAucyt3iF/bcBVWnTjWsfccXHs8o/JGjPGRNuUd1SDuCyrpBTSKO95KCvN1m3TXNKnPfcCsFyWyIlxryusROe6jMUrud4W8MQSlGasTt4Rt0vAW2yzsM9Na7fg78ZSuJs3WqqAaHw/vcKDiOwOB8bEuXgoWnsJWYYrY2SfUrMdOLnLJP89L6Z97zqK/BsFE69fiH6r9LrKoYa/hi759T2pyX8q+iy5Sk6NHuHuD+U79D6NeYe6ECBrKWj8oM9YtdAJKlBmqsGR6tU7vax4YBthIgxwkkqWvOgsA1hNbuWefZyHd0IxR1f5pHDv0WWdJlZfAGt0fneWH0eaqyxWO1XyGS1R/59fX0JqkdcSA45fik2kA1xkw3EavbqPUd1n55idlntsjrkvpN14gXFTexERbmD7+PCy/9W/Kz8zQOnibsWgahoLqmqW8XyI2MshaQTQV4I42n3plcZicje5vllOmQUW9ArbGAV1rY6aFGY4dkArLVJF++Ti+7Q0U2mVKLjHSPBe8Yh8J7qKkWt7IL9PUmB+ef4PbqsyRm+D03BEIIqqr5jgjcE9EjPDf4E0amS8Of4Vb5lpsm2YxCFOSkRDbmHvMBUjPiZvIGtzcuYLV26YzfQ+T5o9RQ73AtfZWe3iQxgz36w5+vqmoRyzr4IcSRC+vx/T3ag7UGoQLGDx8imVJs33sCoSHs3fVUDwaGsFswWggmFnQuTlgVTnysA8iaDun1UhDagR+6hUN/U4g23W2sgvpNjSosXionGg7LaM5zzj2eoHljoqmQguBGiSwNMtV0T1fI2h6jBUnQt3iRINrWZDMhogj2bCz9XsahPx6w8cQUMjcEm2NMxVkKqu0RrW/fhjhidLJD/0jgxM/SHbMsLCqTdO9r4o8MWVsynvVRxxcclU5A95hH3oRkOqTRnqd7QtK6YkimJON5EDagc94wc06z8rTEKpe2ZAUMH1dgHE85vPne137sRxa/e7Xf+P6Q6uo1NsvbPFj5KMoP3ChNWdRGn+zoFMHKwJ2waY5tVLChgkyj+gnJwQbRnRHFdOwQJAO5dApg36s4G7BcY0K1F/krjCXtKMKucdGrvuPoytJSVJxlTdpyzas/tviJ3aNAaF/gjyZxxRNe1+6iqjLnwKBStwjL0kWROoN7s0eV8IeasjIRwRhL2vGxarIwDg06EOQ1SdoWRF1LMi0oY4i2Hcpcxu5Y/ZETvKnc0R104BZiKwR22vlNti5PELaJG4QsDbJwMbMkKXk55oXeH5OXY1reLPdXPsy8f/Tndi78ZalARsz7R7kw/DYYy5G5D2KrISLJkeNJwMfEIs6GClkYippHWWkQX1hlpnGKeLPOrezN93TjG8kqv9T8B4DYa55Gprv3ey+HtjpAHJ3mevYar5z/1zzR/HWi2x406jRe36RsV9HVEB17WAlZx0cWTmgphxlimLrpShC40XXSR8QR+D6212ctvUpmRsTxFNO1E44OEPiEIuZo9WGOBPezU9zh3ODLPD/8E+6vfIiWN/cjvz6JYrO8TSdbcBSHwNlJmvkOVkpmv7nJtd+dZv65kq17PJrXDWnb3X8852Mm+8TKjqSdlvj9kqLupjy7nECrJIMDCusp5renUddW9hpecFSvW9kFrmevYdAcys9w772/BUog17twcA6xsQNS0J46Tqs7T7dYZT54mvafe60db4GmmuH26rMA3/X73cpMQrdcI5ARLTWHEAIpFPdVn+Sl4Z9yJ71MSYG1FiXUO8RNvWKNXrmJJ3wOBqdZqp4hljUARK1KMehyJ7+CoaQm27S9he+L/l5LX+Vi+jy+V2G+dS+VeJpqHhIsLlFLQ7xBhj4wg/Ulw6UYMzTsNFyoTrRZUnn1NsMPnyJeyxC5Rq1uE64lBNuSVmHQNZ/BUkhelXiZZee0wh8orILBEUvQF6hMkPsgSjCBQ3y1hfoth9zmddcQWwn+0OlAdsEIHTpNiJe4tdv6kvqtAh2KPctJf5BPnIMkJlQkCxHRjkalBqE9dCQoY0e9U4lxrii9yfstBPlcjfqtHONLRkfqbN2niNcg3q7gD0qEgaCbM3d+HdOusX1/nXQKVOYmg85D2IEp4Y5l516BN3bAT962BD1BZd2SdiQqh80HJHlbE24p8oZleEDiJeCNIdwUmBCG92eQKayy+Js++ZEf6Sv38619ju+7VvuN7w+pjeI2voiYC1zDZa1BIDH1CuF1h5qRFRAFUGiErzDVgJ17YmrLJaNjdbdYWLcjS/QQEPgyoKh4ew4OsrAMFxV+4rwZrYCy6iFzS1FzqKrKXN66UZJkWpDMukUDKwh3IBhY/KHG+IJ4syBvuAuczIyLKPUkQhuM7+gMKi3BQtF0lAuVukYbIQh3SrejH+g9azXji71QC5XBeFbsiSfSNviTxcpMxHFW4SgOgZgkyLmFu4wcejGedchD1nYUkupKgUoKKDWmKHhl63MYXfB047d/LKRsv+CBykcI0woXxs/QqjxEawSmXXWj+tDxH4cnGjRe3SA/0EQWFr+XMHh4keqtEdVwinE+eNePW7Rb2J3uj377P9ew1FWHTzT/PhL1DiSxrjq8MPocW/ltZqITUBQM7p+lqErar3Up6z6jOY/qaknQzRkcqaAWYqLNDD/NHH81zaDVwO500ULzws4f09VrCAR2ZDnQP8XZ+kcQu77UxiCEoBMs8njz07w2+CrPDv/oRxbAeSIgljWuZa9yKL6PeOEopAUiKSinq6hhRjFX4+jvbZIsNamuWbrHJK2rhtWpLW599l+R7NxhavF+5uwSXtclKxY1F2Vev1lOUrwslU3DaF4yPFKlkUw5esfERebNtS+xXtzAFyHGajrhIuLWHViYoTw47QJEjsy7jXRuONR+mO7651jJL5OZMbP+0l64RFU1eaL2awzNDrGsfV9f+BeGf8Jwsok5FNzDmcqTe5/jh5u/Czh1/+X0RVbyy++4b6/cYNo7iLYF68UNtsoVHqh8hJpqYYcjrqWvcjV7Ze/2p6LHaXsL5HaMROGLiECGCOTEwxeKcsxouMbp2Y+jF9uEr98AnFuEunEHGnXiiocVgvbLO7BLcWg2wELWCUimFObB+h4nt7bi0NjKauHWQMAbiYmPO0Qb7t/jBfAH4BmQOVTWLWUoGM8IqmuGvOE8eQHyukBlUFt2Te3woKR+yxB08z3diAkU4U6JTCabGyXQVR8TSJIZF3vs59aJ1TwHkggNRc3501dvOh53Nh3jJRo1LlFA/1iF2nJGdVnijy3DBYk+6gJW4i1FWZ0hvr6DymqoRDjE2jKx55w4T0SC6m3I2lA0LaaTkzQkZeRTzud465OwokySHc4By2DaIldD6jec1kSUUH0jJJsCqywmsJTNH245t19/dWq/8f0htVncYto/6PLRlfO0xfed8X2Wu8bXTlwPfEXeidi+N6Bx3dEEqjeGFM0IHUrQliIdAJaBHFARUxgPRoshKrfUlicm84Uhnw7xRpp0yneRq0O3o9+6X+INwfoQbUHQtwRDh+i66GBFtFW6sVO3dJGjQmCVxBpHL1BJOfE81Y6GgROdidJCIFHpxNkhN+i6h0wNOpbI3OKlFllokhnlPHxD1wRbHNpQVJ3CGOu8gNMJv1fgUN5k1o3k5BCYCO/Cnibo5qhBjhwmIAQXd77BTnmHx2qf2m96f4ISQnIqeh8r+WWWl79Ds/oUQlewsU/RjihjRePlVWwlxAqBLDTy1hq16yvcCm+zmVznbOVD7/px/zhN7/er79VQtr05PBGwXtxguvMIYjCm/uYWw9MdrBCoVFO7U1LEkuxITP1GSt6coL+NKqI3dFORLMfokpeGn2eod3i89qu01TxXs1ecwK67zXx0nNhrEIiIkJhI1VzD1/x1rqevcXn8IlvlHd5X+9UfGAi0VSzvpV71TzSo3BlQHpnDu3Qbz1foakCwOmB8vO3EpIll7qWcIpasfvP3KW3GsU/+Q2abp7FjKAKJPyio3UxJpwN6xyKiriHczqkuZ3hJ4DaogzG9p47QfGUDihIrnMXUI9VP8o3Bf+T1wZ/Rr2xxyHyYyo6BomR8aob4dp/x1m2u7TwHwO38ArfzC4CLyl4KzwCOxvB27uz3qvsqT/Hy6EvkNt1zVHh7dct1Xh59CTNJ2xuW2+/4/WZ5m7rsMFs9wfLwPM8OP8uB4CQSj8T033Hbi+nzP/BYdms7v025toLfqjF+3zEqb6zByAkkbeCjRiXenW2IQuz8NCb2UVtDqrdGYAzxHYmu+AwPhoQ9RxNTBcjCTfK0jxMd54ayIp2uw5f0l6RL4wugvuxEyUWsaNzULpiiB3ndjfS9dGI1WRVU1kuqqxBtZBhfYZVApSV+P3OJotKFuaQdn6wlJ7QLgyosWVPhe4J4rSCd8qmsZxSNCaXHWtKFKmjLzumYYGCI1wuabw3pn6q5iPsYgqFF9KFxLWX73phoR1DcN7WH3HYupAht6R2PGB2Eyh2ncSkrkDct/lAAAfGaIJ2xhDcDrIRweyLaXgsYHS9pLvYZrIaUEQQDGC6BN3J/gr5gvAAy/dmm7v1UygJ/EUuyfcD3R679xvcH1K51ypHgwbuuCdY4agA4pbcf7QnerHJNZe22Itx2jRzKidfUKOfy1re4feObhJU2KogoK5J4LSPoO8W0jjz8zSGmGuL3C3SkWH1SMPOi2wkPFwU6ck228aF22044uYZwM3NWTaGiaPioTOP3UqwnJ37A9rt9/oTAhMohzrmhjBVqrJGFpqj7WOGaYB05zlRZcalvZUVNbM4g2nGL7u5iK0vIWhJ/5NBnlQmEdqiBVY62EfTdOE6Wlmi7xBtrvMmxog3Xtp/l+vgcp6Mn6HgL7+6H/gtUUkiOhPdzqfsChzuPUfEVuuLjdzPCS10AROGh0hJvZdt5ndoRby5/nkPBPSz6J36+L+CnWDvlGqXNEZ0OrG+T37cEQP+wx3imRfutMUUsCQaa4GZK0QiRuUGOMkR3iK1XESMXOX4pfZGdcpXHap/aOz+PhQ/RUFPcyi5wZfTinicpgIfPE63foKZaHI0fZMo/yPP9P+KV0Zd5tPrL39eSb8ZfIhI1UjskLD3S+w4Qro249F+fYuoNS+cr16FRo/KmGyEnCxXKimKre5n+6iUWfuvvER07i161jOtQu11MOP6WcKegv+TijLEWmWriVY3qjrn6D5c48tk+JClmNKJXrDPvH8WXIU/Wf5Mb2RvcHL3O9fOvMBscRlhF//omVdlks7iNxdBW80gh2SpXAHgzeQaL4XB49kf6vFreHB9p/B0slsyOuZa+SmIGHI0eIJZ1rqavIIViOjjESnoRgIX6vZye/ii6FSNXd4hKH2HhkDjBjeIN1rIbCECqgNnwCIfiM+RlQuBXCL0aoapiAo98sEVhUnRZEPk1hHSjqyhoEbRnSOsBwVbmpnyTEkWJt9EnOzFL+Pot6LTQkQfTdYp6QFFXE06robJekDVdlHARC6QSeImlslaiI0naVjQvjll/vErQt8gSoh0nRANQqaGyAeM5RdgzLthi627yppWu6bRKEO44Kp1KSqx2CP6ulaRK3LVEh2ICVDjXnrzuzscyFuS1gKImkGVA5U5C1gkZHKuRNSWytNTulHjDEplrkNC4OAQJRTMkb3jkNcFgyaX4CQPjWUV11dEl8qaPmUwFazcFzauFa/pjRf+wa02mzxmKqiTadvqQnVOSrI2z74sgvumRLndQPowPWvKRQIeWsgIyExRNi8wE4eY+x3e/7tZ+4/sDajxBBgSTMIiycOphrZ1XZK0KRUm+1CGbCrBSULvap3a9cD60E6GIGpdsblzg1qXPs9h+gHsO/ypy6CO3Bo6fO/HqlSPnWCAHGcmCi3M8+GVN75jHeB5qN6F9ybjRU2kJN1JEoRHaGfHbifVZtJ44Ve0E6XU+wM60X5QGBMisxPgKURiskphA4o1LpyRuBo6CoS15w7sbTyxdSps/NBRVRbhjSacc3cJKhzhoH8KRRRYWHTsLHn9o95LggoGYRKmaSfqbxeumiLxEjDU3ui/yVu+bHAsf4kj0o10k9+v717R/kEvpCxQUFI2QYGPozo1SY5t1irkaRc2jqM+RTnnYtW3ssv2JXAjey9X0ZpjyFrl551tsqzc58cYHqXzwaRa+sgkGkiNN4s2cwaGQtFNFFlC/OkDXI7xhCr7ziN3sXeZ6+iqnosffsSkTQjDjLzHjL2GtRVOQmYTcJrw2/jrnh9/k8cZfQ0pFM5zlgfrHeKn/ebp64/vyXKWQvK/2q7w4+lOefeW/p3riXu5RTzD/7Rq6qtj8pSN0zvVITrTpL3nMfafH6hMN1l58hnBqjjPLJ9nuuIYhbTu6lFWSMhB4w4LWlYLBIZ+pV1OXxOYp1j48y8w5TdEICbsBo+5tcpvsCcNCWeFU/DhHowe5k1/manqOzLrRdyxq2AlktaNXmfWP8KH673CnuMKl9EUuJM9yIDj1I8feCyHYKG7y8uhLez8bmR6PVT9FX2+R2fFe03t25lc42H7QgREDQNWgyKBeo2piznhLnAHsdtc9dq2KHY7Ac5HFwkpsWkKqiWi5EVUk3aZEiruJcL0BUZI6saieIAlRgA08yqaLfLZzjiri+4rkQA0v0USbmrLiUdQUleUxecPDSkF1tSRrKRcQNBLI3BJvOdcdh/5a6rcn4jgpGC34JDMeKnc6imBgEFqS1wVhz+kysoZkuCAJ+4LKqvPsTWdC/KEmryt0JKndTNCR57jIW+VevH3WVBONxsReUzkv9jIW6FDhjUqnw+iB9SVZQyIzSe94uLepMr7Ym0BkbYdkyxJGC4KsBemURKVQ1J3Oo3dcUFuG7gmfogYqgcqmJdoqyZsKHULYNYxnFSqFZEEjC4U3dnzncNuBMEVdgAF/gjj7Q8AKyip/OdBQy1+Q4/tTO5Jf+NpvfH9AxdLFkCZ64JDeXRP3iTn6+NQUonAitGgzRw0zymaEKA35YtXFpY4dJ68WThF4VbYGVynLlMqms0yygT9JWTNgQJSa0ekpZGYYLXp0Xh8SL2vk8M/ZeCnpml1fgXK7eK+boEaTKOMJAs3Enskqicz1XrSxVWIvx94hvto1wJFr1o3vFjqjBCjAF5hAEAzc4ilzJ17zEtxzaCYiOoccYC1lLBktQLwpkKXjfVkB1eUUHXnI0iBKZ+ZeTFe5dOVz3Nx5hiPh/ZyIHnl3P+wfUAO9zSujL5PbFIVHRTZYCI7/pfATXi+c60FQbRJeXZ+ozDX64DRlPUDmDlERkXQpfrpKo7LI7fwC88EvjpDQEz6P1T7FTrnKlfRlXln/I8LPfo2K33L88uUpDjz81wh7Hv7ANR7pQpXKxS30dAM1SDBTTd7aeI6WmuNIeP/3fS4hBB4Bngqo0uRM/EFeHH2BO+VVDsSnwVoq3q4h/+gHHnes6nyw/husFle5dvV1XjT/gtrKAQ789b/H/J02cntApBT9nTW+ceMz5Oe20GXKsZOfYni0Qu+UnXAzwa67YBhv4GLU/UFBvbCIrCA90iGZ9emcH5O3Aq7/dR81XqD6+314ju9qVn0RsBSeYaT73MzfAKCm2hwMTnNu/FWU9FkvrtNU0xyLHqKl5lgrrn9P2gJAYoYkZoBAUJUtbuVvsuCfIDd3RWuxrNH2FkjNcK/ZBnh86jfozJ2BrES3a1hf4m2PXHOaZqDkXSFyrYodj134R+A7f2IhsbvBIJPNnqhWsK0aJvAo6yF+NyWfqnD7oyEIB0LMfW0NlKTsVElnnF+zFVAdF4hqjNjsUhml6Ok6yXyM8QTRRoZa71Mb5ySHGvjDEh1KqreG7nrgqz3QpHInRY0LdMWlgZZ154qgQydujjZLipoirzm+rMoNZSgdgish6BtUqhnPhajckMz4lCFUNt1ab6WjLRhfubTN0oEbxhcII1GZnaRtCoqKIK87yz8/sYTbJXldUsaC7XsCrAdBzzW9MncuFEJbhHFTQH/oKAwqd9eKou4ocv3DgrxtKLouIEOWDrkdHLe0LvjIHDcxLSzxlps+hlsKlTnxnj/cFfFBuANF1dEgvMRNIhEOGbbFD/ya7ddfsdpvfH9AXUlfwRMhh2pnEdKb2AlVnOl9u0K4liBHmWtAPYmuBmDB2xnj7YwduoobQdRMhceP/B2+dfl/prdznUrllEMaMsfB3VNYhwHxygiRFVSuW6fA36VWTMQmu7cX4xwCD6E1XlKA70ZYTsQwWcDLCTVj4tNrA+XQ3tBzFmmTXaKOPecGgUNvwY3N5MilsVmBa3YDxz1TmUAHFlmA9RwasTu22l2YVWqYekMwnpOO15W5i8t4ISLeyJGpxlvvwXDElZt/ws30de6J389ScOZdQRuttXT1OlvFMhvlTfp6iw/Wf/O7+If9cnMP/fdkgFCS88m3UMJnMTj+Mz/Ov0gtZxepyRbxzT5WKoTvOY76KMMzTM4X5/9aWy0Jb3eplhUS2//hD/6XsNrePI/VPkW3XGe9uEGqXeO53r/Ixjeu8P7H/jF6pkl8s8/weJOVX56jfTHHDxRbF59loLd4vParP9b5Oe0fZN4/xoXBt2nKGWrRFNeSc0Siyoy/9EPvL4ViMTjJgn+CrXKF86NvsfLZf8OR9m+x+quH8P/Ttzi39p+oVGY4uvg01dZB+OBZetOCpS/k5A3FaF5RxBI1Fs7ru6bwevlkRC2RhSHsabx+hhoXHP//eXRPV1AHj1B5pcO50Vd4rPapd9iLARwJ7+N2fgGD5kb2OjeAI+H93JjE8hYTt4WOv0DH//60pWcHn31HMwsQiSoHw9MsBMcRyD3nhZvZm3u3eWT+N+lM3wtAvtjE3xghun1nIeb72OkWIisIl/swHGObVfShaUftqVQQXg71KmJzx+k1pHTrbRRiQ5+yHqKSgnShRlFTLDxbknQU6ZQDPsK1BJm5KGlRWFRhHG92JkbqFmXs6GKV2yPS2ZhkNmTn9AGCoaGMBUb5qMJSVOuEPY3KDMG2W7NNGJDMhnvrfbhTEvRK+ocDok2HAvuJwU+cGK6ouvfHH1u8xFHTgp77fpfx3XU7azjgwtHWJKM5D+s5wMIoKCvCNZOBcNeAYvK7QOAnlqCn0bGiqDgv4KDv3HncRMEJ75JpgT90yK8sQMcTW7FJc2oV+CMnRBNWogPnymAlezS63ilD45IknYHeSYU3EgQ77jG8kWtodx7QoAXUC9RGgMwdHTBed8FJ2ncWb+Op721B956qfVeHd632G9/vUwO9ze38LU7HTxD4Vbf4RGovKlQmBSLJKafr7KapidLibQ1dM7vrh1mUYDRIxc7YoW9Nb2YPNUZ6rrkVYi8hSmTusXcz6HdRiL2mV03QXCGQWYENPGwgXTOcOy9hhBv7iEI7VBjAGGTOXmQwuIbVUSTcYiOsRU9iJ7GAcrQE9/zOsUFHYi+aUmqLKGA8vbvomj1Uwhs7kVxlDfK6dCjFVo7XTdDVu4lWt4fnuZ6+xj3xBzg8EcD8rGuzWOZi+jwDvYUvI4oJsrRd3qEmW+/gXc76h1nSW/T1Jl29TlE49P1G9vp7vvGtqiZb5TKvjb/OA9WPuIlFo4ZIckTgkS7Ebqy/4kRMNvAZmh2aaubnfeg/02p5s++wakvNiG/2/xPXlr/OvcmH6d3XciPjw5apNywmkFwZPE/HW/iJeOf3xE/w7PCP+Fb3P7AQnWQtu8LR8IEfK9rYYvCExwH/FJd7L3KjeJYjf1DQm1+ENVhs3sexzgcQxrAmBI3rlp3TgZvG5LjNZ+EhM4kqjEP7pCKfqiBLQ7Q6RgwThJQk90xTv5HjdxPeN/s3eX7l93hu+Mc8XvsUNdXeO6ZY1flA/TdYLa6xkl+kMDlL4RkOBvewUdzkYHj6R3ptgnduJCJRYz44Bny3WHGjuEnHW+CxqV9HtjuQu6YmuLGJrcTQqDlrrmqICRQy91Ar285bd5jgDcZubY18bFxHjMZYa8jPHkEUjjPrX10jPzrlaGG5JFoZwIJDk6WGeNOydY9HNFfbawAr6xqtlNNgBAKtnHuGVYLxXH2Pg1u/5eBHL5F7dpVJRzCe8fAykEVA2DVEOwXBwAEPfr9EVxTGE9RvFc5fPZJ7rgjGE6jMkjUdChtvGsJuSTlB+1XmnIWssVS3nY4jbwdOl1JYvMFdDrEwjt8LYHdRYM/R0rKm3BMux5vapXwqZ6UptLMcE2ZCPag55NVKELkTN+tJupzQgHUI7y5Voay45rd2011fjI+jKQC6XSIzn7IKRcPi94VzuLilGB/UYNx0U1fc78YHJkmLFU14xyfceKc/9XuyDPAXwXv+IsK4v2K13/h+n7qUvEBF1jlcOesQgGrFcXsnJbZ6UK/irfcw7RrZVES0Mph44krHBe4PHYogBJnIuLr5Lebqp6kE7QmKKyeJR1UXgbqLzv7/2fuvIMmyO70T/J1zrnQdOjIyUuvKLC0gCqrREkCzBZscDpdsDndnzJa7M7ZLo9ma8WlJo9kaHzi2Ng9rzWXbkLvTM2wumwqt0OhGQzZKo3RmVmqdoYXrq8/Zh3PdowqoKlQVgBJyR4OBAAEAAElEQVRA/MvKMtPldQ+P49/9zieyHFMNEHFmz+JUCcIKjfEdjKuQw/QNgNZIx0oaPAcjJTLJ0L6Lrpa5n45AZiXDKwQyKSyQdaXVAWsQWEPEqHPdOLbK2Lg7QFiW7TJFUBZUlMkM4ZatsdSuJKtKm9TQsdmOMlU4sUJFBdqTpLNVvJUeIs4YDtZ4bfAkC96x9wX0DosuF6NnWMtvUZs9xAN7fo25lYDrne9xKX6OC9HTXIyeZY97hHurNtXAlT6nKp8o799jKb3MWn5r7FL/MM99lc/xze6/ZTW7AUqSHd2De3sLpEAOU9xOhuPaNBBnWCCSlKjoMe/89Mgc3skEsso+/wR37z7H8cnPkIU2g/r4v1wGz8VsbNGLVzkRfvw9Pb4vKzxe/+vcSM6ykl7Dl1UO+Kff8f1zk/Jk78tE2kbMCSS3orPsn36Ejf5VALb1OvlEgLsxYPrlAVndpbIGvX2uLTnwLSuYzirm/mrdlpmUVetZXeEDciXFTDaoPnu9PNn34dQRDvzKP+Lmv/uXvDj4Sx6v/9Ybcm9rqsVR9SBHgwffcMxV9c41+nv9E9xOzo/zeBf94295UlCYjFDVkY4HW227E+e5tmUvzdDNCr3DdRqXOqiNngW5YYBuhIihsuukqxC5XS9FO0cIiX+3S9EMyeoean4SWYLg3qEKwYZLPOXQuDxAJj5OP8Nv++ShpLqcs33cJWk4hFsGmdl4MZUZvIEtOXH7xRs0mMIYZF7qYZXA79h1dHSbvCIpXJun7m+lFL4ibim8nmWF4ymbUqC9srkT6O6XBJuW/XUi68PwejayMm1YSYTXN7gDa3hzuznatYZlo0qiQgriCUnasPIJGTHOdNeOwC2zfwvfasZFYSVtRkJes2UX2rFyCe1YdnckSyh8ewLmDuz9yg+yldMJG9VmH7v8foktGDYS1LaDUTYOUxQ2Ex4JGAt+k2mJ1xGE6/Y5QdJ4ZJ3jk+s8IY4hb7/jj+Lu/AzMLvB9k2nna6znt7mv+YvIsGK3zdJSJJRlEACV0C6eWY5Ic8Lr2xbMGsNm/zrfW/3ymKjFgKbAlQEnm5+yQHZ0ZV4gy5B84yqMBhzbfKMrPjp0kVmByAqKimcBy8BWlQpjyFuOLcHwFEa5ZUWyRIfODnjNdHn9TjGFcXaqjkWxU2BBUep/ja1aE9ogzIgJMMjEUPgOqqwmBlvN7MSFzR0uNKIQZd2mZx3HN9t2Sx0sk+25ZDM11IVbvLz5VTwZcOo9Aop3OtoUXI1f5EZyFs+pcP/Ml5gPjyFWUygK9lVO2/fWDbgzeJWl7DL3mE/+wJdvRdU5Gj7EUT48GuS3m618GYCGmoJC497asJ9lZU/I1DBHhw7+IEdoTeppcpOOA/9/lmbBO8aN5Cx3wjtMtVtUbw2sRrQ/wGQ5VdniTnKBimww6cy/K7YWLHN5JHiAI8ED7+n4Xq93NWiGpss37/wuRkDNneLemV/Bu75uf7a1AH91yOqnWsw93eXOz9s82cGsYP5Z264lNzrItkAULQBklGFaNXvCDXYnqj8kePE6+683aFU+y5ODf89KdpUF79h7eg1vNUcDC5y10cR68EM+f8IyqZMNmzccOqQHZ1BRxvY9NQpPMPlaxHB/HWdQwVvrUTRCVC/GBA5ie2DNioDc7lqTcrtj118hyGoKmdsdKZnkeL0CoSFcz8kmbFpBVldlao0maToW8JXNls7QoFLbjEZgYyDzmk11GBm/jLIZ6SodJQSBGmIjxgKFfzcZezGMsBm6Xs+WSozIiXhC4kQGFdu/129rGzeZG3qLNiPd7VtGOasIws2yrl4K0rrCSWzGu9fNyQNlzcx1ZVnnbTMuHZKFZWhlSYwIbYhbstQE22r6woesYXOEjWMZXJnY+7oDC3KdyLLSeSjG/hOwoNhIK5krJESzBplZ7W+wIvF6tuwinrKPiYDBPoNRhuptG8OWN3Nk6jJ0oHXZUF0FLk7zytwMfgv04faP9fP6k5jdVIf3b3aB7/eNMYbL8feoqUnmxX4LUOs1TOAiugMLCIcRhOWH1HUQw8SyvHEyBoyGAk/VONx4BF2r4CaGGXcRvzI5zlC0zLAYJzuINLfshaMwwobfyzTHSImu+WVUmYPn2XQGURjiad9ue3kSr2tNEVlVEWxmGMcuSrgl6JR2IRolLY2AqzDY5h4p7JG70ja6JXbxFrkZV6AaKXAGli02jr3/aMvN7aRkdRewRokilGCE/ZLdHtgTiKKAKMbdanO59xzdYp3Har/6jp3e73WW06tcS16m6k0yFR5gq3uNpm5SCaZAKVzjclg+yFaxwiDvsOideNfA5sM4mbGyjEcO/G3oDKE/hFoFohhTr6L6MWorg6IgX5gkWb0D7Bg7f5amriZpqhmWXvwqe9UR5HbfXhEGSM/jPu9XeGHjj3lh8OcIJAveUY4FD+PLyk/82Bzh8Vj9S7zQ/wsSM0TiMO8eZCm7QkNN81D9VwhiSXpgEm/V7jzlrYC5pzoUVY9ww5C0rNFo7ZEKrcsZlfYAohh1cxW9OItY3bTmR9cdS6owxibabLdxHnuI2ade4bX200gUc+6hH7sWXwpJRb31Z29QdGkXqxz3jmJcReQkbBe3ic+9QFR0GV7oEcSSicrHqVaaY6ZXpgWiO0D4PgSeBffDyK5JcQKeR94KEYWNHEsmXGtY7saESYEOXYwjysSbEvB5NtVgVNhjL7db+kaVa2hZ1V6UJT4yN3bXLLPkQ+ZZ+YLd6pdoB5yhgUKNmVyVi7IACeJp15YLiTIPPbfruJNYNtXWyCuCbW2bNgPL6AZbRSk/s+t1XpFEM9aX4XdtggLYx9LKAl13YIG0kTaJR5fLYVa1gDtpCYqgZHM9C9wFQGrjLUf1xIUryOql/KEi8PogEsaMsFZW0mA1wqBi+356XYk7sIVHGMsI+x2bJFS9JfC7kFUg3NSEGw7asRK79QcsiJ56GYItG/U2WP4IrGe7Gt/3bT763+w/xjFGcyl+jq18mYenfg3ph5hWDaOUrXqNSsbFKd+2XtnFboytNA1tpu+UPMLh/JNc23ySrt7mTPNxay4rjWoip3TwOiCtwUhkhd12K9kWkWu071rTXOBY933Dwe3naEfidRPymoe/lZYsLmhPUviWiSgqirQuCdczCs/qruxCXLZJlNEpo1Y2+0tnL3eisr9dCJQpAXF5O+PYaDehQSTayiZMqR9zbPSP18ttrEwnw7iSaLGGnKlYVnwY2ecqNDeiV9nvn35fanFbzhyBqDFIt4jTHkIIOp0NPhn811aOEifkUvPK1l/SUrOcCj/xEz+m92NuJeeZCvbjeCGEBrIM0+sjfB/RG4AUpAdncDoJztUlBk0BW/xMMr4AJ8OP80z/j7lz6wkOzH0cebuPnp8knQqRlUU+3ruX7OYN1rcvcH3rGVbSa5ypfOZ9ScBoqCkerX2B7/b+E5qc2AxZ9E5wN71MvjiDliFZwyWvThAsDSgmAsDH3RqShyEqgcatnO4+h2jaoXIuH+9SydurJcjVYLRd40am2qJAFBA+e4X7Kp/hJVfw8vo32ePe4t7KZ94yh/hdjZI78WBvM5HuYTBc7T3HtRefG5/YucInlDW6he1onnMOMDc1h25WKKoezsYAPI9ismr9GXG6Y2arVezOW5IjBwmy2kC1bcRXdKA13tJ3ogK3k+IVhnTSR2S6jHR0bGkPFgC6Q2OlJYFkOCfw23pMMkDZhDZiOwvGjWVpVeANrG9Ce1bDKktJgDMoLEs80GhPjtswX5/GMNLiGmFBq0ztbbNQWu9FYkpNsU1ssNK0kqQIJElgTW1OZHASbR/fl6UWt1zzR01r0oJb7WLrh1NIpg1eW+AMKPXGFkR7fds8VwTgJjv1ytqF4YIhWBN43R3mV44CNnKI5sDt7lzud824qGPjPvu5638yYd/MFjdf24MRhmDPgCx1iA8nJJmDuVwj+yhkfe0C3/dtdoFvObnJeL7/VdrFGicqH2dGLVjN2Po2wnWtxEEbTFEgPM9uAxYaRoUwUtjLlAV/x+Y+h3EV11f+ihN7fxHXDdGeY/Nqtcb4nmWKlcRIifHdMt5MQWmQQEJe9VDJKITcblN5W7bswW3H9j5SYnyFkDZ5LKs5iNxQvZtY0OpA0lJ4fYFMdpImRFYyzbrcUnOlzaEsmQaBAW1ZYGtsk8jEmmLMSBpRVp6iQaYavx+hA4VMC4rAsZE2mf3SMI5ClCDTFAUCGzP1fkxVNfl0429yN73ErLufzXyJV4ff5onV32fW2c+kt5cbyaskOuKx+pfGFasf9SnIaFYWyCeqpEcnqZxdhl4fkyQIx7EnbEJQNHyEniJZuoRA4onwgz70D2Raziz7vJNcufMNZvY+QC0MyGsevUUXmUP3QECtdYzFjQPsu/0A55b/jJeH38AVX2DKXfiJH19VtbgnfJzz0RNs5UvEooEjXK5f+jPuOfE3qD53A70wjSj9CCqyJ9K1uwVJS9Ld5yAzaF6NoBKiZ1rIzR4Mh5blLQqICgt8wwDyHL0wjVzdRkQxVCssuA9SmTvArbNfRUaK0+GnfnTm9x2AXoAJNUdLzdIv2mg0E2oP91c/hydCLsXP0S022V+9l9nqEbI9TbJmWTbhKrKpCu5yBxO4pAencNctoy86NvpsRD4AbN7r4/ZsU2XhCSYuDOgertBblMy+lJLWJEnD5unKwqaixJO2Ttjra5wYkqYFocM5SbBls83zUOL1dbluAtoCOZvLa3fYsqqVEXjZji44aTmWLc4NWVVSuPb91k7J/GY7UWJer0CWEgqtLBjOA0t+JM2dn5MRwoJhx0o0rOaY8jXL8eNrR5A0Be7AvlYjIG0Iy9b6FtQaB8IVG2+pYoimBMG2PQEw0kaLydyCXUv82B3IYF1QhGUE2QBLBJVlGvGklVCYJkydK4imFf09Eq9n2LhXkkxqpg5vsbneIM5dajcsSM826lA3dFsOjfMuTgSbx3adX7uzM7vAt5x+sU27WONk49McDE5bJqCwrUYW9GpMnluwkKYWMFRDa5wQwtYXl6CXvABPsnDgE9xYfZLra09yYvqzVtagtV3kiwLjO9ZUZgymNMUZx7FAstTZeus231Ephas1RS0AbMkFEopmBdWL0dK1ANbYRdAZZGNAK7TB65bms7I6WXsSr61LrbE9+7fAesdhbb7vu2xsSKA0PIwi2IQYt8YJT6KiHJFr3O2IbLJib1sYq6vLCwhDSFKm3X2spjfet8xeKeQ4e3ePexgdarbzZW7EZ7kav4gvKtxf+TnCt9lq/aiNIzwyUpxbazjXbXGFcF10FLOcXKWZzZKfW6a6eAwQbHWvUVeTP1XlFe92jgWPcDu9yHJ2lWP+EVRSMJwX+Nt2u1W7NlFFtVrcr36T9Sv/T3rF1vsCfAH2+SeZcw+ynt3CkwFD3eNC9DRb5/9fnAgeZT5q2hNnY3/vRJxRu7hNteKRTAUYJdg+EWJkhXCroCIE6m6yw/AaM5YkoRRydRsz2WB76Q4vXfsz0mLIaNvobnqJKWeBPd4RCpOPY8fa+Rpb+RKH36Oe+ftnO1/l5cE3yE1KgTWjTYcHWR9eYz27TVU1uZG8ypx/iJP7f9Uyu3GBo3LUIIFc43QtO2x8F+3a/F1ne1hGlznowGX9wSpB29C4WdDdr6yEwUDa8knrktqyXTt1KfNSmWU3hS4jv1zBcMZKDVRioCbw2wZnaMa1wGnNNgSioQglTmLlJAKBiksJ24RChhJC8Lrgt60UIa+WpUiZ3aHLKtYYJkpQaRx7vNqTiNygYo3j2DY2Jzal1MBYzW5RSti02QkTEAIjLMAuPDFmd4O2fT6jbEOn0DZDNxO2Jlim4CSGtG6/C8JNq/ctfAuEVSltMAKymVIWYWxZhYoZJzwkk/Y28aSgdVXjt63sob/XNr61j0h6h4G5CKEFw9hj6rseiTsLo9IKASoSRI6idzwnWHIQ6UdgPdtlfN+32QW+5YzcxBNiFDW2A3xNXmpvR8BWCPslMcrfFcJum+WlC8BxEFlOredwZO4zXF35Fg05xUzjKA6ulTtENvLMeAqjxTh7N9pXQ+SGytWtN27/ScsSqCJCV327UEmJHKSk01WcYQapRhqrHTOORMQW7I5+ys7QOoyNEshOGaFWbpF9/xgBSDFmnkWZA0ypWRsBfrto2gVUGvtnETgQOOShwt+K0Z5f6rcEtGqIFbsducc7wouDr9Ertn4gO/fdjDaaoe7gigBfvjOmUgjJon+cRf84p0xGr9iiqaZ/apje0XgEtDu30LO/aNl2IRBRytbwBq/0v7Fzu60qM7Nn2MjuvG05w8/CuNKnribor98gPfIQMtOE65a10h44scDd6FumMIqROGje35xQTwbs9Y+P/91UM1yLX+Kl3l9yph+yqA8QtruYYQT1Gkw2yBo2EzZtKKvJH2g6BxVGVKgyg9rqWb1ryRZH9+2zSTVRiljfZjhYJy2GnKl8htX0Buu5jWdcSq+wxzvCs/0/pVtscCJ4jIvxswDMu4epqMaP/HovRE+TmCEL1ZNs5SvESZso7VDzZngteor7Kp9jQs2zmdyhazZo9hTxnpo9/vVtuzYHvpV1CEEwSEBYKYMoDG7P5qnPPdHGuAodKBrGszXtuV3/ZGYJhJFWlzLScSQ1EzljwDhKOgg3tS16qIDXs8CQ3ObqqsSgsh3/BDCOAqus5WjPZgAbCab0achUIzxF3JI2VafEc2nD1h6rxDa3CW2THWSKze9NDdG0siUQI9NaZBjMS8LNNxIaVg5hgagoDG6B1Sn79vvCiQzRrCCaNVSWxDjBwlbTQ9Kw1IkY+fZc+3sz0iV7nTKCTTKW3Qks6M2qkE3l1K44tI9KjIDGTUMywbi6uHHLkIUB26cgCj3klAXeWQ3SBlRWIGlB45K0zLWATP8Y5Dg/6dmNM3vfZhf4lnM3vUxDTVsAVqtCf8B2tMQz3T+kqWb4WO2vlSkIJRsL9gtiBIJHUWdGWsNE4COynMO1h9gILvHy6h/jrVf45MLfIXAbFkAbg0jLggrjIExO5Xp7J8as1N+NMnkpmVXVj21sWZkEoeJ83MKT1V1UavVdRdUZ/zKpVNuFyJQa4++fkuEb5foaJXYAsRCgyszeUb5vCfpHrPDI+GYcQeFKitCa7USuyUOJvxJbc2CajVuSZiZO4Ay/zVJ6hRPhY+/6Z1aYnCvxC9xKzqMpkCg+Vf+td83YOsJ9y9rYj/K0zQabxRIA56//EWfqn8HMT2EqPv1KCl14oPLzeDJgJb3O+up56nKCvT9mx/5HcSbUPGsrl9BH7ZZsdTXHiRSDeetGF0lutaFZhi9CBkX7Az3eljPLg9Vf4Gz0Xc7e/iM2vaMc8O5hoDuoTQc1rDIRPEzaqlC7HZPVXdxuSn++ymCPYjhXZ/K8bQjDWKAVLPUwjmRwegZ/M2HhpuD23dc4O/wOjrCpBwIxznyecfbRLTa4GD+LwuFw8MCPBfQC7Pfv4fzwCZYGF3Yum32U6WKW76z+Hi8Nv87nGv87nup9mUtX/oTHZn+LMEoxW9tWuiUFohJiQs9GUQIEPsGdDvHeBvFsQOEKjAowinFerdc3yNIX4Xc0aUOhYvtvJ7KAMa3ZtjQntmuj/dPqZgvfZvymNUFWtakGWVWAsXF5Xs+uy3LkuyiZZKOsLM2WOeysxTK3gDYosap2GetyZbmuj45LGDDuDpKqrORo30atUYJ3v2uzeWVuT4SMFOM1fZQ7rB2r1bVAGLQv8NsQbJbVxElpYvNKaYRnX4utuucN5Ioub6Ni+9h5AIwMgcJm/LLpMFzU6EZO7bzHcMaa8tBWP52Fgsp6QdJ08DvQ31ea6yJIJyzzXl3R5BVJb681003e0lz7sXwSd+enYXaBbzlR0aXlziEdB+KEttvlmdU/3LmBklbmMGJ589yywmDjg6Tc2WoQZcKDUkgh+djc32Qjvc3zy/+JbrxCoKoWkEq1wyDnhU2OiNLX6d3MzvWOsjm+ZTObSDLwXQu4pXURG0fhDHNkpskaHs4gt4tOYfVbO8c3Arnls5TPMQKu2rF/jthdI+xrMqkeG99GjzUCvFndgcImOQht2YHClcgyR7ioB0gpkdtdBIE97kaD/b0HuN6xxQAz7r539TM7O/wOK9l15sIjrEXX0BRkpPxsqlN/cF4vTbmTvEatMstk9xBFq8KtNfuez3kHAdtodoqfDkPfj2PmvIPc6p/n/K0/4sSx30DkhtrdhMbVgnTKJxc520tnyZWm6rZYTW5yxpgPVCIihORM+Gkm1Txno79iOb2yc+UQTkwKDm2fhKJAxlW05zB9LkVmmmjGI5l08TftNreMcop6QFZ3rU51PkBV5mj1D9HZWicvTWUGw/XkFaqqyZHgQSqqgScCJp09b7p7cjn6HomJOB48hif9H7j+rWavd4x59xBb+QovDP4cgIvLX+eKen0ajCAzCUPTo99bpZZP2RSHWtVKGZRC5DmmUUN0ehDF6IkaXiclng1w+wVOVFD4isqyNYaldYXKDNvHvTIOTI9zyv1tG/+VtCzrmdYt61oYgUqsBEKmNmvX72rSqi2sMBKCLY3MyjVUm/EOG/oHt6uLwH632MQFWyGskjJzvUyeGyU6aMcCalMCaaMEaU2iXQi2rPZXaIHIbD6739F4vXINr5QmZkMJZC1oF9p+peWhIK1bU5uRdhPS61uwPMog1q6tI/baJUh+HQi2JkHA8jxoCU5imdoRW+x3rVmuqAiC6x55CH7bapXdyLaBysyWadSWLZs+eV6T1gVZTSA3LKBPmpKkZXcrVWzZ6A/77MaZvX+zC3yxrU09vc1+/16oVsnyIU/f/rcAPFr7IpPuAkIqTJaP826F41iwOwLCo6IJr1yIjRwDVu1J7qy9hBIeLW+PBbZCAMXO9oQolbV5edo+AtOjWKEsB0eNa5CN55DMVhHG4G7HNoy9rE0WucHpZxQVB6efjYHt9wPe1zfCaU+Oge/rF81R5iTGIJSg8FW5eO68zLxqQa9xRlt/4G/ZjMqs6iCMvY03SC3YD+3JhRhGHK08TC9a5YXBXzDrHmTBPcKse+CHAohMJ6xk1wFYja6icLiv+jmbV7s7gG0IPBN+GhBs5Le5sP1t2P423LKpDfeEj3/Qh/ihnUlnD8eDR7l09WlObB2kEk5DJSQh5tILf8ZqchXzOqf4If/+D4UuWghB05mloWboFutvuC5euUX24GM47QjZHmAm6+QVRVZx0I5g6qk1q+vNcysNcBQ6gG/f+J03fa5pbx8njv0aV25/nfPdJ2g15ljwjr7t8V1LXgZgO1/5gSKMHzZKOMy4i/xi8+/TKTZo56v0ii2EKzgU3I8vAyacOTbzJb7b+w885v0mzUMPUIQuhS8JlvsYx0FutO2Jt1J2jewkeNvpOBlHZhqZFCQTLuF6Sl5xqK5oVKopXEG4bplTI236gnagd9BQvykocgs8C1+QhZYFloVB5OBGlq1UuWV9RWG1stGUINw0ZVLCjqFOlrts49QGRp6NsuDCs+ymKhnm0Xouih3NrtAGv1tQeJL+goPXN7aowrcGOpVoCt+2vWnHAmjtYk1pyhIqTmTKdAaNO7QA2d7WkNblWBYRT1oNcNrSuD0rMTCyJEeULaawpAhjacioxS3YsGUVScP+3esIkpZ9DU5UMtupIZpR1G/ZHVGvW+C3bUyb15e4kaE/L0nrkmBbE25aQ5wTG7KPAtLZ1fi+b/NR+Dj8xGc7XwUMs5WjpCbi0sa3xtfV1ITVuhYFwi0ZX8fZkTaMWd/yz7wA18FUfMQwoddb4qXVP2aYtXlw+kt4KrT3N6WMwS1TDUaSCcfZYXdDD3JdZv3KcRXxyEwW3G6jq75tcCvMGEQXoYOKc2SqySsuMtclYC3GujSAvOKgItveg2GcJ6yD7/syKpMfdAlstSsQxup7tbIFGcYt6zNL04UwNl3CGRSIoUYNc/JWgFvKN6JTs1SubiPqFR7Y899w9/I3uTN8jZeGX+ew/wDHwoff9mfmCI+T4cfZyO7SL7Y4Hj7GjLP/R/gU/HTOSAe64B3lhPkYke6jTU7LmfupyCn+SYwxmk6xQawHAKiJKYqZGdKNVZ669m8wwInwMaacRXwRkn2ICj86+TpP9/9o/O/F6mnq80fRq2vsPfJZ1CBFxBnFdJ205dNbVNZ9HwqGJ6bxVyM6J2ps3SM4+m+W0Wt38EWFxAzf8DwV0WAjvU3ntX/N/tp9bAuH73b/I9PuIjPOfvZ4h9/083XYv59rycsMdZdbyTkOBu9eTy6FYsKZ+wF5kjGaPe4ROsUGuUkJnDpqZRsVBjYqcqtrAWGWWfJBW0mYjFOMr8oCj9Aa3qQk2JTosgq+cjcimfFxEoPXzchqDsmEQ1YRVNbLwgRjF+A8sIYsd2gJDlFYAKoSC960J0g9gRdp0oakf0jjDq35bJSCkLQk4UaZwCPKFB1jWV0jrYEZY/N1RWFNdm+Ipxy/KfaPpCEI2posFBRNCxKNsZFrMjMWQHqC4ZyislogtMQZGvJKyVC3NcNZZXXLG1aCkdZskoXfsYBVJfb5KnclRWi1vNq12vgiNKjIvi9jM1uZ/+sMYbinrC42Zf5vak19SdPuVgZb2sacGUM86eAO9LiAyYiRBhumXssYzjk4kUa7Aq+ry++rd/0xe/9nJKX8Ue6/O+9odr/5AL+Mbvrmyr9+w+Wzzn5cSi3bCPSCBb2ua8HuSP6gtWVpjbGShSTDuA4vXP8yEsknFv4ODX92ZzurbM6yTHEpeRgnO0hMLUAOEmtkywpbt5nm43YhA6jUtsaJJLOgWEqcXko24ZdRYhqZ78SXIYTNdnTsQiBzKy4bxZON2V1e92dpvBgZG/LQBq67A5sLOZ6RyaO8SGa6BMAGmWrSSR8nKogW6xhHEN4dUDQCOsdqVNYy5v2fJ79g6G5/dww43m6EEBzwT1NXkzzX/wqvDL/JZfk9Pl3/Gz+eXNGfshFCEIgqgax+0IfyoZ7XxxoKJBPuAmJhFnLB9fWnAHi8/tffYKIcrREfhrmRvDr++4J7lDuDc8y5Uzxw5BcQd9agZTW3RkraxzyCrbLowFMUnmDrvhrhpmbioiTd28JrVvj49P8d9/oad/pn2erfYntwi2HRY8bZR2IirnafpenvYapygM18iXO9v+Ji9Aw1NYErfGbcfeM0lSPBg0jhAOZHbn8zRrOVrwAw6cxzJ73E+egJm8NdeRzn1EnMWh+RZoiNbestGO3YTU7AYIizvGVTHZSkqAe4K12b4FO16RfeSg/jOMR7qrbSO7fpNWnTQWaGYFuTBwKvW5DVJMMZy8Q6ka3mHSUdqMTW/QpAxAYPiUqhsloQroN27bY9WF1xdaVAj+rjBVDKGLQ7MlRbxlUldm0Wekfj+2ZjNbEKlVlgnoXgFSNmuXxPtH1eDATbhY04y+zjJ00LxAvf3jZpSrKalSwkEzZrF2n/roZW6pCHNrs3r1mg7G1btroI7PVe18oSolmBTGw5RVYX9PYLanftd0mwbWPe3EGB0IY8VOSBsMbpjiatlYC+JskqAie2hrh4Qtk85bBMoOjsOr92Z2d2gS8w6e7h47Vfo12scSF6GoAz4adZ8I+hsQylKkCMwKpSO6wtWACstZUjGG2LKqQgj7pEeYd7J35xB/R6rmUbRltTxmCcUgsXelb/5LtWz1X17SLsSMviAuQaWV5mPIei4iGjjLzuo5ICoyQqLtCORHuKvKpwBgUqtqti2nBRI9NEyfwaKUgbDs6w2NEUl1IHt5cTTzl2ASmNDu5Qj9veVKYxQowBthEjuYTAGVgBmswK/I2cZDrEiQq0K+keqxNs5ahuyvqrf8X11e8S6R4H/NMcDx59xz+7imww5SywmS/RUNP8aLbY3flZn5vJWdrFGg+e/G1mshlkrhnWA3LHnvj5svKOk0M+iBnJfwSC4+Gj1BaOcunCV+ktHqQhK5jNbYTr4MQJU56tME+m/BK8WfOQv5Wy9lBIdVnRn67h9QqcYc5BdYqDex8mbfjcPfdVVuJr9Iotpp19bCXLFCLnnqlfIJj9Etf8K+jbSwzSLc5HT1BTE0w4c0ih3lNl8/X4VVaya0gUk848i/5J1rPbvBY9CcAe9wj7/dMA7PPvoaEm4aWriEq4UzcPNjasUaN/zzS1l5Zsoc4wwoliitkJ0Jp8rgnaIOPCVsPnmmA9KmvfBXnNQyUamVoDmzsw42Y2r2uBrimX9MIVpHWBnoBgy2p8vZ7VCoMlFURhmVG/rSkCu6sWTSub65uXKTy5NRbL13ENo+dQIwJiRKS8xfjdgqRhG+HiSevl8AbGZuVKdoidcpzIEE1L/I4ZF1JkVTFmWdE2w1eWubwGy9oaZdMVitBKGry2jXGTmb3OSFtvrH0QhaCyYkgbgsG8jT/ztyGeEKgUJi6lNg0iKYhmfWsQzAzRtCBtSJyh/U7CQGWtwEkMIrNMezKh8LoFMjW05z8CUGdX6vC+zUfg0/D+TNOZoenM0Cs2uZtepmu2udz9/5Fou8W3PzjNqfqnbIuR45TmtnKhSbI3PpjRoDyWY2sumaoetJdLC1aNYyuHjRDIkq0V5YdeFAVayrL4ocA4krzhI5NinLM5Clk3Eqv5VQKnZ+N5tCtJm64NnxgWBOuJzdfVoF2JExdjNtdGvdi/O+UZdeFZ7deoqCKadsfmCL9r9WKjOB9V3saJrObKSIlxJRpJ4UucnpVAxPMVguUBTlQQT3u4/YLqKyvc3H6B26tPk+ghs85+Hqz+gpWWvIsJZJVHal94Lz/y3dmdHxhHeAgkM+s+slKQHJunCC2L5PgVsk76QR/i285e5xjbeo1pZxFfVjjQDrglqtzYfIb7Gp/nQvIcDTHHXn0I9+VrsH8PRkkqChrnNtGBh9Ca1uUA8+pFOl88BIdrmIcOsv9/uwFRjLfV5tDCZznUfYg7g3Oc7X0bEAzjTV5a+jKfnf1tTlc/hj7pIpbX+c7y/8Ll+Hkeq33xPb+upfQyfb1No77Itd7LDE2PabUXgIWTP8fShW9ywD/NnHuI88PvkuohuhZQPf4gs70p0smQaNZl4muXMf0B1e9eto6tURFPFKPurkO1AsaQzPi43dwm5niKrOogM03asGuvLMA4pWkYGM4okglhCyx6Br9rm8/6iwrtQnXZ7oiZtNziDwTd/RKVQLhp0x2gzOfFguB4QpK0LCiu3y7K5rSR7MGMt/CF3imWQLzu1P9NZA/uQCNza75LG4LCteB7VEdceKJkl8vyC9fKJCrrhmhKsPjFm1y4vBdvwyHYAJFakOt1S8OaGlU2l0BX7DSyORGkLSuJsDplqCzb563fKegcUjaHF2hdtdGb9rVZkijYzlCpIqtKVGLZ6HgK3KFldWVuyCqSpOnYvOC6/Y6rrBoK9yPgbuNHBL4fhXa6D8nsAt/vG19UAFhLrlNXk2Pgeys+x97gBE1vdqesYlRdLIRdRE1ZTuE41iRSam666SqB39yRRAgrV9BVj6LuoQYp2nMt0JWyLLkw1qiWadQws2HnVc9KCAqzA55dicFukY263f3NhKzukjYdVCLxt2yDWzxt7z/qWve3M0Y5isYRFJ7E7efjM+bhHg9RQG05p3PIIdguUHGBGuaIQo+PVQ4tGChqATLJAQeVFAz2V6isJAQrQ0SS4aQ59eUOw8E6z63+F6Kix4J3lIP+Gaqq9b79jHdnd95qOvk6vqwgHBcCn2TStfWzL5xjZfMsVdX8oA/xTUcbzUp2lbv5ZQBupR32+/dQVQ0O+Ke5FH2PiqlxM34ZhuCd+vsUa+vEd66ytd5hY/kVDJr6zGEmwn3wYoU7K39B8a9zFh/+EseikyQn9+Df2LJP2OkCsNi4j0ZlL223w82VJxjkbb6++j/jrPkoL6BqaoSqPo4wfK9zPHyMlwZ/SUAFKguITIwlTeqaRU9P9/+IqmxSkNsc4RgWnlhmfv6LBN2I4JzV7opqFT1ZI6t55FUH4wgqN7oWaK1v4wyGOEsu8fE5komw1Ipag5gT6fE6q1XJfjoWeAVb1jiGsGyq0BBsGrqHbOKA17PGLndoyALLVroDw9YpQeuyNWTBjvnYG9gCiqwqyQObGDECvQirlx3VCI9nxMaWcohRSoO9zn5HODFkFavNBSjcnfxdq6O1wDdtWnBZ2bBm5sYtzdIfHaCV7cSoyZwxWDUC+vemOKsuTl+MGV7tgdO3aRDuXUhrVpNspXM2DQNhWWFhrO63e9CheS23HpJS3yyMzVKu3k2o3oVk0iOrKQZzFqz7VYfhHNTu2MSL6oohbtnoMz/6PnJqd36mZxf4ft8cDR7moH8vrvQxxvBs/0/ITc699c/RcGcwaYbwvbKuWOwEo+f2DJUwsJIHJdkX3sNmfIuX17/CY6pGs7rXsrpJhsj1uFYUKSHXttJ4tN3hCmRqGV8AFIjcWClBqBCZRoeOrQb2bSC9LjN4pbAOZLdfAlQly4geC8Zly8OJCmt2EwKRFhRVFyfLrQljmJE3fGo3IzrHKhS+ItgyuCXblUz5yMzgdlNEYay5TghUL0LkGunaPbhqoRG5tozvHY3sDDBFzrMr/wGJ5JP139gFvLvzgUxuUhI9ZCm9ymp2A1+EhKrOSnaNE/VPIjyPdKGJd2mF65f+kOX4cqkd/XBGvt1MznIpfu4Nly2nVzgaPmRlAfkdrsYv0lDTpDri+df+v2/6ON31q3SxKSl1NUko69x9/ivc5StMr51i3yO/jtc6QuNKH7myBVrTCGZpuHuZm57n6bU/INI9UhPhpbBhtgGQKFId48ngPb0+TwQYDN1omSyP8Jw5Xh1+G4B9rQfpdjt04mUqTovQmcSfW2QqaTHnHADfx4Qe6YEJC6TKCEYjbJFE0pQMZm2Bjt9pUr/aRXYjgvNLBPUqvZOTqKQYJ+qM0h9MoMZms3CrQGSG7RN2t62yauVkgz0Cr2OLGfy2wetB54Cism6o3y3IKpLWJcP2PVBZUtRvl9nwgnHcmUqtfne0UzcqHrK57OYNCTuMgPAowQfzg+IvY3CHELfEWBec1qy0QJRlFTIDpDWejUZoqC1rOgclwbYFuvE0hGuQNGFwMiO45uG3rdY3bUERakytIHzBRcWWmXZiC7aFhmTCSuj6e3eAch7C9Kv2RRWh/S7pLyhqd3MKX5K0FO3jdhdmz5OpNVJXFZunFbU7NlGj8Ozz1O8WICCZ/AhAnV2pw/s2H4FPw/s7QgjcUTi7EEy5i9xOXqPpz+4kOowmy+xlcWJjzEbbZo6CQYJQivsmf4lnN/4zz699mdBpsqd+igN7PmHbgUIX2UswvmWARa5tmLenELkBxzqKZZyjA6dMZNCIyIJmoxVF6OJ0Y/K6PWYV52hPWfBa9VCRsRKHQYr2FE4nIkhz+0uiQWhNUQ/stl1qQW86FTKcc8ctRUi7MDpzAVnFZjZ6fU0eBlRv9hBZYfOHk9QuxK5LMduwx77RodKPodtHxzHXoheJdZ9Hql/YBb278wOzlF6lMCn7/FMYY1jOrnA3vYwxmoYzzYngsXdlXtSmYCm9Sl9vI7C/24XJuZG8iqZA4VCQM6CNwzaLxz7HwsSn2D7apPFXN3h+9T8wzNpW8+8d+1BElr3ZXIlfAEA5Pl7hE5kuVWnZaUe4PFr7AsYYYtPn+f5fIIxgxt3PWnaLhdYZ6g9+nPjll7mz/SLaFMy4+5hw9jDpzHM8fJTV7CbXNl9i/av/HIki8JrMNo5zovm4rcCu+viuw6en/gfiwRabxRJXlr9FXU/R05toCl4efoMF9yieDJhw9uAI9x2/vm6xgUET5z0AZt0DbOerFORcbj9JPZzF5BnzzkEWZh7ENBvIzY4lJuIuoivwcivNIs3QzQoizhHtLvg+xVwT2Y3pnpmke6JB47JEbtvbZlWJMK6VPiQFaMsoUhiSKQdZGPwtiyAnX0tpH/Os0SqxbKg1YVnjW9A2TFzNySqSPLQMchFIGlcFg71glKK2VBZJSCsLkPmOFGE8ZZKB0BaA2l08zTh3fST7tb2a47vZYiKrI1aplQYYBWnTPkdlxQJSVRKktnxiJwnICKvdlav2PQjXLVgdHM2pXHERub2P24F4viBYUeiuZDgP9RvC5vJ2DU5ib+d1rL432ILOMYNMrdbcKBjMOUSzNgWid6ywaQ1lW3bjuiFcz2kf8+gvwr6vpziRNWiGGxp/OyerK1sC4gj73nzYR7+enn+v99+ddzK7wPeHzKDYtmYWz7NgsUgxeW6Nbq8vhEjTHcNalo0BspIuD01+iVc632AzukHNmwagqPoWdDZfZ5QRWGnDILVaYCmQSVEuVhLVjdC1AOMK8rqHzDVO12b4Ov0UHbjIJEd1LfOKBrXdx3j2i8npxBbsJhkohYhSTOCiOkNUV9jA+olgDHr7Cw5pHcIN6x7OA2HTHQRl/qSislx+hGSAqYXEizUq37uBuptZWYfWmF4fCs1mdocr0fPs9+5h0pl/P3+Mu/Mhn1gPuBg9y0p2bfzv3GTcSs8z5S3iVFrcbJ9jKb3CgneMw/79Y/Yw0UNiPcQTPp4MSXXEUPfo621uJxcY6A4Vb8IyfOmAQufsDU+yOPEAHbHN+btfAQRH5j5D7TO/zFpLMP/UgLPrf04/3eTR2pdoOtMf4Lvzw+eAf5ql9ApJPiQuqxmXs2vs8Y+MbyOE4OLwOWI9oOXM0S/aHGg+yIGP/U106BAeW2S/+8ss33mW9ZVXWY2ewmDwRYVF/yQfr/8aV+MXuJteZphucWPjaaZmTtKcPYZY3iCpe7hBnVAp9mWTJJV1bvZeZNpZZCO/w1a+zHa+ikGzzzvFPZVPvuPXt+idoDA5t9MLHAnuZ8E7xrx7mLXsJteTV9jqLlOXLV4dfpvl5essDu9jRuxBoaBaxbQ7sLRaVrALZKdn5WqBD1GEuptj6lWMgvqVAUXFxag6CEHrtS7JTAUV5cgkI5sMyUOF280IyjjHkQE43ChoXs0Y7HFQScnwHpa0rmgrkxil3uQgo4K0oUhrwiY53BWkDejut7pUWUA0JckDW95QlGUQadNqhl0Yr8V5aKVqXr9s1yzPz0wZp2YzdUfJPaADyerjGnfbgutR3m5/P9TuYE3WClAwnBXITOAObJ6wv21jxorQVgUbBZXrDu6QcaHGYC80zyuiGajepYxcszILsI+pklLv7FutbrAhcHtWC5z7gv4+e9zxrKF+RdE/oPG3JY1bBdGUor/XZbgHWpcN8ZTDxKXclots5xSBxBmWspTc4OYfAY2v0TuG+fd6/915R7MLfN9mcpOxnt3mcOVBy+KWEgbbPmMsw+s4b8zwddQbIsriYsBL239GO1lGCsXBhU8issIuoK0QFeVWXxs6uN0UHTo4GwkizsFVFLUyKkkbRK5RGz1MNUD1YnTVJ28GyKRA9RNUlCHSzAJvqVBxUkorUtQwsjpkJW3c2jAhn66jA4V2JM4gQ/ViorkWaV3g9QTxtD3b7i8Kwg3Iyq02v2MXcb+dkzU8RO7iDFJkL6FybtW+J3FinyvNEGEAec52soorAk6GH//QMme78/6PMYZXBt+iL3ucan6GzNVc2fguAPur97L/F/8elVs9NtO7bF77HreH57mbXGTK3Uuv2GKou2/6uALJZOsIRz7x3zJZzFiGbahxtyJwFRtqnQtP/QFz7kE28yU60RL1l68RJjkrww2W48ucCT/9oQe9AMfDRzkaPMzN5Cypienk67Sc2fH1hcm5HH+P1ew6Z6qfZe/RzyA2O5iJOllqMFlOXvVw8Kh+6Zep579MrhN49RrtV57iRvQKd5IL4zzfSjBFnkVsL7/G7WvfZj25gQGOT32GQ94ZqFbw3Cq5yThd+RSvRU+zlt1ASkWhNZlJODf8LjU1wYEyjeHtRgjBweAMB4Mz48tc6bPXP85e/zimbM27nVzgQvQ0G+u3cITHlLvIPn0vU4tnYGkN9syQztbJq4p4UuG3C3qLttjBSKjfTEnmQqIpVaY1QPNSn/DsXbJDs3QONfD6mv4eh3puEwS0b6PJ3KHNmi1CSWXdlicM5wT124btE5JwXdI5oZl7yt52+6hDXgWMbSwzErweJC2IpwRuv9TwYqt9hbGGMK9nL5fpTnxkuFmQ1uVY9jDW+oKtLTbWfDZqZRMGpl5Q5KFd4+MZGB5LqZ31ELltUzNllTBA94EEZ9UjXBWo2F4e7dHUr0qcvs3xHTW39RcNftsC29qdksnNBNqD2i2Bv20INwwb90NR1Uwd2CZ9eZpwzT6G0FYXbRxrfgvWbUpG86KkeTOnfcjBiWCwAJPnDf52jjMsiGY9arcitCvHefOjOM7dVrPdef3sAt+3mczEFORIlAW1o1Y12JE1GLMDeGVZVRxYsJqalGdW/gBjCs7M/AqTE0eoyAb5pM1SdYYZcpCUD2hzemVhyKeruMsd8okKotBoT4ESVkvru4hOH1Oxt3cyeyYrehFE0U6hRuiA8iz4dCSiH0PgQZZbNthROBs9jO+Mdbo68PC3UqLpkPZh60aurEC4brfFRm5kmVv3rzASkWmGCx7NiylFM8Qxxp55liYM0ayD65INOtyOX2PePbQLendnZ4RgK1tiu1jhodoXmK0egUrIQvNepFAEbh3Ob2ACl4nGQaaO72Vv7VdZuvIt2u1bTHn7OXj0fmq6Tp4MiMQQ0arTLFqYPdNksyEY6LjWHJSHEpn5DPMu55/419Rkk3srn2UlvcbZ7b9i5Xtnx4c26ez5kbNm38+RQnLQv5ezw+8w0B2OOQ+PAeGz/T+lW2xwIniMvbV7EJ0+BD4i16w9GOD1bJKALMw4vmrlkx612imO1g5z5MpNzt39M9azm0w4e9iOraHsbufVN2ynX9r8Nr1whdP8HG4mMGgkigcqn2c9v21ZaTHAFQG30/MA3Ihf5b7qz/1AIcW7mdGass8/yaJ3gqHusJxe42ryInFnwFQxgzmwgOxHeJtD/NsJ/nQd40qql9vouo/qRNAfoucmqFwYWoOy69g4NCFwr61SE/MM53zbHqZsrm5vr4Pf0ajUvgeiMHQOOVTWNBMXNfGkZPqVsmHsewJ3aNdsrwd51aYPYOz7noeC6rI1mlkNr2V186qVTbh9y5K6/R8EcoUnyoa18n7KMq2jhAVRZvKOdiqdyK7pTmLwexCueajEMJwTpKWH0675MDndZ2vQIhso6rc1vX2S6i0LtL2ewYnsMTdv5Gjp2OKKstQiWLPscP2GrRoe7BHEs4bqHYFKFOalaSq+Nb0NDlowXVmxzHbvoGHmRQv8VRmoMnUuoX3MZ8/TKdoR+JsxyVSAO9TEs3YXyEj7HshSDqL1R+A7Z1fj+77NLvB9mwllnXn3MHeTSxzSj9gLR9XESr0xkzcpfyuVgjhB+w6vbnyVvIj5xL6/R9iaw0iJdiRqewiORPsuxnPIax7e3TamGiDSBJnmMBiiOvbHIzzHJj4oZXVrnosYDBHt3JZpGGNZ1rCUTZiyTGN0vIXBVH2M5yABXfHQZSRaOuERrEWINKeouqw+GlBZNVATVFaswUJltkrTBqXbbbXKSm4TJoDqUspwsYKR0LizAYGPXqgje0P7vsQJV9pPkJuUw+8hw3N3forHGJbSKwSiauOppETXQio9GxNoPOvqFnFGtqeG8hX129ucqH2SYt8voVa2yJqzLH88pHlD09zKSBsOWtlqWIaG3Bc0bqTkFWW/+AdDzr74u0gheaj6SyjhsNc/zoQzT25Sa/hEUJWtj9xJWqz7LGU2RvHZ/p/SUrM8UPkF+7qAnFKmlWYQBkQHWlTWbC2u183xNyLymkf7WMiBr6RoX+KtDTDT8zzMX8c0a6zdfI7t9jKBqPLZ5n9NVPS4nrzKvHeIRA85N/wu3XSVE1OfgS70ii2m3AVm3f3MurZdcVh02chvE+kesRlwMzn3IwHfu+ll7iQXiXWfqmoy4cwz5x0kMRFtvY5o1BCDGLPdhk2bjqC2tsf3l6tWXSmEtARDFJPvnyWZ8alc76ADD9WPcW+uUx80wdjUnbziUFsubAPelgW0eV3ZVISapNbPbXlEQ+H1CoY1h/iQQ+2uJq2DM4Csbtg6LZk8p3GiUXSXsbpeARi749Y+bsGiO3iThjYs61v4FozLzNidyXJs+YMkadrHNlgphSwY387r2YIK7UA6k0MhaFxSdPcUzFT7bOkJwnUreVOxPTa/Yyhcm7vbupbTn3fQvjWojdIeGrdsSUruCwbzisGRHNVR48i0+l3NYF4y9VqG13NRmaFzRLDw3ZThnGu1zinUb8ZkNVvM1LqcILTB7eYYR6FSGw8Kkqwibd5vYhBakIcCZ02958/W+za7Gt/3bXaB7w+ZCWeOleg6OvAsIM3zcUMbxes0Na47bl4DuLj5V2wMb/Dg1JeoiCp0B9aU46jSDOeiyiY2t63BdRDtnn0c10C1gugMLMjNy+rLXmmx7fV3jHaOU+qPtdUZCwGOskxuYhlq4zkYXxHPhQSrESIriPYEdA4pWlcL0omArK6o3B3SvGZdydXlgiKQiNygfVmeTVoDnCyspqp2K0LGlg3Jq1Wqr63b40tTZBTb9yPP0WnG7fg1Jpz5cVzc7uzOaBrOFEvZZbbNGlPZXuRG2+6aSIFIM0zFJ95TQ3sSlWqSg5N4awOKmkv84F7cbs7CXw3QniSe9gg2Uluhne1o37O6y+YZReFD+8XX6OfbfLL+G28oo6ioxgf3JvyYJlR19nv3cKtkU9vFGt/q/T6fb/xdrievcDV+gVayyHR4EBGnOMOcyWc2MRWfdKbCcF+NYC2meSOht8+julzmqWYFxUwLHTq0Hvksxy8ZLt36CwqTE6o6pyd/DhPb3au6muKlwV/ywtofA5ZxjPWAW8lrzHuHaKgpKqrBo7Uvcnb4HbbyZdr5Ku18jZqa+KGmt1RHJCZiPbvNtLOXgoKzw+8AIIQizgds5kvcjM+hKZjzDoFUmPVNhO9hpiZgdd3msU+2oDcgOzxHMulRu7jFxn016hM+4VIfmbjc/uIU4YahdUnhbAuivdWxocxvF8hU07yqiWYckqbdXp98zYpdtS8ZTtvSiKym2HywIFxRxANbDFF4guptwXCPZWNVUua5Y6PFCheSKWATmpeFlR68Db6RqQVPRu7U9Mqy4GLrpGDyNduoOTKvAWNJBFjWWOZQu1LKMIDJfW1ub7cI1iSTr8VsnQxwh4bKas5gj4UQjduarVMO8ZTVKmtn5zj97dwSKLEF2tVVSW+foLKqUYkhnlBMXM7p7XOp30rtrkNb4XZTaklRlnzYB3P71pgts3L3tTAgbDuoUTYNwxFgpARh39P+XkGY7LZ57s7O7ALfHzKxHuLLCrI/tADT9yzYTLOd9jYhS12ttEyBJ7gzPMfh6oPMBgctQFYS4sjeX2t7dlZohBAYZXbyf8FusXkeZjiEIQjXxSSpBQKj1riijL1RJZhOC3t8SqKbFWQ3omhVbSYwYBxFHkjWHq3jdQ2VtZzaks2bTFoOXq8gbflUlmOSKR9RGNx+TuErBrOKIrTRNqIwVNY1KtKkLQ8VO/h32lRfG2IqPtqVbK6dJ1cFOkvQaUJhMjQFW/kyW/kSU+7eD+4HujsfutnvnWItu8n3tv+YRf8UNW8K3cmZaB6hpacQjiK43aV3zySF5+IO7C6L00sxQuBuDkhnarjdhGoZO5XXPNx2jFECZ2uA2hbMyibak1y8+xItNUNdTX7QL/0nMifDjxPKGteSV5hyFph05nGlz9HgYdaz2zy/+UfMOPs4VX2csGtTDUw9IKs5aAWDxZDufsmep4ZsnwzxVwTZ8h1ud15iceIB8o+dYo59XAae6f8xNTnBkeIhquWJQ021eLT2RV6OvokyDi0xw8XoGe6kF+kX2zxU+0UAQlnj4eov88Lga2zmd3mmb4HyI9UvMOUu/MDrKkzOK8NvsZbd3LnMzznSeIQj2YMMdJuV7DoCSUNN0ynWADgaPGSZXsDMT5M3fERzP8YRuJfuQuDT3xeQVgW1pzvMfccwPDRBtLcGUtC8ZtfQwd6A7Lg9URrpR0dmXwTjnN1w05rL4kmnjE6z5jTtwP4/NyQNQ1YTGLNTFpHtSclve+MWNlOmM8gCgg0bGybXQUWUz18ay0oN646W1V7/+hQGsJnDMy/rN26HCwtQrZZXkDQtkxtsGvr7BcEGDOchvzRJ/bqgdregc9hHGJh8ucNwX43anQzjSmSqCdddRCGormiyqmA4L9jzpK2fN0qweW+FZALiKVNKNiQyh+pKQeEJ+3stBGiD1y5bP1P73susLF7SEpntUNlGCfsdl4MRtolQJVYYXXiS3B99Tj4COze7Uof3bXaB7w+Z1EQEsgKOg4kihOta0DoytI1a3EamtmpIMlijMBmt6j57Oeyww1luAbIskyCEb6PLorhkkQsLcsuECKGsvlh4bmmYG+X6KgugC23vKwR4ClPxLQM7XUd7EqeTYAJnJ+/R2LP6/oKDOywXRwVJS1FdSjCOxBkUll1L7NZZsK0pIhtpI4zNvlSJNXK47cjWMzeqrPUvceXynzIsOuP3TyCQOISyxqSzQPN1hpvd2R2w28sPV3+FG8kr3Epe405yAYmk6D3FpLfIZLCX/eEZGt+L0NNNRJyClMjOEH+7D1LibQ7BGPJ6BXcrwruzbX83GhXo9hFA5bWETr7Gev8qZyqf+aBf9k9srBHsXg4G977hcilsdvZqdpML0dM83f1DHvvYP6QSu8h+QvWapnO6RVYRTFyxQKO6WjA4XOfmlWe5E5/l6vKLNP50lgNHPs/9c3+NpfgSa92rdAYbfKz2JbySQfdlhceqXxo/90Z2F4C6mhzrjgE6xTo12aLhT3E9eQWAy/HzrGTXOejfOwbTACvptTeA3gP+aY4ED6KM4mj4EAAn9ACJwhU+15NXuBx/byzzEBMtCs8ZG4mdW5uYmQnERpvG1QFZ3WP40AEAKpc2iA9PkVckftumBABs3ePgb8HElRztCKIpq3PVJdtYWdNlLq07jv4K1zXuQJM0Fd52ircNw/mArCrYfAAWv17QuO0Qt+zrykNb+a5Su2ardCd5QWXWbyEKxqyu+T4K2JQJDtoTqLgEjt8HhEegN560ebjatc9TBJA5guZVQ9KwBrWpc7ZIw+vlCO0QbCRkrZDK7T7pdIXgRtvmtyd1qhWHeNrB7xiaVxPaJyo0rsWopGDuiW104JDXPQbzHkG7QCaWKfe72tYya4OKyxIlWYZTlIDOOAqZ5BglKELXRntqduqWR9nFZZzbqKyjsiIw6UcAFBp+ROD7YzuSn/rZBb4/ZEz5H55rfwnzfKe1zXVsXIzrWEBbyiAqtTncrYDtwS1m3H2WnR1NGfE1NsqVINeU/xauuxOLJsUOoB5piR3HXud7VjIx0iB6Lsa1ABetSSdCvHZKUfcQGobzPs6woLIGTqLRZf+73doSuP2CeMpDu6K8zOAObAVyVrORON7QssAyKVCD1Ob3JjnDZItXr32F7fQuU84C99c+R1W1kKiPnEZyd2z2LYAU758uTgrJ4eCBsQbcZvheZTm9yvXuC9zpneXe+ueZ8u6xqSTbPfuZD72dk0BjkHFB1gpwtUb0hoiNNmSZbQ4bRqwOX8UVPgvukbc9np/WEUIy7x1iwpnnyd5/5tIrf8CZR/8PxEfqZDXJ1LMbpPN18mB0wm4IlxMCz7qdToSPsZbd4pUL/47DjUepUWcTYc1k2XUO+Pe86fM+UvtlXhx8nWvJS4SyxqJ/AoBbyXlWsus8Uv0CB/wz3ErOcy15iU6xhid8joWPjB9jxt3PGT5NVTVpqOnx59O8znQcyOr47wf9e7kWv8RycZ2wPotTC1ArW6i2Tz5TR8+06B6r0XwZZJRhWlZegzbkc02rE48K0qZj9aiuoH7TjAGGTDUqkbSPCcI1awTToSTcKnAiU7KeUL9dbtMPbD6vd7dNfZDSPd6gdkNSeILBnAXQWUWS1mGw3zDzvAWsMrMxXzK3Wtrqik0skCWYMyOjtbaMcx5a9lTFZlzWkYe2nniUXlH4VtKQVS1wjPYYnL5d5/Oqzei1pRlljKUnkIWienuA7AytlK7dJ9jqwdDS0F5/iNozReX8Nr2H946LMLqHAppXI0QsQINMCuo3I7KmRzzlUFnJcAYplNzQOIEh09bb4lrCR+SvK3Qyhqzm2vcn1a9jS4U1tMUamZXfbUNNnn4U4sx2Gd/3a3aB79tMbjLWspvsC05Z4Fmr2i/YKLbyBsfYkok4t1/GqQStEXHClLePzfTuzodZCEyW0cu3EEDNmUT4/vi5RKExxv4CC8fBFMWY7QXsgiyEBdGlgQ5H7Wh9C41IUsgkplkhWB0S7a3i9AviKdee0WcCJ9GkdYW/lZNMKPp7JfXbtmVIO4J4QtI7aCNkasugYkP9doYa2AxLkWtEnFm22nEY5G2evfPvkEbwUPWXmXb27oLdj9gYY+gVW2zmd9nMl9jOV9AU1OQkJ8OP4QiXimriCu99OyYhBAveURa8o8R6wMuDb/Jc949pJc+zv3KG+ckz0LR6cZHmVs+uJE57SNEIrBmpNxwzQUJIDAW+UyVLUlazm8x7h9631/NhG1+GHPLv4+LwWcx2B9+dwO+AcSTuVoRo+JaVrNlK3qniUa49+zTdfJNHa1/kid5/4Vr3OVzhM+MsMuUsMO8dfsvnq6oWA90GGBcEASx6J0l0RFU18WXIfv+UrU5Wk8yURrjReDJgr3/8TR9feC4mfWMtrRSSee8w14cvcXP4Kse2H2XxxOdxbq6hNrYQ8zN4nRDjOaAEMtVsHfHxO4a0oagsJziDjP5i3Rp6V62BqvAEhStQGfidAmfg2FreLQOxQTuCwrexj/W/KugvuDRupuRVRTLl4d3SiDinv0eS1yygri0XrD+gkKltQqtfE/T2Qe2uNZ15fWx5kG+f3x0akqbEG+iS/WVMgujXSaRH2b0yN8QtSREIkhakLYPZH6HXAiaObEPm4KiCzu0maiipLltmOXg5w7+1hQlc+3sUZxDFiAj7HRAb+70FiDxHbfchy6k/c4ub/80hVGT1xCI3lsE1xraNBhZ6uENN2nLIqwqZaqsFTgqMxDaXKjUGwkbJUtpgX48TWWP3SN5hX6ttPBVSQGqQqQSJlQLuzu6Uswt832aW06vkJmVf80ELXqN4p6gCQBcIgjcwtMZxMdUQr+2xkq1xdvMvSfQQg0GhWM1uAPArc/8nC2JLCcSoy97k+Y4mWNtFRQhZ6nlLFkaW/3ZdcBTZTA1nc4jQGiMlsh+TT9WoXLeRaOGG3eqTqUbkBW7HsT3nFWn74z1B2lTI1OAODPXrNjw8mZS4PdCuQmif1mVNuG4fy13rozfXeW793+Hg8GjtC/hy17j2UZrNbIk76UW28iVSEyOFw6S3l2PBo1zsP01fb/G9wZ8BtnL2SPAgh4P73/fjDGSVx2pfYi27ya30PK9s/wVXOs9wYvbnmK0fH9d862qA7A0RuWdNL54HjkZPt+zlnR575x7htWtP8PLwG0w6f+c9V+h+1KdftLkav0TTncPNFPLsbdCa6KFDqCjH3Y6oAEXo0N/r4rt7OT7461w49x/Ymx/nseoX2S5WmHT24LzDE6Iz4WfYzlfo621mzYGyGXPhDXpeKRyOBY+Qmpjr8cvMuAdoOTM/9LG/H/SO5nT4KfZ5p7iZnOVi9DTxa31Ohh9D1GsYz8HtZbTvbdJ6rYfbTaisuUTTksaNnGTKtnE2rqdoV7B1j0fSsoUJRSAoAhuRp1Ib6aWVIG1YljevGGa/B0UgCbYL8oqVkGU1BXmO8arUljV5IKispmzeEyAzyBo2AzfYtjnxvf2C5jUL7mQOlTVDFgrSupUhZBXbxOb1rWlNGBtLN35fSh2ydsEd2Lg0t2e1scOeR/Nghzh1GK5VUX3FxBULqrOawFnXlonNspJUKd9j17V/H30/OY59/43BeC7CUVBopl8t5SDTCpnm1mRdgtdkykNFFug6Q2PTjhJtQWumrWzPUfY5hD0hMwK0r8Z6ZgBnkFvSSFhXmxxdl2sLtkc0cvbmn48P1WjN+Hjf8/13553MLvB9i9FGcyM5iyM8toY3uZos0cs3qcgmngxwpY/rVqlHM0zWDyH6MTqNuNN+levRy0S6i0SylS5TUXUkkoxk/Pgvbv8ZJ8KPE4rqG5+41GJRaIwwlvUdbWUpBb6H8VzLNAsBWqN6KbgK7dgEiGiP3ZbUriSZdKneKpuIJOjAQeYGfytFuz6DPZL+PoG/YbvatQvBlmHhCbt9GE9aVtnfyhHajBcmoTW3+2dJ9IBP1f/GLuj9MUymE7byZQyGOffgDzDnxhhuJucQQlCRTZpqBk/6b/Fobz2pjnktepKV7Do1Ncli9QxT/iITwQIy05g4IfH63EjP0nLmOFV7nAu9J1nNbrwl8I31gG6xSVPNvCEp4cc1QgjmvIPMeQfpFptcip7jxZUvU1ufoOZMoh2Be9dhf+tBmp0GzEzaL07Xw7iKfLZJfnia4E6Ho3Of5crqt1nNbrDPP/ljP9aPwmznK+SknP78f0+eOniFxqxvUgQSIx2SqSb1sxuIqRoyc9FKsDBxL0vqm1yOnuex2peYdQ+8q+f0pM/d7BJktont9Qkv2mheHX6blewap4JPci15icQMWc1u8qnGb73j59Cm4E56kWlnkYpqEOke56MniLStOk4YInwLaEWSkTXrVmLQsL9HfifHb1vAqpUgnnRJWjYey28bmtds21rSlEQzMP1qQeNmQdKSbN0jcAfWjCYKYfWqkaZ3wKV2Nye4uU2QJJjhEJmm1F3FyuN1vG+tI0/sI1yHydcM3X0WQPttQ+EK2sesCczfpsxcsxIEKAsutCGalDZ3fU0jcxtpph0bVZYHgrxqm9+0a8sp8ppGFILuch1ygSgEzcuC2lJOeKdPUfNx13rQ7lqixS2hQvkdhNaYEfgtTzpMniM2tqBRx3guXiejczigcdOSJdqV9PcFZFWJSgx+YZApaGGPV2grY3C7EVoF5DUXkVntr32xlpXXrkTFuf3ek6OrBIXrWR9KXp4EjCqqAZ1/BEDhrtThfZtd4PsWs57dYqitSets95uEss6EmiPSPXrFJrlJyaIE3S3w1yu03Hna2QqJGTLnHuT+ys/RUFNvCl5WsutcjJ7hifQ/ciR8iAPeaaR4i7iVkcShTGzAddCNADlM0aFra42Hth5YpNYVq+ICIwWdwz55RaCdGkGZbypzg0w0yYRDd79Ef7xLM0hYvzWJv6rwutDfKxjOunhdaF1LcPoZshtTtMKx6aAwOdeSV1nwjv5UxEB90NMvtnm698cU2C+ROfcgc+5BJpz5sW5RU3AxfpaRyFAgmHL2cjh44IdmoGqj6RabbOfL3EhexQi4r/EL7NnzMGIQWRYHIB+ClBxrfpzJbB8zjWPQHRDKOp1iDW30Gz6rIzB+Of4emoK93nHOVD7943+DXjcNNcUjtV9hM1tiKb1MUgyRhWJLr3J35QKL4SlOmk/g+BVo1CgmQ2Rc4PQztO9yhFPclS9wMzn3Mwt8Q1kDYPDis9Tn7qffucuF3rfI/uQPOX3/bxM9vEi1EeKsd5kYJCTzNbKJgMMnvshL53+PjfwuM+7iu3rOljPPIf8+fFnhTnqRTr7B/dWfQwmHtezmuK76dvoaiRky1TpG3F17V8+RmpjXoqcA+Fzjb7OUXaVbbIyvT0h4fvA18sSgV4YUl2NycuKix0z9GA95n7Nkg++THZyhd9AWoHg9Q7hZ4PSt6U87Eq8jSBrWA+EMDbXbZUKCZ8kDmdl0h2BTW/OwsbsQwk0xSYq6vcre/7RFsTDJ7Hc2KFohg70hU+dTjBT09rkUIcTzBd6mIp7VBGvSHk8XKhsFcUtSu5uRVxSdQ4q0LpG5ZZ+dxJA0BXkI2rfpEUaBdq3OVyYC7UPthqK6bKisplYyARb09sv4TCGsFyUvLAgeJRi9bsRoN1IIdC1k49EWfltTu5vhrdvc+njax+tbo5+NahtFUoCKNdoVuNv2sVV7iMgD0okAhEYNMpClwS0tbBWxBPG6hAcqdg0T5S6qMAbykQzjIwB8d+d9m13g+xYz4cxxyL+Phppm1j2AQLwpiO0UGyynVxjoNjPuPg74Z6ip1ls+rhCCPd5hZtxFLkcvcCl6jna+Sr9oE+ken2n8VxboCGGZiVH9ceCXNZTCgl7fJZkOcDspIs3BkeStkMFeH3egGcw6eH2N17cLcDTt4nUKsrpC1xXVuwlbpwI42yDehpm2oX47QUUFnSPhuPrS3Y6Ra22K+Uni2YDqpW3o9nmt822yfMCh+gM/uR/Ch2D6hY1IKkpn+NuPoKlmmHYXf2gWKdjPjzUFXeN2coEgnODkp/9b0u89z9X202NZzAikxHoIGA7697J/6mHWiyXubr/Es/0/YZ93ij3eERI9YCtfZqh75CYlNympTshJxy1as+4BTjU/ja8qkBeYyYb9AulbTayoVVFCMOsdxXRtHNGif5zl/lXOR09wOvwUfb3NUnqFjew2fd3mgH+GzCSspNc4FX4CJX7yS8v3b5Mbo7mTXuRi9Cy5Sbk/+CJCCFQ/QyYZOnQhz3l58E0i3eNY8MjbPPpP90w5e5l3D3Fu7S9oVfdxrf88W7mtVX/llf+Fgwf+OzrHZ5h4oo3o5gTbPUy9ilw4RePGAreSc+8a+LrC43j4KADP9b/CVr7MSnadvd4xWs4sk84eJIppd5EL0dNsti9zJLBpDYXJuRA9zZ30IvdWPseC9+bmxEBWcYVPZhKux6+OK5Zbao5Q1Sl0jokTfOGgRB0tKyxnVwFwcGDPDEXoo9bbOK9eZ/JWnXxhCh0oKw+Yd3GHZdpCAr39Ar8N0bRtJ/O3rWHMiQR+xzCcdWhdjnBWO8RFn6SzjmMcVCFxowKZZajbFrw5gyGhP4vTTdh8oEHQ1mR1CzC1Z092C98axtImbFcUWQO041EEMP/0AO0r1h4IcGJ7TEay87+CPLSlDm7XmtdUYoG6E2nyiqRyZ4Bc2QLARPHOGzuS8yUaErtzKWamMKsbDOWQO/EF/MLnwOTDZJMh3cMw+zx461aCV7guTqRtS6iEvKpQsZU6yEyjPYnXyRAjyZ+UDLorLK1cICejIupMVg9Qr85bs5uxbaMi3jE2Cg2i1PKO5E8oUTLAHwE2dJfxfd9GGPPD361ut0uz2eTnm7/9jvVcu/POZiW9zsvDb4z//bnG38Z3azbdwXEsy5vlUK1gXIeiFSKTHB245FXHbqcNcorQwb+2hp5qjBuFwmtbUBTk8y3SiqAznSNyQ1AEVDYLvFtb9B6YJ89ismyAPwA/dymmamyecZn61hrXrn2NXu8ueRbhywoHK/exkS9xe/Aq94SPf+QZs2HRYzO/i6bAGI1GY9Boo22wfrGKI318Anvi4dgwesrIHOPI8cJaCE2cdXCExyH/Pg769/4Ak9/J11lKLQvVK7YoyFA47Gme5vDMpwjDFmKYQKdHPFthu3+L9upFpHIJKpPUnSmaURUpFSIMKPZMcvviX3K5/ywF9kugIpvUnAlcp4LKBQkRq+k19oYnuefIbyIcK5WRg8RmY0rbViVyjehH1jjpOtAfWpNlaHWwV7ae5Er8Ao9Uf4VXht8CIZhWe9nbvJcmE3xn8/dJTcwnar9Ow5l+0/f7ZnKWy9HzPFj9hZ9YnvPod+pg4yH2Ln6CGk37BbjZYW14lRfaf8b9lc//TJvbwEprnhz8oZVhmYRptZdF/wQvD76BUA4Pfur/QmtF02nfYLNzDdetMH/ysyxtvsRrV/+Qn2u8e410YXIykxDpHuvZHQ4H973hO2VYdOkWmxhjcKTHtLOX1ew6Lw+/Ob7NieCxH4hqe/1sZktcjJ6hp7fGlzXVDI/UvkA7X6VbbJKZhMxYaVGqIx5e+C062zfouF1UXDA9cw+z/QmkVBT3HERtDxkebdE55DCct3IGtwcqtXpfI6FzQuP0JZPnTZmJaxjOC1QE9d97kmc2/wuaN5qsXBHgi5CKajDlLbK3fho1OU339CSV1YThvE9WEQz2CLIG5FWN25OIYqeOGANOBCqGmZdiVJSxfapGf1EQbJapDbNWIyxKGWleg9ptywJPvxKRVxyKGze5c+sJhlmbuprigHcP7ltJqZQkCnJubb/AjeErOMIlNynz3mGO/fI/IGkpKisZw2vnWW1fQE1M0nJmqc8cxtRCVGZ1uTLTtgFUG4wxJMMtNjcvsLT1Cp1oCUeFeF6NON5Gm5yZxglO7P8lKs4EIs9BW5BrlMAE3g54LImbNO2z1b/Oevcyy+2zdDodGo0P1w7lCF/9wuT/Hke+d3yV65S/3Pr/fChf44dtdhnfD3jm3IMABLLGZxr/lTWyabOzreS6IMsA9WMtvE5OUXGQiXUL12/Zlir/wl0buba8yTJXWetcJC2GZHlEdi0aZ1mORgmXhjeDXjJ0khVeHwIoUdS+OsnFoo0Sihl3P64zTSff4MXOnwOC0+GnxpFEH8XpF9tcip5jPb8NCGT5nxBy/K+qN8n9lV9gLjiEdP1xPXRxeAF1d9OemASeTRHwFO7GgHY9YenKd7iy9Twr6TVOVj5OKOtsZne5nV6gW2wQqBotNcesf5Da/hNMRg0cJ4AowYRYILowQxCl7DGL7GnNWsY/ikGDkWUj3zBCXlvigHOKfc3j9IttfFnBlxWb++y6XNj8NqvxNaaC/Sze+wUwgc0xXelaeYxRkGe2SMV1MKGHSFJMr28/iwBphslzFJbF/t7gq/iiwicmfotgdhGztskL3a+iTcFjtV99S9ALNs+1IOdW+tpPDPjOe4fo64e41n2RG+dfoO5O48kQZRTtbBXY+b37WR5X+jxa/SIv9P+cTMc0vGkmnT18sv6bPNX7Q86/9G+5v/p5nl75A5urHOXk5xOawR4AEjPE450B30RHfKv77xitM5878H/keGf+B253dvgdtotVJtQcj9a+hBCC2+kFACqywcdqvzrOCn6ruRA9TV9v29cofA77DxDKOl/v/N5b3uda93tsRFdppXMUJuPu3S8TOHX2OsdonL3DRnKT6vY+9nQ/S/OaS/X8Gp2H5+ktSishcGD+uxBPWS3tcB5UIvDa0LyecYMbeCLkgerPU5iMnJRUx6QmItERfb3NhcGTXB48x2L/NAeGH8OpTFItDKobUZuvk1ckSVOx9pimeluSNcDfsgA4nrb63bufDTjwJwnT312hdniKwpesfNyhdhvSmmV4keCXUevO0JDrlFvP/yk31p/GFR51NcmN+BVuJmfZ551kr3ecqmruvFlCcHXwAlc2n0eiOBY8zAH/NLeS81yKn2N6vyYYKtR6lxdv/Ae0MNA2XCsSqtenOfXY38d1QoJIolB0h6usrr/M6tY5omQbgWS6foQH9vwGMxPHEWFIgWal8xpXb32Np879v9k7eT+eqiCNxFUhSnkW/BpNknXpx+t0oxUGySYAVW/qHX1OP8gxRo8TMt7r/d/t/M7v/A7/4l/8C5aXlzl9+jT/0//0P/HpT/9kpWofhtkFvh+C8UUFV3hsFss2DsxzrVEgzWzebxiA1lSvtuncO0nhWhevLEDm2uqxlEInMRc7T3BzaBubGrKFq+ZwHR9X+LjCQwhBZlJSHdEtNjDAYvg4oayjKchNSqyH9IpN5tz97PWOj41rxhi28xUCWf3Q6nq10eQmsa/RxMS6T6wHRLqPpkDhkJqYlew6oapzb/PzzNVOoobliYEUNmZuZOLIMvR0E5Pa6laMNU8UC5OorQH5ZJXtEyHVlRxnU9C82qNV/xSLjTO8evdPeK7/lfGxzQQHuefhX2WPOoTxXYQ2FIEi8SW9uiTcyAlud8hn6jjLbRgtZGFgNd4Avo/YamNmpxC9gdXbGYMCmhPzVq6gNXqizlL3HDfjsxxa/BzHW59EbGVQdFFKWlY3DGBQVkEVhc2pLk0rozxp4bmYJEF4Lgc4QyuYp6e32SMP4qoK9AbciV9jPbvFg9Vf/KFa4werv8BGfoeGemtw/OOYo8GDHPBPs50vs5JeR+uCVEcUJqMmJ36iz/1Rmoqs8fH6r7GW3WTetXFkvqxwMvw4L7e/wUvRn+KJgE83/iYXo2e51H+GWW1vF3y/MfdtplOs8/qTa7Hdh+9ji4XjcDh4gOcHf05iorG07NHaF99QegF2p+aFwZ8z0B0erv4K0687idrvnyI1MYveCVwRIIWkk28gUWgKBAJfVvFFWB4XbPSvcsi/n+NlbnA33+Rmco4b8asUcYZAYJZfozEIaJx5FJSidn1APFm3IDe27Kvf1sQTEpnBcLFg4TsJvYMhCTFV1aD5NieFke5zKznPnf45bvZfYrZ2nD0bx2kcf5C86bB9TBItaGo3JWkLgnXI6tZgl1d2MrezZoCX5gTn7qLnJ5l7robXyejt94kny3a2tsZrFwzPvsgzd/+EVEccDu7nkH8fSjgkesi1+BVupxe4nrxiJVzOIjU1QadY52ZylgP+aY4GD+EID200vWILgaB1McWR0L5zjqyI+MSZ/x5ncZHk8mu8fPvLfO+v/sednzkCg8F1Ksy2TjKz8EtMVPbhOaGV8OUakxU4QrC3eZrZ+09w/frXWe1coNAp2hTkOnnD++iqkKo/xVT1IIdnPsVU7QBKenz9/P/I7uzMv//3/55/+A//Ib/zO7/D448/zr/6V/+KL3zhC5w/f579+/f/8Af4CM+u1OFDMJvZEq8Ov40Uks80/pbtkJdlPm+jBllOPtvEOALVS5H9iHTfBG2xRf+Fp0g9jUkztvs36OWbnAgf44B/5oN+WT+xSfSQzXyJrXyJoe6T66TcukzH5rDXjyN9AlFFCQctNEZrFv0T7PNOIpU99xNCgu+hZyYwgYN2Je7lJdKTi7awoxMhooRirolqD0kWm4hMkzVdkoZi8hvXic8s4i/3KGoBybSP0025M7lK/bs3cR+8H9+pIQpDNOtSu2NlBkWg0ApkZghWBgwO1Cl8QWU5wbhybCxMF+qoqMC5s4Fp1RGDGN2qIoYpot21ZQ6VkHS+jn9zk3NbX+f29ovM7HmAe/f9Nbx2GcOnJHT7O29OeT+RZtDr2x0G34P+AJoNK7MZDCzwLnOk9Z4pxI0lhOvSMx2eXv0D5r2DP9VtaD9rs5Hd5fnBVwHGkiZtCl4c/CUb+R0A9nknuafy+Dt6PG0KOsU6nqgQytpbm3mBXOfEuk/Nab3lbS5Hz3MteQngbQ2VYnoSs7EjechNhjYF3+z+WwAeqPw8Q91l0tlD801i07TRpCbCFT7f6f0BE5V9nH7k7+Odv0V2YpEb/4OBG1VmXtT090jcAXSOG9TBAbO/HxKuxETzAWf/6F8Qihr3V3/uh75Xucm4m17mTnKRvt5CCocDrUc4NvdZhKNY+dy0NdEpmLycoxUE6wnatU2dyVwFbytBLZWmvkrI8NgUncOuTYfoaLxOwda1Fzl34Q+YdOa5J3z8TcmMwuSsZjdZy26ymd8lNykOHvv8kxwNHkYKSaoTXhl+k618iTOtz1P/hS/Q+O41LvaeYim+xKcf/r+h+pZYSCuwvX0NtKEoYnKT4XsNplrHUUKWZU2leXckW8g1uMqWVxhjAbHGVhVjCZnCZDarW0nU6/m8Mt841ylfP/cvPpQygDG+av29Hwlf5Sbl6+3fe8ev8WMf+xgPPfQQ//Jf/svxZadOneI3fuM3+Of//J+/5+P4KMwu4/shmCl3gaPBQ5yLvsuw6FL1py3oTVIbJxOGONsDy9LlBau1bS5/99/QzzZRuPgyRCDxRMDHar/2tqzCR3WMMWzkt7kWv0K7sNvVtWCWumzgBntw3ADXqeCqANFs4ucustmkWlTwIssUiWFkJSRZNi7+yPfPIArNcKFC9VafZDqkCBWVGz1oNXA3bCVudMCeeKw/4JBVazSv2O3F2edTJl9dJbp3EW8rQQceWcO1VaGu4sDqLPrMHnLPGQfJ125bhsJbH9qGpG6EblWR/YTaNatX076LSAoGe0MCX+20M1XCUlecI1ftdi5KgZCY0EXFObgOkbbgtjpQeMvdHzRO+D74LtlsHWdjYCUOmb/zuQt8mwuZJDttgUCxdwa13iZVBec732YlukRFNjgRfvx9+BTszvs1dTXBSMg+2uaWQnFf5XNciJ5mKbvC7fQCJ8NPvC2IHY0UignnB6UNbzZ3s4tciJ7maPAQR4IH3/Q2+/yTDHWHGXc/e9y3Ls54PegFrOlUuHyy/psMig51NclQ97gYP0ddTnKq8sbPsRRyzGwf9u/nYv9ZTnd6oA1py6P6pIPXNXSOSJyBlRsc/OMYdztF9DqYRoXk/DU6+RoHKm/eavf94wiXA/49HPDvYVh0uZte5tr2MwxMhwf2/xZZzUaSOUNYe9CuK27fQWYgC5tCETYdqp7C2RpAt094q4MT1UgbDm6vYP3Sk5y98yfscQ9zpvKZt/wZKuGw4B1hwTuCMZrMpLjCH7Pv/aLNC4O/IDcppz/53zHjHsR7cQW0ppdtELqtcf68yAtcE+xkbwPac+zftW21EwAj8jq3l4vcFlrgKmvC1VhAqwFtEICDW8Z7AsLYXF+JlY05EmN2GPEP7RjDj9Q7XL6n3W73DRf7vo/vv1GrnaYpzz//PP/4H//jN1z+S7/0Szz55JPv/Rg+IrMLfD8kM+8d5kr8Aq9FT/Gw94VxextFYcX74QRiGNHJN3jpzn9mwpnnweovMu3sfV+rZd/v6RVbrKTXWM6uEekeLW8P9y78OtP+frywYSuTj0xSudEmm67itCN04JHXPRtrIwR5xRooVAn+inpI70iV6lJCf9Ef98T3D9aoX2pjfJdkvorQVuKhohx/I8a4kn1fjcaLtuwMrbs49PFXh+QTwXjdUnFO1vQQuSGedHESU2ZMGrK6Y2s2J0NkYis504kAMRkgU/sF4G5FRPtqtote2UxRjCGdq6PinPXPLzL97CaiMBSNAFEYukdraEcgDobcd/vvcfHcf+Zu/wInDn3RNh7FVj5jPBcRJZjXRRKJXJfa8nynJjtJrclNKtL9k3iXl1HXl0iIeWbrv5CZhHvCx9nrHfup/gz+LI4vK3y++XfZzO7SUjvylZeH32Qzv8th/wEaauodgd53O73CgtVOvhNDJuo1TG9npyKQVe6vfv49P4fCYTm7ysvDb4wlEIkcAG99Ajfj7OMSz/Hi+d/jntqn6B+woFMUsP9PthGdPvnCJMufrNL6X8+znt6kudmkLbdRuGMpybuZimpwLHyYhpripfbXueR/g2Pf/GWGCxWWPiORqcAp1UpOGcJglDWxDfcE6H0BMpu0rzkz+C/f4vrKd7kWv8Re7zinw8d3tPw/ZISw5MpotNG8NPhLpFA8+Jl/iN+Ywnt5yXoRgDn/MOd632Z47TwNb5Zi7xRymFogitiJGNM27QFd7ABaJSwpkBqKicoOw2vKGLOiTJnAlAkPztjkNh6lLACG8Z8/C7Nv3743/Puf/JN/wj/9p//0DZdtbGxQFAVzc2+Ups3NzbGysvKTPsQPfHaB74dkHOFyuvIpXhh8jbP973AwtbFootXANGv2lxvDK92/pK4mebj6Sz+1YMMYw1a+zNXkJbbzZRzhM9c6xfzeh2m2DuKt9e2WfZSCEFQuraNbVdylNqQZClDrclzlbEIfE7oWGHcT8rpH7WZkGZvllHjKw+vmBOspyXwdt5fibcdoz26vadcyrs4gQ5dROiLOMaFHNlmhv+ijXWheiYhnfGRuGDYCZGGIy+vyHDBQWcuIphR+R5A2HVRaAmIDcmjD2Z1+RjYd4rVT8qpLVleoxKA9RTTjEW5AuKWJ9jXRvs3tlKmmupQgMo1xBNp1yEgIa7NECzXC2x2QoGthGfFTYDwHZ3s4ft/1VNNuI5ZfPkLrcbOgt9QZh9jf2Hp6nN7wYdV6786PPq7wfiD5Yqgtm3QteYkHq7/4E3neI8GDhLLGoreTGPN60PujTqwHPNf/CkI53HPgr1Ef+jyz/h854J9+2/tVVINHar/Cq8Pv8MTmv6f+e08wPXkCd889ZJnHxlSXzo3n2HzmPOeKLcbRL8Cce+hHqnKf8w5yQj/GxdUncaKCff6vsu/rPkuPO0ydtbpi7cDMCz22ztjvC7+T43RSZLvP8sGc7ee/w9LWy2g0R4OHOOw/8CMdkyZnqHvMP/DzuJPTVF/bgii2sYLxBTZSK4m5GZ3lzMxfQ+TapsekpTnXd5FpPm4csx4DMXpwK3EoNKoToau+ZXtLj4W9zc4u1qi11Daovg7Ij6qcPwpJX1ozzhF9L1N6Qm7fvv0GqcP3s72vnzeLaP1RPhMfldkFvh+imXH3cTp8nHPRE9xNLrLYuI8jW/cQ1A6TdDb59trvYjA8VvvVn1rQOyy6vBY9ZQ1QzgwPzP8as7VjyAJIFEWmKSarqNvrJZoEPM9u+/seVEMbjeMouzU2TBBZjsgLRJShqz7OICWeDTESBhMeKrHAsQgcZK7J6h5FKBG5wThl132hSjOaQxFKCldQvRvZMHUDKjEMFgOCzZwikKjM2MYho8scTYFxIK8o/K6m8IXNsEwt2yxyQ+FLEJA1Pcsk5aNF3daOYiR+277mwhMMp12qazl5IFHCtk2J3D5vHkra/TsszNxPsDpApAW64lPUPdQgxfiOzcyUFuWaAnTooicCnE6M8RzLEOc5YpDsVH7mOYOiTVNNf+hArzaaWA8IZfUds1i78+5mVOIDUJWtn8hzhLL2lhKHH8ecHz5JbAZ8+uT/lWA94tsb/ytV2XoD0H6rmXDm+VT9b7CSXWc9usntG9/h+o2vj6/3RMi0s8hR/0Fm3H1s56vEus+89+7Z3u+fA/4ZNAWXu8+w8twNpj7280w+e5T6lQKxep21uYTBYEj65Q0GusOwu0pqYowpKC7neCLgoH8v+/yTP5amTUd4LHonWHn1u9yT3g/bQ/TiLEs3n+Jc7ztM+HuZa55iz9T9Nh88K0pwZxtHRZyO48heP0ZZyYLI7O6TKXe7rOxh52R8LN2SEgqN0AaDAlOMAfAoalLqnA/9/JikDo1G44dqfKenp1FK/QC7u7a29gMs8E/j7ALfD9ks+ieYcw+ynF3jcvd73OEVmhdmSUSCwbDPO0VLzX7Qh/kTmUHR4anel3GdCg/u+U1mG8dBKUReQJHbtIPVjjVeGQNhgJ5qIPuJ1Yh5LtlcDWc7Huu7itkGMskRaU5RD9CuRCYFbi8nbTpU1jLSukPWcHD6BXnVnlBkVUlak8QTMHkxJ2lIVKzIq9aMplJD4SsbJdcpyH2BygxZbadL3kir6UWUAfJlhKfMR6AYu1MnBboikYkuqzsNUhsGe32CzRyV2IB3YaAIJSYVBBsZ/rat+nTyYlxlWgQSdyNFb2yRpl2aziwyytAVH5RtATSeM06oMJ5DVvfw1wY2x7eQRHtrVK63EUluAe8oXQQwWU5VNrmbXsYY/aECmHfSC7wWPcWkWuDh2k/vjsgHOacrn2I2O4AQguqH4cSn/By/mwllDUd4RBt3eHLtjyhMxrHSqPVORgo51r1qU7Cdr5KaiJqaoCYn3sCYvb5g5UcdIQSHgweYdPZwKX6em9/6fW4CgdckTjuwZiUcvqxSlQ1mnEU8ESIQNJ0ZWmr2x/47cci/l9u9Cyxff5LF079EUaSs53eoOZN87MDftd6BKLW7c+UYz8WELiLNEbqwzO3rXyev+zkUGkRZVPH6H8+oUGP09/J/kWN3AzGMw3xhXIzxYR6jNeZHYHzfTZyZ53k8/PDDfO1rX+M3f/M3x5d/7Wtf49d//dff8zF8VGYX+H4Ix5U++33bxLWW3WQ9u02VBrnbIjcpW/nSTywD9f2c12+raKM5Fz2B51R4fM/fwZE+bLZttmF5e9XtWhPXwsy4OEJuD8B3iQ9O4a/0wUA6U8EZ5hShQjsS5QiSfVXShsTraQrfI1zPCDZSCl/h9XKKQDHY6+F1LVvg9TTBZk7trmVmhYasZgtDcCTaheGCj0qMNZcMRiwE5IEs/xQ4sS4Brm1MEnqHxTUSspqyjK+BrOKgXYHXK1CRpvDAOILMl1Zq8bodqCKQtgVJ2eNTSYEoDF5bIzJNv3sXgIY/Z5ncwEV7tu7TCEFR95FJAQK0b8FusBYhMk3lVm9nO7HQFvRqYxdWY5jzDnE9eYU76aUPVYGJLF0xW8US3+j8b5yqfJK93rEP+Kh+ukYKxZx38IM+jJ15D21Vke6Tm5TnV77MpDPHgnec+feY6yyF+rGC23cyLWeOx2pfJNFDtvMV2sUazcqDzLmHfiKa67cdYVPPl6sb1CYzXvnW7xCnbY40P2ajIUtZA1LusLZphtAaXQus9CEr7Ek22DQjrCZXOArywjK/Slqz28jkW+idv79+tN5hlUej5A5LvDvj+Uf/6B/x27/92zzyyCN84hOf4Hd/93e5desW/+Af/IMP+tB+4rMLfD+kMyjatPM1Btomja9lt8ixZ81D3f3IAt9+sc2d9CJL6VVyk9JSM1RVi06+Tl9v88jsb1rQ6/sgFWKk7VNlmYcQiO0eIsswc1MU0w3yuo2A2XpggnAjR2jo7wsQBWhPELdcjAN+2zKtKtK2vajqkIcWVAptryt8iUrsIqk9idvNMAJUUoxZBlEY8oqDVg5ee0cT2z7mk9Vso5N2wYkNRkmcoSYP5RgcGwlIKDyJG2koNb4qxgLjkr0NNwqyUI6PDWEBs3aFZZEdMZZDjKd0M/fSDZR0CWrT5M2glH8ICulQ+BLtS8DFSHD7BSI3JNMh/pqtKNaBh9xoQ55bkyWMmZlWZYGF9DgXoqdRwmHOPfi+VBT/sFn0TzDlLPCd3h9QkHN2+B0CUX3fgcnufDimMDl308tMOvPU1E5285x3kF6xyYy7n5Phxz6yOwO+rDDvHWaeH11G8V7n1cG3EUKyvXGJZ//i/4GSHp84/X+mqZsQxRQzLWSSWZlDXq4jJQgVcYrxHIp6gJMP7eW6rBkendA4yl4+Aq7F69a70nNAXtiTcyHLtbgEyKPdAPXh2ZV62/kxSR3e6fytv/W32Nzc5J/9s3/G8vIyZ86c4Stf+QoHDhx478fwEZkP/ttqd35goqLHE73/gkETyjqBU+dA5V5mmyd4avn32eef+qAP8V1NbjJW0uvcSS+UWZ4Be+unCbTPVrr0/2fvzOObqPM3/s5kmqYhhFBKKaWUUkrlvk9FBcVb8T5211u80F3vc73W9cD7dr0V7/tExRsVEFkuOctdSimlhDYNaTpNJzO/P74zk0la/OniUXSe16vQJpPJ9zszbZ55vs/n+RBJhMjKCNDPsxfBRCfxhysetwpaXC5JxGt5REMJ3ZeFa0cDWlaGIJY7xA1BQEkQy8sks07FE0kQD7iRYxpZCXH374kKkikrwhrgbkggNUui44/LhbtJFySzWai0UrP4YyvZPWWGJy0jniAjnAxO17JkOqyPE+8gC1uD8VkqxXVUn1CAm9tJNPtcyE3icVnRiLeXyKxN+s80Q9bVPML64NmRXKLTXYgKELcLTXYJRblRR27UDF+cTsIn41bALWeiaQkUdxOurHZ46uLomo6Sk4m7SbO8xQmv+FAQFdQautuNngFSY7ORoZlKenEL5aa/f29ULc7S2Nescs2jb9aYXS7g+SWQ5W7PgKy9qYivFN337B2nHPypsKlpJauUefTMHERp1kjr8W6e3s5KwC8ARWugLlHNoC6H4fd1YWPdfLKDJXRQfGjtM9ADXtT2HjJqjaI0gHjyb6krnjAUY4x0HA+upuYkgbP/LXG5rL89FrHVBKnVPRm4MmQjiaZZFHnZnQ2aDrR9qwOaLjxy/yv+h9WPKVOmMGXKlP/9PXdTOMS3DWJL83pcuJiQfRqeDB90FHfPzfkd8ddks7FpGV0zitu8UqHqzVQ0rWBDfBmqptDJX8wQeRi5nh5WC+AihqArts47mi7SGJqbcWVliWUrSUIPtjeez0DPcIPUDqmxGaWrX/QLNZRYWdFIeCXULAm5UUOK62Q06Fbhl8sMRzctB6qGK+EySKVL5OVquvW8RfjM1yVEjqRk/JExY3LczQncbhcZO9zoboNMSy5iXT2gg9yoES6W6bhONYrlBJFtCkio3gx82xIkPGIcckxDMlRnXXaRyHAhN2rib6Jhm5BcIr7I/DupuV24JDdSs0ZzBw+dMoYiVXzKhu1z6d3hYHSDUHt2qCQyhKotNSdwqW4SmRJyTEVq1nDpOlJtDD1TFmpLswuXJqEbbbNdbje4XLhdMkODB7EjHmJt4wJ+iH1FXkY5g3wTfnfy2y2zlG6Zpb/rGP6s2N5cxVplAYPajSdLak+TFiOmRQi6u/ym14Wqx1mlzAOENcBB69D0BFua11MW+w6VZkb5D/vJecvb1SoAclxd8cSzGFBwOOHBneDrjUiqSlPvLiK20eUSf7MTuiCoaiJpe4g1ietCduNqakaXJBFLZr9WZHdqAZzd30uykYX47HCDy2gAlTDiz1S1dVuEgz8tHOLbxqDpGpuaVtI1sxceb3vxS1tXD+39ZGzazgDfPszb8QGLG75gSLv92yz5rVO3sjT2NYrWQPfAYIqyBuHTs8STGUa+l8+Hbg/bdku4/O3A6yFe1AlPZVgUV2V5ccWa0Dr40N0yiSzR7leubcBTp6BLEs2BDEHa4jqJTBcZMaHu4hKk0K1oBvE1CaTda6tbrTNdOiAJBViXjbzIRPJOXPwBNhQFXU/+0QURxZPQcRkdhnRZwr8xgeZxo2VI5CyPC2Lql2ns5KYp4KKpIwTKhS9Y6SihuyALrJgzNB23InzEFozvzRg0zeMSXua4sEm4VB2CfjrklbIjshldcpHwCv8wukGm3W7cdQmkZuPLUF/AmFfUaPYhSeDSceku9EQCvVmo0y6POIeBjByGygewLjqftU2L6M84ZJzujn82aLrGoobPrK5uC6Kf0FHOozK+CuBHm1H8GrBnAP+cop8/C5q0RtYpi9gUX5ny+M9p5x1RQ2S4vLiUZvD70PxeNJNRuFzI0Wbxd1SShGCQ4UbXjLSFeHOSwNpJrG5rPmFaFbSkwOCyq8GSy9qH7nIJNmNkAIu8X0n8fVbVZAJQW4b52bJLr3fwU+AQ3zaGmuZyFL2BHr5B6I0KdMslntuezIpakc2411iG/VdnYe105kdnMLDdPmRJ7X+x969XQ/jdwV3ybNY0V7C44Qs6eLowMvtofJovaV0y/5i194ulLbck7tKN53SPLDypgO7LBDJxRWLgFWRK87iF11XVaM7xW+/pjms0t5cF8TM7+ui2/82/l8b/uttMSjfe1+R8LpcVgq4b1jC3ksClC0VZy5SRGuJW9iRpSoTIvhV/zF2qsCC4EhpSXKjATZ0yifRwW8H32WUaSlAi4XEJ/3GT2F/CyOe1fMWaIL+62yUsE1kufNtERXRT0I1nh2Y9r7tEYZ2mNSNleGhuJ46Z3WfsUnUau2Tiq2oUqnezaJYiuiJJVrclU5kRh8lQfjUd3fwgcUugauRkdGdt0yIi6nayM7r+/IvGwW6NHYlai/R28fZC1eNE1O3W82uVheRm9MAvdSSm7aBWrULRGnC7ZGRXBj6pA53k/F9MFQ7KyeSbkFrZtgryfgVoukaT3oDX1XqUn6ZrRBLb2K5WsV3dQp26JeX5fll7UeAp/VkpLd08vdkcX8Pihi8Y4T8a3eVCM/5saMH2SDEjycHlguaERUhdJuE1C97Mc27722t9TrhcIJmrbWmkF0QbY0CXZZAlizTrRhMed0Nc6AQNyk+e1+8FXdPRd8HqoDvE9yfDIb5tDBublpOdkU/A3UkQwlCYDI9MvKAjns1hMnY006lgECOaEixp/Jo5kXfo6xtL14ySn/yh0VpIta7rbGxaxiplHkWZA9kja9TPHntDIszGphVUxleR6ylkcIcDkKTMlBgaPRggERTKryuh4Y40oHYOIFdtJ5HbEV2WcDfEhWJq/hHr0E7sQ9Vw74ije2Wacrxoboi3d5PRoCWtC+w8A9yl6WiyIKBCOTAK2/RkQZlQGqApKAurRLNudU7TJdAzJLxK849bxnQbYdWNTEpZR8twkxFRaV8BzX4JTyRBwiMKMprbCX+v1Cw6MbkSoPrAExHzam7nIiOm40qIojmpWUeXTIIMzT6JhEcQ+6xQAm9tQuT/xhtxKxruZg25wYXqEyRYimu4Y6IpRqK9h8yt0eQHS8IoFlFtkzQ8dq4EiKjMBK4sr9gWCHg648LFDq2ObBzi+2dDXBeNUPbtexFyTmcytu4AXSda1J7QvM8oq/+GeTumI9yWzbhwkSn5SJBA1eLoaATcOXhdPjIkL+3dHdF1nagWJq410ss7lA5yZ+v9mvU425srycnoLtoQ2+DqGMRdFyZXLiSB+psqzb8XNsVXUtY4Fwk3PilAppSF7MrEhYsmLcaOxHZUmpFdHlQ9GS3WI3MAvTKHkCHtvMnBzhCQcxjUbl8WNXxOfayKQDxb5K0DUniHKDbLzBAJPJqGbnwQ6B5ZkGBbhq+l8hrd1ly2vF9Tn9BdZktjgyAbDSvMFu+aR7LsalJzAkkxi4kl8Pz8+f3m0DV2TfF1VjZ+Khzi24YQVmsIJ2oY1vEIsdyeHcQViYrWuAEv8YIgUlOCptx2ZPbYh9HVg1iz8l2W7viGDdJSunp6kS3n004KkCFlktBV6hPbqFO3siOxHV3XUPQY0UQdXT298EsdcbtkFC3KNnWT1Sp0c3wNvbxDW3yg7AwJXWW9spgNTUvxSF6KAyPp1XE0kpRhRclo2X7rzt69QxG+XZeLRNds0b1HciPFVfRmF3qmm+ZAJi5dR3O7yNyuoLb3IDUlaG6fgZYp4dKEbxYMldNUCjRANMRMyYd06TpahoQuCXVYkyX0DFPmtc0lQxJZuDsSuJuT+zdtAnKDiur3INfrLX1nJgxfsqWU6rpIlfS6UXIyyNoWJ7NWR+mcSUO+hNQMmgxqFmRFRSJEPAd8W3QkFRo7u/DV6CSMpIhEpouEB+RGgywbcWgg/MDxgGi2kV08jHVzXqKhuZb2ro64lQSxvAwyGozGGc0aajsZT01M5CC7jTaibrcgtFle0X7UnJtZ5OfJwJWQxDYuFy5ZBlWlo9yV9cpiumb0wvM/fJA62H2RJYlM32U1M8io96NkNBFo9BHr1IOOY/vSUyvG9d1y5Kz2tGvXmWCnXjT16EjWtjiuZo3tq+aypXEVCRLsUOvY0rgOAL+vC5FYFe2ag2RKPurUahq0COuUhQCtelL1ujAAQ/0H/KE7Uem6jo6G5HITVrfic3ege/YwGpvradJiNNOM3tRERnYXesaK6JRZQDweZWFkBjlyAX2yRtPOHdylMXR0i2MfVWvJ6uBFd0GiIAf3llpQm8XNsmlncLus+DKxquRCt0ePuVxoHtkiyS7DroBRfGz+HRV/q9yWHUKXJZBcaJlucUOvqMK6pYpos/QGGQ4cOMS3DWFj03KypPZ01vPQ4824whG0/Byk7TuQ4oL0yfUKjUVZNPskOtV4GdD7OPK3rWZz+AfW7VjMGuYD4HF5adaFkiJLmQQyu+Bu1vFJATpll7J1+zK2aOvRUPG6/bR3d6Jf/iFkdOjE7GUPsSD6CdlyV3zuAAm9GU3X8EhZZLqyyJR8ZLgyUbQoW5rXsSW+jmY9TnHH0RTrfXB3zEYP+Eh45OQdvZG7i6ahZ2YYxV9CCXA1NqO3y7SWrbRM0R1N9Uq026ygu0TigJYhCK+aKZo54BVRXwmPUGNFW1+XaFLRrBuKLWgSJPxu5IaEUErN/u0SRlcgl+jUlhBKakZDwlKQdWNJzR0X/eQTHgm3kkDLSt4U6LJLdHBrMpfzpKSaYRR26G4XcqSJ9pEm9Aw34dJ2JDJdtNui0ZAnyK9/u05jrgvvdnDHIOF14a1LCAVYA9kFTR0kVK8Lb1hL2jc0QYDlJkARHyRSXMfTIRuAeqUKT9fOqL4M/JviuJsSJDLdoOl4QjFxDhK6aO8su0EGV5Oemn1pFLXhdif9ckaWpp5IoCc03C43mp5A3xXVwsFuCb87SJ+sMVSF16JSS4Yrk5BWQezVeZhuWxcuvEqATnpvmru0J7vaTe3AjjR1gMK6gXTRBqDLblyaRrSkA2qGC19tgplf30BlfBXlTUtbvG/AnfOj4/qjkt4t8fWsUebTqO1AJgOVZrp6ehGObCTcXE2GJBpXdMnsSUliGLpH1DysVFbiQmJIu/1/kQhCt0vGjUyTFAcJfKEEDd2yCGw2C81cEG9Gz/KgeT2W0gugZ7qtVSaL2MqSIL2ahm78DTU7uSUbVSRFDpduEucEcgOg6Uhx0bAIXbf+ru0OcKwOvx0c4ttGoGgNbG3ewB6+MclfVFVFamhCD/hwhxuRmlTU9pkEl9ezbVRHlFwvmduaaNd/KAW5I9ljbT317jBq5WYad9SQ4fbSMbMbWQXFZGzaLqJffFlo7TLp3W0imi8DV10D7h2xZNbhDuidNZJNTSupjJcR1xVcuHAhobWyvu+RfOR3HES3rqNoH8uExkaIx6E5E3dTs+gMlu0zmiW4RIGDWxKWhqhIc9CzMqxlLd0tmix46nTkTDc7enjxb1LQ3RIJr3FH36zT7DNVAtGjHh3ifuGL1SUXsiRSD3TZIMVmKoIkit3EkpiIDXMldNxxYR1wJXTDT+si3kFONolQhcfWpekoORl4IqJhBDpWy2EyDQ8yIgrNFTP+KKvCMuGKq+KPeEKnfUUTTR0zaPZL+Dcn8EQSRAsy8EQgIyaU3kSGiC3z7EgQzZeRVEFwvXWa1bjCE9VSFGszLg2Xi03fv4cvmE9O537ITRoZjWL+SudM5IaEuBGR7C3lXClLkuia+PDSdUF4TU+ePWNT13G5JNY2LWRb8yaGtTuATCnrF/u9cLD7oEdmf3pk9k95TNMTNGpRGrUdNGo7iCbq2RpaQeW2+XhcXsZtOpOMDh2NAigVV1NcLHcrzURdO9gRr8Pt9tCcaMTbrhPdu4wiQ8piw6avyFQ9bSI/+rfEt5E3iGk7AJ3O2f3ooLnYWr8SdNgSX0cHbz75gQGoWhON8TBrG/7LDjVEx4yu1MdrqI6vQ0dncfQLhvkP3OUbg1p1CwlUcrN64m5QibeXhd0hy5tMVnC7ccUTuBMKWjtjJcgUOTxuS/HVzD87soTuFufVldBFDYJqrJpliuQaV0ITEZQNTbiamnG5XOhSwrCt6aIhhukR1vXdwwbgWB1+M/ysvxqq3vxrjeNPj43KMiTc5Pn3IKGDHo+L5frt25K/wMEArpiL0MBsfOsiuBtU6rt60TKaydgepzlLon1TEKlzexqGDCWR6aJJh6wltTT0DJLIFHmysa4ywdXNyKE6dDWBKqliWQhA1ynsMITCzFFo/iz0eBx3gwJKnLgeZ169aPFZ0K4/2YFedPB0Ru3eCc/metREI2SaS1PNNHVtR+a2GGqzC0nTBenMkJDicTS3m4Q7QaKdjLtBKIiaz40Uj5PwyigdJWSlGS2WoNGbwN3cjIqbeI6bjGgjzVluq5BNT4DuBk1xoSHIabMOCS9WpJmk6mhmgRgSmgRSsw5xKyTBsA1o6LJEUwdhvcAFrmbDH+wWPjRNdRHr4sK7XUPNctFuSzNoqlCQ9QRSUwJdTaA1NwtVorExpYhD6xTAFVLIrHORKbmIB71sHuEhs76JdpsSyLEE8bwM/BvixP0yoSI33jqV5gxw14OmaKg+Cc0DGc0GaVcFoZcUUDMgHg4Tra2g98DjkaJxERGZ0Gn2SmRsb4S4hqolcMU1I6LNllrRrIFbJxHMwr0tDJqRvWYrdBPfC5/djng16xoXUOQZSEc5L8VD6MBBppRFppRFEFFwVuIdSp1azaLY5yyofhtfKIhKHBWVuK6gNNWTWN2Usg8XEkrDdtas/xgAD1n08A39011rMU2k4Azsehgdi4bS0D2LkvII4aYtuDpn01EJIDcI+0hTZDuzKp5ma9MGtjZtAMBNBgmaCSUqiSS273Lb6YZEPQBef2cS8RiejTGULlk0u1Tjxti4qc5w42psRJdUsbKXcKG53Eb9hGC8iUyD+UoamltknUvouNwijlJuTJCQNXQZPPVxYV/TE0brYy0131dLFWlUre1fJyrNKSLG//R6Bz8JLv0n6OOKotCzZ0+qq6t/izE5cODAgQMHDhz8YsjLy2PDhg14vd7feygp+CX5VVudY1vDTyK+IE5OPN7275ocOHDgwIEDBw7s8Hg8bZYQ/lL8qi3PsS3hJxNfBw4cOHDgwIEDBw52Z/z0tGoHDhw4cODAgQMHDnZjOMTXgQMHDhw4cODAwZ8CDvF14MCBAwcOHDhw8KeAQ3wdOHDgwIEDBw4c/CngEF8HDhw4cODAgQMHfwo4xNeBAwcOHDhw4MDBnwIO8XXgwIEDBw4cOHDwp4BDfB04cODAgQMHDhz8KeAQXwcOHDhw4MCBAwd/CjjE14EDBw4cOHDgwMGfAg7xdeDAgQMHDhw4cPCngEN8HThw4MCBAwcOHPwp4BBfBw4c/KqYM2cON910E+Fw+H96fXl5OS6Xi+eee+4XHZcDBw4cOPjzwSG+Dhw4+FUxZ84c/vWvf/3PxLdr16589913HHbYYb/swBw4cODAwZ8O8u89AAcOHDj4MWRmZjJmzJjfexgOHDhw4OAPAEfxdeDAwa+Gm266iSuuuAKAnj174nK5cLlczJw5k6KiIg4//HDeeecdBg0ahNfrpbi4mAcffDBlH47VwYEDBw4c/FJwFF8HDhz8apg8eTK1tbU89NBDvP3223Tt2hWAfv36AbB48WIuvvhibrrpJvLy8njppZe46KKLiMfjXH755b/n0B04cODAwR8QDvF14MDBr4aCggIKCwsBGDp0KEVFRSnPV1VVsWjRIgYPHgzAIYccQk1NDf/+97+ZMmUKPp/vtx6yAwcOHDj4A8OxOjhw4OB3Q//+/S3Sa+Kvf/0rkUiEhQsX/k6jcuDAgQMHf1Q4xNeBAwe/G/Ly8nb62Pbt23/r4Thw4MCBgz84HOLrwIGD3w3V1dU7faxTp06/9XAcOHDgwMEfHA7xdeDAwa+KzMxMABobG1s8t3z5cn744YeUx15++WXat2/PsGHDfpPxOXDgwIGDPw+c4jYHDhz8qhg4cCAADzzwAKeddhoZGRnsscceAOTn5zNp0iRuuukmunbtyosvvshnn33GHXfc4RS2OXDgwIGDXxwO8XXgwMGvivHjx3PNNdcwbdo0nnzySTRN46uvvgJgyJAhnHHGGdx4442sWbOG/Px87r33Xi655JLfedQOHDhw4OCPCJeu6/rvPQgHDhz8+VBUVMSAAQOYPn367z0UBw4cOHDwJ4Hj8XXgwIEDBw4cOHDwp4BDfB04cODAgQMHDhz8KeBYHRw4cODAgQMHDhz8KeAovg4cOHDgwIEDBw7+FHCIrwMHDhw4cODAgYM/BRzi68CBAwcOHDhw4OBPgZ+c46soCvF4/NcciwMHDhw4cODAwS8Oj8eD1+v9vYfRKn4pftWW59iW8JOIr6Io9OzZk+rq6l97PA4cOHDgwIEDB78o8vLy2LBhQ5sjhoqikJUVBJp2eV9tdY5tDT+J+Mbjcaqrq9m4cROBQODXHpMDBw4c/GERCoV44IH7KStrYsuW2SxfvpwDDjiYF154mWXLFvHonXcw+4cfiEZjNDTsoLiwkIKiIkKhEEOHDuPvf/8Hhx12CPF4nMMPP4LDJu7PyWdNZcKE7nz//Vz23nNPsjtPpLRUIUvXWFG+kcj2EAdOnMjfhg2D0lJ0XefbBSuZO/cr3nzjdVatXk0w2JGNixYSkbMJrPyebcWjURTo0AECfo24KuHZugm6dAFZRkNC2rqFSLuuBJq2Ee/QGQCPGgOvFxSFuOxDlkFCg3CYmDcbnxyHrVtBllnb0JWSwjgoCjE5gG972v7VOLVRD34/eGQxhoxoLbOXLeOOW2/lm7lzmXTYYZx80kl0CARQ5Sxqa5uI122goqqK7C5d2GuvvSguKcXlcolxqKo4EcZ7xKIRXnz+eR5/+mnWr1+P3+9n5MhRjB0zmrFjxjBk2AgCfh+oKhHFQ0A25qeqvP7udM4++wy6du3Gli2brXM8dOgwFi1aCEBxcTH5+fm43W4URSEQ6EAgEKBr164UFfVkyJDB9O8/wCIrLj3BE089zQ03XI+iKACMGjWWoydO4L9lq5k3by6VlZXk5OTQr18/evUqoVevXgwaNJhx48bhcrl+w6t590AkEqFHj+7E4/E2RwqF0tsEHMiuNdNVqa7+tE3Osa3hJ8WZRSIROnToQF1dvUN8HThw4OB/wNFHK5w18m6mPPYY27dvp2fHjvTs2BFfv/787W8X8OSTj/PRR6/QoUMHduzYgaZptGvnp6RXMYUFBXw7Zw7hcJgePXrQ3u/niyefZOobY+nVq4krr8zmoosu5vbbb+Oii17kyiv/Rn6exvvTJSaNj0A4DAUFRKISU6fCbWPehzFjAFACOXzxxecUtPcyeMwYWLaM1f5h5ORAMJgkrQSDAESiEtEo5OfEIRQiFsxHlhEEV43zzVwPY8aInwGkaEQQRVkWpFOWIRolJgewfz6rqiC3ADFFwucV38dV8X5ut87TTz/E448+yOp16+i3xx7cec99HHLIISnHORyG7NBqtJJS6+0kNEGkEfskGkXzB5I/KwqJzCwWLfgvn33xJbNmzWLOnNmEw2FAkNeB/fszctQoLrv0UrxADB+RSA17770Xa9eubXG+r7nwQuo1D48+ei+jR+9Jj8JuZLpcLFuzlh9+WEyPwkI2VVaiqiput5v+/fvTuXNnVq1aRWVlJeefcw4HH3ggW6qrKe03gG+++oKc3Fy65PVgy5YqysqWsnVLFWvWrGHt+vXEYjFuueVWrrnm2l27UP+AiEQidOzYgfr6tsdhTH4FhwIZu7CnZuCjNjnHtgaH+Dpw4MDBLwBd19m2bRvXXnsN/fr1o6CgOw0NDYwePZrq6kwOOKDE2vbB664jt7aWUL8BhCsrePq116iurmbI4MEsXLSYq6/+F5ceOI7Pq/fkmKMEOTv1hBN44a23yMzMZHlpKd3nL8FTuZ65NSHGjh3Nq6++zkknnYAsy/xn//3Ju/Ajhg2TyA/GrPfVvD4qK6EwL05M9VBdDTk5QtEFLEKqqhDwGp5DU31FE4SUGBHVJ5432K2GhKKAIVBaPNcjC8IJWCTT3Fdr/5uQlJh4X9kjfg7Xcvvjz3LttZdzyskn89e/ncKECQfQ1ORKGScAqkpM9QjirChY7FpVk/sjdVx2UqwhISkxNI+HpctXsnj+PJasWMmSJUv59tuvmbjffrz99tt4JImasIdgQGHBoh+oW7USX1Ex9aEa/j31ThYs+C8lJSUM6NePE48/nqEj96JzposVixez99FH8/abb3LQIYexePFSFi9ewMKFC6ivj1Bc3JN99jmAoUP3N5TuGFnt2rV6zZnKcUaGh2XLlnL++Zfw8MP3/vSL9k+C3YP4HsGuE98P2uQc2xoc4uvAgQMHu4hnn32WyZPP3Onz48dPYPWqMqq2bEl5XJIkdF23lqc1TeOf/7yOa6/9N77K1UK+zMlh68yZ5J11FgD/PO88fN3/w9VXwzvvLOKKK45lw4YNdOggPthNvHTppfz13/8Gr1eQuWVLiJUMsvihR40Rl32EQpBfvRCGDEkhuKqaJMQWMTRIpdebRh7VOBFFWBJUFTzEU+wKdsIZVyVL2U0nxTFFsvZt/zlcU01R796cfvrp3H3PQ2L8CMIbx0M0CtlqDfj9aF6fpfTa9x1XJesx++N2mPM0t5XQqA1LZAfFXD/99FOOPPIIjjjsMN544w3q6t2CnBpjiSgestwN7Dl+PPPnz+fMU0/li5kz2VhRkfI+HTt2ZMmSZWRn5+PzGjcUsrB8aP5AivqtIfHGww/y6FvvMG/eXFRVpX///qxcudIqiMrIyKBr165Mn/4R/fv3JxaLUVFRQbdu3Wjfvv3OLss/DXYP4nsUu058322Tc2xr2BVDiQMHDhz8qfHiiy/yxuuvMv3DD63HbrrpPc7pFYFRo4i5uzNnxjOceuGFAGRlZdHU1ISmaRx00CQaotuZNXs2uq5zyCHHcdNNV1FSMgJfqIJ4USme6gq+KS9kS7soAAV5eYw9/G66doUnHn6Q8y+6yHrf0aPHc+65F0L9JuYsj9P3bydYXtuo6iNQUGCJn4L0yciyUHzJG2I9riHhUyOCRNpUWA0JSZbxGp8acVXCo0SIewPIsoeAN46GB4+sEVM8eA3rQ0z14JNTFV0w7AxqhAgBAkTF/944cdWDB8FcfcRAlbn3gQdQEwkuvex6VBXDBiGsEx5Zw+uVwJtjvYflK7aNPZ0I25FigyBJmjUE6Y2rEm63TiLhJjc3l1lz5hCNqfj9bsLhMOXlaykrW82iRQt57723qaio4IUXPuCYYw7HR4zVlfWsWPEDWjyC7HYzZvRocnNziBl2Y59sqOdeLxIaqiohy2JMigJHTP4HJ06ezOplyzj94otpampi1JAhxFTYUlXBlupqKioqGDRoAH379mXlypUAeL1eVq1aQ0FBwY9fyA7aANzG1/+Klte1g9bhEF8HDhw4MFBWVsY999xNefkGBg8ewvXX32CoMS2xaNEiTjvtFAYPHkzv3hPR1HWUFhRw+aUTaGpuz6xZMOlwjfcjEQBcLhcjhw/n/bff5qPPZ3LhlHOoNTykAB9//CYul86zz74JXi+eyvVoRcWoa6G5eQDvvvYaB2/bxuysdhQXxxk+XJDeosJCHn30UQ7p2RMKCkAdxjGjq9H6dITKCrSCQhq2bObjTz9l5cZtZGzbSKJLPh0knQOOOY2Sku5w3nnw8MMQDiPl5IDfDwingM9rWAFCNQDiecAjA34/HoMsa7LHIo8+OQ4Iq4JJei0SbJBqrxfiaoAAceIECFdDIEdF9npAhZqQRG6Ol3fe+4Cpd93FVZdeSn5+rlBCVTWlSM30A9vJq11Ztj/XwtbQigXD3N78ftasmVx77dV8//33jBo1irFj9+GAA/Zl7dq1bN++3XqPnj17ss+4cVx0yWUMHTwQ0ECVKQ26Kd1nFHF/tjiv+QXEFKxxW4q4LIOi4PX6CIdBliVh5Vi7Fvr0oXT+fGbNmkN1tbinyQ4KO8e3H33EPscfT+fOndl37FgmT76cDz54iZkzv+Sbb77hueeeYcuWLei6jq7raJqOrmtIkpvOnbLp2auE3r1707t3qfF/b/zGNZBIJHjnnXeort5Cr14llJaW0qNHD2TZoQ8Odk84VgcHDhz86dHY2MjTTz/F1VdfRW7nztSFI0QiYT744EMOPfTQVl/zxhtvcNJJJ1BeXkGP7t1QX3qJl/UOfPfW0+x5zDGgaawtr+fmmy/B6/WiKArPPPEEBx12Nvn+CE0ZGXw3Ywbfr15PUzTMqiVLuObWu+jXr5Ro1OKeSQ/qjI9g4kQIhSAY5PsPP+SKh3rx7LNDycoSVgmvF7JlU0WNoPkD3HXXPVx99eUAdOjQgYwMDy4X1NfX43a7ufTSa7j22iuQZS+eaC3IMlXRAPl5GuvLJQoKSLEIlJdDcZHNsmB4ZyU0qKwknldoWR3sSPf0oiggy8Tx4EHYIewWBfMYjBw+lGB2NjNmfEpGYwNVUfEZlJ+nJZMW1Fqxsc1zbKI120OLsdjGCAbhl+PENY2zzz2P55+fxujRo7nhhptYtHA+111/PScefzw9eg5mWP/ulHToQMk++9ChXbsUrzGqSkoFX1Qo214vSQJvwrSGKMlUDDM9wjy+NSGJXH9MvM7vt/ZnXiumzWTLli0MHzOGLdXVZGRkMHjwYPYaOhR87ZAkCUnXUHUZl9rIttpa1q9bx+p161JIvM/nw+PxUF9fj67rZGRk0NzcDAhrRXFxMb17lzJ48GD22Wdf9txzT3w+X6u/K783dg+rwwnsutXh9TY5x7YG55bNgQMHf1rE43GeeOJxbr31Fmpqajjh+OMp6F7IQw89yH777cd+++2Xsr2ERkJ3cfzxx/HOO28DUFdVyZo1azj7hn9TXr6G/Px8Hnv/fUCovJIkWbFU6ys2EwxCXA6QGa5h/JFHsqcqCsMCivCoosYJhKuBoCC5soy0di3k5bG63ENp+TLi4w9k4GHHc1MnqK+HXq71vDy3mJNOUFk2fwXzVpTR1KQRVBt4++3XAfhh0SIGlZaieX1I0QhhDW695WbuuONm3nrrFaY9+wyjhg0DWSbf8PYWFCRjxEw+V1wkCKNpc/AYx0ZDQiooEB8qqu0xkmqsaY/A67UIoccoZJPUOKrqsVRav1+81puVRZcu3WhsdJPh95PjNTy1UUEMvV6oqM4mzw8eVfhkJZtNY2fCZGtFdeY4vV6JSNTDO++8x/PPT+OqK6/k6quu4pVXXuG666/nmmtu4JZb/pX04hosPa5KeLDfDGCp3SZZ9dr9u2nFdoK4GgTca5BI2SNeL8sEg6DJ4vHycij2RgnkeIW1xAtVVfX07BlMmc+ZZ5zBQw8+yKbNmclCxrVriReVEgqJSy4cNm60IuWs2rKVdcuWEKqupsmTia4HOGDvgQzt35+lG+vZtnUVK8rWsn7ZYlZtquTxxx/j1ltvISMjg5EjR7LvvuMtImyqxg5+ClzsWjNdJ8bup8JRfB04cPCngKIonH/+eWRkZHDuuecxfPhwjjxyEh999CHjx5/GxIknccu/jyLW2MhVV13Nv/51MxkZSQXGLNJqbm6msLCAmpqalP3vvffe3HvjjSyvjPOPf5yEJyODIydMoKRnTxTfaPbbr4TRowfR0OCyYsJqw4JQBmRRaOZZu4IKfz9ycgQvlNQ4cTyEQvDqq3Cp/wm0yecgKTGW338/A/75TwB8vnY0N8dpbm6moFs3KjdvJh3ffjubUaP2xKPG0LxJZW758uWceebpLFy4kL/+9TTuues2cnNzW009SFFIVVWotXKStIFNyWxF8VVsy/spMF5cUe2h0J9Ub+Oqxt7j9iS/WyHvvPayKK7Dl/TE2vYNSZX4/0uNaA0p22oaSxYtYvqMGdw+dSqZHg91hi3lzDPP4vHHn0CSksenNiwRDCZF2vQCOXN+djtITUiiuhoGDLDdFCCIu+mvtpRxr5eakHgPjxKhVk1GwflkYSFRFPjuu485/HCxQrHnnuO49OJ/cMykSbgyMpKRG6qK5g8QCgl/txX5ZlhRwHaOjJQP8300k4SDlZwRqoWtW5Yz8+uv+fSzb/juu5ls27YNWZYZMWIE++8/kYMOOpjRo0f/bvaI3UPxPRGs28j/BXHgtTY5x7YGh/g6cODgD42mpiYuuGAKq1evYvbs2YCIgXryyac48cQTAFi+fCXt2nWiqCiXXr16sXz5SlwuF6tWrWLp/HkMC4cJnHgJ+Tlx5i32MGyYIEcrV67kueeeZfjwEZx00kkkEgkG9SklPzub59/9lO6ZCZg5E4YMIZJXKpofPPYYXHyxRSp8oYqkmlsi7ALk5YklfL+hJoZCxPKKAfBFayAapTaYTbduXS01+frrb6KosBuN4TBLy8r44uuvWbt2LSeffCrHHXMUh086CpfLZToMgCRJVVWVO+9/mnvuuQlN07jj9tuZPHkySEKJTUkbUJNRY5JiEHaSyQ12pHtmoWUhGQCqyvpKD8VFGvPml7FixUK2VFXw1ttvs2jRIl555TVOOGqSGLiiCNXaIGB2MvlT/butjRNF4Y0PP+GEE45JeW7UqDGMGDqYMaNHM3rsWEpK+6TMx9y/3Z4SjRrKqo3w2pMaTLYZiUoE/C2Pkfm4uW/rOfsNhdEgxGwYYiZDmCkhNWGRsmGRWFOFNhI4zEYctWGJbG8sZb+mxQJVFaq+LMi939+yQYmHuGVXIRwm0akzy5aV8dFHM1m0aCZffP4ZtXV1dOjQwSLBBx10EN27d2/1XPwa2D2I71/ZdeL7cpucY1uDQ3wdOHDwh8OiRYu48srLiUajKIrCkiVL6NatkN69inj60Uc59NjrWLXqXUpLS1m9ejWXXDKVyy+/igUPXcOkqVP58st5XH75eSxcuNDa59lnn8Ojj/7HUvpA5M1qXh+NjToL3n2Zf95+O3NXreLbb+cSCAynpMQgCooiGkCoqtUMojYqyNDatYLr5uTAfn2qQFWpkgvJp4qIPz+lU1gcj7AKGE0gIt5cvv12JocfPoFpTzzBqWedZZGtWCTCaedfwIcffkBjYyN999iDa666iuNOOIGsjAxBNIO11rg02UMoFOKqKy/nuWnTOO3UU3nq6WeRJVLUR1MtNmPP7BZWKRrh+yVLeOTRR5FkmZ69Sth3z7GMHTeOjMwsa8nehEnWYqqHzRuWc/o55zBnzhwAsrOzGTx4MDfffAujRu2JLENZGfTrk7QWpMefWTDIm6nEAimxaubP5vE0m1k899xznGHExpn46L332Gv8JCsvOG6QE1VFpE6Y3Tui0eT3hrfXiikzHqsJe8jNSSXgphBr7qs26iEYtJHnaJQaRSi89rg4uyfaHlcshWrQcnJtiRri/c1YNvNFZmMQmzXasiVbRXeGSm/yYIvkyjaC7hU2jhYk3CiK1Ldu4dPFFfz389eZMWsW38+fj6Zp9OvXj4MOOpgDDzyIffbZ51ftNrZ7EN9T2HXi+0KbnGNbg0N8HThw8IfCBRdM4bHH/kPv3v3pVZDLjK++4pBx4zjir19y/lk6cTy4m3YwfO+9Wb16NYMHj2X69Bl0atjCjDlzOOQvf6FXr16sW7eOa/7xDy495RRe+/xzLrzmGh599DFOO+005s6dywMPLGTkiAYqNzfw7bcfsGLFCkpzcnjopXcZMmQvcr2GlzUaBUWhRs4Xj61dy6NzhzFkCOw5xiBx1dWwdi2RcYcSCK1nXqgYrxcGDdBg1izWF+zD2rVwYJ8KYjmFFjHRV67kjLteYdq0W1mxbBl9+/ZNbdSgxmlsbOSrzz7jkaef5qMZM+jQoQMXX3wFJx5/FIVF/WjnarRYk0lYXnjpFU499WS6du3KHnv0IbdTNtmd8+iS24mO2bl069aVA/afgMvlYuPGjSxcuJAVZWtYuXI506d/QO/evcnJyWHFihWEw2F8Ph977TWOvn370qe0N3v0HcSIYQMJeDxoXh876usYNGQImZmZTJ16J/vvvz9ZWe3xyBoVlRKFOWlNM1RVHDeTkfn94hhHfeTm2Ire/EmiZ5JNi9wZS/ciPSFpN9GbdlATjnDccccwb948/vv99wwaMgoghSRbSmy4Fi2YbZFIy/IRriHmz02mYhjEu9XmGaqtCUcrRW0aElI0IlYIvDYbhZpUW1PaKduPjQEz3xiE8lxVLRTcQNk8tBGjrPGY+zZXBtLdCRKaRXjjePCEqtDy8q2bQHujE1RVjFmpteTw2jVr+GD+Cr757D1mfPUVVVVVZGVlse++4znyyKM4+eSTf/Eiud2D+J7OrhPf59rkHNsaHOLrwIGDPxSOOOJwPvroQzIzM2lqagJEfu4he++NIndE2lFFWVUVa9etA+CjBx/khe/+zrGB8zju8cet/Zx80kk8+thjPPl0GWVlbzBt2kP07t2bdevWoSgKWVlZBPx+3Bnt2Gtof84bOZIJV1+Nq76eeDDXWvqNB3PxhKqEsjp/PnUdO/L+QolevboxbphHEDqlRjSa8AesRhM+pRbKyqjtI9TOgF/j088lDpyokaiv58vvvuP+O+7go2++4fbbp3L1lVe0OBam4mgSqLVlZdx53308N20azc3N9OkziL/+5ViOOPxwBvfvT7Mr01L1pj37OP9dsJDt2+uprw+xbds2QiHxv1ndb0dhYSGlJSUcfsQRXHjBBST0DCRJY8mSJXw+4yO+nTOH1WvWsG7dOhKJBD6fj0mTjiE7uyOffjqDrVurWbpgAT169EhRZqMiwphA2TwYMcLK/7VaDkejYjleSWYPm9wxGoWAWkuNmm0ppiktlCHprVVVahUftbWbOeH4w1m7bh2vP/88xf2OojRoqKjRiKU0m8QOr9dSciHZ+c1sHAKCoNaEPeQGbT5ZWU5VhMFSqM3n7YTX6qYXjaIFs1tNpUBVk8TZRvZNpBBtm9XCnkBhPh/Hk5qGYbuBML3adpJsqcJy6rbhMGT7k6qwtU81jt7YyJxlm/ju2+m8/9HnzJ79FcFgkHPOOZcpUy6gW7du//8v/E+AQ3xToaoqN910Ey+99BLV1dV07dqV008/neuuu85a0dJ1nX/961888cQT1NXVMXr0aB555BH69++/C2NsG3CIrwMHDv5QaGxs5PPPP2fVqjK66xolo0bxwosvsnrjRpp1nYaGGKtXr6aurpZDDvkb558/jSOa3+Pwyy/nww0buPLKe9lzzz354P0nmPb8i6hqnJycHJTGRqINDZx4/PEcdMABDB0+nIrKTOrr3WRnu1CUbcRiVXTpHGCfYcPw5uTArFlUlexDfk6cVffdx6H33st6W1FcXpcu9AkGKd13PLruxeXKIi8vQGl+Nt37DqJ797706BG0iMXixTBkCBxzzNG89967AEwcP56P33oLWVEgL691n6ttmT2uSjQ0NPDFF1/y2msv8OmnnxCJROjXrx8T9t6bkaNH0617D7p360rPXr1RVTml8UVCd7F69Xrmz5tFRmYWnTvnMXrkkFYr+FsQLzVOY0Jn9erVvP3WG3w841PC4VpGjx7LlClTGDt6ZIvx2+J6U5bv7aq2BYNsmYTXJIh2fyuKIhRhOTupIBv2Ey0ep6Rff+LxJqZP/4gh/fpYrzPfLxSCXK8g3pBUfMFW3BYSNzIxOSBaN9usCXbV2CSO9gIz69iZ3mWzBbNhCYlGEZFmpj832LIzXcr5D9cKQuv1paiyFoG12TWsmwDze9tY7fYFe9FdyrE1J2PIxaYX27SHmDcxZv5wTdRHbjB5TlZtq+exe6fy9Cuv0NjYyAknnMjFF1/C8OHD/79f+x/F7kF8z2LXie/TP2mOt956K/fddx/Tpk2jf//+zJ8/nzPOOINbbrmFi4ymOHfccQe33norzz33HKWlpdxyyy188803rFq1arfvBugQXwcOHPzhUFdXx6uvvsLSpUvZtm0b27cLpXLdunU0NTXRvXtPzj5of67dYw/cZ57JM+/6KXv/BL7d2sCwYaN54YUHycrK4pxzLqaysoi+Pddw1Y03/uT3z8nJYet//4tUWwtFRUTkbF685UouuOsupk17gaKiItav38Tq1WWsXbOCNatXE1dVYjGFSCRMbW2tta+8vG4MGtCX7j0GMnZ0X4LZA4lG13H66Sdb2yxasIAhZsthu1qIJmwUJiG2PWeSrUTddj777jveePNN5nw3l9WrV1n79Xg89O3bl4EDBjBo0CAOO/RQ+pWWpuzf/r891cBOutOX+CFtGztsPuKdbmcjg/b824jqS/pg1eTPUmUF+P1UKdnkB2NiHwZLjBhRYB5ZIx6P06lzZw455AheffVl8Z6GFyLuDaTs0xyb5XM19mmS0UhUzDUUgrw8Ya2IKB4C0SrxAMkbg9aUUqsIzeYtNi0NikJSPTaOcRyPZeEAQZxNn7B1/MJhcT5yclMOeXrjDzsZTzkHSrKw0Rq31b0v2fDEenFa8of5GivtwiiQk2VSVPLa2ghPPvk0Tzz+AOUbN7Lvvvvy2GNPUFpayv+C3YP4ns2uE98nf9IcDz/8cLp06cLTTz9tPXbsscfi8/l44YUX0HWd/Px8Lr74Yq666ipAFAl36dKFO+64g3PPPXcXxvn7wyG+Dhw42K0QiURYtWoVkUiEzp07069fPxKJBB6Phw0bNnDPPXfz3HPPojY3MyA/n2BREQsWL2bHjh30KCigsGdfvv32MwCKe/TAHwiwsqwMTdMYMGAAFRUVHHzwIVx11VVccMEUZs+ejcfjpXPnTmxuJSbMjr1HjSLaDCccvD+Dxt3GxImicK24IM7TL7zE5Mln0rx1Ky/PyGXECOhXFINQCK2g0NqHhEb9jgbKF85nWVU1S5YsZ/WyRSxbtYp169dj/smWJIljjjqKy664ljGjhlrkJmX52rac31obX7tyZ27TsKOeLVu3sWnTJpYvX8byZUtZumwZS5YsoaGhgX322YcrLruMQw47ArdLTyE5dkPoj71nOgFO77LWWvpCemFca9umk2g7WbPHeREMWgrmijLRpMNcqn/uqQe54KKLeO+9j5g48RBB5KNJv7ap7loqqCxsDDk5gldmUyvOaUmpINx5eS3PQ2UFFRRSmBe3vMg7a6ZhEkLTXhGXfdah9shJ8qgotCg0qwj5KCxI3nxYxzEaFYp3mgc6pUgOW7awrLUgsenFgiZS1Gv7DZh9DK2dp/Tzqygk6ut579tvufzq69mwYTV5eXm09/uJ7NjBgAEDOfroYzjuuOPo3Llzi3HY4RDfVEydOpXHHnuMTz/9lNLSUn744QcOPPBA7r//fv7yl7+wfv16evXqxcKFCxk6dKj1uiOPPJJgMMi0adN2YZy/Pxzi68CBgzaPxsZGysvLueeeu3n22Wda3ebYAw/krU8/BaB/584cPWECm7JymD79NbZv306XLl3YunUrOTk5HHvsccRiMWpqaigsLKRXr1707FlMVlYWX389kx9++AGAzz//jDvvfJCysnO57z4RD1VX18yCBcuZObOcfXrXkd1/BH369EaWvULtevVVOPhg1oezmTEDpoxfgdanH8888xlnn30gq1atoaSkBKl8PeTl8dFMH2PGCAtwWZkgDgMGCLIVIWDyNKRwLevqsti+vYy67dX07T+QgoICqqshXzY8qGnKndk4zK6m2dMYUr63F1jZYC6XN2a144P33uH+Bx/ku+++48orruCOqVNTXq/JnpQ2x5AktlZaQBpBbk2lthPhnbUSTlEObUh/rR1WIwkzTsxQbxUF4alWFNTcPI464jBmz/2el55+ipHDh9Po6mEVrxUGIxZ5Novs4n5Bhj1qjBg+65ivr/ZRVISV3mEmUtQoAXJDK4QSH8y2EhOAVDWVuJWXa87ZOqd2G4RXFKvl59kItFngZpxT0y9sxpMBonAwL57q701T8c3rwkpzsBFY+zlIUa9JLeQzz69dTU7p7tcK+TZfG40CWpjp06ezevlyKreF6JLbmfnz5/PFl18CsN9++3PiiSdx9NFHEzRjPIBYLEZmZiYNDQ27AfE9F8jchT01AY+zadOmlDlmZmaSmZm6X13Xufbaa7njjjtwu90kEgluvfVWrrnmGgDmzJnDXnvtxebNm8nPz7ded84557Bx40Y++eSTXRjn7w+nc5sDBw7aJHRdp7q6miVLlnDaaaewbds2AIYPH0HHjp1RVYmZMz+0tt//qGP4bM4cItEoy7dtY/U771BQUMDpp5/BySefwqBBg4jH43g84kN78eLFzJs3j48//ojnnnvWKtjq2LEL7dpl0NzURE5ODu+//zrnndebwJtVPMOZnHnwNsaPH8L48UMsMre+PM611z7LuHEae+21F0MyMyn2VjFmTL4gCtEI3899DVmWyXQZWkNBAXE8HFq0gri/H1LZCvoVFYm1cQqoUQJWwwJULwSD9JKj9Oo5GFRRYBJTEEv3ctBQ5pKqoqUIglhOJkkS7XFVVoqU5fFMVR8lJQbBIG5V4rgTTuLY40/k7rvu4Jprr+XTzz7jsIMP5l8332yRGJPcSjZym8J17SqgMSZ7Fi+Qov6a47T7Vs1tzO/tpFiWk9vb91kTksgNivc3Jy0rhkob1MAbZOFiiQE58MJjjzH2oEM47NhjAejSpRsjRgxleL++DB82jJF7702XYDaSWbxojkW1hSnIPqvLnSwL0qshocgBUQgXLBFd5srX4wkGqYhmU1kJe5bUQE4OHkT0nS8YhKiCIgfwyXFUQxXUkFAM0htTJKuFs2QyS7OTnBqzjq9pSYhEJUIh0ZnPvFjsNx3pXmFk2bou7J3kPMaxtr9GVcHjlZMpFmbeMsltxPlNFt9J5rUna/i8oihTloXfOKCEISeHk/56cooiDbBt2zZeeult3n//Vc4++yymTDmPgw46mBNPPIlhw4bRr5/IXL7kkktp+3AbX7vyelrkI994443cdNNNKY+99tprvPjii7z88sv079+fxYsXc/HFF5Ofn89pp51mbedypXaDMzOid3c4iq8DBw7aHDZt2sTpp5/KzJkz6dixI3V1dSnPFxQUkJmZyWGHHc4//nER3bt3R5ZlEokENTU1tG/fnnbt2rX4I93c3MyGDRt4++23+Oc/r7UeP/6YY7hy8mS6lJaS1aEn391/A5NuvZUxYw5n7tzpyLLMhx82Ew7DCUNWQ0EBX871oapL+eqdR3nunXeoMYi5pml06tSJcSNGMGb8RMYO6seV/7qbBQu+4enrr+e0v/8dZs1iRckkwmFhhTihaB4MGUJNWGS4yjJIa1dDSUmy8MqmwlVWQmFBUhGzN0Ewi69MI6qlgBrssyYkWVmy6WSyVbUvLR1AQkPV4KEH72f2nO95++03GDBgMFdffRVHHXUUPm+SmNm7vJmsp7XHW1UaaV21TcfOvMP2n839tLaUb/evmgVgeL1omsbatWuZv3AJS5YsYtF/57FwyRJCoRAul4srL7mEf99wQ7K7n9cL1dVoefkpqQemCmz/GVm2uqSpqjh/cVXCE60FVWVhZS4DBggF2WwSYaYwWCsAhv0iRSGWbUqv4Tc2UyLM4jogxa5gZRB7vSlJDq0q6obdwZ7MYG2clmJhb9phX2mAncekpavGZlGcfR92td8+xqqKCl5/9z1ee+1V5s6d2+q10rYV37+z64rvQz9J8e3evTtXX301F1xwgfXYLbfcwosvvkhZWZljdQCH+Dpw4OC3QzgcZvjwoZSXlwOw//77M3/+fIqKijjhhBM56qij6dOnz8/aZzwe55GHH+Tmf/+bSCTS6jbbXniB7L+ejKqCXr+NPQ84gIWG5WHBgkUM61PK69N9dOvWwMyZDzBt2susWbOc7I4dmbDfSUw992gackezden7zFq+nG+/+YbvFy2isbGR3NxcXnnlNQYMGE8uNTB1KnOOu5c334R7R7wM5eVw0knEC4oFMTI7Zqmx5BxkUfBlkqCqaol8uYZaOZdsORnRZRVbyXKLQjETdpJhr+y3F0ulRFfZisjMon3THzpv4UJOO+NMyspW0rt3KYsXr7KIjbXkbvoJDC+xuaxvwk7eTKQTm9bIudXFzWaPSLdB7Mwq0aKorhUI5TFJvFx6gtVrN/PWmy9w4003MXz4cB7/z38YOHhoC4XTnIAme6wYNBRFkGA1YhFNa8nfHPTatdQES8nJEbuZPx9GFVRBTg5xPGYstFB4EeqtvdguHWY6g2lxsJNL+3E2r610H655c2UP7bC/1g7zWjEJq3mjYe43HE4myaWcnx/xb7fmAW+tYFJCEzd1ahWbGhspW19FfMc2/IEAnqws9hw37k9BfH/KHDt16sQtt9zC+eefbz12++238+yzz7J69WqruO2SSy7hyiuvBMTf0Nzc3D9EcZtjdXDgwEGbwjXXXG2R3oMPPoQXXniR7Ozs/3l/CxYs4JRT/saaNWs478wzOebQQ4kCM7/4gqXLloHcmUP36kfw3XeZXyqSEhSlM7r0JZLUGU3TqKzMZliRwvE9lnLCrbcy/dNPOfqYY7nnnjsYOvQACrJVQV5LvER6nsyBx4jqf69H4dvZyxg4sIhcWYLyhSxkGMP8fvZkDupRe/J++K+Mv1AUJnlCVcRz8vHIcSuXFkWBaBTV7xMEFUEU8/KAsExlJWSXJJerBSE1CVFSwUwpNjOWxJNWh2SzA0FM7V5ZKcWK4CEOXg9xVUJRPIwYNYbOnTtTVraSU//2VytVwPp4sXJvAVXFI8ugkqIAg1AJPWk2CI/tE6q1gihV9uGxttVS9mN/nV0Btr63kSfz2IRCIi2hKuQhP09LmYtJbHv3LuTyK/7Jfvvswxlnn82wESM4b/Jkrv/X7eRl+4mpnqSqrKri3YylfEUV/l8UQXKVKHhQLOVWUuNQUECuqQ4rEUb1AVSDJIdrQM7F78dS7gPeOFRWE8spxOttqXzLsjgHi+fDqAGKsEJUV+MpKCCuimOtmB34nnsO9fRz8Dz3BEyeTEWlKPxLacXsjSMbZN5sY21eF75oWNyIBTXrWowpkrA+oBEMJm9KhCreSkc9m6or9qsiG8+3IMBp5zcnBzTy6Y5Gt569rH3v7Ga3beGXsTr8FBxxxBHceuutFBYW0r9/fxYtWsS9997LmWeeCQiLw8UXX8xtt91G79696d27N7fddhs+n4+//vWvuzDGtgGH+Dpw4KBNwWxles011zJu3Lj/2VNmfiC+8MLzrFq1ig/ffRcpswPvTJ/OI4/cA8CaNesoLi6muhrmlcOeOevFOrLXy8L5QSoqm8ia/z6dx4korPc/+og3P/iAyy9/g+uvPw5VFf7QuOpB7tNPLFsTQfMGCKhxPp3ppbp6BBMmQG0YsoNhhuXFYPJkCAYZ4xXL2asrfcgFHnyKgoe40bbWUN6MDFZfuJa4PxuPrFlqJ8Egg4IacdWHJxpB9QZQVQmfVxZdvPBaa/spxWK2CLCkCmuDLFsfDtYSPWqK6cAja3i8KnHVw6pVq7jxhhu4ziiOieNBVbCUTZ9XBtVY3lfBFw0LQmwWgtlIrfV9NJrMyqUl2RFjIDknmx/VrgJCUqG0Cuxs+7ErxcIC4rHUVJOciwI+TwqZHLXX3iz54Qceuu8+brr1Vl554w3O+stfuOSKK8jPzxdkzjj2ZmGYKgsF3WPIrKrqAZIEvDbqIdsktf6Ypfpbam1OLuFyKM6JUBkKkOuNUhUNkF9QgM9uHzFkeck4juvVQkaMAPCyvlyiOOi3zqGGxOLFQlk+77xzQAVPMMi8+RKjBsTQ8FnH0e8XPmZFAeQAshEbJ2wOHiRZFodMUZCMVQufGgFExpwE1s2N5TM3lOBsv9mFTgU5mR4RVz14LE+xeZOSvBGzK8bJmxjJ2ndr10/bhGR87crrfxoeeughrr/+eqZMmUJNTQ35+fmce+653HDDDdY2V155JY2NjUyZMsVqYPHpp5/u9hm+4FgdHDhw0Ibw6qtw0km/7D6PPeYo3n3vvVafmz59M4dtns7N1edww3nCNrB2LYwKrhYyl98vcnCjUWYsXMhRF17IqaeeyXHHPcrEiYZqtUx0FLNXu4OIrKrxFuL3CyUxGoV+0Xl8Gh5FSQkUR5eI+AZI8cCaKQlm+hYkrQjrKz0UF9mSEcylc7M7m6HC2SvjzXH92PK/HZZX1EB6SoLZhMDrRXhSg0H2GT8e2e3my08+IY6nRbQWGEV6skxFyCeKqtLfK60Rgj1RoLVlcLuCnR6vlW5nMOdgdVyTZcurao4hvQ2wfd/pSQUmzPeorqzkjvse5P777+GQQw7no3ffStm/LGOdG9Ofbc65KuQh3x9JNnxQhKofUX1CvTewvlyorx41xopyn4jCk2Xx+pw01dSILKO8nKq8YeT7I7w/M8DEiTB9urjsvF4oDiabb5jHrbVoubQgDguG/dx6vrJS/MpkB7WU9AxLTlcUtILCVNJqWmtshYLpBXbpCSGW97kVa0vKfs1rNhKmQ8eObdzqcCm7bnW4t03Osa1hV24vHDhw4OAXxS9Nel16gokHHJTymL3D2COPnMNZ3y/hmWeKuPv518kOalRWAiUlRCoruefJaZx88/0Mm3w2h5x9NnuPGcODd0/lwIkaoZD44DdJb03Yw+efw4sviugq8vLw+4XCWChX0acPRPoYpNdfQ1XOIKFqIgmWO3MmqCrhsPgA9xpirc+rWeSxqEh8kGuyxyKV9mIt/H4ktBRV02QQdmJgkglFEXxEUmLii2Qqgj09AZJkwiRj0SgiOSAeZ/v27ZStWmVJq5bH2BhcKGRsK/sozIujKKYlwUawDOKmyR5rCT6Ox7IJmCqmmSLgkTWLGKcnQ9jTHkyF1rJ1GCZTe8KAGbemKFAbNUivErPmbNkoWlOeVZXcgkL22+9Q2rVrx9Chwy11UlEEYZbUuDg3SsywqITFnGSZYBArI1iKRoQn2+sVir2qWnMpLhLXXFz20acPlic7L8+mbIZrk8cgmE1t0TDxvD/ApHG1KAqccJxGTg4U58WSne3M86koyWxgNUkPWiO95mqHpMat5/PysDrJoapEVJ84h6pKzJ9LPK9Q+J2N56VoRJxPPIL0KpHkubWdSyM1LjkWr7cF6bWfd+t7u2m8zcP9C3w5+ClwFF8HDhz85tiZ2vhLYt26dZx33jl8+eWXjO7fn78NH84i93jk7+7kybKyFtv/5eijuf+xt8mVa4l5s9lzzwNZsWImxcWljBo5lElHHs2xffdA75vsVb92rfi/tEQTyrAsw9y5nPDiJF5/NTVNwDf3SxgyRNgVlIjIcl38KUycmMzCra5Cy8tvkbsr/LSCmOXkpBEwW+vY1pIT7GpoioJpy2RNV1lbK3DaWerClzO/Yf/9JwCw334TOergA7ngsivEeygGybHdbKSnRaSo0+YPRtFaqh+09Wvmx1Ig0lVuu3Jrvd7WatcsNjOzcU3Yc4/Tkw1qKiu4+rrrmPbCC4wbtw/vvv0mWe0640OkRJiFYXa7hVkwZ6Yc+KI1zCvPpU8fg1DKwt+9vlyi2C9WImzxtK3OPSW9wwz73UkVWmvJHelZYfb2xfbtfrSzW5o6mz42u6puL5aE1Bus9DSI1goWwdYpzjav1rB7KL5Xs+uK79Q2Oce2BkfxdeDAwW+OX5L02lVMAGnml7z66quMHj2S9evXc+SRnzD3m29Y5J7GM4d34In33mPRojpmfvYZ559/GQAdOnTgxZdfRlEg5s1mxQoNVa3F7XZz2ZRzePa55znmmGMs0mvaEEpZTWlRnJqQUO9ueDiX15VJnHQSfDRDoiYkIVVWCBI0fj/i/mxLsQqFIDbuQDTE8ntZGeD3C8XZSG2QQjWAIAGVlaSSH5MxGASnNpqMEYtGsZRkO5FtjSDa7QB25bQ1scxalra9fs8xo7jxxps499wpVFVV8o8rr2TJkiWCNPn9xL0BIlGhvJpxXCZzkhAFZIoi9lerCGXbTKIwiZWPWItrplXfpqEiSqpQWT3EhVJovJfdriCpcUtVNvcty+Ifr1e8Jq5KllJcXY2QHQ01V1VV7r3tFkoHDOCDDz/kyccf56uvvqJTp04i2cBQ6U0u6RG6Jj41giwnG4z41AgrQrmMKqohIMeMTGEvq9cmC9Oyg+J8mKq8NXdFsb43iSWybL23JntSYhvSz7k5aQ2JGL6U7nbCxytbyq95DZkKtqm4p18T5rFPLVLUWr637QIzx24eE/Nn6zq2XQt2Jdonx5PXhTnmtOtDVX/Zvze/HiR2Te3dHebYNuAovg4cOPhDYeXypQwYNOgnbTt06FAmTTqaopyOnD5sGOvz9mTxYjj4YHCVr+Dif/6TJ959lwsuuJCHH3wg6amtXk8sr9iKQM32C0JlZuqCUAnnzoX9lj3I+0X/YNkyuPak9fDqq1ScfC2FBakKWEpLWZsCaYQ6oChiKTm9GMxSKhWbT9T2vL14qwXptat9xtK5Cbs/uFVFz3htTUhkxc6dM5OJBx5IIpFg8cKF9B84OLkvQ8G2o7WWxvb3M39Glq32wlZ82U46vVlztMW4GVNrqU7aIrRaqJSGzzcchly/UG7tsW4rVqzg9DPPZMGCBUyZcgE33ngTOQGR6GBuY54XSBaAmWQuGEwmSEQUDwE5Rk3UJxqW2DzPqKo1jxT13ezAZu9+Zjt+QEqEmnlNmMfHPJ4789K2luFrZgK3GIuS6plO31drnmj7MTfPUTJBgxb+a/u26fu2rg1Ss5rt/vFwJLobdG67FvD+f5v/CBTgtjY5x7YGJ9XBgQMHuz2++uorli1bStnsWXy5ePFPft2iRYuY/sILhBL9ofx9ZpbBmYfXsL46l+KSEh567R3kS/7DI49MYb/9DmbMmMPID6+AoiJBQKMRvN6AIJ6q6DK1pDyXQQM0Pv9ceHKZPJlJxJg0Igz+HOKXX0shcVGtbvO42smviKqSiYaFZzKghIjk5Frc0frgDwtbhqKA3yhqK18GAwaIzly5OULlJKqAkZBgLtsLcmM2GRAfBSkk1EhVaE1ZNV8Lgrwhy3w8YwZut5vNmzbRqXOXlNfVRH3kGGM3iUmS2NjmI8vGvg17iFds5JMRx8vrNYRCs9JfqLXpEVfWMUVrEfFlwk7yjeni96eqlLk5gCqizHyy6Fz1+GOPcclll1FUVMTMmbPZe/ggIqoP1Bg+VJC9FgH1GKTQJK8ejCgwJUauHyKKaJkcV33k5ggSJ1I5NLbWJcjLa9diToMHD6FrXhfyuvZkjz2KCIV6sM8+PcjPH0Qg0I6SkjRi6vW2uHGxk16LSEajRiqIWUzpTbnWTO+u+bOdNGuyOB8aqfFwO73RUlM7+3m9UsprPYh9gYjlszdosVsh4qqET44TUzzWDaHXK8i4bBxzO9lu2/jt4sz+7HCIrwMHDnZbRCNhJp9zLm+88ToZGRl0zctj730OZXhRET169mTEfvvhziwmP78DPp+bRELG53PT3OwmGnUzoHIWvq1boU9/kEs4bjzgDVKco0EojBqL0StQAUB842rkcYeJRgKyD0+4ltWhbKJR4bstpBr8fkF2q6s5/PB88UE/dz7auH0gz4cUrhUDl2Urf9b8mXCYkJpNblCQSQ1P0tqQk0OgtQ/vYBCf+WGPiMsaVCJizHJzktFlGITRI2MRhaQ3UmrRQEJk9SYJk7GV9b8sSymKmobEQQcfytQ77uDBhx7iphtvBLfbIim5OUlV1ierFulXFAnZn0pMPLKWbMpgM5LKtufFmOSUmwVIZsPaH1CN6n9znClWARv8fskiv9g9zobqWlfXyMX/mMyLL7/M+Wefzb9vf4BOGc1oXh+BaIS4LG4sVMW4oVBANt7b7ApnHuOKsFB37d5fq8taNEJMCdC5UwZHHDGJDz54P2WcP/ywmB9+gD59+vDuu9WEw2HuuQcOOuhQ3n//w+Q8DV+1OWfz/Js3FiZx9GBkOvsDeIxza+U6q6qI0zOOmnnsNMwmJLYVBiNOzLTaiJi/tJsSk+zaIufS1WXhU8ZaPfF4VXGuDZXbvm+xOxG9J26oBOmNqD6IQsCrWuey7eO3izP7s8M5Ug4cONitoGkajz32GAccsD89e/VixowZvPzss2za1MTGnBxuvvkxXp46lduPPZZjhw7lqFHd6NOnlOLiXgwe2J127QroV9SBUUOCrC05BkaMID8nTrykH36/UK/Wrodpb79NrzFjuPKuuzj11NM46qyzyPXHiHhzxUCCQUqL4qgqFHprwOsl5s1m5kxEgZoaF8vM4/ZBUsV2lJVZPkR7ckJtWPyf6zc6tRnKpwXDb2q+ziyKsgiJQai9XpIdw+x/3lU1WfiEbVlZVfGohm/UqM6XZbHUnK6IpryfErM6zIk8Whg/agS3Xn89t952G3uOHk3ZrFlGZm1LD6rp6Q144ynkmmiUuCoeNz2m5vtCqr8zpkjWcTKftxRxMxbM8OOmKI5px94OswbP7hU1id0pJx/DW++8wzPPvMTDjz1Bp8QOcXMQqrFe6CGOz6tRXS28u+Y8Na9PJFuEwwSDUFAgPMNJQqqR7Rfe2JgcwKfUImka77/7DnpDA3pDA0okwvT332fs2H0BuPjiS9m8uY633noHgJUrl1FVVSESM6KR1EkYh1JDspwt5vea7LGuvxQ7i02pTr8GTC94uhHc9Imb6rDd+gDGdW74dszhhcPi/0g0mcIQUTzCMhQOJ5cGjHPt9YoxmNdtkoQb7+P1EvBr1u/y7qH2Ovgt4Xh8HThwsFvA/JCbO3cue+011nr8nn/9i4lH3cCgAZowToZCzIv2Y5RfWBKorqbGXyyW5G2wMnE//xzGjaNW8ZFNLf/98kv+fvfdfP/995y05578e9oLlBQXWd7K9SGhOg3yrhafwgUF4oO5slK8n2prU+v1QihkdGNLFpGZcVnWh7rXm+K7tEc1eWSNqmrJamGbksbQiiL7Y8kM9mNp7qO8nNRsYAN2RW5nVoJIVLJSy8z3+Xb2d5xzzmTKy8uZPXsew0p6oPkDKf7nlLbKtmBgi6gYAbEpiqGipLRtro16yJYjgihGa9BycpPzU22eazmW4nu2+1KBZH4sqd5c+/lyu3XatcviyEMP5ZXXX0eJyyk+UrPDGYhkDnJyrMKw6mpxiUhqHKqrRY6t6XmurkbLy0+2jVZVqxuadaNijNNsn7x48XxGjx4JwJlnnsVFF11MdXU1p556MqFQiEmTjuTA/SZQ0mc/JkzoC3EFPSMTSWq9sDHlulDj1nvuLBO5Nb9tevqHHa15w80kEXvnPHutpn3f6QkPZke7mBywMpmt3yPjd8n+npIaJxxTdgOP783susf3hjY5x7YGR/F14MBBm4L9g9NcWq2pqeHTz7/krjuncthhR6Vsf9mNN5JIbBJV4cFcKCgQH57BIKsrfcTyismVa0WhUXk5S8qEmllUBKxdS2TMgTBzJhn6dqaceSajTziBxoYGPvnka+55YzbFxcVEopKlJgEMGqBRm1OKVlCYVCGLiqCsTCwPh2shHGZ9pSeZjQpCYS1fnSQYqkoMH6bvsiaUSnpBEIecHFEgZamXabFl5oe85YM0I8pIKsRWMwjjMXNpurhIs+Zg/79FWoA9j8vYJuDXLAJoJjfsPXggN1x3HYqi8PnnM0R+rRoXRNd4fcCvJYvq/H40f4CYmhyz6fEwyV9MkZId6Ax1z+uFWjUgHs7JsVR1S43EEGJNJmUc73AYw5NrkMpgEA9xasIeqxLOnmXrIU4i4eK2W2/l9Xfe4Ygjj0KJhZBUQ5VWFGFRUOOC0ObkiPwGo9FCYTBieVtjOYVifF4fNSGJCjXf4ms1UR/4/VYxnnkezfPq8wq/9qghg9j4ww/cdNO/+OyzTxk8eCAPPHA/L730CldeeRUVFRu58OKLOeCA/uTm5tCxSxdycrI58MCJ3HfPPcycOZM5X3/Fgv9+z/a6+lSiatzFmIQ0TTROUdztqQl22L245nYp16m5kmC7hmUZK+3CPIfmjk3ri1nI5iGO5g8kVzeMfZiFhPaxpbxfm4eT4/tbwVF8HThw0GYhqXGeefFl/v73C4jFYmR6PJz0l79y4vHHEfnySz4K7c1ZZ3Vh8OAxtG/vQlGEWJgfXgElJcQRql92aDVV/lJTgKW0IGblxHrKV/Peygou+sdZhLZv59prb+fii88HZHzRGsjJsRTX+fNhyBDxIV2rBsgOatSGJWuJPOmbjFuRZGb7W7tSFgoJUuaL1kAwmEJUrU9/gxQCLVIKzM2speSddDhLUeBUVbQMJlVVs7Yz9hFTPfjCVcSC+anZwrZt01Vge6ETwJgxowkE2jPj5ZeRDanaUloRTRjsVfuQVI+tLnR2xU8Vr7P7ZFN8u4b/M31pPV2NbCXyOEUZtJCWaWwqjV989iEnn3oquZ0789Wnn5KXk2MdTHP/lgppnj87MwyHkwffSFywtjMPSDgslN+8fKRwamc1s1OamdgQj8d54KGHue66fxKPi/F7PB6eeuoZunTpwnffzSEjIwOA2bNn8/nnn1nbJacq07dvXz744BO6d+9KKBRizZo1DBo0jPbtMlKOY/r/FtS0roVpxz9lVcJUlO3KcbhWzMemtFurGvZr21D9rd8zOXWFJP18mmOK1obo0Llzm1RDk4rvVHZd8b26Tc6xrcEhvg4cOGgTSI89Anj++ec544zT2HPPSdx33720b9+NvnULQVVJ7LsvG9fpFIcXUlMwjFAISkrAM+N94gdPEtXpZrRUOEwt2WSXi21zvYI4rFmzhltvu41pzz/PfnvvzVXXTePA4DYIBqnyl5IfTMZQhUKI1rLAkvIAg4oi4v+cKggGRYtZo02vSW7sS7g+r5Zc4gerVa2VnBAOC/WzFQuD5eM1lFCLeNgaPhAOi7wzGwmxFw6Zr7EKx+zHPM3mALZiq1CNpYymEx+T8JqNBJqaXbzyynTOOedY7pg6lWOPu1Qs89vmY75VKJRsxmGS1xYpEib5Ma0BarJ5xM4SA+xjTJ+WvcjMeo1RvCap8dQ4MqCiUqIwaIzLIGBl68vZf/8J+Hw+PnvlFQqHjUgh4mazkYDfiNqy7c9O+uzjtc6FSYwN64utFqzFfM2Yu2AQGht3sLpsBZVV2zjmmCMAWLduA0VFRSnndMeOHWzdupVEIkEsFmPVqlWcfPJf0XWdAQMGkkiorFy5EhDZ1kceeRQnnXA8E/Y/AI8neU2lEE2lFStJOtltDQaJteZm3NHFbcWIpmpuj2Ozn+v0+LudWTIikchuYHVwiO9vBYf4OnDg4DeFnTD92DbbtteRn59H165defnlVxkX8FNbMMhqFTxq1r0weTKUl/Np9SAOrH4exo2DsjI+lQ/lwLWPUnPcFGbNEl2FC9X1UFAgCGcwxrqVK9lj9GhycnL41/XXM/m8KbhcLqTKCmI5han+QbCaL2R7Yynqq5mOYHl3DZXO/AA2iabZwSscFrm/NWGPJfSZCIdTO7OlxEJFo8TkgOWnTc8AlpRYCmkwFVaT1LUgCOpOOpiloTW1D1KzeU1F/LRTTuTV11/n4IMP5fXHHqV9x47J5Wg74TQzZm3731lmsKom7Q32Odg7iKWrhMa3KQ0rRFQYBIgQIYDfb8xBUazGIq2Rt9Z8rBs3rGP/Aw7E48ngs8++p3u39hZJMwdVq/hEkZeZoxuuTarDRkc30+ccUyR8qhhXwBs34vFSrz/7+dgZpHAtf7/xJh5++CEAOnbsSOfOnTnggAO56667ycxs2RmsqamJf//7ZpYuXUpBQQF77rkXJSUlfPzxR7z++musWrWKjh07cvTRx3DwwYcxcOAoSv06Un5+iy52KTcftnNsP18/VmyWcr7TVGHzPFs3ZGpqdnb6cbErxZFIZDfo3HYnkLULe2oErmyTc2xr+FnE145TTjmV556b9qsNzIEDB38OtCiwMT4Y581fyOjRI5n13HN0HHka/dQl3Pv5IC49fDW1OaV8/XWCvn03UlmxliHDRpBTUU6kZBgBIqKXcElJUqlTFFEMU7maFWopJSWgxqN0zs3lussu44Ir/m0VQVlFWLbmCaqaJK6WWmo0OUhRVG1KVEqhjUESV5RJ9OuTLNYyg/9NBS2lfa8JYxyWhUJViag+vN605X5zGdnwDZuWgXA4Gf8EWOTcVBbtrWpbLZSzjcUs4rIX3ZlWjkRDA55gkIsvvoQ777xL3ETsRImzk8kUVbQV5bnVFrlpzSfsZLhVwmh0XAOIkbRZlJdDv6JUxdLMjTUVV9NnHFE8BFSRmyzLsGHDGoYPH8qpp5zCIw8/TGOTW8zDOAeaP2AJuD45nnKeQZD/inCAYFBcb9aNlV9sa65YmAkH5vVltwO0uEEw1NFQKMRhhx3C/PnzrUOwdes2cswKyZ8IXddZsmQJb7zxOm+88TprjR7dHo+H/Pxu5OcX0KOwG/ndCigoKKBbtwIKC/IJZufRrl0mXglUyU+njplkJBLJZhzRZHFaDF+KDdtevJm+YmGiNTtDyuM2SwWqSiQW2w2I793sOvG9vE3Osa3hRzSXH8fBBx/yS47DgQMHf1JoSNSGapA9XoIBv/UBN2jQIHw+H5c/9jEnVFby/I4o1dX3cfgH5Swv30J5+SprHwXdurFufSUBWSMSDRAoKkp6KQ2CWV4OffqU0ru5ibmzZvPx66/jkiS+W7SIa2SR/RlYvJDAkCHEFImyMg/DvCugqB8BtZZAXtCIFUsSD6vyXhENIkx1sTbqITtoU6y8XqispE+fQoukhKM+UbRm+7A2M2hTLAQkVTUND8gevJYKKieTDyzFFHwkVeBsv0xt2EN2MEnmYl4jf9iLldMqKTEkrzdFNU339eblYbSrFXMzSS+A5PNRUFCAriVwuVzW66z9pC1LC14iGadJtgys6QqwRxHKob3RRRyPlYMsTq9BUqO1VhoEyXsPVK8gArIMsnHsZK+HPn1Aw9bpTlUJoAD+lBsQTRYNEjQ5Gy9iqL179+baa+/kn/+8AJ/Xy5XX3IUc9ODxGudEjZMtK8TlgLXKQFRBCgYtYlxgCqKqSsAvXhdTPUYhm/DI+P3JpiPmHOywNyRB9iED7kRzCukF6NatK3v07s2AQYMZOHAgI0eOYt9997U8wK3B5XIxePBgBg8ezC233EplZSULFiygsnITlZWVVFZWsnlzJf+dP5/KykqU9Go4G7Kzs+mWn09Jr16U9ulL7959GD9+H3r27CmuESWGx+u1VjZ8soZZf5+S6JCSeJI8GCYJVlXIcOuUb9rE9/9dwIIF8/nuu+92Oi4Hfz78LMX39dff5Oijj0aSnDAIBw4c/O+wKzjPPvss55wzGZfLxdNPP8shhxzB+vWrWbduHSef/Nf/d1/FPXtyzbVPM3m/HpCTQ0wOsHVrgsVzXuXbBSG2bKlD18O43SE2Ll/G4rVraWhooFOnThx/9NGce8GNDBkklm3NaK2KaDaFOTFqFdFowFImDYXKF64i4s9PKsOq2iLz1HyN15vqSUQWbX5zg6kqYIpKBVZsk91fmm4FsKul6epsOiGurhY2Co+SbHe7cJmHYUNstom01sJ24hqJSgTkWFLFbsUacfY55/DctGnsO24c5593HscefbQ1bhOWipem2ppeaHM5u4VKnabypRdKpXvEo1GSqng4TMybjc/bsjCrReGVcSNjt6u0UJVtiuvDDz3ApZddxqhRo3jrrXfo2qVzsgLRPJYmmfNqLW8szKxavz/5PkZr7NaivezHw470Yq/GHTvYVr+DDD3B6vIKli9bwtKlS1m2fDlLly6lvr6eTp06cfTRx3DGGWcyZswYdgW6rlNbW0tlZSXbtm0jHo8Tj8dpbm4mGo2ydWs1mzdvZvXq1axevYqKCtEYprR0Dw499FBGjRpHn14F9CgupkPHTikrBimrHrZrOhqNUlFRxfbNG9iwpZb1q5bw/cLFLFw4n1AoBED37t0ZPHgI06d/0CbV0KTiex+7rvhe0ibn2Nbws4jvRRddTFNTE//4x0Xssccev8X4HDhw8AeDnbhdf8MN3HLrrdZzt/z731x3/fXWz50CAbK79EFRenHKIe3xKgqJ/HzqlSzOPP1IYsogRveuEx+M1dXMUwYxZAhU/Xc2PceNw+PxkJOTQ7t2Qdq1y6ZPn0L69x/KwQfuw9ChQ2lozCDg11iyTPgGFcVoM4xIe6gJlor83+pqUeQWFFmxHtlGak1vreFLtEc+2Ze2bSuvKd5UsxmFz5tUZE0Sanl2o1FqlICV5Zu+7G8qXelL6VZyALQs6rITRnMp36+1IHbpXlnz8dasC42NjTz91BO8/c47fP311zz/3HP87ZTTUm8C0sh5erqC+X169b855hbdwFoZj3mMWkueSL8hMY+dqQ5b16fZbthWXFdVLZGXR2p6gyzzwYfzOPvsowkEOrB86Q+4MzIxfdn4/dY5DoWw8n5NmOdSUWyJFvYbENtxsFsBzMfM19lvQuyZ0PZ5mYTRpSdYvHgxr736Kq+/9RYbNmzgb387mTvvvIu8vDx+C9TX1/PFF18wY8bHzJjxMZs3b7aek2WZYDBIsEMHgh070r59RzI9Es1qgqYmha1bt7JlyxaiZga0gc6dOzNixEhGjhzJiBEjGTFiBF26dNlNitseZNeJ7z/a5BzbGn4W8c3Py0NDLH+Ul1cg/1h1igMHDhz8CCQ0zjjzTJ6bNo3MzEyamppabHPllQ9xx41nQjSKlpMr/LeVIqrMJBUV1YK4zJ0LJ50k7L29u9TTe9gwxu+7L0/dcguxYD5r14r8XVRV5O0WFaH5A4I4RGuoUHJFAsHML2HECKG0KjHmLPYxZgxW1b9NEE0ha/YirBZxTTblylzKrg0LImaqqHak+1pNn7LZ9CASLLSWt83iOpNcpe3KihAzi9ysnRpvkFKcZEs92FllfqtFRGnETNM0zjr7HF555WUWLVhA3969W6i05r7shN2eENAamU1XOVuN1zLmZJyGFoV91ut+5L3McZrnKr1ozhbcYb1+6Q+LGDp8OFOn3s3ll1+aqiB7vSmJDa0VqLVIeWjFx/yjarU5uJ0Uw6XfCFjPaxrPPPMMV197Lc3Nzdx9972cddZZLbb7NaHrOqFQiPLycsrLywmFQoTDdYTDYcLhMHV1dSQSCTIyMvB4PHTp0oWuXbvStWu+8X9X8vPzad++fav73z2I7yPsOvG9oE3Osa3hZxHfUE0NF1x4IR99/DHbtm3/UW+QAwcOHOwMdpKx337j+frrr63nZFmmW9eubNy0iTvvvIsrLpgiFFegNlgsrAdlK6wuaVRXWx3bGDGCCjWfQm8Nl91xP9OeeoSta9dS7+6MokB+TjxJZgzvb7qf1Swy8vtttgBZs8J3Na8vWbREMmbLRKsdr8x1d4Q/VVFERX8KITO3aWXp3jxW9o5j9u5XVrqEmSAQTY7bTJWwOslVVwsfrDeQOj+bx7aqqpb77r2FzrldmDz5bJ566hk2rC3jwrPOYuDo0SljSiQSKLEocVVjddkKAsFs+vTpQ3NTI/0HDqRnz54899zzdOzYFUmK88pLL7C+fCP/+tfNYjk7XX1OnzPJebV2/dhvDtKPffr39sQA8wF7sZhZ2JZyvG3nN91qYleR46rEZZf9g2eeeZplCxfSo/ceKaqxfeymIpueWmC3MNj9rC1i2OzHKc07bSfptrrFVtV6+8/bttdx1RWX8ey0adxzz71cfPEl/FHgEF8Hdvws4jtk4EAWL10KwF577UVVVRUlJb354IPpDgl24MDBTmGShaamJjwej1X8JKGxdOlSnp32Aq+88hKdc3L4+qGH6DhokBUxFY2KCKqYLP6Ymw0qVsv9KClJEdLEtopQb1999Qmuuupcpk/fzGFjvalNAsDy5U6fDpMOtymRZWVoffqJ8ZkEMlorXmMvmDMyykzvKJBMXjDbbxmpCTEEaTHJaVz2WYVYLXyrtPTn2tu8pii2BloszdvUaTvRsvyrRl5uC/UWjaamJo444ghmfvMNuq6jqiqyLJObm0tVVRXjx49n4v77s3TpUmZ+/TXbtm1D01IJa3Z2Nn6/n6qqKlTjeAeDQTRNIxIRWchKLEZmZmYLu4M5H/t18/8pvSn/7yTxYaf7sR1biwQbNyEpj9sJs3l+bdYLDYkdO3YwcGB/Rgwbxttvv21ZDczrw05KW/v9ML3UthSwltu0cqPQqoK8k2OZ/pz9eCV0F/vsM45EIsGcOXNbDmI3xe5BfB9j14nveW1yjm0NP8urMGT4CJauWMGee46nqCAXv7+ATz55jUMOOYhTTjmN3NxcCgoK2GOPPaywawcOHDhYu76cI488ghUrVjB8+HCmv/8+uXn5bNq8hRtu+hfvvvsOB02cyFXXPkXmqB7EZaNbV3WIQDAo8k0VQRR93jBan36oZWJpPltW0bwBkdGq1hLz59K5fYKnHpvK/vvvz8EHd2XO9y5hV0CzFFJZ9lBdaZBes3kEElJBQTJjFcEJqpRsgsGkV9IK3lcUvEEsac2K0jJIE4jUBJ9BRDUk8PpEIoGRPuBRIqAY1f4IVdGjxojjAyO9wByz1+tBMkhKVbUkkgJkWTwmy0aahCC4PhlQsRRuDQlJlgWRT1OKTQKkqCqffPIJn33xBR9+8AH5BYUsnD+P8ftNpHu3rrz00ku8+dZb3Hb77XTp0oVzzjmX/PxuBAIBJEmiuLiYuro6vvtuDs3NzcTjce6++y4uuODv5OV1Qdd1Zs78ii+//JILLryQQIcgI0eO4oADDiAn25i/zWqALKd4e+2r+K1ZSdIL7uyEMqVZhbF/cw9CCbZFafkDxmMayDKetCYNdruCqqq8/vqbLFv2A5s2VVJdXc03s2ZZ4zXVZHHzIaeosNbYVRVkj5Xu0BqRtdCKlaE1Atyaym0eD+uYGPMzsWjRIubMmcNdd93X6o3R7oiGhgY+/PDD33sYPwES7NLx3v3P1W+Fn6X41m/ahJxdQDgMrPuWbvvs0+r2HTp04OSTT2GPPfbghBNOpHPnzr/wsB04cLA74e677+Kqq660ft62bTtVVVUceOBE0HUemDqViZNOp6nJRWWlcDHkRtdT5S0mP7wCrU8/FEV8iFuZpoZ3tSLkMxuWCaKhxpi3aBGjx43j88+/pnfvfSgs0FIKk8zWxbneiOXlXV/to6AguWxuqnyWNcKAvboebEvnhifULJpKb7+a4t8kNbc3FILcnJY+TY1kO157gVlclYRi7PUSl32WjTQaxcojtpRMWyOBmCLSDnJyUjtwbVi3hi9nfsM550wGhN2kqbERSZJaJT+JRAJJkizlfmdoamqisLCAY489jkcf/Y8xPZUbbrieTz6ZQSQSYf369UiSxOjRozn0oIM4d/JkOnfunKJ024+Z+b3dn2xPO4Cd5/ymKMNKsiufPUcZkl32/P7WbROm/QKvl88//5wDDjoIECuhgUBHDjvsUC44+6xWz3m6TSOVGBvXgGlZ+RHy2VqqRmvvlV4MaD8G1r7QUDWYMGFfqqurWb58JSC3iE7b3fDNN99w2GGHEIuJvxVtUQ1NKr5PAb7/b/MfQQyY3Cbn2Nbwsy5rM5A7PxijukcPhgwZwsEHHcT5551H5y5dCdVUM/ObCubMfolHHnkYgOnTp/PxxzN+jbE7cOBgN8H550+hY8dsGhqiHHPMsbjdbo46ahJdPB4++/hjlPb96TT7fWrGTGLUCCPGSg6ybD4Ex/UjGoJcakSqQnU1kqoK9lZejjenH56yJaglg1i7FvqVyMyfNYsMWWbcsIFkGL138vPEErbsDSCpcXK9grgsWwaDilTy8mwkRBVkyyMbTQSiHsv7KalxQmYuq9eL9WdUlvEhtvX7PaACikJE9eH3CxKXQmFsS9520mtl1Koqkiyj+QPIiAzfpF84QETOxmu8tdmHIiAbcWuILGGvF3x+v6U++rwaqiqIj0dVCMe8REJrKSkttcbi8/l44YW3LdLbSr0Ubre7xTlujaRVVFTQsWNHzjnn3OS0ZZnbbrud2267HYBNmzbxySefMGPGx9xx993c9+CDfPrhhwwfNcp6YzPzN92q0KKxhUX0WpJeE9aNi+zDo8SQvT5L8fbJWGTV7092/5IsxdlGXA3PbZ9+Q/B6veyxxx58+/XXuBKJFNJtf1/7+6cfU1lOWmVi+ETzWlMJbuVYp8/J3kXQTm5bLWhLO0+bN2/mn9ddx6xZs/jss5l/mML1m268nuLiXjz55HOMHTv89x6OgzaCn3V1S2jil1WWCeQUsmjBgpSIGndGD07psZGsrH9SWV7O9E8+YcSIEb/S0B04cLC7oH27LM4+6wzrA/ec008lFArx4MtLKG8owpsAecQk8l+8F+Xkk/n+++/J7Lw3B04URG/W4gBeby7LlsGU8/KIqxKLF8OoAUXkhqtYIQ+iX7iKfgV+KCtn7vJV9O03mMzGRmKZHUVjCFUVlglZAxVqlAC53jiDiiKsqAxQUmIMNhTCZ/qBFUVs54+hYaYdiCK5OD5UJUk6hdUiSsCwLHhk0GQfAVU0moBkQZq57OyzLXkL8qUiez0ixcLw4ZowSVhMFkTYbvOV0PAhVEIvokjLjGfTsLf2BVfzdv7yt7/z6quvIMuy5cE99ZRTuOXW2+nerWtKsd5P5UCtKZO9e/dm+fKVrRJlE927d2fy5MlMnjyZOXPmsPfee7G5JsRAW+FYOunVkFDxWMfBTrplOUn8WlM2QRwHsbE3ufxvKstKDExbg81La6rCpoJqqtHz589FURTeeOMtXIkEMVWMy0PcRpiT802mf8hYy9OqaiPrHuuGxq7wp5+H9KJMrzfpDbesH+kqObQ4jtOnT+fYY4/G5/Px9NPPst9+++70XO1uWLtuHfvtdyAl1i93W4bb+NqV1zv4KfhZxDeuirtgTTZ+MVUVn1c2yK/o1V4j70Ni8ytM/+QTAMaMGftrjNuBAwe7EdJJ0RfffktRUTFblr/GyJFn0rFjZ5YvX8uj27Zxa5cuANx3002MKT6fGnI5cLwgizk5gs54Ktczau1cUAqo6bMP0SjU5OSTK8fYEIsxffp7nHDM0RAMWoShotpDYV5cKLFr15LTpx8oIr6hX04NRGXen5XNiBG55Hmx2vr6/cJOUZgjLARmzqrsTSpxpmdTIzuVbNi8tF6vp0VKQEouFhh5wJrVtMIqeLMtfftk8bPZ5UrzB1JkTykawe8XS52mWm3y+MamZgK2trVnn30OB+y/Hz179WbgwIG4XC5Bi1pRGf9X/BjpTceKFStwuVwcsP8Ei2jalVL7Er7H9unVWpGbXe1tYX1IswmYZFTYWrwpxz5dXQUsVbmyopwrrriM9u3bU1RUBG6X0XEMYor4nDSzmu3E1VT1zccsdd6bSk7NebSWW5z+vf2Y2B9LJ//pz/Xu3Zvs7Gw6duzI3nvv/f+cod0Ll15yCZddfjn9+vb+vYfyE+AQ398KP8/jW1eHPxBMec7sXy+hQXU1FWo+O3boDBggfrnGjh3Lt9/O/n+9YA4cOPhjobWCG13X+fDDRZxyygSrur9jMEjn3HxWr15hbXfE2LE89MrXNDRk0KePrcOV10tVWHRT8y2bB336iNQEfy4+r0Z4+XL2PukkYg0NfPLaa5QMHAiVlVbXAM3rE0vC5cI3bMT5pjQOiMtC2bUTlWg0qbDaM2/NH1KycE3/p5mwgCA+ioLVjczu/U1X7sxjZr7OjFYzCYzlBzYyYq1Cu1CNFbdm9xCbaq9Jqk4+9TReeulFAJYvX0m/PqU79ZH+1rjggil8+OF0yssrWlw/9riv9CYbkHwcaOFphWSDCOvceH2WT9zMiYakP7u190rHs88+y5mThS96yJChzJn1LZlZ7ZLvZ/OG26PPdjbmdL9xehRZawkYpj0i/RpM9/JK6QV6tuOzfu1qDj38cEKhEO+8896PEuB3332XmTO/Yu7c78jN7cIDDzxotR3eGcLhMNdffx3Lli0lFAqRm5vL6NFjGDNmLGPHjv3V6oB0Xefqq6/i7rvvAtq6x/d5dt3je2qbnGNbw88ivnV19QTjyQ8ZM5ZHUWDGDJEpP0yZA0OGcOutt3LdbbcB8Morr3HCCSf86pNx4MBB24OiKHz91Re898F0pn/wPpurqujQoQO6rlvk18SgQXvx5FknMMogE1RXoxUVI0UjVEUD5OWJGNr8oCCo0aggGPnR1WyTZcYfcSxbtmxk1owZlAwZZVXpxxFNLnyhCmr9hRaBDYWgsCAttxV2npkKEI1SqwYwHA1J9dBIhkCWUwqjWrQtJkls7dsZByulY5e9I1tKrqtJbGxFeOb/NWGP6DaXZoA1vaWVldWMGzccTUtQVVX9y5zkn4FVq1bx5JNPUFlZSbt27YjH41x99TUM7N+X0WPHsnz5cj784AP23ncC0DpRtN+U/H+RZ9b3hlVkdbmH0pKW7ZDN7VL2mXbO7GPwyBpNzQnOPfdcpk17FoAtmzeTm5cvtrM1HUm5uTHU+9Z8vq3NMX27dFKbXrj3Y4Vx9rGnP1dXV8cxxxxFWVkZixb9sNMObh6PTCKRIDs7m9raWs4++xwee+zxlELEdFx55RX85z+PcsQRk8jrksvGikq+//47tmzZAsDIkSO58sqrOeqoo5CkX/4m7PHHH2fKlLYZ9ZUkvi+x68T3b21yjm0NP8/ju3ULWu898KlxNDyEoj5ylQo8Xi8njBPqg1awJ6cdfywvvv22eAO322lv7MDBHxibN2/m888/5/u5cyjsUcS++45nzJgxfPHFFzz2n0f49LPPaGhooLi4mGOPO54xYyZxXGg5/x1+Ai++cBM7ok10yZToOfQMLjiiO5SXU6v4REqBv5jwWig1PoOltavJKSoF2YtqKKjvT5cYpq3ggGuuIRSq4/PPv6ZfQRewtXb1qHE8qoJWUEh2ZQXr1UIKChDWh/Q/g4b/tjYske1PZqaGw5Dtj6P5A2STqtiqKihyNn5jV2byhOmvTY/kEukLCgGvDEpStVVlHzIGuc+TbUpzUnUUUbyS0evCY4xeNgriRM1fTPHgU4XCV12NkXqh8vDDTzJ16o1IksQrr7z2q18breHUU09m/vz5KY9t3lzJl1/OZMyYscybN49nnptmEd90guYhTlz1tCCNrZHflNxc4zyWlJDSQKIFOTZuGCTZ1txEFX5dU+wx3/vpp55g2rRnmTBhAueedRbZOfkpSq/ZHCTFfuH1IikxPLKMRqrab87VakuMiFmzChuT00qxepiIq5KwwIB1w5W+fw+G3SetBXX79h15/dVXGTx0KJMnn8X06a1HgD399LNcfvmlhEIhAHr1KjV+zVJJbygUYuPGjSxevJhHHnmYq668kptuvNE65rquU15RyXezv+WpZ57h+OOPpW/fvlx55dX85S9/+UV7A/zlL39hypTzfrH9/Tpw4sx+K/wsxXfbtnpyfDJ4vUSiEtXVUFoUpyrk4eGH4bbrYnzybRanndKFrdu28eSTT7P33nvTu/fu4K9x4MDBz8Xll13Cffff3+Lx0aNH8/3339O//1BOPm4SBxxxAkVFfem0ean41C4psfJulyyTGJQnmk4UVs6hts+eZCtVAMSC+aI7GlAT9ZGTk+wdYOL799/khAsuwOP18vm775LZaSgFBWm+TTUiCtuIJP0KqkpE9RGoXi02NrLMYvisgjVz09YIVYokB0JppUYwT1sXNtPfKXJ/hcc3pkhiXgaZwu8XXcO8qaqZXTG2L/VbUVi2pgpV1ZJIrkgfHyI54Zhjj2XBwoWcfPIpTJ16x04VvV8bN9/8L5588glisRh5eXlGu9luZGRk8NxzQjld8N//MmTYiBaJDTuL4rIj3V9t397o3yESOmwZaOmk2f5zukJq3+7xxx/nvClT+OijGRxy0AHJ5iRKJNkO26slz7cRn2ZdU6Y6ayr3qljJsCv75vWTEnsmx1NIebpdJv0YpI87/Tjaj/NL057l1DPPZOPGTRQW5LN6rURpSeox13Wdxx77D19++SU33/xv+vbt2+I877vv3syaNQuXy8VhBx/MS88/jz87p8W5NPHdl19y+wMP8MH06fTo0YPTTjudPfbogySJxjdDhgxh4MCBLd7np2D3aGDxOruu+J7QJufY1vCzPb6BQMD6BWhsbKZixWK27BjChH0lPv5kOU/e+Q/e/fpr3nz9dY4+9vhffQIOHDj4feDSE+w7YQLffvttq8/bEwPef+kljhgwgFjJIECQj+zwelYoxRQUiM5srF3L+uAwvF5hXSAnx7IOVFRKFBYkCZ8sQ3OzziOPPMRVV13G6NF78ubzz5JbVIwUrrUaTlikw6sxZ67Enn1EEwyqqwWplkVTA5NUm4qf+Rp7ag2Q0lXLWjZWY1bTg5SiKcODaxFdObVYzWLDZnissQ9z32b73BZ5rLbXRqKSef+QQp5Mq4ZJMPbffwIzZ87kgw8+5NBDD/3lL4afiHg8zskn/405c2azZcsWsrOzKTWi1LZt28a6des44fjjee3VV1tdpofWi9NMtFbkJqG19FKblhKzM55ixMDJSYXf/r4xRcKnRiyLi3kD09zczFFHH81HH3/MiBEjKSnpTUnPHhx17PH07TsUEL7iqpCHvDyb3cW0QBgrCZZthuQqhZ28AtbjcUMltuwtapJQm7WSUlR0Oky5cTN+F82oPnv0mfU+sszCxUsYPnwoxx17LE89/Szt27f/n8716NEjmT9/PvPmzWfw4OHWzUBr3n/7uVq8ZBl333UHH338MXV1dcltJIl9992Xnj2L6devH/369adfv34UFBT8vzVEFRUb6dmzqE2SQof4/vb4Wdp4TBFRLrNmiQv10ktvoN+oUey/v4d27dtz2GGDmbdmDW+88ZZDeh04+IPD5XIxc+Y3bNy4iS1bttLU1My8WbMYPXpPAIv0AnTrM56PKgdZilv2sm/QiooBI37KH4A+fcjJgWXLIFZQajVdWL3WIJtlZUhKjGgUGrdu4cwz/sZll13EX//6dz755HNBepUY+P3kR1fjUyPEVVEkFFdF84p5a7OJRCXIyRG8qbKS1ZU+cnOS8VTWB3I0mlKchKq2JL0YpMTvt9oEm4jjEQRUVcV+ZBlVFR/4cdlHHI8Yi0ngjJ2bJMCuSmpIeMqWiLEZnlEzZUdk85IkQRhL84og5OEwnH7qqXi9Xv7xjwtpbGz8ha6An4ft27dz+OGH8tZbb3LIIYfy3XffE6qp4euvv2P27O9Yu3o1ihLntVdftV6TnqpgEVr7ebInZJivU+OpxNmwr9gbj5iPR6PC011ZaZwzmxJpEkZZxkr4UFWsDLuMjAxeefV9HnlkGgP692NzZQUP/+c/7LPPOJoat+NTI6CqlhKvyR5qQhIxfNb7BIPJoWtIliXGmrvJXo3zbld/QSSBmMkP1vXq9+PzaniIEwqJz277ten1ph0v433iqmSpt2++9RZfffHZTzu5reCJJ56ic+fO7L33Xlxy8RTCmm2OkHqMbf8PGTSAF194gZqaEOFwhNraMHV19Tz84IMEAh1YtGgh1133Tw499GCKigrJzg5y5JGTePTRR1i3bl3KGHRd58ILL2CPPUpp+5BIJjv8L18/z+qwefNmTj75ZDp16oTP52PIkCEsWLDAel7XdW666Sby8/PJyspi/PjxLF++fFcn2SbwsxTfTZvqKcj3w8yZPLKykAsvFBaG//zncWKxBnr3LuWAAw5w2hU7cPAnQlNTE/fcczeff/4Zs2fPJhAIEAjswXFHjOCIww8nO38iA3zl1AaLCYehOC8G0SgRb64ligaD4ClfjRmmO2++JLq3hVeL2IVqowjL6yW8fTt7HXciZWXLmfbEExzzl7NEYx1ZNLjwKMlOZaacVhOSyA0mianJNU11NByGbDmSbFtsKHqt+UZTiswMNS6OB0+4RmxgxIXZ0wQs5c1U74xiuLg/2ypcS7FUmEqkQbANN4SIWPP7W+1qRjRKTA4I8tNK5VTZ6rUMHNifyy+/gltvvW0XzvjPR11dHQccsD+bNm3i+eee46BDDkuZa3rUWHqRVGvkt7WEA8sCIrdcSjcV9FaLBNOtLGlIUVONYx0hYJ0Xk3Cu27CZv5xwFAt/+IHVq8spLspPzjEaTbaptlkarPmnq9Jp14BplYnhS70hS/f+gKUY2zvDmfuwLDO29Ir0xIx+/XozevRoXnjhxf/nzP44amtreeKJx5k69XY65+Tw8ksvMXJ0y4hTU1WHZAtt+3PpaR3NCZ1N69awYvVqFv2whC+++JzZs2ejqiq9evXiwAMPIj8/n+XLl/Pqq69w6aWXce+997RJNTSp+L4DtNuFPTUAR/+kOdbV1TF06FAmTJjA+eefT25uLuvWraOoqIhevXoBcMcdd3Drrbfy3HPPUVpayi233MI333zDqlWr/udVgDYD/Segvr5eB/T6L77Q6+t1XVNV/ZOPP9YB/corr9ITCd35cr6crz/ZV0VFpf7EE0/po0aN0jMzM/VDDz1Gf/jhR/Wammhyo+3b9YYGXde/+ELXN27U9YYGffNmXd+8WdfXrdPFc01Nen29eEzfvl3X6+t1valJ15ua9KYmXb/nHl1sWF+v64mEvmHdOr2wsFAH9GAwqE+adKR+zz336pFwWNcbGvR168TLEwld7LSpSd+6Vbce3LxZ1/WtW3W9qUlsYzyeSOjWuJua9JTnEwmxmbE7a5uGBjG2+npj7E1Nul5fb22fcsDMQZnb2R4zN9EbGlocZ72hQdcTCfEeaeO0v8ban20f5tjNr1tuuVUH9LPOmqxHo7Ff/RpRVU1/++139b59++qdOnXSFy9eYh07+zzSx2k/L9b/aXNPOW47+T790Nt/Nq+FlGNnnvu097BfDyljs429qUnXLzzvPB3QP37llZTjb99fQ0PaeOvrrWvIem/73I3fA2uw5rVgPJcyZuNaMX9On1trB8N4ScrxO3LSJL19+/b6tGkv6Kqq7fJ1sGbNOn3UyJG6LMv6TTfeqMfC4RZjSz9/ekND6u9mfX3K0NOvo0g4rL/3zjv6+eedp5eUlOi5ubl6UVGR/vDDj+h1dQaHqa//KZTnN4XJr+AdHT7dha93fvIcr7rqKn3cuHE7fV7TND0vL0+fOnWq9ZiiKHqHDh30xx577BeZ9++Jn6X4vvHCC7z45kyWLZvFunWrGD9+PG+//a5xt+LAgYM/A8rLy5k8+Uy++uorJEli6NAxXHTR3Rx55FgqK4XgGQwmPYimndJSt0IhIv58AtEqtLx8JDRR4MYSGDDAUubM/62YMEURHkElhr5jB3PWbubDDz9g7uwvmT13Ln878UTuf/j5pEXAUNhQFKtgrbpaPJWXJ+J9i4pS/YV2ZQ9IUcxai7OyP2aPLYvjsearyR6kqM3faHo1DeXPjJ6yPLxW2+LUSDK739gslrK8vGmeV7sX2l7E1NTUxIQJ+/L999/zyccfM/HAg3+162TRokWcc85kFi5cyPjx43nggYcYMGCA9XxrRWo/VmTWIpe2FZW2NV+w/dyGw7YMZJvKai8ig5bHzdqfkYVrrlRYBYoI7+zC779in/335x9//zs3Xnstme274EOou5ZibFP9Te+3+WTK8TCvGVtBpHk5mPsxFWJzOtEoBLxiZcPrTc2ajqkefEotMW92yrjTI/biqkQsFuHvF07hxZdeorCwkCOPPIoJE/aja9euVFdXs27dWvLzuzFx4kQ6der0/18MQHNzMzff/C/uuutOunTpwrHHHkdeXh5qc5zt27cT2l6Lx+PhsMMOZ//9D6NDlqAmlqfZtHfYCgLt3fbsEYT28w8Gh+nYsY0rvu+z64rvpJ80x379+nHQQQdRWVnJ119/Tbdu3ZgyZQpnn302AOvXr6dXr14sXLiQoUOHWq878sgjCQaDTJs2bRfG+fvjZxFfEAds3Li9Oeywwzn00EN/lcw9Bw4ctE288dornHv++QTbt+emf9/JpPgOqsedQzAouGlAqaFKzSUYFBm5wSAE1FpqyU4W8FRWEM8rpLoaCr01IhecGB/N9DFxovEBV1ZGvKSf+L6yEnOHkZxiAnJM7DwnhyVrfQwqivDvO+/kzgceoLY2TEZzU9IbaxAHK7jftEzIMuTktEqsgJQ8XdNqYF8mt9sPwCDISkTEV6VV5lvk2UZ4TWLVInLKVhBnfsCbUFVhzbA3xjDHDVhxa+bNhpkPHFcldtRv45577+XJp54iFAoxadKRvPnmWz+rq9pPha7rfPLJJ5xxxmnk5eVx7733M2HChJRt7Dm56cv7rRWXmfNs9VzReqHUzl7fWiaweePQglTbkh/Mbc1GGC2aXBgWm3vvf4DLLrsUt9vN6NF7ceIJx3Da6WeSldUeD3Eiiuikl15Iab/xMbv92W/CzHNvjsu8pu3XkNlQyg7zUraTe3PO9pxoc7/WTRsw49Nv+HD6m7z73ntUVlZa+8zKyqKxsRFZljnm6KOZcsHf2Wfcnuiu//96WrNmDXfffRdffvkF4XAYWZbp1KkTnTp1oq6ujuXLl7PHHnuwaMECmhPtUnz1Lc6r7XpJv3GyP7Z7pDpMZ9eJ7+Fs2rQpZY6ZmZlkZmambOk1LphLL72U448/nnnz5nHxxRfz+OOPc+qppzJnzhz22msvNm/eTH5+vvW6c845h40bN/KJ0Zl3t8VPkYVNKX7GjE9/kWUP58v5cr52r6+NGzfpZ5x+ug7oJ44Zo9ctWpS0MWzcqCcSxrL/1q16IiEe07dv1/VPPtH17dv17dvF8z/8IB7euFF8JRIpK7iWDaCpSXy7daue3Mh4fNUqXdfr6/Xt23Vdb2jQm5p0/cOXXtIBfWNZmTFe8bpEQtcXLLAcCEmbg7GMai4vJxLG+2zfbm2bSOiWvSDFTpBI2g4su4N9Sdtcmjb/b2jQf/hBT7FBWAesFZuFeSzsy9XmGM33sqwfxhwSCT1lyd3cSUNDs37TjTfq7du319u1a6dfdNHF+g8/LP3VrpMffliqjx8/Xgf0AQMG6NXVNSlzsn+Zx88+b/u21mO2Y2t/vf282V+Tfhxbe8583r7ML46XnmIhaHX/5ouamlraBIxzumnjRv3xRx7RDz30cF2WZb24uFiP1tamzNk+fvM6aXGebTu3X3P2azN9bvbrxrTipF+X9rGnXP9p15D5uKaq+uYNG/SF8+frVeXluqpq+qaNG/UH7r9fLy0t1QF98ODB+kcfzdjla+jDD4WN8rMPPtjpdWOfc6vP2c6hnkjo9XV1u4HV4WMdvtmFr4+N/aR+3XjjjS3eMyMjQx87dmzKY3//+9/1MWPG6Lqu67Nnz9YBvaqqKmWbyZMn6wcddNCvdix+K/zszm1t7W7JgQMHvx7Ky8u5+qorePudd/B6fVx//f1ced6xuLZupTanFK+XlDzaCAEkSaOmpoae7Vw0tu8iUhz8YnnXVJhM5ayyUog2/fporC+XROEbQjXcsHUb5evXUl5RhRqPEWzXji4uF7nDR5KRkUevzqC3FyrOEYcdwoqyMjZs2ExWVlZKJzNLHTWydc2f7bm56cvGLRSwNNuBPQ6rtQgxaznWWKZurSMbtIy3QlWJKB4rxszM6rUrvITDxLzZ1ljTFT5zDBoSl192CQ8+9BAXX3wJV1xx5a/WGhbg66+/5sADJ1JcXMwD993HAQcdgtslPl5ay981kW4nSSlOU1vm1baW22sKs/Zc4/QObynHMq2hCKRaWNLVdrs6ar8MotFkJrAZi2Yuw5s7nvvVV4ydOJFPP/2c/fffH0mJEVGF9ca8TiG5X3Me9hbE9vf1qDExvmC2NTZzW7u62yL2zdhJJCrOQcDf0sKTviphjcdmyUlRWdU4qiTzxWefMPXOO5k1axavvfYGRx111P9/wewEiUSCUSOH06goLFy4GB9aig2k1Xg6AzuLwNs9rA4fs+uK7yE/SfHt0aMHBxxwAE899ZT12H/+8x9uueUWNm/e/Ie3OrTS+8WBAwcOoKmxgWOPmsTWUB3333cfp5x6Oh0SzcQyOuDLSeD3g6dyPeTk0Ox28+SLn/Hl+0/y6Zw57NixA4AnnniN0047wVqaDYXE52Z+nobPC6VqGRQVEYn6KM6L8dX3P/DiM4/y6cyZKUurrSEzM5O8vDwaGhpQVZUZH30kSK+s2Tp7yQZZUCyfsITwOwbUWsBv+zAXxMXsfAWCqKNikRrRTi6abE6gKni8qS2ONSQUfPiqq5J2CiNnFcBjxJrJMhAOo+Xkiq5gxvt5vWkdvLAtb8sepGBQkAFVJd6K5cH8/rlnnuK+++/nwQcf4oILLvyfr4Mfg/5/7J15eBPV+sc/DUMaQggxlFJqhYIFEZAdRFRAUVTccOcqKu6IXrfrcq/7Lm7XBVdExQUUENx3QERARED2fSlYaqltSUMa0nSa+f1x5kzOTFNEWYT76/s8eZpOZs6cc+Yk53ve832/r2EwYcIE7r77TjZu3Ejv3r35/rvvTGWfJOhVzQlc3ZqduqBpyjUqb9kEOlJGToJgFwk0TQLrJBiyAK0J/tzmeFDBtEotsEAv7+qvNAABAABJREFUQiLMrWydS7CsKX8lrUCoEYhMeVI2TVpcd/HLmnUA+P1J2o0PAZrdmhh3kjKh65L24E4mPAHcJvCLRCAY8OBE9G6PZnaXyzaeAUsnujDkJTsrYVFg1OQV6oJBqER4re6PxUDHi6ab5ZvnuUhYXOITTzqF4wacyNChF3HBBedx3nnn07VrVw4/vD0dOnSg5SEHg2vX4IbL5eKcc8/jnnvuZtkvC+h1VFIFIklPsScmUT93qoQcOCZlyXbnekxVnZ2D+6OPPprVq1fbjq1Zs4aWLVsC0KpVK7Kysvj2228t4BuPx/n+++95/PHHd6OO+4fVAd86q7M6s8xFgrJQmPHjxzF69KusW7eOWTNn0q11a0gzWFMSJDcX+OwzIqddQjArizUF5Rx2WG0BrtUCyJjBPZk+yVMU7qR4XnvcoWLKonDTgzfw5puvc2jr1px33vkcffRxdGrTgpyGDfHk5hIKRyhetJCi6moKfy/l9+Iitv72G5FIhOuGD6dt+/YkwM7bXLeOWE578IhUwJgA1RsLkwgErYkyrnlBxwK9EgSp3scoXmIh8Pn8uGNRPB4v0ZgfjypDFokQ95iSYiJPMAUFkJOTTFXs9ilJBTIyTH6w8JZ7PIIrjMdjen6BUAiXKfbqcrgb3YFAMkBKkb76ceZUho8YwVVXXc2IEdft8XFSXFzM559/zpgxo5k7dy5nnn46D9x3H6ecejqa2wMOLq3zvRP8pvq/NtAiFzZu5znO/pHlOjKzyUWM4GGjgFWX3Ussy4vFcJlZ+MR40CxPu7xOaPtqlkfV74FoNMrN/7qd0aNfZtill9KxYw/wGBbXVnhcReptmYRCTZoSiYAf3QqKdJEgGDAXCQrAtjyxKHhYWUjJcWFl9cPugdd1cHtkHwEeDxpJb68qnZZQ+kh+Lu/t1lyMf/cdnny6K1OmTOaTTz6moqICEIvUVq1a0aZNW3r37s3RRx9Dz5498Xg8xONxpkyZwjfffM3KlStYsWIFkUiEk046mU7de4p6FRXiysgQCxhFrtDpiRf1qentPzBszwDfXbGbb76ZPn368Oijj3L++eczb948Ro8ezejRowGh0X7TTTfx6KOP0qZNG9q0acOjjz6K1+vlwgsv3I067ie2K3wIyUHZtq18r3HD6l51r7rX3nnpesL49dctxuuvTzBGjLjOWLduQ63nLv7lF6NFixaGpmnGSSedbMyfMcPYssXk2k6ebGzalFQbMyoqjJ9+MoxtW7dafLJTTz3Ten/7bbdZ5RpbtiT5slu3WvRWo7LSWL5okdGhQwfD42lgjHnlFaN640Zj/XrzOrOA778X9zMqKixur+Txrl8v/qrnq1zN6mq7BJlTMsqqo3wj+byVlYaxdauxZYtRgw9plVlaal1rlWE2rrTUSJZTXW3Mnq3cWyGHWhxd875btxq2OqvtkBzo6mrDkneS58yaNce46667jX79+hlpaWlGv379jB07asqE/dWXUVlprFi2zDj3nHOMevXqGWlpacbRRx9tTJ06PXU/Vtfkn6Y6T+0/tY9TyZjZ6pOiXOuv5EGnuMbJ67XV08EnVmXFrDGrtsGpk1Zdbaxcudp45plRxmGHHWY0aNDAeOmFF4xEJCL45eYYljxyG2fbWZfycns9zXuZRVjjSNZJjiP1Jb+nqaT7avCTle+K/F+eI6+R31l5f6fMm9qnVVXVxoYN+cZnn31hPP/cc8aNN9xgnHDCiUajRo0MwHC73UaPHj2Mpk2bGoDRtWtX49JLLjGeePxx48svvzaqqmqOF1mvncm11Ti/+kDh+E4zYO5uvKb9qTZ++umnRseOHY309HSjXbt2xujRo22fJxIJ47777jOysrKM9PR0o2/fvsbSpUv3Rhfsc6vj+NZZnf2P2qhRz3PXXXdaXhdpF1wwhPHj30t5Te/evfj55585b+BAHnr+BQ46qA2ZoTUUB9qSqZUR9wVZtgwOO6yK2T9MY/SYCUyePNa6vnnz5vz2228APPjgE9xz6QUAJHJa4CoqJJ6RTX4+tM2JYmzbxluffcZ1t9xCy5a5jB8/kS6ZB7Ehlk3rnCQnWJqrqFCkGVYE7i3ep5LW1SlrVFuUv8rflZHsCVwWT9Lib5rnbi5yk5Mj7lkWcQvesukRFFvj9u3iKF68MZE+OSPD3FaPRCiM+DGdV8yfDz16iMQUiUCQWEyoM2gaZHrCNlUKmdlY05Jc1VBxEd9Nn86b77zD5199RUZGBkcffQyDBp3KxRdfTIP0+ru13ZtIJPh100aWLFvNp59M5s2xY2nRogW33nobF5x3LhmSYGx6ymuLqndyY53PQt12t7zhquyb5kg8odvHR21ycjJxiTouZNlR3W2NJTmO5DN33sPyVCuJTWR9dd30isZivPzWO4wYMRyAgQMG8NzDD9O6W2/ruQE16m5RDSIR4Z1WJMxk39joCEq6Y9keWV9Lxkz5XqhJKsDO1/0jGopUnFBN3VFR+fHyWvmcZHpvp6xedXU1y5cuZtbs2SxcuJBAIMDlV1xF+/btrTJUpQpZLycfW/2upkxAovCADwxVh++AFIT9XbYIcNx+2cb9zeqAb53V2f+o1atXM399vXr1SEtL4/DDD+eIjh05rn9/LvjHRcyZM4fff/+diy++yDo3GMxizn9HUt3zUgIBWLWqnA0bfuSnr8Yw5bvvKCsrs5V9bK9e5LVvzwXnn89xA04kFtPwl2wQYrm6TmGJmJSDWpjVv8W4/tohTP3uOy4bNoxRzz9Pw/R0iEQo1oNkZiQBUywGfi2ZsUrlYtaQqFL1ck1LteUuTQVesVgya5SgfIiJ2xYQJTV1TdCk0g6imj+p02oCrYICaJGRDP6zTOoSm4BWpVdaYDsUEnQMCeT0KEZ6OpMmf8ibb77B0qVL2LJlCwA9evTg+utvYOjQoaSlpdXa3j9rV111JW+88ToATZs25c477+LaSy8hvXHj1IsJqHG8tjqkAsFOqTFVzks1NcBJatUWlrjJysJ6jtJUwKwGuKn1ACywJmXrJMc24fFafF5rPBJOHgAL1a9ev57effoQCoU45+yzeeCee+jQvn3y+WuaLbV0FC9ezSFxpuviuB4Wmfg0+8JM1llNW6zKkNnOUTPE/YlnY/WxyWdXgX9c4f9KEG99H5T+luaUiEtFdXEumKw66DWDT2VgqspV3tn4gwMluO17dh/49tsv27i/WR3wrbM6+x8xwzDYunUrpaWltG/fnt9//50TTzyBZcuW0qxZFv37H0eHg5vTuEULlixdyeuvvwqIYJJEQkwQgUATju3aiU+/+84q97TTTmfliuWs37DBOnbttSOYPn0aq1evZvLkDzn55NPw5q8h0a69KJOElS54zToXbTPKbCjn6+++4+TBg3nhhRe59toRFtCRXq2Fi1x06SImPqlyIL10atpYqdIA9sQANfRYi4qw3KyKSU+Z9IqpAMcdC1spgDcXuMjJEdeoXsEaAMR0QdnS0uoiij8Wg0yKCXsy0TShhmGlnzUBlKWhGotRWa8By+fP4beyMmbMnM1JJx7PM88+yxdffknfvn3p0+doOnY8gp49e5JnpnreU/bmm28yb95PjB79KscffzxvjBlDk6Yt8blrptG1+tkBvlIBGWm18X5r0+pVtY/VZ5YKYDm1bGVdpbm1hOXJDEdcyeQqjnJs6aUVAAjY1Ddku2VfVO+oYPTYCTz55ENs3ryJ8886i2uvv55jjz0Wl/k9q42AqibRkAsib6RYNEim0JYLMI9HeLR9UZtiCAggauMhK4k6UukZO59TqufpPFeC0RpKEtj7RLbDuVit8UxrAbG1gWRn6mlnG2R9E7iIhEMHAPCdxe4D32P2yzbud7YrfIg6jm/dq+61f7/+fccdRnp6usWvvfHGm4xfFiyw/u/du7fx1ptv2tLZZmVlGYDRt28/Y8qUxUbFxx8LkdzSUmPZshXGIYccklIX0vl6+t57RYGS/Ltli/xjyc0a5eXW36qqamP4pZcagDH9668No9rO3bO4wNXVyRTGSirW6mrD/t68r5OPKN9bL4c+q6q1q3IVVQ6j5OoapaVWu2R5ahlW26VO708/WedVVIjrbSlpFV3g6mrD4mqamZSN6mrDuNzUTVZfLpfL+OCDKXt1LP33v89Y97vn7ruNWCxu4xLX6Fe1L5Tnoj6DWp9HdU3+rnxTg8dZXa0+whrXOsuUz9LiWpt9rD5DlcMrSbKpeLzymMqLVVMPy2vVfti+vdJ4ddQoo3Xr1gZgtGzZ0rjr1luNJUtWJce4rJCq76xweeWgUe+n8s1VrWhZV2dfWumNzYtSjUG1XHmerX1qGmzHM7Fd53h26phRuzvVeFD/T1We2r5U1znLVN8fGBzfWQYs2o3XrP22jfubHXBxj3VWZ3VW077+5hsqKyut/+fOnUvv3kdx1FFH8eOPPzJ37lwKCgrIbT2MnBzhhZkxYw5LlvzGOad0wjVlCg/mX8K9XTYT9QTp0MrDqlWbufric5j5889cP3w4nbp0oWkwSHjrVopLSlhT2IC+3QO07TrA0pb1aODyeHBrCTweF149zBez/Azqr+HzQGVVI64adjHvjh/Pc8+Nod8JA4GkF8wMsk9uq/qCuCNltWY8c5UUQ0ZGjQxc0iyvrBk1j65bHiK3hqkOILyHxSE3mRkJ8dcTJhrz40Un6AO0AAB6TEg6SQqDUIEQvEwA3eMmFgFPl15gbuULxQVTESBSBj5fMhI/FMLl81FZrwGuqgoyfWls+b2ce++9jzfGjuXpp/9LLBajS5euNG7cmCZNmtC2bds/NTZ27NjBvLlzSEtL45hjjsFIq1drxjbDMIhWRAC4+qqruP+Bh4Ckpy+O25ICcnrpNE1oD6hePGkpPXKKHBmo3FzxsZ2eoFvR+1L5wKslVRxcUrlBVXAwvZ/BQMJyOzo9uzpCrs6taZbX1E0cKXgkvMdu3HocYjqQ5I+rsnMJn19o2krPr67jc4tMV1dcex1z5szh7bff4oXXXuORp56ie/deDBt2GZcPG4rX5QKfT/Fm6xb1IYGp6GBKqBGL4XWkNhYiKabHt6gIsrKsTxOa2/R+JwnWbt1sn8rL1uN4TWWHBC7Q3HhUPq2SGluliSRIcoDVlNrqM0PZkXEr+r9qOSDpG9jKlibHgrrbUEPfWrku1bH93/adqsP/d6ujOtRZnf0PWDQa5dNPP2Xd2tU08vl4btQo8vPz8fl8ZGZkkJWZSfcj7+DWW8+mhadYBGvpIhVlC60QPB42hIJEItCpnTmhRMIUx/xWcBCaZgV1hWNu/JFCWLeOaI++AtyVlAgJL7BSuMY9ftzEKQ65yciAgoISDj20OWeffT4T3nnT2rJNxb90mTq4QM00tkqKWSeo+iMuocoBjesu3BERtBeLgb9kA9Gs1ng9CQqLXLI5yXLN4LTsrIRFnyiLuC0uMJpGcYkAAH5PXPB4fX5ckbAFvIsjAkQEAhCNlDH/p584cdAgAOrXr0+9evXwer3cd9/9XHfd9RZn96/a22+/zWWXXWo79swzz7JyxXI2bMxn69YiOrRvz+8lJaxcuZLCwkJ8Ph/vjRvHoNPOqFGec5tZHqtt61z9zJacIsW2O6R+tgBlIRfBQJK2YGnuKhQZ+b/kDzu30qXZ/lcSMsj6yXtYiyln4hJlD18FY5AMTrS+JyYdglCImM/Hpx9/zNh3x/PVV18QaNyYW265hTv+fScul8vedoXmI6kZNSg8psl7l5RAtkeMZ1n/VKYuDFQ5MOezsAXvUQv9RFlsOmkMKn/alvgiBS0iFW9fpSHZxpiSgCTVeHKOvwOD4zuP3ac69Nov27i/WR3wrbM6O0Bt5cqVfPrpJ5SXl2MYBvEdUTKaZTFjxnK+/XYcp576LDfccCN5edA6UCa8nRmZuIoKKdayyciARYugW1ahQGG6ngRpoZDwTAaCInjI/J9IBLKyKCwSk0p2hj0zWtzjx/3RRBg82ErOUFQE2QHT41pSwkOvvML9DzzArFlzOOrInoA52UXCIkgp5CXbF2ZJvp9OHc1JP1RIIivbrtepTH5QM1BKBirZwII6ycrsaiqwMQtK4CIUEs1tETABvINPaF2j9M30RUGO7x21UJcaEBQKQWbAVITwRAnFoVevLqxdu9aq97/+dStZWVlcfvkVBAKBPTJOKisr6dmzO8uXL7eOyZ2AwYPPIiMjg+XLl5GV1Zx2bfLof/TRHNnvFBo0qG8HI44Ao1SBUrUFEKaKyHeCZdVjCFg8adUzCVj9aSV4UBOOpACGEtA6wbCzfLkIwux3tY42VQVFLcCpKqCCuajuFlkNISlpIXm6kTAbCwp49pVXGPXCCwwZMpQ3X3+V+ukNrL6QOwU23jgm71iCbo+3huKD5Z0Nid2F4pBbLF6dQNHxPFUesI1Pr6g2SACuBv8Byd0UpV/kYXVRoC6WnM+pBmdcqqU4vneplCZq45HLzw4MVYc64LuvrA741lmdHQBWVVXF2rVrWbZsGcuXL2PWrB+YMWMGPp+PjIwMDAM8Hg+///47ZWWl1nXHdu3KyBdep09uMyEFRpQl67x07GgCx1CIefmZ9NLnQE4O5OQkA8vM1Kq6DsGY8L6GY278HiGbZEWbm4LycrIuDrnJ9CmBW7EYxREB/LKywKtFOfq441i2bBlrli2jectWgFBkCOPHryWBI7GYlZ7V8lLJ2dERsFZbdLfTO2ZLHwy2CHEJlq3yYiI9bFgLinNiol2ahuUphmTAFCQxjs2rHAtbwVHTpk3jhIEDrft/9tkXnHjiiWh7UXHfMAxmzJjBjh07SE9PZ+DAEwC47957ufe+B6zzdtU7W8PDq3jz1LJUq7FogJQZtlQwaxtTATsAsxQ0HPe16k7yM6ecWirgri6gYjERfKgmh5Cfq8/WUvmIiZ2EQMDebqkMokq0ye+ObPu49yZwxRWXcWjr1rzy6mscffTRFlCPRJKbHlY/m6oPcggXFECLLHuKbtl+573Uvnb2ke15OdQqpMlFo7pokM/IKc+mgmjnginV99TWRgeIdz4np3fYGbynnn/gAN8F7D7w7b5ftnF/swOB+FJndfb/1gzD4MEHHyAYDHDEER34xz8uYMxroykrS+fee99lzJgSNq5fz5o1G1mxYiWlvxezdvlyDj30UAB++OUXjj66G6deeSWxWAhiMTIyYNYsoKiIeCCTXj0SJHr3AY+HspCL3FxwFWwGTcPvSxDUiynzZMO6dQAsWSWki+JmetiEzw/5+cK7pWlk6oWCr6sJ4JLwCKAYCJgeII8Xt8tFNBpl8bx56LoJYHw+AXo9HuFFLSkRL02zbc2KHKo6iaxs4rixeInSlInapcfFZ/KYCpxjMRK48BetsT7TNIQ0WczcdjbRjN8TF3Uwr9U0IBAQADgWBkS1vUQFr9fclk7gYsOqJVRUVlJUJG4z/v0PrPoNGfIPTjnllL0CelVwkZaWxoDj+tGuXTvuvPPfAJxxxmB6H9XXdq4KZi2utQOkqP9b71OAT9WcYDmhua3xY5Wlx5Pb5iYX26sJD2cgAMUht+UJ9HoSST1cWWc9Tigk6uTWEpRFkkBMdq+buOWllNzZWEyU4dYSlhdT8nQBoehAkgbh8QgQLDmncTPNsAS91njUdQIB+06ETEkd1d1Wvf/xj38wb+5cGgcC9O/fly8+/hC3lsDrSZCZkUj2s5RHMDO8ScvKwvq+2canpolxaILOBC4LvAvOMDX4urLfBTfXfKZyEap8rzQtmaZb0NzFd9Q6xRzscT3Jy00Fdp2L07juSi6GzEWH81rnV6Us5LKNJZcet5VXY+G731oaApL91dfuUaL+P1kd8K2zOtsPzUWCaDTKpZcM5YEH7ufiiy/h889n8PvWrfz2xBO8885XXHPNRdSvn84TT7n46isR6BWJxtBdefzww2o++2wml156GQBffPklF1wwlLAWJDsjTrt2sCLSQmxJRiK4Vq1gTSiToC8ugoEUri4ejwiQadcOvy9BpzzhBXUXbEhOdDk5bCjyQiTCilA2hEK4ieMtWENRkZgcMwNx3HqUt97Smf3TT/zrllsYdNZZAjgqGrdx3UUiI5N4IBNyckj4/NYEnNDcYtsXtwVw1D6zzlMAloskSFc9jFKPtDjQ1gJRXi1Ome4X7ZIUBtP1Fo6ICdarh1N6x1x6nKgZ/CS9xSXFRRzeuTO+zEyOOKIJl19+OR988L516e2337G7Q6VWU4FoPB7nwYcf4YgjOlBcXMyM6dP5+MPJDBw4oFYvnApkavPSSTClAhhzXaJAFnuwmfxf08SzluAkobktKgqaJoaE+cx1XYyfBC4LcCU0N1FdAVWaRjCQBNfyvfS2ugo2k9DcNbyIXqK4YlGKS8zFjscjhonHI4InwQz+SrZfHXdOICYBtZT6coXKrEWUBN1ej6hzNCba3rFTF0aNepFEIsHcBQsJR0Qb5C6CHK+2RVwt95d1cD43CXbVBZx1jiNZhzUmYtHkONK0JNUCu5dcPmczBwfxrBYA1qJWXQzIa518Yfl9VsetEyCr18r3wYC4zhUJ24AzCI+52h/7t9XbA6862xWrozrUWZ3tR6b+qF999VW8/voYcnNbcVTPHsxbuJCKigpymjenT7duVAFTp05l7aZNNcp56aXVXNtkkdiG7dOHJ175hi5dmjN44NHCizpjBit6XEIkAr1C3zAlMpAePcxkC/n5bPC0JyvL1N/EwYHVlSxYZvIAa2/W9NYmMjJx5W+g2NdaeK2UQCBdh7ZtW9GnzzmMHfuULa+DDK6XW82Wt4nkBC3F8otLXNY2sLotr6o42DiNJjdUbiH7fFhbtDKrnJqsIhXHMRxx4dfL7LqpppawK1RGGUGCnmTSg0YNq4XygGJDh17MsGGX0aNHDxo1arTHxs7ObMiQC/jwwyn861+3ctddd9OwYUPbWJNWg8KgWG2BQ/K9qtdqA7uaVuN8FQjHERnTpMdU3Tp3RZJaympZFrfWfKZyWx+SY1bdale3zm0cYjObHiBoNp64LRmDdU3Mnu1M5aA6ealAksvruFeqBYSuQzwW5ojOnQkEAsyYMZPGDdLt3AzTaksOoT4v5/Or7Ry5QHHm4VDNokNAMomLwqtX+zlVoFlREWRnpQ6GVNsvAXlxiYtAoCbFptY2Kt9TG9cZ+3g9MILbFgO783uwHei8X7Zxf7O9Ryqrszqrs122WDTC+Pc/Ztu236ioqGDbhvW8/s47AOTnbyQ/fyMAgUCAxcuWsXrdOrZv356yrENbt+ZEz2xo1x18Pj74Jot7770E12efCH5gRgu8J59MXgDc61YwPTKQLl2gRU6CBF5cPh+xiCnDFYmIGUVIMpDIaSFkqEwZseKIVwBbXac45scDaL5MvCQgJ4dMOUmbQNEVKqMgFMQwDJo1S+COhXGbHlwLQBQV4s3KEnWRQEOPUxJyk5mhWTJLchsYXRdyVLqOKxbD7fFYIMUGNjwe3LEoMV3UWd32jWeIwDm3WXjClHNykSCqC4myQMCF3xMnTjDJ89R1iMXQPW7cmlk3jwdX/gb0QGvSqqtp3749K1asYPToNzjzzNPJkGh9H9natWuZNGkir7/+JsOGDRNt/gPQCyRBlwK+nABW/d/jsUfjq4oHqUA0JpASFAMR8BX3+M2AMOHx9Zpb+OIZmvXU43g8SQ++oKfE8Jpb7uYH9vuQIKx78ZEEWyAVIQRdR4uJ5+7VlGQqcoEj6TaxGHi8JsfYi7tgM9YKURYqQa8ClsXi0dxidSwE6tczuPK66yguLmbqN99QXd0IJIfVEVSmKlmYRaX0Zv6Rh9NFAq+mk/CIzHduJTmGSn8Qfa9QUhRkLOqS7GdZN8vDTILsLOWyWAyXsmBMWM8/KaMmvxq1USFqtM/8zllybxLS6Lq9r0tL2f+tTs5sX1kd8K2zOvsbzUWCbeXbOf/885g69Vsa+/14GzTgoGCQkwYMID0Wo8Rws2N7CaWhEL+XlFFVVUVVVZWtnLXTpjGn4HguyX+QeSffS1gD9IVMnN+ac8+Fd9+FwYPPsOathQWZFMyFjIz2HJ+7wZy4s4jpbrxZWbTPX0NCa4tL04SWbixKsacFGZjBNDlCOzfTFwU84PGQ6fDCQnKrtqREqCPg85Hjg3C4nIrfi60UW3pMlNs6J06ZJ5tgLCruLRUYNM26V41tXNkoTaNM9+MD3AoAC0XcQlPYI/RIfSDAstJ/bj1q/u+xebGlR8/jEYCcQAC3R8Mdi5DAD5qbmObGa3qYZ07/hurqBvTp04dfV8/ly9WrWbFiBQDTp3/LFVdctqeGzi5bdXU1AMGA8AKlAhESeKjeN2k742g6PcSWl065RpUbk+dKD718dlKzFh0rkt+jQTTmxSs9hea54ZgbvyZT8WrJNNV63PLeWumjsSsUSCk7twnE0DRTci8hgLPUujUDNtF1XHIcAC4TAHs8JjDLEVv6NYC+KQWY4cHSuNZ1JR21efv09DTuvPNu3nn3Xd5++11aHdrGpB1otmflTNtcGyW8NkqKDdAq8hZyQSgl4LweDVeojEQgaH+meornp8eSqhJOfWT7BpF9EWFmwVPHlmqpvLypxpv8Xx1v6m+CrLdL00g0aZq6w/YrqwO++8rqqA51Vmf72IqLi1m2bBlLly6hQ0WEfzzzDGVlZbRo0QLNMNjw66/Wub/+Wk006qJtThR0nSX5frL8+Tz10g8UFMwmHq/HKacczZVX5lJR0QdvwRqYO5c1vS+hbYlQapiZ34K+HcsIa0FKSqB1aCFzYt0A6N0bXLNmQseOFMaChELQPlBIIdlk+5I6vOpWcSwm8IWMONc0hZZg0iAsWoCpZSsBrvSEPTFqFP+5806+/HI+A3u0hEAgmT5WoRvYPMFqCtmiIkt2Sk7ckLxW3QpXAQmYerA+RWNXUhmkh86hpSr5we5QMWVapjV/FxVBbm5yYl80bx5djz0WgObNm1NUVIRhGLRt25bnn3+B/v37U79+/b0zqP7AOnQ4nE6duvDuu+9Sv14yCKZWoFQL+JB/nQA5JRB26PE6qRLO95ZMlekNDIUg6Emqg9jqquuURdy2gDIwgW2sTCRTcaTRVeXt5I6Fkz5hDnP8sWI2xzIJBBDUFp/P0tSN6y5rSNe4t1Pv1uQsm9m7RZ+Z43jNhg0MHzGC7777jicfe4xbb7/d6m9V2s3pmZf97NQvrq1f1cQv1nEliFB9RvJc2fcqZSMV9UCtj/OegE020HmuOm5sCiImfUHSZqTtTBJvZxQdgFA4cgCoOqxk96kOh++XbdzfrA747gOrqKjgl19+Ye3atXi9Xk455RT8fj+ffPIJL774Aq+//gY5OTl/dzXrbC9aIpHg1Vdf5c3nn2XBGqEiUK9ePcsbl8r+dcEF3Dv6fTHBzprJJ6G+nKFPIXzC2Vx5pQCtt5y8ApYtI3Hu+VYgR0kJtPYUsrAom5ISGNhDcFI3FHlprW0WE/6MGRCLET35bLyY3jPp5SoqYk0km7a5YoIui7gJaopkmSdh40daHEzFk+PU95SvuMePpgl5tq5du+L3+5g6dQ4+d1LySLIrZECTxbVFiWxXecWaZiXIgKSXT86STn1Y28RvyqWhmxrHVvawJMBTvVeRCAQRHjFXqEyABrPNS5YsoWvXzgzo35/D2nejfftDGTr0YsGndf29ccSPPvoI99xzN3l5eXz66edW9reUPFAH8HcqNjiz46mAxMm1tvFfqfks1Ovlc3NKX1keQ8kdxy47Z+lH61HLAykBpjM7mFV/sMl/hUJiqEpOt8ziJ++TCnTJsqwEC473tkFjLvziuotIJMLzzz3JYyNHkpOTwyujRnHiySdb4NsJ2NV+UqkOzr6Vz7G2/1N55mU58r4SvKfiEqvnpzL1PrLJqQCq8xmn0uGurV3O9jmtNk9xJBw6ADi+a9h94Nt2v2zj/mZ1wHcf2AUnHM8H331n/e92uznssB74EuX8aIrKf/jhz5xxRo+/q4p1thfMMAzKysrw+XzcccftjBr1PKecMphLTuzLwT0GkJfXganfvMuPH3/M2u2taNasNYcf3pbs7DZcMqQZ639tQEEBHJ+1gs2+9uTkgGvGdOjYUUymsRjzIu1ZtQouyfgC8vLEbBMIsCJfbNHn5WGbhKIxl/DOfvABDBnCnPlu+uQlPZk1skOFQhTrQTK1MgtwWrxeCThkhjaZWtgEISvyvaxaBWefFk+K+St7to88NpO77z6Ob7/+mhP697eCZpygxVWwmUROixoeYAskpAA4su6JQNDKmhaOiWu9ngQb8k3ZNulFVgL2rK1bh96vZaEQZSbPVyYGKAsJgPbsM//hsZEjAfjoo084/fTT99yA2k2bN28eJ544gOFXXcWTTz0F7Fz436mNWsPbmyI9dKrgI1tmMNVrb5YvuLx2HVr1WssTr+j7OoGZeiyVzmsN773C47XAakgsEKOIXY2gJ7l4s7SeI2IBmBKUOryvav8RixFzaYx57VUeevBBQuEwN930L+699x4aNki3XSP7J1Wfy+eTyotre3bKM3EedwJQ9RmpGdbk+K9tF0At19nn1mcmzUT1hKttsLy8MrOhGkCbQgfYuq869hQuujpebQvWAwL4rmP3gW/eftnG/c3qOL57yQoKCrjxxhuoqqrit/IK0tJcXHHFFXTpcgXXX9+bpUvn2M7v1GnfBrzU2d61srIyjjiiL0VFywkEAlRUVDBy5OPcdpvYzly3Dpo1gzPPupSLL76Y4hIXmQjpJPLzWbExl1AIju8Rpkxvz1P3Q5cu4PMdz/mLvqG4y0Ayc+L0ioWJRPwQyGKzpy0tsgS4zcsT89aqVdA+JwwxTXh8c+KsyffiO+ESSlZBn9xC8PgI+gQ/16tHcIVChAMtABe+QBBfDBIekc7Yn7+CzIwMIAN8PkqKINsnvMwQJFvfDFl+Eh4v7TOKaX+yD0zuICQDaCgo4OyBDbn7bnAZhgl6EsnJ3JyxXHrc4lGqqUuLS1wCdCK3a5PZ44QHGhsVIqG5LfAP0DorCrrwFGdqpgdXKjuEiiEQSPIXI2LrPBIRAXVxX5CgpgCHUBkeTxBNg9tuf9gCvps311Tb+DutU6dOpKenU+XYZXACWzXIKRXlAXmuA4wI4GRPZRtHBAZK76wtNa0JujRT01cCR+l91TTzWo9mjYlozGXfArdpy7prBWbCk6nhVoBaLAZun0YkJIaK5LViJqKI62LxGIkkNy7c5rgUmNCR2c1jgtVQmRg/Cr1mwqef8+9/387mzZu5ZOhQ7r/7bloeeqjJga/JoxXvk+1xendTgkxqLmSs5+dQ17CeBULqz20+BxkMCCQD0XAsRJUxIevqVqhQBQUiF468h0pfse6tpjTXEsnFhLnIkYGPaFoy7bN6rRJs6ZJ/zWNy/NWmfrH/Wh3Hd19ZHfDdC+aaMZ1wZhYfffSh7fiYMa8Br1n/t2/fnsmTP6RFixZ4UnmW6uyAtQkT3uf331fx6COPsGnjRi69/EqOOrIncdML0Ta2BNZ58GdkkCBIZkaCzQWZvPIKLFuWySdjiuk7PJOpU/0EX/gvz989FM49F668knj/SyCEmc1K8ExZV0IgD4jF8Jg8XL8nTvtcnbjmTzovYzHaBkKgaWTnasQ92dYEITJj+XHFYvgJUxhJeg1k+l5/Xp44UFICGRlke8rA4yNbM71jZAjQEwkTD2QmPUiIyScUgnffdTN0aGu+fP990tPT6dnnGIfzJjnxR3W3FbUtJ7tozGUqOmjmVnQy4A2fD/WbZAPR6lap6cnKyIC4HhQ/hIGAYFKY2+kgttjjviBe4ngzNBsPNY4bdAjpQTKJEo55mT51CgA//vgTvXr12gMjac/ZBx98QGlpKdeOuN7qBxXQ2MCvcgzsYCfpFVSSBiCUGSTokCDRTQK3L+kRFCoByWQQoDpJBTCzsp/FYuia11pcJAJBEUSIRlx3W5J1VnY0zHGi6xDTbbxyrydhnefWhMqC2yd2GIIB59a+2KqXFAcJekUyCK+p6SvHgqKQIMMlJYgrKWZzNMoNN/2Ljz+ewmmnnc6kSZ/RrVsHQiFIgJUMQwWysu9S8aKlWc8vlSdXObdGsBd2GpDsf1l3GShoe/YpPPuQ3BmJ4xbfH3PHpEVOsk6WhJmyCEjgssCuhkJ/kUGlYKuz+RhtZarjDk2zfjdSBWc6dY/rrM7qqA570VauXMkLL4xi7dq1pKenc+qgU3j88cfZbAYvzZ79I7179/6ba1lne9q2bt3Kbbc9xLhxL9K/f3+09espadKENgcfzBFt2hDM68n48W155pm2dOzoZ8YMOOYY8M+fTrT38Xjnz6S6aVP00lLSvV7BV1i3DjIyOPumFowZA8GiFZRltWf+fBjYpZioLxOvrmwXmsFfYdNr5V23hHmxTvTqkuS2RvHiDRUKRGsC2sIiManNnSsoCpY2r4PsanlhzHTEUvkgFkMEjpnnyElLCvjLtL3oOv0HDMDbqDFffDAxydvFzsGVXiA0zdoyVSdelRtqTc5FRSSysq0t9KgutnHVVMgqQNM0RxCc3HaNxVhT5CcvD/LzheIEkOQXm+2RFo8n6NatI82bN+fbb6ftxRH21+ySSy5m8uQPGDv2bS447xwgtYdQHq/Niwg1PYDqeTYvqJYavDnpFLJMwP7cpUNACawEbGl4nSlz1frVaI9Dok0NVFPrLs18zGKsm9v2NTzOjnGKppFIJBj19NP854EHCDRuzLOPPca5lwwTdSgpIZGRabuf2h8q7cZ5jnPsOzBsjWeZihOb6pmn6kO1D2q7h1qGWnYqHrGlwa2mUHZoK8synFQIldov6wTJ7/8fjdcDg+qwCdiduoWBlvtlG/c7M3bBysvLDcDYtq3cqK426l678erdu7cBGIBx5513GVVV1X97nepee+41e/aPhqZp1jP+o1daWprRuvWhRmZmayOrWTOjfn237fMbbphmLFhgGI88YhjG1q2GUVpqPPKIYZSXG4bx6quGUV5ulJcbxoQJhmFs2mRs3WoYlZWGYUybZqxebRhGaamxdashKrdpk/iwtNQoL7feGkZpqbF4cfK9sXWruPbii43Zsw3DWLzYMCorjepqUU5lpWEYFRWGUS3Gbmmpcryy0jAqK8X7TZsM4/XXk//Lv9XVRklhoeFyuYzRr7wiyq2stMozKioMo7TUOm7eSp6SPE/es7Q0+d78a51r1nvLFlFudbVVdeuz8vLkZ7Ls6mrR31u2mO2rqLDKtNq8dat1oKLCMH6cPdsAjKlTp//t4zDVa+PGTcYZZ5xpAMb48e+nPEdtf6rPrHFgdrJ13HzJZ2A9sPLyGuNFDjx1TNiea3m5fSwo40YWq75Xn7VzbNR2nfxcHQdyrMnxYVajxpiT7ysqUrd98+YC48QBAwzAuP76fxqhUDjZFnOs2PrNUe9U9a3R/+r55rEa41epm7NsOd6tc5Uyan32tYwN5wG17mr7bPffssXqb+t3I8UzVcuprR4p2+e497ZtAsOUl5fvCuTZpybxFRQYEN6NV8F+28b9zeo8vvvYpkyZwnmmtwVg48ZNtGjR4m+sUZ3tSbvrrscYOfJOnnpqGrlV81hLR5o3b8CqVem0++ZGPm11JIsXfcO69ev/sKzOnY/ki8njyG7aVLg2ZsxgTmAQfTqGAdhQ4qd10Rzo0oWymJdg/kJo14433vdy+bAEmwtctGCz8PyangS/L8HCRSKwKxgQnNgl+X5ycgR7oW1OVASv6YWUebLxeIRDOBMRABfEzE4WEMFjcV/Q8piWxYSXKhAQZfl82GWoTLdNYYmbad++xSXDhlFYUECTpgfj1hxyUyk4haoygM1rZHoNdxYAFI25LPk1y7ukqAGgmZrBuimfpQlvd1gXPN+gbmoOmxQJXYf586FHD+H9++TDDykNR7j88mFMmDCJc889d88MqD1shmFw8cVD+fjjj1j8yy+0zjPVHRweUqCmN9YRcFXbFrgzJlD13qmyc6rJvrd2F8xdCamjbHv2quqAdMkqgVG1KVRIkzsB0mUax215fWUgqPyrtmVnagJx3UX9etW8+dY73HrrLTRo0ICxb7zBiccdZ89sRlzsxvh8gleOwhXHIQOGPWiuNp7qzgLcanh8FYUJG6eW2qXTdsVSeaWddXOOAysYUHHfWkGEythylpvSm1zL/UEUH42GDwA5swJ23+Obs1+2cX+zOuC7D62kpISJEycwaNCp/Pjjj1RVVXHJJZf83dWqsz1oX7zyEqdfdx0nn3wdV111FWfnVBLvIrie7qLNsGoV8f4D4cfvWb1tG+u3byc9PZ2yqixycxvS5Idv0c69lrzEVkE/KCoSmaFAqDgs8/LRR4LXe+WVJs9unVB9sDRHi4qYuKw9558reI1FRUK9zOeDSzouFBcHAiRwWcW7Fi0UM7xJeUglLK8Cm5ISkd54Q5EXjweyM+I2XdXCIpeVqlRyftE0wrrYrn57zKPcdtddHHXUUVx55U0MPX8QsYTP0kwFbJHlzjrIuVICZo/HBAsyMgpsFI2ymFeAdQUoqVrB7kiZBUTCERf+WLG43kRBUrKtsEi0J5Nia7v69y2/kqUsXl0uF1VVtcvU/d0WiUTo2LE9PXv0YNIHU2yf1bZt7Ax2SxXNbztfoRXUADkO/SxLOxlqgJ1wxIVfs6cLtuoacwBl5boaW+gplApU0GmBYRnJpuyrW200eRa21MUmQCvIz+eya65l6tRvuPDCixj13LMEghlW36lJI8yHYMsKp45zG7fW/FwFdVJyTFUuSLXNXxv9QPadTBSi2p4IAlMBqfO+Fi/YkcIYFJUW7AsbufhSeeHOdqYC/ZbpOiXhGE2b7u/A9zd2H/g23y/buL9ZHfDdh/bRRx9xzjlnAXD00Ufz/fc/kJaW9gdX1dmBZGlrV/PopEk89/zzRCIRXnnhBc457zy2/t6IZcvgtNPAtWqF+BXPyWFNSZC2674QAvld+uIPbRYz2UcfUXzuCDIzBNhatQqO728CgfwlxNt1sviOmibwXnbRQgqzupFdskQAW1MCjEWLxAnHHMP4j7wMGSIkwgDLiykBYdSXaQGAMoKW91amBy4uEZ7T1gUzBTFZmvRiSR1fNZtWQQHk5lpZ3GIx4XmcN2MKI59/npkzZ5LZtClnnnkmN99yK4cf2gpIKgCkmrhlOR4PtkxTsZiSTMP0IIFdKckVEioNXl3U0eKNyhTEslNNs0lZSRe4mRZZ1+Gaq4cx9q23GD16DB6Ph+bNm3P88cfv5kjaexYOC+8XwIpFizjsiM5A7aDX0tF1gktq5+w6PXASxKXi3VrAOBKBQMCmES11peMZQpM6OysJ/mTdZNITmyKCA2iquwgqwALxfP2Y41XlFZuWSjkhuYsQ44NJr3PnXXfh8/kYPXoMg04eaIFSi+McKrMk8JS8GZapMmmyXWBP6qDKe0lZNts5KbyiKYazZc6EG3vKnM9ejh8VwCYDIGt6tlWvsMrplTrNtXl/U3GX5f0PDI/vVnYf+DbbL9u4v9mBoPHxP2ODBg2iWbNmAMyePZuFCxf+zTWqsz1tRpvDuODkk7n00mHs2LGDS6+4Ap/fj2v9t9Z8usHTHvLyiHqCrFuH2C9v1465c83PY9mMWDaCzKIlUFBA9rtP0K4dTPnIhX/s80xc1YkfTzqO1W88K7R3Q4VkzxgPuk52ZA0zQ524d0wLPvgANhe5IS+PiaGBrCkQurouErz0WQshE6bu5wYCrFsnwEkiEJSYg4ICAQ6IxcjIMIO8evSgLORixSoX5OezIZYNHg9FRWKSKoz4KSoS4JXcXBKIScxbtIFgrJAmpWvpd8o5fP/ddyydN4+hF17IV199RefOR/Dve+8jllDUA7B7clx6XETZa2aCDYIiNSlCNUAFPH5PHL8nbgXXuPQ4BALJ7Ws9bvOgAcktcF3IQFlawT5/MpjJ9FK6tQThcJhOnTpxxRVXcNFFF+3XoBegsLDQep/Xrh1gOTOBmiBITS0MSY+cU2UAAFONAMxHp+sisYpJJdF181xdt86TygByLErlB5kyOJ6RjTsWtjY+5PP3eAR1R9dF+Va6Yt1NFLF9H9ddVjpeCRwl2JP19vmwg12ZCcY0XTefvwK2qo00PvlkIt27t+H6f/6TswYPZunixRboVS/WdSAQIBhIWElWnEA04fPbrpMKGPJ+0uJ6UnFDPQeAWAxV6UF+H9ya/Zj8a/WD8h2TGyI7o3XsiqnXa5o97bVbjwopORX0KsGC8vnLY/J7hseTGvSaz0aCfHkfCYjdWsI2vvdfq7cHXnW2K1YHfPehud1u1q3bwA033AjAZ599+jfXqM72hj3w3PM89dSTBIPH0DY3l+HXXENOs2YM9MwkFhNMg7KYF++6JQzquJl7X8gk7MlkoP4FvPIKrT2FvFRwBvF2nRg/qwVrBt9O9thHOfvkKEbLloy/JYf+M2Zw42uv4c5fI7y5PXpwxsO94P776fvs2Tx4d5zz8xYSiQhgeL42hbZTX+LBf0cJR1wMG6ZMTmYu1YTmppO2glAIXCXF6LqgMEjFBmIxXEWFlpst6BOflQVa0zorSkJzk60VE4sJ+oRUeSAWS3q4cnPFhzk5FjBq3aEnT997L2uWL+fuu+/h6aefol+/voQjUZvHDuzyZOqsH8dNWcglOLq6qUcaiQiQIMtwRP1LYBX0JSfOhOa2UKCui7q7Y4Km4dLjgg/p8eAqKSaOuE/9+vVZsmQJVVVVe2U87Wk76KCDAPjnP2+gXv10CwSpwEtyTaXJz2rwZ+V7kvxUeY4EPD4foh+JJ7m9SlS/BLtxBGBVwRuaJjx9phpIAgH8/J7kvS2vpXmO15OwOLxuLWEBRFckTAKXtQugjqk4bmtsqUodVlUV2sOWTZs4e/AZ/OMfF9C9a1cWLlzJq6PHin41ga7l7dXcFpBL5ZFMBcicPGvncZcu+jEaS3q3XSSI4rXuIRcm6nOR2RRVz3UCl7VYkWBT9qdMaiiv2VUwrLZVLlLU/sbjscabXBATiRCOuS1PtgSz1jORZSoLJttClZoyZipIrlMLrTPV6oDvPjav18szzzxLSUkZd911999dnTrbg+YiQSKRoMlBAXJycli//mtWr17NP294hUS7TpCRgbdgDfn5Yj6bXiKODR8OfsKsyRvEkiGP8sIjj9D488/55JMvOPpog7aezULDt6SEWVVVfLxlCwBX3HAD88NVrK53OBQV8UnW1ay4ezzRd6eIyaJLN9qzQkxekQjRYSNA1/FrUTG5FRQQjplALz9fNCI3l6AvTjyQideToDjkpl07Ud9EIGghWglA2ubGCQYS1hZk2JOJP1aMiwSBgDnh6LrN6ySDlgoKhOSZVxNeWLfPz73/voMbr7+eefN+Ytu2bYQjSU+OqgcsAZS8D5hJBzQvXqJCOklLgiULZJiTaDgmJtgoXgF6YlGReQ4sXoT0KEuebxx3css+I9NqU9OmTQFYtGjRnh1Qe8lk+uR+xx5TA5ToOpaXDOxeNWkSIFlePBN8yWtiMQG8XCRwxaKiDI/XtggJR1yWbJccO27iVuCaBDoJXFbwVTSW1B6O6mZGN1yCQqOMDbWeVqPAot74PXGb51OCLzmmLX6ymcpa9tHGjYXc8+9bOLxzZ376eT6TJk3mo48+okvbQ8QCMOSygizlgm9nlsBVKyBTQV9cd1mLLMu7jdQVTvap3JmwnrPZRk3DJpGWwGXJuFm0ENlIXbf6VKZwll76P0uHkKDa+q7KVNG6WHyoTznh8+PXotZ6SPLvVW+0C9He2qgnTkC8J+kb+8bqPL77yuo4vnVWZ3vI5s+ayXkXX0xFRQUVFRU0a9aMYSedxHnnnYeR1ZGVK5eyetVcSr74glKPh59/CxONltC6ZQsOye1EIHAIlZUGr712p63cQw5pRc8W2fweDvPD0qU17vvMM9O56YZ+vP2ui0uGmJNFSQnT17UgN1dwdHvlFGIh0ViMzSVesrLAHRPcxqIiwT2U3k0rAEjR34Vk0JLk3xaXiCQQoZBQiUjgsmvimsE/0VhSL9Xawo0lFSTiGdlomtC+PvbYozmqa1cmfTrNxkF0TnTWvWIxu5SEeW9parCNc9sYkskJbIFOnoSl+iC5pda9zcxc0ZgLrx7mw2+/5exzz2Xz5gIOPvjgPTCS9q69N+4dhl5yCRvXryc3J8fuOXcEJTn/V832HEjUCkjU8WI7rtxP8kAlHULyr0EBZxKFIbOOxa33jo8tTqkFYpUAMVsdFIHY2jiiixYt4vnnn2P8+HE0aNCAK6+8hrvvvAMjrYkImHSUsSu6t3vCrOeh6zXaqrbR5qVP8b9KBJbfCUkNSqmFrNzzj+qX6l6qWsvOVBnUYztrjzSVC+18BgeGjm85aWl/vW6GEQb2Tx7z/mZ1wLfO6mwP2S0338hzzz8PQJs2bVm7ds1eu1dznw93k1yOP/50XrvnKjYZrVi1StCFfT7w5q+Adu0sT25ZoDWaJpI4rCnw0jYrDCUlFPtak1mwkHjHbhZ4cMWiEAqRyMq2QGwcN5GImZzCBLLemKmEoKcWvnd6YNRgGgkWtpaWMmPmHDZt2kT1tt8ZM3EK6en1mDVrDsGA+VvjkGCqcR8z6MySxNL1ZPYs7MkUZICd15OwPHr4fJSFRMawSET0kUz8YXGBY+KYP1ZM2JNpgSyPB+bPn8+RR/Zk7tx59OzZcw894b1jv/zyC8cf359jjj6aTz/7olbAmsrUz1OpCUhprFTBS6lAsgpObOUpSg9OSbtYTIDiqCbGhhxPTgBVI3CqlkQakPRE2hJyxGLMX7GK2/51MzNmziQn5xBu+Of1XH3xxTRq1ty6xkpoIQOvUsin7S1zAkNptS1I1OvU81KqYpjmVF/YWbmqWSoZpsnkM6AEizrqbZ0rM7k5QW2qhe8utBNMDFMHfOvMtH2wLq2zOvvfNvkDO+QfFxHdEWPNmtV8//339Ox5HIWFa9hiUhMCgSDHHXcS7Vs1p1WDBuRmZtLg8MPJ/30bhUt/4feiImasaMmDw5rx1ZpL+c9/vIwfH+LHH29k4sS3AVg8ezYNmnanTcNSwYvLaksFULBIgF4ZPENODrz7LtFzL+Hhh+HRW8vAF4CSCG2zhIcnmtUaPQSbM7qRYTp9xO6sF2+GhqukGDIyCEdclJSIoDbpxdV1N2EtiN+UAwuV2DVyhdaubsu25tXiENOFjJKuU/zbb7Ts0IHKykoaNmxIgwYN8DdqxEsvvUHQ57V0fSXoLQu5LK8yYEmR4fELhxsAWo0UpS5EOl1IAtkELlyqixDx1u+JEzUl1ySFQl7oA/Bl4EMBapEwhx12GAArVqzY74HvO2+Pxe/3M/69CTZgkAqMOoGHBEGCCpEMUkPTzPhIr62vwRG4FIvhMgt3aRpuRJpfWZ5cDJXFvPg0cIdCkJFpck3FwsRLFHw+vBLohEIkAkGbLJdsg6oZLFPyqtviVvppMzDOpekY6elMmz6dN8a+xcSJE2jXrj3jx0/kvHPORDPRfDgCfp/p3TWdvVG8eB0e0r3t+a0VyEswaIJw53O0zpO7MTIteIqyJAVEemfd6LhqAfbSa29lbFRoGR6TboGmWWqFTsAqv4oyNkCOIxtNiprgW/UcW4odqu60Epi4P5umwe6IPBlGjZ++OqvF6oBvne112759O/Pnz6dDhw5kZmb+3dXZ4yZ/VHv16kXvTh158c23+OGHH3j33W9om+eC99+HIUPglVdY0X8EIH6cMzJg2TK48Ogohf3PJztLyJVpGpzoEZJjF17YAniOoqJCDjnkUDoFAqwx0pG6SB4PuEPF5OVlkqmVsSE/SFYWaB4/7mOOIRKBR89dSLHeDV8MImSSaSaJ8GBu4RcVQX6Isqz2BD0igUNxyE2m6TX1e+L4M2IktKQXwe8THOF4VgvcJYVkZGWLD0IhIRVmBhd5VU+byTN0I8Bsox07qKys5NZ//YsnHnmEX7em0yIrbgERn89t0wMOeqKAQK4uErbtc+s5aBph/Pgdk72Yc10WnVF6fAVgiRIICNBWWOQm2xfGm+Ez+Y6mJ1sXE74Eb5rpHUz4/HirqznooIP4/vsZXHrppXtnkO0Bc5GgSq/G7/fTuFFDwA4+FJonIPrL4sLqcdyptvLNY17NBJe6DubiSPaR1XfmqiOuu9DAAsGWt9ak10gt6KgvE830qksPYMLjTcrReRIQCCRBkS4WWnJxk9QOTi6SVJksKxEGItBx9o8/ceON/2TBggXkHXooTzz+OMMuu47GjdPNQMy4DbgBlufSrWHdZ5/wHBRTgaO1aFG2/C11FE2zvgeSPwzJa+RYsO2KgLUgcWsacd0tvr+KyfEjvoualYBClbUDh0cd+2JK8qzl5x5P7bsQKk1GvVZel0yNnAyQPBAAYR3w3Xe2/y+D6uyAterqahYvXkSrVi054YTjbRnr/tfMmnzNWdflcnHQQZVi0sjL4/IrXUIXDGivraF1nvCi5uRAYUgEnRAK4V80E2/RBlFeJMJXX8ENNwR4881veffsgUmR+5wWzFkVxD1/DpSU4PPBhlCQzz4Db6RYqBtktSYzEIecHAs8BALmBFckJK0SuIhnZENenshOhpjwMjJgc4mXZctE1eIeP66iQmSASVnIRSKnBW49SrEmQK9Lj5MIBJNeNMwgp0gYEEoW0vuSwEV602ZceukwXhszhsKSMnJysPbIEz4/kYiIpZOTqgzOUSiJVhtUcO3zJYOrikuSXiN5rceDAPuahlcP20K+swNRW/CelECL6u4aSgcyEKxevXpcccWVvPvuO8Tj9oxk+5t17dyJVatWUVIWsnkMdV1s10ciAjC6tYQAi6akG7GYdb6kMchrIxGxlS25uLGY+F+WC0nvsJNrrd5f9eQnEN5YN8lANMt8PjwexeNMMjDN6xGjQdexAsIk59upDQtiXGwoKGPYsGEcc0wfAL775hvWLF7MddffwkGN6yfBhMmBVcGFk/MqVUEE8E9x3h42p3fWAooq6DU/TJAMClUDwNxawvY8vZ5Esn9N0JvQxKLGrUeTgYtKm9TnLEG19MTK9luUEpLHpEfZaVaQnhLcJv/K81VvtI32IXngutAcT4Ly/dtMmvhuveps16wO+NbZHjXDMIjH4+zYsYOTTx5It25d2bZtGwAnnHDi31y7vWfqj3f//v3RdZ033niFr39oADk5XHnlapq/+S4dOqTxzk/lrFiWICcHWuQkyJ41kYwMWJgfZHNuX2uCXaO159xzhbRYazbAySdbWrpFRQI0k5PDZl97/Mvm4PPB8OGI6zWRUW1zkTuptBAJE4mYMqVFRWKyi0WFJFosBhkZxDUv5OfjKiokIwM6dhRtcutR4hnZlIVEcJcVsK5pNkqAOgFa29yaxpp1gqaAplFQkAwk/+9TT+J2pzPimqtIq6q0ynFFwkLj2Gnm5Kv+b+Mkyq1z8xyZeENqnHr1sKh7VpaYzE26g5QuUzNdWLQN3Y2XaFIVQpPb88lJuJ4rjerqat58803efvttvvzyS3YhfGKf2roN+WRmZZNIJFi5fGkS2JJMIRz0JSPvLTO9tRJUyLbL8/y+JNhKeJLcaAn+onpy+19OzqoSg5QcU+/nikVrBFBZddI0IhEVNOssWrSS7dsNa9zJNjmBtaYlZb2qduzgmWefpWvXw/jsiy944YWXeOiuu3jvgw8ZcettrFy5xlZnCRxVgBGOCNhlyXCZXmknCtnbW+0q+JP3UtNCS7AqAwGt60yAqVJDVLAqF4XWNR6PnfNrLlLUY+rYcYJxWa58ThJwy/Ktz8zvsbwmFZc5VR8kcJHwiJTjmobNO19ntdtjjz1GWloaN910k3XMMAzuv/9+srOzadCgAf3792f58uV/XyX3pBm7YOXl5QZgbNtWblRXG3WvuleNl64njK+//tbIzc01AOPSSy8zAAMwTh00yBj79NN/ex33xauyUvy98YYbDMA4JDvb6gf5Kti82TBWrzauusowtm41jPJyQ7wpLTWM1asNo7TU2LLFMH76yTA+/tgwIpGEoU+caJVfUWEYRkWFUVlpiIvXrze2bhVlbN1qfv7558ZPPxmGsWWLsXq1YRizZxsVFeL68nLDdh+jutowNm0ySkvF+cbWrYZRWWmsXi3+LS8XL1nXyspkOysrxfXV1Wa5SkdUVxvG4sXmMXnz6mpxXmmpdf3HH3xgAMYzjz1mXV9RYVhl2K4vL0++Ly0V9zfLMiorrTpa15WXJ9+b11dUJOsq+7CiIln30lLD9lArK+11sf1fWWlUVhrGqlVrjAEDBtie87nnnmc8+uhjxoABA4wzzxxslJdv//vGZlWV0bBhQwMw0tLSjA7t2xvPP/eccc5ZZxntDz/c+PnnBaJdFRW252f1nfmMZZvVz6qrzesqKmzH1PNrlGf2m/O7k+pezsbIQ0Z1tbGjosLwer0GYPzww8/Wc6zevt1Y8PPPxqQJE4x58+YbCV23yo1GIsaTTz5lHJydbaSlpRmdO3cxzjzzTCMQCNieX3p6ulFSWGgb77a6KWNBrbvVJ+Zf9Tuyt1+2+8uKm98X8xHZf6iU56COaes76Hwe6sNK8TzUsuQ/Nfqr2vF7YdZBDj05jpx9/kd96KxrdbVh/Rj8/rvAMOXl5bsCefapSXwVCJQbBx1k/OVXIPDX2jhv3jwjNzfX6NSpk3HjjTdax0eOHGk0atTImDx5srF06VLjggsuMJo3b26Ew+E93AP73uqAb91rj7wefvgR26Rx+OHtDY/HYwDG4sVL//b67auXUV1tfPrp58bPPy8yspo2tfXJe2PHGlXl5UnAuX69uMgEm5GyMuPHsWONZ5991bjukkuMYLCF7fpFi8oFwJ082TCqk5NuRYUhEKZ5bNMmwzCWLzeqq5Mg2ag2AeemTYZRWWmY1TDGjRN1ttBgRYVhrF5tTVASYxrV1caWLeLWck6zgRIJMOXkKW8gZ9vycttEZlQrgKmy0rj+uusMn89nVGzfniy3tLQGaLLKkJ+pZZmTnPUsJBBTyrBQsVkf2X+yXhKUW+fJGdksS62/E7wZ1dVGNBozKnfsMEY+9pgBGF6v1zjj9NONhg0bGn379jXWr99onbsvx2VVVbWRkZFhjaWDzQVZhw4dDE3TjPr16xu9ex9lPD5ypLF48cqafSnHm9kPpaXJPrYWYcpYsPrb7Fz1vVVWtR0I2Z5ldRI0yv/feWec0bVzZ+OFUaOMsrKQ8fvvpca///0fq01PPvaYcdeddxrXXn21kZeXZ/vutGrVyjj++OONvLw8Iz093Tru9XqNvLw849hjjzXuuedeY8GCX4yWLVtan+9Q668+bMfCR3511DFta0D1roG3v/J74xyXtb1Xn591jVwpV1fXGMuy+rZyHN9H5ZC9YuZi1FnXGn0pFw3yd2wnCy71mDp2nH1QXW1/BEZl5QEBfJs0KTeaNjX+8qtJkz/fxu3btxtt2rQxvv32W6Nfv34W8E0kEkZWVpYxcuRI69xYLGY0btzYeOWVV/Z0F+xzq5Mzq7M9YrNmzeK6665l2bJldO/emwUL5lqf6XqCtLQ0QiFHpPz/oC1cuJCePbtb/5933vm89OwzRPVsQU1AaN5CMhhl1aqf+c9/nmfmzHdrLfeiiy7n3eef5Iu5QXJyoFNWseBd5rSwBbDIiGrJryspEbuVQS2pz2vJeIVCkJPDhnwXrX3FFJOJppnb3atWUZzViUAgGQzm3K7VdUFb1jRBvejVwx5dbfFnTWJtWUhw7lrkKFHn5mdTpkzhnPPOY82qVbRp0wawKwLIrU6p7FDDzLb7PWYQU6TMGmzhiJBHksFO1v961BZw5daSUloqP7IsJOSXVEmsGlJQ5l+1zsUlZTRu1JD66Q2YOXMml156MWVlZQwffi1HHtmbE47vjz8Q/BOjC2bOnMnQoRfSoUNHTjzxRDp2PIKTThxAWlpaaq6kwolcvnw5Tz/9FNXVCa679hratm2L1+enQYN06/z09HQqKyvx+xuT1SyT7INzCASCjBnzGk3M86KIJCEWsVDqyOrJwERJt1HlyqTJyH/rGTgIiioPd/36AnKzD6LSqM8ppwxg1qxZtfZNeno6zZo1IxhsQof2h3PlFVfQvmMnlixZwqRJE1m9ehU9evQkIyODcDjM7bffkXI+mzRpMkOGnAvA66+/yaCTB5KVlWXbbpfybXHNW6vcl3UeNT/fU1abjJeNGuAkxataurGa3wHZNkvL26SGqFz4VG207qWqKTgk4hIer5AMlJn3lFiAVN+vVP2n3vOP+lragSBn1qxZOS7XX69bIhFm69bG/Prrr7Y2pqenk56envKaSy+9lGAwyDPPPEP//v3p0qULzz77LBs2bODQQw9l4cKFdO3a1Tr/zDPPJBAI8NZbb/3leu4XtivouM7jW/fa2evzz7802rRpY9SrV88AjH/842KjoCBsAEbXrl3/9vrty9fSpcstb1GgcWNjwIABRuW2bYbFXZCuiPXrjVAoYTz77Bs1qBDy1a/facamTduFZ3jTJkFZWL3a2LRJOGpWrzYMo6Ii6WlStvW3bBGfrV+v0Bukp3nLFsvL8txzhuXdW7/ePE/1gkqew+TJlvOztNRIekKrqy2KRWmpYdvuVhy2RnW1YfMe//RTss+M6mrjyCOPNLp162YkIpGkJ6e0VHUS2rbhjeqkF1FuyVZUiG6urjZSb8fLAw6uho1WYR6XbZSnO8twPndbPZV7qNcUF4eMW26+2QgGg+bWZsB48rHHDF1P/OG4Wrt2vfHcc8/bxkdaWpoBGO3btzdWr1xpq5t6sVqO+nl1taAonXfe+bWOQfnavHq1UV1tGIlQyOojy+uvuApVR7n1meI9ljsQVn0cz2nu3HnG6JdeMh544GGjY4cOBmC0aNHCaNasmVWXhx580BgzerQxYcIkY+nS5caSRYuMhQsXGfG4vke+w0Z1tfH9d98Z3bt3N9LS0gyPx2PceusdxjaFnuP0esr+cI4R53jd0y+1XJUikOq52743jrFhG/+OcSvbJakJznEkH3MqD2xtY885PtX6qS+1r63/q2t6uWscc/R5+bZt+73Ht1mzcqN5c+Mvv5o1K0/53b3vvvtS3ve9994zOnbsaOzYscMwDMPm8Z09e7YBGFu2bLFdc9VVVxkDBw7cm92xT6wuDrDOdttWr17F2rVrrf/XrMlnzncfA/Cvf932d1Xrb7FmzZrRtGlTfv/9dw5rdzg//PADR/Xvz9nnXYrLVZ+D5s9ncPfuNGrYkAuvOJ4vZswAoFWrVtx664scccRA+vYVX8uRI98gJ8cHeCEUom1GFGIZZHiEBzYzA6IxEcgRjbnxejxm8JqL7ECUwpDXctL4fQkSBMmOhMGTYWpu6txwpU4UPyEzWM6tRyks8RIKQfvcaDLg64QTRBASOnhE9LorFoNQiLAnk4BHRlkL5QUpUi+9n0LXN25KTnnp0UM4nH0+iEZh2bJl3HfbbdbOQGYG4POhxxTPjeJZlbJiYd1raobqeNHxZnlMj2EyA1sCl5XkQg1gk+d59agpRWUqBGhuIZ2mC8mtWMyF5nNZkli6LsT5ZfawhJaU0BKe4mQgj/wfoGmTRjw9ciRPPfkk+ZsLuOWWm7ntP//hkmHDyMzMrNUTOGvWLPr1O9Z27MUXXmDlqtW88MIoVqxYwYIFC2jbunWNRCKpZKDSjGrGjxvHslWbKC/fymeffcrQoRdz6y03M+TCC1m1alWNOmwsKmX5ui8YcuGFjBhxHfff/wjuWJi4x28lLvN6Evg9ccIRM6mDx2y4T0jDRczdiAReQqEQixYtZfXqFVRWxli/bi3zfv6ZefPmkZaWRuPGjTmuf3+u/+eNjBkzmg4dOnLDDTeSlZVLVlYgZT/tKUvg4pi+/Zk3bz6lpaU8//xz/Pe/T/PGG6/RrUsXfP7G+Hw+ykpL2LAxn+rqapo3z2LEiOs588xz8LjtXmtnsKTTM1mbpZLy2tl5MgBR00SAmypvJjSLNcuDm/B4cUXCQlJO14l7/KCDGxEgqpH0wsrvsN8MFHMmrFF3ZVJ5vlUPcm3JboT6hj3boiw7rrtxdKVdp5eaSUt29j3YX03TwLUb1UyYwyCVx9dpv/76KzfeeCPffPMNntryZgNpDn01wzBqHDsQrQ741tmfNueP9g033Mixx/bllVdeprCwkO+/n8H5F19M06ZNOe+cs/7Gmu57a9KkCe+/P5H3xr3DwYe0Ys2a1SxcvJiFi2+xzvnyjDNpf1hbvp09m+bND+G3337lzTe/p1/PJkQSYtK/9tq7KS5uKi6QW5WRCHg8AmSZ70GAUC9xyiJugr44sZhbpO/VWggAoiXgo49wnXwyUc2PV0vg1aNsLvGSkwNePY7XFwMEIPR4oH27BNGYF3wCWEslA6lwAB6RPUsDvx4GzWfLyOQ3JcUSuCysiamc4I2FQNPQPJm49SgTPv2YiooKunXqBJgMBXPWlr/JIlJcSFKFIy78usgw4fclLAArR6SmCVUIrxLSHcaPB3Ar5WmaOYmb268+ZWKXW9iEQmieoFWw2wQWcTNjl0zAIMt0bnvLRA9qZLuLBC1btuScc87lo48+pMMRR9CrZ09u+ddtHHfccTXGlJGCjTby8cf59ddf6du3Lxeccw5nDD6b+x55lF9//ZWbbrqZjh071oiCl/X44YcfuMihN5xIJDiic1cWLVrBfff+m8efeILGfj/l4TB33Xkn6ekat9xyL+Xl5Tz22KOkpdXnnHPOoWvn9ri1SqEGYuro+jUBcmQGrkgkwoYNW4hEQgSDmdx/3+1M+uADAOrVq0f9+vXJzc2lU6fO3HbbHZxxxhloCvXhqquuqtH+fWVNmjThgQceZPjwa3n22WfIz89n+/btlJT8zkEHBRk4cCD169dn0aJfGDLkfE4YMIDJH3yAzx+wynCCMqmluzOrbXtf/SwViLTLxCVBoVeLJ8esKQtoZTs0FRCcGrBC4i6GbVWnaeaCT9HnlbQlJW2yquErv2NSVULjjykf6ndGVfyQFC63spiQ51pJVWT7lXrsLTm5PWl7Cvj6/f4/pHMsWLCA4uJiundP0vKqq6uZOXMmL7zwAqtXrwagqKiI5s2bW+cUFxfTrFmzv17J/cTqOL51tkctGo3SyBTHv+yyyxkz5vW/uUZ/nw0ceALTpk2jY8eOhEJhmjZtwi+//GI7R0jIPMx/T+5BvP9AQiG44AKD7w6/Dm69VWS5MFFZYcRPdiDJKywsEp5dNJF9yRsptryac9Zl0qeHmBhjMaHtW6ZlEoxsJpHTQnhAzXS94ZgbP2Hw+SxB/7KIm6AWpkz34/MpnpaCzRRqLSyacNsck/+Xnw95eUkvjMl/tOSMLP2zpC3fWMJDD93PhAlvcvbZ5zLhtVdJ+OxZuKSnWKYjLo54rex01qQXKqOMoOD+6rrNE2txGEMh65zNBS6yspIpjDVNkX4yG+qUT1IlsmSaWmlSG9iZoleajQusWAIXc+fM4qtvvuXLL7/kl18W8vHHn3LKKafU6KuCggL8fj8PP/wQS5YswefzkZWVxRNPPInX62XChAlceOEQ6/zt2yvwer0pAYau67z80gtsLf4dv9/PYYe1Y9CgQdSvX9923n333cvDDz9k/d+sWTNef30c338/lSefHAnAiy++RjDYnK++mEDjgzI56KCDiO8Is3bVKtZu2sTGjRsJh8O2cn0+HyNHPsGxxx5L27ZtcbtregB312rzLP7hdTsBZB9++CHPPvtf0tPTado0k6ZNm9IssymZTZvS6tA2FBcXc+2112AYBmefdRZ33Xknh7Y5zCpX2q56fNXrdnZNKq4rKFq4ikkgKBd+cljaFn4o3wtNSfKRQig2JdBMkbzCOubw1ILdO67q8KYUplU4xGrba/SDymMmcUBwfFu23H2O76ZNu5ayePv27WzatMl27LLLLqNdu3bccccddOjQgezsbG6++WZuv/12AOLxOJmZmTz++ONcc801f7me+4PVAd8626M2btw4LrlkKADLlq3g8MMP/5tr9PdYIpHgrLMGs2TJYjZ99x2rq7K48MLjWbp0IVVVVQD0PvJI/nvJJSyrfzW5uTvo3LkRq1ZB33YikQS6TrGWTSgEM2aI5G+RiJltLT+faFZrQiHI1gUYzfaFKY75ySxZQWGgPSBws9yaZ9ky1vi6kZcnPKIJn18AQ+nFKSkUGSPACkQJhSBImZhIMjIFYDZRbzSQbVEJioqEp9bK9mTOpOGIC3+kkGggm1gMpk//grFvvMDmggJWrFhBo0aNuP/+Jxk+/Aqqq9OEN9kMhPN4RL3X5LsJBAS49PmwgmMKS9xkZGCflE33ckrdz0hEtFmdIGX2Nk/C5vKSCQAAyzMsM3+p28i2eygeJkgNVqyUqiYgTwYD6pxz9mnM+P571qxZx8EHH7xL40yWX11Vyaw5c1mxYjmHHJzNaWcM/kNwtTMgBUkPUCwWo2GjxvTu1QPN7eHjyZO4esQISkpKrGvat29PZWUl27dvJz3dQ5tWubRuezht8lrRPDuHgw8+GL/fz6+//kqfPn1o2rTpLrXv77Di4mJCoRBt27a1jr388stcf/0IBgwYwEEHBSkp+Z3i4mKKi4spLS1N6ZW/+qqrePmV0db/O0thvLMgNbmgShW0ZUsJDSnPkceT3tLUHmRZR1Wj2VpA7mQsuUhYuz1qeSnb5ADAVgKSFDQHW50iZagr8Np0fZ0gXZZRVhamadNdA4X72iS+at26nHr1/nrdqqvDbNjw19uoBrcBPP744zz22GO8+eabtGnThkcffZQZM2awevVqGjVq9JfruT9YHfCtsz1qBQUF/Otft3DSSSdz+eWX/93V+dtMeuAmvvMOiWiUR597jrUbN/Lhhx9z+umnWuBXtS2PPELGrXdayRfimsictm4dnH9alA1FgpowYwYM7B22J1zQNApL3GSvmk78mOOJxczIaV0nrHvxI/iYM2bAwP5xmD+fRO8+FBQIrGuB45ISElnZuGJRcZ0nzuYiNy2y4rZI8IKyEPkb1tHnmL4UFYkyXBEBvDMykvxdSEbur166lCOOOorOnTvTvXsPunbtxkX/uIAEfouyIL3NPp894t+m5qDuycZiJn0j6RVG18UxE5THYmbbMPmLqneJpMdJAmr1HHleyqhyyZWU6hRg1Velfcg6y3IluHBGshcWFXPwwc15+OFHuO22O/d6JianVzS1d9gO1jasW0Obww6z/j/qqKN47LHH6XtMn1qVJf5O+yPwX1RUxMiRj9G8eXNuueVfrF69mj59elNRUUGTJk0IBAJEIhG2bt3KtdeO4MVRz2Ok1bOlJtZ1nXXr1rF48WKWLF3K4sWLKSkt5eWXX6Vz58416vFHnlv1f2nqtYKvWxPYqtfIHQq5G+H0gsoxKOkoNe4ts6xp7hrfkxqLPseCz1mfVIoNf9Ru9f+d7qTU0gfO68Ph/R/4tm27+8B3zZo9B3wNw+CBBx7g1VdfZdu2bRx55JG8+OKLdJRZjQ5gqwO+dVZne8Huv/8+HnroQbp378GCBfOt49dddz2LFy+qIct0y5ln8vjEiWhFRRR7WpCfjyV/lpEBs2bB8T3CSS+qJqgE69ZB+xxxnFiMzSVeAgHwx4qJBzJxF2wQBUmNsWXLBCWhoAByc62MbZYcGEl6g5zg3PlrxBvTG5xwu6lnbosbpaUC6OFPemN9CUsyLBQSE++2bdu49OIz2VxQwNKly6msbJAEsqbXVdIFpHwaJD1aVnCcRGGK9xZq93RFYy68iL7SdSwZrqjuxhsSHm6nN0xu8wJ2kOyQLLOl3zXrI016wSQ9UlIpZHCcPO7S4yxaUczbY0byxrvvUl5ezldffMFJAwb8pa36P2O7GmClnmMYBuPGjUPXdTp37kyXLl32WrBLSUkJDRs2JB6PYxgGjRs33uP3uvLKK3jzzTfQNI3MzEzq1atHdXU1Tz/5JBvWrye0PYLX66VTp84MHnQyustjGxO2cWfucvyR11W+d57jBG6pAF8qr3Eqz2cqIGmj3DjBqqNgi9rjkBN0Ako5/lXOvNPb6uwnJxBOxY1PVV+V4qB6wWsE0qUY15FwaL+nOrRvv/vAd8WK/RPc729WF9xWZ3W2F6xdO0HxkKC3SZMmnNi/P19++S0FBRs5ql07Hrr6ato2b47RZwiHpG9l1bx5TF9czdChhxAKpdErY4MAp6EQgUCQNUV+2maFiUT8+LM8uPU4eXluwAOffcaadmfQNqMMNA8UFCBhUxw3kRD4fF60Hr2YPx96dfSwpsBLXp6fggLIyXHj18V2YlCPAhoFRW5a58QFODRBnaukmHB5udXO5b9tpU2bw/HrUeKmh5iSEP6MDBK4CATg16UL6HvGGVRUVDB53DgaNkinQQOSk6/Hg9ecrNyRMrRA0L6Fq+t489dBXh7RmAAE/lgMl8+HKg7tDGghFsOraaALfO/3JUAXrl2vxwNZWZbHK4HL0kL2epI/i+oEKgNzrAA7XzJFbEzz41W4jRI8O8GAW49bagexWIzXXn6Zux54kPr1NYZfdRWXXXk1h7U5dI+Nw53ZrnhnneekpaUxdOjQvVUly6ZNm8bAgSfYjvl8Plq2bEmLFi1p2bKl9T4jIwOXy0WXLl0IBv+cLnLr1q3xeDx89933TJo0kfLycm6++RYOP/xwa0PFoqe7xfOTAY0qyErgAmUhBtQAaalMBYwx3Z1UISFhqYGogFAGxanAL+VuhAIok/x0O4i06ew6NH7Vsp3lSlMD9KzzTYpQzQVjss80rWZZqXjECRSlB8ci0KnuIOvuSsH/3VU+dZ39/7E64Ftne8QEePq7a7H/2JAhQ1i3bi333Xcvr776OuefPwS/34vr/fEkzjgDVzwOr7xCxdFHM+q/N/Mfc3sJ4PRjF7NuXSd8vtb0yAF3QQHd9HWQ2wXw4ENOFLBqFeTlufH26EFbXxgiMYr1IJkdOxKOudF8mXj1KJrmpaREzEFZWbAi30t7bQ1xvS0tsuIQ0ymMBfFp4CdGWBdBZIUlbjweN0EzqG32px9y/vDhVl1//fVXOrRqCbqOO1IsvMeBgJhwImHcPh8/L1tGYWEh3333PX379oVYVEy0sRgxzY3XI9qj6+AJBHGFyohpQTSfy0oykWjX3tp+jcXAb3qp474gbhK4dBF05tVj6B43uu7CY6o1eDxuPJp5oaaJID7cYHqWreAaVXwfNQIfa8KWE7lf04GkPFMsBt6A+DktCwnAH4mYnWSqHXg8EIq4yc9fyltvvMq7771HWVkZAHfffT8PPHAfQA3/ndNLeCBadXU1n332GSUlJTRt2pTCwkLmzv2RuXN/pLhYcNqlNzctLY1t27YB8Oijj5HXuhV6AjZt+pUtBfnkb9rMnDmzee+98ZQri7D69eszaNCpnHnmYNq2bWtThkhPTycQCHDQQQfh8/kELSORYPv27cRiMQ495GAeeugphUKQwGsuiCQVQKoJyOeR9PKai0JzLDg5uU5qjQrMpBJBQnPj1exAUI431Surmzxzt1JmbeBOjtsk6BYXhWOSyiO+FzYPqwmIMdvpLFP1xLqs3Q87kNU0R32U5+BcGAgwL75nqbjEVt30JAVJHlPVHcT31G27h9MLvL+bpkG9en/9+v8BlbF9ZnXAt84sMwyDrVu3kpmZietP6qrUgd6aNnPm9xx77LEMGXI5/tBm8OeQGHIhVevXsqSsjGeXhxjfooV1vqZpTHntNVrk5HDaacksd9G8Ttbc4S7YQEGsNe3z4lBURElJCzp2RPzyDx0Kw4czK5bN2acJRbPWoYWU5XYjWLKG/FhbOhV9AxkZFOd0g4w85s4Cn89Nt5wQ2XoJ+HKgKIJfD1HmEwFzeDwUxoQ0WsglJperr76G0aNfpaKsxFSZMDmBppfGyvYEnHHmmTTNyGDy2Dfo1Kkvuu4l0xcl7vHjJS70QzVNeKTQwOPB7zGztPkUagHCI+aVkmQOLq7wlvkJlQj87YqE8Xj8VkY2PB6LexuLIGS3NI/l6RUcYel5s3uBVdpBQnOLc0hYgTrBgADMkYh4bi49js8nJnIjPZ0p741n3Dtv8e20aVRXV9cYK9dcdVmNYzZv4gFoiUSCiRMnsnHjBsaOfZN169ZZn9WrV4+uXbty0kkn0+KQHNISCRIuMeunVeug1WfQiSfQwZS4S8UjBdhWvp1QWQnxeJyvvv6ad959l8svH7bTetWrV49AIICmaWzduhWAex58kFdefhlQAsZMcAdOAKksQhxeXqAmDQY72FXLUP9XubspA9A0seOQygtr+6t4ci1daZIBmTIsIBV3HUjSeRASZSrtwRqPZvmp6AZO8Op8by0cFIAtwbLqHRZ9mATPGnYPstv87ZAe6lR2oIBeqAO++9LqOL51Ztm11w5n9OhXAZg27Tu6dOnCgw8+wMyZ39Ota1eefW4UXq/3b67lgWFVVVUcdFBj7rvvIe647WaMHTt48dVX+fDDD5k59yd0PRnclpXVnDFPPckJ517Ipk1ptM2JUhbzMnUqnH+uwvdDgF1KSqBdO4sX+8orMGK4mBCkli+LFkEoROKEgXz2GZxxWkLwe3NzLT6uq6jQQtfT54qy+nQR9w4GEooOqwCJhSEv/sqNNGrdmpdeeoUxY0azefNmpk+dyhGtWlEc8xMIKLQCsEi7dz70EC+9/DJbtvxGWloDvFo8mV5Zj0MkQlgL2iLDARuloDbOpDrZS6+wVGBIxVW0uIlS7smxzat67pxBbraDlkCxslVLTfH8BT//RK/evWsdK5dffgWvvTbGuseBCnQNw2DdunX8+OOPbN1axKZNm3j55ZcAOPuss7j9jv/QpUsXtpX+TqNGjUir18jO28YOknZGEZDnpgKAkbISNm3ZQrWRhqu6CurVY8eOHWzbto2yUJht27ZRXh5i3k9zKfytiJ9/nkdOTg6b8/NF4JqjzD9Kp1tDQi/F9ZrTs1pLO2po4JKoCfrN/+VvQo3zZeeZuxcqTVZthzqWnQD4j7530mqjQdS4ziEvJo/J76laZ7n7I6lCqtW2kLC1CZINNgn1B4KcWbduu8/xXbiwjuO7K1YHfOuMyspKEokEU6dOZfDgM6zjTZo0obS01PpfaoPW2R/b4sWL6datC/+5/Xa69ujFhAnvM3nyBwwadConnHACR/bsQd/+/Rk8+GwmTJhAvdLf2RDJtAKfMjJEIFZY9+IvWEFxhpAnywytESdIfa9QiDnrMunSBb76Cs4+LankEApBiywh+5VNofD0htxkamUkAkFc+RuEpFZGNgDumNBbDeNH1xEAOhIRAC8rC8MwuHTYMCZMnMjy5SsJBAKccMLxhEIh7rzzbtoc2opOnToRCGaQlpZm49+98tJLXHfjjWzeXEKjRgcRi4l4PI9HeGYBS0dYagQHY4UksrJr7eNUHisLgOq6pXfsBARx3LhjYUv5wQl4neWr2qMWGHPqierJTG6AWJxkZQlZuHicsVM+Jz9/DfXr16d//1O54IJTcblcHH3UUdx222306NHDBqgONHv55Zf473+fZsOGDQAEAgEaN25MIpHgtdde56QTB6QEK87/nQsZZ4CX7GewrVcsvKMqFNQAeiS9uQt//JEexx5L165dGTLkH1xz1ZVW0okaCxzFnJqzqQCf05zBXyoAdMqLOct0Ajp1ux+wZActmbwUOrm1bvmriNjs0FT1T7UAdI7VVF5VZ1m19VOqa1PJrkmTGRnVRW1cT9Ki1DJkXx0IwLdnz3I07a/XTdfD/PxzHfDdFasDvv/PbcqUKVx00T+Ix+Mc0b49d91yC5O//oZJkybSt28/Th10Cm0PO5yBAwfuNLVhndmtoqKC7t27Wqmcc3NzefDBh7noootwkeDbaUsZOLALN990Ew8/8oxQT/hsCpx2GuTns0Frixl/RVERIlGFx0NhkUi+UFAgsK8UawjGhELB5gIXLQJCmSG4ag707g26zop1btq1A1fBZuvChMdr6fgSiVBdXk7focOYM2cmkyZ9xDmnn8y2inSCPjFZ33PP/Tz66AOMf/ttLrjoYgA2b97M6aefyvLly2tomd5887/571OPUFzi4qIhx1OVqMf06d+mntSVSPNQCIIBe9T3H0l7qUDAqeNb2yRd6/+Kxi6k3nYOR0Sd5Na0/EwmAnAh6BVWSmVEWuZvvv6SDyZPZv78+RxxxBFMmjSZvNa5+y3YjcVivP3221RWxrjyyqto0KBByvPats1j/fr1fPbJJxx19LEEA8l5wtn/tUXkq7YrHkSnp9gZ6KQCQBUI67EYvfv2pbKykl8WLBD0gRQ6sqnuvVPvrcNb6/TIpqp7yj5IwTWX56pKCqnGdW39JHnnat2cAWKpvMPyvmr5Tg7zHz07tQz1/FTAOEFSJjDlOEmxSyMrbC08zVW12p4DQdXhqKN2H/j++GMd8N0VqwO+/8/tqKOOZN68eZxz1llM/vBDAO666146d+7EqaeeWgd2d8NisRglJSW43W6aNW3Cp59/yVtj36Bjx478OGcO306bxrnnnsd1R/XmvzNW8umnY/ho1CjObNuWJxYNJBaD4cMh0xNmQ4mf1lnRJNL1eNhQ4KZ1RhhKSigLtEbXITMjYUVVWXJfoRCbI0Fa5IjP4ibvNa67RNIKn4/imJ/69avpfeThrDHB+vmDB3PB+eczavTrLFnyC2VlZTz88CPc9Z9/i/KViauspJiPP/iAK6+7ztYHpb//zrbyBO3bH8LIkU9x3XX/tCanuMdv6e7a9NOoOdnuzJzUBIsWYvaVLYOcYnI7F+yAxoYKdCEJIZN9qBOy6imTnmaZ1c2tJYjH48ydt4QtG1bw1nvv8fU33+D1eunY8QjmzfsJ2P+SvIRCIUpKSigtLeW3337jnnvuYtWqVSQSCdq1a8eAAScwbNhldOvWzXo227ZtIyMjSL9+/Zg+fQaQ2ounmtOTLq9JycnUdZunszb+rPrcnaogAGga27dvZ9hll/HRxx/z4+zZ9OrVy7bAqs3LmGp7XvX2pwKy8taqpzcVmE8JIB2LQXkfqwwH7zzVPZ2fyfHrvEVtnuFUYHxn56XysidwqYygGu13POZaAwHlZ9LbW9vuSKpnARAKRzjooP0TFEp8deyxuw98f/hh/2zj/mZ1wPf/sZWVldGlSye2bNmS8vORjz3Gbbf/ex/X6n/TqqqqCAbF9m88HrdRSFS7776XuPfea/nqKxjUoziJ5CIRCj2tRaIIPc6KdW5ycsCfvwTatRMXl5SwWc+mhb4BMjKYs0wkrLjzymKLV7C5wEWLkoXQsaM1cVaV/s7bH81k5rcT+GLaNMrKyujVqxfz5s0DoEePHnTt0oVjju3HRRddlFJLdcSIa3n11Vdo2LAhPXr05qGHHmPQKcfRoWNXIpFt/F5czOIlywgGMwGTViGjbExTt7hVq2XX2WY1aAq16ImqXjmZFCOlLi+kFPeXqZgBO6XC9OxVV1Uy45tv+Pr7mUyaNJHNmzcD0KtXL2669lrOGnIhkXCIRx4byeDBZ3HsscfuvGH70F577TWGD7/adqxZs2Z889VXrFy5knfGjWfp0iWUlZXx888LaNc2D4DPvviK008/lZtvuomRjz9TY5FRG4h0ZgaT56byZsrrUtIASO0Rdo6jSZMmcfvtt7Jt2zbeHjuWwYMHp76PTHOdgm/rBHm2hRbUoGeo7ZfHnbq1tr7Ra3KeU+5QOACxk6ZgW/ypHmSZdKUWoJ+qj9UyaywOU3jeUz2vPwK5qSgkqeojAl4dixvlOanH1HrVAd86U23/3F+rs31i69evt4HeK664EhDSP0cc0Ynzzh/yd1Xtf86WLl1KNBpl0qTJbN36O/Pnr+LBu+6iuZkU4sorr2HbtnIyM6+loABOPhlB2jUJr5s1E/SSgIICsrJE/Fo4t5OYAPPziWdk0yIQtibtPh3DXHklxAOZ4PEQjbmEdFleHnPmu3EVFeIqKebhxx7j6qvP5d1Jk7jmmuHMnDmLH3/8iQ0b8tmwIZ+5c+fxyquvMXTo0FoTCFx//T+ZOWMGjz32ON9/P41DDm7Ce+PHo+s7aJWby2efforfn4lbj4oJ2dz/T+CyT3IpkjaooFc676RJjVU1il3yQBO4RGS+HscVKhPUhUjEmkSDPgFcJQhx61FLjSKBiLB3xaLEdVdSpcKTTGCQ0NyEdQF69VCI2d98xVFHH83AM85g/PhxDBhwAlO/+YZNq1bx048/csElw3C73QQzMnn66f/uV6AXYPDgwXSSKgqmDR16MR07daFVq1bUq1ePtm3aEIlE+PDDKdazk+lLN2/ezLPPPsm20t9Tgjr5bCApDyc7M64nn5UKdFzWXWoBUeaAUHmwCVw1xtHkyZMZMuR8unTpyoIFv3DG4LOtcpz3k1QZqTggKS/yc3m+BIGyHfKeEkxGY2abIuHkedTkHbv0eHJcSwAbi1n1i+uuGmDUtlhI8Z1x61ESpiJDQnOLugB4PDX6UJYt+14ek3WT7VZBckJzW33k/A7Ll9WfynFp6nfaGguKOYG3LDUQwNbP6n2ldratfqRYFO2nJoP5dudVZ7tmdR7f/+c2evRorr32GgBGjXqRf/5TbFVHItFa+Xx19uft008/ZfDgM1i/fiO5ubkiEYQnk0ZVpSwrrEfDhgFL9zUvT6Qp7uTbAKGQkCPThdd2c4mXFlnKlnqkTFy0bBmFeX0tcJzAxaJFgs7b2lOYFPDVNBF4pWkYDRvy4COPcP9DDwEwZswbXHZZTVmtP2MrVqzgiCM6MGvqVI7oOcBKmyy9TKm2cGW2tz+iNDjNyXeUlpLHaN67LCL0dL2aPQWzVT8zWEh6duPxBL9tWQuVlaR5m+DzNaBBehp6Akjo/PTzat5950W+/OorQqEQbdq05c3Xx9C7zzF7LaPZvrIHHrifBx98gMsuu5wPP5xCKBQiOzubSy8dxvnnnkNVtUHDhg1p06YN3bt3ZenSpQAi89xJJ9k9lKbVxv9UvXXOv1Az2CmVR9np0VfHxODBZ1JcvJXZs3+0nouqwaxq9aaiCQg96ORxSxUkxba6teWvJ1Na16ZR6/R0OvskFe1ApYlYfRMLW3Qhp5faqTjibK/ax6koQWqqYid9xKbUUEvfp6JUqH2Qqv+cVhvlwnlObR7yA8Hje8IJ5dSv/9frVlUVZurU/bON+5vVrREOYCsqKmLq1Kk0aNCA3r17c/DBB1NaWkp1dTWZmZkkEgmKiooIhUKEQiG2bdtGfv5G1q1bR2lpKdu3b2ft2vVomkZ1dTX33ns3N910M2effU4d6N3D1qNHDxo1asS/77iNd995hxCZBDyQpjXgiA4ewhFo7Ssm6sskPx86xeZBbjuKfa3JDCSgSKcwJBIyFIfcBALgDom0xJoGri5dCGgyRbALrx4mJ8dPRgaACHqjSADhetXVjJ04kRdffJGVq1Zx2WWXc9lll3P00Ufvdjuzs4UKw4aCAroeJaLQ0YQ+ruT1amDpgEq9252ZE8DKCU3V8ZQmJvWaQUAJXERibovakBL0goVuwrqXtKpy/FJMeSd22GGHccN113HSoNPo2bMn9XZHjHM/sVWrVgHQpEkG48a9y8EHH0z//sdRXV1NdXU1Xbt3t87t06cPXboI4Pv1l19yTN+TkT46aU4Q7NTKTZDc/pd/pfdOtVS82CSAFPqyQuXBZXFBQTyjH3+cg67r1K9fH7m74MLUhTYHTCrADeAnTELzC46pFkdOnZa31AFi3VqChGaOKwVJO/vEyYdVz6kJHmv/PKr58UAyAxtJDV9xjyRAlRrVlqfVXOwlObT2Zyb7QtOSnl0UwCvLqnFvhGShc1GbyvvqPJbK4yvvq56r9ptcEDg94H92QV1n//tW5/HdD6y6upqvv/6aNWtWM3z4tbsUULZu3TqOOupIK/NT/fr16dKlCwsWLMDtdtO1q5iIIlb6KGFut5vWrVqR0TQTfyMfuS1a0L5jRzbmb+Lpp5/i3nvv47777t8bzfx/b5MmTeKSS4ZyRIcOXHv55Zw1eDCB7BxKSpLJKtyxMIURv6VWVlAALSIrIBYj2q4b3oI1kJXFwnV+urUTmrslJSKzcX6+8BZLD6qlPICpzeuJ8tn0n7jhn5ez+ddfOfPMwYwYcR39+/ffo97JDh0Op/+RR/Lc6LHCI202LqVHj5pcXGlqtiZIEfxDzSQWqocr1RZwKm+UU3c4YSbgqKqfzm233cqUKZP59ddfU7Z1woRJnH322WiuA3eC3bJlC//+9x00aNCAww47jOnTp/PVV1/i8Xjo0KEDh7drx/wFCwgGgzRuHOCHH2bW+F357LPPOeOM02nXrh3jx79P5yM61Ho/dRs9lV4y1OR5yuucXj0VbDq5teq9Fi1aRPfuXfnssy845ZRTai9X0YOWsmm2MuWOgDIW1XFcWx1TAVy1nal4ujXu4dQ0VupSwyNM6n6wylba6dTXTek1dcikOdtkPQDsGtpO5YhUlsrTnJLWkqKOqTzLzvN0HaLR8H7v8T355N33+H711f7Zxv3N6jy+f6MVFBQwfvw4XnnlZTZt2gSIdJ033njTH1775ZdfmB7bIvyVJTz0ypts3LiaF559lsWLF1NaHmPwmWdyeG4uTbKyaBTMoH79AIcemkVVVT2bZwJg/PjxAFx11dW13bLOdtPOO+88DjnkEO666z9cdcMNXHvLLZx//hD++8B9aBmH4gqVQUkJviw/Hg/Mny/0fDd42uMJQLYuFBzIyxNzTCSCLyDksjQtKYzg8ZhBIKENJHJbQwzq1ytnxHU38fLYsfQ95hi+/Oob2rRps1famZmZyevjxzPy7rtxt25tTYhuXSeqex1jr/ZtSyeoleepk7bYwtVqAiCP/UI5Kcr7SJCkaS6bR8qlmSlbPR4M3cWzTzzOf//7jCX79uLo0dz/wAOUlJQAQq/W5ToQGIS126xZsxg/fhwgfn+OOeYY/jFkCC+9/CoBv68GkCooKOC0M85g8eLFABx//PGccsog5s6dxymnnMS9997DR1Mmi7TA5rVV1QbTvv0ar9dLz549SW/QsFZVAtUsTrDi6VOBngoGNc2VMqgNoHPnzrRr146JEydYwFc1WV5UF6mD1bFnA2YpAibVcWyV5QCyqagLNjPLrQH+zLGuaViKEtbppkJDyjJT9INtlJrjPFVf1bhGQZTS8yz73QZEzfZqO7neooEoQY1u4iRw1+iTVONBPeZcJDg94vK9W4OwIzZgf7Td5en+sQuzzqTVAd+/wT777DMeeugB5s+fT3p6OkMuuICTTzmfq6/+hy33/M7s999/xzAMGtaPkTlvMaOee0L8wIRCcN11QvzVDJxy8sjq10v+MJSURZjw/tvc/8ADtG/fnszMzD3d3DpTrHfv3kyb9h2//fYbEydO4IEH7ue998bRp08/LjjrNI489nQOcpUS3lpGt4x6JHJaC/6ephHX/Lh794aiInp1DEB+CW6fT3hztTDZWT7rPsEAxH2t0WMxnn/+U1555Q5KSkoYNeoFhg+/9k+npP4zFo/HqaqqonmnTnz77TSO7tndojx4FY6glWlN03CVFJPIyLRNWhLUSktud2qmV9s+mUpg6/HUnDSdHMMa3irF7EFKmg18bQsJibonnniSoRf+g2bND94TXfa3WveunQHQNI2iwkKaNGmiALakLViwgGefH8W4ce/idru5/vp/0rJlSwYMOEGU0707TzzxFFdccRlZ2dn07n0UJ54wgB5duvDMqFFMnDQJEIlxli9dSrNmzVJ79MyHKekI1nH+2KvulPuynm8aeDweYrFYEiSmUCSQm21u4sR1oQurOdJVg12LWNZP/Z1V753kxybv4/Rop/ICy4tVgGrz+so2RsIkfH4boBSatjW9vk6vuFrvWvtW6SP5PVI9vqk89vI7JpRRFM6xHsetaSCBqG5mHzE9/47b/WlLxe+VAaz7u9UB331nB+be3AFo8+bN46yzBnP/ffdw5pmnM3/+fMaOfZeiwkLuf+AxXhz1KB6Ph6uvvqbWMsrKyujTpzcNGzbgkUceRtd1nnh2FBxzDBQUMH2W2wK/0UA2RCLiB4g4LhLCa2X+umz9vZTbbrmF3NxsbrzpJo4/fgDTp89AqwsN3SfWvHlzbrzxJlavXsuLL76M1+vm5jvuoFevtrRpk8EhbdvS4+xhVFUZLMn3QyhEURHMmetis54NHg8LYyKbW9ATJeHzCw6tGR0/b/7v3HzzTWRnN+c//xlCmzZtWbx4KSNGXLdXQS/ARx99wi+/LCY9PZ3vv/4SIhFKSuyC+HHMCduc0OOBTEuhwTkDJnAJZQUS1gQqqQlygjOFLJIC96Y5t4ujMbvnTfaXpQ5B8j7ousUHjmteXKEybhpxOQCLF8ynedOme7zv/g779PMvANB1na+//pp4PM4P33/H0KEX0bt3L3r16kHbdu3o0asX3303nWeffY6NGzfx3HPPc8st/6Jz585WWcOGDWPq1OlceeVVbN8e5uZbbuGovn35/IsveOutd2jdurUVXyD7ugboUl33ijmBmVQ7kJ/pugJ8VLCKi7JQmEWLFnHM0X2SC54U1AJVXUGOV2tcKlWSn6n3dGsJa+yoY0y2Ud7D2abaeMxOk21SQbtLFwoprkjY4f1O9pfkKauKGhYtQcko56yD/CuvD0eSCWec90pV7wSmMgqKd1h+p+XCQNMspQm3Jl7OuuzMnH2tHtd1sx11c1qdOayO47sPLJFIkJmZwfbt23G73USjUbxeL4sXr2To0PP56aefqFevHp9NnMjAwWfXWs7kyZM5//xzGTZsON26Hk49zU3v3mfTrZ3Y4w7jx+8RAQWRiKBWekkG70RjLubM2caXXz7NSy89S/36Lv75zxsYPvxaDj74wPdcHegWCoX4+eefeeyxR/j++++t4/Xru1m2bDVtly0UOmfy4Woa0ZiLBlXl/Faxg3nTvuWFt8axfNkiQuXleNLTGX7tCC6++BLaSa3ffWgd2rdjwAkn8sLzz1Fc4hLJNRRLYBfV/6Po7wQuQQcJBGp8JlOWqgL98jPb/ajJC5STuOREgz39a1lInB8IQMHa1bRs147zzz2X9yZM2s0e2j+sqqqKd999lwkT3ufbb7+xjnfs2JGePXvhdruJx+McdVQfLr300l1eHLtIUFRcwqZNm+jYsSMNGjSgVauWnH7aabwwapR1nnwuegLM3eqkx05PzZ11ck2hpi6w6o1Mq6rkuJNOYtWqVSxZsozMjGBK9QggmX4PrEFZW6riGiB1J4klUnkjU9I7UniA5XXO74hVR7Bcy2qyD+c1tv9Vfm+Kfpb3VuXc5G1S9oGqF6x4kp3Uhp3xd3eJn5yif1Q6SqpndSBkbjv33N3n+H7wQR3Hd1esbim0DywtLY1t27YB8M5bb3Hq6efgcem8N/lDfvpJZHAaOfLxnYJegGf++xQA9//rOuoHO5KdEYepU1njG0RbXyH+LB+g4fcl8Psw5Zu8BD0JVqzaxOvPPMprEyai61XccMMN3HrrbTRp0mRvNr3O/oQFAgFOPPFEVq5cYQO+VVVxTj/9JAKBIEU3/4sGDZrQunVz6tf38Ouv61m7dq0VbNSrVy+uvmY4jRo1YtiwywgGg39Xc+h/3PG8/voYevXoTu8+/cnIyCUSEROnVw+LqcvjIRRKBve5SooFsVmJ9k+mKXWTCARtXh5QM7AleZLOCdQ6xyxXAhQ3cTYXuMnKEmDXrUeJYoJnM8w9GPAIb5ce59cSEUx671137bV+SyQSbNy4ke3bt9OmTRsaNmy41+4FIjD24osvZtGiXyzge+yxxzJ9+ozd2h1I4CIzM9OiT02ZMoXNmzdz/ICTSSQSLF2+knXr1vHjnFl8/sUXbN68mVa5uVQnDM45+yyuuno4LZs2qdVjlyD1Fr1U9hBeP1OZIC2N98ePp1379txzz928/PIr1rXOLXuXkkVQBbG24KmIkA+rAdIcyTigZkCWHJ/ORBZOjyVIb20SmDu9q8KjqdBBNA03UtNWXOdGBzSLUiDvaaOCOPjIah+n0sv1eGpyl3F42SUQFWoQ7hp95ewXeY9ozGVLBZ6KupJKylAGJKYKJPwjisz+YPXq7Z5zOrH/szn2G6vz+O4ju/nmm3j++ecAeOWGG/D36sVbr77K1z/8QG5uLlOnTqdVq1Ypry0pKaGgoIDvpk/l1ttuA+Df/76HU055kNxcaKEVsrAom5wcgRlcJJDCk5uL3HzyyRRuvPE8GjduzJVXXsVNN91Mlsn/rbP907Zv387SpUs57LDD+OGHH3j77bdo3LgxWVlZlJWV8dtvv7FjR5RDW7cmr01b2rRpy+GHH07btm3/7qpbFovFOOOM05g2bRoAq375hVbtuwCCip6ZISa0qC60dWUAmQgwqhnUVGOCS5GWWJpLT+oHW8dMbV63Lu4Tx407UkbcF7Sc6HJi9xKlOOKVjnV0HSKRCLfffjOvvz6GNatWcWibw/ZIP8mf4LfffpuysjLGjn2DZcuWWZ9XV+998t63337LyScPBAQXdsaMmfTs2XOPlV9aWkr79u1onpVFbqvWzJr1g+UMaN68OYNOOQVvQx8vvvgChxxyCGVlZVRUVHDccQM4skc3hl97LQcf0hIQz1bqWIMjIUQt+rLy5CeefJI777qLzz77goEDB9aoZyplCJsnszb1BT2ZythpNs+ontrz6VysqffaVZOeWTm+bcBWyRucSpHB+T6VqR5j2S2SYrQzDm0q73wqz7LzGud9nXVRz0sC8pqfuzgwdHwvuKAct/uv1y0eDzNhwv7Zxv3N6oDvnzTXsiUkOnb609dNmDCBCy+0Z0Lr168fl1wyjKFDh9a6fbh48WKOO65fyqC3LVu2k6UENMVi4I0Ij1kCFyUlAlyceNLJTJ36Lb1792by5A/rQG+d7VNbu3wp7Tp1YvLkDzn75IFJIOLxWJJMsZgYv1KhwjlRgpjEVPF9SZVQ08tKkyBX17GDaIU/uLnITYuMJO+9TBe/bcGAWDgmfH4bYPnvqFHcettt9OnTh6+//JIGDRv95T5JJBKMGzeOd955i8WLF1sqEarl5eXxyCOPce655/7l++yqhcNh/v3vO0hLS+PKK6+ia9eue7T8l19+iX/+83rq169Pnz5H069fP449ti+HH344TZo0Iy0tTXhgEwlcLhcV28sZ9847fPLZZ/z400+EQiFycnI48sijePHF12natFENr18qXqwFBjWhaf7Siy/y0KOPArBqxQraHHZ4jWtqpTLUkqBBXgN2D6UzcC4VWFPr5zw3FWfWCbJt1yu0DPmZriO8p47EMWqbVMBeG8UCUkiSKYuMXUlSobZDDQ5MRX9w0jIkXUJddKgeXmcfW/+bdQ6Hw/s91eGii3Yf+I4bVwd8d8XqqA5/0v4s6DUMg3iojHfffcc65nK5GD/+fc477zzrWGVlJenp6TWuHT58OC1btuS1V1/F0HUa1K/PG+914JRTyojFfLiWLbEycmk+sa0djbnwrlpIZseOhCNuevXqxdSp3zJ37lw2b95MVlYWpaWlLFiwgDVrVgPQpk1bOnToQEVFBYWFhRiGQf369alfvz6aplnvd+zYQX5+Pk2aNOHII4+sS3Tx/8yqq6v59NNPueSSoZx99jm8+ebYP9QAzmsv+J1vvjGGPkd0IKul8Nyh60Tx4iWBV9PRfGrEvMhKlwgELXqEpmFtgYK50DPfq9H8ElS7SW51x3Gjx8CrYc2kLbLioHmsCTNIwgwQ9OLWNHNeN8G3plGwpRBN05gxY+ZuUQCKioo4//xzmT17NgNPPJHrr7uOpcuW8803X7N9+3YAnnvuea6//p9/+R5/1vx+Py+99DIgfnc2b97M0qVLWbp0CX6/n2uvHbFbWs+rVq2iSZMmLFiwlJycrBSeRkNsj7vE0Ub16zP86qu5esT1lJeX88knn7BixXKef/451q49lrFj37KC6pzZ1lQPLYjH/euW3znllIGsWrWK3r1707dvP/Ly8moAJWkqCLM8pKl0oU0PrhOwWTSdFAs4lcZgblhYUlzq57VyfTW3NXFbgWk6NtArTSbxsJJLmFQfixOrabh1ISem3ld9Nup9ZfeqnF1Zj1T9qPafak45NPV+6nu35dUHmYTDWlNoGppyrvzdsOqtxykOucnMqMlT3h9td1Ud6qgOu251wHcv2LZt2zjllJPYtGkTkUiEqqoqunfvzn333U9OziFceuml1KtXD8Mw+PXXXxk58jFeffUVunfvzjvvjOOww8QW6rJly5g3by7j336bXm43BIOMn9+WZy9fQjSvE95FcyjO60NJCbRvlxAPc8YMPOeeT3FONzK1BN9/9zGPPvoIXq+X4cOv5a23xjJs2CWsXi0Ar9ttRtXHdz2SVtrBBx/MO++Mo1+/fnuq6+psP7OysjJWrVpFfn4+a9eu4e233yI/Px+An3+et0tlpKWlceaZg3n//fdoP3s2Jb/+iu72CSArZaN0HR033lChGbjnsTiUHo/L5t0CIBbD6/FARLdNtGryATdxPB63KF8zJ1Gd5LZvKCTuIT1luHGb0fwJzYtbAg/TS9a+fQeqqqqoqjJwrFF32aZMmcKNN/4TwzD47rvv6d/3GAAuGjqU7du3c8MNNzJy5OM1FsF7y6qrqykoKCA/P5+FCxfwww8/MHv2LMsD7ff7CYfDVFRUcNttt//l+wwefBYvvDCKtWtX0iIrWIPCYue0gtvjMYPVEhzUuBGXXnwRcd3Feeedz+WXD6NXrx48eN99XH3tjTQ5qCGCM5tg2bKVLFr4E2n1GjNkyBk0SK/Ptm3b6NmjE3p1NT//vICunY+wxowTK0iwqe4sqGAqYUJBea6lv2vuPKicUnm+ZmrwOoPepMcz1fa8eh4kr1cdyRK8WsFssajVb5qW9KjasrGZKZTdcmFQi+6xZcoN1fZEY27x3XUE0qVKM61prpqLkz+w2mgXQrtbgOCdcZFluzIy+H8jZ1YHfHfd6qgOe8F++ukn+vTpbTtWv359fvrpZ8tL8dNPP9G37zHo5nZR744dCZnvly9fCcBvv/1GTo5IAXvHHQ9x9dV3E4lAp3dvZ82VT9A2x9ym9fkgP5+J81vTv7+Yz/PyxPx+7jmn8OVXX1n1aNOmDccddzzHHHMsR/bsTmZWW/xalPxNm1i5YQO4vLRp05J61VXoQDRWTVVVFVSEqEpLo77XR6tmTckv3satt97IokWLmD9/IYceeuje7dQ626eWSCR46aUXueOO24mZek4HHXQQpw4axLvjxnHqqafx8cef/Ckv4IT3xnHh0KEs+vFH2nTqbfPeArbtWBvv16RESGCRajtTAinLk2UGH6XaVgapEUzSS2YqQtj4io4o9WnTpnHCwIFM+/Zb+h9/wp/u07fffpvLLruU0wYN4uWXXyYnJ8dqQ79+x5Kb24q33nr7T5f7V23VqlWceuop1kLG4/HQu3dv87ehBx07daFp00O45+5beObZZznzzME8+OBDdOzY8U/fyzAMgsEAd915J7fedgdQ09tXg7rgyNwnr4nFde6/5y6eePppPB4P/fr1JxQqZ/HiX9ixYwdpaWkYhkGDBg3o06cPsViMOXPm8M/rr+fuu+6iadOmNbzCtW23y7o561vbWFLbAw7lBGqnL6j0BFnUzuqUUjzXPK7qY8u6urEHfjnNSWOoLajM2V/O985+c9I+nHxnsPP45TlO3rDzWG3nuHR7mmR5rwNB1eGKK3af6vD663VUh12xOuC7l2zDhg2MHfsms36YST1N44YbbuL0008HYOzYsVxxxWUAHHVUf8aPfZWWLVvy5siRXHH//UTKymjQ+CCOOaYfP/44E4B3R43iovPPhxkzoF07VmidaB+ZR6JHL/GjYea9tX3pCzZTACxdvpJGjQLk5rYiJzsj+UNkBsBFdTfe/BXE89rjjoUpjvnJ1MogEiGe1UL8sMvoH8kJI86SVWvo3PkIbrrpZp5++r9/T0fX2R63qqoqLr/8MsaPH8d1113P8KuvommzVjRr2hBiMS688io++uhDVq9caQUc7Wq5ubktOCgQ4OJLLuU/d9xuTcplETc+n0jZLLm1INQYpEdMnedjsSR3V45HdSu2hvSUAo5VL5fFHZQmgXCkTABtMzjORQI9EiGYk8O5557HmDGv/+l+HT78GubO/ZHFv/yCkVbPBmx69OrF0qVLWb58Ja1bt/7TZf9Z+/nnnzn11FPIymrOk4+PpHXr1rRq1QrN7bEDNF2nKq0e7733Hvfddy+bNuXzj39cyP33P/CnF7vdunWhz5FH8sLLr9b4LBXlQE1pDOI5RXU3XqIAbCgqZty4Cfw4ZwaNAwfRvXt3enTuRIcufSgqKuDrzz9k1tyfKCj4FY+nAbNnz2LQoFN59+23aHxQk5SgtLZ6WZ5MB49W/T1UF1/qubY21fAxp5ZuS3WuujiQVhtXVpX3qo0bXENRwvm9SMGddQJxZz/VxmW29eEfWKqFh7UoikVtaZpTtl9PLkSkmku4uJjGzZvvl6BQ4qtrrtl94Pvqq3XAd1ds/ye+HKC2Y8cOHnnkYb6fOZOTTzjBAr0gvL/SMjIaM27Sx8QSGuXV1QCs/7UEwzAoK9sKwC0330zr7teKbGwnnMDEVZ2YNUtc7wqVMeUjFytKMiEWw6+XCZH++fMgJ4ecjAxOGXAcx/TpaYHecMxtqbIvWeWmpATIyyM/HwiFyMiAuC/IzPwWImtYLEbUExQBP+YP49fffc+xxx5NixYtuPbaEXu9P+ts31gsFuPcc89h0qSJTHz/fZ5/fhTtO3aiWaN6whvl8TB06MXs2LGDbeWCj2oYBvPnz+fRRx/huOP6WSoOTqtfvz6PPPIY1dXV3HvvPaxdX4imQTjmJkiZmMDMDFRyG9ZPGJGHKm5NhNZEikjYopv8RlBkjlSxfpL8xLjuIqont3blVrHMdmVtTft8NtBbbaTx7wcfYvv27Zx55mDzXjq33HIzgwefSVlZ2R/2bUZGBsXFxZaXXNZt69atLFy4kHg8zsiRj+3Sc9odmzlzJieccDxt27Zl5ozvGHDiqbQ69HAL9NrC9oH6RjWXDL2Q1StX8MILL/Hdd9Pp1Kkjo0eP/lP3bdkyl42bf8Wlx4nFRL9KLqY01ZMax0xLrSUTQHg9CfB4iGtecnNzueuuO/ji88957/Ux3HrDP+k74ESaNq7PER3acOstt/DRlMnMnzOHWTO/Z+wbbzBt2lRa5OZy3YjhFBQVAWaQlF472JRb5SrYk1Jolkda06xr5WdOaoOTKlGDd6ogWgleJX1ABZTOpBlg7oxgpyPoOskANOzj3gLmjjbrZhIYGyhW+kd+NyWn1tkupyfY5qF2mEoLQbdTltRxaAuc83hs7ZI0EtlfFufa7Hsr0Y1D33t/NCln9ldf9er93S04cKwO+O4lKzJ/VAGmz1xg++yiiy7i008/Z8SI64hGK7j33n9z3TWX0fbIEwHo3LktjRo1oqysjHr16vHfZ57hlltGIEPfBw+Gq08rZGasF8yfzwknmNmJPR42hIJ4PQnK8nqxZp2LsO6FWIzNBUk+l/oblJsLLXJEjnqfD8jKwpW/gYICIY0W94iVo1cTGYJCIVi9ejXnnHMWRx3Vh19+WUxeXt5e7cs62ze2Zs0aTj31FKZNm8pHH33COeddAJiTsCkXJjiDYtHkMV2xTzzxOEce2ZN77rmbmTNn8sEHtSd2GDZsGPN+XoDX62X0q89ak1oiELQWY24tQSSCpZeU0NxJnqEJkjwe01Pr8VgBPGCPLHfpcet82yRMMlOqKxK2Nj80TWycSO6mvCauu5g0aRJPP/0Uzz77nLWIffrpp3juuWf59NNPWLx48U771kWCOXNms3XrVqqNNFwkqKrcwUcffcSQCy8kGAzy+edf8vzzo3Zazu6aYRhcf/0IjjiiE99+/TVBvz/pHXdm7zL73UqX63YzfPhw1q1Zw9ChFzNixHBLh/yPrKKigqKi30gkRJCYHEvSCxnXXTYvpSsWFeeYgWOxGNbCBIRkl+oRTHi8ya19eZ70tpplXHrRRWzauJEbb7yF995/n2GXXy6AmpakU6igDrA+t72Xiy1qbrWrGQZV3qtathMgQxIXOsG1i4TNcyuzm8V1s0/MzIMJj1eA21jS4+kE5FKnGpARdbZ6J0yNX5XTKwuSuyKyvdFYTY+xk8qRUHoiqrst0JwKJMs+jsaSHF1pTsUJ2S71mci+cdI1nP1bZ3UGdcFte8127NihvK8pVTRo0CAGDRoEwDvvvMPllw/jzXeSyg+DTz2F9z74ABBBZGvXTmaO/ir6OujrC0MoRN/578P11+PXEhAKURYJEgjAxA9cnD84TiBgglzNRwu9jOJQkJISaNcOCMVYUhCkXTsoC7kIFq3AGwhAfgRyc/GFBHW4qAha5PjElpEWxefz8srLz+H3+/ngg8l4vfv/SrrOYP369SxYsIC0tDRWrFjO7NmzqaiI4PF4SE/3UFi4hWXLlpGVlcVXX3zBMX372yYwOfmuX7GCyy8fRseOHTnkkEMA6N//OPr160dlZSV33PEf2+5GKmvUqBE33XQzjzzyMP2PG8ipJ/YXAWixGJieGZE4yyMUStStTCXAR3IZwzHBB07KHjk4hYrskZs4bo/ys2d6kHw+4TXLyPBa10lzawkKC7dQv359LrpoKAAbN27kzjv/A8BRRx3Fcccdt9M2J3AxdOglfP/997z5+mt073kk5513DuvXr6dNmzaMHj2Gk08+edce5m5YUVERy5cv54P336dhw4b2LWtzmz2mi8ClhOauofnqIoHH6+PlF1/gl18WcvXVV/LzzwusIFmnxWIx3n77bZ588nGKior4cPJkE8y55Ak2NQ+LfmBuZ6sBUjaQaQZpSfUEqF2KS93Gb9qsOdePuIYPPphAPB63ATd5vgWiHGXJ9yLxSWoN2lTJE1QFg1QUgZ3dD/mdMIM/IRm45laC5pLg1oWc1mVQm41iIIMGJX/IUW+VX6/WT1WFQHPj9dgzpIFdXcOWPU2Po2nJILhUJo97NZ0Ebvv3V1mASpUV9Zk7Pemp+np3gsb2le1ucJu5YVxnu2B1Ht+9ZJqmWYFsweDOs6Ppus5JJ53MPffcy/vvTwTgvQ8+wO1288/LL6e8vJqjjzqKnBzo3Rs2lPjFr9qQIaDrrFnnolgPEgxtIBgrZPBgQNcxk3nB3LkQCJBZsoL2uVGkMzojQ3Aqgz7hOZtXkE1xoC1oGpmhNWgatPAUk8CFzycmm9UrF/P6G29w1VVX14HeA8B0XWfkyMfo2LE9//jHBQwZcj7PP/8cy5cvY+7cucyYMYNvvvma3kceydg33mDDunX07dvX5q2SHrAdO3Zw2YgRBINBfvhhtqU8cOSRRzJ9+gxmz/6RM844Y5cC3u6++x5OPHEgF154HotXrrd9pk5YksebnPiSW73SM+vXokmPlOT6Ki4em4fRwbnEVHGQ7126AEOWx8/0np199jlUVVXxzTcis9k999wNCMWK117bNb7v5ZdfTsuWLbnqmmvo1q0Lfr+fRYuWsGrVGgYPHrxLZeyuTZw4gXr16tG7Tx8g6RV360k9Y48H2za901yxKAncjBk1ilWrVpGX15qbbrqRWbNmkUgkKC8v55dffuGJ/2PvvMOjqL4+/slms2yWJYQQQqgi0ptSpIg0UbDQURQsKPYGiNgFxd57BRUUVGwUQYoICiICAtIh9E4SQkjCZtlsZve+f8ze2Tuzs4jlp/jKeZ59kp2dueXcO/eee873nPPcs5xxxuncdtstnHVWC1b+8gudz7swKsxoQVP2Mwk7cQSi2tx4CSE0LQp1UbX6Bqlm/MhJyaHpcJmHRo3m0KFDvPziiyZNpdE/pZwwDj3WNPbmeKsGU70eA7dRhDg5h61CuzrPAYLO6Bortb0qZla14Ml3VdajYuOlZlh+l22Wh40iX1TzaqTrxnxwkL+r42U9HMv/JTRJvqPqbyrFjJnTKQ0/JpiGrM+F/n46An6jjYaWWC0vAn8w+mCxZpyM9GdgDn9WaP6v0Snntv8Bvf32W9xxx+0A/PzzMs4+++y4woAQwtB+NGnShNWr1zJixF3s3r2bqukVmTJtGhVSUlgwcyZVli7lc+8QBrTaQVF6bVLcQVixQscrbNumS8VOJ8+94KBt22hkB7cbqnKAT36oyqWXwnffwfnn62avPXkeamYvJ3hWa1yb1xJu0gyfD1J8B/TwEJmZFDnTCATg6NFj9Op1NomJDpYuXW6Yuk/RyUlFRUX079+XH374geHD7+b+++/DGdb4+Zdf6N23LxkZGSQmJrJ3714jE1nMRqRpBszhicfH8Mijj/Lddwt+U8N5ou0799xzOHbsGEuXLKFScrKudbRxXlEjL0CsI5B6TWqbTNhARTMmHerk87LPMlWq1VyrafDRhLHcdMstrF69luXLl3PjjdcDMHHixwwaNOiE+rtv3z5OO62G8X3v3v1UrVr1T/PxREgIwaRJk7jpphu48sqree+990ye/DH4TGv6V2uUgMiYrPvlJz767DO+/OorDhw4QJkyZSgpKQFkKuRruO+ekdSp1yDGMctO+2fUH/CbMNayfdaED3J8rEKYKUqBEsEhHA5Tt+4ZXHRRD954wwwrMQmskQlkF3bNeo9V4rDDulr7Z3fd4SsyJU3RNbZRIRfMXbJmX5M/WKM3OAibMrfZ8UhtV0ySGBt+qOMRL/mFVci1kvqOS4qnFVYhC6Z3N5LFzxoSzvrcvyGqw733FlKmzB9vW0lJEc89d8q57UTolOD7P6BVq1bxxJhHOKtlKx544EGTM5sdzZw5k08++Zgrr7yKrl0vwe2GqV99waUDBgAwZ84aum9fDE2asIiOVK8OtdN1uIM/vSYeZ5AFi12c1yTXiE+a762JpkGG18+3iz107gyuvAPku/WN1uuFzZuhWd4Cwp3PY/NmHSccCEDVdD3wt0zX6vNBmeKDDLn7br6aMoXly1f8oZBGp+jvo5KSEjp2PJetW7cyfepUOnXqRBgHO3fu5KyzmtGxYyc+/XQyY8e+y+jRoyg8coTEpDLGRmIKNRbZ8G668XrWrF3LsmW//GXt3LlzJ+3atUEIwaOPjuG2G64nISEhJo1xEJeulVRipapkpzmSpAoAdpuzEfFB8fJXywyHwzRs1IiGjRqxb98+Vq7UMftNmjRhzZp1J9zXGTNm0KdPL2rWrMnLL7/6t2l5d+zYwQ03DGHhwoVcdeWVvP/OOzg9XpMmTz1EqLy0RiiIJ8yFw2EWLVrKqlU/U7VqNWrXrk2D2rVIjWSRlEKSpkW0+M7YFMCqtk4KWlbhWzqTSQFI/W4VmtSDk2z3F599yhWRg8p1117LW2++iUsRsNX019b5Ye23bGvY6YqG3SNWqylJFaCt3+MKlwFz+mE7/htlWAR0O4rbNi0aIQWUw6Yce4kJVlSLdrF5Y94xmxTNahvVuaHyXGGv0R55XTbFmBcRHkGspUKWHfCfEnxPUZROKcf/B9SiRQumTJ9xwvf36NGDHj16APD666/x7rvvmFKYnnWGB6qcy7fZzWh2+lauumkEF53TnL7XPkZtp45xbNIEXetbvTpj59TkphvCFPkcBJ0eup2VC850SE0lVZqx8vJwu6tC27Y4fEU08haAO52g10PY6SIQ0PG91auD359L9379WLVqFR98MOGU0PsvoKVLl7JixQqefOIJzu3YmU1ZW9iatYnnX3wJn89HVtZmypfXU+42adI0cjjTzZJup/3mGRa65vCvpNNPP52VK39l9OhR3HHH7Rw6dJhHH7xP13YVHNDxOEgNn9PIPGXSADnNWlyr0KuGZooRdok6sqnPqZvy519OYcvWrdSr34BNmzbRqlUrVqxYwdChw39XX3v27Eko9Nfy70TooYceZOvWrXzzzWwuvrCbeWwVAdQQNxT+GsKFxeHJhOEkDA4HnTufQ+fO55iEzaCGoanXx8dlFiKtkpNFy+pCZiVzmbC1mgZOt57BTMUMWw82LrWNmkZqaioNGzakSZOmjJ8wgfbnduT66wYbz4TdHtOmKDG9MRpM6R0ZwYhrkQyEx9NyqlAHFR4hhWadp8rBSwuaohFY6zcdCpR39XiHiXgh3OSaH8n+bYyvDg9y4fAq5UXGyC7NskqSd+p3tR86fj9oQJHs2qbG1JZz0Ir3Vg/D6nurQiT+DSSjOvxR+j0OfE8//TRTpkxh8+bNRrzrZ5991kieBfpaP2bMGMaOHcuRI0do06YNb775Jo0bN/7jjTxJ6BTG9x+ikpISnnnmaRITE5g2bRp79+7l4YcfYvjwYWzatIlDhw4xffoMQkeOUDklhW2e05g1axRV6tVj/vyZzF6ym9orPudAnosUishIDUKrVpCezk2X5hPGoYeCimjJ8Pko0jzG4rNHq0q96n78eHT1b2oqO7Kjmo6a6X492oPfz2WX9Wfnzp0sXPgjAwcO/Ic5d4p+i4QQyMQoDz38MFWqVKZRowb07tuXxYt/BODMM8/i+eeeA6BN67OjDyvYODCbGMPh8G9aL+wonvZJUrVq1Xj//Q947LHHGTNmNJdecQVz535GScUqJlOsEaZIWeElftHq0a3W7dL8ESEsqjGSwq68rv6uYjV/WLSYW265ibPPbs3MmTN4/PEn2L59O3feOZTrr7/+d/Pin6Dly5dxxeWXxzjPhVGiAFi0eWrILMDgkSSJNbUbW2fE6coIiyWhKxZtnDXaQYwmNBJVwq+5YuqS65QafUEdN1W4lOUGcdG9e3c2rl/PZ59+Qps2bRgxYjibsraa2uUgTCBgxsGqkRxM2s9IWyQWXfJNxaGrbVOhJA7COj41Uo6dE5yUr1W+SN5IbaxdRAg1JJ18dyQPjLGNjJH8eNy6EK5iiWMEaoiBfxgHSaI4YtNzljkim+Z2Y35nlcOVdU4YUBUUgdyCAZaFq32zq/9kpb8T47tw4UJuv/12li5dyrx589A0jW7dulFcXGzc89xzz/HSSy/xxhtv8Msvv5CZmckFF1xgpFX/N9O/5Cz0/4/uvfceA2NWrlw5mjc/kyNHjlCpUgaHDuUC8Oioh5jf+RKSkkJ88MH7HDlyGIBatZozceJY1h4qQ7NUP2zeBmedpUdecAM+H5o3jWlzUhigfQIXXkiRMw13xMNX01zUdOcSdGbg0fwENQ9Obwq1vDqsNzXVQUKZMixasIBhI+9h69YtfPvtd7Ru3fof4tYp+j00e/Zseva8xPh+6NAhypUrR9OmTVm7di3Tp8+gc+fOAAy5/kaSkpIMDU9Ac+GJyY7kxEWYlJQUVq5cyV13Dadjx04kJCQQDodxOBx06dKF8uXL27bnt7B+kh588CGSk5P54ovPGTToCqZ+lUSvPv3AkqoVzNojU6B9SwYqwDBBGxumvNdXhMPrNVLSquUC/LxsFRde2I02bdqwbt06+vTuTbAkQHFxMSNH3nNCffqnqbS0lF27dtG4USPjmipY6F7/Ec2pYq6320R1jWBsggK1XCAm450hkEa8++V3qaV1oEelcXi9hrOWyxk2xtLjNmO0HQE/zogmVG2nqnVUTedoGvh8uFJTowJlCGbO/JYWLZpw4YXdmDJlGi2bn2k8rwuyTgP3XeTTEwPJ0GGqIC8110U+XdkQdKfE4F6twjiRvjidmPqss86h8Ejnmz/gwuPUIypIFruc+g0uq2AnBciAX3eOM+ACivNn5D6r5j7o9BhadCtURGpcdeSDQ/cxiZQlx8avrB+SrHXoDmpmTXA8CAdggI41TXfGVkMcymclHtofmctG6RHN+ImuQf8VmqNkcwUYP348GRkZrFy5ko4dOyKE4JVXXuGhhx6iX79+AHz44YdUrlyZTz75hJtvvvmfaPZfRqdmwz9EQ4Zcz7PPPsfevfvp3Lkz557bAYDSwDHGjHmd5ORkfl27ljfffI6PPhjHwIFX0LBBAypVqsS9906kbNkyNFv/iQ5v8HohEGDSJGDfPrYEauLy5TOghx8uvBAKCoxIDq5Akb636fGiQNNwOnXHm8cee44bbxxAi7OaUblKFTpfcAEg+PHHn2jXrt0/waZT9Ado69YtAGzZso0JH3zADUOGUKZMGZYsWcL1Q4ZwXueOhtYnNTWVMmXKmrzF1U1CFSyeeeZZ7r/vPiZP/pRLL+1H//59ueyy/vTv35dzzz0Hv9//p9qdnZ1NdnY29erVJykpiXXr1wP6xu8iaHhyy43MaKfFO8b0G7Fe3R53RFPo9UY1VJE65LMlpSGGDLmapk2bcvfd93DkyBFGjX6Ul15+mWuvvc5IN3yyk9TglCtXzix4EY3fCrpsEXToGPCDBw/i9xXpMXcV4cfjDKJpGkW+qJkezDFoDc28RWMnr0vNoF6uxpYtWwgEAnoc54ggIw8oMmqDLigqXl1ud0zZYBagTGZ4p0vPOqmQ0wnpaV7mzp5NOBzmgQceMPVBPwUGDKepFK8unEM0CoJVI+p2R+Oey0gDqiAuv1sPbTokI5p4wng+wo98X6zzllXgV38zxtXpjIbwUyOXRA4Dav0qX4yDUSTGtYnPgQAugnqUH+UQI59xuzHmh7zuImhouE0HGMyQD2N8LVYnCWWQCW6k4K5qfaVPQoy/tdNpHB5OdvqrNL5FRUWmj3Q2PR4VFhYCkJaWBui+F9nZ2XTr1s24p0yZMnTq1IklS5b89Z3/m+mUxvcfojPPPNMIdwYwaNCV5ORks3PnHs4993wee+wLPv3wfnKOHGHPnn1MnfwJb731Ju+99wXXDzwdP/C1dxDnVoe01QtA07jtquqwL0C99FxITTfSDH80M42rroqsEU4neXmQ4dU3h627dlFPaYdKF110MR98oJ8ET9G/h/bs2UP9+vWpe8bp1D2tBoMHD+aFF15g3bp1tG3VKrrBBgI43G5d8xbR0pm8uSOaOFJTI1obN4+NGcMjo0eTn59PQkICBUWJfDrpdUaPGcOBAwf+VDKTpUuX8uKLLwBw6aUDGXrrrREnJkwOPirO0+UM6w5O2JhXpVDrjCZhkBo1UPCLUmBQTPHvvTeOrKwsVqxYxb59+wA9FFh+fj733nvfH+7j301S8E0uq+O5Vfzn4cOHWb58Oct//olFP/3EsmXLTPHHHQ4HFStWJC0tDYfDQXFxMXv37qV27TMYcddwlixZwlFfMenp6WRUSic9PZ1kj5cySYlkZFalSZMm1KxZk3CCcghxulizZj3PPvM4X8+YwbFjx6hbty6rV63C4/GYBGZ9I3fGaPFjtJSaw4zlxaz9VU30Rt8idTRs2JCnn3ySqwcPZv3GzTSpVyeqrbZKUYrGWGYEw+cj6E4xnK2kYKe2QRdsMa6p9ask++J0RkLKRQ5sXq/L0DA7CEezk6kCr6aZnFJNjqA2oemsGi+1bmOsIlkUTdp/iUW2FqhpeplOJ15vFMOrC2SKc5uC0VeFX6mZdUawxjJ2t1UDbjgxyjnh80FqWpQXhjVAqeNfIPTC74cr2D0PGPHVJT3yyCM8+uijcZ8TQjBixAjOPfdcw39HJuCqXLmy6d7KlSuze/fuP97Ik4ROCb4nAWVnZzNw4OXG965dGwL6Cevaa68jnH2AkQ89TLduvRjSuTkHCjxkZkLZ0FTmz2/EZWdWJze1HtvWw/DhjXjvPWjmzGfR+jQ6NsnnmnMLIJCpLwhON+luCKOb6/YdLmvU+/BDD1ErI4NjDjeffzaR2bNn8cAD9/P++x/83Sw5RX+C9u/fT/Xq1U2CXbnyFTj33HMBDPFQDReFM+o4JgViwBB6XQQRQvDeex/y1dRpDB06jEYN6jFr1kzeevdd2rdv/4eF3uXLl9OuXRsTfnj0w/dRrmIlvW3ZeYQzq8Z4uDudUcxfTHizQID8gMdQ9Dl8uonUqZiVZYg0w3RKxIzrL2DMmEe55prBnHXWWYbw+Oyzz3DNNYM5/fTT/1A//wkyNL5lkwEoEQnMmDKDSZM+ZNasmZSWllKxYkU6tG/P448/QbMmjTlWUorfV0RhYSGHDueTfzgPwmHKeMpyWo3qTJk2ndvvuIO6detSt04d1q9fx6FDh8jLy8Pv9xNSIulXqlSJZs3OpLCwgMOHDxMIBDh48CCnnXYajz7yCFUyM7nx5pu5dMAVTP3qCyM2tCqsarii5vyIaV/VQtqG9YqQaqKX5crEHPLypQOu4OZbb2XmzBk0uvc+Q7iSgmdRwEWKOxpBQparaeDyeqNtU4Reu/jDap0xGFakk57l4Ol04lTqczr1/kQF/uihzaM4eUo4hgpVUEOBqfyRfHEqArvEFkuYidp3lzMa/QIcJm2y7EdQc5gyKkryR5wAHb4i/M4UHVesBXXLo1t/rz2W84aEVsgkNTLUneS/bH8QF66INUDluevPSpR/E/1Vgu/evXtNUR3kOxWP7rjjDtauXcvixYtjfrOGYRVCnFCc9pOdTv7Z8B+gzMxMZs+eS1bWZpKTPdSpU4czzjiD8uXLs3v3bpZsO8SuXTsZ//ZbJCQns337UqpV06EHHTp0YUv3QVSsuJratQcweTLUXv81wQa9OOsswO01ctu75OKwdBFFZ3XE63XQqdMZiFAILRDg9XfH89BTj5OTkwPocTgvu2zAP8eYU/SHqKioiHLlUkzalICmZ33yuMOmDdf0f0RwDEQ2J0kSTzjx00+58eabqVy5MhdfrDtKJSYmcumll/Hcc8//7nbu2LGDgwcPkpysC2WlpaUkJiZSqVIlXK6IJjYQ0NNoE3WSMhoVMZ3r3u1RwV3Huuva66KCfJ5+9gW2bt1CcfExSkuPUa5sWSpWysCT7GZLVhbbd+5E08I0P6sZnbucxwcfvI/f7+exxx4H9AQdF5x/PgWFhTz11NN/dFj+EZJJZnbt2sV3C75n7Nh3yc3NpXnz5jz/3HP07NGDqtVr47YoBVXBzBoq7Oabb6bI58ft9pKUpG+CqqZVhErZv38/a9Zt4Ocli8naspXap9ciLS0Nt9tNg/r16devH06XLqRkZGTQu29fKlaqRP369Tm9Vi1OP/10atWqRdMmTTjnnHNQMaExESVQMK9EBTcplIWJhLyKZEBDiUiQlZXF5M+ncOzYMcp69Hloyr7m1FO5BzVdEykRYkAMVtWqWbUKfZKHpogJqNfMYbykptNBOBoBIQLzsQqqkg8uZziCBw6bypH1h3EZh0R1zAy8ckQIdUUsQfLwrFpUpDZcHkBMhwtFSFatMvLd1DTdodLj9UKA6GFBsbxI0hOr6JjqFC0f8ALOKN5XEeJ1p1f9OX9ESPb5dM38fw3fm5KScsLhzO68806+/vprFi1aZIJvZWZmArpSrkqVKsb13NzcGC3wv5FOxfE9yUhf5IK8/vpr3H+/blLt3/9SZs+excaN23jqoXsY+/HHANSrV58hQ27l/vuHU6NiReYsyqNRg4iwALrzAi5cvnzCqWls35pFvQYNALhywAA6du1OlfJl2bJrF++NH0/Wli0MHnwtderUYceOHZx7bgdq1KhBy5Yt4zounaKTj6644nLWrl3DunUbSExMBMzxMFWyCsByszDCg6F7ggshOLtVM2rUPI3p079m5sxvgSAdOnSgQoUKJ9y2kpISJk6cyPvvj2P58uXGdY/HQ0lJCV27dmXG9OmmFLh22iqr8GMV1HJy9vP559NYsuR7pkz5ipYtW1KjRk3cbjdHjx7l8OE8jh49St06dahTtx4AS5b8xJIlSzjnnHN44423TFCkfysJIShXrizBYBC32821117HTTdcT5NmZ5kdlxShQxV2IRY+YMWUWpNKyHvVe6zXrb+tXbuWb+fNIysri127drFz1y727NlDaWkpZ5xxBqNGjeGqQQNISEwya0RtyIoZtQv7tX3nbobeeTuzZs8mKSmJ1NRU0itWxFuuHDt37sThcHD5gAE8/8JLlElKpKioiKysLGrWqk3lShVt+aH2S16TTldG3Qpj7eawtQx5+DMlbgHDQqPibK2xcOU7Y5vQIs44WdtgmziDoKleY3FRnOWMZBxqey1ttIsRHePEGhHEZX9Vi08sDgMTn2W/ISLDnORxfF94oZDk5D/etmPHihg58sTi+AohuPPOO5k6dSo//PADdevWjfm9atWq3HXXXdx7770ABINBMjIyePbZZ//1zm2nBN+TiIqLiykuLqZfvz78/PPPAFSoUIHk5GQG9u7Nrxs2sGDRIgAqVqxISUkpPl+RqYwP33yTa666CgMo5vMR9qZQUADlxGHKVKoUNxbrueeeS/nyqcyZM9tkrkxMTKRt27Z069adCy7oRqtWrQyB6hSdfPTLL7/Qtm1rvvjiKy7t18e0QciNwS7jUoxQE3kuqDlYsmQRXbp0Yt68+TRt2pTevXvSv/+ljBhxd1zT16FDh5g48SPy8/O59NLLCAaDtGvXBoCLLrqEwYMH07RxQ/YfzOGhhx7il1+W4XQ66de3L5M+/pSkxEi5kdzbalYrK7RBXi8uLuaxx8bw2muvUlpaasz15UuX0vLsNr/JO5/Ph1dV6/0/oFatWuBylWHOrG9IjeBUrcJPjBCpmO0NrV2E7LKnqcKXKmRZyU7AktetQlgoFOKnn1fw/PNPM3PmDOrVq8/QO+/g+muu0bNGqnPaJvmI2i5ZtgiV8vY773D/Aw+Qnp7OmDGPc8WAS1m7fiP33TuSZE9Z2p/TjqKiIl56+WU6d+5CsiuJb+bMMdbEFi1acNFFF3PHbbeSmZ5uTtAQJxsaxMapVfmvakZllAdF1rMdh3h8tF63XouX1c56P5jHOp4VwHqP2ldpkZGwCev8UPkWw5tI2DhrchnToUzJMCh/lMlu1AyQ+flFVKp0ciZ3kPLVK6/8ecF3+PAT6+Ntt93GJ598wvTp002xe8uXL29Y4J599lmefvppxo8fT926dXnqqaf44YcfyMrKoly5cn+4nScDnRJ8/2E6duwYzz77DEuW/MSCBQtihNLNGzfS8uw2PPrg/Yz/+GNSy5VjybJlAPTv2ZP2Xbpz773DkXFbXS4XJUeORKANepxeq8ahwOdj5c8/s2H7DjZt3EAgEGD/gWz27dtDSkoFBl89iPO7XQg48fv9LF3yA9/Om8f8BQsoLCykdu3aTJqkx8E8RScfHTx4kOrVqzJ58udcdtllthqyuIKJxDRSxP7CQu5/8CFycnJYvnwZXq+X3bv3smTJEjp21PHCEyZ8xNVXXx1TjhCCCy7oyvfff4/D4SApKYnPP/+S3r17cv31N/De2HdN7eja9TwKCwt48MGHuOKKy+nbtz9vvz2OtLQU2+xPVgE+jIN9+/Zx3nmd2b9/Pw888CB33jmUQ4cOUaFCBSpWrPhXs/lfQxdc0JWMSpX49JNPAF2Yifi9AmaByiTUxEl28FsHJzsHM/W73T12wrNBmsay5ct58dVXmTJ1KjVq1OCD994z0mZbtak+P+zZtZEjR45QoWJ1atSoSnJyEokJgrtGjODV117jlhtv5JnnXyQ5Wd/AVSiH7M+UKdO56647yKhUieuuu452bduybsMm5n07h08+/ZQ+vXrx2RfTjWf37NnDt98twOVyQzjIsZJSWjZrwpmtWiNEoomnJviIFpsKWOWZ5K1KVr7ZCfk+HwY22QQLiPOsLe7YRpCX+F/p0GcSqDWNIs2D220OnSb7XVAAaalKpjYbgdeqtZUHAFMoNsxCs+GQaBGa5fV/Q8riv1PwjaesGD9+PNdeey0QTWDx7rvvmhJY/H9IYHUK4/sP09NPP8WTTz4BQJMmzVi/fi2gm36/+24Bdes3pLj4KPc89BAAVatW57nnXuDcc8+lZcs2vPbai7iSksjPL8DjdCCSykBuNlqqB5fTiSeS+cgR0dy5gNTUVLpedBFdgR27HNSurpyaAwE9qQXg0YrAXYUzm9bnxptvpaBAY82apTz4wEg6djyXxx9/gpEj78Hh+G9hqE52WrdOT6N7dsvmcTV7KtbQEGQiG4uOi0th+sSJTJo0US/r7LMZPPhaEhISTIumXGCDwSA//PADfr8fj8fDJ598zPfff8+7744jGNS4885bOXjwIADt2rTW04gGohi8Vq1aM378e/Tp05dPPpnM9ddfR7dunfll2TLbsEmyP+rG++yzL3D06FFWr15rmO5OQXSgXLkUduzcSUjoY+fy5ZMW0fyarMURHKbElqrCmCoMhYk4BTp1LySrsBRPELYTrqzjCcQK1E4nzVufy+efncOmrK3ceuvNnHf++YweNYphw0cYWuyA5uLIoYNcfvll/PTTTzF8SExMJBQK8eijYxg1anREYIqvnb60X08u7dfT1JaWLVsycOBAvpk1CxISOLh/J++9/z6r16xl/vzvTFExJKWmpnLHHXfy8IMPkFQmGQfhKI8xR11QDxXqAUC+q+p4qXxT+SiFxJSIk5iMjmEldVzUsVAhMKpQKq87nbHZECUcw+F04o20Qde8RgVnB2HSUgGfD6c3jmAmHWwjHZWt1vnhMr6bsd3OmMOSCRri/HfE8f2rnNtOhE4kA2dCQgKPPvrocSNC/FvplOD7D9PkyZ8a/6emlqdVqzZkZW3kxx9/omnTpuzdbs4qlJ9/mHvvHUnPnr348vPPOJKbQ6IziWXLfuW8884lAfCnVo0kq3CZMF/SuQH0BaOgAGpn+gk7PWgB8PkcpKW68QT8HCjw4HOmkOGNOFbgJ83rpFOnc/lh4Y888shoHnzwAb77bh4vvfTK/4tT4P8X2rRpI8nJydQ4TY8+YMX+qY4wUqiRTjFup37//m0bmfzZZwDUq1ePJUuWkpCQgBCCc845h1dffY3t27fRq1cvAJ5/5ilGjxljtMHj8fDh+PFcc801RrD0W265iQEDLue6664Dh+4oFMZBQUEBJYFiDh8+zGeffcbAgQNJTk6mV68erN+4maZNm0Y7p2kmL31JPh8cKy4gKSmJ9Eia41Ok0/XX30CvXj2Y/c0MevToQdCbprtIaUFcqpnbaU5Lq+HCpQhbJrN2JFSWnZYynnZSJatAbcXkWrGvTqf+W8P6dfnuuwU8/uhonnjySZ559llatWpF9WrV2LptG1lZWaSmpvL1tGnUrl2b/QdzyD6wD03TKCkpISkpiSuvHmzbXwzlgBlGYxIEcZCYCGef3ZqvZ8xgxsyZeL1ezm7Viocfeog7br8dHE7cYY2g08Mvvyxn+rQveOaZp/nqqy956YUX6NatG1rYYQrTpfJCCnDSec5BOIK3d5qSrViFYMkrI1tnRBg1HP9MMAp7PLEUylWLiuS9K1KZpmE42hntcHsMPK9GNKucwVdcuArydTOD16trfr1RJzt1Dso5gIXvMc6ERKNvGLzyFRkeiA7CEW13OGb+nYz0dwq+/3U6BXX4h2nWrFmUlJRw+eWXEQqFSExMZMSIu3nmmWcBGDz4Gr7/fgFjbr2VGx5+mMTEJB566GWefHIYH3wwgfbt2zNo0BUsX76cRx95hEdGj47GdPTl6gtNxPwE+pogTUNFPgcpu9ZC9er6fYEAbN5MbvUWZGgHIDPTFMdV1/JEMFcBP7MXLuG2225iz57dPPLIozz88Kh/jI+nKEq3334bH388iddee4MrBlyKS4mGYGdmltmpwjgIhUK88MJLvPTSc3jLluXOocNwuVz89NNPfP/9AoqLi7nssgEUFRUxffo0XnzxJe64406WLFlChw7tAVi8aBHNW56N0+nG5QwjhGDJ0uX88vNPDLx6MBUqVMLphB079nD33UP55puZBn6yYsWK5Obm8dlnnzFo0BUc3L+fzMxMkznVDicJsG3HLs4+uyW9evVm/PgJfwer/xU0e/ZsevS4GKfTSTAQiGrsLSZ2SfG+m+ZNXi7h9Ax7gUJxdlKvxYOrqEJnjGOTFE6l5jBiwg7i4sCBA0yf9jlffPkVq1at5LJLL6Vho8Zcd+UgKlWrEaNZNtquzHnjmsVcbofPVX8/VlLKuHFjSUp0cOXVg0nxemIEZRWGs3H9WobccAO//PILSUlJtGnThvnz5hlOnL8FXbDCe1RohqQYbbrkWWQ8rE5uVr6o3+NdA/uDtOleReCOJF2zDe+WX+AgLTUadSPo9OByhvV9yWueH1bcs20IOyloy0OZgv/9Nzi3jRtXiMfzx9vm9xdx440nJ475ZKNTgu9JQt9++y1HjhzhggsuMLKnHDlyhOrVq3LPPWOYM+cbiopyyMrK4pEHH2TMU09xwQXdmDNnLuFwmOuvH8Inn3xMybFjBIJOPIF88HoNoH+uz0OGN5LCEl1Dlpa9Edavhz599Ebk5emCbno6pKfHLrTKaVqaxPAXMOaZZ3jq2WdZtGgx7du3//uZd4pMtGrVKh588AHmzfuWChUq0K9vXy4fMIBOXbrikpoeG49wlzPM3ffcyyuvvMyQIUP4+uuvyc3NxeFw0KplSzp3OY8kZyKTP/uM5ORkypcvz6+//squXXuoWLEiWVlZNGrUgJtvvoW33nrbtCGqzjtSuunQqROrVq3iueeeJzs7m7fffov77rufu+8eyU033cgPP3zPli3bYuQoR8BPSWIyOTk5BAKC007LpEyS4GjxMS655CJ++uknCgqKKFu2LKcIGjVqQFZWFgCLfviBDh06xAovES98iEYiAGLSD0uSIaPUa/EclyTFE7KsArC8psA0jaYYAqWCWe3Xvz+bs7JYt24DoVCCSShS2ykFLCOxA7GCntWBzA5zq8IRrBQPowuQIEIsXryYSR9/zNhx41i3Zg31GjQDYrV1MXOecEz71Mgr8uYYTa3so8Jb9aAr64qH6Y55hxWnMVP9Ntpz+ZApCoPsVARSp6eGjnZUjSIRcziKhDaT7ZMJMuzGQcYZls0oKiqiQoWTUyg8Jfj+/XRKOf4/pIULFzJz5gy6d7+Qrl27Hjfws5oaUNKUKVMIBAJkZKTwyy+LmDz5M77++muefO45QDdBg56pa+HCH/QEBQ6nboZK1YVnJ4AGGelhliz1cE7mDvyZtUlzFkGDBuzxNoJsqJlaxPJ9VWndwEsRKWgFuozr0gJo6Kd3tzcFR0E+FBTgAFyZmQQ9qTwxZgyff/kl48aNPSX4ngTUokUL5syZS1ZWFh999CGff/4Z73/wAYMGXcnEiZMAHTepOo1Jk6HD4SAlJYU3XnuN9957j1EPP8xdI0ZSoWyysTk98bge3zY3N5faderwyCOjeeONN6lfvz5Dhw7j888/46233ja1ydjYFRNyKBTC7/czd+5cPv74E8aMeQzQ8cLvv/8eAJdccjH169enft06hARsWL+ODRs3smHDBvLz8wFITk6mVq1aFBQUUFhYyMSJH58SeiO0dOlSQ+gFWLt+I+07dIqJyKBGzDCEXoirBZWCk50QK0kVXu0iQIA5pJcq/anPxUAAnGHQ9LIWLFjI1GnTGD9uHIkJggRngqm9Mg+L1ACqgpMVWyzN/Oo1I56uZjbLy/cFYrXB1jLl/yIhkfYdOrE2gsEvV66cvYAXwVlLchAGnw+H14sLDXAaAiJOZ8whREKXTLyOqEr9msuAKch2SxiEqT5lDE2ObBHFCZqG0+lCQjHU2MTSn8TpBBRohUMRbp1uDwQwNLkuoy1mhzUJ05CxflV+y7E1acDlQc3tMeIMSwjHyU6noA5/H538iO9/EW3atInx48ezevVqnnjicc47rzMvvfQi3btfQNu2rXnjjdc5fPiwcX84HGbTpk0sWLCANWvW6Dnrw9EXVGIV77zzVjq0b0+/fv2ZOHESfn+AY8dKePXV1zhy5AiXXHIRjoQEPhw/Hp8PI/wLRCJBud0cyHboCS0wUs7Drl3U9OZT03mAsDeFJk30kFEympPLl0/Q6SE7WzdXFRRAkTNNl4hr1TLgEwkJCVx51WCmTPkKXyT01Cn656l+/fo8+eRTbNuyhSeffIrPPpvMseKjxkYrNx1VWOnbuxcFBQX8vGw56enp7Nt/kLJly+PXIg4imkYYB0HNQXpGJgOvuIK3337LSHGZgCAYDLJ///7ophPwR+uU17Qg33wzm8HXXMOMGV8bOGDQE6dMnvw5w4YNJzExkdmzZzF0+HBGjLiLn5YsoWrVagwffhdffjmFadO+5qmnnuaCC7px+eVXsHTpcq644gqjrKNHj/L2228zfPgwNm/e/Pcx/ySgZcuW0b69nuimVauzAfhx0Q+MHj2KvPyCGG2sPxAruKl/7VK/SqcniGrpZBhx0AXk48WQdTmjz6uCtMcZNLCl8jk574p8Dv3wrQWZO3c2ADfeeisJiYkMH3Zn3PaqEQHQtKjAqQVN/yu34HLqrZLZ3mRbTP1QtKTWe9QyHYTZt2cXQ4cNo3379tSsWTOGx2EbR6ygpgPig5qDINHfpaBj1bw7tKCt5jnsdOm+H4rQi6bp5UcgbAUFZqHfQTjG2dCoR469pkUd3bSgoYmV3+UYy/GT80Qm0wG9Teq4yH66CBLUomOkRplQ5558Vj5nBwM52UkKvn/mc4pOjE6x6g/SihUrWL9+PatWrWTNmtUEg0FTQH6ALl0uoGGDOjSsU4c7776bFStWMGzYUPr3v5Tc3BxWr17N0aNHTc+43W6efvoZhg4dRu/evcnK2kp2djatW7c2YucmJiaSmJhIMBjkssv6k5OTw9JvvsGbUosUiiDgNE7LXi+wejVVvV5IrQ61alFVCxJ2pugncKeTA4E03AWweTOcoy3i8+yO9OgBOL34fFCrlm5eTvPqJqoidwbOAKQ4/fg1D063i2uuuZrHHnuETz/9lBtvvPFvGYNTdGKUkJBAnTp1CYVC7Nu3j7r1G5o0V6BvIqK0lNVr1wOQnZ3Dww+PYvjwYdSsUY2bbxmKx13BWF2dTh0ZU/O0WoCuWWzfvj3D77qbr6ZMoWHD+oRCIVJSUqhduza3334n/foNwu2GgzmHGDz4GpYtW0pRURE1a9Y0BVBPSEjgsssu47LLLjOulZaWApjSGp8Ivf76a4wa9TAOh4PXX3+N8847j6FDh9OzZ88/ys5/BX3yySdcffWVgI6b3rNnNwBz5s7l2LRpvPjiC3Tv1o1u3S+id89LqFatmgnzKv+aBIg4O6t6WdWyGk5VmH+XZcrfpdBUUABpbon1dJozjPl8erYwpxOn14HPkUrWqlVc2q83ZcuWZcyY0QD8unoNgCGsgimyVVQDqzRahfxIpYFDakIVfsh2SqiAnRbRyiKphZTaztTUVGrUqMnu3bvZun0v9WpVNdev8tyADDgiBwCX4cQVT4Ou9kGFNqhjol+O/BbRAIPOZ683NiZyDO5Ywhe0IJrmwuWOYK8j2nRZnl5vJIVzxDkPHBHcb7TdEmYBTtP6Aiou2WWyUAEGFtgYI6fTlD5azp2gFj/ZySn6b9IpjO8foGnTptG/f18ATj/9dNo0b07Z8uXx+UM0blyX0aN1J68pU6axaekSHn7+eSN8SFpqKs2bNyc9I5MzmzWhRcu2nH56TQ7lHGTr+vUs+mUd48e/zbfffkfXrl2P247nnnuWUaMe5ssv59OzZ0cdm+cMMus7Fxe30h3bigK6Vi8tNQz79hHMrBkT7Bt07S6BgI7vBdi1C6pX1/FcWhB8Pt0bPFBE0K3PAZkVCPSFqm/vnuzcvZtff13z/yKf9/8H+uKLL/h+wXe8O3YsAFlZW6lXp3aMBi6Mgz59+jJjxjT69u3HSy+9zKJFC/nuu++YOPEjEhISaN26NR3OOYeWLVrgdJdjz54d3H33COrXr09WVhYvvfQyw4YNZ9u2bYwbN5YqVapw9OhR5s//jtWrV7Nv3wG8Xi8TJkzg+uuvY9So0fj9fgYPvpYGDRr8T5Ki9OrVk1WrVvLMM8/h9xXxzHPPs3v3Ltav30jDhg3/8vr+aSouLmbw4GuYOnUKAI8//gQPPvgQx44dw+vVI22c3+1CJk2ayMyZM/j555/RNI3mzZvTokVLGjdqiDspCX8wTKIjTFJSErVOO41LLrkEiMW42gle6n3G/0pCgxOBBTgCfhMsQRW2/JqLXr3OZ/78+aY6n3nmWUaMuNt2HlkdsKwOVHZpkK1CqDWhh+kZS0IViKbMtT6bl7uP9h06ULt2HebPm2vLMyCGx3Zac5V/8dpuy+uIFtrUJwW/q46bFb/r1/RnVOy0rFvNxqZG57Brm+pgaHjBRVS41uxsQc0RjSahOreqWe0s+G1JmgYB/8kfx/fTT/88xnfgwFMY3xOhU4Lv76RffvmF9u3b0aJFGxZ9+SlbCmrSoIG+aBAI0O6ii1ga0fympKRQXFxMcnIyPp+P8847j6mffYY7RRcuYxaFQABRpgzNW7ZECMG8efNtQzNt3ryZwYOvZsWKFdx++1DeeO1lKCggnzTS3JHFK/sARd6q0QDmqkPEri1sCQb55ddfOXLoEAmJifgCYXbtzOLukfdStWptPE59g3E6wRWIOrXJ6A7SA1ddlL+fP4/zu3Vj9uy5tpjlU/T30q+//kqrVi0AaNKkCevXr8dXVERyWT1ov7pp+f1+ypXTcbEJCQl6IpSSEiMGaWr5FL748iv279/Hvn379OcdDlq2aMEvK1YA8PPPSwmHBUVFRTRs2JAaNWoAsGbNGlq0OIuvvppKnz59eOaZp3nmmadp3LgxS5cuNdr7xRdf0a9fv7+UB1OnTuXpp59k5cqVAJQpU4bk5GSysrb+q8OeCSHYsGEDGzduJDExEafTya5dOxkx4i7jnrFj3+P6668Hotn8li5ZQps2bYz39siRI8yaNYvvvvuO1WvXkpWVRWlpqRFtIBgMomkaL774ErfdcD0Od0qMk6Kd4KM6f5mETF+RLpzE0XJacbNqRIIdO3awZs1aFsyfxdhx43jttbdo3boVwYCfMsllObtlc+PAHS9GtSrk2glKVucxVUtsSjqBjSaUWCHecBRUnLyyc/M455y2pKamsmLFKuN+9XmVn2BukyS5/lp8yXChr91SjoyBmljGzircOwiTm+cwdCCyTNW5TG1zTHkRRYkRDUgJD2eXYc/Ka0kxDpRKdAerkK6SndD/b4jq8MUXf17wveyyU4LvCZE4ASosLBSAOHKkUIRC4j/9GfXwwwIQa9duFTk5QhQXCyH27xfFxfrv940cKQDRo0dvUbZsWbFmzQ5x4IAm9u49rN8bComSEiFESUls4ZFrK1euFenplUS9evXE4sVLYm4bO/Y9AYhLLukhDh86JA7t3i3ycnOFCIVEKKTXUVpYKNZ8840oys4WoqREhEJC7N29Wzz33POid8+eArD9DLziimgbI21Smqb/U1ho1LN/f/S6poVF69atRZs2bYSmhf/xsfqvf9xud8z4NmzYULRr104MGjhQPPPMs2L27LnC7/MJEQqJZct+FePefVdUqlQp5rk77xxq/F+9enXx+edfiAcffMi4NmTI9aJVq1bG9zJlyog77xwqli5dLnJyDok6deqInj17iVBIiMcfe0wkJibG1HHNNYP/Z7zIytoqJkz4SIwe/YhYufLXv30siouPib1794vt23eKrVu3/+m1dODAQTH8c7lcombNmqZrtWrVEvXq1ROJiYmiTJkyxliLkP6OG+91KGT7NxQSYvDgGwUgatSoIX768UfTPSIUMtYIWabd/2rbRSgkCguFKCwUxloYKUaIkpLo2hN5rrj4mOjerZvRp7S0NPH88y8b96rlqnVaP9Y2WG+xva+kxFi3jTYq96k3q79ZP7JvRUU+Ubt2bZGZmSk2bdgQU4bd93jjZOW9cbPlN/m83Rib+GcZB/ld7b8oLo7P85IS0++mOg8fjt1LQiFz2ZGy5F4qfzMVaDOmBt/lg0rf5e9HjugyTGFh4YmIPH8rSflqypRCMXeu+MOfKVNO3j6ebHRK43sCFA6H+f7773n//ff47LPJ1KpZk7nzllIvvQwHAmlUTfWTH/Dg9ULoSA7T583j6uuu4/bbbuOVRx7RC9E0thRkUC+ziCXrUzinbfQUXlCgK1QNrJPTyTeztzJm1EB++fXXGA3qgQMHaNy4IY0bNeLxxx6jV58+lJSU0KXLeXS74HyOHTvG+AkT2LVrF5UrZ9LjkosJhQVffPE5QgiaNm3KkCE3sG/fXp555mnq16/PLbfcxllnncXZZzbF5fEYp3OpLTZMTe4wB7IdeL06xrdI8xjmPL/mYsGC7+jZ8wKmTJlG7969/4HROkUAJSUleDzumOudO3Wi5mm12LZtK2vXrsXn81GxYkVSUlLYuXOn6d7TT69NaWmQChUqMG7ce0yePJlXXnkZgIYNG7Jp0yYA0tLS2Lx5C9WqVaFnjx48/cxzTJz4EePGjSUnJwfQM6gVFhbSr29fVqxcSUJCAh06dKRv3350794dv99PWlravxoic+jQIbZs2UJWVhZbt25hy5YtbNmSxZ49e2KcPp1OJzVr1mTkyHsZNGgQ5cqVO+F6NE0jJcXL0KHDePD++ygpTSBBlOBxOPCmp6OF9YgbS5cs5uelS9E0jXr1G3LuOW1p3PRMIDY2r6R417I2baBRkyb06NGLGdOnxmg2rZq8aFvN351OBQKgkKrdk2uNxKUOH34X48a9w7hx79Ox43lUq1aZxFBpjBbRrk+2MAqipngrXCMurEBVq1r5ZafFlKZ7C0+/+GoqAwZcyrRpX9P7ou4xUTNMdVvgCLapeS1tkfVLHsYN90U06oYV2y0hc0UBl+HorLZLbZthTVSC7MaLF6yGKlPLVHkvtcthp8tIuYymGRZGsInioBSqwjPkvf+WOL5TphRStuwfb1txcRH9+p3S+J4InRJ8T4Auvvgi5s7Vvc4fGDmSex8aQ7lyyWzdms/27eWoXHkPgwZdwtatW3C5XASDQXp0786Ur74iKTk5ms5RBun25YPXax88PiJsLlmyiC5dOgF6eKqxY9+jefPmxn2//PILl1xyEYcPHyY1NZVHHx3DzJkzWbLkJ5KSkujZoweXDbiCsWPfJTv7IJqmccEF3XjooYdJSUlh3rx5XHhhN+66awRPj3mUhDLlTOY/YwEjqK+EgYAune/bR25qPTK0A/hTq+LBD2AELE9KDHHhxZewatVKPvhgAt27d8d5yt30b6eSkhLq1atDUlKSIdA2bdqM7du38fW0aXTt2pVwOMyGTVl88snHlJaW0uKsM2nWrBkHsnP49NPP2bJlI0uWLGHYsOG89JIu8BYWFrJx40YaNWrEVVddyaxZ3zB27HsMGTKEs85qxvr166lWrRoDLruMfv0vY82aNSyYP4+FixbhdrspX748rc8+m8HXDqFjx44n1JdQKMS4ceOYOXMGvXr15qabbvqf8e33kBCCpUuXMm3aVGbM+NoIG5aQkEDNmjWpX68edevV5/TTTycjvSKpaekkhzUoW46HHnrA5AzbqlUrvv32uxNKsSx9DObPm0fn886PK+iZSInHa0e/ZTKeNm0affv3Z/rUqUa2Pjsv/9/E7lrqsYvbqjSXooJ8MqtW5f77H+LR0Q/FtMvaNxWOYP0ek9bWpk128AW1jdbkFDFxahUBzC7RwoYNG+jStSuHDx+mX7/+DB40kO49epGYmGiu10aAlOXJqAkxIbxsBGgr72PwwDawBxN/IwK82gaVpJ+H2paw06ULz1oRfmeKOSZ05ETjDzh0JzjZ7oJ8cLsp0nQFktwrJc+N8n0+gu6UWLyvIuzGHMoIk5fvo1Klk1MolPLV11//ecG3V6+Ts48nHZ2IWvi/DHXQtLDo0KGDYWarWrWayZx4xaWXijUrVhjfK1RIE78uWSLCmhY1weTkGGYaaZFRYQ9qffKeobfeajJZJiYmilmz5pjuPXgwR9x++x3iww8nKmadUhEMasftU3HxMVG3bl3RuXNnEQiEo+aywsJoW4uLo+YraS8qLhbi8OFo+xWzVk6OMMrJzc0TnTp1EoBITU0Vl156mXj//fHiwIHsf3w8/2ufCRM+Eo0aNRJdu54vsrK2im7duguv1ysWLPjBdKMca3UeilBIPDJ6tABEfn5BTNnBoCa2b99pfC8tDYkfflgkbr/9DlG5cuUYU/z1Q4YYdf2ez0MPPWyY2gHRo0dPMWHCR387L3Nz88TUqdPFyy+/Iu68c6ho0aKFAERGRoYYPPh6MfmTT8TalSuF3+cz+GlnYg6FhNi6NS+GP6NHP/KbbVi48EdRvnx50atXb1s4kTqe8hNjJo+YhGUbreOvPi9CIaFpYVG3bl3RvfuFIqxp5jkTp6HS6mztu8k0bzFhqyZ9+dm1Y4cAxLRp35jaatdO6//xIBhqv63Pqd/tzPBxB8ZSnizAygMRConiI0fEa6+9Lho3aiQAce899+iVKQyQRVrbbf2u8llte0lJZD1X2qhC7I7Hs5gxU8q2rvtWuIndnJBzTm4hVp5a+Wv6q0AuYphiqcN2vkX+Fh45ctLCAKR8NWtWoVi4UPzhz6xZp6AOJ0qnBN8T/OTkHBJTp04XV199jUnwPb9rV1GuXDnj+0cTJojCQmEseuoLKwVGuRBYBQ1jwSopEUeOFIpNm7LEuHffNcquV6/eX9KXJUuWCkDMmTNfXxwXLhTiq6/0duTkCPHxx9FFRsHzykVPdsIQgC0bUiikHxhmzFgqHnzwEdG6dWuRkJAgEhMTxaBBV4qcnEP/+Hj+lz5ybEQoJIqKfKJatWoCEAcP5ph+M/1fXCzGvvOOMffuuedekZNzSAQCQVuBKxAIisaNGwu32y06dOggli5dJubP/17Mnj1XHDiQLXJz847bxsLCo+Krr6aKBQt+ENu27RClpXpbsrNzRWJioujdq5coLQ2JV1551WjTr7+u+Vv4p2lh8d57H4gKFSoIQLjdbtGwYUPRp09f8c03s0Xo2LGYhww+RjbqNWvMsk1WlhCfffaFAMTrr78hFiz4QezffzBuG7Kzc8XVV18tHA6HOPfcc8WhQ4dNddmOoc0n3vxQBRlreVuzsgQgpk+fYfrdbn6pgpAVZynnlcqXmOcjn+Jine/XXXutAMTSH380QMHWZ4x2WIRGtUwV/vlbbVV5YhXUQiERBSf/xsQxPRMR/NTfp06dLgBx3733mq7HFSQVhYQVa2w3HjHP2o2duilF7lOHyY6Xdm0wcMTKIcb6vPHM4cP2YyB5pJRh7YtdvVbe2c27Q4dOXqFQylffflsofvpJ/OHPt9+evH082egU1OEEyefzMXTonUyaNJFQKMQZZ5xBxYoVWb58OZdeehnDbruVVi1bGl7PYRxGSJ5gMMjLLzzHDz/+xMCBVzJw4JWUlCTgdsea+Exex4SZOn0W/frpMUfr1q3L5s1bjtvOtWvX8vLLL1GuXDlefvkV29A+Pp+PmjWr06JFC2Z+8gkeh4NcMshID7N8hYPWtXIhO5tgg2ZGSsp8n4s0LZdweobRLwdh8gt0bJ7M5BRjMs3LA7eb/UdL+Oyzz3jqqUdxOpOYNOljzjvvvL9gZE7Rb5GDMNt37ubee+9h/fp1bNmyBY/Hw+7de4302PI+1dzZsWMHfvppsQHfSUpKIhwOU7NmTfr3v5RLL72MVq1akZuby5dffsHQoXcaZTVu3Ji1kZjAxyMhBNOmTeOuu4axd+9e43q5cuWoUaMGzZu34OOPJ7FuzRoaNWlG2FdEatWqFBcX89NPP9O2bdu/llkW8vv9XHfdtXz55RdcfeWVjHn8SWrUqIHDYTPXlbBV8UiFijoIc8uttzJ23DguuaQHl102gEaNGlFaWkpOTg65ubkcOpTLL7/8wty5cygpKUFdrt1uN16vl7Jly1KmjJvkZDdud+RTpgxJrmTKJrsok+zB7XaT7C6j/+Zy4fZ4KONOxu1KwuX2GM8lJbnxeMpQJkmPFOFwujh61E+PHt1p17YtDRo24pyWLeg38ErKJpcBzNm9ZL/kGmZn7rfCLiSm1BrpYdKkSQwefDXvvTeB66+7OgoviEDHfD4dfWXF+Mo2qGQHXbALxxYTek0FGx9nUI0IOHHSHdv1f968efTu25fS0lKmTJlG9+6XmOATkkzPgS00wcp/2wlHbKQKO7iDLON40AlTmyLRHmLw0Eq5uXkOMrx+HeCdnm6MoRpFw5ZfSlg0B3oYOq83NgqG3diqPCjwB076lMXffvvnoQ7dup2cfTzZ6D8l+AohWLhwIfv378fpdLJ8+TJ27txJcXExZcqUoWzZsrRq1Ypbb72N77//npUrV5CRUZkqVarwxeeT+XTyZIbfcgujHnqI1KrV2bBiOZdfex1ZWZu5+urreeOlZ/CmpppiCx45UkrvHh35aelS2rRpw7Jly3jyyWcYOfI+nM6oD4RcbKWjm88HKSlhFsydTfcePQDYuXO3ke3HjpYtW8aFF3YjMTGRI0eOMG/e/LjC5eLFi7n44gtp2bItM6Z/ScqBA+RnNtLj/UrKy4PUVD2zRWqqHgO4IBe/NwOIDQqvLkYFBZAWOECusyqpqXqc4HBqGtkH9nHNtdfy/fff88QTTzJy5D3/k/itp8hMDz74AM8++wygh/T6deVK6jdsHLuBWILES1q9ciUTPv6EunXOYO3q1UyZPp28vDzS0tKM1MEAffv25fTTa9O8eQsGDRp03DYdOHCABx98gIkTP+Liiy/h+aeexJGUxK5du1i3fj1ZWVm8/8EHAAwcOIi+fftx++23cehQLgDNmjXj11/X/DUMipDP52PLli3k5OSwefMm3njjdbKzs5n00Uf079/fuE8KGxB5B/JywevFjyd6CNSica4lFlIVbDQNnA6N9957jw8mTGDZsmWmtiQkJFCxYkXq1atHjx49OfPMs9A0QcmxIgqPFuP3F+Pz+fAX+wiUBCkJHONYoITAMT/HAkFKSgKUBI4RKCnh2LFjlJSUEDimfw8EAsY1zQrcjEN169ZHiBDbtm2jatWq3Hbb7fTvfykN6tUxYVqtoalinKIsWGP1vqNHj3Fw/07mzV9gHKTuvfcBHn7wPsMBUK1LxaCqTmbHE7ilcCRlWluMtBaLXQ3aJI6w4m/VMlRHLZVUvHEgqNG3bx/WrVvLhnXrKFe+guoXZ2qbFVcsf1cdumLiK9uEGrNmmrNTvqhlWp+TexREwng6nTF8V/kZc0CMdFDG8Y0XQ9kaPs6U3jpSjPVds8NwaxoEivIoX6nSSSkUSvlq/vxCvN4/3jafr4iuXU8JvidEJ6IW/v8CdXjrrajplkhYposuvFB07Xqp6Natp2jXrrNISkoywkClpaUJh8NheubJJ54QorBQFBbqEVqCu3aJoUNfjkAR6ot777pLbFi3zjDdfPXVHAGI+vUbiFBIiKuvvk4kJyeLEXfdJX5csEC/r6REFBZGzWqFhUKsWLFZZGRkGPWOGjX6uH174403RUJCgjjjjLbi/rvvFoB4++13j/vM998vFCkpKaJh3bri55+XiZ07D4tx46aJ8W+9JfbvP6h3sLAwCs+I4HvF9u1i+/bod9kHaY4qKRFCrFlj9EWt8/BhIfx+Tdx//wMCEG3bthVLliz9x+fG//fP4sVLRJs2bcR5550nHA6HuOGGG4UIxYZ4kh/TdTW+UEiaG0vF/HnzxIMPPCA++miSWLnyV1G+fHlx990j47YhLy9fbNqUJRYvXiKeeOJJkZSUJMqVKyc+HD/egE8YN0fMnc8996JISEgw3sM6deqIF154SbRo0ULcfvsdf5gfmhYWe/bsE19/PVM88cST4tJLLxN169YVCQkJppBsXbt2FZs3b4maVG2woaGQiOJ55XsQsf2aTLHFxVEzuYznpRRy+NAhsXTpcrHm11/Fwf37RUlJqXlsIliJGFO4YpeW98q/VkyoiccR03JhYanwFRWJvAMHxL49e8SWLdvEihWbxfpffxW/rlwpfvzxF/HTTz+L7dv3ClFcLBYvXiK6dOkivF6vDvc6/wKxfu1aU5uOZ65X211aUiICfr8oKSkVDz74kFGm/JzZrJkAxB233GIyg6v9tTOJx/A+pJjjQ7HhGuX/hYXCbH63jLXK23g8P979djzasmWbSE1NFWeeeab49ptvDB8Na/uPW78N9lVet86F48Ek1LbJ+WHXjpixlYVHoHGmsVKwzgZcTnlGfYes81POk5i+W+a82g5THyK/Fx46dNLCAKR8tXBhoVi5Uvzhz8KFp6AOJ0r/KcF3+PC7jAW1w7nnikOHSmIWwB3btonhw+8S748bJzQtLLSiInFw3Toxb+5c8c5bb4mcnEMGXlfk5Bgv5meffiou6t7dcOpJTk4WSUlJAhAtW7YSK1asEiIUEj6fXwwZcqNxz6oVK8R3M2eKx0aOFAMH3io+eeghMWvWr6J1y5aiatWqYvLkz0VW1tbjxsXNzdUdZZKSkkSvXgMEIO6//wEDJ3m8z7p1G0TLli2N5yV/rrxysGkRKiwUhuNbcbEQYvduIYqL9euFhbYLpLwoHd+MhS+ycP24cKGoXbuuAMRNN938j8+P/8qnU6dOYtDAgcaFUEjESip2GEblmhz34uJSMXrUKFG2bFmRnp4udu3aE/PYnDnfirPPPjvGmWvonXeK/PyCmDZYn9+6dbu48frrTfNTfho2bCg++GCC8PsDx+3z4cNHxJw534rHH39C9OjR0+R8V758edGpUycxbOhQ8d57H4hlP/8s9uzaJYJBLTqvLZuv/N+Y84oQa+DerYdBpUFqWeo1tWxrPeq9pmcVodv2XhtfgkhYVdNvVhysHHK1H4cPR+v0+3zio48mifr164vk5GSxc+fumIetbVTHecuWbcY4JCYmioSEBHHfffeL+fO/F2+88aZpnG+++ZaYPqh1yXZaDx/qM/J301qljKudoGbH97h9tBtX2SbVodBm3NetWSMaN25sKGTuvece8evKldH7FFxtvPGytsUq4Mq/1rli5YVxj81z6u85ObHjobZFtkf23xB6ld/i1WXls3Wuxnt3YvagyLP/hji+pwTfv4/+E1CHY8eOceml/ZkzZ7YBNwD46ccfCQTPpXPn6L3SrOIP6GYSTyBfN/eDgbEqCrgMCJPEmEncQpHmYObMaRw4kEtx8THS0ytx27WXcyyhrHG/psETj4/i8SeeMOp1JSURLC01vleqVIlvvplNy5Ytf7N/s2bNomdPPaVoWloazz//IoMHDz7hmKiapjFhwgSOHi2iX7/+nHdeZ7p368Y7r7+uY3sj2eA0TUc/AFRN1TPVBb06RtQVKCJsY6YxZTAK5OtpjxXz3333juSFF1/k5ZdfYejQYSfU3lP056hTpw7UrHkaH0/8CDCb7V1OHUfndsfG/wzjiOIqI+/JqlWraHn22QD07t0Hj8dD8+bNadOmLZUrV2bMmEf59NNP6NihA0Ouv5GaNWtSsWJFKleqSKXKVWLaFg+7B3AgO5eF388nOTkZHE769o3Gic7MzOTuu0dy8823ULZsWY4ePcqCBQuYO3cOP/zwvRFqrHz58rRs2Zq2bVtzdssWnHXWWZx22mkkJCTEYhhV87bPR9ibYjKBgxJqKeA3YxYtpnHDpHycWKwnHB7MYq42tVvJRqaa+P2aK2oWjtwjTc3Wv7K9MRm/FFLNzkcLj5Calsb7b73FkJtvNj0jhODo0aN4vCk4HPr17VuzWLpkCV9Oncq8777jtdfeIOArokOnTpx55pkENQeJiYKff/qRbVu2kJaRyQUXXECZMmVseWJnsjfxyCb9seSLvG6FRqj4Y2sGNDX2rRGqUuG1FatsZD4D23TN8n8hBEuXr+CDDyYwbdqX5OXl8eabb3PDDbfExyMr5cj4yNZYttb7rdACNcybKYaw02ngGuScN2GJC/S90eqfopZlrCsy01pkXNRyVB7L60rSPlM3YsKpOaOZ+QgEKCLFWLvU98lXdPKnLP7ppz8PdWjf/hTU4UToPyH4Lly4kPPO6xxz/cH77iNQWoNePRrRqX1704JlyiMeIbm4SPyV3MjUVJguzQ+aRhEpevBt+VZH3t78Ah2c73Ro/LxsDUlJgu/mzeWhhx+mcePGnH12a66++hpat26Nx+PhRKmoqAi/30/ZsmV/VzB8lX799VeuvfYa1q9fzw8/LKJTh/b6D/v2EcysafQ3t8BFRmowugpJh4WCAsKpafGFF2VTkIvwqEce5cknn2Dz5i3UqVPnD7X7FP02HThwgK1bt3LGGWcwatTDfPbZZHr17ElqaipnNW/JwMsvo0KFCoC90BlPEAqJBB55ZDTTp0/D6/WS6HDw6+rV+P16fOeKFSvywgsvMXjg5YikMsazViHPitezde7BvJk+/fQTPProKAAaNWzIxkhCDYfDgdCtWdStW5cuXc7nnHPa0bZ1K+rWqEHA4TXVlVvgIiM9NnarscHbJGdwaMEYhyY7JyAp9BhYX4tQIA+MJoxlwG/s/nHbRHTD92suIyaqlU+qwKHGhbUTKsASM9XmfVWFJ9mXUChEnXr10LQQDRvUp7S0lM1ZWRQXFxMOhykuLqZhw4ace24Hliz5iQ0bNhj13T1iBC88/7yJf9a+GjyXMcax4HwjFO9wIdsqk2SofY+HBbYebuzi6RrMsgi/dk5g6mFKOs6puFhr+vrS0lKq1ahB3779ePftt4z+xcMYW8nucGTtS7znreOrYtINXLTlndC06FanzjGjjEBA/+t2m0HC8mG3W78noh1Sx8ouyYjaVpNDoqWvoL9/eUWBkz6O77Jlf17wbdPm5OzjyUb/CcEXdKeV7OxsXn31FT54/z0CJSWm3wsLhclD2LqoArHeqpGXWS56dptCTPBzTQ/MDRg5zHfs2kOTJo3o2vV8pk//+n/Mifh0zTVXM2PG10yb9jWdOnUyFmop6AZxGc4MclUJOj0EAoqmIRBNaGHr0Wz5fqTwKG3a6BrD779fSJUqsVrAU/TnaNOmTXTo0J4jR44c9745c77lggsuMAthhE1ZtWydVSxarqAWZsOGDezetoUu558fk5TBKjzbbcLyu8zeZLeJr1+/njPPbBq3PykpKSz7+WcaNGhgbMSahulAG6MdlBuor8jYnK1CMGDrsGT1QFf7Y9KU2ZShCkXyu+qE9VsZuBwF+RQ504yMaPGEAWug/3hRAWKci9S+2QhVrVu3Ijs7m9at25HkENRr2Ihy5cqR6EigQmoqU6fPYMeO7bRr145u3bpz3nndcLkceFUByIasgnC8ddbEC19RVECW0Rnk/5gFf4hmk1OFNjnv1QOS1bNK1SJbncrUdybemIEuzPvxGFpOeQD8/PPPuXzgQC44/3zatWtH+fLlqZSWxjkdz+f002uY5oetU5088MikSc6wHlkh3TwX5IHMbuxN2lQb9az1WUOzrWRNs2prXZo/yr/UNJNwKhMmxcvCZ4yvTaY+g992h1T+HZnbVq7884Jvy5anBN8Tof9MSi2v10udOnV4/fU3qFmzJvfffx8AiYluevTooWtnceqLO+aX3njJpGY3cg/KwicXkzDRl11u3GmpuvexC10gjDLdiT/goHatmox95x2uHjzYyIr1T1CtWrUoKiriwwkf0KVTB30BxEV6ut5WNAwTaUGBnp2ndvUgrkABYW+GvrApoX/koiT5s3P7VurUqxdT7+hRo3jn3Xfp3v0ClixZ+pub4X+ZDh06xMKFCyksLKS42IfP5yMcDuN0OklKSsLlctG7dx9T9I9nnnmaChUqMHv2XHJzc9mxfSvhcJjyqWmkpabwzaxZvPf++1x4oZ7Z77HHHjeeDeOISWkKFmFQEaT0jRuan9mU5o0bku9zgSI4uZxhRVBQTbSxAqFDC+L1uggT3eTUNjRr0ojx4z/k+uuvIxyObpCZmZlUrFiRDRs28NOPP1K7TiPjrOZ2x2qMZF1S+nAQNrSwaJq+vWvoXvMKfEHdlPVsWooJV9NA2YB1U3eEYUpUA2PtsBweVKFL9WxX+S/J6YRwahryrTH6FxkXCdtyuzEJJaoW005YN/oYaZvLciCSY+ggzHXXDWHYsKGMe/ctypWvFO1zpK9DhgwxCdrR/tgffqQAI6/bRY+Jq7n0eo3+yXVbLVMvz8x/I4Wyphkledz6pNFngL7mG7oPp76Oq9ABmVFN0yJZyTSwZl9zICNR6HtH0OnBE9lrHITxROZnSkoKXq+XtevWsXHTJgoKCiguLiYhIYGOHTty221DGXBpH4KawxAG5XvodDrA6db7puw3GenROSStClZNs+y/prlwRYTxMNGDoBT2fZF0xlZ4AsqBwthDI1YN+XvY7SGABw9hXJp+gCjyuSLKE5fJmuJ0OkyafkBRTEXb7IyMsUx17PWCw6fXa103TtEp+s9ofEE3ye3YsYPmzc/k2LFjAHz55Vp69myKK1BkMr9Y8VDWcDEEAtH84crpHyymNiX1IljMSJHjbtjporTkGBmZmVx55VW88cabfx9TFBo/fjw33DCEUQ8/zGNjxhjaE5kiEnRtRG6eDteQVqs0t36KDzo9BpbNLiTWgexcqlU7vka3SpUq7Nt34C/v27+NvvvuOy6++EIaNWqkHwY8bmbPnUf//n2NuZucnEzZsmVxOp2UlpaiaRp+v5+KFSsyd+48Dh06xObNm3j77bdo3LgJn336SdwUpSuWL6VNu3aAfkicPPlzLrzwQhISEmK0bGAO02SFRFhDWVlxsfK3Ip8icCjtUb+DObSUNcQR6OmZl/2yko3r1nD70KFkZmZy4IA+hx4ZPZpHH3nEFntpVzaYIUyyPlXzbGe9MLSCkQJk+TJGrVw7rJo1SVaNop32W9WoSViVmuLVileN4auNllIeBtRn4oWXkt/luKnjlZ2dTbUaNXj37bcZcsNNMUKqiR8WjXsMdCDyV223sdZaeGNHVuiAld92JnPAFJ/cOl/sxkRNu6tWbtLkW8K3qRpstc9WaJ3dQaCwuJhp06Zx7ZAhZGRkcPBgjqlMtfPqwcga09ZubTZBESz7mco/63sRc5BR9jTTeqFAemTfrYc3R8BvjptsxWBLbbLCM1WrrrbPFBIu4KfI7z/pw5mtXl1IuXJ/vG1HjxZx1lmnNL4nQv8pwfeSiy9kzty5pmtTn36aPgMGQHY2KMHwYzUb0cUwLy9yera85PI502KgvIHxsF+ynkcfe44xYx5g374D/4jJv2HD+jRq2JApX32FSEg0OTypmxFET9OapgsF0v/P1rmG+Hjf+fPn069fH3w+HwDt2rVj8eIlf0t//wkqKChg+/btlJSUkJaWRoMGDVi3bp3hnLh48RKqV69O9+7d+O67eQD4/QFyc3OpX78uF5x/PmPffZf0jEySEqPOi5Lfubm5dOnale3bt1NaWmrShIZC+qseTwg4fCiHjMxM4/4Xnn+eu0eMiB07opuMVVizvgcq1MeKvVTvVzd+u7ljNaMaGmTlWhgH57ZvR1rFdN5//wPmzp1Lu3btqHvG6aZNUW2jrZCobJ52OH87GIO6KZugUpH3Pya+KkQFOoK612hmpsmJTu2XwX8VZiUlVhtnOSuPrcKJFbagjoMphqyNFGlngg5qDvr0uYTt27exbuVKNIfXHh6jCLfq+FnhYar5HGKdlVSKOUQQO4/s1lxrGbJuO02y3bqtPiOFQLvDjcrHqFXEzD9ViDZBFiLYZAl1CePgnntG8tJLLzJy5D0MHTqMGhFlwvHW3Hj9t50jqnAc58BoetYC1wCM5B9Bp8eAXRjPKXOuyOcgxRlVDklNtJwbUvMLsYcZnw9SiArUBlnmbBjHv8K5bf36Py/4NmlySvA9EfpP6f/nffcdAN26XcjtvXuzePEy+gwdCtWrs4RzjPvkhihfbGfEJCtfJsNkpJhGCQSii4IUiJVn1LKNhRC9DllPl05tADh8+PAf6l84HGbSpElce+1grrxyEN999x0ncK4BYO7cuWzZsoVp06dz4MABpHlR7bu66PmdKUybpi/GXi+sX28uT57eDVOcZaOUC1+nTl0pKijgiy++okGDBixbtozx48f/of6fbLRz50769OlNYmKC8TnrrGa0bt2KDh3a07hxQ+4aPpQrrxzI3r172bt3L9dddy0dOrTnwIH9nH56bc444wzeeedtJk/+lMTERCZ9/ClVqlQhMTGRsDF7ovxNz8ikQoUKlEQw7AsX/mi0Rx0D+aRKFStVprBQsHr1Wp5+6imuvuqqiOkzuumFcUAggDQhx7RBmddhdCHC8GjHvDk7tKDxrDTry+ty7khyOcNRbY8iXFrxfIOvuYbZs2fh9/u56qqrOOOMM6J9l+8qZqFX1msV5g3rqqbF8Nmh9NzpJOY9N+BObo/RD1knRKAKqmYrs2o0TIxSgHwmci6MXpemcsxY2zAO0/oTo9mDCGwhaIyhpmHw1eMM6mZzRXstyR9wGCZ5oy6lWc888yzbtm3jtXfejdZlmRdhp8sQTFQNrougUZ6EKMj/5T2grysOwkb7jLZHSLYtXjutYyjXeUl20ROswqGV36oFQhX81Hml/pVrqtouq+bYQdhoi8cdNuAzDsI8PuZR7rv3XsaOfZczzjidb7/91tQmtQy7tqt8VPcsdcyN/ilYWn8gyhfJdy0CXfA4g+rrGZ0U6JZAyWt5XdP0+ZTiDZshF4GAMTdkJBL5nDpuEPEriRwS5dwMasqeGwgYbY53aDpF/036T2l8P/74Y0aMGE6ejMkFtGrVikGDruGuYbeTm6cvYmle88nbOKGr9hMLmTZty6Z1PKcU1Ylg2pTJXD5wIJs2ZVHPBgv7W/Trr7/SqlULmjZtSm5uLjk5OfTs2YvGjRtzzTWD2bx5M2vWrMbj8eD3+1m6dCkbNqwnLS2NtWvXxpQ3Z863dO/SyTYd6Nr1DprV0UOasX49/lYd8QTyCaemGffYnbzlbzFCjtMDaAwbegfvvPsuH300iSuvvPJ38+BkoJUrVzJmzKO43W6++upL0289e/ZiyZKfjMNN+fLlyczMxOUqg8eTTPnyqVSuXJnU1FTcZVzk5OTw0cSJxvP9+/Xji88/tw2/Jf9u376dDz/6iDPPakHfvn2pUaMad901gpEj7oo2RIufXve3tEbxNEZWTZ1JQ6vU69dcMZmp7MzrVrOtgRm00QzK5/IL/NSuXZ2bb76Fp59+Jiajk3UDNA6tikZKtl1uvCZS4QI2IaOsfXQQPq42247Ppu+BaFQGFS5hp90FMACOluvWOWLnfCXXIyveV0UgSCckY6wCZm3eLbfcwWefTWTL5s1UqlzFVJcd2WkjVaW2x6nXpzr4xfRLSTFsDWGmzst4WQntNOrxxkNts/pdau9jIBaWtll5H0+gNvHGZp4tWbqcd95+k4mTJnH33SN54blnkYNl52CpWuLsUkTb9TGeNSHmXdXM0T8MeA966E+p0XWhaIEVa4jUdpsdZB1Gts+YLHpKOyB2vto5v/0bnNs2b/7zGt8GDU5pfE+E/lOCr6T8/Hwuu6w/DoeDQCDAzz//TIsWLTh27Bg+n+4wVLFiRTIyKvPKK6/SqsVZxw0lE3cTItaEq94vzUQAuN1s3LyFxo0b/mGhL3vndqrVqcPIu+/mgQcfZejQW/j444/1Oh0OwuEwGRkZlJSUkOx207hJE+rXb8vhvK189vnnANx4402MGzcWgBdfeIERN96oOzVYFkVDGIlEedixz0Xt9CJDC66GejqeaU1ek7FjkxJDDLj8cpb/8gtZWVtxueyFs5OV3n//fW666QYAOnfuzAcfTKBcuXI8/PBDvPvuOyQnJ9O9Wzf69O5N165dqVatmhFvOZ6QOfPradx7//1GLNoVK1bRsvmZts/I/1X8bDz+AyYHTvWcomrpwOxwZgftsf5vlO2MFcyt9avYXaNuos5yMSZzK44ScxSCm2+6gcWLF7Np40bb/hukbuxWDH88LCQYWikgxhJibb8hSP5WOl0Lzwy+K2WrkQfU+2M2fhth8riCi6WueM/ZrXcGnyIH2IOFx2jcuC5XXnkVr7/6Skx9Vh6pZdsKppYxOpHYyCrPVP4DMfPGjn/yObActtRJqkWdNWMELs0Svs46l6w+IYQJh8NMmfY12dkHKQ2WUD4lhW4XXkz1qpmm8gNheP755xg9ehQ1a9akU6cu3DtyBI2aNLOfd/EEW8X3RMb/jTfOxjywwGvU91uWYfCqoICgNy3aBhsliDwEOJ3maEdgbrvpkCYtPm6P8RpqmiLIK+OsKp3+DYLvtm1/XvCtU+eU4HtCdCJZLv6/ZG6z+xw7ViJeeullceONN4lLL70sJjPUC88/b8pao2bysaYDVdNGqhlm1O/W6yUlQojt28WyZUJ8840Q3bt1Ey1btvzD/Rk58p6YPrRo1ky88cADYuvataYMR0Y7du8Whw8dEvPnzBGaFhaBQFiENS3aL5uUkRs2CCNDlZGRJ5LiUs1SZGRqUzIF2TZcyTq04LvvBCBmzZrzj8+P3/N57rnnjbS6Mg1zMKiJ++67XzgcDvH6a6+Jo0ej2ZHUuWE3T9TfQiEhvp2jp7/etmWL7X1qOerHWla8+RmvnJKSaJYoYyytmd0OHzZ+t8uyFC/VrF2COHXuhJT3Sj6jPmT8HvkxrGmic+cuokOHjrZ9CUXmc7z0rsY19Z7jZJlS+xZv3CRPrH2x8jyGD8XmuRIve5sd/+zGX22v3djI99k6XOp4Ge+zHOcInwoLo/c9/LCeye/w4SOxc6+k5Lg8jGlbKGSq87jz1zovTuB+u3E43v9WnscbPLt7Yvqh8PqJJ54WgHC5XEba5kqVKomnnnpOfPTRJDF16nTxyOjRolq1agIQ94wYIUKlpcZctcvSZtsWpc/yuzWjnjo+dv1W+WdkfissjO4TSpp7dS7bvHamuRQzPmq2O0vWvZg5qmS2M83PyPP/hsxtO3cWisOHxR/+7Nx58vbxZKP/vOArX7b16zeK6tWri0qVKolLzj9f3H/HHWLuxInmlyjy5qrCnGUdE7t3i2haT8sCF/Nih0LRVKe7dwtRUiI+nThRAOLAgew/1JdgUBOPPvqYSExMFGeffbbYtHixuPHGaN1qP0RhoVF9To4QYv9+4z6Z0lRts+yLTNdcXCzE/v02/FTSUqqbqXGDsqGrC2lY08Skjz4SlSpVEtWqVRO5uXkiEAiKffsOiC1btons7Nzjpm7+Jz/vvfeBcdC45prBwufzizfffFvUqVNHAOLJJ56IOwesPLbbBEIhIebNmy8AsXXrdtP98cr5rTloPGMj2Jku2Nx33LSj6jOh2A3U7mPHFzX1rLVsa9tKSoTYteuAuPHGmwQgpn3xxfF5pMxBdZM2LqjveUSwsGtLPN6brsv7IhVZBQvTs0pddh87ftoJE8fj94mULdt9vLS3du0PhYQ4sG+fcDgc4p133rMt09pf9YaY+izzzK6PMetUHOWD7Tyw4Yu1PFXYsuu/3TjIf9QDo+2YlJSIeXPnCkDcffdI4769u3eL3j17iuTkZGNdSUlJEUOGXC82rl8fI/3ZFGv8te33cQ4JhYVx1n6l7+pYyT7aKjUk8yKF2gmtxmFWzjdl87GbX8a8kScxRUCONx6nBN9TpJINQO2/R0U+P02a6LFzD2zbRsUaZ8Tgcl2BIvI1PRahgVeTzjIRU5bTCTWrR81wGLdZTMMBPw63G3w+/M4UCrIhoNWkNkHOOO00APbu3UvlypV/Vz8WLVrE0KF3sG7dOgB6X3wxE2fN5fzzD+LI1p33XJmZLFnhoW1bcBRkk+IOwOIVZDRoALVqGSa/1FSzowjoocvS0124nYDmRtOgaqZdbE+nYdrzOMNA1FlCmiWtpsUEEeKqawbzyScfM2DA5bzwwousWbOGgQMvN2Gyy5Yti8PhoGLFijRo0JCWLVvSp09fWrRo8bt49VdTZkY6ZcqUITU1lYKCAqpXr0pRkZ4CeuLEj2nbupVhdLRznpHXIdZEKWnlyhUAlCubbGvWjQe5CaPHY3bZlOlAj0utRXDsMr6pAdGJmCcdhE24OQMagXTEiZZpmBmJjrXRDo0YyBBIS6jFtK7Ezzaw8LhAmnGVkEbbt2+nQ4c2lJaW8sbrr9O7Vy9T5AD1XsAU1svjjppTwziMd5OI8x5q7G2FH9Z5bMZTqqHFIjyIhIpyRbCWJuysM1q3k1jTvB20Sp0v6j1qe+LBFuxwkHbQDJcWRMZWdSimaju/BVlO5SrVaNGiBT8vWcR1111vvteCedCxn9G+qRAQyWO1zyrMxRrfVZ03Rj+PwzcTXlrTCBixY2PhM1Y+GuOlXLdCJsKYcdS2cB+nk42btwF61JVjJYLkMmGqV6/OlGlf40DPfFfk81OhQgXcDiJOpbJ/9pAi+d0EqdG0aMxtS9Y19d3TY9pDGJexX0mIgwN9PqtxphX0g/5PIEDQHYnbK50n3TosxKXp8axdWgCcboNvEMWvy7T2Jjhd5J2RfA3gwR1ZA0zrivJSOZV3xxaydJKRnHt/5vl/G6WlpbFlyxbS09OpUKGCAfuzo/z8/L+s3n8hq/56KioqAqBWrdOpfLruBc6+fVC9uoFrCntTSJMLQEB/aSUo369FhMEIqYs4YMIlGRugphF0p+DR/ATcHqpmhtH2ZfP0Sy9RtmxZqlat+rv6sHz5crp06WS69vQLL1BcXEyNatUYsHat0fZzzgKyC/Q0w5rGljoXUy/Tb9pwZB8MjGX2AVOoK7xeUpTFRG7e+kIbXVTVjDqOiEAsSV2MiouL+eyzyYAeb/m1117l9ddf49xzOzDstltxlU2luDCPrTv34nAIcnNz2bhRj1H75JNPcNFFF/Poo2No1arV7+LbX0Xz5i+gpKSEChUqsHfvHu64406uuWawEVUgulHZOxtZ8ZnW6wf27WHUqIcZNnQolStXJow5SoAakF/+VTd2+bskddM2IhBYNmxrOwFj8wzjMCVlsOI4dWykyxCM9Q1JFyxkDFqHkgFKFY7shElZtin+Z2Rz0zRYtWIJhw8f5plnXuKGG28Hp9D5E0Cv19JPAwft1Ce4dF7VBTE9uoIbC0Y0EDAlR1DbZxpbJWthTFSCCGOl8GSEsSJ6iHY4YxNlxKvTyjMrntLunVYFSiu/DR7J91QK90pcVjmGtge0yDg3atiQLVu3RqI1mOPaOhRQt0vzE3ZGM1/GZGOz4mOVfhHhsxTurMK9XJPiHTLN2TWjPgm6UBcZIzRDADTKjJy8ZFmq4BnvUGuMRWQeOSJ+Ew7C3HHHbWhaCSNH3s26dWt4770PqVmzqsGTsmXLkly2XKQMCzmdtgdaOT6muaLgoFXnPxcaMkFLGAdE+K3OZ3mA030Cwjqmlmi8XKP/ThcOr9N0YEJmZMOFwzJ2BpYaDZemoa8nLv3QJR0nnUp4TJ9P3zfd5vlsCNJS2HU6Tbj9fwP9E4LvW2+9xfPPP8/Bgwdp3Lgxr7zyCh06dPjjjfid9PLLL1OunD63X3nllb+t3v801KG0NCTefXecSE9PF5mZmWLdug1ChEJi376weOONN0Xr1q3FBx9MEDu3bxeFhToawWS2LC7WsW27d8ea0ySGQP6NYJxM5pgIViAUEkJs2CDefvNNkZCQIKZOnf67+zLnq68EIOrVqyeee+55sW3bDqFpYfHUU0+LhIQEsfzrr4U4fFg3Ja1cGTUT5eSIwkId6rB7tzBMV1bTUoypzGIqls9IM5m1gQbEImRv4g2FhMjPLxCvvfqqaNy4scjIyBDDhg4VAb/f9n750YJB8fHHn4r69esLQAwbNvxvn0dHjxYLj8cjHhk92sQnu4/dRSsf7P7eM3KkSNZEZtQAAQAASURBVE1NFUUFBVH+WiAFdhADu/LVtpjapWL84kAjrCZUk3lXed7uWbsxt22Hzdyx46Vqgvb5/GLwNdcIQHTp2FH8vGiRUZ61PSYzrrVwG1jFb/XjePfFmwt2Y2Hw3qas3xo7u78nMq+OV571f6u5/3jjOWTI9eLMM8+MW5b8qDhuK5wkXj3H47Xa2OONh92gmCANNu+SFYZxvHXyeP2O9/7OmzVLAKJTp84xZcWDnJj6EtlrrGOlYmPtxsC2LFmPHCAL/Me432as4rXZbtyt7VARDKbfFIyvUXaJGY9u5an6KTxy5KSFAUj56uDBQmMv/SOfgwd/H9Rh8uTJIikpSYwbN05s3LhRDBs2TJQtW1bs3r37f9zjf57+k1EdNE3jk08+4fbbb8Xv16MqXHLxxZxx2mksW/Ury5YtjXnGV1RE2bJlZQEA5Pv0tI2u7D3402uavc8jgbitXsqGt72mke9zkablsjY7g2YNgpzZsiX1GjTks88+/8v6euDAAWrUqMbtt7/BGwOaQoMGHNAySE0FT94eXZudnoGjIB+8Xj38zHEyVKn/qyduNXqFKQuREr/TCnc4US9yk7lR8YhWQ8ElJpTy0iuvcu+99zB//vd07tz5L+Phb9G0adPo378vWZs2Ua9evRgtYLzvduY3496wxlPPPMumjRsAmDptGpddNoDx4yeYylKfU2E3qpbQqk0+XiIJu2cIBPDjMZlt7aKcxOuL+ttvRXqwtjUeNMKuvyGRwDczpvPQqFGsX7+egQMH8eG4sSQlJcWEeFL/mqIcWOamdczsQkHZwk1kQFNLCu+444Z5vttFfYj3vtiVIcuxhnuzRjH4rflojBmK17xNiKswDrL37GLG7NlM+3oGc+fO4eabbuLtt976zTFW/z/e/Ir3vPxrSgwRJ4rAcaN12JCtRt+Ob1ZmQ9x2xntXHIRJz8igQYOGLF600NRma7IWa9g1tY3qe2OqT4nSYssbYqOsyOgPoEAJiMaPliHKTJATBY4StUhF3y2ZpCUQAA/6/qtGaZDQBmtZcnzV99Y2QyGx71JBkY8KFU7OiAdSvjp06M+1raioiEqVTryPbdq0oUWLFrz99tvGtYYNG9KnTx+efvrpP9yOP0OhUIipU6eyadMmEhISaNiwIb1798b5V+M4TkQ6/v+m8b3wwotiIh/YfS666GJxx+23i6+nTTMels5axunSxkmgpEQHm1tP1KrXq3pCF6GQyN+3TyQmJoq33373L+3rhg2bBCBatWonAnv2CJPnQsSRRp4YpWOB6QQd8dBV/BOihSt9t7su/5UVHD4sokd5Gy1ZDL/UcuNo1eQ9JSVCaFpYZGZmigceePBvnU9XX32NaNSokal98e61zhXrdfn5+aefBCAqVqwoOnfuLM4//wLxy7JlMfeZyj6eV5TNHDXx08Yr2jrG1nZa+2XXVzm/7Mqwe96qnVU1gta5YcdXEdKtAO+/P14kJSWJ66+/IYZHMRqiSN9VbVaM840NL47nQKS2SeVpPK1bTF8s891OMR23ANUbPs5f65w53hyyavWt/Z0//3txzjnnCEAkJiaKTp06i9dfe02UHDsWwze7uWjHMytf4821eHPJro6Y73Hmtt0zhrYxjjba+syJfNSxlpcvOP98AYg1a9Yd9xm7uaCOj9oeuQbbtdfKY7tr6nuhttfq5GZti+m9KdRlB2PPs/Fys04T2/GxqIKt7bCbJ6K4+F/h3PZn5SvZx71794rCwkLjEwgEYuosKSkRiYmJYsqUKabrQ4cOFR07dvy7um6idevWidq1awuPxyOaN28umjdvLsqWLStq1aol1q5d+5fW9e8Av/zFdP31Nxj/V6xYkVGjRvPmG28wedIkli5Zwv79RwiFBLNmzuD1116jZ8+e+glS0/SDaCBgnET9mkvHEMlsVhHNg3QOkydTTQN8PsNpJag5CHv1U5k/P5/eAweSkpJC9+7d/9K+ZkZwuRs3rmOHrypL1qewfLXLOKWrh3WXMwypqezbpxTg9eLBj8sZJsWrZxDyByLTRtE4qM4IoDiBENQrcLv1uPoRx4iw0xUXe6XiO6VGV2YJs57oVTx1QkIC5cqVMzDbfwcFAgFmzpxB3z59gPhaMxNmzqL1kXNEUhgHjoiWIzk5mQrly9OkcSMaNWmGxBHK+x3GlbApk5osRyUrX9XrUouu4gIlZs/6LJoWU7bu+GLOhBVG1x553LpFAE0zZWtzaEEzH7SgKWsX2DiSqjwiioFV2xgSSQy5ahDntG3LL78s12vTopnKrHUEnZ7oexDph8xsZuKJBRfr0vwmpxq1PVLTZdVcSi2cyid1DK18DwSM7hvPOLSgkelMHQdjjNwe4/8in73zo2yjnDMqWcuVdauxbeXvr7z6Khdc0BUhBB9NmEBudjYLFnzPHbffjtMVSdVumUP+gCOmTpVn6jutak1VHlnH3PQeKO2305irHVM1g8a8jFOGzCZmV69KaqY++a5Y1zrrOybLGXTl1QDRdOSWd82qNZbvjHHN6YyJgSuzHhrPRLK2RVgQLTsSi1nFljsI43GHOZCt9MnpNDTCKt7eQdi45iBsxmp7vTqu2JtilBHGQVHAZfBJvpeaFm2LrFP2W2qfVZ64NL8xPnIOqRp5NWbyyUzqHP6jH4AaNWpQvnx542Onvc3LyyMUCsU40FeuXJns7Oy/pb9WuuGGG2jcuDH79u1j1apVrFq1ir1799KsWTNuuummv7Su/5RzW0lJCUlJSfzww/cA3HTTzbz4/HOEScHtjpp2INaJQC4qDnTntLDThSPgxwOEnToAX5IRDDwStcHj1gWbIncGKQQJe1N0px9fET8sW0aXbt0AWLx4CadFojr8FaRpGrfffhter5fNc+eSVDGRhtWKwO1m7WYXzarn4wEIgNObxoFsB1W9RWRmpiCFMd3Hz4OvICLMB/x4nE50RwVFkHM6cWKOIKAvWFEHN+m964k4Rbmc5gVMNdOpi7cRRF4xgcnfZOD0MA4WLlzI1q1befbZ5/8yHv4WvfTSixw9epSrrh5sXIvZYBWKZ5q0One1btWCb2bM4NPJk8nJyeGVV18lo3ImD9w9IrK52Ts4qcHlTc5c0rlQ2XClEHU82InaXsN8ajF5A8YOKoVEq/nX6cSc8Qs9QoNLC6Lh0r3KFRO6yTFJSZKgZr/yuC3CXKRNLmcYn19j0eLFPPfcS8b8VHnk11xGmlgZRSEccarRG+yK4ZkkA64RifZglK+Y0VWveis/dQHht3UOYRzGocHjDOrRUjDzSYdOmctXzdwyA3Ls77GCpRwo07gbkQCk0B5NdDJq1MM89dSTjBx5D0899TRJidFsgsb8CwRwuN0mZysVMqMKcaa5o8xpVSC1PvNb/LO7z04oNs1Lm8QYchxVU7vdgUEV+CRMwIXuyGgcgiI8UdtizPugftJp0KBBTEY0OXc3bd3Opk2bqJ2RTuM27SgTaXfOocNM/eIzFixcSHZODinlylGtWjWSkpIo9h+jtLSUyy+/gosvvphEhLEu6AxwmSK1GPyPJOOQfs3GOybXcCTkIhppwykFTfmeSc9vt9voS36BPjfl/LSOTdjpMpzsAF1p5HabIjWo7ZHPqlE6iONI/f+d9u7da4I6lClTJu691igKQojjRlb4X9KaNWtYsWIFFSpUMK5VqFCBJ598krPPPvsvrev/veCraRrvvfceb775Ohs3bsTtdlO3bl0A5syexTsvvYhIjghQFBF0p0Q1OQV5+L0ZOg7J7Ya8PHLJIEPLw5GZaXjF6tgjIlrfqFd32JuCJ/KiO50w7csPSEhIoF6DBmzdvpvTTqvBxi1bjLaeeeaZf0mfA4EAU6dO5emnn2Tz5s2MHTuRamedBb5cwE1ugYtmrAVvAygoIJcMnD7IzobMs1JwalFv81q19MXD68UQ+q0n8Qijjc3fqWhng7hiNzoFRKZmtJJkl7nKFQmLpl5zEMarbPqjRj3E2WefTc+ePf8SPv4WzZw5kzFjHmXEXXfRoF6dGCHe2oeYzdsmC5rU8LndcOHFPbj44ov18Gg1axIKiSjfMAstqsZH157oG/ba9Q7q1AG328WuXVC7VtjSnigmO7/AQVqqPa7RQTRkmT7fnbapeI2NFEzqJFXTKTWkrsiGKe9SN3cX6FEhIiGRwIwT9ziDoGHO5BURpMNOF8llkqhfvz5PP/04p51Wg/79+8cIOmGny8jwG4y0wzQmcQ4EOq4RQziOiYAgeaE8I8kubJv1Hil8ST653S4g9tACsYKDVag2ab4Uodvol00qZNP91gONFsSlafgKfDz11JOkpKTQu3efyHNJRrsMoToShsoOa67it63YclXoi6e1NbSA8bDs6ntB7DtpvUdeMw4rllBy8VIey3GNyVLpdptCtRmWAxn1IyKcqXXLaD7XXHsdH3wwniRL26fPnkvfvr0REdccl8tFvXr1KFOmDKtXrwbgnHbtqF7jNI4WFbBi5Uo0TSM5OZlAIMDHH0+ib58+TJz0CWWTy8RE2VGVEfpctQmDaMEKW8cSMMIBeQiCTw9vpvLH68UipDqNPcQaKs5B2Jjoavpi2T55jx2mXR3vk55Us8offR5ISUn5TYxveno6iYmJMdrd3Nzc3x1G9a+i+vXrk5OTQ+PGjWPaVKdOnb+2shPBQ/ybMb7PDBtmYHZrpqcLh8NhfL/1xhvNGZpU7G1OjgkXZYHzmnBZOTnCFEhby80Vc6ZNE48//pS44447xRVXDBIDB15zXDxxs2bNRGHh0T/cz+zsXPHmm2+Lrl3PF263WwDiwm7dxPJvvhFZWXp7c3KEgXkysFsSe7V7t9i/XxhZ2CROWeLarLhIkwe0BYcl/xYWihi8oZ1nsOSvNbOR+oyt97CCT9yzZ59ISEgQH3ww4W+ZV+PGvS+SkpJEn969RUlJqe1NsumyH1aveOu91t8OHTos3nzzbVGlShVRvnx5sWvHDtt7je8Kfs4u25WKs1OTsBj47pISI7KH3diq9RofFbOtBKlXB9baVmt5Sr6T2HlkwYvHzLfIw1behkJC7N59UDRo0EC0atUqhrdqW4y5ZwOktbs/po9xxt5urK23Wp+xe/5E6rErN97/dr/F6486BtZxeOqp50TVqlUFICpXzhQvv/yKKDxy5Lj9srse83uJTUQRC+b5ROqw43PceaCsMXbY1XiMtkYusKvHOnes9xYXC7Fjxy7x3bffijmzZokRd90lHA6HGHrbbSIQCBt1+Hx+0bhxY3HeeeeJnL17xaJFi8Vrr74qbrv5ZnH9kCHinbfeErnZ2eYXS6lL08Li88+/FMnJyaJXz54irGmx87TEnJRG/d2ajCNmzpVEExYZD0c2Ebv5aZ2H8dYA4x5lr7aWZYyhTXIkEQr9K6I6FB48+MdDOhQXi8KDB39XH1u3bi1uvfVW07WGDRuK+++//3/Rzd+kb775RjRu3Fh88cUXYu/evWLv3r3iiy++EE2bNhXffPONCbf8Z+n/teCblSXE2AceEOnp6aJs2bImQfPRR8dEpS3L5m96kSLCgvFSRkKYWRfMwkL9/9LSkBgw4HIBiPLly4vGjRuLjh07irZt24rrrhsi7r//AfHNN7PFkSOFYuXKX8WCBT+I3bv3/u6+BQJBsWjRYvH88y+Ibt26i8TERJGYmCi6dLlAvPTUU2LevA1i/34R7UthoRAbNoiVK6PZ1goLhSGsSEHI9Eyk4yYhN/JF8sS6gKm8kTxRf48py7rCRr7bLo6RtkjhXN7z3bffijp16oiMjAwjTer/6nPwYI6RHezGG24Qx47FOu7YLcpqf1T+Wu+Vn+LiY6JKlSoCEAMGXC52bt8et1y75425bI0LVFwcTfUTKdMYp5ISIXbvjpalSqSRU5M6jvK7TFcrMxbKsbJrry2PSswZ2o4nVFrrt5ZrvW/QIP3AuXTpSnO/VL6cQFvj1mXjuGXqk3LNeiCw3nO8/qpVxZtDds/aHULU+9Xf7Q72dsK/Wpffr4mffvxRXHXllcLpdIpmzZqJQCBoOozYzdnjjVu8/3+LV1ae2NVn/djx+XhtVvlqHRvr+Ks3WMdu+vQZ4pxzzhHp6emiSZMmIiEhIUYZUqVKFVG1alXRr19/0bdPH1GhQgXhdDrF8qVLTWXLtVsVHO0OCrJdX345Rc9uOO3rmHbZjUs8YVSEQua9UB6sI/XL3+R9cv9Uy1HLNvHNIuSq91gFcrv5ap27pwTfWJLhzN5//32xceNGMXz4cFG2bFmxa9eu/3GP7SkhIcH4OBwO4XA4bL87HI4/X5cQ///DmS1YsIAhQ65l37791KvXgvbtL+X114fhWboE2raFvDzC1WviIMyOXQ5qpxeB18va9Q6a1SrigC9FD/8VCWPk9+vOAR6PRwfyO8I8+eRrLFw4k7VrV3P48GHGj/+Qq6+++n+Cl5kxYwZDh97Bnj17SE5Opt3ZZ9P/8oFc1rsnFatUM4KKS/yrxMceKPBQ1ZnLAS2Dql4d1iGpoAAyyAW3m3xN768M3YTTSX6BOZubJBWDKetVrTWugM5LFXvqChQZmX3imRHj4egkBYNBOnZoz5q1a/X/O3Zk7Nj3DBjL/4I2btxIhw7tCYVCPP/ss9x0000kJCTYttVqZpO4VAP2oWl66DivOYyQfO5o8TFSUnTz3r59B6hWJWJ+iuDmpNOXNIsDRsgptX4ZikraAP0Bc6IJaTJ0+fLB641iXwsKWL4rg9atwtEQfJHnNQ1SnNEwRGo7jpfRS/2umiWtz1rxqCpf7PCZduZv+fvwYcN4Z9w4cg4epHz58sZvqnncZKa14CpVaIatWTdyv3pNzWpltFWJ6xSDPbUJhWXlgxXaovIxXjINO77b/R4DEbDgJlVS55X1/Z346adcc+217NqxgxqnnR53TgS1MCUlJZSWHCO/oIiDBw+ycf1acnJz8R8L4HA48Jb1ULZsWZxJZUhISCC5TBIVK1akXr161K5TD6cFVqKuIXbtjcdL673Hu8/A7DrDpnmilm+8i87YOhyEOXLkCHePHMn4CRPo0qULHTp0ZPu2rXTs1IWuXTqRlJSEEAJ/IMiePXuYN2cWq9etw5GQQMtWZ3PddUOoV6d2TJKSmLB/yhhKkvNSlJZywSWXsGXLFj6fPJm2bdvG8EIdeyvGOCbcn1y7I/xR31c1HFnkayzEgdh3Xq5Z1vdV8tcu/KAdtEiSr6iA8hUqnNThzAot2Nw/VE6NGr+rj2+99RbPPfccBw8epEmTJrz88st07NjxD7fhz9CHH35IjRo1SExMNF0Ph8Ps2bOHWrVqGdc6derEn6ITkY7/rRrfUEiIzz77wtC+rlq1RYQLCsSWWbPE009/JLxerwBEr1536DcfPiy2bxfRI6VMTBE5SufkCPHVVzONE/k1V18t3n9/vDivUyeRkJAgevbsJUaPfkT8/POy/1l/1q5db9T/449LRSAQjDFr79+vQAcicdVKSoRhdtq9W+gavJKSqPp3924hli0TGzYI44QuNYHWU3mEVfo/kWO91DCaTuHybwQ6oWrUrad8tWw7LYP8f8eOXWLXjh3i8OEjBh+++mqqKC2Nr7X5Kz6BQFC0aNFCNGrUSOQcPGjbT7X91nZbv4tQSOzYtk3cd++9ok6dOqJ27TPENVdfLfr36yfOP/8CkZqaKgDRtm1bY4yNMuJpGS3fTW1StfSHD4vDhyMQnVDISK4iB1Z9Rs3NYmiKLRpTKw/s2qG22arRtfItXtulpl+aU+2ek/+XlAixZMlS4fF4xPDhd5vaqSqV4vFQrV+N4W/8o2iuTrgfoZDKtuPWa/rN8l7Zabx+6xMzR0piw16pvDneuMb7/bprrxWnn366CAa1mPd8144donPnziItLc0W6pWYmCiqVKkiateuLWrVqiUqVaokypYtKxITE03wNEC4XC7RrFkz0b9fPzHirrvEDwsWiD27donS0uOP5W9dt/LYTqtrHUv5g92z6oOhkBBbs7LE6bVqiZSUFPHuu+OEpoVNBdu187euWb8b9arvcciszS8pEWLnzt2iTZs2IjExUYweNUoEA4GYftlpaG3boViWYkIXqlYcS1nHm7/qF7Vdan2m+kPmd0OtPxQS/4pwZoU7d0bX2D/wKdy586Tt44mQw+EQOTk5Mdfz8vL+Ei2vSv/vndvKl9OTThQWFtKlU0tKShMIBMzhrtq3b0l+gYO8vDQyM2HHPhe1aoEvtSYp6CFsAgHIcBdx+mnRtL3fzJrFRxMn0qpVK6ZPn8Ell1zyP+9P3bp16datO99+O5e6dRtRJkEQdoMoLWXut98yZ/p0Qi4XtWrU4LYhQzgQqkzVSNpIAJxOajoPEE6vikML4k+tilMDZ/Wa7NJqUitT1+akOCMJOBwO3npjHNUzy3HpgAFGaLY0bxAKfIRT03SniIhmV9UwRTWRSipUzMHIJcl88IYzG2pKTAdffvkll19+WQw/HnroYfpEQon9L2jBggV8881M9u3by6pVq2jRogXlylcwaYOs2iE77YOdNuKSnj3ZtGkTg6+5hvLlyzNr9mxcLhd169Zj+PC76Ny5C+3btSFMkqFBlA5HdhopqS0BFOcPoheIaKJS00iLaFwOZLsAD1W9RYCXcGqaScvpVBy4tuSlUa+6nz15HlJTwRkATyAfR14epKfjSE01ogwAJs9qVetj1ezG08BJC4LUqOoWFw+eiJbHqjWGqJOUC43pU77E7/dzz93DjfI87mj9HnesJlBqyLWI01yYqPZWhjtTwyP9ltOTVXuohgZzu839l86BMtSf1IwFI1FSDOcfLaBHklHnVyS9q9SWxUuwYfzvjKaTVuer1cFN7Yf6vNX5KBgMMn/BAkNjEyaqtdm1Yxt9+/cnPz+fESPupnLlTJKTk3G5XFQoX46MzKqcccYZlE0uE9NeWUdJaYi8vDy2Zm1i3YaNrF+/np07tjNx0iReevllQA/9V7t2bapkZuLxeCgtLaVX777cctMNpnLtHPnkXFId0axtcDoVTWoggEeuV0q4Nuk8aJoLTidBXxG9+/YlyeVi7erVnHbaaQS1BBKcCYaTpOroZqfhV+swjUMgan0JBMDl1kxrseGwF8kQ4QJq1qzJ4kWLuO/++3ns8cfZsWMHEz/4wAiHJueqmk5avh/SQRMiEXdw4XLra5IHP2hOwwHNiBThhCDRKCjqu2HlM5Z79PfFEY26FDErRjXB0cGS0TgMq43FAnBSUyj055zbQqG/ri3/AIk4ESV8Ph9uNUHKX0D/CajDqlWr2LZtGx999CGzZ8+yvefzyZO5rGdPlq/30LpOPqSmGpvo7KlTWfTjj/z8668sXLQIh8PBuHHvM3DgQILBoJFr+u+iX3/9lbZtW1O2bFkG9OlDaqVKTJ0yhW07dugbSNmybN68mYSEBEpKShh4xRVMGD8eh99PvpaG06mjDzZvhma1ivSQa75ccsnA643AGwIBPpu9hiuuiJo9REkJB/JcVM2MD0FQTVnWRVoNPWYsThaTXDyzeLt2LVm1ahUAn332BYFAgHbt2nHGGWf8L1is91cImjc/k3Xr1pmuZ1auzPYdu0wvo9UEbEfWft126828O3YsH737LlffEN2craZsVYg1CVlKmK+gIqip9akbiJzPahSH1FS9zD3ZLiNCgNOpRzgBwOslqDnIy4Oqqbpw5Vi6hKIm5+B0RsM7aZoOl0lPx8jIZMr4pFC8jd0fcEQjqKikmFft5pUUkK383blzJy1bNqdp06YsWPADiYmJpsxrMZ7o2M8/Oz5a4Rd2cA27cbAbF/V+qwBvharEtNHO5K54vseryzp/bCEY1nYpZmtrn+TBdPjwu0hNTeX002py/vnn8/Gnk3n88cdIT0/nq6+m0vzMprY8Vss8HiTBGj2htOQYW7btYNeuXWzduoWdO7aTnZ3NsWPH8BUXs3DhQl579VUGXD6QwiOHKZNclhrVquBwRKNHiMREtu/cTdWqVfE4HTG8COMgFAoxc+Zs0tLK06lD+5i2q2SF0gCMHj2K559/juXLV3Bm08a264TsrzUDXbwsmobQq+mCrpWv1jrkGAZxsWDBt/Tr14djx44BMGjgQD6eNMmYPyqsR86j3Dx9vQA9dm6R5omGATXCojnN63uc+W09cFj/t/IijAOHr8jUz5h5owq8lnHJzS2iSpWTO3Nb4bZtpPwJWaLo6FHK16lzUvbxeDRixAgAXn31VW688UY8nqhiIRQKsWzZMhITE/npp5/+sjr/E4KvpNq167N7tx4+rGbNmuzZs8f47YEHHqdHj+6kp1cia+0K1mzOYu3ataxZs4YtW7KoWbMmderU4eabb6VDhw7/WMgPSVu2bOGjjz7k008/we/307NnL6688io6duxIQkIC27Zto379KN61TJkyOJ1OBgy4glH33cPpycn6SuPzQWoq+d6alJQc5quPx/PLqlUs//VXNm/eDED58uXZs2cfKYSNsDQxWKt4p/eCAl2TK0P4SJIh0SyY1PwCXbPmcQYRQrAuayf7924nOzePUaMe4uDBg+zbd+B/yv/s7Gy6d7+ADRs2GGGDPB6Pkd4a4OWXX2Ho0GGm/tppaCB+KJ1QKESPSy5i/oIFrFqxgibNzjKVZxU0rFhQuTEFAkrsaAumTi0vv8BBmm8PZGaaNiggEm8zohXKzqYovbZRldsd0bQEAvqJKS+PtXlVaebdAbVqGQK0VFbIgPJSgy+1kaa+KX1QtZUQwfdBLF5Ti8UwG2Uom5981qEFeeG117nnnpFs2bKLumfUMHgmNdoSL60eMKR2zI8nJlxbzKarbPgQm/LV2lYTWeO0xsG5x0vNqj4j67EKbLY8iwg/Jiymcr/sj1o/xKbAVef15MmTufLKgYAeBD8nJydSjJMbrr+eZ595Bm9KqqmdqhCr1mPbrjjCsB1WVF4PiQTuGTmCl195xcT2qlWr0qrV2cyb9y1NmjShpKSEtWvX4nK5qF+/PlUyM6mYXokRI+6mWpXKvPHW20ybNpWNGzcC8NZb73DrzTfGvNd2bZb/V6hQnn59+/Lu2Am2KbvV5+zKM0hdE9QDiw2mV2p4rT4BoIdi7Nm7Ny1atOD9d96h8VktSEpMMPxBjJCcavss6496KPutg1083LuR+liZ39YDZEEBpKVaxt2CQ5eHX7s2wL8E47t5858XfBs0OCn7eDzq0qULAAsXLqRdu3a4XIp10OWiVq1ajBw58i/13/lPCb5ZWVnk5eXRpEkTGjduyMGDB+Pem5qayplnnknTps3o2vV8evbs+Y8Fdv6jNGHCBD76aAINGjSkQYMGFBQUMHbsuxQUFHD//Y9y+eWXUT3NS9jl4vkXXuDFl15C0zSEEJSWlgLw2GOPc889D+JwmLVccpOSQpfquBU1h0WFibw8jCDooAgYmDUT8vkjhw+SGYlpKalOnTqMGDGSm2+++X/Kt4ULF3LeeZ2B6DwoLCw04mRKmvjRR0yePJnTa59BWloG48eP5aorr6T5WWcxbfp0nnziCQOQH2+jKygooEvXrhQWFrF96xZEQmJMTnq7ZyXP1HvVGMAOTdfa52sppKVGHNTc0c1i0WIHHVtF4CxOl6FNkTuIKuyYnPIKCsjV0gxB1+OOCh5FvggMJnCAcGZVk9ndENCdfpND3PH6GE/DqMYKNhwE5YQrKNDhN5GN8auvvuLSAQNISUnh2sGDeenFFwmJpLjOR+pYyf+N3xVNqvU5O6HM6sijaurjOY8Z/bPROtrNH3WcJNkJTzHa3IhQZNeO4wnqVmckeb1EJNCrV082rF/HlqwsCgsLmfHNbLpf0JUap51uPG4Vnk1lWQ96x6HjaebVcUgQIebN/x5fUQFpaWmsXrOGuyIaphtuuJGSkhKCwSB9e/ci51AemzdtJCf3EL/8stw46GqaRvdu3bjt1lv55NNPmThpEj//9BOVKlVi/vz55OUfoaioiNycbPbu28/WrVsoKSmhU6fOjHlkNDVr1qT7RRezdesWtmzejNOqvQ+Y34kTGkObdyNGsaDGZ1YPVYEAYbeHQQMvZ+269Wxcvy76jI7BMfFa1V47iCZUkXNUCp2qc3M85zSjH3K9AVMbpSN1mrMIqU627g8q39Q5bOWbypt/heC7fv2fF3ybNDkp+3gidN111/Hqq6/+LW3/Twm+Kk2cOJEffvieVq1ace65HTjttNNYu3YtR48epWnTplSrVu1fJ+ieCPl8PkaPHsXrr79GOKwvIgkJCZQpU4Zhw4bTsGEjbrnlJho3bsy7735Ey4a19NO/FjTSdXqcEcFDpm5OTdMXMnUjjXj5ykXUukHHNb9GKC8vjy5du+L3H2PHju0RAbQlVatWJhwOU1hYSGFhAcFgkOrVazBhwod/am7u3r2badOm8sMPP/Dzz0s4dOjQCT/r9Xo5duwYdevWNbTkAFcOGsT4CR+RJEJxMZcOwjz4wAO8+sYbHC0sBIczxmQn9yNPIB+/O41AQFek164eJN/nIi01HM0SqBUR9qaQl6c/k5qqD4krUGSE+gh606SiH4dPv99RoMN7yMvT25ieYdQrn5cptkF/rogUUrR8fXOKROnYtw9qVrfX8kCs1tbOzG3dtFVe2ZFqkpX3qVmy1u/YxYQJ43nxxReY+fXXOhbfRnsOsQcyu8gP1o04rqBsEVCtZcUz/x6vHercOF4UDWu5v2VyNq5ZbM+qdlGF09hpKVesWEGbNmfz5ZdT6Nu3b1z+2Jmi1Tao91uTpKj3/Fb5dhr04uIQ77/3GplVanDFgH72sBUtyIatuxkwoA/hcJivv57HGWdUByDg93Fuhw78qhyCPR4PXq+XzMxMqlapQr36DUhMTOTTTz/h2LFjZGVtZfEPC7j0iitYtWIFzZs2jXuwsRtLu7GKDI+p7UU+h5FoSOWPykO13EceGc1LL73Ihg2bqFq1ZvRdl9Aai8NAPBiBSYOvKUJ8QIdDpLiDsfNI1hERwlVBWH2f5f2gt6so4DL6aCfUxzsw+HKzKV+lykkpFJ4SfP9++s8Kvv8VCgaD5OTkkJ2dTU5ODiUlJTgcDiNXd3JyMiUlJZx//vksWrSIW2+9mS5dujF27Be43W4yvFHzvp1WwiRwyPzq8vgPURWAoklQTapBXAY2VJrjnc5IuKyIqfyHeXOZM38BO3ds51BeHonhMN4K6VRMK8/WbdtYvHgxy5evoGXLlr+LN4cPH+bjjyfx8ceTWLFiBS6Xi0aNGrF69WratGnDnj17CIVCJCQk4PP5OLd9e9atX8+BAweoXr06NWrU4I7bbqNXn36UlJRQoXw5FsybR7LXy/IVKxkx4i4aNmhA48aN2b1nD1UyM3nv/fFUrFjRWKQ3bdpEq1YtuOP22xnz2AvG2cG0mQSKDBxfboGLDO0ARd6qpARyeWlSBiN6bAEl1As+n85/CcgrKKDIW5XFi6FJE6iZ7ic/4DHqsuJj9+xzUNObr2t+nR5DWy83NhnSyR9w4NGiYfFcBbl6Wm5v2MhymJpKDEZVQiPUuQTEhvxSNkNj3sQRftV77EJ8JZSWcHb79ng8HhZ9912s8KjiiCMauHjYV1XwldPc44wKhupLYSd02AkRxzPlW4VVO16YMMFOe2FHfVYtW/JLmq5N2bwi77QKVbFrr4MwO3fupHadOtx88y28/eYbJIRCMRrceJrZE+m33e+qBUSdZ3Ic1fBacbXx1ovqXLAIVQ70kGTvffARtWpWpWPn86hcqWJM3wAOHDhAgwb1cLlcFBcXA7Dyl19o1KTZ8QX2OAeWmLXWRvtuFRrtYAhyjkz+fDoDB/YjOTmZl154gRo1atChUxdSvB7COEgQIfyBIG63m4SEBBw+3R9ECsdqGnErXt7u0GudPyrG3O6gb1Hm6s9FDuoFBZGDuxJiTj0IWg+LBf4AFSqc5Bjf1av/vOB71lknZR9POjqR0A//5nBm/+XPjBnfiOTk5ONmjEtISDAyvQFi4BVXiJJjx8wZeJQkFiIUCU1TWGh8V0NtGYlA1FA0auipwkI9FFokpJYarkb+NT5KKBz5VYRCRkStvXv3i1tvvU0A4uDBnBPiSWlpSMyePVdcdtkA4XK5RFJSkujbp4+YNOkTfX6XloprBw8WmZmZYsiQ68V1115rhL0DRN26dcXrr70WN3GF2u7FixaJa66+WnTt2lUMHDhIpKamiuTkZNGuXTvx6iuviEAgLAYNulIAYu3a9bH9V/lQWGgK4SMjiqk8nj9fT9oSCgk9LF1hoRDLlomVK/X7NmwQRiIKWaQoKdHD4USyuZnGYvdusXKlEGvW6P/LstWg6WqODFPA+e3bo4lRCgv1cDsyoH3kH9kP6/hbk8HJ/9Xg/MZ8ioQZjBmDyMd4prBQDBs2XGRmZppC9MULwWcN9aW2Kd6cjTt+SgYt9Tnrs/HCvBl8swnhZq1bDSuojoldubZlWOowhcELmUNPWesOhYR47tlnBSBuvukmEQxq5n7Fab8d3+x4ZbrP0i+7Ntk+F7Ik6ojz/PHqsJsndmG0RCgkdu3YIR64/37Rp09fsfD7723riTcv7OqLx/cYPtqEjVR/LykRYv68eaZwckRCxXXs2FE0qF9flClTRgCib9/+Rp/UpBRyrtm9SzH1RtaveHPV2G8smdeMEJhq6M3IuiKf2b3bnIDV7vl/RTizlSv1BfwPfgpXrjxp+3iy0SmN7/9T2rFjB+eeew516jTioQfuxptSlbS0yqSnJ1NSEuK7745So8YO9mzbQnEwSIIjhQ6tGnBWmza6aUiJwACK6bWgwEi0bouzUrGMgYBu6lIiOcQc4ZXwLUUBlx5NIOK5G0FSGKYyqSWY+OmnjHv/AxYv/hGn08lNN93Ma6+9HsODkpISdu7cydatW9m+fRtbt25l2rSpZGdn06hRI64fMoQrr7qGSpUqxWi/VK1PQX4ey1es4rTTTqNevXq69sPGvBYPsyp/y8nJ4eNPJ/Puu++wZcsWbrvtdt56600Ali9fwdktm8f0QZYjzZgQiY5BEbkBPdGIVPBW9epwk7XbPDRroEdqqFmwFho0YMc+F5mZ4NGKWLUthQYN9GfSnPozQafHZEoEDPiDdDg08Hs2mp0YDJ/qNOcMklvg0rW/eQcgM5Og5iA7G6pXN+OU5XNFAVd03G20W0ZEioAfPx4Dlrg1axPb1qyhzpln4nDWpu5pCbqpNBygTt26nH/++bzz7nhkeDRVo6tqqaQmCWw0g5bxUcceopq240EijL4oGiuTttnmfrD31I8xazujGOjjYWaPV368ZBDyvYyBsCgaxw8++ICbbrqBV195hdvvGBqjbf2t9ljfHcPp0QYmpWo442k64/IeMyRGrmPxNM12UUBMpDaEqMOoHYQlHhzFWlc8Hp+o1lxtvx1JHiQlhti2bRvTZ8xm2dLFZGZmUrdefbZu3c0bb7zI0KEPcHbzegy88koSExONeRYvKkjcdis4eWnNKiLFcC9wOm14bHHSs6CU4q7BKoyloMh38mt8ly0jRbFw/e5yfD7Kt2lzUvbxZKNTgu//M3r11Vd46aUX2bdvH+np6axZvJjMuvUNYcHrjXjdRxaSXbt0M7bXazZ32uL8IoInPh9oGhvzMqhVSw9dZdwf2fClYOHXoo5NMlSaySs5EIiaygOR0GrOYIzT0rZt29i+fTuz5szltdde5YILunHFFQPp3bs3FSpUMPq/d+9exo59ly+++Jzt27cbOObk5GTq1KmD3++noKCQrE0bqVCxktEvu4Uafj/2zoq9NAlDgEhMpHHTpuzevdtwntm9cyc1q1Y1hRCSyBDrQl5QABmpUcEm3+ciLw/qeQ8YkunGvAzS0yPwES0I2dn402uanN6wLLBBzaFnb0tN5UC2Pk9SiIwHfqNBJrOm4pUti3Sg442LSDFCHQGsXg0tmgRNNkw516SAYGxU2Qfwp1Y1YBSyXaqAmpcXwRJHoobgdrNrz1EaNswkEMEfpKenM2fOQpo2bcSzzz7F6NEPAVC1ajXat+/EU089TZ3a1fVy83IhNZXlq120PitWcFLH3O6AZDcPTPNEORDGddaxOxiewBws8jmiYaUwO5fKdzm/wEGa1yzMqhBOY95qsaZjU399PtNBVxXuVPjA9TfcwLTp0/n552XUqVPH1Nd4fbKDdFjvP1G4y/GEITvBU61fkl2oRStZBVCVB7bQFYuQGI8PVuHOjk50XbJrg/oeW2EBQVzGO7d7bwKPPnIdEz78EIC5U6bQrXt343CmQmxMc1qzZDSMRElRo0vIQ5SqN1EPXOo5QjpRBzUHrjzdeVYeGlV/PPW9VGEU/wrntlOC799G8Y+Cp+hfR5qmMXrUw7Ro3pyPPprKL79sJv30+oAu2BiCSOQfpxPq1MHQxMl0tkFc+kIVcBi7o7F4RkChwdQMGmXm43SCH08kNJSD6jVrUqZMAq88P4axEyaxefNqkpJCOJ1Ew2UBgUCAIr+fbL9GSUmJvlh5vXjwE3a6CIfDLPvhBx5/9jkuufhi6jdsyIUXX8xrr73KVVddzZw5c7n22mtNQu8bb7xO/fp1eeON1+nUsSPvvv02PyxYwL49e/AVFbF69VpefP55Dh/OY+bMmeZ+KWTV0IRxRHHKEXJoQYKaw7yh+IogENAdPHCYNh6cTkRiIjfdfDObNm3igQce5NL+/QFYsnixSdByaX5zco/IRuZyhsnQDnAgTx8ffD40DerVCRNMrwpeL/lOHVebkR7WMXmaS+erO0xBAXrUA28KuXkOgprD+OsKFJFPGmRnUzU1EhDfm4LPhzHmYaeOx961K8KTQACXM6xjsr16oHnJoxR3kEBA55Nj6RIyMyPzSjrYyc3W6cKj6Rhmyd5wZlVdEHan6IKbjN0Z8ENBAR5fLjUzg3rbvWkUaR6+nJLLjBkTDaH36iuvJC8vj1atGvP1Fx/zyCMPk5iYSFJSEoMGDeKLLz5h2LB7EIcO6cJIaiobt7lo3Sps7LQFBdH5oAoUDsJRrZQVQ6kFoxu/VQCLzBn5rLwvqDliNKzyGdPfSJnq3IToodUQRAgaAoUkKfTKMTEEY2dkXkTGUmJiTX0K+A3ccNibEnVYRdfAFfn0sXERNA54zzz+OBUqVKB+/bp8PvkT2/fseGS9V84tVaiTDrOSh/K6QwsavLfWa+K9WpemGYkgIIIldbpixiFG2NQ0o89yXtgKu5E+yDKt91j7a9VoOtDfLzshWf3IOWC9x5iXBjOjdZh44nTq3yNhW6pUSWD8Bx+wcaMeF37Tnr22/HM5w1H+BQKmxBXycOrUg66Y+CE1uLJ/FtbiIGwcquXh3Cr0erQi435XQW5U6A34DYfsfwXJPebPfE7RCdFvnClP0b+JvvzyS3zFxdw1YiTnnNMxcorXyfDiJ6qRU6EMOJ243bBnz2Hy84tp1CgTjytMGA8+H+TlOajNDqilR3k4sGsHLpeL4P+x9+7hTRVr+/+nYRFCCCWUUGoppZaCtSIiIiKiAiIiKiIinhUVz+fD9rQ9n7dnPCueRbcnFBEQFBAQEBAQsECBUktpSyhpSUMa0rCa+f0xa1bWSlP3frf7fb/s/WOuK1fTZGWtmVmzZu55nvu5n0CASr+fSDTG+rW/UlVVBcCDjz2GbjyImZmZDD/pJADKfv+drVu3NlNNyMrKpmvXPHr1ysPd1sW8+fMpLy+nQ4cOHHPMQF544UXOOGM0e/fu5eCDD27W9hUrVnDzzTdxw/XXc/c9T9K1s8wCZUYQO+RUPWz4CI488khuvPlmIpEIQ4cO5atp3/Dr6lWMOOVULr/8clqlieYWjORAEl1Hc9n1NM2dhbEYNksqIXQ+/+ILWrduTWutFQcddJDsn+wcY1EncZ6WisuFzwOsKSHSewCZ0TrASyAAwaCTnBzI9sWI6U50Tao7aFoG0XLjtF4PDj2Gzyetj5kEQPeAx4NmgNyY5kaPSsCT6XMBMvraAWjGghYIQKbXZfZHRaWD3CzZDxEtnYBBY4jpTpz9++MKg7N8M/GCXugemURFbbQ0T7pcwFx2y5GTGITDVEcz8Pmg0u/G53PTvl0je2pqWFdSzuzZi5kz5xOKi39D0zSGDh3KkYceyn2PPMLggQO5+sYbOeeii8jr3p2Du3fnwUee5MRDC8jP78F1111D9hELOaxnTwafNILDc7uSkTGGrFCAWF4vMlwyC5UCpApAmEoaFm+ICZCUN0PT7JZGYyxoJFkkNZmVLY5hHUO3aSo7LKooWrMMYYnxWRNw4PNhWuoyXBGIIq230YhJf9E0p02SLY4KNHSZFl80Nf4chgyeZm6czTZpGk4DZMkqajZLXaeDupKdnc3WrVv5bs73jB13QWKzoOuJ7INJVlW550jQelS/ahqg2zVezWfL6EPrZkoBM6s2cLKV1QYiNc0uN5eUhTIlzcCahMcyPtT9V0X1S7IihvX8EiQ6ml3TuoFOtgCnAtDq+YnjMJ5R5VGxbNBcrsRGK8kyCiTUeDTN7PNDDjmE0WecwUsvvczlF11Ie2NcmnUyNpzWudJJDKI6EVcGbmO8ZniMeVGXY9FBHLemE1eBodgzMhIMSitoOIoTiHkycBoBbuGg0vdNN/s35MokPRrC4dGIkAhsjET/A2x8fxa8HgC+/3Q5QHX4LygNDQ3ceedfeOON1xl9+ul89sU3uOJRYprbtPyEw9IKaC1NTU38+OOPLFvxC0uW/MLatb+wY0c1AK1atWLgwIGcd95FXH75BLZv+50dO+s4uHs2v60v54wzhv1TdRs1ahSHHFLIihXLcTgc5Of3ID8/n27dcmnbti2aplFfX8+2beX8/vvvbNtWzt69e+nb90guuOBCjjvuOLTkGT9FefDBB3jzjdep2L6TSMRBhivBlVQCk2ri37NnD7fdejPvvvceIGkQRUVFrFq1iueee55bbrm1mUUjlSUFDMUFTbOpAJgSPTSPmp89ewb33nsv1dWV0tLtbMMhhxTy4YefkJOTZyaLsP4e7Jw/xb8mECDmzZQLjDHp1YTdZLqkBQSXSy4ywRqq9UyytRoinswEJ9eglrhciWhpv18CZ/OixnlUGHUoLBdWd7iG+cXSutyvQF5PSZqp6G+3HqI6nI7PZ/SVlnDDuzWLAkg4bGaIszBsTEm2XE8d6DrVupv333+bxx//q0kT8Xg8HH30SC6+eBz9+w/j8C5CttUr6TdVK1fyU0WIM047jtZt2uPUJEjM1KuZP38+360toeSXxfz066/Uh0I4nU5OO/VUrjztNLY19aDN3rXg9XHuoAG4Gxuhd28bLzSV2kEyPSjZnZ0soaXGmNXta7XOJZ9LAuTU2bWs49UKxKoDkuNtdHWzbHcpXdYWYBfRnfj9kJ9nB5SpMt+pcsvNN/LyK6+wdOkyjj3m6ER9VEOVuQ+aUWistBB1nZRUBFVSUFOsJVmLNpmWYn3OrFSFlqgLyoCgvBHJ102V3CHlOZLmppZoHMm/s9FPsAP8ls5jXiM5YYxFqjBZQ9zqOlizdi1HDhjAm29O5qqJlyfiPTA4+VpCRSMcRkodGhQlhels506iQ9ieE123cYGtyj+qvcEgUnVIbVqMdvn9dvtBuidOqKZm/5czW7jwz1MdTjxxv2zj/lYOAN//8LJ27VrOO28827dv57lnnuHyidfRurXUHy4vh3xXtXSB6+kJi280SjwW49wrr+PLL/+O1+vlqKP6c/TRR9O375G0b9+e338vY/bs2cyaNRMhBKmGic/n48MPp9CtWzd+/HE+N910IyAzvXk8Hqqqqnjrrbe54oor/tf74cYbb2DJksWsWb3aBjyVVRHswTEO4mzYsIHft21n8KCBtO/Qkcsvv5wff5xHeVkZexpamcFV1sXPBC0qKAlpATTluVoI9IhGwR2UgV1qIdi7V/DTT99xxhmnAfDLL6voX1SYyHimFgGFVoyK1AUdZAQ2U+3pRbarjjoyTAyZHk7ixxoBa2oRqglIa5o7WgdASMtIBLNFIxAIEPHlSg5tlhEg50ssKNm+hJ6zFaipgKqaoKRD9Aqvht69pfya1x6cGMNpBrWAJY21BfCbALl4BT/u2cNjTzzB/PnzARg79mJOO20UR/bO53Cvl3heL5zF8nomorMEGZnXDochHDZdpcqHGoo6addOsHFjNZ9//nfee+9lKisrbOMrq0sXPv5kJdFoDqOGyMU2hpNwWFqxku+52c4U2c5aSlCSDHJTgdFU/GprQJcq6pyK/6uK6hYFTkxetuV3qlgtb7Z7YtBwkrnF1uuC3FjnFxQwatRpvPrqa6mBH/9cQJ01I1+z76KJ+9FMmg47DztVDEOyKdVKTTG56ElzR8q/SRrLqfbryd9Z+816THJ9bP2rLLLhsI124owmAoOTdXFTbSKaBVYmgX0rWAX4ZMoULrz0Un75ZRX9+vWz19XyrIXDJJLlqLk4Sb+7pViSYBCTOqWeFbBslNWEYwROmxQ6g06h2hMKO2SgtMtFXdiJwxHa/4Pb5s3788D3pJP2yzbub+UA1eE/tMTjcf7ylzt48cUX6Nq1Kz/99CtHHdwZmvYSS5O7+fysCERdxD3paGGZXEDTHLhcbpb99ANffvl3PvxwCueff34id72lXHvtdWzZsoX58+fjdDo5+uijqaqqoqqqinB4D+ecM9501xcVFXH99TewZs0aPvnkY/bu3cull06gf//+/yf9EQwG8SqJA6PEdENnVjMmgaRJuKioiKKiIgDiwIUXXsgHH7xHx06d8Pl8FBYeyq233sZJQ09EuRxNC5fLhdOgM5jAkbgtmj8UdpDuieOorMCVkyuBVjQKLjk5O9vD6aNGMn7MGD6fNo0777yLz199Cd8hh+AI1hHSMkgPVlDjyiUzWEE8JxdHOERGNEyFqxdeD4BGhiexYEW0bAlIPTK1NCWlaHlFxFwZoBtWk2iEmEE30IMk9JcDAeI5ubiJk5PjII60Em4odVNUGCc7CwgEcRsawZWBdHrlRFhR7GaAt5xYXi+iUUlxoEQuxj4f1AWdZGgKiMsS96STbgCWUNgIZAyHEU1NrNhYQ69enXnqqeeYOvXv/P57Gd275/PYgw+Sk5XFRVdcQZNozZo1oHlrWLEGBvTtnbAgWyxRhMPgy5T33pPOmtJ0+nkjJmiI6MamIM1LZmZXHrnlcu76y9XM+WEBvTu4+WXbNq647nr8O3fS9aA9HNKhGvACkhaUm9tBAlDdbv2Ma87mtAbMoWMrEqs77O5xDGCAlgC2gFMBMRKAN47TRCqKJqHGuEplbd2wacbmwuNJUjYwisn/Na6vPnBqcZwWyoDHkwDPiSBDtwkCF/+8nIqKCtxutwHYE2DSel0FvJL1ciVQs9MXzO9V4hXiZoea/Z28CdHsbYDU2szJ/F91zeS+cSJpSdbNnMNClYhjz0SWDIKTA1/VNZPrpI5JHj+mJ8sCbJ0oTrzkymqqbyznVtq7KUGvUVfrxspGrQmH6JaTA8Dnn/2dooJ8XOlewpEomzdv5uDu3XB7MmgTDpGuPE3hkA2Ya5b+AyeiVSviTU2ktWpNVHfiMjCtx5NQi3FHg4S0DGKaU/5ObWpcblxWZoBhWXbqMQhHcbnSiWvpJsWvro79vzQ1/Tm6QlPTv68u/+XlgMX3P7DU1NRw1VVX8u230/nb/fcz8aqryMjMROzZw9rtQTZs+I26uirKyirY+NtqrrvkEkaOGEGrzl1Ma9PYs89mw8aNrF+/8b8iQ90ZZ5yOpml8/fU0HEgFC5Xf3RE2QJcxoZdVOsnLa24lC4UdzJv3HRs2/Mruulqmf/stoVCI9977gPbt2tK+Q0d6FeTTpm07wGJ9q6yUaM8wV0QMbm1ull1WyqFLWa9wWB6uJuWdO6p47umnee6ll3j88Se45ZZ7EsAjHIZlyygrHIXPhx1sAI5gHXFvhm3BAjDIvaDr1GjZZPqSrKoWGTDTshOuMfmN1eF0srUaqKykLq+fyWlV/FYzS5SyPqlIsMpK4r37mO229X0gYCbVUJZgdJ0dlZU89eprLJ4/j/Lqauosq9TYs87i5P79GTDyVvr1bmUDEoFAwv2ZbDGG5q5daybBlix3Zv9pGpWbNtHN2Bi98sobXH/x+RJsBWr45NtvuXDiRACOOeYYThk+nOtvuIHMzEyb5dbshyRAozZh6nm01jcYJDF2SbjDre5fa7IYm5vc4jpXBkEnluxXLVATmknGWWgEpiUVu/Ux+TwO4kz55FOmTv2SbdvK+fXXXxk8+ES+/Xa6uW7YsqkZICamO8yofdv9CNbJtiTLu1nGYTJFIJkC0Ky+FmtwMo0h+T6lOndyNjjrNVOeS31hpNJWn7d0vVQWYOtvmtEcjHGUiiaSfJx17JvnTZLti0aNYDEDXKq5QdFiHnz4bzzyyL2cfPIICgsLeffdd8zkHO3bt+eqq67mkUeeRNM0M4ubsj6HwhF+++03dv6+lR+Xr2batC+orKxk9Oiz+Pi9t/F4vUSiksKQlSWvp6hVpiINhpIIEZPDq+aCTG9Mbt6zsm39GI1KDHPQQfu5xXfWLNLbtfvXz9PQQIdRo/bLNu5v5QDw/Q8qtbW1fP3119xzz11AGq+//j5nnnkaPy+ay+R332Xejz+yc+dOAFq3bk2nTp1o3749W7ZsoUOHDowZPZobbriBhT8t5o47bue99z7gkksu+X/bqH9TOfzww8jJ6cac72bJD5JcmFZepeK3tsTPU5/NmzePESOG267jdru56667ufrqu+ncubXJt4zoCT6aeaxyZwdqTMktpcYQ8mSTHq4Gr5doNMqU99/nyttv55xzzufz998GpFqG2xWn2u8wKQ2VlVKJw+0yNFuJwNy5RIaPNuXjgkHIzpIW1JpouuTBKTOjsVCWl0O+p4a4L9PsLkXbUFYXR1RmeMsIlsmVSNPMdgaDSC6x1Z1qWOGiUYNKEQ4T8eVKEB80+MV6iO27djF42DAOP+wwJl51E1deOYF9+/Zx5pljyMnpxuGHH01Dw27apcU498wz2dHYCV2XVXDqiYx+SmfYmqrVeu9TAQkb3QK7+9V6/3UdYrE4jz9+H6+88jKtW7fmrddeY+z48ygvh507yxg0qAcA555zDjNmzaKpqYnLJkyg7xFHsLWsjPk//sjNN97IRRddZLOqJVvxkt3A1jqABaxaApGs4M0ZrCHmzbRxKFX5I5BqfS5sx1opF38gv2UFVjt31XP77Tfx8cdTOP744zn00CLy8/O54oqJ+DK8Ka+dfH2zDoZnpCKcQa7XYtkFG+3HGgRo29AkbXDUeVO9t143Wcc51SbK6B4bBSD5Oqr/bLq0SeTqVP1p7Z9m9IYWALEqyZxt80NliU4hlWfb9JBEI4lGmmXqVL/59puvufSyy0hLS+OGG25k2LAR1Pi3s3blSp556SV69epFRkYnCvK6c+e997Fw3g+8/PoblJRsNOUlfT4f559/Ad265fHww/fTqVMn5s37iezsXNmvatem6mzI6JmZ+CwbdxXzYAbLaokNuQK+kUiIzp0PAN8DxSj/TJaLA5nb/t+9dD0uXn/9TVFQUGBm2Tn33ItETWWl+PHHhWLwwIECEEVFReKee+4V3347U1RV7RC6Hjd/v3LlavHAAw+Krl27mue45ZZbxb59zTMc/Se+fv11rQBEXl6eiOsyW5T5pZHlx/KvEE2W7EpJmams3+t6XLz79tti6dJlYv1vv4kFC5aIcaNHC0B8/fU3iWxNxnnKN28WPy1cKOLRaCKLkSUzkcq0ptIfLZ8/X7z+8svipKFDRVpamjhz9GixduVKIRoaxPr1wpYlqb7eqGNDg5kVzTygtla+jCxsW7dafmtkXDMb2WTJEqbSHRnZ9FQ9VVa+qiphfq7eq3bU1goz05KqnOrjbdsS36vEcKodDQ1CbN2yxZY9sH///mL58p22bIAqw5x5QeO3qg3btslDjKRztmslZxmz3n/rq1mGwaTfqP9ri4vFOaedJgDx2Xvvidpdu8RdV15pZrzyL18uaktKxD33PCJ8GRkiLS3NbNuYM8+0Xcd63uTscLbMd5aKmtmrjEx5Zt0tY0zdx2YZxJpSZwBTJ1HvrVkYrX1i7b/kz0VTk4hG4+L9d98VmZmZokOHDuLD999vfp2k9lqfC+sYT66jtZ7WZ9Zss6V/UmUUs/4uuS7JFUrVPpVZ8h8da/5Nyjpme9as9Wghw1nyvWrpviWPj1T30zZ2kk7W0nmsWdhS9bX1+H21tSIajdnmzcZGIWbMmCtGjz5TnHfuuSI3NzexZo0eLd5+6y2xatWvYtfOnWLfviZzbt6woVR4PB5x+eVXCl2Pm8+xaGoSO3cmppnkupp9k5xB0lLXxkYhs0bu2LHfZjUzM7dNny7EvHn/8qt++vT9to37WzkAfPfz1w8/zLOBhCOPOELMmTFDTJ82TaSlpYmjjjpKTJ8+wwS6f/QKhyNi3rwfxYYNJf/P2/Xves2dO19kZWWJfn37iqqqHaKpqTnQMd/U1trBRoqFwvpSbxsahHnS9977RADii88+MxeE2lohJk9+z7xHs2d/b35npgVuSqS9bWgQ4vWXXzbThHbOyBCTJ09JoLadO4XYtEk0NdnBZ6ORKrqqyg7Um5qEEDt3mgvG+vUikeJz/fqU6UtN4NvQIBYuFCZQMEGrkVK6oUGY9VJgNhnAi6oqMyWpNUWwWrTq6w1wqtB7Q4N44YUXBSA0TROVldWyDSqNtWVRMxczS8pm6/eqT6zAp9m9TZF6Vv1VbbECUms6VPXTuK6LC8ePF5qmiU6dOon09HRxxRXXiuWLFwuxapWJ05t27BAVFUFzLDz+2GOiqUmIPXuaxB7jRlrraR2j6j43G7eW9ljvu8oCa7a1trbZuZPBmLXt1vOa3ykEo+7lHwC+XbtqxejRZxmb8fNFZUVFszalakuzOrYAUJt9pm6yem8ZD9b+sZ7Teg51Hiu4s4HxFM9/s2cmxffWa6r3yYDerGuTHVSmuq51AmvpvrU0hlpKj20O0BR9ndxfqa6fvPlR84e50TR+r55H0dQkgsGQePett+QzYoxN9bvkTd8rr7wmAHHZhAmiprLS/G7dugrxw5w5YvfuRtvYt77UnGRkRhdVVc37ateu/4CUxV99JcScOf/yq/6rr/bbNu5v5QDVYT8vGzZsYMCA/uTn59O//9GsX1/MypUrAThlxAi+nTGLVq1a/T+u5f9dEUKwefNmfvjhe6ZPn868eXM56qhjmfXlJ/hy8wBwBKQL3yrH1ExTl4QLT7k4I1FHs8CjZG7hvJ+WMXz4iYw69VRuu/2v7GusZ+Patdz14IPs27cPgB07asnK8JgkXhVNrbhyP/64klNOGcjEiVdz+vChnHHOOSxa9DNduw6UAYkAK1cS6X+CdF8G68w00SxbRqj3INNr6iYi00IHyiAYpDqrn0xd7PEkMvVZoraTA5nMMGqPh2q/g6wsS+pQlOZmQv4oHJb8U1Pz1Wij4t0BCc5hsMbG6XW5ZDa4mCudhoYmLrlkLDNmTOeYAQP429PP0rPn8Xi9Bk1CcTstXFZ1r2wu3XDYzPZn6usaWaKsXEF1j1Nxa20lBUXGqcVZV+zgkG67eemNN/Dv3MmFl9xGVlYuPp/kF2bPeAvGjTNJ2HNX/8bjjz3IkqVLmTDhMhYt+JHK6mquvuoqLr/iSg4+uCcul5aSf5rM04TmfHRVWuKCJo9xKz9V1zHTRTuQ8m4uVyIzFvyBhJdxrpUrljH+vPPYs2cPk19/nbHjxgFGQKdLjhvrNVJlM7TKWCXX19oXJq/Zyvm10Bmsx6fqj+R+Su7LlNncrFQK7FSGVIoNDuI28r31vtl42VY5jRT3MjkVeqr7maov1XepqFvW8yefw3ovkuXGlPKCUq2xntN8Dv2SrmXN9gdSTzruzUgktTA4CLb5x+DyqP554423uffev5CWBg/dey8XTLicQw7pxe7ddXTt2pXrLr+c7occSU62l6LeJ9CpUytbprm4N0M+1+EEhUvdS39ddP/n+H711Z+nOowdu1+2cX8rB4Dvf0BpamrC4XCQlpaGEILvvvsOIQQnnXQSrj9KdvBfUCorK/nuu+8oKdnIpk2b+O23dVRWVtK6dWsGDTqOa6+cyPjhw9nTtgvpYZnKEprrcIJl4UkCFo5wKCGTA+YCalURU4EjS35Zw/DhJ5oZwuThGmeOHEmoMc4PP8yixu+nc8eOUjrLmyHPbygIaJpOjx49yMjoyM8/r0Rz6PTucyS1tXV8+uokhp96KqJ9h0SwjJFKVwFHXTcSkQRq5MVdLkKkm9WXkfiYee1VXwDN5IwASkqgKCdERTCdXP8KKQmmpKFKNxAvLLL1m9lHwaAUk9cSfRg3ElGYi7yhpODQZZBejZ5hCuq7XEBc55NPZ/LKy0+wctUqlnz/PUcPGWYLiFMLZV3QQUa4AnJyiOlSnD9bqwGfjzgyICbDI4NbrJJxKuNYeTkUFmKvn5ZIohDRnVIyyUrUNtqqfp+VlaAdahpmpr46LZOMwGbqfL3I0KRMWzgMHTrs4567b2PWd99x+OFHoLVKY+GiRWbyloPz8hgy9BRefXUSbdq0sd0rW7Cdppn8xWhUfpRBnUwM4JJ943KBO1BBLCtXbk5cFn1TBViMTU6dLrWb3VG5oVKBhtYAOJtObzhs49lOnjyZ62+8kX79+vH5p5+SlZ1nPh/VASfZWcZGwyLf19IYVPzSurAcE24sUl2KuGo8hGYyGi2R7toKdpP7Tn2ekv9qlGSgrMaH9TctBfT90XlaKtZ+UACwLpjYbJgbWleif/5IE7olgJ2c9tfaPsVtTxUEasYhWCUV9RRp61WF1VwaluNece2b1T1saIt7PDaJSVVftcHeVV7OvS+8yDvvvG1KaL7//ofMnz+fTz/9hFhMjpfDDjuc++6+kzHjxpMmmljy8zoOPbSALl06me1Uf92uOJXVYbp128+B7xdfkO52/+MftHSeSIQO55yzX7ZxfysHgO+Bst+VSCTCtGnT+OCD95k3by5paWnkH3wwhxQeyqGHHsrQE09g8AlDSCeekFFSWRJKSogXykh8U/IoRUIIVZpZQa2TfNQCHizWsjTRSG1tLf6a3bRvn05Oto82bdqwcflyigYN4qijjuGKi8/n4rPOwp2TawZhxXGwYcMGDj/8MJ54/HHuuvteolFo2LOTs88Zz08/LaJr166MHn0Wjz32MhnhCuI5EsikIxeWdC0izXW6TiSnl6kMEQjIgDYTWBAzLVZqAYtEHbi1hIVEAYqasJtMb0yCFl+KhVYtiBYBWDNZhWGFA8zgN7crEUCm61KD0xrJb12UncR48aWXuPUvf+GTT6Zy7rljE6BDZWgKY19QldSboRWqZONU9jJHOASBACFfPukkgqOsAWPKognIhT4QkO+zshKrZmkp9O6dANG6Yb0yQIGuY+oRKwOeqruyxluTNMRw0tTUyOeffsKe+npWr1nDex98wKeffs4555xjs7Sb6EvToLycUFYvKU1mgNe4Jx1HsI7qaAbZeoXcALkyzcDDrCwLoCBmJiCpDjhlco9w2Aw2NCtsBA8p7We1B0iP1hByZdK+XRMPP/IIDz/yCNddey1/e/pF3G47IFKWf/W81QUdCY3raCLBgXV8mWMhyQKpxrAaC2YKa7WhagEImkGBWMBgKuu1ZQNsXhTMwDRz42gFcHoi9bMa5+o3tmcmxVyjigrGsh5nvV5ySVX3Zm1JkUwlGfSqc6l7kqxEkcpIYI5zUmhxWzxHobCD9GAFEV9u8wDLJD3kZoHGxmZdjdUYTsrLS/nxhzn0O/JIjug/CIBWafuoq6ujZP16Hn70UeYtWGBuGBsbG8nO7sqMGT/StyiXtNatzX51h2sIOFz7f3Db3//+54Hv+efvl23c38oB4Hug/Mvl119/5bPPPsXpdJKZmUkgEOC3335j3759nHvueVx44YX/43NOmvQiDz74AHv27GFw376MuegGrrzibDzpXtOdqCyLyprnJkJN2C1BT1K2KTBAVEBaB1NGkauit5xxS4FGZd2wZSQzAFFjq7ZcdtkENm5cR3FxMV5vR8adPZaJEyZweL+BOIM1hN1eRo4YQvGGDSz/+WcO7nEozpJ1iC5dmLFiPaNHy9TOkYjO3r2t0DSpllZUIJNJKHUDJeiusvOZqgYGKE12hSrgq4CyVQrJVG8wtHaVTJjRJUrhzLZAOsN1pvnTBFdKQi0cJp6Xb/7eGZXnVTQJ8wtNo6y8hh49DqJ9+/bs2lVvJl+xgrZmWbyiCbBWE5Xnzc9JWA7VXsjjMeS8FCXD56Mm4DAta1aZL9XPhnhFYlGOhqjT5Zzn9RqLuAEi1VgwkwYYvzEC0E0pMetmwDr49jQI+vQpJBIJ8eabkxk9ejTFxdCnt2Hh1msoC2eSr1VQpueSkyP3PLlZMb5f4GREfwl8AwHZ9cN86+SN83rlfTW8AhFPpg1YBQIJCoICB6rPFFUkpLvxeMymEo3q3Hjj9bz77ls8+ugT3Hfn7Yn76HIlpOosChBWeomKwHcE6+RzplzRipZkAYrqM+szagV4yZZsGz0jCWSlsgab47KFTG7W69qy7CVbPo3STBlDb56RzDLkm13DVqdoqBldIrm+ye1JZem2gtpm9CajJFtlk+tlBdPNwHbSPNuMEpKkCpHcz45ATeIBtexGrXQza4Y5Kw1DHb55/a/8sGAxDoegR243rr3pJiorK0lLS+OkYcO4+56/MmTIEJqa0ohGgnTo2HG/BIUm8P3ooz8PfC++eL9s4/5WDgDfA+VfLmeeOZoZM74lJyeHnTt34u3QgT5H9GXevLlkZ2ezfXvV/+h8Gzdu5IgjDufCCy/lvvvupWePgwG7TqYqyTqWVlCcyqoDCauR1dpndRXa9EWhZc6gmok1u2i9Og/RKNtqa3lx0iQ++/xzAoEATz32GLfefDONojX+6nIO7tGDMWecwdRp002L6tQXX2Tc7bdz15138tSDD1IddJPtlbI9ug7p/s2QkyM/91msedEoGyrTKSqUYEP1lZXqoACO+k6lLVagJ9cr3fYxb6YtDaqZ+c0VMzOdqXMpqSYT4KhSWmrW0wSfFo1RlV/CSQzRqhW333wzL7z6Kk8//Qx/ufQSyRlUmagMcJ1qkVaLroFpJagCSanQDCqAsUHYXOkmLw9TL1bpPEeikjaR60lQB6wWrbqgTH+txgPRqJlxThmJ8/Isi7vyMlhdzxYQoKxnqk07f1rIlc88y8yZM3jsvvv46znnyPZn5bJmDYjg97zw7mzuu+8aHI5e+P0wbHDMrIemgbtys42HYQNiimOp66b1XGW0slpOraWsXIKPbJ/UnW7TZh8Xjj+dOfPn89prb3HluWfLzZWeSIJg0/HTknRyDapPsiveBE1BO0XJ7H8lgacs50YxgVyS7Jq1v832WSTJ1PPeEmg1708LvONkK2YqSTwrME0+PjnrnGqHDezRHCinArPJ1/kjLnAz3q9lI2IeH6wzk9pYNy3J1zW5vUlpj1W/14TdpnJjKi1lk96i6830ma31DwSkXKKZUj2FddtaL3Sd+oYG5s6YQXlNkI8+eoe1a9cyaNAJXHbphWwqKeHZF17YL0HhAeD7f18OAN8DpcXS0NDAHXfcTiwW44033qR169a27++443beeedtNm8uxefzUV+fhqbBlI9e5eZbbqGqagc+ZTr8J8qkSS9y22238vjjT9C1aw6tRBOjx15EupEO1yrUbp2YVbFaaJItHimDUXRDCN8Ts9EZgkHJoTR9tBbUrVz/pp4kRnrMaI08RvkQka67eDTEXfc/wksvPUdubi5+v59YLEbbtm057bSx3Hv3rUz9ehqV5b+zfMUKWrvSWb1sETESlg7lRvf7Jb4pL08kwMjEsJhZMjFZS7MFPByWILkgBpWVbIjmk5OTcL2q5jqD8rzRKAnuq+WcJqCKRhPC/FbXusHp1TTICEvuaUtgxanFuefuu3n6uef48sufOevM/s2SNYSiRhYyA3HXhZ0mHzLdlUi2oPrdqUdsnG1rWlyVbEO1TxmdnFHJQ1QeBQXQ3cUrqMkbgK5jUkGsdbfqh5obMkhwkb2yryLIRU1ZQXf/8AN/nVNC67QKvv1uNnvqg1w1fjwPv/wqX31VxtNPX8iqVSsAyO/WjaWzZtElPx8qK03qw+ZSuQnpkxeCcJhqJIB0uaC4WGo+Z+vSYqw2KwC92Cz50ZakCgQChFyZ5lgIBCDTv463ly3jyquvZva0aZxy8slm4gCrxdS6+VHgSPVFWbmD/Dz53eo1DvoVRszARXUfnWHL82acQ9XVBqCMhC3NNq5qQ2rhZav6qHvfjH5iWKutfPA/ChZTxykPi7UkW5BV3dTx6S4J8nXdks7X4PBY6UmpNtuqtKTVm0pvN7lvkuvVrH0taEk3+73Fmq1e5nMJ0nPkSox3K9VKdVRygg3bPOpKBLM2C4QzbqJpCEgRjKnud6tWgi+/nMEzzzzMqlWryMjIoK6ubr8EhSbwfe+9Pw98L7tsv2zj/lYOAN8DpcWyYMECTjppKAB79jTgTnood+3aRVFRISeeOIypX3yKSGuFgzg7d+7kkEMP5bDDDmPAgGNo3bo1hYWH0qNHD9q0aYPT6aRbt2506tTJPJcQgo8++ojLLrvUdo2tW7aQny/d5sqND/bFx1FZIREhCa6dAmxWN1yqoAwzF7yhJKAsY4rfa7U8tiQEr86tgFByJiqAH374gS+/nMphhxTgdruZPmsWCxcuJBwO0759e/Lze1BdXcWuXbsoKOjF11O/IL+gj6ybnnC3myDBEHhX6hWK9uAM1khk3L9/SqtVRaWD3OA6qn19JA80if/sCErLpwJ96YRkEgxvzOw7k5e3Zg3x/gOkFVFLCMab1zMC4HQ9kQ0qprklKFWIPhoFv599nToxaNgwtldV88U7b3P8qaeCrrOh1ElRTkhykfUMmTRDZYqzACUrbxjsQEplg1IAFJeLmoCDTK8E1Mo6FQo7zPfKehvR0nFHpTXMSYIHTTDYzB1v1iXJMqVoNlYO7OczZnP7zddTW19PXrdutHFn0qVLBnPmTKdfv2OoqdmBs3Ur7r7nGYb2yeGEMWOI7dvHNVdfzY033ULnzp3NTV24zs/UDz5gTUUATWvHrl2NDBp0KJcNLGKbuz8L573M66++yvadAeLxfbjatKFDejodOnZkYN++jBg9hkH9+9GpSxczU5aifuR765g1cyanXXIJ7723lAmjD0kojGB3l9uCslKALRswKy0llNULl0sOV4/HSLqiPCmWTZjVza28FtaEJcl0HqvbPdkzlMp6qeYLsGfRSwZ8QCLdopXnmpQKvdmYSAHIQ2GHGopmSVZbiXszUieXSAK41tIStcNamlmHjTkgECCR4TGFxTjV75MtvqZBwOL5KKt0mhsfGwfb6i2yxA+YsQdBJ5k+e99HXHIz7YyG7MG0SfEY1orFcBAJh+jYqdN+CQpN4Dt58p8HvldeuV+2cX8rB4DvgdJiiUajfPvtt3Tt2pVBg2SAwZYtW9izZw9FRUW4XC6++OILzjtvPG+++ipXXXONaV35aeGP3HDTTTQ1NbF3717Ky8ubnT8zM5OioiIyM7uwatVKtm7dypGHH07/Y46hR0FPTjluEH2N6wLmZBiNQm5OgjuoAoKSI4+VlVABGsDOM8We6ams3EFODqaLW+HbdFcsNaUhGQCHw9TpMtDJqUdsPEl1zTgJtYiamhrWrNlA7959yMn2sru8nDWlpVx3881owNJvvqF9Xh6hqNOsB8GgGZQUQvJx83NiJscyprlxBuzR9MncPwUkKiodCRd/+QZiBUUEAgnqnWnx1ENGylGHSRPweAy5MsPKnUxFcOgxNpc7KSggYfUysitBYsGvrIRcX4SKgJvWrXdyztlnseTnn+nYsSPDh4/gpZdeIivTZ7O0Wy1jVs6hlRKRbDkLBqXSgQIoCrSoNkWiDnPzE8FtSiKZi6hhblOcatU/VnesKiZQUrxXI3iuoWtPPv30e7779Fmmzp3L0UefzpcPXoPr6NMIh6Fbu52Mu+oaamt3kZHRiZdefIE40iK/fdFcrvnbc8ydO5srL7+ct558En/cxa03X8nUr6cRjzeR07Ur0b17cbpcbN++nU6dOtG5cw4lJWs5bdQoDs4fRPcugkBY0LSrnMqIYOGC79jh99OqVStuv/JKnpo4kbTOnaVCgyufbKoJp2dx5OE9OP6YY3jl3U/x+yWbZUTvaupc2aZr+4/UBJLvk9p4mMF2JCyESZNQs6gvFZxlplW2BgKqi1osg9YEYCoY0+qxsVJU1NhNlhRTz24y0DKLZbwlg1XbeQxvgwrOtEmdqbak4BK3ZAW2llRA29rn5v8kcZdT9HHyRsVGZ0o6v/rIumFUVBgTjCZl01PHx3SHKXtn3Da7B8aaGZJ4sxgP9SOVdjkcNtRdVF8aO5pQKESHgw7aL0HhAeD7f18OAN8D5Z8uS5Ys4YQTBpv/+/01dO7cmRtuuJ4333yDb77+mlGnjwaSAkPCIcLA9t9/p2GfjMCt2lbK+k2bKdm4gR1+P0cc0ZdRo0YzYMBJdOyYZgYapQrSorwc8vISn/mrJfc0ia9ousqCQdOKqaSWrDw1869SC/AkueWSdIBT0SdMUKYmaxUtZCxkVp1LtdCp4DvlflUW1583lTFy5EkUFvbhvPPOZtmyX+jX71j+cv0EwnGPBF3bt5LeuTNllel4vYY1s7ycpcEiBg1smd9XUekg1xdJ+OWVhduQHIu4MhILT6kEwyadQNepCLhlYJRSc1D1tqQItXIJQ7rbjH3Kdkk3tU0mzrDchMPyGvvSWjH1ow/YvG0bL7/2GuBizpxZ9Ot9iKyz329aT9F1aZHVLQFm4QRdAex80pqgM5Fm2QCz1eF0U/dYBTACZv+oe6RpBtD1JtI6Kyu39XcKyJhKFNGItN5lZfPcs09z5113cVhREVdffjnXjRhBKyEkHyEQoIJccsMbEiK76h55vWwIZFJUGKfLQT2oqSmnT58TaNNmH8XF63n88os5644HyMuWsnceD+xY9RNPfTibvXt3cdJJQxg06HwOOXifBJpI7VVcLsTevWzdsZNJkz7klVce5qrLL2fMuGs55fAsHE4nZeFM8vLg+GOPISOzC6++Op1cT51pUdsQyKSoIJbwjCSlAU+O4Lc9MxbagtKQNoZNSvkx87zhEGWBdPLymlNU1HXVmFTjT9cT6iLm9XU7b936ebLcV/KmV91nZSVV802LgbOqWE2kBmBTz6mFfWH7vU1azgKK/6g049RaKmatp1KYsPav2TeWzWWyRrG5AUixyTQ3foaco2lNV8+Whd+rDBQejz0Gw+TCq77CLgGXDJ5VgLH1vCpwVddhX+NuvBkZ+yUoNIHvG2+Q3rbtv36evXvpcM01+2Ub97dyAPgeKP90+fbbbxkzZrT5f0nJZnr27Ek8Hueoo47kiD59+PCDD5ovFC1YSlMtNqZFMpzQaFWLJqSIik6aoNUkGHe5TX3eVIuLzaUZtlAZrBQHAzTj9dosgtbzmfUwLCch3W1aiEHSMELeXBMkJZc4DpvXXlkm3/n7Om69dQR79uyhsLCIkpINeDweDu/dm+odO9i2bRs5OTk888yrDOpxEAf16kXrtDQoLibWf1DKKO5mQU9WrqMiDhuVKNNzE8ACCxeTmAmurFY+v1+Cb6slDYBwWMqweVIHyliMMgnJtsoNUFDADwt3ceutp7Fl8wbOGzeOu265hYK+AygthSJfjdTQ9eRKC08waALiuOY0dXeteqgqSM9mzbPwkhWYSeaHm/JiqljNmeEw1eF0k3udnyUDfDTNbmFG0yjo2ZNDCk9gxuevkNbURNyTTmmp7EdFDV+zBob1TdBNstfMgv79ZdtKSxlxw2Ns3foL2dk9KClZxRVXPMpTw3Jh+HAAqv2yj3P1MjZE8ykqjLOhxEGRt5pqsolGId9nlzCjspI6Xy+efvBG3vr4Y3bv3o3P5+OkIUMYctRRtO92MNdffwP79kWYMuUTzjrmaNYFsunj/54NOSPkxsuVALFWqoey+FmBUjLH04ncVFUH3WRnNQ8KC0WdpGuWZ1pRkgyQYwWGMV2eU0mqmRx1I5DPuGUJMJzEQVUqMcl8+ZYoA1Z+7h8Fx1q1alvinivptmg0obEMCU1u1YfJfOI/sga3FDymvksZK6E393Cp46F5wg/rddTjkap+VrUYR1R6eUwVFd3+/DWzFhsntkoHWh/DluI74jjYse13rrvpJqbPmLFfgkIT+L7yyp8HvjfcsF+2cX8rB4DvgfI/KkKmuSYWi9mSZ5x66kg87rZ8MfVrc96HxK5dTWAmxzMaNbOaWQMYaoJOGaHvl5HeKa0eRrHy78zgJ4MbB4nJUFlRmnH2UgSsmaBYcfjUQpUU0ZIcsIGmNQvIMRd2QzM3WfsSSGjPWjlqRr3r/BUEg0EKe/fm0cdfILDzd2qD9XTufBAHH3w4H3/0EiuMLH5paWl0796dwp49OXHoUMafcw75+fnNFiPABEIxX7akK/h8EAxSo2eYtNsMV8KCW16O5OhZpaQCMuLeSjNxBOskD9fX3EJkApiwcV1LNLsy4pr31+8nnpXN4sVwVHYpj7/7OX//+2R2797NlCnTGdC/F5mZCX6tOl7JYOl6IjjPXMTDIeYtXcqsb7/l2COO4JBjTySwbQuHDxiAz+ezZbmzcjbNlRTsFjDdCIx0SaDr9Sbonwq4VIQzyHXV8N6XX/LS5PdZs+YXvnzuOc6+4QbQNKr9DslrNSgyGf4NUFgo709gkeRQ33BTs/sXCjtMo7Uar2rsqf2LpoGzskweoPgm4TDfr8ygb1/ILFnE5qwT6JUTSVA5DK71D2tLWTpvOj8sXMiKVavweDyEw2EAsrOzqfrlF8qiEkQXRVdL8F9wAtnlS4kPHISjvMz0yFitbyan0+CsZ3hi5vNu1cWNa07z+Vcl+VlrtokzaA4KuKJp0rrtSXBB1cuktliTZVgk6ZqNWU/zeUPxja2WaZs6Q5Il1ARzyeoUJOkCg43nmqx5jabZqFvmM6PGo56Qh1PtUP33R8FuyZ8lf27p+hbP3RIIT3Vtq3W7WeCbZRNgBdHN6m7QHqza2ZDYkM+eM4drbryJbdvKad++PXv27NkvQaEJfF988c8D31tu2S/buL+VA8D3QPm3lHHjzqahoYE5305PADwLIARpxY15M00OqrI22BaxpKjtZoA3Bb/MDKTAsqApF34L1mYr4FbRxCoIQx1vFZq3Ao9UoNdqvbK5UysrJBKxisSqohYrb8JKZFqNlFnKcqxpia4sI56XT5poYs26Mnb+/hsVgTq2lmygeONGZs2ezXHHHcfiRYtMi7LHA06/DAI070/Sgm/2XXk5kbwi3OXS8qoQnS0wRUlZBaqp0bLJpMbUcVX303SjGpsRUwKteDWx3v2aRcHHdIeso8vFivJMBvSNQXk58YJehOsCHH3ssWwuLaVVq1ZccsmNTHrybrbXdsHjgVwqJHq29JkZJR6NEnOlc8ghBzfjmjscDoYNG86F559L3379jUDMQlrV75bcZ5KC/wwu5roSJ4WF0op1UJcm/H4/nTp3wak5qAs66NihibVr1/LM3/7GJ59/zimnjOL448/l7rsvplXVduo8uabywoDALFb4RtG/vyW6fcF04qePNnVvX/o0k5vypsOQITLYcNl0PgyO5qKLElmn08PVsg8qKyV1wyM3B25dBgdWRzPI9oSYvzKdYf1DsvJ5eRAIsM6fSUGBJdlINMKlV1/NJ59+ypT33iOyr4lVq9Yyqkc3Rp17rty8VJYRyconGMR89e6NTJ+t68TyetmTSKTSflUcTIMPr45ZuRIG9LeMi1R8TxKcecWXVY+KNT21dQNjbmYN1QCrKoiitShwbF4rGrHJf5lzQfKznyIVr5VHrooaR8mWXKuqjNeLqRFtDepVp7fg9WZpvdVBEV0CaqVaA80toynlzizFCnohNW/b9lvLJsf8LkVGOKv1OhWYthardGIqzrWqV7L1/9HHn+CBB+6nb9++3HvvfYwfP26/BIX7O/AtLy/n0UcfZf78+fj9frKzs7nooov461//itOZWOsqKiq4/vrrmT9/Pm3btuWCCy7g2WeftR2zvxTtHx9yoPw3lm3btvHUU0+yceMGKioqaNWqFccMGMCQE09kwuUT0ZI5Bf+geDwe/P4ddsuOy8iqheTghVyZpEdDkJVlWrviqMw9BphV+dZdcmKzVkOC1RR8Mk0zJnE5v9YF3abr2IkOxkIewY0bO9XCocfweJyAZoJepXWqaenmtTQtRWS6+iIaRTeCKxRwNUGXog8YCQ9sXnIjO1ZNwEGmL2FNrAs6CIfTydWqTTCpuKQulzxXIACZ3iaOPKIHHNHDXMwWLVrEvB9/pKNF8UCmr3WZdXEqfq5hxXYE5IbELHl5EjgYWczi3gxKSuS/Kqgo7nLLO5aVhSsMES1T9q3fjzMrC6JRPB63bJPHgyMcwm3QSejdO9H/lkXMqcXNOg7wGhsRr5c1a6Cw0Md9D6wku/PPrFi+nMeefppFi77l83ffpciVQzwvX7ZDc+MMy81TOiFC0XRcjhjffTeL8vJy3n33fbp370k0GqJr1+4sWfITn33yIZddcYXZ/L59+3LHHXczbtxYYmmynfPnz2fhT4sp7NWTM888k8JCOc6FqGXY8PEsWLCA1q1b06VLF9I9HmoCAQKBAD5fFpMmvceN119MWkMDpAnIysJfCkXeakpLs+k9ZhQDtBhxnNQEHEybBlcVeFiwAIb5Z/O97wLOOw8IFBAinUxPhJqBo7nEE6Gs3E2+vhnCYcq8/cjSQcvJp6REJsKI6Q4orwSfj+zwZuJZvRjWt463Ps3gqvMMoOHLpNArgWtJpZN+vgrmbSnnwylTeOaZDzh30CDiefmceSZkRKv5alk2Y4dLMO3WQ+iedLJddeAKQlBjXTifcBgGFgBRHSc6cc1tUEokYHS5nPL+m1Gnaq/nBMMaaH32qsPpZBsyYMr1ragMEg9rYIAgBYYiuCEK7nDQNMU7PRpxTYJhp67j1AAdk6JjC3gjLucQlwtNT2zKTYBrPPsOl0uex7i4AvdqzkgnRJwE59yBBMXK2unUo6BJnWN0FZylJbjvHg8ogBiNGHOg0+SQx11uorqTaNCiwIhUD3G75D1w6GFTjcOJHGuqHX9k5VXfWdunNg9WypcpGWek/o6TSOBhcv913TR2aJoBUPUIMdyARW7Q2Kiqe6FpDhvoVX/VdwnKRsLwENMd3Hbb7bz55husWbOG8ePHsd8XZQb/M7//XyglJSXE43HefPNNCgoKKC4u5sorr6ShoYFnn30WgKamJk477TQ6d+7M4sWLqa2t5dJLL0UIwcsvv/y/Uq8/Uw5YfP9LS2NjI+vXr2ft2rVs3LgBTdNIT09n9+7drFixnJ9++okuXbpw0rBh5ObksLexkWXLl7NixQrOOGM0H3/8CW3/YPep6zpTpkxhyJAh5OXl8eqrr3DzzTfx9tvvcvHFF9NaNDVLWWt1Z5pWIEMySrnMTTOA2uYnS2SRWBCDQXlopteuJoBmRI37LIFsKZJXqGJ1Y5rZuHSdmEdSJlqySNjSllrd4BZtTeXiVLJWdVqmPeoYmTAgP8eigavrEqRrCZqIar8C5qack8Xk8dFHHzHxqqsYPHgwU7/4Aq/fT7W3SGbk0ixi8JYIa2Veqgs6TK7shkAmRVkGbcG/DgoLbUF+qj9Uvc20slb6QwscRMPjjsslLZFmQKLyUxrow8rZVkyTQEAm2giRTs3G5Zw0/lx27Qpw8snDefbZSfTo0d3e38QJBgKcPnYsS5YsoU2bNmzZtIlu3brZ0qc6tTg1gTrWrNlENLqbl156iXnzfiAtLY2MDDkGamtrTS3Qjh07ctxxgxl07EBmfTebTZtKePqpp2iIRPDvrKGmpp5OnXwcX3Qw2Yefy+GHt8bhlxQPXQd3UFpmK/xOmTjE44FAgGo9k2xXHZ/MzuCCIdVU6NLVv2yZNOT27SvvY1kgnXz/UujbV+qmBqXl1U0EFixgFqMYFfgQsrIoKxhBeTkMi86ipv8oM7shmkZFpVQxMRUF1FiLRTnljDPZsaOKefN+Y/36NIYNNjYiwdWyMmoQer2sK5drQmGhtOarYL3vS/MZMSQGpaXECoqa6dRagyDRtITOrZYi4YchH2fzTCiub5IutNXiG9PcOEs3UO0tMoMYgUSGQ4sCiho7KkjVOl8oyy9gD4hNGt9WYNaiHFiStdc6R1ozz4GdMqVKswA640tlRTdpO6otal41Mq5YM+WlCk5LLs0SsOiJOAhrgJvNkqxb+O26bqouJAcrmx4kEgHENQFZf+UNTE49baVcWSkiVuoIwOeff87555+L1+slaKhp7NcW37/9jfQUcSD/9HmiUTrcddf/SRufeeYZXn/9dcrKygD47rvvOP3009m+fTvZ2XLe+vTTT5kwYQI1NTX7XZ8fAL7/RWXt2rW8+eYbLFmymJKSEnRdJy0tjYMPlhnQgsEgHTt25NCePRk7dixnnXMu6enpNhmimTNncu6553DUUUfxySefsmLFCl544TlWrlyJw+HA4XDQqlUrQqGQed3evXsTjUYpLS0FYOLEG5j85qREtK31YU5ydyVTGKyTl3JhtjQxp+LsWqPIW/qNTTMnmTaRtHCZi6hRRwVOI7rTBGS2YDbsk7VadFSmsLqgvE6GJ4nHhmXhw0J5UGA8GjFRY50rW4JUC//0iWee4a/33cell07grTdep7TMRTgMA3zS7Vzn60XGmvnEBg8z+6eiUvKLzQQV4bBUSTDAvBXQ1pApubuGQoabhPvXtojqlohta4lGJUjzxiEQkJQXw31dE3CQ6QqZ+skm6FcAOGwEvRFi+cZy8lyC1t2O4NhjC+nY8SCqKrfQyefjnptvxpWRx++/1/HTwim0ad2a6TNn0srh4O9vv02/Y48lIyvX3FyocRgMYvan4s+uW/ULPy5ex65dO2nr0ul92GEMGjyWPXt+5/13JrNk2TIWLFhAWloaC3/8kWOOPdFGB3auXCot20aCguJiaczO9FraZaiRMHcu8TFj5T0uKSHet5+9/ww9ZKceYdFKSQnIy5N7lnxXNQA1WrYJaiv80l2uuL5mggHjORT79pHW2Ngsy2EcB/W7a7n40gnMnDmDb/7+d3oPOE8C5zxJr3GUlxHLyUfXYcECGDUkwuZKN72CKyAcZnp4GKP7V5vpqzdQRJGvRnp7wrK9NdF0UwlBPVfN1BbA3MCqPXBy8KTKqhfS3bKNxvNZXi6xd2kp9CpISGZ5vfJZtdGLLJssKz8YEgod5ryh6wkAbgGDkLSZtJRUmz9bOt+wPTuZOYCM5yjVnJS8eU/2nJjXwR7sq+wJ6S6Du4wlqJfmNIJU1AfrNawBybbsfcbEGHe5bZt0q2FAbXSsBg/FU1fTsspKqepouw/Jnj+LpVitKQW9elFRUUHtrl0IIfb/lMWPP/7nge9f//p/0sb77ruP2bNns9KIMXnggQf45ptvWLt2rXnM7t27ycjIYP78+QwdOvR/tT7/03KA6vBfUiZOvIL33nuXrl27cvppp3HttdfTu/cR9O17OB6PJxGIofh1hjUxEpXuRTVJnnHKycyZM59x486ke/duCCE4/vjjeeyxp3C2TiO+dy+79oR57rlnefjhx6kN+NkbbcTVxkkbV1tqa2u57robzAk6rrlti4IMbouhW1xtdUEHLpcTtxY3rQkKjMRwEg1bklUkWSrMYpk4HUiA5jBce9bUoG6iicUuBTc3EaCmovmdtmtoQMySFMPpAaJ64rhoFM3lhqgu24hcbTI8LmK6DIaSZh4NzaJi4XRpKVLbyi8dhuWbGTPA5cIzxAj6MYK6IuEQjz/xBLfecgvPPfssabW1LFvm4vKc7yGgExs+CsLAwIGmni7RKLleHaK6lHDT69jgz5AZ3eYugCFDEvxrXyaZ0QjgAo8HDXlf3eZCLIFFtsegTlgWt0RaXINyEdbB65XtMyTEMn1xiGqmVd5tuD81EvxFjxcWzlzIkNGjAcjJ6U5l5Tbe+us4vEc8y+23nsl5l19u3qq+ffvSvn17Ovk6c+lFFzLqjDNM17jTMqD8fnl8SJPKAR6PBO35hxxN36OOsm2IItE0urTP4pHHn0TXdXr1KuDEE07g+OOPBz1GxNBbdushagoGkWnhh/fta+GYR6MUl7rp45KZ1rKHDDFc2pKO4ijdDHl5RHQJ4oq8URashBFDNAYORFopXV4CupuQJ5t0TxwtCF99NY8nnrib38u2sE/X0TSNrl270r//0XTJ7MzOml0sW/Yzmzdv5uh+/Xj0iac45eSTTIDjIM6dd93F4sU/MX36DM448XjQIuTnuYjp+TjDIaYX5zPaF6IyIDWkX3rbzU3n1YDuocw3gNHTnofC0yUvZvFiioZkQThKcSn4/dmM7V+Bx5eesKDqunkvFOAxLXm6vB8+nwI8ms1i6PVCTHfjcWFu1NyVm8nL64WDOFlZDvP+5eRAeMsmftc0cjMygA7NwJOmISlBJBRQFLiTqcCd4MokXY9JAE4CiFmTY0CSioPLZQOUEdy41DPu8eAyx5ecB3UdNFcik6R1U6loDqpYeedWvVxJBLDPwU5NQ/M4ISqpJjHSzeBj5Rmz0gjU+dXYUCUZECdkGi1qHZobdFs8sNE/ct6NWdqgrmN6owzrsDQcRM3fymtZ2m2thzFHKtpck0gjEtnLvn37yMntznffzeb/L8VqlAJo06YNbdq0+bedf+vWrbz88ss899xz5md+v58uXbrYjuvYsSNOpxO/mmT3o3IA+P4HF8U5Ky8v57333uXGG2/jnttvYk/jPjIzM3G7DV4ZccDgrnoMLpwBTNzohMJuPB4D8Olw/HEDKC7ewIdvvcHgYcM45phjmllPH7r3Hlq1bWc5vyzJltyY7sBpmDWVBSVucNkA0HUytCi4jBnSAMgZ3jiRqNOQ9ckwpclMa6KVWoBl4tQlv8yhkipggOlAELfPB5qLZKuIFQhZ3WZxzYlTnc9itbFaqaV7Tkv0gwXgu1VAjhnJYaT0NKyLauHUNLnUOIwF0uS7RnXbIsnI0RQXQ14YKiud9CnwArBsxUoikQgTr7iCtMZG5hdncvmEOBtKRlBUEFNrAnGXGw9G0JdlVUrXY8TIoKjQ6PP+/eW9IpHRLN1jWOktgStxlH6mRnaWRiicTroKtFHBNi6XkcAjYcmI48AdkK5/U07KGCPhMGRgcDFxEtGdBMIZ5FLHZ998Q3p6Os8//yI//fQTRxwxgok3nUNaUxPnnF3BrtrdhAI1EIlwcI8eOGKSc0xBgbpd0hUczUAzcHl5OQxCqhEQVfQV2TWmxV9LBE6pjcl7b77Otm3buOzii81NlDtcJ0/q8ZDpSowbt6aDjimnRjhMn5wodfQi2xWBcj9hbwa67gAtkwyPzroSqXZQUAA1wWxG9K2BgE7Uk03YlU2GFqOXVkadni/rWbmO6689j/YdMrjz+utp3bEzYt9etpaXs2r1apYuld6ek04azgUX3MD3c/7OyJEjeO+9r5lwyWga9jayZdNGVq5aRZfMTJoMuTVVNA3weBg5Egjr5HvryL9IUmS+X5mJ3y/VNPJPP50aby8WL4axgwfLQLvCQgZ5Q5AXJuTJZcFcaX09oXeUdZUZ9CmI4EByadWNkhxgubkyvR4qStM4ToG5SNQpN87EKHVo7P51OZ07dyYSTSMajTLlo7dYtXotv/yyjL1796JpGkf27ct119/IpRdfSFpaWmKjbswZJndY03AQx+UyUji7QsS1dJOHLDfIiTnWCt41MDdwZhBXOITb8AIkAkzTTZCq+tpB3KbwAk6cmkrHbaEXqflPgU6XMjQkJUIwTi5pCDpoJOZilMauZj7XKjBVzeU2mUjjmoqzbc5XzS/X7DPZD06cFoArP0w8X04LjUTNn4rfjG4c75HH27R9lccsGKTRlUFJyTYqK0o4cehQ3n57cvMK7W/l38Tx7datm+3jBx98kIceeqjZ4Q899BAPP/zwH57yl19+oX///ub/1dXVjBw5knPOOYeJEyfajk1LS2v2eyFEys//X5cDVIf/ghIOh+nR42ACBofLWrZv20aGL9ecJE2xfWWJ0+3cMhvlICktpDXBjzWKVwmQq9KSi8xmeXXF7VQIlTLMKCY/zLiG+r86IAGBzQWpfoOdrmAtuo4p3WUVPG+WWIKElU5RGiwByc1UJ9R1re6+GNJilV6+johKO6w4fCqrkeHGUxq31j6ycdnCYQgEqPEV4fWCs2QdG7Q+5OQkXIhXTJzI7Dlz2Lp1O67NxVR4+7BsGYzPWQoDB0I0yoZyucgUFST4nDbtXgN4hqLS4pSxeDqxkaNNiS6weAuMzYGSYjMz01loLDadYMsq2MxCZeEAqjEGCYmubb+vZ+785az8eS6ffPEFt11/PU8+/yKBgDy1zyfVKjaEc/H5MFOcqiQT4bA0Pqqxr/C4Mkhb74117Fg9CzVBJ5keuRgr7PXC809x/wMPUFFeTpbKkqei8I12mvxDpS5geCLweBLXM3jR7kAFZXqulI0rLTUTTBAMEsvKtYMOS5ayOA5C/mouvOIKVqxcydKlv9Gza3pCASQgqRAmPSYQkJ6CPn0Yd9ZZfDNrFjnZ2WyvqkIIgdPppKmpCU3T2Lh+Pd0P7pF4ztSibNykdeXp9O4t24CmSZBbUAAlJVRn9SMYhCJXmRQnzslhBQNYswau8n0FQ4ZID0NOiM3+dHplhUwKRHIQk/XZtkpXmRQdXWf18uU88LdnmDVrBslLWvv27el35JEcN3gofXsdTEWggYXzZ/LtrFn06dOHYcNO49FHH8LpdNp4saZnzDpY1LOiJhX110Lf0nVMKpBNoi1Jw9wEw9gpWzbpx1R64VaKhkXKLZmCYPuNhV5gHZPN7q3xXOq6JXOalX9v/E1FhVD1Mc8bTQLKSbxl1XUpecHqGql0nw3+tSpOYs3XIEs8QlFRIX6/n/r6+v2b6nD//X+e6vDoo2zfvt3WxpYsvgEjAPePSl5enilbWl1dzdChQznmmGN4//33cTgS4/I/jepwAPj+l5SysjImTXqRV16xR1B++eU3nHHG6GZZx6ySPsoSoWaOmoB0I1q5V2oBsE44YFEoCGNPwYldNgfsgQ1qwrMmb7BxXa3AyVJSyfIkgxVrSbWAmguObsk4pazJBlcsosmIasXJNBekpIVYXSMUdigKIPneusSCoTKCBaWFU9MkeDZ1faOhlFxLwLRyEwhIgGpo7Wbq1fJzn4+Vq9cwaNBAHn/sMY4ZeCcn9E5YHeM4zGuZi7hBuqvwOxMZuLxe+T1SXznmybDxCFXgmxX0qs9N9QwLx88E/p4UC6Ol/6wbG1wuCcR9PkI4mTz5fT74YDK//baatLQ0evfuzflnn80dd99N67Q0E0goLV0FEhWodJTLgC+brmpJCdW+PjLIyWg3s2fDyJGJFdias9nCc7bx0YFAXZBDDunJmDFn8c4LzzfLWJbMPVfjx5RmiibqENMdpiRZhsfCk/ZXg99P42GH89qzT1NaVcXwE07gqEHj6NSpFUsXf8/rb77FzJkzaGpqYtpnn3H6WWeZdbRxVpUJMxgkpGUYhjSdt99+m/Ly3yns1ZOioiJ6FRbRulUaRb17U19fz6hTT+WB+++nsKh34hm18vIrK03FhIg3GzcRlq5xM2hgHN5+G/r2ZbU2gH5Z1Ynsisbmr7LSSLcdDEJJCQwebNY9FHaQrtcR82QkxpIxvurCTrzxAG9/+SWLFi2iZONG6urr+f3333G1acPwk0/hwgvOo7PPR6tWrcjJPYKC3PbyxOEwIU0GLC5fPIu33vuIL7/8lE6dOpGfn8/pp5zCA7feamYYVCXdleD1g30TbcW/qp424GnVl9aSYgCS0vyCBQhqdnmuZtrYSZtv65yo6pP8PjmtuC1oDDt/1+Q6p0gMYbW02uQorc839u+bya4ZHafmlVTXjuOwqc6YuupWoB+2z9/WRBi6Dkf0KaB061ZgPw9u+zcB3/+NNlZVVTF06FCOOuoopkyZQqtWrWzfq+C2yspKDjroIAA+++wzLr300gPBbQfK/26pqKjgogvPZ8nSpQC88OST3HLTTfJLZSYx0qFWB+Tkl+1LWDbUBKSArulOS05faQ1isFiIkydQ9d6qrGBNJavAlmkhsFxHSYqZUf+WWfyfCcJIBpE2/l2yVS/59xaLmuL8WtOFmhO/SqlppOZUE63x08RCUbKBeGGRvLa/2pQJCxlyZrYscko0P2oEBAXKqPPmm5bLYBAyAzLRgRCCPn374nQ6mTr1Z/IydUmlqFzHar0PWVmQHbRcW/WjUTHbfSditgWfz0yzFEe6eF0uuairID2b1Slpk6Nwlq1dSX1t9p/yPBiWq5qaGk48+WQ2b97MqFGnc/HFl3Pa0EG0a9eumf9UBQ/WBJ2mpde82ZaIf7Uh8XplMpGKsAR+5eUG9zZ5sxGNmoFMZGXZEqJYNzxvvP4q199wAy+//Dk3XHe22dZ/VFKNP1NTlhAVwXSi0SjxeC1lZRt49qlHWbR0Kd27H0xZWSmdOh1EusfJ79u2cXjv3lx2zjmcMu5Kigo6yXGlS75phrf5c2FVGmjRM6LFKS0r56OPPmTKlI8Ih8Ncf9VVHJSeziU33ECbNm2IRCIsW7GOo486jPZt28qNVFbM9FBgSNrhcpkBfASDRE4fj9tfxldr8hk7pA4WLGCRbywFBchUytEosZx8wJLwwbJLjnkycEZDfDt3LqPPPpujjjqGvgV5HHrkkWR26sSmLVuY/P77NDU1sWTJzxx8cE8zKQm6biY8UGMzEnXw44/fMeOrL3nj3XfNfsjLK6Bbdia98vK49/bbyc/LI6RlmPsHd7QusUEM1sl7782wZ4G0jquk94DdE2AUleAj7kmX51VJfnR7MB3YQWwyULYZHFIpVGDx/qkfWEoyZU1dJDkLn3nxZPUdS9tammNt8QxJ11F/kwNorRZ1ZZm38oUVJcIaWHfuuefz5ZefAvs58L3nnj8PfJ988t/exurqak488URyc3P58MMPbaA3y8gz3tTURN++fenSpQvPPPMMdXV1TJgwgTFjxhyQMztQ/vfK5s2bOfTQQ8z/hw4dyseTJnFQ165yQjYmUavbzbQCGjOZmTM9RcpK9d5idEhYTFOkx01lWTUtywbp1CZMb8xoVveg+bJkMbK6oFU7bJNxsuUiBWg2P6c5iLa6UpMVFyDJumm8rFxIazYnWya3aGJBNFUEwFyhaoJOaV3WddPqquvYLO3O8s1sppeirLJp0yaKigp5993PuezCM+WHfj+bo7kUFCCTZ2iamSxExccNGWKoZeg6+P3UePIVHdfWVnNxxB6Frqyb1rZaeYHWfk3lrjb70XBRQsJA/uWXU7j00ot59dlnue7GG83MWSoJik2OzbJA2qgxVmuQJdjHdB8bqg4h3U16sIIV/lx695bXLymRp+7nLTMHQjwv37ZwK7mo1q2aOP+CC5j2zXRuuukm+vQ+jDPPPJN27Ts0ex6aLfyGppvq62UL5vP0Cy+w7JdfCAaDNDY2moe2b9+ed99+m9FjxlP84xxe++IHAoE93H79OAYPG8au2lZy7CCtoclyeaq0tGFs5kq3fL9r1y6uvvY65s2bSygUYsiQITz++JNceeUVbNiwgfT27bn22msZNnQo0ZhO6507qG8/koMOyuHEnjvYEJSBmEV5EdlmXYfFi6kePJ5sVx2ryzPol1XN0vJsBuVVy/vizSXdv1kmwLDMLXv37mXHjh38/vvvXD5xIp07Z7FkyTKamtLk5lSXwXLbdjdy8smDaWgI8/PChWTlFtitpwYXW1lYFXiqXPUzD738Mp98/jlnn3UWrVo7WTB/Hr7MTBYtWoZbi7MvrQ3t0vYR0t22tMeUl8v51fDkWLveFogbDJoWTzVmU6UHTqZOpUo4Y7uvxthPTrudfE/V/+o31uPVkGmmWKHWDjAnOKuV13pOcx62UDXMBmHx2Fme4VQ0EGsdTeqdbn+WzTXE+nmSRXvluo0MGHAkzzzzHHfccdv+DXzvvJP0PxGEFmpspMPTT//b2/j+++9z2WWXpfzOCh8rKiq47rrrmiWw+HcG1v27ygHg+19SduzYwZgxo015kZtvuIGnn3vZJr1l1dF0RKVbu44MM1Wr6b6yzoJgc9MamYabLeSpXF9WC6hTi1Ptd5h8S+txygUmE0wk5ITqwk4zBayNZ6uubVkIVEm1mCeXP1rwY7pDLozGRJ8M4GxWWVdzfWICATPVsjlxKxe8laOp61I6zMIvNTM2lZdBOMw6+tDHJ8FABblmdjK1oNQFQ3Tq1JHJkz/k8ssvTliT586FvDzKtF7kh9dBTo7c/JRsIFZQRCAA2Vl2jeOIJp9rt25EBLtc5lix8SmNm5Bs+bUubFZXqOJz24p1Vbb8Xxd00KbNXs444wyWLVvKF19M5dRTT01InFn5kiRxxJUUW9TQHw6XQWUl8cEnyHtQXi4pHno2uVkG2CjdzFfFMhDr+ackfzzbVcei4gxOGJjkik6xCXQQZ8mSJRx/4onkdO3K9spKunbtysuTJjF6zFhapYmU1i6rF8Kpxfl923aKigopKCjg7DFj8Hbqgi8jnXbtM+hd1JMe3bvjqKuDaJQKLZ+sLIvmtdqJLlhAfMgwOQZcLpN+kGx1S9UWVVry2qi/E6+6mqlTvyQYDNK1a1cmTZrM8nnf8tqHU2ho2GNro8fjofCQQ9Bap3N8Zw/OPkP58ceV6Ht+o33Hjpw25ipOOeVCli2D/v2hj7eCai2XBQtgZPoM5tTUsGT1NmKN1ZT9XsHmzRvZvn27ef5ePXsyb+5csnNyzbEAsjsyXBGqgyGOGzQQX+fOzJ69lE5t9xEhkfDCBJLGJlxNVjHNze7de+nYUWqYb9q4lmOOPRafrzOhUD0et5u5838mP7+72f3KQZDts9C0NM18r+6BNaOhMh7Y6F0p7k+qYvM4WTZ51s1/S/Su5McwFd/W6nmzAWgLUE4eO2r8pKKzWZ+ZZm1pgXphbatKTWz1IFozKpoLjSXJj7repZdcxM/LlrH855/xZWbu38D3ttv+PPB9/vn9so37WzkAfP/LSjQa5Zlnnubhhx/i9ttuY2+0kdWrV+F0Osnq0oWj+h/NgAHHcPRhh6Kl+xITnQpgSGFdTU484QzXmckdoLnrSVlgTdBLwhoB9v9TpSJOvj4kLLfJ526JXqH+N39r+Sx5EjaBrMcCBvXUXGMVoKYCA5U1wrTOWhYiFfSlNhoh3U16OJHit1rPJNubEINXLtmY5sa54HvJdy3oR/qaRTI7QEkJDBxo9s13c35g1KiRrFixkqNbpcnOmDsXbrmF7+c6GDE4YqaCbdzbQNvGRtmWykoiOb1MY7pZV+rM1MRW6+3qNQ56907hjlRAOCnoxexXi3UYpJWnJuwm02coRWiJAEN1HxX4HXvWmaxZu5ad27cTijpNlk6frAS3EqQl/ZMZ6VzQWwJ8PB6eftHJnYOlUoNjzWqpi6vH4NNPqRl5CeEw5M94iepxN+Hzybo6S9bJNi1bBkOGEMkrkhxvq95sZaXcRFjG1egxY5k37wd2VFURCAS48eZbmDVrJoMGDeK22+7glFNOweO2K4mkiSai0Sh7GvbS0NDAV1O/4I6//IWZ773HKEOuLeLKwK2HqNPTJW88xxiPwToIh1lamUv//gbX1OB0W59hteH4I1f7P/N8iKZ9xPQ4zz/3DA8+9BBH9u3LM08/zeDBg9E0jdfecHDpxXvYsXM30WgbPPoOFhdXsmP7b2zcuJHaqip+XreO+lCEPhnp9Bk6lO1lZfywfDlDhozhw7efZfvOHhy76xter6rn04/fZMmyZcTjcbr6fByUnU1O9+4UFhXRs1chuTnZeDO6cvhh+bRRS5ex8VH8YTUx/LJ8OccOHcrjjzzCrXfcK++z2igZGzgznbor8ZwqdFpHBhneOK+/uY4lS56nU6cspk79O4P6H8XbH04jHblhVM+R8qKZ1mejXiYtyKD0qPEORmCgGoTGc2UDlxbPlpoj/miDYn08jUfSdo9tfNykIDjzOEsdms2VCmhqzVV1kseZukYyh/cfjsekgOvkOgMs/Hk59957N/7qatq1T6dLly643W40TUMIQTTaSGNjIwsWzOe8887n1Vdfo2PHDvslKDwAfP/vywHg+19YmpqauOeeu/nwww9IT0/nmGMGIoRg+/YKVq1axd69e2WK4mMGcvLwkyg89HByfF6OOOZY2rdpbZ5HTYrhMKTrdTauo9WSZ2YKSnLNWV1wgG3ihqRJOTlwwwI8rdH0yhr7R27bf7TIJ1smwAL+Xa6EwL2ymBnW8YgrA3dYBlqYdbcK1xuLXMwjA2MyNAn8pBxYgvrg1KUF0wrcrYBb8V6jUZnl6/vibEb0l5sNq4XmggsuYMOGYiZPXkttbRqjhhvBXloIyssJ5fVhzdyvuPKee9m8eRMDBhzD+PHjOe7YgeTmDSJbk4tuKCyvrWgnJr/PEoBTF5RcX0WzMPvR2ASp7FoqxbIaE8pKb7NEGff2k7feoKLuIA4++EjOPzfHDLwqLoYHHhjOvHnzKC+voHv9bu6c0oenx8hsZSHdTfotl8PgwbwUvpybTjdoCaWlPLLgBB4ovxzuvlvWp7gYolGeDl/HDTdg8pUzvTFee9vJuHGQWTyf1d5h9AvOh8JCHngjm4ceslvOaququP/JZ/j1118YOfJURo08hVAoxPARIzjuuONYtGgxIF1/s2fP5pFHHmLFihWAlPnRNI3WreWztXfv3mbKAx5Pe9b/uprc3NyEF0Gz03lMb0ELPMCW6CUtWRJbOmZ71S5eeP4pvps9m5KSElwuF7FYjLvuupsHH3yI1q1b268TDktlBo8MutwQyDTHSXk59NI3gM8nsxYGpTdj0o+beOSRm9m7N8TlgwZSGo8z58cfOfWkkzjznHM5vXs3uvbqBWBaua1gr1nklppQDG66ep4uueQyliz+kS3r1qEZAVBWFlW6RWvZVHJwxc0AX3Vqd7SOkJbB3XffxIIFc9mwcqXk07sSfFIrxSA5GDhVEolm2cgUBSIJRFppD+bYoDnn15zHVEmid6musm5g41jUSCy0A1tiCosmNy6XSZFrphxBc6vvP6RyJI1f63eq7aophkONXdUrGXLyyfTq2ZPjTxhKJBLG799JNBqlqUknDYHL5aJNmzZ0zOjEX++5m7RWHenWbT8Hvjfd9OeB70sv7Zdt3N/KAeD7/7Oi6zrFxcUsX76cd999m9LSUjOdY0FBAffeex/xeJzt2ysYe8bpFB5+FGCfiJpRJgzLiaI0WC0SpmXOEpxhtd6mcgM3c80mWQ7VOVoCudZ0tMnuPetx5qyKRcLHwv+08Z11O/cVv19aHo3Fy+hCSVUwAlxSWU1KS6FXnnHOQI0MXkHyfpXhR7lOTSmuygpiWbm2hT+mOzj55BNlNP+0WfgqSqnO6kd5OfQpqOGnX36hfudOzr/iCrON3XJy2F5ZCUDnzpmEw3uIRqOccMIJ3HDDTYwZfToOY2Ft00bQqmmf2fZQ1EkgIDOGQcKaa9INlNlLbWAsFIiI7iTyy0KqKytZWJdNls/PbytX8ujzz5t1O+qoo9kbClLp9zPouJHs2PE7a9euJDe3J9u+mMITcwdw7zV14PFw291OBg+WfTOooEZaOI2NhDNcJ++Ny8VmPZ+8PGnEHTzY2MBVbiCSV4R77nT5YTDI/PJ8hgW/oqL/WHJ1I0OZkp2Lhmhs057uuVnsrKlJ+UwNGjSIJT/91AywbC7ZwLJly4jFYuzTdamNK6BtWzft27ZBpz1ZnZy0czjodtjR5AYqMMnGxiaw2u8gO6vlYMyWLLr/LOC1PQ/IQJZhw4eza9cuTjvtdI47diDhhgZGnXoqhxx6mL0OVstfZYW0uK9ZY97/WEERzuLVbPb0o1dBXFrMKyupyBnEsmVwSp8S7rjiCr6vrCQrK5/Ro6/kr+cPZEM031TZKy+HPvpqYr37ARaJreT2G0k/AHMDWkMm1ZWr6T9gANdecw0v3nUXrTp0oE5Pt2Xqs4imEI1Crs8I9LRyUI1nevio04jHm5g2bb7psTDHHjHbpqUm6LRlJFTKI6YBIUnlwApyk++XjTKURPFqabNjfW/9awXf5v2zAFRbAKSFN6/QvdWz19I8bK1Dciph69hJriMYVC/jXsZxIJr2MW3aNLaWlbF4yc98991MDjvsMH78cSEd27S2BQi2RM0KhUL7f+a2667788D3tdf2yzbub+UA8D1Q2LRpEzU1Ndxzz138/PPPtu/uuutusrpkcuEFF9C5Y0dzUU65+CWBWGgeHZxq4U6Z7tOirKCOg6RAEcP1bL1OMsetJXccJHEa9RQRywZwUzQIK5D2+2UKVcJh4r5MWzCcld9spYiooA+zGBsGtfAqPdSYJwNnyTpCeX1Ij0oppMa9DWzfvp2OnQ6mVas2iMYdDDrxRCq2bycWi+F2u2nTpg2N0SjhhoZm96FXr178PGsWaZrGR99MZ3dgFx08Hhxt2vDFF1+weMkScnNzKSw8lGxfJ76aMYOcnB5cfM5ojh16DUcfnSU9t9WVXHnbbVRs34vH00jPgh50zchg2Olncewx/SRQ0ysgEGBdfT2Tv5rNd99NZashJ6RKK4eDgvx8Phw6lLIePXjhq4V06NCV7PjvfDBvHuPGXUFO+zgffvUVtTU1ssOt+lJer7Q00otnn5VY6Pln40yf4aCgQBp6hwyRChhLg0Xk5EBu+SJ5nuJi1o17hD4FcjOmAtry8uQ9qNYzyfbFJGLu2xc8Hia9/Cbvv/8Wv/32G0VFRbw8aRI5uXlomkZ2djatWrVqPq7/YHMWx9GMjwskNhDYLWDQ3FKXXP4Z8PtHIPiN11/l/gceoG3btiyYP58CZba1FBMMqeBAY3zanstolJqwzLg2bRqM7V8hn5PCIoqLoY+njPF35/Pii5C94BOz89dp/ejdO/FYL14MJ/g2JPpI14l5M82usqq+WAFwKKuXTMer68S9GbzxwnPceOedjBwxgq///necTicxzW1uMHXdoLQompEhmRWKOknXpaVX02DTprX069eXD195hYuvvdZugdWkxyPiyTT7KhmoWpUMgMTmSktwV638VNu9tSStUGPC6jFTdCvrNJpqPKrrpNLytVrwk8egqoM5jyXpvievB8nqIamMEC2NSV1PyJYJIRhx2mnMnTePDh06cOihRZx/3rlcddllpr5scuCxrS5G4GtdXYjOnfdzi+8B4Pt/Vg4A3wPFVvbs2cO+ffs4/vjBlJRsJD8/n7KyMg4tLKR4/UagBXcjdhCrFkglOZWsyGBzU1q4oc2sWpbvbZHHyZN6CnF4q+XEusBb6akmvUCd2Cg2rc1gjRmcps5ldemh65RVOsnJMSZsS9Ag2LPYpVo0zOsZltOIlm5jT/z949e5+957CQaDeL1errrySqZ/O4OdO6p54MEH8bRtS6iqij2am/YNu/Hl5pLV6xSO66lRHQjQpstB+Hw5Mguearjy4xr3as0vy5n0yitM/fprdF3n4nPPZc/evUyfMYM0YNbYsZz4xBO8NXsNV199Jicedxy7dmcRj6+npKSEjAwfH5x1Jnr//mzdtInpqytZtOhLvB06cP7RR3PiSSfRvU8ffC4XvsJC0jMycKxbx2bvAHrlGBbjykrK3YWceeaV/PbbewghOOGEUSz8+2TJXe7bVwb85YUIIbmVGeEK+d2YMabFeUVpBgMK6lhXmcHcuXBb7+8l4NU0GDiQkC+f0lJDucHr5fuVGfh8sktycgy+r99PZPAI3IEKcLmoqqlhxcaNXH3ddRzepw/zfvjBNu6sINW6mbIG3UCSxJu/Wmooq6BOSHga1HMQjTTzPtiewaTyR2C3JSAU0x0Eairp2q0bZ40Zw2uvv0lWpq/ZcTZgZLg5yqLZpqFVdXGmx+ByIyX5DCcDc+fCTRfVSWRr/P7pxYO4s3A6n0dHM26cNBj309YxvbwPo4eE5Emzsoh70k01lLjmtNGv1D2oCzpM6oEJRo2AtZkzv+e8885gwoQreP3113AQp6zcQU6OnT1iVWxRz7vBnuDrLz5j3Hnncf31N/Hg/ffSrr1M0erWYmYgrhnMqmTcwmGblJgtoC7pvlmD3gDbXGqdd9SGutm9STr+f1qSqUj/6DhVrJt961yvNgbm75LTzJNaNs3qWdy0aROFffowZconXHjO2c3WCutv1P+KWgYJ718wFN7/Ob5XX026s+V+/4fnicXo8Oab+2Ub97dyAPgeKLaSPKlNnTqV8ePHMe7ss3nv/Q+p3bWTmpoadu6qJT+/F4WFBebvoHnwRLI7y6oc0SztZrJV1zDJmAuHletoKakoENY6WY8xgYllkbABakPhQAGUar9DJjxIAoumBqYVwOq6mVnOBrotUkPKix2NygU11xuS7s+cXBzBOurIIBCQdAiiUcrrghx8cHcAXn7mGT566y0CsRiH9uzJQ48/Tv+sLMjKoqzSST5lsi4FBRCNUh10S6qEnshspOsyRi4vTwIHFUQVc6XTulUTffsNprFxNyXTp1Pt6cUnn+zmb490J7BnD6edcgq19fVUV+9i6dItdP3gSVYMv5cVK6p4/73RrFq92uzvjIwCTj31Ft4e0gaX282inAs4obAGAgFJNdBirCtx0qcgIsHNypVMd41ndN8KyMpidbGf+fN/YsLww4hn9yUQkAbYiy6Sh+cij1tX4qRP+XQWeUfj80GRt5o7X8zmoovgxRfh3bxH+DDvAS4pWEpd4SDJE9cjUFzMhyUDuGRcxEycgd9PvHefRDY1lV0wGuLQYwZRUrKeww47jM8//piiww9vNgZTLsQGiKqLumXwoMdjfyaSJNhSgVvlvrVmTWzJatuSlyNVSQCFCBMuvZivp03jt7VrKerdJ9EWw7xaF3WT4ZVBiZqWUP+oDsv1IByWw87hr2ZDMJsiXWYtjEbl5qSCXJYtk908zLOCeP8BOMJyA6Np0kI/oEBaV0tK5KPWi83UeHuRGZVUH2egmpAn23TRA6b+sUoapzRrVYIJNc+4wzW8/uGHXPeXv/DWU09x+R130ipNmO2rCMhnRalChHS3tBqrh1XT0KNR/vrII7z+1lukpaXx+uuTGTVqJN64bhLZVVIatXnVdWwZMFNJP1rpFNbj1H00LbTWAFvs1lRT5SPFWEw1NqzzV/L4MutpUVNIBVCtbq7k7Gpgb0OyYSNZoSdlwF40wrOvvcVf/nIr5WVldO/aNfFsJGVJTDaUJNPd/iMsvldc8eeB7zvv7Jdt3N/Kv7Y1PFD+64riqCYvlL179wbgy6lTad++HXn5+QwYOJAzzjiNww7rSatWabwz+U3zeKcWNz3SMZzS0qXrza2kmmZOtNZJ0QQCRhRS3CPT+4bD8jdq4ozjkPzhaNT4L26beNX11DfWhUDXMUG1+typyWvHPXIhprwcdF3KfmnpZlCHKqruNQEHMZzEdAeri52mMctsD4n2msFs0QhuImRlISfvnBzmzgW8XjK8cXrlxVhd7CSipbN3b4bxc42zzr+QJ9/YzK/ryrnkyh/ov2YNFBezuthJfl6cOm++rJjfT13UnegHpMvWocdwhusoLJRAg7ffRtchRDozZsCHU+ZSWbmZhx58EDwesv2rueOELSz9+msAZs6Zw2+/beKFFz7m44/TuLz0XlwuGDCgK0s//pjvv1/J9oULies6V1yxhSkfXovrggtg5EhO8KyW2ZdycgiHoazSSZ/gIigvZ7OeD4MHM7q/zO5FZSX9CrzcUdQRX00N11wjgfrlrk8oL5cAmPJyqKxkyhR4NzCaEwbG5H0tLmbIEPn1u2/EWDfmAc47D+jfn4xodeLmLVjAJXny+uTlSQtvQR8c0QjVeqZMUGCAqhDp7PRX0b9/f35bu5bCw48wx6wah6nc06vXOOyDxQicVMVc5DVn4hwpsgM6iJv6xalArxrjzc6b4rPkvwD3/fUevv/hB9575x16FfaxUt8lV12TQVzoOn4/puRgnZ4uk6R4QqZxO+bLpshXQ6ywD26XnAtiWVKKb/hwA2fm5Mj5xu8nHJYW05wcqENSCgbkVEtO8Jo1fPopUFkpj9c00qM1csyUOqgLSlCT7olTlBfBqcUJYVAHDMJ8RHdKkO5ycc2VVzLxkku46u67ueyyy9jTIMykPrneEE5/BeEwbCiX6it1erpMmqG5pYtf13n0iWfZtOl3jj32BC688Fxyc3MorQtKFYiwpEqpZ91BPJGZMRxC0yTAi0QTc5e6/4CpB+7U4tTX17Nx/W/Gs5+4HTGMeAMLoNQ0TABrHZfW9+qvlXYQ15xmHZpJDgJ4PLZxommJ89YFHcRdbnnuJMBtYajJMWGMbasXwwS9um62QR1rzssuF1OnfgbAuuJNRCIR/vrX+2jVKo0O3bqxefNmXn/1VbKzs+hy0EFcceU1iL17bTQLtd4oesx+XaxRl//q60D5p8oB4HugAAl98uRyyCGHUF3t54svpvLBBx+Zn5977nnm+xtvvhlITLDKzeTUIzaPntUKap0MbW5hw2oS92VCNGouJB4PkpOWZKFVk6+aMCEhl6YWH+t84NTicjL0eolrTkLhxCSJpklwGKyBvDwT0LqJQCBAICCvV+03FhJNZgzTNCkr1a8wQv/+9v6L47Bx0MxobJfLXBxiuoMRQ2LEdAehsDx3QQEsXLiFs88eSLt2Hr7++GPS0g5i2OAY6QumMz5vBfGJV8HIkfQrlG7yDOqo1nLB68XjgdwcyeNzEmNdZYaUk9N1nFpcppS94w7SS1cTDMLYIXW8+vJfqauro2HTJjPDH3l59KyqouTzz/nsySep2r6VcPgYbrgB3nhDJsTwesG5eTMnd2giZ9o09jW1YuBAYxF74w3Kghm8tbIfxcUSRC5YIIH3as8J8OmnFBRIwFRNNmXBDDZE8yXocLmo6z+CggJ4/31kamFgfN4KWbfSUu64w/jY7zeVBPr3h9EFG6CkhD6+ahMYVJPN++/D5lIHsVvuhMJCmdUuGoXCQjlWXS68Xoh7JQhLJ0SrVvsI1tezb98+0tLSbMAyie2TAKvhEP16JyxqGeEK0HU5jo3FPqYnQIMCFdZiBbUKCKSy5qljzfFmAT1/BIIBNpeW8eZbb3H3XXcxYcIEM0grpjvYXCpBmjMaMsFfQQHUhN3EXW4yotWmvFpRoXwOAgHA55MgNOwg1xcxwa7XC6OGx4hnZcv5xuUiKwteesNJti9GhhbCXbkZgkHqghIY9u4N1XmDyKxcbUZ81nh70UsrS9ACLORWxcUvK3ewrtiR2ORqGmlt2zJ58mQ+eO89PvroA16a9CRi3z4AOd68XnKzYhR5pTpFhitCHTJbm1OLm2OiQ4dOfPPNdJ5//k327NlDaWmF3LRq0gpeE3ab9VJyZ8pyaokRS8iqqfuix0xQ++Zbb9G7Tx/uuPMec36Ka84EYCUBNNX8ad55PdZsjFiPU3OgGlPJJXk8W8ecOo81K6DVm2Ybd8a11DEq0DmmJXjOVu9G2r4Gdu/cTkV1NYE6mcSljWEB/ezTjzioe3eeeupxQFpJjz3uOK676SZOOmk4F1xwIe++O5nPZ3/fTBHCQdxGITlQDpQDwPdA+YelS5cujB07lgsvvJBrrrkWgN9/LyMajSGamtjb0JCYHI1F3aHHEoEcxnbe6tq1ypqpY0ydX2NSjuA2aRFqknboMZx6xG4dxlCNUAuChVdmLvjGOSJRixU4GjHljBzhEDFdWm8rohJ0mxK1ui4XxehmHME6U7wgHLa42QxlAUc4ZNYr2b3n1OK2hALhsARhTj1Chd9psjvE7t0sWPA9557bn8bGfcyfv5zTdZ1srUa2beBA6N8/ESgXDlNR6aCOjER/REMmT7E64KQP66RVuaSESyY4eOttB4TDVGf1IzcgQYW/ppZWrTTunDSJu15+mY9/WE/cl8nnrkuo734Ow6+6mw47dtC/Pzz0kOzzgQOhV+ksyMnhkdkD4O67cT71CGOHh3jwQcGTjReg/fgOlZUxOld9y+cTx/PtKycw/qxWnDLCx/bBg/H7YfhwmV4ZJJjOcEWYzzD8ftnc886TX/Ra8znx/gOI5eQTGzKCTE9EujI9ufj9QN++ZHpj1GUVsY4+4PfL+7NyJdkrpzNxYiKrbswrg7Li3gzqwk4zaMsdrZP3LSyBTLCmkpycbqxdu5aYbnfbqrFqG8sY1juDx6rrEM/JBY9HjmfDc6FAgW0DSGpJPisAsYLYVPQG6zlTUTDU34U/LWHQoIF069aNm268EXTd9NY4tTi9PNWUl2PyqZ16BIceI9MTIRCAkEdmZasmGyorcegx6cXw+4njkFQBIL10NZFoYn5wBGooLYV1wVxKS+Gaa6DC74TSUj5Z2YtQThEuF1QPv0TJToOu831xNpSW4nLBunA+0Simbq/1uY5GpeKHzyc3LgrcxXCyrsTJJWPH8tc77+S+++9nxPnnsyEqAWlZID0RvOvLlJZub1xamY1pwEEctxajTcNunE6JrDLdDlNLWdMg0xUy77PaSFj7PtNneMWUXGI4hLL2q7nryokTAXjuuaep2rFT3lNjXkm22seR8xbhsG2jrb5XgFSN0WSrcPJYS+W9SP7fvJ+Welk9XdYP1DhPYoXJ80Ri3H77bXgzMnB6PGTl5tL94IPp3LkTLrebhYsWAfDT4sWcddZYOnXqRIcOHRg79mwmTLiMDz+cwkMPPUyPHj1IS0vjo48+NI0q1s3kf4Qx9IDF9/+sHOD4Hij/43L11VfxyScfU1FRSceOHZst2Oo9YJMiSw6aSOayWYspg6aoEQYpzAqwreY2BZqtk2uzoDXjC+tkaOpUWvi+qk7hMKRrUnM3GJQqDhHcuIPVxHzZJq8uFHYk0jiTsDak4qyZbTDkkZTWZyAggd/fvv2Fd999gs2bN3PcccczZcq35GW2tnHpli2TYNChx6jwO8mNbgavl6WlmRQWGokoNE1ylcMy6r6yEnJdNWwOZhIMSrCxeppM1zugoA5mz2ZyQ5y1a3/htzWr2FT6Ozt3VnPvvU/w0EN30vrnJTyzfDevPHc1vQ45hKOOncUFF7Sjj7ZBJtcoLaWxe08mTJjE6tXvsWNHBXv3NqDr+2z31eFw0K9rV1YaWbgWLQqxe3d7Bg82dI81TWq+eb2SjFxZKc9fWMj0xRmUl8NN1xhZ1koXEep7AnPnwlj/a8QmXic5mm88AXfcwfcLnIwIfwWnn05NMKFJHQ4jucVg3oOasNu8hyrQrDIQ4NrrrmPGzJkAnDpiBLO++84mLWUduyqoxtzgWaPdy8uJ5+UnksEklVTW3lQlFfi1Atx/ZOm11nfkqaeyecsWVixbRoYv0wwoAiAaZUVJOgP6S1C/cqUUuABZ/7JyB/meGlSu61DUSXGxVGPz+0nIlwWD0rJuPPeKTp0elEGDGwLyun0qZ8kHcsgQeT/IlAlLoitA01ih92NAYYiv5qYzdmA1ZdFsgkHo1zeeAJAWDexAQGo1VwecZHskl9jk7FZWgsvFp/N/4d57b2Tnzp0sXfoLR3TLSohOa1qijQbPN+LKsGWurN/TQLduXTnllJG8/9abpLXpaE9+kyLw0ZY62eIBU+PCen9uv+MOnn/hBU4ePpzv58xpcZwk3/PksQJSa13Vu6UxkgrwJo8tR1AGFCZ7OpqNL92u525eT9eJ6jorV64kEAjwt2eeY9WqX7jtttvp2bMXnTp1wul00tDQQENDA9FolP79+3PkkUeSlpYGSK3sqqoqvv32Wz7++CN+/vlnWrduTY8ePXjy8ccZM2YMZocb/R8Khfb/4LZzz/3zHN/PPtsv27i/lQPA90D5HxevN50rLr+cF55/3japWVMVW5UMFEa1goKUmdlortBgTeygFCKsnDJrSTVxm+e2TIIp/8e+UFhTFysrkpnulJg0GWZlNQPgSgBfgdTkeplWcUMGybZQEqdDxwwOLzqUeydOZPjFl+LUjPYol6imURd2Ul4O/XISyTRUlrjX3nBwnfcTOO88YrqDu++G++6Dp56CCROgaPFb9HnlKta9vYKavAFkfvkaDBxImbefXOQDAeKFRaRt2cRF997LJ199RVZWFj27duWnVasYeMwxFK/fyCGZPoqys8k8ZhxXXHEDh+5bz4Pvv88jL7zA+WedxZFHHonmySC/fRtmrsjh2IwFtO8/gNzcIZSWZrBq1eM8//x93HLLI9x///1kBDbzfXkvRgyJMX+xk2FD4jz9rIPhw6UF+IEJFXy4IJdLRtbw/ZpMRgyPs2Klg759ZdeUlko1AHw+8Hj4fHY64/tuBpeLdcFcsrIgU6ujIpxBrqsmIZKsbqpyl/v9ROvrefjDv/Paa5NojEYZMngwt975VwYNOoZ27dqZAZCalsjQVROQ98nnk/e4rNxBflbEBFHm/W9B0D+Vhdf6XFjHe0uftUSDsBZ1zOR33uOqqyby0qRJ3HjDDaDr1ASdynApAwhdCWm3urCTDF2ONzM5C5iqC2iamdCBaJTNgQyZ0MJ4cGIFRTgDCRULvx/yvTL5ia7LBBEb/BkUhQ0ai6axzp9Jn5w6qqMZVFbCANc6U8aOcJgy34BERjvlZVHPXFAGEiYHQ1X75XyUmyPnq5i/gkMGDmTUaafz5ptv4QjLbHkZ3ripuRsISKUKZTmuqHSQ6w0R96Tz5JNP8OCDD9C+fXvGjR3LzddcQ+8jjrBf14gPSJYqc5AA7alKfX09GRleAJqaEsv0H81zf7SBsgUetzBeWvpM/aalTV+q45PrsXL1Gp544nFmzpxBLCbvV05ODp999gUDBw5M2QfmOeNxvvrqK6ZN+5p58+ZSU1NDq1atGHnKKVxw4cWMGX06LrfHNrdb63MA+B4o1nIA+B4o/+MyYsTJrFu3lu9mzuSoo2SCi1RAz6bCkDQZWVOqppK5gdQuX+vnZrFYF1Qxs5FpdhCqrFpWEJ1sRVbWo1DUacuwpOsS72ZnycxOLpchAh+NmtHpzRYFa7sNcJHps7Qpmsj8VLxyPseddBITJ37Jm2+ebUv3aUokASqNXZ2ebmbM+2qag7EjIxJ8LPiK+JixOGbPAq+XFdogBhS/CwMHsigg3ciLF0sFsPwsqWpQ4SkiEJCY4oS8CrPOKz77jK/XrOHXnQHOHnwsR/h8HHPttRzdvz+thWDZr7/i83jIdLsp9vt5+OyzCWR/yeDBMF77ShJuXS4+X5DJ+OESjLBsGavaHc8NNzzOsmX388qoUVz/7beybbNnU1Y4inz/Uhbpg+jdOyErmhGtliCrtFQ2ICtLWhPz8qXma6G0aCvZ12nTDAqFV4KWWbMdZGVBv+B8Qv2Hka5LIOzxgMMRourXVbTr2pUPPvyQhx5/nNOGDyccDrNw2TK+mzmTkcOHE9dkIo9MEqoBysqowNa6EidGTGhKZZOU9ISWLGSkBrf/zLPREohZungRx594ItdcfTWvvfoqIq2VTXlE8XPTPXGYPRuyslga7cfcufDAxGo2h7Px+Qzwa7Qfr9eWejqOQ+pSK2kDjyeRVTAaNYPPzPoH5SZTpcdWxRkNgd/P52t6Mb5/memdmV+ez7C+xkYmJ6kPLRnYCASo1qX2b16eHQArDP3mi/fy5IsvsnHjJg46qJtsg7+aaiQXWWVhM10C0Sgh3a0YUJSXlzN58ltMmfIRe/fupXTzZrxG0IRtc2NQk1QGN9NIYMxDDXsbGT9+PF2zMnlj8jvEohHatmsHSOD7R5slVZKmm2bjqSXr7v/Ea5D8mbU4iNPU1MS3337LrNlz2Lq1lDZtXPTp04fnn3+O/Px8rrzyKoYMGUpOTg4dOnTA+QdgLxaL0djYyIoVKxgxYjgA99xzL0cfPYBBgwbRsWPn5mA+hTLKf4Sc2bhxpLdu/Y9/0NJ59u2jw5df7pdt3N/KAeB7oPyPS21tLWeccRrr16/np4UL6dO3X8oJ01RxSErHqazDzVJnJp0jEnXYLMXJ7sCWFnlFPUg1uZsLehJQV+ewLhzJlrVwOJFqNByWmqIR3anW9T8sJi0huI547z6A1Czt2xc2bNjJ80//hfc++ogjioqYu/BnfOkuaoJOpbJFtleCWo8HpkyRv9N1aRzL9sX4aobM/nb5mLrEijplCh96b+KiiyRgDwSgKC8CCxbwUukoLrpIWolN/Sifj7JKqUd6xx3yVRRega7rnPd8a56+txVffP01dz/2GI3bt+OMxXhxei2//votlZW7GTy4kAkTrmHXrlYMyKuBBQugd2/m+4sYVvIajwSuM7PTXed/gA3nPcJTT93KRx+9iMdTyGn9MmmV05du3Yo4vX2Ale2upGPHzjQ0pHHd4HUybfHpi1Diq/HCIkpLZd9nly+FwkLKghnk5SVyXaQvmA6nn04oHGPNmnVs2lTCzp0BmvQQ7TWN2r0ZVGxdxKdTp6JbOHJHHnkkK1euJh6Pc/DBB9O6dSu2btnC3sZW5vhwRkMJYGeh4Zhj0UKhCYcxxx2Q2HAFJBUF7O5u65hNRW9INT7/EeB16DG2bNvOiBHDKS8vZ9euWnwZ3mbPrXWDRjQq6T2BCimR5+ll8ljx+2HNGkIjxxMMSitqtd9hyoIZp5JjzO+XMmeuMjnWlKybwX1QVtZQ2NEsoxgrVybGdF6eaUVWD1AkrwiQANXqcVGbWF2Xwae4XISQ61c6Bv3BE2fL1hAnnljE8ccdx3sffKESrCUCuIygOrxeuWE3VC3MHZkxIDZt2kRhURHTp8/gtNNOS9w7fzXxrGybISASddC4t5bVq1cT0+Oke9w889zzfPPNNAAef+wx6nYHee65ZwF4+eVXuPrqa2jdKk3OhZEw27ZXccghh5ib53+FupA8lv7Ikpz8VwjBgvlzWbBwIatXr8bj8eDrnMn8+fMoKSmhqKiIww7rzc6dfhYtWsS1117H88+/0CLQ3bdvHx9//DGNjY20b9+er76ayowZ37Jv3z66du1KVVUV1113Pa++/FKzsf2P2vYfkbltzJg/D3ynTdsv27i/lQPA90D5l0pDQwMnnng8u3cHWb58BZk+GViVnKEnmesKCfqCzephTXVs6FmmAqTJ50sGsiaotlAilMvSDAYzkKqyOtcEHNJFnWIBUVZbBXDVtcwMRsE6cLmoDrql9JnFkg1217Y6J5g0QzrUbqT3GWdQt3s3j95+OxPvuBOn5rAdl5sVM+XXNvgzKNLXUZPVh8zZH0oEXFgoRWvPO4+IL5fhw2HpU4vY4DuB0lIYvfIBGR2WJTmMH37p5hL/03LRHjfOBATpwQoAPlmcS9++UOSRSgTn3HYbX37zDa1btyYrK4vt27dz2WXf8+64fRIhjBsHfj+rA7n0y6lhRXkmA3xlMHcuGwZfhcsl6Qo3Dd8g70lBAbzxBnXnXUfHdo2MHvc9XbOms6m4GH9tLVu2bqUpLvsrvV07sroeQo/sdDyds2nXVqN7bi5l2w7n5jPS8Pbrj8uVQ9e2e9gcyDCVHRzETV7j2mVLGXX22fj9fgA87drhaduW3XuixGIN5OcXcfWl53LsIYewp1071v/yC8NHj6Zv375EIhEefPgRnn32GS699AreeWcyDQ1pEtB5EsGVVo+D2qSZurtJ47kmIDdmVqBm3Qj+kWU4FVixjdUU/6vfrFuzmmOOPZYOHTow6YUXOPf8C23HGI4EwmF5W/Pz5HdLlzkYFJwFQ4ZQHXSzeLEccn08ZcTz8ikvl79TVvBQWLY/U5O61F6vfLZUqlulGLKu2EGf3ong0nXl6RQWyg3FipJ0ysth/JhEQoh15en00VcTKuhnZl3L9sXYUOqUG7rKSsjLSzxvitCtadSQSaYrREUwHZ9PntJMBR2o4e6//Y0PP/6Y6s2bibnSJdXDI3WF05HawLt372bZsp85/ogiMnJzTTpUxJWBywXFxcUcccThzJ+/gKEnHp8SRNZt+507Hn6En5cuYfOWLbbvnE4nmqYRiSSyOzocDnr37s26desAOOyw3lRXV7F7924AqrZvJys75w+tudaxkmqcWI/5o3NYy+rVq7n99ltZtGgRmZmZ9Ot3FI2NUXbt2kVR0WHccsutHHPMMebxkUgEtzs1pUOV7du3k5eXa/5/xBFHcNFFF+PzdWbDhvXsqK7igvPP55RTT2u2sbO2J1Xd/yOoDqef/ueB74wZ+2Ub97fS3L98oBwo/0Rp164dX375FQMG9Kdnzx5MuPRSLrv8eoqKDrFNsgp7WtNxKtALKjI+YR2O45D6kdEEPxISlAWnCmYzAkTSXTFCYSfpHs1cXGU0ryXRhddrZHKSaUg1DaJBaXiK4yDTGwM0cLkMYJ0A2tLqpON2JXiaVpd0zCMljrK9EdA13NEwcVdGYvI1JNLqwk6TlkAgQFZWJs5wHX+dMpPSrVsp/vVXcg4+hLnTp+EPBkkTgk5d8hl8WB5EO5sK/UV5ESL0IbN0nbSWDR9OKOokOuFOMh+7Cfctt7D0WT8UFJIRr2HTsheZc+IptA0UccKnDxC77xFOPx02+O+ksBD2TnqB455/nrL6EMf2Pozr7lrCBX03QHExX2njOfaYKr785huuuuoWOjfsYtbSpWT27k1OzqHgKSM0eBTFK2FQYA2vTMvl3YeiDOgfh5UB3uIqrvLPh2CQwYPHQnExoZHjcengHDiQ8nLQCtrQs+cZPD+mg7TmzZ3LxmMvIL5rBcu21DJz5mYqK8to5amhpvhXokLw9bRpNEajfPSRBJ6tW7ema9c+nHTSUeR3y6ZjZjd6VpXxe/ehvPnmZxQXf0SvXkU89tjXXDCkMxvre9DPtYHvK4s4udU80tq2xdShi0Y59dRTqfY7iOkwctQofvrpJwC++WYqK1cs5coLLuCS8eOpo5fktLpciYlU10FL8DlrAg4yfXZ3QKZXJT5RgXQuG+hV5R+5n5MX91T/O4wjAZ546m9kZmZSXLyBDu3bgeX8DuJkaGGIAqSTH15HRWUfcnPiDBwIhAezodxtGlx79wbCPhzEyfcEqCFTWmALCkjPy8PjcUBYI8OQF0MzLK/RMHWeXKJ+I9t4OCxrHY3i9crFujosg+p03SFBbY4LPB76eMogpzfpWpx0l9yMLlrmlPULBKnz9YKwxVJryKRUu/IJhyHTEyYrS2aAy/aEIAwOXadOy2RXMIrLLVG/U9fxeDKIezPwIDcqt113MZ9//hn7DPmz6yZOpFVbD6efPpqOjiZ+XL2OE088HpfLxfnnn8ujDz7IxKuuYl9TK9tGfdI77/Dll18wYcJl3PvX+zn66KNxu92EQiG6d+/ON998w6WXXpy4h/G4CXoB1q8vNt8/8vDDZGdnE4dm4yN5/CR/Zv2/pbGjvm9qauLLr6Zx6qmn0rCnnvvuv5/33n+fQw89lFmzZjNixAgz8Kyl8o9AL0C3bt0YMmQIW7ZsYebM7zj88MNTtiFu/rVv7pID7lriMR8oBwrinyj19fUCELt314umJnHgdeBlvrZt2y7uuede0blzZwGIk04aLt59932xYP58sWPHTiGamkRTk0j8bWw03zc1yX+T/29sFKKhwf65+p36TP1ONDbK942N8jfqOHUS431TkxCioSFxLvU7S/2s11X1UB+a11Ov+noh6utFfb38d/16IT8zrql+a9a1qkpUVQkhdso+qaoSYuFCIY499jQBiJcmTRJer1cAttdhhx0mmpqEuPVWeXqxfr2YN08IsWqVEH/5izznN9+IVauE6NZNCDFzpjj/fCEWvPOOaNfOJwDRoUM3IerrxdatQog335QXbmwU114rxNY1awQgunTJEoCY+fbb4i9/CYrJkz8U5557mRg/bJho5XCIE04YKh5/XAjx2WdC/OUvQkydKsSrr4pt22SdrPdv27ZEN4klS8TOnUb/vPOOqK0V8oDly4VobBSvvmqcc/16IbZuFatWCSHmzBGioUEsWSLkcUuWCLFtm1iypEQcfPAQAYiOHQvFV1deKeZMmiRevuwyccopF4nDDusnMtq1s/Wfz5ctLrzwIbHnxx+FmDNH1NfLWyCamoRoaBDbtglRW2upr/HmmWeeFYf37i0AceGFF4nqar+YOvUrcfbYsaJ169aiU6dO4uO33242vpPfqz6xfrdtm+yDnTtFYowmPyeWv9ZXS9dKvqb1JZqaxLffzhSAGD785BbPZV6voUGOq/XrRX29HGoNDfL/2lr517glYs4cIT7+WI7HpibZl2aHGs+IGvOioUGI2lpRVWWcb+dOUV8vxMyZQlRVGfdl587Es1lba3ucxc6dYupUIbZulZdobDSeucZGIerrRUODHCrqek1N8r06h9i2zTxW7NwpxKZN8plobBTnn3+ByMs7WJ7TmCfUM/zOCy8IQDz11PPi5JNHmGMrPT3dNtaysrJE//79zf+3bv3dNg/U1ARF586dxdVXX5PyPu3b1yQuuuhi8eqrr4ubbrrZdu4JEy4Tn332hXjs0UfFIw8/LOrr99jun9lGy71NHj/Jn/2jcaPqdNmECQIQbdu2FR6PR3Tq1Em88sqrorFx3x/+9l95lZdXiC5dugi32y06duwobr3lFhEKhZvN+6l+a87ZSc9OU5MQ9bt3C0DU19f/M5Dn/7QofFU/cqQQZ5zxL7/qR47cb9u4v5UDwPfA69/yikSi4oMPPhKDBg0yJ+s2bdqImpqA7cCmJiHfq5naAJXqENHUZAO11s+T/6pjGhrkQmoCVeO8or7eXMisdTAXTUudzN8n1dW6oKi/DQ3CXGhFfeKZSAbntg5au1Y0NEiQ0NgohFiyRIS3bBFXXXWtBaT5xPr1G0UspovoTz+J00+/STgcDvH71q1CPPywmDNHCHHZZWa7qqpk22bOlGBAfPCBiJWUiDNHjxaAOO6YY8QN118vvB06iNtui4lJkyTunTRJiHnz5G9uuGG+AMRdd60UJx55pABEWlqaAETfvDzRrl0Hs35Vt9wixHPPyUasWiWmThVCvPqq/GzbNrP/tm6V59+0SZigvL5eSBDb1CTEc8+J2lqJncWmTUJ8802iv/72N9HUZBz/zTeivl7ilX1r14oOHTIFIL5+6SURCMSF+Phj8cEHxnmqqkRDg8QzsWBQlNx4o3jiiZkivHGj+OADA2hZAI0Cn1OnymvV1u4TqxYvFnfffb842uiHs84aLyZecYVY9csvtjFQVbVDnDt+vADEJ2+9ZVtsreOltlYIsXOnvJbaFBmgTr1qa0ViY9b0x8D2j56J5HG7YP58ccvNN4u//OVO8egjj4isrCxx1FFHicrK6mZj1DyfAqyWyjU1yb5S/STmzZNjbe1aIWprE0B36lQJOo2Ha/16YX/2tm2T1zD+X79eyM1Oba25KTP2QrbNo4FPhdi6VV5/yRKJxJuaxNq1su8USK+tTdznbduM82zdavb91q1GO9Vu1Zh7qquDwuVyiUceeTwxd1jmii/feUcAYuPGcrFswQJx7733iz319SIejYrFixaJadOmi19+WSUGDx4sRpx8srj44kvExx//3XZbRFOTuPiii0SHDh1EWVl5yjk0FtPNZy0vL88GfG+88SYRrKuz3bs/eiUfs+3330VZWbmIRaMt3n/bXLdvn/j225lizJln2upx6qmjRCBQ9w+v/2deW7f+Lh599DFx++13iLZt24q8vDzxww/z/vD5SAb+ycfs3l2/34JCE/gOHy7Eqaf+y6/64cP32zbub+UAx/dA+bcV5VKq3V3PjBkzmDDhElb98gv9+vUDLO6zJEknq7ZpS9y0SFQGCKlAelP/1xI1Xxd0SN6loa2rMshZg43iLrfJ5VWi/Ob7JAk2lVhJcTGVK03TJA+xTpfPgssF7nANeL2Eok5THUvV0e+XGr2hnCIphu9yEdHSufqK85ny6admW6+96CJe+eAjHH6ZOWrUhNl8992llHzyCZvanc/ouTcRe/YlWc9gkOmLMxg4UPIVp0yBRwLXMWXQU1xyiZf8/Hw2L17Mkt9+Y9ipp1J46PHMuvQ0us2fDzfcQGTIKMq+msKpN96IN6cbI0as4tF76vnqxRfZ2/1g1q49hdtuy8G/5iuOO/tsHA43ixf/yt69vSgpkZnXfD54RL8XbrkFfD6WLpOcWk2DXn4ZhHbnG/k8/ViMex9y8sR566j29SH7jQdg8GBiQ0bgnPEV871j8Xqh34xHYPBgKCwk4s3GvXIRDB5MJOqgTdpeunTLp7bWT9u2bq45/zyenfwOU6bAJfq7zM+7nGGVH0ryaf/+5tgIRZ1mIJPfLwUhFP92VF/ZzxsCdZxwwvHU1gbo0KEDJ588gvPPv5ixI0+Snev1EtLdtoBJIQSXXHIxn3zyMWPPOos7br+dI448zq7FGggQ82YSCMi+ikYhPVxNjZYtNWrzQua9j3vSTZ3n5FJZ7ef555+jpmYX+fkH07ZtW6qqqvB2SKdLly7k5+dTvWMnpVs2sTtYzyGHHMI999xNx44d8Xg8BAIBTjzhBF6c9DL5ebm2ZywaBXfpOiIFfcygLUkvCLG0WKYkzvfUyAHt88nntngduFysCPaishLGDq4xUrZhJp9wBuXzEMOJM2jIokXLJBlYaeW6XKa8mNcrqb/hsKRAmBq85UuJ9B1Eebm8taa0WDBIxJtNOCxPlx6VdYxnZcs2BaUCSCjsoLISigpiCVUJxe+PSk3al156k9tvv45ff91OH49Ub4h5M3Ei56n6+no6d+7EFVdM5OWX35Dya67m9BNrbIFVXcBBnL898wJ3330Hb731NldccUWLc+i7777LlVem/r5NmzZcffU1XH31NRQV9kKPQ1VVFWWlm405MsaaX1exdu1aTjzxRK66+lpatWpFRXkZB/foAUBmZiY3XX891153Hd4MX0peuBCCE4YMYfHixc3q8H+NAbZu3crVV1/JwoULeemll7n+2msSsSB/wGUGOxXiP0LVYfjwP8/xnTt3v2zjflf+GXR8wOJ74PU/ef3883KxZctWAYjZs78Xoin1Dt36o6YmIURjo7TqGJa55N9Yz6MoCeo3jY3CdFta3dnKuGN1OZr/NzQkLJWG5bipSQjrj+rrhTzZ2rWmJUzVRdTWSte8Yf2ytsNa/507hTSbGXQHZVC7666HBCB69uwlnnvueRGJ6EI0NYnzzxdCvPmmmPHmmwIQo0aNFcEtW4RoahJLlkimgmhqkpbXqVPFww8LIQ4/XFx7rRCvP/usAMQTxxwjj9m0SbzwwkLRoUO2AEROTo4YPXqS+PW990QHl0vk5vYRt99eKcQ77ySoIK++KhYuNPpz+XKxZUtYRDZtEuLii033t6ivF+KDD4RYv140Ngpx//3CdG0rS+bOnZKiIRobpT97zhzRs6cQ8JuN8mJa4jZtavGei6Ym4a+uFpeMGSNd9n36SDNkk7QeLlkihNi6VVoB1f2orZWWP8O9XlsrXfMffGBcY84c0dQkxHNGn73w/PMiWlcnRG2ttDIabdm5U0jzuhp4hrld1+PincmTRVFRkUhLSxMPP/yI/UGwjhV1ImWWND5T49g6TiPhsNBjMRGNRMTHH/9ddO/eXfh8PjFw4ECRnZ0tvF6vOPTQQ0W3bt2E0+kUOTndTCthYWGhtMyNHCmCdXXmOc16WPrT6CLT6mpaoLdtk31YXy8Hm/FdY6Px3bZtQuzcaXpaxPLlwhzYxgU3bRLmvTGpQsZvFy6Ub7duFQnagTqZNL/LzwzaQ1WV0f/qWa2qkmbg5cvFpk3Su1BfL0wLtZWCpPpW1Nebc4KiWqjvzzj9dHHSSScl7q1RX3VvduyoFWlpaeKuu+5O3FOLdyeVV0i91/W4ePLJpwQg7r77nn9q/oxGY+LHHxeKV155VZx22ummtbVfv34iIyNDAKJbt27C7XY3o0Z16NBBDBgwQACie/fu4ozTTxdZWZLG9M7kyeKaq68Wbdq0EQ6HQ3Tp0kV06tRJnHvueaK0tMysQEPDXgGISy651DxvZmamKC+v+D9bQ376aYmYPft7ccIJJ9goYJMnv9NsHFv73PqddS75j7D4Dh0qxMkn/8uv+qFD99s27m/lAPA98Pq3vgYOHCgAMXLkqSItLU1MnvyOaGoStoNs/6fg29qoC8YxTU0isTBu2pRAj00GZ7KpKUFtUFwG4/+mJmHjFe7cadAEGhvFZ58lQHFtrTyPeV0DkdXXC/uCV18vT6A4qUlUCvXW2lYFMBQPubFRCLFpk/y8qkq+6uvFWWdJypZYvlzU1wvxzWmniXZOp8jPP0y89VZQLF8uxNKle8WPzz0nbrj0UjHutNPEc88+K2Z98okoKrpIAOK6iRNFfM0a0dQkxFlnCSHWrxfBmTPFZZe9Zy4gI4cNE4U9eoiZM4Oyju+8I8Tf/ibEPfeYFAUTuM6ZI+v3zjuy7ZMmyf57+OEEGHn4Yck9bmoSmzZZXNRVVZIT/PHHQjz8cOI+KuSzcKEQM2emBA/J/RiNxoTD4RCA+Oijz4U4/3zzmjt3SgAk3nwzQTJuaBBi/XpJEWlsNF3kH38scd3OnUKI+npR5/eLnJwe4uyxY00Ap+61ok+Y/HGD2iJ27jTBVNO+feKhBx8UgLj44kvE669PFqt++UXEdT3luDfHvzp5U5PQ9bjYsmmTePPNyaJDhw4iOztbdOrUyeDNnyS2/f5782enqUk0Nu4T995zjwDEgw88IGp37RJ7LRvH5H60PU/GM6Peq2GsHh/FQW5qEgnAbmwWamuFEAsX/n/sfXlYVdX3/svlioiIiIioOGbmHGqamWZqqVlOlZU2l0NWNtlcVlaWVmaW80crKzRKS00sTExMVFRUVFQMFBAUEIiLXLgX7rnv74999j7nApqlpv2+nOfZD5cz7nmvvda73iWuJSeLMWL6lhxLsiny8wWywYyv1iG/ahqQ41MOWAkRpt2uZGHzWExKMqpQzgFynEkYhBqz5klFf7Fs044dO/PxiRONPMj6O32an3wyjy1btmRAQACPHzmihOKqTOsV28d++jRH33MPAfDVV1+jy+U+7/m1uLiEP/64ms89N5kffTSTa9as5cGDh5mc/AePpqTQ7XJR08jt23fwoYceZq9evdi1a1d6eXkpmEv2iRNcsGAR33rzTb7+2mts2rQp69aty8GDb+HgwbfwjTfepI+PD99/fzoXLVrMrVu3X5C8n2uaOfNjD2F+6tS3+fTTz/CuUaN4YN++yuPI/NuknDBf/09gfPv0Ifv1+8fJ1qfPZVvGy+2oFnyr0wVNX3yxVE1Yfn5+fH7yZI8bNK2ys49JAabukefVX/0mpakxaWjNWmJqmrFIy3M2mxDUNEOolUpc+S6lIjIliaH1cESSAFFdUI6P93yvyoNMqaniXGwsOXOmoeXKz1eaatrtnDSJQrBMSjLwoHY7Z89O57Bhj7JmzQZs0qAB27RoQW9d+GvQoDFbtuxD35o1CYB16oTx02nT+MMP5WqxT06mAk9Om0Y++ujrJkxxUx496jLwt9HRpM3G5GSR3YQEPa+rV5NOJ6OjySlT9DqLiiI1TQnuUpnJ1FSFW33lFVHHTE1laqqQf6Oi9HNSOyf/apUFQ3M1yv/ffFNoyUePfoLMymJ8vPKZMiRUHU/NhAQlBGuaLhylpoo6MWn38vP/ZPfu3Tls2EjVEZOSqPqOuX3NSWoZ8/NJt8vFzz6bw+bNm6v6fWrSJNrtpR5lkO+S71u1ag3r169PHx8f9Vzfvn35xBNP8rXXXmfS/v2V+1SF5Ha5+PzkyaxZsyZr1arFTz6ZXaku1W8T1jg/n57YVyn56RpTqXz1GLSmvxJH6/Etp9OwcOgq5eRkKg1xRS233U51T8XNrxRylbCcmlp5A6pbUpiYKMaWpnluXsx5rmCVke9t3z6c48aNN+YNfTPwzTffEgCHDR7MgwdTKjm5VtUumkY6Skr488/R7Nq1K/38/Lh8eeS/MvdWTA5HGb/66hu2aNGC3t7e3L17b6V7qGnMyMjksGHDOWzoUA4dOoze3t5s0iSMHTp0YFmZ61/Nc3FxCRs0aMBRowSG/pVXXvWYC6r6XbH+zW2sxup/QfC97jqyT59/nGzXXXfZlvFyO6oxvtXHBT8iIyMxZsw96n+7vRR+vj4emFwPSh0ZjtjqST9TVGxBgLVE8OhaRb/Tg0QpblTACANcBh8RVKCwECXBzQSllEMEfpCwQonjlUEuXC6I0MS+vh4cvmUuC3wO7MaJ0K4IDgZ8tmwU+FOdIqnM6ofMTCM/ja25KPEPgR9KFKevwgCmCb7T4mJBt/vG8wLLWeKwwC/tII5Y26NNC88od7mFPsjKOoCe3cNRw8cH9w4dCktQfezd64OHrrfiRO178eyzVyPQxwGHy4V+g47h98f3wXrrrQIouWoVFvk+hfEjclWY16OFQWjVwo17738ay5bNwZVXdsLBFd/gqG9ntAkVmGVfX8AvLwNHHM2Qlwf02v4xdt/4HLqGnsCyTY0xJu9TnLjzKTR2ZeCHXc1we+anQHAw1gePQXi4CPR1223i7403Cp5VHD4ssLJhYXC3aCWCA/gbHLZn4q11wwK73Y7Zn3wMi8WC3tdfDwDo268frFYr5s9fgkeHDoJXgwYKl+3nMNoyJQVo00LwvLZoAfhli3YAgLy8PHz5xRJEfPkl9h0+DABYHhGBe268UfTP4BC4XCLbIcEmOiSdh08GP5F90tcXKhhFeXk5Pv5wBqa89Rbq1KmD7tdcg6ZNm8Knpi9qWL1h8fZB/aC62LkrAevWRaFPnz5od8UVmL9kCcbcfTe+Xmbgvj2omExBV+Q18zjKP5WDN6e+jfnz5+Hll17CXXePRperO1VJ6VTiEDhJiWOtiC+W2PvsbIHxLfINUfEaAHGrj0NEbpP9Cmlpou9JMmWr1SNITFGxBQHFJ8TDvr5QoH3TNwHAckDHgofqeS4u9hzrgAHW1mMsFwU2g7+/OC1f3bZt1dHvzKHVHQ7gvvtGIC8vF1u2bFXUgzExK/Hcc88gKCgI27YlKgpGcyQ0eWzZvAmpx9IRHByMVT+sQOT338Nut6Ndu3b45ptlCA8Px791HD9+HD/9tAZHjhzBd99FIicnB0OHDsP7709Hh3ZXVTnG5CHr6vkXXsDCRYtQXFyMd9+dhldeefVfyTtJvPjiC/jkk1k4cvgwwpq1QM0a3pXybD7OFtzFfK64qPDyD2Bx3XUIqCKC6Tm/x+VC3W3bLssyXnbHuUjH1Rrf6vR3U926BhtARTNtVfheCTdQu3STB3yle6Q6SN6va3KcTnrQG+kKIqW189Ag22xkYqLIk93uqf3VaZQkblhpfqXbueapNZKWe1k++VclkzmZ+flcuVIoVyVcgjk5BtWZzh21cCEZvWIFAbB9+4dYVuYiV640vNXtdiq6hKQkTp2qa1JjY0U+4+MZG2uwBqi604SG8Hh6OsvKXJ71LutVryNFLaZjZW02Cq20rqGbPZuKakzanCWDgdIingGvXfF3xXvKyzXu35/E/v3709vbm/7+/qo/1alTx6B5Gj2a7sJCMiuLmqbjRrOymJ9fzq/ef58pmzd79DNpAh858nYCYJ/rr+eSJUu5b98fSrtpzof5WWkel3Um+4C8zdxXNY08cvgw35gyhbePHMlrr72WXbt2ZadOnXjllVcyKCiIffr04exPPqHTWU6tvJz9+vVjhw4dWF5euV7OVG8V69DtcnHcuPEEwO7du3uUo6pyySSVnUlJen/X21T2n+hovW/Jgupq9pgYHb6gY7/tdgXHFVgXE6TBQ3tegcZN1q+m6f1Ob0+P/EZEiP/T01V+4+Op8MDy24mJrNKCU8kMrmuf582cSQAszM2l3U5OnfqugmsdPZppaOj1cWTO0/eRkR5m+bCwME6d+jb37t33r8IDjh1L54QJj9HHx4c1atTgFVdcwacmTeKePYmV6vlM/UqmP5KTef311xMAa9Sowfj4nRc9/6WlTt5zz2gC4IcffFBlns9UBvM1819ze/0nML7du5PXXfePk61798u2jJfbUS34VqeLkn76KUo5Yjz80EOCkqviTSazpxluIPGCZliDMqlW4VxislozP9/A71akkFLPyEVRmtll3ux2w5lNz5PEu0q+WmoVoBjSxm+ziXtMPL0KF6ppZFaWgZvMyhLcp/Id6ekCXyvNz3FxZFYW9+/X+N7EifTysrBBg6eFU9srrygq3iVLdBxtbKz49syZ4lm7XXxHB0bK+jSbf+Vf+bvi/x73yMpNTeXChXoZdXynhG7INsjPp+DllVhs7cwLrkyldjvXrFrF48ezmH3iBN97733lkBMaGsr16zewrMzFhIQ9jIz8njk5pzwgBZvWrBHfSk5Wwudjj71IAGzYsBXTf/9dbRh0KDXvuutu3Vnmi8p1IMur94mqrqvNm0mQUkKx5PLKylIY1or9Xv42C8uvvPwyAXiYpM9WfxXfa752000387rrrqvymvmvHH/md8XEUDktMj2diYmiSRMS9P7mdIq+KOEO+kbL7J/GuDjF7yzRQYyLE9RzmiZ2TVOmKGe3qCiSS5cauF7ZmfSxqVen4WjodIpNWXq6EH7tdr7wAtX4VhCNv6in7OwS1qtXjwB48qSYL3r27MmO7dt71LeHz4HpHZOfe4516tThsWPp/OOP1H9V2NU0Mi+vgJMmPaW4pd97730WFhadsbxV9amq/qemcd/evezWrRvr16/PAwcO/qP8nTqVz/nzF/LkyZyz3vf22+/QarXy+8jIv2y3s42DimWQ6T8h+HbtSnbv/o+TrWvXy7aMl9tRLfhWp4uWzB7JPj4+XLtmjbqoaRW0vPqqqYQ0/Qb5U2ppzYurfIemGe/RNJI5xiRLTVNrqPpeQoInrjguztMBRv+OptED80dN88CMqkxILxspeZsEbMXhKjMkXelnz2Z+vhBezQVJTNR5aWfPFueSkjhb10h99umn/OYbN7lypeFwNW6cB+OEB7bRVNfm+qjqt/mcKp9WYfHRdxWVrqWmVsZY606EZ3tfaamTb7zxpofGzMvLiz4+Phw7dhx/+WU9JVG/TBERy+nj40OLxcImjRrx7qFD2aFtW/bs2ZO33jqStw4axB49BJ/lI488yuZNmrBunTq8+6672LlzOB8aNYoRX3/NtlddJbiJjx/3EJLMbVFVfVDTlJeVOifLruNapZUhJ4eVmCqqSvLn77/HqXrYoweEqCofVf1fMT1w//308/NjYWHROY1VJWw6DccxtXmTTA5mja3+OyZGHyNTphhBUuLiGBEh3puVRTI+nlFRJqtIXJx4r04qrfC9+uZKmmpSUykyEh/P9HQhdCuhWm7oJM2JxG6nphp5rbDRM/+WG8PsbDeHDxdMIdf17MkrWrUiAN533wOedW3arFATzojl5Rp3797LwMBAPv74E+dUzxcqlZdrXLjwfwwODqa/vz/fmzaNp20mTvEz9LOq+s3Zxmj+qVPs2LEjmzRpwtTUY2fMj8vlZkLCHi5e/DkXL/6cv/8ex+LiEu7eLQLkbN26nUVFxWd8vlu3bh4yxtnyVFV7etzndFZ6f7XgW32Yj2rBtzpdlJSTc4pWq9UjoAUA4RmtVXA+0P9K7ZNHRCspNOoRmKSWVmpfzBo1qeSVpk+p8FXf0k+YhV5Fq+Q0AguogAua5uFUl5BABatQplxJD5Cc7CkUa5r5cWqaTkOmqxylk5imUWmSo6KMtV8xTyQm8o8/NN5++xOCxuumpz0gFpw9m8zPNyjOTAu0OR/mxlHfPcu5qu4xn1eaevlNE9uB9LDXNHrAByq+65NPZtPb21v1jQEDBnDJki+Ym5t3xn71zDPPEgAbNWqknvP19WX3q6/m4EGDOGDAMF533XV8+eV3uH27mwWpqXxy/Hh2bNWK9913P9s2a6aeCwgI4IEDR5Q2npqmnCBV+Z0mmjtzOfR6Nu9p1I0SN6N3KKklNZ+TGkTzezWNHDpUBB/Jzs6tss7O1J4V2yciYjktFgtbtWrF3bt2nfFZCWdQlhJp7dAd3JKS9Kh7cXHCKhEbS5uNBo2f7mC2dKkOfZEviooS8Ag9Wh5jY0m7iManafq3UlNVxDe7nUJzrFOlyeiCjItTlGj5+SRXrpQGFk/YgU5xJmEWHv3zDGWXzVVS4uDdd91FX19f3jdmDN9/911mZGRXavOk/fs5ceLjbN68OX18fBgYGMjR99zDUaNGsXnz5v+qtvfOO0cRAFu2bMl333mHy5dH8ph0pP2Lclfsd2ca4zJlZp7gFVdcwdDQUG7YsJGaRsbH7+S4cePZtWtX3nTTzeynU2lVTAP69/f4/4477uSRIynUNCG8p6Qc5apVa5R1cPfuvec0Z1XMY8V7zBYZav8R57bOnckuXf5xsnXufNmW8XI7qgXf6nRR0pIlX9DLy4snT+Zw3969ynT93jvvKGFB/tA0kpoxIXvAH8zsDPKiZhKcTTgumczCizJLSzWxjueVzALyE8zJoaII0DQyNVWZxaWwbbNR8bkmJJi+oWuqk5KoMmEWruU9TicFQ4KmkVFRkoaXjIkRXLy6Jis9nWRiIpOSBOcs4+KYsWEDAfCNUaOEgLF0KWfMoIc22QPOYUqq7rRzgDVUOFcR02h+XmEfK5yv6hsxMZX7yK233sb+/fv/rX61ZctWAuBvP/zA+Ph8fvxxHAu3byftdhYWutmz5wC1yF7doQPj1641aOTS05mVRe7Z8ydXr07nyZMib2qjIymuTB9U5TdpeEVfOM1Zsz5hdPRGQ1uqm+VVBDFzm5j6sRlJYU50OvnLunWsU6cOfXx8eNutt3LBvHksr0KLf6b2M19OOXKEHfWwyz169ODMjz5SZnBz20lIhmRHkRcTE0V/j40lGRurtLtKk6/X68qV9OA9fvZZkgkJQvCVlpDUVDHopNpW79ySMjg+Xu//elRACROSgrfiHNax5Ob6lZS/imvZzN6gVS3cVayrgrw8dtcxktdf35svvPCisAy0bcumTZvyyiuv1KEzDfnsM89w9uxPOeX119muXTsV6fDUqfy/1ZfPJ7366muVhMwaNWrw+cmTWVBQeNaxeLa54Ux9KfvECfbu3ZsAFN6+WdOmfPTRsRw+fAS7d+/OJUuW0VFSwtL8fH733foqBWFAhD7u16+fB1a/bt26HDN6NMvLz5zPs+WvqjY2n/9PCL7t25OdOv3jZGvf/rIt4+V2eJHVrA7Vx4U/JkwYj21b47BvfxIscGPzlq3o27cPAIBOp/Akd5UJNgarHwDhJV7mG1Ap+lEZfBTzQpHLT3lYS+/tAFcBSnyDlKd2cbGI/CQ9ymXENemVLr3vLcVFKLEGyOBcyqldRZLLy4M7OMTjHZbiIiAzE2jRArBakVvog127gCFh+1DWtjMA8Z0gXxERzuEQTAP7MoPQujXgd2CHeDYwENi7F4v29kDHjuKZgdaNOBLWH1u2APe33YofjtdAzZpOrI+YjQUrf4CfXy1kDB8O6/wIBGxZh/XWIbjpJs96N0eyqxhZquK5MpdFsVxUvGb2oD7TefO1qr5jft5SLCJmme/v0eMaJCQkIC0tA02bNv2LHiUOkmjZsjlGjrwds2d9DKxdi9yewxBSfBQHHWXo0KEd7rxzFPr164/nnnsGLpcLM95+G89MnAivuvWM/oQyFVWswBoCf3/gSNIePPDoOGRkpKFDhw745LXX0OWaawBfX0T/vg/PPPMoCgsLEBwUhLyCAuTk5IAk+vbtizvvuANOpxNXtmmL667tjhPHj+PAunUYMXEiatevj5PHjiG/NBCt7Cn4s3FjhIQ2Rg1vL4+6lUwjkcsjMOa++1SZJ0x4DAs+nW2MiTPUf1Vt5CzX8N23y7Dihx+xdu1PAIDw8HA8/9xzuHv0vQAEc0VQoBu791oQGirGweHDghUhOxvYvl0QmoSGCtaEroFHRYdNSQH8/TEvZSAev1NnD9m+HRktblBkDX7bN4oBdc01UGH99HFlgVswm6BElMXXD1u2CFKIxsFlQHExyvyD4AOdAcQq5gvJviLLWeayCPaNwLIq6wiAYsQ4E6MBAJSVleHH7yMR+f332JOYiIyMDFGnFgsee2wi+t/YF7cOHQ5fH+MbLpcLvW/oi+PHM5CRkQkvL69z6sfne5DE3r174eXlhXbt2sFut2PevLmYMWM6ateujdH33IPTxXZcd10vPPLQA/DWl3nFHFPhOBPLg0cduV345ZdfcPBwMtpd1QaDBw+GN2mwglitKIMPrFbgvvvuw4oV36G8vBz+/v4oLi4GAHz44Uc4fdqO9et/Ro/u3TFw0C24ut1VaNK8Oby8PMeDzJf5f3Neq7p+prmqqKjo8md1aNMGAd7e//w9moa6R45clmW87I5zkY6rNb7V6e+mHj168MEHHlAntPJytbvfumWLcV6/36y9rQiBoGZoqCTcQWqA5LNSMysdzOLjqQIWSGWv4g3VzaXy+0xK8nDEkswKmkZlYo2MFN9buNCg+2RqqgDp6ppaqQ2TGkTFF6tpVKBHnRPX6aRwRsvKIuPjjXLr0R866BhUAKxdO4D33vsWD2/f7mkarsCYoLzpdTWYtBpXxKzKv+ak2qGKxjRfM/8922/zu6o6R02YORs1asTbbhv6t8zEd911N9u2bctTpwye5i1bnLzpppsVdMIc7QkAu3XrxkyTKV1yy8bGUvEyPzFuHOvWrct3p05l+/adWadOHa77+mv++msi6/j785prenLqyy9z0pNP8slHHuHRpCSuWbSI3bv3oJeXF2vVqlVJu9WyZUvefdddKvCGTP7+/hxyyy187LGJfP31Kcw8epSaRpba7R5aMH9/f340fbqA4+hWCNn+FbXTFetcjhtV30eOcNGCBQRAi8VC+6lTog9HRxtYdMmBnJ8vxtDKlWRqqkLzrF5NhWM3Q0BkfzSbbWTbKAdQXbNMTTPgQTL/drvi4dU01SQejqbSkiMh+TIqnxzcqo9VcEg8U9+s1H/NXrKaxuPH87lhwzYWF5dV2Z/lj/DwcN5//wMe779UKSMjk+PHT2CrVq149dVXEwA7derE3Ny8Kh+oCONR1jG73cMqIO+ZPftTtmp1BRs3bszhw4YxJuY3ahpZ7nQyJ+c0HSUl3Ll1K+vUqePBxAKA99wzmpHLl7O4uERlQbKGnK19KrZVxTKcaa5R/U/7jzi3tWlDtmv3j5OtTZvLtoyX21Et+Fani5JCQ0P55htvqBOaRn7wgRGRx35aOC0pqIE++ZkFX+mUJk2oMmmaaWE0maAlm4PExspoTx5mXWnO1j385bNKKpbBKnTTrCyPfJF8j8QYSsiEORSt+lZOjlrolZCiR2Rjejq7d9ehDlFRQlqOjCSTkjhjBtldh4b8+MEHzPvjDyFgp6cL4cCEU9Y0erA3mAUdKTicDQKhaaYNhOm8+br5/zO9w/zNMz1X8V5qGld+/z0BcODAQWd1njGn7dt3sHbt2rzppoEs1z94550P0sfHh/fff3+V5lU/Pz8+9NBYAxxqFoD1vPXrN4DDh99Om408ffQobxk40IBNdOrEvLwi1Z/khkIGecjLK6PL5Wba0aP86qtvGLVqFQ8mJPDmm4ewQ4dOfP+99xi5fDm/WLKEP/zwE6dNe4+DBg5keHg4AwMDWbduXaamHqPb5WK9evU4fvyESnVu/l2V0FtVO1WsbxkAZMzo0XS7DDq7xETDR1P2b2rC2ZIxMQp3Lseb02lAimw247fqmDrLhgrIYh7fstPZjMiK8pp6l91OBQjWvykFY8X8IAfwWfrj2fpxxb+yXTWNHoJfQWYmJz/3HB+67z7u3bnT4735p07Ry8uLS5Z8cU59999O27fvYM2aNfnBjBlG/Vdwgqs4p6lK0NliNI0sKCjkG1OmEADvvfc+vvba6+yqO1M1a9bMA6sPgPXr1+fHH88iAD7zzLMcPXqMCqddt25djh8/gceO6S93mth9qmBRqTR/nGUuO1Pb/ycE31atyCuv/MfJpjtmXswyOhwOtaHas2ePx7X09HTedttt9PPzY/369Tlp0iQ6nc6LlpfzOaoF3+p0wVNpqZNeXl5csGAxqXlOYuvW/cJnn3mGdntpJQYCM2WQppkEYn2ilgteXJy4R0WIksKvWfCMjlb/Swym7odjxD6VUrekNZMTsH6jppGMjVWYRukwrvIZFUXGxSkttMykLK9+2VDP6ZRPr7yin4+OJiMjleI4IUHHOiYl8dTBg/T1rcPOnfvw27vvZkZSEtPTxXUzllglk2BhKpYHBtjsiKVp+jUdl5qYKOQIWQxzu5jbsKrzFdvYfE9V583nyhwOfvPVVwTAd9+dds597NdfY+jt7c3Jzz3HuXMXEgC//PIrPvHEk2rxfeihRxS2vE2bNmzbtq2KTielnJgYgwu2SZMmfPWFF8QH8vPpdjj448qVnDLlQ57etk05fKn8ywW4gnCn+pHeGDKqnOyjZi0bNeE5X6NGDQ4YcBOHDxPObaGhoezQoQMnTnycMvpbxbqtqh3OmpxOvvD886p+li9ZophDGBmphoyidIiN5cyZxnBRwq1krjCNW00zBFYpPMmxJsePGtP6PdLBzQS/94jk58FBfZaynqlvmq+ZN81V9UVNM6j55GZGPjB69AOqzp54/HH1XHm5xnffnUZvb29mZGSec9/9t9Mttwzh4EGDDCWDZgj58rdyHtTnPinwutPS+OLjj9PX14/e3t58/fUpyjpTXq7xq6++4fPPv8C5c+fzm2+W8fPPv+TmzVtYUuJgSYmD778/nceOpau8HDqUzFdffY2hoaEMCQlhSspRo3FSU9V3z6W/m69VGpMV2vY/gfFt3pxs2fIfJ5tO8Xgxy/jUU0/xlltuqST4ulwuduzYkf369ePu3bv566+/snHjxnzyyScvWl7O56gWfKvTBU8pKUcJgO+8/TapndlkpWlV84jKa+q802BckM4tmqZDCXSuUOnRLe81UYAqYVYu4ExMVEKkjCEhNVzqGyZKM6V51jVjdjuVo05UlHhOacQ0Ta3iNpuSbRXTgeR4dTpNvKgxMSITkyYJpzn9+pw5P/AKnYWgVq3a/OGHEwaHqXaGBb+CNsSjHivUrXLek6bo1FRSF7AlM0FFU2fFNqrqvWf7pvn8r7/GEICCCaSkHP1b/eyjj2YqgWTs2HHUNPLzz79U5376KYrh4eE65OBKDuzVi0xNVXIq7XZR1vR0ljkcBMDFCxaoPqeo6eTGxW6n7ACqPCbqEKW1kuYIc5vo2kmbTfQH8yVqGufNW8CwsKZKOz1kyK0cpGucf9c5k/+yritAWqrqB9PeflvVz/THHjNo/hITVXwWVU5JeaLnm3a7oihW8CJnhdDA+fnMytKFWknnZ6ovqSmX41IJtbokVlEDLMt1pvmhqnJWTGd6rmI9muFDEqFBp5Oj775b8UYHBwfzoYceZvfu3Vm7dm0C4FNPPf23+u2/mcrLNTZr1kxYEGRfdjrVPCP7rdvl4t69+/jKU0+xe3g4mzRqxNCGDdmhQwcCInRwZuaJC5av7OxcNm3alIMG3cKCApch/JrhMlWEM6/U58/wt2L7/yc0vpe54Ltu3Tq2bduWSUlJlQTfdevW0WKxMCsrS51bvnw5a9aseVnWuSe6v/qoPi7AIZ1CprzxBuYvXAKgaicFC9zSD0tEgi0uBhwOWFxlyvENAGC1wsfqhk9hrnrW5QLa+J+Au2175OUB8PUVIU6tVrhcwo+mlesILI4S4ajmcCDEdQIBvmUAgGZhbrRoATT2LUCr0BIRitXlEp/09UWByzNEqq8vlONGcTGAw4exNa8NQkNF+ONWwUUIsRYIJxr/ABzJFE54A1sfxV2DixAaCiAvD++tag+kpcHH6sbixcKRZ1l2f2DDBsBqFQ52v/wCn28+x6hRI3HkWDp++eknlJbacSpupnIgMR8yjyUOi1FnxcUq7GyZyxS6s1i/JTsboaEQIaEdDjzyfBBO+LYCWreGwwFRgQcO4MABCO8mnNmRzXxO3nO2e+V9P/20BgDw6KNjERv7O1q2bFnpnWc7nnnmWaxduw4rV/6IuXPnARBONVdccQUAYO/ePfDXY+weO/YHMgvLELmzJaxWGP3AvwAlwc1QrnmjcePGeOm1KVg2/T0Rlto/yPCiPHwYB9P8kBHYGSXwgyUzAwWFor6LXH5AcbGoN5cLRYHNhFdYYaHIaGEhcq2Ngbw8BBSfwF2td8OScgQWV5nou5s2YcKECTiengattBT2P//Ejz+uRevWrVG3bl107doVFriVI1fFo5KDW3FRpevy2YfHvojnn38B11xzDV5esADjHrgNs2fPwvy4g2hZsgmZmaIMy5Nq4qW5CzDsgQfw/uTJsGceBAC0Dy0QL7VaxdgtLIQFbhw8bIHb6oMS3yDk5emRiIuLERoKFDj8VF6k06mluAh+KIGPS3dss/oAwcHwsbpV/7Ba9b5irdzfVV9zOKqsB3mP+XxVDlJmJyg/a5nycJX94/jJk1j544+4+upwACLU9YED+9GuXXu88cabiIr6GR99NLNSm1wux++//46MjAzcf/tI0Sd1D+CuwRmif2ZnIze3ADfceCPCwztjwddfo02Hjnj40bGY8NhE9Op1PT77bA7efXcaGjVqdMHy1aBBA3z22Vxs2LAevXp1x+x33sHK1asx7Z13MHnyZBTu2wf4+sKSKfKZlgZs3GRBmUu0VUamZxhjeV7+BTz7wH/icLnOP12kIycnB+PGjcPXX38NPz+/Ste3bduGjh07onHjxurcoEGD4HQ6kZCQcNHy9Y+Pc5GOqzW+1envpI0bNymt0nvTDPM1tQpaFx3GoDhz8w06IKl9MWtdzdeldknTSCYnV8Lyqm/ojnAJCXp0KF2bIP1qJI2VB5WVGUCbnGyYPrOyBMwgOtpwJNM1zpGRAr4gOYHpdArntagokZf8fDI5WXwjIYGMjmZ8PA3NS04OOW2aUrwyMZETJ5InT+YzOLgVg4OCuHfyZAOHZ+IMVmWV2pL0dEXfJb3s5H35+TRgHElJgnIqIsLAVTqdwvQvMQ+6hl3iMc3+SOZUKS8VUxVa6imvv86QkJALyn9KTePc2bMJgA8++JDS9Mj08rPP0l0siPTN2j0mJDBz/3727SvCpr4wciR//FG8ND9f1Icep0Np/VWEQKce0lcPPR0dLd4nLQmShku1rY4bMHezpCQq8mankwr7/N57HxvBGvT+XhEqQU1TsExpmZD3e2BXdM2pvPe99z5jhw7h9NOd8mpYrRw79n0uXLiEfn5+DA5u4MHPOmvWMjIryyM8t9SYUzNpaPUxl5pKg0rOlFfzGD5T//mr3+byV/V/xY5xtuc86rOCxWT+3LnKIffPP21VhpO+XFNJiYNdunRh26uuojslxQgQpFt2qGnMzcxku3adGRwczB9+WMXS0srBHy5m2rx5CwcPvoVWq5WACEdep04dtm3blitXppCrVxsWt6wsMV/qcIyICNNcJh2bq7B4adp/BOrQsCHZqNE/TraGDQmAx48fp81mU8nhcJxX/txuNwcPHsx33nmHJHns2LFKGt9x48bx5ptvrvSsj48Ply1bdl7fvxhHtca3+rjgx8mTJwEAO7Zvx0svv6rT/lRBQ2O1wu0fAH9/XSsZGAhLntDq+lkFNZGfqwjFxRAUZ4GBsDhK4HIJ7aui7WrdBiGBZXA4AJ/iApS5LEIrm5cHHD6MIMcJdO1YZlB/ZWejRQuhZE1LA7YeCMCR7ABkZupa0+JiYNcusYMODkaAbxkCA8X7/P3F38bZu9EsVM9T2lH07An06ulGqxZC61zk8AHGjgX8/fHllxAUaNu3wy/zCNCxI5CdjR4py9C1rdB4ITgYeOYZuFxAWJj4xry3cvHaoH7IyzuKqe/sxNVPPYWAzINISYGhHTfVZwn8UOLywRFHM/hZy+AOa4aMwgAgMxOWzAw4HEBQyg6gsFDUT3Y2rFZgc9gYuFzAkUw/nMjzQY+wE0BgIHLzLChy+aEsMAQFLkEzFxysa1IyM2DJzFBKhqoohjx+V6CZssCN8C7dkJubq/rLhTjcsGDCE5Ow4ttv8frrUxAQEID16zeo69NnzcJVXYbDtnUL3L5CcxGAIiAsDE1atcJvS97BJx99hI9WrcKLL3ZG3r59ou0DA9GqeB8OHxZsdH6uIjR2ZQAHDgAOBwa2zRBWh+AyVbetUtYjAEUIshZh/RY/uFxAqzChVXSHNoafrxuW4iJkZwPtA0/gaLGgzvv551Tce/8DGDXqLowf/wzg7y8087o20g8lKC6Grs8S9RuCXFjgRlCgG0UOHwSgCCccQSjzDzK08FYfuFw6pZ+jBHfc8STWrduDPwtLkLNxI4YNfxyLF7+CCRMexdCht2PfvmNop2vPAWDHjigU+TdGs1DdIlNcjGbWE4LnDKJLWuAGfH2FxcX3BODvLywuAHLzLAa1nd4nzqTJNmvrlNbO5TorlVuV50xaMIejCoouiLlGWZikBll/Lnr9egBA/M5dCAgIgMXy31kyk5KSsGfPHhQXFyOjtBQoLkZA3lGUhbWCo1VbRHz8Ma655hpkZuZg48ZNGD58OHx8fP76xRfwuP766xEVtQ52eylyck4hL68AO3bsgsvlwvjx1+K5TYKmMujwViAvD3l5wLotAdiR3QxjbjyBkuBmosnS0hAYqFsOdLOWbOfiYlRpKbnsjguk8W3atCnq1q2r0vvvv1/l59566y14eXmdNe3atQufffYZioqK8Morr5w1+1VR+ZH81yj+/tZxLtJxtca3Ov2dNHny82zRokUl7au8Tk3z1PbomNqqGAGYnq4IE8xUSJpGMjVVaeEkq5HZK1s5vUmtV3y8R3RfaprCMEqHOTM9korZmpREpqZKticPrYLEyMbEiOdl1Ln4eApNWEQEmZ8vtBM5OcKLTcdKSkYBZmUZTntJSYyNpXLc69ZtPAGwNDWVjIlherrh3GeuW1mo2FiSMTFKQyKxzftXrOBL48YxvGVLtm9/PR8cPpyPP76SxZs2MTlZf2dMDDXNpIVOSBBliI0V2nIZlSs/X2n5UlNJxscbWFHZeBUCPlT19+jRNALg99+vvCj90KxR3bx5i4fmNyioAWNnzfJ8QGrKc3L429q19PGpyfffn26ouSWrhu68Zg61K/GxsussWUKh+o2PF/W1erXqszKegznCnWrD1FTOf+MNQTe2d6+yhkisrMSSS5wtNc3DaUnmTQZ1UNoyU4VIxzv5TsbGMjmZTEtzc+3aOH7xxSG6s7N57JiTAHj/fffx4MHDdDjKjErVB5p6v83m+R0TBlg6+KmxWaHvms+dLVV81jxPVPVIVc9Wdb/6YcIeU9O4ZfNmBgUFsXnz5v9qcIoLlVwuN7/66hs2atSIPj41OWLESD4/fjzHjxvHNnpAjhEjRv5tbP2/kXJz89i3b1/61KjBiaNH86cFC5i+YwddLrfqUypSoG7SS0qiYQWs0B8PHPgPYHzr1ycbNPjHyVa//t/S+J46dYqHDh06ayotLeXw4cNpsVjo7e2tEgB6e3vzgQceIElOmTKFnTt39nh/QUEBAXDjxo0XvQ7/7lEt+FanC54GDLiJw4ePqHSemubhqKL/q86bnWDkX0VblJNDJiV5Ornpk5vyoDdLOvI7uqAWGWmwHynOUekoJp1wJOxCesFJOqboaPU7JqZCGF4pLOme6vLzElIQH08japWmiVCsZmqA5GTh3Kbz+2ZlCaFJ/5cffBApnK4eeoiu9euFQKzDJ5SwY6YnkrGM9fClp045+djdd+vCXhAfeOBB3n//A+zUqRMB0Ne3FsODg/n0iBHcvDnLcGxLShILi54nxYgh2yo5WUWVTU6mCr+Vny/KK2Vk6WCo2l9PmiYcarp27cqbbx74r/TL7dt30NfXtxLV2apVaUbkLynBR0Xxjr592b17d/FwTIyxY5JMBTrBc0SEiUNZYh30eouLE9zPCQlGv5G0YFFR9BCqJa3Huy+/TG9vb349cybLDh82HOgkQ4Ts26bzFYU2TaMnl65sNykNa5rYrJm4r1Wf153+bDZy2LAR9Pb25ph77qGztFS9Ru924kdWlhFmXP+WzEtFRoaq4A3yb1XJfE/FVJGDtqr3VexzVX2rqnO5mZmsX78++/Tpw7y8gn+lf16sVFhYxBkzPmCfPn145ZVXsmPHjnzkkUe5adPmS563s6XSUidff30KmzZtaqIlDGCvXjdy6SefUNu5k7TbuXKlqa11DYKH066m8dix/4DgGxhI1qv3j5NN5y6/0GVMT0/n/v37VYqOjiYArlixgsePHydpOLedOHFCPfftt99ets5t1YJvdbqgyeVyMzg4mG+++io1jaTmqdGS98nzmkZPriFTkotpaqouXFXAOEpFrhKGdW2X0jRJDltNUxjWrCwq3K5S0emYRHldKnsTE0nabIpmLDWVhjQnJT4pKGmaIWCYqM2SkymE3chIMjZWBACQQrdUD+paQNrtvP9+vSypqXz4YbLs4485YsR9BMDmISEcMeI9vvpqJhkRwY0b87lpUxzj4gTwd9o0kSWZz+ylS9mhQ2/WqFGDc+bMq4TfS07+gx988CHHjh3HwMBA1qxZk0+MG8d5844r4cfppABHJyWRzz7LyEgqfmOpodY0cTkmhkZgArtdaddllVTUAmsaFZWZJMK/GImaxrS0DBYVFSsmCXOaMuUNtS9haqpqm2U6b+mBfftIm81oO71tVd/V9A3a6tUGZlxqzKOiBNY7Jkb0g5gYUXGyQ6WnG0KvHlI5fetW9urShQDYqmVLbt26XbxX77dxcabNnnnsmLzgVZLCrj5wzHmW31PXExPJ/Hwli9vt5J9/OvnAAw+ydu3aHDXqLu7Zk6jaT46tivRf5s1tVfjeqvDeVc0LFc97zBlV/K9pYjOVl5HB/fuTmLB9O90u1xmf88hrhQ151E8/EQAPHz5y0fpldTq35HK5efRoGlev/onvvfc+Bw4cRADs2rUPD+/ZQ00jR40S99psJNPT6XTq4d71drWdPHn5C77+/mSdOv842fSAIRe7jFVhfCWd2YABA7h7925u2LCBYWFh1XRm1en/Rjp+PIsAuHLlj9Q0T2czc6p4zqyp0jQa6iJdiJRW90rCrKYpJad6NjnZEExycpQm0m6nch5S2iK73dDe6YKBWqzz84WUIb3W4uI8olZV1DSbyyajbEmNBJ0mPlI9olxyMjl3rslsnZgo1L2zZ4vCSmkyKYnbtu3ig8OH09fXlxaLhSFBQUpwCw/vSvf27SIahm66PnAglWFhTRkaGsotW7b+Zbv9+aeN7747jUFBQaxRw4eP3n8/Vy9fzqNH/xT1k5BgaMilh5deZins6ZZ6ow3S08nISCYk6EKyrBPTJqfM4WC/fv1Yu3Ztfv75lxfU0c2catSoQQAMa9RI1dvaH39kaamTDofbAyrgdIp+UlRUzBYt2jEoKIwHdu5UEALZJ2X/kYuthMVICIsH1MdmUxsppqcLs6zk1NOd4hITaUQRTE/nunX72TM8nFZrDT7xxHvcvdvF2Fh9YyMd3nQYjjROKM2t3jAe3LhSuJMaa7udTE/njBn6s4mJBv+uPn5On9bo7+/PDh06sJFed3369OGePYlGXzfVhYeG1+lJQ1bJ8VSrrKmtNI4qXHM6jbxlZ7u5d+8+fvrpZxw7dhyvu+461qlTx2NTc/XVV3P+/IU8bTNxfetJ1omsI+WcZ7czJuY3AmBy8h//6vxZnc4t/fprDK+44gr6+PjwnbffZmmp0+CfllR8Jmffdev+Axrf/7DgSwrN8K233spatWoxKCiITz755Hk71l2so1rwrU4XNK1Zs5YAVBQuamc3O1ZKuuChaVQ4QWlSlYJmxffK/yUEQi3q+mIm5WczxEHTSEZGCg2mBAlrmjLxahqVsBIZSQOrqRkLuC6/iv+l5tek9fL4qz+rNItOp8hnUpIKcazAnzYbk5KEHJuURD78sLh/3DiyMCaGn999N6eMGcPlr73GPuHhrOHtzZLsbJGPxET++ms6mzdvziuvvJLp6cf/VvsVFhbx/fenK95Si8XC7t27c+mHH3LrVpcR3jYhgZw2TWQwPZ1cuVKwGSxcSCYlGe0WHW0IWjr0IydHyVhC237sGHteey0BcNiw4dy2Lf6CC8CzZn1SSdPrBXDq1Lfpcrk9+o78rWnksWNZ7NixE2vWrMXpb71FrbycdDpVFDFzv2NCgsBHa5poPKfB9mD2pE9PJ/nss6r8TifJ5GQlcMuIf7Nm/cSPPvqUrVq2JADeddc7irtabrY8IDq6ECdDVUvcuUc/1IyobMzKYkSEwb4goRR2u3jnonfe4ZUtWhAAf/3pJ5bl5akAIbcMHuwx9tR41vOlxnCFhlDPVNBOe7zHWZm31/yOA/v2cezYcWzcuDEB0MfHh+Hh4bxv1ChOf/VVRkSs4O+//srvvlvNYUOH0mKxMCAggH379uVNNw3hW2++yd9+28Yvv/yOWVmn1ffMgnn8tm0EwN279/5rc2d1+nupuLiEL70kYEEdr7qKP/20nYyNZVaWHlpb30Smp5O2mJjLX/D19SVr1frHyabDuC7HMl5uR7XgW50uaHr66WfYuHETZWKkVjXhvjmZBQ35W9F2mfCwEpmgBA3Tu9VirmmGFs4EQ5AK1Zwc3XnLbkQqMmt6NI1KSJXOclJzYM6fuWzUNAP/WjHpuEkplFaEeyitnO6NJPMxcyaVGTo+nkKgjIpSuEz34sW8444XCIAz+vVjcjIZHV3G6C+/ZKtWV7BFixZMS8s4r7ZMSTnKRYsW89ZbbyMADunbl+7p05VJnKmp5MqVCv8bH2/Uoxnbq2l6aObERKH6lUEy8vOZl1fCproAc++9jylhpmXLlvzsszksK3NdsL75yy/rldBbt25d9fveMWNo+/NPj02XbGenk5w9+zSfeGIyvby8OPDGG1lYWERmZQmhNirK6KeJieTq1aI99Q1Naqrwb1SbLim02mzieV0YdjppaGvz87lmzRFPId3Li8uXf69wxBK+KGE5Zi2vwqhIKVYfOB4aVym862Gbo6I8MfApKVm0WCy88cb+jIkR2Ipdu3bTy8uLXbt25cYNG5iQsIdxv//O/fuTmJl5QmjdTGOiorWn4nwg+4r5hKz7is9Q07hn0ybePnIkAbBp06Z87rnJ/DU6mqUm2IkMOiH3oDYbeexYOp96agrHjBrFIYMGeeC8+/bty9OmsN7yc3IDf+DAwX9t7qxO/ywlJOzhNddcQy8vL95221N0lpbKwINkQoLoB/8FwddqJWvU+MfJplPCXY5lvNyOasH3AqdTp/Ivmrn2ck8ul5stW7bkYxMmqHMeps+qIAFOI7yrecGTWid5wozjlYu6eoemKYlYRU/Tz0n8oTRl5+cLIUyZ3PPzlZMWo6M9tM1SeJOmbFke6aTk4UikaR6hWdXNuvAk/YYUNtjpVCZx+b2YGCp8LBMSDOF91CjxzaQk8oUXyMREzpkTRQAcOPAOTn/2WQ4ePIz+/sLM261btwvuqf399ysJgOujopRkouAiuqCl2jUhgXQ6pRVzkUn9AADrKElEQVReVLiOlVbktnrdaIcOcWT//rzyiiuYtn8/Xbt3M2bNGo4Ycb+O4+vKrVu3X7By7NmTyGbNmnHQoLv41KRJ9PLyop+fHxs3bsxPP11CR1GRZ2Q22Rnz8/nLL+sZEBDALl36sNTsWGZyotE0KgE2Pl4gV1JTdbyhxNLqdSc3YLL/y02W3U66Dxzg+Hvu0aNmfcQ//6xgjZDfSk315LfWxH0SZpOfT7XhMm9MzONB4pqV5ULT+PXXEQTAvD+EqT8/n/zpp1+UhrWi9lxaB6688koOHTqML734Ipcs+YJRUT8zYedO7k9M5IoVP3D+3LmMivqZqX/8wZISA39rdtCU48HcBku/+IJWq5WtW7fmnDlLeOqUIdyqzWh+fiXmCHWD3lZCqM9g3KZNXL9+A/39/RkeHs45n33GAwcOqo3WPfeMZrt27f7PzuX/tVRW5uLMmR+zZs2avOmGG5iYWCTgVePGCX/i/wKPL0B6ef3jZNPH4eVYxsvtqBZ8zzMdP57FTz/9jK++8gq76A4pV1xxBdu1a8dXXnn1/1Sd7dt3gAC4bu1adU79qMjYYPI4N79DCcqSjkYKxpohIJoFStPr1T3m78rfTqdBDmGz0aAXk0KYCU8snc2io0mmpystksyX0syavqFplWmm1IJrFqRMi7MM7SqzkJQkTHTx8aJeJK+ZjBzL/Hxu2bKLd911L2vUMISPOnXqsG/fvnz33Wncvn3HRSHZd7ncbNiwIV995RXS6eTq1Z7XVf2Zyy4dAXVz/owZNHCpeoXJ2yUUQm0QcnK4fetWdurUhV5eXhw7dhyPHUu/oGWSgvuxY+lKk9i4cWNGLlkiaJOkQKun9HRy66+/smbNmgxv3577ExM9NmgKriKF4YgIKilUQhr09ly40BgDmkYyOVmYZyMjldb38GE3b755Ir29vbn+u+9EvchMZ2WpzZs8v3q10feSkkS+FOZa01T9yj4rmUcknJyJiYooYtWqNQTAbdv2qzHpcLgZsXQpX3ttGpctWsS4uG3ct+8AY2N/56pVazhv3gJOmvQMBw0cyGZ6qO2qhGP528fHh+3atePQocP53HMvcMGCRVz9449cv34Dt27dzg0bNnL6+++zR48eBMD77nuU5XoGPca53u88rDH6vKHukYNM89REx8Xt4I033qgCKPj6+rJRo0asWbMmX375lUsyj1anf542btwkNqcdO/IPaWl75RV+//1/AONbLfj+a4cXSeIvjqKiItStWxd//mlDQEDAX93+f+I4dOgQZs/+BF99tRRuN9EopAHad7oWt9/SF3v27kWZ04nINWvQsGFDvP/+DPTs2RMWiwWJiYk4ffo0ysrK4HK5EBwcDJI4efIk8vJOwc/PD7m5udixIx7p6ekYOHAQbrttKJo0aYIGDRogODgYVhnn9zI7pk9/H++9Nw15ubnwtVoBqxW5eRaEBAuCepdLD0whybZ9fVHi8oGfryCVLywEgvzLVFjNIocRIjjEtwjw91dBENywwOIoQZnVD1ar4J33s5YBhYUo8g1BAIpQBNFXfX3F9Q0bgNtHuHEiW5CZZ2cD4eGAJfsEyoIbw8chiPU37gpA/xtNoS5dLpSXl2P3gYPIOp6OW265BbVq1aoUtKFSSNS8XBEtwOGAOzBIXC8sFOXQw7BaXGUocviguFjc6utrhBX29QUCXAXIdQWhZs3TeOaZZ/Dll5+jSZMmuPXW2zBixEiEh4cjJCTkXyEJv/32kbDZbPgtZoNnmV0uuK0+Kt9B1iK4/QNggRslDgv8fvkB8PXF0bZD0MpxEFsL26OX/z7sQ2e0aCHaISwM8Du8G+jYUYS0zcuFOzgEzDmJBd99h1ffeBNFRTZcf/31mDz5BQwfPvyCls3iKkPSH6mYMuV1/PjjD4iYPRtj7rkHRb4hokwoEO0Y2hiJexJw/+jR+CM9HTNmfIBx455CaqoXOnYU70FaGkrC2qggLPj2WxTdNka1ZQhyAYcD6w83w8DAHTga3EMEtli1CvD3R0bHIahbl3jooY249trj+Oij59Gvb198//XXKIGfeO/hwyKstK+vCH6SnY1PVzTGU4+ViQoNDUUZfOCTeRRH0QqtgouQ6whASKAIxYvCQpHCwgBfX+TmiaAvYWGAj6MIxRYr2rRpi9DQRti1NRbFZb5qHAW4CuAODDLqzhwWVu/IZS4L3K4SHE3LR1ZWLmrUcKBdWEMEN2+OzMxMHDlyBEf++ANHDh7E4dRjSEk5grS0NLjdniFm/f39cd11N+DJCY/g1hG3w+n0UmMkwNcIf+z2D1BjSMag8PU1AlY4HKJvqmf0/iXz/6ftNHbt2oWDSfuRX/An3n33HcyZMw+PPfbYBe1n1cfFPxITE3HnnbcjNzcXjz46B7MeDsfplStR9513YLNdfjKMlK8KAZxPzooABAKXZRkvu+NcpONqja9nOnkyh7Vr1yYAvv32OywoKFTUVYmJJO12RkeTGzak8uqrr61S81ExWSwWBgUF08/Pj6GhjThi+HBOfOwxhoaGVbq3Xbt2HD9+AhctWsxNmzbzxInss5rkyspc3L59BxctWsyoqJ/5/vvT+eijYzl37vwLFqLywIGDDAsL4+233+Gp4TRpSjXNcKqWZnxNowcmT5phJW5SKs886KP0JL8h/yozp07zYGIVIzXNrAxSEIjYWJJJSQq2qr4nH8zP59HDh3n11VcbnuKdO3P79h08fbqC5smUzHmTyQyjMGuoJf5X02jgk+X3nU6uWfM7W7ZsSX9/fy5YsOiC4l7/Tnr//emsXbs2Hbm5Hprt/HwabBtS86sT+SpKNKdTEUOowB1xcQZLggSrappi+JLtkJNDFmVn8+svvuANN/QncPGCXmga2ahRY7Zr14FPPfUa7xo5kl07dmSjRp34xBNvMW3vXp1RoZQPPvgMAbB//0Fc8e23LCosVBpfBTdITeXChaIsM2bodREZSeraYulXyYQErlqVw44de7PftdeyZcv2HmP+3eefp4zWIvt5TAzJuDjVd+128f/q1TqMQnfsYUKC6o/mcaX6mA6vcTopXqqX4deFCwmAm9asUU50yqnP6TlvmPu2Gg+6ZUSOe6lNlgPQzKySlUWePu1kbmYmU1KOcuvWfUzav59lZS4PhzllCdLDf6u5RKvAGiHLo1eWypM+ptR8U6Es1DSeOJFNAPzhh1WXZJxVp/NPhYVFfOCBBwmAdw8bxrT4+MtWGyrlqwKArvNIBdUa33M+qjW+f/PIycnBmjVr8Nhj4zFhwmNY8PFMZOT5oVmYG9i+HSda9EJgoIiW2wwZYHk5sk6fxopNaWgWXIy6ja7HNUV74dOrFywlJcjTNBw96Ydu3ULgt2srTrS+AQ4H0CpYaCz9LcU4kpmLwrjfcMrfH9sSi5Cfn4DffotFSkoyZPMFBASgTZs2uPLKNggKCoKXlxfy8vJw6NBBJCcnwyHVIABq166NNq1bI3H/fgQHB6NXr+tx7bXXolu3axAZ+S1WrfoRgYGBuOqqtmjfvj0GD74Fffr0qaRpTk5ORlTUWuzevRvr1kUhrEkTrPzhZ1zVMhQn8nzQOFBoZAGhRRLxfnVNoUtoXqSmtgw+8LHq2p7CQhQgSGh/XS4UOPwQGKhr0wAjDKkewhXFxSJMsEuEhVVaY/3ejVt8EBYmosvefpMeLnXvXqBtWxzMC0FYmB62Vs+f1EhnFznw6awZ+HTuXAQHB2PRosXw8/PDHXeMRG6uCK3cpUsX3HzzQNx4Yz/8mX8KexMTcfjwYaRnZGDBvHm4rlMn8U6ZH19fpSktKrYgwJELBAejoNAitIqBger7h/74Ax9Pn44lkd+hV6/r8OWXX6FVq1bn033P6zh48CCuuaYrRo4YgYhvvsH2HVb06liEEmsA/HzdyM2zCC21tQRwufDDhgDcfmMByvyD4ANd0wZxX0igrvnPzERJWBvVpIsXC63jNdcArfxzxUBq21ZoJwGwbl3cNuwubNv2G/bu3YewsLALXs4ff/wRU6a8BpvtNFq3boWrWrRAfrEdP/+8DqWlpWjRohX6XXct+g66BYFuF16a8RGSkw/iiiuuQPLPP8O7eXNhyXAU4EheENoEFwCHDyMjrBdSUoD+PUvEnOE6io1prdA/vAAZxUHIXL8Y148bBwBo0bw5ioqK8OawYWh91wNwOm9At25WhIUZytpWriNCu9x7IPw2rQPatkWGtRWaFe4DWrfG0WwxblJSgB6tCwCrFWW+AfDJzhD9zGqF29cPDoduVfEvQW6xHwoLxeX66TvR/r5xyMw8gVdffQZP3DUKR09fia4dxTiU49esWQVQKQSx1QoRpljXBPtYdcuH1aqsOPoQhp+1DLmFPggJ1ucCqaqVqlyXCwWuAARZiwBfXxGe2d8txo8rV5TRX2ijDx8W0ZSlxUlahmSe5JDMy83GsuXLcSDpILwtXsjL/xNr1qzCwYOHcYUpZHP18d87IiMjMXHiBJSXu1BSYr8staFSvsrD+Wt8g1Gt8T2n41yk4/+rGt9NmzZz6NBhvPPOURw3bjwHDhyk+EB7XHMNt0qvKE1TWiyp/WJWFuPjDccoxsSQWVnS8VtoG1JTmZOj4/10Z6rYWBrOJ3r0LaXO0aOESehkcnIpk375hT9+9BHvumsGHx0wgL1792Hn9u3ZoUMn9uzZm+NHjeInH33Eb7/dTPvhw5w9+w+WFRaSTic3bNjHZ599mb1791Ma7Dp1Ajh58ut8/pFHeNvgwWysc3cGBQVx2LDhHDPmXg4cOIhX6iEvvb29Wb9+fd55xx3cvX07yzIzDdWOmf7LrN6SFWzS7prrXapeNY2e0aeclbXTSoNkwotWdKhT92mCgkzyqUpHIaVh1iT28U++8dprrFOnDv38/PjSSy+zoKBQvbKkxMG4uG383/+W8N5772NISIiHdu6mm25Wvxs0CGHv3r2Zu28f09NF0ZKTqUIxK82UzQjuwIQExsbG02q1slGjRvzoo5mXTMtbMX333Qp6eXlx1qwFKnyu1OAlJur5T0w0nKby8z20vFJDl55OAwOta+hlW6pAGHp/kWGCpaYu78QJNmjQiHfddfdFLy+dTrozM9mqVasqLTW9u3dn9h9/cM60aQTAnI0bFYF+VBSNSHg6nlwGAZSayNhYUps/n++9N4+tWrUhANb28+Mvv6Ry2DCBOx4wYAAL9+5VQUGUZ5zdzthY8R2nk2RSkqhDPYxcTAw9HEHj4mhYWXTNrhwXesdXA0ifwpiScoLj7r2XNWvWZN269bl+/S6BQTfh7M3EDHa7MV+Zx6JHnepgeFm/6rz+QzFgOJ0qmJ58h+wuVWlspRXH7Mwmr5s1w+bv2k+f5pVXdmbNmjXZpUsXtmvXjj4+Ply8+PNLPtaq04VJx49n8eGHH7lstaFSvsoDWHYeKa9a43vOR7XgW0XavHkL77xzFAEwPDycN/Xvz/DwLrz11qGcOXkyk5JyqWk0nF90L305uyoTnsnMr2i0liwRC1Jiopq44+KE4/uSJYbMmJQkPMEVb6ceInb1aopF64UXxKK6cCH5yitCyHjhBfFd3WyemEgjVK5OrB8RQbEa62Fpk5NJxsXRtW8fY2L2M+fAAaqH8/O5d6+bu3bs4OvjxnFQ//68/vo+HDlkCJ944in+sHgxl7/1Fhs0aKgEgYYNGvDwl18ai7MsUE5O5QXStGrKupB8pGbTqTSVy2fN5tSKXtzSyq4WxQqStYcnuEkIF81UynffeYeBgYH09fXlc89N5smTOWfsJzKVl2s8dCiZW7ZsZXFxCTWN3Lt3H999dxqnTn2bwcHB7N69Oz+eOZO/zZzJko0byfx8tReg00lGRzMri3Q7HFy2bA+vvvpqtm3blnZ76SUfDxXTHXfcyauuuorl5fpGTzICyIqVpnTdjK5pNDZxmiZC9WqagkJIwSQpiXrwAIOLPjLSuG6GwyxetIgAuHNnwkUv75EjKQzUw4GaU926ddmwYUM2CQ3l1wsXsmZNf3bvfgNzcwsNlganU4y35GTD0UyS69tszMsrY+/eNxEA7+jQgVZrDV7RtKkQLpOSGBHxKwMDA3lNly48tmWLClYhu7YcD1lZ+v/HjvHzTz9leLt2bNKkCTN/+klMLqmpKrqIpPGTAqWEBGiaQqiQcXHGGEpO5onkZHbq1IP169Xj/Plf0i1hHXJjIt9ThZOZHK8eG1J9TJrLofqMZvAAVxRw7XaT82fFitC1AjI/NpvxPvM7ZT88cSKbvXr1Zq1atVRADvGZ8ks+xqrThU1//nn5O7flAnScR8qtFnzP+agWfCuktWvXEQDbtmnD+Z99xj//1AzMoq7hkPyqCQn0VFdWwG5KBgCFY9QxjPn5VF7XjIsjIyIMb/4lS1RQgMREKq/r1FRSSr4REeK3FFptNgpB1WYTi1xODlevpgrO4HSK05IDlJq+KOhaI8bFMSbGiJ4qvb0lA0F8PJXGVkWXio8XeUpP56lTGqOjD/Kjj+YSAB9+eBwLvv1Wae4UF645xJouEGia8W5qmuISNWufzIugfI2iatIqB7Jgfr4SoKkJD3e1GEvQqQl/SE3jsWMaR4y4nT4+PnzyyUnMzDxxwfrUxo2beO211yr+0Mahofz0/fcZ8dFH/OCDZdy1Ywffe/119up1PQMDAgQzSMuW/4pQ90+S5MPd9/vvRr0mJyuyBhleWqrmFPey3oiyLbOyRH+UQR+kjEi7XZyTIXWnTBF9TW/z/Hyy3GZjmzZXceTI2y96eVf/+OM54fSvvLIt/fxqs3nzFty0abPq36qfyV2a7Nt2O2fNWkAvLy++8EIUuXo1d+8+zYQEsXliejpXryb3fP214jfu3PlGvvbal9wTE8PiYrfH3BMfT27dukcxfQDgFc2acdSoT/nDDydFw+gR36TsbW4TPUuqDaSALHmod+/O5dUdOhAA338/0WBKWLLE4LyuMPepTqFvhjw2uPJeMw7XZjM2y/pux/yMZLJQGHC7Xc1b8j1yM+l0GvOdfH9SkkHmcv/9D7NevXqMjf39ko+p6nRx039B8M0GWHIeKbta8D3no1rwrZAGDRrM8PDu1MrLDfOYzaaitXqoDJ1Oz8neZL5Ti72u6UpPJ5mczPh4GhCI5GQh+NpsnDGDygHI6dQ1u3a74P9MTGRkpMFtK6ESkZG6QJyQIN4fHy8ejIvjCy+YTKpyldC1rkoAlvZYp1O8KD6eiYlCHpZy+urV5KRJ4rIuL4qMpKYqrfDcuUKwvm/ECCUEtGrcmG+99QEjIg4yO9stMpuezqgoXeu8ZAmnTRP1M3s2lSZLbjDMmkBNMy3SmhEsQvf1UdASuchJZzizZlipgaV5V19Y5SI5fdo0enl58ccfV1+0vuV0ljMhYQ/vuOPOSkKTn58f77jjTk6b9h7Xrl1Hh6PsX+vzLpeb8+Yt4OLFn58Tb+n69RsIgMuXJ6uT0vysaXo/1KO3ma3OUjCRY0a1qb4ZkdpjRkUxLs6gesvJEWNAbso0TVybPv1j1qhRg6dO5V+QejhbysjI5PTpMzh48OC/FIAbNw6jl5cXp0//TNGgySiq1CFNWmkpv5w1i126dGWbNp3VEHU6RcRqapqh1czJYWFGBufP/5LdO3VS37mmSxeuXbOGeXlu1fc3//ADAfCdl15ifPxODuvenTWsVgbWqcOfly416jw11di06JHi8vOpLBHS4c08Jvfv2MGWTZuyRbNmPHiwVLSL3BlLGJO+obTb9X4gdzhiAKjxqKj/JIxL04QlSzOgDmoTbN75xsUJpYEpLLna5Jqd9nSIh+p7doP+UHaiNm3aceLEx/+1cVadLl2qFnyrD/NRLfhWSG3btmXPngPoKihQsAXJ/yqJ4OU87cHbqZlCgWqaWkyktlfTSCYkCC1sZCQ5dy4ZH8/8fPFTrYyxsUKYjYwUQmlCgtD06jyf0hwsIRbym+npyllcZEzHV3pIjqZ8MSlJhcZNTjYUodQ0Q6jVyxUfTyXAx8aSHkz6UqDMz+fu6dN55w038K5Ro3jDDSPoqxPdN2vYkN26dOHYseNonzVL5GXmTGXSpk2Q/StVTGIiGRHBxERy5kyRV01T66IoqC6F2+2iXqOiTG1RAVssY0IkJxuLu1njnLR/P318fPj88y/8a/2sqKiYp0/beepUPjds2MjioqJL1uejo39VwtSvv8b85f2S47VevXq8f/hwluiYcbmRkN0iK0u0ndTMq3Fg8qyX7zRzI0dFifaaPVuMi7lz9Q1ecrIy6VPTePLIEXp7e3Pu3PkXvE7MUHRzGvvoo+ek/QXAgNq1uWjePJ6WKklNE/WUnMwV330ntMStW/NNydigW0REFD5x+8qVOkRKCpgrV7IoL4+rV6/j9ddfTwBsc+WVnP3JJ5ww4XUCYKdOVzMuLlPghzXy0KE83nLLrbRarVy5YIEKGW3mtpXlk2wrS5eSjI2ltnMnU1KyGDVnDn19fNimTTumHT1qCLG6+SonR99oS42tHi3DbtfnC3M/0MvooUzQNDUneeCOzXOr02lYyiTMTE7QJkiUNPHI/CUkUNyjw740Tdzn5+fHjz+edcnGXXX699J/QfDNAnj6PFJWteB7zke14Fshvf32ClosFvbr04cRX3/NnTtPGQKtLiglJIh/8/M91zP5DnNkLyWs5eRw9myxmM+dS06ZQqFOXbJE+qIwIkLcL7G5kZH6oifBvbrWSy4kUVGm78XHk1lZUhFiaHR0bahkjKKmiVVVV5c6naSSNGw2cc0EPaBmck7TNINE3+mU8RWUQ8vq1YZy2W4n7bt2ce3KlXz+9tt5//0PsEYNHzZq1J7fvPQSBwz4ji8OG8arrlrM4qVLFc41OppU6m1d8/fBB3M5qH9/3n//c/xx7lzmrVvnoQGXGnkZFEwGQ1Cqa5uNS5cK5brUwsfEiLpITCRfffU1BgcHX5Z42n8jzZz5MWvUqMmaNX05c+bHla6XlDj45Zdf8d13p+kBB4bx008/47PPPscaNWpw8hNP8PRpU1/RLQg2G41Kj4sjU1MZFyfaJzXV5OCmJ9mPZLvGxJj6th7qWNOMZ2w2csjAgezevfu/FmErMXG/RxAGmXx8fDh8+PAqBeAe11zDPXsOGMKYzcZvFy8mAGZkFHrCoXT4kYQ55eerwGpMTdXnDbsICe12ufjrG2+wT+/e6ltNGjbknj2aREsp40y5zcaePXsSAIcOGcK8vBKDOk/Pl9rg6+r2/cuWsWXTpurd3br1p91eagiZ+sY7JoZGoI6cHJH32FgV1lpCp6SgK2nt5KaVdrvh8yA91PRvSEo4EX5LbOilJlj1r5wcMjrawFDr85PCQMsJVtMMSjW7nRaLhfPmLbjk4686Xfz0XxB8MwEWnUfKrBZ8z/moFnyrSNHRv7JRQ+GwNfGBB8RJqV2Uq7ameXgYy8VDwQikl7506tEjLWka1aKmJubISC5daixuagbXNPUsNU0JpJpGpVGRUqZ06JBlkLKrWTst/1cwjIQEj3CzylFM18jExlLBOXRLoliIdH5QhaGTUn9Ojkc0KSnzyHf/9lsSGzbsrBbSGjUa0MvLiw0bNOCDD37D6D59uPDRRxnRqhWjon7n1l9/ZVLSIaEZCwlhUJBYhL28LOzWbRBfeeVjrvr8czq2bVNtEx9PIRzYbGKHkZXFuDi9LDk5XLlS5Nmk7OLbU6cyKCjo/1x40tjY3/n440+wdevWtFgsDAwM5DvvvFvpvoiI5ZWEuUOHhNPatGnvEQDbt2/PuLht1DSjXyQk0NisSWHJDEuR2v2kJI8xRKeTHDdOOG4mJwu1Z1wco6NNcJvERNJu57qvvyYArl277l+tu8LCIhYVFXuMuddee/2sGuA7+vblvn25pM3G77/fQQBcsWiRGpDKZK//VlrZJUuU1YWpqWRCAouSk9mr1w3q3dde25t3DRnCuPXrjTrSPB3Oyspc7N9/IgFw+PAxnDt3PXNOnuSWLW4DkpCYKFFPfOn55wmAX3+9ipt++YWOgwfV/Gd2VNU08S35ncREKj7h6GgqYTU1VZQnPZ1kTAxnzKDaSNvt+r1Op5CkdWxVVhbVZig6moa/hW6tys83pkIznElpep0VnO3y85maWsSFH35IAFyy5ItLPg6r08VP/wXBNwNg4XmkjGrB95yPasH3DEmyOgwZcic/mz5deUErrYQmmQAMDafZ+UIqstLTSc6dq/Bs8fGCrYE5OWIhkAKAppGRkUKA09UhCpOmaWpCVw4nFbSyUhsi71eLn252tNuFIlU6dyhJNiFBYG5lHvTFRipiFA7WrG0zwxx093ubjXz4YarQrDrJhDBNSnBmVha1//2P2d9/z5deyuP27W6mfP01h95gLOBeXl5VCg0b3n6bjI1l2v79nP/RR+zXr5+ilmvb9hp263YPX3rwQa759ltq5eWC6SI+3oNSS7IIeOCyNY0/rV5NADx6NO2S97uLnQ4dSuaHH37EO+8cRW9vbzZq1JQ1atRgh3btCIBffvlVpWeys3M5Zsy9vO22oezXrx9DQkI8tONbtmxlz5496evryx9+WGVs+nQBRQY/kIKt7DpSKyzHjcJ0rl5Njh5twFL0YAUrV7ISS4fb4WDv3n3YokULZmRkXtK6PX3aztmzP+WAAQNUv+3evTvffXca/f39CYBWq5VPPPEUIyOz2LXrDWzYsKFgSNA31omJhgAoAzXQZuOyZeV89tnXOXHiUyyPjWV2bCx9fGoKDe7Qr41M6ONX9m05P0mBNCMjmyNHjmG9egYTy6MPP6ww9lK2Znw8X311Cv3961TaEKqxY9Kqmq8pNbNWAYcvzVHyoYQESuk1KYmGM4GmqUtMT1eWJeXFpquz779f9A+dKdKYn/TMKMWCPhk7nWRmRgY7dxab7z69ezM7O/eSj8nqdPFTteBbfZiPasH3DEni5wCwZs2ahiZBhxCoRdmEnVWTui4YOp0kk5KE5iEujoyPZ3S04YyhzMLSXqg7oGkaK9H6KGFC0xcdiZfUDAFOyqOaZrxX/S9/mPMmX65rkZXGSS+T00mRL9PC4aGZ0wxtlxSylTZZ4kCchle2sm+mpgoNrI5ZdD//PA9s385Fi46x7L33eKx7dz79dBI//ngff/llE5cuTaR7xQpOmyYW76lTxeuef97NZS+/zHr1mrJFiyvZUPdknz1smMJo0unk6tVCDpamc+mgJ/N1MiuLXl5efOONNy95v7uY6cMPP6K3tzdr1arF63v25Huvv87y/Hzu2HGaa9aUsFWrVuzcufM/erfdXso77riTFouFS7/4QtS9jic37jH6snI60plDVH/W7fom4gN1T1aWrrlPTlabF5uNTD92jE2aNGW7du0uK0GmpMShnBRPn7bznXfeZa1atdS8EhIczK4dO9Ll0tkZ0tONzbOmKS3s6tXkPfc8qZ5bsSKay2bN4pXNmrFrs2Z85ZUK48vuyQ0tx6rSImsaN2xwMzp6IwHwqaeeVpvqxET9HqeTjz46mfXr1+eJqCilVk1KMtrK7KSoYEemuWL1ahoYX00z8L/miUrTPLC/yqJVVYXKOVa+T0+yqlRZ7XaPx+QNB/btY1hYGJs2bcrExP2XvH9Up38v/RcE3zSI6Gv/NKVVC77nfFQLvmdI2dm5/P33OD777HP08/Pj9u3HlH+EdJRaupTKKUXTqHCvaiHIylIe0llZJBMTDQJ6HY+raSaie50PVcqe1DQP55OKmayYZ4WTrOC0Qs0kQOs/srJoLJAm+i/1Lk1T2l6z45u8bg5FKzXIMjyq8gTXv6toyyRMRC58ugZH5k2aNSWeU9FfREeL55OTGR0tNH+rV5OMjWVMTB4BsF3LlqxVqz5r125OXx8f3nnnPcxITmbaoUMcMeJz/jp5MjdsyCXj43nggJub1qzh9GnT2Llzb7YOC2N7PSBHdPSvl7zvXYyUkLCHVm9vPv74JC5YUMqHHzZgk9JJc8nMmQTAkhLHP/qG3V6qhLNFs2czLi7FQ8Pn0VeNh5RZOjGRBsY3P5+K409niJDdRlGP6GOINhv37k1mUFAImzZtyk2bNl/y+j5TyssrUKFUATAk5Bq+PnmygHWkpppRTmqDNksPjvHqmDG0Wq3q2X4dOxIAly5ZIh7QB5LZKiWDVpjHovz/7jvvZP2gIOZmZxsCtxQsY2L42WdHabFYeP8dd3hYfDSNikHBvFk2N6mk8DZbnpS1KitLZVeZhzRNMWCol8j5TMIwzBVphsWYzqk+UsFiZv/zTwYG1qPVauXmzVsueT+oTv9u+i8IvscgglD803SsWvA956Na8P2L9P33KwmAT06cqCbqrCwqYc4cLEHTxCS/cqXOoSsdO6S9Ty7Ukplfd8yQ71VaMJPQqmkmtgWTpkTTqC6q3/Jm82KgeeJ+5WKlvmPSEjEhQWin9UVN01hJu0vN0BZLmUblzyTgyLVMLcIS96FpZHS0WOBk5el5kKZeeYqaRsbG0mYTQlpMjGEWl+slExI4YcJj7N69Oyc/8gg3vP02X311Ohs2bMjatQMqQSdaN2vG+vWDCYC+vn4ccdttfOqJJ3hDjx6sW7cuW7RocUE5fC+HlJdXoMrvOHhQCJOJiZw9mwYl1dKlXDt9OgHw+PGsf/SdxMT9lSAqHTt25PLlkXS7XB4WA6kVVIKK3BRJCo4ZM8T5mBhFe5efT4VBpSY0hQoXmp/PjORk9unVixaLhVOnvn3ZRLurKh04cJC9evVS9TRy5CcsLCxR8BCJt58//0sC4J13vkT3t99y9wsv8N13v+W+fcf47rtu3n//g/T38+OXc+bwtC7QKi5uHV4gg4CoMZ2fzycmTCAALp43j0m//cbP58/n229/xc8+W877Ro3inb1782GdnvDDDxeKByUWW5+z4uLoYR2S1+Q8obyA7XalHTYHbpGbeznPyLnGZqMKjCHrS/4w/5b/y3MVZGAPwdflcvOtKVMYFBREPz8/rlq15pL3ger076Vqwbf6MB/Vgu9fpBdeeJGA4Fk9ccJF2mwGLZYOoJPQB00z4G3UdAFRcoVJl2lNE9pMuwg3mp5OFaVJ08Rz5u+b//fQ6JjwdfIG83NmYVR+1oRsMLS80kMvIUFo3KQ6NTFRadmiokhGRBgmSV3oVS81aXykNOx0UpmsVTAOTTMgIlKS1fHH1DRDK6QLwrp8ptjVlAAdFSUEdJ12SXmW69i/hQvJ5Nde4y23jOPCuXN59Oif3L8/mcuXLOGTT07ijZ07c9Kk55mQUK4USal//MHatYVAPGvWJ5e8313IZLOdVgLW7t37RX9LSFCOZnIjt2jRdgLwiGL1d9O+fQe4Z08iCwuLuGLFD7zlliEEwIcffoTFxW6jrTXDRC37tMRhJyeLcRMVRaMD6EBVGWhFUppI2UoKVOWpqXzllTdosVjYt29f5YR3uabMzBN88MGH6O3tzYYhIfx6/nxy7lxqGrl3927WrFmTYx99lO4DB5iURN58s2gridffu7eQ114rMPKNGjXmTz/9Il6sT0hy/GmamDPyT53i1KkLWKuWHxs1bMjw8PBKm5X27dqxeePGtFqtHDHiXkWtpna5kg3CNOeY2RjUXCCj9pkmH/W/qQ/IvKn79CAbFa1M6l7NiPRo3nhrmiFMK6uZxDbpdVFUVMxhw4aztp8f9+07cMnbvzr9O+m/IPimQkRf+6cptVrwPeejWvA9Syov13j33fcQAB8fM4arV5Pldjv3btvGD2bM4MrPP1eQXrm4SA9jGXKVcXFKM2W3U4UrlloNKbRFR5PUDIc5iaPTNHpoQzzOacZCUvE+apqH+VH+MD+r/pdSu856MGWKUQZFyBoba5TVpE6R71aCsMn5SGrzlLanijwrPLDUCkksiXxQp3qSQpHCkkycyEmT9LzoQvu4cQatZ1IS1fO02zl1KoXmUHfoq6hFnz9XRJ175pln/7/r53/8kUoADA5uQOeePco/SDoxJSeLfnvgwBEC58bl+3fS4sWfEwBnTp1KTTNFBtQ3jRKeo6MejH4WG+tB8yXHk2pknR5Nb1I15ux2ctOaNWzevDlr1KjBF198iYWFl44n+VzbSM41zz/2GF0ZGcpJzm4v9aijpCTdohQRodBA27Yd5U033cyaNX3522/ppM3GgqQkLpo3jzf26cMGDRrzvjvvZD1/f92psSVvuOEG3nff/fxu2TKettlYlJbG3MxM0ulkSWYmb7rpFvr41ORnn31Bd3Gx8nxTY9ruSbsmNdVqp2oSkGWSY9/8/5mSBzyroo+DpnnQsUlJ2QzZstlIV1kZT540IGCaRu7fX8wOHToxLCyMycl/XPK2r04XP/0XBN8/IIJQ/NP0R7Xge85HteB7lrRhg3D+mP3JJ1z9zTccMOBm+vrW8tCOrFywQGlwqemTsi78Sf5NGWlIMQromk2JX9M0eqpjTSpkTaPKkPm3ShU1KWacrlT1mu6Ti4QU/CRWVzq2yIUqJ4eKZULTRP6ZlCSEpbg4jyxQ0zxCOivztSk/6vu6A5y87nFNVorTqYJBmRd85Z4usX9SQsrJERrA+Hgd90shIMfHU9MMGtCVK2lISbpALNtj7959rFOnDgcMuOmS97sLnVwuN8ePF6btt96aatT7lClcsoSCQDo5mc89+yytVisPHz5ywfPwwgsv0mKx8KnHHmN8vNGOqn/o+BVNo8LDx8WJPikDOki4zM03izaTsBjFvTd7tgGJ0DSWFBbyrddeo6+vLxs3bsyPP57F3Ny8S94eZ2unWbM+ocVi4R033cRp0z4gAG7bJvoxc3IUpllq6RkdLTYDycksysxkrZo1OW7cDM6dPp0+Pj6Ck7zfzXxu0iTlqJuyZ48KAqOgWpK9ReKI0tP5yy9OPvzwIwTATu3a8cUX3+X69XkGZElqdnNyyIULuXChmDPMLB50OsW40z9UaexrFYJnyH/0/Mi8macv6YgnH5KbJzkdHNm9m/feez+v7tyZAQF1WatWLX76zjt0ONxKoXDsWBbbtGzJJk2aMD39+CVv+wudjh5N47p1v3D9+g3cuTOBKSlHmZ//J8vLz77ZkOn48Sy++eZbHDRoMF9/fQqzsk5e8jKdT/ovCL7JAE+cR0quFnzP+fAiSfzFUVRUhLp16+LPP20ICAj4q9v/vzliYmIwcOBNaNu2HQ4fPoTw8Otx78iBaNiyH3p39Eerrl0xYMAt2LBuFU7k+aBxcJl4MDsbCAsDALjLynDH3XfjyMGD6NStJ/z/zMXx8nKENOmMVq2CMH78ODSpUxtlvgHwcZWgzOoHH+jvsVrhhkXlxwI33LDA5QJ8rG7xfv26BeL/Mpf43wdlKIOPfA0AwOEAfH0Bi6MEbl8/8VzaUbhbtILFUWLkPTBQ/E5Lww5XV1xzDZCWBrRoAVhcet6Ki5FRHASrFQgOFvlxwyLy4XKpj2ZkWhAa6nnd/Nd0KwoLgSD/MnGisBBwueAODoEl7ajIeGgosHYtNvoPQ8+egF9xLgCgwBqCIN8ScY/DIVJgoPhrtQKrVgEjRgCFhchFCEKC3UBxMeDvD6SkwN26DVwu4NVXJuOHH39ESsrR8+k2l+Uxf/48PPnkE3joobH4YslCUb/bt+OrvCF44J4y/LRmDYaNGoVZsz7BU089fcG/r2kaPvhgBj74YAY0TcOzz76Iqa+9iOwCXzSobUN5aSn8QkJEvhwOoLgYuYFtEOI6AQQHY99hH3RuW2Z0luJiuP0DRH/bvl2Mt8JC7HZ1RmEh0L91hnhPcDASjp3G9OmvYvXq7+Hl5YXbb78DN9zQFyEhIQgICEBJSQmKi4tRXFwMu1389fX1RXh4F/Tt2xc1atS44PVxtuP777/HPffchRdffA0ffDANK1b8gJEjR4qyFhYi1xWE4GDAsniR6NcpKaLeevfG0B494AwORtKxE7i6URCWvPYaGg0fjoOHLQjyPYqi06fRutPV6l0IDAQOHIC7Y2fk5Ylx3qNFLn7YEgKrFRh2YxFiN27Eh4sj8Ntv69CuTRvEbtmNWrW8cOCAGPsHDgADexbhaF4AWhXuBlq3xrotAXA4gNt7nsC6vY0xxLoe6NgR6/Y2Rng40DhlM3b43oC2bcWwtVr1uUWf81wukb3gYKj5zg0LLMVFKPMNQGEhEBLsRkGhBYX7NuHpDz/Eqfx8HD+eiRMnstAwJARDh92Opk3DkJV8EIuWLcOgQUPQrVs37Fz/M/JLS5H0xx8od7nw/PMv4P33p/+rbXwxjtTUVKxY8T2+//477Nmzp8p7LBYL6tati3r16qFevXqoXbs2vL29YbF4w9vbG1arFU6nA5s2bYKvry9atmyJAwcO4NNPP8MTTzz5L5fowh1FRUWoV68ubLbLT4aR8lUygDrn8Z7TAK4CLssyXm5HteB7luPEiRNo2rQJAOCrhQsxaMR4uFxiol7y5iS8OGcOpj39NHamZ2Dv7gQ4yspQWGhDnz590bJlb/j7W3DgwGasX/8LbgwPR7mvL+wOJ+rX9EFyVjZOnsxEvz598OvKlYDVigJXAIJ8S1Dk8oPVCvhZDQEYgKcQ7CpDicsHfr6GwGu1ioWrVagQAt2wwFJYAAQGejwrhU2Lq0z8A8Dt6wdLcRGQnY2i0DYIKMzAvsJmKC4GevYUwjKsViUwHkzxQXAwEOKvC8y+vp6VpwudRzN90KqFsciWuSw4fBho29aQb/39jYUNgCE8m94DQBQuOFgkvT4scKPMJRZKP6uok+Ji8XjjwBIgLw/w90dGcRCaWU/gqKOxEOCLi8R7HQ5odeth8Vtv4OkPP8SgQYPx44+rzrfrXHbHG29MwbRp7wIAivLy8Gtsfdw+wo3cPAtCDmzEyE8+wYmcHGzduh1eXl4XLR/5+fmYMWM6Pv54Jh568EH8b948HE5KwsFj6Rg1fKi6b/N2H9zQIkMIZoWFOGFthsb+Rdi8NwA39HYDmZnA3r1AdjaO3jRetenWAwEIDxd7nTGDCwCXCzvSQtCiBYCSNHy9YgW++PJLHD58GJqmeeTNy8sLtWvXRq1atVFaakdxcTHuvvseLFu2/KLVx5mOiRMfw6JFC+Ht7Y0+11+PZ555BsNvvRUAsGOvD3q0LUIRAhCwdhkQHo6jvu2Rlwe8P+labE7JQEFBNmZNmIBn3nsP8PdHGXzgk3dCbB4dDrHBbdFCDEBfX2MjnH1CjIvAQBQU+yAoUAiXQb4l+GXzNtxyy034ZeFCpGM8xj9Uhq27fNCrda4Yk9nZKAtuDB9HEdZvD8DAawoAX19k5PnB5QJa7foORYPvQkqK+HSQ4wQwdiyOzlmHVmFC6C0oFPNDz56mTbbLBbeveIdSDjiK4CosRFJaGp587XUcOZKMWwcNQnBoU/To2gm3DRsGX19fVb7In2Lw4uSJKLDZ0K9vX7jcvujZsws+/HA6nnxyEqZNe+9fb+PzORwOB3bs2IGdO3eov+np6fDz88NNN92Ke+4Zhesa1odWty4SUolNm/7EjW2SkF+zFrZt+xONaqbiT01DyenT0MrKoFks0AoLodWpg5xTXrj3lm647YFnkHVgM3oPHYolS77AQw89dKmL/Y+P/4LgexDnL/i2R7Xge07HuaiF/69DHRbNmUMmJwvIgo4LWLs2hQEBAQTAli07cOwdd/CFF97i++9PZ58+fRkUGMi6AQHs26cP57/0EjMz3cpEKM12L7/8Ghs3bqo+KL8rzXgV82M+R02rxOggf5sdz8zYWwnlNTsUyWeV6bQq4lXTeyTEQD2bk6PgEmbHJZmP5OQqvncGns1K+ZfJhCk2e26rd6amiraReZZ8c/p3Vq7U4SbSUUoPuKGVlnLd2rW8QQ+gMW7c+H9M5fVfSPfeex8BcOPGHXQfPiwcBDWNTErizTfcwFGj7vrX8vLVV9/QYrHw1iFDeGDfPhV8QpnCdTiLpMZidLSAs+hUWDNmUOG9laOpHhBDmsM9+q7uxZiTI7p4ebnG3MxMHjqUypyUFBbv3MnSUpGB1FQy68ABdmjfnmFhYZesvXbs2MUJEx7jddddRwD838KFHhGgabORU6Yo6rfs/YJVo2vXnrzttnt59OifapwkJlLAGxITRT3qcAYV5Kbix51OMjFRRUZLSiK3b3ezW7cebNy4KQ9u3SogDUlJHDqUio1CQaNkzOSsLDEW9YlAxrFgdDSZlSVgSS+8oEK1x8TQg1VGJtmOZWUurvjuO0576y22a9eeAGixWPjdsmUKw6uwwXpmJPSitFSj01muHInj48nWra/k8OEjLvnYPJfkcrm5Zs1a3n33PSogip+vL/t068bnnpvMlV9/zeKMDAEtkRPvypUq4reMFsr4eIPNJTZWwNeSkhgfbwojnpREzp7No0ddHDpwIGvVqsUFCxZVmh8djjLu23eAeXkFl7x+zpb+C1CHJIggFP80JVVDHc75qBZ8z5KOHUtXWN5Vq6I8hMesLHLZslwejY6mOyVF4e40zcT4YF50dS5SfX2g00m+8qJgjBg06BZOmvQMd+3y5D31wO86PTl2zX/ldWqacu6o6HUtXyeZHMyOI2ZGCoWdNZ/UF0bzdyq+VNMMqHNFAVhhAU14X/NaK99jLotZWDYL6ObXqrzoWGaFCTThC+PiBISVWVnKmXDfvtP8+OM5bNPmKl1Q6Mqff46+5P3tYidz6OHl//ufwsMWHjvGxqGhfOKJJ//V/ERF/czAwEBeddVVPKQLI4q3Vfful+PBZqOB9daFMrudonFjY0lNU+PPZqPojDrOXkq70vGtYj+WOPysLPLAATefeWYO/fz8WLduXUZELL/k7eZyudmyZUu+8PzzZHIyFy5U3VnxbNNm4/ezZxMAs156iYyIEJvZuXMZEyPKN3WqqBc9SjQZH6/4vCWHMjWNTE9XdZWYSDI1VdIm87ffdhIA33zzXXGvPqFJTL4MS6wq1elU7A5ZWSRXrhTCbUyM4jeXPgYJCeK8Yn6RXq2yLzidnD79YwKgv78IVuPl5cXHJ07kaR2zr2mmuccMDJYZkP/rm99Zs0TI688///KSt/PZ0rFj6Rwy5FYCYOeOHfnUU29zz6ef0mYrV3NuVpZoU0ZHG3R2kkpT961gerrSb8g2Y1ycip4XEUEyNlb0j5gYodCYN48PjhxJAAwMDOS4ceP5/PMvsE+fPiogi8Vi4ZQpb1zyejpTqhZ8qw/zUS34/kUaPXoMATAxsUj5VsmIVJKLNiuLykNdah6lY5tyGpHeY3rkN6eT3L8/jQ/eey+HDxvGhg1FCNFDhzI9tadSQqzA7OAhFOuMEjk5RiAMRWGkP2DyJfJ4XjqPydVHXpPPKkFDflh/iYdWxSSoyjxJTSw1TfnYqfdpOs1ShfeY82XOS0UyevUBTfOoX/0xcupU8X190ZTl/v33o3zu6adZp05dent78847R3Hz5i2VQrL+/5zuuWc0AfDZZ3crPukXJk2iv7//RXFq+6t0+PARtm/fngEBAVy9+ifPi/p4iY317DOxsRSLta7xle2v+rLOBJKYaHQVSRkoF3nzYFBjStMYv2ULAXD8+AnMz//zkreXppFffx1BAPzsszlkfr4I3pKUpDacMpzvc8+9KSJAvfmmKrcMkqPGoNMpgmXk5yuCDEm/KNlXpNCk6kU606Wm8svFi+nl5cVj69eL+k9NZWSkXr9S+tI0Mj6eqankb4sX8/ulS7ny88/5y7ff8o033uPbb8+he8MG0m5nejoVM4QpeKXyQY2JEddk2OoPP5ynM4/8zpQjR/jetGn08vJikyZNmJ9/2jA9mSpQltvczlIx4C4u5thRo1ijRg2uWPHDJW/rqsbHpElPsXbt2mwcGsqIiB9FGfLzBd2f1JrrihWTnKsYOCSVpNphOJ1q40NN89ww2O2cNs2oJ+VQGRfH9esPcfLkV9miUSM2adyYdw4fzpkffcQNGzbyiSeeZI0aNXjsWPolr7Oq0n9B8N0PEX3tn6b91YLvOR/Vgu9fpAULFtHb25tFhYVKyFNey3FxQsDSJxQp9Oq0uExKohGpTYcEKK2V/gGnk9ROn+ZDD4poTht/+kkJm3InL/OSn++JRJCJWgVaM12QldeVQKD/I4VUpS2SEr1+TlEEyclS0zzWE6kQZny8opWq5G2taao+NM0ojxnGYPbaNt9nLotZYDfXm7xmFl4k16+qF72uT53K5+DBo2ixWFivXj2+8MKLl+0EfbFTVNTP9PPzY+3atfnY2LFMWL2adfz9+eKLL12yPBUWFnH48BH08vLiww89xJXff6/mGjODwNSp9DTN64NhyRKqTVZqqg6D0PuXok7TO5DSSOpmd3N/otPJn6OiCIAvv/zKZWG+dTjK2LhxYw4dPJjluqZbwTHE/laUKSKCra+4gu3atad26BCpaUJg0TQuXWqM85UrxXvVBkDfsGuaaWzqA1WON5kXpqbyxRenMjQ01KCVkw8nJ9PpJIuL3dz322989dU3ee+YMZU4gmWaM3YsXQUFQnjWNzAyqKOkRYuPp8f8mppKFha62aRJMz7z9NMKthIT8xsBcM3KlWo+qQirOtNGh04nT592cvigQbr1bTB/+GEVS0udF6T9/kkqL9e4du06Dh58CwEwKCiYr736KjMyCtWuYOlSfb6TGBETbEUpYOSELangpMBrgpLoiBdVV+Z5nna7AYuIj+fq1VSQOLkRknP/6fx8BgcHc/z4CZd8zFSV/guCbyLAo+eREqsF33M+qgXfv0gHDx4mAP6yahWZk2MIa7oUKhcHM02PnHz1uUSF9JUTe1YWyeRkugsL+fPy5bz++t708vLizJkfqwlbvkvNTpquiTkDPlb+lVAK+Q6ZpDAthdqKiAWPmdDp9BC4zd9RgkTFPGZlGfgwp0FLJbXeFQVasxBc4dMeC6662XyDbod1OmngkpOTjTbIz1eqj2MxMWzXti2DgoI4b94CFhUVX/I+dalTWloG33prKoODRcCO+vUbXHK6ovJyjTNmfMA2bdoQAOvWrcu5c+bQVVYmbli9mgsX6pR0UVFKsWi3k0xM5MKFen+KjlaUX1LNqWlU4cCVcKVriisKd2VlLr75xhu0Wq2sWbMm7777Hq5b98sliwK3c2cCATD2t98M9a2mKU1rZCTJJUvI+HiOHj2G4eHh5NKlxmZX52lWgT9kfegDMCGBivZPRkuUbH/yXFaWgFtER//Km/r1Y9OmLbhp02a++847vKJVKwYHN6BfrVps1qw569apo0zi7a66ivffdhsTEvK5f/8p/vJLOh1FRezf/0G939VnSEgTdm/WjM+NHcudv/9OOvXImE4ntdOnuW9fLpPi47lx6VIe2LOHixZ9zoCAunz00bGiKk6f5g8/rCIAfvrRR6SmebSpWXmgNs7OypzoboeDKxYt4tVXh6u8TZz4OOPitv1rFqGiomLOnv0pr9TDp4eHd+GX06bx669L1U268ptMSuLq1Tp21+n0gKPp3cNoXz2MvJpbpYXOzAFns5GxscazZliIZszFEs7G9HRy6VIx1+ra5g9ef51eXl6cPftTlpdrLC/XGBGxnJMmPcUnnniSv/8ed8msa/8FwXcPwJTzSHuqBd9zPrzIalaHsx0k0aRJI9x77wOY+aGgvDl42IL2wblwB4fg8GHhoexwAEEQXuRwOFAS3Ax+riLxEodD0HLBjSMpFhQXA6WlaXjppfsRF7cF3a68Em99vBBDhvRTlD6SpcHiMDE0mOh+JH2ZOlwuQfEUGAQAlWjDAIMuqOJzJS4fkVer1aAE8/X1oCUrc1kMmjUAbquPoB9L2w107Igihw8CfMvEs4CgmnKVwW31QV6eeE1QoImOzUTZdiLbIijRXCWCNcLXF1sPBKBXeAkKHH7C+zs0VDAQBItylzgsKCwUTuouF+CTdwKOwEAcOnQI+3fvRsyWZGQf340t8fFo2LAhoqJ+xlVXXXVhOsX/J0dxcTFee+1VhISE4NVXX7uobA5/5zh27BimT38fixf/D927d0dAQABSUo6jZcvGuOKKa3FDeBi+/KEI7755PXq1awd3cIjoA3t3ANdcI/r94YNAcDAyHCFoZj2BIv/GipQkOFiQQoSFiXFS4rAodhR5ZJ3MwbKIr/HFl1/i0KFDaNKkCe6//wGMGXMv2rdv/6/VlWSW+T4yEp3D70Ibf52ZITMT2LIFOHAAGY+9h2aZWzH522+xatUqpB44gK0HAhAaKkhNMjMFrdjWtMbo1UJ/HgA2bMC+0IHw9xfkGZmZQMeOgGXOp8DYscgt9hPjrbAQS5cvx0NPPomA2rVRZLcDECwYj952G5p174HadONUqQMORx3c0rsN+g4ZAtvpWgjZvgY7QochLEynPbuxDAXFPoiN3YHFi6ehVq1guFzliI1dj8LCHAwbOBBXduqMhG1bEb97N0r1+UQeXl5euLFvX/xvxgwcPnUar702GYmJiWjbti1Wr/4JbVq3Eu1pLfNgwzFTopkPNY+6XHBbfWCBGzsTDmJFxGJErFiBrKwsXHnllbjnntHo1et6tGzZEvn5+QCAZs2aITQ0FBaL5zv/yeF2uzFw4E3YHBuL2+8YhQkTJqH/NR1xLL8uwsIAn8JcZDhCkJcHdA09IahwdHaOjMDO2LtXUM8VIQABeUdxFK3QyvcEMlyN4e8vaCI3bvFBx46i/8+ZAzx121EgNBQH0/zQPrRAsfYU+DZGYCBgycwQ61jKPnx3uDNuvBEIQa6gsrS2QrMwN7BlC4rCb8CmTUCbNm7MmvUsFi36FFdddRWCgoKwbds2XHXVVSgtLUVGRgauvvpqfPvtd2jTps1519nfOf4LrA57cP6sDl1QzepwLke14HsOxzPPPI1vvvkaaUeOwOoXLITcQH3BPLwbuWFdEfLLV0BYGIqu6Y8AFAGFhVh3oBluugnwyc5AWWgzZGcDzVxH8eVmK156qTtq1aqF+fMXY3D/Pij3qqmo0swUXZIlzIPiyzShy4nbLBjL/82HfKePo8gQksOawbJ2DXDjjWIidblQBh84HBBl8PVViwHS0sTq6OsL+PqixGFRec3NE3lt7F+EE8UBgkZMpworQgD8/U1lkIeZwFf+r5etoNCCIFcujhSGICwM8HMVocQagOJicUtgoMhO06ZOxMf+hqiYzdi4cT0SE/cqiqqWLVuiY8dOuPbaa/HYYxNRr1698+8I/7HDbrejZs2asFbc7AAoKyvDhg0bMHSooMgKCgrCww89hDfenAp/2WCX+Pjuu+/w/FNPokOXrmjfvj0yMjKwdWscsrOz4efnh9LSUrz33vu4//4X0aRBueirxUWib4c2RnY2BLd2Xp6g0rP6wSc7Qwh+hYU4Wiz6l7l6zOMJALyoYefOnfj8y6X49tvlsNlsuOKKKzBs2HAMGzYcvXr1qrJ+L+QRGhqCBx98DPff/zY6520U41XfIB5M8cGWLcA99wDrnnkEo7/4AnHr16PXgAE4kmJBG9dBKMnW11fwjVsF/VhRsQVpaWIs3TLAju9WJaBG+hYs2+FAcHAD9O3bBV07+WPPgT/w8cfvgySmTYtD27ZFKHMUoHbt2mjStDkscKOo2IKUFKBr3nrBVehyYUdeK/RoWwTk5cHdopWiMfNxFEFNCtnZWLe3MQbeVIaVERF45eWXUe7jhy5drsYN9eriim7d4NXsarRr5IvskyfRoVcvBAOAry9CrrgCzZq3wKyZH6FPnz6qTuS8I+dOq9U0/+l0aFarJ61jicsHfsVCmWFxlQHZ2dBq1MCmAwfw1TcR+OqrpVW2Tc2aNdGiRQu0aNESLVq0QMOGDZGTk4PMzExkZWUiOzsbrVq1Qu/efdCnzw24/vrrUbduXY93uFwuvPvuO3jnnbexYfVqDBg82OCCT0kRO4bwcJSEtsLevcA11wA+mUdRFNxKldHH6ja4rfMEvzn8/Q0yZBMlZFlYK/W8y6Vzp//yCzB4sMd9O/JaoUfwUewrboXOvkdQEtYGfoUnMG9VY9x5pxCCjxYLvudmxQexJqU9QkMBt2sr5k2dihOahqeeegbDbhsCt9uN9Rs24plnnkJxcTGGDLkVXbp0RZcuXdC+ffuLPuf8FwTf3QDOpxaKAXRFteB7Tse5qIX/L0MdhOnnGAFwxXffCRORtKlLehgBNBPX4uM9WQ2yssjERGZlkW6Xi3fcMYuNGjVi06bNRXhQTfMwQWkaDVOU7ohgxrKancuqyqw0SZnhDOp50/uZlUUFFHM6hflM0oBJZgkJAtY0dZ+EekiHGGoamZ9Pp1M5zxsflRHizKa19HTlYyHzmp5OxX4hy2WGPNhsVPCF0zk5fPXV13jDDTfQz8+PANigQQOOHj2Gc+fO55YtWy/78LT/RtqyZSsBVOlpnZJyVEEKenTrxu++W8FnJ05k7dq1OWDAABYUFF7y/J8puVxu/vmnjeXlGl9/fQoBcO7c+UbfN/VZTTOxlOheXMopVZ4zYXoqjRPTOHI6yVK7nWvWrOXYseMYGhqqTOIPPPAgd+5MuCjltdlOEwC/+vxzw1vNKSIbqkGkMyFopaXs0ro1mzVpovIjoUCKycH88pwcpqaShw5ls53eHwAwqG5d+vj4eGBy27fvwHVr16q6oN3OpCTjVQrTJR1ldccqmZxOKpaHhATdXF/REU1nf5D/e7xXhulLTFS4VF9fX374wQfGvZqmpi75UY95Vc+by+VmQYGDTid5+HA6X3nlDQ4eNIjDh4/gS88/z+/eeIN796aysNCt2n/y5JcJgHfefjv3JyZy7/r1XL10KT/54ANOmPA0hwwZxk4dOjC0YUOGd+7M24YM4YTx4/nGK6/wrlGjVH/x8vJiu3bteNVVV7FRo0b09/enl5cXAfD1SZNEfrOyDEdqCWOIi1NMC8zJUZHdFY7dZlM+IDK8vGyrnBySq1eTCQke/V+xn5jbQFIP6VR0CQkiP1y50uOdklYwIYEG5C8picnJBlRCMU3IMjidPHr4MO+77yF26tSJ3t7eqn8FBASwXevWvHXIEP7yy/pzGhuZmSe4fv0Gzpkzl08+OYk33zyQzZo1Y61atXjbbUP5xRdLFU7/vwB12AXw8HmkXRcZ6rB27Vr26NGDvr6+rF+/PkeOHOlxPT09nbfddhv9/PxYv359Tpo0iU6n86Lk5XyPao3vORxutxu+vj74dPZsPP7ww8L8XngUBx2tkJ0tFBy6EgnFxUCzw+uB1q2B0FAUufwQkHcUKC7GWz8UY+rU6zGwb1/Mv+MOtJowQXzArH4waULdsBgR1XS4A4DKMAd4BnOQUdt8rG4VAEJqNGQItqPFIdi1C7jrthIjWpbVKrTA0AME6JqCEpfQAgcVZwiNigynJGEXOhwDLpfQrgUHC+1b9gmhsejZU5WtyOGDAKtxv9vqYwTS8PVVkd4KC0UWwsN1iEZxMf44eBAjJ0xAWno6brllCHr06IEBA25C586dL4i58f+no0ePa5CQkIDXX5+CqVPfVue3bNmCu+8ehdq1/bH8q6UIqH8dWrb0go+jCEt/3IWHHhqATp06Ye/efZcw9+d+PP74RCxd+iV27diBDh06ADCNG73vyr7U4xpD61fkEgEbHA4jCIvb188jollBoQVBgW5lCfFBmeqvLosVO3fuxJo1q/Hdd5E4evQoRowYiU8+mY2mTZtesPLZbDYEBQXi22+/w92j7lDl0wMbIsS/BEcy/dBm0yIcvWk8rJY03Nj/JjRt2gQRET+jwel01LzqKuDbb7Gv4xh0bivK4HAAfihB0tatuOvpZ/Hnn/lYsXw52nXsiEB/f5T/+SeSk5KQVe6DVq1ao02L+sZzvjqMKjMDKCyEu2NnD2gVYECjlMUIQPnJk9gQHQ2tVi00aTsSV1/tC5JYsyYKX36xCLmnTmHMmAfQvGkj9OrVC8HBwUZbulxAWhqKWnSGvz9QXk60a9sKXbt0wbwFPyAkUMx5VqsBY5EBL9y+fvAqtePVN9/EhthYHD58GMXFxWgYEoK8/Hz4+/ujT58bUFZWhoMHk5CZmQkAqFevHq6+ugsKCvKwb58YD5/MmoWnx4wRmuHCApT5B8Fn7w4UtO6BlBTRx4qKLQhAkQhI5C+gHbVrExlpR/D7hg3YlXQYbndNNPJ1oU7t2shjC4zq3QRdQkOBjh2xfpMPBrY+ikUbWmH8PUXYuCsA/YP3iblUj0BZ4hsEvxVfYUfbB9AjZRmO9hyDVofXAWFhoj0cJXjvEz+MHQvs2iXm0cbWXCAvD0Vh7RHgEtCGjMIAGa8EeXliHUtLA9qECqslDhwQmmDdSrg7LQhd24qxVVAsIoMGWYuQ6whAiK/Q5J/ItqBx5g7ktughIi/u2iXWQ4cDJW27wuEQr6tZsxRJSQeQdmgfstLSkHX4MLampGDn3r1o2bIlOnToiPbt26Ndu/Zo27YtvLy8kJWVhd9+24hff12P5ORkAECNGjXQ+oor0DC0La69ti0CrN6I/Ok37Nu3FVarFX369EHDhqHKYnO5yTBSvtqF89f4XoOLo/FduXIlxo0bh/feew/9+/cHSezfvx933nknABGZMzw8HA0aNMDMmTORn5+PBx98ELfffjs+++yzC5qXC3Kci3T8f13je/RoGgFwXWSkouBR3h+xsYZ7tU6pJb3FNY0eLAcZGYWsX78+x4+fYGiYTFQymkalnZCaT+mII+8xOSd7ZtLkkGa+ST4vHVeSkw0nFqamGrtx3ZlB06g85GWS7E/x8Ub+zCwVFR0g5O5fPpuaSvGwyZvYTANHp9PQwpn4OOV97uxsfvn556xbty7btGnD/fuTLnmfuNxT71692KBBA/7vf0u4bt0v/PjjWezRowcBsHv37ly0KEeoa0x9p6iwUGlgbLbTl7wM55KKi0vYoUMHtm3blmlpGSwqKqbb5ZLFYlaW4K/NyqKiWZFdNi6Oih5MOnQpp0mnUzmlmp3C1BgzZaLcbudXn3/Oxo0bs27duvzf/5bQ4Si7IOXbu3efYEGY84M4oTuRmh30IiJILlmi/PmWLIlU7ejj48OHHnqY77z9Np9++nk+ePvtDAwMZNu2bVUAiIYNG/NgdLTB0iD5X5OSPB1NJTuAyVtMWWO0CmwJ8pm4OCYkkH/s3Mm2zZqpfDVt2pQvPP88e/bsSQC89tpreeutt9FisRAAvb29ed111/G+u+/myy+/xkWzZjHlyBGhgS0t5f33iWAsCxcuMSpLn1w8nGT1xp41awUBcMyYe/nBBx9y8eLP+eabb3HOnHmV+vqJE9n86acoTp36NkeOvJ1jx47jvHkLOGDAAHp5efGxRx5hRkqKQd8mGTDk/KWbtGR7qPlbalI1TXgl6u1JTVPaWJuNfOUVoRGX2tTkZH2e1NsjLk7UsaQ6lkwYTE4Wzo66RlhSwMkO43SSjI0VeTLznqWmij4u75f5kjR2NpvIQ2wsnU4VR8aDuF32C1klklkiOpqcPZuGJTQ52eAPTkqSxBCqbMXFbkZ98QVHj57MW/r3Z/PmzSsxgjRt2pzDh4/nd59/ziPff89ym00FRKHdTiYmctQoMjMujnNeeokjhg9neHi3y17juwPgwfNIOy6Sxre8vJxNmjTh4sWLz3jPunXraLFYmJWVpc4tX76cNWvWvCzrvFrwPYe0Y8cuAmDC9u1i0tBNUUxPV96zcjGSrAl2Ow0BUhcsbTby5ZdeYsOQELpdLmMRNUVzkN80MwVVZEQwT/TmfFYUkuV7lfd6Vhajo415zfweZcIyLWJmCAZtNiYlUU2aZmo2mV9znmTebTaBqKDNpiImaRoVF7I0m8kNRWQkxcyum9KYk6PM9gC4d+++S94fLvd0+rS90mJRo0YNDhkylP/73yoeP250GLtdX2BtNr7yCrlgwc8EwDfeePOSl+Ovksvl5h9/pPK11173KGuzZs04efKndLtcXLpU37DFxoo+GBOjKAY1TSzi+flGH5RyixR65b6wIkWgOSPyZ1paAe+7735dmGzIF154kQcPHj6vMo4YMZItW7ako6TE43tqbOpEuDk5wprNmBi6i4v54Ycr+eKLX/Omvn1ptVoZHBzMNk2bsnOnTnzh+ef56COPcOjQYYyMXMX9+53KpC25kqkZ0A9zeTXNCMIjK0cKfVIQW/f11/xm7lxGPvccd+3YwY/ffJNBgYFs06YNd+zYxenTP2Dz5s1Zu7Y/e/bsyV9+Wa+8/XNyTjE19RjnzVvA0aPH8Prrr2eTJk3o5eVFi8XCkSNv5y233EIfHx8u++YblSeZMbPVXuY9JmYz/f0DOWjQ4PNqi7IyF2fP/pR1dOaKRo0asVu37uzXrx/79x/MRx99jgVbtyqliDlSpnyH3HRFR1MpSjSNhvIkMpKMi1P1LOdIWUapb5G08OnpVKwcUvBU87gUtCtAeiRMQsq+dJoCLUVHGx+tIMh7FMRpigoaHS3WQZ0fWvaJ1FTRHxkVRa5ezdWrPdEwmiaGZVSUeI9kq2BqqujMM2cyMpI8cuQ033gjgXvefJOZS5dy1Sq3uCc+Xnxz3DgyOZlTp4ri5uTo64iMSjN1KtesufyhDtsguHj/adp2kQTf+Ph4PcjL5wwPD2doaCgHDx7MAwcOqHumTJnCzp07ezxXUFAgKFo3bryg+bkQR7Xgew7p008/o8ViYc7Jk+qkoiXTd81ynjBjU+l0VsLVRUZ+TwA8pQt+5kVF0XHJ1VafbOS5ivdT0zyCNMhrcpfOnBxjctI1qRLPa9ZEV8QCK8oa0zUp1JsncnNgCjWBa8bCLOnXpFCtwiJLbVp+vsGlmp5uhBKaPVtN/tQ0nj5t5+MTJxIAb7zxxkveHy73lJaWQQCMiohgYWERj6ak0FFQwLg4Yx3z6BtZWWKR0jV4rz35JP39/S/78S61oQD41FNPc+HC//HrryMYFBQktIHz5/Prl1/m1IkT+cUXm8Wi7nSqsL+K9kynZJLRdXUoqbFK62HSFIZSz4Cm0VNI1IXpvbt3c8KESaxXrx4B8Prrr+eyZd/+7fJlZZ2kxWJRGGaZVLslJhoBDGJijHBceuQOTSPH3nsvg4OCjLnL6TT8EaQGV+8DERGe5auY5L3yHik0JSUZTGvR0bur3HSNGXMv8/IK1Ca2QYMw1rBa+fjjT5xTXZw+beecOXPp4+NDb29v/rhyJR0OgcHNyyvhjh0nuGtXJvNPnVLzcVpaLl966R36+NRkv379zgu7/scfqVy+PJLTpr3Hu+66+4z8xNHRv6pnKlrC5HlJ+5iYqNPz2WxCENY3++rZ1FTOnVuZ3lFuzGw2fbOjc87pUdqNixJ7a1o7ZLAQJiQYEV6SkkSedI2uxOcyK4uMjVURApUwa66Y/HyxaVq9mrGxFXizZX9zOqkbS8nUVGn8M/rQK6+od0leeE2jCrKiNq0SQDxjhqFc0jkOc3LET6amqvDcNhvJ5GQuWUKeOnX5C75bAe47j7RV74PHjx+nzWZTyeFwnFf+li9frhQKK1as4K5duzh69GjWr1+f+fn5JMlx48bx5ptvrvSsj48Ply1bdl7fvxhHteD7F+nkyRwGBATw3nvv83CWSEqikvwkLEEtovqATk42rIaaRtJu5/LlawmAR1NS1AQhn68ogJqFXvOuWwmVUhqVHh2mBcpmo2Hy0jQPk5vS1ujv99BS62Ty1EQwAKanG/ebwxjrK53Z2cEs/UtBSl0zqSri46lCoDIrS5n5pKOGmvw1jS8884xaVFq1asW1a9dd8j5xuaeSEgcDAwPZq1cvZp84IdovIcEwTduMiF/SZ8hmo1hQNI2Ze/fSarXyk09mX/KynC2Vl2v89NPP+Nlnc5TG8I8/UisJI3Xr1iUALpg3T1gT9MLr67oyHWsalSZLKuDkvU4nlclY0zyVX7Lfy/Vejh+7vZTfLlvGAQNuIgB+8MGHf4vHdPNmEUUuKupnZbaXZmHm5AhhV9PImBjGx4tyyNDDUgA6sGcPAfCbjz82rEF6X5Bljo6mis51JthCYWER3546lb179+bXX3/nITSr+c/p5KpVfxAA+/fvz7S0DG7ZspUnTxpR4L788isCYKcrriAAPvnkpL/V5h988KFq11q1atG/du1K7f3jypV89OGHWbNmTfr6+nLSpKdYUuIg7XZGRPy9PpaWlsG7775HvbtevXrs0KEb77z9dj799IucM2MGP/roe8Z+8w1T9u8XkmxiomgnXcNg3kzExyvUAmNjRRPGx5v6n6Ypp0HabMqKJ5UI1DRDMNVhO0xKEu+QqlR7hUAUJmdstd6Y1p3kZD2vUrLV4Q8q7LFmQF3kNG8Osed0iudNSwe5dKmaYzSNHuHH1Xwjw1rrpoKcHDEHaRqVMC1fMGWKeCeXLOHs2VTri1Jfy3v1QB4y2rXksX7xxf87gm/F9Oabb1b53TfffPOMGziZdu7cyYiICB1WtFA963A4GBwczAULFpAUgu/AgQMrfaNGjRpcvnz5Ram38zmqBd+/SIsXf04vLy8eOXLSY2Ixh9wVixzFdV1QVB6t0p6ka9i++GIpAbBUf5cUUJOTxZypsGI6RkzhsOSiJYXrhAQxOeiziDRXy3tTU2lMCppJQNU0T9W0aZHTNKpoT5pGQxjWNJUffX3z0EJIrKRS62qa2rzLb0hNgNQ00WYT2gqpvtBfKjUBmkYuXfq1Whw3bdrM8nLtH7fj/7W0efMWhoaGsl279izdvNkzwIjeOdWmxLRxiosjGR3NQYNuZZ8+fS55Of5uKigo5JNPTuLnn3/JDRs2Mj//T5aXa5ww4TH6+vryxIls0m5nZKQQPKSmVwojsu/p0XjJ2FiF/zWbaDWNXL16HTt16sTg4GB26dKFcXHb1EVznqhpfPHFlwiAgwffwvT04+dUlrIyF7t3786OHTuyzOEgnU4ls9ImopspNZvNRkZGGvvfU6c4c+ZKXnddLwbWqcOjR0+pMMTUNI/xT03MDxK+5LH5tNs5e/anrFWrlloM33prqkdGNc3YaDM1lQ8++B4BMCJieaUyuVxurl27jiNGjORLL718xgiKU6e+TQDs168ft27drs6Xljq5aNFi/u9/Szhr1id88slJbNmyZaUFOywsjMOHj+Ds2Z/yxx9Xs6zMpTb6a9euIyCCbFxzzTVnhU8NGXKrYh344YcNok+kpiphLTpa1JlUuCckiHpIShL3KevbwoUqQISMQjdyJFXoablGJCXpmG1dubB0KY3w83a7gUXXKXQk9EzOqzI4khS4pZWHNhsZH6/a1gxpoaYpDa9qdxNcQ7EXaRpjY/Xr+rPK+qBrleVYUkEwpFZZ01RZU1M92SDk5jshQZQlKkovg16OnBySCxeqNU7NY3J9S0wk587llCnGxlNGTnU6ScbH0/b995e94LsF4N7zSFv+psb31KlTPHTo0FlTaWkpN27cSAD8/fffPZ7v0aMHX331VZKshjr8/5buuONOXnvttR6DXU4ccqGQO2hltteF1KQkKhyXFGLfeOklent701FQoNYfPfAYGRMjzDV2k3OXNPtomhrwmkalDVDaX00zduESbGfS0irB1+mJU1QYXn0SkxOH2rnrmXc6Dec2rl6tFluzaSwhgap+PBZEObmbTG5S3qKmC1sxMR7mrz07drBWrVp84IEHL1m0n/962rfvAL28vPj5518ZGzO7EVHQvBmSjifMz+fJI0fYKDSU99//wCUvw4VKeXkF9PPz49tTp3o4Z8kb1HiOj/cwoCirhaapCrPbyZWRkbRYLBwwYADfeeddduzYkUFBQfzmm7V0OsvVd82ZWL36JzZu3JgBAQH85ptlf5lnM7Y9VjqfSWcoafbVNGkVNzJts3HaNCF8hrdvz5UrNyrcpdJcx8eriONmYHNOjhivTqcxd9100yCGhoYyIkKYPB97bCJPSacG+XE9XLC7uJivv/SSynf79u35ySez+XedJUePNsId9+zZs9L1sjIX3313GmvWrEmr1aeS4NuxY0eP/ydOfJwFBYUsLXVy9uxPKzhLNeXgwbewS5cu7NmzJ2+99TY++OBDfOSRR3nVVVd53HssNlZZu8z5od2ucLvSaVRupkwynJr4pNZUR9GIl+jPqk2InOul9lU3/WuaIVwqXxLpDZeQYGht5Tv1vq6UDuadjcQw2GwK6qBpxpog4T2qfzmdQjCVedOFcsmCKS2LUqhVkeXi4gwohMybxNTZbGqJUONMCri6X4hE8UhlUUyM3nejow3zoTQlSqCvpgltUnLyf4LObDPA3eeRNuPiYHxtNhtr1qzp4dxWVlbGkJAQpQWWzm0nTpxQ93z77bfVzm3/xeRwlDEgIIBT33rLmOB0La8Z36u0J/HxjIjQJy25UOkOM9Q0njiRx969byAA7tq1m9Q05T8gzTRMSKCc+SQWKi6OBptEQgJl0HSlHZaTXkSEyJc0r6WnK0WseUKT852yW+mFU+f1CU9OktIKJhdDMzRDYcXMrBBSO+00MVToM7VZs+Sxe09OZnq6mAuPp6ayebNm7NKlC4uLSy55P/gvp169ejEsrBkLCwoM87SubZekHlIojo0VGrUePa5lo0aNePx41iXN+4VMhw4l09vbm1PfesvAdkRGqj6saYaGSPZ1CYuX/VRuHDdt2kUfHx/effc9ygqRmLif3boJz3F/f3+2bduWN9zQl6NG3cWpU9+m01lOahoL8vI4evQYenl5ccWKH86a56SkQ0rgysw8YajFdFO0kjTS04UkoAuhp7ZtY/369dm371gyP19swGWB9PlKfkPxrOqCSlIShQBhst706dOHAwYMoKaRr78+hX5+fvTz8+NjY8dyz55EHjuWzm++Wcbt2xP4yTvvVGky9fLyOmdNt6YJzfCyZd9y6tS3mZi4nw5HGU+cyFbXn3tuMgFw9N2eeNuxw4fzgQfG8pG77uIPK1awoKCYU6a84cEZK5O3tzdr1KjB7t26cfjgwZzw0EN8eORIDr3lFl577XUMD+/GoYMH87bbhnPw4CF89qGHuH+/pmBZ5jqVc2JkJI3+FRPjselXMAG5y0pMVHKaFC6lgOuh0HA6BY5bb2ul9dUlX2nok1pcTaOa1+12KgYdTRPvM/+VuhI1D2sGhlv2DaX00NW5CQk0OJfNTnR6XtWaqPfXuDgTd3ZOjvFsdLRYy+RmQq8gBYPQw9AnJIi1zIMRQmIZVq4k585lZKTuRC13BsnJTEoSTcDkZK5fXy34ns/x9NNPs0mTJoyOjubhw4f56KOPMiQkhAUFBSRJl8vFjh07csCAAdy9ezc3bNjAsLAwPvnkkxc8LxfiqBZ8z5K2b99BAIz59VfKWUKC+yX+Vc1Q8fHKLCUFCrPEmbZxI0Pq12eAvz+feupTfvSRW+34qWnGpKAZwiOTkxkXR86cSTIiQuH7oqJoEJpHRxsaG30lk/OPGYpRMXl4C0uhWuZX35ErwVovu6ZVcH5xOg2codzF68BRKexW1JYxK4tLllAtHuasaxp58sgRtmnThs2aNTujGbQ6nXuSWsNt2+JJTTNwq+Y20dssOprcuzeJAP5SKPuvpT17EgmArVu34YovvmB5uSYWVCnlyg2dycFHCZdSItQ0FiUns/UVV7Bbt24sKXF4fMPlcnPHjl2cMeMDPvPMsxw9eoyiwPpk1ix1o1ZayrvuuIO+vr7MzDxx1ny///50AuDI3r0ZP326gfucMYOcOpUTJ+q4Xmk/Tk7m+2PHslatWkxNFfCsGTNICS5VWFGz5UbTDBaV1FSlMbPZBMWdxWLh/PkLVZ5yck7xjTfeVEEZqkq9evXinDnz+OSTkzzO/13rTUFBIV988SXFpPDhhx9R08j+/fuzRYtWHu8+vF1AIqhpZGIiNc2Yr7KOHeP8+Z/zy/nz+dVXkUxI2KM26B4bec1wzpVNr9pNz5OSMk3WOGqap8XLPJearQZy8ylVpLpALDee6nv6IvL/2rv2uCiqL/5lWdd1Xdd1XQkREZHwhUZKvjPLZ2paVmZvs7KXvd9p/czSrDQrs7LU0tLU1NLy/UTBBEWBhAABAQEBF1zWZV3WmT2/P+7cu7Novywr7deez+ey7OzMnXvvzJz7nXPP+R5hRVUalZxMfpZ+WVYBQW695UiWXSyfC4QaDMuKm4L6hYgfW29FRCQ3UgWt1dSwuY7Xy33LSWb+uLJMPsqG9HR2/yUns2A+ZSXhgw8Utw4FOHMjbX6+j/WC3n5bWJD5S4Ewd3MjEd+mzM81NWx+FC4gdXX/CIvvLrAkFH+07PoLga/H46Fnn32WQkJCqEmTJjRo0CA/VgcilsBixIgR1KhRI7JYLDRp0qQLDqz7qyQAfP9H4Rnbpk59QygevrInfKR4FKnir6B+Sxfmo9pa+n7ZMuav+thj5HZ7z/IXVCteoWzS0xmwLCoSQRniIOVTlkkoLL6UdS7rLj+Honv9Oqr+jSsloYBVbg+yTILKLTlZta2qysdtzJflFH9nodiVWYgbwkW7FeUuy0SZmQXUKSaGwsLCKDc376Jff15On66jr75aSu+//wHNn/85bd++k2prT1/0dp1P2bFjF1th+OYbv5cjbjXk9Hz8otTu20dabSN67rnnL3rb/+ySkLCHBg4cqARKdqZPZ8yg7atW0YoV26ng66+JVqyg2bNFMLvIeCasnzk59NRTT1Pjxo0pOzv3vM/7yCOPktFoFBZPkmU6dqyUANCKFd/+5vFLlnxN0dHRBICu7t2bVq5cS19+yXQI1dTQ7NlEUmUlTZ26luZMmUKhl11G4eG3MGCg+DMInaAs06uNcmLVSAEyIrCvro62bmX3z7n8YN1uj/CBtVqttHr1dzR69I0CiGq1Wtq9O5HKysoFcFVbbf9X8XgYF/Ozzz7nB2579+pF1dV2v23drrySTu3Z40+XqNznPGaB+5bS+vXsd5XVWx1XUL8UFZHQWwkJRLRwoRg/PgdwJhDhj1pURDk5CsuALFOLForVMjWVGSvWrvUzMIgVMuV/vxiMujqfhVmhxKSKCqF/xfWrU9GLKUCRkpLYNk4/yQG46gWo/hj4ubhxwwlf8lMX5QbiixC8Eu5pJ+43hcWBd1e8LFRU0OrVPioz9bxTW0tEmzf7vSwII4xyXr8YFt5ObkjiJ1es0czl4tIHvjvAuHj/aNnxFwLf/zcJAN//UVav/o4A0MbFi/2VE3/Q+Fu1EjnK3zTFG7jK4ipVVtIriu/bypUbz6qLK2OhyGTZ36JQ58/Zq1bU3Iog6qmnxP325Qq1XmfV1l8/cK38L6zYsioxBw+Yqq2ltWt9w8HjDaiigr15K2/fImBv7Vof5YViacrYs4csFgtFRUVdMPfp7y21tadpx45d9OWXS86ZeID7NqpL27ZtqaLixEW/R3+r9O3bl8LDw+k0N6fwoDZl0hX3cWYmK6tX07233krdu3e/6G3/q8qePUk0dOgwkSqWL3v36zeFamuVFZaqKnYTK8FelJ5OZWvXkl6vp6lTX/9d56uutlNoaCiNuekmse3z+fMJAB08mHZedXg8Eq1atYb69OlDAOjVV98mSk2ligqiExUVNHDg9QSAdDo99b7ySjp8OMtHbaZYw/hjL645dzBVfCQ5xzfJsuBT3bWrgADQc889f05r7YIFi/yei5deepm6detGTU0mAkAPPfSw2PfEiapf7d8LL7xI1157LQ0YMIDuvJMlp1i2bDmVlh6nV16ZTK+99h/68ssllJ9/lPbu3SfO17lzLO3Z4xa6iGMj/iLOMSC3DPoF7tXV+QO9ev7cAjQr/LYrVhDTW8nJJDIvKJVxDEuyf6ps4TvPOfSSk8U5Fi9W9K1CL5eczNrNwTbV1Ai3gHpY2KejuaVW+ZH7wvJAM7GvioVH6HVulODtrKvzS/ftZ92tU5iMFODJU2bLMonlu/x88ucAVsaRg2w1sxB38SgqUijdFP/1mhqiefNYH4SrgnJBExLo7LlLORf3/62rY/ML/4mzL+XlXfrAdztA+y6gbA8A3/OWAPD9lXL6dB1FR0fT4MFD2Qb+kCvKkmpqhOUsIUH1nb/+yz5rLF8hSt2/nwDQ1g0bhLJSn5O/datxp6hHPptiSL2Nu2AIpav6vb4VmGTZ5/yv3o+flFeifOebuQIUFt06nz+ZMkS+dquokTgg5opYtEVBy6Wlx6l169YUFxf3PyfHP7NIkpfWrPmeBg4cRA0bNhQTqXpJl5edOxPE71Ft29Ko4cMJAI0Zc/NFv09/q7Rt25YaNWpEu3ft8l0cvtxaV0c8TFskGZFlGjhwII0efeNFb/tfXRwOJ+Xm5lFubp5IgrFmzWYfiFFcjThZ/s03P0Fms/kP8cHyl6d77r6b8vOPUteuXf/wGD/77HPUUKejX5QlZL6a9J9Jk3z+lRUVIsiqro78sjRyQMd3Fa4c9YIf+UvSbbcxCrFnnnn2LPB75oxMDzzwoB/4Xb58Jd1zz73UtEmT86Yf5JzH6pKcvP+c+z700MPUokULeuutd8lZUCCwH18Kl2Uf8PUDRjU1wiqs8nDx11t82V9mOpEzbpHMaMa4qxCnluX4lFsgueup4soqzukHemtVNI/8RVRhA5JlXx94h2WZxMnUrg9qPc8VKwe2ap903meSZX//W+VNQcxnCsDknhL1/Y45+5CwAqvqE0F6KvYYvnpAK1b4ViSVpBJiRVOWfZF//FjFQi3L5DOeKAF8fFfe3KVLiWj9enG/cgYLHt/GmYM+/zwAfAPikwDw/ZUyZ877pNFo6OeDB8VTJstEVFurDkYV2lNk0ZF9nLnqpSRZJrr11juodevWZLd7fBOSAjD58y+0zbkaxUF3PdCseoEXuoi31c9Prc5HT8YVoSyTvymhzt8vWABe1cmEnyD3B1M+xTKVsi8fH9E3ZTun3MnJIZL37KFBgwZTy5Ytqbi45G+5tvv3p1Lfvn2ZL2KXLvT+nDn00MSJBDD+0WnT3qBDh9L9jqmoOEGbNm2he+8dT40V7tBRo0Zf9Pv0t8rq1d9Ry5YtqWXLlr6bRZYFUhDBIzwoJCmJwsMj6KWXXr7obf87iyR5qU+fPnTNlVdSairj1OcTLPcVNJvNf3hcJMlL8+d/LpJrAKDt23f+ruM//3whDR48hDp06EAWi4WGDBlHVFNDh1JYLMINI0b4rqfC8cqDXElW9JIS6OSXkra0lF1/lcWT+2KSzADfh1OnEgB64YUXz9k+p9NFGzZsouXLV4qAv9/jz3vFFVf4gd677rr7V/ft168f3X77HUSZmT4dzPUWV3hKwKK4iMrBCm24/5jIsgB2YmVLMRYIM6xisRTny8/3RYZxA4AaQfMJQr1SqDI380eQn0vso7LEqvU2P0bspzy/XO/zvlFtrcCkQucqO3GrLnfHUxtYuAsvb5PaPU0d0MxBaU0N+QI1lPHgLCHCws7fRmSfpZn3lwdh8zp5O0iWBcDm41pTw+7nhAQi4WenULNxqy7H89z+RDk5zNiUqsyDhw9fsqCQ46utYFy8f7RsDQDf8xYtAnKWOJ1OzJgxHePH34fYdu0AvR7QaqFxu+DRGtChA6CBF9i0CZ5Bw5FXbkFsLGC3Ax5JgybBVfh86UZUVZUCsgRXXTCqTxTh22+XYd68z9G0wRlU2xvAbAa8WgM0kgdOtw6RkQBghNdsAQBkZwOdoj3ILdQhJtIDOJ0wGI1wSQZoAWjB2qHVaqCxV8Olt0AHD0xuOzz6EOj0ehjVHZMkGPRaeKEBAPEJrZYV1nnojFp4JA1sNiA0FDAZvfBCw/oMNhxevQFOyQCT3gvYbIDRCIPWA5ekA+x2eM0WmNyVgM2JA7Yo9IjzwAsdNPZqABYgOhox8OL9FTuxbdtWbNq0Ba1atfpLr+uJEycwZcpkLFy4AC1bdsK2b79F6663ICbSg/WbN+PzBQuQmJiIHTt24N1330FlpQ06nQ4AYLVaMXjwYAwePBgffjgXO3bsQO/evf/S9v4Z0qJFCxw/fhxNmzZl19DpBPR6ePUG2JwGhBg9iIvTISu7D7R5QFR+Po4fL0VERJuL3fS/VYKCgjBx4sMYP/4eNDuVgF69roElbQeq466DKzQKjYJluFwuyLL8h+t/4IEHcOutt2L79u1wu90YMGDAeR9fXl6OBx+832/b7t3f48MFV2HLunUAgNE33ACTuxLdYs3waruiPA+IjgZQYkeWMwKdpAxkoCu6RrvgQph4vlEuAR06wKs3QAcv4HZjzI16eGGBBl506AB0uukmVJEWb775Hzz44ERERUX5taVRo0YYOnToWX0+X/nhh/VYt24dTpyoREFBAR599LFf3Ver1YIIgNEIk9ELON0oc5oQZvUAkgTs2sX0tdOBg4UWxMUBGskD2GwIM5uh1xvgMUZABy9CzB7AZmdKzelElDMDXm1XwO2GLjERB0OHIy6c6Vm9BBiNAPIK4QiNgcldCZcxBAZnNTSS8qPTCQdMMBmZnrXbAckJWK0aaMxm5OZpEB4OGPReGPRMB3uNJmjgRbVdA4tZC9jtCDOzOccLHTRaLdOx1hDfIOj1gCQJtQ27HWF6IOWwBT0iK+FFCGLMlYDbyMbE6QTMYYDbDaOR6TR+/XWSC3mFBkRGAga4gJJymEOj4HBq4HRbEGZ2QQemv92hUchOBIYM8KDaaYFF62HnN5vRw+pgfbFVAnk2eDt0QrndgFDeZkmCBB3cMMFuB9x6C/RuICw0FBqnAzqnEx5rGHQ2G2KizUB5OezGCNZHsxnOEmDlrhD068fGobyQDXknYzFgB1BYCHdcf4SFeuFFDMpLgG7uvdiS2Ae9OjU973vxYomslAs5PiDnKeeDjv9tFt8335xOOp2Oio4cIf7Kyd/oVfEIPv8t7oubn0+ZmUQff/SRsFxYzGYym5tT69at6ZXnnyevm0WCq5el/JgdVNYL/garBGv7lpjUb8JqrjFuseGfdecOblNbEH4t0I2/sPtFKigbueWAb1YZJXxv++r2KDvx/3lz9+zJoIYNG9KTTz71l1/TAwcOkslkoqZNzTR16utUUlzs12dZJjp6tI5++cWuUICFiwCbf3LhKbKXfPABkSyLgCgRMKL4PXJLVuGBAwSwbGEXu+1/d3E4nGQ0GmncuBeJ8vP9LWZVVTRl8mQKCgqinj170uTJU+jIkfy/rW2S5KX77pvgZxXlLjpBQUH0+SefMIdIdaYNzmGlWEbffpv1hyddoKQk4cOsuFgKNyZZ9tcLyclEtdnZZLG0oBtvvInUXMV/Zzl9uo6ioqLo3rvv9rOY7t8vU+nWrZSYuJfmz88XgbW1tUSUni74ZHlfZZl846NYZflKlsKc5bP4qpI5CPcB7kS7fTuLZ+Bmxxofrzt3Z1DrPZL9V9v4bzU15O+SUOtL9S46r17aU60mqn+TZSI/Z2f57CQTJMsiEI0fL8ZEfe3rxamo50FhklaxLHDeXfWqpDoYTu0qJ8vks4anpvrPQ1VVYtWCMjOFe3Rmpo+ql7N2iKhDJXiRu/WIsaljQX81aWmXrDWU46tNAO25gLIpYPE9bwkA33rl8OEsMplMNGniRPYwqrhuxbI/V3yKMpRlpms2byamaE6coNbh4dS+fXs6eOCAWPLyCy5R/lGfm4MRtduCWhkIP7WKCvrgA/Lzr8rP91HDZGaS3xKbn5Kpv10+23dYLLFxpcUVqjIGnH6H7yI6pVpSVCtPEZSgTERcyXXv3p26dOlCfwdDwldfLfWLNgdAr7/22ln9njDhQdLr9bR7d+JFvxf/jDJhwv3UrFkzkk+c8Osrv0f40iiPivnhB+bPfPhw1kVv+8UokydPIa1WR9krV/otwdbVEZ1ZtozefHMRjR0+nJo1bUoNGjSgp59+hk6dqv1b2iZJXnr++RfEfZyQsJsiIyMpJiaGpJUr2fWdPZtIVr3UVlWx50/FZsDBirpu9TFqZhr1PhUVRN9+u5o0Gg3Fxsb+qg/uHyncr/W3yqZNWwgAPfbYJHrnnQ/p3ttuo8tbtSKdzj+JRULCHlEvv44CkHEiXDVQlGUGtBRWGu6uxtndRBaKujrh/0qy7Be4JXxl+Q6qgVO7tfGxVtsTeGCaGmiKseHtVHSomD/UgciqIuYO7gir6GWuq3nTamrIl81PBaq5bzLHraKNqrYLn4LSUl8iDR6tph5b3i4VEFe3RRhYFD74xYt9l4NWrPC5/aWm+pKA1Nb6OIDT01lRUaIJGrTkZKLnn6e6OqINGy59H9+NYFy8f7RsDADf85YA8FUVnlkpNjaWTv70k88MUs9yKYpiAeYvv+qH+Zf0dGrXrh21sFpJPnPGT3kIJahSWlxJCCuGcgCP8OU0LYoeZedSB6gpGqr+pMX5OEVeSB55oTrnuf6vX9TWB3VgrboPfjQ2aq2uGiS1nm7QoAG9//4Hf8u19Xgk+uyzBRTWsiW98MKLdNtt48hgMNDq1d+R3e4gWSbavn49AaCPP/70ot+Lf1Zp1aoVPfPAA2Ji4teZXxpxLykblsyaRQDI4XBe9LZfjOJ0uigqKoqu69+fvNnZgvyAu0C//jqbox0OJ73x2mtkMBioR48ef1tQpscj0WWXXSYA3k03jWEBZbNmCb9GToHI/e+TkpQAre3biVavpoQEhex/9Wq/uvl9IW4OWcXlrVrSOZCSQh07dqemTZtSSsqBv/X65OQcoWCNRrzAxsTE0BNPPEkffjhXZGTT6XSUn5Ym9KyguCoqEv7aPPBKcU8VtFecrUAgMrWOLS2lhARmYOCJFGSZfBWpLMjcwKAO9JJl8vf5VcZZvSJHskqHyyprrQKuhcWZXw/l2ohARdmnv8W14z66ylwgjDcqq7ISB0myrIoRUSrlpzqLp5gH7fG4FCXzHx82rvPZdSPfgNXUiHuVx7fxYMC6OoXJQWarDJs3kwiI4/vyFdL8fCJ6/XW6+27lfOnplJws3NUFZURFBVHNV19dsqCQ46v1YFy8f7SsDwDf85YA8FUKJ7jv0aMHlSiO8/wNXEwMatRW64t+Vis09bO9bRvLcZ2wbZtPWXGtwhVlfasvR9DKpCMUlSrilQMY4SIhq5bNlNf55GQSik6WSShwrgDVBgm10v1f2/zOo/zDx0WWSdA+ceXN252URCLilrtJkCxTly5daNy42y/K9c7OzqXWrVsTAGrcuDFdO2AAaTQa6tOnz/+FiwMvHTp0oEmTnmbXKSnJb3IUn3V1InPSK88/TyEhIRe93RezrF+/kQDQ/PlbxZKwSPyhhLnLMru/V648QMHBwTRv3id/W/tstmrBpDBy5A00dOgwCg8Loy8XLRKp0EmWKT3dF3wvQFNODrOUPf44UWmpj/Kq3j0h9BrXeZmZ5HY46O2ZM+mKK66g6667lQwGI1mt1l/NyHbqVK2o70KLy+Wm+fM/p5kz3yaTQpXGQW5OzhEqKyunRo0aUevWrenQocNCJ3Frrbh+XPFxBcWpGvLzSUS+Ke4J3C1CwV1EmZlq0h4R3MYxNX+R5L8J63ldnZ8HCgezvG/8H/G/AmSFEaTeihuvTz1A6q4pVbBjeCSayuWA5HO80Mj+gFlFbuHfNlkVEKi8NfA+C4u3OosnPzffn5+vooK5iKSmCtcSAY4VVobSUiJ65BEf16/SqIQEhS5Tln2k00qCGaqpofXrfZRo9OCDLNBzw4ZLFhRyfPUDGBfvHy0/BIDveYvmT3AT/r+S/0yahFbx8bCgGhZUA243NLZK2GxgAWBOJzwSGzYNvDDovdC4XYBeD43k4TESMBqBa67ui+7du+ORhx9GXV0dPNDBozcBbjeKy3Wo1oexIAwW4gCN5IFXb2CBC2ABECajFyatC97QMESEe+EKjWLncjoQZnb52mKrhM7tAMxmAECPeC+81hCY9B6sWgVUIoQFrmm9gN0Oi5EFJbjdEEFrPNiNf1dv4/+zYDolKEPLgiQ8YJ8WvQuIjYXDqYHZDJgKM+ANDYPbDbjMYQhxF8Og953r9nHjsG7dWtTW1v4FV/J/y+WXX46jR4uQl1eAF154EZpgrRK0tgvBwcF/e3v+KmnWrBlqyorYNY2LY9cfQOmxIrTv2BHjbrsVw0aNwdzPPkOJV4sfN27E4MFDLnKrL64MHToUVqsVmZm7AacTZjMQEe5lD3ZkJKDXw24HTOW5uPXmK9HEaITTeepva1+zZs0wf/5nkCQvvv9+LebO/QixXa/A+AkT0P+66+AsKwH27UNXczFi9MXQ2CpRXg7ovl/JdFhcHDIe+BBITGTby4vhcrNnmz/jBj3TRzx6qszcCe9//AlefOkltG0bhZSUjXC5nLDZbJgz5z0AwOeff463354Jj8eDuLiuaNKkMcrKK/+UPr/wwvN46KEHMW3a62jSsCHaRUVh7NjH4fF48PDDE1FQUIDTp08jKupydDlVDTid0MCLCG0ZvNExiHBmsWhhAA6nBg6thQV9lZcD4eFAZCTKEIYCcze4zGHQuR2wGD2w25lKDTM6gNBQxIQ6mJ4FUOAMgcsYAh08MBoBndYLSWLtdRlDoNcrqtxuR4iZzQ12O2DSe/yChbkOlyRF37rd0OuBw4dZ4BmfIwDWXK9WB7MZqLZrkJXt09laLaBxu6CRPKIdCA+H18jmHK/eoATMaWBwszHyanV+el8DLwySAyFmD0xG9h2SBKcTcLk1qLRpEKJ3oKBQg9xCHXYURvHpin3q9fBYwwBJgt2udEoJxIPdLuYKlzEEsbGAN64brFZ2fEy0F169AV6jCZIEhIV64Zr1MYaHHgTS0gCzGVklJuj1QNdYL5Yt18BhDAMKC7FoXyc2OG43hltTMH480CO8DO91+AyLDnSFo0vfP+U+DMj/hwSAryLffrsSRmMTdLp6FFNE2dmohgUHMjKQcuQIQqxsUqiWTHC7AY/WIBSWC+x/DgRNeg80kgdaAF98/DGOFBWh59VX4/2Z09CA6uDVGxAR7oXTyc7thQaQJJTZdGeBUJdbA6+eMT8AgEHrAex25JabAK2WKUaFVQFpaUzBZGczxep2AZKEsbd4WfuNJlZvdLSY0LjS4sInv/rbeFF/t9sZFtBJLtjtvnHQ65Uo6vBwaOzVCA31KcVKGxsnDbwYd9ttcLlcWKdEpf8RKSkpwVtvzcBtt43FSy+9+Lui7oOCgtC2bVu89tST2LJlKx555FE0aNDgD7flUpOTJ0+iRYsWWP7DD8jYtAmQJBQUagC7HYk7dyI3Nxf7DxyAJLnxzAcfoHXry5Bx+DBGj77xYjf9okpQUBB69eqNpKREVGrDoPtxjXjWi0s0KLMb2OMTHQ2XW4NGBgMcDsdFaWdQUBAub9US69dvwN69+5Bz9Ch6DRmBJGrMQE94BGC1svdhsxnQavHZpgiEhwOIi0O3WXdgb0kEyssBHD7MWFcUxeSBTjz5YWYXbrhhFIKDgxEeHo7x994r2pGZmYmSEuDDD9/HK6+8jEaNGuLnn38GADRp0uRP6WtWViYAYEjfvig9cQL5BQUoL0nFV/PmYefOnZgxYzq+/XY19uzZhSmLFqEaFjicGsBqZbqoQwd4O3RCmdsCk94DExyAXo/c8OvYtT1wAFotECXlwuCuRkahCXA6EebMZaBXYWzgDDglJQzE2u0MiHJDQpjVI14cdJILBr0XDn0IUF6OwkIgRCpj+ho+wMtFq2XqG3o9ysuBHnEKS4Ui1XbGCOF0MpBtMXvRKZqBaJSUwGT0wgUGbg16pp8BRacrTEG8Pq/ZApjN7Oq6Xb72SBKbJzggdrsBMGYfvR4IMXvgNZoQFelFTLQX/foBhYVM32skxkDkdgOw25mBRDmvBzpwhOuFRsw7GrCXhZhwl8I640BaGhBlrERWtgaG7IMAgMrwbiiz6RAeDsTGsrG4YxxrE6KjMWFYGWC3MwNPaCgM5QWo1IYhLg6YMN6Li2Bb+d3i/RNKQM5PAsBXkT17dmPE8OsRGdYIAHCmc2dYrRpcdfXV6NmvH7we9mBbjOxNGICwfHIlx8GpV6tjIFirRef4Hvhu9Wq0ahWOF//zH2xN2CPAZUS4z8JS7dQhNJQBXSGSxCwv8ApQDUkCIiMZ9ZkkMQBuDsHuAwZUdugPSBKy0IlRyrjd4g2fixrYas7xqNT/TewvSWIS5GI2M4UIrZbPqdC5HbDZgJQ0pb16PZxO1myPOQQhegUguN1o2Kgd+vTpg9mz34VbUbC/R7Zt24Y2bVpjypTJWLXqW7z77jvYs2fP767HazT97mP+CbJnzx6sW7cOZ86cwbAHHoTDxV5QcPgwdi1fjvDwcOTnH8WWLdtw7FgpFi/+Chs3bsaYMWMudtMvugwZMgQZGYlIS/sF6NePrVpoTTAagTCpmNFaud0wuKvRt1cv/PjjDxetrV69AQDQs2dP7NyZgOBgLwYP7o2RN9yAmJhodI2Lw9hbeyKnkumE+HgF/6SlAZ9+ij6xDkQdXgfo9cwSajTCC42wIJaUABt2GeB2d8C011/HRx/NxUfz5sFoNMJsNqN58+YwmRzYsGGTaNOcOe+jutqOxo0b+7X16NGjKCws/N19XLVqDV5/fRp+KS4W20LDB6DwIANGGzasR9++fdGmTRsk5+fDYlZWprQ61tnERIEhK+3KypteD0liFm9ERsJsBor1MYDZjK6xXmSVWwRQLC7RoNoYwXRqdjasVqBbeCWsVkBTUoyCEqbvymzK+SQJDoldF60WQHg4o44zm1EsMSo5HTy+3yHUNaDVIiLcC4dbaafSBr2eXQ8TVC9ZijW4Uh8BAH4ramYzwK0TGokBcq/RJP7n9Xq0BnihQVoafPMMlDlArxdjqIGX0VUCyMrWIOMwo7zs0IHt73DrEB0NtkJpDRHg1gsNdPDA5daweRJeaOzVHFOzOUSvZ+8Dej17KdNqER0NFJi7YYutG0LcxQjTV8MkVUOrBSzOYngkDXSFuUBeHhu40FAcPgx4QiOAyEjo9cB10cWotmvwB6aXv10CwPfvkyAiot/ayeFwoGnTpjh5sgYm0/8fSJBlGa1bt8I999yHd556HC5zGMbcOASbt24FAKSn/4yuHWIY+FMmGe7ewEW9dCX+lyShSJYs+Q733TcGiYnJ6Ns73ndyZR+n058vt/6nR9JAp/V9dzg1MGnZMliZTQdJYpyMWi2gKS9jr+FWK7zRMed0XVDXDUkSS1A6eFBp1yHE6jvG5dYIUMtm/Hp9Vnh7NWDLwRxIatwun5XE6YQ3PAIatwsphw3oEc/4Qg/+/DP6XHMNevbsiblz5yE2Nva8rtmZM2cQHh4Gm82G8eMfxjfffIFu3bph06YtMKra+G8Wh8OBDh1iYDQ2wfHjZWjRogWujIsDnTyJtbt3Y+bMt/H88y9c7GZeklJdXY0BA/qjuPgYCnNzIGlCceAAMHyAC4czMrB02TLs3LsXdqcTTqcTDRo0QF5ewe/irv2rxOFwIDo6ClVVVX7b77//aSwY3o/phX79AQCaLxcht98ExLgzsOxwV9x4IwNP1XYNjEYgOJiw/OslOHK0BO7KUnyxejUqK5n7QkxMDHpfcQXWbNqEq666Clu2bBPn+rVxiI6OwtGjR7Fq1RrcdNNNf6h/a9aswaeffoLk5H1wKtbpiIgI5OQcgcVixunTp3HXXXfjo/dmo+h4C3SNdKDAZkJUKFsBU+sw7NsHAPD26sOs3XY7vJFRkCRmmA1zF7Al9OhoAOzlPTubfTVoPah26nyAVRGrVWVU4Ghbq4XLrWE8uZIEj94EXUkBc52RJBSU6BAV7nMtOafedzN979Wycxokpo/5PgCz2mq1EG4qXmiE651wXVGAuVdvgMbtEp/Q69l5JI/vHHplrjF6fe4SgOCNVwNtDRine0phiHi5UrdF8AkXFjL3ErebzQklxWwuNRqBkhI2gHo9Vv5owMiRbPgLC4Hr+vks4A7JALebGV9KSti1Cg9nGBgA+sc5kFFoQni4wldsKkfTli1RU3PpYRiOr74D0Pg39/51qQVwE3BJ9vGSk/NxBP5/D27bunU7S5GZkEBUV0dbf/hBBE/Yq6v9AtD8qMY4Z2O94AD1Pl67nRYvXkqNGzem668fTm639+yAgaIiX7SuKjJBBAyoWSVUWeTUPLucSUYETKijI2T/gBV1vepxULHNnNVnvk0daFF/X76N98XvuKoqFmCyebOvAUogw56lSyksLIwAUJcuXejgwbTfvGY1NafEMQDo4YcfJpfLfdHvpUutOJ0ucjic9NNPyXT/vffSwIGDqG/fvjRv3ie/K7PWv7Fw6qwjR/KJMjOpvNxLr734Imm1WmrRogWNHXsbPfHEk3T33fdQdnbuRW+vLLMgsLvvvoesVqvILtg6PJyaNDHR999+S5SURCtWsH2ptpaFwCcnE9XVUXIyiYxZnEbqcEbGWamEeWnZsg3dd98Mev315YJi7NCh9P8ZHGoxm8XxP/2UfEF9ras7Q7m5eXT8uI+ajQcmAqA1a773RfVlZoq07iTLPmWn0EPyDF8ky/5cyAqzD6fcUhLe+ZhQON1WUZEvTTJnkpAVVgZVcBfX2fzUPN1ZcjL5WCF4qT07OJAzVcgy/erAqL/y7yLyTUWrWf+Y+tzAIohNzbGpULyJOlWTXXKyjweaamv90zAr+9TVkWAc4dtlWXVcRYVIE52aSr4Iw6oqwZXMU0iLOngGPYUOtKKCiDIz2ZgqHTp58tKnM1utcPH+0bI6ENx23hIAvjLRsmVMcb/43HN01x13CMXZuHFjstsdQjH4UZqp2R5kVXS8Oo1jXR1NmvQkAaCxt95KTofDb381QBaKUKGeEQpTdR4/zlxZJkpPFwqiro78GSPUn7zy+jy76t9VALm+4uQKr35fubI86yDeAT5x8H04xdL27WKC4Yqq7tAheu+9rwkADR485Lyu26lTtWKia9OmDS1a9OVFv5cC5Z9f1q37kYYOHUYWi4WCgoKoZt06otJS+vKddwgAvfbaf+j06bqL3s5zlZkz3/YluNDpqEWTJnR461aST5wQDCv5+cRI/2+4gWpqiJ5+mj2u27eTj9dVQXj5+URff72FJk+cSBaDgQBQcHAw9e7dh266aQzpdDoKC2tNw4cNo6ZNm4pncfr0GbR581bavz/Vj+c4NzdPtG/Fim//1L4fPJhGkZGRBIAm3n8/ebOzBbNMfQMF/+TgLieHBEODLPszk6mZGqimxpeumAMyRd/xTRycinNxOjFF4auZHQQwLC0VyWV4+/j+fkC1HgsDV7Hid/kcOrxe+/zAaD3KMv6PQm4h+lpb68P46hOnpvqrepJloqQkP3pPNaMPH1NhzElNFWPIp0+SZcEOkZPjY8yQZWVcc3IY00NFhY9KrqaGkpPZYbNns/ub8+onJRHVnDx5yYJCjq9WAbThAsqqAPA9bwm4OgCoqKjAgw8+gJ9+2ovq6mqxfdeOHbj6mmsBwG/ZCW43oNfD5VYCuVTRueolJ43GiyZNGuPRRx7B7JkzRVCX2gWC+wWL6FdlOUnjVPy4eEQs/x8A3G64YBAByQALdqi0aWC1suYZ7GVsyUirFX5psNmAAQNQ7WTBGKIN9Za5HG4dTEZWX4jVC7WDVG6JAVYrYDF72dKdkqZYq2VtEGOiLKFJEtvO+1Bm0yHMmYsCbQzcbla10SghceFkvLjoS5w+XYvVq7/D4MGDz+va7dq1CwMHsmuk0+ngdLr+r1gZAvL3yvbt2zFs2BD0jI/H0OEjEB/fFyOu7Q3o9bj/5ptxsLAQqamHLnYzf1WaNWsqAu32JCTgsUmTUFpWheLCHBgqK4HISGRla8SK89hhDiAxEZ5Bw1FezlxCu6YtAQYNQhnCEBqq6IfycpQbInEiby927tuHme+9h+PHj6NJkyZo164dfv75MB5/fC6Gm47jm19+wTc//CD89qOjo3E4IwMNGrL4idOnT0Ov1/8ut5Cqqirs27cPer0eV155JSwWC9LS0vDkE5OgCQ7GzJnvIDMzEw8+eD8WLvwC9917N4Lq6piLgaQTS/IAhN4SLl3l5Uw3xsYyHVhYANhsyDX3QEw0O67SpmGBXVxnOv3dDLzQQJKYPjPlHYQ3rhs0aQdZJJayfF8tMUYCg/5XXNokpU1utvTvMYeIurn4uaihnmsD4OcqUV9sNrD+Kn4c3tAwUZ/brQROAz4fBUlCtdsAi5mdKytbg07Ryvyg9/i5cagdlQvKmTtElLkaSEuDI/466PUKQ4Vej6xsDUJDAYtUiTIpBG43EBXpFemceVsjzA5USyZYnMVAeLjPVcTpBKxW9l3vFcGYXqNJXBcvNMjLY1Og0QhUVjrQunXTS9INgOOrFQAMF1CPC8BtCLg6nI8EgtsAXHbZZVi37gecOFGF/v37o1OnTqgsKUH+kSN46aUX8frU12ArKWE7c4AKf78u9XceGJKQkAK3240brr9e5I53ODVwuHXQlBT7gV6vngUYcFo0B0y+SGLOi+N2i+A3rdaHa7Va4GCaBiH2XEgSYHBXw2MNg1erg8utgUdrwJrCbkBcHBxuHQoL2TklidGg8YZz+hlOtxPiLAAkCbsPGJBy2ICMPANi0lZCq2XBHm43C4Yw6L1CQXPQC7BPAXq1WhSXswC+DHcMorTFOHTIiR07PsTQIdG4/513MHjwIPzyS855g14AuOaaa5CcvB8bN27GTz8lB0BvQISoAuJ9L5K/Ibt3J0Cj0WBPYiL+8+oUXH/9QPaDzYambaNw+vTpv6Clf560a8d8UQcNGowevfpg1ervcPJkOZZ88gk84VE4mpqK8DA74uOBsbd4US2ZgNBQ6F56BhGFu9E1vBq46y4gNBRh+mokJoLxakVGIjQE6BIWhhvHPofsrCxsXL8enaKjcfz4cXTq1BHvv/8IvvjlFyz68ktMmVKNLVuO4oc1a3D06FG89Mpk0cZGjRqdN+jVZGcBAIYOHYxRo0ZiyJBBaNGiOd5/fw42b96ExKQknDhhx7BhQ3DttdeiefPmWL16FSSOQtPSYNB7UVyiwcpVGhGM7HAzSjCXWwNvaBi8sV3Z+bg+jI8XTAMoL0eIlhlEJAkMGCs3l1YLoLwcGqcDOnslTFoXPLHd2M8dOiAjW4dKYxQq3SZYzF5GIwYVgC0v83VWq2XsO+ERjLGnvBjIyxP7cLDLac88EgPbGnhZUJ3i03su0Asw0Otys0BlmM3MtxYMNBskB6DViliPSrsOlU4DjEZg7z7G7tCpg5exR+iZsUPMSwpI9oIxEEWFexAaCnz4tQXo1w+AMrcUFgJOJzoZiznrJsxm5uYMtxvh4YDByfzHI2wHAb0eZrMSrCZJbOwUo5NghuAg3e0WwXvIzkZ5ORCjLYDFzNgtTFrXed1vAfl3SAD41pOYmPbIyspCaEQE7n/oIbz77juY9sYbaNGmDU6WHoUHOkaTA2bJrM+SwN/GNZIHiTt/ZHV2vopV7nbDaGR0ZwgNZdYDVYSzBsz64HDrYDQyyhav2SLqd0gGGLQeeLSMTonHaGjgRbdYD7zRMdBJLniMFuic1UyhleRCd/ggxtzIlKbdrigavR46eOAxhzBlJ0mwaB0os7N3TqcTQGgoist16F++Ej3MuejawQPvLWNhtwMR2jJYtA6hPAGmQJ1OoKDcIOpBSQnrp9uNCGM1NPZqGI3AwnXr8Pik1njppWfQu09fpKYewtdfL0WrVq1+1/UKCgpCfHw8hgwZgri4uN91bED+v0X9Yuo1mqA5nPGbxzRp0gRerxdnZEJxiYbRfGVnI+GXFigtPYHzWCC7qFJZWQEASE7eh+AgQrt27TBy5E1477PPEBx0BlE9eiC8dWug2gakpcFmA461aINFsT3w4FfJSNi/H66jRyHX1mLSa29gwYJXkNO0AyBJOJimAcLDER4OmEwmDBk2HN+u3YirruoFW3k5AGD5qlX4z9uzUFi4BJVF21BR3RJXXdUT+/en/KH+eDt0AsD0MgDMmvWJ0r9kDBkyFAAwatQoOBwOPPzww7j11rHYsGE9dHo9gpo3x7OLF6O4hFkSxw5zCPDI2QE4paQ4nzUE3vAIOJwaFJQrNJJms2A3sNsBREYymi7FeOCxhjGGDABwu6GzlUGn9Qo9HaJ3IMToQkGhhjFF2GyA04mvvwbjcuegTQGtnH7MGx4BhIfDYWQsEPx3rdZHA8bBX2iorw/qYOb67DwGPWPhgV4vlgs90LHJxO2GDh6xUme1Mittn15eYewp1kYBgM/yCmZ1LijRCUqzjGwWGPfEAy7AboepPBchZg8+S+yEvYeZQUdjrxbMD5rsLHj1Bhg2rQGMRvz4IxtjXr8OSnCc2QyYzcgoNMHpVPqWlgY4nXAZQ4TVHFotwvTVqDRGMYNQYcrZvJ2XoPyqM/3vKAE5Tzkff4j/dx9fdfnpp2R64oknacGCRZSdnUtNmjQhABQTE0NHjxYJ96b6/mL1MkiSLBNlHT5MJpOJrr9+ONXVnfFL+0myLLLqCP8l2T97j9rvVu3bJTLkqHyzhA+Z4sAlsgbV1rIsN5s3M2f/oiJasYJ8/rZKRAs/nrutkSyLFJE8MU5dHXMNFH5VSvY5fh7e9tWr/du7dq2qbxUV9MorkwkA3XvveCooKLzo1zxQ/r2lquokrV37A2VlZVNxcQm1a9eOxt5yC8kyiSCvzGeeoauvvpYA0MyZb1/0Np+rHDyYRm3atPGbBz//fCHJMtHevfsoKCiIGjZsKH7r368fdenYkTRK+l910Wq11LhxY/G9WbMQevqee+jbb1OJFi70xTHIsp9v59wPWcrg+nU2M5spJibmgoIpnU4XtWzZkqLatqUru3ShW265la666ioCQNOnv/urWOD779eJYKvaWhJpm3mQGs+wlppKLNCvXjr3igryC8QSvqnr15Ms+/xbZdkXZyHqlmXmN63cR0rsFtOh3NFWyWBWVOTbJst0VuwEb0/9bepyrt/q/3+uov5NHfZBdapUy7IvOxxVVfn8hHk7eYbOzEzW56oq1qnUVOZTrsrmxqc/kmWi2loxv+TkkIjQ5n7VfK4VftM5OcKtWsmILM5XVER+vtIVFeSLmTl69JL1f+X4ahlA319AWRbw8T1vCfj4/oY8/vgkbNq0EUeO5AOAoHgBzqacARQ/X7dDLAFt3bQJ148ahfHjH8Cdt9+K9h07AwhFWKhX+OoatB4/qjQAglKmPhUZP59WywwHVitb7dHBAw90jIInVGmT5EKl04AQowsZeQbo9UCMsYz5vRlDYIDye3kGEBsrfIR5PwG29FTsDkGEVMB82swh0NnK4DKHsd+VDEAIDz+LFg0lJYxjjWftCY2AvbocoWFhePnlV/DGG2/+lZcuIP9AOX36NIgIBgN7FjweD5KTk3HmzBl07NgRLVu2/N11EhGcTieCg4PRqFEjOBwOzJr1LrZs2Yzs7GxBiRUUFISGDfX4ac1qxLVvD+zahQ9OBeG55yYiMjISc+fOw5Ahl2ZWu6uv7ou9e/eK73q9HkuWfI2bb74ZALB7924kJu5Bv35XY/78T7Fq1bcYMWIk1q79HgCjAzt+/DjOnDkDvV6P22+/AxMnPoSWLVvi7bdnYs2a1Thx4gTuGTsWHbp0gaVFWwwdei1CVaZGpxPYsGEZtmzZgt27d6GoqAjt2rVDfj7Tnd9+u/oPc0TPmfMennvuWTQzGnHS6cSIESOxfj1bUUtM3IuMjDysWbkIM2d9gPx8F667rhOsXjcc+hBuzMS2bcCo0BR44npA51RiObRa4MABAIB3wHUoLASisjeAZ0rg1mKNvRoOrQU2m+K7ajQK/cz1JqdzTMk2+ZJPuN04WGhBhw5MHcYUbkFl3BC2v72aWTHdbqCwEAfdndjKnVZ3FhVYfTpL4GxqSv7/r/3Gv/O6PBJzVzPpPSz2IvTs+jV5uUB0tH/95eUQJubERDji+mPVKmCCeQ1SwsegR6xCG/f9977kSnfd5aNCk3x91B0+iMrwbgixsvbYbMLd2hdvUpjB3G169QLS0lAcz+6h8HDGoYzwcKz70edjfUd8LksIZe6EMCsbP4fDgabNml2S/q8cXy3Dhfv43oGAj+95yfmg43+Txbd+eemll+myyy7zexMWb7rnYjRQXmk5i05dHdEnn8wXFojrr79RvKmqrQg1NSSSvfM3VREhrKY743nauaklJ8eXUF720ZYJS0wyowzi1DL8DZ4HKNfW+upNSlK+r1/vi+jNz2cUZNxioqKNqX881dQwa7ISCs3bwsflWFERhYSEkNFopGPHSi/6tQ2US6scPpxFXbt2pVatWlFhYTEdOZJP7du3F8+OwWCgOXPep9LS4+dVn8cj0eLFX1Hr1q19TAcNG1Ljxo2pcePGdNOoUXTrrROFlfP668fSTz+dpORkotWribYuXUrBwcE0YcL9VFt7+qKPz/8qoaGhoo9t23YhAPTKK5PP2m/BgkV+FlGTyUTffJNGNTVER49W0Kt33CEox0JCQujmm2+hjz/+lGy2anrnnXepXbt24lhNUBC9804e0ebNJMvsOd+8mYgyM+nMGZluv/lmats2mlq0aCGOadWqFcXHx9PatT/8rv5lZWWT0WgUq29VVSdp6tTXKSoqyq8/l19+OaWmHiLKz2fR/bLsr2N5hWqFrihkWWY6jatUKi0Vy13c8piTI9jRRJ9Jrsd0I8uUn08+fVlRwepJSvLtq1AVKCqf+BLd2rUq1gXVsbKsovyqx/Qgy77jxXf53FZiMY+oFLjYLynJZ+FVxqeqyjcv8WrU9AyyTEQ5ObR4sdKG9HSxIEDr1/uWCjMzxVyxYgXRvHnkO762ls0bFRW0cCGJtiUnExuz0lK2aqjMMzk5JM5fVaWwlLz+OvGLk5nJxldQm8kyHTt26dOZfQ3QmgsoXwcsvuctAYvvb0jXrrHo3DkOn3zytWBCUJOTe6Dz+SC53fBofdl6NGBW3c17kvDuu7OwffsWfDx7Nm6+6xmElLCIXw90zEKs1TIHXKMR63aZMKpfNdtWWIgya1eEmV1Ys8mAMQOqWYYlycAc9hktAntNPnwY3kFDRKpKrRYwwQGX1sR8g3lb+Y/1iMxzSwwIDQVMzjKfyVerZa/WdjuQmIjqfqPgdkNYBwAWOOQ1msS48IQX3H/OYmTjM//zhXj00YeRl1eANm3a/PUXLyD/GPn443l44onHhQ/tZZddhtOnT0OWZWxZtQrVUjjmzHkSu3btgl6vx1NPPY1x425HWloaEhP3oLS0FM2bN0fLli1x/PhxFBYeRVZWFmw2G0aNGotxl7dGsnQloiIqUHv8OHoNfxhXd26C0bfdhp/S0+F0OvHOI4+gz50fwGgEDh1y4ukn2iCuezx+/HE9tPUjWS8xKS4uRlFREUaPvgE1NTUAgLi4OD8GiuLiYvTp0wt9+/TBw488horCAvQeMABtW7eGB8x/1WwGpEPJ2F1aik+XpKKiYjf27/8JBoMBkydPwZYtm7Fjxw5R58+7duH7PSEoKZkLTRBh6uTJCAkLA8rL8f706ZiyeDHefvtdTJr0KADAarXCZrPh9tvvwMyZb6Np06bnnda4uroamzezzIINGzYEAEiShFWrVqG0tARdunTFyy+/iLS0NHTu3AV33jQao26+GbWeWPSIrIagvAGA8nKk2KJYIh1lRQpmM/MZPXAAKfGPIjoagoVBrFqZQxg7gSShWjLBbD6b1UewDYAFhvXpxRI7oLAQPNOQNzKKHcdjPCIj4YUGJSVAhLGa7a9kIwNY3ERUqKLvy8uBDh3OaQVWn/tcqecFCwQ/t90OR3Q3mNyVyCgPgc0GXDfg7BxgZeUsoYmpPJe1VbHYlpSwZkaU7IW3Vx92HiXtdbUxQuh+AKxP5eXMnGuz4bPvQzBxnAMoL0eWFMNdqdmYOpU5cdcuvLZvOKZNZZb15cuZ+++oyAxM/KgrPnsgBXC7URzZn1mA3coYcSdlZRwcDgeaNbu0WR2W4MItvvcgYPE9LzkfdPxvtfjm5RUQAFq69BvxNq9OzlDfcqA2JnDrwn/+85bgtnxk4kQ6ebKOvUUrlgRuFRBv3ZzkPD9fEHlzCyvV1BAVFVFVFTG/3YoKwXGopg8W7VTe8P14FpW2c3808UZfVUVUUUGZmSSsFaIfVVU+xyz1OChW4PnzfQaEszgsuQW7ro6GDB5M8fHxF/26BsqlVSorbdSkSRO6557x5Ha5KDm5kK655l56eMIESk//hWSZxFJFdWYmvfTww9SoUSNh5escE0MjBgyg+Pje1CYsjLpHR9MdAwbQK+PHU/I33zAHzsWLBZcorV1L3rQ0GjDgEQoODqYNGzbRwIEDyWq10jXXjKRrrx1OrVvHkcFgEH79/5Ry+nSdiFMoKjomti9e/BU1adKEWdNzc/2T1axeLXz9+SBVVCh8qElJlJt7jB544Ckx3kFBQdSz5zXUqJGBgoJ8/rwajYYiWremtJ9+oro6os/ns5WuurozdGjDBup2xRUUFBREAOgOhS89IiKCliz5mmpqTv0p/T9+vILeemsmjRt3OxkU3uHxd97J+pmTw/xAMzOZXk1IIEpIoHnzmAWyqIjYOCQksBtl9Wo2HkrCCZJVvLuy7B+DobIa89U+WVbpzvXr2afCYS7LJKy+wsqqxHyoV8xExxISSJZ9cRtCH6uKsOYq3/nxskxnkcaLuhWlzemJ+T75+T6KYm5x5ZzIOTnK2M2bJ0zkskxEb7/NpxGf9Ts5mTIz2Rzx9NPst/x839wlVhJramj2bHbPrV/PrpWY6Navp/R01u2nnyZh5eVc97x/fLxLS33fxXX7B/D4fgnQygsoXwYsvuctAYvv/5DTp08jNrYTunePx6oliwWnrjqfOffFAuDH0atxu7BqwybceuvNeOGFV/Haa6+jri5IsL/wNJI6ycWst84y9qqr1QLl5ShGBMxmiFSR0OvZ6zUnOnQ64dKa4HYDFq1DcBgW2EwwGoEQowsu5f2RU+hUwyI4GdXikVgudYdbB9O+LUBsLPYWhiE+XrFcq9IzeyQNo9lRomy3JBowJK4SMJvxxHM6fDil0ud4zK3J8GLbjj0YPHgAVq5cJfwOAxIQAJg58y288cY0FBcWokWjRnBpTX782ADEg5abp0GMtgAna2uRnpKCmF69sC+nM8ZIKxn3rNuiprsW/u42GxCmZ6slyM7G9I07MWXKc/j008/w4IMPorKyEs8//xxqamqg0Wig0Whw773jccMNN1ycQfmDUllZiQ4dYlBTU4NbbrkV99//AAYPHgyTyQiXy4WsrGy0adNejBF/ttd8r8GwYSwNrtdoYr6TJSVAXBzWbDIgMhKg00lYsXYfSotSsGzlSjRs2BAffDAXOTnZmDPnPfTp0wculws5OTl4/PGPcN11kRg2bCAyMg6jc+fOAICMjAyUl5fj+PEyTJhwn2j3iy++hBkz3vrD/a6rq0NiYiKKi4vRvn17XHHFFSAi3HTTaBzLyUFuSoqwnmZlM7/dffuY8dHphODrVVtPHU4NTIf3spU5vUksrrndbGi4urZoHb5JgPOh26uRUWJB11gfhzmnG9PYFVqu0FBkHNagQwc2D3AfWMGp63SyVPCSslpXmItifQwirC7/eJD6fMCHMyDM1cpzc5bvLnztUs9nAKDJy0WlOQYAECKVMSt4bCxe+TQCM245CHTowGJTsg8Cdjuq466DpSQDW8q7Yoh+N3ajPzp0AELy9gIdOrBBKy9nY7RpEzLiJyA2lhnZLYUHgfJyuAYMZ/OUQtu5N9uCXr2YUZoTOpjKmb8xbDYWdxLK4khcoVFi+CWJMU6ox1KrBdwOG5q2aHFJWkM5vvoSF27xHY+Axfd8JAB8f0OmTXsdc+d+CFtZGahBQ8G969XqfAFoimICIJaefkrag+tHjMDAgYPx9der0Fg+JYi1AWUpx25HpT4CNhvQyVqJAmcIy9eenQ1XNOOVNOi9vqQW5WXAgQPwjhzlAwXcn0CrRbWbPTYWsDzqPK5AgF0V5yHcbpS5LQjTVwvlCrcbWSUsv7mpPBfV1hh2LAfegHDHQF4eU4AKqbhXb/CNh5JTXk2m3rlzR+h0Ohw4cDDAtRsQP7n//glYv/5HZGQUItSiFfeoCwa43eyWi4r0+oIlbTYfmAgPZ0udNgMKC4H+HSqZC5I1DDq78kyFMloljzUMuuwMHJIJ3btfiRdeePGCwNalKE6nEx07tkdZmY8f9oknnsTll1+OadNeR3BwMPIyMtC4aVP2XDudwKpVQFwcEBqKRYkxmNAvF47QGE73irw8xonKl+erKipwx113IXHfIdSesomlZJPJBJfLhSeffAKLFi3E0KF3YPPmZfjuu7UYNWoUTp8+jUaNWBILIsKMGdPx2muvAgCuvfZabNu24xw9+m2pqqpCWFgo4+5Vyfjx9yE3NwcNGxrw1FNbMWqkP/AT9Fc8KkqSkGsPgVYLRFkdyCoxoZOUwe7H6GgWFKwkvxAuB5GRrE7uArdvH9Cr19kBz8r/KC8HsrOxRboOQwYwcAuzGbDZsDs7BP36+b/weaGBxu1Csc2ACKkAuVIUbDYw9wn4A/X6ou4noALU8IHdcwXDCeONEtAnSez2KN5Xxp6hrxex59DphOfGsdAdZmAYNhsq9RGw21kg4bhxgGXfBjZ39OoFj9YAna0M2LcPO8xj0KEDEHZ4CxAfDzidqNRHIMTqxcE0DbpFO1DpNiHE6MLBbANiY30B3DwRhsvNAto4racksRcITiMn+uN2w+6RLnlXh0W4cOA7AQHgez4S4PH9DTGbzaitrYXdpWVzbUkJS0ChArvQaqHTeqGzVwJ2OzTw4qmnn0ZMTEfMn78YjYNOi7dvjdsFjZP53bqsEQgxe9DJWgno9YgyVrI6w8P9MvyITG6hoQz0Sh6f/5bRKCyrRqNi/TVbYHBXw2wGLO4yVNoY2TkkiX0qVuUwo4O1yV7N+IlhQqfQaoZxzWZGMq7KKAew7ylpOqBDBzicGuaipiTdEEBXb4BXqxO8k0SE48ePIyMjAxUVFX/n5QvIP0Cee+55nDp1CvffdzPKysrYParXwwAXLGYvm9j4/We3o1gKQ4EUITJnwelEaCibiysRggI3A70uYwgz8ikmI7cbQGgoli37Bi1atMC0aW9cxF7/NWI0GvHDD+v9+LAXLPgcjzzyKJKSfkJFRQVGjh2L5JQUpjvsduDGGxn4yM5GdDTgCI2ByVYAS+FBaGyVjMs4MhLyoVTA6UTtmZZ48KGH4HKdxIovvsCsWUfERGswGPD55wvw3ntzsHnzMgBAVFQU5s+fD6PRgJdeehEAY9CYPHkKNm3aAgDYuXMnrrqqO159dQpOnTr1q/07ePAgJk16DPHx3RAcHIT//Oc1lJSUCNBrsVjEvl9++QX27t2Lsdddg1EjmS4tKNT4EjdwDnKtFg6tBbuzQxAdzUDvsh9N6BTtYYktwsOxbpMOKQc0LCOmYjioNMcwAGm3Q5OXy5JDKBnGtFqIDGlOJ4Bdu1BQqMHH34cBHTpgSIdifsGQla0B9u1DbCzbxHW7y61kkdNq2UKf1YoYbQH6xLnOSlRxrsQVag7f8nJBXiFAuh8bhMLB65FUdTidMGWnQJKAXbuASm0Y8vKAlNgJqIwfDtx4I3S2Mux1d2P7l5RAkoAYazUevcsBi9mL1/YNZyuA5eXQOauR6wxDbuwYxMcrLri9egFmM6qNEdBqWZ+7mQsAmw16PeCCAnrdbK7Sab0iPkWvZyui/H2Hv1xwVcF9miFJZ/E1X4ri/RNKQM5PAsD3NyQ7Oxvt27dH06bB0Lkd8IRHweRm2X108EADFszgkTTwmENQDQvys7JwIDUVLz7/DEIUqjLY7T6LqwIQbTYwbeR2wwETC5xwO5BrY8rb721ecR3QwCusqh5JAbRmsyA0h17PHnK3Gya9Bx5rGEK01SgpAYptBujsDFznajshq8SEai1rs05ywaR1waW3sOOdTt9ymNpSbLWiR2SlyPDWqYNPeXpTUrD0q8XoeVV3xLRri9atW6PlZS3EmzYAlJaW/q3XLyCXvnTs2BErV67CgYMHEREdjVatWqBxkyYYNmoUdm/bBklSVhycTlRrQ4TXj8doEdkGJYkZ0ySJ0U059CEAlEfN6QS0Wpj0Hpxq1Bhff70Eo0aNvuQD1v6oxMXFISPjMObO/Qg2WzVqak4hKCgI7dq1w9Kl3+DkyZPo3b8/Xnn5ZWaxVIKACmJHIT5eSbBTXg5vXDdg0ybY7cCXS5ahce/eePDZl/HLji8xeuhQxMVdhXEPPIAXX4zBjBnT/drw5JNPYcuWbUhM3IvY2Fh8+unHAACv13967tu3LxYt+hIAA7UzZkzHzJkzcfz48bP6lZKSgquu6o5PPvkYhw6xoL3hw0fgyjat4XZ7kJn5C8aMuRlPP/0M1q/fiPDwcFgsFtzzzHMAfMxalfoIIDubJYhQ9JvTyZKMacoZ3eMtt4Bl2ywvA5xOjBwJFgin17Nsd1qtj8JMCUIzSA7AauW3KuB2Y8fhEGzaBGDAAEQ5M/DoyGKx/u6SdMCuXejkTMEW/SiRhQ1gKZINei8QHg6vVgenE/DoTag2RwF6vciXUV/UAFgNhMNCvejfj7VVHYzHKdggSXC4ddA5q7FuE5tfdhdG4J1dPRBiy0JU9gaEWL3oZCxGj1gXnE5gyy4dlmwLQx9zFrBgARAejjCU4WChBS6tCdi1C1Ongq3KKEk/wsOBGHsK7HZAV5gLGI3IzdPAoncJz4xqcxQQGQmTkWW602pZAhqRIU6rg0vyZSAFVJZrvUEsTgpLu17PXAYvcfECkC+gXPo9vHQk4OrwG/LIIw/jwP4U7D9wEBp4UVCoQZS+DA5jGDe2AvC5eDmdgMNRjYgIKz7+eCEenngv+0GS4JJ0ftmk1GwQPFsOr8vPH0tlTQWY75nRqPLtUlwLBDeiEnWMTZtQPWgsc1coLESxNor5SmlZ1h2POQR2u4/gIcSqKMHCQubXpvj+iiVmtxsuvYVl7VEUt8HOfJN37tiB5156CQczMzFy5A3o2LEjGjZsiIYNG0Kv16N5cysGDBgQYHMIyK9KdXU1Vq1ahaoqG7RaLRYtWojc3Fw0atQIL774Hzz33AsoKgpCp9BqbDlgwZDIXECvR6U+gll/lMj0yEh2Txu0HsBuh9fKQLDG6cBHS5bhqacmISfnCNq2bXtxO3yRRJIkvP32TLz22qtYNn06bo+NBYYN8ymzbduY82tkJBs/swUTx9+DhV99hdDQUJSXl6N9+65Yt241kpNP4JUXxqCkvBzr1v2IESNGnPOckye/gh07duDkyWps3LhZjP2rr07BjBnTkZycgnXr1mHDhvUC1M6d+xEeffQxUcfmzZsxfPgwXHPNNbjuuoF46KGH0aJFi1/tZ25uLjp2bI9lS5Zg6Ii7GVtAXi7LSGk3wWoF81NV8ubuTtQgPl5Jm2u3M4CquDggL49Vyr+zgRT/l5UzK28IWLyDw60TqX3vugt4/30gws0YETZs02HYMKZmo5wZwq1N8ZJAYSHQSV/Axp8zIfD89Gazz62iXrwJ4OMSFuv/8DegqF0aqu0McO5NMyA+HtDt2w3hfHvgADBoEKZ9ZMFrN2bA06GrIL4Q/vJmM6vDXQZvaBicTsUPV5IY2F21CigpwcoOr6FDB3ZshFVxg7PZ2JySlsas5MYQGOxlKHCHwe1mnhMaG3NVMhrZ3FSfq5jPqSIeQDUe9d1FnA77Jc/j+xmARhdQz2kAExFwdTgf+f80efyJkpWViebWFtA4HaiWTIy8XGuE08n0g16vAEaAWUGdNhjDwhAffxUSdm3GxIn3KUkvtDBoVf66ajCr1Qo3Wv7Wzx9yplt9gNajNTCLDBha1Wi1zHdKcgFanZLUwgAJgMFoZIEXhwuB2FhE8HrL7UgpCWMBCEYGgr1WlvLRCRO00V2hVQy90Oqgi4xkqZSNYdBrAWjZK7VeC1Dz5nh1yhRMnzULPXv2xO7diejbt+/feo0C8ueIJEnYv38/duzYjjNnzuC66waif//+f9v5LRYLJk6cKL4//fQzOHToEFasWI6pU1/Crs1r8fLjjyMs7DZotYAnMoal7nazoKxqbQgjvrdXI6vEgk7RAKxWaNzMB91rNKHKVo6mTZv+7tTY/0+i1WoxefIUZGZmYtK776L99hPoVlKManMUjEZAO3IUGzNooLHZYIcF17Vpg4UAli79BsHBwRgwoD/iu1+JOo8HHo8HFotFJB05l0yfPgPBwUEAgMWLv8TUqa8DgHBrqKvzYNq0NzCgV08MVgIK27WL9qtj6NChkOXzT8waExODqKgovPHWWzicmYn+176KZs1i0MN5EObobuwFvkMHpo/t1ejfQUJBeQiijBC+48jOBiIjkYVO6GQsZkoxLY05vWq1IsotLC2RoVYtS21sggMoLIdBq8War0MBvR5798Wgjz0FvXr1gKakGFGhVkAfC6eNVXNdLxdQXo5OcANp2fCER0FrDYFGrxcJkXLzNIiJ9FFS1k9Q4ZE00CmGCwDMDcNohAc6lJQAUaEM6PYJLYQxPAouyYDoaAhKzaxyCzqlbYLrxjtg2LUB8fHD8d62rpjUgXVXV14Ma2gEvFoWF2I26wCnERp4odUyFyUeRLgIE9BhEBAOoKu1TNmuF5RuHkkDXWgoHPoQmPRewGhElLYS3sgQ7NsH9OllRZSWxav4CY9Y02qh1/JEThq4JR0MSvIo9QsBj8u51OVC0w4HUhb/Djkf6od/K51ZauohAkBffLHKL4GELJOg7MrPZ0w2JMuC6LymhuiFp5+mlqGhVFFxgvbtS6WUffsoPf1numn0aHrp2WfPqk9NPSPoZ87RKDVxOT9WncKYt82vjtJSqqsjQR9DMksJmZTEclPQ9u0+yp6qKsHOzpl46uoU+rTUVMGkw+nSXnjhZZHK9UJSkgbKxSlZWdn04YdzadSo0WQymURSAyh6uFu3bnT99cPplVcmU3FxyUVr58aNm6lLF5aYIaZtW1r83nsknzwpduDPYGkpu6+VzKfsj4rKaevWvQSA2rdvT6dP1/1t7b/USl3dGRo37nYKDg6mkydrBIWiUDCpqewZVxSFZ/58GnjttWS1Wqm62k4ff/wpXXHFlfTGG29SdlbWeT37V199NQGgnJwjYpvT6aLt23fSmTM+3XfqVC2dOSNTbe3p361TSPbVU1tLtG9fCo0YMZIAUFhYGH3yyXZKTlbtX1TEqM34fZKZKVLy8gQIPLWxSJ5QWipSG4t7j/OcKTq4ooJo8WLVPbh+vS9F/PbtjLJL0cs8BTJPUMGZ5SgnR6SWVyclys9X0vQqqePVfef9Vw8KHwuebnntWkXPK/R1vOnp6b42UUUF0fXXCzozsZOSuEmdmEj9nNXVEVFmJtuWk0O0YgVRUZFvjJS5acUKX7XqsSRZptRU9X3K6hb0cMr/JMtn0Weq80nV7//Jk5d+AotPFEqyP1o+CdCZnbcEgO//KOPH30fhrVrRmaoqyssrph/WrqWcX36hkxUVJJ8+LR50/gCnphJlZ3voi08/pfYxMRQcHPyrOeQPHDjop6TPUlwqjki1QldnBzoXZy9XjpzLkO8gMqypNUpVFdHSpVRRwfQ95x7mykTkVF+8mGnL9HSRxa2igig1MVGA3ot9rf4tRQ0QLqQcPJgmgEiDBg3o6quvoWnT3qB9e/bQmaoqGjlihLhXbxg2jJo0aUJ9+vS5qH2XJC8lJOyhm24ao4DXOFqxZAlt2pRJBw8coMOHixhgUCbn1FQiqqkRCQhJZi9z7ZRsX7m5eRf9el6s8vXXywgALZszRxB2y7KigxSARFVVVFXFXiQoM5N+/rmEGjTQ02uv/ecPnTMj4zABoODgYKqqOnnW74cOpdPTTz9DJ05U0bRpb5BGo6EHHnjwd52DAyv1PbN27Q/02GOTlMyZo9l+NTWsj+npgttXHFRU5OOQ5ds4qEtPZ/uWloqXK54djGprfVy8CQlEdXUct/oRo/Mqq6qIAeLSUoZk168XSTgFOldANufHFTzCSn287qQk3xwhrqP6u3Leqip2Xfn3FSvY9Z03j9gJrr2W5s9nu6j7J7LeKeNW/xz8k/PD19WxqSIhgcQbBD+O8++qDTXcEKRKQOc315GsAr+ckFv5FOOhzFl8HlS3MwB8A6KWAPD9lfLLLzli4o+IiDgLuAYFBZHZbKa+ffvRJ7NmUUbGYXrvvY/EviNGjKSZM9+m5ctX0r59KZSaeoh27dpNq1d/R7GxsaTRaOjxx5+gGsVqVV9hqQu3InMrRH6+SgGomei5xlCUAX8DrqhQLAiqTBYc9+bkKHUlJwulwwncue7l2oQfXldHRDk5dOOgQXT55ZdTXd2Zi369/unF45Fo8uQpdMUVV1CnTp0oLS3jrH1On66jZs2akcVioZ49e9LTTz9De/fu+11WMbfbQ6+/Po20Wi117hxLH364isrKnH5E9LJMtGfFCup25ZX0ySe7iGSZ7r13PPXu3fucdVZVnaRHH32MunfvTosXf/W3jNeePUnUr1+/s57LkSNGUG52NsmyL6s4X+3glr3Dh7PIbDbToEGDL/p1v1iFpy4+fpyBB68k0U9JSbRh7VryLl/O3uIV3ZKaquiPFSvouTFjyGg0UkXFid99zqSknwgANWnShLKzcyk5eb/4LSfniLiGw4ezly5dgwYUGRlJskxE+fnndY7i4hICQD179iSn03VWiuannnqaUhMSaM/WrfTyyxtpxYpv6ZVXFtHHkybR6tU7hJLNz2fnFBbQl18myswUyRdycoi4abKignxAjDdEGTtZZhiWpk/3ayfXv5STw+pPSCBKTaWkJOVFQ8kvz6tUMvdSba2ySldaKqyl69ezfWjtWpEUo6jIN5cIna0ky+D6XyQoUlIjc0CqTnrEXxhlWalPsfaqLb688H9Jllk78vOZZVo5jq/KyDL5Hk7FiMJRak6O738xnymf/FkWDZT9rfvqVdT6g/1PSGAxD6BFF1Dm/YXANycnh0aNGkXNmzcXRpAdO3b47VNUVEQjR44kg8FAzZs3p8cff5zq6ur+9Lb8GRIAvr9SNm3aQgAoOjqaXn75FVq8+CvKyyugrVu30/LlK+mTT+bTjBlv0bBh1wvLrkajodtvv+OcoEVd3G4PvfPOu9S4cWNq2bIl7dixiwoLCmj37kQBYuq/7QolwC0VykTgt586Y1pdHb39NjMk1NWRWDLjy2NUW0urVyvbN29mCkex6CYnk0+Zy76lpaoqEm3Yv3MnAaBFi7686Nfqry6nT9dRTc2p3yynTtX+ofprak7Rk08+RRqNhkaPvpeio7uI5fj773+AFi36khYt+lJYwa6MjaWbb76bLmvRggDQ4MFDKD//qKjv+PEKSkzcS+vXb6SlS7+hjz/+lKZNe4OGDh1GJpOJgoODafJzz5G7uJiotNTv9lJnAOT3kiwTvfzyK6TX6ykp6SexrbraTsuXr6TWrVuTyWSiyMhIuvbaa//Wa3PkSD7t3p1Iycn7adGiL6lt27bUqFEj+vbbTb7not6zlJT0E5nNZurV69xA/t9QysrKyWq10g3Dh5NXkmjWu+8KcHjbbe/5LaVzYJKfT3SioID0eiNNmfLqHzrvyZM1dOpULXXs2JEACPD7+ec/iPNfc80A5tJy+eU0cOBAceyJE1X06aef/c95yO32iHrWrv2B3njjzV9ddatfQqxW9nakPADp6QrgT06mzZvZcIhMl/n5wiquvrf4/VZaSiL7Zm0tEW3eLPZT71pUpNSXk8MQcno6x8DswNmzhYtaZqYCiouKhNFDbelV63Zef2qqyhVOZTWpqWHbcnKIVbp+Pes7nzDUrnPyOVYeVXONLBOdrKggp9PlA7JJScylQgGoNTVElJPDfuOomhttlMykXPeox9HpcFDNsWMkSV6xjYPz+qBcDaDrr5j+E4DvXIAWXECZ+xcC3+joaBo+fDilp6dTbm4uPfroo2QwGOj48eNERCRJEsXGxtK1115LBw8epK1bt1JYWBhNmjTpT2/LnyEB4Ps/isPhPK+l5bKyctq9O5EKC4t/V/2FhcV0zTXX+LtApKSIB5Y/2GI5h4Pd1FSi/HxmSZBlpgQTEtj/SUlUU8M2cV8pWr+efXLNoqTNpNJS5muWnk61tYqyrapiiraigkpLiY7l59OMGevo66+X0c4tW0jyeOjngwcppEULiouL+7+19no8Em3evJVuu20c6XS68548O3fuTNOnzzjnUi4vlZU22rx5K7399jt0223jyGg0UlBQEE2f/jalpxOdWr6clr7yCj18ww3UWQEIAMjavDkNuOYa2rFtG1FpKZWVSfTd6tXUvHk4GQwGGjRosAAU9VcngoODqV27DvTmG2/QggU/89tKLHuqjSwky2KJgU9Ep2trqW/fvtSiRQuqqDhBjzzyKGk0LF3ttQMGUEFBIY256SYCQD//nPmrfa+uttPKlauotvb0X/bMDht2PTVr1oyO8lSqquXQ4owMaty4MfXu3ZsKCgov+n12Mct3360lADRj6lQaNmw49e7dmyZOfIgA0AMPPEPTpzOdwJeP+TL5Q+PHU8uWLf2e/RUrft+5p0x5lQDQ9u07SZaZS8LOnQmUmLiXCguLqXPnztSzZ09KS8ugM2dk+vjjT8X9fOedd/3PuidOfIjCwsJo2LBh4phbbx1Lubl5lJaWQSkpBygl5QAlJu6lqVNfJwB0Xb9+lLh7N6WmZtGcOcfIa7Oxe0aWhetvZiYRFRWJ7Rz81dSQAFrcQiuW6EpLqaqKyOn00GOPPUE3jBxJt99+Jz388CM0efIU+uj992nlylW0Y0caecrLGfhdvVq4nnEjx/PPk0gjTKWlRJs380Ua336lpex5VXzvRFyH4svGv8syEc9N/8EHim/vwoVKfdV0aO9eqj11SvSz/if/v6iIqKS4mO654w5q0KABhYWF0Z6EBDanVFURrV1LkuSlmqNHye32CvcQP1/cei4PJMskeTy0cd06Gj78NmrYsCEBoGbNmtGNN95Eqfv3i5dy3o76Re1OwtuclpZ1yQPfDwD67ALKB38R8D1x4gQBoN27d4ttDoeDANC2bduIiGjDhg2k0WiotLRU7PPNN99Qw4YNL8kxD9CZXWSprq5GixbNAQDvvfcRnnyS0fdwfmCDnjFGHEzToJs+C57oTixlsF6PMikEYaGMKYJnbdPrgaysOuzcmYYOmkQcCbLC6azGL79UQ6OphtFIaC57cLS2Ix64tzOk9HRsO34c5VXVaOiVoW3SEm2bBuPyntcgefcWzJo71497s3v37sjNLURUVDi2bNkGq8IB+k+UAwcOYN68j7Bt8yac9nhw5swZUXifO3bsiDFjxiM2yopfigzo2EbJUneiArbgy2AwAIaiX+Bt3xGe/CPYkZuLld9+C5PJhLlz5+HWW28FAMiyjI0bN+LTTz/Bpk0bQURo3Lgx2re/AiNGDEJc3P2QpAiM7cXSQbvMYTC4q1EpWaD3lKDE0RzR0Y38qO64lFc6sXDBh0hOTkbLsFbo3/8adI3tBLPRiIK8PDz81NPIzv4F06Z9jJ49H0FcHBCiZelBq92MRi9E70BuuYmlbnW7kZFnYOlWVfL2u7Pw0ksvYvToG7F27fd4bfJkjBg1AfHxUfhh7Xe4ccwYDBo0GN98s9wvkYBa4uK64ueff8YjjzyKjz6a9+dfVAAnT57EVVd1R43djqHXXYebbrsTLVqEoFGjJvjpp514/vnncOJEVUCXAXjttVcxffqbAICJEx/C++9/gJkz38K0aa/jnXc+wzOx4bhh7udISNgMs9mMjRs3oyrrMK67/Xa/VMS/JUSEL774AgcO7EdtrYyPP54DWZbPugZvvDENCxcuwJdfLsGAAQMAAP369cFPP/0EABg37na8/fY7COep288hs2a9ixdffMFv25tvTsfJkyeRlJSI5ORk1J/2fvhhPx6aOAplCn9wp06d8NRDD+Gu++/HofTGiNQfhCU0FGXuMHFM1L5lwMiRvkyW2dmMuSA+njEWJO6Ap991OHwY2PbxA5iyZAmGDBkKp/MUampqYLPZUFFRgTNnzgAAQkND8djEiZj42ONITLSiXz8g5MAGfFw4HI/eUgmvNQQayYNlq3Qwm4EBAxSmBbcDHr0JOnulL/ubU8l8hkrszWOJOcxm/9TIGrBsiAVSBE6frsTsWS/iq6+/hiRJMBgMeOH55zHp8SfRvFlTAD5aNI+kQWleFl6fORNrvv8ejRs3xpNPPoW1a79HTk4ObAcP4tMNkRgwAHh96lis/PZbNGrUCHGxsXjg1lsx7rHnBSUmz3xaU1WFH7Zuxbbt27Fp82ZUVFSgc+fOGH/vvWgdHo7MX/KwcuVS5OTk4KH77sPUGbMQGmL2axf/lLzA0fwjOHjgAPbs3Ytt27cjJycHwKVJ9cXx1Qe4cDqzJwEcO3bMr4+cVvSPChGhc+fO6Nu3L95//300bNgQ77//PmbNmoXs7GyYzWa89tprWLt2LdLT08VxJ0+ehMViwY4dO3DttddeQM/+AjkfdPxvtfj+HUWSvKTT6WjixIdIPn3a56fEd+DLUXwtuqJCBEFUVJB4u8/MJKLaWsrLK6A2bdr4WfwaN25MrVu3piuuuILi4uIoMjKSGjduLH5v1aoV9evXj3r06EExMTHUpEkTcdzkyVOoqOgY1dScou3bd9KAAQPonnvupcpK20Ufu98zxhUVJ6io6BidOFFFv/ySQ2PH3kYAqF27dvTiCy/Q29On03uzZ9OHH86lTz/8kBZ+9BFt2ZJEXrebmVSSkvyX4riVQvEBFEEjskylR4/SmJEsknzAgAE0fvx9wve7e7duNP+FFygjI5ukykpm4amqYlaSnBwRRCPLvvNwy5FYVlUtP4sAF1kmqq2loiLFp7CmhtzV1dS5cxdq374jJe7eTZSe7m+Rqq0lqqmhqipfgKY6UFJ9D5Is06FD6dS//7XUokULmvXuu2xsZJmO5edT06ZNacyYm39zhWTduh+pU6dO9N57c/7Sa15QUEjPP/8CXXHFFee0zP9ZQYL/D2XRoi8pOjraz0XrgQceJF2DBvT22+8QAJo69XUKCQmhft270+LPPiMAVFJSdt7nSEjY4zf+2dm5Z+1DNTV0xx13in2429e6dT/SqFGjaf/+VL/9jx0rpRUrviWXy+23PTY2lgDQvfeOp08+mU9ut+csX99zlYiICNqyZRutXv0djR59IwUFBZHBYKCOHeMIAIVarXRi/36xUpKTw6yl/PEkWRZ+vvwZnj+fiPLz6b6uXc/pIy9JXqqstNGuXbtp4sSHSK/Xk16vpwfvvZcyMg4TZWZSTo7iciH7LK1UUeFzYVBYKNLTif3IzbqKP25NDYl9uM7grrDJyWfow/feo6ZNm5LFYqHZs9+jPXuS6NlnnyOdTkd6vZ7uvOMOWr9+I7mcTpJlouPHq6hjx47UqlUreumll8lmqxb3EQCyL1tGVVVER3JYnMz48U/S1KmzaNCgwQSAbrxxHD3y8MP0wvPP0xvTptFNN95IDRo0IAAUFxdHzz7zDO1PTvZ3b6ipoTN1dfTRe++JuSs4OJj0ej2FhYVRTEwMXX755dS2bVthJQaYq+JDEyfS4i++uOQtvnMA+vQCypxfua//85//XHAbS0pKqHv37mL1MCwsjA4dOiR+f/DBB2nw4MFnHafT6WjZsmUXfP4/WwIW30tAbr99HFauXIEbR4/Gd2vW+CWt2J2oQVycknQCLDPNjz8Co/RbsNc4BD0rvkNdRATW/HI5amq24JVXJsJqbYbFi79CVFQUmjVrds63Pa/Xi5ycHBAROnbsiKCgIPGbLMsoKChARETEBb0p/tVSXFyMo0eP4uTJkzh58iTsdvZZXV2NkydP4sSJEzh2rBjHjh3D6dOn/Y4NC2uFN16finvvvRfBwcEAmOWAJ9gLydsruDALbCZEhbNkCABLixuyaQnWGO/BmH7MElNeDoQZHfAaTSJD1KaPZ+HTH39ElcOBXjExsNGzuPPOq9CvH2CZ+QJmmN/BK+PLsGZfGMYMqGb8lKGhgNOJYrsJEfpKwGrF3n0a9DEr1n57Jcv0Z46ASfJxXBpsxch1RwAAYiI92LY7HY9Puhv5BQX4ad06tO0xDBaj0ger1Z8MPi0NiI1FpV3HslFxjmmFEN4vUQqAMrsBoaFsPwoOxrDrr8fhzExkZBxGs2bN/tqL/gfkyJEjqKurQ2VlJbKyMnHZZaHCEh+Qc8uuXbswcCCz0tx++x34+uul2LNnD4YNGwK3khN206YtGDx48HnVl5WVhXvvvRtt20ZhwIABeOSRR4XO0ZQUsyxqANxuN1auXAmz2YxRo0b9an0LFizAQw89CIBZqj/55FPxW11dHTQaDRo0aMDSu2t1OHPmDFavXo2DB1NBRHjvvdkAgDvvvAtLl36NESNGYtas2YiJiRH15OfnY82a1cjbthUtruqBt96agXkzZ+LRxx9nz4eSKIJbLUXyBLeLJVaxaZCdDfR3bsDA2R/DaNTiu+++/5/jZLPZ8Nln8/Hxx/Nw/PhxtG3bGddcMwavvz4RTmc4OkW6gLw8lFm7wmgETCVZIn282w2EFKZgt7sH+scpVmCJtUXN9cufZ9ewIbjR68WOHTvwwAMPYvr0GWjevLnYr7y8HF99tQQLFy7AkSNH0LBhQ7Rr1w4FBQVo2LAhduzYhbi4OAAs5fTNN9+E6OhovPVWMgZfI2Pe5wvx1FNPoDovDw1btkF1tRdz5nyALVuWAGAczk6nE2FhYbjnjjtwy4gRCG/f3o/Dnufi0MEjxrncZsOGTdtQd/oUPGfOoPqkHa5TDgQFB0Oj0SCsVTjat++A7l06wxLKLPT/hAQWs3HhFt9ncf4W36lTp+L111//n3Xu378f3bt3x4033ogzZ85g8uTJaNSoERYsWIB169Zh//79aNmyJSZOnIiioiJs3rzZ73idToclS5Zg3LhxF9CzP18CwPcSEK/XiwkT7sPatd/jxIkqAFqRIdig9QCHDzOG8169kGULQUnJGTgKv8DK9euxfssWuHhycgA33TQG8+d/5qfA/l+EiLBt2zasWbMa27dvQ35+vt/vjRsb0ayZBQ0aNEN4eDPU1VnRu3cEIpsYENGpEwxNm6L2dB28Xi+uv/56GA1sQnArCRCK7SZE7FoCDBrEKiwsxG6pD/p3qAQAFDhDRJKRCGM1PEYGOnXlxSjTRsBshkiXKUmAzlmND7+24InCZ1D23Hsss5M9l13Y8nIctA6B1cr2dbuBTtEKMHU64QqNYm4u2dlwhHeCyV4MAFi0LQKFhcC0KR6IrCcAYLOhUhsmcqL069cNv/xyCEsXLMAdd9/ty+qnVWUEhBcH0zQIDQXCrAzscvcaLzRsf3hQUKJDlNXBZiCbDQ49y6b0888/Y/qb0/DtqlVYv34jhg0b9ldd+oD8zZKYmIhrrrkaALBx42YMGTIEALBhwwbcdNNoSEqWtzNnZGg0ml+t54/Izz//jNdeexWzZs1Gu3btzrnPsmXLcPfddwL4fQAcYHrkwQcfQOKe3TiUloHg4GCkpKSgefPm6Nix468ed9ttY7F31bcolryoqwuCobyAPRMHDiArcjg6aXOxpTAGQ2LLRBpoOJ2wHTiAjnfeiTvuuBNz5rx/Xm30eDxYv349vv/+O/z44w/QarWYO3c1xhnsSAkdhR72LSiIHoKSEqC/NQvQapFij0FsrJJ5TknwUGAzISpUyeSp18MDHdxuwOm0Y8yY4cjKOozvvlv7P5eiiQjZ2dnYsmUz8vLyEB0djbFjb0PLli1BRJg790M8//xzuLZfPyz5Zi1CLSzZxrhbb0VhSQn2bdyISsnCXC1U+ofrI7WrAhe/zKWqFMscyKt/q/+pFl7nvwn4nm8fbTYbbDbb/9wnMjISSUlJGDJkCE6ePOlX7+WXX477778fL730UsDVIVD+WDlw4CABoPnzF4pAM1kmEmtbRUVEpaV05Egd9e07kACWXODNN6fTV18tpeXLV9L27Tv/L5NInDxZQ19+uYTi4+MJAEVGXk6PPfoorVm8mNLScqikpJIOHPCIoIaEBCIqKhLUQ7R6NW3f7s+nWVNDjNWCrwWuXk1UW8uogurqOFUnJSQo9EH5+UQ5OZSerkRWp6f7rk9NDS1c6GPSqaggkeyDR1Hn5xNRZqY4VoSI19UxNwmFIF9Nr8DdEhSGIhHdwpc4ZZl9clpLQSxfV0dLl66nyy+/nLp26EAJCcpyZ2qqH+G9qFfNeqCK5q5fRAerquijuXMpODiY2rRpQwsWLLro90ig/LnlzBmZpk17g8LDYygvr0Bs/+GH9TRjxkxq27Ytde7c+S9xGXn6sccUdodr/ud+hw9nCSYVdcBU/UKyfM7f9+9PpTvvvIvMZrNgUflf51u37kfGFvHFF8KtSIkNFfS9lJNDq1cTvfoqkXf5ckpPJ1r0/vu/2zVEXSorbTRgwAAymUzC/YHWrxdkEPxBrqpSBURXVQmCBs4wwXVYWlo5Xdm+PTVr1oz27Uu5oGv16quvEQB65pln6YwSvMZ/vPeee6hly5bkcjqJZFlw/KorqB+opnbzk2X/BBXn4g9Wfz9X4b//E1gd3gFjZvij5Z2/KLht3bp1pNFo6NSpU37bY2JiaPr06UTkC24rKysTvy9fvvySDW4LAN9LqNx5513UpEkTOpSSIgAGp3nJzyei1FR68bnnSKvV0tat2y96e//qsmPHLrrppjHCZ+vqq6+lLd98Q95t2xgYVUBfaSmJGUj8rwKvAjTKssg0UlOjZD/KyWETiUJoLPx4OSBWeHNExjzuG8sJ7ZUZj/Pd0+bNRGvXiqBuWSbRCH4tSZYZ0FW4LgVyVaiA0tPJV7/SBj9id1n2+XfLqgmhtpYBeGVcBg16kiIjIsQEzX2IuU8vH5OcHB9wOCvRiSwL8nr+2/dr1hAAevLJp8jt9lz0+yRQ/r4SFhZGAKhr165UWnr8LznHnDkMKH722YK/rB+vvDKZNBoNXXZZGD3xxIsEgEaPvvF/HuN2e2jkyBsIAI0ZczP9OHs2pae7fAwOr75KK1faafXs2XTLtddSw4YNqW/fvnRFhw4UFRV1Qe212x3UpUsXimzVSom5IKKFzEjCqc2Ux9v38s3jAxISGABesYIeemgKWSwWuuyyy+jQofQLalNV1UkKCgqi50ePFkNAMgObZ+rq6Pvv1xEAmjVr9lkZ5oRP9Ll4d2WfTlNn1VPvws/DP8/1m/p7jcJMcCmCMI6v3gbowwsob/9FwPfEiRPUvHlzGjNmDKWlpVFOTg4999xz1KBBA0pLSyMiH53ZwIED6eDBg7Rt2zYKDw8P0JkFym+XmppTFB8fT2azmW4bO5byDh0SQMjp9NKM6dMJAL355vSL3ta/siQm7qX+/fsTAIqN7UKvvPIuFf34oyBfz88nPy5IEcAh+6wGfELgdZIs+xG7JySQiEzh+/AgMWGF4DRYKr5JP/7J2lpasYIYcbwCtDnFXFER+QJKeOVKJizO3am2tgoAL8uCSF6g3dpa3zalj5mZxA7ggSxKhE16OokXgKu6d6e7xo0TQXGyrFDWqfsiq3g5eQYljoK5dVnhzuRtun3cOIqPj7/o90mg/P3lyiuvFEEzS5d+c9Hb83tLVRXRvI8+IgD0/PNvkN3upaefeII0Gg0dPpz1m8d7PBItWLCILr/8cgJAjRo1omuvvYHuv/9J6tu+veB079KlC02Z8ipdffXVFNG6Nf3ww/oLbvvRo0UUERFB4eHh9MUXq2jbNi9RVZUAh5s3E1FSEhUX22l/cjIte+klev/RR2nm9Ok0asQI0mi0ZDQaadKkx6m8vPKC23PmjEyxsbE0YMAgtkHRi7/89BO1bt1a3CePPTbJB3BV1IKy7NPZvPDvZ1mC5XoBt/LZ9Gr161D/9k/I3DYToPcvoMz8i4AvEdH+/ftpyJAhZLFYqEmTJtSrVy/asGGD3z5FRUU0YsQIatSoEVksFpo0aRK53e4/vS1/hgR8fC8xqaysxLvvvoPVq1ehvLwc48bdgxEjxiDvwE688s47AICKihP/aBqxXxNZlvHEE4/j008/wZVXXokXX3wdYwf1wckg5q9sMXtRXKJBhFQAhIcDWi0cTuYrZjF6UGnXIcSo+IA5nQAAr9GEkhIWM6bTelFp08BoBAyFWai0dkKI0YWUwwb0iPcKn1kvNNDk5QJGIzzWMOjslXDoQ2AyegG7HQV2C6KMlcy/T6sF7HZ4zCGMaszt86dzSTrhgqv2PVP7sgm/W1UgGQDm68uD3Xi0HK+svBwucxjcbkZRJKjvtB54oINWC5w6dQYhIUbMmjkTjz/5pN+5JYk1u7CQHW8xe4WjsddoYsFtkgRIEqolE/tdJePvuw9Zv/yCfftS/szLf8GSmZmJJ598HM888xyGDx9+sZvzfylbt27Fs88+jcaNGyMp6ac/3b/375AbbhiJXbt2YuHCKhTsfgaTP/kEjz02CR9+OPe86yDF7/XHH3/A+vU/orKyEh07dsKQIUMxdOhQREZG/iVtLysrw/33T8CWLZthtUajXbuBaNOmB2TnaiSmpuHUKSdcLofYv2HDhggO1qJnzx4YOfIG3HffBDRt2vRPa8/KlStx++234WBSElpF90GI1Yunn52Kzz6bjR/WrMFljRqhSWQfhIez4INzxRmo9SEXHr4gAm35/vW+AzjLz1e9jcs/wcd3JgD9BdTjBvASLk3KtktNAsD3EhWXy4XZs2dh8eIvcfToUQQFBWHo0GGYM+d9v8jj/yeZO/dDPPXUk3h/1izcM+EpnD4dzIKuJIlx56rYBjioPHCAkS/Y7UAYyoDycsBsRpY7ClYr46vdkWbBdbGVgNmMMpsOYc5clBljYDYrPJh2hSPT6RAaN7fchPBwwFBeAG9kFDSFBUBoKHJLDIgxVyLXHoLQUMAkMTYGb2iYiOxWsyB4tAYBbOF0AmYzC9LQeuFwahiYVqR+IMfy5cA941if+TF8P0AJftT79ueBbQCQkpKO3r3jsGPHHlxzTb+z9ofdDpjN7JxOxkYhQHdhIXuxcLsZ16be4AfcP/30Uzz+5JPIysr+1eCjiyETJtyHxYu/hMViwTvvzMKtt94Ko9F4sZsVkEtMHn98Er76agl69OiL7ds3oWXLlvjxxw2CoeCfIAkJCVixYjl2707AL7/8gvbt2+OWW25F06ZNERbWCpdffjmio6MFyFWz9vyZIkkSLrusBe4ZOBDvz5uHaZ9+h88+ewMxMR2xc/VKP9YLAEyf1AtC+7XgNpdbI4KJ6+u++sFsv1Wnw+FAs2ZNL0lQyPHVDFw48H0FAeB7PhIAvpe4uFwubNy4EQkJu/DVV0vgcDgwcuQNWLt23cVu2h+WyspKrFr1Lex2O3r16o0OHTpg7969mDBhPO695x7M++gjeCQNnE4IayN/2/dA54sEzssFnE4UmLshSl+GLHsYnE4GZmNjGRFGlC2FRVhHRgKFhQzEKlbZYrsJoaHAjz8C/Rg2RIjZg2onI4gHFEstt8baq31WXgXIes0W2O0QVGEOfQhM7kpmrlCoObxmi6A4OlfkMge1QnnXt/4C7HyAn7WDTwgi0Yliys04rMHBA4sw4YEHUHPiBIIbNfcBXmUfh1Mj6NDEbyUlyHVHICb819sKAE6XG506dUBMTHusW/cD9PoLUdd/npw+fRpffLEIjz8+CQAQFRWFn35K/r9cHQnIH5c77rgdK1Ysh8FgwPffr8PAgQMvdpMuSGpqatCkSZOLYn2fN+8jPPHE47jsspYY2Lc3lq1Zg5tHjsTrM2aw5Cac8k0FWPnqlFqncSpFLgLYqmji1L+dS84FhPmnw+G45C2+b+LCge8UBIDv+cg/b53qXyAejwcTJtyHtm3boEmTxhg79hYsXLgAffuOAAC0b9/+Irfw94vX68XmzZsxduytiIgIx7PPPoPZs2dh8OCBaN26FW677VYMuPpqzHzrLUCSoNN6GZgEAEliFgO3Gzq3Ay63BpryMjhCY5Cl74aokt1AYSH0eoZLIyOZTo0yVsIT18PHFxYZifJywAUDYDQiItwLndaLAQMY4A2xMncHNY7zQuMDm2YLvFod26ZYhrmbBQDAbocJDsBsxt7DJrYPFEWtVCpJLMETV9DVdg1KStjhnCcXWi0OHIDoO9xuuCSdODdX5jpbGTySj36suFwHj6RB11gvyisqYDQa0bhpUzbJKOKBDrDbYbMB0OthcFfD5dbAI2ngDY9ATLQXHq0BKC9XzuT1m0wAQKcz4PPPFyIpKRE9esTjww8/ENmnLqY0atQI9947XjwfBQUFSE1NvcitCsjFkpSUFAQHB+HDDz/w2/7hh3Px+ecL8fPPmf940AsATZs2vSig98yZM5gyZTJGXH89+vbqgWVr1qB372sw/8t1uLx9FxQUauDRmwBJgiSxbHKAsuqk1cKjNcAhsSxyIVbvWfpGAy/8lrEU8UiKvlL29kjn7jvXV+dypQjIv1sCd8QlKNu3b8fixV9i9Ogb8eX8+Zg3bwdO7NyJqVM/hVarvWQsbOcjDocDb701A9HRURg+fBiys3/Bu2+9hbKSEhw/XoVDe/Zg3fLlOHjgAH748Uc0btLUp+yUZTH+3aNnb7F6PfvNZCuA1QrskPrDE98HUcZKdNLmwqJ1wGAvA8BwoyM0RgBPvR4CKHqhASQJRiN85zQaYdB7hTFCbTVQK2Sv0QTo9dBqAa9WBw908EbHsDa63ejVC0jJszCrMDSotiugUXKhk7USHkmDlas0sNkYQPdCAzXi7hHv9fVdr4dB6zlrYoDZLCzFABAR7oVWC1TaNOjbrz9OnTqFH9asYT7Ciui0XsBsZgk5lDcFg94Lm40ZZ7xQcWVK0jknDa0WGDx4MLZu3YUO7dvj2WefQY8e8UhOTr6wm+VPkMaNG+PgwTSsW/cjdu3ajaFDh17sJv2rpLa2Flu3bj0rJfDFkDfffAMARMINLlarFRMmTPjL/HD/aeL1enHgwAG8++47OHny5Hkfl5KSAofDgdcefhirZ8xA4e7d+OqrDWjejKCDB1arolO0OujgYVYJQGgxrRYwwYEym+6sutUwWAN/UKzTekXqdg3Y//XdxNT6+58i3j+hBOT8JODqcAnKzTePQW5ONtZ8l4n2rU8DkoSUbBN66DPw6vLlmPnuu1i/fiMG8UQLl6AQET799BNMmfIaTp924o6bbsKDd92FXoMGISgoiPnamn1L6kJBKf67NhsLvOI+sGXlGubv63Si2GlBRLiX+fMajSiwmViQltEj/Gj5by6tSbgB8MAv4Nw+Yny7+jvfxq0KXOFyOVcwBfdF3rtPgz7xvmAMOJ0sm5LbIYCliDIzGlkgmyQxoBoaKupXE72rpX4wh9pvl4jQt29vXHZZS3z33XdnTwA2G1zGEEZ2z03lvD3KdTjL5UPZXj+45KefDuLxxx/AkSNHUFlpu6Sz/QXkr5OkpCS8+eYb2LJlM95++x3ceedd+OijuUhKSsScOR/gyiuv/Nvakp6ejm7d4gAAKSkH0L1797/t3P8UOXbsGJYsWYzXXntVbNu1azeuvvrq8zp+6tT/4KOP5qKi4gQakAyutL16AzSHM+CN7Xp2cBrOHYBWX8f9WtDb+QSynWu/f4KP71RcuKvDVARcHc5HAhbfS0wKCgqwdu33ePLRR9G2bZAASPHxAKxWvPrKKxh83XUYPfoGbNy48WI395zicrkwevQoTJr0GG66aTRyc/OwaOlS9Lx+BIIaNAC0WoSGsvTLcLv9gCVsNrjdQITVBVN5rmA3CAv1Aa+IUA9SDmhQ4A5DtWSC1QpYpErkFuqEVQGhofAaTdDrfe4KPEDi10CvJPmW0c61xA8o7giKBUltjfAD74qi79WLWTtcbg3rBweVdjscbh2KbQZU2nVAZCQ81jA2Bk4nEBqKSpvG51qgajcvu3axBmvghdsN7E7UsExyiqkjuO40wsMjUFujWHDcblYU628lQtgLgdnMXhDcGmHh9UgaeLXnAL2Az9VD2e50Ar17d8OrkyfD6XSioqLid98vAfnnS0VFBfr374ctW1jK0hdffAHh4WGYOfMt7NmzB/Hx3eByufyOkWX5L2tPo0a+HFjffbfmLzvPP03q6uqQkJCAZ555GpGREX6gd+3aH84b9AKAwWCAw+HApg0/MkODyi3BFd0VGnjhkpj7FddL9VfPAAirrfo7/zxrpQ3+QWwARN1iP4WVhs8r3MXiUpeAxffvkwDwvcRk3ryP0KxZM9w1fjxbcrbZ2EOcdhA4cAC6ykrMfn8tevYchJEjh+PZZ585aynvj8qJEydw442jsWvXrj9cR1lZGW68cTR27tyBpUvXY9GCzxERzvKlC4XldELjdDBFpjcATidnHwNCQ2HROtj26Gi49CwtMNxuwG6HyxgCuN2IjGRGUa0WMNmL4bWGICbae5Z1we+88Flv1dvUcWN+LmV2O8e44rdKp0G4L3BR+5LVPxcAH8DU69k1zc6GSesSrglwu6ErzGWBakp/Q6xeaGyV7Pzl5ew+cLvFua7r5RKuIAZ3Nfr380LnrBYvEtDrUVN1Ak0bN2YBInoD66jVKqzIog92O2uHXi+WEjVu11nAv75VxQsNTHrmgnH1NSwlZWJi4rlvjID8X0taWhoA4I033sTxffuQkLAX65Yvx+zXXxf7vPDC83jvvdm4++670KpVS+h0WjRq1BCXXdYCV1/dF+vXr0dG6n4cO3YMRASv14tjx44hNTVVpEg+X7n8shbi//Dw1n9KHy9lOXToECZMuA9vvz0Ta9asQVJSErKyspCbm4udO3di1qx3MWzYUDRv3gzXXTcAH3zwvjh2+vQZqK09jZEjR/6ucz777HMYNWo0xo4bh/STDZmegk/vcVYGAIBWC43kQf3LWF9Hn8vY8GsijA4Ka4TDydLPO9w6YXDQaZlb2u+8fQLyfy5ne44H5KKJw+HAwoULcP/9k6DVGQHJBVitqLRpEBIqIUvfDZ3M1eio9WDBgrX4Yd37ePmVV7Bly2ZMnToNI0aMOKf/r8fjwZEjR3DmzBmUlZXh8OGfceedd6FVq1YAmA/cxo0b8eKLzyM/Px+nTjkwYMCA39X2yspKvPDC81i2bCkaNWqMb7/dgOHDrmaMBWCRuXl5QIyxDAgNZdvzcqGxWuExWmBW7kQvNICKWkuSgIN5BnTr4EKZFIIwvReAEWY985f1Gg2A1nrO6F/g7GUwtU+Y+rvamqCDhOISHUJDLTBwtgUnc0+wWnXwIkQcq/5U+6SdCxhzQOodNAQapwMOpwYWvQserQkHbCb0ifbCcDiFWWAjO8HmDkGEVIYth8MwpJ8LsNuhCVXYFvQGBk4lSbg3SEbGMAE3EGJ0IfaKK/DV4sWoS0lBgz79mDXc6YRGq0VoKAsqgSTBY7QoE4NCmaZEYqv7Vv9/3ieXpINeC1gtZlgsFmzZshl33HHH77p3AvLPF653OnXqicpGLdFUV4XOVToMfek1PP3ss7hr4qP45JOPYTAY0PGyyzD+3nsRHRaG05KEUxUVWLF5O0aN8gGvZs2awev1oqamBgAwY8ZbePHFl8Tvc+a8h9dfn4rExL2IjY31a4tG8sDbtBkSEvaAiH6XFfOfKsuXf4NvvlmGBg0aorb21Fm/Gxo1Qt9+/fHII5Pw3nvvAgDuvvsezJjxFsLCwv7QOYODg/Huu7Pw3XdrUFx8CFf07MboG+FlHLyKHuT6VlIYedSiZrQB2LXjVJXnsu6ey9qrUawSJj0P4pUA6KHXqwKBtZe+PfRCrbaXfg8vHQn4+F5CMnfuh3juuWeRk3MUUVYTHDDBpGeKwOCsZBY+swUayYMZs3R46SXglx3bcNOjU3HkSBKaNm2K3r37ICYmBjExMTh+/DiSkhKRnJyM06dPi/M0aNAAZ86cQdOmTdG4cWMcP34cRIQhgwcjLjYW78yZg4SEPYiPj//NQLoTJ07g66+/wvTpb0Kj0eC1l17Cvfffj6YNGwo3DZekg8FdzdquWFwlCTDYy1AshcFqVfh04YHDzfx7IyMBja2S+Zrqw1BSAnSN9SI3T8P4dZ2Ml1cNdv2UouKLqlaeat5czntbf/lMzZdbXyptGoTA/7waMHqe7GygWweXj/O2sBCIjBR1eyQN0tJ8rA4TBhXDYY6ASarG3mwL+mhTUBnZg7l52A4iS98NkZHAqlXAXXf5t7OsnLU9xOr1tbee760GXvx84AC69uyJtWt/QGTkSHTt4DkvHk3+W7VdA4v57OXFXxu7Z59/Ae+9NxtZWdn/SOaRgPxxOXXqFK64oguKior8toeFtUKUqQnaXtUDLVu2QefWIWjaegxGX28FJAkOyQBTYQbOdOyMvOSfUCtJKK05hQMHMtCoshhxvXtjxH334e6770HDhg2xZ89u5OTkiPpzco4gOjr67+7uRZfTp0/j22+/RV7eEYSHt8a7776NK6/sjkceeRWpqVsRHKyB5DqFdh07o+vl7RDRviN0Oh3eeWs6/jNtGnbt2o2ePXtecDskSULz5s3w0rPP4qo+U2E0An3imB6sLzwpBeBvLFDrHv7OLTjHFWpHLufS8bwehXb8nPrwn+Dj+wou3Md3BgI+vucjAeB7iYgsy+jYsT2uuqoHvln6NeB2s0lBywLAyso1CHPmApGRcLh1+OgjYNAgoEcHB5b9aILRmIPvvvsGJSUHUVyUjYKjR2E2m9GvXTv0Gz0aV8XFoXGzZmhkMiPc7cK6jAwcP34cWbmnER8fiSuu6Ip+naIgyzK6DhiArKwsaLVahIeHw+l04syZMwgJCYHFYkFYWCuEhISguLgYW7duQVBQEO687jq89snXaNrUCou9gIFDFcetGihy4KRWbjzwTCMx8Gty+wCmxumAS2tCeTkYGwGPfON+CW63z7c3Lw+IjmaBZb18fsFn8eLCp3QdTpbNjYNYwWurHAuw5TOT0Ueqzo8DlAA8Zb9KO+tniNUrsp8dzDYgLg4iUYTNpvxeXg6H0WdtMcGBrBITOkW6UOk0IETLXhbcbsAgsd8AoFNotS/5BHwW2vqJMR55bCoWLHgLKSmH0LRpLBu7+oF2qBd88it8w15o/BJ08P3579nZ2ejRqxcGDRqMb79d9ZcR5gfk0pWamhokJiZCq9XCbDYjPz8f2dm/4OjRozh6tAAFBQWoqKiARqNBzy5dMPqGG/Dc1GkIrjoBSBIqtWGw24GYUAcO5rEEMiFWL8LCw3H8+HGEt2qF6wbeiDZtWmDv3iSkpx9CeXnlv+pe++qrr0BE+PDD95GWloaGDQ1wu2thMBjQwmpFUXGx3/4tW7bEwYNpuKxFc+QVFOLhhydi586d2LBhE4YMGXLB7Tl69Ciio6OwdOkKREePRQ99BtPH8fHM9SE01P/FWY1+1aICuHxe4PrIqzcIHKsOluNSnwe9/os58M/I3BYAvn+f/C7gW1R0LDCgf5Fs3LgRd9wxDtu2bccVV8QDYArAZPQCpaVILmuNq67yOe6LjGAFBfBERPv2dTqBmhpIFRUIDguDrUEYWlQcBsLCAK0WLq0JFRVAWRnQ90p/pcIVzuGsCmT+vAunTp1Cyc8/Qza3QdOmwSgrO4aFCxciPCwMZrMZRtNl6N37eowadQvi4poLpVRt1wgcqqs5AU/TFiLnw7mU1/EKDZo2VVJUFh0F2rSBR9IgKwuIiQEMWsXqrfWIFMHQ64VVQQAyNTBTOe5yxXguay73d9Vq2dCJTGrc9CBJ2L5Hh969GfgU6ZBra4HLLgMkCdnFBsTE+E6p07Jr5mreGgZ3NZJ+saDvVR7kFesQ7T4MT0wsdMV5SK6KRs+oE0DDhr7BKS7G0caxaN7cdypLwQGgWzecqNKgRVM2BnkFGjRuDDRvDuFKwoG1JAGyXIfLL2+Hu+8ej7emT/Pr786dwMBrvUjer0HPLmcDXeDsqOhzvTTw/erOyLjmmqshyzK2bduBJk2a/NHHICD/52K3n8T336/F+vU/Ytu2rfjuu7WIjo6G80QFamprUVVejr1p1ZCkY8jLO4YTJ0qRkcFIrRs0aIBWoaGQocGxY0W4//4HMGvW7Ivco79XmjVjmdg6dOiAz597DmFduuChyavgrNqGiGbNcNt996FLz0GAtwbpBw/iVsXtqHHjxqitrYUmKAheZco/erQQZnOzC2rPN998g0cffRipqSWIdhfBERHLjAhu3+qXw6kRbgjVTp1fCnS1HvFIGjGP+elqteFCkpB8SIeeV507QFmkOq63ouVwONCmTetLEhRyfPU0gAvhw6kDMAcB4Hs+cl7A1+12o23btihXnNcDEpCABCQgAQlIQP4pEhoaiqNHj15yPPh/Jr66VPt4qcl5AV+AXRyPx/PbOwYkIAEJSEACEpCAXEKi0+kuWUD4Z+GrS7mPl5KcN/ANSEACEpCABCQgAQlIQP7JEuDxDUhAAhKQgAQkIAEJyL9CAsA3IAEJSEACEpCABCQg/woJAN+ABCQgAQlIQAISkID8KyQAfAMSkIAEJCABCUhAAvKvkADwDUhAAhKQgAQkIAEJyL9CAsA3IAEJSEACEpCABCQg/woJAN+ABCQgAQlIQAISkID8K+S/LzeBjARY5ZkAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(len(da.data_vars), 1, subplot_kw={\"projection\": ccrs.PlateCarree()}, figsize=(8, 4 * len(da.data_vars)))\n", + "for ax, var_ID in zip(axes, da.data_vars):\n", + " if var_ID == \"tpi\":\n", + " maxabs = max(abs(da[var_ID].min()), abs(da[var_ID].max()))\n", + " da[var_ID].plot(ax=ax, transform=ccrs.PlateCarree(), cmap=\"seismic_r\", vmin=-maxabs, vmax=maxabs)\n", + " else:\n", + " da[var_ID].plot(ax=ax, transform=ccrs.PlateCarree(), center=False, cmap=\"viridis\")\n", + " ax.coastlines()\n", + " ax.add_feature(cfeature.BORDERS)\n", + " ax.set_title(var_ID)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T11:38:28.322847005Z", + "start_time": "2023-10-27T11:38:27.416585996Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\narray([[0., 0., 0., ..., 0., 0., 0.],\n [0., 0., 0., ..., 0., 0., 0.],\n [0., 0., 0., ..., 0., 0., 0.],\n ...,\n [0., 0., 0., ..., 1., 1., 1.],\n [0., 0., 0., ..., 1., 1., 1.],\n [0., 0., 0., ..., 1., 1., 1.]], dtype=float32)\nCoordinates:\n * lon (lon) float32 -14.88 -14.62 -14.38 -14.12 ... 39.38 39.62 39.88\n * lat (lat) float32 69.88 69.62 69.38 69.12 ... 35.88 35.62 35.38 35.12", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.DataArray 'GLDAS_mask' (lat: 140, lon: 220)>\narray([[0., 0., 0., ..., 0., 0., 0.],\n       [0., 0., 0., ..., 0., 0., 0.],\n       [0., 0., 0., ..., 0., 0., 0.],\n       ...,\n       [0., 0., 0., ..., 1., 1., 1.],\n       [0., 0., 0., ..., 1., 1., 1.],\n       [0., 0., 0., ..., 1., 1., 1.]], dtype=float32)\nCoordinates:\n  * lon      (lon) float32 -14.88 -14.62 -14.38 -14.12 ... 39.38 39.62 39.88\n  * lat      (lat) float32 69.88 69.62 69.38 69.12 ... 35.88 35.62 35.38 35.12
" + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "land_da = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir)\n", + "land_da" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "hide-input" + ], + "ExecuteTime": { + "end_time": "2023-10-27T11:38:28.565400004Z", + "start_time": "2023-10-27T11:38:28.320639110Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuwAAAHqCAYAAABfkRt8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVRfA4d9sSe+9EQgdQu+9d0RRQKpUKSoIoqCAgBUFC1akCCICgjSl9yK99xJKKqmQ3rfMfH+sRPPRAiTZhdyXZx+S2Zk7Z1ZMzt49c66kKIqCIAiCIAiCIAgWSWXuAARBEARBEARBuD+RsAuCIAiCIAiCBRMJuyAIgiAIgiBYMJGwC4IgCIIgCIIFEwm7IAiCIAiCIFgwkbALgiAIgiAIggUTCbsgCIIgCIIgWDCRsAuCIAiCIAiCBRMJuyAIgiAIgiBYMJGwC4IgCIIgCIIFEwm7IAiCIAiC8Mz6+++/6datG35+fkiSxJ9//vnQY/bt20fdunWxsbGhbNmyzJ07t+gDfQCRsAuCIAiCIAjPrMzMTGrWrMkPP/xQoP3DwsLo0qULzZs35/Tp00yePJk333yTNWvWFHGk9ycpiqKY7eyCIAiCIAiCUEwkSWLdunV07979vvu8++67rF+/nsuXL+dtGzVqFGfPnuXw4cPFEOXdxAy7IAiCIAiCIPzj8OHDdOjQId+2jh07cuLECfR6vVli0pjlrIIgCIIgCMIzKycnB51OVyRjK4qCJEn5tllbW2NtbV0o48fFxeHt7Z1vm7e3NwaDgdu3b+Pr61so53kUImEXBEEQBEEQCk1OTg5BQUHExcUVyfgODg5kZGTk2zZ9+nQ++OCDQjvH/78huFNB/v/bi4tI2AVBEARBEIRCo9PpiIuL42poFE5OToU6dlpaGhXLliIqKv/YhTW7DuDj43PXm42EhAQ0Gg3u7u6Fdp5HIRJ2QRAEQRAEodA5OTkVesJeHGM3btyYDRs25Nu2fft26tWrh1arLZJzPoy46VQQBEEQBEEodEoR/XlUGRkZnDlzhjNnzgCmto1nzpwhMjISgEmTJjFw4MC8/UeNGkVERATjx4/n8uXLLFq0iIULF/LOO+8UyuvyOMQMuyAIgiAIgvDMOnHiBK1bt877fvz48QAMGjSIxYsXExsbm5e8AwQFBbF582beeustfvzxR/z8/Pjuu+/o0aNHscd+h+jDLgiCIAiCIBSatLQ0nJ2dib2VUiQ17L6eLqSmphZZSYwlEiUxgiAIgiAIgmDBREmMIAiCIAiCUOiUfx6FPWZJJBJ2QRAEQRAEodApiulR2GOWRKIkRhAEQRAEQRAsmJhhFwRBEARBEArd47ZhfNiYJZGYYReEZ9S5c+cYNmwY5cqVw9bWFltbWypUqMDIkSM5ceJEvn0/+OADJEni9u3b9x1v7969SJKU97CyssLT05OmTZsyZcoUIiIiHhjPSy+9hCRJjB49+r77XL58mVdeeYWyZctiY2ODh4cHderUYfTo0aSlpT1w/MWLFyNJEuHh4Q/cr6hIklSoy2IXh4f99xAEQRAsg0jYBeEZNG/ePOrWrcvRo0cZO3YsGzduZNOmTYwbN46LFy9Sv359bty48Vhjz5gxg8OHD7Nnzx4WLlxIq1atWLRoEVWqVGHZsmX3PCYhIYGNGzcCsGzZMnJycu7a5/Tp09StW5dLly4xbdo0tm7dyty5c+natSvbtm0jKSnpseIVBEEQzEQpokcJJEpiBOEZc/DgQV5//XW6du3K6tWrsbKyynuuTZs2vPHGG6xatQpbW9vHGr9ChQo0atQo7/vnn3+et99+m3bt2jF48GBq1KhB9erV8x2zZMkS9Ho9Xbt2ZdOmTaxdu5Z+/frl2+ebb75BpVKxd+9eHB0d87b37NmTjz/+GLFkhCAIglBSiRl2QXjGzJgxA7Vazbx58/Il6//Vq1cv/Pz8Cu2cbm5uzJs3D4PBwOzZs+96ftGiRXh7e/Prr79ia2vLokWL7tonMTERJycnHBwc7nkOSZIeOa4dO3bwwgsvEBAQgI2NDeXLl2fkyJF3lf7cKQm6ePEiffv2xdnZGW9vb4YOHUpqamq+fdPS0hg+fDju7u44ODjQqVMnrl69WqB47pQVLV++nHfffRdfX18cHBzo1q0b8fHxpKenM2LECDw8PPDw8GDIkCFkZGTkG+PHH3+kRYsWeHl5YW9vT/Xq1Zk1axZ6vT7ffqdPn+a5557Dy8sLa2tr/Pz86Nq1Kzdv3rxvfIqiMHnyZLRaLQsWLCjQNQmCINyPmGAvPGKGXRCeIUajkT179lCvXj18fX2L9dz169fH19eXv//+O9/2Q4cOcfnyZSZMmIC7uzs9evRg2bJlhIWFERQUlLdf48aN2bRpE/3792fkyJE0aNDgsT8FuOPGjRs0btyYV199FWdnZ8LDw/n6669p1qwZ58+fR6vV5tu/R48e9O7dm2HDhnH+/HkmTZoEkPcGQ1EUunfvzqFDh5g2bRr169fn4MGDdO7c+ZHimjx5Mq1bt2bx4sWEh4fzzjvv0LdvXzQaDTVr1uT333/n9OnTTJ48GUdHR7777rt819SvXz+CgoKwsrLi7NmzfPrpp1y5ciUvzszMTNq3b09QUBA//vgj3t7exMXFsWfPHtLT0+8ZU25uLoMHD2bTpk1s2LCBTp06PdI1CYIgCEVIEQThmREXF6cASp8+fe56zmAwKHq9Pu8hy3Lec9OnT1cA5datW/cde8+ePQqgrFq16r77NGzYULG1tc23bejQoQqgXL58Od84U6dOzbdfTk6O0r1797xJFLVardSuXVuZMmWKkpCQ8NBr/+WXXxRACQsLu+fzsiwrer1eiYiIUADlr7/+ynvuzvXPmjUr3zGvv/66YmNjk/dabdmyRQGUb7/9Nt9+n376qQIo06dPf2CMd669W7du+baPGzdOAZQ333wz3/bu3bsrbm5u9x3PaDQqer1eWbJkiaJWq5WkpCRFURTlxIkTCqD8+eefD4wHUN544w0lMTFRadasmeLv76+cOXPmgccIgiA8TGpqqgIokXHJSkqWsVAfkXHJCqCkpqaa+zKLlSiJEYQSom7dumi12rzHV199VejnUP6vzjwjI4M//viDJk2aULlyZQBatmxJuXLlWLx4MbIs5+1rbW3NunXruHTpErNnz6ZPnz7cunWLTz/9lCpVqhASEvLI8SQkJDBq1ChKlSqFRqNBq9VSunRpwNSR5v89//zz+b6vUaMGOTk5JCQkALBnzx4A+vfvn2+//6/Hf5jnnnsu3/dVqlQBoGvXrndtT0pKylcWc/r0aZ5//nnc3d1Rq9VotVoGDhyI0WjMK80pX748rq6uvPvuu8ydO5dLly7dN5awsDAaN25MWloaR44coWbNmo90LYIgCPejFNGfkkgk7ILwDPHw8MDW1vaeLRaXL1/O8ePHWb9+fZGdPzIyMl9t/MqVK8nIyODll18mJSWFlJQUUlNTefnll4mKimLHjh13jVGlShXGjRvH0qVLiYyM5OuvvyYxMZGpU6c+UiyyLNOhQwfWrl3LxIkT2bVrF8eOHePIkSMAZGdn33WMu7t7vu+tra3z7ZuYmIhGo7lrPx8fn0eKzc3NLd/3d+41uN/2O111IiMjad68OdHR0Xz77bfs37+f48eP8+OPP+aL09nZmX379lGrVi0mT55McHAwfn5+TJ8+/a5a92PHjnH16lV69+5NQEDAI12HIAiCUDxEDbsgPEPUajVt2rRh+/btxMbG5qtjr1q1KkCR9Sk/duwYcXFxDBs2LG/bwoULARg3bhzjxo2765iFCxfSsWPH+44pSRJvvfUWH330ERcuXHikeC5cuMDZs2dZvHgxgwYNytt+/fr1Rxrnv9zd3TEYDCQmJuZL2uPi4h57zEfx559/kpmZydq1a/M+KQA4c+bMXftWr16dFStWoCgK586dY/HixXz00UfY2try3nvv5e3Xu3dvfHx8mDJlCrIs8/777xfHpQiCUAIoiulR2GOWRGKGXRCeMZMmTcJoNDJq1Ki7ZlOLSlJSEqNGjUKr1fLWW28BppKTw4cP06NHD/bs2XPXo23btvz1118kJiYCEBsbe8+xY2JiSEtLe+SuNne6ytyZJb9j3rx5j3p5eVq3bg1wV7/55cuXP/aYj+Je16QoygM7ukiSRM2aNZk9ezYuLi6cOnXqrn3ef/99vvnmG6ZNm5Z3o60gCIJgOcQMuyA8Y5o2bcqPP/7ImDFjqFOnDiNGjCA4OBiVSkVsbCxr1qwBwMnJ6a5jN2zYkK8H+h09e/bM+/ratWscOXIEWZZJTEzk6NGjLFy4kLS0NJYsWUJwcDDw7+z6xIkTadCgwV1jpqens2vXLpYuXcrYsWMZMWIEKSkp9OjRg2rVqqFWq7ly5QqzZ89GpVLx7rvvPtLrULlyZcqVK8d7772Hoii4ubmxYcOGe5bhFFSHDh1o0aIFEydOJDMzk3r16nHw4EF+++23xx7zUbRv3x4rKyv69u3LxIkTycnJ4aeffiI5OTnffhs3bmTOnDl0796dsmXLoigKa9euJSUlhfbt299z7LFjx+Lg4MCIESPIyMjgu+++e6xWmoIgCELhEwm7IDyDRo0aRePGjfn222+ZPXs2MTExSJJEQEAATZo0YdeuXbRp0+au44YOHXrP8f57M+nkyZMB0Gg0ODs7U7FiRYYOHcqIESPyyjT0ej2//fYbtWrVumeyDtClSxcCAgJYuHAhY8eOZcyYMaxcuZIFCxYQHR1NZmYmnp6eNG7cmCVLluRbrKkgtFotGzZsYOzYsYwcORKNRkO7du3YuXMngYGBjzTWHSqVivXr1zN+/HhmzZqFTqejadOmbN68Oe+m2qJUuXJl1qxZw/vvv89LL72Eu7s7/fr1Y/z48flaS1aoUAEXFxdmzZpFTEwMVlZWVKpU6a7yoP83bNgw7O3teeWVV8jMzOTnn39GpRIfxAqCIJibpPx/WwdBEARBEARBeExpaWk4OzsTFpN0z09zn3TsID83UlNTC31sSyZm2AVBEARBEIQiUBRtGEvmPLP4rFMQBEEQBEEQLJiYYRcEQRAEQRAKnWjrWHjEDLsgCIIgCIIgWDAxwy4IgiAIgiAUOoXCrzgvoRPsYoZdEARBEARBECyZmGEXBEEQBEEQCp+YYi80BU7Yc3Jy0Ol0RRmLIAiCIAiC8AisrKywsbExdxhCEStQwp6Tk4OtozsYsoo6HkEQBEEQBKGAfHx8CAsLs8ikXSmCPuyF39f96VCghF2n04EhC+uqg0BtVdQxCYIgCEVIMeowxB5DMWSg6LMh5zYA4Tfj0Gq1rFq5gvlz53Dp0sW8YwICSuHu4UFsTDRpaWkYvJqi6DMxxh6habPm9OzVm/YdO1GjyQvIqTdQOQUiZ8SiDWzHxnlvYjAYsbW15fjRI+Tk5tK0aTOq16yZL664uDj27t7FwgXzOHfuLJ26dOXX35YX62tTGIxGI9u2buG7b77m9KmTvNy7L+9NmYqfnx+SJOXtExsTw82bN/Hy8iKobNm85x7kzOlTLJw/j82bN5KRkYGrqysNGjaiQaPGNGjQiGrVqmFnb3/f46tWLIt/QCnOnT2T/wkbN8hJAkkNihGsnP/pyWcESQKVNai1SFb2qKxckOw8UNl4IGnt8oaQs5PQR+4AXVretvkLF1O6dGm6DHwfOSseJTUCFD2orMDaGcnaCZWVCyoHP1T2Po/2Qgtg1BF36Vd0Op1lJuyirWOhkRTl4Zd+Z4lZ6+rDkUTCLgiC8FRSFBklMw4f/SlioqNp36EjiqLQpGkznJ1dqFmrNq+PepVLFy/i7+9PdHQ0Wq0WH19fypevQKlSgZQKDOTTjz+kSdNmHDp4gLfensCnn83MSzbtHN2RbL3AmEP7JlX4c8Pmx4hT4eKFC5QrXx5bW9vCfhmKTE5ODp989AHLfvuVuLg4GjVuwseffkaz5i2K5FyHDh7Iexw9cpisrCwkSSKobFmCq1WnYaPGvDn2LbRabd5xP/34A+9OGI9er79rzO9+nIuvry+9XnqBOnXr0bJVa6ytrTEajSz7bQl6vZ5y5ctz+dJFUlNTAfAPCCAoqCyxsTHcuH6d6tVr8P2ceTg4OJCamoqNjQ2bNq7H09OLUoGBeHl5c+1qCFFRkVy/do3r169x7WoIiYmJaMs+h9qpdKG/Vs8yxagj9/wCUlNTcXJyMnc4ee7kjdeibuNYyHGlp6VRoZSHxV1zURMJuyAIwjPEmBSCnJuK2rkMijEXSdIg2Xmh5CajC1kJgLW1NYt/W46/fwDJyUkkJSURHX2TqZPfIzi4GrZ2dly/dpWPP/2cQUOGotH8+2FsQkICpf29AWjcpCm79u7PS9azsrJwd7ZH49cYRZ+FKuUSw4aP5P1pH+Du7l78L0Yxe3XIIFavWsnwka/xcu++1G/QoNjOrdfruXD+PBfOn+PCBdPff+/by4s9evLLr0tRq9V5+6alpXE1JAQAOzs7YmKimTplEmdOnyI4uBp16zegU+cutGzVGjc3NwC+/uoLprw3kZSMHKysrAgLDeX06VOcPnWSqKhIvLy8qV27Dt1f6oGdnWnWPSIigsrly9wzXkdHR0oFBuLs7IJer+fE8WNoS3dA7VqhaF+oZ4ylJ+xXiyhhrygS9nsTCbsgCILlkjPj0IVvM5UvGLLv3kFrj9q5PMbb57hfiwVJkrC2tsbe3p7ExES+/X4OI0a9dtd+096fzBczPwPg0NGT1K5TB4CkpCQGv9KPHdu3Idl5o2TF5x3j6upKTELSk1+oBTt+7BgtmjZk7vyFDBoy1NzhALBu7Rpe6debvv0GMO/nRahU9+7krCgKrVs05eiRw/TtN4Ad27dy+7apTMrR0RGtVktSUhINGjZi7/5DBSrduTPuFzM/Y9XKFVy4cB4rKyv69hvAlSuXuXH9Grm5uTi7uODs5Ez9Bg35/ZQVkiS6TT8KkbBbzjUXNZGwC4IgPKXknCTktCgMcUdBNpU49B8wkBkzv+D0qZNUrFiJpKQkFsz7iV8XL8LXzw97e3uuX7uGJEk83/1FBg8ZxovPdwWgfYeO1K1Xn46dutCwUaN7JmbBlcsTeuMG70x8j48/NSXuJ0+coFePF4iNiQHAzc2Ntye+h72dPdevX6NcufKMev2NYnpVzOPF57sSFhbKyTMX8s1mm1N6ejrdunTk6JHDhNyIIDAwMO85RVGIjIjgxInj/PrLQnZs38aixb/Rt/8AFEUhLDSUo0ePcCshgVxdLl6eXnR/qQfOzs6PFcv1a9do36YF8fHx2NnZodVqSUlJybdPg4aNqFGjJguXrkPRpSJpbNCW7oDKzutJXoZnmsUn7JFFlLAHlryEXfRhFwRBsACKbEBOv4liyEZl74PKxvWB+8tZCeiurgIk/jtr3rf/ALy8vOjYqTMAQWXLculic1b8voy42Fh8fHzYsn0Xly9d4v3J77Jj29a8Y3ds38aO7dto2qz5fWdRP5kxk/S0NF4ZNBiAmJgYmjWun/f88BGjmP7RJw8tgVEUhZSUFHQ6HbIsY2VlhYuLi8Uku49i6ZJf2bplM4t/W24R8ScnJzPnh++Y88N3ZGdn892Pc9m5fRs3blwnNPQGodevc+PGdTIzMwGoUaMmv/+xhu4vvgSYPm0pW64cZcuVK7SYyleowI2IaCRJyvu3lZ2dTfTNmwzo+zJnz57h2NEjZGSko7J1A1t3jEmXkbPiQZGRM2IA+Z9/6qZ/74qimMbS2CJZOSBZuyBZOd13ll5RFJANSGrtPZ8XBEsmZtgFQRDMTM6MQx+xA+U/3TWsyr+IysHvvsfoY49gjD+FdY0RIKkI3zkDMHX1sre3x/6fTiF6vR4nOyv8AwKIvnmTXXsP0KRpUwDCw8JYs2YV+/bs5vr1a4SFhgKw5+9DNGrcuECx63Q63nlrLM4uLvTr/wpVqlZ94P6nT51i5uef8vfePSQnJ+d7zs/fn09mzKRP334FLrswt7DQUKpVqcCgwUP5ce58s8atKArLl/7GexPfJjMzk8FDX6VvvwH07vUicbGxBJYuTbly5SlXrjxly5enYsVK1K5TF19fX7PFDKZ7H86eOUPV4GCcnZ1xrT8affQBjLcvoHYPNpVyqbSgujPHKJk61wAoMhhyAfmf51RI1k5I1s5IVs7/dLaTwJiDMfkaGHNAY4dk7YLK2tmU5Fu7INn88/dTVpJj6TPsIZG3imSGvVKgp8Vdc1ETM+yCIAhmImcnYkg4jZR2nXp16/HBR5/wXPc+KDmJSFYO9z8uKx4l6xaSBLeP/oBGo+HAgf18/cVMtm7ZjJOTEz6+viQlJZH4Ty3ynUn4XTu35yXsZYKCePudibz9zsTHvgYrKyu++/GnAu8/+rURnDp1kvenfUDlKlWxsbFBpVKRk5PDHyt/Z+igAfw8fy4/zfuZipUqPXZcxSUsLBRZlnnr7QlFnqy71h8NQPLxH+75/CcffcCMTz6iV+8+zPzia5ydnWnfugVqtZrr4Tfx87v/G0BzsrOzo3GTJoDpDd1rbe2Y/dVZAOTE83w843PGvz3hvjX4sixz8+ZNbly/xrWrV7l+/RrXr10lLCyU9PQkZFnG2c2Zpt0H0rhJU8LCQrl27aqpS821i6TFmt4oOzs7k664mlpMOvgj2Xo8dQm8pRFtHQuPSNgFQRCKmCIbAZBUpnIJxahDf3M/cvIV0Dry7sT3SE9Pp9dLL6AYFKwq9ECyuvfMkTEtEn3ohrzvP5j2Pom3b7P4l4XUrFmL7374ifPnz7JpwwZuJSQApqTaycmJOvW681KPXoV+fbIsc+jgAXJzc8nOziYnJ4ec7Gzi4mJZs+oPZEVBo9Hg7u7OqVMnAejStVveDat3vPhSD/bs3sWbo1+jYb1avD/9Q0aPGYu1tXWhx1xYSpUy1YVHR9+kQsWKZo3l2rWrANSuU5cVvy/jj9+Xc/VqCLv3HbTYZP2/du7YTrcuHfO+d3JyYuHi33iu2/MPPE6lUhEYGEhgYCCt27R9pHMqikJCQgJXLl/i0MEDfPLlfAyxx0AxgMoKlYMvKns/VA5+SHZeIoEXzEYk7IIgCEVEURSUnCRTO0VJQuNdH7V3XQwxh5CTr6Dxb4HavSoGg4E5P3zHm+PGM2+n6Wa7+1HZuKB2q4KiyAQ45fDVFzNxcnLi+x/nMvTV4VwNCWHC2+Pw8/fn9z/WUK9+A/z8/O47O1kYdu/amS/RukOr1eb1+7azs6NUYCBBZcvi5+dPmaCge47Vuk1bjp44w4fTpzJtyiR+nj+Xr7/5ns5duhZZ/I9LURTWrlkFgJeXd7Gf32g0EhEezpHDh/h7315OHDsGwMIF84mLjaFR4yZs/n4ONWvVKvbYHoeXlzftO3SkXfuO1KhZkyZNm2FlVbRluJIk4e3tjbe3Ny1btWbWn/EoshElKwE5Mxo5IwZD/HGI/SeBdwxA5RiI2qnUfd9UC/9SuF9fqicbsyQSNeyCIAhFwJgehT50EyCBYqBT5y5s3bIZlWslFH0mSsZN+vTtzy9LlnL82DE6tmtF02bNOXCrAoo+EzkjhlHdgwkMLE3f/gMo32n6XedQFBklO9FUr6u2QlFk9OHb8XXM5dzFkLx+2EVNURS+/eZrpk2ZhF6v55cly3ipR0+0Wi0xMTGcOH6MH777hgP7/6b/gIF07voc7dp3eGjHkSuXL/PO+LHs2rmD7i/14JvvfsTbu/gT4zt0Oh1bt2zm6JHDhIeHceniBa5cvsyYsW8x84uvCq0k5k7pC9y//GXb1i1079Yl37YWLVsxdNhwatepS/kKFYr0TVpJotfrOXniBHv37GL7tq0cPXIYWZaRrF1ROQWicgw0zcCrin8O1NJr2C9HFE0Ne5XSJa+GXSTsgiAIhUDRpaGP2oecGWNadh0FDNlofBsxZVRX3p00hRXLlzF0yBAkGxeU7NvUqVOXA0eOI0kSc374nncnjEddZQi5l5eCIZtSgYHExcbi6upKimsbVLb37ryiKDJyehSG+FMombEsWryEvv0HFO8LgCmx8XZ3ZtTro5nx+ax8z6WlpfHFzM/YsmkjFy9ewN7entfeGMPQYcMJKlv2vmMqisIfK1cwYbzpxtbtu/Y91k2S6enpfPbpx+zdvQt7BweqVg2mafMWtG7TFk9Pz4cef/TIEV7p35uoyMi8mzf9/QMYPPRVmjZr9sjxPEhBEvabN29StWJZ9Ho9dnZ2ZGVl4e3tTfjNuEKNRbhbSkoKe3bv4pXXpmFMjwR9BkhqVA7+puTdKfCfG1iL/gZkS0/YL4UXTcJetYxI2O9JJOyCIAj3Z7h1HkP036C2QeNVC2NaBEpm3D9LrQfmS7ocfGtivH0eJA3RcXG4ubmhKArvTnib77+djcohADnjJtrAdqTd2EFsbCzdn+vM+atRWFfui6LPQs6IRslNRVEMYNQjp4Wh6NKRbNzR+Dcl7cpfxf4aKIrCN7O/YvK7E9iweRvt2ne4774RERHM++lHFi6YR1paGj16vcyQoa/SpGkzbG1t73lMWGgoLZs14tatWwQHV8PdwwMPT0883P/528OTgFKlaNe+A7IsExcby6lTJwm5cplr165yYP/fpCQn06Pny+Tqcjl96iTXrl5FkiRq1qxF1eBqVKhYkcpVqhIcXI3yFSrkJVwxMTHUr12dChUr8f2Pc6leo0aRvIZ3FCRh/6/fly1l5PChPN/9RZYuX1mUoQn/4Vp/dF7Zm5wehZweaWo/qRhB64DaKRC1W1VU9kX3qZBI2C3nmouaSNgFQRCekCHhNIYY0wqQdnZ2ef2tK1epQoMGjdBoNKRnpHPj+nVOnTyBra0tg4YMY/a33wPQ66UX2Lhhfd5449+ZyMeffkZSUhIb1//F99/O5tbtW3h7eXPhwnkAvLy8sLWzw8bGhnr1GjB85Gs0aNiwQLN6iqKQmpqKvb09Wu2T9aRWFIUjhw/z/XezWbdmNRPencSHH39aoDiysrJYvvQ3Pv3kQ+JiY3FycqJnr9507NyFdu073FXSc+zoUdb/tY7s7Gxu377F7Vv/PBJvc/vWLXQ63V3n8Pb2pnyFilSpUpW3J7ybr3Y+NjaWXTu28/e+vVy9GsK1qyEkJZlWZK1Ttx5t2rbDaDSyds0qcnNyOHHmwkP7yxcnRVGY8clHfPLRB7wycDA//DSvyGu+H/XNREmTlZXF/r/3sX3bVjZu+IvIiAgke180njVROQcV+k2rlp+wJxRRwu5lcddc1ETCLgiC8IQURUHJimPa0Iao1WoaNWpCfHwcy5YuIT4uDoPBgJWVFTHR0URGRlC+QgU2bt5O6TJliI+Pp0yADwArV6+jbr36LF/2G78sXEBYaCiSJBFUthyhN67zwosv0f3FHrRs1fquspCcnBziYmPR6/WUK1/+nvXL0dHRjBg2mFMnT5CSkoJGo6Fc+fJUqlyFSpUqU6pUICqVCjs7O5ycnSldugxlgoJwcLh/i0lfT9e8FSvfHDeez2d9+cilAIqicOniRVavWsmqP1Zw4/p1HBwceK7bCzRt1px69RtQKjAQV1fX+9ZlK4pCyJUrHD1yGGsbG9zd3alVu06Byl3+O0Z8fDwnjh9j4YJ5XL58CZ1OR4cOnXhjzNgin1l/VNPen8wXMz/jg48+YeJ7k4ulBEMk7AVnNBpxrdwNw60zKJmxSFaOqD1qoHavWmi5lEjYLeeai5pI2AVBEApJ1J7PObD/b24lJHDr9i0Sb5tmfi9fvsTJE8fx8PAgSVsZtUdVJElN8vEf0Ov1uAbURLL3QdLao4/aC4Ys1K6VWPjtVEqXKcOE8eM4cfxY3nlUKhVqtRq1Wo1KpSIrK+uuWHbu2X9XbfXP8+cx5o1RTJ3+IRUrVSYpMZGQkCuEXLnMlSuXiY2JMb35+L9fC/4BAQQHV6NK1WCqVg2mStVgqlStioODA59+/CGffPRB3r4bt2ynbbv2T/Q63rh+nZUrlrPhrz85f/4cRqOpLaZWq6VixUoEV69OcHA1gqtVp3aduk9Fy8Ki0KFtK2JjYzh3MeSpWWiqpDp18iTffzub1atWYmtry+ChrzJpylTKdpj6RONaesJ+MaxoEvbgIJGw35NI2AVBEO5Pzk3BmHAG29wIMjIyAFMPaSsrK3Q6HY0aN6FylaqcO3uGvXt2o3Iph8ren8FdqvD333u5GhKSN5Zk540msB1KZjTVPdI4ffrUY8V07OTZu2aEf54/j7FjXicjx3DfBE9RFHJyckhOTiYiPJzQG9e5cuUyly9d5OLFC4SHheXtWyowEFtbW66GhFAmKIi3xk9g2PARqNXqx4r5XrKysjh39ixxcbHExsRw5fIlLlw4z8UL50lNTQVM3VFee2MM3Z5/oVDPbel279pJ107t+fb7OYwY9Zq5wxEKIDo6mnk//cj8uXNwcnYmOt0OlbUjii4TtHao7H1ROQYUuHTG0hP2C0WUsFcTCfu9iYRdEISSSDHqMMSfRMmKR9GlAyBZOYLaBpBRuVRESY/AmBQCGhsmvzeBHj1f5sqVy6xetZLNGzeQm5ubN56npye3bt0yfSOpqBYcTLXqNVh7UgdqG5Ts2yCpUHTpGKL/pmOnzgwZNpyKFSvh6uZGVmYmJ04c59TJEyQlJuLk7Iyfvz9VqlSlanA1AgMDHzjTum7tGvr17klEdDxeXl6P9ZpkZmZy5bIpgb96NYS0tDRatmpNt+dfQKMpvrZ2iqIQHR3Nvj27WbRwAYcOHqBS5cosWbqCGjVrFlsc5jZuzBss/mUhu/cdpE7duuYORyig0Bs3mPnZp/y2ajNKbgqS2hpF1oMhGzS2qJ3LoXatgGTv+8D/p0XCbjnXXNREwi4IgvB/jEkhGNMjkTNicbSBtu07EBRUlm9/XouceiNvP8mlEkrKP7PjWgeQ9WA0JeiSjTtqt0pIth4ouWlIVo6o7H1M/dKNOhTZiJwWjpweRbOa/kREhBMRHm461t4XJTOWTz+fxfi3JxTadW3dspkXn+/K3wePUr9Bg0Ib1xIcP3aM10e+Sq4ul1lfzqZK1WBKly5t7rCKXG5uLm1aNuPG9Ws0adqMmrVqU7NWbWrVqk3pMmVEqcxTRFEUzpw+zao/VrDqjxXcjIrC18+PBL0napfySHbeSJKEnHULQ8Jp1G6Vkey80V342eKS1zt54/mwBBwdCzlhT0+jukjY700k7IIgPOvkjGiM6TdRdGnIyVcBCVBo2KgxYaE3SE1NJTc3F8nKydRn2dYLtWtF5NQbyJnxIKlMK5SqbVDZ+9yzZ7oiGzDEHkHOjEfJvgWKEcnOm57dWuPr60er1m3oNXQixtQw1C4VMN4+R6nAQPb8fQh/f/97xy3LbNm8ia++mElcXCwNGzamcZOmNGnajKrBwXk3ae7ZvYv+fXpRoWIlduzeV+TdRMwh5MoVWjVvTEpKCvb29nw/Zx59+vZ75pPWuLg4fvrxe86cPsXZM6eJj48HwNXVlVq161C3Xn1GvvYGAQEBZo5UKChZljl65Air/ljBT/N+BkO26U2/Yynk9GgUnakcDDsfyIqzuORVJOyFTyTsgiCUeIb4Exhij5q+0TqCPj3vuVKBgfTtNwAfH1/e/fovU2u2R/g5qCgKcnoESnYSckY0cnrkv09qHbAK6kTqxVV5m5yDX0Z3dRWSjRtKjqnFYHR8Im5ubvnGPHP6NCtXLGf1qpVE37xJk6bNqF2nLkcOH+LsmdMYDAZcXFxo3KQpAQGlWPjzfFq3acvS3//AxcXl8V6op0BOTg4x0dG8P+U91q1ZTbVq1Rk0ZBjDho+4b4/3Z01cXBxnTp/i9KmTnDp1kkMH9gMwf+Fiuj7XzczRCY/Kpd7ryBkxyCnXkLMSwKhD0aWhcvBHzkkBQ6bFJa938sZzYfFFkrDXCPK2uGsuaiJhFwShRDMmhaCP3Jn3vca3EYouDUnrYCppsXr8XwhyZhz6m/tRshNwdHQkIyPjrg4sY8a+xawvv863beqUSXw563MAzpy/TKXKlfOe+335Mj6f8TFXQ0Lw9PTkpR696NNvAI0aN87bJzMzkxPHj3HwwH4OHtjP+XNnGTJsONM++KhE3ZT557q19H25BwALFi5mwMBBZo6oYAq7dWJiYiIjXx3Cpo0b6D9gIJ98NhMfH58nHlcwv6ioSCqWLW1xyatI2Atf8d0hJAiCYGEURfk3WVfboPFtZOqRXAglFPqb+zHePodk68nOPftp0rQpRqMRt+AXUbITQaVm3YKpNG3W/K5jP/pkBgBffTEzr+sMwOFDhxg+dBCdOnfhy6+/pXWbtve80dPe3p6WrVrTslXrJ76Op9nZM6exs7Nj/DsT6dW7j7nDMRt3d3dWrf2LXxb+zLT3J7H+r3VMnjqd198Y80yWRpUkzs4u5g7hwZR/HoU9ZglUuEtuCYIgPGU0vg3RBrbFOngQGo/gQqt3NiaHgNoGben2pKamMPq1kTjaatGHbkSydkLjWZN27Tvcs0xDkiQ+/vQzsnQydevVAyApKYmBA/rQoGEjVqxaS/sOHYu1K8vT6PatW1SoUJEpU6djbW1t7nDMSpIkhr46nHOXrtJvwECmvDeR4MrlmfX5jLyVeQVBsFzip70gCCWWJElovOsV+riKUZfXLUZ3ZTk9ui+H//RVPrhm1iOtmpmUlMSQgf3Jyszk16W/i0S9gCpXqcqSX3/h5s2bT9UNl0W5gqibmxvffPcDrw4fyfffzmb61CkATHxvcpGds6DulAI96vU/7nFC0RMT7IVH/NQXBEEobCo1au96GONP5G2SbNxMfdaB+XPnUDW4GpGREURGRvDt93Pw8PDI29doNPL3vr1cuXyZ06dOsmnjevR6PUt//4NSpUoV++U8rXR6HTqdjpArl5+qhL04BFerRvMWLVny6y/Uq/9stfgULIeimB6FPWZJJBJ2QRCEQiRnxaOP3IOSk4hka+qfjCIjZ8bmzQz9vGBevmOGDhtO23bt875/e9ybzJs7B61WS7Vq1ek3YCBvT3hX3Cj4CGRZ5pMPpwOwedNGQq5cYcDAQSXqJrX7iYqKYvy4MWxc/xcv9uhJq9ZtzB2SIAgPIRJ2QRCEQqAoMh8NqMCkd3+iZo2afD9nC/Xq18+3z43r19mzexchIVf44btvAPhhzrx8ybrRaGTVHyvw8vLizw1bqF2nTnFexjNDkiQGD32V06dOsmf3ThbM+4mTJ46zcPESc4dmNllZWXz1xUxmf/UFzi4uLF+5mu4vvmQxfeoft6RFlMJYLuWfP4U9Zkkk2joKgiAUAt2NDXk91gcNHopGo0GlUqG1ssLqPw9rGxvc3dyJjr7Jr4sXsWbdBmrUrJlvrKshIbzSrzchIVf45rsfGTx0mDku6ZmxfOlvDBsykLLlynHxynVzh2MWBw7sZ+SrQ7gZFcWb48Yz8b3JODo6mjss4QmlpaXh7e5scS0O7+SNp2/EFUlbx9rlfCzumouamGEXBEF4Aooxl1/e78Q74/8k5p/1ln5dvOihx30843OuhUbe87mKlSqx7+ARxo8dw2sjX8XH15dOnbsUZtglRnJyMsOHDaZd+w7M+PwLc4dT7HJzc5n2/mS+/3Y2jRo34c/1m6lQsWKRnjMpKYkvZ32Ov38ALi4uaLRaNBoNWq0WN3d3Spcug5+fX4laE6DEEnedFhqRsAuCIDwiOesWhphDyLnJYMihX++f854LKFWKChUq4uvrh7W1NWq1GrVGY/r7n4eVlRUDBw154DlsbGz44ad57N27m4U/zxcJ+2OysbHBxsaGWrXrPFJnnmdBeFgY/Xr35MKF88yY+QVj3hxXLEnykcOHmP3Vg98caTQaSgUG4u3tgy43l4WLf6NylSpFHpsgPK1Ewi4IglBAii4dY2oohphDSNYuqN2qIKltuLh/GYoso1KrC62Ly5HDh/l8xseEhYYyfORrhTJmSWRra8vYt97ms08/RpIkJr8/DRsbG3OHVeT27N7FgL4v4+ziwr4DR4r1XoguXZ/j4pXrHDywn/iEeKIiItiw4S9iY2IAGDhoCHXq1iMyMoKvv5wFQEjIFZGwP4PEBHvhETXsgiAID2FMCUV/cy8YsgF47Y0xfD7ryyJZJTI6Opop701k5YrlVA0O5p2Jk3i5dx9RPvAEZFnmqy9m8vGH0wkqW5aly/94pmfb09PTCSrlS/0GDVm2YhVubm7mDgmAY0eP0rpFE3AohbZMJySVBmPSFfSRu5BsPdm64Q+at2hpMTfBPg0svYb91LU4HAq5hj0jPY06FUpeDbtY6VQQBOEBFEXGEHckL1kHqFevfqEn67m5uXwx63NqBldiz+6dzFuwiOOnztG3X3+RrD8hlUrFhHcncfTEGTQaDY3q1yYqKsrcYRWZnJwccnJy8PHxxd7e3tzh5KlTty7t2ndATosg98Iv6G/uR+UQgFXFl0GR6diuNbVrVGXcm6NZ9cdKYmJiyM7OJjwsDFmWzR2+IJiVKIkRBEH4P4ohx9Q3XZeGMfESSk5yvueHDRlI3/4DCm0m8PChQ4waMZTQGzd47Y0xTJk6HWdn50IZW/hXlapVCQoqy6WLF4mNiXlmF6Hy9PRkztwFjHljFNeuXWXZilWULl3a3GGh0Wj4a+MWnGsMwJh4GWPiRYyJF1C7V0VbqiXfvtOFvXt2s3PHNub99CMAarUao9GIk5MTjZs0pdvz3fHx9UWj0WBjY0OFipXw9fUVs/IWSrR1LDyiJEYQBOE/jCmh2KccJiUlBY1GQ/sOHRn/zkTc3T1IT0/H2dkZXz+/QvkoNisriw+mvc8P331D/QYNmTt/IVWqVi2EqxDuJT4+njIBPnzz3Y+MfO11c4dT5E6dPEm/Pj3Jyc5m2869VKpcuVjP71p/dN7X9+qVnp6ezvixY1i2dAl5qYikQhvUGZWtp+lNsyEHSeuAknMbY1oUSmbMXePY2tpibW3Nnxu20LBRIxRFISI8HJVaTWBgYJFdnyWw9JKYk9dii6Qkpm4FX4u75qImZtgFQRD+YUyLwBBzgOqN6rBg0a8EBAQUSTmKLMts3LCeye9NIPrmTT6b+SWj3xwrSl+KkCzLebO2bdq2M3M0xaNO3br8ffAonTu0oX2bFvy1catFLcTl6OjIgkWL+XL2t0RGRNC01xT0oRvRh23Buvpw0yrBdziXQeNdD8WoA9kAiowi61Fyk6nsEs/p06fo9dLzNGnWnGNHj+Td4FqvfgN69urNSz17PbOfqFg0cddpoRE17IIgCJjKYPRhm1H0WYx6fTSlS5cusgS6c4e29O75IgEBpTh28ixj3xovkvUiFBERQb3a1fns04+Z8O6kIu9Dbkm8vLzYtnMvpcsE0a1LB25ct7yFo5ydnaleowZqp9KonMqAIpN7fgG5V1ehC9+GIe4Eij4TAElthaS1Q7JyQGXjitq5LPsPH+ODjz4hIKAUaamp9O03gDV/buDXpb/j6+fH9KmTqVg2kNYtmvLDd98SER5OAYoLBMGiPFJJjORSDvRZKDlJqOy80ZbugKSxLo44BUEQipQxLRJ96AZOn7tU5O3lWrdoio2NDVu27yrS8wgmMz/7lM9nfMLGLTto2qyZucMxi6SkJFo0bYi3tw87du9DpbLM+TpZlrl44QJ//bmWVX+s4GpICAAan/pofBo81piKUYecGoYx5bppNWJFBo0dkrULkpU944a9iL9/AH7+/vj7B+AfEIC3t/dT8Sba0ktiTlwtmpKYehVFScwDKSk38r6WM6JBMQAiYRcE4emnsnUH4Pz5c5QtV47U1FRCb9wgKyuTqMhIQkNvcOXKZbZv3UJ2djYT35vMhx9/+sjnSU5OxsfXl80bN5CdnY2trW1hX4rwf6xtbJAkifoNHi/hexa4ubnx3Q8/8VznDowb8wazv/vBIhNSlUpF9Ro1aFC3Zr7txvSbKEYdko0bKlt3JBs3JJW2QGNKaivUbpVQu1VCMeQiZ8YgZ8Wj5Kah6DJZt3Y10TdvotPp8o5Rq9X4+vnh7e2DjY0NVlZWaLVarKyscHV1w8fXl4CAUlSoWJEKFSvh7+9frDe+Zmdnc/bMGQ4e2F9s5xTM65ESdskxEI1bZSQ7b1TWJeddjSAIzwZFUTAmnEbOikftUh61a4W85yStPRUqVmRg/z4FGsvBweGBz+v1elJSUkiIjycsLJQTx4+xe9dOTp44jkqlYuiw4UXSx124W/36DcnOzubzGZ/Qu0+/Yr/50lK0aduOn+b9zOujhnPt2lUWLv4NPz8/c4d1T6vW/sWfa9ewcvcNFGMuSk4icmoYyq2zeftIth6oXcqjcimPyrpgXZUkjTVq5yDUzkF52y4d/wFFUbh9+zbRN28SHX2TmOhooqNvEh8Xh06nQ6fXodfr0eXmEhJyhX379hATHY3BYABMPw+aNG1Gh46d6dS5C+XKl79fCI9Mr9dz4fx5Tp08wckTxzl54jgXL17AaDSi1RbsTYu5KIrpUdhjlkSPVBJjVe1VJJUGSWV578oFQRAeRDHqMMQcwph4MW+bVaU+vNLciejom4SG3sj7+P1eypYrx8BBQ6hRsxZNmja7Z9vFae9PZvmy30hJTiYzMzPfc56enjRv2Yp27TrQsXMXi02UnkWKojDm9VH8tmQxOp2OV4eP5Nsf5lhsWUhR27N7F8OGDESSJP7asIVq1as/cP//dnv5r3t1filqmZmZXLp4kYsXzrNr1w42b9xAVlYWkp0PWv+mqOx9ii0WRTGi5Kaj5Caj5CQhp99EzowBRUayckSydmVon86UCgzEzc0dZxcXXFxccHJyxsXFBWtrawwGA3q9nuTkZGJjY4iLjc37Oy7O9PWlS1dAMQKS6RMGOy8kOy9Udt6gdUB3cZHFlYfcyRuPhcQUSUlMg0p+FnfNRe2REnbUtmDMRuVc1lS/LhJ3QRCeEvrYYxjjj+d9L9m4g8YGJSM6b9vML76mUuXKBAWVpXSZMlhbP1rJ36tDBrFu7Wqmf/gJrq6uOLu44OHhSWDp0sX+kblwt8zMTJYs/oW333qTCe9OeqySpmdFbGws3Tp3wMrKigNHjj/wzYslJez/LzMzE9+aL2FIOI2SfQu1WxU0fo2RNOYpNVOMOuSMaOSMaBRdOjWCnImKiiQ5OblAiz9ZW1vj6+eHj48vPr6++Pr6seDP06Yk3dbjrjIgxagj9/wCi0teRcJe+B6pJOatcaNx9/Dg/UnvIqeG5vs4WRAEwZKpnQJRcpORU0xdMpScxLv2ychIp2Onzo99jh69XmbZ0iW0advuobOWQvGzt7fntTdGk5GZwbQpk+j2fHfq1a9v7rDMwtfXl29+mEP71i1YuGA+w0eOuu++lpCY34+9vT1p17dhNBr5ef48Ppg2BVXMn6S7NkftGFDs8Uhqq3wlN1cASjVBG6CArAdjrqk1pTEXRTEiSSqQVKC2RtLYgdqaOEkiLhsIBUJlNJ41H3BGCyfaOhaaR/o8cNz4d4i+eRMAydoFRVFQZGORBCYIglCYVPY+qBz88753cXHF2tqaPn37M3zEKF7u05fnur3wROdo2649jo6ObNq4/knDFf5PamoqvV56gXatW7B500YWLphP3VrV6NenF2fPnMm3b2ZmJqE3bnDi+HGOHT3Kpo0bmPPD9xw+dIjc3FxGvfYGlSpVZuTwoezauYObN2+SmprKop8X0LBuLbZt3WKeiyxmzZo1Z/CQYbw/+V2io6MffoAFU6vVjHztdc5eDKF2nbroQzcgZ9/9ptxcJEkytaS0ckRl647KwQ+1YylUDv6o7H1R2bghaWzEp3DCfT3SDPugAX3Zu2c3APqIbaa+qLIBtXc9tL4NiyRAQRCER6XIRpB1oM7/C1DtHoxk5Uwdr1scO3qE7bv20qx5i0I7r16vx9bWNm/RFqFwGAwGBg3oy769e6hWvQY9uncD4LnnX+D0qZM0ql+bmjVr0bxlK44dPcKxo0fuGuPOEveSJOXrwf1c5w537ZsQH190F2NhZsz8gi2bN/LR9KnM+3mRucN5Yl5eXnz86efs2lkXJTcF/un+JJiHmGAvPI+UsPfo+TLp6emULVcOX18//Pz8WbRwPldDTiCp1EhaR9DaIWkdkawdkSRR4y4IQvEyJF7CEL0fZAMqB3+0ZZ9DUmmI+fsLZnzyEd98vZlkbTm27thdqMk6wPx5P5GcnMxrb4wp1HFLMqPRyMkTJ9i2dQva0h04ryuHVXl/JCtHdkY6ojj5oi0dyvnIcM7+tADJyhlNqTZIVg5Iahv4Z2YTrQPq7NvIWbeQ1FoUYy6Gm3+j9m2MysYFxZCDpHVAH76VkaPf5rX3vga1FSqHUtw+t/KZ6uhz4/p1tmzexJXLl0hKTiI+Pp6zZ04X+nn+W/tenGU1096fhGTljMrx2V7ZVNFnYkixvIWwhKLxSAn7y3368uqIkXnfT586Ja+rgiH2aP6d1daoPaqbPuYRbSAFQSgmxlvnTEuXA4ouAyQViiGHDm1bcf7cWSa/P43x70x85BtKC+KP35fzYo+eJbZtYGGKiYnh0MEDvNKvd942lWMpJEmF5PBvhx1JUqN2rVCge6pMnTW8AFOHD0PccdClofau8+8+5V/EEHfUdNOgIRtj/EkCfDxo1aYtHTp04uU+fZ/6G92GDxvM4UMHAWjXvgO9eveh18sFa2dq6TZuWM/OHdtNjTHUz86brP+nj9qDMfGSucN4KNHWsfA8UsL+/7y8vAFYsmwFw2dsBbU1ij4TRZeOnBaOMf4ERgCVBusqryBp7QohZEEQhPvTBrZFTo8CSYXarTIgoY/YTqg2k937DlKnbt0iOW9OTg4XLpxnyLDhRTJ+SXLwwAHatW6eb5s2sB2SxqbQzqFk3TKVdLrlX9VWZeeJVdnnTPsoCkr2bd4eUIPt27Yy7s03+GzGxyz7fRWNGjcutFiK2/PdX+TwoYN8PONz3pnwrrnDKTQHDxxg9Gsj6NipM3tjgx5+wFNKzrqFMfESGp8GqFwrobv8m7lDui/lnz+FPWZJ9EhtHeMTC95CR1EUFv28gNFj3wbZgHXVAUhqsSqqIAjFy3DrLIboA2zcsp227doX2XmOHztGi6YN2X/oWIntPPK4Ll64wOT3JqDX60lLS+PkyZOgyKjdqqD2CEay9SqSm/EUQy6SpuC/l+TcFPRXljN1+odMmjK10OMpLq2aN8HBwYH1m7Y+E73o4+Pj6d+nFwcP7Eey88YqqDOS1t7cYRUZw61zGKL3E5OQhFqtxtvd2eJaHN7JGw9fji6Sto6Nq/hb3DUXtSL7P/XsmTOMfn0k6DNQu1UWybogCGZhvHUWlWvFu+rVjUYjGzesx1YrYauVOHnixBOdZ8f2rWi1WqrXqPFE45Q0H30wjXq1q7N921b27N5F9eo1UHvVQRvUBU2p1qjsvIusc8ajJOsAGLJRFIUOHR+/9ae5nTxxgiuXL1GvfoNnIlkHyMrMNNXga+ywCuryTCfrAGrnslhZWTHuzTfyVlq1WEoRPUqgIvu/tUbNmnn9jI0p14rqNIIgCA+mdUROvoqroy0vPNeZP9etZeI743Gw0dDrpX/bOFapWvWxT7Fl8yY++egDXurRq0hq459ld1oFA3R9rhs/zf8ZrW9D1M5BFtfiTslNBaB8hadzDRK9Xk+Hti1JTU0lMiKCSxcvPvygp0BQ2bJs37UPUNBdW1Pgdo6KYkTOjMOYfNV0v0sBKYpsKktJuY4h8TLGtEgUQ+5jRv/oJCsHFv26lLWrV+W7x0N4tj1RDfuDqFQqfHx8Td/oM/l0UCWm/Hr/Zb8FQRAKi6JLx5gaTquqNuw8Y2qxqCgK27dtZfu2rfn2XfjLEvr2H/DYyeHBAwcYNKAvXbo+x6JfLbeW1FL9NP9nAkuX5pOPPmDb2Yz7rqpZXBRFAWOuaZEbjS2S6t9fk8aUG3h6elKASlKLpNFoGP3mOLZv3cLvy5dy+/Yt1m/a+vADnwK169ThypXL9O7RndDQTeQGPI/K2uW+++tjDmFM+E9nHLU11lX6F2iFVH3kbuTku/MZycYVlZ1pvQeVS/kiXQ3+1Zn7kEp3Yfcey/7vJ9o6Fp4im2FPS0ujy3PdeHW4qavMksVPf39XQRAsk6IoyFnx6GOPkntlBbmXlmCIPoDRaOTLr7/lk89m5pv5dnd359PPZ3ErOZ1+A1557GR9184ddOvSgTp16/HLkmXPTIlBcTp54gRLf/sVVFao7H3NGoucfRtdyO/kXlhI7qUl5J6bR86ZHzGmhgGgcirDrVu3eHP0a2aN83FJkoRKpeL6ddOn3k2bNX/IEU+X0qVLs2PP33h5e6MP3/7AhR0l1b8dZFQu5U0rjxZgllzOuoWcHILGrzHR8Ylk5Bg4e+EKmlJtUNn7ImcloI/cSe7l3zAknEEx6gvl2u5F7VgKqwovFtn4z5o5c+YQFBSEjY0NdevWZf/+/Q/cf9myZdSsWRM7Ozt8fX0ZMmQIiYnmW4yryGbY+/fpxc4d2wHw9fPj089n0XPSX0V1OkEQnmGKLgNjcghy+k3krATTaoGOAai96iKnXMeQcAr0GaC2RuVUGo13XVROgWzetiBvjN59+pF4+zYurq74+vo+cV/tNatXMXTQANq2a8+yFauwtX34zJzwr9jYWCa/O4EVvy+jTt16xNg0M3v7XzkzFiUn+e4njDoURcaYdBmAm1FRxRxZ4YiMjOTzGZ/wUs9efPzJZ5QtV87cIRU6R0dHlixdQdPGDTDePofGq/Y991N710GycjT9XPmnl/n9uhDJuanIySEoRh3G5KtI1i6oPWvh5uYGQMVKldC4VwF3U8chOScZY8IpDDGHMcSfRONZE7VHtULtcnSHZGXZN11aSlvHlStXMm7cOObMmUPTpk2ZN28enTt35tKlSwQGBt61/4EDBxg4cCCzZ8+mW7duREdHM2rUKF599VXWrVtXCFfx6IqkS4xer6dtq+bExcWS4NoFUFlcLaIgCE8HOScZ3ZXl93yufIUKhN64Qa+X+9C2XXuee/4FXF1dizQeg8HA9KlT+PrLWfTu048Fixaj1WqL9JzPmsOHDtGj+3Mkp+eg8WmI2r0KkmT+TycUQw6GW+eRM2OoXdEbnV5PSkoytra22NrYcu7cWQBup2Rgb//03dhoMBioV7s6AKvXrn9qa/ELwt6jLBh1WJXv/sD9FEVBTgtD0jqisvO85z76mMOQeBYfX1+6du3G2LfeLtCbnYiICL75+ksWL/oZrVZLpsoTycoRkEAxIlk5mRJ51ePPnSpGHbnnF1hcx5Q7eePBi0XTJaZp8KN1iWnYsCF16tThp59+yttWpUoVunfvzmeffXbX/l9++SU//fQTN27cyNv2/fffM2vWLKLM9Ib9iX9CXr92jWNHj5KYmEhmZiabN22kbavmnDl9ii+//hZJUotkXRCExyapNKB1ACQkKyfq1K1HQKlSeHp5cf3aNWRZZuWK5Yx4dQg1qlYs0lgSEhLo1qUj387+is9mfckvS5aKZP0xjH59BMnJyViV6YTGI9giknUAw60zGOOPo2TcJDsnm2rVqtOv/yt06dqN4GrVqV69BqPfHPdUJutgqmFfteYvsrKyqF61IuWDStGhbStGDR/GsaNHHz7AU0TSOiBnRKOPPoCiyPffT5JQO5e9b7JuGssOWZaZ+O5kvvrmuwJ/MlG6dGlmf/s9V66HM/att8GYi5wWiZwWjpx+E0PMQXIv/EJuyB/owrdjiDuBMSUUOSflgTHfoSgKcmZsgWIxF6WI/jwKnU7HyZMn6dChQ77tHTp04NChQ/c8pkmTJty8eZPNmzejKArx8fGsXr2arl27PvZr8aSeaIY9KysLd1cX0805/x3U1gttQDOz1yMKgvBsUnTpGOJPYkzM3+Vixaq1vNC9aGo6jx87Rt/ePdDrdCxZtoKWrVoXyXlKgr17djN2zOtcvXYD68r9/pl1NB9FkTFE78d4+wLdXujOmDfH0ax5i2d2sik7O5s/164hJOQKoaE3OHL4EBnp6YRFxT4zXY5279pJ106mdResq7/6RK2lFUXBcHMvxsRLSFaOLFn8Mz17vfzEMYZcucK6tauJCA8nJOQKly9dJCUlBQBbW1tatGxFu/YdmbLgGJK1S75/j/t+Hk7/vr24fs10P4KlzrAfuHCzSGbYm1ULICoqKt81W1tb3/Pfb0xMDP7+/hw8eJAmTZrkbZ8xYwa//vorISH3boiyevVqhgwZQk5ODgaDgeeff57Vq1ebbZLmiWrYJ4wfB7IelXNZ1K4VQdYj2Xoi2bg9sz/oBEEwD8WYi/HWOeSMGOSMGFBradW6DVWDq/Fct+dp1rxFkf0gXfXHSl4dMpBq1aqzcs2fBAQEFMl5SopWrduw/9AxvL190EcfRFumo9l+ZyiKjD5yJ3LyDWZ/+wMjRr32zN88bGtrS9/+AwDTolUD+r1M4u3bGAyGZyZht7Ex3VNy4PBx2r22+InGkiQJbanWqN2rYYg/ziv9erNz+za++ua7J/q0pVLlyrw3+f287+/M5F65fIlTp06ya8d2pkyaiE6nA60jaqdSSLaeoBh5uWd31Go1a//ayEsvPPdE1/e0KlWqVL7vp0+fzgcffHDf/f//Z4yiKPf9uXPp0iXefPNNpk2bRseOHYmNjWXChAmMGjWKhQsXPnHsj+OxE3ZZlgkNNdX2aPyamv1mIUEQnk2KMdf08XHcMRRdGiqHADT+TVG7VWbL9vnFEsOJ48fQ6XScPXuGoYMG0KJlK1q2av1Mz8IWNScnJ7QBLdCHb0MfsQNtQPMCtdQrTHJOCoaYg8hpEWjLdGDU628U6/ktwYhXh3D92jV27T3w1Jb63EvpMmVQq9VMe38Sij6gUBZTUtl5oi3Tme/H1OetsaM5dOgACxb+SsNGjQohYlNC6ePjg4+PD61at2H82xPIzMzEt05vUylNeiRK4iVQaXCuFsyqdetxcXEplHMXlaJs63ivGfZ78fDwQK1WExcXl297QkIC3t7e9zzms88+o2nTpkyYMAGAGjVqYG9vT/Pmzfnkk0/w9S3+CpJHmkbIyclh86aNOPjXxcHZk717dqPxqS+SdUEQCp0xPZp6jucxXPoFffhWalYuzZmz58lMDCM9/G9SThVPsg4w84uvuB5+k2+++xFnZ2fm/PAdHdq24pvZXxVbDM+itGtbmTt/IXLKNQwx964lLQqKLo0e1dIxXP0dXycDK1evJe1a8fWzdq0/+q6HubRt1x5Jkp7a3vL34+/vz/pNW7l08QK20X/Su1Y2S6d3RPmnhFdRZFP3l+zER7p2SZJ484cT6Et153pUMq2aN8beswIbN6zn5IkTnDh+HKdK3XAq1x7HMi05dPAgRuP920s+jL29PWkhG8mIPUdWRgpZOpnsXD1HT565Z3eTksTJySnf434Ju5WVFXXr1mXHjh35tu/YsSNficx/ZWVl3fVJm1pt6qtvrv9XHqmG3d3d3dSDUmOHysEfjUc1VA5+xRGnIAglhKIYMcQdxxh/koaNGtN/wEA6dOxE6TJlzB1aHlmWeX3kcHbt2sG10Ehzh/NUCrlyhfnzfmLF8qUkJyejLfcCKgf/Ij+vos8k9+pqfNwdmPjeFIYMexUbm8Jvt/cg90rQk4//UKwx3JGbm0vnDm05fuwoTZo2o3PX53juueefmQ4yt27d4rtvvmbD+j8JuXLFtFFtbbr37s6NnRpb1M5lUXtUR2XrXuCxTa0+r2CMP4WiS73HHhKgEFi6NJ/N/JKXevR84uv5f2lpaXi7O1tsDfvf54umhr1F9YBHuuaVK1fyyiuvMHfuXBo3bsz8+fNZsGABFy9epHTp0kyaNIno6GiWLFkCwOLFixk+fDjfffddXknMuHHjUKlUHDXTDdqPlLAPGTacMW+Oo/HAH8XHwIIgFDo5Nw19xHaUrAQ0vg1ICTuYN6thaf5ct5a+L/cgLCoWHx8fc4fz1Lhx/TqffvwhK1csx8PDg/6vDGLQ4KE0eqVoE1bFmGt6I5h4EdQ2XL92BX//on+DcC+WlLADpKen8/uypWzdsok9u3eRk5PDc92eZ+Hi3ywqCXxSIVeuUL/raBR9BqiskKxdQJKQ06MwJoWAIQuVgz9qjxqonMsUuHuRoiicXTORlGRTD/+Wg2aDxgYkNZu/7c/0qZOJiorkyrWwQr8mkbAXfOw5c+Ywa9YsYmNjqVatGrNnz6ZFixYADB48mPDwcPbu3Zu3//fff8/cuXMJCwvDxcWFNm3aMHPmTLP93HikhN26+nAk9ZMtNiIIgvD/5JwkjLfPY0y6QunAAH797fdCqwstKt9/+w0T33mL8Jtx962DFPJbu2Y1/fu8DFo7NN51UbtVLdLl2+8wpoSiv7kXe2sVb44bz5Bhw++6YU0wycrKYt2a1bzx2gimTPuACRPfM3dIxUKn0/HnurXMnfMDhw8dpEPHTuyLLf1EPdLvMKaGog/bwpo/N9Cla+HeIGrpCfu+81FFkrC3rF7K4q65qBXZSqeCIAgFoY89ijH+hOljac9aHD2xE2dn5wcek5qayu5dO7l44TwBAaVo37HTY896JCQksG/vHo4eOUxERDgxN2+SlZ2Fg4Mj3t7eeHv74PWfv728vTlx/BhT3pvI0GHDRbJeQKdPneLVIQNRuZRDG9i2UBKhh5FzU5DTozDEHELl4M+ZswdEh5+HsLOzo/8rA/nm6y+JDA83dzjFxsrKipd79+Hl3n3Yvm0rfXq9hF7jibZ0+ydeoVTlFITKqTSvjRhGWFTsM9+FKJ+ivOu0hBEJuyAIZmNMuY4x/gRq73povOshqdT3TdYVRWH7tq0smPcT27ZuwWAw5D3n4+tLaET0I5Xq7f97H5/P+ITdu3YCUK58ecqVK0+t2nWws7cnMyOD+Pg4zpw5TXx8HAnx8ej1/6458froN/niq9mPeeUlS1xcHL16vECVqsFc1Nct8mRdMeSYyl9uXwAUJFt3tKU7iGS9AIxGIzM/+5QLF87z1tsTzB2OWXTo2Im1f22kc6eO5F74Bcna2dSu2sYVlY0rkpUzkrUzqK0f+DNHUWQUXRpKdhJKbiqZRj16vf6ZaZ0pFC+RsAuCUKwURcaYeIlavtmcCD9Gr959WLxk2UNnnVav+oOB/fsAINn5gMHUoqt0mTL8MGdegZN1g8HAxx9OZ9bnM6hTtx7zFiyiXYeO+Pk9+AZ6RVFITk4mIT4egMpVqhTofCVdVFQUlarVR9Glc9upLZJV0fzaUWQjS6Z1ZNOG9az/ax1Go5GJM2YweszYYr+p9GkVGRnJ8KGD2P/3PqZ98FFer/aSqFXrNoRFRLHhrz+5fPkSly9d5PKli8RHnMjbx9PTk8ZNm9G4SVOmLzhs6pEu6zEmhWBMDkHJSQLF1CGmbLlyLFq8tMQl62KCvfCIhF0QhMeWN4OUk4wx5TooCtpSre57r4uiyOjDNiOnReBT5wV+W76Sl3r0LNBHxMHB1fK+VjsHYcgyJex6vZ527Tvc77B8bt68yaABfTl65DAfffoZb78zscAfT0uShJubG25ubgXavyQ7cvgwK35fxuGDBzh//hyKyhqrss8hWTkU+rkU2Ygx8SKG+BP07jmXqsHBDH11BG+OGy/KlQogMzOTnTu2s3vnDlauWI6jkxNbd+ymRctW5g7N7Hx8fBg+clS+bSkpKYSFhhIaeoPz585y+NBBPpo+FV12Nkhq7qSTKucg1G6V+GvhdKpUDcbHx0c06xCeiEjYBUF4ZMaUUPThW+79nGMgGvfK93xOTrmOnBYBGlsqVKhI1+e6PTBhDr1xgzVrVrHo5/mEh/3bYcFw6wwAfv7+DB02/IEr1t2xdctmXh0yEBtbW7bt3EvTZs0ecpXCo0hISODvfXv5fdlvbN60kTJBQbRs2ZrRb45jzLeHCrVhgWLIRslJRs6+jfHWWdOCWq6VOb5nNVWDgwvtPCXByOFDWbPqDwDGjH2Lye9Ps/jFeMzJxcWF2nXqULtOHXr07AWYblj1rNUPOSsBALVLubyFmtq0bWe2WC2BopgehT1mSSQSdkEQHpkx5dpd26ytrTEYDFglHibYN4NT19NROfihcq2IkpOEYsiieyN3VkUAhmxmf/UF4eFhzP/5FxwcTDOvsixz7epVNmz4i7Wr/uD06VP5zuHn70+Dho0oW7YcPXv1pnadOg+NNS0tjVEjhrFuzWo6de7CgkW/4uHhUSivQ0mWm5vLgnlz2bJ5I7v3HQRDNgCSnTeaUq2JdarMyjMqVp45UajJujE9Cv2N9QCoVCq6dOnKBx99SrXq1QvtHCXJ6DHj2LNrJ8nJydxKSOD2rVtPbcJ+vwWoirplppWVFamXVhfpOQRBJOyCIBSIqQOsjCSpsSrTEX20I8bb50AxUq9+A+rWrUe58hUwGA1cPH+e48eWYEy6hBR3FEWXDsCqG1C9eg3s7O05euQw69asZuf2bfR/ZRBXLl/i9KmTpKamYm1tTZfnunH+tjOGqD0AXLkeTunSpR857nNnz7BuzWo++OgTJr43WXws/Riys7MxGAwsWfwLNWvXplRAKTp3bEtEeDidOndB7R6MytYDydazyFa+lrNuIWfFY4g/CcDxU+eoULFiiasJLmyNGjcmNDKGX39ZxMzPP2VV9RX06/8Kr49+k5q1aon/X4Qnovzzp7DHLIlEwi4Iwn0psgHjrbPI6VHI2bdB1qPxa4baIxhj4nlQjLzw4ks0bNSYN0a/iZWVaSZVURRW/bECnU6Ht7sDX369kHr16uPh6Ym9vT2KojDnh+95Z/xY0tPTmTsn/wxYbm4uhw7sp5yrKyH/bHN0dHysa7h+zfRpgK+vn0g+HsO6tWvo17cPyIZ82yUrR7QVe7M72g2t76O/kXoUxrRI9KEbAKhXvwE/L/qVSpXvXXYl3O3OzPP9Zpqtra0ZMeo1Bg4ewsIF8/nyi8/5bcligoOr0XfAK/Tp29+iFpmCe1+LORefEoSiJhZOEgThvuTs2+hCVubbJlm7YlW5D8bbFzDEHQdjDgBz5y9k0JChefvt3LGd0Bs36NW7D66urvcc/+bNmzSqV4ukpCR69e5DtWrV8fHxRafTkZAQT2JiIp6enpQJKkuPnr3QaB5tjmHOD9/z9ltvMnTYcL778SeLXTXVUu3auYO+L/cgU/JA0tiiGHNQe9RAybmN2jkIyap4Fi0xplxHH76NcuXLc/7SVfHG6xE9LGH/f3q9nl07d7Bs6RI2rv+L3Nxc2rRtR/8BA3nhxZews7MrynDzMVeZy9PC0hdO2n0mskgWTmpTK9DirrmoiRl2QRDuS2XrgbZMJ4zJ11B0aaYbqdQ25J5fCLIubz8PDw9q16mb79h27TtA+wePHxAQwJkLV8jOzi70lSfPnD7N22+9yaDBQ/nhp4K3fSypZFnm5R7dSU5Opmmz5pw6eYJdO3fQpGkzTqZWRtL8p/TE8fFnW41JIegjTb3vVQ7+SLYeqF3KI2kdkHNTUXRppudsXFF0acg5Scip4QC0bt1W/HcsBlqtlk6du9CpcxdSU1NZt2Y1y5f9xtDBr+A2fiyvjhjFqNdH4+vra+5QBQsn2joWHjHDLgjCPeX9aFBkACSVmiO/jaZW9Sq8MnAw3V7ojqenF15eXvgHBFhcLXFubi5NGtZFo9aw//CxvHIdIT/n6v0w3PwbOTMur2e0ZOUIKis0Pg1QOQcVapIsZyWgu7oq3zaVUxnktPC87yVJyvv35+PjQ8tWbXipZy86dupscf/Onlb/nbku6Gx1eFgYc378nsWLfkalUrFh83bqN2hQVCEKBWDpM+y7imiGva2YYRcEoSRTjLmmRT8SL5kW/UACTAk7amuaNf4VgNDQG9jb29OwUSOLnfG0trZm4S+/0bxJA6ZOmcTML74yd0gWJSw0lIsXL6CP2ImSm4zasyaStTMqex9UNkXXa15l54VVhR4YYo+g6LNQu5YHtQ1yWjit27Rl7V8bycrKIiI8nLLlyt135Vuh+JUJCmLWl18zacpUXnrhOTq2a8V3P/xE/1cGWuzPAcHMiqCtY0mdYhcJuyCUUIqsR06LRM6+bWq7mJOIkpsGSKZFPzyqgaIgqbWm2U5DNm0a+rD+z3UcPLCfrp3a07pNW779fg4VKlY09+XcU63atXlz3Hi+/nIWDRo2yuubXNItX/obw4YMzPveqmIvVHZexXZ+lb0PVuW7AyBnJ6ILWQHAnt27SE9Px9PTUyxQZcFcXV3ZvG0nY14fxfBhg1m+7Dd+/mXJQ1cLFgTh8YmEXRBKIDk3Dd31P0Gfjo+PD1XrVaNq8PMEB1ejQ6fO9/3FqygKc+f8yLy5PxJy5Qp7du+iRnAlXuzRk6XLVxZ41dDiYjAYWPXHCtRqNWXLljN3OGaRkpLCr78sYvDQYXmz1SOn/ZL3vGTrVazJ+n/99WVPxo55nWhHRzZv24WPry+enp5miaWkedKbNm1tbfn5l1/p068/gwb0ZUDfl9m970AhRSc8K0Rbx8JjWb9dBUEocsb0KHRX/0CS4NDRk9yIiObPDZuZ9eXXDB467K5k3Wg0Eh8fz/lz54iPj+e1N0Zz5vxlDh87xZChrwKwbs1qzp09a47LeSBFUYi+eZMZn39RoEWWnkWbN27gvYlv4+Phgq1WolXzJnm97SVrVzR+jYo9JsWQiy5iBx3btcbFxZWde/ZTr359AgICij0W4clUqFARlUpVrJ1jBKEkEjPsglCCKIbsvFUiJXtfJrw9jhPHj5Gbm4uzszNNmjbDw8OTI0cOce3q1XuOcfLMBaoGB1Ordm3mzFvA7O9+4MTx49SoWbM4L6VAtFot5StUIDw8zNyhmE23F7rn+/7kieNofBuidq+GpLEp9ngURUEXtgklJ4m58xfyyqDBFvfJjFAwRqORV/r3wdHJiUW/LjV3OIIlEm1iCo1I2AXhGaUoCnJGNEpOIigy4we24tLFKDZeMD0vp4Vz8EA4Dg4OBAdXIzc3l7CwULZs3nTXWCqVCj9/f6pVq47L//VUt7a2pmmzZsVxSY8lKyurRHeIkWU572urSn1Q2bqbMRpQshJQMmPRln0uX99+4enz8YfTOXniODv37MfLyzxlVfdzv/7t/yV6uQtPE5GwC8IzSFEUDLFHMCacAkkNkpoVv0fj4eHJ891fxKDXk5aWRmpKCrcTb3Px4gVyc3PvGqd9h46s37TVDFdQOBRFISkxkQJ0r30mxMTEkHj7NsHVqiFJEhfOnycqKjLveWNyCCrbJmaMEO50HZJUWjPHITyJn+fPY+Znn/LxjM9p3MTc/6YESyUm2AuPSNgF4Rmh6DNRdOlI1i7oQjeiZMUjWbuidi2PnJuCwZDFqZMneHX4SIYMezX/sYpCYmIie3bvYse2rSQlJaK1suKjj2eY6WoKhyRJjBv/Dl/M/IwhQ1+lcpUq5g6pyBgMBtq2akZ4WBhBZcvi6+vHoYOmmwDr1W/A57O+ouu45WaOEiQ7H9DYYUwtuWVKT7PExEQmTXyH35YsZtTro3n7nYnmDkmwYDIKciFPmMglNGUXCydZEMWQC5KU9xorioIx4RQqlwqorEvO4gBCwSiyETktHGNyCHLWLdBnmJ5QaUHW3/e4Hbv30ax5i2KK0vxycnKoW6sa/v4BbNu555ntF52eno6PhwvVqlXnQlQ2GLJRu1VBsnVHsnZBkiynTlwfuRtj0hVe7tOHGZ9/gb//46+cKjzcvcpDHrUcRFEUfl+2lHcnjMdgMPDZzC8ZNGToU/3/053X5VFfi8c9rihY+sJJ206FY+9QuHFlZqTRsU4Zi7vmoiZm2C2ALnw7cnoUGHNAUqFyCEDlGIhk7Ywh9gjEHkFTqjUa96rmDlWwEIpsRHfjL5TMWCRbL9SuFVHZuiNZOWG4dRY55Tpgmllt2KgxFSpUpHyFCjRp2gxbW1szR1+8bGxs+Pb7OXTr0pG1a1Y/s73YHR0deW/y+8z45CNULhVQe9VB7WiZXVc0Ac2RbD3YtWM7H1pZM3/hLw8/SDCb3bt2MnXKJE6dPEGv3n2Y9eVsfHx8zB2W8BQQJTGFRyTsZqIYdSj6DDDk0LSGP/v/vsYHH32Cg4Mjv/6ykPPn8/ezNd4+LxL2Es6Ych1jagQqWzfTSqS5aWzetpPWbdqaOzSL1659B1xdXQm9cd3coRSp96d9QGpqKj9+/y1yyjVUwYORtPbmDusukkqLxrMGLcv7cP6c5bUDtXT3u6HyfjO+jzsTfOL4caa9P4k9u3fRoGEjtu3cQ4uWrR5rrOJQkNelIDejPowlzKwLJY9I2M1EH7EDOS0cgP3XQa1W8/VXX/D9j3M5f/5c3n4qj+qotA6oXMqaKVLBEshZCejDt4HGDjn5CpKNG1aVXhbJegFdv3aN5ORkKld5tt/0SpLE6VMnkWxc0ZZqbZHJ+h2KIYetmzfx1tsTzB2K8H/S0tKY/O4EFv48n6rBwfyx5k+e6/b8U13+IpiHopgehT1mSSQSdjNRewTnJexg6mfr7ubOoAF987ZJdl5ofRsjqUU3hZLOmBoOkhrrKgNAMYLayqJqki3dxo3rsbGxoU3bduYOpUgdPnSIQwcPoC3TGZW9r7nDeSBjyjV02dm8OmKUuUMR/qEoCiuWL2PyexNIS0vj2+/nMGz4CNRqtblDE4QSTyTsZqJ2KoOqxkiUrFsohkwkKydibNxRux/AmGhqlK12rSiS9RJOkY0Yk6/ycttK/L78OLnn5+d73lb7Iy1btaZy5SqUr1CRipUqUbFiJUoFBub7JZuRkUFkRATh4WGUL1+BipUqFfelmNWmDetp07Yd9vaWO+P8pFzrj0Z3/S8kG3dUzmXMHc7DyUYURaFs5bpYBXUi5fRCc0f01HjcmyQfNEZ8fDyvjRjGls2beKlnLz6b+SWBgYFPFOejKqqbOR9WBvPf50W5S+FS/vlT2GOWRCJhNyNJpUFyyD8Lphiy8742xB5DZeeNyl7c3FNSGRNOYog7zh8r7z/DtW/vHvbt3fNI42bkGErMrNnt27c5dPAAP8yZZ+5QipRi1CNn3ETj3+Kp+PRF41ULydYdfcQOdGFb0Ol0JXqBK3PasP4vXh/5KiqVijV/bqBL1+fMHZLwjJAV06OwxyyJLP+negmj9W+KyqWC6RtZh5yVYN6ABLOSc1KQ7HxIzcwlJiGJxNRMMnIMZOsVbqdksGPP38yY+QUv9exFUNkH3+fg6OjIkKGvsnvfwRKTrANs27IZWZZp16GjuUMpMosXLURONy2QdOfvp4HasRRWQZ1RMuP57NOPzR1OiZOQkMCwwQN5uUd3GjVuwvHT50WyLggWSvRhtyCKIQdjcghq53IAyFlxqJyDkKSSk1wJ+RluncUQfZCxb42n/4CBVK9R44H7Z2ZmcjMqChsbG+wdHLC3t8fGxqZE3yz26y+LGDViGEFly/LG6LH0f2UgLi4u5g6r0KSnp+Pllr8XsVXFl1HZeZopokenjz2ClHiWq6GR+Ppadu39s1I+8ee6tYx5fSSKovDpZ7MYOHjIfX9OPGpXGktQUrrBWHof9g0nwrB3cCzUsTMz0ulWL8jirrmoiRl2CyJnxWGIPkDupV/Rha5HZe8nkvUSTu1RA7VXLZb99istmzVi3do1GAyG++5vb29PpcqVKV2mDB4eHtja2pboZB1g0JChHD1xhrr16vPexLcpV9qfV/r3YdPGDRRgvsLivfPWWKytrdGW6Yy23PNog7oi2bqZO6xHZjAYmDnjE3OH8cyLiIhg8Cv96ftyD5o0a86pc5ee+gWQBKEkEAm7BVE5lgKNHQBKTjLG/3SREUomSZLQeNVm1pezyc7Opl/vnjjaatmze1eRnC83N5erISFFMrY51ahZk9+WreBqaCQT35vMjWvX6Pni8zzXuQPXr10zd3hP5NatBBo0bITapSxqx1Koncs8dW/0jfEnAegsyjGKTFJSEuPGvEG1yuXZuWMbC39Zwoo/1uDl5WXu0IRn2J22joX9KInETacWRJLUWFfpjyH6AMakyxgTTovFkgT0UXsZOngRTk5OpKWlodVqKVWq8Ls3HDp4kLatmgEQFXsLDw+PQj+Hufn6+vLupCm8O2kKmzdt5J3xY2ncoA7zfv6Fl3r0NHd4j8XFxZUtmzdhXTP4qZ0llWxcUXKSLXpRHnN5WGlHQco21q5ZzVtvvkFOTg4ffPwpI0e9joODw2OdryD7WkIpSUFiEN1jhKeJmGG3MJLaCm1gG6wq9UFbuoO5wxEsgWygUeMmxN1OIVuvkJalo3yFCo82hCwzd86PLF3y6z2fz87OzkvWmzRthru7+xOHbem6dH2OoyfO4OHpyTvjx5o7nMdmZ/fPp3JZ8WaO5PFJWke6vdAdW1tbc4fyTDl/7hwv93yR/n160ahJU85cuMLb70y8b7IuCIVNKaI/JZGYYbdQKttnP2ESHkzOTUFOvgoqLSeOH2PmZ58y9NUR+T7CVhSF1NRUMjIyyMrMJDMzk8zMDCRJRUBAAL5+fmi1Wr6Y+RkfTHsfgEMHD1CuQgVq166Dg4MjOr2Oa/8pgzl08AB2Viomvz+NqdM/LPbrLk4J8fFkZmTQpWs3c4fy2Jo0bcbCn+eD2trcoTwWRVGQc5IoXbqMuUN5JiiKwt49u5n91Rfs2L6NUoGBLP39D17q0fOp/QRGEASRsAuCxdJH7kHJjAGgfecufDh9Kh9/OJ32HTpStlx5oqIi2bj+r0ce95dFPxdoP5Xq2f4ALicnhx4vdsPZxYXpHz29NzsGlTV1lUIxmjeQx2RMvAj6DF7o/qK5QymQ4i6NKOj5srOzWbF8GXN++I4LF85Ts2YtflmyjB49e6HVPngBvsLoqPIo41lKecmdOCy5tOdpJ/qwFx6RsAuCpTLm5H2595+bTGVZZtvWLfc9xMnJCUcnJ6Jv3rzrud59+lGrTh1srG04fuwoy5f9lvdcjRo1adu+A9Wr16BK1WAqVa78zJUn/LFyBatXreTa1RAyMjJISU4mKyuL46fOWXwrwQe5Ux6l5KaA7dN134GclYDh5j7UHtVp1ryFucN5KimKws4d23njtRHcjIqi63Pd+OLrb2jZqrWYURfMTqx0WnhEwi4IFsqqYi8UXTrGxEtY5dzg9z/WEBEeTnZONna2dtjb2+MfEECZMkEElCp11yyaLMskJyejVqtxdnbO98t71OtvEFy9OlPem0hg6dIcPXmmmK+u+L0xajgZGRm8PvpN07oS1tbUrVefqsHB5g7tiXh6emJlZYWck2LuUB7ZzDdaMuHtdSRHnTJ3KE+dtLQ0fl4wj6VLFnP50iWaNmvO5q07H/n+Frj/THJhz7zfa1xLmMW2hBgE4WFEwi5YLDk7ETktAsnWHbVTaXOHU+wklQbJxhWjSoO9vT2du3R9pONVKtUDbx4d99bb+Pr64e3t/aShPhWqVa+BWq3my6+/eeZmHhs0bMTB4xdRe9dBkp6eUiYPT08MBgOpqakl4kbnwiDLMsuX/saUSRNJTU3lhRdf4suvv6V1m7bP3L9r4elXFG0YS2pbx6fnJ7tQYijGXIxpEeiu/oEh9jD68G3PxAI3j0tSW5OcnExOTs7Dd34EKpWKvv3606Ztu0Id11JNnf4hBw/sZ/GiheYOpdC9MnAwSk4iii7d3KE8kvr1GwDw97695g3kKXH61CnatGzG8GGDadm6DReuXOfX35bTpm07kawLwjNOJOyCRVAUBUVROPH7OHLP/4w+dCMoMgBqzxol+peRyrEUubm5/PD9t3lvXDIyMpg6ZRK2WomundqbOcKnQ5u27Xhl4GAmvfsOERER5g6nUKWmpgIwuW9lZr9WG0PiZRR9ppmjejBFl05SUhKenp6EXLls7nCK3I3r10lLS3usY2/fvs3o10bStFE9MtLT2bJ9F6NeG80P333Di893ZcXvy5FluZAjLh6u9UfnPYRnj1g4qfCIkhjBrBTZgCH2CMZbZ0FtzQfTEvOeU3vUQLJ1L/GLR6ls3Rn/zkSmTn6Ptav+4PTp/PW+LVu1NlNkT5+ZX37Nvn17eKVfb3bu+RsrKytzh1Qo+r8ykCuXL/Hxh9MxGk3dYgwaW7QBLZGzb6FkxiHZeaHxbWwRb34VRSH32hqaNFyCh4cnc+f8iEarxcnRidWrVuLq5sbyFatQq5+uFVvv54fvvmXC2+MYNHgocxf8+wmPoihERkYSER5GYGBpygQF5Tvu1q1bzP7yC+bP/wnZaKRDx054enoxZGB/4uLisLe3x83dnSED+xMZEc7E9yYX96UJglBMRMIumI2iyyD30j8L+WjswJBFYOC/K3hqvOsiae3MFJ3lkHOSeG/yZ1wNucLGDevztg97dQST3p+Gv7//A483GAzcuH6dCxfOc+H8ObZu3sSZM6cBCCxdmstXQ5/5Fo53uLq68tuylbRq3pjfly1l0JCh5g6pULi5ufHj3Pl8P2eu6fvaQ8kNWYk+fCuorVHZeWNMOA2KjMa3EZLK/D/6JUmNAty+fQt7e3s++XA6er2eVq3bsP7PddSuUZW27TrQ7fkXaNa8xVPx5mrZb0s4ffoUffr2p269ekiSRMiVK0x4exwAVYOrsf6vP0lOSiIhIZ5VK1dw/vy5vONr165DqzZtuXL5EomJiRw/djTvUzVJkjh75jQ+Pr707tufF7q/xM4d25jxyUcAWFvbFPv1CsLDKCjIoktMoZCUAhQHp6WlmboqVB+OpLb8H5rC00HRZ6EL3YiSfYtGjZtw8cJ50tNNNbi+vn4kez8dfZmLkjEtAn3oRipUrMi1q1dp1LgJM7/4mvoNGjxwpjQnJ4f1f/3JwgXzHlgf3H/AQH7+5d6rnz7LalarTMOGjZm/8Bdzh1JkkpKSSIiPp3yFCmg0Gr7/9hven/wu5cqX54OPPqVps+a4u7s/dimCMTUcY3IIaqcySLbuSFbOSOoH9/v+LznrFoaYgyhGPWrn0qg9qoNsxJgegSFqL2B6I5KUlIStnR0NGjQksHQZypYti1qjoWvXbhbX4cfNyY7s7GwAKlaqxLWwOBR9el55Xz4qK1QOfqjdqiDZuKLkJGJMuY6cHo3KztM0iSFJSFpHNB7VQGNz1w3Fck4KuivLAPht+Uq6Pf8C1taFv4BWUZariA4tTyYtLQ1vd2dSU1NxcnIydzh57uSNfxy+jp2DY6GOnZWRzsuNy1vcNRc180+zCCWSIhsxpoWjcgqkYZ1KHDp4gBOnz5OYeJuO7Vrj6+dH8tO5DkzhMuoAuHb1Kq6ubpQpE0SDhg0feEh0dDTPdW7Plcv3rgseM/YtpkydjrOzc6GH+zTY//c+roaE8P60Z3sVVzc3N9zc3PK+HzN2HK3btGXsmNfp3dP0Zjg4uBrGzFKonIMeqVRGzoxDH7bJ9HXKddNGtTUaz5qoPWsWaGJHZeeJVfnud2+3ds37OikpCYDsrCz27d2Tb7+U5GQ+/WxmgWMuLAaDgeTkZHZs28rKFctJTEyk/4CBrF61Mi9ZH/naGxj0em4kH0eyckJl64mcEY3KwRfJyvmeyTc2rqhdyj9SLCobF85dDOHFF7rySr/e2NraMnjoq0yaMhVPT8/CumRBECyASNgFs5AzYzFEmX4BH4o3zUbpdDpcXEy/rN+dNIVBn+w0Z4iW4T/LzQeWDmTF78vw8fXlnYnv3bMN3qKfF/DuhPFkZGQA8Fy35/nw4xms/2sdH06fSoOGjZj5xVcWUcdsLlu3bMbLy4sePXuZO5RiV616dXbu+Zsrly9z8eIFFv08n4u7t6Dxb47Gs8ZDjzcmhaCPzP//paZUazDkYIg9jCHumGmbT/1Hjk3RZ6FIahTFiNq7PihGpo3pyfSp+euyS5UKJCoqkps3owA4cGA/WzZt5K23J+DhUfgLRxmNRm5cv86xo0eY88N3+e4hadGyFcnJSYwfN4amzZrz40/zcXF15bluz2NlZcWyE//OTKvsi6Z9aoWKFTl3MYRzZ8+yaeN6vvvma5YuWcy48e9Qu05dHB0dcXBwJD09jfCwMJKTk7Gzs6NZ8xZUrlKlSGIShDvEwkmFR5TECGahKDLG+JMYU0NRsm+bNkoqJBt3FEM21lUHIEnPxg1nT0JRFPRhW5DTwlC5VUVCwZh0GVODJ+WfB4TciGDj+r94+6038fHxIS4ujp8X/Ur/VwYC0LpFU44cPsTFK9cpW66c2a7HEvTo3o3c3Fw2btlu7lDMLisrC3dneypXqcInM2bSf+qfSJp7r3CrKAq5Z+fk29ambTs6de7KxHfeAkzJY6SmMZKVA4oiA1KB3hzqwrcip9wAjS0YTLPUGr+maLxqIeemob/x510tK39ZsoyXe/ehQtlAYqKjaduuPX9u2IxG8/jzUFlZWfw05wdOnTzBug07UXRp/7SkMJW0qBwCULlWQNLYIFm7obJxQTHqUfTpSNauFvFGWDFkY4g/ifH2+fuU4mhANpi+dCmP1r85KWcWFXj8+5XHlPTSloKUDRXFa2TpJTErD18rkpKY3o0rWNw1FzUxwy6YhSSp0PjUR+1dz5Swy3p019ehZN9C7VVHJOv/kCQJq7JdUGQ9hvhTGONP/PNM/l/EMz7+kM2bNuDq6opKraZMUBAv9+mb9/y8BYuIjY0p0cl6bm4uH30wjc2bNvL5rK/MHY5FsLW1ZcrU6SyY9xM9X3weJBWagJb37MwkSRKaUq1Rsm6hGHORU66xe9dOdu/aiUqlIu52iqlrSb1R5F5aiqIztZq0Kv8iKge/+8agKAoY/llj4D+JpNrNNPursnbCqmJv5Iwo5MwEjLdO81LPXly8cJ4W331DTHQ0U6d/yIxPPqJurWq0bNmad96dRGBgILIsI0n/vmlQFIXbt29z/do1IiMjiImJJjYmhlsJCQSUKsW2LZu5ejWEBg0boXIMMJWvqFRI1i6obD3u+WZGUmuR1G53bTcXSWOL1r8ZGt9GyJnxgIKkUoPaGsnKCUmlMZUkJodgiD2C7toaNm7oTvsOHYuk/l0o2cTCSYVHJOyCWUmShGTniT72aN42tXPQA44omSSVFhRTUb82sC2KMRckNXJ6JHJqGL8u/neGrGat2sxfuBit9t8bACtWqkTFSpWKPW5zMxqNxMXFsWvHdr76ciZhoaF8+vks3hz3lrlDswiSJPH+tA+YMnU6kRERBDfsgiFqL5JKi9r17iXuNe5Vwd2U+O7YtJTc3BwcHBzx9fPD0fGfWTRFhv98ZP2wxZwkSUJb7gWQdaCyuucstaSxRu1SHpW9H3JWLCdPHOfkieMEB1fjr41b6NCxE527PMeo4UNZMH8udvb2qFQqflm4AIPBgH9AAGq1muibN/N61gM4Ojri5++Pu7sH+/btoXz5Cuw7cISatWo91X3BFUM2+vBtyBnR/25UWZnecGhtkTT2qGzd0HjVxRB3jF4vvYCzszNzFyyi+4svmS9wQRDuS5TECBYhN2QVSnYCas9aaP2bmjsci6PIenTX/wJDNulpSUiSxOsjh/Pr4l9QOZZCTo+kQsWKvPveFJo1b8Ht27e5ffsW7Tt0LDEtG/9Lp9MxbMhA1q5elbegTOcuXfnok8+oVr26maOzXAaDgYED+rJrx3ZyA3shaR6/VaCiyKD8M7tbxBRjLrob61GyEv7dqLJC7V4VSWtnWkRKkZG0DkjWzqaHldNT//tMzk1FTgtHZe+HZOUIkoSiz0IfsR0vJzWzv/sROzs7biUkkHArgdu3bnErIYGoqEgunD9HYmJivvGmffARk6ZMNdPVCI/D0ktilh+6WiQlMf2aVLS4ay5qYoZdsAjaMu2RU8NQu1tWmzZLYUy+jpIVj1WFnqz6YyWzPv+Uy5cuoSnVBklthZweybWrV3l16KB8x+3cs5+mzZqZKeonYzQa+enHH+jVuw/e3o92w96333zNujWr+ejTz6hcuQrVa9TM1+NfuDeNRsPAQUNYt2Y12oxo1C6PX0IlSSooppJuOS0iL1mXJAmVR03TOg5P8IbD0hjTozDEHUdl44rGrykoMrqQP0yfTPw/lRXr1h+mdp069x1PURRiY2O5cP4c58+fIzMjgzFjxSdPgmCpRMIuWASVtQsqr9rmDsNy6U1lBfroAwwZuDpvcy2fDBo2aszmTVcJCw3N2x4cXI233p5Ak6ZP76cVsz6fwUcfTANg9JtjC3zc3/v2MuuzT3l99Ju8/c7EogrvmaIoCqv+WMngEWNNia/WAZW9r7nDKjCVSwWsrF1BrTXNnP9/y8QioNypu5dUptp7tdZUulZEDNEHKBvgRkJ8FLqrS3BxcSHVSsXpc6HcjL7JrYQEDAYDHh4e1Klb76FtWyVJws/PDz8/Pzp07FRkcQslm6hhLzwiYReEp4Bka+qprGTFAaBWqxk+8jWiIiPYsX0rSYmJTHxvMiNGvY63t3dep4yMjAyuXL5MzVq18tW0Pw1iY2IAOHhwf4ET9q++nMX7k96labPmTH5/WlGG98y4sxLnju3bUDmWQhPUBZVT6WJJegvLnXthiouiKOReXJx3X0ketQ2SlWP+h9YRSWtvWgRJY2sqXXkMkq0n1tYaTpy5wF/r1hIZGcHgIcMoExREmSBx349gmf7tZVa4Y5ZEImEXhKeA2jkIgrqgD9vM+Hcm8u6kKfet3VMUhfV//cnUKe9xNSQEgC+//pY3xrxZnCE/tri4OLp2aselixcBiAgLK/Cxa/5YSVDZsmzftbdE1u4XVFZWFmtXr+KPlb+zY/s2AOzt7TGU6fxIq5U+KxRdOnJual4XGDkrHiUzHjk7AeR7reCmgGJEsvdF41Hd1CrRmIuiS897yGnhKLqMu5J6yc4HtVtFVA7+SFoH8tUNqVT37JBlutVMIjIigsDAQMaMHVdo1y4IwtNBJOyC8JSQ0yJAa8/U6R9iY5O/Nte1/mgUow45NQwfrhIVGZn33LBXRzBoyNDiDvexZaSnc+niRaysrDDYl+FMyM0CHztw8FDefutNIiMiStys43+7mtyr3/OF8+dZuWI5+//ex+lTJ9Hp8tc+Dxs+knl7coo8Tksh56aCPhND4iVU6TcwGAx5z0mSRLVq1alXvztOzs7c6c3w379r1apN7779Htj3XZZlEhISiI+LQ1EUQkKusGL5UnZs34bOeO+lnO3s7HBxdcXFxQUXF1dcXV2JjY3lVPIVcrVa/li5gpd79ynEV0IQio6iKBSgt8kjj1kSiS4xwmMzxJ/CEHcUtUeNvBu85Ny0vL7qKgd/JCsHc4f5zMi9vBSVYyAZsecAUyeU7du28ve+vfywYBlKdmK+2bwJ705iwruT/m239xRp2rAe9g4OHL4hY4jez/c/zuXVESMfelxWVhZBpXx57Y0xfPDRJ8UQqeV4UMK+csXvDH6l3wOPT0zNxL/ls1vzrygKGHNMPeQzYvJWWkbrwKzPPqZT5y4kJiai0+VSq3adIu0+kZSUxIXz54iNjc23XZebS0pKCqmpKSQnJ5OSnExKSjJpaWn4+PiyetVK/Pz9uRFe8DexwrPN0rvE/HYgpEi6xLzSrJLFXXNREzPswmOTc5JBkTHeOoPx1hlUblWRky7lPa92r4q2VGszRvjsUPRZKLmpqHxMNwImJCQwaEBf9u7Zja+fH5K1KyrHUhjjT/Jij57MmbsAFxcX8wb9mCLCwwkPD2PAwMEcS81ByU1lzBuj8PD0fGiPaDs7O5q3aMm+vXuKKdqnQ4MGDalduw65ulzs7R3o9kJ3du3Ynvc6NWrcJN8M87NCkY3IqaEYU8NMPckNWfmeV3vXR+NdN6/E5O7O80XDzc2NFi1bFWjfbVu30L1bFwB6vtybt8ZPKMLIBKFwyfz/Mn+FM2ZJJBJ24ZHIGTEYU64zbkgXWrX+lpfGzEF/4y/Tc/8k65KNGyqnMmi8apkx0meNApIKfcxh7BxcUHLTQaVBW+4Fkhz8sZIkFF06xviTNGjYyGKT9eTkZA7s/5tatetQqlSpu55PSUmhSrU6oBiZtzMFSWOLxr8Zij6Tvi/3ALU1DerVplq16ri4ulCuXAU6demKn59pJc3c3FwO7P+b10c/Wb2+uZYZfxIPiieobFkOHTsJmGaaXYJ7oQs9jMq5HBr/ZpzJdqB028nFFWqxMd46jSH2KLVq1aZt+zHUqVsPDw8PHB2dcHV1tfiyqaysLMaPG0PzFi35c8Nm7OzszB2SIAhmIhJ2ocAUQw660E2gUrN82W989cVMVE5lsK76CobEy6gc/FA73p2ECU9O0tqjLdMZOT0KJBWStbOpR7ZKYyqDkTToY48AUL9+w7zjYmJicHNzu6vm3Vy+mPkZs7/6AoBx499hytTpODg4cPnSJcLCQvly1ucohiysKvTIuwFQkiS0pdshp5ZD0aUSGBjIooUL8o0bcsN0M97BA/tJTU3lxZd6Fvu1WbrTp07x3Tdfs2vndnS3boHKCjn1BkaNDapSrcwdXoEpunT0N/chZ8SgcvBHW7r9fUs15ZwUAPYfPvbAWnNLpCgKk9+dQPTNm6z7a5NI1oWnkqhhLzxP108wwazknGTTIh0yTJ4ymzFvjEJOCyf3arypZ7ODn7lDfKapncugdi6T972cGYvuxkaQDUi2Hig5plULBw/sR6dOXfh5wTwAKlepwulzl+41ZLHrP2BgXsL+zddfcujgAZycnNi5YzsAHh4eWAV1QWXjmu84SaVB7VoBY1IIVlbWAHh6eeHj48v5c2f55usv+eKr2Xz/7WwCSpUSq5limp39ZeHPhIWFcvjgAU6dOknZcuUY+uoIvv79JPrwrQCoPSz3tVJ0aRhuX0RSaVGMOSiGHNPN1yoNKqcyyCnXyD2/ADR2aEu1MnVT+g852dQlSZKKaQWnQpKYmMgbr43gr3Vrmf3tD1SsVMncIQnCYxFtHQuPSNiFAjMmX837eswbo/59wpCNnBqKpLYWM+zFyJh4hXJlAxk77m2OHT3C33/vJTIigptRUXnJOsCMz78wY5SQmprKh9Onsn/fXi5cOA+A2q0KKqfSHD97HEljgzawHZKNK+lWjqj+mVm/F0PiJZb/cQTJ1oPbKTmEXD/M11/OYsYnH7Fq5e/cvn2btX9tfGiCVpCSl6dRTk4Oixct5O2pX5hqtmUjgaUDqVuvPm9PfI+hn+3m2y0pqF3Koao6CNTWFt3G0ZB4CWPCqXzbJHs/Lp0+QJmgIM6eOcOlSxdZumQxu3dtRhU82NTznH8mGICKlSqhVt/dKtES3OvfoTHpCvqb+wHQlunMqNffKO6whCJy57+3pZXTCU8HkbALBfb/v9g1ge0wRO4EQOVWFY1fI3OEVWLJ2Qm0aNGd4SNHMXzkKBRF4fChQyxfuoQTx4/x1jsT6d2nr7nDZMvmTfz04/cAaMt0ROVQCkljmiVXu5R7pLGsK7wIgJyVgO7qKo4fO8rE9ybj5eVNVFQkL3R/ibr16hXuBTwFkpKS2LVzB198PoPLly+BjQ8a7/qoXMoTcm5J3n7DPt+b9/XT0MFJ49MQlZ0PcmYMyAaMt8+j6NJwdHIiOzubD6ZN4WZUVN4bQTkrHrVzWQAka2ckWw9iY2Lo1L4N3V/sYfHJr5wVjz5yFyrXimj9miJpRRmM8HQTJTGFRyTsQoFpfBuB2gZj7GHTin7/mQnVlmpxzwU/hKKjGHKw/U9dqyRJNGnalCZNm5oxqn8ZjUamT53C11/OAuD9aR/w5fpbhTK2ZG1adj0hIQGtVsvwkaMecsTTR5ZlLl+6RG5uLnZ2dtja2WFtbY0sy3mPQwcPMH/uHI4eOYwsy9Sr34BDR0/SYth8c4dfKCRJylcKpvGuS+7FxdSrVQ0/P39OnTqJn78/w0eM4qWevXhh3K8Y028iqTRINu5o/JqQfmM9+/buQa/XW37Cnh4FkhptYNunaqVZQRCKnkjYSwDFkG36eFxSo7L1QLJyNL1DNWSBxg5Jkv7pUZyLYtSBrEMx5KLo0lByU8CQhSLraVojgMvR17gNYMxBH74NjX+zf5YxF8l6cVO7lOOXhQt4uXdfGjaynE83kpOTWfzLQqZM/RhFl4baozpq9+BCS9YBUFmBSktY6I3CG/M+HuXj6/uV2jzqR+AGgwFH24KVqqgcAlD5t0TrGMgFvcNdyfqzUv6j6LMwpkUi2XqRmpqK0WjkpZ69+HPbURb+sZNFfx7HmHDy3wO09mj8TG9ep3/4MW9PeNdMkd/ff/9duNYfjWTrBYoRJfs2kp2XGSMTitLDFjn7H3tnHR7F9TXgd9bi7gYBEtzd3d0dihYoRVtKqfGrUiiF4u6lFKe4u7tLCIGEJCSBeDbJysx8fywN5cMSSEiAfXn2IWPnnrvZzJ4598j7hLmsY/ZhNtjfEWRZQnrsOVJkIblTSotFH7wRRN3jPQIK+/xIaY/AkIJg4w3IpqY7kv5ZAWpbBLUNglKDh6cnderWo1BAIANG/ogYdxMEFQoLx+yYopksovKsQlk7Wxo3qMOoz8bQpWt3ihUvnqs6bVi/jpHDPiExMRHBxt9UwcPaI9uT/gRBQGHjyYnjx7JVbl5BqVTyvx9+YsO6tVy5chlBEJCkp7+mihUvzh2pDApL51zSMueQ0h4hxt1CUFkiWDggJd9HTLgDog5BY0+bDu158CCSC+fPgSCAMQ0xIfhpIQYtgsqagMBApv7+G3Z29gwd9mblPnMahZ0vqKwQ44NQmA12M2bM/Adzp9M8jmxIZVyXQiyYP5eIcFN3O02xHpkykuPPzOSrL79g5YplHD99HkEQWDh/Lhs3rKNO3fp4eXmxbesW/AsUoFSp0hQoWAgnJyfs7R1wcHDA18/vhaXE7PyqYIy5iEWp/ual21xElkSMD04ixl4HSY9g6czcGZPp9VGft1oZIyYmhpHDh7Jx/ToUDgVR+9bOSP7LKQzhh3FTPyIkNCLXq4A8z4ud3Z6z1NRURnz6CWfPnubmjRsAWPwnyfJ9Qh+yDSnpXsZ2YOHCODg4snT5SgoFBDz3mtTUVFy8AiD1cfdQjQMWxXqYVgMjjiPF3+RGUMhza6+npKRgNBpztX/Bv58hQ/hhxMQQLIp/hCAIedoD+yF5il+X113hyuz7mdc7nS44dD1HOp0OrFM8z805pzF72PMgsmhAjLuOlHgXKSWSiRMs6dK1OzVq1mJg/z6mMJVMerUjIsJxcnbG29sbQRD47n8/8N3/fsg4Pnbc11nTTZY5fOggxtjrCJaOZmM9lxEUStQ+NVB5VUVKDkOMu8Wggf2YOf0P2rbvQJu27SleokSOGbSyLLN2zWpGj/j0cb30xigcA96KAS3rU4h69IASRQP4fep0mjVvkeNj5iYGg4H169aQL3/+x6Fo/u+lsQ6g8q6GPukeBQoW5J8tOwgsXPiF5yYmJjJn1gzmzZkFqVEo7PxAoULpUND0OVRZofapgS45lBbNGtG0WQuqVK1G/QYNcXV1ZdvWLfTs1pn09HSKlyjB/IVLczVxWbBwBIM2o7+CGTNmzIDZYM8zyJIRKTkMwdIVMfocYtx1FHb5UPnWJvjcBuzt7WnSsB6obU01z18mS5+M8dFVhnw8gK2b/yE1NZVlSxbTp1//19ZPp9OxYtlS5s6eybVrVxGs3dH4N31teWayF0GhROlQAKVDAdb83IqVK5bzx5TJ/Pj9eAoWKkSBAgUxGAyIosjc+YsICHyzJuz3799n6eKFrPrrT+6GhNC+YyemTptJkRY/vPribELlWYnJv3zBogXz+G3ihPfeYHdwcGDAx4NZtmQRSr+q762xDmAINVWf8vcvQH5/f8D0cHj+3DmuXb1CcnIyGo2Gs2dOs27taoxGI3369mfpvqjnhgwKKks0hVpTpYKanTu2MXvmdNRqNZ5eXtwPC6Nps+YUKVqMaVN/5+9VK3PVYJcS76Kw9UFQmL+ezbz7yLLpld0yP0TMITF5AFkS0d9ej5z2EKVSiSiKAGzbuYd69RvgWLwDhrD9yPokNAFtXxnDbgjbjxh3g0qVqyDLMnqdjt+m/EHtOnWzrJvBYGDliuVM+OVHwkJDUTgUROlaEoWtb66HIZh5ObIkIqWEIyWFIhtSkRJNCZoKe3+++LQnJUuVpkPHTpmSJYoi+/buocPHPyHrkxFjr4GgROlYCKVz0SzlVWQ3hoijSElhpKbE5ZoOb6u+8to1q+ndoysqn1qo3Ern6Fi5iZgQjOH+QRB1eHp50aZte+Yv34CsfRzuIvzb4VeB0r0sKtdSWXqAkQ1axIRgZH0KChsPFA6FMD44iSL+CteDQvD19c2ReWWGXj26cvTwIY6dOoe3t7c57OQ9JDt/p3k9JGb+wetYZXNITFpKMh/XNYfEmMkFZIMWOe0hqKz48ecfkGUZtUpNyVKlsdY8CTlRF2zxSsNINqQiJoagsPfn8LGTr62TXq9n3ZrV/PLzD9wJDqZ9x05EWVV/LxPc3lcEhRKlfX6U9vlNycePDXYp6R6//vITAIUKnUcURR48iMTBwQFPTy9c3dx4EBlJcPBtgoNvc+f2bfbv38u9u3dBoQJBhdK9PCr3snniAV5Q2yDrkwi6deu97wi5aeN6SpYsxW1FsdxWJUdROgagdAxg8bh6dO/S0RTuAqgLNEdh55fhfZZl+bUcB4LaBpVbmYxtWZaRtFHUrVP3GWM9OTmZfXv3EPvoEU2aNefmjetUrlI1xwyFSZOnUr1KBUYM+4S16zflyBhmzJh59zAb7HkAQfP46dOYRujdu0z6fSoajQZRFPH08iLqwQNQWqC093+lLFlMB1GHlBrD6VOnqFylSpZ0SU1NZca0qcydM4uoBw9o3qIlK1etpUzZsu9NebgPEcHSGZVffaTkMGRDClN++YaffhhPtcrlX3qdra0thQoFUKdOPZatWEXjocvz3MqK0rk4YuwNmjSqR5MmzejctRv1GzTMbbVyBL1ej1++fARH5nx3UintEVJyBFJyKIK1JyrPSm/1dy+lPKB3j64Z20qXEigdnk4YzS59pPhbyNpIBn8yh+vXrnH0yGHOnjnN3bshnDp5AoPBgEKhyKjUY2NjQ/cevRjw8WBKlS6dre+Ll5cXv/3+B726d+HokcPZJteMmdxAkmWkbI5hyW557wrmkJg8gph4F8Pd7QDUrlOX47fSMD68BGI6Cjs/VF7VUFi7vfB6SZeIlHiHH0a05+yZ02xYtxaAgR8PZvqsOZnWY/jQISyYPxelc3GUbqVRWLm82cTM5FlkyYCU8sBUOk9tgyzqkQ1aMKaZSnlaOGTU6c/ryPokjFFnEZPvIygtSE1+lNsqZTufjx7J0sULadCoMbvvZV8IUvyZmcTFxRF06xaCIPDZqOE4OzuzZ/eup8572xVpjDEXMUaaynYKNl5oCrZ6pttydiAb01HfW42buzvJSUk8evQIlUpF6TJl8S9QgOrVa9KseQuUSiVTp0ymdOkyRESEs3jhfKKionBzc6N23XoMHjKUwkWK4ubm9sZ/M7IsU7ZUMfR6PXPnL6JO3XrZNFsz7xt5PSRm7oFrORISM7heiTw355zG7GHPA8iyjJgQkrF9+NBBQDA1nHEujMLa4+XXG7Tob68H0cDEX65jNBopWqwYN2/c4P79sCzp8m9dazHuOkrn9zu84ENHUKhR2ud7sq22AUunXNTo9RE09qjz1UeIPo8x+tyrL3jHCAsLY/bM6bRo2YpRo8ewe/jKN5YpyxJi3C1KFA0g5M6TBlT/9SQDqP2bmsJQ3rKzRulaCsHCHkFpiWDjlWMPjlLyfVJSUnBycqb/wEHUrlOXKlWrYWPz7MPJH9OfxBuPHfc1B/bv4+SJ4yxbupj1a9cAULlKVbbu2I2d3esZKYmJiUz4+UdioqNJSEhg8qRfzQa7mXcW+fEru2V+iJgN9lxElmWQDKYNMT1jf7HixbmjL4rC9kk1GFkSQTIgqCyfkWOMOg2ARfFeRF1c/Nr6SJJEi1atuXr1immHwuTNko06pLSHyKkxyGI6gkKNYOmMYOkExnRkY6opbVtQPP1CYeqiKqYj61MQ1Lam6gcqi9fW0cz7jyzLSCkRGCOOIqfHoi7Q/JlQiBchaOxA0jN75gy6dOuOi8v7sUKk0WiQZZn6DRpRtVo14M0Mdtlo6lQspYRTtmMnxn//EwULFmLsmNFER0dxJzgYhVMRVJ6VUFg4ZM8ksoip8lFBk76yhJQej5wWi5T2CNmgReVRPltyamRDKiqVihNnzmfp86LRaGjStBlNmjZj3NffEnz7NufOnmHk8KFUrVSOeQuXULNmrSzpkpiYSL+PerJ3z27atGtP2XLl6dipS1anZMaMmfcQs8GeCxgfXsYYcQSUFhkdSAU7P1T5G6NQW3NX44PisTNLlkTk9Dj0dzabwmMcCpo8iUqT0fuvl2zEyJH8OmnyG+k16ddfmDjhZwQrd5TORRHjb1HU8haXr14CTPHMXt7exMXGEvv4ISGzqNVqDAYDKC1R52uA0sH/jXQ18/4gG9OQdYnI+mRkfSKFnVO4fudaxnEhCwajwsYLwdqdz0YNZ/euHWzasj0nVH7reHp6YmNjg17/nG7EWURMvIe3fI1kTSp/7tpLvfoNAFN8/PFjRxEsnVH7N0PpWPCNx3odZElENiQj65L4sldFjh09wqmTJ9BqtQB4+/ggq2Q06Sc4dfQi/g2z1kvi/6N0CkR+dJqVK5YzfOSo15Kh0WgoXqIExUuUoGq16gwa2I/G9esw+vMv+GzMWJycnqxcabVazp87y43r1ylcpAh16tZDEAREUaRJg7rcuRPMsj9X0bZd+zealxkzeQFZlslE5HWWZX6ImA32XCCjhbaoA0EJsoicGoMyX0MEtamzqCwZMdzfjxR/23SuoEDpWgox7hbGiKOo85m+ZAVBAYKSaVN/58/lS7l1J/S5S7mZYfKkX01jp8VgjIgBtS1lmnVk2IhRVKpchcDChVEoFMiyTHR0NMG3g7C3dyBf/vwolUoMBgNGo9H0v8GA4fHLydkZDw8PQu/do0TFehju7UQo3BGFleubvZFm3mlkWTTFnUefI2ORU6GhYKVmaLVaYqKjkQJ6ZikUQ9DYYlG4Ex/XteDP5UsxGAyo1TmfoPk2KFCgIEcOH3xtoxJAjLuFIWwvgY0aM33mHAoUfGKUP3hgKpmo8q7xVKjU28QUt34CMIXkzJh2hOo1ajLum++oVKkyJUuVxtnZmbshIVQsV4oKZUtiFAJQOhdFEJSvNaagtqZCpcpcOJ89oVSBhQuzZ/8hpk6ZzPfffcP0P6bQoGEjnJ1duHjxPDdv3ECSpIzQI3d3d2rWroNKpeLSpYv07T+AkiVLZYsuZsyYeX8wG+y5gKZQa6SkUMT4IGRdIihUqH1qZhjrUnr845h0k/ddE9jeFILy2KsuJT+JSzc8OA2Syevm+obJTnsPHCE8/D49vliKoLEHtQ3zF8165jxBEPD09MTT0zNL8v0LFECdvzG6KwswPjiJpmDL19bVzLuNbNShv7sNWRuF0qMCSsdCCBo7BKUFa9fPZN3aNfTq3gVVfBAq15JZlt/7o75M/2MKA/v1oUu37u9FU6X+AwcxasSnhIeHv7YMKSUCwcqVzdt2PnOvSExIADCFvtn5vdVkY1mWMT44iRhzHqVraRQO/ggaeyIuLkOheLabcoGCBTl19iI/fP8da1f/jRh9AZVXZRSOga+lt79/Ae7eDXn1iZlEqVTy+ZixdO/Riw3r1rJj+1aCgm5Ro0YtPh02kvIVKlKyVClOnDjOrh3bOXH8GOHh96lQqTJLFi1k757dnL1w5YNKqDPzfiLx7+N39sr8EDFXicklvu2anxnTplKiREmOPvB5qvqClBKJPngjAEqX4qyY/QMNGzXGzs6OHt06c+P6Nc5fuoZTpU/R3d6IrI3k96nT6T/wYyws8m58eFhYGEVLVUJOfYjavwlKx0K5rZKZXEA2pKIP2YKTlcS6jVuoVr36c88rXaIIIbEq1H5PEu5kUWcKnzGmorByz3jIfR76uztQpt7HycmJW3dCsbR8Nv/jXSEuLg7f/IEgGdAU64kgmFa6pIRgUKhR2OfPlKFqCD+MlHyf1JT4Z47dvHGDcqWLA6DO3xil05t1w80ssixhvH8IMe46v076nRGjRmfp+suXLvHD/75l29YtCNbuqPM1RJHF5GnDg1OIcTdIS03J0nU5wYXz56lbqxpWVlb07T+QgR8PpmAh873SzPPJ61ViZuy7miNVYoY1KJnn5pzTPOu6MPNWOHXyBFEPHrBv7x6klIinjilsvVHnb4Rg7YGYcIfuXTrStFF9kpKSqF69JjeuX6dhvdoYwvaZDH21LZ+NGs7A/n1MceJ5kNjYWFo2a4RsSEMT2N5srH+gyPpk9MEbkQ2p7N536IXGOphiqlFZZWwbYy6gu7IQfdBaDCHbMITufulYmgLNOHfxKg8fPuTvv968qkpuYTQaadOyGbIhFXXBlqYwOEB8dBVD6G4Md7c9cw95EbIhFVkyPrM/JiaGDu1aIVg4ovKpicI+f7bO4WWIsdcQ426wYNHSLBvrAKXLlGHdxs3sO3gURL3p82VMf/WF/0FQqk0J9HkgNrZc+fJcDwqh34CPWbZkEWVKFuXE8eO5rZYZM2ZyGbPBnkts2X0MhWMgCEpkY9ozx5VOhbEo3BGLkv3RFO7I+YtX8PTy44vvpwFw7OgRinqpcLNIAoPJK7R29d/s2rnjrc4js0z9/TdioqPRBLRBYZO1UBoz7xayQYuYeA8xIdj0f/J9Fn1Zl4+qgfLeOvw8Hbh65RIlSr441GX50iVEhIcjKJ6s6EmpDzN+Vtj6ZORxvIzKPaYj2Pkz5NORxMTEvNnEcom7ISGcPXMatW/tjKooki4RY+RR0wkqq1d2QH6CDGJ6RhnHI4cPYe3gRX4fD0JCQlH7N0XlVuatrqSKcbdQOBSgZ++P3khO9Ro1CA66hoONJqN++6uQJRHjoyuo4y/SsmWLPNNzwMfHh19+ncT5y6YyvadPvX7XajNmchMJOaN5Ura9PtDCjmaDPZdQ2PogJdw2JZwadS88TxAEFNYeJs+alSuIOhS2PgC0adceQRCwtbWlR6/eAPj6+r0V/bNCQkICK5YtoWv3nrlWIs5MziEm3kV3aw26G3+hu/4numtLMdzdhuHeLtP/dzbTo2sntm75h+EjR3P81DkKBQS8UN7VK1cYOuRjevb6CKX7k/bxGv/GWJQcgKZYTzQBbZ90CH4Fat9aIEt07tCW9PSseV7zAn758uHp5fWUF90YdQZkUySn2rduhtf9VajzNQSlJfXr1OB/331D00b1QQB1vgZYFO/11hulyaIeOT022x7ivb29mTBxMmLcTYzR502NwF4wrjHmArrryzGGH6ZL1+4s+3NVtuiQXUiSRMd2rbG1taVR4ya5rY4ZM2ZyGXMM+1tGlmWk+CCMUWdMzUDUVihdSrzUkJX1SeiurwAeNzGx9UV3dREg07BRYwZ8PISB/XpTpmw5du7Zj1L5etUScgJZlvmoV3d27djO2YtXKd1+Ym6rZCabkEU9hvBDSPFBKGx9ER4be4KFI2LsDeS0xx5tlTUH9u99XD/85cTExNCwXi1TXezT5/Gs+Vm26Cppo1Hc30qbtu1ZsvzPPONJzSx1albj7PVINIVaISaFYgjZCoDSrQxqn5pZkqUP2YqUFApAj569WXfFJtMGf3ZiSjQ9gfjwEhbFepJwaVm2ybXzLI4YFwRICDbeKB0LIigtkfWJSLokpKR7IBlQOhVB6V6OxCt5L2Tq6JHDNKpfhx2791G3Xv3cVsdMHiWvx7D/sfcKVjbZHMOuTWZkw1J5bs45jdnD/rYR0zGE7UXWJ4KYhtq7+iu9zpIuMeNnWZ+EoLJAU6QL6gIt2HvoJF07taNc+Qps2rI9TxnrAKtW/sna1X+T5lTFbKy/R9za9h3FlGexFaNYuHgZKXFhpEReROVVDSkxBFkXj8q7Gkr3cmBMxWDIXP3wzZs2cjsoiDti6Wwz1gEUNh6IHrVZ/fdf2PlWQKd78apWXuPokcOcPnUShUtxxMS7GML2ASBYuqDyfvVD0H+RUiIzjHUUatadJ3eMdUMqhrB9iDEX+OGnn7PNWAfTqmRK9A0ioh8yb8FimtQuixBzCkPYXlzkMCoVcWbkiGHcDgklJfp6njTWAfbu2Y1Go6FoseK5rYoZM+8Fs2fPpkCBAlhaWlKhQgWOHDny0vN1Oh1ff/01+fPnx8LCgkKFCrF48es3p3xTzGUd3zKCygpN4U7Ioh6FjUemrlHa+SEU6WqqjGHra5Jj6Wwq56hPAqBX7z6vXX89p9i0cQPDhg5G4VQEpVPh3FbHTDYhyxItmjTk0aOH7D1whFKlS2ccM0afRUqOQF2gKYLK6nHcuUD5ChUzJTspOQkUmhwJzVA6BSIbkjFGnqRsqWIsWLwsy50oc4OZM6ZRrHhxbj0IRYq/kbFf6Vws67XHFWrTaoiNByqXkgga22zW9tWICXcwhO0HQWD+wiX0+qhPjozj7OxM7z596d2nLykpKQiCkOfukS8iPT2diRN+BqCAnxf9+g9k1tz5uayVGTNZ59+48+yWmVVWr17NyJEjmT17NjVq1GDevHk0a9aM69evky/f8/tOdO7cmejoaBYtWkRAQAAxMTEYjc8m7b8tzAZ7LqCwds/6NVYugAuyaEAfuuuJlwwQLJyo858lU0mSWLtmNX16dWfBoqVvnMz1Ovzy0w/8+P14OnTqzNabjm99fDM5iDGNq9eu0LZ9B3z9/AgPD+fwwQNERIQjRp8FwHBvF8ii6XyFJtOGkqWFJUhGZFnOkbAVlXt5FHb58XK5T/vWLdiz/zBlypbN9nGyi7NnzrB500YGfDyYG/PmoPKugTH6HIKFI0rnIlmWp7B2QxPQJgc0zTzG6LMorN1Q+zfNMWP9/2Nr+/YfTN4EtVrNhMedq2/fusXiRQv4/Isvn2p0ZcbMu4Akm17ZLTOrTJkyhf79+zNgwAAA/vjjD3bt2sWcOXOYMGHCM+fv3LmTQ4cOERISgrOzKdnf39//TdR+Y8whMXkYMeEO6RdnoQtaZ4p9T4mkWWDsU8b6hcvXSU2Jw8/PlGy6f99ealatRJ9e3QHwz4Ub/JJFC/nx+/GoPCuzNcjVVDLNzHuBLMvIhlQCAgPZtGE9/r6eBBbwo3/f3nz3zVcAuLq68vOECWzZvguAHt27Zlp+WnoaKFQ5GmOusHLhfHJxUoxWVK1alcED+3P8WOaqirxNLl64QK3adcDCiQULFtG6bTt+GNEWtUJE498YQfXu1ZWXJQMKfTzTJn5LwoWFua1OnkWpVDJy1GeMHPUZX307Hl8/P1q1aEJSUlJuq2bGzDuHXq/n3LlzNG7c+Kn9jRs35vgLSqZu3ryZihUrMmnSJHx8fChcuDCff/45aWnPVvV7W5g97HkUMSkMw72dAAgqa6SkexjubmdTMBQuUoSgW7cAGNCvNy1atcHF2YUN69dy6OCBDBmz5y54q0v+sbGx/PrLT8yc/gdKlxIoPSq+c8l9Zl6OrH2APngjwY+39XpTbLo6X0MMkcdoVL82y/5chZOTqXGNViciimKm5Ts6OIKkRx+6B6VT4cdlHR+7UxRqBCvXbPlMCUoNmkItMUad4fjxo6z8cznB98Lx8MhcmFpOczsoiCYN65oq4SgswJjO71OnU7NqRXr2+ohV5/Nug7SXIeuTEUWRosXNcdmZxcfHhx279lGudHGaN2nI32s34Ovrm9tqmTGTKWTZ9MpumcAzD7AWFhbPbR756NEjRFF85v7u4eFBVFTUc8cICQnh6NGjWFpasnHjRh49esQnn3xCXFxcrsWxmz3seRSFtTsqz8qoC7VBU7C5qUGS0vRBzJ/fn4m/TUGpVHLu7Fl+/N93jBj2CWlpafw0YSJKpZK69erzUd9+OaZfcnIya9es5vvx39Lvo17Ur1OTAn5eLFm0gAmTJqPyrWM21t9DJF0CADdv32XN+k0M/uRTBGt3DGF7wZjGN999n2GsAygUCtTqzK+w9BswEJVvXaSUSAwhW9EHb0AfvNH0ClqDMTL7GsjI+hQECwcaNGyM0Wjk4oXz2Sb7TZAkib4f9cTTywt1gRbIKeGoPCqw5Z9NPHz4kM/GjM1tFV+fx02b7LK58+H7TkBgIJu37eT6tatMehzbbsbMh46fnx8ODg4Zr+eFtvyX/2+TvCz0UpIkBEFg5cqVVK5cmebNmzNlyhSWLl2aa152s4c9jyKoLFF5VnqybeWGplAr/IUr6PV6ho8cRd/+A5j6+29M+PlHNMU/4lK6DZ6nTuLi4sLGzdtQKLL/eezQwQOm2s3PQWHvj9GvLt//dddsrL+nyPpkUNuQ39+f/P7+tGrdht+nTmPP7l04OjpRuUqVN5IvCALJdw8gyzIhd+5gMBgyPktffvEZhw8dRJSrZ8vnyxC6G1mXwMoVl+jarQf16r+6EdPbwDGwCYawM2gC2iFolICMoLRg9JhxKBwCqNjtj9xW8bWRRVMn5pflNERGRnL82FGOHT3C8aNHCA29h5W1NXZ2dtjZ2ePi4oKLiyuWlpaIokhU1APi4uKoXqMmw0eOZuf2bSSnJOPq4oqrmxsuLq44OzujUCiwtrHB3d39pffGixcuMHP6H5w4cYyHMTGM//4nhg4bnu3vRVapV78Bn3/xJZMn/cp33/+Iq6trbqtkxswrkcj+Rkf/yrt///5TZR2f510HU5imUql8xpseExPzwlVVLy8vfHx8cHB4UsWvWLFiyLJMeHg4gYGBr9QzISEBR0fH5x4LDg4m4CX9SJ6H2WB/RxBjr2EMP0QQEHTrFkUDC3A/LAxJknByciJVbYOUHMrmTdv4a/U6LC1zJr51966dGT9XrlKVMmXKIggCe/fuJuTOHfR3tmBRNPMxy2beMQwpCOqnE/gUCgVNmjbLtiFSU1P5Z+MGypQtR/ESJZBlmRPHj3P58iWatWjJtttvZqwbIk8gp0ajsPVG1CXQomVrliz/M5u0fzPS0tIwPDiJwqEgCltv5MfNkYxRp8GQgsqjQi5r+IZIJoPd+j8GuyzLnD1zhj+XL2XTxvUZHWkLBQRQs2ZtOnfrTnpaGsnJySQnJREbF8v9+2HodDoUCgWurq4UK1acxQvnM2PaVJRKJba2tiQmJj5XBVtbW4oVL0HlKlUpXrwE8QnxxMXGkpaWRvDtIPbs3kXBQoVo2qwFoffu8vW4LyhVujS169TN8bfnVQz4eDA///g927ZsztEVVDNm3gXs7e0zVYddo9FQoUIF9uzZQ7t27TL279mzhzZtnp+EX6NGDdauXUtKSkpG0npQUBAKhSLTIWnNmzdn//79z9hjt27dokGDBoSHh2dKzr+YDfZ3BIWtN4KNJ+WK+pIvf34KFQqgYMFCFAoIoETJUgQ2+x/io+tUrFSZtu3aA2AwGPji89HMnT2TYSNG8fOEiWi12hc+8WWGnydM5OcJpnrq0dHRzJszi+ioKCpUrETInTvvZCKcmcwji3oEZc7FTycmJlKnZlVu3byJWq2mectWXL1ymTvBwZQuXYafJ0xiW8ffXlu+LMtICcHI+iR43Dl0z+6diKKYrT0MZFnm2tWrxMfHkZqaik6nw8HBAWdnF+wdHAgLvceN69dJSk7CzdWNuvXq4+Lqymcjh4MhFZWXqb66ICgQbLyRtZGmBmuWztmmY+7wxNMWFxfH0iWLWL50Mbdu3sTbx4cevT6iUuUqVK1WHS8vryxJ/vrb8Zw7d5ZKlauQL18+9Ho9sbGxPHr4kISEeCRJIikpidu3g7h6+TL/bNrArBnTcHR0xNnFBRtrG1xcXVmwaCldu/dApVKRlpZGp/ZtaNe6BYOGDKVIkaIUKFiQ/Pn98fH1RaV6u1+hdnZ2WFpaEhGRtS96M2ZyjRyIYX8dh/3o0aPp1asXFStWpFq1asyfP5+wsDAGDx4MwLhx44iIiGD58uUAdO/enR9//JG+ffvy/fff8+jRI8aMGUO/fv2wsrLK1JhOTk60bduWrVu3Ztwrbty4Qf369encuXOW52A22N8RFJbOWAR24LoI10OAkBRk8Qxi3HLEuJumhjWpUdSu0wlBENi2dQsd27XOuL56jZrYW2vw8vYmJDTixQM9RpZlFs6fR8FChahbr/5TxkxKSgrz583h159/JFmrQ7B0BEGF0r0cKvfyOTB7M3kGKWdr0C5etIBbt4LQFO6MmBjClj2nECwcUBdswS0hP2WzaKzLsoSUHI4Yf9vUdEypQbD3x1G8j6WlFRMmTaZ+g4bZ3nCsc8d2bN38zyvOUoBSDeLjJk4KFcgyKr86KCwdM87SFGyBnPYQwSZrBmxeRLBwBGD40CHs37cHSZJo264Dv0+d/sx9Jqv4FyiAf4ECGdsajQYvL68XGv6yLCNJ0kvHtLKyYu2Gfxg5bCjr160hLPRJhS6lUkl+f38aN2nGiJGjnxo7O5EkiY0b1jN/7mxOnjiOlZUVdnb2nD1zhksXL2AwGChZujQ1atQ0hyKaMfMCunTpQmxsLD/88AMPHjygZMmSbN++nfz58wPw4MEDwsLCMs63tbVlz549DBs2jIoVK+Li4kLnzp356aefMj3m+vXradSoEd27d2f16tVcu3aNBg0a0KNHD6ZMmZLlOQiy/Opnn39bzFqUGoig1GR5EDPZj5Qag/7O5owve4VTEaSE25w8fY7ZM6ezfNkSAIqXKMGIkZ/x18oVGRVkjp08S/kKL19aT0tLw9ne+qXnDBk6jEV7HyIlhSJpo/j3sVewcEBh52daFVCYSzq+TxgfXsIYcYzL124SWDh7m2EZjUaKFS5IZIoNmvwNkI3pyGI6isdGXlaQJSNi3E3EmPPI+mQEC0cEazcQ9aZmTsZUFAoFLVu3YeWqNW/sKZVlmY0b1jNz+h8kJiZw/do1ADTFeiAIKlAokUU9GNOQRR2C2hbB0hFBMO2XEu8i65NQOhc1VYZ5T5FlEePVBVhbWzPqszEM+Hgwbm5uua1WpklPTycsNJR79+4Seu8eN25cZ/3a1cTHx9O33wA+++LLFzZheR3uBAfz8YC+HD92lFq169CyVWsO7N/Pzh3bAFPOh1KpxGg0MmToMH6fOo2LFy6wdcs/3Lt7l+IlS9KgQSNKlymTIzlNZnKfpKQkPFwcSExMzFR4yNviX7txwo5LWNpk7z0tXZvMuGZl8tycn0diYiJ169alUKFCHDlyhN69e/Pbb6+3Smw22N8hZFHP1KGVyZ/fnxbNGmXsV9jlY1DvNhw5dJAvxn1N7x5dCQgMJPj2bTw8PIiOjqZQQAD37t59qsTezeB7GU+XzyMyMpJunTtw+tTJ5x53d3fn0aNHaDQaataqjaWlJbIsc+nSRcLv30ej0VCjZi0aNGpMp85dyZcvH06VPs2+N8TMW0eWjOiuLuKbb77h62/HZ59cWWbf3j20at4ETeFOKKzd0d1ag5z2ELV/E5SOL07OkY3pGML2UcBdhaOjE3PnL6JKg05I8bdo0bIVX3z5NZUqV87wPt68cYNypYujsPNDSo6ge48eLFi89LUNmqBbtyhbpT6yNtLURVRjh6xPQmGfH5V7udeS+T7jGruZLl2789Mvv+a2KtmCVqtlzuyZTPltIomJibRp157vxv9A0WLFXlumLMtM+2MKP4z/Fk8vL+bOX/RUDP3BA/vR6XQ0bNQYhULB3NmzGD1yGO7u7sTExODi4kKhgECuXrlMamoqnl5efDnuGwYN+SQbZmwmL5HXDfaft1/MEYP96+Zl89yc4dlSkwBRUVE0bNiQli1b8uuvT+57WdXdHBLzDmB8dAVj1BkwpvHJ4AVPHRMsHFH7NyY5KQm9QZ9RQq9GjVoE376Nq6sb/2zdiSAIVK1UjqrVqnPq5AkcHBxeaaB4e3tz6OiJjG2tVktEeDjh4fe5HxZGREQ4Xl7etOvQ8am4eFmWCbp1iz27d7Fv725++fF7Jv7yEzNmz8u+N8VM7iDqQTJSpOjrGyP/5a8/V9C/b++M7fz+/kRZPfa4Pk5QNITuRWHvj6B49nYlyzLGyBNISfdo0G0Imzau5/ffJqJ08EeKv0WffgOeqVxz/brJ+63yrYOcGsOqv/4kMTGBOfMXZdnbe/3aNerUrAoGBepCrVHa+WXp+g8RGxubjPr97wM2NjZ8PmYsg4cM5a8/VzDl90lUrlCGb//3A6M/G/PCkJubN25wYP8+dHodXl7e+Pj4oNFYoFQqOXvmNOO++JxBQ4by84SJz1TVqVvv6UpdQ4Z+iq+fH/v27KZx02Y0btIUlUqFTqfjxPFjfDZqOD//+L+nDPbU1FTmzJ7JtStXsLe3Jz09nfT0dEqXLUv9+g3NXnkzZl4DR0fH54amybLM3LlzmTdvXkY5yaz0KAGzwZ7nkQ1ajOGHM7a37dxD+zYt0el0CBp7NAFtEZQWCIKRoFu36NmtMyqVChc3NzZs2krT5s0RBIG5s2ehUqnYtfcAGs3rrZLY2NhQuEgRChd5eUt0QRAoUrQoRYoW5dPhI0hMTGT4p0Po06s7SudiqHxqmbufvqNI6XEAlCpVOlvk3bx5I+Pnz7/4knr1G9Dhy00ACJZOyLoEFHZ+Gca6bNAiJtwBWQSFGkkbiRR/G5VXFabNnM3Ro4dNIQIxF0GhpnSZss+M2aBhI0CBlHwflWtJ/p42jEED+tK9S0f27D+UJf3/WrkCGxsbDAVam1cfM4m7uwfnzp55aQ3kdxFbW1s+HjyEj/r248fvx/O/b7/mxLGjfPXNeCpUfNJETpZlFsyby+ejRyAIAhqNhpSUlGfk1albj6nTZmT6PWrVug2tWj9d8cLCwoK69eqj0+lwdHIiMjKShfPnsmvHdoKCbqHX6ylfoSKpWi2WVlYolUq2bN7E119+QYkSJZkzfxGVKld+8zfHzAdLTjZOyoscOHDg1Se9JmaDPY8jJd9/art17y8QZUvQWKIp0gVBqUaWJa5euQyYbvL79+1lym8TmfLbRJQuxVH71cMYcwGjUcS1WHMSg/e81S9KBwcHli5fSYMGjRg14lN89RJ3DYEo7PK9V1/YHwJyejwICgoWKvTGsuwDmmAINxnICqfCzNydzIxdGwHTQ5/apzZGC0eULiUyrjFEHENKuG26RqHA08uL8ZMW07tPXwCKFS/Byj9NWf5bd+x+Jp44PT2dq1euADLiw0soHQPo8b+dGC1LcPTIIXQ63Qtr+T4PhUKBVqtFNmjNBnsmORluhyFkKw5FWpAUtD231cl2LCws+OmXX6lRsxbDhg6mVvXKuLq6UrZsecLuh/IgMpLk5GQGDRnKxN9+x8LCguTkZCIjItDr9YiiSFpaGqVKl862++PgIZ8y5rORFMrvg62tLa3btKNNu/Z06tyVAgULPnWuTqfj6JHDfDNuLHVqVmXwJ5/y+Rdf4u3tnS26mDHzPlOnTp0ck22OYc/jyKIeKTkMBAWGuztMOxUaVD41UbmYwhLEuJsYwvax7+BRhg8dzLVrV+neoxdrDtzBGHkcTeFOCBp7DOGHkBKCadqsOWvWb8pSB8rs4tbNm3wyeCDHjx1FYV8AtX/j54Y6mMmbGMKPIMZdZ/78BXTs3CXT5a3+y727d/nfd9+w+u+/UDgUQulaCgwpSCnhiMnhpoRQu3wIVq6IcTcRBAWawA4IamvExHsY7m7D1taWi1dv4uPj85RsURQ5c/o0CQnxNG3WPGN/UlIS333zFX8uX4pWq83Yr/Kujsq9HIYHpxAfXSU1LTVLRlJSUhK1qlfm9v0Ek47mB9BX8u/9CoWG1PT09/o9E0WRgwf2c/TIYf6YMpnyFSrSolVrKlepSs2atd6qLieOH+f6tat06NQ5U6V9jUYjkyf9yrSpv5OQkIClpSVfffMdY8aOy3llzWSavB7D/sPWnIlh/65l3oxh/y87d+7E1taWmjVrAjBr1iwWLFhA8eLFmTVr1lNdwTODOUAtjyMoNSgdA1DY5UOdrwHqQq2xKNUvw1gHMMZep0HDRuh06Vy7dpXSpctw4cI5FNamDl5i3E0ElSUa/yao/Oqzc8d2jh87mivzKVK0KHsPHEbt3xQpORRjdN5oB28mcyhdiqGw8ebjAX0J8Pfl0yGDOHhgf6Zj8SIjI6lbq5opdMWjAlLSPQx3NmEI24uU+hClYyFUXtWQ9UmIj66gsPFENqZjjD5rGt/Bn0tXb5KSksKUyZOe1U+ppGq1ak8Z6wCfjRzOyhXLGP35F6zfuAWUlihsfVDYmTzwUnK4qapRFo1HOzs7mjRtjpwajayNevUFZjDcfxx2JOk5dvRI7iqTwyiVSho0bETVatVJT0/np18mMvqzMW/dWAeoVr06/Qd+nOk+HCqVii+/+obrQSEsXrqCsuXKs3TJopxV0oyZ94gxY8ZkJKFeuXKF0aNH07x5c0JCQhg9enSW5Zldm7mELMvIaQ9BFhGs3BEUL68/LChUKJ2LPrNf0iUgax/wUd+pTJk8CcHShRvaghjubQfxuukkpeWTMbUPsLS0JLDwy+PQcxJBEEi6vYPRI4ezYd0aEuSKCIL52fFdQGHliqZQKyRdAomxN1i8fBWLFs7H18+P/YeO4ef38qRLURR5+PAhU6fNJCAwkBZNG7F42Z80bNT4hQmfP/3wP37+6SeUbmVQWDhQpecMlO7lmD1rNpOn/JEpI/vevbukpBn4ZeYaVF6hWJbqn3FMSotFTo1CBn795ScCAgsTGFgYGxsbbty4TvdPJyClxyGnxSHrEkFliaCxN5VfNKYiJd9H6Voaweb5La7NPEHSRoH8uJa/oODwoYPUrFU7d5XKYQwGA999PY4qVatRtVq13FYnyzg5OdGtR0/27N6F9jmx9mbMvAxZlslEIEeWZb4L3L17l+LFiwOmmuytWrXil19+4fz58zRv3vwVVz+L2Up6i8iSiCyLphrRDy+jD1qL/vYG9DdXYnx0BdmYnnWhj68ZPLAfe/fsRuVZCaWdNxYl+qAp2g1Nka6oPCuaTn1wEjHuBtNmzM4T8Yi9evchOjr6mTh9M3kfhYUjau9qaIr14tDRkyQlJrJ86eJXXufn50elylXYv38vmsex4r6+vi+tzjJy9OcgKDBG/NcbK4BClelqI6vWrEfpVBgx/pYpIfW/klRWKBwDEKw9mDVjGr26d6FqpXKUKl6Yzh3aYoy5iKxPQWHjicqrCkrnIghqG2RdIrJkRJ2/MWrfWk89dMrGdKTUGFNHVTMASKkP0d9eD4DCsTDIEk5Ozhw/dizL1RLeJfbv28vly5cIuRNMn949+HrcWKKi3q3VmJUrlrPqrz9p3LRZbqti5h1DknPm9S6g0WhITU0FYO/evTRu3BgAZ2fn55Z/fBVmD3sOYfKgP0JOj0OWJYxRp8GQAkoLU7dI2fQFJWgcEKxdMYYfxhh+GMHGC5VnZRB1yOlxSKnRSGmxgPzYq2ePoLJC5VERQWWBYO2B2r8ZI3pUpELFSvT8fpdJrkKF8J825sbY64gx51F518hI0MttypYrR/ESJbgZfgOl/YvrwZvJuwiCQOUqVahQsVJGucRXUaZMWdasXsXKVWsoXboMn40czs69B3B2dn7u+ba2tghqW5CeGHVKhwKIDy/RrnULSpQshSzL5M/vT6nSpZ8qeWc0Gtmy+R9OnTyBlPbQ9LcnPm3kC2prNP5NALh/ZiZxcXHcDgpCq02haLHiFG/9c5ZDZfR3dyBrIwEBhX1+lK4lP+gkayklEn3wxifbCUEAjB45DIDy5SvQp98AmjZv8cpVmneNWrXr8NmYsVy+dJE1f68CwNHJiTFffJnLmmWekJA7AFSoWCmXNTFj5t2hZs2ajB49mho1anD69GlWr14NQFBQEL6+vlmWZzbYsxkx+T7G8MNYKfUZT1b/xdnBhri4OLp07c7SFSsJv3+fUSOHsXWz6YYoax9guGNqae7k5ETFqpUpXaYsGo2G27eDiAgP5/q1q7impxBuVe9xjHtBpm6Lg227nquTpI2CB0cYNPgTpk6fmXOTzyKCIDBg4GBGjxyOrE9B0NjmtkpmsohsSGXjhvUc2L/vlaENWq0Wd/+ySAnBKF1L41p1BFJ6YfTBmyhdvDDt2nekcdNm1KxV+6lknDvBwci6eFBqSL88D01AexQ2nqj9m3Lg8H4OHjsLKJD1ySAbUfs3Ien2TgC2bd1C9y4dye/vj6C2RZWvIQqnwBfq+Gxjr01ZNrJlYzqyNpLJU6ZhZWXFvDmzuHx5K4KlE5rAjh9U4r4sy4jR5zBGnQJAcCyMyr0sgqRHf2crgwYPonmLlsyc/gcjhw9F+nQIJUuWomXrNtRv0JDSZcri4OCQy7N4PbZv28qsGdMAsLS0JD4+HktLS/73w8/vXAOjseO+JijoFh/17Ib77v3UeJxEZ8bMq8gJj/i74mGfOXMmn3zyCevWrWPOnDkZRRJ27NhB06ZNsyzPbLBnI1LqQwyhexBU1oz//idKlylDhYqVMippJCYm4uvpCsCxY0cY8vEAVv65AoPhicdv9bqNFC9eAkcnJ1xcXJ5rLATdukX5MiUQPDxQuZd9oT7/xqwbwvZStlRpJk+dluc8fD17f8To0aMxPrqC2vvdi+/8kNGHH0F6dJlVK+MBaNio8UvP/+6br5ASgkGhQWHtjv7OZmTJiMqzMh3blGXvnl0sXGBqrlUoIAAvL290Oh3nz50FlQ1yarRJ0OMa/koHf5QO/TLky7KMPngjYuyT2u4Xzp/D08uL9Ru3UKlKDURZRjamonQqjKB+uhlNdiGLOkDB1+O+oEmz5nTv2ZurP0xBSolA1icjWLnkyLh5DVmfhD74n4ywIJVPLZSupRAEwfQeyUaqVK1G4yZNadykKXFxcRzYv4/tW7cwb84sfv3lJwA8vbzQaDTo9XokUUSt0WBlZcVPv0ykTdt2uTnFFxITE8OAvr3x9fWjcNGi6NLTcXJyYt7CJXTu0jW31csyGo2GRUuWs3f3LlYsW2I22M2YyQT58uVj69atz+yfOnXqa8kzG+zZiOH+QRAUqAs0ZfjIUc8cP3XySddQSwtLNv+zkTFjv0Sr1ZKUmEjP3n2oXqPGK8cpXKQIffsNYOGCBQgaO5SOz6+JbXxwEjHGVIVl4uQpqFRZ/3VLksTmfzaxYf1awkJDMRqN3Lh+LWP14O+1G97oS9POzg6lS3HER1dRuZdDUFm+tiwzbw9JG4X0yFT7f+eObeTLl5/Tp0/x4MEDrK2tn+sVLVCgIILG3lSiNGxvxn6j9gEhd2yZO38x/T7qQfkKFXFydkGXno5araZK1WrMnDEdAMHKFTntEYaHV5BFPQoLe5RuZRCUGgRBQGnvjzHqFNHR0Xh4eKDX69Hr9VQsVwowGZFSoqncqUXJfgiqrJelfBUKCwcsivfi+z6l2bhhHd+P/wYpLQ2FU+GnwtTeF6TUaMT4x6sgKEBQgKhDSokATK4wwdIFQakxxf3LIlLSPQDKli2XIcfZ2ZkOHTvRoWMnjEYjt27e5PKliwQH30YURTQaDQqFAoPBwLGjRxjY7yMuXbzA0GEjcHHJ/YegI4cPsWP7Nm4H3eLokcOo1WrW/7P1vQjx0ev1DB86hMTERJo2b5Hb6ph5h5Af/8tume8aaWlpGAyGp/ZltSSl2WDPJiRdEt4uGnx9C3HwyJ/PPadkqdKM+mwMtWrXoUPbVkybMZuBgwa/1nhTp88kMSmRtav/ps/Hg1l+Qnx2qf1xnLy6QAtq1a7D8WPHiIgIp0nTZhkfFFmW2b9vLzeuX6dt+w4ZcVWHDx1kxrSpbN25HwwpCFbuNKpdnt27dj41RHr6ayTK/j+Cz++kRJFCfNrSg+k7E99YnpmcxxDxpCyowWAgLCyUsLBQCm7dAoCHhwelSpehVOkytG7TjuIlSlCufAUmT/yJiPD7TPn9N6ysrUl7/OC3Z/cuDlzVYoy8z/37j5OQ1TaovKpiDD8EsgSAKn8jVKGbMBqNlK9QkUsXL2BjuEOHjp1ZsuseqG1AlliyaAFffvUNkiSR/J/kHoW9P7KYbvKuK3KuD4GgseV/f4UA5ZELl8XCmA4qq7e+wiXLMhhTkQ1aU1K7mA6yZOoyqrJAYev3Rl2HZVGP/vZGPD3dKV+5ArIsYzAYUKvVNGv+Nba2tqxZvYqoBw+4eHHfU9eWKlX6hV2TVSoVJUqWpETJks89npiYyDfjxjJj2lQWLZjH/kPHKBQQ8NrzeFPmz53DiGGf4O3jQ+nSZeg/cBCffDo8TyT3Zwe//zaRP1csY+HiZbRt1z631TFj5p1Aq9UyduxY1qxZQ2xs7DPHs5psb26c9AbIsoyUdA8xPggpIRh3d3dmzpn/THtoURRJT08nPT2do0cO89mo4Tg4OHDwyAns7F6/oYAkScyfO4dRIz5F6VwMdb76Tx2X9UnogtYhqCyZP2sqA/v3AUyd+GrVrkOhgEAOHtjHrZs3AXB0dKRgwULIssyFC+dNBlGYEaVDQUDGLv4wCoWCyVOn07xFS2xtsy/m/JuvvmTu7JkY83c0x7K/A6RfnPX0DoUaZJmFixah1mi4eeM6Vy5f4vz5c0RGRGScZmFhgaOjI9HR0ahUKnx9/cjn78+xGymo3EqDZDTVZE8xXaNwKIiUGAKA0r08Kvdy6K4uYtiIUXz51TckJyczb84s1q75m/B/DX0EQKZkyVJcv36NRk2a0qt3H/r/vOu9XcGRZQk5LRZZF4+UnoCse/JCMrz8YrUNap9aKOz9X1le9v/zbzLp6XOXKFW69EvPjYyMJOROMAqFkmLFi2e5acjz+GfTRrp2as+a9Zueue++LULv3aNksUD6DxzE1Gkz8lzYYXZQp2Y1oqIesHvvQfL7++e2Omb+Q15vnPTVpvM50jjpl7bl89yc/z9Dhw7lwIED/PDDD/Tu3ZtZs2YRERHBvHnz+PXXX+nRo0eW5JkN9jfA8OAU4r8NXVyKExl0Ant7e7RaLTHR0fj4+hJ+/z61a1R56umqTJmyrNu0JdNZwv9NhIs/8yRp9OjRIzSq9yTRb868hYycdfapL10pPR5DyFZTHKnSEk3hTkiJIUgp4ci6BARrT1QuxREsHDBGnwNZRJZElPb5UDgGmuJNJSP6m6uoUqEka9ZvemkJvtclLi6OyhXKYG9vz9RpM6lRsxZu1UZm+zhmsgdD+GFkfXJGaAOWLiDqyOftwu59h8if31T1R5Ik9u3dQ2xsLMWKFadEyZIolUpuBwWxc8d2Tp48zsb161C6l38qh0GWZdNnT5+M7vYGBKUFmsAOoFBgCNme0f1XYeeH0jEQwdodKSkUWdQjRp9BsPNDobZFsPFE6VAgS6Evsiwjxl1HfHQdQW39uBvv2+8K/CpkSWTRuPps3fwPu3ZuJz7elEvg6emZUUs+sEgRAgIC8fX1w8XVFWdnZzQaDUqlkjOnT1OvdvWnZCpdS6H2zVxddFmWTQ9XiXeJjU/A2to62+f4MkRRpHb1KkiSxNGTZ1Aqs/awkV18PW4sy5Ys4tadUGxsciYvIrdZ9ddKvvhsJPHx8bRq05au3XrQqnUbFApzZejcxmyw5505/3/y5cvH8uXLqVu3Lvb29pw/f56AgABWrFjBqlWr2L59e5bkmUNi3oD/elLE2BtUrVSORw8fkpycDMC347+nT78BTxnrN2/fJV/+/NnihTl25HDGzxYWFnwyeCCCXT7UBVpkyFdYOqEp2g3x0WUEjQMKC3sU7mXhOcmqL/qiNkafQzakMH/hkhwx1sEUv7pl2y769OpO00b1cXR0RI8rCrt8KO3z5ViCoJnXQ+1bG0mXhKi2RjbqUDoXQWHlhiLtMG1aNuWfLTvI7++PQqGgUeMmz1xfuEgRChcpwnBGMXbMZ0yfNg2VV9WMz23G/xo7LIr3fmqfplArZIMWMeEOYkLwU/HwJuVsUHtUQGHr81pzEx9dwRhxBIWdH1LSPfS31qCw90flVtrULCkXyCgTq0tA1ich65IQk+7Rs9tcSpcuw+BPPqVR46YUL1Ei01VVqlarRtduPfh71Ur+XZUQH11B6VYahYXjK/UxRp1Cig9Cna/hWzfWATasX8f58+fYf+hYrhnrAEmJiXh5eb+3xjpAt+49aNO2HUsXL2L50sV07dSe8d//yJdffZPbqpnJ48iy6ZXdMt8F4uLiKFCgAGCKV4+LiwNM5R6HDBmSZXlmg/0NUHlWRulRyVQvXfuAypV9CAsL5cTxYwDcvh1EzWpP6tYOHzk6W5cTR47+nO49e6NUKimU32ScyEmhyNpIhP8YK4JChcq9/GuPI8UHoXQqTGDhwm+s88soVrw4x0+f49zZs+zauZ0JU+ZivL8fI6CwL4DKpwYKi3ezxNv7iMLCHoVfvaf2bV67k2qVy9OgXi1uh4S98sH0h/99x/Q/pgAgxl5F6VTkmVW8/8qQJSP6O/+AaEDQ2KH2roGgtkZKj0Vh7QmCEhSqV44r65ORRb2pvvvjhFUwxWQbI08gWHuiKdQaSRuFMfos4sOLyLp4NAVbZvr9yS4kXRLG8EOmVQUApQWCxh6lQwHO7F9Dsced9F6HP2bM4u91m1BYOKH2b2xaddO8/G9M1D7AEHEcUqNQeVdD6Zw7XZN37dhOuXLlqVa9+qtPziFuBwWxft0aipd4fqz9+4S1tTWffDoMjUbDsKGDyZ/fP7dVMvMOIMsgZXun02wVl2MULFiQe/fukT9/fooXL86aNWuoXLkyW7ZswdHRMcvyzAb7GyIIArIsISWGsPrvQwD45cuHWq3m779WMmToMBo2akzVatVf2BhGlmXWr1vLpYsX6NqtxzOJVv8Ng/kvFhYW+Pn5YTQan5ZneLb++/MQkyOQUsJROgWieEn1CsHaHTEpjDvBwTme2KVUKqlcpQqVq1Th2/HfExMTw5Z/NvHbpAnEhf9DulOVXDMQzLwYMTkCKTGEEcNuotVqsba2fqXRnJCQwISff8zYNoYfxkcVhoO9AxaWlrRp154fll/JeEiTZRkpIRhZa+oSKafHok8Ow6L0IJSZ9HzLogFj9FmEuMsZfzdOTk6UKl0Gb28fqlStxqgRRnZvXZ1RV97WtxIkhSKobTNCdd4Wi8fVY2C/j3BzcmLyovXUrVf/tW70L8LBwYFtWzbRrnULytre4HySDYKFE6gsTQmrog7ZmIpsSDPFxyeGZHQmtrG1xUEIwzYtjhpVKmJja4uNjQ2WVlZYWlhiaWmJhaXpf0tLSywsLEzbFv/ZZ/n/fn7RMQsLVCrVUyEYDo6O3A+/z5LFC7GxsaVuvfq4u7tn23vzKvR6PV07t8fdw4O/1254a+PmNlqtFoDPR4+gWPESlC1X7hVXmDHzYdK3b18uXbpEnTp1GDduHC1atGDGjBkYjUamTJmSZXnmGHZMCVvIEghK5LRHSGmPQHpcG12hRlCoTV0KVRampij6ZAS1NaiswJCC7voKABYuXka9Bg3x8vJi8cIFjBj2CT6+vvw8YRIdOnZ67he9Vqvlo57d2LZ1C3Z2dqSmpjJ/4RK69+yVaf1FUcTW0vTspXAogDp/k1cmjxmjzj5pZmLjhUXgizP/ZYMWffAmvN1s2b33IAULPb+MZE6SlJTEyGFDWfXXnyhdSqLyqZnlBDkzOYMsi+guz8+o5NKpS1d++fW3TOVoJCcnIwgCNjY2HDp4gIkTfqZAgYLEJ8Sza8d20tLSEKxcESwcTYmoxjQABDs/BFlC0Nij8quXKSNa0kZhCN2NbEjlu/HjqV2nHpGREQTfDuLatavcunGDmzdvYDQamTptJv0HfszMGdP4+tufkPWm6kXqAs0eJ2HnHLIsI+uTER9eQIq9RodOnZk9d8EbJai/ioMH9vPj9+M5fuxx9R+F5nGy6n+/HgQUtt4INt4IKkt+GN4abUoKycnJpGq1pKSkkKJNQa/TZSTZ69LTSUtPQ6fToXu879/X66BQKFCpVKjVahQKJVptCoIgIIoiKpWKgYOG8PGgIRQpWjRHH6wePXrEzOl/MHHCz4wY9RlffPnVCx0y7yPh4eF0atcavUHP6XOXcjUk6UMnr8ewf7H+PBY22VtIQqdNYVKHvB/D/v8JCwvj7NmzFCpUiDJlymT5+g/eYBeT72O4twtE3dMHBBUgZ5RGRGmB0jEAMf72E2MewWS0G1NBbUtaavJTIoJv32bMZyPZuWM7I0d/To+evSlStChq9ZMEtm1bt9CxXWt69OzNnPkL6dS+DZcuXWTNuk2ULFUqo+nS85AkiV9++oFzZ8+wc4cpecGiRJ+XxnvLxnQM4QeREu6g8qyClBqNlHTvlb9b2aDFT3+MxIQE/ly1htp16r7w3JxClmXsC9bHGHEYwcIJdb76KKzfnkfNzPORZRn9zVXIuniUSiWiKLJ5287nxq5nBa1Wi1fZDogJd5D1KShsvVHYeGK4ux2lRwXUXlUzJUfSJWKMOIqUdA/B2hN1/oYkXl7xzHkGg4GO7dqwe9cOAGxtbUlJSUFhX8AUN54eizp/Y5Qv6ZSaFWRJRNbFZzgJ5LRHSLpE00OJLIKg5LfJv/PJp8PeWnKfQ+neyKnRpq6xSg2CytqUsKu2Mv38n3vEi1b+MsO/5R//a8Dr0tNJS3ts3OvSnzlmNBoxGAwYjUbTz0YDBr2ert17YmlpyU/fj2fB/LkAFC9RggEDB9O3/wAsLbOnMtDlS5eYPXM6Fy+cJyjoFmlpaRnHvH18OHfxaraufuR1zp45Q+0aVejarQdz5i/EwsIit1X6IDEb7HlnzjnNB2+w6+9szlji/Xb899SoWYuq1apn3HwkSSIyMpLJk35l2ZJFNGvRkuEjRhMXF0vUgwfcunWTUydPUKlyFX77/fndq0YOG8q8ubMByO/vT6fOXREEgbS0NFYsW0JiYmKGgXP//n2aN2lA8O3bODo6cunarYxl3rS0NCwtLTM8R3YF6mAMP2zy/ls6o3QKQGHt8dL5GiJPYJUaxC+//sb9+2H8NnHCMxU6XoRsTMNwbxdSSgRK56LIsoSHVQoJ8fGM+mwM347/PnNv+hty8cIFhnzcn4sXL6Cw80PlW/uVSXJmchZZMoKoB5UluktzUHnXIDn06KsvzALXr13j63FfsHPHdjSFO6OwfjYBWjZoEeNv0bZmPuJiY4mPi+POnWCcnJ0Z99W3dO/Z66kH5v+PTqdjyaKFTPr1Fx48iCSwcBGqVa+ONiWF+Ph4Dt8yoLB2z/KDoiyJJoM8NZqu9Qty+dJFbty4ntFIo1BAAKXLlKVw4SK4u3sQEBhImbLl8PB4+d+zmadJSkri2NEj/LliGf9s3EBAYGBGAnRWCQ0NZfofUzIelhbOn4unlxcNGjTC2cWF3yZOAKBW7TocOXyI3fsOUqt2neycTp5n7ZrV9O/TC3t7ezp37U7PXh9Rrnz597K0ZV4lrxvsY9bljMH+W8d3w2A/ffo0Bw8eJCYmBkmSnjqW1bCYD9pgl406xIQ7SGkxSLHXANh/6NgLk5jeJH41Li6Oa1evMHvWDM6dPYMgCEQ9eECHjp35ZeJveHp6Zpybnp7OpF9/YcLPP1K5SlXcPTy4FxLC1atXAHBzc6N23XqsX7sWpUsx1P8v8e+F89Uno7u+HDDF2UdHRSG5lEflUSHT85BlGTH2KsYHpxGUGj4fNZR5c2ZRqnQZ9h44/GoB2YTBYMDB1Rc5NQalSwnUfnXf2thmXk76pbmovKuRfO9ItslcvnQJgwb2w79AASLEQqaa4aonHj1ZlkzVXR6cAlmiVq2auLq54eLsgruHBwMHDXnqb+xVGAwG1q7+m8WLFmAwGLCxsSE09B4hd+4AIFh7oHIvh8Kh4HPvCZIuEVkbZVrBSo1GTnv0OOxOQYUKFShTpiylH79KliqVo+EuHyo3rl+nedOGtG7dlmkzZ2f5+jYtm3H0yGHy+/uTmppKi5at+XnCRCwtTfH934//lm1bNqNQKKharTqTfp/6QXqZb928ydIli1i1cgXR0dEUCghg0OChfDp8hNlwfwuYDfa8M+f/zy+//MI333xDkSJF8PDweOrvQRAE9u/fnyV5H6zBLsbdxBD2pPOevYMDSYmJ/LlqDR06dnorOrzsASA2Npbhnw7hYUwMNjY23Lt3l5s3bmQcr1ipMhfDlSjdyyIImVsuN1XAOE7f9jVJTU1l7LivqdJzxhvN4fCij2nepAE9en3Er5Mmv5GsrGJlaYnC2h11geYICnP+dF4h/dJclC4lSAw/n22xrZv/2USXju2e2ido7BGsPVBYuZjCZtIemvIbvKqQcGFhtoz7X+7fv0/hgvme3qlxRO1ZAcHSBdmgRUoOM9WD15u6qwoWjiYdrT1Q2LgjWLqScG5Otutm5vm0b9MSrVbLX6vXYW1tTWREBCEhpoeulJQUYqKjqVS5CuUrVCAqKoqd27exZfMmkpOTOXL4EJOnTGPosOG5PIt3A6PRyIH9+1i4YB6bN23k6IkzVKhYMbfVeu/J6wb7Z+vOYWGdzQZ7agq/d6yQ5+b8//Hw8GDixIn06dMnW+R9uAZ70j0MIdue2S/YeFG3SnGcnJ358acJuZJg+TxaNmvM4UMHwbseCvt8CMrc9+QYYy5gjDyOX7587Nl/OKNZztti1Ihh/Ll8KYeOnqRGH7MRlFvIxjSMDy8hKDQs/+MzZs+cztH/9AjQaDTMnruA7j17vZHH7cjhQ1y5fBknJycEhYLz585y+tRJLl28QPkKFZkwcTKVq1TJjim9kD69erD677/wL1CAsEfik1KLjxEEgQEDB9G4aTNq1KyVLd08zbw+n40azpxZM3nV15ynlxdRDx4gCAI1a9XGy9sbezt7fv51Up42CPIiSxcvYsigAdwMvvfWvxM+RPK6wT56bc4Y7FM65X2D3cvLi8OHDxMYmD15Tx+swf5fxOQIjJHHkNMePrV/waKl9Oz9US5p9TT79+2lfZuWGB1KZCre/G2gu72BIvkcOXH6fLYldmUWo9FIeno69WvX4OGjh8Q51jfHsecCsiSiv70OOS0OFKr/JGQ/i1++fFy6evOlidR5nQ3r19Gj68tX4Lp268GS5X++JY3MvIx1a9fQq3sXpk6fib2dPe4eHgQGFgZBwNraGicnJzZuWM+F8+coX6EitWrXMecNvCG+nq7ExsbSvEVLZFnG0dEJVzc3GjRsRP0GDV+aQ2Im65gN9rwz5//PpEmTiIyM5I8//sgWeeY4AkBp54PsFIgx7SEIKmrUqEZAQCB16tXPbdUyqN+gIYM/+ZRp02ei8qqMIOR+GS2lnS83b5yhbavm7NyTtVisrCDLMtaa54f9/Drpd+bOmYnhzhY0hTshqN7ug8P7gmzQIiaFgjENWTKAaADZCAggKB6/lChdij/VvErSRiKnPUIT2AHB2oPgnd9z7+5dLCwscHRywsnJiaBbt6hRtSL3w8JwtrcmKCQMPz+/3JvsG9C+Q0c2bdnO9999w4UL558cUNujsPFASrjNhQvnck9BM0/RvEVLrK2tSU5KYvCQoc89p1PnLnTq3OUta/Z+IssyY8d9w66d2zOSdUND73H8+FFmTJuKm5sbXbr1YMLE31CpzObHh4D0+JXdMt8FPv/8c1q0aEGhQoUoXrz4Mw+rGzZkrX/DB+9hl2UJWZ+Cn+EEd4KDAVi8dAXdevTMZc2e5dLFi1StVA6VX31ULsVyWx2M0ecwPjjJH9NnMWjIJzk2jizLjBoxjHlzZr3yXMuyz/9SNmP6rBvu7UZKvIPSrSxqnxoAiMnhGO5uQynIODk5YW1jg62tLZaWVsiShMFgwGA0EBMdTXxyOppCrQEBKekusiQiRp8l6lECDg4v7pBpMBho2qh+Rp3vz7/4kk8+HY6Xl9fbmHqO8OjRI4Ju3aJ7l47Y2duRkpxMVJSpqVOa4R1pxfcB0LN7F27fusWpcxdzW5UPFlmWuXzpEh/378Ply5fe6Yf2vEZe97CPzCEP+x/vgId96NChLFq0iHr16j2TdAqwZMmSLMn74B9x9bdWI6fHcec/+27cuJ5r+ryM0mXKoHAMwPjgRK4b7LIsY4w6y9BhI3LUWAdTXPAf02fyx/QndZ8lSWLN6r/p27tHxj6F3Yf5BSCLhsd9BGRQWSMolMgGLYbIE8jaKNT+TVBYuyGnxSIlPq5y8jgHQtanYAjZhsLWi/t3Lr005jomJgb/QsXRB29CUFki6xIzjp07e4b6DRq+8Fq1Ws2+g0f4ffIkvhk3lsmTfmXypF+5fusOBQrmbCOinMLV1RVXV1caN2nK6dMnuRMaweVLl3j4MCa3VTPzH3r2+oh2rVuwc8d2mjZrntvqfJAIgkCZsmX5fOw4evfoyo//+47PxoylSNGiua2amRxGkmWkV/uFsyzzXWD58uWsX7+eFi1aZIu8t9ONIw8jp8cBMHbc1yz7cxU3gkL44adfclmr5yMIAgobbzCmvzKJ6lXIRh1i3C2+aOvBgi9qIxtSs3Z9ajTIRlYsW4JOp3v1BdmMQqGga7fuJGp1/DF9Fh4eHqj1MSz5Ku+EMWU3siwiJoRgiDhK+rVlpF+cRfrlBeiuzEd3fRm668vRXZ7Lkq/qU839PlL8LWR9Ik2K6uhTXaBNOQVNmjajQcNGtKtTgLOrRvJd7xJYW2mIvHvllQmS7u7uVK9Y3NSuXpfI4mVP4rQLFQrI1Bw++/wLHiWksGDRUn6d9Du+74GXrXvPXty6eZOjRw5Ttly5N24YZSZ7adK0GXXr1eeLz0eh1784x8JMztOxU2cm/jaFPXt2UbZUMUaNGJbbKpkxk2M4OztTKBsLl3zwITGG+wcRH9dg/5fPxozF19ePQUM+yXN1ZG19KyFGn8WizJBMl3N8Hrqgdcip0Xh4eBAdHQ0qa9R+dRHUtghWriBLyOmx/BvDLOsSkFIikI1pCBaOiNFnn5LXpl17vhj7FeUrZL6me3ai1WoZ/HF/Nqxbi9K3PkrnIrmiR04gSwbk1IeIyWGI0f8vPlqhAQsHrEhBr9cjimLGIUEQsLS0xNbWFnd3D1zd3LC2tkZjYcHFC+d59PAhWq0WgPWbttC8RctX6nLq5EnmzJqBj68vP/48gb4f9WTN36s+6BAQWZapULYkhYsU5e8163NbHTPP4drVq1SuUIaff53EyFGf5bY6HzSyLHP61CmaN2lAamoqCSnpH2T9+uwir4fEDFt9NkdCYmZ0qZjn5vz/WbJkCTt37mTJkiVYW1u/sbwP3mAHU1m6A4uGUr2Kydj08vbmQWQkHw8agn/BgmhTUkhJSSEtNRVPLy8qVqpM7Tp1c+UmY+dfC2PEUSxK9jO1DH9NdLc3IijVaGPvERUVRcFChU3tyDE1hZHTY0EyPnWNYOEAKhvk1ChTExjAycmJ+Ph4AMpXqMixk2deW6c3RRRF+n7Uk7XrNmJRvPd78VkVk0IxhGw1bahtUXlUMD1UqW0wPryElBAMskiJEiVp2boN1WvUpFjxEnh6eqJSqV74wJmSksIngweydvXfGfsOHj5OlWpZq0BkMBhIS0vL0zfNt8G8ObMZPXIYYZExuLi45LY6Zp7DyOGf8tefy7lx+675d5TNGAwGUlNTUalU2NjYvPC8hIQE2rRsxulTJ7GxsaFO3Xqs27g5zznG3iXMBnvemfP/p1y5cty5cwdZlvH3938m6fT8+fMvuPL5fPAx7ACCyor6gxZjUeYTQCYOAaXxBPMXLjEZpko1GLRPXfPJp8P5feq0t67rvXObKFwwHyPb+jJla+xry1E6BWIMP0S1SuXx9vFFMGqRMYWa1KpcnIaNm1C7dl2USiUGgwG/fPnw8fEBTF1bF8ybg1ar5X8//MTJEyeQJJHSZcpmzyRfd05KJb/8+htr16xBjL2Gyr1crurzpkjaKIzhpnrmCvv8qH1rI2jskUUD+ttrkQ1p/PTLL7Rt255CAZkLSfkXW1tblv+5il8n/c7Wzf8wYtgnpGhTsqyjWq02l2kDnF1ckCQpV8LDzGSOr78dz7Ili1i0YB5ffPlVbqvzXhAZGUmj+rUzOgAD5Mufn3kLFlP3P1XWEhISWLZkMdOnTUGbksL6TVto1LiJ+d7xASDJpld2y3wXaNu2bbbKMxvs/8H0lG960ld7V0ftXR3ZmI7+7g7kxwa7o6MjBQsFMHL057mio4uLCz169mbZ0sXILq1f2zOhci0JgoJHj4K5ePECdnZ2jB33DR8PHvLKNunOzs6MHfd1xnb1GjVeS4fsRpZlThw/9njjXSn89HzEhBAM93YAoPKphcqtNLIsIyaHY4w6jaxPRlO4E599/sUbjePt7U216qbfn51d3vVU5GWSk5OZ8ttEKlaq/E5XvXnfcXNzo3uPXsybO5vPv/gyo+ygmdfDaDQyeGA/4uPimDNvIbZ2dhj0eubMnkmzxg1wdnbG1c0NK0srbty4jiRJdO3WgzFjx1G4yPsTsmjm5ciy/MY5d8+T+S4wfvz4TJ23atUqWrdu/dLVKTAb7C9FNmjR396ILOpYs34TRYsWo2ChQtnWbv11qVWnLgvmz8XCSQ+v2fFUFnVgSCU5LYly5cqze/8hbG2zd9nqbfLo0SM+7t+HHdu3oXAoiNKtLLI+2dSyXkwHBASlBYLGHpARVFYIlk5vFFaUkxgjHz94ICBYOiPG3cL48BJy2kMESxfUBZqjsHTOlrH+vfm9KzfBvMSKZUv54fvvSEpMZOeeA+al/TxO9569WbxoAefOnqVS5cq5rc47zfRpU9mzexdz5y/io779MvZ37tqNzf9sIjj4No8ePiQ9LY0evT6iQ6fOeHt756LGZszkTQYNGkSVKlUo+IqKaWaD/SUYYy4i6xOZO38RrVq3yW11Mvi34YRsTMsoz5cVxMR7GO7vB2MaicDFoAc0rl+HB1EPGPLJp+/ccnF6ejqBBfxIT09n+cq/+fi3I0jaaPQhW9AoZdwf1z999PAhaWlpT13r5e1No0ZNGDZiFLX6zculGTyLwqEg4sOL2NraoAvbjsFgQGHri6pgKxR2ftlqGE6ZPAkbG5ssh9V86Ozbu4ePB/SlU5eufP3NeHOJuneAipUqoVQquXjhvNlgf0Nat27LrBnT+PGH8ZQoWYqKlSoBptDEdu075LJ2ZvIKH3JITGbJrLPMbLC/AFkyIuuTAFNL9f8iimKuedmDb99m+NDBVK1WnQupWQ9hkI3pGO5ue7JDoUJQqChfoSKLFs7PaGzzrlGnbj127dzB8KGD0Yv2SCkRCNZu3Lt7PaNcoSzLxMTEoFQqiY6K4ubNG5w7e4YN69eyfNkSFI4BqDwrZZvn+nWRdEmIjy7TslVrihQtho+PL1/OO43CIvtDVk6fOsXqv/9i4eJluLq6Zrv89xmj0ZSULQgC7uZ29u8EFhYW+Pr5cf9+WG6r8s4TEBjI4WOn6NqpPfXr1OCnXyYyfOSo3FbLjJn3FnMQ3/9DlmXEhBD0N/9CSrrH0hV/ZTSE0el0fDpkEF5uTnw9biyb/9n01sMIxo39HFs7u8eZ9a/x61OoUNgXQGFfAHW+BliU7I+mUGtmzpnH19+OZ9fOHVy+dCn7Fc9BLC0t2bRlOzeCQug/cBAAKo+KaAq1eaq2uCAIeHh44OrqSomSJenQsRO//DqJK9eDmD13AZI2Cv3NvxETQnJrKgBI8UEgKFm64i9++uVXhgz9NEeMdYBZM6cRWLgwXbv3ePXJZp6iSdNmLF/5N9u3bqF44YL8NnFCRplMM3kTg8GAwWAwh39lEz4+Puw7eIS69eozdsxobgcF5bZKZvIYsvzEy55drw/1z9dc1vExsiwjJd7FGHksw7Pu7OxM567diY6O4uSJ4zyIjHzmuqMnzlChYsW3omN0dDT+vp6o/Oqhcime7fIlbRT62+szXZP7fUOn09GrR1dOHj9GknfHN6pz/7rEn5lJ9coVKBgQwJ9/rX7uOU6VPn3q/KxwOyiIH38YT+pjw3Lb1i2M/vwLfp4w8fWV/sCJiopi0q+/sHD+XFxcXFi7YXNGeICZ3Een03Ho4AG2bv6HrVs3ExMdzbade6hTt15uq/beMKDvR/y1cgVxSalYWlrmtjofFHm9rOOglWfQZHNZR31qCvN6VMpzc35d7OzsuHTp0itj2M0e9scY7x/AcG9HhrEOpvKFc2fPZOP6dU8Z6x07d2HCpMls37X3rRnrAOfPmZoVKWxzJnFHFk0l6f5etTJjuf9DwsLCguEjRvHw4cOMDrhvm9DQUC5cOE/rNu1yRP7kSb+ydvXfGTHwHTp1ZuDHg3NkrA8FT09PpvwxnSvXg8iX3592rZtz7+7d3FbrgycyMpIhHw/Az8uNNi2bsWfPLjp07Myxk2fNxno207R5C2RZ5reJE3JbFTN5jH+rxGT360PEHMP+GKVLccS4m4Dpg9CjZ2+KFi+Oi7MLrm5uBAQEUrBQoVzryBYaGsrQIR8jWLk+rnSS/Sis3ADYu3vXB1vyzNn5cUMVMXfqaW/etBGNRkPTZs1zRL7BYADAw8MTO3t7ypQth3+BAjky1odGfn9/xn//Iy2aNuLy5Uvm9zUXOXXyJF07tUOSJEaO/pzWbdpRomRJcxWfHKJDx0706t7luavQZsyYeTn58+fPVE8Cs8H+GCn5PiAjWLly7OAuypUvn9sqZbBg3lw+GzUcH19fNAUb50iohizLGCKPgtKC85evf7AG+5rVq7C2tka0fPudEGVRz7Q/fqdl6zYvXebLahjMf5k8dRoOjo4cPXyI+IR4/pgyGSsrK9q0zRmP/ofG5n824ZcvHy1atsptVT5Ydu7YTvcuHSlbrjyr1qzHw5wQnOOkp6cDUKt2nVeem5qaikajyah29i+yLHPp4kWOHjlMdHQUtra2+Pnlw9LKClEUefTwIUWKFqVO3Xq5XlrZTOaRHr+yW+a7Rnp6OqtXr0ar1dKoUSMCAwMzjl29ejVTMj5Yg11KjUGMvY6sSwSV1ZPKILJM6TJlckWnuyEhKBQK8vv7Z+wTRZEvPh+FwWDgu/E/8MkfJ7N9XCktFuODk0hJ91Dnb4Snp2e2j/EuEBkZyfQ/pjBk6DBm7327yYOyLGMIP8yj1If89POvOTaOs7MzU6fNAEzedic7K+6HmStmZBdWVlY8eviQJYsW0n/gx2aP7ltGq9XSo2snHBwd2bpjN9bW1rmt0geBUqlEqVSyZvUqWrVp+9yeHrGxsbRt1ZyzZ05jaWlJufIVKFWqNP4FC/Lo4UM2/7OR4Nu3sbCwwMPTE21KCrGxsU+NIYoiFSpWYt6CxZQoWfJtTtHMa/IhNk4aM2YMer2eadOmAaDX66lWrRrXrl3D2tqaL774gj179lCtWrUsyf0g3aiGsH3og9biYZlA/WrFyedkxBh1CgA5PfatGDCOFYfiWH4gDqV64FCiEw4lOlO8SCGKBhbA2t4DK40SKytr7Fz8SDeYPpwDRmSua9ariDs9g8OLPubrzn5UdbqB/tbf+DnDqjXrSQrenS1jvIsUqd6NtHQds3a93fh1WRbpXkGPnBDEnPmLKPCKxJPsIDw8nI96dQd4qoW4mTdj3Nff0rxlK4YNHcy+vXtyW50PDktLS0qVLkPUgweULBbIsE8Gc+vmzdxW671Ho9Ewc/Y8jhw+RN/ePZ5rUE2e9Cs3b1xn3oLFfP/jL/j6+XH82FF++fF7/lq5gurVa7J5204exidzK/ge4VGPiEtKJepRAlGPEkhOM7B730HS0lJpVL/2O1fNzMyHw44dO2jQoEHG9sqVKwkNDeX27dvEx8fTqVMnfvrppyzL/eA87LIsPY5Vh8iICCIjIjKOfTxoCFOmzcjR5TatVsuITz9Bd3X1C+OkBaUGpXd1ZGM6si4RhZUrChsvFA6vb8jJsoysS0BKuE250sW5dfMm1tbW1KxVmwWLltKlW/dMxVC9r9wNCUF8dBmFre9rNaN6XWRjGoZ7u1hxLZp5CxbTLYfLK0ZFRTFy+FB2bNuKg4MDi5auoGSpUjk65oeEvb09U/6Ywfq1a9izexcNGzXObZU+KJRKJQcOH+PUyZOsW7uaTRvXs2jhfFq0bMWCxctwdHTMbRXfadLS0ti3dw/RUVF4+/iwc/s2Llw4jyiKSKKIt48vW7dspnPHdvQf8DElSpYiJTmZbdu2MHf2TEZ9NobeffpmejwrKyusrJ50o65Vuw77Dh6lacN6fNSrG2fOX34mtMZM3kLOgTKMedzBTlhYGMWLP6nkt3v3bjp27Ej+/PkBGDFiBM2bZz1P7YP7pAuCAk3hzsjpsQTaRXH92rWMY63btssxY/3Ro0dcuXyJWTOmcWD/PpSupVBYOiOobUChBllEsHRBUGaf0SzLImJcEFLSPaTUaDBoQaGmYsNuTPxtCvXqN0CjeT/LdGaG20FB3Lt3l7NnTvPbxAnIkhK1T823MrYsy4iPLmOMMlX+2bVnHzVr1c7xcVf99Sf/bNxA/QYN+Wv1OhwcHHJ8zA8Nd3d3AI4cOpi7inygCIJA1WrVqFqtGj/+PIHVq/7is1HD+f23ifz4s7mKyety+NBBBvbvQ1hoKAqFAkmS8PT0pFHjpmg0GhQKBTqdjjp167Jr5w7atW6Rca2FhQWdu3Rj1Gdj3lgPR0dHZs9bSI2qFVm8cAEfDx7yxjLNmMlOFArFU6tMJ0+e5Ntvv83YdnR0JD4+PstyPziDHQCFGuPDy9yKiOOjPv1o3rIVDRs1zoh3TE9PJ+rBgyxXebh86RJbNm+iStVqNGjYCEEQcCzXH8O9XUgpjz35SgvUfnVRO+ZsG3hZn4JL4l4iIyKoUbMW1ap3pmq16jRo2MhcJ/cx7dq04E5wMAhKlK4lsfCs/Nb6DIgPL2GMPEav3n344ecJ2Z43EHz7Nunp6RQrXjwjgTg8PBzF44TluNhYs7GeQ/zrBBg2cnQua2LGysqKbj16Mv7brxBF8YXnabVabgcF8eBBJElJSUiSRHJSEgkJ8YTfv8/ly5eIi4slLS0NQRCwtrbGxtoGK2trFAoFgiBgZ2eHu7sHRYoWo0TJkhQvURIvL693Po8hLS2NcWPHMH/ubGrWqs3Gf7YREBjI7aAgAgsXfq7TR5Zl7gQHExJyBysrK8qULZet9bLLV6jAR336MWrEp0RGRvD1t+M/6BXivIwky0jZ7BLPbnnZTdGiRdmyZQujR4/m2rVrhIWFUa/ek1KyoaGhr5UM/0Ea7Ia725F18QwYMpQvv/oGbUoK/2zayPGjR1i4YF7GeRHRsTg7Z75Nff8+vbh69QpgWrrz9fVDd30NKJSo8zVEsHZHsHB4Kw15xLibREZF0KVrd5auWJnj470LxMfHs23LZqysrXF2dibh8ROuRYk+CKq39xAj6RIwRh7jk0+H8/vUadkq+8/ly5gxbSqXL5viOx0dHbGztycyIiLDYClbthwz58zP1nHNmNBqtXTu2BZvHx/atmuf2+qYAc6cOU1MTAwtW7V57vEb16/TuEEdHj169NR+pVKJo6Mj3t4+lChZiqrVqmeEZ2i1WtJSU0lNTUWSJCRZIiU5mYsXzvP3qpWkpaUBYGNjg4enJ23atqdIkaIUCgggsHAR3N3d3wlDXqvV0rZVc86dPcOkyVP55NNhGQ6AlyV9CoJAQGAgAf+phJHdzJwzjwIFC/LTD/9jz66dLF72J0WKFs2x8cyYySxjxoyhW7dubNu2jWvXrtG8eXMK/McBvH37dipXrpxluR+kwa5wLIQYfZZ5c2Yxb86s557zy8Tfnpvp/iLuhoTQtn0Hrl69wuBPPuXC+XMEBd1C6VYalWtJU+jLW0TpXo4GZZ05eGAfiYmJGd5UWZbZs3sXy5ct4UFkJDY2NrRu047effpmW3jMwQP7+fbrccydvyhPZPInJSXRoE7NjIepf3FyckLlXeOtGOuyqMMYeRIp5T4Ipj+7C+fPERsbi4tL9pSQ1Gq1fDygLxYWFiz7cxUeHh7s3bObsLBQqlatjqeXF7Vq18HV1TVbxjPzLLIsExkRQcvWbZ6KvTWTe6x73CjseZ/7kydO8FGvbri6ubF2w2by5c+Pvb09CoUCKyur1zKqRVEk9N49rl27yp07wQTdvMlffy4nJiYmY5ncwsIC98ceNlmW6da9J9//+HOeM+LHf/s1586eYfuufVTNYkWLnEalUjF02Ah8ff0Y0O8jmjVpQEhoxKsvNPNW+RBj2Dt06MD27dvZtm0bjRs3ZtiwYU8dt7a2ZujQoVmWK8iZqI/zb4tZi1ID31rIQE4jyxKyLhFj1CmkhDvPPSewcGEuX7v1QhmnTp6kQfvByLpEpKRQQEaw8UJTsGWeeJ/EpHsY7u4ABBQO/ggqa8TEu2BIMTVgsnQGYzpS8pOqOKM+G8O3479HqVRm2YC/HRTERz27ceHCeQBOnb2YayUy/0t4eDiBBfwA8PL2Js65KbIx/a2tdsiyjJT2EEPQ2ucez+pKzsv4ZNBAli1dzPSZc+g/8ONskWkma8yY9gdffD6KqdNmMviTrN+UzWQfoijiYGNBy9ZtyJcvP1ZWVpQrX4Fy5Ssw/Y8pzJsziwoVK7H8z1VPldPNCXQ6HSF37hAUdIuI8HBiYqIRBIH4+HjmzZnFmLHj+HT4SB7GxKBSqfD08nrK0SIIAqIoEnTrFvny58fG5sVOoOTkZDZtWI9/gQKZqo3+PE6fOkWdmlWZ+NsUho8c9VoycpJZM6bz+egRGdstW7Vm7YZ/clGj3CEpKQkPFwcSExOzNezoTfnXbuy95AQa68w7PzODPjWF5X2r5bk5Z4WLFy9StmzZLF3zwRrsYLoJ6i7NzthW2Po8iTUH+vTtT+eu3ShfoSJarZarVy5z9eoVrl6+nPGzrLJFYeGAwsEfpXPRt1phJDPI+hTEhNuIcbeQRT1KB3+UjgEINk9iK6XUGPT/MSbVajUKhYK27Trw2ZixlCpd+rmyExMTWb92DefPneXq1SucOnki41heMNb1ej03b9wgMTGBsNBQvvn6S2RJIsGzw1vzZBmjzmCMOp2xrVSqsLaxJjkpKWPf19+O55vv/pct40mSRMd2rdm1cwfHTp6lbLly2SLXTOaRZZnyZUrg6enFjt37cludDxqDwYC7sz3p6em4urpiYWlJRHg4YAoXG/35F4wc/Xmuxz9PnTKZr8Y+nZCpUqno1r0nly5eIDT0HuXKV+DBg0hu3byJSqUisHBhfH39sLK2pnnzlnzUtx9nTp9m5Ypl/PPPRqIePABgwaKl9Oz9UZZ1GtD3I44cOcT1W3fyZKOiZUsWM/jj/nTr3pNJv0/9YFcOzQZ73pnzq0hMTGTlypUsWrSIixcvvjSv5nl80AY7mJoGIUsIlk4YwvYjJdx+6fm2traUKFmKUqVKU7VadYZOO/lWvLQ5iSxL9K+l5tLFC5QsVZqiRYuhTdWyaME8wkJDGTHqM77+dnxGUm5ycjLTpv7OtKm/k5aWhqeXV8aXYP0GDVn256pcv3n27tmNtav/fmpf6dJl+OHnCXT9dttb0UGWJXTXV5hWNDT2CBp7Rg3pwYnjxzh+7OhT5278ZytXrl7hzu3b9PqoLxvWr+Xc2TPMmDWXxMQEdu7YzudffJmpsnQJCQm0aNKQqOgobgSFfNCVgHKLurWqc+rkCapUrcaYsePMnU9zkcm/TWTGH1OYPHU6nTp34eqVK1y8cJ7WbdvlqS/706dOERX1ADc3dyRJYtzYzzlz+hRubm70HziI69evYW1lTacuXYkID+fGjetERIQTFxvL0SOHadu+A5s2rCe/vz8NGjRizNhx/Pzj9/yzaQNHT5yhcJEi3AkO5s6dYNLS0oh99Ijo6Cju3b1LcLDpe69+g4YMGzEKe3t7Fi2Yz7Chgzlw+DhVqlbN5XfnWWRZpmvnDoSHhXHs1NncVifXyOsGe6/FOWOwr+j37hjs+/fvZ/HixWzYsIH8+fPToUMHOnToQLksOtQ+eIP9v4hxtzDGXkdh5YLC1hvByh1kEUn7AEFpiWDlYjK88licYU4hSyJizAWM0WdBFkFlhaCyQjakgmRA6VqKPetm0a9PT5ISE/ljxmw6duqcJ96fQQP6sXzZkozttu07UKpUaRwdnRj72xqQdMhGnWleCpWpzKbFm1dNkWUZOT0OKSUcURuNnHwfxPRXXmdnZ0dycjI2NjZotVrs7OwQRZHU1NSMc7757n98/W3mmmf9630Ki4zBzc3ttedj5vVITk5m6+Z/mD9vDhfOnyM0ItpclSeXEEWR2jWqolQqOXws+ztF5xQH9u9jw7q1DB02gqLFir3wPFmW6dKpPVv+2USPnr2Zt3Bxhkc8KSmJOjWrEh0Vhb2DA6H37mVcJwgCbm5u+PrlIzCwMKIksm3LZhydnDh19iLOzs74eLjQt/9AJkz8Laen+1qM+WwUa/7+i+tBIS8NEXqfMRvseWfO/yU8PJylS5eyePFiUzGCzp2ZO3culy5deqpGe1YwG+xmXomkS0RKCQdDGrIxDRRKVK6lkGURt+RDWFlZsXXHnoymAHmJsLAwfv35R65du8rdkDskJyeTrjeC0sIUviQokdMeonQvh9q7+muPI6XFIibcRkq4g6xLAAQQBARLZ2pXKUVMdDSRDyJJTEgAoFChQty5Y8qd0Gg06PV6ypUrz4Ejxzl18gTFipcgKTGRf/7ZiJeXN8ePHmHxogX07TeAGrVqExcbS3R0FEOGDsPLy+spXZKTk6lSsSz58/ubQzJymYiICIoFFuDb8d8zZuy43Fbng6Vzx3am0L0bt9/bsrYPHz7E1dX1GYfJ/fv3+eXH77F3cKB6jZqUr1ARKysrHB0dn2k6dDckhDIli1K6TFkqV6nKnFkz6Ni5CytWPr1amVfYtnULHdu1pmu3HkyeOg1bW1ssLPJWWGpOk9cN9h6LjueIwb6yf/U8N+d/ad68OUePHqVly5b06NGDpk2bolQqUavVZoPdzJsjpcZgjLmIbNCCMdXkRZeNmAxPBYLaFsHC/nG1GwWyMRUpKZQiRQLZsXv/M0ZjXsap0qcZP8uyhO7yfFRelVG5l8+SHFnUm/IDYm8gp0aD0gKlQwEUDoVQ2PliDD+EGHcTtVpNgYIFuXf3LiqVijJly3H50kW0Wi0NGjbi96nTKVykyEtXJvR6PbNnzWDa1N+JevAAjUZjqnzh5kbffgOoVLkKdevVR6PR8N03X/HbxAlcvHLDXOYsD9C1cwfuhYRw8uyF3Fblg2X/vr10aNuKqtWqs2b9Juzs7HJbpTzLgf37+PWXnzh18gRlypZj5579ebbi0ZJFC/lk8MCMbbVaTZWq1WjeshXe3j7cunmDiPBw0tLTGDR4KDVqvp3GeG8Ts8Ged+b8LyqViuHDhzNkyBAC/1Pa1Gywm3ljZGM6znE7sLS0pEqVanh4euLu4YGNtQ2SJKHX67l/P4y7IXeIevAAURRxdnGhbr36DBoy9J1b6pckiRPHj7N+3RrmzFsExlQ0Ae1R2L76oUOWjMipMYhxNxATgkESadK0KR/17U+Llq2eiheXJIlTJ09SoGBBPD09SUhIYM6sGdy8eYOSpUrTsmVrimXxD1eWZZKSkrCzs+P+/ft889VYDuzbS2xsLE2aNmPZn6somM+b1NRUlv25is5dumb5/TGTfUiSRGDBfLRu046p02bktjofNEePHKZD21YUKVqM/YeOmlvav4J/TYO8EOL4IoxGIyeOHyMlJQW9Xk9kRAT79u5m3949pKen4+nlhZ9fPiIiwtFoNFy8cuO988DndYO9ew4Z7H/lYYP9xIkTLF68mDVr1lC0aFF69epFly5d8Pb2NhvsZl4PKe0RkvYBYvxt7FWpnL14FV9f39xWK0eJiIigeZMGBN26hbePD9F6V5ROhVFYuz91nizqkVIikHUJyLpEZF0Cki4RDCmPz1CgdC2Fyr0sCZeWvvV5/BeDwUCRAH+Sk5JISUnBysqKTz4dzrfjv3/vvpzyIpN/m8iWfzYRGFiYgoUK0W/Axxmda9es/puPenZj4KAhNGnajOo1auLk5JTLGn+4nDp5knq1qzNtxmwGDhqc2+qYySHS09NJT0/PSNK/cvkyNapWxMLCAjt7ezZv3UnJUqVyV8lswmyw5505/39SU1P5+++/Wbx4MadPn0YURaZMmUK/fv1ea5XPbLB/oIgJdzDc25kRovHVN9/RvEXLXNFFq9US9eABBQsVyhFvTtCtW5Sv0xFkI2LCHVBaoMnf6KnSlv8i65MxRp/DShdKSkoKNjY2BAQEUjAggICAQAoVCsAvX37at2lBoyZNWbt+U7brm1Um/foL47/9Gjd3dx7GxOBfoADHT50zG4ZvAVmW8fNyIzY2FrVajSzLlCxZio1btmM0GqlWqRypaWmkarWAyVv5x/RZfDx4SC5r/uEyaEA/1q9bw4LFy2jbrn2e9iCbyT5OnjjBrJnTWLdmNfMWLKZ3n765rVK2kNcN9m4Lj+WIwb5qQI08N+eXcevWLRYtWsSKFStISEigUaNGbN68OUsyzAb7B4o+dC9yeiyx0WG5Hp84beoUvvziMwAaNGyEt7cPFStVplHjJhQoWBAwGUaPHj3ibkgICQnxGI1GRFHEzc2d/P7+eHh4ZLTM1mq1bNn8Dzu2b+XY0SOmkpNqGwS1HchGVF7VUNrne0YPKTUGffA/oFDyzVdj6da9JwUKFnzuF3rrFk05e+Y0Zy5cwcfHJwffnZezdctmOrVvQ9NmzVm+8m/Wr13DkEED+HPVGjp07JRrer3vREREcOTwITasX8uWfzYB8PGgIXTs3IXGDepSoWIlXN3c2LdnN0ajke/+9wPde/RixLBPuHz5Eus3bqFwkSIfbGWL3ESr1VKtcnluBwXx4y+/8vmYsbmtkpm3hE6no3yZEpSvUDHPJtJmlbxusHdZkDMG++qB75bB/i+iKLJlyxYWL16cZYPdHMT3ASKlRCIl3UPpVOSNjPXExERuXL9OaqoWb28fAgIDXxgXmp6ezuFDB7GyskIURcLv3yc5OZnY2IcsWbwo47w7wcHcDbnDXytXIIoiAYGBWFlace/eXZKTk1+oi4WFxeO24g7cvHEdrVZL+fIV6NylG5UqV6Hvz3sQFC//uBvCDyFYOKAJaPPK8omTJk+lVYsmVC5fmm/H/4CrmxtrVq/i0sULNGzYmImTp2Brm703qefx70NKSkoKIz79hLCwUAAqV8l7dZPfVVJTU4mMiCA8/D6nT53k0MEDHNi/D1mWKVeuPN//+DPVa9SkStVqqNVqBn/yKcuWLEKhUNC+QyfqN2hI1+49sLCwYNqM2bRo1ojqVSqgVCopV74ClatUpXjxErRp1z7X+xd8CEiSRFio6e/EzdVc8vRDwsLCgv4DBzH+m684eeIEVatVy22VzLzHyLLMuXPnuHfvHoIgUKBAAcqVK0fbtm1p27ZtluWZPewfELIkYow6jfTwAtWq1+Cv1evw8PDI9PV3goPZtXMH586eYdW6LY/LF/6Hx1VSlG5luX98HkcOH8LOzg4fH19OHD/GwP59/p9EAXjy8RMsnJB18SZRrqVQ2HojpTwApIzGQ4LGHkFlCYICEJCNacj6JGR9MrI+CUQ9goUjCscAFBaZf/KWJRHd5bnMmbeQPv36Z+qaR48eMWb0SFb//Zepu2X5ClSoWImVfy6nVeu2LF2xMtPjvwlLFi1k65Z/SEpKIiEhgRvXr+Hj68vfazZQrnzWKt+YeUJsbCy3g4Jo3aJJxsOivb09latUpX2HTrRo1Rp3d/fnXqvX6wGe27QqLS2NE8ePEXLnDkeOHOLihfPcCQ5GqVRSv0FDBg4agk6n435YGDpdOl269SBfvmdXhMy8HrIs8+mQQSxetIBrN4MpWKhQbqtk5i2i0+kolN+H1m3aMXvegtxW543J6x72zvOP5oiHfc3HNfPcnP/LgQMH6N+/P6GhoU8lcBcoUIDFixdTu3btLMs0G+wfCLI+Cf3dHcjpcfzw08+M/mxMltpNnzxxgpbNGmEwGChVugwX76WjsHZHsHIFhRpZn2JqFhR38z+Jmc+isPVB5VcXQW0LsoT+zj/IqTHAY4PdkAyyjCagLQobzzeed2aRDanori1h3cbNWe5KGRYWhlKpzAiNmTl9GmPHjObBw/hcuZlcvnSJ5k0aEBsby99rN9Cmbbu3rsO7zPlz55jwy49s27IZWZYpW7YcEydPwcPDk4DAwBxp0/7w4UP+XLGMGdOm8iAyEgBra2sEQUCr1bLhn600a94i28f9UElLS6NgPu+M5GwzHw5nz5yhVvXKzF+4hF4f9cltdd4Ys8Ged+b8L8HBwZQpU4YqVaowYsQIihYtiizLXL9+nenTp3P27FkuX75Mwcchv5nFHBLzniPLMsaoU4jR50zJloEdGPPFl1mWM3zoYEqULMW2nXuwtbV9qpY5ABYOKO18UHlUREq+z4RhjalTtx4WFhZERIQTER6OTqdj9KxTJg/5v5cV7oQsi0iJoUjJYaCyQuVWGkH1duPqZVEHgMPjqgJZ4f97P1u3bce4sZ9TsmgAXl7e+Pr5UaNWbYaPGPVWSsmVLlOGbj16MXP6H0z9/TfKli1Hfn//HB/3XeS//oofvx/P3j27uXb1Co5OTnw7/nvc3Nxp275DjoequLm5MWr05/TtN4BLFy9QomQpIiMi+PbrL9m9aydRDx7k6PgfGgcP7CchIQFrcw7BB4e3jw9KpZJDBw/Qpl37DINPr9cjSdJ721grN3m1W/j94o8//qBq1ars2/d048KiRYvSrl07GjZsyNSpU5kxI2ulfs0G+3tM2P4JDPtkMKsvnePrb8fTt//ApxIk09PTCb13j4SEBC6cP0diYgKffDr8mXJDFy9c4MqVy6j9m+FX7+XGvqBQonTw55vlQbA86NnjqmdvhoKgROlYEKVj1p42s5XHBrujg+Mbi8qXLx879uxn5/ZtpCQnExJyh6+//AIXZxfatu+Avb19jlem+PyLL0lPS+OvlSv4YsxoVq/dkKPjvUtcOH+eFcuXEhX1gNOnThIdFYWrqytRUVE0b9GSMWPHMWjI0FypsuPo6EiduvVITk6mYb1aJCcnM3zkaD7q2++p874eN5YpkydRrlx5KlWuQsPGTWjRslVGToOZpzEYDKxa+Sc3blzn3r27bN60kZatWjN4yNDcVs3MW8bb25sFi5YysH8fzpw5xfyFS1m2ZBHr1q4mJSUFH19f/P0LMGLUZ7Rs1fqlsvR6PTExMRzcv4/169YQHHybqlWrM23mbKytrd/SjMzkNQ4ePMiECROee0wQBEaOHMm4cVnvfG0OiXlPERPv4W64REJ8PLPnLaRzl64YjUb27tnNrp07OHn8GJcvX0KSJMD0IZJlGWtraxo0aky7dh3o1KUraWlptG7RlNjYR4RZ1UcQsj8cIC8gJoVhCNnCzdt3c8QbXa92DU6eOA6YuqA5ODhQrnwFvvnue6pUzZkE0fj4eHp268zt20EE3QnNkTHyOvHx8Xzx2SjKlC3H4E+G8v34b5k86Vd8/fwICAikeImSBAYW5s6dYAIDC+eZcouSJNH3o56s+XsVXt7eLFn2J3Xq1ss4Pvm3iXz71Zd4eHhg7+DA7aAgChcpwmefj6VFq9Y8jInh1MkThIWFMu7rbz/oJkH37t5lQL+POHH8GAUKFiR/fn+KFivO+O9/zJPL6WbeDhfOn6dxgzqkpKTg6enJgI8H4+Pjy927IZw6eYJDBw8wZOgw3N3d8fb2oXnLVjg5ObF86RIOHtzPubNnuBMcnCGvVu06lCpdhmVLFuHvX4Aly1dSqnTpHJ9HXg+J6TTvCGqr7A2JMaSlsHZQrTw353+xt7fn8uXL+L/Alrh79y6lS5d+aSGN52E22N8TZFlCig8yVYBJgQLehAAA7TpJREFUjUZOj6Nxk6ZMnzkHbx8fVq38k4m//kzInTsUKFiQGjVqUaVqNQoXKYKTkzP5/f1JTExk9d9/sXXzP5w6eQIfX18Mej1paWls2LyNVqNW5/Y0cwxj9FmMD04xbcbsHDHaDh08wJzZM2nZsjWpqanExcWyfu0arl69wpr1m2jVuk22jCNJEpIksX7dWoYOHojBYGDQkKFMmjwlW+S/axw5fIjGDepmbAuCwI+//MqIkaPfCSM29N49Bg3sx+FDB5k9dwF9+vVHkqT/Y++sw6JM2z58TpDSDSKglNii2N3d3bX2mqtr17p2d/fa3d2B3VKCAdLdAzPzfH+w8i2viRKjzvkeHC5P3M91zzvM/O7rvoIL58/RomkjTExMCAqN5LanJwsXzOX40SMfjHH2wmWq16iZD9bnL+np6axZtZIZ0yZjYmrKxi3bqVaten6bpUaFiImJ4cnjR1SoWClLxTRBEPj7r+ksmDeHAgUKEB0djaWlJcYmJvh4e+NRoSLlPSpQsmQpLK2sKF6iZGZo5NMnT+jSqR3W1jacOX8p13dTVV2wt12TO4L9wEDVFexisZjQ0NBPFiUICwvDxsYGhUKRrXHVgv0nQBAE0l+dRBn/GgAra2vGT5jMbwMGEhQURPMmDfDx9kZsWASphTsiXYsvfogokyNQRHuBWIrEpChibZM8mEn+oIh/Q3rASRo1bsS6jVswN8+bUm+nTp6gTctmbN+5h3btO2Q5d/HCecaNGY21jQ17Dxz+qo6lTx4/pmvn9rx5/RqxWEyDho1ZtnJ1ZtfNXxGlUknbVs05feokALPnLWDEyNH5bFX2UCqVjPh9CJs2ruevWXM4dGA/d+/cxt7BgZGjxjBg0ODMa328vXn27Ckrly/l1s0bALx8HZSvvQLyA28vL3r36MqTJ4/p99sA/po1RyW/2NWoNkqlErFYTHBwMJMnjCM6Ooo/xo6narVqn73v4IH9dO3Unj/GjmPajJm5kqj+HrVgV505v0csFnPx4kVMTD6umyIjI6lfv362Bbvqu5jUfBlBmSnWAUJDQhg5fCiPHz3k/r27JCYmounaEbHO1yfOiXXNEev+3DWKhfQk5KH3UEQ9R2xgz76DR/LU6+ri4grArZs3sgj2hw8e0KJpIxQKBT4+3l81lv/Ll9StVQ1HRyc6dOrC6VMnmD7z719arEPGB+emrTso7uqIboECODgURqFQ5OoXaE4jFotZtHQ5cfFxTPhzDE7Ozpw5f4nqNWp+sPB2LVoU16JF0dHRoW2rjGpHly6cp0Onzuzfu4e4uDj69R+AhoZGfkwlT9i6eRMjhg3B3sGBqzduU658+fw2Sc0PyvucEBsbGzZu2fbV97Vp245Zc+cz4c8xnD97hoVLllOlalUEQWDc2D949PABnTp3pXPXbj99kqsgCHyFXzjbY6o6devW/aid78OPv2XnRe1h/0lQxL5ESEvg/tlN6BYowK6dO1i9cjnW1jYsXrqChkO357eJ+Y4gT0WZEoEyIQhlwluElEiQaCG1LI/ErCSx91fnqT3vu5QaGRnRomVr5HI5oaEhXLt6BdtChYiPi6OsezmOnTzz2XFSU1Np1rgBwcHvuH3vEWGhoZQs5sK4CZOYMm2GuvU68OL5cwYP/I3bnrcoXboMew4cxt7ePr/NyjZxcXHo6+t/VXJpamoqw4YMYvu2LWhoaJCeng5kJLZ27tqdMmXKYmdvT/ESJfNsVyk3SU5OZsTvQ9i+bQu9+/RjweKl6sQ/NfnKbU9PRo34nQf379GmXXvKlHVnysTxlChRkufPn2Fubk7pMmXRLVCA2rXr0rtvv4/2bvgcqu5hb7P6aq542A8OqqFyc37PmzdflzOW3e8gtWBX89OiTI5AEeODMjkcU510IiMjAbCwsKBuvQbUq9+Axk2b5Us1EMjoTvrX9Km89PMlIiICDQ0NzMzNqVCxEt2696R3j648e/qEt8Hhnx1n04b1DBnUP0us8tzZfzNtyiTatGvP78NG4lGhwg/lVc4tbnt60rRRPSpUrMTJM+fz25xcR6lUcuzoEQLfvqV6jZoolUoOHtjHujWriI+PB0AikbBk2Ur69R+Qz9Z+O8HBwbRt2QxfXx+WrVhN1+498tskNWqAjL/B7Vu3MHfO37wKCKBS5SqcPneRt2/esGnjegIC/ImNieHa1SsUsrNjwKAh1KpVh7CwUO7c9qR+g0ZUqVr1k+OrumBvnUuC/ZAKC/YvERMTw7Fjx+jRI3ufU2rBruanQkhPRhHjiyLaGyE1CqQ6iPVsmTi8Gy6uRXFzK4ZbsWI/RPm7I4cP0al9G1yLFqVmzdoMGzEKRyenD66bMG4sixfO58Hj57gVK5Z5fM/uXYz/8w9CgoPR0dHh+Klzn/3g/xU4fOggnTu0Zey4CUz/6+/8NiffSEpKIj09nfCwMHp264xSqeTmnfs/5KLuVUAATRrVIz09nUNHTuRJZQ41arKLUqkkOTkZPb2Pi9fnz56xaME89u/bk9kpWSqVoqmpyYbN2yha1A07e3sK/E/vALVgV505fy2PHz/G3d1dnXSqRrVRJochj3hMpyaVMDYxQUNDgxfPn+Ht7UWRIo7cDDRErGfzTWPLwx8iD76FpqYGTZu3oFv3ntRv0PCHjddNTU1lzqyZhIeFcerUCcLDwqheoyYdOnamd99+maEuQUFBNGtcH7lczuVrt7I0+ZHL5cybM4u/pk/9aTr7fQ/upYvj9eIF/m/eYWPzbe+zn43Dhw7SpWM7KlSsxPqNW3B2cclvk76a256etG/TAgNDQ06eufBBEzM1an40oqOjefvmDfr6+lhaWdGudQuuXL4EgLGxMQMHD2XI78MxNTUFVF+wt1x1JVcE+5HBNVVuzl/Ltwp21XczqvmpkEc8QRnjx+vXrzh/7gyHDx1AQ0ODNm3b8+D+PRSx/t80rlIWhzzEE4lpMV4FhrBz9z6aNG32w4p1AG1tbabNmMmqtet54ePP8pVrABgyqD8d2rUmLi4OAGtra1asWov/y5ds3rQhyxihoaEsnD+XevUb0Lptuzyfg6qxeu1GrG1saNa4fubr96vTqnUbzl+6RmRkBBXLl+HB/fsfXPP27VvGjf2Dgwf254OFH+fihfM0ql8bJ2cXLl+7pRbran4KTExMKFO2LI5OTujp6XHq7AWePPfh/KVrdO3ek6WLF1LUyYHJE8ezacN6/hg5PL9NVpNHqKvEqMlRFLEBKOICkJqX/miVGbG2CUqRmE1btn/QoOjxo4dcufthd9SvQZkQBIISkZYRfr6+JCTEU6ase663lM8rdHR06NPvN/r0+42jRw7Tv28vShVzwcjYmAB/f8zMzNDS0sLQMMPTsnPHdgIC/AkLDUWpVLJj195PbsX+SlSsVIlTZy5Qo2pFxo4eydoNm/LbpHzntqcnV69com27DqxYtoR+fXowbcbftGjZiqioKAb278vpkyeQy+WIRCIOHztJg4aN8tVmQRDo3aMrZd3LcfLM+Z++0oaaXxeRSISziwvOLi5UrVaNseMmsHjhfFavXE5SUhKuRYvmt4mfRRAyfnJ6zF8RdUiMmhxDkKcge5YhgKQFqyE1L/3hNYp0ZN47qV29IsdPnc0SS75zx3b69u7BxMlTsbOzZ+hfOxFpmyDSMgKx9LPVTi6t60vlCu5Zjo2fOJkp02bkzORUjDdv3rBg7mwkEgnFipcgLCyMI4cP8PzZMyAj9tHO3p5XAQGIxWIsLC1ZvHQFLVu1zmfLVYOtmzcxsH9fpk7/i7HjJvwQOQ05TUREBNMmT2TTxvUYGRmhraODs7MLfr4+hIaGMm3GTI4dPcKrAH8mTJpKtx4ZidAXL5xn8NBhdOjYmTJly34wrreXF48fP0IsFiMSiTAwMMCjQsXM5O59e/ewf98eQkNCSJPJ0NTSwsDAAANDQ2xsCtKqdVvKe3h8sfdA2VLFcCtWnJ279+XK66MmZzH2GPrFa2LursgDS34OBEFALpcTFRlJYTsblQsPea8bm6+4nCshMceG1lK5Ob9n2bJlnz3/7t07FixYoI5hV5N/CIKAMsYHpSwWqWV5ROKPb+AoEgJJ9z/K3PmLGDZiZJb7R48czuqVyz/xBBFItBBpGyPWNkakZQxiCcrEEKTJb9DS0qJw4SLoGxhQrXoN/hg77pfzKt+9cwcfby+qVK1GEUdH3rx+ja+vD2tWreDsmdPc8LxHqdIfLqR+NQRBYNbMGcycMY2SJUtR2NGRPn1/o2GjxvltWq6TkpLC4UMHmT51EvFxcUyZ9hf9Bw7KXLR4e3lRv04N0tLSMDM3Z+v2XZT38AAy8ioG9e/H7l3/IJFIePD4OS6urgiCwMb169iyeSP379394JkFChSgc5dupKWlsW3rZkqVKk2p0mXQ0dFBJpMRFx9HQnw83t5eBL97h4aGBjVq1mLOvIWUKFnyo/NYt2Y1I4cPxe9VoDof4QdALdhzB1WPYf8VBXvhwoW/6rpXr15la1y1YFeTqyiTwkjz2w9iTSRmxZFaV0YkEjGgtjbLly5m09YddOzUOcs9KSkpGSUOKwxGSI1GkMUhCAoQlCBPQZkagyCLQUiNAUFApGPG9EkjGTBwsEr+8aoCqampVPIoS3x8POcuXEEmkxEWFkq58h6/9Gt24/p1Vq5YypvXr3lw/x4DBw9l/sLFedpAKy+5cvkSnTu0JSYmhuo1arJi1VpcXF2zPc6zp0/xcC9F9x69qFGzFl5eL1i0YB5NmzWnW49eVK9RE4lEglKpJDYmhg3r13L29CkUSgWdOndl7LgJH90xUygUPHr4kDu3PVmzegWxMTFcuHwdJ2fnD6598fw55cqU4NTZC9SqXeebXg81eYdasOcOqi7Ymy3PHcF+/HfVFey5hVqwq8lV0gJOooz//1Wkplt3xFoGCIJA+pszKOMDSZHJvmlshUKBXC7/4ta5mgxCQ0NpWK8Wwe/ekZycjFKpRCKRMHnqdFxcixIVGcmd256kpaXx16w5FCpUKL9NzjMEQWD92jWMGvE7NWvVZvpfs3AvV+6nC5Wp7OGOlrY2Gzdv+2iJ0K/l6JHDdGyXNbxq5OgxzJoz73tNzCQwMJAK7qWIjY3F3b0c9Rs2ok7delSsVBktLS22b91C/3692bpjFx06dsqx56rJWz4m5NXC/esQBIG5c2YxfcoklROvv7JgT01N5fz58zRr1gyA8ePHI/uPzpFKpcyYMSPbuTc/pxtJjcogta6IYOyUmSUi0tTP+FckQqxvhzLWH7lc/k0eTYlE8kPWjc4vrKysOH3uErNnzqCwoyPVqtWgeZMGTJsyCchow128eAnCwkKp4F6KGrVqY2dnj61tIZycnSla1I0ijo4/ZedUkUhE/4GDcHRyYujgAVSvUoHqNWpy4PAx9PX1v2vs9z6R/HzdEhMTuXL5Eo8fP2LFqrXfJdYBmrdoyb2HT9E3MKBAgQLc9rxFnbr1csjaDAoVKoSX3yvOnD7F8WNH2Lh+LXNn/422tjaVq1QlKSkJgJ7dOhMVGcmgIV/24KpR8zPw0s+PI0cOcfb0Ka5euZzf5nwWpSCgzOEs0ZweL6fZunUrx48fzxTsK1asoHjx4ujo6ADg7e2NlZUVo0aNyta4asGuJlcR65iCjulHz4nEGSUXk5KSMDQ0zEuzflmsra1ZtnJ15u+BIRGIRCKio6MxMjJCU1OTsLAwVq9czp3bnpw7e5qgwMBMcWRnb8/gIcMYPjJ7HzQ/CnXr1efxM2/OnjlN317dadmsMdWq16BFy9aZcdzZQRAE6tSsxr27d6heoyYlS5UmMPAtjo5OtGzVhnLly+e6kPe8dYv2bVoQGRmJa9GiNG/Z6rvHFIlEFC9RIvP3Jk2bffeYH8PIyIiOnTrTsVNGc6fbnp706dWNe3fvUrpMGSQSCQqF4ocu36pGTXYICgqiZLGMXgk1atZi+849dO/SMZ+tUvNf/vnnH0aOHJnl2M6dOylSpAgAO3bsYOXKlWrBrib3EAQBFDKE9CREGrqIpDrfN6BasOc774WOhYVF5jFLS0umzZiZ+bsgCAQHB/Ps6RNaNW/Cls0bflrBDqCpqUmz5i3Ysn0n48aOZuvmjSyYN4ff+g/k7znzspXIHBgYiOetm7Tv2ImnTx7z7OkT3IoV58a1qyyYNwcXV1caN2mGiYkJ5uYWdOjU+YNOhl8iODiYs6dPYW1jQ8GCtpiamZGclMSLF8/ZvesfDh3Yj0eFipy9cIWibm4/7A6JWCxm7eqVREZEcOzkWSpVrkxaWhpRUVFYW1vnt3lqvhF1+Ev2sLKyonCRIrx5/RpTMzPevH6d3yZ9ll+xrKOvry8u/2lAp62tnSW8skKFCgwZMiTb46oFu5ovokyNQR52H2VcACjTM4+LNA0Q69sitamCSJL9OHKRJEMshoaEqKs8qDAikQgbGxs2rMto3NS8Rav8NSiPaNykKY2bNEUul7N29SqmTp7ApUsXWLdhM5UqV/ni/TeuX2fpkoUAzPhrFg7/qRygUCi4dPECe3fv4sD+vaSmpBAdHc2USeMZPHQYjZs0w8LSEk1NTS5dvMA/27eiW6AATZo0o12Hjpmxj9evX6N96xbExsZ+1IZixYuzdPkqevft98Mn0j5/9ow9u3eydv0mKlWuDGQsrtRiXc2vhFQqZe36TTSoW4tDB/ZzSIWamX0MQRD4ilTJbI+pysTFxWX5vI2IiMhyXqlUZolp/1rUSae/OIKgQEiNRUiJRJkalVF5RSxBJNZCUKYhvD8m0UJqXgaRthEijQIIaYkok0JRRHsj0tRH07E5Io3/9wwKSnlGVReRCBBl/CsIyMMeING3Raxng6BII81nDyVcHVi6YjWVq3xZBKnJe5KSkhgysD97du9k5uy5jBo95of10n4PN2/coG3r5sTGxFCjZi02btmOra3tR6/dunkTgwb0Q1NTk9p16nLwyPEvvmavX71iyaIFbNm88YMP82rVa6BUKrl54zp6eno4O7vQvGVrVq1Yilux4uzae4DExERCQ0KIiopEV1cXOzt7ijg65tj88xOFQkHnju14cP8eXr4B6hAYNb8sMTExFHMpgrmFBaXLlEUilrBn906VS8B8rxsbLbmYK0mnp0fUyfacV61axfz58wkJCaF48eIsWbKE6tWrf/G+GzduULNmTUqUKMGjR4++eL2zszNz5syhbdu2Hz2/d+9eJkyYwMuXL7/adlAL9l8SIT0ZRdQLFHEBaCrjM8WBnb09RYu6IZfLiY2NxcDAgMKFi9C4aTPq1W+QmTDxX54/e0aLZo3Q0NAgRKsiIEIe/ghJoj/p6ekfXP8eaxsb5OnpWVaeDx4/x61YsRyfr5pvR6FQUKNqJby9XrB2w2bate+Q3yblKe/evSMiPJxSpUvz9MkTKnmUZcq0Gaxft4aCBW0ZPOR3LCwtUSgU7Ni+leB377C2sWH/3j306Nmb1es2ZLvSTExMDAH+/oSHh5Geno65uUXmYtbP15djx45w7sxpLl+6iKmpKY+eef80HX0/RmRkJL17dOXC+XPs2LWXNm3b5bdJatTkG8uXLmHsHyMzy5mqelnHBotzR7CfHZk9wb5nzx66d+/OqlWrqFq1KmvXrmXDhg28ePECOzu7T94XFxeHu7s7Tk5OhIWFfZVgHz58OOfPn+f+/fsfVIJJSUmhfPny1KtXj6VLl36V7e9RC/ZfDHnUC+RBVwAxYqMizJs8hFKlS1OiZKnMToTZ5e3bt7Rt2Yxnz54BAmjo8df0SdjbO6BUKvlt4iaEtHjk4Q/YvWcvr1+9Ij4+Di0tLTS1tJBKpFhYWtK+Q8df0nOryrwv33f+0jWqVquW3+bkKenp6bgUsSM0NBQra2sEpZLk5GSeevnh5+dLv949ssSP2tnb41GhIm/fvCExMYFDR05g7+CQK7YFv3tHuTIlGT1mLH+MHZcrz/geoqOj+X3IQB49fEBEeDhSqRQNDQ2KuhXDvVx5DA0NiYiI4LbnLZ4+eYy5hQV/jBlHv/4DPgjd6d2jG2fPnGL7zj05XolGVYmNjcXIyCi/zVCjgvz913RmzpgGQNv2HVi1Zr1asH8FFStWxN3dndWr/7/ogpubG61atWL27NmfvK9Tp044OzsjkUg4fPjwVwn2sLAwypQpg6amJkOHDsXFxQWRSIS3tzcrVqxALpfz8OFDLC0tv8r29/zYQY1qso085DZNmjRh/aatmJiY5MiYdnZ23Lh9jy2bNmJgaEjbdu2zbFm/b4ykUCjUZRh/MK5cvkQRR8dfTqwD3LxxndDQUGbOnktIcDBJiYmMHD0GS0tLLC0t8fZ7RXx8PDExMSgVCgra2qKpmTcOjckTxyORiOnQqUuePC+7/DFyOIcO7GfI78MpaGuLQqEgNSWFJ08ec+TwQZKTkjAwNKRcOQ86durCvXt3GD1yGHdue7Jxy7bMhXtycjLeXs9xdnZFT+/7ymuqEnFxcejp6WV+HiqVSvbs2smtmze4f/8eD+7fw9DQkMKFi9CwcROGjRiVY5/Xan5sJk6eypDfh7N29UqmTZnEiJF/5LdJn0X49385PSZkLAr+i5aW1kf7sqSlpXH//n3Gjcvq3GjQoAE3b9785HM2b96Mv78/O3bsYObMmZ+87n+xtLTk5s2bDBo0iHHjxmUp7Vu/fn1WrVqVbbEOasH+yyGSanH2zGk83EsR/O4dALaFCjFq9NjvqmOsqalJ/4GDPnuNWqz/WMjlck4cP0qtWr9OF8n3FXFu3rjOvNl/U9DWlpGj/vhkWIuBgUG+eLV8fLxxL1f+s1u5+cXePbvZtXMHm7Zsp3PXbl99X6PGTenTsxvBwe/Q1tbG29uLt2/eoK9vQHx8HPXr1OC5j/8n8wZ+BO7cvs2SxQs4cuggmpqa6OrqZiagpaSkYGdvj7OzC/MXLkGWJuPFs2esXrmcrZs30qtPP5o0bY5HhQr5PQ01+YyRkRHdevRi2pRJ3LxxPb/NyTf+t7nf1KlTmTZt2gfXRUZGolAoPhDJlpaWhIaGfnRsPz8/xo0bx7Vr174pYb9w4cKcPn2a6OjozFh1Jyen71p4qwX7L4aGQyOGNLVl8cL5mceCAgMZNeJ32rRr/02rPjU/Jzu2beXN69cMGvJ7fpuS6/j5+rJl80b27N7Ju6AgAMqV92D/waMq2e20/4BBDPitD7du3szTZO2UlBTu37tLwYK2FP63pjBkdPY7cvgQu3fu4NzZM7Tv2IlOXbpma+zOXbqio6PDyuVLEYvFtG7TjqJF3XAt6kbhIkWoWK407Vu3oEevPnTs3OWH8DjHxsby6OEDnj97xvVrVzl86AC6urrUqFmLypWroPuvl10illChYqXM6jf/JSgoiBlTJ7Ny+VLmzJrJwMFDKWhrS+XKVX/JnS81Gdy57QnAlEnj89mSz5ObZR0DAwOzOEy+1PX8f0NuBUH4aBiuQqGgS5cuTJ8+PUt5xm/BxMSECjm0yFbHsP+iyMMfIQ++kfn7Dc97uJcrl48WqVElXgUEUKFcaVq2asOGzVvz25xcIyYmhsEDf+PwwQMYGxvTsXNX6tSth3u58hQsWDC/zfskSqWSqhXLZ5SHvHYz27Xbv4XAwECaN2mAj7c3AFWqVqNT5668ffuGLZs2EBkZSaXKVejUuSs9evX+aJL693D92lWmTp7I3Tu3MTIy4uiJM5QqXRqRSKSSuS8RERGUKVGU6OhotLS0KOLoiINDYSRSKdeuXCY5OZlZc+YzdNjwrxovNTWVfn16cuXSRSIjIwH4c/xEbGwKoqGhQRFHR0qWKv1DLGTUfD/p6ekY6P6/HlPVGPZ6iy7kSgz7+VF1v3rOaWlp6Orqsm/fPlq3bp15fPjw4Tx69IgrV65kuT42NhZjY+MsUQFKpRJBEJBIJJw9e5Y6dfJ+51ntYf8FkUc+RRH9AsRSUMrR09NTV2dRk4XVq1agq6vL4mU/d1OToYMHcPjgAdas20jHzl0+yOhXVcRiMes2bqF2jSoMGtCPbTt25ci4SqWSy5cu8tLPj7i4WGJjY4mJjsbb24s7tz0xt7DgwuXrBAe/Y/3a1YwYNgR9fX26du/JgIGDcXF1zRE7Pka16jW4cPkaISEhNGlYl8oV3AGoXKUqm7f9g729PatXruDggX1UqVqNQUN+x8rKKtfs+RLLly4mNjaWm7fvU6p06Sxf/snJyUyeOJ4xo0ego6ND39/6f3E8bW1tduzcA8BtT09qVa/M3Nl/AxnvB6VSiaGhIddv3cXJ2Tl3JqVGZThy+BCA6nc6FXKhbno2h9PU1KRcuXKcO3cui2A/d+4cLVu2/OB6AwMDnj59muXYqlWruHjxIvv376fwf3pq5CVqwf6LIQhK5EFXM39/39Exp71han5swsPCsLEpiL7+z5Po9zEcHDI+eDW1tH4Ysf6ekqVKMW/BYoYM6s/lixexsLCgU9duDBs+8puSX1/6+dGqRRP8X75EIpFgbGyMoZERhoZGODo50aRZc1q1apMpBtu170BCQkJGtac8SrYFsLa25ubt+5w/dxZfXx+mT5lE7+5d0Dcw4OyZ09SqXYdVK5axZNECataqDWR4I62tbShesmRGmI1rUTQ0NbGzs0MkEpGWlsbbN29QKBQUcXTMVp331NRUXvr54e3txatXAYSGhPAqwJ9TJ08wY+Ysyrq7f3CPrq4uCxYtQaFQMHTwACwsLWne4kPh8CkqVqpEcpqSVSuWU7FSZUqVLk2Avz/t27akS8d2rF63kQf371G4SBHq1W/w1eOq+TFIT09n2pSJNGrchAYNG+W3OZ9FKWT85PSY2WXUqFF0796d8uXLU7lyZdatW8fbt28ZOHAgAOPHj+fdu3ds27YNsVhMiRIlstxvYWGBtrb2B8fzErVg/8UQicRounVDGf8aZfxbjh87inWplsT7n0cQBGJiYihQoMAXY8HU/Nzo6ekhl8vz24xc56+/ZxMZEUGfnt2QpabSq0/f/DYpWyQlJQHQpVt3IsLDmTZ5Irv/2cH8RUuoVbtOtkJF/v5rOokJCVy6epOKlSp91b35taDT0dGheYuWvH71imVLFhEcEkxBsZjVazfQq09fYmNjWb9uDbdv3URDUxMNDQ38/Hw5dvQwiYmJmePY2dtjYWGJ14vnma+lmZkZa9Zvommz5h88NyEhgQvnz3HqxHHu3r1NWGgo0dHRmeeNjIywtrHBysqaRUuWfzaRXyQSsWjJMkJDQ+jftxf3Hj3LVhiWSCRiyO/DMn8v6ubGzt37adGsEdUqe2Rec+joCRo2avzV46rJPwRB4M3r1ygUCvT09TEzM/ugWIMgCHjeuon/y5esXL0unyz98ejYsSNRUVHMmDGDkJAQSpQowcmTJ7G3twcgJCSEt2/f5rOVn0cdw/6Lk/b6LMo4f+rWrYuX14vMyjEGBgaUdS+HR4WKmT/qFuC/BjKZDOfChWjXoROLliz77LVyuZwH/zaHKFmqlErGEn8JQRBo3qQhiYmJXL726RJfqohzETsKFrTNtPvxo0f8PmQgd+/cpkrVanTt1oMSJUuhoaGRWQsdMkIykpOTSE5OJikpiZTkZH4fMhAdHR0CQyJU9v/H1NRUXjx/jra2NjeuX2Pi+LEYGRuzees/X5WAKQgC7969w9fHm/j4eK5euUxyUhKOzs54eFRALBazdPFCTp44Tpt27Zm/cAk2NjbEx8czfOhgDuzfS3p6Om7FilGjRi0K2tpiZWVNEUcnirq5YWpqmu05RUdHU650cerUrc/GLdu+5WXJQlxcHJ63blKmrDudO7RFV1eX46fOfve4anKXmJgYGtWrzZMnjzOPicVitLS0MquUyGQy0tLSgIzF8lMvP3R0dFS6Dnvt+eeR6uRsjo08JYlLY+qp3JxzG7WH/RdHw64uinBjdHR16dCxM+7lypMmk/HuXRB3795hx7YtLJg3B4DqNWri6OiER4WK6BYoQLPmLdDTy9lkEjX5z80b14mIiKBX7897mwP8/WnRrBH+/5asqlW7DsWKl6Bb956ULFWKhIQEkpOTsbKyyveSnvPmzEIQBEqWKk31GjXR19fP7PAbFxfHhfPnAPDx9sa1aNH8NPUDYmJiWLxwPiuWLcHK2pohQ4djZGSETCYjKDCQcuU9Mq8tXaYMV67f4vSpkyxZtIDfhwxEqVR+1XM0NTWZPHWGSor1VwEB/Dl2NNeuXCY2NhbI8B53696T+YuWYGho+FXjiEQibG1tM0tDtmrd5oNrqteoyZ7du/jzj5GUL1OCylWqcu/uHVJTU5k5ay7NW7TMUiHnezExMWHAoCEsmDeHORELMTc3/67xDA0NMz3q7uXKc/bMqZwwU00uEhERQbfOHQgKCmTfwSMYGBgQHx9PWGgoqampyOVyBAS0tbTR+jd8r0LFSlhaWn5Qi1zNz4vaw67mswiCAOmJKOLfoIjxAUUaQmrGFrBbsWIMHDQUhUKBv/9LqteoSctWrb8wohpV59DBA3Tp2I6DR07QsFGjzLKGgiAQGxvL1SuXiY6KYuXypTx//gyA8h4ViImJJjQkJDO04D2F7OwYMGgIvfv0y1LB4lMltb6H9PR0Avz9iYyMJDo6iqjISN68ec2cWf/f9EJPTw97ewdevHiOlpYWvw0YxIvnz7hw/hxlypTl1t0HOWrT99KlU3sOHdgPgIaGRsaX938+tgcOHsripcs/em9UVBQhwcHI5XLS09NJT09HEAQKFCiArq4uugUKZP63pqamSor1AH9/Gjesi0gkomu3HjRs1ASZLJVChexwyMXkr+joaCaOG0toaAjFipegd59+uZbMGRERgXupYhQvUZLd+w7mSJdTQRCoVrkCNjY27Dt45PuN/IEx9vj/0KSYu/mfSK9UKjl4YD8+3l48f/6M0ydPoK2tzZ79h6heo2a2xoqPj1dpD3utebnjYb889tfzsKsFu5psI8hTubljJEMHD+DObU8kEknmNt2ESVPQ1tGhdu26lPfw+MJIavIbuVxOTEwMJiYmmV7wv/+azt9/TcehcBEC375BWzvDq5OYmJjplf5ftmzfScdOnUlOTmbPrp2IxWIMDA2RSqUcPXyIvXt2IZFIqFOvPubmFrx985rbnreoVr0GHTp2pk279lmSPufPnc1tz1sZZbSkUsqVK4++vgHtO3b6wAMZFxfH6VMn2b51MzdvXCclJSXLeSMjIxwcCrN7/yEUcjkbN6wjKjKSipUqs3DBXPxfvuTcxSsc2L+Py5cu8PDJixx+lb+P58+esWrFMh7cv8ejRw/ZvnMPdevVzxR1qiiycwKlUsmcWTNZvHA+llZWnDp78YNGKT8TV69cpmO71piYmnL63KXvnuvVK5dpWK82Bw4fo0nTZjlk5Y+Jqgn2dq1bcOL4MaysrbGzs6dZi5b06t33m3ZX1IJddeac26gFu5pv4v2HXlpaGhKJhIb1anPj+jWsrKyIjIxELpez98DhbFU+UJO3bFy/jr+mTyEsLAwrKysmTZnO0yePWbtmFX36/kbd+g0IDwv7N25SRoECepiYmlK5SlXs7e2JjY0lKjKSIo6OXxSN4eHhbN64njOnT3Hr5g2cXVxo2qwFd+/c5sb1a9gWKsSpMxdwcnYmLS0NEwNdDAwMqFqtOomJiTx5/Ijo6Ghq1qrNjl17iYyIwM/Pl9evXjF96iSSkpKoVr0GTZu3wN29HObmFpiamWFiYvLZLnV+vr506diOZ88ySnh1696T9Zu25OTL/N0IgkBoaCg7tm9lysTxHDt55peo/HHxwnmaNqrPgEFDmDZjZo54nVWdVwEBNGpQBxNjEy5du/ldlYvWrFrJyOFDWbh4GX1/6/9LFxJQJcH+KiCAYq6OrF2/iR69en/3eKou2GvMPZcrgv3qn/VVbs65jVqwq8kR3r+NRCIRMu9dCKnR3H3whBIlS2aeT05ORkdHRyU7R/5qnDl9ilbNmwAw4+/ZrFuziqDAQAra2tK7Tz8mTJqSK55bH29vypR0Y826jfTs3QfIEM1lSrqhVCqZOHkq5uYWjBg2hJu372cpiXf61El6duucJWZTLBbTtn0Hpk77C0cnp2+ySalUcu3qFZ48fkznrt0wMzP7vknmMPPmzGLq5IkA9Ordl1Vr1/+0XvX3xMfH07d3D04eP0ZETAK6urr5bVKe8fjRI2pUrUjvPv1YvGzFN/9/nZCQwMD+fTl88AA2BQuyY+deKlaqlMPWqskuu3b+Q5+e3Xjy3Afn7+yiCWrBrkpzzm3USadqcoSsXyoZ/z1s6CBkqak8ffqE9PT0zLOt2rRl3oLFP/X2tqpTukxZACQSCYOH/M6YseNQKpW5upgSBIEZ06ZQsKAtrdu2yzzu7OLC3gOHade6BX//NR2AAYOGfFC/ulHjJty684CbN65T0NaWQoXssLK2/u7EZ7FYTM1atTNrdqsagf+WGnvu/ZIijo75bE3e0KVjOzxv3WTp8lW/lFiHjMTheQsWM2LYEF6+9GPrjl3fVH1GX1+ff3btxdfHh9/69qJ2jSq4FSvGshVrvqqijprcYe3qlUBGpSbI2H28euUy169dpWGjxjRu0pRDBw9w7MhhpFIprdu2o3GTpvlp8nchAPncN+mnQe1hV5PjCGkJKKJ9UMpiAAFljN9HrwuJiPkltrlVjdjYWPr17sHJE8dZsmwl/QcOypPnXr92lUb161C1WnXOnL/0wfkzp0+xb89uGjVpStt27X96L/LX0qh+Ha5fu0psYupnw3t+Fq5cvkSj+nXYs/8QLVq2ym9z8o3z587Su0dXnJxdOH/p6ndVWkpLS2P3zn8YPXIY7dp3ZPW6DTloaVZKFXdFEAQePH6erQZUvwq1qlfhtuctpIVqgSIdefCNLOcl5qVRRDxGpG0KghIhLZ6nz70+mfCs6h72anPOItXOYQ97ahLXxzVQuTnnNj//p7+aPEekqY/UqjwAytRo0v4V7BqFmxL94jCnTp4gLjb2q0uxqck5Xjx/Tsf2rYmMiODgkeM0atwkz5599cplFAoFV69c5vTJkzT4TwUagIaNGudogxelUslLPz/u3b1DREQEg4YMzdOOnDmFi4srVy5f4tzZMz+0p+1rePL4MQP798Xdvdwvn/9Sr34Ddu09QKP6dejQthWLlq7IbPKSXTQ1NanXIKPXQJFvDB37Wt4FBZGcnMy8ObOYOHlqrj5LFUlOTmbnju0EB78jKjKSmNgYpBIpenp66BYowKtXASDWRB54GUQf7mgqYl8iMS+D1KYKCApkL7Yxd/bfKpdboybvUQt2NbmKWNsETZcOpAddJf3NGZRK5S//RZwfvHn9moMH97Ng7mysrW244Xkvz8MrbGwyujiamZnRumVTTExM6NSlG/MXLs4i3G/dvElychJ16tb7pJddEAQe3L/Py5d+pCQnExoaQmRkJHp6epiYmPLo4QMunD9LeHh45j0VKlaicpUquTvJHCQoKIgtmzYQFBQIgIHBz73AjYiIoFb1yhQp4sjOPfvVOyxAteo12L3vIMOGDsK9VDH+nj2PgYOHfNNYxsbGFLS15ezpU4wZOy6HLf1/XvgG4GBrxcwZ0+jTr/8v1XDvpZ8fnTu0xdvbC0srK0xNTDE2MUEul5OclERiUiIaGhqI9O2QGhVBbGAPiBDSk0AkQqShByIRyoRA0t+eQ5kQBPIUUmWp+T21b0YQciEk5heNiVELdjW5jkjbBCE9EbGe7Q/p4fzR2bFtK7/17YWWlhbNW7Zi4eJlWFhY5LkdPXv3oVGTpsTFxfH6VQCnT51k1YplREVGMnTYCIq6uTFl0gRWr8yoKf73nHmMGj3mg3FCQ0Np2bRRlo6AJiYmWFlbExsbS2xMDM7OLnTv2Ztateswa+YM7tz2pKibW57N9XtQKpWsW7OKSRPGIRaLcXR0olfvvlSpWjW/TctV9u7eRUpKClt37MLewSG/zVEZmjVvQc1atZnw5xhGDh9KmbLuVKpcOdvj6OjoMGjI70wa/ydTJ0+kX/+BuZJHZGlpSaPGTTh96iSbNqz7qb3sRmV6o0wIRJkUgiCXoUwIRKShg4ZjO6J0TIkCiP3PDboZP1r/k9cuyEFIDqNPUyMO7t9LeHg4Rd3caDlwFK5F3WjWvEWezUmN6qIW7GpyH0UqpCcitnT/8rVqcpxz585QokRJLl69gb6+fr7ZIRKJsLKywsrKCldXVxo0bIRtoUIsW7yQPbt3AqClpcWiJcu5eeM6c/7+i1l/TcfYxIT+AwfTq3dfNDU16dC2FRGRERw/dZaKlSqjo6Pz2fheIyNjWjZrRJ2aVTl38arKVYH5L/fv3aNv7+68ef2a1NRUzMzN2bFr7zdXwPlROHrkMOP//IPeffpRrHjx/DZH5dDX12fpilVcvHietatXfpNgBxg0eCjhYWGsWrGMeXNmUaVqNVauXpcji1mZTJZZOrJPv/6cPnWSmzeuf/e4qkhMTAxjRo1A9nwHoESkbYJIowASY2ekNpURSb5cQlMQFMhD76GM8UVIy6h8dfrUSzp27kqXrt0pXabMT7HLJAgCX5Eqme0xf0XUSadqch1BEEh/fQpl/Fv2HTio9hbkIbc9PenUoQ3NmrVg+ao1+W3OR0lLS+Pe3bs8e/qEWrXrYFuoEHY2Fv9WbqmDj7cXmzauz7xeIpFw7uLVbIW3+Pr4ULdWNVxci7Jn/yGVEe2xsbE8fHCfqKgo7OzsGf/nH0REhDN02Ah0tHUYMqg/g4b8ztz5C/Pb1FwjMTERa3Nj6tVvwN4Dh9WJip9h+dIlTBg3Bs+7DyleosQ3jxMfH8/xo0eYPesvdHV08bz38JvFoUKhoGWzxlw4fw4f/zfY2dmx658d9OnVna7derBh89ZvtjO/SUlJYduWzRw9cohHDx+QlpaGe7nyvHsXRHRUFAk6xZGYuCKSfl29fEEQEGSxoJQj0iiA7PlmADQKN0FcwJrYh9lPBlb1pNMqs87kStLpzQkNVW7OuY1asKvJEwSlnPQ35yHhFUeOn/olGr/kJyEhIUwcN5ZdO3dQpkxZlffSpqamcvPGdfT1DZBKpVSpWI59B49kLu7evH7Ngwf3SU1NpWxZ92/yCHreukWLpg1JTk7GtWhRHBwKY2VlTekyZXFxdcXJ2QUbG5scLW0ZHBzM/Xt38fd/SVRkJAnx8RTQ08PAwIA3r19zYP/eLHXlAfr9NiBzcTXwt75s3bKJew+ffpdAU1XevHnDzOlT2bF9K+s3bqFbj575bZJKI5PJqFi+DAUL2nLi9LnvHm/j+nUMHTyAuCTZV4UrCoKAUanuCCkRGQckmihj/VFEewHQsVMXHAoXZt6yzQhJwWhpabFsxWq6dOueWeEoNTWVx48e4Vq0qMpUCTMq3QtFrB/KpDAEWTQiqS5ItFEmBYM8FbF+IcQFrEAsQRH7CgAN+3qItT6fV6JMCkUR/xqRRBsEBUUMYvD18QEyHA8KhYJCdnb4+r/5ZttVXbBX/jt3BPutib+eYFeHxKjJE0RiKRoODaht84YeXTtxw/MehYsUyW+zfkrS09Np3KAO0VFRrFqznh69en9XSbi8oG2r5ly8cB6A+g0aAnD65IlMwW7v4PDdcc2VKlfmmfdLjh05zNMnjwkKCuTe3Tts27oZuVwOZMT5FiniiIWlJSampmhpamFqZoabWzGKFS+Bubk55hYWXxVatHzpEsb/+QcKhQI9PT3MzM0xNDAkMSmRuNhYLC2t+G3AIHr07I25hQWvAgJ49SogczGrUCho2Kgx+/ftoXOHtly4cv2bWperKkFBQXiULYlYLGbx0hV06dY9v01SebS0tOjYqQvLly7+4rWxsbE8uH8PjwoVP/l+jY2LpUCBAl/c1Thx/BhrV6/k3t07pMXEZD0pEiM2dkUZ45MZ2gYgMS1OMTstBvzWhwG/9cHJ2RmxWJwpWGfPW8CIkaO/OI/cJDk5mSWLFiDz/gcAkY4FYj1bBHkKyFORGDkjMS+JWMso8x6pxdeHdiqifVBEPQNRxueve61OzFuwGAMDQ148f0ZoaAhFivzcvRXUITE5h1qwq8kzRCIxm7buoFplDzzcS9Gla3cGDBryU3oO85N1a1bj4+3N7XuPKFW6NKGhobz08yU5ORlTUzPsHRy+OyREEATOnc2o+vOl0pB9e/Xg4sXzODgUZtOW7R8s1Hy8vbl44TzzFixGIpGwd88unF1cqF233nfZ+DEsLCzo+1v/LMfS09N5/eoVfn6+vPTzI8D/JRGREURFRpKens5tz5usWLYEW9tCBAZmNDGysrbG3b0cZcq6Y2/vgLWNDVZW1hRxdOTihfNs3rieUydPMHjoMEaM+gNbW9svhhwYlyuHe7lymb8P6NeHf3ZsA8DPz5cqFcvTqXMXevbq88mazD8Sq1cuRxAEnnm/VJkQpR+ByMhI9D/jVQwKCmLc2NEcOXQQuVxOEUdHOnXuir6BAaVLl6FW7TqcOnkCG5uCGBoYkpSURO0aVZk7f9FHO6HK5XIG9e9LwYK2/D58JLO33UWsa5FRklAhA6kOyFORxfhkuU8R9ZyHUf//+0u//+/H0aBhIwYO+rZqN9+KIAjcuX0b93LlkEql7Nm9i0kT/iQ8LAyJWUmkluW+KvY8O0hMi6KIeobEoixSy/Js3rY689yPVLFKjWqgDolRk+cI6cnII5+hiHoO8mSqVa9Bv/4DqVe/AUZGRirvDVZ16tepyfVrV3nw+DmTJvzJqZMnPvBILFi0lCG/D/um8RMSEujWuQNnz5wGyFwYfIoCWhJcXF3x9vJi9Jg/mTlrDnK5nBvXr3H37h0A/p4xjdZt2rFp6/Zvsik3EASB3Tv/YdLEcQS/e0eTps0ZNmIkwcHB+Pp443nrJt7eXoSGhHxwb+nSZRj5x1g6dOyU7djgA/v3cfTIIfbu3kW16jXYuWc/jx484PixI+zds4vY2Fh69e7L33PmYWJiklPTzVMeP3pEJY+yuBUrxoPHz/PbnB+KEb8PYd/e3bwLi/ro+d49unHi+FEmT53BieNHuXI5a5MyPT09EhMTEYvFDBg0hIcP7uN56yYAYVEfhhi8j0fXdO2IWOfjCytFbEBG90lZNMqEIJSJ7zLPzVuwGD09Pfz8fImLjWXMn+NxKFz421+Ab2TalEnMnf03YgMHBHkqQnIoYsMiSG0qZ/Gg5zTysHvIQ24jKmBDtXLO/DF2HA0aNsqx8VU9JKbiX6dyJSTm9uTGKjfn3EbtYVeT54g0dNGwroDUqhzK2AAglV7duwCgoaFB67bt2Lp95+cHUfNJmrdoxfVrV3EvnVFtY9Wa9VSpWg0dXV0iIyKoX6cG58+dybZgFwSB9WvXMGvmdJKTk5k9bwHjx/5BQkLCJ+9JTExEqVQydtxEvL1esHD+XO7fy0gwjYyMRFdXl+TkZCwsLNi3dzfLVq5GT0/vu+afU0yfOpm5s/+mddt2TJ32F65Fi370utTUVMLCwggMfIv3ixcUtLXNdoOj1NRULpw/x6kTx9m4YR1lypSlXHkPevbqg7m5OfUbNqR+w4bMmb+QrZs3MW3KRB7cv8fFqzcoUCBnvwxzgwB/f16+9MPY2ASpVMrQwQMoZGfHytXrv3yzmkxkMhn79+2ha/dPx/qLxWKKuhXj9+EjKGRnh76BAXPmLsDaxgbPWze5c9uTChUr8c/2bWxYtwYLS0vKlClL567dPxA/4eHh/DFqOGLDIp8U6wDpgRdBIUNiWgLEWcNrGjRs9Mm/nbwg7D9VcYyNjYmJeQ1SXTQcWyHRL5jrz5dYlMuIh08IykzQ7dS5K/MWLv6pQtzU5D5qD7uafCfm7gpeBQRw//49Nq5fy7WrV0hISf8pSlrlNWP/GJUlvrVwkSK88PHPck3Xzh24cukiQaGR2Ro7NDSUwoWs0dXV5cHj5+gWKIBLETuqVK3G9p17PvD2KhQKfh88kB3bt3Lv4VOKODqyeOF87t+/h6OjE23atqesuzvTpkxi/tzZAJy7dJVq1ap/4+xzlrq1qnPzxnUaNGxE/QaN6NWnb44vJk6fOsnypYu5c9uTxMREbAsVYuDgoYwaPeaz7/9nT59mNhmat3AxNWvVzpO/l6ioKJ49fYKZmTnWNjakp6cTHhaGqZkZ5ubmaGhoIAgCoaGhvH71iqJubpw/d5YeXTtlGcfS0pJt/+ymRs1auW7zz8T+fXvp3qUjD5+8+GTi9fu+C1eue1KhYsXPjqdQKD65o5mWlkabls24d/cOqYXaIpLqfHqc+NekB5z46DmxWEzbdh0YPeZPSpcp88kxBEEgODiYp08eU6p0GWxsbDLPLZg/l93/7MDC0pI2bdvTrUdPtLU/X5klLi6OQQP6cfTwIRQKRZZzms5tM5JI85joO8v5Z/s2xv4xEi1tbQ4cOpYlDO5bUHUPe4UZueNhvzPl1/OwqwW7GpVi2dDy9O/Xm5iElC9+IKv5kKqVPHhw/x4Azi4ubN76D+XKl89yTe0aVXn08AGPn/tgZ2f31WO/ef2a4kWdaNOuPdt27ALg0sULdOvcAS1tbXr07E2Zsu40bdYcpVJJj26dOX70CKvXbqBHr96fHFehUHDo4AG0tbVp2qy5yizUHty/z+5d/2QugLb9s5v2HTrm2PhyuRxrc2NMTE3p99sAmrdohWvRol89/6dPntCvdw+ePHmMu3s5NmzehluxYjlm3/9y7uwZunRsR2Ji4ievcXUtSmDgW5KTk4GM2vuCIFCrdh3WrN9EXGwssbExeFSoiI7OpwWgmo/TrnULIiIiuHL91ievefPmDUWdHPhr1hz+GPPnNz0nLS2Nfn16sm/vXjSKNEeib/vFe5SyOJSxL1FE+yDI/jcxVQqCnEqVq9CiVWsEQeClry9+fr6Ehoagq6NLaGhIZmdiU1NTho8cTZOmzbl//x7jx/5BdHQUYn07lAlvQaqDxNglozOooECsXwiRjjmx91ZmPlK/SG3kgZeRmBZDEfUi87iGXT0kJq7f9Lp8L4IgoIzzz6geE5HR+O3gkePZ3pH7L2rBrjpzzm3UITFq8h1Bnkp64GVEUm1MTDMqhLwLClLpMoSqyuatO7h18waFixShWvUaHy1RuGLVWtq0akbNqhXZvO0fatWuk+W8IAgEBQVhYWGR2QjF68ULWrVogr2DA3/Pnpd5be06dfG894hJE/5k2ZJFpKSksGDRUry9XnDm1En2HTxCk6bNPmuzRCKhXfsOOTD7nMW9XDmuXMmI/23QsFGO9w+QSCQUL1GSF8+f0atPv2xvj5csVQrPew+5euUyI4cPpW6tapw5f5mSpUp9t21paWksW7oYB4fCpKens3njeq5dvULDRo2ZO38REZERRISH/9sMy5qYmGhCgoM5cGAfb968ZtnK1Xh4VOT+vbvoGxjQpm27jLJ+9vbfbduvjLe3F81btPrk+aSkJCZPHIeWlha/9R/4Tc8IDw+nS8d23LntiYZ9/a8S6wBiLUPEluWQWmZ4jAVBgPRElKnRiLRN2TS5Kbv+2c70KZPQ0NDA2dkFJxcXyntUICU5GWMTExbuvI9Iy5BmlXWZNXMGUyZNyBx/4+ZtDFl6G6UsFkX4IxSxAaBIAUQQ4onEpCiBgYGkp6Who6sLSkVGBRvDwiiiXiDWs0VaqDZirbwXeIr4t8hDPBHSk0CeDP9Jbt27e9d3CXZVR10lJudQe9jV5DtCWiKyFxnNNVxcXPH19eHU2QsfCEk1OUdISAg9u3Xm/r177Ny9j4K2tvj4eHP3zm1OnTyOr48P2traVKlaDW1tbU6dPIFtoUKcPnuRIo4fL0N25fIlGtWvg0eFigQHv6Nu3fqs3bApj2eWswwe8BubN21AW1ubV4EhOV43+n3y5flL16hardo3jxMbG0vdWtXwevGCkiVLYefgQO8+/b64WHrP27dvefzoIQnx8Xh5eXH0yMHM8nsAVatV57cBg2jfoeNn69THxMRQrbIH0VFR9OnXn8FDh1GwYO7HCf8qmBnpMXHKNEaO+uODc6tWLGf61Emkp6ezYtXabyqT+fjRIypVqQ6CAk2Hxoj1rHPC7CwIggIQf3EnSZCnokwO4+b+WdSvU4MmTZuzccu2D65LT09n547tDB74G0qlMvO42NARZZw/mi7tM6ra5BOCPDXj+02ZUTq2WPHi3Hv4lLS0NGQy2Xd7iFXdw+4x/WSueNjvTm2icnPObdQedjX5jkhTD6ltTeRBV/D19UFTU5M7tz3Vgj2XSEhIYMumDbx86Ye2tjatWvx/WcaCtrbUqVOPqdNnEvj2LVcuXyQqKoqVq9fRtXuPzzZXqVmrNpu27qBPz24AHD92BEEQVCbE5VtYsHgpT5485v69u1/VWOZrkclk3Lt7lwP79wJgbf19wsjIyIgbnvfY9c8OHj18wL17d2nfpiUTJ0+lT7/+WFl9Ol731s2btG3VjJj/1NeuUbMWa9dvxtraGm0dHSwtLb/KDmNjY85dvMqyJYvYuH4t69as4vipcx8tF6gm+1hZWxMWGvrB8aSkJObOnknVatVZvHRFtnoWpKamcvnSRU6fPMG2rZsRSfXQLNwYkeaXew18CyLR11UBExRpKBODqVmtEtra2jRp1vyj12loaNCzdx9KlipNrc5TQSxFSA5FHnIbJNrIQ++iUbhJvn0OKaKegyCgWbQrfeoYM+bP8YhEIrS0tDJ3MH9mBCHjJ6fH/BVRe9jVqAzp4Q8RR9wlPT0d4Ku776nJHqNHDmfVimX06Nmb0WMz6hAjElG0qFuO1MOeM2sme/fsonPX7owZOy4HLM473r17x8jhQ5GlplKlajXKlHVn9Mjh+L/0w8zMjHUbt3zX9nVgYCBzZ83kwP69xMbGoqOjQ+++v7Fw8dIcnEVGXsDE8X+yasUy0tPTMTMzw8rKGg0NDSRSKRoaGpiamRHg/5IXz59TuUpV1q7fxNbNG1m4YB6Xr936bpEdFxdHi6aNeBXgT7PmLZn2199YWOSfp/NnoFXzJsTGxnL52s3MY+fOnmHUiN8JCQ7m3MWrlHX/fGOfhw8esHnjeqxtbIiJiWHXP9uJjIzE3sGB9h06sfx0NCLx5xsp5QYZ8d0BKOJeIcjiEJJDQazBqFEjGfPn+K/a3TL2GJr536lPN4JYAulJaNg3QGKc970LFAmBpL86hcTYGY1CtYm5uyLHn6HqHvZyU0/kiof9/vSmKjfn3EYt2NWoDP8NjUGsQVxColqw5wKTJ45n4fy5TJw8lQmTpvzQHvCcIi4ujls3b9CmfVcEhQyxjhnKpDBQpoG0ACIN3cx27HPnL2LYiJEfHefUyRO8Cghg4OAhHw0dGTN6JCuWLaFMmbKsWruBkqVKZbZszw2io6M5d/YMrwL8CQ8PRyGXI5fLSUtLIzQ0hEKF7KjXoCHNW7REQ0MDmUxGmZJuuJcrzz+79n7388PCwujRtRNXr1xm1Zr19O7bLwdm9euycME8Jk8YR1RcEjo6Opw4fox2rVtQu05dFixaSrHixT97f2xsLC5F7NDR0SE8Kh7EUiSGhZGYFkekbZIvnwXvEzHloXcRUqMpU6YsTi4uNGjQiDbt2n9z2dKbN24wb87fnDl9CsRaaLq0RaxtnMPWfxp51AvkgZdp2KgR2/7ZnWvCUi3YVWfOuY06JEaNyiDS1EPDvgHpQVdAIWNQ/35MnDz1kzHTar6NiZOnIpFImDljGvr6Bp8Unz8jgiBw984dlEolFStV4sH9+6xcvpS9e3ahUCgQ6ZihWbgxYm0TBEGJIItFpKGPkBpFmt8BACZPHMfAwUM+WEze9vSkTcuMmPGoqEgmTZn2gQBycsrw8tWsXeeLntCcwMTEhI6dOn/19VpaWtjaFuLYkcO8e/fuu+PPLS0t2XvgMFZmRr/E9n9u8vbtWyaNz6j68r4Uo5dXRvWTI8dPoaHxZa94eFgYCQkJzJw1lz835n/DKkVCIPJ31xFSoxHrF+L86aNUqVo1R8auUrUqh4+dJDw8HAdHN9L8j6Ll3Oa7Qn0UMX6Zi5zPoUyNRh50BYlJUfYfOpqri3KVJxdCYvhFQ2J+4XeRGlVEbOSEKPQugkLGzn+2c+jgftZv2krbdu3z27SfBm1tbabNmElKSgqTJ46jiKNjjldAUUWOHjnM8KGDCP03BtjK2prQkBBsCxVi1pz5NGjYiErdV2SKbJFIDFIdZP7HIDkEJDpU9ChL4yZNqVqxPA6FC2NiYopMJkMqlXLyxDEqVa5CjZq1mDVzBtevXcXBoTABAf5Uq16DOnXrZQqsNm1V9/3cpWt3rl+7ipODLQFvg787vl5XVxeAe/fuflMipJoMLC0tqVCxEndue9Ktc0cC377h8eNHmJqafjYR+L84OTvTqk1bxowegcilByJp/iyihLQE0t/dQBnnj6iAdWZd9JwS6//FwsICTccWpPkdJM3/KJpOrRFp6H7RPmVqNCAg0jJCpGmISCTKiEeX6n5ZsMe/BUGJ2LDwry3W1eQo6pAYNSrFxbV9qFKxHJWrVOXWzRuZx+/cf5wj5erU/D8pKSl079KRE8ePMWHSFCZPnZ7fJuUa169dpX6dmlmOScxKZHRw1LP5ZCKcMjmCNN+9GBoaERcXm+Vc6dJl0NTSQltbG5lMhmvRosyeuwBTU1POnT3DX9OnEh4eRqnSZbh+9UqWpM5/du+jTdt2OT7PnMLVyQFBEPD2e/XVYvBTKJVK6tWuwa2bN/h9+Ej+nj33q7zBaj4kMTGRTu3bcOP6NVq0bIVtITsaN2320WZjcXFx7Ni2lVMnjxMaEoJcIadW7brUrlOXTu3boOHQEIlR3pfOVcQGkP76FFbW1gwaPJQGDRtjbmGBjY1NrobkvAoIoE6taoRFJaNRpMm/u2gCQlIIfRvaEhERjpOTM15eLzhy6GCWe01MTIhVmiCkxiAo00GZjkhDH6l5ScTGrlnsFuQyVo6qTr8+PenRs3euV8pS9ZAY98nHkeRwSIwiNYkHfzVTuTnnNmrBrkalGFJfj21bNhHwNpgb16/Ro2snwsPD6dCpM1u378xv8346EhMTMTfWp1v3nqzftCW/zck1xv85hiXLV6NV7P9bun+NOBAEAZuE09SqVYfZ8xbw9OkTgt+9o36DhhgbZ8TDbtqwnpHDh6Kjo0ONWrUZOGgIderWyzJOeno6L/38MmKIXV0xNTX9rvkoFAqePnlCiZIlc8WDN3XyRObNmYW7ezlat2tPgwaNKFW69DePp1AoWLViOePGjsahcGE6dOxMq9ZtP9v5Us3HeffuHY3r1yEkJJjOXbpRp159SpcugyAI/DV9KlbW1rx585qzp08hk8mo36AhDoWLIE9P58yZU7x98wZDQ0MSpIXQLFTzyw/MYRSxL0l/feaD47Vq12HegsW56ph5FRBA8dIeCKmxiPWsEdKTEWQx2Ds4YGdnj5+fL2kyGX/PnkedevUB8PXxZvKEcTx69PCjY4oKWCMxsEeZFIIyJQrSMxqLaWlpceDwMer+O05uoRbsqjPn3EYt2NWoFGV0HmJbqBDb/9kNZHRzrFAuQygkpso/2UZbTfYQBIEjhw+xdPFCPG/dxMs3AIfCn9/m/ZFp3aIpp0+dRqtEb0TS7HXQHdbIkPVrV/M2OPwDcSyXy7G1MqNW7bqULlOGXTt38NLPjxkzZzFy9Jivfr/6+viwdcsmkpKSqFS5Cu07dMxy77GjRzh7+hTGJiYYm5iwf+8eHty/h6OTExMnTaV123YkJSVhbGyc6RH/3pKaBw/sp1f3LplVmwYPHfbd1WyePnnCgvlzOH3yBElJSVSrXoMqVavRuk079Q5aNoiMjGT1yuVs27qZoMDALOe0tLQoV96DevUb0KtPvywhTUqlkqVLFjFp/J+ILCug8W+To7xm/+yWPHz4gOLFS2BmZo6//0tmzZyO/8uX9O7Tj379B5KYmEAhO3vsc7jZlpH7ABRRL1AmBYNYA4lJUeK8DmX+rfzv382F8+do1rjB/w+goZcpyiUW7igTAhFSIhBpmyI2sEesY8qNgwtwcXXNk7wNVRfsZSfljmB/OFMt2D+KWrCryQsEQQnem/jr7zn8PnxE5nEdjYwPz3OXrn5061fN1/H61SvGjxvDS19fUlJT8H/5kvIeFejVuy99f+uf3+blKmdOn6JVq9aIDezRtM+ex0uREES6/xE0XTsR92xXlnN79+ymZ7eMpE6xWQkMFe8yQ1/Ke1RgzbqNFC9R4ovPKF2iKCHBwdgWKoTXixe0bd+BjZu3oaWlxfx5c5gycTwurq7IZDKiIiNxcnJm5B9j2bdnF8ePHc0cx8DAgHLlPTC3sODk8WM4OBRm0dLlJCUlsXrlcoyNTdDV1SUiIpyCtoWoWas2pUqVRk9fHzMzs8xFQkJCAiXdnAkLC8sc29LSktdBH9YA/xYyuqdu4Ny5M1w4d5aUlJQcKSX5KxIaGsrTJ4+5e+c2BgaGDPl92GcXau/DwzRdOiDWzV533dxEUCpQRD5DHnYXFLJ/j4oZPHQoU6bNwNDQMMeelZKSwuFDBwnwf0kRRycaNmqMiYnJB9cZewwl7fUZlPFvQJmeeVxUwBoN60qI9WwybJfLiL6/9rvDx74FVRfsZSYeyxXB/ujv5io359xGnQ2hRnVIT0Imk+Hs4pLl8Ox5Cxg/9g/q166Bt9+rbDUFUfP/nD1zmsMHD+BRoSJlyrqzcPEyGjZqnN9m5QkNGzVGalMVeeBF5Ho2SEyKfbX3WaxrCRIt0gMvk5CQgL5+RpWJG9ev079vL4oVL86L589RRr0gRlDiWrQoPt7e+Ph4U62yB4+f+2BnZ/fJ8ZOSkvD18WHdhs1079mLI4cP0bNbZ+rUrEalylVYtWIZ4ydOZvLU6R/Y3KFjJ549fcqd257oGxjw+lUAN29cx9fbm0FDfufihfM0qFsLgJIlS5GYmEhKcjKWVlZcOH+WtatXZo5VxNGR9Ru3UqVqVVJSUggLC6N48RJMnjYDqVRKqdJlsvWafw4NDQ36DxxE2/Yd6NyhLdeuXvll241/L1ZWVlhZWVG/QcPMY3Fxcejp6X10h+fK5UsYGRmRovN9YVk5jUgsQWpRGolZcYTkcJBooYx/zdbNG5GlprJi9doceU5KSgqtWzTlyuVLmJmZERkZiba2NmPHTcDOzp5XrwJIS0tDKpWS9uokyrg3iI2dUcb4gKYhpCciJIWQ9vIQogI2SEyKIjFyzBexrubXQi3Y1agMwr/bjLa2hbIcH/r7cO7dvcOBfXs5fOggw0eOyg/zfnjad+zE9m1bCAx8y7mLV365MnsSk6IoE98hD7yMMtYfTcevq4wjkmig6dictJdH6d6lIwePHCcsLIyO7VpRsVJlRo/5k5bNGoOgpGBBW3y8vQFIiI9HV7cAa1ev5O/Zcz85/ks/PwBcXIsC0LJVa85dvMrwoYNYvXI5o8f8+VGx/p4SJUtSomTJj56bMm0GF86fw8DAkEqVK38wRmBgIAH+L4mLi2PenFl0at+aV4EhpKamAlCxUmUKFbKjqJtbZrWXnGTThnVcu3oFPT29zIWQmu9j+tTJzJk1E/h4cvO5s2eoVr0G5wNVU2CKxFJE/3quxTqmjOjXkCWLFrBo6fLv6suRkJDAnl07WbNqBQEB/py7eIVq1WsQFhbG4oXzmf33X6Snp2NlZYW2jg5paWmgAKlVecTmZUiXxSDSMkbDrjZCagzK5HCUMX4ZToB3V1m7ugwDBg3OqZfhp0Hd6TTnUIfEqFEZFDF+pL85S0hEzEe72sXExKCrq/vLCc2c5PGjR1Su4E7hIkWoUqUa7Tp0/CW87IIgcPHCeSwsLKlfpwbxcl20nNtkawxF/Fvkr47T77cB3L9/jwePX6BVtBOK2JfIg66CVBexvi0Ss5LIg67TpG5FXrx4TtNmzZm/cPEnx30fVhMcHp2ZyPoemUyWZ+/3a1ev0KBuLYq6uREUGEhiYmLmOV1dXY4cP0W16jVy9JmXL12kcYO6QMYOwJ0Hj3N0/F8NmUyGkZ42IpEIQRDYve8gLVu1JiUlBW8vL2q0/h158E00HBohMfox+ltsHFeLrp3a4/cqEFtb26+6Ry6XExYWRnhYGHp6ekilUurUqpbR1VnPDqllOcQFrLLcI8hlIBIjkny8gpEgl4FE84NFr5CWgDzsAYqoZ2zdsYsOHTt920S/EVUPiSk9IXdCYh7P+vVCYlRzia3ml+S9h/38ubMfPW9sbKwW699J6TJluHT1JtWr1+TOHU/atW6RJU75Z8Xz1i2aNW5AhXKlSU1NRcM6+7HSEgM7ps2Yyfp1a/Dz9UGzcGNEUp2M0nhiTZAnIxKJM0q/pYRx4vhRggIDP9gx+l/CQkPR1NT8aPhCXr7fq9eoyd4Dh6lSpRpVq9egW/ee7Nl/iENHT5CcnIyfr2+OP1NbWwdzcwskEgk6urq8eJ7/zXx+ZGQyGUZGRjRt1hyATu3bUMLNGVPDAlSpWA558E3ERs6IDYvks6Vfz4ljR3Fxdf1iEy+5XM75c2cZ0K8PtlZmODnYUqViOUoVd6WYqyMIAs+8/NAs0vQDsQ4gkmp9Uqxnnv/ILpdIUx+NQjVp0ao1f44ZRYC/f/Yn+RMjCEKu/PyKqENi1KgMysRgALp36YhCochWh0Y1X0/FSpWoWKkSmzduYPDA37h65TLtO3TMb7NylRs3rgGgYd8AQdcSsda3eWVmHwhGq0Q/0sRSxOIMgS2S6iAxL4Ui7B6KuFdoWriDpgGkxZOensbEuZs+G8blUaEiEomE0sVdWb5qbb42sWreoiXNW7TMcmz8n2PQ0dGhaS7YValyZQ4dPcGN69dYv2411atUoHHTZtjbO1CokB2t27bD0tISAG8vLxYvnM+D+/cwNjGhR8/edOjU+bvCJH42bIrVRRGfyJnHSQCItE15HVcAiW0txNomiLRNfqhdckGRxpHDB/lj7LjP5pzEx8fTpmUzbly/hkjTELGxMxomlog0dBEUaZCeRHQBK9w7Lso1W8/4GpAWlURxNxfERo6Itc1AUKBMCkGka4HUqgKx91bl2vPV/PyoPexqVIb/ltv73jrVaj7Pvbt3GTl8KJUqV6FW7Tr5bU6uU7Bgxla6WL/QN4v194ikWojEWb3hUtNiGf+hkCHWNkZq6Z55ThH1nNUrV3zSK1SpcmUePfOmXHkPOrRtxZLFC1XGg3T0yGGWLFrA+ElTsLCwyJVnlCtfnmEjRnLluifDRowiJDiYw4cOMPaPkTg52LJm1Uq2bt5EtcoeXL16mYqVKhMfF8dvfXvhaF+Q6OjoXLHrR0MQBBSRz0ApR2zsjHaZIWgV7YRGwWpITYshLmD1Q4l1gPSga8jlcrp27/nJa2JjY2nWuAHPnj5Bw7EFmm5d0bCuiMTQAbGuBRJ9WyQmroi1cq7KzMcQaeqh6doRqVVFhNQY5OEPkEc8BkFAEfaA9FcnSUhIyFUbVJH3Mew5/fMrohbsalQGQSnH2cWF6Phk6tVv8OUb1HwTSqWSXj26UMjOjlNnL2Burjql3XKLMmXKAqBMicyV8UWa+mi6dUfTuS0AUtPiSCzLZ54fNeJ3enTrTFJS0kfvt7OzY++Bw4we8yfjx/5BrepV8v3LPcDfn17du9CmXXtG/zE2159nYmLC1Ol/ceHyNZ57v+TNuzC6duvByOFDGdi/L81btOLew6e079gJP7+M8JzIyEjevH6d67b9CCiVSlBkJAuTnpK/xuQAgiCgjPVDJpN9UGv+/flDBw9QtVJ5Xvr5cvLMBST6hXK1W+qXEEk0kVq6o+XaEe2S/dAu2Q9Np5ZoFGmGMjGEOjWq8vbt23yzT82PjTokRo3KICSH06hxX3R0dPLblJ8esViMvr4B2trZayL0MYw9hqJMiUIR44uQGo1IqoNI24Snl7erTDMmF1dXEEkzysXpf13iWnYRaxnAf7z3GtYVEUk0kAffAmD/3j0cOHyKe3duUqx48Q/vF4v56+/ZeFSoSJeO7dixbSuDhgzNFVu/htOnTqJQKFi/cUu+lKwzNjZm5Zp1dOvREysra5ycnQFYunghZubmHDtxBn0DgyyNgX5VBEFg0YJ5AEhMiyPS1Mtni74fkUiEplMr0oOuUqdm1YymRHqFEEm1UMriUMa/RUgJR6xvh7RgY+oO3JzfJn8SiYEdIuc2PPc9gatrUaQW5RAbOiDSNCD23sovD/ADI5DzMecCv6aLXe1hV6MSCIo0hLR4SpX69vbnar4OsVhM9eo18fXxJiIi4rvGevPmDTLfA6T57EYR9RwEJcrUKOQhnri5FKFS+bIMHTSAtatXkZKSf14/iUSC2MAORbRXnoabSMzLIrX9//bvQlo85cqUoFL5sp/0tLVo2Yq69epz6OD+vDLzo4SEBKOtrZ1RWSOfkEgkVKteI1OsA9SsVYe3b94w+++/kP1bfvJXZ8O6tUyZNAGJZfks77cfHXEBKzRd2iEtVAdBLkMe4kn62wsoop4j0tDNCIFxbI5Y2/jLg+UzYh1TNJ3bIS5ggzzkJmleO5A9XU+NqpUY1L8fRw4fQqFQ5LeZOY46JCbnUAt2NSqBkBIFkKPNWdR8miG/D0dXV5firo78MWrEN1UAuXrlMtUqlQd5MhqFG6NVvDeajs3RcmmPVok+7Ni1F1c3N+7fu8uoEb9TzNWR5UuXkJycnAsz+jJS8zIIsliU8a/z7JkikQipWQk0CjfNcvzx40e4On665Xqr1m25cf1avlbwadS4KWlpabi5FKFbl44EBwfnmy3/5ffhI1i4eCnHjx1h8MD+BAUF5bdJ+c6qlcto16Fjxq5OPoaE5AYikRipqRtaLm3RLj0ArVIDMj5rijRFov/5CkyqhkhDF83CjdAq3huNIs2QWpXHxcWVu3du06l9G2pWq8yTx+rSpmo+jroOuxqVQB7xFHnwdeISU9RVH/KI0NBQVq9czsb1a4mKiqJylarUq9+AoMBAnj59gjw9ne0792Txbr5Hv3At5EFXEesVRMOhYZaE4Y+hlMWiCLuPItoHpNpILcoS8vwMenp5t3UvCAJNGtbj0cMHJJvVQayXu6EUgjwFmc9eJCauKNOSEWK8ADh97iIpKSmYmZlT3sPjo/dGRkbi5lyYipUqs+/gkXwLE4uPj+fAvr3MmD4FQalkw+ZtKpFfcmD/Prp17oClpRVRUZE0a9GSYcNHUblKlfw27aMIgkB4eDjPnz3l+bNneL14TkhIcMbuhUjEgIGDadeh4zc3p/IoW4rqNWux+YYyhy1Xk1cok0JID7yMkBqLxKIMES+vf9XfvarXYS829jASrRyuwy5L4sW8Vio359xG7WFXoxIIqZGItIzVYj0PsbKyYvpff+P3KpCtO3ahp6fHimVLeHD/Hi4urjx69JAVy5d+cN+aVSuRB11BYlYCDcfmXxTrAGItIzTs6qLp1hWJgQPyYE9sLEyoW6s6M6ZN4drVKxlJc7mISCRi976DFC9RkrSXh0gP8URQ5uIWtFgD0hNRhN3PFOsAv/Xphb29wyfFOoCZmRkHDh/j5o3rNKhbK7N7al5jYGBA7779uH3vESVKlqJ5k4ZMnTwxX2yBjMTK256eLFm0gKJubjx+7s3c+Yvw9npBnZpVWb1yRb7Z9r9ERESwe9dO+vbqQRE7GxxsrWjaqD5TJo3n0cMHSDU0KOteDhMTEwb274ujfUHG/jGK69eucuf2baKior76WTq6uiR/IqFZzY+BuIA1mi4dkFqVRxHxiArlSnP1yuX8NkuNCqEW7GpUAmVSGGLdn79aiSqio6NDh46dOHriNMHh0Xjee0hZ93IAlC+fVVRu2bSRkcOHIjEvjbRgdUSi7H2EiLUM0bCrg1axbsxfuAQLS0vWrVlFg7q1qFqxPNeuXsmxeX2Mp0+fYGxsgqiAFYrwh6R57yQ9xBNlyteLo69FJJaiVbzXB8cDA99SsXwZTp86+dn7a9SsxbmLV4mOjsLDvRTLly7J83KPaWlpdGjXmorlyxAfHw/A8qWLkcvleWrHe0YOG0qt6pWJiAhn5qy5GBoaUq9+g0x7VCFh/aWfHwP69aGInQ29e3Tl+bOndO3ek117D/DkuQ+RsYncvHOffQcOs2L1Wo6dPMNz75f06defnTu2Ub9OTWpWq4StlRlNG9WnbavmtGre5LPhUTo6OiQlqwX7j45ILEFq5YGmaycsLCxpWK82gwf8RkxMTH6b9s2oGyflHOqQGDX5zuMDY3F1tGf7zj20a98hv8355Zk3ZxZTJ09k5Ogx/D17LrGxsVy+dJHDhw6wd/cuJGYlkBaskWOxsoIgoEwMRh5yCyE1Gv9Xr7GxscmRsf+XerVrcOP6NWrVrsO8BYtZsWwJR48cIjY2lrbtO3D8uU6OV9gQFDJkL3ZklNwTa4IyLfPcqD/GMmHSFAoU+PSWcWpqKlMnT2TZkkX07NWHVWvX51nVlsTERFyK2BETE0PjJk2xs7OnSbPmNGjYKE+e/1+SkpKwtTKj728DmDNvAVJpRpGz3/r0Ysf2rUybMRMrK2tev35FQkICxsbGGBkZY2JiQhFHJ4q6uWFomHu1uCMjI/lj5HD27d2NhYUFw0f9QcdOXbJVxSY1NZVXAQGkp6dz2/MW69aswsrammdPn2BiasqJ0+exssrapdPIfQCy55uQWrgjtfr0ro2aHwtBEFBEPUcefAsrCxP27D9MhYoVP7hO1UNi3MYcypWQGK/5rVVuzrmNWrDnEYKgQJkYjEhTH5GGHojE2fZO/qzM7u3GmNEjCAqNzNUvVDVf5tLFC/Tu0RVDQyM8KlTE68VzHj16iFKpxMXVlYAkq4yycbmQ2CbIU5G92M7kyROZMGlKjo8P8PTJE/bt3U2v3n0p4ugIZHiR9+7exaQJfxIWEY3UygOJeSlEIskXRvt6BKUCRYwPIpEEsWFh5BFPQJ6MNMEXC0tLRoz8g569+3xWuO/csZ1+fXrSf8AgFi5ZhkSSc/Z9jqdPntC8SQOsrKw5d+kq+vr6efLc/+Xxo0dU8ijLpas3qVS5cubxFcuWMmb0CCAj7MnaxgYDAwNiY2OJjYkh9T+VZKysrSla1A0nJ2fMLSwwN7dAS0uLgAB/Xr9+hYWFJc7OLjg5O+Ps7EIhO7uvep2fPnlCl07tiIuNZeLkafTs3SdHSqa+x8fbm8YN65KSnEz9ho2oVasOpUqXwaZgQVyrdEL+7hqabt2/uymYGtVDSEvE3egljx89ZOee/TRs1DjLeVUX7EX/yB3B7r1ALdg/ilqwfxvKxGAUsX4I6ckok0JA/p+ydlJdpBZlkJiX/i7hLgjCD18VoJq5H0qlkhOnz+W3Kb8kgiBw7uwZNqxfy8njx1AoFOjr6+NWrDjOzi5Uq16DOvXqY2dnh7FH7tYFT/M/Rr0qxThy/FSuPudjxMbGYutWA0XkM0TaxkitKiA2cPigq2lOcm/XCGZMn8KBfXsxNzdnyfJVtGzV+pPXr1uzmhHDhlClajU2bNqaZ3Xunz55Qr3a1alRsxb7Dh7Jk2f+L1FRUTjYWjFl2gzG/Dk+yzkfb2/EYjF29vZoaWllOZeUlISfry/e3l74eHvh7e3F64AAwiPCiQgPRy6XU8jODnt7ByIiwvF/+ZL09HQANDU1cXRywsnZJVPk6xXQQ09PD7FEwtMnj7l+7Sq3PW/h6OTE0eOnMxeCOU1gYCCbN67nzKmTmYvoTDQKoP2R8Cs1PwfBV+fTo2snTp08wYy/ZzNi5OjMXTZVF+yuow/mimD3WdhG5eac26gFew4jCALKOH8q2CZz4/o1ChcpQpEijhQvUZIOHTvz9u0b4uPiuO15iy2bN1KzVm1uvNZGrGuBoFQgpEQiKGQgKEFQgFgDkVQLQZ4K6ckIChkiiSZCWiLK5DAEWSxiPRvERk6ItYxAqo1IqgMS7R9CyAuKNJTeW5gzbyGDh/6e3+bkCQkJCdy9c5vQkBBatGqdp5VS/peIiAiGDh7A0cOHEOmYITFyQqRvj1jHNF/eP/LQu+il+vIuLCpfmvUAPHr4kNEjh3HzxnUMDQ1JlBZCal0JkVTryzd/I0pZPPKgKygT3nLz9n3Kurt/8tprV6/Qr09PoqOiWLZiNZ27dss1uwRB4Py5s/j6+HDr1g0O7NtLYqo8z7z7/8vQQQPYtnUz9x4+zWiG9Z0IgoBcLkdDQyPzmEKhIPDtW3x9fXjp54efny8v/Xx5+dKPmOhoEhISMsWylbU1FStVpm27DrRs1TrPkuaTk5N58fw54eFhtOs2AEGpQNulXZ48W03+IAhK5CGeKMIfItazxfeZJwULFlQLdhWac26jFuw5jCLah/S356lQsRKj/hhL8xYtPyk8Ll+6yIDf+vD2zZuPDyYSZwj390h1MsS6Ig2RVBdxAUtEmgYo4t8iJP1PjWSRBJGuRYaY1zFHpGWESMsQkfjzzW0FQUCQxSGkRCDS1EeQxaFMDgOJFlLTYog0c247XBCUGSIl2gsv3wDsHRxybGxV5dbNm3Rs1yqzYZFbsWJs3b6Lom5uWURDXnDq5AkG9e+LQqFg+aq19Pr7Qr4v8hQJgaT7H+Xew6cUL1EiX23x9vJi755dzJ49F5GOKZpOrXI1jE2QpyJ7tpH6DRpStVp1/Hx98fPzJSYmmlq16tCzd1/cy5VDJBIRHx/PyGFD2fnPdtq270D3Hr2oUbNWjiRd3r93j98HD8DcwoI3b97g4/3/FW4qV6nKxSvXv/sZ30pKSgqujvZ07NyV+QsX54sNgiAgk8lITU3F0NAw3/9mChgXAqkWmg55n1egJu9RJASS/vYCJvparF63kYqVKuNga6Vy4vW9bnQZlTuC3XeRWrB/FLVg/zp8T05l5vSprFu7mhOnz1Gnbr0v3iMIAoGBgTx8cB8tLS1KlymLubk5EokEkUiETCYjNjYWExOTzwq6uLg4wkJDiYiIIDIygrdv3nDr1g1uXLtKeHh45nWF7OxwdnbJiM+0t0cikaBUKnn7+jVeXi/w8fb6oBqBs4sLkRERpKSkUKt2HTwqVGTO9nuIdcwY1cqWI4cPoqtbAFfXori4ulK1Wg2ajtj5UXEjKOUoE98xsVclTp86yb27d1i+cg29+vTNxiv9Y2HsMRQhLQF52D0UUV6IClihUagWCAJp/kdBngyIEemYItYvhFjfDnEBC4TkSJTJIQiyeIT0RKQ2VRBrmxBz9/tK1714/hyP2m1RxvggNrBHo1BtRBo5+4H6rQiKNGRe/yDS0EPTqSWxD9blt0lcv36NhnVrMWXaDOYcDMnVZ8nDH2bEtyvliLQMEGubIIikKOMCQJ5MoUJ2VK1WnSpVq1Gnbj3u3PZk2tRJvH3zhoK2tjx66vXdOzYLF8xj0vg/cXZxQSZLIyU5iUVLV2Bubk5Z93L5/gU5dfJEFs6fy6AhvzP09+G/xEL/PYmJiVy+dJHOQ2YjKOWINPWQB11FaumB1Kp8fpunJo8Q5KmkB15EGfcKpHogT1Q58aoW7DmPWrB/A4I8NaMNO4BUBxRpKJOCIeENSqWSSpWr8M/ufblW6SI7CIJAVFQUfr4Z27p+//74+/kRGPgWpVKJIAgUsrOjqFsx3NyK4V6uPBUqViLw7VtsCxXC3NychIQE1q5ZxdXLl7h3905mmSkNDQ26de+JXC7Hx8cbH28v4uLiQKqDxKAwIm1jEIkQ0pMzvPUJb0GZjpaWFuXKlWfS1OnUrlM3n1+l3OPdu3e4lm+EIuoFiDWRWpb7N6ExYzEjKOUok0IRZDEok0JQJgRlzXUARNomCKnRoKGPWNuITi1qMe2vvylUKPtd/pYsXsj4sX9k5FBYeeRaAun3oEyOIO3lIcSGRUgKz5/64//LtCmTWDBvDhLnjnneBl0eehd56J3M3zU1NUlLS0csFjNn3gKG/D6MPbt20qdXd+4+eEKJkiW/6TkKhYLNGzdwYP9eLl+6SIOGjViwaCnDhg7K/H3ztn8wMTHJqal9s52zZs5g9crlJCQkMHbcBCZNmaZy7+OcRiaTUa92De7dvZNRbUgkBkVqRvOyIs1zNddCjeohCALK2JekB3tCerzKidf3utFpxIFcEewvl7RVuTnnNmrBng0ERRqK2JfIQzxBkQ5iCShkIJIi0jFhydxpNGjYKM8SwfILQRAwKtUdISWc20eX4FasWOa5941N6rcfijLuNUJ6IgjKDA+uhh4SfduMhjLht1EoFJiamuJQuAijx/xJq9Zt8nFWOUtoaCgL589l/drVyOQgtSiLxKzkF/9+BEHIyGNIzagLLtazRaSphyI2AEWsLwhgrp2IvUNhlq1YjVuxYl8dN+v14gU1qlakY6cu7LgjVukveHnEU+TvruHj/xo7O7v8NofU1FRKFnMhOEEzz0MP0vyPZSx0/4eCBW159y6Izl26MWX6DMqUcKNBo8bs2Lkn27HUgYGB9OzWmVs3b+BWrBheL15QqlRpbt9/BMDJE8cZ0K83VlbWHDt19oPSgp9CqVRy+dJFNm/aQJ069ejdt1+27PocSUlJLFowj1kzZzBy9BgmT52uEnXYc4PExEQG9u/LsSOHOXnmAk1H7AJASItDpGmgrjj2C6OUp5L2bKPKiVe1YM951IL9Kzk0rw3dOncgKiqKVm3asmDRUgoWLEh6ejoSiSTfEuR+VMLCwjh/9gxBQYGsX7cGhULBq7fBX77xB+D6tavUr1cXEP9/JaAc/LtRJoWS5n8ElPKM8qDaZuzYvJLWbdpm8TImJiZy/txZnj55zJMnjzl+7BgiLUM0HVsh0vi2Fuh5haBIQ/Z8K5MmTWDi5Kn5bQ4A27ZsZsBvfdB06ZBnTb6UKVGk+ez+n6Ni0NBFpG0CgoCQ+A4kGvTs3o1dO7fjUaEiG7dsx97e/queIQgCTRrWw9vbi+3/7KZK1WqcPnUSJyfnLImd3l5eNG5YF4VcTtv2HRkydBhOzs6fHbt3j27s3vUPAFKplK07dtGyVescTVqdP28OUyaOx8nZmSfPfX5KT3uThvW4e+c2MtMqSIw//5qr+bUQFGnInq5XOfH6Xjc6Ds8dwe6/VC3YP4pasEMprfsoFAp27Nzz03vQ85LIyEjcnAuTmJiIW7FirFy9nkqVK/+wX7qvX72iaqXyxKbpoOHQCJE052ox/xdBkYaQGoUyORJl/GuUCW8xMzNDJBIhFospVrwEtz1vkZycjKWlJa5F3bjpl4bErAQicd4mtwL/dqYTsuUJlPnsoUfHFqxZvzH3DMsGcrkcfQMjJIZF0LCtkSfPfN88RRHlhZAS/tlrxWIxpv++B1JTUliyfBWdu3T94jOCgoJwLlyITVu2f7HiTHBwMHNnzeTokUOEhoZiZ2+Pe7nyDBs+ispVqnxwfbcuHTmwby9vg8Pp0bUTly9dxNjYmIGDhzJ+4uQcSbROSkqifNmSCIKAl2/AD/vZ8SkSEhKwNDVkxaq1jF77OL/NUaNiqAW76sw5t1G7hb8CIS2RO7c9GTR4qFqs5zBJSf/fTtvrxQvq1KxK8aJOjB45nNOnTnL3zh1CQ0Pz0cKvR6lU0r9fb/T09XNVrAOIJJqIC1gjNS+JpmNzjp86y+Chwxg6bAQ9e/dFIpEwbsIkvHwDeB0Uypnzl5BalM03sZ4ecBzZ0/Uo4l59/X1piXh7e3H9+rXM1vP5iVQqRWLsgiLGD0GpyJNnikQipGYl0HJtj2bx3oj0CiIqYIPExA2xkRNo/v+XlVKpJCI8nPCwMGwKFqRPz25cvnTxk2MrlUq6dGqPm3PGZ1qhrwg9srGxYemKVXj5vWLL9p20adseXx9v6tSsSoumjTh39gzp6emkpaWxYP5czpw6Sdmy7piZmXHq7AVu3r5Pj159mD93Nu3btCQ5Ofm7Xh9fHx9qVatMZEQE6zZs/unEOsDzZ88QBIFy5dVdTNX8eAiCkCs/vyJqD/tXICjS0As+iItrUQ4cPoaxcd4mnf3sxMbGEvj2LUXd3Lh86SInjh3lxIljBAUGAhlCadmK1fTq0/ebvpDT0zMS9HK7dvT2rVvo3683Go4tM2L11QCgTI0mzTsj5lZs4IBmkaafvV4QBJAnk/b6NEJSxmKtcZOmHDh8LN8F2fNnzyhftiR7Dxymx1952+hLUMiQPd2QrXtMTExo0LAxK9esQ1c3axhUaGgohQtZ07NXH9q270CduvW+6W9EqVRy6OABZs+cwfPnzyhcpAhNmjRj5YplDBg4mElTp2NmZpblnvPnztKmZTNq1qrNkmUrcXRy+urnhYWFcfzoEaJjolm3ZhUFChRg6/ZdlC5TJtu2/wicPXOals0a4xvwllJt5ua3OWpUDFX3sBf5fT/iHPawK2VJBCxvp3Jzzm3UHvavQCTRZP+hY3i9eE6ZEkUZ0K8P165eyW+zfhqMjIwoWaoUGhoa1G/QkCXLV+Lr/4YXPv543n1I+w6dGDzwN5o1bsDokcNp36YlZUq6MWXShC963328vSlkbY6xvg41q1VmwrixnD1zOrOTYU5y/95dRNomarH+PwjpGVVvGjVugiCL/fg1aYmkvTlH2svDyB6vQvZ8CxJzd7RK9EHDri6nTp5g1swZ3+2R/V6KlyhBmTJlWb92dZ4/WyTRQrNoFyRmJRHrF0JiWhyJhTtiY1ckluXQcG4PWkZZ7omOjmbvnl1UKl+W48eOZvFMva/2UrFSZeo3aPjNC1qxWEz9Bg3ZsWsvbdt1ICY6hpUrlqGjo8P0mbM+EOsA9eo3YOXqdTx79pQyJd24cvnSVz0rKCiIkm7ODP99MEsWzsfKypoTp8//tGIdMqrDAB90cFWjRs2vxee76KjJpFLlytx79IwB/XqzbetmNDQ0qF6jZn6b9dMiEokoXKQIAJu2bqdJs+Ysmj+Xy5cuYG5ugYdHRdauXsnqlcsZP2kKUomUt28zGlCVLFkKmUyGpZUV+/buJi4ujvkLl3Dnjie7d/3D4oXzMTMzo179hhSys6N9h06ULFXqu20uaGuLkJaIIAj57glWBeSRz1BE+4AiFYB3QUHwicZdyqQQlDG+WQ+mxSCSFkZs7MofnTyY/fdfrFuziu0791CjZq1ctv7TjB47ju5dOqLppItYL29Lt4q1jRF/In5ekRAEH1kQGRsb4+fnS/s2LSlVqjSbtu6geIkSaGpq4lasGP/s2Eb3nr2QSr/t6+Dxo0dU8iib+Xvvvv3w8KhIvQYNMTQ0/OR93Xv2on7DRhQuZE2j+nUYOXoM1WvUxMGhcJbKU//lVYA/CQkJ7D1wmOYtWn6TvT8Su3ftZMumDYjF4g92SNSo+REQBHI8hOUXjYhRh8RkF5nvPoTkcDp36YZUKmXN+o3qCjH5RExMDGNHj+SfHdvQ0dHBzt6eyIgIIiMjkUgkKBQZccbVa9Tk7IXLQMYHx9MnT9i3dzdXLl/iVYA/SUlJVKxUGU1NTUqXKUuz5i2pULFitu15v3Wt6dYNsdanhcrPiiAIKOP8USa+y6gtnxJJk6bNePP6NSampqSlpXH3+Ts0HZt/eK9SgSLqGYI8FZGmPsoYX6Q2VbNUY1HK4pEHXkKaFs76TVvp0LFTXk7v/+1QKqlRtRL3H3uh5dwmR7v/fi+CMh0hOQJF/BsU4Q8AkBZpDunJyEM9IT0jZ6RR4yZMnjqDsLBQ2rRsxrZ/dtO+Q8evesbZM6eZO/tv+vUfSOcuXXnz5g1FnRwoUaIkG7dsp1Tp0l9vryCwb+8eTp88waVLFwgNyWhMdeb8pY8uyi5fukjjBnW5decBZcqW/eD8z4JSqeTPMaNZsWwJIl0LpOalkRi75LdZalQQVQ+JKTx0P2KtnF1sKmXJvFrx64XEqAV7NpH57EFIicz8/W1wOObmeVPiTc3HSU5ORkdHB5FIhFKpRC6XI5VKiYqKQhAETExMPuk9TEpKololDwQEHB2dOHniOGKxGL9XgdlufBUREYGdjSUS89JoFKyaE1P7YRAUMtL8jyIkhyPSMkaka8Gu9XNo0bJV5jXz5sxi6uSJaDq1/mbPtKBU0KZEIrt27mD5yjX06z8gh2aQPYKCgnB2KYZILEHTqbXKl8kEEARlRh+Jd9dAnrHr4eziQnBwMJev3vyqhksP7t+nTs2qyGQyKlSsxN4Dhzl+9Ahz5/yNs7MLJ05/e1y/IAgM/K0v27Zuxjfg7Ucbg128cJ6mjeqz7+ARmjVv8c3PUmVSU1Pp16cnB/fvY/HSFYzb9CK/TVKjwqi6YHcYkjuC/fXKX0+wq13D2UTTsRV3Hzxh9dqM5K/IiIh8tkiNrq5uZgiKWCxGU1MTsViMubk5FhYWn93qL1CgANY2NsTGxKChqYlEIkFTU4uG9Woxb84sZDIZMpmMq1cu8/zZsyyx73K5nPv37rFsyWKaN2lI+zYtERWwQhHxCEWsf67PW5WQh9xBSI1G06kNWm5d0LSvl0WsA4z5czyIJChTvv1vRiSWsG7jZgCGDR3EqZMnCA//fLnD3MDW1hZNpxYZX5a++1Amqn4PAZFIjNTYBa1iPZkwaQoaGhr4+fpiaWnFhnVreOnn99n7A/z96dShDcWKFWfk6DHcue2Jg60Vw4YOwtW1KBcvnOfE8WPfbJ/Xixfs2rmDP8dP/GQX31q16+BRoSI9unZSicpBucHA3/pyYN9epkybwYBBg/PbHDVq1KgIag/7N6KUxZPmtT1LN0A1Pyb/bN/GpAl/UsjOnvYdO2FlacW5s2fY+c92SpcuQ0CAP7GxsQBoaGhQ1r0clatUZfPG9cTHx6OpqUmduvXQNzDg0YMHvHr9CjlaKhcukVvIIx4jf3cdiaUHiUF3Pnutjq4+EpOiaFhnP+ToPcqkMNL89mc5JtK1Yv2KuXTq0jXXqwH9l6CgIHp178KN69eRWnkgsSz3w3SdFNKTSA+8hDI+I/dDpGtBYMALTE1NP7g2JCSEWtUzwsZOnb2Iubk5u3f+QwE9PapVr4GFhQUd27fh5vVrHDl+Gvdy5bIVKvj0yRM6tGsFwMMnL1Aqlfj6+GBiakp6Whonjh8jJiaaSpWrMGhAP6wsrbhx+95PmSuyc8d2Jk8aT/C7dwwbMYq1l1J/ynmqyRlU3cNuP3hfrnjY36xqr3Jzzm3Ugv0bUUT7kP72PAD+b95lO3xCjepz6OABFsybQ9Vq1enStTuJiQk8efyY27dvcdvzFqEhISxYtJQu3bpnJoTJZDKGDRnEtq2bM4SpXd18nkXuk/7uBoqIR4iNXUgK9/nstboG5oh1LdEoVOubnycIAsr416CUI9I1R5kYkhE7H/8Gd/dyHDt1NrMCSl4gl8sxcqiCIuweYj0bNOzq/lALNUEQkIfeRhHxGD1dbQYOHsqf4yeip6cHZMyvYb3avHoVwJXrnp/0fkdERFC5gjvvgoIoVao0K1avw6NChS8+Pz4+nt/69OLokUOMGDmal/4vOXn8GEqlMvMazfe7X1pa6OrqcvP2faysrHLmBVBB0tPTWb1yBX+OGYXUuhJSy3L5bZIaFUUt2FVnzrmNWrB/I4r4t6QHZGz/er98ndkGXBAEgoODsbKyylNPnxrV4PSpk7Ru0RSRtilSm8pIDL6uPfyPTNrrsyhj/ZDa1iTh1eXPXlvAuBBItdB0aJTjdiiTQkgLOIlYx4zY8IAc6aKZHa5dvUKvHl2JjYlh3IRJ/L33LSLxj/MZIKQnI494jCLyCSJNQ7ye3sPewYHFixYw4c8xXLh8nSpVP5+bkZaWxtUrl5k6aQKPHz/i7IUrWe4JCwvj8MEDvH37hpat2nDlyiVmTJ2MXC7H0cmZVwH+lClTli7delDeowJRUZGIxWIqVa5CQnw8nTq0xcfbi70HDlOnbr3cfknynRnTpjBn1ky279xD23btMfYYmt8mqVExVF2w2w3amyuC/e3qDio359xGXdbxGxDkKaS/PY9Iyxiv5w8RiUSsXb2Ku3du4+l5E/+XL2nStBl7DxxWi/ZfjPfx8mJdi19CrEPGXJWxfijjAkhNTUVb++MdXtPS0hDkSbm26BcXsEbDoRHp/kcZNmQQC5csy9NSeNVr1OTB4+fM/vsvZkybgkKsi7RgNcQGDj9ESINIQxcNm8pIjF1If3WSapU92L3vUEY5TjK83F9CU1OTevUbULNWbapXrsCiBXOpUvUox48dZd2aVVy8cB6RSISZmRmLFswDYPDQYfTo2Rt7Bwe0tbU/+f4xMjLi3MUrdGrfhmaNG/Bb/4EMGvI7rkWL/hCv7/8iCAJ3bt/m1asAXv0bdjd46LBM5w/ApCnTeBUQQM9unfPR0h8bpSwe5MmIdMx/qAX0T4Pw709Oj/kLovawfwPK5HDSfPehUaQ5HauasPOf7UgkEkqWKo2HRwV0CxRg8cL5TJ3+F+MmTPrieNevXQWRiDJlyqKrq0uAvz8Wlpa/1MrxZ2Lc2D9YungRWqUH/ZBCIrsIgkDay0MISSF4+QbgULjwR68bMWwoa9esRtOpDeIClrlmjzzqBaLQ65iamjJuwmR69+33VWIzJ/H28qJc1YYoEwIRaRkhMS2GxNj1h6gmAxlOCQ/jlzx98phHz7wp5lKEEaP+YMq0GV89xrIli5k8cRwXr9ygWmUPypZ1p3ff32jTrj2GhoasXL4MXx9vFi1dnq2mQAqFgmVLF7No/lwiIyMpXrwEu/cdxMnZ+VummmfEx8fj//IlcXGx+L98yf59e7h86SKQUStfJBIhEolYvW4jzVu0JDw8nKjISF68eM6SRQt4cP8eUtcuP3XJWEFQokwMRhkXgDIlCshoGCaSaoFEC5HkP/9KtRBJtP/t7SACkQgQ//uvCCE1GkXkU5QJbzPH13RqhVivYL7MLbdQeQ/7wFzysK9Re9jVfA2SDA9QesAxjkTos2DRUrr37JUZ8zlrZsaXWrHiJYiNjcXH2xu5XE5kZATOzi4UK148c6hTJ0/QpmWzDx6hoaGBkZERdes1YMPmrWpP/Q+CIAj/xt4KIMhBlLdhGflCehJCUkb97AcP7n9UsF+/fo21q1cita2Zq2IdQGpaDKVeQcJD7zJi2BBGjpmEpmNzYh9vJSkpicTERCwtc9eGom5uJEa94eqVy2zauJ7DBw+gCL9D8eIlsLC0xMTEFFmajKTERBITE0lKTCQpOYmkxEQMDA0pV86DYSNGUbv/xly181OIpDrcjXFCluBJYecSIEtj3obT2RLsHhUqkJaWxuVLFwA4dupsloTW4SNHfZNtEomEkaP+YOCgIVy6eIERw4YwYfxY9u4/9E3j5QWRkZF4lC2Z2ZlZIpHgUaEi/+zeR8NGjSlQoABRUVEM6NebDm1b4ejkRIC/f2bDGbFYjFKpRJkQ+NMJdiE9GWVyOMr415hKIggPD8fO3p4KdaojlUiJjY0hJiaG2NgYYmNCiYmIIS0t7avGLlvWnQGDpvLixXOWLVnElZ1T8u1v6ldFEIRcaJz0a7rY1YL9G/ivl+zClRuU/J/6xU+fPkEkEnHk0EH69upOYmJilvOOTk7Y2BQkNDQEP19fXIsWZd2GLfj7v0SWmoqxiQkhwcE8e/qEjRvW0X/gYCpXqZInc1Pz7YSEhDBs6CCOHz2CxLI8IvEvINYBNHSRWLijCH/A1s0badO23QeXPHn0CA0NDcSmxT8yQM4j1jJE074eSouypAWcIO3lYV4FBBAaGoqn501GjByd67sfIpGImrVqU7NWbaKWRLF39y68XjwnPCKc4OB3aGtrU0BPD0tLKwro6aGnp4euri7R0dEcOXyQBw/ugXb+JS2LpDpoOjYn7d0NEBQowu5SpUI5lq9aS7ny5b94/7lzZ7G0smLShHHYFCyIsbFxjtqno6NDk6bNCAsNZcig/nh7eVHUzS1Hn/G9REREsG/Pbo4cPkhCQgJnzl+iYEFbbAoWREdHJ8u1pqam7Dt4hP379nLuzGnG/jkBRydndHV1kUgkVCxfBpHmj+9NVKbGoox/jTI5DCE5DCEtIeOEhh5dfh9I23YdKFe+/Cf/PgVBICUlJUPEx8SQkpKCQqFAoVCgVGb8K5fLMTMzp1Tp0ohEIq5fu8qyJYs4d+5MHs5UjZqcRR0S8w0okyNI892L1KYKIc/PZHrW3xPg70+Htq0AaN22HZWrVMXa2gZjExNue97i2tUrREZEYGRsTOUqVWnRstUHH94A7969w8nBloNHjtO4SdO8mJqab+BVQACrVi5n6+aN6OrqsmzlGnrOPJ/fZuUpglKO7MlaCtnZsWrNeurVb5Dl/MIF85g/Zxaywt3y3ra0eNJeHsVYT8KOXXupXUe1K/ecPXOaUSN+B+CdXsN8tuZfD1lyOIIsFleDMKKiowh48+6L91X2cKeAvj5dunSjdp26/F97dx0exfU1cPw7M7ubjbtCcHd319JSKNJSpZQape7u+qOlblSolxaHYkUKRdribgmSBIjrRldm7vvHQlpeLLKBAPfzPHkIuzN37oQwe+bOuefWrVevSvpnt9tp3aIJBfn5/Ln2H+o3aFAlxymrjIwM3n1nEgcPHmDzxo2kpCTTrFlz7n/wYW69bXyF2iwuLqZZo3qk2903ohcbYejomTvQs/cjSrJA0VB8IlB9IlB9IlF8IlEs/uRu+qTK+vDqyy/yxmuvoAY3wRTRGtU77D/9cyGKMhDOfBTvcFSrZ28uq1J1T4mpefcvqBYPp8Q4ijg65fpqd85VTQbsFSAMHfuur8Fw8ujjT/LaG29VyXGSk5OpX7sGAQEB1KlTlz79+vP4k08TFhZ27p2lKiWE4M9VK/nkow9Y8Nt80LzQQptjimiLYjr9pLlLnSt9G67kdYC7lvaJ0U6Xy0VAWC0wXHg1vu6C9E24SnAmLsXIP4oppju2hNXVbn5Bbm4uEyfcyZxZM1F8ojDX7IXqU71WUX7hhjq88erLZOTkn3U7Xdfx9zYz+b0Puefeqq9sMu2nHxk/7hYWLF5K/wEDq/x4Z3Pn+HH8+MN39O3Xn82bNmGz5dGocWO++OpbOnfpUuF2v/n6KyZOuBNTbF9Moc082OOqZRSm4jyyEtWZx+hrxzBi1GgGDhp8XieEg/ua/d03U3numSfJysqiZctWdOrcha1bt7Bj+7aTFuIyxfTAFNH6vPavomTAXn3OuapdHCt8VDOKqmGu2QuAe+69v8qOExMTw8+/zuS22++kXfsOfPLRBwwZ2O+yzd+qDoqLi/l26td0ateaIYP6c+jQQUyxffBqfivmmK6XbbAOoIW3Lr14/neU89dpPyMKUzDFnL0kYFVSTFbM9YaihbfGlbyWO8ePo7i4+IL153S+nPIZixcuwFx7EJaGI6tdsG7Y8/jog/do2uzcaU0Jhw8jhKCg4OyBvaesWvkHDRo2LPPTE8MwWLb0d+bMnsWc2bNYsXwZX3z+GY8/+jAZlVy9uvHxG9U3//cOqZk5/LV+M2aTmT49u/LTD99XuN1x429HC22O68if6Dnx1fpzQAiBnn8Ux+FFOOJngWrir/Wb+faHnxh+zYjzHqyDO0Vt3PjbOZSUzIzZ82jYuDHr1q2hSZOmvPPuB/y9YQspGTloIU1wpW1E6GXLk5fO7kQOu6e/Lkcyh72CFK8gAFKSk6lRo+pmnY8YOYoRI0dRUFDAkiWLOHz4EIWFhaek4UhVSwjBu5Pf5r13JpGdnc2VVw1l0uT36NO3HyGdqu6m7WKiKAoPP/o4L7/4PI0b1OGuu+/hrgkTeXfyJNSA2mj+F7Y6g6KomGt0R/UJZ9bM6ezetZM7776HAYMGU6tWrQvaN3CPsGuahl7NRv5P0NO34lKd/PzrzHNu+/FHHwBw3fU3VnW3ADh69AgtW7U+6+qqQgi2btnCiuVL2bVrJ9N/mXbS+yaTCZfLRWJiAlO//aHC19iHHn6U9ye/zfx5c2jdpg1t27Xjn01b6d65AzNn/MpNt4ytULuKomCq2bP0aZGavRctrBVqQCyKUj2KEgjdiZ6zHz1zJ6IkG8Uagim2L1pIE1q1rh4j1haLhaFXD2Po1cNO+74pqjN6Thx65k65YJUHyEmnniMD9gpSvMNBMbF27Wo6dOxYZcfRdZ3f5s/j2aefIN9mY/7CU3PmparlcDi456473OU7w1pibnIFK44GseLJOUD1rUxxIfxvTiqWRteSnrWHl196iZdfehEEWBqOuNBdK6UFN8LwCmZ7/BruveduQKD6x2Kq2Yu8HT9esH49/OjjxMXtZ8H8eWD2RwtpjBbSpNpUBdHzDnHzg/dRs2bNc27bsWMnPuffdQmqimEYJBw+zJGkJGrWjMVut/PHiuV88fmn5Ofnk5WVSUREJIqisG/vHtLS0vD398fHx4e77r6Hl159HcMwKCgoICgoiBXLlzH2putpXL82nTp3IT8/n+bNW9C3/wCuGHLlGWvEFxYWYjabURSF9f/8jWEYZGVllb5fUlJCSGgoBw8eqNT55m76DCEECxf8xssvPMeuXQvB5I0W1AAtpDGKd8QFSfUy7DYmDonk26k/YbPZGHr1MO697wF69e5T7VLPziV3+7c89IAfP37/LQ6fCDR/98q+Qndg2BIRriIUr2BU/9iL7tyki5vMYa8Ex4F5DOnTlplz5ldJ+8uXLeX+eyeQcPgwvfv05ZPPvrjgE6ouB0IIkhIT2bVrJ7t27mDu7Fns2bMbEd0HLbh613quToSjAFf6VhSvQEzhrS50d05LuEow8pNwpaxHOAt58aWX0EwmDh04QGhYGG3atqNb9x4UFRYC7lSfqvyQFkIQ1Hw0evY+9Jx4MJwovjFoIU3Qgupf0Ouvfe9PTLjjFt59/8Nzbvv3X3/Rr3d3Nm3dSfMWLaqsT9dfN4p5c2ZTu04dEhMSSl/v3KUrdevWIzgkhMzMDAzDoEGDhnTv0ZO+/fqf9UYiMTGRd/73JrNmTqd7j57Ex8exf98+goKCeOa5F2nbrh3btm5l3bo1xO/fT1Z2FulpaQB4eXlRXFxM/QYNmD5zLrXr1GHK55/y3juTyMzM5O577uX9Dz/2yLkLIdixfTvdrxzn/l1xFblr/gc3Rg2qj+IViKJUfdarnhOHM3E5wcFBjBt/B3dPmEjtOnWq/LhVqbCwkJuuv5bflyxGDayP6heNK20zuIpBUUEYKJYAtPDWaGEtL2jgXt1z2GPu+LlKctiTv7qx2p1zVZMBeyW40rehZGxg174DHn+k/s7b/+P5Z56i/4CBvPLam7RrLx/NVZXs7GxW/rGC1atWsmPHdvbs3oXNZgPcqyt27NSZ5154mcH3/XCBe3pxEYaOY/+vCHsOanBDtMAGqIF1zksQUV7CcOJM+gMj9wB+fn40atSYjMwMjiQlnbTdqGuv44uvvqnSHNwTy88Lw4mRewg9ex9GwVFQTaj+sagBddEC66CYTq0sVZUcictpEWtl/eZt59z28KFDNG/SgPc//IS7JtxTqeMKITh86BDBISEnlYZMTEigRdOG3DVhIqNGX0tGRkZpHfurhl5d6SBKCFHaRtz+/Xzy0Qd8+cXnCCHw8vKiY6fONG/RkvDwcKKjYwCw5dvo3r0n7dq3R9M0rhs9giWLFnLruPE8+PCjVXLDF9zxPveCQ/lH0XP2Y+QdAuP4BEqzLwjDHWCa/VC8AlAsASgW/+N/BrgXHnIWIpwFCEcBwlmIYvZB9Ytxj9ifZXVQ4cjHvu8X1IBaZCRuvyC56VXF6XQS0ngQevp29zXMrwbmWv3B7IcoSsOVuRMjJw4tvA1aUAMU71AU9fwnLciAvfqcc1WTAXslCN2B77FZ3H7n3bzy2hseabOwsJCvvpjCU088yhNPPcOLL7961rxMqfzS09PZtHEDG9b/w6QPvkQUpQPueQmKTziqNRTFOxTVGgZmX/nY8/8RwsCV/DeKZsEUdWo6mBAGrtQNRFvSSU1JoWev3mSkp7Nr105Uv5qY6w2tlkuECyEQJVnukcnjNfSFsxCjMBVUM7iKMGf+TfMWLVm6YtUZ0yOqQmJiIjOm/8KC+fPYsP4fFEWha7furD+kowbWRT0+p6YqOQ4tom+nBixYvLRM298+bizLl/3OH3+uK/eTweLiYp5+4jGWLFlEVmZm6VoWderWJTa2FikpyRyIj8fPz48Nm7dXWcnI/+9AfDxOp5P6DRqUafXctq2a0X/AIN55932PHD89PZ2dO7bj7e1D/QYNTrsAWEFBAf16dWfnzh1079GTQYOvQFEUjiQlkZBwmISEwyQmJJx28aHAwECiY2I4euSI+2euaKi+USi+0ahege6JmIaz9M9wUwaaycSmrTsJCgryyDlWRy6X67RPZV59+UX+9+br6LoOKCjWYBRrKIrZt/RL9Y1GsZQ/jVUIgXDkI+y5CHsOwlGA6huF6l8LRft3jY/qHrBH3/5TlQTsKV/fVO3OuarJgL2SBsQeweFwMG/B4kq3lZmZSddO7Th29Ch33Hk3H3z8qQwWPUgIwUcfvM8zTz2OruuEh4eT5QxE9Y9F849Fsfhf6C5eFFwZ23EdWwuAV+uJJ/2OCsOJM2Ephi2Ju++5h3G33U6btm0BWLb0d4ZdNQTF4o+lwTUX5c972ae30r9PD+68+x6PBWHllZaWxqIFv7FwwXwWLlwEQkcNqIMpqiOqT0SVHdceN5ObRw/hi6+/KdP2ycnJ9O/Tg+ysLHbtO0B4eNmq3tjtdq4bdQ1r16zm9jvvJjomhkaNGmOz2di+bSupKSmEhoXRuUtXBl8xhMDAqs3xF0Kwa+dOCgsL6dylS7muyX17dcff35/5C5eUeR+n08me3bvZu3cP8XH78fH1JToqmrlzZ7Ng/ryTJtzF1KhBu3btade+A23btSc2thbbtm7hjvG3ArDun02nfTprGAYpKSkkHD6M3V5SupiTv7/7/6TL5WL7tm30GfUQRmEyRkEK6CXudBDV4g4YVQs3X3c1z734crWYtH2hlJSUsHvXLvpc+ziiOAOjJOf4E4vC46tdq2ihLVADarvru5v9Tvkdcg8WZGPkH3EvKFWSg7DnufcHUDQweYOzABQTakAttKD6qL4xCKHj2PtjtQteZcDueTJgr6SuIfsICAzkl+mzKt3Wvr17aduqGS++/CpPPfOcB3onnRDU7m6cR1Zi5MYfzzts5X4sLG+Iys1xeDFG3iHM9Yej+bsnIAqhY+Ql0CwwlQMH4vllxuxTFk8CuGJgP/5ctZI58xdywwuLznfXPeLEDcuc+Qu5YsiVF7QvhYWFzJszm7fefI34uDjuvudeXn/zf9Ts86THj2WPn8N1V/fh2x9+KvM+ycnJNG1Yl2tGjqJtu/Y0btyEK4ZcWfr/zjAMVv6xAiEEbdq2Y/HCBXz15RS2b9vKnPkLz9siV4Etb0RP34phz0P1q4Epog2oFoy8w7hS1yNKsgHcI6hmfxSfcLTAeqRu+u60i96BewGlIQP7YfX2Zu3fG8rcl5HDh7J40UL3X0ze7vQWw4niFYwW3grVvyYYOsKei1GU7g4Si9JBt5/SlhbaDFNMd3K3fFHun8l/CSFwOp1leqoguQkhyMrK4usvp/D+u++Qm5sLgJ+fH02aNqNJk6Z4eXmRlZ3FhvX/kHzMvfpxh46daNKkKY0aN6FR48Y0btyE2Fq10DSNgwcOMGfOLObOnsXmTRtPOl51C15PxI1R43+skoA9derN1e6cq5oM2Csp2raYESNH8/qb//NIe9eOuob4uP1s27nXI+1JsG3rVrp2ageAufYgOXG0kuzxcxCFySi+UajWUHf1hPwjoJfQo2cv/vf2u2ecc/Hxhx/w+KMPcd31NzB/X8h57rlnCCFwHvoNI/8IH378GUHBwdSqVZtOnTtfsBtAl8vFlM8+5flnnyI6JoYjzrruiYceyqkVjnzse3/i+Rde4JnnXijXvs898xST3/4f3t7eFBcX07JVK4QhyLPlUVhQQHZ2dum2iqLQq3cfnnrmOfr07eeRvp/LooULGDVyJGhWVN8IjLxEUADNCs4CVL+aaBFtQVHQs/aC4cQoTCkNkCMiIoitVZu69epxy9hxDBw0mEMHD3LVkIEUFxUxfda8Mi+YtHjRQkYOH4qpZh93XrTJyz2ibjjcI9tn+P06kT6BswDFGoJisuLK3OVeyEzz4q3XX6Fnr97UjI0lPDxcDlScZ4ZhkJiQwN69e9i7dw/79rj/FIZBUHAwLVq2YuCgwXTv0fOMN4D/39GjR9m+bSs2m43xt1a/4FUG7J4nA/ZKEELgkzSNRx5/ksce98yI1ozpvzL2putJSk4v8yNk6eyef/Zp3pnkXo3W0vTmalMm72IkDB37zi9QfaNBsyDsNtAsqL5RaMGNyNv1yznb+OG7b5lw1+1odYeWlky7WAhnIXpOPIY9FyNr90nvtWrVmm++/4lmzc+9sFBViY+L4+EH72PF8mWgWtCCG6GFNkXxrlyQ5jy6Gj0nnrT0tAp9QDqdTsxmMyEBvjRs1IiuXbsRHBKCxWKhZ+8+hIeF89e6tfTp26/K8tG3btnCD99/ixACPz8/6tatx++/L+a3eXNR/Otgrj0AUZyJI2k5OPJRvEIw1exZ+hTpv4TQEYVpfPL0cJKSEklKTGT7tq1s27aVZs1bkJeXi4+PDwsWLytzusjsWTMZf+vN9Ordh9Vp9T0SVAuHDWfyP5iKEk+bsz5h4n2898FHlT6OdOHYbDYiQwOrXfB6Im6MvO2HKgnY0765pdqdc1WTddgrQRSmkJOTQ8uWnitZ17y5uwTa/v37ZMDuAXl5eVx/w028+8UsjNx49IwdqDV7XuhuXdyEwafvvsKtt42v0O43j72VD99/lz1JOy66gF3PiXePWqJgbjDSnTMudPTMnezY8Q8duvVDC22OKMnmlqEduOfe+8/rgjENGzViweKlHDxwgO+/+4Yfvv+WlLgZtGrVmseffIY7J60ud5vC0NFz4tBCm1f4w9Fsdk+S692nDzt37uCV1988pa3GTZpUqO2yenvSm8yZNRPFGorQ7aWj0VqNXmihzUDo+GSuJDDQyoiRN/PFlM/O+IRCUTQUvxju/+hEWoI3QnTFXK8Ge3YvApMVS90uBAUF4XQ6yczMJCszE4fDgWEY1K1Xj9DQUAB2bN/OJx99wPfffYMa1JDVqXVR1IoH68LQMfKTeGZcVw4fKiIhoQY7tmecNmBftXJFhY8jSWUijn95us3LkCw/UkFCCJxJK2jXrj0DBw32ePu6y+XxNi83e3bvplG9WnRo2xLDdhgtpCmmqA4XulsXNUXVUKwhvPH6K2zdsqVibSgK99x7P4YtAcOe5+EeVi0trCXmOldgaXI9ml+0u9qNquFK+QcAUZSO68gqDFsCK1euoHePLvy1bt1572f9Bg14+dXXiTuYyJz5C4mpUYNbbhyDK6sCqXZCB93hkfSaW2+7nWNHj7J/375KtwWw/p9/uGHMaFo1b8z2bdvOum2rVu4bJy2kMdbmt+LV6i4sja/HFNbCXWpUCDRNIyMjg6++nOLeqRylMxVFQQuo7b7GuIpwxM8kMjSQAB8L9WrF0LFdK7p36UDPbp24bexN/DLtZwYP6EvnDm1YsWIZppjumGsPrFQFJT33AI59P+M8vIiPPniPPXt2ExEZyR13TeCTz75gweKlbNyyg8RjaRSUuNi6Y0+FjyVJF5tPP/2UunXrYrVaad++PWvWrDnjtrNnz2bgwIGEh4cTEBBA165d+f33389jb08lU2IqyChKxxE3gyXL/qB3n74ea3ft2jUM7NuLrTv20KRpU4+1e7nJy8ujR9eOmM1mXn9zEjc8N0/+7nqIcNhobt3DwYMHWPv3Rho0LP+cgKKiIkKD/DFFd3VP8LuICSHQs/aAAqpvDRSTFcVkJWXNO1wxsB/5+TY2btnh0fKsQgh++fkn3nzjVfLz86lRoyb/e/tduvfocdrtDcPgvnvu5pupX6EG1sdcsxeKueyPqZ3H1qJn7mZfXHyFFsXJz8/nt3lzef21l/H38+evDZsr9fNITU1l5LCr2Lr135vG1evW07FTpzPuYxgGvt5WMJxn/Cw7tPRVPvnoA9JSU/lu+VHUgNqnTU3RbYk4E5a4R+gD6qJFti/dThg6hi0RFJWvX7uFvNxc/vn7L5b+vpiMjIyT2unStRv9+g+gfYeOXP/o1+7a5yfaEQJn0nKMnDgw+aD6RmOu1e+M1zHDbsOx171WhBbSjCP71p5Ut166NFX3lJiIW7+vkpSY9O/Gluucf/31V2655RY+/fRTunfvzpQpU/jqq6/Ys2fPadPWHnroIWJiYujbty9BQUF88803vPPOO6xfv562xyufnW8yYK8gV+pGXOnbsBUUlD7u9YRvvv6KiRPuJOFo6mlr7ErnZhgGY64dyZo/V1EcM/S81Ki+3AjdgX3fNDT/WArSyj9K98eK5Vx1xUDMdQajBV26q/caBck4Dszht0W/n7ZqTkX51+qKK+Uf1MB6KNZQjLxDBHi5WLB4GR06nlob/4RZM2fw0P0TycwpwBzbu0w/e+EswnFwPqIkiyeffpaXXnmtXH01DIM+PbuxccN6unXvwZQvp1boJu+/AhoPw3noN0w1eiJKstGzdmNpcA25e2afdWKmr38Iwp6L4h3mXoE3rBWKb3S588VdGTtwHft3dO6/FZP+67d3r+Oeu+/gQHx86aTbE7p07YbVamXVyj9KX9PCWmGq0Q1F0Y6X6/sZ4bCVvn/X3fegqCqpqSmYTCbCQsP4as4GFM0L4SrGz36QvDz3U6vg4GASjqbKyi6XOBmwl+2cO3fuTLt27fjss89KX2vatCnXXHMNb775ZpnaaN68OWPGjOGFF8o38d5TZA57Bem2RFT/WI8G60II8vPzAVi18g/GXH+Dx9q+nLz+6sssmD+PWXN/46aXyl7/WCo7RbOgBTdEz9zNzh07aNmq7PM4DsTHc/MN17lX7QysX4W9rD6OHT3qsbam/fQjrpR/0CI7Yo52jygbQfUJdqynZ7dONG3WjGbNWxAREUlkZCQREZH06t2H+g0aMGr0tfTs1Zu6zbrhTPgdahtowY3OfkBFQZRkAdCoUeNy93fBb/PZuGG9Z8tgHg+wVZ8IlMB6GIWpOA7MpW+v7tz/4MMMG34NZrOZjIwMQkJC0DSNq68cjLDnAiCKM90TTHMPovhGY6k3tFyDUabwVijWUPTsPajWEFSfUwdX9Oz9DB7Qly5du3H1sGt4b/Lbpe/1HzAQXdfRNI1vvv+J7j160rTzMPSMbei58ShmXzBcJwXrALNnzSA6OobIqCh0XSd+/3707IPuGumaN7GN61CzpiAtLZWx48bLYF264IQQlGFcuNxtAqUrkp/g5eWFl5fXKds7HA42b97MU089ddLrgwYN4q+//irTMQ3DID8/n5CQC1fdTAbsFSBcdkRRGlpsM4+1mZ+fz60338DiRQsZMHDQBa/vfLF6/73JvPHaK7zy2htcedVQkAF7lTFFtEfP3s93304t1yJC/3vzdXx8fSkKGnzJl5czClMByMnNoaioqNJLt8fHxXH/vRNQgxuftMqs6h3Kru3xLP19CfPnziEh4TB79+wmPS2NrKwsQkND2bZrH6GhoURERGCuMxhn0gqcSStQLAGovlFnPKZi8sZUoyeuY2vYvHkTg64YQlhYWJn6K4TgxeefoV//AQy+Ykilzv2/DFuiexVinwgURcXSeAyGLRGTycbNN1xHVFQUgUFB7N+3D6vVSpMmTdm2bSsAptg+4CxGz41zL1BTmILj4Dy8Gl1brj5o/jXQ/GsgdAd69l6MvEOA4s5DN/ug2w7ToGFD+vUfwGuvvATA8BEj+fqb7/H19T2lPXON7mghjdFz4sBwgmIC1czqeZ/Rtl07XC7XaQeIgjveV/r9xo0fl+scJOliFht7ctGCF198kZdeeumU7TIzM9F1/ZSshcjISFJTU8t0rMmTJ1NYWMh1111X4f5WlgzYK2Db7Gdo2ugrHrmpq8fanDn9VxYvWsjbk9/n3vsfuOQDmarw6ccf8fQTj6FFtueNmcd4Y+Z9597pAnGPEAj3ZLeLlGLyQjFZMQyjXPuFhoW59/FQjfDqTAttjrDn8PQTj/P0M89jimhL6p6lpw3YzkXXdcbdciMxNWqQ5NXrlGtEWJcHj39nBZqCuSnUBEtkIZl7f6Z2s56l6Uu5mz7B4XDQqnljjubEnTVgB/dkWxB8+smnfPrJp2ghTdi2ZvY5U1v+XLWSfXv38r+33/XoNc0oTEH1q1H6/0dRFLTAOmwuAEvjGqQdXU1qqntiqyukLTsS/s0ddx1Zxa3jxvPL1vYYBck4D85FFKVjFGWg+pSvMpcwnNh3fQ3i3/8DrvQtmGK6Y+QfJS7XXhqsv//hJ9w14Z4z/hxyzhFsn+lp7rn2k6QLqSpH2I8cOXJSSszpRtf/63QrzJblujRt2jReeukl5s2bR0RE1a0mfS4Xb7RwAYWGhWEymUpzBT2hT99+1Kpdmzdff4WDBw54rN3Lga7rPPrwgzz68AM8+PCjmKI6X+gunZEraw8lO7/Gvv0z7Du/xr5/Bq7UTR6/oJ0PRmEqoiSX2HIuS37zLbeSkpyMYUuomo5VI4rJC3Ot/lia3oQWUBdX8j/UrhFJt07t6dmtMwP69uLXX6aV6d9/xvRf2bJlM19+/V250jcUsy+mmK7o2XtZu/bfvGtN0zCbzQi95NxtKAqm8NZ4NR+LKbIdet5BWjVvzNibbzilXODRo0e5YmA/woP9GTKoP/UbNPDoxHwAdCfu1Y1OpXqHnrQ4mp6XgCmiLVpoc1RVZfAVQ/ju26kY+Ulo/jXwanEHppiuKBb/Mx7OsNswClPdv/OGjit9K3q+O81JOZ4Oo1gC3WleAXXAmX/SyqPf/vAzd98zUQ7ESJedEwG7p78AAgICTvo6U8AeFhaGpmmnjKanp6efc67gr7/+yu2338706dMZMGCAZ34oFXTpD3FVgXffmYTJZOKRx57wWJt169Vj9br11KkZxaqVf1R6Utbl5PFHH+aLzz8tHcGa0un+894HozgLo+AoRv4xjPwkLPWHo/pFn7pdQbI731RR3e+rFlyp6wFxUorDxUDP3g8Ibht/R7n2q1W7tvsb4/IpXap6BaLW6ospqj3PjG3Jwfh4hBAcPXqEcbfcyKGDB3j62efPuL+u67z5+isMufKq46tm/liu42uhzdGz9/HAvRNYvnINISEhzJo5gwPx8VjKkQqimLwxRXVEi2jL23e14eEH76Nx4yY8+/yLACQmJtK+tTswfurZ56lTpy6DBl9xzpGv8tJCm+JK/guXNQRTZLtT3w9pjJ6xDWHPc6e8xM1Ai2jL4CuGsHjRQvdGruLj5+SFKeLUNk4QugPHvp9OGkUHUIMaoPnXxKvhyFNG6lyZu0q///TzL+V8JEm6gCwWC+3bt2fZsmWMGDGi9PVly5YxfPjwM+43bdo0xo8fz7Rp07jqqqvOR1fPSgbs5SQc+bz/7tc88NAjZV7Brqw2rHfXcm7XXtYKL6uvvpjCZ598hKlmb56auoenpp7fYF23JdEuIpP12/7GYrHgcgn3Qjq5B04bsJvCW+MyHBhFGRi2ROrVr8+hXHClbkCLaOuxpeTPB8XsCwh6duvEH3+uK/NCXzt37HDv7122POhLiWIJ4NVfEoETI+QN0CIymPTWG9w8dtwpOZknzJj+K3H795MgWp2Us1zm4yoK5ti+7N03mxoxNTBFtEHPO4ziG+Ve/Km87akmHv98IwQ357VXXmHU6Oto0rQpPj4+FBUVcf0NN/GoBwc0/j9bwlpefflF3nz9VRD6KTe7imrGUv8a9Jz96LZERGEKCMEfx2pjrnslwm5DPddk2xNUkztYVy1g/Ps0wRT1bwnJ/z9ybuQdQvWrQVbKAaxWa8VPVJIudtVk4aRHHnmEW265hQ4dOtC1a1e++OILkpKSmDBhAgBPP/00x44d4/vvvwfcwfrYsWP54IMP6NKlS+novLe3N4GBF2a1dJkSU07OlA0EBATw2BNPnXvj8rTrdPLma6/QrXsP2rVv79G2L1V79+zh8Ucf4q6778EU1uK8Htuw5+I4tBDnod9QVZXps+aSmpmLuWYvAPTsPdjjZ+M8uhqhO0v3U33CsdS9Eq9mY1m6YhXdu/fE19cX1b8WKBVfMOVC0CLbYarRgwPx8Sw5MWpZBkmJCYA7eJXAFNkek8nE999OPeM269asRrGGVii4PkH1DsWr6Y1ogXVwpW1CFKWdFHSWlW5Lwr7nB+y7pqJn7gBVY8rnnwKQmJCAEIJFC3+rcD/LQlEUXnjpFV58+VVcqRtwZZ1aWlSx+GGKbI9Xw5F4tZ6IuUb347nudTFFtC7z/BFFUVF8o08K1lX/WFTrmWucC1cxilewDNYlqZoYM2YM77//Pq+88gpt2rRh9erVLFq0iNrHn/impKSQlJRUuv2UKVNwuVzce++9REdHl349+OCDZzpElbt4hvOqAaMkGyNnP0+9/yH+/mfOdzwbIQQzZ0xn5YrlOJ3O0lysuLj97Ny5gxWr1nqyy5csu91O+869QHjz3d8GigcXpTkboTtwpW1Gy91FTGQkb02ZzshRo0tH2LYtncJTTz5GcVERVm9vFsyfh+Idhin05IpCiqIw7NEZgC+iwVjMKBdhfquC65j79zXk+DLrZZGUlEhoaCiFmudKol7MFM3CyFHX8uMP3/H0s8+fdkEhq7c3wT6CjfOeISYmpkKj7OB+KmKu1R9TzT7gKqzQTZORdxDhsKGFNEHP3geGwVdffI6qqhyIjwPgy6nfVah/5fXUM8+xd+8e/lq3lt3rlhDZ/ZHTblfZ/1uWBiPAWQCKilFwDMXn7JN0UbRTUmgk6XJUlZNOy2vixIlMnDjxtO99++23J/191apVFTpGVZIBezm4UjeA2Zfxd9xZ4TYMw2DsTdcD0LVb99IPkoiICH6dOYdOnavvhMnq5KUXnkPYc7A0HH3e0kiE7sSx/xeEs5AnnnmWq4YOo2mzZicFA/Xq12f6zDkIIXjqicdQVRXV++ypIhdzpRiAMdff6C6hWUZJiYnUqlWbvRffPNsqc8ut4/j+u2/4fclihlx5aq7kE089w4xfp9GkQR26dO2GK82OFtoCxVSx3HBF1aCCTzhMkR0xCtPcwTqgBtbBS0/j048/xGq18u0PP3P1sDPnhXraU08/R/s2LXj91ZfLXPWhvBRFgeOTUs9Vt164ShD2PPh/lXeEEOTm5pKUmEhmZgYtW7W+oBUnJEm6uFzckcJ5pOcdxsg9iCmqY6UmUGmaxqeffwm4V7pbsHgpK1atYeac+eUKei5nmzdt4oP3JmOK7lzuMmyVIlwIZyEIg3cmvUWPrh2pX7sGmzZuPGXTaT/9yIfvv8ukd947v308j05UeRk3/vZyBUlJSYnEnph4KgHQvUdPevfpy2OPPHjSapgnhIeHs279Zv739rsEBgbiSt2Efe+PuDJ2nPcKQ4rFD0vDEaXVUURxOjt376dps2bUqFGDkaNGn9f+NG3WjJdffZ1Jb72B48AcjOOLI10ohi0B9BIUryB++O5bnnriMbp1ak9UWBAxESF06diWoUMG0aFNC+x2+znbk6SLWVVWibncyID9HIQQuLL2YEpdybBrRpAbv6zSbY4bfzuvvzWJ9ya/zRuvveKBXl5e9u7ZjRACLaz1eT2uYvLG0nAUim8ULlMg5jpDyC108r83Xzsp9y07O5vb77gTNbgRz30fd177eD4ZtgQUr+BylewL7ngfK1ZvYOG6Q1XYs4tPSKf7+Ts1mkOHDjPprTdOu02NGjW45977mDF7HgcTEhk39iZcx9bgTFqGMPTz2l9F88Jcqx/gnohfr3YN4jK9OXjwIL/8/NN57QvA408+zYLFS6kX7Uto3soLGrQrFveENNfRP7nrjtv44KPP2J5QSJFfc8y1B2GKdj9FbdykKSaTfMgtSVLZyID9HPT0LbiOrOSaEaP49vuf0LTKTwxUFIVHHn2cMdffyO+LF122d4sVdaIsoCjOOMeWnqf6RGBpMBJLo+vQguphCm/Fgt/m07h+bXr36MoLzz1Dh7YtQQjMMd3Oe//OK9Wdg16e0XUhdIQjH8VcsTkglzLVGowW0Y7Jb/+P5OTks24bExPDZ198hbn2IIyc+OOrbJ5fqjUES8PRYHYvAiVKMlED6/Haqy+xbu3a83Zdc7lc/Pj9d/z84w9MuOc+rFYrjgPzEa5Tn1RUJSEMjKJ0wACz379v6HZMoc3dpSOFgStlPQMGDmLub4s88nkiSdVaVYyuX6YxkwzYz0E4i0A1M/W7H/D29vZo22PH3cbOnTv4durXHm33Ute9R0+ioqPRc+IvyPEV5d8JoqaIdsQfPsIPP/9KUFAQn3/6MX369MPSeMzxsoeXLkXzOuOiO9nZ2Tz2yEPMmT2Lr76Ywo7t2wEw8o+B0FH9Ys5nVy8apvBWOJ1O1q5ZXabtteCGoKhlWvyoKqi+kVibj8Or5Z2Y61yBKboLVquVAX170r9PT7Kzs6u8D2NGj+DO28exZcsmHn/0IVJTUsBVhCvVnaomdKd7wSMhEIaOPX4OjsSlHr2hEELgPLwYR9wMHAfmguFC9a+Fud5VIHScyX+5F1zK2g3AlK++qdBqt5J00RFV9HUZkgH7WQghaFfPm969elRJ+/36D+DWceN56olHmfbzT6Snp1fJcS41mqYx+tox6LnxCA9UYhBCxyjOctdrrkBqQcsRb3HnpNWsTquPs/5Y5uwJRPW6DEoWmn3BVczff/11ylu/L17EJx99wI1jRnP/vRPo3KENPgHhuFL+AbPvZVmDvSwUkzf16tfnn79P/ZmeTs7Gj/H38+XVB4ZVcc/OTtEsKKoJ1RpMorU/5npD+Xv9Zq6+cjBHjhyp0mOHhYUTFhbGb4uWooU0dc8BMHmj5x0G3KlbjvhZ2Hd87i6zWpiMkROPJz/1hT3Hnbtu9uXd9z+iRnQYRn4SYSVbeXPSO6j2DJwJSzDX7AMmH0YOu8qjK2VLknTpkwH7WQiHjY0b1jNh4skl1LZt3Yq3WcHbrJCWllapY7z19mQaNGzE+FtvpkObFqcsnSud3pjrbwRXMUZ+0rk3PgtX5i7sO77Esf8XnIcW4Exa4aEeXtqE7sR1ZCUAI4dfRUpKyknv7969C8y+WJrejFerCZjrDEGxBoNqxlyzz0VYwvL86dmzN3+sKPtcmdhatdi2ZUsV9qh8FEVBC6iNpf4wUlNT6NCmBdN//YVVK//gu2+mMmf2LJYt/d1jI9wvv/YGXlYrw4degW5LdL/oKkYLbgyAGljP/ZowMPIOoPjGYGl6i0erMylewWiRHUB38shD93Ps6FEA3p78Pg89/Ch+fn4YtgSMwmQs9Yayffs2pv8yzWPHl6TqSk469RwZsJ+FcNgAaNmyVelrW7dsoWsn9zLW/v7+BAefefGMsggKCmLdPxtZsuwPMjIy2L1rZ6Xau1y079ABxTca55E/Mey2CrXhytqD6+ifqL5RaBFt3S/qsmpDmfwn2NENgztuG8ue3bspLi5m965d/PDdN6h+NVC9AlFUDS2oHpbag/BqOAItsM6F6/dFYOToa9m/bx8PPXAfhnH6J0glJSWsXbOatWvX0KZNO+bPm+ORp02epPqEs3nbLjp36cqtN9/AkEH9mXDX7dw4ZjTDrrqCaT/96JHjBAYGEhEewZ7du8FV5H5R6Ojpm3GlbkRRNbyaj8Nc90osjcbg1XDEaZ+A6flHcBxeglFU/rkxiqJgju6MV8vb+X35SiwW90q2d99xGwP79f53NF3RECXuNKHi4mJKSi5MKpMkSRcfGbCfhZF/lMDAQGJr1QLAZrPRrbN7FdLZ8xaQnm0rvTBXhsvl4vPPPiE4OJiOnWQd9rJQFIW4XRuoGxuBb+oCnCnrMUrKly9bmuPqKkJP3+rOOa09qCq6e8lRVA1Lw1Fooc0pDu3JH3+son2bFoQE+NChbUsy8pyYY7pf6G5elMY8twBTTDemfPYJ27ZuPem93bt2MXzoEIID/BjYrzcD+/bi559+wOHbsFrW86878DlWJZ08qGE2uycrb9u29XS7lMmnH39U+pQzJiKErVv/fcLw6ONPkngsjaeeeQ5X6gaMwlQUsy9aYN2zpqrpWbsx8g7iiJuOqOCNu6KoDH9sJkqT8VgajMQe2Iq/diaj+tXEXGsAptCmKNYQUDSefPwRmjSoQ2ZmZoWOJUkXA0EVjLBfpknssqbUWRi2BEbcMLo0KH/5xedL3+vS1TMVQOL272fihDv55++/+HHadAICLoPcZw+pWbMm6/7ZxPPPPMXXU79FT9uEKaYbphOj5edgCm+Nnr0P4bChhjTDHCtTNcpD9Y1CPb44jNbsZoQ9D8Oe585lDqznXpxHKjchDJTji/T8d6L7D999y7333EW9+vUxRXd1T9xVNdAdpTXRqxvnsXXoGdsAiIyM5NXX32LPnt0YhsFjTzxV4XY3rP+n9Pv/jlKbzWYmv/0/Vq38g9feeIvFCxewfedvaCFNUP1rovrXOuPvpRZQByP3IAD2PT/g1aJ86wv8l6JqKH7RqH7Rp77nHYa59gCcCb9TUlIiSztKklQmiihDMpDNZiMwMBCvlneiaJUfUb5Y2Pf9grdazMDBVzBvzuzS15s1b876TdsqfaFNTk6mQ5sWhIaF8fGnU8pVz1o6WWCLG3Ds/wXFKwivpjeVa9+SXd+AqwjFGoI5tm9pECpJ55MwdFzH1qDnxIHhBEUjJT2ToKAgkpOTad64PqOvHcPHn00hqsejF7q752TYc3Hsdddkr1evPnaHHcMwWLbiT+o3aFDp9vPy8pj+yzRmTP+FDev/wW6306ZtO64YchWLFs5nx/bt3HDjzUxfttP9M3W5J6NqwY1RvAJQNCuqX8xJ1ZxcqRtwpW4s141/eTkOLXSvYWDxZ9uWjTRq3LhKjiNdHmw2G5GhgeTl5VWrAb8TcWPAtV+gmD1bYU84i7HNuKvanXNVq37PUKsRc81elFhqMG/egtLXRl17HYt+X+GRUZGNG9aTk5PD3PmLZLBeQbm5ubz4/LM44qaD2a9iKS3HUwlESTZGUeUmEUtSRbmS16Fn7+WZZ55m0e/LOZqSRlBQEABpqamUlJQwfX3RRRGsAxh5CaXfJ2TqZAYOIDWriDGjR5wxN788AgMDufPuCSxdsYq0rDwWLlmGy+nkrTdeZcf27ajBjZk27WcGtI/h8OFDbN62iwl33U64KQ1S/8KZuBR73EyE4Spt0xTVCWubeysUrBuFabgyd6HnHS5NqRGOfOz7fqFk51fu0o5CIHQHUVFRFOTnymD9DII73lf6JV3c5KRTz5HP4s5C9YvB4heDMJwocd/z8KOPc98DD7Fk0UL27duLy+Vi/O130qBhwwq1v3LFcqJjYqhXv76He37pS0pK4uMP3+ebr7/E5XKhRbTDFNkO5fhiPuXh1fQmMJwIVzGKV+UmEUtSRRnFmagBdXn+xZdPeS8kJASgwrnVF4Jico+qKT6RaOGtUcy+mGP7snv3HJb+voQrhlxJRkYGmqaVnl9FeXl50a//AP7ZtJXEhARadr0KIzce1b82a1b/SbNG9diweTvvffAR733wEUIIglpcjyN+Jq7kvzDX7FWp4xsl2TjiZ570mqlGTxRLAKIkCzWgNnr6VhSzP6bwVqQmLOG7b6Zy2+13VOq4kiRdPmTAXgaKasYurLz5+qu8+fpr/Ld+73uT32b5yjV071H+Wu2LFy+kU+cuMm+6HILa3YXr2Fr07H2gWdDCWmAKa4m5EosUKaoJVFNpgCFJ51vOxo+5duQRMjJOX6EkPz/f/c1FNLIkDAegIIrSSlMpFd9oFJ8IRt14F5YG12CPm4UoSsWr1d3kbv68dN/CwkJW/7kKu91O5y5diY6OJrjjfei5hzAKkzm8fRnh4eGnHFPTNOrVr0/O0R08+tAD/PHHcg4dLEJRFB5+8D4mTLwPi8VCQEAgB1Z9zI1j3E8udjkrd66KyQcUFcXsx6o/ltK7RxduHtSIaZtU0LxQvILp3qMWBfk2HnjoDpYtDWXihDuZOOFOAF5/axKPPPp45TpxCcnZ+PGF7oLkKVWx0NHFcxn0KBmwl5EW3tr9weMTieofiyN+FrjsgEHC4UMVCtjHXH8j70x6iwW/zWfo1Rd24ZOLQUpKCo4DcxD2PEwx3dFCm15WcyqkS4swnCAMFM2LxMREFi9ayFuTJp+0jWEYTP3qS1547mkw+VwUK8QKoeM68id69t7S1xxxM/BqNQFF1TBFtMWZ8Dv2/dMRxe4bFOfhxTz5+KNs37aV+Pg4ko8dO6nNOnXrYk8rQhxPWWvZtCF333MvI0ddS6vWrU8Z9LBYLHz0qfsGIDEhgY7tWrHyjxUsX7a0dJvg4GBatmpNUVEhlP/B3EkUkxVL4+tx7JvG119OoV37DgC40re4S8XqJQSH1Gbd2jXcftvYU/Zv2rRZ5TogSdIlTwbsZWQKawG0+M/fW+JK20x+kbPC+ewvvfIacXH7ufXmG1i+cg1t27XzUG8vTW+9/irCWYil4UhUuVKmdBEyijIwilIRReno2XGAgeITSbtW3xAcHMy48beXbpuYmMjNN1zHpo0buGXsOKZvVtxPg6o5PXv/ScE6AJrVPZFW1VAD62Oq2RujIBktpDGKyQfnkT+YP28OAf4BpwTrAH6+fqhWL5TghmiB9bmhjz9ffP4pk956gyuvGsqTTz9HQEAA9erXP6XUbu06dViybCWvvfoS27ZuISU5mYiISFwuJ6v/XAWApWGTSk8219O3AILikmK2bN5E3br10NM2u08/tAXvTH4bh93OsOEj8Pb2xj8ggJYtW1G7Th35lFW6ZAkhPP5k8HLNYZeTTitIsYaA0MnJyalwG6qqMvXbH2jarDkD+/XC26zw+KMPe7CXl45vvv6KaT//iBbUQAbrkkcIZyGOg7+h29yr5QrDxf2DAwhInoHX4R9pLNax9psJFWpbzz/GqBb59I46xMDax7ixvYPhTXJwxE3HSF5LlE8BDRq6566IojQm3vcA69Zvxs/PD3BXQBkx7Eo2b9+LpcEIZuzwRTH7eObEq5iRE1f6/QsvvUKdunWPv+HOO1EUBVNYCyx1BqGFNMGV8g8IQePGTUjPSKdxkyYcSDiKrcjBN9//ROvWbdi1ayd1Q3VuHdKMz54cyDerbBTXuh5z7YEsWrqS3j260LZVM4L9vRlz7chTFiRq1749s+f+xsGEo6xetx5VU8nVg0rfD8pbw/2DA3ClbUbPP/WGoUyOz5+ZMXMuKCZ+221BDXSfu+PgfJp1HMDSFX9y/2MvEhkVxdXDhlOnbl0ZrEuSVCayrGMFOY+tQ8/ZT36+rdIVY9LS0njmycf5+acfuO+Bh3h78nse6uWloaCggKiwIIaPGMnCfQEoJuuF7pJ0ERNCoKdvwZW+DfQSQMEU2wcj7zCGLYH7HniI6JgYPnxvMmlpaSjeYZiiOqMG1EZRFIQwEI5896qaJm8Uky8YDvfCXc5C9LzDGHmHaN68BfUaNMBht5ORkUFxcRFjx43n1nHj3YuwdWpHzdhapCQfIyk5/aQ+jh4xjLVrVlMcfRWq9eKaCK3bEjEK09DTN8N/Vl811xmCFlTvpG2dyX+jZ2xHC29FvzYRREfH8NyLLxMbG1u6jRCCVSv/YM6smaxdu5q9e/YAoPjGYApvjRpQG2fiUozCFHfpRmDJsj/o3acvDoeDxIQEGjRseFJgfPu4sUybswzFKxAjZz8AdevV4/ChQ4CKV6s7y/00QwiBnrkDozAVU3RnVK8g9+vOQlzpWzFsCai+0RgluVCcxh133s2VQ6+m/4CBpYtJSVJ5Vfeyjr4jPquSso6Fc+6pdudc1ar/89VqSAiBnnsALah+pYP19f/8w+233cLBAwcICAjggYce8VAvLx0b1v+Drus88+wLLLrt83PvIElnYeTE4Ur5By20BVpEa1zJf+E6shJUE5PeeY/7H3wIgLG33sbvixdx5/1P4zy8EMUnEsXij5F/9Higf3qKdximmn3YsGUFqnrqQ8z8/HzGjLoGH19fRo2+jtdeeZF1a9dSs2ZNDMNg/fp/WLjgN37+dSbj31xZVT+GKqMF1C79evH2TuTm5DD5s59RrEGl2wiho6dtRU/fhhbZHnN0J+YvPP1EQ0VR6NuvP3379QcgMzOTel1uxJW5C2fCYnclFocNgE6du2Aymdi8eRMzfv2FWbNmkJuTQ7fuPZg2fRYREREABAYFgeHEXLMnLpMVPWM7x44eRbGGIOy57psuWxKmiDao3qFlOm9FUTCFt4bw1ie/bvbFXKMH1Ohx/NwNRrUoYNrPP/LlF58THh7OwEFXcOPNt9B/wMDy/KglSbqMyBH2ChC6A/vOr9Ai21NwdGOF29mwfj1XDu5Py1atuff+B+ndp+9pKx9c7oYOGcQfazZiaXKjfHwsVYoQBo69P3PVFX2YMWvu8dcEB+LjiYqOxt/f/zT7CH5fspivv5xCZmYmPXv1plfvPkRFRZOZmUFKcjJWb29atmxFaFgYwcFnHhF3uVwERtTHKEzF0nAkisUfR/xsREnWSdup/rUw1xt60f++G/ZcnAcXoIU0Rotoh6JqCCFwHJiLKEzm8Sef5rkXXjol77yspv/6Cy889zSJCQlMvO8Bvp36FUVFRaCawOQLjjz3hqoFNC/++Ws1rdu04dWXX+SNt97G2mK8u58FKei5B9DzDqNFtEU/trp0P9UvBnPtgR7/7BNCIIoz0XPi0DO20bZtO/7asNmjx5AufdV9hN3nmk+rZIS9aO7EanfOVU2OsFeAcrycoJ65E8MwTjuKdi45OTmMvfl6mrdoycIly/DxuTjyU8+3FcuXsWL5Msy1B130wYt04Rn5RxGOPB57/KnS1xRFoWGjRmfcR1EUrhhyJVcMubLSx3/kwfsx8o9irj+0dOTW0nAkRmEqKAqgoCiqezT/Evh9dyX/jXDk4UrdgJ69z50qElQfUZwJQNNmzSscrANcN+Z6rhtzPU6nk1deeoGioiL69R/AusxGoNtxHv0T1RriTps5sorePbrw1qTJtGzVGlzFCEcBisUP1S8a1S8ac82e7obtOeiZO92pTrYEjIJjaMfz0StKGC707H0YhckgQPWNRPUOxxTTBRSVtHS5aJt06ZGTTj1HBuwVpAbWRc/cyYH4+HKvVme327liQF9seXn8vmylDNbP4pknH6dZ8+YcNMnFpaTKOzFKun/fXjp36XJej71xwwa+/OJzTDV7o/n/m6OtaBa0gFrntS/nixbaHCPvMJh9EQ4bzsRlaCW5WBqNxpW6nvG33kzjxk1o1759pY5jNpt55bU3yLfZ+GXaTyh1G4PJiqXO4NJtLA1HclsPMw8/eB89eroXShK6HQU/jOIsFIsfiuYFuBc9QvNCT9sE4B55r0DALlx2UBQUzYIz4XcMWwLgXkzKlRvv/t6/NjjyaNm3a2V+BJIkXeJklZiKMnTAvcJeec2eOYMdO7azYPEyatep4+GOXTp0XcfXz489u3djHK/kIUmVofpGoYU04cH7J/LRB+9jt9sxDAOXy3XunStp/rw5hIeHo4VePjW3tYBamOsMKq0QA4DhQLUGY649CMx+dO/eA//YLjgcjnK373A4KCgoANxPQgYPuZK8vDxcGTvQ848ijH//XRXVxLd/CUxRnVi7ZjWY/VC8AnBl7cax/xcccbP+3VZRMEd3xlxvKCgaRvZeSnZNxZG4DOEoOGuf9Oz9OA7+RsmOKdh3fYUzYYm7TcuJdCsFUZJdur3IT0TYc5kw8b5yn78kVXuiir4uQzJgryBhzwXVRK3atcu97+zZM+ncpWulR5UuFUeOHOGO226lfp2axEaHExESQJCfFT+rib//WufeSOgXtpPSJcNUszfj77iLJx57mLAgP/y9zQT4WLhhzGg2bdyI01nJZS9Pw2az8f23Uxl+zUgU5fK67GpBDfBqcgOWRtdibXOvewImoCgqlgbD0YIb4krdQLdO7UlMTCxzuy6Xi55dO9G4fm3+9+brbNu6lSuGXMnwESNxHVuD8+A8nIcWIv5TqQZAi+yApckNeDW+HkU1Y9iOuPtzvKrLf6neYZhqHx+ldxW7JyxnbMew552+Txk7cSYtx8hPguM3C1qEe30Nc81eWNvci6XhKLTwVpjrDcXS9GYUayiY/Uon1UqSJJ2OTImpMHd+aUXyTKOjotm3d4+nO3TRsdlsTH77f3z4/rsEBAQwdtx4AgICsFi8sFgsWK1WQkJD6dCxEy2uefNCd1e6RCiqicnvfcCdd01g9Z+r0DSNwsJCPvrwPXp264Svry9PPvMcjz3+pMfyyL//9htycnJ44uln+XHk/zzS5sVEMfuimH1PeV31CkKt2QsttBm2/L8Zf+vNLF3h/jc5l/z8fHbs2A7Ae5Pf5qUXnuOKIVcy9bsfWRIXiCtzJ3raJlzH1mKu2evfviiKex2NE33wi0bodoQjD92WdFJ6kn3fNNAdWJrfipG1B912BD1jG3rGNtSghljqDDq5U8IdpKtB9VF9o9FCmpSm2ZQezzcS1Tey9O/mOoNx7PuZeXPncN2Y68953pJ0MZE57J4jA/YKEo48d+WBChg4+Aq+/OJzDh86RN169c69wyVox/btDB96Bbm5uTgDm5MX0Y6Pl+YD+afZesX57p5URYQQCHsOoigdzH6ovlEXZPXO4I6nph+I4KuwWNMpyT3IC88+zepVK3nplddp36FDpY/31FvfYijetLoMg/WyUL3DSNPbc2TdHIIaDiD/0LnLWQYHB9OmTVt2HEinpPbVmPMOsmTxIq4aPABH/IHSUo+c44mGKbw1euZuhD3HXe7zv/MJdLu7CZMPpqhOqAF1ccRNd792mhsQU0RbTBFty3jWbqo1GMx+fPbJR9jy8rjx5lvkvCZJkk5xeT2b9RChO9Cz96GFNq3Q/j169kJRFHce5f8z/ddfmPLZp5XtYrW2dcsWhgzqR0xMDXbsicMc3UWWC72ECWehO683cTn23d/i2DcNZ9IKnAfnYd8xBVfaZlzp2zAKjl3QkRNF1VB9ozHX6MGc+Qs5cCCeHl070rNbZ379ZRqGYZy7kTNQfSMRDhuOw0tOSdGQ3BSvIDB5I4qzzrntCa+8/iZGQTKutE1owY24/Y672LVrJ4pPJOa6Q/BqeUdpCs5Zj328Ys//D7Ytja/HXPfK0jQm1Sccr2Zj8WpxO+Ya3ct+cudgju1DXl4u9987gZ7dOrF82VKPtS1JF5IQokq+LkeyDnsFvHlbUx575EH2HUigZs2a5dpXCMHyZUsZNuwaUM0oJivCWQCKiqKY3CP3QFZe4SU5ymK322nepAHJ2Q4s9YahmMo/aVeq/oSh89qtTfhm6pfs2b0bgNat29BvwED69R9Ai5atqBsbXbq9j48PRUVFXDHkSlalVK58nqcIYWDYEt3lW/OPoHiHs2jeL/Tu07fcqTJCCKLCgrDZbFia3IT6n0WEJPfPp5GxlozMDJYs/YPGTZqUed8Xn3+Wjz54j137DtB8+BsIIcr/7+MqxnlsHeh290i6z6nrYQghECVZKF6BIAxcyX8BCqaaPVGUc6fwnLMPQiAKU3AkLsXPSyEtK69CJYOly0t1r8PuNfSjKqnDbl9wf7U756omU2LKSRg6706eRGBgIHNmzSRu/z4WL15IcFAwderVIzgomKDgYIKDg+nYqTN9+/VH0zR0XWfe3Dm8/dYbbNu2FUy+KJYAVK9AlMC67jtGw4FRmIooSqdd6+a8+/5HXHnV0At9yh71/bffkHzsGObGN8hg/TwQugOjIBlRkoUW3BDFcvqLmyttC8JwoFgCUb3DULzDKpy/bRRl4ExawVNP5DLq2ut46pnn6dO330mLggkh6NS5CxvW/8Oc+QsZfMUQ7rvnblauXAEBZw7YjaIMREk2qn8sirlqb2gVRUULrIsWWBejIAVn8jqGDOpPw0aNCAsLx+l0EhYWxp1338OQK686689LURS++Ppbrr92JHr6FtRa/aq07xejXbt28v6Hn5QrWAd45LEn+HLKZ0x683Xcdewr8nurYOTsB8Dwr3VKwC50J46D8xBFaWiRHTBy4ksHV7Tghih+Ncp1NKM4Ez33AKbwNigmK4Y9D+fBeQiHOyXQLywap9NZoSpkklStVEEOu8fbu0jIgL2cjLyDHElylxh86YVniYqOZsTI0ZQUF3PkSBJxcfvJzc0hKzOTzMxMoqKj6da9B7t27iBu/3769uvP4qUruObxWWf8YDHsuTSsmcGoa65m6LDhvPPuB9SuQDWa6sbhcPD2pDe5dsz1zN935tUgJc8QLjuOuOnHc3lVXJk7MYW3RvWNQfEJO2lU0JWxHfQSOJ6uoVj80UKaHF+d8tyXCaE7MYpS3SPSGTtRrMGs+2cTrdu0Oe32iqIwb8FibDYbtWq5c4Z9/fwoLipC+DpRNPP/a9+B69ha9Oy9AGjhrcuU6uApql80loajmPHGMObNmY3dbsdkMrFnz25GXXM1AwcN5vMvpxITE3PGNoZfM4Krh1/Db/PmYYot/yj9pUxRFBo3acKPP3zHbbffgdlsZsXyZbz68osoisIvM2YTGRl52n0DAwN59ImneOn5Z9Ea3XDGm9KzHt9kxVxnCMKei+IXgz1uBqawVmgh7jU29Jx9iCL3wkaGLQHhyMNcqz/OpBWcKEBQHqI4Ez1tM3raZrxa34ORd7g0WEdRadSoMTeOGY2u6xQUFFBYUEBBYQH5NhtpaWn07tOXJcv+KPdxJem8E0bp54pH27wMyZSYchKuYlwZ21GtoahBDc74oetedjoDPXu/u+au2RtTWCtU36iyHUcIjLyDOI+tJdDHxKdTvuKJxx6mb9/+fDn1Ww+e0fkhhOCF557hnUlvYWlyA+p/qjRcLoySbN68u2uZc6Gffn8emn/Ncgcgx/6cxNzZs/jog/c4fPgQvy9fRWRUFBPvvoOVf6ygpKQEX19f2rRtR3FREUePHiE9PZ3hI0byzXc/sv6fv5k5/Vd+/OE7asbGkmQ0RvWJRpRk8fQt7Th44AB5tjxseXnk5eaSk5vDkaQkDMMgLCyMuyZM5Mmnny33Cpa7du6kb69uFKlhmOsOARSM/CSM/CNEW7PJyc5m0jvvcf/TbyOKUrE0vckjqQiVIYTAsCXiPLISxWQlIzUJX99TJyMKIXjisUf4+MP30UKaYpYj7KcwClNxxM9Gi2xPwdGNtGremPjDyaCXoPpEEb97/RlviAoLC6lfuwYFXvUxx1RuASI9/xjOg3MB8Go9EUVR3CPgSctRFA0toh3OQwsAgeIViKXxDSiqhjB0nEdWYuTsx9LoWlSfiDMeQzjyse/5HgBTbD+MkmyMjG0o3uGo3qHu+vGGyz1hVjWjqGaE4Sx9CnDV0KuZOWd+pc6zrHJycvD19a3UirQXi4TDh5n+6zR69OxNt+6em6NwQmpqKnNnz8LhcFAzNpYuXbud9Sa/LKp9SsyV71dNSsyih6rdOVc1GbBXc8Jlp5ZjNfFxcYB7oaZsW1G1zW1cu2Y1ixYu4ODBA/j5+tGydWvumXgfb7z2CpPeegNTdFdMke0udDc9Thg6wp7jrhd/fERBnPjTWYCevQ9RmIrZbMZsNp+7QaCoqAgA1T/WnVd7hps9oyQHw5aEUZyBKM5Ec+Xhcrno268/z73w8kkfPA6Hgy2bN/PXX2vZumUzgQGB1KhZk6bNmtN/wED8/f1Lt92/bx/33H3Hv7XwgYCAAJo2a05QUBABgYH4+fqxfPlSjh09yobN22nWvHmlRo7nzJ7FjWNGY649EOEswpW8Dsx+jL3xWp58+llq1KxJcEgEwmHD0nDUWW+AXVl7MGxJmGt0/8+iNVXDKM7CET+T0aNHMeXLqafMP1n5xwquHDyAtye/z3Pfx8nR9TNwpW7ClbqBye99wFNPPIqI6Ipi9sWZtIxasTVY988mwsLCEEKwd88e0tJSadW6DaGhoTzy0AN8NuUrvJrfVqmfrzB0XEf/RPWLQQs5OT1HCB3hKEA4bIjiDLSQpqBZ0TO2u39XjzPV7I0prMWZjyEEes5+DFsiRu6Bk96ztrkXIQxEcRbCVQguO8JVjJ69l6gQK1O//QFvbx9Wr17lvsa2akX3Hj09/jslhOCeu+7gu2+nAu7PnsDAQMLDI4iMiiIiIpL6DRrQvUdP+vTtV21+p7ds3szS3xcTGBjEkCuvok7dc8+Jyc3N5dmnnuDbb75GVVV0XWfyex9yz73/VpPSdZ1FCxcghKBBg4Y0btKkTOVHi4uLWbxoIT/98B2/L1mMqqpYLBYKCwsBGHP9jbz86uvlXkTR6XSyaeNGlixewKS33qx2wWtp3DjkvaoJ2Bc/XO3OuarJgP0i8PEDnbhj/K3c98BDTHrnXY9dGF0uF0sWL2Lvnt1kZ7tHMHNyc9x/ZmfjdDkJDAwiODiYuvXq06xZc7Zs3sTff6+jsNA9KTYwMIjQ0FDatmvPoYMHmf7rNGrUrEnjxk0oKipi08YNeHt7Y7PZeGvSZF76+ZBH+l5dCFcxrrQt6Nn73CklZ6D6x6KFNiNz9/wyj1QFtb0Tw5aAK32rOwc9rBWm6C4omhkhdIy8BPeEyIJjoGgo3qGo3mG89/L99Os/gPoNGlT6/AzDILjlDYiSbBRrMNk7ppV+SB09epSe3TqRlprKLWPH8fmXX1f6d3PunNnccN0oFGswoiQHLawlpho9yd30CUIIxo29iem/Tsdcqx9qUMOzPuGyb3dXW9LCWmCu2btS/SoLPSceV9IyFEWhV+8+XDV0GCX2EurWrcfihQuYMf0XcgtKCOl0f5X35WIljk/m1DPc9dXN9a5GC6iFcOQTkLGY5i1a8tui33nlpRd4+3/utRlia9Vi+659LFzwG7fcOAavFuNRTOULEJzJf2HkHkToDsw1e6EFNzz9dkkr0bP3oIU2w1SzF4qioecfxXlwHgCKNRhLgxHnPL4wXNh3TDnpNTWoPlpoc/T0be6Fl85g5pz53HLjGDRNw+Fw4HA4aN26Dfc98BBDhw1HURSWL1tKt+49iI6OPmM757Jr5046tmvFM8+9QN269bDZbOTl5ZKRkUFaWiqpKSnEx+0nIyODps2acd/9D3HDTTfj7e3Z4KysEhMTeeKxh5k/dw4BAQEUFxejKAp3TZjIPRPvo179+qfsk5eXx/33TmD2zBl4e3vz0iuvM3bcbTx430QWLphPamZu6TVm8juTeO7pJ0v39ff3570PPuamW8ae0u6RI0eYM2smCxfMZ+OG9RQXF9OhYyduGTuO0deNISQkhLS0NObNmc2br7+CzWbjuRdfZuDAwSiKgp+fH8EhIXh7e2MYBoZhkJKczP79+9i2dQubNm5gzeo/yc/PJyAg4Pi/TfUKXmXA7nkyYL8IuDJ34Tr6J5YGI8jdc+bc9/Kw2+2MH3cLs2fOAM0LxWQFzepe5MN0/E9FBd2OcNndtbPtuSjWYFS/mqB5uR/Z6naEqwijMA3F7OvOew5vXdpHozgLPXsvakBtNP/YSvf7QhGG070kuW4H1QSKCSPvIK60Lfj7enH7nXdz1dXD8PfzLx1FN5vNmMxm/Pz8CAoKqvCxdV3n4w8/4OUXn8PX15fmLVqyc8d2srOz6dqtO3dNmMiIkaPO6wQ1p9PJ2Jtv4O91a1n2x2oaNmrkkXZdLhc/fPct8+fN4aqhwxg3/nZMJncO/c8//sDtt43FXHvQGQOq/zIK09Bz9qMFNypzKlplGfZcjPyjGLkH3TdSqgmM4yunqiasre4+L/242OnZ+zFKsjBFdy29lsx8czhDhwzi7cnv8/hjj6CFt0b1j8V5cIG7xK7JGz1zlztgL8c10rDbcOz9ofTvZ3sKeOJaDGBpehOqV1Bp+iOaBcUSeNKxhbMQPWs3anAj1P+spCqcRdjjZqBY/DGFt0bxDkP1CkQ4CrDv+e7kg5p8UH0iMGwJpS8pPlFYGgwHRcMoOIqesR3DdnyVWEUFYRAVFcW+AwkVvi4sW/o7w666Aq9mY8/4hOpEZRtXxjaMvMOgWdHCWrD379nExp6f673dbiesQW9caZvB5IU5phtqUAMwdPeTj/StYDhQ/WqgBjdiz5/fERsbS1FREeF12mHkHcQU3QUtsD6KxQ8AV9omXCnrKXIYpf+erVs0oX37jrw56R327d3Dl198zqwZ0+nRsxdmsxn/gAD8/fxJSkpkzeo/sVgsDBg4iJ69+3DVVVef8RpZUFDAc08/yZdffF6mdMng4GDate9Ar9596NvPPTBTIzK02gWvpXHjFZOrJmBf8mi1O+eqJgP2i4BwFuKIn4Vw5DP5vQ+ZeF/5R+gMw8DhcOB0Ojl86BB33T6OPXt2Q43+aEGnjjycth+GjqJe2JxhTxLOIveNiMuO0O2glxz/032TcuJmxB2on270XEULa87hHStOqoBSVQ4dPMjUr78kLm4/rVq1ZtjwEbRq3brKj/v/7dm9m9vG3sSuXTv55vufzsvqjEePHqVDmxYMuXIoc/cGVfnxPEEIA0VREY4CDHseismKerzet1R+SX+8SUTI8Q9nsx9eTW9EUc24svbgOrISFA2EjqXBCFS/sucFC92BK+UfUM2o1mD3k5uzXOeMwlRQtNOWfvwvPXvf8Umpbify4c/ZH1exe00CVwnCnoeesQ00L9SAWojiLNTAupjC255SZUs4bOj5x8BwoJi8cSYuY/qsuVw9bPg5j3k6P/3wPXeMvxWvVneXaeK5Yc9Fz9jhnhhuuGjfoSPDR4zkrrvvITAwsEJ9OJe8vDxGDh/KX+v+QotojSmywykxijCcGLmH0LP3YhQkA4LIyEgyMjIwBJhq9sIU2ty9rRDomTtwHVuLGtyYwvR9gPv607BuLD/9MoORo0YD7oGUb77+ihUrlqFpGvk2G/n5+fj5+THm+hu5evg15QomMzMziY+LQ1VVCgsLyMrKwmG3u1fmVRQiIiNp0LARtWrVOun3qNrnsMuA3WNkwH6REMLAvucHRo+4ih9++qVM+5SUlLBk8SJmz5rB4oULKCgoKH2vSdOmfPv9z/S586uq6nK14x4NSkbPO4yRfxRR8v8WaFHN7qcNmtfxpw5eKCZvFLM/isXfPfqiWd3LjxsuFEsAisWfnI0fX5gTukCuufpKfl+ymLcmTebBhx+p0mMZhsFv8+fx6ksvkJWdxeZtu6g/+IUqPaZUPSWueIOYiBB0XUcLbYY5tm/pe6707biS17r/onnh1eL2KsupFroD59E1aCGNzvrUUM8/gvOge2KoudaA0ooz5TqWIx/HoQVoQQ0wRXUsXSlYUc1nnZchhKBz0B5seXn8vXFLuY8LcNMN1zF77kKsLW4rX591B58/3of58+awZNFCasbGMnP2fBo1Lv/5n01WVhbDrhzMoUMHKQrvX6anaMJVwtTnrmDH9m3UqlWbhz9cjerlvpkQhgvX0dXo2XvRwttgiulG7qZPAJj280+Mv/VmjqRkEBYW5tHzqKxqH7APfqdqAvbfH6t251zVZMB+EXGlbsSct5Ptu/ef83Fjeno6deo3cy/0YQ1FC6rvrjaiqKBq7jrWatkmP17shKHz3fODePedSWxY/w81Y2Pp338gffr1p1279gSHhBAUFFTmyaCXu7VrVvPk44+yf99eDiUlV9kFMzc3lxr1WmPkJ6H4xmCu0f2slTekS5+eexDn0T8xRXbEFN7y39fzjyIcebiO/AlmX3caRxUF7EZBMo4DcwDwan1P6SqopyMcNlAt7pTDyhyzKAM9ey/R3rkcPXIExSsQr6Y3n3Uf95OHVVgajyFv17RyHS8zM5PY6PBzTp49Z7/tuTgPLUIYThIOHzhjac7ySk1NpV7D5ghXMZb6w1C9KxdEp//1HkMG9Wfzpo18/OmUU/LSf5n2M7eNvYm/N2yhTdu2Z2jlwqj2AfugSVUTsC99otqdc1WrnqVGpNPSwlsRGBjIHbeNxW63n3E7wzC4c/ytCFcRlkbX4dXkekxRHdFCGqMFN0QLrHfJB+tCCPdksKQV2HdN5fprR6KqKvMWLCbuYCKff/k1199wI40aNyY8PFwG6+XQo2cvnn72eQoLC8nKzKySYxiGwbCrrsAoSsNcbyheDUfIYF1CC6qPtcX4k4J14SrGeXAeriOr0CLbVWmwDu4URQDFGnLWYB1wP4WrRLAuDB1H4nIccdPR8w5z1dBh7je0c7epBdZDsYbgiJ/FG6+9Qmpq6hm3PXbsGJPfmUTfXt15+MH7+fxT91ND1bfik1YBVK8gLPWvBmFw7cjhpZWvKqqgoIDPPvmYLh3aIHQ7lgbXVDpYB/hyyuf88/dfLFyy/LSTSEdfex0NGzXiheeervSxJKmi5MJJFxFF8+KHadMZesVAxowewdhx47lmxMiTSjzqus6Uzz5l6e9LMNcbes48y0vNibrYrrSNiKJ0FK9AtPBWbFz6HU2bNbvQ3btkbNywnoiIiDKVTKuIv//6i40b1mOuPxzNv2aVHEO6RBh66bd62mZU32i0gKpbaE4LbujOkdeqdpK3EALXsTUYOfGYYvuihTSlbVv3ZFhzTLdz7q+YrFgajsCVupFJb73Bqy+/SPsOHblq6NX07TeA3Nwc/ly1kuVLf2fXrp1YrVYGDBzE7JnTSU9P56qhV7P8SOXXy1As/ljqXcnuXYu4cvAAvv/pl9LF0s7GMAyys7PRNI3t27ayaOECvvvmawoLCxl97Rjm7rSgmE9d86AigkPcqVb/f4Kuruu8+fqrzJj+C/FxccTHxVFSUoLVWrknJpcVIapg4aTLc6VTmRJzEdJzD+E8tgacBSg+UZhjupKzeyaqquIX3RI9cxeKTwReja690F09rwx7Lq6jqzHyj9Ctew+efvZ5+g8YWG3qA19Krhw8AF8/P2bMmlsl7c+bO4frrx2JV/NxHvtQrgrC0N0lL70C3HMfpPNOCIHjwFxEYfLxyag3lWmSZHVnFKbhiJ/Jw48+zhtvTWLf3r20bdUMNaghljqDytWWcBVj2JLQbYcxbEn/Vi4y+aAF1EL1r+VOkzRZEYYLYc87/gTBc9dOozANx+FFoNu5Z+JEhl49jM5duqKqKrNnzuDw4UPk5+eTmJjA/MV/Iux57vlCJ2hWdznNsBYeX1dBCAPHvmkoXsEUZv1benjBb/O5duRwxt56G/UbNKB1m7YMvmKIR49dWdU+JWbg/1DMnr3BEc4S7MuerHbnXNUu/qvaZUgLqocWVA+jIBnn0T9xHJhDo/q1iQiPcAfrXkGYa/a50N08r4QjH8d+d4nKWXN/Y8iVV8lAvYoIIdi+bSv33v9glR2jZctWABhF6WiBVTOK7wl6zn53hRKTL5amN6DKoP28UxQFS4PhiKJ0d2naSyBYB1C8Q0HR8PX15fVXX+a1V14CwBTeqvxtmbzdKZEhjY/fZGa5f1YW/1Ouk4pqch/bw1TfSLya3oSesZ2Z03/hs08+wmQy4evri81mIyo6Gj8/P2rWjEX1jUYJaeIOzIWOYg31+A3EfymKihbeGtfRPzl86BB169XDbrezfNlSQkNDPbLGxGVLCM+PiF+mI+yXxpXtMqX6xWBpfD2iMIXU3AOkJBSiRXYEw4FRkOy+GFdystPFQAhB39qZ7MgLZ/O2XZWqeS6d25EjR8jOzqZN26pbsbZuvXq0bduObfs2oQbUqbYflopmBRTQ7Th2foUW2QFTVAcU5dIpf3oxUBQV5TzV2j9f3CPMOq+9/hboJWjhbVADaqP4VG7ipqJqKBdoPoiiWTBFdcQmOmAJycYoTKbAWYQ5pgk5XoHkAEeywRzb5Jxteb5v7pvtVav+wMfXl4H9ehEfF8et48pX11+SqooM2C9iQhgIex7CVYziFYgoSEZP2wQcv/sULkyR7S9oHz1FCIEoSkPP2oNRmAImK6pfTRSTFcOWxJLtScyYPU8G6+fBrp07AGjVuk2VHUNRFN5570P69+mB6+hqTDV7VMsgWAuqh9ZmIiXb3OXf9LRN4CzCXKvvOfaUJLcT1zbF4n9S+pdi8UfxCkboJZWu1lLdKIpyfGXm6rEugXDYcCb9AcC9E+7C19cXVVVZ988m2raruoGJy4Ph+Rx2PN3exUEG7BcpoTuw7/sFnPnuF44vTW+q0QPhKkbP2I4W3uaC9tEThKsEPWc/etYeREk2mP3RAuu6VxDM3FlaD332vAUMufKqC93dy8KJ1fhKiour9DjdunfHFNsX15FV6DlxaOGtMEW2r5YpD+bag9zzSlzFUI1z7qXqR892l1/UwltjrtGj9HVFs2BpcoP7eznCW6X03AMAWJqP5517OvLllM+48+57aNf+0hjwki4N1e+TTyoTw5YAznymz5pLx06diYyMLL2oz5o5g5tvuA6j4BhawLln41dHRkkuo9urzJo5HcUwuGbYcMbffid9+/VH09wjrSfmS8sPs/OrX/8BhISE8MF7k/no08+r9Fj5h/5g186d/PzTD3zy0QfU9M/lCC1Q/WpU6XHLSwtuiBbcECGE/H2spvS8QyiaN6pf5UoVepIQBq6U9QAoXkGnvC9/l8pGGDpGwVH0jB1o4S3RAuqUa//ezfzQWg5g3oKvAbjz7glV0MvLlMxh9xhZh/0i5crcRfcePbl62HCioqJOurCPHDWafv0H4ExagWHPvXCdrAChO3Ae+RPHvp/588+VvPDyqxxIOMrPv8xgwMBBpcE6ULpks3R++fj4cPuddzNv7uzzcrwWLVvyxluT2LB5O4GBQTgSl5+X41aE/H2sfoSzEFfaFpyHF+M4MBujKAPDnosjYQn2PT+6U+wuECP3oPupDJWveX45MkpycCb/hX3H5zgPLcDIT8IoTC9XG8JwsXbNavr2H1BFvbzMCaNqvi5DMmC/CBlF6YjCFO5/8OHTvq8oClO/+xFF88JxYC5GSfZ57mHFGPZcHPt/Rc/ZhymmG7v2xvPIo48TESEXzKluQkJDKSkpOa/HbNykCTfceDO4ihGG69w7SBLgTFyOK+Xv0r874qbj2PsTRu5BhCMPR/xshO64IH1TzD6l3+vZ+y5IHy42wnCh5x/BmfQHjn0/o6dvLX3PXGcw5uhO5WtQUQgNC2Pajz+Qm5vr2c5KkgfJgP0i5MrYgWLxZ+jVw864TWRkJIcO7KFZozpoiXNxZeykDCX3y0XodpxJKzGKK7/apVGSjePAXBrVi2HX7r3kJ66Vi1NUYznZ2QQFB5/34/bt1x+EjlF45lUbJem/wn2d9Os/gOUr15CebWPZytUsWLyUSe+8V7qNK20Tui2RV29pSO+oQwSlzsInaRqRuQtpqK/BeWQlwpHvrlH+/66jwnAh/rN4U3ko1n8XJvpv8H650W2JuFI3oecdxijJRrhKSn/OQrdjFKbiSttMl+C9sP9bnAfno2fvLd1fi+yAV8s70YIalPvYiqKR6deTHbv3UaNBB4+dk3TciZQYT39dhmQO+0VGOAsxcuMxRXc9KT3kdKKioli9bj3PPvUEUz7/FMOWgKlGD1Rr2QItYbgDI9Un/JQFs4yidPeHWHEmwnBgqTO4QudjFGfiSlmPYUtA8Qpi8dI/iI6Wj4aru7p163H0yBESExKoXafOeTvuiZVVRXE6yBVQpTJQNY0OHTvRvYd7QmePHj0B6D9gIBPvu59bb7mRWTOmo6dv5dmnl9Ktew9uu/1OvL29yc/PJy83l51fTUXP2uNuUNHcdcHN3u7BCmchmHzwanozimYuPa5RnIkr+W9M0V3OuOK0YvLGXHsgmLzR/GOr9gdRjblS/kGcbuBHUf9Nf1DNeLcdxLjbbuenH7+noKAANbA+pphuqF6VWzxH9Q7FFN4GV8a2SrUjSVVJBuwXGVfmLlA0tNCmZdre19eX9z/6hKlLk0ofISo+EWiBdVG8QlCsQSgmH4ziTERhMkZBCkZJlvsiabhA6KB5uReyMHkfXwUvF1GcgWINRg2og5F7CMNuK9dFU+gOXGmb0dO3oXgFYortgxbUSAbrF4lrx1zPE489zI8/fMezz7943o7r6+uLFtIEV8p6tKCGHl/xULr0dOnajQ/em8zC3+aTZ8ujqLCQZs1b0LRpM+rUq8eIkaOZvzEPxSuIrG0/YjKd+rH43To7RkEyGC6EqxhRkoVwFqEFN0YUZ2LkJyFcRRh5qRhFqYiSHIyCYwCIsBbA6QN2AC24UVWderUlhOFeIfjEZ0pJDqYaPdAC67s/iwwnQnegCB3F5O1eSdg7jNnzPmPUNVcTEhqKPbI/mgdv2hVrMOh2Eg4fLh0YkDygKnLOL9McdhmwX0SE4SLESGT0PRN49/0Py7Wvbf9vFBcXs3jRQqb99AOr/1yFLcV20jbBwcF07d2ddu07YPX2xmK20KFjJ36bP5f9+/aSnp6O1WqlQYNe9OjZizE33IjD4aBpw7qY81eSkmw5/ohXgO4E1YRi9kEx+6KYfEDzQjjy0XPj8Co5iskweP6VV3j40cexWCyn77hULeXl5aFp2nnP+bTZbBiFqSiWQLgMFgWTKm9RXDB6SFv2pRWBFoli0fhrxzHWbdyNcNjAcJZu277NNsZcfyPduvegZ6/epU8xc7d+fcb2P/vkYx556H6Cs5eRlpZGk6ZN8fOrAdRg08YNqJVc6OhSIQwdFAWjIIWw4g2kJCeXvufn58eNQ1uyYsUyDh4+gNVqRVEU2rZrz+x50wkMDATA6XSyd+8eGjduQlqahytFHQ8C5cRxqbpSRBkSm202G4GBgXi1vPOU1Ajp/HFl7UU/upIdu/fToGHDSrUlhCA9PZ34uP0cO3aMli1b0aRpU1S1/NMalv6+hA/em8yq9XvdE1wVDUUzI3SX+3Hx/1vkQPEK5uUXnuDGm26hRo3qVZ5PKpt77rqDxYsWsHn7bkJDz8/iJ0IIxlw7kt9+W4Sl0bWo1qDzclzp0iWEAL0E4bAh7DZGd49gwW/zyM/PZ8LE+3jvg49Ou5/T6ST52DGOHEli544dPPLQ/QA8/OjjNG3aDF3XeXvSmxxOzser8bXn85SqLfvenxH2HAD69O3HQ488xjuT3uLvv9ah6zoREREMv2YkXbt1Jysri6KiQl58/lkCAgJ47MmnyczIYOnvi9m31527rkW0wxzT1WP9cyQuRZTkUGTL8Fib54PNZiMyNJC8vDwCAiqXGuRJpXFj7xc9vuK6cJVg//PlanfOVa18AXuzW0EG7BeEEAJH/CwG9enMDz//eqG7c1q1+jx2ymtGSR7OA7PAEoApoi2KdxiKJYAjf06+AD2UPMEwDJo0qMP4O+7iqWeeO2/HnTd3DnfdPg5TrQFogfKRteR5SavewTAM7p94NzNnTOfhRx/HZrNhy8vFZrORlZXFsWNHSU1JOWnyqclkws/Pj8LCQpxO94h9bK1apChN0AJqX6jTqVbsu78Dw4GpZm8SN88uTT2y2fJIOHSYJs2anfKktUvHthw+dAhvHx8cdjtWqxUfHx8yMtxBtVfLOz3WP8ehBWDyJvXQ1nNvXI3YbDYa1o2tdsFradzY6/mqCdhXv1rtzrmqlSlgLykpoW7duqSmysoMkiRJkiRJ1UVUVBSHDx+uVpXVZMDueWXKYbdarRw+fBiH48LUqpUkSZIkSZJOZbFYqlWwfhK50qnHlHnSqdVqrb6/EJIkSZIkSZJ0iZJVYiRJkiRJkiTPk2UdPUaudCpJkiRJkiRJ1ZgcYZckSZIkSZI8zxDuL0+3eRmSI+ySJEmSJEmSVI3JEXZJkiRJkiTJ84Soghz2y3OEXQbskiRJkiRJkufJSaceI1NiJEmSJEmSJKkakyPskiRJkiRJkufJhZM8Ro6wS5IkSZIkSVI1JkfYJUmSJEmSJM+TOeweI0fYJUmSJEmSJKkakyPskiRJkiRJkufJHHaPkQG7JEmSJEmS5HkyJcZjZEqMJEmSJEmSJFVjcoRdkiRJkiRJ8jyZEuMxcoRdkiRJkiRJkqoxOcIuSZIkSZIkVYEqyGFH5rBLkiRJkiRJklTNyBF2SZIkSZIkyfNkDrvHyBF2SZIkSZIkSarG5Ai7JEmSJEmS5HmyDrvHyIBdkiRJkiRJ8jyZEuMxMiVGkiRJkiRJkqoxOcIuSZIkSZIkeZ5MifEYOcIuSZIkSZIkXdI+/fRT6tati9VqpX379qxZs+as2//555+0b98eq9VKvXr1+Pzzz89TT09PBuySJEmSJEmS5wn+zWP32Ff5u/Hrr7/y0EMP8eyzz7J161Z69uzJkCFDSEpKOu32hw8f5sorr6Rnz55s3bqVZ555hgceeIBZs2ZV7udRCYoQl2n2viRJkiRJkuRxNpuNwMBAvFrdjaJZPNq20B3Yd0whLy+PgICAMu3TuXNn2rVrx2effVb6WtOmTbnmmmt48803T9n+ySefZP78+ezdu7f0tQkTJrB9+3b+/vvvyp9EBcgRdkmSJEmSJMnzTuSwe/qrHBwOB5s3b2bQoEEnvT5o0CD++uuv0+7z999/n7L94MGD2bRpE06ns3w/Aw+Rk04lSZIkSZIkz9MdFclgOWeb4B7F/y8vLy+8vLxO2TwzMxNd14mMjDzp9cjISFJTU097iNTU1NNu73K5yMzMJDo6ujJnUCEyYJckSZIkSZI8xmKxEBUVReqe76qkfT8/P2JjY0967cUXX+Sll1464z6Kopz0dyHEKa+da/vTvX6+yIBdkiRJkiRJ8hir1crhw4dxOBxV0v7pgu3Tja4DhIWFoWnaKaPp6enpp4yinxAVFXXa7U0mE6GhoZXoecXJgF2SJEmSJEnyKKvVitVqvdDdwGKx0L59e5YtW8aIESNKX1+2bBnDhw8/7T5du3blt99+O+m1pUuX0qFDB8xmc5X290zkpFNJkiRJkiTpkvXII4/w1VdfMXXqVPbu3cvDDz9MUlISEyZMAODpp59m7NixpdtPmDCBxMREHnnkEfbu3cvUqVP5+uuveeyxxy7UKcgRdkmSJEmSJOnSNWbMGLKysnjllVdISUmhRYsWLFq0iNq1awOQkpJyUk32unXrsmjRIh5++GE++eQTYmJi+PDDDxk1atSFOgVZh12SJEmSJEmSqjOZEiNJkiRJkiRJ1ZgM2CVJkiRJkiSpGpMBuyRJkiRJkiRVYzJglyRJkiRJkqRqTAbskiRJkiRJklSNyYBdkiRJkiRJkqoxGbBLkiRJkiRJUjUmA3ZJkiRJkiRJqsZkwC5JkiRJkiRJ1ZgM2CVJkiRJkiSpGpMBuyRJkiRJkiRVYzJglyRJkiRJkqRq7P8AliGZbW16LzYAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, subplot_kw={\"projection\": ccrs.PlateCarree()}, figsize=(8, 5))\n", + "land_da.plot(ax=ax, transform=ccrs.PlateCarree(), center=False, cmap=\"Blues_r\")\n", + "ax.coastlines()\n", + "ax.add_feature(cfeature.BORDERS)\n", + "ax.set_title(\"GLDAS land mask\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T11:38:28.565851790Z", + "start_time": "2023-10-27T11:38:28.565170042Z" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/getting-started/index.md b/_sources/getting-started/index.md new file mode 100644 index 00000000..89ae9574 --- /dev/null +++ b/_sources/getting-started/index.md @@ -0,0 +1,5 @@ +# Getting started + +This first part of the documentation provides an overview of the package in [](overview.md) and +the [](./data_requirements.ipynb) of DeepSensor. +If these align with your use case, move on to the [](installation.md) to get started. diff --git a/_sources/getting-started/installation.md b/_sources/getting-started/installation.md new file mode 100644 index 00000000..5baf884a --- /dev/null +++ b/_sources/getting-started/installation.md @@ -0,0 +1,62 @@ +# Installation instructions + +DeepSensor is a Python package that can be installed in a number of ways. In this section we will describe the two main ways to install the package. + +## Install DeepSensor from [PyPI](https://pypi.org/project/deepsensor/) + +If you want to use the latest stable release of DeepSensor and do not want/need access to the worked examples or the package's source code, we recommend installing from PyPI. + +This is the easiest way to install DeepSensor. + +```bash +pip install deepsensor +``` + +```{note} +We advise installing DeepSensor and its dependencies in a python virtual environment using a tool such as [venv](https://docs.python.org/3/library/venv.html) or [conda](https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-python) (other virtual environment managers are available). +``` + +## Install DeepSensor from [source](https://github.com/alan-turing-institute/deepsensor) + +```{note} +You will want to use this method if you intend on contributing to the source code of DeepSensor. +``` + +If you want to keep up with the latest changes to DeepSensor, or want/need easy access to the worked examples or the package's source code, we recommend installing from source. + +This method will create a `DeepSensor` directory on your machine which will contain all the source code, docs and worked examples. + +- Clone the repository: + + ```bash + git clone https://github.com/alan-turing-institute/deepsensor + ``` + +- Install `DeepSensor`: + + ```bash + pip install -v -e . + ``` +## Install PyTorch or TensorFlow + +The next step, if you intend to use any of DeepSensor's deep learning modelling functionality, +is to install the deep learning backend of your choice. +Currently, DeepSensor supports PyTorch or TensorFlow. + +The quickest way to install these packages is with `pip` (see below), although this doesn't guarantee +GPU functionality will work (asssuming you have a GPU). +To access GPU support, you may need to follow the installation instructions of +these libraries (PyTorch: https://pytorch.org/, TensorFlow: https://www.tensorflow.org/install). + +To install `tensorflow` via pip: + +```bash +pip install tensorflow +pip install tensorflow_probability[tf] +``` + +To install `pytorch` via pip: + +```bash +pip install torch +``` diff --git a/_sources/getting-started/overview.md b/_sources/getting-started/overview.md new file mode 100644 index 00000000..ef6879bd --- /dev/null +++ b/_sources/getting-started/overview.md @@ -0,0 +1,47 @@ +# Overview: Why DeepSensor? + +Machine learning (ML) has made its way from the fringes to the frontiers of environmental science. +DeepSensor aims to accelerate the next generation of research in this growing field. +How? By making it easy and fun to apply advanced ML models to environmental data. + +## Environmental data + +Environmental data is challenging for conventional ML architectures because +it can be multi-modal, multi-resolution, and have missing data. +The various data modalities (e.g. in-situ weather stations, satellites, and simulators) each provide different kinds of information. +We need to move beyond vanilla CNNs, MLPs, and GPs if we want to fuse these data streams. + +## Neural processes + +Neural processes have emerged as promising ML architectures for environmental data because they can: +* efficiently fuse multi-modal and multi-resolution data, +* handle missing observations, +* capture prediction uncertainty. + +Early research has shown NPs are capable of tackling diverse spatiotemporal modelling tasks, +such as sensor placement, forecasting, downscaling, and satellite gap-filling. + +## What DeepSensor does + +The DeepSensor Python package streamlines the application of NPs +to environmental sciences by plugging together the `xarray`, `pandas`, and `neuralprocesses` packages with a user-friendly interface that enables rapid experimentation. +**All figures below visualise outputs from DeepSensor**: +![DeepSensor applications](../../figs/deepsensor_application_examples.png) + +```{warning} +NPs are not off-the-shelf ML models like those you might find in `scikit-learn`. +They are novel, data-hungry deep learning models. +Early studies have been very promising, +but more research is needed to understand when NPs work best and how to get the most out of them. +That's where the DeepSensor package and community come in! +``` + +## Project goals + +DeepSensor aims to: +* Drastically reduce the effort required to apply NPs to environmental data so users can focus on the science +* Build an open-source software and research community +* Generate a positive feedback loop between research and software +* Stay updated with the latest SOTA models that align with the DeepSensor modelling paradigm + +If this interests you, then let's get started! diff --git a/_sources/index.md b/_sources/index.md new file mode 100644 index 00000000..d92b41a5 --- /dev/null +++ b/_sources/index.md @@ -0,0 +1,73 @@ +# Welcome to DeepSensor's documentation! + +DeepSensor is Python package and open-source project for modelling environmental data with +neural processes. + + +**Useful links**: +[Code repository](https://github.com/alan-turing-institute/deepsensor) | +[Issues](https://github.com/alan-turing-institute/deepsensor/issues) | +[Slack join request form](https://forms.office.com/pages/responsepage.aspx?id=p_SVQ1XklU-Knx-672OE-ZmEJNLHTHVFkqQ97AaCfn9UMTZKT1IwTVhJRE82UjUzMVE2MThSOU5RMC4u) | +[Slack channel](https://ai4environment.slack.com/archives/C05NQ76L87R) | +[DeepSensor Gallery](https://github.com/tom-andersson/deepsensor_gallery) + + +::::{grid} 1 1 2 2 +:gutter: 2 + +:::{grid-item-card} +:link: getting-started/index +:link-type: doc +```{image} _static/index_getting_started.svg +:height: 100px +:align: center +``` +**Getting started**. + +New to *DeepSensor*? Check out the getting started guides, containing an +introduction to *DeepSensor's* main concepts and how to install it. +::: + +:::{grid-item-card} +:link: user-guide/index +:link-type: doc +```{image} _static/index_user_guide.svg +:height: 100px +:align: center +``` +**User guide**. + +The user guide provides a walkthrough of the main features of the +*DeepSensor* package. +::: + +:::{grid-item-card} +:link: community/index +:link-type: doc +```{image} _static/index_community2.png +:height: 100px +:align: center +``` +**Community**. + +The community guide contains information about how to contribute to +*DeepSensor*, how to get in touch with the community, our project +roadmap, and research questions you can contribute to. +::: + +:::{grid-item-card} +:link: reference/index +:link-type: doc +```{image} _static/index_api.svg +:height: 100px +:align: center +``` +**API reference**. + +The reference guide contains a detailed description of the DeepSensor API, +including all the classes and functions. +It assumes that you have an understanding of the key concepts. +::: + +:::: + diff --git a/_sources/reference/active_learning/acquisition_fns.rst b/_sources/reference/active_learning/acquisition_fns.rst new file mode 100644 index 00000000..86db65c6 --- /dev/null +++ b/_sources/reference/active_learning/acquisition_fns.rst @@ -0,0 +1,7 @@ +deepsensor.active_learning.acquisition_fns +============================================== + +.. automodule:: deepsensor.active_learning.acquisition_fns + :members: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/active_learning/algorithms.rst b/_sources/reference/active_learning/algorithms.rst new file mode 100644 index 00000000..9d4edc7d --- /dev/null +++ b/_sources/reference/active_learning/algorithms.rst @@ -0,0 +1,8 @@ +deepsensor.active_learning.algorithms +========================================= + +.. automodule:: deepsensor.active_learning.algorithms + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/active_learning/index.md b/_sources/reference/active_learning/index.md new file mode 100644 index 00000000..2bdd533b --- /dev/null +++ b/_sources/reference/active_learning/index.md @@ -0,0 +1 @@ +# deepsensor.active_learning diff --git a/_sources/reference/data/index.md b/_sources/reference/data/index.md new file mode 100644 index 00000000..d38a48f0 --- /dev/null +++ b/_sources/reference/data/index.md @@ -0,0 +1 @@ +# deepsensor.data \ No newline at end of file diff --git a/_sources/reference/data/loader.rst b/_sources/reference/data/loader.rst new file mode 100644 index 00000000..b69ba7bf --- /dev/null +++ b/_sources/reference/data/loader.rst @@ -0,0 +1,11 @@ +deepsensor.data.loader +========================== + +.. + Can not do automodule of deepsensor.data.loader because of + some weird bug in sphinx. + +.. autoclass:: deepsensor.data.loader.TaskLoader + :members: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/data/processor.rst b/_sources/reference/data/processor.rst new file mode 100644 index 00000000..5f3a9700 --- /dev/null +++ b/_sources/reference/data/processor.rst @@ -0,0 +1,8 @@ +deepsensor.data.processor +============================= + +.. automodule:: deepsensor.data.processor + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/data/sources.rst b/_sources/reference/data/sources.rst new file mode 100644 index 00000000..45cff019 --- /dev/null +++ b/_sources/reference/data/sources.rst @@ -0,0 +1,8 @@ +deepsensor.data.sources +============================= + +.. automodule:: deepsensor.data.sources + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/data/task.rst b/_sources/reference/data/task.rst new file mode 100644 index 00000000..1861a1ae --- /dev/null +++ b/_sources/reference/data/task.rst @@ -0,0 +1,8 @@ +deepsensor.data.task +======================== + +.. automodule:: deepsensor.data.task + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/data/utils.rst b/_sources/reference/data/utils.rst new file mode 100644 index 00000000..741219c4 --- /dev/null +++ b/_sources/reference/data/utils.rst @@ -0,0 +1,8 @@ +deepsensor.data.utils +========================= + +.. automodule:: deepsensor.data.utils + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/index.md b/_sources/reference/index.md new file mode 100644 index 00000000..8d0c01d1 --- /dev/null +++ b/_sources/reference/index.md @@ -0,0 +1,3 @@ +# API Reference + +This part of the documentation contains the API reference for the package. It is structured by modules, and each module contains its respective classes, functions, and attributes. The API is designed to be as simple as possible while still allowing for a lot of flexibility. The API is divided into several submodules, which are described in the following sections. diff --git a/_sources/reference/model/convnp.rst b/_sources/reference/model/convnp.rst new file mode 100644 index 00000000..1c02d336 --- /dev/null +++ b/_sources/reference/model/convnp.rst @@ -0,0 +1,8 @@ +deepsensor.model.convnp +=========================== + +.. automodule:: deepsensor.model.convnp + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/model/defaults.rst b/_sources/reference/model/defaults.rst new file mode 100644 index 00000000..3d4a67a1 --- /dev/null +++ b/_sources/reference/model/defaults.rst @@ -0,0 +1,8 @@ +deepsensor.model.defaults +============================= + +.. automodule:: deepsensor.model.defaults + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/model/index.md b/_sources/reference/model/index.md new file mode 100644 index 00000000..a645d9e4 --- /dev/null +++ b/_sources/reference/model/index.md @@ -0,0 +1 @@ +# deepsensor.model diff --git a/_sources/reference/model/model.rst b/_sources/reference/model/model.rst new file mode 100644 index 00000000..231fbbf7 --- /dev/null +++ b/_sources/reference/model/model.rst @@ -0,0 +1,8 @@ +deepsensor.model.model +========================== + +.. automodule:: deepsensor.model.model + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/model/nps.rst b/_sources/reference/model/nps.rst new file mode 100644 index 00000000..e040d35f --- /dev/null +++ b/_sources/reference/model/nps.rst @@ -0,0 +1,8 @@ +deepsensor.model.nps +======================== + +.. automodule:: deepsensor.model.nps + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/model/pred.rst b/_sources/reference/model/pred.rst new file mode 100644 index 00000000..7058b1c8 --- /dev/null +++ b/_sources/reference/model/pred.rst @@ -0,0 +1,8 @@ +deepsensor.model.pred +========================== + +.. automodule:: deepsensor.model.pred + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/plot.rst b/_sources/reference/plot.rst new file mode 100644 index 00000000..9b9c9623 --- /dev/null +++ b/_sources/reference/plot.rst @@ -0,0 +1,8 @@ +deepsensor.plot +=================== + +.. automodule:: deepsensor.plot + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/reference/train/index.md b/_sources/reference/train/index.md new file mode 100644 index 00000000..54707898 --- /dev/null +++ b/_sources/reference/train/index.md @@ -0,0 +1 @@ +# deepsensor.train diff --git a/_sources/reference/train/train.rst b/_sources/reference/train/train.rst new file mode 100644 index 00000000..763124f3 --- /dev/null +++ b/_sources/reference/train/train.rst @@ -0,0 +1,8 @@ +deepsensor.train.train +========================== + +.. automodule:: deepsensor.train.train + :members: + :show-inheritance: + :undoc-members: __init__ + :special-members: __call__ diff --git a/_sources/research_ideas.md b/_sources/research_ideas.md new file mode 100644 index 00000000..7e8e711d --- /dev/null +++ b/_sources/research_ideas.md @@ -0,0 +1,71 @@ +# DeepSensor research ideas + +Are you interested in using DeepSensor for a research project? +Thankfully there are many interesting open questions with ConvNPs and their application +to environmental science. +Below are a non-exhaustive selection of research ideas that you could explore. +It would be helpful to ensure you are familiar with the literature and +resources in the [](resources.md) page before starting. + +Why not join our Slack channel and start a conversation around these ideas or your own? :-) You can join by [signing up for the Turing Environment & Sustainability stakeholder community](https://forms.office.com/pages/responsepage.aspx?id=p_SVQ1XklU-Knx-672OE-ZmEJNLHTHVFkqQ97AaCfn9UMTZKT1IwTVhJRE82UjUzMVE2MThSOU5RMC4u). The form includes a question on signing up for the Slack team, where you can find DeepSensor's channel. + +## Transfer learning from regions of dense observations to regions of sparse observations + +Since the `ConvNP` is a data-hungry model, it does not perform well if only trained on a +small number of observations, which presents a challenge for modelling variables that +are poorly observed. +But what if a particular variable is well observed in one region and poorly observed in another? +Can we train a model on a region of dense observations and then transfer the model to a region +of sparse observations? +Does the performance improve? + +## Sensor placement for forecasting + +Previous active learning research with ConvNPs has only considered sensor placement for interpolation. +Do the sensor placements change when the model is trained for forecasting? + +See, e.g., Section 4.2.1 of [Environmental sensor placement with convolutional Gaussian neural processes](https://doi.org/10.1017/eds.2023.22). + +## U-Net architectural changes + +The `ConvNP` currently uses a vanilla U-Net architecture. +Do any architectural changes improve performance, such as batch normalisation or dropout? + +This would require digging into the [`neuralprocesses.construct_convgnp` method](https://github.com/wesselb/neuralprocesses/blob/f20572ba480c1279ad5fb66dbb89cbc73a0171c7/neuralprocesses/architectures/convgnp.py#L97) +and replacing the U-Net module with a custom one. + +## Extension to continuous time observations + +The `ConvNP` currently assumes that the observations are on a regular time grid. +How can we extend this to continuous time observations, where the observations are not necessarily +on a regular time grid? +Can we do this without a major rework of the code and model? +For example, can we pass a 'time of observation' auxiliary input to the model? +What are the limitations of this approach? + +## Training with ablations for interpretability + +Since the `ConvNP` operates on sets of observations, it is possible to ablate observations +and see how the model's predictions change. +Thus, the `ConvNP` admits unique interpretability opportunities. + +However, the model would need to be trained with examples of ablated observations so that it +is not out of distribution when it sees ablated observations at test time. +For example, when generating `Task`s with a `TaskLoader`, randomly set some of the +`context_sampling` entries to `0` to remove all observations for those context sets. +Then, at test time, ablate context sets and measure the change in the model's predictions +or performance. + +## Monte Carlo sensor placement using AR sampling + +The `GreedyAlgorithm` for sensor placement currently uses the model's mean prediction +to infill missing observations at query sites. +However, one could also draw multiple [AR samples](user-guide/prediction.ipynb) +from the model to perform *Monte Carlo sampling* over the acquisition function. + +How does this change the sensor placements and what benefits does it yield? +Do the acquisition functions become more robust (e.g. correlate better with +true performance gains)? + +The [Environmental sensor placement with convolutional Gaussian neural processes](https://doi.org/10.1017/eds.2023.22) +paper will be important background reading for this. diff --git a/_sources/resources.md b/_sources/resources.md new file mode 100644 index 00000000..a1c4c24e --- /dev/null +++ b/_sources/resources.md @@ -0,0 +1,27 @@ +# Resources +We aim to keep this document updated with the latest resources related to DeepSensor and +neural processes. + +## 🎤 Recorded talks + +| Date | Title | Presenter | Length | Video | +|------------|:---------------------------------------------|:----------------|---------|:--------------------------------------------------------------------------------------------------------------------------------------------:| +| August 2023 | Tackling diverse environmental prediction tasks with neural processes | Tom Andersson | 1 hour | [🎥](https://youtu.be/MIHNyKjw204) / [slides](https://github.com/tom-andersson/slides/blob/main/2023_08_04_nerc_cde_webinar.pdf) | +| April 2023 | Environmental Sensor Placement with ConvGNPs | Tom Andersson | 15 mins | [🎥](https://youtu.be/v0pmqh09u1Y) | +| Jul 2022 | Advances in Neural Processes | Richard Turner | 1 hour | [🎥](https://www.youtube.com/watch?v=Eu6rGePXYX8) | +| May 2023 | Autoregressive Conditional Neural Processes | Wessel Bruinsma | 5 mins | [🎥](https://www.youtube.com/watch?v=93ZliHS0qBk) | + +## 📑 Papers +* Tom Andersson et al. [Environmental Sensor Placement with Convolutional Gaussian Neural Processes](https://doi.org/10.1017/eds.2023.22). *Environmental Data Science* (2023) +* Jonas Scholz et al. [Sim2Real with Environmental Neural Processes](https://arxiv.org/abs/2310.19932). *NeurIPS Tackling Climate Change with Machine Learning Workshop* (2023) +* Wessel Bruinsma et al. [Autoregressive Conditional Neural Processes]( +https://doi.org/10.48550/arXiv.2303.14468). In *Proceedings of the 11th +International Conference on Learning Representations, ICLR* (2023) +* Anna Vaughan et al. [Convolutional conditional neural processes for local climate downscaling](https://doi.org/10.5194/gmd-15-251-2022). *Geoscientific Model Development* (2022) + +## 🗒️ Posters +* Paolo Pelucchi et al. [Optimal Sensor Placement for Black Carbon AOD with Convolutional Neural Processes](https://zenodo.org/record/8370274) +*iMIRACLI Summer School / FORCeS annual meeting* (2023) + +## 📖 Other resources +* Yann Dubois' [Neural Process Family website](https://yanndubs.github.io/Neural-Process-Family/text/Intro.html) diff --git a/_sources/user-guide/acquisition_functions.ipynb b/_sources/user-guide/acquisition_functions.ipynb new file mode 100644 index 00000000..477810f4 --- /dev/null +++ b/_sources/user-guide/acquisition_functions.ipynb @@ -0,0 +1,1025 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Acquisition functions\n", + "\n", + "Now that we've got the basics of DeepSensor's active learning functionality\n", + "from the [](./active_learning.ipynb) page, here we will focus on the various\n", + "acquisition functions available in the package.\n", + "Again, we will use the pre-trained ERA5 spatial interpolation ConvNP from the previous [](training.ipynb) page.\n", + "\n", + "For an up-to-date list of acquisition functions see the API documentation for the [`deepsensor.active_learning.acquisition_fns` module](../reference/active_learning/acquisition_fns.rst)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set-up" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T15:26:27.749653544Z", + "start_time": "2023-11-02T15:26:27.744291166Z" + } + }, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "logging.captureWarnings(True)\n", + "\n", + "import deepsensor.torch\n", + "from deepsensor.data import DataProcessor, TaskLoader, construct_circ_time_ds\n", + "from deepsensor.data.sources import get_era5_reanalysis_data, get_earthenv_auxiliary_data, \\\n", + " get_gldas_land_mask\n", + "from deepsensor.model import ConvNP\n", + "from deepsensor.train import set_gpu_default_device\n", + "\n", + "import cartopy.crs as ccrs\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T15:26:28.915606914Z", + "start_time": "2023-11-02T15:26:28.584163687Z" + } + }, + "outputs": [], + "source": [ + "# Training/data config\n", + "data_range = (\"2010-01-01\", \"2019-12-31\")\n", + "train_range = (\"2010-01-01\", \"2018-12-31\")\n", + "val_range = (\"2019-01-01\", \"2019-12-31\")\n", + "date_subsample_factor = 10\n", + "extent = \"usa\"\n", + "station_var_IDs = [\"TAVG\"]\n", + "era5_var_IDs = [\"2m_temperature\"]\n", + "lowres_auxiliary_var_IDs = [\"elevation\"]\n", + "cache_dir = \"../../.datacache\"\n", + "deepsensor_folder = \"../deepsensor_config/\"\n", + "model_folder = \"../model/\"\n", + "verbose_download = True\n", + "\n", + "val_dates = pd.date_range(val_range[0], val_range[1])[::date_subsample_factor]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T15:03:07.442173492Z", + "start_time": "2023-11-02T15:02:58.758031041Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading ERA5 data from Google Cloud Storage... " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 120/120 [00:02<00:00, 45.88it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.41 GB loaded in 3.68 s\n" + ] + } + ], + "source": [ + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir, verbose=verbose_download, num_processes=8)\n", + "lowres_aux_raw_ds = get_earthenv_auxiliary_data(lowres_auxiliary_var_IDs, extent, \"100KM\", cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "\n", + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "era5_ds = data_processor(era5_raw_ds)\n", + "lowres_aux_ds, land_mask_ds = data_processor([lowres_aux_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "\n", + "dates = pd.date_range(era5_ds.time.values.min(), era5_ds.time.values.max(), freq=\"D\")\n", + "doy_ds = construct_circ_time_ds(dates, freq=\"D\")\n", + "lowres_aux_ds[\"cos_D\"] = doy_ds[\"cos_D\"]\n", + "lowres_aux_ds[\"sin_D\"] = doy_ds[\"sin_D\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "outputs": [], + "source": [ + "crs = ccrs.PlateCarree()\n", + "test_date = pd.Timestamp(\"2019-06-25\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-11-02T15:03:07.442326661Z", + "start_time": "2023-11-02T15:03:07.441982888Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 5, + "outputs": [], + "source": [ + "# Run on GPU if available by setting GPU as default device\n", + "set_gpu_default_device()" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-11-02T15:03:07.531598379Z", + "start_time": "2023-11-02T15:03:07.442155343Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:03:09.287360130Z", + "start_time": "2023-11-02T15:03:07.538742415Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(3 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature',), ('GLDAS_mask',), ('elevation', 'cos_D', 'sin_D'))\n", + "Target variable IDs: (('2m_temperature',),)\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds, land_mask_ds, lowres_aux_ds],\n", + " target=era5_ds,\n", + ")\n", + "task_loader.load_dask()\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:03:10.201584715Z", + "start_time": "2023-11-02T15:03:09.290148769Z" + } + }, + "outputs": [], + "source": [ + "# Load model\n", + "model = ConvNP(data_processor, task_loader, deepsensor_folder)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:03:10.204692537Z", + "start_time": "2023-11-02T15:03:10.199450952Z" + } + }, + "outputs": [], + "source": [ + "X_c = 100" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:03:10.534248632Z", + "start_time": "2023-11-02T15:03:10.206349225Z" + } + }, + "outputs": [], + "source": [ + "task = task_loader(test_date, (X_c, \"all\", \"all\"), seed_override=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:03:10.534409973Z", + "start_time": "2023-11-02T15:03:10.534097910Z" + } + }, + "outputs": [], + "source": [ + "# xarray object containing a mask to remove ocean points from the search and target points\n", + "mask_ds = land_mask_raw_ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sequential greedy algorithm\n", + "\n", + "Sequentially loop over all search points, passing a query observation to the model at that point and computing the change in acquisition function.\n", + "\n", + "These acquisition functions can be computationally expensive because they require one model forwards pass per query point,\n", + "so we will coarsen the search space for the purposes of demonstration." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:03:12.877838472Z", + "start_time": "2023-11-02T15:03:10.534321655Z" + } + }, + "outputs": [], + "source": [ + "from deepsensor.active_learning import GreedyAlgorithm\n", + "\n", + "greedy_alg = GreedyAlgorithm(\n", + " model=model,\n", + " X_t=era5_raw_ds,\n", + " X_s=era5_raw_ds.coarsen(lat=15, lon=15, boundary=\"trim\").mean(), # Coarsen search points to speed up computation\n", + " X_s_mask=mask_ds, # Mask out ocean from search points\n", + " X_t_mask=mask_ds, # Mask out ocean from target points\n", + " N_new_context=3,\n", + " progress_bar=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MeanStddev\n", + "Minimise the model's mean standard deviation - i.e. minimise the expected MAE under the model." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:03:46.332907754Z", + "start_time": "2023-11-02T15:03:12.883449701Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 579/579 [00:32<00:00, 17.91it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9HElEQVR4nO2ddVhUzfv/b1IQAZuyFVvUx266WxGkFBAVFWyxW7FbBMHGQFRARbFbxMBCFCUUpKXLBXbfvz/4cn6uu0ujfp6H13XtpZw5Z2bO7rnPzNxzhxAAUCONNPKfQPhPd6CRRhr5fTQKfCON/IdoFPhGGvkP0SjwjTTyH6JR4Btp5D9Eo8A30sh/iEaBb6SR/xCNAt9II/8hRKt74o8fP6ikpKQh+9JII43UAXFxcZKQkKj0nGoJ/I8fP6hz586UmppaLx1rpJFG6h95eXmKj4+vVOirJfAlJSWUmppKiYmJJCMjU28dbIQoKSmJAgMDKSkpiWJjY0lKSoratm1LcnJy1LFjRxo2bBi1a9eOiIiSk5Np+vTp9ODBA5ozZw6tWLGCxMXFeer88eMHJSUl0YMHD+jcuXMUHh5ObDabOnToQCkpKVRaWkoyMjIUHBxMRUVFFBAQQFlZWaSsrEylpaV09OhR0tPTIx8fH566J0+eTMHBwfSzRfb169dp+PDhXOcdPnyY5s+fT2/fvqW2bdvSvn376Pnz5/T27VtKTU0lZWVlcnR0pCFDhpC7uzuVlpbSw4cPiYgoOzubzpw5Q69fv6bnz59TXFwcEREJCwuTuLg4SUtLk6ysLMnKylJZWRnFx8dTXl5etb5vKSkpMjQ0pEWLFpGysnL1fqQawmKxKDw8nL59+0ZNmjQhCQkJatKkCfMRFRUlEREREhUVZT4A6MePH/Tjxw8qLi6moqIi+vjxIz1//pyeP3/ODLYdOnSgU6dOkYqKClebeXl51L59eyopKalU4IWqY0ufl5dHsrKylJubW68Cz+Fw6MaNG3Tu3DnKz8+nAQMGkJOTE8nLy9dbG/8mrK2t6cyZMyQsLEydO3cmGRkZYrFYxGKxqKSkhFgsFqWnp/Nct3v3bpKRkaEXL15QeHg4vXnzhsrKysjOzo46dOhAhYWFVFBQQAUFBRQXF0fPnj2j3bt305w5c3jqioyMpBs3bpC0tDSxWCxydXWlkSNH0ogRI0hSUpJycnIoJyeHLl++TKampnTw4EFq1aoVFRcXk4qKChkaGpKysjKFhoaSv78/6evrk6OjI02YMIE8PT1p7Nix1LFjR2rWrBkRlb+87OzsKC4ujrp3704sFovev39PzZs3p759+5KIiAh17dqVunbtSp07d6YWLVpQ06ZNSUpKiiQlJUlISIiKioqosLCQ0tLSKDAwkNauXUvKysr08eNHEhZuODUWAHr16hXl5uZSz549SUFBodZ1ffv2jR4+fEjW1tY0atQocnJyIgMDA2rbti0RVV9G/5jAFxYWkrW1NQ0dOpSmTJlCrVq1okePHtH27dtp5syZZGxsXC/t/A4yMjLozJkzlJqaSl26dCFLS0uSlpbmOQ8Affz4kfLy8hgB+/kjLCxMLVq0IGVlZerWrRvJysqSuLg481BmZWVReHg4xcfHU3x8PBUWFnKNHPfu3aMHDx7wtDty5EhKSEigb9++MceaNGlCUlJS1KxZM+YjJSVF0tLSNGPGDNLT06vyvjkcDq1cuZIiIiLo06dPVFpaSs2bN6fmzZtThw4daPfu3VRaWkqKiorMNRVtSEtL0+fPn8nU1JQuXrxIJiYmdPnyZea8li1bUseOHSkjI4P69etH//zzD7Vu3ZqaNm1KoqKi9PDhQ0pISKDx48dTUVER5eXlUV5eHuXn5zP/FxMTI3l5eZKTk6OsrCz69OkTff78mRITE6lnz5705s0bvjOk+uDSpUu0d+9eGjx4MLVt25aeP39OIiIitGvXLmrTpk2t6z1w4ACdPn2awsLCSExMjI4ePUrW1tZ/v8C7uLjQxIkTSU1Njet4aWkpmZmZ0YEDB6hjx4710lZDsnv3brp37x45OTlRp06dKDIyko4ePUrTp0+n8ePHc5177tw5srS05KlDSEiImjVrRmVlZVRcXMxTLiIiQmJiYiQuLk6tWrUiHR0dMjY2Ji0tLRIV/f+rsm/fvlH79u2Za0REREhRUZH69etHffv2pb59+1KfPn2oR48eVSp3akJycjJJSUmRrKyswHNSUlLoyZMndO3aNYqMjKTU1FQqKysjJSUlEhcXJ1FRUZKQkCAZGRmSkJAgAJSVlUXv3r2jVq1a0ffv3ykzM5N+/PhBHA6H+d6EhYWZtqWlpUlGRoZkZGRIWlqaSktLKTU1lVJTU6l58+akrKxMysrKNGrUKNLT0yMREZF6+w5+JiQkhM6ePUuHDx/meqG8ffuW5s+fT5cuXaKmTZvWqY309HRatGgRnThxgrZs2ULTp0+n5s2b/50Cn5WVRU5OThQYGMi3/MmTJ3T58mXy8PCoc1sNyfnz5yksLIy2b99OQkJCzPGysjKytbWlhQsX0uDBg5njLBaL1q9fT5s3byZFRUV69uwZycrKkoSEBHN9UVERxcbGUkxMDBUUFFBJSQmVlpYy/379+pVCQkIoLi6OFBQUyMHBgZYsWcLMKCp+zp/7Ux3Kyspo8+bNFBcXR5mZmcRisUhOTo709fXJwsKCZ+pbVlZGQUFBdPDgQbpz5w4Rla8vO3fuTHl5eZSZmUmZmZkkKytLERERJCoqSuPHj6f79+9Tp06dSEVFhRQUFKisrIzKysqotLSUMjMzKT4+nj59+kRERB07dqRz587R0KFDKTU1lc6cOUMfPnyglJQUSk5OppiYGGbtzmazKTMzkyIjIykqKoo+fPjA/NulSxfas2cPZWZmkqOjI6Wnp/PMbhQUFMjQ0JBMTEzqtKQEQNra2nTlyhVq0qQJT/nJkyfpx48f5OzsXOs2fm5r9erVtH79epo6dSr5+vpWLaOoBrm5uSAi5ObmVuf0Krl37x62bt0qsJzD4cDQ0LBe2mpIdHR0UFRUxLfsy5cvsLOz4zpWUlKCWbNmgYgwefLkGrf36dMn7N69G2PGjIGwsDCICEQEYWFhdOrUCTo6OkhPT0dpaSni4uIQERGBsrIynn6lpKQAAL5+/YoZM2Zg9OjR6NmzJ1MfEWHcuHFMG3fv3uXpi4+PD4gITZs2ha+vL06ePInFixdj0qRJcHFxwciRI5m6Ll68iDVr1kBKSgp37twBh8PhqS83NxcPHjyAhoYGiAjGxsaYOnUqnjx5ggkTJkBUVBQSEhL4559/YGhoiOnTpzP1L1u2DNu2bWP6KyYmhj59+sDCwgIrVqyAiooKhISE8M8//4CIICcnh+XLl2P16tWYP38+Jk2axJQREUaNGoUbN27U+PcBgA8fPmDOnDkCy4uLi2FsbMxzvKysDMXFxQI/v/6Ov/4WFfdelYz+EYEPDw/HypUrBZYXFxfD1NS0XtpqKPLy8mBlZVXpOfr6+sz/y8rKMGnSJIiJieHgwYN8H/pf4XA4uHXrFlxdXdG+fXsugRQSEkLnzp0xZcoU7Nq1i+u4qKgo87eSkhIWL16MwMBAGBkZMS8ILS0tLF26FESE/v37Y+rUqRg4cCBXGyIiIti6dSvYbDbTp4q2pKWluc79ld69ezPnubm5Ydq0aZCVlUVqaipzDpvNxp49e7jurWvXrggJCQEAnDp1Cl27dkXr1q2xb98+ZGVlcbXRr18/5uVERFi8eDGio6NRWlrKdV5paSl2794NKSkpSEhIoEmTJiAi9OrVC82aNeO6j4pPz549q/x9+PHs2TOsXbu20nOMjIyY/3M4HCQnJyMqKqrKT3JyssDn5vz583+vwJeVlUFdXZ3rQfqZY8eO4fDhw/XSFgA8evQIVlZWMDAwgJ6eHpycnPD+/fs61Zmfn4+JEydWeo6enh6A8gfbyckJwsLCOH/+fLXqf/nyJfMgy8jIgIjQrl07LF26FNevX0dOTg5zbnFxMYYNG4a2bdtiwYIF8PT0RGhoKO7cuQMXFxe0bNkSRITevXvj8OHD8PHxwYABAyArK4vu3bujbdu2SEtLY+5r3759aNOmDbp27QoWi8XVrwULFvAIh5ubG0//8/LyEBgYiGnTpkFKSgqGhoZo27YtdHR0cPPmTdy5cweampogIjg4OODkyZN4+fIlV3vTp0+HkJAQrl27xlP/ly9foKWlhXXr1kFSUhKHDh2q8jt99eoViAg6OjoYPnw4FBQUmJFRWVkZ3bp1g4iICIgIEhISUFdXx549e5CcnFyt3wwAcnJy+I7gFURFRWHGjBnM3xXC/v37dxQVFfEd3YuKivD9+3dG6PlRXRn9IwIPAEePHsX8+fN53lgfPnyAuro6CgsL662dyZMnIykpiTkWHR0NQ0NDvlPVmqCnp4eCggK+ZTExMXBwcAAAbN++HUSEli1bwt/fH9++fau03p07d0JISAg9e/bE2LFjISQkhM2bN6OkpKRW/WSxWHj37h3Xd52Tk4NevXpBQkICRIRTp05xXfPq1SuIiIhg/fr1XMeLi4tx/vx52Nvbo1WrViAitG3bFk5OToiOjuY6l81m4+3bt2jVqhVWrVqFLVu2cL0oJCQk4ObmJvC3VldXx/Dhw6GqqoozZ86gqKgIeXl5OHz4MNTU1BAfHw8AlU53f+bdu3cQFhaGrKwsBg8eDGtra+zYsQMvX77kur9Hjx5h69at0NfXh5iYGISFhaGpqcnMToqKihAdHY28vDy+7cyYMQP379/nOc7hcGBtbY03b94w/a4Q9upQIfT87nf16tV/RuA5HA5ev34Nd3d3aGlpwcnJCR4eHrhw4QJ+/PgB/PTQHTp0CJqamti+fTuOHDkCJycnjB8/nllj1pX09HTo6+vznUkUFhZCVVWVZ/pXEy5dugQXFxee+n/8+AEzMzO8fv0aQLnwGBoaokuXLszD3rFjRyxZsgQlJSUoKirCs2fP4OPjA1dXV7Rq1QpaWlo4deoU1/lqamoYOHAgMwqNGDGiWksDQcTExKBr165YuXIl3+9owYIFkJaWFvi7l5WV4eHDh1i8eDHatWsHUVFRaGlpwc7ODgYGBmjevDmzptbT0wMRYciQIVi0aBEsLS2Zl1nLli2xfft2nnvZtWsXxMXFsXr1amhoaEBZWRnm5uY4duyYQN1JVRQVFdXoO8vMzISvry+aNm2KDh06oG3btsxv0qZNGxw/fpynvvz8fOjp6WHPnj3MTOzVq1eYOHEivL29mfOKi4sRFRVV7XspKipCVFQUiouLuY5zOBx07969WjJaay19WVkZvX37lh49ekSPHz+mvLw8atmyJUVERNDHjx+pZcuWNGrUKEabmpubS91FRUm/SRN6x2aThLw8NR04kESaNKERI0ZQu3btSEVFhbp161ZVd6rNzp07qUePHmRgYMC3fPv27dSrVy+B5dXBx8eHLl68SHZ2dtS5c2d69+4dnT17lhYuXEj6+vo856ekpFBYWBjdu3ePDh48SC1btqTv378Th8MhISEhUlZWpv79+9Ps2bNp9OjR9PTpU7py5QrfHQtpaWnKyMigkpISKioqIiEhIWrTpk2NNfSCSE5Opo4dO1Lv3r3J3NycDA0NaeDAgXyNVYqLi8nT05PCwsIoPT2dJCUlafTo0TR69Gj6+vUrOTg4kJeXFzk7O3NdHx8fT9u3bydPT0+aNGkSHT58mCQlJYmofJtRRUWFsrOzmfM/ffrUYBZylbF//3569eoVdezYkTp27EiKiop0+PBh8vf3p379+tGQIUOod+/ezEdeXp4uXbpE586dox8/flCXLl1oxowZ1KtXL6bOHz9+UHx8PHXu3Lla26SVnZ+ZmUmtW7eu32251atXU2xsLH39+pVevXpFBQUFJC4uTkOHDqU2bdpQZmYmdezYkaysrEhLS4vExMSI8vMJw4dT5IcPNAugd0SkTkRlRFQsJUU3CwuJiKhVq1bUvn17EhYWppSUFGKxWNStWzfq0aMHde/enbp3705ycnLUrFkzkpaWpmbNmlGbNm3K2yBirMwUFBSYvenZs2fTwoULqVOnTnzv6/r16/T582eaPXt2lV+2ILKyspgtoIyMDMrMzKRbt25Rt27dyMbGhszMzLgEkMPhUEFBAcnIyNCjR48oMDCQevbsSf3796e+ffvy7M8mJyeTt7c3rVu3juu4pKQk3z37nxk5ciTdvXu3TsYl169fpyNHjlBoaCjl5eWRvLw8aWhoMJ8OHTrwXAOACgoKmK3CvXv3kru7e6X9PXfuHE2ZMoX69u1LwcHBjFXaixcvaNSoUVRSUkKjRo2i/v37k7y8PMnLy1OnTp2oa9eu1KFDBy57hOrCZrMpOzubWrduXeNrK7h16xadOHGC2QIsKioiIqLmzZvT1KlTae7cuaSkpMT32voU+AYxvJGUlKR//vmH2rdvTwMGDKDRo0fToEGDKu+smxvRgQNE/2csASJiHn9hYYqcNIkitLXp27dvlJiYSGw2mxQUFEhcXJxiYmLo06dPFB0dTZmZmTxVi4qKUteuXSk/P59SUlIIAElISFD//v1p0KBBlJCQQKNGjSITExPq1KkTM3JU4OXlRa1bt6YJEyZU9RUQUblPwcOHDykkJISePXtG0dHR9P37dyIiGjBgABkbG9OhQ4eoVatWJC0tTU+fPqWhQ4eSh4cHqampUVBQEK1evZoSEhIoJSWFJCUl6fnz53Tr1i3GAm3AgAHUv39/EhYWpo0bN9Lr169p6tSpJCcnRz4+PuTl5cUYnlSHwsLCOht5EJUbRD1+/JiuXr1Kt2/fplevXhEAGjRoED179owZtePi4sjNzY1CQkKoe/fupKmpSfn5+XTq1ClydnamSZMm0ZgxY3hmCfn5+WRgYEAPHz6kJUuWcM1oMjIyyNfXl+7du0epqamUlpZG6enpjM2BiIgISUtLU6tWrUhGRoZkZWWpbdu2pKCgQB06dCA5OTmSlZUlMTExys7OpqysLMrMzKTz58/T27dvSVtbm0xNTally5Y0YsQIvi+x6sDhcCghIYGioqLo/v375O3tTSUlJXTp0iXS1NTkOf9PCHyN1vAVSpIa0akTQCT406lTtarJzMxEdHQ0Xr58iXv37uHy5cvw9PTEnDlzsHLlSvj6+uLy5cvYuXMnbGxs0LNnT67tKSKCvLw8RowYAQcHB5w5cwaqqqo866E3b95g3bp1UFVVhYSEBFq2bIkePXpgxIgRzFaUoqIiJk2ahLVr18Lf3x9Xr17FkCFD0KxZM1hYWCAuLg4AcPv2bQwdOhREBAUFBRARVFRUmH3m0aNHQ1RUFNLS0pCUlGT62bZtW4wYMQIGBgZ48OAB0tPTmXWira0tc97OnTtx/vx5hISEICYmBvHx8YiOjq6zclWQEozFYjH76xX306ZNG2b7sKJfSkpK2LNnD2bMmMHoLdq0aYM2bdqAiDBs2DA8ffqUq+758+cz10tLS2Po0KHYu3cvgPI1cX5+Ptf5JSUliImJwfXr16GiogIRERGIi4tDSEiI7zbbzx8xMTHIyclBQ0MD+/btw9ChQxltfZMmTbBy5cp6URrn5uZCT08PEhISuH79Ok95xRr+12dQEJWdX109W8Na2gFE7dsTJSUJPkdJiSgxkaie1p0/w2azafHixZSRkUFjxoyhb9++UXx8PL18+ZKioqJIVFSU1NXVqW/fvtS2bVu6d+8ehYaGkqysLKmqqtKoUaOIzWZTeno6ff/+ndEH9O/fn+86mcPh8IxcACg4OJguX75M9vb2NGTIEFJTUyMRERHq0qULDRo0iGbPnk1iYmLEYrEoLCyMQkNDydPTk4qKiojNZhNRuW15z549SVlZmbKysujGjRvEYrGYdoSFhalXr16kqqpKHh4efG35icp1L7m5uZSbm0sxMTH09u1b5vPt2zfKy8uj0tJSat++PfXq1Yt69uxJ3bp1I3l5eWrevDlpa2szdS1fvpxGjx5Nurq6tHTpUtq8eTMREamqqlLXrl0pISGBOnXqRKKiohQSEkIJCQk0bdo0xoFnw4YNtHz5ciIiys3Npbt371JGRgZ9+/aNzp07R82aNSMbGxtavXo1EREtWbKE5syZwzNjUVdXJzk5OTpz5gwRERUUFDDWeBEREXTixAl6/fo19e3bl8LCwkhKSorn98P/mfJOmDCB7t27RwoKCpSYmFhr89vMzEy6f/8+hYaGko+PD0lJSVF2djazBCX6/yM2v9knP4qLi+nLly+/b4Sv1chRTyN8XfDz84OWlhasrKwwfvx4GBoa4uTJk9izZw90dHTQvXt3yMrKQkVFBadOneLR3LNYLIE2Aw1BamoqHBwc8OPHD7x//x4XLlzAxo0bYWdnh2HDhkFeXp5n1BIVFUW3bt0gJSWFXr16wdzcHFpaWhg2bBh69eoFRUVFNG3alOc6YWFhiIqK8syG2rRpg379+qFHjx4QExPjue7evXs8/U5ISMCuXbvQr18/KCgoQFFREa1bt2ZG3c6dO+PJkyfIzc2FhIQEFixYIPA7mDJlCtO/GTNmwM3NDWJiYlBUVERCQgJzXnJyMtq0aQNXV1eBdXE4HKa+qjTiFhYWXNuGAwcOhKOjIwIDA6s96n/8+JHrOxs0aBAuXbrEc159bsv9HSM8Ec8angthYaLZs4n27KlZnbUA/6dIEhERqXJNC4DCw8PJ29ub3r59Sx07dqTi4mKSk5OjJUuWUM+ePRu0rxkZGbRw4UI6fvy4wHN0dHTIz8+PJCQkaMeOHbRhwwZis9nUo0cP6tKlC3E4HC5HEmlpaSorK6OsrCzq3bs3FRUV0dKlS4mIaOzYsWRiYkLS0tLUsWNHys7OpsDAQAoICKCOHTvS+PHjKSMjg7Kzs6lTp06koaFBhoaGXLOZsrIyAkBCQkLUpEkTatGiBfXr14+io6MpJSWFiIjGjx9P0tLS9O3bN7p79y7FxsYKdJA6dOgQBQcH08aNG2nAgAFERLR161ZaunQpJSQkkJKSEhUWFpKamholJyfTs2fPuLzyfmby5Ml04sQJWrx4MW3ZsqXS737jxo106NAh+vbtG0lKSlL79u2JzWbT58+fqWnTpqSnp0dbtmyhrl27CqyjrKyMDh8+TCEhIXTnzh0qLCykNm3akKamJvXt25e6du1K3bp1oz59+lB2djbl5ORQ27ZtqWnTpnxnjgCoqKiI0tPTqXnz5nzdbP+eET4vD+jTBxAW5h7ZhYXLjwswXvhTvHr1ClpaWujXrx+mTJmC9evXQ11dHcHBwYiNjYWWlhZevXrVoH3gcDjQ1tYWOBq9e/cOLi4uAABvb2+ukVdBQQGDBg1Cz5490b59e7Rs2ZIxJa34iIiIwNnZGaNHj2aOVegdfub9+/cwMzND586dMXjwYAwbNgzi4uIgIrRu3Rrq6uro378/szb/+bNs2TLmXhISEtCuXTtmfT98+PBKTasFYWZmBmlpady9excvXrxAz5490bRpUy7DGX7MmzcPRIRZs2ZVet7FixdBRJgyZQoOHTrE6BUOHz6Mjx8/wsPDA507d0bbtm2RmJhYrT6zWCzcvXsXS5YswfDhwxmrR6Jyy8nLly/Xi2nt3zPCExHl5xOtWEF06RJRaSmRmBiRsTHRhg1EAtaaf4KvX7/S1KlTycXFhSIiImjDhg1EVK6dnzx5Mk2fPp369etH9vb2FBIS0qB9uXjxIt2/f592797N9dYvKioiS0tL2rZtG/Xs2ZM4HA69ffuWvn79SgkJCfT161fKz89nvMGkpKSYT4Wtw6lTp2jdunWUm5tLGhoatGTJEr5aZH4UFxdTWFgY3blzhz58+EBycnKkqKhI8vLyJCYmxni/6evrM666ROXx1kpLS5k1a21ISEgge3t7evDgAYmIiJCKigqdPHmSevfuXel1eXl5ZGpqSu/fv6e0tDSB561Zs4Y2bdpEc+fOpcLCQrp27RolJyfTjRs3aOzYsUREFBsbSz169KApU6aQr69vre4jOzuboqOjae3atRQaGkoTJ06k9evXMzthYmJiPCO9mJhYpfqEBhnh62Vkq4NlWEMzb948PH/+HLa2tjw2yzk5OYzTw4wZM/Dp06cG78/Bgwehq6sLPz8/PHjwAHv37oWqqiru3Lkj8JrS0lJcvHgRs2fPhpubG86cOYONGzfCxsYGs2bNwuPHj8HhcJhdj9/F48ePGZPSulBWVoY9e/Zg48aNYLFY4HA4uH//Po9jDYvFQnBwMCZOnAgJCQkICQlVOavIyMhAv3790LVrV/Tv3x82NjZcz3xERAS6du0KGRkZXL16tc73wuFwcOrUKbRu3ZprdiQrK4svX77UqK4GsaWXkZHB5cuXa9SR/yV0dXUBcHsz/czEiRORk5OD7du381VaNQS5ubk4evQotmzZglWrVsHY2Bj6+vrQ1dWFlZUVwsPDmXPj4uKgrq6OXbt2ITY2Fvv27YOysjL++ecffP78GdHR0XB3d8ekSZN4nGKqS2pqKgICAnD+/HlkZGTU123WmooljYiICEaOHIlx48aha9euzDJGRUUFW7du5VL01YZLly6hSZMm+OeffxATE1Ota+7cuQM9PT0MGDAA8vLy0NHRwcePH3nOy8zMxLVr13D+/HkMHToULVq0EOijIYgGEXgiwujRo2vUkf8lKgR98uTJfB8QBwcHpKenY+rUqYiNjf2tffP29sa0adO4NLrfvn3DhAkTcPnyZZSVlUFDQwNfv34FUO4gZGpqitLSUkRGRnJ5cF24cAFLlixBQUEBXrx4gffv31dpX15cXIwZM2bAwsICR44cweHDh2Fubo45c+bU+uVRVy5dugRJSUn07dsXdnZ2MDU1xaRJk7Bo0SLs3bsX7969q5d2MjMz0bJlSxgaGlZ7zxwo1zkoKirCxcUFK1euRJcuXSAuLo4VK1bw6GdSU1Nhbm4OIsLGjRtr3McGEfikpKRqeyb9L2JpaYnk5GTcv3+fa8uIw+GgtLQU6urqSEpKEjgDaCjS09NhaGjIVyhZLBbU1NQQFBSELVu2MMfnzJnDNR2dN28eXrx4AaDcuadTp07Q1tbGqlWrMG/ePGhoaMDf319gH2xtbRk/9Z8JCAjAtGnT6nB3tePgwYMQFhZG+/btISIiAiEhIQwcOBCTJk3C1atXa7SNWlxcjJUrV2Lq1KlwdHTE5MmTYWtrC1NTU6iqqqJDhw4gKg+MURNMTU0hJCSEKVOmICEhAUVFRVi5ciXExcXRoUMHrFq1Ch8+fMDp06fRsmVLtGnTBufOnavpVwGggQT+8ePHOHLkCBwdHXHr1q1adexv5v79+3B2dgabzYabmxucnZ1hYmICAwMD9O7dGz169MDAgQMRFRX1W/u1c+fOSpdSBw4cgImJCdeI9mvEoFu3bmHHjh3gcDiwsLCApaUll3a7pKQELi4uOH78OE/9b9++xcyZMwW2P3nyZL5a/obi+vXrEBISwrRp0yApKYmNGzfCy8sLcnJyTOANOTk5TJs2DZcuXRLoxgqUu/BaWFigSZMmGDZsGEaMGIFRo0Zh7Nix0NfXx8SJE6Gnpwc3Nze+e+mVUVJSggMHDqBNmzYQEhKCqqoqDh48iCdPnmDKlClMnAMigpWVFdLT02v9nTTYlL7iM3bs2Fp37m/mwIEDMDc3x7JlyzBixAgMGzYMnTp1Qvv27eHo6Ahzc3Me3/GGZu7cufj8+bPA8tu3b0NLS4sZwQHAwMCAazYWEhKCvXv34s6dO1i5ciXmz5/PEwSEzWZDQ0ODx+9+3bp1ePTokcD2r127hl27dtXwrmpOamoqHB0dISQkBHV1dYSGhoKIuNbFHA4H4eHhWLhwIbp27coYJWloaPAVhuPHj4OIoKmpidDQUAQEBODw4cPYtWsX1q5dC2VlZRARunTpgiVLluDly5c1dknOzc2Fr68vtLS0ICIiAhkZGQQEBKC4uBhBQUG4efNmnb+bBhH4wMBAxoZ68eLFde5kTan4MWfNmgULCwssXbq0QdbSb968QZcuXWBlZYU5c+bg5MmTWLZsGRYuXIhz585BU1OTx7a7Idm2bVulWmEvLy9s2LCB6zfZvn07goKCmL+nTJmC2NhYTJ06FTExMQIjDm3dupUnntuyZcsY335+PHz4EB4eHjW5pSopLS2Ft7c3Bg0ahM6dO6NNmzYQFRVFy5Yt4enpiaysLNjY2KBJkyZIS0vD7du38ejRI8bG3traGt27d8epU6ewdetWEBG6d++OoUOHwtfXl7GmzMjIwKxZs3hCdklJSUFBQQHdunVDixYtMHXqVCbgh7KyMlauXFlp1KTExES+329aWhrMzMwgKSlZbeVfdWgQgdfX14elpSWaNGmC4cOHV3pNWVkZQkJCsHjxYixdupTZDqotbDYb06ZNw5w5c/Dx40cUFRUhLCwMEyZMwL59+2pdLz+8vb1x9uxZFBQUYMKECViwYAFevHiBqKgo7N69Gz179sSmTZvqtc3KSE1NhYmJCd/vr6SkBOrq6igqKoKpqSmePHkCAMjKyoKamhoSEhIQEhLCRN+ZMGECXFxccPr0ab5tHTt2jGcdefnyZWzbtk1g/1atWlWr6EGZmZnw8PCAnp4ejIyMYGNjg4cPHwIAxowZAyKCubk5lixZgg0bNmD//v34/v07Pn78yCWcLVq0wKZNmzB58mTIy8tDWFgYCgoKTLCQiuAQP38OHjzI1ZfCwkJ8+fIF2dnZAoOilJSU4Pr163BwcGDq4RfZJikpiSk3MjLC7du3uerMz89Hp06doKqqWieZ+JkGEXhNTU0MHToU69ev5wpG+Cvx8fHQ0NDA5s2bERkZiYiICCxZsgTGxsbIzs6u0Y1UsHPnTp4fCSgf9Z2dnfl+8bVlxYoVePXqFRwdHfnueV+9ehWdOnWqddSV2rB37164urpy/aBpaWmwtrZm4uTl5uZi0qRJcHR0RFBQEA4cOABFRUX06dMHx48fx+7du9GlS5dKbdhnzJjBo6OoiEHIL57aly9foK2tXeMH9+vXr1BTU+NSsL1//x4GBgawsrICEWH//v18r01ISMA///wDBQUF2NnZQUJCgvETUFZWhoaGBtzc3ODt7Q0HBwdoa2tj7Nix6NSpE8aNG4c9e/bU+bdzdXVldAUeHh54//49fHx8oKOjA0NDQ3Ts2JHrBdOsWTNMmTIFZ86cQVxcHJYtWwYxMbFahy37lT8W066srAyjRo2Cm5sb9PX1oa+vj+XLl+Pbt28IDw+HpaVl9e7gJyrWloI0r0lJSVVGkK0J3t7eOHDgAKytrfmWnzx5ElOmTOGr4GpILl++DENDQxgZGUFfXx/jx4+Hv78/rly5gocPHzJr9k+fPsHb2xu+vr5ISEjA69ev4efnhytXriAuLg76+vp8d1vi4uIEBmCMjo6GqqoqDh8+jMzMTGRkZMDLy4srtlxNMDc351qOXbx4EXJycoyAtG7dGpGRkQKvv337NtasWQOgfFbi5uaG8PBwsNlsrhDWFZ/p06cz11aEFKsw1mGz2Xjw4AGWLFmCTZs2ITAwEB8+fOASxuTkZFy5coUJWcXhcPDo0SPY29szcQGbN2+OyZMn48yZM0hJScHt27cZk2J+n6lTp9b4exPEHxP4rVu3onv37rh//z44HA44HA4ePHgAbW1tPHnyBM7Ozvjw4UP17uL/SElJgZOTU6Xn1OdWWXZ2NlRUVPgKdFlZGbS0tBAXF1er2PL1QVlZGRITEzF+/Hg4ODjg4MGDWLt2LTQ0NBAQEFDl9f7+/lwx90pLS3H+/Hmoqakx+/j8KCoqwqZNm6CsrAwlJSUMHDgQ9vb2NbbAjI+Px5QpUwCUP1sVI7qxsTHev3+P58+fV+r9BpRHtOW3M1BYWMg11SciqKqqMpaRmZmZ6N+/P4gI4uLi+Pz5M/bu3Qui8jgEsrKyXD4HCgoK6NmzJ+PxJyEhAUtLSy5/fn9/f9ja2mLu3Lno06cPc33z5s2hoqLCxPaj/7Pnv3LlCjZt2lRvsRsrvsffLvAlJSVo164dIiIieMry8vKgqqqKixcvwtPTszrNMmRlZVU6gnM4HOjq6oLNZiMmJgYxMTF1dmd1cXHBmDFjuAxdMjIyMHnyZPj5+SE5ORmOjo51aqO25OXlQV1dncc0trS0FA4ODlzKOkF8+PABrq6uMDQ0hKGhIVfARUHcvn0bhoaGXMqqz58/Y8KECQgMDKx2/69fv449e/YgPz8fo0aNgoyMDPz8/LiWBVUlIrGxsRG4PPT09MTYsWOhrq7O41gTFBTENcrGx8fDz88PRISMjAxwOBykpKTgzp078PLywpo1azB79mwcP34cUVFRzIBGRFBTU8ODBw9gYWHBYxB1/vx5eHh4wMHBAa1bt2bMZ9XU1Kr9PdWEPyLwFy5cgKqqqsAR/MCBA1i4cCFX5M4KYmNjMWfOHKioqPBdKxoZGQl8IMPCwqCjowMNDQ24urrC1dUV6urq8Pb2rrVSJD09HWPGjIGpqSmzNDE3N2eUU3v27MGFCxdqVXdd2bdvn0ADDRaLBS0trXpTBv1cr6qqKl+f8JKSEmhoaFS63/0zL1++xLx586CmpgZpaWme6Dfp6emYNGlSpXXs2LGj0n3x6dOn87WX4HA42LFjB9TV1ZnZ0OfPn0FE1baPLysrw4ULFzBo0CCIi4tDWVkZO3bsgJeXF86cOcNjFrtixQq8fv0aOTk5Dab3+SMCv27dOuzbtw/r1q3jW/7y5Uv069ePyzEgLS0NBgYGXG/dn5U1LBYLGzZswLBhwyApKYl//vkHO3fuZF4KaWlp6NKlC+bPn8+1Li0rK8OGDRuYdV5tmDt3Lvz9/ZmlSQWfPn3iu1/9uzA0NKy0bTc3N74223XhwoULle6GnD59ulrJIIByoVNQUICkpCQePHjAU75x48YqhS8zMxOampp8TV0rzIqrC4fDQcuWLWvssvvjxw+YmpqiSZMmaNasGTPtP3r0KNd51tbW9Tp958cfEfg9e/YgODgYurq6ePv2LU/52rVrMXToUObv5ORkxjKKiDB79mw8ePCAS3Artjj69+8PCwsLtGnThonL3rp1a0YLHR8fj/T0dHz69AkvXrxgvuC6xLkvKSnBzJkzYW1tjeDgYNy6dQsLFy6Evr5+lckkqkNFDP/Hjx/zeHtVRlXT3VWrVlXpI15TNm/ezFc4K3j//n21bTM+ffoEYWFhDBgwgOuZ4nA4uHjxIsaPH1+tJdn169eho6PD5KsrKirC0aNHGRPommBnZ4f27dvXyi8gICAA27Ztw48fP0BEOHHiBFNWoWv5lbdv32LChAlcxlJ1oUEEfsmSJZU6DyQnJ8PCwgLp6ekwMTGBm5sbbty4gStXrmDKlCno3LkzPn/+jMzMTKxatQqysrKMIY+ZmRlTT2RkJLZu3QpbW1tGwVKRoK+srAyXLl3CrFmzYGpqyjfcU8VHSUkJw4YNg76+Pq5evcqkU6opCQkJ8PT0xK5du7i80+rC+fPnoaGhgUWLFmHjxo0wMTHB9OnTq2XQ4+LiUqnRh4GBQb0bBh05cgR+fn4Cy69du4bt27dXq661a9eiefPmuH79OgwMDGBvb4+5c+dCS0sLy5cvr5HQJSUlYc2aNTAyMoKZmRmOHDlSq2lzRRqq2uy8lJWVwcrKCr6+vpCQkGC+h6ioKL66llOnTqFJkyZMMM1aBYf9hQYzrfX19a303OXLl2Pbtm3gcDiIiIjArl27sHfvXixfvhzu7u44cuQIE6V13rx5iI2NhZCQEJydnbFs2TImyquUlBSGDx8OZ2dnbN26VaBV0po1a3Djxg1cvnwZgYGBTDSU8+fPw93dHUOHDuWK+KKnp1dvQltb/P39MXXqVJ5p+f3796Gvr19lNpx3797B0tKS7ygYGhqKuXPn1mt/gfJ4AHp6egJ1A+PHj6/2qDpv3jz06tWL+TslJQUxMTHlmYn+ADk5OdDQ0IC4uHitfURKSkqwY8cOtGzZEnJyctDW1oazszPPTsLt27chKioKW1tbJCQkoEuXLujRo0edp/wNJvBXrlzB7t270adPH3Tu3Bl2dnaIiorCp0+f8PjxYzx48ACDBg1Cx44d4e7ujiVLlkBDQwM7d+4Eh8PB8uXLQUTQ0tJipu5DhgwBUXn4ZyMjI1hZWUFdXR2GhobQ1NTEunXrBI5Y/v7+lWr9vby8cPr0acTExODIkSNMWmR9fX08e/asOrdfr1S4sQryOty5c2e1NN7Hjx+HqakpwsLCwGazkZaWhk2bNsHU1LTBFEMHDx6Eq6srV/0sFgsrV67Ehg0bql2Ps7MzmjdvjunTp2PDhg31ajRVUzIyMqCiogJZWdl6iXGwefNmSEhIMI5IFS/lCqvCpk2bYty4cczL/tOnT1BQUECPHj1qvAz5mQZ1nhEVFYWpqSmX3fHP+corLIvevHmDN2/ecI1kd+7cgbS0NBQVFRkhzsrKQmpqKvLz86Gjo4NLly4xXxSbzcbly5eho6PDVwtcoT3mFzCgIn/czyNHWVkZTp8+zQi+mpoa1qxZg4ULF0JNTQ0aGhowMTHBxYsXG8QV+MmTJ1i9erXA8qysrGobJ8XGxjIWjLa2tjV2C60NFy5cgI6ODuzs7DBlyhRoampyrVmrw82bN2FkZIQBAwagRYsWEBIS+q3Rd37mzp07ICL07du3XvQe3759g7W1Nfr27QshISEYGhpCQ0OD2Yvv0KEDzM3N4ezsjMLCQly7dg0aGhqMtaCFhUWlBkeCaDD32Hv37jFr4YcPH+Lly5eYPn06li1bhuvXr2P06NFo3bo1l6tfSUkJgoODYWRkBGFhYfTr1w9LlizBkiVLuBw11q5diytXrvDtw5UrVwRq3O/fvw89PT08f/6cOfbixQvo6+sLtPEuKyuDn58fNDQ0GCUgv4+Kikq9Zs0NDQ0VaDIKlCuuKks3/PN5fyrwBFC+O/Lu3btam0pXUFxcDAUFBcbW/0/w+PFj9OvXD8LCwtixY0e91RsSEgJxcXEICwvD2NgYQUFBzOB38+ZNDBw4ELNnz0ZmZibi4uLQsWNHdOjQARoaGjWe9fwRLX1ERAS6dOkCOzs7AOV52W1sbBiLp7Zt2zIZVn72TqqwkdfQ0BC4RuRwONDU1BTYdlxcHBYsWMDsmc+fP79annQzZszAw4cPERERgdu3b+P69esICQnB+fPnoa6ujiZNmsDd3b3KeqpLYmIibG1tBZY/ffq00vbS0tIwb948aGlpwdzcHBoaGli7dm29pdeuirKyMmzfvh3q6upwdHSEhYUFTExMKnWfrYqdO3dCRESEiXn348eP3x4+q6SkBAsWLICQkFC9hXFLTEyEubk5X2Xxly9f0K1bN65BKi4uDoqKiujXrx/GjBlTo9nabxX45ORkTJs2DUSErl274tmzZ3j8+DGkpaXRs2dPrFy5EleuXAERQUNDA2fOnIGLiwujTHN3d4e/vz8TUw4o14y/efOGq00jI6N6nbLm5eVVapKblJSEvn37QlxcHEeOHKk3YxYrKyu+4ZfYbDZMTU0FvqhSU1OhpqaGsLAw5hiHw0FwcDD09fUb3JmHw+HA0dERhw4d4vodMjMzMX78eL7plKoDi8VCr169oKCggI4dOzL72Z06dYKtrS0OHjxYY3Ps2sBms2FiYgJZWdl62eU4ePCgQKvHNWvWwNvbG8uXL+c6/u7dO7Ro0QIdO3bEtWvXqt3WbxH4Fy9ewNraGqKiopCSkmIipbZv3x5E5ZlGfjY51NTUZEZ1BQUF9O3bF7a2tjh9+jQOHz6M1q1bw87ODnp6enB0dMSyZctgbGyMadOmISsrq9IRvjZERkZWOXrr6ekx+dzGjRtXLwYt6enp0NDQwPHjx5ltzlevXmH8+PE4efKkwOtmzpwpcJ155syZegtCweFw8OTJEzg5OcHQ0BDOzs54+vQpHj16hEWLFvG9pri4uNIZWlU8e/YMkyZNwpIlS+Dr64szZ85g7ty5GDx4MLPk+ueff7B///4G1eaHh4eDqHoRmrOzs7Fnzx7Y2Nhg6tSpCA0N5XoR7tq1S6DWf8qUKXjy5Alfz8Vly5aBiGBra4ugoKAqTZ6BBhL4tLQ0fPjwAffu3cO6desgLCyMLl26YNeuXYiMjIS8vDzatm2LmTNn4u7duzxKLzabjUuXLuHKlSvQ1dXlms4A5UEiO3fujPnz53MdDwsLw6BBg+p1ag2UK1gqc4D58eMHY+Ry48YNdO3aFS1atKiX6XNhYSF8fX1hYmICIyMjuLm5VTqKlZSUcM2AfqW0tBQ6Ojp17heHw4GrqyvmzJnDbCnFxsbC1dUVffv2rXSZtGLFCsYfvz7Jz89HYGAgTExMICIigt69eyMkJAT5DZDEZMGCBRAREak0whBQrjdSV1fHhQsXkJOTg4SEBGzcuBEGBgaM0IWFhQl8ZpcvX4758+fzODsVFhZCQkICIiIi0NXVxb59+2BkZIQlS5ZUqkRuEIH/OWtGxWfr1q3Q1dWFsLAwWrduXa2thdDQUL4BJHR0dKCqqorhw4cjMzMTQPkDeOPGDfTp0wd79uypTndrhKGhoUArtxMnTnDZ/UdHR4OIGP/z38n379+r9M6rygKvOlSExOZHz549KzVM8fHxqZbjTl14GxaGwW3bgoggTAQVMTGsGDIE8XWMUJuXl4c5c+aAiLB79+5Kz83IyICGhgbfF/+TJ0+Y34nD4UBPT4+vDcnTp08hJyfHY4thYWGBDRs2MHovOTk5HDlyBEeOHOEZCH+mwWPaVViyiYuLY+TIkfDy8qq2eeiMGTN4rIsSEhLg6OiInJwcGBgYoF+/fjA1NYWmpiaWLVuGtLS0BokWGx4eDgMDA56+P3nyBNra2jw/6pAhQyAqKgpDQ0PcvHkT69atg6amJmMz4OHh0SAKtJKSkkpHcBaLVS8jvLa2tkBrSldXV4wYMULgtbNnz6630NB8+b+0ZWwhIUQSwZcIU4ggTQQhIvTv1w+jRo2CpqYmjI2N4eDgAHd390r31zMyMnD48GEoKSmhadOm2L59e5XLkq1bt1aq2LO0tGQGvoSEBKirq+PAgQNIT09HdnY2jh8/DlVVVcyYMQMrV65kdC/Pnj2Di4sLJkyYgJCQEERFRcHGxoZZTvbv3x9+fn748uULTx8bROBFRESgo6MDHx+fOlkGOTo68mgu3759i6VLlwIoN6Y5ceIEj8VZdQW+uLgYERERePfuXbWUfE+fPoWRkRGmTJkCd3d3GBkZYcaMGXzXTllZWdi/fz/69evH2P9XfPlsNhsXL16Enp5egwi9m5ubwCnzsWPH6hzqi81mM1uCz549g5OTE2Oy6ufnhzdv3kBJSYnvd5qSkgI9PT3m75KSEly9ehWHDx/GnTt36kfZ6urKm6OQCAVEOCIkhOl9+8Le3h4WFhYwMDDA8OHD0bRpU2hpaXFVU1ZWhi1btmD48OGMgtDY2Lja2V7Mzc0r1SN4e3sjODiY+ZvFYuHs2bOwt7eHjY0NfH19mefj9OnT0NHRgZmZGbp27QoNDQ0upSxQ7jMwfPhwLotRZWVlnDlzhjmnQQS+vkIR+/j48CincnNzmYfNycmJJ5VTVdtZQPk6duXKldDW1sby5cuxYMECqKur49ixY9XqV1JSEiIjI3kMfPLz83Hr1i18/foV79+/R2xsLJYtW4YBAwZgyJAhPNOyCxcu1HtQR6BcG66hoYGbN28yL5nS0lKcOnUKJiYmdd6X53A40NHRgYeHB5ydnZmpaH5+Pjw9PaGvr49u3bph1qxZTIgzDoeDsLAwqKurM+6owcHBUFdXx/bt23Hx4kUmIWddtu4A1Cr1uLKyMuOHUcGXL1+Y9Nhr167l645dGZMmTWKWnPzYuXMnQkNDa1Qni8WCq6trpbqDq1evYs2aNbhy5QqMjIxARMx3+sci3lSHgoICqKqq8hhtTJ8+HceOHcPEiRN5rpk9e3aVxggODg44deoU13SnrKwMixYtqtPot3nzZq6ljLi4ONTV1XH06FEICwujd+/eXLHv2Gx2ve8oVJCVlYWVK1dyLSO2b99eb5prPT09gaG9jh07ht69e+P27duwsLCAoaEhdHR0sHjxYsZ78OHDh7C0tOR5+eTl5UFPT6/222scDqCkVLnAKynx5C7s1q0bV3irCsLCwqCkpAR9ff0ad8Xf31/g81Tx0qzNFunp06f5xm2sYMGCBYw5OJvNRu/evTF69GhcvnwZiYmJf6/AA+W+8ePGjcOJEyeQkZGBr1+/Ys2aNWjVqhUOHDjArCMTEhIwa9YsrF27tsr63Nzc+JZVRMSpab6uCvbt2wciwqZNm6CmpgYVFRXGu+/Vq1cYNWoUiIhrXVcfCrQ/gZGREcaOHcuj0/j+/Tu0tLQwbty4Sr9HMzMzrq3Yn/n48WPdstTUYoSfO3cuFBUV+S4p9u3bB1FR0Rq5JgPlyxVNTU2+LuAeHh7YunVrjeqrgMViYdy4cXy/v8+fP/O8nK5cucIks+jcufPfLfBA+Uh/6NAhTJ48Gc7OzuVbLfn58PHxgZGREQwNDWFra1upH3YFCxcurDR2+qFDh6oV740fubm5jBcfEcHR0ZFrz5nNZqN79+5wdnZm/m6oEb6hMTQ0xIsXL6CjowM3Nzfs378frq6u0NXVRUREBBYvXizQ1rsiIERlVLa1WCUC1vAgKj/O54X/5MkTEBGOHDnCU5aUlAQhISGegBXVIT09HRMmTICjoyP8/Pzg6ekJPT09bN68uU4GWq9fv4aqqir8/PyQm5uL79+/w9PTE+rq6nxz0nM4HLx7946x1f+rBb4+cXZ2rlSRGBQUBB8fn1rXX1ZWxhWPXE9Pj8tOv2JLp0+fPrC2tv4jiTq4qOVDp6+vz+gk3r17h2vXrnEJuIODA98HDyh/gfNbjv2MgYFBrfoFgNHS8wi9sHD5cQH78nZ2dmjevDnf52P48OFcsRhqyqdPn3D69GkEBQXVegb5K/n5+fDy8oKVlRVsbGxw5syZKvUz//zzz39L4Pfs2YOLFy8KLF+yZAmP9rOm/Pjxg0vohw4dinv37jGOLEFBQdDQ0AARMTsOv5W8vPJRsFOn8vVsp07lf9fAQGXfvn04e/Ys37Lc3NxK17wcDgdaWloC9Qnp6ekwNzevdl/4kpdXPpL/fI9ubpXe4/fv39GmTRsMGTKEK85dWloapKSksGTJkrr16Q9z584dJhDMf0bgK0xv+b0Jk5OToaOjU2+28Ddv3sTRo0eRkpKCxYsXQ0NDA+bm5lBXV8fcuXNBRHWaTdSKWo5+v5Kfnw8NDQ2e5VF+fj5MTU2rXF4dP36cb0xDDoeD6dOn128S0hr8nmFhYVBWVoa4uDjWrl2Lr1+/YuLEiZCVla1U4/63kp6ejosXL2LEiBEgIiY2/n9G4IFyJYahoSFjsltWVoYrV65ATU2t3oM6/kzFCF8R7HL06NFQVlauUS7xOlOL9a0gMjIyYGdnhwkTJmD9+vWYOXMmdHR0qhUgoiLIib29PZ4+fYr09HTcvXsXZmZmXG7BGRkZeP/+fZ3da2tCcXExli1bxmzJNW3aFIcPH/5t7deVx48fY9KkSYyCjoggLCzMFYuiKhkVAgCqgry8PJKVlaXc3FySkZGp6vQ/SmxsLHl6elJ0dDQBoHHjxpGTkxO1atWK59y8vDw6efIk3bp1i4SEhEhLS4tsbW1JWlq6Vm2z2WwaO3YsZWZm0ufPn6lp06Y0dOhQ0tDQoDFjxtDIkSNJRESkrrfIn86dib58EVzeqRNRfHyNqvz+/TvFxsZSixYtqHv37jW69tOnT3T8+HFKSUmhzp0705QpU6h9+/YUHR1NK1asIBEREerQoQPFxMSQtLQ0bd68mRQUFGrURm2JjIyk58+fk6mpKbVo0eK3tFkXCgoKaNmyZbR//37q06cPaWlpkYyMDG3atInGjRtHnTp1Il9fXyKiKmX0Xyfw1SUyMpLc3NzIxcWFjI2NCQAFBQWRt7c3HTx4kHr27FnjOn/8+EGSkpJERNS6dWv6/v07V3mvXr3o6NGjNGzYMCIiys7OpsTERGrVqhUpKSnV/mYAovbtiZKSBJ+jpESUmEgkJFT7dupIbGwsTZs2jY4fP07t2rVjjr9//55cXV0pICCA74u5uuTk5NDjx4+JiGjkyJHVFuaSkhI6cuQIBQcHk6ioKJWWlpKenh5NmzaN+T0FXRcYGEg3btwgIiItLS0yNzcncXFxnnOTkpLI1dWVYmJiKDs7m0pKSoiIiMPhkJSUFCkqKpKCggLzYbFYlJKSQqmpqRQREUE5OTm0ceNGcnV1JRaLRSoqKqSgoEAzZ84ka2tratWqFWVmZlYto9WZSvyvTOmrS2lpKVRVVbmi8lSQkpIiMJVydfD29mamV82aNcPy5cvh7e2N7t27M26eurq6jMnqsmXLMHnyZBgZGdUtxFIt9qh/N5MnTxZoSXb79m2sWrWqVvWWlpZi0aJFMDY2xv79++Hp6QlTU1PMmzevSu02i8WCmZkZfH19GWVjSUkJTp06BX19fYEm0vHx8YyNfHJyMlJSUnDw4EGoqanxeBS+fPkSSkpKaNeuHVxdXZkYgDo6Osyz0rJlS7Rr1w5dunRBy5YtoaSkhMGDB8PQ0BCzZs3iqnPBggWQkJDA27dvefxb/lNr+OoSHBxcaSijjRs31tg08meio6Nx9uxZ9O/fH0JCQtDW1saVK1cwbNgwCAsLM4I/fvx4vHz5EhwOBxkZGdDV1a3UlqBS6nEN3xCwWKwqNfza2tq1qtvFxYXLrryC8+fPV5mTcPfu3QJj8gUHB/MNq1axG8HP9v7r16/Q1NRERkYG9uzZg2HDhoGoPNrT+vXrsWXLFixduhRz585lctr9+pGSkhKYnTksLAzCwsLYsmUL2Gw29u3bh+fPnzMxKBoFng8rV67km/+ugrCwsBpFYRVEYWEhjhw5ggEDBkBKSgqLFy/GgAEDmC2Utv/n5lmRez01NRUTJkyoXWP1pKVvKLKzs2FjY1PpObWxToyLi4O9vb3A8qlTp1YaIFNLS0tgWHAOhwN1dXWe3Z2fM9fyY+7cuZCTk2Mcc37+yMrKolOnTlBUVISQkBDs7e3h5+eHyZMnc6WY/lVByuFwcPjwYUhJSWHo0KE8fU5JSWkUeEF4eHjwzftewbVr1+otegxQbpBiZ2fHZCYVExMDEaFVq1YYN24c2rdvzwQ3sLCwqLGpJ0Mt9qh/FxUpvwVtjRYWFtbKrn3Hjh2Vzsbu3r1bqSNTVS+ZCRMm8Oy2rF+/XqBNR0REBFcGWiLCkCFD4OPjw+WUFRoaCnFxcbRq1Yrr987IyOD7+4eEhDCjP7/wW9WVUWHBq/t/L+PHj6dTp04JLD99+jSZmZnVW3tSUlJ04sQJ+v79O0lKSlJpaSkJCQlRZmYm3b9/nxITEyksLIyIiNq0aUN5eXm1a0hammjPnnJtfGJi+b979pQf/8MICwvT2LFjKTAwkG+5l5cXWVpa1rje4uLiSpVUsrKyVFRUJLCcxWIRKtFb5+TkUJMmTbiOiYuL863z3r179M8//1Bubi4REbm4uNCrV6/o2bNnNHXqVGb359OnT6Snp0ejRo2iN2/ecCkXW7duzVfZ+PDhQyIiGj58ODVt2pSIiABQUVERpaWlEZvNFngPP/OfFHhlZWUSFhamc+fO8ZT5+fmRjIwMdezYsd7bFRUVpV69ehER0bNnz+j8+fNM2cuXL4mIKCYmhuTl5eve2B/UxgvC3d2dTpw4QQcPHqTCwkIiKt+p2LBhA0VFRZGtrW2N6xwyZAjduXNHYPnt27dp6NChAstHjBhBt2/f5lv2/Plz6t27Nwn98l2amJjQ2bNnmb8BkKenJ6mpqRFR+cvtyJEj5OnpSQMGDOCpV1FRkcTExMjExKTauzNfv35l7kdERISEhYVJVFSUpKSkSF5enjp37lytev6TU3qgXBO7aNEiGBkZYc+ePdi9ezcMDAywdOlSZnqdlZWFS5cu4dKlS/VmjXXx4kVISkoysc6sra1BVJ5x9Pr161i4cGG9tPO3UlJSghMnTsDY2BiGhoYYP348AgMDa20FWbFU4BdarSLKb2Wx4LKysvgGnXj16hXU1NQEKs8mT56MK1euoLS0lGvt3a5du2plrq3wPPT09BS4vIyOjoa1tTUKCgqQn5+Ps2fP4sSJEzhy5AgOHTrEZFXy9PT87xre1JTc3Fx6+vQpEZXv3UpLS1NpaSktWbKEYmJiSFdXl4iIrl+/Tp07d6YtW7bw3WetLgCoX79+lJGRQW/evCFJSUkKDQ2lnJwcunz5Mp07d46ZsjVSPT5//kzTp08nBwcHMjc3JyEhIQoKCiIfHx/y9PRkZlWCyMzMpLVr19KnT59IUVGRUlNTqUOHDrR69WqBxkAsFovmzp1L8fHxdP36dSIi6tq1K40ZM4YOHjxIEhISlbZ5+PBhmjp1KvO3s7MzderUib58+UJaWlo0evRoUlRUJCKip0+fMrYb/IiIiKBBgwYRUaPhTa2YMWMGqaur08SJE7mOX7hwgUJDQ8nHx6dO9W/evJnWr19PxsbGVFBQQCIiImRubk6WlpY868VGqkdhYSGdPXuWrl+/TgBIS0uLrK2tqVmzZtWuo6SkhHnGq/s7pKSk0J07d0hYWJhUVVWrbS1YXFxMioqKlJOTw1PWq1cvkpCQoI8fP1JxcTENGzaMDh8+TH369BFYX7VltMq5B/6dU3pBxMTEYMqUKQLL+YXfqikBAQEgIoGBIuoTNptdb05DjdQvb968gZ2dHVesuopPixYtcO7cOaioqICIqlzqVVdGRav1OvoPERQURNbW1gLLbWxs6OLFi+Tu7l7rNqSkpIiofFSqiylpZVy4cIEOHz5MYmJiVFpaSrKysrRo0SL6559/6q2NlJQU+vbtGykqKtbNNPhfRkFBAYWEhFBOTg716dOH8vPzae3atZSbm0spKSnEYrGotLSU2Gw2rV+/njIyMujq1avE4XDo69ev9PbtW/r48SNZWVlRu3bt6OjRo2RnZ1cvffurBD4xMZHS0tKoQ4cO1LZt2z/Sh6q2eWRkZKi4uLjSOu7evUs+Pj6Un59PAMjAwIDs7e0ZQY+PjydRUdEGE5INGzZQYWEhnTt3jpnSJiUl0axZs2j27NmkqalZp/pjY2PJ3d2dJCQkSFlZmWJjYyk/P588PDxq5YPwb2Lv3r0UGhpKEyZMICUlJfLz8yNvb28iIrKzs6O7d+9Sbm4uCQkJkYWFBVlaWtLdu3fp3LlzdPv2bcrNzSVZWVlSV1enmTNnkp2dXf0u86oz9WjoKf2bN29gbGyMKVOmYPXq1bC0tISlpSUSEhIapL3KCA0NxcaNG3mOp6WlYf369ejRoweGDBmCOXPm8LXgWrVqFebMmcNojVksFk6dOgVNTU3GoGL+/Pno2rVrg/T/8+fPAoNQFhUVQV1dvU5psBMTE6GmpsZjVpqUlAR1dfVqJfD8t3L06FG4u7sjOTkZnp6eUFVVBRFBXl4eysrKWLZsGYSFheHg4IAPHz7g2LFjaNeuHYgIgwcPxrp16xAWFibQ8q8y/uqotT8TFRUFLS0tnjj1nz59gpqaGtLS0pCXl4fo6Ojftub9dZsnMjIS6urqOHv2LCMwL1++hLGxMVfgynv37gkMpBkeHs7EvDM1Na213XhVLFu2rNLIPps2bcLNmzdrXb+bm5tAJ58PHz4w9/hfgsPhIDQ0FM2aNWOs7CpyOJw4cQIsFgvXrl2DtrY2ZGRkmP8TESwtLeslL/3/jMDb2Njg69evfMuCgoIwYMAAGBsbY/78+bC0tISFhYXAUMcsFgt+fn4wNTWFkZERJk+ejMePH9e4T9HR0VBVVcWxY8eQm5sLVVVV7N+/H6qqqlxts1gsaGhoMEEcbG1tmXDN/DAxMUFSUhJkZWWxbNmyGverOtjb21dqMxAQEFDtOP38+DWpw6/UV2QhDoeDjx8/IiIiol4yuTYUpaWlsLW1RdeuXSEsLAwbGxusX78e5ubm2LlzJ3Mem81m4s4REdq3b4+QkJB668f/hNKOxWJRXl4edejQgacsJyeH9u7dSxISEhQcHMwc//btG02ZMoU8PT25gjIUFhaSpaUlGRgY0MmTJ6lZs2b09etX2rp1K926dYtWrVpV7X51796dQkJC6OzZs2RqakppaWnUpEkTunLlCrMOJyo3sXRxcaGTJ0+Sq6sr5ebmVrou79OnD/n4+FBeXh7XHmx90qFDB/r48SONHDmSAgMD6ciRI0REVFZWRu3btycpKSkyMjKqdf1VrSebNm1KZWVlJCYmVus2Ll26RPv27aNevXpR8+bNKSIigpSVlWnTpk2V+qf/CbZt20YAKC4ujkxNTcnPz4+Iyu0tZs6cSffv36dx48aRsLAwKSoqUlBQEO3cuZMiIyPJy8uLDh48SNbW1mRlZcVj0dcg1Ofbo6ZkZWXBzs6Ob9mmTZsQEhLC17khPj6ex/Nq3rx5Aqeqc+bMqdRZpjK8vLwqzSOWmJjIJDowMjKqNKyVo6Mj5s2bB2lp6QZJRQWUZ3q1srLCqlWrsHTpUq7fLCIiAi1btkR4eHit69fR0REYpLK0tLTO4bnPnz+PKVOm8LQRGhoKExOTOukf6pvS0lJoaGjAwsICI0eOhKqqKtfsJikpCVZWVgDKU3dNmzYNampqXGml8/Ly4OHhgRkzZtRpZvQ/4TwjKytLycnJfJ0X7t+/T6NGjeJ7XadOnSg/P59xYCguLqYPHz4I1D67u7vToUOHatXH5s2bU2pqqsDytLQ0xtnB2NiYy8b6Z3Jycig9PZ1mz55NBQUFXHb09UmXLl1ITk6OLly4QEuWLGF2HBISEmjNmjV07NgxWrFiRaUOI5VhYWFBXl5efMuOHTtWp9kDm80mT09P8vHx4ZlJ6Ojo0LBhwxirtr+B1NRU6tatGykrK9OTJ0/o3r17pKenx5QrKipSQUEBsVgsWrduHWVmZtLu3btJR0eHhIXLRU9aWpqWLFlCcnJydOXKlQbv8x8VeGFhYVJTU+PrxCImJkb79+8X6FDRunVrys/PJ6LyaX7v3r0FtqOgoEAFBQW16qOBgQGdP39eoID4+voy+/a2trbk7+9Pjx494jonOzub7OzsaMWKFdSlSxdSUFCguLi4WvWnOggJCdHUqVPJxsaGjIyMSE9Pj5YvX07r1q0jIyMjGjBgAD19+pTCw8MpPDycWCxWtet2cHCgd+/e0Zo1aygjI4OIiLKysmjTpk10//59mjVrVq37HR4eTmPGjCFRUf4rTScnp0q9HH8XX758ocePH9PVq1fp3r17dPfuXabs6dOnNGvWLHr58iUlJibSt2/fmG1ZNptNKioqfOt0dXWlEydONHjf//g+/KJFi8jGxoaSkpLIycmJZGVlKTU1lT58+EBKSkq0bNkynmsAMLHgiMr3xisePn6UlZVV233wV5o1a0ZGRka0ePFi8vDwYB5GAHT8+HFis9nUr18/IiKSkJAgf39/Wrp0KW3evJl69+5NaWlplJ2dTStWrGDsocXFxavcy68LX79+pS1bttDcuXMJANfakMPhUFxcHLm4uDAuwCtXriRVVVVasmQJM/IIQlhYmHx8fOjatWvk5uZGBQUFJCkpSba2ttW6vjJycnJITk5OYHmbNm2Yl/zvBgDNmTOH9u3bx3VcRESEWrZsSYqKitSsWTOaNm0aqampUUBAAEVFRZG8vDydPXuWkpKSKg0E2qpVK/rx40dD38afF3hxcXE6c+YMBQcHk6OjI5WUlJC0tDRNnDiRZGVl+SoyQkNDadCgQYzwycnJUU5ODmVnZ/P1Jb506RJpa2vXuo+zZs2ikydPko6ODvXr148kJCTo5cuXNG7cODp48CDXuTIyMnTgwAEqKCighIQEat68OeMEQUSUkZFBX758qdQuuq4oKSlRTEwMX9dOd3d3KigoIC8vLxo+fDgRlT/M3t7etHDhQtq5c2eV9QsJCZG+vj7p6+vXa7979+5NAQEB5OLiwrf82bNnVTrCNAQcDkdgtOHFixfTp0+fyM/Pj4SFhen48eO0detW2rJlCzk4ONDp06dJVlaWWCwWJSYmCmyjqKjo36+0qwwOhwNnZ2esX7+eMVgpLi7G4cOHYWBgwKP0CgsLg5GREU8f3759C3V19XrpO5vNxocPH/D27dsqgyO+e/cOW7duhYeHB54+fcooZCpynTVkooqIiAjMmDGD53hiYiImTJggMPKMtbW1wC3S38X48eP5GjSx2WyYmZkxKax/J/n5+cx22ooVK+Dv7w9bW1smk2toaCg0NDSwYsUKeHl5YfTo0ejfvz+Pz8X48eMFpqb29vau03bp/8w+fGVwOBwEBgbC3NwchoaGMDAwgI+Pj0At8ePHj6Gvr4/p06dj7dq1mDBhAuzs7PhGp20o8vPzYWlpCRcXF9y5cwcPHjzAokWLYGhoiLS0NLDZbNjZ2UFERKRBk2PMnz8fHh4eXLsGq1evxpAhQwRmjwkNDa00uOfvICkpCWpqajh37hyT4y4qKgpWVlZ8E0LWFzk5Odi3bx/s7Owwbdo0XL9+HY8ePUJSUhLS09PRtm1bLFiwAED5wPNrjjwOh4OnT5/i8uXLiIiI4JtD7/3799DQ0OCyUuRwOLh06RKMjIyqHEQq418h8LUlJiYGz549Q0ZGxm9v28bGhiePPYfDwYULFzB06FDEx8ejoKCACXpRHxQWFuL69eu4cuUK83LjcDg4evQotLS0YGZmBj09PfTr1w9+fn4C63nx4gVWr15dL32qC3l5edi3bx8MDQ1hZGSEGTNm4M2bNw3W3sOHD5mXTGZmJry8vGBra8vlvSYnJ4e4uDgA5TMlfjOonxEUK+/jx4+wtbWFsbExHBwcoKmpiRUrVtQqn/zP/KcF/k/x8eNHHtPS+/fvQ0tLC/PmzYO2tjZ0dHRgZmaGrl27YsSIEXXaj+dwONiwYQN0dXWxc+dOHDhwAOPHj8f06dO56mWxWGCz2QgKCuKy/vqVqhJyCiIrKwtxcXF1fmj/BJmZmVBXV2cyv/748YMR8okTJzL///mFU1BQAGNjY4F1slgs6OnpVdpuUVER0tPTa2U3z49Ggf8D7Nu3D1evXmX+DgsLg7GxMfMwvX37Fu7u7oiLi8PAgQPRtGlTGBgYCFyiVMWqVauwZ88enuM3b97EhAkTeNbpFQk4+EVFzc7Ohqqqao0ewPfv38PCwgIWFhZwdXWFvr4+XF1dK31Ovn37hjdv3iAnJ6fa7TQkO3bsQHBwMIDyF6iJiQkj5BX6llmzZvFcN2XKFIEm3sePH4enp2eD9vtXGgX+D7B3716ukMkmJiZcdu3v3r1j8sbfunULdnZ2EBcXx+DBg5n1anXJzMyEiYmJwHJ3d3c8efKE5/jLly+hoaGBa9eugc1mg81mM0qniiSc1SEyMhJaWlo8seQePHgAbW1tnpnL8+fPGf+GpUuXwsTEBE5OTn88c+vPYahLS0t5AlE0a9aMr4L169evUFNT4xr5K9bjBgYGvzeRKBoF/o8QGRnJrO2ysrJgaWnJVb5+/XrcuHEDQPnDoaurC19fXxARc7y6nDx5UmDGlIq+zJs3j29Zeno6PDw8YGBgAENDQ2zcuJHHW7EqJkyYwDdwJACcPn2aK1PsixcvoKenxyPcz58/h6am5h91jrG2tubpl6OjIyPw06dPx7Vr1/heW7GW19HRgZWVFTQ0NLBq1ao/srRpFPg/hKWlJcLCwngUOx8/foSOjg5XzjojIyOUlpaif//+GDJkSI3y2R06dIiZivLjZxv/+iYzMxMWFhYCy39NK2ViYiJQgerv74+9e/fWex+ry7lz57Bv3z6uY8uXLwcRoVu3btDV1a1Sz1JWVob8/Pw/Gkrsf8KW/t+It7c3bdu2jXbs2EEvX76k58+f06pVq2jOnDl09OhRxhItPT2dJCQkSFRUlA4cOEDPnz+nw4cPV7udwYMHc5l0/sqdO3doyJAhdb6fXyksLKQTJ05Qeno6hYaG8rVgFBcX57pPKSkpat26Nd/6zMzMKDQ0tN77WV1MTU0pODiYIiMjmWMODg7Utm1batKkCamqqlYZRVhERISaNWv2ewxn6kijwNczsrKydOHCBbKxsSEpKSnasmULaWho0LVr17gimm7atImmTZtGRESjRo0ie3t7WrhwIUVERFSrnYEDB1JMTAzFxMTwlOXn59PRo0fJysqqfm7q//Dx8SFzc3Nq0qQJFRcX05s3b0hLS4sJ811BdnY2E8o7Nze3UnNZMTGxOpnj1hUxMTE6deoUrV27lqZOnUpnzpyhW7dukZSUFKWmptLixYv/WN8agkaBbyAGDx5M169fJxEREXr06BGTK/7Tp080depUatOmDZd33759+6hnz56kra3NNdpUxsGDB2n69Onk6+tL+fn5VFJSQsHBwWRqakoeHh5cvvt1AQBt2LCBdu/eTc2aNaPk5GTq2bMnjR49moKCgmjNmjUUHx/PnL9nzx6yt7cnonIz348fPwqsOy0t7Y/H4W/bti0FBATQ4sWLicPhUJs2bcjBwYFyc3Nr7VX411Kf64PfDZvNxosXL3D37t3fak1XE9hsNkJCQjBp0iQYGRlh+vTpAkMaZWVlYcCAAVBQUKi21VVxcTFOnDgBCwsLmJqaYseOHfWq+S4tLYWNjQ06d+6MqKgoFBcX4+HDh9DX10efPn1w9uxZPH36FPPnz0dWVhbWrFmDWbNmca1n3dzccPfuXb71L1y4ENevX6+3/lYHFouFM2fOYM6cOXB3d+cyfQbKFZ7Nmzevci/9b6K6Mvo/m4giICCAvLy8aNiwYdSyZUt6+vQpSUtL065du6h58+Z/unu1Jjw8nIYPH04rV66kcePGUd++fXmmxKmpqfTlyxeSk5Orfk6xWrJ27Vpq27YtPX/+nImeQ1TuUGJtbU3t27en9+/f04sXL2j06NFkb29PJiYmXOvZ/Px8mjhxIllYWJC1tTVJSEhQSkoKbd++ncTFxcnDw6NB7+Fn3r59S3PmzCFLS0vS0tKigoICOnXqFMXFxVH//v0pKCiIIiIiqE+fPvT48WOSlZX9bX2rC//qRBT+/v5wdnbmMRIJDw+Hjo5OnWyS/zSlpaUwMzNjtoWaNm0KNzc3XL9+HYmJibC0tISVlRXWr18PZ2dn6Ovr12j//Geio6OxYcMGLFmyBAEBATy2ACwWC1paWkhISMC0adN4rv/8+TMcHBwAgK/t+M9UOD5V5JSztrbG7du3a9Xv2lJQUABVVVWuYKhsNhuRkZEYOXIkhISEYGVlhRMnTvw1hkHV5a/YlktNTYWHhwcmT56MBQsW4PXr1zW6nh9sNhvq6uoCLcL279+Ps2fP1rmdP01RURE+f/4MFxcXSEpKgoigqKiIFy9ecJ2XlZUFXV3dGn23paWlmDZtGpycnHD//n28ffsW+/btw7hx47iWG9HR0Zg3bx7znfMLL2VoaIjo6Gg4OTnV/mZ/E4cOHeLyJUhISMCIESOYF+uYMWMEerP97fxxgT916hT09fURGhqKjIwMvH79GjNnzsSMGTNqtN/8K+Hh4Vi+fLnA8ry8PIwfP77W9f+N5OfnY8SIEWjWrBn69OnDExk3OTm50n3xX1myZAlOnz7NczwrKwvq6uqMDuDr16+Mb4Cnpye2bt3KdT6bzYauri4mTJhQLy/zhsba2pqJMJybm4vRo0dDSUkJly9fRmZmJo4ePYqAgIA/28la8kf34V+9ekWXL1+mS5cukY6ODrVu3Zr69+9PBw4coIEDB1YryIIg8vPzK03PJC0tTSUlJbWu/2+kWbNmJC0tTeHh4ZSZmUkrVqzgKldQUKCysrJqhfHKz8+nt2/f0qRJk3jKWrRoQW5ubnTs2DEiImrfvj19/fqViouLacaMGZSZmUl2dnb04MEDio+Pp9WrV9Pnz5/JysqK+vfvXy/32pCIiIhQSUkJ+fn5UY8ePejly5fk6+tLhoaG1LJlSyopKREY6OJfQ32+PSpwdHTE58+f+ZZVNSWvipSUFB6T1Z959uzZvzLHeoW75cqVKyEjI4O8vDyucicnJ6SkpFRZz507d7Bt2zaB5aWlpTAyMmL+DgkJweTJk5nfKzY2FmvXroWDgwO6d+8u8Hf+Gzl58iQGDx4MIoKFhQVPsA9jY2NmBvC/xh8d4dPT06lbt258y4SFhalPnz6VhvupDHl5eRIXF+droMLhcGjTpk00ffr0WtX9NyMqKkrZ2dk0bdo0Kioq4rLKi4+Pp5s3b1JycjLf9MM/IyQkRBwOR2A5fomBp6+vTwYGBqSjo0ObNm2iBw8eUHp6OqWnp1NISIjA3/lvg8PhUEBAAEVERNDu3bvp3LlzXPkQjh8/zsTB/1dTn2+PCvT09Cq1K3Zycqo0Q0tVZGZmQktLC15eXozjxfPnz2FmZlZpgIf/ZYKCghjdhb29PRQUFJh719XVZbT6oqKicHV1FahlLiwshI6OjsB2+NmWA+Uj/507dxAQEIB3797Vwx39Xg4cOAAiwpEjR2BoaIj58+cjNDQUAQEBmDhxIubNm/dXxbyvKX90H3758uWkp6dHo0eP5ikrLi4mU1NTCg0NrZPtMYvFovPnz9OFCxeotLSUunfvTjNmzCBlZeVa1/k3A4Dc3d2ptLSUJk6cSOrq6uTi4kJKSkp08OBBysnJoaNHj9K7d+9o3bp15O7uTmvXruVb17p160heXp4x7a0gLS2NrKysKCgo6H9m/7m66OrqkrCwMF29epWIiF68eEFPnz4lSUlJMjAwIHl5+QZrm8Ph0N27dykqKopatWpFRkZGJC0tXa9tVFdGG0Tgk5OTyd7ens6ePcvlNMFms8nFxYUMDQ3J2Ni4mrfSyM88ePCADh8+TGFhYRQbG0sHDhwgeXl5MjMzo2/fvpGSkhKNHDmSZGRkBDqlcDgcWrx4MX379o2sra2pZcuWTHz1/fv3/5HIsIIAQA8fPqTnz59TRkYGtWjRgtq1a0e5ubmUmJhIsrKyZGtrS+3ateN7fWJiIgUEBNCmTZto8ODBdPny5RqlwUpISKDTp09TRkYG9ejRgyZNmlQjYX316hUtXLiQ1NTUaMiQIZSSkkL+/v5kYGBAs2fPrnY9VfHHDW/evn0LLS0tLF26FOfPn8eePXugqamJkydPVruORgRTUFAARUVFTJgwAR8+fOCKhHvy5EkQUZUGOd++fcP+/fuxefNm3Lhxo07bpbWhsLAQ7969w9u3b5kl4K9LQW9vbxARhISE0LlzZ8jIyICIICYmhk6dOqFp06YQFRXF6dOncfv2bRgaGmLIkCEICgrCokWLMGnSJFy7dg36+vpo164dxo0bh6dPn1bZNw6HgxUrVsDKygq3bt3Cx48fcebMGWhoaFTqlvwzSUlJ0NDQ4DF15nA4WLhwYb0uP//4PjxQfmNPnjzB0aNHcenSpVqHcvqbSE5OxrJly6CjowNDQ0NYWFjg1q1bf6QvFYK9YcMGjB8/HuLi4jh//jxKSkqgoqKCXr16NVgOu7oQGBgIDQ0NiIuLc2VT7d69OyQkJDB58mTmWfP39wcRcYUOy8/PZ15Oubm5sLe3Z+rp168f1NXVISwszGUdGBAQACLC06dPoampWaWBjbe3NzZt2sRznMViwczMrFp6jBUrVvAENK2gpKREYLjw2vBXCPy/jejoaKirq+Phw4fMD5WamopZs2ZVutXVUHA4HLi6ukJMTAxdunTBqFGjICwsDD8/P7x//x6ioqLYvn37b++XINhsNpYtWwYiwrhx47Bnzx48fPgQN2/exNy5czF37lysXr0a0tLSaNWqFfr06cMIsqDoPRX1njlzBrdu3QKHw0FhYSHatGkDCQkJxjKRxWKhdevWmD59Om7fvo01a9ZUWp+GhobAreOoqCi+psa/UpXyevbs2fUWZ79R4BsAQ0NDvmGdOBwObG1t8f79+z/QK+DTp0/o3LkzFBUVoaGhwUzvDQwM0Lp1a0RGRuL58+e4cuWKwMCLDQmLxcKpU6cwePBgCAkJYcuWLZUKQmxsLJYtW4ZZs2bh4MGD8PT0rFEIrpcvX8Ld3R19+/blyme/Y8cOCAkJITw8nInIw+Fw4OfnBz09PRgaGkJbWxs2NjaYNGlSpW38HNFHEFX5F8yfP7/echP8doEvKCjAoUOH4OTkhNmzZ+POnTt/NORPffPhwwe4uLgILH/9+jXmzJnz+zr0C+/evQMR4cyZM2jTpg2ICHFxcejatSvExMRgYWGB3bt3w8XFBQYGBg2aBONn4uPj0bt3bxARNDU1BbrJ1icvX77E8uXLMXPmTHTq1Ik5Xlpaig4dOjARdoHyNOMbN27kWvrcvn0bioqKlU7bq+M6O3v2bIEmx1XNImrKbxX4p0+fQlVVFSdPnkRKSgo+ffqEVatWwdjYmMci7H+Vy5cvw8vLS2A5h8PhslD7nUyYMAFEBBkZGXz58oVR4jk7O0NXV5dxEFFUVERubi6Sk5Ohrq5eJ1uI6lBQUID27dujc+fOiIiIaNC2fqakpASampoYOHAgz0itra0NFRUVrFu3Dk+ePOH7kuZwOBg3bhx0dXX51v/ixQvMnTu3yn58/PgRxsbGfL03PT0963UZ+NsEPjs7G2pqanzLHj58yLhP/q8THh6OZcuWCSxPSEj4Y/dqaWkJIoKLiwsTHnnp0qUgIpw4cQKlpaW4desWhISEcPDgQQDlMfMXLVrUoP3y9vaGiIgIk7Hld7J9+3aMGzcOzZs35wqOUhEl+MGDB3ByckJ8fDxT9vMo7+/vDxUVFZ4lUH5+PnR1dau99r58+TI0NDTg7++PuLg4PH78GI6OjnB1da3XXZHfJvB79uzB+fPnBV5rZWXV4CPJ74DD4UBDQ0NgCGIXFxfY2trC3Nwczs7OePDgwW9b0pSUlMDOzo5RcE2ZMgWJiYmQl5eHqKgoDh06BKD8xVChyCsqKqrU4q4+WL9+PeTk5Bq0DUFwOBy4ublBXFwcmpqaCA8Px+7duzF27Fg0b94c7u7uMDQ0hL6+PsTExCAiIgIiwsaNGxlBnDBhAoYMGYKTJ0/i7t272LFjB1RVVfHo0aMa9SUnJweenp6YPXs2Vq1axTdZZl35bQI/ceLESrd+fH19a5y+iMPh1Dgxw+/gxo0bMDc358rcwmaz4eDggPbt2+PRo0dgsViIj4/H0qVLYWtrW29rtOoQHR2NoUOHMrnQxo0bBwcHB4iLiyMrKwslJSWYM2cOhISEoKKiIjD/WX2xZcsWyMrKNlj9BQUF2L59O7S1tWFoaAgdHR3s37+fawq9ZcsWEBEcHR0RGBiI0tJSDBgwADNnzoSamhpP4gkiQnh4OIDyNXh4eDiOHTuG7du349KlS7/196wJv03gbWxsuCKI/Mq+fftw5cqV6jSDpKQkzJ49G1paWjA1NYWGhgY2b978V+3fP3r0CKamprC0tISzszOGDBmCgQMH8n0QTp8+Xen2T0ORmJgIAwMDEBF27twJYWFhZpQHymddPXv2hJmZWYP24+rVqyAiPH78uN7rrphaBwQEMDbwLBYLR48ehZmZGSP0bDYbw4cPR/fu3RlFZYcOHbB06VLcvHkTmpqaCAwMxPv37xmBz8/PZwKL1AexsbFMBmFjY2N4e3sz6cfqi98m8P7+/kyWkaKiInz58oVLUaevr1+tzCIJCQlQU1PjirjCZrPh7+8PU1PTvy5sVXZ2NpKTkzF58mSBa1QOhwNNTc0/0ncOh4OOHTti8ODBMDQ0RMeOHZnfZcGCBSAiaGlp8eQwr09u3LjBrJfrk7S0NMyePRuXL1/mW37ixAmunHvv379Hly5d0KFDB9y+fRtEhICAAHA4HMyYMQO7du3Cs2fPcP36dRw4cACxsbHQ0dERGGy0JgQGBsLQ0JAJlPnjxw/4+flBTU2tXpe6v03gWSwWxo4dC0tLSxgYGGDWrFkwMzODra0tVq9ejXXr1lWrw5MnTxa4R+zt7Q1fX99q1fO7qWpaPHfu3AYVqsowNTWFkpISZsyYAUlJScyfPx+RkZGws7ODrq4uFBQUIC0t3WBbdIaGhhgwYEC96TJCQ0Ohq6sLOzs7tGvXDmpqati6dSuP8qu0tBTa2tpcx168eAFRUVHGqu/nGUDFLsbAgQOho6ODyZMnIyoqqs79TUlJgY6ODt/l6adPn+p1hvXb/OGLiooIAKWlpVH79u1JTU2NjIyMKDk5mY4fP042NjZV1lFQUECZmZkUHh5OM2bMoLlz59L9+/eZmOB2dnYUGBhY1642CGw2u1L/8ry8PJKUlPyNPfr/SEhIUHp6On3//p06dOhA+/fvJw8PD1q4cCFdu3aNoqOjSUlJiYyNjfkmtKgLJSUldOvWLbK1ta2XjCwXLlygU6dO0fnz58nLy4tGjhxJt27dohYtWtCMGTO4zhUVFWUSYVQwaNAgio6OZnziK8rT0tIoLCyMiIjKysro6tWrdOzYsXpxIDpy5AjNnz+fx1kHAEVFRdGrV69ITU2NTExM6MSJE78nUlNd3x7r169n7Jzfv3+PI0eO4MyZM8jOzsaHDx+qFdzwypUrUFRUxOHDh5GYmIgPHz5gxYoVXPv4dVEwxcbG4tq1a3j+/Hm9a85/ThD5K4WFhfW2DqwNeXl52LhxIxMEk/7PCeXChQvMOZ8+fYKysjJkZWWr7RRSHV69esWkXK4rpaWlXFGS2Gw2lwWdm5sbl6MQh8PhKq+qbgsLC+b7SU1NrXN/K7CwsODZ1WGz2Zg6dSrWrVuHAwcOICAgAIWFhTh48CBMTExqnXX2t03ptbW1K91P1NfXr3QNm5+fjzFjxvC1XHr06BHs7e1RWFhYK4GPj4+HqakpHB0dsW/fPri7u0NDQ6NeEx+kp6dDTU0NiYmJXMcrtsoEZR79nXz+/JkJ7SQrK8tlYw6UbxuZmpqCiHDq1Kl6afPOnTsgonqxFb9x4wa2bNnCdczV1ZUR8vfv38PV1RVA+b1MnToVysrKMDIygoODQ5Veg4WFhYzAC0p6WRucnJyQkJDAdezEiROMwc327du50otfvHix1kre3ybwVQminZ0d1zbWr3h5eeHUqVNwdHTE27dvecqtra2xfv16HDt2rDpdZcjIyICamhqXYQVQHh99/PjxAr2YakNMTAyjvzhy5Ag2bNgADQ0NrpH0T1Mx26h4sH+1QONwOLC3t4eYmFi9xIsPCgoCEdVLRqBTp07xvIhSU1MZJW9eXh4mTZqEb9++YeDAgejXrx+OHTuGZcuWQU9PD61bt0bnzp2hpaUFAwMDbNmyhecF/fr1a4SFhdW5rz9z48YNrF27luuYvr4+CgsLwWazeRS6FbYetTHI+W0Cr6enJ9AYpUJLXVnoIBsbG2RlZSElJQVqampcnmglJSVwcnLC8OHDa7z/uW7dOoFT7ZycnAbZg46MjMSFCxdw7969vzJcUnR0NDOt52fTXpF4osJEty54e3tDWFi4XnYonj9/zjcwaUpKCmbOnImhQ4dCRUUFcnJyGD16NOTk5Pjur+vq6kJPTw8SEhIQEhLC0qVLce3aNRw7dqxeR/YK2Gw2TE1NuZ5DQ0NDlJWVYd68eUz8gp+paoAUxG8R+NTUVHTs2FHgOj0kJKTSGPIAMGXKFCbaanp6Otzd3aGpqQlDQ0NoaWnB0tIS586dq043udDV1a30TWlra1sjD6x/C+Hh4Tyznp/JyclBu3btYGpqWqd2VqxYgVatWvHVmRQXF+P48eNwdHSEs7MzgoODK31BcjgcaGtr8/292Gw2DA0NcfXqVYwaNYpLwEVERCAlJcX83bJlS6xbtw7Pnz/H2rVruc5t27ZttZZfFbH9AgMDq7VcKSoqwuzZs2FkZAQPDw907twZ6urqOH78ON/zDQwMamV38lsE/uHDh8wXtmPHDnh5eSE4OBhFRUU4fvw4M32pjIsXL2L37t0Cy42MjGqV9qeqEXz27NmVPvj/ZbZt2wZJSUme9WdNqFjD/7xGBcrX2+PGjYOvry9SU1ORkJCA7du3Q1NTs1KF2cuXLzFs2DD4+fkhKioKd+/excePH2Fvbw9fX18sWrSIS4DbtGnDzLS2bt0KLS0tSEpKQlhYGE2aNIGpqSkWLFiAFStWICwsjFnuLFiwQOCs5OTJk1BXV8emTZvg6+sLJycnmJub83WZ/pWcnBw8fPgQzs7OAnVIMTExmDx5cpV18eO3Tek/fvyIyMhIHDt2jOvL7tGjR7XipJeWlkJTU5OvL7mPj0+lDiuVMWnSJIE/xJ80iPlfIDMzE+3atYO1tXWt66jwOOvTpw9zjMViQVVVle9I/f79e5iYmHAdS0hIwJo1azBkyBCIiYnxTNGVlJSYcFV3796FpqYmtm3bBgMDA56XeXp6OiZNmoTg4GBoa2tj9OjRjP28mZkZ2Gw2tm/fDjExMfTp0wcLFizgMhjy9/fnmzUpOjoaampq1TIuA4Dv379DTU2Nx/U2MTERGhoatbbZ+CMBMAIDA2Fqasq1hlJVVa2y/tTUVJiamsLFxQWBgYHw8/ODmZkZFi9eXOu18P379zF9+nS+U8pz585h9erVtar3vwCLxYK8vDwmTJhQp3rOnz8PImJmCv7+/jhw4IDA893c3PDq1SsAQFxcHKSkpNCsWTNMmjQJBw4cQFBQEHx9fXHhwgWoq6ujS5cuzLUV/uU5OTkwNjbmqdvDwwNXrlwBm81mjHJYLBYOHjwIISEhuLq6wsfHBw8ePICqqiqaNGnCWCMGBQVBTU1NoB7pzJkz8PT0rPb3kpKSAnt7e+YZt7KyYmIT1pY/GvHmx48fOHv2LCP0J0+erJYzzLt37+Dj44MTJ07USIlSWlqK4OBgbNy4EQcOHGCmhjt27ICtrS0TJDE1NRVr167FxIkT/0rnnL+FivXt3r1761RPZmYmJCUlMXHiRLDZbMyZM6fSde/Vq1eZF8KuXbsgISGBnJwcxMTEYPz48bCxscGaNWswZswYEBFmzZrFdf2lS5cwfvx42Nrach0PCQmBmZkZM3j8vNwrKyvDsmXL0L59exARevbsidLSUqSmpqJ79+6MDkBOTk6gIpPFYtUqFkJ2djaioqLqZSejujIqWierHQE0adKELC0taeTIkdShQweys7OjDRs2UGhoKHXq1EngdX379qW+ffvWqK0XL17QokWLyNjYmNTU1Cg9PZ1mzZpFvXv3prVr11JUVBQdOnSI4uPjSUZGhuzt7WnFihUkLNwgSXf+FbRp04aIiIYOHVqnelq2bEmnT5+m8ePHU7du3UhcXJyKiooEnl9UVMRYwCUnJ5OSkhLl5eXRtGnT6OjRo9ShQwdis9nk6+tLenp6FBUVRV++fGGeKSMjIxIRESF7e3uaNm0atWzZkl6/fk39+vWj06dPk4iICE/+PREREdq4cSMpKCiQq6srffz4kYYMGUIiIiLUvXt3UlRUpHv37lFaWhpFR0fTzp07KTo6mhQVFUlcXJw+fvxITZs2pejoaHr+/Dn16dOHmjZtWq3vp3nz5r8/0019vj1+5eXLlyAiWFlZgYh41mi15f3791i+fDkmT56MHj168H3zbtmypc4j1H+VHz9+YMCAAejSpUudt+eAco29pKQkrl69WqlOxsrKCklJSSgtLUXv3r1hYWGB2bNnM9N8oHzrk4iwcuVKREZGYsaMGTz1rFy5EocOHUJkZCSP0tjDw4Nv5tw9e/aAiGBpaQkXFxdMnToVhoaGsLKywty5czFkyBDmef75Y2RkBDU1NUhISICIMGbMGBw6dOi3u9H+FUEs2Ww288WIiopyeTDVBjabjVmzZsHZ2Rnh4eGYO3cu1qxZA01NTVy6dInn3PqMGfZfIy4uDgoKChAXF8fcuXPrtE+dmpoKaWlpmJiYQFNTEw8fPuQ55/Tp05g6dSr8/f0xcOBACAsL4+HDhzwmsklJSSAqTxkFlFt6/qqnKS4uhrGxMQ4ePMgI/Pfv37F69WqBep2qmD17NkJDQ3Hz5k0QESZPnoyysjKUlZXB3Nwcr1+/xooVK5jnXUVF5bcm2vwrBB4oX0dPnDixWlsXVbF582Z4e3szfxsYGIDD4YDFYsHExITH68vd3R1v3rypc7vV4cWLF5g8eTIMDAygp6eHOXPmIDY29re03VDk5+dj/fr1kJGRgbKycp3cOYOCgpg49JKSkhg9ejTWr18PU1NTtGvXDq1atWKEZciQIXj27Bk4HA7XetvPz485p8I4xcTEhK9il8Vi4fjx4zA2NoahoSEmTJiAS5cu8RX2ixcvwszMDJMmTcKKFSt4ElVUKB+bNm2KTp06MX3YtGkTDA0NsWnTJhw4cAAXL17kEnoZGRlkZWXB398fOjo6MDMzg4ODQ72adlfw1wh8fcEvcH+FwAPlzhqzZ8/mumbp0qUCo4bWJ2fOnIGVlRWXgL98+RI6OjrVynLytxMbGwt5eXkICwtjzJgxWLVqFQIDA2s8Uubm5uLq1aswNzdnhKJZs2YYPnw4nJ2dceLECZ69fy0tLWb7dNiwYSAiDBgwAED5M8HPSebz58+YO3cu9PX1oaenh2XLlvGY0lbA4XAgKyvLbCdX9MvGxoY5Z+PGjXwt96SkpDBx4kSe482aNQMRQUNDA2VlZejXrx9Xubi4uEDr1NryrxP4qKgoLFiwgOvY8uXLufZKf44DXmGX3NDa+IyMDOjo6PAdZXJzc6Gurv7bUzg1BN+/f4evry+MjIwgLy8PIsK0adMqjXYkiLKyMvj5+eH+/ftVbrt6eXkxAVZcXV1BRIwhlre3N0+m2+vXr8PAwIBxDuJwOMzS4NmzZ3zbuHjxIo85brdu3bj66+vrC3t7exw6dAjbtm2Dj48PVFRUQETo0aMHLl26xIRmLy0txc2bN5moNvPmzYOSkhJ69OiB7t27w8PDo8bfWVX86wT+8+fPPCN4YmIitLW1kZ+fDw6Hw+Vxt2/fvt+SDWbnzp08+oOf2bhxI27evNng/fjdeHp6QkZGBi1atMCKFSvqZJVXGWw2G1OmTMG6detgbGyMnj17IjMzExs3boSdnR3XC6OgoABqamp8XUxzcnKgpqYm8AVTWFiIy5cv4/Lly0z8v6rIzs7G1KlTYWNjAwMDA+jr62PJkiX4+vVr7W+4lvzrBF7QiP3o0SOMGzcOc+fOxfTp03Hjxg3Y2NhgwYIFvyVqrIuLS6UPe0hISI2MMv6XSEtLg6urK6SlpSEsLAx1dXUsXryYy/W2PmCz2bh8+TLk5OTQunVrWFhYIDg4mGfm5OvrixMnTgisZ+vWrQgJCam3ft27dw96enoIDw8Hh8MBh8PB48ePoa2tXS9xAGrCv07ggXKlzfz583kE+du3b+jTpw/c3NywdevW3/qGXbVqVaVBGr28vBAQEPDb+vMnyMvLg5eXF4yMjKCgoAAigp6eHs6fP8815S8oKMDBgwfh5OSEOXPm1Mir0MfHB0JCQti4cSPX8czMTERGRiI7OxuOjo6VWqvdvXu33nLtFRcXQ1VVla+vSF5eHlRVVX+rcde/UuAB4MCBA9DR0YGvry9CQkKwZs0aqKur/zZt/K98+vQJ9vb2fMsqIrPUt4Lmb6asrAynTp1iFFXCwsLQ1dXFtGnT0KpVK4iIiGDQoEFQUlICEeGff/6p8rdjsVhcHm+ioqLo27cv1NXVubzh6P+83g4dOsR3dnf69GlmO6+unDp1iisS8K/s2bOnxuHZ68Jvi2n3u5k5cyadP3+epKSk6MuXLzRu3Di6desWqaio/JH+KCsrk7y8PG3bto3KysqY40VFReTi4kI2NjZ/LKbdn0BERISsra3p7du3lJCQQJ6enlRQUEBhYWFka2tLMTEx9OLFC0pISKB79+5RaWkpjR49mh4+fCiwTnFxcdq3bx916NCBhg0bRvPnz6fhw4dTmzZtaMGCBRQUFETHjh2j/fv3k5SUFE2bNo3Gjh1Lnz59YuoAQGfOnCFTU9N6uc+oqKhKLRGHDh1KUVFR9dJWfSIE/F+kyErIy8sjWVlZys3NJRkZmd/Rr/8pAJC3tzcFBARQly5diMViUUZGBs2cOZOMjIz+dPf+agoKCsjExITCwsIoKCiItLW161TfokWLKDc3l3x8fGjEiBH05MkTKisrozVr1lDz5s1p4cKF9dLvHTt2UJ8+fUhXV5dveWBgIKWmppKLi0u9tFcV1ZbR+pwu/Ndhs9lISkqqF2eI/xLFxcUwMDCAmJgYPD0966Rs5XA42LlzJ5o3b45OnTrBzc0N6urq9TaVryAxMRGWlpYCy83MzH5rgJXqymjjCN/IX0FJSQktWLCA9u/fT7169aKuXbtS7969ydHRkXr06FGjuoqLi6lr1640ePBg2rFjB3Xt2rVBnKWWLVtGLVu2pPnz5zP1s9ls8vDwIAC0cuXKem9TENWV0UaBb+Sv4v79+3Ts2DH6/v07PX36lPLz82nYsGGkpaVFdnZ29OXLF3r9+jU5OTlRs2bN+NZx584d0tDQoDdv3jSobgcA7d+/n4KDg6l///7E4XDo7du3NHHiRJo2bVq9xOOvLo0C38j/PD9+/KBdu3ZRREQEXb58mVgsFlNmZGREly5d4nudn58f2dnZUWFhYbVdVesCm82mz58/k5CQEHXr1o1EREQavM1fqa6M1sgfPi8vr84da6SRmjBr1iwiIsrKyqLw8HB68uQJ7d27ly5fvkzfvn3j+3BXTK8/f/5MnTt3/i39VFRUJCKiwsLC39Ler1RXNqs1wv/48YM6d+5Mqampde5YI4000jDIy8tTfHw8SUhICDynWgJPVC70vyX3VSONNFIrxMXFKxV2ohoIfCONNPK/z/+cpV0jjTRSexoFvpFG/kM0CnwjjfyHaBT4Rhr5D9Eo8I008h+iUeAbaeQ/RKPAN9LIf4j/B+ZpZ2HDEAiSAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAElCAYAAAAflYjaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgVR/uw7xN3dxJCCIEE9+DB3S24FS8uwa0Ud6d4cYfiBHcnwYPFjbh7cr4/8st+HCIEbft27us6V8vu7OyczXlm55nHZHK5XI5AIBAIBAKBQCAQCH4ISn/3AAQCgUAgEAgEAoHgfxmhdAkEAoFAIBAIBALBD0QoXQKBQCAQCAQCgUDwAxFKl0AgEAgEAoFAIBD8QITSJRAIBAKBQCAQCAQ/EKF0CQQCgUAgEAgEAsEPRChdAoFAIBAIBAKBQPADEUqXQCAQCAQCgUAgEPxAVP7uAQgEAoFAIBAIBP8VUlJSSEtL++Z+1NTU0NDQ+A4jEvwMhNIlEAgEAoFAIBD8BFJSUrCzsyM0NPSb+7KwsMDHx0coXv8ShNIlEAgEAoFAIBD8BNLS0ggNDSUgIAA9Pb2v7icuLg4bGxvS0tKE0vUvQShdAoFAIBAIBALBT0RXVxddXd2vvl4ul3/H0Qh+BiKRhkAgEAgEAoFAIBD8QITSJRAIBAKBQCAQ/ETkcvk3f76U9evXY2dnh4aGBlWqVOHGjRsFtr927RpVqlRBQ0OD4sWLs3Hjxlxtjhw5QunSpVFXV6d06dIcO3bsi+8rl8uZPXs2VlZWaGpqUr9+fV68eKHQJjU1lZEjR2JiYoK2tjZt27YlMDDwi5/B34lQugQCgUAgEAgEgv9hDhw4wJgxY5g2bRoeHh7UrVuXFi1a4O/vn2d7Hx8fWrZsSd26dfHw8GDq1KmMGjWKI0eOSG3u3LmDq6srvXv35smTJ/Tu3ZuuXbty7969L7rv4sWLWb58OWvXruXBgwdYWFjQpEkT4uPjpTZjxozh2LFj7N+/n5s3b5KQkEDr1q3JzMz8AU/rxyCTC6dQgUAgEAgEAoHghxMXF4e+vj5RUVHfnEjDyMiI2NjYQvXj7OxM5cqV2bBhg3TMycmJ9u3bs2DBglztJ02axIkTJ3j16pV0bOjQoTx58oQ7d+4A4OrqSlxcHGfPnpXaNG/eHENDQ/bt21eo+8rlcqysrBgzZgyTJk0Csq1a5ubmLFq0iCFDhhAbG4upqSm7du3C1dUVgODgYGxsbDhz5gzNmjX7kkf3tyEsXQKBQCAQCAQCwf8oaWlpPHr0iKZNmyocb9q0Kbdv387zmjt37uRq36xZMx4+fEh6enqBbXL6LMx9fXx8CA0NVWijrq6Oi4uL1ObRo0ekp6crtLGysqJs2bL5jv+fiMheKBAIBAKBQCAQ/AuJi4tT+Le6ujrq6uoKxyIiIsjMzMTc3FzhuLm5eb71wkJDQ/Nsn5GRQUREBJaWlvm2yemzMPfN+W9ebfz8/KQ2ampqGBoaFnr8/0SEpUsgEAgEAoFAIPiJfK9EGjY2Nujr60ufvFwFc5DJZLnG8Omxz7X/9Hhh+vxebT6lMG3+SQhLl0AgEAgEAoFA8C/k0yLLn1q5AExMTFBWVs5lFQoLC8tlYcrBwsIiz/YqKioYGxsX2Canz8Lc18LCAsi2ZllaWubbJi0tjejoaAVrV1hYGLVq1cpz/P9EhKVLIBAIBAKBQCD4iXwvS5eenp7CJy+lS01NjSpVqnDhwgWF4xcuXMhXaalZs2au9u7u7lStWhVVVdUC2+T0WZj72tnZYWFhodAmLS2Na9euSW2qVKmCqqqqQpuQkBCeP3/+r1K6hKVLIBAIBAKBQCD4H2bcuHH07t2bqlWrUrNmTTZt2oS/vz9Dhw4FYMqUKQQFBbFz504gO1Ph2rVrGTduHIMGDeLOnTts3bpVykoIMHr0aOrVq8eiRYto164df/31FxcvXuTmzZuFvq9MJmPMmDHMnz8fBwcHHBwcmD9/PlpaWvTo0QMAfX19fvnlF8aPH4+xsTFGRkZMmDCBcuXK0bhx45/1CL8ZoXQJBAKBQCAQCAQ/ka8tcPzx9V+Cq6srkZGR/Pbbb4SEhFC2bFnOnDmDra0tkG05+rh2lp2dHWfOnGHs2LGsW7cOKysrVq9eTadOnaQ2tWrVYv/+/UyfPp0ZM2Zgb2/PgQMHcHZ2LvR9Adzc3EhOTmb48OFER0fj7OyMu7s7urq6UpsVK1agoqJC165dSU5OplGjRuzYsQNlZeUvfnZ/F6JOl0AgEAgEAoFA8BPIqdMVHh7+zXW6TE1NC12nS/D3IyxdAoFAIBAIBALBT+RnW7oEfz8ikYZAIBAIBAKBQCAQ/ECEpUsgEAgEAoFAIPiJCEvXfw9h6RIIBAKBQCAQCASCH4hQugQCgUAgEAgEAoHgByLcCwUCgUAgEAgEgp+IcC/87yEsXQKBQCAQCAQCgUDwAxGWLoFAIBAIBAKB4CciLF3/PYSlSyAQCAQCgUAgEAh+IELpEggEAoFAIBAIBIIfiHAvFAgEAoFAIBAIfiLCvfC/h7B0CQQCgUAgEAgEAsEPRFi6BAKBQCAQCASCn4iwdP33EJYugUAgEAgEAoFAIPiBCEuXQCAQCAQCgUDwExGWrv8ewtIlEAgEAoFAIBAIBD8QYekSCAQCgUAgEAh+IsLS9d9DWLoEAoFAIBAIBAKB4AciLF0CgUAgEAgEAsFPRFi6/nsIS5dAIBAIBAKBQCAQ/ECEpUsgEAgEAoFAIPiJCEvXfw+hdAkEAoFAIBAIBD8RoXT99xDuhQKBQCAQCAQCgUDwAxFKl0AgEAgEAoFA8BPJsXR9y+dHER0dTe/evdHX10dfX5/evXsTExPz2e8ze/ZsrKys0NTUpH79+rx48UKhTWpqKiNHjsTExARtbW3atm1LYGDgF9/b39+fNm3aoK2tjYmJCaNGjSItLU067+vri0wmy/U5d+7cNz2Xb0UoXQKBQCAQCAQCwU/mn6hwAfTo0QNPT0/OnTvHuXPn8PT0pHfv3gVes3jxYpYvX87atWt58OABFhYWNGnShPj4eKnNmDFjOHbsGPv37+fmzZskJCTQunVrMjMzC33vzMxMWrVqRWJiIjdv3mT//v0cOXKE8ePH5xrTxYsXCQkJkT4NGzb8Dk/n65HJhVOoQCAQCAQCgUDww4mLi0NfXx8fHx90dXW/up/4+Hjs7OyIjY1FT0/vu43v1atXlC5dmrt37+Ls7AzA3bt3qVmzJl5eXpQqVSrXNXK5HCsrK8aMGcOkSZOAbKuWubk5ixYtYsiQIcTGxmJqasquXbtwdXUFIDg4GBsbG86cOUOzZs0Kde+zZ8/SunVrAgICsLKyAmD//v3069ePsLAw9PT08PX1xc7ODg8PDypWrPjdns23IixdAoFAIBAIBAKBgDt37qCvry8pPQA1atRAX1+f27dv53mNj48PoaGhNG3aVDqmrq6Oi4uLdM2jR49IT09XaGNlZUXZsmWlNoW59507dyhbtqykcAE0a9aM1NRUHj16pDCutm3bYmZmRu3atTl8+PDXPpLvhsheKBAIBAKBQCAQ/ES+V/bCuLg4hePq6uqoq6t/db+hoaGYmZnlOm5mZkZoaGi+1wCYm5srHDc3N8fPz09qo6amhqGhYa42OdcX5t6hoaG57mNoaIiamprURkdHh+XLl1O7dm2UlJQ4ceIErq6u/Pnnn/Tq1euzz+BHISxdAoFAIBAIBALBT+R7JdKwsbGRkk7o6+uzYMGCPO83e/bsPJNLfPx5+PAhADKZLM/x5nX8Yz49X5hrPm1TmHt/ro2JiQljx46levXqVK1ald9++43hw4ezePHiAsfyoxGWLoFAIBAIBAKB4CfyvSxdAQEBCjFd+Vm5RowYQbdu3Qrss1ixYjx9+pQPHz7kOhceHp7LwpSDhYUFkG2FsrS0lI6HhYVJ11hYWJCWlkZ0dLSCtSssLIxatWpJbT53bwsLC+7du6dwPjo6mvT09HzHB9luilu2bMn3/M9AWLoEAoFAIBAIBIJ/IXp6egqf/JQuExMTHB0dC/xoaGhQs2ZNYmNjuX//vnTtvXv3iI2NlZSjT7Gzs8PCwoILFy5Ix9LS0rh27Zp0TZUqVVBVVVVoExISwvPnz6U2hbl3zZo1ef78OSEhIVIbd3d31NXVqVKlSr7PycPDQ0Eh/DsQli6BQCAQCAQCgeAn8r0sXd8bJycnmjdvzqBBg/jjjz8AGDx4MK1bt1bIXOjo6MiCBQvo0KEDMpmMMWPGMH/+fBwcHHBwcGD+/PloaWnRo0cPAPT19fnll18YP348xsbGGBkZMWHCBMqVK0fjxo0Lfe+mTZtSunRpevfuzZIlS4iKimLChAkMGjRIsvj9+eefqKqqUqlSJZSUlDh58iSrV69m0aJFP+SZFRahdAkEAoFAIBAIBD+Rf6rSBbBnzx5GjRolZRps27Yta9euVWjz+vVrYmNjpX+7ubmRnJzM8OHDiY6OxtnZGXd3d4W0+CtWrEBFRYWuXbuSnJxMo0aN2LFjB8rKyoW+t7KyMqdPn2b48OHUrl0bTU1NevTowdKlSxXG9/vvv+Pn54eysjIlS5Zk27Ztf2sSDRB1ugQCgUAgEAgEgp9CTp2uN2/efHOdrpIlS373Ol2CH4ewdAkEAoFAIBAIBD+Rf7KlS/BjEEqXQCAQCAQCgUDwExFK138PoXQJBAKBQCAQCAQ/EaF0/fcQKeMFAoFAIBAIBAKB4AciLF0CgUAgEAgEAsFPRFi6/nsIpUsgEAgEAoFAIPiJCKXrv4dQugQCgUAgEAgEgp+IULr+e4iYro/YsWMHMpkMX19fAPbu3cvKlSv/1jF9bhwymYzZs2f/1PF8CY8fP6Zx48bo6OhgYGBAx44d8fb2/ruHJfgPIeT6+3Lz5k0GDhxIlSpVUFdXV3i2AsHPQsj19yMzM5Ply5fTvHlzrK2t0dLSwsnJicmTJxMTE/N3D08g+J9BFEf+iPDwcN6/f0+lSpVQV1endevWPH/+/G9fUBQ0jrt372JtbY21tfXPH9hn8PLyonr16lSsWJHJkyeTkpLCzJkziY6OxtPTE1NT0797iIL/AEKuvy9z5sxh+/btVKpUiZiYGK5evYqPjw/FihX7u4cm+A8h5Pr7kZCQgJWVFd27d6dJkyaYmJjw+PFjfv/9dywtLXn48CGampp/9zD/Z8gpjvz8+fNvLo5ctmxZURz5X4RwL/wIU1PTn6IIJCcnf7cJrEaNGt+lnx/BzJkzUVdX59SpU9KEUKVKFRwcHFi6dCmLFi36m0co+C8g5Pr7MmPGDGbNmgXA0qVLuXr16t87IMF/EiHX3w9NTU18fHwwNjaWjtWvX5+iRYvSpUsXjhw5Qq9evf7GEf5vItwL/3sI98KP+NhdoX79+pw+fRo/Pz9kMpn0ySEtLY3ff/8dR0dH1NXVMTU1pX///oSHhyv0WaxYMVq3bs3Ro0epVKkSGhoazJkzB4B169ZRr149zMzM0NbWply5cixevJj09HTp+s+NIy93hefPn9OuXTsMDQ3R0NCgYsWK/Pnnnwptrl69ikwmY9++fUybNg0rKyv09PRo3Lgxr1+//uZnmZGRwalTp+jUqZPCDoytrS0NGjTg2LFj33wPgaAwCLn+fnINoKQkXhuCvx8h199PrpWVlRUUrhyqV68OQEBAwDffQ5CbHKXrWz6CfxfC0pUP69evZ/Dgwbx//z6XgpCVlUW7du24ceMGbm5u1KpVCz8/P2bNmkX9+vVzmeIfP37Mq1evmD59OnZ2dmhrawPw/v17evTogZ2dHWpqajx58oR58+bh5eXFtm3bPjuOvHj9+jW1atXCzMyM1atXY2xszO7du+nXrx8fPnzAzc1Nof3UqVOpXbs2W7ZsIS4ujkmTJtGmTRtevXqFsrKy9H2zsrI+e2+ZTCZd8/79e5KTkylfvnyuduXLl+fChQukpKSgoaHx2X4Fgu+FkOtvk2uB4J+IkOsfI9eXL18GoEyZMp/tTyAQFAK5QGL79u1yQO7j4yOXy+XyVq1ayW1tbXO127dvnxyQHzlyROH4gwcP5IB8/fr10jFbW1u5srKy/PXr1wXeOzMzU56eni7fuXOnXFlZWR4VFSWdy28ccrlcDshnzZol/btbt25ydXV1ub+/v0K7Fi1ayLW0tOQxMTFyuVwuv3LlihyQt2zZUqHdwYMH5YD8zp070rFZs2bJgc9+Ph7jrVu35IB83759ucY8f/58OSAPDg4u8JkIBN8DIdffT64/ZcmSJQrPViD4WQi5/nFyLZfL5YGBgXJzc3N51apV5ZmZmQW2FXwZsbGxckD+5MkTube391d/njx5IgfksbGxf/dXEhQSYen6Ck6dOoWBgQFt2rQhIyNDOl6xYkUsLCy4evUqw4YNk46XL1+ekiVL5urHw8ODWbNmcevWLaKiohTOvXnzBmdn5y8e2+XLl2nUqBE2NjYKx/v168fZs2e5c+cOzZs3l463bdtWoV2OZcrPz0/yPx88eDCtW7f+7L3V1dVzHfvYteJLzgkEPxsh13mTl1wLBP8WhFznTUFyHRUVRcuWLZHL5Rw4cEC4FP8g5CKm6z+HULq+gg8fPhATE4Oamlqe5yMiIhT+bWlpmauNv78/devWpVSpUqxatYpixYqhoaHB/fv3+fXXX0lOTv6qsUVGRuZ5PysrK+n8x3zqx50zEX98fwsLC8zMzD5774+VqJx+P70fZE/oMpkMAwODz/YpEPwshFznjdgcEfybEXKdN/nJdXR0NE2aNCEoKIjLly9TvHjxz/Yl+DqE0vXfQyhdX4GJiQnGxsacO3cuz/OfpgDNa3I7fvw4iYmJHD16FFtbW+m4p6fnN43N2NiYkJCQXMeDg4OB7LF/Kb/99psUTFwQtra2Uppce3t7NDU1efbsWa52z549o0SJEiKeS/CPQsh13nws1wLBvw0h13mTl1xHR0fTuHFjfHx8uHTpUp4x2QKB4OsRSlcBqKur57mD1bp1a/bv309mZuZXuRTA/5/YPzbxy+VyNm/eXOhx5EWjRo04duwYwcHB0m4ZwM6dO9HS0vqqlLVf466goqJCmzZtOHr0KIsXL5ZebP7+/ly5coWxY8d+8TgEgu+BkOtshHuh4H8JIdfZfK1c5yhc3t7eXLhwgUqVKn3xvQVfhrB0/fcQSlcBlCtXjqNHj7JhwwaqVKmCkpISVatWpVu3buzZs4eWLVsyevRoqlevjqqqKoGBgVy5coV27drRoUOHAvtu0qQJampqdO/eHTc3N1JSUtiwYQPR0dGFHkdezJo1i1OnTtGgQQNmzpyJkZERe/bs4fTp0yxevBh9ff0vfg5WVlYKL4TCMmfOHKpVq0br1q0ViiObmJgwfvz4L+5PIPgeCLnO5mvlOjw8nGvXrgFIluyzZ89KdZNcXFy+uE+B4FsRcp3N18h1cnIyzZo1w8PDg5UrV5KRkcHdu3el86amptjb23/xWASfRyhO/zH+juwd/1Q+zYYUFRUl79y5s9zAwEAuk8nkHz+u9PR0+dKlS+UVKlSQa2hoyHV0dOSOjo7yIUOGyN++fSu1s7W1lbdq1SrP+508eVK6vkiRIvKJEyfKz549KwfkV65ckdoVNA4+yYYkl8vlz549k7dp00aur68vV1NTk1eoUEG+fft2hTY52ZAOHTqkcNzHx0cO5Gr/tTx8+FDeqFEjuZaWllxPT0/evn17+bt3775L3wJBYRBy/X3lOuceeX1cXFy+uX+BoDAIuf5+cp3TT36fvn37flP/AkVyshc+fvxY/ubNm6/+PH78WGQv/Jchk8uFmi0QCAQCgUAgEPxo4uLi0NfX59GjR+jo6Hx1PwkJCVSpUoXY2Fj09PS+4wgFPwrhXigQCAQCgUAgEPxE5CKm6z+HULoEAoFAIBAIBIKfiFC6/nsIpUsgEAgEAoFAIPiJCKXrv4coMy4QCAQCgUAgEAiA7BICvXv3Rl9fH319fXr37k1MTEyB18jlcmbPno2VlRWamprUr1+fFy9eKLRJTU1l5MiRmJiYoK2tTdu2bQkMDPzie48ePZoqVaqgrq5OxYoV8xzPs2fPcHFxQVNTkyJFivDbb7/97YqqULoEAoFAIBAIBIKfSI6l61s+P4oePXrg6enJuXPnOHfuHJ6envTu3bvAaxYvXszy5ctZu3YtDx48wMLCgiZNmhAfHy+1GTNmDMeOHWP//v3cvHmThIQEWrduTWZm5hfdWy6XM2DAAFxdXfMcS1xcHE2aNMHKyooHDx6wZs0ali5dyvLly7/hqXw7InuhQCAQCAQCgUDwE8jJXnj37t1vzl5Yo0aN75698NWrV5QuXZq7d+9KBcXv3r1LzZo18fLyolSpUrmukcvlWFlZMWbMGCZNmgRkW7XMzc1ZtGgRQ4YMITY2FlNTU3bt2iUpS8HBwdjY2HDmzBmaNWv2xfeePXs2x48fx9PTU+H4hg0bmDJlCh8+fJAKgS9cuJA1a9YQGBgoFTz/2RQ6pislJYW0tLQfORaB4H8KNTU1NDQ0/u5hFIiQa4HgyxByLRD8b/JvkO28iIuLU/i3urq6pGh8DXfu3EFfX19SegBq1KiBvr4+t2/fzlPp8vHxITQ0lKZNmyqMw8XFhdu3bzNkyBAePXpEenq6QhsrKyvKli3L7du3adas2VfdO7/v4OLiovAcmjVrxpQpU/D19cXOzu6Lnsn3olBKV0pKCnZ2doSGhv7o8QgE/zNYWFjg4+Pzj53EhVwLBF+OkGuB4H+Tny3b3yuRho2NjcLxWbNmMXv27K/uNzQ0FDMzs1zHzczM8p1Xco6bm5srHDc3N8fPz09qo6amhqGhYa42Odd/zb3zG0+xYsVy3Sfn3D9a6UpLSyM0NJSAgIBCmzDDwsIYOnQoBw8eREVF8TZ+fn5MnDiRgwcPfvmIfyCxsbH079+fli1b4urqiq6uLk+ePGHZsmU0bdqUXr16ERsbC8CZM2cYOnToZ/tUVlZGS0sLFRUV6aOmpkapUqWoXbs2tWrVQkNDg/LlywMwb948Fi9erNCHtbU1Tk5OlC5dmtKlS2Nra4uOjg7a2tpoa2vj5eWFhoYGSkp5h+hVq1Yt1zG5XI6vry+vXr1CS0sLHR0d1NXVJZNrWFgYHh4ePHv2jDdv3hAREUFycjImJiaYmpoCoKqqipqaGnK5nISEBF6+fImGhgZRUVGfnUg0NDTQ1NREW1sbyA6cTExMREtLCxsbG2xsbGjQoAF169ZV+P2UKVPms8+8IObMmUPx4sVz+Qe/efOGiRMncvjwYVRVVb+436ioKM6dO8fUqVMxNTXlzz//pGbNmqSlpf1jF2dfI9eZmZm0bduW3bt355o4ExIScHV15ejRo9+0y/a9yczMZNiwYdjZ2fHLL79gZmaGr68v69evR11dnd9++w2ZTEZsbCyvX7+mSZMmn+1TJpOhra2tINeqqqoUK1aMWrVqUbduXfT19QEoX748x44do1+/fgp9mJiYULp0aUm27e3t0dPTQ0dHBy0tLV6/fo2GhgbKysp5jiEvuQYICQnh8ePHaGpqoquri4aGhiTXcXFxPHv2DE9PT16+fMmHDx9ITk5GR0cHKysrlJWVUVZWlmQgNTWVZ8+eoampSVRUFBkZGQU+FzU1NbS1tdHU1ERFRYXY2FhiY2NRU1PD2toaGxsbatSoQdOmTdHU1JSu+1a5PnjwIJ6ensybN0/BbSQyMpL+/fuzefPmXIuBwpCUlMTVq1eZMWMGUVFR7Nixg7Zt2/7PyTVAnz59mDFjBg4ODgrHs7Ky6NmzJwsXLsTW1vZ7D/ebWLRoEUFBQYwePRp7e3siIyP5888/8fT0ZMuWLaipqREbG0tqamqu75Ufecm1ubk5NWvWxMXFBQsLCyBbrl+9ekWNGjUUrtfV1ZVk2snJiZIlS2JoaCjJtba2Nq9evcq1LsohP7mOiorizp07qKuro6uri6ampvTOT0lJ4cWLFzx58oSnT58SGhpKQkICqqqqFC1aFDU1NZSVlVFRUUEmk5GWliaNISYmhtTU1AKfiaqqKpqammhpaaGurk5cXBwxMTHIZDKKFCmCjY0N5cuXp02bNrneC98i248fP2b58uVs3bpV4Z2SmprKwIEDGT16NFWrVv3ifjMyMrh79y4LFy7k7t27bNq0icaNG2NjY/NTZft7KV2fynp+79/Zs2czZ86cAvt88OABQJ7ud3K5/LNueZ+eL8w1n7b52nsXZiz59f+z+KKU8Xp6eoWexNetW8fEiRMxMjLKda5cuXKUKFECf39/ypYt+yVD+KGMGzeO33//XWESrVu3LrVr16Z79+7Ur1+fIkWKANCiRQuKFi2Kv78/JUuWZPPmzejo6BAeHo6GhgaxsbH4+/sTGBhISkoK6enpZGRkkJGRQVJSEo8ePcLd3R2A0qVLc+zYMRwcHJg/fz5DhgyRJkhdXd3PPvOIiAj27t2Lh4cHGRkZpKamYmZmRqtWrahevbrC9Wlpafz5559s2LABDw8PVFRUsLW1lV5OsbGxJCYmcujQIcqUKcPWrVsJCgrC3t4eGxsbdHR0yMzMlD7Pnj0jPDwcgObNm3P27Fmio6NZtmwZHh4ehIeHExkZibe3NwBNmzZlzJgxeHl54efnh6+vL35+fiQmJmJra8vo0aO5fv06hw8f5tq1a2hpaUkfIyMjOnfuTMeOHSlRosQX/31jYmJ49+4dy5Yty3WuatWqdOjQgWvXrtGxY8cv7ltPT4+hQ4fSsGFDmjdvTrt27b64j7+LL5HrU6dO0a5duzwXX3p6evTu3ZuLFy/SvXv37z3Mr2bFihU0adKEX375RTpWvnx5Nm7cyKxZs7h48SKdOnVCLpdTuXJlmjdvzrlz5wC4evUq2traREREoKmpSVJSEgEBAfj7+5OQkCDJdI7cPX/+nEWLFrFo0SIMDQ1ZuXIltWrVok+fPjRo0ICsrCxUVFSk33NBREdHc+PGDY4cOQJky66BgQG1a9emZcuWCn8zuVzO8ePHWbduHZcuXUImk2FtbY2+vr4k13FxcaxcuRJnZ2d2797N06dPsbCwkJS9HJlWUlLi3bt3BAQEAFCsWDF8fHxISUlhzZo13Lhxg4iICCIiIggJCSEhIQEzMzOuXbvGpUuXJJn29fUlJSUFGxsbhg0bRlJSEitWrODWrVusX79ekms9PT1at25Nhw4dqFy58he/EOVyOfv37+fs2bO5Nkz09PSYNWsWe/fuZdasWV/Ub8713bp1o0mTJrRr146uXbt+cR9/F18i1z4+PhgaGlKlSpU8z0+fPp19+/Yxf/787znEb+LixYskJSWxY8cO6Zienh6zZ8/myJEjrF27ltmzZ0sLrQkTJrB06VIAjh07hpWVlSTXGRkZBAYG4u/vT3R0NBkZGWRmZpKRkUFaWhrv3r1j48aNrF27FoA1a9bg7OyMs7MzISEhpKSkoKysjLq6Oqampp/9DV+4cIEdO3aQkZFBeno6GhoaVKxYEVdX11x/s1u3brF69WqOHj1KRkYGZmZmmJubExcXR1xcHNHR0YwdO5aePXty6tQpHjx4gKGhIba2thgZGUnfQ1VVFX9/f969eweAjo4OERERZGZmsn37ds6fP09oaCiRkZGEh4cTEREBZCs+jx49wsfHR0G2lZSU6NWrF05OTkyZMoW7d++ye/dutLS0pA3VChUqMGjQoFybp4Vl06ZNbNiwQdro/ZgNGzYwfvx4GjZs+MX9ArRs2ZLGjRvzyy+/0L9/f+bOnftV/XwL30vpKqysjxgxgm7duhXYplixYjx9+pQPHz7kOhceHp7v5lXOZkRoaCiWlpbS8bCwMOkaCwsL0tLSiI6OVlDOw8LCqFWrltTmS++d33g+tYyFhYUBua1xP5MfVqfr2bNnjBgxIt/zNWvW5NmzZ/8YpSsyMpLo6Ohcu1YASkpKTJs2jY0bN0qCmZmZSZEiRQgKCuLXX3+lQoUKCtfo6upibW2tcEwmk/HmzRsuX75MVlaWdPzly5eSn6qrqysLFy7E29sbPz8/ypcvT6VKlZDJZCQnJ3Pq1ClKlChBxYoVmTp1KqdOncLHx4fExESFe3t6euLu7s6tW7eAbOH09vbm2LFjTJw4ETU1NTZv3oyvry/v3r0jMzOToKAg7ty5A8CTJ094/Pgx6enpHDx4kKJFi0r9JyYm4uPjQ2ZmJosXLyY6Opr27dtTo0YNfv/9d+bPn09aWhply5bF0tISJycnSemqX78+AwYMkMzMNjY22NraUrFiRW7evMnQoUPR09MjNTUVW1tb6tevLyltXl5eTJo0iUmTJqGiosKDBw/yTRWaF1euXKF169b5nnd1dWXSpElfpXTlULJkSe7cuUPLli0lAf9fIicFa37UqFGD/fv3/2OULrlczunTpzl//nye58ePH0+vXr3o1KkTkC3XORaq4cOHS7+vnB1lXV1dzM3NFXZXlZSUCAgI4Nq1azx58kQ6Hh0dTd++fenbty8VKlRg3759REVF4e3tTZEiRXBxcUFZWZnMzEzOnz+PpqYm9erVY+vWrWzatInXr1+TlpYmxebo6OiQkJDAlStXqF69unSfgIAAnj17Jv1uc9Livn37lsTERFJSUjh79iyQ7efu7++Pl5cXGzdupEKFCtICMTU1FX9/f5SUlFizZg0BAQG0b98eHR0d9u3bx8iRI4mMjMTR0RFra2uKFy/Onj17AOjWrRs9e/bk8ePHKCsrY2VlRbFixWjatCmvX79m6tSpmJmZkZiYKClZKSkpvH//nqCgIObNm8e8efMAOHr0KB06dCj03/j9+/c4OTnla6GuX78+S5YsKXR/eWFsbMyFCxfo3r07f/311zf19U/k5cuXeb77cnB2dmbhwoU/cUSfZ/PmzaxZsybPcx07dmTjxo2kp6cD2fOAmpoaMpmMRo0aSUrAx4qAsbGxwntcSUmJyMhIbty4wZs3bxTe2SNHjmTkyJHo6upy7tw5VFVVef/+PZqamjRv3hx1dXXkcjm3b98mKiqKpk2bcu3aNX777Te8vLxITk4mKSkJQJoDbt26hYODA3Xr1gWyF4gRERHUqVMHgAEDBlCyZEnevn1LREQEampqHDp0CIBr165RsmRJ3N3dmT59Oi1btpTmrByFUlVVlT179vDu3TtcXFyQy+XcuXOHnj174uPjg62tLXZ2dpQvX56jR48C0LBhQ2bPns2JEyeA7IWsra0ttWvXJjY2llWrVmFubk50dDQATZo0QUNDg3fv3hEUFMS+ffvYt28fAL///jvTpk0r9N9XLpcTExMjbXR/ipWVFbGxsV9lAclBTU2NnTt3UrRoUWbMmPFVfXwLP7tOl4mJCSYmJp9tV7NmTWJjY7l//770rrl37x6xsbGScvQpdnZ2WFhYcOHCBSpVqgRkbxReu3aNRYsWAVClShVUVVW5cOGCtIEVEhLC8+fPJQ+vr7l3ft9h6tSppKWloaamBoC7u7v0bvq7+GFKl76+PmFhYejq6uZ5Pjw8vNABcfmRmZnJ2bNnOXv2LFlZWTRq1Ih27dp9lXuYl5dXvmZ9yN4Z9/X1BbLdEDt27EhgYCCnTp2iZs2aBfbt4+PD7t27uXbtmjQ5QbaLnaOjIzVq1MDGxoZp06Zx4MABDhw4oHB96dKlcXFx4dChQ9LuU9myZYmOjiYoKIh+/foRFhbGzZs3iYuLIz4+HgsLC5YsWSJNvGfPnqVVq1ZSn2lpaSxdulTBxXP37t3cu3ePrKwsDhw4gJGREampqWhpaQHZbib79+9n48aN0kKwSZMmnDx5EhMTE5o2bYqnpycTJkygS5cuCrsJ3t7e3Lx5k7lz52JhYcH27dspVqyYgutUnz59OH78OFu2bEFdXZ3Q0FD+/PPPPJ9pRkYGq1atYvPmzYXeQUtPTy/Q7U1dXV16SX8L5ubmnDp1Cisrq2/u65+GgYFBgcpkeHi4pLR8LTmLgcOHD5OYmEiVKlXo0aPHV2V5io+Px9zcPF8XvY93BzMyMhg8eDBnzpxh8+bNdOnSpcC+IyIi2L17N1euXFGoM6KiokKJEiWoXr06JUqUYObMmTx58oTSpUsrXF+kSBHatm2Lu7s779+/B5CsUy9evKB9+/YoKSlx8+ZNwsLCSEhIQEtLi3nz5kk7v/7+/rmsjjn3y+HWrVtcunSJtLQ0bty4gZOTE5mZmaiqqkqLlStXrrBw4ULJfbpixYpcvXqVOnXqULVqVfbv30+HDh0YMmSIgpXZwMCAdevWsWXLFrS0tFixYgXlypWTXnKQ/fe8du0aa9asQVlZmbS0NPbu3Zvvc12yZAnNmzdXcD8siM/JtUwmy9f1+kvQ1NRkx44dudyn/hfQ19fn8ePH+Z6PjIzM913+JXh5ebFr1y7Cw8NxcHCgb9++ecZvFIakpKR8r5XJZDg4OBAaGoqenh4LFy5k0aJFTJ48GTc3twJ/D0lJSezfv5+LFy/y+vVrhT5tbW2pWrUqVapUYerUqcTHx1O7dm2F6w0MDOjYsSPPnj2TXLUMDAwoVaoU9+7do127dmhpaXHnzh18fX3JzMxEWVmZ8ePHK2ymlChRQiHV9rZt2/Dw8KBFixZAdpjG+fPniYuLw8fHR1LAPv69P3/+nDlz5khW66JFi7J37166detG8+bNadOmDQ4ODixdulTByly/fn2GDx/O3bt3ycjIYNq0adStW1daC+TQrl07Vq5cyYcPH9DV1eXYsWP5Ptfly5czYsSIL3o/fE5uVVRUvknpguznNW/ePMzNzRk9evRX9/M1/FOLIzs5OdG8eXMGDRrEH3/8AcDgwYNp3bq1wrrd0dGRBQsW0KFDB2QyGWPGjGH+/Pk4ODhInltaWlr06NEDyJ5nfvnlF8aPH4+xsTFGRkZMmDCBcuXK0bhx4y+697t370hISCA0NJTk5GQpe2Hp0qVRU1OjR48ezJkzh379+jF16lTevn3L/PnzmTlz5r/HvfBL6N69O9u2bZN2Lz8mKyuL06dPM2zYsK/uPyQkhL59+9KkSRMmTJiAkpISJ06coFmzZmzZsoXixYt/UX+6urpERkbmez4pKQllZWXi4uKoXbs24eHhXLx4kXLlyuV7TWxsLBs3buTIkSPo6uoSHx+PkZERAwcOxNnZmWLFikmTiq2tLYGBgRQvXpwyZcpgb2+PtbU1165dY9euXZw4cQJXV1dGjhyJj48PY8aMITg4WBpbzi6Nl5eX5EbzsXUqr5fTgAEDSE9Pl5TUXr160aZNG+7cucPChQspUqQIysrKDBw4EBsbG2JiYnj79i3dunWjRYsWdO7cWZqEQ0NDefLkCe3bt2fJkiVS4CRAcnIycrmcCRMm8PbtWwYPHpznC1xFRYXOnTuTnJzM5s2bMTU1lVwX9fX1qVu3LiYmJjx+/JiXL1+yY8cOjh8/TqdOnST3z/wW1wC1atVi0qRJ9OnTJ8/zp0+fLtCK8yV8+nL6X6Fjx478+uuvtG/fPs/zf/75J7/99ttX95+cnEzfvn0pXrw4AwcOxMDAgKtXr9KmTRvmzp0r7foWFg0NDYWFS16kpaWRmZmJq6srly5dYvfu3QVaRNPS0ti9ezfbt29HJpORmZmJpqYmvXv3xsXFBQcHB0mmsrKyyMzMJDk5mVq1amFvb4+dnR3Pnj1j165dnDx5klq1arF3716ysrKYMmUK169fB7ItWGvXrmXixImEhIQwd+5cXr9+jb29vTQWLS0tlJSUFHbhu3fvTmJiohQvWbt2ba5fv87Dhw9ZtWoVfn5+lCxZkvHjx2Nvb09GRgZPnjzBxcWFnj170qVLFwwMDKT+vL29JatWzpyT891CQkKYPHkyDx8+ZObMmXk+L5lMRv369dHQ0MDNzQ1DQ0PS0tLIyspCTU2NmjVr4uTkhIeHB0+fPuXOnTsYGRnRqlUrunfvTqtWrQqMsShRogRPnjzJd/H15MmT7xY0/T2Ut38iNWvWZNasWUydOjXPOXTr1q3SwulryJn/Y2JiGDJkCDY2Nnh6etKvXz+6d+/+2fo/eZGRkVHggjsqKgptbW3mzp3LsmXLmDVrFmPHji1wjCdPnmTdunXExsZK8ZTt27enZcuWlC5dWuF3aGpqiqenJy4uLtjb21O8eHFCQ0PZtWsXhw4domjRopw5cwZbW1sWLlzI7t27gWx3vV27djFq1CjJWnT27FlKlCih8F0sLS0V5q6KFSsSExMjuSXb2tpy+fJlnj59ytatW7l+/TrNmzdnyZIlnDx5EnV1dR48eICjoyOrV6/G1dVVwfUxMjKS9PR0Tp06RUJCgsKz8PHxYeTIkTx79ozhw4fn645VtmxZFi1aRIcOHVBVVUVFRYWMjAyUlJSoWLEiTk5OBAUF4eHhQVRUFEZGRjRs2JBu3brRqVMnhXnmU3KUx9jY2DwVtbi4OORy+XeTycqVK3+Xfr6Ef6rSBbBnzx5GjRolZRps27at5F6bw+vXr6WNOgA3NzeSk5MZPnw40dHRODs74+7urrDeW7FiBSoqKnTt2pXk5GQaNWrEjh07FOadwtx74MCBXLt2Tfp3jnXNx8eHYsWKoa+vz4ULF/j111+pWrUqhoaGjBs3jnHjxn2nJ/R1FKpOV05NgbxqAbx584aYmBhKlCihEKMgl8vp3r07PXr0oG3bttLxjIwMxo8fT/ny5RViLL4EuVxOmzZtWLZsWS5rWUBAAP3798fd3f2LhFEul9O4cWPOnj2rsEubw9atW6XEETmuU1WrVqV69eo4OztLgeE5O9axsbGMGDECPz8/XFxcOHfuHNra2kyZMgV7e3uUlZVJSUlBRUWFUqVKfZGbHGRr+dWrVyc6Opo+ffooKLDv3r2jX79+DB48mD59+khuI6mpqVy9epUTJ05w8uRJAgICMDY2ZvDgwVSoUAFVVVWeP3/O48ePOX36NB07duTu3bv4+/tLfaupqdGmTRtcXV0VLAFJSUmYmJhgZ2dHp06daNSoEfr6+ty5c4fdu3czcuRIySL4cX958ezZM/766y/J9dDW1payZcuiqqoqKbkpKSk8evSIs2fPsm/fPry9valbty69evXCz8+PoKAgGjduTM+ePRVeZP3796d///7Uq1dP4Z5RUVF06tSJU6dOSYvVzMzMfC1fqqqqBSp4y5cvZ/z48d+9fsb3pCC5DgoKwtfXl+LFi2NhYZH9DOVykMmYOXMmenp6jB8/Xnq2crmcP/74g9evX7NixYqvHtPw4cNp3769QkpZyE7S0b59e/bt25enf39B9OjRg8WLF+dy9wW4f/8+Bw8eZNiwYZIFp3Tp0jg7O1O9enWaNm2KsbGxJNfJycnMmzcPd3d3yWUoNTWVcePGUalSJclampycLLnufYlsx8bGUrNmTV69ekXt2rWlGJSccz169KBq1arMmTNHkuvMzEzu3bvHyZMnOXnyJC9evEBDQ4O+fftSt25ddHR0eP36NR4eHpw9e5Zq1aoRHR3No0ePpL5lMhkNGzake/fuueblChUqSC/Htm3bYmlpyatXr9i2bRtNmzZViHMqSLbDwsL4448/sLS0xNbWlqJFi1KmTBl0dHQkuc7IyOD58+e4u7tz4MABHj9+jK2tLbNnz8bPzw8/Pz/KlCnDyJEjFebpRYsWYWRkxKBBgxTumZaWRteuXVm0aNE3e1ZAtsdAy5Yt/7VyHRMTw7NnzyhatCjW1tbZc9j/yfXBgwdxd3dnw4YNCt4iFy9eZM2aNRw9erTAOa8g1q9fT0pKSq4FT2ZmJn379mX06NEFeprkxdy5c6lRo0aeiW8iIyP55ZdfOHz4MOrq6mRlZVGsWDGqV69OjRo1aNSoEba2tpJcp6WlsW/fPlavXo2LiwsvX74kPDycPn360KhRIymWOTo6msqVK6OiovJFcp2ZmUm7du04ffo0Tk5OrF+/XlLgMjMzGTRoEOnp6ezcuVN6T8rlcl68eCG9r+/du4dMJqNDhw5Swgo/Pz88PDxwd3dHW1sbR0dHyRUwhypVqtC9e3fGjRun8C7s1asXV65coUaNGnTt2pVSpUoRGBjIrl27MDQ0ZPLkyVL7guRaLpezYMECDA0NKVq0KLa2tjg5OWFsbAxkx/DnuDtfuXKFAwcOcPXqVZSUlKSYcT8/P4yMjJg0aZKCInb69Gnc3d1ZuXKlwtjlcjnjxo2jYcOGtGnTptB/h/wIDg6mRIkSJCcn/xTZzpHRa9eufXOdLhcXl3/0fCRQ5IuUrkaNGkn+kVFRUfj6+iq4yykpKaGtrY2BgQHp6elSVjtNTU0sLS3JzMwkKiqKEiVKSDuPn8ZCfcynaTBzePv2Lffu3cs1ueSwcOFCypcvT8uWLT/31RT466+/OHbsGA0aNFBwWfPx8eHAgQOMGzeO2rVr4+XlxePHj3n8+DEeHh4EBgbi6OhI/fr18fHx4fnz5wQFBQHZ1qTGjRuzbNkyhUXOx/j5+X12N/748eO5jgUHBxMeHs6AAQNy7fatWrWKu3fvMn78eMaPH59rp1gul/PkyRN+//13jh49qpDVxcnJCVtbW86fP0/ZsmVZv349NjY2+Pn5cenSJTZs2EBsbCxbt26lZ8+eUp8dO3ZUcC+oXr06vXr1ok+fPgo7VYcPHy7wu3bu3Dnfc1euXMl1TC6Xs27dOo4ePYpMJkNHRwcNDQ3Cw8OxsbGhUqVKmJiY0KVLF9LS0li8eDFFixalYcOGaGpq8ujRIzw8PFi5ciUVKlRALpcTGhpKTExMgeM0MDD4/wrJJ9y6dYs6der8oyfDHLlu2rQpycnJqKqqkpiYiK+vr0IgqxpQSyZjokyGP/BcXZ39KirIVVWxtLRESUmJ8PBwLC0tKVOmDDKZrEC5hrxlOz4+nj/++IP79+/nec3p06d5/vy5VHixsDx79gw3Nzc6dOggKdSQrWhv3LiRoUOHYmRkhIWFBQ8fPpRk+927d5iZmdGlSxcCAwN5/vw53t7eyOVynJ2dWbZsGW5ubty+fTvP+545c4YWLVrw4sWLfMeWl1zHxMTw+vVrhgwZkst19sSJE2zcuJGJEycyZcqUPHeAvb29WbJkCdu3b1fISlasWDHKli3LpUuXMDIyYuXKldSpUwc/Pz/u3r3L2rVreffuHbNmzWLmzJnSptWsWbMUrJcODg706dOHAQMG5HKhLUi2v1SuITtxy/Lly4Fsq56uri5hYWEYGhri7Ows/X1UVVVZu3YtmZmZtGjRAiMjI16/fs2pU6eYPXv2d1mYQfYmY6lSpf4Vcn3kyBECAgLQ1NQkPj6eM2fOcOPGDWkjSU1JiQoqKszT1SVRSYnUypV55OjIsdOnKVOmDPr6+rx58wYLCwt++eUXNDQ0Pjsn5vVMciy4Dx8+zFNp8/X1ZdasWfm6kudHREQEXbt2pU2bNgqeHCkpKaxfv562bdtKa40cuX706BGvXr1CTU2Nvn37Skro69evycjIwNDQkDt37jBy5EgePnyosL7JYdGiRbi5uX2xXKekpPD48WMqV66cy2L/7NkzJk6cSP/+/Zk/f76UlOBjPnz4wLp161izZo3C38HMzIxq1arx8OFDkpKSmDt3Lj169JBiPdevX8/9+/fp0aMHW7Zskdx2Dx8+rLBxmpMMql+/fjg5OSnc+2vlGvKW7RcvXjBy5Egg2xtBT0+P6OhoVFVVqVmzJhYWFnTp0gVtbW2OHj3K06dPadu2LdbW1gQFBXHy5Enat2//3awWKSkpjBkzhj/++OOnKl1Xr179ZqWrfv36/+j5SKDIFyldH6OsrIy1tTXFihXD29ub9PR00tLSiImJUXB1yUFLSwszMzP09fVJTU0lLS0NHR0dypYti6mpKSYmJgqpjSF/pevkyZPY2dnl68b09OlT9u3bx4IFCz731XJx7Ngxpk+fTvHixdHV1eXBgwekp6fTvn17qlatqlCwLYeXL18yduxYEhMTqVChAmXLlqVcuXKUK1cOBwcHMjMzOXHiBIsXL+bVq1cK12poaNC4cWN8fHzIyMhAX18fU1NTsrKyMDY2ZtSoUWhpaeU5ieeQV8rU4OBgpk+fTnBwMFpaWjRu3JhmzZrRqFEjSpYsKT3ngIAAwsPDCQkJISkpCScnJ/T19dm6dSuLFi0iPj4+18IvJSWFoUOH8ueffzJlyhR+//13KZnAxy6NK1asoFq1alhYWGBjYyPtTH9vpQuyd8gjIiIUXuy+vr5cunSJqKgoINt90draGltbWxwcHIiKiiI9PR0nJyfmzJkjKaYhISHExMRgZmaGlpZWnmlHk5KSCAsLw8DAQCFTTw4F7Tb/U8hLrmUyGRYWFtlBsXp6NL54kfiMDDYD7/Lpp2jRoujr65OZmUlKSgqampqUKVMGU1PTfJ9hXrLt6elJSEgI27dvz/M+mZmZdOzY8asSGTx48IBBgwZJY8pJl96kSRMaNmyIioqKQjwFZLvMTpgwgTdv3kjynCPbOYkbrl69ytKlS7lx40aue7Zt25awsDCio6PR0tKSFlKqqqqMHTsWU1PTL5brlJQUpk6dysuXL1FRUaFu3bo0b96cRo0aUbFiRem3HxAQQGxsLEFBQZIngpmZGbdu3aJ79+68evUKR0dHhb6zsrJYuHAh06ZNo0uXLuzYsQMtLS1iY2Oxs7OTFqDjx4+ndevWklx/rMh+b6VLLpfz4cMH7t+/L1lfcly7c+LoZDIZlpaWFC1aFEdHRylJQdGiRWncuHG+rrBfw79VriF7g7Nly5bUKF8elUmTeB8QwD65nDv59FOrVi1pPo+OjkZHRwcjIyOsrKywtLTE0NAwlzdJXs8kMjKSnTt3Sslc8qJ169acOnWq8F/y//D396dz586oq6tL2YRfv35NzZo1adOmDZqamrnkOiEhgdmzZ3P58mWcnJwkmc75r46ODp6enqxZsybPsjYtWrQgPj6e8PBw1NTUpFILmZmZDB48mFKlShUo15BbtuVyOYsWLeLatWvI5XKqVq1KixYtaNSoETVq1JBiFgMCAkhOTsbf35/IyEiKFClC0aJFiYqKolKlShw8eDDPWNQDBw7Qr18/ypcvz/Hjx6VN8BYtWnDhwgUgO7PwxIkTJbku7Ebp1yhdkC3Ht2/fltYF8fHxXLlyRSGOztTUVJLrnLIeJiYmNGnS5Lsna/qZsi2Urv8uXxTT1aRJE8kfX0NDQ3oJBgcHSwtWAwMDkpOTpd2UHP/e1NRUoqOjCQkJQV1dHTU1NYKDg3n69KnUv5KSEmpqaqirq6OlpSVN+OHh4cTFxWFpaUnx4sWlHZFP007mkJKSkqeLYF7kBJdfuXIFLy8vXr9+jY+PDzo6OshkMik2adWqVdjb2zN79mycnZ15//4969atIzMzk1WrVnHu3DkePnwopUq1s7PD0tISPz8/hg8fTocOHTh//jxr166VdlNyxlrQy6Zs2bIFxpfkh5WVFVu3bsXPz4+YmBhOnz7N6NGjycjIwMrKip49e0rZYkxNTXnz5g1Lly5FX1+fOnXq4OPjA8C+ffto3769gk+uhoYG27dvJzo6mgULFmBmZsaYMWOwsbHhxYsXLFmyhAMHDij4zyspKWFjY4ORkZGkXOrq6mJsbIyJiQl6enpS3bF3794RGRlJVFQUz58/Z9u2bdSqVYvu3bvj6+uroMDloKKigoWFhcJOarFixRgwYABJSUlERkZiZmaGn58fr1694tq1a5QoUYK5c+dKCj9kL+xzFK4c94i8yPl9h4WFYWZm9tVuN/8EGjVqhLGxMRkZGaioqEgv+J7379M4IwNlYCRwDqgGaAHxwDB9fZ7q6BAfH8+HDx8k2f3w4YPCLrBMJpPOaWhoYGJigqGhIeHh4URHR2NkZETx4sVRVVUlNTWVDx8+YGZmlktRS0tLK3TSlKysLB49esSFCxd48eIFXl5evH37loyMDLS1tfHz8yMhIYGdO3dy/vx5OnfuTNWqVYmMjGTTpk08efKEnTt3snv3bl6+fCldZ2VlhZ2dHQkJCfTq1YuqVauyY8cOTp06xYoVK6RkO0C+lnjIlrmC4kvyQ0NDg+XLl/PhwwcSEhI4ffo0c+bMkdxyWrZsyZYtW4DsOMjQ0FA2btxIcnIyderUkZ7fiRMnMDQ0VIjVUFJSYurUqSQlJTFv3jx0dHTYtm2blNhj2bJlbN++nWXLlimUXbC0tMTc3Bw9PT0yMjLQ1dXF0NAQExMTDAwMJLn28fEhKiqKyMhIfH192bhxI0WLFmXAgAGEhIRQpEgRBQUO/v8mwMfubqampnTv3p2UlBQiIyOxsLDAz8+P9+/fs2PHDkxNTZk9ezYlS5b84uf7v8SaNWuoWrUq6enpyGQyyRpk+vvvGAQGIpPL+ZVsuS4OmANJMhmLHBx4ZGJCeHg4r169Ql1dHQMDA+Lj4wkJCVHYVM2RaU1NTczMzKQ43LCwMHR0dHBwcKBIkSKEhYUREBBAkSJF8nT7z2ujNi/kcjmvX7/m3LlzPH36FC8vL169eoWJiQnGxsb4+/sTFRXFiRMnuHLlCu3ataNixYqkp6eza9cuTp8+zfr161m6dKmkuOS8hxwdHZHL5YwcORINDQ1mzJiBq6sr8+bNU0gy8qny+OzZM+n/Q0JCCkwSkx8ymYzJkyczbNgw0tLSOHXqFOvWrWPu3LloaGhQv359Nm/eDGS/ewwMDFi/fj3e3t7UrFlTqkF25coVKlWqlKukiqurK5CdZbRt27Y8ePAAZWVljh49ypo1a/jjjz9wd3eXythAdjZHa2trtLS0yMrKkuQ6JwFCjlz7+voSExNDZGQkoaGh0jgHDx6Mg4MDMTExecZumZqaKrzHdXV1adu2Lenp6URFRWFlZYWfn5/kaaSmpsaECROk7I7/C/yTY7oEP4YvsnS5urrmqczcvXu3wOsLSkVbsmRJqeZLcnIyaWlppKamkpiYSGxsLDKZDFNTU3R1dQkODsbb21uyXED2wsLOzg47OzscHR1p2bIlhw8fpnfv3lLNkejoaE6ePMnly5e5d+8eWlpamJqaoqKiwvXr16UMZ2XLlqVUqVIEBARw4cIFUlJScHJyYsyYMZLg+/j44OTkxOvXr1FRUSE9PZ0ePXrw+vVrHj58qPDdSpcuTXx8PBMmTKBWrVqUL18eNTU19uzZQ69evYDsWhEVKlQgISEBKysrSUktUqQIVlZWkvvOl+6If0yzZs3YunUrQ4cOlYqbWlpaEhQUxOzZs1myZAnJyclUqVIFTU1NHjx4QGpqKoaGhtIuvZubGxMnTpQSRGzatIkhQ4YA2VnY6tSpw+TJk6XvoqOjQ3R0NKGhoYSEhODj4yMpdl8yUSgpKdG+fXvu3bsnuWyam5szbNgw6tatm2thXtBuak6ckFwu5/nz5yxYsABVVVWWLl0q7ZqlpKRIgZify56WnJyMr68vdnZ2udw3/0074vnJ9bKjRzH9qBTBp4RrazM+n/T6Tk5OklwnJSWRmppKamoqycnJhIWFoaSkhImJCUZGRoSFheHj46NQU0NLS4tixYphZ2eHg4MDTZs2JSAgADU1NanIcEpKCqdPn+by5cvcuHFDYa64c+cOHz58QF9fn3LlylGqVCmio6O5evUqUVFRWFtbM2rUKDIyMjh06BAeHh7Y29sTFBREVlYWaWlptGvXjri4OK5evarwm7W1tUVVVZXOnTvTpk0bKlasiJaWFg8ePJB21cuVK0ebNm2kOFDIVugtLS2xsrLCxsYGJSWlb5Zrd3d3unXrRnJyMikpKUC229WZM2cYPnw4iYmJ0jO8c+cOcXFx6OjoSOmqBw4cyNy5c6UF+e3btxWysXXs2JEBAwbQqlUr4uPj0dbWljJGhYaG4uvry/v371m9evVnXc8+pWnTpgQFBUkKuo6ODv3796dt27a5NjEKI9eQ7aq9dOlSAgMDWbhwIaVKlZKyYn0P/k1y/ejRozx30Ys1bIja/82leZFsbs6t/0v68CkRERF8+PCB4OBg4uLiSElJISUlhcTEREJDQ0lMTJSsyTl1Ef38/CSlSlVVVUpNXrx4cRo0aIC5uTknTpyQ3EizsrK4dOkSFy9e5MqVK1KfxsbGeHp64u3tjYaGhiTXycnJPHjwAH9/fymuz8rKimPHjnHt2jUsLS1JTk6W6uq5uLigqanJlStXJJmBbCXDysqKcuXKMXDgQCpVqoSBgQHh4eGSfOjo6DBq1ChkMhnq6uooKyuTnp6OmZmZVCRYTU3tiy1dH9OsWTOeP39O+/btpc0VyE4Ln5iYyNChQwkKCsLAwIBatWpx9+5dwsPD0dLSkuqKtW7dmmXLlkkbDxEREQqxsG3atKFVq1YMGTKEpKQk1NXVSUlJ4cOHD4SGhuLv78/79+/Ztm2bVO6lsFSpUgUdHR0pyUHOXNmrV69c79TCynVERATr16/n1q1bTJ06FRcXl+8q1/D3WLouX778zZauhg0b/qPnI4Eif7vS9TUxXXFxcWzYsIHGjRtjZGSEj48PPj4+eHp6EhYWhpqaGp06daJo0aIkJSWxfft2EhISqFixIrVr1yY9PZ3w8HCSkpKoU6cOrVu3VqhXs2fPHhITEyWLTA45dSMOHz6Mi4sLNWrUoG/fvhgYGGBtbU3btm0l14MXL16wZ88e7t69K8VrKSsrY29vj6OjI2pqapw9e1ahvpampiaOjo60a9cul8n++PHjpKenSwvX5ORkaYJMSEiQ3AMzMjIwNzfHxsYGGxsbzMzMqF+/PvPnz8fDwwPITs3eokULunbtqrC46dq1K+Hh4QrWiqysLDp16sSxY8cwNzfn3r17WFpaEhYWxsaNG0lNTSUwMJADBw7QqVMnIiMjJcvBvHnzFHabc6waw4cPp1y5ciQmJhIVFcWHDx/w8fHhwYMHxMfH07lzZ2bMmIGRkRHGxsZS8UofHx/OnDnDmDFjAGjVqhVjxoxR+A6FmcSjoqLw8PDg0qVLPHjwgCpVqkgKc47SlZci9SkFtf03Lc7ylGu5nJVHjmCUnJzv9VGamozp1AnyiGn7mpiupKQkDh48iKmpKRUqVJDk+sWLF/j6+qKsrEyLFi0oVaoUqqqq7Nixg9DQUEqUKIGLiwvq6uqS9axy5cq0atWKWrVqSdadPXv2kJqaSnx8fK5aJW/evOHu3bs4ODhI2dTkcjk2NjbUrVuXfv36kZCQwLt37zh16hTHjh1TiMO0tbXF0dERIyMjLl26pJBWX0VFhZIlS+Li4pIrTuv48eNSYeWUlBSSk5MJDw8nNDSUpKQkAgMDSUhIIDU1FRMTE0muLSwscHFx4fTp01JWtF69elGxYkXGjx9P/fr1pUVP27ZtpQyiiYmJPHnyhKSkJDp06MCVK1fIysrC3d0dZ2dnkpKS2LBhAzExMYSEhHDy5EkcHR0pUaIE27Zto3bt2ixatChXmmwbGxt69OiBvb09iYmJREdHExYWRmBgIPfv3yc8PJzKlSuzZcsWjIyMMDIyQldXF7lcjq+vL+fOnWPBggUEBARQokQJ1q1bp2DdKoxc53y327dvc/78eYyMjNi/f3+eiRa+ln+TXOepdMnl2Lm4oJpH8dEcUkxMuLl3b55y/TUxXampqVy4cAEvLy9at24tWS9ev37Ny5cvkclk1KpVi6pVq2JgYMCBAwfw8vLC0tKSBg0aYPJ/VreIiAhKlChBq1ataNCggbQBuGfPHjIzM4mIiMhlIQ8ODubOnTtoamoyePBgZsyYgbe3NzY2NpQvX55x48aRkpJCUFAQly5dYvPmzSQkJEibLBYWFjg6OlKkSBEePnyYK4W8nZ0d1apVY+zYsQrP+vjx42RmZkpynZKSQlRUlLQJGRsbS3x8PCkpKejp6UlybWVlhYuLC15eXvz+++9AtvyWLFmS+fPnM3LkSCmNdr169dDR0ZHicW/fvi0twr29vQkKCmL79u307NmTrKwsdu7cKXmRXL58meTkZPr168fixYspVqwY8+fPl1J/59CyZUuUlZVp27YtSUlJxMXFERYWRlBQEI8fP8bPzw9zc3MOHz6MlZUVRkZG6OvrI5PJCA4OJiwsjHHjxkkuhqdPn1ZQvAoj12lpaVKCr5y0+Pv37/9sSY8v5e9Qui5duvTNSlejRo3+0fORQJF/pdIF/98tMC4ujvbt26OsrMyJEycIDw+nTJky3L59m9DQUFJSUujXrx+jRo3CwsKC8PBwdu/ejZ+fH0WKFKFXr165YnJyCn7mxaf+4Z/ycV+LFy/GxcUFOzs73rx5g5+fH15eXnh5eeHr64u3tzdpaWkoKSlJqU+NjY0JCwujTJkyZGZmkpiYKFn9MjMzC7x3DpqamhgbG5OWlkZkZKTCdRs3bpQsVJBdWPTWrVvs3buXBw8ekJWVhVwuJz4+nqysLKpUqcKRI0ekGK+AgIA808/nBLja2dkxYMAANm3aRHBwMCdOnJASmuzatYs+ffrw22+/5QrUhezsbDNmzMDGxoZ79+7l+d2uXLlCt27dpEVtzs5pTnCyv79/vimEcxJGdOnSRUowYGVlxZgxY5g4cSIglK6P+RZL19coXZC9sfHmzRsePHhAx44dMTQ05PLlyzx58oQaNWpw//59AgMDiYmJoV27dkyYMIFSpUqRmJjI/v37ef78OQYGBnTr1i1XtrqC5BoKlu2P5fr06dOEhYXRvn173r59KxUb9vLywsfHB29vb2l3Oiedu6mpKZGRkRQrVgwNDQ0FuS5sbTh1dXUpQ2xERITCdb/++qtCSl0/Pz9pkXLhwgUyMzMlpSs9PR1bW1v27dtHYGAgXbt25caNG3mm42/RogXnzp3D0NCQ0aNHc+zYMZ48ecLSpUsZP348kB0vV6tWLVauXJlnaum0tDQWLlzI27dvSUpKylM+r1y5wuLFizl37hyQvaC1sbGhXLly1KlTh7CwsHxdS3MWZ4MGDZLcO/X09Bg8eDDNmjUTlq5P+BZL19coXTmEh4ezfft22rdvT9GiRfH09OT8+fPUrl2b58+f4+vrS3h4OLVq1WLy5MnUqFFDioe+desWampqtGvXDmdnZ4Xf0PeSa19fX9atW8fs2bN5//699L5+9eoV3t7e+Pn5SXUyc2K4jIyMSEpKkjYScuQ6JiZGqmX5OZSVlTExMUFNTY3w8HAF61vNmjW5efOm5JLp7+/Pmzdv+Ouvvzh8+DCpqanI5XKSk5NJTU3FwMBAKnqekyUxr9I8bm5uLFmyBDU1NUaNGsXTp09xd3enb9++7NixA8jOYFu5cmU6dOiQpwzJ5XK2bt3K+fPnefv2bS6XxhyGDRvGxo0bFZ65o6MjderUIS4uLt9QkBy5njdvHlevXgWysyd37dqVPn36fNfNFBBKl+Dn8MPqdP1o1NTU+OOPPwgKCuLixYtkZmYyZ86cPOuxpKens2nTJjZs2EB4eDhFihShfv362NvbM2zYMBo0aPBDiuKpqqqSkpKCmZkZZmZmNG/eXOH81atXuX79urRAzMzMJCwsjAYNGqCsrIyamhpqamqoqKjg7+9PWloaSUlJFC9eXIo9g2wLVYkSJTAxMSExMZEbN25w8eJFjIyMKFmyJBkZGRgbG+Ps7Ey5cuWkXbfg4GBevnyJkpISGRkZJCQk0LRpUyIjI/H09CQ5OZm3b9/SvHlzAgIC6NWrV77FKAcMGICGhgbjxo1DQ0NDSuWbs6t1+fJlBg0aRJ8+fXIF8EP2BD5nzhwFn/C8SE5OxtDQUFK6cl6+Fy5c4ODBg2hra9OwYcM87wHZCumcOXO4desWDx8+JDg4mClTpnDkyBFKlixJ+fLladCggfCVBh5bW9Po9es8J4mM/zv/vZHJZMyYMYOYmBjOnj1LeHg4/fr1k2pwfIxcLufw4cP07duXd+/eYWVlRZUqVXBxcWHJkiVoaGiwevXq715bSU1NTfodVq9enYYNGyqcj4yMZNiwYWzYsIGyZcsSGhpKeHg4FStWlNyaVVVVUVVVJSAggIyMDBITEzEzMyMxMVGKH2ncuDFVqlTB2NgYmUzG3bt3OXPmDEpKSpQsWVKqD1a5cmXatGlDQkICycnJBAUF8fz5c+RyOerq6kREREhjfPToEbGxsQQEBDBo0CBCQ0OpVq1aLstVDp07d8bR0ZHp06dL5SWKFCkiWaHevHlD27ZtqVatGr/88kue8anr16/n2bNnLF68ON8NkaysLIVMiznKak75CjU1NZydnXMtuD/Gzc2Nq1ev8vDhQ7y9vVm6dClHjx6latWqlChRAicnJ7p06VJgIeX/AokNG6K6Zw+yPOKo5EpKhP9fyvLvTc+ePencuTNnz57lw4cP1KtXjxkzZuT597x+/TotW7bk/v37mJub4+joSLdu3Th27BiLFy/mzz///C7Fmj9GTU2NpKQktLW1KV++PLVq1VI4L5fLad68OX/99RcdOnTg3LlzREVFYWxsTPny5aU+VFRUCAwMJCsri4SEBHR1ddHR0ZGsPcWLF6dz584YGBigqamJp6cnJ0+eJDIyUnpvZWVlUa5cOTp27EhMTIxkOXry5AkZGRkYGRkRGhpKlSpVMDMzw8PDQ8q4u3jxYj58+ICRkVG+NSmbNm1KREQE06ZNw97enszMTKytrSW5joiIoF27dqipqTFr1ixu3bqVq49jx45x/vx5+vTpo1A78FNSU1ORyWTSOzUrKws/Pz+uXLmCsrIyZcqUoXHjxvnGRQ8YMABbW1sePnzIq1ev2L17N5cvX6Z69erY29vj4OBAly5dFEoW/ZsQa43/Fv9apSuHIkWK0Ldv33zPp6en0717d+zs7KhRowabN29GLpdz7tw5VqxYwYEDB/jtt984ceKEQj2x70GrVq1Ys2ZNvgV39+/fz+jRo3PFguWX7UdJSQldXV3evHmDtbW1NJGZmJgo1J2qVq0aXbt25ciRI6Snp1O2bFnevXvH9u3bWbVqVb7jtbCwYP369UB2ApTixYsTFxdH8+bNadq0qbSznRefZpLMSTm+bt06zp07x5IlS2jYsCGbNm3i5MmTua6XyWS4uLiwZ88eTp48SatWrfK8z7Zt2/Dz82PatGno6ekxadIkEhMTOXjwIK9evWLdunWcPHkSbW3tfK0pVapUkeL9goKCePjwIbGxsbx//54XL15QtmzZfGO1/kscqVQJOx8fiqelKUwUGYC3mhpH8lCEvhcGBgafzU7l5uZGRkYGenp6UmrsR48e4ebmxoYNG7h+/ToLFy5k6tSp33VstWvXZv369QwfPjzP8zmuL97e3gpxap6ennm2l8lkGBgY8Pr1a8zNzVFXVyc1NRU1NTUaNGggtStXrhxdunTh8OHDREVFUa5cOUJDQzl58iRbt27Nd7xKSkosX74cIyMj5HI5NWvWJDg4GHNzcxo0aEDv3r3zVWQ+rdkVEhKCTCZj7969pKSkMGfOHKytrTl27Fi+slKzZk0ePnzI8ePHJYvyp5w/f54rV64wfPhwHBwcGDt2LIGBgZw+fZqQkBA2bNjAjRs3UFdXz1MBh+xU9g4ODgwaNIjIyEgeP37Ms2fPCAsL486dOwQEBDB//nw2b96cr5L5XyBizBj0Hz0CLy8FxUuupITc0ZH3/fv/sHurq6t/Npvktm3buHbtGnFxcbx48QILCwu8vb0ZO3YsI0eOpHXr1owYMeKLU8x/DisrK4KDgxUSgX3MjRs3cHZ2Ji4uTrLIQvYmy8f//hgDAwPevHmDrq4uenp6xMXFkZGRobBR4+TkRIcOHfjrr7/w9vambNmyJCUlce3aNQ4cOFDgmCdPnixlVHZzc2P//v1kZGTQsWNHGjVqlCsxTQ6NGzdWsF7Fx8eTlJTEpUuXWL16NQsWLCAtLY1Lly7lmZ0Xsr0Zzp07h7u7O4mJiXlabO7fv8/27dvp2LEjLi4urFu3jjdv3rBu3ToMDQ3ZuHEjt27dQiaT5arNmIOlpSW9evWiV69eJCQk4OHhIblIHz9+HF9fX2bOnMmaNWvo0qVLvnPZPxGRSOO/xxe5Fw4ZMiTPXcJLly4VeH1BO1JlypTJ91xB1cqBXHEZH5Ozw7Nz505UVFS4fPkyixcvlnZD5HI59+7d49y5c4wfP55ff/1VmsQLyj6UXECMC8DMmTMV/t2/f386depE69atFa49d+4chw8fljKNQXasUUBAgJSUIzk5WSqk7O/vL9WuePz4MYsXL8be3p6xY8dSrFixAseUs/DLyMjAy8sLb29vDA0NMTU1lWoMZWVloaGhobBwWrduHUpKSjRr1izPiaxs2bL53nPEiBEcP36ccePGkZCQwJQpUxg1ahTKysp5/l3fvn3Lnj17WL16NR06dMh3Ebl06VLc3NzQ0tIiKSkJJSUltm/fTu/evQHYsmULgwYNonfv3lJ2xhwKCgguUqQIkJ3sIDIyEjU1NaluS45lQktLSyHG738lkUZ+cg1wx92dkWFhNIiPR0UuJ0Mm44quLmvMzFAuQD4LkmsoWLYLI9cPHjzg5MmTaGho0KxZM0mJzqmxNm3aNLZs2UKPHj34888/UVNT+2xWsYJk+1O5XrRoEcrKykyYMEHhupcvX+Lm5saxY8ekXeP4+HgCAgJ4//49d+/eJTY2Fmtra0xNTXn9+jV6enq0b99eSmWtoqLC6NGjqVy5coELiBy5lsvl+Pj48PLlS3R0dDAxMeHu3bvIZDKysrJQVVVVWHydOnWKFy9e0LFjxzxd9nIKFefFiBEjuH//PkOHDsXHx4d+/foxd+5cacH16d81NDSU/fv3s3r1akxMTPKtwXb+/HmaN28uJfnIqe00f/58IHu+7NatGyVLlsyVFfJzgf45su3l5cXkyZPx9PSUav7kZKPs3r17oRZr/ya5Lqjwqv+LF5TZtw/Lhw9RyswkS1mZkKpVedG9O1EFuLt+7PqWFwXVm/xcYqIuXboQGRnJ2LFjadu2LampqVIdyKysLJKTk+nbty979uxhwoQJTJw4EWtr6+8q16dOneL48eP88ccfCu6BYWFh9O/fny1btkhKSEpKCoGBgfj6+nL37l1CQ0MxNjamRIkSUkmHJk2aYGFhwaxZswgKCmLYsGF07ty5wOf08UZNSEgInp6eqKqqYmJiwoMHD6RwBJlMpvAbfPjwIZcuXaJ169ZSvNvHfE6ufXx8GDp0KPfv36dRo0asXbtWKnPxqVzHxcVx9OhR1q1bh5eXF1FRUQoxmDn4+flRokQJaSMpIyODrl27sn37din5UPfu3QkLC8PLy0vBK6Gwcv3hwwdmzZrFuXPnqFevHmXKlMHS0hJTU1P69etX6I3Tv8O98MKFC/kqxoUhMTGRJk2a/KPnI4Ei/3pL1+dwd3dn69atnDt3Lpf52dnZmdWrV0tZiHJSZn9PNm7cyJgxY9i1axdNmzYlJiaGTZs2kZiYSJkyZejRowcDBgygSZMmGBsbs2fPHq5evYqrqysJCQksX74cmUzGxIkTsbS0ZPbs2ZiZmSn4eX+czTE/kpKSePjwIenp6VSvXl2aTJ8/f57vNc2aNUNJSemrd47at29P7dq1iY+Pp3jx4hw7dozNmzfTrFkzKleuLGVJcnd35/79++jq6tKpUyfmzJmTb58jRoyQxqSrq0vz5s2xtrYmIyODCRMmsGrVKlq1asX06dMLHFtCQgKenp5ERkYSFxeHq6srdnZ2UlYqU1NT0tLSiIuLIysri/T0dDQ1NRWUrpwMcHm9bP5XSFJWZpGlJYssLUEuVwiu/77OPV/Gvn37GDt2LNOmTWPKlCkK5ywsLDA0NMTf35+KFSvy9u3bzyqBX4qbmxvz58+nVatWtGjRAjU1NTZv3oy/vz9ly5bF1dWVLl264Orqip6eHr6+vmzYsIFOnTphaGjI/PnzSU5Opk+fPtSpU4dt27YRGRnJkSNHpJdwYeQ6IyODhw8fkpCQQOnSpSlevDhArnqAH9OyZUucnJy+2u2yevXq3LhxAx8fH8qWLYuHhweTJk3C2dmZxo0bEx0dTUBAADdv3uTixYsoKyvTqlWrXAvcj2natCmbN28mNjYWbW1t6tatK/3N1q5dy7hx4yhbtizr1q0rcGzp6ek8fvyYiIgIqXZRzuLM0dGRI0eOsHPnTg4cOMDjx48JDw9HLpdLBZb/K2RoavJkwACeDBiQS64pZIzhj+Dw4cP06dOHs2fP4ubmpnBOU1OTpk2bcvXqVRo2bMjdu3c/WyPqS2ndujVxcXE0a9aMpk2bYm5uzt69e3n06BFOTk4MGTKEpk2bMmDAALS1tUlKSmLZsmU0atSIdu3asWDBAg4dOkT9+vXp16+f9G5bv3491l/gji2Xy3n69ClhYWFYW1tTtmxZZDIZb9++zfeaKlWqYGBg8NXlS+zs7Dhz5gxPnjyhUqVKfPjwgVatWuHg4EDr1q1JTU0lICCAx48fc/LkSVJTU3FxceHgwYP5yo6trS2HDx/mzZs36OjoUK5cOWrXro1MJuP06dP06tULHR0dDhw4UOB8JJfLefLkCaGhoURGRmJra0vXrl2RyWSYm5uzceNGzp07x4YNGzh9+jRRUVEkJCQozCP/RISl65/Nhw8fmDBhgpQc69PnXdg8Cx/zP690KSsro66unu+P08zMjISEBDIzM3+IWVpdXZ0NGzYQGhrKjh072LlzJ/PmzaNly5bIZDLCw8NZvHgxnp6eUj2TI0eOSLEst27dQklJiZ49e7J27Vq2bdvG5s2bWbRokRSIam1tXWBigq1bt/LkyRPq1KmDhoYG69atQyaT5Xqpfcr3qD1lamqKqakpr169Yvz48ejo6LBixQqpHIClpSVVq1blwIEDUjHLgsiJG/uU33//nbVr1/L7778zYMCAz/4t169fz19//SXVhtu2bRvDhg1j2LBhqKqqEhkZiYmJCUWLFiU6OprIyEj09fVJSUnJVRz531yj64v4B7ltREZGYmNjI720Pv17Ozg4EBQURHp6+neP6YJsl8Bp06YRHx/PgQMHWLFiBQMHDmTQoEEoKyuTmJgolWkYNGgQe/bs4a+//pIygR08eBBbW1uGDBlCzZo1Wb58OdeuXWP06NEMHTqU0NBQDA0N80w4k8O5c+c4ceIEzs7OGBsbc+jQIamgc0EoKSl98zPR1tambNmyhIeHM3z4cCIjI/Hz85OSeZiamlKmTBk2bNhA586dPxtvIZPJGDhwYK7jR44cYeTIkfzyyy/MnDnzs/UXP049rqmpycaNG3F1dWXy5MkYGhqirKxM//796devH6dOnWLGjBl06NDhP6Vw5eIfJNcBAQG0aNECd3f3PBPMlCxZknfv3qGnp/fD5t0ePXrQuXNnTpw4weLFi6lTpw579+6VUrIfP36c7t27s2LFCqZMmcLevXsxMjJi4MCBzJ49GxcXFxYsWICnpyfTp0/n/fv3DB06lMWLF+Pj44OJiQn29vb5yqCnpyebNm2iXLlyFC1alOvXr7NhwwaFBFh5IZPJvvmZKCsrU7lyZVJSUqQEG0FBQZIXkIGBASVKlGDOnDl07969wGRnObRr1y7XsWfPnkkuh6tXr/6sV9OTJ0/49ddfASQvlzNnzjBnzhzJ06d58+Y0b96chw8f4ubmRqlSpShduvSXPQCB4CP69euHv78/M2bMwNLS8rvoCP/zSld6erqU+j04OBgrKytiY2Px9vZGV1eXiIgI0tLSUFNT+6GLZwsLC65fv87Jkyel2luQvThZsmQJAwcO5NSpU1y8eBGZTMaOHTsYN26cNBlNnz6dTZs28fvvv6Ojo8Ps2bPJysrCwsKCgwcPkpyczG+//ZYr0cWqVavQ1NRk9erV0rG2bdvy/Plzpk2bRp06dX64D/SNGzfo1asXGRkZREdHo6+vz7Rp06hfvz6NGjUq9P3d3d2lmi+ZmZmkp6cTGxtLTEwMK1asAKBv376F6s/Hxwd9fX3GjRtHnTp1OHr0KOvXr+f48eMMGTKEZs2aERQURExMDOnp6ejq6hIXF6fgFmJgYCBZDAU/Fz09PcLCwqhSpQo3b96kXr16pKSkSPXz/Pz8aNiwIc+ePctlCfue6Orq8vDhQ9atWyfFVkC2UjJq1ChWrFjBpEmT2LVrF2pqapw+fZomTZpIgecLFy5kxIgR1KtXD2VlZS5fvoyWlpYUL+Ht7c20adNyKV9nz57l0aNHrFmzRpq3WrduTUhICHPmzKF27do/PB7x7du3dO3alQ8fPpCcnCy5RdasWZPOnTsXej59+PAhnp6eZGZmkpWVRUZGBnFxccTExLB06VIARo4cWaiC997e3qiqqjJkyBA6duzImTNnpMKvgwcPpm3btqipqTFjxgzOnTtHp06dWLJkyTc9B8H3w9zcXJLd06dPM2TIEDIzM3n16hUZGRm8e/cOMzMzTpw4Ibme/gjU1NQICQmhT58+CnGNKioqdO7cWXLLnjp1qlS2RklJSYrfdnNzo3Xr1tK1QUFBTJ06lTZt2vDo0SNu3LjB0KFDFWI2Ids9eceOHSxdulTBRTAhIYGpU6fi6OioUG/rRxAVFUWPHj14/Pgx6enpJCQk0K9fP5ydnenTp0+erot58f79e6kkRWZmJpmZmSQkJBATE8OiRYuA7MyGn1O44P+7Gnbp0oVBgwbh4eHB6tWradq0Kf369ZNKBC1ZsoTt27fj7OzMzp07//HxXcLS9c/m5s2b3Lhxg4oVK363Pv/nla569epx9uxZBg0axNSpUzExMSEqKkpKLvHq1StGjBjx2d3hb+X169dSweO8cHV1ZerUqdKO67179xTGVK1aNebPn8+RI0e4c+cOw4YNo0mTJlSvXp0OHTrw9u1bRo4cyY4dOyRrUXx8PB4eHtIE9zFly5alfPnyUkzSj8LLywtXV1fKly/PvXv3mD59OuvXr2fBggXMmzePYsWK4erqSps2bXB2ds7XvXPt2rWMHDkS+P879SoqKhgYGKCqqoq+vj6NGjWSinB+jsmTJ7NmzRpmzZqFra0t7du3Z82aNRw8eJDp06czc+ZMdHR0KFOmDG5ublLMUA6qqqr/HQvXP5DOnTvz559/0r9/f4YNG8b169d59eoVFSpUID4+npMnTxIcHEybNm1+6N8pp2zAxwrXxwwcOJCVK1dKrkWXLl1ixIgR0nkTExPS0tJ49OgRK1euZMGCBSQlJdG/f3+ioqKIiopi+PDhLFmyRNpVlsvl7Ny5k8WLF+f6bpaWlnTv3p1Tp059trzFtxAdHU3Hjh3R1NRESUmJvn374uHhwZo1a1i1ahUmJiZ06dKFtm3bSsVo8+LixYu0bNmS9PR0aadeWVkZPT09NDU1sbKywtLSstBuHL/88guZmZmsX7+e/fv307BhQ5YtW4a7uzsrV65k0aJFaGpqoqWllW86bcHfR6dOnZg9ezbr1q2jV69eJCcnc/v2bcqXL4+Kigo7d+7E2dkZS0vLAmM/vwcnT57k4MGDeZ5r3LgxAwYMoG7dukB28qvWrVtL55WUlKhcuTI3b95k4cKFrFu3jiNHjkhKWEhICKNHj0ZDQ4OaH2WL3LhxI5MnT86l2Ojo6ODm5sb06dPzTTL1PUhLS6NPnz68e/eOYsWKUaRIEfT09NixYwd//vkn48ePp0OHDrRr147GjRtjaGiYZz9v3ryhVq1aREZGIpPJUFJSQllZGR0dHXR1dSlevDgZGRmFziTasmVLIiIi2L9/P2fPnsXFxYUZM2bg4eHBvn372LRpE9ra2mRkZDBt2jRmz579r3g/C6Xrn02ON8335Pv73XwjWVlZJCUlKaQP/hb69OnDgQMHCAsLIyQkhGfPnlG3bl1MTEx4+vQpVlZWUrr0H8m7d+8KTDxhb29f4Bhydmy2bt0qxXl9jIODA127duXo0aPSsRs3bhRYy6Jly5YKxR6/J8nJySxdupRGjRphbW1Ny5YtUVdX59dff8XLy4v4+HjJN3/r1q3UqVMHY2Nj+vfvn+tH/urVK0aNGoW9vT2nTp1iz549rFu3jrlz5zJo0CACAgKIjY3F3NycBw8eFGqBZmtry9KlS1m7di1OTk5s27aNoUOHYmBgwM2bN5k+fTrDhg1j69atVKhQQUoykvP5N0zo/yRyasnkFOn9VurVq0dQUBDnz59HT0+PixcvUrVqVRwcHLh9+zYlSpQgOTm5wID170FYWBi2trb5ns8ridCn319ZWZkVK1awdu3aXIsQIyMjZs6cyaZNm6RjPj4+2Nvb5+sSl1Ov7keQlZXF7t27pSxuOdlDBw8eLKW9fvr0Kb169eLs2bO0aNECQ0NDWrRoQWxsrEJfKSkpdOrUCTU1NQ4fPsyBAwfYuHEj8+fPZ/jw4fj7+xMcHEypUqV48uTJZ5M4QPbzmjx5Mn/++Sf169fn0qVLDB48mICAAC5cuMDy5csZNGgQFy5ckOoHCr6NpKQkYmNjC73hVRBWVlaUK1eOxYsXU6lSJQ4dOoSjoyMVK1bk/v372Nvbk5SUJMXT/khUVFTyVQpkMhlqamokflTHMC+5PnToEJMnT87lgaKurs7ixYulQsc510dFReXrPWFtba1wv+/NxYsXqVOnDnfv3mXVqlW8ffuWHj168McffxAaGsq7d++YMmUKT58+pWvXrpiYmFCzZk28vLxy9dWjRw8iIyPZuHEjhw4dYvPmzSxevJgxY8YQHByMt7c35cqV4927d7nmhbzQ0NBg8ODBHDhwgE6dOvH06VOGDh3KxYsX2bdvH1u2bKF3796cPXuWgQMH/mvezzlK17d8BD+OlStXMnnyZKn+4/fgu1i6cszHysrKXx0rkJWVxYsXLwgICEBPT0/y565atWqh/IbzQ0tLiz/++IORI0eSnJxM6dKlWb9+PQkJCRQpUgRtbW3Mzc1Zs2YNDRs2/GHmaHNz83xTwUP2BJ2amkpWVhZKSko4Oztz6dIlSWl6+vQpenp6FC1aFGVlZe7evZvLOteqVSuGDx8uZXxKSUkpsPCelpZWoQuz5pCVlcWHDx+kvm1tbaXYtMuXL+Pn50daWhqzZs1CWVmZIUOG0K1bN0aNGoWenh4jR44kJSUFU1NT2rVrh7KyMunp6YwYMYK0tDQ2bdrExYsXsba2Zs6cOTRt2pTixYszbtw4tm3bJu0m5mRu0tPTk+qqnD59mg0bNmBmZkabNm3o3Llznmbhly9fSrFmlSpVolKlShgbG/PXX38xdepUihUrxqhRo77oufwvkuPC+S1yDdluJm/evJESRCQmJlKpUqV8a6kVBplMxrJly1i4cCGenp5Ur16dY8eOERYWhqmpKRoaGujq6nLu3Dl69er13Wv65GBoaKiQbexTciw44eHhmJqa0qhRI06cOMHYsWOB7CxW6enpyOVyLCwsOH36NNOmTVPoo3Tp0gqZvD4n11+z4JDL5URERJCQkIC6urqUNTUhIYGrV6/i5eVFamoqc+bMISMjg86dOzNmzBjJ/W/9+vVERERgYGBAhw4d0NbWJjY2lq5du1KmTBlmzZqFo6MjZmZm/PrrrwwaNAh1dXVmzpzJ6tWrFRIi6OjooK+vj5mZGQYGBjx9+pS9e/dKiXPat29PgwYNcs3V/v7+UqmL4sWLM3bsWEaNGsX79+8ZN24cixYt+mwijv8CmZmZREdHo66uXmhXsbx4+/Ytly5dQk1NDQ0NDcLDwylRogR16tT5pvli5MiRHDx4kN9++42aNWty//59Dh48iJ6eHnZ2dqiqqhIeHs7Lly9/aMxOenq69D7OCw0NDZ4/f06dOnVo0KAB8+fPl+KX5HI5jx49QiaTUa9ePVasWJGrwLCenh66urpERkZibGxMVlbWZ11oP85cWFhiY2OJjo5GJpPh4OAgZRK8c+cOjx8/JiUlhblz55KWlkbt2rXZuHGjVNbl4sWLHDlyBE1NTVq1aoWOjg6RkZHUr1+fNm3aMGvWLOrWrYuRkRHdunVj+vTpqKqq4ubmxu+//87QoUOlcWhpaaGnp4eVlRXx8fHExMQwevRoqTRGu3btaNWqVa5nEB4eTlhYGKVLl8bU1JTBgwdLZSHGjx/P+PHjOXHixHctgv6zEJaufzaurq4kJSVhb2+PlpZWro3OwiS7+pQvUrpmzJihkJbS39+fBQsWULRoUczMzAgODsbe3h43NzcFP92CdptNTU2Ry+WMGDGCPn360KdPH2mSe/v2rRTPUL9+/VzXRkdH59vvx7tuOS4wJ06cYMGCBfTt25fx48dLMQ/v37+nTZs2XLp0ic6dOxdYw+VzSkpISEiex62srPDw8CAtLS3PF93OnTvp2rUrGzZsYPz48QwbNoxu3bpRp04dtLS0+O233+jcuTM+Pj5s2LBBerF9nChAS0sLuVwu/bty5cqsW7cu3wKJR44coXPnzpKS9ikxMTEK/7527RoHDx6kVq1aWFpakpKSwrVr1xg5ciRdu3bFwsKC0aNHY2BggLa2No0aNSIlJUUqHAnZE6ibmxsbN26UdrldXFykAHyAwMBAAgMDadasmVTgdenSpcybN48TJ06gra2NhoZGrpehXC5HU1OTAwcOsHLlSrZu3Yqvry+2trakp6dz8+ZNrl27pnCvNWvW0L59e6ytrXFzcyM2NpYlS5YwdOhQHBwc8nwu/2t8KtdxcXEsWLAALy8vnJ2dCQ8PR09PDzc3N4XyBJ+Ta8h+vnp6ehw5ckTaNU5NTWXKlCmoqanlqgMFhZfrHLeVzZs38/DhQ3R0dFi8eLE094SFheHq6srq1atZsmTJZ2szFSTb+ck1ZMdv+fv7S5kDP+bw4cO4uroye/ZsNm/eTPv27WnevDmdO3emRIkSzJw5k549e3LixAkuXLiAXC6nSJEiuRKAqKqqSv+2t7fn+fPnlCxZMs/xvHr1Cmdn5zyfbQ4f7y57eXmxZs0aypYtS6lSpVBVVeX06dMMHDiQ8ePHk5SUxMCBAzE3N0dHR4cqVapQqlQphTn+5s2bbN++nV27dtG/f39SU1Np06YNhw4d4vDhw0B2KuzQ0FCGDBlC8+bNKVq0KOPHj2fMmDGcOHECLS0tNDU181QajYyMOHDgAHPmzOHQoUMcOnSIzp07I5fLefXqFadOnWL16tVkZGQAMHfuXDp16oSTkxN169ZFU1OTbt26MXToUAU3sP9lnJycFOQ6IyODlStXcvHiRWxtbSWFf9y4cVSrVk1qV5BFMWfj5Ny5c1y+fBl3d3cpo2tWVharVq3Cw8OD+fPn51IMPmfR+Fi2VVVVmTZtGqampuzcuZNDhw5JWSgTEhKYMGECs2fPxt3d/YfJdd26dSX310959uwZNWrUYNmyZdSqVUvKBnr79m0aNmzIypUrqVu3Lvfu3eP169dcvHiR4cOHS2PJkWU9PT1SU1Mll/n09HSsra3zXCMkJCRgbW2dZ8KZHD5+xmFhYSxevBgzMzPq16+PsbExx48fp169ely9epUbN27Qt29f7O3t0dbWpkSJEjRr1gwVFRXpb3HmzBkOHDjAlStXmDRpElFRUbRo0YKrV69y9epVaVwRERH89ttv1KhRgxYtWtC1a1e6dOlCSEgIT548QUtLK8/QgWLFinHo0CEmTpzI+fPnGTNmjBSf/eHDBw4cOMDhw4elrI2jR4+me/fuVKtWDSUlJYoWLUq1atU4fPjwD43d/VEIpeufzcqVK797n19t6QoICGDIkCE0btwYMzMzTExMmDJlCj4+Pvzyyy/s2LGj0LvL9+/fR19fn379+ikc19XVZcmSJQwaNIh69ep90+5Zeno6b968QUNDg+HDhysEmdvb29OzZ0/WrVv33VPQ5iCTyZg8eTJ9+vRh48aNkj96VlYWO3bswNfXl+3btzNr1ix69erFgAEDGD58OLVq1SIzM5MBAwagrKzMli1b6NSpE3Pnzs11j6dPnyrEZxUvXpz4+HieP3+ey7UxISGBbdu2FVgs+WMeP37MhQsXWLVqlTR5xsXFERwcTP/+/UlLS+PatWu5aobFxsZSv359zMzMqFatGhMnTuTatWuUKVOG33//nevXrxMdHU39+vWJjIykZMmSpKamUqdOHXr06KHQV04q94KecY0aNahRowbKysosW7aMMmXK0LRpU16/fk3Pnj0ZPXo0VapUof//FQAdOXIkI0eOpFq1atSrVw8dHR3S09MJDw//zyhdH5OYmEivXr2oU6cOlSpVQlNTk5EjRyKTyaQXYmFjACMiIrh58yb79+9XWICpq6szceJEhg4dSocOHT6b2a4g4uPjUVFR4datW2zbtk1BETAzM2PixIlMmzbts/X1voVZs2YxbNgw1q1bR4kSJYDsl+Hly5fZsWMHhw4d4q+//qJ169YMHjyY6dOn061bNxISEmjatCnGxsbcuXMHyFZSPyU2NlZh7tPU1KRs2bJ5FnTPzMxk4cKFBSpcHxMSEsLatWtZsGCBtEBXV1cnICCASZMmERwczIkTJ2jTpo3CdVlZWfTv358XL15IWT8bNmyItbU1o0aNIjk5mYsXL9KoUSPCwsIoWrQoSkpKlC5dmp49e1K0aFGpL2Vl5VzuV5/i5OTE7Nmzsba2ZtCgQXTp0oUWLVoQGBhIw4YNGTx4MC1btqRp06ZkZWUxY8YMZsyYgaOjIw0aNJBSbgcFBRXqufyvIZfLGThwIDY2NtSsWROZTEb//v0pVqwYv/76K7/++qsUn/Q5srKyWL16NceOHVNwv1NSUsLV1ZX379/j6emZbxHrwhAfH4+ZmRmbNm1i+/btCgV6dXR0mDFjBi1atOD9+/dffY/P8euvv+Lq6oqBgQG1atWSjr98+ZIxY8awZcsWgoODadWqFX379mX06NG4ubkxfPhwSpUqxYgRIzh48CCjRo1iy5YtuTYT5HI579+/V3An7NSpE6tWrcpTgVixYgWdOnUq1NhTUlKYNWsWU6ZMkWTN0tISPz8/9u3bx4sXL5gzZ06eheNzNqnmzp3LjBkzaNWqFQYGBri6uuLg4MCaNWuoX78+ISEhGBsbo6+vj7m5OT169FBQgGUyGVZWVvj4+OQ7ziJFijBmzBgqVqxIgwYNWLlyJY8fP5ZqlI4bNw5XV1fatm2Lv78/q1atYtWqVRQpUoQmTZpImVv/rXItlK5/HuPGjWPu3Lloa2tjZ2dHrVq1vmspqS8qjhwYGCi9mNu1a0dCQgIDBw7E0dGRwMBA9u7dS5UqVShZsiRv3ryRXLQ+tyM+atQoRo8eLWX0yiHHbWfNmjXUrFmTqlWrKpwvaEf8U7/oadOmER4ezowZM7CxsckVANqnTx90dXUlN7f8+JylK7/dZ8gOmr937x5Lly5FWVkZLS0tbty4gaqqKtWrVyc6OpoiRYrQv39/rl27RlRUFA4ODujr6/P06VN0dXV5+vQpPXr0oF69elK/iYmJZGZmMnjwYKZOnarwHCMjIxk9ejT169dHQ0ODa9euERoaSlRUFEuXLi2wYOLHlq4JEyYwc+ZM9PT0SEhIYOXKlZw4cYISJUpgZmZGYmIijx8/ztP61KRJE86fP4+ysjLHjh2jWLFiVKxYkdmzZ/Pbb78ptF+1ahWjRo0iLi6OefPmkZaWxqRJk5DL5UybNo0TJ06go6ND0aJFsbW1xdLSEiMjI0JCQvDw8KBx48b06tWL4sWLExgYyKZNm1i2bJkUA1C5cmUaNmxI6dKlOX36NEeOHJHubWNjQ0BAADVr1uTWrVvf5Gr6byqi+rFcT58+HXd3d/r370/t2rWJiIjg0KFDqKioMHToUFasWMH69euBz8v1pk2bsLCwyKUYQLZsu7u7ExYWRq9evRTOfYlc79q1i0ePHtGqVSuaNGmSS67nzp1LSkoKlSpV+qwSXZBsf06u379/z7x584iJicHExITbt2+TnJyMs7MzaWlpqKurM2zYMJ4/f46/vz+WlpbY29vz8OFDVFRUSExMxNTUVCEtdE78xu+//061atVo1qyZdC4tLY3x48dja2uLnZ0dV65cISgoiLCwMClzX0Hk7IivWLGC5s2b4+TkRHp6Ojt27GD79u2YmppSokQJvL29efbsWZ4Zxrp168aqVaswNzfn2rVrZGZmUr9+fc6fP5/LOjBw4EA2b95MRkYGy5cvx8fHhxEjRmBnZ8fMmTPZu3cvMpmMYsWKYWtrS5EiRTAxMSEhIYE7d+5Qvnx5evfuTaVKlYiJiWH37t3MmjWLmJgYsrKycHBwoHHjxlSoUAEvLy9Wr14t7dYXLVoUf39/zMzM8Pb2/qZipP8muQ4LC5PGePjwYWbOnEm3bt1o1aoVqampHD9+HB8fH5YtW8bQoUM5fvw4Mpnss5auW7duce3atTwX7MHBwfj6+rJt27Zcc/vnLF3m5ubS/z948ICdO3dSsmRJRo4cmev3d/ToUR4+fIiamhodOnQosN9vkevo6Gjmzp3L27dvsbKywtPTk7CwMCpWrIimpibJyckMGjSImJgYnj9/joGBAZUrV+b+/ftkZGSgp6fHixcvWLVqlcL7JDExkSNHjhAYGMjo0aOl43K5nOXLlxMWFkadOnW4fv06vr6+hIeHU6tWrTyf+cfkPOMc98A2bdogl8s5efIkq1evRklJibJly/L27VsuXLiQZ5z5zJkzadKkCXXr1uX58+e8f/+e5s2bS5snH1OxYkU8PDyQy+Xs2rWL69ev0717dxo2bMiSJUvYuXMn4eHh0vu6aNGimJiYIJfLuXPnDhYWFvTo0YP69euTlpbG0aNHmTZtmlTuw8rKisaNG1OlShWSkpKYPXu2FO9vYWFBREQEAC9evCjwb1kY/o7iyCdPnvzm4sht2rT5R89H/zZUVVUJDAzE3NwcZWVlQkJCPrsp+CV8lfrm4eHBixcvePnyJWpqaqSlpUkWhXnz5hEXF8eNGzcKHRcTHh5eYNyWpaUlHz58IDAwEE1NTYyNjb94zL169aJ37955Fih8+vQp6urqlCtXjuDg4B+aFcnZ2ZlDhw4RFhZG7969Wb16Nc2bN5f8mF+8eMHIkSPZvn27QoB+ixYtgGwh++WXX3j06BG9evXC2NiYe/fusW7dOjp16pRLcTU2NmblypV069YNXV1dzM3N6dSpExYWFqxevZrhw4d/dkcyOTlZyigWGBjI8OHDiY+PZ9OmTQwcOBCZTEaLFi3ytEQmJCRgamoq7fJ9/IJ89+6d9P8VK1ZkypQp0k7e8OHD2bNnD5C9a1e3bl22b99O+/btkclk+Pn5ce7cOWnSVVZWxtHRkSVLljBr1izat2/PlClTKFOmDEuWLKF9+/ZcvHgRd3d3Dh48mGeigc2bN1OhQgW0tLT+8almfwTR0dHs2rWLBw8eSJNMWloaderU4ciRI+zbt4/4+HgSExML9aIIDw9XcFv6FEtLS169ekVwcDAymQwLC4svfu4dOnRg7dq1DB48ONe5Dx8+8ODBAyZMmICnp+cPtVza29uzbds2kpKSGDJkCCNGjJBqdqmqqhISEsKgQYOYMmWKlIUTkFJGZ2VlMX78eKZOncqgQYOwtbXFy8uLP/74A2trawWFC7JTWq9Zs4YOHTpw/fp1zMzMaNCgAeXLl2f37t2oqakVyo3Ox8cHJycnEhISGDVqFC9fvmTKlClMnz4ddXV1evbsmW+ChMTERGmhnJMqG1CwPlhbWzNp0iQGDBgAwLJly5g8eTKQ7aK1YcMGli1bRv369bGwsMDPz0/aGMq5r6OjI8+ePWPFihXUrl2byZMn06BBA168eMH8+fO5cuUKFy5c4PLly2zatClXIp2RI0cycOBA0tPTv2mB829FLpczceJEdu7cKVmz0tPTqVatmlTTqFy5cjx9+pQKFSp8tr/Pva+trKyIjIwkPDyctLQ0zM3Nv3inuGrVqkyePJkaNWrkOpeamsrWrVtZt27dD00bD9kxm8uXLyctLY0FCxagq6vL3Llz0dTURFVVlfj4eKnsyMelBz62+GzYsIFffvmFUaNGUb58eYKDg/njjz8ICgqSXOlykMlkzJgxg/79+7N+/XrMzc2pWLEi9erV48yZM6xatUpBScuP69evM3fuXDIyMpg9ezbnz5+nT58+rFixAiMjIxYuXCi9Oz/lyZMnzJ49G8jOcpyjmH0cV6qjo8O4ceOkuezEiRP07dsXgEOHDhEREcHUqVOpUaMGlStXxt/fn0ePHvHXX39JLsA5c9zWrVspVaoUkyZNol27duzZs4cXL15w8+ZNLly4wKVLlzhw4ECu5Gr16tVjx44dREVFSa6nAsG3UqxYMakcQc7mQH5ZOj82fhSWr1K61q1bR/Xq1XMFPMpkMiZOnEiPHj3yDAiNi4vj7NmzNGjQQEFzLFGiBE+fPs1lyYLsl8P+/fsBKFeuHHFxccTFxTFw4MAv2tlwcnKSXFOmTJlC1apVSUlJ4ejRo+zbt48dO3Ywf/58XFxcCrR0fS8OHTpEv379JGUqh5yCorNnz2b79u25rtPW1mbPnj1cunSJadOmkZCQgIODA/Pnz8+34r2bmxt79+7NFXPSrFkzOnbsyB9//FFgQHVmZibq6uqEhoby66+/oqamxt69exUsGPm9VNXV1fPNyrhz506mTZvG4MGDuXHjhsKCu0qVKuzZswctLS3JvQ2yM7N9nL49p/aXpqYmOjo6VKtWjf3797N48WKcnZ0pU6YM69evRyaT0a5dO3r37o1MJiMpKYn379+za9cu3r9/j56eHsWLF/9P193au3cvdnZ2ee7qdOrUiUOHDmFqakpcXJzC4jU1NZXz58/j6OioIJP29vY8ffo0T6VeLpfz559/8vz5cyIiIsjKyiIwMJBOnToV2s0Jsl/+jRo1YsKECcydO1cqG3DhwgXWrFnDsmXLuH37dr6lGr43Dx48oGjRogoB5JCtYO7bt4/OnTtz7ty5XMqlkpISy5cv5+HDh6xcuZKwsDAsLS0ZPHhwvgWSZ86cyYwZM3JN/C1atMDV1ZXSpUvnGWf2McrKyiQlJTF69Gh8fX3ZsmWLgpu3lpZWvvNhRkZGnokGfv31V5o1ayaVsPhYpj6O75w0aRKOjo5oaGhQrlw5XF1dpXOZmZlSAXVDQ0OqV6/OmTNnWLx4MW3atMHR0ZGxY8eSlJQkBeHnJOXx8fHh6tWr7N69G3t7e5ydnQtVC+h/lStXrqCrq5unXFWtWhUTExMpOcXHZGVlcenSJbS0tBSUCHt7e3bu3Jnv/XIWzUuWLEFTUxNvb2/q1atH586dCx0iIJPJGDJkCCtXrsTc3JwOHTqgpKTEgwcPWLRoEWPHjuXDhw8/bbEdFRXF8+fPOXjwoILs6urq8scff9CiRQs6deqUZ4KbYcOG0bhxY3bs2MGiRYswMjKiQ4cO1KhRI89Npm3btlGjRg2pIHEOLVq0YMKECVy8ePGzSSMyMzNRUVFh7ty5XLx4kXnz5ilYyQqSa21tbaKionJtPru4uODv78+iRYto1aqVwtolJxY0PT2dyZMno6qqSvny5SlZsqSCq3NWVhbx8fGkpqZiZmZGrVq1uHXrFsuWLWPAgAHY2NjQvn17IiMjqVq1Kg0aNEBVVZXMzEwCAgJ48+YN48ePp2bNmjRs2BBNTc1/tcIl3Av/eeTE9C9YsACZTJavJV0mkxW6lMnHfJXSFR0dTUZGRp5ZdNTV1TEzM+PDhw/SsQ8fPjBnzhzOnj0LZE/0hw4dArJ/NCVK/D/2zjosqjxe45+hJaVEMTBRFBMUxcTExFZsLDARCwvFQrERAxsDFezubrF1VVRspaSRZub+wZ1zHWeGUHfX3bvv8/Dses7MOWfOzPd3vvm+FRkxYgQ1a9bE3t6eLl26YGhoiEQiYezYsWRkZHD48GHhXMnJyUybNo22bdvKaFzkhxkzZrB161Y2bNiAr68vIpGIdu3aERwcTFpampD1ffjw4Y/clkLh5MmTMvTu36Jy5crExcWRmpqqMBhSVVWldevWtG7dGiBPGtlHjx5RoUIFhc6Xnp4e3bp149ixY/To0UPpMXR0dIiOjmbkyJGIRCJWr14t0woSFRWlVIhVQ0MDfX19Pnz4IJcdVVVV5evXr9jZ2cn9jjw8POjZsydZWVmULVsWsViMvr4+z549kwm61NTUZOa8dHR0GDJkCIMGDcLf3x8PDw+ZLLyrqysBAQFoa2tTvXp1bGxsqFq1qtw84f9HXLlyBRMTE6WVrMaNG3Pw4EFhBuvr16/4+/vL0B6/fPlSCMBLlizJyJEjuXTpEtWrV6dnz57CA3L58uXcvXuXo0ePCufKzMxk+fLlfPz4EWdn5wJf98SJExk5ciQnT54kICAAiURCo0aN2Lp1KwYGBkyYMIF9+/b9afII32L79u1Clvh76OnpYW1trbSiIBKJqFu3rlAdzMuuExMT+fz5s8JMm6qqKiNHjmTXrl1yTIjfQ0dHB3d3d8LDw1m9ejXVqlUT9uXk5PD69WulrRUNGzbk7Nmzwjr07ecwNjZGU1NTLonRtm1bYmNjiY6OFtgr69Spw9OnT+U+w7ezfurq6jg5OeHk5MTx48fp1KmTTCum1HlTV1fH0tKS7OxswsLCWLp0aZ6f//8Dzp8/T82aNXn27JnCAL5Dhw74+PgIhEo5OTls2bJFZq7ozp07QueFhoYG586dY9CgQVhYWAgBPsDRo0fZunUrAQEBwvcrFosJCQnBx8eHGTNmFPi6u3fvzu7du3n69KmQeK1SpQpLly6lbNmyuLi44OXl9afLQgDs3r2bIUOGKAySVFRU6NOnDwcPHpRrlZaiUqVKzJ8/X/i3MtuWtgJKyWe+h6urK5MmTco36KpevTrTpk3j0qVLzJ07V85GL168qJRAq1evXgQGBirULi1ZsiTPnj2TIxioUqUK8fHxhIeHCyMLdnZ2XL58WSboUlFREYhXIHetaNSoEY0aNeLx48c0bdoUf39/YbZVOq+lqakp6IaVK1dORkLjnwyxWPxTUgu/QqbhP8iic+fOdO7cmZSUFPT19QkLC/ul7YU/xEwhEomoVauWUgr08PBwwcjfvXtHt27dhICrVq1ajBs3TnhtaGgoo0aN4u3bt5w5c4Zx48ZRoUIFOnbsyJAhQwQmJMhtVYuNjUVXV5clS5awffv2QkX6NjY2GBsbU7p0abZt20ZISAiDBg3i06dPuLi4KHWW8kN2djZXr15l27ZtbNy4MU8KaSmkbUfKULx4cTn2wB/B48eP8yyB1q9fnydPnuR5DJFIhJ6enjB0/23AJZFI8PLyYtSoUUrfP3XqVIYPHy43q/Pp0yc8PT0F+uzvUbJkSYGYQ0VFhaZNm3LhwoUCfeeqqqqMGzeODRs2MGTIEI4ePUqtWrXkvpsDBw7ItG5lZWWxYsUKLl++nO85/m2QZnUUVVgB3r59S8mSJdHU1CQpKYkBAwYIAVeJEiVYvny5EHClpKTQtm1bIiIiOHXqFPPmzaNKlSo0b96cQYMGERQUxMSJE9HW1iYtLY0vX76gqqrK5MmTuX37dqEcKSMjIzp27Ci0vO7btw8PDw9ycnIYNmwYrq6uSpMCeUEikfDw4UN27NjBmjVrBAatvBAbG6u04gxQrly5Aq0P+eHVq1dygt3fomrVqgXS6rK0tOTBgwfMnz9fJuCCXEFyaYVBEUaMGMHChQvlyAy+fv3K4MGDlbKJGRkZycgFNGvWjFu3bhVYK7Fdu3aCBuHx48fp3Lmz3D0NCQmRaa+USCTs3LmTXbt2Fegc/yZIq/zLli1TuD8mJobk5GQqVqxIdnY2Y8aMEb47VVVVpk+fLvOb7tKlC69eveL48eMEBARga2uLra0tQ4cOZebMmXTp0oUqVaqQkZHBly9fyM7Opnfv3mhoaPDs2bMCX7eKigoTJkzgwYMHLF++nL179zJv3jyMjY3x8vIqUCVXGV6/fs2uXbvw9/cnNDQ032dKZGRknnp8v8qu09LSMDQ0VOob6OnpFej5Z2Njw4ULF3B1dZULuM6dO4eZmZnSMY327dtz4cIFrl69KrM9JycHd3d3Bg4cqLCzRSrdIg1MmzZtytOnTwtMdlK9enWePHmCra0tJ06cwN3dndjYWJlqgiJq+AsXLrB8+fL/qj7/4ZdCV1eXCxcuUK5cOQwMDBT+SbFw4cIC++s/VOkqWbIknTt3Zu7cucTHx9O2bVvU1NRITU0lMDCQjx8/0rNnT5YsWUJAQIBwMUuXLqVr167ExsYSEhLC06dPefHiBQA+Pj5YWVmxatUqwsPDefz4MXFxcYjFYmHORxrVGxoaYm1tTUZGBtu3b6d169aYmZnlOw8iEomYNWsW+/fvx9nZWZhHK1WqFMuWLROYxwqDsLAwAgICsLe3x9bWFh0dHby9vSlTpgxTp07N85qUVbIglzb9R2bXvkeRIkXy/DEkJycXyCENCwujXLlybNmyhW7dumFubs7Fixfx8/OjdevWCin9pbC2tmbOnDn07duXcuXKUb58eZ4+fSqIJ+blpH4Ld3d3WrZsya1btxT2+ivC4MGD2bdvH6VLl8bCwkLGmd+/fz8mJiYCM1ZsbCzt27fn1q1b6OjocPnyZerUqVOg8/wb0KxZM4oUKcKVK1dYtWoVLi4uqKurk52dzYkTJzh06BDnzp1j69atrFixQmCMGj58OFOnTiU1NZWjR4/y+PFj3rx5g0gkol+/fgwfPhw/Pz8ePnzI+/fvuX//PllZWbi7uzNx4kRh0F1HR4eqVauioaHBypUrBZa7grQk9e3bl8uXLzNy5EihCq+jo8OoUaOws7Mr9L2Ijo5myZIlVK5cGTs7O4oVK8aGDRtIT0/H19eXIkWKKHxfyZIlefHihdLW5z/++CNPwfKCokiRIiQlJSndn5mZWaD7dv/+fUqVKsW+ffuEKtH9+/cJCAhAS0srT8pcY2Njtm7dioeHB9ra2tSsWZMPHz7w7Nkzpk+fXmAbHTVqFL6+vnlWCr5HgwYNKFeuHFlZWVhbW3Pt2jWh8+LevXvcuXOHWbNmAbmJlH79+hESEgLkVs3+LJba3xGtWrXiwoULVKxYkYkTJ+Lp6UnRokWFeQUvLy9Wr17NkSNH8PX1FZJwzZs3Jzg4mKysLM6fP8+9e/cICwsjJiaGevXqsXXrVlavXs2FCxeIjY3lwIEDpKWl4e/vT0BAgGDX6urqWFlZCXPE48aNo3z58nkmHaVo2LAhhoaGzJ49m9jYWNTU1JBIJAwcOFCOUbMgSEtLY8mSJejp6dG0aVPKlSvH2bNnWblyJUuXLlWa0S5btixPnz5V2ur75MmTArO65gV1dfV8hZ+lM1F54fLly+jq6nLr1i3KlCmDra0tL1++ZNu2bfzxxx/s2LFD6XvV1NTYvXs3EyZMYNmyZTRo0IDExERu3LjB4MGDlVbIvke3bt0oVaoUQUFBzJw5s0DvMTc3p2/fvjx8+BB7e3v8/PxITk5GW1ubz58/s3r1apkOoZkzZwpMzklJSYLN/1PwO7cXxsfHM3bsWA4fPgxAp06d8Pf3z7NVWyKRMHv2bNavX098fDx2dnZyHRQZGRlMnDiRXbt2kZaWRosWLVizZo2MH1iQc7u7u3P16lWePHmClZUVDx48kLmWt2/fKrTJEydO4OjoWKB78G2XVF7w8fGhZ8+eBWpjLxR7oZQhRTpsvWXLFnbs2MGJEyeEvtucnByqVavGpk2bSE9PZ/jw4cIwtZeXFw8ePODkyZPk5ORgbGxM2bJladSoEePGjZNjxunYsSMLFy7k5s2bZGdnY2BggLq6Ok+ePOHOnTtcunRJcKLr1auHt7c3jo6OiESifDPlL1++VCoymNei9u2iHBMTg4eHB2vWrBGYY6QDd2vXrhWyhlJ8e66dO3eSkpIiEAB860Ddu3ePAwcOyNDC5+Vg5fXwSkxMZPbs2UJ7xvcYNWoUDg4OClkMY2Njhf/v2LEjgwcPxsbGhjNnzhAXF0ejRo1wcXEplHh1WFgYERERAutaQZGUlES3bt24cOECAwYMkKOml0IRNXhqaionT54U2B+XLFnCuXPn0NPTw8vLCw0NDXR0dOjcuTMvXrwgMDCQWbNm8enTJ44fP07FihULzQz0T2I5k15jYmIinTt3ZteuXZw7d06ges/KysLAwIAiRYpw7tw5Iani5OREnz59GDFiBAkJCRw9epTk5GQMDQ0pVaoU9vb2DBs2TK4iM3nyZFq2bElMTAwJCQkYGhqira3NixcvuHPnDleuXBGyxhUqVMDLy4u+ffuipqZWYLsG5Gw7P2dFatvZ2dkMGjSIefPmCb8zqV2fO3eOgwcPylC7f3ueBw8esGXLFhkpBqntRkdH4+npKVNJ/FG7FovFAuOcoqzz0qVLycjIoHPnzgrfL21vGjlyJOXKlWPQoEGcOnWKjx8/UqNGDQYMGKCQ2UwZPnz4QHh4OKamplStWrXAhCjZ2dmMHj2adevW0aNHD6Xt4oqqYNnZ2Rw/fhx1dXVu3LjB7NmzefHiBXFxccyfP18ILLy9vdm9ezfr16/n2LFjHDlyhD179tC0adP/F3YtkUjo0KEDCxcuJDIyknXr1pGZmUlmZiampqbExsby+fNnHj58SLNmzZg+fTqtW7emW7duGBgYcOzYMSIjI9HT08Pc3Jy6devi7Owsx1C5Y8cOvn79SrFixfj48SNFixZFX1+f9+/fc+fOHW7fvs3z58+BXGbASZMmMWrUKKG9OC/bllaZFT2zC2rXkEsH3bNnTyEhILXrFy9eMGXKFPbu3SskK749T0JCAoMHD2bPnj0CKZTUdtPT0xk4cCDbt28XZtnzsmvI27anTZvGggULZGjypTh48CCHDx9W2PoH/2fXS5YsITw8nMWLF3PmzBlevHhBxYoV6dGjB40bNy6wfcbGxvLkyRN0dHSoU6dOoWR7/Pz88PDwoGHDhkrZVBXZtUQi4dKlS2RlZXHlyhXc3NxQVVXl0aNHzJo1S6huhoSEMGXKFLy8vJBIJMybN48VK1bg4uLyQ7b5d7AX7t+//6fZC7t27fqnXLNUkkPayjl8+HDKli0rMGMqgq+vL/PnzycwMBBLS0tBFigsLEyQkBoxYgRHjhwhMDAQY2NjJkyYQFxcHHfv3hVsqyDnHjt2LJUrV+bWrVs8evRIadB19uxZmaDPyMgoXxHywkJPT4+HDx8WqPJeqKBrxowZODg48OTJE549e8aGDRvo1KkTkydP5v3792zbto02bdqgr6/P4MGDqVmzJjdv3uTDhw9UrlwZPT09ypYtS0pKCkOGDKFhw4a8e/eOoKAgunTpIsdANm7cOFxcXJQyKg0bNoyBAwcSGRnJsmXLuHHjBnZ2dnh7e2Nvby8Y78uXLzExMcHR0VGoLOXVKlTQoGvlypXUqVOHRo0aCduki7hEIqFLly6EhIQIX/C3C52U4r1Bgwb069ePzMxMxGIxFy9eZMOGDaxZs0aGMeVHnTOALVu2ULRoUbkWwHPnzrFy5Uphvu17SIMuiUSCo6MjxYsXp0KFCpQqVYrevXvj5OSU53l/FdLS0rC3t+f169d07do1z2AtLz2mkiVLMmbMGEqXLk2jRo3w9PTkxo0b7Ny5kxcvXhATE8OwYcPw8vIiKSmJli1bkpiYSJ8+fRgzZkye9Prf45/knA0ePBg3NzeuXLlCYmIivr6+VK9enZUrVxIfH09QUBCmpqZ07dqVdu3aoaenx927dzExMaFkyZKkpqZiaWkpBG1OTk7Ex8eza9cuLCwsWLhwoczDevPmzWhoaCitavj5+WFoaIiZmRkBAQEcPHiQihUr4uXlRceOHVFTU+PevXvcu3ePIkWK4OjoKFSFf9Su4f9s+/Tp03z48EFmFuFbWxw2bBizZs0SMnPf2878+fPJyspi3LhxFC1alKSkJB49eoSPjw9z586VYVH8Gbu+efMmFy5cYMWKFTIaQM+fP8fNzY2lS5cqrchJnbMhQ4YQHx+PlZUVZmZm9O7dm549e+Z53l+Jnj17sn//frp3755nRTKv1kN7e3vatGmDkZERtra2TJ06lcjISDZt2sTTp0/58OEDjo6O+Pn5UbRoURwdHXn8+DFOTk6MGTOGJk2aFNgJ/SfZdfv27Zk3bx7nzp1DVVUVb29vdHV1CQwMRFVVlT179hAXF4e3tzctWrQgLi6OCxcuUL9+fRo1asTt27epUqUKX79+pX79+gwePJicnBz27t1LWloaAQEBMg5jaGgoe/bsYdGiRQqv6/z585w/fx5HR0e2b9/O5s2bMTQ0ZNKkSYwcORKxWEx4eDiXL19GJBLRrFkzIenxK+z67du3rF27Fl9fX2Hft3a9ZMkSQVIE5O167969nDp1Cm9vb0qWLElSUhJv375l3rx59OvXT6bb42eCrpiYGObOnUtgYKAMMUdMTAw9e/Zk2rRpSskjvpWZuH79OtWrV8fU1JSOHTvKzED+2Zg7dy4zZ85k8uTJFCtWTGmwlpddd+zYEUdHR9LS0qhRowbjx49HT0+PjRs3cu/ePV6+fEn16tXZtGmTQNixb98+HBwcGD16NJ06dSoUa+bfEXTt27fvp4Oubt26/fJrfvbsGVWrVuXmzZvCunzz5k0aNGjA8+fPqVy5stx7JBIJ5ubmjBs3Dk9PTyC3qmVmZoavry+urq4kJiZiamrK9u3bBeKkz58/U7p0aY4fP06bNm0KfW5vb28OHjyoNOi6f/8+tWrV+mX3RhEKE3QVqr1w3rx5zJs3T2ablpYW586do1ixYmzfvh1dXV0CAgJQU1NDU1MTFRUVKlSoQEJCAu/fv8fT05OQkBDBGWjcuDF9+vRh7NixHDx4UCYzO3z4cObPn8+OHTvkFsD3798LWhaQW8o+c+YMs2bNom3bthQvXhyJRELNmjWxsLDgzp07+Pr60rhx4wJT2eeHhw8fMnr0aIX7RCIRtra2PH36VOEXrqqqyvr169m+fbtQrs/MzMTOzo5169b9UgOaNm0ay5Yto3PnzjRv3hxNTU0uXryImZkZc+bMKVBb5pgxY4TAZN++faiqqv5lQVdqaqowG/Dp0yfKlCkjJzRZELRr146oqCgePHjA0aNHOXbsGAYGBnz48AFdXV22bNmCiooKXbp0QVVVlSFDhrBz50727NlDcnIy6urqbNiwQUYQ9N+AzZs3s3nzZpltWVlZXLhwAR0dHRYuXEipUqU4dOgQmpqaaGhooKKigoaGBu/evSMjI0OY2/yWOKFz586sXbtWboBeKnbZo0cPuXuZkpLCwYMHOX36NOrq6rRp04b79+8ze/ZsBg4ciJGREerq6lSsWJEqVaqQlZXFunXrsLCwYMqUKb8kg3XlypU8HZR27dpx6dIlpW0206dP5/jx44wYMQKxWExaWhqVKlVi2bJlv5RFsWvXrmRnZ+Pk5ESjRo0wMTHh9u3bpKenC7TW+cHFxYXQ0FCio6M5e/as4Nj9FRCLxXz48AGJRMLnz59JT0//odm78uXLs3z5ci5dusS1a9dwdHTE0NCQqKgoRCIR3t7e2NnZCWQ5LVq0QFNTkyNHjqCurs6iRYsIDAzMU3j9n4hjx45x7NgxmW2JiYmEhoaipqbGyJEjsba25vbt2+jo6JCSkiI4qefPn0csFtO9e3fmzZsn8wxr3bo158+fZ8SIETIshra2tsyYMYPo6Gi5Nj2xWMyKFStYu3YtJUuWpFGjRkydOpUFCxYwbdo0QYzUzMxMqKjs2LEDTU1NpkyZUqDxgfxw9erVPFt7O3bsyNatW4Wg63t0794dCwsLZs6cSXJyMllZWZiYmDBhwgSlbYc/gpo1azJhwgT69OlDzZo1KVu2LM+ePeP169d4eHgUiK2va9eu6OvrExMTQ2hoKA8fPmTo0KE/9Nz8EUjnSV+9eoWWltYPsYcaGBgIeqChoaH07NkTIyMjUlJSSE1NpV+/fowaNQovLy/S0tKoXLkyXbt2Zf/+/RQtWhR/f39WrVolN6v6O0EikfwUGcaf1V5448YNDAwMZBJh9evXx8DAgOvXrysMut68eUNkZKTMDKGmpiZNmzbl+vXruLq6cvfuXbKysmReY25ujrW1NdevX6dNmzY/dO680KlTJ9LT06lUqRIeHh5/e2t5oYKuI0eOEBsbS4cOHXB0dMTU1JSgoCAkEgl37tzBx8eHbdu2ER0dTfny5UlISKBKlSr07NmTOXPmsHLlShYtWiTnDKioqLBo0SK6desmE3RVrVqVunXr4ubmhpeXF6VKlRJobBcsWMCmTZuE14pEIlq3bk2rVq3YtWsXnp6eGBgYcPnyZbKzs4Vs2LNnz9i2bRsHDx78JQ/ZvB4EyvZJJBIuXrxIUFAQKSkp6Orq0qFDB1q1alWo8n1hrnHChAnUrVuXJUuWkJSUhK6uLjY2NgV2dL4dSl+7di2HDh0iISHhL6FiNjY25unTp3h5ebFy5Uqhva2w90okEgl6QTt37mT16tWUKFGCsWPH0rdvX3R0dEhOTmbp0qXC/MOgQYNwcnLi4sWLzJ49m0mTJrFy5co/42P+bbh58ya3bt2ib9++uLu7c/36dW7fvo26ujrPnz9n27ZtBAYG8urVK0qVKoW+vj52dnY4ODiwcuVKgoKCGDFihEK6/REjRtCmTRvS0tIEu9fR0WHChAn06tVLhsDh3r17zJgxgzlz5shkgmvXrs3Bgwe5efMmvXr1wsjIiAcPHnD79m1hbuTBgwccOnSITZs2/elZLZFIpPRh9+jRIzZt2kRUVBQqKip06NCB1q1bFygA+hH07NmTmjVrMmfOHCF5UKtWrTwFbr+FlDkMcnvdFy1axKNHj2So3f8sqKiocOXKFfz8/Jg2bRrh4eGMGTPmh5IaHTp0oEOHDjx58oShQ4dStGhRXFxccHJywtLSEolEIszwenl5kZGRgYuLCwcOHGDt2rUMHjxYhiH334Dnz59z6NAh+vfvz6ZNm/D29iYiIgJTU1M+fvzIoUOHcHFx4c6dO5iamlK+fHmcnJyoWbMmAQEBvHnzhjp16ii0p+bNm7Nz505evnwpVG5FIhHLli3D2dkZb29vGjVqhEgk4s2bN8ycOZOuXbvKBAxly5Zl3bp1TJ06lY4dO6KhoUF4eDjPnj0T5AggNwkyffr0fAW/C4IfeV5DLiHYpk2bBAbURo0a4eTkpFS/52fRoEEDNmzYILRq6ejoUL58+QLNc0Gu7yRllAwLC8PNzY3g4GD69Onzp1zv91i/fj0tW7Zk3LhxnD59Gg8Pjx+6V3Z2dtjZ2ZGcnEzr1q3R0dGhV69edO/eXfhdFi9enDt37jB37ly0tLQoXbo0fn5+LFmyhNGjR8sw5P5u+FUzXd9XVjU1NX8qORwZGalwvrFYsWJKCWOk278lWpP++927d8JrNDQ05H4LZmZmwvt/5NyKoKury7Jly2jYsCEqKiocPnyYXr16sXXr1gLPDv8ZKFTQ1aRJExISEhg5ciR3797F39+f169f07x5c96/f4+xsbGQSTE0NMTAwIDz588LooJPnz4VWKuSkpKIi4ujWLFiaGtro62tjbGxMXFxcTJUwePGjePKlSt4enqSlJREdnY29vb2BAcHKwyapIPU27dvl5slyczM5O3btzRo0AA/Pz/mzp37Uw/ZGjVqcOPGDezt7eX2SSQSQkNDmTRpktz2SZMmoaury/z58zEzMyMuLo5169Zx5MgRVqxYUWghyYJg3bp1PHjwgFWrVlGmTBkhePX09GTWrFmFysD37NmTkydPMmrUKJo3b86rV6+QSCTY29tjb2//p4hL6+npsWLFCqKioti9ezdXr179IWE6Ka5du8bRo0cF45cuysHBwYwZM4a9e/eSkpKCiYkJBw8epG3btvj6+lK5cmViY2N/CcnJ7wIrKyusrKyYMWMGe/fuZdCgQWRlZdGwYUPu3LmDtra2MF+goaFBmTJlOH78OFu3bkVTU5OnT59y9uxZILe9MyoqSrB/yHXQbt++LTOU2q5dO8qWLcuqVat49+4dEokES0tL/P395QS+pQgLC8PT05P+/fvLbM/OziYxMZEaNWqwePFitmzZ8lMVr4YNG3LmzBlcXFwU7j9+/LhC6uv169dz9+5dJk6cSKVKlUhLS2Pfvn0MGTKENWvW/CkJivPnz7N27VpmzpwptL/evXuXKVOmCC3eBYU0YTVixAhGjBjBq1evSEpKol69ejRs2LBQs5sFhZqaGhMmTCAyMpKVK1cSEhIi9/0WBidOnGDt2rVy2nA3b97E1taW1NRUnjx5grW1NVu2bMHZ2Rl3d3e6dOnC7du3f4h05XdFiRIlGD9+PIsWLWL58uXY2dlhYmJCz549hdmkbwlfSpcuzZMnTzhx4gTDhw/H0NCQ8ePHA7mV78+fP6OjoyOs7926dePUqVMy7bLVqlVj+/btrFmzBh8fH1RVVTExMWHs2LFKhdLj4uJo2bIlc+bMkdmek5NDUlISDg4O+Pv74+Dg8FNBjr29PevXr6dFixYK9x89elRhlevs2bOsW7cOT09PbGxsBB1ANzc3fHx8lK5XP4OwsDA8PDyYPHkyfn5+iEQiwsPDmTRpEg0aNKB9+/YFPlblypWxt7dn8uTJqKqqEh4eTmRkJDVr1qRRo0ZYWlr+8mSDSCSiV69eNG/enCpVqrBlyxbGjh37w77NhQsXcHd3p3fv3jLbpXPBbm5uHDlyhJ49ezJ79myysrKYPHkyo0aNYteuXQwdOvRXfKxfjl8VdH2/Ns+aNUshG7e3tzezZ8/O85ihoaGA4iSEMh6Eb/H9/oK85/vX/Oi5v4WJiYkMM7atrS3x8fEsWrTonxN0TZ48maCgIAwMDHBxcSE8PFzoY758+bIgWCcWi9HR0eH8+fNoamrSqFEj9PX1+fjxI02bNkVHR4ciRYpgbm7O27dvKVWqFPPnz0dVVVWh2Fjjxo0LJZj69OlThSw2GhoaWFpaCpSkUVFRTJs27YdZh5ydnRk/fjzVq1cXhgSl2LRpE82aNZNz/vbs2YO5ubnwMIPcwb5Ro0axZ88eNm3a9FO911lZWZw5c4ZTp06RmZmJtbU17dq149q1a2zdulX40aqoqNCqVSvU1NRYsmSJUjphRTA2NmbQoEGsXbuWXbt2Ubp0abKzs4VeeSsrK5ycnHBxcSmUgHVBYGVlRb169bhx40a+QVdUVBRPnjwhNTWVokWL0r59eyHTmpmZqfABfvnyZQICArh//z6RkZFUrFgRU1NTzpw5Q506dXj27Bk+Pj706tWLunXr/isy4wsXLmTLli18/fqV7t27Y2BgQL169Xj16pVAqT9p0iQ2bNiApaUlp0+fRk1NjerVq2NlZcXFixdp2bKlYAPly5cnMjISdXV1Zs+erdSuq1atypo1awp8nceOHZMhqJBCTU0NY2Nj+vTpw4YNG3B2dmb69Ok/zDzZsmVLBg4cSMuWLeUeZpcuXUJdXV2O9OfRo0fcuXOHdevWCb+JIkWK0K9fPywsLJg7d+5PaUZJmeYOHTpEYmIiFhYWDBs2jCVLlrB//36ZarWNjQ0LFixgwoQJ+Pv7F9jRUVNTw93dnUmTJnH9+nWKFy+OtrY2y5cvB6BMmTK0bdsWFxcX6tWr90t/++bm5jg5ObFnzx6cnJzybK9OSEjg3r17xMXFoauri62trZDMe/v2rZDh/xaXL1+mXbt2vHjxgvDwcKytrdHU1OTAgQPY29tz9OhR0tLScHV1pVmzZn9ZG9afiQ0bNrBhwwZevXpFp06dsLS0pHHjxly7dg0/Pz/69+9PSEgIbm5u1KlTh/Pnz5OTk0P58uVp2rQpp06dYsyYMRgaGpKVlUXlypVJSEggOTlZcOAV2bW5ubncGEJeOHr0qMKWVlVVVQwNDfHy8mLEiBH07NmT8ePHC2RZhUX58uVJT08nNDRULgAMDw/nypUrMnI2kNuOuXLlSvbs2SNUDlRVVXF0dKRChQqMHz9e4fhDYfD06VNCQkKIjIzExMQEV1dXFixYwJYtW2SqBhUqVGDOnDlMnDiRunXrFko7aMyYMQwdOpTevXtTtGhRihUrxurVqxGLxZiYmNCyZUsGDBhA69atf+lv39TUlH79+rFy5UrCw8PzbA1LTU0VnrsaGhpUrFhR0PB8+/atQobkmzdv0qJFC2rUqMHx48eBXIfd39+fT58+ERAQQPXq1TEzM6NVq1Y/1L78Z+JXBV0fPnyQWTOVVblGjx4tF7h+j7Jly/Lo0SMZrV0pYmJi5CpZUkg7XSIjI2VIYKKjo4X3FC9enMzMTOLj42X8r+joaKF4Ubx48UKfu6CoX78+Gzdu/KljKELjxo0L3M1SqKBrz549jBkzhrNnz7J582aKFStG165dGTNmjPCg27x5M9OmTSMiIgJra2tOnjwpOLoXLlzgw4cPQC67lvQ9d+7coUePHkgkkl9SJcmv7axq1aq0b9+egIAAnJ2d8fX1LTA15LcoVqwYEyZMYPjw4bRt2xYbGxsyMzPZtWuXMC/1Pfbs2UNgYKDC43Xt2lWg2P6RRTw+Pp4JEybg4ODAvHnz0NbW5tatWwwbNowxY8YoPKa5uTmGhoYKxYvzQufOnZk0aRIlSpRAS0sLiUTCu3fvuHbtGpcuXWLdunUsXLiQPn364Ofnh4mxMfwiJ01NTY309HTEYrHC71oikXD27FnEYjG1a9dGX1+f6Oho5s6dS5MmTejTpw9isZiMjAy5xUlFRYWcnBwiIyNlFoX9+/cTFxeHtrY2IpGIffv24eXlxZIlSwpFsPE7YsWKFQwcOJCoqCiCgoLQ1dWlY8eOrFmzRrCLOXPmkJOTw6NHjyhXrhxBQUEyIr579uxBV1eXUaNGCa2o7969Y8iQIWRnZ/+SIe7s7Ow8K1iVK1dm0qRJnDx5kmHDhuHu7s6AAQMKfR41NTV8fX2ZOnUqdevWFZIn+/fvJz4+XmF76ebNm5k4caJCG6tZsyYpKSlyVfyCIisrC09PTywsLBg/fjzFihXj2bNnuLu7U758eYWOhLa2Ns2aNePKlSs4ODgU+Fw2Nja8e/eOokWLCkF0dHQ0165d48qVK+zdu5d169bRpEkTNm7cSKWKFX+pXUOu86Us6Lp16xZv3ryhQYMG2Nvbk5CQwPbt29HS0mLGjBkYGhoSEREhx24qtetPnz7JdCbcuXOH58+fCyx/t27dwsfHh4kTJ9K2bdtf8rn+LkyePJmuXbvSokUL1q5di5qaGq1atSI4OFgIcgYPHsznz585efIkpUuXxtvbWxhwr1WrFlOmTMHCwoI6deoIw/EJCQkMHTqUrKwsGcHfH0V+dm1ubo6zszMfPnxgxowZ3LhxQ+GztSCYN28enp6enDhxgnbt2mFsbMzJkye5e/cuq1evlnueBAcHM3jwYIVOrJmZGdWrV+fevXt5aublheXLlxMbG8ugQYOoUKECHz58YN26dURFRSkMqqRCzIcPHy5U9aZ48eKEh4ejrq4urEFJSUncvHmTq1evsn//ftq1a0flypXZtGkTDe3t/xS7VoaXL19y7do16tevT506dUhLS+PGjRts3bqV5cuXY2RkREREhFzb87d2/a3v+OHDBy5evIiKigoqKiq8ffsWJycnOnfuzIgRI37J5/oV+FVBl76+foF4AExMTArkY0tlAm7fvk29evWA3LU3MTFRYWcX5GrVFS9enDNnzgidBpmZmVy6dElIyNvY2KCurs6ZM2eENSgiIoInT54IBDw/cu6C4v79+wpZQfOCWCzm1atXREdHy83fSRP/0oC/IChU0DVq1CgOHTrEo0eP2L17N927d5fLilSsWJGQkBCGDRvGxIkTZXq4s7KyMDIyYsWKFSxYsEAIPmxsbDAzMyM7O/uXZE+l/aHftj1IkZOTw5s3b1i/fj3jx4+nZcuWHD16VKYMefHiRUHk9PvIWho0SmFiYsL8+fO5evUqe/bsQU9Pj969e1O8eHE5IUgDAwMyMjKIi4sjLi5OZt+bN2+A3CzNzZs35aLmvFqTpDMxU6dOZf78+TJBQKdOndi9ezenTp2iV69ecp+nSJEi1KhRg4iICLmq1KlTp5SeE6BHjx5K9yUlJaEJHNy5k5CdO7ECagMGgMbw4WTm0W+szNnJyckhPDycGzdu0KVLF4VVtD59+rBq1SoGDBggR5ginQuzsLCgSZMmHDx4UCADSUxMBHJbyzZs2MDXr19RU1MjMTFRGNCvX78+N2/eJDg4mKlTp+Lh4UG/fv3YunVrgYabf1dMnz6ds2fPysytff/7MzIyYu3atfj5+VGqVCmZTLFYLCYnJ4ctW7YwYMAA2rdvj0gkwsLCgs6dO7NmzRq5SvCPoHHjxly5ckUpDfrVq1dZt24dPj4+DBs2jN27d7N06VJhjbp16xYfP37ExMREodDp97Y9f/587t69y4EDB9DQ0KBRo0ZUrFhRsFUpDAwMePPmDUWKFJE7BuTatpGREadPn5YRBYaC2bWvry+dO3eWmWkxNTXlypUrvH79mjt37shRrRsZGVGvXj1CQ0MVBnpSjTVFuHPnjsLtjRs3Zv78+Zw8cIAJI0ZgaWmJlZoadpqadGrShDZbtvDmyxelx80rGZaamsrBgwdp0qQJbdq0kXsOODg4cPHiRT5+/MiRI0dk9j9//pzAwEC2bdtGhw4d2LFjh0xbd2JiInZ2duzevZvnz58zZMgQEhMTefPmDQsWLMDR0ZGjR48K38+ePXtwdXWlaNGiSins/wmYPXs2d+/eZf369fTt25eVK1fKVfel1eimTZty+fJlIeCC3O8rJSWFefPm4e7uzqhRo9DV1aVo0aKMGzeObt26/RKSgiZNmnD8+HGlgcv58+cZOnQo9vb2LFu2jAkTJrB+/XqhJf7hw4eEh4ejra1N5cqV5X4739vklClTePHiBSdPngRyg8tOnToRHx9PfHy88DoDAwNu377NiBEj8rTrM2fOyPlB+bUSV6tWjSNHjqCtrS0TuJqamtK+fXvU1NTYtm2bXGBlZGREgwYNOHnyZKHt+vr16wq3165dm+nTpxN66RITBgygUaNGWKiqUl9Tk9b169NlyxY+50Hnn5ddP3nyhF27dlGhQgWcnZ3lEkQODg58+PCB4cOH8/TpU5ng9vnz51y7do358+cLhBlNmzYVvt/ExESsra3ZvHkzqqqqLFy4kMTERFJSUhg1ahTdunVj27ZtPHz4kEePHrFt2zaWLFlCYGCgQKrzd0MsFv8UkcbPvDcvWFlZ4ejoyLBhw1i3bh2QS2zXoUMHmWpllSpVWLBgAV26dEEkEjFu3Dh8fHyoVKkSlSpVwsfHB21tbWGW0MDAgCFDhjBhwgSMjY0xMjJi4sSJVK9eXRC9Lui5X716RUpKCpGRkaSlpQnshVKtz61bt6Kurk7t2rVRUVHhyJEjAlt3QXHz5k369OkjjEB8C5FIpLDSnx8KFXQtXLgQJycnlixZkq/Ap5QmXorMzExycnIYNmwYo0aNIiYmhqdPn/L+/Xs2btxIrVq1uHLlSqE/gCKMGTOG6dOns3PnTrnWmpUrV9K1a1dUVFQoUqQILi4uDBs2TCDhuHDhAoaGhpQsWZLt27eTlZXF9OnT85x5UldXx8HBAQcHh3xL85mZmXn2pqalpf3QPMrHjx+Fli+AL1++kJCQQIkSJTAxMaF169YEBgYK2cpvER0d/UvZlwB0gRuAEXAYuAlcAt4CFTZuRFSmDCoaGqipqaGhoYG2tjalS5dWmN3Lzs7myZMnBAYG8uLFC1q2bEmXLl0UnlcsFnPw4EGFAaOUhXHx4sWCI2FmZiYj4lqvXj2hyiPFpk2bOHr0KPv27aNKlSpkZ2czatQotm/fTpMmTfD09MTPz+8fO+c1Y8YMWrRowY4dO+jTp0+eiY8zZ85w4MABmW3Xr19nw4YN9O7dG4lEImiibdu2DbFYTKVKlQTCmJ/BoEGD6NatGw4ODjJq8JCbIDAzMxOyeMOHD2fz5s3Y2dnRtWtX7t27R05ODpUqVeLTp098/vwZDw+PPAkjpAyktra2+dq1iopKnmLnSUlJSvflhczMTG7dusXkyZOF40RHR2NqaoqJiQnW1tasW7dOYXAQFRX1y+fIVFNTcZo/n1bJyewHbmZncyU7m8ATJzAvVYrKDRqgqaODlpYWOjo6GBkZUb16dYUZSrFYzNOnT1m3bh3nzp2jXr16eHp6Kv39rVmzhpUrVyrc37dvX4YPH07Pnj3Zu3cv+/bto0uXLoJDWL58eU6cOMHgwYOF73L9+vX4+fkRHx9PdnY2VatWZfHixezatQsXFxcmT57M7t27MTc3/0e2EXt5eWFjY8OSJUtwdXXNs7Vqz549cvPHO3bsICQkhFGjRlGkSBE2bNhA06ZN2bNnD3/88Qd9+vT5qSqPFC1atGDx4sW8fv1ajnL5+fPnPH78mAULFgC5bJvTpk2jSZMmODs78/HjRz5//kyNGjVISEjg2bNnQptcXrC0tMTS0jJfu9bT0xNmzxUhMTHxh0kadu7cKegQpaWl8fnzZ/T09DAyMqJq1ars27dPYTUrOjpabv37WYhSUrD38OBadDRHgGs5OVxPTWXo+fN4lCtH7QYN0NLVRUtLC21tbYyMjLCwsFCYIJVIJLx9+5agoCB27dpF+fLlBZILRVi/fj1Tp05VWE1s2LAhO3fuRFVVlTp16rB8+XJGjx4t+Eja2trExsZSunRp4fm7d+9e3NzcsLOzIywsjDZt2rBixQr279+Ph4cHy5cvp2HDhlSoUOFPIS4rDH5nceSgoCDGjh0r2FKnTp1YtWqVzGvCwsKEhDXkVtfT0tIYOXKkII58+vRpmaTr8uXLUVNTo2fPnoI4slTGojDnHjp0KJcuXRL+La2uvXnzRuh0mDdvHu/evRPmVzdv3lyoeS43NzdsbW05duwYJUqU+CXPgUIFXeHh4QVuQfteh+Lr168YGRnRtWtXWrZsSZMmTdi8ebOgUm9ubp6vwnx4eDhbtmzh48ePlC5dGhcXF4W8+LVq1aJHjx60b9+eESNGULt2bT59+sT69esxMTFh8eLFwmsHDx6MSCRi9erVTJ48mREjRggODuS2SE2cOBF/f/9f4lRXrlyZR48eKRxwj4yMRF9f/4d6qh89ekSDBg14/PgxixcvRlNTEzMzM169eoWGhgYPHjwgPDxc7n2ZmZncv3+fUaNGcfv2bfbv309SUhIaGhpoampSsWLFH1qY5gFWgCrg9r9/YuAisF0s5llsLJ8MDMjKyiIjI4OkpCQ+fvwoQ0P/xx9/cPDgQe7fv09qaqpA15tXX/iXL1+wsLBQeg/NzMz4+vUrWlpaLFu2jFWrVrF582bKlSvHly9fUFVVxd/fn3Xr1nH79m2sra3JzMxk+PDhmJiYsHHjRlRVVXF1dcXDw4MlS5YgFosJCgrC3t6eJUuW/OOy469evSrwMLhIJJKzbTU1NerXr8/p06fp3bs3ISEhlC9fnvHjx1OlShXc3NxITExUGnRFR0cTGBjIs2fPMDQ0pG/fvgodOUNDQ3x9fXFycmLAgAE0b96cxMREtm/fzocPH2Tadu3s7Dh8+DCrV69m+vTpNGzYkG3btgm/5cTERNzd3fH09PwlCYcWLVpw/PhxhXS0mZmZvH///oeIKKQV6IiICObNm0dKSgplypThw4cPiEQipd0BEomEQ4cO4evrS1hYGEFBQURERCASiXBwcKBixYo/NN+gOnMmoufP0ZVIGABImzfvA5uzswkLDye+dGnS09NJSUnh8+fP6Ovrc+7cOeEYb9++ZcOGDVy+fJnY2FiKFSvGzJkzZbLYipCamqqQIRNynzfFihUjKSmJOXPmsGXLFoYMGYKFhQWZmZkkJiYyb9489u/fz4wZM2jTpg2PHz/G39+fuLg4goOD0dfXx9XVlbFjxzJnzhwyMzMpVaoUlStXZv78+XTr1q3Q9+vvxNOnTwv825bOvX6LhIQE6tSpw8mTJ/Hy8uL8+fPExsbSqVMnfHx8WLNmDTExMUqPmZKSws6dO7l58yZaWlp07tyZli1byj1PRCIRGzduxMXFhTZt2tC5c2ckEgn79u3jwoULbNu2TfhdGBoacunSJVavXo2Pjw/m5uYcO3ZMaK3KzMxk2rRpSCQS2rRpU4i7pRjt2rVj//79TJs2TW6fRCLh2rVrMv5CYaGiosK0adN49eoVlpaWfPnyhZSUFKKioihTpoxCduHdu3fTuXNnPn/+zK5duwTB6Tp16lC9evUfCsikdq0mkdAFkKY03wCbxGLuvH1LYunSREdH8/XrVyIjI0lKSqJhw4ZC9TQxMZHVq1dz6dIlPnz4gLa2NpMnT6Zly5Z5+jQPHjzIs13UxsaG58+fM3jwYI4cOYKbmxslSpRAQ0ODDx8+0K9fPx4/foy7uzsdOnTg0KFDtGrVis2bN7Njxw7Kli2Lm5sbEydOZOHChXz9+hVLS0vMzMyYOnUqY8eO/duSKr9z0GVkZMSOHTsKdX6pRIciEg8ptLS08Pf3x9/f/6fOffHixTz3Dxw4kIEDB+b5mvzw8uVL9u7dS8WKFX/qON+iUEFXYYw5JydHJvOrr69PRESEQN1rZmbGkiVLhNenpaXlWaqbP38+T58+ZfTo0VSuXJmwsDCmT59OjRo1mDp1qtzre/ToQYsWLdi+fTtnzpzBxMSE6dOnCy2HUu2K4sWLo6OjQ+nSpalZsya7du2if//+Qt+nhYUFo0ePZvv27XJDtj+CgQMH4unpydy5c2Va0hISEli9evUPz75oa2vz/PlzDh8+zNq1a2WYHe/fv0/v3r2pWLGiTJUtJSWFadOmMWDAAJYtW4ZYLMbDwwMzMzOSk5Px9PTk6NGjtGvXrtCsQ53IDbi+hQrQ/H//vgBzvqlWbdu2Ta715fTp01y7do2KFSsyduxYQe8tL2hoaOTZOw4IvzMdHR08PT3JzMwkLS0NPT094eHdtGlTbt++zeXLl8nKysLX11cQw4VcyuDQ0FAyMjJo3bo1w4YNY+nSpbRv317QKPmnoDDSCSVKlCAsLEwm8FVRUSE5ORk9PT3S09PZvn27TPb37du3SvvI9+zZw+bNmxk7dixDhgwhIiKCjRs3smbNGtavXy/3sK5bty4nTpwgJCSEJUuWoK2tLZCaALx+/ZoLFy5gZGRERkYGlSpVolq1aixbtoyHDx8K2TADAwN8fX2ZN29enot/QdG2bVvGjBlDpUqVZBIqGRkZrFixQmi/KCyKFClCdHQ0I0aMYNGiRTL3PTIyEkdHR4HQQHqvsrKyWLZsGba2tpw5c4Zr164xatQoKlWqREZGBidPnmTBggV4eHgUuhKmcuwYIgUtLbUBfyBTJOLlN1Ie7u7ucgKoly5d4sCBAxgbGxMYGEjt2rUFIfa8kB9ddnp6Ourq6qiqqjJ06FAGDRpETEwMRkZGQitWq1ateP78OVevXiUtLY1Ro0bJtMhZWlpy8uRJQf+sf//+bN26lR49evDHH3/8o9qIC3OtNjY2XLx4UaaFtVy5cjx58oTq1asTFxfHokWLZIK4Bw8e4OjoqPB4oaGhTJ48maFDh+Lr60tKSgpBQUGCxMT3vkTp0qU5deoUJ06cYNWqVYhEIhwdHfH09ERFRYWEhAR2794tjCFYW1szduxYVqxYwbFjx3B2dgZy1/8FCxbg4uLySyRYqlSpQmpqKsePH6ddu3bCdrFYzPbt26ldu/YPVbAhd20YPHgwI0eOxMfHR2Z727ZtuXr1qsxvXiKRsH//fpKTk0lPT2f69OmMGjWK8ePHI5FIuHr1KkuXLmXw4MFyM435QZldlyM3gZoJvPyGgGDVqlWEhITIzBH98ccf7NixA3V1dZYuXUqzZs0oUqRIvjTfKioqZGRkKE0Cfdv907FjRzp06EBMTAxFihQR9Nt69OjB58+fOXPmDImJibRt2xYfHx9hzTU1NWXr1q0EBgYyefJkzM3NefLkCePGjaNkyZJ/m3bT7xx0/Yfc5O2rV6/+vqCrMOjXrx/Lli0TqJVVVVWpV68eJ06c4I8//hAWSSk2bNigdEZIutAEBQUJ2xo0aED9+vXx9PSUE1WWwsjICHd3d4XHHD16NLdv3xb+XatWLebMmcOJEydo2bIlY8aMYfjw4aioqNCgQQOht/RnYWpqypw5c1i6dCnq6uqUL1+eDx8+EBERwZAhQ2Qc+8KgQYMGDB8+nGvXrsk50Y0aNcLBwYGXL1/Svn17qlatSlJSEpGRkfTo0YPU1FQ0NTVlZqD09PSwsbFBT0+P27dvF26AUSJBPZ+XqIrFIJEIw7rq6uqkpaXJvGb06NGoqKhw+vRpjIyMCuS0Fi1alJSUFBITExUmCZ48eSJX1dHQ0JDrjxeJRNjZ2WFra0vfvn2VtpdGRERQpkwZ+vXrR5MmTahQoQLdu3cX+pP/bRg5ciRz5syRYexydnZmzZo11KhRAysrK5mA68KFC1StWlVh68gff/xBcHAwR44cEYJ6Y2NjVqxYwbZt21iwYIFCavYiRYoozWItXryYgIAA4d+lS5fm7t27nDhxgu7duzNgwAAmTZqEtrY2ZmZmZGRkyGiI/Sg0NDRYsmQJS5YsYdOmTVStWpW4uDjevHmDo6PjDzMpFitWjPv377N8+XK5Cm+FChWYNGkSixcvpl27dlhZWZGTk8PLly9p27YttWvXZsmSJYITC7msVk5OTqipqbFp0yYmTJhQ8IuRSOB/ddGUQZSVJWPX2trackmIAQMGIBaLWbx4MWKxWK5yqgyWlpY8ePBAoW5UYmIiOTk5Mr89NTU1SpQoIdf+VaVKFapUqcLt27eVVs5ycnLIzMykV69edOnShfLly9O/f/9CUXX/kzBgwAC6detG27ZtBVsYPnw4vr6+TJ8+ncjISJmA6/3798TExCiskCclJTF58mQOHjworMGmpqbMmDGDW7duCUnM76GqqirorX2PnTt3MmrUKEEjz8TEhLCwMJ4+fcq0adO4fPky3t7emJmZoa6uTo0aNfjjjz9+CcmRt7c3a9aswdXVlRo1apCZmcmTJ0+oW7fuT1XTxGIxtWrVkiPxMjIyIjAwEAcHB3r16kWZMmXQ1tbmjz/+oHbt2syYMQNXV1c2btwofFcikYgmTZqgqqrKkiVL8Pb2LnjA+YN2nZqaSnp6umBf9vb2rF69Gnd3d758+VLgNbVDhw7s3btXYduXVAP222S0SCSiWLFicnZtbm7OwIED+fTpE5qamgr9BZFIxNOnT5k5cyZ6enq8efOGyZMn8/Dhw79MFP5b/K4zXf8hF2PGjBEkTapXry73rPoRPcs/raHV2dmZxMRERo0axcuXL5FIJDg7OzNq1CjOnDkjBF0pKSksW7aMO3fuKGUa27Rpk0LnSyQS4eXl9UMUkNWrV0dDQ0MYHC5btiw1a9YkLCyM3r174+vry5kzZ4TzFNQxKAhKlSolDATb29szatQoZsyYUejs1LdISkqidOnSBAQEyGU/QkNDiYuLw8zMjAMHDuDq6oq3tzeHDx/G3t6eQ4cOKR0slc7AFMq4RSLyXsJBrKIiw45Uvnx53r59K4jdQm4g5uLigkgk4saNGwU+vYeHByNHjpQ5FuRWE1esWFGonl5VVVWaN2/Ohg0b5D+DWMysWbMYPXo0kEup7e/vT3x8vMLZuX8DatWqRfPmzenRowehoaFIJBIcHBzYu3cvEydOFFptsrKy2LVrF76+vkpbDVatWsXs2bMVVlH79+/PpUuXyMzMLNT1SYkqpCLYxsbGmJqa8uDBAzw9Pdm5c6fMemFgYJBvZbSg0NPTY/bs2cydO5eGDRvi7OzM+vXrfzjgksLQ0JCtW7eSkZEhs/39+/fs27ePsmXLcvz4ccaOHcv48eM5ceIEXbt2FTS3FDkfZcqUQUVFpUAVJgEiEeSzDkrU1GTsunnz5rx8+VKGfEQkEjFo0CDMzc05ffp0gU8/btw4Jk+eLEN2ALktZbNnzy50K0m/fv3w9vZWmC1evny5MN+oqanJhg0b0NHRkWlN/zehaNGieHl54eTkxKlTp8jJyaFcuXJkZGTQsmVLQYJFIpFw/vx5Bg0aJEgJfI8dO3bg5uamMOkl1UGTiqUWFFK77t69O0WLFkVfXx8jIyNOnjyJn58foaGhMvpDRkZGJOdB/lAYqKmpMXbsWPz8/GjatClt27Zl/fr1P92+qKKiwo0bN+RsMDk5mSlTptCkSRNWr17NtGnTGDFiBEeOHGHkyJGcOnWKrl27Kgxq9PX1qV69Oo8fPy74hfygXaenp3P16lWZ1zk4ONCwYcN8Sbi+RZ8+fdi8eTOvXr2SPadEgp+fH23bti1Up02/fv2YN2+e3PMfcuUJKleuLMwY+fn5UalSJdasWaNUv+3PhLTS9TN//+HPQ7du3Xj27BmDBw+mbt261KpVi9q1awv//RH8aZUukUjE4sWLCQ0NZenSpXz+/JnixYsLsxtSMgsVFRV69+7NuHHjFGZmxGIxqqqqSudB9PT0hOxXYdp3fHx8iIyMJDg4GMh1YCQSCQYGBnh5eXHq1Cm2b9+Oqakp5cqV+1N0W4oVKyYM6H7PiFZYJCQkYG9vT6lSpejatStNmzZFX1+f69evo62tTVBQEC4uLmhqasqxOubk5CilGxWJROjr65OWllaogeHDwCgU/8ByRCIef6eNVqVKFe7evcutW7fo1KmTsF1fX18gWSlolrl58+YkJSXh6OhImzZtsLCw4OHDh1y8eFGOUbMgGDp0KAsWLGDMmDG4ublRqlQpofrQqVMnGUFVNzc33NzcmD59ukzLyL8JQ4YMoWnTpqxfv5558+ahq6uLt7c3KSkpuLm5kZ2djVgspm3btuzfv19p+83Hjx+Vsp+JRCJq165NeHh4oWau3NzcCAsLY+3atUDub1ta9Rw+fDi3bt3iyJEj1KxZk/r16xMREfHLySYMDAx+qYyAmZkZffr0oXfv3tja2mJubs6jR4+IjY0lICAAT09PxGKx3HzrmzdvsLa2VnrcihUr8uHDh0LNqorbt0clIEBhK5JERYXk7+jpGzVqhJmZGQsXLmT9+vXCGi0SiWjdujVHjhxh+vTpBTp3+fLlWbhwIT169MDOzo4aNWrw9u1bDh48yIABA5SK7ypDkyZNiI6OplevXowbN45q1arx5s0bVq1ahZGRkUzipF27drRr146dO3fSt2/fQp3nn4JmzZphZWXFpk2bWLNmDerq6jg5OTFs2DChRTA7O5sGDRoQHBystC35+vXrckPv36J169bcvHlTIYOoMjg4OLBo0SIhqVOyZEnu3r2LjY0NnTp1EuYWjx49ioODAw8fPpSZD/4V0NLSytOevq0EFQSamprMnTsXNzc3KlSoQJUqVXj9+jXPnj3Dy8uLM2fOEBcXJ5e0CQsLk+sU+haVK1fmzZs3hRJGL6xdly1bFltbW5YtW0aTJk1kAsA2bdowffp0oqOjC6QlpqOjw7Zt2xg1ahQlS5akSZMmxMbGsnv3bpo0aVLoClSZMmUYPnw47du3x93dnYYNG/Llyxe2bNnCy5cvZaqs1atX59SpU4SHh//SFrKC4r/2wt8bP+uXK8KfFnRJUbduXbmHYdOmTXFzcyvQ+6XD4nnhR6jmixUrJgxcXrhwgXv37glq3WXLlmXu3LlMnTqVbt26YWhoyJo1ayhbtmy+Fa+8+PoV0c5KkV9mKq8qWHx8POnp6dy+fZs2bdowduxYnj17RlJSEh07dqRmzZo8efKErKws/vjjD5n3SmfXihYtKncPpRWcJ0+eMHr0aLmgK69IPzo8nPg1azCKjkb1m4UhRyQiuWRJvowbh/13mbqsrCx2797N27dvsbW1FbZbWFhw6dIlTExMFAqffosv/0tZ3ahRI+rXr8+VK1f48uULTZo0YeDAgUp/J1+/fs3zuAEBAdy7d4+NGzcSExODpaUlq1evVtoO+qsd+d8NFStWFHQ1vsW3lNP5IScnR6nWGuQO9xeWyVNTU5M1a9agq6vL4sWLefz4Mc7Ozhw/fpyyZcsyY8YMhg8fzqBBg9DV1cXFxUVokcrLtn/UriFv287LrqUZ8KioKFRVVXF3d+fly5fEx8dTr149GjZsKAy1f58lNjc3F7SnFFUcHBwcuHr1Kk2bNpVz6vKyhc+VK2N29izqr17JOGgSFRWyKlYk2dNTJsiWUmIPHTqUvXv3ynQzlC1bltjYWNLS0vKlHpdWt8qVK0dISAi3b9/m3bt3VKpUiU2bNuWZCc/r83h4eNC5c2c2b97MmjVrKFGiBB4eHkqv599u12ZmZgpJI/JjK/4WGhoapKWlKb1XqamphWYyFYlETJo0ieLFizNgwAD++OMPOnfuzLt37yhbtiweHh7cunWLMWPGoKWlRb169QS/48+0a62sLPo+e0bdyEjUxGKyVVQILV6co46OZOSxdsXGxpKZmcnz588ZM2YM7969IyYmhnLlyjFkyBBEIhG3bt2idevWMtIz5ubmmJiYkJaWpjBR6uDgIOgBfq/P9yvtGnLZrNu1a8fy5cvx9vYWEtPly5dHIpHw8eNHLCws8rRtqV3r6OgICfknT55QtGhRVq1alWeLYl6fp2PHjtSvX5/AwEB2796Nvr4+zs7OzJs3T6EP8P08+X/4D0ChEkMFxd/Ll1kAiEQiihYtysePHxXuf//+/Q+zCqqqqnL69GmBiOPEiRMsXryY+Ph4XFxcuHHjBjY2NiQkJOTLrPh3Q0tLCxMTE54/fy70tNva2gr3ZseOHTIVpG9ha2sr1yYgRVRUFGpqaoWmxc3U1GTHyJHcb9CABENDkvX1STA05H6DBpydM4dsBYtp+/btqVKlCqNGjWLp0qV8/fqVT58+cezYsR8adFVTU8PBwYEePXpga2v70wxFUsraHTt2MHPmTIUBV1hYGP369fspRqv/L2jQoAHnz59XuC8zM5OwsDCF7KQFwaJFi9j0v4QOCQkJeHh48OHDBxwcHLh58yY9evQgJSVF0A/5nVGvXj3Onz+PiooKlStXxtbWVqjWnjp1Skby4Fs4OTmxa9cuhfuysrIIDQ1VOB+VFyS6ukQdOEDywIFklSpFdvHiZJUqRfLAgUQdOIBEgTPdvHlz+vTpw6xZs3BzcyMqKoqvX7+yfv162rZtWygiF/i/ecuePXvi4OBQaJKf71GuXDnmzp3Ljh07WLx4sUInMTIykokTJyqVqvgP/wepNqQyHDly5Idbufr37y8wYZYsWRJnZ2ceP35MxYoVuXLlCt7e3qSnp/8lxAhaWVn4Xr5M29evMUtNxTg9HbPUVNq+fo17cDCa+bRGt2rVioMHDwK5zp2trS0VKlRAJBIRFhZGkSJFFCZMunTpkuf93bdvn8K5uLzwI3Zdvnx5pk2bRlBQEN26deP58+dkZ2fj7+9PxYoVla5LecHKyooePXrQrl27n56zNTU1ZdKkSWzfvp3Vq1fTqFEjOR8gOTmZRYsW/TBL88/iv/bC3x/h4eGMGTOGli1b0qpVK8aOHauQCbyg+NMrXb8CEydOZPTo0ezatUvGEFNTUxkzZoxML3dhoaamho+PDz4+PuTk5HDkyBFcXV1JS0vD2NiYrl27cvfuXS5evPjbD1H379+fRYsW0aJFC+zt7VFXVycxMZEDBw6QnZ2tlAxj0KBBuLq6Ym5uLjMYnZCQgKenJ56ennz8+JE7d+6gpqYmQxObFzI1NTnXqRPnOnWSab2wULKYqqqq5oo0hoaybt06zpw5Q0pKipCl+h0RExMj0CLfvHmTt2/f/iM1ff4OuLq64uzsjLW1tQyhgVgsZvz48bi6uv7UvRw8eLAw23XlyhW8vLyIjY1FW1ubZs2asX//fi5evPhDzsFfCanOTFpaGq1bt6ZIkSKkp6eze/du7ty5I2gYfQ9HR0cGDhxI9erVadiwobA9IyODyZMnM2zYMBISErh06RJZWVnUr1+fMmXK5Hs9El1dEry9SfD2lm+pUsJAO3fuXOzt7fH29qZVq1aIRCIyMjIYP358oe7FX4W0tDR27tzJ9evXuXnzplBt+M/JyR8dOnSgffv2tGjRQm7QfM2aNdjY2ChtZy8ImjdvLnwPT58+Ze3atbx79w4VFRUcHR0xNjbm5s2bjBkz5qc+R37o++wZJZOT5Vh6VYFicXG0vX6dg82aKX1/1apVefjwIZs3b6ZLly4YGhqSk5PD2bNn2bNnDwsXLlT4vgoVKqCpqcnOnTtxdnYW1kixWMzSpUupXbs2mpqaHDt2jOTkZKytrfNui/xf/IhdDxgwAGtra6ZMmULHjh0xNjYmKipKIfPs7wCxWCys+7du3eLBgwfk5OT8bXb9X3vh741Tp07RqVMnatWqRcOGDZFIJFy/fl0QNy9MB4AUIkkBvrWkpCQMDAxITEz8qcXyZ3Du3Dl8fHxo2bIllpaWhIWFce7cOaZPn07z5s2F16WlpbFmzRpOnz6NhoaGMAg8evToQlO7fvz4kUGDBhEWFkZcXBzNmjWjXr161KtXj2rVqilcVP6O9sJvP396ejrnz5/nzp07qKiooK6uTu/evbG3t1fowErbCz9//szcuXOB/yPPiIyMZPjw4ezevRuRSETTpk3JzMzk3LlzWFhY0KhRI6XZIWWVSci/ZFuhQgU+ffpEYGAgpUuXplOnTkKrSnJyMl++fKFMmTLCtX+LvCpycXFxSvflRxQiHeSWQiKRsHv3bsaOHUtycjI2Njbo6upy+vRpmjVrJmhI/J02kx9+B7t+/vw548aNo2bNmtStW5eIiAiOHDmCs7MzLi4uwuvEYjE7duxg9+7dqKqqkpGRQZ06dQSJg8IgIyOD3r17ExYWxosXL2jYsCGtW7fGysqKWrVqKWRa/DvaC5t947Dl5ORw/fp1rly5IsyvdurUCUdHR4WVHinb5tevX5kzZw6fP3+mZs2aJCQk8Pz5c2G+7fXr17Rt2xZNTU3Onj0LwOzZs2XELL9Ffq3eecl+iEQiEhMTWbVqFWpqavTt21eoFsfHx/P+/XtMTU0Vzlbk1SKWl1YU5G3b39s15AboQ4YM4fXr11SvXh0LCwtOnDiBtbU1jx8/Jisr6z+7zgdfvnxh5MiRGBgY0KpVK1JSUjh06BA1a9aUY9Y7deoU69atIzMzk+zsbMqUKSNo/BUWo0eP5tatW9y5c4c6derQunVrrK2tBSbe7/Ezdj1q6VLM8iDhidXXZ97/Jn2+x7e2/fDhQ86ePUt6ejo5OTm0aNGCzp07K3yWSe06JycHPz8/oRsnJyeHe/fu0alTJyQSCadOnaJt27YYGxtz/fp13r9/LydT8y1+1q4zMjLYtGkTERER9O7dW6gWx8fH8+HDB3R1dalWrZqcD/JX2vWLFy8YMmQIV69epXLlylSrVo1z585hYGCAWCzm8+fPiMXiv8RupDa6YcOGH5YcgNzCw7Bhw37r9eifjNq1a9OmTRu5BMiUKVM4ffo09+7dK/Qx/zFBF+Qa/sWLF/n48SOlSpXCwcFBZvFOS0ujR48e9O/fn+7duwv6NQcPHmTTpk3s2bOnUG1yx48fV1rdsrCwwM/PDxsbGx48eMDx48dJT09HJBJhY2OjcDH5K4IuRciLhv77wCUmJoaPHz9iYmKCiYkJw4cPx83NTU6sdt++fZw7d07pULmyoEsikZCens7ly5dJSkrCzMyM5s2byzwMFNEQP378mA0bNlCpUiVKlizJixcvSEtLY/r06TKfT/r9ZmRksHHjRi5cuICmpiYZGRlYWVnh4uIiN2tw+fJlNm3aRHx8vNAnnpOTg6amJsWLF8fU1JTKlStjbGxMbGwskZGRvHjxgtu3b9OjRw/8/f1JTU3F2tqaHj16cPr0aSIiIoD/gq6CQCKREBoaKogjt27dWkazRSKR4OrqSuXKlRkxYgTa2tpCxsnLy4vAwMACVWikeP/+vdLA38DAgEWLFtGuXTvevHnDgQMHiIuLIyMjg/r16yt8QP4VQVdh3/u9xEFSUhLh4eHo6OhQqVIlvL29qVmzJr1795Z53c2bN1m+fDmbNm1SmKTJyzl78eIFQUFBwvrRrVs36tSpI0Oe8T0+fvzI/Pnz0dfXp3Llynz8+FEQpP92zZGupxKJhODgYPbt24eamhqZmZmYmZkxdOhQOfHpsLAwli5dSnR0tKAVlpOTg5qaGsWKFRPsulixYiQnJxMREcGHDx84d+4c9vb2bNq0idKlS1O9enVKliyJsbExhw4dAv6z64IiLCyMW7duoaWlRevWreXW3hUrVhAeHo63t7fQCv/8+XM8PDyYOXNmoYTmJRIJmpqaClnrNDQ0mD59OgMGDCAhIYF9+/bx4cMHkpKSqF+/vsLOjTztWiLBfckSjNPTlb4kQVeX2UOGKCTXyMu2C2PXGRkZPH/+HBUVFaysrNi7dy+vX79m1qxZMvb29u1bRo4cyZYtWxTO0+Vl1xEREQQFBfH8+XO0tbXp0KEDzZo1E5LOiuw6KSmJ+fPnk5SUhK2tLQkJCTx48IDBgwfL+FTf+kkXLlxg8+bNZGVlkZOTQ5EiRRg0aJAcKVFMTAw+Pj68f/+epKQkxGKxkIgyNjamWLFiWFpaUqJECTIyMoiIiCAiIoJz585RqlQpNm7cSJMmTWjdujUvXrygb9++LFiwAFtbW+7cufOXBl3r16//6aBr+PDhv4Wt/xuhpaXF48eP5cjnXrx4QY0aNUjPw/6V4R/RXiiFqqpqnr3gfn5+uLi40K1bN5n3dOvWTdDRkVLfFgSOjo60atVKoI43MDAQqFufPn1K586dMTMzo2HDhri6uqKrq0tAQAB+fn707NmzUI7g7wJTU1NhxuLixYtYWVnJBVyQS6UZEhKiVA9LEcRiMXv37qVUqVJ06dIFY2Nj3r17x4EDByhXrpzSAPf58+ds3rwZHx8fmRmfDx8+MGnSJPz9/WXEdzMyMhg2bBidO3cmODgYVVVVJBIJx48fx93dnRUrVmBoaEhmZiY7d+7E19eXWrVqYWNjg46ODqmpqYImXFRUFEWKFOHu3bukpqZibGxMiRIlsLCwYOrUqXTu3BmJRELr1q0xMTGhdu3abN26tcD3+z/kPrSlFWRFOH78OCVKlJDRlBKJRDRs2JB169bh6empdHZJEcqUKcO4ceNYsWKFsG3WrFlcvHiRS5cu4erqiqmpKVWqVMHDw4MSJUoQGBjIunXraNas2Q9Txf6d0NfXF647KiqKiIgIhW2J9evXp3LlyoSGhir9PhRh1apVvH79msGDBwvB0/bt29m/fz9z585VWBGPiYlh8uTJLFq0CEtLS2F7UlISbm5uTJs2TaYtSiKRMHXqVEqUKMG2bduEVvNr167h5eXFjBkzqFixIjk5OZw7d44pU6ZQokQJoQotEokEuYCIiAh0dXV59OgRqamp6OvrU6JECYoXLy6I1KuqqjJ+/HgiIiJYuHBhoUhi/kMuKleuLKcvJ8WbN2+4du0aISEhMo57lSpVCA4OpkuXLpw9e7bALcYikYi1a9cydOhQYZu7uzsRERGEhIQwa9Ys/Pz8KF68OJMmTaJ9+/aEhIQQHBxMuXLlCkcBLxKRnc8MUM53sih/BjQ1NQWWwpycHPbt28eBAwfk7lnZsmXp168fe/fuVSoPowjHjx8nJCSE4cOHM3bsWBISEti7dy+7du3Cz89PYRI7MzOTsWPH4u7uLiMenZWVxaRJk5BIJHIzZ1u2bOHx48esXLlSCIAfP36Mj48P3bp1o2nTpkgkEh48eMD48ePJysqiWbNm6OnpoaqqKki6fPz4EQMDA54+fUp6ejpaWloUL16cEiVKMGXKFEGjccuWLZw9e5bg4GDBru/cuVPg+/Ir8V+L4O8LqdzM90HXgwcPCsTMqQj/qEpXfmjVqhWnTp1S+ICXSCS0atVKaKEpKLKysnjw4AEnTpxgzpw5aGlp4ezszNu3bzl79izq6upkZWXRpk0bXF1d+fLlC1+/fiUgIEDIykvxT6h0fYvp06fj7OyslEp1yZIlZGVl0aRJE7l9iipdly5dQkdHRyYohtzvZvPmzTRo0ICqVavKVbqmTJnCxIkTMTExkfuh37hxgxs3bgizITo6OmzatAkdHR25LH5cXBwPHjwgKCgINTU1zpw5Q3JyMqqqqnTq1Ink5GSSk5MpW7YsR48elWNHsrW1JTQ0VO5zrVy5End3d06ePEmVKlW4ePEi8fHxeHh4/NY280+x6169erF69WqZwPr7/atWrSoUIYNEIuHJkydcv36diRMnkpGRQfv27TEwMGDr1q2oqamRnZ2NjY0Nbm5uiMVicnJy2LBhA506dZKpzP4TKl3fYteuXejr6yslhbh37x67d+9WmKBSlBG/cOECV65cYebMmXJtSNu3b0csFitkDl28eDFNmjTBzs5OLtsbHR3N9OnTBWdKXV2d69evc+LECaENWoqYmBi+fPnC5MmTqVSpEsePHyc6OhrInS+StgOampry7NkzOaZHkUhEfHy8XPLo7NmztG7dmkWLFuHq6kpQUBCmpqZ07979t7aZf4pdz5w5kzZt2sjMG34Lb29vWrRoQePGjQt13NevX3P37l3Gjx/Px48fady4MXZ2dixZsgQVFRXEYjFly5Zl5MiR6OjooKamxr59+yhfvrwMk2d+dl0vKIi2r1/LzXRBLkvv1Zo1lc50/apK17d48OABp0+fVqhpCrmtfq6urmzZskVunyK7fv/+PXPmzCEgIEDOdm/fvs2hQ4eYP3++3L6jR48SFxcnMJV+a9vZ2dn07t2bkJAQYfwhOjqacePGERQUJHOsmJgYMjMzGTx4MHZ2dhw7dkyg8G7evDmampokJSWhpaVFRkaGQjKwp0+fykmOvHr1irp169KpUye2bNnCtm3bsLS0FH6Hf2Wla926dT9FGJKWloarq+tvb+v/VMyZM4fly5czZcoUYUTn6tWr+Pr6MmHCBKW2lhd+e/bCwkBLS0vpjJFIJEJXVzff3uXvoa6uTt26dZk5cybh4eG4uLiwceNG3r17h46OjtDKcOPGDbp27cqXL1/Q0dGhadOm3Lx586c/09+JzMxMmTav76GpqVng+ykWi3n58qVCoViRSES3bt2EiuK3SE1NRSKRKHW469evz4MHD2S2nT59mq5duyp8fXZ2NseOHWP//v2CeKaKigrh4eFkZGRgaGjIkSNHUFVVZeXKlXh4eAgPfSkFtxRZWVn06NEDd3d3Ro8eLWiCDRw4UCBw+A8/j9TUVKXfP4ClpSWfPn0q1DFFIhHVq1fH1dWVt2/fsnjxYk6dOsWFCxfQ1tYWqOojIiIYNmwYT548QU1NDScnJy5cuPBTn+fvRmZmZp4Pem1tbYUtWsqwa9cuxo4dq3Cfs7MzZ86cUZjNffz4sdJqWrFixcjOzpZJfAQFBeHq6qrw9WlpaTx8+JDAwEAh4IJcBys5OZmiRYty8+ZN3r17x5w5c5g2bZpQ2bCyspL7vHPmzKFVq1Y4ODgwbtw49PT0cHNz+6HB6f+gGG/evMlTAqRq1aq8ffu20MctX748PXr0ICwsjG3btvHq1SsCAwPR19cX5royMzOZPHky586dQyQS0aFDB6UMvsoQZGXFJz09vp92ygGijYw4oYS46s9CZmZmnq1q6urq+c4uf4sdO3YwevRohTOj9erVIzY2loSEBLl9x48fV/r8VVNTo06dOjx69EjYFhwcjIuLi8KKZkZGBpGRkaxatUpGM+n169fEx8ejo6PD27dvuXr1KqNGjWLOnDk4OTmhrq4u6It+i+DgYCpVqoSJiQnLli1DRUWFQYMGYW9vL7Nu/FUQi8U//fcf/jx4eXkxc+ZM/P39adq0KU2aNGHVqlV4e3sXWF/ye/yj2gvzQ3p6ulKRZIlEQkpKyk/RC1tYWODv74+joyOLFi2SoY20tLTkzp07hIaG0q9fP5o1a4a/v78Mnf2tW7eUHjs//a/IyEil+6QUusrwvV7Ht8hrxq1hw4aEhoYqFaf9+vUrbm5uCimWv1/8IyIiePPmDVOnThXmK77H4cOH6dChg8xCGR0djbm5uZD9U6TbpK2tLcwKaGhooKWlpbBH/8KFCzIzaBUqVGDQoEH07duXcv8r1rx582YuXrxIqVKl6NmzZ54kDffv32fv3r1AbrXrP/w5kLJwKmtjffv2baHJNL6FsbEx7u7uNGjQgBUrVrB3717BCdfU1ERDQ4Pr16/TrFkzjI2NOXLkSIHtWnr9ypCXXSuj05fiR+26SpUqHD58mJYtWyrcf/v2bRo3bqxQZ0mRUyeVqIDcDO73KF26NKqqqnLXVKRIEcEJVmTXUhvW0tISfgOKqu6xsbE4OTkJAZqpqSn9+/dnwIABlC9fHj09PS5cuEDPnj0xMjKiY8eOeVLlJycnC1W+I0eO/DQl/X9QDHNzc16/fq2wfR1yHetv9RoLC21tbfr370/Dhg1Zs2YNq1atIiMjA8itZpQpU4YrV67g7OyMiooK2tra6OvrC/aan13naGszo0ULej15gu3nz4JO1x1zc/bWrEl6HsRNedn2j9q1ubk5N2/eVJoIDQsLo2bNmgW260+fPgkyM4rsumHDhkRGRsrNUorFYhk22u9t28zMTEjoqqurExkZSY8ePeQSvCoqKgwYMECoOOrq6tKjRw8GDRpE7dq10dPTIywsDCcnJ4oUKULLli3p3Lmzws8OuT6gtPvl0KFDclJDigiU/mz8x174e0MkEuHh4YGHh4eQpFdGMlVQ/KueJg0aNODs2bMKs5GXL1/+qQX8W0hnj968ecOHDx9o2rQpd+/eBf6vlSg7O/tv0X34lejUqRM9e/akQ4cOGBkZyex7/vw5ERER+YqaSqGlpSX8aBVBIpEofFgYGxvz/v17pcF0fHy8nFOUmZlJVlaWjLO7ceNGIRuvoaHBrl27BOrqb7FmzRqqVavGlStX8i37b9u2Dch1OqdMmYKamho5OTnCcO9/+DVwdnZm06ZNCunFP3/+TGpqap5tsgVFvXr1WLhwIffv3+f58+fY29vz6tUrMjMzefjwITk5OUJ70j8ZVapUYc2aNYSFhcnN28TGxrJ3715BP6ggyK8q9vXrV4UOjZqamtJgWiwW8/HjRxkHsWjRonz69EmmtfPcuXMyGopz585lxIgRco7etm3bkEgkPHr0KN9e/G/nA2fNmoW6ujoSiYTk5GRS82Cr+w+Fw6BBg1i8eDGbN2+W25eRkcGZM2eYNGnST5+nfPnyLFmyhOPHj/Ps2TOqVq1KWlqaUDmJioqiRIkSgn0XBunq6mytXZuttWvL0Kz/HXTpenp6lCtXjtOnT9O6dWuZfZmZmSxatEhmjjU/qKmpkZaWpvQ5mJSUpHBf+fLlefjwoTBr9j3u3Lkjo6Nmbm7Oq1evZNoqnz59SqtWrQTx5F69erFs2TI5h/fYsWOEhYXx4MEDpeeT4tvOozVr1qCvr49IJCIlJYXU1FS5uZ2/Av8FXf8c/GywJcW/KugaP348PXr0QFNTU2bO6Pr168yZM4c9e/YIbEqampq0bt36h5XImzRpQokSJfjw4QO+vr68ffuW3r17C/MC165d+2VB3t8FTU1NFixYgIuLC87OzrRs2ZLMzEwOHjzI+fPnFfaGK4OhoSGpqakkJCQozBzfuHFD4aKpqqpKw4YNOXjwoMIZlJUrV9KvXz+ZbW3atGH//v306tWLjIwMunbtKrSEVa9enZo1a8o9lKRo1aqVwGQoEokUtlfeunWL0qVLM2DAAK5evUpGRgb79+8XAm0DAwPu379foPvyH/JHly5d6NOnD0FBQUJWGnJbx9zc3PD39yciIoLz588jFotp1qyZXPa1oChdujQmJiaoqKjg4uKCnZ0dNWrUIDs7m6SkJKKjo/8Ulfq/GkuXLmXkyJE0b96czp07o6GhwZkzZ9i9ezfLli0rVNbXysqKe/fuKWwdjomJEaoImd+JxTo7O+Pv76+wL37fvn00bdpUxnnt378/69atY86cOUgkEjw9PVm1ahUAJiYmVK5cGXd3d4XX2KpVKwIDA/n8+TP6+voK7TosLIzs7Gzatm2Lvb098fHxHDp0iOzsbCQSCfr6+nLzYP/hx2FlZYWZmRnz589n4sSJwm8uJiaGkSNHMnHiRL5+/cqpU6dITU3FxsamQHpTylC7dm2+fPlCixYtmD17tpBIjIqKEma7fipY+g30GWfOnMnIkSMJDQ2ld+/eGBkZcevWLTZu3MiYMWMKRe7VsWNHgoODFRJv5OTkEBoayowZM+SSpQMHDmTu3Lls3rxZLoh9+PAhGhoaMp0Jffr0wcPDgxYtWiASiQgMDGTkyJHC/ho1arBq1SqFa5I0wR4WFkbFihXR1taWS6RGRUXx6tUrbGxs6NChA69fv+bMmTNkZ2eTk5ODnp4eX79+FUh2/kr8F3T9fqhTpw7nzp3D0NCQ2rVr50nk8yOU8f+qoKto0aKEhITg4+PDvHnzBIpva2tr1q5di6urK4aGhrRq1YqvX7/i4uKCtbU1c+bMKXSGS09Pj1atWvHixQv27NnD4sWLOXfuHBoaGkRGRnL9+vUf7vn8nVC1alV27drFwYMH8fb2Rk1NDUdHR4GtsTCYNGkSw4YNY+3atTJOT2RkJD4+PkoXvTFjxjBy5Ejev3/PkCFDMDIy4u3bt6xatQoDAwMcHR1lXj9kyBD69OlDkSJFuHPnjhBwdejQgYSEhDzFtJ2cnFi4cKGQTd++fTulSpUiLS0NOzs7bt++Tdu2benduze7du2SmyeTonTp0nlqlf2HgkNNTY2goCCWLVtG69atMTU1JTExkeLFi+Pn54e/vz9xcXF07NgRdXV1pk6dioaGBv7+/oWSiIDcdoIxY8bw7t079uzZw9ChQ/Hx8eHevXuoq6sTHBzMiBEj/qRP+tehWLFi7N69mzNnzrBo0SJBPH337t1yVe384OHhweDBg9m5c6eMXaempuLu7i7DOvkt2rRpQ2hoKFOmTMHd3R0LCwtiY2PZsmULf/zxB+vXr5d5fZMmTQgJCWHNmjUYGRkJAVf9+vVRU1PD19dX6TVK9cykDI4rV67E2tqa9PR0qlWrRmpqKlZWVpQoUYLPnz9z7do1hcfp2rUrBw4cKNT9+Q/K4ePjw7Zt2wQtxvT0dNTV1Rk/fjwXL15k9erVdOnSBQMDAwICAvj48SNr1qzJk1BCGSZOnMitW7fYs2cPK1euJCQkhLVr11K5cmXWrVsnx6j3T4SmpiYbN27k1q1brF+/npSUFKpVq8b69euVanQpg7OzMx07dqRevXoyZFxisZgpU6bQv39/hX5ThQoVaNu2LUOGDGH8+PHY2NiQmprK3r172bdvn1yytkSJEjRq1IjJkyfTvXt3IeAqXbo0VatWZeDAgUqTQNbW1pQtW5b+/fuTmZmJp6cnLVu2JDs7m9KlSwuMpJAboBw5ckThcebNm4eXl1eh7s+vwH9B1+8HJycn4ffm5ORUYPbUguJfxV74LcRiMampqYKmT7t27Vi8eLEweyBFQEAAnz9/Zs6cOT90jkqVKpGamoqfnx/6+vqsXbuWjx8/4urqKjf8n5cQo6Ke6W+RVwYuv3mWvHrElc1rAXI9z98jv2F8RTh16hQLFy4UFvLHjx/z7t07FixYINBGfz/8Cgg00Pv37+fr16+YmpoyYMAAuUF8aVtRWloafn5+nDlzhqysLDQ1NQUxXUUsd9IAUiKRULVqVZ4/fy73mv79+wvnt7CwIDg4GDs7O4Wf882bN5QvX/63tpl/ol1LJBK+fv2KlpYWampqDB06lE6dOgmzB1KcP3+eDRs2FIpK/ls4Ojpy6dIlVq9eTcmSJdm2bRuPHj2if//+cnNFedk15G3bedl1fm1wedl1fhWBvCr8P2LXT548YdKkSVhYWFC1alXevXvH3bt3mThxotB18H2lS4rbt2+za9cugYSoV69etGrVSsahk7YKi8VitmzZQkhICKmpqWhpaVG2bFnGjx+vtD1I2hYiZU37/pHn4ODA69eveffuHQAHDhxQOhvy+fNnSpYs+VvbzD/RriE3SFdTU0NDQ4OlS5eSnZ2Np6enzGtevHjByJEjOXr0aJ4kT8owZcoUfH19WbBgAbVr12bfvn3cvHkTR0dH6tevL/PaP8uuIW/b/p3sOjo6mjFjxqCqqoqdnR1xcXFcunSJ3r1706dPH0C5Xb969YotW7bw4cMHVFVV6dChA126dJH53r4dATh27BgbN24kJiaGIkWKYGxszOjRo+W+Fymkdr1o0SKmTJkiZ9d6enrUqFFDSKCsXLmS0aNHK3Sis7KyuHnzJk2aNPlL2Qv9/Px+mr3Q3d39H2fr/5/xrw26vsXhw4d5+fKl0oxrx44d2bFjR4H1pr6FlCp8ypQppKam8vXrV6UU64UNutLT04mKikIsFmNmZqa0p/SfFHRB7qB6aGgoMTExVKhQQU49XlHQJYWigfv89mdlZaGmppbnLM63Vbu7d+8ybtw4hWxWtWvXpmbNmgQGBlKrVi2lbYT/BJv5J1xjXggPD2fevHlK21zd3d1xcXHJkzRBGTZu3Mjw4cPZunUriYmJxMTEUL16dYWZ3cI6Z1lZWURGRpKdnY2RkZHSytI/KeiS4saNG7x79w4zMzMZYWRQ7pxB/natiIwkOzsbVVVVOZr67yFdNz98+MDYsWM5cuSI3HtKlixJv3798PX1RUdHhy9fvih06v8JNvNPuMa8kJaWhpOTE6dOnVLoIG/cuBFNTU369+9f6GPfunWL+vXrs2LFClRVVXn//j02NjYKf1+FtWuxWExUVBRpaWno6+tTrFgxpVnyf0rQJcXjx495+vQpurq61K9fX+Z+5WXXkLdtK7rvOTk5iESifGdnpXb99etXPDw82LFjh5zvUKRIEaZPn87MmTMRi8UKKeSl+CvtRnquFStW/HTQNW7cuH+srf/uKF++PKGhoXK+cEJCAnXq1OH169eFPua/qr1QGQ4dOpRnJatjx46cO3dOKc1pcnIyly5dIisrCzs7O5nWBmk/sIuLCwD79+//6esVi8U8fPiQ9PR0SpYsibq6Ok+fPiUnJwdbW9t8HZS88Pr1a86fP09cXBzFixfH1dU1T12QPwNSMdy/CtKFPS0tjV27dnH8+HFUVFTQ0tJCV1eXK1eukJaWRlxcnEAK0KJFC96/f8+BAweIjIzkyZMnPHz4kPDwcB48eMDAgQPx9vb+yz7Df5DHkSNH8hSsdXZ25tChQ0qDrszMTC5fvkxiYiLW1tYypBJ6enqCiKehoeEvsWuJRMKLFy+Ijo6mZMmSaGpq8u7dOx4/fiwI+P4ooqKiOHv2LBEREejr6zNkyBBq1Kjxy1sj8kO1atUKTK7zs5DOhorFYg4dOsSePXsEh61UqVKcP3+etLQ0YmNjSU9PF94XGxvLvn37+PjxI8+ePePRo0dER0fj6+tLmzZt8PHx+aEqyn/4Nbhx44ZCkiMpevfujYuLi9KgSyKRcOPGDT5//kzZsmWxsbERjiV11GvXrk2TJk1+iV1DLtPfq1evKFGihBC0//HHH9SoUSNPuYv8kJSUxLlz53j9+jUaGhr06dOHxo0b/+UkXRYWFn/ZLKu0SigWi7ly5Qpbtmzh69ev5OTkULFiRS5cuEBaWhrR0dEyxDYvX77k7t27vHjxgpcvX/Lo0SM+ffrEjBkzqFWrFj4+Pnkmmf8O/Nde+Hvj7du3CpN6GRkZPzw+8pcFXa9fvyYgIIBnz54JpeY+ffrkm2H5FVCmX5GTk8Pp06e5fv06JiYmdOjQQSagEYvFzJs3T5jjKVKkCBMmTEBbWxs/Pz90dXV58+aNQDcOeQsq5kWs8S1JxPTp05k4caJMi0t2djb37t1j1apVbNq0SeaBlF+0XatWLWHwPCsrCy8vLywsLHj27Bl+fn5Ur16dUaNGyb1PGbW7FD8a/IWEhOS5P68KmyJdkG+hTHQyOTmZiRMn0rdvXw4dOoREImHdunWMGzcOABsbG6KiooTXDxw4kF27drF161aePn2KSCSidu3aODs7079//7/MsfzdERMTw+bNm4WqYKNGjRgyZMhPORoFhTK7ljpdx48f58mTJyQlJcllAbdt28a2bdto06YNxYoVY9myZURHR+Pv70+pUqV4+/YtBgYGAnvej9o1/J9tb926lTJlyjBp0iTBfrOzs/n06RMeHh4sXrxYpppdELuG3Mz/xYsXGTNmDNWrV+fTp0+sW7eOAwcOsGjRIoWtTt8Lf3+Ln0nqBAcHK92XV3b/R+06JycHb29vrK2t2bFjB7q6uuzfv5+ePXsCuYP23+r/zZ49m/3797NlyxZu3bqFWCzG0tKSPn360LNnT4VC7/8f8fXrV3bu3MmxY8fIycmhatWquLm5yTzr/izkpTf19OlTLl++THh4OBEREXKspRcvXmTevHnY29tToUIF9uzZw/Tp05k/fz62trYCY6H0c/wKu75+/Trbt28nODhYSPBlZ2eTkpLCiBEjGDFiBBUqVJB5b162LbXr8+fPExgYiJubm9D2tm3bNnbv3k1AQIDCJM3vZteQt23nJRK9fft2oqKi8PPzo0SJEly5coU2bdqQnp5O7dq1ZTTc+vbty6NHjwgMDOT8+fNkZmZibm5Ou3btcHJyonPnzr8lm/R/QdfvicOHDwv/f+rUKZkuOOmoy4+uhX9J0HXgwAG2bNnCjBkzqFu3LhkZGezZs4eOHTsSFBQko+nwZ6Bhw4acPHkSZ2dnYduFCxeYO3cubdu25f3795QrV462bdsyevRoYTGdOXMm5ubmHD16VHjf4MGDuXz5Mv369ePAgQO8fv1amEX6FYiMjCQ2NlbhTEGdOnWwsrISWiQKg8DAQMqUKcPo0aOFbTY2Nqxdu5YZM2Zw4cKFPNsa/smQBpyVKlXiwYMHHD9+nOPHj5OcnEynTp0wMTFh//792Nra4uvry82bNxk2bBgA3bp1Y+bMmbRo0eIvCST+Sbh37x6TJk1i4sSJArXzyZMn6dWrF0uWLBFIC/4sNGzYkGPHjsk4yi9evGDMmDHY2NgQERFBuXLl6NOnDw4ODkJ78e7du7l9+zanT58WHsQDBw4kPDycAQMGcOjQIcLDwylfvvwvqxRlZ2dz9OhRQkJC5I5ZsmRJ+vfvz759+xQyheWFmzdvcv/+fbZv3y4ct1KlSsyZM4cdO3awbt06GSawfxtWr15NZmYmX758Yfz48Zw4cYKIiAjs7e1p3Lgxe/fupUyZMixbtoyUlBQmTJhAXFwcjo6OrF+/nlatWhWK0e3/AyIiIujXrx8uLi4EBwejoaHB7du3GTt2LEOGDMlTC+lXwMbGho0bN8okAmNjY3Fzc8PY2BhTU1OsrKzw8PCgWLFiLF26FHV1de7evcvy5cs5fPiwTNAWHx9P7969WbVqlVAx+hEiDmVYv349K1askGuV09XVxcvLiw0bNrBw4cJCHTMqKoqVK1cSHBwsVF11dHQYO3Yst2/fxsvLi+XLl/+yz/C74dy5c5w7d4769eszd+5czp8/z4sXL7C0tMTZ2Zng4GB0dXVZvHgxFhYWjB07lqCgIOrXr8+iRYto1aoVVlZWf3ml/z/8OyBd40QiEQMHDpTZp66uTtmyZVm6dOkPHftPD7o+f/7Mhg0bOHz4sNAOoqWlRf/+/alatSqtW7fG3NwcDQ0NJBIJzs7O9O7dWy4rIRaLOXXqFKdPnwZyM5ht2rQpEMVr37596dSpE+3atcPAwIDHjx+zbNkyjh49KrSNzZo1i6ysLAYOHIixsTHW1tY8efKEefPmyR2vSZMmnDlzhosXL/LixQvatm37C+5ULs6fPy/ogCmCk5MTwcHBhQq6JBIJBw4cYN++fXL7RCIR48ePZ9KkST8VdEkkEtLT01FTU8tX6PmvxJs3b5g+fToPHz7k1KlT5OTkoKurS4MGDVi1ahWWlpbExsaye/du0tPTcXd359mzZ4wfP57Jkyf/F2gpQXZ2NhMmTGD//v0ycwTt2rWjbt26NG7cmAoVKqCioiLQcA8bNkyuf10ikRAaGsq+fftIS0ujbt26CoUyFcHe3p558+bx6tUrKlasSFxcHG5ubgQFBZGTk8OgQYOEqvCsWbNYv349Q4cOZcOGDZw6dUpujalQoQJubm5s27aN58+fy2WnfwaPHj2ibt26Sp0AKSNoYYOuDRs2MGfOHIXHlVZvXF1df4oKOzMzE4lE8reIhypDQkIC06dP5/Lly2RmZpKRkUGRIkWoXLkye/fuxd7eHrFYzMaNG9HS0mLFihVcvXoVZ2dnfHx8/vKW6n8SRo8ezZo1a2Tabe3s7Dhw4AB2dnasX78eNTU1MjMzsbOzY/To0QrJiV68eEFQUBCxsbFUqVKFfv36KRTm/R6mpqYYGxtz/vx5mjdvjlgspn///syfPx9LS0s6d+7Mzp07MTU1JTg4mIkTJ+Ln58eiRYsICAiQq5IZGhqyYsUKli5diqqqKuXKlftlOlqpqamoqqoq/VyWlpY/1Ia0detWxo4dq3AdrFevHuvXrycmJkbhfS8osrOzycrK+q1aaTMzM5k3bx7Hjx8nLS2NixcvoqGhQcmSJdm7dy9dunRBRUWF4OBgJBIJR48e5dixYzRu3Jjg4GCFshW/M8Ri8U/pPv7TNSN/V0jva7ly5QgNDf2lfuCfHnRt3LiRiRMnymkzxcfHM2XKFIoVK8bKlSuxtLQkJSWFdevWMXToUDZu3Cg4RZ8/f2bQoEG0aNFCoGs+ePAgK1asYMuWLflSoerp6bF48WI6d+7M4MGDOXbsGOPHj2fZsmXcuHGDoKAgIDeCXblyJcOHD6d79+5069ZN6TH79u3L5MmThazpr8K3i+CrV6/YvHkz79+/Jycnh2rVqglaWYVBcnIyJiYmSoMhY2PjfAVOlUEikbBjxw727t1L0aJFSUtLQ1tbm2nTpmFjY/NDx/xVSExMZNq0aZiZmfH161cWLlxIz549KVu2LLNmzeLixYtYWlpibGxM2bJlKVKkCJ8/f8be3p7w8HBhzu93CiJ/Fxw9epTOnTvLDW5nZ2czZswYqlWrRq9evejZsydZWVns27ePbt26ERISIrTFpKam4uLiQpkyZejXrx/6+vqcO3cOR0dHli1blu8DVCQSsWHDBgYNGkSHDh2IjY2lf//+HDx4kJCQEJk1xNvbm9atW1OvXj3q1KmjUCsOcjNcjo6OXL16lQ0bNvyCO/V/90Vq19HR0WzdupX79++joqJC8eLFGThw4A89QJOSkpSufyoqKpQvX56oqKgfyuyfPn2aDRs2oK6ujkgkIjMzk7Fjx9KuXbtCH+tXQiwW4+HhQZ06dTh27BgjR47Ezc0Na2trgoODCQkJwd7eHhUVFSpXroxIJOL169fUrVuXlJQUjh8/zoABA35qhu7filevXmFoaCgnmg25QtGVKlWifPny+Pj4IJFIuHDhAr169RI6KSD3mTBx4kTi4uIYNmwYJUuW5O7du/Ts2ZORI0cWqFK2fPly+vbty4ULFyhXrhw1a9bkxYsXTJgwAW9vbyHY6NWrF/v27ePDhw98/fpVqUi6lZUVr1+/5v79+/Tt2/fHb9B3yMnJEdr2vn79yq5du7hw4QIikQhdXV369u37QwHe3bt3lRJ/QW7C6dGjR7Ro0aLQx37w4AErVqwgNTWVIkWKkJCQQJ8+fRgyZMjfXhmaO3cu5ubmxMXF0a5dO6ZOnUq9evW4d+8e8+bNE+bumzZtyoMHD3j06BHW1tbo6elx7NgxSpYsmS+x2O+E/9oLf29I25F/Jf70JteHDx/SqFEjue0zZ85k9uzZ9OnThz/++APILcdPmDCBKlWqCHM/EomEoUOHsmrVKjw9PbG0tMTS0pLJkyezevVqhg4dWqAfnq2tLUePHiUjlypYpgAAr8hJREFUI4OrV6+yZ88e6tevz5EjR2SyVCYmJuTk5JCcnJznQ1lfX5/nz59TqVKlX0oKUa9ePc6fP8/Zs2eZO3cu/fr1Y8eOHWzbto0WLVowYcKEQi8qGhoaMoPkivC9wGFBMW3aNOLi4tizZw9bt24lJCSEhQsXMnfuXEEf6+/Cnj176NWrFwcPHqRSpUp4enpSrlw5RCIR3t7ehISEkJOTQ1ZWFunp6djb23Pz5k0uX77Mli1biIqKokePHvneu/+PePDggUK73rx5Mw4ODkyZMkWg3VdXV6d3796MGTOGBQsWCK8dP348Q4cOZfHixdSsWZNy5coxdOhQDhw4wIQJE0hMTMz3OkqVKsXJkyexsLBg69atXLt2DSMjI06dOiVTqVJRUaFevXo8fvw4T2V5qc6eiooKvXv3LswtyRNVq1bl9u3bPHv2jJEjR2Jvb09QUBCBgYEMGTIELy+vH5q5kAr3KkNKSsoPVai2bdvG8ePH2bRpEzt37iQoKIjNmzdz9OhR1q1bV+jj/Upcv36dOnXqsHv3boyNjfH396d69eqIRCJ69+5NREQEkZGRQG5QWqJECU6dOsXt27fZu3cvRkZGODk5ERER8bd+jt8RDx8+pGHDhnLbr1+/TmJiIoGBgbx8+RLITXo0b96cjRs3ygQI/v7+lClThi1btmBvb4+FhQVdu3bl2LFjbN++nSdPnuR7Hdra2uzfv59WrVrh5+fHy5cviY2N5eDBg3Jzd126dOHUqVP5ssAlJSXx5csX+vXrV5BbUSDo6uoSFxcnJIaLFStGYGAggYGBTJ8+nb179/5QpUtTU1OGJOJ7SGUzCotr166xYMECFi5cSEhICFu3bmXPnj0kJiYK881/FyIiIkhKSiI0NBRtbW3h96Ompka9evWoVasWV65cAXLHMNTV1QkKCuLRo0ccOXKEBg0a0LdvX6WMwr8jpEHXz/z9WYiPj6d///4YGBhgYGBA//798529lUgkeHt7Y25uTpEiRWjWrJng30uRkZHBmDFjMDExQUdHh06dOsnZSH7nfvjwIc7OzpQuXZoiRYpgZWWFn5+f3PU8fvyYpk2bUqRIEUqWLMmcOXPyvWcrV64UfL6VK1fm+fcj+NODLj09PWJjY2W2paen8/r1a+zt7fny5YucEzRixAhBX+fatWvUqVNH4dxUpUqVsLW15fLlywW6Fh0dHYYOHUqtWrVYs2YNLVu2VDhcqa6ujo2NDefOnVN6rDNnzlCvXj3Cw8PzHMYtLKysrPj06RPLli1jw4YNVK1aFch9wJUtWxYjIyMuXbpUqKy4lpYWKioqfPnyReH+p0+f/lC7jZRh0d3dXcZhLF68ODt37mTevHl/aybmxo0bNG7cGMhlNurXr59wPSoqKtjZ2fHw4UO8vLwoX748K1asEEQg9fX1hRmGuXPn/m2f4XeFIruGXPbOQYMGKbRrR0dHgbwgOjqa2NhYWrVqJXcMQ0NDRowYwfbt2wt0LWpqanTp0oUaNWqwYcMGevXqpTCA0dLSolSpUty+fVvpse7du4e1tTU5OTlKBXJ/BLq6ulSoUIHRo0ezdu1aGjZsKGSVS5cujYaGBnFxcQrvaV6oWbMmt27dUrgvOTmZpKSkfKUfvkdiYiIHDx5k2bJlMgQkenp6rF69msOHDxMfH1+oY/5KnD17lg4dOiCRSIiNjaVevXoyVNFSJ/zUqVOkpKQQHBwsUG1raGjQu3dvVq9ejbu7+9/1EX5bKLNraceKIrsuX748WlpafPr0iZycHA4dOsSYMWPkjqGurs68efMEUev8IBKJaNKkCfb29ixfvpyRI0cqpMWWBh8JCQlKu0ASExMpWrQoGhoaXLp0qUDnL+g1dunShQEDBuDt7U2nTp2EzojixYujoqJC6dKluXv3bqGO26FDB6WEUxKJhCtXrlC3bt1CHVMikeDr68vmzZtl5ug1NDSYMGECYrGYO3fuFOqYvxKXLl3C0dERiURCSkoK1atXl0mM9OrVi8OHDxMTE8Ply5c5ceIEjRs3RiQSoaKiQsuWLdmzZw8TJkzIV0bid8HvHHT16dOHBw8ecPLkSU6ePMmDBw/ylWlYtGgRy5YtY9WqVYSGhlK8eHFatWpFcnKy8Jpx48Zx4MABdu/ezdWrV0lJSaFDhw4y31l+57579y6mpqbs2LGDP/74g+nTpzN16lSZtSUpKYlWrVphbm5OaGgo/v7+LFmyhGXLluX5GZYvXy4Q0ixfvlzp34oVKwpzOwX86UFX79695XR0oqOjKVu2LGKxmNOnT8tlrvT09ISg4uLFi3nOOHXo0KHQi6impiYxMTEK96WmppKcnIytrS0fP35UKJKbmJjIli1bmDdvHmKxOE8n7kdQv3590tPTWbduHe/evSMiIoIdO3YwcuRIFi1ahL29Pb6+vqxevZr9+/cXqBIzduxYxo0bJ/fa+Ph4Zs+ejZubW6Gvc8eOHQwfPlzhPm1tbRo2bMj169cLfdyfRVZWFlFRUSQkJLB7925he1BQEC9evBD+raWlxf3799m8eTMbN25UeKwOHToQGhpa6JbOfzu6d+/Otm3b5Larq6ujqanJjh076N69u8w+kUhE8eLFSU5OFmihleFH7Lp69ercuHFD6f4bN25gZ2dHpUqVOHHihNz+7Oxs5s6dy9y5cylWrNgv/+22adOGrKwsVq9ezfPnz4mOjubo0aMMHDgQNzc3XF1dWbBgAWvWrGHHjh35ZhUBhg8fzvz58+XWs8zMTCZPnoyrq2uhr/PAgQP06dNHYUJKJBIJBAt/NXJycvjy5QtRUVEcPnyYuLg4IPcBvGfPHuF1WlpaREREMHz4cJYtW6bwc1SpUgVtbW0ZBrT/kMsmd/LkSbmkXkxMDGXLliUwMFBhBdja2po3b97w7t07qlatqpQpzsrKqtCVn8aNG+epmXX8+HGaNGmCs7OzUkdo/vz5jBo1isaNG/9yu27VqhXp6ekEBARw7949YmJiuHbtGkOGDKFmzZrMnj0bPz8/AgIC2LRpE+/fv8/3mE5OThw6dIhnz57JbJdIJCxatIg2bdoUujJ+584dbG1t0dHRUbh/9OjRSjUP/0yIxWLi4+P58OEDoaGhQqAVGRkpI/WjpaVFSkoKjo6ODB06VGEnkqGhIW3btuXUqVN/2fX/LH7HgOvZs2ecPHmSjRs30qBBAxo0aMCGDRs4evQoYWFhSj/HihUrmD59Ol27dsXa2pqtW7eSmprKzp07gVzfedOmTSxdupSWLVtSu3ZtduzYwePHjzl79myBzz148GBWrlxJ06ZNKV++vED8860ERFBQEOnp6QQGBmJtbU3Xrl2ZNm0ay5Yty/PevXnzRkhUvnnzRunfj2h0wV8w09W6dWvWrl0rDMVCrmFERETg4eFBnz595BaPrKwsod1NOrCrDJmZmUrnM5Rh1KhRzJgxg4CAALke5vnz5wuaWwEBAfTv35/OnTvTu3dvtLS0OHHiBGvWrGHx4sUCVeq3Wda8Wg3zosf/9jNERUWxefNm3r17x7p168jKysLR0ZELFy5w4sQJzp8/T6VKlejVqxevXr3C19cXFxcXpe1Qr169olSpUnTq1IlOnTpRt25dSpUqxcuXLwkLC8PT05PixYuTkZFR4OsFeP/+PUWLFlWY9V6/fj0vXrzg7du33Lx5U2Zffg+9vM6riNhEinPnzslV7O7fv4+hoSEJCQmYm5vTu3dvrKysMDc3Z9u2bXTs2JE6deoo1SARiURUrFiRqKgoSpcuned1/3+ChYUFpqamrF+/nmHDhgl2lJGRwdq1azEzM1N4v2JjY9HR0flT7NrNzY0RI0awf/9+udYb6ZC1trY2CxYsoF+/fty+fZvBgwdjamrK9evXWbp0KYMGDaJy5cro6ur+EruG/7Pt9+/fM23aNMzNzdm9ezcpKSnY2dlx7NgxwsPDGTt2LBkZGYwcOZKoqCg2bdpE7dq1mT59usJZi1evXgEwadIkBg4cSIUKFahatSoRERHcvn0bFxcX6tWrJ2fXQJ6tSW/evMHBwUGhXQcEBPDx40eePn0qk72UIq+gV5mzB3nb9atXr+Ts+sSJExQtWpSMjAyKFSvG4sWL2b9/PxUrVuTAgQNUqVKFihUr5jk/ZGdn98NV/n8rNDQ0cHZ2ZsKECSxZskSYR9LW1ubAgQOEhoYybdo0ufe9f/+eLl265GvXEomk0LOL3bp1w9HRkc6dO8u11t+5c4fk5GQsLS2pVKkSEyZMYMSIEYwePZqKFSvy9OlTli9fjqWlJR07dmTTpk2/3K4/ffpEt27d6Nq1K8HBwURFRWFlZcXmzZsBGDZsGO/evcPLy4vU1FTWrVuHmpoa/v7+CgMnqV3Pnz+fWbNmoa2tTb169UhKSuLq1as4ODjQt2/fQtv1q1evKFasmFK7zsnJ4fLlyyxevFhu/4/aNSi37djYWKpVqyZHc6+vr4+qqir6+vpcunSJVq1aUaNGDa5evSrMtn/PKPctGjRowLVr1/722dOC4Hed6bpx4wYGBgbY2dkJ2+rXr4+BgQHXr19XOPP55s3/sPfd8VS+///PY2WEkFIqmu/23svOVspMVkaRCk2jJakUbVJCNKw2KpUmKm1SkWSUTWRzzvX7w8/9dTqHkHrX+9Pz8TiPB/e47uu+z3ld9/V6Xa/X85mJ/Px8zJs3j9rWrVs3yMjIICEhAcuWLcPTp0/R0NDAdEzfvn0xevRoJCQkQFlZuVPXBpocOlFRUaZ7kJGRYUqvV1ZWhpOTEz5+/Ngpync6nY7k5GRISUm1KUTeFn6608XBwYEzZ85g3bp1OHDgAGbOnImKigokJCRg/fr1WLp0Kcs5586do1a31NXV4efnBxkZGbbth4eHw9LSskN9kpeXR1paGhYsWAA7OzuqyNbX1xejRo2inBcJCQnExMTg4sWLsLe3R319PWbPno0LFy5AWFiYSuvpSpYzAOjRoweKioqgoKBAFcqKiYnh0aNHCA0NxcqVK8HFxYU5c+Zgzpw5WLx4MaysrCAhIdGm7sXs2bMxc+ZMPH36FMXFxVBWVoarq2uni2ebHbcxY8aw3V9QUIBx48Z1qu2OYsuWLTh58iTLdgUFBVy+fBm8vLxgMBhUTq+oqChMTEywd+9eqKiogMFgtBqdLSkpabMO6H8VXl5e8PDwgIqKCubMmQNCCD58+IDExEQEBQWxHJ+SkoIBAwaAi4sLc+fOhY+PD5OEQUuEh4dDQ0OjQ/2RkpKCg4MD1NXVsWzZMsyYMQPFxcUIDAzE169fKWIMXl5eREREIC4uDtu2bUN5eTmVmti3b1+Ul5cjKysLgwYN6vAzaQuioqLIz8+HhoYGRRIiJiaGvLw8bNiwAR4eHrhy5QqVEqutrY2dO3fCz8+vzZXoIUOGwN/fH6mpqcjKysL48eOxatWqTjO0Ndt1a7ZbWFjY6RdORxEVFcX2N9Jco9s8CQ8NDcWVK1cwc+ZMvH//HhcvXoSRkRFKSkpaZZ4qLCzE2LFjf2r//0RYWFggODgY8+bNw/Tp0yEkJISPHz/C09MTt27dYhkny8vLkZmZiWHDhlFjQF1dHdtawocPH3b4mXfr1g0+Pj4wMDCAnp4e1NTUUFtbi9DQUCQlJVFpyDQaDd7e3nj+/Dn8/PyQl5cHKSkpODs7Y/jw4QCaajy6km0YaAoi5+fnY/DgwZRDKiYmhsbGRqioqGDv3r3Ytm0b9W5WU1PD+fPnsXbt2jbrQsTExLB//35kZ2cjNTUVIiIiMDU17TTbYL9+/dpMHywsLGwXu2RXIC0tjWni3YzJkyfD39+fGnsePnyITZs2QU1NDYmJiXjw4AG8vLxQWFjYqlZmYWEhk67S74yucroqKiqYtnfr1u2H2Gbz8/PZ6q/16tWLqpdldw4AlsBI7969kZWVRR3Dw8PD8v7o3bs3dX5nrp2YmIjw8HBER0cz9efbgFpz3/Lz89vldNnb22PMmDGwsLAAnU7H3LlzkZiYCH5+fkRFRbU5324Nv0QtTkBAAD4+PggKCsLMmTOhra2Nu3fvIjo6mmWJLi4uDidPnqScsTFjxqCkpAR37txhaffu3bsoKirq1MR++fLlOHr0KJ4+fYodO3bgzp072LlzJ1xdXZmOq6qqQkpKCgoKClBTU4MrV67g2LFjqK2tpZhNWquV6iwWLVpEMSq2xL59++Dl5YXIyEjMnz+f2s7FxYU9e/a0K1eeg4MDU6ZMgaqqKlV83lkYGBhQ0bxvUV1djc+fP1M1Ul2F0tJSPH/+nIVVprkGcPXq1fDw8IC+vj4YDAbWrVsHdXV1hIeHIy8vD/Pnz0dISAgePnxIkTrMnTu31XSEwsJC0On0X/Yy+pPAwcEBV1dXXLp0CfLy8lBQUEB8fDw+f/7MUmf05s0brFq1irIvQUFBTJo0CceOHWNpNyMjA6GhoSzpie2BkpISLly4gJKSEnh4eCAsLAxLly5FYGAg08pZY2MjXr9+jZycHNTV1eH+/fs4ePAgioqKkJubCzqd3uH6qu9BXl4eMTExLJH+Y8eOwcnJCWFhYSxF/hs2bMD58+fbVaMwcuRIqKqqYvr06T9Eid08KWTHaEqn0/H06dMud1aqqqrw4sULvHnzhun5xMXFAQDk5ORw4MABzJo1C/X19QgODoaBgQGOHj2K7OxsTJw4ERkZGfDy8qLGpLbGp8bGRty/f7/Deof/KzAxMUFsbCy0tbUxc+ZMxMTEoH///oiKimKaJBYUFGDx4sXYvHkzgCbHx8rKCuvXr2eZTH758gVbtmzplG7ciBEjcP36dYiIiMDT0xO+vr6YM2cOrly5wjSBI4QgLS0NGRkZqK2tRUpKCvbt24f09HQ0NDQgNzcXpaWlXUq1PXDgQOTm5rKs/F6+fBmampp4+PAhy1g2f/58FBYWoqCg4LvtDxgwACoqKpCRkfkhevdRo0bh3bt3raYt379/v0tJwYCm1MGUlBQkJyczrcw1p4nx8fHBy8sLU6ZMQUlJCa5evYqNGzdix44dSE9PR58+fSAuLg47OzsEBQWBm5sbenp6bIN6zThz5gzFcvi7o6tquvr370+RTggLCzMRVrXE1q1bQaPR2vw0O+bs5oaEkO/OGb/d355zvj2mI9d+/fo15s+fj82bN7OULLDrS2vts0NkZCTlX1y5cgUfP37E27dvYW9vDxcXl3a18S1+iThyM0RERKgoLgD4+flh69atKC8vp7zh0aNHIzw8nGlp39/fH7a2tggODsb8+fNBo9Fw8eJFNDQ0tFqL0x706dMHGzdubHV/WVkZdHV1sX79eurHSqfTce7cOejp6eH06dPQ0NDA4sWLUVpa+sPU4gwGAzQaDYMGDYKIiAilK9QcWSwvL8eBAwegrKzMUlDcs2dPNDQ0tLli09UYMmQIBg0aBHd3d6xcuZKKLqWlpeHUqVNQVVXtMgra2tpaPHv2DGVlZRg+fDiKiorw7t07iIuLU8LHfHx82L9/PzZt2gRHR0fQaDQoKSlh2rRpOHXqFNzc3CAsLAxzc3NIS0tT35eNjQ0WLVoEaWlpjBgxgrpmWVkZzMzM2kx9+oumlaOZM2dS/0dERGDz5s1wc3ND//79kZeXB3FxcZw8eZIp5XDr1q1wdnaGjo4OdHV1ISQkhJs3b+Ldu3cIDg7udKROSEiIkpZgh8bGRhgZGUFNTQ3R0dHg4uICIQQPHjyAvr4+Tp8+jXXr1sHFxQU6Ojo/LH7ePMHj5eWFtrY2Nm7cCHd3dyq1KCkpCZKSkmhsbGQJIHFwcGDixIlITU1tdUW5q8HPzw9jY2M4ODjAxcWFouHOz89HWFgYpk2b1mWaXXQ6HS9evMDKlSsxbtw4VFdX49WrVxAQEMCaNWtQV1cHYWFhxMbG4vz58zA3Nwc3Nzc1CT937hx27twJbm5umJmZISMjg0oxUVNTg7+/P27evAlFRUXqmvX19bCxsflh/bL/Ojg5OTF58mTq/1OnTmH37t1QUlLCwIEDqTS17du3M8k76OnpoaysDKqqqtDV1aUo4+Pi4uDp6dlpMepmEpS2WEWdnJzAx8eH8PBwKu3t7du3WLFiBXbv3g1/f3+YmJhAR0fnhyfmzamSnJyccHBwgI2NDY4cOUK9B69duwZFRUWcPHkSFy5cYDlfU1MTcXFxMDQ0/KF+tBc0Gg0bNmyAnZ0dNm/eTI1rFRUViImJgYiICBPBxo+AEII3b97g8+fPEBMTA41Gw+7du8HJyQlLS0sq2P7mzRtUV1cjKyuLstvo6GjcvHkThw4dolYLKysrqf4OGjQIoqKiOHr0KJYtW0bNMQgh2LNnD0aNGsV2peR3RFetdOXk5DDNCVsbn+3s7L7LyistLY1Xr16xDQgUFRW1yp7d/NvJz89nkm4oLCykzpGQkEB9fT3KysqYgiWFhYXUHEJCQqLd105NTYW8vDysrKxYFkwkJCRYVsYKCwsBsK7GtYbi4mLqvmJiYqCrq4thw4bBwsKi0+yFv9Tp+hZDhgxBcHAwqqurUV5eDjExMbY5zgICAjh58iQyMjKoYjsXF5cuT+v7Fu7u7tiyZQvlKFZUVFAim0VFRZg8eTLk5eVRWVmJN2/edDr6Gxsbi9jYWHBxcaGxsRFCQkKwtbXFw4cPsWjRIowcORJcXFxISkqCkZFRq5S3HBwcv5wtcOXKlbh16xbWrFkDQggaGhrQv39/LFy4sMsE5RoaGvDgwQNMmjQJR44cQV1dHebNmwcNDQ0cOXIEUVFRAJoii0CTc9py0G1+ns24fv06RXsMNAUDTp8+TbEejR49Gjk5Ofj06RO2bt36xwku/tsQERHBoUOHUFdXh9LSUvTo0YMtnTMHBwd27dqFoqIiREVFoaSkBIaGhkwTvZ+BU6dOQVZWlhIibmxshJ+fHy5fvgw6nY4pU6ZQkemkpKROO13Pnj3D6dOnwcHBQUURly5dCkFBQRgaGlLBlYcPH2LWrFnw8fFh2w4nJ+cvF8FUVVVFnz59sHPnTlRUVFC6Q7NmzWq1/rGjIIQgPj4egwYNolakjI2NMWnSJBw+fJga6w8fPgwuLi4qONeM5vqj5knr58+fsW3bNmo/Jycnzp49i40bN2L//v2YMmUKvnz5guTkZNjZ2bVLL+ov/g88PDzYtGkTnJycUFxcDAEBgVbTrpctW4YlS5bgypUryMjIwLRp0+Dk5PRTA4JPnz5FeXk5du3aBaDp93Xu3DkEBQVRAbhFixahd+/eePToUaedrszMTAQEBKCqqoqSY1m4cCFWrlwJGxsbiIqKol+/frh69SoYDAbCw8PZzms4OTl/Ocve6NGjsWPHDhw7dgw5OTlU4FFKSqrVdL3O4OXLl+Dh4aFkbtzc3NC3b1+Eh4dTBEmrV6+GlJQUHj58yPS+5uDgwLx585jSD1sS5QBNqe2enp5UCiydTsfjx4+hpaWFdevWddl9/Gx0ldMlJCTEltnzW/Ts2bNd87IZM2agvLwcjx8/plY/Hz16hPLycqYAa0sMHDgQEhISuHHjBiZMmACgKcB19+5d7N69GwAwadIkcHNz48aNG9DT0wPQJBWQkpICT0/PDl379evXkJeXh6mpKXbs2MH2HpydnVFfX0/ZX2xsLPr27dvuOt7evXsjNTUVffr0wbVr16h3dLMoemfwrzpdzeDn5/9u0SrQVDv1sx2tZjQXzHl5eQFoSo3Q1dWFo6MjNm3aBDqdDjU1NUydOhWBgYEwNzfvlC7V0aNH0djYiBMnTlCRuby8PKxfvx5WVlawtLREVlYWevbsiby8PCgrK7Ntp7y8HISQdv0Q0tPTERQUhMLCQnBzc4OHhwfGxsZsdZeAphUfQghERETYrly1rD1rxreD5I8gIyMDQ4cOpSIj165dQ1ZWFp4/fw4+Pj7U1NQgLCyMcnqbizJbM6zExETIyckxbevTpw/OnDmDwsJCfPz4EeLi4p0qtPyL/0O3bt1aFSttCXFxcYq85lcgMjKSomOm0+kwNjaGgoICoqKiwM3NDU1NTaipqSEwMBBr1qxp9SXTFmJjY3Hnzh24uLhQv8uKigps374dI0eORGRkJHJyciAgIABOTk7IyMiwtV1CCJ48eYItW7Z895oFBQU4efIk3r17R9UwLliwgMoO+BZfv35FbW0txMTE2E6Gx48fzxLN60rWwsLCQggJCVEpyO/fv8f9+/dx//59zJs3D7Gxsdi4cSNV2zd69GhcvnwZWlpabNtLTEykqOGbwc/Pj4MHD6KiogLv3r2DgIAARowY8a+LwP7J4OLiateKiICAQJdq3X0PJ06cYNKa2rRpE2g0Gs6ePQtBQUHY29tDTk4O0dHROHDgADQ0NDpM1pOamorDhw/D2dmZSk2tq6vD8ePH8erVK5w+fRoFBQXg5OTEyJEjUV9f3yrRRHR0NDw8PL57zaqqKpw6dQqPHj0CHx8fGhoaKDINdisa1dXVqKyshIiICNvsGykpKZZJalfadU1NDSoqKihW6pqaGiqo4uLigh07dmDSpEnUdzV06FC25B3NePv2LYu4OwcHBzZu3AhHR0ckJyeDg4MDbm5uHf4+/20wGIwfCqj9rGDciBEjoKKiAisrK0qX0draGhoaGkxEFsOHD8fOnTuhra0NGo0Ge3t7eHh4YOjQoRg6dCg8PDzAz8+PxYsXAwCEhYVhYWGBNWvWQExMDKKioli7di3GjBlDZSO059qvX7+GnJwc5s2bB0dHR2pFi5OTkxJOX7x4MbZt2wYzMzM4OzsjPT0dHh4e2Lx5c7vHf3Nzc+jp6aFPnz5U4AZocgKb60Q7il+Th/YHorKykin64uHhARcXFypljouLC926dYO5uTm2bNmC1NRUKCsrt0pFzw5ZWVnIycmBnZ0d08Dcp08f+Pn5Yd++feDg4MDgwYMxaNAgrFy5Ehs2bGAxNEIIXF1dW6Vvb4mkpCTs3bsXVlZWOH78OAIDA+Hh4UEJV7ZEdHQ09PX14ezsjE2bNkFPT4+JkvNXIS8vj0pLKywspPR1EhISUFNTAyEhIaaUlcWLF8Pf35+JpaoZhYWFiI+PZ5EpaEavXr0wderUvw7Xfxg0Go0K8pw5cwYzZ86EpaUlNUEZMGAAhg8fjosXL6Kmpgby8vJMK6PfQ01NDc6dOwc3NzcmNiUhISF4enrixo0bKC0txYABAzBs2DDY2dnBzc2NrRiqn58fFBUVv0sPnZOTg/Xr10NZWRknTpxAQEAAfHx88OnTJ2zZsoUpmvr06VOYmZnBwcEBO3bsgK6uLnx8fH551P3jx48YMmQIgKYxrGUKYGxsLHh4eJjSUadPn45nz56xFTVuZs1sTUdGSEgIU6ZMwciRI/86XP9R5OTkUKvSL168QGFhIbZv306txg0fPhxcXFx4/PgxBAQEoKGh0WH6+CNHjmDXrl1MtcrdunWDnZ0dODk58eTJE0hISGD48OFYvHgxQkND8enTJ5Z24uLiwMvL+11G3MrKSqxatYoiywkICEBgYCBERESwYsUKpjqpjx8/YsWKFZT0hJGREbZt28bCDvizkZ2dzfT+bCn5s2PHDtBoNIwdO5ayQzExMQgLC7Ml+SCEYOfOna0SCfHw8GDSpEmYMGHCH+dwAb+3Ttfp06cxZswYatVx7NixLHPEd+/eoby8nPp//fr1sLe3h62tLSZPnoxPnz4hNjaWaUV83759WLBgAfT09DBr1izw8/PjypUrTEHH7107IiICRUVFOH36NPr06UN9WmrXCQsL48aNG8jNzcXkyZNha2sLR0dHODo6tvsZbN26Ff7+/rC2tkZ8fDwV5ODk5GyzNKkt/HW6WkH37t0pggwGg4Hnz58zMSjS6XSKGnfdunUYN24cHj58SDGktQeXLl1qNRLIz8+POXPmMAm0ysrKYu7cuVBXV8f58+eRmpqKS5cuYf78+Rg5cuR3KVLpdDoOHz6Mffv2Ma0CiYmJwcPDA/fu3aMiBiEhIUhISEBQUBB8fX1x5MgRnDp1CqmpqTh06FC777Gr0ByJ79WrF1atWsW0T1lZmamIuXv37nBxccGiRYuQkJAAQgjodDpiYmIoLZe/E6//XTAYDEqvLiIigoVBNTc3F6KiopCTk6OomptTltqDO3fuQEVFhe0kgEajwcTEBJGRkdS2AQMGwMnJCerq6jhx4gRev36NuLg4mJmZIS0tDWvWrPnuNT09PeHh4cFUE8bPz48VK1aAj4+PGkfi4+Ph5+cHb29v+Pv7Y//+/YiIiICwsDAcHR1/aXpyfX099RKj0Wg4cOAA0/4lS5YwOYI0Gg0HDx7EkiVLEBUVBTqdDkIIHj16hEWLFmHt2rV/CW/+h9G3b1+qVujbVS+gaSVVUlISffv2haGhISQkJODq6truYMP79+8hJSXVahrXsmXLcOrUKer/bt264fjx4zAxMYGnpyeSk5Px6NEj2Nvb4/jx4+0SV/Xz88PSpUuhoKBAvQObxeDV1dWp6338+BFOTk5Yt24dQkJCsG/fPoSFhUFWVhaWlpZsA5A/Cw0NDUyEH9+uYhkZGbFkNnl5ecHZ2RmBgYFUX9PS0mBubo7JkydT6Wr/NfzOTpeoqChOnTqFiooKVFRU4NSpUyzjKyGEStMHmsborVu3Ii8vD7W1tbh79y5L9gEvLy8OHTqEkpISVFdX48qVKyzBh+9de+vWrWyfxbe6i2PGjMG9e/dQW1uLvLw8bNmypcNzPx0dHTg4ODAFWkxNTZnI7DqCPy808IvAycmJf/75B48ePcLIkSPRs2dPpi/rwoUL1FIjFxcXxMXFsWbNGhw9ehT79+9ny9rXMiIANKUbTZs2DcLCwpTQZ0v06tUL6enpTFoW8vLymDhxIi5duoQbN25AQkIC3t7eEBMTY6u/AYCKJt+4cQNaWlpMtWeVlZXU37a2toiKioKFhQXu3r2L8+fPM90zPz8/duzYAUNDQ3z9+pVtBK/l82sN32MM09bWZvr/69evsLa2Rp8+fSApKQkvLy8q7cne3h7v3r3D1KlTmVYLFRQUMGTIEPj6+sLDwwOEEMydOxdhYWFdVmv2F38mtLW1cerUKVhaWoIQwvS7efPmDURFRSnhzeHDh0NFRQVr165FVVUVExFQM7616+rqakyePJlKrfzWtkVFRXHnzh2UlpZSdj1w4ED4+fkhJiYGhw8fhpCQEOzt7SElJcXSfjOa7frTp0/o1asXU1CopV3b29tj8+bNUFNTg5+fH0JDQ1lqcaytrZGbm4uXL1+2yZD2vWjyjBkzWt33bQ2Nj48PxowZgzlz5kBSUhK2traIiYnB9evXMXDgQHBzc0NGRgaSkpLUOf/88w8iIiIQEBCAo0ePAmhKRzl06NDf1en/cTQLph44cADZ2dlM6T/l5eVITk6mghJjx47F4MGDsWbNGjx9+pTtSsq3dtdct92aXXfv3h15eXlMds3DwwN/f3/cuXMHR48eBTc3N0XuVF9fz1bTrOXqb0ZGBnx8fKj3cEu7XrJkCfT09ODo6IjDhw/D19eXpfxCTU0NX79+xfnz5zFp0qRWn11X2vWtW7eQmZlJSflISUlh586dcHJyAgBMmTIFPXv2ZLJrERERXLp0CaGhoTAwMACDwUCfPn2watWq/3RN9e+q0/W/jIMHD8La2hq8vLzfJcv4dgGgPfjrdLUBV1dXGBgYYMuWLRR9NCEE0dHRCAgIoKLVdDoddXV12LRpE06dOoWNGzcyRbxag6SkJNLT01slDsjMzGS7r0ePHkzigO2ph0tKSoKHhwdqamqQlZUFc3NzpqVYoGmCeeHCBVy+fBn6+vpsIwI0Gg1mZmaIjIxscyDuSjRTQ7cskm/ODRcXF0dDQwPbvHkpKakOrVD8xf8GTExMoKenByEhITAYDNTU1ICPjw9Pnz7FunXrEBwcTB2bm5sLd3d3REREwN7eHg8fPvwuS2mzXbcWXMjMzGRbE8PLy8s0gWmPXb9//x7btm3Ds2fPYGpqCkNDQxb9GwkJCZSXl+PZs2eYNGkSW1IToEnEdefOnbCwsPjudbsCenp6WL9+PdM4Ym5ujuvXr2PBggVIT0/HyJEjWc5rrgNYu3btL+nnX/wZmDp1Kk6fPo29e/eid+/eVC3wx48fYWNjAzc3N+qdlpGRAT09PZiZmWHr1q1YtGgRVQvSGvr27UuRu7BDdnY224AeJycn27rntlBQUABfX1+8ffsWBgYGmD9/PhYtWsR0DBcXF7i5uVFRUYHa2tpWCW60tbVhYGDQptPVlZCVlUVAQAB0dXUpJseWGmXnzp3D1atXWc7j4+ODubn5L63v/bfx1+n6/bBv3z4YGRmBl5cX+/bta/U4Go3WKafrb3phGxAXF0dYWBiuXLmCt2/fQlZWFkpKSnjy5AkiIiKoSdHly5ehoKBA6SNERka2qSPRDENDw1Yp76urq/Ho0SMWx6ijIITA3t4ePj4+WLBgAQwMDODg4ICQkBCsXbuWyWgzMzPRu3dvFBUVtZlr3q9fvw7Vrv0omlcNXF1dkZGRAQBYs2YN+Pj4cPLkSbbMNX/xF62Bh4cHYWFh+PDhAzIzMzFr1izMmzcPJ0+exKlTp6hV6rS0NAgJCUFYWBj79+/Hmzdv4OLi8t0XnYqKCiVp8S2a2cw0NTV/+D6OHTsGe3t7zJs3DzNnzsTu3bvx9OlT6OvrM9V6lJaWgp+fv1123dWag22hZ8+e0NfXh52dHZ4+fQoA0NLSwj///IPTp0+3K/3qL/6iGc0pqqKionj58iVUVFSgoqKCzZs3Y8+ePZg2bRqApsyJ58+fY+LEidi+fTtoNBosLS3Zrjq1xPDhw/Hx40e2WSkAcPLkSejq6v7wfdy6dQsGBgYYOnQoRowYAX9/f1RWVkJTU5OivAaaxpL6+np8+fKlTWITHh6eX1rvxMnJCScnJ6xcuRL3798Hg8HApEmToKGhgXv37jHJZfyv43dOL/xfRWZmJsTExKi/W/t8qzHcXvx1ur6Dnj17Ys+ePXjy5AloNBrc3NywdetWCAgIgBCCq1evws/PD3Z2dgCaHClLS0vY2NggNDS0zbYHDhyIESNGwM3NjSltIDc3Fw4ODrCzs/shit2qqiosXrwY165dQ/fu3fHgwQPs3r0blZWVOHjwIMTExCgWNwAICAjA4sWLMWjQILx+/brVdl+/fv3LUnlKSkrw+fNnWFpaQldXF7t27cKCBQtgbm4OQUFBzJkzp1V2qL/4i9bQrVs3bNy4ES9evED//v1haWmJ/fv3UyxZL168wPLly7F9+3YAwIQJE6i01pYrruzAx8cHCwsLrFixgklvpKysDJs2bcK8efOYNEo6CgaDARcXF2zbtg0DBgzAzZs3ERUVhfj4eLi4uMDExIQpEBEYGAh9fX0MHDjwu3bdXirdH0VFRQVyc3MhKyuLjRs34uzZs1iwYAF0dXXBxcUFaWnpLqOm/4v/HTTLMjx69AiqqqpQUFDA8ePHqbqSnJwcGBgYULqbPXv2RHBwMG7fvg0TExM0Nja22b6zszOWL1+O9+/fU9tqamrg6+sLTk5OFp29jiIkJAQGBgaQlpbGvXv38O7dO3h7e8Pa2hr79+9nWt29fv06Zs+eDXFxcWRlZbXa5tevX39ZDXN1dTVyc3MhLS0Nb29vJCcnY8GCBViwYAElyvyrMmT+4i9+R/yW6YV1dXU4deoULl68CKBpEmNmZtalYrsdRa9evRAREYFdu3Zhy5YtEBYWRllZGWbOnInIyEhq4t9c7F1bWwsLCwvMnj2bbX1XM1avXo2rV69SxfKNjY0QFRWFg4NDpykpgSYxYUtLSxQXF1PU6gAQFBQEDQ0NnDlzBvb29liwYAG0tLTg7e2NQYMGQVpaGn369IGOjg5MTExY6jsaGhoQEhKC0NBQpKWldbp/30NCQgICAgIgIiICAQEBZGZmYubMmTh69CgKCgrg4eGBoqIilvqvv/h9QQjBpUuXEBISgvr6etBoNOjo6MDQ0PCHhcU7Cx4eHoSHh8Pb2xtKSkro0aMHvn79iqFDhyI4OJjJdm1sbFBTUwNnZ2fMmTOnzXQhNTU1iIuLY9OmTSgrKwMHBwe4uLiwZMmSTlHQt8SaNWuQnp6OuLg4ikI3MTERurq6KCkpgbW1NQ4fPozKykpcunQJb9++hYODAzg4OJCTk4P8/HyWMYkQggMHDsDBweGnFt2npaXh4MGDoNFoEBMTQ3Z2NgYNGgRvb2/Q6XQEBgYiOjqa0mz5iz8D8fHxOHr0KL58+QIGgwFFRUVYWFi0SzvoZ+HQoUMICAiApqYmunfvjpqaGoiJiWHnzp1Mdc1KSko4e/Ys9PX1ceTIEYodlx1Gjx6NXbt24ciRI8jKyqK0NefPn98qw157cfToUVy/fh2+vr6UTuDnz58xZ84cFBYW4siRI+jRowfS09Px+fNnHDt2DMHBweDj48OAAQOQlJTE1qHx9/fvkhW4tlBUVARvb2+UlJRAUlIS+fn5FE3/1q1bER0dDTMzM+jr6//Ufvxp+Jte+HvjW5Ktb9EshdAR0Eg7vrWKigoICwujvLz8pw+iVVVV0NPTw6JFi7B48WLw8vKiqKgIBw4cwNevX38L5jlCCCW49m1fmtN6ioqKMGDAAEyaNAnTpk2DiooKJfR29+5dhISEoK6uDo2NjRg5ciT09fXRq1evVu+NnR5HVlYWMjMz0bdvX4wbN47p3NOnTwMArl69iujoaKbzLl++jBUrVmDy5Ml4/PgxRo0aBUNDQ6aBOS4uDidOnMD27dspGt4PHz5g8+bN0NfXh6amJp49e9bqM2pOF2IHdmlXLSEkJITo6Gi4ublRhAaEEPj7+yMwMBBFRUXg4OCAt7c3VqxYwXTu70Ib+yttprP4lX1kMBiwtraGtLQ0VqxYAREREVRVVSE4OBixsbEIDQ1l+xv/1airq2vTrgkhGDx4MPj4+KCoqIgpU6ZAQ0MDNBoNr1+/xrFjx6gUPQkJCVhbW0NCQgKEELa2ze6eCwsL8fbtWwgLC2Py5MlMDunz589x7tw5ZGZmIiYmhum8lJQUqKioYPz48fjw4QMEBQWxYMEC2NjYUHaRnp6ONWvWYMuWLZg6dSpoNBqKiorg6emJPn36wNHRsU3bbWsfgDZXCkaNGgUPDw94enoyiRzHxcXB1dUVJSUloNPpWLZsGQ4dOsT0vP7adfvxq/u4Z88eZGRkwMXFBf3790djYyMuX76MI0eO4MyZM0zf9b+F+vp6cHFxsWSOtEzD1dTUxPPnz6GlpYURI0ZAX18f3bp1Q25uLo4fP460tDRwcnKCn58f5ubmGDlyZIfs+uvXr3j58iVoNBpmzpzJlKFRVlYGOzs7CAoK4tixY1QtFNBU3zV37lxISkqipqYGlZWVUFZWhoODA3Xcly9fYGZmhuXLl0NVVRWcnJyoqqrCiRMn8ObNGxw5cgTPnz9v9fn8iF3LyMhg9erVcHV1ZQoUp6enw9zcHGVlZairq4O8vDwuX77M9Gx+F7sGfq3dNF/LxcWlTeKi76G2thY7duz4rcejPxnfBvUbGhqQkpKCL1++QF5evlMSSl3idKWlpSEmJgZ0Oh0yMjKtEkO0B2vXroWysjLFDNgSW7duxfjx47FgwYJOt/+z0XIQP3PmDE6dOoWsrCxkZGSgV69emDRpEnr37o21a9dCXFycEj91d3fH1q1bMWjQILbtthyosrOz4e7uDhEREYwcORLFxcV4+fIl7OzsqILVJUuWwN/fHyYmJrhx4wZLe80pSObm5tSK4rdIS0uDr68vPn/+DKBptc/GxoaKEv4Mp4vBYODSpUvw9/en8r5zcnIQEhKCqKgo1NfXY9WqVbC1tWVbtPy7DOL/hclZfn4+Lly4gK9fv2L8+PFQVFTsdLprcHAwiouL2WpknDt3Dq9fv8bmzZs71favQEu7vnv3Lvbv34+cnBykpKSgR48eVIR5y5YtVOpteno6tm/fDgMDA8yaNYttuy3tuqKiAm5ubqipqcHkyZNRW1uLhIQELFy4EEZGRgCAjRs3wsLCAps3b0Z0dDQLS+iuXbswadIknDlzBo6OjmzTgD9//owTJ07g1atXlDj60qVLIS8vD6Bt2/2RydmtW7ewdetWirCgoqICAQEBuHr1Kj5//gwtLS14eHgwae41469dtx/f62Mzm11+fj4GDRoELS2tTgc8nj17hsOHD+PEiRMszkdqairc3d1x5syZTrX9K9DSrt+9ewc3NzdkZmYiOTmZ0oBqbGzE5s2bKdry/Px8eHp6YsiQIZRdfouWz7OxsRF79+7Fu3fvMGvWLDAYDDx8+BDjx4/HunXrwMnJieDgYAgLC+Pu3bvYunUrS2ptdHQ00tPTUVdXBykpKUowvCUqKioQHByMO3fuUIEaHR0d6OrqgoOD46fZdUZGBmRlZan68/r6eoSEhCA2NhbPnz/HpEmTcPz4cbYaeb+LXQP/jtPl7Oz8w06Xh4fHbz0e/dfAYDBga2uLQYMGYf369R0+/4d+8TU1NVi+fDm4ubmhq6sLHh4enD17Fm5ubvD392cSF24P6urqkJycjL1797Ldb29vD3Nz89/a6Wo52DYz8RBCcO7cObi6uuLq1auYMWMGevfuTTkN6urqkJaWhoODA86ePcu23WbSjqKiIri6usLPz4+anDQ0NKC2thZWVlbo3r07Zs6cCQ4ODggJCUFSUhJJSUkstRoiIiJISEiAuLh4q1TzvXv3xtatW1m2NzM5fqsS3xJt7WurBishIQFqamoUa1lKSgoWLFgAPj4+KCgoYPXq1QgKCmqzcPgvfgyEELi4uCA9PR2LFy/GqFGjqHrAgwcPYtSoUR1uMywsDBEREWz3LVy4ED4+PmAwGD9Uw/gz0dKumwUbgSZNLg8PD1y9ehVSUlIQFhamxr1evXrhwoUL1PHsJrbNdt3Y2AhLS0u4uLhQK+INDQ1gMBjYtGkTzpw5AzMzM5SVlUFaWhpycnI4c+YMVFRUmNoTFhZGeno6Pn78SKVAfws+Pj62rEvtseuWNM/s0Jptl5SU4NmzZxSjY1lZGZSUlFBcXIw5c+YgPDwcmzdvbjXo9Bddg4CAAISHh8PIyAgzZ85ESkoKVFVVsWHDBigrK3e4vWPHjmHjxo1sV3uaV4Ly8vIomvXfDS1tcuzYsRQjcXJyMry9vREUFARBQUFwcXEx2XVISAi0tLQwf/58tkGClsyjdnZ2kJGRgZeXF7WtoaEBp06dwrZt27Br1y6UlZVh3LhxEBMTg5+fHxwcHJjaExAQQE5ODl68eAFfX99W39nGxsYsAuHNx/4MuwaaAri+vr6g0WhgMBiQl5dHfHw8Zs+ejZiYGHh5eTGJIf/F/+FveuGfBw4ODjg4OEBWVrZTTtcPzXBWrFgBIyMj+Pv7Q1lZGXJycvDy8oKHhwdMTU3BYDA61F5hYSGLzkRL9OjR47uFrr8jmmtX5s2bBx8fH2RkZGDevHlMBiMhIYH+/ft/t07q+PHjWLduHctAz8vLi8OHD1MCo7y8vCguLsbq1avh5OREFbE24+3bt/D19cWyZcu65ia7CKWlpejXrx8IIYiMjISysjJERETw7t07nD17FhMmTPilDGv/i9izZw8kJCQQEREBbW1tzJ07F87OzggNDcXKlStbfeG3hea0HHag0Wjo27cvk8D1nwJZWVno6+tj+/bt6N69O2bPns1ka3x8fJg/fz5biuSWiI6OhqKiIuVwNYODgwPu7u44f/48GhoaMHjwYLx69Ypayf5WDPLVq1e4dOkSli5d+ltNcr58+UJN+hISEiArK4u8vDw8efIE0dHRmDhx4m/V3/8ioqOj8fjxY8TExMDY2Bhz5syBjY0NYmJicPToUSQnJ3e4zU+fPlHp5+wwYcIEJtKJPwVjxoyBra0trK2tMWvWLKiqquLly5fUfhqNBhsbGyqNvzWkp6ejsbGRbU3VkiVLUFxcjE+fPmHw4MF4+fIlZGVl8eLFCzx8+JDp2JSUFKSlpWHmzJmtSj78W+jWrRtoNBrS09OhpqaGu3fv4uLFi7h9+zaUlZUhKCj43ZKC/1UQQsBgMDr9+et0/TvIyMjotC/SaacrMzMTdDqdRRMGaCo2nTlzJuLi4jrUprCwMBMl6reg0+l/pNPVjI8fP2L58uU4efIknj9/jqSkJKb9I0eORGZmZpttPHr0CHJycmz3CQsLQ1BQEMXFxTAyMoKPjw+GDRuGDRs2YPny5di8eTNOnjwJW1tbvH79Gi4uLm06uf8GBg0ahIcPH1JMZhMnTkRcXByVu/7s2bM2X/J/8WOoq6vDjRs3sHLlSpZ94uLiWL16NQIDAzvVblsviGZa8z8RGRkZlGNVUlKCc+fOMe0fNWoUi3P0LS5cuIDFixez3Uej0SArK4vExEQYGxvj8OHDEBYWxoEDB+Dm5gZHR0ecPHkS27ZtQ0REBIyMjKg0498FEhISFKHHrFmzwM3NjTt37lC2XFxc/ENpNn/xffj4+GDv3r0sq8m8vLzYs2dPpyj6eXl5WxXvBppSWUVFRTvc7u+A9+/fQ0ZGBpcvX4aoqCjLuDdq1Kjvvq8vXrzYql0DgK6uLq5cuQJ1dXVcvHgRdXV18PHxQUREBKysrBAYGIgDBw5g69atmDRpEqysrLrk3roSdXV1OHjwIEaPHo23b9/i/PnzUFdXB9CUilVeXv6XIr4V/KWM/73h6OjI9HFwcICBgQH09fU7TQrTaacrNjaWRYm8JXR1db8b3f0WQkJC4OTkpGqIvkVUVFSHBAZ/N4iLiyMnJweKioqQlpamVqWAJif2xo0bEBQUbNOQuLi42owI9+jRA9XV1VBUVER1dTU8PDwgLS2N0NBQ6OrqIi8vD1lZWbh58ybGjx/flbfXJZCWlsbZs2dx+/ZtXLhwAVeuXKFSjggh8PLyopTu/6Lr8fTpU8jIyLT6G1NXV8edO3c63O60adNaPe/9+/fo1avXv8Zg+KPo1asXsrOz0b9/f6ipqeHAgQOUDX/58gVnzpwBHx9fm3ZdVVWFHj16tLq/2a6lpKSgoKBASVQEBARg1apVqKqqQmJiIs6fPw9VVdUuvb+uAD8/P969e4dDhw5h//79ePToEaWbBAAHDhxgEnz/i65FZWUlunfvThETfYshQ4YgPz+/w+3q6+vj5MmTbPdVV1fjzZs3bAWu/wQ02zU3NzfMzc0REBBAOZiNjY3w8fEBLy9vmxk9lZWV37XrqqoqdOvWDWvXroWZmRlycnKojCFOTk7cunUL+/btw4oVK37L1eBu3bph9erVWL58OVJTU5nIB86dO/dHz9l+Nv46Xb83nj9/zvR59eoVAMDLy6vTOpKddrq+V3/ByckJOp3e4XY3bdoEMzMzJn0boGmF4+DBg7C2tu5wm78LTE1N4evrCy4uLjg4OCAsLAxv374FADg5OeH69evQ0tKCjIwM7t69y7YNQUHBVp1SQgjS0tLQp08f0Gg07Ny5E+PGjYOjoyNMTU2xc+dO9OjRA6GhoZT42++Gbdu2oaGhAcOHD4eoqCg1qOTk5MDS0hIKCgp/6z5+Ir5n1xwcHJ0a6FevXo3t27ez6ETl5uZi2bJlcHFx6XCbvwsMDAxw4sQJEEKwdu1aJCcn49KlSwCaBudTp07BxcUF48aNa7Vmc/z48bh//36r10hMTKS0hpYuXQpTU1MqjdvZ2RlfvnxBUFAQRowY0fU32AU4efIkMjIyMHLkSEhKSlK/obKyMmzduhXl5eVUdPwvuh7tqZfszIR+/vz5uHnzJgtZ09evX2FsbIwNGzb8lo5CeyArK4ubN2+ivr4eK1eupFZ0gKaVaU9PT5w5cwaDBw+Gt7c32xS6CRMmtGnX9+/fp4KfsrKycHd3x8mTJ7FkyRI4OjoiJSUFe/bsYand/F2QkJCAqKgojBo1CkOGDKG219bW4vjx4zh9+jRb8qS/aMJfp+v3xu3bt5k+t27dQmhoKKytrTtNAtNpIg15eXl4eXlBU1OT7f6LFy9CUVGxw+2OHj0ae/fuha2tLXh5eSEpKYm0tDT07NkTYWFhfzRDy5w5cxAQEICAgABKjNXBwQGnT5/Gq1ev0KNHD2zYsAHHjh2DkZER3r9/z5JyY2FhgV27duHAgQMsL7Pz589j5syZ1IoBjUaDurp6q+mIvxsaGxsRFRVFCUP7+Phg586d4ObmhpCQEGxtbdlqHNHpdJSXl4Ofn79DKUrl5eXw9/fHzZs3wcXFRYnadqag/L+CiRMnwt3dHc7Ozmz337hxo1PilmJiYjh9+jScnJxQUVGBIUOGICcnB3Q6HT4+Pkwv7D8NEhISmD59OlxcXLB582YoKytjzZo1kJGRwbVr1wAAnp6euHLlClauXIlx48axRP/Nzc1hY2NDpd61xKtXr0AIYdLWmjp1KuWE/e5gMBi4fPkyNDQ0cPbsWfj7+0NLSwtcXFzg4uKCqakptLS0WMYzQgi+fPkCHh6eDgmgNzQ04PTp01SaJ41Gg56eHgwMDH4rtrRfCUFBQZSWlqKmpoZtTVB2dnabKzKtgZubG6Ghodi0aRP27duHUaNGoaSkBAUFBdiwYQPmzp3bBb3/d8DJyYlVq1bB1NQUR48exerVq7Fr1y6YmJhQcg3Ozs7Iz8+nWDeb9bWaoaGhAQ0NDRgYGLAEOgsLC3Hv3j0mp2To0KHYuXPnz7+5LgAhBFeuXIG0tDSePXuG0NBQGBgYAGiy+QULFiA8PJxtauHXr1/BYDAgJCTUbqecEIKoqCicPHkSdXV1oNPpUFFRwdKlS1tdwf3d8ZdI438PnX4D/fPPP6ioqEBiYiLLJCwzMxPXr1/vdIRj7NixOHfuHAoLCymxvT/Z2WoGjUbDiRMnsG/fPmhpaWHQoEG4du0aNDQ0oKmpidDQUFhaWmLEiBFYsGABnj59ykI1PWfOHDx79gyWlpZwcHDAqFGjUFBQgMDAQKSlpcHPz+9fursmvHz5EleuXEFeXh64uLjQt29fVFVVIT8/H3379sXixYsp6t2KigoICQlRjExfv35FaWkpzp8/j3/++Qdubm5tDsh1dXXYvXs37t27h379+qG0tBRCQkLYtGkTJRrbGgoLC2FoaIiVK1fC3t4enJycKCwsxJ49e3D//n24u7t36XP5U8DPz48pU6YgJCSEhQWroqICe/bs6TQFdJ8+fRAUFIQvX74gLy8P4uLibGn//0SsX78eZ86cgZaWFvj5+ZGZmYlp06ZBX18fT548gYKCAjQ0NDB69GjEx8ezOF19+/aFlZUVdHV1sWbNGsyePRtfv35FWFgYoqKiOiXC2JXIyspCREQEcnNz0djYiL59+4LBYCA/Px98fHzQ09OjSEC+fv2K7t27Izc3FwcOHMCnT5+ooJKPjw/s7e1hb2/f6rUIITh+/DjCw8PRp08f1NTUoLGxEWvWrMGcOXPa7GddXR0MDQ0xb948hIeHg4+Pj9IrMjY2RkhIyP+k40Wj0WBpaYktW7Zg9+7dTONqY2MjNm7c2OZ30hb4+fnh5eWF6upqZGdnQ1BQ8LtseH8KtLS0ICQkBGNjY3Bzc4PBYGD69OmUPuSIESPg6OiI6OhoxMfHszhdXFxc8PT0xJIlS7Bs2TKoq6uDEIILFy4gICAAXl5e/ypja2lpKUJDQ5GRkYHq6mpISEigW7duyM/PR2NjIzQ0NKggZHV1Nbi5uVFdXY3Dhw/j1atXSE9PR01NDVxcXODs7AwTE5M2rxcVFQVfX18ICgqCg4MDJSUlsLCwgJ6eXpvnEULg6OiI7t27w8/PD2JiYmhoaMCFCxewcOFChIWFQUREpMuey6/CX6fr98aECRPaHRRoS0KpJX5Ip6u8vBzm5uYYPHgw9PX1wcPDgytXruDOnTs4ceIEWyrV3xHZ2dkIDg5GXl4epKWlYWJi8tMFHel0OoqKiqCjo4OSkhLs2LEDixYtQmBgIAwMDDBlyhQICwsjNjYWnJycLAQiqampCAwMRFZWFgQEBKCvr4+5c+eyHcDbKuJvK7rZkmSDwWBQrErFxcWYNWsW+vbti9zcXMyYMYOKNElISKCgoABKSkpoaGigXsJ9+/bFixcvUFpaCicnJ9y6dYtKrejbty/8/f3Rp08fTJ48GQMHDsSECRNQXl6O3bt3s+1bQ0MD9PX1sWTJEmhra1OG8fHjR1hZWWHfvn1trgSYmppizZo1lOZYS6xevRoLFy6EjIxMq+d/D3+yng+dToednR3q6+thamoKMTExPHjwAGfPnsXu3buZanF+Z5SWliIkJIRaKV+yZAmGDh36U69JCEFJSQmcnJwQFhaGW7duYdq0aVizZg3c3d1hYmKC+Ph4PHv2DMLCwix2/enTJwQEBCAlJQWcnJxUpJxdtLizdg38n20TQvD+/Xvcu3cPubm5GDNmDMaMGYOsrCyMHTuWosmeN28ebty4ATk5OXByciI7OxtcXFzo168fsrKy8O7dOzg4OCArKwsXLlzAwIEDIS4ujsDAQIwYMQJLly5FYmIiXF1dcfHiRZw9e7ZV58fR0RGSkpJYtWoVtepXWloKGxsbGBsbs9Uoasbu3bshJSVFRdxbwt/fH7W1tVQ9XGfwJ9s1AOzduxfx8fGwsrKCtLQ0UlJS4O/vD0tLy+9OfH8X1NTUIDw8HE+ePAEfHx90dHRYWD9/Br58+YITJ05g7dq1SEhIgIaGBmbMmIGwsDB4e3tjx44dePLkCYYOHcpi11++fMHp06epVMO5c+dCV1cXgoKCLNfpCrsGgLy8PMTFxeHDhw8YMGAAZs6ciU+fPqF///7UcWvWrIG3tzdmzJgBYWFh5Obmora2Fv3790dVVRUeP34MfX19CAsLIzg4GEJCQujXrx/27t0LWVlZ7N+/H05OTrh48SL27t2LiIiIVp2fEydO4MmTJ9izZw81X6ipqaG0+9auXdvqfcXExCA+Ph47duxg2ffo0SMEBgbi6NGjbT6b7+Hf0OlydHTstEYe0BRk8vb2/q3Hoz8ZTk5O8PHxwciRI6nFpYcPH+L169ewsbFhyhrYsmVLu9r8YXFkQgiSkpIQFRWFxsZGyMjIQElJ6bfV2/kWO3bsQHJyMpYvX45BgwYhNTUVR44cwfz5838JYcOrV68wYcIETJgwAV+/fkVGRgaOHj2K/v37Q1VVFTt27ICjo2ObrI21tbVtXuNHna6HDx/CwMAAWVlZ4ObmplJVmjFkyBDs3r0bHBwc0NbWhoSEBD5//swSIairq4ORkRHOnTuHmTNnQk9PD2vXrsXUqVNx48YN8PPzY8+ePdi0aRM+f/6MDRs2YPXq1WydpzNnzqC0tJTtBCo/Px+2tratqoWXlJRg+fLlrepG5ebmwtnZGcHBwa0+m+/hT5+cAU10x+Hh4ZQ4sra29g+9IH4lIiIi4O/vD1tbW4wfPx6fPn3CsWPHIC4uDk9Pz59eZ1JaWophw4ZRul0PHz7E2rVrYWFhgWnTpkFDQwMBAQH/il0DTbadmZkJPT09PHnyBBwcHBAVFWWSYxAVFcWePXsgKSlJ1ZR8+fKFYhJtBiEErq6u8PDwwD///INly5Zhy5YtEBYWxsOHDyEpKYlr165BVVUVjx49QmJiIsTFxdmyuiUnJ+Pw4cNsV+zr6+uhqqpKBaLYQVFREbGxsWzfPw0NDVBXV0dsbGybz6Yt/BfsuqCgAGfOnKHEkQ0NDX/be/kWSUlJWL9+PUxMTCAnJ4fy8nKEhIQgNzcXgYGBP51OnU6nY+rUqcjOzsaYMWNw7949qKurw9fXFzIyMhASEsK9e/e+205btv2jdl1eXg4zMzNcvHgRANCzZ0+UlJRQqyI8PDzYtm0bpk2bhlWrViElJQVJSUmYPHkyS3vBwcGwsLBAz549YWtri4CAABQUFODu3buYMmUKsrOzIS0tjWPHjmHw4MGIjY1lmx759etX6OnpITo6msU2CSFYuHAhfH19W9Xf1NPTg4+PT6uZEZqamjh79uwPpRn+G06Xg4PDDztd+/bt+63Hoz8ZlpaW6NOnD7Zv3860fcuWLcjJyelUBsoPO11/MsLCwvDq1SuW6AmDwYC1tTWMjY1/aLWjvYiLi8OGDRvw6tUriIuL49OnT/D398ft27dx8+ZNvHz5Enl5eSgpKYG0tDTLwPSzJmeSkpLw9/fHmjVrMHnyZLi7u1M1Jy9evEBFRQX4+flhZ2eHx48fU+cNHToUycnJbAcTQgiKiorQq1cv3Lt3DyEhIThz5gysrKywf/9+FBQUQEpKCqtXr8bixYsRHBwMLy8v3L59G8ePH8fXr19Bp9ORk5OD69evtyr4aGxsDE9PT7ainE+fPsXly5exbdu2Vu9dU1MTV65caXX/9/An2Myf0MfO4MWLF/Dw8MCZM2dYVlO8vLzAx8cHW1vbn96PlJQUODs748qVKxgwYACys7Ph6OiIXr16YePGjUhJSQE3Nzeys7MhISGBgQMHMp3/s+yawWAgOTkZ1tbWEBISwr59+yAvLw9BQUGkp6cjKysLEhIS2Lp1Kwv9fWZmJovQejOKioogJiaG0tJSmJub4+XLlxg6dChu3boFOp2OoUOHYvjw4QgNDYWJiQkuXrxIOVmfPn0CnU5HWVkZ3Nzc2EqRAMCuXbswefJktvXC9fX1MDAwaDXYAvy16z8ZZWVlWLRoES5cuMDi+F+/fh2XLl2Cj4/PT+/Hp0+fsH37dvj5+UFSUhJFRUVQVFSElZUVtLW1ERoaihkzZiA9PR2CgoIYOXIkS5DnZzhdhBAUFhZi6dKlyM/Ph7e3NzQ1NSEuLo78/Hy8fPkS/fv3x4kTJ+Dt7c107s2bN1tlGSwrK4OAgAB4eHggJyeH2tpa5ObmIj09Hby8vNDU1MSbN2/w6tUraGlp4ebNm8jJyYGPjw9evHgBTk5OVFdXQ1lZGRs2bGB7jejoaLx7967VkpTv2e2aNWtgbW393bKCtvBvOF329vY/7HTt37//P2frvwuEhYWp1euWSE9Px+TJk9uUy2gNHV6OKisrw4EDB7B06VLY29vj0aNHf2xeaWBgIFxdXVm2c3BwYMeOHTh8+PAv6Ye8vDxu3rwJRUVFFBcXQ1lZGZaWlpg4cSKqq6sxbNgweHl54cGDB3BycoKpqWmrDIZdAUIIAgICMGDAAKxcuRJmZmaIi4uDnJwceHh4QKPRMGHCBMjIyGDKlClITExEZmYmJQT57t27VgcSGo1GpSx9/vwZsrKyWLFiBY4fPw5CCHr37o1NmzZRk+PPnz/D3d0dFy5cwN69e3HlyhVcvnwZvLy8MDY2ZmG5bMaAAQNQVFTEdl/Pnj3bfH5VVVX/c3UftbW1CA4OhqWlJSWY2hn20d8Bhw4dgoeHB9vv0N7eHufOneuwcHtnMHr0aFy6dAkODg7Izs7GggUL4O3tjZKSEgwcOBBTpkyBo6Mj4uPj4eXlBR0dHSYB1p+B69evQ1FREYsWLcLkyZORlJSE+fPnU2lOQ4cOhaKiIkaPHk3VcL19+5YqXG/N4QKaJDE4ODhQUFCAUaNGYceOHVR6EycnJ/bv34+rV6/i8ePHoNPpiIyMhJubG+zt7REVFYWYmBgICQnBw8Oj1ecwcODAVm2em5sbVVVVrfaPEPJdR/a/BjqdjujoaNjY2MDS0hIhISF/7DMICgrCqlWrWBwuAFBWVkZ+fj7TSu3PgqSkJI4ePYrjx4/j06dP0NDQQExMDAICAiAjI4MlS5bAwMAADx48QEhICLS0tChCnZ+FFy9eYNGiRZg1axZ4eHjw+PFjLF26FOLi4gCa0v6VlZUxcuRIeHl5obCwEG/fvkVlZSUaGxvbpHUXEREBDw8PCCHo3r07fH19kZubi+vXrwNoSlnNycnB0aNHISAggMePH8PCwgJaWlqIiYlBVFQUxo8fj+joaFy+fJntNdqya6DJduvq6lrdn5eX90fqwf1lL/y9wcfHhwcPHrBsf/DgQad1JTvkdN24cQO6uroYMGAAdu/eDWtra0RGRmLJkiWor6/vVAf+LVRXV0NISKjVdITevXv/0peTj48PcnNz0a1bNxw/fhw0Gg2RkZEYO3YseHh4cPXqVXz8+BEnTpyAq6srLC0tmVL8uhLu7u7w8PCAtrY23r17Bz8/vzajMRwcHJCWlsaQIUPAycnZ7tQtKSkpvHnzBtnZ2UzRwPnz54NOp1Osgrm5uTh48CC1qsXFxYVBgwZhy5YtWLNmDdu209LSWi3mlpKSQl5eHr58+cJ2f3BwMEtB9H8Zb968gYqKChoaGrB9+3Zs2LABycnJUFdX/yWTmK5GQUFBq2yInJycGDZsGHJzc39JX86ePUsV2G7fvh0DBgxAeHg4xMXF0a9fP9y9exePHz+Gu7s7/Pz8sHnzZrx58+an9CU0NBQrVqzA4MGDkZiYiGvXrrUpHUGj0SApKYl//vkHPDw87U4Z79OnDzIyMqh6zmbWRQ0NDXBwcCApKYkiyzh79ixFc0+j0TB9+nSsW7cOa9euZTuhSE5OZlkRbNnfoUOH4vnz52z3x8fHY9KkSe26h/8CiouLoaamhtTUVGzcuBHbt29HXV0dVFRUftpv7Gfi3r17UFNTa3W/oqIiHj169Ev6cvfuXUqH1MjICCoqKrh69SoaGxsxadIkJCUl4fr167C0tERkZCQiIiJ+muOVmJgIIyMjik3wxYsXlOh4axAXF8c///wDAQGBVlN1vwWNRkNtbS21EtdMBvTPP/9g+PDhSE5ORmVlJTZu3Ijw8HDMmDGDeqc3lxMcOnSI7epAcnJym1IwmpqaCA8PZ7uvoKAAdXV1lIP5J+Gv0/V7w97eHjY2NrCzs8OpU6dw6tQp2NnZYcWKFXBwcOhUmx1yuvz8/BAdHQ1tbW2Ii4tj5MiR2LNnD3R1ddmuGP3O4OTkZKur0RK/KtLf2NiIPXv24NWrV9i5cyd69eoFf39/JCYmYvbs2bh37x60tbURFBSExMREDB06FPb29j+F0Sw9PR0nT56Es7Mz/Pz8vjt4/wimT5+OR48eQUhICNnZ2fj69SuApsF84MCB2Lt3L2pqarB+/XrqnOZBxtTUFDdu3EB9fT0KCwuZ2n3z5g14eXnbnFBu3rwZRkZGLE5FbGwsYmJioKur21W3+dtj7dq1iIiIgIWFBfr06QNpaWls2LABnp6eWL58+b/dvQ7je6tYdXV1v0yI2d/fH3fv3oW5uTmGDh2KU6dOITc3F927d8fdu3exevVqXL9+HWFhYRATE8OhQ4fg5eXV5f2orq7Grl27oKOjg2PHjmH69Oldfo1miIqKolu3biCEoKqqipqkcXBwQF1dHYcPH4aYmBjs7Oyo1chmu166dCkCAwMxY8YMlghjWVkZHj161KZkgZOTE9asWYO0tDSm7SkpKdi8efP/lGbQ6tWr4eXlhXXr1kFKSgp9+vSBpaUlwsPDYWtr+8cFSjk5Odvs86+064sXL+L8+fMYPHgwVFVV4evrC35+fmRlZSEmJgY7duxARkYGDh48iG7dusHHxwdHjhz5KZNkDw8PjBkzBqGhoVRg42dBTk4O7969AwAmzUUNDQ2Eh4ejV69eUFRUpNIgm+9XU1MT58+fh7m5OU6dOsXUZmNjI/z9/WFoaNjqdU1MTHD69GkW/dL8/HyYmJi0m8TgL/6iI9i4cSOCg4Px/PlzrFq1CqtWrcLz588RFBSEjRs3dqrNDlnn+vXr2a54LFiwAK9fv0ZlZWWnOvFvoHlSUFZWxrKvuLgYNjY2ePnyJTQ1NaGsrIyjR4+2WfT+I+Di4kJcXBwkJCRgZ2cHKSkp9OjRA8OHD8fu3bsRGhoKb29vDBs2DKamprhz5w4UFBQQHx/f5X1pniDNnz+/y9uurq7GrVu3cO3aNZSWloJGo8Hd3R1paWmoqKjA1q1bATTlO/fr1w85OTmorKzEw4cPMWLECPTs2RMcHByIiIiAqqoqSktLUVZWhpSUFABNA/ytW7ewYsWKVlkPmzF16lRs27YN1tbWWLx4MVavXg0VFRXExsYiLCyMLVvcfxU6Ojpso4Rjx46FuLg4i6Dx744RI0bgyZMnLNtra2uxa9cuXL58GdbW1pg3bx7c3d0pZ/9nIDw8HOPGjUNgYCBERETw/v17jBgxAnFxcXB0dMTatWuhqamJTZs24ezZs5CUlMSXL1+6fEJcXFyMyspKzJ8/v8tJROh0Oh48eICYmBhkZ2cDaKq9io2Npca05tQ+SUlJfP78mYp2jx8/nrJrd3d3DBgwADIyMnj8+DFTneirV69gYGCAnTt3ttl/SUlJBAUFwd3dHQsXLsTq1auxYMECSqS6ObX5fwF9+/ZlS0LUq1cv6Orq4sKFC/9CrzoPDQ0NtuRHhBCEhITAw8MD+/fvh7KyMhwcHPDp06ef1pddu3ZBU1MTGRkZ6N69OwIDAzF27FgUFhZCU1MTBgYGsLKyQmBgIHbv3g0Gg4HRo0cjNTW1y/vy8eNHKCsrdznJESEEz549Q3R0NNVve3t73LlzB+PGjYODgwNqamrAYDAgJSWF6upqMBgMDBw4EDNmzKDsWl9fH42NjdiwYQMCAwOZViOzsrJgbGxM1Ze2Bj4+PoSHh+P8+fNQV1fH6tWrYWBggJUrV2LPnj1sWYj/BDAYjB/+/MXPhZ6eHuLj41FaWorS0lLEx8f/ENNrhwpXpkyZ0uq+GTNmICUl5bsR1Lq6Oly+fBkZGRmQkJDAwoUL/7UCQHt7e6xatQqBgYFUxDU/Px/6+vqg0+m4du0axowZg/r6egQFBcHExAQhISHtXo7vCEaMGIHk5GQEBgZi/fr1WLRoEYYPH44VK1bAzc0NysrKuHr1KpYsWQINDQ04Ozv/lLqj5ja/twrYERBCsGvXLty9exdKSkro1q0bjh07hr59+2Lv3r3w8/ODsbEx9u3bh6dPn0JYWBjy8vK4f/8+6HQ6jIyMmNrT09NDYWEhDh8+jHnz5mH79u3Yv38/6urqMGPGDISHh7dL/2ny5Mk4f/48kpKSkJmZiRUrVvzUlb3fFW2JmKuqqiIhIQGjRo1qsw0Gg4GbN2/i+fPnEBQUhLa2NlsSk1+BlStXYtmyZQgPD6fqP2pra6Grq4u6ujocPXoUOjo6YDAYuHr1KhYtWoSIiAi2tSI/ip49e+LBgwe4dOkSjI2NqToLDw8PODs7Q15eHseOHcOKFStgZWWFqKgoCAoKora2tksd/2a77mpn7syZMzhx4gRkZWXRs2dPhIaGoq6uDocOHUJERARWrFiBc+fOYfLkyRAXF4e8vDyApqCXtrY2UzbBpk2bMHPmTKxcuRIfPnzAuXPncOfOHTQ2NmLIkCHw9fVtMwWpGQMGDEBwcDDS0tLw4sULmJiY/E+lFTajrTodVVVVeHt7Q19f/7vtPHnyBHfu3AEnJyfU1NR+iKzgR6Cvrw91dXXIyspSKaaEEKxYsQJ5eXmwsbGBm5sb1WdjY2McO3bspwivd+vWDeHh4bh79y6srKzg5uYGISEheHp6YsuWLfD29sb27dvR0NAAd3d3hIaGwsjICBUVFV3el/Zk7XQUDx48gJubG8aPH4+BAwfi6tWryMzMhKenJ86dO4etW7di7969GDduHKSlpSEvL48ePXqAk5MT+/btQ1JSEtVWeHg4Zs6cidWrV6OgoAD79++Huro6aDQaRERE4Ojo2ObcshlCQkI4cOAA8vLy8ODBA4iLi7cqk/On4K9O1++NpKQkMBgMFpmcR48egZOTky3j5/fQoVl7Wys9NTU1350kXL9+Hbt374aenh7mzJmDjx8/wsDAANra2rCysupIV7oEsrKyKC4uhoqKChYuXEjVCTU7CWPGjAHQRLFqbW2N6upqhIWFsaU6/lF069YN3bp1w7p16+Do6IgjR47A0dERUlJSEBcXR2RkJLy9vfHgwQMICgqiuLgYAgICEBAQ+K7z1ZZe2rcplOPGjQMAPH78mEWYubPYsmULxMTEmHLa7ezscPXqVZiZmSE0NBQPHjzAhAkTUFJSguPHj+Phw4cAmvLl+/fvDzk5OQwdOpRKLerZsycqKyvBxcWFGzdudKpfL168gKurKyQlJTFo0CDExMSgoqICnp6eP+VF/buirdrF6urq79r169evsWrVKigqKmLOnDkoKSmBvb09pKWlsXPnzl/+UpSWlsb27duhra0NRUVFTJw4EQEBAcjKysLq1auper3mdDdeXl7s3LkTu3bt+in96d69O4yMjGBoaIjo6Gjo6enh6NGjmDNnDsLDw2FlZYXw8HBMmzaNWnWTkJD4roPUEbuWlpYGHx8fEhMT26yL6QjCw8Nx7949Jgp3GxsbvH79GosXL8bly5cRGRmJRYsW4cGDBzhw4AC6d++ODRs2QEtLC1VVVViwYAGGDRsGPT09FBQUYPTo0WAwGEhNTcWtW7c6RQH++fNnODo6gpOTE2PHjsX9+/fh4uICV1dXzJ49u0vu/U/A9+z6eysjhYWFsLS0xLBhw6ChoYGGhgZ4e3ujuroafn5+4Ofn7+outwk+Pj4EBQXBxsYGI0aMgLy8PB48eIBbt25BR0eHypQAmgJqQUFBcHBwYGHg7Crw8vJCWVkZHz9+xPPnzyl2Pk1NTURGRmLv3r3YvXs3SkpKcOXKFbx69QorVqz47ju7I3YNNJFQJCQkdLrG5Fs8e/YMu3fvxvnz55ko2AsLC7F48WKcOHECnp6e4Ofnh4eHB9zc3LBw4UK4uLhgxowZyM7OxuHDhzFs2DAEBAQgNDSUmkvdvn0bYWFhndJLrKqqwrp16/D582dMmzYNz549g7u7OywtLdnq8v0J+Ot0/d5YsWIF1q9fz+J0ffr0Cbt37+5UDWmHZkMxMTGIi4uDiYkJNDU1YWJigtu3b4NOp+PRo0fUhJ0dkpOT4evri5iYGCxfvhyzZs2CkZERoqKi8OLFix+i8f0R6OjoIDo6GhISEkhNTQWNRkNCQgIVkW0JS0tLhIWF/fQ+cXJyYtWqVZCTk8OtW7ewdOlS+Pj44N27d+Dg4MCkSZNw/PhxlJaWtsn40xk0p1v+6OpjdXU1Tpw4ATU1NRw7dgw5OTnIyMhgOkZVVRWSkpJISkoCDw8Pzpw5g8rKShgaGuLw4cMYM2YMjIyMUFRUBHFxcaSkpODq1au4du0aysvLsWTJEjg7O3eqf2/evMGGDRtw8uRJ+Pn5YcOGDQgKCsLBgwdhbW39U1NTfjdERkbi5cuXsLW1hZaWFnR1dXHu3Dk0Njbi/PnzlEYTO5SVlWHlypUIDQ2Fk5MTZs+ejfnz5yMsLIwi3Pk3MHXqVNy8eRNTpkxBRkYG3r17h/j4eFhYWLAcKy8vjydPnvz0VA0ODg5oampizZo1yM7OhpycHG7evImoqCgATRPFuLg45ObmdnkaUlVVFQgh39X5+R7odDouXrwIPT09rFixAg0NDRRRSDNGjRoFY2NjhIaGAgCOHDkCaWlp6OjoYPv27RAQEICWlhakpaVRX1+PgoICnD59GqdPn4awsDBWrVoFfX39TjlcZWVlWLJkCdzc3HD69Gls2LABhw4dQmRkJDw9PX8Z0cLvgMuXLyMrKwvOzs7Q1NTEggULcOzYMVRVVSE0NLTNFHIGgwFTU1N4eHhQQrhKSkrw8/ODqanpL5FcYIcBAwYgOjoa+vr6+PjxI27fvo3z589jx44dLMGdAQMGQEBA4KeP5c3v5MjISNTV1WHo0KHIy8vD3r17ATTZdWFhIe7evdvl7KQMBgNVVVU/vEpPCMH9+/dhZmYGDQ0NcHFx4cGDB0xjYq9eveDp6Yn9+/cDaKp30dLSgpGREVatWgUGgwFZWVkYGRkhPT0dNBoNS5cuxZEjRzBnzhwcPHgQIiIinXK46HQ6DA0Noauri4sXL8LJyQk7d+7EtWvXcP/+fZY6sT8FvzORRllZGYyNjSEsLAxhYWEYGxu3Sj7W8n62bt2Kvn37go+PD7KysizlCXV1dVi5ciV69uxJvQu+Jbb63rVfvnwJQ0ND9O/fH3x8fBgxYgQOHDjA1MbHjx9Bo9FYPh0htElNTcXEiRNZtk+YMKHT7+gO13SdO3cOu3btwpUrV7Bz505cvXoVU6ZMgb6+fptpd/v378eWLVtw+fJlnDx5kqrD4eDggKenJ3x9fTt1A12Bbt26YeHChViwYAGmTZvWahSqe/fuvzSyMH/+fDQ2NoJGo6Fv375Yu3YtMjMz8c8//0BZWRnJycnQ1tbu0pShkJAQ9OvXr82J9vdQUFAALS0tcHNzY9GiRfDy8oK+vj7WrFnDkpNvYmJCbRs3bhz8/PyQnp6Oly9fYvPmzeDm5kZYWBiWL18OKysrODs74/Tp0zAxMcHGjRsxZ86cTvXRw8MDfn5+LGQbQkJCmDp1KtTU1LBhwwa8ePGiU+3/Sbhw4QKcnJywcuVKXL58Gf7+/sjJycHUqVPRq1cv9O7du9Vzg4KCYGtri0ePHiEoKAjx8fGUjdja2uL27dv/GkU1BwcHlJSUsGLFCgwYMICiRf8WNBoNPXv2RE1NzS/pl6qqKoAmcgdZWVmsWrUKhYWFkJCQwMyZMwEAKioqLAQxP4Lz58+DTqfDxMSk023U1dVBV1cX79+/x4oVK2BhYQEnJyccP34c7u7uTMfq6+tT9NASEhIIDg4GFxcXLly4gI0bN0JQUBAHDx7E2bNnoaenBzMzM9y9exeampqQk5PD0qVLO9XHo0ePYu3atSxpwjw8PJg/fz4MDQ1hb2+PW7du/eejxJWVlViwYAE0NDRw+fJlhIWFQUBAAHPnzsWjR4/aXPWLi4vDjBkzUFxcjMDAQFy7do3KdFFUVASNRsOHDx9+1a2wYMqUKbC1tUXPnj3bTH3+559/kJOT80v61JzCGhMTA1NTU7i5ueHDhw/g4uLCpEmTMGTIEGhoaHTpO+Xhw4f48OEDLC0tO90GIQSOjo64cOECXF1dMWXKFPj5+eHRo0cwNzdnWl2bOHEi3r59C6BppS8gIABjx46Fn58fDA0NMWbMGNjY2KCqqgpKSkrQ0tLC69evoaKiAkJIp0mCrl27hlmzZkFOTo5pOwcHB+bPnw9nZ2fY2NggPDy8y1MtfyZ+Z6dr8eLFePHiBa5du4Zr167hxYsXMDY2bvMcT09PeHt74/Dhw0hKSoKEhASUlJSY6qbt7e1x4cIFKsOpsrISGhoaTL+z71376dOnEBcXx6lTp/D69Wu4uLjAycmJrczTzZs3kZeXR33YLai0hm7durFd2MjLy+t0eU+HnC5jY2NkZmZi7969OHfuHKKiopCcnAwpKak2O0AIwYMHD7B582Z8/foVAgIC8PX1xYIFC5CXlwcBAQEICQl1ON+5trYWycnJePfuXZf8+Hr27NnmAF1TU/NLX9STJ0+GqKgovL298fnzZ0RHR2PBggUwMzPD1atXceXKFTx9+hRqamrIz8/vkmsmJCRASUnph+rWVq1ahYMHD8LExAQNDQ3o0aMHpkyZgsjISJw8eZLpGYuIiDBp68ybNw8lJSUoLS2l0sD4+fkpo01OTsb27dtx+fLlNlnM2kJjYyNKS0tZNIdu3rwJbW1tTJgwAT169IChoSECAwNhZmb2Rw3kHcX48eMhLCwMT09PRERE4PLly7h//z4GDRr03YHl1KlT8PX1xYcPHyAkJIRr165h3rx5ePHiBWg0GmRkZPD06dMO9YdOpyM1NRUpKSld9tzr6uraXMkqKSnp1MpKZzBw4EAMHDgQFy5cwNOnT5GZmYlp06Zh+PDhuH//PuLi4lBfXw95efkuIzFppkv/EVrl7du3w9TUFGvXrgUXFxd69OiBIUOG4NixYyguLsatW7eoY3l5eZmed/Pkt7y8nGK65eDgoMaZ3NxcGBoa4vr161i0aFGn+3jv3j2WgNHbt2+hrKyM+vp6jBkzBoaGhkhISICGhsZPk934HVBXV4c5c+bA29sbp0+fxqVLl3Djxg1ISkqCm5u7TUKSgIAAxMTE4MGDBxAWFkZKSgqUlZWpVVltbW3ExsZ2qD+EEGRkZODly5dt6ql1BPz8/G3KWmRkZPyy2lI+Pj5Mnz4dL1++RFRUFGpqajB9+nR8+fIFDx48wO3btzFixAgoKCh0OiX+WyQkJEBERARTp07tdBvh4eEQExODt7c3evfuje7du6NXr17YsmUL5syZg0OHDjEd35IhUkhICM+fP0d5eTnOnDlDbW/WMKqtrcWoUaMQGxuL1atXd5rEJzQ0FObm5kzbSkpKoKGhgaSkJOjo6EBGRobSOf2WvfR3xe/qdL158wbXrl2Dv78/ZsyYgRkzZuD48eOIioqi2CvZ3cv+/fvh4uKChQsXYvTo0Th58iSqq6up30Z5eTlOnDgBLy8vKCoqYsKECTh16hSSk5Nx8+bNdl976dKlOHjwIGRkZDBo0CAsWbIE5ubmOH/+PEu/xMTEICEhQX06UiutpKQEJycnJpmDL1++wNnZGUpKSu1upyU65HStW7cOMTExWLJkCb5+/UrVGp09e5ZKJWGHPXv2gIODA1euXIGFhQV0dHRw5MgR7N69G8bGxqirqwMnJ2e703saGxuxZcsWzJ8/H2fPnoWvry/mzZvXZh/aAyEhIQgICCA9PZ3t/pCQEGhra//QNTqC6dOnIzMzE9bW1qirqwMhBK9evaJWhqZNm4Zbt27h/fv3mD59OpKTk3/oeoQQZGVl/VCh9MePH8HHx0dpeEyaNAm3b98G0FTMv379ehw/fhyNjY2IjIzEwoULER8fD3Nzc4qNkYuLi6VeoFmIsbGx8Ycnx3V1dSzpk9nZ2fDy8qJSV4SFhTF+/HgcOHAAampq2Lx58w9d83eGq6srzp49C1dXV1RXV4OTkxNHjx5FZGQk0tLSUF1dzfa86OhoFBUV4dq1a1i1ahUWLlyI7du3IzQ0FOvWrUNOTk6H7JoQgmPHjkFZWRkBAQEICQmBmpoa9uzZ88Opf3JyctSE8VskJiZi1KhRv6z2rG/fvnj37h12795NBRM+fvyI48ePg8FgQFJSEvHx8eDl5cWcOXMQHR39w9fMzs7+IZKY+vp6PH78GFpaWgCaZB1apupt3LgRx44dAyEEt2/fhpqaGlJSUqgVLwaDARqNxrLa2HKiRqfTf5hZkZubm+l7rK+vh42NDUJDQ2FjY4MBAwZAQkICmzZtwvbt22FjY/ND1/udYWdnh4MHD8LX1xccHByoqanB5s2bcfnyZfTv379Vra63b98iMTERPj4+cHV1xcKFC7F27VpcvXoVISEhePDgATg5OTskqXL16lWoqKjA29sb4eHh0NPTo9jvfgTGxsY4evQo232FhYUoLi6GlJTUD12jveDi4kJCQgLOnj1LPZuioiIcO3YM1dXV4OPjw82bNzF16lRoaWmxpEN1BtnZ2RgyZMgPjV0hISGwt7cH0JTNU1BQQK1qmpubIyoqipp7WFhY4PHjx1iwYAECAwOp7+/b9+nOnTspcoz6+vofJh/7+vUrS1bKsmXL4OHhARcXFwwfPhwCAgKwtbXF6dOnsXz58j8mUNoVDldFRQXTpy0h6fYgMTERwsLCTLVM06dPh7CwMBISEtiek5mZifz8fMybN4/a1q1bN8jIyFDnPH36FA0NDUzHNLOsNh/TmWsDTQ4dO4FsLS0t9OrVC7NmzUJkZGQ7n0ATvLy8kJOTAykpKcjJyUFOTg4DBw5Efn5+p1dtO2SpzYW3EydOhJmZGRYuXAgBAQHw8vJSFOzfoqamBnFxcZgyZQqysrKY9v3zzz/Q09PDmTNnUFxc3O68ZAsLCwwfPhzXrl2jaGJjYmKQkJCAEydOdOSWWODu7g5ra2smB4bBYCAiIoJyOH8lhISEcOjQIVy6dIlyNg4cOEBFymbPno2HDx9CQkICWlpaLM+4I6ipqQGdTmcqnu0okpOTqRQpoCkNJDU1FZmZmQCAWbNm4fnz59DT00N6ejp4eHhw8OBBTJw4EevXr4eioiJ8fHwQGhrKFF2YPHkyXFxcYGBg8MPK8/z8/CgsLGSaNPj5+cHFxQW8vLyorKxk2qenp4fnz5+36nz86Wgu3B48eDBMTU2xePFiakVk7NixlIzAtzh8+DAsLS2ZVjiApsiSm5sbjhw5grt377LNiWaH3bt3Iy8vD7GxsVQRemxsLAQEBFoVwW4vVq5ciSNHjiA2NpZpnEpMTKRIFn4luLm5sW7dOjx79owS/b5x4wYOHjwIABgyZAju3bsHRUVFGBkZITEx8Yeu9/Xr1x+q0/z8+TP++ecfyikSERFB7969Kd0cCQkJVFVVwcHBAdHR0WAwGNi3bx+UlJTg7++PiRMn4tChQwgKCkJeXh7Vbt++fREQEABVVdXvMmS2B3x8fEzpIOfPn4eenh569+4NQgjevXtHrXxMnDgRPXr0oNKl/mtonrSIi4tj8eLFMDU1pdgf58yZ02p9kbe3NzZu3EhFnpvBw8ODI0eOYN++fbh06VKb7IgtcfnyZWql7ciRI9ixYweio6OhqqoKQ0PDH9LDVFNTw7t373DixAkmoq/379/DyMgIO3bs6HTbnQGNRoOBgQGSk5MxYcIEAE3al836cKKiooiOjoaDgwM2bNiAkJCQH7rej9p1c5+b3/k0Go2q/QOa6st79uyJQ4cOYffu3aDRaJTGZVxcHMaOHYs9e/bg+PHjTCsg3bt3h6enJ+Tk5DB37twf6h/Q9B5qKZHz+vVr9OrVC+PHjwfQtOLXLI/Qp08faGtr49KlSz983Z+Nrlrp6t+/P1X/JCwsjJ07d/5Qv/Lz89nKa/Tq1avVrKrm7d+WI/Tu3Zval5+fDx4eHoiIiLR5TEevnZiYiPDwcCxbtoza1r17d3h7eyMyMhIxMTFQUFCAvr5+h+r/JCUl8erVK3h6emLkyJGYNGkSDhw4gOTkZPTv37/d7bREl3GO19XVsY1SPnjwAEpKSpCRkcGGDRtw6tQpppQlAwMDTJ06FW5ubu2Kcj5+/Bg9e/ZkEdLj5ubG/v37oaKiAiMjI2p5u6OQkpJCcHAwPDw8qJSp0tJSyMvL/6v6TVpaWti7dy9WrFgBAEw/WgkJCVy8eBEyMjKYP38+4uPjISAg0OFrNBcq/sggLigoSNXrNcPX1xfm5uYwMTGBrKwsPnz4ABUVFfj6+qKsrAwyMjJMx9+9exeNjY3g5eWlhA8LCwvh4uLSJSlgNBoNGhoaCAoKoogVXr58SdWlHDhwgCV3edasWXj16tVPFZX9t9AWK2lJSQlbJzw/Px+9e/eGjY0NDA0NMWPGDKagyfTp07F8+XJoamq267dYUlKCxMREXLx4kWkcoNFosLW1hampKTIyMjB48OAO3l0TunfvjsjISOzatQuenp4QFRVFWVkZxowZ026JgZ+BCRMmIDQ0lJqYtHxh8fPzIzg4GBoaGli0aBHi4+MpquyOgBCCL1++tFrT1h50796dJRVv7969MDAwQFJSEkxNTZGTk4PevXsjMTERBQUF1Op0MxwcHECn08HBwQE1NTUcOHCAqjv6NnWos7CyssKuXbuwb98+AE3phhs2bAAAXLlyBZMnT2Yaw9XU1HD//n0MHz68S67/O6GsrAz9+vVju6+kpKRVW8rNzYWvry+UlZWho6PDRNPfs2dPFBYWgpOTs13PjMFg4MCBA7h69SrLu7M5DTkmJgaampoduLP/AwcHB4KCgnDo0CGoqKhAREQElZWV6NOnD44cOfKvSYD07dsXMTExlIPfMsWRg4MDO3bsQFlZGbX6+u07sL348uXLD6dPflsTbmtri+XLl2PdunVYsWIFPn36hJiYGNTU1ODNmzcsge2NGzdSDsC0adPg4+MDPj4+DB06FHFxcT/Ut2ZYWVnB1tYWs2bNAicnJ+7fv0+xsL558wZVVVVMY6O6ujr2799PlSj8rugq9sKcnBymeVtrzKRbt27Ftm3b2myzme6f3XycEPLdefq3+9tzzrfHdOTar1+/xvz587F582amlL+ePXsyMXpOnjwZZWVl8PT07NDiiYCAAGbPno0BAwZQtnL16lUAoDI/OoIOOV07d+6Eh4cHy42/efOGpT6mGQ0NDeDn58fkyZOhq6sLVVVVLF26lIqgHz9+HFxcXO0WGztz5gysra3Z7uPg4ICWlhZiY2M79TCa0b9/f/j6+oLBYKCurg68vLxdLijaGZibm6OgoAAqKipM+gDdunWDlJQUrl27hokTJ2Lnzp3Ys2cPtb+tyVbLZf9mNpbhw4czLeVXVFTg2LFjuHnzJri5ucHJyQljY2MsXLiQ5bnMnj0b7u7uWLNmDZXyICkpiYsXLyI8PBzq6urIyclBdHR0q/VzvLy8cHR0RLdu3bB9+3Yq6jZo0CAEBQW1WstFCEFSUhIiIiJQXV2NiRMnwsjIiK3TsGrVKpiZmeHTp0+wsbEBjUZDVlYWDh8+jMbGRhZWxNraWqZc9v8STE1NcfnyZZbvsrKyEp8+fWJLYdzQ0AA+Pj6Ii4tj586dmD9/PvT09DB37lyUlJQgODgYX758+e4A34yLFy9i8eLFrdrZ0qVLERoaChcXl47f4P+HoKAgduzYQQn1/i52PXv2bHh7e2PgwIFYsGABtb1ZRuLy5cuYMGEC7O3tmZiX2mvXZWVlKC8vx9ChQ5nsuqGhAadOncK5c+dAo9FAp9Mxf/58mJmZsby0myUaCgsLqZVmXl5eREZG4urVq9DR0cH79+/BycnZatoaDw8PLC0tMWjQIOzatYua9IuIiMDHx6fNCdL79+8REhKCoqIiDBkyBKampmwJXhQVFZGYmEhNGrm5uVFUVIRz587h/v37LCno/2W7Xrx4MV69esV2EhQdHd3qSgAnJyc4OTkRGBgICwsLzJkzB5qammhoaEB4eDgyMzPbzeL75MkTzJgxo9VgpYWFBezs7DrtdDX3197eHqtXr6b07X6GlmZHISEhgTNnzqC8vJxlzsLLy4tjx47hw4cPsLa2RlpaGvWM2mvXQNNke+bMmUx2TQhBVFQUAgMD0dDQgIaGBsjIyGD58uUsKwxAE9toYmIik1bWkSNHkJCQgPXr1+PZs2cYMWJEq7W5fHx8UFZWhoKCAnx9fSlCER4eHmzfvh329vatpj8WFhYiKCgImZmZ6NOnD0xMTNjKtfTv3x/GxsbQ0dGBq6sruLm58fXrV4SEhCAoKIgpTRn4c+y6q5wuISGhdgXL7ezsvkuvLy0tjVevXrElkCgqKmqVWEtCQgJAU0C2ZSCgsLCQOqdZCqWsrIzpt1hYWEhlSElISLT72qmpqZCXl4eVlVW7slWmT58Of3//7x7XjA8fPkBbWxvJycmg0Wgsjl+nVulJO1BeXk4AEADkwYMH5NSpUyQmJoYwGAxSUFBAFBQUSEZGBttzCwoKiI6ODlNbfn5+ZMOGDcTb25sEBwcTT0/P9nSDEEKIqakpKSkpaXV/eHg4OXnyZLvb+69h1apVREJCgpSXl1PbampqWv3U19dTn8LCQsLNzU22bt1K6uvrCSGEFBcXEwUFBXLhwgXS2NhICCHky5cvxM3Njdja2hIGg8HSh4CAAKKnp0cSEhJIUlISiYmJIeXl5eTWrVtEXl6eiImJUb+nbt26ER8fH1JRUUF0dHTI4MGDCY1GIwDIsGHDiLa2NlFRUSG7du0iM2bMIJycnMTd3Z3U1dWRhoYG6lNRUUEWLVpENm7cSFJTU8nnz5/JmTNniKysLHnw4AHbZ0Wn00lMTAwxMDAgo0aNIrKysuTOnTss90Sn04m8vDxpaGho9/fQbDMtv4ffDS3t2tvbm8TExJBz586RqqoqUl1dTXR0dEhcXBzbcxsbG4mCggKh0+mEEELq6upIaGgo2bhxI3F3dyc3b94kpqam7e7L3r17ye3bt1vd/+bNG7J27dqO3N5/CsePHyc0Go2kpaVR29pr13V1dWTw4MFER0eHabuOjg7x8fEh1dXVhBBCamtrSUBAANHS0iI1NTUsfYiPjydycnLk1q1b5OnTpyQmJobk5eWR1NRUIisrSyQlJanfEwcHB1m7di2pq6sjDg4OZPDgwYSLi4sAIL169SKLFi0i8+bNI05OTkRXV5cAIBYWFqS8vJzJruvr64m9vT2xsLAgjx8/Jnl5eeTq1atETU2NhISEtPq8Hj16RCwsLMj06dPJqFGjyPnz59nar56eHsnLy2v39/Cn2fWSJUvIs2fPyOnTp0lubi6h0+lk3bp1xMfHp9XzFy5cSIqKigghTWNfbGwscXZ2Jps2bSL37t0jioqK7e7L9evXycGDB1vdz2AwiIaGRvtv7j+Ghw8fEgDk4sWL1Lb22nV9fT3R0tIiI0eOJNXV1dQ7e/369cTJyYmaJzW/5+Tk5Nj+1rOzs8n06dPJ+fPnydOnT0lsbCxJS0sjBQUFRElJiQwaNIj6PQEgOjo6pKysjBw7doxIS0sTPj4+AoDw8/OThQsXEiUlJWJtbU3WrVtHABAlJSWSk5PDZNcNDQ3Ex8eHaGlpkRs3bpC8vDySkJBAjI2NiYuLC9t5BSGEpKWlEUdHR6KoqEgkJSXJ8ePHSVVVFctxmzdvbvN9wg6/0rabr2VhYUFsbGw6/bGwsPgpfU5NTSUAyKNHj6htzb/Vt2/fsj2HwWAQCQkJsnv3bmpbXV0dERYWJkePHiWENM0dubm5SVhYGHXM58+fCQcHB7l27VqHrp2SkkJ69epF1q1b1+77WrNmDRk4cGC7j9fQ0CDz588nhYWFpHv37uT169fk/v37ZOrUqeTevXvtbqclOuR0eXl5EVVVVcr4RERESL9+/Uh0dHSb51tZWbE1gMrKSqKgoECKi4vb3eHdu3e3eb01a9aQJ0+etLu9/xrev39POU7N6Mggbm9vT/j4+KiXrpWVFXn8+DHba23evJlcvnyZENI0CQ8KCiIKCgqEn5+faZAGQCQkJIi1tTX5+PEjkZOTI7a2tmTMmDEsgwWdTifKysrkyJEjZNSoUaRnz57U+VVVVWTDhg2ERqORMWPGEDs7O/L06VPS0NBAli1bRmJiYlj6+PXrV6KgoEAKCwvbfG6lpaVETk6OfPr0iWk7g8EgW7ZsIb6+vt9/+C3wJ03Ojhw5QvT09IiIiAg1KRYSEiJHjx5t9eVHCCH79u0jR44cYdlOp9PJ4sWLSVJSUrv7EhMTQ3bt2tXq/qCgIBIYGNju9v5rqKioIP369SOLFi2itnXErv39/akXWX19PTlw4AAJCAhge62IiAiyY8cO6v/o6Giira1N/T5afrp37050dHTIx48fyYwZM8jKlSvJzJkzydOnT1naVVdXJ7dv3yYDBw4kAwYMoJyz7Oxs4uvrS/j4+IiUlBQxMzMjsbGxpKGhgRw4cIDs2bOHpa3GxkayePHiVsemZtDpdKKmpkaePXvGsi88PJysXLmyzfO/xZ9k14GBgcTKyop61qKiooSTk5O4urpSE3R2uHHjBlm+fDlb23dzc+tQUDMrK4uYmJi0uv/p06fEwcGh3e3910Cn08mcOXPIsGHDqG0dseuEhARCo9GIv78/qa+vJ3Fxca0+z9evXxMjIyPq/8ePHxMzMzPSt29fFrvm4uIi8vLy5NGjR0RFRYXY29sTLS0tcvz4cZZ216xZQ27evEkGDBhARo8eTbVx/fp1cv36ddK7d28iKipK9PX1yalTp0h9fT25desWWbp06Q/9xmxsbMi5c+dYticlJRENDY02313s8G84XUuXLiXLly/v9Gfp0qU/rc8qKipk7NixJDExkSQmJpIxY8awBEj++ecfcv78eer/Xbt2EWFhYXL+/HmSnJxMDA0NSZ8+fUhFRQV1zPLly0m/fv3IzZs3ybNnz4i8vDwZN24cFdRvz7VTUlKIuLg4MTIyInl5edSn5TwvKCiInD59mqSmppK3b9+SPXv2EG5ubuLt7d3uZyAmJkZevnxJCCFESEiIcvpu3bpFxo8f3+52WqJDTlfzF3vy5EmiqqpKRS4BUF4qO1RWVpIFCxaQTZs2kXfv3pGCggJy9uxZIicnR+7fv//d61dWVpL09HRSUlJCCgsLibKyMtuo5adPn4iKikp7buk/i5SUFAKg007XmzdvCAASERFBvn79SjQ1NVu9VnFxMTUJdHNzIwCIgoICWb16NVFVVSWzZs0i48aNI2JiYmTs2LFUhEtbW5skJyezXQm5du0a2bFjB2EwGERFRYUwGAySnJxMODk5ycSJE4m1tTU5evQo0dDQYIq8zZ07t9WVqKioqDYn9M1IS0sj8+bNIxs3biRXrlwhgYGBRF1dnezZs+e3HsA7i2/7GBcXR7S0tIi0tDT1bFv+jr4FnU4nK1asIMuXLyfPnj0jhYWF5Pr160RdXZ0EBwd/9/p1dXXk/fv35PPnz6SxsZHIycmR0tJSluOqq6uJrKws24jm/wpqa2sJALJw4UJqW0fsurq6mggKCpItW7aQ+vp6oqSk1OrEm06nEwUFBUIIIRcuXCAAyPjx48nq1auJtrY2mT17Nhk3bhyRkpIi3NzcpL6+njQ0NJB169aR+Ph4tmNwVlYWNeHT0tIitbW15MuXL0RUVJQMGTKELFmyhBw/fpzo6OhQv7358+eT0aNHs111I4SQzMzMNif0zSgpKSG6urrEysqKXLx4kYSGhhI9PT1iZ2fXpvPBDn+iXb9584YsWrSITJw4kXq2c+bMabONgwcPkoULF5I7d+6QwsJC8ujRI2JiYtLmKkQz6HQ6+fDhA/n48SNhMBhEV1eXbXS8rX3/K2AwGERSUpIMHTqU2tYRu66vrydTpkwhixYtIvX19WTJkiUkNze31evp6uqSoqIi8ubNG8LFxUUGDBhA7OzsyOLFi8msWbPIxIkTyfDhwwkA8vr1a9LQ0EBOnjxJvXO/tZfa2lqioKBAGAwG2bhxI3n27BlpaGggkyZNIr169SIGBgbEx8eHmJmZEWFhYQKADBo0iEycOJFkZmay7WNtbS1RUlL67u+srq6OrFixgujr65OwsDBy8eJFYmVlRfT09Ni+R76Hf8PpMjc3J8uWLev0x9zc/Kf1uaSkhBgZGRFBQUEiKChIjIyMSFlZGdMxzcGdZjQHqSUkJEi3bt3I3LlzSXJyMtM5NTU1xM7OjoiKihI+Pj6ioaFBsrOzO3TtLVu2sAQKABApKSnqmKCgIDJixAjCz89PBAUFyaRJk9rMjmCHHj16UFl8gwYNojJ/3r9/T/j4+DrUVjM65XS1xMGDBwkAMnToUOLr69vqS4zBYJA7d+4QOzs7snTpUiqlrC2UlJSQZcuWEU1NTeLg4ED09fWJjo4O2b9/P9HW1iYvXrwghDRFPaOjo4mcnBx59+5de27pPwtlZWUCgGmVoSODeF1dHZk8eTLp168fuXv3LnF0dGzzes3RBxkZGbJw4UKyb98+Ym5uTt68eUMaGhrIpk2bqJWpoqIi0tDQQJ48eULk5OTI0qVLmdp6+/YtkZOTo9Ii1NXVqX03b96kVln5+fnJ06dPydGjR8nMmTMpg/Pw8CD19fUkPz+fNDQ0EAaDQfLz80lpaSnR0tJq1/NjMBgkISGBHD16lJw5c6bTg9mfODlrievXrxMARFJSkmzdupV8+fKl1XZevXpF1q1bR8zNzcnOnTu/m65VV1dHNm3aRJSUlMjq1auJqakpUVNTI76+vkRRUZHExcURBoNBGAwGefjwIVFVVSW3bt364fv9k7F7924CgBw7doza1tHJmZmZGeHn5yfx8fHfTelauHAhqaurI3Z2dmTo0KEkKiqKaGhokISEBNLQ0EDCw8Opl1zz5CwnJ4fIyckROTk5praKi4vJvHnzyOvXrwkhTRO/Zgc6JSWFGBoaMqWvnz9/nsjKyhIhISECgBgaGhIGg0E+f/5M6urqCCGEFBUVkdLSUqKmptbuZ5iamkr8/PxIQEAA+fz5c7vPa4k/3a7fvn1LABBhYWFiZ2fHMtlpiezsbLJt2zZibm5OnJ2dv/tuZTAYxNfXlygoKFDBGAUFBXLw4EEiJydHIiIiqPnBu3fvyJIlS4ifn9+P3ewfjmvXrhEAZPHixdS2jtr13r17CQBy8uTJ79r1li1byJMnT8ixY8cIjUYjSUlJRF5enkRHR5O6ujry/PlzwsPDQ3r37k2uXbtGGhoaSGVlJVFWViYzZ85kcoRqa2uJkZERiYqKIoQ0BV4fPnxICCEkPz+fWFlZUXZ98uRJcvv2baKurk6kpKQIADJmzBiqRKU5xfnLly+kqKiIGBgYtNvGPn36RAICAoifnx958+ZNh55/S/wbTpeZmRmxtrbu9MfMzOy3H4/+ZMyePZtcuHCBEEKIoaEhUVFRIQ8ePCAmJiZk1KhRnWrzh50uQggxNjamjGvRokUdXhVoCTqdTq5fv0527dpFRo0axVJTkpubSxQVFUlUVBSxs7MjGhoaRE1NjezatatDaYr/VZw+fZoAoH4ohHR8EP/48SMZMGAAmT17NjEwMGj1WjU1NURdXZ0wGAzSv39/YmRkRMzMzAiDwSANDQ2kqqqKiIqKEiMjI5KQkEDMzMyo1agHDx4QMTExYm1tTXbs2EEMDAyIvr4+ld6XkZHBshLWchBn9zl8+DAREBBgu69nz57E3d39h36bHcGfPjkjhBBvb2/q+Y0ePZp6MXYWjx8/Jvv37yeTJ08mx44dY/ouKioqiJ6eHjl16hTZsmULUVdXJ+rq6mTt2rXkw4cPP3Td/wJevHhBAJDt27dT2zpq1+Xl5WTGjBmkb9++RF5evk1bUFRUJAwGg6iqqhJZWVmiqKjIVEc5Y8YMMm7cOPLx40dq1ayhoYFkZmaSvn37El1dXbJjxw5iaWlJNDQ0yPPnz6k+KykpMV3r8OHDbdr1qlWrmNLav01vdHR0JJWVlT/luX+L/4JdP3v2jHp+oqKibTpe7UFaWhrx8fEhKioqxNHRkSlNqL6+nmzYsIHs2LGDHDx4kGhoaBBNTU1iaWnJNgX1fw1lZWUEANHV1aXssaN2XVdXR4yNjQk3NzeZN29em8FsCwsL8vHjR7JhwwYiISFBpd4327W1tTXh5+cnhYWFREZGhpSVlZGGhgby5csXMnbsWDJ37lzi7u5O7O3tiYKCAuVwEUKIqqoq+fr1K/X/3bt327RreXl5snnzZrb7+Pj4iKWlJcnKyvp5D/8b/BtOl6mpKbGysur0x9TU9Lcfj/5kXLt2jUphzcjIICNGjCA0Go307Nmz04HgLqGMb8lCcvHiRVRVVXVK6+np06eUVtPHjx+hoKCAvXv3Ijk5GatWrQLQxIQXEBCA9evX4+zZs13R/f8UDA0Nce7cOSxZsgSbNm3CypUrOyyc2LdvX3h4eGDJkiWYO3cuPn/+TGkJtURoaCg0NDTg7u6OnJwcfPnyBfv27aPYXRobG1FaWgoBAQFMmTIFnp6eKC0tpYTqnJ2d8fXrV8jLy2Pp0qUU+w2DwcCmTZuY6D4BwNHREZMnT4akpCSEhYVRUVGBqqoqCAkJYdeuXdDX18fRo0eRkpKCQYMGwdraGiNGjMDFixdx69YtuLq6wtXVFWvXrsWuXbt+C4ar3xktWbRSUlKQkpLCxHDVXuTm5mL58uUYMWIEREREMHjwYNy6dQupqanYu3cvODk5ISgoiODgYKirq+PGjRu/Bavg74Rx48Zh8+bN2Lx5M0pLS+Hk5NRhCng+Pj74+vpi/PjxGD16NO7du8eWqvrp06cYPnw4wsLCcOPGDcyfPx9GRkbg4eGh5AXS09MxbNgwSEpKYty4cXj8+DGmTZsGaWlpBAUF4fTp05CTk4OhoSETlfOePXtY5BgWLVoELi4u9OnTBz169EBdXR3FbuXh4QE3NzeYmZlRx69ZswZqampISEhAYGAgvL294e3tDXV1dYSFhXVKLuN/CS0pwktLS3Hjxg0sXbq0w+1UVVVh+fLl4OHhwZw5c1BdXY3KykpKsFhISAjc3NzYuXMntLS0EBwcjJUrV3blrfzx6NGjByIiIqCrqwsA8PDwaJXmvzXQaDQcPHgQly5dAp1Ox8mTJ2FnZ8dyXGlpKQoKCpCdnY2AgABMnToVU6dOhbi4OGXXaWlp4OTkhIiICMzNzREWFgYLCwsICwvj4sWLWLZsGWRkZCAqKooRI0ZQ4/TFixcxevRopnnfxIkTceLECYiIiEBERASEEBQVFUFQUBCBgYFwdXVlmsOtXbsWsrKyKCkpgaurK/z9/eHv749Ro0bh9u3blHbkX/zFr4KysjL196BBg5CamorS0lKIiIh0eo7SeRnzFmh+cU+fPh3379/vlMP16dMnbNy4EZGRkXByckJ2dja8vb0RFRWF3NxcJkGz/v37o76+HhUVFV3RfRYwGAycPn0ampqa0NTUhIqKCry9vVFZWflTrteVoNFoOHnyJExNTeHq6oqhQ4fixYsXHW5n4cKFkJGRQVJSEsaOHQt3d3cwGAzk5eXh+vXrsLW1xcaNG+Hs7IytW7di/fr1oNFoGDp0KIAmdfBm2npVVVUAwPjx4/H+/XvqGvb29igsLERwcDAKCgpQXFyMGzduQEtLi4UWv7y8HMnJyRATE4OkpCSmTZuGefPmQVtbGzIyMmhoaMCiRYuol/qHDx9gYmKCUaNGIS0tDU+fPoWTkxOAJn0hJSUl1NbW4sWLFwgMDERkZCSeP3/eqWf+X8WMGTNAo9HQr18/nD9/vlMOV319PUxNTbF//37s2bMHb9++xf79+xEaGooJEyYwUcB369YN06ZNo3RCfgZu3LgBXV1dyq5dXFxaFVz83bBlyxZs374d/v7+GDRoEC5fvtzhNkaOHAlra2vcunULCxYsgK2tLSorK/Hlyxfcvn0bW7Zsgbq6Os6dOwdDQ0Noa2tDUFCQkmloaGhASEgIiouLKbuePn06kzafkpISJk6cCC8vL+Tk5KC4uBiPHz+GqakpamtrmTRSGhoa8PjxYwgJCaF3796YPHky5OTksHDhQsjJyUFKSgozZsyAnJwcevToAQDQ1dXFxIkTcfv2bZw/fx6HDh0CAERHR2Py5Mn49OkTsrKyEBAQgLCwMNy7dw8MBqOzj/0/h1GjRqFHjx7g5+eHj48PTExMOtWOlZUVLCwscOLECRQVFcHV1RV+fn6ws7NjcuJoNBqMjIxw7ty5rroFFjx//hxLly6Furo61NTUYGNj88eIXuvo6CA4OBjx8fEYMWIEvL29O9yGgIAA3N3dqeCitrY2cnNzUVNTg/j4eBw8eBDjx49HcnIy5s6diyFDhmDq1KlM8isxMTFISkqi9K++teuBAwfC3t4e27ZtQ3p6OoqLi/HmzRusX78e4eHhlM4lAEq+hZeXFz179sT48eMxZ84cLFy4EEpKSpg0aRI0NDQgJCRE9WHcuHGYN28eYmJisH//fly4cAFAkw7TqFGjkJSUhLKyMgQHByM0NBSxsbGoqanp1DP/XUC6SBz5L34dREVFfywo3J7lsPYsu3748KFDlNrfwsXFhYlUoyWBQ319PVWs2Yzly5eTnJycTl+vNdDpdGJqakq8vLyolJWGhgYSGRlJlJSU2qxt+d2QkZFBJk2aRISFhcnSpUtJREQES9HytzSuLT8FBQXEzc2NTJ8+naqlwv9f/ufk5CTTp08nzs7O5PHjx6SmpoZoaGiQkpISUlNTQ7y8vKhjmwvh7ezsmK7/4sULYmpqSubMmUMGDRpEBg4cSJYtW8a2Jqi5Vg0t0opevXpFtQM2KQpDhgwh//zzD9t9QkJCFFVpy+2tMbp1FP+FNCRCmuhcW6aMdBShoaFM9NSamppMdqypqclUIHvkyBG2LJRdAQ8PD7J69WqK4YjBYJB79+4ROTk5kp6e/lOu+TNQVFREFi5cSLi5uYmuri45efIkefr0KdNzbcuuq6qqyIEDB4iysjLh5OQkvLy8lEwDjUYjo0aNIqtWrSKxsbGkpqaGrF69mrLxe/fuUbbSXOPj5+dHIiIiqGtnZWURe3t7IiMjQ4YNG0b69+9PFi5cyJYwoZlWuuWnmT67vr6ere2Ki4uToUOHEm5ubpZ9HBwc5NGjR2Ty5MlM27uKIe+/YtdlZWXfZXRtCykpKcTGxob6f/369SQlJYX6397enolF+N69e+0iM+oMzp07R3R0dMj79++Z+qehodGq5MXviOrqarJ27VoCgMybN4/4+PiQBw8eMNXJt2XX9fX1JCQkhOjr6xM+Pj7Cw8PDRHYmJSVFLCwsSGhoKKmqqiLHjx8nAQEBpKamhkpzBEDZckJCAtm8eTN17bKyMuLm5kbk5OTIyJEjiaSkJJGXlyf3799nSVUODg5msc2W0kAjRoxga9vDhw+nCDe+/QQGBlIU6c2fjsgXfA//RnqhsbExsbCw6PSnubTndx6P/oIZXeZ0/SjU1NSYDHf+/PlMDo6dnR3ToKqsrExqa2u7vB+nT58me/fuZbvv3r17ZPXq1V1+zZ+J4uJisn79ejJs2DBqoNqyZQv17L43iDd/QkNDia6uLvHy8iKvX78m1dXVLPnmx44dI76+vqSmpoZEREQwDbRVVVVk3rx51Hd89epVsmDBAqZ6nU+fPhFjY2O2DDMtnbjmj6WlJSGkiUhl69atpH///kRZWZn079+fjBs3jqmeS1tbmxw4cIDcunWLODk5kYSEBMJgMEifPn2Y2rx7926XPPf/yuTsR2FsbEzJDxBCiIODA1XfQ0jThL1l/aGlpSWTnXcVXr58SczMzNjuy8nJaTfRyu+Curo6snPnTibnwtjYmGLtasuuW9r2/fv3ia6uLtm6dStJSkoiX79+ZbHr+Ph4smLFClJTU0M+fvxIAFB1WQwGgygrK1MBqtTUVCIvL89Ur1NeXk5cXFyIs7Mzy31cvHiRxa6nTJlC7Q8KCiKDBw8mCgoKZNCgQWTUqFFUoERAQICoqqoSNzc3EhcXR3bu3ElNGOfNm8fUJjuq687gr103wdPTk8mhCQgIYGIsTUhIINu2baP+37dvH5OddxXKy8uJoqIiWwKvqqoqIisr22GGyn8TDAaDnDhxgsjLyxNOTk4CgMjIyFBMf+2167S0NGJgYEDWrl1L4uLiSFlZGYtd5+XlETU1NVJdXU0aGxsJACIoKEg9L0tLS4qYolmv8+rVq9Q7vK6ujvj5+RF9fX2WgPuzZ8+IqKgoi2034+bNm2TcuHFkxowZZNSoUWTYsGFEUFCQCpzIyMgQR0dHcuPGDXL06FGyf/9+wmAwyJo1a35KMIWQf8fpWrJkCVm6dGmnP0uWLPntx6O/YAaNkO+vT1ZUVEBYWBjl5eXtUr3uDDQ0NBAVFUX9HxkZibdv31Iq046Ojli+fDmGDRuGuLg4REdHw8vLq8v7oaWlhbNnz7ZaF6CqqoqLFy+iW7duXX7tn438/Hzs378fe/fuhZSUFNasWQMDA4NWv9Pv/TS+VeOura2Frq4uXF1dkZqaCltbW5SXl4OLiwumpqZYtmwZFBUVUV9fD1VVVcTExLA8RzqdDnV1dZw9e5apVhAA3r17h4iICPDx8WHcuHGYNGkSyzEtERwcjI0bN2L8+PEYOnQoPn78iJ49e8LDw4NSNq+oqEBNTQ24ubnBy8sLfn7+Nu/5/7V370FRXXccwL/LG0Q2KIFlDfURraipidUEESkvFTRKapICQTdDpQooWnwTO1pCWhWN2ijqGJ0Ko1SrRE1ICVWb0cRG4yvW+MLEoAFhwSouIC91T/9g9taVR5DdvYr7/czcmXDvOfecvXowv/2de057yTFmTCVHHydNmoQNGzZAqVQCAC5duoT09HTk5ORAoVBg69atcHNzwxtvvIGrV68iJSUF+/btM3s/kpOTMX36dAwcOLDF6wkJCZg3b540PbYzuXXrFnbs2IHU1FQ4ODggJSUFcXFx8Pb2brVOW2P74XENNE0lGz16NPr06YPAwEDs378foaGhWLRoEXx8fKR3SCZMmIDNmzdL72c+KCkpCfHx8UbThoGm30s7d+7E7du3MWLECAwcOLDN91qOHTuG6OhoPPfccxg2bBi0Wi30ej3S0tIwaNAgAEBdXR0qKyvh5OQEe3v7R37/rTUc102WL1+OkSNHYuTIkQCa3u+KjIyUfqefPHkSeXl5ePfdd1FTU4MJEybgwIEDsLMzy2vkkg8//BBKpRLR0dEtXl+3bh2ee+45TJw40aztyqGmpgYHDhzAjBkzcOvWLSQkJGDatGno379/q3UedVy///77qK+vx6JFi9ClSxesWrUKs2fPRlZWFo4fP46NGzcCaPr9qdFo4Ofn1+we69evh4uLC37729826//f//53XL58Gb/61a/w/PPPw9fXt9X+lZWVISwsDLa2tggODkZVVRVu3LiBuXPnIiwsTPoMZWVlcHFxgY2NjTTl2BzkHNuGtgzvynZUY2MjcnJynujfR/SQ9kRmcnwDkJycLC0BL0TTNz5JSUkiLS1N3LhxQ4SGhoqamhqRnZ0tIiIiTJry1Ja29qUSQoiEhIRmG+h2NhcuXBBvvPGGsLW1Fa6urmLcuHEiPT1dlJWVtZrpauloaXUlrVYrpkyZIgYMGCBsbGxEUlKSCA8PFwcPHpTaz83NbXFTXYOPPvpIZGZmmvQZr1271uK0sf/85z8iJCTEKPtiCfxGvMmmTZvE9u3bjc6tXbtWxMfHi2vXromoqChRUlIiPvvsMxESEiKuXr1qkX781FLKmZmZbe412BmUlZWJxMRE4eLiIuzs7ERISIiYP3++KCwsbDOL3Z5xXV1dLVJTU8WQIUME0LSpZ1hYmMjKypLaLywsFImJia327/LlyyIhIcGkz1hTUyPGjBnTbH/H69evi1GjRjXbE8bcOK6bHD16VCxcuNDo3GeffSYiIyPF2bNnxZIlS8Tnn38ujh8/Li2zbAnz5s1rc5nww4cPG01r64yqq6vFkiVLhIeHhwAgXnnlFZGUlCRt32DKuK6trRWZmZli5MiRAmjaB3DMmDHivffek1ahrK+vF2PHjm21f7W1tUbbu3SEXq8XkydPFtu3bzea8VRdXS1iYmJEXl6eSfdvj8eR6YqNjRVxcXEdPmJjY5/430dkzCwLaZhDcnIylixZgoaGBgBNL9+uX78eL730EkaNGgWtVouoqCjU1dVhz549HVqsoz3u3r0rreTTEq1WK31r31kNGDAAubm5uHr1KubPnw+9Xo/ly5ejb9++SE5Oxscff4za2loIIXDo0CFMnjwZAQEBSE5OxpEjR9q8t1KphEajwcWLFzF48GC8+uqr2LVrF4KDg5GXl4e9e/fi448/hhACd+/ebfEegwYNQlFRkUmf8c9//jPWrl2Lvn37Gp0fPHgwFi9ejA8++MCk+1P7xMbGYsuWLfjvf/8rnZs5cyamTJmC+Ph4HD16FL/73e9w+vRp7N69Gz179rRIP9zd3VFWVtbq9WvXrsHT09MibctFpVJh48aNuH79OlauXAmlUomtW7di4MCB0Gg0yMnJwa1btwAA3377LRITExEYGAiNRoN9+/a1udiEnZ0d4uPj8cMPP0CpVOLVV19FTk4O3n77bRw5cgQ7duzAjh07oFAoUFtb2+I9+vXrh+vXr5v0Gbdu3Yq4uDgpw2KgVquRnZ2N9PR0k+5P7ePn54dz587hwoUL0rmIiAhkZGQgIyMDGzZswMqVK7Fz505s2LABAQEBFumHl5cXfvzxx1avPw3j2tXVFe+++y5KSkqQnZ2NPn36ID8/HyNGjMC4ceOwadMm6RkUFxcjNTUVISEh+PWvf42srCzU19e3em/DIic6nQ5A00ye9evX4w9/+AMuXbqE7Oxs5Obm4t69e6isrGzxHs7OziavNvvFF1/Ax8cHkyZNMrqXq6srsrOz8Ze//OWpXAxHcCEN69OeyEyubwD+8Y9/iNDQULFjxw5x5coV8eWXX4q4uDiRkpIi2/5Ka9asEbt27Wrx2vfffy80Go0s/ZCL4RuysrIykZqaKnr37i0tNGH470GDBolJkyZJPxs2LmxtLxHDLukPHg++0Gs4+vTp0+I7VPn5+a2+V9ce9+7dE2PGjGn1ul6vN+sLuC3hN+L/d/bsWREUFCTWr18vvvvuO3H69Gkxd+5co01yLe3gwYNi8eLFLV67c+eOtC/V08IwrnU6nVi1apUYNGiQACAcHByEr6+vACB+9rOficmTJ4vBgwcLACIgIED8+OOPrY5rwyasDx4tLWbRrVs38be//U3cv3/fqE/FxcXN9t57VGPHjm3zHZ2oqChpc3VL4Lj+P61WK8LDw0V6ero4f/68uHDhgli6dKkYPXq0KCkpsWjbBiUlJeLNN99s8ZperxcRERFt7lvV2RjGdX19vdi2bZvw9/cXtra2QqFQiAEDBgg7Ozvh7u4uYmJiRGBgoFAoFKJv377i5MmTrY7rf/7zn+0a146OjmL58uXSBuUGjY2NIiIiwqTPZdg/rDVpaWnNstvm9jgyXTExMeLtt9/u8BETE/PE/z4iY480wdpSS7QbjBw5EoMHD8bu3buxYsUKuLu7Y9asWXj++edRXV1t0bYNoqOjMXnyZLi4uCAwMFA6/8MPP+D3v/89PvjgA4s/BzkZsnoODg6YP38+5s+fjytXriA3Nxc6nQ5hYWEICQmBQqGAEAK5ubmYM2eO9K1bSxnHBQsW4JlnnsH9+/cxbNgw3LlzB3fu3MGQIUPg7e2N2tpaTJ06Fba2tggKCkJ8fLy0TK4QAuvXr8eaNWs6/Jzv3LmDLl26tFnf1tbWon+OnenviKX72rNnT+Tm5iIvLw+rVq2Cs7MzJkyYgKFDh+LevXuyPKthw4bhww8/xKZNmxAdHS3tXXfr1i3MmDEDKSkpsv2OkcOD2fq4uDjExcWhvLwcH330EYqKijB79mxERkbC3t4eAPDvf/8bCQkJCA4Oxu7du1t8p+o3v/kNGhsb8f333yMgIAB6vR6VlZXo27cvXnzxRVRVVWHq1KlQqVSIjY3Fhg0bsHfvXumdhdWrVyMqKsqkP2+9Xo+6urpWl4p2d3dHcXGx2d8dMuC4/j9nZ2fs3LkThw8fxsaNGyGEQEhICJKSkmBjYyPLs+ratSt8fX2xcOFCzJ8/X/q7Vltbiz/+8Y8IDw+HEKJT/bm15cFxPW7cOIwbNw5VVVX49NNPceLECUyZMgVvvvmm9A5jYWEhEhMTMWrUKOzYsQO//OUvm93zxRdfxObNm/H5558jMDAQXbp0QXl5Oby9vREQEICbN2/ivffeQ9euXZGamooNGzbgX//6l5RB3LVrF0JDQ016xlqtFm5ubq3eo1u3biguLn7q/s0WJmarTKlLj0e7FtKor69H7969O81+NkRPApVKhaKiIjg5OT3urrSI45ro0XFcEz2d5BrbhoU0oqKiTF5IY9euXVxIoxNp19eBTk5OKCoqMtrJnoja5uDg8MT+jxnAcU3UERzXRE+nxzG2ma2yLu2eg+Hk5PRE/0NDRI+O45ro6cNxTfTk4/RC62OZie9ERERERNQivV5v0qqMT+OKjk87Bl1ERERERDJipsv6MOgiIiIiIpIRgy7rw6CLiIiIiEhGDLqsj83j7gAREREREdHTjJkuIiIiIiIZMdNlfRh0ERERERHJiEGX9WHQRUREREQkIwZd1odBFxERERGRjBh0WR8upEFEREREJCND0GXKYSmVlZXQaDRQKpVQKpXQaDS4ffv2T36etLQ0qNVqODs7Izg4GOfPnzcq09DQgJkzZ8LDwwNdunRBZGQkSkpKHqntmzdvIiIiAmq1Go6OjvDx8UFycjKqqqqM7vPtt98iKCgIzs7O6NGjB9LT0x97oMqgi4iIiIhIRnq93uTDUmJjY3HmzBkUFBSgoKAAZ86cgUajabPOihUrsHr1amRmZuLEiRNQqVQYPXo0qqurpTIpKSnYu3cvdu7ciSNHjqCmpgbjx4/H/fv32922jY0NXnvtNXzyySe4fPkysrKycPDgQSQmJkplqqqqMHr0aKjVapw4cQLr1q3D+++/j9WrV5vxKT06hXjcYR8RERERkRWoqqqCUqlEREQE7O3tO3yfu3fvoqCgADqdDm5ubmbr38WLFzFw4EAcO3YMfn5+AIBjx47B398fly5dQv/+/ZvVEUJArVYjJSUFCxcuBNCU1fLy8kJGRgYSEhKg0+nw7LPPYtu2bYiOjgYAlJaWwsfHB/n5+QgPD+9Q2wCwdu1arFy5EsXFxQCAjRs34p133kF5eTkcHR0BAMuXL8e6detQUlIChUJhtuf1KJjpIiIiIiKS0ZOa6Tp69CiUSqUU9ADA8OHDoVQq8dVXX7VYp6ioCFqtFmPGjJHOOTo6IigoSKpz6tQp3L1716iMWq3GCy+8IJXpSNulpaXYs2cPgoKCjD5DUFCQFHABQHh4OEpLS3H16tVHeBrmxaCLiIiIiEhG5nqnq6qqyuhoaGgwqV9arRaenp7Nznt6ekKr1bZaBwC8vLyMznt5eUnXtFotHBwc4O7u3maZ9rb91ltvwcXFBT169ICbmxu2bNli1J+W+vJgXx8HBl1ERERERDISQpiU5TIEXT4+PtKiE0qlEsuWLWuxvbS0NCgUijaPkydPAkCL0++EED85Le/h6+2p83CZ9ra9Zs0anD59Gvv27cOVK1cwZ86cn+xLa/eXC5eMJyIiIiKSkbmWjC8uLjZ6p+vBKXUPSk5ORkxMTJv37NWrF86ePYvy8vJm127cuNEse2SgUqkANGWRvL29pfMVFRVSHZVKhcbGRlRWVhpluyoqKjBixAipTHvbVqlUUKlU8PX1Rffu3REYGIjFixfD29sbKpWqWUaroqICQPNsnJyY6SIiIiIikpG5phe6ubkZHa0FXR4eHvD19W3zcHJygr+/P3Q6HY4fPy7V/frrr6HT6aTg6GG9e/eGSqXCgQMHpHONjY04fPiwVGfo0KGwt7c3KlNWVoZz585JZTrStuFZApCmVvr7++OLL75AY2OjVGb//v1Qq9Xo1atXq/exNK5eSEREREQkA8PqhcHBwbCz6/iEs3v37uHQoUNmX70QAMaOHYvS0lJs2rQJADBt2jT07NkTeXl5UhlfX18sW7YMEydOBABkZGRg2bJl2Lp1K/r164elS5fi0KFDKCwsRNeuXQEASUlJ+PTTT5GVlYVu3bph3rx5uHnzJk6dOgVbW9t2tZ2fn4/y8nK8/PLLcHV1xYULF7BgwQI888wzOHLkCABAp9Ohf//+CA0NxaJFi/Ddd98hLi4OS5Yswdy5c836rB4FpxcSEREREcnIXNMLLSEnJwezZs2SVhqMjIxEZmamUZnCwkLodDrp5wULFqCurg7Tp09HZWUl/Pz8sH//fingAprew7Kzs0NUVBTq6uoQFhaGrKwsKeBqT9vOzs7YvHkzZs+ejYaGBvj4+OD1119HamqqVEapVOLAgQOYMWMGhg0bBnd3d8yZM6fZe19yY6aLiIiIiEgGhkxXYGCgyZmuL7/80iKZLrIMvtNFRERERERkQZxeSEREREQkoyd5eiFZBoMuIiIiIiIZMeiyPgy6iIiIiIhkZNjk2JT61Lkw6CIiIiIikhEzXdaHQRcRERERkYyY6bI+DLqIiIiIiGTETJf1YdBFRERERCQjBl3Wh0EXEREREZGMhBAmTRFk0NX5MOgiIiIiIpIRM13Wh0EXEREREZGM9Ho9FAqFSfWpc2HQRUREREQkI2a6rA+DLiIiIiIiGTHTZX0YdBERERERyYiZLuvDoIuIiIiISEYMuqwPgy4iIiIiIhlxeqH1sXncHSAiIiIiInqaMdNFRERERCQjTi+0Pgy6iIiIiIhkxOmF1odBFxERERGRjJjpsj4MuoiIiIiIZMSgy/ow6CIiIiIikhGnF1ofBl1ERERERDJjtsq6cMl4IiIiIiIZGaYXmnJYSmVlJTQaDZRKJZRKJTQaDW7fvv2TnyctLQ1qtRrOzs4IDg7G+fPnjco0NDRg5syZ8PDwQJcuXRAZGYmSkpJHavvmzZuIiIiAWq2Go6MjfHx8kJycjKqqKqnM1atXoVAomh0FBQUmPxtTMOgiIiIiIpLRkxx0xcbG4syZMygoKEBBQQHOnDkDjUbTZp0VK1Zg9erVyMzMxIkTJ6BSqTB69GhUV1dLZVJSUrB3717s3LkTR44cQU1NDcaPH4/79++3u20bGxu89tpr+OSTT3D58mVkZWXh4MGDSExMbNangwcPoqysTDpCQ0PN8HQ6TiGY2yQiIiIisriqqioolUr07NkTNjYdz33o9Xpcu3YNOp0Obm5uZuvfxYsXMXDgQBw7dgx+fn4AgGPHjsHf3x+XLl1C//79m9URQkCtViMlJQULFy4E0JTV8vLyQkZGBhISEqDT6fDss89i27ZtiI6OBgCUlpbCx8cH+fn5CA8P71DbALB27VqsXLkSxcXFAJoyXb1798Y333yDl156yWzPxlTMdBERERERyUiv15t8AE1B3INHQ0ODSf06evQolEqlFPQAwPDhw6FUKvHVV1+1WKeoqAharRZjxoyRzjk6OiIoKEiqc+rUKdy9e9eojFqtxgsvvCCV6UjbpaWl2LNnD4KCgppdi4yMhKenJwICApCbm/sIT8EyGHQREREREcnIXNMLfXx8pPeflEolli1bZlK/tFotPD09m5339PSEVqtttQ4AeHl5GZ338vKSrmm1Wjg4OMDd3b3NMu1t+6233oKLiwt69OgBNzc3bNmyRbrm6uqK1atXIzc3F/n5+QgLC0N0dDS2b9/+Ux/fohh0ERERERHJyFxBV3FxMXQ6nXS88847LbaXlpbW4uISDx4nT54EgBaXshdC/OQS9w9fb0+dh8u0t+01a9bg9OnT2LdvH65cuYI5c+ZI1zw8PDB79my88sorGDZsGNLT0zF9+nSsWLGizb5YGpeMJyIiIiKSkbk2R3Zzc2vXO13JycmIiYlps0yvXr1w9uxZlJeXN7t248aNZpksA5VKBaApU+Xt7S2dr6iokOqoVCo0NjaisrLSKNtVUVGBESNGSGXa27ZKpYJKpYKvry+6d++OwMBALF682Kj9Bw0fPtwoG/Y4MNNFRERERCQjuVcv9PDwgK+vb5uHk5MT/P39odPpcPz4canu119/DZ1OJwVHD+vduzdUKhUOHDggnWtsbMThw4elOkOHDoW9vb1RmbKyMpw7d04q05G2Dc8SQJvvs33zzTetBmRyYaaLiIiIiEhG5sp0mduAAQMQERGBqVOnYtOmTQCAadOmYfz48UarB/r6+mLZsmWYOHEiFAoFUlJSsHTpUvTr1w/9+vXD0qVL4eLigtjYWACAUqlEfHw85s6di+7du6Nbt26YN28efvGLX2DUqFHtbjs/Px/l5eV4+eWX4erqigsXLmDBggUICAhAr169AADZ2dmwt7fHkCFDYGNjg7y8PKxduxYZGRkWeWbtxaCLiIiIiIgAADk5OZg1a5a00mBkZCQyMzONyhQWFkKn00k/L1iwAHV1dZg+fToqKyvh5+eH/fv3o2vXrlKZNWvWwM7ODlFRUairq0NYWBiysrJga2vb7radnZ2xefNmzJ49Gw0NDfDx8cHrr7+O1NRUo/796U9/wrVr12Bra4uf//zn+Otf/4rJkyeb7yF1APfpIiIiIiKSgWGfLk9PT5P36aqoqDD7Pl1kOcx0ERERERHJ6EmdXkiWw6CLiIiIiEhGDLqsD4MuIiIiIiIZMeiyPgy6iIiIiIhkxKDL+jDoIiIiIiKSEYMu68Ogi4iIiIhIRkII6PV6k+pT58Kgi4iIiIhIRqYGTQy6Oh8GXUREREREMmLQZX0YdBERERERyYhBl/Vh0EVEREREJCMGXdaHQRcRERERkYwYdFkfBl1ERERERDLS6/VQKBQdrs+gq/Nh0EVEREREJCNmuqwPgy4iIiIiIhkx6LI+No+7A0RERERERE8zZrqIiIiIiGTETJf1YdBFRERERCQjBl3Wh0EXEREREZGMGHRZHwZdREREREQy4pLx1odBFxERERGRjJjpsj4MuoiIiIiIZMSgy/ow6CIiIiIikhkDJ+vCfbqIiIiIiGTg4OAAlUpllnupVCo4ODiY5V5keQrBMJuIiIiISBb19fVobGw0+T4ODg5wcnIyQ49IDgy6iIiIiIiILIjTC4mIiIiIiCyIQRcREREREZEFMegiIiIiIiKyIAZdREREREREFsSgi4iIiIiIyIIYdBEREREREVkQgy4iIiIiIiIL+h+pwei+/nSOPAAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import MeanStddev\n", + "\n", + "acquisition_fn = MeanStddev(model)\n", + "X_new_df, acquisition_fn_ds = greedy_alg(acquisition_fn, task, diff=True)\n", + "\n", + "fig = deepsensor.plot.placements(task, X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(task, acquisition_fn_ds, X_new_df, data_processor, crs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### pNormStddev\n", + "Computing the p-norm of the standard deviations can be used to place greater emphasis on reducing the largest standard deviations" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:04:19.230562082Z", + "start_time": "2023-11-02T15:03:46.332243617Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 579/579 [00:32<00:00, 17.77it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8x0lEQVR4nO2ddVhU29fHF0MIIqAYlIWKLXbrle5WBOkQFRXs7kS9diAoNgYWKKLYLWIHohigoKQgjcMw833/4Md5HWeGRr338nmeeZSzz9l7n1jn7L32CjEAoHrqqec/Aet3d6Ceeur5ddQLfD31/IeoF/h66vkPUS/w9dTzH6Je4Oup5z9EvcDXU89/iHqBr6ee/xD1Al9PPf8hJCq74/fv36m4uLgu+1JPPfXUACkpKZKWli53n0oJ/Pfv30ldXZ1SU1NrpWP11FNP7aOsrEwJCQnlCn2lBL64uJhSU1MpKSmJ5OXla62D9RB9+fKFQkND6cuXL/ThwweSlZWlFi1akJKSErVp04YGDhxILVu2JCKi5ORkGj9+PN26dYumTJlCCxcuJCkpKYE6v3//Tl++fKFbt27R8ePHKTo6mrhcLrVu3ZpSUlKIw+GQvLw8nTlzhgoLC+nEiROUlZVFGhoaxOFwaN++fWRsbEy7d+8WqNvV1ZXOnDlDP1pkX7x4kQYNGsS33549e2j69On04sULatGiBW3bto0ePnxIL168oNTUVNLQ0CAPDw/q378/zZkzhzgcDt2+fZuIiL59+0ZHjx6lZ8+e0cOHDyk+Pp6IiFgsFklJSZGcnBwpKCiQgoIClZSUUEJCAuXm5lbqesvKypKZmRnNmjWLNDQ0KneTqgibzabo6Gj6/PkzNWjQgKSlpalBgwbMT0JCgsTFxUlCQoL5AaDv37/T9+/fqaioiAoLC+nNmzf08OFDevjwIfOxbd26NR0+fJg0NTX52szNzaVWrVpRcXFxuQIvVhlb+tzcXFJQUKCcnJxaFXgej0eXLl2i48ePU15eHvXq1Ys8PT1JWVm51tr4N+Hg4EBHjx4lFotF6urqJC8vT2w2m9hsNhUXFxObzab09HSB4zZv3kzy8vL06NEjio6OpufPn1NJSQk5OztT69atqaCggPLz8yk/P5/i4+PpwYMHtHnzZpoyZYpAXTExMXTp0iWSk5MjNptNPj4+NGTIEBo8eDDJyMhQdnY2ZWdnU3h4OFlZWdHOnTupadOmVFRURJqammRmZkYaGhoUGRlJISEhZGJiQh4eHjRq1Cjy9/env/76i9q0aUONGjUiotKXl7OzM8XHx1PHjh2JzWbTq1evqHHjxtS9e3cSFxen9u3bU/v27UldXZ2aNGlCDRs2JFlZWZKRkSExMTEqLCykgoICSktLo9DQUFq2bBlpaGjQmzdviMWqOzUWAHr69Cnl5ORQ586dSUVFpdp1ff78mW7fvk0ODg40dOhQ8vT0JFNTU2rRogURVV5Gf5vAFxQUkIODAw0YMIDc3NyoadOmdOfOHVq/fj1NnDiRLCwsaqWdX0FGRgYdPXqUUlNTqV27dmRnZ0dycnIC+wGgN2/eUG5uLiNgP/5YLBY1adKENDQ0qEOHDqSgoEBSUlLMQ5mVlUXR0dGUkJBACQkJVFBQwPfluHHjBt26dUug3SFDhlBiYiJ9/vyZ2dagQQOSlZWlRo0aMT9ZWVmSk5OjCRMmkLGxcYXnzePxaNGiRfTkyRN6+/YtcTgcaty4MTVu3Jhat25NmzdvJg6HQ6qqqswxZW3IycnRu3fvyMrKik6fPk2WlpYUHh7O7KeoqEht2rShjIwM6tGjB/Xp04eaNWtGDRs2JAkJCbp9+zYlJibSyJEjqbCwkHJzcyk3N5fy8vKY/0tKSpKysjIpKSlRVlYWvX37lt69e0dJSUnUuXNnev78udARUm1w9uxZ2rp1K/Xr149atGhBDx8+JHFxcdq0aRM1b9682vXu2LGDjhw5QlFRUSQpKUn79u0jBweHP1/gvb29afTo0aStrc23ncPhkLW1Ne3YsYPatGlTK23VJZs3b6YbN26Qp6cntW3blmJiYmjfvn00fvx4GjlyJN++x48fJzs7O4E6xMTEqFGjRlRSUkJFRUUC5eLi4iQpKUlSUlLUtGlTMjQ0JAsLC9LX1ycJif+flX3+/JlatWrFHCMuLk6qqqrUo0cP6t69O3Xv3p26detGnTp1qlC5UxWSk5NJVlaWFBQURO6TkpJC9+7dowsXLlBMTAylpqZSSUkJqampkZSUFElISJC0tDTJy8uTtLQ0AaCsrCx6+fIlNW3alL5+/UqZmZn0/ft34vF4zHVjsVhM23JyciQvL0/y8vIkJydHHA6HUlNTKTU1lRo3bkwaGhqkoaFBQ4cOJWNjYxIXF6+1a/AjERERdOzYMdqzZw/fC+XFixc0ffp0Onv2LDVs2LBGbaSnp9OsWbPo4MGDtHbtWho/fjw1btz4zxT4rKws8vT0pNDQUKHl9+7do/DwcPLz86txW3XJyZMnKSoqitavX09iYmLM9pKSEnJycqKZM2dSv379mO1sNptWrFhBa9asIVVVVXrw4AEpKCiQtLQ0c3xhYSF9+PCB3r9/T/n5+VRcXEwcDof599OnTxQREUHx8fGkoqJC7u7uNHfuXGZEUXY7f+xPZSgpKaE1a9ZQfHw8ZWZmEpvNJiUlJTIxMSFbW1uBoW9JSQmFhYXRzp076dq1a0RUOr9UV1en3NxcyszMpMzMTFJQUKAnT56QhIQEjRw5km7evElt27YlTU1NUlFRoZKSEiopKSEOh0OZmZmUkJBAb9++JSKiNm3a0PHjx2nAgAGUmppKR48epdevX1NKSgolJyfT+/fvmbk7l8ulzMxMiomJodjYWHr9+jXzb7t27WjLli2UmZlJHh4elJ6eLjC6UVFRITMzM7K0tKzRlBIAGRgY0Llz56hBgwYC5YcOHaLv37+Tl5dXtdv4sa0lS5bQihUraOzYsRQUFFSxjKIS5OTkgIiQk5NTmd0r5MaNG1i3bp3Ich6PBzMzs1ppqy4xNDREYWGh0LKPHz/C2dmZb1txcTEmTZoEIoKrq2uV23v79i02b96M4cOHg8VigYhARGCxWGjbti0MDQ2Rnp4ODoeD+Ph4PHnyBCUlJQL9SklJAQB8+vQJEyZMwLBhw9C5c2emPiLCiBEjmDauX78u0Jfdu3eDiNCwYUMEBQXh0KFDmD17NsaMGQNvb28MGTKEqev06dNYunQpZGVlce3aNfB4PIH6cnJycOvWLejq6oKIYGFhgbFjx+LevXsYNWoUJCQkIC0tjT59+sDMzAzjx49n6p8/fz7+/vtvpr+SkpLo1q0bbG1tsXDhQmhqakJMTAx9+vQBEUFJSQkLFizAkiVLMH36dIwZM4YpIyIMHToUly5dqvL9AYDXr19jypQpIsuLiopgYWEhsL2kpARFRUUifz/fx5/vRdm5VySjv0Xgo6OjsWjRIpHlRUVFsLKyqpW26orc3FzY29uXu4+JiQnz/5KSEowZMwaSkpLYuXOn0If+Z3g8Hq5cuQIfHx+0atWKTyDFxMSgrq4ONzc3bNq0iW+7hIQE87eamhpmz56N0NBQmJubMy8IfX19zJs3D0SEnj17YuzYsejduzdfG+Li4li3bh24XC7Tp7K25OTk+Pb9ma5duzL7+fr6Yty4cVBQUEBqaiqzD5fLxZYtW/jOrX379oiIiAAAHD58GO3bt0ezZs2wbds2ZGVl8bXRo0cP5uVERJg9ezbi4uLA4XD49uNwONi8eTNkZWUhLS2NBg0agIjQpUsXNGrUiO88yn6dO3eu8P4I48GDB1i2bFm5+5ibmzP/5/F4SE5ORmxsbIW/5ORkkc/NyZMn/1yBLykpgY6ODt+D9CP79+/Hnj17aqUtALhz5w7s7e1hamoKY2NjeHp64tWrVzWqMy8vD6NHjy53H2NjYwClD7anpydYLBZOnjxZqfofP37MPMjy8vIgIrRs2RLz5s3DxYsXkZ2dzexbVFSEgQMHokWLFpgxYwb8/f0RGRmJa9euwdvbG4qKiiAidO3aFXv27MHu3bvRq1cvKCgooGPHjmjRogXS0tKY89q2bRuaN2+O9u3bg81m8/VrxowZAsLh6+sr0P/c3FyEhoZi3LhxkJWVhZmZGVq0aAFDQ0NcvnwZ165dg56eHogI7u7uOHToEB4/fszX3vjx4yEmJoYLFy4I1P/x40fo6+tj+fLlkJGRwa5duyq8pk+fPgURwdDQEIMGDYKKigrzZdTQ0ECHDh0gLi4OIoK0tDR0dHSwZcsWJCcnV+qeAUB2drbQL3gZsbGxmDBhAvN3mbB//foVhYWFQr/uhYWF+Pr1KyP0wqisjP4WgQeAffv2Yfr06QJvrNevX0NHRwcFBQW11o6rqyu+fPnCbIuLi4OZmZnQoWpVMDY2Rn5+vtCy9+/fw93dHQCwfv16EBEUFRUREhKCz58/l1vvxo0bISYmhs6dO+Ovv/6CmJgY1qxZg+Li4mr1k81m4+XLl3zXOjs7G126dIG0tDSICIcPH+Y75unTpxAXF8eKFSv4thcVFeHkyZNwcXFB06ZNQURo0aIFPD09ERcXx7cvl8vFixcv0LRpUyxevBhr167le1FIS0vD19dX5L3W0dHBoEGDoKWlhaNHj6KwsBC5ubnYs2cPtLW1kZCQAADlDnd/5OXLl2CxWFBQUEC/fv3g4OCADRs24PHjx3znd+fOHaxbtw4mJiaQlJQEi8WCnp4eMzopLCxEXFwccnNzhbYzYcIE3Lx5U2A7j8eDg4MDnj9/zvS7TNgrQ5nQCzvfJUuW/B6B5/F4ePbsGebMmQN9fX14enrCz88Pp06dwvfv34EfHrpdu3ZBT08P69evx969e+Hp6YmRI0cyc8yakp6eDhMTE6EjiYKCAmhpaQkM/6rC2bNn4e3tLVD/9+/fYW1tjWfPngEoFR4zMzO0a9eOedjbtGmDuXPnori4GIWFhXjw4AF2794NHx8fNG3aFPr6+jh8+DDf/tra2ujduzfzFRo8eHClpgZC4fHw/v17tG/fHosWLRJ6jWbMmAE5OTmR972kpAS3b9/G7Nmz0bJlS0hISEBfXx/Ozs4wNTVF48aNmTm1sbExiAj9+/fHrFmzYGdnx7zMFBUVsX79eoFz2bRpE6SkpLBkyRLo6upCQ0MDNjY22L9/v0jdSUUUFhZW6ZplZmYiKCgIDRs2ROvWrdGiRQvmnjRv3hwHDhwQqC8vLw/GxsbYsmULMxJ7+vQpRo8ejcDAQGa/oqIixMbGVvpcCgsLERsbi6KiIr7tPB4PHTt2rJSMVltLX1JSQi9evKA7d+7Q3bt3KTc3lxQVFenJkyf05s0bUlRUpKFDhzLa1JycHOooIUEmDRrQSy6XpJWVqWHv3iTeoAENHjyYWrZsSZqamtShQ4eKulNpNm7cSJ06dSJTU1Oh5evXr6cuXbqILK8Mu3fvptOnT5OzszOpq6vTy5cv6dixYzRz5kwyMTER2D8lJYWioqLoxo0btHPnTlJUVKSvX78Sj8cjMTEx0tDQoJ49e9LkyZNp2LBhdP/+fTp37pzQFQs5OTnKyMig4uJiKiwsJDExMWrevLloDX1eHtGCBUTh4UQcDpGkJJG5OdGqVURC7AaSk5OpTZs21LVrV7KxsSEzMzPq3bu3UGOVoqIi8vf3p6ioKEpPTycZGRkaNmwYDRs2jD59+kTu7u4UEBBAXl5efMcnJCTQ+vXryd/fn8aMGUN79uwhGRkZIipdZtTU1KRv374x+799+7bOLOTKY/v27fT06VNq06YNtWnThlRVVWnPnj0UEhJCPXr0oP79+1PXrl2Zn7KyMp09e5aOHz9O379/p3bt2tGECROoS5cuTJ3fv3+nhIQEUldXr9QyaXn7Z2ZmUrNmzWp3WW7JkiX04cMH+vTpEz19+pTy8/NJSkqKBgwYQM2bN6fMzExq06YN2dvbk76+PklKShLl5REGDaKY169pEkAviUiHiEqIqEhWli4XFBARUdOmTalVq1bEYrEoJSWF2Gw2dejQgTp16kQdO3akjh07kpKSEjVq1Ijk5OSoUaNG1Lx589I2iBgrMxUVFWZtevLkyTRz5kxq27at0PO6ePEivXv3jiZPnlzhxRZFVlYWswSUkZFBmZmZdOXKFerQoQM5OjqStbU1nwDyeDzKz88neXl5unPnDoWGhlLnzp2pZ8+e1L17d4H12eTkZAoMDKTly5fzbZeRkRG6Zv8jQ4YMoevXr5euBeflEQ0eTPT6NdH/1rGJiIjFIurShSgqSqjQX7x4kfbu3UuRkZGUm5tLysrKpKury/xat24tcAwAys/PZ5YKt27dSnPmzCm3v8ePHyc3Nzfq3r07nTlzhrFKe/ToEQ0dOpSKi4tp6NCh1LNnT1JWViZlZWVq27YttW/fnlq3bs1nj1BZuFwuffv2jZo1a1blY8u4cuUKHTx4kFkCLCwsJCKixo0b09ixY2nq1KmkpqYm9NjaFPg6MbyRkZGhPn36UKtWrahXr140bNgw6tu3b/md9fUl2rGDechARMzjz2JRzJgx9MTAgD5//kxJSUnE5XJJRUWFpKSk6P379/T27VuKi4ujzMxMgaolJCSoffv2lJeXRykpKQSApKWlqWfPntS3b19KTEykoUOHkqWlJbVt25b5cpQREBBAzZo1o1GjRlV0CYio1Kfg9u3bFBERQQ8ePKC4uDj6+vUrERH16tWLLCwsaNeuXdS0aVOSk5Oj+/fv04ABA8jPz4+0tbUpLCyMlixZQomJiZSSkkIyMjL08OFDunLlCmOB1qtXL+rZsyexWCxatWoVPXv2jMaOHUtKSkq0e/duCggIYAxPKkNBQUHpS+Sn+8AHi0U0eTLRli0i6+FwOHT37l06f/48Xb16lZ4+fUoAqG/fvvTgwQPmqx0fH0++vr4UERFBHTt2JD09PcrLy6PDhw+Tl5cXjRkzhoYPHy4wSsjLyyNTU1O6ffs2zZ07l29Ek5GRQUFBQXTjxg1KTU2ltLQ0Sk9PZ2wOxMXFSU5Ojpo2bUry8vKkoKBALVq0IBUVFWrdujUpKSmRgoICSUpK0rdv3ygrK4syMzPp5MmT9OLFCzIwMCArKytSVFSkwYMHC32JVQYej0eJiYkUGxtLN2/epMDAQCouLqazZ8+Snp6ewP6/Q+CrNIcvU5JUibZtASLRv7ZtK1VNZmYm4uLi8PjxY9y4cQPh4eHw9/fHlClTsGjRIgQFBSE8PBwbN26Eo6MjOnfuzLc8RURQVlbG4MGD4e7ujqNHj0JLS0tgPvT8+XMsX74cWlpakJaWhqKiIjp16oTBgwczS1GqqqoYM2YMli1bhpCQEJw/fx79+/dHo0aNYGtri/j4eADA1atXMWDAABARVFRUQETQ1NRk1pmHDRsGCQkJyMnJQUZGhulnixYtMHjwYJiamuLWrVtIT09n5olOTk7Mfhs3bsTJkycRERGB9+/fIyEhAXFxccLncVW4D6KUYGw2m1lfLzuf5s2bM8uHZf1SU1PDli1bMGHCBEZv0bx5czRv3hxEhIEDB+L+/ft8dU+fPp05Xk5ODgMGDMDWrVsBlM6J8/Ly+PYvLi7G+/fvcfHiRWhqakJcXBxSUlIQExMTusz2409SUhJKSkrQ1dXFtm3bMGDAAEZb36BBAyxatKhWlMY5OTkwNjaGtLQ0Ll68KFBeNof/+RkURXn7V1bPVreWdgBRq1ZEX76I3kdNjSgpiaiKlmGVgcvl0uzZsykjI4OGDx9Onz9/poSEBHr8+DHFxsaShIQE6ejoUPfu3alFixZ048YNioyMJAUFBdLS0qKhQ4cSl8ul9PR0+vr1K6MP6Nmzp9B5Mo/HE/hyAaAzZ85QeHg4ubi4UP/+/UlbW5vExcWpXbt21LdvX5o8eTJJSkoSm82mqKgoioyMJH9/fyosLCQul0tEpbblnTt3Jg0NDcrKyqJLly4Rm81m2mGxWNSlSxfS0tIiPz8/flv+H+5DCRHl/O/3nohelP0kJemzvDzl5uYSh8OhVq1aUZcuXahz587UoUMHUlZWpsaNG5OBgQFT7YIFC2jYsGFkZGRE8+bNozVr1hARkZaWFrVv354SExOpbdu2JCEhQREREZSYmEjjxo1jHHhWrlxJCxYsICKinJwcun79OmVkZNDnz5/p+PHj1KhRI3J0dKQlS5YQEdHcuXNpypQpAtMeHR0dUlJSoqNHjxIRUX5+PmON9+TJEzp48CA9e/aMunfvTlFRUSQrKytw//A/U95Ro0bRjRs3SEVFhZKSkqptfpuZmUk3b96kyMhI2r17N8nKytK3b9+YKSjR/3+xhY0+hVFUVEQfP378dV/4ai3L1dIXviYEBwdDX18f9vb2GDlyJMzMzHDo0CFs2bIFhoaG6NixIxQUFKCpqYnDhw8LaO7ZbLZIm4G6IDU1Fe7u7vj+/TtevXqFU6dOYdWqVXB2dsbAgQOhrKws8NWSkJBAhw4dICsriy5dusDGxgb6+voYOHAgunTpAlVxcTQU8rVjEUHif78ftzdv3hw9evRAp06dICkpKXDcjRs3BPqdmJiITZs2oUePHlBRUYGqqiqaNWvGfHXV1dVx79495OTkQFpaGjNmzBB5Ddzc3Er7x2JhwoQJ8PX1haSkJFRVVZGYmMjsl5ycjObNm8PHx0dkXTwej6mvIo24ra0t37Jh79694eHhgdDQ0Ep/9d+8ecN3zfr27YuzZ88K7Feby3J/zjq8jw/AYgkXdhYLEGK0URfweDzk5uZW6qbxeDxERUXBzc0Nffr0gbW1NYyMjODq6orXr1/XeV/T09Ph4uJS7j4GBgZIT09Hbm4ulixZwizVderUCcbGxjA0NIStrS08PT0xdepULOrfH/OIMJ4IW4jg94Pw/kWEDcOGYdeuXbh48SKOHTsGOzs7sFgsqKurY+bMmXB1dYWFhQV8fX1x5swZgRcgh8NBcXExOBwOWCwWmjZtCi0tLWboT0QYOXIk3NzcoKenB3FxcXz8+FHk+QUGBsLExARPnz5ltq1duxYsFouxY8jPz0f//v2hpqbGZ2fxMy4uLiAqtcSriJUrV6J169ZgsViQlZVF586doaGhAaJSM+KRI0fi/fv35dbB4XAQEBAAc3NzyMrKMi/QMWPGYNWqVTh27BgePXqEoqKif6HhTW4u0K2boNCzWKXbRRgv/C6ePn0KfX199OjRA25ublixYgV0dHRw5swZfPjwAfr6+nwPYV3A4/FgYGAg8mv08uVLeHt7AygVjB+/vCoqKujbty86d+6MVq1aQVFRkTElLfuJE8GLCMN+2Bb/4oVAO69evYK1tTXU1dXRr18/DBw4EFJSUiAiNGvWDDo6OujZsyczN//xN3/+fOZcEhMT0bJlS2Z+P2jQoHJNq0VhbW0NOTk5XL9+HY8ePULnzp3RsGFDPsMZYUybNg1EhEmTJpW73+nTp0FEcHNzw65duxi9wp49e/DmzRv4+flBXV0dLVq0QFJSUqX6zGazcf36dcydOxeDBg1irB6JSi0nw8PDa8W09s+Yw5eRl0e0cCHR2bP/v/5rYUG0cqXQpaDfxadPn2js2LHk7e1NT548oZUrVxJRqXbe1dWVxo8fTz169CAXFxeKiIio076cPn2abt68SZs3b+abbxYWFpKdnR39/fff1LlzZ+LxePTixQv69OkTJSYm0qdPnygvL4/xBpOVlWV+LRUVSfPcOTp86hQtz86mHIB0W7Wiudu3k14l4w8UFRVRVFQUXbt2jV6/fk1KSkqkqqpKysrKJCkpyXi/mZiYMK66RKXx1jgcDjNnrQ6JiYnk4uJCt27dInFxcdLU1KRDhw5R165dyz0uNzeXrKys6NWrV5SWliZyv6VLl9Lq1atp6tSpVFBQQBcuXKDk5GS6dOkS/fXXX0RE9OHDB+rUqRO5ublRUFBQtc7j27dvFBcXR8uWLaPIyEgaPXo0rVixglkJk5SUFNAxSEpKlqtPqJM5fK182aprGfYLmDZtGh4+fAgnJyeBoVN2djbj9DBhwgS8ffu2zvuzc+dOGBkZITg4GLdu3cLWrVuhpaWFa9euiTyGw+Hg9OnTmDx5Mnx9fXH06FGsWrUKjo6OmDRpEu7evQsej4fMr18FTGHrkrt37zImpTWhpKQEW7ZswapVq8Bms8Hj8XDz5k0Bxxo2m40zZ85g9OjRkJaWhpiYWIWjioyMDPTo0QPt27dHz5494ejoyPfMP3nyBO3bt4e8vDzOnz9f43Ph8Xg4fPgwmjVrxjc6UlBQKHe6I4w6GdLLy8sjPDy8Sh35J2FkZASA35vpR0aPHo3s7GysX79eqNKqLsjJycG+ffuwdu1aLF68GBYWFjAxMYGRkRHs7e0RHR3N7BsfHw8dHR1s2rQJHz58wLZt26ChoYE+ffrg3bt3iIuLw5w5czBmzBgBp5jKkpqaihMnTuDkyZPIyMiordOsNmVTGnFxcQwZMgQjRoxA+/btmWmMpqYm1q1bx6foqw5nz55FgwYN0KdPnwrn8GVcu3YNxsbG6NWrF5SVlWFoaIg3b94I7JeZmYkLFy7g5MmTGDBgAJo0aSLSR0MUdSLwRIRhw4ZVqSP/JMoE3dXVVegD4u7ujvT0dIwdOxYfPnz4pX0LDAzEuHHj+DS6nz9/xqhRoxAeHo6SkhLo6uri06dPAEodhKysrMDhcBATE8PnwXXq1CnMnTsX+fn5ePToEV69elWhfXlRUREmTJgAW1tb7N27F3v27IGNjQ2mTJlS7ZdHTTl79ixkZGTQvXt3ODs7w8rKCmPGjMGsWbOwdetWvHz5slbayczMhKKiIszMzCq9Zg6U6hxUVVXh7e2NRYsWoV27dpCSksLChQsF9DOpqamwsbEBEWHVqlVV7mOdCPyXL18q7Zn0T8TOzg7Jycm4efMm35IRj8cDh8OBjo4Ovnz5InIEUFekp6fDzMxMqFCy2Wxoa2sjLCwMa9euZbZPmTKFbzg6bdo0PHr0CECpc0/btm1hYGCAxYsXY9q0adDV1UVISIjIPjg5OTF+6j9y4sQJjBs3rgZnVz127twJFouFVq1aQVxcHGJiYujduzfGjBmD8+fPV2kZtaioCIsWLcLYsWPh4eEBV1dXODk5wcrKClpaWmjdujWISgNjVAUrKyuIiYnBzc0NiYmJKCwsxKJFiyAlJYXWrVtj8eLFeP36NY4cOQJFRUU0b94cx48fr+qlAFBHAn/37l3s3bsXHh4euHLlSrU69idz8+ZNeHl5gcvlwtfXF15eXrC0tISpqSm6du2KTp06oXfv3oiNjf2l/dq4cWO5U6kdO3bA0tKS74v2c8SgK1euYMOGDeDxeLC1tYWdnR2fdru4uBje3t44cOCAQP0vXrzAxIkTRbbv6urKWBf+Ci5evAgxMTGMGzcOMjIyWLVqFQICAqCkpMQE3lBSUsK4ceNw9uxZkW6sQKkLr62tLRo0aICBAwdi8ODBGDp0KP766y+YmJhg9OjRMDY2hq+vr9C19PIoLi7Gjh070Lx5c4iJiUFLSws7d+7EvXv34ObmxsQ5ICLY29sjPT292tekzob0Zb+//vqr2p37k9mxYwdsbGwwf/58DB48GAMHDkTbtm3RqlUreHh4wMbGRsB3vK6ZOnUq3r17J7L86tWr0NfXZ77gAGBqaso3GouIiMDWrVtx7do1LFq0CNOnTxcIAsLlcqGrqyvgd798+XLcuXNHZPsXLlzApk2bqnhWVSc1NRUeHh4QExODjo4OIiMjQUR882Iej4fo6GjMnDkT7du3Z4ySdHV1hQrDgQMHQETQ09NDZGQkTpw4gT179mDTpk1YtmwZswbfrl07zJ07F48fP66yS3JOTg6CgoKgr68PcXFxyMvL48SJEygqKkJYWBguX75c42tTJwIfGhrKGFJUxoihtim7mZMmTYKtrS3mzZtXJ3Pp58+fo127drC3t8eUKVNw6NAhzJ8/HzNnzsTx48ehp6cnYNtdl/z999/laoUDAgKwcuVKvnuyfv16hIWFMX+7ubnhw4cPGDt2LN6/fy8y4tC6desE4rnNnz+f8e0Xxu3bt+Hn51eVU6oQDoeDwMBA9O3bF+rq6mjevDkkJCSgqKgIf39/ZGVlwdHREQ0aNEBaWhquXr2KO3fuMDb2Dg4O6NixIw4fPox169aBiNCxY0cMGDAAQUFBjDVlRkYGJk2aJBCyS1ZWFioqKujQoQOaNGmCsWPHMgE/NDQ0sGjRonKjJiUlJQm9vmlpabC2toaMjEyllX+VoU4E3sTEBHZ2dmjQoAEGDRpU7jElJSWIiIjA7NmzMW/ePGY5qLpwuVyMGzcOU6ZMwZs3b1BYWIioqCiMGjUK27Ztq3a9wggMDMSxY8eQn5+PUaNGYcaMGXj06BFiY2OxefNmdO7cGatXr67VNssjNTUVlpaWQq9fcXExdHR0UFhYCCsrK9y7dw8AkJWVBW1tbSQmJiIiIoKJvjNq1Ch4e3vjyJEjQtvav3+/wDwyPDwcf//9t8j+LV68uFrRgzIzM+Hn5wdjY2OYm5vD0dERt2/fBgAMHz4cRAQbGxvMnTsXK1euxPbt2/H161e8efOGTzibNGmC1atXw9XVFcrKymCxWFBRUWGChZQFh/jxt3PnTr6+FBQU4OPHj/j27ZvIoCjFxcW4ePEi3N3dmXqERbb58uULU25ubo6rV6/y1ZmXl4e2bdtCS0urRjLxI3Ui8Hp6ehgwYABWrFjBF4zwZxISEqCrq4s1a9YgJiYGT548wdy5c2FhYYFv375V6UTK2Lhxo8BNAkq/+l5eXkIvfHVZuHAhnj59Cg8PD6Fr3ufPn0fbtm2rHXWlOmzduhU+Pj58NzQtLQ0ODg5MnLycnByMGTMGHh4eCAsLw44dO6Cqqopu3brhwIED2Lx5M9q1a1euDfuECRMEdBRlMQiFmXV+/PgRBgYGVX5wP336BG1tbT4F26tXr2Bqagp7e3sQEbZv3y702MTERPTp0wcqKipwdnaGtLQ0GjZsyHx9dXV14evri8DAQLi7u8PAwAB//fUX2rZtixEjRmDLli01vnc+Pj6MrsDPzw+vXr3C7t27YWhoCDMzM7Rp04bvBdOoUSO4ubnh6NGjiI+Px/z58yEpKVntsGU/89tMa0tKSjB06FD4+vrCxMQEJiYmWLBgAT5//ozo6GjY2dlV7gx+oGxuKUrz+uXLlwojyFaFwMBA7NixAw4ODkLLDx06BDc3N6EKrrokPDwcZmZmMDc3h4mJCUaOHImQkBCcO3cOt2/fZubsb9++RWBgIIKCgpCYmIhnz54hODgY586dQ3x8PExMTISutsTHx4sMwBgXFwctLS3s2bMHmZmZyMjIQEBAAF9suapgY2PDNx07ffo0lJSUGAFp1qwZYmJiRB5/9epVLF26FEDpqMTX1xfR0dHgcrl8IazLfuPHj2eOLQspVmasw+VycevWLcydOxerV69GaGgoXr9+zSeMycnJOHfuHBOyisfj4c6dO3BxcWHiAjZu3Biurq44evQoUlJScPXqVcakWNhv7NixVb5uovhtAr9u3Tp07NgRN2/eBI/HA4/Hw61bt2BgYIB79+7By8uryg4oKSkp8PT0LHef2lwq+/btGzQ1NYUKdElJCfT19REfH1+t2PK1QUlJCZKSkjBy5Ei4u7tj586dWLZsGXR1dXHixIkKjw8JCeGLucfhcHDy5Eloa2sz6/jCKCwsxOrVq6GhoQE1NTX07t0bLi4uVbbATEhIgJubG4DSZ6vsi25hYYFXr17h4cOH5Xq/AaURbYWtDBQUFPAN9YkIWlpajGVkZmYmevbsCSKClJQU3r17h61bt4KoNA6BgoLC//sciItDRUUFnTt3Zjz+pKWlYWdnx+fPHxISAicnJ0ydOhXdunVjjm/cuDE0NTWZ2H70P3v+c+fOYfXq1bUWu7HsOv5ygS8uLkbLli3x5MkTgbLc3FxoaWnh9OnT8Pf3r0yzDFlZWeV+wXk8HoyMjMDlcvH+/Xu8f/++xu6s3t7eGD58OJ+hS0ZGBlxdXREcHIzk5GR4eHjUqI3qkpubCx0dHQHTWA6HA3d3dz5lnShev34NHx8fmJmZwczMjC/goiiuXr0KMzMzPmXVu3fvMGrUKISGhla6/xcvXsSWLVuQl5eHoUOHQl5eHsHBwXzTgooSkTg6OoqcHvr7++Ovv/6Cjo6OgGNNWFgY31c2ISEBwcHBICJkZGSAx+MhJSUF165dQ0BAAJYuXYrJkyfjwIEDiI2NZT5oRARtbW3cunULtra2AgZRJ0+ehJ+fH9zd3dGsWTPGfFZbW7vS16kq/BaBP3XqFLS0tER+wXfs2IGZM2fyRe4s48OHD5gyZQo0NTWFzhXNzc1FPpBRUVEwNDSErq4ufHx84OPjAx0dHQQGBlZbKZKeno7hw4fDysqKmZrY2NgwyqktW7bg1KlT1aq7pmzbtk2kgQabzYa+vn6tKYN+rFdLS0uoe3FxcTF0dXXLXe/+kcePH2PatGnQ1taGnJycQPSb9PR0jBkzptw6NmzYUO66+Pjx44XaS/B4PGzYsAE6OjrMaOjdu3cgokrbx5eUlODUqVPo27cvpKSkoKGhgQ0bNiAgIABHjx4VMItduHAhnj17huzs7DrT+/wWgV++fDm2bduG5cuXCy1//PgxevTowecYkJaWBlNTU7637o/KGjabjZUrV2LgwIGQkZFBnz59sHHjRualkJaWhnbt2mH69Ol889KSkhKsXLmSmedVh6lTpyIkJISZmpTx9u1boevVvwozM7Ny2/b19RVqs10TTp06Ve5qyJEjRyqVDAIoFToVFRXIyMjg1q1bAuWrVq2qUPgyMzOhp6cn1NS1zKy4svB4PCgqKlbZZff79++wsrJCgwYN0KhRI2bYv2/fPr79HBwcanX4LozfIvBbtmzBmTNnYGRkhBdC/KuXLVuGAQMGMH8nJyczllFEhMmTJ+PWrVt8glu2xNGzZ0/Y2tqiefPmTLCHZs2aMVrohIQEpKen4+3bt3j06BFzgWsS5764uBgTJ06Eg4MDzpw5gytXrmDmzJkwMTGpMJlEZSiL4X/37l0Bb6/yqGi4u3jx4gp9xKvKmjVrhApnGa9evaq0bcbbt2/BYrHQq1cvvmeKx+Ph9OnTGDlyZKWmZBcvXoShoSGTr66wsBD79u1jTKCrgrOzM1q1alUtv4ATJ07g77//xvfv30FEOHjwIFNWpmv5mRcvXmDUqFF8xlI1oU4Efu7cueU6DyQnJ8PW1hbp6emwtLSEr68vLl26hHPnzsHNzQ3q6up49+4dMjMzsXjxYigoKDCGPNbW1kw9MTExWLduHZycnBgFS1mCvpKSEpw9exaTJk2ClZWV0HBPZT81NTUMHDgQJiYmOH/+PJNOqaokJibC398fmzZt4vNOqwknT56Erq4uZs2ahVWrVsHS0hLjx4+vlEGPt7d3uUYfpqamtW4YtHfvXgQHB4ssv3DhAtavX1+pupYtW4bGjRvj4sWLMDU1hYuLC6ZOnQp9fX0sWLCgSkL35csXLF26FObm5rC2tsbevXurNWwuS0NVnZWXkpIS2NvbIygoCNLS0sx1iI2NFaprOXz4MBo0aMAE06xWcNifqDPT2qCgoHL3XbBgAf7++2/weDw8efIEmzZtwtatW7FgwQLMmTMHe/fuZaK0Tps2DR8+fICYmBi8vLwwf/58JsqrrKwsBg0aBC8vL6xbt06kVdLSpUtx6dIlhIeHIzQ0lImGcvLkScyZMwcDBgzgi/hibGxca0JbXUJCQjB27FiBYfnNmzdhYmJSYTacly9fws7OTuhXMDIyElOnTq3V/gKl8QCMjY1F6gZGjhxZ6a/qtGnT0KVLF+bvlJQUvH//vjQz0W8gOzsburq6kJKSqraPSHFxMTZs2ABFRUUoKSnBwMAAXl5eAisJV69ehYSEBJycnJCYmIh27dqhU6dONR7y15nAnzt3Dps3b0a3bt2grq4OZ2dnxMbG4u3bt7h79y5u3bqFvn37ok2bNpgzZw7mzp0LXV1dbNy4ETweDwsWLAARQV9fnxm69+/fH0Sl4Z/Nzc1hb28PHR0dmJmZQU9PD8uXLxf5xQoJCSlX6x8QEIAjR47g/fv32Lt3L5MW2cTEBA8ePKjM6dcqZW6sorwON27cWCmN94EDB2BlZYWoqChwuVykpaVh9erVsLKyqjPF0M6dO+Hj48NXP5vNxqJFi7By5cpK1+Pl5YXGjRtj/PjxWLlyZa0aTVWVjIwMaGpqQkFBoVZiHKxZswbS0tKMI1LZS7nMqrBhw4YYMWIE87J/+/YtVFRU0KlTpypPQ36kTp1nJCQkYGVlxWd3/GO+8jLLoufPn+P58+d8X7Jr165BTk4OqqqqjBBnZWUhNTUVeXl5MDQ0xNmzZ5kLxeVyER4eDkNDQ6Fa4DLtsbCAAWX54378cpSUlODIkSOM4Gtra2Pp0qWYOXMmtLW1oaurC0tLS5w+fbpOXIHv3buHJUuWiCzPysqqtHHShw8fGAtGJyenKruFVodTp07B0NAQzs7OTEDKH+esleHy5cswNzdHr1690KRJE4iJif3S6Ds/cu3aNRARunfvXit6j8+fP8PBwQHdu3eHmJgYzMzMoKury6zFt27dGjY2NvDy8kJBQQEuXLgAXV1dxlrQ1ta2XIMjUdSZe+yNGzeYufDt27fx+PFjjB8/HvPnz8fFixcxbNgwNGvWjM/Vr7i4GGfOnIG5uTlYLBZ69OiBuXPnYu7cuXyOGsuWLcO5c+eE9uHcuXMiNe43b96EsbExHj58yGx79OgRTExMRNp4l5SUIDg4GLq6uowSUNhPU1OzVrPmRkZGijQZBUoVV+WlG/5xv98VeAIoXR15+fJltU2lyygqKoKKigpj6/87uHv3Lnr06AEWi4UNGzbUWr0RERGQkpICi8WChYUFwsLCmI/f5cuX0bt3b0yePBmZmZmIj49HmzZt0Lp1a+jq6lZ51PNbtPRPnjxBu3bt4OzsDKA0L7ujoyNj8dSiRQsmw8qP3kllNvK6uroi54g8Hg96enoi246Pj8eMGTOYNfPp06dXypNuwoQJuH37Np48eYKrV6/i4sWLiIiIwMmTJ6Gjo4MGDRpgzpw5FdZTWZKSkuDk5CSy/P79++W2l5aWhmnTpkFfXx82NjbQ1dXFsmXLai29dkWUlJRg/fr10NHRgYeHB2xtbWFpaVmu+2xFbNy4EeLi4kzMu+/fv//y8FnFxcWYMWMGxMTEai2MW1JSEmxsbIQqiz9+/IgOHTrwfaTi4+OhqqqKHj16YPjw4VUarf1SgU9OTsa4ceNARGjfvj0ePHiAu3fvQk5ODp07d8aiRYtw7tw5EBF0dXVx9OhReHt7M8q0OXPmICQkhIkpB5Rqxp8/f87Xprm5ea0OWXNzc8s1yf3y5Qu6d+8OKSkp7N27t9aMWezt7YWGX+JyubCyshL5okpNTYW2tjaioqKYbTweD2fOnIGJiUmdO/PweDx4eHhg165dfPchMzMTI0eOFJpOqTKw2Wx06dIFKioqaNOmDbOe3bZtWzg5OWHnzp2/JB8Al8uFpaUlFBQUamWVY+fOnSKtHpcuXYrAwEAsWLCAb/vLly/RpEkTtGnTBhcuXKh0W79E4B89egQHBwdISEhAVlaWiZTaqlUrEJVmGvnR5FBPT4/5qquoqKB79+5wcnLCkSNHsGfPHjRr1gzOzs4wNjaGh4cH5s+fDwsLC4wbNw5ZWVnlfuGrQ0xMTIVfb2NjYyaf24gRI2rFoCU9PR26uro4cOAAs8z59OlTjBw5EocOHRJ53MSJE0XOM48ePVprQSh4PB7u3bsHT09PmJmZwcvLC/fv38edO3cwa9YsoccUFRWVO0KriAcPHmDMmDGYO3cugoKCcPToUUydOhX9+vVjplx9+vTB9u3b61SbHx0dDaLKRWj+9u0btmzZAkdHR4wdOxaRkZF8L8JNmzaJ1Pq7ubnh3r17Qj0X58+fDyKCk5MTwsLCKjR5BupI4NPS0vD69WvcuHEDy5cvB4vFQrt27bBp0ybExMRAWVkZLVq0wMSJE3H9+nUBpReXy8XZs2dx7tw5GBkZ8Q1ngNIgkerq6pg+fTrf9qioKPTt27dWh9ZAqYKlPAeY79+/M0Yuly5dQvv27dGkSZNaGT4XFBQgKCgIlpaWMDc3h6+vb7lfseLiYr4R0M9wOBwYGhrWuF88Hg8+Pj6YMmUKs6T04cMH+Pj4oHv37uVOkxYuXMj449cmeXl5CA0NhaWlJcTFxdG1a1dEREQgrw6SmMyYMQPi4uLlRhgCSvVGOjo6OHXqFLKzs5GYmIhVq1bB1NSUEbqoqCiRz+yCBQswffp0AWengoICSEtLQ1xcHEZGRti2bRvMzc0xd+7ccpXIdSLwP2bNKPutW7cORkZGYLFYaNasWaWWFiIjI4UGkDA0NISWlhYGDRqEzMxMAKUP4KVLl9CtWzds2bKlMt2tEmZmZiKt3A4ePMhn9x8XFwciYvzPfyVfv36t0DuvIgu8ylAWElsYnTt3LtcwZffu3ZVy3KkJL6Ki0K9FCxCV5sXTlJTEwv79kVDDCLW5ubmYMmUKiAibN28ud9+MjAzo6uoKffHfu3ePuU88Hg/GxsZCbUju378PJSUlAVsMW1tbrFy5ktF7KSkpYe/evdi7d6/Ah/BH6jymXZklm5SUFIYMGYKAgIBKm4dOmDBBwLooMTERHh4eyM7OhqmpKXr06AErKyvo6elh/vz5SEtLq5NosdHR0TA1NRXo+71792BgYCBwU/v37w8JCQmYmZnh8uXLWL58OfT09BibAT8/vzpRoBUXF5f7BWez2bXyhTcwMBBpTenj44PBgweLPHby5Mm1FhpaKP9LW8YVE0MMEYKI4EYEOSKIEaFnjx4YOnQo9PT0YGFhAXd3d8yZM6fc9fWMjAzs2bMHampqaNiwIdavX1/htGTdunXlKvbs7OyYD19iYiJ0dHSwY8cOpKen49u3bzhw4AC0tLQwYcIELFq0iNG9PHjwAN7e3hg1ahQiIiIQGxsLR0dHZjrZs2dPBAcH4+PHjwJ9rBOBFxcXh6GhIXbv3l0jyyAPDw8BzeWLFy8wb948AKXGNAcPHhSwOKuswBcVFeHJkyd4+fJlpZR89+/fh7m5Odzc3DBnzhyYm5tjwoQJQudOWVlZ2L59O3r06MHY/5ddfC6Xi9OnT8PY2LhOhN7X11fkkHn//v01DvXF5XKZJcEHDx7A09OTMVkNDg7G8+fPoaamJvSapqSkwNjYmPm7uLgY58+fx549e3Dt2rXaUbaKSEyaT4S9YmIY3707XFxcYGtrC1NTUwwaNAgNGzaEvr4+XzUlJSVYu3YtBg0axCgILSwsKp3txcbGplw9QmBgIM6cOcP8zWazcezYMbi4uMDR0RFBQUHM83HkyBEYGhrC2toa7du3h66uLp9SFij1GRg0aBCfxaiGhgaOHj3K7FMnAl9boYh3794toJzKyclhHjZPT0+BVE4VLWcBpfPYRYsWwcDAAAsWLMCMGTOgo6OD/fv3V6pfX758QUxMjICBT15eHq5cuYJPnz7h1atX+PDhA+bPn49evXqhf//+AsOyU6dO1XpQR6BUG66rq4vLly8zLxkOh4PDhw/D0tKyxuvyPB4PhoaG8PPzg5eXFzMUzcvLg7+/P0xMTNChQwdMmjSJCXFWlmlXR0eHcUc9c+YMdHR0sH79epw+fZpJyFmTpTsA1Uo9rqGhwfhhlPHx40dISEiAiLBs2TKRGVlFMWbMGGbKKYyNGzciMjKySnWy2Wz4+PiUqzs4f/48li5dinPnzsHc3BxExFzTPyd7rBDy8/OhpaUlYLQxfvx47N+/H6NHjxY4ZvLkyRUaI7i7u+Pw4cN8w52SkhLMmjWrRl+/NWvW8E1lpKSkoKOjg3379oHFYqFr1658se+4XG6tryiUkZWVhUWLFvFNI9avX19rmmtjY2ORob3279+Prl274urVq7C1tYWZmRkMDQ0xe/Zsxnvw9u3bsLOzE3j55ObmwtjYuPrLazweoKZWvsCrqQnkLuzQoQNfeKsyoqKioKamBhMTkyp3JSQkROTzVPbSrM4S6ZEjR4TGbSxjxowZjDk4l8tF165dMWzYMISHhyMpKenPFXig1Dd+xIgROHjwIDIyMvDp0ycsXboUTZs2xY4dO5h5ZGJiIiZNmoRly5ZVWJ+viFzzZRFxqpqvq4xt27aBiLB69Wpoa2tDU1OT8e57+vQphg4dCiLim9fVhgLtd2Bubo6//vpLQKfx9etX6OvrY8SIEeVeR2tra76l2B958+ZNzbLUVOMLP3XqVKiqqgqdUmzbtg0SEhJVck0GSqcrenp6Ql3A/fz8sG7duirVVwabzcaIESOEXr93794JvJzOnTvHJLNQV1f/swUeKP3S79q1C66urvDy8ipdasnLw+7du2Fubg4zMzM4OTmV64ddxsyZM8uNnb5r165KxXsTRk5ODuPFR0Tw8PDgW3Pmcrno2LEjvLy8mL/r6gtf15iZmeHRo0cwNDSEr68vtm/fDh8fHxgZGeHJkyeYPXu2SFvvsoAQ5VHe0mKFiJjDg6h0u5AX/r1790BE2Lt3r0DZly9fICYmJhCwojKkp6dj1KhR8PDwQHBwMPz9/WFsbIw1a9bUyEDr2bNn0NLSQnBwMHJycvD161f4+/tDR0dHaE56Ho+Hly9fMrb6f7TA1yZeXl7lKhLDwsKwe/fuatdfUlLCF4/c2NiYz06/bEmnW7ducHBw+C2JOmoDExMTRifx8uVLXLhwgU/A3d3dhT54QOkLXNh07EdMTU2r37n/aekFhJ7FKt0uYl3e2dkZjRs3Fvp8DBo0iC8WQ1V5+/Ytjhw5grCwsGqPIH8mLy8PAQEBsLe3h6OjI44ePVqhfqZPnz7/LYHfsmULTp8+LbJ87ty5AtrPqvL9+3c+oR8wYABu3LjBOLKEhYVBV1cXRMSsOPzT2LZtG44dOya0LCcnp9w5L4/Hg76+vkh9Qnp6OmxsbGrWwdzc0i9527alc/a2bUv/LscI5+vXr2jevDn69+/PF+cuLS0NsrKymDt3bs369Ju5du0aEwjmPyPwZaa3wt6EycnJMDQ0rDVb+MuXL2Pfvn1ISUnB7NmzoaurCxsbG+jo6GDq1KkgohqNJn4neXl50NXVFZge5eXlwcrKqsLp1YEDB4TGNOTxeBg/fnztJiGtwv2MioqChoYGpKSksGzZMnz69AmjR4+GgoJCuRr3P5X09HScPn0agwcPBhExsfH/MwIPlCoxzMzMGJPdkpISnDt3Dtra2rUe1PFHyr7wZcEuhw0bBg0NjSrlEv+TyMjIgLOzM0aNGoUVK1Zg4sSJMDQ0rFSAiLIgJy4uLrh//z7S09Nx/fp1WFtb87kFZ2Rk4NWrVzV2r60KRUVFmD9/PrMk17BhQ+zZs+eXtV9T7t69izFjxjAKOiICi8Xii0VRkYyKAQBVQG5uLikoKFBOTg7Jy8tXtPtv5cOHD+Tv709xcXEEgEaMGEGenp7UtGlTgX1zc3Pp0KFDdOXKFRITEyN9fX1ycnIiOTm5arXN5XLpr7/+oszMTHr37h01bNiQBgwYQLq6ujR8+HAaMmQIiYuL1/QUfxlfv36lDx8+UJMmTahjx45VOvbt27d04MABSklJIXV1dXJzc6NWrVpRXFwcLVy4kMTFxal169b0/v17kpOTozVr1pCKikodnQk/MTEx9PDhQ7KysqImTZr8kjZrQn5+Ps2fP5+2b99O3bp1I319fZKXl6fVq1fTiBEjqG3bthQUFEREVKGM/usEvrLExMSQr68veXt7k4WFBQGgsLAwCgwMpJ07d1Lnzp2rXOf3799JRkaGiIiaNWtGX79+5Svv0qUL7du3jwYOHEhERN++faOkpCRq2rQpqamp1fyk/nA+fPhA48aNowMHDlDLli2Z7a9evSIfHx86ceKE0BdzZcnOzqa7d+8SEdGQIUMqLczFxcW0d+9eOnPmDElISBCHwyFjY2MaN24ccz9FHRcaGkqXLl0iIiJ9fX2ysbEhKSkpgX2/fPlCPj4+9P79e/r27RsVFxcTERGPxyNZWVlSVVUlFRUV5sdmsyklJYVSU1PpyZMnlJ2dTatWrSIfHx9is9mkqalJKioqNHHiRHJwcKCmTZtSZmZmxTJamaHEP2VIX1k4HA60tLT4ovKUkZKSIjKVcmUIDAxkhleNGjXCggULEBgYiI4dOzJunkZGRozJ6vz58+Hq6gpzc/NaDy39p+Hq6irSkuzq1atYvHhxterlcDiYNWsWLCwssH37dvj7+8PKygrTpk2rULvNZrNhbW2NoKAgRtlYXFyMw4cPw8TERKSJdEJCAmMjn5ycjJSUFOzcuRPa2toCHoWPHz+GmpoaWrZsCR8fHyYGoKGhIfOsKCoqomXLlmjXrh0UFRWhpqaGfv36wczMDJMmTeKrc8aMGZCWlsaLFy8E/Fv+U3P4ynLmzJlyQxmtWrWqyqaRPxIXF4djx46hZ8+eEBMTg4GBAc6dO4eBAweCxWIxgj9y5Eg8fvwYPB4PGRkZMDIyKteW4J8Mm82uUMNvYGBQrbq9vb357MrLOHnyZIU5CTdv3iwyJt+ZM2eEhlUrW40QZnv/6dMn6OnpISMjA1u2bMHAgQNBVBrtacWKFVi7di3mzZuHqVOnMjntfv7JysqKzM4cFRUFFouFtWvXgsvlYtu2bXj48CETg6Je4IWwaNEiofnvyoiKiqpSFFZRFBQUYO/evejVqxdkZWUxe/Zs9OrVi1lCafE/N8+y3OupqakYNWpUjdv9E/n27RscHR3L3ac61onx8fFwcXERWT527NhyA2Tq6+uLDAvO4/Ggo6MjsLrzY+ZaYUydOhVKSkqMY86PPwUFBbRt2xaqqqoQExODi4sLgoOD4erqypdi+mcFKY/Hw549eyArK4sBAwYI9DklJaVSMsqqcILzL6Rhw4aUnZ0tsjw7O5tkZWVrpR13d3e6c+cO2djYUGBgID179owyMzOJqFTJN2LECNq6dStxuVxSUlIiMTEx+vbtW43b/tOQl5en1NRUggiVUWFhIfF4vCrXGxoaSg4ODiLLHR0d6fTp0yLLGzRoQBISEkLLxMTESFFRkdhsNt/2e/fukaGhodBjnj59Svv27aO0tDTmXPv370+7d++m3Nxcys7OpoSEBNq7dy9JSkpSREQEmZiY0P79++njx4+UkZFBWVlZNGLECL56L1y4QJ6enkREdPXqVYE+N2zYUOQ5/sh/UuBHjhxJhw8fFll+5MgRsra2rrX2ZGVl6eDBg/T161eSkZEhDodDYmJilJmZSTdv3qSkpCSKiooiIqLmzZtTbm5urbX9p8Biseivv/6i0NBQoeUBAQFkZ2dX5XqLiorKVVIpKChQYWGhyHI2my3yJURU+vJv0KAB3zYpKSmhdd64cYP69OlDOTk5RETk7e1NT58+pQcPHtDYsWOZ1Z+3b9+SsbExDR06lJ4/f86nXGzWrJlQZePt27eJiGjQoEGMcAOgwsJCSktLIy6XK/IcfuQ/KfAaGhrEYrHo+PHjAmXBwcEkLy9Pbdq0qfV2JSQkqEuXLkRE9ODBAzp58iRT9vjxYyIiev/+PSkrK9d6238Cc+bMoYMHD9LOnTupoKCAiEpXKlauXEmxsbHk5ORU5Tr79+9P165dE1l+9epVGjBggMjywYMH09WrV4WWPXz4kLp27UpiYmJ82y0tLenYsWPM3wDI39+ftLW1iaj05bZ3717y9/enXr16CdSrqqpKkpKSZGlpWenVmU+fPjHnIy4uTiwWiyQkJEhWVpaUlZVJXV29UvX8J+fwQKkmdtasWTA3N8eWLVuwefNmmJqaYt68eUzssKysLJw9exZnz56tNWus06dPQ0ZGhol15uDgAKLSjKMXL17EzJkza6WdP5Xi4mIcPHgQFhYWMDMzw8iRIxEaGlptK0gulwtdXV2hodXKovyWFwsuKytLaNCJp0+fQltbW6TyzNXVFefOnQOHw+Gbe7ds2bJSmWvLPA/9/f35XKt/JC4uDg4ODsjPz0deXh6OHTuGgwcPYu/evdi1axeTVcnf3/+/a3hTVXJycuj+/ftEVLp2KycnRxwOh+bOnUvv378nIyMjIiK6ePEiqaur09q1a4Wus1YWANSjRw/KyMig58+fk4yMDEVGRlJ2djaFh4fT8ePHKz0fq6eUd+/e0fjx48nd3Z1sbGxITEyMwsLCaPfu3eTv78+MqkSRmZlJy5Yto7dv35KqqiqlpqZS69atacmSJSKNgdhsNk2dOpUSEhLo4sWLRETUvn17Gj58OO3cuZOkpaXLbXPPnj00duxY5m8vLy9q27Ytffz4kfT19WnYsGGkqqpKRET3799nbDeE8eTJE+rbty8R1RveVIsJEyaQjo4OjR49mm/7qVOnKDIyknbv3l2j+tesWUMrVqwgCwsLys/PJ3FxcbKxsSE7OzuB+WI9laOgoICOHTtGFy9eJACkr69PDg4O1KhRo0rXUVxczDzjlb0PKSkpdO3aNWKxWKSlpVVpa8GioiJSVVUVqjzu0qULSUtL05s3b6ioqIgGDhxIe/bsoW7duomsr9IyWuHYA//OIb0o3r9/Dzc3N5HlwsJvVZUTJ06AiEQGiqhNuFxurTkN1VO7PH/+HM7Oznyx6sp+TZo0wfHjx6GpqQkiqnCqV1kZFb4e8R8mLCysUss8c+bMqXYbZUt+BQUFNTIlLY9Tp07Rnj17SFJSkjgcDikoKNCsWbOoT58+tdZGSkoKff78mVRVVf8TpsGVJT8/nyIiIig7O5u6detGeXl5tGzZMsrJyaGUlBRis9nE4XCIy+XSihUrKCMjg86fP088Ho8+ffpEL168oDdv3pC9vT21bNmS9u3bR87OzrXStz9K4JOSkigtLY1at25NLVq0+C19qGiZR15enoqKisqt4/r167R7927Ky8sjAGRqakouLi6MoCckJJCEhESdCcnKlSupoKCAjh8/zgxpv3z5QpMmTaLJkyeTnp5ejer/8OEDzZkzh6SlpUlDQ4M+fPhAeXl55OfnVy0fhH8TW7dupcjISBo1ahSpqalRcHAwBQYGEhGRs7MzXb9+nXJyckhMTIxsbW3Jzs6Orl+/TsePH6erV69STk4OKSgokI6ODk2cOJGcnZ1rd5pXmaFHXQ/pnz9/DgsLC7i5uWHJkiWws7ODnZ0dEhMT66S98oiMjMSqVasEtqelpWHFihXo1KkT+vfvjylTpgi14Fq8eDGmTJnCaI3ZbDYOHz4MPT09Jnba9OnT0b59+zrp/7t370QGoSwsLISOjk6N0mAnJSVBW1tbwKz0y5cv0NHRqVQCz38r+/btw5w5c5CcnAx/f39oaWmBiKCsrAwNDQ3Mnz8fLBYL7u7ueP36Nfbv34+WLVuCiNCvXz8sX74cUVFRIi3/yuOPjlr7I7GxsdDX1xeIU//27Vtoa2sjLS0Nubm5iIuL+2Vz3p+XeWJiYqCjo4Njx44xAvP48WNYWFjwBa68ceOGyECa0dHRTMw7KyuratuNV8T8+fPLjeyzevVqXL58udr1+/r6inTyef36NXOO/yV4PB4iIyPRqFEjKCgogOj/czgcPHgQbDYbFy5cgIGBAeTl5Zn/ExHs7OxqxWnqHyPwjo6O+PTpk9CysLAw9OrVCxYWFpg+fTrs7Oxga2srMtQxm81GcHAwrKysYG5uDldXV9y9e7fKfYqLi4OWlhb279+PnJwcaGlpYfv27dDS0uJrm81mQ1dXlwni4OTkxIRrFoalpSW+fPkCBQUFzJ8/v8r9qgwuLi7l2gycOHGi0nH6hfFzUoefqa3IQjweD2/evMGTJ09qJZNrXcHhcODk5IT27duDxWLB0dERK1asgI2NDTZu3Mjsx+VymbhzRIRWrVohIiKi1vrxj1Dasdlsys3NpdatWwuUZWdn09atW0laWprOnDnDbP/8+TO5ubmRv78/X1CGgoICsrOzI1NTUzp06BA1atSIPn36ROvWraMrV67Q4sWLK92vjh07UkREBB07doysrKwoLS2NGjRoQOfOneOzsZeSkiJvb286dOgQ+fj4UE5OTrnz8m7dujE21T+uwdYmrVu3pjdv3tCQIUMoNDSU9u7dS0REJSUl1KpVK5KVlSVzc/Nq11/RfLJhw4ZUUlJCkpKS1W7j7NmztG3bNurSpQs1btyYnjx5QhoaGrR69epy/dN/B3///TcBoPj4eLKysqLg4GAiKrW3mDhxIt28eZNGjBhBLBaLVFVVKSwsjDZu3EgxMTEUEBBAO3fuJAcHB7K3txew6KsTavPtUVWysrLg7OwstGz16tWIiIgQ6kGVkJAg4Hk1bdo0kUPVKVOmiLRmqoiAgIBy84glJSUxiQ7Mzc3LDWvl4eGBadOmQU5Ork5SUQGlmV7t7e2xePFizJs3j++ePXnyBIqKioiOjq52/YaGhiKDVHI4nBqH5z558iTc3NwE2oiMjISlpWWN9A+1DYfDga6uLmxtbTFkyBBoaWnxjW6+fPkCe3t7AKWpu8aNGwdtbW2+tNK5ubnw8/PDhAkTajQyqqyM/lZbegUFBUpOThbqvHDz5k0aOnSo0OPatm1LeXl5jANDUVERvX79WqT2ec6cObRr165q9bFx48aUmpoqsjwtLY1xdrCwsOCzsf6R7OxsSk9Pp8mTJ1N+fj6fHX1t0q5dO1JSUqJTp07R3LlzmRWHxMREWrp0Ke3fv58WLlxYrsNIedja2lJAQIDQsv3799do9MDlcsnf3592794tMJIwNDSkgQMHMlZtfwKpqanUoUMH0tDQoHv37tGNGzfI2NiYKVdVVaX8/Hxis9m0fPlyyszMpM2bN5OhoSGxWKWiJycnR3PnziUlJSU6d+5cnff5two8i8UibW1toU4skpKStH37dpEOFc2aNaO8vDwiKh3md+3aVWQ7KioqlJ+fX60+mpqa0smTJ0UKSFBQELNu7+TkRCEhIXTnzh2+fb59+0bOzs60cOFCateuHamoqFB8fHy1+lMZxMTEaOzYseTo6Ejm5uZkbGxMCxYsoOXLl5O5uTn16tWL7t+/T9HR0RQdHS3g/lke7u7u9PLlS1q6dCllZGQQEVFWVhatXr2abt68SZMmTap2v6Ojo2n48OEi3VU9PT3L9XL8VXz8+JHu3r1L58+fpxs3btD169eZsvv379OkSZPo8ePHlJSURJ8/f2aWZblcLmlqagqt08fHhw4ePFjnff/t6/CzZs0iR0dH+vLlC3l6epKCggKlpqbS69evSU1NjebPny9wDAAmFhxR6dp42cMnjJKSkkq7D/5Mo0aNyNzcnGbPnk1+fn7MwwiADhw4QFwul3r06EFERNLS0hQSEkLz5s2jNWvWUNeuXSktLY2+fftGCxcuZOyhpaSkKlzLrwmfPn2itWvX0tSpUwkA39yQx+NRfHw8eXt7My7AixYtIi0tLZo7dy7z5REFi8Wi3bt304ULF8jX15fy8/NJRkaGnJycKnV8eWRnZ5OSkpLI8ubNmzMv+V8NAJoyZQpt27aNb7u4uDgpKiqSqqoqNWrUiMaNG0fa2tp04sQJio2NJWVlZTp27Bh9+fKl3ECgTZs2pe/fv9f1afx+gZeSkqKjR4/SmTNnyMPDg4qLi0lOTo5Gjx5NCgoKQhUZkZGR1LdvX0b4lJSUKDs7m759+ybUl/js2bNkYGBQ7T5OmjSJDh06RIaGhtSjRw+Slpamx48f04gRI2jnzp18+8rLy9OOHTsoPz+fEhMTqXHjxowTBBFRRkYGffz4sVy76JqipqZG79+/F+raOWfOHMrPz6eAgAAaNGgQEZU+zIGBgTRz5kzauHFjhfWLiYmRiYkJmZiY1Gq/u3btSidOnCBvb2+h5Q8ePKjQEaYu4PF4IqMNz549m96+fUvBwcHEYrHowIEDtG7dOlq7di25u7vTkSNHSEFBgdhsNiUlJYlso7Cw8N+vtCsPHo8HLy8vrFixgjFYKSoqwp49e2Bqaiqg9IqKioK5ublAH1+8eAEdHZ1a6TuXy8Xr16/x4sWLCoMjvnz5EuvWrYOfnx/u37/PKGTKcp3VZaKKJ0+eYMKECQLbk5KSMGrUKL68eD/i4OAgcon0VzFy5EihBk1cLhfW1tZMCutfSV5eHrOctnDhQoSEhMDJyYnJ5BoZGQldXV0sXLgQAQEBGDZsGHr27CngczFy5EiRqakDAwNrtFz6j1mHLw8ej4fQ0FDY2NjAzMwMpqam2L17t0gt8d27d2FiYoLx48dj2bJlGDVqFJydnYVGp60r8vLyYGdnB29vb1y7dg23bt3CrFmzYGZmhrS0NHC5XDg7O0NcXLxOk2NMnz4dfn5+fKsGS5YsQf/+/UVmj4mMjCw3uOev4MuXL9DW1sbx48eZHHexsbGwt7cXmhCytsjOzsa2bdvg7OyMcePG4eLFi7hz5w6+fPmC9PR0tGjRAjNmzABQ+uH5OUcej8fD/fv3ER4ejidPngjNoffq1Svo6uryWSnyeDycPXsW5ubmFX5EyuNfIfDV5f3793jw4AEyMjJ+eduOjo4Ceex5PB5OnTqFAQMGICEhAfn5+UzQi9qgoKAAFy9exLlz55iXG4/Hw759+6Cvrw9ra2sYGxujR48eCA4OFlnPo0ePsGTJklrpU03Izc3Ftm3bYGZmBnNzc0yYMAHPnz+vs/Zu377NvGQyMzMREBAAJycnPu81JSUlxMfHAygdKQkbQf2IqICcb968gZOTEywsLODu7g49PT0sXLiwWvnkf+Q/LfC/izdv3giYlt68eRP6+vqYNm0aDAwMYGhoCGtra7Rv3x6DBw+u0Xo8j8fDypUrYWRkhI0bN2LHjh0YOXIkxo8fz1cvm80Gl8tFWFgYn/XXz1SUkFMUWVlZiI+Pr/FD+zvIzMyEjo4Ok/n1+/fvjJCPHj2a+f+PL5z8/HxYWFiIrJPNZsPY2LjcdgsLC5Genl4tu3lh1Av8b2Dbtm04f/4883dUVBQsLCyYh+nFixeYM2cO4uPj0bt3bzRs2BCmpqYipygVsXjxYmzZskVg++XLlzFq1CiBeXpZAo4ynciPfPv2DVpaWlV6AF+9egVbW1vY2trCx8cHJiYm8PHxKfc5+fz5M54/f47s7OxKt1OXbNiwAWfOnAFQ+gK1tLRkhLxM3zJp0iSB49zc3ESaeB84cAD+/v512u+fqRf438DWrVv5ElhYWlry2bW/fPmSyRt/5coVODs7Q0pKCv369WPmq5UlMzMTlpaWIsvnzJmDe/fuCWx//PgxdHV1ceHCBXC5XHC5XEbpVJaEszLExMRAX19fIJbcrVu3YGBgIDByefjwIePfMG/ePFhaWsLT0/O3Z24dNWoUo+fgcDgCgSgaNWokVMH66dMnaGtr8335y+bjpqamvzyRaL3A/wZiYmKYuV1WVhbs7Oz4ylesWIFLly4BKH04jIyMEBQUBCJitleWQ4cOicyYUtaXadOmCS1LT0+Hn58fTE1NYWZmhlWrVgl4K1bEqFGjhAaOBIAjR47wZYp99OgRjI2NBYT74cOH0NPT+63OMQ4ODgL98vDwYAR+/PjxuHDhgtBjy+byhoaGsLe3h66uLhYvXvxbpjb1Av+bsLOzQ1RUlIBi582bNzA0NOTLWWdubg4Oh4OePXuif//+Vcpnt2vXLmYoKowfbfxrm8zMTNja2oos/zmtlKWlpUgFakhICLZu3Vrrfawsx48fx7Zt2/i2LViwAESEDh06wMjIqEI9S0lJCfLy8n5rKLF/hC39v5HAwED6+++/acOGDfT48WN6+PAhLV68mKZMmUL79u1jLNHS09NJWlqaJCQkaMeOHfTw4UPas2dPpdvp168fn0nnz1y7do369+9f4/P5mYKCAjp48CClp6dTZGSkUAtGKSkpvvOUlZWlZs2aCa3P2tqaIiMja72flcXKyorOnDlDMTExzDZ3d3dq0aIFNWjQgLS0tCqMIiwuLk6NGjX6NYYzNaRe4GsZBQUFOnXqFDk6OpKsrCytXbuWdHV16cKFC3wRTVevXk3jxo0jIqKhQ4eSi4sLzZw5k548eVKpdnr37k3v37+n9+/fC5Tl5eXRvn37yN7evnZO6n/s3r2bbGxsqEGDBlRUVETPnz8nfX19Jsx3Gd++fWNCeefk5JRrLispKVkjc9yaIikpSYcPH6Zly5bR2LFj6ejRo3TlyhWSlZWl1NRUmj179m/rW11QL/B1RL9+/ejixYskLi5Od+7cYXLFv337lsaOHUvNmzfn8+7btm0bde7cmQwMDPi+NuWxc+dOGj9+PAUFBVFeXh4VFxfTmTNnyMrKivz8/GolPx5RqentypUrafPmzdSoUSNKTk6mzp0707BhwygsLIyWLl1KCQkJzP5btmwhFxcXIio1833z5o3IutPS0n57HP4WLVrQiRMnaPbs2cTj8ah58+bk7u5OOTk51fYq/GOpzfnBr4bL5eLRo0e4fv36L7WmqwpcLhcREREYM2YMzM3NMX78eJEhjbKystCrVy+oqKhU2uqqqKgIBw8ehK2tLaysrLBhw4Za1XxzOBw4OjpCXV0dsbGxKCoqwu3bt2FiYoJu3brh2LFjuH//PqZPn46srCwsXboUkyZN4pvP+vr64vr160LrnzlzJi5evFhr/a0MbDYbR48exZQpUzBnzhw+02egVOHZuHHjCtfS/yQqK6P/2EQUJ06coICAABo4cCApKirS/fv3SU5OjjZt2kSNGzf+3d2rNtHR0TRo0CBatGgRjRgxgrp37y4wJE5NTaWPHz+SkpJS5XOKVZNly5ZRixYt6OHDh0z0HKJShxIHBwdq1aoVvXr1ih49ekTDhg0jFxcXsrS05JvP5uXl0ejRo8nW1pYcHBxIWlqaUlJSaP369SQlJUV+fn51eg4/8uLFC5oyZQrZ2dmRvr4+5efn0+HDhyk+Pp569uxJYWFh9OTJE+rWrRvdvXuXFBQUflnfasK/OhFFSEgIvLy8BIxEoqOjYWhoWCOb5N8Nh8OBtbU1syzUsGFD+Pr64uLFi0hKSoKdnR3s7e2xYsUKeHl5wcTEpErr5z8SFxeHlStXYu7cuThx4oSALQCbzYa+vj4SExMxbtw4gePfvXsHd3d3ABBqO/4jZY5PZTnlHBwccPXq1Wr1u7rk5+dDS0uLLxgql8tFTEwMhgwZAjExMdjb2+PgwYN/jGFQZfkjluVSU1Ph5+cHV1dXzJgxA8+ePavS8cLgcrnQ0dERaRG2fft2HDt2rMbt/G4KCwvx7t07eHt7Q0ZGBkQEVVVVPHr0iG+/rKwsGBkZVenacjgcjBs3Dp6enrh58yZevHiBbdu2YcSIEXzTjbi4OEybNo255sLCS5mZmSEuLg6enp7VP9lfxK5du/h8CRITEzF48GDmxTp8+HCR3mx/Or9d4A8fPgwTExNERkYiIyMDz549w8SJEzFhwoQqrTf/THR0NBYsWCCyPDc3FyNHjqx2/X8ieXl5GDx4MBo1aoRu3boJRMZNTk4ud138Z+bOnYsjR44IbM/KyoKOjg6jA/j06RPjG+Dv749169bx7c/lcmFkZIRRo0bVysu8rnFwcGAiDOfk5GDYsGFQU1NDeHg4MjMzsW/fPpw4ceL3drKa/NZ1+KdPn1J4eDidPXuWDA0NqVmzZtSzZ0/asWMH9e7du1JBFkSRl5dXbnomOTk5Ki4urnb9fyKNGjUiOTk5io6OpszMTFq4cCFfuYqKCpWUlFQqjFdeXh69ePGCxowZI1DWpEkT8vX1pf379xMRUatWrejTp09UVFREEyZMoMzMTHJ2dqZbt25RQkICLVmyhN69e0f29vbUs2fPWjnXukRcXJyKi4spODiYOnXqRI8fP6agoCAyMzMjRUVFKi4uFhno4l9Dbb49yvDw8MC7d++EllU0JK+IlJQUAZPVH3nw4MG/Msd6mbvlokWLIC8vj9zcXL5yT09PpKSkVFjPtWvX8Pfff4ss53A4MDc3Z/6OiIiAq6src78+fPiAZcuWwd3dHR07dhR5n/9EDh06hH79+oGIYGtrKxDsw8LCghkB/NP4rV/49PR06tChg9AyFotF3bp1KzfcT3koKyuTlJSUUAMVHo9Hq1evpvHjx1er7j8ZCQkJ+vbtG40bN44KCwv5rPISEhLo8uXLlJycLDT98I+IiYkRj8cTWY6fYuCZmJiQqakpGRoa0urVq+nWrVuUnp5O6enpFBERIfI+/2nweDw6ceIEPXnyhDZv3kzHjx/ny4dw4MABJg7+v5rafHuUYWxsXK5dsaenZ7kZWioiMzMT+vr6CAgIYBwvHj58CGtr63IDPPyTCQsLY3QXLi4uUFFRYc7dyMiI0epLSEjAx8dHpJa5oKAAhoaGItsRZlsOlH75r127hhMnTuDly5e1cEa/lh07doCIsHfvXpiZmWH69OmIjIzEiRMnMHr0aEybNu2PinlfVX7rOvyCBQvI2NiYhg0bJlBWVFREVlZWFBkZWSPbYzabTSdPnqRTp04Rh8Ohjh070oQJE0hDQ6Padf7JAKA5c+YQh8Oh0aNHk46ODnl7e5Oamhrt3LmTsrOzad++ffTy5Utavnw5zZkzh5YtWya0ruXLl5OysjJj2ltGWloa2dvbU1hY2D9m/bmyGBkZEYvFovPnzxMR0aNHj+j+/fskIyNDpqampKysXGdt83g8un79OsXGxlLTpk3J3Nyc5OTkarWNysponQh8cnIyubi40LFjx/icJrhcLnl7e5OZmRlZWFhU8lTq+ZFbt27Rnj17KCoqij58+EA7duwgZWVlsra2ps+fP5OamhoNGTKE5OXlRTql8Hg8mj17Nn3+/JkcHBxIUVGRia++ffv23xIZVhQA6Pbt2/Tw4UPKyMigJk2aUMuWLSknJ4eSkpJIQUGBnJycqGXLlkKPT0pKohMnTtDq1aupX79+FB4eXqU0WImJiXTkyBHKyMigTp060ZgxY6okrE+fPqWZM2eStrY29e/fn1JSUigkJIRMTU1p8uTJla6nIn674c2LFy+gr6+PefPm4eTJk9iyZQv09PRw6NChStdRj2jy8/OhqqqKUaNG4fXr13yRcA8dOgQiqtAg5/Pnz9i+fTvWrFmDS5cu1Wi5tDoUFBTg5cuXePHiBTMF/HkqGBgYCCKCmJgY1NXVIS8vDyKCpKQk2rZti4YNG0JCQgJHjhzB1atXYWZmhv79+yMsLAyzZs3CmDFjcOHCBZiYmKBly5YYMWIE7t+/X2HfeDweFi5cCHt7e1y5cgVv3rzB0aNHoaurW65b8o98+fIFurq6AqbOPB4PM2fOrNXp529fhwdKT+zevXvYt28fzp49W+1QTn8SycnJmD9/PgwNDWFmZgZbW1tcuXLlt/SlTLBXrlyJkSNHQkpKCidPnkRxcTE0NTXRpUuXOsthVxNCQ0Ohq6sLKSkpvmyqHTt2hLS0NFxdXZlnLSQkBETEFzosLy+PeTnl5OTAxcWFqadHjx7Q0dEBi8Xisw48ceIEiAj379+Hnp5ehQY2gYGBWL16tcB2NpsNa2vrSukxFi5cKBDQtIzi4mKR4cKrwx8h8P824uLioKOjg9u3bzM3KjU1FZMmTSp3qauu4PF48PHxgaSkJNq1a4ehQ4eCxWIhODgYr169goSEBNavX//L+yUKLpeL+fPng4gwYsQIbNmyBbdv38bly5cxdepUTJ06FUuWLIGcnByaNm2Kbt26MYIsKnpPWb1Hjx7FlStXwOPxUFBQgObNm0NaWpqxTGSz2WjWrBnGjx+Pq1evYunSpeXWp6urK3LpODY2Vqip8c9UpLyePHlyrcXZrxf4OsDMzExoWCcejwcnJye8evXqN/QKePv2LdTV1aGqqgpdXV1meG9qaopmzZohJiYGDx8+xLlz50QGXqxL2Gw2Dh8+jH79+kFMTAxr164tVxA+fPiA+fPnY9KkSdi5cyf8/f2rFILr8ePHmDNnDrp3786Xz37Dhg0QExNDdHQ0E5GHx+MhODgYxsbGMDMzg4GBARwdHTFmzJhy2/gxoo8oKvIvmD59eq3lJvjlAp+fn49du3bB09MTkydPxrVr135ryJ/a5vXr1/D29hZZ/uzZM0yZMuXXdegnXr58CSLC0aNH0bx5cxAR4uPj0b59e0hKSsLW1habN2+Gt7c3TE1N6zQJxo8kJCSga9euICLo6emJdJOtTR4/fowFCxZg4sSJaNu2LbOdw+GgdevWTIRdoDTN+KpVq/imPlevXoWqqmq5w/bKuM5OnjxZpMlxRaOIqvJLBf7+/fvQ0tLCoUOHkJKSgrdv32Lx4sWwsLAQsAj7pxIeHo6AgACR5Twej89C7VcyatQoEBHk5eXx8eNHRonn5eUFIyMjxkFEVVUVOTk5SE5Oho6OTo1sISpDfn4+WrVqBXV1dTx58qRO2/qR4uJi6OnpoXfv3gJfagMDA2hqamL58uW4d++e0Jc0j8fDiBEjYGRkJLT+R48eYerUqRX2482bN7CwsBDqvenv71+r08BfJvDfvn2Dtra20LLbt28z7pP/dKKjozF//nyR5YmJib/tXO3s7EBE8Pb2ZsIjz5s3D0SEgwcPgsPh4MqVKxATE8POnTsBlMbMnzVrVp32KzAwEOLi4kzGll/J+vXrMWLECDRu3JgvOEpZlOBbt27B09MTCQkJTNmPX/mQkBBoamoKTIHy8vJgZGRU6bl3eHg4dHV1ERISgvj4eNy9exceHh7w8fGp1VWRXybwW7ZswcmTJ0Uea29vX+dfkl8Bj8eDrq6uyBDE3t7ecHJygo2NDby8vHDr1q1fNqUpLi6Gs7Mzo+Byc3NDUlISlJWVISEhgV27dgEofTGUKfIKCwvLtbirDVasWAElJaU6bUMUPB4Pvr6+kJKSgp6eHqKjo7F582b89ddfaNy4MebMmQMzMzOYmJhAUlIS4uLiICKsWrWKEcRRo0ahf//+OHToEK5fv44NGzZAS0sLd+7cqVJfsrOz4e/vj8mTJ2Px4sVCk2XWlF8m8KNHjy536ScoKKjK6Yt4PF6VEzP8Ci5dugQbGxu+zC1cLhfu7u5o1aoV7ty5AzabjYSEBMybNw9OTk61NkerDHFxcRgwYACTC23EiBFwd3eHlJQUsrKyUFxcjClTpkBMTAyampoi85/VFmvXroWCgkKd1Z+fn4/169fDwMAAZmZmMDQ0xPbt2/mG0GvXrgURwcPDA6GhoeBwOOjVqxcmTpwIbW1tgcQTRITo6GgApXPw6Oho7N+/H+vXr8fZs2d/6f2sCr9M4B0dHfkiiPzMtm3bcO7cuco0gy9fvmDy5MnQ19eHlZUVdHV1sWbNmj9q/f7OnTuwsrKCnZ0dvLy80L9/f/Tu3Vvog3DkyJFyl3/qiqSkJJiamoKIsHHjRrBYLOYrD5SOujp37gxra+s67cf58+dBRLh7926t1102tD5x4gRjA89ms7Fv3z5YW1szQs/lcjFo0CB07NiRUVS2bt0a8+bNw+XLl6Gnp4fQ0FC8evWKEfi8vDwmsEht8OHDByaDsIWFBQIDA5n0Y7XFLxP4kJAQJstIYWEhPn78yKeoMzExqVRmkcTERGhra/NFXOFyuQgJCYGVldUfF7bq27dvSE5Ohqurq8g5Ko/Hg56e3m/pO4/HQ5s2bdCvXz+YmZmhTZs2zH2ZMWMGiAj6+voCOcxrk0uXLjHz5dokLS0NkydPRnh4uNDygwcP8uXce/XqFdq1a4fWrVvj6tWrICKcOHECPB4PEyZMwKZNm/DgwQNcvHgRO3bswIcPH2BoaCgy2GhVCA0NhZmZGRMo8/v37wgODoa2tnatTnV/mcCz2Wz89ddfsLOzg6mpKSZNmgRra2s4OTlhyZIlWL58eaU67OrqKnKNODAwEEFBQZWq51dT0bB46tSpdSpU5WFlZQU1NTVMmDABMjIymD59OmJiYuDs7AwjIyOoqKhATk6uzpbozMzM0KtXr1rTZURGRsLIyAjOzs5o2bIltLW1sW7dOgHlF4fDgYGBAd+2R48eQUJCgrHq+3EEULaK0bt3bxgaGsLV1RWxsbE17m9KSgoMDQ2FTk/fvn1bqyOsX+YPX1hYSAAoLS2NWrVqRdra2mRubk7Jycl04MABcnR0rLCO/Px8yszMpOjoaJowYQJNnTqVbt68ycQEd3Z2ptDQ0Jp2tU7gcrnl+pfn5uaSjIzML+zR/yMtLU3p6en09etXat26NW3fvp38/Pxo5syZdOHCBYqLiyM1NTWysLAQmtCiJhQXF9OVK1fIycmpVjKynDp1ig4fPkwnT56kgIAAGjJkCF25coWaNGlCEyZM4NtXQkKCSYRRRt++fSkuLo7xiS8rT0tLo6ioKCIiKikpofPnz9P+/ftrxYFo7969NH36dAFnHQAUGxtLT58+JW1tbbK0tKSDBw/+mkhNNX17rFixgrFzfvXqFfbu3YujR4/i27dveP36daWCG547dw6qqqrYs2cPkpKS8Pr1ayxcuJBvHb8mCqYPHz7gwoULePjwYa1rzn9MEPkzBQUFtTYPrA65ublYtWoVEwST/ueEcurUKWaft2/fQkNDAwoKCpV2CqkMT58+ZVIu1xQOh8MXJYnL5fJZ0Pn6+vI5CvF4PL7yiuq2tbVlrk9qamqN+1uGra2twKoOl8vF2LFjsXz5cuzYsQMnTpxAQUEBdu7cCUtLy2pnnf1lQ3oDA4Ny1xNNTEzKncPm5eVh+PDhQi2X7ty5AxcXFxQUFFRL4BMSEmBlZQUPDw9s27YNc+bMga6ubq0mPkhPT4e2tjaSkpL4tpctlYnKPPoreffuHRPaSUFBgc/GHChdNrKysgIR4fDhw7XS5rVr10BEtWIrfunSJaxdu5Zvm4+PDyPkr169go+PD4DScxk7diw0NDRgbm4Od3f3Cr0GCwoKGIEXlfSyOnh6eiIxMZFv28GDBxmDm/Xr1/OlFz99+nS1lby/TOArEkRnZ2e+ZayfCQgIwOHDh+Hh4YEXL14IlDs4OGDFihXYv39/ZbrKkJGRAW1tbT7DCqA0PvrIkSNFejFVh/fv3zP6i71792LlypXQ1dXl+5L+bspGG2UP9s8WaDweDy4uLpCUlKyVePFhYWEgolrJCHT48GGBF1Fqaiqj5M3NzcWYMWPw+fNn9O7dGz169MD+/fsxf/58GBsbo1mzZlBXV4e+vj5MTU2xdu1agRf0s2fPEBUVVeO+/silS5ewbNkyvm0mJiYoKCgAl8sVUOiW2XpUxyDnlwm8sbGxSGOUMi11eaGDHB0dkZWVhZSUFGhra/N5ohUXF8PT0xODBg2q8vrn8uXLRQ61s7Oz62QNOiYmBqdOncKNGzf+yHBJcXFxzLBemE17WeKJMhPdmhAYGAgWi1UrKxQPHz4UGpg0JSUFEydOxIABA6CpqQklJSUMGzYMSkpKQtfXjYyMYGxsDGlpaYiJiWHevHm4cOEC9u/fX6tf9jK4XC6srKz4nkMzMzOUlJRg2rRpTPyCH6noAymKXyLwqampaNOmjch5ekRERLkx5AHAzc2Nibaanp6OOXPmQE9PD2ZmZtDX14ednR2OHz9emW7yYWRkVO6b0snJqUoeWP8WoqOjBUY9P5KdnY2WLVvCysqqRu0sXLgQTZs2FaozKSoqwoEDB+Dh4QEvLy+cOXOm3Bckj8eDgYGB0PvF5XJhZmaG8+fPY+jQoXwCLi4uDllZWeZvRUVFLF++HA8fPsSyZcv49m3RokWlpl9lsf1CQ0MrNV0pLCzE5MmTYW5uDj8/P6irq0NHRwcHDhwQur+pqWm17E5+icDfvn2buWAbNmxAQEAAzpw5g8LCQhw4cIAZvpTH6dOnsXnzZpHl5ubm1Ur7U9EXfPLkyeU++P9l/v77b8jIyAjMP6tC2Rz+xzkqUDrfHjFiBIKCgpCamorExESsX78eenp65SrMHj9+jIEDByI4OBixsbG4fv063rx5AxcXFwQFBWHWrFl8Aty8eXNmpLVu3Tro6+tDRkYGLBYLDRo0gJWVFWbMmIGFCxciKiqKme7MmDFD5Kjk0KFD0NHRwerVqxEUFARPT0/Y2NgIdZn+mezsbNy+fRteXl4idUjv37+Hq6trhXUJ45cN6d+8eYOYmBjs37+f72J36tSpUnHSORwO9PT0hPqS7969u1yHlfIYM2aMyBvxOw1i/glkZmaiZcuWcHBwqHYdZR5n3bp1Y7ax2WxoaWkJ/VK/evUKlpaWfNsSExOxdOlS9O/fH5KSkgJDdDU1NSZc1fXr16Gnp4e///4bpqamAi/z9PR0jBkzBmfOnIGBgQGGDRvG2M9bW1uDy+Vi/fr1kJSURLdu3TBjxgw+g6GQkBChWZPi4uKgra1dKeMyAPj69Su0tbUFXG+TkpKgq6tbbZuN3xIAIzQ0FFZWVnxzKC0trQrrT01NhZWVFby9vREaGorg4GBYW1tj9uzZ1Z4L37x5E+PHjxc6pDx+/DiWLFlSrXr/C7DZbCgrK2PUqFE1qufkyZMgImakEBISgh07dojc39fXF0+fPgUAxMfHQ1ZWFo0aNcKYMWOwY8cOhIWFISgoCKdOnYKOjg7atWvHHFvmX56dnQ0LCwuBuv38/HDu3DlwuVzGKIfNZmPnzp0QExODj48Pdu/ejVu3bkFLSwsNGjRgrBHDwsKgra0tUo909OhR+Pv7V/q6pKSkwMXFhXnG7e3tmdiE1eW3Rrz5/v07jh07xgj9oUOHKuUM8/LlS+zevRsHDx6skhKFw+HgzJkzWLVqFXbs2MEMDTds2AAnJycmSGJqaiqWLVuG0aNH/5HOOX8KZfPbrVu31qiezMxMyMjIYPTo0eByuZgyZUq5897z588zL4RNmzZBWloa2dnZeP/+PUaOHAlHR0csXboUw4cPBxFh0qRJfMefPXsWI0eOhJOTE9/2iIgIWFtbMx+PH6d7JSUlmD9/Plq1agUiQufOncHhcJCamoqOHTsyOgAlJSWRikw2m12tWAjfvn1DbGxsraxkVFZGJWpktSOCBg0akJ2dHQ0ZMoRat25Nzs7OtHLlSoqMjKS2bduKPK579+7UvXv3KrX16NEjmjVrFllYWJC2tjalp6fTpEmTqGvXrrRs2TKKjY2lXbt2UUJCAsnLy5OLiwstXLiQWKw6Sbrzr6B58+ZERDRgwIAa1aOoqEhHjhyhkSNHUocOHUhKSooKCwtF7l9YWMhYwCUnJ5Oamhrl5ubSuHHjaN++fdS6dWvicrkUFBRExsbGFBsbSx8/fmSeKXNzcxIXFycXFxcaN24cKSoq0rNnz6hHjx505MgREhcXF8i/Jy4uTqtWrSIVFRXy8fGhN2/eUP/+/UlcXJw6duxIqqqqdOPGDUpLS6O4uDjauHEjxcXFkaqqKklJSdGbN2+oYcOGFBcXRw8fPqRu3bpRw4YNK3V9Gjdu/Osz3dTm2+NnHj9+DCKCvb09iEhgjlZdXr16hQULFsDV1RWdOnUS+uZdu3Ztjb9Q/1W+f/+OXr16oV27djVengNKNfYyMjI4f/58uToZe3t7fPnyBRwOB127doWtrS0mT57MDPOB0qVPIsKiRYsQExODCRMmCNSzaNEi7Nq1CzExMQJKYz8/P6GZc7ds2QIigp2dHby9vTF27FiYmZnB3t4eU6dORf/+/Znn+cefubk5tLW1IS0tDSLC8OHDsWvXrl/uRvtHBLHkcrnMhZGQkODzYKoOXC4XkyZNgpeXF6KjozF16lQsXboUenp6OHv2rMC+tRkz7L9GfHw8VFRUICUlhalTp9ZonTo1NRVycnKwtLSEnp4ebt++LbDPkSNHMHbsWISEhKB3795gsVi4ffu2gInsly9fQFSaMgootfT8WU9TVFQECwsL7Ny5kxH4r1+/YsmSJSL1OhUxefJkREZG4vLlyyAiuLq6oqSkBCUlJbCxscGzZ8+wcOFC5nnX1NT8pYk2/wiBB0rn0aNHj67U0kVFrFmzBoGBgczfpqam4PF4YLPZsLS0FPD6mjNnDp4/f17jdivDo0eP4OrqClNTUxgbG2PKlCn48OHDL2m7rsjLy8OKFSsgLy8PDQ2NGrlzhoWFMXHoZWRkMGzYMKxYsQJWVlZo2bIlmjZtyghL//798eDBA/B4PL75dnBwMLNPmXGKpaWlUMUum83GgQMHYGFhATMzM4waNQpnz54VKuynT5+GtbU1xowZg4ULFwokqihTPjZs2BBt27Zl+rB69WqYmZlh9erV2LFjB06fPs0n9PLy8sjKykJISAgMDQ1hbW0Nd3f3WjXtLuOPEfjaQljg/jKBB0qdNSZPnsx3zLx580RGDa1Njh49Cnt7ez4Bf/z4MQwNDSuV5eRP58OHD1BWVgaLxcLw4cOxePFihIaGVvlLmZOTg/Pnz8PGxoYRikaNGmHQoEHw8vLCwYMHBdb+9fX1meXTgQMHgojQq1cvAKXPhDAnmXfv3mHq1KkwMTGBsbEx5s+fL2BKWwaPx4OCggKznFzWL0dHR2afVatWCbXck5WVxejRowW2N2rUCEQEXV1dlJSUoEePHnzlUlJSIq1Tq8u/TuBjY2MxY8YMvm0LFizgWyv9MQ54mV1yXWvjMzIyYGhoKPQrk5OTAx0dnV+ewqku+Pr1K4KCgmBubg5lZWUQEcaNG1dutCNRlJSUIDg4GDdv3qxw2TUgIIAJsOLj4wMiYgyxAgMDBTLdXrx4EaampoxzEI/HY6YGDx48ENrG6dOnBcxxO3TowNffoKAguLi4YNeuXfj777+xe/duaGpqgojQqVMnnD17lgnNzuFwcPnyZSaqzbRp06CmpoZOnTqhY8eO8PPzq/I1q4h/ncC/e/dO4AuelJQEAwMD5OXlgcfj8Xncbdu27Zdkg9m4caOA/uBHVq1ahcuXL9d5P341/v7+kJeXR5MmTbBw4cIaWeWVB5fLhZubG5YvXw4LCwt07twZmZmZWLVqFZydnfleGPn5+dDW1hbqYpqdnQ1tbW2RL5iCggKEh4cjPDycif9XEd++fcPYsWPh6OgIU1NTmJiYYO7cufj06VP1T7ia/OsEXtQX+86dOxgxYgSmTp2K8ePH49KlS3B0dMSMGTN+SdRYb2/vch/2iIiIKhll/JNIS0uDj48P5OTkwGKxoKOjg9mzZ/O53tYGXC4X4eHhUFJSQrNmzWBra4szZ84IjJyCgoJw8OBBkfWsW7cOERERtdavGzduwNjYGNHR0eDxeODxeLh79y4MDAxqJQ5AVfjXCTxQqrSZPn26gCB//vwZ3bp1g6+vL9atW/dL37CLFy8uN0hjQEAATpw48cv68zvIzc1FQEAAzM3NoaKiAiKCsbExTp48yTfkz8/Px86dO+Hp6YkpU6ZUyatw9+7dEBMTw6pVq/i2Z2ZmIiYmBt++fYOHh0e51mrXr1+vtVx7RUVF0NLSEuorkpubCy0trV9q3PWvFHgA2LFjBwwNDREUFISIiAgsXboUOjo6v0wb/zNv376Fi4uL0LKyyCy1raD5kykpKcHhw4cZRRWLxYKRkRHGjRuHpk2bQlxcHH379oWamhqICH369Knw3rHZbD6PNwkJCXTv3h06Ojp83nD0P6+3Xbt2CR3dHTlyhFnOqymHDx/miwT8M1u2bKlyePaa8Mti2v1qJk6cSCdPniRZWVn6+PEjjRgxgq5cuUKampq/pT8aGhqkrKxMf//9N5WUlDDbCwsLydvbmxwdHX9bTLvfgbi4ODk4ONCLFy8oMTGR/P39KT8/n6KiosjJyYnev39Pjx49osTERLpx4wZxOBwaNmwY3b59W2SdUlJStG3bNmrdujUNHDiQpk+fToMGDaLmzZvTjBkzKCwsjPbv30/bt28nWVlZGjduHP3111/09u1bpg4AdPToUbKysqqV84yNjS3XEnHAgAEUGxtbK23VJmLA/yJFlkNubi4pKChQTk4OycvL/4p+/aMAQIGBgXTixAlq164dsdlsysjIoIkTJ5K5ufnv7t4fTX5+PllaWlJUVBSFhYWRgYFBjeqbNWsW5eTk0O7du2nw4MF07949KikpoaVLl1Ljxo1p5syZtdLvDRs2ULdu3cjIyEhoeWhoKKWmppK3t3ettFcRlZbR2hwu/Nfhcrn48uVLrThD/JcoKiqCqakpJCUl4e/vXyNlK4/Hw8aNG9G4cWO0bdsWvr6+0NHRqbWhfBlJSUmws7MTWW5tbf1LA6xUVkbrv/D1/BEUFxfTjBkzaPv27dSlSxdq3749de3alTw8PKhTp05VqquoqIjat29P/fr1ow0bNlD79u3rxFlq/vz5pKioSNOnT2fq53K55OfnRwBo0aJFtd6mKCoro/UCX88fxc2bN2n//v309etXun//PuXl5dHAgQNJX1+fnJ2d6ePHj/Ts2TPy9PSkRo0aCa3j2rVrpKurS8+fP69T3Q4A2r59O505c4Z69uxJPB6PXrx4QaNHj6Zx48bVSjz+ylIv8PX84/n+/Ttt2rSJnjx5QuHh4cRms5kyc3NzOnv2rNDjgoODydnZmQoKCirtqloTuFwuvXv3jsTExKhDhw4kLi5e523+TGVltEr+8Lm5uTXuWD31VIVJkyYREVFWVhZFR0fTvXv3aOvWrRQeHk6fP38W+nCXDa/fvXtH6urqv6SfqqqqRERUUFDwS9r7mcrKZqW+8N+/fyd1dXVKTU2tccfqqaeeukFZWZkSEhJIWlpa5D6VEniiUqH/Jbmv6qmnnmohJSVVrrATVUHg66mnnn8+/zhLu3rqqaf61At8PfX8h6gX+Hrq+Q9RL/D11PMfol7g66nnP0S9wNdTz3+IeoGvp57/EP8HWGDlfVUBe+oAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEnCAYAAACuSAIbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXRUx9vA8e/GXYlCAiEECa7BPbgWihaKFKcQKMWd4jRAixd3t+LuwTVAEkhChBgh7rL3/SPNfVmyCVra8pvPOXta9trsbubeO3eeeUYhSZKEIAiCIAiCIAiC8ME0/ukCCIIgCIIgCIIg/FeJBpUgCIIgCIIgCMJHEg0qQRAEQRAEQRCEjyQaVIIgCIIgCIIgCB9JNKgEQRAEQRAEQRA+kmhQCYIgCIIgCIIgfCTRoBIEQRAEQRAEQfhIokElCIIgCIIgCILwkbT+6QIIgiAIgiAIwv+KtLQ0MjIyPnk/Ojo66OnpfYYSCZ9KNKgEQRAEQRAE4QtIS0vDycmJiIiIT96Xra0tgYGBolH1LyAaVIIgCIIgCILwBWRkZBAREUFISAgmJiYfvZ+EhAQcHBzIyMgQDap/AdGgEgRBEARBEIQvyNjYGGNj44/eXpKkz1ga4VOJpBSCIAiCIAiCIAgfSfRQCYIgCIIgCMIXJEnSJ/UyiR6qfxfRQyUIgiAIgiAIgvCRRA+VIAiCIAiCIHxBoofq6yJ6qARBEARBEARBED6S6KESBEEQBEEQhC9I9FB9XUQPlSAIgiAIgiAIwkcSPVSCIAiCIAiC8AWJHqqvi+ihEgRBEARBEARB+Eiih0oQBEEQBEEQviDRQ/V1ET1UgiAIgiAIgvCVW7FiBU5OTujp6VG1alUuX75c4PoXL16katWq6OnpUbx4cVatWpVnnX379uHq6oquri6urq4cOHDgg48rSRLTp0/H3t4efX19GjZsyOPHjz/tw35hokElCIIgCIIgCF+xXbt24eHhwaRJk7h37x716tWjZcuWBAcHq10/MDCQVq1aUa9ePe7du8fEiRMZMWIE+/btk9fx8vKia9eu9OrViwcPHtCrVy+6dOnCjRs3Pui4CxYswNPTk2XLlnHr1i1sbW1xd3cnMTHx7/tCPjOFJPoMBUEQBEEQBOFvl5CQgKmpKVFRUZiYmHzSfqytrYmPj3+v/bi5uVGlShVWrlwpv1emTBk6dOjA3Llz86w/btw4Dh8+zNOnT+X3Bg8ezIMHD/Dy8gKga9euJCQkcPz4cXmdFi1aYG5uzo4dO97ruJIkYW9vj4eHB+PGjQMgPT0dGxsb5s+fz6BBgz7wm/lniB4qQRAEQRAEQfgPSkhIUHmlp6fnWScjI4M7d+7QrFkzlfebNWvGtWvX1O7Xy8srz/rNmzfn9u3bZGZmFrhO7j7f57iBgYFERESorKOrq0uDBg3yLdu/kWhQCYIgCIIgCMIXlJuU4lNeAA4ODpiamsovdb1N0dHRZGdnY2Njo/K+jY0NERERassXERGhdv2srCyio6MLXCd3n+9z3Nz/fkjZ/o1Elj9BEARBEARB+A8KCQlRCfnT1dXNd12FQqHyb0mS8rz3rvXffv999vm51vk3Ew0qQRAEQRAEQfgPMjExeecYqkKFCqGpqZmnxycqKipPz1AuW1tbtetraWlhaWlZ4Dq5+3yf49ra2gI5PVV2dnbvVbZ/IxHyJwiCIAiCIAhf0OcK+XsfOjo6VK1aldOnT6u8f/r0aWrXrq12m1q1auVZ/9SpU1SrVg1tbe0C18nd5/sc18nJCVtbW5V1MjIyuHjxYr5l+zcSPVSCIAiCIAiC8BUbPXo0vXr1olq1atSqVYs1a9YQHBzM4MGDAZgwYQIvX75k8+bNQE5Gv2XLljF69GgGDBiAl5cX69atk7P3AYwcOZL69eszf/582rdvz6FDhzhz5gxXrlx57+MqFAo8PDyYM2cOLi4uuLi4MGfOHAwMDOjRo8cX/IY+jWhQCYIgCIIgCMIX9KG9TOq2/xBdu3bl9evXzJw5k/DwcMqVK8exY8coWrQoAOHh4SpzQzk5OXHs2DFGjRrF8uXLsbe357fffqNTp07yOrVr12bnzp1MnjyZKVOm4OzszK5du3Bzc3vv4wKMHTuW1NRUhg4dSmxsLG5ubpw6dQpjY+OP/Xq+ODEPlSAIgiAIgiB8AbnzUIWHh3/yPFR2dnbvPQ+V8PcSPVSCIAiCIAiC8AV96R4q4e8lklIIgiAIgiAIgiB8JNFDJQiCIAiCIAhfkOih+rqIHipBEARBEARBEISPJHqoBEEQBEEQBOELEj1UXxfRQyUIgiAIgiAIgvCRRINKEARBEARBEAThI4mQP0EQBEEQBEH4gkTI39dF9FAJgiAIgiAIgiB8JNFDJQiCIAiCIAhfkOih+rqIHipBEARBEARBEISPJHqoBEEQBEEQBOELEj1UXxfRoBIEQRAEQRCEL0g0qL4uIuRPEARBEARBEAThI4keKkEQBEEQBEH4gkQP1ddFNKgEQRAEQRAE4QsTjaKvhwj5EwRBEARBEARB+Eiih0oQBEEQBEEQviAR8vd1EQ0qQRAEQRAEQfiCRIPq6yIaVIIgCIIgCILwBYkG1ddFjKESBEEQBEEQBAGA2NhYevXqhampKaampvTq1Yu4uLgCt5EkienTp2Nvb4++vj4NGzbk8ePHKuukp6fz448/UqhQIQwNDWnXrh2hoaEffGyFQpHntWrVqs/x0T+aaFAJgiAIgiAIwheU20P1Ka+/S48ePbh//z4nTpzgxIkT3L9/n169ehW4zYIFC/D09GTZsmXcunULW1tb3N3dSUxMlNfx8PDgwIED7Ny5kytXrpCUlESbNm3Izs7+4GNv2LCB8PBw+fX9999/vi/gIygk0WcoCIIgCIIgCH+7hIQETE1NefbsGcbGxh+9n8TERFxcXIiPj8fExOSzle/p06e4urpy/fp13NzcALh+/Tq1atXCx8eHUqVK5dlGkiTs7e3x8PBg3LhxQE5vlI2NDfPnz2fQoEHEx8djZWXFli1b6Nq1KwBhYWE4ODhw7Ngxmjdv/t7HVigUHDhwgA4dOny2z/2pRA+VIAiCIAiCIHxBn6uHKiEhQeWVnp7+SeXy8vLC1NRUbtAA1KxZE1NTU65du6Z2m8DAQCIiImjWrJn8nq6uLg0aNJC3uXPnDpmZmSrr2NvbU65cOXmdDzn28OHDKVSoENWrV2fVqlUolcpP+tyfSjSoBEEQBEEQBOE/yMHBQR5vZGpqyty5cz9pfxEREVhbW+d539ramoiIiHy3AbCxsVF538bGRl4WERGBjo4O5ubmBa7zPseeNWsWe/bs4cyZM3Tr1o2ffvqJOXPmfMCn/PxElj9BEARBEARB+II+V5a/kJAQlZA/XV1dtetPnz6dGTNmFLjPW7duATkhdeqOp+79N729/H22eXud9zn25MmT5f+vVKkSADNnzlR5/0sTDSpBEARBEARB+II+V4PKxMTkvcZQDR8+nG7duhW4TrFixXj48CGRkZF5lr169SpPD1QuW1tbIKeHyc7OTn4/KipK3sbW1paMjAxiY2NVeqmioqKoXbu2vM6HHhtywgITEhKIjIwscL2/kwj5EwRBEARBEIQv6Etn+StUqBClS5cu8KWnp0etWrWIj4/n5s2b8rY3btwgPj5ebvi8zcnJCVtbW06fPi2/l5GRwcWLF+Vtqlatira2tso64eHheHt7y+t8zLEB7t27h56eHmZmZh/0nXxOoodKEARBEARBEATKlClDixYtGDBgAKtXrwZg4MCBtGnTRiXDX+nSpZk7dy4dO3ZEoVDg4eHBnDlzcHFxwcXFhTlz5mBgYECPHj0AMDU1pX///vz0009YWlpiYWHBmDFjKF++PE2bNn3vY//5559ERERQq1Yt9PX1OX/+PJMmTWLgwIH5hjt+CaJBJQiCIAiCIAhf0OcK+fs7bNu2jREjRsgZ+dq1a8eyZctU1vH19SU+Pl7+99ixY0lNTWXo0KHExsbi5ubGqVOnVFLDL168GC0tLbp06UJqaipNmjRh48aNaGpqvvextbW1WbFiBaNHj0apVFK8eHFmzpzJsGHD/pbv4n2JeagEQRAEQRAE4QvInYfq8ePHnzwPVdmyZT/7PFTCxxE9VIIgCIIgCILwBf2be6iEDyeSUrxh48aNKBQKXrx4AcD27dtZsmTJP1qmd5VDoVAwffr0L1qeD3H37l2aNm2KkZERZmZmfPPNNwQEBPzTxRL+h4h6/XlduXKFH374gapVq6Krq6vy3QrClyLq9eeTnZ2Np6cnLVq0oEiRIhgYGFCmTBnGjx9PXFzcP108QfhPECF/b3j16hX+/v5UrlwZXV1d2rRpg7e39z9+s1BQOa5fv06RIkUoUqTIly/YO/j4+FCjRg0qVarE+PHjSUtLY+rUqcTGxnL//n2srKz+6SIK/wNEvf68ZsyYwYYNG6hcuTJxcXFcuHCBwMBAihUr9k8XTfgfIur155OUlIS9vT3du3fH3d2dQoUKcffuXX755Rfs7Oy4ffs2+vr6/3Qxvxq5IX+PHj365JC/8uXLi5C/fwkR8vcGKyurL3KTn5qa+tlOTjVr1vws+/k7TJ06FV1dXY4cOSJX9qpVq+Li4sKiRYuYP3/+P1xC4X+BqNef15QpU5g2bRoAixYt4sKFC/9sgYT/SaJefz76+voEBgZiaWkpv9ewYUMcHR359ttv2bdvH999990/WMKvkwj5+7qIkL83vBlC0LBhQ44ePUpQUBAKhUJ+5crIyOCXX36hdOnS6OrqYmVlRd++fXn16pXKPosVK0abNm3Yv38/lStXRk9PT56pevny5dSvXx9ra2sMDQ0pX748CxYsIDMzU97+XeVQF0Lg7e1N+/btMTc3R09Pj0qVKrFp0yaVdS5cuIBCoWDHjh1MmjQJe3t7TExMaNq0Kb6+vp/8XWZlZXHkyBE6deqk8uSkaNGiNGrUiAMHDnzyMQThfYh6/fnqNYCGhrhsCP88Ua8/X73W1NRUaUzlqlGjBgAhISGffAxB+NqJHqp8rFixgoEDB+Lv75/n5l+pVNK+fXsuX77M2LFjqV27NkFBQUybNo2GDRvm6R6/e/cuT58+ZfLkyTg5OWFoaAiAv78/PXr0wMnJCR0dHR48eMDs2bPx8fFh/fr17yyHOr6+vtSuXRtra2t+++03LC0t2bp1K3369CEyMpKxY8eqrD9x4kTq1KnD2rVrSUhIYNy4cbRt25anT5/KaSyVSiVKpfKdx1YoFPI2/v7+pKamUqFChTzrVahQgdOnT5OWloaent479ysIn4uo159WrwXh30jU67+nXp87dw6AsmXLvnN/wocTPVRfGUmQbdiwQQKkwMBASZIkqXXr1lLRokXzrLdjxw4JkPbt26fy/q1btyRAWrFihfxe0aJFJU1NTcnX17fAY2dnZ0uZmZnS5s2bJU1NTSkmJkZell85JEmSAGnatGnyv7t16ybp6upKwcHBKuu1bNlSMjAwkOLi4iRJkqTz589LgNSqVSuV9Xbv3i0BkpeXl/zetGnTJOCdrzfLePXqVQmQduzYkafMc+bMkQApLCyswO9EED4HUa8/X71+28KFC1W+W0H4UkS9/vvqtSRJUmhoqGRjYyNVq1ZNys7OLnBd4cPEx8dLgHT//n3J39//o1/379+XACk+Pv6f/kiCJEmih+ojHDlyBDMzM9q2bUtWVpb8fqVKlbC1teXChQsMGTJEfr9ChQqULFkyz37u3bvHtGnTuHr1KjExMSrL/Pz8cHNz++CynTt3jiZNmuDg4KDyfp8+fTh+/DheXl60aNFCfr9du3Yq6+X2KAUFBcnx3rmzVL+Luhmq3wx3+JBlgvCliXqt3j8587wgfCpRr9UrqF7HxMTQqlUrJEli165dIsxXEN6DaFB9hMjISOLi4tDR0VG7PDo6WuXfdnZ2edYJDg6mXr16lCpViqVLl1KsWDH09PS4efMmw4YNIzU19aPK9vr1a7XHs7e3l5e/6e246dyT7JvHt7W1xdra+p3HfrOBlLvft48HOSdrhUKBmZnZO/cpCF+KqNfqiQcfwn+ZqNfq5VevY2NjcXd35+XLl5w7d47ixYu/c1/Cx5FEyN9XRTSoPkKhQoWwtLTkxIkTape/nQZT3Ynr4MGDJCcns3//fooWLSq/f//+/U8qm6WlJeHh4XneDwsLA3LK/qFmzpwpD8wtSNGiReVUsc7Ozujr6/Po0aM86z169IgSJUqI8VPCv4qo1+q9Wa8F4b9G1Gv11NXr2NhYmjZtSmBgIGfPnlU7BloQBPVEg6oAurq6ap88tWnThp07d5Kdnf1R3fzw/yftN7vdJUnijz/+eO9yqNOkSRMOHDhAWFiY/JQLYPPmzRgYGHxU2taPCSHQ0tKibdu27N+/nwULFsgXreDgYM6fP8+oUaM+uByC8DmIep1DhPwJXxNRr3N8bL3ObUwFBARw+vRpKleu/MHHFj6M6KH6uogGVQHKly/P/v37WblyJVWrVkVDQ4Nq1arRrVs3tm3bRqtWrRg5ciQ1atRAW1ub0NBQzp8/T/v27enYsWOB+3Z3d0dHR4fu3bszduxY0tLSWLlyJbGxse9dDnWmTZvGkSNHaNSoEVOnTsXCwoJt27Zx9OhRFixYgKmp6Qd/D/b29ion+/c1Y8YMqlevTps2bVQm9i1UqBA//fTTB+9PED4HUa9zfGy9fvXqFRcvXgSQe6CPHz8uzwvUoEGDD96nIHwqUa9zfEy9Tk1NpXnz5ty7d48lS5aQlZXF9evX5eVWVlY4Ozt/cFmEdxONoq/IP5QM41/p7axBMTExUufOnSUzMzNJoVBIb35dmZmZ0qJFi6SKFStKenp6kpGRkVS6dGlp0KBB0rNnz+T1ihYtKrVu3Vrt8f788095+8KFC0s///yzdPz4cQmQzp8/L69XUDl4K2uQJEnSo0ePpLZt20qmpqaSjo6OVLFiRWnDhg0q6+RmDdqzZ4/K+4GBgRKQZ/2Pdfv2balJkyaSgYGBZGJiInXo0EF6/vz5Z9m3ILwPUa8/b73OPYa6V4MGDT55/4LwPkS9/nz1Onc/+b2+//77T9q/oCo3y9/du3clPz+/j37dvXtXZPn7F1FIkmgeC4IgCIIgCMLfLSEhAVNTU+7cuYORkdFH7ycpKYmqVasSHx+PiYnJZyyh8DFEyJ8gCIIgCIIgfEGSGEP1VRENKkEQBEEQBEH4gkSD6usiGlSCIAiCIAiC8AWJBtXXRTSoBEEQBEEQBOELEg2qr4toUAmCIAiCIAjCFyQaVF8XjX+6AIIgCIIgCIIgCP9V791DlZaWRkZGxt9ZFkH4qujo6KCnp/dPF6NAol4LwocR9VoQvk5fum7/m3uoYmNjGTFiBIcPHwagXbt2/P7775iZmRVYnhkzZrBmzRpiY2Nxc3Nj+fLllC1bVl4nPT2dMWPGsGPHDlJTU2nSpAkrVqygSJEi8jqzZ8/m6NGj3L9/Hx0dHeLi4vIcKzg4mGHDhnHu3Dn09fXp0aMHixYtQkdH57N9Bx/qvRpUaWlpODk5ERER8XeXRxC+Gra2tgQGBv5rb75EvRaEDyfqtSB8nb503f43N6h69OhBaGgoJ06cAGDgwIH06tWLP//8M99tFixYgKenJxs3bqRkyZL88ssvuLu74+vri7GxMQAeHh78+eef7Ny5E0tLS3766SfatGnDnTt30NTUBCAjI4Nvv/2WWrVqsW7dujzHyc7OpnXr1lhZWXHlyhVev37N999/jyRJ/P7773/Dt/F+3mti39xJyEJCQt578jAvLy9OnTrFtGnT8ixTKpV07NiRPXv2/KOtybddvHiRNWvWsGrVKvnHBzh37hyrVq1i27ZtpKamAnD27Fn69Okjr1O1alUMDAzQ1tYGclrhwcHBhIaGqv2j19DQoGzZsjRu3Jj69evTtGlTAC5duoSnpyfa2tpoaWlhbGxMmTJlcHV1pUyZMhQpUgQNDdVIzfHjxyNJEqmpqWRmZpKVlYWxsbH83c6bN09lfUmSuH37NkePHkWhUODs7Iy2tjYJCQkkJCSgr69P/fr1Adi/fz8HDx4kODiYzMzMPJ/DwsICGxsbDAwMSElJoX379sTExPDy5UsSExNJTk4mMzOThIQEXr9+TdmyZbG3t0dfXx8jIyP09PSIi4sjKCgIpVJJsWLFMDExITk5GVtbW0xMTNDX18fAwABzc3Pc3d1RKBQf+tPKOnfuzG+//Ya9vb3K+9nZ2XTr1o2lS5fmWfa+0tPTGTJkCPv27WPatGnMmDHjXz3h3sfU61evXjFq1Ci2bt2qdvmAAQOYPHkyRYsW/ZxF/SQBAQGMHDmSVatWUbhwYfl9Hx8ffvrpJzZv3oylpSXx8fG8ePFC/tsHqFy5slyvdXR0iI+PJyoqipCQELKystQer3jx4tStW5eGDRtiZmZGkyZN8Pf3Z+zYsSgUCrS0tNDX16dkyZK4urri6uqKk5MTWlqqz7cGDx4M5Fxc0tPTyc7ORl9fH11dXQBWrVqV59jPnj1jz549xMfHU7x4cUxNTeV6nZ2dTcOGDdHR0eHatWts3boVPz8/tZ/D2NgYOzs7zMzMCA0NpU+fPir1OjExkczMTNLS0ggJCaFUqVK4uLigqamJoaEh+vr6JCcnExISQnJyMg4ODlhbW5OQkICVlRWmpqZyvTYyMqJNmzZ5Pv+HGDVqFN27d6dGjRp5lo0bN47WrVur/K4fQpIk5s2bx7x58+jZsyfbtm376up1dnY2HTp04MCBA2p/h19//ZUKFSrg7u7+uYv70RISEvjuu++YOXMmlSpVkt+Piopi0KBBzJ49G1dXV+Lj48nIyKBEiRLyOhUrVsTAwABdXV309fVJSkri1atXBAUFydf4tzk4ONCkSRPat2+Po6MjJUqUIDExkSFDhpCamoqWlhY6Ojo4OzvL12wXFxe1N+f3798nJSWFuLg4MjMz0dPTw8bGBkDls+SKiIhg586dvHz5EmdnZ6ysrEhKSiIhIYGUlBTq16+Pqakpjx49YvXq1Tx58kTt59DT08Pe3h4LCwtevnxJnz59SEhIIDQ0VD5PZGZmkpmZSUBAAEWLFqVs2bLyOUtfX5+srCxCQkKIi4vD1tYWe3t7kpOTMTIywtLSEgMDA/T09DA0NKR48eJq6+T7WrNmDTo6Oir3Wrk2b95MSkqKfJ78GHv27GHw4MHUrVuXFStWyH8vf3fdzq2jV69e/eSJfevUqfPZy/z06VNcXV25fv06bm5uAFy/fp1atWrh4+NDqVKl8mwjSRL29vZ4eHgwbtw4IOeeyMbGhvnz5zNo0CDi4+OxsrJiy5YtdO3aFYCwsDAcHBw4duwYzZs3V9nnxo0b8fDwyNNDdfz4cdq0aUNISIh8v7Zz50769OlDVFTUP3dult5DfHy8BEjx8fHvs7okSZI0ZMgQ6dmzZ/ku9/T0lI4dO/be+/u7KZVKyd3dXUpOTla7fOnSpdLu3bul+Ph4+TV37lwJkJo2bSq/FxAQoPLy8/OTvL29pXv37kmHDh2S9u7dK23ZskX65ptvJEB+9e/fX9q5c6cUEhLy3mWOj4+XLl26JDVr1kzS0dFR2R8gOTs7SyNHjlTZ5vHjx1LFihUlQLKyspK0tLTybAdIU6dOlaZOnSoBUq1ataTJkydLy5cvl/744w9p5cqV0rJly6QtW7ZItWvXlgBJS0tL+uGHH6TY2FhpyZIlUunSpdXu95tvvpE8PT2lJk2aSE5OTpKmpqbK8k6dOklly5ZVuy0gFS1aVPLw8JAuXbokKZXKD/qN79+/n+f7eNPZs2elmTNnftA+35adnS2NHTtWLu+H1Jkv7WPq9YoVK6T9+/fnu/zMmTPS/PnzP0fxPps+ffrkey46d+6cNGXKFEmSJCkuLk6Ki4uTDhw4IAGSvb29FBsbK8XFxUnPnj1Tefn6+koPHz6U7ty5I+3atUvatm2btHHjRqlv374qf6+1atWSNm7cKD19+vS9y5uamirduHFDqlevnmRtbZ2nDhgaGkrdunVT2eb169dSkyZNJEAyMzOT9PT01Nafrl27SmvWrJG0tLSk0qVLSyNHjpSWLFkirVq1Slq2bJm0ZMkSaefOnVLnzp3lbWrUqCGlpaVJmzdvlmrUqKF2v+bm5tKBAwekFi1aSCVLlsxzPqpTp47UvHnzfOu1paWl1K9fP+nPP/+UMjIyPuj3TUhIkNq2bZvv8pcvX0o9evT4oH2qs3btWklDQ+OrrNeXL1+WZsyYke/yyMhI6bvvvvscxftsFi1aJB08eFDtspcvX0pdunSRJOn/6/Xdu3clIyMjSaFQSP7+/lJcXJwUHBys8goKCpJ8fX0lb29vycvLS7p06ZJ09uxZac6cOZKhoaH891qtWjVp5cqV0s2bN9/7OpSVlSXdv39f2rlzp9SiRQu19WDPnj0q22RmZkq9e/eWtLS0JH19fcnExETtdtWrV5dOnTolmZiYSHZ2dtIPP/wgLVy4UFqxYoX0+++/S4sXL5b27t0rjRgxQlIoFPL5TalUSkePHpWaNWuW773A8ePHpXbt2klly5ZV+Q4AqWTJklKPHj3yrdd6enpSp06dpG3btkkJCQkf/Bu7u7vnez7IzMyU3N3dP3ifbzt37pxkamoq33d8ibqdW0evXLki3b9//6NfV65ckQApJCRE5d40LS3tk8q3bt06ydTUNM/7pqam0vr169Vu4+/vLwHS3bt3Vd5v166d1Lt3b0mScu6xACkmJkZlnQoVKkhTp07Ns88NGzaoLceUKVOkChUqqLwXExMjAdK5c+cK+mh/q78ty19cXJz8xEUdGxsbtXGRH0OpVCJJktxd+DFyW+QGBgZql/fp04d+/frJLeg///yTqVOnUr16dZYsWZLvfrW0tNDS0iIpKQlvb2/Onj3LjRs3SE5OVllv3759ctfmmDFjCAwMJCgoiAoVKtCrVy9q1arF7t27WbduHSVKlKB3794MHjyYp0+f5jmmtra2/PQ4tzcnMjKSBQsWcOfOHR48eADATz/9hLu7O8HBwWRnZ3Po0CG2bNkC5DwVv3PnDqVLl2bVqlXyftLT09mzZw9PnjwhJCSEBw8e0KxZM/r06cODBw+oVasWz58/p2XLlgwZMgR7e3usra1p0qQJANbW1owePZrKlStTp04devXqhbOzM8WKFePMmTMsXbpUfrJWrFgxatasSUpKCs+fP5e/kyVLlrBkyRJWrFjBkCFD3uv3hZzfuHr16vkur169On/88cd7708dDQ0N5s+fj7W1NWPGjPmkff0bxcXFUbFixXyXW1tbf7Z6LUkS2dnZn9RzkZmZSVRUlMrT6Tc1bNhQpQf34cOH9OvXD0dHRzZt2pRvb6iGhgb6+vpoaGgQGBjI5cuXuXbtGrGxsSrrPXr0SH662q9fP1JTUwkICKBw4cL06tWLli1bcu7cOZYtW4a+vj49e/Zk+/bt7N27N88xNTU1yc7OJiUlRT7XZWZmMm3aNEJCQjh79iwAjRs3Zvz48YSFhZGUlMTjx4+ZO3cukHOuvHnzJtra2qxbt07u7VIqlRw/fpz79+8TGRmJl5cXFSpUYN68eaxfv54OHTpw4sQJ6taty7x58yhSpAi2trYMGzYMX19fvvvuO7p27YqjoyOVKlWiQ4cOFC9enOLFi/P06VPmz58vh6BZWlrSoEEDFAqFXK9fv37N+vXrWb9+PYMGDVLb+5af4OBgXF1d811ub29PQkLCe+8vP/3798fc3JxOnTp98r7+beLj4wu8XhcqVOizfIeQU6+zsrLkaI6PdebMGTw8PNQus7e3R6lUEh8fD+Rc/7p27YqGhgZbtmzB0tJS7XYKhULuBX769Clnz57l6NGjhISEqKz35MkT+dpTv359nJyc8Pf3R19fn+7du9OpUyd8fX1ZvHgxMTExdO3alefPnzNnzpw8x9TQ0ECpVAKoROwsXryYFy9esHnzZiAnGuT06dO8evWK6Oho4uPjGTRoEJBzn3H37l0SEhL4448/cHJykvfj5eXFtWvXeP36NdeuXcPe3h5PT0/Wrl3L6NGjWbJkCa6urkyYMAEnJydsbGxYvnw5x44do3fv3vTo0QNdXV2qVq1K48aNKVasGMWLFycuLo4FCxawfft2APT19alXrx5mZmYEBAQQFBTEq1ev2LdvH/v27aN8+fI8fPjwnb9rLkmS0NPTy/fvJLfXTKlU5ona+RCNGjXi6tWrtGjR4qP38U9zcHBQ+fe0adOYPn36R+8vIiICa2vrPO9bW1vnG0qc+/7b5xEbGxuCgoLkdXR0dDA3N8+zzoeEKEdEROQ5jrm5OTo6Ov9oqPPf1qAqV64cXl5eNGvWTO1yLy8v+WTwsS5evMjSpUvJzMxEoVAgSRJDhw6lZcuWH7yvmJgY7Ozs8l1uYmJCeno6kHMi79u3L23atJG7pPMTHx/Pb7/9xtatW+WQOU1NTUqUKIGbmxsVK1akbNmy2NraUrVqVSCnceXs7Ey5cuU4f/4869evR0dHh4yMDJo0acL58+dZt24dFhYWAHTq1Ak9PT38/f15/PgxiYmJODo60rFjR7kcFy5cwNPTU6VsT548oVWrVjg7OwPQpk0bYmJiuHbtGvPmzaNKlSr4+Phw6tQp6tevT2BgIJMmTSIoKAhXV1eqVavGjBkzaNeuHRkZGQwdOhQNDQ28vb0xNTVVOVa3bt04dOgQq1atwsPDgx9++CHPzWq3bt1o1qwZEyZM4MqVK9jY2HDgwAE0NDTkUMZcmpqa7NmzByMjI9q3b/9eXbzm5uZ4e3vnuzwiIkL+Tj/VgAEDvsoGVfny5fHy8qJ27dpql3t5eVGuXLlPOsaTJ0+YN28er169Qk9Pj+TkZLp160bfvn0/ONwzJSUlz8n7TQqFQm5U+Pr68s0331CsWDEOHDhQ4ODb9PR0Nm/ezKpVq0hISJDLVbhwYapUqULFihVxdXXF0NCQ9u3bA3DixAmcnZ0pXbo0jx49omPHjnK9rlatGkqlkm+++UYur5ubG3Z2doSHh+Pr60tcXBzGxsa0a9dObmQ+f/5cbizlOn78OBMnTpQH+VpYWODn58e1a9fYs2cPxYsXJz09nY0bN9KrVy/i4+OZNWsWN2/epGTJklSvXp0+ffrQt29ftLS0GDZsGCEhIZw8eVJlcDHkNBIXLFjA77//TpcuXRg7dmyeGyAbGxvc3NxYvHgxu3btwtHRkdOnT5OVlUVWVpZKKLGGhgZeXl6sWLGCjh07FnhOzmVubl7gRTT3vP055IZmf21cXV3Zt29fvtfkGzduFNhofR/h4eHMmzePp0+fYmRkREJCAk2aNGHUqFEfNWZFS0urwIeo1tbWxMfHk52dTceOHUlKSuLChQsUL148322USiUHDx5k4cKFvHz5Ur6vsLW1xc3Njdq1a1O5cmUcHR1xc3MjPj6ee/fukZ6ejrOzMxEREfTv359BgwaRmZmJs7MzDg4O9O/fX74mDhs2jBYtWvDgwQP279/P/fv3MTQ0ZPfu3dja2splGT16tErZoqKi0NDQwMbGBhsbG1JSUujXrx+XLl3Cy8uLhw8fYmRkxJo1a5g8eTLZ2dksXbqUP//8EwcHB2rUqMH06dMZNmwYRkZGrF+/Xn442aFDB5Vz67Bhw7h16xabN2/Gzc2N2bNn57mmFylShA0bNrB3714WLVqEs7Mzd+7cITk5GaVSqZIURaFQyA2wDh06ULJkyXf+vgqFgrS0tALXSUtL+6TGVK6yZcty9uxZtaFsfyfpM42heju8N/ea9rbp06czY8aMAvd569YtALXXWkmS3nkNfnv5+2zzPuu86zgfu5/P6W9rUPXv358+ffrQuHHjPE+Yg4KCePHixSfdeO3cuZNjx47xxx9/yE+b4uPjmThxIi9evPignguAEiVKsGzZsnyX+/n5YW9vz8OHD+UnlLkNiPycO3eOMWPGkJGRgYODAy9evKBPnz5069YtzwWkSpUqhIeHY2lpqXJDIkkS165d4+LFi7Rv356yZcsiSZL8ZAngzp07dOjQASsrK2rWrMmVK1e4d+8esbGxcgOhWbNmeHh4cPjwYQICAtDX1yc2NlaOW9XU1KRMmTLMnTuXpKQkOnbsSJkyZQD4+eef5fLY2NiwYcMGKlasSPny5eX3IyMjiYuLo06dOhQvXpzXr1/Ly65cuUJUVBTnz5/n5cuX+fYWQM7NX6lSpbhy5Qo3btxAT08PR0dHGjVqRLt27ShdujRXr17l2rVrXL16ld69e6Orq0urVq345Zdf5It+SkoK+vr6KpWrcePGLFy4EA8PD7UX4rVr19KzZ898y/YhXr58+Vn282/TsmVLfv31V/r165enoZKUlMSOHTvkQawf4+bNm0ybNo2VK1dSrFgxIOeGeNmyZYwYMYLffvvtg06YxsbGRERE5HuiTUlJISsri5iYGDlWfPHixflekCCn4TV48GDCwsIoVaoUCQkJNG/enL59+6pthL169UoeV/Smx48f8+eff1K7dm3q1auHQqFg/fr19O/fHwBvb29Kly6NqakppUuXJiAggMuXLxMWFoajoyMALi4uzJw5U74x09LSokaNGuzevZt27dqhp6eHtbU1EyZMICMjg5EjRwI555s//vhD7pE1NDTkl19+oUWLFvKDnTfLX7hwYWrUqKHSs/78+XMOHTrE0aNHef78OQ0aNCAmJkbtd6avr0/FihXZtWsX9+7dQ0tLCwcHB2rWrEnLli1xd3fn2rVr8mvkyJH8+OOPNGzYkEmTJtG4cWMAUlNT0dXVVTnv2tvb8/r1a2JjY9U2nvfs2UObNm3y/T0/xNuRBV8LJycnEhIS8PPzy3Ozq1Qq5cHmH+vly5d89913LFy4kGrVqsn73b9/P127dmX37t0F1jl1tLW18/3NAfz9/bG2tpYTdMyePbvAB2YxMTF8//33PHjwgHLlyhEWFkbt2rWZOnWqfC56U1BQEAqFIs/DvJCQEPbt24ejoyPt27dHU1OTK1euyFEaK1asoFOnTrRs2ZKWLVvi4+ND7969OXr0qFz3Af744w+2bNnClStXUCqVVK5cmdWrV9OlSxfMzc0xMDBg1KhRjBgxgnnz5nHq1CkGDRrE3Llz5d5qbW1tBg8eTN++ffOMZYqNjcXMzIx27dqpnBtjYmKYN28eW7du5eXLl9StW1fu6XubpqamfL7w9vZGoVBgb29P5cqVadKkCZUqVSI9PV2+Zs+YMYNx48ZRpUoVPDw86NWrF5ATEaNQKPI8jCldujR3796lSpUqeY59//59XFxc1JbrQymVSpYuXfpZ9vUhPleDysTE5L0eKg8fPpxu3boVuE6xYsV4+PAhkZGReZa9evUq357s3IcBERERKg/CoqKi5G1sbW3JyMjIU2+joqLyfUib37Fu3Lih8l5sbCyZmZkF9rT/7d4nLlBdTLZSqZSuXr0qjRw5Uurdu7c0Y8YMadu2bVJYWJgk/RVTvHfvXqljx47SvXv3JEnKiXk9cOCA1KhRIykgIOCj4xSTk5Olpk2bSpmZmXmWKZVKqXXr1tKrV68+eL/du3eXvL291e6zb9++0p07d6QbN25INjY2coywgYGBVK9ePWn//v1SXFycdPnyZemPP/6QRo8eLQFS6dKl5XEV+vr6UtWqVaV69epJjo6O8vKTJ09+cFmzsrKkNm3aSDY2NlLXrl0lDw8P+TV8+HDJ1NRUcnFxkTw8PPJ8lsePH0vz5s2TatWqJY+16tixo9SlSxepbNmy8rgmNzc3CZCKFCkilS5dWrK1tZU0NTUlQ0NDqV+/flJ6errKfosXLy5VqFBBcnFxkcqWLSsNHDhQcnd3l/r16yf5+/tL4eHhUnh4uPT48eMCX9evX5c2b94sXbx4UXr69Knk6+srv94WEhIiLVq0SHJwcJAAqWLFipKZmZk8fuX+/fsq62/dulUaMGCASoyxUqmUdu7cKX333XdyPLxSqZQyMjKk1NRUta+MjIwCY+dzx5/9F8daPH78WJoyZYrUvXt3adKkSdKGDRtyvvu/Pu/t27elpk2bSmfPnpWUSqWkVCrlsXyXL1/+6PIolUqpWbNmUmxsrNrlHh4e0rVr1z54vzNnzpT27t2rdtmvv/4qbdy4UYqOjpaqVq0q12stLS2patWq0m+//SbFxcVJ169flzZs2CCNGzdO0tXVlUxNTaUJEyZIgKShoSGVK1dOqlu3rlSiRAlJQ0NDMjU1lbZs2fLhdVuplMaOHSvp6+tLDRo0kL7//nv51bt3b8ne3l4yNTWVY9LfFBQUJC1fvlxq0aKFpKmpKdnY2EitW7eWunbtKlWpUkXS1dWVAKlq1aqSjo6OZGFhIbm6ukr29vaSnp6epKmpKbVu3TpPfHv79u0lJycnydXVVXJxcZF69+4ttWvXTmrfvr10+/ZtKTQ0VH49ePAg39ft27el9evXS8eOHZPu378veXt7y6+3vX79Wlq7dq083rN69eryeDJnZ2fpxIkTKutfv35dbdmvXbsmNWvWLN+xsR9q165d/9l6HRwcLC1atEjq2rWr9PPPP0urV6+Wbt68Kdfrly9fSo0aNZJ27dolj1vx9vaWunTpIm3atOmTytS3b1+1v7Mk5YzXWL169Qfv88CBA9K0adPULjt16pT0008/SZmZmVK3bt3keq1QKCRXV1dp/PjxUnR0tOTt7S3t2bNHmjVrllS0aFEJkBYsWCCvX7ZsWal58+ZS5cqVJQMDAwmQ9u3bp/ZaVCClUtq4caOkqakpzZ49W7pz547Kq1evXpKenp50/vz5PJtGR0dLW7Zskb799ltJX19fMjIyklq2bCn17NlTqlu3rmRsbCyX1cTERDIwMJDKlSsnFS5cWDIyMpKvhc+fP1fZ7+TJkyUTExOpUqVKUrFixaROnTpJXbp0kZo2bSodO3ZMCgoKkl+3bt0q8PXHH39Ie/fula5fvy7dvXtX5fWmlJQUac+ePVLTpk0lQKpUqZJUuHBhSaFQSJaWltK6deuk7Oxsef3Q0FCpUaNGkr+/v8p+AgICpEaNGknBwcEf9jvkIyAg4IuOe86toxcvXszzt/Ahr4sXL/4tZX7y5IkESDdu3JDfu379ugRIPj4+ardRKpWSra2tyhjq9PR0ydTUVFq1apUkSTnjGbW1taVdu3bJ64SFhUkaGhp5zumSlP8YqmPHjkkaGho57Y2/7Ny5U9LV1f1Hz80flOXP3NycrKwstLS0SE5OJiMjQx6vo/jrr9EQaAP4AwnAc0Dzr4x1CoUCIyMjTExM0NDQQENDg1atWuV73LeflOa6evUqmZmZrFmzRu3yQ4cOERQUxIgRI9710VRERkbSo0cP3NzcqFmzJpqamkRFRbF7927s7Ozo1KmT3KrOyMjA19eXR48ecfnyZby9vTE0NCQxMREAU1NTXF1d6devHzVq1ODcuXNMnDhRbeade/fucfr0aTIzM9HW1qZQoUJ5wgjVxcNKfz3daNiwYZ5lT58+5fr16xQpUoRJkybRunVrlTz/ufbv38/69et5+fIlKSkplCtXjurVqxMbG8uCBQtYsWIFAwcOlHt0Xr58yfLly1m0aBG1a9dm7969FCpUCMjJJjhhwgR532PGjGHKlCl5npzcu3evgF8hJ7Nafs6fP6/2/evXr3Po0CE0NTXlp3eXLl0iKioKZ2dnbG1tqVChAg4ODkRERHDx4kU522BAQABt27Zl8uTJaGtrk5GRQXh4OCkpKQWW08DAADs7O7Uhn69fv6ZQoUL/iWxgXbt2lUMGgoODefLkidwrEhIcTFh4OJpAd319QpRKNAoVguLFCQgOxtjYGDMzM0qXLk2nTp0wMzNDT0+PqKioAo+t7jvz9/fnxIkT7NmzR+02gYGBzJkz54PHuaWnp9OtWzcsLCyoX78+enp6JCUlcerUKV69esWAAQPQ0NDA2tqa7OxsAgMDefz4Mbdv3+bq1auYmJjI40cMDAwoVaoU7dq1o3v37pw5c4YNGzZw586dPMc9fvw4zs7ObNy4EYVCgbm5eZ5eqtGjR2MkSczIyqK1Uok2kAkcUCi43qIFqW/17ueOg7CwsGDChAm0bt2a0qVL5+l9O3v2LKtWrSIwMJC4uDhKlChBtWrVMDc3Z8yYMYwaNYpffvlFHjMaHx/P+vXr+eWXX7C0tOTPP/+Uw18OHjyoEj7ctm1b/vjjD7VPAt9+avim3B5AdY4ePar2/RcvXrBx40aysrIwMzPDxMSEhw8f8uLFCwoXLoyNjQ1ly5alSJEiZGZmcu7cOYyMjDAzM+Ply5eYm5uzZ8+eAsM3P0R8fDxmZmb/iXrdp08f/Pz8MDAwIDExkRs3bqCrq0ulSpWIioggKDgYpSTRXleXFIWCDAsLtFxcCPqrd93GxgZbW1s6d+5M4cKF0dHRISwsrMBjq+tlSktLY/78+fn+baSnp/PNN9/k+zeQH0mS8PDw4NmzZzRt2hRjY2MyMzO5ceMGd+/eZdCgQejq6lK4cGEkSSIsLIwnT57w+PFjzp49q3K91tbWxsXFhdq1azN58mQuXLjAyZMn2bFjR57jrlq1iqZNmxIaGopSqcTe3h5zc3OVOhgfH48iKQnLxYsxPHsWsrJAS4tXDRqQ+vPPZL81Vjs6OpqGDRvi5ORE165dadOmDdWqVcsTAXP37l1WrlzJo0ePeP36NYULF6Z69epUrFiRPn360LZtW1avXi2Pf0lPT2f37t3MmDGD2NhY9u7dS6NGjYCc0Oo3Q3jNzMy4f/++2gytly5dyvd3eFf2zF27duV5LykpiVWrVpGUlISJiQnGxsa8fPkSHx8fLCwssLa2xtXVFXt7e/T09Lh48SKSJGFlZcWrV69QKBTs3LmzwPDND3Xr1i1q1KjxRbP8Xbhw4ZOz/DVs2PBvKXPLli0JCwtj9erVQE7a9KJFi6qkTS9dujRz586Vrw/z589n7ty5bNiwARcXF+bMmcOFCxdU0qYPGTKEI0eOsHHjRiwsLBgzZgyvX79WSZseHBxMTEwMhw8fZuHChVy+fBnIiSQzMjIiOzubSpUqYWNjw8KFC4mJiaFPnz506NDhv5M2PTcdZnZ2Nrq6ulhYWGBsbMzTW7fwAqyAWcB+oB45DSwvIPSNfWlpaZGdnS0nkbCxscHc3BwzMzP09fXl9MS6urpyQyE6OpqEhATs7Oywtrbm6NGjcqiLOk+ePGHTpk3Mnz//vb8ISZKIiori3r17LFiwgJiYGHR0dAgICCAzMxNXV1e6du2q0m0eHR1NUlISDg4O7N+/n5SUFGrXro2rqyt2dnbyCfbs2bNs3ryZpKSkAm841Jk2bRouLi4FDjBUd0JTKpU8efKE4OBgXr16RXZ2Nq6urjRp0oSmTZvSsGFDTExM5MGCgDz2ycHBgZUrV7JmzZp8Q3iuXLlCx44dMTY25uTJk3LXe9++fdm4cSMGBga4ublha2uLra0txYoVo0SJEpQoUYK4uLgCByS/2aDKysri0qVLVKpUCQsLi3wbVLnu37+vsq2XlxcBAQFEREQQHR1NdnY2kBPy5O7ujqOjI/b29nTo0EH+3p49e4ampiZWVlbo6OiojQnOyMiQv1cXF5c8F77cOvNfuPEqVaoU5cqVky9uHTp0oHHjxuhmZGDaogWpPj78Lkn8BlQH9IFEIyOOJSUBOeNeLCwsSEpKIi0tDUNDQ+zt7SlSpAhFihRRSZFtYGCAvb09pqamREZG8urVK6ytrSlWrBi3bt0iIiIi3yQvkiTRrl27AufBUCcuLo7Hjx8zY8YMwsPD0dHRITw8nLi4OJycnGjTpg2VK1eWGwjJycmEhoZSqlQpLly4QGBgILVq1cLV1ZWiRYvKv/WjR49YtWoV8fHx8gn/ffXp04fq1aszddQoLmZmUlqSeDMINQt4aWzM2Lp1VRpVkiTx8uVLXr58SUJCAmlpaTg6OtK0aVOaNGlCkyZNsLGxwd/fX97mxYsXZGRk4OLiwqVLl+jfvz+hoaEqKeRz+fv707ZtW8LCwjh48KB8Dl60aBFjx45FQ0ODWrVqYWdnh42NDUWLFqVEiRI4Ozvj7OzMo0eP8v3MbzaoJEni+vXrFC5cGEdHx3feTOfG9edu+/jxY/z8/Hj16hWvX7+Wx2EVL16cxo0bU7JkSaysrNDX15fT834O/6V6XbRoUSpVqkRGRob88LJVq1YYA2atWpHl48MeSWIq4ATYAClGRhz6q15Dzvi0jIwMkpOT0dXVxcbGBnt7ezn1tr6+Pnp6eujr62NtbY2NjQ3R0dFERUVhZGQkhxLu3r27wN+4bdu2H1yvk5OT8fPzY+LEiQQFBaGtrU1MTAxRUVHY2dnRoEEDatWqJYfHZmVl4evri6urq/zApG7duri6uuLs7Cw/5AkJCWHp0qVERERw4cKFDyrT8OHDmTp1KgkvX1KkSxd0/P1R/JVwAkDS0CDD2ZngnTuR3rqRvnbtGnv37uXq1avExcVRqFAhGjduLF+zixcvrnK9joqKIjw8nLJly/Lq1Stq1arF8ePH1SZXiI2NpUuXLly4cIE1a9bQt29fAI4cOUKnTp3IyMigatWqODo6YmNjg4ODA87OznLdLiiZxNv3H7mhf7mNNXUNqlxeXl4q/w4NDeXp06fExsYSFxcnP4C2srKifv36uLq6yvedb4ZHfg5fsm7/FxpUMTExeSb2XbZsmcrDKYVCwYYNG+TES9JfE/uuXr1aZWLfN4f3pKWl8fPPP7N9+3aViX3fTKzRp08fNm3alKdM58+fl69JwcHBDB06NM/Evh8aOvw5fVCDqmrVqmrHnvS4eZPhQN4lOTcGC4yNWWFiIg9C1tLSkhMNWFlZERsbS2xsLBkZGe+MJ9XX18fc3BwjIyN69+6Nk5OT/LKxsUGhULB//37Cw8MZNmyYyrbx8fHcuXMHAwMDrKys0NLSkrP4nD9/XiVDV+48LH5+fri7u+Pj40NISAiNGjWia9eunDt3joMHD2JgYMChQ4cIDg5mw4YNaGhoYGhoSNGiRalfvz6+vr74+PgwadIkSpUqRXBwMIMHD+b48ePv+tqBnBmjixYt+sENqjctWrSIY8eOsXv3brlyODo6ymPZHj9+zIoVKzh27BgARYsWxcLCgnv37uHm5kbPnj354YcfVJ6uBwcHy0+y+vfvz/z58+WxbLdu3WLXrl2EhoYSGRlJWFiYfFOXK3fOjtz5KnJvAMzNzSlUqBAxMTHExMTw9OlTOXtSixYtyMzMpEaNGtSpU0ftmJg3G1RvK168OOHh4Tx9+pTDhw8TFBTEjz/+SLNmzWjdujWQU9kDAwMpWrRovhkfc6WkpBAUFISTk1OeMXH/pRuvFy9eqC2j/vjx6K5dq3JDkEvS0OBumzZ4ubsTGRlJdHQ0RkZGmJubExUVha+vLyEhIfKNv1LNPt6ko6Mj9zL07dtXpV4XLlwYTU1Nnj9/zqJFi/JkgEtLS+PWrVsoFAqsrKwwNjbm6tWrHD16lNOnT6s8VdfW1sbZ2RlfX1+qVq1KYmIivr6+lCpVigEDBuDj48Pu3btJTExk165dKJVKtm7dSnJyMoaGhtjY2FCnTh00NDTYtm0bc+bMoVq1asTGxjJ79mx+/fXX9/ruhwwZQrly5ZB+/JHBSqXac2c2cNTJibX5jDXduXMn586dY9euXRw6dIjExEQ0NTUJCwsjMTGRoKAgNm/ezJYtW1AqlVhZWeHs7Mz169cpVaoU3bt3Z+jQoVhZWcn7TEpKokyZMoSGhlKpUiWOHz8un1efP3/O5s2bCQwMJCIigvDwcF68eKEyrkhLSwttbW10dXUxMDDAxMSEIkWKYGlpSZEiReR6/eLFCx48eICGhgbu7u5IkkTJkiVxd3dXe415s0H1tlKlSvHq1StevHjBqVOnePz4Ma1bt+a7775DoVD8zzaoAgMDVeZTzGUwYQJ669blW68ft23LhaZNiYqKIioqSn54mpCQwJMnTwgLC+Ply5fEx8fnOxdbLg0NDRwcHEhMTGTgwIEq9drR0REdHR1SU1P59ttvOXLkiMq2WVlZ3Lt3j+TkZKysrLC0tOT+/fscPXqUEydO8Pz5c5X1XVxcePHiBY6OjhgZGfHgwQNsbW3p27cvqamp7Nixg8jISH755RecnZ05dOgQ4eHhGBkZYWFhQa1atShWrBi//PILs2fPpmHDhqSlpbF161YGDBjwXt/91KlTGT58ONpjxmC6dWu+33Fcz568mjxZ7T6KFy8uJ5A5cOCAPB738uXLODg48OrVK/bs2cOyZctISUnB2NiYypUrc+nSJezs7OjatSvDhg1TGaucm/Dm0KFDQM71297eXo7C2bRpE0+ePJHrdXBwsMr9kKamJlpaWvK8XUZGRtjb21OoUCGcnZ2Ji4sjJiaGiIgIrl27BkCdOnVwcXEhPT2d5s2bq0088naD6k3lypUjPj6e0NBQrl69yu3btylfvjxDhgxBW1v7q2hQnT9//pMbVI0aNfpXn4/+l3yWBtXOmzdxUrNdrlBtbdz/yiT3tjdD/qS/0qlmZGSQmpoqd6MXKlQIY2NjwsLCCAwMJDAwkEePHmFoaKiS/MDU1JQWLVrg4+PDwYMHKVasGMnJyaxdu5bt27dz+/btPDd2CoWCmjVr0rx5c8qXL0+pUqW4desWu3fvJiEhgXr16lGnTh2USiXnz5+XT8pGRkZUqVKFS5cuyemMc8PKkpKS8PHxISYmBk1NTWrWrEmJEiWoXr06pUuXRldXl3r16gHg7u5OpUqVePDgAY6Ojjg5OeHg4JCnxyO/BpUkSZQvX16eaDM7O1sOeTEwMEChULBu3Tratm2rcsFyc3Pj2rVrFCpUSD5xzp8/n6SkJB48eMDZs2dJS0vDwcGBkJAQChcuzMKFC+nSpQsAW7ZsoXfv3iplWbNmDfXq1ePw4cN069ZNfjIIORNH+vv7U6pUKYoUKYKWlhYpKSmkpKSQmppKdnY2GhoaGBgYYG1tjZ2dnTxpcPfu3bl69SqXLl3C39+fwMBAHBwcmDdvXp4sYAU1qN4cbK1UKvn99985ffo0Hh4eLF68GPj/BpW6RtLbClr3v3TjlV+DyqRSJTSDg/PdPt3eHp+/GuFve3NAqyRJZGZmkpqaSlJSkjwprq2tLYUKFSIiIgI/Pz+ePXvGtWvXMDQ0VNleT0+PJk2akJSUxNixY2nZsiXZ2dnyNAJXr15Vm8mtbNmytGrVisqVK1OqVCnu3LnDiRMnePHiBZUqVaJx48Zoamry4MEDdu7cyYsXL9DS0qJBgwacPXtWrtdGRkbUqVOH5ORkAgMD5exflSpVolSpUnK9trOzo0WLFkRFReHi4kKnTp1ISkoiMjKSokWLUqRIkTw9s62GDaOYmu9PSU7Y9A0dHTzLliU7Oxs9PT2MjIzken348GEmTpyokuUvt1516dKFgwcPAjBixAiKFCmCl5cXt27dIjQ0FAcHB16/fo22tjbTp09n+PDhaGlpcePGDWrWrKlSlh9//JFJkyaxefNm+Xz15m8bFRVF1apVkSQJXV1dUlNTSU5OJjU1Vb7hNjAwwNLSksKFC2NhYYGlpSWdOnUiLCyMw4cP4+/vz/PnzzEwMGDmzJl5sm0V1KDKTZ6T6+jRo2zZsoU2bdrI6dw/l/9Svc6vQWVWuTKab6UBf1O6nR0P/7rxfltoaKjKv3On50hJSZHDpK2srOQMe8+fP+fZs2fcvHkTPT09IiMj5WuwpqYmtWvXxsrKiqpVq8rh4mfOnGH58uWcP39ebap2R0dHWrduTY0aNShVqhReXl7ydCAlS5akQYMGGBgYEBQUxMGDB3n8+DGQc4N/584d+TqppaVF48aNSU9PJywsjGfPngE514ny5ctTpUoVypQpg4uLCyNGjOD8+fMYGBgwcuRIEhISKFSoEBUrVqRixYp5vmezypXRVpOYSCInYueBpSXPJk0iOTkZMzMzihcvLjcwS5YsyY4dO+jRo4fKts+fP2fNmjUsWLAAgI4dO9K8eXPOnz/Ps2fPuHv3LjY2NmRmZpKYmMjIkSOZOnUqxsbGREdHqzw4gZwpI3JDr0qWLEnTpk3zJKf45ptvePToEaampqSmpsrX69weYT09PczMzHBwcMDCwgILCwuaNm2KkZER27dvJyoqitu3b5OVlcWIESOoVauWShkKalC9mfQKciICfv/9d8qWLcuPP/743o3c9/VPNKhyQ5Q/VlJSEo0bN/5Xn4/+l3x6g0qS2HfrFnlH5/y/CC0tGjk7g5oehY8ZQwU5F9jw8HBmzpwp39heuXKFDRs2yI0sY2NjJEkiNTWVDh060KJFC+rUqUNmZiavXr0iOTmZWrVq5TnRFBSaYGBgwJ07dyhXrhy6urps374dMzMz7OzsKF++vJxlTqlUsnDhQoKCgsjMzJQbArknIm1tbTkltIaGBgqFQl7m5OREnz59UCqVpKamkpqays6dO1EqlfIrOzub9PR0lZTDb9PS0sLIyIhKlSrh4+NDREQERkZGnD17FhcXF8zMzOjXrx8bN27Ms62TkxMvX74kIyODpUuXcvDgQc6fP8+jR4/k7tusrCwiIyMJDQ2ldevWWFpaEhAQQHZ2Njo6OgwfPpzp06fLJ4ywsDAKFy6Mp6dnnnFfoaGhHDt2jL1791KhQgU5S9Hbzp8/L2f8gpwxKE5OTpQsWRJtbe13Nqiys7PZv38/N2/exM/Pj+zsbOrVqyfHiIsG1V8kCdNy5dAID893+wxra56ePKm2XqvLEPSm/KYaeP78Obt372b+/Pno6+sTGBjI3bt3Wbt2LUFBQUiSJM8TExcXR5MmTWjTpg0NGjRAV1eXV69eERsbS+XKlfOMBSgo9ESpVMp/n9bW1uzfvx/IySZUpkwZef4ySZI4cuQIu3btwtzcXK7XuePtNDQ05N9dQ0MDTU1NuefdzMyMXr16oaurS3p6OmmpqZReuxYNIA6IB2IBb+ARkJG3mPIx9PX1qVy5MsnJyfKYxGvXrlG0aFHs7e2ZP38+48ePz7Nt7pxMSUlJjB49mtevX7Np0ya2b99O9+7d5e8iOjqa0NBQBg8eTHh4OAkJCSQmJiJJEj179mT+/PlyyKBSqcTGxoaRI0fi7u6ucryYmBhOnz4th0TnN7bu6NGjjB8/Xp7WYNCgQTg6OuLi4oKBgcF7NaguXrzI1atX8fX1JT09ncKFC7No0aJ3ZrX6EP+leq22QSVJmJUvj2YBaeYzrKx4cOSI2nr9doPqbfmF28TGxrJu3TomT55M0aJF5ciIDRs28PDhQ5RKJdra2piamhIdHU2lSpXo1KkTjRs3plChQvLcS87OzpQtW1blxv9dYyoTExPR09OjWLFiXLx4kejoaGxsbHB2dlYJj/Pz82PkyJG4urry/Plz/P395Tn1FAoFFhYWxMbGolAo0NTURKlUkpWVhYGBAYsXL8bJyYnExEQSExLIGjmS5IQE4smp13GAH3AXyC9PpKamJnZ2djg4OKCtrS1fk44fP46LiwvOzs5s3bpVzoz3JgsLCzQ0NIiOjqZt27ZUq1aNadOmMWHCBHnuK0mSiIuLIzQ0lNmzZ3P8+HFMTU0JDQ1FkiSaNGmCp6cnFSpUkPfbsGFDbGxs8kT7pKSkcPnyZf7880+8vb15+fJlvlMcdOzYUX6407NnT4oUKYKzszMmJibv1aB6/PgxFy5cwM/Pj+TkZAwMDJg9e3a+c5B9rH+iQXX27NlPblA1adLkX30++l/y6WnTFQryv6XPkaVQqD05f4rq1avj7OzMtGnT5Hlg9PT02Lt3L87Ozly6dInw8HDS09Pp2bMnRYsW5dy5c0ybNo3nz59jZ2dHRkYG9+/fZ9SoUWqf5Kmjq6urkt4xNxb5bRoaGmhrazNw4ED5ia6NjQ2BgYH4+Pjw4sULbt68ycOHD2nQoAGnT5/Gx8cHhUJBVFQU06ZNy7NPhUIh36Tlnsxzj6WlpYWhoaEc766vry+f4BQKBcWKFcPV1ZU1a9bI805BTs/XtGnTmDdvHmvXrpXHGEVFRWFqakq/fv0oU6YMZ8+excnJSeVpsJaWFoULF6Zw4cLyiXnGjBkMHDiQhQsXsmDBAjmUKjs7myFDhmBkZKR2rofc8TbJycnvPMF07NiRw4cPo6Ojw+LFi5EkCUNDQ9zc3HBwcKBcuXL5zk+SlZWlEgZmZ2eHi4sLd+7cwcXFpcA5xf6nKBRI75h4U9LS+uz1ukSJEqxYsUJ+GKGjo0NWVhZz586ladOmXLhwgdDQUOLi4mjfvj2VK1fmwYMH/Pbbb9y9exc7Ozuys7MpU6YMP//8s9pxQupoaGiopObNb/LW3NS+bdu2lXs+ihQpQmhoKD4+PgQGBuLv78/OnTtp27YtUVFR8iS92dnZagfMGgCmf72U5Nx4AWgDeoDS0BCFQkFSUhJaWlpYWVmhqamJvr4+WVlZ1K5dmzlz5qg8/e3cuTOdO3dmz549TJ8+Xe7Bi4mJQU9Pj549e9KiRQuOHTuGrq6unNI597uwtrbG2toae3t77ty5w+DBg5k2bRoHDx5k8ODBWFhY8NtvvwEwZcoUXr9+TZ06dfJ8ttxpEFJSUjA0NCxwnpB69erh6+uLtrY2f/zxh3yTXalSJWxtbSlbtmyB8fG5c/FAzsO0mjVr4uvrS3R0NJaWlv/o/CT/GgoF/AP12tzcnN27d+Pp6cnt27fR09MjLS2NPn360KdPH65cuUJgYCCvXr2iTp06uLu7ExISwu+//865c+coVKiQ/Hc5ZsyYPL0XBSldurT8/w0aNMh3PW1tbdzc3ORoEHt7e6Kionj69Kk8Ue2GDRto1aoV2dnZrF+/HsiZckDd/F16/H+91gYe//W+Bjl13uKv0MSnT5+ira1NzZo1sbKyIiUlhbi4OGrUqMHw4cNVGn316tXjxYsX3Llzhz59+shJNRITEzE0NKRx48YMGTJEDofMDWUH5MQ45ubmuLi4sGvXLho3bsyFCxfw9vamb9++jBgxQh43tmPHDi5evKh2OhkDAwPKli3Lrl270NXVLXDy9dKlS2NgYIAkSezcuZPs7GwUCgWlSpXCysqKUqVKYWhomO/2T5484f79+0iSJH9PwcHBhIWFqYxV/696jz4N4T/is8xDdRgYls/OsoBzBVSWT+Hm5qY2Cw+gMp/Q7du36du3LyEhIbRv356qVaty6tQpRo4ciaamJp06dWLv3r2fvYXv6OjIs2fP5AaVlpYWLi4ucgKHrVu30rhxY3R0dOQbLUmSKF68OKampkiSRHZ2NtnZ2Tx+/FgOh9TT00NTU1MOh6hdu7YcziZJEq9fv+bu3bsEBAQAyP+1s7Nj6tSpVKlShZiYGMLCwggJCUGhUODr64uenh7r1q0jJiaGe/fusXbtWubPny8n91i2bFm+DZVDhw5hbm4u38DmNprKlClDXFycnNnl8OHDap9kSZLEypUrSU9PZ9y4cfl+p0+ePOHw4cMYGRlRqFAh/P39KVasGPXr1+fKlSucO3eOkiVL0r9/f7WJL3R1dVm9ejXBwcHcvXuXu3fvsmXLFvniWLlyZTw9PbG1tf2oySa/JpktWqBRwBiqBDXZJT+HEiVKyJmF3ta5c2f5/0NCQmjXrh3Pnz+nevXq9O3bl2PHjtG6dWvq1KlDr169WLt27WfNBAU5Dajbt2/L/9bQ0MDR0VEOcX3w4AFZWVn06NFD7tmCnLlCypYtK/cwK5VKsu7dQ5ucHilHoCGQm0pnONDwjTFUKSkp+Pn5EfJXuFZub4GZmRmLFy/mxo0bpKSkEBYWRkBAAJIkyQ+Vli5diqGhIffv32fPnj1s27aNbdu2ATm9QblZwd62ZMkS5s+fL9fnypUrI0kSZcqUISMjgxkzZjBnzhwWLFhAo0aN1Cbd2bZtG69evWLOnDn53vxER0ezbds2tLS0sLW1JSAgAD09Pbp3786NGzf4888/8fLyonfv3vk+/Bo/fjyvXr3iwYMHPHz4kOPHj7Nv3z6mT5+OqakpZcqUYfr06TRv3lzt9v8rMlq0KHAMVew7xuR+rEKFCsm9JW9788Y/KSmJvn378ujRI6ytrenfvz9nz56lWLFiDB48mNGjRzNmzJgCG0cfw8rKSq5bkNMAyZ1Et2HDhiQkJPDgwQNmzZqlUl/S0tLo2bMnGRkZZGdn54wVv3eP+JAQ7gNGQFf+v0HlDuzo1UseQxUbG8vGjRvZuHGjykS2+vr6bNq0iRcvXqChoUFYWBj+/v5kZWXl9IQlJvLzzz9TuXJl7t+/z+HDhzl37hznzp0Dcu4L8pvbx8PDgw4dOshRQIUKFSIxMRFXV1ckSWLdunUMHz6c3r17M3ToULVJd06cOIG/vz8jRozIE+WTKze6JjMzEzs7O/mc9e2338oh3rdu3aJjx475noO+/fZbWrRoIWdovHPnDufOnWPx4sXo6+tTokQJRo4cSb9+/f5zjavcTM2fsr3w7/FBIX+TJ09We5P55MYN5l64QOHERJXB1dnkZKqa36ED6fk8+S9o9vV33QgV9PQ5t4ERGBjITz/9RPXq1Slbtizt2rUDcp7Ujho1il69epGens7169flG/ncmGt13jUrd9OmTeX/T05Opn379hw/fhxtbW2VP/6srCxatmzJgQMHCA8Pp2/fvujr68sZxjQ1NTEwMMDQ0BBDQ0P09PQoXLgwRYsWZe3atfKJv1q1aixatIiKFSvmKYu3tzcZGRkkJiYSEhLC7du3uXnzJgEBAZibm2NlZSX3BmVnZ1O0aFGGDx8ub597wVq0aBEWFhbY29urfP63Z05/+3vq0qWL3NOVnJzM0qVL6dy5c75Po/z8/KhTpw41atTIN+yyd+/eHDhwgCVLlvD69WvGjRtHzZo15dCBnTt30r17d8aPH6/yWeD/G5ZvS09PJz4+Xh6IW79+fTk5hrW1tdz7+bavJeQvNDRUfRkTE9Fv0gRNP788maqyS5bk5Z49eTJV5XpzbKM6BQ1mL6iHMjcTUFJSEt26daNLly6EhYXJ4W2xsbEsWrQIe3t7GjRowOzZs1m5ciWA2tTmbyqobrdv317+f0mSaNGiBdu3b5cTsbypT58+jB07FhsbG3744QdiYmKQJIng4GCUSqVqvdbWxu7OHconJLBDkrj71z5cgIVFilD/6lV4qwERGBgoZz7NTTd7584dnjx5Ij9oyJ2aIjs7GwMDA8aMGSP3vvbo0YPXr1/j4eFB8eLFsbW1VXn4oO4z5XJ0dOTbb7/lzp07ODk5ERQUxKRJk/jpp5/kaTHeFhMTQ8OGDYmLiyM4nzF5CxcuZOzYsXh6eqKtrc2oUaPQ19cnOjoaHR0dzp8/T8eOHWnQoEGeXj5fX1+1+8zOzpaT4QQHB3P58mVu3rxJu3btmDBhAhYWFnkmsX2Xr6ZeN26M5rNnauu1ugx0uV69elXgsQsKQX9XFIiTkxOSJNGrVy+++eYbDh8+zIYNG1AoFMTGxnL48GHu3bvHzz//zA8//MDWrVvR0NDg4sWLBe43v4eAAN99953Kv/v378/IkSOpUKFCns/i6emJg4MD7du3Z8yYMdy+fVueaiK3B9bQ0BADAwOM9PWxvH2bigkJXJIkckeaWgNT7ewY/ORJnnodGRnJs2fPyMrKIjU1levXr+Pl5cXt27fR1tbGxsYGIyMjdHR0yM7ORlNTEw8PD3lC1QULFnD48GE6d+5M3bp180zTkN8EyJAzvOKHH35g//79lCxZEj8/P/r06cPChQvR1dVV+9tlZGTQpUsXDh06JE8S/LYTJ07QsmVLRo8eTalSpVi+fDkPHz7k8ePHuLq6cufOHXms2PHjx1UaRA8ePFBb1txMp5DzUO3+/fucOnWK6tWrM336dIoWLaqSDv59/RMhf6dPny6wd+5dkpOTcXd3/1efj/6XfJYeqjRtbSY0bEj3J0+oHh6OllJJloYGt+zs2OHqiv4/GEa1YsUKZs6cyeTJk1V6PnR0dJg9ezY//fQTa9euZcWKFQWGo3wMQ0NDhg0bxnfffceiRYvkeaCeP3/OgAEDqF69OtHR0bi4uMjpwJOSktiwYQOnT59GU1OT6OhokpOT0dPT48WLF1hYWHD8+HEuXrxI8eLFqV27dr4Z1HLHOr148YKiRYtSt27dPOuoG/Sba/DgwTg6OqrEVL+vMmXKcO3aNSZNmkRERASenp5YWFjg7e1N9erV5ZtXSZK4e/cuW7duZefOnURHRxf4BHngwIFs27aNH374AW1tbTp37iyHJERFRbFy5Uo5tOF95c7NUqlSJbKzs0lLS5MH8kZHR8thlsbGxjg5/X/6la/+6ZCxMfHHj2MwZw46J09CZiZoa5PRvDkpEyfyT3763bt38/3333Ps2DEWLVokv69QKBgzZgw9e/aka9euaGtrExUVle/Tz4+hUCiYP38+3bp1w9PTUw4/ev36NcOHD0ehUJCdnY2lpSUHDhwgIyODrKwsdu/ezd69e5EkidjYWNLS0tDT0yOsShV0IyPZHBvL49RUtLS1admxI2mTJuW56QLkLGnPnj3D0dGRypUr88MPP6iskzv2Q52hQ4cSHR39UU/4LS0tOXXqFJ6enpw5c4aNGzdSoUIFHj16lCc5xPPnz+WesGfPnuUp45t69uzJrFmzGD16NBoaGtSvX5/ffvtNzgK3du1a4uPj5Tnv3oempibOzs7yWLoBAwZw4MAB5s2bx9GjRzEwMJDr9MWLFwu88f6qGBsTe+wYhnPnovtGvU5v3pzkCRP+0fParVu3cHFxwcfHh0GDBqlcj9u1a8eZM2dITEykVq1aXL9+Pd8emI81Z84cunfvzuTJk6lbty4KhYLU1FRmzZrFjRs3mDlzJlpaWvz2229yePypU6fYtGkTaWlpJCQk5CS9AOLd3Lj/4gUTExIYlZnJS4WCzt9+i96cOWrrdW5vWG5joUKFCgwcOFBlnZACkom0bdsWHR0dvv322w++j9HS0mLDhg00b96cVatWsWvXLlq2bMmTJ08oWrSoSoMqMjKSXbt2sXXrVm7duoWbm1u+87zlTmHg6ekpf6aTJ0/i6uqKUqlk9+7d+Pv7U6NGjfe+/1IoFBQpUkSO9OnduzdeXl7MmDGDNm3aYGhoiJGREVZWVhw9elQlHfe/jeih+rp8lgYV5DSqNlSsyIaKFUGSVGKw9QvY7u8WEBAgJ5B4+wm0mZkZmpqapKSkYGJiQmZm5mcfQ9OxY0eKFCnChAkTiI2NJSgoiNevX9O1a1dKly7NzJkzSU1NxdPTE01NTXr06CE/KZo6daqc/S41NZW5c+dy/fp1hg4dyooVK1Sy6BUkJSWFY8eOceXKFTk9cadOneQnW/n55ptvPumzGxsby+MsAH744Qd27tyJjY0NlSpVIjIyUp7Azdramu7du9OzZ0+qVauW7z7r1q0rp4d+c46o58+f06BBAzIyMti+fbucRTE/uandX79+TWJiIh07dmT48OFyT5O+vj4uLi4kJiaSnZ3Nq1ev8vSq5CYiKGhOrf86yciI5DlzSJ4zJ0+95o35ar6006dPs3HjRvbu3ZunR0WhUFC9enUePnyIk5MTkZGRn7VBBVCpUiVWr16Np6cn/v7+xMTEEBAQQPPmzWnatCnr1q3Dz88PT09PHB0d6dOnDzVr1mTLli3s37+fM2fOUL58eby8vNiwfTsBAQGMnjKFMT/9RM1atciCnMlAC5CVlcXFixc5c+YMGRkZ2Nra0rFjR5V0yerUrVv3nZNWF0RLS4uxY8cyduxYABYvXszUqVMxMTHBzc2NuLg4QkJC5CQ4nTp1Yvny5SrJZN6WO15FkiT09PTkep2YmEiDBg148uQJ8+fPf2fGvuDgYNatW0d0dDSxsbFUqlSJGTNmUKhQIRQKBd988w0NGjTg1KlTJCUlsW3bNsLCwv5zoUKfSjIyImn2bJJmz85br/8al/NPOHr0KN9++y3Lly9X23vYsmVLzp07R4kSJd45yfDHsLGxYc+ePSxdupS5c+eSnp7OkydPqFy5Mt999x1nzpxh1qxZjB07lgYNGjB16lSysrJYsmQJfn5+LFy4kObNm/Pnn3+ydssWMjIymDJlCo0bNaLXW1lx8yNJEl5eXuzZs0eeSPrbb7/Nk33zbWXKlCkwauRdFAoF3bt3l5PTnDp1is6dO6Ojo0Pt2rXJyMiQp8LQ1NSkVatW7N69mzZt2uS7Tx0dHTlSRl9fX74HUyqVfPvtt+zfv5+hQ4fi4eFRYIRAUlISq1evJioqitjYWIoUKcKMGTPkKKZatWpx4MABTp48SVxcHKdPn+bp06f/6JxEwr9bZGQkY8aM4ezZs/K15025D0w+xGdrUKn4F12ccgdLpqenq30Coq+vL4fF/V03xtWrV2fr1q0sX76csLAwZs2aJZejX79+PHz4kF69elGsWDFmzJhBjRo15FTQufPaTJo0iVOnTtGiRQuWLl1K3759cXBwIDU1FRcXF/r27UuxYsXyHDs0NJRRo0bRoUMHFixYIGfC++WXX+jevfsHDe79WLmTve3cuZOKFStiY2ODjo4ONWvW5Ntvv6Vq1ao0adKkwIGtb1I3P9T3339PdnY2J06ceGdDEWDv3r34+PjQuHFjeXK6I0eOMGXKFOrWrcurV6/kwf+54WsWFhakpaUhSZKcsSy3Uf4/4V9Ur5VKpTwBeGxsbJ4eSX19fTIzMwkODv7sjalcxYsXZ9myZZw/f541a9Zw+fJllQcyERER9OjRg4YNG9K4cWP69etHVFQU+/btY//+/WhoaLB9+3aWL1/O6NGj2bBhAy1btqRcuXLExMRgZ2dHr169VNKU50pOTmbcuHFUr16dSZMmYWRkREBAAJs2baJs2bI0a9bsb/nMb9u+fTszZsyQe4K0tbWpUKECrVu3ltPWv2s+t1zqwmrHjRvHvXv3OHbs2HuF8Zw+fZpbt27RpEkTjI2NOXXqFC1btmTUqFF07doVTU1NLC0tqVOnDpMmTSI8PJz169e/M5T7q/YvqtcZGRkYGBhQuHBhAgIC8jwsMTAwkOccK5fP/GyfytLSkpkzZ+Ln58ewYcPw9vZWKUdqaiq9evWSs879+uuvZGdnM2vWLPbu3YuRkRGNGjVi7NixbNy4kXXr1tG4cWOuXL1KREQEZmZm9OzZk6ZNm+b5u1MqlUycOBEzMzPGjx+PjY0N4eHhbNy4kaNHjzJw4MAv0vi/evUq/fr1k7Oc6unp4ejoSMOGDXFxcaFt27YFhga/SVtbO8+91R9//MH+/ftZtmxZgZmec929e5crV65Qq1YtypYti5eXF9988w19+/Zl4MCB6Ovro6+vT6NGjZg7dy4PHjxg1KhRf9u5/3MRPVT/nD59+hAcHMyUKVM+W3KTv6dB9S+ir69PVFQUtWvX5tSpU7i5ubF9+3bu3buHgYEBz58/58mTJ5QvX/5vPVFlZGRw8OBBTp48mec4FSpUoGXLlmzfvl0e77Fx40amTJkirzNs2DBGjRpF3bp1GT9+PFlZWYwdO5YyZcpw8+ZNJk+erJJ5LNfYsWOZPHmySrd3buKFESNGMHny5L819laSJAYPHsy2bdswMDAgLCyMBw8eyOOO2rVrR+PGjd/ZmIqNjaVv374EBQXJA/ozMzOJj48nLi5OzmL2vk/oChUqREJCAkFBQfLA21mzZjF48GBcXV35+eefKVasGKmpqejq6lKoUKE8KZ/NzMzeq/EmfH65vTtdu3Zl/fr1DB06lAMHDnDu3Dm0tLR4+vQpjRo1Ijk5GRsbm7+1LJ6enmzbti1P77atrS0zZ86kV69ecjrwrVu3MnjwYPlGqmPHjnTo0AEPDw8mTpyIsbGxPHm4j48PK1as4OjRo0yaNEll37NmzaJ79+4qvbnFixdn+vTpzJo1i2LFin3w+KAPtWTJEqZMmYKNjQ2vX7/mxYsX2NrakpGRQZMmTd6rMZWVlcWwYcO4efOmPCVEVlYWCQkJxMXFyT1p75oYOpeFhQVZWVn4+PjIY3EOHDjAjBkzWLt2La1bt8bExITly5djYWHB2bNnC+w5E76sGjVqcO7cOXr06MG8efOoUqUKp0+f5tChQ2RlZREREcHQoUP5/fff84TDfW5Lly5l3rx5eRoO+vr6rFixglq1askJIM6dO4e7u7s8hrB8+fKkpqby+vVrNm7ciJaWFqampqxatYrIyEjWrFnDpk2b2Lhxo0pjY/369bi4uNCvXz/5PTs7OyZMmMCaNWs4fvz4ezVAPsWxY8fo3bs3lpaWxMXFcfPmTQwMDChWrBg1a9Z878bU3Llz2b17t8pUL0lJScTFxcnZCd9MwlEQY2NjtLS08PHxoUKFCsyZM4fbt2+zdu1a9u7di7u7O6VKlWLFihVkZmayadMmtenl/21Eg+qfc+XKFS5fvqz2geXH+uofy/Xv3585c+YwePBgZs+eTbt27XB0dGTKlCnygM1hw4Z99kni3nbt2jW5N0SdunXrkvRGCNXr169VQvosLS1JS0tj8uTJcoae3HTx1apVY/PmzRw7dgw/Pz95mydPnlC4cGG1McQ6Ojp069aN48ePf8ZPqSotLY1p06axbds2Ro4cSUpKCocPH2bw4ME0btyYJ0+e0KpVK2xsbOjZsyebNm1SO39Reno67dq14/Lly9SuXZuGDRvStGlT2rZty/Dhw3F1daVNmzYcP35cZRBuQcaMGcP8+fOJi4tj1KhRdO/eHUdHR3755ReKFSvGkCFD6NixI7dv38bOzo6SJUvKY1dy5736GlK2/lf16dOHX3/9lcaNG3Pjxg3q1atHZmYm48aNo0aNGmRlZdGlS5e/vV5HR0djYmKS70OJOnXqkJSUJN805YYg59LQ0MDY2JhVq1ZRsWJFPDw85JuNEiVK4OnpiSRJKklakpKSePHihdrQWIVCQb9+/VQm8f7clEolGzduZOrUqfTv35/IyEgWLVrEtGnTaNSoEenp6fTo0YNChQrRrl07li9fjr+/v9p9DR48mPXr11O9enXq168vN8QGDhxI3bp1qVu3Lps2bcozPis/HTt2ZNmyZZiZmfHLL7/www8/kJ6ezi+//ELdunXZvXs3ixYtolOnTvz555+iMfUv07p1aw4ePIixsTG2trZUrVoVb29vhg0bxrfffktkZCRDhw6lVatWf3tkwPPnz/MdP2xtbU16ero8pu/teg05Cbf27dtHYGAg69evJyUlBYVCga2tLVOnTqVdu3bMmzdPZZt9+/blSZSRq3fv3pw5c+YzfLL8nTlzhsGDB9O0aVNSU1MZNGgQK1asoEGDBlhZWeHh4YGNjQ2NGjVi/vz53Lt3T+1N/dKlS5k4cSKlS5emfv36NG7cmBYtWtCnTx/atGlDhQoV8PT0fO+Mm5UrV2b58uWUK1eONWvWMHDgQB4/fszYsWPp2LEjly9fZtasWZQvX56DBw/Su3dvcW0WCuTg4PDZG6T/qh4qpVLJkydPCAkJQVtbm5YtW37ygMJ69erh4+NDv3790NTUxM3NDU9PT0JDQ0lPT6dy5cr06NGDlStXqp376XNJTU0tMMtR4cKFSU7+/yn/DAwMeP36tfwkKD09nYyMDKKioqhTpw579+6VMxZCzo3ZmDFjWL9+vXySfvToUYFx11WqVPmsDarIyEh8fHxISUnhwoULrFy5kpcvXzJ16lQyMjKwsrLCzs6OH3/8EXt7eznLzfDhw/H29mbHjh0YGRmxdetWSpUqJadqDggI4OrVq5iYmBAYGEhSUhIJCQkkJCQQHx8vp3k/e/YsjRo1ol27djRp0qTAxpVCoaBWrVrUrFmTp0+fcvPmTQ4dOsShQ4c4cOAAc+fOJSMjQw4l+19Pof4pJEniwYMHckptNze3PJNzfqgiRYowZMgQunbtSlRUFO3bt2fr1q0sXLiQmJgYSpcuzdSpU/njjz9UUpd/brkJTPKjUCjkp5C5aZiDgoLkBDWQM07o+PHjHDhwgA0bNuTp9RwxYgSDBw+WU0u/K9ypSJEixMfHf+In+3+JiYk8fPiQlJQUeZqB3OxcDRo0YN26dVSvXp2MjAwGDhyIjY0Njx49om/fvgQHBzNq1Ch+/PFH1q9fT9myZeXfIy0tjT179qChoUFQUBDp6elyvU5ISJAzynl5eVGrVi3atGlDy5Yt8x0An6tkyZIsXLiQ4OBgLl26xMWLFzl69Chr1qxh8uTJxMXF/etDgf4rXrx4wYULF0hPT8fV1ZXq1at/UkNHR0eHRYsW0bdvXxITE+natSsXLlxg+/btRERE4ODgwOjRozly5AidO3f+W8fIvCtqQltbm9jYWOzs7OR6/aawsDDu3bvHypUref78eZ6/uS5dutC8eXMyMzPR1tYmOzsbPT29fMdx6+npydmCP0djISMjgwcPHpCUlISPjw/Hjh3j+PHj1KtXj59//plGjRpRp04dnJycaNiwIY6Ojrx8+ZIBAwYQGhrKrFmzGD9+PDNmzKBu3bo0bNhQ7nnfsmULAOHh4URFRcnX6oSEBPmh6ejRo+Xw4NatW2Nvb19gea2trRk9ejTff/89165d4+bNm/zyyy+MGzeOkydPEhkZia2t7X+qISV6qP45S5YsYfz48axevVrtcJmP8ckNquTkZPz9/UlLS8PQ0JAiRYq891iYN0VGRrJ//37KlClDhQoVSE9P58iRI2RmZjJkyJBPGt80YMAA/Pz8sLGxITQ0lNevX9OwYUPatGlDfHw8R44cwc/Pj1GjRv1t4W+VK1dm48aNeWYcz+Xt7Y2pqSmRkZHY2NjQrVs31q1bJw/83r9/P+XLl8fMzEwe9P3mBL2QE2bw5knd2NhYzhikTlxc3Hv36EDOID0vLy/OnTtHZmYmZmZmtG3blipVqrBixQp27dolp5rV0NDA3d2d3bt3M2bMGHnW9379+lGtWjV5dvWAgAASExOpW7cuffr0YcOGDXKK6latWnH06FHKlCmDr68vf/zxB35+fhQrVkzuFTAxMcHc3Jxq1apx5swZtm3bxuDBg4GcrFCLFy9WuehmZWUxceJEEhISmDBhAkWLFsXV1ZWmTZsyfPhw2rdvz4QJE9i2bdsnpTP9r0tJSeHAgQP4+flRqFAhOnbsmO9cIwWJi4tj+vTpuLi40PCveasuXLjAhg0bmDJlyjtvjgvStGlTQkNDOXv2rJxK3MXFhe7du6NUKjl58iT+/v7cv3//s3brv8nOzo5nz56hVCrVjsMJDQ3FysqKq1evUrduXXr06MGsWbPkSXAfPHhA0aJF5d7pP//8kz179qjsw8TEROXCaWRkRExMTL5lyszMfO8QuVze3t6cOXOG5ORkDAwMaNy4MfXr15cbIrm9ZgqFgsqVK3Py5EkOHTpE778G2vfr14969eoRFhaGr6+vfCPl4uLChAkTmDlzpjwJuqWlJf7+/piamuLn58f69eu5fv06VlZWKvXa2NgYNzc3uRE3ceJExo8fT/ny5dmwYYPK36MkSWzatImjR48yY8YMSpcujaOjI9999x0///wzgwYNYtKkSRw9evR/ujGVlZXFiRMnuHXrFoaGhrRp00Ylc+n7yszMZN68eejo6NC8eXMMDAy4ffs2O3bsYNSoUZ90g1K6dGlmzZrFtGnTCA4OJjo6GnNzc0aMGIGxsTGXLl0iPj6e3bt3/61hXVpaWsTExGBhYZFnWWZmJiYmJhw6dIjBgwfTokULvvnmG/r374+mpiaxsbGEh4ejUCiws7Nj7NixzJw5U2UfuZPbhoeH4+joiIaGhhy6np/MzMwPajAEBwdz6tQpefqBGjVq0LRpUx49esRvv/2mEhFSrFgxNm3aREJCAo0aNQJy5nZr3bo1SUlJ3L17l7i4ODnb8Lhx45g6darKg2hfX19KlizJ+fPn2bFjB8ePH0dPT48SJUpgYmKCqakpJiYmVKpUibCwMDZs2MCvv/7K3LlzsbGxYf369Xl6o8+dO8eaNWsYNWoUVatWxdLSkrZt2zJq1Cjmzp3LkiVLqFev3me7Kf6SRIPqn9O1a1dSUlJwdnbGwMAgTxujoGtsfj5oHqrg4GCVBseqVau4cOECPXr0wNHRkadPn7Jjxw769++vkvmloJv2zMxMkpOT6dq1a56LZGZmppydTt2EgAVl4Xh7PpTOnTuzYcMGunTpwpo1a/L0fH3zzTc4ODiwdOnSAvf7rswfBc2hM2DAAAYMGECtWrVU3k9PT6d9+/aMGzeO+fPns3HjRmxsbOjRowft2rXDzs6OBQsWMH36dDZt2kRgYCAzZ86Un/TmliktLY0ePXqwf/9+IOemuFOnTuzfv1/tSXjGjBk0btxYbTp1yOlVy5WRkcHQoUPlbEempqZkZWWxePFi/Pz8OHToEOPGjWPkyJGYm5ujq6uLQqHgxo0bKr1k5ubm1K5dmxMnTqChoYGVlRWTJk1i2bJl+Pr6qtwIdujQgQMHDqiU6eHDh/l+v5AzHu3Zs2fy+JF58+YxaNAgrl69yurVq1EqlSrhU/r6+nLSjipVqnDixAnatGnDqVOncHd3L/BYBfkvzVcTFRWlUsbjx4+zdOlSevToQYUKFQgJCWHz5s24ubnx008/vde+lUolkiTRpUsXpk6dmif5ye3bt5kzZw5bt27N87dZ0Cnp7TE5Y8aMYdiwYUyYMEGeb+5Ns2fP5uzZs5w7d67Aua+g4Lpd0G/466+/UqhQIZVxD5DzOQYOHCg37JcuXUr58uWZMmUKOjo6dOjQgZEjR7Ju3TqGDh2KjY0NLVq0oFu3bnnK07JlS5Xe5JYtW8rjEt+2d+9eoqOjCxxjkjs2SZIkfvnlF7Kyshg0aBD29vbo6+uzfv16Tpw4wcmTJ+nSpYt8w2NgYIBCoSAuLk4lEYhCoaBTp04cO3aMlJQUbG1tGTt2LLt37+bu3btkZGTI6zo4OPDw4UOVxvSbEyWrU61aNSIiInB0dCQzM5Pu3buzcOFCwsLC8PT0JD4+nps3b6rMfzZ8+HA6duxInTp1CA8Pp3jx4ixatIjRo0cXeKyC/Jfq9atXr1TK+OjRI3766Sdat25NvXr1iIuLY8eOHejo6LB48eL3ehCa+zc5ZswY+aHkm4KCguSpLd5+IPWuRv6b187ce4ErV65QuXJlunTporLu+fPnGTx4ME+ePHnnTWVB9b6gMbenT5+Wpwh4+xy1ZMkStLS0OHXqFMOGDaN58+bs2LGDU6dOMWXKFIYPH87kyZOZNm0aderUITMzkxkzZsjb5+6vV69eLF68WA4dHDBgAB4eHnJK8Dc9ffqU5cuXs3Tp0nzL/GaUy86dOzl//jyjRo2idOnSmJubs2/fPlatWkVgYCBFihRhxYoV8g1lbs+ioaGhShbQtm3b4uXlRXR0NNbW1vTr1w9vb2/Onz+vcjwAHx8fObIk17Vr1/Itb+3atUlISKBDhw6cP38eJycnjhw5gp6eHgsWLCAwMJCQkBCePn0qb5M7NrJJkyby1AgtWrRgw4YN+R7nffwT81AdPXr0k+ehat269b/6fPRvtWnTpgKXf//99x+8z48eQ7V//35OnDhBZmYm27ZtY/r06YSEhLB27Vr279/P/fv333tfe/bsoVevXmqfgLdq1YqXL19+VGvxTbkZtfr06aM2jLBixYo8ePDgvQdJfowlS5Ywe/ZsFixYQEREBOnp6Rw+fJgaNWpgZ2eHv78/U6dOZcSIEXTr1g1LS0tmzJjB999/j4WFBXPnzmX//v3MmjVLbRjTnj17VC5wBgYGtGrVihkzZsgXs8jISF6+fMnJkyfliXTfx/Lly2ndujXDhg2Te9KGDx/OkiVLOHToEBoaGowfPx47OzuVtMdubm706tULX19fIiMj0dPT4/Xr1/z222+cPHkSIyMjhg0bxtOnT1EqlYwbN47jx4/z+vVrdu/erXIxjIuL48yZM9y6dYvo6Og8F9JXr16RnZ2Ni4sLN2/epHXr1kyaNAlLS0sGDhxI+fLlmTx5MpmZmSxZsgTIaTTOmTOHGjVqYGpqyujRo9HV1f3bMkj923l7ezN37lwMDQ05ePAgU6ZM4dKlS/z666/Ex8ezc+fO997XrVu3KFWqlNpMkmXLlsXFxYW7d++q2fL9aWtrc+PGDUqWLKm2TpQpUwaFQpHvpM6fw08//cTVq1f5+eef8ff3JyMjAy8vL+rXr09kZCSBgYEsWLCAJUuW0L59e+Li4jh48CDNmzeXs3k9fPhQpTH1prt37+Z5ajt69GiGDBkin69iY2MJCQnhwYMHbNiwQZ4s811Onz6NlpYWM2bMwN7enuTkZCZPnszEiRM5efIkAKNGjaJ48eIYGhrK9drMzIz58+ezZ88eMjMz5V7nSZMmce3aNcqXL8/o0aO5fv06GRkZdOrUiZMnTxIUFERgYKDKTURaWhpXr17l2rVrhIeH57nxjouLIy0tDVtbW3x9fenVqxeHDx+mSJEiuLu7Y2FhwejRowkNDVV5WLJs2TI521+bNm2QJKnAKRm+ZnFxcQwYMABzc3POnTvH9OnT2b59O8OHD6dOnTp5ek8KEh0dzcuXL9Wmy7a2tlZ5qPexcuePCw4OVpsq397enqJFi3LixIlPOk5BWrZsia2tLb169ZIfCvj6+tKlSxd2795NSkoKU6ZM4ezZszRv3pxr167x4sULuQG1fPlyAgICSEpKYvr06Xn2n5uc4c251caOHcuoUaPkcNekpCSCg4MJCgpizJgxeHh4vFfZAwMDOX36NCtXrqR06dJkZ2ezdOlShg0bxqVLlwgJCaFv375UqlQJY2NjlTDNvXv3MnXqVHmS5bt379KnTx+uXr1Khw4dmDdvHkeOHCE5OZkKFSpw9uxZvL29USqVKr1E2dnZXLx4kcuXLxMcHJynYZucnExCQgImJibs378fDw8PkpKSKFu2LOXKlSMuLo7Bgwdz7do1Hj58KJ8ztmzZQseOHTE1NcXNzY2oqKj/bL3O7aH6lJfw/kaPHi0/BHBycqJnz558//33al8f46NC/rKzs5kwYQIeHh7069cPLS0tlEolZ86c4YcffmDWrFmsWLGCFStWvNf+Lly4IE/Oqk6jRo24ceMGLVu2/JjiAtCkSRO2bdvG6dOn8yxTKpXcvHmTVq1acfPmzfduZHyo3BCB48ePM2HCBAICAggNDWXw4MHUr1+f4OBg5s6dS/Pmzfnuu++Ii4tj0aJFcmpofX19jh8/zurVq6lUqZLKE0Vvb2+2bNnCwYMHVY75448/snLlSmrXrk1ycjJmZmZER0ejVCoZMWLEe5VbqVRy5coVRo4cCeSccCdMmICuri7z5s2jcOHCrF69Wm34VlZWFtHR0XKP0Ztzh/Ts2VMliQbk9ErVrFmTS5cu0a5dO+Lj49m7dy/m5ua0aNFCZfZ6Y2NjihQpQqFCheTwQTs7O3r27Mnw4cM5cuQIt27dYuDAgTg5ObF8+XLmzJmDkZERpUuXpnXr1io3YMOGDcPf35/BgwdjZ2f3Xt/N16Z///5UrVqVOXPmYGZmhiRJ3L59m4EDB7JgwQImTJhA165d3yvs5MKFC7Rt2zbf5a1ateLixYtUrVr1o8vbpk0bpk2bxsKFC9UuP3jwID/88AMnT5782xJUaGpqsnbtWq5fv86iRYsICAjA19eXzp0788033xAXF8fixYuxsrLC09OTmJgY+e8wNjYWbW1t/P39mTRpEq1bt84ziea4ceNYu3atyjHd3d1JS0ujWbNmxMfHY2BgQEpKComJiXTu3Pm9w6537twpT7rp5eXFyJEjefXqFT///DPly5dn4cKFVKlSRe2258+f56effkJTU5ObN2/K72/atCnPebZTp040a9aMwMBASpQowYsXL5g9ezY9evSgcuXKKhMR6+npyfU6KSkJb29vTExM+Pbbbxk+fDibN2/G09OT+vXrU7lyZfbv38+KFSvQ1dWlZMmStG/fniNHjsi9Kd9//z1paWlyGOP/otGjR2NoaMivv/5KkSJFUCqVBAQEMG7cOAYOHIi3tzeJiYkFjgfMdePGDZo2bZrv8latWjFq1KhPCsdzd3ena9eu+U4GvWfPHgYNGsTx48ffO7HBxxg3bhw+Pj6sW7cOHx8fvL29qVOnDvPmzSM7O5uNGzfy+vVrtm3bRmJiIiYmJlhaWhIbG0tmZiZZWVn07NmT4OBgeYJpyHmQN2DAgDw9/i4uLsydO5fevXsTGhqKrq4uSqWS169fU7du3QIjYN60ZcsWhg8fjoaGBs+fP2fEiBHcu3ePIUOGUK9ePTZu3EiTJk3Ubrtz5055HPbmzZvl9x8+fMiaNWtU1m3bti2NGzcmKSmJ2rVrc/36dXr27MmGDRsoVaoUgYGB8rpaWloULlyYQoUKyeNqNTU1adu2LYMHD8bT05N58+ZRr149XF1duXr1Krt27UJDQ4MSJUrQsGFDLl++TEJCApBzT1e8eHFKly6dJzrgv0KE/H1Zv//+O+PGjcPQ0JBGjRoRHh7+WUPAP6pBtXHjRmxtbRkyZAiAPPlss2bNMDc3Z8uWLR/Uo6RQKAoMB8jMzOT69evcuHEDfX192rVr995Zn3L16NGD2bNn8/LlS3kyOMj5g5w5cyadO3cmOTn5oybz+hCampq0adMGZ2dnxo8fz4kTJ9DX10ehUMjzMv3000+cOXOGb7/9Vt4uNzlFp06dyM7OpkWLFtStW5dChQrh5eVFdnZ2viFAurq6VK1aVZ6wr1y5chgbG7Ny5UomTpzI3LlzCyxzQkICdnZ2aGhoyAO7v/nmG9asWSOXa9u2bWq3TUlJyXecTPv27QkODubp06fyRSR3vNOMGTPkgfXe3t7UqFGDzMxM1q1bh6WlJQEBAQQGBhIWFkZ0dDTlypVjwIABhIWFsX79epYsWSJnGvP09KRRo0ZkZWVx69YtLl26hJ+fH35+fhgZGcnjV6pUqcL8+fML/C6+Zvfu3SMmJibPg5Bq1aqxfv16hg0bhr29Pa9evXqvk9C76nVWVpYcvqqhoUHjxo3zhMO+S+3ateVkKJUrV1ZZtmvXLmxsbLC1tVUJBfs75CY5KVu2LO3bt+fGjRsq6dpbtWrF+vXr8fT0VAn9yR2fUalSJSZNmkSnTp0oX748xYsXx9vbm6CgIJYuXapyM5bLxMQEKysrZs+eDeTcjNnY2HD06FH69+/Ppk2b3tmwyh0Lee7cOfr06UPlypU5e/asPDnw6dOniY6OVjtgXEtLS20CgpIlS9KoUSOePn1Kr1695Hl1ICf714sXL4CcnrfevXsTFxfHuHHjqFWrFi9evODFixfyWFcjIyM6duwI5NzcrVu3jhYtWtC0aVMGDx7MiBEjkCSJx48fc+7cOXx8fPDz88PCwkJ+ym9jY8Mvv/xS4PfwNYuLi+PUqVM8f/5cJblO8eLF2bJlC+3bt6dZs2bcvn1bHjtTkNxEK/mRJIn4+HjmzZtHRkYG1apVo1mzZh8015eNjQ1mZmbcvn07T9a7mzdv8vDhQwYMGPC3Z72DnDFdCxYsoE2bNhw6dEgl81+jRo24fPkyP/74Izt27JDff7NhumbNGkaPHo2lpSWVKlUiNDSUO3fuMHbsWLUT0OeG0i5ZsgRtbW2KFClC8eLFuXv3Ln379mXz5s1qx3W96dmzZ1SqVAlfX186duyIubk5V65coXbt2kBOL6Ofn5/KvVCu2NhYtVNNmJiY0Lp1a54+fUq5cuVYtmyZHO2zfft2rl+/DuREJmhqahIfH8/QoUNp1qwZwcHBvHjxgpCQEF6/fk1GRgYjRozAwcGBjRs34u7uTtWqVRk0aBCVKlWSG24vXrzgzJkzeHt7y/U6t0Glp6fH6tWrC/weBOFNxYoV47fffqNZs2byBNpvz2GZ62Mevn1Ug+ro0aNqL/CQM4mtuqfFCQkJbNq0iXHjxrF69WqVp1dNmjTh8OHDtGvXLk8c6IMHD1i4cCEeHh64u7sTHx/Phg0bSElJYeHChflmxHmbsbEx33//PX379qVGjRrUqlWLmJgYjhw5gru7O3379qVLly75piz93HLnuHh7fJlCoWDOnDl06NCBzp07q+0J6NKlC506deLmzZskJCTQtm1blaxhb0pNTWXHjh1yWN6bhg8fzuDBg/Hz8ytwzho9PT3i4+PZvHkzkydPZtiwYUydOlVuTEmSlO9gWmNjYyIjI9VmJurSpQtt27alU6dOeXoPli9fzoQJE9DW1mbChAnyoPjc7v38BlJXqFCBuXPnsnbtWhYsWEBCQgKJiYmcPXsWQ0NDmjdvzrhx4+T1//zzTwICAmjSpMkHN9K/NuvXr893YK+dnR2FCxcmKipK5XfMyMhg3759jBkzhq5du8q9HZBTr3fv3k358uUxMDBQ+fsLDw+XL7adO3dGqVTy559/8vvvv7Ns2bJ33jDkUigUzJgxg0WLFnHu3DmaNWtGRkYGx44dw8HBgblz5zJx4kT5YcLfbfPmzfJ4qLf169ePVq1akZycrDZuvnbt2pw8eZKHDx8SHh5Ow4YNKV26dL7HmjdvHps2bcpzzmzTpg0BAQEcPXpUTvCSn6ysLC5fvky/fv1o2LAha9euVQmJzm3UqJOb5eztC1Lu/DwtWrRg1qxZKklhpkyZQlxcHKGhoaxYsQJra2vs7e2JiIigcOHCFC5cWG2EQLVq1Zg6dSq7d+9mzpw5TJo0iZYtWxIREYGhoSHVq1dX6XEPCgpi7ty5DB8+XG4c/q/auXMnjo6Oahu/enp6dOjQgTt37qj0FEuSxJkzZ5g0aRKmpqYcO3ZMHrRdq1YthgwZQs+ePdHS0lIZzJ07btfU1FROVnH+/Hm+/fZb5s2bp3ZsUH48PT3p0qUL3bt3p3Xr1ujq6nL69GmysrL4448/OHToUL7jfz+3y5cvU7VqVbVp1OvVq8fWrVt5+vSp2muIk5MT+/btw9/fn+fPn+Pm5sacOXPy7eWfN28eixYtyjORdZUqVRg9ejSrVq1i4sSJBZbX0NCQBw8e8P3332NjY8O+fftUylZQmFzp0qW5c+dOnhDqYsWKceTIEQYMGMC4ceNUzhN9+/bF19eXmzdv8vvvv6OhoUGNGjV48eIFVlZWWFlZqY1EqF27Nh4eHpw5c4bZs2czaNAgatSowfjx4zE0NKR48eJ5einbtGnDr7/++lUklxE9VF/WwoULGTx4MHPnzkWhUMgP696mUCg+qnPlo8ZQaWtrk5KSkmdAYi5TU1OVi/D69euxtbWVb2R37dolL4uKiuLgwYN4eHjg4OBAnTp1WLp0Kc+fPyc2NpahQ4fyzTffMHToUFxcXKhWrRoLFiygZcuWH/zUccSIERgZGdGpUydSU1OxtrZm+/btDBs2jGPHjlGsWLFPyjr2IUJCQvK9gdfT08PGxobo6Oh8t9fU1KRWrVo0b94838YUwIkTJ2jXrl2+Twf79eun8nvkV56MjAx+/vln+vfvz9SpU1UuBpcvX843NbVCoaBRo0bs27dP7fJVq1blGXAMOSf1AwcOsHv3bnR0dLC0tMTZ2fm9xtwYGhoycuRIrly5gpWVFadOnWLLli1Mnz5dpXcAcp7klShRgnLlysk3HP+rJ6mXL19SsmRJfHx81C53cXEhJCREjvk/d+4cpqam9OvXj5iYGHbs2CHHyWdlZbFixQrWrl2LjY0NZcuWZfr06dy7d4+srCz69OlDiRIlWLBgAa6urpQrV44JEyYwceJERo0a9UHlbt++Pebm5vTr14/MzEx0dHTkBxY+Pj4EBQXl6b36u5w5c6bARkzuvFn5USgUVKxYkRYtWhTYmHr27BlFixbNdyDyd999l2+de1P58uXp3bs3bm5urFmzRuUBVUREBAqFIt9jfP/99yxevFjtsjNnzlC2bNk8aa0tLS35P/beOiqq9X3/f83Q0ihli4mKitjtsQsTA1BBRUzsYyuYKLYCKrbYdRS7C+zExsQAAUE6h/n94Xf2z3ECUM85+v6cay3W0l2zZ8++n+e567o2bdrE6dOnhQVR3bp189Vzq6mpibOzM1evXsXe3p5r166xY8cOQWfwa8jYQKtWrSqXlfm/aNuvXr2iVatWhISEKN1ftWpVbty4IYzhT58+pXjx4jg6OhIeHs7ly5flSrVXrlxJaGgoFhYWlC1bljFjxnD58mUyMzMZPXo0WVlZbNmyBXt7eypWrMiQIUNYvXo1f/75pxzRUV6wsbGhRo0a9O/fH21tbbKzs5k8eTLr168nKyuLHTt20K1btx97OPnEiRMn1H5W9+7dOXnypNprlC1bljZt2uDg4KDSmZJIJERGRio4UzLI2h/yQufOnenXrx+Ghobs3r1bLkCVk5NDaGgoderUUXquh4cHCxcuVGorr169IjY2ViFIoaWlxeLFi+WEUuvUqcPVq1fzJAMSiUS0atWKs2fP4urqSkREBHv27GHx4sW4urrK6XN++PABU1NTKlasKBfI+V3tWiZ6/CN//yH/6NKlC9HR0SQlJSGVSnn69CkJCQkKf9/L2fBdDpVEIqFv3754e3srvMiZmZmEhoYydOhQsrKyWLp0KSNGjACgYsWKnD59WujzycnJ4dq1a5w6dYrmzZtTsWJFJBIJc+bMwcHBAVtbW+Lj4ylWrBgbN25k+fLlLFiwgAMHDlC5cmVevnxZIL0Vc3NzZsyYgbe3N7m5uVSvXp1nz54xYcIE9uzZw+zZswv8LKRSKUePHsXV1ZXevXvTvn17Zs+erdYZAvLsQRGLxT9lkIiLi1PrcBUvXjzPe4Uvv5Wuri6jR4+Wu/fnz58zc+ZMtf1YEyZMYNu2bfj7+wtOeEJCAnPnzuXBgwcC9XJecHJy4siRI/n+zcuUKcP58+epXbs2r1+/plmzZnIlUJmZmRw5ckSuBv/y5ctUqFCBQYMG/baD9PfCzMyMnj17Mm3aNAVyFqlUys6dO+nevTvwJSjy9QLjwIEDvHz5UuinfP78OTt37sTOzg57e3sMDAwIDAykUaNGFC5cmMePH1OjRg22bNnCypUrmT9/Pjt27EBTU5OiRYty7969fN+3hoYGAQEBzJ49m9jYWOzt7fn06RO+vr5MmzZNbX+mOly/fh1PT0969+5Nhw4dGD16tEqB2q+hrrTpn7JrExOTfBHs5OTkkJmZybhx4+Qcj/j4eNzd3Zk6darKcx0dHUlKSmLKlClCeV1GRgYbN25UKG1Uhx49enDv3j05Ji91MDAw4MKFC4KcwtChQ+XsWiqVEhgYKDeuRERE0LBhQ5o1a1agRf3/AqysrKhevTpr1qwhJiZGYf/27dupWLEi+vr6hIaG0qZNG2FBsWXLFj58+ECpUqWQSqVERUWxY8cOTE1NadiwIZaWluzfv5+2bdtiYWFBSEgItWrVYu/evQQGBrJgwQI2btzIhw8f6NKlC4cOHSrQvS9ZsoSNGzfy8OFDqlWrhlQqZe3atfTt25fFixcXSPZDhufPn/Pnn3/Sq1cvOnfujJubGzdu3FB7Tl7aTz/LrtPT01WWIMGXdUN+qnJkmpUDBgyQI/vKysrCw8OD4cOHqxynypcvT8uWLXFzcxPIfCQSCYcPH2bgwIFqWQa/Rvfu3YmPj8/T0ZRBLBazZcsW6tevz9WrV1mxYgWAXAZ05cqVuLm5Cf//9OkTPXv2pEKFCmolYn5V/EdK8e/AwMBAYJU0NjZW+ieDr6+vXI+vOhSo5E+mIeDo6IiWlhY1a9bE2dmZfv36UaZMGcLDw1m3bp3g7MgE4CpWrMjTp0/Zs2cPJiYm+Pv7s3fvXh48eCCUivXp04f+/ftz7tw5Ll68SFRUFKdOnaJkyZIsXLiQzMxMTExM0NLSErQTChUqRK9evWjdujVOTk5yKWVVk2a9evU4cOAA+/btY8WKFejr6+Pq6ioXwVYnTPjtCzx16lS0tLQICgrC1NQUqVTKuXPn6N27N+vWrZNb9HxNqGBubk54eLhQAvH1YJ2Zmcnbt28xNDQUFkUFqT//GjY2NoSGhiplZIIvdMWlSpVSWrL39eR77949OnfujJeXFyYmJhQtWpT4+Hhyc3PZsmWL2vS7jo4Ou3fvZvfu3bi4uJCbm4u2tjaurq5Mnjw539+tSZMm+Pr6cvToUbp06aL0GGUUrTLmKWNjY+7evcv79++Jjo5mxowZuLm58fHjRwwNDTl+/DjOzs5UrFhR6NWSLSj/lylJdXR00NHRYeDAgZw8eZKRI0fSpUsXevfuTdWqVYmMjGTTpk2kpKRQrlw56tWrx/379wVmzG3bttGkSRN2797N9u3buX37thBVbNiwIUuWLOHu3bscPXqUt2/fcvPmTXR1ddm0aROfP3/G2NgYfX19oqKikEql6Orqcvr0aRwdHWnfvj2tW7cW7EOVXZcuXZqQkBCOHz/OmjVr0NDQoG3btkyaNEl4v/ISZ/462rd161bOnz/P3LlzhdKWe/fuMWLECKZPny6Xkf3adho0aKBUdFuG06dP07dv3x+265IlS/Lo0SOVY9WTJ08wNTVV6VRFRUUBcPXqVRo1akRgYCCrVq3CxsaGnJwcoqOjmT17tlr9LpFIxNKlSzlx4gQjRowQfpvOnTuzf//+fIth169fHw0NDQ4cOKCylPzcuXMK2/744w9at25N7dq1efPmDU+fPiUnJ4fFixdjZ2dHTk4OkZGRREVF0aZNG0xNTYmJiaFXr15s3rwZDQ2N/2m71tbWRltbm379+jF8+HBWrVpF//79admyJY0bNyYhIYHt27cTGhpKYGAgHTt25MyZM1SvXp2PHz8yadIkunfvzuHDh9myZQtXr14VehFbtmzJqVOneP36Nfv37+fly5dERESQkJDAyZMn2bx5M4aGhhgZGfHx40dycnLQ0tLC0NCQ8PBwmjVrRs+ePeUcYWW2bWxszK5du7hy5Qrbt28nKyuL+vXrc+TIEcGxyEuj8uvSndDQUPz8/Jg7d64gLv7mzRtmzJhBhw4d5Kolvqb6b9iwIXv37pUrWfx6zt6zZw+DBg0SvkNeAVNV+3V0dIiLi0MkEik9JiYmhszMTLmszdd4+/Yt8GWcKVWqFHfu3KFHjx7Y2tpSqFAhHj58yMiRI+XGJ2Xw9PTEwcGBOXPmEBcXh0QioVmzZuzbt0+tw/c1ypQpQ4kSJTh06JDSXjGAw4cPK2xr27YtrVu3Ftovzpw5Q9myZdm+fTtv3rzBxsaG169fk5ubS+vWrYmPj0dXV5e2bdty7NgxDA0N1dLh/0r4r+Tv30PTpk3zddy8efPo2bNnvqrXCqRD9f79e4oWLUp6ejrdu3fH2dmZevXqcf78eaKjo9HW1haEWNesWYODgwNbtmzhxYsXODo6YmlpycePH9HW1sbc3BwTExP09fXp1KkT48aNU4g2devWje3bt6OlpYVYLBYGmNjYWG7dusXy5ctJSkri1atXREVF0alTJ2bOnImDg0OeUUh1A566fV8/rsuXL3Pw4EGlPWPPnz/Hx8dHUAz/9twHDx4wd+5cNm/ejLa2tvCZUqkUb29vKlWqJNf38b0Lr9zcXNq1a8eOHTsUXgiJRELnzp0JCAgQ+qG+RnR0tPBvWelF3759yczMJD4+nubNmyvtFfk7cOTIEXr27EnZsmVZtGiRygFTVd3rxYsX2bZtGw8ePKBmzZoULVoUT09P7O3tefnyJaGhofj4+NCiRQsha+Lt7Y23t/d3CT7/Tno1L168wMbGBqlUysCBA6latSqdOnXi1q1bPH36FB0dHc6cOUOdOnWYN28eRYsWZevWrdjY2FCmTBksLCyIiYlBLBYLzeSFChWicePGTJ48WcHZnj59Ol26dMHe3h6pVCo4BUlJSdy5c4dt27Zx8+ZNkpKSePHiBXXq1MHb25u2bdvmmXXJK4qsDjKHKjo6mmHDhrF3716FcxITE+nduzdHjhwR9n3tiCUkJODs7ExwcLBgU7Ljdu/ezf379+VKlb/XruFLWd/06dOV9qUMGzaMHj16qCzFlUVznZ2dsba2ZsKECWhoaBATE0PDhg3/MZHM+/fv065dO3Jzc1m0aJFSSQtQbdePHj1i9+7dXLx4EVtbWywtLenXrx8tWrTg48ePhIaGMm/ePIoUKcKJEycIDQ3FxcWFXr164e/vn+/FoQy/k12Hh4cL8g8yzS53d3c+fPjA9evX0dDQIDw8nEqVKuHj44Ouri7r1q2jZ8+eFClSROiRy83NxcLCAhMTEwwMDKhSpQqTJ09WKFnfvXs3qampuLm5IZFIBGcpIyOD+/fvc/bsWTZs2ICenh7379+nbNmyTJ8+XejFUjdn/4hdy94diURChw4d2Lt3r9CSILuuRCKhS5cubN68WSiP+9qupVIpXbp0YeHChYLOkuzcGzdusGzZMjlipu91qABmz56Nvb290iDosmXLEIvFKhkUZQ6Vj48PT58+xc/PDz09PaKjo6lTpw6VKlUqkDDw9yI6OpoOHTrw/Plzpk6dSvXq1ZUe93WQ+Wt8+PCBU6dOsX//fkqUKIG1tTWOjo706tWL1NRUrl69yuLFi4mLi+PUqVOkp6fTrl07qlSpwu7du9Vm71Xh39Ch2rdv3w/rUHXv3v1vueeEhAS8vLyErLKjoyMrV65U61hIpVJ8fHxYu3YtCQkJ1K1bF39/f7kS1szMTMaPH8+OHTtIT0+nRYsWBAQEyP1mc+fO5ciRI9y9exdtbW2lGSJl73FgYKBC+fePwtDQkHv37iklcFG4p4I4VNbW1jRo0IDw8HDi4+MFobfWrVvz6dMnihUrxvTp00lNTcXBwYHc3Fzi4+ORSqWMGjUKS0tLrl69SpMmTYRFalZWFnv27CE4OJg9e/bI9V6tWbMGQ0NDlZoq7dq1Y+/evejq6rJz505mzZrFs2fPcHR0pH///kLDfFpaGlKplE6dOtG7d285nSSlDyWfDtWgQYPw9vZWabz9+/dnwYIFWFlZKZwLcPToUVatWoWLiwvVq1fn7du3bN68mdq1azN+/Hi5Y39k4XXjxg1mzpyJt7e30Ij68uVLvL29admypVDG9S1kDpVUKqVRo0ZCqZ2hoSFBQUFK9UH+Dnz48IGSJUtiaWnJpk2b1A4c6hoJDQ0NqVOnDhkZGRgYGDBlyhSOHDlCfHw8b968wdjYGBsbG7y8vJBIJMyYMYPnz59jY2NDmzZtGDduHGXLls3XPf9OCy8NDQ1cXV25dOkSurq6PHr0CC0tLXr27EliYiK6urpMmDCB0qVLU6dOHd68ecONGzdwcHBg4sSJSCQSPnz4INDoW1lZIZVKOXPmDPPmzVMgu7hy5QoHDx4UqHm/xeDBgxk7dqxQIjxz5kyuXLlC3bp1GTZsGGZmZuzZs4e4uDhycnJo0qQJ7u7umJqa/hSHatGiRVSvXl2lsPP8+fNp0KCBEOH6to79/v37TJw4kQ4dOtCkSROSkpLYvn07mpqagiBofu9JHd69e8eAAQMYM2YMrVq1QiwWExMTw5IlS9DU1JQjX/kWModq4MCBQl+ipqYmc+bMUXvez0Rubi7FihUjPj6eoKAgtU6cOru2sbGhadOmvHnzBk1NTby8vHj69CkvX74kKioKiURClSpV6N69u8CmeOPGDSwtLWnWrBljxoxR2U/yLX4nu4Yvc9SZM2cwMTHhzp07AAIJTEZGBkOHDqVFixa0bduWixcvsnHjRtzc3Fi1ahWPHz9GJBLx7NkzVq5cKTgSd+7cYcqUKUybNk2OQCQuLg5PT0+VvXsrV67E2tqaHj16cPfuXWbNmsWBAwcoV64c48ePF0RdIyIikEqlVKlSBU9PT0qUKPFTHKrjx4/z5MkTOS2nr6976NAh3r59y/DhwwFFu46KimLo0KE4ODjQoUMHJBIJf/31Fy9evFCQDfkRhyo9PR0XFxe6dOlCr1690NHRITU1lY0bNxIaGsqKFStUsnfKHCo/Pz/27NkjbPfw8FCgPP870bJlS86cOcOBAwfUlmWqcqjgS2+fp6enUDLYq1cvdHV1uXr1KomJicTFxVGrVi3q1KmDi4sLs2bN4sSJE+jr69OgQQOGDRumsjJHGf4Nh2rv3r1KmZnzi7S0NHr06PG33HO7du149+6d8N4MHjxYqARRhQULFjB37lw2bdpEhQoVmDNnDhcvXuTp06cC8+XQoUMJCQlh06ZNFC5cmHHjxhEfH8+tW7eE4OrMmTMxMTHh3bt3rF+/XqVDtXHjRtq2bStsMzY2/q4yYHX42xwqGxsbPn/+TK1atYSX/ObNm5QtWxZ9fX0kEgkHDhxgwYIFPHnyhOHDh9O6dWsaNGiAoaEh27dv58OHDwrOAnxJUZ84cUIu25OSkkKnTp0IDg6mWLFicsevXbuWqKgoZs6cKWzLyclh586dzJ49m2fPniESiShVqpTAMJaSkkJycjIeHh5y5yk8lHw6VD169GDv3r0qj12wYAHNmzcXJutvH/XHjx95/vw5N2/eJCEhAXNzc5ycnJRmfX5k4ZWbm8ubN28IDAzk7t27pKenY2ZmxtSpU9Uy232doZIJDH78+JElS5ZQvHhxLl68+N33VBDk5uYyffp0Fi5cSNGiRfHx8VF53+oWXqVKlSIxMZHHjx+zdu1a4R02Njamd+/e/PnnnxgZGdG0aVMqVqzI8uXLWbNmDXPnzmX48OE8e/aMBQsW5Ivg4HdaeFWqVInXr1/TqFEjgYY4ODiYjh07IhaL0dLS4syZMyxbtozTp0/Tp08funfvTqNGjbC0tOT+/ftCr8O3tvP69WvGjh0rJ/Qpi/ZOnz5dgWnq/PnzBAUFyUV7pVIpp06dwtvbmytXrgBQrFgxjIyM0NDQID09nU+fPtG+fXv8/f1Vlprl16EaNmwYM2bMEAIh3+Lw4cNCf8LX58mQmJjIs2fPuH37NlFRURgaGtK1a1elbHM/atfx8fGsX7+e8+fPk5qaira2Nl5eXnmWM8gcqoyMDN6+fcvHjx/Ztm0bb9++5fXr1/nWsfpRrF+/nrFjxyIWixk/frzK0iB1dl22bFnS09N5+vQpISEhgmaXjo4O7dq1Y9q0aZQrV46+ffsSGRnJzp07uX79OgMHDqR9+/bo6OjQu3fvfBEc/E52bWdnx4MHD2jcuDERERFERUUxevRoZs2ahUQioVChQty8eZPAwECCg4P5448/cHNzo0GDBpQtW5akpCS6devGsWPHFMrqUlJScHR05OTJk3LvypgxY6hfv74C0dDz58/x9PTk+PHjcte6c+cOPj4+HDp0CKlUSpEiRTA3N0dDQ4OsrCxiY2NxcHAgKChIpT3m16EKCAigYsWKcvpLX49Xr1+/ZsWKFQJT6bd2nZGRwZMnTwgPD+fVq1doamrSpk0bpWx5P+JQwZco/tatWzl06BDJyclIJBJcXFzo3r272pYEmUOVk5PDu3fviImJ4eTJkxw/fpw3b96ofIY/G6dOnWLgwIHExsbSv39/lWxqeTlU2dnZPH/+nNDQUObPn09ubi5isZimTZsyYcIEGjRowOLFi1m/fj379+8nPT2drl27YmNjQ4MGDbC2ts6TEVGGf8Oh2rNnzw87VE5OTj/9nh8/fkzlypW5evUqdevWBb6Uh9evX58nT54IwZWvIZVKKVq0KKNHjxaCcpmZmVhaWrJgwQI8PT1JTEzE3NycrVu3CgH5Dx8+UKJECY4ePaqgKbdp0yZGjx6t0qE6cOCAyvaPn4WCOFQFmjVv3LiBrq4uCQkJNGjQAEdHR2rWrElISAj79u0jJCSEhIQETExMyMzMZMmSJcLgFBkZyY4dO+S0Gr5GixYtWLhwIdnZ2cKAa2BgQFBQEO7u7tSvX5/mzZuTkJAg0MB+qxmkqamJq6srRkZGhISEYG9vz7Nnz8jJySEnJ4eMjAwePnyIr68v9erV+2FBQFkqUlUKNDIyUq4h9OvtU6dORSwWU758ed68eUNiYiI+Pj5/WwmdqakpCQkJmJmZUb9+fRITE5kxYwZOTk5KWfa+hYGBAZUrV6Zy5cqkpqYyadIkQkNDadiwoeAo/l2lBGKxWBAB7dGjB2PHjmXz5s3fRZtqbGxMvXr1uHHjBjY2NlSrVo3WrVsLv9OjR4+ws7MjPj4eY2Nj/vzzT0QiEXPmzMHX15fJkydz7Nixf6Rs4p/C1atXhaZqWW29i4sLV65cITg4mEOHDvHu3TuMjIzQ1NSUs+PQ0FC2b98uPKdvIWPOfPXqlUB1LxKJ2LRpE4MHD8bS0pLOnTsjkUjYv38/aWlpCpFUkUhE69atKVu2LMOHD6d3796Eh4eTlZVFdnY2WVlZQrN85cqVFcQyCwpzc3MiIyNVLj4iIyMpWbKkwvakpCSmTZtGdHQ01atXJy4ujhcvXjB27Ni/jbrbyMiI5ORktLW1adGiBbm5uaxdu5abN28yZsyYPBeburq6lC9fnvLly2NhYUGvXr1Yt26dUDaRVzP+j0Lm1Dg5OeHj48Py5ctVMpypg56eHjVq1ODTp08kJydjb29P+/btMTY2xsTEhOTkZJKTkzEzM8PMzIwuXbqgoaFBv379GDhwIP7+/rRp0+aHym9+NVy+fBn48hsPHz6c/fv3s2TJEp49e8aGDRs4dOgQT548QV9fH11dXc6ePcvZs2eBLz2EKSkpeHh4KO1RMjAwoGPHjhw/flwuC7Bw4UJGjx7NoUOH6NWrF/r6+pw4cYIHDx6wefNmhWvZ29uzc+dOWrVqhaenJ/fv3yc9PZ2cnByysrIEaZNJkyaxadOmH3oeFhYWREZGqtwfGRmpdE7JycnB19eX69ev4+DgQGZmJnfv3qVPnz4qqcd/FDo6OkilUrKzs2nVqhUGBgacOXOGW7duMXPmzDwX4ZqampQuXZrSpUtja2vLmTNnmD17Nv7+/sDfb9etWrXi0aNHTJ06lRUrVmBoaKhWDFoVtLS0sLW1xcDAgCtXrtC4cWPatm2LlZWV0LN++fJlGjZsiI6ODpUqVeLgwYM4OjpibGzMp0+fePLkiVrG1H8TP6uHSqbNJYOsL/p7ceXKFYyNjQVnCr7wDxgbGxMWFqbUoXr16hXR0dG0bt1a7j6aNm1KWFgYnp6e3Lp1i+zsbLljihYtStWqVQkLCyvwmnzEiBEMGjSIMmXKMHDgQAYPHvxDQcofRYEcqoyMDIFNq1ChQjg5ObF8+XLGjBlD1apVGTp0KOvWrSM3N5exY8fy/v17gZK7b9++vHr1iocPH1KqVCm2b99OdHQ0NjY29OnTB2NjY0qVKsWnT5/kFjLlypXjxIkTXLx4kVu3bqGvr8/y5cvVRlo2b97MihUrlGrZSKVSihcvzqhRo9i1a5fK2t78wMnJSfCgv0VCQgJRUVEKeknR0dF4enoSEBAgt+/jx48MHDiQZcuWFUirQxXi4uJIT0/H2tqa3Nxc+vXrx6RJk6hXr55wTG5uLmPGjEEikRRIp6ddu3Zs27aNXr16YWlpyfPnz5FKpdSvX59GjRrRqFEjGjZsmG+NsPyiSpUqLFmyBHd3d2bNmpUv9jaZI/3tBHT9+nU2b96sYHxbt27Fy8uLwMBAPnz4QNGiRRk/fjxpaWlMnjyZ9u3bc/fu3X+MhvufQE5ODocPH2b06NGkpaWxbt06jh49KuibOTo6cuvWLW7fvs3gwYNJS0sTFjdjxozh/fv3dOjQgWLFirF7924iIiKwsLCgT58+FCtWjBo1avD8+XO5993U1JQ9e/YQHh7OmTNnEIvFjBs3TulALcPatWuZMmUKtWvXVlpu6uDgwPz587Gzs5MbsAsKFxcXFi9erLQMTPasDhw4ILc9MzOTfv36CQK1MqSlpTFkyBCkUqlcZPx7kZiYyOfPn7G0tERbW5sxY8bQoEEDZs2aJRwzfvx4Vq1axaxZs/D29s73tStUqEDnzp2ZOHEiW7Zs4fnz5yQlJVG7dm0aNmxIo0aNaNKkyU+P3lpbW+Pj48Po0aOZOXMmO3bsyJNoIDc3l7S0NIXyjqNHjzJx4kSFhfFff/2Fi4sLcXFxXL58mZYtW9KpUyfWrVvHgAED6NSpE/v27cs34+jvAKlUyrVr1/D09OT169dMmzaN+/fv07x5c8RiMe3ataNSpUr89ddfuLq6oq+vz44dO0hKShJEeT08PEhKSuL48ePC/NujRw8qV66Mvb29UEYog5aWFv7+/kRGRnL48GEyMzPp2rUrvr6+Khfwe/fuxc3Nje7duystP+/fvz+7du2iYcOGDBw48LsXTO3bt6dXr170799f6TXWr18vZ0cyeHl50bhxY6ZOnSrXc+Xj40NgYCBDhw79rvv5GmlpacTGxlK4cGEMDAwICAjg48ePHD16VPhMWT/L8OHD2bBhQ74dIkNDQzw8PFi+fDkPHjzgxYsXREdHU61aNWGubtas2U8P5hoYGLBs2TKePHnC8uXLqVq1ap4ZMqlUSnp6uoL9Hz9+HDc3N4UM9p07d6hevTrNmzcnJCQELy8vqlevTkhICK1bt6ZevXqsW7eORYsW/dTv9rPwsxyqb3tPZS0e34vo6GilwQULCwu5yqVvzwEU3iNLS0vevHkjHKOtra3Qu2ppaanyuqowe/ZsWrRogZ6eHmfOnGHcuHHExcUxbdq0Al3nZ6JADpWtrS0pKSk0btwYU1NTHB0dSUxMpG/fvmzZsgX4suBYuHAhS5YsQU9Pj5o1axIUFIS9vT1NmzZl7NixfPz4kRUrVtCuXTsePHhAz549GTBgADExMUona5FIRNOmTfPNypGVlaVSGFQkEtGmTRtu3bpFw4YNGTFiBDNmzPiutGunTp3o27cv+/fvp2vXrsIAFxUVxZAhQ5gxY4bCOatWrWLmzJkKjpaVlRUrV67E19f3h2qdL1y4wNKlSzE2NsbQ0JCIiAisrKxo2rSpnDMFXzI/c+bMoUePHjg5OeW7zEdDQ4NZs2axdu1aihcvTq9evQRti8WLFwuiv66urowbN05lo/n3wMzMDGdnZwICAtRG2WJiYti0aZPA4JeQkED9+vUZOXIkhQoVQlNTU+mkGhkZSaVKlTA2NpZjbJo9ezbr1q3j0qVLDB48GDs7Ozw8POQWz78r7OzsiIqKonbt2pQsWZJJkybx4cMHatWqxYULF9DS0iI4OJgBAwYQEBCAtrY2pUqVYuXKlXTo0AEnJyfWr19P//798fPzw93dnbdv3zJmzBiqVavG58+fVZZy2dnZYWdnl6/7fPr0qVKbksHNzY1t27bRuXNnevTowaJFi75rkVChQgUKFy7MkiVL8PLyEuwiOTmZcePG4e7urhD9279/P506dVJ4HwoVKkRQUBBOTk788ccf3x0Vfvz4MXPmzEEikWBhYcGrV6+wsLBQGQzp378/np6eREdHF6jMZ9SoUcCXTG779u0pVKgQV69eZcuWLSxYsAA9PT2cnJwYO3bsDwWjvoWWlhYDBw5kzJgxREdHqxwz0tPT2bZtG0+fPsXExISkpCQqVqyIl5cXlpaWpKenK51DIiMj6dixI1lZWaSlpQnb3dzcWLp0KSdPnuTZs2eCBEb79u3/1Ujnz0C9evV48uQJtra2dOvWjT179jBnzhysra25du0aVlZW3Lhxg6NHjxIcHIxYLKZw4cIEBAQwePBgZs+ezf379ylVqhQTJ06kX79+fP78mRUrVpCdnU2jRo0ETbpvUbJkSYYNG5av+3z8+LHaKglPT09evHiBl5cXO3fuxN/f/7syDjJW4JEjR7Jw4UIhG5mVlcWSJUsoW7asAsvkvXv30NPTU7Ax2RzYtWtX+vbtq1L8Oi/ExMTg7e1NVFQUJUuW5MOHD+jr6/Pu3TtOnTqlMF40btyY69evExoaWiBR4549e5KQkEBmZiZNmjTB3Nyc27dvc+zYMVauXImGhgbt2rXDy8vrS++oVAo/IYMlEokYMGAAJ0+e5Pnz5yrHIhkt+/Xr1zExMRGCwUOHDqVSpUqkp6cLPThfIzIykooVK2JkZCSni9q4cWM6d+7M7t27efToES9evBB60vLLPvo74e3bt3LjnqrslDItzm8hkxBQNlflJ7P57f78nPM9GdOvHScZG+2sWbN+ukPVuHHjfPdlFcihcnd3p3bt2owYMYLChQvj5eWFk5OTwCQEXzjb27dvT0hICPr6+nI/XsmSJUlNTcXR0ZGYmBjat2+Pra0tXbt2pVu3buTk5PxQPakMMopWVQ5Cbm4uly9fZsOGDXh7e6OjoyNXPqiObejrumqRSMT69etZvHgxQUFBlCpVivj4eDQ1NfHx8cHOzk6u9j8nJ4e7d+8yffp0OUpW+P/rT6Ojo0lJSVG4d3V107Jjjx8/zrZt29i4caNgXFKplObNmyORSJRSscoyS7L62K/x6NEjlZ8JCGQcz58/B770tTg5OREfH8+dO3cIDAzE398fGxsbihQpgpGREWKxOM8yifbt26vcV6RIEc6ePYulpSXFihVTWPQUK1aMt2/fMm3aNJYvXy4s1qVSKfv372f48OFs3bqVIkWKEB8fL0ygsudrbW3NmzdvePz4MaVKlUJDQ4OMjAzat29PUlISlpaW9OzZk27durFkyRKOHz+eb72dXxUtW7YU9NMuXbpE7969cXJyokGDBsLzdXd3x8HBgWPHjnHz5k12794tvEstWrTA39+fdevWceHCBfr374+trS2tW7dm6tSpHD9+XCkTZkFhYmJCYmIiRYsWVbo/PT0df39/3rx5w+jRoxk6dChHjx6V268OX9uqj48PGzdupFOnThQrVozMzEySk5MZMmQILVu2lBOrzMnJ4a+//mL16tUKdi1DuXLluHfvnkIGTp1dy6K0jx8/ZsKECaxevVqOAGfYsGE8efJEaQZWxuB5+PBh3N3dFa6tTiBbLBaTnJwsd0zdunVJTU3l3r177Ny5ky1btlC4cGEMDQ3R09MTvscff/yh8ro9evRQua906dIsW7YMPT09KlWqpBAdLVGiBKmpqfTo0UMg4ZC9f5cvX2bcuHGsWbOG2rVrc//+fTlCEbFYTNGiRYmMjCQ0NFSQapBKpXh6ehIeHo6ZmRn16tVjzpw5bNmyhR07drB58+Z/rJfs74CNjQ1Tpkxhx44dnDhxgh49erB48WJatmwpLLgaNGjA8+fPOXz4MMHBwZw6dUp4l7p160arVq04fvw4CxYsYNKkScAXCvE9e/YwceLEAunFqYKZmZlQJqsMiYmJDBo0CFtbWwYPHoyjoyOvX78WxqavHWRl+HrO7tOnDyYmJri4uGBiYoKmpiYfPnygZ8+euLq6ytl1dnY2O3fupHfv3kplRXJzc2nfvj2HDh1S6OPI673R0tLi06dP9O3bl3nz5snJE2zYsIEVK1YQFRWlQHglkUjo1q0bAQEBSoN5oaGhKj9TNp9/raVnampKjRo1ePLkCSeOHuXw4cN0BroB1YCr2trM0dXlDzVi5TJ6c1WQZTGrVaumMP6VLl0aqVSKu7s7jRo1YvXq1cJY8vDhQ0aPHs3kyZOpX78+9+7do1mzZsK5GhoaFC1alHPnzgkEFbJzV69ezaFDh9DT06N8+fKsXLmSEydO0LlzZ3bt2pUvCux/Aj8rQ2VkZJSvyoERI0bQu3dvtceULl2a+/fvC/JEXyM2NlZlkFLmLEdHR2NtbS1sj4mJEc6xsrIiKyuLhIQEuSxVTEwMDRo0yPP+1aFevXokJSXx8ePHfAdSZZqZMTExCj2TTZo0AZBbQ+SFAs0Whw4dYvny5VSqVInQ0FClWSBZNmnBggUKhA3R0dHk5uZSr1495s2bJwi0vX//nk+fPqmMdhUUrVq14tChQ0qbjKOjo4Uo76RJk3jz5g07duxg0KBBlC9fnrt377JhwwZiYmKwsbHBzc1NbYZFR0eHKVOmkJOTw6dPn9DX11cbrdLS0lLricu0pwoa8crNzWXFihUcOHBALjohEokwNzenZMmShIWFybEyyWBmZiYX3fkRiEQiChcujK2tLeXKlePJkyc8f/6cZ8+eCbTaZmZmmJubC06vhoZGvqITDx48YPHixbx8+ZIDBw6ojCDPnDkTf39/OeIKmRp7YmIiW7ZsYdCgQSxYsAB/f3+5z+7bty8TJ06kVq1awnP09fVl/PjxQgT9zz//ZOvWrQQFBbFnzx5Onjz5QyVm/zbu37/P1q1bMTc35+zZs3IBkq9RrVo1/P39mTNnjtwz+1rL7OHDh6SmpqKvr8/nz595+PDhD9Vyfw1XV1eCgoKUEspkZ2dz6dIlpk2bRqNGjUhKSsLLy0toqo2MjGT16tVCZsfV1VVtZkwWWXV3dycuLg5NTU21FNs5OTlq+2/Mzc0LJEL+NebOncuaNWsUiHnMzc3p3LkzW7duxdPTU+E8ExMTIiIivuszv4VIJMLAwAALCwvMzc2JjY0lLi5O0CUyMDDA1NRUCAYVxK7fv3/PtGnTuHjxIqtWrVLZG7lmzRoGDBigYGt2dnb4+vqyYMECpk+fjoeHB40bN5aLRHfr1o1evXphbW0tsAnu37+fUqVKceLECVxdXdmyZQunTp1i1apVFCtWjOXLl/9wP96/iYSEBPr374+uri67du2iU6dOSo8rUaIEOTk5jB07Vs4xP3PmDE2bNuXs2bMUKVKEx48fY2trS2ZmJmFhYejr6/8UHZxevXoxfvx4lf0TW7duZe3atZibm7NhwwYaN25McHAwLi4ufP78maCgIO7evYuhoSHdu3encePGat+7du3a0a5dO+Lj45FIJBQpUkTl8UlJSUr7oGUoUqSI0oVnfuDv78/EiRMVtN6MjY3p168fCxYsYOXKlQrnmZqa/rT5Gr6sSQpra3MiM5PrwFTg4P/b55CVhUd2Nk8/f0by/wIn+bXrpKQk1q9fz/Hjxxk2bJhKCYfTp09TsmRJBg0aJLe9WLFirFu3joEDB7J7925WrVpFnz595MaHunXrMnPmTMRiMSNHjgS+OGKXLl0iLCyMXr16cf36dWxtbZk3bx4+Pj6MHTuWDRs2fM+j+unIzc1VWMgX9PyCoEiRIvlaZ8v67K9fvy6Uvl+7do3ExESVjk+ZMmWwsrLi1KlTQktEVlYWFy5cEBIWDg4OaGlpcerUKSErHRUVxYMHD1i4cGGBvsu3uHPnDrq6uvl2lq9evYqzszNv3rxRGMdEIpFaIiRVKJBD1ahRIzZs2ECTJk3yLIfQ0NCQG5xlA1NAQADTpk3j3r17DB8+nOjoaHR0dFT2In2L3Nxc0tPT0dPTU3kPHh4edO3alVKlSsmJ/cbGxuLm5ib3ww0ePJgdO3ZQoUIFSpQoQZMmTRg1ahQlS5YkPDycCRMm8McffzB48GC196WpqZkvr1hW+68sEyeRSASnrKC4du0aDRo0QEdHh5cvX7Jz507i4+OpWLEilSpVwt7enuDgYKUO1bVr14RFSmxsLO/evfspzq2WlhZ2dnZUqVKFpKQkPn36xLt37wgODpY7TlNTE319fezt7YWogAyfPn3iypUrXLp0iYsXL2JnZ8eBAweoVq2a0s9MT08nNjZWJQtg586d6d27N56enty9exd3d3e8vLxwcHDg48ePHD9+nJcvX9K4cWMh23D79m0h43Ho0CG0tbUZMWIE9evXx9bWlt27d+Ph4UGnTp3UCqH+qihbtiwzZ84UGM/U4cOHDwpRxo8fP3Lw4EHmzZvH06dPGTBgAJqamqSkpPDnn3+yfv16Pn78qLb0TFY7r6OjozJr88cff7B27VqB2edrsd/BgwczfPhw4dwePXrg5+dH/fr1KVasGOXLl2fatGlUrVqVN2/esHbtWnR1dVm4cGGeEgrqFlQyWFpaEhERobL/8f79+/Tv3z/P63yLhIQERCIRxYoVIyYmhp07dxIZGUmxYsUoXbo06enpHD16VKlDdfXqVSHqn5yczIsXL9DX1/9hggyRSCQ4VpmZmaSlpZGQkMDbt2/lFipisRg9PT2KFy+usFhOSUnh5s2bXLlyhTNnzmBhYcGGDRvUNq6fOHGCI0eOKN1XpUoVPnz4gJGRESNHjsTZ2ZkRI0bQtGlTUlJS2Lt3L/Hx8ZQrV46kpCSMjIzYsWMHGzZsYNasWcyfP5+mTZsyZswYunXrRvny5fn8+TOfPn2iRYsWP1Su+W/BxMSE9evX07179zyj1zdv3mTp0qVy286fP8/evXvZtGkT27dvF/og3759i4eHB6VKleLatWsq5QVkSE9PR1NTU2VfXPHixSlXrhx+fn6MGzdOmNclEglz586lVq1agg3Wr1+fhg0b0r9/f8aNG0fRokWZPn26UI4YHBxMYGCgoHelDqraAr6Gra0tN27cUCmEe+vWrTy/vyrcuHGD6dOnC+/nw4cPMTExEQJAMvHab9c5V69eFYJemZmZREREIBaL1faf5oVpGRlUkkqpArgBr4AwYCcwSyol9yuqbJFIhI6ODkZGRgr2mpWVxf3797l+/Trnzp1DIpEwZ84ctT3amzdvVtnjJGOXfv78OQsXLmTQoEH079+fjh07CmWCKSkpmJqaEhsbi5WVFevWrWPChAmcOnWK9u3bM3nyZLy9vfHy8qJYsWLk5OQwfPhwmjdvTpcuXf7VLPSvKuxra2tL27Zt8fDwYM2aNcCXtXLHjh3l3rNKlSoxf/58oeVl9OjRzJs3TyA6mjdvHoUKFRKkj4yNjRk4cCDjxo2jcOHCmJmZMX78eOzs7OTepcjISOLj44mMjEQikXD37l3gS6WHgYEBISEhREdHU79+ffT09Dh37hxTp05l8ODB+Q7gDhkyhFq1anHkyBGsra1/yvheoDdp1apV+W5I/pYOUywWI5FIMDU1xd/fn2fPnjFhwgTMzMzkytNUIT4+nvnz53P37l0KFy5MXFwc9vb2TJkyRSFybGhoyK5du5g0aRKxsbFUrFiRDx8+kJKSgq+vr9xi3N7enqioKIYNG8bBgwd59OiRMFg1bNhQ0DOQMdr9KLp37866devw8vJS2Ldnz57vnrhjY2MpVqwYkydPJi4uDjc3N6ytrbl9+za7du3i7NmzSvWyHj58iFQqRSwWM2TIECQSCRUrVuTdu3c8ffqUXr16KfR7FRRisRgTExNMTEywsbGhWLFipKSkkJOTQ3Z2NhkZGYSFhSlE+lauXMm2bdsQiURUqVKF8ePHM2LECLVlUp8/f5ZLN3+Lr0tBBw0aRPPmzdm4cSN+fn6YmJjQp08fJk2axObNm+nevTva2to8f/6c8ePH4+3tTc2aNYEvk1pwcDBXr15lz549LFu2jBkzZjBixAilUcVfGV+XiOYFqVRKTk6O3CQklUrR0tJi5syZREdH06dPHypXriw45WvXrlX5m2VlZQk9LEWKFCExMZHixYszZcoUBZpSsVhMcHAw3t7erF69murVq5OYmMibN28YNWoU7dq1E441NzcnIiKCJUuWsHDhQm7evEnNmjXR1dXFzs6OlStXsnLlSoKCgvIMluQHAwYMYMmSJQQEBCjY771799DX11cqnp0XPn/+jJWVFevXr+fo0aMMGjSIjh078uLFC4KCgnj8+LFSbbS4uDhCQ0MZOHAgU6dO5d27d9jZ2fH582ciIiKoUaPGD/dAiUQidHV10dXVxczMjIyMDCpXriywqmZmZvLo0SMFuz569Ch+fn5IJBLKlCmDi4sLEydOzLPcW1tbW+3ix9zcnOTkZP744w+qVq3Kli1bWLduHbq6ujg6OhIWFsbZs2cZMGAA2tra3L17F09PT4YNGya8O4cOHeLw4cOcOXOGXbt2sWnTJubPn0/Lli05duzYDz2vfxo7d+7Mt10XKlSIz58/yzkZIpGI3NxcPDw8BJvv2LEjVlZWiEQiFi9erNKupVIpmzdvZvv27RgbG5ORkYGenh7jx49XSvYye/ZsAgICaNWqFdWqVUMqlRIeHk7v3r3lMhcaGhpcunSJI0eOMGDAAO7fv4+NjY0wv0ybNo0zZ84wZcoUBQfxe9CzZ0/c3Nxo06aNwkLt48eP3L17N9+03N9CV1eXc+fO4efnR79+/Rg6dCgxMTEEBwdz7tw5KlSooFDOm5mZyYYNG1i1ahUrV64kLCwMe3t7cnJyuH//PlZWVjRo0KDAa4h22dnIfkkRYPP//lyBt0CYjg6B9eohkUjIzs7m3bt3fPjwQW7N9vDhQ6ZMmUJGRgbm5uY0b96cPn36yDHFKUNiYqLaYFupUqX4+PEjjRs3Ztu2bezZs4dBgwYhEon4448/OHHiBBEREUycOJG0tDTu3r3L69ev6d27N+PHj0ckEhEQEEC/fv04cOAAhw4d4q+//iIgIIBKlSpx8eLFfAXN/g78qg4VwLZt2/Dy8hKC7Y6OjgpEYE+fPpWrvPjzzz9JT09n2LBhgrDvyZMn5frfli5diqamJj179hSEfTdt2iQ3lsyYMYPNmzcL/5dlvM6dO0ezZs3Q0tIiICCAsWPHkpubi42NDbNmzRI05PKDiIgI9u7d+1MZeP8217xEiRI8ffpU8GYNDAxITU0lOTmZuLg4IcIqg7qGxYSEBHr27MnMmTOFXgypVMrFixdxcnJi7969Cmm+woULExQURFJSEu/evcPMzEzu+jNnzmTnzp2ULVuW5ORk0tLSmD59OhMmTGDBggWMHj0aHR0dRCIR06dPZ9KkST/FoerVqxfjxo1jzpw5DB48GAsLCz5//symTZu4d++eEA0oKMqVK8eKFSvo2rUr8+fPF7bb2NjQtWtX6tSpw507d7hy5Qr16tUjNTWVnTt3smvXLnx9fRk2bBgLFy6Ue7kOHz7MihUr6Nu3r1Ka6O+BSCRS2gMTFham8BtWrlwZbW1typQpw9q1axGLxWqdKfgSdXz37p3K/enp6XJp8rJlyzJnzhyF67q7u+Pm5saHDx+YNGmSAt2/pqYmbm5u9OvXjzdv3hASEoKvry/Tp08XaDz/F6GsnLZ06dI8ePCAcuXK8eLFC7mSm/T0dKKjo5VmPHNycnBxcaFbt26cOnVKiMQ+efIEDw8PVq9erZDx0dbWZt68eWRkZPDq1SsKFSok10i+bds2Fi1aJPT1ZGVlsXr1anr06MH48eOZNWuWsGgcOnQojo6OeHh4/HB0qlq1atSoUYMRI0YwduxYypYtS0ZGBn/99Rc7d+787hITS0tLrl+/TlpaGnv37hXuUyY23adPH06fPs3hw4dp164dubm5HD58mJUrVzJr1iyGDRvG4MGD5RrYMzMz6dOnDxKJRAgQ/Azo6uoqiPO+fv1a4bgyZcpgaGiISCRi5cqVGBkZ5at3ViKRkJmZqTICGR0dLTgQFhYWgt7h17bdtm1b2rZtS0ZGBj179uTQoUNyv71IJKJTp0506tSJ58+fs3//fg4fPkz37t3Vls397nBycmLr1q1y5bRt2rThwIED9OrVi8OHD7Nr1y65UvTTp0+rZLibNGkSJiYmhISECL9XdHQ0Q4cOZfjw4QqZDZFIxPDhwxkyZAgvXrxAJBJRtmxZYUy4du0agwYNwsjICC0tLXJzc1mzZg09evRg8uTJLF26VHj3WrRowZo1axT6NL4HxsbGDBs2DDc3NyZMmEDNmjWRSCScPXuWlStX4ufn991jR2JiIsuXL+fAgQNCeaqNjQ2NGzdmyZIleHt7s2fPHnr27Imuri4XL15k7ty5eHp6snTpUmxtbdm+fbvw+bm5uXh6enL69OmCZc2kUtRxapYAWonFHClRQiCqSE5OJiEhQS7AIctaR0dH4+PjozTQowwykh1Vc+azZ88Ean5DQ0MGDBggVEHIULNmTTZv3kx2djYuLi7s3r1boW2iXr161KtXj+zsbAYMGEBmZibNmjVj8eLFcmumfxK/skNlZmamUE2U1+eLRCK8vb3VMgzq6uoKAU1V2LRpk1qZBNk4/iOoW7cuz58//6kO1d9GYzRhwgS8vLyIj48Xtg0fPpyRI0cydOhQ/vzzT2F7RkYGEyZMUFny5+fnx9SpU+WYwmS9WpMmTWLx4sUq78PIyIjKlSsrOGvHjh3j2bNnJCcnc/nyZQwMDPD09GTMmDHMnTuX2rVr8+HDB+ALT/7P7DFavHgx9erVY/LkyfTq1QsvLy/Kli1LUFBQnnTBqlCxYkWePHlCZyXNo1paWhQvXhx7e3uOHj1K9+7dGThwIPr6+gQHB/PXX38xatQohRfL0NCQoUOHsm/fvu+6p4KgaNGigiihDC1atMDX15enT5/mSZAhg46ODmXLluXq1atK9wcHB6ss3/gWslKr7Oxs4uLilB5z4sQJmjRpgqamJhMnTqR06dLUqFFDaRT2fwFubm6sWrVKrjdn1KhRTJw4kUGDBuHl5SVM8FKplEmTJjF48GCli449e/bQuHFj+vTpI1fWUqlSJTZt2sTUqVNV3oeuri62trYKrFyXLl3i7t27WFtbc/nyZT59+kS3bt1YunQpe/bsoUaNGly/fh344hQXK1ZMboz6EXh6egr0xL1798bd3Z2srCy2bdv23Qu7QoUKERsbK1fiKINIJKJChQqULl2aZ8+e4eTkRO/evXn//j0bNmzg9evXNGjQQIENTEdHBzc3N86cOfND9fv5gYwO9+t6dFtbW9asWUNiYiIXLlzI97W6dOkisMl+C5k2Sn7HT1mm8tq1a0r3v3nzBlNTU7S1tenWrRvt2rXD1dVVrRD674zmzZtz584dud/D1dWVNWvWMHnyZJo0aSK3QA0KCqJevXpKHeHw8HDi4+OZPHmynPNrZWXF9u3bBYFWZdDQ0KBChQqUL19ebky4efMmDx48wMjIiNu3b/P06VO6dOnCnj17ePDgAQ4ODuzZs0c4vkGDBoSHh//QM5GhVatWzJ8/nwMHDtC7d2+cnZ159OgR69ev/yGJEx0dHWrUqKGUda5MmTJYW1uTnZ1N37596dq1K+fPn8fPz4+SJUuSnp6Oi4uL3JggFotp3bo1kZGRBVuviESoltf9AolYLMf6V6RIEdLS0khOTha2mZubs3LlSoyNjTlx4kS+P37QoEEqs4lRUVHExsYqjPOqoKWlRZcuXVTqnWZmZhIeHk6VKlVwcHBg2LBhLFiwgCJFiggaXf8kZD1UP/L3H74PI0eOZNy4cWzatIlbt25x//59ub/vwd+WoapQoQLz58/H2dmZSpUqUalSJSIiIrh58yaGhobcvHmTT58+ER4ezt69e5k4caLKvpgbN24wd+5cpftatGihIPCbHwwePJgbN24I4ocmJiYUKlQIPz8/evfuTYMGDTh48KAQgfua/edHIRKJaNmypVyU7kcjDW/evBFqXqdMmUKjRo0QiUS8e/cOX19f2rVrx6lTp5g9e7bceZ8/f+bGjRuMHTtW6XXNzMyQSCRkZGT8rXSjMkG+b7UI6tati5mZGWfOnFFJlvAtfHx86NmzJ+PGjaNNmzaIxWIyMzPZuHEjYWFhBAUFFejeJkyYgLu7O9u2bZMroXn69Cl+fn6Cw6mlpUVoaCinTp0SBK3/12BsbCxodRkbG1O7dm0+fvxIVFQUb968oW7duly6dInIyEi2bdtGp06dlGrLAOzevZutW7cq3VeiRAk0NDSIjY0tUDlG3759WbdunaATZWpqKtR2Ozo60qJFC7Zs2SI4vGlpaT9VL61GjRqsWLFCbtuP2na5cuVYvnw5KSkpdOrUCU1NTT5//ixE4UuVKoWXl5ecDcfHx3Pw4EGVY6OmpiZly5blzZs3f2s21cbGhuvXrwtMoDJYW1tTvXp1zp07l++sj7u7O87OzojFYvr27Yu2tja5ubmcOHGCwMDAAgu/jhw5ksGDB7Nx40a5BVtcXJzgGMuwc+dOjh07xvr164VA2/8SRCIR27ZtY/To0axatYpmzZqRmppKVlYW+/fvx9nZmYsXL5KQkMCOHTsoXry4yibyTZs2MWLECKX79PT0aNasGZcuXcq3DApA165dmTp1KteuXSM5OZmSJUuSmZlJt27daNSoEU5OTgQGBuLk5AR8seufRYYDX7Lw386dP7qY1dLS4tWrVwQGBtKvXz/09fXJyMhg27ZtHDx4kO7du1OrVi25kseYmBiWLl2qlmbe3t6eBw8e5Flq9zWOaWkxKCtL6YIwB7j9TbtA0aJFEYvFCqQ3enp6NGrUiEuXLjFkyJB8SQ/Ur1+fv/76i5kzZzJu3Dhhjr1z5w7e3t5qA+bK0L17d1xcXKhevbpcYDMzM5MBAwYwZswYwRGdO3cuDRo04MiRI99duvkj+JUzVP/rkK1LBgwYIGwTiUQChfvfTkpRUNSsWZPjx49z//593r59S/369Vm0aBEpKSkcOHCAK1euYGNjw7Fjx1QOfrm5uRQqVEhlWl0kEqGnp1dgHvtBgwZhZWUlTOY3btzg06dPFC5cmMqVK1O7dm28vb25efMmtWrV+mWVtmXQ0NBAX1+fjRs3snbtWvz8/NDS0sLQ0BBPT08aNmyoMmqkqamp9tkZGBj87Q5V1apVuXLlCiEhIfTr109I52toaNC0aVMuXLggaOTkBTMzM/bt28eqVatYtmwZ2tra5OTk0KZNG4KCggrchOrg4CBkE8uUKUOJEiW4f/8+UqmU4OBguexD0aJF6d+/P7GxsUyYMKFAn/O7oFixYuzbt4+XL1/y+PFjqlevzowZM5BIJISEhHDlyhUsLCzy7OGQSCRq2SxLly5NTExMgRyqhg0bcvPmTaHmOiIigkuXLtG4cWOsra1p3bo1GzduJCoqinbt2pGZmalU3+RXglgsZvv27UJfn4xFz9XVlcmTJ9O1a1elC5f09HS1jEeGhoZ5Uk7/KCwsLChbtiwXL15kxIgRGBsbC/uaNWvGihUr5KLc6qClpcX27dtZt24dnTt3RlNTk6ysLOrWrcuWLVsKLDgsa2AfO3Ys+vr62Nra8vLlS6Kioli4cKFcNsrIyIhevXphZGTEqVOnCvQ5vwv09fUJCgoiJiaGW7duoaOjw6hRo9DW1ubcuXNcu3YNfX19lixZolK6AL4Q16gr9ypbtmyBndKiRYvy4MED2rVrR0JCAg8fPsTf359x48ZhYGBA9+7dGTVqFK1bt6Zr165cuHBBrgrmV8W6devYu3evQFiTm5tL586d2blzJzNnzlRa4p6cnKx2TDQ0NOT9+/cFuo85uro0ycmhQm6u3KIwB3gmFrPvGyF7LS0tqlatSnh4OC9evJD7vRs1asRff/3F06dP853R9fX1Zf/+/QIFe1ZWFuXLlycgIECB3TQv6OjosHPnTsaNG4evry+1atUiLi6O8PBwxowZIyfLoqmpSefOnWnSpEmBA60/A/85VP8eXr169dOv+Y/Qm1SrVk0u+2RoaJhvRXqxWExqaqpKh0nG+vc9dcwdO3Zk//79dOvWjaioKP744w9u3LiBnp4eu3btYt26dWzevJkdO3YI2/NagKSkpKjcl5GRoXLftyQe30KdE2BkZISFhQXPnj1DX19fYSLR09MjLCwMOzs7haiaiYkJurq6iEQiucUOfGFVk0ql+Pv74+joqHAP35IGfA11FNHffo4M5cuXZ8CAAfj5+TFr1ixMTU2RSqVERkZiYWFB0aJFVZ4rg+wZ6+joMG7cODnaY3URh7zenwYNGnDs2DEiIiKIi4vD3d1dZc/fx48fCQsLU3u9/wXY2NjIvQNisVipVIEqaGtrq+1zeP78uVqCEVWoUaMGN27coHbt2iQmJuLk5MTjx48xNTVl0aJF2NraCg23sn4rQG2ZjLpFvzq7BlRqU4F6u5Y5Q0ZGRkRHRwu9AzIUKlSImJgYIcP2tW2bmZlha2vLmzdvBOfya3Ts2JGjR4/St29fhcWxukWQqtJXGZQRb7Rs2RIXFxdmzZrFokWLhGyQrOfJxsYmz5LIr5+xu7u7nLbW90QSZbCxsWHfvn28e/eOt2/f0rt3b5UZu9TUVE6ePPndn/W7wMLCQo7gBb7MBeo0xr5G6dKlefTokcqy50ePHqnVGlSF4sWLc+zYMapVq0ZCQgKTJ0+mc+fOlCtXjuHDh2NoaMju3bsZP348PXr0EBxsdXb9+fNnlfvy0q1Tpk0lQ15ZbzMzMxwcHDhz5gxdu3ala9euwr5ChQohkUi4ffs2Pj4+ctUx5ubm1KpVi2fPninNQPXu3Ztly5bRp08fhQygsnFAhnfv3hGeno54zx6K376NWCIhV0ODdzVrEu7kRB8lDnJ2djZDhgxhwYIF+Pn5Cf2YYWFhApFUmTJl1JLxfG3XHTp0oEOHDsL/86oKUjdnyxguP336REREBIaGhlSuXFnpOTk5OUJFwz+N/xyqfw/5LSMtCH4L1cImTZpw+PBhpaUhhw4donnz5t997a5du/L8+XNCQkIoVKgQ7dq1o3Xr1pQqVYqMjAxBT+VHKEn/CYhEImHRMmvWLLmB4/Pnz8ybN4+AgACl5/bt25fly5czY8YMhX1Hjx6ldu3a/wi1aNWqVfH29mbRokX88ccfTJkyhdevX3Pr1q08myP/KcjoQL/Fp0+fuH79OkePHmXt2rU/tUT0fxWurq4EBgYqLbV4+vQpOjo6+aI2VoZatWoRGxvLjh07MDMzo2fPntSuXZtq1aqRkZEh/D5f92X+qhg6dChTp05lzZo1cpn87OxsJkyYoLK8atCgQXh7e8s1rsvw9OlTcnJy1GYafhYKFy6Mr68v8+bNo02bNowePRpjY2N2797NpEmT8q1C/3eiePHiSllQU1JSuHXrFmfPnmXZsmUkJSX9C3f3e2HAgAHMnDlTYGj9GomJiVy9elWhfC6/KF68OB8+fGDz5s0YGxszfvx4rK2tadKkCampqYIT9KMN6/8E+vbti6enJ3Z2dnJOh1QqZd68efTo0UNphsrJyYkuXbrQvXt3hR62+Ph4QkNDlbII54UcPT1u9evHrX79QCqV65lSBi0tLWG+7tWrF3379qV27dqsWrWKLl26/BLETIULF1bq0GVlZXH37l1CQ0NZsmSJWiKrvxP/OVT/Ll68eMGyZct4/PgxIpEIW1tbRo0alW9ClW8hkubjF0lKSsLY2JjExMQCl1X8DKSmpuLk5MTAgQPp0qULGhoaSCQSDhw4wIYNG9i7d6/cwJKbm8vFixeJjIykePHiNG3aNE92OBlycnI4d+4cMTExlC1blpSUFBwdHQVF87wm/38rQyVDUFAQp06domvXrlhZWXH37l0uXrzInDlzqFWrlsK5YrEYqVTKxIkTEYvFeHl5UbRoUZKSkli7di1hYWHMmDGD7du38+jRI0QiEQ0bNsTZ2VltFup7MlQySKVSZs6cydGjR9HR0aFv375Mnz4dkUiUZyRb3XP6kQyVsubr3NxcVq9ezbJly4Raci0tLbnf8t+ymfzg37br3NxcBg0aRPXq1fH09ERXVxepVEpoaCgzZsxgy5YtCovc27dvC3otrVq1yncZqlQq5dq1a7x48QJLS0ssLS3p0KED5cuXZ/PmzRQvXvyXzVABnDx5En9/fzp06ECFChV4+fIlR44cYfDgwXLRbRlkJYAbNmzgwoULTJ48mUqVKpGVlcWBAwdYu3Ytvr6+nDp1irCwMKRSKZUrV6Z///5qI+/fk6H6+vssWbKEjRs3IpVKadOmDcuWLUNXVzdPSvnvteu8oErzLyQkhJkzZ3Lv3j1yc3PR1NSUC5L8Z9fqsWDBAj5+/Mj06dOFMfvJkyeMHj0aHx8fhezK8+fPuXbtGtra2rRq1Srf4pzwJeN19+5dDAwMqFq1Km5ubrx7945jx45RoUIFtVUl/2aGCr5QjU+bNo2GDRtSq1YtYmJiCAkJoWHDhkr7mmXrmPPnz7N48WKmTJlCvXr1kEqlnD17Fl9fXyZNmsSzZ884fvw4UqkUKysr+vfvr3YNlJdDoS7wUqxYMTZv3szSpUtJT0+nZs2arFixQqjgUCXUDaglkfmRDJUqu7516xbjx48nLCyMrKwsYS35Nf4Ju5HZaFBQUL4YTlUhLS0NDw+PX3o8+lVx4sQJHB0dqVGjBg0bNkQqlRIWFsa9e/cICQn5Ln2538Khgi8vzqpVqzh9+jQ6OjpkZmbSqlUrhg8fLvdCXrhwgVmzZtG8eXMqVqxIRESEoEvRokWLAn3m+fPnFbJflpaW2NnZMWHCBAX2LKlUqnZR9k84VPBl8Xfs2DHi4+MpX7487du3V9kcKtsulUo5f/48mzdvJjExEW1tbTp27IihoSFBQUGMGzeOWrVqkZuby+nTpwkMDGT06NEKNMky5OVQyRiCZExaX0M2AD98+BArKythsRUeHs7hw4eJiYmhTJky9O/fX+Hzv35Oubm5nD9/nlevXmFhYUGLFi2U9upJpVKeP3/Op0+fhIWzTLzQ0tISKysrQXtFKpWSnJxMREQEY8eO5eLFi7i4uNC2bVs2bNjAjRs3GDp0qEDv/ysPdL+CXefm5rJp0yb27NmDpqYmmZmZODg4MHr0aDmh7IiICLy8vKhcuTJ169bl48ePhISE0KtXLwYOHFigz4yOjqZo0aJy0T1TU1NsbW0ZOHAgPXv2lJuspVLpdwdK4Oc4VLLrnDx5kvfv32NtbU3Xrl1V9p5+be/h4eGsXr2aDx8+IBKJaNu2LZUqVcLb25shQ4bQokULxGKxIO7q6OhI7dq1lV43L4fKwMCAxMREDA0NFYJPsl6IV69eoampSYkSJYAvIo6HDh0S7NTZ2VlBIPtb3TMZK5OBgQEtW7ZUGaSJjIwkOjqapKQkoWxcQ0MDCwsLrKysKFGihBzF/9u3b/Hx8WH79u20atUKJycnrl27xoYNGxg3bhyBgYGkpqb+Z9f5wJEjRwgKChJ0yUqWLMm4cePkqj3i4+MZNmwY+vr6tGrVirS0NA4ePIidnR2zZs3KF6mBDFKplGLFihEVFSWM1fr6+lSoUIHu3bszfPhwuQW8VCpVO0/9Ew4VfBkDL1++zOPHjzE2NqZbt24qHcqvnaLIyEjWrl3LgwcPgC+04C1atGDKlCl069YNR0dH9PT0ePbsGcuXL6dUqVJKWYAhb4fK0tKS+Ph49PT0FPpeZZIqHz9+JDExkQoVKgBfqjb27dvHixcvMDAwoFu3bjRr1kxubP3WoXr+/DmhoaFC77Sqku+YmBjevXtHYmIiEolEsGuZPE6pUqWEZ5WVlUV0dDSBgYH4+flRtWpVBgwYQGJiIjNmzGDQoEGcPn0afX19Hj58+I86VGvXrv1hh2rw4MH/uq3/jrC3t6dNmzb4+vrKbZ80aRInT57k9u3bBb7mb+NQ5Qf3799n6tSp7Ny5Uy5CkZ6eTp8+fZg+fToODg75vt6TJ08U+glkAzV80ZRydnZm7969REdHC03SPXv2pHPnzgoRlH/KofoW6rJq6iasDx8+0K9fP3bs2KGQCYiOjmbQoEGsXLlSaaRI1UT1/v17tm/fTkZGBoULFyYqKoqSJUsyZMgQYaD+NqKVm5vLjBkzEIvFDB8+nBIlSvDgwQNWrVpFo0aN8PT0FI6VPacrV67g4+PDH3/8QZUqVQStqAEDBsj1+aSlpTFw4EBCvlKCVwY9PT0KFy5MfHy8EPGUUd03b96c7du34+LiwtKlSxkzZozcc/hVbeZ3setPnz7h5OREcHCwXKQ0NzeX0aNH06BBA3r37p3v6yUnJ2NiYiLXcyQWi4X/N2rUiHHjxnHmzBkePXqEjo4OqamptGrVCjc3NwVb/Kccqm+hbiJWZ9ey7NCqVasUbC0jI4Nu3brh6+urNMqryqFKTk5m27ZtxMfHY2VlxadPn9DX12fQoEHCokhZc/nGjRu5efMmY8aMoWrVqrx9+1ZoDvfz8xO+h+w5vX79mtGjR2Nra0vDhg2Jj4/nwIEDNGjQQI69SzZmLFu2TOVzgC8LX5kgsKycz8zMjOXLl+Pi4sKdO3eoU6cOEydOZN68ecJ5v7LN/C52LZFI6NixI3PnzlXQQ1uzZg3v3r0rcGlg9erV5SiPv84sli9fHm9vb548ecLly5fR1dUlJSWFmjVr4unpqfCs/imH6luos+u8Km369u3LwIEDFRiTpVIpffv2xcXFRWnvsyqHKicnh0OHDvH69WuKFStGcnKyoPUkI+pSplF54cIFNmzYgLu7O+3atePz589s376du3fvsn79euE7yhyqxMREvLy8KFSoEG3atCE7O5tDhw5hamqKr6+v3PPctGkTY8aMUZvBEovFWFpakpmZKchiaGtrM3PmTCZMmMDnz5+xtbWlRYsW7N69W+7cf9qh+pGS5/T09P8cqu+Erq4u4eHhCi0cz549E1oDCor/KYeqX79+zJo1S2nW5N27d/z5559s3769QNfctm0by5Yt49atWxgZGTFz5kzEYjFjxowRButu3boxe/ZsQdE7ICCA7Oxshd6Q382hWr58OaampkpLigAhS1e9enWFfcocqvfv37N06VK8vb3lFld37txh3bp1+Pn5UahQIYVF3saNGxGJRLi5ucmV/EmlUkaNGkXPnj2FbKGmpiYRERGMHz+e4OBgOQa3zMxMhg4dirOzM/b29oSEhBAQEMDLly/x8/OjVKlS5OTkIJVK6dKli9w9VKtWjZo1a1KtWjWsra2xtramTp066OnpERsbi62tLS1btqRNmzZyxAG/ss38Lna9YMEC7OzslDayZ2dnC5IABSGmuXTpElOnTuXGjRtkZWUxc+ZMbGxsGDJkCNnZ2WRlZQmspNWrVychIYG9e/dy7tw5/P395ezxd3OoQkNDOXToEJMnT1a6f/Xq1aSmpirYACh3qFJTU/H19cXV1ZUGDRoI29++fcvChQuZOnUqVlZWCg5VWFgYhw8fZu7cuQrCz6tXr0YsFjN48GDgy3NKTk7GycmJtWvXyi3iJBIJCxYswMjICHd3d06ePElQUBDnz59n+vTp1KlTB6lUioGBgULFQfny5bG3t6dWrVpYW1tjZWVFzZo1MTMzIzs7Wzg3MDBQ7rv9yjbzu9j10aNHCQ8PZ+LEiUr3Ozo6smXLlgKV/7148YKRI0dy48YN4uLiGDx4MG3atGHUqFHExMSQlZVF2bJlWbhwIa1bt+bz589cunSJwMBAVq9eLZfp/N0cqtjYWIYOHcratWuV7j927BiHDh1SqvepzKHKzc1l1apV1K1bV04HLzExkYULF9K7d2/s7OwUHKoPHz4wffp0AgMD0dbWlpvPL1y4wF9//SXoTmlpaSGVSunZsycTJkyQIzLJycnh4MGDnD9/nkWLFnH58mWCg4PZuXMn/fv3x8nJSchCfkuYYm1tTc2aNalfvz5FixbF2tqaqlWrCiXkzs7OnDhxgqtXrwoZNRn+SYdqzZo1P+xQeXp6/vK2/iuiRIkSLFmyRJBakEFGbBMZGVnga/5POVTt2rXj2LFjavcfPXr0uxgBP378yODBgzl8+DBWVlb06tWLVatWkZ2djba2NlKplG7durFs2TLB4Ro0aBBVqlQRrvG7OVSenp6MHTtWZf301q1b+fjxIz169FDYp8yhmjdvHu7u7kop6E+fPk1MTAzOzs5yA3Bubi7Ozs5s27YNDQ0NhR6q6OhoJk2aJGjQaGpq4uXlxZAhQ6hcubLcsRKJhM+fP9OsWTMiIyNVLnQLFy5M165duXfvHjdu3BC2i8VicnJy5N6fd+/e0bt3b548ecKjR4+Ee79+/Tp169b9pW3md7HrDh06cOjQIZWLiVGjRjF06NDvkjbIzMxkxIgRbNu2DfiiTRQQEEBKSgra2tpkZWXRrFkzAgICMDU1JSgoCDMzMzltrd/NoVqzZg1FihRRWQJ9+fJltm3bxvjx4xX2KXOodu/ejY2NDbVq1VLohXr9+jU7duxg8uTJCg7V8OHD8fb2xtzcXOG8nJwcunbtysGDBxGLxWhqarJmzRrMzMwUJkCJRIJUKqVOnTq8e/dOZb+brq4uPXr0ICYmRoGt782bN3ILw+TkZDw9Pdm9ezfXr18XMigvX76kbNmyv7TN/C52PXjwYKZNm6Y0wwGwfv16jIyMFH7v/GLWrFksX76chIQERo0axa5du4iKihL6XKtXr87ixYupVKkSoaGhXLhwQS4I+rs5VKGhoZw9e5bhw4cr3f/06VOmTJkil2mVQZlDdfv2bd69e4ejo6PCGiAtLQ1vb28WLlyo8PstXbqURo0aCWXD3wZInZ2dWbVqFWZmZmhpaXH58mVOnz6Nt7e33HGyDJSjoyOPHj3i48ePwr6vKwpEIhGdO3dGS0tLTtwZvpSdfh2Iy8nJYfbs2cyaNYutW7fK0bSPGjWK1atX/6MOVWBg4A87VEOHDv3lbf1XxKxZs1i6dCmTJk2iQYMGiEQiLl++zIIFCxg3bhzTpk0r8DV/C5a//CIvJjqZEGR+CSq+hqWlJQcPHuTNmze0bNmSpUuXCp+XlZVFo0aN2LVrFx06dKB58+a4u7sTHByMj4+PcI2EhASV18/LyVMnUqiusTOv/eqeWeHChUlJSVHZ4Kmnp0elSpUUHBfZvq+RkpKCoaEhLi4uSvvMypUrh5OTk8KiWEYOItPd+PY5FS1alLS0NGEBKRKJiIyMlHNkZZBKpUybNk1OZFRHR4cuXbrQvn17YYCXicNeunSJKlWqEBoaSnh4OGXLlpX7/MjISIF689KlS3ITx6+uW/Y7QVYfrwr6+vpqnRZ10NHRISgoCD8/P7p168bChQsRi8WCM1WrVi3Onz/P1q1bGTJkCD169GDUqFFyjKOxsbF53r8qqCPVyMuu1S3a1Nm1gYEBqampKidgCwsLbGxsFPqYQHlwZtWqVWzevBmxWKzQa1atWjU2b95MpUqVFMaw3NxcoaT622ekra1NsWLF+Pz5M0WKFEEkEnH69GmljIUaGhoCU5MMIpGI1q1b4+joSLFixTA2NmbMmDEEBwcTEBDAgQMHuHbtGjdv3sTIyEhuwZiZmUmlSpX48OED27dvlytH+zaT9h++H1lZWWqdh0KFCn23XQPMmDGDiRMnMnLkSKH0U09Pj/T0dCwtLXn48CGrVq1i8eLFODg4sGLFCjIyMoT36+sFvDJ8r12DettWZ9d56UXKypmVoXLlypibmyuls1cmsiyr4JCtA75FrVq1MDQ0lOt1hS9Bh/nz5wv3+m1wp2HDhjx69IimTZsiEok4duwYzs7OCt9NU1OTw4cPc+7cObnttWvXFjQhTU1NWbVqFfv372fo0KFkZWVx584dgWjn66wyfBFzPXToED4+Pri4uAjbtbW1WbBgAatXr1b26P7D/yCmT5+OoaEhixcvFqo1ihYtire393exZALkv+PzN4EqWluZ6vv3OFNfo1SpUjx+/Ji5c+fKDRSyum1ZPe73iBf+anBycmLLli1K90mlUv766y8FvRJVSEpKUhh4v4ampqbSSUbWv6IO39ZSK/uNMzIycHFxETJZ5cqVY+HChbx48YJNmzbRr18/OnbsyMqVK0lMTGTx4sU0aNAAU1NTOnbsyOTJkxXU6a9evQp80bL5mqBEIpH8R5v+E1GmTBnu3bundJ9UKuXmzZsKZRsFhYmJCWfOnOHQoUMYGxsLC7nw8HAAIfKpr6+voOX2u6F9+/bs379fJeXu1q1bC5QV0NHRUZsRU7Ugy8tG0tLS5JwwqVSqMEZIpVKmT58uTIhmZmZMnjyZx48f89dffzFgwAA6d+7MiRMnuHv3LiNHjsTNzY1ChQrRvHlzJkyYgKenp5wDGhERIYzdX2cipVJpnpUE/yH/aNCggUqxeYBTp05Rr169H/oMHR0d1q5dy4sXLyhSpIiQdYqNjSUnJ4ejR48KOpZGRkY/5MD926hatSr3799XmTnbsWOH0jJeVUhLS1PLvlm8eHGlGWsNDQ21WfuUlBQ5hzM7O1upAxocHCyMQ5qamnh6enLt2jUuXrzI8OHD6datGx8+fGD//v106tQJHx8ftLS0qFOnDqNHj2bMmDFyzmVcXByHDh0Cvuh1yRw4qVT6r/3uMtr0H/n7D98HkUjEmDFjBHKTxMRE3r17x6hRo76rig3+xxyqQYMGMXv2bKUv2bx58+R6W34EmpqatGzZUmj8PHDggEBJfu3aNeBLlOZ7REl/JVSvXp20tDSFps3c3FzmzJlD06ZN5XqU1KFw4cK8efNG5X5VLGrGxsZkZGSopLe9ffu2QjZIX19fzpl99+4dTZo0EQbTkiVLcufOHUaOHKkwYYhEIurWrcvYsWPzZJiSscC8fPkSAwMDTExMMDQ0RFNT87f/7X8lyErDlC3Ad+3aRb169fJNn64OIpGIJk2aCD2Ya9asoVevXsAX9qnk5GTS0tK+e7D9VWBsbEyjRo2YO3eugnO4a9cuMjIysLOzy/f1cnJyVC6gpFIp0dHRSln4ypcvz927d5Wel5CQQHZ2ttz4UqNGDS5cuCD8PyUlBWdnZxYtWgR8qSK4efMmM2bMUBBtFIlEmJmZsXTp0jxLbL523k1NTTE2NsbY2BgNDQ0hU/4ffhzOzs6sW7dO6dh+69Yt0tPTv1sP5lvY2NgIukh//vknU6dOBb5kyR4/foxUKiUpKSnPUr1fGSKRiJEjR+Lp6angVF29epXDhw8XyKGysrLixYsXKvc/fPhQab96u3bt2L9/v9JzZLIYX5ODfetYSyQSpk2bhoeHB/AlK3zgwAGWLVumQLYhm6MDAgLytM2v1wT29vYYGxtjYmKClpYWOjo6Sklz/m7851D9GjA0NMz3WlYd/qdK/jp37szjx49xdnbGy8uLSpUqERERwcqVKylXrhzVqlVj9OjRwiDRvHlzBgwYUKCmVxlq164tRE8TExNZu3Yt5cqVEzQNNm7cSN++fX/ad/u34O/vz5w5c3B0dKRu3bpkZmZy8+ZNunfvXiAHVUdHh0qVKnHx4kWlTIvr169X2osFX/paRo0aRVBQkFzEOi4ujhkzZigIFg8ZMoSZM2eyZs0abt26JSfe2rVrV9q2bauyJKpjx44MGzaMKVOmUL16dWFBLUN2djaenp507NiRGTNmCDonMmpgsViMsbExgwYNyvez+Q/qUalSJVxdXenYsSOjRo0SaNPXrVtHbGwsc+fOZdasWVy/fh34svAeMmSIUqHWvGBsbEylSpV4/fo1z549IyAgQMjSikQidu/eTYcOHX7q9/s3MGbMGNavX0+HDh2Esezq1avUqlWLVatWFehaPXr0YP369Up7N86cOUPNmjWVZo2HDx/OiBEj2LRpk1wpXWZmJqNGjVIouxg4cCCDBw+mbt26xMfHyy22nZycsLKyUhnI6NixI/Pnz8fLy4saNWrg7u6uQMU+a9YsChUqxNixY9HS0iImJkbINkulUoyMjFi1apWQtfwPPwYDAwMWLVpE165dGTRoEG3atCE1NZUdO3Zw4cIFVq9ejb+/v7DYLl68OMOGDaNq1arf9Xldu3YlJSWFO3fucOLECfbu3cvjx48pVKgQ169fp3Llyr99sKRdu3aIRCK6deuGra0tRYoU4fbt25ibm7N161a1rQPfwsPDAz8/P6VlcK9evSItLU3pGNujRw9BSP3rygGpVMqMGTPo0aOHnO116tSJDh060LVrV0xNTeX6pNu0aYOGhgYtW7ZUeo+y/VOnTqVWrVq4uLgo9KcFBwdz+fJlVq9ezYkTJ4iIiBDm69zcXAwNDblw4QI7d+7M97P5WfhP2PefRc2aNTlz5gympqbY29urtff/87TpMjx//pxNmzbx9u1bihUrhru7O+Hh4WzdupUZM2Zgb29PTk4Ohw8fZsWKFaxfv/67VL3DwsJo3749LVu2ZO/evVy7dk0QHE5NTVVg+fv06ZPKa/1ID1VenrW63yyvvjMZ0tLSePjwIVpaWtjZ2aGhoaHWmJVFgZOSknBycsLV1RVHR0eBuWv9+vU8ffoUf39/lVmhY8eOsWrVKpo3by7Qpt+7d4958+bJRdNlC7eNGzcSEhKClZUVGzZsoHr16lhbW2NnZ4ePj4/C85ZlOD5+/EixYsUEx7hChQpUqVKFy5cvs3HjRvbs2cPmzZtp2bIlp06dUvn9hwwZwpo1a35pm/nd7DomJoZNmzYJwr4uLi5oaGgwceJEJk+eLDA9Xb58mTlz5jB9+nQFrbj8IDIykrp162JiYsLjx4958uQJ79+/Jzw8nFOnTrFy5Uo5u/m7ei3yEsBWJ3KdX7vOycnhwYMHZGdnU7VqVfT09Aps1xKJhP79+1O7dm169+6Nvr4+2dnZHDhwgF27drFlyxb09fWVPofw8HCmTp1K9erVqVq1KpGRkZw/fx4vLy/atm0rHPe1oOn8+fOpWbMmS5cupVixYtSoUQMDAwPWrl2rNMOgq6uLRCKhRIkSREVFAV/GzNatW3P+/Hlmz55NWlqaQMKRm5ur8jdbsGABkyZN+qVt5nez65SUFLZv386VK1fQ1tamS5cuVKtWjX79+gnC1dra2jx8+JBZs2bRoUMH+vXrV+DPSU1NpVatWrx48YL09HTi4uK4dOkSGRkZBAYGsmrVKjmbk70rqvAjPVTqSCnUldnl1Vcpg1Qq5cmTJyQnJ1O+fHlMTU0LbNcAPj4+JCUlMWLECMzNzQW9ykWLFrF69WpBS+5bREdHM3bsWAoXLkyjRo2Ij4/nxIkTdOjQQU7mRGbXERERjBgxgoYNGwqkGR07diQjI4MNGzYozT7JnnHbtm3lMlxdunTh8uXLDBgwgCZNmtCxY0fgSzBU1bgYEhKCo6Mj8M+y/K1cufKHSSlGjhz529j6vw0fHx8mTJhAoUKF8Pb2VmvDM2fOLPD1/ycdqm/x8eNH+vfvz+HDhxUMKjIykmHDhnH48OHvunb79u25desW9vb26OjokJiYSPfu3eVoRmX4nR0qZfieATo1NRV/f39Onz6NpqYmYrGYHj160L179zxL7CQSCZcvXyY2NhYbGxtq1qyptEFdhujoaIKDgwXBUBcXF5UlJF9PgAMHDmTDhg0Kx9StW5dr165RuHBhPn36xOjRowX612/xO9jM73CP6iCRSGjZsiX79+9XcC5SUlLo1KkTx48fL1BUVobJkyezdOlSmjRpgp6eHvHx8TRr1gw3NzeFRc3v7FApw/fYtUQiYceOHQJbYm5uLm3atKFv377COaqeg1Qq5c6dO7x8+RILCwsaNWqkkNH6+v/Jycns2LFDEPbt3r27UHKtDLJnvHLlSqXNxg4ODty6dYsiRYoQFxdHmzZtlM4V8HvYzO9wj3nBycmJOXPmyIkAw5f3qnv37ixevFipnlJe2LNnjyCzYWZmxqdPn6hWrRqDBw9WeFa/s0OlDN9j1wAnT54kMDCQzMxMsrOzqVu3LoMGDcoXQcuzZ8948OABBgYGNGvWTOG5fG3XWVlZHDx4kEuXLqGhoUG7du0E0XFlkF3r3LlzCrTp8IVg4PPnz+jr6xMbG0uVKlU4f/68yvv+J+1G9lnLly//YYdq1KhRv7Wt/y/hf6rkTxU2btzI6NGjlU6QJUuWpEyZMoSHhxeob0CGmjVrEh4ezrFjx5BKpT+NiCI+Pp59+/YJ9fxly5bFxcVFZUSoIMjKyiIpKQkTE5MfWnh9D/T19Rk+fLhKald10NDQoFmzZvk+3srKSo76WZZeDw8P59OnT5QtWxZTU1MeP35MbGwsnz9/JisrC7FYzPjx43nw4AEnT54kNzcXExMToRcrPj6eT58+fZfw23/4eTh+/Djt27dX6lgYGBjg7OzMvn37cHZ2LvC1a9SoQWZmJrt378bQ0JD379//jFsmPT2do0ePcvnyZeALo17Pnj2VslIWFDk5OSQmJmJgYPCP27WGhgaurq4F6tGQQSQS4eDgkG/RdUNDQ0GfCv7/heKLFy+IjIzE2toaGxsbHj58yPv370lKSiIrK4vXr18zZMgQUlJS2LNnD5mZmRgYGBAbG0vVqlUxNzfn3LlzZGVl/VdK8y/i9evX6OvrKzhT8KVnZuLEiaxduxZfX98CX1tmZ/PmzaNBgwZq+3oLgpycHC5evMjp06fJycnBwMCAjh07Ur9+/R8uI8zNzeXz58/o6urmGWT5O9C6dWsFtrz8okKFCvlmvNXW1sbJyUkgopDZYFRUFE+fPsXIyIgaNWrw+PFj3r17R0JCApmZmXz8+JG+fftiZGTE1q1bSUpKQldXFy0tLYoUKULNmjU5ePAgWVlZQuXJr4L/Sv7+PdjY2HDjxg2FAMbnz5+pWbMmL1++LPA1/9FZNyMjgxcvXqCnp0eZMmX+sXrl8PBwhg0bpnJ//fr1VTpUycnJBAcHc/z4cXJzc6lVqxYeHh4CzW5ycjIGBgaIRKKf9n0iIiJYuHAhAwYMYODAgYjFYp49e8acOXNwdXWV6wkqCD58+MC8efOIiorC3Nyc6OhoKleuzJQpU76rj+x3w7lz51i8eDFVq1alaNGibNu2jb179yplRWrUqBEXLlzg1KlTnDt3jrNnz3Lr1i3ev3/PH3/8wdWrV6lbt+6/8C1+PUgkEoGKvly5cj/MpJlfhIeHq7WF+vXrCxmTbyErSdu9ezeZmZmULVsWT09PgcY7JSUFkUiEnp7eT/s+CQkJTJ06FUdHRxYuXCj06axZs4YqVap8l+Mnu9eFCxdy9+5dihYtSlxcHBYWFkyZMkVp0/j/Gp48ecK0adOwsrKiYsWKHDp0iD179qisCMjNzWXkyJEcP36c8+fPExoaSmRkJFWrVuXQoUN07Njxt++l+RmQSqW8evVKIIf4GcQv+cGjR4/UsvvVrVuX+fPnK90nlUo5e/YsmzZt4vPnz5ibmzNw4EBBZ0amUWZgYPDT7Do7OxsfHx+qVq3K1KlT0dfXJy0tjZ07d3Lx4kUmTpz4Xe+TRCIhMDCQEydOUKxYMZKTk4Vgn7qM7P8KYmNjmTBhAlKpFAcHB+Li4nB1deXVq1dKj4+KimLUqFH89ddfXLp0ifPnz5OcnIxEImHNmjVKqwv+bfznUP17eP36tVIHOzMzU6kuW37wjzhUWVlZ+Pj4cPPmTWrUqEFSUhIvXrzAy8tLqG/9O2FsbMzHjx/lUqJSqZSQkBC2bt3Ko0ePMDIyEsrPZNHd169fM2DAAAYPHsyePXvQ0tLi/PnzuLu7M2nSJJo3b87Lly/lSg/evn2r8j7UlR7JerikUileXl4EBwfLpaZLlSpFkyZNcHJyok2bNnLfJS8aZ7FYzIcPH/Dw8GDRokVy0fCwsDBcXFzYtWvXT2E5yQ/y0u35Xt0s+DJRKkNYWBjr1q3j0KFDZGRkcODAAR4/fkxmZiZ6enrY29sTFhaGnZ0dY8aMITo6mnLlyvHq1SuKFClCy5YtGTJkCC1btlQpRPl/DVKplMDAQPbt20f16tWBLwxpPXr0YMiQIX/7olRm198iLCyMNWvW8OzZMz5//kyJEiXo16+f8G4kJyfTq1cv2rVrx4YNGzAyMuLu3bvMnDmT1q1bM2jQIF6+fEnx4sUFm1UXrcqrZKNcuXIALFy4UMH+ypYtS7169RgyZAifP3+W25cfu05PT6dfv36MGDGC2bNnC8/85cuXDBkyhMDAwO8qjfpeREdHq9ynjkEtr4WOqrEpMjKS8ePHExwcjJGREceOHePMmTOCM9W9e3f27dtHiRIlGDt2LNra2jg4OHDnzh2hDGnhwoW0atUKW1vb/xyp/4eQkBCBzMnQ0JC7d+9Su3ZtZs6c+bcvSlXZ9ZMnT/D39xdE1GfPns3gwYMFOY7c3FwGDRpE0aJFWbhwIdbW1rx+/Zply5axb98+Fi9eLNixbL598uSJyvtQNZfIINNfXLp0KX369KFr167CPrFYLPT53b59W45+X3avqiDrTx4+fDh169YlJCREcP4+ffrEsGHD8PLyokmTJmrv72dC3QLzRzS3VGXc0tLSGDBgAIsXL6Zy5cqcP3+ejRs3Cs6Uo6MjISEhGBkZMXLkSCpUqEDfvn05ffo0WlpaNGzYkIkTJ9KqVSscHBz+sSBfQfGfQ/XPQ8b2DHDixAm5d1AikXDmzJnv4lSAf8Chkkql9OvXj549ezJ37lxhe0ZGBkOHDiU1NZVixYoRGxtL+fLl82Twkb1ABZn4nJ2d2bBhgxDVys3NxcPDgzJlyhAYGEifPn2E+v8+ffqwbds2tLW1GTZsGBs3bpSj4G3evDn16tWjQ4cOODg48PLlS1q0aFGQR6IWYWFh1K1bV2mdr46ODm5ubuzZs4eBAwcW6Lq+vr4sXLhQobSocePGJCUlsXr1aiZMmPBD9/6r4vr16/Tr1w9jY2NKlSpFfHw8UqmUli1bcuLECXJycujVqxfu7u64uLjg6enJ27dv6d27N8HBwdSrVy/P/q7/i/D29kZPT49Tp04Jzyc3N5cFCxbg4+NDly5dBPmAevXq5WmzUqm0QHbdvXt3hg4dSrdu3YRtfn5+PH/+nNmzZzNt2jSmT5/O7du36dKlCzt37qRIkSJMmDCBKVOmyBFW1KhRg127duHi4kLdunV58eLFT6Nshi+EGtnZ2UpL+2R6GOvXr8fPz69A192yZQu9e/dWYMEqX748AQEBzJkzR2k/4P8CIiIicHV1JSsrixo1apCQkEBWVhYODg4EBwdTt25dGjduTMOGDVmxYgUjRozgypUrdOzYkdmzZ9O6detfLmL9K2DXrl2cPHmSQ4cOCYtlqVTKvn376NevH7NnzyY8PBwjIyOaNGmS5zMsqF3Xq1ePGTNmkJOTIwTQDh48yKZNm/Dx8eHYsWOMGjUKPT09nJ2dWbFiBVWqVCEgIIA6deowZMgQ4VqlS5dm2bJlzJ49m927d/Py5UsKFy780yoycnNzuXz5MqNGjVK638PDAw8PDwWHKi+EhoZibm6Ou7u73HYLCws2b95Mz549ady48f9kAODjx48MHz6cZ8+e0aFDBz59+kR6ejo2NjYsW7YMFxcXHBwcsLKy4uTJk/j4+DBnzhzq1avHli1b6NatG/r6+v/218gXcnNzf0jX8HfXRPw3ICtLF4lE9O/fX26flpYWpUuXZvHixd917b/doTp//jwVKlSQW/TAl6hG165dcXNzY+TIkZQqVUoQ4Fu8eLFC3e2FCxdYuXKlIMynq6vLyJEj89VT07BhQ1atWsVff/1Fly5d2Lx5M3Z2dowYMYKxY8fSu3dvihQpwqhRo7CwsGDp0qW0bNkSW1tbBT0T+BKR9vT0JDAwkIiICEaOHPn9D+gbPHnyRC6dn5KSwv3799HU1MTe3p5atWqxcuXKAl0zOzubyMhIlT1i7dq1IyAg4LsdKpm2xI0bN9DT06NDhw6UL1/+u671s7FixQrCwsJISEjg8+fPNGnSBGtra168eMH27dspUqSIMCht3LiRjRs3Ym9vz9GjR3+qo/y/hqioKB49eiQI3sogFotp3749bdq0ITo6mjp16nDnzh2mT5/OlClTFJqHHz16hJ+fH1FRUWhpaSGRSOjXrx+9evXKc7FgYWGBnZ0dCxcuZMKECdy6dYunT58SFBTE6tWrKVy4MOXLl6d8+fJUqlSJcePGsXz5cqKjo5Wy/4lEIqZOncrKlSu5evXqT6VHf/HihZyGSnZ2Nnfv3iUnJwc7OzsqVar0XX1ax48fV9CJk6Fs2bKkpKSQkpKSZ7RdFR49esTp06cBaNGiRb77nP5uHD16lPXr1/PmzRsyMjKoX78+5cuX5/Hjx6xbt05wXEUikaB7U7JkSbZs2YKrq+v/5EL0ZyAnJ4e1a9dy4sQJuWoAkUhEw4YNmTZtGqNGjaJ79+48e/aM+fPn4+rqipubm9x1oqKi8PPz48GDB+jo6JCRkSFIUuTlgGloaDBkyBBhjk1JScHf358jR45w/vx5wsLCGD9+PBoaGtjZ2eHq6srx48f566+/OH78uNJrjhkzht69eyOVSoWy3p+B5ORkLC0thYCSVCrl/v37pKSkUL58eaysrL7rXQsODha0sr6Fvr4+NWrU4M6dO9SsWfO77vvdu3ccPnyY9PR0ateuTYsWLX4Jm3jw4AGTJk0iPDyc+Ph4qlevTosWLXj58iWTJk2iffv2ABQrVowrV65gZ2eHqakpvr6+gtzB74T/MlT/PGTrvTJlynDjxo18kavkF3+7Q7Vt2zZmzJihsP38+fNs376dUaNG0bRpU8ExioqKwtXVleDgYEFTZPv27Zw4cYLAwECBPlNWX/vu3TtcXV3V3oNIJGLLli3MmDGDNWvW8Pz5czp06EDbtm0ZOHAgffr0EY7t1asXrVu3xszMTG1KvUmTJixevBgNDQ2hifJnwMjIiNjYWLKzs5k7dy6PHz+mQYMG5OTk4OvrS4UKFQrM5pKamqqWOUgsFn8XExrAmzdvGDFiBA4ODvzxxx8kJyczffp0zM3NWbp06T/eHP817ty5w8OHD3n69Ck6Ojo8e/ZMKA+5d+8e48aNY/PmzYjFYmrUqIFYLEYikdCiRQt27NjB0qVL8fb2/j9Rr15Q7N69W2ERBV/0ScaPH8+iRYtISEgQtMrS0tJwdnbG0NCQ2rVrA19EsL29vVm1apWQDUpNTcXPz4+pU6cK9LnqMHPmTFatWkWrVq2Ii4ujQYMGtGnThhYtWshFmapXr056ejrXrl1T6xRUqVKF27dv8+bNG4Xo1Y/AyMiIuLg4pFIp69ev5+jRo9SvXx89PT38/f2xtrb+riyohoaG2kWElZUVCQkJBXaokpKSGDZsGIULFxbohIOCgvD19WXdunX/SnO8DAkJCaxevRpTU1MyMjKEUnL4kgl0dXXlxIkTAtlFbm4u0dHRtGvXjlu3brFlyxZGjBhB586d/7Xv8Kvi4sWLtGzZUmHcTk1NxdXVFX9/f3bt2iXY9YQJExg9ejRaWlq4uLgAXxbr/fr1w9fXlzp16gBfHLXg4GBcXV3Ztm1bnvOCk5MTWlpadOjQgaysLKytrenatSvlypVj586dQgmXhYUFderU4dy5c5iZmam8roGBARkZGZw9e5a1a9f+0DP6Grq6uiQmJgJfyofWrl1L9erVsbCwYMuWLXJ9WwVBXFycWh29UqVKERMTU+DrSiQS/vzzT+Li4nBycsLIyIizZ8/i5+f3j5cHfwupVMrkyZOpXbs2Fy5cYN++fUIgPjMzk/bt29OoUSOMjIz4448/KFKkCK9evaJly5Z8/vyZtm3b0rVrV4YPH/5LOIf5wa/sUCUkJODl5SWUyDk6OrJy5Uq12V2pVIqPjw9r164lISGBunXr4u/vL1eZkZmZyfjx49mxYwfp6em0aNGCgIAA4X1//fo1s2fP5uzZs0RHR1O0aFFcXV2ZOnWqXNl4ZGQkw4cP5+zZs0K2etGiRfkW51bVi/cj+NtXuwkJCVhZWSlsX7x4sUAKEB8fL2y3trbG29tbEJRNTk5m8+bNHD16VK4O1tzcnPXr19O+fXscHR3zdDK0tbXx9fUlNTWVdu3a4eHhga2trcIiRiwWU7hwYbS1teXu61vI0tBWVlZq6YsLijZt2uDh4UFYWBgtWrTA29tbuK/x48fTunXrArMRGhoa8vHjR5WlFzI61IIiIyMDT09P1qxZI5fJ69ChA/v27WPKlCksXLiwwNf9WVi/fj3u7u5s27aN8uXLy/W6yBbYsbGxxMbGEhERwdmzZ4W6ePjy7rq4uDB37lzs7e3/ja/wy0KVXS9ZsoRFixaRlZXF0aNHhe2FChVizZo1jBgxgj179iCVSpk2bRp79+6VW5zr6+vj7e2Nh4cH9+/fl8vqKINIJGLkyJEMHTqUFi1a4OHhQZUqVZQOqtWrVyc+Pl6tXWdkZJCeno6GhobQ+/QzULlyZR4+fMjy5cvJyspi3759iEQixGIxXl5ejB07ltjY2AKXR4lEIrUZqDdv3nxXBG7IkCGMHDmS+vXrC9tatGjBvXv3GDhwIHv37i3wNX8Wdu7ciDzQtgAAsmBJREFUyaBBg/Dy8qJo0aJyE7xsgR0aGkqtWrW4evUq27dvp1WrVsIxWVlZDB06lOzsbJVi4v9XkZCQoFQcedu2bbi7u9OwYUMCAwOF7WKxmKVLl9KmTRv69OmDWCxmypQpBAQEyFWZaGpq4ubmRlJSklBamxe6dOlC586d6d27N+7u7jRo0EBpL12dOnWIiIggJSVF7fWSkpKQSqVyY/yPQkdHB2NjY7Zv387ly5fZsWMH2trawroiODiYxYsXk5aWRqFChfJ93VKlSvH48WOV9/rgwQOaNm1a4Pv19vamZs2acs+/SZMmxMTE4ObmxpEjR36IxvtHcOnSJRo2bMilS5coVqyY3JpOR0eHwYMHs23bNoYOHcqOHTsYNmwYBw8eFMbL3Nxc/Pz8mDVr1ndpCP0b+JUdKmdnZ969eydkfQcPHkzfvn0JCQlRec7ChQtZsmQJmzZtokKFCsyZM4dWrVrx9OlTwXZHjx5NSEgIO3fupHDhwowbN46OHTty69YtNDQ0ePLkCbm5uaxZs4Zy5crx4MEDPDw8SE1NZdGiRcCXwECHDh0wNzfn8uXLfPr0if79+yOVStVWcK1YsYLBgwejq6vLihUr1H5/ZRIbeeFvbwyxtbXlxo0bctvi4uIwNjbGyMiIGzduKAwajRo14ubNmwDs3buX/v37K20q1NDQwM3NTWXJizLo6+ujq6tL5cqVVUaEk5KScHR0ZO/evSpf2E2bNjFixAhev35NWFhYvj8/LxgZGVGxYkXCw8Pp1KmTsF0qlbJt2zaqVq1KTEyMWk2rb6GhoYG9vT3nzp1Tuj84OFiIQhcE+/fvp1evXkrLIl1cXHjy5AmfP38u8HV/FmJiYrC3t8fS0pKIiAiMjY1JTU0V9levXp2IiAgGDBjA2LFjFd5DU1NTNm7cKNf79x++QJldw5e+lurVqyu1a0tLS7KyssjIyODWrVs4ODiozHSMGjWK9evX5/t+NDU1MTMzo3z58iojVNHR0dSsWZMHDx4oZXaEL/0j7u7uiMVidu3ale/PzwsikQh3d3eCgoIYMWKEnNMUGhrK+/fvqV27tjDu5Rfdu3dX2SN17do1SpcuXeAF0r1797C2tpZzpmSoW7cuJUuW/C4V+Z+FJ0+eULt2bWxtbXn79i1lypTh2bNncvf46NEjxo4dS8OGDeWcKfgSXFuzZg2rV6/+5WiU/23Y2tpy/fp1he1HjhzByclJqV1raGhQp04d7t27R2JiIikpKSqpsgcMGFCg+VokElGmTBnMzc1VEpNER0dTpEgRChcurJIG/c6dO9SrV49SpUoRHByc78/PD0aPHs3MmTOZPHmy3Njz4sUL9uzZw/DhwwscgHBzc1O54IuOjubt27dKaeXVITExkUePHil1ZkuWLEnfvn0L9Nv8bDx58gQHBwdsbW15//49rVq1klu8y+x6165daGpqMm7cOLlxVEapf//+/TyJr34lyJyq7/n7u/D48WOOHz/OunXrqF+/PvXr1ycoKIjDhw/z9OlTld9j2bJlTJ06lW7dulG1alU2b95MWloa27dvB768g+vXr2fx4sW0bNkSe3t7goODCQ8PF0rL27Zty8aNG2ndujU2NjY4Ojoyfvx49u/fL3zWyZMnefToEcHBwdjb29OyZUsWL15MUFAQSUlJKr/X0qVLhTXg0qVLVf4tW7bsu57b3+5QeXh44OfnJ9c8l5GRgaGhIW/evOH9+/cKg69IJBLKWCIjI6lQoYLK61esWFEts54y1KxZk9DQUKX7nj59StGiRTE1NaVp06bMmTNH4cUNCQnh/fv3Qqngz9KokUFXV5dWrVrRvXt3pk+fzpw5c+jatStRUVH4+vpiaWlJ586d6dWrF7169WLLli1kZWWpveaff/7J8uXL+euvv4RFRGZmJuvWrePs2bMKza/5wYkTJ9TqzrRv356LFy8W+Lo/grdv37JgwQK6devGrVu3KF++vBxj1KJFi4iLiwO+DBp+fn4kJCTI6VV9DVl9/L/pGP6K6NKlC7t27ZJzUOGLYyPT+VFWUqWvr09WVhaRkZFqFwTfY9c9evRg69atSvelpqYSERFBxYoVGTVqFB4eHgo2c+/ePbZu3cqQIUMoWrToT7driURC165d6d+/PxMmTGD+/Pn06dOHv/76i3Xr1mFjY8OQIUPo06cPTk5OrFixQignUoWePXty//59/P39hf7S3Nxcjhw5gre393dFak+ePCnHWPYtevTowbFjxwp83R9BfHw8q1evpk+fPpw/f55GjRoJWl4APj4+QgnH48ePOXbsGCdOnGDNmjVKr6epqUnjxo25du3aP3L/vwsqV67M27dviYyMlNsukUjQ0tJi0aJFDBo0SOE8IyMj0tLSiImJUUvVb2BgUOCFYJ8+fVi3bp3SfVKplP3799O+fXsmT56Mp6cnCQkJcsdERUUxfvx4xo8fj52d3U+3a5FIRIsWLZg6dSrDhw9nwYIFDBw4EF9fXwICAqhatSp+fn44OzvTs2dPvL2987wHOzs7ypQpw6RJk4TgqVQq5fr167i5uX2XBldYWJhCcOFr/Bt2LaOXHzBgAJs2bWLYsGFyNjtnzhzu3LkDwPPnz4mIiGDGjBksWbJE5TVdXFzkFt+/Mn7EmfraqUpKSpL7UxUwzC+uXLmCsbGxnDRMvXr1MDY2VplAePXqFdHR0bRu3VrYpqOjQ9OmTYVzbt26RXZ2ttwxRYsWpWrVqmoTE4mJiXJi2FeuXBHkb2Ro06YNmZmZ3Lp1S+V1Xr16JbS/vHr1SuXf92hQwT9Q8leqVCm6dOmCq6sr3t7eVKhQAQsLC65evYqbmxsbN25UOOfdu3dCNKpEiRJERESo7GN59uyZ2lpjZRgzZgx9+vRh9erVcs7au3fvGD58uFBjPWHCBKE/o0mTJujq6nLp0iXKlSvHpk2blNZGq0vrW1hYqNz3dWQrPT2dwYMHM3PmTJ48eUJOTg7e3t6IxWL69++PpaUlzs7OjBs3joyMDLZv346Hhwfbtm1T2gslkUgwMjJix44drF+/nm7dugkEAJ07d2bz5s3f1euUm5uLWCxWOkEmJCSQkZFBYmKiwgT3I42jqp5vfHy80om8QoUKjBo1isKFCxMTE8PBgwe5e/cumZmZhIeHExISwvTp09X2rxQpUoTk5OT/E1pd+YWOjg6zZs2iR48ezJw5Uxh4k5OT6dy5M7Nnz1bIFGVnZxMTE4OhoSElSpRQmuGS4Xvs2snJia5du2JraytHVpOcnIybmxsTJ04EoGPHjuTm5tK+fXtq1aqFubk5N27cQFNTk507d6Knp6cwIanrQVJW+vg1ZExpmZmZNGnSBD8/P16+fElKSgqTJ0/GyMiIKVOmkJ6eTr169di8eTMSiYRjx44xcOBAtmzZIvT+fY2cnBzEYjFr1qxhx44duLq6IhaLyczMpFmzZuzatUtlKbS6skKJRKLSrj99+kRKSgrJyclKs+T5rV//Fqqeb1ZWFvXr1yciIkJuu4mJCdOnT8fU1JScnBx27NjB2LFjycnJ4fbt26xdu5Y1a9aoHXMtLCz+C5QowfLly3Fzc2P8+PG0adMGDQ0NLCwsaNeuHS4uLkplI65cuSJIJbx+/VrltVNTUwvc31K9enUkEgkbN27Ezc1NOD87O5uJEyfSpUsXChUqROXKlZk7dy7Ozs7Y2NhQtmxZHj9+zMePH/H396dkyZKCTIYM6noB8xp/ZNfJzs6mYsWKTJkyhQ8fPhATEyNk1bZs2cKZM2eoUKECISEhSKVSbty4wbhx4/D19RXkJr6GrPx+4sSJnDhxghEjRpCTk0NWVhbVqlVj3bp1Ku/te+06NjaWtLQ00tLSlGZ31FGj5+UgK8ssSqVSRo0axebNm+W2a2hoMH78eCwsLNDR0WHnzp34+PggkUh4+PAho0aN4v3792qddgsLC4Xx4lfFzyr5K1GihNz2mTNnCu0i34Po6GilY6eFhYVKaQzZ9m/nKktLSyFzHB0djba2tkKbjKWlpcrrvnjxgpUrV8r1REdHRyt8jqmpKdra2mqlO9RBIpEQHh5OqVKlvruN5x9hDHBzc6NGjRr4+fkRHR1Nbm4u1tbWtG/fXsEwpFIps2bNEoR4e/TogZOTEz179lQo+8vNzWXjxo0FTlNbWlqyZcsWJk6cSFZWFuXLl+f169dkZ2cTEBAgNGbK+jMGDBhAYGAgHz9+ZNCgQXTs2BENDQ2OHDkCIDTe/ixUr16dsLAwypYtK5RXaGlpsWrVKtq0acPr16+Fz9TV1WXAgAEYGRmxYsUKtUx9+vr6eHl5ydWG/ggdeLNmzTh69Ci9e/dWuv/s2bPfTT9ZUCgrMRk3bhyPHj2iadOmQr15r169+PPPPylUqBCbNm2iRo0aaGtr8+nTJ6XEHVKplBcvXihd0P5fR+PGjQkMDCQwMJDZs2cDX3obTUxMlLLoBQQE0KNHD0QiEbVq1WLKlCkkJSUpXfSvWLGCoUOHFuh+tLW12bVrF5MnT2bRokXY2dkRGxtLVFQUEydOlCOZcXR0pGPHjqxfv56nT58KPSC6urpEREQQHR0tkGf8LFSvXp3t27fj6OgokHBoa2tz4cIFsrOzadiwodBorqGhQYcOHShdujSTJ09WS32uoaGBq6urHDnPj+iuNG/enJCQEKUlf/CFWVBdpPtnwsvLS2Fx5OjoSOHChbGxsaF///5COWWPHj2oUaMG7dq1o0OHDly6dInr16+rFOC+fv067dq1+ye+xm8FGxsb9u7dy7p16/D390csFlOoUCGysrKUik+fOXOGEiVKCAEnfX19nj17prSyZMOGDd/VtxYQEMCCBQto3bo19vb2ZGRk8OjRIwVSKQcHB44dO8aBAwcICwujSpUq+Pn5YWJiQk5ODmFhYUyaNKnAn68O5cqVE3qFixYtStGiRdHW1iYqKor9+/czd+5cAgICgC9rijp16ggEHUePHlXrBLVp04Y2bdoI//8Ru65bty4jR47Ew8ND6f4TJ06oFUr/mdizZ4+CM1WtWjW6detGeno6Y8aMQVNTkyFDhtC9e3caNGhAyZIl/z/2rjssp/f/v572IimUkb3JHh87DW0NDWnSVBQpZDRIqewIhbS0lAaV9LFHlBURUlJKi9Iez/37o6vz8+gpqZDP1+u6znXVuc+5z33Oc973ud/3/X6/XrCyskJQUBDu3r3LVIIC+P/Vi/8lvH//vlXOGTM4OjrCycmp3bpaJjqZvZcdyfH9trwj57R1zIcPHyAjIwN1dfVWK+OdbV8LrK2tMXnyZKxZswZNTU1YtGgR7t69Cx4eHsTFxXWIQfxb/DJxnalTp8LHxwexsbG4ePEiYmNjkZqaCjs7O7x9+xYNDQ148OABNDU1ISYmRg3IevfuDV1dXRgZGVGhWkDzTKmxsTFWrVrVKcapwYMHIygoiAojOXjwIMLDw1t9BKKioqCkpAR2dnYsXLgQGRkZkJKSws2bNyEqKgo2NjamLIZdgYqKCoKDg1utgF26dAni4uK4d+9eqwGrqqoqkpOTu7Ud34OmpibOnDnDdEYrKSkJ/fr161ZKyqKiIuzfvx+mpqbYvHkz0tLSqBmaFtKInJwcnDt3Dl5eXvD09ERYWBgiIiKgqKgIe3t7HDx4EM+ePYOMjAxFi7569Woq2fFbXLx4ETNmzOj0zPt/HcOGDcPevXtx8eJFXLx4ERERERg5ciR0dXXx+PFjNDQ04NWrV1i/fj1evXoFU1NTAM2dobOzM7S0tBjYdqqrq7Fr1y706dOHYm77EfDx8eHIkSMICQmBtrY2du7ciYsXL7Zi7ExLS4OUlBQ+fPiARYsWobq6GoqKiggMDISAgAD69u0LFxeXLodOfI0pU6bgzZs3rfI8zpw5AzMzM5w8ebJVfsPEiRNRU1PzQzmTXcWsWbOQkZGB58+ftyrLzMzEs2fPutXZrKysxKlTp2BmZgZra2skJSVRYcktM683btzA48ePYWZmhujoaPj4+CA/Px/S0tLYsmULdu/ejY8fP6Kuro6ajDMxMcHevXuZarVkZmaisrKy3Znu/2X07dsXdnZ21Lc6NDQUlpaWUFJSwr///ov6+noUFBTAxcUFhw8fZiAf2rNnD8zMzBjyARsbG+Hv74+bN28yOEAdBSsrK+zt7XHx4kXo6+tj3bp1SEpKalVXXl4eFBUVcf36dSxYsAACAgLQ19eHs7MzWFhYMHz4cJw4cQIfPnzo/MP5Bvz8/BAWFmYIQQWAs2fPwtLSEnv37oWJiQlDmaCgIEWa8qsgJCQEERERaiL4a5SWlsLf379bSVrq6+tx8eJFWFpawsLCAuHh4aitrQXw/6sYR48eRVFREWRlZfHkyRM4ODhg/PjxkJGRwYYNG7Bjxw4UFhYiISGBIhtQU1NDUFBQq3BzoDkyJj4+HjIyMt12Hz8T3RXy17t3b4atLYfK0tISL168aHebNGkShIWFmYprFxcXtzm53BKp8e0KUVFREXWOsLAw6uvrW0UtfX1MCz58+ABxcXH8888/rZg5hYWFW13n06dPaGho6PDkd0REBLVCHBsbi5ycHLx8+RLW1tZtShZ8DzTSgfXGiooK8PPzo7y8/Icpu9sDIQR37tyBv78/JexrbGzMlF3r6tWr8PLyogySk5MTlpaWrXRtuhPXr1/HiRMncPbsWSpMraGhATExMXB2doaVlRUqKythZWWF0tJS9O3bF0+ePGmzvvbCT7Kzs3Hv3j1wcHBARkYG7969g4uLC6ysrLB06VKwsLBg0aJF6NWrF7y8vJjO/mloaCAoKKhVSF17idddWaGi0+lU8reCggKWLl2KyspKnDt3DmVlZTh06BDTUIHq6uofvlZMTAzCw8Oxfv16TJ8+HVevXsX58+cRGxuLxYsX4969e9DR0YGvry+sra2xbt06BmHWL1++IDs7G71798aLFy+QnZ1NDbxa6Fpb6DwHDRpEsUsmJSUhNDT0u2rw3+Jn2Ux34me2MSMjA6dOnUJ2djZERERgYGDAdBD+7NkzeHh44OPHj+Dg4EBDQwN0dXWxcuXKn0Z9++7dOxgbGyM0NJRa2ieE4Pr169i5cycWLVqERYsWYdmyZbh+/ToWLVrULllEeyF/ubm5ePDgAeh0OhYvXgxubm6YmZnBwMAAy5cvBx8fHxYvXoxevXph06ZNEBcXp85t6ZqdnZ2hqKjYimmysbGxzet+byb7e6FBxcXFMDY2xrRp07B8+XLQaDTExMTg/v37OHLkSJt9GbNBTnt49OgR3NzcYGJiAnFxcaSnp+PixYsUw1NZWRnGjh2LO3fu4NSpU+jbty9Dfld9fT1evXoFdnZ2cHNzw9XVlYGF7uzZs4iPj8eOHTswceJE1NfX48KFCzh+/DiCgoKYMtq1h/91u87Pz8epU6fw5MkT9O7dG1paWpCSkmr1Hfnw4QPc3d3x/PlzcHNzo6amBrKysli3bt1P0wqqqamBgoICTp48ydD3p6enw8XFBSwsLNi5cyfExMSwf/9+WFpatplLDbQf8ldWVoaUlBRUVlZi2rRpmDhxIgwMDCAhIYFVq1ahX79+UFVVBY1Gg6ysLNO8s8jISFRWVkJPT49hf3uMu12165YJh169emHlypXo1asXrl27hqioKLi4uLTJKtieXTMbQubn58POzo5a+S8uLsbFixfh4eEBLi4u9O3bF3V1dcjOzkZ6ejoSEhIYJqbpdDpevXqFpqYmjBo1CmpqaoiLi6PKb968CRcXF2zfvh3z588H0BwR4+rqCnd3907pc/1K2265louLyw+PLb5GbW0ttm3b1u1tbmGYTElJoaKhUlJSMHfuXLx8+ZJp/jMhBAMHDsSGDRtgZ2cHoLl/7t+/P/bu3QtTU1OUl5ejX79+CAwMhIaGBoDmHMfBgwfj0qVL1Gpsfn4+xMXFKZH2b9/7+Ph4KCgoIC8vj+rDQ0NDoa+vj6Kiog49Cy4uLrx58waDBw+GiYkJeHh4cPDgQWRnZ2PKlCntklu0hd8nEoT/FwtsMYj2IC4uDnFxccp4f4XOwIEDB3D69GnqAxAbG4uDBw9CXl4eJiYm8Pb2ptoRGxvbKd2aoqIi2NraYsyYMZCQkEB1dTW2bt0KISEhnDhxAoGBgThx4gRYWFhQWVmJ+Pj4NnN5KisrO5wLVVZWhqtXr6KxsRFz587F8OHDf7jtQHMSc1xcHC5evIjg4GAqBLE7hX1fvnyJixcvws/PDwICAsjNzYWBgQE1m3b9+nWIiYlRibocHBytnLZevXpRFNxpaWkMK040Gg1ubm64fv06tm7dis+fP4OdnR0aGhqIiIj448QCewImTJjQoXDPFiagltm2rjj4HcWRI0fg4uJCOVOPHz/Gpk2bMG/ePFhYWMDJyQl3794FKysrYmJi2tWjaws1NTXYtm0bCCFYsWIF2NjY4OXlhfLycvj6+iI+Ph56enoghODTp084depUmzaTn5/fro7ct9dNTk5GZWUlJk2axDRHoyPo168foqKicPv2bSrBW0pKChs3buy2vvfLly+UrlVLfouSkhI1qHvz5g0AUEQjHBwcFPFGCzg4OKjwnlevXrVaSdbX18eMGTNw7NgxvH//HoQQyMrKIjo6uk3WuL9oG4MGDepQRMbAgQMppqyWXNufjbCwMKxatYpypj58+ABzc3OIiopCXV0dDg4OsLGxQd++fREXF/fDIcVA86Bx3759eP36NbS0tCAiIoL4+Hi4ublRDqSFhQW1grdly5Y2CV7y8vI6LM3Q1NSEa9euoaioCEOHDsWCBQs6ZYecnJw4deoUnj17hujoaNTU1GDmzJkICwvrtu8cIQT29vZwc3PDkCFDICgoyDAAbxEbv337Nri5uZnaNQsLCxXGz2ziaOHChfD19cWJEyeo7/6cOXMQGBj43ZzWnoSeSpveskpobGxMkYSYmJhAQUGB4bccN24cXF1doaKiAhqNBmtra+zZswejR4/G6NGjsWfPHvDw8FChwvz8/FizZg1sbGwgKCiIvn37UmQxkpKSAJrtdsmSJRAVFYWnpydDBFTLbystLY0JEyZAV1cXHh4eKCsrw6ZNm2BsbNxhx3LAgAHIyMiAiIgIEhISqLDc6urqTofW/laHqjP4VYJttbW1YGFhoZhFbt26haCgIMTHx1Mf7bi4OISFhWHs2LEwNjbGwIED212F+haNjY1Yt24ddu/ezSA2qqysjLCwMBw5cgSurq4AmnOotm3bhmfPnjHNT3n06BHGjh373efT1NQER0dHvHr1CgoKCuDi4oKLiwsaGxtx6NChVuGTqampSEpKAiEE4uLimDt3bqtrsLGxYfny5Qysbi0rid0BPz8/bNq0CaysrKirq6NmMW7fvg1FRUXExsYiNjaWWuZWUlJCSEhIm3pdERERTAf7X+da/cWvBY1G+2W2/fz5c2q17P3797C1tUVYWBhl65cuXYKbmxuUlJSwb98+DB8+vM08nLZgb28PZWVlLF68mHLcZGRk8ODBA2zcuBHnzp3DmjVrwMHBgeDgYCQnJzN1qD59+oSioiKmRADfoiWkWkFBAf3790dAQAAcHR2xf//+VhMmb968wYULF1BTU4Np06ZBVla21UeERqNhwYIFDP1NZ1aX20JkZCT09PQox2br1q0Amlc3N2zYgAMHDuDcuXNUn7ps2TJYWFgwzeMBgHPnzjFllpw0aRKOHj3abe3+ix/Dr3CmgOZJzZa8nNraWujq6sLb25uK5sjJycHUqVMRGBhIheNpa2v/UPuOHTsGISEhbNq0iQpnl5SUxPv372Fqaorw8HCoqKiAg4MDT58+xcmTJ5k6VI2NjYiPj0d0dPR3r3n58mUcPHgQS5cuxahRo3D9+nXs2bMHO3fubJXn+PHjR0RERKC0tBSjRo2CiooKU9mESZMmMeQZfU/D60fw4MEDTJkyhQrXPX/+PFV2+PBhrF+/Hvr6+tT1J0+eDBsbGzQ1NTEdyMbExDDN2Rw8eDCVu/ungk6nMw1J/pHzfxaCgoKwfv16ipFPSUkJXl5eDMdkZmYyMNHa2dmhpqYGa9eupYR9L1++zDB5deDAAbCxsUFDQ4MS9vXz86N++8uXL+PNmzfU6tHXaHEgWzgM1q5di/nz5zMI+3YUhoaG0NDQgIiICGg0GvWOpaSktCn78D38shyqPw2NjY0Ms5379++Hl5cXwz5WVlb06tULiYmJGDBgAOTk5PDvv/92+BpJSUmQlJRkOpDS0NBATk4OQ+6EtbU1du3ahfT0dIZjX7x4gc2bN7dLSNGCHTt2YMyYMQgNDYWuri40NTXh6+uLtWvXwtDQkHphP336BA0NDZw/fx7i4uKQlJTEpUuXoKqq+ss1HgoLC6lnVFlZSVHOFhQUIDY2FpMnT2ZQjZ8/fz4yMjKYhnOEhISgX79+DHSbf/G/ha8/2l5eXti1axcDJSsXFxc1Izx06FBYWlrCz8+vw/VnZ2eDjY2NqXM+a9YsjBkzhoHhcMWKFUhMTER8fDzDjGNRURH09fWxffv2714zICAA2dnZiI6OhomJCdTU1ODp6YlDhw7BzMyM+ug1NDTA0tISHh4emDFjBuTl5fH69WvIyckhIyOjw/fYHUhLS6NW/wghDNTYBw4cwOjRoxlmrvv374+hQ4fC39+/VV33799HamoqQ8jkX/xvobGxkZpUi4iIgJaWFkNoPBcXF+rr63HmzBlMmDABx48f/6EBeW1tLVJSUmBgYNCqbMiQIdDX12cgyBITEwMrKyu8vb0ZBr5VVVUwNzeHgYHBd3NzU1JScPbsWURFRWHTpk1QU1PD9u3bERYWBjc3NwZNIA8PD6xbtw6ioqJQVFREfX09lJWVcfny5Q7fY3cgLS2NgdzCx8eH+nv9+vUQFhZmWEVoIdXZunVrqxWX9+/fw8vLq1PRP38CuiuH6megb9++CAwMpKjYAwMDW0VHEUIY7IFGo8HR0REFBQWora3F9evXWxGEcHFx4ciRIygtLUV1dTViY2MZWAoNDAw6dK+ioqKIi4tDdXU1SktLceTIkTZzx5jB0dERvr6+MDExwe3bt6lzWVlZO01c88etUP0q8PLy4tOnT1RSelNTEwPBwsePH6mZn8mTJ1NCwaGhoTAxMWE62/7t0vW1a9dgb28PXl5epnlOsrKySE5OhpqaGggh4Ofnh6+vL5ydnVFcXIwhQ4YgLy8Pffv2hY+PDwYMGMC0npa2FBcXIzs7m1r1Av7f4581axamTZuG69evY/HixTAzM4OtrS0DXf2sWbMo1erIyMh2jbm90MPvhdp8+5FhZWWFgIAAWFhYwMLCgi9fvjDUMXv2bPDy8lIGQaPR4O/vDwsLC5w4cQJycnKor69HTEwMREVFfxnz4F/0TAgJCSE7OxvDhw/H06dPGTRdmpqa8ObNGwwcOBAsLCxYsmQJ3r17h9DQUDg7OzONd/825+H27dtYsWIF9Y5+a5NKSkqIi4vDjBkzqP7lzJkzcHV1xeHDhzFixAiUlpaiqakJDg4OmDp1KlO7bplZb2pqQkhICOLi4ihn8Ws6XVNTUwQEBMDCwgI7d+7EwoULqfh1oJkwaOXKldDV1UVERAR4eXnbfHbfCwtqjyDoW7vu1asXeHh40K9fP7CysqK2thaLFi2ihGX19fXBx8fH8JHcu3cvtm7dClVVVSxfvhxcXFxISEhAfX09AgICftkq51/0PMyfPx8JCQlQUFBATExMK2Hwf//9F5qamgCaiYju3r2LiIgIHD58uBXtNACmOnVLly6lnIFvv+cKCgpYvXo1dHV1KQeqJadv2bJlGDVqFEVLbmFhgWXLljENZ/t6xezw4cM4dOgQNdZosWs+Pj64u7vj4MGDOHbsGIKCgqj85RYbmDJlCjQ0NKCrq4vBgwe3G4b/vYFoe3b/7bmCgoLg5uamwrOuXbsGGxsbanXDwcEBhYWFDH2poaEhjh49CllZWSxfvhxCQkK4e/cuMjMz4evr+5+VLOmpIX//K2BGwtIV5/2vQ9UGaDQadHR04ObmBltbW4ZOgxCCHTt2UKQGQHOHc+jQIaioqCAuLg6KiorfvQadTm93hoqDg6PVku6AAQNw9OhRVFVVoaysDAICAh1mOYyLi8OCBQtQVVXFdNCkoaGB48ePg5+fH4MGDWKq/TVp0iSIiYnhzp07bdIqdzfmzJmDa9euUQQkHBwc6N+/P4qKinD+/HkcPXqUorpvQa9eveDv74+cnBzcunUL7Ozs8Pb2Rr9+/X5Jm/+i58LS0hLbtm1DQEAAWFlZGQbhXl5eUFFRoQY1PDw82LFjB2RkZHDw4MEOzVy1iKC2BQ4OjlYOEjc3N5ydnVFfX4+PHz+Cj4+vwwyZDx8+xOjRo9vUSlNUVISmpiZ0dHSQmZmJPXv2tDqmf//+MDIyojTtfgUUFRURFhZGyTjQaDSMHDkS9+/fx8aNG3Hr1i2YmZkxnMPKygp3d3eUlpYiKSkJ9fX12LFjRyv7/4v/PRgaGkJTUxNLlixBY2Mjw4A9KSkJ/fv3p2yKm5sbGhoauHnzJuzt7dsUBP8aTU1N7X6v2djYWn2vWVhYYGFhATMzM0qDp1+/fh3Kda6pqUFFRUWbkwRjxoxBfn4+CCEICgpCdHR0q2O5uLjg5OQEb2/vdsVwuxPy8vJwd3encmIAUHltkyZNwuPHj1uxHgKAhYUFDA0NcfnyZZSXl0NHR6dT5BJ/Ev46VL8Whw8fhomJCbi4uHD48OF2j/1aXqij+Bvy1w50dHTQ1NQEExMT5OTkIDs7G1euXIGysjKmT59OhZcUFxeDk5MTy5cvh7S0NOzs7DoUk9wyo9YWLl++jLlz5zIt4+XlxZAhQ9oVHG3Bhw8fYGpqiuPHj+PKlSswMDCAqalpK+pYHh4eNDQ04N9//4WSklKb9S1fvvyXUrSvWbMG7u7uDDSZLbHnhw4dgqmpaZsfnWHDhkFHRwcrV67860z9BQBg5syZkJeXh6KiIurq6nD37l08ePAARkZGyMnJgYWFBYDmCY/MzEwsXrwY69atowR5v4cFCxYgMTGxzfKEhASmeZBAs7M1ZMiQDgkLVlVVYevWrdi0aRMePXpE5YR8GxLcsmp1//79dllRWyixfxVkZWVx5coVPH36lNrn6uoKXl5epKWlYdasWW2uZgsKCkJLSwu6urp/nam/ANC88rxr1y4oKiqCi4sLQUFByMjIwNatW3HixAkGh+Lff//F4sWLsWfPHkRFRXXoezZt2jTcvHmzzfKkpKQ2JxlZWVkxaNCgDn2D6HQ6Dh48CGVlZWRnZ2Pr1q1QVlbGlStXWh3LxsaGgoICDBs2rM1JnAkTJiA3N/e71+0ujBw5EjQajYGVT19fHxMmTAAbGxvKy8vb1Ini4eGBsrIy9PX1//POFNCzQ/7+izhw4ADFWHngwIE2txZCnR/FX4eqHbRo5Tg5OWHQoEFYsWIF7t+/D29vb2rmlBCCnTt3wtzcHDQaDZ6envj06RPU1dVbMdd8C1VVVZw7d45pTtKdO3fAysrKNBThR5CTkwNZWVnQaDQsWbIEffr0QXh4OKysrGBoaMigNZCUlNSmA/c1frUR9+/fn3KctmzZgoiICCrmlY+PD8rKyr+0PX/x52PVqlXw8/OjmIIiIyNhY2ODAwcOUM65t7c3lJSUwMrKis2bN0NERATKysooKChot+6pU6ciOzubqY5TTk4Obty40WW5h6qqKkhJSSEvLw9LliwBBwcHAgMDsX//fmzbtg2PHz+mjk1NTWUqs/AtfrVds7Gx4cyZM/Dw8ICZmRnCwsIQHx8PXl5efPjwAfb29r+0PX/x52PevHmIjY3FrFmzsG3bNhw7dgyKiooIDw+nwuauXr2Kvn37on///tDQ0IC4uDj09fXblTwBmsNZRUVFER8f36qsoqIC3t7eDOLanQEhBBoaGrh+/Trmzp0LAQEBHDlyBIGBgTh37hzFuAk0a0d1Rej3Z+LQoUNITk6Gjo4OAgMDER0dDTqdjjdv3uD48eO/u3k9Bn8dql+L7OxsijE3Ozu7za0jE6fM0GND/gghyMjIQHFxMUaMGNEhlqufhZEjRyIyMhIODg548eIF3r17B1ZWVmRkZODIkSOQkJCglrdHjhyJ8+fPQ1lZGdra2oiIiGiz0+Pm5sa+fftgaGiI5cuXU7Tp4eHh3dLx/PvvvzA1NYWuri7U1dVRWFgIExMTarVq165d2L9/P/bu3YvS0lKcO3cOMTExePXqFc6cOdMm4110dDRkZWW71LaOID09naJ2nTVrFiIiIvDs2TO8fPkSvLy84Obm/js7/QciOzsbOTk5EBER6TSbTnegxVGfPXs2goOD8e7dO/Tt2xf5+fk4ceIEODg4cOjQIQDNOQtxcXGQkpKCoqIirly50m5c/5EjR2BmZoZZs2ZBWVkZbGxsuHjxIpKTk3H06NEuMZ9lZmZCS0sLEydOxObNm1FZWYmEhARISUkhNjYWp0+fhrm5OcLDw1FfXw83Nzd4enpCUFAQx48fp1bgvkV0dDRDmM7Pwvv37xEWFobS0lKMHTsWx48fx8ePH/HgwQNwcnKiT58+VA7bX/w5KCoqQkZGBnr37o2pU6f+tt+Pj48PGzZswJw5c7Bt2zbk5ORgxIgRKC8vR0BAADIyMqgQPxqNhqCgICgqKkJRURFJSUlMNXZa4OjoiPXr1+P69evQ1tZGnz59cPPmTYSEhMDJyYmB3OZHUVJSAk1NTdTV1eHIkSNgYWHBixcvMGvWLCQnJ+P48eNQUlKiJnlcXFxgbGwMERERvHv3DvX19UxDEp89e4ahQ4d2ul0dRVlZGUJDQ/H+/XsMHDgQ9vb2oNPpuHXrFpqamjBw4ECUlpYyZR38X8XfkL//Fn6rsG9buHHjBiUyN2TIEDx9+hSVlZXYv3//b3WsgGa64bNnz1LL7AYGBgzUji20wrGxsdDS0kJ4eDhkZGTAwsLCkICam5uLp0+fgpubm6KWvH//Pjg4OKCgoIBZs2YxhLG193Fi5rBlZWVh06ZNqKurY5hRKy4uhoSEBMaOHYv9+/dj9erV0NfXR0BAADw8PCitJm1tbVhbW1Oibi14+vQpnJycEBER0a4xtycm/L1Xjk6nw9zcHPz8/JT44NWrVxETEwNTU1M8e/YMgYGBYGdnx82bNxlyTb7HmvSr8L8uAMoMr1+/hp2dHQQFBTF+/Hjk5OTgzZs3cHJyavWe/WoUFRXBz88Pr169gpCQEHR1dTFx4kSqvMWuX716hRkzZsDBwQHW1tZgY2NjIKVoEfyk0WiYO3cunjx5gqSkJErYV0pKisFef9Suq6uroaqqCg4ODoSFhVGDk/r6eigoKFCDRmdnZ8jIyCAkJARr166FnJwcAGD79u2YOHEiVq5cyVBvYWEh9PX1cf78efDw8LTZpvbEhIH2bZudnR0ODg7Izc2Fvr4+RERE8PDhQwQEBEBbWxslJSUICQnBu3fvcP36dQaR0b923XH86jaWlZVhw4YNqK2txezZs1FSUoIHDx7AwsKiTQ2mX4XKykoEBQUhNTUVPDw8WLFiBYOGU0v4z6dPnzB79mwsWbIER48eBQcHBwMpRXV1Ne7cuYO6ujpMmzYNJSUliImJQVVVFaZOnQplZWUGR+F7ziSzHCp1dXXw8vJi8+bN1LtPCIGlpSUSEhIQGhqKhIQE8PPz4969e5g9ezasrKwANEsGZGRkwNnZmWHcUFNTAx0dHbi6ujKIHX+L9r7XQPv03JycnAgICEBERAQMDQ0xbtw4ZGVl4cyZM5gzZw4EBAQQGRmJGzduICIiAvLy8tS5PcWugd8j7Ltt27YuC/u6uLj06P6op2L16tXtlp8+ffqH6+xxDlVKSgr27NmDoKAghvyg7OxsrF69GuHh4R1O1v4daBl41dfXY8qUKcjNzQU7OzukpaWxcuVKKhSBjY0N8+fPR3l5OZKTkyEnJ8c0UbMF33bQr169gp+fH968eQMhISFoa2tj0aJFVGdqZ2cHLS0t7Nmzh0EHAmhmJZs3bx5mzpyJK1euwN7eHpqamgwDqfLycpiZmWHQoEFQVlYGCwsLYmNj8fr1axw/fhxCQkLtdrJdcajs7OwgIyMDGRkZhvrc3d3h7OwMAQEBSEtLw8HBodVHoqd00H8HXozIz8+Hrq4uAgICMGjQIGp/eXk5tLS0sHfvXsqZ74n4Wn9p+fLluHLlClhYWDB9+nSYm5tjwYIF2L9/P/Ly8iAhIQE6nU5pSzk4OLSZhP6tXRcWFsLf3x8PHz4EDw8PVFRUIC8vT+VHnD17FqysrIiKimII/wGa7UpGRgYjRozAgwcPICkpCVtbWwZR4MbGRmzatAmVlZXQ0tJC7969cf36dfz77784ePAgxo4d265dd8WhOn36NGpqarBhwwaG4y9cuABdXV1wcHBg6dKlsLOza5WL8teuO45f2cba2looKSnBzc2NIeeloaEBpqamUFJS6tEh2S0OFQBs27aNWpEeOXIk1q9fj8WLF+PChQu4ceMGJCQkwMvLi5s3b4KdnR179+5tkxDqW7uuqKhAaGgorl27RmneaGpqUmOc1NRUnD9/HoWFhTh8+HCr3239+vWoqKhAXl4eBAUF4e7u3mrV6cCBA7hz5w5WrVqFwYMH4/HjxwgPD8fmzZuxdOnSdr/JXXGoUlJSEBQUBG9vb+q+CSF49OgRpKWlUVdXh/nz58Pc3ByqqqoM5/YUuwZ+j0Nlb2/fZYdqz549Pbo/6qn4drKnoaEBz549w+fPn7F06dJW39eOoMsOVXZ2Ng4fPozMzEywsLBgwIABWLduHaZOnfrDjQGaRW1PnTrFMAhowZUrV3D37l3s2LGjU3X/Cnw98Pr8+TNu3ryJnJwc7N+/H0VFRRTd6apVq6jjCCHYvXs3hIWF22TY+rqD9vb2xv3792FlZQUxMTF8/PgRvr6+yM3NxcmTJ8HGxgZVVVVERkZCXl4esbGxrWa7bW1tsXr1atjY2ODSpUtt3s/jx4+RlJQEABAXF2dg/vsZDlVJSQlsbGxw7tw56hru7u7Yu3cvamtrIScnBzk5uTafU0/poP/0gVdpaSm8vb0phkRubm6YmJh0OiTM1tYW6urqTFei8vPzsWnTJuo374n42q7r6upw7do15OXlwdvbGy9evAA3NzdMTU3h6OjIcF54eDhSUlLapOr/2q4TExNx/PhxrF+/HgsXLkRVVRXOnTuHxMREnD17FgICAjA0NMT+/fthbW0NDw8PDBgwgKG+s2fPolevXggJCcHJkyfbDEvMycmhwmmnT58OSUlJqi0/w6FqamrCihUrEBMTQ/VFoaGhsLGxQVlZGcTFxTFq1KhWwpEt+GvXHUd7baytrcWZM2eobwKNRoOWlha0tLQ6FaLn7++PhoYGrFmzplVZQ0MDZGVlkZSU1GPp7L92qAgh1Pc6LCwM165dAysrK6SlpREQEMDwfB48eIB9+/YhJCSE6XP7el9GRgb1vZWXlwchBBcvXoSfnx+OHDmC0aNHw9PTE3PnzsW1a9ewZMkSBh0noFnb6dKlS6iursaKFSswY8YMpvdTUlKCyMhIlJaWYuTIkVi+fDnFUPyzHCpDQ0McOnSIIty4c+cOjI2NkZ2dDTExMQgJCTHNOwN6jl0Dv8eh2rp1a5cdKldX1x7dH/1JoNPpWLt2LUaMGAE7O7sfPr9LQc737t2Dubk5dHR0cOnSJcTFxWHr1q3Ys2cPwsPDf7i+T58+gYuLi6kzBQASEhK4c+dOV5r808HDw0NtAwcOhKamJjZv3oyCggKsW7cOvLy8sLKyQnx8PHr37o3evXuDn58fjo6OuHjxIuh0OtjY2NrcUlJS8PLlS/j7+2PmzJkUK5iTkxOkpaWxb98+ho+XtLQ0g9hgC5qampCYmEipYLeFqVOnwtbWtpUmFQBKF4rZ1t49cHBwtLmlpqZCVlYWXFxc4OTkxKFDh+Dk5AQLCwvcuHEDISEhuHHjRpvn/0XX8f79e8r5uXTpEmJjY3HkyBFcvHgRu3fv7lSd6enpbYb1DRo0CFVVVZQmU0/E13YtICAAFRUVrFu3Ds+fP6ecmIMHD+LQoUPg5+enNiMjI1RVVeHDhw/t2kRxcTFOnDiB8+fPQ0pKiuoHLS0t4eTkhE2bNoFGo4GFhQWEEOjp6eHw4cOtEpQbGxuRm5sLAQGBdnO8hg0bBisrK2zZsgXS0tIMA0Aajdbmxs7O3u7GycnJdCssLMTEiRPBx8cHbm5uXLlyBYaGhpCQkEBcXBySkpLw4cOHv3b9E1FVVQU1NTXw8fHhwoULiI2NRXBwMAoLC2FgYPDdQTUzXLhwoVX4aAvY2dkxffr075I9/E7w8vJSGx8fH2RlZWFubo6rV6/i8ePH6Nu3LxISEmBpaQk+Pj4ICAhQERLz58/H9evXmdpziz3QaDTY2dkhODgYWlpa6NWrF3r37o2VK1fCz88P1tbWIIRQdm1gYIDDhw+jqamplV3X1NTg2bNnmDZtWpsEBUJCQjAxMcHWrVuhoaHBIPfS3vf6e3bNxcXV5lZfXw9RUVFwc3MjOzsbSkpKEBYWRlhYGO7cuQM+Pj6wsLD8tWsmIISATqd3evubQ9W9YGFhwYYNG3DgwIHOnd/ZCzc1NcHe3h5hYWEMsyWjRo1CcHAwfHx88OnTpx+qs6qqql264JYP+p8IFhYWfPz4Eenp6VBVVYWhoSHD7BiNRsPSpUtx9+7dduvx8fGBvb090xk/LS0t3LhxAw0NDZg4cSJSUlKwdu1aREdHw8fHh2Id/PLlC5KTk3H37l0GLa2eABYWFjQ1NeHly5eQlJSEvb09zMzM4OnpiYULF6KpqanHMhv9V7Bx40b4+PgwDLQHDBiAAwcOIDc3F6mpqT9c5/c+nr179+7RDlVboNFoeP/+PcLDw+Hg4AAHB4dWtOXq6uqIjY1tt56zZ8/C2tqa6XOaPn06mpqakJ+fDykpKVy4cAESEhJobGyEo6MjysrKADT3yWfPnu2S4/uz0GLXHz9+hK6uLpSUlLBw4UKcO3cO8vLy1IDyL34e9uzZA0tLSyq8EmgmcNi4cSNmzpzZIS2mb9HQ0NBuzp2goGCHJER6It69ewdHR0eEhYUhJCSk1SSxlpYWLly40G4d8fHxkJeXZ5qmICIigkWLFuHatWuQlpZGVFQUhgwZAllZWZiamuL9+/cAmgfd3t7euHHjBlxdXXvcah8hBNXV1diyZQumTp0KYWFhREdHUzlhdDq9x7W5p+Avy1/PQ1ZW1ncjMdpCpx2qK1euQFpamukyIxsbG8zNzREYGPhDdQ4YMACvX79u8yUpKir6rqJ3T0ZtbS369u2LPXv2oKamBqGhoQzlvXv3/i7V+pcvXxhyUL4GjUbDmDFj8OHDB5iYmMDFxQW1tbUICAgAJycndHR0oKamhn/++Qdz585FYGBgj5slWrBgAc6ePYuZM2fi/fv3uHTpEry9vanyiIiIX8Iw+L+KvLw8cHNzt5nAbGtri5MnT3aq7oqKCqb7m5qaUFBQ0KbmUE9HTU0NFQ/ft2/fVsmsHbHrtLQ0LFq0qM3yBQsW4MmTJ1BVVUV4eDhyc3Ph6uqKWbNmwcLCAitWrMD8+fPBwcGBiIiIHqe5NnToUKSlpWHmzJlISEiAr68vFVIFNGtkfU0C8hfdi6amJty/f58hL/VrGBsbdyqqZMSIEe2uQKWkpPxWJs+uoKamBr1798aKFSvwzz//tLLrXr16dciu22LLBYDFixcjLS0NkydPRlFREe7evQtDQ0MYGxvDyckJampqWLp0KdLS0nDu3LkeaSMcHBz4559/cOjQIWzfvh3Pnj2j+p/S0lKws7P/nQT9ix6HjRs3MmwbNmyAlpYWNDU1oamp2ak6O+1QvX79GtOmTWuzfNq0aXj16tUP1cnOzo4FCxYgIiKCabmrq2u7xA09HbNmzcK///6LESNGQFFREfv27aNik/39/eHk5ISUlJR2wxobGxvbnZUoLy8HDw8PREVFsX37dqirq+PYsWMYOXIkVq5cCRYWFhgYGODEiRM9crXv9evXSE1NxdixY/Ho0SMG5+ndu3cIDg6Gurr6b2zhfxtZWVntkkOMHj36uzpMzGBgYABPT0+mZWfPnoW8vPwfO4vZQmvMwcEBMzMz+Pr6Uqvzt2/fhra2Nl69eoW4uLg2cxG4ubnbdDiB/7drTk5OnDhxggoF5Ofnh56eHvr06YM5c+bg0qVLPTKWvqCgAJmZmWhoaMDjx4+xZs0aavWzoqICDg4ObdK5/0XXUVFRgYEDB7ZpY9zc3J0a9JqZmcHFxYXpe52SkgIBAYEeTSLVHmbOnImrV68CAKysrJCcnIxHjx4BaA6L/ueff1BQUIBz5861ubrOw8PTrl1XVFRQ7IDe3t44duwY1q9fj8rKSqxatQpDhw6FsLAwrl+/zsAm3FNQU1ODzMxMvHr1Cjdu3MDOnTup+2lsbMTGjRuxfv3639zKnou/K1S/D48ePWLYWgTm9+3b9+uFfYWEhKglaWbIy8vr1Cypvb09wsPD4erqipKSEgDNjHbGxsYQFBSElJRUZ5v822FkZARPT0/U1dVhy5YtyMjIgL+/P4Bm3ZqysjK4u7tDSkoKhoaGTI1l1qxZuHHjBtP6KyoqUF5eTj33OXPm4OLFixg1ahTu3r2LiooKnDhxAps2bfp5N9lF2NraYtq0aZgzZw5MTEwQGxuLa9euYfv27TAxMcHp06e7lMT5Leh0Ou7du4fExMRfqibfU/E9uy4tLW03xKctqKiooL6+HuvWrUN2djaAZkY7R0dHXLt2jaL//RMhLy+PuLg4FBUVYd26dRTJDAAcP34cRUVFCA0NhaamJpYuXcoQ6tsCFRUVBAcHM62fEIKrV69i3rx5AJpXe2JiYiAlJYX79+8jJycHO3fuxKFDh3rkJAnQHG7GxcUFc3NzmJmZUbmQBw4cwPLly+Hg4NDtWjnp6elISEhARkZGt9b7J4KXl5f6njIDnU7vVMjt+PHjIScnB01NTcrZ+PLlC44dOwZHR0fs37+/023+3Rg5ciQqKyvx9OlTqKmpYdSoUdi8eTMIIYiIiMC7d+9w+/ZtGBsbY/r06VS/9jWUlZXbJdsJDQ2FkpISgOaV7ICAAJiZmeHZs2d4+vQpDAwMcO7cuXZTIX4n/Pz8kJWVBRcXF2zZsgUnT57EjRs3cObMGcjKykJGRgZLlizp1mtmZ2cjISEBDx48+OMdir8O1e/D1atXGbbk5GSEhITAxMSkTVbe76HTLH9VVVVQVVVFfHw8U5YbPT09prTWHUFTUxMSEhIQGBiIyspKDBw4ECYmJm0y2/xJSExMxL59+7Bx40acPn0a165dw/r163Hy5EmwsLDg2bNnVA7Lu3fvqNm9lmdcVFQEPT09+Pr6MsxY1dXVYc2aNTAxMWk3dOhXoKmpCcXFxWBnZ4eAgACamppQWFgIAQEB8PLyMp0lzcvLQ3R0NDZv3kwxmOXn51NMZHPmzGHQD2lBQ0MDYmJikJGRAQEBAairq7diPmsLUVFROHr0KObNm4f+/fvjwYMHqKmpweHDhyEsLNylZ/CnsoERQrBs2TJERkYyyBa0wN3dHePGjaMGAT+Ku3fvwtfXF0VFRejduzf09fUhJSX1x65OtSAjIwMWFhYwMjLC69ev4eLiAmdnZ0raID8/H1FRUVi7di0uXrxIDTJa7LqhoQFqampwdHRkoJ8mhGDHjh0YOnRoK2bL9rrurjzPtuolhKCsrAyNjY3o378/CCEoKioCBwcHJWj67XU/ffqE2NhY7Ny5E9OmTUNcXBwqKioQFRWF0tJSjBs3DrKysq0+YC1O5J07d8DJyYnly5djzJgxHWp/amoqtm/fjvHjx2PUqFF4+fIlsrKy4Obm1mVq/j/VroFm3ZXNmzczFa6Nj4/Hw4cPsW3btk5dMzMzE8ePH8ebN2/AwcGBFStWQE1NrceFlP8oSkpKoK2tDQUFBQgKCkJHRwf29vZITExEWloa/v33X/Tu3RszZ87E3r17qVXWr1f7zM3NIS0t3Yqm+dy5c7h//36rBPiuDJLbs/v27PrLly+orKzEgAEDwMLCgrKyMjQ0NFDfwW/rra2tRVxcHDw8PFBTU4MnT56ARqMhOjoaubm5lNwKs8m3x48fIyEhAXQ6HRISEpg9e3aH+qv379/D2toaffr0wbRp01BQUICUlBTY2Nh0SxrA72D527RpU5fSWOrq6uDp6dmj+6P/JXSJNv3UqVN4+PAhPD09GZZ5Dxw4gJKSEuzdu/fntfwngBDySwZ2RUVFOH36NK5fv46kpCSoqKhg4cKF2LBhAz58+IDy8nJMnDgRu3fvxrp16wAw0rBmZWXBzs4OgwYNwpQpU5Cfn4+7d+/C2toay5Yt++ntbw/r16+Hj48P9T8vLy9qampAp9PBy8uLNWvWwMXFBS9fvkR8fDwkJSVx9uxZfP78GSoqKjAyMsLUqVPBx8eHkydPYsiQIW1e6+7du7C3t4eqqirmzJmDwsJCBAQEYMKECXB0dGz3t4yLi0N4eDh8fX0ZZvVfvnwJCwsLXLhwoUs5PX/ywOvmzZvw9PTEmTNnqIEyIQRRUVEIDg5GaGjoHxUT/6vsurKyEsHBwUhMTERCQgLGjBmDAwcOQFxcHNevX4eYmBgmTJgASUlJHD9+HACjXX/69Ak2NjZoamrCggULUF5ejqtXr0JZWZmpTMCvdKgOHTqErVu3Uv9zcXGhqakJDQ0NYGNjg7KyMg4fPozKykqEh4dj+vTpePToEW7dugUNDQ14eHiAhYUFQkJC2Lt3L2bNmtXm9XNycmBiYoL58+dDWloaVVVVCAkJAZ1Oh7e3d7sDkIyMDGzcuBEhISEMLIclJSVYuXIljh8/3qlJvhb8yXadk5OD1atXw8fHh+EZPHjwAFu3bkVERES7zJA9Db/Krlsm7c6fP4/k5GTQ6XTcvXsXo0ePxtGjR6Gvrw85OTlUVlbi+vXroNFoDP1jQ0MDtm/fjqysLCxduhSEECQnJ2PixIlMNep+pUMVExMDAwMD1NbWAgDFUNiSG7Z48WIcPXoUgoKCOHfuHPr16wc2NjacOHECampqSExMxIMHDzBp0iSYmZlhxYoVbV6/oqICa9asgYiICFasWAEWFhbExMTgxYsXOH36dLsRTWVlZVixYgV8fX0xYsQIan9dXR309fVhbGwMCQmJ7z6f9vA7HCobG5suO1T79u3r0f1RT8W0adM63H88fPiwQ8d1WYcqKioKx48fx8CBA8HBwYE3b95AXV0dpqamf8Ss86dPn+Dp6YmUlBTw8PCguroa4uLi2LBhQ6dCm34UO3bsgLu7O6U/M3/+fJw7dw4bNmxAdHQ07t+/36ZTkZmZiTdv3kBQUBCzZs1qU0ekswOvFieZEIJLly4hKioKd+/eRUlJCRYsWICBAwciLy8Penp61OzbpEmT8Pz5c0RFRVEUznx8fBg0aBBSUlLg6uqKfv36oaCgAGxsbKDT6bC1tYWbmxsAYMWKFcjKysL58+dhbGyM+Ph4prOc79+/h5GRESIiIlo5Pm5ubujdu3ebDIaEEEhLSyMuLo5pZxYWFobi4uIu5XT8yQMvoFkSwc3NDdzc3Ojbty9evXqFf/75B9u3b/8jZp3r6+vh5eWF+Ph4cHNzo6amBpMnT8bmzZs7vILZFYSFhUFTUxPe3t5wc3MDLy8vLl68iPDwcGzZsgWXL1/G/PnzmZ6bn5+PJ0+egJubG/PmzWvzebenDfM9TaEW205JSaHC796/fw8xMTFMnjwZ7969g7i4OCwsLMDCwoJVq1YhODgYERERYGVlRW5uLlhZWTF48GCKDY2NjY3KHWtsbISUlBQSExNBo9Hg7OwMT09PvHjxAoaGhjh9+jTTnJD6+nrIyMjgzJkzrUIAY2JikJiYiKNHj7Z5X3p6enB2dsawYcNalWVkZODw4cOUM9sZ/Ol2/fbtWzg4OKCyshKDBg1CTk4OhgwZgt27d7cpV9KTQAhBcHAwAgMDwcbGhoaGBoiIiMDOzg7jx4//6dd/9uwZJSVy584dZGRk4NKlSygpKYGcnByOHj2K1atXMz338+fPSElJAY1Gw9y5c9ucsOsOu379+jUCAgKQnJyMt2/fQlRUFPPmzUN+fj5GjRqFHTt2gJubG25ubti6dSt8fHwgLCyMvLw81NbWYvDgwaiuroazszOKioqokNDGxkaMGDECL168AAcHB6KioqCqqorHjx/D3d2dEjlnBk1NTVhbW7cS7U5PT8fWrVsRGxvb5nhk7969mDRpEuTl5VuVVVZWQkNDo109zY7gdzhUGzdu7LJDtX///h7dH/VUbN26FceOHcOECROod/LevXt4/vw5zM3NKVsCAAcHhw7V2WWHCmju5D5+/IjGxkYMHDiwUwKBvwNlZWXQ0NCAvb09xMXFQaPRQKfTER0dDV9fX0RERDA81J+B6upqzJs3D0+ePMHQoUNRUFCAOXPm4MyZM1i8eDGmT5/OVEfqa3zvJ+yKQ1VfXw8LCwv4+vpi/PjxEBcXh4CAAJKTk1FRUQEeHh6kpqZCQkICNBoNV65cAdCcrMos1ykxMRG+vr7UqtysWbNQUVGB69evY9asWbh48SIUFBRw7949PHz4EAICAtDS0gIAfPjwAS9evEDv3r0RGRkJBQUFpoNSOp0OKSkpXL58melKyqtXr+Dl5YXDhw8zve/6+nqoqal9l+q6PfzpA68WlJaWoqqqCiIiIj02P+dbNDQ0YOXKlVBWVsbKlSupd+DevXuwt7dHYGAgBg4c+FPbQAjBihUrEBkZiYEDB6KiogL9+/fHpUuXYGhoiI8fP+L58+ffraM9dGXgxcXFBQ8PD2zZsgWDBw+GpKQkREVFcefOHbx79w7CwsK4ceMGZs6ciYEDByImJgZAs1PCbOCanp6OXbt2Yf78+TAwMICYmBhyc3MRHByMlStXIicnByNGjMDJkycxbtw4xMfHw8XFBUDzQPPRo0dgZ2dHdnY2qqqqYGZmxrTd6urq8PLyYuoU0+l0yMvLtykiCgDLli1DYmJiu8+mPfxX7LqiogKfPn1Cv379fsnEYXfB1taWGoi2tPvNmzdYt24dnJ2d21357C44ODjA2dkZ/fr1Q1NTE+h0OmJiYuDn54eQkBBkZmZ+l4ijPdvuqkMVGRkJPT09cHJyQlJSEuPHj8ezZ8/w+PFjDB48GPfu3YOoqCimTJlCEYC12Om3KCwsxJYtWyAqKoq1a9di+fLluH//Puzt7eHi4oK6ujoMHjwYK1euxPbt27F27VqqztraWjx48ABNTU3g4uJCQEBAm5Mh27dvx7Jly1oJGrdATk6OEqNmhtWrV2PXrl1tMiB3BL/DodqwYUOXHaoDBw706P6op8LIyAgiIiLYtWsXw34HBwe8f/++FatnR9C5zCs0GwsHBwdYWFhAo9G6nHPyO+Di4gJHR0eGGRUWFhaoqKigoaEBx44dg42NzU9tAw8PD9LS0uDt7Q1ra2sMGDAAqampUFVVxZo1a7B7924cPXoU2dnZKC0txahRo6Cnp9duKFx3oL6+HufPn6dmlU+fPg1DQ0OqvCXpnhCCs2fPIjw8HA0NDVi7di1Gjx7dJnHEsmXLqLDEyMhI7Ny5E76+vli/fj3u3r2LZcuWYdKkSVi3bh1iY2NhZ2cHCQkJSgBxzpw5KC4uho+PT5tCsSwsLJg2bRoyMzMxYcKEVuWVlZXthrb8CSswPwv19fWUMDPQrCPzJ8xcf42goCBISEhAR0eHYf/cuXNx5MgRbNu2DWfOnPmpbaDRaIiIiEBiYiJWrlwJdnZ2lJeXY968eXBzc4OJiQkcHBxAo9GQk5MDYWFh6Orq/nRaZDqdjitXrsDLywtXrlyBvb09du3axXSg1nJcZWUl1q1bB05OzjbD5SZPnkxN/Lx+/RrLly/Hx48fYWVlheXLl2PYsGFQV1fHtm3b8OLFC7i6uqKurg6bN29GdnY2Fi1ahLq6Ohw9ehRmZmZthnMpKCjg2rVrTGltWwZu7eF/1bYbGxtBp9Op+28Rlf+TkJaWhqqqKnh4eDDsHzVqFM6dOwcNDQ1qRfRnwsnJCaqqqlBVVUVRURH4+PggJSWFEydOwM/PDxs3bsTkyZORkZGB3r17Q11dHfPnz//p7UpNTcWJEycQFBQEDQ0NnD59Gry8vK2Oe/bsGXbv3o2SkhKYm5tTuUzMICwsDD8/PwCghIOdnZ3h6OgIAwMDjB49GlZWVnBycoKJiQkV3r9v3z4kJSVBXFwcHBwcOH36NCZMmID6+nqmNqiqqorz58+36VCxsrK2G2YuICDAlOynp6OrxBJ/SSk6j/DwcKaamjo6Opg5c+bPd6iamppw+PBhxMTEQEBAgEpi3Lp1K9NE154MOp2O9PR07Nu3j2m5mpoa5OTkfrpDBTR3FqtXr0ZRURF27dqFAwcOYMOGDVBQUMCQIUNgZ2eHzZs3w8zMDAUFBdi4cSPk5eVhYGDwU9rz7t07qKio4OXLl5CWlsbJkyfbdF5oNBoMDAw61RY6nQ4eHh7IycnhyJEjIISAjY0N7u7ukJOTw+vXr1FXV4eVK1fiwIEDmDx5MnXuw4cPER0dDRYWFixfvpxpu9rC6NGj242JffHiRZdmuv5EhIeH4/Tp0+Dm5kZDQwM4ODiwcePGNsPSejLOnz/f5qruxIkTUVZWhsrKSqakG90JGo2GZcuW4fjx49DS0oKHhwdsbW0RFxeHJUuWwN3dHatWrYKNjQ3odDqOHj0Kfn5+7Nmz56cMvsrLy6Gjo4Pk5GRMnz4d0dHR7ZKLSEpKQlJS8oevQ6fTwcbGBlVVVYSFhaGkpASioqLYv38/Bg8eTK0gGRgYQEdHhyGM59WrV6itraVCkb5Fe8+FnZ0dVVVVbQ7aqqqq0NTU9MP38yfj5s2bOHjwIJXrVlNTAyMjI6ipqf3upv0wTp061SYbaJ8+fTB58mQ8efIEU6dO/eltmTJlCqKjozF58mTY2NjAyckJzs7OWLt2Lby8vFBYWAhnZ2f0798f/v7+8Pb2xqlTp7qVobYFLfTkvr6+GD58OI4dOwYzM7M2bWXSpEkICQnp1LVoNBrU1NSwc+dOvHr1CqNHj4atrS28vLwQEBAAFhYWODo6ok+fPgzOLY1Gw5cvX2BkZEQxG39bb3sQEBDAu3fvmDKBEkKQnp7e7SyhvwJ/HarfB25ubty6dQujR49m2H/r1q1O2+kPxeatXbsW3NzcSEhIQHh4OOLj47Fjxw5YWlpSHO5/CqqqqtpNgmRlZf1lIsKNjY2YOHEidu3ahUWLFsHU1BQSEhI4evQoDAwMsHLlSri6umLRokWYPHkyQkNDcevWLdy/f7/b21JfXw8FBQXU1dXh8ePHSExMbNOZ6irmz5+PhIQEPH36FGJiYlSnOnXqVNBoNJw6dQqcnJzQ09NjcKYAQExMDKtXr4aXl1erToVOp+Phw4dtsoL16tULI0eORFJSUqsyQgh27drVZv7VfxGenp54+PAhzp8/j8jISMTGxuL48eM4cuQIoqOjf3fzOoX2QnVFRUXbpZDuTigqKkJLSwtDhw6Fvr4+1q9fj4SEBPTp0weOjo4IDg6m6NCPHTsGQUFBpgOO7oChoSHS0tIQFRWF1NTUTjM1fg8jR47E06dP8eTJE/Tp04fKlRo4cCD69++P2NhY9OrVC4MHD26VEyElJYWhQ4fizp07TPV74uLi2hVK1dDQgJeXF9Oy/fv3Q1dXtwt39mchNjYW3t7eOHnyJGJiYhAZGYmIiAjcv3//jyOMApqZYNtjehw7dmy7kg/dia1bt2Ly5Mng5uaGqqoqfH198fbtW9y8eRP+/v548OABxMXFkZqaCkdHR+jo6GDnzp0/pS0tbKKHDh3C69evYW5u/lMmZGg0GtjZ2SmdzBbGTE5OTkyaNAl37txBQ0MD0tPTsXHjRoY2SEpKoqSkBH369GEqBB0VFQVpaek2r7127Vo4OzszdSCio6Mxc+bMXzZe6078pU3/fbC2toa5uTksLS0RGBiIwMBAWFpawsLCAhs2bOhUnT/kUA0fPhzGxsYMrDQjR45EcHAwtm/f3qkG/C7w8vKiuLi4zfLq6moqjvL27ds/9cVlY2OjqJLHjx+P/Px8HDp0CLW1tUhMTISHhwdSU1Px+fNnHD16FCwsLNixYwdOnDjR7W25efMmsrKyEBAQgClTpnR7/V9DREQE/Pz8GDFiBG7fvo0HDx5Q+yUkJBAREYHS0lLIyMjg4cOHePbsGZKTk0EIgbm5Ofbs2YOxY8e20pnZv38/lJWV29UScHV1hZeXFzw8PFBaWgpCCFJTU6Gurg5JScku0yv/SXj+/DlcXV0Zcin69esHf39/HD58GA0NDb+xdZ1DC0vVt6DT6UhLS8OlS5eQkJCAxsbGn9qOlhCWkSNHIjc3F/b29uDl5cWDBw+goaGBd+/eQVBQEB4eHmhsbMT69esRFhbW7f1NQUEBEhISsHfvXixbtuynhh+xsbFBQUEB1dXV+Pz5M+Ug0mg06Onp4fz58+Dg4ICWlhYeP36Mp0+fIjk5GY2NjVixYgVCQkKwZMmSVknmly5dgqCgYLvh5WvWrEFWVhZsbGyQk5MDoJkV1dLSEhUVFVQ+5v8CfHx8cPbsWYaQXV5eXri5uSE1NfWXOR/dhcGDB+PVq1dtlt+4cQMPHz5EZGQkqqurf2pbWiZB+Pn58fHjR2hpaWHs2LF4+fIlRdSyYMECHDp0CBUVFZCVlcWbN2/w5cuXbm+Ln58f1q5dC2Nj45/OvmphYYHr16+Dm5ubQfzU0NAQt27dgoiICNTU1PD8+XM8fvwYV69eRWVlJcTExFBYWIgZM2a0ih54/vw5UlNT25V7mTt3LqZOnQptbW08fvyYkmxwcXFBUFBQh0kDehrodHqXt5+FT58+QVdXF/z8/ODn54euri4+f/7c7jmEEDg6OmLgwIHg5ubGkiVLWuUK19XVYd26dRASEgIvLy+UlJSQl5dHlefk5GDNmjUYPnw4uLm5MXLkSDg4OKC+vp6hHhqN1mr7EcKhLVu2wN/fH48ePcL69euxfv16PHr0CH5+ftiyZUuH6/kaPxTyZ2RkxHR/v379MGDAAGRnZ2P48OGdasivBgsLCyZNmoTbt2+3CmsKCgqCm5sbRo4ciT59+iA+Ph6Ojo7w9PT8aU6Gv78/hg8fDl9fX5w4cQJycnJYuHAh0tLSsGTJEty9exc2NjbYvXs30tPT4eLiQjFqdSda4pBFRUW7td7q6mqEhITg0qVLaGxsxIIFC2BoaIiDBw9CX18fgoKC0NPTQ3h4OJKTk/HhwwdUVlaipqYG06ZNw4cPH6i6REVFkZmZiW3btkFPTw88PDzQ0tJCYWEh/P39MXLkSCrHqy3w8PAgMjISly5dgqWlJaqqqjBmzBi4urq2WgL+r6Mtu+bg4ICSkhISEhKgqKj4i1vVeaiqquLs2bOtiA1u3bqFTZs2ob6+HsLCwkhPT4eHhwcVQvszsHnzZnBzc2Pv3r2YOXMm5syZg5EjR6KsrAwLFizA7du34eLiAlNTU0hJScHV1RV9+/ZFVVUV0/yHzqLFwexuu25sbMTFixcRGhqKqqoqTJw4ESYmJrCysoKtrS2GDRuGDRs2YNy4cXj9+jVu3LiBxsZGFBcXw8PDA6GhoQz1vX//Hj4+PlBVVcWIESMwatQoVFVV4dy5c6iursbJkyfbbQ+NRoOXlxfu3LmD3bt3o6ioCMLCwlizZg3mzJnTrffe06GgoMCUSIZGo8Hc3Bz+/v6d1p36HVizZg0OHTqEY8eOMezPysqCqakpXr9+DRUVFRQXF0NVVRUKCgqwtLT8KW1RVFREZGQk7O3tIS0tDWFhYQwaNAgzZszAsmXLEBMTA0dHR6iqqmLBggVwdnbG3Llz8fz5c8ydO7db21JVVdXtOdWEENy+fRt+fn4oKiqCqKgojIyMICkpiezsbNy/fx8HDx7E4sWLQaPREBQUBA4ODnz69AnPnj1rtRJ87949+Pj4QFNTE0VFRZCXlwcrKyuio6Px5MkTnDlz5ruTPOvWrYOkpCROnjyJrKws9O7dGzo6Oti6desfQ4T2LXpyyJ+2tjby8vKQkJAAADAxMYGurm67ZF3u7u7Yv38//Pz8MGbMGOzevRtSUlLIzMykWC2tra0RGxuLkJAQCAoKwsbGBgoKCkhLSwMrKytevnwJOp2OEydOYNSoUXj27BmMjY1RVVUFT09PhuudOXMGMjIy1P/8/Pw/dI8aGhrQ0ND4oXPaww+9he0x14wYMQIFBQXtnk+n0xEUFAQlJSUoKipCVlYWR48ebXM2+Wdj+/bt2LlzJ65evUq9mNHR0fDz88OQIUNw7tw5qKqqYvfu3Th37hw2bdqE/Pz8n9IWXl5eeHp6IjMzE2pqarh58yZu3LiBTZs24dWrV0hKSoKHhwcCAwORkJBAhbpxcXEx9dQ7un2LFrKGr2cMuop3795BQUEBrKys8Pf3R0REBMaNGwcNDQ08efIEYWFh8PT0xMuXL2FlZYUhQ4bA2dkZQPOsZIsz1ZLzkpubi/r6eixcuBCTJk3CuHHjcOHCBWRmZmLfvn1wcXHp0Aw8Kysrhg0bhoEDB4KXlxfs7Ox/BNV/d6O9SZBRo0YxOLNtISkpCRoaGlBUVISMjAycnZ1/WVjdt9DR0UFSUhICAwOpnJmMjAxs3rwZ7OzsiI2NhaqqKmxtbXHp0iWcPXuWCmP5GVi/fj2ysrJgYWGBrKwspKWlQV9fH3Q6HYGBgVizZg2uXLmC3Nxc7NixA/X19ejVq9d3bZeFhaXN7Vu0fGi6064rKyuhoqKC169f48iRI7hw4QLk5eVhZWWFkJAQeHp6IiQkBDU1NTAxMUFDQwNOnToFoDk8i1nI8vv37zFy5EhISEhAUlIScXFxuHPnDqysrODv79+h2HYajQZRUVEMHjwYvLy84OLi+mMHXF1Bd9j148ePsWbNGigoKEBWVhZWVlbIysrqzmZ2GDNmzAAPDw9cXFyoMcPnz5+ho6ODxsZGhIeHQ01NDaampoiPj0deXl6nEss7ChUVFWRkZMDNzQ3s7OxIS0vDhAkTMHHiRHh7e0NCQoKSYzEzM0NdXR169+793W/2j9g10Gzb3TkuodPpMDU1RXR0NHbs2IHo6GhYWFjAy8sLjo6OMDY2xtWrV9GvXz+Ym5vj9evXOHv2LNjY2DB06FCK6Rf4//FES/jvypUroaSkhH///RcJCQmQl5dHXFxch6UshIWFMXToUPTq1Qvc3Nx//Pe6p4b8vXjxAgkJCfD19cU///yDf/75Bz4+PoiLi0NmZmab93Lw4EFs27YNqqqqmDRpEs6ePYvq6moEBwcDaM7jPXXqFPbt2wdJSUlMmzYNgYGBSE9Pp96bFtkMaWlpjBgxAkpKSti0aRMiIyNbXbNPnz4QFhamth9h5X7w4AFSUlJa7U9JSWFKVtEhkA6gvLycACAvX74khBBSUlJC0tPTSUlJCXWMvr4+yc3NbbOOxsZGoqurS/bt20e+fPlCCCGkrq6OBAYGEllZWWrfr0ZpaSmxt7cnkpKSRFFRkQgKChIHBwdSVVXV6tjbt2+TrVu3/pJ2FRUVkb59+5KRI0eSOXPmkEWLFhE6nU7odDrh5uYmM2fOJOvWrSOEEFJTU9PuVl1d3eHtw4cPBADZs2dPl++BTqeTt2/fkoULF5KMjIxW5RUVFWTx4sXUszYzMyMsLCzE29ub7N27l3BwcJBHjx4RdXV10tjYSAghRExMjMyfP58QQsiNGzeIqalpp9u2adMmYmRkRB4/fkwqKirIvXv3iJaWFnF3d+/kHf8/WmymvLy8y3X9LLS08cKFC4SQ5t/j2bNnJD8/nzrGw8ODXLp0qd16du3aRaysrMjHjx8JIc3PNikpiYiLi5N37979vBtoB3V1dcTT05Oy64EDBxJDQ0NSUFDQ6tiioiKipqb2S9pVXV1Nxo4dS9jY2IiWlhYZPHgw1ffNmjWLjBw5kkhLSxNCuteuq6uriaCgINHW1ibV1dVdvo/8/Hyirq5O4uLiWpU1NjYSFRUVkpmZSQgh5OjRowQAWbduHbl06RIBQO7fv0+WLFlC3bu+vj7h5+cndXV1JDs7m8jJyXW6bb6+vmT58uXk2rVrpKKigmRkZBArKytiZGRE9SOdxZ9k1y19eG1tLcnIyCBZWVmETqcTQghJSEgge/fubbee8PBwoq6uTl6/fk3te/jwIZGRkSF37tz5eTfQDuh0OgkICCAyMjJEUVGRjB07lixdupTp96WxsZFISEh0+TfvCJqamsjy5csJAKKrq0vY2dlJVlYWIYSQ1atXE15eXjJjxgyqLd1p14sWLSJiYmLdYtelpaVk69atxM3NjWm5nZ0diYmJIYQQcu3aNUKj0cjSpUtJbm4uAUDOnTtHpKSkSHZ2NiGEkMOHDxMAJCsri3z58oUsWbKk0+38999/ydKlS0lUVBT5/Pkzyc3NJS4uLkReXp5UVFR0qs6v8Sttu+Va5ubmxNrautObubk5AUDev39PysvLqa22trZL7Tt16hTh5+dvtZ+fn5+cPn2a6TlZWVkEAHn48CHDfiUlJaKnp0cIISQ5OZkAIGVlZQzHiImJkZ07d7bZnm3btpEZM2Yw7ANABg0aRAQFBcnMmTOJt7c3aWpq6sjtEUKav7fh4eGt9p8/f57Mnj27w/UwtKkjB7X8+IaGhkRTU5NoaGiQLVu2EA0NDaKlpUXu3LlDVFRU2q3Dz8+PHDp0iGlZQkIC2bJly4+3vpvx/v17snr16jbL6XQ6kZWV/WXtsba2JgBITEwMAUBOnTpFCCFk7969hJWVlXBycpKIiIhuHXgdP36cACBPnjzpUtvj4uKItLQ0UVVVJbNmzSLLli0jmzdvbmXoZ86coQy0vr6eaGpqEj4+PsLJyUm0tLQIIYScPn2aLFq0iPTv359cvXqVFBUVkYMHDxI5OblOO+KnT58mrq6urfbT6XRiZWVF4uLiqMFHZ/AnDbykpKSIqakpUVRUJJs3byb6+vpEQUGBXL9+nYiLi7c7IElNTSVGRkZMy7KysoiqqurPan6H0dTU9F27VVRUJHV1db+kPeHh4QQAOXv2LOHh4SHW1taEEEKio6MJFxcXYWFhIS4uLt1q1zdv3qQGPF0ZeD18+JAoKSkRDQ0NMnr0aKKsrExWr15NiouLGY5LS0sjGzZsIIQ025SjoyNhYWEhffr0IRMnTiR0Op1cu3aNzJkzh4wcOZL4+PiQ8vJyEhgYSMTFxUlOTk6n2peSkkJ0dXWZflh9fHyIm5vb/4xdz58/n9jb2xMpKSlia2tLzM3NiaSkJImMjCSKiopMJxdaUFZWRqSkpEhDQ0OrsoqKCrJkyZJf4qi0h6amJiIvL8+0jS3YvHkzefTo0S9pT2FhIQFAHB0dybBhw4iEhASh0+kkPT2d9O3blwAgOjo6pKmpqdvsOi8vj/Dw8JDt27d3ya7fv39PVq1aRdTU1MjQoUOJpqYmUVNToybRW/Dp0yeipKRE/X/+/HkCgAgJCRFeXl5SXl5O3rx5Q+bOnUumTJlCbGxsSHV1NYmPjyeSkpLk9u3bnWpfUVERkZSUZHqPt2/fJgYGBj80mGaG3+FQmZmZESsrq05vZmZmBECrzcHBoUvtc3FxIaNHj261f/To0W1Ott++fZsAYJiQJYQQY2NjapIwKCiIcHBwtDpXSkqKmJiYMK33zZs3pHfv3sTHx4dh/65du8idO3fIo0ePiKenJ+Hh4SG7du3q0P0RQggvLy816fE13r59S/j4+Dpcz9f4oRyqhIQE6OjowNHRkUpgj4mJgZycHCX82BaCg4OxbNkyKhejRShu4sSJkJaWxr59+9DY2NgukcDPRlNTU7tLhjQa7acnfX6NFgFNKysrTJw4Edu2bUN6ejqeP3+O69ev48CBA9DX18fFixe7LT8gMjISS5Ys6VIeUVRUFC5cuMAQPikvL4/o6Gjo6uoiJCSECl8QFxeHu7s7DA0Nwc7OjqNHj2Lo0KGoqKigiE4MDQ2xfft2FBUVQV1dHeLi4tDU1MSFCxc6JTZLCEFwcDDi4uIY9tPpdJw8eRKPHz9GaGgoxMTEMHToUGzZsgUjRozo9PPo6Xj37h14eXlx5swZKoH98ePHWLZsGXbu3NnuO3/8+HGMHz8eqqqqaGhogICAAIyMjLBo0SKMGDECfHx8yM3N7fbcnR8BCwvLd+2Wk5Pzl1Fqt1Dyb9myBZMnT8aRI0fAzc2NlJQUhIaG4vbt29i2bRtERESYim12BlFRURgwYAAUFBQ6XceTJ0+wdetWBAQE4NWrV7h58ya2bNmChw8fQktLC5GRkZS20fTp0+Ho6Aigud/cunUrODg4kJmZCWtra9BoNCxevBi9evVCSkoKLC0tERsbC3l5ecTGxnY6f+zo0aNMdbWio6MRFRWF+/fv4+rVq+Dn54eNjc1PYzDtCWBnZ0diYiLCw8Op8L/8/HxISkpi3rx57ZJ7BAYGYu7cudDT00NlZSU4OTmxcuVKLF++HL169YKsrCwuX74MWVnZX3U7rdDyG7dn2zw8PK2S2X8WWt5ZLy8vjBs3DsnJybC2tsaLFy+wa9cucHJywsjICKKioti+fXu3hKslJiaiuroaq1ev7nQdRUVF0NPTg7e3NwYOHAgzMzMEBQUhLy8P+vr6OHnyJKU/16dPH4YwMxUVFfj4+ODGjRvQ1tam9M3mzZuH/fv348mTJ3jy5AmWLl2KoKAg9O/fv1NtPH36NDZu3NhqfHbv3j0cPHgQN2/exLJly8DJyQlTU9M/JueXdFMO1fv37xl05dpiPHR0dISTk1O7dbaQgzF7P0kb+oBf49vyjpzT1jEfPnyAjIwM1NXVW+V6f02E1yKV4Ozs3GGCPE5OTnz8+LHV2K6goKDTfsgPnRUaGoqcnBysWLECrKysqK+vx4QJExAcHIyIiIg2Rdk+fPiAtLQ0GBkZITIyEuzs7Hj+/DmcnJygqKgIXV1dDBo0COXl5R0WEa2trUVYWBju3LkDDg4OKCsrQ1xcvEud1ODBg6mEOGbxyllZWe1SrXc3NDU1kZGRgWPHjlFMa/7+/rh79y7GjBmDqVOnQlpaGlJSUti3bx+MjIy63Ek/ePAA69at6/T5TU1N8PLyQkJCAtjZ2cHDw0MxwyxfvhxPnjxBcnIypKSkAAAvX75EZWUlSktLKRFZZpS+06dPx4cPH1BSUoKTJ0+2K8z7PdTU1KBv374MnQ4hBMbGxpg+fTouX74MNTU1xMbG4sWLFzAxMcHhw4eZigT/F2BjY4MRI0bA2NgY9fX1aGpqwoABA3D+/Hm4u7vDwsKC6Xk1NTWIjY3F1KlT4e/vDz4+PuTl5cHDwwOJiYlwcXHBlClTkJWV1WGHqqmpCQkJCbh06RLodDqWLl0KZWXlTjnOX4OdnZ16x5jdR0VFxQ/FX3cFs2bNgqurK9zc3KgY7n379iE2NhbS0tJQVFREYWEhVq9ejadPn2LXrl1dnmi6f/8+5s+f36UJoV27duHs2bPo168f8vLyKLuePn06LCws4Ovri40bNwJo/sBXVFQgPz8fgwYNAgcHB1NdqdmzZ+PKlSuoq6vDpk2b2vyGdBRlZWWt9Gg8PT1RUFCAkJAQbNmyhcqlW79+PQwNDSEnJ9ela/ZUtEhLODo6oqioCKysrODg4MChQ4fg7u6OhoYGpnZFCIGPjw8WLlyIAwcOYMCAAfj8+TN8fHywatUqBAQEYNq0aXjx4kWHHSpCCFJSUhAWFobKykrMmDED2traVKJ6ZzFhwgTcv3+/zQnFFjKnXwE+Pj74+/tj+/btuHXrFgDgyJEjOHjwICXDUVpais2bN+PZs2c4efLkDyfRf4v79+9j7Nix7TrH38OBAwfg5OSEsWPHoq6uDpWVlQCax0Pe3t7Ys2cPlftYUVGBkpISZGVlYeTIkaDRaDAyMmo12J02bRr1t4qKSpdlSO7du0f1LS2Ii4ujmGgvXLiAwYMHY9GiRXBwcMCbN286TX39J6KjQt2WlpbfZTodNmwYnj59io8fP7YqKy4ubjPfreUdLCwshIiICLW/qKiIOkdYWBj19fX49OkTBAQEGI5pYc5swYcPHyAuLo5//vnnu2REQDMTZEVFBT5+/NihnDwpKSls3boV0dHRlB1+/vwZ9vb21Pj0h9GRZayOLIVKSUm1WaampkYWLFjQakm2Je44OzubyMvLdzju88mTJ2Tx4sXE19eXvH//nmRmZhInJyciLy9PPn/+3KE62sK+ffvIsWPHWu1vbGwkK1euJGlpaV2qvzN4/PgxGTt2LLWcO3r0aPLp0ydCSHOuSMuy7/bt27sUQvDlyxcCgBw7dqzT4QM3b94kTk5O1P8lJSVk+fLl1P/5+flEX1+fpKamEgUFBTJx4kSyZs0aoqamRnR1dUlhYSHTemtra6n7/zb+9kdRX19PFBUVGfYlJCSQHTt2UP/LyMhQfxcUFDCEOXQEf1JoUFFRUZvH6Ovrt1rCb8HmzZvJ4sWLW4V7EdIcax8fH0+sra1Jenp6h9pTUFBApKSkyN69e0lWVhZ59+4dOXLkCBEXFydv3rzp2E21gcTERLJ27Vqm4V4ODg4kMDCwS/V3Bnl5eURKSop6r/n5+am8IzqdTtzd3QkbGxtRVVUlVVVVXQoNGj9+PLGwsKD+/1GUlZURTU1N6v+mpiaydOlSKtyqoaGByMjIkNzcXKKlpUVmz55NFBUViZ6eHlm+fHm778DkyZMJAHLjxo0fbte3kJGRYfiN3717R1asWEHt09fXp/qY2tpasnTpUlJfX9/h+v8ku/42l+FreHh4kISEBKZlgYGBREpKily/fr1VWUBAANm7dy85deoUCQ4O7lB7ampqiIaGBrGzs6NyNIODg8mSJUu6/Ju/ffuWyMvLMw3XjYiIIJs3b+5S/Z1BRUUFMTIyouyahYWF4VlfuHCB9O7dm0ybNo0UFRV1ya7V1dWpvKTOfrOlpKQYbEZdXZ18+PCB+l9GRoaUlZWRtWvXkoULF5LZs2cTMzMzIi0tTS5fvtxmvZaWlgQAOXr0aKfa9TU0NTUZxnZ1dXVEXFyc+t09PT2pttDpdKKiokLy8vJ+6Bq/I+TP1NSUrFu3rtObqanpT2lzRkYGAUBSUlKofffu3WPgUvgWdDqdCAsLM+Rm1tXVEX5+fnL8+HFCCCGfP38m7OzsJDQ0lDrmw4cPrWwkLy+PjB49mmhpaXU4tPjIkSOEi4urw35EXl4eGTFiBOHn5ydLliwhS5YsIX369CFjx45tlw+iPXQb9REXFxfTpcu3b9+Cn58fcnJyiI+PZyhjYWGBnZ0dXF1d0b9//w4Js1VXV8PKygrnz5/HmjVrMHjwYIwZMwY7d+7Ejh07ujwTYm1tjWfPnsHc3ByPHz9GcXExEhMToaSkBHl5eUov6ldiypQp1AwzALx+/RoXL14E0Ext3TLDtHv3bvj5+XX6Oi0aGR2Z6WgLnz59YpgtExQUhJiYGA4fPgygeYYiJycH27dvh7q6Ori5udHY2IiioiIkJiZi2LBhGD9+PBYuXIiDBw+iqKgIQPPy7OPHj3Hjxg2GmY3OgJ2dHRwcHFTdAHD27FlqJebFixcMs9zCwsIQFBTEu3fvunTdnor27E5YWJgpPX9dXR0ePXqETZs2wdfXt1W5ra0tTpw4gYyMDEycOLFD7TAxMcGhQ4dgZ2eHESNGQFRUFJaWlvD394eJiUmXQvKkpaUxZswYrFixAtevX0dxcTFSUlKgq6sLOp0ObW3tTtfdWQwaNAiXLl2iKIbLy8spVjIajYZ169YhKCgIFy5cwObNm7t0rYqKii6tBpSXlzOszrOwsMDU1BSWlpZoamoCGxsbmpqaoK+vD21tbdTU1EBISAjZ2dlIT0/HrFmzMHr0aMyaNQsODg4MTHGxsbGIi4trJV/RGUyfPp1aHQD+365pNBqqqqoYZi85OTmhoKCAy5cvd/m6PRHthVeJiIigrKyMadm5c+dw8OBBprPC2traSExMRFhYWIeFoW1tbWFgYIC9e/di4sSJGDhwIFauXIm4uDg4Ozsz9MM/iuHDh2Pt2rWQl5fHhQsXUFRUhIyMDNjY2CAqKgq7du3qdN2dRa9eveDj4wNXV1cAzaHkhw4dosqXL1+OpKQkvHnzBqtWreqSzl9X7RpotoOvI1u2bNkCExMTaqWKj48PWlpakJSURFVVFSZMmIDs7Gzk5ORg+fLlGDp0KKZNmwYrKys8fPiQqmfXrl2IiIiAoaFhl9oHNK9yBQUFUf/Hx8dDRUUFHBwcIIQgMTGRWt2m0WhYu3btTxNI706QHsryN378eMjIyMDY2Bj37t3DvXv3YGxsDAUFBYwdO5Y6bty4cYiKigLQ/Nytra2xZ88eREVF4dmzZzAwMAAPDw/1feXn58eaNWtgY2OD5ORkPHr0CDo6Opg8eTIkJSUBNK9MLVmyBEOGDIGnpyeKi4tRWFiIwsJC6rqxsbHw8fHBs2fPkJWVBV9fX2zbtg0mJiYdFngeNGgQnj59Cnd3d0yYMAEzZszAoUOHkJ6e3mkZgh+KI/n8+TPTwXZDQwNqa2uZhptlZGRgzpw50NTUhJqaGoSEhBiW5/v164fIyEimFLrMEBISAgMDA6ahO3PmzAE7Ozvevn3b6ZwXFhYWHD16FOnp6QgICEBJSQnGjh2L06dPd5ja82egd+/e8PDwwLx58zB37txWuRC2trbIz8+HpaUlJk+ejBkzZvzwNVqoV5l9iOl0Ou7evYvS0lKMGzeuTcX6cePGITY2FiYmJtQ+JycnuLm5QUZGBmPGjEFGRgaGDh0KU1NT1NbWtqKoZGNjg6CgIOzs7ODs7Iy1a9eiqKgIsrKyUFFR+e590Ol0NDU1tRsmZmtrCzMzMwQHB4OLiwtfvnzBgAEDUF5ejg0bNlAOYAtGjx6N/Pz8VuFE/wW8fv26zfclIyODabheYWEhRo8eDTk5OYoKX01NjeoDWFhYcPfuXYSFhXUoDPXBgwcYM2YMlTf4NQYPHgwZGRlcunSpS7HxVlZWUFFRgZ+fH86ePQsRERHs3Lnzt+qOsbGxwdPTE+fPn4eQkBCD3QCAkpIS9u/fD2tra0yfPr1TOVX19fUoLi5mGq5MCMGTJ0+Qm5uLQYMGYfr06Ux/L2FhYbx584Zhn4aGBpqamrBs2TLMmjULT548wejRo6GtrY3Kykqkp6czHF9bW4vRo0fjwIED2LNnD6ysrCjRT1NT0+9SmxNC0NjY2K5dW1hYQE9PD0FBQRgwYADy8vIwZswYNDY2Yu3atbC2tmY4fvTo0d1KJd+TcOvWLWhqajIte/DgQZsDXRqNhgkTJkBUVBRubm7YtGkTFXJaV1eH3NxcWFlZdSjP7dOnT3j//j3T0EBeXl7Y2NjA19cX9vb2P3BnjJCTk8PcuXPh7++PmJgY8PPzQ1tbG7Nmzep0nd0BW1tbnDp1CgUFBa3CXcXExBAaGorly5fD0dERLi4unbrGhw8f2rzPrKwsZGRkgJ+fv91w38bGRtTU1FAhz9OnT8fmzZuhqqqKKVOm4Pbt2xg2bBhWr16Nz58/MzhNQPNE7NKlSxEWFobDhw9jzZo14ObmhpCQEGxtbTsUSl1fX9+ubImKigrk5eWxaNEiTJo0ibJrQgj27NkDWVlZBkmFMWPG4MKFC9+97u9GV52in+VQAc16rOvXr4e0tDSA5m+Rl5cXwzGZmZkoLy+n/rezs0NNTQ3Wrl2LT58+Yc6cObh8+TKD03/gwAGwsbFBQ0MDNTU1kJCQgJ+fH/V+Xr58GW/evMGbN28wePBghuu13C87OzuOHTuGjRs3gk6nY8SIEXB2dm4zPaEt8PLyYsGCBRAVFaVyLVsWfjo6YfQ1aKQDv0hFRQX4+fnBwsKCgoIC9OvXj+HF9/X1RW1tLVMRvZs3b+LatWvYsWMHysrKsGPHDuTk5GDo0KFU8ldjYyPl5X4Pq1evhpubW5uzbyEhIWhsbISOjk6H6vvTUFhYiH79+jHtHBsaGjBz5kwICwsjMTGR2l9bW9uhutPS0rBgwQJcvnwZCxcupDqo2NhYHDp0CAsXLsTAgQORlpaGgoICHDx4kKnWiYqKClxdXVuVVVdXQ1ZWFkVFRcjOzqb29+7dG/Pnz6deZDY2NgwbNgy7d+/G6dOn8eTJEwgICODly5fQ09PD/v37mX7MMzIycPDgQRQXF4OLiwtVVVXQ1NTE6tWrmXbUly9fxt69e7FkyRIkJCRg5syZeP78OVxcXFrF5BsaGsLJyanDuUAtNlNeXt6lFb+fiZY2As3Pbty4cQzP6d69e/Dz82OqPl5WVoa1a9ciJCQE9fX12LNnD27fvo1Ro0bh06dPqK2tRWFhIe7du9ehthw4cABiYmKQkJBgWv78+XP4+/szza/7L6C0tJTSTGIGLS0t3Lx5E3l5edRv1FG7rqyshIiICNzd3WFubg6gOaLg4cOHsLe3x8SJEzFu3Di8efMGjx49gpOTE/75559W9djY2EBCQqLVb9TU1ARjY2Ncu3aNQduInZ0dK1eupGaK2dnZISAggN27d+POnTuIi4uDiIgInj17hsWLF+PUqVMYOHBgq+sWFBTgwIEDePHiBXr16oXy8nJISEhg48aNTJ9XRkYGNm7ciEmTJuHdu3cQEBBAVlYWzM3NsWLFCoZj9+3bh/Hjx3c4j+pPs+sbN25g4cKFDEnf+fn5MDExoaIcvsWyZcsoMU8fHx+EhYVhxIgRqK+vR0FBAUpKSnDv3r0O5TVeuXIFz549a+XItoBOp0NZWfm7pFZ/Kr58+QJCSJvviouLC3bu3ImCggJqTNNRuwaAyZMnY/HixdRAl4uLC/n5+Vi/fj0EBAQwZ84cfPz4EdeuXYOxsTFTB9vPzw8lJSWtcqcJIfDw8MCxY8cYVgcAQFdXFwEBAdQ12dnZYWtri9raWvj4+KB///7IysrC8OHD4e/vj0mTJrW6blVVFby8vHDjxg3w8/Pjy5cvEBMTw5YtW5hO/hQVFcHCwgK9e/cGPz8/cnNzUVVVhaVLl2LTpk0M366kpCQ8fPjwh1b2f6Vtt1zLyMgIHBwcna6nvr4evr6+Pbo/6ql4+/YtVFRUkJ6eDhqN1ooYo1MRMR2JC2yJ96TRaMTBwYHMmDGDACAPHjwge/bsIdra2m1Sl7ZoQXxdXl1dTXJzc0lFRQVxcXEh8fHxHQtQJISYmJi0G9945swZEhIS0uH6/mvw8vIirKysDPSk36NfbtmqqqrI8OHDiYSEBBWPnZiYSLS1tVvFqL97944sWbKkVf7My5cviZubGxEWFibi4uLEwMCAKCoqEh8fH6KlpUX27NlDBg4cSMWXa2pqUjk8qamp5MCBA2T48OGkX79+BADp27cvERMTIzY2NsTPz4/w8vKSMWPGkKSkJPLp0yeq7Tdu3CDS0tKU/gUhzTkSnp6exNLSsk2q5KamJnL16lWydetWoq+vz/S4/Px8hjywjuBPyrUAQLS1tYmqqioBQJKSksjJkyeJlJQUlavHDCoqKgz5V/X19eT9+/ekrKyMxMTEfFfn5mscOXKEqaZRC1JTU8m2bds6XN9/DdevXycAiK+vL7Wvo3ZdU1ND5OXlybBhw0hpaSmpqakhr169IlJSUqS0tJThOhUVFURWVraVbEJeXh45ffo0ERUVJXPnziX6+vpEUVGReHh4EBsbG7JhwwYybNgw6n2aPXs2efXqFSGkmT7fy8uLjB8/nowZM4YAIDw8PGTKlClESUmJJCcnExERESIkJESCg4MZ8krevHlDFi9eTB48eEC1pampiYSFhRElJaV24+VTU1PJkSNHyPz585nmSdXU1DDkgXUEf5pd//PPP2TDhg3UuxMeHk6WLFlC/TbMYGdnx/D9aGpqIvn5+aSwsJBkZWVRmjIdwbVr15jKU7SgpqaGKCsrd7i+/xoKCgoIBwcHsbKyovb9iF3b2dkRHh4e8vLlS1JTU0PKy8uJuLh4q9+3sbGRrFmzhkRGRjLsLysrI+fPnyeTJk0iYmJiREdHhygrKxM7Ozvi4eFBVFRUyMSJE6n3aciQIeTu3buEEEKKi4vJyZMnibi4OJk+fToBQNjY2IiYmBiZO3cuuXPnDhETEyOcnJzEw8OD5OfnU+0uLS0lMjIyJCYmhuGbe/v2bSIuLk5pGjLD69evSUBAAJk8eXKr/ouQ5lweZWVlhjywjuB35FCtWbOGmJubd3pbs2ZNj++PeioUFBTI8uXLSVFREeHj4yPPnz8nN2/eJLNnz+50bucPOVRlZWUkJCSE8PDwMHDeGxoativgGRoaStasWdNqUJ6QkECUlZV/SD8gNja2XeFVZWVlpkb2v4KamhrCwcFBacC07OvoFhgYyKBDJSMjQyorK5leKz4+ntIkyMzMJLNnz6aScMeMGUOEhYUJHx8fYWFhIYKCguTevXukoqKCSElJkbdv37ZKhiWkWVhQVVWVFBQUEHFxcbJjxw4iIyNDWFlZyY0bN0hKSgqZOnUqAUC4uLjIqlWrSEFBAZGUlGyT0MLa2vq7QpR0Op0YGxuTAwcOMAzS0tPTydKlS8mLFy++//C/wp808CovLyf//vsvGTlyJPX7ASCqqqrtJranpaUROTm5Vk7Xs2fPyNKlS9t1xr7F27dvib6+fpvlmzZtYkiQ/V/ExIkTiaSkJPX/j9j148ePCQASFBREampqiImJSZvv9Lt374iOjg4hpHnAJS8vT2g0GgFAhg8fTgYPHkz4+PgIOzs7odFoJCYmhtTU1BBZWVmSnZ1Nli1b1koYvampiUhISJC6ujoyZ84c4urqSlatWkUAkNOnT5MXL14QWVlZauJu/vz5JDc3l+jp6bVJBHTq1Cly4sSJ7z63AwcOkPXr1zO8j+/fvycqKiptEjO0hT/Nrp88eULmzZtHDXYBkGXLlrU7idnS936r0VJYWEgkJSXbTEpnhtraWqb9fAvOnj3LMEnwvwgtLS0yYMAA6v8fseuioiLSp08fYm9vT2pqasjhw4eZipUS0kwQ0PJbNDY2EmNjY8LJyUkAEBERETJs2DDCx8dHuLi4CADi5uZGKisriYmJCUlJSSGGhoZM+wwNDQ1SWFhIZGRkiLu7OzE1NSXs7OzE1taW5OfnU8QJAMjEiRNJamoqcXV1JQEBAUzbmZKSQiwtLb/73C5evEjU1NQYyCc+ffpELC0tyeHDh797/rf4HQ7V6tWriZmZWae31atX9/j+qKdCUFCQGuf27t2b6teSk5PJ1KlTO1XnD+VQsbKyQlNTEyoqKsjKykJQUBD279+PM2fOYPjw4W1qK2hoaICdnR1ycnKYNGkS+Pn5kZqaijFjxiA4OLjd2PnPnz8jODgYr1+/Rr9+/aClpQUvLy8sW7YMYmJiDMf6+flhzJgx6Nu374/c1n8KBw8eRH19fYeJAL6FtLQ02NjYEBgYCCsrKwwcOLDNWHlpaWkcOnQIW7duhYODA96/f4+AgABcuXIFnz9/hpiYGLKzsxEeHo5Ro0ZRWgEzZszAtWvXMHbs2Fbvy759+2BoaAhhYWHw8vLC2dkZlZWVWLx4MRYtWgQAcHBwgJOTE4yNjREUFITg4GCMGTMGlZWVTPPc1q1bB1dXV6ZhTC2g0Wg4fvw4zpw5g+XLl4OdnR0NDQ0YOXIkTp06hWHDhnXqef4pEBcXx6tXr/D27VskJiZix44diIyMRH19Pc6fP880LGH69OlwcHCAjo4OREREMHjwYDx79gxcXFwIDg5ul9q+trYW58+fR1paGnh5ebFixQqws7MjJiamVezyrVu38Pbt29+eE/E7kZqaiufPn0NcXLxT548dOxajRo1CcHAwlJWV8e7dO4wbN47psaKioigpKQGdToe3tzeSkpLg7e2NzMxMPH/+HDNnzsSXL1/g5+cHTk5OKsZeU1MToaGhlFzC1wgLC4OEhAQ4ODgwfPhwWFpagpeXF3V1dZSGjq6uLhISEuDo6Ijbt29DVFQUQkJCTEPJAWDVqlVQVVVtlXf2LaytrXHp0iXo6+ujqakJdDodffv2xbZt2zqVa/onQUxMDLdv30Zubi5SUlKwfv16JCYmIjk5GaWlpUzDhISFhXHmzBnY2dmBlZUVY8eORXZ2Nj5//owDBw4wJKV/CzqdjsTERPz7779gYWGBjIwMli1bBnd391bhV9nZ2fDz80NsbGy33/efghY6/8WLF3fq/F69emHx4sWIjIzExo0bkZiY2Gb6BAcHByZMmIDMzEy8fv0aPj4+cHR0BDs7O65cuYIZM2aAjY0NZ86cQUNDA1auXAk2NjYYGRnhyJEjKCsra9VnPHnyBBwcHBgwYAAWLlyIBQsWwNbWFgMHDoSDgwM8PDwwY8YMJCYmIjIyEidOnMDMmTPBx8eH4OBgpu2cPXs2du7c+V1dUjk5OfTv3x92dnb49OkTpTdoZmb2W/XRfgSkB+dQ/dfR1NQEPj4+AICQkBA+fPiAsWPHYujQocjMzOxUnZ0SN+Hg4MD48eOxe/duGBsbY926ddi5cyeCg4Ph7+/PdOCjoqICZWVlvHz5EtXV1bC1taVupi1ERkbC29sbpqamkJaWxvv377F9+3ZMnDgRzs7OEBISwrJly1BdXY3IyEiMGDECbm5unbml/wxa2LNaGFN+FL169cLWrVuxa9cu9O/fv924XBYWFqrDy8rKwrJlyxAQEABnZ2fKeVJSUsKAAQMgJCSEK1euQFJSEjt37oSKigqKi4tRWVkJPj4+FBQUYN++faDRaJCXl0dTUxMaGxsBNLMM3b59G3v27MGuXbvg5OSENWvWQEVFBc+fP8etW7eQmZmJPXv2QF1dHXfv3sWgQYPAysqK3NxccHFx4fXr198VmGNhYcGaNWuwZs2aDonR/dfAwsKCUaNGYdSoUdDR0YG9vT2OHTuG3r1749y5c0wJQWbPno24uDjk5OSgpKQEFhYWEBISavc6qamp2LRpE1atWgVzc3N8/vwZvr6+qK6uRlxcHM6dOwdlZWWwsbEhNjYWTU1N8PPz+5/7Pb5Gi15Vi/PSGTg5OUFHRwcODg7fzX/h5uZGU1MTsrKyMHXqVNy9exeysrIUc5m9vT0IIZCTk8OxY8ewdu1aaGpqYuPGjXj+/DnFpldRUYFTp07hzp07FEtXRUUFuLi4QKPREBoaiqCgIOjp6SEgIAB0Oh1Tp04FLy8vHjx4QL1TJ06cQGRkJPr37w8hISG8ePECHBwc+Pz5c4dsVU5ODnJycv+Tdg00O8mioqJQVVXFkSNHsGHDBvDz82Pfvn2t9H0AYOjQoQgNDUVhYSHy8vIgLCzcKkH8W+Tl5cHQ0BASEhIwNDQEnU5HREQEUlJSMG3aNCgqKkJNTQ0CAgK4du0aXr16BT8/v06LOP8X8Pr1awCMuk0/ii1btkBSUhJ6enqg0Wjt2jY/Pz+qq6uRlZUFbm5ucHJyoq6uDhcvXgQLCwuCgoLw8eNHmJmZYdeuXfDy8oKYmBhmzpyJffv2IT09HZMnT0Z9fT0iIiJw+vRphISEAGjOcWrJ3du5cyfExcWxaNEipKWlwc3NDWPGjIG8vDyeP3+OnJwcaGlpISMjA2fOnEGvXr0wdOhQPH36FKysrKitre2QLunMmTOpfuVPtO2/DtXvw6RJk/D06VOMGDECc+bMgbu7Ozg4OHDy5MlOk9p1iw6Vuro6taQrLCzMVBOiI6DT6SQhIYGoq6uThQsXEmFhYXLo0KFWIWe7d+8mvr6+JCMjg/j6+hJ/f/92tXT+l5CZmUm4ubmJtrY2lTfwIyEELToY6urqpH///mTp0qVthmu8ffuW6OnpkbKyMsLNzU00NDTIqVOnCCHNoR6FhYVUSOinT5+IlJQUqampIYQ0hx/MmDGDyMrKEkVFRbJq1SqSnJxMXSsmJqZVaOemTZsIACIoKEimTZtGRowYQQYMGEBGjRpFRo8eTW7cuMEQigqADBo0iPDy8lI6P76+vr90Sb8nL8V/r43Ozs4EAOHg4CA0Go28ffu209dKTU0lhoaGREpKivTt25ds2bKlVZz8hQsXiJWVFcnLyyN+fn7k1KlTrcKO/ldRUVFBhgwZQmbPnk39Xj9q1zU1NcTJyYmwsLAQcXFx8uXLF6bXagnTampqIuPGjSOysrLE2tqaKqutrSWDBg0is2fPJjU1NURaWpqUlpaS2tpaQqfTyYoVK4ikpCRRUFAgqqqqJCwsjMpTysrKahXaefr0acpep0yZQsaOHUv69+9PRo8eTQYMGECSkpKIkJAQg12LioqSvn37Uu/n7t2729RL6078F+z64sWLBABhZWUlAH447PFrZGVlkY0bNxJZWVkiJCRE9PT0WuXvPHnyhCxfvpx8/vyZnDt3jvj4+PwWPceeCDqdThYtWkRERERITk4OIaRzdh0REUEAEHl5efLs2bM2rycnJ0e+fPlCVqxYQSZNmkQUFRUJnU6n7HrZsmWEm5ub1NbWktWrV5PHjx9TIfCOjo5k/vz5RFFRkSgqKhJvb29qbFZTU9MqtPP27duUvU6aNIlMnDiR9O/fn4wYMYIICgoSX19fIicnx2DXHBwcRFhYmPrfwsKCZGRk/MRf4P/xO0L+9PX1ibGxcac3fX39Ht8f9VQkJCSQ8+fPE0Ka+7Hx48cTGo1GhISESHJycqfq7BaHysXFhTKAOXPmdFhY62vQ6XRiZ2dH7OzsyMePH4mhoSF5/vw5OXfuXKvk+IaGBiIhIdHmQL+78PTpUxIZGUlu3br1Q3levxvBwcGERqORkSNHkuDgYFJdXf3DHfTDhw8JKysrmT59OlNhPjqdTjQ0NIiDgwMZM2YM4eHhIcuWLaPILGpra8nnz58JALJjxw5SW1tLzM3NydOnT6k6UlNTiby8/A/l4LTVXgkJCZKbm0vOnDlDkSy0OAAmJibE3t6eGkCwsLCQ1NTU7nvgTPBfGHjFxMRQdj148OBOi92dOXOGrFq1irx584bs27ePREVFkaSkJLJ06VJKyLYFSkpKXRZu/h6ys7OpNnSmr/pdePDgAeHh4SGCgoJk3759pLy8/Ifturi4mAgKCpIpU6YQMzMzpn2ok5MTsbS0JAsXLqSIY1rstmXgJSIiQlRVVUltbS3x8vIiwcHB1LP88OEDERcXb+WAt5eD01Z7DQwMyM2bNyknYObMmVQeh5eXF7G2tib8/PzUexoTE9Pdj50B/wW7zs7OZhjA3rp1q1PXuXHjBpGRkSEPHjwgSUlJZNeuXeThw4dEQUGBXLlyheFYa2vrn97nFhcXk5iYGBIXF8cgAtvT8eHDBzJ48GDCxcVF7OzsSEFBQacmQWfMmEGGDRtG5Sp+iwsXLhA1NTWiqalJABA9PT1K0LzFriUlJcmYMWNIbW0tuXbtGrG3t6fsura2lsjIyLTKR66uriaampokMTGR6f0xa6+7uzs5ceIEuX//PuHl5SVCQkLk8ePHpK6ujty8eZNoaWmRsWPHUu/p0aNHf/p473c4VHp6esTIyKjTm56eXo/vj/4klJaWduk961TI37fQ1NTE7du3oa6uDj09ve/qiTDDlStXQAiBu7s7gObl4wkTJmDChAkYPnw4tmzZQtE3t9BqFxYWQkREpDtugQEvX76EjY0NRo0ahSlTpuDJkydwcHCAjY3NHxGbu3LlSkyaNAnbtm2DtrY2bG1tsX37dqbhe21RtI4fPx6enp7YuHEjLCwssHPnTri6uuLt27e4efMmHj9+jKqqKgDAokWLEBISgh07doBGo6G2thaPHj3CvHnzADRTPnNyckJERAQ1NTXUNWbMmAFLS0uIi4tDQEAA06dPR25uLjg4OFrl4MTExMDT0xOcnJwYPXo0NDQ0sHjxYtBoNJSWluLq1asQFRWlQhCDg4NhbGwMX19fZGRkQFpaGsbGxjh+/DjodDrmzZuHnJwceHp6UrStw4cPh4uLS7uCmP9LWLRoEVauXInx48fDzs6uw4J5XyM3NxdRUVGIiooCCwsLbty4gfXr14ONjQ0TJkyAkZERLl26RB0vISGBBw8edCm0rS2UlJTA0tISXFxcWLhwId68eQN3d3eoqqrCzMys26/X3Zg5cyYyMzPh7OwMOzs73Lp1C97e3kzzBtuyaz4+Pvj5+UFDQwNPnjzB2bNnsWPHDtDpdFy/fh1paWmU4OuECRMQHx+PsLAw9OrVC7W1tSguLqakAzQ0NMDJyYlBgwahpKSEej9ERETg5eUFHR0dEEIwY8YMVFZW4tOnT61ycB49egQ7OzvU19dj5MiRkJOTg4qKClhZWUEIwc2bN+Hn50d9U1JTU5GUlITbt2/j1KlTkJGRgYGBAY4cOQI6nQ4lJSVcu3YNz58/x+nTp9GrVy8MGDAAO3bs6HRe6X8NoqKisLa2Rm1tLfbs2dMpofT6+nrs3LkTcXFx4OXlxbZt26ChoYEpU6YgLCwMcnJymDdvHqVBpKSkhKtXr/6UnLW6ujps2rQJHz58gLS0NBobG3HixAlMnDgRu3fvblN/qaegRTpg37592L9/Py5fvoyIiAiMHDmy1bFt2TWNRsOZM2cgKSmJ5ORk8PLywtTUFGPGjEFycjJSU1NRWFgIOp0OERERnDp1CmVlZejTpw9qa2vBwsKChQsX4v79+9i2bRs4OTkxePBgVFZWUnbNycmJwMBA6OjooKioCNOmTQMnJyfevHkDGxsbhj77w4cPsLS0RGFhIUaMGIFFixZBV1eXeh/u3r2LqKgosLKyoqmpCVVVVTh48CC0tbWxceNGLFmyBCtWrIC/vz/ev38PCwsLEEIwYsQIODk5gYuLC/z8/Fi3bl2n0xt6AsjfkL8ehS7zL3TE6/oVnrumpiYDS5usrCxDuaKiIqmoqKD+19fXb5das7PIz88nS5cuJQUFBQz7a2tribq6Orl+/Xq3X/NnwsPDg5qJFBcXJ+vXr2eYvfvezFd+fj4JDQ0lQ4YMIQAIOzs7GTZsGFm1ahXx9/cn2dnZ1LGrV68m6enppKamhnh7e1OzSy1QUVGhGBjr6+uJlZUVUVVVJWfOnCH79+8n0tLSRFtbuxVDGCGEzJkzp1U4n5eXFyGkebn22zJ8xVbXsnFzc5Nx48YRAFT44bfn7N69u1ue+39hJrs7sHPnTgabUVFRocI+CSFk/fr15PHjx9T/np6erWa3uwMts6/f0oG3rIyfPHmy26/5MxETE0OFYs6ZM4esXr2aYUXoe3ZdUlJCLl68SGbOnEnZysCBA4mSkhI5fvw4ycjIoI718PAgISEhpKamhjx//pyylZb+2M7Ojty7d48Q0vw89+/fT2RkZMixY8fIsWPHiKqqKpGWlmYakmdkZNTKBltCAuvr60mfPn2Y2va3dj5+/HjCwcFBxo4dS0pLS8n48eMZjtHU1OyW5/7XrpsRERFB9b+EELJjxw4GansfHx8GFrfExESyf//+n9IWXV1dEhsb22r/2bNnyfr163/KNX8Wnj59SgQFBakwOW1tbYqmnJDv23VFRQW5evUqUVZWphgzhYSEyNKlS8m+ffvI/fv3qYiVhIQEsmPHDlJT0yyZ0mIr6enphBBCAgICiI+PD3XtqKgosnTpUuLu7k5OnTpFDAwMyPz585kywR46dKiVnQ4ZMoQqFxcX79A3e/To0YSfn58ICAiQjIwManWtZZswYUK3PfvfsUKlo6NDVq9e3elNR0enx/dH/0volhWq7kB1dTXDTOvIkSPx5MkTTJkyBQAwbtw45OXlYfz48aipqaEEhrsbR44cwa5duyAsLMywn5OTEydPnoS+vj7FNvcnYNOmTVixYgViYmJw7do1+Pj44NKlS9i3bx8UFRW/e37fvn2hpKSExYsX4+XLl5g+fXqbSa9GRkbYu3cvTp48SbF8vXv3DgDw4MED9O3bl5oBsLKywpIlS6ChoUGdv2HDBiQnJ8PQ0BChoaEMdQcFBWHdunVISEgAOzs76uvrqdmZESNGICcnB+fOncOMGTNQW1sLPj4+mJiY4M2bN1BWVgYvLy9mzJgBfX19VFVVYcCAAeDg4MCmTZvw9u1bsLOzt8so9hedw8uXL2FnZ0f9LyMjg/Pnz2PVqlUA/n/VpcXOk5KSKPHZ7sT58+exYsWKVsygNBoNbm5ukJaWhoGBQYfESnsCFBUVkZ+fj7i4OFy+fBmxsbGIiYnBrl27YGRk9N3zeXl5sXTpUsyfPx9paWmYMmVKm+QAq1atgo6ODmRlZVFXVwcA1KrVhw8f8OTJE4oM6OjRoygvL8elS5eoBHFzc3O8evUKurq6iIuLo2apAWDv3r1oampCYGAgxcDXspLOzs6Ot2/f4syZMxg1ahRYWVnBw8ODvXv3IjExEeLi4hAREcHo0aOxevVq8PDwgJ2dHfz8/LCwsEBSUhK4uLjAzc2NnTt3dul5/wUjXrx4wbAyICcnh4iICMycORNAs11HRERQ5REREbCxsen2dqSnp6NXr15QUFBoVaanp4eEhATk5+dj0KBB3X7tn4HJkycjJycHly9fxsWLF3Ht2jVERkbC1tYWdnZ27bLeAc02M3fuXMyZMwf379/HqFGj2iR2WLRoEfbu3Yvi4mJKUHvHjh2YNGkSampqcOrUKcTFxQEAkpOTER4eTn1/AWD16tUoLS2FlpYWfH19MXToUKpuU1NTlJSU4MCBA6isrATQvOLdgvj4eJw9exZ8fHwQFBQEGxsbzp8/D29vb4wfPx6zZs2CkJAQ9PT0MHLkSFRXV6N///7Q1dVFdXU1eHh4wMrK2kqM+E8D+btC9d9CR7yuX+G5KygoMOQzvH79msjKylKJ0zo6OqSgoIA0NTURCwuLVgJ13QUZGZl2Yyi1tLR+eo7Hz0RGRgaRkpIiQLMmxP79+0lmZman8qyYbR4eHkRXV5ds27aNAM3aZadPnybS0tJUTlROTg6lc8MM7cXbFxUVdfj5u7q6kjlz5pC4uDiSmZlJoqKiiIyMDPHz8/vh5/aj+DuT3Qxzc3Py+vVr6v/KykqyZMkSKh/Lzc2NJCUlEUIIOXbsGHFycvop7VBTU2uThIGQZqKbzor59QQUFhZSCcqDBw8mO3bsII8fPyZVVVXdYtdRUVFETk6OHD16lAAg165dIzExMQwionV1de3mtp46dapN26uoqOiwEOeFCxfI5MmTyZkzZ8jLly9JcnIyWblyJbG3t/9P5Vl0Fr+ijd7e3gzfYDqdTpYvX05pxV28eJFakUpOTm63v+8KHBwcGFZwvkV0dDTTHOA/BVVVVWTr1q2Ek5OT8PPzk7Vr15Lbt293Kn+S2ZaamkqWLFlCzp8/T0V93Lp1i8jKyjIk5svLy7f5Pt2/f5/Y2NgwLaurq6PINr6HR48eETExMbJnzx7y4sULSo9q1apVvyTX9XesUGlraxMDA4NOb9ra2j2+P/pfwo8nO/0kKCgoICwsjPp/1KhRsLe3h5KSEpydnfH27VskJCRAXl4eYmJiTCmcuwNsbGztUm+25BL8qRg/fjylEzJu3DjY2tpSGjWHDx9GdXV1q3OKi4uRlpZG5Uy1B0tLSxgbGyM4OBicnJzQ19cHAERHR1M5UXFxcQwrU99CW1sbFy5cYFrWr1+/DsX8X7hwAUVFRbh79y7k5eUxZswYKCsr4+LFi7h69Spu3rz53Tr+ouvQ0dHByZMnqf95eXlx6tQpGBkZwd7eHqGhoSgtLYW6ujrevXuH7du3/5R21NfXt0vP3Lt3b4b8vj8NAwYMgJ+fH548eQI5OTns27cPU6dOxcCBA7F9+3YUFxe3OqeiogKPHj1CSUnJd+uXkZGBp6cnRVG8e/duZGZmIiIiAqNHjwYA3Lt3D+Li4m32n1paWoiOjmZa1qtXrw7lw2Zk/F97dx8U1Xm3D/xaERYkskEXWJigoqOgIY7WCCzY+A7GIKNTB5TOKtVRqyKlgUgxGeUxEUQTnRSsUttIpESiBaOJhkDUaqkgSqW+PEo7igGFBUfXBRF2ye7+/vDHebKyKLJwxO31mTl/eM59n5fFA1x8z7nv/0V2djYuXLiAmJgY+Pr6YsaMGfjiiy/g4uJi9n+N+s7ChQvx+eefC38hl0gkyM7OxieffILVq1dj69atGDp0KJYvX47s7Gzh/efe1tra+tSpPVxcXCz+THtZDBo0CKmpqfj3v/+N1atX49ChQwgJCYGbmxtWrVolTJPyU21tbbh8+TJqamqeuf/XX38d+/fvF+auysnJwTfffIPdu3djxowZAACNRoPBgwd3+TlPnjwZV65csbjNwcHBrHLVlaamJvz2t7/FyZMnkZycDD8/PwQEBCAjIwOLFi1CYmLiM/fxMjL9/wqVNQv1H/0mUC1ZsgS5ubkoKSkR1k2ZMgVffPEFjhw5AqVSCXt7exw6dOiZEzlaw9nZGWq12uI2o9GIGzduvPSDFkgkEkyfPh1//etfcfPmTeTn52PWrFl4//338dprryE8PByfffYZioqKEB0djeHDh2PKlCl47bXXoFKphMf4unL69GlUV1fDYDDAzc0Nd+7cQXZ2NubMmYNZs2Zh586d+PTTT4XHCZ7UMeGnNfbu3YvNmzd3+uVuwIAB2Lp1KzIyMqzaP3WPUqlEQ0MDcnNzzR7RPHz4MCorKzF+/Hg0Nzdj165d2Lp1a48GtOmOiRMn4syZM11u//vf/y48dvgyGz9+PLKyslBdXY1jx45h2bJlyMrKwsiRIzFt2jTs2LEDp0+fxm9+8xsMGzYMwcHBGD58OObOnYuKioqn7ruqqgpnz54F8PiR7Hv37qGgoACLFy/GlClTkJCQgLy8POzbtw8Gg6FTf0dHR7S3t1t1fRkZGdiyZYvFiaYTExNx6NAhGI1Gq45BzyaXyxEUFIRNmzYJ8wW++uqrwh/SnJ2d0dzcjOTkZOzfv7/P5poKCAjAiRMnutx+4sQJBAQE9MmxxTRs2DCkpaXhP//5D77//nt88MEHKCoqgr+/PyZPnoyNGzfizJkz2Lx5M0aOHImAgAD4+voiJCQEx44de+q+m5ub8Ze//AXA4+8fjx49QlFREdauXYuAgABERUXhzJkz+OSTT7oMp896FPFZcnJysHr1aouPJ4aHh+POnTu4d++eVccg6mv95h0qJycnHDx4EBs2bMDWrVvh6+uLhoYGPHr0CHv37sXPfvYzUc5j9erVSElJwe7duzv9Mr5v3z68/fbb/X7UoOfh7u4uTHq5YcMGFBQU4MSJE1i3bh2MRiNGjRqFTz/9FOPHj8c//vEP7Nq1CwEBASgoKEBISIjFfXa8P/Xjjz/i2LFjePjwIR49eoRx48Zh2LBhcHNzw6VLlzBv3jxERUVh69atGDFihND/u+++E0YI7AmdTgepVNrlxNEKhaJb1TaynkQiwZ///GfhPSV/f388fPgQtbW1iIuLw9y5c0U5j5UrV2LFihVQKpWdfhkvLS3FK6+8YnG0vJeVi4sLZsyYgRkzZiAhIQEFBQU4efIkPvzwQ7S1tcHNzQ3JycmYPn06Ll++jKysLLz11lv44x//KLzf9qSfft87dOgQDAYDtFotfHx8MHbsWLS0tODmzZtYtmyZUK3oeKcGAE6ePGn1L7c1NTVm72I8eX5jxoxBbW1tt/4qTtb53e9+J/xM9PX1hUQiwbVr1xAZGYmdO3eKMslqREQEQkNDsXjx4k4TitfU1KC8vBybN2/u8/MQi1QqRUhICEJCQhAbG4uvvvoKp06dwt69e7F9+3YMGjQIy5Ytw4IFC3Dnzh3s27cPCxcuRGJiosU/MAKAwWCAg4MD9Ho9Dhw4ACcnJ9y9excKhQITJ05EW1sbWltbsWHDBvzpT3/C9u3bzd5Zu3379lOrhN1x6tQpIdRZEhoaitLSUovvyr3MrK0ysULVv0hM3fiKNDU1QSaToba21uobpztaWlpQX18PmUzWJwNPPMvu3btRXl6OdevWYfz48aitrRWGGc3IyLCpQNXV44tqtRqtra0YPny4WdWgubkZS5cuRUVFBfbv34+pU6da7P/jjz/CZDIJocZkMgn7MZlMWLhwIX7+859j06ZN8Pb2xr/+9S/Y2dmhoaEBy5cvx1dffdXjv3rp9XosXboUBw4c6LLNL37xC+Tn5/do/93R1NQEb29vaLVaUe6ZnhD7vm5vb0dNTQ0cHR1fyEvi3333HbKysrB27Vq89dZbePDgAQ4cOIAzZ87gs88+67dfp57o6r7WarXCUMY/HYCjvb0dSUlJyM3NRXp6OmJiYiz2NxqNMBgMwn1tNBrNvh/Gx8dj1KhR+Oijj2AwGHD58mV4enqira0Nixcvxu7duzsN+PM8nnXfxsXFISkpqc/+f/G+7sxkMuGHH36AyWTq9PNCDFevXsX69evxq1/9CnPnzoXBYMCRI0eQl5eHzMxMsz/Wvey6uq/b2tpw48YNjBw50mzQF5PJhN27d+N//ud/sGzZMmzZssXi12fAgAFobW3FK6+8Igxl/tP7es+ePWhsbMSpU6fwz3/+E8ePH0dISAhMJhNiY2OhUqkQFBTU4+taunQpdu3a1eUfQTuq7LNnz+7xMZ5FzHu74x6NioqyWG3vLr1ejy+//LJffz/6b9KtQNXW1gYfH58uH4Ujos4UCgWqq6vh6Oj4ok/FIt7XRM+P9zWRbRLr3u4IVJGRkVYHqoMHDzJQ9RPdKgE4Ojqiuroaer2+r8+HyGY4ODj021+6AN7XRD3B+5rINr2Ie5uP7dmObj9T5ejo2K9/iBDR8+N9TWR7eF8T9X98h8q29JtBKYiIiIiI/hsYjUarRiXliKb9CwMVEREREZGIWKGyLQxUREREREQiYqCyLf1mYl8iIiIiov8GHYHKmqWvaDQaqFQqyGQyyGQyqFQqPHjw4JnXk5KSAi8vLzg5OWHatGm4evWqWRudTod169ZBLpfD2dkZERERuH37tlmbiIgIDBs2DI6OjvD09IRKpUJdXZ1Zm5qaGsybNw/Ozs6Qy+WIi4t74QPxMFAREREREYmoPweq6OhoVFZWorCwEIWFhaisrIRKpXpqn23btmHHjh3IzMzE+fPnoVAoMHv2bDQ3Nwtt4uPjcfjwYeTl5aGkpAQPHz5EeHg4DAaD0Gb69Ok4ePAgqqqqkJ+fjxs3bmDhwoXCdoPBgHfeeQctLS0oKSlBXl4e8vPzkZCQ0PsfxHPo1jxURERERERknY55qCIiIswmWH9e7e3tOHr0aK/PQ3Xt2jWMGzcOZWVlCAwMBACUlZVBqVTi+vXr8PX17dTHZDLBy8sL8fHxSEpKAvC4GuXh4YH09HSsWrUKWq0Wbm5uyMnJQVRUFACgrq4O3t7eOH78OMLCwiyez9GjRzF//nzodDrY29vj22+/RXh4OGpra+Hl5QUAyMvLQ0xMDBobG1/YnFysUBERERERiai3KlRNTU1mi06ns+q8SktLIZPJhDAFAEFBQZDJZDh79qzFPtXV1VCr1QgNDRXWSaVSTJ06VehTUVGB9vZ2szZeXl7w9/fvcr/3799Hbm4ugoODhfBZWloKf39/IUwBQFhYGHQ6HSoqKnp+4VZioCIiIiIiElFvBSpvb2/hXSeZTIa0tDSrzkutVsPd3b3Tend3d6jV6i77AICHh4fZeg8PD2GbWq2Gg4MDXF1du2zTISkpCc7Ozhg6dChqampw5MgRs2M9eRxXV1c4ODh0eX5iYKAiIiIiIhJRbwWq2tpaaLVaYUlOTrZ4vJSUFEgkkqcuFy5cAABIJBKL52tp/U89ub07fSy1ee+993Dx4kUUFRXBzs4OS5YsMXtnrKfn15c4bDoRERERkYh6a2JfFxeXbr03FBsbi0WLFj21zYgRI3Dp0iU0NDR02nb37t1OlaEOCoUCwOPqkaenp7C+sbFR6KNQKKDX66HRaMyqVI2NjQgODjbbn1wuh1wux5gxYzB27Fh4e3sL73EpFAqcO3fOrL1Go0F7e3uX5ycGVqiIiIiIiGyYXC6Hn5/fUxdHR0colUpotVqUl5cLfc+dOwetVtsp+HTw8fGBQqFAcXGxsE6v1+P06dNCn0mTJsHe3t6sTX19Pa5cudLlfoH/m2+r490wpVKJK1euoL6+XmhTVFQEqVSKSZMm9eCT6R2sUBERERERiai/Tuw7duxYzJkzBytWrEBWVhYAYOXKlQgPDzcb4c/Pzw9paWlYsGABJBIJ4uPjkZqaitGjR2P06NFITU3FoEGDEB0dDQCQyWRYvnw5EhISMHToUAwZMgSJiYl44403MGvWLABAeXk5ysvLMWXKFLi6uuLmzZvYuHEjRo0aBaVSCQAIDQ3FuHHjoFKpsH37dty/fx+JiYlYsWLFCxvhD2CgIiIiIiISVW898tcXcnNzERcXJ4zIFxERgczMTLM2VVVV0Gq1wr/Xr1+P1tZWrFmzBhqNBoGBgSgqKsLgwYOFNjt37sTAgQMRGRmJ1tZWzJw5E9nZ2bCzswMAODk5oaCgAJs2bUJLSws8PT0xZ84c5OXlQSqVAgDs7Oxw7NgxrFmzBiEhIXByckJ0dDQ+/vjjPvs8uoPzUBERERERiaBjHqrZs2dbPQ9VcXFxr89DRT3DChURERERkYhMJpNVVSbWQ/oXBioiIiIiIhH113eoqGcYqIiIiIiIRMRAZVsYqIiIiIiIRNSfB6Wg58dARUREREQkIlaobAsDFRERERGRiFihsi0MVEREREREImKFyrYwUBERERERiYiByrYwUBERERERiYiP/NkWBioiIiIiIhGxQmVbGKiIiIiIiETECpVtYaAiIiIiIhIRK1S2ZcCLPgEiIiIiIqKXFStUREREREQiYoXKtjBQERERERGJyGQyWfUeFANV/8JARUREREQkIlaobAsDFRERERGRiIxGIyQSiVX9qf9goCIiIiIiEhErVLaFgYqIiIiISESsUNkWBioiIiIiIhGxQmVbOA8VEREREZGIOgKVNUtf0Wg0UKlUkMlkkMlkUKlUePDgwTOvJyUlBV5eXnBycsK0adNw9epVszY6nQ7r1q2DXC6Hs7MzIiIicPv2bbM2ERERGDZsGBwdHeHp6QmVSoW6ujqzNhKJpNOyZ8+eXrn2nmKgIiIiIiISkdFotHrpK9HR0aisrERhYSEKCwtRWVkJlUr11D7btm3Djh07kJmZifPnz0OhUGD27Nlobm4W2sTHx+Pw4cPIy8tDSUkJHj58iPDwcBgMBqHN9OnTcfDgQVRVVSE/Px83btzAwoULOx1v3759qK+vF5alS5f23gfQAxITa4ZERERERH2uqakJMpkMfn5+sLOz6/F+DAYDrl+/Dq1WCxcXl147v2vXrmHcuHEoKytDYGAgAKCsrAxKpRLXr1+Hr69vpz4mkwleXl6Ij49HUlISgMfVKA8PD6Snp2PVqlXQarVwc3NDTk4OoqKiAAB1dXXw9vbG8ePHERYWZvF8jh49ivnz50On08He3h7A4wrV4cOHMX/+/F67bmuxQkVEREREJKLeqlA1NTWZLTqdzqrzKi0thUwmE8IUAAQFBUEmk+Hs2bMW+1RXV0OtViM0NFRYJ5VKMXXqVKFPRUUF2tvbzdp4eXnB39+/y/3ev38fubm5CA4OFsJUh9jYWMjlckyePBl79ux54YN0MFAREREREYmot96h8vb2Ft51kslkSEtLs+q81Go13N3dO613d3eHWq3usg8AeHh4mK338PAQtqnVajg4OMDV1bXLNh2SkpLg7OyMoUOHoqamBkeOHDHb/uGHH+LQoUP4/vvvsWjRIiQkJCA1NfX5LrSXMVAREREREYmotwJVbW0ttFqtsCQnJ1s8XkpKisXBHH66XLhwAQAsDuduMpmeOcz7k9u708dSm/feew8XL15EUVER7OzssGTJErNBOD744AMolUpMmDABCQkJ2Lx5M7Zv3/7U4/Q1DptORERERCSi3pqHysXFpVvvUMXGxmLRokVPbTNixAhcunQJDQ0NnbbdvXu3UwWqg0KhAPC4CuXp6Smsb2xsFPooFAro9XpoNBqzKlVjYyOCg4PN9ieXyyGXyzFmzBiMHTsW3t7ewntclgQFBaGpqQkNDQ1dnmNfY6AiIiIiIhKZmOPCdYSUZ1EqldBqtSgvL0dAQAAA4Ny5c9BqtZ2CTwcfHx8oFAoUFxdj4sSJAAC9Xo/Tp08jPT0dADBp0iTY29ujuLgYkZGRAID6+npcuXIF27Zt6/J8Oj6jp70bdvHiRTg6OuLVV1995vX1FQYqIiIiIiLC2LFjMWfOHKxYsQJZWVkAgJUrVyI8PNxshD8/Pz+kpaVhwYIFkEgkiI+PR2pqKkaPHo3Ro0cjNTUVgwYNQnR0NABAJpNh+fLlSEhIwNChQzFkyBAkJibijTfewKxZswAA5eXlKC8vx5QpU+Dq6oqbN29i48aNGDVqlFCd+vrrr6FWq6FUKuHk5IRTp07h/fffx8qVKyGVSkX+tP4PAxURERERkYisnZy3L6tbubm5iIuLE0bki4iIQGZmplmbqqoqaLVa4d/r169Ha2sr1qxZA41Gg8DAQBQVFWHw4MFCm507d2LgwIGIjIxEa2srZs6ciezsbGH4eCcnJxQUFGDTpk1oaWmBp6cn5syZg7y8PCEs2dvb4w9/+APeffddGI1GjBw5Eps3b8batWv77PPoDs5DRUREREQkgo55qEaMGIEBA3o+NpzRaMStW7d6fR4q6hlWqIiIiIiIRNSfK1T0/BioiIiIiIhEZO1EtC96Ilsyx0BFRERERCQiVqhsCwMVEREREZGIGKhsCwMVEREREZGIGKhsCwMVEREREZGIGKhsCwMVEREREZGIGKhsCwMVEREREZGIOMqfbWGgIiIiIiISEStUtoWBioiIiIhIRAxUtoWBioiIiIhIRAxUtoWBioiIiIhIRAxUtoWBioiIiIhIRAxUtmXAiz4BIiIiIiKilxUrVEREREREIjKZTFYNfc4KVf/CQEVEREREJCJrAxEDVf/CQEVEREREJCIGKtvCQEVEREREJCIGKtvCQEVEREREJCIGKtvCQEVEREREJCIGKtvCYdOJiIiIiERkNBqtXvqKRqOBSqWCTCaDTCaDSqXCgwcPntrHZDIhJSUFXl5ecHJywrRp03D16lWzNjqdDuvWrYNcLoezszMiIiJw+/Zti/vT6XSYMGECJBIJKisrzbbV1NRg3rx5cHZ2hlwuR1xcHPR6vTWXbDUGKiIiIiIiEXVM7GvN0leio6NRWVmJwsJCFBYWorKyEiqV6ql9tm3bhh07diAzMxPnz5+HQqHA7Nmz0dzcLLSJj4/H4cOHkZeXh5KSEjx8+BDh4eEwGAyd9rd+/Xp4eXl1Wm8wGPDOO++gpaUFJSUlyMvLQ35+PhISEqy/cCtITKwZEhERERH1uaamJshkMkilUkgkkh7vx2QyQafTQavVwsXFpdfO79q1axg3bhzKysoQGBgIACgrK4NSqcT169fh6+tr8Vy8vLwQHx+PpKQkAI8rTB4eHkhPT8eqVaug1Wrh5uaGnJwcREVFAQDq6urg7e2N48ePIywsTNjft99+i3fffRf5+fl4/fXXcfHiRUyYMEHYFh4ejtraWiFw5eXlISYmBo2Njb36WTwPVqiIiIiIiETUXytUpaWlkMlkQpgCgKCgIMhkMpw9e9Zin+rqaqjVaoSGhgrrpFIppk6dKvSpqKhAe3u7WRsvLy/4+/ub7behoQErVqxATk4OBg0aZPH8/P39zapXYWFh0Ol0qKio6PmFW4mDUhARERERiai3BqVoamoyWy+VSiGVSnu8X7VaDXd3907r3d3doVaru+wDAB4eHmbrPTw88MMPPwhtHBwc4Orq2qlNR3+TyYSYmBj8+te/xptvvolbt25ZPNaTx3F1dYWDg0OX5ycGVqiIiIiIiETUWxUqb29vYfAImUyGtLQ0i8dLSUmBRCJ56nLhwgUAsPgooslkeuYjik9u706fn7bJyMhAU1MTkpOTn+s43T1WX2KFioiIiIhIREaj0ep3qACgtrbW7L2hrqpTsbGxWLRo0VP3OWLECFy6dAkNDQ2dtt29e7dTZaiDQqEA8Lh65OnpKaxvbGwU+igUCuj1emg0GrMqVWNjI4KDgwEAJ0+eRFlZWadrePPNN/HLX/4Sn3/+ORQKBc6dO2e2XaPRoL29vcvzEwMDFRERERGRiHrrkT8XF5duDcQgl8shl8uf2U6pVEKr1aK8vBwBAQEAgHPnzkGr1QrB50k+Pj5QKBQoLi7GxIkTAQB6vR6nT59Geno6AGDSpEmwt7dHcXExIiMjAQD19fW4cuUKtm3bBgD4/e9/j48++kjYb11dHcLCwvDll18K73QplUps2bIF9fX1QngrKiqCVCrFpEmTnnl9fYWj/BERERERiaBjlD/A8qNr3dXx63tvj/IHAG+//Tbq6uqQlZUFAFi5ciWGDx+Or7/+Wmjj5+eHtLQ0LFiwAACQnp6OtLQ07Nu3D6NHj0Zqair+9re/oaqqCoMHDwYArF69Gt988w2ys7MxZMgQJCYm4t69e6ioqICdnV2n87h16xZ8fHzMRvkzGAyYMGECPDw8sH37dty/fx8xMTGYP38+MjIyevVzeB6sUBEREREREQAgNzcXcXFxwoh8ERERyMzMNGtTVVUFrVYr/Hv9+vVobW3FmjVroNFoEBgYiKKiIiFMAcDOnTsxcOBAREZGorW1FTNnzkR2drbFMNUVOzs7HDt2DGvWrEFISAicnJwQHR2Njz/+2Mqrtg4rVEREREREIvhphao39EWFip4fR/kjIiIiIhKBg4ODMIiDtRQKBRwcHHplX2QdVqiIiIiIiETS1tYGvV5v9X4cHBzg6OjYC2dE1mKgIiIiIiIi6iE+8kdERERERNRDDFREREREREQ9xEBFRERERETUQwxUREREREREPcRARURERERE1EMMVERERERERD3EQEVERERERNRDDFREREREREQ9xEBFRERERETUQ/8PfeRiFGm72uMAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import pNormStddev\n", + "\n", + "acquisition_fn = pNormStddev(model, p=6)\n", + "X_new_df, acquisition_fn_ds = greedy_alg(acquisition_fn, task, diff=True)\n", + "\n", + "fig = deepsensor.plot.placements(task, X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(task, acquisition_fn_ds, X_new_df, data_processor, crs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Oracle sequential greedy algorithm\n", + "\n", + "Acquisition functions that inherit from `AcquisitionFunctionOracle` use the true target values to compute performance metrics.\n", + "This assumes that the true target values are available at all target points, which will often not be the case.\n", + "\n", + "Using oracle acquisition functions requires that the `GreedyAlgorithm` is initialised with a `task_loader` object so that it can load the true target values for each target point." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:04:29.613686877Z", + "start_time": "2023-11-02T15:04:19.229844335Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "query_infill not on search grid, interpolating.\n", + "proposed_infill not on search grid, interpolating.\n" + ] + } + ], + "source": [ + "greedy_alg_with_groundtruth = GreedyAlgorithm(\n", + " model=model,\n", + " X_t=era5_raw_ds,\n", + " X_s=era5_raw_ds.coarsen(lat=10, lon=10, boundary=\"trim\").mean(), # Coarsen search points to speed up computation\n", + " X_s_mask=mask_ds, # Mask out ocean from search points\n", + " X_t_mask=mask_ds, # Mask out ocean from target points\n", + " query_infill=era5_ds,\n", + " proposed_infill=era5_ds,\n", + " N_new_context=3,\n", + " task_loader=task_loader,\n", + " verbose=True,\n", + " progress_bar=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### OracleMAE" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:05:44.451845359Z", + "start_time": "2023-11-02T15:04:29.613234506Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████| 1311/1311 [01:14<00:00, 17.61it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8+UlEQVR4nO2ddVhU29fHFymIgGIQdmCLeu0Ghm5QBCkFREUFW+zuaweKYGMgKiCi2C1iYCGKCigoKV0OMPN9/+DHeRlnhka99/J5nnmUs8/Ze5+Zs87ee+0VIgBADTTQwH8C0d/dgQYaaODX0SDwDTTwH6JB4Bto4D9Eg8A30MB/iAaBb6CB/xANAt9AA/8hGgS+gQb+QzQIfAMN/IcQr+qJP378oKKiovrsSwMNNFALJCUlSUpKqsJzqiTwP378oI4dO1JycnKddKyBBhqoe5SUlCguLq5Coa+SwBcVFVFycjIlJCSQnJxcnXWwAaJv375RQEAAffv2jWJiYkhGRoZatWpFioqK1L59exoyZAi1adOGiIgSExNp6tSpdO/ePZo1axYtW7aMJCUl+er88eMHffv2je7du0dnz56l8PBw4nA41K5dO0pKSqLi4mKSk5OjoKAgKigoIH9/f8rIyCBVVVUqLi6mI0eOkL6+Pnl7e/PVPXHiRAoKCqLyFtlXr16loUOH8px36NAhmjt3Lr1+/ZpatWpFe/bsoadPn9Lr168pOTmZVFVVycnJiQYNGkQeHh5UXFxM9+/fJyKizMxMOn36NL18+ZKePn1KsbGxREQkKipKkpKSJCsrS/Ly8iQvL08lJSUUFxdHOTk5Vfq+ZWRkyMjIiBYsWECqqqpV+5GqCZvNpvDwcPr69Ss1atSIpKSkqFGjRsxHXFycxMTESFxcnPkAoB8/ftCPHz+osLCQCgoK6P379/T06VN6+vQpM9i2a9eOTp48SWpqajxt5uTkUNu2bamoqKhCgRepii19Tk4OycvLU3Z2dp0KPJfLpWvXrtHZs2cpNzeX+vXrR87OzqSkpFRnbfybsLGxodOnT5OoqCh17NiR5OTkiM1mE5vNpqKiImKz2ZSamsp33c6dO0lOTo6ePXtG4eHh9OrVKyopKSF7e3tq164d5efnU15eHuXl5VFsbCw9efKEdu7cSbNmzeKrKzIykq5du0aysrLEZrPJzc2Nhg8fTsOGDSNpaWnKysqirKwsCg4OJjMzM9q/fz81b96cCgsLSU1NjYyMjEhVVZVCQ0PJz8+PDAwMyMnJicaNG0eenp40evRoat++PTVp0oSISl9e9vb2FBsbS127diU2m01v376lpk2bUu/evUlMTIw6d+5MnTt3po4dO1KzZs2ocePGJCMjQ9LS0iQiIkIFBQWUn59PKSkpFBAQQKtXryZVVVV6//49iYrWnxoLAL148YKys7Ope/fupKysXOO6vn79Svfv3ycbGxsaMWIEOTs7k6GhIbVq1YqIqi6jv03g8/PzycbGhgYPHkyTJk2i5s2b04MHD2jr1q00ffp0MjExqZN2fgVpaWl0+vRpSk5Opk6dOpGVlRXJysrynQeA3r9/Tzk5OYyAlf+IiopSs2bNSFVVlbp06ULy8vIkKSnJPJQZGRkUHh5OcXFxFBcXR/n5+Twjx507d+jevXt87Q4fPpzi4+Pp69evzLFGjRqRjIwMNWnShPnIyMiQrKwsTZs2jfT19Su9by6XS8uXL6eIiAj68OEDFRcXU9OmTalp06bUrl072rlzJxUXF5OKigpzTVkbsrKy9PHjRzIzM6MLFy6QqakpBQcHM+cpKChQ+/btKS0tjfr06UN//fUXtWjRgho3bkzi4uJ0//59io+Pp7Fjx1JBQQHl5ORQTk4O5ebmMv+XkJAgJSUlUlRUpIyMDPrw4QN9/PiREhISqHv37vTq1SuBM6S64OLFi7R7924aOHAgtWrVip4+fUpiYmK0Y8cOatmyZY3r3bdvH506dYrCwsJIQkKCjhw5QjY2Nn++wLu6utL48eNJQ0OD53hxcTGZm5vTvn37qH379nXSVn2yc+dOunPnDjk7O1OHDh0oMjKSjhw5QlOnTqWxY8fynHv27FmysrLiq0NERISaNGlCJSUlVFhYyFcuJiZGEhISJCkpSc2bNyddXV0yMTEhbW1tEhf//1XZ169fqW3btsw1YmJipKKiQn369KHevXtT7969qVevXtStW7dKlTvVITExkWRkZEheXl7oOUlJSfTo0SO6cuUKRUZGUnJyMpWUlFDr1q1JUlKSxMXFSUpKiuTk5EhKSooAUEZGBr1584aaN29O379/p/T0dPrx4wdxuVzmexMVFWXalpWVJTk5OZKTkyNZWVkqLi6m5ORkSk5OpqZNm5KqqiqpqqrSiBEjSF9fn8TExOrsOyhPSEgInTlzhg4dOsTzQnn9+jXNnTuXLl68SI0bN65VG6mpqbRgwQI6fvw4bd68maZOnUpNmzb9MwU+IyODnJ2dKSAgQGD5o0ePKDg4mDZu3FjrtuqTc+fOUVhYGG3dupVERESY4yUlJWRnZ0fz58+ngQMHMsfZbDatXbuWNm3aRCoqKvTkyROSl5cnKSkp5vqCggKKiYmhT58+UV5eHhUVFVFxcTHz75cvXygkJIRiY2NJWVmZHB0dadGiRcyMouznLN+fqlBSUkKbNm2i2NhYSk9PJzabTYqKimRgYECWlpZ8U9+SkhIKDAyk/fv3061bt4iodH3ZsWNHysnJofT0dEpPTyd5eXmKiIggcXFxGjt2LN29e5c6dOhAampqpKysTCUlJVRSUkLFxcWUnp5OcXFx9OHDByIiat++PZ09e5YGDx5MycnJdPr0aXr37h0lJSVRYmIiffr0iVm7czgcSk9Pp8jISIqKiqJ3794x/3bq1Il27dpF6enp5OTkRKmpqXyzG2VlZTIyMiJTU9NaLSkBkI6ODl26dIkaNWrEV37ixAn68eMHubi41LiN8m2tXLmS1q5dS5MnTyYfH5/KZRRVIDs7G0SE7OzsqpxeKXfu3MGWLVuElnO5XBgZGdVJW/WJrq4uCgoKBJZ9/vwZ9vb2PMeKioowY8YMEBEmTpxY7fY+fPiAnTt3YtSoURAVFQURgYggKiqKDh06QFdXF6mpqSguLkZsbCwiIiJQUlLC16+kpCQAwJcvXzBt2jSMHDkS3bt3Z+ojIowZM4Zp4/bt23x98fb2BhGhcePG8PHxwYkTJ7Bw4UJMmDABrq6uGD58OFPXhQsXsGrVKsjIyODWrVvgcrl89WVnZ+PevXtgsVggIpiYmGDy5Ml49OgRxo0bB3FxcUhJSeGvv/6CkZERpk6dytS/ZMkS/P3330x/JSQk0KtXL1haWmLZsmVQU1ODiIgI/vrrLxARFBUVsXTpUqxcuRJz587FhAkTmDIiwogRI3Dt2rVq/z4A8O7dO8yaNUtoeWFhIUxMTPiOl5SUoLCwUOjn59/x59+i7N4rk9HfIvDh4eFYvny50PLCwkKYmZnVSVv1RU5ODqytrSs8x8DAgPl/SUkJJkyYAAkJCezfv1/gQ/8zXC4XN27cgJubG9q2bcsjkCIiIujYsSMmTZqEHTt28BwXFxdn/m7dujUWLlyIgIAAGBsbMy8IbW1tLF68GESEvn37YvLkyejfvz9PG2JiYtiyZQs4HA7Tp7K2ZGVlec79mZ49ezLnubu7Y8qUKZCXl0dycjJzDofDwa5du3jurXPnzggJCQEAnDx5Ep07d0aLFi2wZ88eZGRk8LTRp08f5uVERFi4cCGio6NRXFzMc15xcTF27twJGRkZSElJoVGjRiAi9OjRA02aNOG5j7JP9+7dK/19BPHkyROsXr26wnOMjY2Z/3O5XCQmJiIqKqrST2JiotDn5ty5c3+uwJeUlEBTU5PnQSrP0aNHcejQoTppCwAePHgAa2trGBoaQl9fH87Oznj79m2t6szNzcX48eMrPEdfXx9A6YPt7OwMUVFRnDt3rkr1P3/+nHmQ5eTkQERo06YNFi9ejKtXryIrK4s5t7CwEEOGDEGrVq0wb948eHp6IjQ0FLdu3YKrqysUFBRAROjZsycOHToEb29v9OvXD/Ly8ujatStatWqFlJQU5r727NmDli1bonPnzmCz2Tz9mjdvHp9wuLu78/U/JycHAQEBmDJlCmRkZGBkZIRWrVpBV1cX169fx61bt6ClpQUigqOjI06cOIHnz5/ztDd16lSIiIjgypUrfPV//vwZ2traWLNmDaSlpXHw4MFKv9MXL16AiKCrq4uhQ4dCWVmZGRlVVVXRpUsXiImJgYggJSUFTU1N7Nq1C4mJiVX6zQAgKytL4AheRlRUFKZNm8b8XSbs379/R0FBgcDRvaCgAN+/f2eEXhBVldHfIvAAcOTIEcydO5fvjfXu3TtoamoiPz+/ztqZOHEivn37xhyLjo6GkZGRwKlqddDX10deXp7Ask+fPsHR0REAsHXrVhARFBQU4Ofnh69fv1ZY7/bt2yEiIoLu3btj9OjREBERwaZNm1BUVFSjfrLZbLx584bnu87KykKPHj0gJSUFIsLJkyd5rnnx4gXExMSwdu1anuOFhYU4d+4cHBwc0Lx5cxARWrVqBWdnZ0RHR/Ocy+Fw8Pr1azRv3hwrVqzA5s2beV4UUlJScHd3F/pba2pqYujQoVBXV8fp06dRUFCAnJwcHDp0CBoaGoiLiwOACqe75Xnz5g1ERUUhLy+PgQMHwsbGBtu2bcPz58957u/BgwfYsmULDAwMICEhAVFRUWhpaTGzk4KCAkRHRyMnJ0dgO9OmTcPdu3f5jnO5XNjY2ODVq1dMv8uEvSqUCb2g+125cuXvEXgul4uXL1/Cw8MD2tracHZ2xsaNG3H+/Hn8+PGD59yDBw9CS0sLW7duxeHDh+Hs7IyxY8cya8zakpqaCgMDA4Ezifz8fKirq/NN/6rDxYsX4erqylf/jx8/YG5ujpcvXwIoFR4jIyN06tSJedjbt2+PRYsWoaioCAUFBXjy5Am8vb3h5uaG5s2bQ1tbGydPnuQ5X0NDA/3792dGoWHDhlVpaSCMT58+oXPnzli+fLnA72jevHmQlZUV+ruXlJTg/v37WLhwIdq0aQNxcXFoa2vD3t4ehoaGaNq0KbOm1tfXBxFh0KBBWLBgAaysrJiXmYKCArZu3cp3Lzt27ICkpCRWrlwJFosFVVVVWFhY4OjRo0J1J5VRUFBQre8sPT0dPj4+aNy4Mdq1a4dWrVoxv0nLli1x7Ngxvvpyc3Ohr6+PXbt2MTOxFy9eYPz48fDy8mLOKywsRFRUVJXvpaCgAFFRUSgsLOQ5zuVy0bVr1yrJaI219CUlJfT69Wt68OABPXz4kHJyckhBQYEiIiLo/fv3pKCgQCNGjGC0qdnZ2dS1a1cyMDCgN2/ekJSUFDVu3JjExMRo2LBh1KZNG1JTU6MuXbpU1p0qs337durWrRsZGhoKLN+6dSv16NFDaHlV8Pb2pgsXLpC9vT117NiR3rx5Q2fOnKH58+eTgYEB3/lJSUkUFhZGd+7cof3795OCggJ9//6duFwuiYiIkKqqKvXt25dmzpxJI0eOpMePH9OlS5cE7ljIyspSWloaFRUVUUFBAYmIiFDLli2rraEXRmJiIrVv35569uxJFhYWZGRkRP379xdorFJYWEienp4UFhZGqampJC0tTSNHjqSRI0fSly9fyNHRkQ4cOEAuLi4818fFxdHWrVvJ09OTJkyYQIcOHSJpaWkiKt1mVFNTo8zMTOb8Dx8+1JuFXEXs3buXXrx4Qe3bt6f27duTiooKHTp0iPz8/KhPnz40aNAg6tmzJ/NRUlKiixcv0tmzZ+nHjx/UqVMnmjZtGvXo0YOp88ePHxQXF0cdO3as0jZpReenp6dTixYt6nZbbuXKlRQTE0NfvnyhFy9eUF5eHklKStLgwYOpZcuWlJ6eTu3btydra2vS1tYmCQkJIirdPoiMjKQZM2bQmzdvSFNTk9lzvn79OhERNW/enNq2bUuioqKUlJREbDabunTpQt26daOuXbtS165dSVFRkZo0aUKysrLUpEkTatmyJdNGmZWZsrIyszc9c+ZMmj9/PnXo0EHgfV29epU+fvxIM2fOrPTLFkZGRgazBZSWlkbp6el048YN6tKlC9na2pK5uTmPAHK5XMrLyyM5OTl68OABBQQEUPfu3alv377Uu3dvvv3ZxMRE8vLyojVr1vAcl5aWFrhnX57hw4fT7du3a2VccvXqVTp8+DCFhoZSTk4OKSkpEYvFYj7t2rXjuwYA5eXlMVuFu3fvJg8Pjwr7e/bsWZo0aRL17t2bgoKCGKu0Z8+e0YgRI6ioqIhGjBhBffv2JSUlJVJSUqIOHTpQ586dqV27djz2CFWFw+FQZmYmtWjRotrXlnHjxg06fvw4swVYUFBARERNmzalyZMn0+zZs6l169YCr61Lga8XwxtpaWn666+/qG3bttSvXz8aOXIkDRgwoFpGHAB4BCAyMpIiIiLo69evlJCQQBwOh5SVlUlSUpI+ffpEHz58oOjoaEpPT+erS1xcnDp37ky5ubmUlJREAEhKSor69u1LAwYMoPj4eBoxYgSZmppShw4dmJGjjAMHDlCLFi1o3LhxVep7UVER3b9/n0JCQujJkycUHR1N379/JyKifv36kYmJCR08eJCaN29OsrKy9PjxYxo8eDBt3LiRNDQ0KDAwkFauXEnx8fGUlJRE0tLS9PTpU7px4wZjgdavXz/q27cviYqK0vr16+nly5c0efJkUlRUJG9vbzpw4ABjeFIV8vPza23kQVRqEPXw4UO6fPky3bx5k168eEEAaMCAAfTkyRNm1I6NjSV3d3cKCQmhrl27kpaWFuXm5tLJkyfJxcWFJkyYQKNGjeKbJeTm5pKhoSHdv3+fFi1axDOjSUtLIx8fH7pz5w4lJydTSkoKpaamMjYHYmJiJCsrS82bNyc5OTmSl5enVq1akbKyMrVr144UFRVJXl6eJCQkKDMzkzIyMig9PZ3OnTtHr1+/Jh0dHTIzMyMFBQUaNmyYwJdYVeByuRQfH09RUVF09+5d8vLyoqKiIrp48SJpaWnxnf87BL5aa/gyJcnvID09HdHR0Xj+/Dnu3LmD4OBgeHp6YtasWVi+fDl8fHwQHByM7du3w9bWFt27d+fZniIiKCkpYdiwYXB0dMTp06ehrq7Otx569eoV1qxZA3V1dUhJSUFBQQHdunXDsGHDmK0oFRUVTJgwAatXr4afnx8uX76MQYMGoUmTJrC0tERsbCwA4ObNmxg8eDCICMrKyiAiqKmpMfvMI0eOhLi4OGRlZSEtLc30s1WrVhg2bBgMDQ1x7949pKamMutEOzs75rzt27fj3LlzCAkJwadPnxAXF4fo6OhaK1eFKcHYbDazv152Py1btmS2D8v61bp1a+zatQvTpk1j9BYtW7ZEy5YtQUQYMmQIHj9+zFP33LlzmetlZWUxePBg7N69G0Dpmjg3N5fn/KKiInz69AlXr16FmpoaxMTEICkpCREREYHbbOU/EhISUFRUBIvFwp49ezB48GBGW9+oUSMsX768TpTG2dnZ0NfXh5SUFK5evcpXXraG//kZFEZF51dVz/ZbnWfqGw6HQwsXLqS0tDQaNWoUff36leLi4uj58+cUFRVF4uLipKmpSb1796ZWrVrRnTt3KDQ0lOTl5UldXZ1GjBhBHA6HUlNT6fv374w+oG/fvgLXyVwul2/kAkBBQUEUHBxMDg4ONGjQINLQ0CAxMTHq1KkTDRgwgGbOnEkSEhLEZrMpLCyMQkNDydPTkwoKCojD4RBRqW159+7dSVVVlTIyMujatWvEZrOZdkRFRalHjx6krq5OGzduFGjLT1Sqe8nOzqbs7Gz69OkTvX79mvl8/fqVcnJyqLi4mNq2bUs9evSg7t27U5cuXUhJSYmaNm1KOjo6TF1Lly6lkSNHkp6eHi1evJg2bdpERETq6urUuXNnio+Ppw4dOpC4uDiFhIRQfHw8TZkyhXHgWbduHS1dupSIiLKzs+n27duUlpZGX79+pbNnz1KTJk3I1taWVq5cSUREixYtolmzZvHNWDQ1NUlRUZFOnz5NRER5eXmMNV5ERAQdP36cXr58Sb1796awsDCSkZHh+/3wP1PecePG0Z07d0hZWZkSEhJqbH6bnp5Od+/epdDQUPL29iYZGRnKzMxklqBE/z9iC5p9CqKwsJA+f/7860b4utyW+5X4+vpCW1sb1tbWGDt2LIyMjHDixAns2rULurq66Nq1K+Tl5aGmpoaTJ0/yae7ZbLZQm4H6IDk5GY6Ojvjx4wfevn2L8+fPY/369bC3t8eQIUOgpKTEN2qJi4ujS5cukJGRQY8ePWBhYQFtbW0MGTIEPXr0gIqKCho3bsx3naioKMTFxflmQy1btkSfPn3QrVs3SEhI8F13584dvn7Hx8djx44d6NOnD5SVlaGiooIWLVowo27Hjh3x6NEjZGdnQ0pKCvPmzRP6HUyaNInp37Rp0+Du7g4JCQmoqKggPj6eOS8xMREtW7aEm5ub0Lq4XC5TX2UacUtLS55tw/79+8PJyQkBAQFVHvXfv3/P850NGDAAFy9e5DuvLrflGkb4n8D/FEliYmKVrmkBUHh4OHl5edHr16+pffv2VFhYSIqKirRo0SLq3r17vfY1LS2N5s+fT8eOHRN6jq6uLvn6+pKUlBRt27aN1q1bRxwOh7p160adOnUiLpfL40giKytLJSUllJGRQT179qSCggJavHgxERGNHj2aTE1NSVZWltq3b0+ZmZkUEBBA/v7+1L59exo7diylpaVRZmYmdejQgVgsFhkZGfHMZkpKShj9TKNGjahZs2bUp08fio6OpqSkJCIiGjt2LMnKytLXr1/p9u3bFBMTI9hBCqCD3t4UFBRE69evp379+hER0ZYtW2jx4sUUHx9PrVu3pvz8fNLQ0KDExER68uQJj1deeSZOnEjHjx+nhQsX0ubNmyv87tevX08HDx6kr1+/krS0NLVt25Y4HA59/PiRGjduTPr6+rR582bq3Lmz0DpKSkro0KFDFBISQrdu3aL8/Hxq2bIlaWlpUe/evalz587UpUsX6tWrF2VmZlJWVha1atWKGjduLHDmCIAKCgooNTWVmjZtKtDNtmGEryEvXryAtrY2+vTpg0mTJmHt2rXQ1NREUFAQYmJioK2tjRcvXtRrH7hcLnR0dISORm/evIGrqysAwMvLi2fkVVZWxoABA9C9e3e0bdsWCgoKjClp2UdMTAwuLi4YOXIkc6xM71Cet2/fwtzcHB07dsTAgQMxZMgQSEpKgojQokULaGpqom/fvszavPxnyZIlzL3Ex8ejTZs2zPp+6NCh/KbVOTmAmxvQoQPQunXpv25upcf/h7m5OWRlZXH79m08e/YM3bt3R+PGjXkMZwQxZ84cEBFmzJhR4XkXLlwAEWHSpEk4ePAgo1c4dOgQ3r9/j40bN6Jjx45o1aoVEhISKqyrDDabjdu3b2PRokUYOnQoY/VI/7OcDA4OrhPT2oYRvgZ8+fKFJk+eTK6urhQREUHr1q0jolLt/MSJE2nq1KnUp08fcnBwoJCQkHrty4ULF+ju3bu0c+dOnrd+QUEBWVlZ0d9//03du3cnLpdLr1+/pi9fvlB8fDx9+fKFcnNzGW8wGRkZ5lNm63Dy5Elas2YNZWdnE4vFokWLFgnUIguisLCQwsLC6NatW/Tu3TtSVFQkFRUVUlJSIgkJCcb7zcDAgHHVJSqNt1ZcXMysWXnIzSUaNozo3Tui8jsQoqJEPXoQhYURycpSfHw8OTg40L1790hMTIzU1NToxIkT1LNnzwr7nJOTQ2ZmZvT27VtKSUkRet6qVatow4YNNHv2bMrPz6crV65QYmIiXbt2jUaPHk1ERDExMdStWzeaNGkS+fj4VOk7+5nMzEyKjo6m1atXU2hoKI0fP57Wrl3L7IRJSEjwjfQSEhIV6hPqZYSv75HtdzNnzhw8ffoUdnZ2fDbLWVlZjNPDtGnT8OHDh3rvz/79+6GnpwdfX1/cu3cPu3fvhrq6Om7duiX0muLiYly4cAEzZ86Eu7s7Tp8+jfXr18PW1hYzZszAw4cPweVymV2PX8XDhw8Zk1I+3NwAUVGAiP8jKgqUs9UvKSnBrl27sH79erDZbHC5XNy9e5fPsYbNZiMoKAjjx4+HlJQUREREKnTYAoC0tDT06dMHnTt3Rt++fWFra8vzzEdERKBz586Qk5PD5cuXa/xdlMHlcnHy5Em0aNGCZ3YkLy+Pz58/V6uuerGll5OTQ3BwcLU68k9CT08PAK83U3nGjx+PrKwsbN26VaDSqj7Izs7GkSNHsHnzZqxYsQImJiYwMDCAnp4erK2tER4ezpwbGxsLTU1N7NixAzExMdizZw9UVVXx119/4ePHj4iOjoaHhwcmTJjA5xRTVZKTk+Hv749z584hLS2tbm6yQwfBwl726dBB6KVlSxoxMTEMHz4cY8aMQefOnZlljJqaGrZs2cKj6KsJFy9eRKNGjfDXX3/h06dPVbrm1q1b0NfXR79+/aCkpARdXV28f/+e77z09HRcuXIF586dw+DBg9GsWTOhPhrCqBeBJyKMHDmyWh35J1Em6BMnThT4gDg6OiI1NRWTJ09GTEzML+2bl5cXpkyZwqPR/fr1K8aNG4fg4GCUlJSAxWLhy5cvAEodhMzMzFBcXIzIyEgeD67z589j0aJFyMvLw7Nnz/D27dtK7csLCwsxbdo0WFpa4vDhwzh06BAsLCwwa9asGr88AABcbumavSKBb9269LyfuHjxIqSlpdG7d2/Y29vDzMwMEyZMwIIFC7B79268efOm5v0qR3p6OhQUFGBkZFTlPXNwuTA3N4eKigpcXV2xfPlydOrUCZKSkli2bBmffiY5ORkWFhYgIqxfv77afawXgf/27VuVPZP+iVhZWSExMRF3797l2TLicrkoLi6GpqYmvn37JnQGUF+kpqbCyMhIoFCy2WxoaGggMDAQmzdvZo7PmjWLZzo6Z84cPHv2DECpc0+HDh2go6ODFStWYM6cOWCxWPDz8xPaBzs7O8ZPvTz+/v6YMmVKLe4ONRrh9+/fD1FRUbRt2xZiYmIQERFB//79MWHCBFy+fLla26iFhYVYvnw5Jk+eDCcnJ0ycOBF2dnYwMzODuro62rVrB6LSwBgV8pPi0axxY4gQYZKtLeLj41FQUIDly5dDUlIS7dq1w4oVK/Du3TucOnUKCgoKaNmyJc6ePVvdbw9APQn8w4cPcfjwYTg5OeHGjRs16tifzN27d+Hi4gIOhwN3d3e4uLjA1NQUhoaG6NmzJ7p164b+/fsjKirql/Zr+/btFS6l9u3bB1NTU54R7eeIQTdu3MC2bdvA5XJhaWkJKysrHu12UVERXF1dcezYMb76X79+jenTpwttf+LEiQK1/FWmGmt4ALh69SpEREQwZcoUSEtLY/369Thw4AAUFRWZwBuKioqYMmUKLl68KNSNFSh14bW0tESjRo0wZMgQDBs2DCNGjMDo0aNhYGCA8ePHQ19fH+7u7gL30hlycoBevXjuo4gI+0RE0PJ/LyR1dXXs378fjx49wqRJk5g4B0QEa2trpKam1vgrrLcpfdln9OjRNe7cn8y+fftgYWGBJUuWYNiwYRgyZAg6dOiAtm3bwsnJCRYWFny+4/XN7Nmz8fHjR6HlN2/ehLa2NjOCA4ChoSHPbCwkJAS7d+/GrVu3sHz5csydO5cvCAiHwwGLxeLzu1+zZg0ePHggtP0rV65gx44d1byrcggQFkbYe/VituaSk5Ph5OQEERERaGpqIjQ0FETEsy7mcrkIDw/H/Pnz0blzZ8YoicViCRSGY8eOgYigpaWF0NBQ+Pv749ChQ9ixYwdWr14NVVVVEBE6deqERYsW4fnz54KXPxW8tLJFRODDYkFbWxtiYmKQk5ODv78/CgsLERgYiOvXr9f8u/sf9SLwAQEBjA31woULa93J6lL2Y86YMQOWlpZYvHhxvaylX716hU6dOsHa2hqzZs3CiRMnsGTJEsyfPx9nz56FlpYWn213ffL3339XqBU+cOAA1q1bx/ObbN26FYGBgczfkyZNQkxMDCZPnoxPnz4JjTi0ZcsWvnhuS5YsYXz7BXH//n1s3LixOrfET05O6Uj+v+lwcfv28NLUxID+/dGxY0e0bNkS4uLiUFBQgKenJzIyMmBra4tGjRohJSUFN2/exIMHDxgbexsbG3Tt2hUnT57Eli1bQETo2rUrBg8eDB8fH8aaMi0tDTNmzOAL2SUjIwNlZWV06dIFzZo1w+TJk5mAH6qqqli+fDnvC/OnZUkCETgCliUpKSkwNzeHtLR0lZV/VaFeBN7AwABWVlZo1KgRhg4dWuE1JSUlCAkJwcKFC7F48WJmO6imcDgcTJkyBbNmzcL79+9RUFCAsLAwjBs3Dnv27KlxvYLw8vLCmTNnkJeXh3HjxmHevHl49uwZoqKisHPnTnTv3h0bNmyo0zYrIjk5GaampgK/v6KiImhqaqKgoABmZmZ49OgRACAjIwMaGhqIj49HSEgIE31n3LhxcHV1xalTpwS2dfToUb51ZHBwMP7++2+h/VuxYkWNogelp6dj48aN0NfXh7GxMWxtbXH//n2Ay8WoUaNARLCwsMCiRYuwbt067N27F9+/f8f79+95hLNZs2bYsGEDJk6cCCUlJYiKikJZWZkJFlIWHKL8Z//+/Tx9yc/Px+fPn5GZmSk0KEpRURGuXr0KR0dHpp67d+/yKR6/lWvHmAg3iVCsosIoHnNzc9GhQweoq6vXSibKUy8Cr6WlhcGDB2Pt2rU8wQh/Ji4uDiwWC5s2bUJkZCQiIiKwaNEimJiYIDMzs1o3Usb27dv5fiSgdNR3cXERGFKopixbtgwvXryAk5OTwD3vy5cvo0OHDjWOulITdu/eDTc3N54fNCUlBTY2NkycvOzsbEyYMAFOTk4IDAzEvn37oKKigl69euHYsWPYuXMnOnXqVKEN+7Rp0/h0FGUxCAXFU/v8+TN0dHSq/eB++fIFGhoaPAq2t2/fwtDQENbW1iAi7N27V+C18fHx+Ouvv6CsrAx7e3tISUkxfgKqqqpgsVhwd3eHl5cXHB0doaOjg9GjR6NDhw4YM2YMdu3aVflvV8n9uLm5MbqCjRs34q2KCryJoEsEIyK0/+kF00REBJMmTcLp06cRGxuLJUuWQEJCosZhy37mt8W0KykpwYgRI+Du7g4DAwMYGBhg6dKl+Pr1K8LDw2FlZVW1OyhH2dpSmOb127dvlUaQrQ5eXl7Yt28fbGxsBJafOHECkyZNEqjgqk+Cg4NhZGQEY2NjGBgYYOzYsfDz88OlS5dw//59Zs3+4cMHeHl5wcfHB/Hx8Xj58iV8fX1x6dIlxMbGwsDAQOBuS2xsrNAAjNHR0VBXV8ehQ4eQnp6OtLQ0HDhwgCe2XHWwsLDgWY5duHABioqKjIC0aNECkZGRQq+/efMmVq1aBaB0VuLu7o7w8HBwOByeENZln6lTpzLXloUUKzPW4XA4uHfvHhbNnYsNw4YhoGVLvGvVCkXt2zPmvYmJibh06RITsorL5eLBgwdwcHBg4gI2JcJEIpwmQtL/RvY2P/Wj/Gfy5MnV/t6E8dsEfsuWLejatSvu3r0LLpcLLpeLe/fuQUdHB48ePYKLiwvevXtXtbv4H0lJSXB2dq7wnLrcKsvMzISamppAgS4pKYG2tjZiY2NrFFu+LigpKUFCQgLGjh0LR0dH7N+/H6tXrwaLxYK/v3+l1/v5+fHE3CsuLsa5c+egoaHB7OMLoqCgABs2bICqqipat26N/v37w8HBodoWmHFxcZg0aRKA0merbEQ3MTHB27dv8fTp0wq934DSiLaCdgby8/N5pvpEBHV1dcYyMj09HX379gURQVJSEh8/fsTu3btBRGglJgb5cgIpRgRlInQv52cvJSUFKysrHn9+Pz8/2FlZYbaCAnqVu74pEdSI0LRcDoEZM2bg0qVL2LBhQ53Fbiz7Hn+5wBcVFaFNmzaIiIjgK8vJyYG6ujouXLgAT0/PqjTLkJGRUeEIzuVyoaenBw6Hg0+fPuHTp0+1dmd1dXXFqFGjeAxd0tLSMHHiRPj6+iIxMRFOTk61aqOm5OTkQFNTk880tri4GI6OjjzKOmG8e/cObm5uMDIygpGREU/ARWHcvHkTRkZGPMqqjx8/Yty4cQgICKhy/69evYpdu3YhNzcXI0aMgJycHHx9fXmWBZUlIrG1tRW6PPT09MTo0aOhqanJ51gTGBjIM8rGxcXB19cXRIQ0ERFw/zc63yLCASKsIsJMIhzT1kZUVBQzoBERNDQ0cO/ePVhaWpY+J/9TPH5t0wbnFBSwsWlTOPbsiRbNmzPmsxoaGlX+nqrDbxH48+fPQ11dXegIvm/fPsyfP58ncmcZMTExmDVrFtTU1ASuFY2NjYU+kGFhYdDV1QWLxYKbmxvc3NygqakJLy+vGitFUlNTMWrUKJiZmTFLEwsLC0Y5tWvXLpw/f75GddeWPXv2CDXQYLPZ0NbWrjNlUPl61dXVBfqEFxUVgcViVbjfXZ7nz59jzpw50NDQgKysLF/0m9TUVEyYMKHCOrZt21bhvvjUqVMF2ktwuVxs27YNmpqazGzo48ePICJcFrClJsj4p6SkBOfPn8eAAQMgKSkJVVVVbNu2DQcOHMDp06dLzWLLff/Lli3Dy5cvkZWVVW96n98i8GvWrMGePXuwZs0ageXPnz9Hnz59eBwDUlJSYGhoyPPWLa+sYbPZWLduHYYMGQJpaWn89ddf2L59O/NSSElJQadOnTB37lyedWlJSQnWrVvHrPNqwuzZs+Hn58csTcr48OGDwP3qX4WRkVGFbbu7uwu02a4N58+fr3A35NSpU1VKBgGUCp2ysjKkpaVx7949vvL169dX6pySnp4OLS0tgaauZWbFVYXL4UBBRATLKxJ4Aea9P378gJmZGRo1aoQmTZow0/4jR47wnGdjY1On03dB/BaB37VrF4KCgqCnp4fXr1/zla9evRqDBw9m/k5MTGQso4gIM2fOxL1793gE99u3byAqTYdkaWmJli1bMnHZW7RowWih4+LikJqaig8fPuDZs2fMF1ybOPdFRUWYPn06bGxsEBQUhBs3bmD+/PkwMDCoNJlEVSiL4f/w4UM+b6+KqGy6u2LFikp9xKvLpk2bBApnGW/fvq2ybcaHDx8gKiqKfv368TxTXC4XFy5cwNixY6u0JLt69Sp0dXWZfHUFBQU4cuQIYwJdHexlZNCWCOwqjPA/4+/vj7///hs/fvwAEeH48eNMWZmu5Wdev36NcePG8RhL1YZ6EfhFixZV6DyQmJgIS0tLpKamwtTUFO7u7rh27RouXbqESZMmoWPHjvj48SPS09OxYsUKyMvLM4Y85ubmTD2RkZHYsmUL7OzsGAVLWYK+kpISXLx4ETNmzICZmZnAcE9ln9atW2PIkCEwMDDA5cuXmXRK1SU+Ph6enp7YsWMHj3dabTh37hxYLBYWLFiA9evXw9TUFFOnTq2SQY+rq2uFqbIMDQ3r3DDo8OHD8PX1FVp+5coVbN26tUp1rV69Gk2bNsXVq1dhaGgIBwcHzJ49G9ra2li6dGm1nHG+ffuGVatWwdjYGObm5jh8+HCNps0v/qc4PCZI2AWY95anpKQE1tbW8PHxgZSUFPM9REVFCdS1nDx5Eo0aNWKCadZFcNh6M6318fGp8NylS5fi77//BpfLRUREBHbs2IHdu3dj6dKl8PDwwOHDh5korXPmzEFMTAxERETg4uKCJUuWMFFeZWRkMHToULi4uGDLli1CrZJWrVqFa9euITg4GAEBAUw0lHPnzsHDwwODBw/mifiir69fZ0JbU/z8/DB58mS+afndu3dhYGBQaTacN2/ewMrKSuAoGBoaitmzZ9dpf4HSeAD6+vpCdQNjx46t8qg6Z84c9OjRg/k7KSkJnz594stM9KvIysoCS10dkiIiuCEiUqF5rzCKioqwbds2KCgoQFFRETo6OnBxceHbSbh58ybExcVhZ2eH+Ph4dOrUCd26dav1lL/eBP7SpUvYuXMnevXqhY4dO8Le3h5RUVH48OEDHj58iHv37mHAgAFo3749PDw8sGjRIrBYLGzfvh1cLhdLly4FEUFbW5uZug8aNAhEpeGfjY2NYW1tDU1NTRgZGUFLSwtr1qwROmL5+flVqPU/cOAATp06hU+fPuHw4cNMWmQDAwM8efKkKrdfp5S5sQrzOty+fXuVNN7Hjh2DmZkZwsLCwOFwkJKSgg0bNsDMzKzeFEP79++Hm5sbT/1sNhvLly/HunXrqlyPi4sLmjZtiqlTp2LdunV1ajRVXdLS0qCmpgZ5eXncuXyZx7wXHTqU/l1FZSRQuvSRkpJiHJHKXsplVoWNGzfGmDFjmJf9hw8foKysjG7dulV7GVKeenWeERcXh5mZGfO3jIwMT75yIkKTJk3w6tUrvHr1imcku3XrFmRlZaGiosIIcUZGBpKTk5GbmwtdXV1cvHiR+aI4HA6Cg4Ohq6srUAtcpj0WFDCgLH9c+ZGjpKQEp06dYgRfQ0MDq1atwvz586GhoQEWiwVTU1NcuHChXlyBHz16hJUrVwotz8jIqLJxUkxMDGPBaGdnV2230Jpw/vx56Orqwt7eHpMmTYKWlhbPmrUqXL9+HcbGxujXrx+aNWsGERGRXxp9pzy3bt0CEaF37968eo8a7nJ8/foVNjY26N27N0RERGBkZAQWi8Xk2WvXrh0sLCzg4uKC/Px8XLlyBSwWi7EWtLS0rNDgSBj15h57584dZi18//59PH/+HFOnTsWSJUtw9epVjBw5Ei1atOBx9SsqKkJQUBCMjY0hKiqKPn36YNGiRVi0aBGPo8bq1atx6dIlgX24dOmSUI373bt3oa+vj6dPnzLHnj17BgMDA6E23iUlJfD19QWLxWKUgII+ampqdRq8MzQ0VKjJKFCquKoo3XD582oVeKKWpKSk4M2bNzU2lS6jsLAQysrKjK3/7+Dhw4fo06cPREVFsW3btjqrNyQkBJKSkhAVFYWJiQkCAwOZwe/69evo378/Zs6cifT0dMTGxqJ9+/Zo164dWCxWtWc9v0VLHxERgU6dOsHe3h5AaV52W1tbxuKpVatWTIaV8t5JZTbyLBZL6BqRy+VCS0tLaNuxsbGYN28es2c+d+7cKnnSTZs2Dffv30dERARu3ryJq1evIiQkBOfOnYOmpiYaNWoEDw+PSuupKgkJCbCzsxNa/vjx4wrbS0lJwZw5c6CtrQ0LCwuwWCysXr26ztJrV0ZJSQm2bt0KTU1NODk5wdLSEqamphW6z1bG9u3bISYmxsS8+/HjR92Fz6oiRUVFmDdvHkREROosjFtCQgIsLCwEKos/f/6MLl268AxSsbGxUFFRQZ8+fTBq1KhqzdZ+qcAnJiZiypQpICJ07twZT548wcOHDyErK4vu3btj+fLluHTpEogILBYLp0+fhqurK6NM8/DwgJ+fHxNTDijVjL969YqnTWNj4zqdsubk5FRokvvt2zf07t0bkpKSOHz4cJ0Zs1hbWwsMv8ThcGBmZib0RZWcnAwNDQ2EhYUxx7hcLoKCgmBgYFDvzjxcLhdOTk44ePAgz++Qnp6OsWPHCkynVBXYbDZ69OgBZWVltG/fntnP7tChA+zs7LB///5qm2PXBA6HA1NTU8jLy9fJLsf+/fuFWj2uWrUKXl5eWLp0Kc/xN2/eoFmzZmjfvj2uXLlS5bZ+icA/e/YMNjY2EBcXh4yMDBMptW3btiAqzTRS3jRVS0uLGdWVlZXRu3dv2NnZ4dSpUzh06BBatGgBe3t76Ovrw8nJCUuWLIGJiQmmTJmCjIyMCkf4mhAZGVnp6K2vr8/kcxszZkydGLSkpqaCxWLh2LFjzDbnixcvMHbsWJw4cULoddOnTxe6v3769OnaBaEoB5fLxaNHj+Ds7AwjIyO4uLjg8ePHePDgARYsWCDwmsLCwgpnaJXx5MkTTJgwAYsWLYKPjw9Onz6N2bNnY+DAgcyS66+//sLevXvrVZsfHh4OoqpFaM7MzMSuXbtga2uLyZMnIzQ0lOdFuGPHDqGRoSZNmoRHjx4J9FxcsmQJiAh2dnYIDAys1OQZqCeBT0lJwbt373Dnzh2sWbMGoqKi6NSpE3bs2IHIyEgoKSmhVatWmD59Om7fvs2n9OJwOLh48SIuXboEPT09nukMUBoksmPHjpg7dy7P8bCwMAwYMKBOp9ZAqYKlIgeYHz9+MEYu165dQ+fOndGsWbM6mT7n5+fDx8cHpqamMDY2hru7e4WjWFFREc8M6GeKi4uhq6tb635xuVy4ublh1qxZzJZSTEwM3Nzc0Lt37wqXScuWLWP88euS3NxcBAQEwNTUFGJiYujZsydCQkLqJQjJvHnzICYmVmGEIaBUb6SpqYnz588jKysL8fHxWL9+PQwNDRmhCwsLE/rMLl26FHPnzuVzdsrPz4eUlBTExMSgp6eHPXv2wNjYGIsWLapQiVwvAl8+a0bZZ8uWLdDT04OoqChatGhRpa2F0NBQgQEkdHV1oa6ujqFDhyI9PR1A6QN47do19OrVC7t27apKd6uFkZGRUCu348eP89j9R0dHg4gY//Nfyffv3yv1zqvMAq8qlIXEFkT37t0rdAn29vaukuNObXj9+jUGDhwIotK8c2pqali2bFmtjVdycnIwa9YsEBF27txZ4blpaWlgsVgCX/yPHj1ificulwt9fX2BNiSPHz+GoqIiny2GpaUl1q1bx+i9FBUVcfjwYRw+fJhvICxPvce0K7Nkk5SUxPDhw3HgwIEqm4dOmzaN7weKj4+Hk5MTsrKyYGhoiD59+sDMzAxaWlpYsmQJUlJS6iVabHh4OAwNDfn6/ujRI+jo6PD9qIMGDYK4uDiMjIxw/fp1rFmzBlpaWozNwMaNG+tFgVZUVFThCM5ms+tkhNfR0RFqTenm5oZhw4YJvXbmzJl1Fhq6IjgcDiIjI+Hj44NJkyZBVlYWIiIi6Nu3L0aMGAEtLS2YmJjA0dERHh4eFeYQSEtLw6FDh9C6dWs0btwYW7durXRZsmXLlgoVe1ZWVszAFx8fD01NTezbtw+pqanIzMzEsWPHoK6ujmnTpmH58uWM7uXJkydwdXXFuHHjEBISgqioKNja2jLLyb59+8LX1xefP3/m62O9CLyYmBh0dXXh7e1dK8sgJycnPs3l69evsXjxYgClxjTHjx/nszirqsAXFhYiIiICb968qZKS7/HjxzA2NsakSZPg4eEBY2NjTJs2TeDaKSMjA3v37kWfPn0Y+/+yL5/D4eDChQvQ19evF6F3d3cXOmU+evRorUN9cTgcZkvwyZMncHZ2ZkxWfX198erVK7Ru3Vrgd5qUlAR9fX3m76KiIly+fBmHDh3CrVu36tU+IC8vD4cPH8bUqVPh4OAAS0tLGBoaYujQoWjcuDG0tbV5zi8pKcHmzZsxdOhQRkFoYmJS5WwvFhYWFeoRvLy8EBQUxPzNZrNx5swZODg4wNbWFj4+PszzcerUKejq6sLc3BydO3cGi8XiUcoCpT4DQ4cO5bEYVVVVxenTp5lz6kXgaxWKuBze3t58yqns7GzmYXN2duZL5VTZdhZQuo5dvnw5dHR0sHTpUsybNw+ampo4evRolfr17ds3REZG8hn45Obm4saNG/jy5Qvevn2LmJgYLFmyBP369cOgQYP4pmXnz5+vfVBHAaSnp4PFYuH69evMS6a4uBgnT56EqalprffluVwudHV1sXHjRri4uDBT0dzcXHh6esLAwABdunTBjBkzmBBnXC4XYWFh0NTUZNxRg4KCoKmpia1bt+LChQtMQs7abN3VFFVVVcYPo4zPnz8z6bFXr14t0B27IiZMmMAsOQWxfft2hIaGVqtONpsNNze3CnUHly9fxqpVq3Dp0iUYGxuDiJjv9LdFvKkKeXl5UFdX5zPamDp1Ko4ePYrx48fzXTNz5sxKjREcHR1x8uRJnulOSUkJFixYUKvRb9OmTTxLGUlJSWhqauLIkSMQFRVFz549eWLfcTicOt9RKCMjIwPLly/nWUZs3bq1zjTX+vr6QkN7HT16FD179sTNmzdhaWkJIyMj6OrqYuHChYz34P3792FlZcX38snJyYG+vv4v2V4rT5cuXXjCW5URFhaG1q1bw8DAoNp1+vn5CX2eyl6aNdkiPXXqlMC4jWXMmzePMQfncDjo2bMnRo4cieDgYCQkJPy5Ag+U+saPGTMGx48fR1paGr58+YJVq1ahefPm2LdvH7OOjI+Px4wZM7B69epK63MX4tFUFhGnuvm6ytizZw+ICBs2bICGhgbU1NQY774XL15gxIgRICKedV1dKNB+B8bGxhg9ejSfTuP79+/Q1tbGmDFjKvwezc3NebZiy/P+/fvaZ6mpJrNnz4aKiorAJcWePXsgLi5eLddkoHS5oqWlJdAFfOPGjdiyZUuN+spmszFmzBiB39/Hjx/5Xk6XLl1ikll07NjxzxZ4oHSkP3jwICZOnAgXFxdmq8Xb2xvGxsYwMjKCnZ1dhX7YZcyfP7/C2OkHDx6sUrw3QWRnZzNefEQEJycnnj1nDoeDrl27wsXFhfm7vkb4+sbIyAjPnj2Drq4u3N3dsXfvXri5uUFPTw8RERFYuHChUFvvsoAQFVHR1mJ98OjRIxARDh8+zFf27ds3iIiI8AWsqAqpqakYN24cnJyc4OvrC09PT+jr62PTpk21MtB6+fIl1NXV4evri+zsbHz//h2enp7Q1NQUmJOey+XizZs3jK3+Hy3wdYmLi0uFisTAwEB4e3vXuP6SkhKeeOT6+vo8dvplWzq9evWCjY3Nb0nUURcYGBgwOok3b97gypUrPALu6Ogo8MEDSl/ggpZj5TE0NKy7zlYRe3t7NG3aVODzMXToUJ5YDNXlw4cPOHXqFAIDA2s8g/yZ3NxcHDhwANbW1rC1tcXp06cr1c/89ddf/y2B37VrFy5cuCC0fNGiRXzaz+ry48cPHqEfPHgw7ty5wziyBAYGgsVigYiYHYd/Gnv27MGZM2cElmVnZ1e45uVyudDW1haqT0hNTYWFhUWd9LM6fP/+HS1btsSgQYN44tylpKRARkYGixYt+uV9qktu3brFBIL5zwh8memtoDdhYmIidHV168wW/vr16zhy5AiSkpKwcOFCsFgsWFhYQFNTE7NnzwYR1Wo28TvJzc0Fi8XiWx7l5ubCzMys0uXVsWPHBMY05HK5mDp16m9LQhoWFgZVVVVISkpi9erV+PLlC8aPHw95efkKNe5/Kqmpqbhw4QKGDRsGImJi4/9nBB4oVWIYGRkxJrslJSW4dOkSNDQ06jyoY3nKRviyYJcjR46Eqqpq1XOJ/2GkpaXB3t4e48aNw9q1azF9+nTo6upWaMBSRlmQEwcHBzx+/Bipqam4ffs2zM3NedyC09LS8Pbt21q711aHwsJCLFmyhNmSa9y4MQ4dOvTL2q8tDx8+xIQJExgFXZm1YflYFJXJqAgAUCXk5OSQvLw8ZWdnk5ycXGWn/1ZiYmLI09OToqOjCQCNGTOGnJ2dqXnz5nzn5uTk0IkTJ+jGjRskIiJC2traZGdnR7KysjVqm8Ph0OjRoyk9PZ0+fvxIjRs3psGDBxOLxaJRo0bR8OHDSUxMrLa3+Mv4/v07xcTEULNmzahr167VuvbDhw907NgxSkpKoo4dO9KkSZOobdu2FB0dTcuWLSMxMTFq164dffr0iWRlZWnTpk2krKxcT3fCS2RkJD19+pTMzMyoWbNmv6TN2pCXl0dLliyhvXv3Uq9evUhbW5vk5ORow4YNNGbMGOrQoQP5+PgQEVUqo/86ga8qkZGR5O7uTq6urmRiYkIAKDAwkLy8vGj//v3UvXv3atf548cPkpaWJiKiFi1a0Pfv33nKe/ToQUeOHKEhQ4YQEVFmZiYlJCRQ8+bNqXXr1rW/qT+cmJgYmjJlCh07dozatGnDHH/79i25ubmRv7+/wBdzVcnKyqKHDx8SEdHw4cOrLMxFRUV0+PBhCgoKInFxcSouLiZ9fX2aMmUK83sKuy4gIICuXbtGRETa2tpkYWFBkpKSfOd++/aN3Nzc6NOnT5SZmUlFRUVERMTlcklGRoZUVFRIWVmZ+bDZbEpKSqLk5GSKiIigrKwsWr9+Pbm5uRGbzSY1NTVSVlam6dOnk42NDTVv3pzS09Mrl9GqTCX+KVP6qlJcXAx1dXWeqDxlJCUlCU2lXBW8vLx4wnwtXboUXl5e6Nq1K+Pmqaenx5isLlmyBBMnToSxsXGdh5b+05g4caJQS7KbN29ixYoVNaq3uLgYCxYsgImJCfbu3QtPT0+YmZlhzpw5lWq32Ww2zM3N4ePjwygbi4qKcPLkSRgYGAg1kY6Li2Ns5BMTE5GUlIT9+/dDQ0ODz6Pw+fPnaN26Ndq0aQM3NzcmBqCuri7zrCgoKKBNmzbo1KkTFBQU0Lp1awwcOBBGRkaYMWMGT53z5s2DlJQUXr9+zeff8p9aw1eVoKCgCkMZrV+/vtqmkeWJjo7GmTNn0LdvX4iIiEBHRweXLl3CkCFDICoqygj+2LFj8fz5c3C5XKSlpUFPT69CW4J/Mmw2u1INv46OTo3qdnV15bErL+PcuXOV5iTcuXOn0Jh8QUFBAsOqle1GCLK9//LlC7S0tJCWloZdu3ZhyJAhTLSntWvXYvPmzVi8eDFmz57N5LT7+SMjIyM0O3NYWBhERUWxefNmcDgc7NmzB0+fPmViUDQIvACWL18uMP9dGWFhYdWKwiqM/Px8HD58GP369YOMjAwWLlyIfv36MVsorVq1AhExudeTk5Mxbty4Wrf7J5KZmQlbW9sKz6mJdWJsbCwcHByElk+ePLnCAJna2tpCw4JzuVxoamry7e6Uz1wriNmzZ0NRUZFxzCn/kZeXR4cOHaCiogIRERE4ODjA19cXEydORPv27ZnzflaQcrlcHDp0CDIyMhg8eDBfn5OSkqoko6KVLnD+hTRu3JiysrKElmdlZZGMjEydtOPo6EgPHjwgCwsL8vLyopcvX1J6ejoRlSr5xowZQ7t37yYOh0OKiookIiJCmZmZtW77T0NOTo6Sk5MJQlRGBQUFxOVyq11vQEAA2djYCC23tbWlCxcuCC1v1KgRiYuLCywTEREhBQUFYrPZPMcfPXpEurq6Aq958eIFHTlyhFJSUph7HTRoEHl7e1NOTg5lZWVRXFwcHT58mCQkJCgkJIQMDAzo6NGj9PnzZ0pLS6OMjAwaM2YMT71XrlwhZ2dnIiK6efMmX58bN24s9B7L858U+LFjx9LJkyeFlp86dYrMzc3rrD0ZGRk6fvw4ff/+naSlpam4uJhEREQoPT2d7t69SwkJCRQWFkZERC1btqScnJw6a/tPQVRUlEaPHk0BAQECyw8cOEBWVlbVrrewsLBCJZW8vDwVFBQILWez2UJfQkSlL/9GjRrxHJOUlBRY5507d+ivv/6i7OxsIiJydXWlFy9e0JMnT2jy5MnM7s+HDx9IX1+fRowYQa9eveJRLrZo0UKgsvH+/ftERDR06FBGuAFQQUEBpaSkEIfDEXoP5flPCryqqiqJiorS2bNn+cp8fX1JTk6O2rdvX+ftiouLU48ePYiI6MmTJ3Tu3Dmm7Pnz50RE9OnTJ1JSUqrztv8EPDw86Pjx47R//37Kz88notKdinXr1lFUVBTZ2dlVu85BgwbRrVu3hJbfvHmTBg8eLLR82LBhdPPmTYFlT58+pZ49e5KIiAjPcVNTUzpz5gzzNwDy9PQkDQ0NIip9uR0+fJg8PT2pX79+fPWqqKiQhIQEmZqaVnl35suXL8z9iImJkaioKImLi5OMjAwpKSlRx44dq1TPf3IND5RqYhcsWABjY2Ps2rULO3fuhKGhIRYvXszEDsvIyMDFixdx8eLFOrPGunDhAqSlpZlYZzY2NiAqzTh69epVzJ8/v07a+VMpKirC8ePHYWJiAiMjI4wdOxYBAQE1toLkcDhgsVgCQ6uVRfmtKBZcRkaGwKATL168gIaGhlDl2cSJE3Hp0iUUFxfzrL3btGlTpcy1ZZ6Hnp6ePK7V5YmOjoaNjQ3y8vKQm5uLM2fO4Pjx4zh8+DAOHjzIZFXy9PT87xreVJfs7Gx6/PgxEZXu3crKylJxcTEtWrSIPn36RHp6ekREdPXqVerYsSNt3rxZ4D5rVQFAffr0obS0NHr16hVJS0tTaGgoZWVlUXBwMJ09e7bK67EGSvn48SNNnTqVHB0dycLCgkRERCgwMJC8vb3J09OTmVUJIz09nVavXk0fPnwgFRUVSk5Opnbt2tHKlSuFGgOx2WyaPXs2xcXF0dWrV4mIqHPnzjRq1Cjav38/SUlJVdjmoUOHaPLkyczfLi4u1KFDB/r8+TNpa2vTyJEjSUVFhYiIHj9+zNhuCCIiIoIGDBhARA2GNzVi2rRppKmpSePHj+c5fv78eQoNDSVvb+9a1b9p0yZau3YtmZiYUF5eHomJiZGFhQVZWVnxrRcbqBr5+fl05swZunr1KgEgbW1tsrGxoSZNmlS5jqKiIuYZr+rvkJSURLdu3SJRUVFSV1evsrVgYWEhqaioCFQe9+jRg6SkpOj9+/dUWFhIQ4YMoUOHDlGvXr2E1ldlGa107oF/55ReGJ8+fcKkSZOElgsKv1Vd/P39QURCA0XUJRwOp86chhqoW169egV7e3ueWHVln2bNmuHs2bNQU1MDEVW61KuqjArej/gPExgYWKVtHg8Pjxq3Ubbll5+fXytT0oo4f/48HTp0iCQkJKi4uJjk5eVpwYIF9Ndff9VZG0lJSfT161dSUVH5T5gGV5W8vDwKCQmhrKws6tWrF+Xm5tLq1aspOzubkpKSiM1mU3FxMXE4HFq7di2lpaXR5cuXicvl0pcvX+j169f0/v17sra2pjZt2tCRI0fI3t6+Tvr2Rwl8QkICpaSkULt27ahVq1a/pQ+VbfPIyclRYWFhhXXcvn2bvL29KTc3lwCQoaEhOTg4MIIeFxdH4uLi9SYk69ato/z8fDp79iwzpf327RvNmDGDZs6cSVpaWrWqPyYmhjw8PEhKSopUVVUpJiaGcnNzaePGjTXyQfg3sXv3bgoNDaVx48ZR69atydfXl7y8vIiIyN7enm7fvk3Z2dkkIiJClpaWZGVlRbdv36azZ8/SzZs3KTs7m+Tl5UlTU5OmT59O9vb2dbvMq8rUo76n9K9evYKJiQkmTZqElStXwsrKClZWVoiPj6+X9ioiNDQU69ev5zuekpKCtWvXolu3bhg0aBBmzZol0IJrxYoVmDVrFqM1ZrPZOHnyJLS0tJjYaXPnzkXnzp3rpf8fP34UGoSyoKAAmpqatUqDnZCQAA0NDT6z0m/fvkFTU7NKCTz/rRw5cgQeHh5ITEyEp6cn1NXVQURQUlKCqqoqlixZAlFRUTg6OuLdu3c4evQo2rRpAyLCwIEDsWbNGoSFhQm1/KuIPzpqbXmioqKgra3NF6f+w4cP0NDQQEpKCnJychAdHf3L1rw/b/NERkZCU1MTZ86cYQTm+fPnMDEx4QlceefOHaGBNMPDw5mYd2ZmZjW2G6+MJUuWVBjZZ8OGDbh+/XqN63d3dxfq5PPu3TvmHv9LcLlchIaGokmTJpCXl+fJ4XD8+HGw2WxcuXIFOjo6kJOTY/5PRLCysqoTp6l/jMDb2triy5cvAssCAwPRr18/mJiYYO7cubCysoKlpaXQUMdsNhu+vr4wMzODsbExJk6ciIcPH1a7T9HR0VBXV8fRo0eRnZ0NdXV17N27F+rq6jxts9lssFgsJoiDnZ0dE65ZEKampvj27Rvk5eWxZMmSaverKjg4OFRoM+Dv71/lOP2C+Dmpw8/UVWQhLpeL9+/fIyIiol5yyNUVxcXFsLOzQ+fOnSEqKgpbW1usXbsWFhYW2L59O3Meh8Nh4s4REdq2bYuQkJA668c/QmnHZrMpJyeH2rVrx1eWlZVFu3fvJikpKQoKCmKOf/36lSZNmkSenp48QRny8/PJysqKDA0N6cSJE9SkSRP68uULbdmyhW7cuEErVqyocr+6du1KISEhdObMGTIzM6OUlBRq1KgRXbp0icfGXlJSklxdXenEiRPk5uZG2dnZFa7Le/XqxdhUl9+DrUvatWtH79+/p+HDh1NAQAAdPnyYiIhKSkqobdu2JCMjQ8bGxjWuv7L1ZOPGjamkpIQkJCRq3MbFixdpz5491KNHD2ratClFRESQqqoqbdiwoUL/9N/B33//TQAoNjaWzMzMyNfXl4hK7S2mT59Od+/epTFjxpCoqCipqKhQYGAgbd++nSIjI+nAgQO0f/9+srGxIWtraz6LvnqhLt8e1SUjIwP29vYCyzZs2ICQkBCBHlRxcXF8nldz5swROlWdNWuWUGumyjhw4ECFecQSEhKYRAfGxsYVhrVycnLCnDlzICsrWy+pqIDSTK/W1tZYsWIFFi9ezPObRUREQEFBAeHh4TWuX1dXV2iQyuLi4lqH5z537hwmTZrE10ZoaChMTU1rpX+oa4qLi8FisWBpaYnhw4dDXV2dZ3bz7ds3WFtbAyhN3TVlyhRoaGjwpJXOycnBxo0bMW3atFrNjKoqo7/Vll5eXp4SExMFOi/cvXuXRowYIfC6Dh06UG5uLuPAUFhYSO/evROqffbw8KCDBw/WqI9Nmzal5ORkoeUpKSmMs4OJiQmPjXV5srKyKDU1lWbOnEl5eXk8dvR1SadOnUhRUZHOnz9PixYtYnYc4uPjadWqVXT06FFatmxZhQ4jFWFpaUkHDhwQWHb06NFazR44HA55enqSt7c330xCV1eXhgwZwli1/QkkJydTly5dSFVVlR49ekR37twhfX19plxFRYXy8vKIzWbTmjVrKD09nXbu3Em6urokKloqerKysrRo0SJSVFSkS5cu1Xuff6vAi4qKkoaGhkAnFgkJCdq7d69Qh4oWLVpQbm4uEZVO83v27Cm0HWVlZcrLy6tRHw0NDencuXNCBcTHx4fZt7ezsyM/Pz968OABzzmZmZlkb29Py5Yto06dOpGysjLFxsbWqD9VQUREhCZPnky2trZkbGxM+vr6tHTpUlqzZg0ZGxtTv3796PHjxxQeHk7h4eF87p8V4ejoSG/evKFVq1ZRWloaERFlZGTQhg0b6O7duzRjxowa9zs8PJxGjRol1F3V2dm5Qi/HX8Xnz5/p4cOHdPnyZbpz5w7dvn2bKXv8+DHNmDGDnj9/TgkJCfT161dmW5bD4ZCamprAOt3c3Oj48eP13vffvg+/YMECsrW1pW/fvpGzszPJy8tTcnIyvXv3jlq3bk1LlizhuwYAEwuOqHRvvOzhE0RJSUmV3Qd/pkmTJmRsbEwLFy6kjRs3Mg8jADp27BhxOBzq06cPERFJSUmRn58fLV68mDZt2kQ9e/aklJQUyszMpGXLljH20JKSkpXu5deGL1++0ObNm2n27NkEgGdtyOVyKTY2llxdXRkX4OXLl5O6ujotWrSIGXmEISoqSt7e3nTlyhVyd3envLw8kpaWJjs7uypdXxFZWVmkqKgotLxly5bMS/5XA4BmzZpFe/bs4TkuJiZGCgoKpKKiQk2aNKEpU6aQhoYG+fv7U1RUFCkpKdGZM2fo27dvFQYCbd68Of348aO+b+P3C7ykpCSdPn2agoKCyMnJiYqKikhWVpbGjx9P8vLyAhUZoaGhNGDAAEb4FBUVKSsrizIzMwX6El+8eJF0dHRq3McZM2bQiRMnSFdXl/r06UNSUlL0/PlzGjNmDO3fv5/nXDk5Odq3bx/l5eVRfHw8NW3alHGCICJKS0ujz58/V2gXXVtat25Nnz59Euja6eHhQXl5eXTgwAEaOnQoEZU+zF5eXjR//nzavn17pfWLiIiQgYEBGRgY1Gm/e/bsSf7+/uTq6iqw/MmTJ5U6wtQHXC5XaLThhQsX0ocPH8jX15dERUXp2LFjtGXLFtq8eTM5OjrSqVOnSF5enthsNiUkJAhto6Cg4N+vtKsILpcLFxcXrF27ljFYKSwsxKFDh2BoaMin9AoLC4OxsTFfH1+/fg1NTc066TuHw8G7d+/w+vXrSoMjvnnzBlu2bMHGjRvx+PFjRiFTluusPhNVREREYNq0aXzHExISMG7cOJ68eOWxsbERukX6qxg7dqxAgyYOhwNzc3MmhfWvJDc3l9lOW7ZsGfz8/GBnZ8dkcg0NDQWLxcKyZctw4MABjBw5En379uXzuRg7dqzQ1NReXl612i79x+zDVwSXy0VAQAAsLCxgZGQEQ0NDeHt7C9USP3z4EAYGBpg6dSpWr16NcePGwd7eXmB02voiNzcXVlZWcHV1xa1bt3Dv3j0sWLAARkZGSElJAYfDgb29PcTExOo1OcbcuXOxceNGnl2DlStXYtCgQUKzx4SGhlYY3PNX8O3bN2hoaODs2bNMjruoqChYW1sLTAhZV2RlZWHPnj2wt7fHlClTcPXqVTx48ADfvn1DamoqWrVqhXnz5gEoHXh+zpHH5XLx+PFjBAcHIyIiQmAOvbdv34LFYvFYKXK5XFy8eBHGxsaVDiIV8a8Q+Jry6dMnPHnyBGlpab+8bVtbW7489lwuF+fPn8fgwYMRFxeHvLw8JuhFXZCfn4+rV6/i0qVLzMuNy+XiyJEj0NbWhrm5OfT19dGnTx/4+voKrefZs2dYuXJlnfSpNuTk5GDPnj0wMjKCsbExpk2bhlevXtVbe/fv32deMunp6Thw4ADs7Ox4vNcUFRURGxsLoHSmJGgGVR5hATnfv38POzs7mJiYwNHREVpaWli2bFmN8smX5z8t8L+L9+/f85mW3r17F9ra2pgzZw50dHSgq6sLc3NzdO7cGcOGDavVfjyXy8W6deugp6eH7du3Y9++fRg7diymTp3KUy+bzQaHw0FgYCCP9dfPVJaQUxgZGRmIjY2t9UP7O0hPT4empiaT+fXHjx+MkI8fP575f/kXTl5eHkxMTITWyWazoa+vX2G7BQUFSE1NrZHdvCAaBP43sGfPHly+fJn5OywsDCYmJszD9Pr1a3h4eCA2Nhb9+/dH48aNYWhoKHSJUhkrVqzArl27+I5fv34d48aN41unlyXgKNOJlCczMxPq6urVegDfvn0LS0tLWFpaws3NDQYGBnBzc6vwOfn69StevXqFrKysKrdTn2zbtg1BQUEASl+gpqamjJCX6VtmzJjBd92kSZOEmngfO3YMnp6e9drvn2kQ+N/A7t27eRJYmJqa8ti1v3nzhskbf+PGDdjb20NSUhIDBw5k1qtVJT09HaampkLLPTw88OjRI77jz58/B4vFwpUrV8DhcMDhcBilU1kSzqoQGRkJbW1tvlhy9+7dg46ODt/M5enTp4x/w+LFi2FqagpnZ+ffnrl13LhxjJ6juLiYLxBFkyZNBCpYv3z5Ag0NDZ6Rv2w9bmho+MsTiTYI/G8gMjKSWdtlZGTAysqKp3zt2rW4du0agNKHQ09PDz4+PiAi5nhVOXHihNCMKWV9mTNnjsCy1NRUbNy4EYaGhjAyMsL69ev5vBUrY9y4cQIDRwLAqVOneDLFPnv2DPr6+nzC/fTpU2hpaf1W5xgbGxu+fjk5OTECP3XqVFy5ckXgtWVreV1dXVhbW4PFYmHFihW/ZWnTIPC/CSsrK4SFhfEpdt6/fw9dXV2enHXGxsYoLi5G3759MWjQoGrlszt48CAzFRVEeRv/uiY9PR2WlpZCy39OK2VqaipUgern54fdu3fXeR+rytmzZ7Fnzx6eY0uXLgURoUuXLtDT06tUz1JSUoLc3NzfGkrsH2FL/2/Ey8uL/v77b9q2bRs9f/6cnj59SitWrKBZs2bRkSNHGEu01NRUkpKSInFxcdq3bx89ffqUDh06VOV2Bg4cyGPS+TO3bt2iQYMG1fp+fiY/P5+OHz9OqampFBoaKtCCUVJSkuc+ZWRkqEWLFgLrMzc3p9DQ0DrvZ1UxMzOjoKAgioyMZI45OjpSq1atqFGjRqSurl5pFGExMTFq0qTJrzGcqSUNAl/HyMvL0/nz58nW1pZkZGRo8+bNxGKx6MqVKzwRTTds2EBTpkwhIqIRI0aQg4MDzZ8/nyIiIqrUTv/+/enTp0/06dMnvrLc3Fw6cuQIWVtb181N/Q9vb2+ysLCgRo0aUWFhIb169Yq0tbWZMN9lZGZmMqG8s7OzKzSXlZCQqJU5bm2RkJCgkydP0urVq2ny5Ml0+vRpunHjBsnIyFBycjItXLjwt/WtPmgQ+Hpi4MCBdPXqVRITE6MHDx4wueI/fPhAkydPppYtW/J49+3Zs4e6d+9OOjo6PKNNRezfv5+mTp1KPj4+lJubS0VFRRQUFERmZma0cePGOsmPR1Rqertu3TrauXMnNWnShBITE6l79+40cuRICgwMpFWrVlFcXBxz/q5du8jBwYGISs18379/L7TulJSU3x6Hv1WrVuTv708LFy4kLpdLLVu2JEdHR8rOzq6xV+EfS12uD341HA4Hz549w+3bt3+pNV114HA4CAkJwYQJE2BsbIypU6cKDWmUkZGBfv36QVlZucpWV4WFhTh+/DgsLS1hZmaGbdu21anmu7i4GLa2tujYsSOioqJQWFiI+/fvw8DAAL169cKZM2fw+PFjzJ07FxkZGVi1ahVmzJjBs551d3fH7du3BdY/f/58XL16tc76WxXYbDZOnz6NWbNmwcPDg8f0GShVeDZt2rTSvfQ/iarK6D82EYW/vz8dOHCAhgwZQgoKCvT48WOSlZWlHTt2UNOmTX9392pMeHg4DR06lJYvX05jxoyh3r17802Jk5OT6fPnz6SoqFj1nGI1ZPXq1dSqVSt6+vQpEz2HqNShxMbGhtq2bUtv376lZ8+e0ciRI8nBwYFMTU151rO5ubk0fvx4srS0JBsbG5KSkqKkpCTaunUrSUpK0saNG+v1Hsrz+vVrmjVrFllZWZG2tjbl5eXRyZMnKTY2lvr27UuBgYEUERFBvXr1oocPH5K8vPwv61tt+FcnovDz84OLiwufkUh4eDh0dXVrZZP8uykuLoa5uTmzLdS4cWO4u7vj6tWrSEhIgJWVFaytrbF27Vq4uLjAwMCgWvvn5YmOjsa6deuwaNEi+Pv789kCsNlsaGtrIz4+HlOmTOG7/uPHj3B0dAQAgbbj5SlzfCrLKWdjY4ObN2/WqN81JS8vD+rq6jzBUDkcDiIjIzF8+HCIiIjA2toax48f/2MMg6rKH7Etl5ycjI0bN2LixImYN28eXr58Wa3rBcHhcKCpqSnUImzv3r04c+ZMrdv53RQUFODjx49wdXWFtLQ0iAgqKip49uwZz3kZGRnQ09Or1ndbXFyMKVOmwNnZGXfv3sXr16+xZ88ejBkzhme5ER0djTlz5jDfuaDwUkZGRoiOjoazs3PNb/YXcfDgQR5fgvj4eAwbNox5sY4aNUqoN9ufzm8X+JMnT8LAwAChoaFIS0vDy5cvMX36dEybNq1a+80/Ex4ejqVLlwotz8nJwdixY2tc/59Ibm4uhg0bhiZNmqBXr158kXETExMr3Bf/mUWLFuHUqVN8xzMyMqCpqcnoAL58+cL4Bnh6emLLli0853M4HOjp6WHcuHF18jKvb2xsbJgIw9nZ2Rg5ciRat26N4OBgpKen48iRI/D39/+9nawhv3Uf/sWLFxQcHEwXL14kXV1datGiBfXt25f27dtH/fv3r1KQBWHk5uZWmJ5JVlaWioqKalz/n0iTJk1IVlaWwsPDKT09nZYtW8ZTrqysTCUlJVUK45Wbm0uvX7+mCRMm8JU1a9aM3N3d6ejRo0RE1LZtW/ry5QsVFhbStGnTKD09nezt7enevXsUFxdHK1eupI8fP5K1tTX17du3Tu61PhETE6OioiLy9fWlbt260fPnz8nHx4eMjIxIQUGBioqKhAa6+NdQl2+PMpycnPDx40eBZZVNySsjKSmJz2S1PE+ePPlX5lgvc7dcvnw55OTkkJOTw1Pu7OyMpKSkSuu5desW/v77b6HlxcXFMDY2Zv4OCQnBxIkTmd8rJiYGq1evhqOjI7p27Sr0d/4TOXHiBAYOHAgigqWlJV+wDxMTE2YG8E/jt47wqamp1KVLF4FloqKi1KtXrwrD/VSEkpISSUpKCjRQ4XK5tGHDBpo6dWqN6v6TERcXp8zMTJoyZQoVFBTwWOXFxcXR9evXKTExUWD64fKIiIgQl8sVWo6fYuAZGBiQoaEh6erq0oYNG+jevXuUmppKqampFBISIvR3/tPgcrnk7+9PERERtHPnTjp79ixPPoRjx44xcfD/1dTl26MMfX39Cu2KnZ2dK8zQUhnp6enQ1tbGgQMHGMeLp0+fwtzcvMIAD/9kAgMDGd2Fg4MDlJWVmXvX09NjtPri4uJwc3MTqmXOz8+Hrq6u0HYE2ZYDpSP/rVu34O/vjzdv3tTBHf1a9u3bByLC4cOHYWRkhLlz5yI0NBT+/v4YP3485syZ80fFvK8uv3UffunSpaSvr08jR47kKyssLCQzMzMKDQ2tle0xm82mc+fO0fnz56m4uJi6du1K06ZNI1VV1RrX+ScDgDw8PKi4uJjGjx9Pmpqa5OrqSq1bt6b9+/dTVlYWHTlyhN68eUNr1qwhDw8PWr16tcC61qxZQ0pKSoxpbxkpKSlkbW1NgYGB/5j956qip6dHoqKidPnyZSIievbsGT1+/JikpaXJ0NCQlJSU6q1tLpdLt2/fpqioKGrevDkZGxuTrKxsnbZRVRmtF4FPTEwkBwcHOnPmDI/TBIfDIVdXVzIyMiITE5Mq3koD5bl37x4dOnSIwsLCKCYmhvbt20dKSkpkbm5OX79+pdatW9Pw4cNJTk5OqFMKl8ulhQsX0tevX8nGxoYUFBSY+Op79+79LZFhhQGA7t+/T0+fPqW0tDRq1qwZtWnThrKzsykhIYHk5eXJzs6O2rRpI/D6hIQE8vf3pw0bNtDAgQMpODi4Wmmw4uPj6dSpU5SWlkbdunWjCRMmVEtYX7x4QfPnzycNDQ0aNGgQJSUlkZ+fHxkaGtLMmTOrXE9l/HbDm9evX0NbWxuLFy/GuXPnsGvXLmhpaeHEiRNVrqMB4eTl5UFFRQXjxo3Du3fveCLhnjhxAkRUqUHO169fsXfvXmzatAnXrl2r1XZpTcjPz8ebN2/w+vVrZgn481LQy8sLRAQRERF07NgRcnJyICJISEigQ4cOaNy4McTFxXHq1CncvHkTRkZGGDRoEAIDA7FgwQJMmDABV65cgYGBAdq0aYMxY8bg8ePHlfaNy+Vi2bJlsLa2xo0bN/D+/XucPn0aLBarQrfk8nz79g0sFovP1JnL5WL+/Pl1uvz87fvwQOmNPXr0CEeOHMHFixdrHMrpTyIxMRFLliyBrq4ujIyMYGlpiRs3bvyWvpQJ9rp16zB27FhISkri3LlzKCoqgpqaGnr06FFvOexqQ0BAAFgsFiQlJXmyqXbt2hVSUlKYOHEi86z5+fmBiHhCh+Xm5jIvp+zsbDg4ODD19OnTB5qamhAVFeWxDvT39wcR4fHjx9DS0qrUwMbLywsbNmzgO85ms2Fubl4lPcayZcv4ApqWUVRUJDRceE34IwT+30Z0dDQ0NTVx//595odKTk7GjBkzKtzqqi+4XC7c3NwgISGBTp06YcSIERAVFYWvry/evn0LcXFxbN269Zf3SxgcDgdLliwBEWHMmDHYtWsX7t+/j+vXr2P27NmYPXs2Vq5cCVlZWTRv3hy9evViBFlY9J6yek+fPo0bN26Ay+UiPz8fLVu2hJSUFGOZyGaz0aJFC0ydOhU3b97EqlWrKqyPxWIJ3TqOiooSaGr8M5Upr2fOnFlncfYbBL4eMDIyEhjWicvlws7ODm/fvv0NvQI+fPiAjh07QkVFBSwWi5neGxoaokWLFoiMjMTTp09x6dIloYEX6xM2m42TJ09i4MCBEBERwebNmysUhJiYGCxZsgQzZszA/v374enpWa0QXM+fP4eHhwd69+7Nk89+27ZtEBERQXh4OBORh8vlwtfXF/r6+jAyMoKOjg5sbW0xYcKECtsoH9FHGJX5F8ydO7fOchP8coHPy8vDwYMH4ezsjJkzZ+LWrVu/NeRPXfPu3Tu4uroKLX/58iVmzZr16zr0E2/evAER4fTp02jZsiWICLGxsejcuTMkJCRgaWmJnTt3wtXVFYaGhvWaBKM8cXFx6NmzJ4gIWlpaQt1k65Lnz59j6dKlmD59Ojp06MAcLy4uRrt27ZgIu0BpmvH169fzLH1u3rwJFRWVCqftVXGdnTlzplCT48pmEdXllwr848ePoa6ujhMnTiApKQkfPnzAihUrYGJiwmcR9k8lODgYBw4cEFrO5XJ5LNR+JePGjQMRQU5ODp8/f2aUeC4uLtDT02McRFRUVJCdnY3ExERoamrWyhaiKuTl5aFt27bo2LEjIiIi6rWt8hQVFUFLSwv9+/fnG6l1dHSgpqaGNWvW4NGjRwJf0lwuF2PGjIGenp7A+p89e4bZs2dX2o/379/DxMREoPemp6dnnS4Df5nAZ2ZmQkNDQ2DZ/fv3GffJfzrh4eFYsmSJ0PL4+Pjfdq9WVlYgIri6ujLhkRcvXgwiwvHjx1FcXIwbN25AREQE+/fvB1AaM3/BggX12i8vLy+IiYkxGVt+JVu3bsWYMWPQtGlTnuAoZVGC7927B2dnZ8TFxTFl5Ud5Pz8/qKmp8S2BcnNzoaenV+W1d3BwMFgsFvz8/BAbG4uHDx/CyckJbm5udbor8ssEfteuXTh37pzQa62tret9JPkVcLlcsFgsoSGIXV1dYWdnBwsLC7i4uODevXu/bElTVFQEe3t7RsE1adIkJCQkQElJCeLi4jh48CCA0hdDmSKvoKCgQou7umDt2rVQVFSs1zaEweVy4e7uDklJSWhpaSE8PBw7d+7E6NGj0bRpU3h4eMDIyAgGBgaQkJCAmJgYiAjr169nBHHcuHEYNGgQTpw4gdu3b2Pbtm1QV1fHgwcPqtWXrKwseHp6YubMmVixYoXAZJm15ZcJ/Pjx4yvc+vHx8al2+iIul1vtxAy/gmvXrsHCwoIncwuHw4GjoyPatm2LBw8egM1mIy4uDosXL4adnV2drdGqQnR0NAYPHszkQhszZgwcHR0hKSmJjIwMFBUVYdasWRAREYGamprQ/Gd1xebNmyEvL19v9efl5WHr1q3Q0dGBkZERdHV1sXfvXp4p9ObNm0FEcHJyQkBAAIqLi9GvXz9Mnz4dGhoafIkniAjh4eEAStfg4eHhOHr0KLZu3YqLFy/+0t+zOvwygbe1teWJIPIze/bswaVLl6rSDL59+4aZM2dCW1sbZmZmYLFY2LRp0x+1f//gwQOYmZnBysoKLi4uGDRoEPr37y/wQTh16lSF2z/1RUJCAgwNDUFE2L59O0RFRZlRHiiddXXv3h3m5ub12o/Lly+DiPDw4cM6r7tsau3v78/YwLPZbBw5cgTm5uaM0HM4HAwdOhRdu3ZlFJXt2rXD4sWLcf36dWhpaSEgIABv375lBD43N5cJLFIXxMTEMBmETUxM4OXlxaQfqyt+mcD7+fkxWUYKCgrw+fNnHkWdgYFBlTKLxMfHQ0NDgyfiCofDgZ+fH8zMzP64sFWZmZlITEzExIkTha5RuVwutLS0fkvfuVwu2rdvj4EDB8LIyAjt27dnfpd58+aBiKCtrc2Xw7wuuXbtGrNerktSUlIwc+ZMBAcHCyw/fvw4T869t2/folOnTmjXrh1u3rwJIoK/vz+4XC6mTZuGHTt24MmTJ7h69Sr27duHmJgY6OrqCg02Wh0CAgJgZGTEBMr88eMHfH19oaGhUadL3V8m8Gw2G6NHj4aVlRUMDQ0xY8YMmJubw87ODitXrsSaNWuq1OGJEycK3SP28vKCj49Pler51VQ2LZ49e3a9ClVFmJmZoXXr1pg2bRqkpaUxd+5cREZGwt7eHnp6elBWVoasrGy9bdEZGRmhX79+dabLCA0NhZ6eHuzt7dGmTRtoaGhgy5YtfMqv4uJi6Ojo8Bx79uwZxMXFGau+8jOAsl2M/v37Q1dXFxMnTkRUVFSt+5uUlARdXV2By9MPHz7U6Qzrl/nDFxQUEABKSUmhtm3bkoaGBhkbG1NiYiIdO3aMbG1tK60jLy+P0tPTKTw8nKZNm0azZ8+mu3fvMjHB7e3tKSAgoLZdrRc4HE6F/uU5OTkkLS39C3v0/0hJSVFqaip9//6d2rVrR3v37qWNGzfS/Pnz6cqVKxQdHU2tW7cmExMTgQktakNRURHduHGD7Ozs6iQjy/nz5+nkyZN07tw5OnDgAA0fPpxu3LhBzZo1o2nTpvGcKy4uziTCKGPAgAEUHR3N+MSXlaekpFBYWBgREZWUlNDly5fp6NGjdeJAdPjwYZo7dy6fsw4AioqKohcvXpCGhgaZmprS8ePHf02kptq+PdauXcvYOb99+xaHDx/G6dOnkZmZiXfv3lUpuOGlS5egoqKCQ4cOISEhAe/evcOyZct49vFro2CKiYnBlStX8PTp0zrXnJdPEPkz+fn5dbYOrAk5OTlYv349EwST/ueEcv78eeacDx8+QFVVFfLy8lV2CqkKL168YFIu15bi4mKeKEkcDofHgs7d3Z3HUYjL5fKUV1a3paUl8/0kJyfXur9lWFpa8u3qcDgcTJ48GWvWrMG+ffvg7++P/Px87N+/H6ampjXOOvvLpvQ6OjoV7icaGBhUuIbNzc3FqFGjBFouPXjwAA4ODsjPz6+RwMfFxcHMzAxOTk7Ys2cPPDw8wGKx6jTxQWpqKjQ0NJCQkMBzvGyrTFjm0V/Jx48fmdBO8vLyPDbmQOm2kZmZGYgIJ0+erJM2b926BSKqE1vxa9euYfPmzTzH3NzcGCF/+/Yt3NzcAJTey+TJk6GqqgpjY2M4OjpW6jWYn5/PCLywpJc1wdnZGfHx8TzHjh8/zhjcbN26lSe9+IULF2qs5P1lAl+ZINrb2/NsY/3MgQMHcPLkSTg5OeH169d85TY2Nli7di2OHj1ala4ypKWlQUNDg8ewAiiNjz527FihXkw14dOnT4z+4vDhw1i3bh1YLBbPSPq7KZttlD3YP1ugcblcODg4QEJCok7ixQcGBoKI6iQj0MmTJ/leRMnJyYySNycnBxMmTMDXr1/Rv39/9OnTB0ePHsWSJUugr6+PFi1aoGPHjtDW1oahoSE2b97M94J++fIlwsLCat3X8ly7dg2rV6/mOWZgYID8/HxwOBw+hW6ZrUdNDHJ+mcDr6+sLNUYp01JXFDrI1tYWGRkZSEpKgoaGBo8nWlFREZydnTF06NBq73+uWbNG6FQ7KyurXvagIyMjcf78edy5c+ePDJcUHR3NTOsF2bSXJZ4oM9GtDV5eXhAVFa2THYqnT58KDEyalJSE6dOnY/DgwVBTU4OioiJGjhwJRUVFgfvrenp60NfXh5SUFERERLB48WJcuXIFR48erdORvQwOhwMzMzOe59DIyAglJSWYM2cOE7+gPJUNkML4JQKfnJyM9u3bC12nh4SEVBhDHgAmTZrERFtNTU2Fh4cHtLS0YGRkBG1tbVhZWeHs2bNV6SYPenp6Fb4p7ezsquWB9W8hPDycb9ZTnqysLLRp0wZmZma1amfZsmVo3ry5QJ1JYWEhjh07BicnJ7i4uCAoKKjCFySXy4WOjo7A34vD4cDIyAiXL1/GiBEjeARcTEwMMjIyzN8KCgpYs2YNnj59itWrV/Oc26pVqyotv8pi+wUEBFRpuVJQUICZM2fC2NgYGzduRMeOHaGpqYljx44JPN/Q0LBGdie/RODv37/PfGHbtm3DgQMHEBQUhIKCAhw7doyZvlTEhQsXsHPnTqHlxsbGNUr7U9kIPnPmzAof/P8yf//9N6SlpfnWn9WhbA1ffo0KlK63x4wZAx8fHyQnJyM+Ph5bt26FlpZWhQqz58+fY8iQIfD19UVUVBRu376N9+/fw8HBAT4+PliwYAGPALds2ZKZaW3ZsgXa2tqQlpaGqKgoGjVqBDMzM8ybNw/Lli1DWFgYs9yZN2+e0FnJiRMnoKmpiQ0bNsDHxwfOzs6wsLAQ6DL9M1lZWbh//z5cXFyE6pA+ffqEiRMnVlqXIH7ZlP79+/eIjIzE0aNHeb7sbt26VSlOenFxMbS0tAT6knt7e1fosFIREyZMEPpD/E6DmH8C6enpaNOmDWxsbGpcR5nHWa9evZhjbDYb6urqAkfqt2/fwtTUlOdYfHw8Vq1ahUGDBkFCQoJvit66dWsmXNXt27ehpaWFv//+G4aGhnwv89TUVEyYMAFBQUHQ0dHByJEjGft5c3NzcDgcbN26FRISEujVqxfmzZvHYzDk5+cnMGtSdHQ0NDQ0qmRcBgDfv3+HhoYGn+ttQkICWCxWjW02fksAjICAAJiZmfGsodTV1SutPzk5GWZmZnB1dUVAQAB8fX1hbm6OhQsX1ngtfPfuXUydOlXglPLs2bNYuXJljer9L8Bms6GkpIRx48bVqp5z586BiJiZgp+fH/bt2yf0fHd3d7x48QIAEBsbCxkZGTRp0gQTJkzAvn37EBgYCB8fH5w/fx6ampro1KkTc22Zf3lWVhZMTEz46t64cSMuXboEDofDGOWw2Wzs378fIiIicHNzg7e3N+7duwd1dXU0atSIsUYMDAyEhoaGUD3S6dOn4enpWeXvJSkpCQ4ODswzbm1tzcQmrCm/NeLNjx8/cObMGUboT5w4USVnmDdv3sDb2xvHjx+vlhKluLgYQUFBWL9+Pfbt28dMDbdt2wY7OzsmSGJycjJWr16N8ePH/5HOOX8KZevb3bt316qe9PR0SEtLY/z48eBwOJg1a1aF697Lly8zL4QdO3ZASkoKWVlZ+PTpE8aOHQtbW1usWrUKo0aNAhFhxowZPNdfvHgRY8eOhZ2dHc/xkJAQmJubM4NH+eVeSUkJlixZgrZt24KI0L17dxQXFyM5ORldu3ZldACKiopCFZlsNrtGsRAyMzMRFRVVJzsZVZVR8VpZ7QihUaNGZGVlRcOHD6d27dqRvb09rVu3jkJDQ6lDhw5Cr+vduzf17t27Wm09e/aMFixYQCYmJqShoUGpqak0Y8YM6tmzJ61evZqioqLo4MGDFBcXR3JycuTg4EDLli0jUdF6Sbrzr6Bly5ZERDR48OBa1aOgoECnTp2isWPHUpcuXUhSUpIKCgqEnl9QUMBYwCUmJlLr1q0pJyeHpkyZQkeOHKF27doRh8MhHx8f0tfXp6ioKPr8+TPzTBkbG5OYmBg5ODjQlClTSEFBgV6+fEl9+vShU6dOkZiYGF/+PTExMVq/fj0pKyuTm5sbvX//ngYNGkRiYmLUtWtXUlFRoTt37lBKSgpFR0fT9u3bKTo6mlRUVEhSUpLev39PjRs3pujoaHr69Cn16tWLGjduXKXvp2nTpr8+001dvj1+5vnz5yAiWFtbg4j41mg15e3bt1i6dCkmTpyIbt26CXzzbt68udYj1H+VHz9+oF+/fujUqVOtt+eAUo29tLQ0Ll++XKFOxtraGt++fUNxcTF69uwJS0tLzJw5k5nmA6Vbn0SE5cuXIzIyEtOmTeOrZ/ny5Th48CAiIyP5lMYbN24UmDl3165dICJYWVnB1dUVkydPhpGREaytrTF79mwMGjSIeZ7Lf4yNjaGhoQEpKSkQEUaNGoWDBw/+cjfaPyKIJYfDYb4YcXFxHg+mmsDhcDBjxgy4uLggPDwcs2fPxqpVq6ClpYWLFy/ynVuXMcP+a8TGxkJZWRmSkpKYPXt2rfapk5OTISsrC1NTU2hpaeH+/ft855w6dQqTJ0+Gn58f+vfvD1FRUdy/f5/PRPbbt28gKk0ZBZRaev6spyksLISJiQn279/PCPz379+xcuVKoXqdypg5cyZCQ0Nx/fp1EBEmTpyIkpISlJSUwMLCAi9fvsSyZcuY511NTe2XJtr8IwQeKF1Hjx8/vkpbF5WxadMmeHl5MX8bGhqCy+WCzWbD1NSUz+vLw8MDr169qnW7VeHZs2eYOHEiDA0Noa+vj1mzZiEmJuaXtF1f5ObmYu3atZCTk4Oqqmqt3DkDAwOZOPTS0tIYOXIk1q5dCzMzM7Rp0wbNmzdnhGXQoEF48uQJuFwuz3rb19eXOafMOMXU1FSgYpfNZuPYsWMwMTGBkZERxo0bh4sXLwoU9gsXLsDc3BwTJkzAsmXL+BJVlCkfGzdujA4dOjB92LBhA4yMjLBhwwbs27cPFy5c4BF6OTk5ZGRkwM/PD7q6ujA3N4ejo2OdmnaX8ccIfF0hKHB/mcADpc4aM2fO5Llm8eLFQqOG1iWnT5+GtbU1j4A/f/4curq6Vcpy8qcTExMDJSUliIqKYtSoUVixYgUCAgKqPVJmZ2fj8uXLsLCwYISiSZMmGDp0KFxcXHD8+HG+vX9tbW1m+3TIkCEgIvTr1w9A6TMhyEnm48ePmD17NgwMDKCvr48lS5bwmdKWweVyIS8vz2wnl/XL1taWOWf9+vUCLfdkZGQwfvx4vuNNmjQBEYHFYqGkpAR9+vThKZeUlBRqnVpT/nUCHxUVhXnz5vEcW7p0Kc9eafk44GV2yfWtjU9LS4Ourq7AUSY7Oxuampq/PIVTffD9+3f4+PjA2NgYSkpKICJMmTKlwmhHwigpKYGvry/u3r1b6bbrgQMHmAArbm5uICLGEMvLy4sv0+3Vq1dhaGjIOAdxuVxmafDkyROBbVy4cIHPHLdLly48/fXx8YGDgwMOHjyIv//+G97e3lBTUwMRoVu3brh48SITmr24uBjXr19notrMmTMHrVu3Rrdu3dC1a1ds3Lix2t9ZZfzrBP7jx498I3hCQgJ0dHSQm5sLLpfL43G3Z8+eX5INZvv27Xz6g/KsX78e169fr/d+/Go8PT0hJyeHZs2aYdmyZbWyyqsIDoeDSZMmYc2aNTAxMUH37t2Rnp6O9evXw97enueFkZeXBw0NDYEupllZWdDQ0BD6gsnPz0dwcDCCg4OZ+H+VkZmZicmTJ8PW1haGhoYwMDDAokWL8OXLl5rfcA351wm8sBH7wYMHGDNmDGbPno2pU6fi2rVrsLW1xbx5835J1FhXV9cKH/aQkJBqGWX8k0hJSYGbmxtkZWUhKioKTU1NLFy4kMf1ti7gcDgIDg6GoqIiWrRoAUtLSwQFBfHNnHx8fHD8+HGh9WzZsgUhISF11q87d+5AX18f4eHh4HK54HK5ePjwIXR0dOokDkB1+NcJPFCqtJk7dy6fIH/9+hW9evWCu7s7tmzZ8kvfsCtWrKgwSOOBAwfg7+//y/rzO8jJycGBAwdgbGwMZWVlEBH09fVx7tw5nil/Xl4e9u/fD2dnZ8yaNataXoXe3t4QERHB+vXreY6np6cjMjISmZmZcHJyqtBa7fbt23WWa6+wsBDq6uoCfUVycnKgrq7+S427/pUCDwD79u2Drq4ufHx8EBISglWrVkFTU/OXaeN/5sOHD3BwcBBYVhaZpa4VNH8yJSUlOHnyJKOoEhUVhZ6eHqZMmYLmzZtDTEwMAwYMQOvWrUFE+Ouvvyr97dhsNo/Hm7i4OHr37g1NTU0ebzj6n9fbwYMHBc7uTp06xWzn1ZaTJ0/yRAL+mV27dlU7PHtt+GUx7X4106dPp3PnzpGMjAx9/vyZxowZQzdu3CA1NbXf0h9VVVVSUlKiv//+m0pKSpjjBQUF5OrqSra2tr8tpt3vQExMjGxsbOj169cUHx9Pnp6elJeXR2FhYWRnZ0efPn2iZ8+eUXx8PN25c4eKi4tp5MiRdP/+faF1SkpK0p49e6hdu3Y0ZMgQmjt3Lg0dOpRatmxJ8+bNo8DAQDp69Cjt3buXZGRkaMqUKTR69Gj68OEDUwcAOn36NJmZmdXJfUZFRVVoiTh48GCKioqqk7bqEhHgf5EiKyAnJ4fk5eUpOzub5OTkfkW//lEAIC8vL/L396dOnToRm82mtLQ0mj59OhkbG//u7v3R5OXlkampKYWFhVFgYCDp6OjUqr4FCxZQdnY2eXt707Bhw+jRo0dUUlJCq1atoqZNm9L8+fPrpN/btm2jXr16kZ6ensDygIAASk5OJldX1zpprzKqLKN1OV34r8PhcPDt27c6cYb4L1FYWAhDQ0NISEjA09OzVspWLpeL7du3o2nTpujQoQPc3d2hqalZZ1P5MhISEmBlZSW03Nzc/JcGWKmqjDaM8A38ERQVFdG8efNo79691KNHD+rcuTP17NmTnJycqFu3btWqq7CwkDp37kwDBw6kbdu2UefOnevFWWrJkiWkoKBAc+fOZerncDi0ceNGAkDLly+v8zaFUVUZbRD4Bv4o7t69S0ePHqXv37/T48ePKTc3l4YMGULa2tpkb29Pnz9/ppcvX5KzszM1adJEYB23bt0iFotFr169qlfdDgDau3cvBQUFUd++fYnL5dLr169p/PjxNGXKlDqJx19VGgS+gX88P378oB07dlBERAQFBwcTm81myoyNjenixYsCr/P19SV7e3vKz8+vsqtqbeBwOPTx40cSERGhLl26kJiYWL23+TNVldFq+cPn5OTUumMNNFAdZsyYQUREGRkZFB4eTo8ePaLdu3dTcHAwff36VeDDXTa9/vjxI3Xs2PGX9FNFRYWIiPLz839Jez9TVdms0gj/48cP6tixIyUnJ9e6Yw000ED9oKSkRHFxcSQlJSX0nCoJPFGp0P+S3FcNNNBAjZCUlKxQ2ImqIfANNNDAP59/nKVdAw00UHMaBL6BBv5DNAh8Aw38h2gQ+AYa+A/RIPANNPAfokHgG2jgP0SDwDfQwH+I/wNRefLfCBBFjQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAElCAYAAAAflYjaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXRUx9uAn427O3EgEByCBdfg7qVIKVBKWyjFi1OhWPFixd1dg7tDgCQkIQlJiBF3z35/8O39ZckGgtbmOSfnwL2zc2fv3vfOvPOaTC6XyxEIBAKBQCAQCAQCwUdB7a8egEAgEAgEAoFAIBD8mxFKl0AgEAgEAoFAIBB8RITSJRAIBAKBQCAQCAQfEaF0CQQCgUAgEAgEAsFHRChdAoFAIBAIBAKBQPAREUqXQCAQCAQCgUAgEHxEhNIlEAgEAoFAIBAIBB8RoXQJBAKBQCAQCAQCwUdE468egEAgEAgEAoFA8F8hOzub3Nzc9+5HS0sLHR2dDzAiwadAKF0CgUAgEAgEAsEnIDs7GxcXF2JiYt67LxsbG0JDQ4Xi9Q9BKF0CgUAgEAgEAsEnIDc3l5iYGCIiIjAyMnrnflJTU3FwcCA3N1coXf8QhNIlEAgEAoFAIBB8QgwNDTE0NHznz8vl8g84GsGnQCTSEAgEAoFAIBAIBIKPiLB0CQQCgUAgEAgEnxC5XP5e1iph6frnISxdAoFAIBAIBAKBQPAREZYugUAgEAgEAoHgEyIsXf89hKVLIBAIBAKBQCD4l/PHH3/g4uKCjo4OHh4eXL58+bXtL168iIeHBzo6Ori6urJq1apibfbt20elSpXQ1tamUqVKHDhw4K2vK5PJVP7Nnz9fatOsWbNi5/v27fuOd+KvQShdAoFAIBAIBALBv5hdu3bx/fffM2XKFO7fv0/jxo1p164d4eHhKtuHhobSvn17GjduzP379/nxxx8ZNWoU+/btk9pcv36dPn36MGDAAHx8fBgwYAC9e/fm5s2bb3Xd6Ohopb/169cjk8no0aOH0piGDRum1G716tUf+C59XGRyYZ8UCAQCgUAgEAg+OqmpqRgbG5OQkPDedbrMzc1JSUkpVT/16tWjVq1arFy5Ujrm7u5O165dmTNnTrH2EydO5PDhw/j7+0vHRowYgY+PD9evXwegT58+pKamcuLECalN27ZtMTU1ZceOHe90XYCuXbuSlpbG2bNnpWPNmjWjRo0aLF68+I3f9e+KsHQJBAKBQCAQCAT/QFJTU5X+cnJyirXJzc3l7t27eHl5KR338vLi2rVrKvu9fv16sfZt2rThzp075OXlvbaNos93uW5sbCzHjh3jyy+/LHZu27ZtWFhYULlyZcaNG0daWprKPv6uiEQaAoFAIBAIBALBJ+RDJdJwcHBQOj5jxgxmzpypdCw+Pp6CggKsra2VjltbWxMTE6Oy/5iYGJXt8/PziY+Px9bWtsQ2ij7f5bqbNm3C0NCQ7t27Kx3v378/Li4u2NjY8PjxYyZPnoyPjw/e3t4q+/k7IpQugUAgEAgEAoHgH0hERISSe6G2tnaJbWUymdL/5XJ5sWNvav/q8dL0+TbXXb9+Pf3790dHR0fp+LBhw6R/V6lShfLly1O7dm3u3btHrVq1SvwOfyeE0iUQCAQCgUAgEHxCPpSly8jI6I0xXRYWFqirqxezLr148aKYFUqBjY2NyvYaGhqYm5u/to2iz7e97uXLlwkICGDXrl2v/T4AtWrVQlNTk6CgoH+M0iViugQCgUAgEAgEgn8pWlpaeHh4FHPF8/b2pkGDBio/4+npWaz96dOnqV27Npqamq9to+jzba+7bt06PDw8qF69+hu/k6+vL3l5edja2r6x7d8FYekSCAQCgUAgEAg+IZ+6OPIPP/zAgAEDqF27Np6enqxZs4bw8HBGjBgBwOTJk4mMjGTz5s3Ay0yFy5cv54cffmDYsGFcv36ddevWSVkJAUaPHk2TJk2YO3cuXbp04dChQ5w5c4YrV66U+roKUlNT2bNnDwsXLiw29uDgYLZt20b79u2xsLDAz8+PsWPHUrNmTRo2bPhW9+GvRChdAoFAIBAIBALBv5g+ffqQkJDA7NmziY6OpkqVKhw/fhwnJyfgZa2sorWzXFxcOH78OGPGjGHFihXY2dmxdOlSpdpZDRo0YOfOnUydOpVp06ZRtmxZdu3aRb169Up9XQU7d+5ELpfTr1+/YmPX0tLi7NmzLFmyhPT0dBwcHOjQoQMzZsxAXV39Q9+qj4ao0yUQCAQCgUAgEHwCFHW6YmNj37tOl7W1danrdAn+ekRMl0AgEAgEAoFAIBB8RITSJRAIBAKBQCAQCAQfERHTJRAIBAKBQCAQfEI+dSINwV+PsHQJBAKBQCAQCAQCwUdEWLoEAoFAIBAIBIJPiLB0/fcQli6BQCAQCAQCgUAg+IgIpUsgEAgEAoFAIBAIPiLCvVAgEAgEAoFAIPiECPfC/x7C0iUQCAQCgUAgEAgEHxFh6RIIBAKBQCAQCD4hwtL130NYugQCgUAgEAgEAoHgIyIsXQKBQCAQCAQCwSdEWLr+ewhLl0AgEAgEAoFAIBB8RISlSyAQCAQCgUAg+IQIS9d/D2HpEggEAoFAIBAIBIKPiLB0CQQCgUAgEAgEnxBh6frvISxdAoFAIBAIBAKBQPAREZYugUAgEAgEAoHgEyIsXf89hNIlEAgEAoFAIBB8QoTS9d9DuBcKBAKBQCAQCAQCwUdEWLoEAoFAIBAIBIJPiLB0/fcQSpdAIBAIBAKBQPCJEYrTfwvhXigQCAQCgUAgEAgEHxGhdAkEAoFAIBAIBALBR0QoXQKBQCAQCAQCwSdEEdP1Pn9vyx9//IGLiws6Ojp4eHhw+fLl17a/ePEiHh4e6Ojo4OrqyqpVq4q12bdvH5UqVUJbW5tKlSpx4MCBt77u4MGDkclkSn/169dXapOTk8N3332HhYUF+vr6dO7cmefPn7/1PfgrEUqXQCAQCAQCgUDwCfnUSteuXbv4/vvvmTJlCvfv36dx48a0a9eO8PBwle1DQ0Np3749jRs35v79+/z444+MGjWKffv2SW2uX79Onz59GDBgAD4+PgwYMIDevXtz8+bNt75u27ZtiY6Olv6OHz+udP7777/nwIED7Ny5kytXrpCenk7Hjh0pKCh4q/vwVyKTiyg+gUAgEAgEAoHgo5OamoqxsTFPnz7F0NDwnftJS0ujXLlypKSkYGRk9Mb29erVo1atWqxcuVI65u7uTteuXZkzZ06x9hMnTuTw4cP4+/tLx0aMGIGPjw/Xr18HoE+fPqSmpnLixAmpTdu2bTE1NWXHjh2lvu7gwYNJTk7m4MGDKseekpKCpaUlW7ZsoU+fPgBERUXh4ODA8ePHadOmzRu//98BYekSCAQCgUAgEAj+peTm5nL37l28vLyUjnt5eXHt2jWVn7l+/Xqx9m3atOHOnTvk5eW9to2iz7e57oULF7CyssLNzY1hw4bx4sUL6dzdu3fJy8tT6sfOzo4qVaqUOP6/IyJlvEAgEAgEAoFA8An5UHW6UlNTlY5ra2ujra2tdCw+Pp6CggKsra2VjltbWxMTE6Oy/5iYGJXt8/PziY+Px9bWtsQ2ij5Le9127drRq1cvnJycCA0NZdq0abRo0YK7d++ira1NTEwMWlpamJqalnr8f0eE0iUQCAQCgUAgEHxCPpTS5eDgoHR8xowZzJw5U+VnZDJZsT5ePfam9q8eL02fb2qjcBkEqFKlCrVr18bJyYljx47RvXv3Esf3pvH/3RBKl0AgEAgEAoFA8A8kIiJCKabrVSsXgIWFBerq6sWsQi9evChmhVJgY2Ojsr2Ghgbm5uavbaPo812uC2Bra4uTkxNBQUHSdXJzc0lKSlKydr148YIGDRqU2M/fDRHTJRAIBAKBQCAQfEI+VPZCIyMjpT9VSpeWlhYeHh54e3srHff29i5RafH09CzW/vTp09SuXRtNTc3XtlH0+S7XBUhISCAiIgJbW1sAPDw80NTUVOonOjqax48f/6OULmHpEggEAoFAIBAIPiEfyr2wtPzwww8MGDCA2rVr4+npyZo1awgPD2fEiBEATJ48mcjISDZv3gy8zFS4fPlyfvjhB4YNG8b169dZt26dlJUQYPTo0TRp0oS5c+fSpUsXDh06xJkzZ7hy5Uqpr5uens7MmTPp0aMHtra2PHv2jB9//BELCwu6desGgLGxMV9++SVjx47F3NwcMzMzxo0bR9WqVWnVqtU738NPjVC6BAKBQCAQCASCT8inVrr69OlDQkICs2fPJjo6mipVqnD8+HGcnJyAl5ajorWzXFxcOH78OGPGjGHFihXY2dmxdOlSevToIbVp0KABO3fuZOrUqUybNo2yZcuya9cu6tWrV+rrqqur8+jRIzZv3kxycjK2trY0b96cXbt2KaXUX7RoERoaGvTu3ZusrCxatmzJxo0bUVdXf6f791cg6nQJBAKBQCAQCASfAEWdLn9///eu0+Xu7l7qOl2Cvx4R01WEjRs3IpPJePbsGQDbt29n8eLFf+mY3jQOmUxWYpaavwP37t2jVatWGBgYYGJiQvfu3QkJCfmrhyX4DyHk+sNy5coVhg4dioeHB9ra2kr3ViD4VAi5/nAUFBTw+++/07ZtW+zt7dHT08Pd3Z1JkyaRnJz8Vw/vX8uHiukS/HMQlq4ixMXFERwcTM2aNdHW1qZjx448fvz4L19QvG4cN27cwN7eHnt7+08/sDfw5MkT6tatS40aNZg0aRLZ2dlMnz6dpKQkHjx4gKWl5V89RMF/ACHXH5ZZs2axYcMGatasSXJyMhcuXCA0NBRnZ+e/emiC/xBCrj8c6enp2NnZ0a9fP1q3bo2FhQX37t3j559/xtbWljt37qCrq/tXD/Nfg8LS5evr+96WrsqVKwtL1z8IEdNVBEtLy0+iCGRlZX2wF1j9+vU/SD8fg+nTp6Otrc3Ro0elF4KHhwfly5dnwYIFzJ079y8eoeC/gJDrD8u0adOYMWMGAAsWLODChQt/7YAE/0mEXH84dHV1CQ0NldKAAzRr1gxHR0d69erFvn37+Pzzz//CEf47+dQxXYK/HuFeWISi7grNmjXj2LFjhIWFIZPJpD8Fubm5/Pzzz1SsWBFtbW0sLS354osviIuLU+rT2dmZjh07sn//fmrWrImOjg6zZs0CYMWKFTRp0gQrKyv09fWpWrUq8+bNIy8vT/r8m8ahyl3h8ePHdOnSBVNTU3R0dKhRowabNm1SanPhwgVkMhk7duxgypQp2NnZYWRkRKtWrQgICHjve5mfn8/Ro0fp0aOH0g6Mk5MTzZs358CBA+99DYGgNAi5/nByDaCmJqYNwV+PkOsPJ9fq6upKCpeCunXrAi/rQAkEgvdHWLpK4I8//mD48OEEBwcXUxAKCwvp0qULly9fZsKECTRo0ICwsDBmzJhBs2bNipni7927h7+/P1OnTsXFxQV9fX0AgoOD+eyzz3BxcUFLSwsfHx9++eUXnjx5wvr16984DlUEBATQoEEDrKysWLp0Kebm5mzdupXBgwcTGxvLhAkTlNr/+OOPNGzYkD///JPU1FQmTpxIp06d8Pf3lzLCFBYWUlhY+MZry2Qy6TPBwcFkZWVRrVq1Yu2qVauGt7c32dnZ6OjovLFfgeBDIeT6/eRaIPg7IuT648j1uXPnAKhcufIb+xMIBKVALpDYsGGDHJCHhobK5XK5vEOHDnInJ6di7Xbs2CEH5Pv27VM6fvv2bTkg/+OPP6RjTk5OcnV1dXlAQMBrr11QUCDPy8uTb968Wa6uri5PTEyUzpU0DrlcLgfkM2bMkP7ft29fuba2tjw8PFypXbt27eR6enry5ORkuVwul58/f14OyNu3b6/Ubvfu3XJAfv36denYjBkz5MAb/4qO8erVq3JAvmPHjmJj/vXXX+WAPCoq6rX3RCD4EAi5/nBy/Srz589XurcCwadCyPXHk2u5XC5//vy53NraWl67dm15QUHBa9sK3o6UlBQ5IH/06JH82bNn7/z36NEjOSBPSUn5q7+SoJQIS9c7cPToUUxMTOjUqRP5+fnS8Ro1amBjY8OFCxf4+uuvpePVqlXDzc2tWD/3799nxowZXL16lcTERKVzgYGBSnUOSsu5c+do2bIlDg4OSscHDx7MiRMnuH79Om3btpWOd+7cWamdwjIVFhYm+Z8PHz6cjh07vvHaqqqgF3WteJtzAsGnRsi1alTJtUDwT0HItWpeJ9eJiYm0b98euVzOrl27hEvxR0IuYrr+cwil6x2IjY0lOTkZLS0tlefj4+OV/m9ra1usTXh4OI0bN6ZChQosWbIEZ2dndHR0uHXrFt988w1ZWVnvNLaEhASV17Ozs5POF+VVP27Fi7jo9W1sbLCysnrjtYsqUYp+X70evHyhy2QyTExM3tinQPCpEHKtGrE5IvgnI+RaNSXJdVJSEq1btyYyMpJz587h6ur6xr4EAkHpEErXO2BhYYG5uTknT55Uef7VFKCqXm4HDx4kIyOD/fv3S1W5AR48ePBeYzM3Nyc6OrrY8aioKODl2N+W2bNnS8HEr8PJyUlKk1u2bFl0dXV59OhRsXaPHj2iXLlyIp5L8LdCyLVqisq1QPBPQ8i1alTJdVJSEq1atSI0NJSzZ8+qjMkWfDiEpeu/h1C6XoO2trbKHayOHTuyc+dOCgoK3smlAP73Yi9q4pfL5axdu7bU41BFy5YtOXDgAFFRUdJuGcDmzZvR09N7p5S17+KuoKGhQadOndi/fz/z5s2TJrbw8HDOnz/PmDFj3nocAsGHQMj1S4R7oeDfhJDrl7yrXCsUrpCQELy9valZs+ZbX1vwdgil67+HULpeQ9WqVdm/fz8rV67Ew8MDNTU1ateuTd++fdm2bRvt27dn9OjR1K1bF01NTZ4/f8758+fp0qUL3bp1e23frVu3RktLi379+jFhwgSys7NZuXIlSUlJpR6HKmbMmMHRo0dp3rw506dPx8zMjG3btnHs2DHmzZuHsbHxW98HOzs7pQmhtMyaNYs6derQsWNHpeLIFhYWjB079q37Ewg+BEKuX/Kuch0XF8fFixcBJEv2iRMnpLpJTZs2fes+BYL3Rcj1S95FrrOysmjTpg33799n8eLF5Ofnc+PGDem8paUlZcuWfeuxCF6PULr+g3z63B1/X17NhpSYmCjv2bOn3MTERC6TyeRFb1deXp58wYIF8urVq8t1dHTkBgYG8ooVK8q/+uoreVBQkNTOyclJ3qFDB5XXO3LkiPT5MmXKyMePHy8/ceKEHJCfP39eave6cfBKNiS5XC5/9OiRvFOnTnJjY2O5lpaWvHr16vINGzYotVFkQ9qzZ4/S8dDQUDlQrP27cufOHXnLli3lenp6ciMjI3nXrl3lT58+/SB9CwSlQcj1h5VrxTVU/TVt2vS9+xcISoOQ6w8n14p+SvobNGjQe/UvUEaRvfD+/fvyp0+fvvPf/fv3RfbCfxgyuVyoygKBQCAQCAQCwccmNTUVY2Nj7t27Vyym8G1IS0ujVq1apKSkYGRk9AFHKPhYCPdCgUAgEAgEAoHgEyPsHv8tRPEFgUAgEAgEAoFAIPiICEuXQCAQCAQCgUDwCZGLRBr/OYTSJRAIBAKBQCAQfEKE0vXfQyhdAoFAIBAIBALBJ0QoXf89hNIlEAgEAoFAIBB8QoTS9d+j1EpXdnY2ubm5H3MsAsG/Ci0tLXR0dP7qYbwWIdcCwdsh5Fog+HfyT5BtwT+bUild2dnZuLi4EBMT87HHIxD8a7CxsSE0NPRv+xIXci0QvD1CrgWCfyefWraFpeu/R6mUrtzcXGJiYoiIiHirAmyJiYkMHDiQBQsWULFiRel4bGwsw4cPZ/78+bi5ub39qD8BcrmcLVu2sHfvXuzt7cnNzSUpKYmvvvoKLy8vpbbh4eEMGzaM3NxccnJyyM3NJT8/n8zMTHJzc9HW1kZPTw8TExMsLCxQV1dHTU0NdXV11NXVqV+/PhYWFiQmJpKfn4+GhgaVKlVCS0uL/v378+LFixLHWaZMGcqXL4+JiQn6+vpKfwYGBtjY2NClSxfU1F5fHUAul3P58mUeP37MxYsXUVdXl/qpVKkSw4cP5+jRo/z6669ERUWRlJSk9PkmTZrQtm1bzp07h5+fH4mJiWRnZ0vn1dTUMDc3x9zcHAMDA3R0dCgsLOTp06eYm5ujrq5Oeno6qamppKWlkZeXJ31W8d2ioqKkl0zTpk1ZuXIlZcqUKfVvWhoePnzI1KlT+f7772nWrBkymYwbN24wf/58xo4dS8OGDUvVT2pqKg4ODuTm5v5tF2fvKtf5+fn079+fESNG0Lx5c+l4ZmYm33zzDZ999hmtW7f+GEP+IHh7e7Nq1SpMTU3R0tLi+fPndO/enUGDBiGTyaR2qamp9OvXj6ysLCW5zsjIIC8vDw0NDfT09DA2NsbS0hINDQ1JptXV1alduzY2NjakpqaSlZWFhoYG7u7uaGtr88svv3Dx4sUSx2hmZoa7uzvm5ubF5FpfXx9TU1O6deuGnp7eG7/vgwcPuH37NhcuXCA/Px8DAwP09fVxcnJi7Nix3L17lwkTJhAdHU1kZKTSZ11dXRk6dCg+Pj5cvXqVpKQkMjIyio3VzMwMIyMj9PX1KSgoIDo6GrlcjrGxMWlpaaSmppKenq70TjAwMMDU1JTo6Gjy8/MBqFq1KkuWLMHDw6NUv2VpiY2NZejQoQwcOJAuXbqgpaWFv78/8+bNo1WrVvTv379U/fyb5RpgwoQJVKxYkS+++EKShYKCAn7++WcsLCz45ptvPsaQPwg+Pj4sXLgQuVyOqakpz549o0GDBvzwww9oaWlJ7eRyOd27dyclJYW8vDxycnLIy8sjMzOTvLw81NTU0NHRwcTEBCsrKzQ1NZXmazU1Ndq2bUtubi4pKSloamqioaFB5cqVOXDgAKtWrSpxjAYGBlSsWBEbGxv09PQkWSw6Z3fs2BErK6s3ft+QkBCuXLnC5cuXycjIwMDAAAMDA6ytrWnWrBllypThm2++ITw8nJCQkGLjGDhwIAkJCVy5coWUlBTS09OV2piYmGBmZoapqSmampqoq6uTlJREfHw8ZcqUIS0tTfrLzMyUPqejo4OlpSXx8fFkZWUBYG9vz2+//UanTp1K9VuWluzsbIYMGULjxo3p378/RkZGREZGsmzZMrS0tJg1a5bSO/11/BWyLZSu/x4yeSl+NUX17Letej1r1iwaNmxIq1atip0LCwtjypQpbN269e1G/ImYMmUKBgYGjBs3Dk1NTQAyMjL4/vvvadKkCQMGDJDanjlzhjZt2lBYWIihoSG2trZoaWkhl8vR1NQkOzubjIwMkpKSyMrKoqCgoNj1tLW1qV+/Pp07d6ZRo0bUrVsXgMuXL7N69WppQWdgYEDlypWpUqUKlSpVwsTEpMTvkJ2dTVRUFNnZ2RQWFlKxYkU0NFTr2XK5nFu3brF7925SUlJwcXHByMhIeqk6OzvTvXt3LC0tiYmJ4bvvvuPEiRPFFmAK9PT0JAUrNTWVH3/8kfj4eBISEkhMTCQ1NZXs7GxSUlIICAjA3d2dxo0bY2xsjJGREQYGBhQWFhIYGEhISAh2dnZUrlyZ3Nxc0tLSMDU1xcDAAENDQwwMDLCysqJy5cqlfsGqoqCggNatW7Nnzx7Mzc2VzmVkZNCxY0eOHz+Orq7uG/t6V5n5lLzrGPfv309YWBhjxowpdi47O5tOnTpx+vTp9/otPhbbt2/n7NmzLFmyBAMDAwDy8vL4/fffSUpK4rfffpPahoaG4u7uTk5ODtra2jg6OkpyraWlRW5uLpmZmZIiUlBQUGwSVFdXp0aNGnTs2JHWrVtLSvvTp0/56aefANDQ0EBHR4cKFSpQpUoVqlSp8tpFV0FBAeHh4ZIiWK5cudcqX4GBgWzevJnw8HBcXFywtLQkPT2dtLQ07O3tad26NeXKlSMrK4uxY8dy6NAhoqKiVPalpaWFhYUFRkZGJCYmMmPGDJKTk4mPjyc5OZnExERycnLIzMzkwYMHODs707x5cywsLDA0NMTIyAg1NTVCQ0N58uQJJiYmVKlSBW1tbeLi4iS5Vsi2iYkJNWrUKPG9VVr69u3LjBkzcHd3VzpeWFhIr169mDdvHmXLln1jP/9muQ4ICGDevHmsW7eu2Dm5XE6nTp3Ytm0bxsbGH3K4H4SbN28ye/Zs1q9fj7W1NfByzPv27WPXrl3s3LkTdXV14OU7ys7OjqSkJGQyGa6urmhra0tyXVBQQFZWFklJSaSlpZGfn69ycVuxYkXatm1Lx44dMTU1pVatWqSmpjJu3Diys7PR0NBAU1OTsmXLSnLt4OBQ4nuxsLCQqKgoMjIyyM7OxtHREVNT0xK/c0xMDJs2bcLX15eyZctib29PZmYmqamppKam0r17d+rVq0dhYSFz5sxh06ZNBAcHU1hYWKwvdXV1TE1NMTQ0JCMjg3HjxlFYWEhCQgIJCQkkJSWRnZ1NdnY29+/fx8bGhsaNG1OmTBmMjIwwMjKSNrD8/PxQV1enWrVqmJmZER0djaGhoTRXGxgYYGRkRPXq1Uu1afQ6pk2bRu3atenSpUuxcz/++COenp6lVvQ+pWwrrnXjxg1pHnoX0tPTqV+//t/6fSRQ5qMqXW3atOHkyZMlvmQ6d+7Mrl27SrWI/ZSEhIQwY8YMtmzZUuxcQUEB7dq149ChQ0rj7tWrF3v37sXOzo6vv/4aeGnpexVTU1PkcjmFhYUUFhZSUFBAtWrVWLlypdLO99SpU/H09KRevXrFFICSkMvlBAcH4+fnx9WrV5k3b57SeRMTE6ZNm8YPP/ygdNzPz4/PP/9cepmmpqYq7VwpaNy4MUePHqVq1ark5OTQqFEjKlSogLGxMQUFBRQUFEi7f4cOHSIsLAxtbW08PDw4ffo027dvZ+3atdy+fVvl+J8+fcrChQt59OiRZC0ret+mT58uLfTV1NSKTR4ODg5069aNbt260bhxY2mSLS0nT57kwYMHTJo0SeX59evXo6mpqaRwl8S/eXHWu3dv1qxZU6LCP2HCBD777DNq1KjxYQb6gVAohCdPnlT5bAwaNIhp06ZRrlw56djXX3/N2rVrUVdXZ/LkyWhoaJQo14Ak0wUFBdSvX59Nmzaxb98+qd2IESNo1aoVdevWxcHBodRjj4yM5PHjxzx8+JAJEyYondPR0WHQoEHFdtgTExPp06cPZ86ckd47ycnJxfo2NjYmJiYGLy8v7ty5w7Bhw9DS0sLKykr6LgUFBaSkpHDu3DkePHiAmpoa9vb2BAcHc+jQIdauXYu3t7fKBd2DBw/YsWMHd+7cwd/fX0mh09LSYvz48ezYsYOQkBDU1dWLbUqZmZnRqVMnunfvjpeX11vvQoeHhzN16lQ2b96s8vzt27fZs2dPsfelKv7Ncj1z5ky8vLxo0KCByvOK+bA0779PTfv27dm+fbvKd5LCo6bownzSpEksX76cjIwMRo8eLXmavEpRuVbItmLjr6i8tWrVisGDB1O7dm0qVKhQ6nEnJCTw+PFjgoKCGDZsmNI5NTU1vLy82L9/v9JaIz8/n2HDhrF161Y0NTUxNDQs0Rvm6dOnLFq0iBUrVjBw4EDgpTypqalRUFBAYWEhubm5PH78mKtXrwJgbm5OXFwcFy9eZM2aNezfv5+cnJxifR87dgw/Pz8uXLiAn58fz549U1JOBw8ezIsXLzh+/DgymayY4qqrq0vbtm3p1q0bnTp1eu0Gsiry8vJo3759iRt8iYmJDB06lP3795eqv79C6bp+/fp7K12enp5/6/eRQJmPmr1QS0vrtbvdZmZmZGRk/O2Uri1btvDVV1+pPKeurk6PHj04duwYPXv2BODUqVMcPHgQGxsbevfu/cb+ZTIZmZmZBAUF4ePjw4IFC4oFPS9cuFAyzf/8888EBwfz7NkzKlSowIABA/D09OT+/fssWbKE3Nxc+vXrR2hoKN9//73Ka9rY2BATEyNZ7QCeP3/On3/+yd27d7l//z4Ao0aNonbt2rx48YKMjAzi4+OZNm0ahYWFmJmZ8fjxY8LDwzl79qzSJJWcnMzly5cJDw/n6dOnPH/+nAYNGtC+fXtOnTpFo0aN8PHxoV27dvz55584OjpSpkwZvvvuO86dO8dvv/1GkyZNKCwspEWLFrRt2xZ3d3fc3d0xNjZm2rRpjBkzBm1tbXJyciR3xufPn+Pv78/jx4+JiIhg6dKlLF26lIkTJypZLUrDo0ePSlxwAHh6erJhw4a36vPfSFZW1msnSBsbm2Lup38HTpw4Qbdu3UpUxr/66is2b97M7NmzAfD392fr1q3o6enRu3fvUllbcnNzCQ4O5uHDhyxZsqSYJXjHjh3SYm3WrFlERUUREhKCpaUl/fv3x8vLi4iICBYvXkxoaCg9e/bEwsKCDh06qLyevb09z58/V1rQZGRksHjxYqKiojhz5gwALVq0YMSIESQlJZGQkIBMJmPs2LFkZGRgb29Pamoqly9fZvHixYwePZq9e/cCkJOTw4ULFwgLC+PZs2cEBQVRsWJFhgwZwpYtW+jTpw/79++nfv36LF68mHLlymFnZ8e6detYtmwZY8aMYciQIQQGBtKmTRuGDBlCpUqVcHd3x9HRkcWLFzN37lzpN1FYBTMyMvD19cXf359nz56xadMmNm3aRNOmTblw4cIbf4ei+Pv7U69evRLP165dW7I6/pdJSkrCxsamxPM2Njb4+/t/whGVjqCgIJycnEp8Jw0dOpSvvvpKUroSEhLYtGkTeXl5kny9iYKCAp49e4avry8BAQHF5Pr69euSrH355Zfo6ekRHByMuro6ffr0oWvXrmRlZbFy5UquXLlChw4daNasGXXr1lWp0JQpU4bIyEjS0tIk10i5XM7SpUtJSEhg48aNANjZ2bFlyxZycnKIjo5GX1+fcePG8ezZM3R1dSksLMTb25svv/ySP//8kyVLlgAvlcj79+8TFhZGbGwsgYGBWFtb07NnTy5evMjUqVP59ddfcXNzY8aMGVSuXBk7Oztu377NyJEjadeuHWvWrOHIkSO0bduWnj174u7uTqVKlXBzc2PPnj1MmjRJ2rx1dnamd+/eaGpq8vjxYwICAvD39+fAgQMcOHAAQHLZLi1xcXG4urqWuMY0MzOT3Jb/rgj3wv8eHz1lfFpaGoaGhsWOy+Vynj9//lrzeWnx8/Nj5cqVhIWFoaamRqdOnejXr987m65fvHiBo6NjieednJwkH+lLly7RrVs3ypYtS58+fZSUGlVERkZy6tQpnj17Jh3T0tKiatWqeHp6UrNmTSpXrkxsbCy9evUCYNGiRZQtWxZHR0eOHTvGqlWrsLKy4sWLF7i4uGBoaEiXLl1wdXVFU1OTvn37MmvWLO7cucOWLVs4ceIEsbGxrFu3jiFDhkjX3b9/P7NmzVIa39atW6lTp47komFubk7btm3x8fHh0KFDXLx4EWtra3777TeGDh2Kmpoat27dYtWqVeTk5ODg4ICrq6u0uCosLMTHxweAe/fuFbN+dO7cmcDAQCZNmoSHhwdHjx5VOfGvW7eOoUOH0rdvX2QyGSkpKUyaNEmaWF6duC5fvszBgwfx8vIq9XNgbGz82vi5Fy9e/C1daz41zs7OPH78mCpVqqg8f/fuXfr27fve14mMjGTNmjXcu3cPeGlp/fLLL0tt+X2V2NhYnJycSjzv5OQk/f4hISG0atUKPT09vvjiizfuRiYmJnLmzBl8fX2liVBdXZ1y5cpJcl2tWjXs7e2l+NYFCxZQtmxZXFxc8PHxYfv27Zibm5OUlISpqSkVKlRg0KBB2NnZYWRkhJubGwcPHsTX15etW7eyb98+nj9/zjfffMOyZcuksdy6dYupU6cqjW/fvn2MGDECU1NTTE1NycvLo1OnTjx48ABfX18cHByoVq0ay5Ytk94RQUFBLFu2jBcvXmBvb4+dnR1t27bF09MTmUxGamoqBw4cYP/+/XTr1k3pen379uXw4cMsWrSIMmXKcPXqVapVq1bsvs2ePZuBAwfSv39/7t+/j7GxMbNmzUJbWxs1NTVp40lBVFQUW7dupX379piZmb32N1HwJrlOSkpCX1+/VH39m6lcuTI3b97E1dVV5flbt269VnktLSkpKWzcuFFSUipVqsTXX3+Ns7PzO/X3pvna1NRUeo5SUlJo27YtaWlpDB8+XJrnSiIzM5MLFy5w584dpQV8mTJlqF+/Ph4eHlSrVg0LCwvq168PwKZNm3Bzc8PV1ZXExEQ+//xzDAwMJPfj+vXrM27cOCk2s6CggOvXrxMTE8PevXvZsmULkZGRNG3aFG9vb2lDIiEhodimanh4OJqammhpaUnrrG7dunHy5EmePHmCm5sbLVu2ZNeuXUyePFnqZ/v27QQHB2NpaYmtrS3du3enUaNGaGhocOvWLX799Vd+/vlnfvzxRyWlxsXFhXnz5nHixAn09fU5fPiwyg2h4cOH0717d77++mv27t2Lk5MTy5cvJzc3Fw0NjWJybWFhwZo1a+jUqVOpPQAMDAxUWicVKKx4f2f+CqXrjz/+YP78+URHR1O5cmUWL15M48aNS2x/8eJFfvjhB3x9fbGzs2PChAmMGDFCqc2+ffuYNm0awcHBlC1bll9++aXYnPC66+bl5TF16lSOHz9OSEgIxsbGtGrVit9++w07Ozupj2bNmhWLhe7Tpw87d+586/vwV/FR3Qt37dpFcHAwP/74Y7FzBw4cwMfHh5kzZ77VgF9l06ZNHDt2jGnTplG1alWys7PZvXs3W7ZsYfv27VhaWr51n4sWLaJcuXIl+gLPnTuXGjVqYGlpKQV8v3jx4rXXys7OllwCypUrR3x8PPr6+ixatIju3bsX233fs2cPkZGRWFhYSAuCpKQkKc7pwYMHlC1bllq1amFsbMzdu3eZP38+6urq5OfnM2nSJGlCyc7OZv78+dSoUYMzZ85IL9GQkBDGjx/P6dOnSU9Px8zMjK5du+Li4kKlSpWUXrZdu3Zl5syZ/Pbbb+zfv5+OHTtKgcW5ublUrFiRYcOGqXRdrFy5Ms7OzkybNk3JNcjPz4/9+/fz5Zdf8ujRI2rVqqUy4UdRRWfWrFkEBwdL/zc3N6d69eo0a9ZMsjIo/hISEtDW1qZKlSo0adJEaVJX5aLUvXt3hg8fLrkjFBQUKCX0mDx5Ml9//TWOjo5SYHFJ/JvdkB4/fsycOXPYunVrsV1GPz8/Zs+e/d4vwcuXL0uTvsICeurUKRYuXMiSJUtKVPhex5kzZ7h165bK9xHA8ePH8fPzY8CAAZLi//DhQ6pWrVpin3K5nOnTpzNv3jxMTU3R0NAgNTWVn3/+ma+++gptbW2l9vv37ycyMlKKb1Lcv8TERMLDw7lz5w7m5uZ4enpibm5OeHg4M2fOJDc3l7y8PAYNGiRtXBQWFrJq1SrJPUihGKakpDB27FgOHz5MXFyc5MZTvnx56tSpo/TcduvWjT179tC7d2+OHz9O9+7dyc/PR01Njby8PKytrRk5ciQ2NjZK7k8FBQXo6OhgZGTEzJkzlRSg6Oho1q1bx8CBAwkNDaVChQoqn6+icr169WrOnTsn/d/AwIDq1avTpEkTzMzMCAoKIjAwkMDAQKKiolBXV6dSpUo0atRIaSNH1U754MGD8fLy4uTJkyrPL1iwADc3Nzp37qzyNy7Kv1mu09LS6Nq1K8ePHy/23CYkJNC7d2+8vb3fmJTpdYSEhDB06FC+/fZbOnfujLq6Ojdv3uTnn39m5MiRtG/f/q37jIqKYvz48Wzbtk3l+bCwMGbOnMnatWuxs7MjLi6OgwcP0rlz59d64mzcuJEffviBvLw8ypQpw9OnTxk7diyTJ09WaVX7448/0NTUxNTUVLpHSUlJxMXFcfPmTdTU1GjcuDG2trYkJycza9Ys4uLiyM/Pp2XLllKCLrlczpEjR7h37x6PHj2SYg3lcjmTJ09m9+7dhIaGSv3Z2NhQvXp1pWQhAB06dMDd3Z1169YxY8YMoqOjpfWBgYEBI0aMwN3dncGDByt9rlq1agQHB/PNN98oKbPGxsYsX76cDh06kJ2djbm5ucqNj6KbnCdOnGDTpk3S/7W0tKhcuTKenp64u7sTHBxMQEAAgYGBhIaGUlhYSPny5alfvz5NmjR57bM2ZMgQevXqxfLly1Uqz6dOneLOnTtMmTKlxD6K8le4F165cuW93QsbNWpU6jHv2rWLAQMG8Mcff9CwYUNWr17Nn3/+iZ+fn8qNi9DQUKpUqcKwYcP46quvuHr1KiNHjmTHjh306NEDeGnlbdy4MT/99BPdunXjwIEDTJ8+nStXrkibNG+6bkpKCj179mTYsGFUr16dpKQkvv/+e/Lz87lz5440nmbNmuHm5iZ5o8BLN9V/0mb4eyldeXl5eHt74+Pjg5OTE+XKlZNifODlS+Lbb7/F1NSU0aNHSwHcGzdu5OzZs+zcubPYy/1tCAoKYtKkSezZs6eYcD569Ig5c+awffv2t+43Pj6eAQMGcPTo0WIL67S0NLp06YK3tzfe3t60a9cOeOl/XbVqVRo2bMjQoUOpWbMm8PLePXz4kLlz53L06FHmz5/PTz/9RGpqKl5eXjRq1AhbW1vCwsLw8fGhf//+9OnTRzK5F6Ukly2F0J44cYKNGzdSu3Zt+vTpo7TAePLkCatXr+bAgQN07dpV6fMKF6LDhw9z5MgRIiIiqFq1Kh4eHujr6/P8+XNiYmK4e/cu7u7umJiYcPnyZYyNjcnJySE7OxuZTEbVqlVZv369Uuax/Px8rKyscHZ2lp4je3t7oqOj0dDQoGfPnkovHVU7U0UFKigoiISEBBwcHKQMUApSUlKUPhcbG8v169e5ffs2qamp1K5dm8TERJKSklBXV6dLly5Ur15daj98+HBmz56NpqYmgwYNUupPkVGx6CRjYmKCjY2Nyon7n7w4Kyws5MaNG1y8eBFbW1vKlSuHm5ubUnKH5cuXc/fuXaZNm4arqyt5eXkcPHiQVatWsX379jfuIL+OrKws2rdvz9GjR4tZIOLi4ujbt+87Lf4KCwtp1aoVBw8eLPabFBQU0KlTJzZu3EhSUpJSttXy5cvToEED+vXrR5s2baQx+vr6cvDgQX755RdGjRrFuXPnePz4MR4eHrRt2xZHR0fi4uJ4+PAhNWrUYOLEiRw6dEjl2FTJtkIuHj58yJw5c3B0dGTIkCFKngPx8fEsXLiQH3/8kWnTphX7Trdu3ZLk2tfXF0dHR5o0aYKxsTFxcXHEx8dz48YNZDIZHTt2ZNeuXVhaWpKRkUFWVhZyuZyyZcvSvn17li5dqtR/o0aNiI2NRV1dHU1NTZycnEhJSSEjI4MePXooWaxVxXoVlevIyEiePn0qWdSKfseiGQ/hpSvzrVu3uHjxIs+ePaNRo0akpaVJSTy8vLxo2rSp9HwMGTKEffv2cfToUVavXq20OD137hyLFy/mwIEDpYoB/SfLNYCvry/Hjx/H2NiYsmXLUr58eaXkDqdOnWLZsmXMmjULDw8P5HI558+f59dff2XBggXvHafZvn17Vq1aVWyBl5ubS4cOHdi1a1epLZhF6d27N3PmzFGZDOW7776jb9++VK1alZo1a0peKnZ2djRs2JAOHTowcOBAZDIZeXl5BAQE4OPjw+eff07Hjh3R1tZm3759uLi40KNHD1xdXcnIyODRo0cYGxvz22+/oaenpzJ26HVyHR0dzdSpU9HW1mbgwIHY2tpKbXJycli3bh1169Zl9+7dSp+Xy+X4+vpy5MgRDh8+zM2bNzE0NKR+/foYGxuTmZlJaGgoMTExJCYm8uWXX7Jx40aMjIzIy8uTknnZ2NjQtm1b1q9frzSHff311+zatQtbW1tycnIoU6YMhYWFpKen07VrVypVqiS1fTXjISgrXcnJyTx48ABra2tsbW0xNTUtUdHNzMzkzp07XLx4kUePHuHh4YFMJiMhIYHU1FTq169Phw4dpDXjkCFDePDgAZMnT2b79u1KXlNPnjxh5MiR7N27t9TP01+hdF2+fPm9la7GjRuXesz16tWjVq1arFy5Ujrm7u5O165dmTNnTrH2EydO5PDhw0puxSNGjMDHx4fr168DLy1NqampnDhxQmrTtm1bTE1N2bFjxztdF17G2tatW5ewsDDpfdGsWTNq1KjB4sWL3/hd/668ldK1aNEiYmJiMDU1JTQ0lL1795KQkIChoSFpaWnAy52MiRMnYmBgQFJSEjo6OoSHhxMcHIyhoSEaGhr06tWLXr16vdEV702MGzeOvn37Urt2bZXnP/vsM+bPn/9OacW3b9/OsWPH+PXXXyWXpIcPHzJp0iSmTp0qxf7I5XICAgK4du0aV69e5dy5c8TExNCqVSseP34suRGqq6vTsGFDvL29Wb16Nbdu3Soxc6NcLn8npUsulxMREYG9vb3KGi179+4lLi6OMWPG0KFDB5VmfLlczpQpU9i9ezeRkZHSjpaXlxeNGzdm9uzZGBoasnLlSmnyysnJ4fbt23h7e5OYmMiff/7J559/LvU5dOhQpYxYdevWZciQISpfvm9SuhSoUtZfVbrg5eI4Pj6e5cuXo6urK6XAjY+Px9/fn8qVK+Pu7o6trS1jx47F3t6ew4cPY2FhgY2NDZqammRlZaGvr4+lpaUUEJyZmcmLFy8wMTFRmiwV/JMWZ6tXryYkJAQjIyOSkpLYvXs34eHhGBgYKE2qQ4YMwcPDg7CwMHR1dYmPj+fx48cYGRlRWFhI27ZtGTRokEp34rdh06ZNFBQUKLnCFuWnn36iQYMGtGzZ8q37vnHjBjNnzmTu3LmSwh0eHs6UKVPw8vJSShIQHh4uybViIdCuXTuePXtGQECApEhUqVKFEydOcPXqVS5cuFBiyui0tDS8vb1Vnnvd4gxe7uZbWFgQHx9frF1AQAB79uxh4sSJdOzYkYoVK6qUrXnz5rFt2zaCg4OlFNMtWrSgcePGHDp0iCdPnrBw4UIGDBjAn3/+SUFBAY8ePcLb25ugoCCmT5/OjBkzJGVmyZIlSu5Otra2TJo0SaWr3puULgWqLFGvKl0KEhMT+e2336R4U3Nzc3Jycrh58ybOzs7UqlULW1tbRo0ahaurK8eOHWPZsmVUrVoVU1NTbt++jbOzM3Pnzi21C/I/Sa63bNmCv78/2traFBYWsn//fh49eoSuri45OTnSb+Ll5UXfvn3x9/dHV1dXyjypoaGBmpoadevWZfjw4Srfc2/DvXv32LJlC4sWLVJ5/tChQ6+NS34dERERDBo0iClTptCiRQtkMhmJiYnMnz8fmUzGr7/+KrWNj4/n2rVrXLt2jStXrnD16lWaNGlCWloavr6+0hzk6OjIjh07yMnJ4dChQ1I81KsorOFvq3QpxqKjo0NCQoLKdt999x0//vgjnTp1onbt2io3mn788UdOnDhBYGAgWVlZ0gZI//79CQwMZN++fUyfPp1x48axfft25HI5QUFBeHt7c+fOHfr168e6deuk2Prz58/TokULpWsoPIle5U1Kl4K32SBLS0tj2bJlREVFSXKtoaHB1atXMTExwdPTE1tbW7755hvc3Nx4/PgxM2fOxNbWFkdHR3x9fVFTU2PBggVKrmlv4q9Qui5duvTeSleTJk2KlYfQ1tYutkbKzc1FT0+PPXv2KLn+jR49mgcPHqgsYdKkSRNq1qyp9OwfOHCA3r17k5mZiaamJo6OjowZM0Ypm/GiRYtYvHgxYWFh73RdeOmZ4uXlRXJysvTdmjVrJrnwW1tb065dO2bMmPHea45PyVspXerq6pIp0NjYmN69e9OvXz+qVatGWloawcHB7Nu3j3nz5qGpqYmNjQ1ZWVlER0cDL4Ok7e3tMTIyIjY2lvT0dFxdXXFzc6NChQqUL18eCwsLKV3wq4k4CgoKUFNTk4516tSJI0eOlDjuJUuWUKlSpXeuGXTlyhVWrFhBeno6ubm5hIeHU6NGDbp3706PHj1UvkhycnKYMGECfn5+VK9eXfqrWLGitMMaFhbGypUrmTt3rtJnzc3NMTY2LlZTQ09Pj8LCQoyMjBgzZkyxdNKqhFZVyucmTZowduxYLl++LGVN9PLyomXLljRu3FhaLBVV+PLy8tDU1KRbt25SzbGNGzcyaNAg1q5dq9R/Xl4et2/fZuPGjUyaNIlffvkFNTU1abdMMbF06NABGxsbtLW1MTMzw9LSUnL3e1ulSy6XS89DSUqXKrS1tbl37x6nT58mKipKuq6lpSVbt27Fzc1NchfV1dVV+VsnJCTw4sUL3Nzciu2S/5MWZ/AynikzMxM1NTW6du1Kv379aNy4MdnZ2YSGhnLu3DmmT58ulQ/IysqSnjFXV1dJduPj40lMTMTBwUGSazc3N2xsbCS51tHRUZJrRTZPxT0cO3YsX331VYk1/BQZ9F51ZS0tT548YdGiRURERKCurk5oaCjOzs506tSJQYMGqXQ9lcvlzJ8/nxMnTlC5cmVJrqtUqSItMhQB7r/++qtSrIG+vj52dnbSBKRAV1cXuVyOmpoa33//fbFd+tLKde/evfn666/x9vYmKysLV1dXSa6bN28uxcC9KteKpEAAFSpUoFOnTixYsABASbblcjknT57kwIED9OzZk40bN6Kvr09hYSF16tSRYu4aNWokpa83NTXF0tJS+g5vq3QVleuSlC5VCz4NDQ2CgoI4ePAg4eHhUiC/lpYW7u7uDBo0SIojcHNze2vZ/KfJdZkyZSgoKCA7O5u2bdvSt29f2rZti0wmIywsjDt37jB58mTCwsJwcXEhLy+P58+fS321aNECW1tbUlJSiI2NxcrKSpLpChUqUKZMGSkVuL6+/mvleuPGjRgaGkrP3KvExcUxYcKEd05W9OLFCxYuXIiPjw9aWlrSQrR9+/YMGzasRIvH7t27+eOPPyhXrpwk19WqVZNcCLOysti5cyfz589X2vFXV1fHxcWF2NhYadMZXs4tMpmMwsJC+vfvX6y2oyq5DgsLK3bsu+++47vvvmP//v0kJSVhZWWFl5cXrVq1omXLltjb2wMvk24pUGT+VFdXZ+zYsfTs2ZPU1FROnz4NICXgUHD79m02bNhA1apVOXjwoKRYd+jQgePHjwMv5aRatWo4ODhgamqKjY0NxsbGyGSyt1a6FMvN17l1Fr2XRYmNjWXv3r0EBwdLc72amhply5alV69ekgePk5NTqeqcvcpfoXRdvHjxvZWupk2bFjs+Y8aMYqE7UVFRUnxt0YRhv/76K5s2bSIgIKBYP25ubgwePFjJJf/atWs0bNiQqKgoqTzSxo0b+eyzz6Q227dv54svviAnJ+edrpudnU2jRo2oWLGiknFi7dq1uLi4YGNjw+PHj5k8eTLlypUrcTPz78hbJdKIiIgocbfLyMiImjVrUrNmTb777jt0dHSkF/+zZ8/Ytm0bz58/JyIigufPn2NtbY2DgwPBwcGcO3eO2NjYYn1qaWlRrlw5LCwsCA8P5/nz5+jr61OrVi08PDyIjY3l+PHjVK1aFTs7u2IL37i4uFL7eubl5XHt2jVOnDjBgwcPCAgIkHb0x40bR2BgIN7e3mhoaLBz506qV6/OnDlzaNu2LRcuXGD69OkkJSXx6NEjlixZwokTJ6RFXVxcHOXKlUNLS4ulS5dy+fJlRo8ezYgRI5g7d660M66oifEqioWDYgH8Li8UgFq1anH+/HmSk5M5ffo0x44dY/v27dJCq1u3bkq7dU+ePGHt2rUkJSWxd+9eKVB4586dWFpaSoWcFWhqarJ48WIuXrzIb7/9hqenJ507d0ZbW5vffvuNS5cucfXqVS5fvkxaWppSEKi+vj7a2toYGBigq6uLvr4+RkZGmJqaYmtri76+Prq6uuTm5kpFVoOCgrhy5QrVqlXD09MTdXV1nJ2dS7XrIZPJ8PDwwMPDg8LCQhITE6lRowahoaFoaWkRHx9PRkYG5cuXL3GXTjG5KBaw/1QUSocq9PT0qFy5MpUrV2bAgAHk5ORIroNJSUmsW7eO8PBwIiIiCA8Px8LCgjJlyhAeHs62bduIiIgo1qe6ujpOTk44ODgQFRVFeHg4ampqVK9eXbKkHT9+XNrkedUi/jZyLZfLefDgAceOHeP27dsEBARItWq+/vprdHR0OHr0KADffPMNv/zyC7NmzWLAgAE8efKEmTNncuHCBQICApgwYQLNmjXj3r176OrqEhcXR05ODnp6ehw/fpzFixfz7bff4ufnx7Jly1i8eDEZGRlkZGQQFBRUbGxFNwSKxm68LXZ2dhw6dIisrCwuXLjA0aNHOXPmjPReqV+/vrSAgpduTWvXriUoKIjNmzfTunVrEhMTOXfuHNu3by8W2ySTyWjdujVpaWns3buX6tWrM3XqVNTU1Pjuu++4desW58+fx9fXl2vXrikpWDo6Oujq6mJoaCjJtbGxMSYmJpQpUwYDAwP09PQoKCggPT2dzMxMKdmQo6MjLVq0wMDAAAcHh1LH55YvX57x48cjl8tJSUmhRo0aUhmNCRMmYGZmxqlTp/62StOHwt/fX8lN9lXKly9P+fLl6dq1K/Hx8ZLnQ15eHuvWrSMoKIjnz58THh6OiYkJVatWJTY2lsOHDxMaGlostb9MJpPckRMSEggLCyM7O5vKlStLrmI6OjpUqlQJZ2fnYlmL4+Pj3yo24+nTpxw7doyrV68SEBBAUFAQWVlZdO3albp16+Lt7Y29vT2zZs1izpw5TJw4kVGjRpGcnCzVrTp//jy9e/emVq1anDlzBj09PRITE8nIyMDExIRHjx4xatQoBg8ezIULF9i9ezfz5s0jIiKCgoICnj59WmxcRZM6nT17tpjSVVp0dXX5888/WbVqFTdu3ODo0aN4e3uzbds25HI5rq6uHD58WGqfkZHBsWPH8PHxkYr8Pn/+nMjISFauXCllWy5K7dq10dDQYOnSpXz//ffs2rULeFnux8nJicuXLxMZGcnBgweVEoloaWlJBZ319PSU5msbGxsMDQ2lTVyFXMfHx3Pq1Cn09PRo1aoVNjY2WFtbvzYJSlGsra2l4tzp6el4eHjg5+fH3bt3Wbp0Kb///js7d+6kTp0673S//wo+VCINVZauknhV4S26wVXa9q8eL02fpb1uXl4effv2pbCwkD/++EPpXNG44ipVqlC+fHlq167NvXv3qFWrVonf4e/EW1m6lixZovSijIyMLNZWlaVCVUpUQGkxlZ2dTXJyspRxRhErlJCQgJ6eHpaWllhZWZGWlsbTp0958uSJkuleXV1dqqBuY2ODm5sb58+fJygoSFo0x8XFsW/fPjZt2sSTJ0+Al8qivr4+oaGhZGdnY2BggKOjI5aWllhYWBAVFSX5THt6euLp6Ul8fDzHjh0jJCQEU1NTkpKSJBfL6tWrk5iYSEREhFJtCg0NDezs7KRq9jY2Npibm6Ompsbq1at5+PAhAM2bN0dXV5devXpRrlw5CgoK0NDQwNXVldOnT6tUABQ7zUVRCKBiAaSmplYs0PbUqVNcvnwZPT09MjMzpfocmzdvloJra9euTYsWLdi2bZsUwK6lpUVmZiaurq4sXLiQLl26SMJTuXJl/Pz8gP9VtG/VqhVqampkZmaip6cn7QLOmDGDsLAwnj59ym+//Yafn1+pX0BqamqUKVOG/v37S/W14OVE1bNnT9q2bYuGhoZ0/FVUZT1KSEjAzMyM/v37Y2lpSVZWFlpaWri5uRW7d/A/JdjFxaWYdeSftCP+rnINqmW7qFzn5eWRlJQk1bfJyckhJyeHpKQkNDU1MTc3l+pBPX36FH9/f6UNGJlMhrGxsWQRrVChArdu3eLKlSuSBSczM5MDBw7w559/4uvrS3Z2tlSwMyYmhqSkJLS1tXFycsLS0lKKLb106RIaGhpUq1aNNm3akJOTIz1LJiYmpKSkYGBgQFpaGhUrViQ3N5fQ0FBAeeJxcHAgMzOTzp07Y2dnh6WlJRoaGhw9elTyc1fU2+vcubPk/ieXy3F2dqZMmTKS73tR3iTXcrlckseiKOK4zMzMpOc8NjaWx48fSy6ZTk5OfP755+zcuVNygdbR0SEjIwM9PT3mz5/P8OHDpU2VX375RcqIqKOjg42NDQ0aNMDCwkIq+6GmpoZcLmfatGlERETw9OlT1q5dK2WpKy3m5uZ8/vnnPH78mLNnzwIv3+/t27enV69e0mKuaEIdBampqcWOFX2e0tPT8fb2pqCggDNnzrz1RP1vk2so/ZxdVK4LCgpITk4mLy+P3NxcSbZTUlKQyWQYGRlhbW2NpqYmISEh+Pn5ER0draSoGRoaSu5j5cuXlzxJFAut/Px8Tpw4wenTpzl48CBJSUkYGRlJc60iMYSjoyNWVlZYWloil8u5dOkS2dnZkvVWR0cHb29vrl+/jq6uLtnZ2WhpaUnZdjU1NQkLCyMvL09p/rGzsyMzM5N27dpJ1hNtbW0ePnzI6tWrgZeZF11cXFBTU2PUqFHo6OiQl5eHvb09jo6OKhMK3bhxo9gxxbMkl8ulOf/VZzkiIoJjx44puRmfPXsWGxsbmjdvLrm7jxgxQpKd3NxcDA0NSU1NRUNDg/HjxzNp0iTJunLkyBGlTZZy5cpRv359KU5H4aYml8tp3Lgxz58/l2rzbdiwQWX9rZIwNDSke/fuZGdns3fvXulZaNSoEYMGDZI2VcLDw4t9VpWbZlGrf05ODpcuXSI8PJxdu3bRvXv3Uo2pKH+FpevChQvvbelq1qxZqcb8T3AvzMvLo3fv3oSEhHDu3Lk3ZiqWy+Voa2tL5Uv+CXz0lPGlRTGRq3LtqVu3brFjoaGhZGVlsWrVKqpUqYKWlhbR0dEkJSVx//59Ll++jJaWFn379sXe3p6srCw2b95MTk4OZcuWpVmzZmhqapKamkpaWhp2dnZUrFiRMmXKKCk2OTk5tGjRAk1NTUmxcHFx4ZtvvuHJkyfcu3eP6tWrY2dnx9q1a0lOTsbCwoJGjRrRqlUrcnNziY+Px8/Pj2PHjpGdnS3tQGtoaGBlZYWJiQnly5fn6dOnnD9/HkDKIFWtWjW++uorGjZsWEzhUgTFJiUlkZOTQ3JyMvHx8ZKLV0ZGhuSSaWZmhpWVFRYWFhgZGWFgYMDdu3eBl4vWsWPH0qxZM2QymVLyEScnJx4/foyOjg61atXi2bNnJCQkYGdnR/ny5enWrRuDBw+WXEJatWqFq6srWVlZpKWlcfv2be7cuUNMTAxRUVHY2dlRv359KbDW1taW+vXrs3XrVipUqIC9vT35+flkZWWRkZFBeno6VlZW7N+/n9TUVFavXk3v3r0xMjKS7secOXNIT09nw4YNTJkyhS1btnD58uV3rr2jKIKppqZGdnY2ERER72yF+K+jqamJlZXVW8l1fn4+W7ZswcTEBEtLS0munz59KmUBGzx4MC4uLmhqarJ582bi4+NxdHSkdu3aGBkZkZqaSmpqKq6urtja2uLs7Kxklc3JyZFSnyuslFZWVgwcOJDmzZtz9epVnJycqFGjBn/++aeU3bNDhw507dpVWnQ+efKEEydOkJ6ezvr164GXGwIWFhaYmZlRuXJlnjx5ws2bN4GXcq2mpkalSpXo3r0706dPL2YlLSgoIDMzk+TkZHJzc0lNTSU+Pp64uDgSExNJT0+Xsmoq3PgsLS0xNjZGX1+fwMBA4OXGwpgxY6hcuTJWVlacPHlSukbZsmXx9fWlsLCQmjVrEhMTw/PnzzEwMKBChQp8++23rF+/ntu3byOTyfjmm2+4c+cOWVlZpKam4uPjI50LDAzEzMyMBg0a4OLiIo2nVq1a3Llzh2fPnjFgwADy8/PJzMwkLS2NtLQ0bGxs2L59O7GxsYwZM4YpU6ZgYmKidD+ysrLYtm2bVBPoyJEjbN269Z1qO6anpxMVFYW+vj5hYWH079//b1l36p+Auro65ubmbyXXigykMTExVKxYUZLrmJgYaYMhNjaWkSNHYmJiwu7duwkODpZCEKytrUlLSyM1NRVHR0datWpFuXLllHb1c3JypAQgCnlXLPabNm3KxYsXpaQTR48elbxnGjduTI8ePdDQ0CA9PZ3AwEDJK6TohojCklO1alUCAwPx8/OTNhmPHDlC2bJladmyJQsXLixmbSgsLJTkJzc3l8zMTMm7JSkpidTUVEmuDQwMJIuwkZGRZFmHlxbBkSNH4uDgQJMmTdi6datUEqFMmTKEhISQlJRE8+bNiY2NxcfHBw0NDTp37syCBQvYuHEj9+7dw8rKijZt2jBixAjS0tJITk7m7t27nD9/noyMDA4fPoyxsTH9+vWjdevWmJiYYGJiQpUqVUhNTWXDhg0cOXJEcjNMTEwkISGBgoICtm7dSlBQEO3bt2fDhg2YmpoqKe25ubkkJyczatQodu3axZUrV1i7du07ZZvOzs4mKioKbW1t8vPz6du37z+mDMSnTBmvpaWFh4cH3t7eSsqPt7e3UuHwonh6ehYL4Tl9+jS1a9eWfk9PT0+8vb2VlK7Tp09LroSlva5C4QoKCuL8+fOlKg3j6+tLXl7ee8ebfkr+NkrXu6Crq8vIkSPZv3+/NInLZDKysrJo1KgROTk5xMbG8vDhQ7Kzsxk3bpxUjBde7qiEhISgra2NiYmJygkEUGnlkMlkUvFeePnAvBpjIpPJ0NbWpkyZMpQpUwY/Pz+GDh1KcnIysbGxxMTEEBsbS1RUFMnJyUpWsfz8fORyObGxsQwdOpQ1a9bw4sULsrKypL+i6cyLXvNVQSwsLJQsiZGRkaSnpyvtOO7bt09pZ+jkyZP4+vqyefNmdu7cSU5ODhkZGURERJCbm4uWlhb16tVjz549ODk5KcVcGBkZKWW4unfvHvfu3cPExIRGjRpJaeKL1oWIiIjg3r179OzZE5lMhqamJpqamtLOzeLFixk+fDjNmzcnMjJSZbpeAwMDrK2tcXNz4+7du9JCz8zMjDJlylChQgWcnZ3fmLwlKSmJ7Oxs6TsZGBi8VTCu4P3R0NBg0KBBktXJ3t4eCwsL0tPTqVq1qlQg+9y5cyQlJdGzZ0/Gjx8vpZZVbHLIZDIqV66sMtZPcR1VODg4SHXG8vLyitUkUVNTQ01NTVIu7t27x5QpU0hPT1eS68jISBITEyVrc1FlIi0tjZ9//pn9+/ejo6PD8+fPyc7OJjMzU6XloaQd5ZycHEkpU2TYVDB79myljIbz5s3jm2++YdeuXaxZs4b09HTS09OJjo4mOzsbNTU1PDw86NixI+bm5kRGRkobTSYmJv/L9CmXExYWRlBQELq6ujRq1Ihnz55x9OhRpWD7zMxMvL29pSyGGhoakgUSYPr06YwaNYqGDRsSGhqqcpJVJL9xdHTk9u3bAHz++edYWFhga2srFVp+UyKM7Oxsdu3aJf0WFStWVKptJvj4qKmp0a5dO65fv86dO3ewtbWVLKX16tXDysqKp0+fcu3aNeLi4vD09GTnzp3Url2b3bt3k56ejo+PD3l5eZQvX75E63tJrt7m5ubSPKcojFwUxfxvYmJC3bp1CQwMpH///ujq6irJdWxsLHFxcUpeJDKZTIqd27JlC97e3lhaWvL8+XNpvi4pNlEVCqUsIyODwMBAJbnu0aMHK1askP4/ePBgOnbsyKFDh1i2bBkXL16Uyp2kpqYil8tp2bIlY8aMwcnJidWrV0sKoZaW1v+U5P93x71y5QrHjx+nd+/eREVFsWLFCs6dOyctkOVyuaSQKTajFfX/ypYtS+vWrfn+++9p1aoVAQEBKsMhtLS0sLKyUppbhw0bhrGxMba2tlSpUkUpru517Nu3T4otU9QQ/ScoXPDp63T98MMPDBgwgNq1a+Pp6cmaNWsIDw+X5rjJkycTGRnJ5s2bgZeZCpcvX84PP/zAsGHDuH79OuvWrVPaiBg9ejRNmjRh7ty5dOnShUOHDnHmzBmuXLlS6uvm5+fTs2dP7t27x9GjRykoKJCSwZmZmaGlpUVwcDDbtm2jffv2WFhY4Ofnx9ixY6lZs+Y7u/D+FfyjlS546bvar18/KU2qlpYW7dq1kxYLkyZNUmqvcHm5ffs22traeHh4YG9vz8mTJ3FwcJAyH30MilqdzMzMJIVN4UawefNmevfuTUJCglRIMDw8nCFDhpCZmYm2trZUH0pDQ4OCggJSUlIoLCxEW1ubK1euIJfLcXBwoHbt2lIdnaioKO7du0dkZCQODg6YmZmRlZWFkZERgwYNolq1asjlcnJzc6WJBV7u6kVEREiuCwpTcW5uLr6+vtSqVYvIyEilHY5XqVmzJsbGxri6ukqxPNu2bZOsVImJiXTq1AldXV1mzJihMn3ow4cPadq0Kc7OziVmtIOXyqViAlS4XslkMiIjI3n06BGamppUrVqVVq1aldiHiYkJWlpaaGpqkp+fT3p6Ov7+/hgYGEiuFrq6un9b16J/C2pqarRv357c3FyePn2KmpoaLVq0kBZUr8p1bGwse/bs4fz588jlcqpWrSoF4ebn59OpU6cSlaz3RfG8KRSK8uXLA/+T65MnT1KpUiWMjIxYunQpWVlZhIWF0a1bN7S1tdHR0cHQ0FCSa7lcTmpqKhkZGdjZ2XHy5EnkcjmmpqY0adJEipdNTEzk4cOHBAYGYmVlJbk56urq0rt3bzp27EhhYSGFhYW8ePFCcu9ydXUlODiYmjVrShlPs7OzKSwsJDw8nKVLl/L8+XP+/PPP/33JtDTanjhBhYAA1AsLUc/LI8jWFtO2bcHQkOrVq7Nu3TpJrnNychgwYIAUd1k09kSBooxDQUFBsd/zVRQJGQoKCiTrZGJiIrt27UJNTQ13d3epmLwqdHR08PLyIiwsjOfPn/PkyRPat29PvXr1qFChglQWoWhKasHHwdPTk3r16hEUFER+fj4NGzaU7nmDBg2UnoX09HRWrlzJ7NmzycrKonz58tSsWZPjx48TExND165d38s963VoaGiQl5eHubk5Li4uuLi4SOcU1t6cnByqV6/OmjVriIqKIjIyEg8PD6nOpa6uLhoaGmhoaCCTyUhLS5NivBVxllpaWjRt2lSKi8rMzCQgIABfX190dXWxsbGRNkV69OhBnz59pCLD8fHxREVFSeN49OgRzs7O1KtXjzt37kjvoMjISIYNG0ZYWBhDhw79X+xcWhp1t23D8cED1AoK0MzPx8bOjk5TpmD2/7FWsbGxSglupkyZwt69e9m7d2+Ja6XmzZvz4MEDlW7TRcnPz5c20RT3PDs7m/3797N3715cXFzo37//azdLW7duTUhICBEREcTGxjJkyBCWLl1KlSpVKFu2LOXKlaNdu3bvVIrgY/Opla4+ffqQkJDA7NmziY6OpkqVKhw/flzK0B0dHa3k3uni4sLx48cZM2YMK1aswM7OjqVLlyolw2nQoAE7d+5k6tSpTJs2jbJly7Jr1y6lQupvuu7z58+lOeLVshTnz5+nWbNmaGlpcfbsWZYsWUJ6ejoODg506NCBGTNm/KNi6v/xSpcCPT29NwZkbt++nZ07dxISEiIV9Lxy5Qo3b96kd+/e3Llzh0uXLqnMBvMhMDc3JyYmRql+jYKMjAzU1NTQ0dHh/v37SucUbkuq0NfXJyMjA0tLSym+LCEhgSpVqkgvRGtra2rUqEFwcDD37t1DU1MTMzMzYmNjmTZtGlOmTCmWHrwoK1as4MiRI8jlci5evMiJEyeIioqid+/e9OrVS6U7iQJFXSNFghDFJBAWFsbu3bv5/vvvyc7O5uLFiyXWdlK4jSkSISgE9VWOHDnCnTt3GDhwIE5OTmzcuJHw8HC+/fZbcnNz8ff359q1a+Tn5+Pp6amyD5lMhoaGBrq6uqirq2NjYyMtgNPT00lISKCwsBBDQ0OVv6Pgw6KlpaWytEFRrl+/zvTp04mMjOTrr7/G3d2du3fvcvLkSYYNG8aDBw84cODAaxfl70PlypXx8fFRGR9UWFjI8+fP8fLy4u7du0rJM1SVhVCgSOsdGhqKnZ0dUVFRpKam4uzsLC2YbGxsqFSpEjExMVy7dk1SzJKSkliyZAlz585FX1+frKwsldkDJ02aJCU6CQwMZM2aNYSGhlK3bl26du1K//79XzZMSwNPT+r6+qJwcJ4GFMTEEHvoEIt79yY+J4fc3Fyio6M5fPgw06ZNw9/fn71791KjRg2VSpeBgQGtW7dm586d3Lx5U2mSLsq9e/c4cOAAXbp0oUaNGly8eJELFy7w5ZdfYmNjg6+vL97e3qxfv57PP/+8xMQ3Dg4OODg4IJfLmTBhAqdOneLq1av4+Piwb98+kpOTqVixImvXrqVRo0Yl/jaC90dNTe2NHgTh4eEMHjwYExMT2rVrR5s2bfDz85MKG6enp7Nr1y4GDx78URZdNWvW5M6dO3Ts2FHl+cePH9O5c2eio6OV4ovu3r0rue6/ikJ5efbsGQ4ODpL3iKmpqVIyI1dXVypXrsz9+/fJzc3F3NxccrX9448/0NHRIT8/Xym5hYLPPvuMn376ifv375OQkEDr1q158uQJbdq0wdPTk4kTJ75s+P9y7e7nh9r/L94/Bz7LzCR97lyuzp9PgZ4e0dHRaGpqsm/fPtauXcupU6eYO3cuPXr0KDFrXNeuXbl37x7e3t707t1bZZunT5+yatUq6tWrR/PmzYmIiGDjxo00atSIESNG4Ovry+nTp1m6dCkjR44s0aXYysoKKysr6tevz4wZMzh9+jQXLlwgMDCQ06dPS1k3ly5dSu/evT/apvo/hZEjRzJy5EiV517NbgnQtGlTlfHFRenZs6fKRC2lva6zs/MbFUgHB4cS08v/k3irRBrnzp1T2lXKyMgo1UVcXV1VHlcVHKnqJaLKPUiVK6Cq2lSK/mJiYtiyZQt169bF2NhYKXg0ICCAP/74g4EDB7JixQqGDx8uuRSqclupUKFCsWOqXvqvKiMKd4XJkycrmb8VdUR69OghuefI5XLJ6qTIklZYWCilYU5KSsLY2FiKm1i7di1xcXF06tSJDh06qHyAVdX4ycjIIDg4mOjoaMmPXDGmwsJCKe5MoSw9fPiQkydP0r9/f5WWg8ePHxc7pvg+CpKTkwkPDyc/Px8vLy/Wr18v1VJr3rx5sc9u2LCBjRs3MmvWLLZt26aUmrQoS5YsYezYsVSqVInk5GQiIiJo1KgRU6ZMQV1dnezsbKZOncqjR4+oXr16sd8sOzsba2trJk+ejLW1tcrkI/ByIZ2RkUFhYSHJycksXbpUcnlq1qwZampq/6iA+3eVa1At259SrnNzc5kzZw59+vTB19dXyeqakJDArFmzGDRoENu2bcPLy0tydfmQcp2Wlkbjxo0ZM2aMkiKupaXF2rVrsbe3p3379sBLuYqLi5NkOzs7m/z8fMk9Jzk5GR0dHTw8PAgNDWX9+vU8fPgQLy8vunXrpvL+qJLrvLw8QkNDefbsGXp6epJcF7UW2djYSL91bGwsGzZsoFmzZtSvX1+KHwHoe/06zf38ULWsLQAO2dvzR4UKpKam4uvrS2ZmJlWrVmXLli2SS+Lw4cOLffbXX39l9+7djB8/nlGjRpVYJPPcuXO0bNmSSpUqkZOTQ3BwMHXr1uWnn37CzMyMwsJC5syZw8GDB/Hy8ioWF6IqBbWqBVxeXh5XrlzhxYsXVKhQASsrK0aOHImRkREtW7ZEW1tbyPUrfGi5Ltrn3Llz6devHzt27FByp8vJyWHs2LH069eP69evY25uLj1nH1Ku5XI5DRo0oHfv3koFgQEuXrxIUFCQlE2voKCAtLQ0yQ0xIyOD3NxcjI2NsbS0lJ7BmjVrkpqaypYtWzh37hwNGjSgV69eKjccVWUyLleuHEFBQTx8+BANDQ0sLCwoX748Ojo6FBQUkJ+fT4UKFSTLYU5ODlWrVqVJkyb8+eefSsk57OfPx2rPHmQqNmQK1dQI69gR/6++IjY2loULF+Lr64utrS3r16+nbdu2ACqVrgYNGnDo0CEmT55M1apVpeywr/L8+XNcXV1xcHBAQ0NDyqI7Y8YM6TfbsWMHv//+O56ensV+R1XPmSortUwm48aNG4SGhuLg4ICTkxNff/21FMunsID9FYk0zp49+16ukBkZGbRs2fJv/T4SKPOvsXS9iTNnztCtWzcOHz7ML7/8onSuQoUK5Ofnk5qaSsWKFQkJCXltqt13xc3Njc8//5yffvqJypUr4+TkRFRUFBcvXsTW1parV69KrlE6OjrSzpciWNXMzIx9+/aRlZVF8+bNUVdXZ8uWLTRp0qRYwcmSal28iq6uLlWqVKFKlSrSsZKKMMPLNJ2urq4YGBioTPNfGkxMTNDX1+fnn3+mU6dOpKWl8c0331C5cmUpPb4ijiwuLg4XFxf09PQYNGiQVItDFcOHD5eyUBkYGNCkSRPJxTA8PJyff/6Z6Ohoxo0bJ8X1vUpKSgr5+fmSZaCgoEDJVRFeJocwNjaWUuGePXtWCja9fft2icW6BR+eGzdu0LhxYx4/flysHp+5uTlVq1YlKCgIDw8PHj9+XKzo54fA0NCQH374gT/++ANra2uqVKlCSkoKZ8+eRVdXV1rMe3p6oqenR5kyZdDV1eX06dMkJSVRpkwZKcFAgwYNMDMzY8+ePVSsWFHaMFBQWrnW1NTEzc1NqdaZqoydCooqGK9SIzxcpcIFoA54xsfzR4UKGBkZUbduXb755hs6duyIlpYWkydPxtjYmISEBDQ1NcnIyCA1NZVnz56xYcMG5HI5bdq0kRavqmjevDk///wzUVFRGBgYUK1aNXr16sXDhw9JTExk+vTp3Lp1i6FDh0rvj5KQy+Xk5OSQlZVFTk4OZmZm0kLNzMyMjh074u/vz7179wgICODy5cvAS2+DL7744rV9Cz4cz549w9rampiYGDw8PJTOaWtr0717d27evImHhweHDx/+X7zhB0QmkzF+/HhWrFjBsWPHqF27Nnl5eVJWQDc3N44fP06LFi3Q0dHB2toaExMTKYW9s7Mz165dIygoiGrVqlG2bFmOHz+OiYkJQ4cOZdSoUdK13vTcKlBXV6dixYpK65PXlZDR1tbm0qVLKpU6k0uXVCpcAGqFhVjfvIn/V19hbW3NnDlzyM/Pp0mTJpibm7N8+XJiYmKwsLDAysqK+Ph4YmNjuXnzJjdu3CAjI4MGDRowY8aMEsdmb2/PmjVruHnzJgYGBjg7OzNgwAACAwPJzs5m4cKFHDx4sNSugQq5VoROKJQZfX19WrZsSVhYGNevXyciIkKKNxozZgy///77G/v+WHxq90LBX89/RumKjIyUUrCr2g1xcXEhOjoaLS0tlbt3H4qKFSsyZ84cfH198fPz49KlS7Rr1w5PT0/y8vI4d+4cu3btYubMmcTHx/P7778zbdo0LC0tmT9/Pp999hmurq6sWbOGX3/9FR0dHf744w/27dtXYtFJVURERHDmzBnS09NRU1NDXV2dJk2avFHZVFNT+yA+9JqamnTu3Fly9Vm/fj1yubzYvTczM2Pr1q106dLljdfV1dUt9gL19vYmISGBMWPGYGpqyrJly3B2di5R6crOzubSpUu0atUKIyMjyddcUWNGsQDOz88nIyODZ8+e4eXlRVRUFHFxcdSsWfNdb4ngHXj27BmtWrXi0qVLKuVa4Y7m6Oj4UeXa2tqaWbNmSemxT58+TZ06dWjVqhWamppcv36d8ePH8+OPP2JoaMiMGTP47rvvcHNzY+/evVJR6nnz5jFo0CC++uorDh48yNKlS18bM/kqCQkJnDlzRorDKCgooG7duq91AQakNN/FkMtRL2FhpkBDLge5HP4/1krhZrJixQp+++03qSRFUaysrFi0aBG9e/d+Y91BmUzGlClTih3Pycnhm2++ITExkWXLllGvXj0WL1782r4CAwOVinFqaWlRrVo1ybKjpqYm1aXLzc0lKyuLw4cP06FDh9f2K/iwhIaG4u7uTkFBgUpvgxo1anD06FHq1q1brF7Yh0RfX58JEyYQExPDo0ePOHPmDDY2NnTr1g0jIyMePXrE5MmTGTJkCDVq1GDGjBl06tSJr7/+mtu3bxMXF8emTZtYuHAhHh4eDBs2jBs3bvDzzz8zc+ZMld9NFYqkNApXv9zcXOrVq1eqOV+lG7xcjuwN70NZfr6SXHfq1AmACxcuMGrUKHR1dYvJtYODA5MmTZLWKW9i8ODBUnma/w1NzowZM7h69SpTpkyhS5cuxeo1vYqitI8CRZxnUQulk5MTTk5OFBYWSork26yZPgZC6frv8Z9RujQ1NcnKyqJChQrcvHmzWLaTjIwMtLW1CQgIkDKXfSxkMhkVKlRg8+bN/PTTT0q+7V9++SV+fn7Mnz9fClq1tLSUilEqXnzdu3fn8OHD9OvXj4EDBzJq1Ch8fHyQyWTk5eXh5uaGl5eXykLBCmWvd+/eUnag9PR0jhw5wosXL5QykH1M8vLyGD58OBs3bpSyPObn56Onp4eRkRHa2tqoq6v/L7bkNaSnp5OUlCQlDlBYLu/fv8+yZctIS0tjwYIFJRYBLsqRI0ckV00DAwPpniqC+TU1NZHL5Tx8+JDdu3dz584dTExM2L59+z8qoPPfgI6ODunp6VSsWJEbN24oWXbgpeVSW1sbX19fJWvux8LV1ZXt27czatQopev16tWLpk2bMmfOHGrUqMHnn3+Om5sbmZmZXL16lYULFyKTyRg3bhwbN25kypQptGrViuvXrzNt2jTJ3dfa2pr27durVFRiYmLYuXMnPXv2xN7eHnjpfnn+/Hl2795Nq1at3j6eQSajoIQYKQX5MhkU6VculzNv3jwmTZqEtrY25ubmODs7SzXZDAwM0NLS4ttvv33j5XNycoiLi6OgoEAq5ZCenk5ycjK//PILT58+5eeffy4xHuxV4uPj0dLSok6dOhgZGeHv78+dO3cIDQ3F09MTa2trZDIZ0dHRXLp0ifz8fJYvX/7OBekF74auri7p6elUr15dZa0rRQ0pPz+/Ui3u3xcbGxuOHTtGx44dadKkibTBY2dnR5MmTZg+fTrR0dFUq1aNhg0bIpfL2bp1K3PnzkVHR4cZM2YwefJkatasSZUqVXB3d2fatGlSgg0DAwM6duyo8rtkZGSwcuVK2rZty/jx45HJZOTn53P+/HlmzJjBypUrS628SchkyN+QWEiurq4k1/AyU+Dnn3+OlpYWRkZG1KlTh2rVquHu7o6VlRWGhoZ4eXm98fIFBQVER0dL83VBQQEZGRmkpKSwc+dOzp07x8CBA1/r2VKUuBcvUFNTo2bNmtjY2BAaGoq/vz9hYWF4enri4OCAmpoaycnJXLp0ibi4OCZMmCClNf+rEErX35vY2FjGjRvH2bNnefHiRbH7/S4bPv8Zpat+/fpcunSJZs2asXr1asqWLcvZs2e5f/8+crmcwMBAypQpg76+vkpF5UNz7do1yVT/KpUqVeLIkSMkJCRIbgHe3t5KAb2NGjVi/Pjx9O3bl3Xr1mFhYUHdunVp3749hYWFXLlyhYULFzJ69GhMTU2lzxUUFHDq1Cm+/fZbNDU1JTc6AwMD+vbty+rVq3F2dv7o90Aul/PZZ59x6NAhKlWqhJqaGpqamlISEWNjY6mA9Ju4desWrVq1eqPrVVRUlFIGqteN7ciRI+zcuRMrKyvs7e2xtLSU4t9ycnIkF8SYmBicnJy4c+cOFhYWpfvygg+Gp6cnJ0+e5Msvv2ThwoU0a9YMHx8frly5QkFBAWFhYbRt25bnz58rxXF+LJ49eybV3XsVKysrGjVqxIkTJ/jyyy+Bl0lAmjdvLilDjo6OJCUlkZeXx6lTp8jLy8Pa2lpSUB48eMDq1avp379/sQXawYMH+eKLL/6XmYyXlpw2bdqwb98+QkND32mB+sDR8bUxXddfee5/+uknZsyYQb169QgODqZKlSpSkWgTExMqVqxYYjKcokRGRkrp6F9H0SQGb8LFxYVHjx5x/fp1XF1dcXV1xcXFhbt373L06FGpYG9YWBg2NjZcunRJ5W8p+LjUqFGDRYsWSe7APj4+pKSkcPr0abKzs4mNjaVmzZpcuXKlWEmHj0FWVhbPnj2T5LYourq69O3blxUrVrBy5UrgZaIoZ2dnKZZNV1cXJycnQkNDiYmJwc/PD7lcLoU6BAcHs2XLFho3blwsydORI0fo0qUL5cuXl94TGhoatG7dmvz8fHbu3MnAgQPf+jslN2ny2piu2Pr1lY7t3buX3r17S0mtWrVqxdatW7l48SLm5ua0a9dOUjhft7mTmZmJl5cXV69efe34Sor5U6CTl8dnfn7UiYnhQX4+38nl3Lt7Fyd7exxcXPDy8pKSeejo6GBnZ0dYWBgGBgZcvnz5H5VmXPDXMHjwYMLDw5k2bRq2trYfJAnLWyldurq6SgHIqgqSqZoASwrgTU5OLnZMVQY9VdYJRTHAohRVLhQoamO0aNGC2bNnU7VqVWrUqEH//v1p1qwZPXr0YOfOndja2rJv3z7mzJmj5CKmqhZI0Qxkr7u2qsKbikxsISEhDB06FDs7O6mYaVHc3d05e/asdK3k5GRat26tdC8sLS3Jzs4mNzeX5s2bExMTIwWXVq1aFVNTUzZt2iQt2GQyGX5+flSrVk3aGXu1Dkb79u2Jj48vFvuiKn5L1b1RZCt8laJxdDExMUyYMIEtW7bw2WefsWPHDvr160e5cuWoUqUKampq3Lx5U3IDMjIykopSKgKlFUWko6Ki6NChA87OzsybN09KFKB4jtavX09WVhbDhg2jc+fOkouiKpetooG5mpqaGBoaoqmpyY0bN6Sg6GrVqjFmzBh27NjBkydPWLlyZal34/6uvKtcg2rZ/pRyXalSJU6fPs2DBw/o0KEDX3zxBTVq1KBLly5cu3aN6Oho9u7dy/Dhw5Vi7T6WXF+9epX27dvj4OCgUq49PDzYvXu3NP7ExESpsLCCsmXLYmFhwaVLlxgyZAj79++Xnk0nJye+++47lixZwo8//ohMJkMmkxEfH4+BgYEkz69umnTu3JnDhw8XyyRWUlzmgwcPpH+fa9GCyrGxWCUmol5kp69AJkO9UiW6X79Od0ND0tPTmTNnDrNmzaJTp05cvnyZOnXq0L59e2xsbDA0NOT69evcvXuXGzdu4O3tjbOzMxUrVpSeuQULFgAvreBt27YlNTWVw4cPo6Ojo5TA5sSJE9y/f58vv/yS3r17S8kz3lQWwM7ODisrKxISEvD19eXp06cYGBhQs2ZNZsyYwa5du7h8+TJLly7lm2++KTET4j+B0sg1lH7O/hRyDS9l29DQkNq1a3PkyBFGjBghFQPu1asXUVFRhIeHc+7cOZo0aaK0eP5Ycn337l0aNmwo/f9V2XZxcSEpKQktLS2ys7NJSEjAyMhISYG6fPkytra2/Prrr0ycOJElS5ZI8dPm5uZ8++23zJkzR6o7l5mZSUFBAREREXTu3JnMzMximY0tLS3ZsGED1apVKzZ2Ve74RROaBAwYgP7Nm+iFh6NWRPEqVFNDzd0dl61bcTE0JD8/n9WrVzNhwgTq169PdnY21apVo2fPnpiYmGBqasqtW7fYv38/W7duZfLkyVSsWJFq1apRuXJlAKX4tcGDB3P9+nU2btwoPZMZGRkUFBTg5+fHxo0b+eKLLxgwYID0LL0qhzp5ecy6eJEyaWmoA20AP2ANsCgqisvPn6OtrU3lypXZt28fhw4d4sSJE4wZM4bZs2e/U3H1j4GwdP29uXLlCpcvXy6Wxv59+NtZuhRuW4qUq9WrV8fR0fG9Jz9NTU0mTpzI6tWruXXrlhRYOXPmTPT19WnYsCHDhw9nzZo1LF269I1FdN8XdXX118aYaGlpKVlunJ2duXHjhvQSSklJQU1NjfXr19O+fXvOnj1bLMOSvb295GaniNdITEx8bfVuW1tb/Pz83uObKSOXywkJCWHGjBmSW9CePXvQ0tKiX79+GBoaIpfLsbe3Jycnh7Jly2JlZUWtWrU4ceIET58+JSUlhcjISOLj46XU+ArS09PR0NDg0aNHfP7556Snp0txWEW5cOECurq6dOjQgb59+0o1vV6Huro69evXp06dOkRHR0uB9aNHj2b37t0f7B79VwgJCeHq1atkZ2dTvnx5Pvvss7d3i1HBt99+y5YtWzh9+jQNGzYkLS2NOXPmSMkkvv76aw4ePEjDhg1LLEvwoVBTU3utXCvO5eTkoK2tjYuLCzdu3JDOy+VyoqOj2bdvH+3btyc4OLhYynwDAwPKly9PYGCglNErKSnptd/N3Ny8xJIQbyJHS4tl/frR8eZN3AMDUSsspFBNjf1lyvC8c2fSZ88mLS1Nss536NCBBg0acOTIEWkxWr58eezs7PDw8OD8+fNcvHgRPT09AgIC8PPzo2bNmlhaWkpyWVQpHThwoBQk/yqjRo1i9OjRNG/enL59+0r39XVoaGhQv3596tWrR1RUFP7+/ly+fJnLly+zZs2ad7pH/2ViY2O5cOECqamp2NnZMXDgwA/iKdGtWzeOHTvGDz/8QMWKFdHV1WXp0qUUFhbi6upKp06d8PX15datW2+MWXxf1NXVlQoUv0phYSFaWlpERETg4OCAvb09e/bsUWrj4+ODpaUlderUITExsZjip6GhQcuWLbly5YrkopeTk/Pae6murv7OLu0FenrcW74ch9Wrsb51C1l+PnINDW5XrszVRo1I+fln0tPTuXTpEr6+vrRq1YrPP/+c0aNH4+XlRUxMDG5ubtja2lK3bl3q16/P1q1bsbCwICQkhBs3buDl5YW5uTnDhw+XFD5FTcDvvvsOuVyu8r00a9Yspk+fTp06dejbty8ZGRlKWf663b0rKVzS/QNGAsMLC9ni5sYfRkY8ePCARYsWsXfvXubPn/9O9+ljIpSuvzeKEiMfkvdWugoKCjh79iyPHj1CV1cXDw+PN9bVKYnk5GR++uknKlSoQIsWLVBTU+PGjRsMHz6cX3755b0XTIqMdvr6+lSoUIHIyEiqVq1KvXr1cHFx4fr166SkpHDs2LGPbr1o0qQJp06dYtiwYSrP37x5U6rTUbNmTVq2bMmiRYukgqrLly/n888/Z8uWLWhoaPDkyROVdRLKlCkj7brBS8vWixcvpB2oV3nx4kWpXPqKkp2djZ+fHxEREairq2NsbIyHhwcGBgbs2bOHiIgIbG1tpayFX375JdOmTcPT01PaMfzzzz+pVasWWVlZPH36VMoMqKg9pKamRmZmJmFhYYSFhTFkyBDWr1+Pm5sb4eHhHDlyhCdPnkgFao2MjDA2NsbIyAh3d3diYmLYu3cvu3btku6TnZ1dsYkvLy+P2NhYqYi1Io7L3t6eMmXKcP78eUaOHEnTpk3/1e6EcrmcO3fucOXKFWQyGVWqVCmm1JeW3NxcFi5ciIGBAc2bN0dfX59Hjx4xfPhwxo8fX+KzWFo0NDRo3749ERER1K5dm6tXr+Li4kLDhg0xMjIiODiYuLg41q9fz+TJk9/rWm+iUaNGLF26lJYtW6o8f/HiRZo1a8bRo0fp0aMHlSpVYtOmTcTGxmJtbc3Ro0dp0KABISEheHp6snz5cn744Ydi/Tg5ORETEyMpXcbGxkpp3l8lOTlZZTrt15Gfn09gYCBBQUHI5XKO6utTq2tX7MuU4fCRIzx69Ajz2FjMzc0xMDCgRYsW/PTTT3z33XfSfd6+fTt169ZFU1MTX19faeNFJpNhbW2NkZER0dHRXL9+HXiZ4fXp06cYGhry8OFDLly4wLVr1zA0NFSSbSMjI8qVK0d+fj4HDhxg9+7dDBs2DLlcTuXKlYtlEC0oKODYsWMA1K5dG3t7ezQ1NSlTpozkVv7LL7/QrVu3j5IJ7+9EUFAQp06dIjc3l1q1alGuXLl32tSUy+Vs3ryZ2NhY2rRpIy22x4wZQ58+fYplE31bZDIZbdu25erVq3h5eeHj44OVlRUNGjTA2tqajIwMAgICCAwM/OhKV6VKlVi+fHmJrnO3b9+mWbNm7Nq1i3HjxmFsbIyurq40fwcGBpKfn09iYiKOjo4cPHhQSrteFGdnZ86cOSP9X1tb+7WbJQUFBW8dVyKXy7l586bkqqmurk7zYcOoW6cOe/buZceOHejevo21tbWUVXDDhg0cOnSIQYMGAS9dmRVrBR8fH1JTU3nx/3FVKSkpODg48OLFC06fPg28TP3+4sULLC0tOXz4MA8fPuTYsWPo6OgUm68dHBwwNjbm6NGj7Nq1ix9//JGcnBzs7e1p3bo1MpmM6kUyqjYDLgLLgX6AGdA5Jgafdu2wsrJi//797Nmzp8R6YX8lQun6e7N48WImTZokhd18CN5L6Xry5AkzZsygRYsWeHl5kZqaysaNG9HQ0GD8+PFvdPV4lfnz5/PFF18ofTmFlWvatGmsXr36vX0qQ0JCqFatGteuXaNp06aSK6Gbm5sUFLpkyRI6der0UZMiNGzYkC1btqgsxHz9+nWMjY0ZNmwYs2bNIj4+nqZNmzJhwgQ6d+6Mi4sLMpmMSZMmsWTJEn7//XeGDBmi8t4UVbjgZSHX5cuXS+nUiyKXy/H29mb06NGl/h6pqamcPn2aGjVqSIknYmNjpXTZERER9OzZk927dyuNLzMzU1K4zMzMSEpKIiAggKioKORyOWZmZjRu3BhtbW3Onj1b7LqtWrWS/q2pqUn37t2VG/x/1iUFrq6uTJgwgQkTJrBmzRq++uoroqKikMlkGBoakpKSopRSu7CwkPj4eLZs2UK5cuVwcHDA2tqaOnXqsH//fnbt2vXaNNf/ZOLj4xk7dizu7u60adOGwsJCdu/ezcaNG5k2bdpb72KvXr2aRo0aKSU7KFOmDJ999hnff/89ixYtUopDeheePXtGxYoViYiIwMbGhqFDh0rn3Nzc6NKlC/369WPEiBElujV9COzs7NDW1ub8+fNS7TkFISEhBAQE8NNPP7Fw4UJ27NhBp06dGDlyJH369KFmzZoEBQWxZ88eRowYIb2HVNVxSUhIULJYW1lZkZycTHp6ukq3Im9vbyWZeRO5ubkcPXqUcuXK0b59ezQ1NcnJyeHy5cvcuXMHX19fmjdvjre3d7H3iMItWF9fn7y8PAICAkhISJDq4NWrV0+K83q11k7R2BSZTEbz5s2Va/e9ItcAX331FV999RUPHz6kevXq+Pr6oq+vj4uLCy9evJDiZ9TU1CgsLOTOnTvcuXOHsmXLUq5cOezt7albty5Pnz5l5cqVrFq1qtT36Z9EdnY2kydPRkdHh86dO6Onpye5Uk6cOPGtN0uPHj2Kjo4O48ePl47Z2dnRp08fJk6ciKOjo8oaWW9DYmIi9vb25ObmkpSUxMSJEyUF0c3NjU6dOtGtWzeePHnyUcq8KNDS0qJx48asX7++WFxXYmIix48f59dff+Xw4cMsWbKE/v37M2LECMaPH0+NGjW4c+cO27dvZ8eOHezdu5c6deqojK+Mj49Xmq/V1dWxsLAgPDwcR0fHYu19fHxUuhaWRGFhIQsXLsTKyorRo0djbGxMbGwshw4d4vTp09y7d49mzZpx8ODBYu+dn3/+WRqTnp4e/v7+5OTkkJycjJWVFW5ubvTs2ZO9e/cSFhaGTCaTlIJevXopzRvVqlVTHrcKue7bty99+/YlJSUFExMTnj9/zoMHDyhXtiz38/JYD6QBT/+//bf//9cSaJudTXJSEuXKlcPT05MlS5YIpUvw1vTp04fMzEzKli2Lnp5eMQ+415VhKYl3VrrS09MZN24c5cuX5/r161y9ehU3NzeGDh3Ko0ePWLVqVamyUyl48uQJ9vb2KrVJR0dHatasyc2bN6n/SnDn26Knp0dMTAyZmZkq03sbGBjg5OTEjRs3PmqgpZqaGr/99huzZs1CS0uLWrVqkZeXx9WrV8nKyqJx48aSUnvmzBlmzpyJlZWVlFkrPz+fzp07Y2dnh4ODg8oXclpaGmlpaUqWK01NTZo3b86GDRvo06eP5N6XlZXFwYMHKVeuXLHioq/jwoULtG7dWlo0h4WFcfz4cclXXVdXVykAWIGenh6jRo0iICCAjh07cujQIZ4+fUr37t2pXr06Z86c4eTJk0qfqVWrFlpaWujo6NChQweysrIk3+zo6GhOHjyI0ZEjuPv4UI6XEyWdOsEvvxCdni4VhB06dCg//fQTSUlJREZGwv+31dHRQUdHBw0NDdLT06VCkk+fPuXp06fS91FTUysxdu2fjlwuZ+TIkTg5OeHn50dAQAAWFhZ06NCB/Px8fvnlF3777bdS96coGKqqxpGRkRGfffYZhw8fZsCAAe81bj09PVJSUggICGDixInFzstkMlxdXTly5Mg7BZ2/DVOmTOGXX34hLi4OT09PNDQ0uH37Ns+fP6dZs2bcvHmTUaNGcfPmTebNm0dhYSGGhoZSwfBevXpJxZJfrVEEL3e379+/XyxLWJcuXVi3bh2fffaZJNd5eXlcunSJpKQkatWqVervcPXqVWrXri29VxISEjh79izPnz8HXt7PqlWrqtyYGjFiBNu3b2fkyJFcuXKF06dP065dOxo0aMDdu3fZvXu3Unrn9u3bY2tri7GxMWPHjiUtLU1aoKWkpHBi/34Kd+6k4qNHVAD0tbUluU4uKCA5ORlnZ2eqVauGl5cXAQEB3L59m1u3bkkB9DY2NtSpU4fY2Fju3r2LXC4nODiY4OBg4KWCmJGRIRWx/jeiqPkWGRnJmjVr0NXVpV+/fjRs2JCZM2eyZMmSUrv7FhYWStnzXkVTU5NRo0axYcMGZs2a9V5jVmQxPH36NMOHDy9mkdPQ0MDR0ZFdu3a9tibUh2DgwIGsXLmS7777jho1amBgYIC/vz8+Pj7UqVOH27dv07lzZ54+fcqqVavIysrC0NCQ0NBQdHV1+eqrrzAxMSE/P5927dqpvMbZs2eLvZ/atWvHhg0b6NSpk5QIqqCgAH9/f27evPlW1vvjx49TtmxZaZNSUW7h2rVrUptmzZqp3Oj54osvCA0NZfbs2QQEBEhlGhTx5EuWLOHXX3+V2nt5eVGvXj1MTU0ZOXIkmZmZSi6G3ocPE79mDRV9fXGXyTApItdZGhqEhYVRoUIFjI2N6dq1K35+fjx69Ij79+9zAugN9OelpcsPaA8kAmeBs7m5sHmzVDT6Yz8b74pQuv7evKkEybvwVkqXwoUQYN26daSlpVG7dm0p5XlwcDAzZ86kX79++Pn5ERQUhJ6eXonm76Iv0KtXr1K5cmWVD1FgYCAuLi6cPHnytUXyVJnhX3151KpVi7lz59K5c2elcwrXnP3799OpUyfOnTsnpXR+FVUxA0UrvStQZel7dTw//vgjjx8/xs/Pj/DwcOLj42nUqBFNmzbF19eX33//ndmzZ7No0SIpeURR8vPz+emnnwgNDaVRo0aScqNI8tC/f3/pRaeocF+lShV0dXVZs2aNlAZTYV3q2rWryiBqVTFuw4YNIzc3lxUrVpCVlcW4cePYtm0bTZo04YcffiAmJobw8PBixagVZGZmsmrVKpydnZUU9OjoaKZOnarUtmnTppw+fRotLS2WL18uJQw4c+YM2dnZdOrUSenZUQecAJtly0hbvpxH/3/OwMAAc3Nznj17hrq6OkuWLOHChQsUFBRw/vx5Xrx4gb6+PuXLl8fExIQLFy5Iff7++++EhITg6upKuXLlVH6nfyJF5frixYsEBQXRqlUr2rVrh0wmIyYmhpUrV1K/fn10dHS4cuWK0uT/KkXl+v79+1SoUKFEubazs2P79u2vTfldGrl2cXFh7dq1VKtWrZilJy4ujv3799OuXTtOnTpFu3btPrpcjxw5kmfPnnH37l1iY2N59uwZtWrVolWrVkRERLBo0SK++OILaVGqSrZXrlzJtWvX6NGjh6TchIWF8eeff9K2bVvpeyrk2sbGRtppDg8Plwp76+vr4+XlJdXkK4oquc7OzsbW1pY9e/ZQWFjI/PnzWbFiBc7Ozmzfvh0jIyPWrVvHkiVLin1W0aeiXtGQIUOU+n01gN3Ozo4NGzZgZWXFqVOnsLCwIDs7m5UrV9KyZUuqV69eLJbLHrBbtgy11au5nZ9PQWEhzs7ONGzYkIMHD6Krq8ulS5f48ccfcXR05MyZM4SEhKClpUW5cuVo06YNZ86ckeLrpkyZQl5eHrm5uUoZYv/pFJXr8PBwKWtmu3btJDewTZs2YWxsTN26ddm7d6/kefEmuU5ISMDMzAw1NbVisq3wYAgNDVWZTEZBSW5zRWVJsQEGxYsAx8XFce/ePSpXroy/vz9xcXEfXa579OhBamoqFy5cICQkhMePH+Pm5oaTk5P0Dqpbty5nzpxBJpOplGs7Ozv27NnDt99+K40tKiqKffv24eTkVCzm2tDQkC+++IJjx46xceNG8vLykMvlaGtrU69ePSmBx6so4iKL8vjxYw4fPoy2tja7du1i5MiRqKurs3LlStzd3Zk6darKmnjw0oW5T58+dOnSBYAJEyYALxf+BgYGxa43b948qlevjr+/P46Ojrx48YJRo0Yxf/58nJ2ciH0luYoVYL9sGXqrV3MbyMnNldxJ//zzT8zNzYmKiqJt27bULSjgrJ8f6wE1wAWoy0s3Q8Xbol+/flL4wXfffafyO/3VCKXr78cPP/zATz/9JHlLNGjQ4K299l7HO/WUmZnJ3bt3WbhwoVI2nLJlyzJ27Fjmzp1LnTp1CAwMLHXWjzcFoCvqtNy4cYOsrCxcXFzeycfSzMwMo/8PsGzQoIGSBebMmTPo6upiY2MjpVL/FLi6upKZmYmfnx+//fYbGhoadOjQga5duzJq1Cj69u3LwoULVX5WQ0ODWbNmsWnTJvbt24ednR0pKSnk5eUxcODAEu9RZmYmBgYGjBw5EkNDQzQ0NMjKyuLAgQOkpKSUKr22r68v9erVIzs7m65du3L58mWWLVvGyJEjpRgsVRYOBcnJySoLNxoaGjJkyBBu3LiBra0ty5Ytw93dHXipZE6aNElqGxUVhbm5OXK5nNuAI/AE8AdCgBggVy6noYEBR01MSEpKIiwsDHd3dyZPnsy5c+fYunUrhoaG5OXlcfPmTW7cuEFQUBCBgYHo6OhIk4mdnd1bFar9pyGXyzl48CBDhw5VSpNtY2PDmDFj+OWXX6TYitKk3oeXcv26mIOCggJkMhn3798nOTkZa2tr3N3d39qNWF1dHQ8PD+7cuUPfvn2VLDCPHz/m0aNHdO7cmVOnTr1Vv++DlZUVHh4eLFu2jFmzZmFgYCAV2R05ciTDhw/HxMSkROvK6NGj2b9/Pz/88AM2Njbk5OSQmJhIx44dS3yv5ufnk52dzfjx47G0tERTU1Oq6bNq1Sq+/vrrN97bhIQEKlWqhFwu5/vvv2fZsmWMGzdOKevX61zwSpJrLS0tJk2axPnz50lLS5PcThXMnj1bkrWQkBDJmr1RJqOrXC7JdRAv5TolN5cWbm4kNG/OzZs32b59O97e3nz//ffExMSwYsUKqlevTmFhIQ8fPuTKlSsEBgYSGBiIvr6+kmvj3LlzX3tP/uls2rQJLy8vJWunsbEx/fv3Z/v27ZQrV05yuS8Nb5JrePk+8ff3JyYmRsr8+i6Ll65du7Jw4UIlzwb4n6IyceJEnjx58tb9vitGRkY0adKEmTNn8v3330tuxIrsqQsWLGDBggVKbpdF6dKlCxcvXmTy5MmYmpqirq7O8+fPadKkSbGswUWJi4vjiy++wMnJSalW5Jo1axg+fHiprJRaWlpoa2uzevVqRowYQa9evVixYoXk3WJubk5+fr7K30nxfn4VmUzGggULOHjwID4+PqxcuZIuXbpISvrSpUul7JWBgYFoaGiQk5LCWGA2EMjLOTsAiALicnMZUbYsBe3ace/ePY4fP46TkxPDhw/HxcWF8ePHM6BrV+T16xPs788FuZyA/+/HlP8pXenp6cz8P/bOOiyq9H//rxm6G0RQUexAsLDFxA6wu9u1W9ddXV1j7Q7sWotVbDFRUMEOVFQUpLt75vcH3zk/xhmQUNfdz97XxbXuOWfOOXPmvJ/nedd9//LLF5/J34n/nK4fDxs3bmT27Nno6OjQsmVLwsLCvqpOY7GcLm9vb8zMzJSWlujo6GBvb09ISIhCjXhSUhKXL1/m/PnzzJkzR67eu06dOpw7d4569eopXRQcOHCAzMxMzMzM0NPT4+rVq0RERDBy5MgiP5Dhw4ezZs0alixZIizwZDXho0aN4sKFC0Wqk/4a+Ouvv5g8ebLCYKenp8fq1atZu3ZtvqLNGhoajB49muzsbOLi4tDW1s6Xph8QFmHjx4+Xo4yXlZts376dJk2afJFQw8DAgPfv39O7d29u3brFuXPn5CaNyMhIBUr6vKhRowZ3797FyclJbruuri5ubm6MHz+eiRMnCg4X5DqZp0+fZvny5VSpUoWBAwcKkf4AoB65EbPmn10rJCMDHxMTTExMSE1NpVatWgwfPhwrKyvWr18v6LP16tVLbiE4ffp0Bg4ciJaWloLw7r8Nb968wcTERCmdroqKCp06deL+/fsKkdiMjAxu3brFn3/+yfDhw+WeX5UqVfDw8MDFxUWpXR88eJCQkBA+fvyIubm5IDjdv3//Ij/vHj164OPjw+LFi6lcuTLa2tq8efMGIyMjZs2ahb+/P7a2tkU6Z0nh4eHBoEGDFLJvKioqbNiwgZ49e+brdIlEIlxdXenRowdxcXGoqakpjV5/fr2hQ4fK/UYyTR8PDw+h76kgaGtrExkZyZw5c9i4cSPbtm1jzJgxwn6ZUHh+qF69Onfv3qV+/fpy28ViMb///jtbt27FxMRE7j2BXDIdWanUr7/+iqamJpYqKrzOycEAcPy/v7xIionhWP361K9fn8jISD5+/MiiRYswMjLC0NAQT09PdHR06NSpk1w2fe/evWhqamJvb1/oAMI/FYmJiUgkknyrRLp3786BAwcUsp45OTn4+fnx559/Uq9ePQYOHCjsMzQ0JDY2loyMDNTV1RVs+9atWwQHB/Po0SNsbGz49OkTZ86coV27dkUWpK1evTpmZmasWLGCMmXKYGJiwsePH8nJyWHq1Knk5OR8kbHya8PLywsnJyeFvk3InTOcnZ0LbK9o0aIFLVq0ID4+HolEQnZ2doHBkEuXLtGlSxe5YJhIJMLe3l4oIS5Mz2ZGRgb79+9n3LhxgvRE3uumpaXl28terVo11qxZo1SrbNy4cdSqVYtLly7Ro0cPuX1LliwhOTmZoKAgdu3ahVgspoFIxGtAG7D/v7+8SIqP55i9Pfb29vTq1YuYmBg2btyIlpYWXbp0ITw8HJ0RI2ji58dIHx/IygI1NR40bMjpsmUZMnr0v5ro6j98O9jY2LBhwwbatWuHVCrFx8cn3z7w5s0/X2l+GcVyukJDQ7G3t+fBgwdKe6wqVKjAjRs3BKYbiUTC4cOHOX36tHDMjRs3BKcrJSUFDw8PfHx8uHr1KhUrVqRFixY0adIEY2Nj9u/fT2xsLBs2bBCiJ40bNyYiIoJNmzYxd+7cIukuWFpaUqZMGVq2bIm6ujpSqRRXV1c0NDSIjo7Gx8enxLXoRUFmZqZA6KAMMoKAL0FVVVWIWBXkdMm0upRFs2SMUTdu3MDV1bXA6zk5OTF69GhCQ0M5c+aMQpRO1l+SH0aOHMm4ceNo1qyZwkD/8eNHPn36pJQxr3Xr1nLscKYmJlRQUcE7J4d++VxLVSoVmnW1tbU5efIkK1asYPHixWzcuJHU1FSSk5ORSqVyjJIykctvSb7woyA0NBQ7Ozv8/PyULkQrVKjAvn375JyEK1euyNFsX7hwQVhMSyQSjh8/zsePH3FxccHCwgInJyeaN2+OpaUl3t7e3L59mw0bNgjvfuPGjUlJSWH16tWMGjWqQHmDz6GmpkaTJk0wMDDA1taW9PR02rRpg4mJCenp6Rw/flxOL+Z7ICgoKF/nUUdHB3Nzc6UaRnkhFouFAEhBTld0dDQGBgb5jiMdOnRg//79X3S6jIyMePbsGfv372fdunVyDheAu7t7vj0pkKsJ1q5dO4YOHapwL8nJyRw7dkxpxrFatWr89ddf/3+DVEoDNTW8C8ioiHNyBLs2Nzdn7ty5tGnThlGjRrF161YyMjJITExk0qRJbNiwQfjc27dv6dSp0zclX/hREBkZSdWqVXn8+DHNmjVT2G9ubk5wcLDceP/o0SO5/pywsDD69u0rzBkXLlwgNjZWkP1o3rw5LVq0oEKFCgQFBeHm5sbChQvlyrA7derEpk2b0NbWLrLuTY8ePXj58iVt2rQhMTGRZs2aYWlpiUQiEQhnvifu3buXb9WDSCSiXbt2eHt7f5EVUhaULIh5NCcnh4iIiHyrVurUqcPmzZsL5XSZmJgwbNgwRowYwbp16+QcrpcvX2JjY5Ov81elShUiIiIIDAxUmB9kZch5bUwGU1NTDhw48P83/J9db0tPJweUiq7ntWs9PT2mTJlCly5dcHV15eTJk0gkEuE9uBEYKBz79s8/sU5I+O7BteLiv0zXj4dVq1YxduxYfv/9d0QikUIQQQaRSFRk5lAoptOlp6eHra0tZ8+epVq1agrMY97e3lhaWqKlpUVGRgbbtm3j5s2bQK7SfPfu3eWyXBEREXh6emJnZ0dKSgoxMTHs2rWLHTt2oK2tLZTK+fv7k5aWRkpKCtra2tja2tKuXTtu3bpVZGKDUaNGsXHjRiwsLGjSpAnh4eH4+fnx8OFDJk6cWOwazszMTLy9vXn58iVqamrUr1+fOnXqFDj45uTkfFEX7GsyKcbFxRWYHbS0tJRrdM8P8fHxhIWFYWdnp0CRfebMGV6/fs3ixYvz/by1tTX9+vWjX79+LFq0iBo1agjUzuvWrWP37t2F+0IiEd11dNidmMhvgDIevGyRSIEdafbs2VhaWpKSksLo0aNRVVWVe86yPpC8DldERAQTJ07EyMiIbdu2/aPFUz+H3v8JYb5580YpW9ajR4+QSqWUK1eOnJwc3N3dOXz4MJAr0jlixAg5+vesrCw8PDwoW7YspUuXJiIigmPHjnHo0CE0NTXJzs6mc+fOBAUFkZGRQUpKCioqKlSoUIHBgwfj4eHB6NGji/QdXFxccHNz4/Xr17Rs2ZKEhAQePHjA9evXGThwYLGjnxKJhEePHuHn5yfQkjdt2vSLdvul90NLS0upoGtxEB8fXyAJjrGxsdKel8+Rk5NDdHQ0FhYWDB06VG7fo0eP2LFjh7xz9BnU1NRYtmwZPXv2ZMGCBYIT7u3tzZIlS/jtt98KR9jwf3Y9LD2d50BNJYdIVFQU7Lpnz57Y2tqyc+dOtmzZQvXq1eXsOiUlhbt377JkyRJhW2pqKnPmzBHYI5UxQP5ToaenR2pqKgYGBjx48ECBnCU4OJj4+HgaNmwoRHbXrl0r7P/pp5+wt7cX5kSpVMrFixfJyMjAwcGBwMBALl26xF9//SUEMevWrUtqaiqPHz8WhG9tbGwYOXIk69atK7LT5ejoSFRUFIcOHaJt27akpaXh7e3NpUuXaNGiRbFlJ6RSKQEBAdy+fZv09HTKly9Py5Ytv/j7y3S58oPMrvO2XxQXX1OrKzY2Fg0NDebMmSM3NoWEhDBp0iR27dpV4Oc3bNjA0KFDmTx5Mp06dUJVVRV/f39+/fVXevbsSbly5b58EyIR3XV1+S0piRNAHyWHKLPrBg0a8OzZM/r168e5c+fo378/0dHRwjklEgl79+7lyJEjwmdycnJYs2YNJ0+e5NixY0oJx/5OSCSSErWyfM82mP8VdO/ene7du5OcnIy+vj6vX7/++8oLZfXATk5OnDhxglGjRrF9+3ZBeTwlJYVbt27h7+/Pb7/9hru7Ox4eHiQnJ2Nubo5EIsHb2xuRSMTp06c5ceIET548ESiGBw8ezPTp0wkICODUqVO8evWK0NBQnj59yu7du5V69VZWVuTk5GBlZUX9+vVp06aNnMMkWxTmRa9evQDo3bs3fn5+eHh4cPPmTSpXrsyUKVMQi8VCyZqysgVli6TMzExCQkLYu3cvjRs3pmvXrqSlpXH//n1OnjzJ6NGj0dPTUxpFUlFRISEhgdTUVGERd+XKFWF/XFwcCQkJ+S4YldFWKislkX0nCwsLoqOj850QgoKCMDIykuuxU8ZmdO3aNTIzMxk9ejQdOnQQSAx8fX2pVasWBw4c+GL/SP/+/bGzs2Pz5s0EBwcjlUpp2bIlJ0+eLFJ2aUCHDqz580/2A5+3zOYAPmZmcqWOMqHEnJwcDh06hJeXF7q6uvz1119Cjf2hQ4cEbR/I1bdp1qyZkBWLiooSWPcUKOv/QZDZdf369VmxYgWTJk1i+/btguilrJfywYMHTJw4kWvXruHu7k5ISAhWVlaEhobi7e1N+fLluXr1KsePH+fhw4e8ePGCnJwcmjdvzt69e4mIiODEiRM8fvyYxMREPD09OXfunNIFvLGxMSKRCAcHB+rWrYuzs7PcQqggu+7WrZuweP748SPp6en89NNPqKurF8uuExMT2bp1K9WrVxcYA58+fcq8efMYOHAgVlZWSt/zrKwsdHR0CAkJEQbtvHadk5PDvXv3ePHihUBGlBfFsesHDx7ka9eRkZFoa2vL2bWyCoGgoCCB7KN///5YW1tjaWnJ8+fP0dPT488///ziorRRo0a4ubmxbds2ge2ydu3a7Ny5s0jU5C49ezJu+3Y2AJ/LFkvEYkLq1ZP7Dl5eXsK/Y2JiGDt2rKD3eO7cOWJiYti8eTMrV64UfrP4+HicnJzw9/dHLBbj5OTE7NmzUVFR+VfYddmyZYmNjWXChAkcPnyYZ8+e0aRJEzQ0NHjy5Am3b9+mR48ePH36lJMnT/Lq1SvKly9PYGAgf/31F127dsXPz49Dhw7h5+fH06dPSUpKok6dOty7d4/k5GROnjzJ/fv3SUhI4OLFizx//lxO9FsGHR0dtLW1BSHzdu3aKSxo8rPtLl26EBERwdGjR/n48SORkZGMGDECHR2dYtl1dnY2O3bswNDQkObNm6OlpcWbN29YsmQJHTp0oGbNmvnOX5UrV+b+/ftyenB5bfvIkSNy/V55IWP2zYuC7FpDQ4PU1NR8dfZ0dXURi8UKAZfPn4VUKuXq1avMnj2bOXPmoKGhQcWKFXn//j3Jycls2bLli6W2ZcuW5dSpU+zZs4fu3bsjEomwsrJi/vz51KpVq8DP5oWDqyvVNm1iHYpOl0QsJqRuXblxLK9d29nZ0b17dzIzM3nx4gXnzp0jJSWFPXv24OrqKszzMibY06dPo6urS9OmTVm6dCk6Ojr/aLv+D98Hurq6XL9+nfLly38xCbN8+XLGjh1bYDuNDCJpIfKTiYmJGBgYsHfvXsHwDx48iKGhIe3bt+f58+e8e/cOVVVVPn36RNmyZTl37hyxsbE4OTmxc+dOfv31V65du0a1atXw9fUlMTERGxsbTE1NqVKlCr169aJDhw4K0SMvLy+8vb0ZO3YsoaGhGBoaCkKgfn5++Pr64ubmRk5ODnFxcdja2rJw4UIGDBiAqqpqgYuzvFB2HCgfxJVFlVJTU1mxYgUTJ04UMn8yBfvg4GBOnz7NxIkTlUais7KyuH79OlFRUYKWhMzJkUqlrF+/HicnJ6ViiqB8caZssggICAByB6N169YxefJkhUWXVCpl8+bNjBw5Um4iULaQCw8PZ8yYMUI9+qtXr0hLS6NKlSpKnbRvhTdv3tDe2ZmUDx+4inxEPAf4qK3NBAcH0vIYjozQAHKfx61bt7hz5w4SiYTy5ctjampKly5dBGHa6OhoGjVqhIqKCrNmzeL27dvs2bOHgQMH0qNHD4VBXGYzCQkJcrorPxKU2fWNGzd48+YNQ4cOJSgoiGfPngG573d6ejpBQUH4+/tTu3ZtevXqhZqaGr/88gutW7fG19eXiIgISpcujYWFBeXKlcPFxYUuXbooDEYJCQlMmDCBnTt38uHDB/T09DAwMBBIevz8/NiyZQsqKiqEhoZiamrKzJkzmTBhAjo6OoW2a1Bu24W168zMTNavX0+PHj2EKKnMrmXO2PTp05WWQWZlZfH27Vs8PDyYPHkyYrFYzi7c3d0RiUR0795dKfFEUe0aYNOmTQwaNEhpP6a7uzu1a9emZs3/byHKovUy2v1nz55Rs2ZNAgMDiY2NpXz58gWyx35txMTE0LVTJx7du8dJIG9BY45IRJKVFZd/+YXsPGNYXodOKpVy4cIF9u7dS1RUFPb29sKCS6ZFmJmZSYf/a9hfuHAhcXFxLFu2jObNmzN+/HiFd+qfZNd79uwR3rfXr1/j7u7OxIkTSUpKwtfXl+zsbMRiMa9evcLExIQrV65gY2NDr169aNmyJR07dqRz5868ePGCwMBATExMKF26NFZWVnTq1AkXFxelwYIuXbrg7u7Ou3fv0NTUxNDQEKlUyuPHjwW7lkqlfPjwAS0tLcaPH8/MmTMFkoaSzNlFsevDhw9TuXJlwXGS2XVWVhYbN25kyJAh+ZafxsTEsHr1akH3DP7/nP3o0SNu3brF5MmTlRJPKHO6lGXE89r1kSNHqF+/vlLW3KdPn5KYmKjAvPn5s0hPT6dnz54cOnSI/v37Ex4eTkhICJaWlkp/x2+FzMxMhg8axOFjx9hArraWDDK7vrRokZxdf56hunfvHtu3b+ft27fY29ujrq5Op06d+Pnnn4Fc2584cSLbt29n5syZWFpaMn/+fKytrVmwYAEDBgxQuK/vaduya7m7u5dorZSSkkKPHj1+6PHofwEycj5l2nufo0i1URs3buTWrVvs2LFDUKMfPHgwvr6+REdH8/TpU+zt7enYsaMwWBkZGVGxYkX69OmDrq4uenp6dOjQgUaNGrF48WK2bt1Kly5d2LZtGwcPHlS4pp2dHbdv38bAwIBq1aphaWmJtrY25cqVw9XVlU6dOjFmzBhiYmLw8/OjVq1aDB06lGrVqrF//36ys7ORSqW8evUKT09PfHx8ClR4Ly58fX1p2LChUpHXMmXKoK+vL2hCKYOTkxNZWVmsX7+e169fExcXx6NHj/j111+xtbUtcjlGQVBVVcXZ2ZmdO3fKLexSUlI4ePAgdnZ2hVpcyahrzc3NqVOnDjt37sTBweG7Olzh4eE0btwYKSDW08NLXZ2PIhGhIhEfRSLcS5dWcLg+h6qqKq1atcLFxYWUlBRCQkLIzMwUaHUbNWpExYoVCQoKonv37sIA36pVKw4ePMiCBQu4dOnSPzbVv3jxYu7evcvWrVsJDw/H09OTgQMHcv78eWJjY3n27Bn6+voMGTJEIJhRU1OjYsWKdO3aFWtra7Kzs2nfvj0ODg6CAPXIkSM5d+4cK1asUMhS6+vrExERgaqqKtWqVcPa2ho9PT0sLCzo2LEjY8aMoXnz5oSEhPDu3TtcXV1ZsGAB5cuXZ9WqVUKZXHBwMNeuXePmzZtERER89WcTHByMvr6+0rIUfX196tevz4MHD/L9fMWKFXFwcGDZsmU8evSIuLg43rx5w9q1awkPDxfol78WXFxc2Llzp9xYk5mZyYULF0hLSytUGZYsE9akSRNq1qzJggULqFKlynd1uLKzs2nRogVPnj9n/LhxWDRrRoKxMUkGBiQYG/OkaVMFh+tziEQiOnbsyPTp08nJySEgIEBgbb158yZt27albNmyXL9+nQ4dOqCnp4eDgwODBw/m5s2bTJs2jYMHD5KRkfHdvvfXxNSpU/Hx8WHHjh08evSIjx8/Mnz4cNzc3IiJicHf35/k5GQmT55MzZo1UVFRIT09HQcHB5o2bYq9vT1JSUm0atUKBwcHIUgye/Zsnj9/zpw5cxTo/CGXYCk8PJwqVapQrlw5DAwMMDQ0xMnJialTp1K+fHnevXtHVFQUM2fOZOfOnQIrXVhYGJDr1Ny4cYNr164RHh7+1Z9NWloaISEhcpkqGdTU1OjcubOcXMjn0NfXp0+fPixduhQvLy/i4uIIDg5mz549eHh4KPRBlhRdunThr7/+wt/fXxhLJRIJvr6+3LlzR0GzTxlk/ScjR46kSpUqjBw5UnCkvycGDhzIoWPHOOTmRpPP7Ppp06YKDpcyODo68ttvv6GiosLr169JTk5GW1ubFy9e0Lt3b2xsbNiyZQuNGjXCwsICa2trJk+ezLt375g0aRJr165VEGb/OyDr6SrJ33/4+1GU36FImS4ZxGKxsMC0s7MTRAtNTEyQSCS8evWK7du3k5CQwOTJk/n999+Fz3p7e7Np0yb2798vl7KTSCSMHTuWnj17KgwgU6ZMoV27dgosXxkZGfTo0YPt27fLRThlzsrp06dRU1NDXV2dUqVKYWJiQlZWFklJSdSsWZPhw4fj7OyMSCQqcaZr586ddOzYUS6TJYucATx+/Ji4uDilquh5jwsNDeX69eskJydjYWGBs7OzUFaoLBoOxYuIA3z48AFPT09SU1MRiUSIxWJatmyplBxFWaZLplwfFBTE69evOXDgABcuXMg3I/ctEB8fT5s2bXj48CFqampoamrmRg3/r7E2P9KAvJkuGYyMjHjw4AHBwcGCdpe6ujqJiYnUrFmTnTt3EhkZKUQ3y5QpQ2pqKleuXKFVq1aIxWJ27dpFuXLl/lERcRlEIpEweIhEIjZv3oxEIhHev0+fPgn9UkOGDMHZ2Zk+fXKLQ0JDQxkyZAgnTpxQCDzI+kM+bzx3c3MjOjpaQcxYKpUyduxY+vXrJ8ds+fHjR5YtW8bu3buRSCRoaWlhbGxMqVKlkEqlpKSkYGpqyqhRo3B1dRVKdUsSEb9w4QJGRkZyVNt57TU6OpoLFy4IGdG8yHtcfHw8165dIyoqCgMDA9q0aSPX//C1Ml2Q25R/5coVIiMjUVVVJTs7G0dHR9q1a6fweWWZLpm+17t37wgODmb79u0sXbo0XwrsbwGJRELv3r05efIk1atXx8XFJdfp+z+7BpRmEZSVLiYkJODr68u7d++4du0asbGxaGtrExcXR5kyZVizZg1WVlaMGTMGPT09NDU1MTMz4/jx40IQaeXKlTg6Ov4j7RpyHQnZ+ygjOzA2NkZdXZ2oqCiOHj2Kl5cXzs7ODBs2TLDrrKws2rdvz65duxRKzy5evMipU6fkiHQAfHx82L59O7t371bI4GzYsAGRSCSnmxQbG8vatWtZv349SUlJaGtro6enh7W1NSoqKkRERGBkZMTw4cPp37+/8NxLYtfPnz/H399fLuiR115lFSb5aUzKjk1LS+PWrVu8ffsWPT09mjVrRo0aNQQ7+1qZLsgNil66dInAwEDh96xWrRo9e/ZUasfKnoW6ujrPnz8nODiYQ4cO0a5dO3mSi++AhQsXsnTpUurUqUOLFi1ybTaPXSurBlIW9EpMTMTf358XL17g4+Mj/Abx8fEYGRkxb948OnfuzODBg9HX1ycpKYkaNWrw559/CmRqY8eOFd71vyPTdfLkyRJnulxdXX/o8eh/AXp6ejx58qRQma4iOV1//PEHcXFx2NnZsXfvXvz8/Ni4cSMikYiQkBB8fX25efMmoaGh6OvrIxKJyMzMRE9Pj3Xr1tGvXz/69OnDunXrlJbjxMfHM3jwYM6cOSO3PT09nSFDhlChQgWGDh2KqakpXl5ebNq0iZkzZ+ZLonHr1i169+6Nubk5UVFRSCQScnJyUFVVJTo6mpycHI4cOYKrq2uJna7du3fTqlUruahR3kH8/v37ZGRkKK0lTk9P59GjR3h5eZGWloa1tTXdu3dXeEZf2+mC3AXatWvXiIyMRCQSYWdnR5s2bRScLGVOV17GKKlUSqNGjRCLxdy5c6fIOkslQU5ODlu2bOGnn35CRUUFXV1d4fpFcbry9hZcv36dixcv0qNHD4YPHy4nZVC7dm2hGRlyBbUPHTrE3LlzuX//PpcuXSIlJeUfszjbvHkzgYGB1KtXj+vXr7Njxw7c3NzQ1dUlOjqaBw8ecOvWLQICAtDS0kJbW5vU1FRUVFSYPn06ixYt4pdffqFly5YK9P+Q+260bduWCxcuyBFPSKVSZs+eTWxsLOPGjaN8+fI8e/aM9evX06ZNG8aPH6/0vj98+ECTJk0wMzMjKiqK7OxswUGW0VjPnz+fRYsWASVbnF25cgUNDQ25QMTnQZKbN28qZUXMzMzkzZs3XL16lbi4OExMTOjSpYtSNsOv6XRBLkvgzZs3ef/+PZCrodihQweFxXh+ZAB5F6OjRo3Cw8ODt2/ffleCCZlu3LBhw5BKpUybNk3OlgrrdOUVwg0ICOD333+nZcuWDBs2jDZt2gi/e5cuXXj69KkQJLh37x5r1qyhd+/ehIeHc/jwYbS0tP4xdr1r1y5evnyJvb09nz59Yt68eSxevJiqVauSnJzMw4cPuXPnDo8fP0ZFRQVjY2OSk5ORSCT07duXrVu3cvbsWcLCwvIVl+3fvz8rV67E2tpabrubmxtnzpxh8uTJ2NvbExQUxLZt21BXV1egKZchNjZWkEeIj48nMzOTnJwccnJyyMzMJCUlhW7dunH8+HGgZHbt7+/Pw4cP5coW89p1dnY2mzdv5rffflP6vT98+MDly5cJCwtDR0eHFi1aCPNfXnxNpwtynTwfHx+eP3+OVCqlVKlSdO3aVel6StmzyDvvbdiwgWnTpvHy5cvvLody9+5dxo4dy4sXL5g0aZKcU1UUp0uG5ORkJk6cSP369Rk8eDDdu3cX1ixTpkzh0KFDrF+/Hk1NTQIDA1m2bBlVq1bFysqKGTNm0KBBg7/F6Tpx4kS+vXqFQWpqKj179vyhx6P/BXwzp2vfvn1kZ2dz4MABvLy8GDlyJJs3b8bZ2ZmrV6+ira2NnZ0dd+/exdzcnF69egmDuqGhIT4+PkydOpULFy7ke62uXbty6tQphcY1qVSKt7c3R48eJTk5mdq1azNkyJACyRaWLl1K/fr1labes7OzKVWqFHp6ejx+/Jhjx44pPYeyKISylzsgIIDHjx/LsX3lTV+vWrWKkSNHKjTWZmRkMG/ePMqVK4ejoyM6OjoEBQUJ5Yp5aWDzo6dUZrTKyj4+p5H39vbGx8cHFxcXKlSoIIgDX758meHDh8v14Sgrnft8ofjkyRMWLVpEx44d0dHRISoqClVVVWxtbalatarCcxs+fLjS71NcODg48OTJEywsLAQ9k/xKJxo0aKCwLe/A/scffzB27FgF8pJPnz5x6tQp4uPjmTZtmtATd//+fZYtW0bv3r0ZOHAgLVq0+Mcszvbt24eamhrHjh3j4sWL1KlThzt37vDTTz+xceNGVFVVadCgAT4+Pmhra9OrVy9CQ0O5fPkykOugLl++nAsXLuTrbM+bN4/evXsrLZP19/cXiDbKly/P8OHDCyRbOHPmDAEBAUyfPl3p/sqVKxMcHMyzZ8+oWLEiO3fuVDimsHadnp7O5s2bhV4BkLfrw4cPY2dnp/A+SaVSfvvtN8RiMc2aNcPY2JioqCiePn2Kjo4OQ4cOlXtWymy7uHb99u1bjh49Svfu3alZsyZSqZRnz55x8uRJXF1d5TJs+Q3/ee0mIiKC8ePHU7duXWxsbIiKiiIrK4sKFSpQvXp1TExM5L7L54yHJcXChQtZv349xsbGjB07VlhEK/sNlS3O8jqWbm5uNGnSRGFyTE9PZ9myZVhZWdGqVSshq5OamsqAAQNwcXGhTp06TJo06R9l11paWkJGSiwWExYWxp49e5gwYQI5OTnUq1ePZ8+ekZ2dTdeuXYVxAGDHjh3cuXOHJUuW5GuPR44cITs7WyAUyouQkBD27NnD27dvMTMzY/DgwQWSLbx7946lS5fmy1rbuXNnzp07J1RTlMSuNTU1mTVrFqtWrRIcnrx2fefOHRISEujZs6fCZ8+cOcOdO3do1aoVVlZWJCUl4ePjQ2pqKjNmzJALLJXErj9nGo2JiWHTpk20bduWBg0aoKamJth6o0aNcHBwkDs+L2GODHnXHxkZGUyaNAkjIyMcHR2JjIwkJSWFcuXKUbNmTSwtLeWcwbw6bV8D6enpVK5cmaSkJCZPniz8dsWx62vXrpGRkaHAogy540eDBg3Q0tISgoKWlpa0bt0aR0dHLCwsOHz48N/idB0/frzETlevXr1+6PHofwFFcbqKxF547Ngxbt68KehQlC5dmoYNG+Ln58eBAwfo2bOnQN/u4ODAiRMniIiIwNzcnIYNG7J9+3b8/PyYMmUKqqqqPH36FA0NDTIzM+nWrRujR4/Od9EmEolo0qQJTZo0KfT9ent7C2KbCl9cVZXOnTtz4sQJqlevTteuXXFwcCh2hqZ27docO3YMf39/OTFfyCUDMTIyUuog7t69myZNmshR6JcrV462bduycuVKbG1tSyzeKaO7fvToESoqKtSpUwdDQ0O8vLyYNWuWMLCqqanRtGlTTE1NOXr0KGPHji3SdWrXrk2DBg04f/48ampqmJqakpGRgaenJ5Ab9atduzZNmzZVyupUUujp6WFjY0NgYCAVKlT4Io1uaGgob968AXIX6nkH9uzsbKVR/WfPnlG/fn2eP39OXFyc4HT99ttvQslGRkZGkRja/m5cuHCBq1evEh8fT7NmzWjdujXt2rXjypUr/Pzzz0ydOpXk5GTKli1L7dq1uX37Nm/fvsXIyIjatWtz5swZHj16xLBhwyhXrhze3t5oamqSnp5O8+bNmTJlSoF2Va1aNVasWFHo+z179qycE/Q5pk6dyqJFi3BwcGDp0qVoaGgUm9rfxMQEIyMjrl69qjChv3nzhsDAQPr1U1SHu3TpEsbGxnKZP3NzcyZOnMjBgwfx8vIqlrDi53jz5g137twhJyeHatWqUb16dQ4dOsSsWbOEyVz0f2W2pqambN26lalTpxZJgsLCwoJ+/fqxb98+7t27h6mpKSKRSJABMTIyombNmjRt2lROvPVrQV9fn969e+Pm5kZISMgXaZ8jIyO5d+8emZmZVK5cmTp16gjvX0hICLa2tgrO5vv376lWrRomJiaEh4cLY27//v359OkTs2fPJiAgoMjSJH8nvLy88PT05MOHDzRq1IhOnToxYMAAzpw5Q9++fVm5ciXm5uZYWVlhYmLCp0+f8PX1RVdXl8qVK/Py5Uu8vLwYO3YsTZo0wcvLC1VVVTIzM6lWrRozZswo0K6trKxYsGBBoe/3/Pnz+ZLhAPzyyy88f/6czp07M23aNMqWLVtsUWQVFRWcnJzYu3cvw4YNk/seUVFRXLx4Uenawd/fn4CAAAYNGiR8Rl9fH2dnZ6Kjozly5AiDBw8u1j3lRWhoKNeuXSMtLU0IyLq5uTFu3Di57FnFihUZM2YMmzdvpkKFCkp7yvODhoYGo0eP5rfffhNE5LW0tLh9+zZSqRQdHR2qV69O06ZNv6jtVxxoamoyaNAgfv/9d168eKE0EJoXSUlJeHt7k5iYiLW1NU2aNBGC8yEhITg6fi6djtDDWblyZXx9fYXtjo6OnDhxgg4dOlChQgVevHjxt4gp/6fT9b+HIjldsoVHcnIyFy5c4Nq1a3To0IGff/5ZKDVr27YtmzZtYs+ePTRq1IiUlBROnjwp6Ey8e/eOS5cuYWFhwdWrV1FRUSEzM5N9+/bRr18/JBJJsTWyPoesTyk/WFpacvLkSTZv3sy2bdto2rRpsQdMkUjEvHnzWLduHerq6jg6OpKQkCAsUoYNG6bwmbS0NEJDQ5UuvsRiMf369ePs2bNMmDChWPcEuQuQDRs2YGdnR6NGjcjOzhbovwcPHqz0+ZQqVQpNTU2ioqIK1P1RhsGDB9OjRw/09fWFc8fGxvLx40fevHmDt7c3ly9fpnbt2jg7O39150t2zezs7HwXlrL3TU9PT4i83r17lzt37jB27Fh0dHSQSqVkZWUplFWK/k8PJDY2Vs4py87O5saNG4hEIj58+MDmzZu/6vf6ljh27BhNmzbFyMgIDw8Pbty4IbCODh8+HLFYjKGhIX/99RcrVqygRo0a6Ovr4+7uLiyANTU1OXv2LA8ePODmzZsYGxsL7HGurq5kZWXxyy+/fJX7zcrKKnCxZWhoyNKlS3n06BFTpkyhQoUKTJ8+vdjjyrhx49i+fTteXl40bdqUrKwsHjx4QFZWVr4O5c2bN+nbt6/S87m6urJ8+fISOV2pqamsW7cOCwsL6tWrh5qaGo8ePeLQoUM4OjoqjZ7q6OhgZ2fH8+fPi7yIcnV1pUqVKhgYGAh2lZycTFBQEG/evMHPzw8vLy9sbGyoW7euQLjytSCLahekM5aTk8O2bdtISUmhRYsWaGlp8eTJE06ePMmkSZOwtLTE0NCQyMhIhXFNLBYjlUqJioqSy8ZIpVJBNiImJoa9e/d+1e/1LbFr1y4cHBxo3Lgxp06dwsfHh7p16/Lrr7/y008/Ce+Ih4cHP//8MyKRiFq1arFr1y5hAdy4cWNWrlzJnj17cHd3F5gvZfOHrq4uW7Zs+Sr3+yW71tTUpGfPnpiYmLB48WJ0dHSYPXt2oWialaFLly6cOHGCuXPnCpp7/v7+hISEMHHiRKU25OHhwZAhQ/6/PlQeNGnShPPnz5OVlfVF/b78kJOTw44dO8jIyKBp06bo6enx+vVrFi1ahKGhodJyRRUVFdq0acOdO3cU+t6/hHr16rFy5Up0dHSEe05PTyckJIQ3b97w8OFD1q5di6mpKaVKlfrqQQexWIyKisoX9QPd3d15/vw5Tk5OlClThrdv3zJv3jyGDBlCjRo1BLv+XEBaxj8g66XNCw8PDyA3w7l//378/Py+6ncrDP5zuv4daNasmVL5FWUoUvh38ODBREZGcuvWLXr06EFUVBTu7u5yvT0ikYgJEybg6+tLUlISZ86ckRP2y8nJwdbWltatW3Pp0iUgd0IdMWIEnz59KrbIoTJUqlQpX2YxqVTKgwcPcHJy4vTp07i6unL79m2l9daFha6urkBHKisXGD16NMOHD1fqAHz69KnAyHC5cuUKVKr/EnJycli3bh2TJk0SGH0qVqzIwIED0dfXl9O++By2trYFsi3mBxUVFQwNDeWcOWNjYxwdHRk0aBCrV69m9OjRfPjwAVtbW5o2bcqMGTO4evVqidn/YmNjCQwMxNzcvEDhSl9fX5ycnHBxcaFSpUpUqlQJFxcXunbtytatW4HcyejOnTsKn3VwcODmzZtIJBIhnS+VSgXGTKlUyps3b/5RosmjRo1CLBZz/vx5HB0dCQsL4+rVq4wcOVLue3Tt2pU7d+6go6PDqVOn5DIOKioqiEQiFixYIJT9yNjjKlasiFgsLvZC5HM0b96c8+fP57v/woULtG3bli1btnD+/HnevXsnaAEWB6qqqkyYMEGgGZdRL0+bNk1pKUx2djZaWlr5OnlaWlol7nncvHkz3bp1Y8SIEVSsWJFy5crRvXt3qlevzsOHD/MtRa5YsSKfPn0q8vVEIhHGxsZy45iuri4ODg706dOHFStWMGPGDLKysnBwcKBOnTqMHz+ekydPllj8OTQ0lCNHjlCmTBmllNkynDlzhqpVqzJ9+nTq1atHjRo16N+/P1OmTGHt2rVkZGTQpk0bOe09GWxtbXn+/DkvXryQown/7bff0NXVRVNTk/DwcIFd75+A0aNHU7p0aTw8PLCysuLdu3f4+fkxZ84cOYeiQYMGXLx4kSZNmrBixQq5jIO2tjbR0dG4ubmxcuVKYXvdunUZNmwYz549U+jnKi6+ZNfnzp2jVatWzJ07V6BJv3//fomu2bNnTxYtWoSenh4pKSk0b96cBQsWKHVuAIHgShlEIhE2NjZERkYW+37+/PNPKlasyJQpU6hevTplypShTZs2tGvXjoiIiHzXJ7a2tsWya8gNUuUdmzU1NalZsyYuLi789ttvLFmyBAsLC9q3b0/VqlUZOnQou3fvluupKg6Cg4PZv38/WlpackRFn+PevXskJSWxYMECmjVrJlQm/frrrxw+fJjw8HCaN2/OlStXFJwQWcXFlStX5KqkTp06hb+/PyYmJsTExPDw4UMFQqfvgf/YC398SCQS3rx5w+3bt7l165bcnwznz59X2lepDEUK/e7YsQNbW1tGjBhB27ZtC1RJf/ToEXU/E7hLTExETU2Nfv36sXXrVi5cuICFhQXv3r1j7969DBgwQE5gsKSYMGEC06ZN48SJEwqL8H379tG8eXMhstasWTP++usvtm7dSvPmzbG0tOTGjRsCXbCWlhbOzs6FKp+xsrLCysrqi5SkGhoaCv0YeZG3sbc48PX1pX79+konCXNzc3JycggLC1P6siQlJX1VFW4ZVFVVcXR0pEaNGkilUu7evcuxY8dYvXq10Oyvq6uLlpYWOjo6mJqaUrp0aVq2bJnvIjYwMJDZs2fz4sULDA0NqVixYr6LWhlzWd6+FhkqVaqEqakp79+/p0WLFvzxxx9YWFjI1cqLxWJev34tl8V4+fIlZcuWZd68eUyYMIFmzZqxadOmEj6p74ft27djYWFBjx496NKlS4G/e0pKilD3nxf37t1j69atzJs3j4iICNq0aUNkZCT79++nbNmyAjPi1yBY6dOnD506daJTp04KJSE+Pj4AQsTT2dkZMzMzDh8+TPPmzalevTpeXl7ExsYKjmKLFi2UUkd/DiMjI9q0afNFuxaLxV+kGc/PKSoMQkNDUVNTUxqgMjU1JTs7mwcPHigt10lKSip0RK4oEIvF1KhRg0WLFqGiosLt27e5fv06W7duxczMjO7duwvlS9ra2piYmGBhYYGTk1O+5BzR0dEsW7aM9evXY2FhwaBBg/IdA1JTU4mIiFBK5GJubk7r1q25desWbdq04dKlS1y6dIm2bdsKQQWZCHblypWFbfHx8Tx+/Ji9e/fi6upKhw4dhKDMPwE7duzAwMCA5s2b07Vr1y/2G3h5eTFv3jy5bYcOHRKyQUFBQXh5eSGRSITe6kaNGhEaGvpVaMfr1avH4sWLefnyJdWrV5fbFxQUxJUrV5gxYwaQO1bXqFGDixcvkpKSQv369Xn48CEfPnxATU2NnJwc6tevr/R9+BxaWlq0aNGiUBTiOTk5BQYHk5OT8xUn/xIyMjLw9/dXWq5saGhIlSpVuHr1qtI+s+Tk5G9i15A7ls6ePRtdXV2uXr3K3bt3OXDgAD/99JNA+KWtrY2WlhZGRkZYWFjQsGHDfIm/kpOT2bFjBz///DNisZghQ4bk248klUq5d+8ey5cvV5g7tLS0BOK10aNHCwRvAwcOFJxIWfY0JiZGGGdkxFtnzpyhf//+NGrUiOPHj/8tpcMSiaREwebifHbLli2sWrWKsLAwatSowbp162jWrFm+x8vkM168eEHp0qWZNWuWQuvJyZMnWbhwIe/evcPW1palS5fSo0ePIl1XKpXy66+/smPHDuLi4nB0dGTz5s1y81xGRgYzZszgyJEjpKWl0bp1a7Zs2fLVAj+f4+7du/Tv35+PHz8qOLgikahY83iRnC4/Pz/q1q1bqGOjo6MVSsciIyMpX748ffr0oWPHjjRt2hQPDw9Kly7N4cOHMTQ0FJrzC0Jqaip3795FIpHQoEGDfA22YsWKjB07lo4dOzJ27FgcHR2JiIgQxJTzTqCTJ0+mcuXKrFu3joMHD6Knp4enpyfv3r0Dchfrhw4dIjY2VkGEEHIXQp9D2SCYN41uYmJCYGAgXbt2VVhMBAcH4+fnR4UKFQgODgbIN1OgzPmVSCT4+fnRoUMHPn36hKenJ2/fvkUsFmNubk6VKlXw9/fn8ePHCvo7MTExPH/+nAYNGhAXF0doaCjv379HLBZTuXJloTRH2QIoP2KTz7XRdHR0UFdXp2PHjnTo0IE3b95w48YNTp06RWZmJllZWWRkZJCeng7A0aNHBWpXgJkzZ/Lw4UNevnxJeHg4urq6dOjQgSpVqsgNzp8v6G7fvk3jxo2VOhay9+nRo0fY2NgwZcoUTpw4wcmTJzEzMxOCBp6enqxfv54zZ87Qq1cv7t69S3JyMleuXGHcuHEYGBiwZMmSfBm/fjTcvHmTZs2aFcohSkxMVFpyqqGhQePGjbly5QoNGzbEw8MDAwMDVq1ahbW1Nb179yYjI6PABYms9DU1NRU7O7t8J21tbW02bNhAz5496devH+3btyclJYUjR47w5MkTOb0/kUjExYsXWbFiBadPn+bs2bPs27dP2J+amsrp06cJCgpSqq1THLuG/98M/rlTGBwcTGhoKDo6OoJdg3LbLsiua9euTXR0NDdu3ODJkyeIRCL09PSoV68er1694vHjxwolhPHx8Xh5edGlSxfi4+OJi4vj1atX5OTkYGNjQ5kyZYR3QFmGXVkZ1+dBIxUVFTQ1NWnTpg1t2rTh06dPAhNoRkaGYNey5zV//nw5hrjVq1fj7e3NkydPeP/+PWpqanTq1AknJ6cC+9DevXtH9erVlWowqqurY29vz/bt22nUqBHDhw/Hw8OD+fPnY2FhQXp6Ounp6ezdu5crV65w8OBB+vfvz5MnT4iMjKRly5aMGDGCMmXKsHDhQkaPHp3vffxIuHLlCk5OToUuq1VXV1fI0CclJVG3bl0uXbpE+/btOXfuHIaGhkyaNInq1auzZMkSPn36VKDTJZVKefToEVFRUVSsWBFbW9t8j925cyeDBw/GycmJnj17oqKiwpkzZzhz5gxubm5y78Dp06dZunQpf/75J5cvX+bnn39mwIABiEQisrKyuHHjBtu2bWPBggUK705x7bpq1arcuXNHKdtfQEAA4eHhpKamCp8ril2/efOGihUrkpiYiI+Pj7DGUVNTo0mTJoSFhREVFaVAuhEbG4unpydVq1YlNjaWlJQUXr58SXp6OhYWFkKlAShnNFR2P0lJSQrbxGIxjRo1olGjRsTExHDr1i1u375Nenq6nF1LpVK6du3K6dOnhc9u2bIFb29vHj9+zOvXr8nJyaF169a0bt26wDkhNjYWc3NzYR2QF+rq6lhZWfH+/XuSk5NxdnbGy8uLRYsWCeLwMTExzJ07l7S0NLZv386AAQNITEwkISGBhg0b0q1bNypVqsTs2bM5e/asUq3Yb4nvXV74559/MmXKFLZs2UKTJk3Yvn07HTp0EALHnyMwMJCOHTsyatQoDh48yJ07dxg/fjxmZma4uroCuYHOPn36sGTJEnr06IG7uzu9e/fm9u3bQp9dYa67cuVK1qxZw969e6lcuTK//fYbbdu25fXr18I7OmXKFDw8PDh69CgmJiZMnz6dzp078+DBgyL1KRcWY8eOpV69epw7dw5LS8uvEjQuktNVlCbpypUrc+TIEbltZmZmBAUFAbmUqy1atJDr8/hSXa9EImHx4sXcv3+fVq1aoaKiwvr166lWrRpLly5VOsB17NiRJk2acPDgQZYtW4aRkRETJkwQatNltM6VKlXCwcGBgwcP0qlTJx48eICXl5cwmRgbGzN+/HiWL19Oy5Ytv4oAsEgkokOHDuzZs0ehBDE8PJxbt27lS5td2PN/+vSJCxcu4OLiQs+ePYWeo2PHjhESEqLglOTk5HD69Gnq1q1LRkYGJ0+eRF9fn+rVqyORSLhx4wYSiUQhilESiEQiqlSpQpUqVRSye+/evWPZsmUKtdoHDx4kPDycChUqMHjwYKpWrVqoUswvZVvyatBpamoyePBgsrKySExMFKJ5Dg4O7N27l4CAAM6fP09wcDAuLi5yBCr/JCYhe3v7Qg8mpqamQtQn72cyMjKQSCSkp6djbW2t0L8VFxdXYL/Gnj17OHToEE5OThgYGLB79240NDRYv3690sV+rVq1uHTpEidOnGDlypWoq6vTo0cPFi9eLGTVnj9/TsWKFSlbtixbt24lMjKS169fc+nSJSGqqa2tTb9+/di2bRvv378vFPtQYdCjRw92797N+PHj5Uq5kpOTOXbsGP379y/2uUUiEcnJyfzxxx+0adOGGTNmoKqqSmRkJO7u7sTFxZGSkiL3G0mlUm7fvo2xsTE6OjqcPHmSrKwsateujbq6Ok+ePOHKlSv06tXrq7671tbWDBo0SCEim5aWxpgxYxTs+vjx49y7d49SpUoxdOhQateuXaiFhUQiKbCkV9azBbmOYdeuXenUqZMQSNHV1cXJyQknJyciIiJwd3fH39+fSpUq0b59+wIXrT8qGjRoUKQ+RpnWXd65TVtbm5iYGIyNjZFIJPz2229y53z37l2BZTVXr15l+fLl1K1blzJlynDixAmioqJYs2aNUluzsLDgwoULXL58mU2bNgmL88uXLwvXffPmDRYWFujr67N48WIyMjJ4/PgxZ8+eFfTy1NTUaNu2reB8KWO1Kw7atm3LqlWrGDZsmFzwKTs7m4MHD8qxDRcVYrGY7Oxs1q1bR82aNZk0aRKampokJSVx8eJFcnJyCA8PV3jXX79+TUREBK1bt+b69esEBwdjb2+PiYkJQUFB3Lx5k06dOn1VEWQTExOhMiIvJBIJS5cuVaiEuHbtGidPnkRXV5devXphb2+Pubk58fHxBV5HKpV+sVQ/7zzUpEkTGjduLJQ+6uvrC+QsvXv35tSpU/j5+Qm6b7I1o4qKCm3btv3XO11r1qxhxIgRjBw5EoB169Zx6dIltm7dKqenK8O2bdsoW7Ys69atA3JJr/z8/Pjjjz8Ep2vdunW0bdtWIJ6ZO3cuN2/eZN26dYIP8KXrSqVS1q1bx/z58wVZpX379gnMkmPGjCEhIQE3NzcOHDgg2NnBgwcpU6YMnp6e3yRTGRAQwIkTJwosay8qvg5jhRLY2NiQmJgot5AxMDBAW1ubgIAAVqxYocAOtG/fPuGHVIaZM2dStWpVubrvqVOncuzYMcaPH6+UQlZ23fzIKHbu3MnEiRPl7nvBggXs379f0ADr2bMn2traqKio0LJlS27evFnkhtX84OjoSHJyMqtWraJKlSro6+vz/v17UlJSGDFiRLFLFSCXTXDPnj0sXbpULpplY2PDtGnTGD9+PPHx8axZswZbW1tSU1P5+PEjtWvXFlL17dq1w8rKShjYqlatSkBAAO7u7owbN67E3/9LkKVvP188DB48mH379gm6cYXtoSpfvjyvX7+mVatWSvf7+fkplJqpqakJkbO8qFSpEpMnTyY+Pr7E/Wj/FKipqVGnTh0uX74sN8g5OTlx7tw5Xrx4oeBQ3L59Gzs7u3wduz179vD06VMuX74s/I6TJk3i/v379O3bFw8PD6UBFQ0NDQYMGMCAAQMU9nl5edGiRQu5Y0ePHk2NGjXYvHkz/v7+DBo0SPhdO3XqxIULF0pEWpMX5cqVo0ePHmzatIkyZcpgYWFBaGgoISEhuLq6lqh0187Ojl9++YXZs2fLsWSam5szevRo5syZg6amJitXrqRSpUpIpVICAgKwsbGhQ4cOnD59msqVK1OrVi3heVeqVInIyEiOHDkiTIzfEjIB5s/tul+/fiQlJfH69Wtq166NgYHBFxdmkNvTcuTIEbp27ap0v6+vrwK5h4qKitLMvIWFBWPHjsXc3Jxz5879o/ozSwJZ2b+shA9yacK3bduGvb09jo6Ocr9XeHg48fHx+TK1ent7s3nzZs6cOSOXRQoODmbIkCEcPXpUqR2IxWLat29P+/btFfZFRkbKMf0CtGjRgrFjxzJu3Dh++eUXhg8fLiz6W7VqxbZt276a06Wvr8+kSZPYvn27wJYbFxfH27dvadWqlQJzcVFgY2PD+vXrGTBggJwuoJ6eHr169SI6OpqsrCxWrlxJ+fLl0dTUFLTz+vTpg6+vLxKJRI4MrEKFCtSvX58jR47Qp0+fIhNjFRWy0urP7bpt27ZERkbi5eVFuXLlCj3+GRsbK3U0Zfjw4YNCRYRIJFLK4qirq8vgwYNp2LAhEyZM+Go9xiXB93S6MjMzefDggaAvKkO7du3w9vZW+hkfHx8FySVnZ2fc3NwEwhiZFNTnx8gctcJcNzAwkPDwcLlraWho0KJFC7y9vRkzZoxAXpX3mNKlS1OzZk28vb2/idPl6OjI27dvv6rT9U1nk3Xr1jFy5EjOnz8vLErHjRtHixYtKF26tFCrKasRv3LlSr4R4JCQEEJDQxk1apTCvt69ewMUq1leZsgzZszAxsYGbW1tqlevzpUrV1i6dClXr17ll19+EV5uKysrIiIiinydgtCgQQNmzZpFzZo1MTU1pXv37owZM6ZI9K/KIBv4lNWqP3/+HGtraypXrsy4ceOoUaMGTZo0YdasWdSuXZvAwEBKly6tlF2wUqVKiESir/4clEFGgytjGpKhVKlS9OrVi7i4OD5+/Fjo81lZWREVFSVX2iVDUFAQwcHBRaa9HjFiBB4eHv8zjtfChQvZsGEDe/bsEco+Bg0axNSpU/Hy8hIii1KpVCj3+LxXRIasrCwOHTrE6tWrFSbVBg0a0KFDBwWx9MJAdq5OnTrRvHlzTExMqFmzJhs3buTAgQP4+/sza9YsoRzN2tq6RA3wymBra8vMmTNp3LgxJiYmODk58dNPP5VYTkBVVRWRSKSUQS0kJAR1dXUMDQ2ZNm0a9vb2ODg4MGPGDFq0aEFycjLJyclK9ZLMzc2pWrUq/v7+Jbq/wkBXV1coQ80LAwMDxo4dKxAdFeV8BgYGSj+TkJCAp6dngX0LytClSxfu3bunVEPp34h+/frx6tUrli5dKji6rVu35uzZs8ydO5dZs2YJx75584aBAweybNmyfM+3YsUK3NzcFMr2ZGWaxWE9zBsk6NOnD6qqqlSpUoWxY8dy9epVkpOTmTt3Lh8+fAAoUdAyP5ibmzNlyhQ6d+6Mqakp9vb2zJo1q0ANssJALBYjFouV2nViYiKRkZFoaWkxa9YsGjVqRI0aNRg/fjydO3dGRUWFZ8+e0bJlS4XP6ujo4OTkVGLSkcKiQ4cOeHh4yDkEGhoaDBs2DBMTE+7du1foc4nFYhwcHBTGCchdzB85coQOHToU6f4qV65MQkLCVx/viwNZT1dJ/iD3/cj7p6ynODo6mpycHIUefwsLC8LDw5XeX3h4uNLjs7Ozhfc0v2Nk5yzMdWX//dIx6urqCoGygu6/pJg0aRLTp09n7969PHjwgKdPn8r9FQffLNMFCOUEO3fuZNOmTQKz3aZNm/D09KRdu3bo6emRkJBAmzZtOHr0aL7Rh7/++qvAkpzBgwdz/PjxIumCQG4kb9++ffzxxx8AdOvWjffv39OoUSNmz55NREQEa9euJSQkRFiYfd4D9TUgFovlFvtfY6IPDQ2ld+/eHDp0iNKlS1OnTh2ysrKEWvGRI0dy9uxZtLS0FDx5WaQ5P9SqVYsXL17ky+T0taCqqoqrqytbtmxh0qRJchknGxsb9PX1efz4caG1zEQiEV26dOHYsWOULVuW+vXrA7mR8ODgYMaPH1/kul2ZZsi6devo3bs31tbWJSJK+NEhK087ePCg4GCpq6uzZMkSnj9/Trt27TA0NCQ+Ph57e3uOHTumNFMIuZG0li1b5ptNGDx4MOPGjSswA64MTZo0oW/fvhw9ehTIjXi/f/8ekUjEwIEDiYqKYtq0aTx9+pTGjRsTERFRoNB6cSESiShXrpwQef8adh0WFkbLli3x8fHh3r17NGzYUKCMDwkJYfr06WzduhU1NTWFEq6AgAAFkoK8qF27Np6enl9FQ+xL6NOnDzNnzuTJkydyY42enp5QxpJfRloZevTowcmTJ3n8+DFNmzZFS0uL58+f8+jRI0aNGlXkBbiM9Gn16tX06tWLypUr/6vZwsRiMTt37sTd3Z0RI0YIrJPDhw8nMTERV1dX9PX1SUlJwdramm3btuUbAZYRFuVnU05OTnJsiIWFqakpixcvZtGiRQQEBGBraysE/1q1asWKFSsYOXIk9+7do1y5cmRlZX2z38zCwuKrzn9paWlUrFiR5ORk1qxZI0cZ//TpU4YNG8ahQ4cQi8UK/TcRERFYWVnlO45WqFCB27dvf7V7LQh9+vRh586dHDt2TK4PWyQSUa9ePXx8fBg4cGChM8hNmzbl6tWrbNiwAScnJ4yMjHj//j23b9+mR48exSqbHDZsGJs3b6Zz5844ODigoqLyzRbuBeFrZbo+D+QtWrQoX4mWz9c3X2q5UHb859sLc86vdczn+FoEXcogW3cMHz5c2JaXFOybE2kUB8bGxsyePVuBjtPFxQWpVEpmZmah6uSTk5ML1OMwMjIqkAkwP+jp6XHnzh2GDh3KwYMHOX36NG/fvqVfv36IxWKqVauGjo6OUNqYnp5erMni74Curi6ZmZnMnj2bt2/f4u/vj4qKCt26dcPS0pKAgIB8mcO+VEutoqLy3TI7S5cu5dSpU0ydOpX9+/cL28ViMVWrVuXVq1dFOp+Ojg7Tpk0T9IUgt2Srf//+xTbeZs2aUbZsWc6dO0dcXFyJmSd/dGhqajJy5EilpWgyu1ZXV//i80xOTi7Q2TEwMPhir6cyiEQijhw5gp2dHfPmzePatWsEBAQwf/589PT0sLS0xNramg0bNnDmzBk0NTWLLAb+d0FHR4fk5GTGjx9PWFgYjx49Iicnh4YNG1KxYkVSU1PzDV5JpdICG47z9jR+a4wfPx43NzdGjBjB3bt35UqS7OzsOHr06BdZIPNCTU2N8ePHExwcjK+vL5mZmdja2vLzzz8Xu8m6SpUqjBkzhitXrnDy5Ml/dTAFcu3GxcVF6KvIi+nTp5ORkYGamtoXF8wpKSkFztcikajYunkLFy7E3t6erl278u7dOxITEwXGQ1VVVerUqYO7uzt37tyhdOnSNG3atFjX+d7Q0NAgNTWVvn37Eh8fj6+vL+Hh4djY2NC1a1dEIhHZ2dlKP/ul+fpbLUqVoXXr1ri6ujJp0iTatGkjF3Czs7Pj0qVLBAUFKfRz5geRSETv3r2JiYnBx8dHYNGbN29esXsszczMmDFjBteuXRPK2vNbC31LfC2nKzg4WK4XV9lzMTU1VepcRkZG5hs8KFWqlNLjVVVVhd81v2Nk5yzMdWUlouHh4XI9op8fk5mZSVxcnNyaITIyksaNGyu9/5IiMDDwq5/zmztdBUEkEhXaaOrWrSuwrCnDjRs3Cs2s+DlUVFTYtWsXGhoauLm58eLFC0aPHs3q1asZNWoUrq6uHD16lLlz5wpN8Z+X7Cmb1JVFtZX1JyjrI1m8eLHCtvyEhJWlybW1talatSpbt26lQYMGlC5dWo41SiqVcu3aNbp166YgAjlr1izs7Ox4/PixUFKyfft2uWMCAgLo3r27QtYvv0VSfoxNn0NZNPr27dv079+fLVu28OnTJwYNGoSuri4ZGRm8evWKGjVqoKurq/T3zy8KFh8fT506deT0QZQtVJWxoR04cEBhm5qaGlZWVowYMQLIJYWR/ft/DUWx69q1a3Po0KF8CWO8vLzkKPuLijlz5qCmpsbMmTMJDg6mS5cuHD58mL59+9K1a1c8PDyYPXs2r1+/xtzc/G+xa1Bu2/nZtYz1ND4+HgMDA7nyGqlUyo0bN2jevLmCXc+cOZOPHz+ycOFCZs6cCeTSiufFo0ePqFWrltJsvrLvXVhCIWXMcOfPn2fQoEHMnTuXevXqMXbsWDQ1NZFKpfj6+lK2bFml5SQyKCNwiIqKwtbWVm6sU/YuKrNrZU30qqqqGBkZCSXs/8t2DYUnErG0tOTt27f5RqHDw8NLREbVpUsXTp48iaurK1FRUfTu3VtguHV1deX69essXLiQe/fu0adPn69q11CyOVuZXcvsQ1NTU9Ca/JyUQ6Yh9/lzmzNnDpmZmXTu3JnZs2cLzzvvnP3+/XtsbGyU2rWyObuwZDrK7Nrd3Z2OHTty6dIlQa9PtnD29fVFR0dH6OlSNj/nZ9eWlpZywYCS2rWmpiYdO3YU+vNTU1O5efNmfl/1h4a+vv4XfzN1dXXq1q3LlStX5IjQrly5Qrdu3ZR+plGjRgqlnZcvX6ZevXrCeqlRo0ZcuXJFrq/r8uXLgiNUmOuWL1+eUqVKceXKFWG+z8zM5ObNm6xYsQLI9QHU1NS4cuWKMB6HhYXx/Pnzb5YIUSYtVFL8rU5XUdCqVSuWL1/OyJEjFRon4+LiOHHiRIk0vjQ0NNi1axfTp09HTU2Nt2/fMnDgQFRVVRGLxaSnp1O5cmWhAfx7Ro6KCy0tLezs7Dh27JictodUKuXq1auoqqrmq2/Qrl07Vq9eTe/evRVKlIKCgkhMTPwmL2R+cHJyIicnhwMHDvDw4UM6duzIixcvSElJUWBQ+g//HMhIWh4+fKggkJmdnc3KlSsVHP6iQCQSMWPGDHr16kVCQgLZ2dlMmzaN5ORkdHR0iImJoWrVqsTHx5Odnf1DNFd/CTLR6Z07dzJixAi5hc+zZ8949uxZvkKf5cqVQywWc/PmTTmiEUCIrv/000/f9P7zonLlyixYsICtW7cyefJkunTpQmxsLG/fvmXatGn/iHH2PyhCVVWVFi1acPToUQXdKalUytKlS5VKNBQFLi4uREREEBQUhLGxMStWrODjx48YGRkRGRkpODzfSr/qW6BLly7s27ePkSNHygVNQkJCOHXqlBzJSV6oq6vTsmVLdu7cqSBpkJmZyblz50rEmFpUGBkZsXjxYjZv3szcuXNp3bo1enp6eHl54erqqhAQ+l/F92YvnDZtGoMGDaJevXo0atSIHTt2EBQUJFR5zJ07l5CQEKGiaOzYsWzatIlp06YxatQofHx8cHNzk2Mmnzx5Ms2bN2fFihV069aN06dP4+npKVfO+qXrikQipkyZwrJly6hUqRKVKlVi2bJlaGtrC++tgYEBI0aMYPr06ZiYmGBsbMyMGTOoVatWiVhDv4R3796xbt06/P39EYlEVKtWjcmTJxcofVEQ/jFOl1gsZvPmzfTr14+xY8fSo0cPxGIxZ8+eZcOGDaxdu1bpgunFixeEhIRQtmxZqlat+sXryNiHKlasSPv27UlPT0cqlZKdnc3+/fuZOHEip06donXr1gWWT/woaNOmDd7e3qxZs4ayZcuiqqrKhw8fqFWrFkOHDs33c2KxmN27dzNixAhatmxJWloaEomEhw8f8unTJ4YOHcr79+/x9PQkOjoaIyMjWrVqRbly5b7JQkkkEtGmTRvq1q0rGL2pqSlDhw5V0EL6D/8sbNiwgb59+9KtWzcGDRokTM4rVqxg1KhRSgMDHz9+5PXr1xgbG1O3bt0vvnN5AwRHjx4lKytLKIH08PDg1q1b7NmzR2AW/NEX+zVq1EAsFrNlyxZMTU3R09MjODiYUqVKMXny5AJLtzZt2sSwYcPw8PBAQ0MDNTU1Xrx4wbNnzxg4cCAJCQlcv36doKAgtLS0aN68eYmyjV+Cg4MD69ev58iRI5w6dQodHR1cXFwEWY//8M/E7NmzGTJkCK9fv2bMmDGUKlWKFy9esGrVKmrUqKGU9CE6OprHjx+jqamJo6PjF4Mg5ubmQtZk+/bt5OTkkJaWho6ODrdv38bX15edO3cyfPhwrK2tf3gmSgsLCwYMGMDhw4fR0NDAzMyMsLAw1NXVmTBhQoHZjNmzZzNlyhSGDRvGsGHDCA8PJzAwkLt379KxY0c0NDRwd3fn9evXiMVi6tevT5MmTb7Zd7GxsWH58uWcO3eOw4cPA9C8efNvukD+p+F7O119+vQhJiaGxYsXExYWRs2aNTl//rwwP4aFhQmyTpCbgTp//jxTp05l8+bNlC5dmg0bNsj1WDdu3JijR4+yYMECFi5ciK2tLX/++aeg0VWY60JuhVVaWhrjx48XxJEvX74sVyW1du1aVFVV6d27tyCOvHfv3m+i0QVw6dIlunbtir29PU2aNEEqleLt7U2NGjXw8PCgbdu2RT6nSFqIXy0xMREDAwMSEhL+dv2hxMREDh48yOXLl5FKpTg5OTF06FCFEpQHDx6wYMECwWt+/fo1gYGB/P777wrUwYXBTz/9xMaNG4UmOkCgjO3Zs6dSsURl9f/forxQWXnA55EkqVRKQkICOTk5lCpVSliUKZvU8qbwJRIJly9fZu3atYjFYmrWrEmFChU4c+YMOTk5dOnSRWB0PH/+PBkZGQwbNkxh0apsslNWXqjMeJQtgN++fYuRkZFw3uTkZB4/fkxsbCwmJiY0btwYHR2dAssLc3JyePv2LZmZmZQrV04p2UNycjISiYRPnz6RlJREWloaOTk5iEQixGIx+vr6GBoaYmJiItx7VlYWYWFhzJ49+4ewmfzwI9l1ZmYm7u7unDhxgoyMDGrXrs3o0aMVGoQ/ffrElClT0NPTo06dOoSGhuLr68v06dOLzGIFsGvXLgVGVC0tLaytrenQoQMNGzZUeP++tl2DctsujF1Dbv9MWloaZmZmQnnul+wackt9Fi1aRE5ODra2ttSqVQtfX18ePnxIv379qFy5MklJSVy9epVXr14xYcIE1NXV5c5RWOf088/l99kPHz6go6Mj3H9GRgZPnz4lJCQEHR0dmjRpIgRZ8itDkkqlfPjwgcTEREqXLq3UaZeVIYWFhREfH09qaipZWVmCXevq6mJoaIipqakwVsp0kmbMmPFD2Ex++JHsWiKRcO3aNfbt20d8fDw2NjaMHj1agekvOTmZadOmERsbS7NmzUhOTub69ev06tWrWBkxGcFMXqipqVG6dGmaNWuGs7OzQmCisHYNJZuzldm1smycTB/SyMhI6DcqjF2/ffuWo0ePcvPmTUqXLk29evUICgri7NmzuLi44ODgQFZWFrdv38bLy4uxY8cqlB0W1q6V3Y+yz4aEhCAWi4XxKycnhydPnhAcHIyamhoNGjQQyEHys2vIJQeLiorCxMREaaZBZtcxMTFER0eTkpJCZmYmIpEIkUiEtra2YNey8kSJREJSUhIBAQGsXr36u9iNzEZ37txZoqxfamoqo0aN+iFs/d8IBwcHnJ2dWb58udz2OXPmcPnyZR4+fFjkc/5jMl0y6OvrM378+AJFg1+9esW8efM4evSonDMWHR0tCKEWNTUoY/ySOVwaGhokJycL5TxNmjShe/fuvHr1ikePHgG5C40WLVpQs2bNvz1yLhKJChSxzA8yzZS8tOwPHz5ELBbLlTGUKlWK4cOH4+7uzrVr14qli/Lo0SOuXbuGRCIhJycHY2NjunTpopRiO6+DdPPmTZ4+fUrr1q2pXr06YWFhbNmyBUdHR/r27av0WlevXuXWrVtUq1YNbW1tLly4IKSv806AqampbNy4kcePHxd47zJtkKysrGIRuvyvQ11dnT59+sixXX2O+Ph4Bg8ezI4dO+RY0zIyMhg8eDDq6upFfu8+1/xRVVUlIyODgIAAAgIC8PT0pF+/fsTExHDnzh3B4XZ0dMTR0fGbRdiKguJmeuvXr0/37t2F/w8NDeXp06eMHTtWGCsMDAxwcXHhyZMnHD58uMDseH549+4dly5dEhZEsl4KmWRIXuStHnjx4gVnz56lZcuWNGvWjLi4OA4fPoyZmVm+dv3kyRP++usvbGxsMDEx4datW2RmZjJ69Gi55yQrVb548eIX719XVxexWExSUtK/mr3wW0AsFtOmTZsCsxsSiYT+/fszY8YMOdbMefPmMX/+fDZt2iSnpVkYfO7syIJzHz9+5OPHj1y7do0BAwagoaHB9evXhUoOOzs7mjdv/k2o5osKAwODYsnGVKxYkQULFgiaXOnp6Zw5c4YJEyYIc6mKigpt2rShRo0auLm5CT2eRUFkZCTnz58nPDxcGAednJxo3LixwnonL0lFaGgoBw4cELIH6enpeHp6kpqaqlAaKUNwcDAHDhzAxMQEKysrfH19iYyMZODAgQoSLxcvXmTfvn1ftFVtbW3U1dVJTEz82+Revnem6z8UDf7+/hw7dkxh+/DhwwUdsqLiH5fpKgyGDh3Kzz//rFTx3t/fn/Xr17Nt27YinVMikTBr1izOnTvHq1evqFKlCitWrCAsLIxx48ahqqpKdnY2lStXZsiQIQKjy7Vr1wAE9iFlka+QkBCFbTKdkbzIr2RIGfOMsuiJsuOUOTQyNfe8yNuIvGzZMqZOnaqwYIVch3fFihXMnz9f6b3mRV6BxGPHjhEZGUm3bt2EATo0NJQ9e/bQoUMHhYFVNok+ffqUhw8fMmTIEDmnUiKRsHbtWho2bKhQpuTp6UlYWBiDBw+Wy8A9efIEDw8PZsyYQXp6Or6+vpw9e5bo6GjGjRuHtbU1EomETp06KYhgVqxYEXt7e+rUqUPp0qXR09PD1dX1h7aZf5pdr1q1iqpVqyrt4UtJSaFXr15ywumFxcaNG9m9ezePHz/G2NiYNWvWYGZmhouLCxKJhKysLCwtLRk0aBBVqlQhNjaWu3fv8u7dO4YMGYKKikqJ7BqU2/b3sOu823bs2IGzszPlypVT+vlRo0YxadKkL0Zm8wqwent7c+XKFQYMGCA4PfHx8Rw4cIBKlSoplDfJ7DEiIoKDBw8yadIkhUzViRMnhB6WvHj58iUXLlxg8uTJck32wcHB7Nixg2nTpqGhocHjx4+5ePEiL1++ZMiQIULlQ+fOnRXGGUtLS+rWrYuDgwNly5bFwMCA3r17/9A280+z60uXLuHn56d0zpBKpTg7OwsMo0WBh4cHS5cu5eHDh0gkEn7//XeaNm2Ki4sLMTExZGVloa+vT58+fXB0dCQpKYknT57g7e3NsGHD0NHRybe6pCRz9vewa/j/c/alS5fQ1tYWGHY/x/z584XWgIKQ164DAwPZsmULAwcOlJPDOH36NKmpqYKUiAwyu87IyGD16tVMmDABAwMDuTXA/fv3uX//PkOGDJH7bGRkJNu3b2fKlClyQZm4uDg2bNjA4MGDKV26NP7+/ly/fh0vLy86d+5Mq1atEIlEtG/fXmG+1tfXp0GDBjg4OFChQgUsLS3R19enVatW3zXTtWPHjhL1HKalpTF69Oh/jK3/01CmTBnWrFmj8D4fO3aMGTNmyJViFhY/doFzMSCVSgkPD1fqcEFuz1Z+C5+CIBaL+eOPP/D398fPzw9tbW26d++Om5uboPEFuSxBP//8Mzt27EBNTU1gZykqrfmPjvwGClVVVbS1tYtEmR4aGiqUL+WNiJUuXZpp06Zx6tSpfCM6V69epXfv3krLGUeOHKkQyc7KysLb25shQ4YolDxWq1aNSpUq8ccffzBmzBi2bt1KcHAwUqmUzZs3M23aNCEaO336dLno7du3bzlx4gS1atViyJAh/9WtfwNcv35dYJr6HDo6OlhaWvLp06cin3fSpEk8evSIT58+UbduXYYOHcqoUaNYt26dUBYXFRXFypUrWbt2LUlJSbRo0YJatWpx48aNknylHwpRUVEFLrxsbW0JCwsr9PkyMzM5efIk8+bNk8syGRoaMmHCBHx8fPLNCnt6euLq6qq0LNHFxQVvb2+FcrDTp08zceJEBVazUqVK0blzZzZt2sTo0aP5448/eP78OZDb3zd16lSmTp1K7dq1GT9+vMCMBbnlhzItw5EjR+Ls7Fzo7/8fCodjx44pLLRlkJHGXL9+vcjn7dKlC3fv3iUxMZG+ffsyf/582rRpw8KFC4VyutTUVHbu3MnSpUv58OEDderUoVu3bvz1118l+Uo/FN69e1dgf2SNGjV4//59kc65Y8cO5s+fLzdeaGlp0bdvX1JTU/Ol2r579y7NmzdXmsFr0KAB8fHxCkyTZ86cYejQoQo99Lq6uowcOZJdu3YxYcIEFi9ejJeXF5DLZj19+nSmTp1KjRo1GDBggFyZamJiIp6ennz69ImxY8fSrVu3YrNflwSyTFdJ/v7Dt8OoUaMYPXo0K1aswMvLi9u3b7N8+XLGjBmTb1b2S/jHlRd+CRKJ5IuRA2UTeVFQt25dHj58yO3bt+nUqRMzZsxAVVUVLS0t0tLSqFSpEvfu3cPa2poWLVrQqlUrTpw4oRBt+afiS1o1mZmZRSq7unjxIq6urkpLMLW0tKhcuTJv3rxRyKxJJBKkUmm+kXcDAwNB4FMGf39/ateurfRamZmZvHz5kmfPngnbZGw1dnZ26Orqoq2tzaVLl1i9ejXbt2/n+PHj3LlzB29vbyQSiSC2/B++PlRUVAp8r4yNjUtU2mllZcXly5d5+/Yt7du3FzLYenp6JCUlYWVlxfPnz9HX16dv377UrVuXLVu2FKuU9keESCQiKysrX/KC1NTUIunieHt74+TkpPR8YrGYFi1a4OPjozRAIdMnUgaxWIyNjQ0RERFCz2ZcXJxgn59DIpHw7NkzoexbhooVK9KgQQP09fXR1dXl1atXbNmyhYkTJ5Kamsq9e/fw8vIiPj6erl27Fvp7/4ei4UtafcbGxkqpwAsLTU1NDh48yNq1a+nTpw8TJkyQs2tVVVXCw8M5ffo006ZNo0yZMqSnp/9rysRl+l/5PeOi2vXHjx+xtLTE0NBQac+bs7MzFy9epHz58gr7Xrx4ka+DDVCvXj38/f3l+vEKGguePXuGv7+/3DaZNpuxsbGgVbphwwZatGhBZmYmjx8/5ubNm4SEhPztzMcSiaREpY1/V1nk/woWLlyInp4eq1evZu7cuUDu+/XLL78Um+X3X+d0qaiokJKSQkZGhtKBRNYw/TXQtGlT3r9/z969e5k9e7ag8xEdHY26ujo+Pj60aNECPT09hcX/Pxnm5uYEBQUpLVWIjo5GW1u7SCxR4eHhBUbYraysiI6OVlrOWNRIT1pamlIRxJSUFJYuXcrr16+B3Im+ZcuWtG7dWq6s4tixYzx9+hQXFxd69eqFoaEhnTp1olOnTkW6j/9QdBgbG/Phw4d8J+CnT59+FRmDihUr8uTJE65fv46rqytJSUlA7sJeX18fPz8/XFxcUFdXR0tLK1/B0n8aHBwcuHfvnlIx2aysLIKDg/Mtt1KG8PBwoRdWGaysrPKNsMuiuPn1wkokErl96enpSu06OzubrVu3cuvWLQChzKpdu3Zy79Ht27c5d+4cDRo0YOrUqWhpaeHk5ISTk1Mhvul/KAnq1q3LrVu38iXCuXnzprDgKQnMzMy4dOkSd+7coVOnToJdQ27W5MOHD4SGhlK6dGlKly5NTExMia/5I6Bx48bcuHGDAQMGKN3v6+urlBgkP4SHhyud+2UoVaoUcXFxSveJxeIC52xlNq+sRFMqleLu7s7Ro0eB3HVfo0aNaNeuHdWrVxfO8fbtW5YuXYqNjQ2///47ampq1K9f/4cJjv7X0/VjQyQSCZUQsvFCmeZsUfCvKy+EXHrKzZs3K923bt06Bg4c+NWuZWJiwqBBg4TUd9++fTExMSEzM5PQ0FDS09P/NYsyGbp168aePXsUolzJycm4ubkVOSpsampKaGhovvsjIiKURunEYjGqqqpyk2dexMTEKPQB2NjYKJR6hoaGMmPGDMHhqlatGhs3bqRXr15yDpfs2KpVq3LixIkCo7P/4etj3LhxLFmyROlE4+HhgYODw1drgNfR0aFz586CXXfp0oWqVauSmJgo2Dbk9ij8CGQaXwNOTk5cvnxZoV8lOzub5cuX07Zt2yIRAhXGrvOT3ShTpgzv3r1Tui8nJ4egoCC5nhdTU1M+ffok924kJSXx22+/CQ6XqakpW7duZfjw4QqOe0REBGKxmGvXruVbmv4fvg2GDRvG2rVrlbL6+fv7k5CQIEecUxKoqanh5OQkaH02atSIZs2aCex4staDhISEEok3/0ioWrUqISEhPH36VG67VCrlwIED2NraFolB70t2HR0dnW9/kYwhNT/4+voqBGokEgnp6enC/2dlZbFt2zbB4dLS0mLTpk1MmjSJGjVqyI1RcXFxJCYmcurUKRo1alSo7/c98V954T8Henp6JXa44F+Y6YJcZpGJEycyY8YMJk2aRLly5QgMDGTdunWIxWLmzp1LTEwMV65cISsriyZNmpRoopVphcTExKCnp8fo0aOZNWsWkFsv/eTJE7p06ULTpk3lBg8ZlNFOKittKIpuzecC0qBcrV3Z/Si7dt5ok7W1NcOHD2fmzJkCJXN4eDgfPnzA1dVVabZB2WI4OjoaAEdHR44cOcKECRMUFrCZmZm8fv2aPn36yO2TpdW7dOnCn3/+yfjx4+W+X3Z2Nlu2bKFPnz5y9eMGBgZIJBLevHmDtbU1169fx83NTdhfrlw5pk6dKpSgfj6oOTg4sGnTJi5dukS1atWUftfg4GD+/PNPhe3/oWRo2LAhvr6+DBgwgDlz5mBnZ0d0dDS7du3i/v37HDlyhNTUVC5fvkxCQgJ2dnYl1peqVasWt2/fJicnh5EjRzJt2jTS09OxsbGhVKlS1KxZk2bNmpXIrqHwtq2suV7ZOQtr13ltSldXl+nTp7Njxw5OnjxJ5cqVSUhI4MWLFzg7O1OvXj2Fzyuza1mGoFq1aqxatYq6desq2LVUKuXOnTuMHz9ebiKTlS537NiRHTt2MHXqVLn7lkqlHD16lMaNGysERGrVqsWdO3eoX78+/v7+chTeFStWZPDgwUI27PMSaXt7ew4fPsyRI0do3rw5FSpUUIiwJyUlsX79eoXv+x9KBjMzM6ZNm0b37t2ZNWsWTk5OpKWlceTIEY4cOcKhQ4fIzs7m2rVrhIaGYmNjQ/PmzUukudWiRQsSEhJITU1l2LBhREVF8fz5c8zNzbG3t+fPP/+kW7duSu0Ivv6c/bXna5Cfs6dPn46bmxsXLlzAzs6OzMxMnjx5gp2dHT169FD4bEF2bWBgwNu3bwkODlbqmN66dQtnZ2eldt2sWTN+//136tWrh5mZmdy937lzBxMTE4WASKdOnXB3d8fFxYWoqCi5sq5KlSrRrFkzgZDjc7uuXr06GhoanDlzBjU1NaysrBSCpRKJhM2bN9OuXTuF7/Kt8V+m68dDnTp1uHr1KkZGRjg4OBQYaPyfoIwvDEQiEZs2beLOnTv8+uuvREdHY25uzsiRI6lfvz6zZ8/m7du3dOvWDQ0NDZYsWUJmZiZbtmwpFkUrgKurK6tXr8bPz4/69eszduxYrKysiIqK4syZM6xevforf8u/F+XLl+fnn3/m48ePREVFCayNxSmjtLKywtjYmBMnTtCjRw/B4YmPj2fHjh10794932xCjRo1iIuLY9myZTRv3hxLS0tCQkK4ffs2zs7OSsubZE23jo6O7N69G8hlM7K0tKRbt24FZrAcHBxQVVUVSmF++ukn6tatS0JCAtWrV8fe3r7A0ov/UDJMmjSJ1q1bs337dgIDA9HV1WXAgAHMnDmTbdu2cebMGbp3746ZmRn79+9nwYIFbNq0SWl/QWHQoUMH/Pz88PPzo3v37oITYGNjw+LFi/n111+/8jf8e2FsbMycOXMEkcxy5crRs2dPVFRUlGYiCoKmpiZOTk5s27aNIUOGCA6PbEFdu3btfMdbMzMzevXqxapVq2jQoAEVK1YkNjaWW7duUbVqVaV9dIMGDeLnn38mNDRUYI2F3DGiXr16SinqZShXrhzlypUTNNt69epF+/btyczMxNDQEBcXFxo1asSLFy+K9Az+Q+HQvn17atWqxc6dO1m7di1qamp0796ds2fPcu3aNVavXo2zszMVKlTg1q1bLFmyhCVLltC4ceNiXa9evXpcuHCBZ8+ekZ2dzYABAwgICKBTp04sXLiQESNGfOVv+PdCQ0NDEJ0NCAhATU2NDh06oKGhUWS7FolE9O7dm/Xr1zNq1Cgh+JGdnc3ly5dJT0+natWqSj+rrq7OuHHj2LFjB7a2tjg4OJCWlsadO3fQ1NRk+PDhCp9p2bIlDx8+ZO/evXIkG7Vq1cLc3LxAfUZNTU1BZ+mXX36hcePGDB48GA0NDdLT0xk8eDBz585lw4YNf8tY/p/T9eNB5hfI/v215Z7+lZTxBWH69OnUrl2bwYMHy22/d+8ev/32G2fOnCnWQ965cyebN2/mzZs32NnZYWBgQFpaGubm5vz0009C1EdZpOrcuXMK22RZoLwoSqarIEHQvFDWH5NfPfbnUEaokd8ArixyltdBk0qlAjuMpqYmWVlZqKur07VrV6XC0583kKanp+Pn50dMTAympqY4OjqioaGhtM8DckV27927h7e3NwAVKlTA2dlZIXquzDz++usvjhw5orBPR0cHOzs7fHx8hG0/ss38m+x69+7dvH79muXLl8vZb1BQEEOHDsXd3b1YAZWdO3dy5swZzp07h729PWZmZkLfQV7dm5LYNRTetpX1VCmLdJfErqHwtv0lu4bcZveLFy8ilUoRi8VkZ2fTpk0bHB0dv3hdmYjqp0+f0NXVpWHDhsJYqiw4EhYWxuPHj7l27RqZmZlYWlri7Oys8DyUfb+PHz8ya9YspTbfp08fuez1j2wz/ya79vb2Zu3atRw8eFCuRzspKYm+ffuyevXqfBf4BWHnzp08efKEzZs3U6lSJcqXLy9oNg0bNozatWsDyu0avv6c/T3ma/i6dh0UFMTp06dJTk5GQ0ODlJQUGjVqRNu2bRWykJ9fVyqV4u/vz7t371BXV6devXpCtkqZXUdERPDmzRs8PT2JjY3FyMiINm3aKGigKvt+BgYG+bKOjhkzhu3btwO5ZZivXr36rpTx69evLzFl/OTJk/8Vtv6/gn9lpis/REZG8vHjR6VZJ0dHR+rWrcuNGzcU9F8Ki/Lly/P27Vt69uxJamoqrVq1+qp14RKJhKCgILKysihduvS/puYccqNnzZs3p2XLlmRlZSEWi4vUK6OpqUmLFi0Kfby6ujrNmjWjWbNmwrbCMDhJpVJWrVqFnp4ehw4dkpsYU1JSePr0KVu3bmXevHlFmgz/Q/GRk5PDoUOHuHLlikLApGzZskyYMIF9+/YVm22oXLlySKVSIerVrFmzfHuRigOpVEpoaCgpKSmYmpr+63oFa9WqhZ2dHdnZ2Uil0nzZEZVBRUWlSI3vYrGYOnXqUKdOHWFbYdhqpVIp48aNIz4+np07dxIZGSm3/9ixYyxdupRDhw7x8uXLQt//fygZZCyxn4/Nenp6rFmzhtWrV7Njx45inVsWwGjbti0WFhY0bNhQIehWUkRHRxMbG4u+vr7SEsJ/MsqWLctPP/1ETk4OOTk5gp0VpuxTJBJRvXp1atWqVejrVa5cWS4AW1i7btWqFRs3bmT9+vW8fftWbv/27dsZN24cwcHBnD17ttD38rXwX6brx0aFChXw9fXFxMREbnt8fDx16tQpstQC/I85XRcvXsTFxSXf/f369WPLli0FOl05OTl8/PgRFRUVypYtK7fIk6Xq9fX1MTAw+KpO0Zs3b7h+/Trly5dHS0uLmzdvoqOjQ48ePUpMHpCSksK1a9eEMkwHB4cSRV9KiqIsyr4msrOz8fPz4969e2RmZlKpUiXi4uLw9fUlIyODlJQUuUhaeno658+fJywsjDdv3vD06VMCAwMZN24cVapU+c/p+k54+vQpDRo0yHey79q1Ky4uLgU6XVKplODgYLKysihXrpxcP4RswaeiooKFhcVXdbhCQ0N59OgRlSpVwsDAgLt375KZmYmLi0uJna+srCy8vLz4+PEj+vr6ODg4/K0OXX7i7t8aUqmUFy9ecOvWLYH6X0tLi+vXr5Oenk5iYqKcXYeFhfHixQtev35NUFAQT58+JSAggEWLFgn6Tv/h2yMjI4Ps7Gw5jbe8qFKlCsHBwV88T0REBImJiVhbW8vNazK7zsnJwdLS8qs6XPHx8dy9e5fSpUtTqlQpoqOjiY6OpnPnziUuP5dIJPj5+fHy5UvU1dWpXbu2IJ3wd+BLUh7fEh8+fODq1atERUVhYmKCtbU1Fy9eJD09nYSEBDmmai8vL7S0tLh//z4RERE8ffqUly9fsm/fPsRiMXPmzGH58uXf9f7/c7p+bHz48CHf7HBxNEHhOztdiYmJHD16lNevX2Nqakr//v2/CsVzYZGZmZlvClZGiRwREUFOTo7Sxu8NGzbg4eFB9erVyczM5N27d4wcOZI+ffqgrq5ObGwsZmZmwmCet8xMBmVMhsrKI/JqRT1//pyEhAR69uwpLCxr1qxJUFAQ27dvZ8yYMQoLTmUN959HbwGhZr5du3bUr1+foKAgli1bRqtWreSoo5VFlZSVYea38FU2KCsr91LWzHr69GmFbcqyUspo2z08PJTez+eLp6SkJNzc3OjYsSNz585FTU2Nn3/+mUOHDgHQqlUruT6RDRs2cO7cOXbt2iUs3kqVKkWbNm1Yvnw57dq1+59ZoGVmZuLu7o6fnx9aWlq4uroK5Tnf6/r5sW9JpVLevXtHYmIi6enpSgMUp06dYtu2bZQvXx5NTU1evHhBhw4dBEKVuLg4RCIRpUqVQk1N7avZdUhICP7+/vTs2VMog61ZsyZxcXG4ubkxYsQIhcCNsmh53nPK4Ofnx759+2jRogX169cnOjqaLVu2UKFCBTlNvPyixYW1bWV2rcwpbdu2rcK2ktg1KLftz8eU7Oxsjhw5QoUKFdi9ezelSpVi/fr1AtGRq6srJ0+eFI4fP348r169ws3NjfPnzwtlO61atWL69Ol0794dS0tLpffzb4NEIuHatWt4enoCuWNzy5Ytv3qPQ37IyckpsPrgw4cPpKamkpiYqHRe9/Hx4ffff8fQ0BBTU1P8/f2pUaMGixcvRl1dXegPsrS0FCRePkd+zMMF2XZSUhI+Pj506tRJLkKenp7OyZMncXFxUXiHCjtff/jwgbVr1+Lg4ECdOnVIS0vj+PHjiEQiRo4cKRewLMmc/T3mayj8nK3s2j4+PoSEhLB8+XKqVavG8ePH6d+/P5AbaDtz5oxwbMuWLdHU1GT37t24u7sTFhaGhoYGTZs2ZdiwYQwbNgxNTc3/nK7/ACD37ly6dEnu/cvJyeHq1avF7hP/bk7X2bNnWbduHSNHjmTMmDGEhIQwb948ypUrx9KlS7/LQN64cWM2btxI9+7dhW0SiYTVq1dz+fJlVFRUEIvFODs706dPH0aOHCnc14wZMyhbtiyXL18WBqnMzExmzZpFbGws2traREZGfvXyhJycHF68eEHv3r0VBseyZcsSEhLCy5cvi9TvJYO/vz+vX7/m999/F85dpUoVgaHPxMTkXyPo/CWsX7+eKVOmIBaLmTlzJu7u7iQkJNC5c2eioqJ49uwZNWvWZPny5UgkEiZOnEhQUBANGzZk6dKltG3bVq6+PDEx8W/+Rt8HT548YcqUKfTq1YsRI0aQmJiIm5sbsbGxuLm5FUl0s7iQLaQ+x9GjR9m1a5cg4dCtWzcaNmzIwoULhazL7t27efDgAR4eHsK9SiQSduzYwU8//UT9+vWJiorCyMjoq2dg7927R8eOHRUWR0ZGRjRu3Dhf4eAvQUbes3TpUiGyX6VKFapXr87x48fx9PRU6gT9G3Hw4EEaNmxIlSpVWLt2LcePHyckJIQmTZqgpaVFcHAwlpaWLFu2jKpVqzJhwgS2bNlC5cqVmTp1qhCMkr0v/yt2HRYWxrBhw2jSpAkDBgwQdJFWrVrFvn37hP6bbwktLS0SEhIUNDe9vLz4/fffMTU1JSIigsGDB1OqVClWrFghLI68vLz4448/2Ldvn1x299KlS/Tp04fu3bsLTs3XnrN9fX0Ffc680NTUpFOnTly9erVYsjWZmZls3bqVuXPnyt1z+fLluXv3LgcOHFBKRPFvxM2bN0lMTKR///6cPHmSY8eO4e/vT5UqVahVqxaJiYloaWnxyy+/0LFjR2bPnk39+vUpVaoUAwYMwNnZmaZNm8plPv9XbPs/fBkyH0EkEimIeaupqWFjY1Nscrzv4nS9ePFCiBzKFhiVK1emZcuWrFy5ksWLF5OZmUlYWBgVKlRg6NChShtLZfD39+fjx49YW1sXydmoXr06kZGRPH36FDs7OwCmTZtGlSpVOHz4ML169eLSpUuoqqqyZMkSVqxYwZw5cwgICCA2NlbhIaurq7N27Vo6duxI9+7diYiIKJAhqzgICQlRKGPMi9q1a3P9+vViOV3Xr19n8eLFCs6ciooKgwcPxs3N7V/vdIWEhLBt2zaePXtGv379yMnJQV9fnxEjRjB27FgqV67M2bNnBS22PXv2cPLkSdq3b8/p06ext7f/u7/C34bExESmTp3KiRMn5CK6DRo04Ny5c4wbN47KlSsTEBCAmZkZgwYNKtA+goKC8Pf3x9DQkPr16xeaElpXV5fq1avz119/CYPlrl27ePbsGadPn6ZPnz4cPnwYGxsbjh49yogRI9i3bx9paWkcPXqUixcvyl1LLBYzduxYRo8eTUhICOHh4V99YZaWloaamlq+pcEVKlTgxIkTxTr3jRs3GDZsmNISYRcXF5YsWULr1q1LRLn9oyMpKYldu3Zx48YN/vrrLzIzM9HU1MTV1ZVJkybh6OhIYGAgzZs3R09PDx8fH0aMGEGtWrXw9PSkVatW3y2j86NBKpUyYsQI1q1bJ5fRsbOz4/nz5wwZMoQuXbrw8OFDtLW16dWrF02bNs33ecXExPDw4UPU1dVp2LBhoQMxIpGIAQMGsHLlShYuXAjk0pGvXbuWo0ePMm/ePDZs2EC7du3w8fGhd+/enD59Gk1NTZYuXcrx48cVHB9nZ2fevHnDgwcPiIiIQEdH56v3RkdHR+ebDTUwMCA9PV1pNc2X4OfnR9u2bZWORQ0bNuTmzZskJSV9FS2hHxVZWVkcPXqUU6dOoaKiwtatW1FVVaVVq1b88ccftG/fnqysLKpWrYqGhgYRERE0bNgQIyMjjhw5gqur69/WvqAMEolEgRSsqJ//D18fsudavnx5fH198y1xLg6+y6y7ceNGli1bphDRlUqlxMXFsW3bNrp06cLy5ctp0qQJkyZNYsuWLQrnefr0KR07dmTz5s28ffuWXbt20b59e/z8/Ap9L9u2bWPWrFmsWrUKLy8vwsLC0NLSonfv3mzYsAENDQ1UVFRYtGgR3t7exMXFcejQIUaOHKn0fDL6VE9PT8LDw4vFpFQQMjMz5RZPERER3L59m1u3bhEYGIimpmaxaNplxp7fAG1kZFRkKtnPER0dzdGjR1m+fDnLly/n5s2bcjXWfzfCwsLYsGED4eHhiEQiVq1ahb+/P9euXePJkydCNLd169aYm5sTERGBt7c3ffv2pXv37n9rHf2PgAMHDjBu3DiFJlPIXWidP38eW1tbli9fLlAMT548WaEkIjw8nN69e7NgwQICAgI4e/Ysbdu25a+//ir0vSxdupRjx44xe/ZsHj9+zMGDB2nZsiXdu3dn3LhxlC9fHpFIRL9+/TA2NsbX15cLFy7g4uKSr/MxevRobt68ybNnz76JXed1uBISErh79y43b97E398fiURS7D6J8PBwqlSponSfiooK1tbWREREFOvckMuqdvbsWVauXMlvv/3GuXPnSE1NLfb5vjZSU1P5/fffiYmJITs7m9mzZ3P//n38/f0JDw8XMh/ly5fHyMgIFRUV/vrrL9q3b8/QoUOxsbH5n3W4IDdLVK9ePaXvfFxcHC9fviQ2NpalS5cyceJELl26JJBH5UVqairjxo1j1KhRvHz5Em9vbzp37sz69esLXRY1aNAg0tPTGTp0KL6+vvz666+MHTuWESNGULFiRaG8rVGjRvTt25cjR44QEBBAhQoV8p3bhgwZwr1797h///5Xt2uQL81LS0vjwYMH3Lhxg8ePH5OZmYmGhka+ZYsF4eXLl3LET5/DwcGhRCQvmZmZ3Lx5kz/++IMlS5Zw5MgRYmNji32+rw2JRMKqVauIjY0lIyODAQMGCNpt+vr6qKqqIhaL0dDQwMrKijJlynDw4EEcHBwYN24cFStW/KEcLvhPHPlHR2Bg4Fd1uOA7Zbo+ffqkNGOyf/9+gQzC5kypLQAAt1pJREFU0tJSEBl2cnJi7NixXL9+XSC1ePfuHdOnT+fIkSNyDyE+Pp6+ffuyZs0apZpMn8PMzIxz585x8eJFpk+fLpzr/Pnzcs6NSCSif//+uLu7ExMTU+ACu3Tp0jx//lxoVv+aMDMz4/Xr11SvXp2zZ8+ira1N9erVUVVV5e3bt1y7do2KFSt+1Wt+Dfj6+uLp6Un37t3p06cPkBuBX7x4MTNnzvwh6E2PHDmCvb09Bw4coEuXLkydOlXYN2PGDLZs2cK8efNITEykatWqJCcn07JlS5o1a0Z0dDTjxo2jevXqLF68+H9ykXb9+nUOHjyosN3X15fLly/z888/o6WlhZmZGWZmZuzYsYMNGzawadMmJk2aBORmJAYMGMDmzZvlFkBZWVmMGDECVVVVOnfu/MV7UVdX59ChQ9y7d4+FCxeSlpZGYGAgf/75p0Jv3ciRI9m1axfVqlX7ol1/+PCBjIwMnJycCvlUCgddXV3i4uKQSCTcuHGD9PR0atWqhY6ODsHBwRw4cOCbkdmU5F398OED+/bto0OHDoLOj0xuY9y4cQKF/t+J8+fPY29vz969e6lWrZpc6emuXbtYsGABBw8eRCKRYGZmhq6uLu3bt6dTp05kZmaydOlSALZs2VJikqJ/Iq5fv67U5qKiovj1119xc3PD19cXCwsLLCws+O2337h69SrTpk1j27ZtQO5ictCgQYwbN06uRHbOnDksXbqUVatWCX11BUEkErF06VJev37NunXr+PTpEz4+Pvzxxx8K/eB9+/alb9++VK1aVam0ggz6+vokJSUREhJCv379CvtYioSMjAxevnxJYGAgtWvXFjQ7jx07Rnp6eqGY94qKkth1fHw8GzZsoEmTJkycOBEDAwOePXvGunXr6NGjx1df1xQHDx8+pHTp0pw8eVKYT2SQzeFt27ZFJBKho6ND5cqVkUql9OrVCw0NDY4cOcLixYvZuXOn0h66vwP/9XT9eNiwYQOjR49GU1OTDRs2FHhscRiRv4vTpSwFKpVKOXToEB4eHkyaNEkuOiQSiViyZAkTJkwQnK5Vq1axfv16Ba/T0NCQrVu38uuvv7J3795C3Y+KigqdOnXi+vXrjBo1Kt+osIWFBQ8fPqRq1ao8fPgw38a5Bw8eYG5uztu3b0lNTRUibMqIFCpVqqSwTVmUuGHDhsK/P336xLNnz2jYsCEVKlQQtpcrV47g4GCioqIoU6aM3DN89OiRwjk/X0CoqKjw4cMHhfIKqVRKfHw86urqQmZKWYZKWZmIuro6MTExXL16lfnz5wu9EPr6+vTq1QsHBwd2797N/PnzleoLyXSz8kIZ65myd0rW8J0XecUU86Jnz55C74aGhgYvXrwgODhYWDQ6Ozuzbt065s2bJwjxenp6yvUyuLq6smbNGtasWcP06dOVXuffDJnm0ufYtGkTv/32G2fPnlXI1kyYMIF27doxYcIExGIx+/btY8yYMQoRZzU1NXbs2EHXrl3p1KlToRYUIpGIhg0b0rNnT3R0dOjZs6fS4ywsLIiLi6NatWp4enrStWtXpcc9ePCAUqVK8ebNG2JiYgSCiK9l1+np6bx+/ZouXbrIPScbGxtiYmKIiYnByMhIrom3MHZdunRp7t69i62trdx2qVQqyE4YGxuTlZWVb+ZZmW2LxWL279/PnDlzhDFOX18fZ2dn6tevz7Jly1i5cqXS7/217RqU2/bAgQNZv349Y8aMYe/evaSmpnL37l3hudvY2JCcnExKSgq3bt0iODiYU6dOyZVnd+jQgQsXLjBp0iR27typ9Nr/ZojFYqWMXbt372batGmoqakpZIdbt27Nli1biIqKwszMjFu3blG9enWFnkSRSMT8+fPp3Lkz48ePz1dH8XNUqVKFUaNGYW5uzi+//KL0GC0tLSQSCba2tqxbty7fc71//x5DQ0NEIhHR0dHCwrWwdg0F27a1tTWXLl2iVKlSNG/eXBi7bGxskEgkPH/+nOzsbLlzF8aua9asyYULFxQCQLL7f/DgAaNHjy7WnL17927Gjh0rtHXo6enRuHFj6tWrx/z586lVq5bSBX5J7BoKP2cPHDiQgwcPMn36dI4dO4aenp5ANgS5z6pOnTo8evQIMzMz3r9/z08//SRH1NG6dWtevnzJkCFDOH/+/A9RXv2f0/XjYe3atQwYMABNTU3Wrl2b73EikahYTtd3eeuqVq2qUAKYnJyMiYkJIpGIwMBAhciUubm5nDDhhw8f8s1klS9fnvDw8CK/gDVq1ODevXv57r937x41atRgwIABbNu2TekgFh8fj6enJy4uLmRnZ/P8+fMi3UNhMHz4cJ4+fUpcXByZmZkCvfWRI0do2LAhjo6OPHz4sMjnbdWqlRDxzQuJRMKhQ4do3759se738uXL9OjRQ+ngW7FiRUQiEVFRUcU699dCcnIyBgYGWFtbk5GRwfv37ylbtqzwDonFYtTV1fH19eXw4cMsXrxYafP41KlTuXjxYrFKPP/p6Nixo9K+o5iYGGxsbLh48SJNmjSR26eiokLFihUJCwsDchvbe/ToofT8mpqaVKlShYCAgCLdV40aNbh7926++2V23bRpU+7cuUNMTIzCMdnZ2WzatAlXV1cMDQ158OBBke6hMBgxYgTe3t4kJiYKi7ioqCjc3d0xNDRk4MCBXLlypcjnbdWqFceOHVNaHnz69GkaNmxYrAXH/fv35cSJ88LY2BgHB4dv8pyKChUVFaGE8OPHjzRq1Ehu7DYzM8Pf35+5c+fSs2dPpf2wHTp0ID09nY8fP363+/5RkJ9d+/j44OzszPHjx+nQoYPC/latWgm///Hjxxk8eLDS84tEIrp168alS5eKdF8VKlTgyZMn+e7/8OEDpqammJubo6amxosXL5Qet3LlSpydnalWrdo3eV/bt2/PkydPyMrKIj4+HsjN6Ht6evLp0ydmzpypVFz5S2jQoAE3b95UWvJ3//59TExMitXPFRISgr6+vtI+enV1dXr06FHk3+pbICEhQXDS379/z8iRI/H39xf2W1lZERQUxNChQ6lUqZJSZsTq1avTokULLl++/N3u+0v4r7Twx0JgYKDQMhEYGJjvX3E0uuA7ZbomTZrEuHHj5BpbVVVVSU9PZ+7cuYwYMUJpJDtvtO1LtbhaWlpkZ2cXqWa3T58+dOrUiV69eimU8sTFxXH58mVmzZqFWCxm4sSJ9OnThyVLllCjRg2kUik+Pj78+uuvrFy5kmfPniEWi0lLSyv09QuLV69eMW/ePLy8vDh+/DgSiQRzc3M6duyIsbExYWFh7N69mytXriCRSNDR0aFJkyZf1AOpUaMGqamprFixghYtWlCqVClCQ0O5ceMGTk5Oxa53DwwMpHfv3vnur1mzJu/evSuSMOLXgK+vL6dPn5ZbSMko4QHq1q1Lu3btaN++PZqamjx8+JANGzZgY2NDly5dlJ5TJBLRtGlTHj16hKOj4zf/Dj8SZPbTqlUruXctJyeHPXv2YG9vr7SMNC0tTa68piCbNTIyUpoRLQh169ZlwYIFhIaGKpQPZmdns2HDBg4ePIhIJGL16tX07duXn3/+WSADePXqFT///DMjR44kJSUFfX19uQDQ18L79+/p168flStXZtOmTYKkhaOjI6VLl0ZdXZ1Lly7x6tUrxGIxYrGY+vXrf5Gsx8zMjK5du7J8+XIaN26Mra0tcXFx3Lhxg3LlytG6deti3e+7d+8K7CmpXbs2T58+/e7kO2/evMHd3Z3nz58zaNAgILfEUAZra2uB7tzS0pKLFy8SGhpKnTp1FJip8qJHjx5cuXIl337efyvq1q3LsmXL8PHxoVGjRsJ2VVVVQRNJRkSVF6mpqYJdJycnF6gJVxy7llG/379/nwYNGijsX758OaNHjwZyRZX79+/PxIkT6dKlC6qqqoSGhrJ8+XKsra2xtrbG0NDwmwT/MjIyqFGjBj169GDFihWkpKSgqamJg4MDtra2iEQi/P39WbJkCaqqqmRnZ1OzZk0aNmxYYEZfXV2d0aNHs3nzZmrWrImdnR1paWncuXMHiURS7Pf0/fv3BY4p9vb2XL9+vVjnLgnCwsJwd3fHx8dHsOvPndUJEyZQp04dqlWrxq5du9DX16dZs2bUrVs33/P26tWLjRs3Fjuo/DXxX6brn4WcnByePXtGuXLliq15+V2crvLly7No0SK6detGp06dqFOnDiEhIfj4+NCwYUP69u2r8Bl/f3+5/gCJREJqaqpSPR6ZcG1RmyS1tbVZsGABrq6uLFq0SBjIb9y4wbJly/jjjz+EiHC3bt2oWLEimzZtIjg4mJycHOzt7dm1axdlypTBx8cHiUTyzXoA1NTUqFOnDnXq1JHbfvfuXRITE7Gzs2PcuHFAbqZhy5YtNG7c+IsLtJYtW+Lo6IiPjw8PHjzA1NSUadOmlaifRENDQ67M8nMkJyeXWCCyKMjIyGDMmDEKJTOqqqrMmTOHfv36oa6uzo4dO4iJiaFGjRocO3aMWbNmMXnyZDp37lzgZKiqqqq0HOffDi0tLdzc3Bg9ejR169aldevWJCQkEBgYyJUrVzhw4IDCZ1JSUoiOjhYYuEqXLs2rV6/ydfAfPnxYqN6PvBCJRGzYsIGBAwcyc+ZMnJ2dEYvFPHnyhF9//ZUxY8YI169duzZ79+5l69atgnRC6dKlWbhwIbVq1WLPnj0kJSV9M7sWi8W0atVKYfEXEBDAy5cvsbKyYsGCBUDus3NzcyMyMrJAAXfIDahUrlyZ+/fv8+DBA3R1dRk+fHiJhJ01NTVJTk7Od/+3fE7KIJFIWL9+vdIsv4uLC7/++iuGhoYcO3aMq1evCuNcu3btcHNzY/LkyQUKNv+v2jXklhKOGTOG/fv30717d6RSKTExMSxcuFBpSZhUKsXT01Po1axbty43b97E1dVV6flv3LghzFdFwR9//EHv3r0ZOHAgvXv3RlNTk48fP7J8+XLKlSsnOIkWFha4u7vj5uZG165dUVFRQVdXl9GjR9OyZUv27t37zd/XOnXq4OLiIrdN1tdlamoqMDJmZmZy4sQJjh49St++fQucaywtLZk/fz5Pnz4VGCE7d+5cIlInTU1NpZpgMnxvuwa4cOEChw8fVthub2/Pvn37MDY25tq1a+zdu5eWLVvy6dMnTExMuHbtGm5ubgXatYqKyg9j1/85XT82pkyZQq1atRgxYgQ5OTk0b94cHx8ftLW1OXv2bLF6vb9bUWujRo24fPkyVapU4dGjR0I0XMbokxdJSUlMnz6dadOmCdsGDhzImjVrlJ578+bNBWZWCkLr1q3ZvHkzJ06coHPnznTu3JmbN2+yf/9+BQenRo0arFq1iiFDhuDq6kqPHj2ElPzbt28BvkkjeePGjbl69arC9qSkJN69e0fZsmWpX7++sN3ExIShQ4fi6elZqMFFW1ub1q1b06tXL1q2bFniBv7GjRvnGxmTSCQ8fPiwWBT3xcXVq1eF5yAWi6lSpQrt2rXj/fv3PHr0iPv371OmTBlWrlz5/9g777ga////3097oIzK3iMzm2ySlEJIlMgqW8leZSQjK3unIpKQUVa87ZGdQnYooiXand8ffbt+jnNKZbx5fzxut243znWd1/U651zP6/V6rscDXV1dNmzYACBsIFq1aiUhjPw1zp8//z9LHV+tWjWCgoIwNjbmzp07vH37Fi8vL96/fy9Vm5+VlcWECROE7xVyxGjnz58vc/E4efIkNWrUKHDfx5eoXbs2fn5+3LlzBzMzM0xNTdm2bRuLFi2S2ghVqFABZ2dnxo4dS69evbCwsBBKmd+/f098fPxPsWtdXV1u3Lgh9dmzsrI4d+4cBgYGEhkFdXV1LCwsiIyMFMqW8oOioiJt27bFwsICY2Pj73K4IMeuz549m+fxkJCQfDNhPxrh4eESDlfdunVp2LAhkZGRlC5dmkOHDlGsWDEmTZrExIkTWbp0KdeuXWP16tVATsDpSxHMr3H48OFvOrf/VWhoaLBnzx7Gjx/Pw4cPefToEatWraJYsWLExMRIne/u7o6hoaGwOR88eDDr1q2TWfkRGRnJq1evirQGaGpqcvDgQdLS0rCwsMDMzIy5c+diY2PDjBkzJM4tUaIEDg4OTJ8+nZ49e2JpaSk4ZWKxmMjIyJ9i1yoqKqSmpsrM5J04cQJra2uJUnUlJSW6dOmCmpoaDx8+/Ob4cnJyNG7cGAsLC3r16vXdLLqNGjUiNDQ0zw38iRMnfjiRUH5ITEyUcLhq165NlSpVuHjxIjY2Nqxfvx6RSMTgwYPZsmULCxYsYO/evXh6eiISiejUqZNMgeVcBAYG0qVLl1/xUb6Jv+yFvzf8/f3R09MDctaD58+f8+DBAxwcHJg1a1aRxhSJC/CrJSUloaGhQWJi4g9nnTt06BAeHh706NGDatWqERYWxpkzZ1i4cCFt2rQRzhOLxUyZMoXU1FQcHR2pUaMGL168wMPDg9TUVNauXfvTGeRWrVrFiRMn6NOnD1paWly6dIm7d+/i4eGBiooKzZs3p0KFCly7dg0FBQUCAgKkxpDVyCorQ/f1YjBz5kxatmwp4Qj6+fmhqanJqVOnmD17tkQzflZWFkePHkVHR4fmzZsDyOw7KqjRyiJMkMXA9PHjR7Kysli/fj2mpqYC+Uj58uXJzs5mx44dVKpUiW7dusnspZFVxiXrd/26vyolJYWkpCRu3bpF8eLFsbS0pE6dOpQoUYLg4GCMjY25dOkS+vr69OzZk127dlG8eHFSU1Px9vbm0KFDyMnJCT2Gt27dEr7PmJgYbGxsCAgIkMreeXt7ExkZKSXO+zNt5kfhZ87x1q1bTJkyhTZt2tCkSROioqI4fPgww4YNk2IM27ZtG8HBwUyfPp2mTZsSHx/Ptm3buHDhAr6+vjKz2z8Suc8gMzMzqlevTnh4OCdPnhSy361ateLt27fcuXMHHR2dH2rXW7duRU1NjXbt2gmvXbt2jcePH3Pr1i0cHR0liDRyyxsiIyMF5/FH2zXkbdu7du2idu3aQpAnd8N34sQJXr58yYgRIwps17LwNatYbi/W2bNnBQIkfX19SpQoQUxMDOXLl2fjxo3Y29szfvx47OzshKb/AwcO4OPjQ2ZmJtnZ2URFRQkEB7mf3cjIiO3bt0sx4V25cgUPDw+paPv/ul2/fv2aMWPGUKlSJTp37kxCQgIHDhxAX1+fmTNnSjyrz5w5g5ubG5MnT6Zr166kpaWxZ88evL298fb2zpdh8Efg5s2bTJs2jbZt29KkSRNev37NwYMHGTRoEIMHD8bCwoLDhw9z4cIFmjdvXmC7hm/b9j///MM///zD4MGDhWqZd+/e4eXlxadPn+jdu7cE63BWVhbx8fF4e3sLzfnfY9dQuDX79OnTfPr0CTMzM0QikWDXYWFhHDx4kJkzZxIfHy/13qLatVgs5u7du8TFxZGRkUH79u3p3r07JUqUQCwWo6SkxNixY1m7di2bNm2iRIkSwrpx/vx5Nm7cyMePH8nMzCQpKYkFCxZIBEisra0ZO3asxB4ScrQghw4dKuixfolfadu513J1df2uLGJqaiqzZs36rZ9HfzJUVFR4/PgxFStWxM7ODjU1NVatWiWwkhZFUPtfd7ogZ2E9efIkMTExVKtWjY4dO+bZ6H316lW2bdtGdHQ02traDBs2jDZt2vx0h2vLli28ePGCBQsWCNcSi8UcPXqUmTNnsnnzZhITE+nevTt3796lYcOG37U5y8zM5MGDB6ipqdG6dWuys7OZPHkyqqqqdOzYEUVFRdavX4+qqirjx4+X0krKysri9u3bxMTECLXLv8rpghwnyM/Pj/T0dGrWrIm8vDz379+nQ4cOGBoaAvwwpyssLAw/Pz9mzZpF+/btCQkJ4dSpU3h5eQE5GYLq1asLjpSZmVm+kTBLS0t27Nghsdm/fPkyM2fOxNramrZt2/Lhwwd27tyJvLw869atk2Lp+1/fnEHOvXXhwgVBHNnIyChPquTIyEg2bdrEo0ePUFdXx8rKChMTkyJrVRUUFy5cYO3atXh5eUnM7caNG4waNQonJyfat29PxYoV2bVrF1ZWVt9l1yoqKty6dUvozypevDgrVqzgyZMnGBgYoKGhwb59+4TN7ZdspZBj13Fxcfj7+wv9K7/S6crKyiIwMJA3b95Qp04dihcvzp07d6hduzaWlpbIy8v/MKfrzZs3bNy4kVGjRmFqakpERATHjh1jzZo1QA55h0gkIjw8HG1t7W/a9cKFCzE0NJTovXz+/DkjR46ka9euAmW8n58fDx8+xNPTU8Lhhb92nYu7d+9y48YN1NXVhc2yLLx9+5atW7dy9epVFBQUhIzTz5JDyEVUVBTDhg2Tkox4/vw5o0aNon379kycOJHatWszZMgQ3Nzcvsvp+vTpE69fvyYzMxM9PT3Kli2Ln58fR48epWvXrpQtW5ZLly5x7tw5bGxspPp/cysxFi9ezPTp04Ff63SJxWL++ecfbt++TZ06ddDW1iYsLIzixYszYsQIVFRUfphdJycns3r1amrVqsW8efNITk5m165dbNu2jcTEREFH8OLFi7Ro0QI7OztcXFzyzOgdOnSI2NhYiZ62pKQkbG1tqVmzJpaWlqioqHD06FFOnDjBli1bZDJR/xtO18KFC7/b6Zo9e/Zv/Tz6k1GlShW2bNmCgYEB1apVE5IJ9+/fp127djIDEd/CL+np+hYUFRUxMTEp0LmtWrX65YQFWVlZ7Nmzh5MnTwoOQEhICIsWLaJly5a0bduWKVOmoKqqikgkYt++fUUmifjw4QPr1q2jfPnyNGvWjJcvX+Lj44OBgQHTpk3jxYsXXLt2TaCcbd++vUxxWshpRM3rmCzkRoPT0tKoUKGCFJV8YaCqqsqQIUNISkri1atXlC9fHgsLix++iY6LiyMgIIBZs2YxYMAAEhMTGTx4sJDdg5wF8fjx48K1vyXQnJycLLU46evrExQUxP79+9mxYwfFixdnypQp1K5d+4d+nv8SRCIR7du3L1DJWa1atXB3d/8Fs5LEihUr2LJli/B7P3jwgMmTJ1OlShVBsH3r1q1oaWnh7+8vs/+0IEhNTWXDhg2IRCLatm1LZmYmM2fOpHr16jg6OnLnzh0uXLjA48ePqVSpErq6ulIOVy6io6Nl0lvnh+joaJKSktDS0ir0e7+EvLw85ubmpKam8vz5c0qXLo2xsfEP7/nIyspi48aNODg4CLTQVatWBXICLu/evSMuLk6Q64Ccsqu0tLQ8N8rx8fFSz7SqVaty/PhxgoOD8fb2RlFREXNzc1q2bPk/qb1XUDRq1EgmmcbX0NHRKXIZzvcgV7Yi915///4948ePR0FBARMTE9auXcuZM2cE3c7cvsnCIjs7Gx8fHx4/foyRkREqKiosX74cBQUFZs+eTcOGDTl37hyhoaGUKFGCevXq5bl/SUhIKLQz+uHDB96/f4+mpuZ3aU/lluW1a9eOZ8+eUaJECTp27PhTNvKbNm3C0tKSmjVrUrt2bbS1tYmNjWXAgAHs2bOHV69esW/fPiGbnqtpmJfTJcuuS5Qowf79+7l+/ToHDhwgIyODDh064OTk9NMDeYVBdnZ2nnT6BX3/X/w8DB06lP79+1OuXDlEIpGQMLh69WqRieZ+C6frd8fdu3dp1aqVkH27cuUKa9asITAwEDU1NTIzMzE3N2fLli3o6+uzYMECKlWqVCiHB3I2ZkuXLmXcuHESafHcfrbg4GC6d+8ulMK8f/+ejRs3Urt2bakNQmZmJtevX2fmzJkFuva1a9cICQmhatWqqKurc+zYMTQ0NBg4cKDUhkosFvPs2TPi4+PR1NSkTp06eWYmcxea7607zwsnT57E3NwcZWVlsrOzhRKE0NBQVqxYwaRJkwgICKBcuXLCe2rVqsWdO3eEWt0vERUVhaampsxGXBUVFaytrbG2tv4pn+Uvfi3S09PJzs4W7PT169eMHTsWHx8f4X65cuUK+/fvp2PHjhw8eJBJkybRvn37Qm/I3d3d6dGjh4QmWP/+/Tl06BDLli3DysqK3r17Azm2O2vWLLp27SoVUReLxRw/fjxPOu6vERkZycGDB9HW1qZ06dKcOXOGjIwMrKysZD6foqOjiYqKolixYtSvXz9PciIVFRV0dXV/ml1fv36dli1bCpvm3OwWgKenJyYmJtjb20uUW/fo0YN9+/YxaNAgqfHS09O5c+eOTGIhOTk5TExMChz4+4vfH/fu3WPx4sVADpGSlZUVy5YtE575t2/fZsGCBUyePJmDBw/St29fhg4dWmgyrp07d6KlpcX8+fOF8sLevXsLBEBTp06VoNd3dnYmISFBZn/liRMn6NixY4Gu++7dO/bs2YOysrIgvPzhwwf69u0rM4uTkJDA48ePUVJSom7dunkGVBUUFKhVq9ZPs+s3b96gqqoqlFYePXpUIBEaMWIEe/bsoV69ehIaixYWFnh5ebFkyRKZYwYEBMgkbRKJRLRs2VIm0+Xvgr9EGr83XFxcaNCgAVFRUYLINuQEH3Mz0oXFv68O9wcgIyNDwvFYunQpW7ZsEcrP5OXlEYvFlC1blt27d9O4cWPs7Ow4ePBgoa5z9uxZunbtKtX3IRKJcHR05OzZsxLEGGXKlKFu3bp4enpKNCwnJCSwZs0aTExM8mXxycWVK1e4d+8eU6ZMYcCAAZiZmeHg4ECbNm1Yu3atxDVfvHjB8uXLCQ0NFUogFy9ezN27dwv1WX8Unjx5IjRkp6WlERQUJBybNGkSFStWlOrDcnJywsnJibdv30q8npiYiL29PdOmTfv5E/+Lfx1ZWVkSmywPDw8WLlwo4aDLy8ujqqpKUFAQjRo1YvXq1RIOQEHw4MEDtLW1adKkidSxXr168e7dO4nSHQUFBfr06cPq1aslyhdSUlLw8fGhRo0aUiLxsvDs2TMCAwMZN24cQ4YMwdTUlFGjRtG/f382bdoklAJDTrR4zZo1HD9+nIyMDKKjo3F3d5dJ4PMrEBERIeFQfRk8ypXK+JoB1draGk9PTyl9pszMTEaNGsXYsWP/Zq/+R5Dbnws5mmH9+vWTCLKpqKiQmZnJrl27qFu3LmfPnmX27NnfrIL4EklJSbx48QJTU1OpY02bNkVXV1dqXRw6dCirVq3i9evXwmuZmZkcP36c9+/fywwEfo2EhAS2bt2KlZUV9vb2mJqaMnToUEGWJyoqSjg3LS2N7du34+vrS0pKComJiWzcuJG9e/f+K1mSiIgIiefgl3pwuULaderUkXhP69atef78OcHBwRKvi8Vili5dSsuWLaXKgP8U/M5EGvHx8djY2KChoYGGhgY2NjbfJHASi8VCKaiqqiqdOnWSeh6npaUxfvx4ypQpg7q6Oj179uTVq1eFuvadO3cYOHAglSpVQlVVlbp16woESbl4/vw5IpFI6u/r++hb6NevH46OjhI6dkOGDKFXr16FGicXfzNdBUD9+vVxcXEBckrP5OTkJDY9ly9fFjb+rVu3Rltbm27dunHw4EG6desmsbGT1Tyc+8C4e/cuy5cvR1lZWebNXadOHcLCwiRK2kxMTLh9+zYeHh7IycmRlZWFiooKPXv2lEp/ykqri8Vizp07h7Ozs1T5XaNGjXj58iVhYWG0a9eOt2/fcuDAAaZPn07x4sUFmtnOnTuzbds2AJkCi3lB1gZIlm6KrAdLrmMqLy+PvLw8ioqKXL16lVOnTjF8+HBBi8vCwkJmSdHq1asZPnw4lStXpl69ejx58oTw8HDmzZtXoLKZv/jzoaqqSlJSEqmpqaioqHDnzh0hOg4592Ju2WHp0qWFct61a9fSv39/iUxRfnbt7++PlZUVlStXlmnXHTp04OLFi0LpAuTYnoaGBl5eXqSkpAg0xwYGBlLlSbLsWk5OjmPHjuHg4CDMI9euK1euTN++fTl79ixWVlakpqayYsUKRo8eLUS43717R/v27fH39+fkyZO0adOmwBvS77HrXEdKSUkJkUiEsrIyZ8+eJTAwkMWLFwuipr1795bK1Kmrq7N7924mTJiAgoICrVq1IjY2losXLzJ69Og8Rbj/4r8HbW1tnjx5Qo0aNThw4IDQ3ws5JVkPHz6kYsWKyMnJ0bNnT0xNTVmwYAE3btyQ0HjKi+xDQ0ODI0eO0LNnT+Ge/dq2O3XqhJeXl8R6raOjg6OjI35+fsTGxqKsrExqaiotWrRg/PjxEhUjedl1QEAANjY2Qrltrl0qKyszZswYvL29cXBwoFixYixduhQTExOh3eHdu3e0bt2aixcv4uXlhYWFxS+1axUVFcRisZAxGDJkCMWKFWPt2rVATuDk6yygSCRi586dTJ48mQ0bNtC5c2dSU1MJCQnByMjoXylf/VH4nTNdVlZWvHr1SnBS7OzssLGxybdvdunSpaxYsQJPT09q164t9NE+fPhQCH47ODhw+PBh9uzZQ+nSpXFycsLU1JQbN24I9/y3rn3jxg20tLTw8fGhUqVKXLp0CTs7O+Tl5Rk3bpzEnE6dOiVR4fCt8noPDw/s7OxQUVHBw8Mj33NzSW8Kg79OVwGgrq6Onp4e/v7+dOrUSSJzkpaWhqurK+vXrwdyHhBKSkosXrwYPT09jh49KpQNfQtZWVl5Eg1AziZRVnOtvr4++vr6ZGVlIRKJCiXSHBkZSb169fKsc+7UqRNbt26lXbt2BAYGYmtrK5U5UlRUxNraGh8fH4YNG1ag6/4oNGvWjMuXL9OhQwcgZ6EqW7YsL168oE+fPoSFhcksS6hfvz5HjhzhwYMHvHjxgo4dO/5ysea/+PeR20Q/b948FBUVJUhy5s6dy5gxY4RzS5QowYQJE/D29mbXrl0FfuCmpaXly8CopqYm0651dXWZOXMmYrGY7Oxs5OXlC2zXnz59Qk5OLs8IcMOGDYUFLJee/uuSIpFIRN++fVm1ahWtW7cu0HV/FFq1asW5c+eEjaVIJBICLZUrV+bly5dCIOxLaGtrC30h9+/fp0WLFri4uORZ/vwX/02MGzeO2bNn4+PjQ3p6uoT9rV+/XtDughwa+vr161OjRg327t1L48aNC9T3k5aWlqcWJeTYdVpamtTr5cuXx8HBoUh2DTkZ7Fyx4K9RunRp0tPTSU9P59mzZ+jo6Mhc19q2bcvGjRtJSkrKswfyZ6Bp06asX79egmnwy+eOsrKyRAl2LlRUVFi7dq3Qx6mkpISjo+MvnfvPwO/qdEVERBAcHMyVK1eEIF9u+8zDhw+lspG5c1m1ahWzZs0SmHV37tyJjo4Ou3fvxt7ensTERLZt24a3t7eQ2cx1nE6dOoWRkVGBrv31PrN69epcvnyZgIAAKaerdOnSAmNtQbBy5Uqsra1RUVFh5cqVeZ4nEomK5HT9XYkKiPnz5xMYGMjChQsJDw/n1atX7N+/nx49ejBhwgSJPitlZWXq169P9+7dCQgI4P379wW6Rp06dWQKfeYiPDxcitr4S8jLyxd4c5GVlcXly5fZuXMnly9fZvny5TI1g9TV1YWFIzo6Wma9OCAsPrI2jz8TnTt3JigoSELc0d7eHjk5OR4/foypqWm+dfq6uroYGRn9dbj+R2FlZYVIJMLa2prk5GTCwsI4ffo05ubmNGzYEAMDAyAnOv7ixQtq1KiBlZUVly5dkiqbyAt6enpcvnw5z+NXr17Nl5BFJBIVqvn7/v37rF27lsjISNzc3Dh79qxUNFskEgmlx6GhobRt21bmWHJyctSoUYOXL18W+Po/AvXq1RM0UXJhYmKCtrY2KioqqKqq5quxVLFiRYyMjGjduvVfh+t/EE2bNhUyWKqqqhw+fJjQ0FBGjhxJZGSkxGbp4sWL6OnpMWzYMKKiooRs6rdQELuWtTnNRWHt+uXLl2zatInnz5/j6urK4cOHZWqB5QZxLl++nK++VvPmzX95W4CmpiZlypSR0Ptr0qQJDRs2pFSpUoSFhQmbcVkoVaoUhoaGdOzY8Y93uODHlRcmJSVJ/Mly9guDy5cvo6GhIVFV0bp1azQ0NLh06ZLM9zx79oyYmBi6desmvKasrEzHjh2F99y4cYOMjAyJc8qXL0+DBg2Ec4pybchpD5GVxerZsyfa2tq0bdtWopw1Lzx79kyoonj27Fmef0+fPv3mWLLwdzUqIBQVFfHy8mLQoEGoqakxcOBAoqOj2b9/P0ZGRsJ5CxcuFKic+/XrR7FixXB3dyc5Ofmb17C0tGTTpk0yHZfQ0FBKlSqVb2StoMjMzGT58uU8fvwYW1tbqlatyogRI4iMjGTDhg0Std6RkZFCyeC3Ni9KSkp5UlD/LKipqTFx4kTWrVvHxo0buXjxopDKTkxMlBDi/Yu/kAUXFxfmz59PhQoVGDBgAFeuXGHdunUSWa4dO3ZgbGyMnJwc7du3R1dXlzVr1hAdHf3N8bt27UpwcLBMetmoqChevHhBrVq1fshn8fLyIiQkhD59+lCuXDkcHBxIS0tjyZIlEvTOSUlJwoYvOzs7395PZWXlXx5MEYlEODk5ERgYyNKlSzl//jy3b99GWVmZ169f/7Xrv/gmBg4ciJeXFzVr1mTcuHHs27cPR0dHVq9eLWS0L1++TIkSJdDW1qZGjRoYGBiwe/duwsLCvjl+zZo1ef/+PZGRkVLHkpOTOXr06A8TCw8JCcHb25vWrVtTs2ZNJk6cSJkyZVi8eLFEUDc7O5u4uDjU1NSketG/hrKycqF62H4Uhg8fzqNHj3BzcyMkJITQ0FDk5OSIi4vDycnpb5CkCKhUqZLQ/6ShoYGbm9t3jRcTEyOlhQo5lQSyxNFz3wPSmmw6OjrCsZiYGJSUlChZsmS+5xT22pcvX8bPzw97e3vhtWLFirFixQr8/f05duwYBgYGWFpa4uPjk9fH/iX4e3cXEs2bN+fUqVPUrl2bly9fEh8fT3Z2Nnfv3mXw4MGULVtW8OJVVVWZPn0679+/x83Njc+fP+c7drly5bCysmLMmDFcvnyZz58/ExMTw/bt29m3bx+2trbfPf/4+HhmzpxJbGwsWVlZHDp0iPDwcB4/fsyAAQOoUKEC586dA3Ie4AcPHhQiTwoKCnmKwWVmZpKYmPjT9Ve+REJCAnFxcejo6DBv3jw6depEfHw8CgoKVK5cGXV19b+N839RINSoUQMfHx9sbGx4+PAhHz58ELJb06dP58KFCzg4OAA5wQdHR0fU1dVZsGCBRJZVFpSUlJg1axYODg4EBweTnJxMfHw8+/fvZ8mSJT+EuCUtLY1ly5Zx+fJlihUrxrFjx3j//j1HjhzByMgIU1NT/Pz8hPMDAwOFLF6VKlV4+PBhnmM/efKkUL2a34uPHz/y/v17VFRUmDp1KlZWViQlJZGenk6DBg3IysoqEEHQX/yFlpYWixYtwsPDg7CwMN69e0dWVhYfPnxgxYoVzJ8/X6KEaMiQIdSrV49ly5ZJZFnzgrOzM25ubnh5eREXF8enT584deoU06ZNY/z48d+djcnOzmb37t14e3ujo6PDpUuXiI2NZePGjejr6zNmzBg8PT2F8y9cuECjRo2Qk5Ojdu3a3LlzJ8+xw8PD85Sl+BlISUkR9h12dnaMGjWKjIwMEhMTBdKcL0m7/hfwozJdUVFRJCYmCn8zZsyQeT0XFxeZ5BJf/oWGhgKye/jEYvE391RfHy/Ie74+pzDXvn//Pr169WLu3LkSfdFlypTB0dGRli1b0rx5c+bPn8+YMWNYunRpvnP5EsOGDcv3ryj4rVeuy5cvs3HjRuLi4gAwMzMTMk3/JuTl5dm6dSsXL15k4cKFvHv3jurVqzNt2jQpSuLKlSsza9YsXFxcOHbsGPXq1ct37E6dOtGoUSN27dpFUFAQqqqqGBgYMHToUCm2vcIiMTGRVatWIScnh6urq1CO+OTJE5ydnbGwsKBLly6sXLmSKlWqsH//fvT19YXIRffu3dmzZw8jR46UuvnPnj1Ls2bNfomTExERwaFDhyhZsiQKCgrExMTQoUMHevfujaKiIgcPHuTevXsyez7+4t/Hw4cPWbduHc+ePSM7O5t27doxcuTIAjHy/WxMmzaN+/fvs2XLFp4+fYqWlha2tra0a9dO4t7W0NBg1qxZODs74+Pj801a4tq1a7Nhwwb27dvHsmXLkJOTo23btqxcuRJFRcU8I3gFQW7m+vPnzyxevBgNDQ3k5ORITEzE0dGRuLg4rK2tOXTokNCcXKxYMYFFrFu3bmzZsoXp06dLOTPh4eGULFkyz/6UH4ncuSkqKlKsWDHevHlD/fr1GTJkCE2bNuX06dMEBQVha2v7N5jyGyI6OppNmzZx/fp1RCIRurq6jB07Ns+S9F+J3r1707x5c7Zs2cLKlStRV1enf//+HD58WOKeV1RUZNKkSSxatIiNGzfSvXv3fMctU6YMmzdvJiQkhHXr1pGRkYGenh5Lly5FXV39u+waYNu2bbx9+5YpU6ZQr1495OTkSE9PZ9q0abi4uDB27FiKFy9OZGQk9+7dIyoqSuhpadOmDS4uLrRp00aqQubt27fExsZSpUqVn27XcXFxuLu7k5qaSsmSJXn37h1ly5Zl0KBBtGzZksuXL7N79246duxYqN6b/wJ+VE9XiRIlCqSpNm7cuG9qTVatWpW7d+/K3G/GxsbmqQeX+9vFxMRIMAC/e/dOeE/ZsmVJT08nPj5eItv17t07QSapbNmyBb52eHg4Xbp0YeTIkQXS2mvdujVbt2795nm5+Lo6JSMjg7CwMBISEujSpUuBx/kSInEBfvFfqdSdi8WLF/P8+XNmzJghPBj27duHl5cXe/fulUpP/u7o27cvwcHBGBgYULNmTaZNm4aOjg5ZWVlMmzaN8+fPk5WVJWzGzM3NpTZAeWXKcm+M7Oxs3rx5Q3Z2NpUqVZLqZfL19aV+/fpCJO7LMZ89e8bOnTtRV1fn0aNHtGnTRqK5PjeDFRgYSGRkJD179hRU6s+ePYucnBz9+/fPM7In63VZJUu5DvaX+DLVfPbsWV68eMGUKVOEMXOFVM+cOcOHDx9QU1PDzc2tSE2OPwr/hs0UFv/GHHOZxFxcXNDT0yM7O5sTJ06wdOlSNmzYkG8PxO8IFxcX5s2bR/fu3alcuTITJ04UAivz5s3j1KlTpKSkIBaLadq0KQMGDJCZDZZl27l2LRaLefv2LampqVSoUEHq/ZcvXyYpKYmbN28yd+5cifE+ffrEggULKFu2LI8fP6Z69eoYGxsL5Yy5Y127do3g4GDMzMyoW7cuz5494/Lly0RFRTFs2DCUlJRkkvz8KLt+8OABQUFBODs7C+QfYrGYY8eOsXPnTmJjY1FQUMDe3p41a9b8a07XX7uWjVu3bjFlyhRmz55Nx44dEYlEXL9+HRcXFxwdHfPt0/kdsX//fvr160eHDh2oVq0atra2Qn/U3bt3mTx5MnFxcWRnZ1O7dm26desmUyw1P7uGHLtITExER0dH6rd68+YNhw8fJjExkenTpyMvLy+Ml52dzezZsylXrhwvX74UGIv19PSE8jxVVVWePXvGjh07MDAwoEWLFkRHRxMaGsrt27extbVFU1Pzp9p1bGwsW7duZdasWRJMkLk6afHx8YjFYkxMTPD39/+llTJf41faTe61Zs6c+V3C8qmpqSxatOiHzzkiIoJ69epx9epVIaB49epVWrduzYMHD/Ik0ihfvjyOjo5MnToVyLlntLW1WbJkiUCkkcs62L9/fyAnWFOxYkWOHTsmEGkU5Nr379+nS5cuDBkypMDZq8mTJxMQEFDkfizIsb0xY8ZQvXp14XMWBj8k0yUWi7l06RKvX7+mSpUqtGzZ8rsWxStXrvD06VM2b94svKasrMygQYOoU6cOU6ZMKZS3+jtg7dq1LF68mCdPnuDl5cXKlStp0KABVapUoXTp0owfPx41NTVSUlI4ffo08+bNw9nZucBlNCEhIVy4cIGqVasiLy/Ps2fPaNiwIebm5sJDODIyEisrKwIDA6XeX61aNZSUlJg0aRJubm55siP17NmT6OhoTp8+zYsXLyhRogTt2rXLt6n9RyEtLY3r16/j5OQkLApPnz5l//79nD9/Hjk5Oby8vPJ1/v6icLh79y4PHjygTJkydOjQ4bvKunLFvI8cOSIEBOTk5OjevTt6enoMHTqUoKCgPyqLMWXKFLKzs7l37x7Hjx9n8+bNVKpUiQ4dOhAfH8+QIUMoVaoUGRkZXL16lenTp7NgwYICL5B37tzhyJEjaGtrU7x4cV68eIGOjg6DBg0SFuvc0sfr16+TlZUl0Zyvrq5OrVq1MDExYe/evQwZMkRmX2jLli2pXbs2ISEhhISEADml1CYmJj/99xCLxQQGBjJhwgTB4frw4QO7d+/m0qVLfP78menTpzNjxozf1tH50/D8+XNCQ0NRVVWlc+fO31U9kp2djZOTE/7+/hKN7C1atMDf358ePXqgr6+fpyDv7whzc3NWrVrFhQsXCA0NZefOnWhqamJhYUF8fDympqZUrFgRsVjMvXv3WLVqlRAgLghevnzJnj17UFNTo0yZMsTExCAvLy88LyAnwGhkZMTRo0dJSEiQkEiQk5Ojc+fOlChRgnLlylGnTh3q1q0rdZ1q1aoxY8YMzp07J/SLN2zYkHHjxv2SEt2DBw9ia2srOFwpKSn4+voKgSIzMzM2b96cZ/bkv47flb2wbt26dO/enZEjR7Jp0yYgh7bd1NRUwuHS1dXFzc0Nc3NzRCIRDg4OLFq0iFq1alGrVi0WLVqEmpoaVlZWQE6FyPDhw3FycqJ06dKUKlWKyZMn07BhQyEwU5Br379/n86dO9OtWzcmTZokZJTl5eXR0tICcpgTFRUVadKkCXJychw+fBgPD488RbYLitz2gk6dOv07TtfZs2dZuHAhbdu2pWbNmhw6dIjZs2fj6upaZCXwTZs2CRHbr9GiRQsWLVoklZ783VGuXDlBvO3t27d4enoye/ZswsLCsLa2FiI8qqqqmJqacuvWLfz9/b+ZCgY4cuQIycnJzJ49W3Cw5OXlOXXqFNu2bWPkyJFATumEgoICJUuW5M2bN1IU0WpqakREREiJjsr6LIMGDfrucsfC4ubNm7Rq1Ur4jLdv32bq1KmCQ2Bvb8/du3f/Olw/AI8ePcLBwYFatWrRrFkzrl27hqurK6NHj6Zfv35FGtPT05Px48fLZJMsV64cjRo1IjQ0lBYtWnzv9H8Z1NXVmT9/PpCTVfL392fcuHHs2rWLTp06CU6CoqIi7dq1o0GDBqxbty7PmvsvcevWLf755x8mT54s3NMKCgrcu3ePFStWMHXqVBQUFMjMzERNTY3GjRtz7do19PX1JcYpWbIkMTExZGRk5EvEo6mpKVD9/krbfv36NRUqVBCcyJiYGEaNGoVIJKJx48YsXryYVatW/XW4fgDi4uIYO3YsysrKdO7cmejoaNauXYuBgQFOTk5FcrBPnjyJoaGhTOYwVVVVhg4dyt69e3+5nMj3QE5OjokTJzJx4kSysrIIDAxk2rRpbNmyhfbt2wtaUiKRiEaNGlGpUiVWrVrFihUrvvkdvnr1Ci8vL8aNGyeMo6CgwKtXr1i1ahWTJ0+mRIkSfPz4kdKlS9OxY0dOnjwptRcoWbIk8fHxhIeHy6RZz4WqqipGRkYYGRn9UrtOT08nKSlJKDVLT09nzJgxxMTE0KRJE8aOHUtQUND/rMMFCLIB3/P+n4VcWZRcjoKePXsKemq5ePjwIYmJicL/p06dSkpKCmPGjCE+Pp5WrVpx4sQJiXVn5cqVKCgo0L9/f1JSUjAwMMDT01MiWPita+/bt4/Y2Fh27drFrl27hNerVKnC8+fPhf8vXLiQFy9eIC8vT+3atdm+fTuDBg367u/myZMnRSaN+y6n6+bNm6xcuZJDhw5JRLESExOxtLRk9erVRSoXev/+fb514I0aNeLp06cSIoZ/EnR0dJg2bRrBwcHo6+vj5uaGkpKShLJ9rgf/Lafr06dPhIWFMW3aNKlGRENDQ9atW8erV6+oWLEiWVlZZGRk0L9/f9avX8+kSZOEjU52djYfPnxg//79EqxtvxM+fvxI+fLlyc7OJjg4mM2bN1O9enU8PDxQUlKicuXKnD59+t+e5h+Pd+/eMWrUKHx8fCQccycnJ0aMGIG6ujrGxsaFHjc8PDxfMphWrVoJ2kp/ItTV1RkyZAjHjx+nadOmzJgxA3l5eQl70tXVJSkpiY8fP+brAInFYo4cOcL06dOlnNSGDRvy/Plzrl+/jr6+PhoaGsTExGBkZISrqytly5aV2Mg8ffqUsLAwBg4c+OM/9A9AUlKSEMW/ceMGHh4eiMViPD090dTUpFWrVgVif/2L/JGZmcnAgQNZvHix0M8HOX0eixYtYsWKFTg5ORV63PDwcCnB7i/RqlUrIWL9J0JeXh5zc3PCw8MBWLFiBQsXLsTNzU1Yc0uWLEnNmjV58OCBzIzTlwgICMDe3l5KBLhixYr069ePY8eOMWDAACpWrMjjx49p3rw5wcHBXL9+XaJn/PHjxzx//pzOnTv/lox/aWlpQqDkyZMneHh48PLlSzZu3CiUN/+vr9e/a6YLcuj5v8X09/X1RSIRLi4u+fbTq6iosGbNGtasWVPka3/rGpBDijNkyJB8z/kWJk2aJPF/sVhMdHQ0R48eLfLY32Wp7u7ubNiwQapsQENDg9WrV7N8+fKiTeob4r5v376VemD9iShevDiLFi2iXbt2nDhxQuIGlpeXR01N7Zve9KVLl2jTpk2e0bWuXbty4cIFIKex9sSJE5QvXx57e3s2btzI2rVr8fPzw9nZWYhQ/K4ZRB0dHR4+fIibmxtLliyhcePGLFiwQKhJv3XrFjVr1vyXZ/nnY+PGjcyaNUsqE6qoqMiGDRu+qdKeFzQ1NfNtLP+v2PXHjx+ZPHkylpaWnD9/XkpLp3r16t+kmn/y5AnVqlXLU2OuS5cugl0bGRmxf/9+1NTUmDp1KgcPHmT58uX4+fnh7u7O48ePsbKy+i0IDWRBW1ub58+fs3HjRiZPnoympiYrV64U7oVHjx5J9IP8RdFw+PBhjI2NJRwuyNkozZw5k5MnTxZKpDcXmpqa+WZQ/it2/fDhQ0aPHo2XlxeRkZE8e/ZM4njdunUlouyykJaWRkpKilAC9TUaNmzIo0ePgBwNyqNHjyIWi3FycuLevXu4ubmxd+9eNm3axMmTJ+nSpYtUZvt3gZqamhDItbOzIz4+nqVLlwoOV2pq6ndlef4L+FHshX/xc3Dr1i2Jv1xdu+XLl7Nq1aoijVnkTFdWVhZJSUlSG7Nc1KlTp8iCmr1798bX11dmOUJycrIgUvqnI1c3p0OHDly4cIHr16/TqFEjICfqlZ6eTvv27QWH6kvK51y8e/eOSpUqSYks5m70lJSUSEhI4NOnT+jr6wsq9AYGBkyYMIGwsDCuXr2KvLw8EydOJDMzk9jYWKnryHpNVhlfXiVAshYZWffOhw8fZL4fcsQoPTw8KFasGCEhIRKq9pmZmZiYmMj8jv6icLh8+TJz5syReUxNTY3y5csLJWGFgZWVFdu2bZOp8i4Wizl06BAHDx4sypR/K+QGjfT19dmzZw/BwcH06NEDyBH9jY2NpXPnzhL9H1/ft9HR0ZQsWTJPu4ac/ohPnz5RsWJFihcvztq1a+nVq5cgAHvjxg3ev3/PpEmTUFdXL7BdQ8Ft+0fYtaamJvfu3SMtLY2dO3diY2MjEUQaMWIEo0ePzvP9f1EwBAQEsGLFCpnHRCIR3bt3559//vkmY9/X6N27N0OGDGHAgAEyg3/bt29n1qxZRZrz74TSpUsTHR1Nt27dKFWqFIGBgYwaNQrIWX/evHmDoaGhwMIG0nadm+HOz65z/6+goECHDh1wc3PDwsKC/v378+LFC27fvs3Tp08ZNWoUFStWzNOGv2fN/hF2LRaL+fTpE4GBgcybN49p06ZJkHasXr1aIFP4X8XvnOn6Czhz5swPH7PIma6srKxv9s7kFaX9FgYOHIifn5+U+vTHjx+xsbEpUD/En4AGDRpw7do16tWrR9WqVQkMDBSMqHv37ly5coVq1aphY2OTZwStUqVKMsUZc/HkyRNhcywnJ8eoUaMoU6YMGzZsYNmyZRw8eBBtbW1GjBjxW2vfZGdn4+bmhpqaGpUqVZLIxj1+/Bhra2vs7Oz+ExHVfxvy8vL59iUUL168SBHx5s2bk5CQwO7duyUWi8zMTBwdHenXr9+/yl71o9C7d292795NyZIladOmDUFBQQIt88SJEzl69Cj6+voYGxsLmihfo3z58jx58iTPa0RFRUlsjPr06UOLFi3w8fFh2bJl7NmzB5FIhL29/Q8RVP+ZWL9+PampqVSuXFnCkX/37h2Ojo5Uq1btjy0l/52QkpKS771QVLsuWbIk7dq1w8XFRUJnSSwWs2HDBkqUKPGfqEAYNGgQW7ZsQVFRke7du3Pp0iVBo+/UqVNs2LCBESNGoK+vL2Sovoa6ujofPnzIc7P89fffqlUr+vTpw7Fjx1i2bBk7d+7kw4cP2Nra/lLtvKIgMDCQFy9eUK1aNWrUqCGsKcnJyaxYsYKbN2/mSdj1v4K/ma7/PRR5l62kpERycjJpaWkyna8vm+sKCxUVFfbu3cu0adNYvHgxjRo14t27d7x69Yrp06fToUOHIo/9O2HKlClYW1tjamqKhYUFy5Yt4/r161StWpUnT56go6ODiYkJ3t7eBAUFsXr1ailHtl69ehw8eBAjIyOpiFV6ejpnzpzB0dFReE1OTg59fX2hJOFXk2EUFS9evCAiIoL58+dTsWJFduzYwaNHj5CTk0NHR4fp06dLlc38CLx+/Rp/f38SExNp2LAhZmZmv7Vz+iOgpaXF06dPZQpnisViwsLCCszS9TW2bNnCwoULMTIyonnz5nz+/JmwsDCGDx/+2/YcFRYDBw7E3Nyc5s2bY25uzuXLlzly5Ajdu3cnKCgIOTk5LCwsOHjwIC1btpQZNMkNKrx8+VKK2EYsFnP48GHMzMwkXq9fv77Q8/Gn2HV6ejqnT5/GxsYGIyMjLl68yLJly1BUVERFRQU7OzsJwcsfhcTERPz8/Hjz5g1Vq1alX79+fxS7XlHQqlUrTp06JdE7/CVCQkJYvHhxkcaeOnUqW7duxcjICD09PRQVFQkNDaVbt24yM9t/Ipo1a8b69evZuXMnXbp0ISgoiN27dzN27Fj++ecfAGxtbbl69SqmpqYcPnxYagw5OTnq1avHlStXZJYFnjhxgrZt20q8VrlyZYEM60+xa4CgoCA6d+6Mg4MDL1++pFevXkJAz9LSkh07dvzwXrS0tDQOHDjAw4cPKVOmDP3798+zlPN3wN9M1++NJk2aFJhc6ObNmwU677t2j1ZWVqxYsUJm5mnRokWMGDGiyGNraGgIpXDPnj1DQ0ODqlWrfsdsfz+UK1cOT09PrKysyMjIQEtLi40bN9K4cWPMzMx4+fIl69evp2PHjgwYMIC3b99KRbfk5OSwtbVlxYoVmJub07BhQ+Tk5Hj69CkHDhzAzMzst8gepKWlcffuXaHkQUtLSxBKFIlEGBgYyMxSff78mdOnTwuLWkpKCuXKlWPo0KHfvObnz5/Zs2cPJ0+eBHJ6XywtLQv0fYjFYmbMmMHz588ZPHgwWlpaXLp0CUNDQ5YuXfrHkj0UBGPGjMHZ2ZmdO3dKLYq5rHxFzWIrKCjg4uJCamoqkZGRKCkpUbt27T+KJv5bUFFRwc/Pj379+vHu3TuqVKnCwYMHefToEQMGDGDr1q2sWrWKcePGUbt2bUJDQ2V+/mHDhrFy5Uq6du1Kq1atUFRU5O3btxw8eJBatWr9EpmGbyErK4v79+8TExNDeno6ZcqUoWzZsrx7946UlBQ6duwosywpIyODS5cuce7cOTIyMvj8+TPq6up5stZ+iczMTI4cOUJAQACpqam0bt0aW1tbmex5srBt2zb8/f2xtbWlSZMmhIeH06tXL0aPHk3fvn0L/R38KRg2bBiWlpYYGBhIPQNzBY2/554aMWIEw4YN4+HDh2RlZbFgwYIiPyd+V2zevJnFixezZ88eKleuLGiRNWvWjJcvXzJ69Gjc3d1RVFTk8uXL6OnpSY1hbm7OypUriYuLo0uXLqiqqpKYmMiJEyf4/PlzvkyEvwpisZjHjx/z8uVLPn36RKlSpahcuTLv378nISFBkJiQ9b5bt25x4cIFnj9/ToUKFcjKymLcuHGCaHN+17xw4QI+Pj58+PCBunXrMnLkyG+yKeciJCSEBQsWMGDAAExMTHj9+jV2dna0atWK6dOnF+l7+Nn463T93ujevTvr16+nXr16QpDkypUr3L9/n9GjRxdpb/1d4shisZipU6eSlJTEuHHjqFmzJhEREaxatYpatWrl2RfyO0MsFguaGV+K/P1M7N69m0+fPvHo0SNWrFiBhYUFDRs2ZPHixTx69IhSpUpRrVo1ateuLZNZUEFBgYSEBE6dOsWDBw8QiUTo6OjQtWtXic8gK0NT0MhZfvXhmZmZJCQkADm6ILI2kMuXLycqKgo5OTlEIpFQhpJb266goMC8efMAOHToECKRiA4dOnDs2DF69OiBtrY2jo6OGBgYkJyczIkTJ/KlkH748CGjRo3C1taW3r17IxaLBWHerVu3frMn0N3dHSUlJSmB5cTERPr164e3t7egwC4Lf7qI6rZt2zh8+DBOTk40a9aMN2/esHnzZmJiYti+ffsfme2LjY0lIyODsmXL/hK2r927d5Oamsrr169ZtmwZDRo0YPr06fTq1YvLly/TunVrOnXqxKdPn3BycpKak4KCAikpKfzzzz9CFK1YsWIYGBhIkGL8aLuGHNvOzs4mMTGRtLQ0tLW1ZQZF/P39uXDhAiKRCHl5eYH4RyQSCXT2o0aNomHDhgQEBPDhwweMjIwIDg6mbdu2tGrVipEjR9K0aVM+f/7MgQMH8iX8iIuLY+DAgRgZGWFtbU3x4sU5deoUq1evZu7cuXTs2DHfzxsUFMTBgwfZsGGDxPedkZHB4MGDcXBwyJeJ70+367Nnz7JgwQImTJhA165dSUpKwsfHh5CQEHx9ff/I8uzExEQ+fvyIjo7OL3PyvLy8ePv2LevWrUMsFuPg4MCkSZPYvHkzI0eOZPz48fj6+uLu7i6lgaagoEBWVhZXrlzh4sWLZGZmoqioSPv27WnYsKGwfn6PXUPea7ZYLObjx498+vQJLS0tmcGK69evC1TcioqKZGRkSIyRlpaGiYkJFhYWHD58mIcPH9K1a1euXr1KrVq1MDAwYN68eaipqaGgoMC6deukMnhfIiMjg6FDh1KpUiVGjhxJ+fLluX79Ou7u7vTu3fubQdbIyEgcHR3Zt2+fxEZYLBYzd+5catas+U22uX9DHNnR0fG7JG7S0tJYuXLlb/08+pMxYsQIypUrx4IFCyRed3Z2Jioqiu3btxd6zO9yunJx9+5dduzYIYgjDxs27Ju0qb8bxGIx27ZtY8+ePVSrVo2MjAxBL6Z3796/bB6Ojo5s2bIFU1NTgoODKV68ONOmTePGjRt4enoya9Ysqf6GLx+IuZC1+OSq2X+J9+/fS72WS/DxJWTVj1evXh1XV1fOnDkjjJ27YXr//j0zZ85kypQpZGRkUKtWLRISEkhMTEQsFvPmzRvk5eXR0dEhLi6OiRMn4uvrC+QQZnz8+JFXr15x/fp1Hj16hFgsZsKECdSqVQsjIyMiIyPx9PSU8Q3mRN+7deuGj4+PoBGSi9evX2Nra8uJEyfyzK6kp6fTo0ePPM85deoUV65cYfbs2TLfD3/+5gxySjq3bdvGgwcPKF26NIMHD6Z169Z/XFYqKCiINWvWUKZMGVRUVHj69Cm9e/dm7Nixv+yzbN++neHDh2Nubs61a9f4+PEjU6dOJTU1FVdXVwYNGoS5ubnEe/4tu3737h2hoaEcP35caJTX0dGhZMmSREVFMWjQIJYvX46qqiomJiYcP36c1NRUlJSUePfuHampqZQvX5709HQWL17MwoULgZwyKR0dHW7cuMGuXbuETeWyZct4+/YtU6dO5cCBAxw/fjxPp9jKyorJkyfTtGlTqe/AzMyMffv25ZvxMjMzY9euXTLv99evXzN16lQJ3Zev8V+w67i4ODw9Pbl69Sqqqqr069cPY2NjKXKH3x23bt3C1dUVOTk5SpcuzZMnT2jRogVz5swRpFB+Nq5evUrr1q2xt7fn0qVLPHjwgLFjx1K1alVmzJhBy5YtmThxosR7foVdg7Rtf/r0ibt37xIYGEhUVBSQ08dXtWpVnj17RseOHdm6dStly5Zl5syZuLm5ER4ejq6uLgkJCcTHx1O+fHnk5eXx9vbG3t6ezMxMSpYsSZMmTQgJCWHq1KlCFYifn58gSLtnz558bdPFxQVdXV0piZzs7GxsbGxwcnKSsvkvMWHCBIYPHy4zs5iRkYGxsTEnT57M93n/bzhdDg4O3+10rVq16rd+Hv3J0NDQIDQ0VGDczEVkZCTNmzcvUhvVDwlXN2rU6I+v254zZw5qamoEBwcLm4GUlBSmTJlCbGysUFP9s+Hi4sKTJ0/Yu3cvOjo6JCQkMH/+fGbPns2tW7fYtm0bTZs2/dc3vmfOnGHo0KHUr1+fuXPn0qJFC1JSUggODkZNTY1Pnz4xc+ZM3N3dycrKEjJhycnJlChRQqKMRUtLC29vb3r06EG5cuXo3Lkzrq6urF+/HnNzc+bNm4eKigpdunRh3759WFtbEx4eLuiPQY6DcOfOHYoVK0ZycjJGRkZSDhdAhQoV6NChA6dPnxYU0L/GvXv38nUuunTp8sff7wVBlSpVBOHfPxW+vr6cPHmSffv2CT07WVlZrF27FkdHxyLTvhYWtra2hIaGsnnzZkqUKIGioiKurq5Mnz4dIyMjfH19MTQ0pFixYr9kPnkhLCyMtWvXUrp0aUaNGkW7du1QUlLi+PHjpKWloa6uzsqVK/H19UVZWVmIpt++fZtWrVpJ6IMpKiqyYMEC9PX1SU1NpWfPnpw+fZrRo0djZ2eHq6sr5cqVw8DAADc3N2JjY+nYsSOnT58W+rg+fPjAlStXkJeXp2LFiigqKsrcfKmpqTF+/Hh27twp0cP6JdLS0lBQUMhzc1KhQgXhOfVfRqlSpaT0Z/40XLt2DRcXFzw9PYVqjlxtuwEDBrBv375fkvVq1aoV7u7uzJs3j+zsbEqXLo2HhwejR48WiDeMjY1lluL9Srx+/ZoVK1aQlpbGkCFD6NSpE1paWoSEhBAdHU3//v1Zu3Yt1atXp2TJkrx58waACxcuULduXUqWLClBXjVs2DAaNGhAREQEffv2JSkpiQ4dOuDu7s7MmTPR09OjU6dO+Pv7c+XKFSZMmICnp6dw333+/JkLFy6Qnp6Onp4ely5dwtnZWWrecnJyuLi4sHjxYrZt25bn53vy5IlMhwtynkM1a9YkKiqqwKWKvwp/ywt/b6iqqnLhwgUpp+vChQtFDuwU2enKzMwUSkr+dDx//pxnz55JRThVVVXx8PDAxMQEKyurX9JoraGhQWBgIFOmTMHDwwMtLS2SkpKYPn06I0aMYM2aNQIjVExMDJqamrRv314m6cGPRnZ2NtevXyc4OJjIyEjs7e0FYeJc5FJjQ05U+vTp02RlZdGoUSPKlCmT54ZHXl4ea2tr4f9hYWEEBwfTvHlzofm7W7duHDt2jB07dmBvb8+1a9dQUVFh3LhxKCkp0a5dO+Li4ti8eXO+rEiGhob5Ol3fgkgk+ted3p+F7OxssrOz/8jywa+RlpbG9u3bCQ4OlnhO5cojjBw5kvDwcOrVq/fT5yInJ8f69eupVKkSy5YtEyLEzs7OjBs3jpCQEFasWEH9+vV5/vw5KioqtGrVSujR/NkIDw8nODiYW7du0aBBA/755x+JTVaXLl2Efw8ZMgR/f39SUlLQ09NDSUmJli1b5jm2iYmJ8O/Q0FC2bNnC4MGDOXDgAGPGjKFx48bUqlWLrVu3sm/fPoKDg+nQoQOTJ0/m1atXGBoakpmZycyZM6lUqRJZWVky1x1DQ0OZMiN/kbM5yy1j+y9g/vz57Nq1S+IeFYlEmJmZCf3Mv4qO3MnJiUGDBtGqVSvevn1LlSpVWLduHcOGDaNUqVKsW7eOrl278vjxY+Tk5NDT06NVq1a/5BkbFRVFcHAwly5dQkdHh4sXL0qU1n9Z8mdnZ4eXlxcJCQkCIc/X2fcv0bJlS8HuQ0JCmDx5Mrt378bX1xc9PT20tbXp3Lkze/bswdnZGS8vLxwdHVm6dClnzpyhW7duqKmpsW7dOqKjo4W+zq9Rq1YtgSWyqPhd1+u/TtfvDQcHB0aPHs2NGzdo3bo1kNPTtX379gL1H8tCoa0+MDCQzZs3Iy8vL9DGOzg40L59+yJN4HfA7t2788xkycnJYWlpyaFDh7Cysvplc6pZsybt27fn4sWLODg4sHjxYp4/f46+vj6nTp2iSZMmmJqaoqWlxbFjxwgJCWHYsGE/bYOWlpbG+vXruXHjBrq6ujg6Ouap+ZKLNm3aSGiWFAZKSkqUKVMGdXV1QcNEXV0dU1NT9uzZw6dPn9DQ0GDgwIGsWLGChg0bCu/Nysrizp07eHp6YmtrKzX2x48f822AbNiwIdOnT0csFst8WIeEhOS7yfwTcfXqVZYvX86nT59QVFQkLS2NYcOGYWFh8W9Prcg4ceIEPXv2zDMwZG9vj7e3N25ubr9sTlpaWpiamuLt7c3YsWNZtGgRZ86coW/fvuzZs4f4+Hj69etHrVq1CAkJ4cSJE4wfP/6nlUtlZ2ezZ88ejh07RsWKFRk2bBgdOnTIVyC9du3azJw5s0jXU1JSQiQSUbVqVcGuc9kcFy1axJMnT1BSUhLYLL8M4lSvXh1fX1+mTZuGu7u71NjfsmtlZWUyMjJISkrKs7xQQ0OjSJ/rd8WTJ09wc3MjKioKdXV1kpKS6NWrF2PGjPljA6bPnj2jfPnyed6jQ4cOZejQob9UA6pkyZJYWlqydOlSevTowbp169i3bx9jxozB3d2dAwcOYGVlhZ6eHtevX8fNzY3Ro0dTpkyZnzanM2fOsGPHDjQ1NTE3N8fQ0DDfXmZtbW0mT55cpGspKSmRmppKvXr1JNhY+/fvT0hICCEhISgpKeHq6oqqqirBwcHCOSYmJowdO5ZBgwYREBAgteZmZ2dLSBHIQrVq1bh7966gc/olMjIyiIyM/C2Ih/7iz8L06dOpXr06q1evZvfu3UCOCLqnp2eRny+F2qGvX79eaLg9dOgQR44cYePGjWzYsIGAgIAiTeB3QGxsbL4GWbly5Twbzn8GXrx4wahRozh9+jSdOnWifv36GBgYcPLkSbKzsxk/fjwPHjxgwYIFvH//XmhAPX78+E+b0549ewgLC8PJyYnZs2f/dN2cXr16sXXrVhISEiTYz6pWrUpmZia7d+/mw4cP9O/fX8LhAujbty8aGhr4+PjIfFjv3r073z49JSUlDA0NWbdundSxpKQkFi9e/MvKTX8FTp48ybJly/Dw8ODo0aMcPHgQf39/bt68iaur6789vSKjIHb9vRHUwiArK4tJkybh7e1NgwYN0NXVxdbWloiICK5cucLcuXNJSkpi+fLlXL16lb59+2JiYoKXl9dPm9OZM2cICgpi0KBBuLm50blz55+6Ge/Zsyd79+4lPDxcovy3cuXKiEQiNm/eTJ06dShVqpSEwwXQuXNn4uLiiIqKIiYmRmpsHx+fb7IPjhkzhmnTpklFiDMzM5kyZYoUcc6fjAcPHmBvb8/kyZM5fvw4AQEBBAcHo6KiwtChQ8nOzv63p1gkvH//Pl+7LlGiBOnp6b9wRtCtWzeWLl2Kjo4ODRo0YPbs2Xz8+JEdO3bg6upKiRIlWL9+PXv27MHQ0BA7Ozu2bNny0zIVuf24nTt3ZsWKFfTs2fOnshh36NCB48ePExERIWHXmpqaaGho4OnpiZGREVevXsXJyUnivZUqVSI9PR1dXV3OnTsnNfbJkydp165dvtefMGECs2bNkqkz5+rqirW19W+Z7cqtLPmev7/4uejfvz8XL14kLi6OuLg4Ll68+F0BnUI5XRcvXmTlypUSAotaWlrs3LmTdevWCQKgfxpq1qzJ7du38zx+/fp1MjIyOH/+PMnJyT99PhUqVBAyh40aNaJTp074+fmhoqJCbGwskydPJjk5GV1dXS5cuEB2djbGxsbcuHEDeXl5gW2oIH+KiopSf7IM+9q1a0yePBl3d3esra0lSgF/Bnr16sWFCxdo0qQJBw4cID09nezsbOrXr0+xYsVISUkhKCgIQ0NDLl26xI0bNzh48CDZ2dno6uqSlZVFmTJluHbtmsS4+/btQ0lJ6ZvlmJMnT+bFixdYWVkRHBzMjRs3WLNmDT179hR6Uf4rWL16Nbt27ZJgY1RXV8fNzY2wsDCePXv2L86u6PiWXd+4cQM1NTXOnj37S4Iq8vLygoxGw4YNadKkCZs2baJ27drExsbSo0cPPnz4QL9+/Th37hwfP36kcePGfPr0iZSUlJ9i15GRkZiZmeHt7c2gQYN+um3XqVOHtLQ0IWMfHx9PdnY2JUuWpEaNGty7d49bt25hbm7OlStXuH79OgcPHiQ1NRV1dXW6dOmCoqIigYGBEuOGhoZy+vRpiVJGWTAxMaFJkyb06NGDffv2cfPmTXx8fDA2Nsbc3FwoIfkvYN68eXh7e6Orqyu8pqCgwMiRI6lduzbHjh37F2dXdFStWpX79+/neTyXJffMmTM8f/78l8wpl12vSpUq6OrqMm/ePMzNzYmNjaVGjRq8ePGC+fPnc+3aNV6/fk3FihWpVq0az549+yl2ffPmTapXr86JEycYMmTIT7drNTU1OnbsSJkyZbh9+zaRkZFkZ2cjEolo3ry5sE8xNTXlxo0bXL16lcOHDxMXF4dIJGLChAk8evQIPz8/iXFfvXrFkiVLsLOzy/f6tWvXZuLEiZiYmLBlyxZu3LhBYGAgffr0QVFRsUASM/8G/ooj/964fv06V69elXr96tWrhIaGFmnMQrEXBgQE5Fnju2HDBrS0tOjXr1+RJvJvIiEhgf79+3Ps2DGJOmuxWIybmxvu7u5MnDgRZWVlzp8/T4MGDVi4cOFPrY9PT09n5syZbNu2jYSEBPr168fr16+Jjo7m06dP3Lp1i7t379KvXz9Kly7NoEGDuHbtGtbW1mhqaspkSJLFhiTrNVmMLC4uLixfvvybWhtFQUxMDLt27RKESq2trSlVqhSxsbEMHDiQ06dP0759e+rWrcuNGzf4/Pkzb9++pUWLFlLZPTU1NV6/fo2amhpdu3YlOzubwYMHIxaLCQoKonr16ixZsqTAv11UVBT79u0jMTGRRo0a0bNnzwK9909iOVuwYEGeTIwXLlzg5MmTAp3/nwSxWIyhoSH79u2TKkXy8/NjzJgxWFlZUblyZa5evYq6ujqrVq36qbTZYrGY1atXs3z5cl69ekXr1q0FqvXbt28TEhKChoYGhoaGpKam0r9/f9LT06lcuTJ6eno/3K4DAgJo2rQpmzZt+jEf8At8/PgRX19fQajUysqKKlWqkJqayqhRo9i1axc1a9aka9eu3Lx5k6SkJMLCwhg5ciTXrl3jzp07EuNFRERQp04d7O3tOXfuHGPGjKF48eKEhISQnZ3N2rVr8y2L/BLx8fGCOHKVKlXo379/gUhM/iS7HjhwoFAS8zU+fPjA2LFj2bNnzy+e3Y+BtbU1s2fPlmJJvnLlCgMGDKBp06a0bduW+/fvEx8fj7u7+zdlQr4XAQEBzJ07l/v371OuXDnatWvHx48fCQ4OZseOHZiamtK1a1cePnxIz549qV27Nq9evaJnz54/3K7379+PkpISly5d+jEf7gukp6dz4MABQkNDUVVVpW/fvujp6SEWi1mwYAGLFy+mWLFiDBw4kPv37/Pu3Tvu3buHk5MTL1++ZN++fRLjnThxAkNDQ7Zu3crcuXMZP368QBn//PlzVq9eXeDfLjU1lYCAAAlx5C/JffLDv8FeOGbMmO9mL1y/fv1v/Tz6k9GyZUumTp0q5dcEBASwZMkSmQ7Zt1CoTFd+2YFatWrx+vXrAo1z/fp1Ro8eTa9evZgwYQJ3794tzDR+ODQ1NbG3t8fKyorHjx8Lr48ZMwYvLy8CAwNxdnZm+vTpHD16lObNm38z8vK9UFJSwt3dnfv379OnTx9OnjxJaGgoM2fO5NOnT3h5eWFsbCw8VNetW0dqaupPcwRLlixZ4N+3MFi5ciWjR4+mXr162NvbU6lSJQYNGsTOnTvR0tLi1KlTtG/fnsuXLwsiiw0aNEBRUVGCACF3s/X582cSExNRUlJCW1ubbdu2oa2tjY6ODtu3b2fFihWF+o5Kly5N2bJlKVGiBCKR6D8ZWfpRdv348WOmTZtG7969GTZsGGfOnPlXvy+RSMTSpUuxtLTk+vXrwuvr168XmDU9PDyYPHky+/btY+zYsVhaWv7U0iSRSISDg4OgI/fs2TMuX76MiYkJ1atXZ+3atdSvX5/Q0FAqVarEpk2biI+PlyCr+ZHQ1NT8KXZ9+PBhzM3NKVGiBHZ2drRu3ZqZM2cya9YslJWV8fT0ZMCAATx48IA3b95gY2ODkZERAM2bN+fp06eApFbR48ePEYlEaGlpsX79emrWrEmJEiVwdXWVIlX4FooXL0758uXR0NBAUVHxP2nX+emdlS5dWuip+xbevXuHm5sb5ubmWFlZ4e/vL9NJ+JVwd3dn7NixBAUFCSVWZ86cYdCgQfTp04eAgACcnJzYvn07Hh4ejBw5UmZJ6o9Enz59uHv3LgsXLkRZWVlgTDUzM8Pd3Z3SpUtz8eJF2rZti5+fH48fP/5pdq2iosKbN29+ePnZnTt3MDIy4sOHDwwfPhxTU1O2bt2KjY0N6enpzJ07l0mTJhEbG8vt27fp0aOHkN2vV6+eRHYgl0kw97VixYoxa9YsWrdujbq6OqNGjeLIkSOFcpaVlZWpVKkSmpqaKCkp/fZ2/TfT9XsjPDxcJltukyZNCA8PL9KYhXK6vmyQ/BoPHjz4Jh2nWCxm4sSJeHt7M2nSJAICArC3t2fNmjX/upBy3759mTlzJosWLaJHjx4YGBhw4sQJjhw5IlVPbGFhgaqqKvfu3fvp8ypfvjz79+/n8ePHVKhQgenTp9OzZ0+2b99OWloaenp6VK1aFbFYTGJi4k9jWGzVqtUPL0c5cOAAUVFRBAQECLS6vXv35siRI5w9e5bz588DOfS0xYsX5+DBgyQkJPD27VvKlSvHxIkTMTY2Ji0tjbi4OBo1akSlSpWoXLkyly5dQlNTkzp16tC7d2969+6dr36PLHh7e9O7d29SU1Np2rQpb968oXv37j+1d+7fwKNHj/I8VhC7Bti4cSMzZsygX79+7N+/n3nz5hESEoK1tfW/ukFr2rQpW7ZsYe/evRgbG9OjRw8WLFiAl5eXFMlKixYt6N27N/v37//p81JTU2PDhg2CPo6zszPdunXj4MGDREdHU758eaFXMSwsTIqy9kehVatWEhvXH4H79++zfft2jh07xoABA6hTpw6dO3cW9LFys2o9evSgTp06BAUF8erVK96+fYuioiI2NjY0adKE9+/fk5GRwfDhw4EcYp6XL19y48YNOnfujImJCX379i00DfT58+cxNDQkMjKSJk2aIBaL6d+/Pxs3bvxh38HvgC8DiF/j7du3Em0CeeHkyZMMGjSIpk2b4ufnx9q1a3nz5g2mpqaChtu/gXLlyrF//35u376NiYkJZmZm2NjY4OzsLEXwVKlSJRYsWICHh8dPn5ecnByzZs3iyZMnODk5sX//fmrUqMH9+/e5dOkS6urqgvj2jRs3flpvdKVKlXjx4gURERE/bMykpCQcHBzYv38/Y8aMQVdXl5YtW7JmzRosLS0FEo5GjRphYGDAxYsXCQ8PF5xdfX19GjVqRFhYGGKxWKiuMDQ0JDk5mc2bNzN48GA6d+5Mv379aNCgQaHm9+TJE4yMjDhx4gR6enpoaWkxYcIEpkyZ8tv2Pv11un5vKCsryxQkj46OLjL7aKHKC42MjLCzs8Pb25vMzEwyMjJo3749w4YNw9ramuDg4HwjN9u2bSM+Pl4mQ87s2bNp2rQpffr0KdIH+dHYsWMHKioqDBw4UObxa9euERgYKAh//gps3bqVkSNHsnfvXgYNGsTMmTNxcXFh4cKFzJ8/n8zMTExMTBg2bBiZmZlS7y9quUKu6vmYMWO+m+ktOTmZjRs3curUKW7dukWTJk2wsrJi0KBBEsyLMTExTJgwAT8/P/z8/Hj37h1z5syhWLFivH79mnnz5jFnzhwOHTrEsmXLSEtLY+3atWhraxMQEEBISAh79uwp0MZCFk6cOMHevXsFps5cpKamMnDgQObNmyeTKSkXf1IZUvv27XF2dmbbtm18/PiRzMxM6taty/jx45kyZQorVqzId2N79epVNm7cyPbt26Walffu3UtERAQuLi4/+dMUDKGhoQQEBLBo0SKZx5OTkxkyZMgvcbxyERERQb169XB3d2fp0qW0a9eO/fv3s2nTJqZMmcLHjx9p1qwZU6ZMkdkMXlS7FovF7N27l4oVK3L06NHv+gxZWVl4eXnh7+9PWFgYlSpVom/fvtjZ2UkEgrKysoSNkb+/P8nJybi5uREfH09KSgo9evTAz8+P27dvM2rUKJSUlJgwYQKtW7fm1KlTeHl5sW3btnyzOPnh8ePHwnPly3JCsViMg4MDHTp0yJeM40+yazMzMxwdHfHz8+Ply5eIRCK0tbUZP348AQEBtG3blu7du+c5TmxsLFZWVhw+fFiKPfPWrVssW7Ysz/LFX43Pnz9jbW3NgQMHZB4Xi8UYGxtLsOb9bIjFYhQVFbG1teXOnTt8/vyZW7duERAQwNSpU4mKiqJatWrMmjVL5jr1PeWFfn5+JCQk8Pjx4+8mxjl69Cjbtm0jMjISeXl5zMzMGDdunFTZXp8+fdiyZQunT58mIyODDRs2cPPmTYoVK0apUqWIiIggJiaG/v37o6ysjKGhIba2tly7do3Vq1czb948CQr7wuDTp0+YmZnh5eUlJQq9efNmoqOjZeqAfYl/o7zQ3t7+u8sLN23a9Fs/j/5kDBgwgJiYGA4dOiQw2yYkJNC7d2+0tbWlehALgkK5aikpKbi6uuLv70+1atXIzs5m9+7d6OnpsWLFim+myvfu3cvSpUtZsWIF2dnZGBgY0KRJEwCmTZvGwIEDfxun6+PHj1SoUCHP46VLl/4lpBpfIrd8xsXFhSZNmrBo0SLEYjEXL15k9+7dPH36lGnTptGxY0eqVq0q9X5ZZXWysj9fsxxduXKFpKQkxowZ813zz+2dGzVqFAEBAdjY2ODl5cWWLVsYOnQoO3bsEByvsmXLCuUvuUwxtWrVYtWqVXTs2JHx48cDOWxo48ePJyoqit69e2NgYIClpSUODg7ftdisWbOGXbt2SY2RkpJCvXr16NmzJ61atcLMzIx+/fr9NErvX4GGDRsydOhQ9u7di76+PpBTqtOxY0csLCy+mUlYv349o0ePZt26dXz+/JlmzZrRpUsXRCIR/fv3p1u3bqSnp/+0UprC4OPHj5QuXTrP48WKFfvlmbnce2zjxo3UqVNH2JTduXOHBQsWULZsWWxtbQkKCsLY2FhKFqKodv3q1Svu3r373YGUzMxMBg8eTJs2bfD396dfv34cOnSIAwcO0LdvX/bt2ydsKuXl5alduzZRUVGCXbdo0QIXFxfS09MFZ7hx48aULFmS4OBgbt68Sffu3TE1NeXo0aPfxcLm4eGBm5ubVP9WWloaDRo0YOzYsezatYuOHTsyZMiQn9rf97NhamqKhYUFGzduFHoSIiIiGDhwIFpaWt8UPt++fTsjR45k165dvH//npo1a2JmZoaSkhJNmjRBXl6eFy9eUKVKlV/xcfJFSkpKvnT/IpHolz9/cnVMT506RdWqVblx4wajRo0iLi6O/v3706NHD2xsbNi+fTujRo2SWkOKatcZGRmEhYWxcOHC73a45s6dS1pamhDw9fHx4dq1awwcOJDt27dL7DMMDQ25fPmyYNddu3Zl2rRpREVF4ezsjEgkoly5crRp04alS5cSEhLCP//8Q5cuXdi7d2++z+VvYffu3QwfPlzK4crKyqJChQrMmzeP0NBQmjZtysiRI6XO+zfxN1v1+2L58uV06NCBKlWqCL7K7du30dHRwdvbu0hjFqq8sGnTpixZsgQnJyd69OhBjx49CAoKYs2aNZw4cSLf93748IGIiAg2b96Mnp4ezZo1w8vLiz59+hAXF0fx4sWLrDH1+vVrLl269ENZ1po0acKFCxfyPH7+/HkaN278w65XEHTs2JG+ffsSERHBjRs3yMjIYMuWLbi5udGvXz+mTp3K9OnTmTp1Klu3bv1hm8fIyEh0dXW/W+fC2dmZOXPm0KdPHxQUFMjKykJdXR0HBwf09PTw9fWVOP/rh5GRkRFBQUH4+PgIm6Hs7GxhsYqJicHDwwMzM7PvWmxSUlJQVlaWihxdvXqVfv360bJlS+rWrcuWLVtITU2lR48eP6Uv5lfh+fPnBAYGsnHjRoyNjTE1NWXVqlUsW7aMu3fv5rsoZGVlcf78eTw8PKhatSpt2rTh0qVLdOvWjUePHiESiahfvz4vX74s9Lzi4uK4fPky9+/f/2ELU/369aUYLb/EjRs3flopX16oVq0a48aN4+XLlzx48ADIic7a2toyceJELC0t2bx5M15eXixevJiPHz/+kOtGRkaioKBAp06dvmscT09P2rVrx7hx41BVVUUsFqOgoICFhQWTJ0+WqgbIzMyUsM+GDRuyf/9+Dh8+TM2aNYXXc+3606dPTJw4EVtb2++mvX7y5Al6enoSr718+RITExPk5eUxNDRk1apVVKpUiT59+hSZoep3gI+PD5cuXeL8+fMYGRkJma8xY8YgFou/eR/5+vqyY8cO1NXVadeuHdHR0XTv3p2zZ88C0KlTJ27evFnoeX3+/JmrV69y8+ZNmRUZRUHJkiV59epVnmVkCQkJv0Rk/Gu4urqSkJAglNT5+vrSuHFj3N3d6dy5M/v27eP27dvMnj2b6OjoH3LN58+fk5mZiaGh4XeNc+3aNWJjY1myZAmlSpVCTk6OrKwsOnbsyPbt26Wo37+2ax0dHTw9PTl9+jQdOnQQXs/N7IjFYkxNTZk8efJ3OVwAQUFBUhnq5ORkevfuzf3797G3t2fs2LF06dIFe3v7X1rJkB/+lhf+3qhQoQJ3795l6dKl1KtXj2bNmrF69Wru3btX5P1woTJdY8aMoVatWnTt2lXqmL+/Px8+fMjTeEaPHk2FChVYv3698Frnzp25efMmtra2HDp0qNAN7E+fPmXq1Kmoqamhq6vLs2fPiI6OZuHChd/tELVr144FCxbw5s0bCZ0oyDHmnTt3/nLK3TJlyuDv78+ZM2cYMmQIUVFRREdH07NnT65fv07FihVZtGgR1apVY+zYsbx8+VJoXP8eJCYmFrmcJxdpaWk8fPhQoMLPbXJNSEgQiEwGDhyItbU1L168YPHixdy9exdTU1Nat26NnZ0d2traUuPKy8tz8eJF4VhycnKhe7e+RnZ2tpTT9vnzZ6ZPn86hQ4coUaIEW7ZsoUSJEowYMYJOnToxevRoKRrrPwVjxoyhcePG7Ny5U+rYvXv3uHz5cp4i1y4uLqirq+Pj4yNsatq1a8ebN2+wtrbm8OHDJCYmoqamVuD5JCQk4OTkRHx8PM2bNyc2NpawsDAcHR2/SQn+LWhra6OqqkpoaCjNmzeXOJadnc2iRYtYvHjxd12jsFBUVGTNmjWMGTMGW1tbYmNjSUxMZOjQoVSvXp1WrVphY2ODjo4O/fr1Y/r06cyfP/+7NyqJiYmULVu2UL+NLAQEBEjoNOrq6grfr4GBAUuWLCEzM5OkpCQ2bdrEgQMHePPmDbVr12bMmDESjtaXyC19jI2NJSkp6bvmmIuvyzPFYjGjR49m69atVK9enStXrqCgoECfPn3o0qUL5ubmBAUF/ZGZbFNTU2rXrs3q1auljmloaODr64u9vb3M9+7du5f09HQ8PT2FMrK2bdsybNgw+vfvT/ny5UlMTCxUxiAjIwNnZ2du3bqFvr4+aWlpTJkyhf79+2NnZ/ddOkpycnIYGhri4+PD4MGDpY4vXbqUYcOGFXn8omLy5MnY2NgwatQoQfpg3rx51KhRAxsbG/T19bl27RqGhoZMnz6d2bNnf3fQJ7fc8HvX7M2bNzNjxgzh/yYmJvj7+2Nra0vVqlUpXrw4L1++REtLC19fX1xdXWnatCn+/v7Y29vTsmVLmePOmzePe/fucfDgQZmlkUWBrDV7ypQpTJ48mY4dO7JmzRogJ3Ddtm1b+vbtS5MmTb4pHfOz8b2O01+n6+cjN+hUuXJlwUcJCgoCciqtCotChX7yo97U1dUlKipK5rGwsDDKlClD9erVefXqlcSxpk2bUr9+fXx9fQtVpvDmzRtGjBjB8uXL8fLyYubMmWzZsgVPT0+mTp363Q2kIpGItWvXMmjQIIGtKTs7mxMnTmBubs7ChQt/qthgfujcuTO3bt0SNsIxMTFMnz5dmLednR0uLi48e/aMVatWfVPN/VtISUn57nrh9+/fS/2+EyZMwMHBQch4icViQkJCsLOzIyIigvnz59OrVy8ePXpEo0aNsLGxYdq0aaxfv15CV0lLSwsfHx/mz5//Q8oG1NXVSUxMlBBa9PX1ZejQoZQoUYI3b95I1ODXrFmTatWqcevWre++9r+B/BqWGzVqxJMnT2Qe+/jxIzdv3sTS0pLTp09LHCtfvjwjR45k+/btxMTESAUu8kJaWhoDBgzAzs6OgIAAZs6cycqVKzly5Ai7du36IYGOlStXMmvWLDZt2iSUCN+4cQMLCwt69+79yzNduahbty7nzp0T9HTS0tIkWFK7devG4sWLEYvFLFq0qMDsc3nhR9g15DAMfumUjB8/XhCHFYlElC9fnlu3btG3b1+uXbuGk5MTAwYMIDs7m06dOmFmZsbUqVNZunSpwFoIOYGZvXv3MmXKlG+KoxYUZcuWlSCEun79OvXq1aN69epkZGTw9OlTQYNPU1MTa2trKYrrPwVfi8Z/CT09vTztWiwWs23bNubPn4+Pj4/EMTU1NRYtWsTq1asJDg6mY8eOBZ6PnZ0denp6BAUFMXfuXFxdXTl58iRv3ryRIr8oCpycnDh+/Djz588XRM+fPHnC2LFjEYlERdog/Qjo6OgQEBAgUc5pZ2dHamoqkJN9d3Nzo3LlyixevPi7M16561ZR+5lz8e7dOwnmQEtLS3bu3ClULTRs2JC7d+/Su3dvLl68iLm5OUOGDKF06dIMHjyYtm3bMnXqVObPn8+tW7cEB0EkErF48WImTJiApaXld80xF506dZLoS42Pj+ft27fC/Xnq1CmBwERBQYGZM2f+FsQ5fzNdvzeePn2Knp4eDRo0oEePHvTu3Rtzc3PhrygoVKYrOTk5z0U6KioKLS0tmcdOnDhB3759KVOmDKNGjcLX11figdC1a1fs7OwK1eS6cuVKFi1aJLWRL1OmDFu2bGHOnDl4eXkVeDxZqF27NgcOHMDLy4u+ffsiFotp1aoV3t7eEkKy/wZKly7N7t27hZrq3AxSLmrXrs2kSZNYsmQJ3t7eUkxthUFycvJ39zZoampKUfYaGBjw7t07unfvjoWFBW/evGH06NGIRCISExMF1rJc7NmzhypVqvDixQsmTpzI8OHDmTBhAtHR0ZiamuZb019YDB8+HGdnZ5YsWYJIJCI0NJRZs2aRlZXF9OnThZ6yLz9LaGioUPf7J+HVq1d5BjxevnyZ5+btypUrGBoaYm1tjaWlpVQJqqmpKfXr12f79u0Fnoufnx99+/YVFshcKCsrs337dkxNTTE2Nv6uqHjJkiUJDAxk//79DB48mIyMDGrXro2bmxu1a9cu8rg/Armf8+TJk7x7906iLAdyAgwzZ85kzpw5rFy5kpkzZxb5Wj/CriHHOczOzhYyndWqVcPZ2ZmePXtiamrKgwcPGDZsGAoKCjx9+pSDBw9KvP/169cCy9m0adMwNjZm6dKlvHv3Dl1dXTp37vzdc8zFhAkTmDFjBr6+vigqKhIaGkqXLl2AnGzIwIEDJe4tAwMDVq5ciY2NzQ+bw6/C1wHOL/HixQuZlQOQw2xYsWJFevfujZmZGR06dKBFixbC8YYNG3LixAnGjRtX4AzgrVu3KF68uNQmW05ODhcXF0xNTRk5cuR3BQEUFBTw9vbm5MmTODg48PHjR3R0dBg5cqTU8+RXQyQSMWfOHE6fPs0///xD69atJXrM1NTUmDp1KnPmzGHRokUsWbKkyOxoycnJKCsrF/n9uVBXVyc2NlbY16mpqQl9fs2bNyc8PJz9+/cLwdLnz59LOTJRUVEkJyfj7OxMkyZN2LBhA+np6Whra8vMwBYVQ4YMoW/fvnTs2JGSJUsSFhYmCJ0fOnSI6tWrS0hKtGzZ8peSoOWFv5mu3xsTJ06kWrVqnDp1iurVq3P16lXi4uJwcnLC3d29SGMWyiqHDBlCUFCQlDHHxsYSHx+fJ/FE7oKsp6fHjBkz6NOnD82aNaNmzZpERERw6dIlOnXqVKgIc26dpSxUqVKFuLg4QcH9e6ChocH48eOlNtm/A6pUqcKhQ4dQUVGhW7duEscsLCywsLBAW1sbR0dHnJ2dZfbVyKqB/1rv5sOHDzIzFdHR0WzevFnQQGrVqhUjR46U6ZAePXqU+Ph4PDw8hOP9+/dn4MCB9OrVixkzZpCVlUWlSpUksiby8vJCpk5RUZHixYvj7e3N69evmTFjhkA/Xb58eby8vDAwMMjz+8rIyCAwMJCIiAhKliwpfD+yYGFhwfPnz+nXrx8jR44kNTWV/fv3ExQUxKBBg6TK7QpbQvc7YciQIUREREjZSkZGBsHBwTg4OMh8X65da2lpsXXrVsaOHUuFChUEev2zZ89SoUKFQvUWBAQEsGvXLpnHlJWVadiwIeHh4dSvX7/AY+Y1lpWVFVZWVt81zs+AkpISBw8e5NmzZ1LsqRYWFkDOxtfQ0JBPnz7J3KgWxK7j4+NlZjmTkpLw8vLi+PHjiMViatasyZgxY2Q6pH5+fpQuXZrp06cL5Zr9+/dHX1+fkydPsnnzZpKTkylWrFievXSKioqkp6ezevVqFBUVmTRpkuDoFytWDA8PD2xtbfN0tHM3fVeuXEFFRYVevXrlWbLYqFEjrK2tMTY2ZuTIkSQmJnLx4kW8vLyoVauWVAnan2zX06ZNY/DgwTLLy7du3Zrnpje3VEtBQQFfX18mTJhAZmYmnTp1IikpiRMnTgiskgXF3r178yzvE4lE9OvXj6NHj+bJFlxQyMnJYWRkJGi+/W7YsmULISEhDBkyRKLHLNeuO3bsiJ6eHrdv35bJ5FcQu/748SNlypSROi89PZ39+/ezb98+MjIy0NLSEjT0voafnx9VqlRh/PjxArlZ//79qVatGsHBwZw4cQI/Pz/k5eX5/PlznlVOSUlJzJkzh8qVKzNnzhzhWnJycsycORNnZ+d8ncPbt28LzyEDAwMJ5//r78Dd3R1zc3MsLS3R0tIiPDycsWPH8vHjR7Zu3Spxfmpq6neTjPwI/HW6fm9cvnyZkJAQtLS0kJOTQ15ennbt2uHm5saECROKVN1UqPLCU6dOCaU+/v7+fPr0idevXzNo0CDmzZuX5/u6dOki9Lu0bduWEydO0K9fP7S0tARRzMJGEpWVlfONdpcoUUJI3/+X0bNnTymH60tMmDABbW1tNm/eXORr6OrqcvDgQYkyxatXrzJ48GDat2/P4cOHOXz4MG3atGHQoEF5Np/37duXtWvXEhoayqtXrzh9+jTv3r3j6tWrPHjwgJIlS0o4XC1btiQqKoq7d+9iaGhImTJluHfvHgMHDsTf358BAwZgbW3Nzp07qVu3LoaGhsycOVMmgcjFixfp1q0b0dHRdOvWjYoVKzJ69GgWLFiQ54NrypQprF27lrCwMFJSUjh69Ci+vr4MGjRI6txcrbE/EU+ePMHGxobr16+za9cuXr16RVJSEsOGDWPMmDF5LoqtWrUSfq/q1asTGBjIxIkT0dbWpmvXrowZM0YolSsoMjMz893kamlp/bA+gN8Z+vr6WFlZ5fmM69q1K126dGHLli1FLh+uW7cuISEhxMfHC6+9evVKoMMNCAjgyJEjDBkyhGnTpuVZZtetWzcCAwMJCQnh1atX/PPPPzx58oTHjx/j7+9P586dJRyuKlWqcOfOHd68eYOFhQU1atQgJiaGkSNHsnjxYkxNTRkwYABr1qyhf//+giSJrN/96dOnGBkZcfHiRQwMDNDT08PNzY0RI0bk2SNsbm5OQEAA8fHxvHz5kkOHDrF06VLmz58v9X37+PjkSyH/OyM+Pp6WLVvy6NEjdu3axY0bNwQB28aNG+dZ8luuXDmeP39ORkYGmpqaeHl5sWzZMsqVKyeQQLRr165Q2ebExESZjkAu/lfsulatWtjb2+eZIaxRowYjRozA19e3yOXDurq6vH79mrCwMOG1T58+CaRlO3fu5PDhw8yZMwdPT888Mz6NGzfmyZMnBAQE8PLlSy5fvsytW7eIjY1lzZo1jBs3jocPHwoOl4aGBocPH+bTp0+MGjWKJk2a8PnzZyZPnszEiRNp0aIFlpaWuLi44OLigpubG507d5YZDE5MTKRfv354enqir69Pu3bt8PPzo3fv3nnqwzVt2pQTJ05QsmRJLl26xLlz5xg5ciReXl5SzJV+fn7/Wrnpl/hbXvh7IysrS2C6LVOmDG/evAFy1rCHDx8WacxC6XTt2bOHu3fv4uHhIRAWZGZmsmfPHrp3757vQ7hPnz6CFteXePDgAY6Ojhw7dqxQD3FTU1P27NkjRf0LOV9Ut27dOHXq1HeVIf1X4O7uLugtfc24Iity9vUD6sGDB8yYMQMfHx9B7NbQ0JDAwECpKHtiYiK9e/fm5MmTAkPh/v37WbJkCQ8fPpRaSFRUVBg1ahTz5s3D1dWV2NhYdHR0iIiIkCpD8vX1JSUlhd27dyMnJ8fly5dJTk6mdu3ahIeHs2zZMmbPno2uri5dunTBysqK1q1b8+LFC+zt7fH395e6XxYuXIiWllaeDeW5EIvFWFhYMHr0aKls2po1a4iNjZWo2f+T9Hz27NlDTEwMixcvJiYmhuLFi5OWlsaKFSuwt7fPNxI5efJkWrduLVBS5+LDhw9YWFhw4MCBQpV9jhkzhnHjxlGvXj2Zx/v168fGjRvz3cD9r+DMmTN06dIFBwcHqah4Qew6Li4OR0dHRo8eLZCH9O7dm+XLl0v0ckDOM7Vnz55s2bJF2KyHhIQwd+5cwsPDJRw3yIlk9+nTh+XLl3PlyhX8/Pxo0KABQUFBXLlyReK5HBYWxvbt28nIyOD+/fuEhYURGxuLqqoqr1+/5vjx49jb21O8eHGMjY3p1asXPXr0IC0tDRMTEzw9PaVkDQ4cOMDZs2cLVMI0Y8YMqlSpwqhRoyReP378ONu3b2fv3r3Ca3+SXe/fv5/Pnz+zYMECHj16hJycHAoKCowdOxZXV9d8e5I9PT15/vy5lL5eeno6AwYMYP78+YUSr92wYQOlS5cW6MS/xowZM+jZs6cgWfG/jGfPnlG3bl169OghlfkriF1nZGTg6OiInp6e0Oc0adIkjI2NZVYdTJgwgT59+ggspnfu3GHKlCncvXtXpjBs+/btWblyJSVKlGD06NG0aNGCkJAQTp48KWETKSkpDBgwAHNzczZs2MC7d+94/vw5kMOMmJ6ejpWVFQkJCZiammJkZMSAAQNQUlLCwsICJycnqSzc7du3mTt3LocOHfrm3m7Xrl1cuXKF1atXS2QVw8PDmTBhAoGBgRIBvn9Dp8vW1va7pAxyyW5+5+fRn4z27dvj5ORE7969sbKyIj4+ntmzZ7N582Zu3LghEdgoKAqV6TI2NsbV1ZXTp0/Tv39/tLW1SUpKwsTEhF69euX73q1bt+Li4sKMGTMIDQ3l1q1buLi44OjoyI4dOwrtHA0aNCjPBdXHx+e7+z7+S8hl/ipqjbeuri5NmzYVSAwOHTpE3759ZRq5hoYGvXr14siRI0AOu52lpSXJyckYGxvTt29f2rVrR9u2benWrRupqaksWLCAEiVKMGzYMOTk5NDR0ZHaAInFYvbs2YO5uTmzZs3CwMCAhIQEzp8/z6NHjzA2NiY5ORl/f38qVarEmjVr0NfXx9bWlilTpuDs7CzTQZ8xYwZ+fn7fVKwXiUR4eXmxb98+Qftm1apVGBsbk5SU9NuI/xYFxsbGTJw4katXr2JjY4Oenh7p6emMGzfumwuCm5sbQUFB2Nvbc/78ee7du4eHhwf9+vVj5cqVhe6zGz16NK6urjIjeNevX6dEiRJ/Ha7/Q24mv6gl1KVKlcLc3Jxjx44hFot5+PAhOjo6Ug4X5JT5Ojk5sW3bNiAnUmxgYMDz58/p0KEDlpaWdOzYEX19faytrcnOzmbSpElUrlwZU1NTkpOTadeuHf369ZN6Lm/btg1ra2ucnZ0pX748MTExggSDoaGhkIHV19dn9+7dmJmZ0axZMxwcHLC0tJSpI2dubs6rV68kCHfygqurK+/evcPExITVq1ezYcMG+vbtS2BgIJ6enkX4Zn8PdO3aVag8GD16NF26dCE9PZ2VK1eipqYmU2g3F0OGDEFeXh4LCwuCg4O5f/++sK4OGzasUA4XgLW1NZs2bZJZffLmzRtu3rwps8ztfxFycnJCn2RRoKioiKGhISEhIaSmppKSkkJERESeZd7Tp09ny5YtQE7bRrNmzQRNKysrK7p06YK+vj5jx44FcvZezZo1o1atWigoKGBnZ0edOnWk9gO+vr6Ym5szePBgSpUqxdOnT0lJSaF69eoMGDAAX19fVq1ahaWlJWFhYQwZMgQ1NTWmTJmClpaWzPuhcePG1K9fn8uXL3/ze7C2tqZ58+Z069YNNzc3tmzZgq2tLS4uLuzateu3KBv+nTNd8fHx2NjYoKGhgYaGBjY2NiQkJHzz87i4uFC+fHlUVVXp1KkT9+/flzgnLS2N8ePHU6ZMGdTV1enZs6dU/2lBri0SiaT+vu4pvHfvHh07dkRVVZUKFSowf/78Qn1ns2fPFuxw4cKFvHjxgvbt23Ps2DE8PDwKPM6XKJJwRcuWLdm7dy8RERGCZseZM2dYunRpnj9KqVKlOHToEGZmZkITe6dOnTh27Ng3SSkiIyMZP348JiYm9OjRg1GjRtGwYUPevXvHlClThAX6/fv3uLq6cvz48Tz7UP7XkJaWxoIFCwAEVq6ioE+fPuzdu5ejR49y7969fJXj27Rpw927dwE4cuQIgwYNwt7enoiICIoXL07fvn1p0KCBIBqZG4WqU6cOKioq/PPPPxKb9ezsbObPn4++vj4lS5ZEU1OTT58+CfW1e/bsITU1FVdXV8aPH09AQAChoaG0adOGixcvsm/fvjz7/+Tl5WnYsKEEo1leUFNTY+PGjaxbt46KFStSt25d/P39mTVr1r+iAfOjUblyZby8vDh//rzwfYjFYhwdHfPUIVNUVGTbtm04Ojpy7tw5fH19qVChAidOnJDSQ/oab9++xdnZGWNjY8zMzISoZ/v27Rk0aBDh4eFADl3/tm3bmDVr1g9hOfuvoHfv3gB5ZgULgj59+nDv3j1WrFjBvXv38pQGgJySxy/tWk9PD2dnZ168eEFWVhampqYYGBgI2c3c57qamhq9evVi3bp1UhuzvXv3EhcXR7NmzdDU1OTz58/IyclRvnx5Tp48SenSpVmxYgVmZmYsX76cR48eYWRkRHp6Ops2bWLNmjV56k316NGDf/7555vfgZycHHPnzsXPz486depQuXJlwc7/LYbaH4nixYuzfv16Tp48SUJCgkC+NGLECKkNUS5yiR9Wr15NeHg4Pj4+pKenExgYiKmpab7X+/TpEx4eHoJd51Y+TJ8+nT59+nDhwgXEYjGZmZkcPHiQQYMGsWbNmr9B0v9DbsDxe2RvmjdvTlZWFqNGjeLly5f59sCWL19eCMweP34cZWVlli9fTnJyMh8+fMDAwABzc3MOHDiAsrKyBBX91KlTGTNmjJQDc/XqVfbu3cuAAQOQk5NDUVERkUiEioqKsDasW7eOPn36MGDAAK5cuUL//v1p1KgR7u7ueHp68ujRI5nz7dOnD8ePHy/Q95DLQ9C6dWvKli2Ls7Mzfn5++TJx/0UOrKysuH37NsHBwQQHB3P79u1vtgEtXbqUFStWsHbtWq5fv07ZsmUxNDSUeEY7ODhw4MAB9uzZw4ULF0hOTsbU1FSiTL6g196xYwfR0dHC35AhQ4RjSUlJGBoaUr58ea5fv86aNWtwd3cv1B7CyMhI6GmsXr064eHhvH//nnfv3gkETIXF99HbkNP4GRERQd26dZk2bRpr167l2rVrMh0pkUhEmzZt8l3YcyEWi3n//j1Xr15lw4YNuLm50ahRIyAnPTxz5kxGjhyJmpoaM2bMID4+HjU1NWxsbJgxY8Z/YhP8I6CkpISenh5v3rwhIyNDqqlaVjOprI1GnTp1aNasGX379sXMzIzs7GypUtFcxMbGoqGhQXZ2NlFRUfTo0YNt27YxYcIEwZnauXMnurq6rFixggkTJgiNrh4eHgwfPpzBgwdjaWlJRkYGoaGhgpYL5Dj4zZo1E65naWnJ3bt3OX/+PK9evUJNTQ15eXk0NTWFPoE3b96wa9cuBg0ahIaGBtra2kRGRqKqqoqCggKRkZF06dJFisXv67I5yNF6+tbG409HzZo1SUpKokSJEqxatYqtW7dy5swZKW2rXOjq6jJr1qwCjR0fH8+jR4+YMWMGc+bMwcXFBZFIxOvXr5k/fz716tUTniVRUVHIy8vTp08fAgMD/0i9pJ8FW1tbNm/eTEZGhtTzrqB2/fnzZ/r06SPoCYlEIkqUKCGTDjfXriGHlaxmzZps2rSJAQMGCHZz/vx5RCIRJ0+eZNSoUQQHByMSiRg9ejRpaWm4uLgQGRmJmpoa165do0WLFkL27MyZMxLPlLZt2zJ06FBOnDgB5NTRi0QiSpUqJVD9P3/+nOvXr2NgYIC8vDw1atTg0aNHqKqqoqioiK6uLmFhYVKZGVl2XaxYMbp37573F/4fgIaGBk+fPqVy5cr4+vri5+fHrl278qTuLl++PJMmTSrQ2B8/fiQmJoaxY8cyfPhwAgMDUVRUJDExUbDlDRs2sHnzZhYvXoxIJKJLly7s379figzifxk9evQgODgYJSWlItt1LvnN6tWrSU9PJzo6mgMHDsi068zMTCGaHxUVRcWKFfHz86Nly5bC8/7ChQu8efOGc+fO4ezsTIsWLdDU1KRLly5kZWUJrJ86OjrcuXMHLS0t/Pz8UFFR4dWrVxJs1TVq1GDOnDkcOHAAQCjXL1myJGlpaUBOaeLr16+pU6cOkMOI+uzZM2G91tbWJjk5WaocVZZdKyoq/lAG1B+J35VIIyIiguDgYK5cuSIwf27ZsgV9fX0ePnwo/C5fz2XVqlXMmjVLcFR27tyJjo4Ou3fvxt7ensTERLZt24a3t7eg9+vj40OlSpU4deoURkZGhbq2pqZmnkmbXbt2kZqaiqenJ8rKyjRo0IBHjx6xYsUKJk2aVOQgz/fqwH630wUIzWUtWrTg+vXrbNq0CWdn5yKNlasRsmfPHsqVK8eJEydo0qQJ0dHRgtNVr1499u7di7GxMYcPH/5tDep3gEgkYufOnejr67Ns2TJGjBhRJLp7eXl5Jk6cyMiRI0lISMg3guzl5cXKlSvZsWMHHz58ICsriw4dOkhkryIjI6lTpw5GRkbs2LFDEKGWk5Nj27ZtGBgY0KlTJ3R0dFi0aJGw2Lx//54jR44IG7FcGBkZERMTg56eHiVLluTTp0/ExcWhqanJP//8w9ixY9mxYweQ03emq6tL3759UVJS4ujRoxw7doxjx47RsGFDHB0dv1vj5L+Az58/IxKJqFu3LuHh4SxevBh/f/8ijxcUFMTatWvR0NDg/PnzVKlShWfPngm9BBUqVGDjxo1YWVlhZGQkIaT+F9JYuHAhQUFBLFq0iNGjR+fJ2PctWFtbc+vWLW7fvg3kLfi4Y8cOrKysuHTpEufPn2fy5MmkpKRIBCoePXpEeno6LVq0oE2bNoSEhAibKgcHB65evYq+vj7Vq1dnxowZwoYxPT2d5cuXS5XzNW7cmKFDh9KgQQNKlSpFVlYWb9++pXjx4jx//pzKlStz584dIKfvrHTp0vTs2RMVFRXOnj3LtWvXuHbtGrq6ugwbNuy7BWP/CxCJRGRmZlKpUiWioqKYO3fud+kl3bx5k0WLFiEWi3nw4AEqKio8fvxYOK6hocGsWbNwdXUlNDQUV1fXH/Ex/rOws7Njz549LFu2jNGjR9O0adMibRA7duzI7du3OXXqFBUrVsyTmCMwMBBDQ0OePn3Kvn37MDY25u7duxIBttzKhzp16jBu3Dg8PT2FaiJDQ0PGjx+PpqYm7dq1w8HBQZCiEIvFzJ8/n9GjR0tcM5fIqmLFiujo6KCgoMCbN29QVVUlMzOTiIgICUIsJSUlDA0NKV26NKGhobx48ULoUbe0tPzXJQGKit/V6bp8+TIaGhoS32vr1q3R0NDg0qVLMp2uZ8+eERMTI0HspqysTMeOHbl06RL29vbcuHGDjIwMiXPKly9PgwYNuHTpEkZGRoW69rhx4xgxYgTVqlVj+PDh2NnZCYGKy5cv07FjR4lEg5GRETNmzOD58+f/2lrwQ9JBudHJ69evM3DgQAlBz8Ji1qxZvH//nqCgIHr16sXcuXPZt28fe/fuxdfXVzhPWVmZIUOG/BLhyujoaNasWcP8+fPZv3+/THa83xl6enr4+fnx7NkzJk6cyI4dO4rEeKaqqoq5uTmnT5/m5cuXDBs2TChLgJx07sSJE4mJicHS0pIRI0ZgaWnJq1evJCLYycnJyMvLC5ttExMTzp8/LxyXk5Njw4YNuLq6cv/+fTIzM0lPTxf6qTw8PKT60xo2bMjq1auZMGECNjY2jBo1ipkzZzJmzBgGDRrEhAkTsLOzE1LUnTp1EkofcscsXbo09+7dY9iwYVy4cAFAoMONjY39n2MK0tHRoWzZsoSHh9O5c+fv6lvz8fFh//797N27F2dnZ3r06MGZM2eIjo5m7ty5wnkikYipU6cKPQY/E0lJSWzfvp158+axY8eOPMvUfldoaWkRGBhIZmYm06ZNw93dvUiMZyKRiAEDBnDv3j0+ffrEvHnzJMpJU1NTWbt2LQEBAaxcuZJ27drRtGlTihUrJpFxzu0RyrXrnj17cubMGYlrrV27lk2bNnHp0iXS09PJzs7m9OnT9OzZkwkTJkgFhCpWrIi7uzuTJk3C1taW4cOHM3PmTMaPH8/IkSPZtGkTtWrVEsqHa9SogY2NDdWrV6dJkybs3LmTli1b8uDBA6ZOnYq/v79Q2vby5UtiYmK+Wzz+T0SLFi2Iioqifv36rFu3rsjjXLlyhTlz5rBu3Tp27dpFlSpVCA0NpXr16tjY2Ej0JY0bN05KbPlnID09HX9/f+bPn8/atWtlkkH8zlBSUsLf359y5cqxaNEi5syZI6VxWVD06dOHxMRE4uPjmTVrlhBYgf8voTJr1iwuXrxIgwYNUFZWpl27dhKZ4bS0NLKysihfvjxlypTB1NRUaCvJxcyZM7ly5QqBgYF8/vwZsVjMrVu3sLa2pn79+lLi5iVKlBB6/IcPH86QIUOYMWMGDg4ODB8+nLt37/LixQuhjLBMmTKMHDmSFi1aUKJECby9vTExMSEqKgp3d3fWrVtHeno6YrGYV69e8ebNGyFr9jvjR/V0JSUlSfx972ePiYmRKaejra2d572Y+/rXpZs6OjrCsZiYGJSUlKQy21+fU5BrL1iwgH379nHq1CkGDBiAk5MTixYtkpiPrLl8Odd/Az/E6dLU1OTq1auEhISwe/fuIvcORUZG8vr1a6ZPn46ioiKRkZE0adKE4sWLs2XLFrZv3y5xMzVt2jTPut8fAbFYjLOzMxMmTKBq1aoYGxsLlOMFaeT8nWBqasq6devo378/x44dw93dnTt37hTagTQ3N6dPnz5kZGSwY8cOypcvL/xGGhoaeHh4cPPmTUqWLIm/vz++vr4SWlthYWGMHDmSpKQkQZskIyNDqmyiWrVqDB48GB8fH1q2bEmvXr14+/YtBw8elCoVGj9+PKVKlaJ48eLo6Ohgb29PdHS0cNzR0ZE7d+7Qpk0bvL29AViyZAlubm7cuXOHw4cPSzEcbd++ndTUVGrWrEnlypXR0dFBWVmZkJCQQn1ffzrOnTuHv78/ISEhhW6ez0VKSgo7d+5k06ZNFCtWTLBrRUVFZs2axbNnz3j27Jlwvp6eXoF67L4HPj4+WFhYoKKiQo8ePVBUVKRv374SgZ0/AY0bN2bFihWMHTuWu3fvsmDBAi5fvkxKSkqhxmnRogX29vaIxWLu3btHtWrVaNq0KaVLl0ZVVZXx48fz4MEDkpOTWbt2LZcuXUJNTU2w67i4OIYPH86DBw/yteuSJUsyfvx4zp07R4cOHejWrRsXL15k+/btmJiYSJy7adMmihcvTunSpSlZsiT9+vWTYIuaM2cOERERmJmZMXXqVCDnd12xYgWBgYHcu3eP+fPnS9xbe/fuJT4+XiglLleuHAoKCr/Eyf+dsH37djw9Pbl165ZQ5lMUzJs3D19fX3R0dHj79i3Vq1dHJBIxcOBAGjVqJJAvQU7GKzMz80dMP09cuHABIyMj3r59i7GxMZUrV2bMmDGFbqD/t1G2bFnmz5/P7NmziY+PZ968eYSEhBSaVr9SpUpMnToVNTU1Xr9+TdOmTWnYsCHlypVDWVmZXr168ejRI549e8b06dMJCwujUqVKEs7y6NGjOX36NL169UJOTo6srCwpu1ZUVMTR0ZFXr15hampKx44d8fb2Zs6cOUycOFHi3DNnzqCiooKOjg7FihWjS5cuEuvqmjVrCA0Nxc7OTtBbu3jxIqtXr2bz5s18+PBBIGTLxdmzZ4mIiGDcuHFUqlSJChUqoKKigpOTU6G+r1+NH+V0VapUSSCd0NDQwM3NTeb1ckv58/vL/V5lZVfFYvE3s65fHy/Ie74+pyDXnj17Nvr6+jRu3BgnJyfmz5/PsmXLvjmXvMb/Vfgh5YWQQ67xvfD29pag7i5TpozAaiIvLy8wbeXWJUdFRf1UJrP169ejpqYmkU1r0aIFQ4YMoV+/fmzbto2KFSv+tOv/aKioqNC3b190dHTw9vZm/vz5KCgoUKFCBRwdHWWygH0NOTk5rK2tsba2platWvTs2ZO4uDjMzc3p2rUrDRo0oFGjRhKZKBMTE4KDg+nWrZtEiWHuPXPkyBEJ8cLTp0/j6urKgAEDcHZ25vXr1+zcuZNPnz7JZMN78uSJ8O93796xefNmXr16JdDl5tJgf42bN29KfK5GjRqhrKzMnTt3GDJkCBkZGYLzJhaLycjI4ObNm0VuoPwTUbNmzSKXreXiyJEj9OvXT1ioy5Qpw9WrV4Xj9vb2eHt7CxmvN2/eULp06e+6Zn44c+YMp0+f5tixY8KcmjdvzsCBAxk6dCgVKlSgQ4cOP+36Pxry8vJ06dJFKM90d3dHTk6OMmXKYGdnl2fv5dfIFZVNSEhg69atREZG0rlzZ7p27UrDhg1p1qyZRE+dsbEx48ePp2HDhhLluLm6VrmZ6Vw8ePCAcePG0bVrV5ycnEhMTGT37t28efNGZmTz6dOnwr8TEhLYv38/x44dEzJqXbt2lVnu+mVArFSpUtSvX582bdoIDkapUqWkNFYuXLjAyJEjC/Q9/RdQpkwZiabzouDhw4fUqFFDIEfR1NSUiCDb2dkxbtw4of81IyPjp2YVX7x4wcKFCzl8+LAEU23Pnj1xdXVl8+bN35QG+Z0gEolo0qQJzs7OrFmzhvXr1yMWi9HU1MTCwuKbMj25aNq0KU2bNiUtLY3AwECOHTtG69at6dq1K02aNPl/7d17VFTl/j/w93AbQGFEuYxjEEQCmpCEKKO28GQg3ijzRihEckgldCHe8o5aKBzTCpbayXtH047FaXkqAs1qeUHIAwnmLb+QGAJecPAyMgjz+4PF/jkwIAhswHm/1pq1ZM+z97OZ8Rnmsz/P/jwYNGiQzt/VoUOHYtGiRcJFkLoLODExMQBqx/WjF0hu3ryJGTNmwN3dHTNmzIBWq0VqaioKCgr0XoB/tFLd/fv3cfToURw9ehQ3b95Ez549oVQq0a1btwZZ++PHjwv/trKygoeHB4YOHYpz587B2dkZXl5e2LFjh84+9TPtnU1bTS8sKirSKVKkb0F0oPY9DAkJafKYzs7OjS4XULekjz51sxRKSkp03veysjJhH7lcDo1Gg/Lycp1sV1lZmVDrQS6Xt7hvoHYKYkVFBUpLS4VZOvUzWmVlZQAaZuPE1GZBV1soLS3VuT9g0qRJCA8Px+TJkyGRSODk5KQz7WXnzp1PXLbxcaqrq5Gamtrg3iGgdsCvWLFCmALXVdTd3Fi3fs5vv/2G48ePY8uWLVi0aBFiY2OxYMEC2NnZNdj366+/brDt3Llzwvo+dR/+RUVFDVanNzY2RlZWFry8vIT1fFatWgUjIyN88cUXeO6554Qv2RcvXsSmTZvw7bffCvd7+Pr64rXXXsOKFSuwZ88ehIeH6xz/m2++QXJyMj7//HMYGRnB09NT54b4DRs2IDo6Gt26dYOdnR20Wi0uX74MX19f9O7dGyNHjkR1dTWGDx+OyZMn63xgde/eHbdu3YKpqSlsbGyEinH11f/y11Q5ZkNTVlamU4Z88ODBWL58OSorKyGVSuHk5CR8GALA1q1bW/2FsCnJycn47LPPGlytNTY2Fv6vdKWgq25cA7VLIFy+fBk//vgjDhw4gPfff19YvP65555rsK++cS2TyRAbG6tzZbG4uBg3btxo0FatVuPs2bPC5/aMGTPQs2dPZGVl4Y8//oCvry+A2inFs2fPxhdffKEzhTAgIAD79+/HkiVLGlylXL9+PQYOHIgtW7agtLQUgwcPhre3t/D8zJkz8dprr+HBgwd49tlnUV1djQcPHsDLywsVFRUICQmBRqOBp6cnwsLChPtMAAiBl1QqhVQq1XkNH8Vx3bj6f69lMhlMTExQVFQER0dH2Nra6rxeqamp7VqoZPPmzVi9erXepUHee+89BAYGIioqqssU2Xr0/+SsWbNQWlqKjIwM/PDDD/jss89w+fJlJCYmNlrcqP7YNjMzw4QJE/D6668L4/rWrVsNpgoCtdN0jxw5gpEjR6J79+7w8/ND//79UVRUhJ07dwpLwmi1Wrz99ttYs2aNTrXF4cOHIzs7G5GRkfjqq690jh0WFgYnJyckJSUhPz8fSqUSzz//vPD3PiAgAH/99ReKi4vh4eGBhw8fQiKRYPz48Th8+DAiIyNRXV0NZ2dnREREoE+fPsKx3d3dMXbsWFhaWkIikTRa8ErfxZqOGNttFXRZW1s3a50uW1vbZiUqlEolVCoVsrKyhIvjp06dgkqlarQQnouLC+RyOTIyMoTPaY1Gg59//hmJiYkAAB8fH5iamiIjI0NYs+/atWvIz88Xpog/Sd8AkJOTA3Nzc+FzXqlUYunSpdBoNMLSN+np6VAoFEIF147QqYKu559/HmfOnBEGkY2NDUaOHInFixfj/fffR15eHnx9fVFVVYWEhAR4eXm1qgx6Uy5cuABvb+9GP6CHDRvWaAq3K5BIJBg4cKBwo/qGDRuQmJiIjz76CJMmTcLkyZPh4+PTYDFlfcd5HBMTE8yePRvbtm0TvugWFRVh2rRp6NmzJzZt2iS0TU5ORkJCQoOKTBKJBKtWrcKYMWOEKmt1TE1NERcX12SVrfpfOG1tbeHn5wc/Pz+Eh4dDKpXi+++/R1BQEFJSUoQSu49eqacn4+rqijNnzghfuIyMjDB//nyEhYVh27ZtyMvLg6urK7RaLfbt24eCggL4+/u3y7lotVpoNJpGM2n29vbCPQldtYS1q6srXF1dMWPGDOzcuRPLli3D3r17MWrUKISFhcHHxwdubm4tniaiT1RUFLZv3y5MG7t58yZmz56NW7du6ay/uG/fPkRFRekt4hMSEoJ9+/ZBpVLpXHGvm6ZWf4HYRz16PBMTE0ilUgwbNgxWVlaYOXMm7OzscPz4cUyaNAkLFy4Upiu98sorBpWxbg8uLi5C5ck68fHxePvtt7Fz5048fPhQuIB37NgxbN++XW+Q31by8/OFi4D1Pbo0iL4iAF2Bg4MDpk+fjmnTpuHNN99EXFwcfH194evri8jISAwZMgSenp56Kxw+qjnj+o033hDW0VKr1VCr1Vi+fDmys7Oxfft2dOvWDUDtl+EXXnhBb3l7X19fODo6IicnR+diCVBb5KOpz/i6aXLA/1+HcPDgwejevTvCw8OF8t0xMTEICAhAdHQ0AMDLy0souNYVdNZCGv369UNQUJBw3yxQm7keN26czvjx8PDAunXrMGHCBEgkEsTGxiIhIQF9+/ZF3759kZCQAEtLS4SGhgKofV8jIyMxf/589OrVCz179sSCBQvg6ekpTHNuTt+HDh1CSUkJlEolLCwscPToUSxbtgzvvPOOcNE8NDQUq1evRkREBJYuXYpLly4hISEBK1eu7NC/7Z3qks9bb72FlJQUnfnEsbGx8Pb2xqhRo5CcnCxULXRycsKKFSs68Gw7dl5oW7K0tMTKlStx5coVJCQkICsrCxMmTICTkxPGjx+PzMzMBoP73r17OHPmDHJycqDRaB7bR69evRAXFweNRgNjY2PU1NQgMTERycnJOlMRCwoKGv3QNDU1xXPPPddgIb0nMWvWLKxfvx6rV6+Gq6srnnnmGURFReHAgQOIiYnpEjfhdhUBAQFIS0sTynwDtVPT3n33XYSGhuKdd95BXl4eAgICUFhYiN27d3fo2HpaxrWxsTH+/ve/o7CwEDt27MCtW7cwbdo0eHh4wM/PD//9738bTPeqqqrC2bNnkZ2drfN+Ncbc3BzR0dHCFySJRIKYmBgcOHBAJ7OUnp7eaJYYgHBvV2utXLkSwcHB2Lx5Mzw9PSGXyzFx4kR8++23+OSTT1BYWNjqPqiWo6Mj7t27p/Oaenh4ICUlBQsXLsSrr74KlUqFMWPG4Msvv8SXX34pfFlvL02N3adlXEskEowZMwb5+fn45ptv0KtXL8yePRve3t5wd3fHzp07G9zTWVNTg4sXL+LUqVO4efPmY/uou43gxRdfFO7hCgoKQlpams4FzB9++KHJcT1hwoRmr6nVlH379gGondo4dOhQyOVyvPLKK/j666+Rl5eHI0eOtLqPjtCZF0feu3cvPD09ERgYiMDAQHh5eQn3xNe5cOGCzn2GdTOmoqOjMWjQIPz1119IT0/XmX6+adMmvP7665gyZQqGDRsGS0tLHDp0SOdiweP6NjU1xebNm6FUKuHl5YWPP/4Ya9as0bmNRCaTISMjA1evXsWgQYMQHR392IvzYuhUmS57e3tMnToVERER+OCDD4QsywsvvACpVIqtW7fCx8cHCoWi3T9A3dzckJOTg5qaGr3ZrpMnT8LT07Ndz0FsvXr1wvz58xEXF4fi4mJkZGRg/fr1UCqVsLa2ho+PD3x8fHDx4kVkZGQIH+xSqRR/+9vfEBISIqRx9UlPT0deXh6A2quSK1asgJubG06cOIGcnBwoFAr8/vvvmDNnDhYvXqz3frm2eN/Pnz8PGxubBlffgNr/gyEhITh48CCmTZvW6r6o9sv/mjVrMGXKFCQlJQkFOVxcXNCjRw+sWLECY8eORe/evYWrmu1FIpHAxMQEt27d0rvexvXr12Fubv7UfEEDaquORkREICIiAjdu3MCJEyeQlJSE8ePHw8LCAl5eXlAqlSgrK8P3338vTAE2NjaGr68vwsPDm5ySkpeXJ3yxKi4uxtq1a+Hp6YkLFy7g8OHDcHJyQl5eHqKiorBo0SK9i2a3xet97949/Pbbb3pnIEilUixbtgxbt25tNBtCLbdhwwa8/fbbWLVqFfz9/SGRSGBvbw9nZ2c888wzmDNnDuzt7UVZZLp///46U5IeVV1djTNnzrT6/tTOxMTEBMHBwQgODsadO3dw+vRpJCcnY8aMGZg1axbc3d0xfPhwVFVVIS0tTediZb9+/RAREdFk2eybN2/in//8J4DasfXhhx/ixx9/xPXr15GamgqFQoFLly7hp59+wnvvvSdkkR/VVp+je/bswX/+8x+9x1+zZg1mzZolLE3RlXTWTBdQOwX7cdVG6/cvkUgQHx/fZKVjc3NzJCcnIzk5+Yn7DgoKatZUZU9PT/zyyy+PbSemThV0AUB4eDjc3NywZMkS3L59GzU1NXB1dUVKSoqoH5h1H2gbN27EggULdJ67e/cu1qxZI3wgPW0kEgn69OmDiIgIhIWF4aeffsLmzZtx4sQJHD16VFhE1N/fHzU1NTh58qRQLWzt2rWNLh736M3y165dw507d3Do0CE8++yzGD16NO7du4eKigrs3bsXe/fuFSof1QW9VVVVuHz5cquLlxw/frzJATtmzBgkJCQw6GpDw4cPx8cff4yPP/4Y//d//wcjIyPY2Nhg7ty5bVKEpyXmzJmDhQsX4rPPPtO5oFJdXY2FCxdi7ty5op6PmGxtbREcHIzx48fj119/xUcffYRTp07ho48+gpmZGV5++WUEBQXBwsIC//vf/5CamorFixdj2bJl8PDw0HtMKysrWFhYQK1Wo7CwEPfv38fhw4dhZ2eH0aNH4/79+zAxMcHhw4fx73//G/PmzcPKlSt1sh7p6enYvXt3q363s2fPws/Pr9HnlUpll54S3hk5OzvjwIEDSElJwfr162FmZgYTExPMmDFD9AXko6OjER0djYMHDzbIqP3jH//AxIkTHzv1rquysrLCiBEjMGLECFy8eBFpaWnYvn07tm7dColEgpdeeglRUVFwcHAQMmRLly7FvHnzGpRzr2NiYiKs5Xb58mXU1NTg+PHjsLS0FJaF6N27N7KyshAUFITw8HCsW7cOCoVCOEZqaqqwTMuTUqvVsLKy0ini8yg7O7suPTOlK1XVpNZrUdD16JpM7al///56F0YVq/86b731FtauXYuJEyfizTffhJ2dHU6fPo3U1FQsX74cPXr0EP2cOoKvr69wA255eTl69OghlI4FgLFjx8LHxweJiYnCF7T61cjUajVeeOEFoUqhRCLRu3r8pUuXsGjRIjg4OCAuLg5qtRoxMTHQarVYt24d3njjjVavp/Tw4UPcunWr0ffuxo0b0Gq1LXpv69+E29KS3R1JrP/DdQtdd1T/dXx9fXHx4kUEBgZi2rRpcHV1xaVLl7Bv3z6EhITA29vbIMa1u7s7Ro8ejdGjR+P27dvo3r27MNW3bkHzl156CRs3bsTq1auxePFiuLm56RxDrVbDwcFBuGrZ2Li+e/cuJk+ejBdffBFJSUm4evUqtmzZAqD2i5mTkxOMjIxa9bpXVlZCpVI1eoyHDx+iqqqK47qNmZubN7gwKWb/dXr16oW5c+ciKCgIEydOxEsvvYTS0lLs27cPbm5umD17tkGMa7lcjoiICPTs2RN37tyBmZmZcJ9LdXU1Bg0ahIEDB+LTTz/Fhx9+iHv37uHll1/WOYZarYapqSni4+OF+1v1jWutVospU6Zg+vTpwjI0dZmFnJwc/PHHH3j++edb9bprNBrhgmxjKisrWzWugY4Z250500XtQ6Jtxrv24MEDuLi4dOiCYkRdjVwuR0FBQaNX6DoaxzVRy3FcEz2dxBrbFRUVkMlkmDhxYqum1FdVVeGrr76CSqVqVvVC6njNynSZm5ujoKCgWQUTiKiWmZlZp/1iBnBcEz0Jjmuip5PYY5uZLsPT7OmF5ubmnfoPDRG1HMc10dOH45qo82PQZXg6XSENIiIiIqKnGYMuw9Op1ukiIiIiIiJ62jDTRUREREQkIma6DA+DLiIiIiIiETHoMjwMuoiIiIiIRMSgy/Aw6CIiIiIiEhGDLsPDoIuIiIiISEQMugwPgy4iIiIiIhHV1NSgpqamVftT18Kgi4iIiIhIRMx0GR4GXUREREREImKmy/Aw6CIiIiIiEhEzXYaHQRcRERERkYi0Wm2rslUMuroeBl1ERERERCJipsvwMOgiIiIiIhIRgy7Dw6CLiIiIiEhELKRheBh0ERERERGJiJkuw8Ogi4iIiIhIRMx0GR6jjj4BIiIiIiKipxkzXUREREREIuL0QsPDoIuIiIiISEQMugwPpxcSEREREYmo7p6u1jzaS3l5OcLCwiCTySCTyRAWFobbt283uY9Wq0V8fDwUCgUsLCwwYsQInD17VqdNZWUl5syZA1tbW3Tr1g3BwcG4evVqi/retWsXJBKJ3kdZWRkAoLCwUO/zaWlpbfL6PCkGXUREREREIqrLdLXm0V5CQ0ORm5uLtLQ0pKWlITc3F2FhYU3uk5SUhI0bNyIlJQXZ2dmQy+UICAjAnTt3hDaxsbFITU3F/v37cezYMdy9exfjxo1DdXV1s/ueOnUqrl27pvMYNWoU/P39YW9vr3NOhw8f1mn3yiuvtNEr9GQkWuYniYiIiIjaXUVFBWQyGQYPHgwTkye/y+fhw4fIysqCSqWCtbV1m53fuXPn0L9/f2RmZmLIkCEAgMzMTCiVSpw/fx7u7u4N9tFqtVAoFIiNjcXixYsB1Ga1HBwckJiYiJkzZ0KlUsHOzg6ff/45pk6dCgAoLi6Go6MjvvvuO4waNeqJ+r5+/Tr69OmD7du3C8FZYWEhXFxckJOTg4EDB7bZa9NazHQREREREYmorTJdFRUVOo/KyspWndfJkychk8mEoAcA/Pz8IJPJcOLECb37FBQUoKSkBIGBgcI2qVQKf39/YZ/Tp0+jqqpKp41CocCAAQOENk/S9549e2BpaYlJkyY1eC44OBj29vYYNmwYDh482IJXoX0w6CIiIiIiElFbBV2Ojo7C/U8ymQzr1q1r1XmVlJQ0mKYHAPb29igpKWl0HwBwcHDQ2e7g4CA8V1JSAjMzM9jY2DTZpqV979ixA6GhobCwsBC2de/eHRs3bsTBgwfx3XffYeTIkZg6dSr+9a9/NfZri4LVC4mIiIiIRKTValtVDKMu6CoqKtKZXiiVSvW2j4+Px+rVq5s8ZnZ2NgBAIpHo7U/f9kfVf745+9Rv05K+T548id9//x179uzR2W5ra4t58+YJPw8aNAjl5eVISkrC9OnTmzyf9sSgi4iIiIhIRG1VMt7a2rpZ93TFxMQgJCSkyTbOzs44c+YMSktLGzx3/fr1BpmsOnK5HEBtpqp3797C9rKyMmEfuVwOjUaD8vJynWxXWVkZhg4dKrRpSd/btm3DwIED4ePj0+TvBdROU9y2bdtj27UnTi8kIiIiIhKR2CXjbW1t4eHh0eTD3NwcSqUSKpUKWVlZwr6nTp2CSqUSgqP6XFxcIJfLkZGRIWzTaDT4+eefhX18fHxgamqq0+batWvIz88X2rSk77t37+LLL79EZGRks37/nJwcnYCwIzDTRUREREQkos66OHK/fv0QFBSEqKgofPrppwCAd955B+PGjdOpHujh4YF169ZhwoQJkEgkiI2NRUJCAvr27Yu+ffsiISEBlpaWCA0NBQDIZDJERkZi/vz56NWrF3r27IkFCxbA09MTr776aov6BoADBw7g4cOHmDZtWoPfYffu3TA1NYW3tzeMjIxw6NAhfPLJJ0hMTGyX16y5GHQREREREYmopqbmsfc7PW7/9rJ3717MnTtXqDQYHByMlJQUnTYXLlyASqUSfl60aBHUajWio6NRXl6OIUOGID09HVZWVkKbTZs2wcTEBFOmTIFarcbIkSOxa9cuGBsbt6hvANi+fTveeOONBoU56rz//vv4888/YWxsDDc3N+zYsaND7+cCuE4XEREREZEo6tbpGjBggE6w0VLV1dXIz89v83W6qP0w00VEREREJKLOOr2Q2g+DLiIiIiIiEXXm6YXUPli9kIiIiIiIqB0x00VEREREJCJOLzQ8DLqIiIiIiETE6YWGh0EXEREREZGImOkyPAy6iIiIiIhExKDL8DDoIiIiIiISEacXGh4GXUREREREImO2yrAw6CIiIiIiEhGnFxoeBl1ERERERCJi0GV4GHQREREREYmIQZfhYdBFRERERCSi1hbCYCGNrodBFxERERGRiJjpMjwMuoiIiIiIRMSgy/Aw6CIiIiIiEhGDLsPDoIuIiIiISEQMugwPgy4iIiIiIhEx6DI8Rh19AkRERERERE8zZrqIiIiIiETEkvGGh0EXEREREZGIOL3Q8DDoIiIiIiISEYMuw8Ogi4iIiIhIRAy6DA+DLiIiIiIiETHoMjysXkhEREREJKK6oKs1j/ZSXl6OsLAwyGQyyGQyhIWF4fbt24/9feLj46FQKGBhYYERI0bg7NmzOm0qKysxZ84c2Nraolu3bggODsbVq1d12nzwwQcYOnQoLC0t0aNHD719XblyBePHj0e3bt1ga2uLuXPnQqPR6LTJy8uDv78/LCws0KdPH6xZs6bDA1UGXUREREREItJqtaipqXniR3sGEKGhocjNzUVaWhrS0tKQm5uLsLCwJvdJSkrCxo0bkZKSguzsbMjlcgQEBODOnTtCm9jYWKSmpmL//v04duwY7t69i3HjxqG6ulpoo9FoMHnyZMyePVtvP9XV1Rg7dizu3buHY8eOYf/+/fjqq68wf/58oU1FRQUCAgKgUCiQnZ2N5ORkbNiwARs3bmzlK9M6Em1Hh31ERERERAagoqJCyCBJJJInPo5Wq4VKpYJKpYK1tXWbnd+5c+fQv39/ZGZmYsiQIQCAzMxMKJVKnD9/Hu7u7nrPRaFQIDY2FosXLwZQm9VycHBAYmIiZs6cCZVKBTs7O3z++eeYOnUqAKC4uBiOjo747rvvMGrUKJ1j7tq1C7GxsQ0ybN9//z3GjRuHoqIiKBQKAMD+/fsRERGBsrIyWFtbY8uWLViyZAlKS0shlUoBAOvXr0dycjKuXr3aqte9NZjpIiIiIiISUWedXnjy5EnIZDIh4AIAPz8/yGQynDhxQu8+BQUFKCkpQWBgoLBNKpXC399f2Of06dOoqqrSaaNQKDBgwIBGj9vY+Q0YMEAIuABg1KhRqKysxOnTp4U2/v7+QsBV16a4uBiFhYXN7qutsZAGEREREZGIWhs01e1fUVGhs10qleoEGy1VUlICe3v7Btvt7e1RUlLS6D4A4ODgoLPdwcEBf/75p9DGzMwMNjY2Ddo0dtzG+qrfj42NDczMzITjlJSUwNnZuUE/dc+5uLg0u7+2xEwXEREREZGI2irT5ejoKExXlMlkWLdund7+4uPjIZFImnz8+uuvAKB3+p1Wq33stLz6zzdnn+a0eVw/+o6j71wa21cszHQREREREYmorTJdRUVFOvd0NZbliomJQUhISJPHdHZ2xpkzZ1BaWtrguevXrzfIMNWRy+UAarNIvXv3FraXlZUJ+8jlcmg0GpSXl+tku8rKyjB06NAmz6t+X6dOndLZVl5ejqqqKp2+6mfPysrKADTMxomJmS4iIiIiIhG1pnJh3QMArK2tdR6NBV22trbw8PBo8mFubg6lUgmVSoWsrCxh31OnTkGlUjUaHLm4uEAulyMjI0PYptFo8PPPPwv7+Pj4wNTUVKfNtWvXkJ+f36KgS6lUIj8/H9euXRO2paenQyqVwsfHR2jzyy+/6JSRT09Ph0KhaDDtUEwMuoiIiIiIRNRZC2n069cPQUFBiIqKQmZmJjIzMxEVFYVx48bpVC708PBAamoqgNope7GxsUhISEBqairy8/MREREBS0tLhIaGAgBkMhkiIyMxf/58HDlyBDk5OZg+fTo8PT3x6quvCse9cuUKcnNzceXKFVRXVyM3Nxe5ubm4e/cuACAwMBD9+/dHWFgYcnJycOTIESxYsABRUVFCxi80NBRSqRQRERHIz89HamoqEhISEBcXx+mFRERERESGoq2mF7aHvXv3Yu7cuUKlweDgYKSkpOi0uXDhAlQqlfDzokWLoFarER0djfLycgwZMgTp6emwsrIS2mzatAkmJiaYMmUK1Go1Ro4ciV27dsHY2Fhos3LlSuzevVv42dvbGwBw9OhRjBgxAsbGxvj2228RHR2NYcOGwcLCAqGhodiwYYOwj0wmQ0ZGBt59910MGjQINjY2iIuLQ1xcXNu+UC3EdbqIiIiIiERQt06XVCpt9TpdlZWVbb5OF7UfZrqIiIiIiETUmTNd1D4YdBERERERiYhBl+Fh0EVEREREJCIGXYaHQRcRERERkYhqampafU8XdS0MuoiIiIiIRMRMl+Fh0EVEREREJCIGXYaHQRcRERERkcgYOBkWo44+ASIiIiIiQ2BmZga5XN4mx5LL5TAzM2uTY1H74+LIREREREQiefDgATQaTauPY2ZmBnNz8zY4IxIDgy4iIiIiIqJ2xOmFRERERERE7YhBFxERERERUTti0EVERERERNSOGHQRERERERG1IwZdRERERERE7YhBFxERERERUTti0EVERERERNSO/h/jpxlo2DSvbAAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import OracleMAE\n", + "\n", + "acquisition_fn = OracleMAE(model)\n", + "X_new_df, acquisition_fn_ds = greedy_alg_with_groundtruth(acquisition_fn, task, diff=True)\n", + "\n", + "fig = deepsensor.plot.placements(task, X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(task, acquisition_fn_ds, X_new_df, data_processor, crs)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### OracleRMSE" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:06:58.386855414Z", + "start_time": "2023-11-02T15:05:44.451551756Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████| 1311/1311 [01:13<00:00, 17.82it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8yElEQVR4nO2ddVhU29fHFymIgE1YGNiiXruBoRsUQUoBUVHBFsVO1GsHimBjICoYKHaL2CKiKKGgpHQ5wMz3/YMf53WcGRr13svneeZRzj5n731mzjp777VXiAAANdBAA/8JRH93BxpooIFfR4PAN9DAf4gGgW+ggf8QDQLfQAP/IRoEvoEG/kM0CHwDDfyHaBD4Bhr4D9Eg8A008B9CvKonfv/+nYqLi+uzLw000EAtkJSUJCkpqQrPqZLAf//+nTp27EgpKSl10rEGGmig7lFUVKT4+PgKhb5KAl9cXEwpKSmUmJhIcnJyddbBBoi+fv1KQUFB9PXrV4qNjSUZGRlq3bo1KSgoUIcOHWjIkCHUtm1bIiJKSkqiqVOn0r1792jWrFm0dOlSkpSU5Kvz+/fv9PXrV7p37x6dPn2awsPDicPhUPv27Sk5OZlKSkpITk6Ozp8/T4WFhRQYGEiZmZmkqqpKJSUldOjQIdLX1ydfX1++uidOnEjnz5+nHy2yr169SkOHDuU578CBAzR37lyKiIig1q1b065du+jp06cUERFBKSkppKqqSk5OTjRo0CDy8PCgkpISun//PhERZWVl0cmTJ+nVq1f09OlTiouLIyIiUVFRkpSUJFlZWZKXlyd5eXkqLS2l+Ph4ys3NrdL3LSMjQ0ZGRrRgwQJSVVWt2o9UTdhsNoWHh9OXL1+oUaNGJCUlRY0aNWI+4uLiJCYmRuLi4swHAH3//p2+f/9ORUVFVFhYSO/fv6enT5/S06dPmcG2ffv2dPz4cVJTU+NpMzc3l9q1a0fFxcUVCrxIVWzpc3NzSV5ennJycupU4LlcLl27do1Onz5NeXl51K9fP3J2diZFRcU6a+PfhI2NDZ08eZJERUWpY8eOJCcnR2w2m9hsNhUXFxObzaa0tDS+67Zv305ycnL07NkzCg8Pp9evX1NpaSnZ29tT+/btqaCggPLz8yk/P5/i4uLoyZMntH37dpo1axZfXZGRkXTt2jWSlZUlNptNbm5uNHz4cBo2bBhJS0tTdnY2ZWdn08WLF8nMzIz27t1LLVq0oKKiIlJTUyMjIyNSVVWl0NBQCggIIAMDA3JycqJx48aRt7c3jR49mjp06EBNmjQhorKXl729PcXFxVHXrl2JzWbT27dvqWnTptS7d28SExOjzp07U+fOnaljx47UrFkzaty4McnIyJC0tDSJiIhQYWEhFRQUUGpqKgUFBdGqVatIVVWV3r9/T6Ki9afGAkAvX76knJwc6t69OykpKdW4ri9fvtD9+/fJxsaGRowYQc7OzmRoaEitW7cmoqrL6G8T+IKCArKxsaHBgwfTpEmTqEWLFvTgwQPavHkzTZ8+nUxMTOqknV9Beno6nTx5klJSUqhTp05kZWVFsrKyfOcBoPfv31Nubi4jYD9+REVFqVmzZqSqqkpdunQheXl5kpSUZB7KzMxMCg8Pp/j4eIqPj6eCggKekePOnTt07949vnaHDx9OCQkJ9OXLF+ZYo0aNSEZGhpo0acJ8ZGRkSFZWlqZNm0b6+vqV3jeXy6Vly5bRixcv6MOHD1RSUkJNmzalpk2bUvv27Wn79u1UUlJCysrKzDXlbcjKytLHjx/JzMyMzp07R6ampnTx4kXmvObNm1OHDh0oPT2d+vTpQ3/99Re1bNmSGjduTOLi4nT//n1KSEigsWPHUmFhIeXm5lJubi7l5eUx/5eQkCBFRUVSUFCgzMxM+vDhA338+JESExOpe/fu9Pr1a4EzpLrgwoULtHPnTho4cCC1bt2anj59SmJiYrRt2zZq1apVjevds2cPnThxgsLCwkhCQoIOHTpENjY2f77Au7q60vjx40lDQ4PneElJCZmbm9OePXuoQ4cOddJWfbJ9+3a6c+cOOTs7k4qKCkVGRtKhQ4do6tSpNHbsWJ5zT58+TVZWVnx1iIiIUJMmTai0tJSKior4ysXExEhCQoIkJSWpRYsWpKurSyYmJqStrU3i4v+/Kvvy5Qu1a9eOuUZMTIyUlZWpT58+1Lt3b+rduzf16tWLunXrVqlypzokJSWRjIwMycvLCz0nOTmZHj16RFeuXKHIyEhKSUmh0tJSatOmDUlKSpK4uDhJSUmRnJwcSUlJEQDKzMykN2/eUIsWLejbt2+UkZFB379/Jy6Xy3xvoqKiTNuysrIkJydHcnJyJCsrSyUlJZSSkkIpKSnUtGlTUlVVJVVVVRoxYgTp6+uTmJhYnX0HPxISEkKnTp2iAwcO8LxQIiIiaO7cuXThwgVq3LhxrdpIS0ujBQsW0NGjR2njxo00depUatq06Z8p8JmZmeTs7ExBQUECyx89ekQXL14kLy+vWrdVn5w5c4bCwsJo8+bNJCIiwhwvLS0lOzs7mj9/Pg0cOJA5zmazac2aNbRhwwZSVlamJ0+ekLy8PElJSTHXFxYWUmxsLMXExFB+fj4VFxdTSUkJ8+/nz58pJCSE4uLiSElJiRwdHWnRokXMjKL85/yxP1WhtLSUNmzYQHFxcZSRkUFsNpsUFBTIwMCALC0t+aa+paWlFBwcTHv37qVbt24RUdn6smPHjpSbm0sZGRmUkZFB8vLy9OLFCxIXF6exY8fS3bt3SUVFhdTU1EhJSYlKS0uptLSUSkpKKCMjg+Lj4+nDhw9ERNShQwc6ffo0DR48mFJSUujkyZP07t07Sk5OpqSkJIqJiWHW7hwOhzIyMigyMpKioqLo3bt3zL+dOnWiHTt2UEZGBjk5OVFaWhrf7EZJSYmMjIzI1NS0VktKAKSjo0OXLl2iRo0a8ZUfO3aMvn//Ti4uLjVu48e2VqxYQWvWrKHJkyeTn59f5TKKKpCTkwMiQk5OTlVOr5Q7d+5g06ZNQsu5XC6MjIzqpK36RFdXF4WFhQLLPn36BHt7e55jxcXFmDFjBogIEydOrHZ7Hz58wPbt2zFq1CiIioqCiEBEEBUVhYqKCnR1dZGWloaSkhLExcXhxYsXKC0t5etXcnIyAODz58+YNm0aRo4cie7duzP1ERHGjBnDtHH79m2+vvj6+oKI0LhxY/j5+eHYsWNYuHAhJkyYAFdXVwwfPpyp69y5c1i5ciVkZGRw69YtcLlcvvpycnJw7949sFgsEBFMTEwwefJkPHr0COPGjYO4uDikpKTw119/wcjICFOnTmXq9/T0xN9//830V0JCAr169YKlpSWWLl0KNTU1iIiI4K+//gIRQUFBAUuWLMGKFSswd+5cTJgwgSkjIowYMQLXrl2r9u8DAO/evcOsWbOElhcVFcHExITveGlpKYqKioR+fv4df/4tyu+9Mhn9LQIfHh6OZcuWCS0vKiqCmZlZnbRVX+Tm5sLa2rrCcwwMDJj/l5aWYsKECZCQkMDevXsFPvQ/w+VycePGDbi5uaFdu3Y8AikiIoKOHTti0qRJ2LZtG89xcXFx5u82bdpg4cKFCAoKgrGxMfOC0NbWxuLFi0FE6Nu3LyZPnoz+/fvztCEmJoZNmzaBw+EwfSpvS1ZWlufcn+nZsydznru7O6ZMmQJ5eXmkpKQw53A4HOzYsYPn3jp37oyQkBAAwPHjx9G5c2e0bNkSu3btQmZmJk8bffr0YV5ORISFCxciOjoaJSUlPOeVlJRg+/btkJGRgZSUFBo1agQiQo8ePdCkSROe+yj/dO/evdLfRxBPnjzBqlWrKjzH2NiY+T+Xy0VSUhKioqIq/SQlJQl9bs6cOfPnCnxpaSk0NTV5HqQfOXz4MA4cOFAnbQHAgwcPYG1tDUNDQ+jr68PZ2Rlv376tVZ15eXkYP358hefo6+sDKHuwnZ2dISoqijNnzlSp/ufPnzMPspycHIgIbdu2xeLFi3H16lVkZ2cz5xYVFWHIkCFo3bo15s2bB29vb4SGhuLWrVtwdXVF8+bNQUTo2bMnDhw4AF9fX/Tr1w/y8vLo2rUrWrdujdTUVOa+du3ahVatWqFz585gs9k8/Zo3bx6fcLi7u/P1Pzc3F0FBQZgyZQpkZGRgZGSE1q1bQ1dXF9evX8etW7egpaUFIoKjoyOOHTuG58+f87Q3depUiIiI4MqVK3z1f/r0Cdra2li9ejWkpaWxf//+Sr/Tly9fgoigq6uLoUOHQklJiRkZVVVV0aVLF4iJiYGIICUlBU1NTezYsQNJSUlV+s0AIDs7W+AIXk5UVBSmTZvG/F0u7N++fUNhYaHA0b2wsBDfvn1jhF4QVZXR3yLwAHDo0CHMnTuX74317t07aGpqoqCgoM7amThxIr5+/coci46OhpGRkcCpanXQ19dHfn6+wLKYmBg4OjoCADZv3gwiQvPmzREQEIAvX75UWO/WrVshIiKC7t27Y/To0RAREcGGDRtQXFxco36y2Wy8efOG57vOzs5Gjx49ICUlBSLC8ePHea55+fIlxMTEsGbNGp7jRUVFOHPmDBwcHNCiRQsQEVq3bg1nZ2dER0fznMvhcBAREYEWLVpg+fLl2LhxI8+LQkpKCu7u7kJ/a01NTQwdOhTq6uo4efIkCgsLkZubiwMHDkBDQwPx8fEAUOF090fevHkDUVFRyMvLY+DAgbCxscGWLVvw/Plznvt78OABNm3aBAMDA0hISEBUVBRaWlrM7KSwsBDR0dHIzc0V2M60adNw9+5dvuNcLhc2NjZ4/fo10+9yYa8K5UIv6H5XrFjxewSey+Xi1atX8PDwgLa2NpydneHl5YWzZ8/i+/fvPOfu378fWlpa2Lx5Mw4ePAhnZ2eMHTuWWWPWlrS0NBgYGAicSRQUFEBdXZ1v+lcdLly4AFdXV776v3//DnNzc7x69QpAmfAYGRmhU6dOzMPeoUMHLFq0CMXFxSgsLMSTJ0/g6+sLNzc3tGjRAtra2jh+/DjP+RoaGujfvz8zCg0bNqxKSwNhxMTEoHPnzli2bJnA72jevHmQlZUV+ruXlpbi/v37WLhwIdq2bQtxcXFoa2vD3t4ehoaGaNq0KbOm1tfXBxFh0KBBWLBgAaysrJiXWfPmzbF582a+e9m2bRskJSWxYsUKsFgsqKqqwsLCAocPHxaqO6mMwsLCan1nGRkZ8PPzQ+PGjdG+fXu0bt2a+U1atWqFI0eO8NWXl5cHfX197Nixg5mJvXz5EuPHj4ePjw9zXlFREaKioqp8L4WFhYiKikJRURHPcS6Xi65du1ZJRmuspS8tLaWIiAh68OABPXz4kHJzc6l58+b04sULev/+PTVv3pxGjBjBaFNzcnKoa9euZGBgQG/evCEpKSlq3LgxiYmJ0bBhw6ht27akpqZGXbp0qaw7VWbr1q3UrVs3MjQ0FFi+efNm6tGjh9DyquDr60vnzp0je3t76tixI71584ZOnTpF8+fPJwMDA77zk5OTKSwsjO7cuUN79+6l5s2b07dv34jL5ZKIiAipqqpS3759aebMmTRy5Eh6/PgxXbp0SeCOhaysLKWnp1NxcTEVFhaSiIgItWrVqtoaemEkJSVRhw4dqGfPnmRhYUFGRkbUv39/gcYqRUVF5O3tTWFhYZSWlkbS0tI0cuRIGjlyJH3+/JkcHR1p37595OLiwnN9fHw8bd68mby9vWnChAl04MABkpaWJqKybUY1NTXKyspizv/w4UO9WchVxO7du+nly5fUoUMH6tChAykrK9OBAwcoICCA+vTpQ4MGDaKePXsyH0VFRbpw4QKdPn2avn//Tp06daJp06ZRjx49mDq/f/9O8fHx1LFjxyptk1Z0fkZGBrVs2bJut+VWrFhBsbGx9PnzZ3r58iXl5+eTpKQkDR48mFq1akUZGRnUoUMHsra2Jm1tbZKQkCCisu2DyMhImjFjBr1584Y0NTWZPefr168TEVGLFi2oXbt2JCoqSsnJycRms6lLly7UrVs36tq1K3Xt2pUUFBSoSZMmJCsrS02aNKFWrVoxbZRbmSkpKTF70zNnzqT58+eTioqKwPu6evUqffz4kWbOnFnply2MzMxMZgsoPT2dMjIy6MaNG9SlSxeytbUlc3NzHgHkcrmUn59PcnJy9ODBAwoKCqLu3btT3759qXfv3nz7s0lJSeTj40OrV6/mOS4tLS1wz/5Hhg8fTrdv366VccnVq1fp4MGDFBoaSrm5uaSoqEgsFov5tG/fnu8aAJSfn89sFe7cuZM8PDwq7O/p06dp0qRJ1Lt3bzp//jxjlfbs2TMaMWIEFRcX04gRI6hv376kqKhIioqKpKKiQp07d6b27dvz2CNUFQ6HQ1lZWdSyZctqX1vOjRs36OjRo8wWYGFhIRERNW3alCZPnkyzZ8+mNm3aCLy2LgW+XgxvpKWl6a+//qJ27dpRv379aOTIkTRgwIBqGXEA4BGAyMhIevHiBX358oUSExOJw+GQkpISSUpKUkxMDH348IGio6MpIyODry5xcXHq3Lkz5eXlUXJyMgEgKSkp6tu3Lw0YMIASEhJoxIgRZGpqSioqKszIUc6+ffuoZcuWNG7cuCr1vbi4mO7fv08hISH05MkTio6Opm/fvhERUb9+/cjExIT2799PLVq0IFlZWXr8+DENHjyYvLy8SENDg4KDg2nFihWUkJBAycnJJC0tTU+fPqUbN24wFmj9+vWjvn37kqioKK1bt45evXpFkydPJgUFBfL19aV9+/YxhidVoaCgoNZGHkRlBlEPHz6ky5cv082bN+nly5cEgAYMGEBPnjxhRu24uDhyd3enkJAQ6tq1K2lpaVFeXh4dP36cXFxcaMKECTRq1Ci+WUJeXh4ZGhrS/fv3adGiRTwzmvT0dPLz86M7d+5QSkoKpaamUlpaGmNzICYmRrKystSiRQuSk5MjeXl5at26NSkpKVH79u1JQUGB5OXlSUJCgrKysigzM5MyMjLozJkzFBERQTo6OmRmZkbNmzenYcOGCXyJVQUul0sJCQkUFRVFd+/eJR8fHyouLqYLFy6QlpYW3/m/Q+CrtYYvV5L8DjIyMhAdHY3nz5/jzp07uHjxIry9vTFr1iwsW7YMfn5+uHjxIrZu3QpbW1t0796dZ3uKiKCoqIhhw4bB0dERJ0+ehLq6Ot966PXr11i9ejXU1dUhJSWF5s2bo1u3bhg2bBizFaWsrIwJEyZg1apVCAgIwOXLlzFo0CA0adIElpaWiIuLAwDcvHkTgwcPBhFBSUkJRAQ1NTVmn3nkyJEQFxeHrKwspKWlmX62bt0aw4YNg6GhIe7du4e0tDRmnWhnZ8ect3XrVpw5cwYhISGIiYlBfHw8oqOja61cFaYEY7PZzP56+f20atWK2T4s71ebNm2wY8cOTJs2jdFbtGrVCq1atQIRYciQIXj8+DFP3XPnzmWul5WVxeDBg7Fz504AZWvivLw8nvOLi4sRExODq1evQk1NDWJiYpCUlISIiIjAbbYfPxISElBQUACLxcKuXbswePBgRlvfqFEjLFu2rE6Uxjk5OdDX14eUlBSuXr3KV16+hv/5GRRGRedXVc/2W51n6hsOh0MLFy6k9PR0GjVqFH358oXi4+Pp+fPnFBUVReLi4qSpqUm9e/em1q1b0507dyg0NJTk5eVJXV2dRowYQRwOh9LS0ujbt2+MPqBv374C18lcLpdv5AJA58+fp4sXL5KDgwMNGjSINDQ0SExMjDp16kQDBgygmTNnkoSEBLHZbAoLC6PQ0FDy9vamwsJC4nA4RFRmW969e3dSVVWlzMxMunbtGrHZbKYdUVFR6tGjB6mrq5OXl5dAW36iMt1LTk4O5eTkUExMDEVERDCfL1++UG5uLpWUlFC7du2oR48e1L17d+rSpQspKipS06ZNSUdHh6lryZIlNHLkSNLT06PFixfThg0biIhIXV2dOnfuTAkJCaSiokLi4uIUEhJCCQkJNGXKFMaBZ+3atbRkyRIiIsrJyaHbt29Teno6ffnyhU6fPk1NmjQhW1tbWrFiBRERLVq0iGbNmsU3Y9HU1CQFBQU6efIkERHl5+cz1ngvXrygo0eP0qtXr6h3794UFhZGMjIyfL8f/mfKO27cOLpz5w4pKSlRYmJijc1vMzIy6O7duxQaGkq+vr4kIyNDWVlZzBKU6P9HbEGzT0EUFRXRp0+fft0IX5fbcr8Sf39/aGtrw9raGmPHjoWRkRGOHTuGHTt2QFdXF127doW8vDzU1NRw/PhxPs09m80WajNQH6SkpMDR0RHfv3/H27dvcfbsWaxbtw729vYYMmQIFBUV+UYtcXFxdOnSBTIyMujRowcsLCygra2NIUOGoEePHlBWVkbjxo35rhMVFYW4uDjfbKhVq1bo06cPunXrBgkJCb7r7ty5w9fvhIQEbNu2DX369IGSkhKUlZXRsmVLZtTt2LEjHj16hJycHEhJSWHevHlCv4NJkyYx/Zs2bRrc3d0hISEBZWVlJCQkMOclJSWhVatWcHNzE1oXl8tl6qtMI25pacmzbdi/f384OTkhKCioyqP++/fveb6zAQMG4MKFC3zn1eW2XMMI/xP4nyJJTEys0jUtAAoPDycfHx+KiIigDh06UFFRESkoKNCiRYuoe/fu9drX9PR0mj9/Ph05ckToObq6uuTv709SUlK0ZcsWWrt2LXE4HOrWrRt16tSJuFwujyOJrKwslZaWUmZmJvXs2ZMKCwtp8eLFREQ0evRoMjU1JVlZWerQoQNlZWVRUFAQBQYGUocOHWjs2LGUnp5OWVlZpKKiQiwWi4yMjHhmM6WlpYx+plGjRtSsWTPq06cPRUdHU3JyMhERjR07lmRlZenLly90+/Ztio2NFeogtX//fjp//jytW7eO+vXrR0REmzZupMWenpSQkEBt2rShgoIC0tDQoKSkJHry5AmPV96PTJw4kY4ePUoLFy6kjRs3Vvjdr1u3jvbv309fvnwhaWlpateuHXE4HPr48SM1btyY9PX1aePGjdS5c2ehdZSWltIBPz8KuXyZbt26RQUFBdSqVSvS0tKi3r17U+fOnalLly7Uq1cvysrKouzsbGrdujU1btxY4MwRABUWFlJaWho1bdpUoJttwwhfQ16+fAltbW306dMHkyZNwpo1a6CpqYnz588jNjYW2traePnyZb32gcvlQkdHR+ho9ObNG7i6ugIAfHx8eEZeJSUlDBgwAN27d0e7du3QvHlzxpS0/CMmJgYXFxeMHDmSOVaud/iRt2/fwtzcHB07dsTAgQMxZMgQSEpKgojQsmVLaGpqom/fvsza/MePp6cncy8JCQlo27Yts74fOnRohabVPOTmAm5ugIoKzKWkICsigtvm5nh29y66d++Oxo0b8xjOCGLOnDkgIsyYMaPC886dOwciwqRJk7B//35Gr3DgwAG8f/8eXl5e6NixI1q3bo3ExMQK+4o2bQAVFbCnT8ftkBAsWrQIQ4cOZawe6X+WkxcvXqwT09qGEb4GfP78mSZPnkyurq704sULWrt2LRGVaecnTpxIU6dOpT59+pCDgwOFhITUa1/OnTtHd+/epe3bt/O89QsLC8nKyor+/vtv6t69O3G5XIqIiKDPnz9TQkICff78mfLy8hhvMBkZGeZTbutw/PhxWr16NeXk5BCLxaJFixYJ1CILoqioiMLCwujWrVv07t07UlBQIGVlZVJUVCQJCQnG+83AwIBx1SUqi7dWUlLCrFmrRF4e0bBhRO/eEXG5lEBEDkR0j4jEiEitXz86dvw49ezZs8JqcnNzyczMjN6+fUupqalCz1u5ciWtX7+eZs+eTQUFBXTlyhVKSkqia9eu0ejRo4mIKDY2lrp160aTJk0iPz8/oX1lEBUl6tGDKCyM6H96laysLIqOjqZVq1ZRaGgojR8/ntasWcPshElISPCN9BISEhXqE+plhK/vke13M2fOHDx9+hR2dnZ8NsvZ2dmM08O0adPw4cOHeu/P3r17oaenB39/f9y7dw87d+6Euro6bt26JfSakpISnDt3DjNnzoS7uztOnjyJdevWwdbWFjNmzMDDhw/B5XKZXY9fxcOHDxmT0irj5gaIigJEzKeUCDuIsE5EBOwZM8DlcnH37l0+xxo2m43z589j/PjxkJKSgoiISKWzivT0dPTp0wedO3dG3759YWtry/PMv3jxAp07d4acnBwuX75caV+Zj6goIMDfgMvl4vjx42jZsiXP7EheXh6fPn2q1ldVL7b0cnJyuHjxYrU68k9CT08PAK8304+MHz8e2dnZ2Lx5s0ClVX2Qk5ODQ4cOYePGjVi+fDlMTExgYGAAPT09WFtbIzw8nDk3Li4Ompqa2LZtG2JjY7Fr1y6oqqrir7/+wsePHxEdHQ0PDw9MmDCBzymmqqSkpCAwMBBnzpxBenp6Xd2mYFRUBAtQ+UdFhVnSiImJYfjw4RgzZgw6d+7MLGPU1NSwadMmHkVfTbhw4QIaNWqEv/76CzExMVXq6y0i6BOhHxEUxcSgq6uL9+/f812akZGBK1eu4MyZMxg8eDCaNWsm1EdDGPUi8ESEkSNHVqsj/yTKBX3ixIkCHxBHR0ekpaVh8uTJiI2N/aV98/HxwZQpU3g0ul++fMG4ceNw8eJFlJaWgsVi4fPnzwDKHITMzMxQUlKCyMhIHg+us2fPYtGiRcjPz8ezZ8/w9u3bSu3Li4qKMG3aNFhaWuLgwYM4cOAALCwsMGvWrBq/PCqEyy1bB1cg8BeaN4e0tDR69+4Ne3t7mJmZYcKECViwYAF27tyJN2/e1ElXMjIy0Lx5cxgZGQneMxfSV3MiKBPBlQjLZGXRqVMnSEpKYunSpXz6mZSUFFhYWICIsG7dumr3sV4E/uvXr1X2TPonYmVlhaSkJNy9e5dny4jL5aKkpASampr4+vWr0BlAfZGWlgYjIyOBQslms6GhoYHg4GBs3LiROT5r1iye6eicOXPw7NkzAGXOPSoqKtDR0cHy5csxZ84csFgsBAQECO2DnZ0d46f+I4GBgZgyZUot7q4CKhjh9xJBlAjt2rWDmJgYRERE0L9/f0yYMAGXL1+u1jZqUVERli1bhsmTJ8PJyQkTJ06EnZ0dzMzMoK6ujvbt24OoLDBGdfpqRgQRIkwiQkLbtigsLMSyZcsgKSmJ9u3bY/ny5Xj37h1OnDiB5s2bo1WrVjh9+nSNvqp6EfiHDx/i4MGDcHJywo0bN2rUsT+Zu3fvwsXFBRwOB+7u7nBxcYGpqSkMDQ3Rs2dPdOvWDf3790dUVNQv7dfWrVsrXErt2bMHpqamPCPazxGDbty4gS1btoDL5cLS0hJWVlY82u3i4mK4urriyJEjfPVHRERg+vTpQtufOHGiQC1/rRGyLr76P0Ga0rs3pKWlsW7dOuzbtw8KCgpM4A0FBQVMmTIFFy5cEOrGCpS58FpaWqJRo0YYMmQIhg0bhhEjRmD06NEwMDDA+PHjoa+vD3d3d4F76RX1tZgIe4jQ6n/9VVdXx969e/Ho0SNMmjSJiXNARLC2tkZaWlqNv6p6m9KXf0aPHl3jzv3J7NmzBxYWFvD09MSwYcMwZMgQqKiooF27dnBycoKFhQWf73h9M3v2bHz8+FFo+c2bN6Gtrc2M4ABgaGjIMxsLCQnBzp07cevWLSxbtgxz587lCwLC4XDAYrH4/O5Xr16NBw8eCG3/ypUr2LZtWzXvqgrk5gK9ejGClEIEp/8Jj6aMDEL/t43247qYy+UiPDwc8+fPR+fOnRmjJBaLJVAYjhw5AiKClpYWQkNDERgYiAMHDmDbtm1YtWoVVFVVQUTo1KkTFi1ahOfPnwte/vzU1x8Vdjndu8Nv925oa2tDTEwMcnJyCAwMRFFREYKDg3H9+vVaf1X1IvBBQUGMDfXChQtr3cnqUv5jzpgxA5aWlli8eHG9rKVfv36NTp06wdraGrNmzcKxY8fg6emJ+fPn4/Tp09DS0uKz7a5P/v77b36t8A/s27cPa9eu5flNNm/ejODgYObvSZMmITY2FpMnT0ZMTIzQiEObNm3ii+fm6enJ+PYL4v79+/Dy8qrOLVVKSUkJfHx8MKB/f3SUk0MrUVGIE6G5qCi81dWR+fkzbG1t0ahRI6SmpuLmzZt48OABY2NvY2ODrl274vjx49i0aROICF27dsXgwYPh5+fHWFOmp6djxowZfCG7ZGRkoKSkhC5duqBZs2aYPHkyE/BDVVUVy5Yt44+alJtbpo1XUUGioiI4HTqU/f3DDCM1NRXm5uaQlpYWrPyrIfUi8AYGBrCyskKjRo0wdOjQCq8pLS1FSEgIFi5ciMWLFzPbQTWFw+FgypQpmDVrFt6/f4/CwkKEhYVh3Lhx2LVrV43rFYSPjw9OnTqF/Px8jBs3DvPmzcOzZ88QFRWF7du3o3v37li/fn2dtlkRKSkpMDU1Ffj9FRcXQ1NTE4WFhTAzM8OjR48AAJmZmdDQ0EBCQgJCQkKY6Dvjxo2Dq6srTpw4IbCtw4cP860jL168iL///lto/5YvX16j6EEZGRnw8vKCvr4+jI2NYWtri/v37wMARo0aBSKChYUFFi1ahLVr12L3rl349u0b3r9/zyOczZo1w/r16zFx4kQoKipCVFQUSkpKTLCQ8uAQP3727t3L05eCggJ8+vQJWVlZQoOiFBcX4+rVq3B0dGTqERTZ5uvXr0y5sbExbt68yVNnXl4eVFRUoK6uXiuZ+JF6EXgtLS0MHjwYa9as4QlG+DPx8fFgsVjYsGEDIiMj8eLFCyxatAgmJibIysqq1o2Us3XrVr4fCSgb9V1cXAR+8TVl6dKlePnyJZycnATueV++fBkqKio1jrpSE3bu3Ak3NzeeHzQ1NRU2NjZMnLycnBxMmDABTk5OCA4Oxp49e6CsrIxevXrhyJEj2L59Ozp16lShDfu0adP4dBTlMQgFxVP79OkTdHR0qv3gfv78GRoaGjwKtrdv38LQ0BDW1tYgIuzevVvgtQkJCfjrr7+gpKQEe3t7SElJMX4CqqqqYLFYcHd3h4+PDxwdHaGjo4PRo0dDRUUFY8aMwY4dOyr/7Sq5Hzc3N0ZX4OXlhbdv38LX1xe6urowMjJChw4deF4wTZo0waRJk3Dy5EnExcXB09MTEhISNQ5b9jO/LaZdaWkpRowYAXd3dxgYGMDAwABLlizBly9fEB4eDisrq6rdwQ+Ury2FaV6/fv1aaQTZ6uDj44M9e/bAxsZGYPmxY8cwadIkgQqu+uTixYswMjKCsbExDAwMMHbsWAQEBODSpUu4f/8+s2b/8OEDfHx84Ofnh4SEBLx69Qr+/v64dOkS4uLiYGBgIHC3JS4uTmgAxujoaKirq+PAgQPIyMhAeno69u3bxxNbrjpYWFjwLMfOnTsHBQUFRkBatmyJyMhIodffvHkTK1euBFA2K3F3d0d4eDg4HA5PCOvyz9SpU5lry0OKlRvrcDgc3Lt3D4vmzsX6YcMQ1KoV3rVujeIOHcqUcbm5SEpKwqVLl5iQVVwuFw8ePICDgwMTF7Bp06aYOHEiTp48ieTkZNy8eZMxKRb0mTx5crW/N2H8NoHftGkTunbtirt374LL5YLL5eLevXvQ0dHBo0eP4OLignfv3lXtLv5HcnIynJ2dKzynLrfKsrKyoKamJlCgS0tLoa2tjbi4uBrFlq8LSktLkZiYiLFjx8LR0RF79+7FqlWrwGKxEBgYWOn1AQEBPDH3SkpKcObMGWhoaDD7+IIoLCzE+vXroaqqijZt2qB///5wcHCotgVmfHw8Jk2aBKDs2Sof0U1MTPD27Vs8ffq0Qu83oCyiraCdgYKCAp6pPv1PO15uGZmRkYG+ffuCiCApKYmPHz9i586dICK0FhOD/A8CKUYEJSJ0/8HPXkpKClZWVjz+/AEBAbCzs8Ps2bPRq1cv5vqmTZtCTU2Nie1HVGbPf+nSJaxfv77OYjeWf4+/XOCLi4vRtm1bvHjxgq8sNzcX6urqOHfuHLy9vavSLENmZmaFIziXy4Wenh44HA5iYmIQExNTa3dWV1dXjBo1isfQJT09HRMnToS/vz+SkpLg5ORUqzZqSm5uLjQ1NflMY0tKSuDo6MijrBPGu3fv4ObmBiMjIxgZGfEEXBTGzZs3YWRkxKOs+vjxI8aNG4egoKAq9//q1avYsWMH8vLyMGLECMjJycHf359nWVBZIhJbW1uhy0Nvb2+MHj0ampqafI41wcHBPKNsfHw8/P39QURIFxEBlwjJVGYlt48IK4kwkwhHtLURFRXFDGhEBA0NDdy7dw+WlpZ8BlFnzpyBl5cXHB0d0bJlS8Z8VkNDo8rfU3X4LQJ/9uxZqKurCx3B9+zZg/nz5/NE7iwnNjYWs2bNgpqamsC1orGxsdAHMiwsDLq6umCxWHBzc4Obmxs0NTXh4+NTY6VIWloaRo0aBTMzM2ZpYmFhwSinduzYgbNnz9ao7tqya9cuoQYabDYb2tradaYM+rFedXV1gT7hxcXFYLFYFe53/8jz588xZ84caGhoQFZWli/6TVpaGiZMmFBhHVu2bKlwX3zq1KkC7SW4XC62bNkCTU1NZjb08eNHEBEu/7Tfz/NRUWHqKC0txdmzZzFgwABISkpCVVUVW7Zswb59+3Dy5Ek+s9ilS5fi1atXyM7Orje9z28R+NWrV2PXrl1YvXq1wPLnz5+jT58+PI4BqampMDQ05Hnr/qisYbPZWLt2LYYMGQJpaWn89ddf2Lp1K/NSSE1NRadOnTB37lyedWlpaSnWrl3LrPNqwuzZsxEQEMAsTcr58OGDwP3qX4WRkVGFbbu7uwu02a4NZ8+erXA35MSJE1VKBgGUCZ2SkhKkpaVx7949vvJ169ZVuA0JlE3NtbS0BJq6lpsVVxUuh4PmIiJYVpHAt2nDp8j7/v07zMzM0KhRIzRp0oSZ9h86dIjnPBsbmzqdvgvitwj8jh07cP78eejp6SEiIoKvfNWqVRg8eDDzd1JSEmMZRUSYOXMm7t27xyO45Vscffv2haWlJVq1asXEZW/ZsiWjhY6Pj0daWho+fPiAZ8+eMV9wbeLcFxcXY/r06bCxscH58+dx48YNzJ8/HwYGBpUmk6gK5TH8Hz58yOftVRGVTXeXL19eqY94ddmwYYNA4Szn7du3VbbN+PDhA0RFRdGvXz+eZ4rL5eLcuXMYO3ZslZZkV69eha6uLpOvrrCwEIcOHWJMoKuDvYwM2hGBXYUR/mcCAwPx999/4/v37yAiHD16lCkr17X8TEREBMaNG8djLFUb6kXgFy1aVGHAvaSkJFhaWiItLQ2mpqZwd3fHtWvXcOnSJUyaNAkdO3bEx48fkZGRgeXLl0NeXp4x5DE3N2fqiYyMxKZNm2BnZ8coWMoT9JWWluLChQuYMWMGzMzMBIZ7Kv+0adMGQ4YMgYGBAS5fvsykU6ouCQkJ8Pb2xrZt23i802rDmTNnwGKxsGDBAqxbtw6mpqaYOnVqlQx6XF1dK0yVZWhoWOeGQQcPHoS/v7/Q8itXrmDz5s1VqmvVqlVo2rQprl69CkNDQzg4OGD27NnQ1tbGkiVLquWM8/XrV6xcuRLGxsYwNzfHwYMHazRtfvk/xeERQcIuxL21nNLSUlhbW8PPzw9SUlLM9xAVFSVQ13L8+HE0atSICaZZF8Fh68201s/Pr8JzlyxZgr///htcLhcvXrzAtm3bsHPnTixZsgQeHh44ePAgE6V1zpw5iI2NhYiICFxcXODp6clEeZWRkcHQoUPh4uKCTZs2CbVKWrlyJa5du4aLFy8iKCgIt2/fxrNnz3DmzBl4eHhg8ODBPBFf9PX160xoa0pAQAAmT57MNy2/e/cuDAwMKs2G8+bNG1hZWQkcBUNDQzF79uw67S9QFg9AX19fqG5g7NixVR5V58yZgx49ejB/JycnIyYmhi8z0a8iOzsbLHV1SIqI4IaICL+w9+rFYy0niOLiYmzZsgXNmzeHgoICdHR04OLiwreTcPPmTYiLi8POzg4JCQno1KkTunXrVuspf70J/KVLl7B9+3b06tULHTt2hL29PaKiovDhwwc8fPgQ9+7dw4ABA9ChQwd4eHhg0aJFYLFY2Lp1K7hcLpYsWQIigra2NjN1HzRoEIjKwj8bGxvD2toampqaMDIygpaWFlavXi10xAoICKhQ679v3z6cOHECMTExOHjwIJMW2cDAAE+ePKnK7dcp5W6swrwOt27dWiWN95EjR2BmZoawsDBwOBykpqZi/fr1MDMzqzfF0N69e+Hm5sZTP5vNxrJly7B27doq1+Pi4oKmTZti6tSpWLt2bZ0aTVWX9PR0qKmpQV5eHncuX2ZMY8tDVP1sGlsZGzZsgJSUFOOIVP5SLrcqbNy4McaMGcO87D98+AAlJSV069at2suQH6lX5xlxcXGYmZkxf8vIyPDkKy+3LHr9+jVev37NM5LdunULsrKyUFZWZoQ4MzMTKSkpyMvLg66uLi5cuMB8URwOBxcvXoSurq5ALXC59lhQwIDy/HE/jhylpaU4ceIEI/gaGhpYuXIl5s+fDw0NDbBYLJiamuLcuXP14gr86NEjrFixQmh5ZmZmlY2TYmNjGQtGOzu7aruF1oSzZ89CV1cX9vb2mDRpErS0tHjWrFXh+vXrMDY2Rr9+/dCsWTOIiIj80ug7P3Lr1i0QEXr37s2r96jhLseXL19gY2OD3r17Q0REBEZGRmCxWMxefPv27WFhYQEXFxcUFBTgypUrYLFYjLWgpaVlhQZHwqg399g7d+4wa+H79+/j+fPnmDp1Kjw9PXH16lWMHDkSLVu25HH1Ky4uxvnz52FsbAxRUVH06dMHixYtwqJFi3gcNVatWoVLly4J7MOlS5eEatzv3r0LfX19PH36lDn27NkzGBgYCLXxLi0thb+/P1gsFqMEFPRRU1Or0+CdoaGhQk1GgTLFVUXphn88r14CT1SR1NRUvHnzpsam0uUUFRVBSUmJsfX/HTx8+BB9+vSBqKgotmzZUmf1hoSEQFJSEqKiojAxMUFwcDAz+F2/fh39+/fHzJkzkZGRgbi4OHTo0AHt27cHi8Wq9qznt2jpX7x4gU6dOsHe3h5AWV52W1tbxuKpdevWTIaVH72Tym3kWSyW0DUil8uFlpaW0Lbj4uIwb948Zs987ty5VfKkmzZtGu7fv48XL17g5s2buHr1KkJCQnDmzBloamqiUaNG8PDwqLSeqpKYmAg7Ozuh5Y8fP66wvdTUVMyZMwfa2tqwsLAAi8XCqlWr6iy9dmWUlpZi8+bN0NTUhJOTEywtLWFqalqh+2xlbN26FWJiYkzMu+/fv9d/+KyfKC4uxrx58yAiIlJnYdwSExNhYWEhUFn86dMndOnShWeQiouLg7KyMvr06YNRo0ZVa7b2SwU+KSkJU6ZMARGhc+fOePLkCR4+fAhZWVl0794dy5Ytw6VLl0BEYLFYOHnyJFxdXRllmoeHBwICApiYckCZZvz169c8bRobG9fplDU3N7dCk9yvX7+id+/ekJSUxMGDB+vMmMXa2lpg+CUOhwMzMzOhL6qUlBRoaGggLCyMOcblcnH+/HkYGBjUuzMPl8uFk5MT9u/fz/M7ZGRkYOzYsQLTKVUFNpuNHj16QElJCR06dGD2s1VUVGBnZ4e9e/dW2xy7JnA4HJiamkJeXr5Odjn27t0r1Opx5cqV8PHxwZIlS3iOv3nzBs2aNUOHDh1w5cqVKrf1SwT+2bNnsLGxgbi4OGRkZJhIqe3atQNRWaaRH00OtbS0mFFdSUkJvXv3hp2dHU6cOIEDBw6gZcuWsLe3h76+PpycnODp6QkTExNMmTIFmZmZFY7wNSEyMrLS0VtfX5/J5zZmzJg6MWhJS0sDi8XCkSNHmG3Oly9fYuzYsTh27JjQ66ZPny50f/3kyZN1FoSCy+Xi0aNHcHZ2hpGREVxcXPD48WM8ePAACxYsEHhNUVFRhTO0ynjy5AkmTJiARYsWwc/PDydPnsTs2bMxcOBAZsn1119/Yffu3fWqzQ8PDwdR1SI0Z2VlYceOHbC1tcXkyZMRGhrK8yLctm2b0MhQkyZNwqNHjwR6Lnp6eoKIYGdnh+Dg4EpNnoF6EvjU1FS8e/cOd+7cwerVqyEqKopOnTph27ZtiIyMhKKiIlq3bo3p06fj9u3bfEovDoeDCxcu4NKlS9DT0+OZzgBlQSI7duyIuXPn8hwPCwvDgAED6nRqDZQpWCpygPn+/Ttj5HLt2jV07twZzZo1q5Ppc0FBAfz8/GBqagpjY2O4u7tXOIoVFxfzzIB+pqSkBLq6urXuF5fLhZubG2bNmsVsKcXGxsLNzQ29e/eucJm0dOlSxh+/LsnLy0NQUBBMTU0hJiaGnj17IiQkpF6CkMybNw9iYmIVRhgCyvRGmpqaOHv2LLKzs5GQkIB169bB0NCQEbqwsDChz+ySJUswd+5cPmengoICSElJQUxMDHp6eti1axeMjY2xaNGiCpXI9SLwP2bNKP9s2rQJenp6EBUVRcuWLau0tRAaGiowgISuri7U1dUxdOhQZGRkACh7AK9du4ZevXphx44dVelutTAyMhJq5Xb06FEeu//o6GgQEeN//iv59u1bpd55lVngVYXykNiC6N69e4Uuwb6+vlVy3KkNERERGDhwIIjK8s6pqalh6dKltTZeyc3NxaxZs0BE2L59e4Xnpqeng8ViCXzxP3r0iPmduFwu9PX1BdqQPH78GAoKCny2GJaWlli7di2j91JQUMDBgwdx8OBBvoHwR+o9pl25JZukpCSGDx+Offv2Vdk8dNq0aXw/UEJCApycnJCdnQ1DQ0P06dMHZmZm0NLSgqenJ1JTU+slWmx4eDgMDQ35+v7o0SPo6Ojw/aiDBg2CuLg4jIyMcP36daxevRpaWlqMzYCXl1e9KNCKi4srHMHZbHadjPA6OjpCrSnd3NwwbNgwodfOnDmzzkJDVwSHw0FkZCT8/PwwadIkyMrKQkREBH379sWIESOgpaUFExMTODo6wsPDo8IcAunp6Thw4ADatGmDxo0bY/PmzZUuSzZt2lShYs/KyooZ+BISEqCpqYk9e/YgLS0NWVlZOHLkCNTV1TFt2jQsW7aM0b08efIErq6uGDduHEJCQhAVFQVbW1tmOdm3b1/4+/vj06dPfH2sF4EX+18wfV9f31pZBjk5OfFpLiMiIrB48WIAZcY0R48e5bM4q6rAFxUV4cWLF3jz5k2VlHyPHz+GsbExJk2aBA8PDxgbG2PatGkC106ZmZnYvXs3+vTpw9j/l3/5HA4H586dg76+fr0Ivbu7u9Ap8+HDh2sd6ovD4TBbgk+ePIGzszNjsurv74/Xr1+jTZs2Ar/T5ORk6OvrM38XFxfj8uXLOHDgAG7dulWv9gH5+fk4ePAgpk6dCgcHB1haWsLQ0BBDhw5F48aNoa2tzXN+aWkpNm7ciKFDhzIKQhMTkypne7GwsKhQj+Dj44Pz588zf7PZbJw6dQoODg6wtbWFn58f83ycOHECurq6MDc3R+fOncFisXiUskCZz8DQoUN5LEZVVVVx8uRJ5px6Efi6CkXs6+vLp5zKyclhHjZnZ2e+VE6VbWcBZevYZcuWQUdHB0uWLMG8efOgqamJw4cPV6lfX79+RWRkJJ+BT15eHm7cuIHPnz/j7du3iI2NhaenJ/r164dBgwbxTcvOnj1b50EdgTJtOIvFwvXr15mXTElJCY4fPw5TU9Na78tzuVzo6urCy8sLLi4uzFQ0Ly8P3t7eMDAwQJcuXTBjxgwmxBmXy0VYWBg0NTUZd9Tz589DU1MTmzdvxrlz55iEnLXZuqspqqqqjB9GOZ8+fWLSY69atUqgO3ZFTJgwgVlyCmLr1q0IDQ2tVp1sNhtubm4V6g4uX76MlStX4tKlSzA2NgYRMd/pb4t4UxXy8/Ohrq7OZ7QxdepUHD58GOPHj+e7ZubMmZUaIzg6OuL48eM8053S0lIsWLCgVqPfhg0beJYykpKS0NTUxKFDhyAqKoqePXvyxL7jcDh1vqNQTmZmJpYtW8azjNi8eXOdaa719fWFhvY6fPgwevbsiZs3b8LS0hJGRkbQ1dXFwoULGe/B+/fvw8rKiu/lk5ubC319/V+yvfYjXbp04QlvVU5YWBjatGkDAwODatcZEBAg9Hkqf2nWZIv0xIkTAuM2ljNv3jzGHJzD4aBnz54YOXIkLl68iMTExD9X4IEy3/gxY8bg6NGjSE9Px+fPn7Fy5Uq0aNECe/bsYdaRCQkJmDFjBlatWlVpfe5CPJrKI+JUN19XObt27QIRYf369dDQ0ICamhrj3ffy5UuMGDECRMSzrqsLBdrvwNjYGKNHj+bTaXz79g3a2toYM2ZMhd+jubk5z1bsj7x//77+stQIYfbs2VBWVha4pNi1axfExcWr5ZoMlC1XtLS0BLqAe3l5YdOmTTXqK5vNxpgxYwR+fx8/fuR7OV26dIlJZtGxY8c/W+CBspF+//79mDhxIlxcXJitFl9fXxgbG8PIyAh2dnYV+mGXM3/+/Apjp+/fv79K8d4EkZOTw3jxERGcnJx49pw5HA66du0KFxcX5u/6GuHrGyMjIzx79gy6urpwd3fH7t274ebmBj09Pbx48QILFy4UautdHhCiIiraWqwPHj16BCLCwYMH+cq+fv0KERERvoAVVSEtLQ3jxo2Dk5MT/P394e3tDX19fWzYsKFWBlqvXr2Curo6/P39kZOTg2/fvsHb2xuampoCc9JzuVy8efOGsdX/owW+LnFxcalQkRgcHAxfX98a119aWsoTj1xfX5/HTr98S6dXr16wsbH5LYk66gIDAwNGJ/HmzRtcuXKFR8AdHR0FPnhA2Qtc0HLsRwwNDeuus1XE3t4eTZs2Ffh8DB06lCcWQ3X58OEDTpw4geDg4BrPIH8mLy8P+/btg7W1NWxtbXHy5MlK9TN//fXXf0vgd+zYgXPnzgktX7RoEZ/2s7p8//6dR+gHDx6MO3fuMI4swcHBYLFYICJmx+Gfxq5du3Dq1CmBZTk5ORWueblcLrS1tYXqE9LS0mBhYVEn/awO3759Q6tWrTBo0CCeOHepqamQkZHBokWLfnmf6pJbt24xgWD+MwJfbnor6E2YlJQEXV3dOrOFv379Og4dOoTk5GQsXLgQLBYLFhYW0NTUxOzZs0FEtZpN/E7y8vLAYrH4lkd5eXkwMzOrdHl15MgRgTENuVwupk6d+tuSkIaFhUFVVRWSkpJYtWoVPn/+jPHjx0NeXr5CjfufSlpaGs6dO4dhw4aBiJjY+P8ZgQfKlBhGRkaMyW5paSkuXboEDQ2NOg/q+CPlI3x5sMuRI0dCVVW1wnBgfzLp6emwt7fHuHHjsGbNGkyfPh26uroVGrCUUx7kxMHBAY8fP0ZaWhpu374Nc3NzHrfg9PR0vH37ttbutdWhqKgInp6ezJZc48aNceDAgV/Wfm15+PAhJkyYwCjoyq0Nf4xFUZmMigAAVUJubi7Jy8tTTk4OycnJVXb6byU2Npa8vb0pOjqaANCYMWPI2dmZWrRowXdubm4uHTt2jG7cuEEiIiKkra1NdnZ2JCsrW6O2ORwOjR49mjIyMujjx4/UuHFjGjx4MLFYLBo1ahQNHz6cxMTEanuLv4xv375RbGwsNWvWjLp27Vqtaz98+EBHjhyh5ORk6tixI02aNInatWtH0dHRtHTpUhITE6P27dtTTEwMycrK0oYNG0hJSame7oSXyMhIevr0KZmZmVGzZs1+SZu1IT8/nzw9PWn37t3Uq1cv0tbWJjk5OVq/fj2NGTOGVFRUyM/Pj4ioUhn91wl8VYmMjCR3d3dydXUlExMTAkDBwcHk4+NDe/fupe7du1e7zu/fv5O0tDQREbVs2ZK+ffvGU96jRw86dOgQDRkyhIiIsrKyKDExkVq0aEFt2rSp/U394cTGxtKUKVPoyJEj1LZtW+b427dvyc3NjQIDAwW+mKtKdnY2PXz4kIiIhg8fXmVhLi4upoMHD9L58+dJXFycSkpKSF9fn6ZMmcL8nsKuCwoKomvXrhERkba2NllYWJCkpCTfuV+/fiU3NzeKiYmhrKwsKi4uJiIiLpdLMjIypKysTEpKSsyHzWZTcnIypaSk0IsXLyg7O5vWrVtHbm5uxGazSU1NjZSUlGj69OlkY2NDLVq0oIyMjMpltCpTiX/KlL6qlJSUQF1dnScqTznJyclCUylXBR8fH54wX0uWLIGPjw+6du3KuHnq6ekxJquenp6YOHEijI2N6zy09J/GxIkThVqS3bx5E8uXL69RvSUlJViwYAFMTEywe/dueHt7w8zMDHPmzKlUu81ms2Fubg4/Pz9G2VhcXIzjx4/DwMBAqIl0fHw8YyOflJSE5ORk7N27FxoaGnwehc+fP0ebNm3Qtm1buLm5MTEAdXV1mWelefPmaNu2LTp16oTmzZujTZs2GDhwIIyMjDBjxgyeOufNmwcpKSlERETw+bf8p9bwVeX8+fMVhjJat25dtU0jfyQ6OhqnTp1C3759ISIiAh0dHVy6dAlDhgyBqKgoI/hjx47F8+fPweVykZ6eDj09vQptCf7JsNnsSjX8Ojo6Narb1dWVx668nDNnzlSak3D79u1CY/KdP39eYFi18t0IQbb3nz9/hpaWFtLT07Fjxw4MGTKEifa0Zs0abNy4EYsXL8bs2bOZnHY/f2RkZIRmZw4LC4OoqCg2btwIDoeDXbt24enTp0wMigaBF8CyZcsE5r8rJywsrFpRWIVRUFCAgwcPol+/fpCRkcHChQvRr18/ZguldevWICIm93pKSgrGjRtX63b/RLKysmBra1vhOTWxToyLi4ODg4PQ8smTJ1cYIFNbW1toWHAulwtNTU2+3Z0fM9cKYvbs2VBQUGAcc378yMvLQ0VFBcrKyhAREYGDgwP8/f0xceJEnhTTPytIuVwuDhw4ABkZGQwePJivz8nJyVWSUdFKFzj/Qho3bkzZ2dlCy7Ozs0lGRqZO2nF0dKQHDx6QhYUF+fj40KtXrygjI4OIypR8Y8aMoZ07dxKHwyEFBQUSERGhrKysWrf9pyEnJ0cpKSkEISqjwsJC4nK51a43KCiIbGxshJbb2trSuXPnhJY3atSIxMXFBZaJiIhQ8+bNic1m8xx/9OgR6erqCrzm5cuXdOjQIUpNTWXuddCgQeTr60u5ubmUnZ1N8fHxdPDgQZKQkKCQkBAyMDCgw4cP06dPnyg9PZ0yMzNpzJgxPPVeuXKFnJ2diYjo5s2bfH1u3Lix0Hv8kf+kwI8dO5aOHz8utPzEiRNkbm5eZ+3JyMjQ0aNH6du3byQtLU0lJSUkIiJCGRkZdPfuXUpMTKSwsDAiImrVqhXl5ubWWdt/CqKiojR69GgKCgoSWL5v3z6ysrKqdr1FRUUVKqnk5eWpsLBQaDmbzRb6EiIqe/k3atSI55ikpKTAOu/cuUN//fUX5eTkEBGRq6srvXz5kp48eUKTJ09mdn8+fPhA+vr6NGLECHr9+jWPcrFly5YClY33798nIqKhQ4cywg2ACgsLKTU1lTgcjtB7+JH/pMCrqqqSqKgonT59mq/M39+f5OTkqEOHDnXerri4OPXo0YOIiJ48eUJnzpxhyp4/f05ERDExMaSoqFjnbf8JeHh40NGjR2nv3r1UUFBARGU7FWvXrqWoqCiys7Ordp2DBg2iW7duCS2/efMmDR48WGj5sGHD6ObNmwLLnj59Sj179iQRERGe46ampnTq1CnmbwDk7e1NGhoaRFT2cjt48CB5e3tTv379+OpVVlYmCQkJMjU1rfLuzOfPn5n7ERMTI1FRURIXFycZGRlSVFSkjh07Vqme/+QaHijTxC5YsADGxsbYsWMHtm/fDkNDQyxevJiJHZaZmYkLFy7gwoULdWaNde7cOUhLSzOxzmxsbEBUlnH06tWrmD9/fp2086dSXFyMo0ePwsTEBEZGRhg7diyCgoJqbAXJ4XDAYrEEhlYrj/JbUSy4zMxMgUEnXr58CQ0NDaHKs4kTJ+LSpUsoKSnhWXu3bdu2Splryz0Pvb29eVyrfyQ6Oho2NjbIz89HXl4eTp06haNHj+LgwYPYv38/k1XJ29v7v2t4U11ycnLo8ePHRFS2dysrK0slJSW0aNEiiomJIT09PSIiunr1KnXs2JE2btwocJ+1qgCgPn36UHp6Or1+/ZqkpaUpNDSUsrOz6eLFi3T69Okqr8caKOPjx480depUcnR0JAsLCxIREaHg4GDy9fUlb29vZlYljIyMDFq1ahV9+PCBlJWVKSUlhdq3b08rVqwQagzEZrNp9uzZFB8fT1evXiUios6dO9OoUaNo7969JCUlVWGbBw4coMmTJzN/u7i4kIqKCn369Im0tbVp5MiRpKysTEREjx8/Zmw3BPHixQsaMGAAETUY3tSIadOmkaamJo0fP57n+NmzZyk0NJR8fX1rVf+GDRtozZo1ZGJiQvn5+SQmJkYWFhZkZWXFt15soGoUFBTQqVOn6OrVqwSAtLW1ycbGhpo0aVLlOoqLi5lnvKq/Q3JyMt26dYtERUVJXV29ytaCRUVFpKysLFB53KNHD5KSkqL3799TUVERDRkyhA4cOEC9evUSWl+VZbTSuQf+nVN6YcTExGDSpElCywWF36ougYGBICKhgSLqEg6HU2dOQw3ULa9fv4a9vT1PrLryT7NmzXD69GmoqamBiCpd6lVVRgXvR/yHCQ4OrtI2j4eHR43bKN/yKygoqJUpaUWcPXuWDhw4QBISElRSUkLy8vK0YMEC+uuvv+qsjeTkZPry5QspKyv/J0yDq0p+fj6FhIRQdnY29erVi/Ly8mjVqlWUk5NDycnJxGazqaSkhDgcDq1Zs4bS09Pp8uXLxOVy6fPnzxQREUHv378na2tratu2LR06dIjs7e3rpG9/lMAnJiZSamoqtW/fnlq3bv1b+lDZNo+cnBwVFRVVWMft27fJ19eX8vLyCAAZGhqSg4MDI+jx8fEkLi5eb0Kydu1aKigooNOnTzNT2q9fv9KMGTNo5syZpKWlVav6Y2NjycPDg6SkpEhVVZViY2MpLy+PvLy8auSD8G9i586dFBoaSuPGjaM2bdqQv78/+fj4EBGRvb093b59m3JyckhERIQsLS3JysqKbt++TadPn6abN29STk4OycvLk6amJk2fPp3s7e3rdplXlalHfU/pX79+DRMTE0yaNAkrVqyAlZUVrKyskJCQUC/tVURoaCjWrVvHdzw1NRVr1qxBt27dMGjQIMyaNUugBdfy5csxa9YsRmvMZrNx/PhxaGlpMbHT5s6di86dO9dL/z9+/Cg0CGVhYSE0NTVrlQY7MTERGhoafGalX79+haamZpUSeP5bOXToEDw8PJCUlARvb2+oq6uDiKCoqAhVVVV4enpCVFQUjo6OePfuHQ4fPoy2bduCiDBw4ECsXr0aYWFhQi3/KuKPjlr7I1FRUdDW1uaLU//hwwdoaGggNTUVubm5iI6O/mVr3p+3eSIjI6GpqYlTp04xAvP8+XOYmJjwBK68c+eO0ECa4eHhTMw7MzOzGtuNV4anp2eFkX3Wr1+P69ev17h+d3d3oU4+7969Y+7xvwSXy0VoaCiaNGkCeXl5nhwOR48eBZvNxpUrV6CjowM5OTnm/0QEKyurOnGa+scIvK2tLT5//iywLDg4GP369YOJiQnmzp0LKysrWFpaCg11zGaz4e/vDzMzMxgbG2PixIl4+PBhtfsUHR0NdXV1HD58GDk5OVBXV8fu3buhrq7O0zabzQaLxWKCONjZ2THhmgVhamqKr1+/Ql5eHp6entXuV1VwcHCo0GYgMDCwynH6BfFzUoefqavIQlwuF+/fv8eLFy/qJYdcXVFSUgI7Ozt07twZoqKisLW1xZo1a2BhYYGtW7cy53E4HCbuHBGhXbt2CAkJqbN+/COUdmw2m3Jzc6l9+/Z8ZdnZ2bRz506SkpKi8+fPM8e/fPlCkyZNIm9vb56gDAUFBWRlZUWGhoZ07NgxatKkCX3+/Jk2bdpEN27coOXLl1e5X127dqWQkBA6deoUmZmZUWpqKjVq1IguXbrEY2MvKSlJrq6udOzYMXJzc6OcnJwK1+W9evVibKp/3IOtS9q3b0/v37+n4cOHU1BQEB08eJCIiEpLS6ldu3YkIyNDxsbGNa6/svVk48aNqbS0lCQkJGrcxoULF2jXrl3Uo0cPatq0Kb148YJUVVVp/fr1Ffqn/w7+/vtvAkBxcXFkZmZG/v7+RFRmbzF9+nS6e/cujRkzhkRFRUlZWZmCg4Np69atFBkZSfv27aO9e/eSjY0NWVtb81n01Qt1+faoLpmZmbC3txdYtn79eoSEhAj0oIqPj+fzvJozZ47QqeqsWbOEWjNVxr59+yrMI5aYmMgkOjA2Nq4wrJWTkxPmzJkDWVnZeklFBZRlerW2tsby5cuxePFint/sxYsXaN68OcLDw2tcv66urtAglSUlJbUOz33mzBlMmjSJr43Q0FCYmprWSv9Q15SUlIDFYsHS0hLDhw+Huro6z+zm69evsLa2BlCWumvKlCnQ0NDgSSudm5sLLy8vTJs2rVYzo6rK6G+1pZeXl6ekpCSBzgt3796lESNGCLxORUWF8vLyGAeGoqIievfunVDts4eHB+3fv79GfWzatCmlpKQILU9NTWWcHUxMTHhsrH8kOzub0tLSaObMmZSfn89jR1+XdOrUiRQUFOjs2bO0aNEiZschISGBVq5cSYcPH6alS5dW6DBSEZaWlrRv3z6BZYcPH67V7IHD4ZC3tzf5+vryzSR0dXVpyJAhjFXbn0BKSgp16dKFVFVV6dGjR3Tnzh3S19dnypWVlSk/P5/YbDatXr2aMjIyaPv27aSrq0uiomWiJysrS4sWLSIFBQW6dOlSvff5twq8qKgoaWhoCHRikZCQoN27dwt1qGjZsiXl5eURUdk0v2fPnkLbUVJSovz8/Br10dDQkM6cOSNUQPz8/Jh9ezs7OwoICKAHDx7wnJOVlUX29va0dOlS6tSpEykpKVFcXFyN+lMVREREaPLkyWRra0vGxsakr69PS5YsodWrV5OxsTH169ePHj9+TOHh4RQeHs7n/lkRjo6O9ObNG1q5ciWlp6cTEVFmZiatX7+e7t69SzNmzKhxv8PDw2nUqFFC3VWdnZ0r9HL8VXz69IkePnxIly9fpjt37tDt27eZssePH9OMGTPo+fPnlJiYSF++fGG2ZTkcDqmpqQms083NjY4ePVrvff/t+/ALFiwgW1tb+vr1Kzk7O5O8vDylpKTQu3fvqE2bNuTp6cl3DQAmFhxR2d54+cMniNLS0iq7D/5MkyZNyNjYmBYuXEheXl7MwwiAjhw5QhwOh/r06UNERFJSUhQQEECLFy+mDRs2UM+ePSk1NZWysrJo6dKljD20pKRkpXv5teHz58+0ceNGmj17NgHgWRtyuVyKi4sjV1dXxgV42bJlpK6uTosWLWJGHmGIioqSr68vXblyhdzd3Sk/P5+kpaXJzs6uStdXRHZ2NikoKAgtb9WqFfOS/9UAoFmzZtGuXbt4jouJiVHz5s1JWVmZmjRpQlOmTCENDQ0KDAykqKgoUlRUpFOnTtHXr18rDATaokUL+v79e33fxu8XeElJSTp58iSdP3+enJycqLi4mGRlZWn8+PEkLy8vUJERGhpKAwYMYIRPQUGBsrOzKSsrS6Av8YULF0hHR6fGfZwxYwYdO3aMdHV1qU+fPiQlJUXPnz+nMWPG0N69e3nOlZOToz179lB+fj4lJCRQ06ZNGScIIqL09HT69OlThXbRtaVNmzYUExMj0LXTw8OD8vPzad++fTR06FAiKnuYfXx8aP78+bR169ZK6xcRESEDAwMyMDCo03737NmTAgMDydXVVWD5kydPKnWEqQ+4XK7QaMMLFy6kDx8+kL+/P4mKitKRI0do06ZNtHHjRnJ0dKQTJ06QvLw8sdlsSkxMFNpGYWHhv19pVxFcLhcuLi5Ys2YNY7BSVFSEAwcOwNDQkE/pFRYWBmNjY74+RkREQFNTs076zuFw8O7dO0RERFQaHPHNmzfYtGkTvLy88PjxY0YhU57rrD4TVbx48QLTpk3jO56YmIhx48bx5MX7ERsbG6FbpL+KsWPHCjRo4nA4MDc3Z1JY/0ry8vKY7bSlS5ciICAAdnZ2TCbX0NBQsFgsLF26FPv27cPIkSPRt29fPp+LsWPHCk1N7ePjU6vt0n/MPnxFcLlcBAUFwcLCAkZGRjA0NISvr69QLfHDhw9hYGCAqVOnYtWqVRg3bhzs7e0FRqetL/Ly8mBlZQVXV1fcunUL9+7dw4IFC2BkZITU1FRwOBzY29tDTEysXpNjzJ07F15eXjy7BitWrMCgQYOEZo8JDQ2tMLjnr+Dr16/Q0NDA6dOnmRx3UVFRsLa2FpgQsq7Izs7Grl27YG9vjylTpuDq1at48OABvn79irS0NLRu3Rrz5s0DUDbw/Jwjj8vl4vHjx7h48SJevHghMIfe27dvwWKxeKwUuVwuLly4AGNj40oHkYr4Vwh8TYmJicGTJ0+Qnp7+y9u2tbXly2PP5XJx9uxZDB48GPHx8cjPz2eCXtQFBQUFuHr1Ki5dusS83LhcLg4dOgRtbW2Ym5tDX18fffr0gb+/v9B6nj17hhUrVtRJn2pDbm4udu3aBSMjIxgbG2PatGl4/fp1vbV3//595iWTkZGBffv2wc7Ojsd7TUFBAXFxcQDKZkqCZlA/Iiwg5/v372FnZwcTExM4OjpCS0sLS5curVE++R/5Twv87+L9+/d8pqV3796FtrY25syZAx0dHejq6sLc3BydO3fGsGHDarUfz+VysXbtWujp6WHr1q3Ys2cPxo4di6lTp/LUy2azweFwEBwczGP99TOVJeQURmZmJuLi4mr90P4OMjIyoKmpyWR+/f79OyPk48ePZ/7/4wsnPz8fJiYmQutks9nQ19evsN3CwkKkpaXVyG5eEA0C/xvYtWsXLl++zPwdFhYGExMT5mGKiIiAh4cH4uLi0L9/fzRu3BiGhoZClyiVsXz5cuzYsYPv+PXr1zFu3Di+dXp5Ao5ynciPZGVlQV1dvVoP4Nu3b2FpaQlLS0u4ubnBwMAAbm5uFT4nX758wevXr5GdnV3lduqTLVu24Pz58wDKXqCmpqaMkJfrW2bMmMF33aRJk4SaeB85cgTe3t712u+faRD438DOnTt5EliYmpry2LW/efOGyRt/48YN2NvbQ1JSEgMHDmTWq1UlIyMDpqamQss9PDzw6NEjvuPPnz8Hi8XClStXwOFwwOFwGKVTeRLOqhAZGQltbW2+WHL37t2Djo4O38zl6dOnjH/D4sWLYWpqCmdn59+euXXcuHGMnqOkpIQvEEWTJk0EKlg/f/4MDQ0NnpG/fD1uaGj4yxOJNgj8byAyMpJZ22VmZsLKyoqnfM2aNbh27RqAsodDT08Pfn5+ICLmeFU5duyY0Iwp5X2ZM2eOwLK0tDR4eXnB0NAQRkZGWLduHZ+3YmWMGzdOYOBIADhx4gRPpthnz55BX1+fT7ifPn0KLS2t3+ocY2Njw9cvJycnRuCnTp2KK1euCLy2fC2vq6sLa2trsFgsLF++/LcsbRoE/jdhZWWFsLAwPsXO+/fvoaury5OzztjYGCUlJejbty8GDRpUrXx2+/fvZ6aigvjRxr+uycjIgKWlpdDyn9NKmZqaClWgBgQEYOfOnXXex6py+vRp7Nq1i+fYkiVLQETo0qUL9PT0KtWzlJaWIi8v77eGEvtH2NL/G/Hx8aG///6btmzZQs+fP6enT5/S8uXLadasWXTo0CHGEi0tLY2kpKRIXFyc9uzZQ0+fPqUDBw5UuZ2BAwfymHT+zK1bt2jQoEG1vp+fKSgooKNHj1JaWhqFhoYKtGCUlJTkuU8ZGRlq2bKlwPrMzc0pNDS0zvtZVczMzOj8+fMUGRnJHHN0dKTWrVtTo0aNSF1dvdIowmJiYtSkSZNfYzhTSxoEvo6Rl5ens2fPkq2tLcnIyNDGjRuJxWLRlStXeCKarl+/nqZMmUJERCNGjCAHBweaP38+vXjxokrt9O/fn2JiYigmJoavLC8vjw4dOkTW1tZ1c1P/w9fXlywsLKhRo0ZUVFREr1+/Jm1tbSbMdzlZWVlMKO+cnJwKzWUlJCRqZY5bWyQkJOj48eO0atUqmjx5Mp08eZJu3LhBMjIylJKSQgsXLvxtfasPGgS+nhg4cCBdvXqVxMTE6MGDB0yu+A8fPtDkyZOpVatWPN59u3btou7du5OOjg7PaFMRe/fupalTp5Kfnx/l5eVRcXExnT9/nszMzMjLy6tO8uMRlZnerl27lrZv305NmjShpKQk6t69O40cOZKCg4Np5cqVFB8fz5y/Y8cOcnBwIKIyM9/3798LrTs1NfW3x+Fv3bo1BQYG0sKFC4nL5VKrVq3I0dGRcnJyauxV+MdSl+uDXw2Hw8GzZ89w+/btX2pNVx04HA5CQkIwYcIEGBsbY+rUqUJDGmVmZqJfv35QUlKqstVVUVERjh49CktLS5iZmWHLli11qvkuKSmBra0tOnbsiKioKBQVFeH+/fswMDBAr169cOrUKTx+/Bhz585FZmYmVq5ciRkzZvCsZ93d3XH79m2B9c+fPx9Xr16ts/5WBTabjZMnT2LWrFnw8PDgMX0GyhSeTZs2rXQv/U+iqjL6j01EERgYSPv27aMhQ4ZQ8+bN6fHjxyQrK0vbtm2jpk2b/u7u1Zjw8HAaOnQoLVu2jMaMGUO9e/fmmxKnpKTQp0+fSEFBoeo5xWrIqlWrqHXr1vT06VMmeg5RmUOJjY0NtWvXjt6+fUvPnj2jkSNHkoODA5mamvKsZ/Py8mj8+PFkaWlJNjY2JCUlRcnJybR582aSlJQkLy+ver2HH4mIiKBZs2aRlZUVaWtrU35+Ph0/fpzi4uKob9++FBwcTC9evKBevXrRw4cPSV5e/pf1rTb8qxNRBAQEwMXFhc9IJDw8HLq6urWySf7dlJSUwNzcnNkWaty4Mdzd3XH16lUkJibCysoK1tbWWLNmDVxcXGBgYFCt/fMfiY6Oxtq1a7Fo0SIEBgby2QKw2Wxoa2sjISEBU6ZM4bv+48ePcHR0BACBtuM/Uu74VJ5TzsbGBjdv3qxRv2tKfn4+1NXVeYKhcjgcREZGYvjw4RAREYG1tTWOHj36xxgGVZU/YlsuJSUFXl5emDhxIubNm4dXr15V63pBcDgcaGpqCrUI2717N06dOlXrdn43hYWF+PjxI1xdXSEtLQ0igrKyMp49e8ZzXmZmJvT09Kr13ZaUlGDKlClwdnbG3bt3ERERgV27dmHMmDE8y43o6GjMmTOH+c4FhZcyMjJCdHQ0nJ2da36zv4j9+/fz+BIkJCRg2LBhzIt11KhRQr3Z/nR+u8AfP34cBgYGCA0NRXp6Ol69eoXp06dj2rRp1dpv/pnw8HAsWbJEaHlubi7Gjh1b4/r/RPLy8jBs2DA0adIEvXr14ouMm5SUVOG++M8sWrQIJ06c4DuemZkJTU1NRgfw+fNnxjfA29sbmzZt4jmfw+FAT08P48aNq5OXeX1jY2PDRBjOycnByJEj0aZNG1y8eBEZGRk4dOgQAgMDf28na8hv3Yd/+fIlXbx4kS5cuEC6urrUsmVL6tu3L+3Zs4f69+9fpSALwsjLy6swPZOsrCwVFxfXuP4/kSZNmpCsrCyFh4dTRkYGLV26lKdcSUmJSktLqxTGKy8vjyIiImjChAl8Zc2aNSN3d3c6fPgwERG1a9eOPn/+TEVFRTRt2jTKyMgge3t7unfvHsXHx9OKFSvo48ePZG1tTX379q2Te61PxMTEqLi4mPz9/albt270/Plz8vPzIyMjI2revDkVFxcLDXTxr6Eu3x7lODk54ePHjwLLKpuSV0ZycjKfyeqPPHny5F+ZY73c3XLZsmWQk5NDbm4uT7mzszOSk5MrrefWrVv4+++/hZaXlJTA2NiY+TskJAQTJ05kfq/Y2FisWrUKjo6O6Nq1q9Df+U/k2LFjGDhwIIgIlpaWfME+TExMmBnAP43fOsKnpaVRly5dBJaJiopSr169Kgz3UxGKiookKSkp0ECFy+XS+vXraerUqTWq+09GXFycsrKyaMqUKVRYWMhjlRcfH0/Xr1+npKQkgemHf0RERIS4XK7QcvwUA8/AwIAMDQ1JV1eX1q9fT/fu3aO0tDRKS0ujkJAQob/znwaXy6XAwEB68eIFbd++nU6fPs2TD+HIkSNMHPx/NXX59ihHX1+/QrtiZ2fnCjO0VEZGRga0tbWxb98+xvHi6dOnMDc3rzDAwz+Z4OBgRnfh4OAAJSUl5t719PQYrb64uDjc3NyEapkLCgqgq6srtB1BtuVA2ch/69YtBAYG4s2bN3VwR7+WPXv2gIhw8OBBGBkZYe7cuQgNDUVgYCDGjx+POXPm/FEx76vLb92HX7JkCenr69PIkSP5yoqKisjMzIxCQ0NrZXvMZrPpzJkzdPbsWSopKaGuXbvStGnTSFVVtcZ1/skAIA8PDyopKaHx48eTpqYmubq6Ups2bWjv3r2UnZ1Nhw4dojdv3tDq1avJw8ODVq1aJbCu1atXk6KiImPaW05qaipZW1tTcHDwP2b/uaro6emRqKgoXb58mYiInj17Ro8fPyZpaWkyNDQkRUXFemuby+XS7du3KSoqilq0aEHGxsYkKytbp21UVUbrReCTkpLIwcGBTp06xeM0weFwyNXVlYyMjMjExKSKt9LAj9y7d48OHDhAYWFhFBsbS3v27CFFRUUyNzenL1++UJs2bWj48OEkJycn1CmFy+XSwoUL6cuXL2RjY0PNmzdn4qvv3r37t0SGFQYAun//Pj19+pTS09OpWbNm1LZtW8rJyaHExESSl5cnOzs7atu2rcDrExMTKTAwkNavX08DBw6kixcvVisNVkJCAp04cYLS09OpW7duNGHChGoJ68uXL2n+/PmkoaFBgwYNouTkZAoICCBDQ0OaOXNmleupjN9ueBMREQFtbW0sXrwYZ86cwY4dO6ClpYVjx45VuY4GhJOfnw9lZWWMGzcO796944mEe+zYMRBRpQY5X758we7du7FhwwZcu3atVtulNaGgoABv3rxBREQEswT8eSno4+MDIoKIiAg6duwIOTk5EBEkJCSgoqKCxo0bQ1xcHCdOnMDNmzdhZGSEQYMGITg4GAsWLMCECRNw5coVGBgYoG3bthgzZgweP35cad+4XC6WLl0Ka2tr3LhxA+/fv8fJkyfBYrEqdEv+ka9fv4LFYvGZOnO5XMyfP79Ol5+/fR8eKLuxR48e4dChQ7hw4UKNQzn9SSQlJcHT0xO6urowMjKCpaUlbty48Vv6Ui7Ya9euxdixYyEpKYkzZ86guLgYampq6NGjR73lsKsNQUFBYLFYkJSU5Mmm2rVrV0hJSWHixInMsxYQEAAi4gkdlpeXx7yccnJy4ODgwNTTp08faGpqQlRUlMc6MDAwEESEx48fQ0tLq1IDGx8fH6xfv57vOJvNhrm5eZX0GEuXLuULaFpOcXGx0HDhNeGPEPh/G9HR0dDU1MT9+/eZHyolJQUzZsyocKurvuByuXBzc4OEhAQ6deqEESNGQFRUFP7+/nj79i3ExcWxefPmX94vYXA4HHh6eoKIMGbMGOzYsQP379/H9evXMXv2bMyePRsrVqyArKwsWrRogV69ejGCLCx6T3m9J0+exI0bN8DlclFQUIBWrVpBSkqKsUxks9lo2bIlpk6dips3b2LlypUV1sdisYRuHUdFRQk0Nf6ZypTXM2fOrLM4+w0CXw8YGRkJDOvE5XJhZ2eHt2/f/oZeAR8+fEDHjh2hrKwMFovFTO8NDQ3RsmVLREZG4unTp7h06ZLQwIv1CZvNxvHjxzFw4ECIiIhg48aNFQpCbGwsPD09MWPGDOzduxfe3t7VCsH1/PlzeHh4oHfv3jz57Lds2QIRERGEh4czEXm4XC78/f2hr68PIyMj6OjowNbWFhMmTKiwjR8j+gijMv+CuXPn1llugl8u8Pn5+di/fz+cnZ0xc+ZM3Lp167eG/Klr3r17B1dXV6Hlr169wqxZs35dh37izZs3ICKcPHkSrVq1AhEhLi4OnTt3hoSEBCwtLbF9+3a4urrC0NCwXpNg/Eh8fDx69uwJIoKWlpZQN9m65Pnz51iyZAmmT58OFRUV5nhJSQnat2/PRNgFytKMr1u3jmfpc/PmTSgrK1c4ba+K6+zMmTOFmhxXNouoLr9U4B8/fgx1dXUcO3YMycnJ+PDhA5YvXw4TExM+i7B/KhcvXsS+ffuElnO5XB4LtV/JuHHjQESQk5PDp0+fGCWei4sL9PT0GAcRZWVl5OTkICkpCZqamrWyhagK+fn5aNeuHTp27IgXL17Ua1s/UlxcDC0tLfTv359vpNbR0YGamhpWr16NR48eCXxJc7lcjBkzBnp6egLrf/bsGWbPnl1pP96/fw8TExOB3pve3t51ugz8ZQKflZUFDQ0NgWX3799n3Cf/6YSHh8PT01NoeUJCwm+7VysrKxARXF1dmfDIixcvBhHh6NGjKCkpwY0bNyAiIoK9e/cCKIuZv2DBgnrtl4+PD8TExJiMLb+SzZs3Y8yYMWjatClPcJTyKMH37t2Ds7Mz4uPjmbIfR/mAgACoqanxLYHy8vKgp6dX5bX3xYsXwWKxEBAQgLi4ODx8+BBOTk5wc3Or012RXybwO3bswJkzZ4Rea21tXe8jya+Ay+WCxWIJDUHs6uoKOzs7WFhYwMXFBffu3ftlS5ri4mLY29szCq5JkyYhMTERioqKEBcXx/79+wGUvRjKFXmFhYUVWtzVBWvWrIGCgkK9tiEMLpcLd3d3SEpKQktLC+Hh4di+fTtGjx6Npk2bwsPDA0ZGRjAwMICEhATExMRARFi3bh0jiOPGjcOgQYNw7Ngx3L59G1u2bIG6ujoePHhQrb5kZ2fD29sbM2fOxPLlywUmy6wtv0zgx48fX+HWj5+fX7XTF3G53GonZvgVXLt2DRYWFjyZWzgcDhwdHdGuXTs8ePAAbDYb8fHxWLx4Mezs7OpsjVYVoqOjMXjwYCYX2pgxY+Do6AhJSUlkZmaiuLgYs2bNgoiICNTU1ITmP6srNm7cCHl5+XqrPz8/H5s3b4aOjg6MjIygq6uL3bt380yhN27cCCKCk5MTgoKCUFJSgn79+mH69OnQ0NDgSzxBRAgPDwdQtgYPDw/H4cOHsXnzZly4cOGX/p7V4ZcJvK2tLU8EkZ/ZtWsXLl26VJVm8PXrV8ycORPa2towMzMDi8XChg0b/qj9+wcPHsDMzAxWVlZwcXHBoEGD0L9/f4EPwokTJyrc/qkvEhMTYWhoCCLC1q1bISoqyozyQNmsq3v37jA3N6/Xfly+fBlEhIcPH9Z53eVT68DAQMYGns1m49ChQzA3N2eEnsPhYOjQoejatSujqGzfvj0WL16M69evQ0tLC0FBQXj79i0j8Hl5eUxgkbogNjaWySBsYmICHx8fJv1YXfHLBD4gIIDJMlJYWIhPnz7xKOoMDAyqlFkkISEBGhoaPBFXOBwOAgICYGZm9seFrcrKykJSUhImTpwodI3K5XKhpaX1W/rO5XLRoUMHDBw4EEZGRujQoQPzu8ybNw9EBG1tbb4c5nXJtWvXmPVyXZKamoqZM2fi4sWLAsuPHj3Kk3Pv7du36NSpE9q3b4+bN2+CiBAYGAgul4tp06Zh27ZtePLkCa5evYo9e/YgNjYWurq6QoONVoegoCAYGRkxgTK/f/8Of39/aGho1OlS95cJPJvNxujRo2FlZQVDQ0PMmDED5ubmsLOzw4oVK7B69eoqdXjixIlC94h9fHzg5+dXpXp+NZVNi2fPnl2vQlURZmZmaNOmDaZNmwZpaWnMnTsXkZGRsLe3h56eHpSUlCArK1tvW3RGRkbo169fnekyQkNDoaenB3t7e7Rt2xYaGhrYtGkTn/KrpKQEOjo6PMeePXsGcXFxxqrvxxlA+S5G//79oauri4kTJyIqKqrW/U1OToaurq7A5emHDx/qdIb1y/zhCwsLCQClpqZSu3btSENDg4yNjSkpKYmOHDlCtra2ldaRn59PGRkZFB4eTtOmTaPZs2fT3bt3mZjg9vb2FBQUVNuu1gscDqdC//Lc3FySlpb+hT36f6SkpCgtLY2+fftG7du3p927d5OXlxfNnz+frly5QtHR0dSmTRsyMTERmNCiNhQXF9ONGzfIzs6uTjKynD17lo4fP05nzpyhffv20fDhw+nGjRvUrFkzmjZtGs+54uLiTCKMcgYMGEDR0dGMT3x5eWpqKoWFhRERUWlpKV2+fJkOHz5cJw5EBw8epLlz5/I56wCgqKgoevnyJWloaJCpqSkdPXr010Rqqu3bY82aNYyd89u3b3Hw4EGcPHkSWVlZePfuXZWCG166dAnKyso4cOAAEhMT8e7dOyxdupRnH782CqbY2FhcuXIFT58+rXPN+Y8JIn+moKCgztaBNSE3Nxfr1q1jgmDS/5xQzp49y5zz4cMHqKqqQl5evspOIVXh5cuXTMrl2lJSUsITJYnD4fBY0Lm7u/M4CnG5XJ7yyuq2tLRkvp+UlJRa97ccS0tLvl0dDoeDyZMnY/Xq1dizZw8CAwNRUFCAvXv3wtTUtMZZZ3/ZlF5HR6fC/UQDA4MK17B5eXkYNWqUQMulBw8ewMHBAQUFBTUS+Pj4eJiZmcHJyQm7du2Ch4cHWCxWnSY+SEtLg4aGBhITE3mOl2+VCcs8+iv5+PEjE9pJXl6ex8YcKNs2MjMzAxHh+PHjddLmrVu3QER1Yit+7do1bNy4keeYm5sbI+Rv376Fm5sbgLJ7mTx5MlRVVWFsbAxHR8dKvQYLCgoYgReW9LImODs7IyEhgefY0aNHGYObzZs386QXP3fuXI2VvL9M4CsTRHt7e55trJ/Zt28fjh8/DicnJ0RERPCV29jYYM2aNTh8+HBVusqQnp4ODQ0NHsMKoCw++tixY4V6MdWEmJgYRn9x8OBBrF27FiwWi2ck/d2UzzbKH+yfLdC4XC4cHBwgISFRJ/Hig4ODQUR1khHo+PHjfC+ilJQURsmbm5uLCRMm4MuXL+jfvz/69OmDw4cPw9PTE/r6+mjZsiU6duwIbW1tGBoaYuPGjXwv6FevXiEsLKzWff2Ra9euYdWqVTzHDAwMUFBQAA6Hw6fQLbf1qIlBzi8TeH19faHGKOVa6opCB9na2iIzMxPJycnQ0NDg8UQrLi6Gs7Mzhg4dWu39z9WrVwudamdnZ9fLHnRkZCTOnj2LO3fu/JHhkqKjo5lpvSCb9vLEE+UmurXBx8cHoqKidbJD8fTpU4GBSZOTkzF9+nQMHjwYampqUFBQwMiRI6GgoCBwf11PTw/6+vqQkpKCiIgIFi9ejCtXruDw4cN1OrKXw+FwYGZmxvMcGhkZobS0FHPmzGHiF/xIZQOkMH6JwKekpKBDhw5C1+khISEVxpAHgEmTJjHRVtPS0uDh4QEtLS0YGRlBW1sbVlZWOH36dFW6yYOenl6Fb0o7O7tqeWD9WwgPD+eb9fxIdnY22rZtCzMzs1q1s3TpUrRo0UKgzqSoqAhHjhyBk5MTXFxccP78+QpfkFwuFzo6OgJ/Lw6HAyMjI1y+fBkjRozgEXAxMTHIyMgwfzdv3hyrV6/G06dPsWrVKp5zW7duXaXlV3lsv6CgoCotVwoLCzFz5kwYGxvDy8sLHTt2hKamJo4cOSLwfENDwxrZnfwSgb9//z7zhW3ZsgX79u3D+fPnUVhYiCNHjjDTl4o4d+4ctm/fLrTc2Ni4Rml/KhvBZ86cWeGD/1/m77//hrS0NN/6szqUr+F/XKMCZevtMWPGwM/PDykpKUhISMDmzZuhpaVVocLs+fPnGDJkCPz9/REVFYXbt2/j/fv3cHBwgJ+fHxYsWMAjwK1atWJmWps2bYK2tjakpaUhKiqKRo0awczMDPPmzcPSpUsRFhbGLHfmzZsndFZy7NgxaGpqYv369fDz84OzszMsLCwEukz/THZ2Nu7fvw8XFxehOqSYmBhMnDix0roE8cum9O/fv0dkZCQOHz7M82V369atSnHSS0pKoKWlJdCX3NfXt0KHlYqYMGGC0B/idxrE/BPIyMhA27ZtYWNjU+M6yj3OevXqxRxjs9lQV1cXOFK/ffsWpqamPMcSEhKwcuVKDBo0CBISEnxT9DZt2jDhqm7fvg0tLS38/fffMDQ05HuZp6WlYcKECTh//jx0dHQwcuRIxn7e3NwcHA4HmzdvhoSEBHr16oV58+bxGAwFBAQIzJoUHR0NDQ2NKhmXAcC3b9+goaHB53qbmJgIFotVY5uN3xIAIygoCGZmZjxrKHV19UrrT0lJgZmZGVxdXREUFAR/f3+Ym5tj4cKFNV4L3717F1OnThU4pTx9+jRWrFhRo3r/C7DZbCgqKmLcuHG1qufMmTMgImamEBAQgD179gg9393dHS9fvgQAxMXFQUZGBk2aNMGECROwZ88eBAcHw8/PD2fPnoWmpiY6derEXFvuX56dnQ0TExO+ur28vHDp0iVwOBzGKIfNZmPv3r0QERGBm5sbfH19ce/ePairq6NRo0aMNWJwcDA0NDSE6pFOnjwJb2/vKn8vycnJcHBwYJ5xa2trJjZhTfmtEW++f/+OU6dOMUJ/7NixKjnDvHnzBr6+vjh69Gi1lCglJSU4f/481q1bhz179jBTwy1btsDOzo4JkpiSkoJVq1Zh/Pjxf6Rzzp9C+fp2586dtaonIyMD0tLSGD9+PDgcDmbNmlXhuvfy5cvMC2Hbtm2QkpJCdnY2YmJiMHbsWNja2mLlypUYNWoUiAgzZszguf7ChQsYO3Ys7OzseI6HhITA3NycGTx+XO6VlpbC09MT7dq1AxGhe/fuKCkpQUpKCrp27croABQUFIQqMtlsdo1iIWRlZSEqKqpOdjKqKqPitbLaEUKjRo3IysqKhg8fTu3btyd7e3tau3YthYaGkoqKitDrevfuTb17965WW8+ePaMFCxaQiYkJaWhoUFpaGs2YMYN69uxJq1atoqioKNq/fz/Fx8eTnJwcOTg40NKlS0lUtF6S7vwraNWqFRERDR48uFb1NG/enE6cOEFjx46lLl26kKSkJBUWFgo9v7CwkLGAS0pKojZt2lBubi5NmTKFDh06RO3btycOh0N+fn6kr69PUVFR9OnTJ+aZMjY2JjExMXJwcKApU6ZQ8+bN6dWrV9SnTx86ceIEiYmJ8eXfExMTo3Xr1pGSkhK5ubnR+/fvadCgQSQmJkZdu3YlZWVlunPnDqWmplJ0dDRt3bqVoqOjSVlZmSQlJen9+/fUuHFjio6OpqdPn1KvXr2ocePGVfp+mjZt+usz3dTl2+Nnnj9/DiKCtbU1iIhvjVZT3r59iyVLlmDixIno1q2bwDfvxo0baz1C/Vf5/v07+vXrh06dOtV6ew4o09hLS0vj8uXLFepkrK2t8fXrV5SUlKBnz56wtLTEzJkzmWk+ULb1SURYtmwZIiMjMW3aNL56li1bhv379yMyMpJPaezl5SUwc+6OHTtARLCysoKrqysmT54MIyMjWFtbY/bs2Rg0aBDzPP/4MTY2hoaGBqSkpEBEGDVqFPbv3//L3Wj/iCCWHA6H+WLExcV5PJhqAofDwYwZM+Di4oLw8HDMnj0bK1euhJaWFi5cuMB3bl3GDPuvERcXByUlJUhKSmL27Nm12qdOSUmBrKwsTE1NoaWlhfv37/Odc+LECUyePBkBAQHo378/REVFcf/+fT4T2a9fv4KoLGUUUGbp+bOepqioCCYmJti7dy8j8N++fcOKFSuE6nUqY+bMmQgNDcX169dBRJg4cSJKS0tRWloKCwsLvHr1CkuXLmWedzU1tV+aaPOPEHigbB09fvz4Km1dVMaGDRvg4+PD/G1oaAgulws2mw1TU1M+ry8PDw+8fv261u1WhWfPnmHixIkwNDSEvr4+Zs2ahdjY2F/Sdn2Rl5eHNWvWQE5ODqqqqrVy5wwODmbi0EtLS2PkyJFYs2YNzMzM0LZtW7Ro0YIRlkGDBuHJkyfgcrk8621/f3/mnHLjFFNTU4GKXTabjSNHjsDExARGRkYYN24cLly4IFDYz507B3Nzc0yYMAFLly7lS1RRrnxs3LgxVFRUmD6sX78eRkZGWL9+Pfbs2YNz587xCL2cnBwyMzMREBAAXV1dmJubw9HRsU5Nu8v5YwS+rhAUuL9c4IEyZ42ZM2fyXLN48WKhUUPrkpMnT8La2ppHwJ8/fw5dXd0qZTn504mNjYWioiJERUUxatQoLF++HEFBQdUeKXNycnD58mVYWFgwQtGkSRMMHToULi4uOHr0KN/ev7a2NrN9OmTIEBAR+vXrB6DsmRDkJPPx40fMnj0bBgYG0NfXh6enJ58pbTlcLhfy8vLMdnJ5v2xtbZlz1q1bJ9ByT0ZGBuPHj+c73qRJExARWCwWSktL0adPH55ySUlJodapNeVfJ/BRUVGYN28ez7ElS5bw7JX+GAe83C65vrXx6enp0NXVFTjK5OTkQFNT85encKoPvn37Bj8/PxgbG0NRURFEhClTplQY7UgYpaWl8Pf3x927dyvddt23bx8TYMXNzQ1ExBhi+fj48GW6vXr1KgwNDRnnIC6XyywNnjx5IrCNc+fO8ZnjdunShae/fn5+cHBwwP79+/H333/D19cXampqICJ069YNFy5cYEKzl5SU4Pr160xUmzlz5qBNmzbo1q0bunbtCi8vr2p/Z5XxrxP4jx8/8o3giYmJ0NHRQV5eHrhcLo/H3a5du35JNpitW7fy6Q9+ZN26dbh+/Xq99+NX4+3tDTk5OTRr1gxLly6tlVVeRXA4HEyaNAmrV6+GiYkJunfvjoyMDKxbtw729vY8L4z8/HxoaGgIdDHNzs6GhoaG0BdMQUEBLl68iIsXLzLx/yojKysLkydPhq2tLQwNDWFgYIBFixbh8+fPNb/hGvKvE3hhI/aDBw8wZswYzJ49G1OnTsW1a9dga2uLefPm/ZKosa6urhU+7CEhIdUyyvgnkZqaCjc3N8jKykJUVBSamppYuHAhj+ttXcDhcHDx4kUoKCigZcuWsLS0xPnz5/lmTn5+fjh69KjQejZt2oSQkJA669edO3egr6+P8PBwcLlccLlcPHz4EDo6OnUSB6A6/OsEHihT2sydO5dPkL98+YJevXrB3d0dmzZt+qVv2OXLl1cYpHHfvn0IDAz8Zf35HeTm5mLfvn0wNjaGkpISiAj6+vo4c+YMz5Q/Pz8fe/fuhbOzM2bNmlUtr0JfX1+IiIhg3bp1PMczMjIQGRmJrKwsODk5VWitdvv27TrLtVdUVAR1dXWBviK5ublQV1f/pcZd/0qBB4A9e/ZAV1cXfn5+CAkJwcqVK6GpqfnLtPE/8+HDBzg4OAgsK4/MUtcKmj+Z0tJSHD9+nFFUiYqKQk9PD1OmTEGLFi0gJiaGAQMGoE2bNiAi/PXXX5X+dmw2m8fjTVxcHL1794ampiaPNxz9z+tt//79Amd3J06cYLbzasvx48d5IgH/zI4dO6odnr02/LKYdr+a6dOn05kzZ0hGRoY+ffpEY8aMoRs3bpCamtpv6Y+qqiopKirS33//TaWlpczxwsJCcnV1JVtb298W0+53ICYmRjY2NhQREUEJCQnk7e1N+fn5FBYWRnZ2dhQTE0PPnj2jhIQEunPnDpWUlNDIkSPp/v37QuuUlJSkXbt2Ufv27WnIkCE0d+5cGjp0KLVq1YrmzZtHwcHBdPjwYdq9ezfJyMjQlClTaPTo0fThwwemDgB08uRJMjMzq5P7jIqKqtAScfDgwRQVFVUnbdUlIsD/IkVWQG5uLsnLy1NOTg7Jycn9in79owBAPj4+FBgYSJ06dSI2m03p6ek0ffp0MjY2/t3d+6PJz88nU1NTCgsLo+DgYNLR0alVfQsWLKCcnBzy9fWlYcOG0aNHj6i0tJRWrlxJTZs2pfnz59dJv7ds2UK9evUiPT09geVBQUGUkpJCrq6uddJeZVRZRutyuvBfh8Ph4OvXr3XiDPFfoqioCIaGhpCQkIC3t3etlK1cLhdbt25F06ZNoaKiAnd3d2hqatbZVL6cxMREWFlZCS03Nzf/pQFWqiqjDSN8A38ExcXFNG/ePNq9ezf16NGDOnfuTD179iQnJyfq1q1bteoqKiqizp0708CBA2nLli3UuXPnenGW8vT0pObNm9PcuXOZ+jkcDnl5eREAWrZsWZ23KYyqymiDwDfwR3H37l06fPgwffv2jR4/fkx5eXk0ZMgQ0tbWJnt7e/r06RO9evWKnJ2dqUmTJgLruHXrFrFYLHr9+nW96nYA0O7du+n8+fPUt29f4nK5FBERQePHj6cpU6bUSTz+qtIg8A384/n+/Ttt27aNXrx4QRcvXiQ2m82UGRsb04ULFwRe5+/vT/b29lRQUFBlV9XawOFw6OPHjyQiIkJdunQhMTGxem/zZ6oqo9Xyh8/Nza11xxpooDrMmDGDiIgyMzMpPDycHj16RDt37qSLFy/Sly9fBD7c5dPrjx8/UseOHX9JP5WVlYmIqKCg4Je09zNVlc0qjfDfv3+njh07UkpKSq071kADDdQPioqKFB8fT1JSUkLPqZLAE5UJ/S/JfdVAAw3UCElJyQqFnagaAt9AAw388/nHWdo10EADNadB4Bto4D9Eg8A30MB/iAaBb6CB/xANAt9AA/8hGgS+gQb+QzQIfAMN/If4P4tF99WUguKTAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAElCAYAAADjgKMQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1gUV/uw76X33lEQRFGxS+yKWLGX2GOL3Vhii7H3XmLXqIktxt5jx4bGXhEFRRQB6b139vvD387HyqJojEl8z31dXIkzszNnZvc5c54uk8vlcgQCgUAgEAgEAoFA8MGo/dMDEAgEAoFAIBAIBIL/KkKhEggEAoFAIBAIBIKPRChUAoFAIBAIBAKBQPCRCIVKIBAIBAKBQCAQCD4SoVAJBAKBQCAQCAQCwUciFCqBQCAQCAQCgUAg+EiEQiUQCAQCgUAgEAgEH4lQqAQCgUAgEAgEAoHgI9H4pwcgEAgEAoFAIBD8r5CVlUVOTs5fPo+WlhY6OjqfYESCv4pQqAQCgUAgEAgEgs9AVlYWTk5OREVF/eVz2djYEBwcLJSqfwFCoRIIBAKBQCAQCD4DOTk5REVFERYWhpGR0UefJyUlhdKlS5OTkyMUqn8BQqESCAQCgUAgEAg+I4aGhhgaGn705+Vy+SccjeCvIopSCAQCgUAgEAgEAsFHIjxUAoFAIBAIBALBZ0Qul/8lL5PwUP27EB4qgUAgEAgEAoFAIPhIhIdKIBAIBAKBQCD4jAgP1ZeF8FAJBAKBQCAQCAQCwUciFCqBQCAQCAQCgUAg+EhEyJ9AIBAIBAKBQPAZESF/XxbCQyUQCAQCgUAgEAgEH4nwUAkEAoFAIBAIBJ8R4aH6shAeKoFAIBAIBAKBQCD4SISHSiAQCAQCgUAg+IwID9WXhfBQCQQCgUAgEAgEAsFHIjxUAoFAIBAIBALBZ0R4qL4shIdKIBAIBAKBQCAQCD4S4aESCAQCgUAgEAg+I8JD9WUhPFQCgUAgEAgEAoFA8JEIhUogEAgEAoFAIBAIPhIR8icQCAQCgUAgEHxGRMjfl4XwUAkEAoFAIBAIBALBRyI8VAKBQCAQCAQCwWdEeKi+LISHSiAQCAQCgUAgEAg+EqFQCQQCgUAgEAgEAsFHIkL+BAKBQCAQCASCz4gI+fuyEB4qgUAgEAgEAoFAIPhIhIdKIBAIBAKBQCD4jAgP1ZeF8FAJBAKBQCAQCAQCwUciPFQCgUAgEAgEAsFnRHioviyEh0ogEAgEAoFAIBAIPhLhoRIIBAKBQCAQCD4jwkP1ZSE8VAKBQCAQCAQCwRfOhg0bcHJyQkdHh1q1anH16tV3Hu/j40OtWrXQ0dHB2dmZn3/+ucgxhw4dolKlSmhra1OpUiWOHDnywdcdMGAAMplM6a9u3bp/7WY/M0KhEggEAoFAIBAIPiMKD9Vf+fsQ9u3bx9ixY5k2bRoPHjygUaNGtG7dmtDQUJXHBwcH06ZNGxo1asSDBw+YOnUqY8aM4dChQ9IxN27coEePHvTt2xdfX1/69u1L9+7duXXr1gdf18vLi8jISOnv1KlTH3R//zQyufAZCgQCgUAgEAgEfzspKSkYGxsTGhqKkZHRXzqPg4MDycnJJTpPnTp1qFmzJhs3bpS2VaxYkU6dOrFo0aIix//4448cP36cgIAAadvw4cPx9fXlxo0bAPTo0YOUlBROnz4tHePl5YWpqSl79uwp8XUHDBhAUlISR48e/bCH8C9CeKgEAoFAIBAIBILPyKfyUKWkpCj9ZWdnF7lWTk4O9+7do2XLlkrbW7ZsyfXr11WO78aNG0WOb9WqFXfv3iU3N/edxyjO+SHXvXz5MlZWVpQvX54hQ4YQExPzvkf4r0IoVAKBQCAQCAQCwWfkUylUpUuXxtjYWPpT5W2Ki4sjPz8fa2trpe3W1tZERUWpHF9UVJTK4/Py8oiLi3vnMYpzlvS6rVu35vfff+fixYusWLGCO3fu0LRpU5XK4b8VUeVPIBAIBAKBQCD4DxIWFqYU8qetrV3ssTKZTOnfcrm8yLb3Hf/29pKc833H9OjRQ/r/ypUr4+7ujqOjIydPnqRLly7Fju/fhFCoBAKBQCAQCASCz8inKptuZGT03hwqCwsL1NXVi3ijYmJiiniPFNjY2Kg8XkNDA3Nz83ceozjnx1wXwNbWFkdHR54/f/7O+/o3IUL+BAKBQCAQCASCz8znqvCnpaVFrVq18Pb2Vtru7e1N/fr1VX6mXr16RY4/d+4c7u7uaGpqvvMYxTk/5roA8fHxhIWFYWtrW7Ib/BcgPFQCgUAgEAgEAsEXzPjx4+nbty/u7u7Uq1ePzZs3ExoayvDhwwGYMmUK4eHh7Ny5E3hT0W/dunWMHz+eIUOGcOPGDX799Vepeh/A999/T+PGjVmyZAkdO3bk2LFjnD9/nj///LPE101LS2P27Nl8/fXX2Nra8urVK6ZOnYqFhQWdO3f+jE/oryEUKoFAIBAIBAKB4AumR48exMfHM3fuXCIjI6lcuTKnTp3C0dERgMjISKXeUE5OTpw6dYpx48axfv167OzsWLNmDV9//bV0TP369dm7dy/Tp09nxowZlC1bln379lGnTp0SX1ddXR0/Pz927txJUlIStra2eHp6sm/fPgwNDT/T0/nriD5UAoFAIBAIBALBZ0DRh+rly5d/SWFITU3F2dm5xH2oBH8vwkMlEAgEAoFAIBB8Rj5VUQrBvwOhUAkEAoFAIBAIBJ8RoVB9WYgqfwKBQCAQCAQCgUDwkQgPlUAgEAgEAoFA8BkRHqovC6FQCQQCgUAgEAgEnxGhUH1ZiJA/gUAgEAgEAoFAIPhIhIdKIBAIBAKBQCD4jAgP1ZeFUKgEAoFAIBAIBILPiFCoviyEQiUQCAQCgUAgEHxGhEL1ZSFyqAQCgUAgEAgEAoHgIxEKVSG2b9+OTCbj1atXAOzevZtVq1b9o2N63zhkMhmzZ8/+rOP5EO7fv0/z5s0xMDDAxMSELl268PLly396WIL/IYRcf1r+/PNPBg8eTK1atdDW1lZ6tgLB50LI9acjPz+fn376CS8vL0qVKoWenh4VK1Zk8uTJJCUl/dPD+2JReKj+yp/g34NMLr4RidjYWF68eEGNGjXQ1tamXbt2PH78+B9fLLxrHDdv3qRUqVKUKlXq8w/sPTx9+pTatWtTvXp1Jk+eTFZWFjNnziQxMZGHDx9iaWn5Tw9R8D+AkOtPy5w5c9i2bRs1atQgKSmJy5cvExwcTJkyZf7poQn+hxBy/elIS0vDzs6OXr160aJFCywsLLh//z7z58/H1taWu3fvoqur+08P84shJSUFY2Njnjx5gqGh4UefJzU1FTc3N5KTkzEyMvqEIxR8DCKHqhCWlpafZZGfmZn5ySanunXrfpLz/B3MnDkTbW1tTpw4IQl7rVq1KFeuHMuXL2fJkiX/8AgF/wsIuf60zJgxg1mzZgGwfPlyLl++/M8OSPA/iZDrT4euri7BwcGYm5tL25o0aYKDgwPdunXj0KFD9OnT5x8c4ZeJyKH6shAhf4UoHELQpEkTTp48SUhICDKZTPpTkJOTw/z586lQoQLa2tpYWlry7bffEhsbq3TOMmXK0K5dOw4fPkyNGjXQ0dFhzpw5AKxfv57GjRtjZWWFvr4+VapUYenSpeTm5kqff984VIUQPH78mI4dO2JqaoqOjg7Vq1dnx44dSsdcvnwZmUzGnj17mDZtGnZ2dhgZGdG8eXOePXv2l59lXl4eJ06c4Ouvv1aynDg6OuLp6cmRI0f+8jUEgpIg5PrTyTWAmpp4bQj+eYRcfzq5VldXV1KmFNSuXRuAsLCwv3wNgeBLR3ioimHDhg0MHTqUFy9eFFn8FxQU0LFjR65evcqkSZOoX78+ISEhzJo1iyZNmhRxj9+/f5+AgACmT5+Ok5MT+vr6ALx48YLevXvj5OSElpYWvr6+LFiwgKdPn7J169b3jkMVz549o379+lhZWbFmzRrMzc3ZtWsXAwYMIDo6mkmTJikdP3XqVBo0aMAvv/xCSkoKP/74I+3btycgIAB1dXXpfgsKCt57bZlMJn3mxYsXZGZmUrVq1SLHVa1aFW9vb7KystDR0XnveQWCT4WQ678m1wLBvxEh13+PXF+8eBEANze3955PIPifRy6Q2LZtmxyQBwcHy+Vyubxt27ZyR0fHIsft2bNHDsgPHTqktP3OnTtyQL5hwwZpm6Ojo1xdXV3+7Nmzd147Pz9fnpubK9+5c6dcXV1dnpCQIO0rbhxyuVwOyGfNmiX9u2fPnnJtbW15aGio0nGtW7eW6+npyZOSkuRyuVx+6dIlOSBv06aN0nH79++XA/IbN25I22bNmiUH3vtXeIzXrl2TA/I9e/YUGfPChQvlgDwiIuKdz0Qg+BQIuf50cv02y5YtU3q2AsHnQsj13yfXcrlc/vr1a7m1tbXc3d1dnp+f/85jBR9GcnKyHJD7+fnJX7169dF/fn5+ckCenJz8T9+SQC6XCw/VR3DixAlMTExo3749eXl50vbq1atjY2PD5cuXGTFihLS9atWqlC9fvsh5Hjx4wKxZs7h27RoJCQlK+wIDA6lTp84Hj+3ixYs0a9aM0qVLK20fMGAAp0+f5saNG3h5eUnbO3TooHScwqMUEhIixXsPHTqUdu3avffa2traRbYVDnf4kH0CwedGyLVqVMm1QPBfQci1at4l1wkJCbRp0wa5XM6+fftEmO/fhFzkUH1RCIXqI4iOjiYpKQktLS2V++Pi4pT+bWtrW+SY0NBQGjVqhKurK6tXr6ZMmTLo6Ohw+/ZtRo4cSWZm5keNLT4+XuX17OzspP2FeTtuWjHJFr6+jY0NVlZW7712YQVJcd63rwdvJmuZTIaJicl7zykQfC6EXKtGGD4E/2WEXKumOLlOTEykRYsWhIeHc/HiRZydnd97LoFAIBSqj8LCwgJzc3POnDmjcv/bZTBVTVxHjx4lPT2dw4cP4+joKG1/+PDhXxqbubk5kZGRRbZHREQAb8b+ocydO1dKzH0Xjo6OUqnYsmXLoquri5+fX5Hj/Pz8cHFxEflTgn8VQq5VU1iuBYL/GkKuVaNKrhMTE2nevDnBwcFcuHBBZQ604NMhPFRfFkKhegfa2toqLU/t2rVj79695Ofnf5SbH/7/pF3Y7S6Xy9myZUuJx6GKZs2aceTIESIiIiQrF8DOnTvR09P7qLKtHxNCoKGhQfv27Tl8+DBLly6VXlqhoaFcunSJcePGffA4BIJPgZDrN4iQP8GXhJDrN3ysXCuUqZcvX+Lt7U2NGjU++NqCD0MoVF8WQqF6B1WqVOHw4cNs3LiRWrVqoaamhru7Oz179uT333+nTZs2fP/999SuXRtNTU1ev37NpUuX6NixI507d37nuVu0aIGWlha9evVi0qRJZGVlsXHjRhITE0s8DlXMmjWLEydO4OnpycyZMzEzM+P333/n5MmTLF26FGNj4w9+DnZ2dkqTfUmZM2cOX331Fe3atVNq7GthYcGECRM++HwCwadAyPUbPlauY2Nj8fHxAZA80KdPn5b6Anl4eHzwOQWCv4qQ6zd8jFxnZmbSqlUrHjx4wKpVq8jLy+PmzZvSfktLS8qWLfvBYxG8G6FQfWF8/joY/17erhqUkJAg79q1q9zExEQuk8nkhR9Xbm6ufPny5fJq1arJdXR05AYGBvIKFSrIhw0bJn/+/Ll0nKOjo7xt27Yqr/fHH39In7e3t5f/8MMP8tOnT8sB+aVLl6Tj3jUO3qoaJJfL5X5+fvL27dvLjY2N5VpaWvJq1arJt23bpnSMomrQgQMHlLYHBwfLgSLHfyx3796VN2vWTK6npyc3MjKSd+rUSR4UFPRJzi0QlAQh159WrhXXUPXn4eHxl88vEJQEIdefTq4V5ynur3///n/p/AJlFFX+Hjx4IA8KCvrovwcPHogqf/8iZHK5UHEFAoFAIBAIBIK/m5SUFIyNjbl//36RHL4PITU1lZo1a5KcnIyRkdEnHKHgYxAhfwKBQCAQCAQCwWdG+DS+HERzAYFAIBAIBAKBQCD4SISHSiAQCAQCgUAg+IzIRVGKLwqhUAkEAoFAIBAIBJ8RoVB9WQiFSiAQCAQCgUAg+IwIherLQihUAoFAIBAIBALBZ0QoVF8WJVaosrKyyMnJ+TvHIhB8UWhpaaGjo/NPD+OdCLkWCD4MIdcCwZfJf0G2Bf9eSqRQZWVl4eTkRFRU1N89HoHgi8HGxobg4OB/7QQt5Fog+HCEXAsEXyafW7aFh+rLokQKVU5ODlFRUYSFhX1Q87CEhAT69evH8uXLqVChgrQ9OjqaoUOHsmzZMsqXL//ho/4MyOVyfvvtNw4ePEipUqXIyckhMTGRYcOG0bJlS6VjQ0NDmTx5MpmZmWRlZZGdnU12djYZGRlkZWWhp6eHsbExVlZWWFtbo6Ghgbq6OhoaGmhoaODm5oaNjQ2xsbHk5uaiqamJjY0NWlpafPPNN8TExBQ7Tnt7e8qVK4eJiQn6+vpKfwYGBtjY2NCxY0fU1N5dIV8ul3P16lUeP37M7du3UVNTw8DAAAMDA6pVq0aPHj04ceIECxcuJCIigsTERKXPt2/fnt69e3Po0CHu3r1LbGws6enp0n41NTXMzc0xNzfHwMAAHR0dCgoKCAoKwtzcHHV1ddLS0khJSSE1NZXc3Fzps4p7i4iIkCYQDw8PNm7ciL29fYm/05Lw6NEjpk+fztixY2nSpAkymYybN2+ybNkyJkyYQIMGDUp0npSUFEqXLk1OTs6/duH1sXKdl5fHN998w/Dhw/H09JS2Z2RkMHLkSHr37k2LFi3+jiF/Ery9vfn5558xNTVFS0uL169f06VLF/r3749MJpOOS0lJYdSoUaSlpZGVlSXJdkZGBtnZ2WhpaWFoaIiVlZUkr+rq6qirq6OpqYmbmxu2trYkJyeTkZGBpqYmVlZWaGtrs2DBAnx8fIodo5mZGRUrVsTc3LyIXOvr62Nqakrnzp3R09N77/0+fPiQO3fucOvWLfLy8iS5Llu2LEOGDOHevXtMmjSJyMhIwsPDlT7r5ubG9OnTuX79OqdOnSIuLo7k5OQiYzUzM8PIyAh9fX3y8/OJjIxELpdjbGxMamoqKSkp0nNUYGBggKmpKZGRkeTl5QFQpUoVVq9eTa1atUr0XZaU6OhoBg8eTL9+/ejYsSNaWloEBASwdOlSmjdvzjfffFOi83zJcg0wadIkKlSowLfffivJQn5+PvPnz8fCwoKRI0f+HUP+JPj6+rJixQrkcjmmpqa8evWK+vXrM378eLS0tKTj5HI5Q4cOJT4+XpLrnJwc0tPTycnJQU1NDX19faysrLCzs0NbW1vpfa2uro6npyc5OTkkJCSgpaWFpqYm1tbWHDlyhJ9//rnYMRoYGFChQgVsbGzQ09PDwMCgyDu7Xbt2WFlZvfd+X758yZ9//sm9e/dIT0/H0NAQQ0ND7OzsaNWqFZqamowcOZLQ0FBevnyp9FlTU1OmTJlCZGQkx48fJyEhocg73cTEBDMzM0xNTdHU1ERdXZ3ExETi4uKwt7cnNTVV+svIyJA+p6Ojg6WlJXFxcWRmZgJQqlQpFi9eTPv27Uv0XZaUrKwsBg4cSKNGjfjmm28wMjIiPDyctWvXoqWlxZw5c5Tm9HfxT8i2UKi+LGTyEnwjiq7OH9qNec6cOTRo0IDmzZsX2RcSEsK0adPYtWvXh434MzFt2jQMDAyYOHEimpqaAKSnpzN27FgaN25M3759pWPPnz+Pl5cX+fn5mJqa4uzsjI6ODhoaGujo6JCWlkZiYiJRUVGkpKRIi4fC6Ojo4OHhQc+ePWnevDmlSpUC4OrVq2zatEmayA0MDHBzc6Ny5cpUqlQJExOTYu8hKyuLiIgIsrKyKCgooEKFCmhoqNah5XI5t2/fZv/+/eTm5kpKWnJyMikpKZibm9OlSxcsLS2Jiopi9OjRnDt3jpSUFJXnMzQ0xNraGmNjYxITE5kwYQJxcXHEx8eTkJBASkoKWVlZJCcn8+zZMypWrEijRo0wNjbGyMgIAwMDCgoKCAwM5OXLl9jZ2eHm5kZOTg6pqamYmppiYGCAoaEhBgYGWFlZ4ebmVuLJUxX5+fm0aNGCAwcOYG5urrQvPT2ddu3acerUKXR1dd97ro+Vmc/Jx47x8OHDhISEMG7cuCL7srKyaN++PefOnftL38Xfxe7du7lw4QKrV6/GwMAAgNzcXH766ScSExNZvHixdGxwcDCVK1cmIyMDXV1dKlSooCTXit9vVFQUiYmJ5OXlFXnBqaurU6dOHbp160aHDh1wdnYGICgoiHnz5gFI53N1daVy5cpUrlz5nQuq/Px8QkNDyc7OJicnBxcXl3cqVoGBgezcuZO4uDhcXFywsbEhNTWV5ORkjI2NadGiBS4uLmRmZjJhwgSOHTtGRESEynPp6OhgY2ODmZkZMTExTJkyhaSkJOLi4khKSiIhIUFSOh8+fEiZMmXw9PTEwsICQ0NDjIyMUFNTIzg4mKdPn2JiYkLlypXR1tYmNjZWkmuFbJuYmFC9evVi562S0rNnT2bNmkXFihWVthcUFNCtWzeWLl1K2bJl33ueL1munz17xtKlS/n111+L7JPL5bRv357ff/8dY2PjTzncT8KtW7eYO3cuW7duxdraGngz5kOHDrFv3z727t2Luro68GaOcnR0JCYmBplMRpUqVdDV1UVdXR0dHR1yc3NJS0sjOjqa+Ph4cnNzKSgoKHLNqlWr0qVLF7p164aFhQVWVlakpKQwceJEsrKy0NDQQFNTk7Jly0pyXbp06WLnxYKCAiIiIkhPTycrKwsHBwdMTU2LveeoqCh27NjBq1evcHV1xdHRkYyMDJKSkkhOTqZZs2bUqVOHgoICFi1axI4dO3jx4oXKe9HQ0MDKygpTU1NSUlIYPXo0BQUFxMfHEx8fT2JioqR8PnjwABsbGxo1aoS9vT1GRkYYGRlJxil/f3/U1dWpWrUqZmZmREZGSsqeQraNjIyoVq1aiQxC72LGjBm4u7vTsWPHIvumTp1KvXr1SqzEfU7ZVlzr5s2b0nvoY0hLS6Nu3br/6vnof4m/VaFq1aoVZ86cKXYC6dChA/v27SvRAvVz8vLlS2bNmsVvv/1WZF9+fj6tW7fm2LFjSuMeP348K1eupGzZsixfvhxAyWqjwNDQELlcTkFBAXl5eeTl5WFlZcXSpUs5e/asdNz06dOpV68ederUKbK4Lw65XM6LFy/w9/fn2rVrLF26VGm/iYkJM2bMYPz48Urb/f396dOnjzRRpqamKnmXFDRq1IgTJ05QpUoVsrOz6dSpEzVq1MDc3Fy6l+zsbOLi4ti2bRvPnj1DR0cHT09PDhw4wO7du9myZQt37txROf6goCBWrFiBn58f/v7+JCQkSPtMTU2ZOXOmtIhXU1Mr8mIoXbo0nTt3pnPnzjRq1Eh6gZaUM2fO8PDhQyZPnqxy/9atW9HU1FRSpovjS154de/enc2bNxerzE+aNInevXtTvXr1TzPQT4RC2Ttz5ozK30b//v2ZMWMGLi4u0rZly5YxdepUNDQ02L59O5qamirlWvFSzM/PJz8/n7y8PFxcXFi/fj07d+6Ujhs+fDjNmzendu3alC5dusRjDw8P5/Hjxzx69IhJkyYp7dPR0aF///5FLOMJCQn06NGD8+fPSwuzt63QAMbGxkRFRdGyZUvu3r3LkCFDcHZ2plSpUpJc5+fnEx8fz+HDh/nzzz9RV1enbNmyPHnyhGPHjrFlyxa8vb1VLtYePnzInj17uHv3LgEBAUrKmpaWFj/88AN79uzh5cuXqKurk5+fr/R5MzMz2rdvT5cuXWjZsuUHW49DQ0OZPn260vdQmDt37nDgwIEi86UqvmS5nj17Ni1btqR+/foq9yvehyWZ/z43bdq0Yffu3SrnJEUkTOFF9y+//MLEiRNJTk5m9erV2NnZkZaWVuSziudXUFAgyXVWVhbPnz9nyZIl0nEdOnSge/fuuLu74+rqWuJxx8fH8/jxY54/f86QIUOU9qmpqdGyZUsOHz6stNbIy8tjyJAh7Nq1C01NTUxMTIiMjFR5/qCgIFauXMn69evp168f9vb22NjYoKamJt1PdnY2169f5+TJk8CbsLeIiAh8fHzYvHkzhw8fJjs7u8i5T548ib+/P5cvX8bf359Xr14pGZQGDBhATEwMp06dQiaTFTE26erq4uXlRefOnWnfvv07jcOqyM3NpU2bNsUa7xISEhg8eDCHDx8u0fn+CYXqxo0bf1mhqlev3r96Pvpf4m+t8qelpfVOK7WZmRnp6en/OoXqt99+Y9iwYSr3qaur8/XXX3Py5Em6du0KwNmzZ1m/fj1lypQpoqyoQiaTkZyczP3797l06RKBgYFFJqwVK1ZI7vL58+fz4sULyRLVt29f6tWrx4MHD1i9ejU5OTn06tWL4OBgxo4dq/KaNjY2REVFSd42gNevX/PLL79w7949Hjx4AMCYMWPw8vIiMjKStLQ0YmJiGDt2LPn5+ZiZmfH48WNCQ0O5cOECNjY20rni4uI4ceIEgYGB+Pn58fLlS1q3bk3fvn3ZvXs3DRs2xNfXl9atW/PLL7/g4OCAvb09o0eP5uLFiyxevJjGjRtTUFBA06ZN8fLyomLFilSsWBFjY2NmzJjBuHHj0NbWJjs7m8aNG+Pl5cXr168JCAjg8ePHhIWFsWbNGtasWcOPP/6o5G0oCX5+fsUuJgDq1avHtm3bPuicXyKZmZnvfPnZ2NioXLj/05w+fZrOnTsXq2gPGzaMnTt3MnfuXAACAgJYuHAhRkZGjBs3Tkl2iiMrKwtfX1+uXLnCkydPiizS9uzZIyk+c+bMISIigpcvX2Jpack333xDy5YtCQsLY9WqVQQHB9O1a1csLCxo27atyuuVKlWK169fKy1W0tPTWbVqFREREZw/fx6Apk2bMn36dOLj44mLiwNg8ODBpKWlUapUKVJSUrh69SqrVq3i+++/x9/fH3jzXR87dozAwEACAgJ49OgRtWrVYsqUKSxfvpwePXpw+PBh6taty6pVq3BxccHOzo5ff/2VtWvXMm7cOAYOHEhgYCCtWrVi4MCBVKpUiYoVK+Lg4MCqVatYsmSJ9J1Ur16ddu3akZ6ezpMnTwgICODVq1fs2LGDHTt24OHhweXLl9/7PRQmICCAOnXqFLvf3d1d8hb+L5OYmKg0p7+NjY0NAQEBn3FEJeP58+c4OjoWOycNHjyYYcOGSQpVfHw88+fPJysrizFjxmBnZ/fea+Tl5fHkyROuX7/OvXv3ioS9Xrx4kePHjwMwaNAg9PT0ePHiBerq6vTo0YNOnTqRmZnJxo0b+fPPP2nbti1NmjShdu3aKpUVe3t7wsPDSU1NlcIV5XI5a9asIT4+nu3btwNgZ2fHuXPnyM7O5vXr1xgYGDBo0CCCgoLQ1dWloKAAb29vBg0axC+//IK3tzfwxvDj4+PDs2fPCAkJ4eHDhzg4ODBq1CgOHz7M9OnTWbhwIeXLl2fWrFm4ublhZ2fHnTt3+O6772jdujWbN2/mjz/+wMvLi65du1KxYkUqVapE+fLlOXDgAJMnT5aMT2XKlKF79+5oamry+PFjnj17RkBAAEeOHOHIkSPAGwXpQzzRsbGxODs7F7vGNDMzUxkN9G9ChPx9WfztZdNTU1MxNDQssl0ul/P69et3urRLir+/Pxs3biQkJAQ1NTXat29Pr169PtqdHBMTg4ODQ7H7HR0dpZjkK1eu0LlzZ6pWrcrEiRPR1tZ+57mfP3/O9u3b8fPzk7ZpaWlRq1YtmjRpQp06dahRowYPHz6kW7duAJLny8HBgZMnT/Lzzz9jZWVFTEwMTk5OGBoa0rFjR5ydndHU1KRnz57MmTOHu3fv8ttvv3H69Gmio6P59ddfGThwoHTdw4cPM2fOHKXx7dq1i9atW0svGUtLSzp27MitW7c4duwYPj4+WFtbs3jxYn766SfU1NS4cOECs2bNIjMzk7Jly+Lm5sa0adNwd3cnPz+fa9eukZ+fz/3794t4LTp06EBgYCCTJ0+mVq1anDhxQuVL/ddff2Xw4MH07NlTUkgnT54svTTefildvXqVo0eP0rJlyxL/DoyNjd+ZrxYTE/OvDHf53JQpU4bHjx9TuXJllfvv3btHz549//J1wsPD2bx5M/fv3wfeeEgHDRpUYo/t20RHR+Po6FjsfkUYELzxUjdv3hwjIyNmzZr1XutpVFQUu3bt4vr169JLTl1dnYoVK9KkSRPq1q1LrVq10NDQkPJJly9fTtmyZXFycsLX15fdu3djbm5OYmIipqamuLq60r9/f+zs7DAyMqJ8+fIcPXqUJ0+esGvXLg4dOsTr168ZOXIka9eulcZy+/Ztpk+frjS+Q4cOMX36dCmPMTc3l27dunHjxg2ePHlC6dKlqVq1KmvXrpXmiEePHjFlyhRev36Ns7MzTk5O9O7dm1atWiGTyUhMTOTWrVscPnyYzp07K12vZ8+eHD9+nJUrV2Jvb8+1a9eoWrVqkec2d+5c+vXrxzfffMODBw8wNjZmzpw5aGtro6amJhmVFERERLBr1y7atGmDmZnZO78TBe+T68TERPT19Ut0ri8ZNzc3bt26JYWlvs3t27ffqZiWlOTkZLZv3y4p+5UqVWLEiBGUKVPmo873vve1qamp9DtKTk7Gy8uLxMREFi5c+M7PwZv1y/79+/H29pbyemUyGY6Ojnh4eFC/fn2++uorrK2tpTD9HTt2UL58eZydnUlISKBPnz4YGBiQn5+PXC6nbt26TJw4UcqFzM/P58aNG0RFRXHw4EF+++03wsPD8fDwwNvbWzI2xMfHFzGYhoaGoqWlhba2NpUqVQKgd+/eHD16FD8/P8qXL0+zZs3Yt28fU6ZMAd7MVcuWLcPPz49SpUrh6OjIiBEjaN++PZqamnh7e7Nw4ULmz5/P1KlTlRQWJycnli5dyunTp9HX1+f48eMqjT1Dhw6lS5cujBgxgoMHD+Lo6Mi6devIyclBQ0OjiFxbWFiwefNm2rdvX2LPvYGBgVIUy9sUFBT86ytdCoXqy+JvVaj69OnD2rVrmTp1apF9R48epWHDhh8clvU2O3bs4OTJk8yYMYMqVaqQlZXF/v376dixI7t378bS0vKDz+ni4oKvr2+xk62vry/Vq1fn/v37eHh4AHDq1Kl3XisrK0ty07u4uEiFFlauXEmXLl2KPIeEhAT279+PtbW1pJBmZmZSUFDAgwcPuHbtGpUrV6Zx48bo6+tz9epVJkyYgLq6Or/99hvNmzfHwcGB8ePHM3z4cAYNGsTvv/+ulGzcrl07fHx8OHfuHGlpaZiZmVG3bl0ePnyIu7s7MpkMKysr5s6dS6VKlZg9ezaLFy9m165dtGvXjho1aqChoUFWVhY1atTgxx9/pEePHkr34e/vT2JiIq6urqSmpnLv3j1p3+XLl9m5cyfz5s3j3r171KtXT2U4YOHFrIGBAf7+/oSEhABvQjIUcdKxsbEEBgby7NkzAgMD6dy5Mzo6Ori7u9OqVSulAiiqFPkuXbowdOhQyfOYn5+vVBzj6NGjjBgxgqysLClJ93+RYcOGsWjRInbt2lXEOujv709+fn6JrL7v4urVq9ILffbs2RQUFHD27Fm6d+/O6tWri1Xm3oWLiwu3b98u1tvj6+uLi4sL0dHRUj7No0ePqFKlSrHnlMvlzJw5k6VLl2JqaoqdnR0pKSnMnz+fYcOGFTGwPHjwgEOHDmFiYoKpqan0/NLT03n+/DkXL17E2tqa1q1bY2xsTFBQEEOGDCE7O5u7d++yZcsWPDw8+Pbbb+nfvz+TJk3ixIkTLF68WAodqVmzJoMGDeL48ePExsZKoTU+Pj54enpKRTMmTJiAm5sbBw4coHv37ixevJguXbpgZmaGuro6OTk5lCpVig0bNlCqVClat24t3Ud+fj4vXryQimzcvXtX2vfkyRN++uknpk2bRmBgIJUrVyYuLo6LFy8qPYvCoS62trbcvn1bOkZbW5v69evTpk0bdHV1CQgIwN/fH39/f/r27Yu6ujo1atSgZcuW1K1bV+U5FXh4eDB9+nTy8vJUWsC3bt1Kr169iv2O/1fo1asXnTp1okuXLkV+t/Hx8Vy8eFFalH8sL1++ZPDgwYwaNYojR46grq7OrVu3GDVqFN999x1t2rT54HM6OTmxYcOGYveHhIRgYWFBXl4e5cqVIzY2lqNHj9KhQ4d3RtBs376dcePGkZubi7OzM0FBQUyYMIEpU6aoNLD88ccfaGlpYWFhIRWBSk9PJzw8nPPnz0vGXhsbG+Lj4xkyZAiRkZHk5uYye/Zs+vfvT9u2bWnTpg0bNmzg7NmzhIaGSnORubk5P/74I/v37yc4OBg1NTUaNWrExo0badKkiRQK6+HhgYeHB3Z2dlSsWJHevXvz7NkzXF1d0dDQIC8vDyMjI1atWkWtWrVo2LCh0n2MHTsWQ0NDTE1NJaUX3uRZzZkzR/I8WVtbY2JiwrVr15Q+X/i3ozBgKbzK2tra1KhRgxYtWlC9enV8fX15/Pgxjx8/ZsyYMYwcORI3NzeaNWtG69atpeeoKjpAURApOjpaypsrjLe3N40aNSr2+/03IBSqL4u/lEOVm5uLt7c3vr6+ODo64uLigqurq2TFl8vljBo1ClNTU77//nssLS1JS0tj+/btXLhwgb17977Xo/Munj9/zuTJkzlw4ECRKnZ+fn4sWrSI3bt3f/B54+Li6Nu3LydOnCiyaE5NTaVjx454e3vj7e0tLTLU1NSoUqUKDRo0YPDgwdSoUQN48+wePXrEkiVLOHHiBMuWLWPevHmkpKTQsmVLGjZsiK2tLSEhIfj6+vLNN9/Qo0cPKQSvMG9bdRQonuHevXtZvnw5jRs3Ztq0aUqVje7cucOkSZM4cuQInTp1Uvp8dnY2ly9f5vjx4/zxxx+EhYVRp04dGjdujJGRES9evCAgIIB79+5RsWJFTExMuHr1KmZmZmRlZZGRkYFMJqN27dqsX79eqUKXIkescuXKJCQkYGZmhouLCyEhIcjlcgYMGKDkwVS14Cn88vLz8yMmJoZy5cpRqlQppQXUixcvlD4XGRnJ9evXuXr1KomJiTRq1IjY2Fji4uLQ1NRkwIAB1KtXTzq+RYsWzJ07F01NTfr3768U1qGoPFjYKm5iYoKNjY3Kl/J/OdeioKCAmzdv4uPjg62tLS4uLpQvX16pUMK6deu4d+8eM2bMwNnZmdzcXI4ePcrPP//M7t27Vb7gSkpmZiZt2rThxIkTRTwHsbGx9OzZE29v7/dWrnybgoICmjdvztGjR4t8J/n5+bRv357t27eTmJioVJW0XLly1K9fn169etGqVStpjE+ePOHo0aMsWLCAMWPGcPHiRR4/fkytWrXw8vLCwcGB2NhYHj16RPXq1fnxxx959OiRyrGpystSyPXNmzf5/vvvcXFxYcGCBUq/wYiICAYPHszUqVOZMWNGkXu6ffu2JNdPnjyhXLlytGvXDjMzM8LDwwkMDOTmzZvIZDLatWvHvn37sLS0JCMjQzLgVKxYkZ49ezJz5kyl8zds2JDk5GQ0NTXR1NTE1dVVSmDv16+fZLEHVHqJC8vuq1ev8Pf3x9nZuUj41tvlvxMSEvjzzz85f/48gYGBtGzZkuTkZGJiYsjOzqZbt260a9dOmrs9PT05dOgQJ06cYNOmTUrz4sWLF1m1apW0uH8f/2W5hjfK7qlTpzA2NqZs2bKUK1dOqVDC2bNnWbt2LXPmzKFWrVrI5XIuXbrEwoULWb58+V/Oi2zTpg0///xzEWNlTk4Obdu2Zd++fSX2PBame/fuLFq0SGVhkdGjR9OzZ0+qVKlCjRo1pOgSOzs7GjRoQNu2benXrx8ymYzc3FyePXuGr68vffr0oV27dmhra3Po0CGcnJz4+uuvcXZ2Jj09HT8/P4yNjVm8eDF6eno8fPiwyLVV5SIrFJ/Q0FAGDBiAjo4O8+bNU/IMZmZmMnr0aGrXrs3+/fuVPi+Xy3ny5Al//PEHx48f59atW5iZmdGuXTvMzc1JTU2VwuoSEhIYNGgQ27dvx8jIiIKCAtLS0sjPz8fBwYGePXuyePFipXfYiBEjOHz4MI6OjmRmZuLi4kJeXh5xcXH069ePmjVrSseqCqkrvKaLi4vjxo0b2NnZ4eDggIWFhdK1Clf9TE9P5+rVq3h7e3P79m1JGYqOjiY5OVmqxql4fp6enjx8+JApU6awe/duJSPp06dP+e677zh48GCJf0//RA7V1atX/3IOVaNGjT5ozBs2bGDZsmVERkbi5ubGqlWr3ql4+vj4MH78eJ48eYKdnR2TJk1i+PDhSsccOnSIGTNm8OLFC8qWLcuCBQuKRC2877pyuZw5c+awefNmEhMTqVOnDuvXr8fNze0Dnsg/ywcpVCtXriQqKgpTU1OCg4M5ePAg8fHxGBoakpqaCrwJX/vxxx8xMDAgMTERHR0dQkNDefHiBYaGhmhoaNCtWze6detWopyEdzFx4kR69uyJu7u7yv29e/dm2bJlH1Vae/fu3Zw8eZKFCxdKVpZHjx4xefJkpk+fLuXayOVynj17xvXr17l27RoXL14kKiqK5s2b8/jxY169egW8Cf9p0KAB3t7ebNq0idu3bxdb4VAul3+UQqUoSqGY8N9m+vTpxMbGMm7cONq2bavStS6Xy9mwYQMbNmzg1atXkiWqadOmNGrUiLlz52JoaMjGjRulyTQrK4vLly9z+PBhoqOj+eWXX+jTp490zsGDBytVjmrWrBlTpkxRWSHwfQqVAlULtLcVKgVRUVHMmzcPPT09LC0tsbCwIDY2lvv37+Pu7k7NmjVxcHCgT58+lCpViuPHj2NhYYGNjQ2amppkZmair6+PpaWllFybkZFBTEwMJiYm2NraFrnmf2nhtWnTJl6+fImRkRGJiYns37+f0NBQDAwMlHKABg4cSK1atQgJCUFXV5e4uDgeP34svai9vLzo37+/yhDfD2HHjh3k5+crhacWZt68edSvX59mzZp98Llv3rzJ7NmzWbJkCdWqVQPeLGymTZtGy5YtlRLuQ0NDJbn28fHBz8+P1q1b8+rVK549eyYVYKhcuTKnT5/m2rVrXL58udiyyampqQQFBanc9y6FCt5Y2a2trVWGsOzfv58DBw7w448/0q5dOypUqKBSyd+7dy+rV6/G399f+u49PDxo1KgRx44d4+nTp6xYsYK+ffty5swZSSE7fPgwT548YebMmcyaNUtSZFevXq0UguTo6Mj69etVWk3fp1CpumcFxfVTSk1NZeLEiRQUFGBpaYmVlRU5OTlcvHgRV1dXGjZsiKOjIz169MDZ2ZmTJ0+ydu1aqlSpgqmpKXfu3KFMmTIsWbKkxGHB/yW5/u233wgICEBbW5uCggIOHz6Mn58furq6ZGdnS7/fli1b0rNnTwICAtDV1ZUqNGpoaKCmpkbt2rUZOnSoynnuQ7h//z6//fYbK1euVLn/2LFj78wDfhdhYWH079+fadOm0bRpU2QyGQkJCSxbtgyZTMbChQulY+Pi4rh+/TrXr1/nzz//5Nq1azRu3JjU1FSePHkiyZiDgwN79uwhOzubY8eOsXr1apXXVnixP1Shgje/bT09vSKFWOBNdc7Ro0czdepU2rdvj7u7u0oj0q5du9i6dSv37t0jNTVVCv9ThNMfOnSImTNnMnHiRG7fvo1cLsfPz4/9+/fj4+NDr169+PXXX6Vc9kuXLtG0aVOla2zdulUKKSzM+xSq91FYoVKQkZHBrFmzpDlP4QU/c+YM5ubmtGjRAkdHR7p160b58uV5/Pgxs2fPxtbWFgcHB548eYKamhrLly//oEiJf0KhunLlyl9WqBo3blziMe/bt4++ffuyYcMGGjRowKZNm/jll1/w9/dXGZGlqHQ7ZMgQhg0bxrVr1/juu+/Ys2cPX3/9NQA3btygUaNGzJs3j86dO3PkyBFmzpzJn3/+KYUIl+S6S5YsYcGCBWzfvp3y5cszf/58rly5wrNnz/7ymuJz8UEKlbq6Og4ODlK53e7du9OrVy+qVq1KamoqL1684NChQyxdulTqpZSZmSlVoKlevTqlSpXCyMiI6Oho0tLScHZ2pnz58ri6ulKuXDksLCykkrlvF7XIz89HTU1N2ta+fXv++OOPYse9evVqKlWq9NE9cf7880/Wr19PWloaOTk5hIaGUr16dbp06cLXX3+tcnLLzs5m0qRJ+Pv7U61aNemvQoUKkmU0JCSEjRs3KlUJgjcufWNj4yI9IxTx1+bm5qxYsULJ8guqJzCFglsYIyMjJkyYwNWrV8nPz6dq1aq0bNmSZs2a0ahRI8kb8OTJE+kzOTk5aGlpSSXLtbW12b59O/3791eqSqg49vDhw2zfvp3JkyezYMEC1NTUyM7OpkyZMtLCqG/fvjg4OFBQUCApLorJ/EMVKrlcLv0eilOoVKHwsh04cIBXr15JOViWlpbs2rWL8uXLSyGcurq6Kr/r+Ph4YmJiKF++fBHr9n9p4QVIJXfV1NTo1KkTvXr1olGjRmRlZREcHMzFixeZOXMmqamplClThszMTKlam7OzsyS7cXFxJCQkULp0aUmuy5cvj42NjSTXOjo6SnKtqHqpeIYTJkxg2LBhxfaou3jxIg8fPixRARhVPH36lJUrVxIWFoa6ujrBwcGUKVOG9u3b079/f5VV5ORyOcuWLeP06dO4ublJcl25cmXpt6hIFl+4cKFSbL++vj52dnaEhIQoKUT6+vrI5XLU1NRYsWJFkTBGVXKtygjh6urKiBEj8Pb2JjMzE2dnZ0muPT09pZyzwnKdm5uLurq6FM7o6upK+/btpQqlp0+fVrr3/fv3s2PHDrp27cr27dvR19enoKAAT09Prly5AkDbtm2pXLky6urqmJubY2trK70IP1ShKizXxSlUqpRLAwMDHj9+zLZt23j+/LlkENDS0qJixYr0799fsoqWL1/+g2XzvybX9vb25Ofnk5WVhZeXFz179sTLywuZTEZISAh3795lypQphISE4OTkRG5uLq9fv5bO1bRpU6mXWnR0NFZWVpJMu7q6Ym9vL5XD1tfXf6dcb9++HUNDQ2kh9jaxsbFMmjTpowv/xMTEsGLFCnx9fdHS0pL6cLVp04YhQ4YU66nYv38/GzZswMXFRZLrqlWrSu+dzMxM9u7dy7Jly5SKcqirq+Pk5ER0dLTS+1ZHR0eqQjthwgSlUFnF/rdRVcSnQYMGjB49msOHD5OYmIiVlRUtW7akefPmNGvWTFoHFA6lVShm6urqNG3alK5du5KSksK5c+eAN2uawly6dIlFixZRpUoVjh49KinN/fv3l6pi1qhRg3r16mFvb4+FhQWlSpXCzMwMmUz2wQqVYrmp+J0Up1C9jaamJq9fv2bLli08efJEml/V1NQoW7Ys3bp1kyJvHB0dS9TH623+CYXKx8fnLytUHh4eJR5znTp1qFmzJhs3bpS2VaxYkU6dOrFo0aIix//4448cP35c6Xc/fPhwfH19uXHjBgA9evQgJSVF6Z3h5eWFqakpe/bsKdF15XI5dnZ2jB07lh9//BF4s5a2trZmyZIlxRaJ+7fxQQpVREREiaxU0dHR6OjoSJP6q1ev+P3333n9+jVhYWGkpqZibW2Nvr4+L168IDAwkOjo6CLn0dLSwsXFBQsLC0JDQ3n9+jX6+vrUrFmTWrVq4ePjw+zZs6lSpQp2dnZFFrXTp0+nQ4cO1K5d+71jzs3N5fr165w+fZqHDx9K1W90dXWZOHEigYGB7Nu3Dzc3Nx4/fky1atVYtGgRXl5eXL58mZkzZ5KYmIifnx8ymYzTp08TFhaGgYEB1tbW1KtXDz09PdasWcPVq1f5/vvvKVWqFEuWLHlnI8C3mT17dhEFsaQKVZMmTQBISkri3LlznDx5kvPnz0sL486dO0vWaHiT77Fw4UJiYmJo1aoVdevWlaoAjh49GrlcXkQBqlu3LjVq1CA4OJhjx47RoUMH4I3b+MSJE5w6dUrq21P4p6dYaBsbG6Ovr4+RkRGmpqaYm5vj4OCAoaEh+vr6ZGVlkZqaSmZmJo8fP+bUqVPUrVuXFi1akJWVRdmyZUs0sRQODygoKCAmJgZzc3OCg4Nxc3PDwMAAXV1dypUrpxQiVJjMzExevXqFk5NTkZfkf2nhpVAo3kdSUpI0ycGbRcCvv/5KaGgoYWFhxMfHY2FhgampKaGhoTx79oywsLAi51FXV8fR0ZHSpUsTERFBaGgoampqVKtWTfKANWvWjPbt2+Pg4FDEk71v3z7S0tIYNGjQe8csl8t5+PAhJ0+e5M6dOzx79kzqxTJixAh0dHRYsWIFbm5uPH36FDs7O+bMmUPfvn15+vQps2fP5vLlyzx79gxzc3Nu377N/fv3paa09evXx9TUlFOnTrFq1SpGjRpFnTp1WLt2LatWrVJpoVbFgAEDipRNLqlCpcglyMzM5PLly5w4cUIKh4M3Mnnq1ClJzkNDQ1mwYAF+fn40adKEFi1aMGfOHEqXLs3EiRPp0KEDV69eVbpGbm4ua9eu5fz588ybN08qenH9+nUuXLjA0aNHCQsLIyEhQcnarqenh56eHqampujr62NoaIi5ubm0MDM2NsbAwIC8vDxSUlLIyMggODiY/fv3U65cOTp27IimpiaOjo5FitUUp1ApkMvlUpixopWEIgTo7NmzHxW+9l+S64CAAKXQ1eLIzMwkLi5OiljIzc3l119/5fnz57x+/ZrIyEhMTEywtLQkOjqaZ8+eERwcXMSrIpPJpBDh+Ph4QkJCyMrKws3NjVq1aiGTydDR0WHkyJGUKVOmSHXfgIAANm3axKpVq0p0n0FBQZw8eZJr167x7Nkznj9/TmZmJp06daJ27drMnTuXUqVKER4eLkXOjBkzhqSkJKkv06VLl3B3dycoKIjz58+jp6eHkZERX331Ffb29vj5+TFmzBgGDBhA69at2b9/P0uXLlU5r6mifPnybN26VWlbSRUqRf/OvLw8bt68yYkTJ/D29ubBgwfI5XKcnZ05fvy4tHZKTk5m8+bN+Pj4UKFCBbp168axY8cIDw9n6tSpdO3alWfPnildQy6Xc/DgQdasWUP37t3Zt28f8Cb08969e/zxxx+8fPmSxMREpXxiHR0dDAwMMDY2lnpMmZmZYWlpiZ2dHSYmJpIxRdHLUlF0w8DAgM6dO1O6dGksLS2LFEEpTqEqTEpKChYWFvj7+3Pv3j1+//138vLy2Lt3r8qeVCXhn1CoLl++/JcVqiZNmpRozDk5Oejp6XHgwAGlcLzvv/+ehw8fqmw037hxY2rUqKHknT1y5Ajdu3eXmtU7ODgwbtw4pb6UK1euZNWqVZIR8X3XffnyJWXLluX+/ftSugxAx44dMTExYceOHR/1fD43H6RQHT16VCmn4enTp0WOfbucKKhe3ANKPUuysrJISkqSKrPk5OSQlZVFfHw81tbW2NraYmdnR1JSEv7+/vj6+hIbGyt9XkNDA3Nzc6ysrChdujTVqlXj6NGjPH78WPIuxMbGcujQIQ4ePCi5501NTTE0NCQwMJD09HRMTU2pVKkSpUuXpnTp0rx48YKjR49iYWFBly5d6NKlC0FBQWzatAlfX1+sra2Jjo7G3Nyc+Ph4mjZtSmRkJAEBAUq9F7S0tHByckJNTY1+/fpJCwR1dXVmzpwp/Zh79uyJoaEh9evXx8XFhfz8fDQ0NHB2dpYSUd9GVRNOxfdU2GL1doW69evXs2vXLvT09MjIyMDc3JzY2Fh27tzJgAEDgDclhZs2bcqePXt4/fq11KwwIyMDZ2dnVqxYQceOHSWLU7Vq1aQ8ETMzMywsLGjTpg2xsbFkZmaiq6uLTCajoKCA5cuXExISQlBQEIsXL8bf37/ESZZqamrY29vzzTffSP2j4M0CbtCgQXTt2hUNDY1iPZiqFqaK71/RwDgjIwMtLS3Kly+vUqlSeG/+6wrVkSNHlOS6sCdDQXFl0FU9x8JynZubS3JyspJc5+TkkJiYiIWFBdbW1tjZ2ZGfn8+TJ0948OABERER0u9ATU0NU1NT6UVdtWpVLl++zPnz5yXPS0ZGBkeOHGHv3r3cu3dPKutuamrK69eviY2NRU9PDzc3N0muU1NT2bNnD5qamjRt2pRhw4aRmJjIL7/8wsWLF7GysiI2NhYzMzPi4+OpW7cuWVlZPHr0SCmRWE1NDRcXF9LT0xk0aBDOzs7Y29ujqanJzp07pcVUmzZtsLOzw93dXQrJk8vllClTBnt7e6WiDgpULdoKy7XCoPF2gZWjR4+ydOlSzMzMJEtudHQ0jx8/lsIkHR0d6dOnD/v27SM4OBh4s0hKT09HT0+PZcuWMXToUMlgsmDBAkmJ0tXVxdbWFg8PD2QyGRkZGZJVXi6Xs2TJEsLCwggKCmLLli1Kie0lwdzcnD59+vD48WMuXLgAIJWfHjRokLQAuXXrVpHPqlqMFf7tpqSkcOTIEbKzszl//rxSPkhJ+C/J9eHDh5Xk2tfXV+XxSUlJRbapeo8Xluv8/HxSUlLIz88nJyeH3NxccnJypCbwZmZm2Nvbo6WlRUBAAPfv3yc0NFRJCTM2NsbS0hJra2vc3Nx48eIFdevWZf78+cAbReL06dOS8S8+Ph5jY2NMTU1JSkoiNDQUTU1NKlasKBlo1NTU2LNnj9TwdMyYMWhoaLBz506OHTuGoaEh6enp6OjokJmZiaurKzo6Ojx+/Jjs7Gyl94+TkxNpaWn07duXChUqUKpUKXR1dbl27ZokC3Xr1pW8sl27dpUaA5cqVQoHBwepQmlhFIaOwiiUD0W/K1XpEA8ePGD+/PlSJAAgtS/x9PSUQtCHDx/O48ePuXTpEtnZ2RgbG5OYmIimpiYTJ05k8uTJkgz98ccfktET3jQrbtGiBb169SIpKQkdHR10dHSQy+W4uLjw+vVrXrx4wbFjx9i2bZvK/lLFYWhoSJcuXcjKyuLgwYPSb6FVq1aMGzdOMpioijRRVaUzNDRU+v/MzEzOnDlDUFAQ+/bto0uXLiUaU2H+ywqVwhurQFtbu4hBLiIiQqq4Wrg9zMKFC9mxY0cRZRveGAQGDBigVFju+vXrNGjQQHKwaGlpsX37dnr37i0ds3v3br799luys7NLdF3FOcPDw5XCNIcOHUpISEiRaKh/K3972fSSoqOjg42NjUrrjaoKTEFBQWRkZDBv3jzc3d3R1tYmLCyM2NhYrl27xqlTp9DR0aFnz56UKlWKzMxMdu7cSXZ2Nm5ubrRr1w4tLS2SkpJISkqiSpUq1K1bl/LlyyspLXl5eQwYMABtbW1JaahatSrr1q3j5s2bnD9/Hk9PT1xdXRk/fjwxMTGUKlWKbt260aZNG+kHdfv2bXbs2EFGRoZUKUlLSwt7e3tsbW2pVasWDx48YO/evQBs2bIFbW1tqlatyrBhw2jQoIFU2U5BTk4OaWlpREREkJGRQWRkJCEhIbx69YqwsDCSk5Ol0B57e3ucnJxwcHCQOqIrlI2MjAwmTJhAkyZNkMlkSoU8HB0defz4MTo6Onz11Ve8fPmSuLg47O3tKVeuHJ07d2bAgAFSmEbbtm0pX748GRkZJCcnc/36dW7cuEFwcDAxMTFYW1tTo0YNLCwssLW1xdbWlrp167Jr1y5cXV3R09OTmg1mZmZKitvhw4dJSUlh06ZNdO/eHSMjI+l7WrRoEWlpaZw+fZqhQ4eydu1azp49+0Gev8IoXmpqampkZWURFhamMtlZ8H40NTWxsLBQ2WtOobQX5unTp+Tm5rJmzRopbEwh148fP+bixYuoq6szYMAAnJycJMUlLi4OFxcXGjdujKmpKYmJiSQlJVGxYkVq1qxJlSpVlBYpubm5Uk8qhWfbwcGBuXPn0rt3bw4fPkzlypVp3rw5EydOJDExETs7O0aMGEHv3r3Jy8sjPj6ee/fusWvXLpKSkqT+VWpqatjZ2WFnZ0f9+vW5ffs2p06dAt40FFVTU6NSpUp06dKFmTNnFvGs5+XlkZ6eTlRUFBkZGcTFxRESEkJISIjkBcrOzkYmk2FtbY2TkxOOjo5YW1tjamrK9evXgTfFG8aNG4ebmxtWVlacOXNGuoaiKW9BQQE1a9YkKipK8qhXqFCBUaNGsXXrVu7cuYNMJmPkyJH4+fmRmZlJUlIS9+7d48aNG+Tk5PDy5UtMTExwd3eXrM6WlpbUrFmTu3fv8urVK77++mvy8vLIzMwkLS2NtLQ0HB0d2b17N9HR0YwbN45p06ZhYmKi9DwyMzO5ePEiS5cuZffu3ezevZuLFy9+VJnzlJQUQkJCMDQ0JCoqim+++eZf2Vfpv4C6ujqmpqYq39dDhw4tsk1R/fPQoUOEh4dTtWpVydgRFhbGtWvXkMlkhIeHk5CQgImJCfv375dygqtWrYq9vb30vi5btiyDBw+mZs2aSnNLbm4urVu3Jj8/XzKC6evrM3bsWMkDY25uTseOHdmwYQNPnz7FxMSEbt268e2336KpqUlycjIPHz7k0KFDxMXF8dNPP0nnt7a2pnTp0jRs2JB79+5x8+ZNbt68CcCmTZsoW7YszZo1Y8WKFUUWtPn5+aSnp0vGxaSkJMLCwggLCyM8PJzY2FhJqVMopPb29lhbW2NkZCSlAsTFxfHdd99RunRpGjduzK5duySFw97eXvIotWnThvDwcG7fvo2mpia9e/dm+fLlbN++nfv372NlZUWrVq2YO3cuycnJxMbGcvnyZY4cOUJMTIxU6GHo0KF06NABExMTTExMqFy5MikpKWzbto27d++ipqZGcnIycXFxxMbGEhMTw65du3j+/Dlt2rRh27ZtmJqaKs2/OTk5JCUlMXPmTDZt2sTZs2c5ffr0R+XpZWZmEhISgo6ODnl5efTs2fM/0wrhU1X5ezsfftasWcyePVvlZ97Ory0cXl3S49/eXpJzfqpj/s38axSqj0FPT4+ZM2eybds2EhMTcXBwkCymrVu3JjMzk+joaB49ekRWVhYTJ05k9OjR0sQUFBTE06dP0dHRoUqVKsVaClS9NGQyGfXq1ZOqxOXn50vN9gofo6Ojg7OzM87Ozty5c4d58+YRGxtLaGgoISEh0n9jYmIkC6CWlhY5OTnI5XKio6MZPHgwmzdvJjk5mfT0dOlPVciLKotRfn4+aWlpREVF8ezZM+Li4pRinw8dOqRk0Tlz5gxPnjxh586d7N27l+zsbNLT0wkNDSU7O1sqabxnzx4cHR2V4qBNTEz46quvpH/funWLW7duYWRkJIVWnDlzRumYsLAw7t+/T9euXUlLS5Oqhim+j23btjF06FA8PT0JDw9XmVNlYGCAvb09bm5uXLt2jcDAQJo1a4apqSn29vaUL1+eMmXKvLcQSlxcHJmZmVIBEAMDg79cAlzwYWhqajJ27FgOHjzIzZs3cXJywsbGhtTUVGrXro2Ojg7JyclcvHiRxMREunbtyg8//CBZbaOiorh//z4ymQx3d/diCw4UF8pZoUIFySKXl5fHmjVrlPYrlDCF0nT58mW2bdsmWc0Vf69evVJququpqSnJeGpqKvPnz+fw4cPo6OgQExNDRkYGaWlpKvMKVMm1ojhKXFycpHQW7sc2d+5cpcp/S5cuZeTIkezbt4/NmzdLik1kZCSZmZmoqanx1Vdf0aFDB6kKoOJlZmJiolS9Mzg4WJo7a9euTVhoKOfPn1cKMcvIyMDb21uyPGtoaEjhQQCLFy9mzJgxNGjQgODgYJX9xXR1dbG0tKRs2bJSrlbTpk2xsbHB2tqaKlWqKOWxFUdGRgabNm2Snn+FChWUencJ/n7U1dXp3r07Fy5c4OrVqzg4OGBjYyNZ2e3s7PD39+f69evExsZSr1499u7di7u7O7dv3yY5OZlbt26Rk5ND5cqVsbCwKPY6qio22tnZSWFJeXl5/PDDD0r7FYqZhYUFzZs35+HDh0yaNAl9fX3CwsKUZDs8PFz6LampqaGmpkZeXh5ZWVn89ttveHt7Y2lpSUxMjPS+VuU9Lc7Dk5WVRXJyMgkJCfj4+CgVpPr6669Zv3699O8BAwbQrl07jh07xtq1a/Hx8SE/Px9/f3+SkpKQy+W0bt2aOXPmYGZmxqZNmyRlT0tLSwothDdGmBMnThAREcHAgQMJCwtj4cKFnDx5UooCkcvlHD9+HGNjYynP3cLCAgsLCypUqICbmxtjx46lefPmPHv2TGU+k5aWFlZWVkp9AVu3bo2ZmRkODg64u7tTu3btEvUc3LZtm+RRVfTI/C8oU/DpFCpVHqq3sbCwQF1dvUhOqsLQrQobGxuVxysiwt51jOKcJbmu4h0RFRWlpFS/a2z/Rv7TChW8mQS/++470tLSCAwMRFtbm169ekkLgW+++UbpeEV4mY+PD7q6ujRs2JAyZcqwcOFCKlasSJ8+ff42jVjh9bC2tsba2lpSKhST5ezZs/nxxx95/fo1o0ePlgphDBw4kIyMDKlruoaGBlpaWlIpUxMTE/T09Pjtt9+Qy+VUqVKFNm3aYGBggLm5Oc+fP+f06dM8ffqUypUrS71yrKysaNu2LVWrVkUul5OTk0NUVJQUk21qakpYWBienp7Ex8cTHBxMdnY22dnZ+Pn5UbNmTcLDw5ViZ9+mdu3amJqaYmRkhLq6OqVKleLo0aOSdykhIYH27dujq6vLrFmzirzk4E0VJQ8PD8qUKVNs5TfF81VXV5deUor/Dw8Px8/PD01NTapUqfLO6nBmZmZoa2ujpaVFbm4uaWlpBAQEYGBgILnRdXV1/7XhPl8KihCv7Oxs/P39UVNTo0OHDlIIWv/+/ZWOj46OZtGiRRw/fhy5XE7t2rWpVq0aa9asQVtbm5EjRxarQP1VFCGsZmZmmJmZSbk5ivyp7du3U6dOHczNzfnuu+8ki2rnzp3R1tZGR0eHpKQkKZxWkfsjk8moUKECq1evRi6XY2trS69evaSKk5GRkVy8eJFbt27h5ORElSpVSElJwdDQkObNm9OuXTsKCgqkHMHIyEjy8/NxdnbmxYsXUqx6WFiYVCI9JCREKtjxyy+/FHvPVatWpZyjI2NiY6nv709Bfj4VgQoxMZCaSraWFn379uX58+f8+eefkue9MCkpKVLz78mTJ7/zGStkOz8/H5lMhrq6OvHx8ezatQs1NTUqV66sNO+/jZ6eHl9//TXPnz+XlME2bdpQp04dXF1dpdYAbdu2/UutPATvp1mzZjRp0oQnT56Ql5dHixYtJKNl8+bN+fbbb6Vj09LS2LhxI4sWLSI9PZ3KlStTv3599u7dS1xcHGPHjn1v0+2PRUNDg+zsbGxsbKhUqZJSlbv09HRJ0WncuDFTpkzhxYsXhIeHU6tWLSpVqiTllGlqakoVE5OSkkhOTqZOnTr89NNPyOVydHV16dOnD6amplhYWJCSksKNGze4fPkyJiYmVKhQgZSUFDQ0NGjWrBk9evSQGuTGxcURERFBdnY21apVw8/PjzJlylCnTh0ePXokhXO+evWKDh068Pz5cwYPHlxsg/p69eqhpqbG8L59qXnwICa+vjTR0EArIADGjEE+fz7TFi/m4MGDHDx4sFh5U5Q0VxQlKI7c3Fx0dHQkI5KGhgYZGRls27aNX375BVdXV0aNGqWyWJVWdjYtfXxompfHH5qaXMjP50l0NAMHDmTNmjVUrlyZsmXL4uLiIilr/zY+lUJlZGT03jWJlpYWtWrVwtvbWymXydvbu9i8s3r16hVJmzh37hzu7u6ScbpevXp4e3srrQPPnTsnhfeV5LoKo6m3t7f0XsrJycHHx6dI8bZ/M/95hUqBgYEBLi4u7zxm9+7d7N27V8qBsrCw4OzZs1y6dImpU6dy6tQp9u3bR8+ePf+WMVpbW/Pq1SuVBQCSk5NRU1NDV1e3SAPMt5NaC2NkZERKSgpOTk7Y29sTHh5OWFiYFL4HSFW/fH19OXnyJNra2pQqVYqgoCBmzJjBtGnTipTILsz69es5d+4ccrmcCxcucOLECcLDw6Xy9+8q+qEQGD8/P+D/59OFh4ezf/9+xo4dS1ZWFj4+PsVaIhQWK0VRgcJWrcLs3buXP//8kzFjxuDi4sLq1asJCgpi5MiR5OTk8PTpU65fv05eXl6RZoYK1NTU0NDQQE9PD3V1daysrEhJSSE9PZ20tDTi4+MpKCjA0NCwSJK84NOjra1dJGn5bW7cuMHMmTOJj49nxowZ1KxZkytXrnDgwAEmT57M8+fPWbVqFZMmTfpbxlinTh3+/PNPqehLYQoKCggMDKRv376cP39eydJ85MiRYs+pKMBy//59XF1dJc9ylSpVJItv2bJladiwIa9fv2bfvn2S0hUREcHq1atZsmQJ+vr6krL0NpMnT5YqsD579oyNGzfy8uVL6tSpQ8eOHYsYowrTvE4dvlm/HrPoaNSBMCAVCEtI4LibGzOMjQl49oyDBw9SvXp1lQqVgYEBLVq0YO/evdy6dUsqsfs2169fZ+fOnfTp04e6dety+vRpTp48yYgRI7C1teXRo0ecPn2an3/+mWHDhhXbn0wRKSCXyxk8eDBnz57l2rVr+Pr6cujQIZKSkqhQoQJbtmwpdn4QfBoUhWnehaJPk4mJCd27d6dbt27cv3+fHTt20LdvX7S1tVm4cCGLFi36W5qsN27cmAsXLhRrxLt+/TrDhw8nODhYKe/n3r17Sg3sC6Mw6jx48ICqVavy6NEjMjMzsbW1ldo4wJvKep06deLIkSOkp6dTpkwZkpOT+f3339mwYYMU3qaqyl7v3r2ZN2+eVIW2UqVK+Pn50blzZ2rVqiVVUVOFp6cnzWrXpuqwYei8eoWsoIAXgA5waN06tmzbxtm0NJYsWcLXX3+tMt8WoFOnTty/fx9vb2+6d++u8pigoCAWLFiAp6cn7du35+XLl/z000+0atWKadOmce/ePam/0fTp05W8TppZWQzfuRPLuDjUAYWPLVIm45ydHZcrVSLwxQvOnTsnVadUFN74L4WQfWrGjx9P3759cXd3p169emzevJnQ0FCpr9SUKVMIDw+XKjwOHz6cdevWMX78eIYMGcKNGzf49ddflRTl77//nsaNG7NkyRI6duzIsWPHOH/+vFJFyfddVyaTMXbsWBYuXEi5cuUoV64cCxcuRE9PTyk369/OBxWlCAwMVKoHr6rYhKqJTVV9++I+X7iSjAJVCbKqwvDCw8OLbFMsJF6/fs26devw8PBAT0+PHj16SMc8fvyYjRs3Mn36dMaPH8/ixYslK6Wq+1HlwlYlpG8rToGBgQwcOJAlS5YUqUY1efJk+vTpIyVJ5+fnExERQUREBFFRUVLfEEX56YSEBExNTalTpw63b9/mp59+IjIykp49e9KtWzeVz0fV8w4PDycgIEByGZuamkr5GQUFBVL5e0Vy+/379/njjz8YOHCgymdTXOJz4SqOGRkZkmLSsmVLtm7dKvUKU/Vsb9++zfbt25kzZw6///57sQK2evVqJkyYQKVKlaT49FatWrF27VrU1dXJzMxk0KBB3L59m2rVqhUZv7a2NpaWlowZMwYbGxvU1NRUhggqQigLCgpITk5m/fr19OzZEwsLC5o0aYKamtp/Knn9+fPnHyXXgMpFkSrFXJVcq0qGV/W7VVWcQSHX2dnZTJgwgSFDhnD79m2l5rOxsbGMHz+eJUuWsHjxYvr27SuVGlZ1P6oUelVy/fY9p6am0qxZM+bMmaPU805DQ4OVK1fi6OgolYpWhPGGh4dLoXa5ublYWFhIhW10dXWpV68er169YtWqVdy9e5dOnTpJVuy3UVUYJCoqiufPnxMUFIS+vj6mpqZSPqXCy2NnZyd911FRUWzcuJEWLVrQsGFDSdEqTOEiRKOeP6dTeDiFn+IdoA8QCFQxN+e3CxekRWLh+VbB+vXr2b9/Pz/88ANjxoxRWbYX3pSFbtasGZUqVSI7O5sXL15Qu3Ztdu3ahaWlJQUFBYwfP54dO3bQpUuXInkYqn57qrxQ6enpnDlzhoiICKpVq4adnR39+vXDyMiIZs2aoa2t/Z+S66CgoPfKNaiWBVVGv5K+r1UVsFGVQ1m4qEBhFLL9ww8/MGzYMDZv3qzUszE7O5uBAwcyc+ZMTp48iZ2dnVQKX9W9qMrLUSXXb69T5HI5TZs25dtvvy1SEfL06dMEBARIntX8/HwSExOld3ZaWhrZ2dmYmJhgbW0tyehXX31FZmYmGzZs4MSJEzRt2pSBAwfi5ORUZDyqKoRaWlry5MkT7t27h6amJlZWVri4uKCrq0t+fj55eXlUqlRJKhKTlZWFtbU1LVq04ODBgyq/L0WotAKrBQsw+f13ZP/3PbwC+gFXAVtga4cOeB07BiAVtFH6vJUVx44dY8qUKVSpUoUTJ04UOQberMmcnZ0pXbo0GhoaUrXZX375RZo3Nm7cyJQpU2jZsqXSd9D+/Hnq3b+PqrdSvkzGlcqVOfh/v4m8vDwuX75MYGAgzs7OlC1blgEDBqCvr0+jRo0kz9U/UZTiwoULfyk8MT09nWbNmn1wY9+lS5cSGRlJ5cqVWblyJY0bNwbehI++evWKy5cvS8f7+Pgwbtw4qbHvjz/+WKSx78GDB5k+fbpUrW/BggVFCoO867rw/xv7btq0Samx79vtRP7N/M8oVOvXr8fT05Pdu3ezatWqIvlSQ4YMYezYsZw9e5Zy5cpJ4XifUqGCN0341q5dS/Xq1XFxcSE0NJSzZ89KRSM8PT2pWbOm9MIPCgpizZo1Upzy1atXycjIwMvLC3V1dfz9/fHy8irSlVpVfpWq563q5Ve4D4kChUJVUFBAeno6hoaGKqsLlkShgjcvoPXr19O+fXtSU1OZMmUKbm5uzJgxQ+pfouifkpeXh56eHt26dWPDhg3F5ktkZmYybdo0cnNzMTAwoHHjxpQvXx6ZTMaLFy8YNWoUoaGhzJs3T6XFXBF+9eOPP2JrayvF4iuqqSm+Y8W21NRUXr16Ra9evaT4+Dt37uDu7v6fWnj9lxWqM2fOkJubS2xsLK1bty5StW3lypWUL1+e3NxcgoODJe/zp1SoFONYtGgR9vb21KhRg8TERP744w/09fVxdXXF3d2dJk2aKPWsWrFiBfHx8ZQuXZp79+4RERGBp6cnFhYW+Pn5Ua1aNYYMGaI01sI5UgpUKVSF+2ApUDU/KuZWuVyu1L/ofQrV7hs3sFUxlgzgFNDOwQGt4GCmTZuGsbExly5dQkNDQypKoShIIJfLadWqFZs2bSrSX0+BXC5n4cKFREREYGBgQNWqVenWrRsZGRnExsYybNgwLl++zA8//EBaWlqR76zwb08ul0tKbGZmJlZWVtJiX9Fb68GDB/z5559K3sStW7fy7bff/qfk+r+sUAUGBnLq1Clq1KhBUlISI0aMUDrm1KlTPH/+nCZNmrB582Yp5/FTKlTwxgu1cOFCZDIZDRs2JCcnhz/++IPs7GwqV65MpUqVaNOmDbq6umhpaZGdnc2aNWt48uQJZcuW5fnz5wQEBFCrVi1cXV3x9/fHwsKCCRMmKC2kVXmaVClUqqIiigtlU3hqFdXYZDJZiRQqp2bN0HprrsgHjgONAfMyZVg3YQJRUVFUr14dOzs7oqKiCA8P5+LFi3h7e5Oenk79+vVZtWqVUr7022zfvp1bt25hYGBAmTJl6Nu3rySjkydPZseOHXTv3h07OzulkO0ff/4Zs7fmvXggHIgCLPX1+eX/wsIVv72goCAuXbqkNF+OGzdOKjryTyhU58+f/8sKVfPmzf/V89H/El9MyN/7CAkJoVKlSuTl5alctFWuXJng4GCp7OnfRZUqVdi0aRMPHjzA19eXc+fO0aVLFzw8PMjJyeHUqVNs27aNFStWEBMTw7x581iyZAk2NjbMmjWLwYMHU758eX766SfWr1+Prq4uK1asYOfOnfTr16/E43j+/DkHDhwgPj4eNTU11NXV8fLyUgo7UIWamton6Vqtrq5Ohw4dkMvlTJo0ia1btyKXy4u8WDQ1Ndm1axcdO3Z8b3lRXV1dpYpMAC9fviQ6Opru3btjYWHBkSNHKF++vEqFCt4kAys6fxeeoGQyGbq6umhoaCCXy6WKTa9fv6Z9+/YEBwcTGxur1ENB8PcTGBhIp06dOHPmjEq5rl27Nnfu3MHV1VXlouVTYWdnx9q1a3n27Bm+vr4cO3aM+vXr0759ezQ1NfHx8WHIkCEsWrQIY2Njxo4dy5QpU6hUqRI7d+5EXV2dXr16MWPGDEaMGMH48ePZv38/c+fOZc6cOSUeR3R0NPv37yc4OBgNDQ3y8/Np2LChkiVQFTKZrNi8iiLI5WgUY4fTA7oC5OezfsMGFi9eLLVlKIy5uTkrV66ke/fu723CKZPJmDZtWpHtCQkJdOrUidjYWA4fPkyTJk2kctbFcf/+faVwLB0dHerXry/lx6ipqVGrVi1q1apFdnY2r1+/5vjx47Rt2/ad5xV8Wp4/f061atXIy8tT6U2sXbs2p06dolWrVn+rXBsYGLBw4ULCw8O5d+8ex48fp1SpUvTu3RsTExPu3bvH8OHDGTNmDF999RXff/893bt354cffuDatWtERUVx/Phx5syZQ926dRk7dizXr19nwoQJrFmzpsR5nampqezfv5/AwEBJcWvcuDF9+/Z972c/qKiSXI5MxfpHHVCYbC+npTFmzBh0dXWLyHXZsmWZPHkyvXv3fm+oNrzxiLxd7TUpKYlhw4Zx7tw51qxZQ9++fZW913I56m+FMB8BCvtDtNPTqXL7tpKBzcXFBRcXFwoKCtDR0WHRokXFNpn+XHyqHCrBv4P/GYVKS0uL9PR0qlSpwtWrV6VmmAqSk5PR1dXl3r17TJw48W8di0wmo0qVKmzYsIF169YphQl9//33PHr0iJkzZyKXy1m8eDE2NjY8f/6cvLw8unXrBrwptrFv3z4GDRrEyJEj+eabb7hz5w7wxmpYvXp1vv76a5WLpDt37nD8+HFGjRolTeipqans3r1bcsd+DnJzcxk6dCjbt29HW1sbe3t7IiMjpeR8NTU1ZDLZO3M5FKSlpZGYmCgl4Ssahfr7+zNr1iySkpLYvXs35cuXf++5vL29ef36NR06dMDAwACZTEZOTg4FBQWoq6ujpaWFXC7H39+fAwcOcP36dUxMTNi9e/ffEssvKB49PT1SUlKoWrUqPj4+Sonj8OblrKury82bN5V6YPxduLq6smXLFmbMmKFknChTpgwtW7Zk6tSpfPXVVwwdOpRKlSqRnp7OpUuX+PXXX5HJZMyZM4f169ezZMkSOnTowKVLl/juu+9QU1MjPz8fR0dHevTooXKRFBoaypo1axgxYoQUGpidnc3p06fZunUrrVq1+jT5AzIZee84jxxYmpHB5NGj0dbWlsrfKxp16+npoampyahRo957qezsbGJjY8nPz5e81mlpaSQlJbFmzRr8/f3ZsmWLyvw1VURERKCrq0uTJk0wMzPj3r17XLx4EX9/f5o3b469vT0ymYzQ0FBOnTpFdnY269ate6/SJ/i06OnpSVU9t2zZUiSPSfG+vnXrFlWqVPnbx2Nvb8/+/fvp3r07rVq1kt6bpUuXpmXLlowePZr27dtLfRvlcjmbN29m48aNktHzu+++o06dOtSsWZOqVavy3XffSSHlpqam9O7dW2Uj5pSUFGbMmEHv3r2ZOnUqMpmMvLw8Tp06xZgxY9i1a9enK6QikyF/RyXcQ0Cf+Hi0tLQwMjKiadOm1K5dm+rVq0uNukuiSOXn5xMZGSm9rxUGyuTkZM6fP8/x48cZO3asaiOxTEb+W3mSFwFtYCXQElinpcWa+/clL6azszNqamrEx8dz9uxZoqKimDRp0md5J7wLoVD9c0RHRzNx4kQuXLhATEyMyurYH8r/jELVpEkTzpw5Q9u2bVmwYAGurq6cPHmS27dvSyEGLi4uUuPAv5uLFy/SsmVLlS/qqlWrSlWMFOEKJ06ckJQpeFMpaejQoQwcOJCVK1diaWlJ48aN6dq1KwUFBVy5coXJkyczb948pfKyeXl57Nmzh8WLF6OlpSWFZxgaGjJ06FCWLFmCg4PD3+4+lsvl9O7dm2PHjlGpUiUpX0lR0l5TU1NlczpV3L59m+bNmxcb0qIgJCQEV1fXEo3N29ubvXv3Ym1tjaOjI7a2tqSmpvL06VOysrKkxqoRERE4Oztz69atYsv4Cv4+mjZtysGDB5k4cSI//vgjXl5e3Llzh4sXL5KXl8eLFy8YOnQoPj4+DBs27G8fT1BQkNQc/G1sbW1p2rQpR44cYcyYMQBcvnwZLy8vSdFxcnIiPj6enJwcjhw5Qm5uLnZ2dpLn5cGDByxcuJBRo0YVWXxt2bKFKVOmYG5uLoX8aWtr06lTJ3bu3ElQUBDlypX7JPd53cKiSA6VgnkyGbP+Lwb+xYsXVK5cmdOnTwNviugoCui8j/DwcBo2bMirV6/eedzb/fnehaKtwrlz56hUqRJubm5UrFgRHx8fdu3ahbGxMdbW1gQGBlKqVClu3779yZ6ZoOTUqVOHGTNm0L59e+RyOXfu3CExMZHjx4+TmZlJZGQkLVu25NixY5+lClhGRgZBQUEqK9oqmskvXryYffv2AW+a05YtW1YKN9PT05NCAKOjo/H19UUul7Nx40bgTS7SmjVr8PLyKlKFdvv27QwaNIiqVatK84SGhgYdOnQgLy+PHTt2qOz99bGkN22KZqEcKgUHge6Au6Uld2JiaN68Obt27eLEiRNYW1vTo0cPWrVqhZOT0zsNNxkZGbRs2ZJr1669cxyqQr0V+Lu4UO/BA9T/bxH8DXAeGMkbD3l1W1u61qnDtWvXOHbsGLq6ujg4OBAUFISRkRFXr16lQYMGJXoegi+TAQMGEBoayowZM6SQ2L/KBylUMplM6aKqXoqq4qdVxfgXt11VXo4qq42qHAFLS8si2xThe506dWLkyJHUqVMHT09PWrduTYcOHRg1ahTr1q3D2tqalStXsmbNGqXzqNJSVcU2qwpHUzUhKEq8+vn5MWLECExMTIiPjy9yXI0aNThx4oSUC5WUlIS7u7tSbLuxsTFhYWEUFBTQpUsXwsLCpByLunXrYmVlxerVq6WQIU1NTW7fvk3Dhg2luN23KyN+++23hIWFFbEMqVrUKJqVFubtXC4FhcsiK6xDv/32G8OHD2fTpk0MGzaMSpUqUbduXdTV1fHx8eHx48dSV3s9PT0MDQ0ly+Dz58+BN7+Xtm3bUqZMGZYuXSol3SvyeLZu3UpmZiZDhgyRPE6gOs+n8O9RS0sLS0tLtLW1+fPPP8nJycHExIQaNWowevRo9uzZw9OnT1m/fj2dOnVSec//Fd6Wa1W5LKrkDVTLsKqcR1V5eW5ubkW2qZIFVblNCrkwNzfn6NGj3Llzh2+//ZZOnTpRv359Bg4cKFkily9fzvfff69kvFBV9a6kcq0qF0kh1wEBAXh5eWFiYlIkNwGgYcOG7NixQ5qXEhMTsbS0VJLD0qVLI5fLOX/+PBMnTmTbtm1SPk+FChWYN28e06ZNY+3atchkMrS0tIiMjMTU1FQywLxtOBg9ejSbNm0qUuFLYcB4G4UCVJjWrVtL/x/WtCkJ69djGRsL//cs04BFwBK5nD7du3P6wgUaN27MN998Q4UKFTAxMeHixYtcv34dX19fLC0tcXJyws3NTXqXzJ8/H3gzb3t5eZGSksLx48fR0dGR8jcLCgo4ffo0Dx48YNCgQXTv3l16/qoMMIW/63LlylGmTBlevHjBvXv38PPzw8jIiPr16zNx4kT27dvH1atXWbNmDSNHjiy2YuB/AUV/JAXF5aiV9J2tKudR1TtOlccoNja2yLbiqqQqZNvDw4N9+/Yxc+ZMOnTogLOzM8OHDyckJITff/+d3bt306xZM6WCDqrkWtVcrypsXZVcK/KTgoKCaNCggfRvRSNdBVWrViUhIQFdXV1ycnKIj4/H1NRUqSF8pUqV0NbWZu3atfz0009Mnz5dmnNsbW2ZN28eY8aMoVatWhgYGJCTk0N+fj4vXrxg+PDh5OTkFFkfubu7M23aNFq1alVk7KoWiKoiKN4OmXw9fDim9+9DQAAUFJAHbAKmAh309YktU4baZcowbtw4XFxcsLCw4NKlS2zdupU1a9ZgZWWFu7s7DRs2pG7dugBKEUEDBgzgxo0bbN++XZqv0tPTpd5Z27dv59tvv6Vv375ShM3b3oOzjRrhFByMTVIS6nI5dQE/YDOwSl2dAyEh6ERHU6NGDfbu3cuxY8c4ffo048aNY+7cuSpz+v4JhIfqn+PPP//k6tWrRQrO/BX+dR4quVzO/fv3uXnzJnK5HHd3d8qXL/+XX2xaWlqsWLGCRYsWcfnyZbp06UJgYCCDBg3CyMiIhg0b8v3337NmzRq2bt36t/WsUaCurv7O2G9tbW2lhWm5cuW4efOmpFApyqxv3bqVb775hqNHjxZJyHd2diY3N5ekpCRpwREdHa0y4ViBk5OT1Pn9UyCXywkMDGTWrFlSqM6BAwfQ0tJi2LBhmJiYIJfLcXJyIisriwoVKmBra0vdunU5dOgQT58+JSwsTGpqrK+vr1SUIi0tDQ0NDfz8/OjTp49UXeltLl++jK6uLm3btqVnz54UFBS89zeloaFBw4YNqVevHuHh4fj7+3Pp0iVGjhzJ/v37P9kz+l/h+fPnXLp0iezsbKn3z6cIVZk9ezZr1qzh8OHDeHl5kZCQIPWdqlatGmPGjGHv3r14enqqTFD/lLxPrhWKVFZWFjo6OpQrVw4fHx9pv1wuJzIykkOHDtGzZ08CAgKUFmXwxpBSuXJlHj16JIUVRkdHF1v8B94sXlUpuh9LjrY2izp1wvjhQ9ICAkjNy+OP7GzigZ5dutCsdWt27d+Pq6urVO7dwcGBBg0acPLkSU6dOoW2tjYBAQE8fvwYd3d3rK2tJblU9KVJSEigX79+ZGdnKxWJUDBmzBi+//57PD096dmzp/Rc34WmpiZNmzalSZMmhIWF8eDBA86ePUudOnXYvHnzJ3tG/ytERkZy7tw5kpOTKVWqFA4ODiXPx3sH3377Lbt376Z79+5Ur14dfX19pk6dSn5+Pm5ubrRv3x5fX1+uXbv2t3sb3ifX+fn5aGtrExwcjJOTE2XKlGHHjh1KxyiMCB4eHsTGxhaJaNDQ0KBz586cOXOGrl27Am+8Oe+KmNHQ0FDZo+mvEJqYyB9ff03yyZOkBQZyJTOTJ3l59C5blkGrVtFtwAC6dOnC69evqVy5Mg4ODnh4eNC0aVPWrVuHo6Mjjx494tSpU/Tp0wdbW1vq1asnyWVWVhYFBQWMHj0auVyuUuGdM2cOM2fO5KuvvqJnz56kpqYqKcHZWlos7dSJDnfuUC0kBPWCAvLV1KhZsSL9PT15nZyMn58ft27dYuXKlRw8eJBly5Z90uf0KRAK1T+HwnD5KfnLkpifn8+ZM2d48OABurq6eHp6qiwBWhLi4+OZOHEibm5utG7dGplMxtWrV+natSvr1q37sORKFRgZGdG6dWtMTEyoVq0awcHB1K1bl6ZNm2JpacmVK1dITEzk8OHDf1svKgWenp6cPHmS7777TuX+K1euUKNGDW7evEndunVp27YtkydPlpqBrlu3jj59+vDbb7+hoaHBw4cPGTx4cJHzlClThqioKEmhsrCw4PXr18X2fAkLC/vgztRZWVn4+fkREhKChoYGZmZm1K1bFyMjI3bu3ElwcDC2traYmJigr6/PoEGDmDFjBh4eHjx+/BiA5cuXU79+fdLS0vD39yctLY20tDTkcjl6enpSHlNOTg6JiYkMHDiQrVu3Ur58eUJDQ/njjz94+vSp1ODOyMgIY2NjjIyMqFixIlFRURw8eJB9+/ZJLytra+siTSFzcnIICQlBXV0dGxsbKW/KwcGB0qVL4+3tzXfffYeHh8cXHeInl8u5ceMGly5dQk1NjTp16ny0JSc7O5t58+ZhaGhIq1atMDAw4P79+3z99dfMnz//L1uINDU16dmzJ8HBwXh4eHDmzBkqVqxIq1atMDU15dmzZ8TExLB+/XrJA/J34eHhwbJly1RajAHOnj1L69at2b9/P/369aN69eqsX7+e6OhorK2tOXHiBPXr1+fly5e4u7sze/ZsleXEy5cvz+vXryWFysLCQqWFXUFcXNwHF5PJy8vj6dOnBAYGUlBQgLGxMXXq1MHBwYEDBw5w//59zM3NMf+/Vg5NK1Vi3rx5TJ06VWrOumHDBjw8PNDS0uLevXukpqZKhXCsra0xNjYmPDycq1evSvelqE736NEjLl++zPXr1zE0NFSSbSMjI1xcXMjLy+PIkSPs37+fIUOGSEa4t4tw5OXl8csvvyCXy2nZsiUWFhZoaWnh6OiIo6MjhoaGLFiwgM6dO7+3MM9/nadPn3L8+HGys7OpW7cuNWvW/CiDpVwuZ9OmTURFRdG+fXusrKwIDAykX79+DBo0iA4dOvylccpkMrp37865c+fo1q0b169fx87ODi8vL+zt7YmLi+PJkyf4+/v/7QpVlSpVWLFiBXK5XKXn58qVK3h5efHrr78yf/58TE1N0dXV5cGDB9SoUYPAwEDy8vJISEjAxcWF7du3q+zPVL58eQ4fPiz9W09PT6VnUEFeXt4HF9GSy+VcuXKF48ePk5WVhaamJm3btsXDw4Nff/2VTZs2oauri7W1NQZly1KmVCm2zZrF9evXadq+PQA7d+4kPDwcW1tbbty4QVJSEhEREairq5OcnIyrqyuvX7+Wyt0vW7aMmJgYLC0tOX78OI8ePeLkyZPo6OgUeV+XLl0aY2NjTpw4wb59+5g6dSrZ2dk4OzvTpUsX6flna2lxoEED+sbHExkZSYMGDWjQoAG6OjpY6+hgbW2NnZ0dBw4c4MCBA8X2w/onEQrVP8eqVauYPHkymzZteqeT4UP4oLLpb5dXDg0NZeLEiXh5edG4cWOSk5PZuXMnGhoaLFiwQLKcFOdefTusYMiQIfTv379IUqOWlhaTJk3iwIEDkjCpCkFSNdG9Pdls3rwZV1dXzp49S7169aQGjorFsbe3N4sWLcLb21sKH3sbVZYqVaFBqtzripCEgoICBgwYwNSpU4uEKl68eJH79+8zbtw4xo8fT9u2bfHy8iI6OpqffvpJilFW9NXKzMxk4sSJSmFDiq913rx5DB06FGtra0kh+eGHH1ixYgUaGhpKuVJyuZyJEycyf/78Ipb84kL+kpOTOXXqFLVq1cLFxQUzMzMiIiI4e/Ys+vr6PHjwgL59+7Jjxw6l7ycjI0MKO7S0tCQuLg4nJydCQkKQy+VYWFjQqFEjtLS0OHToEHl5eUrhHO/qR/V/NwPFxMRu3rxZyqextbVFX1+f1NRUKQfr7cpF5cuXp0yZMtjY2JCTk8PevXtZt24dI0eOLPby/+XyyllZWQwbNowqVarQrl07CgoK2Lt3LyEhIfz0009K1mdVJezf9oTMnj2bChUqFGmWWqpUKfr27cvOnTslxVZVyJ+qxd7bbQEuXbrEixcvyMvLIzs7mz59+kj7LC0tiY+Pp02bNpw+fRozMzOVoUEllWtVFuHC88TkyZNp3rx5EUXx6dOnbNq0ifXr1zNjxgycnZ3p0aMH0dHRrFixgho1akjVN4cPHy55XVU1md2zZ4/k8VE8i0mTJjF16lRMTEyKeAjWrVtH48aNiygaxYX8HTt2jGPHjlGuXDnc3Nyk5PkLFy6Ql5fHw4cP8fLy4sSJE0XmucqVK/PkyRMMDQ3Jy8vD2tqamJgYMjIysLe3p1y5cri7u7Nnzx6Sk5OVLNQKy3SxvEOuC3vsPD09qVChAuHh4VK+Snh4uNL3VKlSJSpWrIizszN6enqsXbuWbt268fPPPxd7+f+SXL98+VJJrjU1NRk5ciS6urp0794dfX19Lly4gLe3N0uWLFEyhKqS67cX9rt37+bVq1dFKs1VqFCBQYMGMWnSJKnAkaqQv+IK+BSW7YiICLZs2UKdOnU4e/YskydPlj5nZWVFdnY2np6ebNmyBTc3N5VyrUrhUGVcUDWewsujLVu2kJeXx4gRI5RC/mJjY5k+fTobNmxg7969REVFMWzYMDQ1NZkxYwbVq1fn7t277N69mz179vD777/j4eFBr169ilz71q1bBAQEMGDAAOl9tHr1ary8vHB1dS0y91y8eJHk5GSVxRtUrYdkMhmzZs3C1taWXr16YWpqSnx8PLt27eLZs2fcuHGD1q1bs3v37iLlvPv27cuuXbukdYOuri5ZWVnEx8djZ2eHmZkZgwcPlpStwon+3bp1Y+fOncV7j98h18nJydL7oX79+lSuXJn09HRu3rxJbm4u8fHxSuHaTk5OVKxYkbJly2Jqaoq3tzcymey9OVv/RNn0U6dO/eWy6W3atPlXz0f/VkxNTcnIyJDa8rzdc7S4NId38dEeqtTUVEaMGIGrqytXrlzh8uXLVKxYkXHjxnHv3j2WLFmistRtcfj6+uLk5KSyQoyzszN16tThypUreHh4fOyQgTe9RkJDQ0lNTVW5UDEwMMDZ2ZkrV64UqQT4KVFTU2PlypXSAqhBgwZkZ2dLPRyaNWuGn58fK1eu5MSJE4wdOxYjIyNkMhmRkZHk5eXRoUMH7OzssLCwKJILBW8mouTkZCWPk5aWluQZ+P777zEyMkIul5Oens7mzZupUqXKB4VFnT9/njZt2kgLuJcvX3Lo0CHpx6inp0fFihWLTO56enrMmjULPz8/evbsye+//46/vz/9+vWjdu3aHDt2jEOHDil9plSpUqirq0sWtczMTElZj4yM5MzRoxj98QcVfX1x+b97pX17WLCAyP/rT2NjY8PgwYOZPXs2ycnJUr8dTU1NDA0N0dfXx9bWlqSkJGlxHxgYSGBgIPDGOKCmplasB+K/jlwup1+/fjg5OfHo0SOePHmClZUVvXr1Ii8vj4kTJ7Jly5YSny85OZmIiAiV3lNjY2OGDh3Knj17ivSZ+VD09fVJSkri4cOHrFq1qsh+mUxGuXLlOHDgwN9enGLOnDnMmjWLQ4cO0bRpUzQ1Nbl69SrBwcG0bNkSHx8fZs6ciY+PD1OnTqWgoABtbW1CQ0OlSp6mpqZYWFionKPy8vK4du2aUpEagKFDhzJ37lwmTJiAsbExcrmc7Oxsjh07RkxMjNT8tCRcuXKF2rVrSz234uLi8Pb2lnoHyWQyatSooXIROnXqVKlR+rlz5zh8+DDdu3enWbNmXLt2jc2bNys1juzYsSP29vaYmJgwYcIEpfCe5ORkTh8+TMHevVTw88MV0NfWluQ6KT+fpKQkypQpQ9WqVenatSu+vr74+Phw6dIl9PT0KFeuHI6Ojnh5efHq1Su8vb2lKp3+/v7AmwV2amoqbdq0KfEz+q/x/fffo6GhQVhYGKtWrUJfX58BAwbQtm1bRo8eze7du0scgltQUMCJEydYsGBBkX2amprMnDmT1atXs3bt2r80Zj09PZKTkzlw4ADTpk0r8nvT1NTEycmJ7du3/+0hXYMHD2b16tUMGjQIDw8PjIyMePjwIbdv38bDw4OrV69KYbpLly4lIyMDTU1NgoOD0dXVlULcc3NzVTa6Bjh69Chjx45V2tavXz/mzZvH4MGDqVq1KvBmDrh16xanT59m5cqVJb6Hw4cPU6FCBalyblxcHPPnz+f8+fPSMW3atFG5yB83bhyBgYH8/PPPPHr0iDlz5uDp6Un79u0JCwtjxowZSmPv06cPrVq1wtramsaNG5ORkaEU9ud9/DhxmzdT4ckTKspkmBSS60wNDamIlLGxMf379+fBgwfcuXOH69evo6WlhZOTEy4uLtjZ2ZGYmMjp06fJzs4mODhYajisq6tLXl4es2bNKvEz+pwID9U/h6p1wl/lgxSq4OBgSdAWL15MRkYGbdq0kV66/v7+jB07VrKuPn/+/J29gwpPjpcuXaJ27dpFtER44wmrVq0ap06dkqxoqhrXqrLIvG3RadSoEePHj+ebb75RypNSWEkPHjxInz59OH/+PF999ZVKi5eqRYQqbVaVZb3weLS0tFi+fDn+/v48ePCAFy9eEBMTQ7NmzahRowZPnjzh999/Z+7cucyePZtnz54VOV9ubi5jx47l3r17NG3aVHoGL1++ZM6cOYwcOVK6psIC36RJE0xNTZk1a5ZU1EIul2Ntbc2QIUNU5iCpmmD79etHamoq69evl7xkW7ZsoXHjxowfP56oqChCQ0OZMmVKkc/CmyTgFStWUKZMGaXFYWRkZJEFtoeHB+fOnUNLS4t169ZJFqvz58+TlZUlVYNSoA44AjZr15K6bh1+/7fPyMgIKysrwsLCUFdXZ/Xq1Vy+fJn8/HwuXbpEQkIC+vr6lCtXjipVqigt/H766SdevnyJs7OzSgX2v8rLly+l7/fEiRMEBgbSvXt3KleujEwmIywsjGXLluHp6YmBgQGXL19+Z/n5wvJx7do1qlevrlKuQ0JCqFChAr/++qu0kFX12yuJXFeoUIHFixdTp06dIlbQtLQ09u7dS8+ePTl8+DDffPNNieW6pB6zt+9v2rRphIWFce3aNSIiIggMDKRevXrUrl2bsLAwJk2axLfffistZBQKe2EWLFjA8ePH6du3rzS2yMhIlixZwtdffy3dp8ICX65cOcaNG8fGjRsJCAiQvLrGxsb06tWLzMzMImNXNT9nZmZibW3Nnj17KCgoYNmyZaxatYoyZcqwe/dujIyM+PXXX1m4cGGRzyqe2aRJk2jVqhWtWrVixYoVwJtF1NveDDs7OzZv3oyVlRVnz57FwsKCrKwsNm7cSLNmzahWrVqR3KlSgN3atahv3sztvDzy8/MpX748rVq1YufOnejq6nLlyhWmTp2Kg4MD58+fx9fXFy0tLVxcXGjVqhXnz5+X5kNFM/CcnBzatWun8p7+iwQFBUlyHRQUxLFjx5g0aRL9+/dHXV2dhIQEtm/fjomJCR4eHuzcuVOp8MjbFJaPmJgYpabIhQkODkZdXZ2XL19KC9uSyjUoy5KWlhapqakUFBQUieRITU3l+vXruLu74+vrKx33rnErUFUwpiRy/e2335KcnMyFCxd4+vQp9+7dw83NDWdnZ0xMTJg3bx61a9fmjz/+QCaTScWTCrN//37Wr1/P5MmTJRmOj49n69atODs7SwZNxbgtLCyYPXs2W7duZe7cuVILDz09PVq1akV2drbKZ6lqsX39+nWOHz+OtrY2+/bt47vvvkNdXZ2NGzdSsWJFpk+fXqzBKSUlhY4dO1KjRg1q1KhB//9rnCuXyzEwMCgipxMnTqRatWoEBATg4OBATEwMY8aMYdmyZZRxdCT6rcIeVkCptWsx2LyZ2zIZWVlZ2NnZ0aJFC1asWIG5uTkRERF4eXlRu3ZtLly4wNmzZ1FTU8PJyQlPT098fHykcfTq1UtKCRg9erTKe/qnEQrV52X8+PHMmzcPfX19nJycqF+//ifNQfyoM6WlpXH16lX279+vNKFWqlSJRYsW8cMPP9CoUSMeP34sVXl5H+9L+lQsDi5evEh6ejrOzs4fVc7W0tISY2Njbt68SYsWLZQmIkV5TXt7e5UT89+Fq6sraWlpPHz4kC1btqCpqUm1atXo1KkTY8aMoWfPnqxYsULlpKmpqcmqVavYsGEDu3btolSpUiQlJVFQUMD3339f7DNKTU3F1NSUBQsWYGZmhoaGBunp6fz888/ExsYW6fuhiidPnlCnTh2ysrLo1KkTV69eZe3atVLfnIyMDCmXQhVJSUkqKz0ZGhoycOBAbt68ia2tLWvXrqVixYrAm99B4YqBERERmJubvymtCzgAT4EA4CVvuqbnyuU0MjLitLk5cXFxBAUFUbFiRaZMmcLFixfZtWsXhoaG5ObmcuvWLW7evMnz588JDAxER0dHSpC3s7NTWTb3S0Eul7N9+3YmTZqkVKmrdOnSzJ8/n7Fjx9K5c2du3bpVon5eUDK5lslkXL9+nbi4OKysrKhevfoHlzDV0NCgUaNGXL16leHDhystou7du8fdu3fp3bu3Un7C342dnR0NGzZk9uzZrF+/HiMjI8nC/N133zF06FBMTEyK9YpMnz6d33//nYEDB2Jvb09WVhaJiYn07NmTevXqqfxMbm4u6enprF+/Hnt7e7S0tMjNzeXQoUPMmDGD+fPnv/fZRkdHU6lSJeRyOWPHjmXt2rVMnDhRqTrWu8LiipNrLS0tJk+ezKVLl0hNTWXTpk1KHri5c+dKsvby5UvJC71dJqOTXC7J9XPeyHVydjazqlYlu317Ll68yPr169m3bx9jx44lKiqK9evXU61aNQoKCnj06BF//vmn5G3W19dXCk39HKW3/0lWrFjB119/rZRrZGZmxqhRo1i7di2VKlXi/Pnz71SoCqOmpvbehrpyuZwHDx4QFhaGoaEhtWvX/qjFS//+/fnxxx/JyMhQCkUMDQ1l+/btLF26lEePHn3weT8WY2NjvLy8GDVqFHPnzpUMylWrVuXbb79l+fLlLF++nB9++EHl53v27Mm5c+cYMWIE5ubmktewdevWtP+/HKW3URi2Zs6cScWKFaVeiNeuXWPq1KksXLjwvcVY4I0Mamtrs2nTJoYPH063bt1Yv369pKyam5uTl5en8ntKSkpSmV8tk8lYvnw5R48exdfXl40bN9KxY0dJQV2zZo0UIhkYGIiGhgbZyclMAOYCgbx5Zz8DIoDY7GxGV6qEQY8eXLt2jb1793Lw4EGGDh2Kk5MTP/zwA3379kUul/PixQsuX77Ms2fPCAwMxNTUVFKo0tLSmD179nufyT+JUKg+L2vXruXHH39EX18fT09PIiMjP2mPwY9SqM6dO4etra1Ky4+BgQF16tTh1atXRcL3kpKSOHz4MHv37mXlypXS4gLexMbu2bOHmjVrqnzhr1mzhqysLGxsbDAxMeH48eNEREQwceLED67c9cMPPzB16lRGjRpFjRo1kMlkPHjwgKpVq/LDDz9w4MABvvrqqw86519l165dzJ49u4hFzNDQkBUrVrBy5UrGjx+v8rPa2tqMGzeO3NxcycPyLkHLzc1l//79rFixQslCra+vz/jx45k2bRpt2rQptqytAkWcfvfu3bly5QonT56kadOm0v6YmJgiRR8K4+bmxs2bN4s05TQwMODXX3/lu+++Y9SoUZIyBW8WzseOHWPx4sW4urrSp08fyYvwHHDnjaVLOVMEwrOyuGtpiaWlJWlpaVSoUEFaqK5evRp9fX0MDQ3p1q2b0iJvwoQJ9OnTB11d3RIrEf9VfH19sbKyKjYfsGfPnvj4+FC6dGmlfVlZWZw6dYpNmzZJOZUKqlWrxu+//0737t1VyvXatWt59eoVz58/x87Ojrt37/Lrr78yfPjwD24w3b9/f86fP8/IkSOpUqUK+vr6PH78GDMzMxYvXoyvr6/Sb+lzsHv3bkaPHl0kvl1dXZ01a9bQtWvXYhUqmUxGnz596N27N/Hx8VKz63exefNmKUdCgaJoxy+//ML169ffm8BvYGBATEwMkydPZu3atfz8889KVuvc3Nx3GpwqVarEzZs3i8yhampqLFq0iI0bN2Jubl4knPGXX36RvNlz5sxBR0cHW3V1nuXnYwzU+b+/wmRER3PNwwMPDw8iIiK4ceMGs2bNwtTUFBMTE86fP4++vj5t27ZVaiS8fft2dHR0qF69+kcXUfqvoGh4rqqtCLyJNFi7dm2Ryrb5+fn4+PiwadMmPDw8lKz85ubmxMbGkpWVhba2dhHZPn36NC9evODatWu4urry6tUrdu/eTefOnYv0WXofNWvWxMbGhgkTJuDs7Iy1tbXU6H7evHnk5eV99jLY586do3Xr1pIyVZgJEybQqlWrdzaubtmyJS1btiQhIYGCggI0NTXfaehQ9JoqbOiSyWQ0atSI3Nxcjhw5opSTVRzZ2dns3LmTESNGMHr0aP4fe2cdFdX6vv3PDA0SIiEGgi22WNiKAhYGdifisRVbbOxAzKNi90FFsUCxu8VOlFIUFBCQnvcPfrNfxtmDgB6Pnu+51mIt3Xt2zez7eZ67rmvFihUK1/3y5YvK3rYKFSqwbNkyBg4cqLRv6NChVK5cmYCAACXplDlz5pCQkEBoaCgbN25EKpVSWyLhKaALVPu/v+xIionhkp0ddnZ2DBo0iODgYFauXImOjg5t27bl3bt36OnpUb9+fYVy8lu3bnHo0CH69u37ryaN+g/5g5WVFd7e3jg4OAjEW6pYNL/uN84N8uVQvXnzhnr16nHhwgXRwbF8+fIcO3aMUaNGAVn11qtXr2bbtm3CZ/z9/QWH6vPnz+zcuZNTp07h5+cnMHTZ29tjYmLCihUreP/+PQcOHBAWFPIJdM6cOSxZskS0iVYVihcvjrW1NW3btkVLSwuZTEbv3r3R1tYmKipKiHb+LMhT9qqoZsuXL5+jyJ0cGhoaQgQpJ5Hbq1ev0rBhQ9EyLIlEQo8ePfDz88PNzS3H6zVp0gRXV1ciIyM5fPiwgjMF4OPjkyNxxKBBgxg6dCgNGzZUGsTfvHlDeHi4qECqvb29wntnUqgQJdXUuJyRgaopRUMmExpfCxQowP79+1m4cCGzZ89m5cqVJCUlCayCgwcPVrgPKyurnyL2/E8jNDSUunXrcv78eVEB5HLlyrFixQoFtqQDBw4osNDt27dPcKgyMzNZv349z58/p0GDBhQtWhRHR0datGghMCaeOHECPz8/weFo1KgRCQkJTJ06FXd3dyXnLSdoamrSokULChUqRIUKFfjy5QsdOnQQopY+Pj4/vZZeLmwrBj09PczMzJQ0bb6GVCoVFsOqNP0gq4S2UKFCKt/VXr16sWjRom86VCYmJty/f59t27bh5eWlVAJ08ODBHDMZzs7OODg40K9fP6Xm/4SEBPbt20dAQIDScRUqVMDPz+//b5DJqK2hweUcFOulGRmCXRcpUoR169bRvHlzBg8ezNq1a0lJSSE+Pp4RI0bg7e0tHPfixQtat24tqnH4b0NkZCTVqlUTCAe+hoWFBa9evVKoJrh8+bIwf0MW+6ubm5swZ+zdu5cPHz7QvHlzjIyMaNGiBQ4ODpQrV44XL16wYMEC1q5dK4zfKSkpdOnShblz5wpB17ygX79+3Lp1iw4dOhAbG4uTk5PAwjpr1iyVPUl/F86ePcucOXNE90kkEhwcHLh8+XKOUgbw/3WucrLr9PR0QkNDRedCyCJgGTduXK4cqkKFCtG/f38GDhyIl5eXgjP16NEjrKysVDp25cqVIyoqSqCGzw55aXB2G5PDxMSE7du3//8N/2fX65KTyQBRcfDsdi0vpWzbti0uLi7s37+fzMxM4uPjadiwoUJZ/osXLyhWrJiS1MSviv8yVD8Xixcvxs3Njfnz5yORSFTqpkokElFCum8hX+JOhoaG2NjYcOjQIdHeoaCgIIoXL46enh7JycnMnj1bcKbs7OxYt24d7u7uwucjIiI4ePAgNjY2lClThg8fPrB8+XJatWpF06ZN2bVrF127duXOnTucP3+eY8eOceHCBTQ1NWnfvj0nTpzI8zNMnDiRffv2cfr0aTQ0NAgPD2fLli1Mnz4dDw8PUWcjN0hJSeHYsWPMnTuX+fPnc/HixW+WD2ZkZHxT90pV1Cg/eP/+fY4LVSsrK6Kior55ntjYWN6+fUuVKlWUHOvDhw/z9OnTHL38YsWK0b17d7p3787Dhw+BrO/i8OHD9O/fX3RwFoVEQns9PXYAqpR20iUSJRahiRMnsnbtWmbOnCkwWGX/nl+9eoWmpqbCAjUqKorOnTvj6ur6U8tCfwYMDQ3R09PjxYsXvHjxQmn/5cuXkclklC5dmoyMDDZv3iw4U0WKFGHZsmUKv1lKSgo7d+6kYMGCVKlShZSUFLZs2ULnzp1p2rQpU6ZMwdnZmWfPnnHx4kWOHz9OUFAQcXFxgnhyXjFgwACePXvG3r17kclkfPz4ET8/P0aOHMmgQYPyLAkgR2ZmJpcuXWLBggXMmTOHo0ePivZxfo1v2a1cCPRH4MOHDyrFWyGLFS2nQIsc6enpREdHY25uTr9+/RT23blzh/Xr1yttzw4NDQ3mzZtHp06duHDhgrBouHTpEp06dWLu3Lm50/n7P7s+BzxQ8ZFMNTUlu+7UqROnT5+mU6dOxMXFUaFCBYXfQc4Qlr0cPSkpiZEjR9KyZUtRXZzfGYaGhiQkJGBsbMzFixeV9r969YqYmBiaNm0qCEqPGzdO2D9nzhyOHTsmzIkymYx9+/aRmJgoCLH7+fnRr18/mjRpQo8ePahZs6bQ4xQQEEBAQAChoaGMHTuWvXv35vkZmjRpQpEiRVi1ahVJSUkkJSURFBTEiBEjqFWrlpIGY24hk8m4f/8+y5YtY9asWezevTtXNvKtOftH2vWXL18Ex0sMedGi+vjxI1paWkyaNEkh2x0REcGIESMUyunF4O3tzcCBAzl06JBQ8vn48WN69OhBp06dRDN2SpBIaF+gANGAr4qPiNl17dq1uX//PrVr1yYmJobOnTsrPHdmZqYSHX1GRgaLFy+mbt26AqHOr4TMzMzv/vsPuUf79u159+4d8fHxyGQynj59yqdPn5T+8sPwB3nMUGloaKCpqUmbNm3YsGEDEydOFJowbW1tSUhIEBTsN27cyI4dO9ixYwdxcXGYmZmRmZlJUFAQEolEoOW9d++eQLbQuXNnxo0bx/Pnzzlw4ABPnjwhMjKS4OBgFi9eLOqNFy1alIyMDPT09KhVqxbNmzdXMLLr168rHSMffAMDA7lx4wZHjhwhNDSUatWq0bVrV9TU1ITBMLf6HGlpaYSEhLBkyRIcHR3p378/aWlpBAUFCeV8RkZGonXOWlpaxMbGkpycLAzS9+/fF/bHxMSQkpKictAUG7jF2Jrk/Qnm5uZCNkLsO33w4AEFCxZUiJqJne/06dOkpqbi6upKy5YtqVKlCgUKFODGjRtUrlyZ7du3f7Nfo0ePHlSpUoXVq1cTFhaGTCajadOm7N+/P09ZoZ4tW7Js7162AV+3n2YAdy0tFbQGfH2zhnJNTU1Wr17N06dPMTQ0FLIzr169wsvLS/gcZAnTNmzYkOTkZOLj40lJSWHkyJEA2Nra5vpefzXI7VpOJjJr1izmzZtH8eLFady4MTKZjKCgIC5dusTMmTM5duwYmzdv5vXr1xQtWpTIyEjOnTuHtbU1QUFBbNu2jdu3b/Pw4UPS09OpW7cuW7ZsISoqCl9fX+7evUt8fDynTp1i586dbNmyRemejI2NkUgklC1bFltbW0G/So5r164pHSMvMduzZw/Pnz9n3759PH36lAIFCrB06VK0tbXzZdefPn1i1qxZ2Nra0q1bNzQ0NLhy5QpDhw7F3d1dZcmYTCbDwMCAsLAwQUMvu11nZGRw584dYmJiRClvxRr5v2XXAQEBSCQSUbt+8eIFOjo637TrsLAwwsLCWL58OT169KBYsWJYWFjw4MED9PX12bt3b45kQ5AVOPPx8WHdunUsWLAAyCr/3LBhQ56yjh07dWLon3/iDXwtuZsplfKpYUOFcq+XL18CWeQzycnJTJgwAR0dHe7evcu9e/d4//49np6ezJo1SxibYmNjadKkCU+ePEEqldKqVSsWL16Murr6v8KuS5YsSVRUFDNmzGD16tVcu3YNBwcHtLW1uXbtGgEBAfTv359bt26xadMm7t69i7W1NSEhIfj5+eHs7MzNmzfZunUrN2/eJDg4mM+fP1OjRg3Onz9PQkIC+/fv5/r168TFxXHixAmuXbtGUFCQ0j3Jhdk3b95M/fr1cXBwUOphELPtOnXqYGtrS1RUFLt27RLE52fNmoWBgUG+7DotLY25c+diYmJC69atMTQ05N69ewJpVU5ZtMqVK3Px4kUF5ky5piJkZXFnzJghGpiV22t2iNmhvBeoQIECfPr0CTU1NZXPl5GRoXStr8sg5eP4xIkTmTRpElpaWpQuXZpXr16RkJDAmjVrvln+amlpyYEDB9i8eTPt27dHIpFQtGhRpk6dqlCO+C1Ud3GhwqpVeAFf5xYzpVI+NWigsFaSk5tAVnVSr169SE9P5+nTp8L76OXlhYuLi9BmIGdMPXToEAYGBjRt2hQfHx/09fV/a7v+D9+PAgUKcObMGaytrb8ZjFiwYAFubm45tq/IkScdqjNnzggTqbe3N8bGxnTu3JmbN2/y+PFjgSK0dOnS7N69m/fv39OmTRuWL1/OrFmzOH36NBUqVODGjRvEx8djZWWFiYkJ5cqVo3PnzrRs2VIp6nPhwgUuX76Mm5sbkZGRgsbKhw8fuHnzJjdu3MDHx4eMjAw+ffpEqVKl8PDwoGfPnqirq+foUGXHrVu3RJ9dbAAT25aUlMTo0aOZM2eOUjTpxYsX+Pj4MH/+fFGHSiaTceTIEd6+fSuUm8l/ZJlMxpw5c3ByclLqNZJDzKESi1zIm7DT09MZO3YsS5YsUVoYyWQyxo8fz6RJkxRq7sUG/CtXrjBkyBCBWODJkyd8+fKFcuXKfZe2Ql7x7NkznBwdSXz9miAge4FVBhBhYICHvT3J2Sac7KyCaWlpHDlyhGPHjpGZmUn58uUpXLgwffr0wcXFBchihbKzsxN6XwICAli2bBnDhw+nX79+SgP076RXk92ujxw5QnBwMGPGjOHly5eC/SQmJpKUlMTLly+5c+cOdevWZfDgwURHRzNz5kzs7e25ceMGUVFRFClSBHNzc0qUKEHHjh1p27at0mAUFxfHsGHD2LBhA69fv0ZfXx9DQ0OSkpIEEok1a9agpqZGZGQkJiYmjB8/nmHDhqGnp5ejQ/U1bty4obQtt3adlpbG5MmTGThwoBKz48ePH/Hw8MDLy0tU10ZOzb1z507mzJmDVCpVGLx37twplNiKOShiDpVYGUJ2coWJEycyYcIE0b7SVatWUbduXYXvScyu7927R69evbh//z6VKlUiJCSEjx8/Ym1tnWOk/EcjJiYG59atuXP9OgcAp2xTVaZUypcSJQhet46MbOXe2Z9bJpOxf/9+Vq1axbt376hTpw76+vr07dtXEG5PTU2lZcuW3L59m7Vr1xIdHc3o0aNxcnJi+vTp1K5dW+Gefie7Pn36tPBe3rt3T6jAiIuL4/z586SlpSGVSgkODsbMzIwDBw5QtmxZXF1dsbGxoVWrVrRp04aHDx8SEhJCoUKFKFKkCEWLFqV169Z07NhRCBRkR9u2bTl48CAvX75EW1sbIyMjZDIZd+/eFexaJpPx+vVrdHR0+OOPPxg/fryQPVblUH0Nsc/lxa69vb2pWrWqIMUiXwqlpKQwZcoUxo8fr9LB+PjxI5MnT2b58uWC4yJ3aK5evUpgYCDTp08XtWsxh0psvs6u++Xl5SWwXn6NU6dOERsbq1Re/7VD9eXLF2xtbQUNx3fv3gnivGK/49+F1NRUBvTuza59+1gpkTBMxK7vrV2rYNdfZ97PnTvHkiVLePjwIXXr1kVLS4uuXbsK7MAymYzhw4fz559/snjxYiwtLRkwYADW1tZ4e3uLVs78EzpUBw8e/G4dqg4dOvzS49HvDrk8gpik09fIU8mfh4cHx44dY968echkMlasWEHTpk05f/4879694/r169jZ2dGtWzfB8E1NTSldujRdu3alQIEC6Ovr07JlS+zs7Jg9ezZr166lbdu2rFu3TlDVzo4qVapw8eJFDA0NqVChAhYWFujq6lKiRAlcXFxo3bo1Q4YMISYmhps3b1K5cmX69etHhQoV2LZtG2lpaQLb0IEDBwgMDPxbSjrOnj2Lvb296IKjdOnSFCxYUKWIJkDr1q1JTU1l+vTpBAcHExMTw7Vr1xgzZgzlypVTmti/B+rq6nTv3p2ZM2cqlPbFx8ezePFiateurbKBOTvk362ZmRk1atRgw4YNVK9e/ac6U+/evaNevXrIADMrK24bGRGuocE7dXXCNTQIKF1ayZn6GhoaGnTo0IHBgwcTHx9PSEgIKSkp6OrqsnfvXuzs7ChdujShoaG0b98eLS0tunfvjrOzM6tWrWLw4MEEBAT8tun3oUOHEhQUxJw5cwgLC+PgwYM0atSIPXv28OHDB27cuEHBggUZO3assLDR1NSkYsWKODs7U6xYMdLT03FycqJ69epMmDCB9evXM2jQII4ePcrChQuVMiYGBgZERUWhrq5OhQoVKFasGPr6+pibm9OqVSuGDBlCo0aNiIiI4OXLl7i4uDBt2jSsra1ZvHixIOT48uVL/Pz8OHLkSK7KVPOKly9fYmxsLEqTb2xsTLNmzRRq+L+GjY0NdnZ2jB49msuXLxMTE8OjR4+YNWsW4eHhuep7yAvc3NyYNWuWkKmBrAXijh07SExMpGbNmt88h7yUp379+lSqVIlp06ZRrly5n+pMpaen07hxY+49eMDc2bMp27o1SWZmfClUiCQzM163aqXkTH0NiURCp06d8PT0JD09nYcPH5KQkIC+vj7nzp2jRYsWWFpacubMGVq2bImhoSF2dnaMHDmSY8eO0a1bN3bs2CHq2P4O6Ny5M6dOnWLevHlcvnyZ58+f4+DgwOLFi4mKihIyxXPnzqVmzZqoq6uTlJQkCN5Xq1aNz58/06xZM6pXry4EQCZOnMiDBw+YNGmSElU2ZJUYvnv3jnLlylGiRAkMDQ0xMjKiSZMmjBkzBmtra16+fMmHDx8YP348GzZsENjb5LqAUVFRHD58GD8/v1z1D+cViYmJvHnzRlTXUktLiz59+ij2832FggULMmTIEEaNGsWJEyeIjo4mJCQEb29v9u7dq5LhL7/o378/Gzdu5ObNm8JYmpGRwalTpzh58qQQ+MsJcrseNGgQ5cqVY9CgQYKT/DPRq1cvdu7bx04fH1qK2PXXzpQYGjduzLp161BTU+P+/fvExcWhp6fHw4cP6dKlC1ZWVqxZswY7OzuKFi2KlZUVc+bM4fHjx7i4uLB8+XIlAfp/AvJy6O/5+w9/L/LyHecpQyWHmpqaECmtU6eOoF5uZmYmRKLmzZtHTEwMnp6eCmJvly9fZtWqVWzbtk2p/tXNzY1OnTrh4OCgcP3Ro0fj4OCgxIaVkpJChw4d+PPPPxXKSO7cucOsWbM4dOgQmpqaaGtrU7x4cczNzUlJSSEqKopKlSoxcOBAHB0dkUgk352hmj9/Pj179lTJOHjhwgWio6NFF1DZf4LQ0FD8/f35+PEjRYsWpV27dkLkThXxRl4zVHI8fvyYv/76i8+fPyOVSpFKpUrUunKIRbJLlCiBn58foaGhPH36lO3bt3P8+HEFlre/G7GxsTRv3pzbt29jaGiIqalpVr/E/zW0ZmeSzI6vRVEhq2H33LlzvHz5kkOHDpGRkYG6ujrx8fFUqlSJDRs28P79e2bNmoWuri7W1tYkJiZy4MABmjVrhlQqZePGjZQoUeK3imTLkb1UTCqVcuDAAUGfTCqVEhISIlAUjxkzhk6dOgkOVmRkJH379sXX11eJXEUuPPk15byPjw/R0dFMnDhRYbtMJsPNzY3u3bsrZGXfvHnDvHnz2LRpE5mZmQKpg6WlJZmZmbx//x5TU1NcXV3p1KmTEDH+ngzVvn37MDExUSmK+/btW3bu3Mm0adOU9mW365iYGPz9/QkLC8PY2Jg2bdooNE7/qAwVZP0We/bsISIiAg0NDdLS0mjRogXOzs5KJbhidp2ens7Lly95+fIlYWFh/Pnnn3h6ev7wRWJOyMzMpEuXLuzfv59atWoxZMiQrNKw/7NrQLQkWGz8/fz5MxcuXODx48ccOXKEDx8+oKOjw6dPnyhevDjLli2jaNGijBo1CiMjI3R0dLCwsGDjxo1Uq1YNPT09Fi1aRJ06dX5Lu4asAIh8nvD19UUikWBqaoqWlhZRUVGsXbuW48eP06lTJ9zd3QW7TktLw8nJiY0bNypla06cOMGBAwdYv16xGPPKlSv8+eefbNq0ScmmvL29kUgkCoyBHz9+ZPny5axYsUIQdTY0NKRkyZKoq6sTHh6Onp4egwYNolevXsL3/j0Zqlu3bnH79m2FXsDs9iqTyZgwYQKrVq1SOjb7Z5OSkjh27BiPHz9GT0+PFi1aCMzBIG7X+clQQdbvunfvXh4+fCj8nrVq1aJXr16idizGfBgeHs6DBw8ICwtj586dODg4KBJG/AR4eHjg6elJjRo16NmzZ1awKptdi5VWifWGfv78mbt373L79m1Onz7No0eP0NfXJzY2loIFCzJlyhTatGkjlGvFxcVRo0YN/vzzTwoXLkzx4sVxc3MTCE3+iQzV/v37vztD5eLi8kuPR7879PX1uXfvXq4yVHlyqOQR6zp16rB06VLOnz/P/v37hcWWnDDizZs3GBkZIZVKSUlJQU9PDy8vL7p3707Xrl3x8vISnfhiY2Pp06cPhw8fVtienJxM3759KVmyJP369cPExIQLFy6watUqxo8fj6Ojo+h9nz9/np49ewp9HpmZmWRkZCCTyYiOjiYjI4M9e/bg4uLy3Q7V4sWLad++vUKfTnbIBWg7deqktC89PZ3Lly9z4sQJQWOrS5cuSoPIj3aoIGvxtX//fsLDw5FIJNSvX59WrVopXUtswM7OXiaTybCzs0MqlXLp0qU86wh9DzIyMlizZg2jR49GU1MTS0tL4TfKi0OV/Z08dOgQe/bsoXXr1gwYMICaNWsKzyQvMVi2bBmQRcG8atUqJk+ezPXr1wkICCAxMfG3WXgdPnyYJ0+e0KhRI/z9/Zk/fz4nTpzA0NCQqKgoLly4wIkTJ7h//z56enoUKFCAhIQE1NTUGDNmDDNmzGDmzJk0bdpUtCxVJpPRokULjh8/rlDnL5PJmDhxIh8/fmTo0KFYW1tz//59VqxYQfPmzfnjjz9E7/v169c0bdoUCwsLIiMjSf8/cVeJRMLHjx9JSUnBw8ND0CD5HofqwIED6Ojo0Lx5c5X3cujQISWnELJs8P79+xw6dEggeejUqZMoW9ePdKgg67f18/PjwYMHSCQSKleuTIcOHZSyTGJ2DYq2PXjwYPz9/Xnx4sU3e6d+JGQyGX5+fgwePBiZTMayZcsU7j+3DlX2ioSHDx/i7u5Oo0aN6N+/P82bNxcIK3r27Mn169fZs2cPkFV1MGnSJLp06cK7d+/YtWsXOjo6v41dnzx5klu3bmFnZ0dISAj9+vVj/fr1VK1albi4OC5fvkxgYCBXr14VAqJxcXGCM7t27VqhFF2VMGqPHj1YtGiR0lzl4+PD4cOHGTVqFNWqVSM0NJR169ahqampRNUtx8ePH+nQoQMpKSlER0eTkpIi2HZSUpJQ3iTXkvseh+revXtcuHBBgcEy+1IoPT2dKVOmsHLlStHnDgkJ4cCBA4SGhqKvr0+rVq1o0KBBroSz8+tQQVbZ3vHjx7l27RqZmZmUKFGCrl27ivYlijlU2WUjvL29GTt2LI8ePfrpkiBXr17Fzc2NR48esWDBAgW9zLw4VNn/7eLiQo0aNejTpw/t27cX2is8PT1ZuXIlvr6+6Ojo8PTpU0aMGEH58uUpWrQo7u7u1K5d+x9xqHx9ffPEUP01kpKSBPKdX3U8+t3xtzlUZ8+eJT09nRUrVnDs2DEGDRrE6tWrcXR0JCgoCF1dXapUqcLVq1cxMzOjc+fOXLp0ibt372JkZMSVK1cYM2YMx48fV3ktZ2dnDhw4oNQoJpPJuHz5Mnv27CEhIYGqVavSt2/fHIkLPD09qVWrllLGC7IGzMKFC6Ovr8/du3d5/Pix6DnEWLrEmthu377NzZs3hRpeyIruyTFp0iTc3d2VtJ2Sk5MZN24cFStWpFWrVhgaGvL48WN8fX1p3Lgxzs7OCt+BGMQaX7NfW46vhRhPnjzJyZMnGThwIOXLlyc1NZXTp09z8OBBpk2bRqFChYTPik1KX/eDXb9+nWHDhtGzZ08MDAyIjIxEQ0MDGxsbqlevrvRbiZVbfA8cHR05deoUVlZWQolk9mfIDrEa6uwZgwkTJjBt2jQlVriQkBA2bdpETEwMCxYsEAbDvXv3Mm/ePLp06UKvXr1o3Ljxb7PwOnv2LJqamqxfv559+/ZRrVo1Ll26xMiRI1m5ciXq6urUrl2bK1euoKurS+fOnYmMjCQwMBCAM2fOsGDBAo4fP67SkZ4yZQpdunShWrVqSvseP34skFZYW1szYMCAHIkLDh8+zPPnzxWYyLKjbNmyhIWFcf/+fUqXLi00sGdHbu3648ePLFq0iMWLFwvbstvWunXrqFWrllKPh0wmY/bs2aipqdGhQwcsLCwIDw/n8OHDFChQgJEjRyp8V2K2nV+7fvjwIWvXrqVv377UqlULmUzG9evX2bx5M25ubgqLJ1UshNkXY5GRkXTu3JnGjRtTvnx5IiIiSEtLE+y6cOHCCs+iKpuXX2zfvp3Ro0djbm7OggULhHsWW4iILcay9+UuX76c5s2bU7FiRYXPfPnyhTFjxmBlZYWzs7MgG/Do0SN69uxJx44dqVGjBiNGjPit7FpPT499+/axadMmZDIZb9++ZfPmzQwbNoyMjAxq1qzJ/fv3SU9Px9nZGQ0NDfbt2wdkaZpdunSJOXPmqLTH3bt3k56eTu/evZX2RUREsHnzZl68eIGpqSl9+vTJkbjg5cuXeHp6smnTJtH9bdq04ejRo0IVxPfYNWSVx65fv16Y27IHJk+dOkVMTAw9e/ZUOm7Pnj1cu3aNrl27UqZMGT5+/MjRo0eJjIzE09NTwW7FHCUxdkCxoOjXdh0VFcWsWbPo2LEjTZs2RUNDg4cPH/Lnn3/i6OioZHdic3Z2u05OTqZbt26Ym5vTvHlzIiIiiI+PF4iASpQooXCOevXqKZ3ve5CcnEyVKlWIjY3Fy8tLyKqK2bXYOi/793zkyBGSk5NFSx9dXV1p0qSJoEcHWcEqe3t76tSpg7m5Obt27fpHHKq//vrrux2qzp07/9Lj0e+OvDhUeWL5W79+PUePHgWyqGmLFClC3bp1uXnzJtu3b6dTp06cP38eR0dHqlevjq+vL1FRUZiZmVG3bl3+/PNPbt68yejRo1FXVyc4OBgtLS1SU1Np164drq6uKhdk8uzJtzRUsuPy5cuCUKTSg6ur06ZNG3x9fbGxsWHEiBE0btw435mVmjVrsm3bNu7fv680aZw4cQITExNRoTlvb2/at2+v0ChuY2PD4sWLmTx5MhUqVFCI3uQHmZmZXLlyhVu3bqGmpkaDBg0wMTHh+PHjLFmyRJiENDU1cXJywsrKihUrVjB79uw8Xad27do0a9aMnTt3oqmpiYWFBV++fBGY8ooVK0a9evVo2bLl3yKmaWxsTJUqVbh79y41atT4JnvLmzdvCA4OBrIyWdkdqrS0NNEB6vr16zRu3JibN2/y4cMHgSZ27ty5QhlFSkpKnpjM/mns3btXyKK0bNmS2rVr4+DgwMmTJ5k+fTpjxowhISEBS0tLqlatysWLF3nx4gUFCxakatWqHD58mDt37tC/f39KlCjB5cuX0dbWJjk5mUaNGjF69Ogc7apChQosXLgw1/d75MgRpk+frnK/PGtWvXp1PD09sbW1zbfsgKmpKYUKFeL48eNKGj4PHjzg6dOnSjpNAH5+fhQuXFiBwrd48eJMnTqVdevWcfLkSdFAT17x8OFDzp07R3p6OtWrV6dGjRqsXLlSQbRbIpFQt25drKys8PDwYMmSJbmmWYYsSvzBgwezatUqgoKCBAdKXklgampKrVq1aNWqVZ6YvnILY2NjRo0axYwZM3jx4oWoRlp2vH37lnPnzpGcnEylSpWws7MT3r83b96Iak89efKE6tWrY2ZmRlhYmHCNHj16EB4ezsSJE3n+/LnKaohfEfKSvGfPntG8eXOaNGlCz549OXz4MN26dWPRokWYmZlRtGhRChUqRHh4ODdu3KBAgQKULVuWR48eceHCBdzc3Khfvz4XLlxAXV2d1NRUKlSogLu7e452XbRoUdFSWFU4duyYaOWAHDNnzuTBgwe0adOGsWPH0rJly3wL+qqrq+Po6MiaNWsYNmyYwnO8e/cOX19flixZonRccHAwjx8/Ztq0acIxhQoVok+fPty+fZv169czbNiwfN1TdoSGhgqVDqVLl6ZZs2YsXryYadOmKWRrKlasyKxZs5g6dSoVK1bMU5+jtrY248ePZ+zYsdy7dw9TU1P09PQ4fvw4mZmZAhtey5YtFSQGfhS0tbWZOnUq/fv3F5gnc0JcXBxBQUHExsZibW0tOJWAyn64xMRE9PX1qVSpEufPnxe216lTB19fX1q2bEnJkiV5+PDhPyIE/J8O1b8LeXKo/Pz8aN++vVDLq6WlRcuWLZk+fTpt27YFoEWLFqxatYrNmzdjZ2dHYmIi+/fvF9iGXr58SUBAAObm5gQFBQkU5Vu3bqV79+5kZmbmabLPCRKJJEcaVQsLC/bv38/q1auZPHkybdu2ZcqUKfm+lqenJ/PmzUNTU5OGDRvy5csXzp49i5mZmUIfmRxJSUmEhYXh6uqqtE8qleLq6srevXvzfU+AIH4sp5RPT0/n1KlTXLx4kdGjR4suNC0tLdHV1SUyMjLPDavu7u4MGjQIY2Nj4bt///49T58+5d69e5w4cYJ9+/ZRr1499u3bR9GiRfP9bGKQP09qaqrK9yglJYVly5ZhZGQkZLKCgoIICAhg2rRp6OvrI5PJSE1NVZqwJRKJ0K+TvU8hPT2ds2fPIpFIeP369U8Vhv5erF+/HkdHR0xNTdmxYwf+/v40adKEDRs2MGDAAKRSKUZGRvj5+bFw4UIqVqyIgYEBBw8eFIQrtbW1OXLkCLdu3eLcuXMYGxsjk8k4fvw4Li4upKWlCSV434u0tDSVpWqQlaXw9PTkzp07jB49mkqVKrF69ep8a8uNGzcOLy8vgoKCaNq0qVDWmpqaypw5c0QXlQEBAcyaNUv0fH369GHixInf5VAlJiYyc+ZMihQpgr29PRoaGly+fJmVK1fSrFkz0VIjfX197OzsuH79ep6jzX379sXOzg5jY2PBruLi4nj27BnBwcGcPXuWY8eOUa5cOfbt26ey1Da/kP/eOWkEZWRksGDBAhISEnByckJXV5fr16+zZcsWPDw8KF68OMbGxrx9+1aphEgqlZKZmcnbt28VglsymUwIIsbExIhS/P+qWLBgAfXr16dFixZs3ryZU6dOYWtry6xZsxg5cqQQGff392f69OlCaejGjRuFcbFevXosWrSIzZs3c/DgQaEU9NatW/Tp04cCBQqwZs2aH3K/37JrbW1tOnXqRKFChZg9ezY7duxg/fr1+V4Id+7cme3btzNs2DCaNWsmVKu8fv0aDw8PURvat28ff/zxh6jN29vb89dff5Gampo7nTURyHWTkpOThYqV4OBghgwZQqFChURL39TU1OjUqRPHjx8XzajlhPr167N3714MDAyEe5azuQYHB3Px4kUmTpxI4cKF2bJlyw8PKMiZT3MSNgbYtm0bt27donXr1pQsWZJHjx4xZMgQhg8fTo0aNShUqBBv375VyjzL+4LfvXun5Gz6+/sDWePYtm3buHnz5g99ttzgP4fq10fDr6Q5ckKeWP5GjhxJZGQkR48epX///nz48IGDBw8KzhRkvcDDhg3jxo0bfP78mcOHDytQCmdkZFCqVCns7e0JCAgAsjIjAwcOJDw8XMkgvgdlypRR2Rslk8m4desWTZo04dChQwwbNgx/f3/ev3+f7+sZGBiwYMECBg0aRFJSEpBFYzxu3DjRxf2bN28Uapq/RqlSpb6LuSw9PZ1Zs2bh4eHBgAEDKFu2LDY2NowcORJDQ0OOHTum8tiKFSvmyEqoCurq6piYmCg4smZmZtjb2zN27Fj279+Ph4cHT548oVSpUjRo0AB3d3eCgoK+myUvMjKSu3fvUqJEiRwN4PTp07Rt25YBAwZQqVIlKlWqxIABA+jduzdz5swBskoC5SVt2VG/fn2OHj1KZmamUF4kk8kEZkmZTMazZ89yrYfyK2Dy5MmoqamxZ88emjVrxtu3bwkKCmLQoEEKz+Hs7MylS5fQ09PjwIEDgjMFWZO6RCJh2rRpbNiwAcgaC1q1akXp0qWRSqX5dmi+RqNGjXJ8d48fP06LFi1Ys2YNx44d4/79+9y+fTvf19PQ0GD8+PFCtvvLly8MGDAAT09P0UVXWloaurq6KhdVurq63/1+zJs3jx49ejBmzBhBEL1v377UqFGDixcvKpULyVGpUiVR0eZvQSKRYGZmpjCOGRoa0qBBA/744w/27NnDsmXLSE1NFTJlf/zxB/v37/9ugdNXr16xdOlSypYtK0obLcfGjRupWrUqc+fOpUGDBtSoUUNgPZwxYwbJyck4OzuLCstWqFCBmzdvcuvWLYWy1Llz51KgQAG0tbV59+6dwEL3O2Dy5MmUKFGCHTt2YGVlxcuXL7l58yaTJk1SKDOqXbs2J06coH79+ixcuFCBUVZXV5fo6Gh8fHxYtGiRsN3W1pb+/ftz//79HMWk84Jv2fXRo0dp1qwZkydPFphwxcbovKB3794sWbIEAwMDPn/+jJOTEytWrFAZ6IuPj1cZZJRIJJQuXfq73pGNGzdSoUIFZs6cSY0aNShVqhQdOnTAxcWF8PBwoqOjRY+rWLGiArNnXmBiYqIwVunq6lKrVi0GDhzI5s2b2bx5M8WKFcPJyYny5cvTr18/Nm3a9E0n6FsICwvD09MTfX19mjVrpvJzgYGBxMXF4eXlhYODA9WqVaNHjx6sWrWK9evXEx4ejqOjI4cOHVJyMHR1dUlKSuLAgQO0aNFC2H7gwAEeP35MoUKFiImJ4fbt26J9sH83/mP5+2eRmZnJs2fPuHjxIufPn1f4k+PYsWMqyea+Rp5SQQsWLMDGxoYJEybg4uIiqr0ix507d7C1tVXos4mPj0dDQ4Pu3bsLrELm5ua8fPmSLVu20LNnT06ePJmXW8oRw4YNY+zYsfj6+iotbrZu3UqjRo2EiFi7du34888/mTRpEu3bt8fa2poDBw4IEVE9PT26dOmSq8irpaUllpaWov0O2aGtrZ0jhfu3jv8W5MKDYhNA0aJFSU9PJzQ0VGFhLEdsbOwPmyizQ0NDA3t7e2rVqsWrV6+4evUq+/btY+nSpZQqVYqWLVtSoEABdHR00NPTw8TEhCJFitC0aVOVGaeQkBAmTpzI+fPnKVy4MLVq1VJZivL+/Xv09fVFyygrVaqEubk5T548oXXr1owfP56iRYsqRPOlUin37t3Dzc1N2Hbnzh0sLS2ZMmUKw4YNo2HDhirZoX5FzJ07l2LFitG3b1969+6tJLSZHYmJiSQmJgqljnJcu3aNtWvXMmXKFKKiomjevDnv379n27ZtWFpaCpHCH0FW0rVrV1q3bk3r1q2VotNXrlwBEMhhHB0dKVq0qEAaU6dOHQ4dOkRERATq6upIJBKcnZ1z1c9XqFAhWrdu/U27VFNT+ybVtiqHJzcIDQ1FQ0OD6tWrK+0rXLgwaWlpXLx4UZQgJC4u7m8hlpBKpdSsWZMNGzbw5s0bLl68yJkzZ1i7di2mpqa0b9+eggULoqOjg66uLoUKFcLc3JwmTZqovJ/o6GjmzZvHihUrKF68OFOmTFHplH/+/JmwsDDRRZGFhQVt2rQhICBA6NH19fWlY8eOgmObkpJCbGwsVapUEbZ9/PiRu3fvsmXLFlxcXGjZsiVr1679Qd/Y34/58+djbGxMq1at6NOnzzd7AC5cuKBUDbFz5058fX2ZPHkyoaGhXLhwgczMTKGX2c7OLl+VDGKoWbMms2fP5tGjR0rELaGhoZw8eRJ3d3cgK1hat25dtm/fTnx8PPb29pw9e5aHDx+ioaFBeno6TZs2xdnZ+ZsVL7q6ujg4OOTK8c/IyMgx8Pf58+d8lyEmJydz79490YqVQoUKUbVqVfz8/Bg0aJDSfjlt+N+BsmXL4uXlxfv37wkKCuLq1ats376dkSNH0r59e0HKRkdHh4IFC2Jubk7dunWV+sXlSEhIYP369UyfPh0tLS2mTp2qslRRJpMRGBjIunXrlOYOXV1dhg0bxu7duxk/fjy1atVi+fLlDB8+XFjvpaamoq2trVBRkpGRwerVqzl8+DA9evTAzs6Ov/766x8p583MzPyuQPLvKtXyK+Dq1av06NGDN2/eKDmmEolElADqW8iTQ3Xz5s1cK0xHR0crRXnev3+PtbU1Xbt2FVhx/P39KVKkCLt27cLIyChXEaekpCSuXr1KZmYmtWvXVtmMV7p0adzc3GjVqhVubm7UqVOHqKgoQQg4++TYokULDh8+jJeXFwsXLkRfX59Tp04JRvz+/Xu8vb15//69Ui8FiDP3iJXTZV9oWVhYCNHirxcKSUlJBAUFUbNmTSHbpaoPRJVRXbt2je7du/P+/Xv279/Pw4cPkUqlFC1alKpVq3L37l2uXbum5H0nJiZy8+ZNOnbsSHJyspD+l0ql1KpVS/hdxRaFqn6Lr19O+YJKrtFz7949Dh06xJEjR0hJSSElJYXk5GTh2ffs2SPQm0IWq+LFixe5c+cOYWFhGBoa0q1bN6pVq6Yw8H59P/LshZizmJGRQZMmTbh06RJlypQRGqR9fHywsLAgNjYWDQ0NAgICWLFiBStWrKBz584cOHAAiUTCH3/8gYeHB8bGxtSsWZP27duLfhe/Gs6dO0fDhg1z5ezEx8eLapRpaWlRr149Tp48Sd26dfH398fQ0JDFixdTrFgxunTpQkpKiqiwtRzp6elcvXqVpKQkqlSponJC1tXVxdvbm06dOtG9e3ecnJxITExk9+7d3Lt3T0HPTt7rs3DhQjZu3MjGjRvZunWroCuVkJDAli1bePbsmWjvg5jOjtgC7WsHSl9fn5iYGKVnSEpKIiQkBFNTU+HdBvEGclV2fePGDRo2bMjnz5/x9/fnypUrSCQSDA0Nady4MXfv3uXq1atK/abJycmcOHGCIUOGkJycTFRUFDdu3CAtLY2KFStSrlw54R0Qs20xx+fre9TR0aFq1apUrVqVYcOGCTphp0+fJjk5WbBteaBq6tSpzJ07Vzje19eXgIAArly5wqNHj9DU1KR///507NhRlKhIjuDgYGrVqiXqyGZmZtKoUSPmzZuHo6MjEydOZNeuXQwePJhixYqRmJjIly9fWL9+PSdPnmTu3Ln06NGDCxcukJSURKtWrZgwYQKlSpXC1tb2t+mjOnnyJE2aNMl1Cb2mpqbSe/j582dsbW0JCAjAycmJo0ePYmRkxIgRI7CxsWHOnDmEh4fn6FDJdSA/fPhA6dKlFXpVv8aGDRvo06cPTZo0oVOnTqipqXH48GEOHz6Mj4+Pwhy4fft2PD092bt3Lzt27GD69OkMHToUiURCamoqhw8fZtasWXh6eirNndltT47c2HWVKlU4d+6cqIj4hw8feP/+PXp6eoJOXm7tWiaT8eTJE6pUqUJqaionT54kKCiIjIwMtLS0cHBwICwsjHfv3indU2JiIocPH6ZevXokJiYSHx/P1atXhcBX9erVhfsQWySKOYBizmWRIkXo3bs3vXv35v379/j7+3Pu3DmSkpJITU0lOTmZhIQEMjMzcXZ25tChQ8Kxx44dE+z67t27pKen06FDB3r16qXkCGa363fv3lGsWDEyMjKU7j0jI4MyZcqwcuVKkpOT6dq1KwEBAQwdOlQgk4qKimL06NF8+fKFyZMn07NnT+Lj40lNTaVp06b07duXevXq0bx5c3bu3MmKFSuUnvvvxH8lf/8c3NzcqFmzJkePHsXCwuKHBHvz5FDlhRyhbNmy7N69W2GbqakpoaGhQBbdcOPGjRX6KsQGuezIzMxk9uzZXL9+nWbNmqGmpsaKFSuoUKGCEruOHK1ataJ+/frs2LGDefPmUbBgQYYNGybUgqempvLs2TPKlClD9erV2bFjB61bt+bWrVtcuHBBYIMzMzNj5syZjBo1ioYNG/6QKK9ceHLx4sVMmDBBYUB/8+YNfn5+LFiwIN/nl0qlvHz5kr179zJgwAAGDx6MRCLh6dOn/Pnnn7x+/VpJryQ9PZ3Vq1fj4OBAYmIiXl5emJiYULduXTIyMti7dy/p6emMHDnyh5VwSSQSqlWrRrVq1ZQc04cPH/LHH38o0dGvXLmSsLAwypcvL1Dz5qZc81tZEjU1NWHC09XVZdSoUaSlpfHp0yf09PTQ09OjevXqbNmyhefPn3Ps2DHCwsIYPny4QsYgJ/bJXw1fO6E5wcTERIjoZD8mJSWFzMxMkpOTKVasmFK/1KdPn3Lsj9i8eTM7d+6kSZMmGBoasmnTJrS0tFixYoUoc1vlypUJCAjA19eXRYsWoampSYcOHZg9e7aQDXvw4AGlS5fG0tKStWvXCr18AQEBgkNVoEABhg8fzuzZs3n27NkPow/u06cPS5YsYebMmQpjRVxcHCtWrBAi7fmBRCIhLi4Od3d3XFxcBJKJyMhINm3aRHR0NAkJCQq/kZyCvHDhwhgYGODt7U1ycjKNGzdGW1ub8+fPs3PnTkaPHq2SGTM/KFWqFOPGjVPK6iUmJtKiRQslu163bh1BQUFYWloyfvx47OzscsWCJZPJciyjlEqlwuJDTU2N3r1706NHDz59+oSmpiYGBgbY2trSpEkToqKiOHjwII8fP6Zy5cp07dpVOHdOAYFfDbVr185TP7JMJiMxMVFhgaurq0tMTAzGxsZkZmYyd+5chXO+fPkyx3KYoKAgFixYgK2tLcWLF8fX15cPHz6wbNky0YyZubk5x48fJzAwkFWrVpGRkYG9vT2BgYHCdZ89e4a5uTkGBgbMnj2blJQU7t69y5EjRwStSk1NTTp16kRqaionTpwQ2N2+Fx06dGDy5MkUK1ZM4bnT0tJYuHAh3bp1y/e5pVIp6enpTJ48mVq1ajF79mx0dXWJjY3lr7/+IiMjg/DwcDIyMhQcxJs3b/LmzRu6d+/Ovn37ePbsGY0bN8bCwoInT56wf/9+Bg0alCuWstzCzMyMgQMH0qdPH4XtGRkZDBw4UKmCwc/Pjw0bNmBoaMiQIUOoV68eRYsWFQ1EZ0dmZuY3y6Ozz0OOjo44ODjw6dMnIGselouZd+nShQMHDnDz5k3MzMwYP368kMlSU1OjY8eO/zlU/0N4/vw5vr6+wlrgR+DHsD+IwMrKivj4eF69eiUYsqGhIbq6ujx//pyFCxcqMfBt3bo1R8Xv8ePHU758eYU66zFjxgiNovLeja9haGioknlnw4YNDB8+XOG+p02bxrZt2xg/fjxdu3bF1dWVAgUKoK6ujrOzM4GBgXTs2DHX30VOaNy4MampqYwbN46qVatSsGBBHj16xJcvX5gxY8Z3pfHt7OxYtGgRW7ZswcjISDC+cuXKsXDhQtq0aUN0dDQTJkzAxsaGxMREnj59ioODA40aNWL69On07duX0qVLC4NW7dq1uX37Nt7e3kydOvWHfAc5QR4p/3phMHLkSLy8vIiOjqZOnTq57kkpX748wcHBKrNH58+fV6JU19DQEC2DK1OmDKNGjSI2NjZf6eHfERoaGtSoUYPAwECFSH2TJk04evQoDx8+pEePHgrHXLx4kSpVqqh02jZv3kxwcDCBgYHC7zhixAiuX79Ot27d8Pf3F3XetbS06Nmzp2gj9oULFxTK+LS0tHB1daVixYqsXr2a8PBwgYobsjSIDh48+MPq6EuVKkX//v3x8PCgVKlSFCtWjNevXxMeHs4ff/zxXeW0devWZfDgwXh5eVGqVCnBrosUKcLUqVPp3bs3urq6jB49WmDdu3//PlWrVqV///6sXbuWGjVqKOjmVK9enbCwMBYtWsS8efN+WLBEFdLT05HJZEp2PXz4cGJjY7l3755AgvGtRRdklesuX75cgVUxO86dO6fQGwRZiygxQgNzc3Pc3NwwMzPj6tWrv1U/5PdAXoqf3dnv1asX69ato1q1atSpU0fh93r37h2xsbEqGU0vX74slFZlz4KEhYXRt29f9uzZIzquSqVSnJycRAXi379/r8Ty2LhxY9zc3Bg6dCiDBw9mwoQJQmCkffv2eHh4/DCHytDQEA8PD5YuXYqRkRFly5YlOjqaBw8e0K1bN9HMVW5RtmxZpk6dyogRI7C3txe2GxkZMXjwYN6+fUtqaipjx46lfPny6OjoCOx07u7uBAQEkJmZKTArSv5P2N7JyYmFCxfi7u6e73LE3EJe7vy1XXfq1Enovy9btmyuyagKFy5MaGiokhMpx7Nnz5TGUolEIlpCWKBAAfr06UPdunWZPHlyvolDfiT+c6j+OdSpU4cXL178UIfqb50pvLy8GDRoEMeOHROi/kOHDqVx48YUKVJEIKCQ12SfPHlSaTEmR0REBJGRkQwePFhpn3wSffr0aZ7vUT5Zuru7Y2Vlha6uLjY2Npw8eRJPT08OHDjAoEGDhBe3ZMmSREZG5vk6OaFp06YsW7aMWrVqYW5uzoABA5g7d+5303jKB7WPHz8q7btx4wYlS5akatWqzJgxg5o1a+Lo6IiXlxeNGzcWovtiL1uNGjVQU1MjIiLiu+4vN6hYsSKGhoYCI48cxYsXZ/DgwURHR/P8+fNcn8/a2prIyEjRBt4XL17w6tUrBVHT3GDgwIHs2LHjf6ae2cPDA29vbzZv3iwsdnv37s2YMWO4cOGCQH0sk8m4cOECM2bMUMlUmZaWxs6dO1m6dKnSwrV27dq0bNlSSeg7N5Cfq3Xr1jRq1IhChQpRqVIlVq5cyfbt27l9+zbdu3cXGqtLliz5wwkHKlasyLJly3B0dMTc3BxnZ2eBXOF7oK6ujlQq5d27d0r7Xr9+jba2NiYmJixevJh69epRv359lixZQqdOnfj06ROfPn2iQYMGSscWL16cWrVqiQqm/mgYGhoKpaHZYWxszPTp05HJZAqNwbk5X6FChbhw4YLSvo8fP+Ln5ye6QM8Jbdu25fTp00L51r8d3bt358mTJ3h6egqisvb29hw5coTJkyczYcIE4bPPnj2jV69ezJs3T+X5Fi5ciI+Pj9Iivnjx4nh4eOSLHVBu12XKlKFr166oq6tTrlw53NzcCAoKIi4ujt69ewtrge/R+FEFCwsL5s+fT8+ePSlcuDB2dnYsX778u3Wa1NTUVNp1bGws4eHh6OrqClpqNWvWZObMmQwePBg1NTUuXrwoGlAwMDCgc+fOnDhx4rvuL7do2bIl/v7+Cot9OUW7nN05t5BKpTRq1IidO3cq7UtJSWHt2rUqgyiqULZsWWJiYn74Oi4/kPdQfc/ff8gfRowYwbhx49iyZQu3bt0iODhY4S8/+NsyVICQ4t+wYQOrVq1CTU0NIyMjVq1axalTp3BwcEBfX5+4uDiaN2/Onj17VEZG/fz8VDpbkFVi89dff+VJ9wKyInBbt24VNCfatWvHq1evsLOzY+LEiUgkEiZOnEhISAglS5YkIiLib9ErUFNT++EaLm/evMHNzY2VK1dSokQJGjRoQGpqKqdOnSIjI4OJEyeye/du9PT0lJyI69eviza1y9GwYUOuX79Ohw4dfug9fw11dXVcXFxYs2YNI0aMUChHKlu2LAULFuTq1avf1KaRQyKR0Lt3b9atW0eZMmWELMa5c+d4/vy5QB+cFxQrVgwHBwemTJnCkCFDsLa2/ldnrPT09Ni/fz87duwQnCdNTU3mzJnDgwcPcHBwwMjIiNjYWKpVq8a+fftUlpFduXJFoCIXQ58+fRg6dGiOmWsx1K9fn27durFnzx4AmjVrxqtXr5BIJPTq1QtdXV1cXFy4evUqDg4ORERE/NBSNzkkEgllypT5bi257AgLC8PZ2ZlTp04RFBRE8+bN0dTU5OLFi7x+/ZoFCxYwd+5cNDU1FZr7v3z5wt27d3PUlGnUqBG7du364aLbYujatSvjx4/n3r17Cux9RkZGVK9enXPnzuWpD3HIkCF4e3sLv6menh43btzg8uXLTJw4Mc/ReQ0NDYYPH86ECRNwdXWlSpUq/+qIsFQqZcOGDRw8eJCBAwcKfTQDBgwgPj4eFxcXDAwMSExMpFixYqxbt05ldPfjx4/o6uqqLH1u0qSJAmtgbmFiYsLs2bOZMWMGz58/V2DCbdasGbt27cLe3p7Tp09TtmxZUlNT/7ZFZ7FixX4ocVNiYiKVKlUiPj6eiRMn4uTkhJGREffu3ePatWtMmDCBVatWIZVKFcaTlJQUQkNDKVOmjMpxtEqVKvj5+f2we80JXbt2ZcOGDezbt0+h71kikdC4cWNOnTrFqFGjcq0N2KZNG3bs2IGHhwdt2rTBxMSEJ0+ecOLECfr166dUXpgbjB8/nhkzZtCrVy/q16+PmpoaYWFheT7P9+K/DNU/B/maYsCAAcK27ORZfzspRX5gbGzMxIkTlUppOnbsKGj95NRbIUdCQoJoL4UcBQsWzFckUV9fn0uXLtGvXz927NjBoUOHePHiBd27d0cqlVKjRg0MDAzo2rUr1atXJykp6Yfpbvzd0NfXJzU1leXLl/PgwQNu376Nuro6ffv2xdLSkgcPHqgkkZDJZDkOeFKp9Kc5DfJM4ZgxY9i2bZvCPcjJNfr27Zvr8+nr67No0SLu3bvHuXPngKxsiLyhOT9o1aoVZcqUYdeuXXz48OG7qaJ/dWhrazNo0CBRxim5XWtqan7z+0xISMix38zQ0PCbvZVikEgk7N69mypVqjBlyhROnz7N8+fPmTp1Kvr6+lhaWlKyZEmmTJnCli1b0NPTE9WK+xUhD0LNmDGD0NBQgSa9efPmVKxYkYSEBJWBqW/p/GXvIfy78ccff+Dj48PAgQO5evWqwn3VrVuXNWvW5KrcTw5NTU2mT5/Oq1evOHv2LCkpKdjY2LBq1ap8axtWqVKFadOmsX//fnx8fL6LnfF3gEQioWPHjqIl7ePGjSMlJQUNDY1vlkEmJibmOF9LJJJ8/yYeHh5Uq1YNZ2dnXr58SXx8vMAMqKGhQYMGDfDx8eHEiRNYWVnRsGHDfF3nZ0NbW5vPnz8ze/ZsYmJiOHv2LOHh4ZQrV44+ffogkUhUMox+q4dQIpH8kKb73MDe3h4XFxdGjBhB8+bNFQJVdevWZd++fbkS6JZDIpEwZMgQ3r9/z8mTJ7l16xYlSpTAy8sr3z2NFhYWLFmyBD8/P3x9fZFKpSrXQn8n/nOo/jmEhIT88HP+7Q5VTpBIJLlypiBL90LORiaGs2fP5pqB8GuoqamxceNGtLS08PHx4eHDh7i6urJ06VKaN29OSEgIe/bsYfLkyejq6mJgYJArZ0Js8BObkL+u7Zc/z9dQRVMvxmylpqaGnZ0d06ZNo2XLlpQvX15J48vPz49evXop1RI7ODiQmZnJ3bt3BQrXixcvKnzm5s2bdOnSRWkQUuVIiEWHxb4fsbrmkJAQhg0bhqenJx8/fmTEiBGYmZnx5csX7t27R61atTAzMxOt5VdFx/r582dq1aqlUPMu5kCK/V5iJVFSqZSSJUsyadIkIMtRyElb49+MvNh11apV2blzJ3/88Yfo/gsXLojSg+cWkyZNEnSkwsLCaNu2Lbt27aJmzZrcv38ff39/Jk6cyPPnzylTpozS7y22CBF7b8W22dnZKW1TJQvxNTkMqGYOtbS05Pnz53z+/BkLCwu6d++u8JkjR47g5OSkZEuOjo6UL18eDw8Pof/t6xK5mzdvUqtWLdHFsNj9iC1oxMZGMdsKDg7G3d2dAQMGUL9+fSZPnoyJiQkymYyzZ89SunRpdHR0VPY6iDnicXFxShlBsYW72D3euHFD9DpmZmYMHToU+N+2ayDXdi1nsFVFAvTu3bvv6g9u27Yt+/fvx8XFhQ8fPtClSxf27NmDra0tR48e5cyZM3h4eHDp0iVcXV1zZddic5cqB/prBk1AtKQut3Yk1/HT19fn9evXFCtWTCkrf/PmTapUqaL0G7Rp04bU1FSOHDlC69athWeTBwshi9ypdOnSovcjtn4QW2uI2YyYbd64cYOBAwdy8uRJ6tSpw9SpUwV7PHfuHAYGBhQvXhypVCo67onN2bGxsVhYWCiQYOTWrq9fv660TSKRoKenp9CDm5CQIIh4/4d/P/KT2fwWfptu22bNmnH27FnR+uJPnz7h6+tLu3bt8n1+LS0tNm7cyKNHj3j+/DmdOnWiV69edOjQgcGDBwvNlBYWFr9NVEBPT4969eqxatUqhYlBJpNx4MABNDU1sba2Fj3WwcGBoKAgUXHfp0+fEhMT80PLmL6FVq1aMXHiRM6dO0f37t3x8/Njzpw5fP78mX79+v20+/gPPxZFixZFIpGICu+mp6ezaNEi0b7J3EIikeDu7s7r16+5d+8ey5YtY+zYsbRp04b+/fuzYcMGypcvj4GBwW+TfZCXLc6ePVspe3ft2jWuXbumsly3RIkSSKVShcWWHNHR0Zw+ffqnlPvJUbFiRby8vAgLC6Nbt25s27aNpUuX8uDBA1xdXX9aVP0//Fioq6vTuHFjoeQ2O2QyGZ6engwZMuS7rtGxY0eB+v/w4cOsXLkSJycnevfuzYIFCwTig79Ln+nvQP/+/Vm4cCEfPnxQ2B4SEoKPj49KFkFNTU2aNm0qSsyVnJzMtm3bvmt9lFeYmJiwdu1aNDQ0GDhwICtWrGDLli0cOXKEnj17/i1aeL8j/hP2/Wfx8uVLIZPaokULRo4cmW+BbACJLBe/SHx8PIaGhsTFxf0jaVE5nj59ipubG25ubnTo0AGpVMqRI0fw9vZm6dKlopHshw8fEhERgaWlJeXLl8/zNZOTk5HJZKSnp7Nt2zaGDx/O0KFDad++vUIqWywyIlY683dkqMR+wuwR4ePHj3P06FFKlSqFhoYGT58+pU6dOvTu3Vs0cizP9IWFhTFw4ECaNm1K0aJFycjI4OzZs7x48YKpU6cSGxuLn58f7969w8TEBGdnZwUtm+wQi2yKRfVVaXTIER0dzbJlyzh79iwWFhb079+f5s2bq7xGThmqr5HbDJXY9/11uYU8kv1P20xO+FXs+uPHj3Tr1o127drRu3dv9PX1uXDhAgsXLmTw4MGifTRv3rzh6dOnGBsbY2trm+eFd1pamlCW6O/vT69evWjevDmDBg2iSJEiwvlya9d/R4bqW3Z969YtduzYgbm5OYaGhrx8+ZLixYszbNgw0Yyw3K4TEhLo378/JUqUoHz58mhpaXHt2jUuX76Mu7s7ampqBAQE8PLlS/T09GjZsiX16tXLdUY5t6XA2X+zpKQk1q1bx549ezAwMKBLly707t0biUSisnxRVYbqa+Q2kp2bxcl/dp17pKWl0bdvX8qWLcuQIUMoXLgwDx8+ZPHixVSsWFGB5EKO6Oho7t69i7a2NnXq1Mkz22RGRgZfvnxBT0+Pixcv0rNnT4Eiu2TJkjnqMYlt+zsyVN+y69evX7N+/Xo0NTUFljttbW2hMuNryO06MzOT0aNH8/nzZ/r378+bN2949OgRAQEB9OnTB2tra06fPs29e/dQV1enUaNGtGjRQvT5xObS3NpMdrtOT09n7969gjCvk5MTw4cPF84v9vuqylB9jdzatdh4LTZf/Ezbltuoj4/PdxGnJCUlMXDgwH/c1n9HyIXeq1WrRv369ZHJZFy+fJl79+7h7++v0jZywm/lUMnvZceOHQQGBiKTyWjSpAn9+vVTmlxv3brFtGnThPKPp0+fEhISwvz586lSpUqerzty5EhWrlwpNK1B1mBZpkwZBg8erNBULcev4lDJPxMZGUl6ejqWlpbCYCQ2sGQvnczMzCQwMJDt27cjlUqxs7OjUqVKbNy4kcTERHr06IGVlRURERHs3buX5ORk3N3dlc77oxwqOd68eYOJiYnwnHFxcZw/f54PHz5gbm5O8+bNMTAwyNGhSk9P59GjR6SkpFCmTBlRUoL09HQyMzN59eoVsbGxJCUlCWUsampqGBsbU6hQIQoVKiR8p6mpqYSFhdG9e/dfwmZU4Vey69TUVA4ePIivry8pKSlUrVoVV1dXpTJOOd25vr4+NWrUIDIykhs3bjBu3DhRwe1vYePGjUoZMF1dXUqVKkXXrl1p3ry50rv8qzhUckRHR5OYmEiRIkUER+pbdg1ZpTkrV64kPT2dSpUqYWdnR1BQEOfOnWPQoEFUrlyZ2NhYDh06xL1795g5c6ZSid+PcqjkCA8PR19fXxgvkpOTOX/+PK9fv8bAwIAWLVoIYsmqHCqZTMbz58+JjY3F0tJSpYg3QGhoqKDbJde8kUgkGBkZYWJiQqFChYRFX3p6OuHh4XTp0uWXsBlV+JXsOjMzk9OnT7N161ZiY2OxsrLC1dVViYApISGBsWPH8vHjRxo2bEhCQgJnzpyhc+fO+cpkXbt2TYl8RVNTkxIlStCyZUuBITA7fhWHSo74+Hg+fvyImZmZ8Dvmxq5fvHjBnj17uH//PtbW1jRt2pRnz56xZcsW+vTpg52dHWlpaQQEBHDixAmmTZumJNb+oxwqOT58+IBUKhUyU+np6Vy5coWnT5+iqalJ48aNBYKTnByq0NBQ3r17h6mpqWiFjPweo6KiePfuHZ8/fyYtLQ2JRCJc38TEBFNTU2Esy8zMJDY2lvv37zN+/Pif6lBt2LDhux2qwYMH/xK2/ruhevXqODo6Kmm9Tpo0icDAQNGqmW/ht3OocoMnT54watQo9uzZozDpRkdH0717d9atW5ejWrsY1q1bJ9TRQ1ZPkDx7BeDk5ETfvn25e/culy5dArL6C9q0aUPt2rWFQeafcqhUbcvNAA2KPVTyLNXIkSOVPrd161Z0dXWVygty41BdunQJPz8/0tPTycjIwNTUlJ49e4rWumavQ/f39+fKlSu0a9eOYsWKERoair+/P82aNaN3795KxwLs2rWL48ePU61aNfT09AgODsbIyIixY8cqDHCxsbFMmzaNK1euiJ5HDqlUSsGCBUlLSxOouIFf2mZ+N7uOjY2lY8eOrF+/XoFdLCUlhT59+uDq6qqg35IbZBfvhqxFV0ZGhjAx29raMmzYMN69e0dgYCDp6elIpVKaNWuGvb29sCj7Jx0qsUhtbu06ew9VSEgIW7ZsYcaMGUr3c/XqVU6fPs3YsWMVtufGoXr06BF79uwhPj4eiUSCtrY2Xbp0oUaNGkrHZrfrmzdvsn37dlq1aoWNjQ0fPnwQVO3d3NxEF14nT55k27ZtlC1bFlNTU54+fUpKSgru7u6C5hhkvTNeXl7s3btX6Rxfw9DQEDU1NT59+iT8Jr+yzfxudp2ZmUn79u1xd3dXsEWZTMbUqVMpUqSIglZkbhAeHq4QjJFKpairqwt9UiVKlGDkyJHo6Ohw6NAhEhMTyczMpG7durRq1UqYA/5Jh+p77Br+fw9VUlISU6ZMYf78+UoZrrCwMJYsWaLEuJgbhyoiIoIdO3YQERGBuro6MpmM1q1bY29vr3Sf2fu0Xr9+zfLly7Gzs8POzo4vX74QEBBAQkICkydPFhWKvn37NitXrsTMzAwrKyvCw8OJiIjgjz/+UGAyzcjIYN++fSxduvSb5DoFChRAW1ubT58+KTzbz3So1q9f/90Olaur629j678StLW1uX//vpJj/uzZM6pUqZInQiQ5/pUOVb9+/Zg+fbqoMvjjx49ZsWIF69aty9M5MzMzmTBhAkePHuXJkyeCOO7bt28ZOnQompqapKamUr16dSZOnIilpSVRUVHs27cPmUzGkCFDkEgkorXDYuyEYtpRqsqaxCK1YoOxWBmQ2DaxFyn7gnHs2LHMmTNHYYEix6dPnxgzZgyrVq0SvdfsyP5dbN68mXfv3tG/f3/hHQsNDWXp0qX07dtXKason4AuX77M+fPnmThxosIiUC5w6OjoqCS2eODAAUJCQhg1apRCqZ58Abd48WK+fPnC2bNn2bFjB1FRUUybNg1ra2syMzOpXr06FSpUUDhn6dKlqVatGjVq1KBIkSLo6+vj4uLyS9vM72bXixcvpnz58rRt21ZpX2JiIp07d1YQ/c4tVq5cyaZNm7h79y7GxsYsW7YMU1NTgeksJSWFEiVKMGHCBKpVq0ZcXBzHjx8nODgYDw8P1NXVRe06ISFBaVtMTIzoPYjZtpjDIGbXYhOy2LZv2fWiRYvo2LEjpUuXFn2eQYMGMXv2bIV9YvedvWflzJkzHD58mJEjRwqZpZiYGFauXEn16tVp1aqVwrFyewwLC2P58uXMnz9f6XvYvHkzWlpadOrUSWH7rVu32LNnD7Nnz1bIpIWGhuLp6cmCBQvQ0dHhypUr7Nmzhzt37jB69GhhfLC1tVWaXC0sLLC1taV69epYWlpiaGj4X4bqByMgIICbN2+KCsXLZDIcHR05fPhwnhnd/P398fT05Pbt22RmZjJ//nwaNGhAx44d+fjxI6mpqRQsWJCRI0fSokULvnz5woULFzhy5AjTp0/H0NBQZRBTrGT8674nEHeUxCohcmvXYv1gX758Eb1HufN44MAB9PT0cHR0FH0fPDw8aNeuncK7L2bX2b+LZ8+esWDBAkaNGiUcl5iYyPbt20lOTlYIPsP/t+vk5GTGjBnD3LlzKVSokMJYcv78ec6dO6fECB0ZGcns2bOFY+SIjY1l6tSpjBkzBisrK+7cuYOfnx8nTpyge/fuQlC3atWqSvO1gYEBtWvXpnr16pQsWRILCwsMDAx+esnf+vXrv0ts+cuXL/85VPlE8eLFWbZsmSD9Ise+fftwd3cnNDQ0z+f8bUgpcguZTMa7d+9EnSmAChUq8Pr16zyfVyqVsmTJEh4/fszNmzfR1dWlffv2+Pj4sGTJEiHq9ODBA3r16sXMmTPR0tISHClVDFK/I+QMOWLQ0NCgQIECeaINDwsL4/79+0yaNElhULC0tGTevHmsX79eZX/D/v37GT58uNIEIJVKcXd3V4pAy0sdRo8erdT3VL16dSpVqsT48eNxcnJi9uzZvHr1CplMxqxZs+jWrRs9evSgUaNGjBs3TujdgqwyC19fXypXrkzfvn0V9v2HH4MzZ84oLcDl0NPTw8LCgvDw8Dyfd8SIEdy5c4fw8HBsbW3p168fgwcPxsvLS4jURkZGMmzYMMaOHUtsbCwuLi40aNAAX1/f73qmXwlv377NUTXexsYmT1otKSkpbNu2jYULFwrOFGQtKKdPn05gYKBCNjc7fH19cXV1FY2U9+3bl9OnTytFzLdu3cr06dOVFt7FihWjZ8+ezJgxA0dHR9zd3bl58yYymYx169bRrVs3unXrRtWqVfnjjz8UhELfvn3LkSNH0NHRYdCgQQI74n/4cdi3b59K2QuJREKrVq04c+ZMns/btm1brl69Snx8PN26dWPq1Kk0b94cDw8P4X1MSEhg1qxZDB48mMePH9O0aVPc3NzyHHD9lfH48eMcGZBtbW15/Phxns65ZMkSlixZouCE6enp4ebmRkJCgsrznTx5krZt24o6lY0aNeLTp09KweRt27YxduxYpWMMDAyYPHkyCxcupG3btri5uQlZwmPHjtG9e3e6detGxYoV6dmzp0LpaHx8PKdOnSI8PBw3NzfatWuXb5bo78F/pBT/HAYPHoyrqysLFy7kwoULXLx4kQULFjBkyBCB3Tqv+Edp0/8OZGZmftPjV0XDm1vY2tpy+/ZtLl68SOvWrXF3d0dTUxM9PT0SExOpWrUqgYGBlC9fno4dO9KlSxe8vb1FS/t+R3yLDS0lJSXXon0ABw8eFHQ2voaenp6gNfU16YhcKVwVY5CxsbESJeytW7eoV6+e6LWSk5O5ffu2As2qRCKhevXq1K5dGwMDAwoUKMD27dtZunQpf/75J3/99ReXLl3i8uXLZGZmKmXD/sOPg5qaWo7vlbGxcb606OQoWrQogYGBvHjxAicnJ4YOHYqGhoYgUlyyZEmuXbvGrl27cHd3p1mzZowfP14l89bvBrnOjSoigISEhFzTZkOWA9yyZUs0NTWVouhSqZR27doRGBiolGmCrKySKhIhqVRK6dKlCQ8PF8qBo6OjMTQ0FB0LMjMzuXHjhlCKLUfFihVp3LgxBQsWxMDAgAsXLrBmzRqGDx9OUlIS165d48KFC8TGxuLs7Jzr5/4PecO3tOiMjY1Fs725hba2Njt27GD58uV07dqVYcOGoaGhQcGCBfn06RMaGhqEhYWxbt06Vq9eTZkyZUhMTCQ+Pl5lhup3gra2NomJiZiYmIjuT0hIyFOWRE5+Y2xsLKoR2K1bN3bv3q2UFYKsvs3x48erPHf9+vW5c+eOQum2XLRYDNeuXVPqdbG0tMTR0REzMzP09fWJjIzE29ubxo0bk5qayt27dzl37hwRERGi1Q4/E/I1zPcc/x/yBw8PD/T19Vm6dCmTJ08GoEiRIsycOVO0nSU3+Nc5VGpqaiQmJpKSkiI6+SclJakUx8srGjRowKtXr9iyZQuTJk0SFnORkZFoaWlx9OhROnbsSMGCBfNVj/mrwsLCgpcvX4oScURFRVGgQIE8OVQREREqM4oA1tbWonT5ucHXEZykpCTR1Pjnz58ZNWoU9+7dA7K0Z5ydnXF2dlao6V6/fj3BwcF07NiRzp07Y2RkROvWrWndunW+7u8/5B7Gxsa8fv0aKysr0f3BwcE/RFuidOnS3Lt3T2iKlzdEv3//HmNjY06dOsWIESPQ0tKiQIECP2w8+adhZ2fHmTNncHBwUNqXmprKy5cvVcosiCEiIkJ0jJDD2tqahw8fiu6TR19VlTlnZmYqsQSK2XVaWhpz5swR9GUKFChAq1at6NChg8IiLSAggKNHj1K7dm3GjBmDjo4OTZo0UUk//x9+HGxtbTl//rxKUplz584JC57vgampKQEBAVy6dAlnZ2c+ffoEZAUSDAwMePToESEhIVhbW1OqVCnevn0rUK//zrC3t+fo0aMqtf7OnTvHzJkzc32+b83XxYsXFy1/hKzvOicnQMzmxQI8MpmMzZs3s2bNGiCrZLJ58+Z06NCBGjVqCOd4+PAh8+bNw8rKivnz56OhoaGkP/lP4j9h338OEomEMWPGMGbMGKGE93sDKP+6kj+Arl27snr1atF9Xl5e9OrV64ddq1ChQvTu3VtgyRk1ahQWFhakpKTw8uVLwYH7N734vXv3xsvLS5iQ5EhISGDBggUK4nu5gbm5eY6lROHh4aLRNXmjsRilKmQtgL8uTSxXrhx3795V2BYaGkrPnj0FZ6p69er4+fnh6uqq1CD75s0bypcvj6+vb45R1f/w4zF06FDmzJkjakv+/v5Ur149z30WqqCnp0ebNm2E965///7Y2try8eNHkpOTBa2KL1++iPY//I5o3bo1Bw8eVCqJTk9PZ/bs2bi4uOSJnv5bdh0WFqYyal66dGkePHggui89PZ2XL18qsPcVLlyYkJAQhXcjNjaWkSNHCs5U4cKFOXr0KOPHj1eKeEdERCCVSjl9+nSOi8X/8OPRv39/li9fLiow+/jxY+Li4nIsRc0LNDQ0aNKkCZaWlkAWmVSbNm2IjIwEEBz86Ojof01PStWqVXnz5o2SwK1MJsPHxwcbG5s86UJ9y67fvn2rcm6sW7dujuWb58+fVyq9k8lkChnu1NRU5s2bJzhTenp6HD58mDlz5ihJaMTExBAfH8+BAwdESYL+afzKJX+fPn2id+/eGBoaYmhoSO/evVWutbI/z8yZMwXG2SZNmigFzVJSUhgxYgQmJibo6enh7OysVKqfm2tLJBKlv/yW6urr6/+QbPS/YyXwFQYMGMDw4cNxd3dnxIgRlChRgpCQELy8vJBKpUyePJmYmBhOnjxJWloa9evX/65J1MzMjGLFivH27VuMjY2ZM2eO0BBpYmLCjRs3aNu2LWXKlBEtXYiKilLaJlZWJ0YCAcoaSIDowjK32htiEaTs1yhevDijRo1i/PjxWFpaCqw7z58/Z/DgwaLpebF7lJcLODk5sWXLFtEoWUpKCjdv3qR///4KWS/5v3v27ImXlxezZs1SaBROT09n7ty59OvXTyFTWbJkSVJSUnj27BmlSpXCz8+PefPmCfvLlCnD/PnzhbLQrwes+vXrExgYSEBAABUqVBDNiISFheWKPew/5A1169blxo0b9OzZk0mTJlGlShWio6PZuHEj169fZ/fu3SQlJREYGEhcXBxVqlQR1abLC+rVq8eRI0fIzMxk1qxZtG7dmsTERAwMDJDJZFSoUIHy5cuLNqm/fftWaZuqbJYYs5WYzYg1queW7lnsc9kXH3p6esydO5fFixejra1NpUqV+PTpE7dv36Zjx440bdo0V/coX/zUq1ePcePG0aJFC1EZB39/fzw8PBQi0PL76dq1K3PnzmXhwoUKx8r7nhwcHJQWvNWqVePs2bM0adKE27dvK9TB29jYMHr0aJW9n/Xr12fNmjXs3r2bRo0aUbJkSSVH+fPnz6xYsUL0+P+Qf5iamjJ27Fjat2/PhAkTaNKkCV++fGH37t3s3r2bnTt3kp6ezunTp4mMjMTKyopGjRqJvnu5RYcOHYiJiSEhIQEPDw8iIyO5evUqOjo6FC9enC9fvmBvby+qawYIDlh2iNm22JwtFpT40XYNirY5Z84cli1bhq+vL7Vq1SIlJYXr169Tu3Zt+vfvn+OxcsgrcIoWLcrTp0+FapSvcfDgQdq3b6/QWiF/ZkdHR0aMGEGDBg2wsLBQqNwJDAzEwsJCSebAxcWFHTt2MGjQIN6+fatQplepUiWcnJxE9bkAatWqhZaWFocPH0ZDQ4OiRYsqOXuZmZmsXr1aNDP/d+NXzlD16NGD8PBwoS/N1dWV3r174+/vr/KYRYsWsWzZMrZs2ULZsmWZO3cuLVq04OnTp4LDMnr0aPz9/dmzZw+FChVi3LhxtGnThlu3bgljfW6vvXnzZpycnIT/i7HlZkeNGjUICgqiYMGCVK9ePccA4X+06dkgk8m4dOkSmzZtIjo6GjMzMwYNGkStWrWYPHkyL168oF27dmhpaREQEEBqaipr1qz55g+iClu2bGH48OHUrFmTefPmcfbsWfT19bGysmLJkiWCgJuYQ/XixQulbWK1yXlxqMRqosUcJbHPiUUKVb0mL168EIR9y5Urp/Jz35r8Vq9ejaamJn369BEcoJiYGBYsWEDHjh2VoktfCxcfPnwYR0dHihcvzuvXrwkMDMTFxUW0RjomJoaxY8fSvHlz5s+fD2SVkxUvXpw+ffrQuHFjlc8dGxtLy5YthYlt5MiR2NraEhcXh42NDdWqVVOIuv/KNvM72jVk0XD/+eefhISEUKBAAXr27ImTkxPr1q3j8OHDtG/fHlNTUy5dusSzZ89YtWpVnkrVsuPIkSP069cPXV1d9uzZw6NHj3jz5g1t2rRh3LhxeHl5UaxYMVGH6unTp0rbVPV45dahEnMIxBZU32vXERERvHr1Cn19fSpVqoSamlquBK2/xvHjx7l+/TpjxowR3rHExETWrl1LsWLFlPrPsk9wwcHBrFq1isaNG2NjY0N0dDTHjh2jatWq9O3bV+mdTU1NZeTIkdjY2HDw4EEiIiKArJKyhg0b5liZIJPJ6NSpE2/evAGgc+fOODk5kZqaipGRER07dqRGjRpCtPVXtpnf1a4jIiLYsGEDt2/fRkNDg/bt29O5c2dOnz7N0qVLcXR0pGTJkjx69Ihz584xZ84c6tWrl69rnT17lv79+xMaGsrp06eJiYnh/PnzDBgwgAkTJjB8+HBq166t0qF68uSJ0jaxMUBMA01sESfmmIjZdW7ZO0Hctj99+sTDhw/R0NCgSpUqaGtri64LvlWy/+DBA9avX8+UKVMEgo/09HR8fX159eoVkydPVnjO7P+OjIzE09OTihUrUrduXRITEwkMDERXVxd3d3cl8gk5KVR6ejoxMTGcOnUKyJKbsbCwYOrUqTmOQ7NnzyYwMJDk5GTq1asnrDGSk5Pp06cPkydPxtvbm1mzZjFjxoyfyvK3cuXK72b5GzFixA+/58ePH2NjY8PVq1epU6cOkCWdYWdnJ7Bcfw2ZTEaRIkUYPXq0wNSYkpKCubk5CxcuZMiQIcTFxWFqasr27dvp2rUrkPU+FC9enGPHjuHo6Jjra0skEsF5zy1mzZrF+PHj0dXVZebMmTk6VDNmzMj1eeX41zpUqjBu3DiqVq2qVJZ27do15s6dy+HDh/NU1iLH5cuXmThxInfv3qVevXoUKlSIDx8+ULhwYaZMmSI4av82hyo314BvL7xkMhnHjx/n+PHj6OjokJaWhpaWFr169aJSpUpKn/96wP/y5QunTp3i/fv3FC5cmCZNmqCtra1S40E+MAcEBABZ7I8uLi4KbGTy+/oay5cvZ/fu3Ur79PT0qFKlioJm1a9sM/8mu960aRNPnz5lwYIFCvYbGhpKv379OHjwYL6CJZcvX2bjxo1s3bqVhg0bUrRoUT5//oxUKmXSpElCP9e/zaES254fhwrg+vXr7N27F5lMhpqaGmlpaXTo0EEhcCHH12Nveno6Fy9eJCQkBENDQ5o2bSpo+4i9s58+feLKlSscPHiQ5ORkLC0t6dixo8qm9uw4c+YMEyZMEH3Orl27KmSdf2Wb+TfZ9eXLl1m+fDk7duxQqDT4/Pkz3bp1Y+nSpSrJS7513osXLzJx4kSqVatGhQoVyMjIEMpE5T02/zaHSmxbfhwqyFq3bN26lfj4eLS1tfn8+TP29vZ06NBBaVz4+pllMhl37twhODgYLS0tGjduLIyBYuN0XFwcwcHB+Pr68uHDB0xNTXF2dlYq8RNDTEyMSnbOIUOG8OeffwJQvnx5njx58lMdqhUrVny3QzVq1CjCwsIU7llLSytPBEJfY9OmTQKjbXYYGRmxfPly0azmq1evKFWqFLdv31aoDGnXrh1GRkZs3bqV06dPY29vz8ePHxUyhVWrVqV9+/bMmjUr19eWSCQULVqU5ORkrK2tGThwIK6urt+Vuf5e/CtL/lTh/fv3vHnzhqVLlyrtq1OnDra2tpw9e1a0tCU3sLGx4f79+wwfPpzPnz9Ts2bNPNUmfwsZGRk8ffqU1NRUrK2t851N+xUhp8dt1aoVqampQn9UbqGjo6OSUlsMWlpaSmQSuTFEmUzG4sWL0dfXZ+fOnQoOcmJiIsHBwaxdu5YpU6Yo9Zj9h78HGRkZ7Ny5k5MnTypNrpaWlgwbNoytW7fmm7mnfPnyZGZmCiVk1apVE9WIyi9kMhmvXr0iLi6OokWLqixf+V1Ru3ZtateuTXp6OjKZTCWLoBjU1dVp3LixqPMlBjU1NRo0aECDBg3ydI8ymYyhQ4cSGxvLhg0beP/+vcL+ffv24enpyc6dO3n06FGezv0f8g85m+rXi0N9fX2WLVvG0qVLWb9+fb7OXapUKSDLWba0tKRSpUpKAbXvRWRkJO/evaNQoUI/hDDnV0Lp0qWZM2cOGRkZpKen52kBL5FIqFGjRp5KsqtUqaKkR/ktyGQymjVrxsqVK1mxYoVS8PrPP/9k6NChhIWFceTIkTyd+0fgR5X8ZRexhqzsSl6IRr7Gu3fvROchMzMzlQRh8u1fB/7Nzc2FzP+7d+/Q1NRUKrs0NzcXjs/ttefMmYO9vT06OjoEBQUxbtw4oqOjmTZtWq6esWTJkty4cUMpIxobG0uNGjV49epVrs6THf9TDtWJEycEsU4xdO/enTVr1uToUGVkZPDmzRvU1NSwtLRUWMDp6Ojw5csXjI2NlUTrvhfnz5/n8uXLVKxYET09PXx9fTE0NGTYsGHffZ2EhAROnDjB+/fvsbCwoEmTJt+l3v29+F5a+/wiPT2dc+fOcebMGVJSUqhYsSIxMTGcO3eOL1++EB8frxA1TE5O5tixY7x9+5Znz54RHBxMSEgIQ4cOpVy5cv85VD8JwcHB1K5dW6VD7OzsTMeOHXN0qGQyGWFhYaSlpVGiRAkFZ14eQVRTUxPogn8UHj16hJ+fH+XKlcPU1JTjx4+TnJzM8OHDv3txl5aWRlBQEK9evcLIyIgmTZqI6r/8LPxT5B0ymYxbt25x/Phx4uLisLKyQk9PD39/f5KSkoiNjVXoTXn79i0PHz7k6dOnhIaGEhwczPPnz5kxY8YP/e3/Q85ISUkhPT1dJXFJuXLlcqWLFhUVRXx8PMWKFVPIBsj7jDMyMrCysvqhztTbt2/ZtWsXFhYWlChRgvPnzxMREcHAgQNF6cTzgszMTK5cuSJkdxo0aCCQbPwT+Jacxd+J58+fc+jQId6+fYuZmRmlSpVi3759JCUlCeLNcly4cAEdHR2uX79OVFQUwcHBPHr0iK1btwoVBwsWLPip9/+jHCqxDJUYZs6cyaxZs3I8p1wzVSzzlxPzqhxi2chvHfP1Z3Jz7eyOU7Vq1YCs8s7cOlSvX78WzQKnpKTkS88SfrJDFR8fz549e3j69CkmJib06NHjp0ZtUlNTVaZy09LSCAsLIyoqioyMDNEmam9vb/z9/bGxsRFohAcNGkTXrl2RSqW8ffsWCwsL4VgxD1fsB/zWIufUqVO8fv2a2bNnC+du164dDx48YPr06Xh6eirdr5iHL0ZlGhAQwPHjx3F2dqZRo0a8evUKd3d3nJ2dFdLkql7wr6HKcMS2iy2wxCJQd+7cET3n1xAT5vua0U+Or522uLg4PD09adWqFTt27EBDQ4Pp06eze/duAJo1a8bp06eFz3t7e3P06FE2btzImTNnSE5OpnDhwjRv3pwFCxbg4ODwP7P4Sk1N5eDBg9y8eRMdHR1cXFxypMv+O66vKgAgk8l4+fIl8fHxJCcni5K1HDhwgHXr1mFtbY22tjYPHz6kZcuWjBkzRrBriUSChYUFUqmU58+fK51DzK7lzJ+q8OTJEwICAvDw8FAo5Xv79i1z5sxh5syZSllosbJfMbu+f/8+a9euxdHRkUaNGvH+/Xvmz59PuXLlGDhwoGCPeSlvzq29f49di51PPlnm5vivr52WlsayZcsoWbIk3t7eFC5cmBUrVjBhwgQgq+F9//79wuf/+OMPnjx5go+PD8eOHRPKf5o1a8a4ceNo3769aHnmvxGZmZmcPn1a6FlxcHCgadOm+SqJzw8yMjJyzHq8fv2apKQk4uPjRef1K1euMH/+fIyMjDAxMeHx48dUrFiR2bNnI5FIhGh30aJFkUgkomV8qggfcsoiR0dHs3XrVsaOHaswBiQkJLBo0SLc3NyUejrF3qmvs6SQZeuzZ8+mdu3a1K9fn8TERLZs2YJEImHixImiBC/fgtjnfoZdg7hti83ZYlltX19fIiIimDJlChUqVOCvv/6iR48eQFYQ7fDhw8JnmzZtira2Nps2beLgwYO8fftWcEb79+9P//790dbW/m0dKgMDg1yVKQ4fPvybuolWVlYEBweLkqV9+PBBZeuJPCDx7t07hff5/fv3wjGFCxcmNTWVT58+KWSp3r9/L/RDFi5cOM/XhizSqvj4eKKionL8XPb3IiAgQGGOzcjIICgoKN891z/NoTpy5AheXl4MGjSIIUOGCIZQokQJPD09f8ogXa9ePVauXKnQxJaZmcnSpUsJDAxETU0NqVSKo6MjXbt2ZdCgQcJ9ubu7Y2lpSWBgoBAJT01NZcKECXz8+JHq1asTERHxw3Ur5OxGc+fOVXKaKlWqxJMnT7h69Sr169fP87lv3LjBrVu3WLNmjfBMFStWpFmzZsyaNQtzc3OVi5l/G2bPns2QIUOQSqWMHz+egwcPEhcXR5s2bfjw4QP379+nUqVKLFiwgMzMTIYPH05oaCh169bF09OTFi1aUKlSJeF9iY+P/4ef6Ofg3r17jB49ms6dOzNw4EDi4+Px8fHh48eP+Pj4fFcdd24hXyR9jT179rBx40YKFSpEamoq7dq1o27dunh4eAiLg02bNnHr1i38/f2Fe83MzGT9+vWMHDmSXr16ERERgamp6Q/PnPr6+jJ69GglJ8/CwoLOnTtz5MgRevbsmefzRkRE4OPjw6pVqwRHs2LFitSrV4+NGzfi5+dHhw4dfsgz/OpYu3YttWrVoly5cixfvpy//vqLiIgI6tevj46ODmFhYVhYWDBv3jzKly/PsGHDWLNmDWXLlmXMmDE4ODhQq1Yt4X35X7Hrt2/f0r9/f+rXr0/Pnj2RyWQcPHiQxYsXs3Xr1p9Slqqjo0NcXJySpuSFCxeYP38+JiYmREVF0adPHwoXLszChQuFxdGFCxdYsmQJW7duVVi4BQQE0LVrVyZMmCCQlhQpUuSH3vehQ4fo16+fUqC0QIECjBgxgu3bt+dLVyslJYUZM2awYMEChQVjtWrVOH36NN7e3owbN+677/93wIkTJ4iOjqZHjx7s37+fffv28fjxY8qVK0flypWJj49HR0eHmTNn0qpVKyZOnEitWrUoXLgwPXv2xNHRkQYNGihkLP8XbNvExERlxjc77OzsiIuLE5ggIYtnIC4uTiURjLW1NYULF+bkyZNCKWdqairnzp1j4cKFQFbQW0NDg5MnT9KlSxcga6x58OABixYtyve1IcuR19bWFnpsVUG+/pdIJPTt21dhn4aGBlZWVqJtQbnBT3GoHj58KET85IuSsmXL0rRpUxYtWsTs2bNJTU3l7du3lCxZkn79+ok2c8rx+PFj3rx5Q7FixUQJC1TBxsaG9+/fExwcLERWxo4dS7ly5di1axedO3cmICAAdXV15syZw8KFC5k0aRLPnz/n48ePSl+ypqYmy5cvp1WrVkL5gfwF+FF4/PgxVatWVVnO1KJFC9avX58vh2r//v3Mnz9f6dzq6uqMGjWKJUuW/Osdqjdv3rBo0SJu3rzJ2bNnycjIwMDAgIEDB+Lm5kbZsmU5cuQIvXv3xsjIiM2bN7N//36cnJw4dOjQv/77yQnx8fGMGTMGX19fhcVD7dq1OXr0KEOHDqVs2bI8f/4cU1NTevfuTcWKFVWeLzQ0lMePH2NkZEStWrVy3VxaoEABbGxs8PPzEwbLjRs3cv/+fQ4dOkTXrl3ZtWsXVlZW7Nmzh4EDB7J161a+fPnCnj17OHHihMK1pFIpbm5uuLq68urVK8LCwn54oETeyK2qXLd69eoKkbS84MCBA4wYMUI0a9e/f3+GDx9Ou3bt/tHm3b8bcXFxLF++nGPHjgFZE7u2tjYuLi6MGDGCOnXqEBISQqNGjdDX1+fKlSsMHDiQypUrc+rUKZo1a/bTMjG/GmQyGQMHDsTLy0uB8KFKlSo8ePCAvn370rZtW27fvo2uri6dO3emQYMGKr+vmJgYbt++jaamJnXr1s11kEUikdCzZ08WLVqEh4cHkFX6vnz5cvbs2cOUKVPw9vbGwcGBK1eu0KVLFw4dOoS2tjaenp789ddfStoyjo6OPHv2jLNnzxIeHo6BgcEP0Z/JjtDQUJUkKKampiQmJpKenp7nEthTp07h7OwsGn1v1qwZx44dIzY29psLyt8ZaWlprF+/nm3btiGVSlm7di3q6uo0a9aMJUuW4OTkRFpaGuXLl0dLS4uoqCjq1q1LwYIF2b17Ny4uLnnq4fy7kZmZmaPQcW6O/ztQoUIFnJycGDx4sEDa4erqSps2bRQY/sqXL8/8+fPp0KEDEomE0aNHM2/ePMqUKUOZMmWYN28eurq6QubQ0NCQgQMHMm7cOAoVKoSxsTHu7u5UrlyZ5s2b5/ra/v7+vHv3Djs7O3R0dDhz5gxTp07F1dX1m+OL/Duztrbmxo0buXIwc4uf4lCtXLmSefPmKUV4ZTIZnz59YsuWLRw8eJCSJUvy8OFDRowYQYsWLZSUvYODg5k0aRIlS5akfPnynDhxgidPnjB37lxq1qyZq3tZt24dvXv3xt7enrp16/L27VuqVatGly5d8Pb2Fn6MGTNm0K5dOz59+sTOnTsZNGiQ6PkkEgldunThr7/+IjQ0FDc3t3x8Q6rx5csXhVTuq1evuH79Ounp6VSqVInKlSurZPnJCRkZGWRmZqoktjAxMVEQ08sP3r17x8GDB3n27BlaWlo0a9YMe3v7X2ZACwsLY86cOXz48AGJRMLixYtp2bIliYmJTJgwQYjC2tvbY2ZmRlRUFC9fvqRbt240adLkh0c2fzds376doUOHipasxsTEcOzYMVq2bMnAgQMJCwsTGI28vLwUFl/v3r1j5MiRaGtrU7t2baKiopgyZQojRozINSWqp6cn/fr148qVK3Tv3p0dO3YwevRo2rdvz+jRo4UUfvfu3bl+/To3btwgLCyMjh07qnQsXF1dWbJkCVevXhUmhB+F5ORkBWfq/fv3XLx4kaSkJKysrKhbt26++xLevHmj0nFVU1PD2tqaiIgIpUbm3CI+Pp4jR45w+/ZtJBIJdevWpVWrVj+0Z/R7kJCQwIQJE5BKpaSlpTFt2jTatm2LqakpgwYNEjIW1tbWFCxYkPT0dPz8/HBycqJFixZYWVn9zzpTkJXdqVmzpih73qdPn3j06BH169fH09OTuLg4tm3bhpeXF9u3b1dw4pOSkhg3bhxRUVE0btyYpKQk5s6dS5s2bRg5cmSuvuPevXszbdo0+vXrx7Bhw5g1axYTJkxg4MCB1K9fX9AOsrOzo1u3buzevZsGDRpQsmRJlY5S3759cXZ2JjQ0lBo1auTzW1KN7I7S58+fuXDhAh8/fsTc3FzIiqSlpeXZobpx40aO/S/16tXjzp07+SbVSklJ4dSpU5w/f56MjAwqVKhAhw4dvlm6/LOQmZnJlClT0NfXJzk5mcGDB9O9e3cqVarEH3/8gbq6OlKpFC0tLYoWLYq+vj47duygevXqtGzZktKlS/8yaw85fmUdqp07dzJy5EjBxpydnVm1apXCZ54+farAhDlhwgS+fPnCH3/8wadPn6hTpw6BgYEKtrh8+XLU1dXp0qWLoPe2ZcsWhfnuW9fW0NBgzZo1jB07lszMTEqWLMns2bMZNmxYrp8vJCQkb19ILvBTHKrw8HDRRsxt27ahp6dHhw4dsLCwwMzMDDMzM5o0aYKbmxtnzpwRBoeXL18ybtw4du/ereBRxsbG0q1bN5YtW4aNjc0378XU1JSjR49y4sQJxo0bJ5zr2LFjCulfiURCjx49OHjwIDExMTkunosUKcL169cxNjamYcOGuf5ecgMrKysuXLhA06ZN8fb2xtDQkEaNGqGhocGNGzfYtGlTnrJ0Pwvnzp3j4MGD9O3bFzc3N4HAYdSoUcybN++XiKKtX7+e2rVrs2bNGrp168aYMWOEfe7u7qxZs4YpU6YQHx9P+fLlSUhIoGnTpjRs2JDo6GiGDh2KjY2NUJP/v4YzZ86wY8cOpe03btwgMDCQ6dOno6Ojg6mpKaampqxfvx5vb29WrVrFiBEjgKwFR8+ePVm9erXCAi4tLY2BAweirq5OmzZtvnkvmpqa7Ny5k2vXruHh4cGXL18ICQlh7969Sr1sgwYNYuPGjVSoUOGbdv306VO+fPmCs7Nzbr+WXMHY2JiIiAgyMjLYvHkz8fHx2NvbY2hoyMOHD5k4ceJ30enmhO95V589e8by5cvp2rUrXbp0QSqVcvbsWcaOHcvkyZPzXXv+I+Hr60udOnXw9vamatWqCuWgGzduZNq0aezYsYPMzExMTU0pUKAATk5OtG7dmtTUVDw9PQFYs2aNaM/dvx1nzpwRtbkPHz4wa9YsfHx8uHHjBubm5pibmzN37lyCgoIYO3Ys69atA7IWer1792bo0KFC5Blg0qRJeHp6snjxYqGPLSdIJBI8PT15+vQpXl5ehIeHc+XKBFTyKQAAq+tJREFUFZYsWaLUf92tWze6detG+fLlc8woGxgY8OnTJ0JCQvLN/PktJCUlcfbsWW7dukXz5s0pV64coaGhzJ07l7i4uL/lvfoeu46Ojmb69Ok4ODgwc+ZMdHV1uXnzJjNnzqR3797UrVv3B95p/nDlyhWKFy/O1q1bMTc3V2B33L59O23btqVFixZIJBL09PQoW7YsMpmMzp07o6Wlxe7du5k9ezYbNmzIscfmZ+JXdqiMjY1F5/ecri+RSJg5c2aODIPa2tqsXLmSlStX5vvaTk5OCoK+uYW3tzeurq5oa2vj7e2d42fzMzb8FIdKLC0pk8nYuXMn/v7+jBgxQsE7lUgkzJkzh2HDhgkO1eLFi1mxYoVSes7IyIi1a9cya9YstmzZkqv7UVNTo3Xr1pw5c4bBgweLipRBVgP47du3KV++PLdv31a5WLh16xbFihXjwYMHJCQkCM6CWM/F13SRgAITjRzZJwR507yzs7MCzaiNjQ0PHjzg5cuX6OnpKXyHYg2t2fdLpVKkUikfPnwQjeTFxMSgo6MjGExuG9IlEgnv37/nwIEDLFu2TIjC6evr07VrV6pVq8aSJUuYN2+eqLK8XDgzPxA7Vuy7hazyFZlMhoWFBVpaWly/fp2wsDAhau/o6IiXlxdTpkwRRGRPnTql0Dvg4uLCsmXLWLZs2f9M7Xp2SKVSBXY0OVatWsXcuXM5cuSIUpZl2LBhODg4MGzYMKRSKVu3bmXIkCFK0XANDQ3Wr1+Ps7MzrVu3ztViQZ4t6dSpE3p6enTq1En0c+bm5nz69IkKFSoIZTRiuHXrFpaWlty9e5f3798Lv71YSYFYlk5M9yl7VqhJkyZs2bKFunXrKpQK29jYEBYWxosXL8jIyFBwCL9l15AVhLl9+7ZSgEkmk5GRkcGrV6+wsLAgMzMzTyQymZmZLF++nEWLFgmZbTU1NRwdHalZsyZTpkxh7dq1ubbr3C4GVI0JYrZdp04dHj9+zJAhQ/D29iY2NparV68KC0IrKysSEhJITEzk/PnzhIWFceDAAYWgVMuWLTl+/DgjRoxgw4YNubrHfxOkUqkoGYNcH0ZDQ0Mpq2tvb8+aNWsEjaDz589jY2Oj4ExB1ns1depU2rRpwx9//JHrrGa5cuUYPHgwZmZmKhdrOjo6ZGZmUqpUKby8vFSe69WrV5iYmCgQUwCiTo4qwiixd0/OtDdo0CB2796NsbGxQn+4jY0NaWlpBAQEEBkZqfDOiVFRf53BqlOnDidOnFASq5fb0aVLl5gyZYqw3sot2YRUKmXx4sUKunpqamrUrVuX6tWrM2rUKGxsbETXCWISAnlZ5IvZtti4WadOHRYuXMioUaPw8fFBT08PHx8fBg4cCGT9djVq1ODOnTuYmpry6tUrRo4cqSCLYm9vz6NHj+jbty/Hjh37JUqef2WH6t+I5cuX07NnT7S1tVm+fLnKz0kkknw5VD/ljSpfvjw3b95U2JaQkEChQoWQSCSEhIQoRZTMzMwUStlev36tMgNlbW3Nu3fv8vxyVaxYkWvXrqncf+3aNSpWrEjPnj1Zt26d6EIhNjaWU6dO4erqSmpqao7nyy+GDBnCvXv3ePfuHcnJychkMh49esT06dNp3749TZs25eLFi3k+b6dOnVixYoWSw5uRkYG3t7egZJ1XHDx4kD59+oiWNJQrVw6JRCLK4vIzkZCQgKGhIcWKFSMlJYVXr15haWkpvENSqRRNTU1u3LjBrl27mD17tmgj9pgxYzhx4oRKx+3fjFatWuHr66u0PSYmBisrK06cOKHU26empkbp0qV5+/YtkNUkroogQVtbm3Llyomy6uWEihUrcvXqVZX75XbdoEEDLl26RExMjNJn0tPTWbVqFW5ubpiYmHDu3Lk83UNu4ObmxsWLF4mLixPKJsLCwliyZAnm5uaMGDGCgwcP5vm8Li4u/Pnnn6KlwFu3bqV58+b5WkycO3eOpk2bipYJFypUiNq1a/8t419eoaamJgSu3rx5g52dncLYbWpqyuPHj5k8eTKdOnUSzfC3bNmS5ORkQT/lfwmq7PrKlSs4Ojry119/0bJlS6X9zZo149atWwD89ddf9OnTR/T8EomEdu3aCaLquUXJkiW5d++eyv2vX7/GxMQEMzMzNDQ0VDriixYtonv37tSsWZPz58/n6R5ygzZt2nD79m3S09OFee7jx49s2bKFx48fs3jxYvbs2ZPn89rb23P06FFRVs8zZ85gbm6er8qP169fY2RkJDhT2aGlpUX37t3z3c/5IxEXFyc44K9evWLQoEE8fvxY2F+0aFFByL1MmTIKzpQcNjY2NG7cmMDAwJ9239+C3KnKz99/yBtCQkKEIElISIjKv/xoUMFPylCNGDGCoUOHKjSJqqurk5yczOTJkxVofLMje5TsW7WvOjo6pKen56lGtmvXrrRu3ZrOnTsrldd8+vSJwMBAoRZ/+PDhdO3alTlz5lCxYkVkMhlXrlxh1qxZLFq0iLS0NNTU1EhMTMz19XOLR48e4eHhQXh4OJ6enoJuxrBhwyhSpAjnzp1j6dKl+Pn5kZGRgb6+Pp07d/6mgnzt2rWJjo5m9OjRtGnTBktLS16/fs2RI0do27ZtvgkXnj59qrLnDLJYiZ49e/ZDmwFzgzNnzrBp0yaePXsmbNu5c6fwb1tbWxwcHHByckJbW5vbt2/j7e2NlZWVUlRQDolEQoMGDbhz5w516tT525/hV4Lcfpo1a6aggyIvY6tWrZooleuXL18Usrc52WzBggXzbFO2trZMmzaNyMhIpZK+9PR0vL292bFjBxKJhKVLl9KtWzemT58uNNY/efKE6dOnC/02xsbGJCUl5ekecoMXL17Qu3dvypcvj7e3N8nJyZiYmODs7EzZsmWJjIzE19eXe/fuoaamhkQioW3bttjZ2eV43qJFi9KnTx9Gjx6Ng4MDNjY2fPjwgSNHjlC6dOlc96V9jSdPngg17WKwtbXl9u3bP5yY51sIDg5m48aNXL9+XdgmJ6MAKFasmED5bWFhwYkTJ4iMjKRGjRpKLE/Z0aFDB06ePJnjWPZvhK2tLfPmzePKlSsK75q6ujpBQUF8+PBBlC47KSlJsOuEhATRagw58mPXcvrz7Oxf2bFgwQJBfHvp0qX06NGD4cOH07ZtW9TV1YmMjGTBggUUK1aMihUrYmJiQmRkZJ7uITdITk6mSpUqdOrUibVr1xIbG4uenh4tWrSgRo0apKSkcPfuXUaMGIG6ujrp6ek0btyYVq1a5ZiJ19bWZsqUKcyYMYNatWpRp04dkpKSOHHiBJmZmUyaNClf9/v06dMce8lq1qyZZ+f3RyA0NJSNGzcqOD9Hjx5V+MywYcOoUaMGFSpUYOPGjRgYGNCwYUNRCRU5OnfuzMqVK/NVMvaj8V+G6tdBRkYG9+/fp0SJEjmOXTnhpzhU1tbWAslD69atqVGjBhEREVy5coW6deuK8uI/fvxYoTwmMzOTpKQkUeaqlJQUEhMT89xwqKury7Rp03BxcWHGjBnCIH327FnmzZvHkiVLhEhuu3btKF26NKtWrSIsLIyMjAyqVavGxo0bKV68OCdOnCAjI+Nv63vQ0tLC0dFRQRsKsrJBL168oHbt2oKgWVRUFIsWLaJt27bfrH12dnamWbNmnDx5kvPnzwv0s9l1cfIKbW1tIQMkhvj4+J/aa5GcnEyzZs2UyljU1dWZNGkS3bt3R1NTk/Xr1xMTE0PFihXZt28fEyZMYNSoUbRp0ybHiU5dXV2lXsm/GTo6Ovj4+ODq6oqtrS329vbExcUREhLCyZMn2b59u9IxiYmJREdHC43ORYoU4cmTJyqd/9u3b+eq1yI7JBIJ3t7e9OrVi/Hjx+Po6IhUKuXevXvMmjWLIUOGCNevWrUqW7ZsYe3atQLjZZEiRfDw8KBy5cpcuXKF2NjYv82upVIpLVq0UCKIuHnzJseOHcPKykqo9f78+bMw/sgpZ1XB1taWypUrc/bsWc6fP4+BgQHu7u7fFcTQ0dHJkVpYTlX8syBfRIplGTp27MisWbMwMjJi3759BAUFUadOHa5cuYKDgwM+Pj6MGjUqR2KA/1W7hqzyviFDhrBt2zbat2+PTCYjJiYGDw8PQZcqO2QyGadOnRJ6I21tbTl37hwuLi6i5z979ixDhw7N830tWbKELl260KtXL7p06YK2tjZv3rxhwYIFlChRQnAAzc3NOXjwID4+Pjg7O6OmpkaBAgVwdXWladOmXLlyhU+fPv2t72utWrWU1ithYWGsXbsWc3NzoYckJSWF3bt3s3TpUsaNG5fjXGNpacmqVau4evUqly5dQktLi169en2Xnqeurm6OjuXPtmuA3bt3s2LFCqXt1apVY+vWrRgbG3P69Gm2bNlC06ZNCQ8Pp1ChQpw+fRofH58c7VpNTe2Xsev/HKp/DqNHj6Zy5coMHDiQjIwMGjVqxJUrV9DV1eXIkSM0adIkz+f8aUWkdnZ2BAYGUq5cOe7cuSNEse/evatULvX582fGjRvH2LFjhW29evVi2bJloudevXr1NxcYqmBvb8/q1avx9fWlTZs2tGnThnPnzrFt2zalqE3FihVZvHgxffv2xcXFhQ4dOgj07vfv3wdQSZf6PWjQoIFoilpOR1u6dGkaN24sbDc3N2f69Ons2rVLtMflaxQoUIAOHTrg6uqKs7PzdzlTAM2bN1eKJMmRmZnJ9evXf6rw6/79+4UBVE1NjWrVquHg4MCrV6+4c+cO169fp3jx4ixatIjy5cuzdu1aAGFxUKdOHQVR369x4cKF/1n6dGtra44fP07Lli25d+8eUVFRbNu2jejoaAX2H8iKAI0cOVL4XiFLSHX27NmiE8PJkycpVapUvtjjypYty759+7h37x5t27alTZs2+Pj4MG/ePDp27Kjw2aJFizJjxgyGDRtGu3bt6Ny5s1Be/PbtW96/f/+32LWNjQ03btxQevaMjAx2796Ns7OzQiReX1+f0aNHc/fuXdGyn6+hqamJg4MDrq6udOvW7bszwvb29gqZn69x4sQJmjVr9l3XyAtu3ryp4EzVqFGDypUr8/z5cwoVKsShQ4coUKAAY8eOZdSoUSxatIjr168LC7WmTZvmWMrk7++fb8a03x2Ghobs2bOHESNG8PTpU549e4aXlxcFChQQ7fdZsmQJLVq0EPqQ+vTpw+rVq0WZYp8/f054eHi+yJSMjIzw8/MjJSWFzp0707ZtW6ZPn07v3r2VtJ0MDAwYPXo0kyZNwtnZma5duwoOl0wmIzg4mNKlS+f5Hr4FHR0dkpOTRTNwPj4+DB8+XCFzrqWlRdeuXdHX1xdKJnOCVCqlXr16DB48mD59+nyXMwVZjt/FixdVLs79/f1p0aLFd10jL4iJiVFwpqpWrUqJEiW4dOkSvXv3Zs2aNUgkEvr06cOGDRuYM2cOe/fuFQSOmzRpgr+/v8rzHz58+KeOUznhe8r9/iv7+z74+voK61B/f39ev37NkydPGD16NFOnTs3XOSWyXPwi8fHxGBoaCqrxPxKHDh3C29ub1q1bY21tzYMHDzhz5gxz585VEPGSyWSMHz+e5ORkxowZQ6lSpXjz5o1QKrNq1aq/nWnNy8uLwMBAOnbsiKmpKZcvXyY4OBhvb2+0tbWpWbMmRYsW5fr166irq4sOjmJUyGLbvs7uuLu707x5c4WM06ZNmzA2Nubo0aOsXLlS4TwymYxdu3ZRrFgxGjVqBORes0BVQ/rXEOvDSEtLIz09nYkTJzJgwACBvllLS4vMzEy8vLwoWbIk7du3F20+zW3k6OvIX2JiIo8ePeLOnTsCAUa5cuUwMDDgxIkTtGzZkv/H3llHVbV9b/9DIyhY2N2N3Y2IgigIFiUWKKKYiBggSqgYILaYoKKCfcHCTjCuhV2IioGAQbPfP3jZP4/ngIR5vz5jnKHsWGudffZca8165rlz52jXrh19+/YlMDBQpF/dsmULe/fuRV5eXszpu3r1qvg8X716haWlJSEhIVKJuVu2bOH+/ftShWV/pMx8L/zIMV69epWpU6fSvn17mjVrRnR0NPv372f48OEMGTJE4lp/f3/CwsJwcnKiefPmvH//Hn9/f86cOcO2bdtkeqW/J7LnIENDQ2rUqMHt27c5cuSI6LVu06YNsbGx/Pvvv5QtW1amXMuyiMqSj69DCVasWIGamhr9+vUTj50+fZrbt28TERGBu7u7xD2CIHDp0iVu3brFsGHDgO8v1zmNPS0tjQULFtC8eXORbCCboGPPnj0iE6ssuZaVfyprPF//1mlpaURHR3PixAmRTKhdu3ZoaGjw6tUrKlSowKpVq7C1tWXcuHHY2NjQuHFjsRBtQEAA6enpZGZmEh0dzaFDhyhXrhyQFf6pp6fH+vXrpTalFy5cwNfXl61bt0oc/1+X65iYGOzs7KhcuTLdunUjPj6e3bt3065dO5ydnSV+0+PHj+Pp6SmuXSkpKWzfvp0tW7awZcuW717b7WtcuXKFadOm0aFDB5o1a0ZMTAx79uzBwsICKysrBgwYwP79+zlz5gwtW7bMs1yD7DX7Szk9duyYyHyYLUsvX77Ez8+PpKQkrKysJHLCBUHg7du3+Pj4MHfuXKBwcp3T/TnJ9Y4dO0hISGDkyJHIycmJcn358mUCAwPx9vaWmScsy2CbF7nOnsfu3r1LWloanTp1olevXmhoaCAIAsrKyowdOxY/Pz9Wr16NhoaGuG6cPn2aVatW8eHDB9LT00lMTGTu3LkSxg9zc3PGjh0rVQj22bNnDBs2TKw3+iV+pmxn9+Xu7l4oxsfk5GRmzJjxW89HvytUVVV58OABlSpVwsbGBjU1NZYuXcrjx4/R1tYuUKHnX65QQZZAHzlyhFevXlG9enW6dOmSY9L0xYsX8ff35+XLl5QpU4bhw4fTvn37H65MrV27lqdPnzJ37lyxL0EQOHjwIM7OzqxZs4aEhAR69erF9evXady4caEUqrdv3xIVFYWamhrt27dHEAQmTZqEmpoaenp6qKio4OXlhZqamkzCBEEQOHfuHM+fPxe9dz9LoYKsGHofHx8xnjw5OZkrV66gp6cnbh6/l0IVGRnJunXrmDx5Mp06dSI8PJyjR4+yefNmANTV1alRo4aoJBkaGuZqwRo0aBAbNmyQ6OP8+fM4Oztjbm5Ohw4dePfuHZs2bUJBQYHly5dL/Yb/6xsvyHoHz5w5Ixb21dPTk8l8CVlW69WrV3Pv3j3U1dUxMzNDX1+/wLWY8oozZ87g5+fH5s2bJcZ2+fJlRo8eLb5TlSpVIjAwEDMzs0IpVKmpqVy+fBl5eXnatm2LhoYGnp6ePHnyBENDQ4oXL87GjRt58uQJLi4uUqGQgiDw+vVr/P39RYv8z1So0tPTWbt2LY8ePaJFixbIy8sTERFBw4YNGTlyJAoKCt9NoXr27Bmenp5YW1vTp08foqKi+Oeff8RQqZIlSyInJ8ft27cpU6bMN+V63rx56OrqSuQ6PnnyhFGjRtGjRw+RNn3Hjh3cvXuXjRs3Shm2/sp1Fq5fv87ly5dRV1cXN8KyEBsby7p167h48SKKioqip+hHh5BFR0czfPhwqbIJT548YfTo0XTq1AkHBwfq1KnD0KFD8fT0LJRC9fHjR27fvk1aWhrNmzenQoUKBAQEcODAAfr27UulSpUIDw8nLCyMCRMmSIUTZW/DJk6cKLKP/UyFShAEQkJCOHXqFM2bN0dDQ4PLly9TvHhxJk2aJHrdvkZBFKrExERcXFxo2LAhkyZN4uPHjwQGBuLv709CQgKVKlUiNjaWs2fP0qpVK2xsbHB1dc2xxMXevXt58+aNRK5jYmIi1tbW1KpVi0GDBqGqqsrBgwc5fPgwa9eulZly8CsUqnnz5hVaoZo5c+ZvPR/9rqhatSpr165FR0eH6tWrs2LFCvr06cOtW7fo2LEj79+/z3ebPyWH6ltQUlJCX18/T9e2adPmpyf/Z2RksH37do4cOSJOFuHh4Xh4eNC6dWs6dOjA1KlTKVKkCHJycuzcuZPGjRsXqK83b97g4eFBmTJlaN26Na9fv2bDhg307NkTT09PHj58yKlTp0hPT6d+/fr07NlTJvscZC0q+am3kJmZyYMHD0hOTqZ69eqFEtCiRYsyY8YM4uLiuH//PhoaGlhbW+e7mOG38ObNGzZu3MjSpUvp0KEDCQkJWFlZSRR6/vTpE4cOHRIXQVmbuy/x8eNHqY1/u3btCA0NJTg4mA0bNlCsWDGmTp1KnTp1vuv3+S9BTk6OTp065ak2W+3atfH29v4Jo5LE4sWLWbt2rfh737lzhylTplC1alUMDQ3x8vJi3bp1aGlpsWvXLpn5nnlBUlIS8+fPJy0tjS5dupCens6kSZOoVasWTk5O3L9/nyNHjhAVFUW1atVo3Lhxjnll0dHR+S62+ezZM96/f0+FChVynC/yAkVFRcaMGcOnT5+IiopCWVkZU1PT775BTk9Px9PTEzc3N5FRLpuFrEyZMrx+/Zq4uDguX74sfh95eXlSUlJk0tpDFtHQ1+HM1apV49ChQ4SFhbFlyxaUlJQwNjamdevW/5O15fKKJk2ayCSm+Bply5YtcPhMYZBduiFbmXr79q1IAqGvr4+fnx/Hjx8X61Jm5x/nF5mZmaxcuZKoqCiRzMjDwwNFRUXmzZtHp06dOHz4MGfPnqV48eI0a9Ysx9yMd+/e5TvcPjY2llevXlGqVKkCF+qGrLnaxMSEvn37cuvWLQRBoFevXj+kXqSXlxejRo2iQYMG1KlThzJlyvDmzRsGDx7M9u3bef78OTt37qRVq1ZA1l4ie+6SBVlyraGhQXBwMBEREezevZu0tDQ6d+7M5MmTf7iRLj/IzMzMs+Kc0/1/UTAMGzaMgQMHUr58eeTk5MSw1osXL36T0C0n/BYK1e+O69ev06ZNG9G6c+HCBZYtW8a+fftQU1MjPT0dY2Nj1q5dS7t27Zg7dy6VK1fOdxX2pKQkpk+fzowZMyRycoYNG4aXlxchISH079+fmjVrAv9HPtG8eXOpxT8tLY0TJ058s3hZNo4dO8bu3bupV68eGhoaBAQEULJkSRwcHGS666Oionj58iWlSpWiadOmOXoUS5YsSZs2bXLc5BQW2cWDVVVVyczMFMMCIiMjWbx4MZMmTSIkJITy5cuL99SuXZt///1XZh5XdHQ0xYsXl6n4qaqqYm5ujrm5+Q/5Ln/xc5GamkpmZqZIoxoTE8PYsWMJCAgQ35cLFy4QHBxMly5d2LNnD5MmTcLCwiLfm+1Zs2ZhamoqQTdtbm7Orl27mDt3Lg4ODlhYWABZsjt69GhMTU2lFHtBENi5cycTJkzIU783btzA39+fihUrion6qampTJgwQaax5enTp9y/f5+iRYvSsmXLHD2K6urqtGzZ8ofJ9alTp+jcubOoOH5ZBHLjxo3o6+tja2srMccaGBiwc+dO8Tl+idTUVP79918xBPlLyMvLo6+vn2ej3l/8/rhx4wZeXl5AViSEmZkZCxcuFOf8a9euMXfuXKZMmcKePXtEYqqc3vec4OfnR7ly5Rg7dqwY8jdgwAAiIiIYN24c3t7eEsQc48aN4927dzLrW+3atSvP7+CLFy/w9fWlSJEiVK9enZcvXxIbG4uNjQ3169eXuv7t27dcv34dRUVFWrRoIbOmFGQZt5s2bfrD5Prp06eoqamJ4Y5f0sCPHDmS7du306BBA4kaggMGDGDz5s3Mnz9fZpshISEyCZDk5ORo3br1T2cdzQ/+klL8Ori6utKoUSOio6PF4s+Q5X0uKGPmr69s9gcgLS1Nwi27YMEC1q5dKyoaCgoKCIJAuXLl2Lp1K02bNsXGxoZNmzblq5/Q0FAMDQ2l3NFycnJMmzaNsLAwCRd72bJladKkCUuWLJFIgH337h2zZ89m8ODBeWI+PHLkCBcvXmTp0qXY29szdOhQFi5cSK9evZgxY4ZEn3fv3sXBwYHw8HDS0tK4evUq9vb2nD9/Pl/f9XshKipK9EalpKQQGhoqnps0aRKVKlWSWjwmT57M5MmTpWphJSQkYGtry7Rp0378wP/ilyMjI0NCPnx9fZk3b56E8q2goECRIkUIDQ2lSZMm+Pj44OLikq9+bty4Qbly5WQybpqamhIbGytBMqGkpMTQoUOZNWsWb9++FY9/+vQJX19fGjRoIOYB5YaoqCg2bNjAvHnzmDp1KkOHDmXOnDmMHTsWV1dX4uPjxWtfv37NtGnT2Lp1K6mpqTx58kQ0RvwK/PvvvxL5D87OzuL/9fX1KVmypARVP2QpqBs3bpSqP5Sens7o0aMZO3bsX6/T/wiy82EhqyaWqamphAFNVVWV9PR0AgMDqV+/PidOnGDkyJHfjF74EgkJCTx48EAmIVarVq1o2LChVP1NBwcHZs2axZMnT8Rj6enp7Ny5k9jY2G+WRICs9X3evHk4ODjg4uLC0KFDcXJyYs6cOaxcuZIHDx6I1yYlJeHu7s7SpUv5/PkzcXFxuLq6smLFil/CdPe1XH9Z7yw7L7Nu3boS97Rt25YnT54QFhYmcVwQBBYsWEDr1q1zZBT+3fGXlOLXwtTUlIkTJ4rkcgBDhw6VyGnOD/56qPKAhg0bitXZP378iLy8vARj1vnz50XGorZt21KmTBl69uzJ5s2bGTx4sITVS5ZlKFszPn/+PH5+fqiqqspkR9LW1ubmzZsS4YQWFhacPHmSmTNnihXuixQpgpmZmVRIhixXd0ZGBnv37sXPz088ny2kzZs3586dO5w5c4bu3bsTExPDihUr8PT0RFNTU8yVGDRoEG5ubqioqMi0AOcHsuK0ZSGb+U1eXp7MzEyUlJR4/Pgx169fx8jISCzMNmDAAJlhPj4+PowYMYIqVarQoEEDHj58yO3bt5kzZ06eQln+4s9HNg14cnIyqqqq/Pvvv6JVG7LCSbNlt1SpUtSuXZtOnTrh5+eHnZ2dhIdHFhNhthHm3LlzmJmZUbJkSZlyraenx4kTJyQKHLdv3x5NTU0WL17M58+fxXo1RkZGUiFDOYWwbNq0CVdXV3GzkS3XlStXZtiwYezatQsbGxuSkpKYO3cu06dPF5WUlJQUTE1NWb58OXv27MHAwKBQGzBZci1LucmeH5WUlMjIyEBBQYGoqCguXryIs7Mze/fuBbKUp6+t/Orq6mzdupXx48ejqKhImzZtePPmDWfPnmXMmDE5FpD+i/8eypQpw8OHD6lZsya7d+8W82khK0zq7t27VKpUCXl5efr27UufPn2YO3cu586dE0mcQPZ6DVlzx8mTJzEyMhLfw69r1RkYGODv70+zZs3EY9WqVWPWrFmsX7+e2NhYVFRUSEpKomvXrsyaNUsi0iMnuQ4KCmLMmDHiJjBbrjU1NZk5cya+vr64u7ujoKDA3LlzGThwoITR0dDQkIMHD+Lr64u9vX2h5FpWfT5Z0SrZ6QMqKiqkp6eLESCOjo6UL18eT09PAGxsbKSMwHJycmzatIkpU6awcuVKunXrRnJyMuHh4ejp6f2SkNLvhb8eqp8LX19fbGxsUFVV/Wb01vjx4/Pd/l+FKg9QV1dHW1ubXbt20bVrV4lJNiUlBXd3d1asWAFkCb+ysjJeXl5oa2sTGBgosnF9CxkZGbm62tXV1WUmfHft2pWuXbuSkZGBnJycqFjlBTdv3qRp06Y5Tt59+vTBy8uL7t27s3XrVhwcHKSsQSoqKkydOpX58+fj7u6ep36/F9q3by9OrJC1CFWsWJFHjx5hbm7OzZs3ZYYKNGzYkAMHDnDnzh2ePn1Kly5dCpz39hd/LrIT0ufMmYOSkpIE4czs2bOxs7MTr9XQ0GD8+PFs3bpV3LTkBSkpKbkyFeYk140bN2bBggUIgkBmZiYKCgp5KoMAWYYfBQWFHAsUtm7dmoCAACCL7tzQ0FDK4yMnJ4ednR0TJkz46UUwO3fuzOHDh0W6ejk5OTGHqkaNGjx+/JipU6dK3VemTBkxD+PWrVu0atUKV1fXHEOS/+K/CXt7e2bOnElAQACpqakS8rdixQqxNhVkUbE3bNiQhg0bsmrVKtq3b5+nXN+UlJRcPSM5yXXlypVxcXEpkFxDVpSIvb29zHNly5YlOTmZlJQU7t+/T8WKFSXyibNhYGDAzJkziYuL+6nenXbt2uHp6SkR2vhl7peqqioGBgZS96mqquLn5yfmTSorKzNx4sQfFpr4s/BXofq5WLJkCebm5qiqqorkL7IgJydXIIXq7yqTR7i5ubFv3z7mzZvH7du3ef78OcHBwRgYGDB+/HiRdvft27eip2bw4MH4+/vLrNshC/Xr1yciIiLH81evXs21Ho6CgkKeNw4ZGRkcO3YMX19fwsPDmT59usxaFNnU4pCVX5QTCUN28qqsBeRHQl9fn+DgYF6+fCkemzJlCgoKCty9e5c+ffrkGvZYr1499PT0/ipT/6MwMzNDTk4Oc3NzPn78yM2bNzl27BjGxsY0btwYHR0dIMuq/fTpU2rWrMm4ceM4fPiwVDhPTmjevDlnzpzJ8fzZs2dzff/k5OTylUh9+fJl5syZw82bN5k8eTIHDx6UCmWSk5MT5eLMmTNiuM3XkJeXp1GjRty7dy/P/X8PNG3alAcPHoj1/SCrWG+5cuUoUqQIampquSbhV6pUCT09Pdq2bftXmfofRPPmzUXPU5EiRdi/fz+RkZGMGjWK+/fvS2yWzp49i7a2No6Ojjx48EAiDC03tGjRgtOnT+d4/syZM99Vrh88eICXlxf37t1j4sSJbN26lY8fP0pdV7RoUVJSUggPD881J6tbt26cO3cuz/1/D5QsWZKyZctKhOa3adOG5s2bU7p0aa5cuZLjXJR9v66uLl26dPnjlSn4G/L3s/H48WPRo/z48eMcP9kRTvnF35Umj1BSUmLz5s1YWFigpqbGkCFDePnyJcHBwaJ3BLKoeW1sbAAYNWoUmpqaTJkyJU+c9hYWFvj5+cms93D+/Hm0tLS+izUpPT0dJycnbt26xYQJE6hTpw6Ojo7cunULDw8PCeaYmzdvijld35r8ixQpInPsPxLq6uq4uLjg4eGBt7c34eHh3LhxAw0NDd6/fy9RRPYv/kIWXF1dcXNzo2LFigwePJgLFy6wfPlyCe/Uhg0b6N27t0hg0KxZM2bOnMmzZ8++2X6vXr3Yv38/cXFxUueePn3KgwcPCh0qmw0fHx/279/PsGHDqFKlCnPnziU5OZmpU6dKhBvGx8eLVvjskNmckJOl/UdCTk4ONzc3tm3bxsyZMzl69CiRkZEUKVKEp0+fSuRU/cVfyMKQIUPYvHkztWrVwt7enp07dzJx4kR8fHxET/T58+fR0NCgTJkyNGjQgP79++Pn55erYTMbderU4fXr19y9e1fq3IcPH9i1a5fE3qAw2LdvH8uWLaN79+40bNiQOXPmUK5cOaZMmSJhsM3MzOT169cULVqU1NTUXNk31dTUfrpcA0yYMIFbt27h6OjIP//8w9mzZ1FQUODt27e4ubn9NYD8xR+Lv29uPtGyZUuOHj1KnTp1RCrizMxMrl+/jpWVFeXKlaNnz55A1kbEx8eHV69eMX78eJnWpC9RoUIFhg4dyrBhwzh58iSfPn3ixYsXLF++nM2bN+eZ2Ss3vH37lmHDhvHy5UsyMjIICAjg6tWr3Lp1C1tbW6pWrco///wDZE3OmzZtEnMPFBUVJRLZv0R6ejrv3r2TmUvyoxAXF8ebN2+oUKECy5YtQ09Pj3fv3qGoqEj16tUpWrTo3yT0v8gTatasSUBAAJaWlty9e5d3796JXiknJyfOnDkjyp+8vDxeXl5oaGgwZswYYmJicm1bWVkZNzc3bG1t2bt3Lx8+fODdu3cEBgYya9YssZBnYZCcnIyjoyPHjh1DQ0OD7du38+rVK7Zv346JiQmDBw9m9erV4vWbN28WE29r1qwp4Qn6GtevXxeZRX8GEhMTiY2NpUiRInh4eDBy5EgSEhJITk6mWbNmUmQif/EXOUFLSwsPDw98fX25efMmr1+/JiMjg3fv3rF48WLc3NwkQn8mTZpEs2bNmDRpEteuXftm+15eXsyePZt169bx7t07Pnz4wMGDBxk9ejTTp08vdDmBzMxMVqxYga+vL5UqVRLrdXp4eNC9e3dmzpzJokWLxOvDwsJEr2zjxo25ePFijm1funRJzP3+Gfj8+TOvXr0iIyODKVOmMG3aNNLS0oiPjxdL4eQn9PG/gL8eql+H4cOH5/opCH7rHKrz58+zatUq0bJraGgoeoh+JRQUFFi3bh1nz55l3rx5vH79mho1ajBt2jQpS3OtWrXw8/PDxsaGbdu24ejomGvbOjo6NG3alICAAPbs2YOamhr6+vrY2dlJMPkVBO/fv2fmzJkoKCjg7+8vepyioqKws7Nj+PDh9O3bl1mzZlG7dm38/f3R0dERk19NTExYs2YNU6dOlVJUgoOD6dq1609RYM6ePcvhw4cpXbo0ioqKxMTE0LNnTwYNGoSysjLbtm3jypUrucbI/sWvw927d1m+fDmPHz8mMzOTjh07MmrUKAmil1+FadOmcevWLbF4rZaWFtbW1nTs2FHi3S5ZsiTLly9n5MiR+Pj4sHbt2lzbrV+/Pps2bWLHjh24uLigoKBA165dWbduHcrKynz48KHAY05PT2f69Ol8/PiRTZs2iXlTcXFxmJmZ8fr1a+zs7AgMDOTx48fs2LEDDQ0NOnToAGSF0i1YsABvb2+p3JGIiAjKlClDsWLFfjgr2J07d/Dy8kJJSQkNDQ2io6Np2rQpY8aMQVFRkYMHDxISEvKXre83xcuXL1m9ejURERHIyclRr149xo4dK7OI6s+GkZERLVu2ZO3atSxZsgR1dXUGDhzI/v37Jd55ZWVlFi5cyLhx45g7dy7du3fPtV0tLS0CAwM5fPiwWGeuRYsWrF69mqJFi+YpMiU3LFy4kJiYGLE8CmSF1Q8bNoyxY8cya9Ysihcvzs2bN4mIiODhw4cigVb37t2xt7enR48eUpEt0dHRxMTEULdu3R8u1y9fvmTZsmV8/vyZ0qVL8/LlSypWrIidnR0dO3bkxIkTrFu3Dj09PSpWrPhDx/K74W8O1a/D14V709LSuHnzJvHx8d+U+5wgJ+ThF/kV1eG9vLx48uQJ06dPp2rVqqSkpLBz5042b95MUFBQjsnWvytMTEwICwtDR0eHWrVqMW3aNMqWLUtGRgbe3t6EhYWRkZGBvLw8urq69O/fX2pzk1M4XXYoT2ZmJk+ePCEzM5Nq1apJWXFXrlxJ8+bN2bt3r0jUkJ1bcefOHZYsWUKxYsW4ceMGPXv2pH///mJuWLbyFRgYyK1btzA3N6dSpUq8fPmSkJAQFBQUcHBwyDEsUJYbX9ZELisE4ctY6X379nH//n1mzJghsqilp6ezaNEiDh48yLt371BTU8PT07NASYXfC79CZvKLXzHGbMYtV1dXtLW1yczM5PDhwyxYsICVK1dKUeb+7nB1dWXOnDn06tWLKlWq4ODgINZYWb16Nbt37+bz589kZmbSoUMHzM3NZRqEZL332QxagiAQExPD58+fqVKlitT9R44cIT4+nvPnz+Pj4wP8n1wnJiYyduxYKleuzO3bt6lXrx5DhgwRLdPZc8zJkyfZtWsXZmZmNG3alNevXxMaGsq9e/dwdXVFRUVFpgzLOibLyixr7vpSrq9du8a2bduYP3++mI8pCALBwcH4+fnx5s0bFBUVsbW1ZdmyZb9Mofor17Jx9epVpk6dysyZM+nSpQtycnJERETg6urKxIkTc82L+R0RHByMqakpnTt3pnr16lhbW4vsmtevX8fV1ZU3b96QmZlJ48aNJepDfglZcv2lYfT169e8f/+e8uXLSxXRffz4Mdu3bycuLo4FCxagqKgoynVmZibDhw+nSpUqPHjwADU1NaysrGjXrp0ok4qKity7d4/FixfTr18/OnXqxMePHwkPDxeZgbW0tGTKsKx1XJZcf2u9fvHiBV5eXri7u4t7Ccgy1EyePJl3794hCAL6+vrs2rXruxcIzw9+ptxk9+Xs7CxRkie/SE5OxsPD47eej/4kZGZmYmdnR40aNb7p/JCF76JQCYLAuXPniImJoWrVqoWuMn/hwgXWr1/PmjVrpM5FRESwevVq1q1bV+D2fwVevnyJl5cXDx8+5MKFC7x7945GjRpRtWpVatWqhbGxMUWLFuXTp0/s3buXqKgovL29JZSi3BSqvXv3EhYWRp06dVBUVOTOnTu0atWKoUOHihOmvb09y5Ytw8HBgeXLlwNIJKuPHz+exYsXi3HmX+LLCTY6Opq9e/cSHR1NyZIl0dfXF8kqcop//h4KVVJSEjNmzMDb25uSJUsCcO/ePQICAjhy5AhycnIsW7aMgQMH/vKE1f/Kxuv69evcuXOH0qVL07lz5zyxX+WEt2/fYm5uzoEDB6SU/ZcvXzJs2DBCQ0P/KO/Dp0+fmD9/Pjdu3ODq1as8ffqUypUr07lzZzIyMhg6dChaWlqkpaURHh7OwYMH8fHxkdo85aRQXbhwgcDAQCpWrIimpqbI3GVvby9uPhwdHXFzc8PR0REfHx+JjRdk1c3LDvmbNGmSRN9f/p7v3r1j//793Lt3D1VVVXR0dGjRooX4e/wohUoQBCZOnIiHhwcVKlQAsijr161bx/Hjx4mPj2fcuHFMnz79l8vSf0Wunzx5IuakdevWrVBRH5mZmfTo0YNdu3aJ83I2kpKSMDAwYP/+/VLlK35nZGZmsmzZMs6cOUNUVBS3bt2iePHiDBgwgPfv3zN48GCqVauGIAhERESI9d6+VqpyUqgePHjAqlWrKFq0KOXKlePZs2coKiri4OAgFrNevnw5Ojo67Nixg7Fjx1KmTBkJuQ4ODqZkyZI8evSIJk2aSBS5hv+T7c+fPxMWFsaVK1eALGbcTp06iXPwj1SoPDw8sLCwoGnTpuJY/P39OX78OA8ePEBfX581a9bILDL+s/ErFKrp06cXWqHy9PT8reejPw13796la9euEkRneUWhQ/5OnDjBvHnz6NChA7Vq1WLv3r3MnDkTd3f3AleoXr16NbNnz5Z5rlWrVnh4ePD+/fs/yktVvnx5UUmJjY1l48aNzJw5k5s3bzJ27FhxsVFXV8fMzIxjx44REBCQJ8r1wMBAEhMTJWpJAezZs4eFCxeKhWqVlZVRVFSkdOnSPH36VMJiBFnsQNeuXaNWrVq59le5cmXs7e1/ekLrmTNn0NHREReAiIgIbGxsxLpfVlZWXL9+/ZcrU/8F3Lt3jwkTJlC7dm1atGjBpUuXcHd3Z8yYMRJV7PODjRs3Mm7cOJn5L+XLl6dJkyZERkbSqlWrwg7/p0FdXR03Nzcga6O0a9cu7O3tCQwMpE+fPuIcpaSkhJ6eHg0aNGD+/Pli3ZXccO7cOf755x8WLlwoLrry8vJERETg7OzMwoULxfpU6urqtGnThtOnT9OtWzeJdkqXLk1MTAypqalSityXKFWqFNbW1sDPZet8/PgxNWrUEDf1L168YODAgcjJydG6dWtcXV1ZunTp3w3Dd0BcXBxjx45FRUWFbt268fLlS/z8/NDR0WHy5MkFMmYcOXIEXV1dKWUKsoiKhg0bRlBQUIHzEn4F5OXlcXBwwMHBgYyMDPbt28e0adNYu3YtnTp1Er9r9jtao0YN5s6dy4YNG775DB8/foyPjw+urq4i45i8vDxPnjxh1qxZeHl5Ubx4cRISEihTpgy9e/dmz549ItlVNrS0tHj79i2XL1/G0tIyx/7U1NTo378//fv3z3Odx++BlJQU4uPjJWrbDR48mJiYGNq0acP06dMJDAz8LZSpX4Vs6vzC3P8X3xcPHz4scC5foRSq7DyVvXv3SlifEhISGDRoED4+PgUK4Xn79m2ucddNmjTh0aNHtGjRokDj/tUoW7Ys06ZNIywsTKzLoKqqypAhQ8Rr+vbty4gRI76pUH348IHIyEgWL14sMZHLyclhbGzM3LlzefLkCdWqVSM9PZ3U1FRGjBiBu7s78+bNEzdYmZmZxMbGsm7dOnGD+LshPj6eatWqkZmZyZ49e1i8eDG1a9dmy5YtqKiooKqqyrFjx371MP94vH79mtGjRxMQECB6DAAmT57MyJEjUVdXp3fv3vlu9/bt2+KGXRbatGkj1g76E6Gurs7QoUM5dOgQzZs3Z/r06SgoKDBr1izxmkaNGpGQkEBiYmKuCoIgCAQGBrJkyRKJwuCQZVS6f/8+J0+eREdHhxIlShATE0P//v2ZPHkyFSpUoEaNGuL1UVFRREZGMnbs2O//pb8D3r9/T5kyZYCsvFkPDw8EQWDfvn2ULFmSBg0afJPQ5y++jfT0dIYMGYKXl5dEsVl7e3s8PDxYvHgxkydPzne7t2/fFkkFZKFNmzYShCh/GhQUFDA2Nub27dsALF68mHHjxrFx40ZxzS1dujT169fnxo0b3ywMv379epydnaUKU1erVo3hw4cTFBSEra0t1apVIyoqio4dO7Jr1y5Onz5N27Ztxetv3brFvXv36NevX77o138WkpKSxP3F3bt3cXd359GjR+zYsUMMi965c+cvHOGvx98cql+HSZMmSfwtCAIvX77k4MGDDB06tEBtForlz9vbm5UrV0q58jU1NfHx8ZFgn8nXoOTlJSh+v0ZsbGyultY/BcWKFcPDwwM9PT2Cg4MlhENBQQE1NbVvasrHjx9HV1c3R6tYv379OHToEJBFeLF7926qVKnCtGnT8PLywsXFhTVr1mBjY8Pnz59xcXH5LcgBZKFixYpcu3YNe3t7ZsyYQevWrVm2bJnokbp69eo3vWt/8W2sWrWKGTNmSChTkOVlWbly5TcrjOeE4sWL51qT7b8i1x8+fGDKlCnY2toSFhYmpQzUqVOH58+f59rG3bt3qVu3rpQylQ1DQ0MOHz4MZJFKbNiwgaJFi+Lp6UlgYCDTpk1j9erVODo6cvv2bcaOHUu9evW+zxf8zqhYsSL37t3Dzc2NkSNHUqJECTZs2CAR1vu/lqz+I7B//3569+4toUxBlvHN2dmZI0eO5Lru5oTixYsTGxub4/n/ilzfvXuXMWPGsHnzZm7duiVFl964cWMePnyYaxvJycl8/vyZ8uXLyzzfqlUrkXGzT58+BAUFkZmZibu7O5GRkUyYMIFVq1bh7u5OcHAwffv2/W3z04oWLUpsbCxr167FxMSEd+/esWbNGlGZSkpKKpR35r+Avyx/vw5Xr16V+Fy/fh2ARYsWsXTp0gK1WWAPVUZGBomJiVKbrmzUrVs3TzVaZMHIyIht27bJDBH4+PGjWGDzT0e2+93Q0JBDhw5x9uxZ0dKnoqLCx48fqVevnqgsXb58WaqNuLg4qlWrJqVQZSti2THB6enpGBgY4ObmxufPnzE2Nmb+/PncvXuX0NBQVFVVWbhwIcrKymIy/JeQtdDKCt3KKdxOVvy8rJBNWX1nW9+aNGnCjBkz0NDQIDw8XCK0KT09nQkTJrBjxw6Z/f9F3nH+/HkJr8qXUFNTo0KFCsTExOR7k2tmZoa/v79M9kVBENi7dy979uwpyJB/K2QbhHr27Mnq1atFsgfIsmQ/efIEbW1tiZDbr2X77du3lC5dWiq/IVuuixQpQnJyMunp6TRo0IDz58/j5eWFtbU1s2fP5tmzZxw5coQ3b96wcuVKSpYsKVOGc2IOlaXIyZLtYsWKSR2TFfolS66zv5uSkhIXLlwgOTmZTZs2YWlpKTGfjRw5kjFjxsgc51/kHSEhISxevFjmOTk5OXr16sXJkyfp1atXvto1MjJi6NChDB48WKZhb/369cyYMaNAY/6dUKpUKV6+fEnPnj0pU6YMW7duZebMmUCWXEZFRaGrqyuxN/laruPj49HU1MxRriFrvUtPT6dYsWL07dsXJycnRo8ezbhx44iNjeXkyZNcvHgRb29vatWqJVO2QLZsy8qBlUUEIct7nle5zl6vBUEgISGBzZs3M2fOHKZNmyYxr/j4+DBw4ECZY/9fwV8P1a/D8ePHv3ubBfZQZWRkfDNXpaC1QoYMGcKOHTukqnh/+PABS0tLpk+fXqB2fzc0atSIS5cu0bx5c+rWrcumTZtEAenVqxcXLlygevXqWFpa8uTJE5lt1KxZk5s3b+bYx61bt8TwHwUFBVxcXChXrhxz5sxh0qRJrFixgkqVKuHu7p6jNfx3QGZmJo6Ojqirq1O9enUJZezBgweYm5tjY2Pzn7CE/mooKCjkmgdQrFixAlmyW7ZsSXx8PFu3bpVYCNLT05k4cSKmpqa/lOXpe8HIyIitW7eipaVFz549CQoKEo0nDg4OHDx4kHbt2tG7d28iIyNltpEd7pMTHjx4IGHlHjFiBF27dmXp0qVMmjSJBQsWICcnh5eXl8yN0O8ELy8vkpKSqFGjhoSS/vr1ayZOnEj16tX/2PDu3wlJSUkyFeBsFFSuS5QoQceOHXF1dZUgGhIEgZUrV6KhofGfiBywsLBg7dq1KCkpMXDgQA4fPsyLFy+ALGV15cqVjBw5knbt2nHw4EGZm91ixYrx+vXrHDfCXytBOjo6jBw5ksDAQCZOnIibmxsvXrxg9uzZv/0z3bp1Kw8ePKB27drUrFlTXFM+fvzI4sWLuXLlSq65X/8L+Ouh+m+hwB4qZWVlPn78SEpKikzFKiEhocCDUlVVJSgoSAxLa9KkCa9fv+b58+c4OTnRuXPnArf9O2Hq1KmYm5szZswYbG1tmTRpEidOnKBOnTo8fPiQsmXLoq+vz5YtWwgNDWX//v1SSk+LFi3YsGED8fHxMpnD9u7dy4IFC8Rj2bTsurq6AH9MbsKDBw/4999/8fPzo1q1amzYsIF79+4hLy9P2bJlcXJykgpl+R6IiYlh165dJCQk0LhxYwwNDQvFdPcnQEtLi0ePHknk4WRDEARu3rwpRWiSV6xdu5Z58+ahp6dHy5Yt+fz5Mzdv3mTEiBESOYR/MoYMGYKxsTGGhoZYW1tz5MgRAgICGDhwIKGhocjLyzNgwAD27NlD69atuX//vlQb2WG3Dx8+lPLGC4LA5s2bpeK8W7ZsScuWLQEKVdfqZyI1NZX9+/djZ2eHsbExJ0+eZOHChSgpKaGqqoqNjY04V31PJCQksGPHDl68eEG1atUwNTX9o1joCoI2bdpw9OhR+vTpI/N8eHg4Xl5eBWrb0dFRrCWkra2NkpISkZGR9OzZ8z9TD7BFixasWLGCTZs2YWRkRFBQEH5+fri6unLgwAEArK2tuXjxIn369GH//v1SoX0KCgo0a9aM8PBwdHR0pPrYsWOHlIewVq1aoofvT5FryGIh1NfXx9XVlYsXL4q5XnJycgwaNIgNGzbkyApcUKSkpLB7927u3r1L6dKlGThwoMia+Dvir4fq16FZs2Z5JuHJZsj8FgpFm75p0yZevHgh02M0bdo02rdvT79+/fI0kNz6fvz4MZqamlSrVq1Qbf2OePbsGTY2NqSmpnL37l3i4uJo3749JUqU4NmzZ1y6dImgoCAGDx7Mjh07ZG5y79+/z+LFi7G2tqZVq1bIy8tz/fp1/P39GThwoBhGKCtxVZZCJeuVKGzIn4KCApGRkbx69QpBEChfvjwqKiq8evUKeXl59PT0KFGihFQIwadPnwgNDeXQoUNERkaycOFCdHV10dbWltnPl/j8+TPbt2/nyJEjAOjp6TFo0KA8eUEEQWD69Ok8efIEKysrtLS0OHfuHHv27GHBggXfJE74k+mVIyIi8PX1ZdOmTVILXkBAAE+ePBFDXQqK5ORk7t+/j7KyMnXq1PmjqNLzgg8fPjB8+HBevHhBfHw8d+7coUWLFrRt25Z169aJ1Ml16tRh+/btMq3NcXFxzJgxAyMjI7p3746SkhKPHz9mw4YNNGjQQGRblCXXed14FTbkT01NjStXrvD8+XNSUlIoW7asmCuXlJQkFgb/Wq7T0tI4ceIEYWFhHDt2TAzr+5r6WRbS09M5cOAAISEhJCcn07ZtW6ytrfPsifP392fXrl1YW1tTs2ZNbt++zebNmxkzZgwmJia53vsny/W7d+8YNGgQ+/fvl5oDIyIi8PHxISAgoFB9Z2ZmcvfuXTIyMqhbt26Bo1R+V2RkZODl5cXevXtRUFDgwoUL1K1bl/bt27Nhwwbu379PzZo1UVJSYtq0afTv31+qjdTUVGbMmEGLFi0wNDREXV2d2NhYduzYwadPn0S2xbzKdV69XZD3kL9ixYpx+/ZtHj58yMePHyldujTlypUjNjaW9+/f0759e+rXry8l19k08kePHmXnzp3o6Ogwd+5cCTKNnCAIAmfOnCEgIIB3795Rv359Ro0aJbIEfgvh4eHMnTuXwYMH07x5c2JiYti0aRNt2rTBycnpm/f/Ctr0SZMmFYqVOCUlhcWLF//W89HviunTp7NixQoaNGhAu3btgKySTbdu3WLMmDEScuHi4pKnNgulUAmCgKOjI4mJidjb21OrVi2ioqJYunQptWvXzjEP43eGIAi8evUKBQUFkXnqR+PChQskJiZy48YNHB0dsbW1pWLFinh5eXHv3j1KlixJ9erVadmyZY4/7Lt379i9ezfXr19HTk6OqlWrYmJiIhFC86MUqrS0NGJjYxEEQcK1/yWsra15/PixOIbs0BBFRUUEQUBRUZH58+ejqqrK9u3bkZOTo2fPngQHBzNgwADKly+PlZUVhoaGJCQksH///lwnkLt37zJ69Gisra0xMjJCEASxqOy6deu+mYPn7e2NsrKyVHHghIQETE1N2bJlC+XKlcvx/j954wVZm879+/czefJkWrRowYsXL1izZg2vXr1i/fr1f6SX7s2bN6SlpVGuXLnvbhmVhfPnz5OUlMTjx4+ZPHkyrVu3xt7enn79+nH+/Hnatm1L165d+fTpE8uXL5cpn58/f+bgwYOcPXsWOTk5ihcvjomJiQTBxI9SqDIyMnjz5g2fP3+matWqMmsVubu7izXgvqx/lf13dm5j27Zt2bJlC2/evMHIyIjdu3fTo0cPOnfujJGREe3atePjx48EBQXlyvAaFxfHkCFD0NPTw9zcnGLFinH06FF8fHyYPXs2Xbp0yfX7hoaGsmfPHlauXCnxDqSlpWFlZcWECRNyZaz70+X6xIkTzJ07l/Hjx9OjRw8SExMJCAggPDycbdu2/ZEh0wkJCXz48IGyZcv+NAXu1KlTxMTE4OLigiAIeHh4MHDgQNasWcOoUaMYN24c27ZtIzg4mKJFi0rdn56eTnh4OEeOHCE9PR1VVVUMDAxo06aNuH7+KIVKEATevXtHQkICVapUkfke79ixg5UrVwJZc8GXdeRUVFRISUmhX79+jBw5kqCgIG7evEnfvn05deoUDRo0oE+fPjg4OFC0aFGUlJRYvHgxHTp0yOFpZsnfsGHDqFy5MqNGjaJChQpERETg7e2NkZHRN9mO79+/z8SJE9m5c6fERlgQBDE88lvMbb9CoZo4cWKhFaolS5b81vPR74qRI0dSvnx55s6dK3HcxcWF6Oho1q9fn+82v0th3+vXr7NhwwaxsO/w4cOpX79+vgfzKyEIAv7+/mzfvp3q1auTlpbGq1evGD16NEZGRj9tHBMnTmTt2rUMHTqU7du3U7x4cZYsWcLp06fx9vbGx8eHjh07StwjiylH1obxy6KA2ZCVVCrrupwKOru7u3P8+HGxnezN0Nu3b3F2dmbq1KmkpaVRu3Zt4uPjSUhIQBAEXrx4gYKCAmXLliUuLg4HBwe2bdsGgLa2Nh8+fOD58+dERESQmpqKIAiYmJjQqFEjTE1NOXXqFBs3bpTxBLOUtZ49exIQECAVchETE4O1tTWHDx/O0SuSmpqKgYFBjtccPXqUCxcu5Oql+dM3XgBPnz7F39+fO3fuUKpUKaysrGjbtu0f500KDQ1l2bJllC5dGlVVVR49eoSRkRFjx479ad9l/fr1jBgxghEjRhAeHk58fDyLFy/m8+fP2NvbM27cOKkFP69yLatoriy5llVbShYxTExMDCEhIRw6dIh3794BWaUeSpQoQXR0NBYWFixatIgiRYqgr6/PoUOHSE5ORllZmdevX5OcnEyFChVITU3Fy8uLefPmAVClShXKli3L5cuXCQwMFL1yU6dOJSYmhkWLFuHr68uhQ4dyVHjNzMyYMmWKlCfr8+fPGBoasnPnzlw9VYaGhgQGBsp832NiYnB0dCQwMDDH+/8Lch0XF8fGjRu5ePEiRYoUwdTUlN69e/+W1Nu54erVq7i7uyMvL0+pUqV4+PAhrVq1YtasWYUqlpofXLx4kbZt22Jra8vVq1e5du0ac+bMoU6dOlhZWdGlSxepDVth5FqWAVTWdSBNIpGYmMi+ffvYt28f0dHRQJYnqlq1ajx+/JguXbqwbt06ypUrh7OzM56enty+fZt69eoRHx/P+/fvqVChAgoKCmzZsgVbW1vS09MpUaKEGMbo6OjIgAEDAFizZg2BgYEEBwezcOHCXGXT1dWVevXqMXjwYKlnZWlpyeTJk3P1Xo8fP54RI0bIjFxJS0ujd+/eouEnJ/wKhWrChAmFVqiWLl36W89Hvys0NTWJjIykdu3aEsfv379Py5YtC5S29F0Uqv8CZs6ciZqaGo6OjqL1PSkpialTp6Ktrc2oUaN+yjgSEhKwtLRk//79VKpUiQ8fPqCurs6KFSvw9PQkJiaGPXv2SEwMv0Kh2rdvH97e3jRs2JDBgwfTqlUrkpKSCAsLQ01NjU+fPrFixQpKlixJRkYG8fHx4veT9Q5lZGSwfft2ypcvT7du3XB3d2fFihUUKVKEjRs3iv+uW7eO4OBgtm7dyvz586lUqRKQtfn/999/KVq0KB8/fuTOnTs4OjpK9QMwd+5c2rVrlyPd7OXLl9mzZ4/UQpiNzMxMDA0NOXjwoMzz8GfIzJ8wxsJi27ZtHDlyhGXLlok5MhkZGfj5+fH48eMC06PmF5mZmdjb27NmzRpKliyJvLw8Hz9+xMfHhyNHjhAcHMyRI0ckfodfoVBFREQwc+ZMSpQogYWFBR07dkRZWZlDhw6RkpKCuro6S5YsQUlJCRUVFd68eQNkedlz8uz8888/JCcn07dvX44dO8aYMWN4+/YtmzZtonLlypw9e1akg37z5g1t2rQR86bevXvHhQsXUFBQoFKlSixcuJBNmzbJ7GfPnj08fvyYiRMnyjyfXVh09+7dMs8DGBgY/JXrPwCXLl3C1dWVjRs3ipEkgiBw4MAB/P392blz50/zVi1atIg5c+YAWRTy2aQRKSkpeHh4sHHjRho3bixe/ysUqidPnjB16lQ+fvzI0KFD6dq1K1paWoSHh/Py5UsqVKiAn58fiYmJlChRQiTbyPa4ycKlS5eIiorCxMSExMREOnfuzOPHj/H19aVNmza8ePECIyMjpkyZQocOHXj48KFY++fz58+cOXOG1NRUtLW1GTFiBIcOHZKp8Ny/fx8vLy/8/f1ljgO+LbejR4/G2dk51/DBX6FQOTg4FFqh8vHx+U/L+o9CuXLl8PT0lPJ+btiwAScnp1xLQeSEAsftpKen5xjn+6fhyZMnPH78WMoyWaRIEXx9fdHX18fMzOynJC1ramqyb98+Fi1aJNYCev/+Pebm5jg6OuLi4oK7uzvFixfn+fPnlCxZEgMDg5/iEczIyODEiRMEBQVx48YNbG1t8fX1lci3MDAwEP9vZmbGsWPHyMjIoEmTJpQuXTpHoVdQUMDc3Fz8++bNm4SFhdGyZUt2796NmZkZJiYmbN++ncWLF2NhYcGlS5dQVVXF3t4eZWVlOnbsSFxcHGvWrMmVPUhXV5djx44VuH6HnJzcH+elySsyMzPJzMz8I0P6vkZKSgrr168nLCxMYp5SUFDAwcGBUaNGcfv2bbEuyo+EvLw8K1asoH379kycOJG0tDS0tLQYOXIkbm5u7NmzB2dnZ5o3b879+/cpUqQIPXr0oHXr1j8lPPHKlSts376dM2fO0Lp1a0JDQyWUre7du4v/Hzp0KLt27SIpKQltbW2UlZVp3bp1jm3r6+uL/4+MjGTt2rVYWVmxYcMGZs+eTbt27WjcuDHz589n69athIWF0blzZ6ZMmcLz58/R1dUlPT0dZ2dnKleuTEZGhsx1R1dXV2apjb/IUjbS09P/MzlNbm5uBAYGSryjcnJyGBoa8ujRI3bv3v3TKLknT56MhYUFnTt35vnz59SqVQsXFxccHR3R0tLCzc0NIyMjbt++jby8PO3btxdzIn80Hj58yPbt2zl8+DCVKlUiMjJSItz9yzA8GxsbNm/eTHx8PA0bNgTA2Ng4x7Zbt24tyn14eDhTpkxh69atLF++nDZt2lChQgX69u3LypUrsbe3Z/PmzUycOJEFCxZw/PhxevbsiZqaGsuXL+fly5d8/vxZ5h6rdu3avH79ulDP4Xddr/+SUvw6TJgwgTFjxnD58mUxx+/ChQusX7+e2bNnF6jNfO+a9u3bx5o1a1BQUBCp0ydMmECnTp0KNIDfAVu3bs3RCiMvL8+gQYPYu3evWEvmZ6Bhw4YYGBgQFhaGp6cnDg4O3Lt3TyzO265dO8zNzSlXrhw7d+5k7969ODo6/rDNV3JyMi4uLpw6dYpmzZqxYMECpk6dmus97du3p3379gXqT1lZmdKlS6Ouri7GjRcrVgwzMzNWrVqFsbExmpqaDBkyhMWLF0tYADMyMvj333/ZuHEj1tbWUm1/+PAhV2KKxo0b4+TkhCAIMifi8PDwXDeQfyIuXrzIokWL+PTpE0pKSqSkpDB8+HAxfONPxOHDh+nbt2+ORh9bW1u2bNmCp6fnTxtTuXLlsLCwYOnSpcyZM4dx48axb98+hg8fzqpVq3j79i0jRoygYcOGHDx4kJ07dzJv3rwfRiefmZnJ8uXL2bp1KzVq1GDatGkYGBjIDAXMRp06dXB2di5Qf8rKysjJyVGtWjVRruXl5Rk5ciQODg48fPgQZWVlkfXxSwNNjRo12LZtG9OmTcPb21uq7W/JtYqKCmlpaSQmJuYY8qepqVmg7/W74uHDh3h6ehIdHY26ujqJiYn069cPOzu7P9YY+vjxYypUqJDjOzps2DCGDRv2U2sclShRgjFjxjBx4kTMzc1xdXVlzZo1zJo1i2nTprFp0ybs7Oxo06YNZ86cYfz48WIJkx+Fffv2sWDBAkqVKsWIESMwMTHJNXe4TJkyTJkypUB9KSsrk5ycTIMGDfjnn3/E4zY2Nuzdu5fw8HCUlZVxd3enSJEihIWFidfo6+szduxYLCwsCAkJkVpzMzMzJej4ZaF69epcv36dJk2aSJ1LS0vj/v37VK5cuUDf7S/+m3BycqJGjRr4+PiwdetWAOrXr8/GjRsLPHfka/e9YsUKMXl17969HDhwgFWrVrFy5UpCQkIKNIDfAW/evMlV2KpUqSKGtvwMPH36lN69exMSEoKhoSEtW7bE2NiY3bt3k5mZiaurK9evX8fe3p7Y2FimTJlCzZo1f2hRWz8/Py5dusTChQtZsWLFD1eg+/Xrx7p164iPj5dw09epU4e0tDS2bt3Ku3fvGDhwoIQyBWBiYoKmpiYBAQEyJ+KtW7fmmhenrKyMrq4uy5cvlzqXmJiIl5fXTwsB/Rk4cuQICxcuxNfXl4MHD7Jnzx527drFlStXcHd3/9XDKzDyIteFtXzmBxkZGQwYMIClS5fSqlUrmjVrxpQpU7hy5Qrh4eEsX76c9+/f4+TkxPHjxxkxYgRmZmY/lHZ67969bNu2jQkTJhAQEEC/fv1+qHeyb9++BAUFcfv2bQm5rlmzJvLy8qxZs4a6deuKnvcv0a1bN+Li4oiOjubVq1dSbQcEBHyTpc/Ozo5p06ZJWXbT09OZOnWqFAnNn4w7d+5ga2vLlClTOHToECEhIYSFhaGqqsqwYcNkhp79CXj79m2ucq2hoZFjGNyPQs+ePZk4cSKVKlWiVatW+Pn5ER8fz6JFi/D396d48eLMnTuX1atXY2JiwowZM/Dw8PhhHobbt2/j6elJv379CA4OxsrK6odG2HTu3JlDhw4RFRUl8duUKlWKkiVLsnHjRvT09Lh48SKTJ0+WuLdy5cqkpqZSr149Tp06JdX2kSNHpPLGv8b48eOZMWOGTPIsd3d3zM3Nf0svVXZESGE+f1FwDBw4kLNnzxIXF0dcXBxnz54tlCEmXwrV2bNnWbJkiURxQC0tLTZt2sTy5ctlxuj/CahVqxbXrl3L8XxERARpaWmcPn36p9RtqlixoqiwVK1alSpVqrBu3TqUlZV5+vQpw4YNIzExkXr16hEcHExKSopI1ABZFl9ZgicvL5+nT0ZGhtTn6NGjTJ48mSlTptC2bds80aAWBv369ePMmTM0a9aMTZs2iZXkW7dujaamJklJSYSGhqKrq8u5c+fEvKfMzEzq1atHRkYGpUuX5tKlSxLt7ty5E2VlZZn0819iypQpPH36FDMzM8LCwrh8+TLLli2jb9++uLu7S5Fd/Mnw8fEhMDBQwlqqrq6Op6cnN2/e5PHjx79wdAXHt+T68uXLqKmpceLEiZ9iMFFQUBDjtWvVqoWmpibu7u7UqVOHmJgYWrZsyevXrzE1NWXv3r28e/eOVq1akZCQQEJCQo5yraCgIPWRJdeyikKeO3cOQ0NDlixZQrt27X64bNetW5eUlBTatWvHnj17iIuLA7JIL+rXr8+NGze4evUqxsbGXLhwgYiICPbs2UNycjLq6upiqNS+ffsk2o2MjOTYsWMS4YWyoK+vT7NmzTAwMGDnzp1cuXKFgIAAevfujbGx8Q+f134m5syZw5YtWyQYIRUVFRk1ahR16tSR8CT8SahWrRq3bt3K8Xx0dDTy8vIcP36cJ0+e/JQxZct1hQoVKFKkCKNHj8bY2JiXL1+ipqbGgwcPcHNzIzw8nIcPH1KlShXq1KnDrVu38iXXsj6y7g0PD6dGjRrs3LmTjh07/nC5VlNTo0uXLpQuXZrz589z+/ZtIGvO69y5M2fOnCEzM5M+ffpw+fJlLl68yP79+4mLi0NOTo7x48dz7949KaPw8+fPmT9/PjY2Nrn2X6dOHRwcHNDX12ft2rVcvnyZffv20b9/f5SUlL7JEvir8Lew769DREQEFy9elDp+8eJFIiMjC9RmvkgpQkJCcoypXblyJVpaWmJtlD8J8fHxDBw4kH/++UfCOisIAp6ennh7e4vJg6dPn6ZRo0bMmzfvh8ZAp6am4uzsjL+/P/Hx8ZiamhITE8PLly/59OkTV69e5fr165iamlK+fHns7e05ceIEY8eOpVSpUjItF7J+alnJ67KOGRkZsWjRIuzt7b/PF/wCr169IjAwUCyyaW5uTsmSJXnz5g1Dhgzh2LFj9O7dm+bNm3Pq1Ck+fvzI06dPadWqFYcOHZJoS01NjZiYGNTU1OjRoweZmZlYWVkhCAKhoaHUqFGD+fPn5/m3i46OZufOnSQkJNCkSRP69u2bp3v/hMTw7DHOnTs3R8bCM2fOcOTIETHp+k+CIAjo6uqyc+dOqfCgHTt2YGdnh5mZGVWqVOHixYuoq6uzdOnSH0odLQgCPj4+LFq0iOfPn9O2bVsUFBRIT0/n2rVrhIeHo6mpia6uLmlpaYwaNYqUlBRq1apFmzZt8izXsiiTZcm1i4sLzZs3Z/Xq1d/nC36BDx8+sG3bNrHIppmZGVWrViU5OZnRo0ezdetWGjZsSP/+/Tlz5gzv378nIiKCUaNGcenSJf7991+J9qKioqhbty62tracOnUKOzs7ihUrRnh4OJmZmfj5+eUaqvgl3r9/Lxb2rVq1KgMHDpRJb/01/iS5HjJkiBjK8jXevXvH2LFj2b59+08e3feBubk5M2fOlModvnDhgliHqEOHDty6dYv379/j7e39zVIZhUVISAizZ8/m1q1blC9fno4dO/LhwwfCwsLYsGEDffr0oUePHty7dw9LS0saNWrE48ePsbCwyLNcyzLoypJ1Hx8fPn36xLlz577Pl/sCqamp7N69m8jISIoUKYKJiQna2toIgsDcuXNZsGABGhoajB07lsuXLxMTE8OlS5eYPHkyz549Y+fOnRLtHT58GF1dXdatW8fs2bMZN26cSJv+5MkTfHx88vzbJScnExISIlHYt2zZsnm691eQUtjZ2RWalGLFihW/9Xz0u6J169Y4OjpK6SwhISHMnz9fprL1LeTLQ5WbVb927drExMTkqZ2IiAjGjBlDv379GD9+PNevX8/PML47ihcvjq2tLWZmZjx48EA8bmdnx+bNm9m3bx8uLi44OTlx8OBBWrZs+U2LSWGhrKyMt7c3t27don///hw5coTIyEicnZ359OkTmzdvpnfv3uKE6ebmRlJSksyCnN8DJUqUyPPvmx8sWbKEMWPG0KBBA2xtbalcuTIWFhZs2rQJLS0tjh49Su/evUVyCzc3N1q1aoWSkpIEmUD2Rurz588kJCSgrKxMmTJl8Pf3p0yZMpQtW5b169ezePHifCnCpUqVoly5cmhoaCAnJ/eftAh9L7l+8OAB06ZNw8jIiOHDh3P8+PFf+rzk5ORYsGABgwYNIiIiQjy+YsUKnJ2d8fb2xtfXlylTprBz507Gjh3LoEGDfmi4kJycHBMmTBDrpD1+/Jjz58+jr69PjRo18PPzo2HDhmLyuKenJ+/evSvUopsbihcv/kPkev/+/RgbG6OhoYGNjQ1t27bF2dmZGTNmoKKiwsaNG7Gzs+PatWs8efKECRMmiPl6LVu25NGjR4BkIdIHDx4gJyeHlpYWK1asoFatWmhoaODu7i5FUPAtFCtWjAoVKqCpqYmSktJ/Uq5zq+dVqlSpHGuQfY3Xr1/j6emJsbExZmZm7Nq1SyYT7M+Et7c3Y8eOJTQ0VFRGjh8/joWFBf379yckJITJkyezfv16fH19GTVqlMww0e+J/v37c/36debNm4eKigo7d+5EXV0dQ0NDvL29KVWqFGfPnqVnz56sWbOGW7du/TC5VldX58WLF989JOzff/9FT0+Pd+/eMWLECPr06cO6deuwtLQkNTWV2bNnM3/+fF6+fMm5c+cwMzNj+vTpADRo0EDC8p8d8pt9rGjRosyYMYO2bduirq7O6NGjOXDgQL4UYRUVFSpXrkzx4sVRVlb+7eX6r4fq1+H27dsyqfibNWsmeljzi3wpVPfv38/x3J07d75Z0VoQBBwcHNiyZQuTJk0iJCQEW1tbli1b9suLAJuYmODs7IyHhwcGBgbo6Ohw+PBhDhw4IBW/O2DAAIoUKcKNGzd++LgqVKhAcHAwDx48oGLFijg5OdG3b1/Wr19PSkoK2tra1KpVi8zMTN6/fy8Rjvk90aZNm+8eIrJ7926io6MJCQmhd+/e1KlTByMjIw4cOMCJEyc4ffo0AI6OjmhqarJ+/XrevXtHTEwM5cuXx8HBgd69e5OSkkJcXBxNmjShcuXKVKlShXPnzlG8eHHq1q2LkZERRkZGudankYUtW7ZgZGREcnIyzZs358WLF/Tq1UvKK/an4969ezmey4tcA6xatYrp06djampKcHAwc+bMITw8HHNz81+6+WrevDlr164lKCiI3r17Y2BgwNy5c9m8ebMUYUmrVq0wMjIiODj4h49LTU2NlStXivVfXFxc6NmzJ3v27BFpjFu2bAlkbTiyWbe+N9q0aSOxKf0euHXrFuvXr+eff/5h8ODB1K1bl27duon1n7K9YWZmZmhraxMUFMSjR494/vw5SkpKWFpa0qxZM96+fUtaWhojRowAskhunj17xuXLl+nWrRv6+vqYmJjk6f38EqdPn0ZXV5f79+/TrFkzBEFg4MCBrFq16rs9g98BXxoHv0ZsbGye1oojR45gYWFB8+bN2bFjB35+frx48YI+ffqINcp+BcqXL09wcDDXrl1DX18fQ0NDLC0tcXFxYfHixRLXVq5cmblz5+Lr6/vDxyUvL8+MGTN4+PAhkydPJjg4mJo1a3Lr1i3OnTuHuro6Xbt2BbJSKH5ULnLdunV5+vQpUVFR363NxMREJkyYQHBwMHZ2dtSrV4/WrVuzbNkyBg0aJBJatGnTBmNjYw4dOsTly5fFmlft2rWjSZMm3Lx5E0EQxKgIXV1dPn78yJo1a7CysqJbt26YmprSqFGjfI3v4cOH6OnpcfjwYbS1tdHS0mL8+PFMnTr1t801+qtQ/TqoqKjIpEZ/+fJlgfOI8xXyp6enh42NDVu2bCE9PZ20tDQ6derE8OHDMTc3JywsLFcPib+/P+/fv5fJJDNz5kyaN29O//79C/RFvjc2bNiAqqoqQ4YMkXn+0qVL7Nu3Tyxa+TOwbt06Ro0aRVBQEBYWFjg7O+Pq6sq6desYO3YsaWlp4sQm62ctaMjf58+fGT58OHZ2doVmRPv48SOrVq3i6NGjXL16lWbNmmFmZoaFhYUEQ+GrV68YP348O3bsIDIykhcvXjB8+HA0NTV58uQJrq6uzJo1i71797Jw4UJSUlLw8/OjTJkyhISEEB4ezvbt2wusYB4+fJigoCCR0TIbycnJDBkyhDlz5shkFMrGnxQa1KlTJ1xcXPD39+fDhw+kp6dTv359xo0bx9SpU1m8eHGum9aLFy+yatUq1q9fL5X4GxQURFRUFK6urj/42+QNkZGRhISE4OHhIfN8dp2Wn6FUZSMqKooGDRrg7e3NggUL6NixI8HBwRw8eBALCwvi4+Pp2LEjCxYskOldLWjInyAIODs7U6lSpVxruOQFGRkZbN68mV27dnHz5k0qV66MiYkJNjY2EsnwGRkZ4qbnypUrJCYmMn78eN6+fcunT5/o3bs3O3bs4Nq1a4wePRplZWXGjx9P27ZtOXr0KJs3b8bf3z9X70tuePDggTivfBniJwgCEyZMoHPnzrkSW/xJcm1oaMjEiRPZsWMHz549Q05OjjJlyjBu3DhCQkLo0KEDvXr1yrGdN2/eYGZmxv79+6UK5V69epWFCxfmGFL4s/H582fMzc1zrDEmCAK9e/eWYJf70RAEASUlJaytrfn333/5/PkzV69eJSIiAisrKx49ekTdunXx8fGhVKlSMu//GnkN+Vu0aBFPnjzhwYMHhWZzPHjwIP7+/ty/fx8FBQUMDQ2xt7eXCqXr378/a9eu5fHjx6SmpuLm5saZM2fQ0NBAQ0ODqKgoXr16xcCBA1FRUUFXVxdra2suXbqEj48Pc+bMkaBxzw8+ffqEoaEhmzdvFmtTZmPNmjW8fPkSFxeXXNv4FSF/tra2hQ75W7169W89H/2uGDx4MK9evWLv3r0iu2t8fDxGRkaUKVOmQCRv+fJQJSUl4e7uzuLFi9m/fz///PMPVatWRVtbm+HDh38z3CwoKIgePXqwePFivL29uXr1qnhu2rRprF+/Pt9f4Efhw4cPMie5bJQqVeqnEFR8ieyQFldXV5o1a4aHhwcuLi5s376dwMBAvLy82L59O+Hh4WKtpC8/slCkSBGpT7FixSQ+N27cIDExETs7u0KNPz4+nv79+1OjRg1CQkLEjWNcXJwU61S5cuXEhaJly5b07duXwMBA6tSpw5AhQxg3bhyQxRr27NkzIiMjMTIyYtasWdSpU4d9+/YVylu3bNkylixZIrUYJSUl0aBBA/r27cugQYMICAggOTm5wP38DmjcuDHDhg1j3Lhx7N+/n9DQUAwNDenSpYtIipIbVqxYga2tLcuXL2fBggUcO3ZM3Axks+j8bNatnPAtuS5atOhP96hlv2OrVq2ibt26hISE4OjoiK+vL66urmzfvp3IyEhWr15NZmZmnuRaTU1N6vO1XL99+5br168zduzYQo0/PT0dS0tLPn36xK5du2jUqBEnTpygUqVKmJiYiPTo2d+1Tp06REdH07JlS7p37862bdvo0KEDXbt2FRXdpk2bUqJECU6fPo21tTUTJkwAsjZ3BVWmAHx9ffH09JTKl0pJSaFRo0aMHTuW/v374+PjIxYj/1PRp08fBgwYgI6ODgcPHuTAgQNMnTqVYcOGceHCBfT09HK9f/369YwaNYrAwEDmz59PcHCwKMfNmjVDQUGBp0+f/oyv8k0kJSXlSnkvJyf3w8Lhc+tTQUGBo0ePoq6uTlRUFKNHj2bhwoUYGxsTHh7Ox48fcXNzIzk5OU9yra6uLvXR1NSU+KiqqnLu3DlGjx5daGVq9uzZnDp1inXr1lGnTh3Onz9Pjx49GDJkiBThh66uLufPn6dly5a0b9+eTZs2YWpqSv369VmzZg1ycnKUL1+e9u3bc+zYMaZPn86wYcO4e/cuQUFBBVamIIu5d8SIEVLKVEZGBhUrVmTNmjUYGhri4uLC8+fPC9zPj8Bf79SvwaJFi4iOjqZq1ap069aNbt26Ub16dV69esWiRYsK1Ga+FKrmzZszf/58Jk+ejIGBAQYGBoSGhrJs2TIOHz6c673v3r0jKiqKNWvWoK2tTYsWLdi8eTP9+/cnLi6OYsWKFbiGUkxMDOfOnfuubGTNmjXjzJkzOZ4/ffo0TZs2/W795QVdunTBxMSEqKgoLl++TFpaGmvXrsXT0xNTU1McHR1xcnLC0dERLy+v77aJvX79OvXq1St0HQcXFxdmzZpF//79UVRUJCMjA3V1dSZMmIC2tjbbtm2TuP7rCUNPT4/Q0FACAgJE4oDMzEzRevrq1St8fX0xNDQs1EKSlJSEioqKlMXn4sWLmJqa0rp1a+rXr8/atWtJTk7GwMDgh+Sh/Cw8efKEffv2sWrVKnr37k2fPn1YunQpCxcu5Pr167lO3BkZGZw+fRpfX1+qVatG+/btOXfuHD179uTevXvIycnRsGFDnj17lu9xxcXFcf78eW7duvXdFo+GDRtKMT9+icuXL1O7du3v0ldeUb16dezt7Xn27Bl37twBsqyq1tbWODg4MGjQINasWSMWxvxeG/0bN26gqKgohiAVFBs3bqRjx47Y29tTpEgRBEFAUVGRAQMGMGXKFCkvfnp6uoR8Nm7cmODgYPbv30+tWrXE49ly/enTJxwcHLC2ti50Pa6HDx+ira0tcezZs2fo6+ujoKCArq4uS5cupXLlyvTv37/AbE+/AwICAjh37hynT59GT09P9FjZ2dkhCIKEoisL27ZtY8OGDairq9OxY0devnxJr169OHHiBABdu3blypUr+R7X58+fuXjxIleuXBHZWwuLEiVK8Pz58xxDu+Lj439Kgeyv4e7uTnx8vBjmtm3bNpo2bYq3tzfdunVj586dXLt2jWHDhhVojpSFe/fukZqaiq6ubqHauXTpEm/evGH+/PmULFlSZADu0qUL69evl6I//1quy5Yty8aNGzl27BidO3cWj2d7ZARBoE+fPkyZMiVXI1deEBoaKuVZ/vjxI0ZGRty6dQtbW1vGjh1L9+7dsbW1/akRCLnhdw75e//+PZaWlqKibmlp+c21RxAEXF1dRbbLrl27SjFypqSkMG7cOLHOaN++faWUXHd3d9q3b4+amlqOJFHPnj3D0NAQdXV1Spcuzfjx4/O1561YsSLXr19nwYIFNGjQgBYtWuDj48ONGzcKvNfN1wxjZ2dHjx49CAkJ4eDBg4SGhhIYGMigQYNISkrKNaZ6zJgxVKxYkRUrVqCjo0O3bt1YsmQJM2fOxNraGkEQ8q0APHr0CFNTU6ZPn86JEyfw8PCgT58+uVIl5xUdO3bkwoULvHjxQurcx48f2bRpE4MGDSp0P/lB6dKl2bVrF+Hh4VSoUAHIivf88oX08PBg9erV7N27Fzs7u+/iPXn37l2hrMKQJUR3794VY8azE0azBdTW1pagoCAgqw7XmDFjuH79On369GHevHk51gtSUFDg7Nmz4t/fw2uYTVn7JT5//oyTkxO7d++mX79+KCgooKGhwciRI1m9ejVjxowpdL+/CnZ2djRt2pRNmzYRGhrKgQMH2Lt3L4MGDaJNmzacP38+x3tdXV1RV1cnICCAPn360LFjR2bNmsWmTZuwtbXl48ePJCQkoKamlufxxMfHM2LECEaOHMnx48dZt24dPXv2/C45fGXKlKFIkSIyN8qZmZl4eHgwevToQveTHygpKbFs2TKuXbsmyllCQgLDhg0TmYYsLS0JCwvj1q1bWFlZyYz9zi/evXtHuXLl8vXbyEJISAjDhw8X/65Xr574fHV0dMSNc1xcHJ6enuzevZvRo0czadKkXPN8goKC0NLSArJCZL4Hvrb8C4LAmDFjWLduHcOHD6dIkSIoKiqKxAZTp079Yz3Qffr0oU6dOvj4+HDo0CH2799PWFgYNjY2jBo1SsqA9SWCgoJITU1l48aNDB48mA4dOmBvb8+BAwfw9vbm3r17+ZbrtLQ0nJ2dMTEx4dChQwQHB6Onp8fq1asLvTGUl5dHV1eXgIAAmecXLFgg8Y7+LEyZMkVi3UtOThbp7CErr+jSpUukpqZiaWnJzZs3C91n9j6ssGv2mjVrJNIz9PX12bVrF5BFXV+sWDGePXtGUlIS69evx93dnWXLljFixIhcjVZz5swR60AmJCQUaozZkLVmT506lSlTpuDo6ChG93Tp0oW9e/eyefNmkfjmV+J3VqjMzMy4du0aYWFhhIWFce3aNSwtLXO9Z8GCBSxevBg/Pz8iIiIoV64curq6EsabCRMmsHv3brZv386ZM2f4+PEjffr0kagZmpqayoABA3LcV2VkZGBgYMCnT584c+YM27dvJzg4WErJ/xayjUWGhoZ07tyZ4sWLExoaKlWWI6/Il0KVG/1kvXr1xOTDr3Hz5k1Kly5NjRo1pDTR5s2b07BhQ7Zt20bVqlXzPJYXL14wcuRIFi1axObNm3F2dmbt2rVs3LgRR0fHQidjysnJ4efnh4WFhchqlJmZyeHDhzE2NmbevHmFtpYWFN26dePq1au0b98eyPLMODk5ieO2sbFh9erV3L17l+nTpxfaCvjp06dCx+e+fftW6vcdP348EyZMED1VgiAQHh6OjY0NUVFRuLm50a9fP+7du0eTJk2wtLRk2rRprFixQqJukJaWFgEBAbi5uUm5/AsCdXV1EhISJIoEbtu2jWHDhqGhocGLFy8kwglr1apF9erVJUJY/yTklvzbpEkTHj58KPPchw8fuHLlCoMGDeLYsWMS5ypUqMCoUaNYv349r169Eg0A30JKSgqDBw/GxsaGkJAQnJ2dWbJkCQcOHCAwMPC7KFVLlixhxowZrF69WlTAL1++zIABAzAyMvrpHqps1K9fn1OnTmFubg5kPYsv2UR79uxJQEAAmZmZjB8//psehm/he8g1ZDHxfZljM27cOGbOnMmHDx+Qk5OjQoUKXL16FRMTE5E+efDgwWRmZtK1a1cMDQ1xdHRkwYIFEpscZWVlgoKCmDp16jcLe+YV5cqVkyBXioiIoEGDBtSoUYO0tDQePXok1pgrXrw45ubmUjTPfwq+Lnj+JbS1tXOUa0EQ8Pf3x83NTUpBUVNTw8PDAx8fH8LCwujSpUuex2NjY4O2tjahoaHMnj0bd3d3jhw5wosXL6SIJAqCyZMnc+jQIdzc3EQD3MOHDxk7dixycnL07du30H0UBGXLliUkJAQ3NzfxmI2NjaioN2zYkM2bN1OrVi0mTJhQaE9Vdqh8YQmqXr9+LcGwN2jQIDZt2iSOr3Hjxly/fh0jIyPOnj2LsbExQ4cOpVSpUlhZWdGhQwccHR1xc3Pj6tWr4uZfTk4OLy8vxo8f/92M0l27dpXIA33//j2xsbHi+3n06FHatGkDZM1Xzs7OvwUJze+qUEVFRREWFsa6deto164d7dq1Y+3atRw4cIC7d+/m+F2WLl3KjBkz6N+/P40aNWLTpk18/vxZzLVMSEjA39+fRYsW0aNHD5o1a0ZAQAA3btzg6NGjYltz5sxh4sSJOc5hhw8f5vbt2wQEBNCsWTN69OjBokWLWLt2bZ6Nb48ePUJbW5tGjRphYGCAkZERxsbG4qcgyJdClZv1Pzo6WrQmfo3Dhw9jYmLCtGnTGD16tNRGoEePHsyaNUsmWUVOWLJkCR4eHlKb9NKlS4thcIVFnTp12L17Ny9fvsTExIR+/fpx6dIltmzZUqh43++BUqVKSSQEf80W1KRJE7y8vDh37hw+Pj6F6ishIaHQtXmKFy8uRVuro6ODnp4evXr1Ys2aNbx48YIxY8bw9OlT7t69y4gRI0QSlNjYWNEK4eDgQIUKFRg9ejS3b9/m2LFj9OnTh1mzZn23sI4RI0bg4uIiTliRkZF0796djIwMnJycxByuL7/LnxoelFtM+bNnzyhTpozMcxcuXEBXVxdbW1s8PT2lDCp9+vRh4cKFTJo0Kc9j2bFjByYmJuLilw0VFRXWr1/PkiVLCr2IlChRQsyxs7KywtDQkK1bt+Lp6flNC9yPRvb3zH7mX4bKQBa7ma+vL69fv8bJyalQ7FWJiYnfpeZWSkqKxDiqV6+Oi4sLffv2ZdGiRdy5c4fhw4cTHx/PlStXmD59OpaWlvj4+BATE8OBAwdEZsiaNWuir6/PzZs3CQ8Pp27duixYsCDX/Jj8YPz48UyfPl3Mk8uWa8iyrg4ZMkTCi6WjoyNBuf8nITe5fvr0aY5yHRsbS6VKlTAyMuLo0aNS379x48YcPnwYAwMDKbKKnHD16lWKFSsmtYGWl5fH1dWV8PDwQnshFRUV2bJlC23atGHChAkYGhri6emJlZUV7u7uhWq7sJCTk2PWrFniBr9t27YSOV1FixZl0aJFaGpqMn78+EJFWiQmJoqe1sJAXV1dwnCppqYm5tXNmDGDM2fO4OHhQWJiIuHh4axatYrBgwezcOFC7t69y7lz59i+fTtLly6lefPmtGjRgosXL4rsvT4+PrmW7MgPhg4diq+vL+/fvweyjPjZhYz37t1LjRo1JMoqtG7d+rsyIBYUv6tCdf78eTQ1NSXW4bZt26KpqZljbbPHjx/z6tUrevbsKR5TUVGhS5cu4j3ZqSpfXlOhQgUaNWqUr5pp58+fp1GjRhKGWj09PVJSUrh8+XKe2nBwcKB69erExsaipqbGzZs3OXnyJC1bthTDmvOLfEnc0KFDCQ0NlRLUN2/e8P79eypWrCjzvszMTOTl5dHW1mb69On079+fFi1aUKtWLaKiojh37hxdu3bNl2U4O/ZRFqpWrUpcXBxpaWmFLr6rqanJuHHjpDbQvwOqVq3K3r17UVVVlXhBAVq0aEGLFi3IzMxk4sSJTJgwIc/Kxteet2wa56/x8uVL1qxZIy64bdq0YdSoUZQrV07q2qioKNLS0ti9e7cYn9qyZUuGDBlCv379mD59OhkZGVSuXFnC26GgoCC6gpWUlChWrBhbtmwhJiaG6dOnixTMFSpUYPPmzejo6OT4vdLS0ti3bx9RUVGUKFGCAQMG5LipGDBgAE+ePMHU1JRRo0aRnJxMcHAwoaGhWFhYiN7BbOQ3/OV3wtChQ4mKipKSlbS0NMLCwkRCgK+RLddaWloi02TFihVFivkTJ05QsWLFfMXyh4SEEBgYKPOciooKjRs35vbt24WmEVdRUcHMzAwzM7NCtfMjoKyszJ49e3j8+LEUy2i2XJcoUQJdXV1u3LiRK9vkl/j6/Xz16pXMOTcxMZHNmzdz6NAhBEGgVq1a2NnZUadOHalrIyMjqV27NkuWLBE3iy1btqRdu3YcOXKENWvW8PHjR4oWLZpjGJCSkhKpqan4+PigpKTEpEmTRMtk0aJF8fX1xdraOsdE/WzP9oULF1BVVaVfv34SuVhfokmTJpibm9O7d29GjRpFQkICZ8+eZfPmzdSuXVsqLOxPlutp06ZhZWUlk0Vs3bp1ORrassOnFBUV2bZtG+PHjyc9PZ2uXbuSmJjI4cOHRfbFvCIoKCjHkDs5OTlMTU05ePBgjqy6eYW8vDx6enrfJNz4VVi7di3h4eEMHTpUYj1u0aIFAMeOHUNbW5s9e/aInupv4ev3882bNzLXtdTUVIKDg9m5cydpaWloaWmJNeK+RmRkJG3atMHFxUX83Vq2bEn16tUJCwvj8OHD7NixAwUFBT5//pxjdFJiYiKzZs2iSpUqzJo1S+xLXl4eZ2dnXFxcclX8rl27Js5DOjo6tGrVSuZ1JUqUwNvbG2NjYwYNGoSWlha3b99m7NixfPjwgXXr1klcn5ycXGjCju+BwipF2fd+bYxQUVEpFHvgq1evZL5DZcqUybGeW/bxryPZypYtK5LXvHr1CmVlZamagWXLls1XnbhXr15J9VOiRAmUlZXz3M758+cJDw9HS0sLeXl5FBQU6NixI56enowfP75AEUf5MucfPXpUDL/ZtWsXnz59IiYmBgsLC+bMmZPjfd27dxdjEjt06MDhw4cxNTVFS0sLS0tL9PT08m0ZVlFRyXGBBdDQ0PhjY9/zg759+0opU19i/PjxlClThjVr1hS4j+wJ/ssY14sXL2JlZUWnTp3Yv38/+/fvp3379lhYWOToqRk5ciSzZ8/m5MmTPHr0iGPHjvH69WsuXrzInTt3KFGihIQy1bp1a6Kjo7l+/Tq6urqULl2aGzduMGTIEHbt2sXgwYMxNzdn06ZN1K9fH11dXZydnWWytGUXVHz58iU9e/akUqVKjBkzhrlz5+Y4oU2dOhU/Pz9u3rxJUlISBw8eZNu2bVhYWEhdm11L60/Ew4cPsbS0JCIigsDAQJ4/f05iYqJIlZ/TgtemTRvx96pRowb79u3DwcGBMmXK0KNHD+zs7PK8KchGenp6rhtYLS2t7xZ3/zujXbt2mJmZ5TjH9ejRg+7du7N27VoJucwPtLW1CQ8PF626kOXVyKaNDQkJ4cCBAwwdOpRp06blGPpmamrKli1b2Lt3L48ePeLkyZM8fPiQBw8esGvXLrp16yahTFWtWpV///2XFy9eMGDAAGrWrMmrV68YNWoUXl5e9OnTh8GDB7Ns2TIGDhwoluWQ9bs/evQIPT09zp49i46ODtra2nh6ejJy5Mgcc3KNjY0JCQnh/fv3PHv2jL1797JgwQLc3NyknndAQECuNOq/M96/f0/r1q25d+8egYGBXL58WSy+2rRp0xzDcMuXL8+TJ09IS0ujePHibN68mYULF1K+fHmRUKFjx465rr9fIyEhgdKlS+d4/n9FrmvXro2trW2Onr2aNWsycuRItm3bVmAvlba2Nk+fPpXIx/r06ZNIALZp0yb279/PrFmz2LhxY46lX9q3b8/t27dZv349Dx484Pz581y9epU3b96wbNky7O3tuXv3rqhMaWpqsn//fj59+sTo0aNp1qwZnz9/ZsqUKTg4ONCqVSsGDRqEq6srrq6ueHp60q1bN5khjgkJCZiamrJx40batWtHx44d2bFjB0ZGRjnm6jdv3pzDhw9TokQJzp07x6lTpxg1ahSbN2+WYnjcsWPHLwsB/RLfy0NVuXJlCabHnCK0XF1dZTJAf/nJ3r/Jkm9BEL4p97LyVL91T16u+VY/+W0nIyNDZHstXbq0yJdQtWrVHMMavwkhD0hISBAAYfv27YKzs7NQtGhRARBKliwpaGhoCP/884+QmZmZaxvGxsbC5cuXpY5HRUUJvXr1+ub9X8PAwED48OGDzHPp6elC9+7d893mfxULFy4UACEoKEiIiIiQ+Fy6dEnqExkZKfHx9/cXACEgIEAQBEFITU0VunTpIiQkJEj1FR8fL3Tt2lVIS0sTBCHrtwgKChI6duwoFCtWTAAkPqqqqsKECROEhIQEwdHRURg2bJjg5OQk9OvXT6rtrVu3Cv7+/oKOjo6gq6srvod16tQR0tPTBU9PT0FBQUFo2LChMG7cOOH8+fOCIAjCkydPBD09PZnvy9y5c4VVq1Z98xlmZmYKJiYmwtGjR6XO+fr6CrNmzZI4li0zsp7R74Iv5Xrp0qVCuXLlBEAoVqyYoKysLPj5+Ym/Y06YPHmysHPnTqnjb9++Fbp16ybEx8fna0xjxowRbt26leN5ExMT4c2bN/lq87+K8PBwARDc3d0LJNehoaGChoaGMG3aNLHNfv36CQ8ePJDqKz09XdDX1xdiYmLEY8eOHRP09PSE0qVLS8m1vLy8YGpqKjx9+lQICgoSTExMBBcXF6F169ZS8/KNGzeEiRMnCvb29kK3bt0ELS0tARCKFCkixMXFCdu2bRM0NDSEihUrCiNHjhT2798vZGZmCklJSUK3bt2Ep0+fSo03JCREGD9+fJ6eo5OTk7By5Uqp42FhYcLAgQMljv1Jch0cHCxs2bJFqFOnjvibKCsrCxMnThQ+f/6caxsbNmwQXFxcpI6npKQIxsbGwo0bN/I1phUrVghBQUE5nndychLOnTuXrzb/q3j06JGgoqIiDB8+vEByfe7cOaFatWqCvr6+2ObEiROFw4cPy+xv3LhxwvHjx8W/r127JpiYmAgVK1aUkmtA6NSpkxAZGSncu3dP0NHREZycnITWrVtLycTnz5+Fvn37Chs2bBBat24tVKtWTWzj0qVLwpkzZ4QqVaoIGhoagpmZmbBp0yYhJSVFEARBMDU1FdfvL3H16lXB0NAwT3u7gIAAwd7eXsjIyJA4fuvWLUFHR0f49OmTxPGfKdvZfVlbWws2NjYF/lhbWwuAEB0dLSQkJIif5ORkmf2+efNGiIqKyvWTlJQk+Pv7C5qamlL3a2pqCuvXr5fZ9sOHDwVAuHLlisTxvn37ClZWVoIgZK0ZgBAXFydxTZMmTYTZs2dLtblhwwaZ45g1a5bQpEkTiWNxcXECIISHh8sc39fo2LGjsHv3bkEQBGHIkCFCr169hDNnzghWVlZCw4YN89TG18iXh6p37964u7tz7NgxBg4cSJkyZUhMTERfX59+/frleu+6detwdXVl+vTpREZGcvXqVVxdXZk4cSIbNmzIt3ZqYWGRY8hCQEAAvXv3zneb/1Vku4MLGlOtra1N8+bNRUKAvXv3YmJiIjOhXVNTk379+nHgwAEgyyIyaNAgEhMTGTJkCCNGjKBXr17o6enRs2dPkpOTmTt3LhoaGgwfPhx5eXnKli0rxbQmCALbt2/H2NiYGTNmoKOjQ3x8PKdPn+bevXv07t2bjx8/smvXLipXrsyyZcto164d1tbWTJ06FRcXF6naMwDTp09nx44d38xFkZOTY/PmzezcuZMBAwawatUqli5dSu/evUlMTPxtCtcWBL1798bBwYGLFy9iaWmJtrY2qamp2Nvbf7N2i6enJ6Ghodja2nL69Glu3LiBr68vpqamLFmyJN+5L2PGjMHd3V2m1zAiIgINDY1cLd3/S8j2wBe0vo6WlhbGxsb8888/CILA3bt3KVu2rEQiejYUFBSYPHky/v7+QJaFV0dHh3v37tGnTx/GjBmDgYEBurq6mJubk5mZyaRJk6hSpQp9+vTh48ePdOzYEVNTU6l52d/fH3Nzc1xcXKhQoQKvXr0SyxDo6uqKntN27dqxdetWDA0NadGiBRMmTGDQoEEy66QZGxvz/PlziRyQnODu7s7r16/R19fHx8eHlStXYmJiwr59+9i4cWMBnuzvgR49eogRA2PGjKF79+6kpqayZMkS1NTUZBZ1z8bQoUNRUFBgwIABIrtk9ro6fPjwXIlsZMHc3JzVq1fLjBp58eIFV65ckRl69r8IeXl5UlJSCux5VlZWxsjIiPDwcJKTk0lKSiIqKirH0GsnJyfWrl0LZKVStGjRgpMnT9KxY0fGjRtHv3796NGjh1ivzsLCghYtWlC7dm0UFRWxsbGhbt26UvuBbdu2YWxsjJWVFSVLluTRo0ckJSVRo0YNBg8ezLZt21i6dCmDBg3i5s2bDB06FDU1NaZOnYqWlpbM96Fp06Y0bNgwV+bZbJibm9OyZUt69uyJp6cna9euxdraGldXVwIDA3+LUF7hO3mososnZ39yCvcrXbo09erVy/WjqqpKu3btSEhIkIgsuHjxIgkJCVLpDtmoXr065cqV48iRI+Kx1NRUTp48Kd7TokULlJSUJK55+fIlN2/ezLFdWWjXrh03b97k5cuX4rHDhw+joqIihs9+CzNnzhT3ffPmzePp06d06tSJf/75B19f3zyP5UsUKIO/devWBAUFERUVJSZvHT9+nAULFuTIU1+yZEn27t2LoaEh+/btIzg4mK5du/LPP//IzLn5Evfv32fcuHHo6+tjYGDA6NGjady4Ma9fv2bq1Kni4vv27Vvc3d05dOhQjnkf/2tISUlh7ty5AN8s0Job+vfvT1BQEAcPHuTGjRu5knK0b9+e69evA3DgwAEsLCyYMWMGV65coUSJEowYMYJWrVpx9OhRqlWrJsaS161bF1VVVU6ePCmxEc/MzMTNzY127dpRokQJihcvzqdPn8SY1+3bt5OcnIy7uzvjxo0jJCSEyMhI2rdvz9mzZ9m5c2eO+XYKCgo0btxYgvkrJ6ipqbFq1SqWL19OpUqVqF+/Prt27WLGjBm/pMbJ90aVKlXYvHkzp0+fFp+HIAhMnDgxxzpbSkpK+Pv7M3HiRE6dOsW2bduoWLEihw8flqr38zViY2NxcXGhd+/eGBoaYmZmRnx8PJ06dcLCwoLbt28DWZT1/v7+zJgx47uwgf1XkE093Lx58wK30b9/f27cuMHixYu5ceNGrotau3btJORaW1ubVatWce/ePdLT07GwsKBfv37s3r0bTU1NcV5XU1OjX79+LF++XGrTFRQURFxcHC1atKB48eJ8/vwZeXl5KlSowJEjRyhVqhSLFy/G0NCQRYsWce/ePfT09EhNTWX16tUsW7YsR7ZDAwMDTp48+c1nIC8vz+zZs9mxYwd169alSpUqopz/KibX74lixYqxYsUKjhw5Qnx8PNWqVQOyQrC/rhGTjWwSBR8fH5FNKzU1lX379tGnT59c+/v06RO+vr6iXBsZGXHkyBGcnJzo378/Z86cQRAE0tPT2bNnDxYWFixbtuyvAfT/I9uY2K5duwK30alTJzIyMhg9ejTPnj3LNee0QoUKotH10KFDqKiosGPHDj58+EBsbCzGxsYMHz6c3bt3o6KiIkHH7ujoiJ2dnZRycvHiRYKCghg8eDDy8vIoKSkhJyeHqqqquDYsX76c/v37M3jwYC5cuMDAgQNp0qQJ3t7ebNy4kXv37skcb//+/Tl06FCenkN23n/btm0pV64cLi4u7NixI1fG6r/IYpzt1asXo0aN4sKFC1y4cIFRo0bRp08f6tatK15Xr149du/eDWTNGRMmTMDDw4Pdu3dz8+ZNrK2tUVNTE3OVNTU1GTFiBJMnT+bYsWNcvXoVCwsLGjduTI8ePcR2nz17xrVr13j27BkZGRlcu3aNa9euiWGwPXv2pEGDBlhaWnL16lWOHTvGlClTGDVqVJ6Za/X09Ojfvz+QlbJw+/Zt3r59y+vXr0WiovyicDQwZPH6R0VFUb9+faZNm4afnx+XLl2SqSTJycnRvn37PGmigiDw9u1bLl68yMqVK/H09BSTr2/fvo2zszOjRo1CTU2N6dOn8/79e9TU1LC0tGT69On/iQ3u94CysjLa2tq8ePGClJQUqdhtWYuYLCIPXV1djhw5gqmpKWZmZpw9ezbHjdybN2/Q1NQkMzOT6OhoDAwMWLBgAe7u7pQsWRKApUuXUq9ePRYvXsz48ePFpFFfX19GjBiBlZUVgwYNIi0tjcjISAYOHChSSB8/flzCCjFo0CCuX7/O6dOnef78OWpqaigoKFC8eHExLv/FixcEBgZiYWGBpqYmVapU4caNG6irq6OoqMjr16/p27evVJK+LGtHmTJlvrmp+NNRq1YtEhMT0dDQYOnSpaxbt47jx4/TsmVLmdfXq1ePGTNm5Knt9+/fc+/ePaZPn86sWbPEuO6YmBjc3Nxo0KCBOJdER0ejoKBA//792bdvX55Zxf4XYG1tzZo1a0hOTpbyBOZVritWrMiwYcOYMmUK48aNQ05OjkaNGsl877PlGrJYXWvVqoW7uztjx44V5SY0NBQ5OTmOHDnC6NGjCQsLQ05OjjFjxpCSkoKrqyv3799HTU2NS5cu0apVK9Hrdfz4cYk5pUOHDgwbNkwsGl+1alXk5OQoWbKkuLA+efKEiIgIdHR0UFBQoGHDhly/fh11dXWUlJRo2rQp7969k3pvZX2/okWL0qtXr5wf+H8AmpqaPHr0iCpVqrBt2zZ27Ngh1pKUhQoVKuSZpfPDhw+8evWKsWPHMmLECPbt24eSkhIJCQmiLK9cuZI1a9bg5eWFnJwc3bt3Jzg4WCpJ/X8ZBgYGhIWFoaysLCXHsuRaloe6du3azJ49m1mzZlGkSBGio6O5fPmyzPc+PT1dtNRHR0dTqVIlVq9eTffu3UWW0bCwMF68eMGpU6dwcXGhVatWFC9eXGS+zWbHLFu2LP/++y9aWlrs2LEDVVVVnj9/LkHhXrNmTWbNmiVuxLOJpEqUKEFKSgoASUlJxMTEiJv3evXqcefOHVGuK1SogJqamsQmHGTLtZKSEt26dcvhaf9afOllKuj9PwqBgYGMHz9ezNHv27cvfn5+EtfcvXtXIvfR0dGRpKQk7OzseP/+PW3atOHw4cMSv/+SJUtQVFRk4MCBJCUloaOjw8aNGyVIQmbPns2mTZvEv5s1awZkrRFdu3ZFQUGBgwcPYmdnR4cOHShSpAhmZmZ4e3sX6jtn708LCjkhD79IYmIimpqaJCQkyNT+wsPDRQaWiIgIXF1dcXFxKdCAhP9fA2P79u2UL1+ew4cP06xZMyZOnCjB3JOSkkLv3r3Zv38/6urqBerrfwX//vsv7dq1o1mzZjg6On6zVpOsjVdaWhqfP39GX18fHR0dkpOTCQsLk3n/oEGDWLJkCaGhoYwcORInJyeUlZUllBAdHR1q167N5cuXGTx4MIsXLxaTpDMzM9HR0WHGjBmULVuWBg0aiML29u1bBg4cyOHDhyVCGE+dOsWmTZvQ1tamRIkSfPr0ibi4OIoXL87JkycZO3YsGzZsEEN4unXrRo0aNVBVVWXr1q1iYn7r1q3x8PAQ6aTz6j7+Gt+Smd8B3xpjbGws5cuXp379+ty+fRsTExOxsGNBEBoaip+fH5qampw+fZqqVasyfPhwhg0bJm4UBEHAzMwMFxcX6tWrV+C+/hfw5s0bWrRoQZEiRZg5cyYNGjTI9fqc5FoQBCwsLMR3YPny5TLZtObMmUOnTp1QVVWlc+fOTJkyhejoaIloABsbG27dukVqaipz5syhY8eOEsybQ4YMwdTUlBo1alCvXj3RA5Samkrfvn3ZuHGjhDHuzp07LFiwgEaNGlGyZEkyMjKIjY2lWLFiPHnyhCpVqojhhZAV5la+fHnU1NTYv3+/mGjctGlTpk6dKm7Q/pflGrKIJ5SUlIiOjqZOnToFT8IGrly5goeHB4IgcOfOHVRVVenfvz+Ojo4S75y7uzv16tX7Y0k+fhZSU1Pp3r07d+/eZebMmXTo0CFX711OIb/ZBCRXr16levXquLu707VrV6nrQkJCePbsGX379qVDhw707t2bhw8fSmxOFy5cyM6dO4mNjeXMmTM8e/ZMQu7nzJlD8eLF6dixIzVr1hTXT0EQsLW1xcrKSqKW3Js3b3BxcaFSpUqULVsWRUVFXrx4QZEiRUhPTycqKopBgwaJez5tbW1q1apFmTJlxDD/1NRUatasia2trehRKKhcw8+V7ey+LC0tCxyyDVm/8ZYtW37r+eh/Cd/FjZNtVYyIiGDIkCESxSjzixkzZvD27VtCQ0Pp168fs2fPZufOnQQFBUlUdldRUWHo0KE/pejiy5cvWbZsGW5ubgQHB8tkkfudoa2tzY4dO7h79y6mpqYsXry4QMV+1dTUGDp0KPv27ePRo0cMHz5cgq4zMTERBwcHXr16xaBBgxg5ciSDBg3i+fPnEpNpQkICioqK4uSur68v1qaArBCclStX4u7uzq1bt0hPTyc1NVXMX/L19ZXKB2vcuDE+Pj6MHz8eS0tLRo8ejbOzM3Z2dlhYWDB+/HhsbGxENklDQ0PGjBmDnJwco0aNYvfu3ZQtW5ZLly7Ro0cPUVnMpoR98+bND7UG/Y4oW7Ys5cqV4/bt23Tr1q1QeWIBAQEEBwcTFBSEi4sLBgYGHD9+nJcvXzJ79mzxOjk5ORwdHcWY/h+JxMRE1q9fz5w5c9iwYUOhC+X+bGhpabFv3z7S0tKwsrLCycmpQMxgcnJy2NraEhERwYcPH7Czs5MI8UxOTsbPz4+QkBCWLFlCx44dad68OUWLFpWof/fx40fk5OREue7bty/Hjx+X6MvPz4/Vq1dz7tw5UlNTyczM5NixY/Tt25fx48dLRTZUqlQJb29vJk2ahLW1NSNGjMDZ2Zlx48YxatQoVq9eTe3atcWQ3gYNGuDg4EC9evXo0KEDJ06coFu3bly7dg1zc3PWrVsnhps9e/aMV69eFThX5U9Gq1atiI6OpmHDhixfvrzA7Vy4cIFZs2axfPlyAgMDqVq1KpGRkdSoUQNLS0uJ3FR7e3upQsE/AqmpqezatQs3Nzf8/PyIjY394X1+TygrK7Nr1y6qVKnChAkTGDVqVK41xXKDtbU1cXFxvHnzhpEjR3Lt2jXxXHYZkRkzZnD27FkaNWqEiooKHTt2lDCoJCcnk56eToUKFShdujR9+vSRqtPj7OzMhQsX2LdvH58/f0YQBK5evYq5uTkNGzaUKsytoaEh5tSPGDGCoUOHMn36dCZMmMCIESO4fv06T58+FUP7ypYti5OTE126dKF48eKcPn2aIUOG8PDhQxwdHZkzZw4pKSkIgsDz58/FiJzfHd8rh+ovfg98F4WqePHiXLx4kfDwcLZu3SpWms8v7t+/T0xMDE5OTigpKXH//n2aNWtGsWLFWLt2LevXr5cQkubNm+cYZ/s9IAgCLi4ujB8/nmrVqtG7d2+RdjsvSZG/E/r06cOePXuwsbEhKCgIJycnLly4kG/lcOjQoVhbW5OSksKGDRuoUKGC+Btpamri6+sr5krt2rWLbdu2SdSSioiIQFdXl/fv3zNgwAAga2L/uiZE9erVsbKyIiAggNatW9OvXz9iY2PZs2ePVEL0uHHjKFmyJMWKFaNs2bLY2tpKJCtOnDiRf//9l/bt27NlyxYAJk2axIQJE7h48SIBAQFSeVDe3t4kJSVRq1YtqlSpQtmyZVFRUSE8PDxfz+tPx6lTp9i1axfh4eH5TkTPRlJSEps2bWL16tUULVpUlGslJSVmzJjB48ePefz4sXi9trZ2nnLaCoOAgAAGDBiAqqoqBgYGKCkpYWJiImG0+RPQtGlTtm/fjouLCxcvXsTe3p5jx47lSjggC507d2b69OkIgsDly5epXr06zZs3p1SpUhQpUoRx48Zx584dPn78iJ+fH+fOnUNNTU2U6zdv3tC9e3euXr2aq1yXKFGCcePGcerUKTp37kzPnj05e/Ys69evR19fX+La1atXU6xYMUqVKkWJEiUwNTWVoIKeNWsWUVFRGBoa4ujoCGSFDDs5ObFlyxYuXbqEnZ2dhPdl1apVvH37lu7du1O1alXKly+PoqLiT1HgfyesX7+ejRs3cvXqVamwqfxgzpw5bNu2jbJlyxIbG0uNGjWQk5NjyJAhNGnSRCQygqxww4IY8vKDM2fOoKenR2xsLL1796ZKlSrY2dnh5ub2R20+y5Urx+rVq/H19eXt27fY2dmxb98+iRIHeUGNGjVYsGABRYsW5cmTJzRv3pzGjRtTvnx5VFRU6NevH/fu3ePx48c4OTlx8+ZNKleuLGFk6N27N7t376Zfv37Iy8uTkZEhJddKSkpMnDiR58+f06dPH7p06cKWLVuYNWsWDg4OEtceP34cVVVVypYtS9GiRenevbvEurps2TIiIyOxsbERPVSHDx9mxowZeHh4EBsbi5WVFadOnRLv2b9/P1evXsXe3p7KlStTsWJFVFVVmTx5cr6e18/GX4Xqv4XvlmjUunXrQsepbtmyBVtbW/Hv0qVLi5YZBQUFkZEqG9HR0T+U8WvFihWoqamxc+dODA0NadWqFfb29uzbtw9XV9cCW41+FYoUKcLw4cNxc3Pjzp072Nvb06lTJwYPHszDhw/z1Ia8vDxjx44lJCSEGzduUKZMGeLi4jA2NmbTpk1cvnyZ9+/fs2/fPkxMTJCTk0NfX1+cML+MUW3dujWQleD+5btz7NgxevfuTVpaGi4uLsyZMwdVVVU+ffokkzXuy7G/fv2aNWvWMHLkSPFYdvL+1zhz5gwRERG8ePGCDx8+0KZNG4YMGUK1atWYM2cOqampomImCAJpaWlcuXIlT8/pv4JatWoVOkTnwIEDmJqaiovwl3INYGtrKyq6kJXvVqpUqUL1mRuOHz/OsWPH+OeffzAzM6Nly5ZYWFgQGhpKaGioxEL9J0BBQQFDQ0N8fHxISkpi2rRpdO3alb59+3L27Nk8t2NiYkJgYCBhYWG0atWK58+f061bN1auXMmZM2dISEjg+PHjYm2y3r17i3XIvpTL7Pdl586dGBgYiMfv3LlDz549uXXrFpMnT8bb25vKlSvz4sULmUUkHz16JP4/Pj6e4OBgcc4AclQEjh49ypUrV3j69Clv375FW1sbKysratWqxZQpU9DS0pIKcTtz5kyen9N/AaVLl2bo0KGFKnx/9+5datasKYYaFS9eXKKopo2NjYRHKi0t7Yd6A58+fcq8efPYv38/Y8eOpVWrVvTt25fg4GAUFBQKVYvxVyA753zlypWUK1eOuXPnoquri56eHjt37szzZrpDhw6sXbuWkydPMnjwYKKjo9HW1mbBggUcPXqUuLg4IiMjmT17NkWLFqV9+/YS7G6fPn0CsjyMkCXXXxo/3r17R79+/di1axfDhw/H19eXVq1a8eTJE5nG9S/n/s+fP3P8+HF0dHSIi4sDssg4ZKVxHD58mOvXr3P//n1iY2OpVasW1tbWNGnShAEDBtCmTRuJOQOQ8pD/bvirUP23UGhSiu+J2NhYqlatKv5tamqKlZUVAwYMQE5OjipVqkiEomzYsKHA9IbfQkZGBrt37xYTor9EsWLFmDVrlhiW9qcgO764RYsWTJ8+nX///ZezZ8+ycuVKLC0tmTBhgrjh+BqXL1+WOpaSksKOHTsAJHJg/v33X4nrqlatysKFC2nbtq1IY7xmzRrk5eXZtm0bNWrUEDfQ9+7dY8mSJRw8eFDMr2jVqhX9+vVj1qxZbN68GSsrK4n29+7dy7Jly9iyZQvy8vI0btxYIrnc29sbOzs71NXV0dLSQhAEHj58SKtWrShfvjw6OjpkZGTQsWNHBgwYIEE5umPHDuLi4lBSUqJEiRI5KmdfP5+CFmX8L+L169cSVNytW7dm5syZpKSkoKKiQpUqVXj9+rV4ftWqVQwdOvSHjWfZsmWsXbtWysqqoKAgvivZydh/Ar6U62HDhvHw4UPCw8MJCgrCwcFBLLxeo0YNqXtlyXWpUqXw9fWVKpKYzbr4JT59+kRkZKRISuHo6EjJkiW5dOkSDx48EEOHPn78yJgxY9i2bZtEWJ+uri7bt29n+vTpLFy4UKJtLy8vmjZtysqVK4mNjaV169ZicjJkKeL9+vUjOTmZqlWrkpGRQXJyMk2aNCExMZHBgweTmppK48aNsbS0FPM6IIvS+e7du6ioqKCioiKyPX3r+fyV6//D1+u1pqYmioqKREdHU7lyZUqXLi3hKd29e/cPJf1YsWIFc+bMkVkew8nJiZ49ezJq1Kg/hrDqy3ygPn36EBsby5EjRzh06BDz588nIiKC+fPn07hxY5n3f/3uZntsJk2aJCHXsoypDRo0YPfu3RgbG6OpqYmOjg4NGjQgOjqaDRs2iGVRBEFg2LBhuLm50bRpU/H+jh07EhERwYgRIwgODpZo29LSkipVqrBgwQJu3rxJu3btqFWrlrje6+rqEhMTw4sXL6hXrx7p6enIyclhaGjI0aNHGTFiBBkZGVSrVg1ra2sqVqwotj1//nwMDAxQU1NDTk4uR/IoWfPer5Dt35mU4i/yj99KoapVqxbXr18XBaREiRLo6Ogwbdo05s2bx40bN2jVqhVpaWl4eHjQpEmTAocXfgt3796lWbNmOU6+HTp0yLEa9Z8AOTk5mjZtStOmTRk2bBje3t7Mnz+fpUuXYmpqyoABA2jRogWVK1f+ZjvfgqKiIi4uLnh5eYmb2AcPHmBubk7JkiVZsmSJeO2yZcvw8PCQoiuWk5PDxcUFfX19LC0tJfpVUlJi0qRJubJRfb2ZLF26NG3btqVt27ZYWVmhoqJCaGgovXr1ws/PT6SZzQ5f+ouCo2bNmly/fl3cTMnLyzN58mQsLS1Zt24dN27coGbNmgiCwNatW3n8+DFdunT5IWMRBIHU1NQcPWBlypQRcwD+VBrnmjVrUrNmTYYPH86GDRuYMWMGgYGB6OnpYWlpSYsWLahTp06+K97LwowZM/Dy8iI1NRXIUp7HjBlDXFycRH3BrVu3MmrUKJnsr4MHD2br1q0kJCRIeLqyQ8eGDBmSY/9ftqeoqPj/2rv3oKjKP47jn1WE1QpUFDbymnfLTBu8oFOOt6yUUhMveL9f0EhLclLzpyOo3aZkzGpMzdHJS9F9SDJtMiPMUKOLUWHmKCphKISiu/v7g+FMK5eQhSOc3q8Z/nA55+xZ4Fn3c77P+T7y8/NTr169dMstt2jGjBlq3LixvvzySz366KN68sknjSlEffv2rXBrXBRq2bKl0aGxyLJlyzRp0iRt3LhRV69eNS7O7d+/Xxs2bNA777xTZeeTlpamVatWlfi9fy6P8c+2zzVJcHCwxo4dq8jISI0ePVrz589XaGioQkNDNWXKFHXv3l2dOnUqdqHoWuUZ11OnTlV8fLwWLVqk3Nxc/f3331q8eLEOHjyoDRs2GBWkr7/+WnfccYdHmCoSGhqqpk2bKjU11eNCiFTYHbqs9/iAgADjvaCoitqtWzfdfPPNGj9+vNHmOioqSgMGDNDs2bMlSXfddZfRDbomIFBZS7W6VDNhwgTFx8d73MgaHR2tLl266P7779fatWu1fft2Y270kiVLbuDZlu+NqSaoV6+eli5dqhMnTig2NlYpKSkaOnSomjVrpiFDhig5ObnYwM3NzVVycrK+/PLLEhdrvFZwcLBWr16tS5cuycfHRy6XS6tXr9batWs9GkxkZGSU+oZYp04d3X777ZUy1XLmzJlatWqV/ve//6lVq1Zq0qSJpk2bpu3btysqKqpG3NBaUwwYMECJiYkeVwAfeOABzZkzR2PGjNH06dP13XffacCAATp+/Lg2b958Q8eWVcZ17dq1NXXqVB0/flxvvPGGsrOzFRkZqfbt26tHjx768MMPi93TUlBQoEOHDmnfvn0eDWdKU7duXS1btswjoEZFRWn79u0eFaHdu3eXWt2VZNxL5a2lS5cqPDxc69atU6dOneRwODR8+HB99NFHevnll3X8+HGvnwOFmjZtqry8PI+fafv27RUfH68nn3xS/fv3V05Ojh588EHt2LFDO3bsqPKOvGWNXauM66Jp9GlpaXrvvfcUGBioWbNmqUuXLmrXrp02btyo/Px8j31cLpfS0tL02WeflatJR61atTRv3jz16NHDuGdq0KBBSkxM9Lg4+cknn5Q5rocOHVruNaPKsm3bNkmF0w3DwsLkcDjUt29f49aDoqnHNQ1T/qylWlWogoKCNHLkSE2cOFErV640qiN33HGH/Pz8tH79et1zzz0KCQmp8jfHtm3bKjU1VS6Xq8Qq1VdffVVqqb2mCgwMNKYEnDp1SklJSVq1apWxoG7v3r3Vq1cvpaWlKSEhwZhbbbfbFR4ertmzZ5c43aLIzp07jbnZKSkpWrJkidq2basDBw4oNTVVISEh+uGHHzR37lzFxMSU2N69Mn7vP/30kxo0aFDsqplU+Dc4atQo7dq1S5GRkV4/Fwo/2C9fvlwRERFGC2yp8Ap3/fr1tWTJEj300ENGK+eqZLPZ5OPjo+zs7BLXnDh37pzsdrtlPnxJhaFn4sSJmjhxorKysnTgwAGtWbNGQ4YM0U033aRu3bqpX79+OnXqlHbs2KGsrCxJhb+3Pn366PHHHy9z8fWUlBRj6u+JEye0YsUKderUSceOHdOnn35qrPk2bdo0LVy4sMQFnyvj552Xl6cjR46UOHPAz89PTz/9tNavX19qFQPX77nnntOkSZP0zDPP6L777pPNZlNQUJBatGihJk2aaO7cuQoKCjJlgeSOHTsqJSXF4z67Ik6nU0ePHlXr1q2r/DzM4uPjo/DwcIWHh+vixYs6dOiQ1q5dq8mTJ2vmzJnq3LmzsQj2zp07PRr/dO3aVfPnzy9zaYozZ84YtzRcvHhRzz//vD777DOdO3dOCQkJCgkJUXp6uvbt26ennnrKY1mbIpX1Pvrmm2/q3XffLfH4y5cv18yZMz2WZ6gpqFBZS6WsQ1XZkpOTFR8fr7/++ksul0utWrXSY489Zvqb4csvv6yCggI98cQTHo/n5ubq0Ucf1WuvvaZmzZqZek5mczqd2rdvn7Zu3aqkpCSdPHlS/v7+GjZsmIYMGSKXy6WkpCRt2bJFDodD69atK/EeLJfLpb179yomJkZS4YdpX19fZWVlqXnz5uratavy8vL07bffGvfTFHUIKgq0V65c0YMPPqjdu3d79Ua9YcMGNWzYUEOHDi3x+3/88YdiY2P1yiuvlPuYJd1r0adPn2q9PoTZ4zo9PV0vvfSSfvvtN9WqVcvo+FbSB6CqtGfPHm3btk2vv/66x8USp9OpKVOmaNKkSVU25bC6cLvd+uabb7Rp0ybt3btXP/74o/z8/DRo0CCNGDFC/v7++uKLL4ypW/Hx8erQoUOx4zidTh07dkwzZ85UXl6eQkJC1LBhQ50+fVqNGzdWWFiYsfRAenq6zp8/r8cff1xLly71qFY8/PDD2rx5s0dV63qlpKQoMTHRow3/ta85PDxcH3zwQbmPybj+d2fPnlV8fLxSUlLk6+srHx8fTZ482fTFzzMyMjR79mzt2rWrWCVs1apV8vf3N6aGWdnPP/+sxMREbd26VQcPHpTNZlOvXr0UGRmp5s2b6+DBg9q8ebN+//13xcXFlTj11el0Kjs7W3PmzNGvv/6qwMBANWvWTCdPnlS9evWMNugXL15USkqKMjMzNX78eMXFxRnrSUqFHXbHjRvnsWD39crPz9f48ePLXCJn8ODBxn1d5VHaPVRmje2iMRoREeHVRcQrV65ox44d1fr96L/kuipU5ZkCUhk6duyodevW3bDnLzJhwgStWLFCw4cP1+jRo9W4cWMdOnRICQkJWrx4serXr2/6Od0IoaGh8vHx0fjx4/Xnn3+qYcOGHh9Ex4wZo969e2vBggWaPHmyXnzxxWJXtF0ul0JDQ43SvM1mK3ERvvT0dC1cuFDBwcGaP3++8vPzFRUVJbfbrbi4OA0bNszr9YKuXr2q7OzsUn93WVlZcrvd1/W7vfaG1qLqXU1g1t9wcHCwYmNjb9jzFwkNDdXPP/+sgQMHKjIyUq1atVJ6erq2bdumUaNGqUuXLv+Jcd2uXTtFREQoIiJCf/75p+rXr+9x/8VDDz2k3r17KyYmRjNmzPCoLhZxOp267bbb9P7770sqfVzn5uZqxIgRRnexkydPGhcsEhIS1KxZM9WqVcurn/vly5eVk5NT6jGuXr2qK1euMK4rmd1uL3bR0cznLxIYGKh58+Zp0KBBGj58uLp27aozZ85o27Ztatu2rWbNmvWfGNcOh0MTJ05U586dlZOTI7vd7tFo6d5771VYWJhWrlypmJgYLVq0SAMHDvQ4htPplK+vr15//XXjftKSxrXb7VZERITGjh2r5557TkeOHDG6pKampuqXX35R69atvfq5FxQUKC8vr8xjXL582atxLd2YsU2FylrKVaG6dOmSWrZs6dESFUDZHA6HMjIyZLfbb/SplIhxDVw/xjVgTWaN7aIK1fDhw72uUL399ttUqKqJclWo7Ha7MjIyjE5OAP6dr69vtf3QJTGugYpgXAPWZPbYpkJlLeWe8me326v1fyIArh/jGrAexjVQ/RGorKVadfkDAAAArI5AZS3Vah0qAAAAAKhJqFABAAAAJqJCZS0EKgAAAMBEBCprIVABAAAAJiJQWQuBCgAAADARgcpaCFQAAACAiQhU1kKgAgAAAEzkcrnkcrm82h/VB4EKAAAAMBEVKmshUAEAAAAmokJlLQQqAAAAwERUqKyFQAUAAACYyO12e1VlIlBVLwQqAAAAwERUqKyFQAUAAACYiEBlLQQqAAAAwEQ0pbAWAhUAAABgIipU1kKgAgAAAExEhcpaat3oEwAAAACAmooKFQAAAGAipvxZC4EKAAAAMBGByloIVAAAAICJuIfKWghUAAAAgImoUFkLgQoAAAAwERUqayFQAQAAACaiQmUtBCoAAADARAQqayFQAQAAACZyu91eTdsjUFUvLOwLAAAAmKioQuXNV1U5f/68xo0bp4CAAAUEBGjcuHH666+//vX1LFu2TCEhIapbt6769Omj77//3mOby5cva+7cuWrUqJFuuukmhYeH6+TJkx7brFy5UmFhYapXr57q169f4nPZbLZiX+vXr/fmJXuNQAUAAACYqKgphTdfVWXMmDE6fPiwEhMTlZiYqMOHD2vcuHFl7rNmzRq98MILio+P18GDB+VwODRgwABdvHjR2CY6OloJCQl66623tH//fuXm5mrw4MFyOp3GNgUFBRoxYoRmzZpV5vNt3LhRp0+fNr4mTJjg3Yv2ks1NzRAAAACochcuXFBAQIA6d+6s2rVrV/g4TqdTR44cUU5Ojvz9/Svt/H788Ud17NhRycnJ6t69uyQpOTlZPXv21E8//aR27doV28ftdiskJETR0dGKiYmRVFiNCg4O1urVqzVjxgzl5OSocePG2rJli0aOHClJOnXqlJo2baqPP/5Y999/v8cxN23apOjo6BIrYzabTQkJCXrkkUcq7XV7iwoVAAAAYKLqWqH66quvFBAQYIQpSerRo4cCAgJ04MCBEvfJyMhQZmamBg4caDzm5+en++67z9jn0KFDunLlisc2ISEhuvPOO0s9blmioqLUqFEjhYaGav369Te8jTxNKQAAAAATVVaXvwsXLng87ufnJz8/vwofNzMzU0FBQcUeDwoKUmZmZqn7SFJwcLDH48HBwfr999+NbXx9fdWgQYNi25R23NKsWLFC/fr1U926dbVnzx4tWLBAWVlZWrx48XUdpzJRoQIAAABMVFlNKZo2bWo0jwgICFBcXFyJz7ds2bISmzn88+ubb76RVDilrqTzLenxf7r2++XZpzzbXGvx4sXq2bOn7r77bi1YsEDLly/Xs88+e13HqGxUqAAAAAATuVyu6w4S1+4vSX/88YfHPVSlVaeioqI0atSoMo/ZokULHT16VGfOnCn2vXPnzhWrQBVxOBySCqtQt956q/H42bNnjX0cDocKCgp0/vx5jyrV2bNnFRYWVuZ5/ZsePXrowoULOnPmTKnnWNUIVAAAAEAN5O/vX66mFI0aNVKjRo3+dbuePXsqJydHKSkp6tatmyTp66+/Vk5OTqnBp2XLlnI4HEpKSlKXLl0kFXbr+/zzz7V69WpJ0j333KM6deooKSlJERERkqTTp08rLS1Na9asKddrLU1qaqrsdnupbdbNQKACAAAATFRZ91BVtg4dOmjQoEGaNm2aXn31VUnS9OnTNXjwYI8Of+3bt1dcXJyGDh0qm82m6OhoxcbGqk2bNmrTpo1iY2NVr149jRkzRpIUEBCgKVOmaMGCBQoMDFTDhg31xBNPqFOnTurfv79x3BMnTig7O1snTpyQ0+nU4cOHJUmtW7fWzTffrA8++ECZmZnq2bOn6tatq7179+rpp5/W9OnTvbp3zFsEKgAAAMBElTXlryps3bpV8+bNMzryhYeHKz4+3mObY8eOKScnx/j3woULlZ+fr9mzZ+v8+fPq3r27du/erVtuucXY5sUXX5SPj48iIiKUn5+vfv36adOmTR7t45cuXarNmzcb/y6qeO3du1d9+vRRnTp1tG7dOs2fP18ul0u33367li9frjlz5lTJz6K8WIcKAAAAMEHROlRt2rTxeh2q9PT0Sl+HChVDhQoAAAAwUXWd8oeKIVABAAAAJqrOU/5w/QhUAAAAgMmoMlkHgQoAAAAwEVP+rIVABQAAAJiIQGUtBCoAAADARAQqayFQAQAAACbytqkETSmqFwIVAAAAYCIqVNZCoAIAAABMRKCyFgIVAAAAYCIClbUQqAAAAAATEaishUAFAAAAmIhAZS21bvQJAAAAAEBNRYUKAAAAMBFt062FQAUAAACYiCl/1kKgAgAAAExEoLIWAhUAAABgIgKVtRCoAAAAABMRqKyFQAUAAACYiEBlLQQqAAAAwERut9urTn0EquqFQAUAAACYyNtARKCqXghUAAAAgIkIVNZCoAIAAABMRKCyFgIVAAAAYCIClbUQqAAAAAATEaishUAFAAAAmMjlcslms1V4fwJV9UKgAgAAAExEhcpaCFQAAACAiQhU1lLrRp8AAAAAANRUVKgAAAAAE1GhshYCFQAAAGAiApW1EKgAAAAAExGorIVABQAAAJiItunWQqACAAAATESFyloIVAAAAICJCFTWQqACAAAATEYosg7WoQIAAABM4OvrK4fDUSnHcjgc8vX1rZRjwTs2N/EYAAAAMMWlS5dUUFDg9XF8fX1lt9sr4YzgLQIVAAAAAFQQU/4AAAAAoIIIVAAAAABQQQQqAAAAAKggAhUAAAAAVBCBCgAAAAAqiEAFAAAAABVEoAIAAACACvo/0yJi8tD4vI8AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import OracleRMSE\n", + "\n", + "acquisition_fn = OracleRMSE(model)\n", + "X_new_df, acquisition_fn_ds = greedy_alg_with_groundtruth(acquisition_fn, task, diff=True)\n", + "\n", + "fig = deepsensor.plot.placements(task, X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(task, acquisition_fn_ds, X_new_df, data_processor, crs)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### OracleMarginalNLL" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:09:25.473404971Z", + "start_time": "2023-11-02T15:06:58.386512594Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████| 1311/1311 [02:26<00:00, 8.96it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9HklEQVR4nO2ddVhU2/f/FymIgI2AhYot6r120t2KIB2iooJd2B3XDhTBxsACRBS7RQxURBQlFJSULgeYef/+4Mv5Mc4Mjfq5l9fzzKOcfc7e+8ycdfbea68QAgBqookm/hMI/+4ONNFEE7+OJoFvoon/EE0C30QT/yGaBL6JJv5DNAl8E038h2gS+Caa+A/RJPBNNPEfokngm2jiP4RoTU/88eMHlZSUNGZfmmiiiXogLi5OEhISVZ5TI4H/8eMHKSkpUWpqaoN0rIkmmmh4OnToQAkJCVUKfY0EvqSkhFJTUykpKYlkZGQarINNEH379o0CAgLo27dvFBcXR1JSUtS+fXuSk5OjLl260PDhw6ljx45ERJScnEzTpk2jBw8e0OzZs2n58uUkLi7OU+ePHz/o27dv9ODBAzp37hyFh4cTm82mzp07U0pKCpWWlpKMjAwFBQVRUVERnT9/nrKyskhZWZlKS0vp6NGjpKenRz4+Pjx1Ozg4UFBQEFW2yL5+/TqNGDGC67zDhw/TvHnzKDIyktq3b0979+6l58+fU2RkJKWmppKysjI5OzvT0KFDafHixVRaWkoPHz4kIqLs7Gw6c+YMvX79mp4/f07x8fFERCQsLEzi4uIkLS1NsrKyJCsrS2VlZZSQkEB5eXk1+r6lpKTI0NCQFi5cSMrKyjX7kWoJi8Wi8PBw+vr1KzVr1owkJCSoWbNmzEdUVJRERERIVFSU+QCgHz9+0I8fP6i4uJiKiorow4cP9Pz5c3r+/Dkz2Hbu3JlOnTpFKioqXG3m5eVRp06dqKSkpEqBF6qJLX1eXh7JyspSbm5ugwo8h8OhGzdu0Llz5yg/P58GDRpELi4u1KFDhwZr49+EtbU1nTlzhoSFhUlJSYlkZGSIxWIRi8WikpISYrFYlJ6eznPdrl27SEZGhl68eEHh4eH05s0bKisrIzs7O+rcuTMVFhZSQUEBFRQUUHx8PD179ox27dpFs2fP5qkrKiqKbty4QdLS0sRiscjd3Z1GjRpFI0eOJElJScrJyaGcnBwKDg4mU1NTOnDgALVp04aKi4tJRUWFDA0NSVlZmUJDQ8nf35/09fXJ2dmZJk6cSF5eXjRu3Djq0qULtWjRgojKX152dnYUHx9PPXv2JBaLRe/evaOWLVtS//79SUREhLp3707du3cnJSUlatWqFTVv3pykpKRIUlKShISEqKioiAoLCyktLY0CAgJozZo1pKysTB8+fCBh4cZTYwGgV69eUW5uLvXu3Zvk5eXrXNfXr1/p4cOHZG1tTaNHjyYXFxcyMDCg9u3bE1HNZfS3CXxhYSFZW1vTsGHDyNHRkdq0aUOPHj2ibdu20YwZM8jY2LhB2vkVZGRk0JkzZyg1NZW6detGlpaWJC0tzXMeAPrw4QPl5eUxAlb5IywsTK1atSJlZWXq0aMHycrKkri4OPNQZmVlUXh4OCUkJFBCQgIVFhZyjRz37t2jBw8e8LQ7atQoSkxMpK9fvzLHmjVrRlJSUtSiRQvmIyUlRdLS0jR9+nTS09Or9r45HA6tWLGCIiIi6OPHj1RaWkotW7akli1bUufOnWnXrl1UWlpKCgoKzDUVbUhLS9OnT5/I1NSULl26RCYmJhQcHMyc17p1a+rSpQtlZGTQgAED6K+//qK2bdtS8+bNSVRUlB4+fEiJiYk0YcIEKioqory8PMrLy6P8/Hzm/2JiYtShQweSk5OjrKws+vjxI3369ImSkpKod+/e9ObNG74zpIbg8uXLtGfPHhoyZAi1b9+enj9/TiIiIrRz505q165dnevdv38/nT59msLCwkhMTIyOHj1K1tbWf77Au7m50aRJk0hNTY3reGlpKZmZmdH+/fupS5cuDdJWY7Jr1y66d+8eubi4UNeuXSkqKoqOHj1K06ZNowkTJnCde+7cObK0tOSpQ0hIiFq0aEFlZWVUXFzMUy4iIkJiYmIkLi5Obdq0IR0dHTI2NiYtLS0SFf3/q7KvX79Sp06dmGtERERIQUGBBgwYQP3796f+/ftTv379qFevXtUqd2pDcnIySUlJkaysrMBzUlJS6MmTJ3Tt2jWKioqi1NRUKisrI0VFRRIXFydRUVGSkJAgGRkZkpCQIACUlZVFb9++pTZt2tD3798pMzOTfvz4QRwOh/nehIWFmbalpaVJRkaGZGRkSFpamkpLSyk1NZVSU1OpZcuWpKysTMrKyjR69GjS09MjERGRBvsOKhMSEkJnz56lw4cPc71QIiMjad68eXT58mVq3rx5vdpIT0+nhQsX0okTJ2jLli00bdo0atmy5Z8p8FlZWeTi4kIBAQF8y588eULBwcG0adOmerfVmFy4cIHCwsJo27ZtJCQkxBwvKysjW1tbWrBgAQ0ZMoQ5zmKxaN26dbR582ZSUFCgZ8+ekaysLElISDDXFxUVUVxcHMXGxlJBQQGVlJRQaWkp8++XL18oJCSE4uPjSV5enpycnGjJkiXMjKLi56zcn5pQVlZGmzdvpvj4eMrMzCQWi0VycnKkr69PFhYWPFPfsrIyCgwMpAMHDtCdO3eIqHx9qaSkRHl5eZSZmUmZmZkkKytLERERJCoqShMmTKD79+9T165dSUVFheTl5amsrIzKysqotLSUMjMzKSEhgT5+/EhERF26dKFz587RsGHDKDU1lc6cOUPv37+nlJQUSk5OptjYWGbtzmazKTMzk6Kioig6Oprev3/P/NutWzfavXs3ZWZmkrOzM6Wnp/PMbuTl5cnQ0JBMTEzqtaQEQNra2nTlyhVq1qwZT/nJkyfpx48f5OrqWuc2Kre1atUqWrduHU2ZMoV8fX2rl1HUgNzcXBARcnNza3J6tdy7dw9bt24VWM7hcGBoaNggbTUmOjo6KCoq4lv2+fNn2NnZcR0rKSnBzJkzQURwcHCodXsfP37Erl27MHbsWAgLC4OIQEQQFhZG165doaOjg/T0dJSWliI+Ph4REREoKyvj6VdKSgoA4MuXL5g+fTrGjBmD3r17M/UREcaPH8+0cffuXZ6++Pj4gIjQvHlz+Pr64uTJk1i0aBEmT54MNzc3jBo1iqnr0qVLWL16NaSkpHDnzh1wOBye+nJzc/HgwQNoaGiAiGBsbIwpU6bgyZMnmDhxIkRFRSEhIYG//voLhoaGmDZtGlO/p6cn/vnnH6a/YmJi6NevHywsLLB8+XKoqKhASEgIf/31F4gIcnJyWLZsGVatWoV58+Zh8uTJTBkRYfTo0bhx40atfx8AeP/+PWbPni2wvLi4GMbGxjzHy8rKUFxcLPDz8+/4829Rce/VyehvEfjw8HCsWLFCYHlxcTFMTU0bpK3GIi8vD1ZWVlWeo6+vz/y/rKwMkydPhpiYGA4cOMD3of8ZDoeDW7duwd3dHZ06deISSCEhISgpKcHR0RE7d+7kOi4qKsr8raioiEWLFiEgIABGRkbMC0JLSwtLly4FEWHgwIGYMmUKBg8ezNWGiIgItm7dCjabzfSpoi1paWmuc3+mb9++zHkeHh6YOnUqZGVlkZqaypzDZrOxe/durnvr3r07QkJCAACnTp1C9+7d0bZtW+zduxdZWVlcbQwYMIB5ORERFi1ahJiYGJSWlnKdV1pail27dkFKSgoSEhJo1qwZiAh9+vRBixYtuO6j4tO7d+9qfx9+PHv2DGvWrKnyHCMjI+b/HA4HycnJiI6OrvaTnJws8Lm5cOHCnyvwZWVlUFdX53qQKnPs2DEcPny4QdoCgEePHsHKygoGBgbQ09ODi4sL3r17V6868/PzMWnSpCrP0dPTA1D+YLu4uEBYWBgXLlyoUf0vX75kHmQZGRkQETp27IilS5fi+vXryMnJYc4tLi7G8OHD0b59e8yfPx9eXl4IDQ3FnTt34ObmhtatW4OI0LdvXxw+fBg+Pj4YNGgQZGVl0bNnT7Rv3x5paWnMfe3duxft2rVD9+7dwWKxuPo1f/58HuHw8PDg6X9eXh4CAgIwdepUSElJwdDQEO3bt4eOjg5u3ryJO3fuQFNTE0QEJycnnDx5Ei9fvuRqb9q0aRASEsK1a9d46v/8+TO0tLSwdu1aSEpK4tChQ9V+p69evQIRQUdHByNGjIC8vDwzMiorK6NHjx4QEREBEUFCQgLq6urYvXs3kpOTa/SbAUBOTg7fEbyC6OhoTJ8+nfm7Qti/f/+OoqIivqN7UVERvn//zgg9P2oqo79F4AHg6NGjmDdvHs8b6/3791BXV0dhYWGDtePg4IBv374xx2JiYmBoaMh3qlob9PT0UFBQwLcsNjYWTk5OAIBt27aBiNC6dWv4+/vj69evVda7Y8cOCAkJoXfv3hg3bhyEhISwefNmlJSU1KmfLBYLb9++5fquc3Jy0KdPH0hISICIcOrUKa5rXr16BREREaxbt47reHFxMS5cuAB7e3u0adMGRIT27dvDxcUFMTExXOey2WxERkaiTZs2WLlyJbZs2cL1opCQkICHh4fA31pdXR0jRoyAqqoqzpw5g6KiIuTl5eHw4cNQU1NDQkICAFQ53a3M27dvISwsDFlZWQwZMgTW1tbYvn07Xr58yXV/jx49wtatW6Gvrw8xMTEICwtDU1OTmZ0UFRUhJiYGeXl5fNuZPn067t+/z3Ocw+HA2toab968YfpdIew1oULo+d3vqlWrfo/AczgcvH79GosXL4aWlhZcXFywadMmXLx4ET9+/OA699ChQ9DU1MS2bdtw5MgRuLi4YMKECcwas76kp6dDX1+f70yisLAQqqqqPNO/2nD58mW4ubnx1P/jxw+YmZnh9evXAMqFx9DQEN26dWMe9i5dumDJkiUoKSlBUVERnj17Bh8fH7i7u6NNmzbQ0tLCqVOnuM5XU1PD4MGDmVFo5MiRNVoaCCI2Nhbdu3fHihUr+H5H8+fPh7S0tMDfvaysDA8fPsSiRYvQsWNHiIqKQktLC3Z2djAwMEDLli2ZNbWenh6ICEOHDsXChQthaWnJvMxat26Nbdu28dzLzp07IS4ujlWrVkFDQwPKysowNzfHsWPHBOpOqqOoqKhW31lmZiZ8fX3RvHlzdO7cGe3bt2d+k3bt2uH48eM89eXn50NPTw+7d+9mZmKvXr3CpEmT4O3tzZxXXFyM6OjoGt9LUVERoqOjUVxczHWcw+GgZ8+eNZLROmvpy8rKKDIykh49ekSPHz+mvLw8at26NUVERNCHDx+odevWNHr0aEabmpubSz179iR9fX16+/YtSUhIUPPmzUlERIRGjhxJHTt2JBUVFerRo0d13akxO3bsoF69epGBgQHf8m3btlGfPn0EltcEHx8funTpEtnZ2ZGSkhK9ffuWzp49SwsWLCB9fX2e81NSUigsLIzu3btHBw4coNatW9P379+Jw+GQkJAQKSsr08CBA2nWrFk0ZswYevr0KV25coXvjoW0tDRlZGRQSUkJFRUVkZCQELVr167WGnpBJCcnU5cuXahv375kbm5OhoaGNHjwYL7GKsXFxeTl5UVhYWGUnp5OkpKSNGbMGBozZgx9+fKFnJyc6ODBg+Tq6sp1fUJCAm3bto28vLxo8uTJdPjwYZKUlCSi8m1GFRUVys7OZs7/+PFjo1nIVcW+ffvo1atX1KVLF+rSpQspKCjQ4cOHyd/fnwYMGEBDhw6lvn37Mp8OHTrQ5cuX6dy5c/Tjxw/q1q0bTZ8+nfr06cPU+ePHD0pISCAlJaUabZNWdX5mZia1bdu2YbflVq1aRXFxcfTlyxd69eoVFRQUkLi4OA0bNozatWtHmZmZ1KVLF7KysiItLS0SExMjovLtg6ioKJo5cya9ffuW1NXVmT3nmzdvEhFRmzZtqFOnTiQsLEwpKSnEYrGoR48e1KtXL+rZsyf17NmT5OTkqEWLFiQtLU0tWrSgdu3aMW1UWJnJy8sze9OzZs2iBQsWUNeuXfne1/Xr1+nTp080a9asar9sQWRlZTFbQBkZGZSZmUm3bt2iHj16kI2NDZmZmXEJIIfDoYKCApKRkaFHjx5RQEAA9e7dmwYOHEj9+/fn2Z9NTk4mb29vWrt2LddxSUlJvnv2lRk1ahTdvXu3XsYl169fpyNHjlBoaCjl5eVRhw4dSENDg/l07tyZ5xoAVFBQwGwV7tmzhxYvXlxlf8+dO0eOjo7Uv39/CgoKYqzSXrx4QaNHj6aSkhIaPXo0DRw4kDp06EAdOnSgrl27Uvfu3alz585c9gg1hc1mU3Z2NrVt27bW11Zw69YtOnHiBLMFWFRURERELVu2pClTptCcOXNIUVGR77UNKfCNYngjKSlJf/31F3Xq1IkGDRpEY8aMob///rtWRhwAuAQgKiqKIiIi6OvXr5SUlERsNpvk5eVJXFycYmNj6ePHjxQTE0OZmZk8dYmKilL37t0pPz+fUlJSCABJSEjQwIED6e+//6bExEQaPXo0mZiYUNeuXZmRo4KDBw9S27ZtaeLEiTXqe0lJCT18+JBCQkLo2bNnFBMTQ9+/fyciokGDBpGxsTEdOnSI2rRpQ9LS0vT06VMaNmwYbdq0idTU1CgwMJBWrVpFiYmJlJKSQpKSkvT8+XO6desWY4E2aNAgGjhwIAkLC9OGDRvo9evXNGXKFJKTkyMfHx86ePAgY3hSEwoLC+tt5EFUbhD1+PFjunr1Kt2+fZtevXpFAOjvv/+mZ8+eMaN2fHw8eXh4UEhICPXs2ZM0NTUpPz+fTp06Ra6urjR58mQaO3YszywhPz+fDAwM6OHDh7RkyRKuGU1GRgb5+vrSvXv3KDU1ldLS0ig9PZ2xORARESFpaWlq06YNycjIkKysLLVv357k5eWpc+fOJCcnR7KysiQmJkbZ2dmUlZVFmZmZdOHCBYqMjCRtbW0yNTWl1q1b08iRI/m+xGoCh8OhxMREio6Opvv375O3tzeVlJTQ5cuXSVNTk+f83yHwtVrDVyhJfgeZmZmIiYnBy5cvce/ePQQHB8PLywuzZ8/GihUr4Ovri+DgYOzYsQM2Njbo3bs31/YUEaFDhw4YOXIknJyccObMGaiqqvKsh968eYO1a9dCVVUVEhISaN26NXr16oWRI0cyW1EKCgqYPHky1qxZA39/f1y9ehVDhw5FixYtYGFhgfj4eADA7du3MWzYMBAR5OXlQURQUVFh9pnHjBkDUVFRSEtLQ1JSkuln+/btMXLkSBgYGODBgwdIT09n1om2trbMeTt27MCFCxcQEhKC2NhYJCQkICYmpt7KVUFKMBaLxeyvV9xPu3btmO3Din4pKipi9+7dmD59OqO3aNeuHdq1awciwvDhw/H06VOuuufNm8dcLy0tjWHDhmHPnj0AytfE+fn5XOeXlJQgNjYW169fh4qKCkRERCAuLg4hISG+22yVP2JiYpCTk4OGhgb27t2LYcOGMdr6Zs2aYcWKFQ2iNM7NzYWenh4kJCRw/fp1nvKKNfzPz6Agqjq/pnq23+o809iw2WxatGgRZWRk0NixY+nr16+UkJBAL1++pOjoaBIVFSV1dXXq378/tW/fnu7du0ehoaEkKytLqqqqNHr0aGKz2ZSenk7fv39n9AEDBw7ku07mcDg8IxcACgoKouDgYLK3t6ehQ4eSmpoaiYiIULdu3ejvv/+mWbNmkZiYGLFYLAoLC6PQ0FDy8vKioqIiYrPZRFRuW967d29SVlamrKwsunHjBrFYLKYdYWFh6tOnD6mqqtKmTZv42vITletecnNzKTc3l2JjYykyMpL5fP36lfLy8qi0tJQ6depEffr0od69e1OPHj2oQ4cO1LJlS9LW1mbqWrZsGY0ZM4Z0dXVp6dKltHnzZiIiUlVVpe7du1NiYiJ17dqVREVFKSQkhBITE2nq1KmMA8/69etp2bJlRESUm5tLd+/epYyMDPr69SudO3eOWrRoQTY2NrRq1SoiIlqyZAnNnj2bZ8airq5OcnJydObMGSIiKigoYKzxIiIi6MSJE/T69Wvq378/hYWFkZSUFM/vh/8z5Z04cSLdu3eP5OXlKSkpqc7mt5mZmXT//n0KDQ0lHx8fkpKSouzsbGYJSvT/R2x+s09+FBcX0+fPn3/dCN+Q23K/Ej8/P2hpacHKygoTJkyAoaEhTp48id27d0NHRwc9e/aErKwsVFRUcOrUKR7NPYvFEmgz0BikpqbCyckJP378wLt373Dx4kVs2LABdnZ2GD58ODp06MAzaomKiqJHjx6QkpJCnz59YG5uDi0tLQwfPhx9+vSBgoICmjdvznOdsLAwREVFeWZD7dq1w4ABA9CrVy+IiYnxXHfv3j2eficmJmLnzp0YMGAA5OXloaCggLZt2zKjrpKSEp48eYLc3FxISEhg/vz5Ar8DR0dHpn/Tp0+Hh4cHxMTEoKCggMTEROa85ORktGvXDu7u7gLr4nA4TH3VacQtLCy4tg0HDx4MZ2dnBAQE1HjU//DhA9d39vfff+Py5cs85zXktlzTCP8T+D9FkoiISLVrWgAUHh5O3t7eFBkZSV26dKHi4mKSk5OjJUuWUO/evRu1rxkZGbRgwQI6fvy4wHN0dHTIz8+PJCQkaPv27bR+/Xpis9nUq1cv6tatG3E4HC5HEmlpaSorK6OsrCzq27cvFRUV0dKlS4mIaNy4cWRiYkLS0tLUpUsXys7OpoCAADp//jx16dKFJkyYQBkZGZSdnU1du3YlDQ0NMjQ05JrNlJWVMfqZZs2aUatWrWjAgAEUExNDKSkpREQ0YcIEkpaWpq9fv9Ldu3cpLi6Ov4MUQId8fCgoKIg2bNhAgwYNIiKirVu30tKlSykxMZEUFRWpsLCQ1NTUKDk5mZ49e8bllVcZBwcHOnHiBC1atIi2bNlS5Xe/YcMGOnToEH39+pUkJSWpU6dOxGaz6dOnT9S8eXPS09OjLVu2UPfu3QXWUVZWRocPH6aQkBC6c+cOFRYWUrt27UhTU5P69+9P3bt3px49elC/fv0oOzubcnJyqH379tS8eXO+M0cAVFRUROnp6dSyZUu+brZNI3wdefXqFbS0tDBgwAA4Ojpi3bp1UFdXR1BQEOLi4qClpYVXr141ah84HA60tbUFjkZv376Fm5sbAMDb25tr5JWXl8fff/+N3r17o1OnTmjdujVjSlrxERERgaurK8aMGcMcq9A7VObdu3cwMzODkpIShgwZguHDh0NcXBxEhLZt20JdXR0DBw5k1uaVP56ensy9JCYmomPHjsz6fsSIEbym1Xl5gLs70LUroKhY/q+7e/nx/8PMzAzS0tK4e/cuXrx4gd69e6N58+ZchjP8mDt3LogIM2fOrPK8S5cugYjg6OiIQ4cOMXqFw4cP48OHD9i0aROUlJTQvn17JCUlVVlXBSwWC3fv3sWSJUswYsQIxuqR/s9yMjg4uEFMa5tG+Drw5csXmjJlCrm5uVFERAStX7+eiMq18w4ODjRt2jQaMGAA2dvbU0hISKP25dKlS3T//n3atWsX11u/qKiILC0t6Z9//qHevXsTh8OhyMhI+vLlCyUmJtKXL18oPz+f8QaTkpJiPhW2DqdOnaK1a9dSbm4uaWho0JIlS/hqkflRXFxMYWFhdOfOHXr//j3JycmRgoICdejQgcTExBjvN319fcZVl6g83lppaSmzZuUiP59o5Eii9++JKu9ACAsT9elDFBZGJC1NiYmJZG9vTw8ePCARERFSUVGhkydPUt++favsc15eHpmamtK7d+8oLS1N4HmrV6+mjRs30pw5c6iwsJCuXbtGycnJdOPGDRo3bhwREcXFxVGvXr3I0dGRfH19a/Sd/Ux2djbFxMTQmjVrKDQ0lCZNmkTr1q1jdsLExMR4RnoxMbEq9QmNMsI39sj2u5k7dy6eP38OW1tbHpvlnJwcxulh+vTp+PjxY6P358CBA9DV1YWfnx8ePHiAPXv2QFVVFXfu3BF4TWlpKS5duoRZs2bBw8MDZ86cwYYNG2BjY4OZM2fi8ePH4HA4zK7Hr+Lx48eMSSkP7u6AsDBAxPsRFgYq2eqXlZVh9+7d2LBhA1gsFjgcDu7fv8/jWMNisRAUFIRJkyZBQkICQkJCVTpsAUBGRgYGDBiA7t27Y+DAgbCxseF65iMiItC9e3fIyMjg6tWrdf4uKuBwODh16hTatm3LNTuSlZXF58+fa1VXo9jSy8jIIDg4uFYd+V9CV1cXALc3U2UmTZqEnJwcbNu2ja/SqjHIzc3F0aNHsWXLFqxcuRLGxsbQ19eHrq4urKysEB4ezpwbHx8PdXV17Ny5E3Fxcdi7dy+UlZXx119/4dOnT4iJicHixYsxefJkHqeYmpKamorz58/jwoULyMjIaJib7NqVv7BXfLp2FXhpxZJGREQEo0aNwvjx49G9e3dmGaOiooKtW7dyKfrqwuXLl9GsWTP89ddfiI2NrdE1d+7cgZ6eHgYNGoQOHTpAR0cHHz584DkvMzMT165dw4ULFzBs2DC0atVKoI+GIBpF4IkIY8aMqVVH/peoEHQHBwe+D4iTkxPS09MxZcoUxMXF/dK+eXt7Y+rUqVwa3a9fv2LixIkIDg5GWVkZNDQ08OXLFwDlDkKmpqYoLS1FVFQUlwfXxYsXsWTJEhQUFODFixd49+5dtfblxcXFmD59OiwsLHDkyBEcPnwY5ubmmD17dp1fHgAADqd8zV6VwCsqlp/3E5cvX4akpCT69+8POzs7mJqaYvLkyVi4cCH27NmDt2/f1r1flcjMzETr1q1haGhY4z1zoFznoKCgADc3N6xYsQLdunWDuLg4li9fzqOfSU1Nhbm5OYgIGzZsqHUfG0Xgv337VmPPpP9FLC0tkZycjPv373NtGXE4HJSWlkJdXR3fvn0TOANoLNLT02FoaMhXKFksFtTU1BAYGIgtW7Ywx2fPns01HZ07dy5evHgBoNy5p2vXrtDW1sbKlSsxd+5caGhowN/fX2AfbG1tGT/1ypw/fx5Tp06tx92hTiP8gQMHICwsjE6dOkFERARCQkIYPHgwJk+ejKtXr9ZqG7W4uBgrVqzAlClT4OzsDAcHB9ja2sLU1BSqqqro3LkziMoDY9QGU1NTCAkJwdHREYmJiSgqKsKKFSsgLi6Ozp07Y+XKlXj//j1Onz6N1q1bo127djh37lyt2qigUQT+8ePHOHLkCJydnXHr1q06dexP5v79+3B1dQWbzYaHhwdcXV1hYmICAwMD9O3bF7169cLgwYMRHR39S/u1Y8eOKpdS+/fvh4mJCdeI9nPEoFu3bmH79u3gcDiwsLCApaUll3a7pKQEbm5uOH78OE/9kZGRmDFjhsD2HRwc+Gr5a0wt1vAAcP36dQgJCWHq1KmQlJTEhg0bcPDgQcjJyTGBN+Tk5DB16lRcvnxZoBsrUO7Ca2FhgWbNmmH48OEYOXIkRo8ejXHjxkFfXx+TJk2Cnp4ePDw8+O6lV0VJSQn279+Pdu3aQUhICKqqqjhw4ACePHkCR0dHJs4BEcHKygrp6el1+vqARpzSV3zGjRtX5879yezfvx/m5ubw9PTEyJEjMXz4cHTt2hWdOnWCs7MzzM3NeXzHG5s5c+bg06dPAstv374NLS0tZgQHAAMDA67ZWEhICPbs2YM7d+5gxYoVmDdvHk8QEDabDQ0NDR6/+7Vr1+LRo0cC27927Rp27txZy7uqRF4e0K8fr9ALC5cf/z+BTU1NhbOzM4SEhKCuro7Q0FAQEde6mMPhIDw8HAsWLED37t0ZoyQNDQ2+wnD8+HEQETQ1NREaGorz58/j8OHD2LlzJ9asWQNlZWUQEbp164YlS5bg5cuXtXZJzs3Nha+vL7S0tCAiIgIZGRmcP38excXFCAwMxM2bN+v+3VVqo8EFPiAggLGhXrRoUb07WVsqfsyZM2fCwsICS5cubZS19Js3b9CtWzdYWVlh9uzZOHnyJDw9PbFgwQKcO3cOmpqaPLbdjck///xTpVb44MGDWL9+Pddvsm3bNgQGBjJ/Ozo6Ii4uDlOmTEFsbKzAiENbt27liefm6enJ+Pbz4+HDh9i0aVNtbomXvLzykfz/9uFLu3SBt7o6/h48GEpKSmjXrh1ERUXRunVreHl5ISsrCzY2NmjWrBnS0tJw+/ZtPHr0iLGxt7a2Rs+ePXHq1Cls3boVRISePXti2LBh8PX1ZawpMzIyMHPmTJ6QXVJSUpCXl0ePHj3QqlUrTJkyhQn4oaysjBUrVlQZNSkpKYnv95uWlgYzMzNISkrWWPlXExpF4PX19WFpaYlmzZphxIgRVV5TVlaGkJAQLFq0CEuXLmW2g+oKm83G1KlTMXv2bHz48AFFRUUICwvDxIkTsXfv3jrXyw9vb2+cPXsWBQUFmDhxIubPn48XL14gOjoau3btQu/evbFx48YGbbMqUlNTYWJiwvf7Kykpgbq6OoqKimBqaoonT54AALKysqCmpobExESEhIQw0XcmTpwINzc3nD59mm9bx44d41lHBgcH459//hHYv5UrV9YpelBmZiY2bdoEPT09GBkZwcbGBg8fPgQ4HIwdOxZEBHNzcyxZsgTr16/Hvn378P37d3z48IFLOFu1aoWNGzfCwcEBHTp0gLCwMOTl5ZlgIRXBISp/Dhw4wNWXwsJCfP78GdnZ2QKDopSUlOD69etwcnJi6uEX2ebbt29MuZGREW7fvs1VZ35+Prp27QpVVdV6yURlGkXgNTU1MWzYMKxbt44rGOHPJCQkQENDA5s3b0ZUVBQiIiKwZMkSGBsbIzs7u1Y3UsGOHTt4fiSgfNR3dXXl+8XXleXLl+PVq1dwdnbmu+d99epVdO3atc5RV+rCnj174O7uzvWDpqWlwdramomTl5ubi8mTJ8PZ2RmBgYHYv38/FBQU0K9fPxw/fhy7du1Ct27dqrRhnz59Oo+OoiIGIb94ap8/f4a2tnatH9wvX75ATU2NS8H27t07GBgYwMrKCkSEffv28b02MTERf/31F+Tl5WFnZwcJCQnGT0BZWRkaGhrw8PCAt7c3nJycoK2tjXHjxqFr164YP348du/eXf1vV839uLu7M7qCTZs24d27d/Dx8YGOjg4MDQ3RpUsXrhdMixYt4OjoiDNnziA+Ph6enp4QExOrc9iyn/ltMe3KysowevRoeHh4QF9fH/r6+li2bBm+fv2K8PBwWFpa1uwOKlGxthSkef327Vu1EWRrg7e3N/bv3w9ra2u+5SdPnoSjoyNfBVdjEhwcDENDQxgZGUFfXx8TJkyAv78/rly5gocPHzJr9o8fP8Lb2xu+vr5ITEzE69ev4efnhytXriA+Ph76+vp8d1vi4+MFBmCMiYmBqqoqDh8+jMzMTGRkZODgwYNcseVqg7m5Oddy7NKlS5CTk2MEpG3btoiKihJ4/e3bt7F69WoA5bMSDw8PhIeHg81mc4WwrvhMmzaNubYipFiFsQ6bzcaDBw+wZN48bBw5EgHt2uF9+/Yo6dKFMe9NTk7GlStXmJBVHA4Hjx49gr29PRMXsGXLlnBwcMCZM2eQkpKC27dvMybF/D5Tpkyp9fcmiN8m8Fu3bkXPnj1x//59cDgccDgcPHjwANra2njy5AlcXV3x/v37mt3F/5GSkgIXF5cqz2nIrbLs7GyoqKjwFeiysjJoaWkhPj6+TrHlG4KysjIkJSVhwoQJcHJywoEDB7BmzRpoaGjg/Pnz1V7v7+/PFXOvtLQUFy5cgJqaGrOPz4+ioiJs3LgRysrKUFRUxODBg2Fvb19rC8yEhAQ4OjoCKH+2KkZ0Y2NjvHv3Ds+fP6/S+w0oj2jLb2egsLCQa6pPRFBVVWUsIzMzMzFw4EAQEcTFxfHp0yfs2bMHRIT2IiKQrSSQIkSQJ0LvSn72EhISsLS05PLn9/f3h62tLebMmYN+/fox17ds2RIqKipMbD+icnv+K1euYOPGjQ0Wu7Hie/zlAl9SUoKOHTsiIiKCpywvLw+qqqq4dOkSvLy8atIsQ1ZWVpUjOIfDga6uLthsNmJjYxEbG1tvd1Y3NzeMHTuWy9AlIyMDDg4O8PPzQ3JyMpydnevVRl3Jy8uDuro6j2lsaWkpnJycuJR1gnj//j3c3d1haGgIQ0NDroCLgrh9+zYMDQ25lFWfPn3CxIkTERAQUOP+X79+Hbt370Z+fj5Gjx4NGRkZ+Pn5cS0LqktEYmNjI3B56OXlhXHjxkFdXZ3HsSYwMJBrlE1ISICfnx+ICBlCQuAQIYUId4hwkAiriTCLCMe1tBAdHc0MaEQENTU1PHjwABYWFjwGURcuXMCmTZvg5OSEtm3bMuazampqNf6easNvEfiLFy9CVVVV4Ai+f/9+LFiwgCtyZwVxcXGYPXs2VFRU+K4VjYyMBD6QYWFh0NHRgYaGBtzd3eHu7g51dXV4e3vXWSmSnp6OsWPHwtTUlFmamJubM8qp3bt34+LFi3Wqu77s3btXoIEGi8WClpZWgymDKterqqrK1ye8pKQEGhoaVe53V+bly5eYO3cu1NTUIC0tzRP9Jj09HZMnT66yju3bt1e5Lz5t2jS+9hIcDgfbt2+Huro6Mxv69OkTiAhXa2j8U1ZWhosXL+Lvv/+GuLg4lJWVsX37dhw8eBBnzpzhMYtdvnw5Xr9+jZycnEbT+/wWgV+7di327t2LtWvX8i1/+fIlBgwYwOUYkJaWBgMDA663bmVlDYvFwvr16zF8+HBISkrir7/+wo4dO5iXQlpaGrp164Z58+ZxrUvLysqwfv16Zp1XF+bMmQN/f39maVLBx48f+e5X/yoMDQ2rbNvDw4OvzXZ9uHjxYpW7IadPn65RMgigXOjk5eUhKSmJBw8e8JRv2LChWueUzMxMaGpq8jV1rTArrikcNhuthYSwoiqB52Pe++PHD5iamqJZs2Zo0aIFM+0/evQo13nW1tYNOn3nx28R+N27dyMoKAi6urqIjIzkKV+zZg2GDRvG/J2cnMxYRhERZs2ahQcPHnAJbsUWx8CBA2FhYYF27doxcdnbtm3LaKETEhKQnp6Ojx8/4sWLF8wXXJ849yUlJZgxYwasra0RFBSEW7duYcGCBdDX1682mURNqIjh//jxYx5vr6qobrq7cuXKan3Ea8vmzZv5CmcF7969q7FtxsePHyEsLIxBgwZxPVMcDgeXLl3ChAkTarQku379OnR0dJh8dUVFRTh69ChjAl0b7KSk0IkIrBqM8D9z/vx5/PPPP/jx4weICCdOnGDKKnQtPxMZGYmJEydyGUvVh0YR+CVLllTpPJCcnAwLCwukp6fDxMQEHh4euHHjBq5cuQJHR0coKSnh06dPyMzMxMqVKyErK8sY8piZmTH1REVFYevWrbC1tWUULBUJ+srKynD58mXMnDkTpqamfMM9VXwUFRUxfPhw6Ovr4+rVq0w6pdqSmJgILy8v7Ny5k8s7rT5cuHABGhoaWLhwITZs2AATExNMmzatRgY9bm5uVRp9GBgYNLhh0JEjR+Dn5yew/Nq1a9i2bVuN6lqzZg1atmyJ69evw8DAAPb29pgzZw60tLSwbNmyWjnjfPv2DatXr4aRkRHMzMxw5MiROk2bX/2f4vA4P2HnY95bmbKyMlhZWcHX1xcSEhLM9xAdHc1X13Lq1Ck0a9aMCabZEMFhG8201tfXt8pzly1bhn/++QccDgcRERHYuXMn9uzZg2XLlmHx4sU4cuQIE6V17ty5iIuLg5CQEFxdXeHp6clEeZWSksKIESPg6uqKrVu3CrRKWr16NW7cuIHg4GAEBAQw0VAuXLiAxYsXY9iwYVwRX/T09BpMaOuKv78/pkyZwjMtv3//PvT19avNhvP27VtYWlryHQVDQ0MxZ86cBu0vUB4PQE9PT6BuYMKECTUeVefOnYs+ffowf6ekpCA2NpYnM9GvIicnBxqqqhAXEsItIaEqzXsFUVJSgu3bt6N169aQk5ODtrY2XF1deXYSbt++DVFRUdja2iIxMRHdunVDr1696j3lbzSBv3LlCnbt2oV+/fpBSUkJdnZ2iI6OxsePH/H48WM8ePAAf//9N7p06YLFixdjyZIl0NDQwI4dO8DhcLBs2TIQEbS0tJip+9ChQ0FUHv7ZyMgIVlZWUFdXh6GhITQ1NbF27VqBI5a/v3+VWv+DBw/i9OnTiI2NxZEjR5i0yPr6+nj27FlNbr9BqXBjFeR1uGPHjhppvI8fPw5TU1OEhYWBzWYjLS0NGzduhKmpaaMphg4cOAB3d3eu+lksFlasWIH169fXuB5XV1e0bNkS06ZNw/r16xvUaKq2ZGRkQEVFBbKysrh39SqXeS+6di3/u4bKSKB86SMhIcE4IlW8lCusCps3b47x48czL/uPHz9CXl4evXr1qvUypDKN6jwjKioKU1NT5m8pKSmufOUVlkVv3rzBmzdvuEayO3fuQFpaGgoKCowQZ2VlITU1Ffn5+dDR0cHly5eZL4rNZiM4OBg6Ojp8tcAV2mN+AQMq8sdVHjnKyspw+vRpRvDV1NSwevVqLFiwAGpqatDQ0ICJiQkuXbrUKK7AT548wapVqwSWZ2Vl1dg4KS4ujrFgtLW1rbVbaF24ePEidHR0YGdnB0dHR2hqanKtWWvCzZs3YWRkhEGDBqFVq1YQEhL6pdF3KnPnzh0QEfr378+t96jjLsfXr19hbW2N/v37Q0hICIaGhtDQ0GD24jt37gxzc3O4urqisLAQ165dg4aGBmMtaGFhUaXBkSAazT323r17zFr44cOHePnyJaZNmwZPT09cv34dY8aMQdu2bblc/UpKShAUFAQjIyMICwtjwIABWLJkCZYsWcLlqLFmzRpcuXKFbx+uXLkiUON+//596Onp4fnz58yxFy9eQF9fX6CNd1lZGfz8/KChocEoAfl9VFRUGjR4Z2hoqECTUaBccVVVuuHK59Ur8EQ9SUtLw9u3b+tsKl1BcXEx5OXlGVv/38Hjx48xYMAACAsLY/v27Q1Wb0hICMTFxSEsLAxjY2MEBgYyg9/NmzcxePBgzJo1C5mZmYiPj0eXLl3QuXNnaGho1HrW81u09BEREejWrRvs7OwAlOdlt7GxYSye2rdvz2RYqeydVGEjr6GhIXCNyOFwoKmpKbDt+Ph4zJ8/n9kznzdvXo086aZPn46HDx8iIiICt2/fxvXr1xESEoILFy5AXV0dzZo1w+LFi6utp6YkJSXB1tZWYPnTp0+rbC8tLQ1z586FlpYWzM3NoaGhgTVr1jRYeu3qKCsrw7Zt26Curg5nZ2dYWFjAxMSkSvfZ6tixYwdERESYmHc/fvxouPBZNaSkpATz58+HkJBQg4VxS0pKgrm5OV9l8efPn9GjRw+uQSo+Ph4KCgoYMGAAxo4dW6vZ2i8V+OTkZEydOhVEhO7du+PZs2d4/PgxpKWl0bt3b6xYsQJXrlwBEUFDQwNnzpyBm5sbo0xbvHgx/P39mZhyQLlm/M2bN1xtGhkZNeiUNS8vr0qT3G/fvqF///4QFxfHkSNHGsyYxcrKim/4JTabDVNTU4EvqtTUVKipqSEsLIw5xuFwEBQUBH19/UZ35uFwOHB2dsahQ4e4fofMzExMmDCBbzqlmsBisdCnTx/Iy8ujS5cuzH52165dYWtriwMHDtTaHLsusNlsmJiYQFZWtkF2OQ4cOCDQ6nH16tXw9vbGsmXLuI6/ffsWrVq1QpcuXXDt2rUat/VLBP7FixewtraGqKgopKSkmEipnTp1AlF5ppHKJoeamprMqC4vL4/+/fvD1tYWp0+fxuHDh9G2bVvY2dlBT08Pzs7O8PT0hLGxMaZOnYqsrKwqR/i6EBUVVe3oraenx+RzGz9+fIMYtKSnp0NDQwPHjx9ntjlfvXqFCRMm4OTJkwKvmzFjhsD99TNnztQvCEUlOBwOnjx5AhcXFxgaGsLV1RVPnz7Fo0ePsHDhQr7XFBcXVzlDq45nz55h8uTJWLJkCXx9fXHmzBnMmTMHQ4YMYZZcf/31F/bt29eo2vzw8HAQ1SxCc3Z2Nnbv3g0bGxtMmTIFoaGhXC/CnTt3CowM5ejoiCdPnvD1XPT09AQRwdbWFoGBgdWaPAONJPBpaWl4//497t27h7Vr10JYWBjdunXDzp07ERUVhQ4dOqB9+/aYMWMG7t69y6P0YrPZuHz5Mq5cuQJdXV2u6QxQHiRSSUkJ8+bN4zoeFhaGv//+u0Gn1kC5gqUqB5gfP34wRi43btxA9+7d0apVqwaZPhcWFsLX1xcmJiYwMjKCh4dHlaNYSUkJ1wzoZ0pLS6Gjo1PvfnE4HLi7u2P27NnMllJcXBzc3d3Rv3//KpdJy5cvZ/zxG5L8/HwEBATAxMQEIiIi6Nu3L0JCQholCMn8+fMhIiJSZYQhoFxvpK6ujosXLyInJweJiYnYsGEDDAwMGKELCwsT+MwuW7YM8+bN43F2KiwshISEBERERKCrq4u9e/fCyMgIS5YsqVKJ3CgCXzlrRsVn69at0NXVhbCwMNq2bVujrYXQ0FC+ASR0dHSgqqqKESNGIDMzE0D5A3jjxg3069cPu3fvrkl3a4WhoaFAK7cTJ05w2f3HxMSAiBj/81/J9+/fq/XOq84CryZUhMTmR+/evat0Cfbx8amR4059iIyMxJAhQ0BUnndORUUFy5cvr7fxSl5eHmbPng0iwq5du6o8NyMjAxoaGnxf/E+ePGF+Jw6HAz09Pb42JE+fPoWcnByPLYaFhQXWr1/P6L3k5ORw5MgRHDlyhGcgrEyjx7SrsGQTFxfHqFGjcPDgwRqbh06fPp3nB0pMTISzszNycnJgYGCAAQMGwNTUFJqamvD09ERaWlqjRIsNDw+HgYEBT9+fPHkCbW1tnh916NChEBUVhaGhIW7evIm1a9dCU1OTsRnYtGlToyjQSkpKqhzBWSxWg4zw2traAq0p3d3dMXLkSIHXzpo1q8FCQ1cFm81GVFQUfH194ejoCGlpaQgJCWHgwIEYPXo0NDU1YWxsDCcnJyxevLjKHAIZGRk4fPgwFBUV0bx5c2zbtq3aZcnWrVurVOxZWloyA19iYiLU1dWxf/9+pKenIzs7G8ePH4eqqiqmT5+OFStWMLqXZ8+ewc3NDRMnTkRISAiio6NhY2PDLCcHDhwIPz8/fP78maePjSLwIiIi0NHRgY+PT70sg5ydnXk0l5GRkVi6dCmAcmOaEydO8Fic1VTgi4uLERERgbdv39ZIyff06VMYGRnB0dERixcvhpGREaZPn8537ZSVlYV9+/ZhwIABjP1/xZfPZrNx6dIl6OnpNYrQe3h4CJwyHzt2rN6hvthsNrMl+OzZM7i4uDAmq35+fnjz5g0UFRX5fqcpKSnQ09Nj/i4pKcHVq1dx+PBh3Llzp1HtAwoKCnDkyBFMmzYN9vb2sLCwgIGBAUaMGIHmzZtDS0uL6/yysjJs2bIFI0aMYBSExsbGNc72Ym5uXqUewdvbG0FBQczfLBYLZ8+ehb29PWxsbODr68s8H6dPn4aOjg7MzMzQvXt3aGhocCllgXKfgREjRnBZjCorK+PMmTPMOY0i8PUKRVwJHx8fHuVUbm4u87C5uLjwpHKqbjsLKF/HrlixAtra2li2bBnmz58PdXV1HDt2rEb9+vbtG6KiongMfPLz83Hr1i18+fIF7969Q1xcHDw9PTFo0CAMHTqUZ1p28eLF+gd15ENmZiY0NDRw8+ZN5iVTWlqKU6dOwcTEpN778hwOBzo6Oti0aRNcXV2ZqWh+fj68vLygr6+PHj16YObMmUyIMw6Hg7CwMKirqzPuqEFBQVBXV8e2bdtw6dIlJiFnfbbu6oqysjLjh1HB58+fmfTYa9as4euOXRWTJ09mlpz82LFjB0JDQ2tVJ4vFgru7e5W6g6tXr2L16tW4cuUKjIyMQETMd/rbIt7UhIKCAqiqqvIYbUybNg3Hjh3DpEmTeK6ZNWtWtcYITk5OOHXqFNd0p6ysDAsXLqzX6Ld582aupYy4uDjU1dVx9OhRCAsLo2/fvlyx79hsdoPvKFSQlZWFFStWcC0jtm3b1mCaaz09PYGhvY4dO4a+ffvi9u3bsLCwgKGhIXR0dLBo0SLGe/Dhw4ewtLTkefnk5eVBT0/vl2yvVaZHjx5c4a0qCAsLg6KiIvT19Wtdp7+/v8DnqeKlWZct0tOnT/ON21jB/PnzGXNwNpuNvn37YsyYMQgODkZSUtKfK/BAuW/8+PHjceLECWRkZODLly9YvXo12rRpg/379zPryMTERMycORNr1qyptj4PAR5NFRFxapuvq4K9e/eCiLBx40aoqalBRUWF8e579eoVRo8eDSLiWtc1hALtd2BkZIRx48bx6DS+f/8OLS0tjB8/vsrv0czMjGsrtjIfPnyof5aaWjJnzhwoKCjwXVLs3bsXoqKitXJNBsqXK5qamnxdwDdt2oStW7fWqa8sFgvjx4/n+/19+vSJ5+V05coVJpmFkpLSny3wQPlIf+jQITg4OMDV1ZXZavHx8YGRkREMDQ1ha2tbpR92BQsWLKgydvqhQ4dqFO+NH7m5uYwXHxHB2dmZa8+ZzWajZ8+ecHV1Zf5urBG+sTE0NMSLFy+go6MDDw8P7Nu3D+7u7tDV1UVERAQWLVok0Na7IiBEVVS1tdgYPHnyBESEI0eO8JR9+/YNQkJCPAErakJ6ejomTpwIZ2dn+Pn5wcvLC3p6eti8eXO9DLRev34NVVVV+Pn5ITc3F9+/f4eXlxfU1dX55qTncDh4+/YtY6v/Rwt8Q+Lq6lqlIjEwMBA+Pj51rr+srIwrHrmenh6XnX7Flk6/fv1gbW39WxJ1NAT6+vqMTuLt27e4du0al4A7OTnxffCA8hc4v+VYZQwMDBquszXEzs4OLVu25Pt8jBgxgisWQ235+PEjTp8+jcDAwDrPIH8mPz8fBw8ehJWVFWxsbHDmzJlq9TN//fXXf0vgd+/ejUuXLgksX7JkCY/2s7b8+PGDS+iHDRuGe/fuMY4sgYGB0NDQABExOw7/a+zduxdnz57lW5abm1vlmpfD4UBLS0ugPiE9PR3m5uYN0s/a8P37d7Rr1w5Dhw7linOXlpYGKSkpLFmy5Jf3qSG5c+cOEwjmPyPwFaa3/N6EycnJ0NHRaTBb+Js3b+Lo0aNISUnBokWLoKGhAXNzc6irq2POnDkgonrNJn4n+fn50NDQ4Fke5efnw9TUtNrl1fHjx/nGNORwOJg2bdpvS0IaFhYGZWVliIuLY82aNfjy5QsmTZoEWVnZKjXufyrp6em4dOkSRo4cCSJiYuP/ZwQeKFdiGBoaMia7ZWVluHLlCtTU1Bo8qGNlKkb4imCXY8aMgbKycq1yif9JZGRkwM7ODhMnTsS6deswY8YM6OjoVGnAUkFFkBN7e3s8ffoU6enpuHv3LszMzLjcgjMyMvDu3bt6u9fWhuLiYnh6ejJbcs2bN8fhw4d/Wfv15fHjx5g8eTKjoKuwNqwci6I6GRUCAKqGvLw8kpWVpdzcXJKRkanu9N9KXFwceXl5UUxMDAGg8ePHk4uLC7Vp04bn3Ly8PDp58iTdunWLhISESEtLi2xtbUlaWrpObbPZbBo3bhxlZmbSp0+fqHnz5jRs2DDS0NCgsWPH0qhRo0hERKS+t/jL+P79O8XFxVGrVq2oZ8+etbr248ePdPz4cUpJSSElJSVydHSkTp06UUxMDC1fvpxERESoc+fOFBsbS9LS0rR582aSl5dvpDvhJioqip4/f06mpqbUqlWrX9JmfSgoKCBPT0/at28f9evXj7S0tEhGRoY2btxI48ePp65du5Kvry8RUbUy+q8T+JoSFRVFHh4e5ObmRsbGxgSAAgMDydvbmw4cOEC9e/eudZ0/fvwgSUlJIiJq27Ytff/+nau8T58+dPToURo+fDgREWVnZ1NSUhK1adOGFBUV639TfzhxcXE0depUOn78OHXs2JE5/u7dO3J3d6fz58/zfTHXlJycHHr8+DEREY0aNarGwlxSUkJHjhyhoKAgEhUVpdLSUtLT06OpU6cyv6eg6wICAujGjRtERKSlpUXm5uYkLi7Oc+63b9/I3d2dYmNjKTs7m0pKSoiIiMPhkJSUFCkoKJC8vDzzYbFYlJKSQqmpqRQREUE5OTm0YcMGcnd3JxaLRSoqKiQvL08zZswga2tratOmDWVmZlYvozWZSvyvTOlrSmlpKVRVVbmi8lSQkpIiMJVyTfD29uYK87Vs2TJ4e3ujZ8+ejJunrq4uY7Lq6ekJBwcHGBkZNXho6T8NBwcHgZZkt2/fxsqVK+tUb2lpKRYuXAhjY2Ps27cPXl5eMDU1xdy5c6vVbrNYLJiZmcHX15dRNpaUlODUqVPQ19cXaCKdkJDA2MgnJycjJSUFBw4cgJqaGo9H4cuXL6GoqIiOHTvC3d2diQGoo6PDPCutW7dGx44d0a1bN7Ru3RqKiooYMmQIDA0NMXPmTK4658+fDwkJCURGRvL4t/yn1vA1JSgoqMpQRhs2bKi1aWRlYmJicPbsWQwcOBBCQkLQ1tbGlStXMHz4cAgLCzOCP2HCBLx8+RIcDgcZGRnQ1dWt0pbgfxkWi1Wthl9bW7tOdbu5uXHZlVdw4cKFanMS7tq1S2BMvqCgIL5h1Sp2I/jZ3n/58gWamprIyMjA7t27MXz4cCba07p167BlyxYsXboUc+bMYXLa/fyRkpISmJ05LCwMwsLC2LJlC9hsNvbu3Yvnz58zMSiaBJ4PK1as4Jv/roKwsLBaRWEVRGFhIY4cOYJBgwZBSkoKixYtwqBBg5gtlPbt24OImNzrqampmDhxYr3b/RPJzs6GjY1NlefUxToxPj4e9vb2AsunTJlSZYBMLS0tgWHBORwO1NXVeXZ3Kmeu5cecOXMgJyfHOOZU/sjKyqJr165QUFCAkJAQ7O3t4efnBwcHB64U0z8rSDkcDg4fPgwpKSkMGzaMp88pKSk1klHhahc4/0KaN29OOTk5AstzcnJISkqqQdpxcnKiR48ekbm5OXl7e9Pr168pMzOTiMqVfOPHj6c9e/YQm80mOTk5EhISouzs7Hq3/achIyNDqampBAEqo6KiIuJwOLWuNyAggKytrQWW29jY0KVLlwSWN2vWjERFRfmWCQkJUevWrYnFYnEdf/LkCeno6PC95tWrV3T06FFKS0tj7nXo0KHk4+NDeXl5lJOTQwkJCXTkyBESExOjkJAQ0tfXp2PHjtHnz58pIyODsrKyaPz48Vz1Xrt2jVxcXIiI6Pbt2zx9bt68ucB7rMx/UuAnTJhAp06dElh++vRpMjMza7D2pKSk6MSJE/T9+3eSlJSk0tJSEhISoszMTLp//z4lJSVRWFgYERG1a9eO8vLyGqztPwVhYWEaN24cBQQE8C0/ePAgWVpa1rre4uLiKpVUsrKyVFRUJLCcxWIJfAkRlb/8mzVrxnVMXFycb5337t2jv/76i3Jzc4mIyM3NjV69ekXPnj2jKVOmMLs/Hz9+JD09PRo9ejS9efOGS7nYtm1bvsrGhw8fEhHRiBEjGOEGQEVFRZSWlkZsNlvgPVTmPynwysrKJCwsTOfOneMp8/PzIxkZGerSpUuDtysqKkp9+vQhIqJnz57RhQsXmLKXL18SEVFsbCx16NChwdv+E1i8eDGdOHGCDhw4QIWFhURUvlOxfv16io6OJltb21rXOXToULpz547A8tu3b9OwYcMElo8cOZJu377Nt+z58+fUt29fEhIS4jpuYmJCZ8+eZf4GQF5eXqSmpkZE5S+3I0eOkJeXFw0aNIinXgUFBRITEyMTE5Ma7858+fKFuR8RERESFhYmUVFRkpKSog4dOpCSklKN6vlPruGBck3swoULYWRkhN27d2PXrl0wMDDA0qVLmdhhWVlZuHz5Mi5fvtxg1liXLl2CpKQkE+vM2toaROUZR69fv44FCxY0SDt/KiUlJThx4gSMjY1haGiICRMmICAgoM5WkGw2GxoaGnxDq1VE+a0qFlxWVhbfoBOvXr2CmpqaQOWZg4MDrly5gtLSUq61d8eOHWuUubbC89DLy4vLtboyMTExsLa2RkFBAfLz83H27FmcOHECR44cwaFDh5isSl5eXv9dw5vakpubS0+fPiWi8r1baWlpKi0tpSVLllBsbCzp6uoSEdH169dJSUmJtmzZwneftaYAoAEDBlBGRga9efOGJCUlKTQ0lHJycig4OJjOnTtX4/VYE+V8+vSJpk2bRk5OTmRubk5CQkIUGBhIPj4+5OXlxcyqBJGZmUlr1qyhjx8/koKCAqWmplLnzp1p1apVAo2BWCwWzZkzhxISEuj69etERNS9e3caO3YsHThwgCQkJKps8/DhwzRlyhTmb1dXV+ratSt9/vyZtLS0aMyYMaSgoEBERE+fPmVsN/gRERFBf//9NxE1Gd7UienTp5O6ujpNmjSJ6/jFixcpNDSUfHx86lX/5s2bad26dWRsbEwFBQUkIiJC5ubmZGlpybNebKJmFBYW0tmzZ+n69esEgLS0tMja2ppatGhR4zpKSkqYZ7ymv0NKSgrduXOHhIWFSVVVtcbWgsXFxaSgoMBXedynTx+SkJCgDx8+UHFxMQ0fPpwOHz5M/fr1E1hfjWW02rkH/p1TekHExsbC0dFRYDm/8Fu15fz58yAigYEiGhI2m91gTkNNNCxv3ryBnZ0dV6y6ik+rVq1w7tw5qKiogIiqXerVVEb570f8hwkMDKzRNs/ixYvr3EbFll9hYWG9TEmr4uLFi3T48GESExOj0tJSkpWVpYULF9Jff/3VYG2kpKTQ169fSUFB4T9hGlxTCgoKKCQkhHJycqhfv36Un59Pa9asodzcXEpJSSEWi0WlpaXEZrNp3bp1lJGRQVevXiUOh0NfvnyhyMhI+vDhA1lZWVHHjh3p6NGjZGdn1yB9+6MEPikpidLS0qhz587Uvn3739KH6rZ5ZGRkqLi4uMo67t69Sz4+PpSfn08AyMDAgOzt7RlBT0hIIFFR0UYTkvXr11NhYSGdO3eOmdJ++/aNZs6cSbNmzSJNTc161R8XF0eLFy8mCQkJUlZWpri4OMrPz6dNmzbVyQfh38SePXsoNDSUJk6cSIqKiuTn50fe3t5ERGRnZ0d3796l3NxcEhISIgsLC7K0tKS7d+/SuXPn6Pbt25Sbm0uysrKkrq5OM2bMIDs7u4Zd5tVk6tHYU/o3b97A2NgYjo6OWLVqFSwtLWFpaYnExMRGaa8qQkNDsWHDBp7jaWlpWLduHXr16oWhQ4di9uzZfC24Vq5cidmzZzNaYxaLhVOnTkFTU5OJnTZv3jx07969Ufr/6dMngUEoi4qKoK6uXq802ElJSVBTU+MxK/327RvU1dVrlMDz38rRo0exePFiJCcnw8vLC6qqqiAidOjQAcrKyvD09ISwsDCcnJzw/v17HDt2DB07dgQRYciQIVi7di3CwsIEWv5VxR8dtbYy0dHR0NLS4olT//HjR6ipqSEtLQ15eXmIiYn5ZWven7d5oqKioK6ujrNnzzIC8/LlSxgbG3MFrrx3757AQJrh4eFMzDtTU9M6241Xh6enZ5WRfTZu3IibN2/WuX4PDw+BTj7v379n7vG/BIfDQWhoKFq0aAFZWVmuHA4nTpwAi8XCtWvXoK2tDRkZGeb/RARLS8sGcZr6nxF4GxsbfPnyhW9ZYGAgBg0aBGNjY8ybNw+WlpawsLAQGOqYxWLBz88PpqamMDIygoODAx4/flzrPsXExEBVVRXHjh1Dbm4uVFVVsW/fPqiqqnK1zWKxoKGhwQRxsLW1ZcI188PExATfvn2DrKwsPD09a92vmmBvb1+lzcD58+drHKefHz8ndfiZhoosxOFw8OHDB0RERDRKDrmGorS0FLa2tujevTuEhYVhY2ODdevWwdzcHDt27GDOY7PZTNw5IkKnTp0QEhLSYP34n1DasVgsysvLo86dO/OU5eTk0J49e0hCQoKCgoKY41+/fiVHR0fy8vLiCspQWFhIlpaWZGBgQCdPnqQWLVrQly9faOvWrXTr1i1auXJljfvVs2dPCgkJobNnz5KpqSmlpaVRs2bN6MqVK1w29uLi4uTm5kYnT54kd3d3ys3NrXJd3q9fP8amuvIebEPSuXNn+vDhA40aNYoCAgLoyJEjRERUVlZGnTp1IikpKTIyMqpz/dWtJ5s3b05lZWUkJiZW5zYuX75Me/fupT59+lDLli0pIiKClJWVaePGjVX6p/8O/vnnHwJA8fHxZGpqSn5+fkRUbm8xY8YMun//Po0fP56EhYVJQUGBAgMDaceOHRQVFUUHDx6kAwcOkLW1NVlZWfFY9DUKDfn2qC1ZWVmws7PjW7Zx40aEhITw9aBKSEjg8byaO3euwKnq7NmzBVozVcfBgwerzCOWlJTEJDowMjKqMqyVs7Mz5s6dC2lp6UZJRQWUZ3q1srLCypUrsXTpUq7fLCIiAq1bt0Z4eHid69fR0REYpLK0tLTe4bkvXLgAR0dHnjZCQ0NhYmJSL/1DQ1NaWgoNDQ1YWFhg1KhRUFVV5ZrdfPv2DVZWVgDKU3dNnToVampqXGml8/LysGnTJkyfPr1eM6OayuhvtaWXlZWl5ORkvs4L9+/fp9GjR/O9rmvXrpSfn884MBQXF9P79+8Fap8XL15Mhw4dqlMfW7ZsSampqQLL09LSGGcHY2NjLhvryuTk5FB6ejrNmjWLCgoKuOzoG5Ju3bqRnJwcXbx4kZYsWcLsOCQmJtLq1avp2LFjtHz58iodRqrCwsKCDh48yLfs2LFj9Zo9sNls8vLyIh8fH56ZhI6ODg0fPpyxavsTSE1NpR49epCysjI9efKE7t27R3p6eky5goICFRQUEIvForVr11JmZibt2rWLdHR0SFi4XPSkpaVpyZIlJCcnR1euXGn0Pv9WgRcWFiY1NTW+TixiYmK0b98+gQ4Vbdu2pfz8fCIqn+b37dtXYDvy8vJUUFBQpz4aGBjQhQsXBAqIr68vs29va2tL/v7+9OjRI65zsrOzyc7OjpYvX07dunUjeXl5io+Pr1N/aoKQkBBNmTKFbGxsyMjIiPT09GjZsmW0du1aMjIyokGDBtHTp08pPDycwsPDedw/q8LJyYnevn1Lq1evpoyMDCIiysrKoo0bN9L9+/dp5syZde53eHg4jR07VqC7qouLS5Vejr+Kz58/0+PHj+nq1at07949unv3LlP29OlTmjlzJr18+ZKSkpLo69evzLYsm80mFRUVvnW6u7vTiRMnGr3vv30ffuHChWRjY0Pfvn0jFxcXkpWVpdTUVHr//j0pKiqSp6cnzzUAmFhwROV74xUPHz/Kyspq7D74My1atCAjIyNatGgRbdq0iXkYAdDx48eJzWbTgAEDiIhIQkKC/P39aenSpbR582bq27cvpaWlUXZ2Ni1fvpyxhxYXF692L78+fPnyhbZs2UJz5swhAFxrQw6HQ/Hx8eTm5sa4AK9YsYJUVVVpyZIlzMgjCGFhYfLx8aFr166Rh4cHFRQUkKSkJNna2tbo+qrIyckhOTk5geXt2rVjXvK/GgA0e/Zs2rt3L9dxERERat26NSkoKFCLFi1o6tSppKamRufPn6fo6Gjq0KEDnT17lr59+1ZlINA2bdrQjx8/Gvs2fr/Ai4uL05kzZygoKIicnZ2ppKSEpKWladKkSSQrK8tXkREaGkp///03I3xycnKUk5ND2dnZfH2JL1++TNra2nXu48yZM+nkyZOko6NDAwYMIAkJCXr58iWNHz+eDhw4wHWujIwM7d+/nwoKCigxMZFatmzJOEEQEWVkZNDnz5+rtIuuL4qKihQbG8vXtXPx4sVUUFBABw8epBEjRhBR+cPs7e1NCxYsoB07dlRbv5CQEOnr65O+vn6D9rtv3750/vx5cnNz41v+7Nmzah1hGgMOhyMw2vCiRYvo48eP5OfnR8LCwnT8+HHaunUrbdmyhZycnOj06dMkKytLLBaLkpKSBLZRVFT071faVQWHw4GrqyvWrVvHGKwUFxfj8OHDMDAw4FF6hYWFwcjIiKePkZGRUFdXb5C+s9lsvH//HpGRkdUGR3z79i22bt2KTZs24enTp4xCpiLXWWMmqoiIiMD06dN5jiclJWHixIlcefEqY21tLXCL9FcxYcIEvgZNbDYbZmZmTArrX0l+fj6znbZ8+XL4+/vD1taWyeQaGhoKDQ0NLF++HAcPHsSYMWMwcOBAHp+LCRMmCExN7e3tXa/t0v+Zffiq4HA4CAgIgLm5OQwNDWFgYAAfHx+BWuLHjx9DX18f06ZNw5o1azBx4kTY2dnxjU7bWOTn58PS0hJubm64c+cOHjx4gIULF8LQ0BBpaWlgs9mws7ODiIhIoybHmDdvHjZt2sS1a7Bq1SoMHTpUYPaY0NDQKoN7/gq+ffsGNTU1nDt3jslxFx0dDSsrK74JIRuKnJwc7N27F3Z2dpg6dSquX7+OR48e4du3b0hPT0f79u0xf/58AOUDz8858jgcDp4+fYrg4GBERETwzaH37t07aGhocFkpcjgcXL58GUZGRtUOIlXxrxD4uhIbG4tnz54hIyPjl7dtY2PDk8eew+Hg4sWLGDZsGBISElBQUMAEvWgICgsLcf36dVy5coV5uXE4HBw9ehRaWlowMzODnp4eBgwYAD8/P4H1vHjxAqtWrWqQPtWHvLw87N27F4aGhjAyMsL06dPx5s2bRmvv4cOHzEsmMzMTBw8ehK2tLZf3mpycHOLj4wGUz5T4zaAqIygg54cPH2BrawtjY2M4OTlBU1MTy5cvr1M++cr8pwX+d/Hhwwce09L79+9DS0sLc+fOhba2NnR0dGBmZobu3btj5MiR9dqP53A4WL9+PXR1dbFjxw7s378fEyZMwLRp07jqZbFYYLPZCAwM5LL++pnqEnIKIisrC/Hx8fV+aH8HmZmZUFdXZzK//vjxgxHySZMmMf+v/MIpKCiAsbGxwDpZLBb09PSqbLeoqAjp6el1spvnR5PA/wb27t2Lq1evMn+HhYXB2NiYeZgiIyOxePFixMfHY/DgwWjevDkMDAwELlGqY+XKldi9ezfP8Zs3b2LixIk86/SKBBwVOpHKZGdnQ1VVtVYP4Lt372BhYQELCwu4u7tDX18f7u7uVT4nX79+xZs3b5CTk1PjdhqT7du3IygoCED5C9TExIQR8gp9y8yZM3muc3R0FGjiffz4cXh5eTVqv3+mSeB/A3v27OFKYGFiYsJl1/727Vsmb/ytW7dgZ2cHcXFxDBkyhFmv1pTMzEyYmJgILF+8eDGePHnCc/zly5fQ0NDAtWvXwGazwWazGaVTRRLOmhAVFQUtLS2eWHIPHjyAtrY2z8zl+fPnjH/D0qVLYWJiAhcXl9+euXXixImMnqO0tJQnEEWLFi34Kli/fPkCNTU1rpG/Yj1uYGDwyxOJNgn8byAqKopZ22VlZcHS0pKrfN26dbhx4waA8odDV1cXvr6+ICLmeE05efKkwIwpFX2ZO3cu37L09HRs2rQJBgYGMDQ0xIYNG3i8Fatj4sSJfANHAsDp06e5MsW+ePECenp6PML9/PlzaGpq/lbnGGtra55+OTs7MwI/bdo0XLt2je+1FWt5HR0dWFlZQUNDAytXrvwtS5smgf9NWFpaIiwsjEex8+HDB+jo6HDlrDMyMkJpaSkGDhyIoUOH1iqf3aFDh5ipKD8q2/g3NJmZmbCwsBBY/nNaKRMTE4EKVH9/f+zZs6fB+1hTzp07h71793IdW7ZsGYgIPXr0gK6ubrV6lrKyMuTn5//WUGL/E7b0/0a8vb3pn3/+oe3bt9PLly/p+fPntHLlSpo9ezYdPXqUsURLT08nCQkJEhUVpf3799Pz58/p8OHDNW5nyJAhXCadP3Pnzh0aOnRove/nZwoLC+nEiROUnp5OoaGhfC0YxcXFue5TSkqK2rZty7c+MzMzCg0NbfB+1hRTU1MKCgqiqKgo5piTkxO1b9+emjVrRqqqqtVGERYREaEWLVr8GsOZetIk8A2MrKwsXbx4kWxsbEhKSoq2bNlCGhoadO3aNa6Iphs3bqSpU6cSEdHo0aPJ3t6eFixYQBERETVqZ/DgwRQbG0uxsbE8Zfn5+XT06FGysrJqmJv6P3x8fMjc3JyaNWtGxcXF9ObNG9LS0mLCfFeQnZ3NhPLOzc2t0lxWTEysXua49UVMTIxOnTpFa9asoSlTptCZM2fo1q1bJCUlRampqbRo0aLf1rfGoEngG4khQ4bQ9evXSUREhB49esTkiv/48SNNmTKF2rVrx+Xdt3fvXurduzdpa2tzjTZVceDAAZo2bRr5+vpSfn4+lZSUUFBQEJmamtKmTZsaJD8eUbnp7fr162nXrl3UokULSk5Opt69e9OYMWMoMDCQVq9eTQkJCcz5u3fvJnt7eyIqN/P98OGDwLrT0tJ+exz+9u3b0/nz52nRokXE4XCoXbt25OTkRLm5uXX2Kvxjacj1wa+GzWbjxYsXuHv37i+1pqsNbDYbISEhmDx5MoyMjDBt2jSBIY2ysrIwaNAgyMvL19jqqri4GCdOnICFhQVMTU2xffv2BtV8l5aWwsbGBkpKSoiOjkZxcTEePnwIfX199OvXD2fPnsXTp08xb948ZGVlYfXq1Zg5cybXetbDwwN3797lW/+CBQtw/fr1ButvTWCxWDhz5gxmz56NxYsXc5k+A+UKz5YtW1a7l/4nUVMZ/Z9NRHH+/Hk6ePAgDR8+nFq3bk1Pnz4laWlp2rlzJ7Vs2fJ3d6/OhIeH04gRI2jFihU0fvx46t+/P8+UODU1lT5//kxycnI1zylWR9asWUPt27en58+fM9FziModSqytralTp0707t07evHiBY0ZM4bs7e3JxMSEaz2bn59PkyZNIgsLC7K2tiYJCQlKSUmhbdu2kbi4OG3atKlR76EykZGRNHv2bLK0tCQtLS0qKCigU6dOUXx8PA0cOJACAwMpIiKC+vXrR48fPyZZWdlf1rf68K9OROHv7w9XV1ceI5Hw8HDo6OjUyyb5d1NaWgozMzNmW6h58+bw8PDA9evXkZSUBEtLS1hZWWHdunVwdXWFvr5+rfbPKxMTE4P169djyZIlOH/+PI8tAIvFgpaWFhITEzF16lSe6z99+gQnJycA4Gs7XpkKx6eKnHLW1ta4fft2nfpdVwoKCqCqqsoVDJXNZiMqKgqjRo2CkJAQrKyscOLEiT/GMKim/BHbcqmpqdi0aRMcHBwwf/58vH79ulbX84PNZkNdXV2gRdi+fftw9uzZerfzuykqKsKnT5/g5uYGSUlJEBEUFBTw4sULrvOysrKgq6tbq++2tLQUU6dOhYuLC+7fv4/IyEjs3bsX48eP51puxMTEYO7cucx3zi+8lKGhIWJiYuDi4lL3m/1FHDp0iMuXIDExESNHjmRerGPHjhXozfan89sF/tSpU9DX10doaCgyMjLw+vVrzJgxA9OnT6/VfvPPhIeHY9myZQLL8/LyMGHChDrX/yeSn5+PkSNHokWLFujXrx9PZNzk5OQq98V/ZsmSJTh9+jTP8aysLKirqzM6gC9fvjC+AV5eXti6dSvX+Ww2G7q6upg4cWL1L5w/IN2VtbU1E2E4NzcXY8aMgaKiIoKDg5GZmYmjR4/i/Pnzv7eTdeS37sO/evWKgoOD6fLly6Sjo0Nt27algQMH0v79+2nw4ME1CrIgiPz8/CrTM0lLS1NJSUmd6/8TadGiBUlLS1N4eDhlZmbS8uXLucrl5eWprKysRmG88vPzKTIykiZPnsxT1qpVK/Lw8KBjx44REVGnTp3oy5cvVFxcTNOnT6fMzEyys7OjBw8eUEJCAq1atYo+ffpEVlZWNHDgQH6NEXl4ECkpEXXqVP6vh0f58d+AiIgIlZSUkJ+fH/Xq1YtevnxJvr6+ZGhoSK1bt6aSkhKBgS7+NTTk26MCZ2dnfPr0iW9ZdVPy6khJSeExWa3Ms2fP/pU51ivcLVesWAEZGRnk5eVxlbu4uCAlJaXaeu7cuYN//vlHYHlpaSmMjIyYv0NCQuDg4MD8XnFxcVizZg2cnJzQs2dPgb8z8vKAfv0AYWGA6P9/hIXLj//U/1/ByZMnMWTIEBARLCwseIJ9GBsbMzOA/zV+6wifnp5OPXr04FsmLCxM/fr1qzLcT1V06NCBxMXF+RqocDgc2rhxI02bNq1Odf/JiIqKUnZ2Nk2dOpWKioq4rPISEhLo5s2blJyczDf9cGWEhISIw+EILMdPMfD09fXJwMCAdHR0aOPGjfTgwQNKT0+n9PR0CgkJEfg707JlRO/fE/3cFodTfvynWUpjw+Fw6Pz58xQREUG7du2ic+fOceVDOH78OBMH/19NQ749KtDT06vSrtjFxaXKDC3VkZmZCS0tLRw8eJBxvHj+/DnMzMyqDPDwv0xgYCCju7C3t4e8vDxz77q6uoxWX1RUFO7u7gK1zIWFhdDR0RHYDj/bcqB85L9z5w7Onz+Pt2/fVt/hrl25R/afP1271uCuG479+/eDiHDkyBEYGhpi3rx5CA0Nxfnz5zFp0iTMnTv3j4p5X1t+q9LO09MTDx8+5FtWVFQEbW3tejsa/PjxA35+fjAzM2N+wPrmbf+T4XA4WLhwIebMmYMnT55AQkICc+fOxbZt29C9e3e0adMGly9fxoYNG9CsWTOsXLlSYF1r1qyBt7c3z/HU1FSoqqrWf0uKwwEUFasWeEXFX6rI09HR4TKkef78Ofbu3QtfX98aLYXqA5vNxq1bt7Bnzx6cOnWKZznWEPxWw5vk5GSyt7ens2fPcjlNsNlscnNzI0NDQzI2Nq7jnOS/zYMHD+jw4cMUFhZGcXFxtH//furQoQOZmZnR169fSVFRkUaNGkUyMjICnVI4HA4tWrSIvn79StbW1tS6dWsmvvq+ffsaJjKskhLR58+Cy7t2JapkjisIAPTw4UN6/vw5ZWRkUKtWrahjx46Um5tLSUlJJCsrS7a2ttSxY0e+1yclJdH58+dp48aNNGTIEAoODq5VGqzExEQ6ffo0ZWRkUK9evWjy5MkkLS1d4+tfvXpFCxYsIDU1NRo6dCilpKSQv78/GRgY0KxZs2pcT3X8dsObyMhIaGlpYenSpbhw4QJ2794NTU1NnDx5ssZ1NCGYgoICKCgoYOLEiXj//j1XJNyTJ0+CiKo1yPn69Sv27duHzZs348aNG/XaLuXB3Z1XYVdZcefhgcLCQrx9+xaRkZHMjO/nmZ+3tzeICEJCQlBSUoKMjAyICGJiYujatSuaN28OUVFRnD59Grdv34ahoSGGDh2KwMBALFy4EJMnT8a1a9egr6+Pjh07Yvz48Xj69Gm13edwOFi+fDmsrKxw69YtfPjwAWfOnIGGhkaVbsmV+fbtGzQ0NHhMnTkcDhYsWNCgy8/fvg8PlN/YkydPcPToUVy+fLnOoZz+JJKTk+Hp6QkdHR0YGhrCwsICt27d+i19qRDs9evXY8KECRAXF8eFCxdQUlICFRUV9OnTp9Fy2FVLFVr6gE6doKGqCnFxca5sqj179oSEhAQcHByYZ83f3x9ExBU6LD8/n3k55ebmwt7enqlnwIABUFdXh7CwMJd14Pnz50FEePr0KTQ1Nas1sPH29sbGjRt5jrNYLJiZmdVIj7F8+XKegKYVlJSUCAwXXhf+CIH/txETEwN1dXU8fPiQ+aFSU1Mxc+bMKre6GgsOhwN3d3eIiYmhW7duGD16NISFheHn54d3795BVFQU27Zt++X9YsjLAzw8yhV0iopgd+kCz//bFhs/fjx2796Nhw8f4ubNm5gzZw7mzJmDVatWQVpaGm3atEG/fv0YQRYUvQcoXyOfOXMGt27dAofDQWFhIdq1awcJCQnGMpHFYqFt27aYNm0abt++jdWrV1dZn4aGhsCt4+joaL6mxj9TnfJ61qxZDRZnv0ngGwFDQ0O+YZ04HA5sbW3x7t2739Ar4OPHj1BSUoKCggI0NDSY6b2BgQHatm2LqKgoPH/+HFeuXBEYeLExYbFYOOXnhyFDhkBISAhbtmypUhDi4uLg6emJmTNn4sCBA/Dy8qpVCK6XL19i8eLF6N+/P1c+++3bt0NISAjh4eFMRB4OhwM/Pz/o6enB0NAQ2trasLGxweTJk6tso3JEH0FU518wb968BstN8MsFvqCgAIcOHYKLiwtmzZqFO3fu/NaQPw3N+/fv4ebmJrD89evXmD179q/r0E+8ffsWRIQzZ86gXbt2ICLEx8eje/fuEBMTg4WFBXbt2gU3NzcYGBg0ahKMyiQkJKBv374gImhqagp0k21IXr58iWXLlmHGjBnoWmn7r7S0FJ07d2Yi7ALlacY3bNjAtfS5ffs2FBQUqpy218R1dtasWQJNjqubRdSWXyrwT58+haqqKk6ePImUlBR8/PgRK1euhLGxcaNsQfwOgoODcfDgQYHlHA6Hy0LtVzJx4kQQEWRkZPD582dGiefq6gpdXV3GQURBQQG5ublITk6Gurp6vWwhakJBQQE6deoEJSUlRERENGpblSkpKYGmpiYGDx7MM1Jra2tDRUUFa9euxZMnT/i+pDkcDsaPHw9dXV2+9b948QJz5sypth8fPnyAsbExX+9NLy+vBl0G/jKBz87OhpqaGt+yhw8fMu6T/+uEh4fD09NTYHliYuJvu1dLS0sQEdzc3JjwyEuXLgUR4cSJEygtLcWtW7cgJCSEAwcOACiPmb9w4cJG7Ze3tzdERESYjC2/km3btmH8+PFo2bIlV3CUiijBDx48gIuLCxISEpiyyqO8v78/VFRUeJZA+fn50NXVrfHaOzg4GBoaGvD390d8fDweP34MZ2dnuLu7N+iuyC8T+N27d+PChQsCr7Wysmr0keRXwOFwoKGhITAEsZubG2xtbWFubg5XV1c8ePDgly1pSkpKYGdnxyi4HB0dkZSUhA4dOkBUVBSHDh0CUP5iqFDkFRUVVWlx1xCsW7cOcnJyjdqGIDgcDjw8PCAuLg5NTU2Eh4dj165dGDduHFq2bInFixfD0NAQ+vr6EBMTg4iICIgIGzZsYARx4sSJGDp0KE6ePIm7d+9i+/btUFVVxaNHj2rVl5ycHHh5eWHWrFlYuXIl32SZ9eWXCfykSZOq3Prx9fWtdfoiDodT68QMv4IbN27A3NycK3MLm82Gk5MTOnXqhEePHoHFYiEhIQFLly6Fra1tg63RakJMTAyGDRvG5EIbP348nJycIC4ujqysLJSUlGD27NkQEhKCioqKwPxnDcWWLVsgKyvbaPUXFBRg27Zt0NbWhqGhIXR0dLBv3z6uKfSWLVtARHB2dkZAQABKS0sxaNAgzJgxA2pqajyJJ4gI4eHhAMrX4OHh4Th27Bi2bduGy5cv/9Lfszb8MoG3sbHhiiDyM3v37sWVK1dq0gy+ffuGWbNmQUtLC6amptDQ0MDmzZv/qP37R48ewdTUFJaWlnB1dcXQoUMxePBgvg/C6dOnq9z+aSySkpJgYGAAIsKOHTsgLCzMjPJA+ayrd+/eMDMza9R+XL16FUSEx48fN3jdFVPr8+fPMzbwLBYLR48ehZmZGSP0bDYbI0aMQM+ePRlFZefOnbF06VLcvHkTmpqaCAgIwLt37xiBz8/PZwKLNARxcXFMBmFjY2N4e3sz6ccail8m8P7+/kyWkaKiInz+/JlLUaevr1+jzCKJiYlQU1PjirjCZrPh7+8PU1PTPy5sVXZ2NpKTk+Hg4CBwjcrhcKCpqflb+s7hcNClSxcMGTIEhoaG6NKlC/O7zJ8/H0QELS2tRvU/uHHjBrNebkjS0tIwa9YsBAcH8y0/ceIEV869d+/eoVu3bujcuTNu374NIsL58+fB4XAwffp07Ny5E8+ePcP169exf/9+xMXFQUdHR2Cw0doQEBAAQ0NDJlBmhQ+Imppagy51f5nAs1gsjBs3DpaWljAwMMDMmTNhZmYGW1tbrFq1CmvXrq1Rhx0cHATuEXt7e8PX17dG9fxqqpsWz5kz57c59ZiamkJRURHTp0+HpKQk5s2bh6ioKNjZ2UFXVxfy8vKQlpZutC06Q0NDDBo0qMF0GaGhodDV1YWdnR06duwINTU1bN26lUf5VVpaCm1tba5jL168gKioKGPVV3kGULGLMXjwYOjo6MDBwQHR0dH17m9KSgp0dHT4Lk8/fvzYoDOsX+YPX1RURAAoLS2NOnXqRGpqamRkZETJycl0/PhxsrGxqbaOgoICyszMpPDwcJo+fTrNmTOH7t+/z8QEt7Ozo4CAgPp2tVFgs9lV+pfn5eWRpKTkL+zR/0dCQoLS09Pp+/fv1LlzZ9q3bx9t2rSJFixYQNeuXaOYmBhSVFQkY2Njvgkt6kNJSQndunWLbG1tGyQjy8WLF+nUqVN04cIFOnjwII0aNYpu3bpFrVq1ounTp3OdKyoqyiTCqODvv/+mmJgYxie+ojwtLY3CwsKIiKisrIyuXr1Kx44daxAHoiNHjtC8efN4nHUAUHR0NL169YrU1NTIxMSETpw48WsiNdX37bFu3TrGzvndu3c4cuQIzpw5g+zsbLx//75GwQ2vXLkCBQUFHD58GElJSXj//j2WL1/OtY9fHwVTXFwcrl27hufPnze45rxygsifKSwsbLB1YF3Iy8vDhg0bmCCY9H9OKBcvXmTO+fjxI5SVlSErK1tjp5Ca8OrVKxAR3wy2taW0tJQrShKbzeayoPPw8OByFOJwOFzl1dVtYWHBfD+pqan17m8FFhYWPLs6bDYbU6ZMwdq1a7F//36cP38ehYWFOHDgAExMTOqcdfaXTem1tbWr3E/U19evcg2bn5+PsWPH8rVcevToEezt7VFYWFgngU9ISICpqSmcnZ2xd+9eLF68GBoaGg2a+CA9PR1qampISkriOl6xVSYo8+iv5NOnT0xoJ1lZWS4bc6B828jU1BREhFOnTjVIm3fu3AERNYit+I0bN7BlyxauY+7u7oyQv3v3Du7u7gDK72XKlClQVlaGkZERnJycqvUaLCwsZAReUNLLuuDi4oLExESuYydOnGAMbrZt28aVXvzSpUt1VvL+MoGvThDt7Oy4trF+5uDBgzh16hScnZ0RGRnJU25tbY1169bh2LFjNekqQ0ZGBtTU1LgMK4Dy+OgTJkwQ6MVUF2JjYxn9xZEjR7B+/XpoaGhwjaS/m4rZRsWD/bMFGofDgb29PcTExBokXnxgYCCIqEEyAp06dYrnRZSamsooefPy8jB58mR8/foVgwcPxoABA3Ds2DF4enpCT08Pbdu2hZKSErS0tGBgYIAtW7bwvKBfv36NsLCweve1Mjdu3MCaNWu4junr66OwsBBsNptHoVth61EXg5xfJvB6enoCjVEqtNRVhQ6ysbFBVlYWUlJSoKamxuWJVlJSAhcXF4wYMaLW+59r164VONXOyclplD3oqKgoXLx4Effu3fsjwyXFxMQw03p+Nu0ViScqTHTrg7e3N4SFhRtkh+L58+d8A5OmpKRgxowZGDZsGFRUVCAnJ4cxY8ZATk6O7/66rq4u9PT0ICEhASEhISxduhTXrl3DsWPHGnRkr4DNZsPU1JTrOTQ0NERZWRnmzp3LxC+oTHUDpCB+icCnpqaiS5cuAtfpISEhVcaQBwBHR0cmxFB6ejoWL14MTU1NGBoaQktLC5aWljh37lxNusmFrq5ulW9KW1vbWnlg/VsIDw/nmfVUJicnBx07doSpqWm92lm+fDnatGnDV2dSXFyM48ePw9nZGa6urggKCqryBcnhcKCtrc3392Kz2TA0NMTVq1cxevRoLgEXERGBlJQU83fr1q2xdu1aPH/+HGvWrOE6t3379jVaflXE9gsICKjRcqWoqAizZs2CkZERNm3aBCUlJairq+P48eN8zzcwMKiT3ckvEfiHDx8yX9j27dtx8OBBBAUFoaioCMePH2emL1Vx6dIl7Nq1S2C5kZFRnWKsVTeCz5o1q8oH/7/MP//8A0lJSZ71Z22oWMNXXqMC5evt8ePHw9fXF6mpqUhMTMS2bdugqalZpcLs5cuXGD58OPz8/BAdHY27d+/iw4cPsLe3h6+vLxYuXMglwO3atWNmWlu3boWWlhYkJSUhLCyMZs2awdTUFPPnz8fy5csRFhbGLHfmz58vcFZy8uRJqKurY+PGjfD19YWLiwvMzc35ukz/TE5ODh4+fAhXV1eBOqTY2Fg4ODhUWxc/ftmU/sOHD4iKisKxY8e4vuxevXrVKDhgaWkpNDU1+fqS+/j4VOmwUhWTJ08W+EP8ToOY/wUyMzPRsWNHWFtb17mOCo+zfv36McdYLBZUVVX5jtTv3r2DiYkJ17HExESsXr0aQ4cOhZiYGM8UXVFRkQlXdffuXWhqauKff/6BgYEBz8s8PT0dkydPRlBQELS1tTFmzBjGft7MzAxsNhvbtm2DmJgY+vXrh/nz53MZDPn7+/PNmhQTEwM1NbUaGZcBwPfv36GmpsbjepuUlAQNDY0622z8lgAYAQEBMDU15VpDqaqqVlt/amoqTE1N4ebmhoCAACYa7aJFi+q8Fr5//z6mTZvGd0p57tw5rFq1qk71/hdgsVjo0KEDJk6cWK96Lly4ACJiZgr+/v7Yv3+/wPM9PDzw6tUrAEB8fDykpKTQokULTJ48Gfv370dgYCB8fX1x8eJFqKuro1u3bsy1Ff7lOTk5MDY25ql706ZNuHLlCthsNmOUw2KxcODAAQgJCcHd3R0+Pj548OABVFVV0axZM8YaMTAwEGpqagL1SGfOnIGXl1eNv5eUlBTY29szz7iVlRUTm7Cu/NaINz9+/MDZs2cZoT958mSNnGHevn0LHx8fnDhxolZKlNLSUgQFBWHDhg3Yv38/MzXcvn07bG1tmSCJqampWLNmDSZNmvRHOuf8KVSsb/fs2VOvejIzMyEpKYlJkyaBzWZj9uzZVa57r169yrwQdu7cCQkJCeTk5CA2NhYTJkyAjY0NVq9ejbFjx4KIMHPmTK7rL1++jAkTJsDW1pbreEhICMzMzJjBo/Jyr6ysDJ6enujUqROICL1790ZpaSlSU1PRs2dPRgcgJycnUJHJYrHqFAshOzsb0dHRDbKTUVMZFa2X1Y4AmjVrRpaWljRq1Cjq3Lkz2dnZ0fr16yk0NJS6du0q8Lr+/ftT//79a9XWixcvaOHChWRsbExqamqUnp5OM2fOpL59+9KaNWsoOjqaDh06RAkJCSQjI0P29va0fPlyEhZulKQ7/wratWtHRETDhg2rVz2tW7em06dP04QJE6hHjx4kLi5ORUVFAs8vKipiLOCSk5NJUVGR8vLyaOrUqXT06FHq3Lkzsdls8vX1JT09PYqOjqbPnz8zz5SRkRGJiIiQvb09TZ06lVq3bk2vX7+mAQMG0OnTp0lERIQn/56IiAht2LCB5OXlyd3dnT58+EBDhw4lERER6tmzJykoKNC9e/coLS2NYmJiaMeOHRQTE0MKCgokLi5OHz58oObNm1NMTAw9f/6c+vXrR82bN6/R99OyZctfn+mmId8eP/Py5UsQEaysrEBEPGu0uvLu3TssW7YMDg4O6NWrF98375YtW+o9Qv1X+fHjBwYNGoRu3brVe3sOKNfYS0pK4urVq1XqZKysrPDt2zeUlpaib9++sLCwwKxZs5hpPlC+9UlEWLFiBaKiojB9+nSeelasWIFDhw4hKiqKR2m8adMmvplzd+/eDSKCpaUl3NzcMGXKFBgaGsLKygpz5szB0KFDmee58sfIyAhqamqQkJAAEWHs2LE4dOjQL3ej/SOCWLLZbOaLERUV5fJgqgtsNhszZ86Eq6srwsPDMWfOHKxevRqampq4fPkyz7kNGTPsv0Z8fDzk5eUhLi6OOXPm1GufOjU1FdLS0jAxMYGmpibfrESnT5/GlClT4O/vj8GDB0NYWBgPHz7kMZH99u0biMpTRgHgm8WouLgYxsbGOHDgACPw379/x6pVqwTqdapj1qxZCA0Nxc2bN0FEcHBwQFlZGcrKymBubo7Xr19j+fLlzPOuoqIiONFmI/BHCDxQvo6eNGlSjbYuqmPz5s1cKZIMDAzA4XDAYrFgYmLC4/W1ePFivHnzpt7t1oQXL17AwcEBBgYG0NPTw+zZsxEXF/dL2m4s8vPzsW7dOsjIyEBZWble7pyBgYFMHHpJSUmMGTMG69atg6mpKTp27Ig2bdowwjJ06FA8e/YMHA6Ha73t5+fHnFNhnGJiYsJXsctisXD8+HEYGxvD0NAQEydOxOXLl/kK+6VLl2BmZobJkydj+fLlPIkqKpSPzZs3R9euXZk+bNy4EYaGhti4cSP279+PS5cucQm9jIwMsrKy4O/vDx0dHZiZmcHJyalBTbsr+GMEvqHgF7i/QuCBcmeNWbNmcV2zdOlSgVFDG5IzZ87AysqKS8BfvnwJHR2dGmU5+dOJi4tDhw4dICwsjLFjx2LlypUICAio9UiZm5uLq1evwtzcnBGKFi1aYMSIEXB1dcWJEyd49v61tLSY7dPhw4eDiDBo0CAA5c8EPyeZT58+Yc6cOdDX14eenh48PT15TGkr4HA4kJWVZbaTK/plY2PDnLNhwwa+lntSUlKYNGkSz/EWLVqAiKChoYGysjIMGDCAq1xcXFygdWpd+dcJfHR0NObPn891bNmyZVx7pZXjgFfYJTe2Nj4jIwM6Ojp8R5nc3Fyoq6s3bAqn38T379/h6+sLIyMjdOjQAUSEqVOnVhntSBBlZWXw8/PD/fv3q912PXjwIBNgxd3dHUTEGGJ5e3vzZLq9fv06DAwMGOcgDofDLA2ePXvGt41Lly7xmOP26NGDq7++vr6wt7fHoUOH8M8//8DHxwcqKiogIvTq1QuXL19mQrOXlpbi5s2bTFSbuXPnQlFREb169ULPnj2xadOmWn9n1fGvE/hPnz7xjOBJSUnQ1tZGfn4+OBwOl8fd3r17f0k2mB07dvDoDyqzYcMG3Lx5s9H78avx8vKCjIwMWrVqheXLl9fLKq8q2Gw2HB0dsXbtWhgbG6N3797IzMzEhg0bYGdnx/XCKCgogJqaGl8X05ycHKipqQl8wRQWFiI4OBjBwcFM/L/qyM7OxpQpU2BjYwMDAwPo6+tjyZIl+PLlS91vuI786wRe0Ij96NEjjB8/HnPmzMG0adNw48YN2NjYYP78+b8kaqybm1uVD3tISEitjDL+l0hLS4O7uzukpaUhLCwMdXV1LFq0iMv1tiFgs9kIDg6GnJwc2rZtCwsLCwQFBfHMnHx9fXHixAmB9WzduhUhISEN1q979+5BT08P4eHh4HA44HA4ePz4MbS1tRskDkBt+NcJPFCutJk3bx6PIH/9+hX9+vWDh4cHtm7d+kvfsCtXrqwySOPBgwdx/vz5X9af30FeXh4OHjwIIyMjyMvLg4igp6eHCxcucE35CwoKcODAAbi4uGD27Nm18ir08fGBkJAQNmzYwHU8MzMTUVFRyM7OhrOzc5XWanfv3m2wXHvFxcVQVVXl6yuSl5cHVVXVX2rc9a8UeADYv38/dHR04Ovri5CQEKxevRrq6uq/TBv/Mx8/foS9vT3fsorILA2toPmTKSsrw6lTpxhFlbCwMHR1dTF16lS0adMGIiIi+Pvvv6GoqAgiwl9//VXtb8disbg83kRFRdG/f3+oq6tzecPR/3m9HTp0iO/s7vTp08x2Xn05deoUVyTgn9m9e3etw7PXh18W0+5XM2PGDLpw4QJJSUnR58+fafz48XTr1i1SUVH5Lf1RVlamDh060D///ENlZWXM8aKiInJzcyMbG5vfFtPudyAiIkLW1tYUGRlJiYmJ5OXlRQUFBRQWFka2trYUGxtLL168oMTERLp37x6VlpbSmDFj6OHDhwLrFBcXp71791Lnzp1p+PDhNG/ePBoxYgS1a9eO5s+fT4GBgXTs2DHat28fSUlJ0dSpU2ncuHH08eNHpg4AdObMGTI1NW2Q+4yOjq7SEnHYsGEUHR3dIG01JELA/0WKrIK8vDySlZWl3NxckpGR+RX9+p8CAHl7e9P58+epW7duxGKxKCMjg2bMmEFGRka/u3t/NAUFBWRiYkJhYWEUGBhI2tra9apv4cKFlJubSz4+PjRy5Eh68uQJlZWV0erVq6lly5a0YMGCBun39u3bqV+/fqSrq8u3PCAggFJTU8nNza1B2quOGstoQ04X/uuw2Wx8+/atQZwh/ksUFxfDwMAAYmJi8PLyqpeylcPhYMeOHWjZsiW6du0KDw8PqKurN9hUvoKkpCRYWloKLDczM/ulAVZqKqNNI3wTfwQlJSU0f/582rdvH/Xp04e6d+9Offv2JWdnZ+rVq1et6iouLqbu3bvTkCFDaPv27dS9e/dGcZby9PSk1q1b07x585j62Ww2bdq0iQDQihUrGrxNQdRURpsEvok/ivv379OxY8fo+/fv9PTpU8rPz6fhw4eTlpYW2dnZ0efPn+n169fk4uJCLVq04FvHnTt3SENDg968edOouh0AtG/fPgoKCqKBAwcSh8OhyMhImjRpEk2dOrVB4vHXlCaBb+J/nh8/ftDOnTspIiKCgoODicViMWVGRkZ0+fJlvtf5+fmRnZ0dFRYW1thVtT6w2Wz69OkTCQkJUY8ePUhERKTR2/yZmsporfzh8/Ly6t2xJpqoDTNnziQioqysLAoPD6cnT57Qnj17KDg4mL5+/cr34a6YXn/69ImUlJR+ST8VFBSIiKiwsPCXtPczNZXNGo3wP378ICUlJUpNTa13x5pooonGoUOHDpSQkEASEhICz6mRwBOVC/0vyX3VRBNN1AlxcfEqhZ2oFgLfRBNN/O/zP2dp10QTTdSdJoFvoon/EE0C30QT/yGaBL6JJv5DNAl8E038h2gS+Caa+A/RJPBNNPEf4v8BdUla6SCm0vgAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAElCAYAAADJMFK/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXQU19uAn924e4hAjBACIViCuwXXYkUKLVootNCWUmiRGsWKtbi7W5FCsDQ4BA+BBBLi7i6b/f7gt/OxZIOX0vY+5+S0zMzO3J2d9859XaZUKpUIBAKBQCAQCAQCwX8I+d89AIFAIBAIBAKBQCB42whFSCAQCAQCgUAgEPznEIqQQCAQCAQCgUAg+M8hFCGBQCAQCAQCgUDwn0MoQgKBQCAQCAQCgeA/h1CEBAKBQCAQCAQCwX8OoQgJBAKBQCAQCASC/xxCERIIBAKBQCAQCAT/ObT/7gEIBAKBQCAQCAT/FQoKCigqKnrt8+jq6qKvr/8GRvTfRShCAoFAIBAIBALBW6CgoABXV1cSEhJe+1x2dnZEREQIZeg1EIqQQCAQCAQCgUDwFigqKiIhIYHo6GhMTU1f+TxZWVlUqlSJoqIioQi9BkIREggEAoFAIBAI3iImJiaYmJi88ueVSuUbHM1/F1EsQSAQCAQCgUAgEPznEB4hgUAgEAgEAoHgLaJUKl/LqyM8Qm8G4RESCAQCgUAgEAgE/zmER0ggEAgEAoFAIHiLCI/Qu4HwCAkEAoFAIBAIBIL/HEIREggEAoFAIBAIBP85RGicQCAQCAQCgUDwFhGhce8GwiMkEAgEAoFAIBAI/nMIj5BAIBAIBAKBQPAWER6hdwPhERIIBAKBQCAQCAT/OYRHSCAQCAQCgUAgeIsIj9C7gfAICQQCgUAgEAgEgv8cwiMkEAgEAoFAIBC8RYRH6N1AeIQEAoFAIBAIBALBfw7hERIIBAKBQCAQCN4iwiP0biA8QgKBQCAQCAQCgeA/h1CEBAKBQCAQCAQCwX8OERonEAgEAoFAIBC8RURo3LuB8AgJBAKBQCAQCASC/xzCIyQQCAQCgUAgELxFhEfo3UB4hAQCgUAgEAgEAsF/DqEICQQCgUAgEAgEgv8cIjROIBAIBAKBQCB4i4jQuHcD4RESCAQCgUAgEAj+5SxduhRXV1f09fXx8fEhMDDwmccHBATg4+ODvr4+bm5uLF++XG3/3r178fX1xdzcHCMjI2rXrs2mTZv+yq/wxhGKkEAgEAgEAoFA8BZReYRe5+9l2LFjB5999hlTp07l+vXrNGvWjI4dOxIVFaXx+IiICDp16kSzZs24fv06U6ZMYfz48ezZs0c6xtLSkqlTp3LhwgVu3brFhx9+yIcffsixY8de6968TWRK4VsTCAQCgUAgEAj+crKysjAzMyM2NhZTU9PXOo+joyOZmZkvdJ4GDRpQt25dli1bJm2rVq0aPXr0YNasWWWO/+qrrzh48CAhISHSttGjR3Pz5k0uXLhQ7nXq1q1L586d+f7771/yG/09CI+QQCAQCAQCgUDwFnlTHqGsrCy1v8LCwjLXKioqIigoCD8/P7Xtfn5+nD9/XuP4Lly4UOb49u3bc/XqVYqLizV+n5MnT3L//n2aN2/+qrflrSMUIYFAIBAIBAKB4B9IpUqVMDMzk/40eXdSUlJQKBRUqFBBbXuFChVISEjQeN6EhASNx5eUlJCSkiJty8zMxNjYGF1dXTp37sySJUto167dG/hmbwdRNU4gEAgEAoFAIHiLvKmqcdHR0WqhcXp6euV+RiaTlTnH09ued/zT201MTLhx4wY5OTmcPHmSiRMn4ubmRsuWLV/4u/ydCEVIIBAIBAKBQCD4B2JqavrcHCFra2u0tLTKeH+SkpLKeH1U2NnZaTxeW1sbKysraZtcLsfd3R2A2rVrExISwqxZs/4xipAIjRMIBAKBQCAQCN4ib7NqnK6uLj4+Pvj7+6tt9/f3p3Hjxho/06hRozLHHz9+HF9fX3R0dJ75vTTlKb2rCI+QQCAQCAQCgUDwL2bixIkMHjwYX19fGjVqxMqVK4mKimL06NEAfP3118TGxrJx40bgcYW4X3/9lYkTJzJixAguXLjAmjVr2LZtm3TOWbNm4evrS+XKlSkqKuLIkSNs3LhRrTLdu45QhAQCgUAgEAgEgrfIm8oRelH69etHamoq3333HfHx8dSoUYMjR47g7OwMQHx8vFpPIVdXV44cOcKECRP47bffcHBwYPHixbz33nvSMbm5uYwZM4aYmBgMDAzw9PRk8+bN9OvX75W/19tG9BESCAQCgUAgEAjeAqo+Qo8ePXrtPkIuLi4v3EdIoBmRIyQQCAQCgUAgEAj+c4jQOIFAIBAIBAKB4C3ytkPjBJoRipBAIBAIBAKBQPCWEcrM348IjRMIBAKBQCAQCAT/OYQiJBAIBAKBQCAQCP5ziNA4gUAgEAgEAoHgLSJyhN4NhCIkEAgEAoFAIBC8RYQi9G4gFCGBQCAQCAQCgeAtIhShdwORIyQQCAQCgUAgEAj+cwiPkEAgEAgEAoFA8BYRHqF3A6EICQQCgUAgEAgEbxGhCL0biNA4gUAgEAgEAoFA8J9DeIQEAoFAIBAIBIK3iPAIvRsIRUggEAgEAoFAIHiLCEXo3UAoQgKBQCAQCAQCwVtEKELvBiJHSCAQCAQCgUAgEPznEIrQE6xfvx6ZTMajR48A2Lp1KwsXLvxbx/S8cchkMmbMmPFWx/MyXLt2jbZt22JsbIy5uTm9evUiPDz87x6W4D+EkOs3y9mzZxk+fDg+Pj7o6emp3VuB4G0h5PrNoVAo+OWXX+jQoQMVK1bE0NCQatWqMXnyZDIyMv7u4f1rUXmEXudP8PrIlOJOSiQnJ/Pw4UPq1KmDnp4eXbp04c6dO3/7S/5Z47h48SIVK1akYsWKb39gz+HevXvUr1+f2rVrM3nyZAoKCpg2bRrp6encuHEDGxubv3uIgv8AQq7fLDNnzmTdunXUqVOHjIwMzpw5Q0REBC4uLn/30AT/IYRcvzlycnJwcHDg/fffp127dlhbW3Pt2jV++OEH7O3tuXr1KgYGBn/3MP81ZGVlYWZmRnBwMCYmJq98nuzsbLy8vMjMzMTU1PQNjvC/hcgRegIbG5u3sjjPz89/Y5NKw4YN38h5/gqmTZuGnp4ehw4dkoTUx8eHKlWqMG/ePGbPnv03j1DwX0DI9Zvl22+/Zfr06QDMmzePM2fO/L0DEvwnEXL95jAwMCAiIgIrKytpW8uWLXFycqJPnz7s2bOHQYMG/Y0j/HcicoTeDURo3BM86Wpv2bIlhw8fJjIyEplMJv2pKCoq4ocffsDT0xM9PT1sbGz48MMPSU5OVjuni4sLXbp0Ye/evdSpUwd9fX1mzpwJwG+//Ubz5s2xtbXFyMgIb29v5syZQ3FxsfT5541Dk6v9zp07dO/eHQsLC/T19alduzYbNmxQO+bMmTPIZDK2bdvG1KlTcXBwwNTUlLZt23L//v3XvpclJSUcOnSI9957T81S4ezsTKtWrdi3b99rX0MgeBGEXL85uQaQy8VrQ/D3I+T6zcm1lpaWmhKkon79+gBER0e/9jUEgncV4REqh6VLlzJy5EgePnxYZtFeWlpK9+7dCQwMZNKkSTRu3JjIyEimT59Oy5Yty7iRr127RkhICN988w2urq4YGRkB8PDhQwYMGICrqyu6urrcvHmTH3/8kXv37rF27drnjkMT9+/fp3Hjxtja2rJ48WKsrKzYvHkzQ4cOJTExkUmTJqkdP2XKFJo0acLq1avJysriq6++omvXroSEhKClpSV939LS0udeWyaTSZ95+PAh+fn51KxZs8xxNWvWxN/fn4KCAvT19Z97XoHgTSHk+vXkWiB4FxFy/dfI9alTpwDw8vJ67vkEgn8sSoHEunXrlIAyIiJCqVQqlZ07d1Y6OzuXOW7btm1KQLlnzx617VeuXFECyqVLl0rbnJ2dlVpaWsr79+8/89oKhUJZXFys3Lhxo1JLS0uZlpYm7StvHEqlUgkop0+fLv27f//+Sj09PWVUVJTacR07dlQaGhoqMzIylEqlUnn69GkloOzUqZPacTt37lQCygsXLkjbpk+frgSe+/fkGM+dO6cElNu2bSsz5p9++kkJKOPi4p55TwSCN4GQ6zcn108zd+5ctXsrELwthFz/dXKtVCqVMTExygoVKih9fX2VCoXimccKXo7MzEwloLx9+7by0aNHr/x3+/ZtJaDMzMz8u7/SPxoR4/AKHDp0CHNzc7p27UpJSYn0V7t2bezs7MrEzNesWRMPD48y57l+/TrdunXDysoKLS0tdHR0+OCDD1AoFISGhr7S2E6dOkWbNm2oVKmS2vahQ4eSl5fHhQsX1LZ369atzFgBIiMjpW0jR47kypUrz/37/fffy4znybCAl9knELxthFy/uFwLBP8UhFy/vFynpaXRqVMnlEolO3bsEOGwfxHKv6Fq3NKlS3F1dUVfXx8fHx8CAwOfeXxAQAA+Pj7o6+vj5ubG8uXL1favWrWKZs2aYWFhgYWFBW3btuXy5csvPa6/ExEa9wokJiaSkZGBrq6uxv0pKSlq/7a3ty9zTFRUFM2aNaNq1aosWrQIFxcX9PX1uXz5MmPHjiU/P/+Vxpaamqrxeg4ODtL+J3k6LlhPTw9A7fp2dnbY2to+99pPKjaq8z59PXg8ycpkMszNzZ97ToHgbSHkWjPCYCH4JyPkWjPlyXV6ejrt2rUjNjaWU6dO4ebm9txzCf4Z7Nixg88++4ylS5fSpEkTVqxYQceOHbl79y5OTk5ljo+IiKBTp06MGDGCzZs3c+7cOcaMGYONjQ3vvfce8Dh/7f3336dx48bo6+szZ84c/Pz8CA4OxtHR8W1/xVdCKEKvgLW1NVZWVvzxxx8a9z9dDlHThLN//35yc3PZu3cvzs7O0vYbN2681tisrKyIj48vsz0uLg54PPaX5bvvvpMSRp+Fs7OzVDK0cuXKGBgYcPv27TLH3b59G3d3d5EfJHinEHKtmSflWiD4pyHkWjOa5Do9PZ22bdsSERHByZMnNeb4Ct4cr+rVefLzL8Mvv/zCsGHDGD58OAALFy7k2LFjLFu2jFmzZpU5fvny5Tg5OUl9sapVq8bVq1eZN2+epAht2bJF7TOrVq1i9+7dnDx5kg8++OAVvtXbRyhCz0BPT0+jpadLly5s374dhUJBgwYNXuncqslWZdGBxw/1qlWrXngcmmjTpg379u0jLi5OsioBbNy4EUNDw1cq3zly5Ei6dOny3OOe/C7a2tp07dqVvXv3MmfOHOllExUVxenTp5kwYcJLj0MgeBMIuX7Mq8i1QPCuIuT6Ma8q1yolKDw8HH9/f+rUqfPS1xa8HG9KEcrKylLbrqenV+b3LSoqIigoiMmTJ6tt9/Pz4/z58xrPf+HCBfz8/NS2tW/fnjVr1lBcXIyOjk6Zz+Tl5VFcXIylpeVLf5+/C6EIPQNvb2/27t3LsmXL8PHxQS6X4+vrS//+/dmyZQudOnXi008/pX79+ujo6BATE8Pp06fp3r07PXv2fOa527Vrh66uLu+//z6TJk2ioKCAZcuWkZ6e/sLj0MT06dM5dOgQrVq1Ytq0aVhaWrJlyxYOHz7MnDlzMDMze+n74ODgoDZJvygzZ86kXr16dOnSRa2hqrW1NZ9//vlLn08geBMIuX7Mq8p1cnIyAQEBAJLH9+jRo1JflxYtWrz0OQWC10XI9WNeRa7z8/Np3749169fZ+HChZSUlHDx4kVpv42NDZUrV37psQiezZtShJ7OMZs+fXqZMu0pKSkoFAoqVKigtr1ChQokJCRoPH9CQoLG40tKSkhJSdEY1jl58mQcHR1p27bty36dvw2hCD2DTz/9lODgYKZMmUJmZqb00GppaXHw4EEWLVrEpk2bmDVrFtra2lSsWJEWLVrg7e393HN7enqyZ88evvnmG3r16oWVlRUDBgxg4sSJdOzY8YXGoYmqVaty/vx5pkyZIsUuV6tWjXXr1jF06NA3cVteGE9PT86cOcNXX31F79690dbWpnXr1sybN++tNMITCDQh5Pr1CA4Opk+fPmrbxowZA0CLFi1Eg1XB34KQ61cnMTGRK1euSON/miFDhrB+/fq3Nh7ByxEdHa3Wr/FZXvynQz+VSuVLFbVSPcuaPjNnzhy2bdvGmTNn/lGpDzLl66ijAoFAIBAIBAKB4IXIysrCzMyMa9eulclRexmys7OpW7cumZmZaoqQJoqKijA0NGTXrl1qHtBPP/2UGzduSF7+J2nevDl16tRh0aJF0rZ9+/bRt29f8vLy1ELj5s2bxw8//MCJEyfK9YC+q4iaiAKBQCAQCAQCwVvmbZXO1tXVxcfHB39/f7Xt/v7+NG7cWONnGjVqVOb448eP4+vrq6YEzZ07l++//54//vjjH6cEgVCEBAKBQCAQCASCfzUTJ05k9erVrF27lpCQECZMmEBUVBSjR48G4Ouvv1ar9DZ69GgiIyOZOHEiISEhrF27ljVr1vDFF19Ix8yZM4dvvvmGtWvX4uLiQkJCAgkJCeTk5Lz17/eqiBwhgUAgEAgEAoHgLfK2y2f369eP1NRUvvvuO+Lj46lRowZHjhyRSsLHx8cTFRUlHe/q6sqRI0eYMGECv/32Gw4ODixevFgqnQ2PG7QWFRXRu3dvtWtpKtjwriJyhAQCgUAgEAgEgreAKkfo6tWrGBsbv/J5cnJy8PX1faEcIUH5CI+QQCAQCAQCgUDwFnnbHiGBZoQiJBAIBAKBQCAQvEWEIvRu8MKKUEFBAUVFRX/lWASCfxW6urrvfC19IdcCwcsh5Fog+HfyT5BtwZvnhRShgoICXF1dy+0+KxAIymJnZ0dERMQ7O7EKuRYIXh4h1wLBv5O3LdvCI/Ru8EKKUFFREQkJCWW61z6PtLQ0PvjgA+bNm4enp6e0PTExkZEjRzJ37lw8PDxeftRvAaVSyaZNm9i9ezcVK1akqKiI9PR0Ro0ahZ+fn9qxUVFRjBo1isLCQoqKiigqKqK4uJj8/HyKiorQ09PDyMgICwsLrKys0NLSUvurWrUq1tbWpKenU1xcjI6ODvXr10dXV5eBAweSlJRU7jgdHR2pUqUK5ubmGBkZqf0ZGxtjZ2dH9+7dkcufXSldqVQSGBjInTt3+OOPP5DL5RgYGGBoaIi7uztff/01hw4d4qeffiIuLo709HS1zzdt2pT27dtz+vRpQkJCSE9Pp6CgQNovl8uxsrLCysoKY2Nj9PX1KS0t5cGDB9I9ycnJISsri+zsbIqLi6XPqr5bXFycJPgtWrRg2bJlODo6vvBv+iLcunWLb775hs8++4yWLVsik8m4ePEic+fO5fPPP6dJkyYvdJ6srCwqVapEUVHRO7tgelW5LikpYeDAgYwePZpWrVpJ2/Py8hg7diwDBgygXbt2f8WQ3wj+/v4sX74cCwsLdHV1iYmJoVevXgwZMkStW3ZWVhYDBw4kNzeX4uJiSbZV1nZtbW0MDQ2xsLDA2toaHR0d5HI52traaGlp4e7ujq2tLTk5OVLzuXr16qGnp8ePP/6osYGdCktLS6pVq4aVlVUZuVbNJT179sTQ0PC53/fGjRtcuXKFI0eOoFAoJLl2dHTkhx9+ICgoiEmTJhEfH09sbKzaZ93c3Pjggw+4c+cOFy5cICMjg9zc3DJjtbS0xNTUFCMjIxQKBfHx8SiVSszMzMjOziYrK4ucnBy1OcHY2BgLCwvi4+MpKSkBwNvbm0WLFuHj4/NCv+WLkpiYyPDhw/nggw/o3r07urq6hISEMGfOHNq2bcvAgQNf6Dz/ZrkGmDRpEp6ennz44YeSLCgUCn744Qesra0ZO3bsXzHkN8LNmzeZP38+SqUSCwsLHj16ROPGjZk4cSK6urrScUqlkt69e5ORkaEm1/n5+RQXF0vvPnNzc2xtbdHR0VF7X8vlcho2bEhxcTGZmZno6OhIsr1v3z6WL19e7hiNjY3x9PTEzs4OQ0NDjI2Ny7yzu3Tpgq2t7XO/b3h4OGfPnuWPP/4gPz8fQ0NDDA0NsbGxoWHDhtStW5exY8cSFRVFeHh4mXF88MEHpKSkcO7cOTIzM8uUOzY3N8fS0hILCwvpHqSnp5OSkoKjoyPZ2dnSX15envQ5fX19bGxsSElJIT8/H4CKFSvy888/07Vr1xf6LV+UgoICPvroI5o1a8bAgQMxNTUlNjaWJUuWoKury8yZM9Xm9Gfxd8i2UITeDV6oapyqwsXLVqaYOXMmTZo0oW3btmX2RUZGMnXqVDZv3vxyI35LTJ06FWNjY7744gupcVRubi6fffYZzZs3Z/DgwdKxJ06coH379pSWlmJiYoKDgwO6urrI5XJ0dHTIz88nJyeHtLQ08vLyUCgUZa6np6eHj48P7du3p0GDBrRv3x6AwMBAVqxYIS2ujI2N8fLyokaNGlSvXh1zc/Nyv0NBQQFxcXEUFBRQWlqKp6cn2tqadV+lUsnly5fZuXMn0dHRVKpUCRMTE3JycsjNzaV27dr06tULGxsbEhISGDduHEePHi2zKFJhaGiIpaUlRkZGZGdnM3XqVFJSUkhNTSUtLY2srCwKCgrIzMzk/v37VKtWjWbNmmFmZoapqSnGxsaUlpYSGhpKeHg4Dg4OeHl5UVRURHZ2NhYWFhgbG2NiYoKxsTG2trZ4eXm98KSnCYVCQbt27di1axdWVlZq+3Jzc+nSpQtHjhzBwMDgued6VZl5m7zqGPfu3UtkZCQTJkwos6+goICuXbty/Pjx1/ot/iq2bt3KyZMnWbRokVStp7i4mF9++YX09HR+/vln6diIiAiqVatGYWEhenp6ODs7q8l1cXExOTk5pKenk52djUKhKPNiksvleHt707ZtW1q0aCEtBB48eMD3338PgLa2Nvr6+lStWpUaNWpQo0aNZy6EFAoFUVFRkuHF3d39mQpRaGgoGzduJDg4mEqVKmFpaUleXh65ubnUqFGDdu3a4e7uTn5+Pp9//jkHDhwgLi5O47l0dXWxsrLC1NSUtLQ0ZsyYQUZGBikpKWRkZJCWlkZhYSF5eXncuHEDFxcXWrVqhbW1NSYmJpiamiKXy4mIiODevXuYm5tTo0YN9PT0SE5OluRaJdvm5ubUrl273HnrRenfvz/Tp0+nWrVqattLS0vp06cPc+bMoXLlys89z79Zru/fv8+cOXNYs2ZNmX1KpZKuXbuyZcsWzMzM3uRw3wiXLl3iu+++Y+3atVSoUAF4POY9e/awY8cOtm/fjpaWFvB4jnJwcCA9PR2ZTEblypXR09OT5FqhUJCfn09qaipZWVmUlJRoXHBWqVKF1q1b4+fnh7m5Oa1btyYrK4svvviCgoICtLW10dHRoXLlypJcV6pUqdx5sbS0lLi4OHJzcykoKMDJyQkLC4tyv3NCQgIbNmzg0qVLODs7Y29vT0FBAdnZ2eTk5DB06FAaNGhAaWkps2bNYsOGDTx8+JDS0tIy59LS0sLCwgITExNyc3P54osvKC0tJTU1ldTUVMmwWVBQwPXr17Gzs6NZs2Y4OjpiamqKqampZFS6e/cuWlpa1KxZE0tLS+Lj4zExMZHe1cbGxpiamlKrVq0XMuQ8i2+//RZfX1+6d+9eZt+UKVNo1KjRCytfb1O2Vde6ePHia1eNa9iw4Ts9H/0T+EsVofbt2/PHH3+UK/jdunVjx44dL7SwfJuEh4czffp0Nm3aVGafQqGgY8eOHDhwQG3c/fv3Z8eOHTg6OvLJJ58AkJ2dXebzpqamKJVKSktLKS0tRaFQYG9vz/r167lw4YJ03DfffEOjRo1o0KBBmUV5eSiVSh4+fMjdu3c5d+4cc+bMUdtvbm7Ot99+y8SJE9W23717l0GDBkkTXEZGhprlVkWzZs04dOgQ3t7eFBYW0rhxYzw8PDAzM0OhUKBQKCgsLCQzM5NDhw4RFRWl1s1469atrFq1iitXrmgc/4MHD5g/fz63b9/m7t27pKWlSfssLCyYNm2atPiWy+VlJvRKlSrRs2dPevbsSbNmzaQX34vyxx9/cOPGDSZPnqxx/9q1a9HR0VFTgsvj37xg6tu3LytXrixXCZ80aRIDBgygdu3ab2agbwiVkvbHH39ofDaGDBnCt99+i7u7u7Rt3LhxLFu2DC0tLb799lu0tbXLlWtAkmmFQoGbmxs7d+7k0KFD0nGjR4+mbdu21K9fn0qVKr3w2GNjY7lz5w63bt1i0qRJavv09fUZMmRIGUt0Wloa/fr148SJE1hYWFBSUqJx7GZmZiQkJODn58fVq1cZMWIEMpkMGxsb6buUlpaSmZlJQEAAt27dQi6X4+joSHh4OAcOHGDVqlX4+/trXGTduHGDbdu2cfXqVUJCQtSULF1dXb788ku2bdtGeHg4WlpaZQxFlpaWdO3alV69euHn5/fS1tqoqCi++eYbNm7cqHH/lStX2LVrV5n5UhP/ZrmeMWMGfn5+5XaZV70PX2T+e9t06tSJrVu3apyTVJEnTy6Wp06dyuLFi8nJyWHixInY2Ng8V65Vsl1YWEhcXBzr16+XjmvRogUjRozA19eXqlWrvvC4U1NTuXPnDmFhYYwYMUJtn1wux8/Pj71796qtNUpKShgxYgSbN29GR0cHQ0NDUlNTNZ7/wYMHLFiwgN9++40PPvgApVKJlZUVMplM+j5FRUXcuXOH8+fPA4/lLSUlhYCAAFauXMnevXspLCwsc+7Dhw9z9+5dzpw5w927d3n06JGawjh06FCSkpI4cuQIMpmsjDJpYGBAhw4d6NmzJ127dn2mUVcTxcXFdOrUqVyjW1paGsOHD2fv3r0vdL6/QxG6cOHCaytCjRo1eqfno38Cf2nVOF1d3WdahS0tLcnNzX3nFKFNmzYxatQojfu0tLR47733OHz4sNRA6tixY+zZswd7e3v69+//3PPLZDJyc3MJDQ3l+vXrREVFqYWCAcyfP19yK//www88fPiQR48eUbVqVQYPHkyjRo24fv06ixYtoqioiPfff5+IiAg+++wzjde0s7MjISFB8m4BxMTEsHr1aoKCgrh+/ToA48ePx9HRkdTUVPLy8khPT2fBggWUlpZiaWnJnTt3iIqK4uTJk2ohexkZGZw9e1Zyw8fGxtKwYUM6dOiAv78/TZs25ebNm3Ts2JHVq1fj5OSEo6Mj48aN49SpU/z88880b96c0tJSWrduTYcOHahWrRrVqlXDzMyMb7/9lgkTJqCnp0dhYSHNmzenQ4cOxMTEEBISwp07d4iOjmbx4sUsXryYr776Ss26/yLcvn273EUAQKNGjVi3bt1LnfPfSH5+/jNfWnZ2dmVCJ98Fjh49Ss+ePctVkEeNGsXGjRv57rvvAAgJCWH9+vUYGRnRv3//F/JKFBUVERYWxo0bN4iIiFALGQHYtm2bpLDMnDmTuLg4wsPDsbGxYeDAgfj5+REdHc3ChQuJiIigd+/eWFtb07lzZ43Xq1ixIjExMWqLjNzcXBYuXEhcXBwnTpwAoHXr1nTv3p3MzEwyMjKQyWT89NNP5OXlUbFiRbKysggMDGThwoV8+umnbNmyBYDCwkICAwOJjo7m0aNHPHz4UJqDtm3bRr9+/di7dy8NGzZk4cKFuLu74+DgwJo1a1iyZAkTJkzgo48+IjQ0lPbt2/PRRx9RvXp1qlWrhpOTEwsXLmT27NnSb1K7dm26dOlCbm4uwcHBhISE8OjRIzZs2MCGDRto0aIFZ86cee7v8CQhISE0aNCg3P2+vr6Sd+6/THp6OnZ2duXut7OzIyQk5C2O6MUICwvD2dm53Dlp+PDhjBo1SlKEUlNTWbduHUVFRfTt2xcbG5vnXkOhUBAREcHNmze5f/9+mTCyK1euSKGuw4YNw9DQkIcPH6KlpUW/fv3o0aMH+fn5LFu2jLNnz9K5c2datmxJ/fr1NSoZjo6OxMbGkp2dLYX1KZVKFi9eTGpqqqSEOTg4MG/ePIqKikhKSsLAwIAff/yRmJgYDAwMKC0txd/fn2HDhrF69WoWLlwIPFbsVGuPhIQEwsLCqFChAu+99x4BAQF88803/PTTT3h4eDB9+nS8vLxwcHDgypUrjBkzho4dO7Jy5Up+//13OnToQO/evalWrRrVq1fHw8ODXbt2MXnyZGn+c3FxoW/fvujo6HDnzh3u379PSEgI+/btY9++fcBjxeZlPL/Jycm4ubmVu8a0tLSUQm7fVURo3LvBX14+Ozs7GxMTkzLblUolMTExz3T9vih3795l2bJlREZGIpfL6dq1K++///4ru12TkpJwcnIqd7+zs7MUc/vnn3/Ss2dP3N3dGTBggJqioYno6GiOHj2qFrOro6NDtWrV8PX1pUaNGnh6elJUVESfPn0AWLBgAZUrV8bJyYnDhw+zfPlybG1tSUpKwtXVFRMTE7p3746bmxs6Ojr079+fmTNncvXqVTZt2sTRo0dJTExkzZo1fPTRR9J19+7dy8yZM9XGt3nzZiZPnoy1tTXw2BPTvHlzwsLCOHDgAAEBAVSoUIGff/6ZoUOHIpfLuXLlCqtWraKwsJCKFSvi4uLCkCFD8PT0pLS0lFu3biGTybh27VoZL0G3bt0IDQ1l8uTJ+Pj4cOjQIY0v4zVr1jB8+HD69++PTCYjMzOTyZMnS5P90y+TwMBA9u/fj5+f3ws/B2ZmZs/Mx0pKSnonw0LeNi4uLty5c4caNWpo3B8UFPRCBoHnERsby8qVK7l27Rrw2CM5bNiwF/aQPk1iYqLUQVsTzs7O0u8fHh5O27ZtMTIyYtiwYRrnsCdJTU3l2LFj3L59W3o5yeVyXF1d8fHxwdvbm+rVq+Pt7S3lS86bN4/KlSvj6urKzZs32bp1K1ZWVqSnp2NhYUHVqlUZMmQIDg4OmJqa4uHhwf79+wkODmbz5s3s2bOHmJgYxo4dy5IlS6SxXL58mW+++UZtfHv27KF79+6YmZlhZmZGSUkJrVu35sGDB1LIXM2aNVmyZIk0Rzx8+JBly5aRnJyMo6MjdnZ2tGvXjgYNGiCTycjKymLfvn3s3buXnj17ql2vf//+HDx4kAULFuDo6Mi5c+eoWbNmmfv23Xff8cEHHzBw4ECuX7+OmZkZM2fOlEKVVMYgFXFxcWzevJlOnTphaWn5zN9ExfPkOj09HSMjoxc6178ZLy8vLl26hJubm8b9ly9ffqZC+aJkZmayfv16SUmvXr06H3/8MS4uLq90vue9ry0sLKTnKDMzkw4dOpCVlcXHH3/8TMUPHhsVTp48yeXLl9UW1fb29vj4+FCrVi28vLywsrKSwtk3bNiAh4cHbm5upKWlMWjQIIyNjaXQ2YYNG/LFF19IuX4KhYILFy6QkJDA7t272bRpE7GxsbRo0QJ/f3/JSJCamlrG0BkVFSWF4Lm6ugKPI3ECAgJ4+PAhHh4etGnThh07dvD1118Djz0lW7du5eHDh9jY2GBnZ0fPnj1p0qQJ2traXLlyhZ9++okffviBKVOmqCkarq6uzJkzh6NHj2JkZMTBgwc1GmlGjhxJr169+Pjjj9m9ezfOzs78+uuvUm7l03JtbW3NypUr6dq16wt7yo2NjdWiRp6mtLT0na+cKBShd4O/NDRux44dPHz4kClTppTZt2/fPm7evMmMGTNeasBPs2HDBg4fPsy3336Lt7c3BQUF7Ny5k02bNrF169YXsvY8zYIFC3B3dy83tnT27NnUrl0bGxsbKak3KSnpmdcqKCiQ3Nnu7u6kpKRgZGTEggUL6NWrVxkr9apVq0hISMDS0lJayGdkZFBaWiqFvzk7O+Pt7Y2hoSG3b99mxYoVaGlpUVJSwhdffCHlGRQUFLBgwQLq1KnDiRMnpIktPDycL7/8kuPHj5OTk4OlpSU9evTAxcWF6tWrq02APXv2ZMaMGfz888/s3buXLl26SMmjRUVFeHh4MGTIkDK/9d27d/Hy8sLV1ZUZM2aohbVcvHiRQ4cOMXDgQEJCQqhVq5ZGa/2TruO5c+fy6NEj6d9WVlZ4e3vTvHlz8vPziYiIIDw8nEePHpGWloaenh5eXl40bdpUbRGsp6dX5jr9+vVj5MiRkitdoVCoeeq+/vprPv74Y5ycnKTk0fL4N4fQ3Llzh1mzZrF58+Yy1ri7d+/y3XffsX379tcaW2BgoPQiVnkKjx07xvz581m0aFG5StizOHHiBJcvX9Y4HwEcOXKEu3fvMnjwYGmBdOvWLby9vcs9p1KpZNq0acyZMwcLCwu0tbXJysrihx9+YNSoUWWes7Vr1xIfHy/lwKjuX3p6OrGxsdy8eRMLCwt8fX0xMTEhNjaWBQsWUFxcTElJCYMGDZIUitLSUlavXk1xcTF37tyR5CQzM5PPP/+cgwcPkpycLIWgVK5cGV9fX7Xntnfv3uzatYu+ffty5MgRevXqRUlJCXK5nOLiYmxtbRk2bBgVKlRg/Pjx0ucUCgX6+vqYmZkxY8YMNaUkNDSUrVu30q9fPyIjI6lcubJGY8ST27Zu3SqF5gAYGRnh5eVFw4YNsbCwIDw8nPDwcB4+fEhCQgJyuRxPT08aNmyo9vtoMkR9/PHH+Pn58ccff2i0OM+bNw8PDw+6detWzq/8//yb5To7O5sePXpw5MiRMs9tamoqffv2xd/f/7mFd55FeHg4w4cP55NPPqFbt25oaWlx6dIlfvjhB8aMGUOnTp1e+pxxcXF8+eWXkhfzaSIjI5kxYwarVq3CwcGB5ORk9u/fT7du3Z4ZsbJ+/XomTpxIcXExjo6OPHjwgM8//5yvv/5ao/dp9uzZ6OjoYGZmJt2j9PR0UlNTuX79OjKZjAYNGmBtbU1WVhYLFiwgLS2NkpISWrVqJeVSK5VKDh8+zI0bN7h9+7aUu6ZUKvn666/ZuXMnERERyOVymjVrhp2dHbVr11YrCAGPwwWrVavGmjVrmD59OvHx8cjlchQKhWTgqVq1KqNHj1b7XM2aNXn48CFjxoxRU0q0tLRYs2YN7dq1o7CwEEtLS41hXU+O48yZM+zZs0f6t46ODh4eHvj6+uLu7k5kZKQk19HR0ZSWluLm5oaPjw+NGjWS7qMmuR07dix9+vTh119/lfLCnuTYsWNcvXqVqVOnltmnib8jNO7s2bOvHRrXtGnTd3o++ifwWopQcXEx/v7+3Lx5E2dnZ9zd3alatapkNVcqlXzyySdYWFjw6aefYmNjQ05ODuvXr+fkyZNs375d44L0RQkLC2Py5Mns2rWrzOR8+/ZtZs2axdatW1/6vCkpKQwePJhDhw6VWexmZ2fTvXt3/P398ff3p2PHjsD/J0U3adKE4cOHU6dOHeDxvbt16xazZ8/m0KFDzJ07l++//56srCz8/Pxo2rQp9vb2REZGcvPmTQYOHEi/fv00hmBlZGRoHK/qHp4+fZrdu3fj7e3N+++/rzZ5hIaGsnr1avbt20ePHj3UPl9YWMiZM2c4ePAgv//+O9HR0Xh7e1O3bl2MjY2Jjo4mMTGRoKAgqlWrhrm5OYGBgZiamlJYWEhhYSEymQwvLy/Wr1+vVvGppKQEW1tbXF1dycrKwtTUFCcnJ+Lj41EoFHTr1k3NGqvJlf3kRBEeHk5aWhpubm5UqFBBbTH1dJx0UlISQUFBXL16lezsbHx8fEhLSyM9PR0tLS26du2qtogaO3Ys3333HTo6OgwZMoTMzExpn6qS3ZMLPnNzc+zs7DS+TP/JC6bS0lIuXrxIQEAA9vb2uLu74+HhoZbA/+uvvxIUFMS3336Lm5sbxcXF7N+/n+XLl7N161aNL6YXJT8/n06dOnHo0KEylvrk5GT69+//Sguy0tJS2rZty/79+8v8JgqFgq5du7J+/XrS09PVqlxWqVKFxo0b8/7770tW3/z8fIKDg9m/fz8//vgj48eP59SpU9y5cwcfHx86dOiAk5MTycnJ3Lp1i9q1a/PVV1+xYcMGjWPTJNsquQ4JCWHp0qU4OjoydOhQNe9UamoqixYtYsqUKXz77bdlvtPly5cluVZ5fpo3by55SdLS0rh48SIymYwuXbqwY8cOaZ4uKChAqVTi6upKu3btWLFihdr5mzZtSmJiIlpaWujo6ODi4kJGRgaZmZllKl89HfoL6opQQkICkZGRVKpUCTs7OzWZf9rbm5mZyfXr17lw4QJRUVE0bNhQKlpRWFhImzZtaNKkifR8jB07lj179nDo0CFWrFihtlA7deoUCxcuZN++fS+UU/hPlmuA4OBgjhw5gpmZGZUrV6ZKlSpqCfzHjh1jyZIlzJw5Ex8fH5RKJadPn+ann35i3rx5r53316lTJ5YvX17Gg1NUVETnzp3ZsWPHC3v6nqRv377MmjVLY8GLcePG0b9/f7y9valTp44UjeHg4ECTJk3o3LkzH3zwATKZjOLiYu7fv8/NmzcZNGgQXbp0QU9Pjz179uDq6sp7772Hm5sbubm53L59GzMzM37++WcMDQ01vrM1hQirjIFJSUnMnTsXXV1dNeMLPH7mN2zYQP369dm5c6fa55VKJcHBwfz+++8cPHiQS5cuYWJiQsOGDTEzMyMvL4+IiAgSEhJIS0tj2LBhrF+/HlNTU6k6XmlpKRUqVKBt27Zs2rRJ7R328ccfs2PHDuzs7CgqKsLR0RGFQkFmZiYdO3ZUy4F68h2p4kn5ysrK4u7du9ja2lKhQgXMzMzUrvXk/+fn53Pz5k0uXbrE3bt3qVWrFjKZjLS0NHJycqhXrx7t27eXzj927Fhu3LjB119/zdatW9Wii+7du8eYMWPYvXv3Cz9Pf4ciFBgY+NqKULNmzd7p+eifwEspQgsWLCAhIQELCwsiIiLYvXs3qampmJiYSImGurq6fPXVVxgbG5Oeno6+vj5RUVE8fPgQExMTtLW16dOnD3369HluGNnz+OKLL+jfvz++vr4a9w8YMIC5c+e+UonlrVu3cvjwYX766SfJk3Dr1i0mT57MN998I+WSKJVK7t+/z/nz5zl37hynTp0iISGBtm3bcufOHcl7oaWlRZMmTfD392fFihVcvny53Ip5SqXylRQhpVJJfHw8dnZ2ZVzPAAcOHCA5OZkJEybQuXNnjS5opVLJlClT2LVrF7GxsRQUFGBlZYWfnx/NmjXju+++w8TEhGXLlhEcHAw8fokFBQVx+vRpMjIyWL16NYMGDZLOOXz4cLVKRA0aNGDEiBEaJ9HnKUIqNIWoaUoYLSkpISUlheXLl6Ovr4+FhQUWFhakpqZy7949qlevTtWqVbGzs+Orr76iYsWKHDx4EGtra+zs7KSqf0ZGRtjY2EhJn3l5eSQlJWFubo69vX2Z6/6TFkwrVqwgPDwcU1NT0tPT2blzJ1FRURgbG6vFwn/00Uf4+PgQGRmJgYEBKSkp3LlzB1NTU0pLS+nQoQNDhgx5bhjZ89iwYQMKhUItjPNJvv/+exo3bkybNm1e+twXL15kxowZzJ49m1q1agGPw0umTp2Kn5+fWiJ4VFSUJNcBAQHcvn2bjh078ujRI+7fvy8VBqhRowZHjx7l3LlznDlzptzyudnZ2ezatUvjvmcpQvA4rM/CwkKjQhEeHs6uXbv46quv6NKlC56enhqV81mzZklFCXJzczE2NqZ169Y0a9aMAwcOcO/ePebPn8/gwYNZsmQJCoWCu3fvcvr0aR4+fMi0adOYPn26pGAsWrRILVTH3t6er7/+WmNVzOcpQs/apimHAh4/vwsXLqS0tFSSa9Vc5OTkRK1atbCzs+OLL77Azc2Nw4cPs2TJEry9vbGwsODKlSu4uLgwe/bsFw6f/SfJ9aZNmwgJCUFPT4/S0lL27t3L7du3MTAwoLCwUHp+/fz86N+/PyEhIRgYGEgV/7S1tZHL5dSvX5+RI0dqnOdehmvXrrFp0yYWLFigcf+BAweemef6LKKjoxkyZAhTp06ldevW0gJ67ty5Uj6cipSUFM6fP8/58+c5e/Ys586do3nz5mRnZxMcHCyFUzk5ObFt2zYKCws5cOAAixYt0nhtldf4ZRUh1X49PT2NIVzm5uaMGzeOKVOm0LVrV3x9fTUaf6ZOncqRI0cIDQ0lPz8fHR0dnJ2dGThwIKGhoezZs4dp06bxxRdfsHbtWqmo0qlTp7h+/Trvv/8+a9askXK1T58+TevWrctcQxV69yTPU4RUlLfW0zRP5efns3r1ammtqSrffenSJczMzKhXrx52dnZMmDABDw8P7ty5w4wZM7C3t8fJyYng4GDkcjnz5s3DwcFB43U18XcoQn/++edrK0LNmzd/p+ejfwIvpQhpaWnh5OREZmYmZmZm9O3bl/fff5+aNWuSnZ3Nw4cP2bNnD3PmzEFHR0dakMfHxwOPE2ErVqyIqakpiYmJ5OTk4ObmhoeHB1WrVqVKlSpYW1tLYSNPF1tQKBTI5XJpW9euXfn999/LHfeiRYuoXr36K/c0OXv2LL/99hs5OTkUFRURFRUllZF+7733NE5KhYWFTJo0SbJoqP48PT2lCSIyMpJly5Yxe/Zstc9aWVlhZmZWpua/Kg/GxMSEkSNHSvk7KjR51TSVtW7Tpg2ff/45gYGBKBQKatasiZ+fH23atKFZs2aS9f3JKiuqvka9evWSeiKtX7+eIUOGsHjxYrXzl5SUcPv2bdavX8/kyZP58ccfkcvlUu5QSkoK8Ph3s7e3p6SkROqtpPoOL6sIKZVK6XkoTxHShK6uLjdu3ODEiRPEx8dLLyIbGxs2b96Mh4eHFOpoYGCg8bdOTU0lKSkJDw+PMtbkf9KCCR7nx+Tl5SGXy+nRowfvv/8+zZo1o6CggIiICE6dOsW0adPIzs7GxcWF/Px8qfqXm5ubJLspKSmkpaVRqVIlSa49PDwkK7+JiQn6+vpqcq2qoqi6h59//jmjRo0qt8fYqVOnuHHjRpnqhy/KvXv3WLBgAdHR0WhpaREREYGLiwtdu3ZlyJAhGquSKZVK5s6dy9GjR/Hy8pLkukaNGtIiWpXE/NNPP6nFrhsZGeHg4EBkZKTagkdfXx+lUolcLmfEiBFlciReVK4HDhzIxx9/jL+/P/n5+bi5uUly3apVKymnavfu3dJniouL0dLSom/fvgBUrVqVrl27Mm/ePAA12VYqlZw4cYJDhw7Ru3dvqYBEaWkp9erVU8vhUlXcMzc3l3ogqa73NM9ShJ6U6/IUIU2VLXV0dHj48CGHDx8mOjpaMgjp6upSrVo1hgwZQrNmzQDw8PB4adn8p8m1yppfUFBAhw4d6N+/Px06dEAmkxEZGcnVq1f5+uuviYyMxNXVleLiYmJiYqRztW7dGnt7ezIzM0lMTMTW1laS6apVq+Lo6CiVRTYyMnqmXK9fvx4TExPee+89jeNOTk5m0qRJr1yQJikpifnz53Pz5k10dXWlPkqdOnVixIgR5XoGdu7cydKlS3F3d5fkumbNmlL4W35+Ptu3b2fu3LlqxSK0tLRwdXUlMTFRreKcat2iVCrp1asX9erVU7uepvlFkyFkwoQJjBs3jr1795Keno6trS1+fn60bduWNm3aULFiRQB++eUX6TMqI4SWlhYTJ06kd+/eZGVlcfz4cYAyRpqgoCC2bNmCt7c3+/fvl5TdTp06cfToUeCxnHh7e2NjY4OZmRm2traYmppKubpP8yxFSLXcVD0n5SlCT6OtrU1SUpKkLGdlZQGPI3EqV65Mnz59pEgXZ2fnF+rD9DR/hyIUEBDw2opQixYt3un56J/ASxVLiI6OLtcqZGpqSp06dahTpw7jxo2T4scBHj16xJYtW4iJiSE6OpqYmBgqVKhApUqVJMtEYmJimXPq6uri7u6OtbU1UVFRxMTEYGRkRN26dfHx8SExMZEjR47g7e2Ng4NDmcVocnLyCye3FxcXc/78eY4ePcqNGze4f/++ZPn+4osvCA0Nxd/fH21tbbZv306tWrWYNWsWHTp04MyZM0ybNo309HRu377NokWLOHr0qLTQSk5Oxt3dHV1dXRYvXkxgYCCffvopo0ePZvbs2dLkpKrZ/zSqiaGwsJCoqKgyitCLUrduXclrc/z4cQ4fPszWrVulxU/Pnj3VlKB79+6xevVq0tPT2bNnDw0bNgRg+/btUmndJ++5trY2CxcuJCAggJ9//plGjRrRrVs39PT0mDt3LgEBAfz555/8+eefZGVlqSX6GRoaSo1n9fX1MTQ0xNTUVJp4VduLiorIzc2VmrGeP3+eGjVqSGNzcnJ6oYlFJpNJz2tpaSnp6en4+voSERGBrq4uKSkp5ObmUqVKlXJDsFSLNtWi8p+KShHQhKGhIV5eXnh5eTF48GAKCwulsLf09HTWrFlDVFQU0dHR0rPp6OhIVFQUW7ZsITo6usw5tbS0cHZ2plKlSsTFxREVFYVcLqdWrVqSx+nIkSOS4eVpa+LLyLVSqeTGjRscPnyYK1eucP/+famXxscff4y+vr5U3nrs2LH8+OOPzJw5k8GDB3Pv3j1mzJjBmTNnuH//PpMmTaJly5Zcu3YNAwMDkpOTKSwsxNDQkCNHjrBw4UI++eQT7t69y5IlS1i4cCG5ubnk5uYSFhZWZmxPLuRDQkJeOVncwcGBAwcOkJ+fz5kzZzh06BAnTpyQ5pWGDRty5MgR6fj4+HjWrFnDgwcP2LJlC+3atSMtLY1Tp06xdevWMrkyMpmMVq1aUVBQwO7du6lVqxbffPMNcrmc8ePHc/nyZU6fPs2dO3c4d+6cWgltfX19SZ6flmsbGxuMjIwwMDBAoVCQl5dHcXEx8fHxnD59mooVK9K0aVOMjY1xcHB44SIZlStXZvz48SiVSrKysmjYsKHUUmDSpElYWlpy7Nixf/3CISQkRC3E82mqVKlClSpV6NGjBykpKVKEQHFxMWvWrCEsLIyYmBiioqIwNzfH29ubxMREDh48SERERBnPn0wmk0JpU1NTiYyMpKCgAC8vL3x8fJDJZOjr61O9enVcXFzKVItNSUl5qWI0Dx484PDhw5w7d4779+8TFhZGfn4+PXr0oH79+vj7+1OxYkVmzpzJrFmz+Oqrrxg/fjwZGRlSX53Tp0/Tt29f6taty4kTJzA0NCQtLY3c3FzMzc25ffs248ePZ+jQoZw5c4adO3cyZ84coqOjUSgUPHjwoMy4njR2nD17towi9KIYGBiwevVqli9fLuXT+vv7s2XLFpRKJW5ubhw8eFA6Picnh8OHD3Pz5k0qVapEYWEhMTExxMbGsmzZMqnK7ZPUrVsXQ0NDFi9ezGeffcaOHTuAx15CZ2dnzp49S2xsLPv371f7vXV1daXGzAYGBhgYGEj9hJ6Ua3jcaLugoID09HTOnDmDgYEBzZo1w8bGBltb2xeO2LG1tZVKjOfm5tKkSRPu3r1LUFAQixcv5pdffmH79u2vfL//DkSxhHeDl/II/fTTT2rWDJWF/0k0hUWUZ5V/MoeloKBA6vRcXFws5Z6kpqZiYGCAtbU1tra2kucpNDRUze2spaUldUK2t7fHw8ODU6dOERYWJi1kk5OT2bNnjzTJA5iYmGBoaEhUVBQFBQUYGxvj5OSEjY0NNjY2REdHc/nyZUxNTWnQoAENGzYkOTmZP/74g4iICMzNzcnIyJDCA2vVqkVaWhrR0dFqtfO1tbWxt7dHS0uLDh06YGdnh5WVFXK5nFWrVnHjxg0A2rZti6GhoVSJTqFQoK2tjZubG/v27dO4KE9OTi6zTaUMPGkhetoitnPnTo4cOYKhoSF5eXlYWVmRnJzMxo0bGTp0KPC4tGzr1q1Zv349SUlJUj5AQUEBbm5uzJ8/n+7du0uWnVq1anHr1i3gcflKa2trOnXqJDV2VXkDSktLWbRoEZGRkTx48ICff/6Zu3fvvrBgq/qYDBw4UOr/A48XXr169aJdu3Zoa2sTFBSk8fOaekYUFxdjYWHBe++9h42NDXl5eejq6uLh4aHRyqXylri6upax8v2TLMevKtegWbaflOvi4mLS09OlDu6qJqDp6eloa2tjaWkpKdXh4eHcu3dPrcKXTCbDzMwMS0tLyRp96dIlzp49Ky2M8/LypI7u9+7do6CgQGrgl5SUREZGhtQQVSXXWVlZnD17Vmr85+fnR35+PsePH+fWrVuYmZmRlZWFsbEx2dnZUiXHiIgIQN2y6ejoSEFBAd26dcPBwQEbGxu0tbX5448/JI9148aNJVlQha4plUpcXFxwdHRk9erVZe7js+S6tLQUpVKpUa5Pnz7Nhg0bsLS0lDxTiYmJ3LlzRwondHZ2ZtCgQWzYsIG4uDhkMhm6urrk5+ejr6/P/PnzGTlypPRb/vjjj1IlOgMDAxwcHGjZsiUymYy8vDz09fWRy+UolUpmzZpFdHQ0Dx48YNWqVVJ1sBfFysqKQYMGcefOHU6ePAk8nr/atm1Lt27dJANEbGxsmc8+XdYY1C3MWVlZHD58mOLiYk6cOEHdunVfamz/NrmGF39nPynXCoWCjIwMSZ5Vsp2ZmYlMJsPU1BRbW1t0dHSIiIggJCSEhIQEtWuZmJhgaWmJlZUVHh4eUsTFb7/9Jo3h6NGjHD9+nL1795KZmSl5lbOzs6X8NCcnJypUqIC1tTWlpaUEBgZSUFCAh4cHnTt3RldXl1OnTnHp0iUMDAwoKChAV1eXwsJCKlWqhI6ODpGRkRQXF6u9f+zs7CgoKKBjx46Sl0FPT49bt25J+XI1atSgcuXKyOVyxowZg76+PsXFxVSsWBEnJyeNzWmf9LipUHlOVf2KNBUHCAsLY8OGDZLnHeDkyZPY2dnRqlUrKVR79OjR3LlzhxMnTlBcXCw1NdfW1mbSpElMnjxZmkd+//13NcNH5cqVadCgAX5+fuTk5KCrq4uuri5KpZIePXoQExPDw4cPOXDgAOvWrdPYH6g8TExM6NWrl2RQUT0LDRo04P3335fmc1UE0ZOoPEBP8qSsFxQUcPLkSSIiItixYwe9evV6oTE9fY237RE6c+bMa3uEWrZs+U7PR/8E3hlFSIWmWNInk+9VREVFkZ+fz6pVq6hevTq6urokJiaSnp5OZGSkJMTdu3enYsWK5Ofns3HjRgoLC3F1daVq1aro6OiQnZ1NdnY2pqameHp64ujoqKZs5ObmSvXtVYt9IyMjKTfoxo0b1KxZk0qVKrFq1Sr09fWxtLTE09OTJk2aUFxcLOWjHD9+nIKCAslipK2tja2tLZaWlhQXFxMaGqo2qejp6VGzZk1GjRrFsGHDyri1i4uLpRClgoICUlNTSUxMJCEhgaSkJHJzcykpKUFLSwtra2sqVqyInZ0dFhYWmJqasnHjRmky+fzzz2nZsiVdunShffv2kiv9vffeIz8/n1u3bmFiYkJcXByZmZnY2NhQt25djh07xtChQ6VwhilTphAWFkZeXh6ZmZmcP3+e+vXrEx4eTnJyMra2ttSsWRMrKyu1ymIdOnTAyMgIbW1tqWldfn4++fn5eHh4sHfvXrKyslixYgV9+/aVOtSryMnJYeXKlcyYMYPs7GycnZ2ZNm0at2/f1vjsPUsR6tmzJ9bW1lKlLgsLC41JuEIRev6CScXLyHVJSQlbtmzB3Nwca2trKak/NjaW1NRU5HI5nTp1wtXVFR0dHTZu3EhKSgoVK1bE09NTWijl5ORgamqKs7MzLi4uauNSyYZcLpeeI9ViJCYmhgsXLuDk5ISPj49Umc3S0hInJyfat28vJQ+HhoZy4sQJMjMzJQ+PXC7H2toaa2trtLS0uHv3rtr9k8vlVK9enV69ejFt2jS0tLTUZFvV2V6Vo5eRkaEm11lZWVKomZWVFY6Ojtjb22NlZYWpqSmXLl2S+oJNmDABLy8vhg0bxqRJk5g7dy7wOOTJ1NSUK1euYGZmRkpKitSHxMXFhXv37lG3bl2uXLmCTCYjIyODjz/+mPz8fDIyMrh69SpOTk4UFRXx8OFDqdKdk5OTmlI3adIk9u3bR8eOHaXvpfKSeXh4sHXrVhITE5kwYQJTp07F3Nxczbuan5/P8uXL2bRpk/Sdli5dioGBwUsrQtnZ2URHR0tVqjw9PV+6L86/Ta7h1RQhFS8j16WlpRw/fpzExESqVq0qyXViYqJamG379u0xNzdn586dPHz4EDc3NypWrCgV8VD11nFycsLd3V0thFQVLfCkMqGS67S0NAIDAzExMaFx48YcOnSImJgYLC0tsbOzo1OnTmhra5Obm8uDBw8IDAwkNjZWrReYhYUFdnZ26OnpERISUiZss3LlyrRp04b58+djbGzM0qVLpX2lpaUUFBQQHh5OYWEhOTk5JCUlkZSUREpKChkZGdLawNTUFGtra2xsbLCwsMDIyIi4uDip6bqqotsXX3zB5s2b+fDDDwEk731sbCza2tqkpKRw79495HI5bdq04fTp01hbW3Pt2jVsbW0pKirik08+IScnh4yMDK5duyYZh/z9/TExMaFHjx40a9ZMLWdz06ZNfPDBB6xYsULqi6jqUWZhYcHmzZsJCwujU6dOrFu3TsrzUVFUVERGRgajR4+W+ggtWLAAa2vrl1aECgoKiI6OJjIykjt37qCjo/NKJfH/DkXo9OnTr60ItWrV6p2ej/4J/OV9hP5KDAwMGDVqFPv37yc7OxsHBwdkMhkFBQVSfkNiYiK3bt2ioKCAL774gnHjxklW2piYGB49eoSuri52dnblNnbVNNnLZDI8PT3VQg+ezllQWVnt7e2xt7fn3r17jBo1Sm1ho/pvenq6pATp6OhI1qnExESGDx/OypUriY+Pp6CggIKCAvLz8zW+rDRZaFQLkJSUFB49ekRGRobay2/Pnj1qFpQ//viD4OBgNm7cyPbt2yksLJQscKqcoRo1anD48GGcnZ3VQnzMzc3VXNOXLl2SqtqoKvY8bYmNjo7m2rVr9O7dm7S0NLS1tdHW1pYmsnXr1jFy5EhatWpFbGysxtKlxsbG2Nra4u7uzvXr14mMjGTYsGFYWFhgb29P5cqVcXZ2fm7DtpSUFEkBU533ZRIuBa+PtrY2gwcP5tixY9y6dYuKFStibW1Nbm4u3t7e6OvrU1hYyKlTp0hPT6d37958+eWXUkPD1NRU7t+/L8noyxhi4HGTUlUPL6BMeVmV8qRSdm7evMk333xDTk6OmlzHx8eTmpqq5hVW/X92djY//PADe/fulQrKqJR/TYnT5VleVYpSQkKC2kIKHvfoebKS3Jw5cxg7diw7duxg5cqV5OTkkJmZSUpKilT5sXr16jRr1oxKlSoRGxsrGX/Mzc3/vyiNUkl4eDghISHo6+vToEEDoqKi8Pf3V5sP8/Ly8Pf3l6phaWlpYWxsLL34f/nlF8aPH0+TJk2IiIjQGPpmYGCAhYUFjo6OkiI0ZswYrKyssLOzk+bg5zXlzs/PZ/369VLYnqenp1rvJcFfj1wup0OHDly8eJGgoCAcHBywtrYmLy+PBg0aYGtrK4U7Jycn06hRI7Zv346vry/r1q0jJyeH4OBgiouLqVy5crny+6Rx40ksLS2lpqpAmVAxldJoZmaGj48PDx48YPDgwRgYGKjJdWJiIklJSdKzpMpbVuVibdq0CX9/f2xsbKRIk/z8/HJz3TRRWFhIbm4u2dnZZGVlqX32vffek7xmAEOHDqVLly4cOHCAJUuWEBAQII0lNzcXpVJJ/fr1+fDDD/Hy8mLFihWS8qirq/v/7+v/hZKeO3eOlJQUunTpQmJiIuvXr+fcuXOSIqRUKjl48CBmZmaSgVjVn8zJyYkPP/yQzz77jLZt23L//n2N+Tq6urrY2tqqVcqbMGECpqam2NnZUb16dby8vF4oVHLLli2SYVPV4/Cf0hdMhMa9G/yjFSF47DXp168feXl5REdHo6urS6dOnaQX+FdffaV2/IMHD9iwYQPXr19HT0+PWrVq4eDgwI4dO6hUqZJUceavoLS0FLlcjqWlJZaWllSrVg34/2TgNWvWMHDgQJKTk1mwYIFUoOGjjz4iLy8PLS0tSUnQ0tJCoVCQlZUl5c8cP35cKnfbuHFjDA0NMTMzIzo6mosXL0o9PWxsbMjNzcXCwoJ+/fpRs2ZNlEolRUVF0mQPj61f0dHRtGrViqioKOLj46XQxYcPH1K3bl1iY2OZMGFCud+5fv36WFhYYGBggJaWFg4ODhw+fFh6UaWlpdG1a1cMDAyYPn06n376aZlz3Lp1ixYtWuDi4lJuJTHV/dXS0pIWjar/j4uL4+7du+jo6FC9enWaN29e7jksLS3R09NDV1eX4uJicnJyCAkJwdjYGD09PfT09KR4aMFfh1wup2PHjhQVFfHo0SNkMhlt2rSRvAVPy3ViYiL79+8nMDAQeNyksUqVKuzcuROZTEbXrl1fqmv5y6B63lQx8lWqVAH+X64PHz4svdTnzZtHfn4+kZGR9OzZEz09PfT19SX5UClLWVlZyGQynJyc2L17N0qlUqreqFIOUlJSuHr1KsHBwTg6OuLu7k5OTg6GhoZ0796dLl26SNbxpKQkqWS9m5sbDx8+pE6dOpiZmZGYmEhhYSFKpZKEhAS2bdtGUlKSerhedjYt9+3D/e5d5AoF+cXFPHB0RKdZMzA2pnr16mzdulWS68LCQgYPHkxYWBhnz55l7dq1Ze5bVlYWvr6+KBQKJk+e/Mx7rJo7S0tLkclkyOVy0tLS2LNnD3K5nKpVq5Zp6vokBgYGdO3alfDwcCIjI7l37x6dOnWiQYMGVK1aVSoR37lz59dq6SB4Pg0bNpSiBBQKBU2bNpXueZMmTdRkOycnh2XLljFz5kzy8/OpXLky3t7e+Pv7k5KSQs+ePV/Lov4stLW1KS4uxsrKCldXV7WqaYWFhVy/fp2CggLq1KnDb7/9RmxsLLGxsfj4+Eh9+FT95lQKQ05ODnl5eVSrVk0qi62np4efnx8mJiaYmZmRm5tLcHAw169fl0L1Ve//Ll260K9fP6kxaUpKCnFxcRQWFlKrVi1u376Ni4sLDRo04MKFC1JxlcTERKZOnUp8fDzDhw//fwUjO5tG27fjfPMmMoUCg5IS7BwcaD52LGb/y91JSUmR5l2lUsnUqVPZvXs3u3fv1uipAWjVqhU3btxg27Ztz7zHJSUl6OrqSgYcLS0tCgoKOHjwIPv378fZ2Zm+ffs+UyY7d+5MWFgYkZGRJCYm8tFHH7F48WIpbNHd3Z2OHTu+Uln2vxqhCL0b/OMVIRWGhobP7C4Nj0tib9++ncjISCZPnoy5ublknerbty9XrlwhICCAli1b/iVjtLCwICEhQWM365ycHORyOfr6+mXyWjQtIlQYGRmRm5uLvb29FDucnJxM3bp1JYXOwcGB+vXr8+jRI86ePYuOjg62trbExMTw7bffMnXq1DKlkp/kt99+Y/ny5SiVSoKCgjh//jwpKSm0bduWPn36UL9+/XLHp7LAqSpLqa4RFxfHzp07+eyzzygoKCAgIKDc3jNOTk74+vpKye5PNkZ9kiNHjhAUFMTAgQNxcnJi06ZNREdHM3z4cIqKiggLC5M6hKuKKzyNXC5HW1sbQ0NDtLS0sLW1JSsri9zcXHJyckhNTZUq+D2vK7ng9dHV1X1up/ELFy4wbdo0oqKiGDZsGB4eHty4cYNTp05Ji/F9+/apeXneJJ6enty8eVNjvklpaSlRUVF07NiRy5cvq+WrqEJCNKEqDBIaGoqTkxNRUVFkZmbi7u4u9ctwdHSUchKPHTuGUqnE2tqa5ORkFi1axOzZszEyMpL6hjzN5MmTuXjxIvC4kuXevXuJjY3Fy8uLvn37MnDgwMcHZmdDo0bUuXsX+f9evN8Airg4Ev74g1ndupH6vzyRpKQkDh48yLfffktISAi7d+8ut/eMsbEx7dq1Y/v27Vy6dIkGDRpoPO7WrVscOXKEjh07UqNGDamk+ZAhQ6hQoQJ3797l1KlTbNy4kQEDBpRb3MTFxQUXFxepv92xY8c4d+4cN2/eZM+ePWRkZODp6cmqVato2rRpub+N4PVR5Xg+i6ioKIYOHYq5uTlt2rShTZs23L9/n8OHD9OxY0dKSkrYvn07H3744V9SrKZmzZpcvXqVLl26aNx/69YtevXqRVxcnFqYZlBQULm5qSqFKCwsDDc3NylMzsrKSqq4CI8rtTVr1ow///yTgoIC7OzsyM3NZcuWLSxduhR9fX1KSko0ersHDBjA999/z4EDB8jIyGDo0KGEh4fTrFkzWrRo8f+K5v/kuvoTcj0IGJCbS+bSpRz55htK/ucN09HRYc+ePaxatYpjx44xe/Zs3nvvvXIr/PXo0YNr167h7+8vVaZ8mgcPHrB+/Xrq1q1Ls2bNiI2NZdu2bTRq1IiPPvqIe/fucerUKZYvX87IkSPL9fra2dlhZ2dHs2bNmDRpEsePH+fMmTOEhoZKoZi2trYsXryYvn37/mWGbsE/l5fKEVqzZo1ayVNNpVw1oeqE/jSaauxrKp2o6Tqa3K2aKs+pLAkJCQls3LiR+vXrI5fLpcaIgFQ9adCgQSxbtozhw4dLyfGa4qc1hUppuo39+vVT+3doaCi9e/fm448/LiPUy5Yto0OHDlLJYFW1uZSUFFJTUykqKqK0tBRra2sMDAzIysrCxMSEGjVqcOvWLbZt20Zqaipt27aldevWGhc+mhSdrKwsIiMjSUpKwsjISEoyVxU0UOUxqX6r27dvc/z4cfr3768WO63i7t27ZbY9fX9ycnJITk6mtLQUPz8/1q5dK70UVdb0J/H392f9+vXMnDmTLVu2MGDAAI3XWLRoEZ9//jnVq1cnIyOD6OhoWrZsyU8//SRZmiZMmMD169dp2rRpGQ+Brq4uVlZWjBgxggoVKkiFIZ7+HgqFgpycHClPZNmyZfTt2xdra2tatmyJXC7/R+USvKpcg2bZfptyXVRUxI8//kj//v25cuUKo0aNUhvH/Pnz+fDDD9m2bRvt2rWTSqK/SbnOzs6mfv36DBs2TK2io7a2Njt27MDe3p4WLVoAj8NeU1NTJdkuLCyU8tBMTU3JyspCV1eXmjVrEhUVxc6dO7l37x7NmjWjQ4cOGsN0Nd3H3NxcoqOjiY2NRV9fX/JWPelVsbOzk+aExMRE1q1bR8uWLWnYsKHU/wzgg6Ag/MLC0LTUVAD7HB35rUoVsrKyCAkJIT8/H29vbzZt2iT1ahoyZEiZz86fP5+dO3fy5ZdfMn78eGbNmqXhCo/Lpbdp04bq1atTWFjIw4cPqV+/Pj/88AOWlpaUlpYya9Ys9u3bR+/evctUNtUUkqSpdHdWVhZ//PEHcXFxUqTABx98gKmpKW3atEFPT0/I9VO8abmG/5ftWbNm8f7777N9+3Zmzpwp7S8qKmLGjBkMHDiQixcvYmVlJY33Tcq1Uqmkbt26dOrUqcx76dKlSzx69Ejql6fK/0lOTiY5OZn8/HyKi4sxNTXFyspKkjMvLy/y8vLYvXs3586dw9fXl65du2oM99b0vq5UqZJUfEJVbKZ69ero6+ujUChQKBRS3lRpaSmFhYU0adKExo0bs3jxYrU8Mc9ly6h08KCkBD1JqVzOvdatuTxwICkpKaxatYrQ0FDs7e1Zu3YtHTp0AB7nCj1Nr169OHDgAF9//TXe3t5SVc6niYmJwc3NjUqVKqGtrS1VL50+fboUYrtt2zbmz59P69atyzyTmsrna1KWioqKOHHiBPfv35eaCA8ePBgjIyOaNWsmeYr+jhyhkydPvlYYX25uLm3atHmn56N/Av8aj9Dz8Pf3p2fPnhw8eLBMLo+7uzslJSVkZ2dTtWpVIiIi1Lonvyk8PDzo3r07S5YsoUqVKlSsWJGEhAQuX76Mra0tV69epbS0lKpVq6Knpyf1CVBVXbKwsODo0aMUFBTQuHFj5HI5e/fupX79+kybNk3tWpqKAWhCX1+fqlWrqn3fZ1lMvLy8cHV1xdjYWGNJ4BfB2NgYfX19Fi9eTNeuXcnOzmbs2LF4eXlJLvKSkhKKiorIycnB1dUVQ0NDhgwZIvUK0MTIkSOl6j/GxsY0b94cS0tLZDIZjx49YsqUKcTExDBt2jT+/PNPjefIycmhpKREWiyqcrV0dHSQyWRS3peFhYXkKTp69Ch79uwB4MqVK+U2+BW8eS5cuEDz5s25c+dOmZBHCwsLqlWrxoMHD6hTpw537tyhVatWb3wMJiYmDBs2jM2bN2NjY0OVKlXIzs7m/PnzkuX26tWr1KlTB0NDQ+zs7NDX1ycwMJDMzEwqVKjAn3/+SXJyMj4+Ppibm3PkyBEqV67MuHHj1DwcLyrXOjo6uLm54ebmJm0rz1MCjxeqY8aM0fgy9YmL06gEAWgBTVJT+a1KFUxNTfH19WX8+PF06dIFXV1dvv76a8zMzKQqgXl5eWRnZxMVFYW9vT1KpZL27dszduzYcsfWqlUrfvjhB+Li4jA2NqZmzZr06dOH27dvk5aWxrfffsvly5cZMWLEc8PalEol+fn5UohShQoVpMWTra0tgwYN4vr165w9e5abN29KvVTWrl0rJaQL/noiIiKws7MjMTGxTPEFVfj75cuXqVu3LocOHSrX2Po6yGQyRo4cyaZNmzhz5gze3t6UlJRw/vx5ioqKcHV1JSAggIYNG6Knp4e1tTWmpqYEBQURHh6Oo6MjQUFBREREUK1aNZydnTl16hRmZmYMGDCAYcOGSdd6UbnW0tLC3d1dzXv0rLL7enp6HDlyRDIAPYnNxYsalSAAeWkplW7c4PLAgVhbW/PVV19hYWFB8+bNsbKy4tdffyUhIQG5XI6VlRVpaWmkpKRw48YNPv74Y3Jzc2ncuDHTp08vd2wVK1Zk5cqVXLp0CWNjY1xcXCQPfkFBAfPnz5cKrTw5j5VHQUGBJNcqwxI8np979uxJaGgoJ0+e5OHDh/zxxx/A47ykJ/swvW1EaNy7wX9GEYqNjaVKlSooFAqNL0sXFxfi4+PR1dUtN7n6TVC5cmW+/PJLwsLCePDgAVeuXKFFixbUqVOH4uJiLl68yJEjR5gwYQLp6emsXr2acePGYWVlxYoVK+jRowdOTk5s3bqVr776Cl1dXTZu3MjRo0fp2LHjC48jNjaWwMBAcnJykMlkaGlp0aBBA43V0Z5ELpe/kZhsbW1tunXrhlKpZNKkSVLH66fvvaGhIZs3b6Z79+7Pva6BgUGZSe3y5cskJydLDfXWr1+Pm5tbuYpQYWEhV69epUGDBpiYmEjbZTIZhoaG6OjoUFpaSklJCbm5ucTFxdGjRw8ePHhAcnIyderUecU7IngVIiIi8PPzIyAgQKNce3l5ERQUhJOT018q19bW1nz22WdERUXx4MEDzp49i7e3N02aNEFbW5vr168ze/ZsPvnkE4yNjVmwYAFDhw7F1dVV6pnUvn17qd/HwIEDOXbsGOvWrVNbMD2P9PR0AgICpFL3paWl1KxZs9zwNBWqksdlUCrR1uBdfhLt0lJQKuF/84gqCf23337j559/lsrzP32/FixYQN++fZ/b/FAmkzF16tQy2wsLCxkzZgxpaWn8+uuvNGjQgA0bNjzzXNeuXVMLW9LX16dp06Z4eXkBj+c3Hx8ffHx8pD4sBw8epHPnzs88r+DN8ujRI6pVq4ZCodDYuqBGjRqcOXOGevXqlVvR8k1gYGDAyJEjpeprZ8+exdbWlrZt22JiYsL9+/eZN28evXv3pmbNmvzyyy+0bduWQYMGcfPmTdLT01mwYAErV67E29ubAQMGcP36dSl6QZOHVxP5+fkEBARIYWpFRUXUqVOHTp06PfezGuVLqUT+nPlQXlIiybVcLpdy8M6cOcP48eMxMDAoI9f29vZMnjyZAQMGvJDyMnToUKlVx/8PTcm0adM4d+4c33zzDd27d2fLli3PPE9ERATHjh2T/q2lpUW9evWoV6+e9F7w8PDAw8NDyiWeNWtWuc193xZ/hyK0dOlS5s6dS3x8PF5eXixcuFBqMq2JgIAAJk6cSHBwMA4ODkyaNEmtgFBwcDDTpk0jKCiIyMhIFixYwGefffYqX+dv4z+jCOno6JCfn0/VqlW5du1amaZbeXl56OnpERoaWm5M65tCJpNJfYEmTJigNlFVqlSJBw8esHLlSimW3crKiujoaEpLS2nbti3wuNz08ePH6d69O++99x4zZsyQSsGWlJTg6upKs2bNNLpdQ0NDuXjxIl27dpX25+XlceLECVJTU8uN1X/TFBcXM3LkSNavX4+enh6Ojo6kpaVJRQm0tbWRy+X/n6vwDHJyckhPT5eSw0tKSsjKyuLKlSvMmTOHrKwsli9f/kKTc0BAAOHh4XTt2lUKEywqKiI5ORktLS0p7ODevXvs2rWLc+fOYWZmxtatW//RjVX/iRgYGJCTk4OnpydBQUFlft/s7Gz09PS4e/eutNj9K3FycuL3339nyJAhauE0HTt2pH79+ixdupTq1avTs2dPXF1dyc/P5+rVq3z77bfIZDJGjRrFrl27GDduHE2bNuXatWvMmzdPKsigCr/UVGEtKSmJ/fv306VLFylEr6ioiIsXL3L48GG6du368vHxMhklz/AkAZTIZPDEeZVKJXPmzGHy5Mno6elhZWVFpUqVpJ5RRkZG6Ojo8Mknnzz38oWFhSQnJ6NQKCgtLZXCUjMyMvjpp5948OABP/zwwwvPWXFxcRgYGNCmTRssLS25cuUKJ06cIDg4mDZt2uDo6IhMJiMqKoojR45QWFjIr7/++kqd6gWvjr6+Pjk5OdSqVYvt27dLoVgqVHIdEhKiVsTgr8La2pq4uDhat25N/fr1JQXG1taWevXqsXDhQlJTU6lWrRq+vr4olUr279/PlClT0NPTY8KECfz888/UqFEDT09P3N3dmTNnjhSebWhoSOvWrTXmOefl5bFhwwZat27NqFGjpAp158+fZ/78+SxevFijsvhMZDJKn1M8plRbW02u4XGF2UGDBqGrq4upqSne3t54enpSuXJlrK2tMTIy4oMPPnju5RUKBfHx8dL7WqFQSCW4d+zYwalTp54bAfIksbGxaGlp0aJFC5ydnQkODuby5cvcu3eP1q1b4+7ujlwuJzU1lcOHDxMfH8+kSZNo3LjxC53/r+JtK0I7duzgs88+Y+nSpTRp0oQVK1bQsWNH7t69q/HZi4iIoFOnTowYMYLNmzdz7tw5xowZg42NjaRE5uXl4ebmRp8+fZ5ZOOtNkZiYyBdffMHJkydJSkrSWCX5ZfnPKEINGzYkICCAVq1asXjxYlxcXAgMDOT27dsolUoiIiJwcHCQ8mT+aoKCgqhXr56U+Pwk7u7unD59moyMDGlBExgYKDVDBKhXrx4//vgj3bp1Y8eOHVhYWFC7dm1atWpFaWkply9fZvXq1QwdOlStBKVCoeDMmTN8+OGHkmUJHk/EXbt2ZevWrVSvXv0vvwdKpZIBAwZw4MABqlevjlwuR0dHh/DwcAApr0FTLP/TXL58mbZt2z43vCAmJua5Hi/V2AICAti+fTu2tra4ubnh6OhIVlYWwcHBUvK5UqkkNjaWypUrc/HiRbX8EMHboXHjxhw9epThw4dz+PBhGjduLL0EFQoFMTExdOzYkZs3b5ab9PwmiY2NxcTERGO4ipWVFfXq1eP06dNSPsK1a9do1KiRWmGTzMxMiouLCQgIoKSkBGtra8lqeufOHbZu3Ur37t3LvLiOHj1K//79MTU1leRaV1eX5s2bSw2gX8QQ8DRBDg7PzBE699Rz//333zN9+nQaNGjAw4cPqVGjhhRiZmZmRpUqVZ5bAAMe38umTZuq5StpQtWD5kXw8vLi3LlzHD16FC8vL2rUqEH16tU5ffo0mzdvxszMjAoVKhAaGkrFihW5fPmyxrxFwV9L7dq1WbBgAW3atEGpVBIcHEx2djYBAQEUFBSQkpJC3bp1OXfuHCNHjvzLx1NQUEBMTIxGI6m+vj5dunRhy5Yt/Pjjj8DjZ7dixYqSN0JfX5+KFSsSHR1NcnIyYWFhKJVKqXDBw4cP2bdvH/Xq1StTdMXf358OHTrg6uoqzRNaWlo0a9aMkpIS9u7dS//+/V/6OyU3bEil339HrsHjWyqXE/2UF3n37t307dtXKlzUtm1bNm/ezKVLl7CwsKBFixaSEvgsg0teXh5+fn6cO3fumePT1E+oPKpUqUJMTAynTp3Cw8ODatWqMWDAAAICAti7dy+GhoY4OzsTGhqKmZkZgYGBNGnS5IXP/2/hl19+YdiwYQwfPhyAhQsXcuzYMZYtW6YxR3P58uU4OTmxcOFCAKpVq8bVq1eZN2+epAipPG/Ac6t/vgmGDh1KVFQU3377Lfb29m+k+MVLKUIqS70KTVZJTS+l8pIiU1NTy2x7ujEloLE6l6aXo6YbolocV65cmWXLlmFtbY2npydjxoyhQYMGtG/fnt9//x1ra2v27NnDl19+KeXmgOaERU0Lbk1hJYcPHy6zTZW4GRMTQ79+/bC1tSUpKanMcdWrV+fPP/+U4vrz8vLo16+f2gJrw4YNmJmZoaWlhZ+fn+Q2h8dx9e7u7uzbt4/x48dLn7l9+za1a9eWFLCnLZ3vvfcehYWFZXosBAcHlxmjJsqzuv/000/S/yckJDBp0iQ2bdpEv3792LlzJ3379pUSGeVyOUFBQTx48AB4bPU3MjLC3NxcsnypijLExcXRuXNnXFxcmDNnjlRWXPW7rV27lvz8fEaMGEG3bt2k8DpNiZZPJlWr4r1zcnIICAigqKgIc3NzatWqxaeffsq2bdu4d+8ev/766wtbrd5VXlWuQbNsv025NjAwIDc3l+PHj9OyZUs+++wzqlWrhp+fH0FBQSQmJrJ792769++vtvj+q+Q6KCiIVq1a4eDgoFGu69Wrx+HDhyXPoSqe/cnSz3v37sXLy4vZs2czbNgw9u/fL8l1vXr18PT0ZMGCBZIXKSkpidTUVMzMzKRCAU9bya2trTl69Ciff/652vbyips8ec8vOThQZ+NGbFJT0XrC+qaQydCqXp3eFy7Q28SEnJwcZs2axcyZM+nUqRPnzp3Dx8eHtm3bYmlpibGxMVeuXOHGjRtcvXoVS0tLnJ2d8fDwkJ6FRYsWAY+9xR06dCArK4uDBw+ir69PaWmp1DDz6NGjXL9+nWHDhtG3b18pB0JT8vaTXtoqVapIDWNv3rwpNYquV68eU6ZMYceOHQQGBrJ48WLGjh37zLyqd50XkWt48Xf225Br+H85dHNzY8OGDXTp0oUffvgBe3t7OnXqRFJSEjExMZw8eZL69eur5cv8VXJ9584dfH19pX8/LdvVqlUjKytLKnpQUFCAhYWFWt+i+/fv4+Xlxbhx4/jyyy/V+lipPEXff/+9FMmRl5eHQqEgISFBmh9iYmLUruvm5sbGjRs1ejY0WcafjBAJGzIEyxs3MIqOVlOGSuVy5NWqUX3vXqqbmFBSUsKKFSsYM2YM9erVo6CgAC8vLzp27Ci16AgKCuLYsWPs37+fefPm4eHhgbe3N9WrVwfUeywOHTqUCxcusH79emm+ys3NRaFQcPfuXdavX8+HH37I4MGDpfWOptC4J2XT3t6e/v378+jRI65cucKBAwfQ19enVq1abN26lQMHDnD06FEmTJjAd99999y+Y2+Lt+kRKioqIigoqIyy4ufnx/nz5zV+5sKFC/j5+alta9++PWvWrJF6Sr5tzp49S2Bg4HPDvV+Gd84jpLL+3Lx5E6VSSY0aNWjTps1rv5C0tbUZNmwYu3bt4vbt2zRu3JjY2FgWLlyIoaEhPj4+UoWaadOm/eU/sFwuf2bOgq6urtoE7uzszMWLF6WJITMzE7lcztq1a+nYsSOnTp2SJh0VlSpVkkLEVBN/WlpauWWq4XFJ3rNnz77GN1NH+b/mi9OnT5dCWnbt2oWuri59+/bFxMQEpVKJo6MjhYWFuLq6Ym1tTa1atThx4gTh4eGkpqaSnp5OTk4OJiYmapN5Tk4O2tra3L59m0GDBpGTk6OxStSZM2cwMDCgc+fO9O/fH4VC8dwwNl1dXRo3bkyDBg2Ii4vj3r17BAQEMG7cOKkHhODFefToEZcuXaKwsBA3Nzc6d+788iEdGhgwYAC///4758+fx8fHh5ycHH777Td0dHRwdXVl4MCBHD9+HF9f37/ca6dSxMtDJfOFhYXo6enh7OzM1atXpf1KpZL4+Hj27NlDx44dCQ8PVzPMwOPkXw8PD+7fvy9VV0pLS3tm+JaVlVW5PT+eR5GeHss/+ID2gYF4hoYiLy2lVC5nn6Mj0d26kfPdd2RnZ/P777+TmppKhw4daNiwIUeOHMHFxYWMjAwqV66MnZ0dtWvXJjAwkHPnzmFoaEhYWBj37t2jVq1aWFtbS/2CVIaKtLQ0PvjgA6nZ7NOMHz+eTz/9lFatWtG/f38KCgo0Ls6fREdHh2bNmtG0aVNiYmK4ffs2p06dolmzZqxcufKV7tF/maSkJM6dO0dWVhb29vYvlM/5IrRp04Y///yTOXPmULlyZfT09NiwYQMKhQInJyfatGlDWFgYN2/elKoT/lU8731dWlqKrq4usbGxODo64uDgwP79+9WOuXnzJjY2Nvj6+pKenl4mGkRbW5t27drx559/Svm+hYWFz4zO0NLSeuVwbIWhIZcWLMBx+XIqXruGXKGgVEuLC56eXG3dmswffiAnJ4c///yT4OBgWrZsSd++fZk8eTKtW7cmMTFRkmsfHx/q1avHzp07sba2JiIiQorUsLKyUpPLgoICSktLGTduHEqlUqPyOnPmTKZNm0a9evXo378/2dnZz41Skcvl1K1blzp16pCcnExwcDBXrlxhwYIF7N69m7lz577SfforeVOK0NNz+9NGEHjcD0qhUJRZ/1WoUIGEhASN509ISNB4fElJCSkpKWUqdL4NKlWq9MaLRLy2IqRQKLh8+TJhYWHo6enh4eHxzIX2s8jKymLNmjVUqVKF5s2bI5PJuHr1Kl999RWTJk3SWPnkZVApPMbGxri5uREfH0/VqlWpXbs2lSpV4tq1a2RnZ3P69OkyWvCbpn79+gQGBpYp2akiKCgIT09Pbt26Rc2aNWnevDmrVq2SmjD++uuvDBo0iE2bNqGtrc39+/c1Jv45OjqSkpIiKULm5uYkJyeXO66EhISXjocvKCggODiYqKgoZDIZ5ubm1K1bF2NjY3bv3k10dDT29vaYm5tjZGTEsGHD+Pbbb2nYsKFUeW7dunXUqVOH3NxcwsPDyc3NJT8/H6VSiZGRETKZjMLCQgoLC0lJSeGjjz5i7dq1eHh4EBUVxe+//869e/ekMsGmpqaYmZlhampKtWrVSEhIYPfu3ezYsUPydrm5uZV5VvPz87l+/To6OjpqiZWVKlWiYsWKnDx5kjFjxtCiRYt/dSicUqnk7t27XLt2DZlMhouLyyuFVcFj6/7q1asxNjamWbNmGBoaEhwczOTJkxk9erRUMv5VUYWJJCYm4u3tzdWrV6lUqRK+vr4YGxsTGRlJWloau3bt4uOPP36taz0PX19f1q9fX27s+blz52jatCnHjh2jW7duVK1alW3btpGYmEiFChU4dOgQjRs3Jjw8nAYNGrB06VKNiacuLi4kJCRIipCZmdkz5To9Pf2lF6clJSWEhIRw//59lEol+wwNqduzJxUdHTlw8CC3b9/GKjERKysrjI2Nad26Nd9//z1jxoyRqlju2LEDX19ftLW1CQkJkfIAZDIZtra2mJiYkJCQwKVLl4DHCc0PHjzAxMSEW7ducebMGc6fP4+JiYmabJuamkrVPvft28fOnTsZMWIESqUSHx+fMn2ASkpKWL16NUqlEj8/P2rWrImOjg6VKlWiUqVKGBsb8+OPP9KzZ8+/fFH9dxMVFcW5c+coLi6mevXq2NnZvZKhUalUsn37dpKTk2ndujVWVlY8evSImTNn0q1bt2cmYL8IMpmMpk2bSu0OQkJCsLS0xMfHB2tra/Lz8wkPDyc8PPwv/82qVKnCxo0byw37Uo1x7969jBs3DlNTU/T19bl+/Tp16tQhNDSUkpIS0tLScHJy4sCBA2otPFS4urqqJf3r6emV298PHq+/XrYIjFKp5PLly5w8eZLCwkJKS0tpMmgQdWrX5vdDh9i3bx+GN29SoUIFqZrbunXr2LFjhzR/Hj58mOTkZCwtLblz5w5ZWVmkpKRIrSMqVapEcnKyVPF2x44dJCUlYWNjw8GDB7l16xaHDx9WK+2vel9XqlQJMzMzDh06xI4dO5gyZYpkJO3evXuZ+79//37i4uJo1qwZvr6+GBgYYGtri62tLXZ2duzdu5ddu3b95bnfr8KbUoSeDjWePn06M2bM0PiZp+/f80IZNR2vafvbYuHChUyePJkVK1Y8s2Liy/BailBERARLly6lQYMGNGrUiJycHA4dOoSWlhaDBw9+aUvFunXrGDRokNqPWrFiRYqKipg3bx4///zza9/8mJgYKbG6YcOGUiiXq6srNWvW5NKlS6xbt06ti/1fgY+PD/v27aN+/fplChpcuXIFU1NTBg8ezNy5c0lNTaVp06ZMmjSJbt26SbHCkydPZtGiRSxcuJChQ4dqvDepqalqYQDVq1dn6dKlNGvWrMz3UyqVUrO0F0XVe6NOnTp0794dfX19EhMTOXXqFAYGBkRHR9O7d2927typNr68vDxJCbKwsCAjI4PQ0FDi4+NRKpWYm5vTqFEjdHV1OX36dJnJQlU0Ah5beHv16qU+sP9Vu1Hh5ubGpEmTmDRpEitXrmTUqFGEh4cjl8uxsLAgNTWVtLQ06fji4mKCg4MJDg6mSpUqODs7U6FCBRo0aMCuXbvYsWPHM0v+/pNR9d9xc3OjUaNGKJVK/vjjDw4dOsSwYcNeuu/Bzp07adSokVoZXHt7e7p27SpN2K+bkxYXF0flypWJj4/H1taW1q1bS/tcXV1p164d48ePZ8CAAWo5c28aW1tbdHV1uXjxYhnF8dGjRzx48IApU6bw22+/sXfvXtq3b8/w4cPp168fderUISwsjF27djF69GipvLym+52SkqLWH8XW1pbMzExycnI0KjzHjh1TC9N5HkVFRezbt08q+a+jo0N2djaBgYFcvXpVKkXu7+9fZh4JDQ0FHhueSkpKCAsLIy0tjYKCAmxsbPDx8aF69eqcOHGijCXzyURrmUxGq1at1EuePyXXAKNGjWLUqFHcunWLWrVqERQUhLGxMVWrViUuLk7KA5XL5SgUCo4fP87x48epWrUqHh4eODs706RJE0JCQli2bBnLly9/4fv0T6KoqIiFCxeip6dHq1atpObdmzdvlprTvgwBAQHo6+szbtw4aZudnR0dO3bkxx9/xMHB4YVyMp+Fqrx8cXExWVlZjB49WlLaXF1dadOmDaNHj+bhw4evfa1noaOjQ/369TUuqNPT0/H392fatGkcPXqU5cuX06dPHz766CO+/PJLateuzdWrV9m6dSvbtm1jz549+Pr6aizykJKSotZTSEtLC2tra6KiojQms9+8efOlQoRKS0tZuHAhtra2jB07FjMzM6niWkBAgBQtc/To0TLzjqoUtpaWFgYGBoSGhlJYWEhmZibW1tZUrlyZHj16cPDgQSIjI6UCLwB9+vRRm+Nr1qypXvJcg1z379+f/v37k5mZibm5OREREVy8eJHq1auTl5fH1atXKSoqIjMzE3icRx0YGIiLiwtVq1bF1dUVT09PGjVqxKJFi/7VilB0dLTaOk9TBVVra2u0tLTKeH+SkpLKlX07OzuNx2tra5cbavtX069fP/Ly8qhcubJUyfdJnlzHvSivrAjl5eUxf/58nJycuHnzJtevX8fZ2Znu3bvz4MED9uzZ81IPXnh4OBUqVNCYROvo6IiXlxfXr1/X2L39ZdDX15canmnKZzE0NMTR0ZHr16//pf1g5HI5kyZNYvHixRgaGlKrVi2Ki4u5dOkS+fn5NGrUiLCwML788kv+/PNPZs+eLSWGxcfHU1JSQrdu3XBwcKBixYoaJ8ns7GyysrLUPBc6Ojq0bNmSDRs20KdPH2xtbVEqleTl5bFnzx6qVKmiMca7PE6dOkX79u2lxWVkZCRHjhwhIyMDeJzD4e7uXkZJMzQ0ZMyYMYSFhdGxY0cOHTrEgwcP6NKli1Qa9eTJk2qfcXFxQVtbGx0dHTp37kx+fr4U6xsfH88f+/dj+vvvVLt5E3ceh7bRtSv8+CPx/ysTbmdnx/Dhw5k3bx6JiYlSHpK+vj42NjZYWFjg6elJXFwcUVFRAISFhUlKm4GBQZmGvP8mlEolP/30E/b29jx8+JCIiAgsLCxo1KgRCoWCdevWvVC1LxW5ubmkpqaW6QUCj/tJ9ezZk+PHj792GVOV5TQ8PFytqaoKmUyGk5MTJ0+eLKs0v2HGjBnD0qVLpXA8VfnsuLg4mjZtSlBQEKNGjSIoKIjFixdTWlqKhYUFUVFRlJSU0KdPHywsLLCwsNA43ykUCq5du1amklbXrl1Zt24d/fv3l+S6uLiY06dPk5aW9lIVklT9UZydnYHHC7SjR49KOQoymYyaNWtqNBaNGDFC8tBcuHCBEydO0LZtWxo0aMCNGzfYt2+fWglrPz8/7OzsMDMz4/PPP1cLg8nMzOTo3r2Ubt+O5+3bVAWM9PQkuc5QKMjIyMDFxYWaNWvSq1cvbt26RWBgIAEBARgaGkqGjA4dOvDo0SP8/f1RKpXcv3+f+/fvA4+fxZycnBcqR/xPZcmSJWhpaZGUlMSuXbvQ19enY8eOeHt7s3Llypcq56wqyKOprLm2tjYfffQRO3fuLJOT9rLo6emRl5fH2bNn6d+/fxnPlZaWFg4ODhw6dIhPP/30ta71PHr27MmWLVuYMWMGderUwcjIiNDQUIKDg6lTpw7Xrl2TwlnXrVtHQUGBtIA3MDBg1KhRmJubU1JSUkZ2VRw/frxMv6r27duzceNGOnfuLBlXFAoFISEhXL58+Zm9ep7m2LFjVK5cWTKKpKens3btWq5cuSId07hxY43Gl4EDBxIZGcnUqVMJCwtjxYoV+Pj40Lx5cxITE1m2bBnz58+Xjm/btq1UEGr8+PHk5eWphcf5HzxIysqVeAYHU00mw/wJuc7X1iYyMpKqVatiZmbGoEGDuHHjBkFBQVy8eBFdXV3c3Nzw8PDAwcGB9PR0Dh06RGFhIY8ePZJy0gwMDCgpKXmpe/Q2eVOKkMqr9ix0dXXx8fGRemqq8Pf3L9dI1qhRI37//Xe1bar32t+RHwRIhRveJC+lCCUnJ0sLz02bNlFcXEzr1q2lOMHw8HDWr1/Pe++9x4ULFygsLMTAwEBjR2pAzaV79+5dvL29NcbXqypzBQYGSpqrphewpqTIp8OXmjdvzrx582jfvr1ajK7KqnD8+HH8/Py4ePEiVapU0Th2bQ1lJzUl32t6UJ4M79PR0eHzzz/n7t27hIaGEhMTQ2pqKvXq1aN9+/YEBwezatUqvvvuO5YuXcrNmzfLnK+4uJhJkyaRlJREixYtJIVj+/bt7N69m/bt20uLfVXojLGxMe7u7vz6669kZmZS+r9ESTMzM1q3bq0xR0iT+/2jjz4iPz+f3377jfz8fL744gu2bt1K8+bNmThxIgkJCURFRUmVdJ6mqKiIlStX4uLiolZ2MT4+vsxnWrRowfHjx9HV1eXXX3+VrGYnTpygoKCArl27qk0oWoAzYLdkCVm//sqd/+0zMjLC0tKSiIgItLS0WLRoEWfOnEGhUHD69Gmio6MxMjKiSpUquLm5cebMGemcv/zyC+Hh4bi5uakl6P7TeVKuz507R2xsLJ07d5YU2ISEBPbt24evry/m5ubExMRIircm+XjyWQkLC8PT07Ncua5UqRIHDhygYcOGwKvLtY+PD/v376d69epSp3AVmZmZHD16lNatW/Pnn3/Spk2bv1Su4bEy8OjRI27dukVKSgqRkZF4e3vTuXNnoqOjWbVqFR9++KHkfdUk23PmzOH69ev0799fui/79u3jwIEDeHt7Sy/7J0PiGjZsyObNm0lKSpJK0xoaGtK4cWPOnj1bZiGpSa4LCwuxtbVly5YtlJaWMnfuXH755RdcXFzYunUrpqamrFmzptwXkqGhITNmzKBr165q/SYKCgrKJCk7ODiwadMmbG1tOXbsGNbW1hQUFLBs2TLatGlDrVq1yuQGVQQclixBtnw5V/5XVrtixYrUr1+fzZs3Y2BgwJ9//smUKVNwcnLixIkT3Lx5E11dXdzd3Wnfvj0nTpyQvvvUqVMpLi6mqKjorVQWfFs8KdcxMTGcP3+eDz/8kFq1aiGXy8nMzOTIkSMYGhrSqFEjgoKCJGX5eXKdnp4uyeDTsh0bG4tcLic2NpbY2FjgxeUa1GXb3NxcyhtzdHRUOy4zM5Pbt29TtWpVwsLCyMzM/MvlumfPnmRnZ3P27FnCw8O5e/cuLi4u2NvbU61aNbZu3Ur9+vU5c+YMMplMo1zv3buX33//nYkTJ0qKwcGDB6U81pSUFFJSUtQs8a1ateLkyZOsXbuWkpISlEolurq6eHl5cfXqVY1j12SxDwkJ4eDBg+jp6UlRDVpaWixbtoxq1arxzTff8PPPP5f5HDyW1QEDBvD+++8DSOGvSqUSY2PjMrm58+bNo1atWoSEhODk5ERSUhLjx49n7ty5uDg7k/hUwQlboOKSJRguX87l/7WssLa2xtfXl82bN2NlZUVcXBwdOnSgfv36nDx5kiNHjiCXy3F1daVVq1YEBARI88X7778vhc4/6bV8l3jb5bMnTpzI4MGD8fX1pVGjRqxcuZKoqChpnv7666+JjY1l48aNAIwePZpff/2ViRMnSoatNWvWsG3bNumcRUVFUtGdoqIiYmNjuXHjhrTOfBNMnDiR77//HiMjI1xdXWncuLFGuX5VXulM+fn53Lx5k7lz56olprq5ufHJJ5+waNEi6tSpw4MHD/D29n6hc6rCFspD1Ufi6tWrFBQUSLHdL4uqelFwcDD16tVT81QEBgaip6eHjY3NW+3Y6+TkRF5eHqGhoXz99ddoa2vTo0cPevTowfjx4+nfv7+apeVJdHR0mD17NqtWrWLbtm04OjqSmZlJYmIiHTt2LDeZraCgAENDQwYOHIiRkRFaWloUFhZy4sQJioqKXihHKjg4mAYNGlBQUECPHj0IDAxkyZIljBkzBrlcTl5e3jO7sWdkZGj0PpmYmPDRRx9x8eJF7O3tWbJkCdWqVQMev4yfrHoSFxeHlZUVSqWSK4ATcA8IAcKBBKBIqaSJkRG/m5mRkZFBdHQ01apV4+uvv+bUqVNs3rwZExMTySN38eJFwsLCCA0NRV9fX3ppOjg4vJU6+X8XSqWSI0eO8NFHH6mVDLazs2PMmDHMnz+fVq1acefOHY0eSE3IZLJnxrArFApkMhm3bt2SQiw8PDxeOgRWS0uLmjVrcvPmTXr27Km24FdZ/v38/MptpPtXYG1tTc2aNVm7di1ffPEFRkZGUoXBMWPGMHLkSMzNzcv1QkyaNEmKy3dwcKCwsJCHDx/SuHHjcvOqFAoFRUVFfPjhh1haWqKtrU1JSQlXrlxh06ZNfPDBB8+9t+np6VSvXh2lUslnn33GkiVL+OKLL9SqLT0rfKw8udbV1WXy5MmcPn2a7OxsVqxYoZbL891330myFh4eLnl918tk9FAqJbkO47FcZxYX08LNjbjGjbl+/Tr79u3DxcWFzz77jISEBH777Tdq1apFaWkpt27d4uzZs4SGhhIaGoqRkZFk/AJeKhz4n8i2bdto166dWsNnMzMz3n//fTZv3oybmxuXLl16Ya/h84oHwOP5JDQ0lMTERExMTKhevforLV66du3KwoULyxTCSExM5MiRI4wdO1Yy9r0NTExMaNCgAb/88gsjRoyQnvXBgwfz4YcfMm/ePObNm8eXX36p8fO9e/fm5MmTfPbZZ5KM3rlzh9q1a2v0nKvIyMiga9eu2NvbS/cxLCyMvXv30qtXrxey0Ovq6qKnp8eKFSsYPXo0ffr04bfffpMUPisrK0pKSjT+ThkZGRpDqGQyGfPmzWP//v3cvHmTZcuW0b17d2kOXrx4sVRlLzQ0FG1tbQozM/kc+A4I5fE7+z4QByQXFzPC2Zm81q25ffs2J0+exNnZmZEjR+Lq6sqXX37J4MGDUSqVPHz4kDNnznD//n1CQ0OxsLCQFKGcnJxy82TeFd62ItSvXz9SU1P57rvviI+Pp0aNGhw5ckTy/MfHx0uRMIDU8HvChAn89ttvODg4sHjxYrUIjri4OLV5RfX8t2jRQs2Q/DosWbKEr776CiMjI1q1aiWFwL8pXkkRunTpElZWVhqtPIaGhtSoUYO4uLgyFhxVIYJjx44xceJENUWmRo0anDx5krp162p8Ue/cuZPi4mKsra0xNjbmzz//JCkpicGDB7900vqAAQNYvnw5v/zyC1WqVEEmkxEaGoq7uzsDBw7k1KlT0sL7bXHs2DGGDRtWZgIyMTFh/vz5LFiwgDFjxmj8rJ6eHp988gnFxcWkp6djZGREQEBAuddShdb06tWrTFxpp06d2Lt3b7k9jp7EzMyM8PBw+vbty59//snhw4fVcjOSkpLU4p2fxsvLi4sXL9KyZUu17cbGxqxZs4YxY8bwySefqP0W2traHDhwgJ9//pmqVasyaNAgqaxrGODLY8tS86euFVNUxDlLSywtLcnLy8Pb25uPPvoIR0dHFi1aJPWP6tOnj9ri7PPPP2fQoEEYGBi8dlL/u86DBw+wsLDQ2LtJLpdLJamfXuQWFhZy/vx59uzZw+DBg9UmRXd3d/z9/enWrZtGud61axdxcXHExMRgbW3N3bt3OXDgAO+9995Lx/x36tSJoKAg5s2bR+XKlTEwMODhw4eYmpoyevRowsLCpAn/beHv70/v3r3LhJpoaWmxePFievfuXa4iJJPJ6N+/P3379iUtLQ0dHZ3n9t44d+4cnTp1UntJaGtr06hRI86dO0dISEiZ6pJPY2BgQHh4OJMnT2bJkiUsX75cLdywuLhY8iJronr16ly8eLFM02q5XM6sWbNYtmwZVlZWZQoarF69mq+//hp4XDVKX18fey0t7isUmAEN/vf3JBkZGaypXZvatWuTkpJCeno606dPx8LCAnNzc06cOIGRkRGdO3dWC+lcv349+vr61K5d+6005Pw7yc7OlsIvNdG5c2d27NhR5t1TWlpKUFAQe/fupW7dumrhM6ampmRmZlJYWIiurm4Z2T5//jwxMTHcunULJycn4uLi+OOPP2jVqlWZ5+J5eHp6YmVlxZIlS3BwcMDS0pLo6GgUCgUjRoxAoVBozIn4K7l8+TKNGjXSqPB//vnntG/f/pkhxG3atJE806WlpVy8ePGZBorLly/TpEmTMgYoDw8PSkpKuH79OvXr13/uuAsLC9m4cSMff/wx48aNY9GiRWrXzc/PLzc3ulq1alIfmqf5+OOP8fb25tixY2phV/C4r1hOTg5RUVGsXr0auVxOfZmM+4AhUPt/f0+SkZ3NGi8vvLy86NKlCyUlJSxZsgQDAwO6du1KQkICRkZGNGnSROqJA4+LTB04cIAhQ4b8q4sZvQ5jxowpdy25fv36MttatGjBtWvXyj2fi4vLX+44cHFxYfHixfj5+aFUKrlw4UK581nz5k+v/p7PKylCqupM165d09jR28XFhXPnzkku1NLSUnbt2qVWpz8wMJABAwYAj/ONTpw4wdWrVwkMDMTV1ZUmTZpQv359LCws2L59O+np6fz888+SlcHX15fk5GTWrFnDp59++tySqU9SoUIFHBwcaNKkiVS+t0OHDujq6pKWlkZQUNBrxza/DKrmh+VVdfL09CQ6Ovq559HR0XkhLTkiIgJ3d3eNE54qQfnChQvPjZdv2bIlI0eOJC4ujoMHD6opQQBr1qyRfmNNDB8+nI8//lhj4YbIyEhiYmI0LtpULxEV1lZWuGlpcV6h4P1yrqWjVEoJmYaGhuzZs4fZs2fz3XffsWTJEvLy8sjJyUGpVDJixAi1cbi4uDxXKfw3kJCQQI0aNQgKCtJYjcXZ2VmyLKs4deqU2uTp7+8vKUKlpaX8/vvvxMbGMmTIEGxtbWnSpAmNGjWiQoUKXL58mYsXLzJ79mxJUfD19SUvL4+lS5cyePDgl0rg1tHRoV69epiamuLi4kJhYSHN/4+9846K6nq//meG3hERBFERCyg2xIYVO2Kv2Hs39iQaoybRYDSJscSu2HtX7F0RsCCCBURQRKT33mfeP3zn/hxnBgHRlG/2Wqyl987cNvc55zxt73btMDAwIC8vj7NnzzJu3LiyPZwyIioqSiXbnp6enkodsfchFotLNKmnpqaip6enUoS4Y8eOHD169KOOkJGREU+ePGHPnj2sWbNGoefq5MmTAr2vMvTu3ZuuXbsyZswYBRKMzMxMjhw5IseMJUPdunXlKYelUppraOBTTKWAWlGRYNempqb88ssvdO7cmYkTJ7Jp0yby8vJIT09nxowZrFu3TvheWFgYPXr0EFj3/s1ITEykTp06BAYGKjif8C5zGRUVRa9evYRtjx8/5vfffxf+HxcXR48ePQRn6caNG6SkpDBp0iQMDAxo2bIlrVu3pnr16rx9+5Z9+/bxzTffCE6mRCKhS5cueHh4oKOjQ/369Ut1D66uroSEhNCuXTsyMzNp2bIlJiYmSCQSduzYIUee8yXw6NEjuXnifYhEIkGb5WN2K5tXinOCJBIJycnJKnt369aty+HDh0vkCFWsWJGxY8cyfvx41qxZI3deWZmfqmuxtbUlLi6O8PBwheCBrIT2fRuTwdTUVF7f6//b9ebcXIpAqVDz+3atr6/PvHnz6NWrFwMGDOD48eNIJBLS09Np27atXNYhLCwMKyurz0qcUZ740hmhfyp+++03pkyZwi+//IJIJFJwtmUQiUTFVpapQpkcIRml4pUrV7Czs1NgYbp//z7m5ubo6OiQn5/Prl27hL6Thg0b0rNnT2rVqiVEFRMTE7l9+zZ169YlJyeH1NRU9u3bx549e4RmNzc3N168eEFOTg45OTloaWlRo0YN2rdvj4+Pj8Ii/GMYMWIEO3bswNTUlObNmxMfH8/jx495+vQpY8eOLXP9YUFBAY8ePSIsLAwNDQ0aNmxIvXr1iqUnlUgkH01rlyeDXWZmZrGZGjMzs2IjADKkpqYSExNDw4YN5RwTeFfzHBISwtKlS1V+38rKiqFDhzJ06FB++OEH7O3tKSoq4ty5c6xZs4YdO3aU7IZEIvrq6bEjPZ2fAWWcYAUikQIrzfz587GwsCArK4tJkyahrq4u95xfvXqFpqamnBMUFxfHV199RYUKFdi8efM/WnDxQ+jr6wtNuMpYih4/foxUKqVq1apIJBLOnj3LsWPHgHeT3ciRI+UW2QUFBVy5cgVLS0sqV65MfHw8p0+f5tixY2hra1NYWEi3bt2IjIwkLy+P7OxsxGIx1atXx83NjUuXLsmxiJUEPXr04MCBA4SFhdGmTRvS09N59OgRPj4+9O/fX6F/qKSQSCQEBwfz9OlTpFIptWvXxtHR8aN2+7H3QzZGlgc+ZtfGxsZKtXg+RFFREYmJiZibmzNmzBi5fY8ePWLr1q0KGinvQ0NDg+XLlzNw4EAWLVokLL59fHxYtmwZP//8c8n0o/6/XY/NzeUpoGzpLBGLFex64MCB1KxZk23btrFx40bq1asnZ9dZWVncvXuXZcuWCduys7NZsGCBwNpXHjo4fxfo6+uTk5ODoaEh/v7+CgQcb9++JS0tjaZNm74rMX7wgE2bNgn7p0yZQoMGDYQ5USqVcv36dfLz82nYsCERERHcuHGDCxcuoKmpiVQqpVGjRmRnZ/PkyROys7MpLCykWrVqDB8+nK1bt5baEWrSpAlJSUkcP36c9u3bk5ubi5+fn0DqUdZsvVQqJSIigocPH5Kfn4+VlRUtW7ZUGUyQoaioqFjbL0+7zs/PL5apUywWl3h9kJycjJaWFgsWLJAbm6KiopgxYwbbt28v9vvr1q1jzJgxzJo1S3CMg4OD+emnnxg4cGDJMu4iEX319fk5I4NjgDIBEWV23bx5c548ecLQoUM5d+4cw4YNIzEx8f++I5Gwa9cuuf6VoqIi/vjjD44fP86RI0dKXNL9pSDr4/yU7/8vQNYqkpmZiaGhISEhIX9daZyGhgYaGhq0atWKM2fOMGTIEDZt2kS9evWwtbUlOzub+/fv8+LFC77//nvOnTvHxYsXycrKwszMTC4FfPr0aU6fPk1gYKDA3DN+/HjmzZsn1L0+f/6c6OhoHj9+zP79+5V6v1WqVKGoqIhatWrRrFkzOnfuLOfEeHh4KHxHltqdNm0aDx48EBoVa9asyeTJkxGLxUIjp7LoiLJtampqxMTEcOjQIZo1a0avXr3Iy8vj0aNHXL16ldGjR6Ovr69U1FBGTZuXlycMrgcOHBD2p6WlER8fr5Ku8P2aThmURfRlkWd9fX2Sk5OxtrZWOlinp6djZmYml2VT9tLJJsNJkybRvXt3GjZsKKjHN2jQgL179360H2HYsGE0bNiQDRs2EBkZiVQqpUOHDhw/frxUWZjh3bvzx+HD7AE+bIssAu5UqCDXqP3zzz+/21dUxOHDh7lx4wZ6enocO3ZMaPg7cuQIFy9eFL4TGhpK27ZtycrKIisri6ioKIEZcfTo0SW+1r8bZHbt4ODAunXrGDt2LHv37sXc3JzGjRsjkUgICAggMDCQCRMm4OXlxdmzZ4mJiaFKlSpER0fj6+tLjRo1uHbtGkePHsXf359nz55RVFREx44d2bVrF3FxcRw7doyAgADS09O5evUqly9fVqrobmJigkgkIiQkBEdHR7p16ya3OC3OrsePH09oaCiHDx8mNTWVgoICJk6cKCdSXBq7zsjIYNeuXdSpU4euXbsiEokICgoSKFktLCxUipXq6ekRFxcn1OC/b9cSiYQ7d+5w8+ZNhfJQKJtdp6SkIJVKldq1bDH8vh0o02Z7/fo1kZGRrF69mmHDhmFlZYWFhQVPnz7FwMCAw4cPf9RRcHJywsPDg82bNwvN140aNWLbtm2l6u3sP3AgU7dsYR3wodRpkUhE2AfMnzLHHN49vxEjRiCRSPDy8mL//v0CS9bq1auF3zs1NRVnZ2eCgoIQi8W0adOGmTNnoqam9q+wa0tLS5KTkxk9ejSnTp3C39+fZs2aoaWlxbNnz/Dz86NHjx4EBQVx5swZQkNDqVGjBuHh4Zw6dYrevXvj5+fH/v378fPz4/Hjx2RkZNCkSRMePnxIZmYmx48f5/79+6SlpXHx4kWeP38uJxQsgyxjeffuXVq3bk3Xrl0V5hZVtj127Fji4uI4cOAA0dHRxMXFMWLECHR1dctk14WFhezZswcjIyPatGmDrq4uYWFhbN68mc6dO1O3bl2Vdl2rVi0F6ur3bXvXrl1MmDBBaY90ae1aW1tbCBIpc3jq1avHuXPnFGi0P+wPlkqlfPvtt8yfP58FCxagpaVFrVq1ePXqFZmZmWzcuPGjZaLVqlXjxIkT7Ny5k759+yISiahSpQrff/99ifvBARwGDKDu+vWsQdERKhKJeGlvL/e7vW/X1tbWdOvWjaKiIp49e8b+/fvJzs7m0KFDDB06VAgGyRg4T58+jZ6eHq1atWLhwoXo6en9o+36fxn6+vrcuHGDGjVqfDRZsWLFCqZMmVJscFCGMqU9zMzMMDIy4unTp8ycOZPnz58TFBQkRNS7du3Kzz//TEpKCq1bt2bXrl389NNPXL9+nV69evHgwQPS09OxtrbG1NSUIUOGMGjQIKHconbt2syfPx94V0Ln4+PDlClTiI6OxtjYWBAP9PPz48GDB3h4eLB69WpSUlKoWbMmixcvZvjw4SXK6jRr1oxmzZrx559/luVRCCgsLOTQoUOMHz9e6LspKiqiS5cu1KtXj4MHDxabSm/VqhXnz59XoDGUSqUcO3asXFP/1tbWnDx5Up7H/73zXb16VSESrAwZGRmIRCImTJjAxIkTef78OTk5OUJTW0lRv359Nm7cWJpbkMOLFy8YeO8eZkCHD/YVAa+1tdlsZaX0u2pqagwePBhvb29EIhG3b9/m9evXVKxYkdGjRwsTQ2JiIq6urhgbG7Nw4ULu3r3LwYMHhf6DfwM0NDRo2bIlnp6eTJo0iaioKIKDg4F3/WMNGzbkxIkTvHjxgvr16zNu3DgMDQ358ccfmTNnDg8ePCAuLg5LS0vMzc3p3r07/fv3F0puzM3NBe2ltLQ0pk+fzrZt23j9+jUGBgYYGRmRnZ3Nw4cP8fPzY+PGjezevZtffvkFU1NTvvnmG6ZPn16id6t27dosWrQI4JNt+8CBA/Tr1w+r//8OFRUV0apVKxo0aMCOHTuK1ZPq3LkzJ06cYOLEiQrZocuXL+Po6FhuWUXZ88vKylJKpXr58uUS1U/LskadO3dm9uzZhIeHk5yczMyZM0uVUbOyshICDmVBUlISvQMCEAEfFkIUiUSkmJnhrYKGGN4FJ27evElKSgphYWH8+uuv6Orq0r9/f9q3bw+8i7YPGDCAiIgIlixZQmpqKqtXr2bHjh1KeyH+SXg/cNirVy/27NnD2LFjyczMJDAwkMLCQjQ0NARl+UOHDlG1alVmzpyJi4sLrq6ubN++nTlz5hAeHk7FihWFkvIePXoINPT6+vqMHj1aWFz26tWLkydP8vLlS7S1tTE2NkYqlRIQECDY9cWLF9m8eTM6OjpMmzaNb775pkRlsObm5gJhzafa9enTp2nSpIngQBQVFeHg4ED9+vXZtm2bICiqDG3bthWY1j7sT3r69CmGhoafrI0mg1gsxsTEhOjoaKUsXL6+vnJ9maqQl5dHUVER9vb2uLu7ExsbS1RUFBYWFnKaZB+DsbExc+bMKTNxUH5+PuPi43kOfFhIVyQSkWJujncxpbedOnXCxMSEgwcPEh8fz4oVK9DQ0KBz585Cv5BUKmXWrFl4enoyc+ZMzM3NcXd3Z82aNcydO7dM1/058F9pXOkhG7s/huXLlzN48OASOUKlmoG3bduGj4+PoLB87NgxZs2aRWBgIMnJyQQHB9OgQQM6d+4ssE5VqFCBWrVq4ebmhr6+PgYGBnTv3h0nJyeWLl3Kpk2b6NWrF5s3b2bfvn0K52zYsCF37tzByMiIunXrYmFhga6uLtWrV2fAgAH06NGDyZMnk5SUhJ+fHw0aNGDMmDHUrVuXPXv2CFSTL1684ObNm9y/f79Ypeay4tGjRzg6OipdgFSpUgUDAwNiYmJUfr9Vq1YUFhaybds2wsLCSEtL49mzZ6xZs4bq1asr1TwqK9TU1HB0dOTChQtyEa+cnBwuXLiAvb19ibIxBQUFSKVSzMzMaNKkCdu2bRP0Fb4UYmNjadWqFVJApK+Pl6Ymr0UiokQiXotEHDUzY3y9emQXUzqgrq5O+/bt6d27N1lZWcTExFBQUCBQjDo5OVGrVi3evHlD37590dTUpGvXrrRt25ajR4+yfPlyLl269I9NU//222/4+fmxc+dO4uLiuH37Nl999RXXrl0jNTWV4OBgDAwMGDp0qFDSoq6ujo2NDb1798bKykrQxnBwcBBEaydMmMC5c+dYuXKlwoBtaGhIXFwc6urq1K1bFysrKwwMDDA3N8fV1ZXJkyfTrl07oqKiePnyJQMGDGDRokXUqFGD3377TVisR0VFcevWLby9vYmLiyv3ZxMVFYWhoaHgBL0PAwMDHBwcCAgIUPn9GjVqUL9+fdasWcOTJ09IS0sjPDyc7du3k5CQUCJ2xtKgTZs2XLhwQa7vqLCwEB8fH3Jycj7aHyT7PEDr1q2pX78+ixYtwtbWtsxlhWVBYWEh7du3J/DpU0YMH45Rs2YkGxmRZmBAspER95o25cCMGRQU0xsq63ecOnUqRUVFhIeHk5OTI5DJdOnShWrVqnHjxg26d++Ovr4+DRo0wM3NDR8fHxYtWsS+ffsUaIH/KVi0aBEPHjxgz549PHnyhLdv3zJ37lwOHjxISkoKoaGhZGVlMXnyZOrWrSswhzZo0IA2bdrQuHFjMjIy6NixIw4ODkLgYv78+Tx9+pQFCxYoLbU0MjIiNjYWW1tbqlevjpGREcbGxjg7OzNnzhxq1KjBy5cvSUhI4JtvvmHbtm0CG5hsjkxOTsbLy4vbt29/FrvOzc0lNjZWqRiphoYG3bp1UyojIYOBgQF9+/ZlzZo13L17l9TUVKKjozly5AhXr15lxIgR5Xq9LVu2xMfHh/DwcGEslUgkBAUF4ePjU6JAqcyuJ0yYgK2tLRMmTBCc2y+JESNGsP/IEfZ7eNCkWTNS/r9dp/x/uz74EbsGcHBwYMGCBaipqREWFkZWVhY6Ojo8e/aMwYMHY21tzcaNG3FycsLMzAxLS0smTZrE69ev+e6771i9erUca+RfBZkj9Cl//0E5SvNsRNISfDo9PV2uD0gsFguLvrp16zJixAjEYjEVKlRAXV2dFy9esHv3btLS0pgyZQqrV68Wvuvj48P69evZs2ePXMZGIpEwZcoUBg4cqLA4mD17Nl27dlVo3s/Ly6Nfv35s2bJFrtzi0aNH/PTTT5w+fVooDzA3N8fExISCggJycnJo0KABEyZMwMXFBZFIpDK6pKzxSlmm6dixY3Tp0kWufO3978oWQaqE1GSIjY3F29ubjIwMTE1Nad++vbAAURXNVZZqV7bt/v37Cud6+vQpOTk5iEQixGIxTZs2VdoIraw0rmXLlpw6dYo3b94QEhLC3r17uXDhwkfvsTyRmppK586d8ff3R0NDA21t7Xcp9f/faKmqdrx3794K24yMjAgICCAqKgovLy8kEgmampqkp6cLUcL4+Hi+/fZbtLW1sbS0JCcnh5s3b9KxY0fEYjHbt2+nevXqgs2kpaV9VOjsr8KHdv2+ErhIJMLd3R2pVIqJiQmamppER0ezd+9ewsLCGDp0KB07dhTIB6Kjoxk9ejTHjh1T6BmU2f+HEUQPDw8SExOF7K8MUqmUKVOmMHToULmSsYiICJYvX86OHTuQSCRoa2tToUIFzM3NkUql5OXlUalSJSZNmsSgQYOEMlNltl1Su/b19cXIyEgue/r+d5OSkrh27dpHSRjS0tK4c+cOCQkJGBgY0KZNGznnSpltl9Wu09LSePz4MSkpKaipqQlR4MGDByuUCSkrjSsqKiIrK4uXL18SGRnJli1bcHd3V0kH/DkgkUgYPHgwx48fp1atWri4uLx7r95ToFcWrFHWo5Cbm0tAQACvX7/Gy8tLIJVISUmhatWq/PHHH1SpUoXx48djYGCAlpYWpqamnD59Wgjs/Prrr7Ro0eIfadeAQKMO71i8RCIRxsbGaGhokJ6ezokTJ/D19aVjx44MHz5ceJ8LCgpwcXFh+/btCmVTFy9e5MSJE2zdKl+06Ovry5YtW9ixY4dCtnPdunWIRCI5XZfk5GRWr17N2rVrycjIQFdXF319fSwtLQUBWFNTUyZMmMCIESOE5/4pdh0REcGLFy/k5rr3vyuVStmyZQtff/21wnffR25uLr6+voSHh6Orq0vz5s3l6P9LatfKyJA+tOvc3FwCAwOJjo4Wfs8aNWowbtw4pT13yqQzcnJyePr0KZGRkezfv5+uXbvKExl8ASxevBh3d3chG2dhYfFRu1bW25OXl8eLFy8ICQnBz8+P8PBwDA0NSU1NpUKFCixcuJCePXsybNgwDAwMyMzMxNbWllOnTmFpaUnVqlWZMmUKbm7vivO+pG3LznX8+PFPChxnZWUxYMCAv/V49FfBwMCAwMBAlWRF76NUpXE//fQTqamp2Nvbc/DgQQICApg5cyYikYiYmBguXrzI3bt3iY2NxcDAAE1NTbZs2cKBAwdYs2YNQ4cOZe3ataxZs0ZhcBKLxfz666+MGjVKwRFasWIFo0ePxsvLizFjxmBqaoqXlxfr16/nm2++Uag5d3Bw4NSpU9y+fZuBAwdiZmZGYmIimZmZQpPj6dOnOXHiBEePHmXgwIGleQxKoaamRkFBgcr9BQUFKhsaZToXd+/eJTc3F0tLS/r06VOuzWDKULlyZUxMTPDz8yM5ORmpVEpqaqqCXoMqGBgYMHLkSOD/NCOWLl1Kt27dSq0DU1YYGxtz7949Nm7cyMyZMykqKkJPT69M55exjjVr1gwTExOuXbtG//79GTduHE2bNhWOuXDhQsRisTCAmpqacuzYMb777jvGjx+vlBHr74yVK1fy5s0bGjduzJ07d9izZw+rVq1CT0+P5ORkbt++zf3794VSlwoVKnDixAnBCf7hhx/YsmUL33//vcICDN4FMrp06cJXX30l12A8btw45s+fL7AH1qhRgydPnrB27Vo6d+6s0DdTvXp1tmzZwnfffUerVq2oWLEiiYmJApWulpYWL1++5NatW4SEhPDTTz998rP5FLuW6VzIFt8mJiZ07tz5s9M1GxkZ0b59ex4+fCiIW2ZkZChdICuDmpqanE5Ebm4uq1atYurUqV+MREAsFnP06FFOnTrF6NGj2bVrF+PGjStTuZFIJMLBwQEHBwcaNWokvF9jx46lc+fOwu9XtWpVgoKChHI+KysrNm3axODBg1m4cCEHDhxQEIT9O2PNmjWEhIQIchYyZ9bMzIysrCwePnzIgwcPePbsGWpqalSqVAlfX1+8vb3x8vJi06ZNnD17lr59+yp9Z11cXNizZw9v376Vc+qdnJwICgqiX79+zJo1i8aNG/PmzRs2b96MpqYma9eulTuOiYkJy5YtY86cOfTr14/ExETS0tKIiopCIpFQVFREcnIy06dP5+rVq5w4ceKTn83H7Ppj2f2YmBhu3rxJXFycIFgsE6r9XNDW1qZVq1Y8efKEly9foqamRlZWVrGMch+iS5cuAuuntbU1c+fOZfHixV9UGmLZsmX06NGDKVOmsGvXLkaPHl3mrFSdOnWoU6cOnTp1YsGCBbRo0YJRo0bRt29fYQ3TvHlzjh49yi+//IKWlhZ2dnasXbsWc3Nzjh8/To0aNUrEuPc5IJVKP6mS5L+MUPmgVBmhDRs2UFhYyJEjR7h79y4TJkxgw4YNdOvWjWvXrqGrq0vDhg25e/cuZmZmDBo0CG9vbwICAjA2NsbX15c5c+Zw4cIFlefq3bs3J06cUHCUpFIpPj4+HDp0iMzMTBo1asTo0aOLLeFyd3enWbNmSstPCgsLqVy5MgYGBgQEBAhKugoPSMmCWhlbTFRUFEFBQQwaNEjY9n7qdevWrbi5uSk4bfn5+e+Ulq2tadGiBXp6erx584abN2/SsGFDnJychM+qMhhlg4iyco4PS/MePXrEkydP6NmzJ9WrV6egoAB/f39u377N+PHj5RZNWVlZCsf78DmEhISwfv16nJ2d0dXVJSkpCXV1dapVq0b16tUVFlHff/+90vspKxo3bszjx48xMzMTSjOVRbwBpcJ170fQNm7cyOjRoxXq1qOjozl9+jRpaWlMmzZNGGyDg4OFmtQRI0bQvn37f0zkeMOGDYI+07Vr13B0dMTb25uZM2fy559/oq6uTvPmzfH19UVXV5dBgwYRHR3N5cuXgXdUuitWrODChQsqHdCFCxcyePBgpaUowcHBApmCLMJZXEO9rKFbFcV9nTp1iIyM5MmTJ9SqVUtp5Likdi2VStm9ezezZ88Wtr1v12fOnMHOzo6mTZsqfG/jxo2IxWLatm1LxYoVSUhI4M6dO+jo6AiNxjIos+2y2nVERASXLl3C1dUVOzs7pFIpwcHBXLhwgQEDBshFV5XZNSDX95CUlMSyZcuoX78+VlZWJCcnU1hYSNWqVbGxscHY2FjuXt4XPC4PzJ8/n02bNlGhQgXGjRsnOC7KnJKP9ZkcPnyYpk2bygkGw7vn+scff2BhYUHbtm2FZ6ShocHw4cPp378/TZo0YcaMGf8ou9bW1ub69eucPXtWIPTZuXMn06dPp6ioiKZNm/LkyRMKCwvp3bs3GhoaHDlyBHg3Z3l7e7Ns2TKV9njw4EEKCwuFgNj7iIqKYufOnYSFhVGpUiVGjRpVbEP9y5cvcXd3V8kW2rNnT86dOydUHXyKXRsYGLB8+XK+//57wXl5364fPnxIenq6Qs8uvOu1CwgIoEOHDlhZWZGens7du3dJSEhgzJgxCpUuH0JZpkaZXX9YEpiamsqhQ4dwdnbG0dERdXV1Xr16xZkzZ2jVqpVCn5Ay234/wJmfn8/SpUsxNjbG0dGRxMREsrOzsbKywsbGBjMzMznHrrzFxHNzc6lVqxaZmZlMmzZNyIwoC8Iqc/TeX7p6e3tTUFCglD34l19+oUmTJoIjCe8kSTp16kSLFi0wNzfnwIEDf0lG6OjRox9lKCwO2dnZDBo06G89Hv1V+GwZoVOnTuHj44NIJMLZ2RlLS0tatmyJn58fe/fuZeDAgdy+fZtu3brh4ODAsWPHiIuLw8zMjJYtW7Jlyxb8/PyYPXs26urqPH78GC0tLfLz8+nTpw+TJk1SuZASiUS0bt2a1q1bl/h6fXx8BIE+hRtXV6dnz54cO3aMevXqCaxnZc1kyJhbwsLCFBoa79+/j5GRkdJo7MGDB2ndurWcnkX16tWZOHEiO3bsoFq1agrCtKWFLOPk5+eHWCymXr16GBoaCr+FbLDT0NCgRYsWWFlZcejQIQX9kI/B1taWhg0bcvPmTdTV1alQoQL5+fmCCGTFihWxs7OjSZMmpdKHKSkMDAyoXr06r1+/xsbG5qOUorGxsYIiea1ateQmqMLCQqUp62fPnuHg4MDz589JTU0VBuiff/5ZKDfIy8srFTPWX42rV68KWQsnJydcXFzo2rUrV65cYcmSJcyZM4fMzEyqVatGo0aNuHPnjiC+2qhRI86cOcOjR48YO3Ys1atXx8fHB21tbXJzc2nXrh2zZ88u1q7q1q3LypUrS3y9Z8+eZcmSJSr3z5kzhx9++AEHBwehvK+skVqZMKe3t7fC2BMeHs6bN2/k9FdkuHnzJiYmJnTo8H/0HWZmZgwbNoyzZ8/i7+9frIp8SSHLgEkkEmxsbKhZsyaenp7Mnj1bcBREIhH29vZUrVqVzZs3M3v27FLR8VesWBFXV1eB5bNChQqIRCLu3bsHvOv3qlOnDo6Ojp9FsNbAwIB+/fqxZ88eYmJilPZrvY/ExET8/f3Jz8+nZs2a2NnZCe9fbGys0mt8/fo1derUoUKFCsTFxQmO0LBhw3j79i3z588nNDSUbt26lfv9fS74+vpy+/Zt3rx5Q9OmTenbty/Dhw8XGF9//fVXzMzMqFKlChUrVuTt27c8ePAAfX196tSpQ1BQEF5eXkyZMoXWrVvj5eWFuro6+fn51K1bl6+//rpYu65SpYpAWFISnD9/Xi6Q+CF+/PFHnj59Ss+ePZk7dy5mZmZlFlJVU1PDycmJo0ePKpSMJicnc+vWLaZOnarwvdDQUF69esXIkSOF7xgZGdGtWzeCgoI4f/680rLr0iI2NparV68KFSKNGjXi2LFjjB07Vq5SxMbGhilTprB+/XpsbGxKlPGVQVNTkyFDhrBhwwZevXqFkZEROjo63Lt3D6lUio6ODrVr16ZZs2afRW9LW1ubYcOG8fvvvxMcHKwQTPoQmZmZPHjwgIyMDOGZyJzOuLg4pUG2nJwcdHV1sbGx4dGjR8L2Fi1acOzYMbp3746NjQ3Pnj37SwRY/yNL+HugVI6Ql5cX7dq1Iysri2vXrnHnzh26d+/OkiVLhMVAly5dWL9+PTt37sTJyYmsrCyOHz8ulDS8fPmSS5cuYW5uzrVr11BTUyM/P5/du3czdOhQJBJJmTV8PoSs70UVLCwsOH78OBs2bMDDw4OWLVsWKwD6sXNNnz4dDw8PNDU1ady4Menp6QQEBFChQgWl5Xe5ubnExcUpnVzFYjGurq7cunVLEKYtCxISEti6dSv29vY0btyYoqIiAgICePbsGX379lX6fCpXroy2tjYJCQkqMyqq0L9/f4HqWHbs1NRU3rx5Q0REBI8ePcLb2xs7OzvGjBnzyU7eh5At8AoLC1Uu9vLz8zl48CAGBgbUrVsXAD8/P3x9fRkzZgy6urpIpVKlpRMikUgQuHvfUSosLOTmzZuIRCJev37Nhg0byvW+PidOnz5NixYtMDY25tKlS3h7e+Ps7My2bdsYN24cYrEYY2NjTp06xcqVK7G3t8fQ0JCTJ08KC0ZtbW3Onj3Lw4cPuXXrFiYmJkilUiELUVBQwI8//lgu1ysjslAFY2Nj3N3defToEbNnz8ba2poZM2aUeVwZMWIE+/fv5/79+zRr1oz8/HyePn1KQUEB48ePV7oY9PX1VamB1LlzZzw8PD7JEcrJyWHTpk1UqlQJe3t71NXVCQoKwtPTk0aNGinNlujp6dGwYUOePn1Ko0aNSnW+Ll26ULt2bQwMDAS7ysrK4u3bt7x+/ZqnT5/i5+dHlSpV6NGjh1JGyk+BLKqfnZ2t8jNFRUXs3r2bnJwcWrZsKTRPe3p6MmbMGMzMzDA0NCQpKUkhKi8Wi5FKpSQnJ8st+qRSqUDvnpSUpFR5/e+Kffv20bBhQ5o1a8bZs2fx8/PD0dGRn376iZkzZwqRaE9PT5YsWYJIJKJBgwZs375dKBVq1aoVv/76Kzt37uTkyZMCWcrDhw8ZNWoU+vr6n8T4+T4+Ztfa2toMHDiQihUrsnTpUnR1dZkzZ06pFv/vo3Pnzpw/f56VK1fSrFkzofE+NjaWUaNGKbWhK1euMGjQIKW9SA4ODnh5eVFQUPBRfTFVkEgk7N69WyCt0NPTIzw8nHXr1mFkZKS0XF5NTY0uXbrg7e39URH0D1G/fn0WL16Mrq6ucM25ubm8ffuWV69e8ezZMzw8PKhQoQINGjQo90CAjBL8Y/pm58+fJzg4mNatW1OlShXCw8P59ddfGThwIHXq1BHs+sMgtKzvNSkpSSFj4unpCbzLBO7Zs0cp3fvnxn+O0OdD27ZtS1zKXKow6aBBg0hISMDHx4cePXqQkJDAyZMn5SKiModA5rmfOXNGrq67qKiImjVr0qlTJ6GXQlNTk/Hjx/P27dtyZUerXbs2Dx8+VLpPKpXy8OFDnJ2dOX36NH369BHYX8oKPT09Zs6cSd++fcnNzQVg6NChDB48WOmiPCYmpth+AUtLS1JSUsp8PUVFRWzevJmJEyfSt29fqlSpQrVq1ejdu7eg96MKNjY2REVFlfqcampqGBoayjlYxsbGNGrUiN69e/Ptt98yaNAg3r59S82aNWnTpg1ff/01165d+2TWteTkZMLDw6lUqVKxgo2PHj2iTZs29OzZk5o1a1KzZk169uyJi4uLsNBp3LixQrMqvGMx9Pb2RiKRCO+1VCoVmAplvVL/JKHVUaNGIRaLuXr1Ko6OjsTExHDt2jUmTJggdx+9e/fG29sbPT09Tpw4IVdipaamhkgkYtGiRWzbtg14Nxa4urpSq1YtxGJxmRcHH6Jdu3acP39e5f4LFy7QpUsXNm7cyPnz5wkPDyc0NLTM51NXV2f06NFCA3leXh7du3dnwoQJSgfawsJCtLW1VTpeAqHHJ2D79u24uroycuRIqlWrhqWlJZ07d6ZmzZoEBQWpVNeuWbMmb9++LfX5ZM31749jenp61KtXD1dXV77++mvGjx9PYWEhDg4ONGnShGnTpnH8+PFPFpaMiYnh2LFjQsmOKly4cIHatWszZcoUGjdujK2tLf3792f8+PFs376d/Px82rRpw7Vr1xS+a21tzfPnz3n+/Llc2dzPP/+Mvr4+2traxMbGFsv8+XfDqFGjqFy5MpcuXcLS0pKXL1/i5+fHggUL5MpxmjdvzsWLF2ndujUrV66U65fQ1dUlMTERDw8Pfv31V2G7o6MjY8eO5cmTJx/N0JUUH7Prc+fO0bFjR7777jtBy0jV/F5SuLq6Mnv2bPT09MjOzqZ58+bMmDFDZXYgKytLZXBQJBJ98px94sQJatSowZQpU4QqhVatWtGmTRsSEhJUMp2V1a7hXUbr/bFZW1ubOnXq4OLiwrx585g7dy6VKlXCxcVFCGDu2LFDpcZSSSGroNDR0VGazZHBz8+PjIwM5s6dK4jnduvWjblz53L69Gni4+Np0aIFXl5eCo6BrDLh5s2bcu/1iRMnCA4OpmLFiiQlJeHv769A2vMl8B9rXNkgkUh48eIFd+7c4fbt23J/Mpw/f15pGaoylCpEunfvXqytrRk+fDjOzs7FNq7K6KTfr/dMT09HQ0ODoUOHsmnTJi5cuIC5uTkvX75k165dDB8+nCtXrpTmkorF9OnTmTt3LseOHVNYGO/evZt27doJESgnJyfOnj3L9u3bad26NZUrV8bLy0uIQGpra+Ps7FyiRufKlStTuXLlj9IzampqFhvhlLH8lBWPHj2iSZMmSqNIJiYmSCQS4uLilJapZWRkfBayBnV1dRo1akTt2rUxMzPj7t27HDlyhFWrVlGzZk2BxlZHRwc9PT1MTU2xtLSkQ4cOKheW4eHhzJ8/n6CgIIyNjalVq5bKhWZKSgo6OjpKS9dsbGwwMTEhIiKCVq1asWHDBiwsLOSi22KxmLCwMPr1+z9lkxcvXlCtWjUWLlzI9OnTadu2LevXr//EJ/XlsGvXLszMzHB1dcXFxaXY310mJvthedG9e/fYtGkTCxcuJC4ujs6dOxMfH8+ePXuoVq2aEJkrDxINNzc3evToQY8ePRQWLL6+vsD/CRR269YNU1NTjh49KpSg+vj4kJiYKCzqnZycSpTBkAkvfsyuxWLxRxf/qhyVkiA2NhYNDQ2l5SomJiYUFRXx+PFjpdoiGRkZn6XhXywWU6tWLb766issLS25c+cON27cELJWffv2pcL/FzXW1dWlYsWKmJub4+zsrJKAITExkeXLlwvHGDJkiMoxIDs7m4SEBKXaPxUrVqR169bcu3ePNm3acOvWLa5fv46zs7Pg6BcUFJCZmYmNjY2wTZbR37VrFwMGDKB79+5s2rSpnJ7Y58eePXswNDQUyl0/Vivv5eXFwoUL5bbt379fIIJ58+aNwKYp69V1cnIiOjq6XCiYmzZtytKlSwkKClKgeX/z5g1XrlwRWNxq165N3bp1uXLlCtnZ2Tg4OBAYGMjr169RV1enqKiIRo0ayfXYqoK2tjYtW7YsEZ1yUVFRsQG7nJycYoNwxSE/P5/Q0FA5ohIZDAwMqFGjBrdu3VJaepeZmfnZiDysrKyYPHmyIJh99+5d9u7dKwR9ZZImOjo6Aotny5YtVRI4ZGZmsnXrVpYsWYJYLBZY3ZRBFrD+/vvvFeYObW1tBgwYwNWrVxk2bBh169bl4MGDcoyhsixjSkqKUMEhkUjYsGEDZ86cYdiwYUKJ5F9R9iqRSD4pAPxPlez4FNy9e5dhw4YRERGh4AiKRKIyza2lcoRkqfWSIDExUaHsKT4+nho1auDm5oarqytt2rTB09MTS0tLDhw4gLGxsdCAXRyys7O5e/cuEomE5s2bq2wSq1WrFlOmTMHV1ZUpU6bQokUL4uLi8PDwoKioSG5Smz9/Pg0bNmTNmjUcPnwYAwMDrl69SmBgIPBuAX3s2DEyMzNLTImpbGCSZYrg3aLlzZs3SKVShQk+Pj6ep0+fUrVqVUETRNUi8v1jyqCtrc2DBw/o0KEDr1694s6dO7x58waxWIypqSn16tXjxYsXBAQEKPQ+xMTEEBgYiJ2dHa9fvyYuLo7Xr18jFoupUaOGQOetTFdEVSQtNjZW7v8aGhpkZWXRoEED6tevT0REBH5+fhw5coTCwkIKCgrIz88XmkgPHToksLQBzJgxg8DAQF68eEFcXBx6enq4uLhga2sr95w+XGTduXOHNm3aKL3O/Px8GjZsSEBAABYWFowbN46zZ89y4sQJTExMyMzMRF1dnevXr7N27Vpu3LjBoEGDOHLkCMnJyVy4cIHRo0djaGjIt99+q7Co+Lvi1q1btG3btkROSnp6utKIqJaWFq1ateLKlSuCKKuRkRG//fYbVlZWDB48mLy8vGLZCAsLC7l79y7Z2dk0bNhQ5USqq6vLunXrGDhwIEOHDsXFxYWsrCwOHjxIYGCgnB6ZSCTi0qVLrFy5ktOnT3Px4kV2794taIllZ2dz4cIFYmNj5d4vGcpi17JrTEtLU7CR+Ph44uPj0dXVldP6UfbsVdn1/fv3qV27NlFRUfj6+hISEoJIJEJfX5/GjRsTERFBYGCgAiFAfHw8N27coHPnzkRERJCWlsaLFy8oKiqiSpUqWFhYCNfxvgyADMq2fWjX8K5ev3bt2tSuXZu4uDgePHjA2bNnyc/Pp6CgQJAwgHeEKe+Lrrq7u3Pv3j2ePn0qLGp79epFhw4dFLLq70exX758SYMGDZSW2EilUurXr8/+/ftxdHRkyJAhXLp0iWXLlmFqakpubi75+fns2bOHK1eu4OnpybBhwwgICODt27e0bduWoUOHYmpqyowZM/j2228VzvF3xJUrV3B2di5xSaimpqZCJjsjIwNHR0cuXbqEi4sL586dw9jYmBkzZlCvXj2WLVvG27dvi3WEpFIpjx49IiEhgVq1alGzZk2Vn922bRujRo3C2dmZgQMHoqamxpkzZzhz5gweHh5y74Cnpyfu7u4cPnyYa9eusWTJEgYMGIBIJKKgoABvb28OHDjA9OnTFe6rrHZdq1Yt/Pz8lAZEIyMjSUxMJD8/v9g5W5lda2lpER4eTtWqVUlISMDf35/AwEAkEgkaGho0b96c5ORkUlNTFdYfMTEx3Llzh6pVqxIWFkZOTg6hoaHk5ORgampK9erVhetQFuRSVlqorBokKCgICwsL+vXrR8eOHXn48CE3b94kLy9Pzq6lUim9e/fm9OnTwndXrVol2HVoaChFRUW0a9cOV1dXhef+vl3Lyljz8/MVgktSqZTKlSsTGRlJdnY27du3x9fXl19++UUQ0UxNTeWHH34gJyeHQ4cOMXz4cLKyskhISKBp06ZCoGzy5MlcuXKF48ePK9z358R/pXGlx5QpU2jatCnnzp2Tm7M+BaVyhD6cWItDnTp1OHjwoNy2SpUqCQPQ69evad++vVzfQHHZEXjn/S5dupT79+/TsWNH1NTUWLt2LXXr1sXd3V1p6Y2rqyutW7dm3759LF++nAoVKjB9+nSh1jk/P58XL15Qu3ZtHBwc2LdvHz169ODhw4d4eXkJTpaMsWjt2rU0bdr0k5g+ZBCJRHTq1InDhw8zZMgQuUE+MTERPz+/T+oPEovFAs2ni4sL/fr1QyQS8ebNG06fPk1MTIxCTXZRURGXL1+mQYMG5OXlceHCBfT19alZsyYSiYR79+4hkUjKVQhSJBJhbW2NtbW1wqQdERHBxo0bhQi/DEePHiUuLo7q1avj5uZGnTp1yMjI+Oi5PpaVkPUKwLtFZ//+/SksLCQzMxNtbW20tbVxcHBg165dhIaGcv78eSIjI+nWrZucfZSXqviXQOPGjUs8mJiamgqRmPe/k5eXh0QiITc3FysrK4V+oJSUlGLr/3fu3Mn+/ftxdnbGyMiIHTt2oKWlxdq1a5UqQzdo0IBLly5x7Ngxfv31VzQ1NenXrx9Lly4Vsk9Pnz6lVq1aVKtWjU2bNhEfH09ISAiXLl0SnH9dXV0GDBjArl27ePPmjVK9irLA1dWVgwcPMnr0aLmJPjs7m4sXL9KjR48yH1skEpGVlcWWLVto27Yt06dPR11dncTERM6dO0daWhpZWVlyv5FUKuXBgwcYGxujq6vLhQsXKCgowNbWFnV1dUJCQvDx8cHFxaVcKbLNzc3p2bOnwm+fm5vLokWLFOz61KlT+Pn5YW5uzrBhw6hfv36JdDY+Rogh6+2DdzbeqVMnOnToQEZGBhoaGujq6uLs7IyzszNxcXGcPHmS4OBgatSoQYcOHYRjl7U5/69A8+bNS9UXJ5VKycrKknveMvZPWQXBzz//LHfMly9fFlt+cu3aNVasWIGjoyNVq1bl2LFjJCQk8McffyjNUJmbm3PhwgUuX77M+vXrKSoqolOnTly+fFk474sXLzA3N8fQ0JClS5eSl5dHQEAAZ8+eZdKkScC7xbSzszMFBQX4+vqWimSpODg7O7Nhwwbc3NzkAgOFhYWcOXOmRBkoVZA5cDt27KBOnTpMmDABbW1tMjMzuX79OhKJhPj4eCQSidy7/urVKxITE2nVqhW+vr7ExMRQt25dDA0NiY6O5v79+zg7O5drhYeRkREdO3ZU6EmSSCRs2bJFoWLg9u3bnDlzBj09Pfr06UODBg2oVKnSR6P3H97rx+Do6EiTJk2EQJe+vr6whho8eDAnTpzAz88PY2NjhgwZIqwZxWIx7dq1+88R+gcgNDSUY8eOKfSDfQrKh5VACaytrUlPT+fVq1fCgGdkZISuri6hoaGsXLlSgdFt9+7dStPCMnzzzTfY2dnJ1RHPmTOHI0eOMG3aNKE34UMYGRkxffp0pfu2bdvGV199JXfdixYtYs+ePXzzzTd07NiR3r17o6Ojg5qaGm3atOHevXtybFCfApnRbtq0iZo1a6Kvr8+bN2/IyMhgwIABnzTx1q1blyNHjvDNN9+gr68vLIqqVavG1KlT+fbbb0lPT2fbtm1Ur15daJKsV68ednZ2HD16lHbt2lG5cmVhEVGzZk1ev37N5cuXlVKmljdk5/1wQh88eDCHDh0SdK1kWikfQ40aNXjx4gUtW7ZUuj8wMFChkVxdXV3pYrx27drMmjWL1NRUYeD9t0NDQ4MmTZpw+fJluVICZ2dnzp07x7NnzxQIR+7cuVMsI+POnTt5/Pgxly9fFia9GTNmcP/+fYYMGYKnp6fSIIeWlhbDhw9n+PDhCvu8vLxo37693GcnTZqEvb09GzZs4MmTJwwePFjI2HTp0oWbN2+qJDgoLaysrHBxcWHHjh1UqVIFU1NT4uLiiIqKUhBeLi3s7OxYvXo1U6dOxdLSUrANU1NTRo0axbJly9DS0mLz5s2CoxEeHo6VlRXOzs5cvnyZGjVqYGdnJyxErK2tSUpK4uzZswwePPiT7/9jkEgkSjPhAwYMICMjg7CwMOrXr4+hoWGJSh1q1qzJgQMHFLSnZAgMDBSIUWQQi8VKo+Hm5uZMmTIFMzMzjh49+o/q9/sUyErW3xcRHTFiBJs3b6Zx48a0aNFC7veKjY0lNTVVJUOmj4+PUIL0fjAgMjKS0aNHc+jQIaWLc7FYjIuLi1Jh7vj4eGxtbeW2tW/fnilTpjB16lRSU1MZNmyYcE1t27bFw8Oj3BwhfX19xo8fz549e9DX1xfos8PDw2nWrFmx2a6PwcrKip07d9K3b18cHByE7Lm+vj69e/cmKSmJ/Px8Nm/eTNWqVdHS0iIiIgIdHR169uxJYGAgUqmU/v37A++CmlWrVqVhw4acPXu21EQKZYFYLCYvL0/Brjt06EBiYiI+Pj5UrVq1xCRMFStWJCYmRqVDFBkZqXAskUikNBCpr6/PqFGjaNmyJRMmTCi3ntVPwX+OUOnRokULpezMn4LPOsKvWbOGCRMmcP78eWFBO3XqVNq3b4+lpaVAjCCrOb5y5YpK1raoqCiio6OZOHGiwj7ZxB0SElLqa5QZ19dff421tTW6urrUq1ePK1eu4O7uzq1bt1ixYoXwwllYWJCQkFDq8xQHBwcHpk2bhq2tLSYmJri4uODm5vbJWQVZhkmZg/D8+XMsLS2xsbFh5MiR1KlTh6ZNmzJlyhTq1q1LZGQk5ubmSsuTrK2tEYlEJCYmftL1lQTVqlXDyMhIYHiRwdzcnD59+pCWlqZUlVsVqlSpQkJCgtLUf1RU1EcJLJRh/PjxXL58+X+mXnfx4sWsW7eOnTt3CmUeI0eOZM6cOXh5eQkUuFKpFC8vL3744QeVZYIFBQXs37+fVatWKUx0zZs3p3v37pw5c6bU1yg7Vo8ePWjXrh0VK1akfv36/Pnnn+zdu5cXL17w448/CloblpaW5f4+W1tbM23aNJo2bUqFChVwcnJi5MiRJW7gVAU1NTXEYrHSpuyYmBg0NTUxMjJi4sSJ2NvbY29vz6RJk2jZsqXQ46Wsv6hixYrY2Njw8uXLT7q+kkBXV1cooXwfhoaGjBs3DqlUSkBAQImPp6+vj5GRkVDK/D7S09O5c+dOqUUTe/Xqhb+/v9JSpn8jhg4dyvPnz3F3dxdIgzp16sTZs2f57rvv5EoCX7x4wYgRI1i+fLnK461cuRIPDw+F0qeqVauyePHiMrHNyey6du3auLm5oa6ujq2tLVOmTOHatWtkZmaybNkyofKkJMLgpYWpqSkTJ06kc+fOmJiYUK9ePaZNm/bJoqRisRixWExycrLCvoyMDBISEtDW1mbKlCk0adKEOnXqMHLkSDp16oRYLCYkJERpRkpHR4fmzZvz+PHjT7q+kqJ79+54enrKLdI1NTUZNmwYFSpUKBXBhVgspkmTJkpFygsKCjhz5kypg9J16tQhPT39i6xfPgZZj9Cn/P2vYcaMGcybN49du3bx8OFDHj9+LPdXFny2jBAgpMK3bdvG+vXrUVNTw9jYmPXr13P16lW6du2KgYEBaWlpdO7cmUOHDqn00k+dOlUstfWoUaM4evRoqXQL4F3Ea/fu3fz+++8A9OnTh1evXuHk5MT8+fOJiIhg06ZNxMTECIslZdmBT4VYLJYrFfgU5hkZ4uPj6dmzJ6dOncLc3BwHBwcKCwvx8/NDIpEwfPhwLl26hLa2tkKJysuXLxUaVt+Hra0tL168+Ozc+zKV+40bNzJjxgy5SHq1atUwMDDg6dOnJdYvEYlEwjOxsrISGsofPXpEZGQko0aNKnXNqZWVFc2bN2fr1q307t0bS0vLf/UApaenx/Hjx9m3b5/g9GhqarJs2TKePn1K165dMTY2JjU1lcaNG3PkyBGVGRBfX1+50qMPMWrUKKZOnVpsplgZWrduzZAhQzh06BAAHTt25NWrV4hEIkaMGEFERASLFi3i2bNnNG/enISEhDLT8BYHkUiElZWVwKxVHnadkJBAy5Yt8ff359GjR0Kk/smTJ8TExDB16lR27NghiBm/D5lejirIyCRUZUzLE25ubnzzzTcKWViZjs2jR4+U9mOqQv/+/Tl48CBPnz6lRYsWaGtrExwczOPHjxk6dGips+saGhr069ePzZs306tXL2xsbP7VEVixWMy2bds4efIk48ePF3oyxo0bR3p6OgMGDMDQ0JCsrCysrKzYvHmzyqhscnIyurq6KgXPnZ2d5VjoSgpTU1OWLl3KDz/8QGhoKDVr1hSERzt27MgPP/zArFmz8Pf3p2rVqhQWFn6236xSpUqllpcoDrm5uVhbW5Odnc327dtp1aoV+vr6hIWFERQUxLBhwzhy5AhisVih/zoxMZHKlSurnLuqVav2yQx7JYWbmxvbtm3jyJEjcn2XIpEIBwcHHjx4wODBg0ucaW3bti3nzp1j69attG7dGmNjYyIiIvD19cXFxaVMmoRDhgxh586ddOnShQYNGiAWi+V6Nr8U/ssIlR6ytYCMxRX+jyb9i5AllAUmJibMnz9fgZqwf//+SKVS8vPzSzRBZWZmFuuAVKhQQaVKenEwMDDA29ubMWPGsG/fPk6fPk1YWBhDhw5FLBZTp04ddHV1+eGHH6hduza5ubkqRVr/btDV1aWgoICpU6fy+vVrXr9+jZqaGt27d8fc3JxXr16p7HX6WM29WCz+Yot9d3d3Tpw4wZw5c9izZ4/cNdSuXbvU1Mh6enpMmzaNsLAwIepcr149evXqVebGu5YtW1KlShWuXr1KamqqUg2ifxO0tbWZMGECEyZMUNgns2tNTc2PPs/MzEyViyV4V9b6sd5BZRCJRBw8eJCGDRuycOFCrl+/TmhoKN9//z0GBgaYm5tjaWnJ1q1buXDhAjo6Op/Uj/cloaurS3Z2NiNHjhT6noqKinB0dMTGxobs7GyVvSElsesvNblOmzYNDw8Pxo8fz927d+Wu2d7enhMnTpCfn19i8VcNDQ3Gjh1LdHQ0/v7+FBQUYG1tzaxZs0olIPs+atasyciRI7l9+zbnzp37JLa/fwJEIhH9+/cXyqvex7x588jLy0NDQ+Oji9isrKxi52uRSFRmXa/FixfTuHFjevfuzcuXL0lPTxeY5mSspGfPnuXu3btYWFjQpEmTMp3nS0PGIjt69GjhnuLj46lWrRouLi7FLvJKIhpdHk3lJUGnTp0YMGAAM2bMoHPnznJBMHt7e65fv87bt29L3I8pEono06cPKSkpPHjwgJCQECpXrsxXX31VZoa+ihUrMnXqVLy9vbl16xZisbhc+r5Li/8codIjPDy83I/52R2h4iASiUocpXN0dBTYrZTh5s2bZRYoVFNTY/v27WhpaeHh4cGzZ8+YNGkSq1atYvbs2YwaNYpDhw7x3XffCcbyYbmZMoNURn/9+vVrhW1z5sxR2KYss6WqaVjZQtHIyIjq1atz4MAB6tWrh4mJidzAk5OTw40bN2jfvr2CMS1fvpyLFy8SEBDAggULAOSYneAdiYGrq6tCRkgVbbCyxa4yR0rZczx8+DDdu3dn7969hISE0KdPH3R1dcnLyyM0NBRbW1t0dXWVlvuoympFRUXRtGlTOTVrZc6LMl2pP/74Q+l1m5qaChmSnJycfwy7VHmjNHbdqFEj9u/fz7Rp05Tu9/LyUkoDXVIsWLAADQ0NvvnmGyIjI+nVqxcHDhxgwoQJDBs2DE9PT+bPn09oaCgVK1b8S+walNu2KrvW09PjzZs3JCUloa2tLdf/kJOTw61bt2jcuLGCXbu7uxMREcHixYtxd3cHFO06ODiYOnXqKM30yhgc30dJs+PKGLm2bt1Kt27d+OOPP6hfvz5DhgzB1NQUqVSKv78/VlZWqKmpqSRv+LBXBODt27cYGRnJ9QMpu25l21TZtb6+vtBf8b9s11BysggLCwvCwsJUktPExsaWiARDFXr16sXx48cZMGAACQkJQs/o+PHjGT16NDdu3GDx4sXcu3cPV1fXcrVr+LQ5W5ldy0iZNDU1CQ8Pp2LFinKlnLm5uYJMw4d2vXLlSvLz8+nZsycrVqwQnveyZcuEz7x58wZLS0ulmXll854yRlhlUFZ6+Oeff+Lg4MCFCxdo0KABQ4cOFcrN/f39Bfp8iUSi1LaLs+v3K1c+1a7V1dVp37690Euak5PD3bt3Vd/sf/hboKTVP6XBX+oIlQYdO3ZkxYoVTJgwQaFvRUZt/SkaRFpaWmzfvp158+ahoaFBWFgYI0aMQF1dHbFYTG5uLnXq1KGoqKjc9FA+N7S0tLC1teXChQtyje1SqRQfHx/U1dVVppW7du3KqlWrGDx4sAK7T3R0NBkZGeUmpFcSNG/eHIlEwunTpwkKCqJr1648f/6c7OxspU21/+GfgSpVqiASifD391eI3BYWFvLrr7+yZcuWMh9fJBLx9ddfM2jQINLS0igsLGTu3LlkZmaip6dHUlISdnZ2pKamUlRU9LdooP0YRCIR7du358iRIwwcOFBuMfH8+XNCQkIYM2aM0u9Wr14dsVjMrVu35Mgk4F0vzZMnT8qNMKIksLa2ZurUqRw6dIjly5fTrVs3UlNTCQ8PZ9q0af+IcfY/KEK2yDx06JBCplUqleLu7s7kyZM/6Rz9+/cnLi6ON2/eYGJiwsqVK4mIiKBChQrEx8cL5WOfo0/oc6FDhw6cOnWKQYMGydl1bGwsly5dUklQpKmpSYcOHdi2bZvAnCdDfn4+t27dkhO+/9wwNDRkxowZHDhwgNWrV9OuXTv09fXx9fWlV69en03z6J+G/zJCZcPLly9Zs2YNwcHBiEQi6taty6xZs8pMVvKPcYTEYjEbNmxg6NChTJkyhX79+iEWizl79izr1q1j9erVShcxz549IyoqimrVqinNGHwIWSSxVq1auLi4kJubi1QqpbCwkD179vDVV18JKtyq9Iv+TmjVqhWPHj1i586dWFlZoa6uTmRkJHZ2dgwcOFBleZtYLGbHjh2MHz+eDh06EBcXh0Qi4dmzZ8TGxtK/f38iIiLw8vIiOTkZIyMjWrduTdWqVT/L4kUkEuHk5ES9evU4ceKEoO0zZMiQEkev/sPfE+vWrWPIkCH06dOHkSNHYmBggJeXFytXrmTixIlKHe6IiAhCQkIwMTHB0dHxo+/c+1GkQ4cOCTpVmpqaeHp6cvv2bY4cOYKrqysVK1b82y/AZaLBBw4coGLFiujp6REdHY2ZmRljx44ttkxm/fr1jB07Fk9PT7KystDQ0CA0NJSQkBB69+5NRkYGx44dIzo6Gm1tbVq0aEGDBg0+273UrVuXhQsXcvbsWc6dO4eenh49e/Ys0Xj9H/6+mD9/PqNHjyYkJITJkydTuXJlnj17xm+//Ya9vb3SJvfExEQCAgKE9+5jgQkzMzOBeW7Lli0UFRWRk5ODnp4ed+7c4cGDBxw8eJDBgwdjYWHxt2cANDU1pVevXnh6eqKtrU2FChVISEhAQ0ODUaNGFZtFmz9/PrNnz2bs2LGMHTuWxMREIiMjCQgIoH379mhoaHDhwgVevnyJmpoajRo1olmzZp/tXqpUqcLcuXO5desW586dQyQS0apVK4UAzP8y/nOESo9Lly7Ru3dvGjduTOvWrYXAvr29PZ6ennTp0qXUxxRJS/Ak09PTMTIyIi0t7S9f/Kenp7Nv3z4uX76MVCrF2dmZMWPGKJRePXz4kEWLFgnCfiEhIYSHh/PLL7+USEX+Q8ycOZM///xTaMqCd029VapUwdXVVWm6TtmjVVZq9amlccoWbR82fkulUnJycigqKsLMzEyomVdWDjB79mzh3xKJhMuXL+Pu7i70TFWtWpVr164hEono0qULlStXJjExkWvXrpGXl8eQIUMUrklZyrqkpXHKrjEpKQkjIyNhYsvKyuLp06ekpqZSoUIFmjVrhp6eXrGlcUVFRbx8+ZL8/HyqVaumNEqVmpqKRCIhNjaWzMxM8vLyKCwsRCQSIRaL0dfXx9DQEBMTE+GZFhQUkJCQwC+//PK3sBlV+DvZdX5+PidPnuTYsWPk5eXRqFEjJk2apEDN+/btW2bPno2BgQFNmjQhOjqaBw8eMG/ePLp3717q827fvl2BiVJbWxsLCwucnZ2V0n6Xt12DctsuiV0DgvCwiYmJULr0MbsGePDgAd988w1FRUVUq1aNOnXq8OTJE549e0b//v2xsbEhMzOTO3fuEBYWxtixYxXss6SMaspsS1lJTlpaGrq6usICOD8/n6CgIKKjo9HX16d58+ZCeY+qEhqpVEpERATp6elYWloqZd+U/V7x8fGkp6eTk5Mj2LVIJEJPTw9DQ0MqVqwo9LIUFRWRkJCAu7v738JmVOHvZNcSiYTr16+ze/duUlNTsba2ZtKkSQqOdWZmJnPnziU5OZm2bduSmZkpCFaXJXN07949BcIPDQ0NzMzMaN68OW3atFHoGyupXcOnzdnK7FrZ7ySVSsnIyBC0v0C5XX94LWFhYRw6dIgLFy5gbm6Ovb09MTEx3Lhxg549e2Jvb09hYSH379/n3r17jB49WqHEtaR2rSzbpsyus7OzEYvFwjhQVFTEs2fPiI6OFiQZZAEvVXYN71gxExISMDExUUpUIfu9UlJSSElJIScnRyjXF4vFaGtrY2hoiKmpqTCWSSQSsrKyCA8PZ9u2bV/EbmQ2um3btk/qTcrOzmbixIl/C1v/UnBwcKBbt26sWLFCbvuCBQu4fPky/v7+pT7mPyYjJIOhoSHTpk1T2VMA78pDFi5cyKFDh+QcpMTERIYOHcrmzZtLnUKTLahlg6WWlhZZWVmEhIQQEhKCo6MjnTt35tWrVwQFBQHvFvXNmzfH1tb2L48wi0SiMgmqyTQd/Pz8hG3Pnj1DJBLJldBUqlSJIUOGcOHCBby9vWnTpk2pzxUUFMT9+/cpKipCIpFgbGxMp06dlPYrvP+7+vj4EBQURLt27bC1tSUuLo4dO3bg6Oio0hG6efMmd+7cwc7ODh0dHa5cuYKuri7Dhg2TG9xzcnLYvXu38Juqgky7oLCwsEzN/f/r0NTUxM3NTY5l6EOkpqYyatQotm7dKsdWlZeXx6hRo9DU1KRTp06lOu+Hk666ujr5+fmEh4cTHh5OrVq16NWrFykpKfj7+1NUVIRIJKJx48Y0bty4zE345YmyZkSbNWtG586dhf/HxcXx/Plzhg4dKjighoaGuLq68uzZM06ePFns76MKb968wdvbm6ysLEQikVDG8yFTJcg7es+fP+fy5cu0bduWVq1akZqayrFjxzA1NVXazA/w+PFjzpw5g7W1NRUqVMDLy4ucnByGDx8u95yKioo4efIkt2/f/uj16+npIRaLyczM/J+MwH4KxGIxnTt3lnvPPoREImHYsGF8/fXXciyBCxcu5Pvvv2f9+vVyWn8lwYesajISkKioKE6ePIm3tzd9+vRBU1OTu3fvCpUfdnZ2NG/e/G8hnGtgYFAmCY1atWqxaNEi4V3Ny8vj2rVrjBgxQrA5NTU12rZtS506dThw4ECx6ylVSEpK4vbt2yQmJqKmpoZUKqVly5Y0aNBAYb3zvkMYGxvLkSNHqF+/Pi1atCA3N5ebN2+Sk5OjsqT37du37N+/HxMTEywtLfHz8yMmJkYI2LyP27dvc/z48Y/aqo6ODhoaGmRmZv5lLK9/RUZo48aN/Pbbb8TExGBvb8+aNWtU9t4D3Lp1i7lz5/Ls2TMsLS359ttvmTJlitxnjh8/zuLFi3n58iU1a9bE3d2dfv36lfraSoLg4GCOHDmisH3cuHGsWbOmTMf8x2WESoIxY8awZMkSpcrVwcHBrF27ls2bN5fqmBKJhG+//ZZz587x/PlzbG1tWblypUBXq66uTmFhIbVq1WLYsGGYm5sTFRXFnTt3kEqlAuuLsohuUlKSwjZl2jiqWHaURWWUNSEqi059OGHAu6jsh3ifrWbr1q2MGjWKVq1aKXzu4cOHbNq0iRkzZshtV7ZgfP/cJ0+eJDExkW7dugnXGRsby8GDB2nTpo3Cokk2UQUHB/PkyRMGDRok9xmJRMKGDRto1KiRQomNl5cX8fHxChSejx8/5sqVK0yePJm8vDwCAwO5du0aKSkpjB49WqDFdnNzUxBnrFWrFo0bN6ZJkyZCFHrAgAF/a5v5p9n1b7/9hp2dndJa96ysLAYNGiQntlxS/Pnnn+zYsYOAgABMTEz4448/qFSpEv3790cikVBQUEDlypUZOnQotWrVIj4+nocPH/L69Wvc3NxQU1P7JLsG5bb9Jez6/QXA0aNHad26NZaWlkoJKqZMmcKYMWPksjvK7Pp9naT79+9z8+ZN+vfvL2Ry0tLSOHr0KFZWVgoENzK7TkhI4MSJE4wbN05B1+v06dNoaGjQokULue0vXrzg5s2bTJw4US5zFRkZyb59+5g0aRKampoEBQVx8+ZNXrx4IWfLQ4cOpXbt2gr34ujoiIODg6BpNnjw4L+1zfzT7PrSpUv4+fnx/fffK+yTSqV069aNM2fOlLrXx9PTE3d3d/z9/ZFIJPzyyy+0adOG/v37k5iYSGFhoTBON23alJSUFJ49e8aDBw8YOnQourq6Kin1P2XO/hJ2Df83Z3t7e6OtrY2jo6NSQqmFCxfSunVruWN/bL6OiIhg+/btDBgwQAia5OTkcPHiRTIyMhSy8zJ7zM/PZ8uWLYwZMwYDAwO5jP/Dhw95+PChglRCYmKiYL/v/x5JSUns2LGDgQMHYm5uTlhYGL6+vty9e5cuXboIi/tBgwYpzNeGhoY0b94cBwcHbGxssLCwwNDQkI4dO37RjNDWrVs/qV8qJyeHSZMmlfiaDx8+zMiRI9m4cSOtW7dmy5YtbN++naCgIKUsfuHh4dSvX5+JEycyefJkvL29mTZtGgcPHhR+J19fX9q2bcuyZcvo168fJ0+eZMmSJdy5c0dhjC4PVK1alT/++EMgppLhyJEjfP3114KGWGnw9y6YLQOkUimxsbFKnSB4V4+uigmmOIjFYn7//XeCg4Px8/NDV1eXvn374uHhIWgQwbsXx93dnZ07d6KhoSE4QKWleP47QyQSqZyU1NXVBdrukiI2NpbQ0FAmTJggN/hXrlyZKVOmCGWQynDnzh2ltNdisZjRo0dz8+ZNue2FhYU8ePAANzc3hXrxWrVqUaNGDbZs2cKCBQvYu3cv0dHRSCQSduzYwZIlS/jxxx9p164d8+bNk4tyhoWFcezYMRo0aMDo0aOLjYD+h7Lhxo0bKtXR9fT0sLCwEEooSoMZM2bw6NEj3r59i6OjI2PGjGHixImsWbNGKNFKTExk9erVrF+/nqysLFq1akW9evXw8fH5pHv6OyE5ORlLS0uV+6tXr14qrY38/Hw8PT2ZM2eOHFuVkZER48aN49GjRyqzp15eXri6uirtEenVqxf3799XiOJeunSJcePGKZTvVapUic6dO7Nr1y7mz5/P5s2bef78OVKpVJi0lyxZQqNGjZg2bZog0A3vSnHOnj2Ljo4OEyZMkCOd+Q/lgyNHjjB69Gil+0QiEa6urty4caPUx+3Vqxd3794lPT2dIUOG8P3339O5c2cWL14sZAdzcnLYtWsXv/32G5GRkTRs2JDu3buXKaDyd0VkZKSCg/8+6tSpU+rF465du/j666/lHBkdHR369etHTk6OyoCPv78/LVq0UJrpcnR0JD09nfT0dLntly9fZsiQIQpOqZ6eHsOGDePgwYN8//33rF69WmB98/Hx4YcffmDJkiXY29szfPhwuRLL9PR0rl69ytu3b5kyZQp9+vQpM+vwp0CWEfqUv9Lgjz/+YPz48UyYMIG6deuyZs0aqlatyqZNm5R+fvPmzVSrVo01a9ZQt25dJkyYwLhx4+TWvGvWrKFLly5899132NnZ8d1339GpU6cyZ2c+hokTJzJp0iRWrlyJl5cXd+7cYcWKFUyePFmBKKSk+MeVxn0MEonkox52WbnnZXB0dMTf3587d+7Qo0cPvv76a9TV1dHW1iY3N5eaNWvi5+dH5cqVadWqFW3atMHT0/OTlaf/LviYlkZptD8Arl69Su/evZWWD+ro6GBtbU14eLiCcyuRSJBKpSp/b0NDQwU67xcvXmBvb6/0XPn5+YSGhvL8+XNhm0gkok6dOtSrVw89PT10dHTw8vJi1apVbNmyhaNHj+Lt7Y2Pjw8SieSzNp/+r0NNTa3Y98rExKRMWmIyVKlShcuXLxMWFoaLi4uQ6dXX1yczMxMLCwuCg4PR19enX79+NGzYkJ07dxZbVvBPgkgkorCwUGXmOScnp1Rj5/3792nTpo1SZ0YsFtOiRQsCAgKUZpYTEhIU+sPe/261atVISEgQWC/T0tIE+/wQEomE58+f8/TpU7ntNjY2ODg4YGBggK6uLpGRkWzcuJGvvvqK7Oxs7t27h5eXF6mpqfTu3bvE9/0fSoePaYmZmJiQmZlZ5uNra2uzb98+Vq9ejZubG9OnT0dNTQ0DAwMyMjJQU1MjPj6eCxcuMHXqVCwtLcnLyyM7O/uziCx/aWhoaJCTk6MyY1Bau46MjMTc3BwjIyOlmbG2bdty+/Ztpfb74sULBg4cqPLYjRs3JjQ0VM4piY+PVzkWBAcHKwSZzc3NadGiBRUqVEBPTw91dXXWrVtH+/btyc/PJyAggFu3bhEVFfVFmfSUQSKRfFJZXmm+m5+fz8OHDwVJFBm6du2qMqDn6+tL165d5bZ169YNDw8PCgoK0NDQwNfXV6FPrVu3bp/NEVq8eDEGBgasWrVK0PS0tLTkxx9/ZObMmWU65r/OEVJTUyMrK4u8vDyldb7Z2dnlJnbZpk0bXr16JUQaZQ2GSUlJaGho4OfnJ6hD/5sENk1MTIiJiVG6LyUlBR0dnVKx88THxxdLxW1ubk5KSorSfaWNiOTl5anUdli/fj0vX74E3umjODk54ezsLNejdPr0aR4/fkz//v0ZNGgQxsbG9OjRgx49epTqOv5D6WFiYsLr16+V9pbAu9LG8tAYqFWrFoGBgdy4cYP+/fsLi7DU1FQMDAwICAigZ8+eaGhooK2trbSB+Z+IunXr8vjxY6UClAUFBURHRytIFxSH+Ph4pY3PMpiZmamMRMuinap6KyUSidw+VXYtY/u8d+8e8C6w0qJFCzp06CC3uLp37x7nzp2jefPmzJkzBx0dHZydnXF2di7Jrf6HT4CjoyO3b99WSXZy69atchExr1SpEpcuXcLb25sePXoI2kIycozIyEhiY2OpXLkylStXJiUlRa7M85+Kxo0b8+DBA3r27Kl0f2BgoMqMnDIU55jAu+f8YVZHhvfJppRBmTCsssCMVCrl4sWLnD59Gni37nN0dKRDhw7UqVNHGBvCw8NZu3Yt1tbW/PLLL2hoaNCsWbO/TcCyvHqEPnzeWlpaCuvfxMREioqKFCRTzM3NiY2NVXr82NhYpZ8vLCwkMTERCwsLlZ9RdcxPhUgkYs6cOcyZM0ew4bL00r2Pf11pHICbmxsbNmxQum/NmjWMGDGi3M5VsWJFRo4cKUSOBgwYgImJCQUFBcTGxgosY/+mJtuOHTty8uRJBUadrKwsDh06VGr6wooVKxZrNElJSUqjWWKxGHV1dZVZgOTkZIUSvqpVqxIWFia3LTY2lh9//FFwgmrVqsXSpUvp2bOnAlFDbGwsdnZ2HDt2rNgo5n8of0ydOpVly5YptSVPT08cHBzKTTNERuEsY1Pq3r07tra2ZGRkCLYNpc9+/p3RvHlzfHx8iIuLk9teWFjIqlWraNeuXalIX8pq1/AuwhcREaF0X1FREW/fvpWzzQoVKhAdHS33bmRmZrJ69WrBCTIxMWH58uW4ubkpLOQSEhIQi8Vcv35dZVn1f/g8GDt2LKtXr1bKLBocHExaWpocOcqnQENDA2dnZ2Hh1rx5c1q1akViYiLwf30+6enp/xqtGxsbG+Li4ggJCZHbLpVKOXDgANbW1qW6VxMTk2LtOiUlRaUIsizYogr+/v4KlTMSiUTu3SgoKGD37t2CE6Strc3PP//M2LFjFYip0tLSSE9P58SJEzg5OZXo/r4kyqs0rmrVqhgZGQl/v/zyi8pzKmNBLW5cV8Wa+v720h6zvFBWQpEP8a/LCME79oivvvqKr7/+mhkzZlC9enXCw8NZs2YNYrGY7777jqSkJK5cuUJBQQGtW7f+pMnPzMyMSpUqkZycjKGhIePHjxcaP1u2bElAQAD9+/fH1dVVae3shwtzUB4FUdYoCcqpqZUpSCsrL/iwdAyUp1vfv57KlSvTv39/FixYgLm5ORYWFsTHx/P27VtcXV2VZneUpd4TEhKAd3SIx44dY/z48QqfKSgo4PXr1wwYMEAuUiRzftq3b8/JkycZPny4HOVnYWEh27dvV0rVevXqVcLCwrC0tMTb25sDBw4I+6ysrJg6dapKulJ7e3t27tzJpUuXqFu3rtIMRGRkJIcPH1bY/h8+DS1btuTBgwcMHz6cBQsW0LBhQxITE9m+fTv379/n4MGDZGdnc/nyZdLS0mjYsKHSpv/SwN7eHl9fXyQSCWPGjGHBggXk5uZSr149LCwsaNy4MT169Pgkuwbltv0l7Pp9J05XV5cxY8Zw9OhRrl+/To0aNcjIyCA0NJR27drRqFEjhe8rs2tZuUzt2rVZv349DRs2VIjySqVSHj16xJgxY+ScIdm9tGnThsOHDzN27Fi5bLpUKuXIkSO0atVK4bdt0aIF9+7dE8pr3leUt7a2ZvDgwcK5lNn1iRMnOHjwIO3atcPGxkbht8rIyGDt2rUK9/sfPg2VKlVi7ty59O3bl2+//RZnZ2dycnI4ePAgBw8eZP/+/RQWFnL9+nWio6OxtramXbt2n6QJ1KZNG9LS0sjJyWHUqFEkJiYKDePt2rXj3LlzjBgxQmWvy6fM2V/Crj+8nrFjx3L8+HF8fHyws7OjoKCA4OBg7OzshD7m91HcfK2np0dYWBgRERFKqZ8fPnxIp06d5O5Jdi+NGzdm8+bN2NnZCQFjGXx8fKhUqZJCqaybmxvnzp3D1dWVpKQkOZpyGxsbWrRoITDifmjXtWvXRktLizNnzqChoUGVKlUUApgyYqUPS8C+BMorIxQZGSk3jiqrhjI1NUVNTU3BiY2Pj1fI6MhQuXJlpZ9XV1cXfl9Vn1F1zLKgSZMmXLt2jQoVKuDg4FCsk/U/QZ9dEohEItavX4+3tzc//fQTiYmJmJmZMWHCBJo1a8b8+fMJCwujT58+aGlpsWzZMvLz89m4cWOZa4L79u3L2rVr8ff3x9HRkQkTJlCjRg0SEhI4ffo0q1evLue7/GthZWXFrFmziIqKIikpiRo1ajBw4MAylQlZWFhQoUIFzpw5Q/fu3YWegrS0NPbt20f37t1VTnq1a9cmPT2dTZs20aFDBywsLIiKisLHx4cuXbooFYKcN28ec+fOpUmTJhw8eBB4F1kwNzfHxcWl2Hegfv36qKurC2UcM2fOxNHRkbS0NOrVq0fjxo2Vsq/8h/LBjBkz6NSpE1u2bCE8PBx9fX2GDx/ON998w+bNmzlz5gx9+/alUqVK7Nmzh0WLFrF+/XoF5rGSomvXrvj7++Pv70+vXr346quvKCgowNramqVLl7J06dJyvsO/FkZGRkyYMIG0tDSio6OxsrKiR48eiMXiUpf3amlp0bp1a3bt2oWbm5tQupaTk8PJkyext7dXmREyMTHBxcWFbdu20apVK2rWrElKSgpeXl7Y2toqFeMcP348M2fOJC4ujjt37gjbbW1tadSoUbFlelZWVlSvXl3QlBo0aBAuLi7k5+djbGxM//79cXJy4tmzZ6V6Bv+hZHBxcaFBgwZs27ZNEEfv27cvZ8+e5fr166xatYpu3bphY2PD7du3WbZsGcuWLVPaX1YSNGnShCtXrvDs2TMKCwsZMmQIERER9OjRg0WLFjFhwoRyvsO/FpqamgwdOpTc3Fxev36Nmpoazs7OaGpqlnrOFolE9O3bl61btzJy5EhhQVxYWMjNmzfJy8tTmcHT0NBg2LBhHD58mGrVquHk5ERubi4+Pj5oa2srLdHr0qULN2/e5PDhw0IpFLzLLlWsWJGOHTuqvFYtLS1Bc+bHH3+kVatWjBo1Ci0tLXJzcxk1ahTfffcd69at46effirVcygPlJcjZGho+FHWOE1NTRwdHbly5YoctfWVK1fo06eP0u84OTnh6ekpt+3y5cs0bdpUWKc5OTlx5coVuT6hy5cvl9k2lUG2Vpf9u7yzTf9K+uziMG/ePBo1aiSngQPvasR//vlnzpw5U6aHvGHDBrZs2UJYWBj169fH0NCQgoICzMzMmDlzpvDclEWYrl+/rrBNmaDZ58gIKauBVlZqpqz8R1kTtKrF0sdKlqRSKXfv3uXu3btoaWlRWFiIhoaGMPl97Brz8vJ4/fo1ycnJVKxYkebNm6OpqamyZ+TevXv4+/vz4MED4B0jVocOHRSemzJiiFu3bnHw4EGFAUxPT4+GDRvi6+srbPs728y/ya537NhBSEgIK1askLPfN2/eMGbMGE6ePFmmIMeGDRs4d+4cFy9epGHDhlSqVEkQ0/3qq6+EEqtPsWso/8jxp9g1lNy2S1KKGBQUxLVr14B35ayFhYW0b9+exo0bK3z2w3spKioiOjqaqKgoQVBVVgqhzLn18/Pj2bNneHt7k5eXh7m5uUI/kOy4HyItLY1vv/1W6cLEzc1NLsv7d7aZf5Nd+/j4sHr1avbt2ycX5c7IyGDIkCGsWrVKQR6hJNiwYQNPnjxhy5Yt1KpVi+rVq6Ojo0NGRgbjxo0Tsp+qMkKfMmd/CbsG5batLGulzBEqiV2/ffuWCxcukJWVhaamJjk5OTg6OirN1n14L1KplJcvX5KUlCQs0GUCqcrs2t/fn1evXnHr1i3S0tIwMjKiffv2CqVwyuy6evXqKtkeJ0+ezJYtWwCws7Pj+fPnX5Q+e+3atZ9Mnz1r1qxS02dv3rwZJycntm7dyrZt23j27BnVq1fnu+++Iyoqij179gD/R589efJkJk6ciK+vL1OmTJGjz/bx8aFdu3a4u7vTp08fTp8+zaJFiz4bffbnwL8yI6QK8fHxREREsGrVKoV9LVq0wNHRkZs3byqNNpYE1tbWvHr1in79+pGdnU337t2VNvCWFRKJhOjoaAoKCjA3N/8kReK/G0QiEU5OTjg5OVFQUIBYLC5V74WWllap2LtkOiTvG2pJRPSkUim//fYbBgYG7N+/X26Az8rK4vHjx2zatImFCxeqJHj4D+WLoqIi9u/fz5UrVxSCGNWqVWP69Ons3r27zIwy1apVQyqVCgxDnTt3VlBi/xRIpVLi4uLIysrCxMSkXI/9d0C9evWoV6+esOBSVR6oDGpqajRt2pSmTZuW6PNisZgGDRrIZYJLwogllUqZOnUqqampbNu2TYEm/MiRI7i7u7N///6Piiv/h/KDjJ3zw7HZwMCAP/74g1WrVrF169YyHVtGFd+hQwfMzc1p165dmUTHi0NycrJAsiJb6P9bYGVlxcSJE5FIJBQVFSkNnqiCSCSiVq1atG7dusTfsbGxkQuKltSuO3bsyJ9//snatWsVShq3bNnC1KlTiYyM5OzZsyW+lvLClxZUdXNzIykpiaVLlxITE0P9+vU5f/68EDCOiYmRI7CpUaMG58+fZ86cOWzYsAFLS0vWrVsnp/XUqlUrDh06xKJFi1i8eDE1a9bk8OHDn80JsrGx4cGDBwrBg9TUVJo0acKrV69Kfcz/KUfo4sWLKhXJ4Z2g3saNG4t1hIqKioiIiEBNTY1q1arJLbw0NTXJy8vDwMAAQ0PDcnWCXrx4waVLl6hWrRra2tr4+vqiq6urkmmnNMjJyeHBgwekpKRQsWJF6tWr95cqa5dmQC1PFBYWEhgYiL+/P/n5+djY2JCamkpAQAD5+flkZWUhkUgEVeXc3FzOnz9PTEwML1684PHjx4SHhzN16lRsbW3/c4S+EB4/fkzz5s1Vlk/27t2b/v37F+sISaVSIiMjKSgooHr16nKLddmEKxaLMTMzK1dHJTo6Gn9/f6pWrYqhoSH+/v4UFBTQvXv3T27WLiws5NGjR0RHR6Ovr0+9evX+0gxBaRyg8oRUKiUkJIS7d+8KNOhaWlpC1igzM5OioiJBZyQmJoZnz54REhLCmzdvePz4MaGhofzwww+C/sx/+PyQEQ19SFgjg62trcqMzfuIi4sjPT0dKysrOZuS2bVEIqFy5crl6gSlpqbi6+tLxYoVMTMz49mzZyQnJ9O5c2eV91NSSCQSgoKCCA8PR0NDA1tb23J34EoDsVj8Sf1an4LIyEi8vLxISkqiQoUKWFhYcOPGDfLy8khPT6ewsFCway8vL3R0dLh//z5xcXE8fvyYoKAgdu/ejVgsZsGCBaxYseKLXv+XdoQApk2bxrRp05Tu27Vrl8K29u3bf7TvZuDAgcXSopcnXr9+rTTzl5eXVyYdQfjCjlB6ejqHDh0iJCQEU1NThg0bVi50tyVFfn6+yoVAQUEBkZGRxMXFUVRUpJCNkEqlrFu3Dk9PT+rVq0d+fj4vX75kwoQJgrp8cnIypqamwoR/6dIlhfMoExBUlgqWNSbCO3rL9PR0Jk6cKDfghIeHc/ToUUaPHq0wECmjGFYWyXz48CHe3t5Cmjk6OhoPDw+cnJzkorDKBrqP6Ql9DMrS78OGDVPYpizip6yUwM3NTWGbqijPh6UyGRkZ7N69G1dXV5YtW4aGhgZLlizh+PHjwDumvPfLIdatW8e5c+fYvn07N27cIDc3l8qVK9O5c2dWrFhB165d/2cWTfn5+Zw8eRI/Pz90dHQYMGCA0sb6z3l+VdlRWQlGeno6ubm5St+5EydOsHnzZmrUqIG2tjbPnj2je/fuzJkzBzU1NVJSUhCJREKzaXnZ9du3bwkODmbYsGFy70pSUhLHjx9n+PDhCsGUktr1mzdvOHr0KE5OTrRs2ZKUlBSOHTuGlZWVXHO0qgVMSW1b2USszIErqV0rWyQqs2tQbtsfErUUFhZy5MgRbGxs2LdvH5UrV2bt2rV8++23wDuWT5mNw7tFwvPnz/Hw8OD8+fNCyUnHjh2ZN28effv2/VdQKpcEEomE69evc/XqVeBdv1yHDh2+CBsUvHsHiwvIvX79muzsbNLT05XO676+vvzyyy8YGxtjampKcHAw9vb2LF26FDU1NYH11MzMrFR2DcXbdnp6Or6+vgrvSk5ODgcOHKBHjx4KNPQltevMzEy2bdtG/fr1adasGTk5OcK85ObmJhdsUGbbJdWd+RJ2DSWfs5URMN2/f5+oqChWr15N3bp1OXr0qHA9vXv35syZM8JnO3TogLa2Njt27ODkyZPExMSgpaVFmzZtGDt2LGPHjkVbW/t/whH6p+L93/PSpUtype5FRUVcu3atzL3AX8wROnv2LGvWrGHChAlMnjyZqKgoFi5cSPXq1XF3d/8ig2urVq34888/6du3r7BNIpGwatUqLl++jJqaGmKxmG7duuHm5saECROE6/r666+pVq0aly9fFgaY/Px8vv32W5KTkxGJRCQmJn5ytOdDFBUV8eTJE4YPH64wsNWoUYM3b97w/Plz6tWrV+pjh4WFER4ezoIFC4Rj16xZkzp16rB3716MjY3Ljbb0747169czZ84cxGIx33zzDSdPniQtLY2ePXuSkJDAkydPqF+/PitWrEAikfDVV1/x5s0bWrZsibu7O126dKF+/frC+6JKR+HfhsDAQGbPns2gQYMYP3486enpeHh4kJycjIeHxxfJLMoWNx/i0KFDbN++nYoVK5Kfn0+fPn1o2bIlixcvFhYMO3bs4OHDh3h6egrXKpFI2Lp1KzNnzqR+/fokJCRgbGxc7plKb29vevfurVDiUbFiRdq3b8+9e/eKbQRWheTkZK5evcr8+fPlHD9ra2suXLiAj49PqUpS/snYv38/rVq1wtbWltWrV3P06FGioqJo3bo1Ojo6REZGYmFhwfLly7Gzs2P69Ols3LiROnXqMGfOHLp27UqzZs2E9+V/xa5jYmIYO3YsrVu3Zvjw4UilUk6ePMlvv/3G7t27v0gGQkdHh7S0NAVNQC8vL3755RdMTU2Ji4tj1KhRVK5cmZUrVwqLIy8vL37//Xd2794txxJ26dIl3NzccHFxERyX8p6z7969S6dOnRRofWVBogsXLjB06NBSH7egoIAtW7YwY8YMucCJhYUFAQEBnDp16otF5f9q3L59m8zMTIYNG8bx48c5cuQIwcHB2Nra0qBBA4H+/Mcff8TV1ZX58+fTrFkzKleuzPDhw+nWrRtt2rSRc+7+V2z7nwrZul0kEimQamhoaGBtba207aUk+CKO0LNnz4QIm2zSr1OnDh06dODXX39l6dKl5OfnExMTg42NDWPGjClWYDM4OJiIiAisrKyoX79+ia+jXr16xMfH8/jxYxo2bAjA3LlzsbW15cCBAwwaNIhLly6hrq7OsmXLWLlyJQsWLCA0NJTk5GSFh6ypqcnq1atxdXWlW7duxMfHU7du3TI8IdV4+/Yt1tbWKh3Fpk2bcubMmTI5Qr6+vnz99dcKDpaamhr9+vXj6NGj/3pHKDo6mi1btvDs2TOGDh1KUVGRQIE+ZcoU6tSpw9mzZxk5ciTGxsbs3LmT48eP4+LiwunTp5U2fP+vID09nTlz5nDs2DG5DF3z5s05d+4cU6dOpU6dOoSGhlKpUiVGjhyJvb29yuO9efOG4OBgjI2NadasWYnLLWRlX6dOnRIGy+3bt/PkyRNOnz6Nm5uboJdx6NAhxo8fz+7du8nJyeHQoUNcvHhR7lxisZgpU6YwadIkoqOjSUhIKPfFUnZ2NpqamirL32rXri3HfFYa3L17l8GDByvNfnXr1o0///wTJyenv6yc5UsgIyODHTt2cOvWLc6cOUN+fj7a2toMGDCAGTNm0KJFC8LDw2nXrh0GBgb4+voyfvx4GjRowNWrV+nYseMXy3z83SCVShk/fjxr1qyRIyJo2LAhT58+ZfTo0fTq1Qt/f390dXUZNGgQbdq0Ufm8kpKS8Pf3R1NTk5YtW5Y4OCISiRg+fDi//vorixcvBt4tgFevXs2hQ4dYuHAh69ato2vXrvj6+jJ48GBOnz6NtrY27u7uHD16VMEZ6datGy9evODRo0ckJCSgp6dX7r22CQkJQv/RhzA2NiY3N1dp1cnH8PjxY9q1a6e00qBx48bcv3+fzMxMlRo+/wYUFBRw+PBhTp06hZqaGps2bUJdXZ2OHTvy+++/4+LiQkFBAXZ2dmhpaREXF0fLli2pUKGC0OD/V5XeK4NEIilxlk7V9/9XILvXGjVq8ODBg3Kdk7/ITPjnn3+yfPlyhcinVColJSWFzZs306tXL1asWEHr1q2ZMWMGGzduVDjO48ePcXV1ZcOGDYSFhbF9+3ZcXFzw8/Mr8bVs3ryZb7/9lt9++w0vLy9iYmLQ0dFh8ODBrFu3Di0tLdTU1Pjhhx/w8fEhJSWF/fv3q6TTFIlEDB48mJs3bxIXF0ft2rVL93A+gry8PLnFUkxMDNevX+fKlSuEhYWhra2tVFvgY5BIJEilUpWDppGRUZmO+z5SUlLw9PRk06ZNbNy4kXv37pWJXvtzISYmhvXr1xMXF4dIJOK3334jODiY69evExgYKEQ9O3XqhJmZGXFxcfj4+DBkyBD69u2rcrL7X8HevXuZOnWq0jLFpKQkzp8/T82aNVmxYgWDBw9m7dq1zJo1SyGdHxsby+DBg1m0aBGhoaGcPXuWLl26cOrUqRJfi7u7O0eOHGH+/PkEBASwb98+OnToQN++fZk6dSo1atRAJBIxdOhQTExMePDgARcuXKB///4qHYJJkybh7e3Ns2fPFET+PhWyhbkMKSkp3L59m8uXL/PkyROkUmmZhVoTEhKoWbOm0n1isRgLCwtBQLIsyM7O5vr162zevJn169dz/fp1cnJyyny88kZ2djYrV64kKSmJwsJC5s+fz/379wkODiY2NlbIENSoUYMKFSqgpqbGqVOncHFxYcyYMcUGnv4X4OXlRdOmTZWysaWkpBAUFERycjLu7u589dVXXLp0iYEDByqUkWVnZzN16lQmTpxIUFAQPj4+9OzZk7Vr15a4pGfkyJHk5uYyZswYHjx4wE8//cSUKVMYP348tWrVErRfnJycGDJkCAcPHiQ0NBQbGxuVQoujR4/Gz88PPz+/cp+vQZ6tLTs7G19fXy5fvsyDBw+E7FZZ5sHQ0FCaN2+ucn+9evWU6huVFAUFBdy7d49t27bx559/4unpqSCa/ldCVr2TkpJCXl4ew4cPF7SlDA0NUVdXRywWo6WlRZUqVahatSr79u3DwcGBqVOnUqtWrb+VEwTlJ6j6v4Tw8PByD0x+kYzQ27dvlWZK9uzZg56eHv369cPCwgIzMzPMzMxwdnZmypQp3LhxQyAuePnyJfPmzePgwYNyDyE1NZUhQ4bwxx9/lCgrUqlSJYEOd968ecKxzp8/L+dwiEQihg0bxsmTJ0lKSip20WtpaUlQUBCGhobl3hthZmZGUFAQDRo04MCBAwJFs7q6Os+fP+fChQtftM+qpAgMDMTb25uuXbvSs2dP4F2keu3atUyePPlvEbU6fPgwjRo1Yv/+/fTo0UOOB//rr79m48aNLFy4kPT0dOzs7MjMzKRDhw60bduWxMREpk6dSr169Vi6dOn/5MLpxo0b7Nu3T2H7gwcPuHz5MkuWLEFHR4dKlSpRqVIltm7dyrp161i/fj0zZswA3kXuhw8fzoYNG+QWXgUFBYwfPx51dXXh/SkOmpqa7N+/n3v37rF48WJycnIIDw/n8OHDChHUCRMmsH37durWrftRu37z5g15eXm0adOmpI+lRDAwMCA5ORmJRMLVq1fJz8+nSZMm6Onp8fr1a7Zs2fK3m7ThXXPyiRMncHZ2ZuLEiWhqahIQEMD69esZPnz43yI4cPHiRRo3bszu3buxs7OTK5vcvn07ixYtYt++fUgkEipVqoS+vj4uLi706NGD/Px83N3dAdi4cWOJaIT/bbhx44ZSm0tISOCnn37Cw8ODBw8eYG5ujrm5OT///DPXrl1j7ty5bN68GXi3wBs5ciRTp06lc+fOwjEWLFiAu7s7v/32m9CnVRxEIhHu7u6EhISwZs0a3r59i6+vL7///rvCvDdkyBCGDBmCnZ2dSqkJeKe5kpmZSUxMzGcrJcvLy+PJkyeEh4fTtGlTqlWrRlxcHHv27CEjI6NEjGelxafMQWlpaezatYumTZsyatQo9PX1CQkJYefOnXTt2rXYTP6XwqNHj7C0tOTEiROYmprK9SLt3buXXr160aVLF0QiEXp6etSpUwepVMqgQYPQ0tLi4MGDLF26lG3btpWr2Oen4L8eoZJh3bp1TJo0CW1tbdatW1fsZ8vCDvtFHCFl6TupVMr+/fvx9PRkxowZclEUkUjEsmXLmD59uuAI/fbbb6xdu1bBEzQ2NmbTpk389NNPShkvlEFNTY0ePXpw48YNJk6cqFJoz9zcHH9/f+zs7PD391fZiPXw4UPMzMwIDw8nJydHWOQrY41TdgxlugLvl/w9ffoULy8v2rdvLxeZrl27NhEREcTHx2NqaioX2X79+rXCMT8sAVBXVyc6Olphe1FREenp6WhoaAhN08quUVlJgZ6eHikpKdy9e5c5c+YItfUGBgb069ePxo0bc+zYMWbPnq1AUQtw7NgxhW3KkJycrLBt586dCtveF2B7H5MmTWLr1q1CCj04OJjIyEiBRKFbt26sWbOGhQsXCuKdV69elauNHzBgAH/88Qd//PEH8+bNK9F1/5sg04T5EOvXr+fnn3/m7NmzClmN6dOn07VrV6ZPn45YLGb37t1MnjxZIfqsoaHB1q1b6d27Nz169CjRJC8SiWjZsiUDBw5ET09P5SLH3NyclJQU6taty9WrV+ndu7fSzz18+BBzc3PCwsJITk4W2OLKy64jIyPx9fXFyclJrgS1Tp06JCUlERkZiba2tlwjeEnsWtYz8GEDdlFRERKJhJiYGCpUqEBRUZHSa1R2THhHL3/q1ClmzpwpjHEGBgZ06dKFZs2asWbNGpYsWaI021RSu1b23R07dij9rDLbnjVrFuvXr2fy5MlC+ePdu3dp2bIl8K5PKjMzk6ysLG7fvi04du//Lt27d+fChQvMmDGDbdu2lei6/00Qi8VKyTJ27NjB3Llz0dDQUMiidurUiY0bN5KQkEClSpW4ffs29erVk3OC4J2Nfv/99/Ts2ZNp06aVOCBma2vLxIkTMTMz48cff1T6GR0dHSQSCTVr1mTNmjUqj/Xq1SuMjIwQiURy80hJ7RqKt22RSISXlxdGRkZMnz5dGLtkc7evry9ZWVlyVNAlsWt7e3tu3bqlIFQp+62ePn0qlHcDSis6lJXi6unpsWPHDsaMGSMEMgwMDGjVqhVNmzbll19+oVGjRkp7aEpq10lJSUq3K7NtVXZ98OBBvv76a44ePYqhoSEeHh6MHz8eeEe81KRJEx49ekSlSpV49eoVM2fOpEePHsIxOnXqRFBQEKNHj+b8+fN/i9Lg/xyhkmH16tUMHz4cbW1tVq9erfJzIpGoTI7QF3kT7OzsFMrXMjMzqVixIiKRiPDwcIUIjpmZmZxA2evXr1VmfGrUqEFsbGypXwp7e3vu3buncv+9e/ewt7dn+PDhbN68WamgYGpqKlevXqVXr14UFhZ+Fo2JQYMG8fz5c5KSksjPz0cqlRIeHs62bdto164dTZo0ITAwsNTHbdu2LcePH1dw9ff2uAAAqSRJREFUVCUSCadPn6Z9+/Zlut6bN2/SvXt3pXS5shIlVQPjl0JmZiZGRkZYWVmRl5fHq1evBL0YeLcY0NTU5MGDBxw4cIClS5cqbRCeM2cOFy9e/OQywn8iXF1dlU6ESUlJWFtbc/HiRYWmfDU1NWrVqkVMTAzwrnn5fZXr96GtrY2trS2hoaGlui57e3vu3r2rcr/Mrtu0aYO3t7fSd7GwsJD169fTu3dvjIyMymRfH8PgwYPx9/cnIyND0KOKi4tj//79mJiYMGjQIG7dulXq47Zp0wZPT0+l7+SVK1dwcHAo0yLg0aNHODo6Kl28Ghsb06BBAx4/flzq45Y31NTUhPK3iIgIQZtMhkqVKhEcHMx3333HwIEDlfaZdu/endzcXCIiIr7Ydf9doMqufX196datG0ePHlUq29CxY0cePnwIwNGjRxVEy2UQiUT06dNHKUtbcbCxsSnWDl+/fo2pqSlmZmZoaGjw7NkzpZ/79ddf6dy5M7a2tgQEBJTqGkqC9u3bExwcTFFRkeBopaenc/bsWV6/fs2MGTO4cuVKqY/r4OCAr6+v0nK1wMBAKlSoUCbJjpiYGAwMDJRmczU1NXF1deXGjRulPm55Iy0tTRh7Xr16xYQJEwgODhb2V6lSRRDQrl27tpwTJEO9evVo3749ly9f/mLX/TH8Vxb3cYSHhwsl+OHh4Sr/yqIhBF8oIzRjxgymTp0q17yorq5Obm4u3333HePHj1ca8X0/KvWxMhEdHR0KCwtLVU7i5uZGjx49GDRokEKkJCUlhcuXL/Ptt98KKvJubm4sW7YMe3t7pFIpvr6+/PTTT/z66688ePAAsVj8WWrlX758ybRp03j9+jW7du0SdA8GDhyIqakp/v7+HDhwgFu3biGRSNDV1aVNmzYKFNEfwtbWlqysLNavX4+TkxPm5ubExsZy584dWrZsqbLP4GN48+YNffr0Ubnfzs6O169ff/T6yhuBgYFcunSJqKgoZs2aBbxjlZLB0dGRrl274uLigra2Nv7+/qxbtw5ra2tBTPNDiEQi2rRpw6NHj/4xKsrlBZn9dOzYkWrVqgnbi4qK2LlzJ40bN1ZKa5uTkyNXGlKczVaoUEGlcroqODo6smjRIqKjoxUm98LCQtatW8e+ffsQiUSsWrWKIUOGsGTJEqHh+/nz5yxZsoQJEyaQlJSEoaGhUtX4T8WbN2/o3bs3NjY2HDlyhPz8fIyMjGjXrh1Vq1YlPj6e69evExoailgsRiQS0bx584+WAJuamtK1a1f+/PNPmjVrhrW1Nampqdy5cwdLS0uFiHJJERERUew7bm9vT1BQ0BcvjwsPD+fixYuEhIQwe/Zs4F2pswxWVlYC9bOFhQUXL14kOjqaJk2aKLAPvY9+/fpx5coVlf2h/1Y4OjqyfPlyIVspg7q6OteuXSMhIUEgG3ofMgIQeBdoep+t7UOUxa5lNNj3799X2iuzYsUKJk2aBLwTYh02bBhfffUVvXr1EqofVqxYgZWVFaamphgZGX1Sr5wq5OfnU6dOHbp06cLBgwfJyMhAR0eH5s2bY2dnR25uLqGhoaxatQp1dXUKCwtp0KABzZs3LzbzrampyYgRI9i5cyd2dnbUrVuXvLw8fH19kUqlDB48uEzXGxERUWwPZP369fH29hayql8K8fHxXLp0iYcPHwp2fe7cObnPTJ8+nSZNmlC3bl22b9+OoaEhbdu2xdHRUeVxBw0axJ9//omLi8vnvPwS4b+M0KdDxqxcvXr1Ysec4vBFHKEaNWrwww8/0KdPH3r06EGTJk2IiorC19eXli1bMmTIEIXvBAcHyy2UJRIJ2dnZSks28vLyyMrKKnVNva6uLosWLWLAgAH88MMPwuB68+ZNli9fzu+//y5ETvv06UOtWrVYv349kZGRFBUV0bhxY7Zv307VqlW5efMmEonks9WUq6ur07JlS4XB6NatW7x9+5Z69eoxduxY4F3Z2O7du3Fycvooi13r1q1p0qQJfn5+BAYGYmJiwvjx4z/pPjQ1NcnOzlZZ9pCVlVVsDXd5Iz8/n/nz5ytkvtTV1VmwYAFDhw5FU1OTrVu3kpSUhL29PUeOHOHbb79l1qxZ9OzZs9gJSl1d/ZM1lf6J0NHRwcPDg0mTJuHo6EinTp1IS0sjPDycK1eusHfvXoXvZGVlkZiYKKisW1pa8vz5c6WN2QD+/v4l6iV4HyKRiHXr1jFixAi++eYbunXrhlgsJjAwkJ9++onJkycL52/UqBG7du1i06ZN/PLLL4jFYiwtLVm8eDENGjRg06ZNZGZmfjYacJFIhJOTk5wmArwb/3x8fLCwsGDu3LnAu4XmoUOHSEhI+Gi21tbWFhsbGwICAggMDERPT49BgwZ9kqCqlpZWsYvXzMzML9pTI5FI2LFjB0+fPlXY179/f3766SeMjY05cuQI165do0WLFvj6+tK1a1c8PDyYNWtWsSKv/6t2De9KliZPnsyePXvo27cvUqmUpKQkFi9eLOgKvQ+pVMrVq1eF3j9HR0du3bolp0D/Pm7evMnUqVNLfV2///47gwcPZsSIEQIzYkREBCtWrKB69eqC42Zubs7Jkyfx8PCgd+/eqKmpoa+vz6RJk+jQoQObN28mIyPjs9L7169fn+HDh8tti4uL49ixY1SoUEEopy4oKOD8+fMcPXqUQYMGFTvXmJubM2vWLIKCgnjy5AmampoCmU9Zoa2tXaxD+DnHP1W4efOmUrIcWe+fiYkJ169fZ9euXXTo0IG3b99SsWJFrl+/joeHR7F2raam9rex6/8codJj9uzZNGjQgPHjx1NUVES7du3w9fVFV1eXs2fP4uzsXOpjfrEiSScnJy5fvoytrS2PHj0SosYBAQEKJRwZGRnMmzdPWAAAjBgxgj/++EPpsTds2FDmaEinTp3YsGEDx44do2fPnvTs2ZNbt26xZ88emjRpIvdZe3t7fvvtN0aPHs2AAQPo16+fQPP98uVLgM+ywHd0dMTHx0dhe1paGiEhIVhZWeHg4CBsNzExYeTIkVy/fr1EBq+jo0Pbtm3p1asXrVu3/uTFTLNmzfD29la6TyKR8PjxY5UL38+BO3fuCE6QWCzGxsaGrl278urVKx49esT9+/epWrUqv/76K3Z2dmzatAlAmNRbtGghJ6b6Iby8vP5nabRr1KjBhQsX6N69O4GBgUJDcGJiImlpaXKfLSoqYubMmcJzhXcClkuXLlU6oF+5coWaNWuWiVijTp06HDlyhMDAQHr16kXPnj3x8PBg+fLl9O/fX+6zVapU4YcffmD69On06dOHQYMGCVmXpKQkUlJSiqXzLytq1qzJ06dPFe69qKiIK1eu0LZtW7nsj66uLv379+fly5clYnPS0NCgWbNm9OrVi44dO36SEwTv7FrZOCTDnTt3vmhWNDQ0VM4JqlWrFg0aNCA0NJSKFSty+vRp9PX1mTt3LrNmzeLXX3/l/v37rF27Fngnsvi+SN+H8PT0FHpU/9dgZGTEoUOHmDFjBiEhIbx48YI1a9agr69PbGyswud///13unTpIswdo0aNYsOGDUorJEJDQ3n79m2ppC9kMDY25tSpU+Tl5TFo0CB69erFkiVLGDlyJN99953cZw0NDZk9ezYLFiygd+/euLm5CY6STGj5c9i1lpYWeXl5Su/99OnTDBw4UAjEwDs7dXZ2RldXlxcvXnz0+GKxmPr169OrVy+6dev2yZpOdevWJSAgQOWi+ubNm2XOIpcFGRkZck6QjY0N1atXx9vbm5EjR7Jx40ZEIhGjRo1i27ZtLFu2jMOHD7Nr1y5EIhHOzs54enqqPP6ZM2fKpM/2OfAfa1zpcezYMYGUzNPTk9evX/P8+XNmz57N999/X6ZjiqQleJLp6ekYGRkJKtvlidOnT7Nu3Tp69OhBjRo1ePr0KTdu3ODnn3+WMz6pVMo333xDbm4uc+bMoWbNmkRERLBu3Tpyc3NZv379Z2fuWrNmDZcvX6Z///5UqlQJHx8fHj9+zLp169DW1qZp06ZUqVKF+/fvo66ujoeHh8IxlF2jMgaZD5muVq9ejZOTk1xJwqlTpzAyMuLWrVvMmzdPru5fKpVy+fJlzMzMhEW6svIeZX1PyqCsKV5ZlCgzM5OioiJ27dpFly5dhJIpCwsLJBIJBw8exMrKivbt2yttEFU2eSiL7nxYfpObm4u2tjaPHj3CwMAANzc3bG1tMTQ05OLFi3Tv3h0fHx+cnJzo3bs3+/fvx8DAgNzcXPbu3cvp06eF8qPw8HAePXokNPrHxsYycuRITpw4oUDJunfvXkJDQxUEPT+nzZQXPuc1Pnr0iG+++YZWrVrh4OBAZGQknp6ejBs3TkFM0MPDg4sXL7JgwQKaNGlCSkoKHh4e3Llzh4MHD5a7zseHkI1BvXr1wsbGhqCgIK5cuSJkiVu0aEFcXByBgYGYm5uXq10fPXoUHR0duYnZ39+fV69e8eTJE6ZMmSL320ilUoKCgnj16pXA7FXedg2qbfv48ePUrFlTGFMsLCyA/8tMDx8+/JPsunLlygrXV7lyZW7evCmQ3Dg5OWFoaEhsbCyWlpZs3ryZyZMnM2PGDCZNmkSDBg0EAdB9+/ZRWFiIRCIhMjKSS5cuCecoLCykW7du7NixQ4GB7O7du6xbt44DBw7Ibf9ft+uoqCimTZtG1apV6dChA6mpqZw8eRInJycWLlwoZwc3btzgl19+4euvv6Zz587k5eVx6NAh9u7dy969ez97VYC/vz/z58+ndevWODg4EBUVxalTpxgxYgSjRo1i0KBBeHp6cufOHZo2bVpiu4aP2/b9+/d58OABo0ePFublhIQEDh8+THZ2Nq6urnJEDFKplNTUVA4fPszkyZOBT7NrKN2cfefOHbKzswXWNZldy5hpZ82axZs3bxS+W1a7lkqlhISEAO/uqW3btri4uGBoaIhUKkVTU5Pp06ezfv16tmzZgqGhoTBveHl5CRm9wsJC0tPTWbZsmVzQYvjw4UyfPl3BgXvz5g1jx44V9CLfx5e0bdm53N3dPynwnJuby/fff/+3Ho/KG9ra2oSFhWFlZcWkSZPQ1dVlzZo1hIeHqyT1+Bj+ckcI3hnClStXiI2NpUaNGrRv315lM++9e/fw8PAgJiYGMzMzxo0bR6tWrT67E7Rt2zYiIiJYtmyZcC6pVMq5c+dYuHAhW7duJS0tDRcXFx4/fkyDBg0+acGUnZ1NeHg42traNGrUCIlEwpo1a9DW1qZVq1ZoaGiwY8cOtLW1mThxokJtpFQq5cmTJ8THx9OpUyfgyzlC8G6A9PT0pKCgAGtra4Hu28nJSSjrKS9H6MWLF5w7d46ffvqJtm3bcv36da5evcqePXuAd6w4NjY2gnPTq1evYiNGbm5u7Ny5U24B7uvry8KFCxk+fDitW7cmKSmJ3bt3o6amxoYNGxTY0f7XF0zw7h28c+eOIKjarVs3lbSxoaGhbNmyhRcvXqCnp8ewYcNwdXUts5ZOSXHnzh3Wr1/Pnj175K7t4cOHTJkyhXnz5tG2bVusrKzYv38/w4YN+yS7hndlb7Korp6eHrt27SL2/7F33nE5/f//v1/tIYmSvUdWvY0QkZW0VJRVkZGZ7L33eCNkFpWMjGQrInvvlS2UUJQG7a7fH76dn8t1FQ3r/fG43a7bjeuc8zrnOp3n67ye6/F480YQ99y/fz/R0dH069dPivktR3tt//79Qn/Lz3SEsrKyOHr0KG/evKF69epoaGgQHh5OtWrVsLW1RU5OrsgcoZiYGAICAnB3d8fKyor79+9z+PBhPD09gc8LT5FIRHh4OKVLl/6mXc+dOxdTU1OJrNXz589xdXWlQ4cOAn32zp07efjwIX5+flIli3/t+jNu377NtWvXUFdXFxawsvD27Vs2bNjApUuXUFBQEDIzuQkJFxUiIyPp16+fFH3+8+fPGTx4MK1atWLEiBHUqlWLPn36sGDBgkI5QikpKbx8+ZKsrCz09PTQ1tYmODiYc+fOYWJigq6uLpcvX+b8+fN069ZNqoclZxm2fPlyoR/mZzpCOT3P9+7do3r16ujo6PDgwQOKFSuGo6MjysrKRWbXnz59YtOmTVSpUoWlS5eSnJzM1q1b2bhxIwkJCVSoUIG3b99y7tw5DA0NGThwIDNnzsy193Dfvn3ExsZK9PIlJibi4uJCjRo16N69OyoqKhw6dIijR4/i7e0tkw3wVzhCc+fOLbQjNHXq1N96PipqVK5cGW9vb9q3b0/VqlVZs2YNVlZW3Lt3D2NjY+Lj4/M95k/pEfoWFBUVsbCw+K59mzVr9tOb0rOysti+fTuhoaHCxBgWFsb8+fNp2rQpLVu2ZNy4caiqqiISidi1axcNGjQo0Lk+fPjApk2bKFWqFPXr1ycuLo79+/fTvHlz3N3diYyM5Pr162RmZlK1alVatGiRa4PY27dvZapQ54bs7Gyio6NJT0+nTJkyhYrE54jUJiUl8fr1a8qUKYO1tXWRL2w/fPhASEgIw4YNo0ePHiQkJNC7d2+aNGki7PPx40eOHDkinPtbL5Pk5GSpF52RkRHBwcHs3r0bX19fNDQ0GDduXJELbf6XIBKJaNWqFa1atfrmvjVr1mTJkiU/4aoksWzZMry9vYW/94MHDxg7diyVK1cWRJ43bNiAjo4OgYGBMvsZvwdpaWmCdk2jRo3IzMzEw8ODChUq0KdPH6Kjo7l48SIRERGUK1eOmjVrSjlBOXj79m2+m0JjYmJISkqiVKlSAg14QSAvL4+5uTlpaWlERkZSqlQp2rdvX+Q9BFlZWQQEBNCnTx+GDRsGINyP0qVLExMTQ1xcnCBdAJ9LhnIEK2UhPj5eilWrSpUqHDlyhJCQEDZv3oyioiJ2dnbfbFz/X4e+vr5MwoSvoaurW+BylcIgh8I/5/337t07hg8fjoKCAhYWFqxatYoTJ04IuoJTp04t0Hmys7PZs2cPz58/p2XLligpKeHr64u8vDyDBw+mSZMmXLx4kZs3b6KhoYGenl6ujfwJCQn5XhTHx8cTFxdH8eLFJcrt8guRSESLFi1o2rQpL1++pHjx4hgZGeUqSlsYbN++HQsLCypXrkytWrUoXbo0sbGx9OjRg+3btxMVFcWuXbswNDQEoFixYsTHx+fqCMmy6+LFi7N7926uXLnCnj17yMjIoHXr1owZM+aHB9fyg+zsbJnyMvk5/n8Nffv2pVu3bpQtWxaRSISpqSnwOUlS0JaL38IR+t1x+/ZtmjVrJmSpLl68iKenJ/v370dNTY3MzEzs7Ozw9vbGyMiIOXPmULFixXxT1KalpbF27VpcXFwkBMw6d+6Mr68vx48fp3379gKJxPv37/H19WXw4MFSL+3MzEyuX78u0WeVF27cuMG5c+eoWLEiampqhIWFoaGhga2trdTCQiwWExkZSWJiIsWLF6d69eq5/lYNDQ00NDSEVHtR4+zZs3Ts2BElJSWys7OF9PnVq1dZtmwZo0ePJigoSOL8NWvW5NatWzLFbyMjIylRooTMqJaKigqOjo5SDbB/8WciPT2d7OxsgZbz1atXDBs2jC1btgjPy8WLF9m9ezcmJibs3buX0aNHU79+/Xwvkr28vGjXrp2EU2hubs7x48fZuHEjTk5OAt1rZmYmc+fOpXXr1lIEMGKxmOPHj3+3Q5bDqKatrU2JEiU4d+6cMF/JcqZiYmKIjo6mWLFi1KpVK1cCGmVlZWrUqPHD7PrOnTvo6+sLTltOFgjAz88PCwsLBg0aJNHHaWlpya5du3BycpIaLz09nVu3bskUhpSTk8PCwuK7g3F/8fvjzp07LFy4EPj8Xu3Vqxf//vuvMOffvHmTOXPmMHbsWPbu3UvXrl2xtbXNN+HS7t27KVmyJGPGjBGcrg4dOhAeHs6///7L2LFjhYoM+Mxsl5CQIJVphM/B1a/lBnLD+/fv2bt3L8rKyujq6hIXF0d8fDwWFhYSDJ45SExMJCIiAmVlZWrWrJlrkFNBQYFq1ar9MLt++/YtysrKQinqoUOHiI2NBT4LXW/fvp26detKaMA5ODjg7+/PokWLZI4ZFBQkk5gnh2VTFsPg74K/ZAn5x8yZM6lfvz6RkZGCWC58DtJNnDixQGP+ekWpPwAZGRkSkZrFixfj7e0tTCby8vKIxWLKlCnDtm3b+Oeffxg4cCDBwcH5Os+FCxcwNjaWmoREIhEuLi6cO3dOgvygVKlS1K5dm+3bt0ukqBMSEvDy8sLU1DRP9pQcXL9+nYcPHzJkyBBsbGwwNTVlwIABNGnSBF9fX4lzRkVFsX79em7dukVmZiZPnjzB09Pzh+gnfQ9evnwpCOKmpaVJ3PPRo0dToUIFqajWmDFjGDNmDG/fvpX4PiEhgUGDBjFhwoQff+F/8cuRlZUlsfBZuXIlc+fOlbA/eXl5VFVVCQ4ORl9fnxUrVuQq8Jkbnj59SqlSpWQuwtu3by8sYnKgoKCAtbU169evlyBFSElJYefOnVStWlVw3vLCy5cvOXr0KC4uLjg4OGBqakrv3r2xtrZm8+bNQhkrfM6s+vj4cPLkSTIyMnj79i3r1q3jzJkz+fqtRYWnT59KEEVMnjxZ+LeFhQUlS5aUWvA5Ojri5+cnpR+TmZnJ4MGDJcQt/+K/jZx+T/jch2dvby8R+FJRUSEzM5OtW7dSp04dTp48yaJFi3ItFZWF5ORkoqKiJBydHNStW5fq1atLvRcdHR1Zv369oKMGn5/PsLAw4uLivotAIjExkW3btmFnZ4eTkxOmpqZ0796d3r17c/DgQaKjo4V909LS2LFjh0AwkZiYiL+/P/v27fsl2YRnz55J2PWXelU54rtfC9w3b96c58+fExISIvG9WCxm8eLFNG3aVKZj+SfgL1lCwWBvb8+oUaMkyE769OmTp2xLXvibEfoO1KtXT1CzTk5ORk5ODm1tbWH7hQsXhAmsefPmlC5dmo4dO3LkyBE6duwosdiSVZaSk9bNEflTUlKSSVNbtWpV7ty5I6FIbWJiwt27d1m/fr2gCK6srEzHjh0l1OpBtl6LsrIyly5dYty4cUJWJ2eCNDAw4O3btzx58oQWLVoQExPD0aNHGTNmDMWKFRMm85YtW7Jt2zZEIlG+GGxkRaUiIyOlvpNVT56TAlVUVERdXR0FBQXCwsLYt28fbm5uwjgODg4yy2FWrFhB//79qVSpEnXr1uXp06eEh4cza9as7yr5+Is/H6qqqiQmJgpEG7du3RKiyPC5uTmnZK5UqVLUrFmTVq1asWrVKrp27SpRdpqXXR88eBArKytKly4t066bN2/OuXPnaN26tfBdzZo1UVFRISAggNTUVIHyNUdA+UvIsmtVVVVOnDjBoEGDhNrxHLsuVqwYNjY2XL58GQcHB1JTU9m4cSP9+vUTavlfv35N8+bNOXjwIKdPn8bQ0JC0tLTvuq9FYddqamqoqqpSokQJDh06REBAAB4eHgJ7o4WFhZQzqK6uzrZt23B3d0dBQYFmzZoRGxvLuXPnGDJkSK7CvX/x30Pp0qV5+vQp1atXZ8+ePUK/KHy2gxy2VTk5OTp37oyVlRVz5swhPDxcggE0tzJSdXV17t69S7t27YR33te23bJlS/bs2SMhA6KpqUn//v05cOAA79+/R0lJibS0NBo2bEjfvn0lHPXc7DokJIRu3boJpaJf2vWAAQPYuXMngwcPRklJiRUrVmBqaioEYV6/fk2TJk24fPkygYGBWFtb/1S71tDQQCQSCffV3t5ekK6AzyLTX5f4iUQiNm3axNixY1m7di1t27YlNTWVsLAwzMzMfknpZVHhb0bo+7By5UoGDhyIiooKK1euzHNfd3f3fI//1xH6Dqirq2NgYEBgYCBt2rSRyDCkpaUxb9481qxZA3w2WiUlJRYuXIiBgQFHjx6VqXAsC19HqL+GioqKTLX4xo0b07hxYwmK6O9tqnz69Cm1atXKtbStZcuWbN68mRYtWhAcHEyvXr2k6IwVFRWxt7dn165dBaYxLygMDAy4cuWKQIsqLy9P6dKliYyMxNramrt378pMqderV4+DBw/y4MEDXrx4gYmJSYH7uv7iz0VOo/SsWbNQVFSUIEKZPn06Q4cOFfYtXrw47u7u+Pv7C4uN70F6enqezeGqqqoy7bVGjRoMHz5ceFnmx64/ffqEnJxcrg20devW5ciRIwCcP3+e1q1bSzE7iUQiLC0t8fLyylOg8EegUaNGXLx4Ucj6iEQiIfpXoUIFoqKiZJaylS5dWugzuHfvHoaGhsycOTPfZcp/8WfDzc2NqVOnsmXLFtLT0yUW8WvWrBG0heCzs1OvXj2qVq1KUFAQDRo0+K4+koyMDKkg25fI7X2tq6vLgAEDCmTX8DnT6+DgIHNbyZIlSU9PJyMjg5cvX1K6dGmZmeimTZvi7+9PUlLST+2ZadCgAX5+fhIlgF/OO8rKynTu3FnqOBUVFVatWiX0BSopKTFq1Kifrm9U1PjrCH0fPDw8cHR0REVFBQ8Pj1z3E4lEBXKE/r4dvhOzZ89m//79zJ07l/DwcKKioti9ezeWlpa4u7sLNa/v3r1DWVmZevXq0aFDByHy8z2oVq2aVFnHl3j06FGeugdycnLf/cLPzs7m2rVr7Ny5k6tXr7JmzRpu3bolZVhqamrCZP7mzRspmtkc5LwQ8jOhFwVatmxJWFiYhCBcv379kJOTIyIiAisrqzydSz09PczMzP46Qf+j6NWrFyKRCEdHR5KTk7l79y7Hjx/Hzs6OBg0aCGUv2dnZvHjxgurVq+Pg4MDly5e5f//+d51DT0+P69ev57r95s2bElneryESifK1kH/48CEbN27k2bNnrFixQugL+nrMnLLZmzdv5kpAIycnR5UqVYiKivru8xcFatWqRWRkJE+ePBG+MzU1RUdHBxUVFVRUVCQi7V+jQoUKmJmZ0bx5879O0P8gGjVqJGR6VFVVOXDgAFevXsXV1ZXHjx9LLJbOnTuHgYEBTk5OvHr1Kk/NuC+hp6fHjRs3ct1+69Ytqlevnuv2/Nr1q1ev8Pf35+XLlyxfvpwjR47w6dMnqf1UVVVJT0/nypUrGBsb5zqevr7+d89hRQVNTU1KliwpoTOor69P3bp10dLSIjw8XCiRk4WSJUtiamqKiYnJH+8Ewd/SuO9FRESEUAEQERGR6+fZs2cFGv/vG+I7oaioiL+/P05OTqipqdGzZ09ev37N7t27MTMzE/abO3cuAwcOBD6THKirq+Pp6ZmnInsOLCws2L59u0xn4s6dO5QoUaJA4pJfIzMzk3Xr1hEREUH37t2pVKkSTk5OPHv2DD8/P4na4WfPngk9E9+KHCkpKeWrxroooKqqiqurKz4+Pvj4+HDp0iUeP35MsWLFSExMlBDv/Iu/kIWZM2cye/ZsypcvT48ePbh48SKrV6+WyAb5+vpibm6OnJwcRkZG1KpVCy8vL6k+M1lo2bIlp0+flhKYhc+lKlFRUTLpXAuCXbt2ce7cOaysrNDV1WXQoEGkp6fj6ekpUQLzZSQ4Ozs7z15CZWXlnx7gEIlEDBkyhJCQEFasWMH58+e5c+cOysrKREdHC1orf/EXuaFnz574+/tTo0YN3Nzc2LVrF6NGjWLFihVC5vfChQsUL16c0qVLC9IdgYGB3+UgVK5cmfj4eJm00h8/fiQsLKzIGvXPnTvHrl27aNy4MdWqVcPV1ZVSpUrh6elJXFycsF92djYfPnwQssx5sdD9CruGz8GnZ8+esXLlSk6dOiXIWsTHx+Pm5vY3cPEXPx1/n7h8okmTJhw7doxatWrx8uVL4uPjyc7O5vbt2/Tu3ZsyZcrQsWNH4PMifdSoUbx//55ly5bJ5Nz/EjlaGDNmzOD69eukpKQQGxvLzp07OXToUJGUnX348IGFCxfy/v17srKyCAkJ4dGjR0RERGBnZ0eZMmW4cOEC8HlSPXz4sKD7o6CgQFJSksxxs7KySEpKKhQnfn6RkJBAfHw8Ojo6jB8/XuCQV1BQoGLFigKd+V/8xbdQvXp1tmzZgrOzMw8fPuT9+/dCFmjixImcPXtW0PeQk5Nj6NChqKmpsXjxYoH1KDcoKioydOhQ5s6dy6lTp/j48SMJCQkEBwezbt267y6xywtpaWmsWbNG0HYJDQ3l/fv3hIaG0rZtW0xNTSXU2oODgwUGuwoVKkhkXr7G8+fPc6Wu/RH4+PEj79+/R1lZGTc3N+zt7UlOTiY9PZ06dep803H7i7/IgY6ODvPnz2flypXcvXuXmJgYsrKyhHfy7NmzJUptevbsSe3atVmxYgWPHj365vjDhw9n3bp17Nmzhw8fPvDp0yfOnj3LokWL6NOnT6GzFjn03Lt27aJ06dJcuXKF9+/f4+fnR5MmTejbt6+E6O/FixepV68ecnJy1KhRgzt37uQ69qNHj3Kt8PgRSE1NFdYdzs7O9OnTRxBEzenL/ZKY6X8BfzNC+Ue/fv3y/BQEv/Xb5MKFC6xbt06IeFhbWwsZmV8JeXl5NmzYwLlz55g7dy4xMTFUq1aNCRMmSNXjVqhQgbFjx7Jw4UKOHj0qiCDmhmbNmlG7dm0OHDjAyZMnUVFRoWXLljg4OEgwSBUESUlJeHt7IxKJmDx5MnJycigoKBAREcG///6LtbU1rVq1Yv369VSoUIGDBw/SpEkToRm0ffv2BAUF0bt3bykH49y5czRo0OCnOB5Pnz7l5MmTaGpqIi8vT2xsLM2bN8fGxgZFRUUOHTrEvXv3mDRp0g+/lr/IPx4+fMjq1auJiIggOzsbY2NjXF1dJQhIfhUmTJjAvXv38Pb25tmzZ+jo6ODi4oKxsbHEs128eHHGjh3LggUL2Llz5zcbdqtWrcqcOXMICQnBy8sLOTk5GjduzNSpU1FUVCyQCFwOMjMzWb9+PSkpKUyZMgUNDQ0UFBRISEhgxowZxMXFYW9vT0hICK9fv+bYsWOoq6sLi4/27dvj5+fHqFGjpByMR48eoampiaqqqswynKLEmzdv8PDwQEFBAXV1dd6+fUutWrVwdnZGXl6e06dPExoaKpQz/sXvhdevX7N+/XquXLmCSCRCT0+PYcOGFVm2szCwtbWlSZMmeHt74+Hhgbq6Ot26dePAgQMSz7yioiLDhg1j2bJl+Pr6fjOjo6Wlxbx587hw4QKbN28mMzMTPT09Jk2ahKqqaqHsGiAgIIDY2FiGDh1KrVq1UFBQID09nblz5/Lvv//Sr18/ihUrxrNnzwgPD+fVq1eCsGjTpk1ZtGgRzZo1k6okiY2N5d27d1SoUOGH23VCQgJr1qwhLS2NEiVK8O7dO3R0dHBwcKBx48YCcYOxsTG6uro/9Fp+N/ztEco/vrapjIwM7t69y4cPH2jXrl2BxhSJv+NO/go17YULF/L8+XMmTZpE5cqVSUtLY9euXfj7+7Njx458Cwr+anTt2pWQkBDat29PjRo1mDBhArq6umRlZTFy5EguXLhAVlYWcnJyNGvWjA4dOkiVoslSmobPfx/4HD168+YN2dnZVKxYUWpRs3//furWrUtYWJigL5RDofv8+XMCAgJQV1fnyZMnNG7cWGJiyrnfhw8f5tmzZ5ibmwOfH8qLFy8iEomwtrbONVIrKzIm69GTVUL45QL57NmzvHz5End3d2HMrKwsfHx8OHv2LO/fv0dNTY0FCxYUqGmuqPBXgV42chicZs6ciYGBAdnZ2Rw9epTFixezdu1aKerU3x0zZ85k1qxZdOrUiUqVKjFixAiBHnbSpEmcPHmS1NRUxGIxBgYGWFhYyMyayrLtHLsWi8XExsaSlpZGuXLlpI6/desWiYmJ3Lp1S9BRyLHrjx8/8u+//1K6dGmePXtGxYoVadeunbA4zbHra9eucezYMczNzalVqxaPHz/m2rVrREdH06NHDxQVFWWWxhaVXT969Ihjx44xYcIE4VkUi8UcPXqU7du3Exsbi4KCAoMGDcLT0/OXOUJ/7Vo2bty4wbhx45g6dSomJiaIRCKuXLnCzJkzGTVqVJ59H78jdu/ejb29Pa1bt6Zq1aq4uLjQpk0b4LOu4MiRI4mLi0MsFlOjRg3atm0rs2ctL7uGz+/PpKQkSpcuLSXzEBcXR3BwMAkJCYIQaI5dZ2dnM2fOHMqWLcvLly9RVlbG1NSUunXrCqVlWlpavHjxgi1bttCmTRsaNmzIy5cvuX37Nvfu3cPBwUEIJn6NorLrd+/e4e/vz5gxYySyynfu3GHx4sV8+PABsViMhYUFgYGBeZLK/Gj8TLvJOdfkyZMLVUWTmprK/Pnzf+v56GcgOzuboUOHUq1aNcaPH5/v44skIyQWizl//jyvXr2icuXKhVblvnjxIs+ePRMoFeGzYTo5OVG7dm3GjRvHhg0biuLSfxpWrVrFwoULefr0Kf7+/nh4eFC/fn0qV66MhoYGAwcORFVVlZSUFE6dOsWyZctkRmhzw9mzZ7l8+TIVK1ZEXl6ewMBA6tSpg4WFhTAxPn36lG7dunHo0CGp46tUqYKSkhLDhg1jyZIldO3aVeZ5LCwsePPmDadOneL58+doaGhgaGj4U0pn0tLSuHbtGsOHDxcm6ufPn7N//37Onz+PvLw8/v7+dOvW7T/RSPk74Pbt2zx48ABtbW1at25dqJKkd+/esW7dOg4ePCgQWMjJydGpUycMDAzo27cvwcHBf1S0f9y4cWRnZ3Pnzh2OHDmCl5cXFStWpHXr1sTExNCzZ0+0tLTIzMzk6tWrLFiwgLFjx363Yvu9e/cIDQ1FR0cHdXV19u/fj46ODvb29sIzfv78edzc3Lh+/TpZWVkSCxt1dXWqV6+OqakpgYGB2Nvby+wzbNy4MTVq1ODUqVOcPn2arKws9PX1adeu3Q//e4jFYg4fPszgwYOFl3lcXBy7du3i8uXLfPr0iYkTJzJp0qT/6Zd9UeL58+dcvXoVVVVV2rZtW6gqi+zsbMaMGUNgYKAEpbyhoSGBgYFYWlpiZGSUJ8Pa7wY7OzuWL1/O2bNnuXr1Kps2baJEiRI4ODgQHx+PmZkZ5cqVQywWEx4eztq1axk6dGieZEZfIioqin379qGmpkbJkiWJiYlBXl6ebt26CcGJM2fO0KFDB0JCQkhISJC4t3JycrRu3RoNDQ1KlSpFtWrVqFmzptR5KleuzJgxYzh37hy+vr6kpqaip6eHi4vLTykvPXjwII6OjsL6IDU1lcDAQC5fvkxiYiLW1tZ4eXn9z2WCcvA7Z4Ti4+Nxd3dn//79wOeed09Pz1wp5XOuZ9asWXh5eREfH0+zZs1YvXq1RKWUl5cX27Zt4/r16yQlJREfH5/nmN8DOTk5Ro0aRZs2bQrkCBW6R+jkyZOYmppy9OhR0tLS2LdvHx07duTy5csFHnP9+vW5ljUZGhry/v37QqecfzbKli3LihUrOHjwIPfu3WPhwoU8ePCAQ4cOkZWVJUQFVFVV6dSpE02aNOHw4cPfNXZoaCjv3r1j5MiRODg40KVLF2GxtXXrVmE/RUVFFBQUKFGihISgWw5UVVV59OgR5cuXz/N8ZcqUoXv37vTq1Qtra+uf1j9w69YtmjRpIjh2d+7cYdSoUdy6dUug+c6Jjv1F4fDo0SMsLCzYuHEjqampXL58GTMzMwkBvPzCz8+P4cOHy2TxK1u2LPr6+ly9erUwl/3Toa6uzuzZs9mzZw/37t3Dz8+P+Ph4tm7dSkpKiuDwKCgo0Lx5c5ydnfHz8/uuse/cucP58+cZMmQIjo6O2NraMnLkSBo2bMjatWsFYpKsrCxUVVXR19fn2rVrUuOUKFGCmJgYMjIy8iRb0dTUpHPnzri5udGlSxdq1KjxU5zS6OhoiUxXTEwMbm5unD59mlq1anH8+HGeP3/+1wkqAsTFxdGzZ09mzpzJx48fefbsGV27dmXJkiUFXlSFhoZiamoqsVDPgaqqKn379mXHjh2FvfSfCjk5OUaMGMGuXbu4desWQUFB6Ojo4O3tzdu3bwUBT5FIRL169Rg8eDAbNmz4rnv4+vVrdu3ahbOzM3379sXGxoahQ4fSuXNnvLy8hD7cpKQkSpYsibGxsUwmuxIlSpCUlMSjR4/yZKdTUVamffv2DBs2jG7duqGvr/9TnKCMjAySk5MFJyc9PZ3Ro0ezZ88eSpUqxdy5c0lNTf2fdYLgs+OQnZ1d4M+PdIR69erFzZs3CQkJISQkhJs3b+Ls7JznMYsXL2bZsmWsWrWKK1euUKZMGUxNTSV6yz99+kSnTp0kRLKLAk+fPi0wWVehrOH69et4eHiwb98+iWhPQkIC3bt3Z8WKFQUqdXn37l2edcX6+vo8e/bsp2tbFBV0dXWZMGECISEhGBkZsWDBApSUlCTY51q3bs3s2bNlcup/iU+fPvHgwQPc3NwkFi0ikQgTExN8fHx4/fo1ZcuWJTMzk4yMDLp06YK3t7fEojQ7O5u4uDj27dv3zYf9VyE5OZmyZcuSnZ3N8ePH8fX1pUqVKixatAglJSXq1KnD8ePHf/Vl/vGIiYlh8ODBbNmyRcLJHTNmDAMGDEBdXV0ojcwPwsPDcXFxyXV7s2bNBO2XPxHq6ur06dOHI0eO0KhRIyZOnIi8vDz9+/cX9qlRowbJyckkJyfn6ZSIxWJCQ0NlOo5169YlKiqKmzdv0qRJE4oXL87bt29p3769UAb3ZXnK8+fPuX//PlZWVkX/o4sAycnJwiL65s2brFu3Dvis96KpqUmzZs2EkqC/KDgyMzPp2bMnCxcupGHDhsL3bm5uzJ8/n2XLljFmzJh8jxseHp4r/Tp8tuv169cX6Jp/B8jLy2NnZ0d4eDgAy5Yt499//2XGjBnCO7dEiRJUqVKFJ0+eyMzMfIlDhw7Ru3dvKce+bNmyWFtbc/z4cWxtbSlfvjzPnj2jYcOGhIaGcu3aNYn11LNnz3j58iUtWrSQYlpTTE2lsb8/Fa5fRy4ri2x5eaIaNeJtixak/6RAYVpamjDHRUREsH79eqKiovDw8BActy9ptP8X8btmhO7fv09ISAgXL14UbNvb2xsjIyMePnwoc10vFotZvnw5U6ZMoUuXLgBs2rQJXV1dtm3bJjB95pAOnTx5skDXltPW8eV5X79+zaFDh77Zg58bCpURWrJkCWvXrpVKeWtqarJixQqWLl1asIuSk8uTYe3t27eFTqX9DtDQ0GD+/Pk0b96csLAwiYdaXl4eFRWVb7KoXL16lSZNmuQauW3dujUXL14EwMjIiOPHj1O2bFn69evHhg0b8Pb2Zs+ePSxYsIC0tDQGDBggRLt+N+jo6PD48WOWLl2Kh4cHDRo0YMqUKSgpKQGf69Rr1Kjxi6/yz8e6deuYMmWKVKZPUVGRtWvXflPZOTeUKFGCN2/e5Lr9v2LXSUlJjB07li5dunD+/HmpZuTKlSsTExOT5xgvXrygUqVKuWpgGRsbc+nSJQA6dOgglNmMHDmSgwcPsmrVKvbs2YOnpyfPnj3D3t5eECf93aCjo8OLFy/w8fFh6tSpaGpqMn/+fGEe+p4s9V98GwcOHMDc3FzCCQIE8pzQ0NBvMpvKQokSJfKkkf+v2PXDhw8ZMmQI/v7+PHv2jBcvXkhsr1mz5jf1ttLT00lNTRU0Ub5GnTp1BAZHExMTgoODEYvFuLu7c+/ePZYtW0ZQUBC+vr6cOHGC1q1bSwWEFVNTsV+2jFqhoRR79w61+HiKvXtHrWPHcF6zBqUvaPR/JHLIIvbt28eIESP48OEDs2fPFpyg1NRUCamO/0X8rqxxFy5cEIJQOWjevDmampqcP39e5jERERG8efNGYE2Gzy0tJiYmuR5TENy4cUPic/v2bQCWLl3K8uXLCzRmgTNCWVlZJCYm5loWVbt2bV6+fFmgsW1tbQkICJBJhZecnCwIG/7pyGmkbNGiBRcvXuT69etCLWVOw6mdnZ3g5GzcuFFqjPj4eMqVKye1YMoRQVVVVRWoZ1u2bMn69ev59OkT7dq1Y8SIEYSGhnLv3j0yMzOxtbXl1atXMiPVOZTaX0JWzXduzF85DeRfQhZ1Z3R0tNR3Ob+/Tp06rF+/HnV1dcLCwmjbtq2wT2ZmJhYWFuzcuVPm+f/i+3HhwgWmTZsmc5uamhrlypXj1atX+V6c9urVi40bN8pUhhaLxezbt0+C4vlPRU4gx9DQkKCgII4dOya8HKytrfH29qZLly4Sz//Xtv3u3Tu0tLRytWsFBQXS0tJIT0+nSpUqaGpq4u3tTefOnRk4cCCnTp3i/v37vH79GgcHB5KSkmS+NGXZNXy/bReFXaupqREeHk5aWhqbNm3C2dlZIrAzYMAAhgwZIvM6/+L7ERQUxLJly2RuE4lEdOrUiVOnTtGpU6d8jWtra0ufPn3o0aOHzICcj4/PN1kV/wSUKlWK169f07FjR7S0tAgODqZv377A5/dPcnIypqam2NjYCMd8bdfJycloaGjkatfwef5IT0+nWLFimJiYsGzZMhwcHOjRowfnzp3j0aNHPH78GBsbGxQUFKScUIuQEEq8fi0V5ZbLzqZkTAz6u3axs0UL4fsfZddisZiPHz9y+PBhZs+ezYQJE4SgJcCKFSuKRBLkT0ZRZYS+JOCAzw5IYVoE3rx5I7AFf4nSpUvnGszM+f7rUkddXV2poEFhcOLEiSIbKwcFzghlZWV980bnFs38Fnr27MnOnTulvMikpCScnZ3/M7TI9evX5/Lly9SuXZtKlSoJ0R+ATp06cfHiRapWrYqzs7NM0TaAcuXK5ammGxERIQiiysnJMWjQILS1tVm/fj1Lly7l9OnTaGlp5cn49jsgOzubFStWoKqqSrly5SRYA588eYKjoyMDBw78T0QefzXk5eXz7A3R0NAoUOS4SZMmfPjwgW3btklM/pmZmYwaNQp7e/tfyhpUVLC1tWXbtm2UKFGCpk2bcuzYMUHMdMSIERw6dAgjIyPMzc1z7YkqU6ZMrjYPn1Xmv4wq29nZ0aRJE7Zu3crSpUs5evQoIpEIW1vb375J3dfXl7S0NCpUqCDhXMfExDBq1CiqVq36x5ZB/074smdNFgpq11paWhgbGzNz5kyJCgaxWMzatWspXrz4fyJT7+TkhLe3N4qKirRv357Lly/z7t07AE6dOsXatWsZMGAARkZGHDp0SOYCV01Njfj4+FwXv1+zzDVr1gw7OzsOHz7MkiVLOHz4MImJiVhaWspcqALoPX5MbtLn8sA/RbgozQshISFERkZSqVIlqlevLrxTkpOTWbZsGdevX/9ty/B/FooqI1SxYkU0NTWFz4IFC2Seb+bMmYhEojw/Oe8kWWsAsVj8zb7Rr7d/zzG/GgVe+SopKZGcnExaWppMh0iWivr3QkVFhR07djBhwgQWLlyIvr4+MTExREVFMXHiRFq3bl3gsX8njBs3DkdHR9q1a4eNjQ2enp5cv36dSpUq8fTpU3R1dbGwsGDz5s0EBwczd+5cKeeydu3aBAcHk5SUJPWSy8jI4OzZswwdOlT4Tk5OjubNm9O8eXMArly58uN/aBEgKiqKR48eMWHCBMqVK4evry+PHj1CTk4OXV1dJk6cKFXyURR49eoVgYGBJCQk0KBBg9/eYSwK6Ojo8OzZM6pVqya1TSwWc/fu3QIL8Xl7ezN37lzMzMxo0qQJnz594u7du/Tv35+ePXsW9tJ/C/Ts2RM7Ozvq16+PpaUlV65c4ciRI7Rv357g4GDk5ORwcHBg7969NG3alMePH0uNkePQy8q8icVigoODpfq06tWrJ2SU/xS7zsjI4PTp0zg4ONCuXTvOnTvHv//+i6KiIioqKgwcOBBTU9MiP29CQgI7d+4kOjqaKlWqYG9v/9s7jIVFs2bNOHbsWK69YmFhYSxcuLBAY48fP54NGzZgZmaGgYEBioqKXL16lY4dO8rMAP+JaNy4MWvWrGHTpk20bt2aY8eOsWvXLgYMGCD0uri4uHDp0iWsrKw4cOCA1BhycnLUqlWLa9eu0aRJE6ntYWFhUv1WlSpVErSBvmnXYjFy3yinl8/OBrEYfvDiNCwsjJYtWzJo0CDi4uKwsbERgmzdu3fH19dXqrepsEhLS2PPnj08fPgQbW1tunXrho6OTpGeoyhRVBmhyMhIiZ6z3JIUbm5u9OjRI88xq1Spwu3bt2WWu8bGxuZKblGmTBngc2YoJ/gOnwNaRUmI0bBhw+92rK5fv/5d+xVqRderVy+WLVsmM0Mzf/58wXgLAk1NTdatW0diYiIRERFoampSpUqVQlzt74eyZcvi5+dHt27dyMjIQFtbG19fX/T19bG2tubly5esWbMGExMTevToQWxsrFQpopycHD169GDt2rVYWlpSp04d5OTkeP78OQcPHqRTp06F4qkvKqSnpxMeHi5E0LS1tYmKiiI2NhaRSESbNm1k9ialpKRw9uxZITuYmppK6dKlv0sj6NOnT2zfvp3Q0FAAzMzM6N69+3dlHcRiMZMmTeL58+f07t0bHR0dzp8/j6mpKYsXL/5jG/q/B0OHDmXGjBls2rRJ6kW1detW2rRpU+Bsr4KCAjNnziQ1NZXHjx+jpKRErVq1fvuIUX6goqLCzp07sbGx4d27d1SsWJHDhw/z5MkTevTowYYNG1i+fDlubm7UqlUr16xQr169WLduHSYmJjRu3BgFBQViYmI4fPgw1atX/y36ZrKzs3nw4AExMTGkp6dTsmRJ3rx5Q2xsLCkpKRgbG0u8FHOQQyd+/vx5MjMzSUlJQU1NjenTp3/znJmZmRw8eJCgoCBSU1Np3rw5Li4uMlnLZGHjxo0EBgbi4uJCw4YNCQ8Px8bGhiFDhuQqG/BfQL9+/ejevTvt27eXmgNzRFBlaeF8LwYMGEC/fv14+PAhWVlZzJkzp8DzxO8KLy8vFi5cyNatW6lQoQI3btxg0aJF/PPPP0RFRTFkyBCWLFmCoqIiFy5ckBlMsrCwYN26dcTHx2NsbIyqqiqJiYmEhYWRkpJSICIaASIR2TJ0gb5ElpzcN50gsVhMREQEUVFRpKSkCMyT7969IyEhgSZNmsjM8onFYu7cucOlS5eIjIykTJkyZGVl4ebmhpub2zfPefbsWbZs2cL79++pU6cOrq6u393bGBYWxpw5c+jRowcWFha8evWKgQMH0qxZM0Ff7XdDUTlCxYsX/y5WTW1t7e8SLjcyMiIhIYHLly8LosKXLl0iISGBFl+UVX6JqlWrUqZMGUJDQ4WgdHp6OqdOnWLRokXf+5O+iU6dOrFmzRrq1q2LkZER8Fly5969ewwZMqRAVSWFElQVi8WMHz+exMRE3NzcqFGjBvfv32f58uXUrFkz1z6D3xlisZg3b94gLy+fa+q5qOHt7c3Hjx95+vQpa9aswcbGhsaNG7Nw4UIePXpEyZIlqVq1KlWrVpXZNyUvL09CQgKnTp3iyZMniEQidHV1MTExkYiGyOr9kRVhkrWfrPK7nAhqVlaWQI/4ZQr8S2zatIno6Gjk5OQQiURCCUWO5om8vDxTpkwhPT2dI0eOIBKJaN68OcePH6dDhw5oa2szffp0WrVqxcePHzlx4kSehv/w4UMGDx6Mi4sLtra2iMViQcxzw4YN3+wxW7JkCUpKSlIOV0JCAvb29mzevFmIgMjCny68uHHjRg4cOMCYMWNo3Lgx0dHReHl58ebNG3x8fP7IrFhsbCwZGRmUKVOmyCORsuDt7U1aWhrR0dF4enpSt25dpkyZgo2NDRcuXKB58+a0adOGjx8/MnDgQKlrkpeXJzU1lfPnzwsNoTl9A19m5IraruGzbWdnZ5OcnExGRgZaWloy58OwsDAuXbqESCRCXl5eoC8ViUQoKCiQmZlJ//79qVmzJocOHSI+Pp42bdoIke9GjRoxevRo9PX1SUlJ4cCBA3kyhubQP5uZmeHo6IiGhgbHjh1jxYoVTJ8+HRMTk1yPBQgODmbv3r2sXbtW4n5nZGTQu3dvRo4cmScD2p9u1ydPnmTOnDm4u7vToUMHEhMT2bJlC2FhYQQEBPyRpcUJCQkkJSWhq6v70xyvtWvXEhsbK1BmDx48mKlTp+Ll5YWrqyvDhw8nICCAGTNmSGk0ycvLk5WVxdWrV7l8+TJZWVkoKSlhZGRE3bp1hfdnQe3aIiSEpteuIS9jaZcFhNWti98//5CSkoKWlpbMaP2jR4/YvXs38LnFISMjQ9impKREeno6ZmZmmJubc/ToUZ4+fUrr1q25fv061apVo1WrVixZsgQ1NTXk5eVZv349LVu2zPV+ZmRk0LdvXypWrIirqyvlypXjypUrLFmyBFtbW6EXKzc8fvyYUaNGsWvXLomFsFgsZvr06dSoUeObjGK/QlB11KhRherlSUtLw8PD44dcs7m5OdHR0QLj48CBA6lcubJEplNPT48FCxZgZ2cHwKJFi1iwYAG+vr7UrFmT+fPnc/LkSR4+fChULL1584Y3b95w9epVXF1dOX36NBoaGlSqVOm7glkDBgygbNmyzJkzR+L7GTNmEBkZiY+PT75/a6EcoRzcvn0bX19fQVC1X79+1KlTJ98X8yshFovZuHEj27dvp2rVqmRkZPDmzRsGDx6Mra3tT7uOUaNG4e3tTceOHTl+/DjFihXD3d2dW7duERAQwMiRIzEwMJA4Rhbziizj+pq9Cj73EH0NWWrYDRo0kPpOT0+PefPmceLECWHsnEXMu3fvmDx5MuPGjSMjI4OaNWvy4cMHEhISEIvFREdHIy8vj66uLnFxcYwYMYKAgAAADAwMSEpKIioqiitXrnD9+nXEYjETJ06kevXqtGvXjqioqFz1WLKysujYsSNbtmyRika/evUKFxcXoYdCFtLT07G0tMx1n2PHjnHx4kWmTp0q83j48xdM8Jm5bOPGjTx48IBSpUrRu3dvmjdv/sdlb4KDg/H09ERbWxsVFRWePXuGra0tw4YN+2m/xcfHh/79+2Npacn169dJTk5m+PDhpKam4uHhgb29PRYWFhLH/Cq7jomJ4fbt2xw5coT3798DnxtetbS0iIyMxMnJiaVLl6KqqoqFhQVHjhwhNTUVJSUlYmJiSE1NpVy5cqSnp7Nw4ULmzp0LfC7x0dXV5dq1a2zdulW4Hk9PT2JjY3F3d+fIkSMcOXIkV0e1V69ejB07lkaNGkndA2tra3bt2pXny9Ta2pqtW7fKfN5fvXrF+PHjJbTXvsZ/wa7j4uLw8/Pj0qVLqKqqYm9vj7m5uYQQ75+AGzduMG/ePOTk5ChVqhRPnz7F0NCQadOm/bQqiEuXLtG8eXMGDRrE6dOnefz4MQMGDKBixYrMmTOHhg0bMnDgQIljfrRdK6en4759O7rx8ch9ca73IhEztLTYr6ZG5P+x22loaFClShUiIiIwMTFhw4YNlClThsmTJ7NgwQLCw8PR09Pjw4cPAjGTvLw8mzdvZtCgQWRmZqKlpUXDhg0JCwtj/Pjxwtpv7969HDlyhAULFnDgwIE8bXPmzJno6elJlW1lZ2fj7OzMmDFjpGz+S7i7u9O/f3+ptRF8drLMzc0JDQ3Nc77/FY7QyJEjC+0ILV++/Idcc1xcnJSg6qpVqySCJSKRCF9fX0EWI0dQdf369RKCqvXr1xeOmTlzJrNmzZI635fj5AVNTU2uXr0qRVP/+PFjmjRpUqC2nCJxhP4LmDp1KmpqaowfP16IdqekpDBu3DgMDAxwdXX9KdeRkJCAs7MzBw4cQEdHh0+fPqGiosLYsWPZsmULsbGxLFy4UMKgf8WC6fTp02zdupV69erRo0cPDA0NSUlJISQkBDU1NT5+/MiaNWsoWbIkWVlZfPjwQfh9sp6hrKwstm/fTtmyZWnbti3z5s1jzZo1qKqqMn78eJSVlTl06BD79u1j4cKFXLt2jUWLFglK3i9evODWrVsUK1aM5ORkHjx4kKvC8Jw5czAyMqJDhw4yt1+7do29e/dKRRxykJ2djbW1NYcOHZK5Hf4Mm/kTrrGwCAgIIDQ0FE9PT4kM5qpVq4iIiCgw3WZ+kZ2djZubG+vXr6d48eKIRCJSUlIYMWIEV69e5eTJk6xYsUKiT+VX2HV4eDhr165FW1sbJycnjI2NUVJS4siRI6SlpaGuro6HhweKioooKysTGxsLIKE38TUOHz5MamoqnTt35vjx4wwZMoR3794xZcoUdHV1uXXrFsuXL2fChAkUK1aMZs2aCX1B79+/5+LFi8jLy1OhQgX+/fdfNm3aJPM8e/fuJSIiglGjRsncnpaWRo8ePdizZ4/M7QCWlpZ/7foPwOXLl5k5cyZ+fn5CplIsFnPw4EE2btzIrl27flp2aOnSpcyaNYusrCyKFSvGu3fv6Nu3LxkZGfj7+zN16lSJCoSfYdfK6ek4PXxIpZs3kcvM5D7QNS2NRGVl+vTpQ5s2bdDR0SEsLIzXr19Trlw5Vq1aRWJiIlpaWgIbXE6GSxYuX77M/fv36dq1K4mJibRu3ZqIiAhGjx5NvXr1ePfuHePHj6dXr144ODjw9OlTQQPm06dPnD17lvT0dAwMDOjfv79QCfI1Hj9+zMKFC2Wy5ubgW3Y7ePBgJk+enGeZ3a9whEaMGFFoR2jFihX/aVv/GmXKlGHBggVSWUJfX18mTpyYJ5V/bihwfUtmZqZQDvGn4/nz50REREhFAlVVVVm5ciUWFhb06tXrpzTTampqsn//ftzc3PDy8kJbW5ukpCRmzZqFk5MTGzZswM/PDw0NDWJiYtDU1MTIyOin9E9lZ2dz7do1QkNDefLkCYMGDWLlypUSlJiWlpbCv3v16sXx48fJyspCX18fbW3tXI1VXl4eR0dH4f93794lJCSEJk2acPLkSczMzGjbti2hoaEEBAQwdOhQLl++jIqKCm5ubigpKWFsbExcXBxeXl55stGYmpoKJXcFQQ67yn8ROYrVf2Lp29dIS0vDx8eHkJAQiXlKXl6eESNG4OrqSnh4uEyq2KKGnJwca9asoVSpUnh6epKdnU2JEiVYtGgRAwYM4PTp06xbt47atWsTGRmJsrIyTZo0oW7duj+ljO/BgwccPXqUW7duUbduXc6cOSPBzNiuXTvh33369CEwMJCUlBQMDAxQUlIS6shl4ctM19WrV/H29qZ3794cPHiQ/v3706BBA6pXr87mzZvZvXs3ISEhtG7dmrFjxxIVFYWpqSmZmZlMnjyZihUrkpWVJfO9Y2pqKrN0+C8+OwmZmZn/mZ6d2bNns3XrVolnVCQSYW1tzbNnz9izZ89Po2YeM2YMTk5OGBoaEhsbS4UKFdi4cSOOjo6UKFECHx8fTExMiIiIQCQS0aBBA6Hn70chTUmJy716EdS6NUePHuXixYvo6upy9dQpCafsy3K1gQMH4u/vz4cPHwTSlZySJ1lo2rSpYPdhYWGMHTuWbdu2ERgYSL169dDW1sbY2JigoCDmz5+Pv78/o0aNYvHixZw4cYKOHTuipqbG6tWref36NZ8+fZK5xqpZs+Y3dde+hd/1ff27Cqr+zhg5ciRDhgzh2rVrAunXxYsX8fHx+a4eU1nItyXu378fLy8voc5VWVmZkSNH0qpVqwJdwO+Abdu25Rr1kJOTo3v37uzbt49evXr9tGuqWrUqRkZGXL58mUGDBrFixQpevnxJkyZNOH36NPXr18fMzIySJUsSFhbGmTNncHR0/GGLprS0NLy8vLhx4wa1a9dm+PDh3xTWbNGiRa6Ndd+CkpIS2traqKurC5ExNTU1OnbsyJ49e/j48SOampr07NmTZcuWSUS2s7KyuHXrFn5+fjJTrUlJSXk21DVo0ICJEyfmSvsYFhaW58LvT8SlS5dYunQpHz9+RFFRkbS0NPr164eDg8OvvrQC4+jRo3Tu3DnXYM2gQYPYvHlzrlSjPwKlSpXCzMyMnTt30r9/fzw8PDhz5gxWVlbs3buXDx8+YG1tTdWqVTl//jwnTpxg4MCBhYoa5oXs7GwCAwMJCQmhfPny9O7dG2NjY4kF5teoVasWkydPLtD5lJSUEIlEVKlSRbBrOTk5bGxsWLZsGU+fPkVJSUlgEfwysFKtWjUCAgKYMGECS5YskRr7W3atrKxMRkYGiYmJuZbG/a5i0gXF06dPWbBgAZGRkairq5OYmIiNjQ1Dhw79Y4OYERERUhIKX6Jv37707dv3p2rUaGlpYWdnx8qVK+nYsSMbN25k37599O3blzVr1nD48GG6dOlCvXr1uHXrFh4eHvTv3/+7CT4KgtOnT+Pv74+mpiY2Nja0a9cuz97Y0qVLM3bs2AKdS0lJidTUVOrWrcvDhw+F7+3s7Dhz5gxhYWEoKSkxb948VFVVCQkJEfaxsLBg2LBhODk5ERQUJPXOzc7O/qawfNWqVbl9+zb6+vpS2zIyMnj8+HGhiED+4vfBxIkTqVatGitWrGDbtm3AZ43JHOKxgiBfq+Y1a9YITZX79u3j4MGDrFu3jrVr1xIUFFSgC/gdEBsbm6eRVKpUSSgB+Rl48eIFY8eO5fTp07Rs2RI9PT1at27NqVOnyM7Opn///jx58oSlS5cSHx9Pr169KF++PGFhYT/smnbt2sW9e/dwd3dnwoQJP4Sq+kvY2NiwYcMGPnz4IEFKUKlSJTIzM9m2bRvv37+nW7duUuU9Xbt2RVNTky1btsicQLdt25Zn35eSkhKmpqasXr1aaltiYiILFy78aaWSPwOhoaH8+++/rFy5kkOHDrF3714CAwO5fv068+bN+9WXV2B8j10XNtKYH2RlZTFt2jR27txJnTp1qFmzJj179uTx48dcu3aNMWPGkJyczNq1a7l+/TrW1taYmpqyY8eOH3ZNp0+f5siRI/Ts2ZPZs2djYmLyQxfInTt3ZseOHYSHh0vYdfny5RGJRHh5eVG7dm1Kliwp4QQBtG3blri4OCIjI2WK+m3ZsuWbrG9Dhw5lwoQJUpHUzMxMxo0b911slH8KHjx4wKBBgxg7dixHjhwhKCiIkJAQVFRU6Nu3r8wSrT8BOUyMuaF48eISAqU/Ax07dmTlypXo6OhQp04dwZYDAgKYPHkyxYoVw9fXl71799KmTRtcXFzYtGnTD4voR0dH4+fnh4mJCYsWLcLS0vKHarS1bt2aI0eOcP/+fQnyBU1NTYoXL46fnx9mZmZcunSJMWPGSBxbsWJF0tPT0dPT4/Tp01Jjh4aGYmxsnOf53d3dmTJlikwdrHnz5uHo6PhbZoVyKjAK8/lfRLdu3Th37hxxcXHExcVx7ty5QgU+8uUInTt3Dg8PDwm9Gh0dHTZt2sTq1asF0cA/DTVq1ODmzZu5br9y5QoZGRmcOXOG5OTkH3495cuXFzJsjRs3xsrKij179qCqqsqHDx+YPn06Hz9+RE9Pj+vXr5OdnY2pqSm3bt1CXl5eYHn5+qOuri71UVBQkPqkpKRIfa5du8a4ceNYsWKFEHH7kbCxseHs2bM0bNiQgwcPkpKSIpAuqKurk5KSQnBwMKamppw/f17o68nOzkZPT4+srCy0tbW5fPmyxLi7du1CSUlJJq3plxg7diwvXrygV69ehISEcO3aNTw9PencuTPz5s2TSQn8p2LFihVs3bpVYmGqrq7OggULuHv3rsy69D8B37Lra9euoaamxsmTJ39KoENeXl5woP/55x9atWqFn58ftWrVIi4ujm7duhEXF4e9vT1Xrlzh48ePNGjQgI8fP5KamvpD7PrZs2dYW1uzbds2+vXr98Ntu3bt2qSlpWFkZMTJkyd5//49GRkZaGhoULlyZe7cucONGzews7Pj4sWLXLlyhb1795Kamoq6ujrt2rVDUVFRaODNwdWrVzl+/LgU4cTXsLCwoGHDhlhaWrJr1y6uX7/Oli1bMDc3x87OTii1+C9g1qxZbN68GT09PeE7BQUFXF1dqVWrFocPH/6FV1dwVKlShXv37uW6PTIyEjk5OU6cOJGnKHFRIsdmcsR/Fy9ejJ2dHe/fv0dfX5+oqChmz57NjRs3hJ6cypUr8+LFix9i13fu3KFatWocO3YMV1fXH27XampqmJiYoK2tzd27d3n8+DEZGRlCWfzZs2fJzs7GysqKa9eucenSJQ4cOEBcXBwikQh3d3cePXrEzp07JcaNiopi0aJFUoQTX6NWrVqMGDECCwsLvL29uXbtGvv376dLly4oKir+8PVKQVFUgqr/S7hy5QqXLl2S+v7SpUu5SlF8C/kiSwgKCsq1ZnTt2rXo6Ohgb29foAv5lfjw4QPdunXj8OHDEnW7YrGYBQsWsGTJEqGp7cyZM9SvX1+muGlRIj09ncmTJ7Nx40Y+fPiAvb09r1694vXr13z8+JEbN25w+/Zt7O3t0dLSolu3bly7dg0HBwc0NTVlZkK+7OXJwYMHD6S+k7Uo9PHxYenSpd/UAigI3rx5w9atWwVxQ0dHR0qWLElsbCw9e/bk+PHjNGvWjFq1anHr1i1SU1N59+4dhoaGHDlyRGIsNTU1Xr16hZqaGh06dCA7O5vevXsLIpTVqlVj0aJF3/23i4yMZNeuXSQkJKCvr0/nzp2/69g/oWE55xrnzJmTKwPe2bNnCQ0Nlcny8rtDLBZjamrKrl27pMpodu7cydChQ+nVqxeVKlXi0qVLqKurs3z58h9KISwWi1mxYgVLly4lKiqK5s2bC7TTN2/eJCwsDE1NTUxNTUlJScHW1pb09HQqVKhA/fr1i9yur169SqNGjQSK1KJEUlISAQEBgrhhr169qFy5MqmpqQwePJgtW7ZQtWpVTExMuH37NklJSTx48ABXV1cuX77MrVu3JMa7f/8+tWvXFhi6hg4dioaGBmFhYWRnZ7Nq1ao8S/q+RHx8vCCoWrlyZbp16yaTrvhr/El23bNnT6F05Gu8f/+eYcOGsX379p98dUUDR0dHpk6dKsVOe/HiRXr06EGjRo1o2bIl9+7dIz4+niVLlnxTMqGwCAoKYvr06dy7d4+yZctibGxMUlISISEh+Pr6YmVlRYcOHXjw4AHm5ubUqFGDV69eYW5uXuR2feLECUqWLCno7xUl0tPT2bNnD1evXkVVVZWuXbtiYGCAWCxmzpw5LFiwAHV1dezs7Hj48CHv3r3j/v37jBkzhpcvX7Jr1y6J8Y4ePYqpqSkbNmxg+vTpDB8+XKDPfv78OStWrPjuv11qaipBQUESgqrfK+b5K8gShg4dWmiyhDVr1vzW81FRo2nTpowfP17K1wgKCmLRokUynaRvIV8Zobyi6DVr1uTVq1ffNc6VK1cYMmQINjY2uLu7CxoZvwolSpRg0KBB9OrViydPngjfDx06FH9/f/bv38+MGTOYOHEihw4dokmTJt+MUBQWSkpKLFmyhHv37tGlSxdCQ0O5evUqkydP5uPHj/j7+2Nubi5MdBs2bCAtLe2HOWdaWlrf/ffNDzw8PBgyZAh169Zl0KBBVKxYEScnJzZt2oSOjg7Hjh2jWbNmXLt2jaysLPr164eenh6KiooSTe45C6BPnz6RkJCAkpISpUuXZuPGjZQuXRpdXV18fHxYtmxZvu5RqVKlKFOmjMD09V+MwBSVXT958oQJEyZga2tLv379OHHixC+9XyKRiMWLF9O9e3cJ/Y01a9YwefJklixZwsqVKxk7diy7du1i2LBhdO/e/YeW1YhEIkaOHCnoXEVERHDhwgUsLCyoVq0aq1atol69ely9epXy5cvj5+cnPM8/AiVKlPghdn3gwAHs7OwoXrw4AwcOpHnz5kyePJkpU6agrKyMn58ftra2PHnyhNevX+Pg4EDbtm0BaNKkiaBv9GVgKkcjTUdHhzVr1lCjRg2KFy/OvHnzpBrnvwUNDQ3KlSuHpqYmioqK/0m7zkuPqVSpUnz8+PG7xomJiRG0Qnr16kVgYKCErsyvwJIlSxg2bBjBwcFCedCJEydwcnKiS5cuBAUFMWbMGHx8fFi5ciWurq4yyymLEl26dOH27dvMnTsXZWVldu3ahbq6OtbW1ixZsoRSpUpx7tw5mjVrxt69e4V+uB8BZWVloqOji7x06tatW5iZmfH+/Xv69++PlZUVGzZswNnZmfT0dKZPn87gwYN5//49d+/epUOHDgIJUt26dSUi9jkMbjnfFStWjClTptC8eXPU1dUZPHgwBw8ezJcDq6ysTMWKFSlRogRKSkq/vV3/zQjlH+Hh4TKp1HPEsQuCfDlCjx8/znXbgwcPvqkALBaLGTFiBJs3b2b06NEEBQUxaNAgPD09f7n4ateuXZk8eTLz58/H0tKS9u3bc/ToUQ4ePChVn+rg4ICqqip37tz54ddVrlw5du/ezZMnTyhfvjwTJ06kc+fO+Pj4kJaWhoGBARUrVkQsFpOUlCQl3lZUaNasWZGXUuzZs4fIyEiCgoIwNzenVq1a2NracvDgQU6ePMmZM2cA6NmzJ8WKFSM4OJikpCRiY2MpW7YsI0aMwNzcnLS0NOLi4tDX16dixYpUqlSJ8+fPU6JECWrXro2trS22trb5bkzdvHkztra2pKam0qhRI6Kjo+nUqZNUFupPx6NHj3Ld9j12DbBu3TomTZqEvb09u3fvZtasWYSFheHo6PhLF02NGjXC29ubHTt2YG5ujqWlJXPmzMHf31+KSMPQ0BBbW1tBSPBHQk1NjbVr1wr6HTNmzKBjx47s3btXKJ3JcfTDw8O/WcpZUDRr1kxiMVkUuHfvHj4+Phw+fJgePXpQu3Zt2rZtK+j35GSfTE1NqV69OmFhYURHRxMbG4uioiLOzs40bNiQd+/ekZGRQf/+/YHP5CsvX77k2rVrtG3bFgsLC7p27frdyvM5OHPmDKampjx+/JiGDRsiFovp1q0b69atK7J78Dvgy6De13j79q1EiXtuCA0NxcnJiUaNGrFz505WrVpFdHQ0VlZWgsbUr0DZsmXZvXs3N2/exMLCAmtra5ydnZkxYwbLli2T2DdH0+db5D5FATk5OaZMmcLTp08ZM2YMu3fvpnr16ty7d4/z58+jrq5O48aNgc/6i//8888PuY7SpUvz4sUL7t+/X2RjJiYmMnLkSHbv3s3QoUPR09OjadOmeHp60r17d4FooW7durRq1YrLly/z6NEjIWNlZGSEvr4+d+/eRSwWC1UIpqamJCcn4+XlRe/evWnbti329vYS2jPfg6dPn2JmZsbRo0cxMDBAR0cHd3d3xo0b99v20vx1hPIPZWVlmRTZr1+/LjATY74coQ0bNgjlcdbW1nTq1Il58+bx+vVrgoKCpJpbv4aPjw8VK1Zk5cqV1KxZE3l5eerVq4e3tzdisfiXEy78888/+Pj4cOjQIZycnJg7dy41atSQua+Li8sPbWL+Gtra2kyZMoW4uDjs7Ox48eKFwHbVrl070tLSuH//Plu2bCly40hPT+fkyZPfrL//HiQnJ7NkyRI6derE4MGDCQ8PZ/PmzRITlZycHAsWLMDT0xNA0HfKyspi7dq1XLx4kS5dulC5cmUGDRpEu3btMDQ0xMvLi1OnTrFs2TLmzZuHh4dHga/z6NGjnDx5kuDgYPr160fbtm1xc3Pj8OHDrFu37pdnMYsSYWFhHD9+nF69emFtbY25uTmjR48mIiICT0/Pb4qcXbp0iUuXLrFz504MDQ2Rl5cXFh82Nja/nHChcuXKLFmyhODgYGbNmkXfvn1zZTN0dnYmMDDwp12bqqqqQMpRsWJFNDQ0hPJTIyMjihUrRkREBCtWrCjyTJVYLObAgQN06tSp0GyTWVlZ+Pr6YmlpiYWFBbGxsaxevVoq6zB27FgCAwPJzs5GTk4ONzc3ypQpw6ZNmzh06BC2traoqqqyYsUKLC0tad26NZ06dSIyMpL9+/fj4uLC2rVrC9z4/OTJE0HgcfTo0bRt25bevXtz+PBh7t+//1Oc4J+FlJQUTpw4wZAhQ7C0tMTKyop+/fpx48YNVq1aRe/evfM8PjY2lsWLF7N//37MzMxQVFSkZMmSuLu7s3DhQoYPH/6TfolsaGlpMWnSJEJCQtixYweGhoa5yia0aNGC69ev/7Rrk5OT499//0VeXp6kpCShiiQ9PZ26detSvnx5nj59ioeHB/Hx8UV+/hcvXlClShWJ/rCC4tChQ3Tp0oWWLVsSHx+Ph4eH1ELUysqKV69eCc5xjx49aNKkCbt372bLli3Url0bPT091q5dy+DBg+nQoQNxcXG8efOG169fY2try5w5c77LOZeFjx8/4urqio+PD3PmzKFdu3Z06dKFnTt3UrNmzVw1AX81/jpC+YepqSmTJk2SEE798OEDkydPFvTn8ot8uU8pKSnMmzePwMBAqlatSnZ2Ntu2bcPAwIBly5Z9M827Y8cOFi9ezLJly8jOzqZ9+/YC+9iECRPo2bMnXbp0KdAPKWokJSVRvnz5XLeXKlXqpxAnfImc0o+ZM2fSsGFD5s+fj1gs5tKlS2zbto1nz54xYcIEOnTogLa2ttTxshhVcgRJv8TX7DK3bt0iMTGRoUOHFur6c3qxBg8eTFBQEM7Ozvj7++Pt7U3fvn3x9fUVFmRlypQRFlE5DeaNGjVi+fLltG3bVngJd+7cmeHDhxMZGYmtrS3t27ene/fujBw5slDsV56enmzdulVqjJSUFOrWrUvnzp1p1qwZ1tbW2Nvb/zQl8x+BBg0a0LdvX3bs2IGRkRHwuczExMQEBweHb0bc16xZw5AhQ1i9ejWfPn2icePGtGvXDpFIRLdu3ejYsSPp6ek/rAwkP0hKSqJUqVK5bi9WrNhPz2DlPGM5OkJBQUGMHz+eW7duMXfuXMqUKYOLiwtnzpyhVatWUk5LQe36zZs33L59u9D04ZmZmfTu3ZsWLVoQGBiIvb09+/btY8+ePXTt2pVdu3YJCxx5eXlq1apFZGSkYNft27dn5syZpKenM3/+fOBzUEpLS4uQkBCuX79Op06dsLKy4tChQ4Viv1q5ciULFiyQ6gdKS0ujfv36DBs2jK1bt2JiYkKfPn1+aL/Yj4aVlRUODg6sW7dOqKe/f/8+PXv2REdHh9mzZ+d5vI+PD66urmzdupV3795Ro0YNrK2tUVJSomHDhsjLy/PixQsqV678M35OnkhJScmT+lwkEv30+SdHZ/HYsWNUqVKFa9euMXjwYOLi4ujRoweWlpY4OzuzY8cOnJ2dpXpFCmrXGRkZREREMHfu3EIzQE6fPp20tDQ2bNiAq6srW7Zs4fLly/Ts2RMfHx8J/UJTU1MuXLgg2HXXrl2ZMGECkZGRzJgxA5FIRNmyZWnRogWLFy8mLCyMU6dO0a5dO3bs2JHnvPwtbNu2jf79+0vdn6ysLMqXL8+sWbOEfkhXV1eZ9/FX4X/RmSkMli5dSuvWralcubLgP9y8eRNdXV02b95coDHzFQZs1KgRixYtYsyYMVhaWmJpaUlwcDCenp4cPXo0z2Pfv3/P/fv38fLywsDAgMaNG+Pv70+XLl2Ii4tDQ0OjwFHJV69ecf78+SJlt2rYsCFnz57NdfuZM2d+WFo7N5iYmNC1a1fu37/PtWvXyMjIwNvbmwULFmBvb8/48eOZOHEi48ePZ/PmzUW2oHv+/Dl6enqF5uGfMWMG06ZNo0uXLigoKJCVlYW6ujojR47EwMCAgIAAif2/niDMzMwIDg5my5YtwgIlOztbcELevHnDypUrsba2LtQLICUlBWVlZanmw0uXLmFvb0/Tpk2pU6cO3t7epKamYmlp+UP6LH4Wnj9/zv79+1m3bh3m5uZYWVmxfPly/v33X27fvp3nRJ2VlcWZM2dYuXIlVapUoUWLFpw/f56OHTvy6NEjRCIR9erV4+XLl/m+rri4OC5cuMC9e/eK7GVRr149KSbBL3Ht2jVq1qxZJOf6XlStWhU3NzdevnwpNEN7eXnh4uLCiBEj6N69O15eXvj7+7N8+fIiC8C8ePECBQUF2rRpU6hx/Pz8MDY2xs3NDVVVVcRiMQoKCjg4ODB27Fjmzp0rsX9mZqaEfTZo0IDdu3dz4MABiQx8jl1//PiRESNG4OLiUmgK4KdPn2JgYCDx3cuXL7GwsEBeXh5TU1OWL19OxYoV6dKlS4FZiH4HbNmyhfPnz3PmzBnMzMywtrZm1KhRDB06VCilzgsBAQH4+vqirq6OsbExr1+/plOnTpw8eRKANm3aFCjL8unTJy5dusT169fJzMwsyE+TgpaWFlFRUbmWQH348OGnCBN/jXnz5vHhwwehHCwgIIB//vmHJUuW0LZtW3bt2sXNmzeZN2+ezHKfgiA6OprMzMwCR8dzcPnyZWJjY1m0aBElS5ZETk6OrKwsTExM8PHxkaLB/tqudXV18fPz4/jx47Ru3Vr4PsfhE4vFWFlZMXbs2EI5QQDBwcFS1PnJycnY2tpy7949Bg0axLBhw2jXrh2DBg36bTK/fzNC+Uf58uW5ffs2ixcvpm7dujRu3JgVK1Zw586dAq9R85URGjp0KDVr1qRDhw5S2wIDA3n//n2uD/SQIUMoX748a9asEb5r27Yt169fx8XFhX379uW79OPZs2eMHz8eNTU19PT0iIiI4PXr18ydO7fQToqxsTFz5swhOjqacuXKSWxLTk5m06ZNP51+VFtbm8DAQE6cOEGfPn2IjIzk9evXdO7cmStXrlChQgXmz59P1apVGTZsGFFRUYwePbrQYoxJSUl5Nt5+D9LS0nj48KFAC57TyPjhwweBrKJnz544Ojry4sULFi5cyO3bt7GysqJ58+YMHDiQ0qVLS40rLy/PuXPnhG3JycmFFqnLzs6WcqQ+ffrExIkT2bdvH8WLF8fb25vixYszYMAA2rRpw5AhQ6Qoff8UDB06lH/++YdNmzZJbbtz5w4XLlzItZRs5syZqKurs2XLFmGhYWxsTHR0NI6Ojhw4cICEhIR89a59+PCBMWPGEB8fT5MmTYiNjeXu3buMGjWq0OWZpUuXRlVVlatXr9KkSROJbdnZ2cyfP5+FCxcW6hz5haKiIp6engwdOhQXFxdiY2NJSEigb9++VKtWjWbNmuHs7Iyuri5du3Zl9uzZTJw4sdDPeVJSEmXKlCl0X2FQUJBEWbOenp5wf9u3b8+iRYvIzMwkMTGR9evXs2fPHqKjo6lVqxZDhw7Ntfx4x44dVKhQgdjYWBITEwt1jTn4uqROLBYzZMgQNmzYQLVq1bh48SIKCgp06dKFdu3aYWdnR3Bw8B+Z8bWysqJWrVqsWLFCapumpiYBAQEMGjRI5rE7duwgPT0dPz8/gXWrZcuW9OvXj27dulGuXDkSEhLyFVnPyMhgxowZ3LhxAyMjI9LS0hg3bhzdunVj4MCBhdJ5kZOTw9TUlC1btsgs+Vu8eDH9+vUr8PgFxdixY3F2dmbw4MECDfysWbOoXr06zs7Ogmh6+/btmT17NqNHjy40u12OrRT2ne3l5cWkSZOE/1tYWBAYGIiLiwtVqlRBQ0ODly9foqOjQ0BAAPPmzaNRo0YEBgYyaNCgXEXHZ82axZ07d9i7d69EeVNhIOudPW7cOMaOHYuJiYlQZm9iYkLLli3p2rUrDRs2/GG9l9+Lwjoz/4uOECAEZypVqiT4DcHBwcDnKqH8Il8hkrxoCPX09IiMjJS57e7du2hra1OtWjWioqIktjVq1Ih69eoREBCQrxR7dHQ0AwYMYOnSpfj7+zN58mS8vb3x8/Nj/PjxhW4SFIlErFq1CicnJ4ElJzs7m6NHj2JnZ8fcuXN/qEBZXmjbti03btwQFqdv3rxh4sSJwnUPHDiQ8ePH8/LlS9avX/9NVeZvIS0trdDUjO/evZP6+7q7uzNy5EghMyQWiwkLC2PgwIHcv3+f2bNnY2Njw6NHj9DX18fZ2ZkJEyawZs0aCcpQHR0dtmzZwuzZs4sk5a2urk5CQoJEaUJAQAB9+/alePHiREdHS9Qy16hRg6pVq3Ljxo1Cn/tXIK+mVH19fZ4+fSpzW1JSEtevX6d79+4cP35cYlu5cuWEmu03b95IBRNyQ1paGj169GDgwIEEBQUxefJkPDw8OHjwIFu3bi2S4IOHhwdTpkxh/fr1QnYlh3re1tb2p2eEclCnTh1Onz4tsCylpaVJsFN27NiR6dOnIxaL8fDw4NOnT4U6X1HYNXxmdvvSURg+fDhTp04lKSkJkUhEuXLluHHjBl27duXy5cuMGTOGHj16kJ2dTZs2bbC2tmb8+PEsXrxYYIuDz8GSHTt2MG7cuG8KKn4vypQpI0H6c+XKFerWrUu1atXIyMjg2bNngkZYiRIlcHR0lKL7/VPwtdD0lzAwMMjVrsViMRs3bmT27Nls2bJFYpuamhrz589nxYoVhISEYGJi8t3XM3DgQAwMDAgODmb69OnMmzeP0NBQoqOjpQgOCoIxY8Zw5MgRZs+eLQglP336lGHDhiESiQq0QCoK6OrqEhQUJFGKOHDgQFJTU4HPWerp06dTvnx5VqxYUejMUI6eY0H7bXIQExMj4ZR1796dTZs2Cdn9Bg0acPv2bWxtbTl37hx2dnb06dOHUqVK0bt3b1q2bMn48eMF/aScRbtIJGLhwoW4u7vTvXv3Ql1jDtq0acOhQ4eE/8fHx/P27Vvh+cxhn4XP89XkyZN/C3KUvxmh/OPZs2cYGBhQv359LC0tsbW1xc7OTvgUBPnKCCUnJ+f64oyMjERHR0fmtqNHj9K1a1e0tbUZPHgwAQEBEkbaoUMHBg4cSEhIyHdfi4eHB/Pnz5daXGtra+Pt7c20adPw9/f/7vFkoVatWuzZswd/f3+6du2KWCymWbNmbN68WUJ88legVKlSbNu2TajRzcm05KBGjRoMGTKElStXsnPnTnr27Fngc3369KnQtfIlSpSQoi9t3749MTExdOrUCQcHB6KjoxkyZAgikYiEhASBLSoH27dvF0ToRowYQf/+/XF3d+f169dYWVnlWSOeX/Tv358ZM2awaNEiRCIRV69eZcqUKWRlZTFx4kSpRuH27dtz9epVoWb1T0JUVFSuQYiXL1/muqC6ePEipqamODo60r17d6nySSsrK+rVq4ePj893X8vOnTvp2rWr8NLKgbKyMj4+PlhZWWFubl6o6LGWlhb79+9n9+7d9O7dm4yMDGrVqsWCBQuoVatWgcctCuT8ztDQUGJiYiRKSuDz/DZy5EgWLFjA2rVrGTVqVIHPVRR2DZ8XXjnkB/A5Ej1jxgw6d+6MlZUVDx48oF+/figoKPDs2TP27t0rcfyrV68IDw/nzZs3TJgwAXNzcxYvXkxMTAx6enoCrXZRwN3dnUmTJhEQEICioiJXr16lXbt2wOesQc+ePSWerfbt2+Ph4ZFrE/7vjK+Djl/ixYsXMjPs8JlRrkKFCtja2mJtbU3r1q0xNDQUtjdo0ICjR4/i5ub23ZmyGzduoKGhIbXwlZOTY+bMmVhZWeHq6loox1xBQYHNmzcTGhrKyJEjSUpKQldXF1dXV6n55GdDJBIxbdo0jh8/zqlTp2jevLlEz5Kqqiru7u7Mnz8fDw8PZsyYUeBKjk+fPqGkpFRgBq0cqKurExsbK6zr1NTUhL6xJk2aEB4ezu7du4UA5vPnz6Wci8jISJKTk5kxYwYNGzZk7dq1pKenU7p0aZmZyoKiT58+dO3aFRMTE7S0tLh7964gjrxv3z6qVasmQa/ftGlTqZLdX4G/GaH8Y8SIEVStWpVjx45RrVo1Ll26RFxcHGPGjGHJkiUFGjNfltKnTx+Cg4OlDCw2Npb4+PhcyQVyXpIGBgZMmjSJLl260LhxY2rUqMH9+/c5f/48bdq0yVckNqdGUBYqV65MXFwcGRkZhdbV0dTUZPjw4b+cIUcWKleuzL59+1BRUaFjx44S23KUlCtXrsyoUaOYO3fud9N950REc/DhwweZEf3Xr1/j5eUlaLQ0a9YMV1dXmU7itm3bePv2LfPmzRNewK6urvTs2RMbGxsmTZpEVlYWFStWlMguyMvLCxktRUVFNDQ02Lx5M69evWLSpEkCFW+5cuXw9/enffv2uf6ujIwM9u/fz/3799HS0sLBwSHXxYCDgwPPnz/H3t4eV1dXUlNT2b17N8HBwTg5OUmViuW3/Ot3Qp8+fbh//76UrWRkZBASEsLIkSNlHpdj1zo6OmzYsIFhw4ZRvnx5gWr85MmTlC9fPl+16kFBQWzdulXmNmVlZRo0aEB4eDj16tX77jFzG6tXr1706tWrUOP8CCgpKbF3714iIiKkAhg5dt28eXNMTU3zpW31tV0nJyfLLMNJTEzE39+fI0eOIBaLqVGjBkOHDpXpJHp7e6Ours7w4cOFcmRXV1eMjIwIDQ3Fy8uL5ORkihUrlmtvlqKiIunp6axYsQJFRUVGjx4tON/FihVj5cqVuLi45Or85izELl68iIqKCjY2NrmW2+nr6+Po6Ii5uTmurq4kJCRw7tw5/P39qVmzplT51J9s1xMmTKB3794yF9QbNmzIdSGaU2akoKBAQEAA7u7uZGZm0qZNGxITEzl69ChKSkq4u7t/97Xs2LEj19I0kUiEvb09hw4dKlTADj47VmZmZpiZmRVqnB8Fb29vwsLC6NOnj0TPUo5dW1hYYGBgwOPHj7+bPvpru05LS5NZNpuens7u3bvZtWsXGRkZ6OjoCBpfsq5TW1sbV1dXgQ3Y1dWVqlWrEhISwtGjR9m5cyfy8vJ8+vQp12qgxMREpk2bRqVKlZg2bZpwLjk5OSZPnsyMGTPydNhu3rwpzEPt27eXcMi/hJaWFkuWLMHOzo7u3bujo6NDeHg4w4YNIykpiQ0bNkjsn5qaWmgiiaLAX0co/7hw4QJhYWHo6OggJyeHvLw8xsbGLFiwAHd39wJV5uSrNO7YsWNCmUpgYCAfP37k1atXODk55ak8365dO6F/omXLlhw9ehR7e3t0dHRwdnbGzMws3xE3ZWXlPKPCxYsXF1LP/2V07txZygn6Eu7u7pQuXRovL68Cn6NGjRrs3btXosTu0qVL9O7dm1atWnHgwAEOHDhAixYtcHJyyrXB2MrKio0bN3Lz5k2io6M5fvw4MTExXLp0iQcPHqClpSXhBDVt2pTIyEhu376Nqakp2tra3Llzh549exIYGEiPHj1wdHRk06ZN1KlTB1NTUyZPniyTJOLcuXN07NiR169f07FjRypUqMCQIUOYM2dOrpPJuHHjWLVqFXfv3iUlJYVDhw4REBCAk5OT1L45Wkh/Ip4+fYqzszNXrlxh69atREVFkZiYSL9+/Rg6dGiuL6pmzZoJf69q1aqxf/9+RowYQenSpenQoQNDhw4Vyry+F5mZmXkuPHV0dIqsrvx3hpGREb169cp1juvQoQPt2rXD29u7wBoZNWrUICwsTIK+NyoqCltbW0qXLk1QUBAHDx6kT58+TJgwIdcSsTZt2nD06FHOnDlDdHQ0p06d4unTpzx58oTAwEDatm0r4QRVrlyZW7duER0djYODA9WrV+fNmze4urqycOFCrKys6NGjB56ennTr1o1+/frh6Ogo8+/+7NkzzMzMOHfuHO3bt8fAwIAFCxYwYMCAXHtO7ezsCAoKIj4+npcvX7Jv3z4WL17M7Nmzpe73li1bpJqw/xTEx8fTtGlTHj16xNatW7l27ZogevnPP//kWq5atmxZnj9/TkZGBiVKlMDf359///2XsmXLCo3+xsbG+crKJiQkyGQyzcH/il3XrFmTQYMG5ZpJq169OgMGDCAgIKDApa81a9bkzZs33L17V/ju48ePAjHVpk2bOHDgANOmTcPPzy/XzEj9+vV58eIFhw4d4tWrV1y4cIEbN24QGxuLp6cnbm5uPHz4UHCCNDU1OXDgAB8/fmTw4ME0bNiQT58+MXbsWEaMGIGhoSHdu3dn5syZzJw5kwULFtC2bVuZRDoJCQnY29vj5+eHkZERxsbG7Ny5E1tb21z1qxo1asTRo0fR0tLi/PnznD59GldXV/z9/aUYA3fu3PnLSiW/xN/SuPwjKytLYP3U1tYmOjoa+PxeefjwYYHGFIm/404mJiaiqanJ9u3buX37NitXrhSa0jMzM9m+fTudOnXKc2Ls0qULU6dOlVKEffDgAaNGjeLw4cP5mlitrKzYvn27FA0qfL5RHTt25NixY4UqofmvYMmSJYwbN47Zs2dLvfxk9Q99PWk8fvyY+fPns2XLFkEg09TUlP3790uVMiQkJGBra0toaKjADLd7927mzZvHkydPpCZ3FRUVBg8ezKxZs5g3bx6xsbHo6upy//59qRKagIAAUlJS2LZtG3Jycly4cIHk5GRq1apFeHg4//77L1OnTkVPT4927drRq1cvmjdvzosXLxg0aBCBgYFSz8vcuXPR0dHJtWk4B2KxGAcHB4YMGSKVdfL09CQ2NlaiBjzHZhISEoqkD+NH4Eu7fvPmDQsXLuTNmzdoaGiQlpbGsmXLGDRoUJ4Ru7Fjx9K8eXOBnjcH79+/x8HBgT179uSrZHHo0KG4ubkJYqJfw97ennXr1uW5qPpfwYkTJ2jXrh0DBw6Uakz+HruOj49n5syZDBkyRCCIsLW1ZenSpVKZoqysLDp37oy3t7cwh4SFhTFp0iQePnwotYiVk5OjS5cuLF26lIsXL7Jz507q169PcHAwFy9elJiX7969i4+PDxkZGdy7d4+7d+8SGxuLqqoqr1694siRIwwaNAgNDQ3Mzc2xsbHB0tKStLQ0LCws8PPzk6J437NnDydPnvyu8ptJkyZRuXJlBg8eLPH9kSNH8PHxkdCL+5Psevfu3Xz69Ik5c+bw6NEj5OTkUFBQYNiwYcybNy/PHlc/Pz+eP3/OzJkzJb5PT0+nR48ezJ49O1+Cl2vXrqVUqVJ069ZN5vZJkybRuXNngb7/fxkRERHUqVOHDh06SPU8fI9d55BSNGzYUOibGT16NObm5jKz8+7u7nTp0kVgj7x16xYjRozg3r17vHv3Tmr/Vq1a4eHhQfHixRkyZAiGhoaEhYURGhoqYRMpKSn06NEDOzs71q5dS0xMDM+fPwc+M9Klp6fTq1cvPnz4gJWVFWZmZvTo0QMlJSUcHBwYM2aMVLbq5s2bTJ8+nX379n1zbbd161YuXrzIihUrJLJv4eHhuLu7s3//fomg28+07Zxzubi4FIrWPYfQ5Heej4oarVq1YsyYMdja2tKrVy/i4+OZOnUqXl5eXLt2TSIA8L3IV0bI3NycefPmcfz4cbp160bp0qVJTEzEwsICGxubPI/dsGEDM2fOZNKkSVy9epUbN24wc+ZMRo0aha+vb74dFicnp1xfclu2bCl0H8F/CTksMgVNBdesWZNGjRoJjer79u2ja9euMg1PU1MTGxsbDh48CHxmFevevTsfP36kffv2WFpa0qxZM5o2bUrHjh1JTU1lzpw5FC9enH79+iEnJ4eurq7UokQsFrN9+3bs7OyYMmUK7du358OHD5w5c4ZHjx5hbm5OcnIygYGBVKxYEU9PT4yMjHBxcWHcuHHMmDFDptM8adIkdu7c+c2oukgkwt/fn127dgnaHMuXL8fc3JzExESpBcOfBHNzc0aMGMGlS5dwdnbGwMCA9PR03NzcvjlJL1iwgODgYAYNGsSZM2e4c+cOK1euxN7eHg8Pj3z3bQ0ZMoR58+bJjHRduXKF4sWL/3WC/g85Ge+Clv9qaWlhZ2fH4cOHEYvFPHz4EF1dXZnlcvLy8owZM4aNGzcCnyOq7du3JzIyEiMjI2xsbDAyMqJJkyY4OjqSnZ3N6NGjqVSpElZWViQnJ2NsbIy9vb3UvLxx40YcHR2ZMWMG5cqV482bNwIdvampqZCpNDIyYtu2bVhbW9O4cWNGjhxJ9+7dZepc2dnZERUVJUGqkhvmzZtHTEwMFhYWrFixgrVr19K1a1f279+Pn59fAe7s74EOHToIGfohQ4bQrl070tPT8fDwQE1NLc+MQ58+fZCXl8fBwYGQkBDu3bsnvFf79euXLycIwNHRkfXr18us0oiOjub69esyS7T+FyEnJyf03RUEioqKmJiYEBYWRmpqKikpKdy/fz/XEuWJEyfi7e0NfG45aNy4MTdv3kRfX5+uXbtibGxMkyZNGDZsGPB57dW4cWNq1qyJgoICAwcOpHbt2lLrgYCAAOzs7OjduzclS5bk2bNnpKSkUK1aNXr06EFAQADLly+ne/fu3L17lz59+qCmpsa4cePQ0dGR+Tz8888/1KtXjwsXLnzzPjg6OtKkSRM6duzIggUL8Pb2xsXFhZkzZ7J169bfouT1b0Yo/5g6dapgG3PnzuXFixe0atWKw4cPs3LlygKNWSBi/aZNm7Jjxw7u378vaAqcOHGCxYsX8+HDB5nHlCxZkn379mFtbS00Krdp04bDhw9/k3jg8ePHDB8+HAsLCywtLRk8eDANGjQgJiaGcePGCS/Nd+/eMW/ePI4cOZJrX8P/GtLS0gRV5bxY/76FLl26sGPHDg4dOsSdO3do2bJlrvu2aNGC27dvA3Dw4EGcnJxwdnbm0aNHaGhoYGlpiZ6eniA0lxOtqV27NioqKpw6dUpiAZ2dnc3s2bMxMjJCS0uLEiVK8PHjR6E2dPv27aSmpjJv3jyGDx9OUFAQV69epUWLFpw7d45du3bl2k8mLy9PgwYNJJikcoOamhrr1q1j9erVVKhQgTp16hAYGMiUKVN+iUZFUaNSpUr4+/tz5swZ4X6IxWJGjRqVq06SoqIiGzduZNSoUZw+fZqAgADKly/P0aNHpfRavsbbt2+ZMWMG5ubmWFtbC9HBVq1a4eTkRHh4OPC5+Xfjxo1MmTKlSNil/iuwtbUFKBTBQ5cuXbhz5w7Lli3jzp07udKkw+dyvS/t2sDAgDFjxhAVFUVWVhampqa0atVKyALmzOtqamrY2NiwevVqqcXSjh07iIuLo3HjxpQoUYJPnz4hJydHuXLlCA0NpVSpUixbtgxra2uWLl3Ko0ePMDMzIz09nfXr1+Pp6ZmrHo6lpSWnTp365j2Qk5Nj+vTp7Ny5k9q1a1OpUiXBzn8VM2hRQkNDgzVr1hAaGsqHDx8Egp0BAwZw7949mcfkNPevWLGC8PBwtmzZQnp6Ovv378fKyirP8338+JGVK1cKdp1TITBx4kS6dOnC2bNnEYvFZGZmsnfvXpycnPD09PwbuPw/5AQBC9MHaWBgQFZWFoMHD+bly5d5jlWuXDkhWHrkyBGUlZWZNWsWnz59Ii4ujlatWmFhYcGePXtQVlaWoOUeP348Q4cOlXIqLl26xI4dO+jRowdycnIoKioiEolQUVER3g2rV6+mS5cu9OjRg4sXL9KtWzf09fVZsmQJfn5+PHr0SOb1dunShSNHjnzXfcjpa2/evDllypRhxowZ7Ny5s1Brob/4tTAzM6NLly7A55L88PBw3r17R0xMjEB8k18UjlaEz7zs9+/fp06dOkyYMIFVq1Zx+fJlmc6NSCSiRYsWeb5scyAWi3n37h2XLl1i7dq1LFiwAH19feBzanPy5Mm4urqipqbGpEmTiI+PR01NDWdnZyZNmvSfWJgWBZSUlDAwMCA6OpqsrCypxllZ90nWy79cuXLo6+vTpUsXzMzMSE5OlipzzEFsbCyamppkZ2cTGRmJpaUlW7dupX///gJb4I4dO9DT02PZsmW4u7sLzYwrV66kf//+9O7dm+7du5ORkcHVq1cFrQn47HQ3btxYOF/37t25ffs2Z86cISoqCjU1NeTl5SlRooRQshMdHc3WrVtxcnJCU1MTbW1tnj59iqqqKvLy8ty/fx9jY2MpQS4XFxep31e6dOlvLgb+dNSoUYPExESKFy/O8uXL2bBhAydOnJDS3smBnp4eU6ZM+a6x4+PjefToEZMmTWLatGnMnDkTkUjEq1evmD17NnXr1hXmksjISOTl5enSpQv79+//I/VcfhRcXFzw8vIiKytLqnzxe+06Pj5eEDX8smypT58+Uvvm2DV8ZoOqUaMGmzZtonPnzgJRzoULFxCJRISGhjJ48GBCQkIQiUQMGTKEtLQ0Zs6cyePHj1FTU+Py5csYGhoKWaYTJ05IzCktW7akb9++glh35cqVEYlElCxZUqA9f/78OVeuXKF9+/bIy8tTtWpVnjx5goqKCoqKitSsWZMrV65Qp04dqXv3NYoVK0anTp2kb/R/CJqamjx79oxKlSoREBDAzp072bp1a640xuXKlWP06NHfNXZSUhJv3rxh2LBh9O/fn/3796OoqEhCQoJgy2vXrsXLy4uFCxciEolo164du3fvlmD0+l+HpaUlISEhqKioFNiuq1atSt++ffHy8iIxMZGYmBg2bdok064zMzOFCHtkZCQVKlRg7969GBgYCGuuy5cvEx0dzenTp5kxYwaGhoaUKFGCdu3akZWVJbAt6urqcuvWLXR0dNi5cycqKipERUVJsARXr16dadOmsWfPHgCh1FxLS0ug/k5JSeHVq1fUrl0bQGCLzbkn2travHv3Too8QZZdKyoqFinzZFHiL1lC0aCwmnqFdoQAoVnJ0NCQK1eusH79embMmFGgsXI0DLZv307ZsmU5evQoDRs25PXr14JR1q1blx07dmBubs6BAwd+24f8d4BIJGLTpk0YGRmxevVqnJyccmVKywtycnIMGjSIUaNGkZCQwPnz53Pd19/fHw8PD3x9fXn//j1ZWVk0b95cYjJ89uwZderUwczMDF9fX0G4Vk5Ojo0bN9K+fXvatGmDrq4u8+fPF8r63r17x8GDB4XFUQ7MzMx48+YNBgYGaGlp8fHjR+Li4ihRogSnTp1i2LBh+Pr6Ap/7mGrUqIG1tTVKSkocPXpU+NStW5chQ4bILKP7X8OnT58QiUTUqVOH8PBwFi5cSGBgYIHHCw4OZtWqVWhqanLmzBkqV65MRESEUJtevnx51q1bR69evTAzM5MQX/4LacydO5fg4GA8PDzo169fgQUUu3btyp07dwRWydycAV9fX3r16sX58+c5c+YMY8eOlWILffbsGenp6RgaGtKiRQvCwsKEhc7IkSO5dOkSRkZGVKtWjUmTJgmLuPT0dJYuXSpVivbPP//Qt29f6tevT8mSJcnKyuLt27doaGjw/PlzKlWqxK1bt4DP/RNaWlqYm5ujoqLCmTNnuH79OtevX6dmzZo4OTnJLKP7X4NIJCIzM5OKFSsSGRnJ9OnTC6Xncv36debPn49YLObBgweoqKjw5MkTYbumpiZTpkxh3rx5XL16lXnz5hXFz/jPYuDAgWzfvp1Vq1bh4uKCgYFBgbJlLVq04O7du5w+fZpy5crx8eNHmfvt378fU1NTnj17xq5duzA3N+fq1avCegs+9y3B56oNNzc3/Pz8hKobU1NThg8fTokSJTA2NmbkyJECLb9YLGb27NkMGTJE4pw5ZEUVKlRAV1cXBQUFoqOjUVVVJTMzk/v370uQHikpKdG2bVu0tLS4efMmL1++ZM2aNZQvXx5bW9tcA3S/O/46Qr8HiiRtkhPFu3LlCj179pQQAcwvpkyZwrt37wgODsbGxobp06eza9cuduzYQUBAgLCfsrIyffr0+Slid69fv8bT05PZs2eze/dumaxkvzMMDAzYuXMnL168EDQ0CiKyqqKigqWlpZB56devn4Tie2JiIiNGjODNmzd0796dAQMG0L17d6KioiRqynPK2nIWwBYWFpw5c0bYLicnx9q1a5k3bx737t0jMzOT9PR0oT9n5cqVUpGyBg0asGLFCtzd3QUl78mTJzN06FCcnJxwd3dn4MCBAjuhsbExXbt2RU5ODhsbGxYtWkTJkiUJDw9n+PDhXLx4EUCgBo2Njf2fm3R0dXUpU6YM4eHhtG3btlB9UFu2bGH37t3s2LGDGTNmYGlpyYkTJ3j9+jXTp08X9hOJRIwfP16oWf+RSExMxMfHh1mzZuHr65tridXvCh0dHfbv309WVhazZs1i9erVBWKaEolE2Nracv/+fT59+sS///4rUQqZmprKqlWrCAoKwsPDA2NjYxo1akSxYsUkNKZSUlIQiUSCXXfu3JkTJ05InGvVqlWsX7+e8+fPk56eTnZ2NsePH6dz5864u7tLVRJUqFCBJUuWMHr0aFxcXOjfvz+TJ09m+PDhuLq6sn79emrWrCmUvlatWpXu3btTuXJl9PX1Wbt2LY0aNeLx48fMmDGD/fv3C2VZL1++5M2bN4UWnP4TYWhoSGRkJPXq1WP16tUFHufixYtMmzaN1atXs3XrVipXrszVq1epVq0azs7OEn0ubm5uUgKtPwLp6ekEBgYye/ZsVq1aVWiB0p8NJSUlAgMD0dXVZfny5SxYsEAQiM0vLC0tSUpK4sOHDyxYsICbN28K23LkJKZMmcK5c+eoX78+ysrKGBsbo6enJ+yXY6flypVDW1sbKysroSUiB5MnT+bixYvs37+fT58+IRaLuXHjBo6OjtSrV09KELl48eJCz3j//v3p06cPkyZNYuTIkfTv35/bt2/z4sULoQSuZMmS9O7dm0aNGqGhocH69esxNTXl1atXrF69mo0bN5KRkYFYLCYqKoro6Gghu/Q742+P0O+BInGESpQowaVLlwgLC2Pbtm1SvPbfi8ePH/Pq1SsmTpyIoqIijx8/pmHDhmhoaODt7Y2Pj4/Ew92oUaNc60iLAmKxmBkzZuDu7k6VKlUwNzcX6Je/p1nvd4KVlRWLFy8W6rVXr17N3bt3yczMzNc4OX1aGRkZ+Pr6Uq5cOeFvpKmpycqVK7l+/TpaWloEBgYSEBCAvLy88EJ8+PAh48ePJzk5GQcHB+DzhPw1kUPVqlXp3bs3W7ZsoWnTptjY2PD27Vv27t0r1ag7fPhwSpYsiYaGBrq6ugwaNIjXr18L20eNGsWtW7do0aIFmzdvBmDFihV4eHhw9+5djhw5wrp16ySiblu3biUtLY0aNWpQqVIldHV1UVZWJiwsLF/360/H6dOnCQwMJCwsLN8N0jlISUlh06ZNrF+/nmLFigl2raioyJQpU4iIiBAijoCgo/EjsWXLFhwcHATnXlFRka5du0oEW/4E/PPPP8ydO5f+/ftz7949lixZwpUrV/ItHdCwYUOhbOb+/ftUrVqVRo0aUapUKVRVVRk+fDgPHjwgOTmZVatWcf78edTU1AS7/vDhA2PHjuXJkyd52rWWlhbDhw/n9OnTtG7dmo4dO3Lu3Dl8fHywsLCQ2Hf9+vVoaGhQqlQptLS0sLe3l2AEmjZtGvfv38fa2prx48cDn0kcVq9eTXBwMOHh4SxevFiCnnfPnj18+PCBdu3aUblyZcqWLYuCgsJPcbx/J/j4+ODn58eNGzfo0KFDgceZNWsWAQEB6Orq8vbtW6pVq4ZIJKJnz57o6+sLBDvwOTOU3/dNfnH27FnMzMx4+/Yt5ubmVKpUiaFDhzJ79uw/atFYpkwZJk6cyOjRo/nw4QOLFy/mzJkzEoHH70H58uVxc3NDVVWV6OhoGjVqRIMGDShbtizKysrY2Njw6NEjIiIimDhxInfv3qVixYoSDuykSZM4e/YsNjY2yMnJkZWVJWXXioqKjBo1iqioKKysrDAxMWHz5s1MmzaNESNGSOx74sQJVFRU0NXVpVixYrRr107iverp6cnVq1cZOHCgoAd16dIl1q1bh5+fH3FxccyePVvCqTt79iwPHz7Ezc2NihUrUr58eVRUVBgzZky+7tfPxl9H6PdAkZTGAVL0rQXB5s2bJWiMtbW1BXVseXl5geEoh1IyMjLyhzJIrVmzBjU1NYmsk6GhIX369MHe3p6NGzdSoUKFH3b+ooaysjLW1tbo6Oiwa9culixZgry8PGXLlmXQoEG5CuJ+CTk5Oezt7bG3t6dx48Z07tyZuLg47Ozs6NChA/Xr10dfX18iY2NhYcHu3bsxMTGRKI/LeWYOHjwoIXh2/Phx5s2bR48ePZgxYwavXr1i06ZNfPz4USYL2dOnT4V/x8TE4OXlRVRUlEAdmkMJ/DVySmpyfle9evVQVlbm7t279OjRg4yMDMGhEovFZGRkcP369QI35P2JqFGjRq7ilN+LgwcPYm9vL7w8tbW1uXTpkrB90KBBbN68WcgMRUdHU6pUqUKdMy+cOHGC48ePc/jwYeGamjRpQs+ePenbty/ly5endevWP+z8RQ05OTlatWpF2bJl8fPzY/Xq1YhEIkqVKoWTk5NEiUteaNu2LW3btiUhIYEdO3bw+PFj2rZtS4cOHWjQoAGNGzeW6NEyNzdn4MCB6Onpoa6uLnyfo7uTk8HNwYMHD3Bzc6NDhw6MGTOGhIQEtm3bRnR0tMxy3WfPngn//vDhA7t37+bw4cNC1qtDhw4ySzVzBJ7hs+NVu3ZtDA0NuXPnjqA8/7XexNmzZ3F1df2u+/RfgLa2tsx+kfzg4cOHVK9eXSDAKFGiBG/evBG2Dxw4EDc3N6GfMiMj44dm3168eMHcuXM5cOCARGlz586dmTdvHl5eXt+USfidIBKJ0NfXFzLkPj4+iMViihcvTufOnWnbtu13lczp6+ujr69PWloaJ0+e5PDhwzRv3pwOHTrQsGFDmjRpIvFebdGiBSNHjhTeczlBFTc3N+CzXX8ZtHj//j39+vWjdu3a9OvXD7FYzJ49e4iIiJAZFM9Z08HniosTJ05w4sQJ3r9/T8mSJTEyMkJdXV2qlO/Ld4aGhgY1atTA0NCQR48eUalSJerVq8fOnTsljvk6I/274XcujYuPjxdoxuGzHXl6egplj7ldz6xZs/Dy8iI+Pp5mzZqxevVqgawjLi6OGTNmcPToUWH9bmtry5w5c/LNMFuUKDJHqCjw9u1bKleuLPzf3t6e3r174+DggEgkolKlShIlG76+vgWmy/sWsrKy2LNnj1QvCnw2wmnTpgnlW38Kcl58ffr0Yc2aNdy6dYtz586xdu1a5syZw8iRIxk7diw6OjpSx+ZkUr7E5cuXhQb5nLrzx48fS0XzMzMzuXnzJnXq1BFYBUeNGoWcnBwBAQFUq1ZNWPg+evQIDw8PDh06JPQPGBoaYmNjw7Rp0/D396d3794S4+/btw9PT082b96MnJwcDRo0kOhzWLJkCUOHDkVdXR0dHR3EYjFPnz7F0NCQsmXL0r59e7KysjA2NsbBwUGCUEJXV5e4uDgUFRXR0tISmLq+xte9DSkpKTL3+19ETEyMBCVz06ZNmTp1KmlpaSgrK1OpUiWJ0o9169YVepGWFzw9PfH29paKasrLywvPyp/kCH15r+bMmcPTp08JCwtjx44dLF++XBC8rlatmtSxsuxaS0uL/v37IxaLhYXWw4cPJRYwOUhJSeHhw4dCEKV79+6ULFmSy5cv8+TJE6GZOTk5mSFDhhAQECBR/mZqasr27duZNGkS//77r8TYCxcu5J9//mHt2rW8ffuWpk2b0rBhQ2H7oEGDsLGxITU1lcqVK5OVlUVqair6+vokJibSo0cP0tPTadCgAc7OzhIv8EqVKvHw4UOUlZVRVlYWWIi+xl+7zh1fv681NTVRUFAgMjKSihUroq2tLVGquWfPnh9KRrFmzRpmzZols79z4sSJdOzYEVdX1z+GSOlLux4zZgxv374lNDSUI0eOsGXLFqKjo1m0aFGu/TFf27aqqiodOnSgffv2gl2/ePFCplZQ5cqVOXPmDMbGxqirq9OwYUPq1q1LZGQkvr6+gjyGWCymb9++zJ49m3/++Uc43tjYmCtXrtC/f392794tMbazszOVKlVi8eLF3L17FyMjI2rUqCG873NK3qKjo9HT0yMzMxORSIS1tTXHjh2jf//+ZGVlUaVKFVxcXCQCuI0bN8bS0hI1NTVEIlGupEayaPF/hW3/zo5Qr169iIqKIiQkBEBoLThw4ECuxyxevJhly5bh5+dHrVq1mDt3Lqampjx8+BANDQ2io6OJjo5myZIl1K1blxcvXjB48GCio6ML1X9cWPxWjlCNGjW4ffu28GBraWnRvn17JkyYwNy5c7lz5w6GhoZkZGQwf/589PX1C1yG9y08fPiQhg0b5jpptmzZkgULFvyQc/8MiEQi/vnnH6EZecmSJSxatIjly5djb2+Pg4MDjRs3lmJRkzXOt6CgoICzszPbt28X7md0dDSOjo6ULFkSDw8PYV9PT0/mz58vxYQjEomYMWMGFhYWODs7S5xXUVGR0aNH58lu9PUiUFtbm+bNm9O8eXN69+6NsrIywcHBdOrUiVWrVgkRjC8j2n9RMFSvXp3bt28LiyA5OTnGjBmDs7MzGzZs4M6dO1SvXh2xWMy2bduIiIjAxMTkh1yLWCwmPT0914xT6dKlhRr3P5XOt3r16lSvXp1+/frh6+vLlClT2Lp1K2ZmZjg7O9O4cWNq1ar1zd/3Pb+/V69ebN++XSh5io+PZ8iQIcTFxUnow23btg1XV1eZbKI9evRg27ZtJCQkSEQFc0qsevbsmev5vxxPQUEBZWVlWrZsiYaGBoMGDUJHR4dz585hb2/PuHHjhFKbdu3a/U9ldn8EqlatKjD+5WDmzJn07dsXX19fMjMzhaDa2bNn2bhxI0FBQT/seu7evSsIA3+NL2UScpjI/jTo6uri5OSEo6MjPXv2ZPTo0RgaGmJoaEj//v1p1qwZDRo0+KZe4PfYtbm5Ofv372fjxo2kpKSQlpbG1KlTuXLlChs3bhQywJcuXaJevXoSTlAODA0NqVixIjdu3JAIYMBntuG85nhNTU1hLsjRSWvatCnFihWjd+/eAm2ym5sbpqamDB06FPj/2a8/Bb+rI3T//n1CQkK4ePEizZo1A8Db2xsjIyMePnwo04bEYjHLly9nypQpQmBp06ZN6Orqsm3bNgYNGkT9+vUlHOPq1aszb948nJycyMzMzFO8/UfitwqN9OnTh1WrVknUp44cOZKGDRtiZmaGp6enwBZXqVIlpk2b9guv9vsmlD8BampqTJ8+nZcvXzJ//nwuX76MnZ0dlSpVwtramosXL0oZ3KdPn7h37x537twhPT39m+fQ0tJiwIABQt9AdnY2ixYtwtPTU+Lhj4iIyHUiU1RUpFq1ajIj0/nF4MGDWbhwIbNmzaJ69epUqFABV1dXduzYgZub2x/RaPmnwNTUlJCQEIHyGD6/aIcNG0avXr0YOHAgd+7cwdTUlOfPn7Np06Zfalv/FbuWl5dnwIABPH/+HB8fH+Li4nB0dERPT4/mzZtz8OBBqVKljIwMHjx4wI0bN3JlmfoSysrK9O7dW0IfyM3NjR07dkhkYI4ePZprNhUQeoUKi+nTp9O5c2fWrFlDgwYNKFOmDF27duXQoUOsXLlSULb/i8KjYsWKfPz4UeKe6unpsWrVKsaNG0eHDh1ISEjAwsKCnTt3snPnTokSyh+BvGz3v2LXIpEICwsL7t69y759+yhVqhRDhgyhYcOG1K5dG19fX6nsRnZ2Nk+fPuXatWvExcV98xxycnLY2tpSp04dsrOzkZOTo1OnToSEhEgEFY8cOZKnXdvZ2X235k9e2LZtG/C5LK9FixaUKVOGdu3aERQUxJ07dzh+/Hihz/ErUFQ9QomJiRKfwq5fLly4gKampuAEATRv3hxNTc1cGYMjIiJ48+YNHTt2FL5TVlbGxMQkT5bhhIQEihcv/sucIPjNMkKlS5eme/fuuLi4MG/ePCEbkdO7sW7dOho3bky5cuV++KRWq1Ytbty4IUwCX+PChQsSjEn/BZQqVYoxY8YwevRooqOjCQ0NZeHChRgZGaGhocE///yDgYEBT58+5cSJE0LtsJKSEsbGxtjZ2eX5ojt9+jQPHjwAPmfcpk2bRq1atTh//jw3btygXLlyAmvbhAkTZPZfFcXf/cGDB2hpaUlFqeDzM9ijRw8CAwNxdHQs9Ln+4vOCfPbs2XTr1o3FixcLpAtVq1alRIkSTJs2DUtLS8qWLStE/34URCIRCgoKxMXFydQeiI2NRUVF5T+zaILPJTEuLi64uLjw7t07zp8/z+LFi7G2tkZFRYV69ephaGjIu3fvOHbsmFC+Ki8vzz///EOPHj3y1Gl48OCBIFwaExPDnDlzaNCgAQ8fPuTYsWNUqlSJO3fu4Orqyvjx42UK7RbF/f748SO3bt2SmalXVlZmypQprFu3LteswV/kH0uWLKFv377MmDEDExMTRCIRpUuXpkqVKlSoUIHhw4dTunTpnyJMW7duXS5fviyzXzkrK4vbt28Xut/xd4KCggKdO3emc+fOJCUlce3aNTw9Pfl/7d1/TNXVH8fx1zUCJODqBO6FpsEUf7Camkt+LNOt4Iu/UzaHGOpcpDFj6tJ0laEuCCrT7c5S/3C6cGvVcLUKf8xpTgXR+WM5NH8ws62rVHAxRUC53z8cd165iHovHz/F87HdP7z3cz73fMAPu697znmfefPmacGCBRo0aJBSUlJ069Yt7dmzx7PNiXTn8012drbX1MZ71dfXewLIjRs39Omnn2rv3r2qq6tTeXm54uLidO7cOe3bt0/Lly/3jLbeLVB/R7dt26YdO3b4PP/q1au1YMECT5n+f5NAjQjdO3Pngw8+8KvKq9Pp9LluMyYmxmsd4L1tJHXYrNZms+nSpUs+2/z1119as2bNY1+7Z6ogJEmzZ8/W4MGDtWLFCjU0NKitrU0DBw6Uw+Ew9I9Y+x+ZtWvX6u233/Z67Z9//tHq1au1adMmw/pjJIvFoqefflpz585Vbm6u9u3bp/Xr16uqqkoHDhzQU089pVdeeUWpqalqa2tTdXW1du7cqZqaGr3//vudfmi6u7DF1atXdfjwYX3//fd65plnNH78eF2/fl2NjY0qKytTWVmZp+JMexBtbW3VhQsX/C5QcfDgwfvOVZ8wYYKKiooIQgH04osvav369Vq/fr0uXryoXr16qW/fviooKAhIoZWH8dZbb2np0qXavHmz15cct2/f1tKlS1VQUGBof4wUFRWlKVOmaPLkyTp69KhKS0t19OhRffHFF3ryySeVlpaml19+WSEhITp58qR++OEHrVq1SkuWLFFSUpLPc4aHhys0NFQ3b97U5cuXPR+8oqOjNX78eN24cUNBQUHas2ePvv76ay1evFgrV670+tJk165d2rp1q1/Xdvr0aaWkpHT6empq6r96OrMZxcfH66uvvpLD4dBHH32k4OBgBQUFad68eYZvOp2fn6/8/Hx98803Hb6Q+/jjj5WVldXltLF/q4iICI0bN07jxo3Tr7/+qoqKCm3atMmzd96IESM0Z84c9evXT2fOnNFPP/2kDz/8UAsWLNCYMWN8njMoKEixsbH6448/dOnSJQUFBengwYMKCwvzlMiPjY3VkSNHlJmZqdmzZ6u4uFhxcXGec5SXl3u2rHhUTU1NioiI6HQz7ejo6H/1DI5ATG+7fPmy16j83euc71ZYWKhVq1bd91ztxWZ8hdgHmTJ+7+udtWlsbNTEiROVlJT0yPuOBspDBaGHLd34qJKSknxupmjU+7ebM2eO1qxZo6ysLM2cOVPR0dE6duyYysvL9d5776lPnz6G9+lxeOGFFzRp0iRNnDhRDQ0Nslqt6tWrl2c/pYyMDA0fPlwOh0MrV67U0qVLOxRcaGpq0uDBgz37fVgsFp/7TZ07d07Lli2TzWbTkiVL1NTUpIULF8rtdqu4uFjTp0/3e7+XW7du6e+//+70d/fnn3/K7XY/1O/23qkI/6ZF1Ub9H27fHPdxvX+79kpDGRkZmjVrlgYOHKhz585p+/btys7O1siRI3vEfT1kyBClp6crPT1dDQ0NCg8P90xPaG1tVVpamoYPH64NGzaotLRUixcvVmJiotc5mpqaFBUVpdWrV0vq/L5uL5c/fPhwlZaW6vfff9fnn38u6c6HpQEDBqhXr15+/dybm5vlcrk6PcetW7fU2trKfR1goaGhHb4sNPL92/Xr108FBQXKzMxUVlaWnn/+eV25ckXbt2/X4MGD9eabb/aI+9put2vu3LkKDQ3VtWvXFBwc7Plg3NraqhEjRujZZ5/Vtm3btGHDBrW0tCg1NdXrHE1NTQoKCtKSJUs8H2R93ddut1szZszQa6+9pk8++UQnT57Uzz//LEk6fvy4zp8/r0GDBvn1c29pafF8SdqZ5uZmv+7rzp7rboEaEYqMjPQKQp1ZuHChsrOz73tMfHy8Tp065XP/rbq6ug4jPu3a12s6nU6vtftXr17t0ObatWvKzMxUeHi4ysvLu30mSFcs7gf4Ldy8eVMJCQmdDokB6Mhut6u2trbTb7IeN+5r4OFxXwP/TUbd242NjbJarcrKyvIrBLS2turbb7/1rLMJlJqaGiUlJamqqsozY6OqqkopKSk6c+ZMp8US4uLitHjxYs++bi0tLYqJiVFJSYln+ltjY6P+97//KSQkRD/++KPCwsIC1u9H9UAjQqGhoaqtrX2gRfEA7ggODjbthyWJ+xp4FNzXwH+T0fe2WavGDRs2TJmZmcrLy9PGjRsl3SmfPWnSJK8QNHToUBUXF2vatGmyWCxatGiRioqKlJiYqMTERBUVFSksLEw5OTmS7owEZWRk6MaNG/ryyy89xR2kO1McH9fU1QeeGhcaGmrqP/4AHh73NfDfw30NmJ9Zg5AklZWVqaCgwFMFbsqUKXI4HF7HnD17Vi6Xy/PvZcuWqampSfn5+Z4NVXft2qWIiAhJ0rFjxzwb49675r+2tlbx8fHddj3380BT4wAAAAD4p31q3Kuvvur31LgdO3YEfGpcT2OqfYQAAAAAwAimK58NAAAA/JeZeWpcT0IQAgAAAAxEEDIHghAAAABgIIKQORCEAAAAAAMRhMyBIAQAAAAYiCBkDgQhAAAAwEBtbW1qa2vzqz38RxACAAAADMSIkDkQhAAAAAADMSJkDgQhAAAAwECMCJkDQQgAAAAwkNvt9mtUhyAUGAQhAAAAwECMCJkDQQgAAAAwEEHIHAhCAAAAgIEolmAOBCEAAADAQIwImQNBCAAAADAQI0Lm0OtxdwAAAAAAjMaIEAAAAGAgpsaZA0EIAAAAMBBByBwIQgAAAICBWCNkDgQhAAAAwECMCJkDQQgAAAAwECNC5kDVOAAAAMBA7SNC/jy6S319vXJzc2W1WmW1WpWbm6uGhoYur6ewsFBxcXHq3bu3xo0bp9OnT3sdM3/+fA0cOFC9e/dWdHS0pk6dqjNnznTbdTwIghAAAABgIDMHoZycHJ04cUIVFRWqqKjQiRMnlJube982paWlWrt2rRwOh6qrq2W325Wenq5r1655jhk1apS2bNmimpoa7dy5U263WxkZGbp9+3a3XUtXLG4mGQIAAADdrrGxUVarVaNGjdITTzzxyOe5ffu2jh07JpfLpcjIyID1r6amRklJSaqsrFRycrIkqbKyUqmpqTpz5oyGDBnSoY3b7VZcXJwWLVqkd955R5LU3Nwsm82mkpISzZ8/3+d7nTp1SsOHD9f58+c1cODAgF3Dw2BECAAAADBQoEaEGhsbvR7Nzc1+9evw4cOyWq2eECRJKSkpslqtOnTokM82tbW1cjqdysjI8DwXEhKisWPHdtrm+vXr2rJlixISEtS/f3+/+uwPghAAAABgoPZiCf48JKl///6etTxWq1XFxcV+9cvpdComJqbD8zExMXI6nZ22kSSbzeb1vM1m69Bmw4YNCg8PV3h4uCoqKrR7924FBwf71Wd/EIQAAAAAAwVqROjy5ctyuVyex4oVK3y+X2FhoSwWy30fR48elSRZLBaf/fX1/N3ufd1Xm1mzZun48ePav3+/EhMTNWPGDN28efOBf26BRvlsAAAAwEBtbW1dBouu2ktSZGTkA60RWrhwobKzs+97THx8vE6dOqUrV650eK2urq7DiE87u90u6c7IUGxsrOf5q1evdmjTPnKVmJiolJQU9e3bV+Xl5Zo5c2aX19AdCEIAAACAgYzeUDUqKkpRUVFdHpeamiqXy6UjR45o9OjRkqSqqiq5XC6lpaX5bJOQkCC73a7du3dr5MiRkqSWlhbt379fJSUlXV6Hv+ua/MHUOAAAAMBAZi2fPWzYMGVmZiovL0+VlZWqrKxUXl6eJk2a5FUxbujQoSovL5d0Z0rcokWLVFRUpPLycv3yyy+aO3euwsLClJOTI0m6ePGiiouLdezYMf322286fPiwZsyYod69e2vChAndci0PghEhAAAAwECBmhrXHcrKylRQUOCpAjdlyhQ5HA6vY86ePSuXy+X597Jly9TU1KT8/HzV19crOTlZu3btUkREhCQpNDRUBw4c0Lp161RfXy+bzaaXXnpJhw4d8lmcwSjsIwQAAAAYoH0foWHDhvm9j1BNTU3A9xHqaRgRAgAAAAxk9Boh+EYQAgAAAAxk5qlxPQlBCAAAADAQI0LmQBACAAAADEQQMgeCEAAAAGAgpsaZA0EIAAAAMBijOo8fQQgAAAAwEFPjzIEgBAAAABiIIGQOBCEAAADAQAQhcyAIAQAAAAbyt9gBxRICgyAEAAAAGIgRIXMgCAEAAAAGIgiZA0EIAAAAMBBByBwIQgAAAICBCELmQBACAAAADEQQModej7sDAAAAAGA0RoQAAAAAA1E+2xwIQgAAAICBmBpnDgQhAAAAwEAEIXMgCAEAAAAGIgiZA0EIAAAAMBBByBwIQgAAAICBCELmQPlsAAAAwEBut1ttbW2P/OjOIFRfX6/c3FxZrVZZrVbl5uaqoaGhy+spLCxUXFycevfurXHjxun06dOdHjt+/HhZLBbt2LEj8BfwEAhCAAAAgIHaR4T8eXSXnJwcnThxQhUVFaqoqNCJEyeUm5t73zalpaVau3atHA6HqqurZbfblZ6ermvXrnU4dt26dbJYLN3V/YfC1DgAAADAQP4Gme4KQjU1NaqoqFBlZaWSk5MlSZs3b1ZqaqrOnj2rIUOG+OzLunXr9O6772r69OmSpK1bt8pms2n79u2aP3++59iTJ09q7dq1qq6uVmxsbLdcw8NgRAgAAAAwUKBGhBobG70ezc3NfvXr8OHDslqtnhAkSSkpKbJarTp06JDPNrW1tXI6ncrIyPA8FxISorFjx3q1uXHjhmbOnCmHwyG73e5XPwOFIAQAAAAYKFBBqH///p61PFarVcXFxX71y+l0KiYmpsPzMTExcjqdnbaRJJvN5vW8zWbzarN48WKlpaVp6tSpfvUxkJgaBwAAABgoUFPjLl++rMjISM/zISEhPo8vLCzUqlWr7nvO6upqSfK5fsftdne5rufe1+9u891332nv3r06fvz4fc9hNIIQAAAAYKC2tja/Cga0B6HIyEivINSZhQsXKjs7+77HxMfH69SpU7py5UqH1+rq6jqM+LRrn+bmdDq91v1cvXrV02bv3r26cOGC+vTp49U2KytLY8aM0b59+7q8hu5AEAIAAAAMZHSxhKioKEVFRXV5XGpqqlwul44cOaLRo0dLkqqqquRyuZSWluazTUJCgux2u3bv3q2RI0dKklpaWrR//36VlJRIkpYvX67XX3/dq91zzz2nzz77TJMnT36oawkkghAAAABgILNWjRs2bJgyMzOVl5enjRs3SpLeeOMNTZo0yati3NChQ1VcXKxp06bJYrFo0aJFKioqUmJiohITE1VUVKSwsDDl5ORIujNq5KtAwoABA5SQkNAt1/IgCEIAAAAAJEllZWUqKCjwVIGbMmWKHA6H1zFnz56Vy+Xy/HvZsmVqampSfn6+6uvrlZycrF27dikiIsLQvj8si7s7d2QCAAAAIOlOuWur1arg4GC/1wi1tLTI5XI90Boh+MaIEAAAAGAgs06N62kIQgAAAICBCELmQBACAAAADBSo8tnwD0EIAAAAMBAjQuZAEAIAAAAMRBAyB4IQAAAAYDDCzOPX63F3AAAAAOgJgoODfW4s+ijsdruCg4MDcq6ein2EAAAAAIPcvHlTLS0tfp8nODhYoaGhAehRz0UQAgAAANDjMDUOAAAAQI9DEAIAAADQ4xCEAAAAAPQ4BCEAAAAAPQ5BCAAAAECPQxACAAAA0OMQhAAAAAD0OP8HCCR2CzV2CmYAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import OracleMarginalNLL\n", + "\n", + "acquisition_fn = OracleMarginalNLL(model)\n", + "X_new_df, acquisition_fn_ds = greedy_alg_with_groundtruth(acquisition_fn, task, diff=True)\n", + "\n", + "fig = deepsensor.plot.placements(task, X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(task, acquisition_fn_ds, X_new_df, data_processor, crs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parallel greedy algorithm\n", + "\n", + "Acquisition functions that inherit from `AcquisitionFunctionParallel` can be computed over all search points in parallel by running the model forwards once.\n", + "Parallel acquisition functions are much faster to compute than sequential acquisition functions, which required one forward pass per search point.\n", + "This enables finer search grids, averaging acquisition functions over more tasks, and more proposed context points." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:30:22.308371628Z", + "start_time": "2023-11-02T15:30:19.983711251Z" + } + }, + "outputs": [], + "source": [ + "greedy_alg = GreedyAlgorithm(\n", + " model=model,\n", + " X_t=era5_raw_ds,\n", + " X_s=era5_raw_ds,\n", + " X_s_mask=mask_ds, # Mask out ocean from search points\n", + " X_t_mask=mask_ds, # Mask out ocean from target points\n", + " N_new_context=10,\n", + " progress_bar=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:30:22.328537425Z", + "start_time": "2023-11-02T15:30:22.308242649Z" + } + }, + "outputs": [], + "source": [ + "dates = val_dates\n", + "tasks = task_loader(dates, (X_c, \"all\", \"all\"), seed_override=42)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Stddev\n", + "\n", + "Use the model's standard deviation at search points as the acquisition function. Maximising this acquisition function will place context points at locations where the model is most uncertain." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:30:52.927298679Z", + "start_time": "2023-11-02T15:30:22.328414267Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 370/370 [00:21<00:00, 17.29it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACcCAYAAABbX8Y9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8L0lEQVR4nO2ddVxU2fvHP0ODKNiKha1rrLH+jDXobhAQFTsxEcXA7u7A7sLuxE7sQOxEQQTpnJnP7w+W+3WcGZrV3fX9es1r13vuPffcy31OPOcJEUniF7/4xX8ClR/dgF/84hd/H78E/he/+A/xS+B/8Yv/EL8E/he/+A/xS+B/8Yv/EL8E/he/+A/xS+B/8Yv/EGq5PTE1NRXp6elF2ZZf/OIXBUBDQwNaWlrZnpMrgU9NTUX16tURERFRKA37xS9+UfhUqFABr1+/zlbocyXw6enpiIiIwPv371GiRIlCa+Av/kdKSgoqVKiAChUqICoqClKpFGXLlkX58uVRqVIl/PHHH2jVqhWaN28ObW1tbNmyBaNGjULFihUxc+ZMGBkZQUtLCxkZGfj48SPev3+P9+/f4+3bt7h48SKuXLkCVVVVGBkZQVNTE8eOHQMA9OnTBwEBAejVqxfOnDmDEiVKoGLFikhISMDHjx9x6dIlNG7cWKatYWFhaNmyJapXr4709HSULl0aLi4uGD58uMx5GRkZqFOnDnr27Inx48fj06dPuHLlCh4+fIj79++jVKlSsLOzQ0REBFauXAmJRILHjx9DJBLh+fPn6N27N16+fImEhATo6uqiVatWUFdXh5aWFvT19aGjowM1NTXExcXh06dPiIiIwMePH5GUlISUlBR8b0SqoqICPT091K9fH46OjvDy8ir071ksFuPOnTs4e/Ys7t27J7RXU1MTWlpa0NDQgLq6OtTU1KCmpgYVFRWoqWWKYVpaGlJSUpCamork5GSEhYXhwYMHyMjIgIaGBpo0aYJWrVph1KhRKF68uMx94+PjUaVKFaSnp2cr8KLcmNbGx8dDT08PcXFxRSrw6enpOHr0KF69eoUKFSrAyckJxYoVK7L7/axkZGRAJBIJH8L3zJgxA+PGjQMA9OjRAwYGBkhLS0N6ejrS0tKE37t373DlyhXhuqFDh+Lx48cIDw9HXFwcPn78CAA4fPgwSpQogffv30NdXR1JSUk4cuQI9u3bh+PHj8PKykrm/qmpqXB3d0dKSgp0dXVx9+5dqKioYO7cuahcuTISExMRGxuLM2fOYPXq1bh9+zbCw8NhZ2cHAKhatSoaN26M0NBQvHr1ChYWFhg+fDisra1x8uRJWFhYCPeSSqV4+vQpAgICcOnSJaipqUEsFiMtLQ06OjoQi8VQV1dHzZo1UaNGDRgaGkJPTw/FihVDsWLFoKOjA4lEgqSkJCQlJeHFixfYtWsXPn36hE2bNsHb27tQ/3bfQxIpKSnQ1taGSCTK8/VpaWm4d+8erl+/joMHD+LcuXMICAjA0KFDUaZMGeG83MroTyPwZ86cwYwZM+Ds7IxGjRrhzZs32LFjBzp16oTu3bsXyT2Lgs+fP+P69etQVVVF+/bt5Xri7yGJ9PR0JCYmCr+MjAzo6urC0NBQodDfvHkTW7duxevXr/H69WskJCRAU1NT+N25c0dudAMAHx8fxMXF4dGjR3jy5AnS0tKUtqts2bJYtWoVXFxccnzmpUuXYvz48YiLi5MrmzBhAiZPnozmzZvjzp07UFNTg4WFBUqWLAldXV0EBgYCACQSCUxNTXH+/HmUL18e1apVE37Pnj2Dqqoq+vfvDwMDAxQvXhwpKSmYOnUqGjRoADc3NyQlJSE+Ph4JCQmIj48X/r9YsWKoUKECSpUqhfDwcDx//hwPHz7Evn37YG9vj0OHDuX4fPkhPj4eM2fOREhICEqXLo2YmBg0atQIY8eOlRHUvJCSkgJLS0tcunQJKioqMDc3x6ZNm1C+fPl/lsA/evQI48aNw86dO6GtrS0cl0ql6N+/P5ycnGBjY1Po9y1MUlJSMHz4cHz58gUWFhZIT0/HiRMn0KxZM0yaNAkqKv/bEMnIyECLFi3w5s0bJCYmQiKRKKxTTU0N1atXR5kyZYSpYNZ/S5YsCTMzM1hZWaF06dIy1507dw4mJiZy9ZUoUQINGzYUfjVq1EDx4sWhq6sr/LJGRmWzC2WQxJcvX/Dx40eUKFEC+vr6KFGiBFRVVQEA0dHRuHjxIm7cuIEHDx7gw4cPiI6OhkQigZGREWrXrg2xWIw3b94Io+LXr1+FZUlefbxUVFRQvHhxJCUlQSwWC8fLly+P2rVrw87ODn369EGpUqXyVG9uSEhIgKurK/z9/WFiYiKM7NeuXcO4ceOwe/fufAs9AHz69AlHjhzBxIkToaWlhePHj6NixYr/HIHv3bs3/P39Ubt2bbmyhIQEeHp64ujRo4V+38LEw8MDvXr1kpmOAsDatWvx7NkzzJkzRzhGEqNGjcKCBQsglUoxe/Zs1K5dWxA6dXV1xMbG4vnz53j+/DliY2ORnp6OjIwMpKenIz09HR8/fsS9e/egqqoKe3t79OnTB9bW1sLHdeXKFaSmpkJNTQ2qqqqoVq0aKleu/L9pJQkomGKmp6fj6tWruH//PlJTU5GRkYFmzZrB2NhYpjPOQiwW49ixY1i1ahVCQ0Px22+/oWHDhgCAmJgYxMTEQCwWY86cOahXrx4OHTqEbt26ITY2FqqqqqhZsybEYrHwi42NRXJyslB/9erVsXTpUrRu3RpfvnzB5cuX8ezZM3z58gUxMTEIDQ3F06dPYWRkhMDAQOH7fPv2LcLCwvD48WOEhoaiadOmGD58OM6fP49NmzYhOTlZpqPT1dVF48aNYWdnh5IlSxboW5g2bRqaNGkiLGG+5erVq9i7dy/mz59foHsAmc9obW2NyMhI7NixA5aWljnLKHNBXFwcATAuLi43p+cZGxubbMvd3d0ZHx9fJPcuDG7evElfX1+l5a6uroyMjJQ5FhYWxho1alBbW5v379/P0/2kUinv3LlDHx8fqqqqEgAB8LfffmPPnj25dOlSisVi4XyJRJL5P/Hx5ODBpKEhWalS5n8HD+b7J0+4bNky+vj4sE2bNkJ9AKivr08A/P333+XaIZFI2KRJEwJg06ZN6efnR1tbW1avXp21a9dms2bNhHqcnJwYFhZGkUhEJycn3rlz53/t+ob09HSOGzeOIpGIpUuXpq2tLR8+fMilS5eyfv36Mu367bffhH+7uLhw9+7drFatmkz7q1WrxrZt21IkErFJkyZs2LAhAbBJkya0sbFh+/bt2axZM9asWZMAqKamRnNzc65evZqSb95hXjA3N1f4bFmYmZlRKpXKHBOLxUxJSVH6EytpS0xMDNu3b08NDY1cyehPIfC2trbZlnt5eTE2NrZI7l0Y+Pv7886dO0rLd+3axXXr1gn/vn//PkuWLMl69erx4cOHubpHbGwsd+/eza5du7J48eIyHzUAGhoasmPHjsK/f//9d/7xxx8sWbIkdXR06NWxI49XrcpnIhEHA9QF2AzgApGInfT0CIC1atVi5cqVZeotVaoUtbS0uHHjRqEtYrGYHh4etLS0lDn36dOnMm2ePn26UNa/f39u3bqVAHjlyhWZ854/f05vb2/+/vvv1NLSokgk4oABA/jlyxeuXLmSdnZ2FIlEdHd35+nTp5mUlCRca2BgQA0NDQ4ZMkToWLZs2cJbt24xMTFROO/GjRts3rw5AVBHR4cqKips37493d3d2bJlS6Geb59nZ8mSQqfIPAw49vb22Za7ubkxJSWFZGbn/fHjR4aGhub4+/jxo1xHQZKpqanC3/4fIfCdO3fm+/fvFZalpKTQwsJC4YPmh4cPH3LAgAG0tbWljY0NFy5cWODOZMiQIXzx4oXS8uPHj3Pp0qUkM0f2cuXKsWnTpvz69WuOdScnJ3PGjBnU1dUVRiBVVVX+8ccfHD9+PE+dOiX8XbL+TgBoZGTEXr16ccaMGZwyZQrrlywplJUGOAqgC0B1gA0BaqmqcsCAASQzO5fNmzezQYMGBMBZs2bJtOnb+3z7y8jIkDkvJiaGS5YsoY2NDbW1tamtrc0GDRqwUaNG/PDhA79+/crAwEDq6OiwWrVq7Nu3LxctWsQHDx4IdSxZsoQAuHDhQoXvpk2bNjQyMiIAjh07NtuRVSwWc+jQoQRAT09P1qtXjxUrVqSWlhYBUFtbW3gWLYBmAJcA/CgSkQ0a5Frozc3NlY7IUqmUpqamwvecJexfvnxhcnKywtE9OTmZX758EYReEbGxsT9Q4PMonNevX6eXl5fcS5JKpRwzZgx37NiRp/qUsWXLFrq7u/PRo0ckyYyMDO7bt4/GxsZ89+5dvuvdunUrAwMDlZaPGDGCN2/eZExMjPBB7d69W2YEUsSdO3dYrVo1qqmp0cLCQphuZte5KENarRpvAdwBMClzBU8CPAhQBFBXJCIAuaVHx44dWaZMGUZFRckc37NnDzt27CjMNqpWrcqBAwfy1q1bcveWSCTs17Mna+np8WbFilT9rqMwNzdX2vk5OjqyevXq9PDw4Js3b4TjYWFhdHBw4OnTp5mRkcHQ0NBcvYeZM2cK99XT02OLFi04bNgwXrx4kdJBg/hFJOIRgGMBdvirQ1QBaALwtJOT3HMpYu7cudy5c6fCslOnTnHcuHEkMzugLGHPDVlCr6gzmTBhwt8s8ErWh9K4ON6+fZtjx47lmDFjuG7dOp4/f15uVN2xYwctLCy4Z88ePn36lCdOnKCrqytnzpyZmybmyNu3b+ng4KDwj/Ty5Us6Ojrmu+7U1FR26NCBMTExCuvO0lHExMSwbdu2wgeXNVL7+/sLwp+SksJbt25x3bp1bNmyJcuWLctDhw4J13To0IEDBgxgQEAAXV1dWatWLfbv3z/bkY1Saebf5BtB//Y3+y+hnzN7ttylERERLFGiBEeOHKmw6rS0NJ46dYqDBw9m1apVhWl1QEAAp06dSjs7O5b8Sw9gBrDGX0LU9q+ZhYGamtBhLF++XG4mt2zZMqqpqXHGjBls3749f//9d1paWrJ3795Cx50XEhMTef36dX7+/Fl+1mhoKPduYgCuA9gUoJ5IRHt7ezZu3JglSpSgrq4u58yZw/T0dJlqUlJSaG9vzx07dgjCKZFIePDgQVpYWAj6qJSUFIaGhjI5OTlXbU9OTmZoaKiwHMji8+fPVFFRyZXAF46WPiEBbNUKz548wWUSdwBoAxABOKShgWfp6ShTpgy0tbXx4cMHkESpUqUwbtw4vH37FmKxGDo6OgCA5ORkaGtro3z58ujcuTMMDAxyap4sSrTP48ePh6WlJdq2bavwsn79+mHEiBGoU6dO3u73F3fv3oWvry8GDBgAOzs7pKenIygoCDt27MCmTZtQpUoV4VyJRILQ0FBcuXIFV69exb59+2BgYAB1dXU8ffoUEokEIpEItWrVQvfu3TFy5EgEBQXh+vXrWLp0qcL7p6SkZG9HXb068OaN0uK4qlWh9/atwrKRI0di1apV8PHxgZ2dHVq1aqVw204sFmPjxo1Ys2YNIiIikJiYiGbNmqFdQgJa3LgBZwAtAawBILxlFRXcdXfHAjU1bN26FZ07d8batWuFZwkPD0f16tWRkZEh866bNGmi/FnzAwlUqQKEhyssfgSgp7o6yllYCPYB79+/x4oVK1C3bl3Y29vjt99+w2+//Yb69etDTU0NK1aswIkTJ6ClpYXU1FQYGRlhyJAh0NXVBZBpwPT69WtUr149Rxv4nM6/efMmWrZsWXRa+o8fP3LJkiX09fWlQ/XqLPPXCKQC8DeAdQBWBtgd4AlHR2F9l5KSwkePHtHb25sAWKVKFf7++++sXbu2MIrVr1+fFhYWdHd3p5GRERs3bkw7Ozv6+voyMDCQ586d47Nnz/jp0ycmJCRQGhcnN7uQDBoks+ZydnaW64m/Ze3atdy/f39uXodSPn36xAULFtDNzY0dO3Zkhw4d2LlzZ65cuZKpqalKr7t//z6dnZ05cOBABgYG8vr163LT/YSEBC5fvlxu3VylShXWqFGDor+m5Fk/NTU1ampqUk1NjQEBAZnvR0VF8SivokIOGaK0fdHR0ezRowfLli1LACxZsiQ9PDy4evVqvnz5MucXY2jIt3+167ii+xsakiR37txJLS0ttmzZUmateuXKFeG5mjRpwlmzZnHjxo08ceIEnz59yrS0tJzbkA3CSK9ghFfUzm+5e/cunZ2d5XYHqlatyuHDh2e7VMwa4b8fsfNzfm6X3XkW+M+fP7N3797U0NCghoYG69SpQwstLY4HeBJgXC5fFJkpIN+uR54/f845c+ZwyJAhdHZ2prGxMT09PTlgwADa2NiwVq1aMttQWT8RwPIAjQC2Aljxr2OG6up0cXDg9OnTaWJiwpMnTypV0E2fPp3nzp3LzesgmfnyT5w4weHDh9Pc3FyYzpYoUYKzZs1inz59CIDNmzeniooKq1atyg0bNlAsFvPz588cMWIES5QoweDgYOEdb968mTt27ODhw4cZFhYmfIg7d+6kmZkZN23axHPnztHDw0Phe8jux/j4TMXT90KvopJrhZREIuH169c5fvx4tmzZUphGGhgY8PTp08J5UqmUW7ZsYaVKlVivXj0OLlaMS/9qhwfA8wAl37ahUiVSKqVUKuXIkSMzz/PwkLn348ePOXDgQNatW1fYKsz6qaiosGLFiqxTpw7btm1Le3t79ujRgwEBAQwMDOSBAwd4/vx53r17l7du3eKpU6e4c+dOLliwgDVq1GDlypU5ffp0HrO3522RiNJ8dIpkZqd869Ytbt68mUOHDqW+vj7V1NRkdmi+/4Z+aoGPjIyks7Mz9fX1OWvWrEzhyWF9+O0ftDBIS0tjaGgoz507x0OHDnG7pSUDRSJOANgRYDeAEwGuBOgH0LhyZer9te2U9StZsiSbNWtGV1dXTpw4kdevX6eJiYmclvn27ducMWMGzczMWLVqVTZp0oTm5ua0tLSkjo6OMMI6OTnR39+f69evZ9++fSkSiViuXDlOmDCBJPnkyRO6ubkRAGvXrs1ixYqxePHi1NHRYYcOHdi1a1e5ESJrlLCzs+Off/7JW7duyWxH9ezZUzhv4sSJ3LJlC/fs2cPr16/z4sWLPHPmDJ88eSL7ccTHZ3603+pZhgzJ05YTSZ4/f57lypUT9uABcPny5UxOTmbXrl1ZrFgxAqCbmxv79OlDw7/W6SUAlvzr/AYAT303IGzcuFGoT1tbmzY2Nly+fDnJTAXXt3+flJQUvn79msHBwVy9ZAkr/XXPvPzU1NTo4ODAnj17UlNTUzj+J8Db+ewUvyU+Pp59+/YlAK5evVqu/EcIfJ7W8CVKlEB8fDw2btyIbt26/e+EHNaHMDQEXr/O6Tb5Ixf35qtX+Pz5Mzw9PdG8eXOUKlVKsEO/c+cOvn79ipIlS8LV1RW1atWCnp4etm/fjkuXLkFXVxcdOnRAo0aNEBcXh6ioKKSkpKBdu3awtbVFgwYN5JwioqOjoa+vL5iVZnHr1i3MmzcPNWrUwIgRIzB69GgcOXIENWvWRO3atTF69GhUqlQJCQkJuHfvHk6ePIn169cjISEBACASiVCtWjXUrVsXtWvXxufPn7Fv3z5IJBLB9LR48eJo2rQpzMzMMHr0aKirqyt+LyTS0tMRExODJ0+e4MGDB3jw4AEePXqE6OhoxMXFQU1NDXXr1kW9evVQv359VK1aFeXKlcOlS5cwduxYAICrqysqV66MgIAAfPz4Eb///rvQ1tGjR+Pjx49QDwmBXmgoTgB4DKADACmASwC6ANgyZAiweDHi4+OxefNmJCQk4MOHDwgODkZaWhpmzZoFPz8/pKWlYcKECejTpw80NDQynyMhAWjdGg0fP4YZgDkA4gB8EYnwqWpVvPX3x7lr13DgwAEkJCSgb9++GDNmDEqVKoXixYsLf7vU1FRERUXhwfXrsHN3BwDsLVUKLiVKAA4OwLRpQA5+Ed8ilUrx4MEDBAcHY8KECUhKSpLTPWStyQ0NDRVaMX5PSkoK3rx5o3ANn2tr2Nz0LFm9x8iRI/nkyRP5EwqwPiwQeZxdpKam0s/Pj1ZWVgwICODgwYNpYmLCqVOn0tfXlw0bNhSmiy1btuT+/ftl1v1isZjx8fHZa8QL9fGktLGxYUxMDK9du8b169dz1KhRdHBwYL169WT2jbN+2trarFGjBtXU1Ni6dWt6e3vT2dmZpqambNGiBWvXrs1y5crJjGgAKBKJqKmpSW1tbWGqrqmpyapVq7JOnTrCXvW3vyZNmshtEUVHR3P9+vU0NTWlvr4+y5cvzzKlS1OUNaoCnAZQCvAPgM20tJSOnP7+/sK9HB0d2a1bN4pEItasWfN/a/zBg/lWJGJxgJOz+fZiY2P522+/sWXLltm+81evXsk8Y7169ejq6sqlS5cqtRVRRJaRDwCWLVuWU6ZMkdPjFOa2XJGM8Nlp6dG6NfDkCSCV/u+4igpQvz5w7Vqeesc8kY/ZRXJyMp49ewYdHR3Url1bboQWi8WCFjo5ORnbt2/H9u3bkZKSAkNDQ0RFRaFVq1YYM2ZMkbrvkoS9vT2OHDmitNzS0hLLli2Djo4Oli1bhjlz5oAkGjRogBIlSkBFRQUlSpRAiRIlULx4cRQvXhxisRhJSUlo3rw5Lly4gN27dwMA3N3d0bBhQ5QqVQqVK1fGvXv3sG3bNjx//hweHh6oUKECPn78CFVVVdSqVQv9+/dHpUqV5NokEonQq1cvbNiwAb/99huSk5Px+q+/QSN1ddhqaiIKwLrERGwODETXvn0VPt/27duxaNEiTJkyRXDRnTlzprC7U6VKFSRUq4a2794hHsANAOW+r8TQEGlhYfjzzz/x8OFDrFmzJluX2OjoaHh7eyMkJARfvnyBgYEB9PT08OzZM4jFYrRo0QI+Pj6yM1wFHDhwANu2bcOZM2cQGxsLfX19mJmZoVmzZqhpYIBax4+j3rVriHNxQayDA8pVqgQdAwOIFOx+kERycjI+f/4MfX19VKxYUe6cIhnhs7VIK6T1YZ4pwtnF8uXL2aFDB9auXZsLFiwQZgdPnz7lsWPHaGVlJbOuLgqcnZ3ljF6yiI6OFuwHVq1aJbf+b9myJRs2bMjq1auzXLlyLFasmIw2X19fn6NGjWLp0qUJgHXq1JG7R0ZGBgMDA1mrVi1Wr16dzZo1Y8WKFQlk2hG0atWKxsbGrFu3rmCEo6qqKijSsoiIiBDWs1paWmzWrBktLS3zrGF3dXVl8eLFeenSJd64fp111NRYAuCjbGZ4aamp/OOPP6ipqcnt27dnW7+dnR1Lly7NcePGceHChaxWrRorVKjAr1+/cuvWrbS3tycAzps3L1ftzcjI4NWrVzlx4kS2adNGRuFYCuAmkYjhPXsy9OBBhp4+zdBHj/JsWksW0QhvZmYGf39/dOjQQfnaMLMXUbgXXiQU0exi48aNCA0NRUxMDIYNGyZ4gIWHh6Nr167Ys2cPTp06hc+fP2PIkCGF9TRyZHl3rVu3TsbFViqVom/fvvD09ISZmRkkEglCQkLw7t07vHv3Dm/fvkVycrLg7vrtr3bt2qhatSrmzZuH1atXQ0VFBZ06dcKYMWNQv379HNtEEs+ePUNwcDAuXrwIkjAwMEClSpWgp6cHiUQCsViMGjVqwNraWrjO398fc+bMwfbt29GpU6d8vY/Xr1+jS5cuuHbtGlRUVNBMVRVb0tNRV9kFf83wnj9/jrZt26JDhw7CjEbRc1WqVAmVK1dG27Zt8eHDBwQFBaFjx44y1zg7O+P48eMIDw+Xc03OkSFDELNsGV6QWAxgOwBzAHN1dFCubFloe3lBc/x4uVmnurq6nE7oW4pkhM/66enpccCAAUxISMhVL1fkFPLsQiKR0MTEhImJiQodew4ePMh58+YxIyODlpaWBW19jmzatImWlpbcuXMn7969y927d9PKyorLly9X2qPHxMRw4cKF9PDwoLe3N2fPns3evXvTzs6OPXr0yDQllUr5+vVrfvjwocifgSTDw8MLbOtAZq59582bx1mzZjF94ECmi0Q8BfDrd6P7V5GIa0xM2KFDB2FmcfTo0Wzr3rhxI6tVq8Z69eqxZcuWnD9/vmATkZqaykGDBhHI3DZUZi+fLd/t9R8DWPU73UixYsUYFhaWp2qLZFsOyHSDrFOnDoFMA5nnz5/nqWFFTiFs/z148IAjR45kREQEe/XqJVcuFouFjsDOzq7A98sNsbGxDAwMZEBAAPv27UtTU1N6enrSw8OD1tbWMoJ0+fJlmpiYcP/+/UxISOCgQYPYpk0btm3bllFRUXz37h1HjhzJvn375ksBmZKSwp07d3LevHncvXt3rreVioT4eE7+yyBIFZl2GM2RaZcBZO7Rm5ubc9OmTQVysU5OTmarVq2ooaHBFStW5MqZ6/3797Szs2Pjxo1ZtmxZ1qtXj8dKl5ZbdiQic4tyH8A2GhrU1dXNs0NXkQn8978FCxbkqWH/BG7dusUJEyYwLS2NVlZWCs+xtbVlSkoKra2t/9a2LVmyhMOGDZPRHSQlJXHw4MFctmwZY2NjaWxsLMy+goKCBHuAe/fu0d3dXaau5cuX8/bt2wwKCuKlS5dy7ACCgoJoamrK1atX89y5c1y1ahVNTEx44MCBInjanFmzZg1VVVXZpGxZeurosKOWFvvo6nJyy5bcsHKlUu+yvDJmzBiqq6vz+vXrub5m6dKlVFFRYf/+/Tl16lSamJgQAF0Bvv9O6D8BdP5LpiZNmpTn9hWJwL9//55fv35lYmIi09LS/rbtqb+b5ORkQdAHDx4s+G8nJSXxxYsXPH36NEeMGMFVq1ZxzZo1f1u7vnz5Qjs7O4WjS9YW3uzZsxkUFCQct7OzkxnZevToIczKQkJCWKpUKfr6+nLDhg2cOHEiTU1NZazmvuXSpUv08vKSM1BKS0uju7t7noShMMjyEKtUqRJ1dHSoqqrKxo0b08nJiYcPH5ZrZ3Zcv36dnp6edHFxoZOTE+3t7WlpaclWrVqxXr16wgB34cKFXNe5du1aAmDjxo157NgxSiQSbre0ZAWAxZBpdn4S4Na/FHhlAQblcwApEoH//PmzIOSvX7/m7t27OWLECJqamuZ5zfGzM3bsWO7atYvR0dHs0KEDHRwcaG1tTR8fH1asWJENGzakhYVFtvb5hc3y5cu5d+9epeW7du1iy5YtZbz2vl9ybNu2jdu3b+erV69oZmZGBwcHGW+t5ORkOjs789q1a3L1u7q68vPnzwrvHR4eTk9Pz7w+Ur6QSqXcsGEDAXDUqFEEwHXr1nHOnDls3LixYAFYqlQpduvWjbt372Z0dLTS+h49ekR9fX3WrVuX1tbWtLW1pb29PV1dXdmzZ0/a29uzZ8+eXLhwYZ5jQly7do1//vmn0DENGziQwYaGnCQSsfY3M2VPgFF16+Zb75Rbgc9TpMJy5cqhbNmyqF69Om7evClT9vTpU9Stq1RX+o9j0qRJ6N27Ny5duoSUlBRUqlQJoaGhCAkJQZUqVeDu7o7g4GA8efJELm57UREREYFWrVopLc/yKktMTBTisn3rZQZkxggsX748Fi5ciLlz5yIgIEBmx0VbWxuBgYEYMGAA9uzZIxyXSqVITU1F2bJlFd7bwMBAYdTawiQ9PR3Pnj3DyJEjceLECXTp0kV4905OTihVqhRGjhwJkrh79y727NmDffv2YdOmTRCJRHBycsK+ffvk6h02bBhiY2PRp08f1KxZU4h6m/U7fPgwAKBFixbIyMiAu7s7qlWrlqs2t2rVCpcuXcKVK1ewa9cu7AgKwqLISPg2bYqnMTG4m5yMZFVVtHV3z7M1X37IU265FStWoHfv3tDX18fGjRtx9uxZoSyncMyFjUQiwa5du+Dk5AR7e3s4Ojpi27ZtMhFKC4K6ujo2bdoEHR0dlCpVClpaWrCzs0OnTp1QuXJl3Lp1C87Ozpg0aVKh3C831KxZEw8fPlRa/vDhQ5iYmGDbtm3CsVq1auH+/fvCvw8dOgRTU1M8f/4cpUuXhr6+vpyra9myZSGRSJCSkiJzPKe46iKRSDDxzSsSiQQJCQmQfrO1mpSUhBkzZsDAwAAaGhrQ1NREo0aN8PTpU+zfvx+TJk3CmjVroK+vj5s3b2LevHkIDAxEZGQk3rx5g3379iEtLQ379++Hr68v9u/fD319ffz2228IDAwU2rpw4UJ069YNS5cuxcCBAzFjxgxs3rwZwcHBePbsGdq1awcfHx9UqVIFEyZMgKGhIdq0aYPFixfjy5cvCp/nyZMnePz4sfBe2rZti6VLlyI8PBxz587Fgrt3sW/+fDSLjETbT5+AxYuLXNgB5G1b7ubNm8zIyODBgwfZvHlztmjRgtWrVycArly5Uun1EomER48epaenJ+3s7Ni7d2/euHEjDxMWWTIyMujl5cV58+YJU5iEhAQuWbKEHTt2LNRpto2NDdPS0rhr1y46ODjw+vXrlEqlTEhI4MqVK1mhQgU+e/as0O6XHYmJiTQxMVH4fGlpaTQ2NmZiYiJtbGyE9fTr169pamrKyMhIzps3j9OmTSNJWlpa0traWiac1Ld07txZLgqNvb29Uu3xly9f6PRdRJjc8OHDB/bv35+Wlpb09PSkiYkJx48fz8TERBobG1NdXZ39+/fn8uXLuWnTJh48eJApKSm8fv26jPK4TJky3LJlC729vQVnKQsLCyGQ5vfuwwBkIuiQmd9VTtr3+Ph4btu2je3atRNMb78ly1z22/tMnTpVxiRdKpXSycmJ5cqVK7RYjUWmpc+yqTY1NWXPnj3Zp08fXrlyRemLSk9Pp6enJ6dMmcJ3795RKpXy+fPn7N+/P8ePH5/3J2PmWlZZSKktW7Zw7ty5ii/Mx5advb09X716RXt7e4X7rp07dy5QtJy8cuDAAbq5ufHVq1fCsZcvX9LV1ZWHDh0imbmF16VLF3bu3Jnr16/n2LFjWbZsWbZs2VLQ8pcrV44nT55UeI/09HSamJjI/U2PHTtGHx8fueMSiYR9+/ZVquxTxvv372lkZMR79+4Jxz58+EAfHx/WqlWLWlpacvH0soiMjKSXlxdr1KjB+fPnC74BmpqadHNzY79+/ejo6MgRI0bQ1dWVJiYmdHd3Z4cOHThmzJh8Rcv5ltevXwsy0aZNGy5btowTJkygiYkJR4wYwR49esh1MvXq1eOIESMYFBQkhNr6vtPJL0ViaXf48GE8ffoUderUgZ2dXa5S54wfPx73799HcnIySpYsia9fv6J58+YYPXq0kBMtr0kmLC0tceTIEYXWfhKJBJaWljhz5kzmgYQEYNw44PBhICMDUFcH7O2B6dNzNYXq2LEjKlWqBA8PD7Ru3Vqu3N7eHpqamli6dKlCG+ei4M6dO1iyZAmioqJAEqVLl0bdunWRmJgIfX19eHp6wtDQEO/evcOtW7egqakJIyMjIamDgYEBwsPDcfz4cSxatEju77hkyRKoqalh4MCBcvdevnw5Tp48iX79+qFixYoICQnBvn374Orqir5KbOKV0bNnT/j5+eG3334DSWzcuBHDhw9HYmIi9PT0oKenh/379wseeN+zcOFC1KhRA46Ojjh48CCioqLg5uYGLS0tVK1aFV++fJFZYmzbtg1eXl4AMpNCPHv2DDY2NihbtizCwsKwYcMGPHjwALVq1RI8BKtXr44KFSrgy5cvOHz4MIoXLw4nJycUL14c6enpOHToEFavXo2zZ89CKpWievXqMDc3h5mZGRo0aIB58+Zh//79iI2NBQDo6OgIcfednJywf//+PL0zZRSJpV1eNZTR0dEsVaoUz5w5I4wKUqmU586do5mZGV++fEkXF5c81UnmbOzi5OSUOe0thKAPR44cYe3atRXOYK5evcoBAwZw8eLFPHXqVJ6fozA4d+4cjYyMuHbtWj569Ihnz55lly5d6Ovrm+P0dPbs2ezcuTNv3brF1NRUhoWFcfDgwRw4cGC21z548IAtWrRgzZo12b59e9rZ2dHLy4uvX7/OdbuTk5OFv2NcXBxtbGwIgN7e3oyOjmZ6erpSG4gs7O3tFW69vXnzRhhVRSIRDQwMOHfuXOHcPXv2COV16tShVCplgwYNqKenR1tbW/72229UV1eXWwKo/eXXr6Ojw169egk7U+Hh4XRycuKhQ4c4ePBgmW08FRUVIXYCkOk59/HjRx4+fFguYGhBKLKIN3lh+PDhSk1Pz5w5w7Fjx2Ybw1vZPr+5uXm29zU3N+ezZ8+4wsiIK0Qihn1n5CAIfS4ca6RSKWvVqsWRI0cKbozp6encuXOnEG11woQJvHr1ao51FTZv3rxR6sCzdOnSXDl4hIWF0c/Pj66urhw4cCBDQkKyPf/z5880NjaWmxK/ePEiT9F/w8PD2adPHyYmJrJt27bU09Pj4cOHZc7JqWO3t7dX+I1IpVLu37+fNjY2DAgIkHNLDQgIEASwc+fOJClEWMoiPT2dYWFhPHXqFDdv3sxdu3YxNjaWb9++5bRp01ihQgWKRCK6ublx2rRpcia7nz594rlz5xgYGEgnJychAUbDhg1z9X7yyk8h8EZGRkpHcKlUSjMzM4Udws2bN2llZaVUGThixAgePXpU4Z7w9evXWadOHfbs2ZOHypXjEYB9AHoBjP9e6JWE3vqenTt3sm/fvnR1daW9vT2tra25ZMkSJiYmUiwW08TEJH921QVk1KhRCvfLyf+938K2Exg9ejQvXryosOzBgwfs379/rupJTU2lhYUFTU1NqaurK/ccycnJOSYomTZtmlI9BElaWVkpDAUuFou5Zs0a+vv7C0ZJM2fOpK6ubq7/jikpKQwMDGSpUqVYunRpGhkZsUuXLuzXrx9PnDghc+6NGzc4efLkXNWbX364wEulUtrZ2SlMs5TFn3/+mRlg8S/i4+NpbW0tM43q16+fzDV9+vQRgilm2Ulv3LiRHz9+5MuXL1m+fPnMmODfBce4DNDte4HPZeit9PR0Wlpayu0siMViDhgwgFu3bs31eylMbG1ts516+/v7K9XC5xdFaZK+Jac0S9/SrFkzampq8vz583JlK1asUBoLLouIiAiampoq/C63bt0qxH/PDcHBwQSgMK5+dly7do2tWrVigwYN2L59e+rr68uZWy9dupR79uyRu7awkquQRSTwX758YXx8PG/fvp2raKWmpqa8efMmbW1t5Rry+vVrlixZUugMPnz4IJPXbPTo0XJeXAkJCaxUqRIbN27MwMBAtmrVimXKlBGu0dHRYfXq1RkYGMidO3dyVenSnA1wG8CnAIfiu1hluRzhSfLr16/s3r07O3bsyIULF3L8+PE0NTXltm3bcl2HMiIjIzl//nwOHz6cCxcuVOr//j05Cbyfn1+BtdHfk9M029XVNVfONDExMSxWrBirVavGEydOCM+RlpbG1atX093dPVemsdevX6eRkREDAwMZGhrKS5cusXfv3uzbt2+eTGvT0tJYpUoVdunSJdfXZJGamkojIyMmJCTQ2tpaZnsyPj6eHTp0kJtpHT58mJUqVeLEiRPzfD9FFInAf6t8AMC+fftmO2WcOnUqDx48yMuXL9PS0pKDBw/mvHnz2K1bN7Zq1YpDhw7l27dvOXDgQGpoaLBMmTJs2LAhq1WrxvT0dMEry8XFhTVq1BDu++1a6+vXr7x48SLXr1/PP//8k3Xq1BFCNKmIRCzxTXt1AVYHOBLgLpGIyQMH5vJ1/o+IiAiePXuW169fL5Rp/NKlS+ng4MAjR47w6dOnPHToEG1tbRUGPfye8ePHKxwdyUz9h6mpaaEvNSwsLJQGrchyK87NyHXixAkC4O3btzl58mSam5vTzs6OlpaWXLFiRZ6ENTU1ldu2bePIkSM5ZcqUfJt59+vXjyoqKgoTiuTExYsXaWlpKYQfk0qlvHLlCi0tLeVy6S1evFhYzwOKA1zmlSIR+PHjx3Pr1q28ceOGoIn88uULJRIJr127xsTERJk/dmJiIq2trblv3z5KJBI+fvyYZ8+eZWBgIK2srHjhwgWqq6uzWLFinD59OuPi4ujh4cFKlSqxQ4cOQgSV33//nba2tvT19eX58+eVujnOnDmTly5dYmJiIuPi4iiJjSUbNGD0X/7SAwHWw//8jyuUL8+FCxfmOvNHYXPkyBEOGjRI4b52nz59ctzXDg8Pp5mZmcI0TdOmTcvWGCq/rFy5kqtWrVJYtmvXLs6YMSNX9QQFBRFArvLrFTVSqZRTp04VBrH8TrXfvHlDBwcHAqCJiQnHjBnDt2/fypyzf/9+ikQiYRdl4MCBVFVVVZqaKrcU+Rp+9OjRLFOmDAMCAmRG3wYNGvDkyZMcPHiwEA8+qzezs7Ojubk5p0+fzsTERMbExLBVq1YEIIQeOnDgAOvXr083Nzf6+/vT1NRUyDy6aNEimpubK/3grl69ytGjR8se/CY4xsTixRlcvjw5ZAif373LHj16UFVVlRUqVOCiRYsEwReLxbx//z5v375dpL7ednZ2Sv9AubVcCwkJoZGREefOncuLFy8yKCiITk5OnDp1aqGuEbPIsnKcP3++0PEmJSVx5cqVdHZ2zjbhxrds375dsJBr2rQpvb29f1hK8MmTJxMAAwICCvzOoqKiqKKiQj09PbZr147nzp1jRkYGN2/ezGbNmlFFRYV169YVlsRisZhubm4UiUQcMmRIrgNafk+RC/zJkycFDaW3tzfnzZsnt2/5bbKE7xMgSqVSHj58mOXKlaOBgYGccikhIYHGxsZyATakUilHjBjBDRs2yLVTKpXS1tZWYWLBZ8+e0dLSUu4P+vz5c3bv3p2qqqrU0tJinTp1aGhoSCMjI5qbm7NevXp0cHDgnj178v3HUIREIskxrXBWTrqcEIvFPHLkCGfNmsXAwMBc6wDyi1gs5o4dO+jo6Eg7Ozva29tzw4YNedoRSE5O5pYtWzht2jT269ePGhoahZZHMK+sXr2a6urqrFWrVqHYU1y8eJEzZsxg69atqaqqynLlylFdXZ2qqqr08PDguXPn6ODgwE2bNrFfv350c3Pjn3/+SZFIxGbNmnH48OF53l35IVr6hIQEJiYmct26dYyNjWV4eDgBcPPmzcI5T58+5YwZM1irVi0CYLVq1fjHH3+wUqVKbNu2rbAPvGrVKqUKsezWp58+faKlpSWnTZvG0NBQPnnyhDNnzqS5uXm2oZxevHhBBwcH1qlThwYGBtTX16eurq5MOOeGDRvmaW2ZHRKJJMdtp5yCa6SkpHD37t1ctGgRDxw48Le66pKZprELFizgxIkTGRQUVKD79+vXj2XLlv1hYdOePHkipJ3esmVLodSZkZHBxo0bs06dOpw1a5ZMMA6xWMzKlStz7dq1JP+3jBOJRBw2bJiQuju3/PBtuXPnzrFNmzZUUVHhhw8fGBoayvr16xPIjJ2e9f8lS5Zkly5d+McffxDIjLYqlUrp4OCQ7fRw7NixSrdQJBIJT506xREjRtDX11cIPpAdsbGxtLGxUTily8jIoKOjIwFwxYoVuX4HOeHi4qJ0NM7Jv3znzp00NTVlYGAgT58+zcWLF9PY2DjbfenCQiqV0t/fn56enjx27Bhv3brFpUuX0sjISKldQE68efOG2traHDx4MK9evcrNmzdz/vz5DA4OzjGtdmEhlUrZvXt3amlp5Xl7ThFfvnxRaody//59duzYkb6+vsIxiUTCTp06UV1dnaampnmys/9hAn/nzh16e3tTJBKxRYsWXL9+PZctW8Z69eqxRo0aPHToEJOSktirVy9qa2szICCATZs2JQBWrlyZbdq0oZ2dHatWrcp79+7x7du3nDRpErt168bRo0cLGtgsBV1hsXXrVm7cuFFp+c2bN9m4cWOqqanR39+/UMJTX7x4UWkEmY4dOyqNIBMcHMyuXbvKXZecnExHR0cZZ5SCIpVK+eLFCz558kQYwefNm8dFixbJnRsXF0dzc3OGh4fn614zZsyQWRJmOWqpqamxRYsW9PPz4507d5Q1NF/3/J6UlBQ2aNCAzs7Oub4mNjaWERERcoPKhQsXOFtBCm6SnDRpEq9duya3zZmWlkZra2tqaWnlKdTV3y7w9+7dE1wGq1atyrFjx9LY2JgikYhqamq0srKSMdt89eoVjYyMqKamRmtrazZq1Ii7du0SPqpevXqxbt26bNasGc+fP8+oqCjevHmT3bt35+jRo2lra1toroVkpgfe8ePHlZa/efOG/fv357Rp06ipqcnq1avz5s2bBb5vVoy4wMBABgcHc+XKlTQxMeHBgweVXuPo6Kh06+jly5fs1q1bgdtFkjt27KCpqSl9fHzo6+tLU1NTTp8+naampkqVW+fOncv33rJYLOaJEyd4//59JiQkUCKR8MGDB1yxYgU7d+7McuXKEcjMeBMcHJypkP0uazAHDy5wLgQPDw82a9Ysx/MuXbpEBwcHuru7s1evXjQxMeG8efOEpeatW7c4ZswYhdeOHj2aN27cUKiYdXJyorq6OmvXrk1bW1vOnDkzR71MkQv8ly9fOHv2bMENUUdHRxDao0ePsl27dixdujQ3bNiQbXihjIwMurq68unTpzLHt27dyipVqtDBwUFO4detWzeamZnlpum55sKFC9m66+7YsUPY5nr+/DkbNmxIExOTQrl3SkoKd+3axfnz5zMoKCjbpUxqamqO7rg5OZ3khlWrVnHo0KEy63KpVMrx48dnKwxZitOiID09nYcOHWLbtm0JgE7Fi3OhSMTrADO+9ZHIR+LHLA4cOECRSMSpU6dme96JEyfo5uYm0/FKJBKuWbOGPXv2pFQqFewSFOmaDhw4QA8PD7lZ5ZkzZwR//kaNGnH79u08cuQITUxM+PDhQ6XtKTKBf//+PSdMmMDixYsL3kOCYYuurmD2Wq9evVxpPF+9esXu3bvLHXd1deXmzZvZsmVLurm5MSEhga9fv+bEiRPp6OiY7SiTH7JszyMiIuTKUlJSaGJiIrNtFBgYSBUVFW7btk2Y3t+7d49z587l3LlzC92k9du2uLq6ZntOQQUuMTFR4Y4GmZkPvWnTpko/vqxgmkWJRCLhSiMj/glQ869vrxLA8QAvAbwtEjG0Sxe+efMm10uv6Oho9u7dO7MjcXLKVueTpTRWtmXr5+cnOFPt3LmT/fv3lxP627dvs2TJkjIehlk7Uw8fPmSTJk0EJWKrVq14/vz5bL/5IhH4rOgh3/9q1qzJoUOHcvLkyRwzZgxDQkJyLYxHjx5VqAjL+mgjIiJYv359durUiX379mVwcDClUik9PT0Lfd/28ePHNDExEZR8UqmU165do42NjVzn9fXrV+EPoqenx+bNm3Pw4ME8e/Ysz549Sx8fH7q5uRXqsiOL7FJcRUREsGPHjgWqf/fu3YL1l1gs5sWLF3nkyBG+efOG6enpbNGihby9w18EBwcXmrlotvyV0CEN4BWA/f6ypFT0ferq6nL9+vVyVcTHx3Pv3r3s2bMnS5UqRT09Pa5YsSJH68QrV64Iob8V8fLlS/bt21f497Zt22hiYsJJkyZx2bJl9PLyYqdOnXjlyhUaGRlxw4YNjImJ4YIFC9i9e3caGxsLCrtLly4JCm49PT22aNGCw4cP59mzZ2VkrMjj0lerVo0BAQF88OBBgUbay5cvK1ROZE1LIyMjBRfGb3F2ds7RQu7Tp0+cMmUK7e3t6eTkxHXr1uXY40dFRXHWrFm0tbWlra0tR40ala2f94sXL1ilShUCkHMtvXbtWo6jcX4ICgriqFGjFFro9ejRI0+hlBURGBjIQ4cOcfv27TQ1NeXUqVO5cuVKent7C5rl1q1by10XGxtLMzMzYfvp5MmTdHV1FUxmx4wZUzhx4pVkDU4E+BjgLYCXypThiePHuXnzZopEIrkoSLt27RJ83uvXr8+RI0fy06dPubr9vn37hO00RWRkZMitzcViMS9fvswTJ07IZKFNSkri+vXr6eXlxXr16nHhwoVyS7rU1FRu3bqV7u7ubNiwIQ0NDQmAVlZWQudUJAJvbm7OkSNH8tixY4Vmo53lXvq9xrlv374MDQ3ljBkz5HyNo6Ojc9Sinj17lhYWFkLwjeTkZG7atIkmJiZ5Svv7PRMnTqSxsTF79uxJV1dXzpkzhz4+PlRRUaG9vb3cXv+QIUOUa5YLwKxZs+jq6spTp07x5cuXPHToEG1sbHL0MMsNFy5coJubG/v27Sv3dw4NDWWjRo1oZGREd3d3HjlyhDdv3uTixYtpZGQkeBROnz6dQ4cOFVyYpVIpL126RBMTk8KJAfhdyia531+OUW/fviUAuUQZDx8+ZKVKlainpyenP8qJBw8ecPDgwUrLb926RT8/vzw/0vjx47Pd1tyyZQs3bdpEqVQqWCpmhS3/4fvweWHPnj3s3r27TM8WFhbGFi1a0NbWVuajS0tLo4eHh1KfbDJzum1iYqJwBvD8+XM6ODjku60GBgYEIGwltmnThlevXuX27dtZrlw56urqyiSnuHDhQpFZkH348IEzZ87kkCFDuGDBAqUx4/OKWCxmqVKlFI546enpbNiwIRcuXMgPHz5w0aJFnDRpEvfu3Sso+O7fv69QL5PV5pwsDHNFLrMGi8VililTRuESJCoqimXLls2XcFpbWyvU92QtN/PjwBMaGiqzFPi+Xnt7exnfAyMjI+rq6rJdu3bcvXv3P0fgycwEjWZmZhw0aBADAgJobW1Nd3d3GhkZcfLkydyzZw/nzp1LU1PTbLesyMwUSor8j7MYOHBgthrP7BgyZAg1NDTYvXt3ZkVMydov//r1Kz08PKilpSV4lF2+fJnTp0/P171+FFkCa2JiIuhMyMyRzcnJibt378620/Tx8cnWLbdv374FH+XzEL6sR48erFGjhkIvv379+tHQ0DDPy9LQ0FCamJjw6tWrwrUREREcMGAA58+fn+/H6tevHzds2CDTHolEwkmTJskF9AwPD+e0adPYoUMHwUP0HyPwZGYv9vTpU965c0cwsZRIJDx//jw3bNjA48eP58q0tVu3btnuW+7evZubNm3KVxuTk5Pp7+8v6DL69esns9d69epVAhCm8iNGjChQSO4fwbVr1zh9+nR+/PiREydOFLKxDBw4UPBTyG6UVpYOK4tly5Zla/OQa3KZNfju3btUVVXllClT5Ko4c+aMQv1Lbvjw4QP9/f1paWlJOzs7duzYkWfPns3345CZM5LJkyfTwsKC48eP5+jRo2lqaspVq1ZlGxk663v8Rwl8YeHj45PtCLJq1apsUzblhqwURwBYo0YNYcYgFos5dOhQlixZkgCor69fJF5rRcnXr1+zHcHv3LnDoUOHKi339vbO1tpu5MiRvH37dkGaKE8O71hZMshHjx4RQIHdUwublJQU3r59m/fu3ctRX5aamkptbe3/rsBfuHBBaXgjqVRKa2vrQnHS2LhxI4HMSKs2NjYcN24cb926xZCQEI4aNYoVK1ZklSpVCnyffFHATmbAgAGZ1mzfIRaL6erqmu0a9ezZszKhy74lKSmJ5ubmf3snmJKSwubNm1NVVZVjxowR9Dtubm6sWrVqrt16fyayogNVqlTpvz3CS6VSuri4yO2dS6VSTpkyhXPmzCmSe168eJEBAQEMCAjg5cuXOWbMGBYrVkwuCEKRUYimpomJibS3t+fs2bOFJKKXL1+mg4ODELtAGVKplF26dOHGjRtlDFi+fPlCR0dHhR3J30FaWhqnTp1KDQ0N1qpVS4jFoMjV+mckLS2NwcHBnDlzJh0dHVm6dGkCsll1CjURRY5B7n8iUlJSMGLECHz69AkdOnRAcnIyzp07BwcHBwwaNEhhEo1Hjx7hzp070NXVhYWFBXR1dfN9/5cvX2LTpk1YsWIFqlatioEDB6JNmzaoV68eVFTylNIvdyQkAK1bA0+eAN/kZ4OKClC/PnDtWp5zl0kkEhw/fhw7duxAQkICGjVqhD59+sDQ0DDHa8ViMRYsWIBTp07B0NAQ8fHxkEgkGDVqFFq2bIlz585h7dq1iI+PBwA4Ojqic+fO0NbWzlMb80NYWBh8fX0hkUjg4+MDe3v7XCVV+ZHcuHEDPXv2RGhoKIoXL45GjRrhyZMnUFFRQY0aNRASEgIAOcrov1bgs4iJicGdO3egqamJli1bQkNDQ+6c8PBw+Pj4oHLlyujQoQO+fv2KgwcPwsjICH5+fvn6GHx9fbFw4UK545qamrCyssLKlSsLN1PNkCHA8uWywp6FigowaFBmwsK/GYlEgi9fvkBbW1v4dgICApCUlISRI0fCwMAAqamp2LlzJ3bt2oVdu3YV+BuTSqUQiUR5+ruRxPnz53Hw4EGkp6ejTZs2QhabnO515coVfPnyBXXq1EGDBg2Unnv9+nWEhITg69evSElJEdqoqamJ8uXLw8DAABUrVkTFihWRnp6OT58+ISIiAufPn8eyZcvQvHlzLFu2DM2aNYOpqSnevn2L+fPno2PHjkL2nR+aeeafQHJyMo2NjeWUfFlxzhS5geaGa9euCaGOihUrxtq1a7NZs2bU1dWlSCRisWLFOHnyZJ4/f549evSgnZ0dra2t6efnl78lQC4NUX40p0+flvEB/5aLFy/Sx8cn33Xv3buXNjY2tLe3p5WVFb28vHJl9BQbG0s7OztOmjSJYWFhfPfuHdesWUMjI6NsfSIOHz5MExMTTp48mevWreOgQYNoY2Oj0JBn0aJFFIlE1NTUZMWKFVmjRg1WrlyZQGY+PEXJLrN+xYoV45w5c4QdqhUrVhAADx8+LHfuf3INnxc2bNigdA0nlUppbm6uNEprThw4cIDe3t6sWrUq1dXVOWrUKIaEhAjx2FVVVamurk5fX1/BL+DmzZs0NzfPWwAGJaamMr9cxuAvajw9PbM1YbWxsclXwIupU6fS399fRhn7/v17Ojg45LhV5uXlpTD2QFRUFDt06KDQgOvs2bP09PSU+zbCw8NpbGzMT58+MSkpiTt37hTSaA0ZMoTv37/no0ePePXqVR47dkxOYLNCxh0/fpwPHz5kVFSUjB7k7du31NXVZd++ffnmzRuqqqqyS5cuvwQ+t+Rkkz9jxgyloaBzS2JiIocOHUp9fX2qq6tz1apVQgQdVVVVqqmpsWTJkoLBRkxMTK7DPQv8Q0b4nOLajxgxQia1cm54/vw5vby8FJYlJSXRxMREqffby5cvlVoFkuT69esVDgi2trZKnbfOnz9PBwcHFitWTEaYv/curVSpEqdOnUoPDw/q6urKlCnaNn769CmbNGlCAwMDGacsqVTKpUuX5kpGi0B79M9CLBZDU1NTabmOjg7S09MLdI9ixYph0aJF+PjxIywsLNC/f38cOXIE5cqVg0QigVgsRu3atREQEICvX7+iZMmSaN++PS5cuJD7m9jbZ67VFaGiAjg4FOgZCgupVJrt+4yMjIS+vn6e6tywYQMGDx6ssExHRwempqY4f/68wvIrV67A0tJSad22tra4ePGizLGoqCiUKlUKxZUoQW/cuIFDhw4hKSlJONaoUSPMmTMHR44cwZUrV3DhwgUkJydj/Pjx8Pf3R2xsLO7cuYMVK1Zg5cqVMDMzk6nz2rVrqFu3Lp4/f46jR49CT09PKBOJRPD29lb6DN/ynxf4//u//8PZs2eVlp8/fx7NmjUrlHtpa2vj8OHDePjwIQwMDPD582cAgKqqKlRVVZGSkoIdO3YAAJo1a4Znz57lvvLp0zO18d8LfZaWftq0QnmGgmJjY4O9e/cqLIuOjkZ8fDwqVKiQpzo/fPiAunXrKi2vU6cOPnz4oLBMXV0daWlpSq9NTU2VS0uekpKiUNhJYtSoUfD39weQ2dn07NkT169fx/379zF8+HDY2tri//7v/zB8+HAkJSVh/vz5aNKkCVRVVdG0aVMMGDAA/fv3l1O8ZXX+LVu2RJMmTZS2N0eyHf//4t88pf/06RPNzc0VTuvPnDmT6+SIecXb25sA2K1bN06ePFmwlOratSvJzJBbebYGzKWp6Y8kMTGR5ubmcubG0dHRtLGxyVfYsHHjxmXrZTZt2jSl6/ioqKhsPS9nz57NI0eOyBzLyMiQC0aRmJhIT09PYUpetmxZhc41Wdfr6+vnyWmnRYsWBDLjPlpYWNDa2ppWVlb8888/2axZM3bu3PnXGj63BAcH08TERIg9//z5cwYEBNDZ2Vnwn09NTeXr16+zDdeVF0JDQ2lgYMB27dqRzHSNBMAOHTpQIpHQzMysYEkwfgIFnTJiYmLYp08fOjo6csyYMezevTvt7e3z7XPw4sULdurUSWFZTmt4MjNCjSLfivv379PCwkKhaeuMGTOEax4/fiyz/q5Tp06OxkWenp5s3rw5nzx5ovSbSkhI4Pr16ymRSHjjxg127dqVnTp1YseOHens7ExnZ2d269aNTk5Ov5R2eSU2NpZLlixh9+7d6ePjwwsXLlAqlTIxMZEjRoygpaUlBw0aRHd3d7q4uPDu3bsFvqeFhQUBMCIiggkJCRw4cCBv377Nvn375tu5559EbGwsHzx4kG2+gNwyffp0jhw5UkaR9vbtWzo4OOQofGKxmL6+vnR1deX27dt54MAB9u/fny4uLkpdjjMyMujt7c1Ro0YJLtNAZoDNpUuX5tjenTt3ynQS69at48WLF3nq1CkhQnDNmjUJIMdwaQsXLvwl8IVBamqqwvBWERERtLKyKrADyL179wiAzZs3Z//+/dm9e3daWlrm6P77C8Xs27ePtra2tLOzo5WVFbt06ZKnjjkyMpKbNm3i6tWrc5V1NyuoR8eOHWlsbEw/Pz+5TEnKSEtLE0xjv/+VK1dOWPLhL4/M7GRPKpUKs4xfAl8ANmzYoDSzZ1RUVIECaZCZUzYgMzPP27dvcx1i6RfZI5VK/xEeiidPnmSDBg3k7OG/HfV///13AqC/v3+2deVWRtXyr+7797N//35Ba/49ZcqUQcmSJREeHo5KlSrlq/5ixYpBW1sbX758QdWqVQvSVKWcPXsWq1evRnJyMjIyMtC+fXv0798fpUqVKpT6SSIuLg4A8rydVlT8DHbxz58/x8uXL1GhQgVUrlwZS5cuxbt37xAeHo6UlBSkp6cjIyMDnTp1gp2dHbZt24a4uDiULVsWYWFh+PTpEwICAhAVFYWBAwdixIgRhdKun1bgxWIxvnz5gmLFiind7yxqpFIpdHR0lJZXqlQJ0dHRSgU+OTkZO3fuxJEjRyAWi9G6dWv06tUL5cqVA5Bp55+SkoIqVaoUSfunTZuGqKgoLFmyBOXLl4dUKsXJkyfh5uaGLVu25LujymLPnj1Yu3YtSpcuDSBzW61fv35wdnYujOb/I3n27Bn8/PxgYGCARo0a4cyZM9i5cyfCw8Ohra2NKlWqCNutFSpUQK1atYTB4+bNm9iwYQMyMjJQpUoVODg4YOTIkahZs2bhNTA3U4+/c0qfmprKiRMn0tTUlL1796aLiws7duxYqOmTckunTp0UTrOfPXtGPz8/VqhQga6urjx06JCcJvfdu3c0Njbmpk2bmJycTIlEwhMnTtDMzEyIx3fz5k0CKJQ8Zt9z8+ZN9unTR2HZs2fPChzKetGiRfT19ZXZzkxKSuLQoUO5bNmyAtX9TyU8PJwmJiYMDw/nkydPOHnyZCGVesmSJTlr1iwCoKGhIVeuXMl79+7R2dmZqqqq1NHRoYODA5cuXcqwsLA8L0n+UUEss8jKQhMUFCTzwB8/fqS1tTVv3rxJiUTCL1++FEput5w4ffq03F7punXr6OLiwq1bt7J79+5CBh4HBweZNtnZ2Qk5wL8lMTGRxsbGjI+PFzS13wYmLCx69+6drQKpc+fO+daOR0VF0d7eXuFHmZV5RlkqrH8r0dHR/OOPP2hoaChEOypevDi7du3KkJAQfv78mX/++ScB8PLly5w2bRo1NDRYo0YNrlixosCy9Y8U+L1793LevHkKy6KiolivXj2amprS29ubzs7OdHNzUzo6ZuVM79SpE+3s7Dh06FA+fvw4T+2RSqX08/PjmDFjGBUVxfv379Pd3Z179uyhqampTNy8U6dOcchfkVJzCgG1fft2rly5kv369WPlypXz1KbckpPN+uzZs7ON/Jsdy5Yt4759+5SW7969m6tWrcpX3d8TGRnJ58+fF8wmoYg5cuQI//jjD4pEIhoYGLBjx450dHRkp06dZFJ1mZiYCAo5VVVVjho1KsfcCrnlH6m027FjB9asWSN3nCT8/PxQrlw5rFq1CrVq1QKQaXfdu3dv+Pv7o23btsL5aWlp8PLywh9//IHFixejbNmyuH//PqZNm4bWrVsrtbv+HpFIhDlz5uDYsWPo378/bt26hSpVquDt27fYt2+fjPmjubk5Fi1ahISEBNy5cwcdOnRQWq+xsTH8/f2xd+9e+Pn55fb15AltbW18/foV+vr62LVrF7Zt2wYAgq93eHg47O3t81V3ZGQk2rRpo7Tc0NAQT548yVfdWVy/fh0zZsxAiRIlULZsWTx58gSNGjXClClT/pYgGbnl5cuXWLx4Md68eYOSJUvi5cuXgg/9nj17MHHiRMyYMQMAULVqVVy5cgUHDhxASEgIQkND4eHhAXd3d3Tq1AmqqqpF3+DC7D0KirJR6ezZsxw3bhynTZsmZ0IZHx9PCwsLmenlqFGjeOjQIbl6pFIpe/bsqTQNc37bl8WECRN4+/Zt7tixQ2FqoyxCQ0MFU8jDhw/nqy05sX//fs6ZM4cDBgzgjBkzBLdRqVTKgwcPsmTJkvnOArNx48ZsDYPWrl3LrVu35qtuMjO0t729vdyy4Pjx47S3t5cZNX80I0aM4IIFCwiAZmZm/PLli0x5VlowiURCY2NjOjs7c+XKlcLInpiYyMWLF9PT0zNXEZmV8Y+c0nt7e/Pdu3dyx7t27crw8HClSjRfX19BqZecnExLS0ul93j9+nW+0ynb2dll+7ENHjyYYWFhQkAFZYwePZqXL19mgwYN6Obmlq+25IRYLGbr1q3p4eEh0xlGR0fTwcGBGzdupLe3d77qTkxMpKmpqcI4AampqUqTgOQWKysrpa6nS5Ys+akizNrZ2fHOnTvCVF1HR0dGgTtx4kSGhIRw/fr1tLGx4Y4dOxTWs3btWi5ZsiTf7citjP5U3nK9evXC/Pnz5Y5//foVSUlJkEgkCj2pDA0NERkZCQB48+YNGjVqpPQehoaGiI6Ozlf7rKyssH//foVlaWlpePLkCerUqQM9PT20atUKs2fPBr+LIHby5Em8ePECbdq0gbGxMZ4+fZqvtuSEqqoqDAwMYGBgAEtLSwwaNAheXl7o2bMnxowZg27duiEpKQkvXrzAxYsXcffuXbm2KqNYsWIYMmQIvLy88OrVK+H4y5cv0alTJ/j6+uZ72v38+XNUr15d6VZst27dsHv37nzVXVikpaXh+fPnuHTpEt6+fYsFCxYIZcnJyejVqxeePHkCkvj8+TNWr16N8+fPIzU1Fe7u7grr9Pb2xuHDh4u87T/VGr59+/Y4evQoxo0bBz8/P5QsWVL4CLt27Yo9e/YovO7Ro0ewsrICAOjq6uLr169K7yGRSCBVFPctF3h7e8PJyQm///67jDtmRkYG+vXrhyFDhghGH2PHjsWCBQtgaWkJU1NTaGlp4fz58zAwMMDmzZuFWGbJycn5aktuSEtLw4IFC4T4aMWKFUOZMmUAALGxsXj27BkGDhwIMzMzREdHw8/PDz4+PnBxccmxbgcHB1StWhVTp04V3HwrVKiASZMmoXHjxvluc3Z2DQBQokQJZGRk5Lv+gvD+/XuFBlIvX75EmTJloKqqilatWsHd3R3Lli3D27dvcfv2bWzduhXt2rWDp6en0gCm6urq2cZlKCx+KoEHgFmzZuHw4cPo2bMnxGIxMjIyYGhoCH19fVSuXFnu/I8fP+LTp0+oXbs2AKBKlSoIDw9HUlISihUrJnf+sWPHYGxsnK+2FS9eHFu3bsXQoUOhra2N//u//8Pnz59x5coVIfppFiKRCCNGjMCgQYNw7do1pKeno2vXrjIWbvfu3UO9evXy1ZbcoKKiIryHatWqCcfT09Ph6ekJAwMDbNq0CeXLlwfwv44LQK6EvkmTJtiwYUOhtrlGjRoKg39m8fr1a6HT+js5f/68wu+mTZs2UFNTw7Zt21C5cmXcv38fvr6+WLp0KTZu3IiOHTvC1NQUJJGYmKi0fpJITU0tykcQblRo64OiZOLEiRw5cqTgSpiVu93Y2FguaOCZM2fo4eEhl1zg+fPnNDY2LpR97zdv3vD48eO8du1atq6Xnz9/5sKFC+nn58elS5fKuEIaGBjIJcssTDZv3szly5fLHd++fTtnzZpFFxcXubL09HSamppm+0xFTefOnZU6r/Tv3z9b3/eiYvjw4QTA6tWrc9asWVyyZIkQcPPFixe0srKir68v9+zZw1mzZrFs2bJyBkg+Pj5KnXmuXLnCUaNG5bt9/0ilXU4cPnyYTk5OQr7xUaNGKTUeOXr0KE1NTTl69GguWbKE3bp1o6ura4FSReeV5cuX097enocOHWJoaCj37dtHa2trIUbazp07qaKiotT2oKCkp6fT0dGR+/fvl1HcWVlZ0cjISKlQjR49ukis/3JLREQEjY2NuX//fqEz/PjxI4cOHcrJkycXyT2lUinPnTsn+OYPGjSI169f55EjRyiVSjlhwgSqqakJseS6d+8uF104Szm3d+9edu/enS9evJAp//Dhg8IB6tGjRzQ2NmZkZGS+259bGf1Xx6Unidu3byMmJgZ169aVmdYWNUePHsWJEyewZMkSGWeOR48eYdCgQbCwsMDw4cPh5OQEbW1tHDhwoMD3/PjxI06fPg2JRIL27dujVq1aSE1NxcyZM3HlyhVUrlxZiNN/5swZpcuJ+fPn448//sjWlqCoiYuLw7p163DmzBmoqqpCV1cXffr0gYmJSaHfSyKRoFevXqhUqRIGDBiAUqVKYeDAgXj9+rVMPLsxY8YIe+r29vbZKtkWLFiApk2byi0D3r17h4CAACQmJgo2HSVLlsT06dNhYGCQ72fItYwWZu/xi/9ha2sr877ev39PR0dHDhw4kCtXrmSTJk1oYWFBc3Nz6urq5ip+ujLS0tI4cOBAenp6cufOndy7dy979uxJLy8vYUQSi8WMiopicnIyhw0blq0vf8eOHfM82kRHR/PixYu8devWD10O5Ie5c+fK2E3Mnz+fALhy5Uphu+377c0uXbpka8cwYMAAhfHps4iLi+PLly+Vbj/mlX/llP6fQkZGhoyvfJb9/Le27ba2tpRKpRw2bBgNDQ1ZtmzZPJv+ZtGvXz+Fpq7Xrl2jo6OjnM17WFgYXV1dFQrmrVu38mSnkJCQwH79+tHJyYmzZs3imDFjaGJikq3hzaNHj3jgwAFevXr1h3cOEolERmdx48YNQcjNzMzo5eVFAHJ6ljNnzihNWBodHU1ra+sib/u3/BL4H4hYLJYxvAkMDJQTABsbG5KZH1y7du3YoEED6ujo5Nkr8O3bt+zcubPS8tGjR/PKlStyxzdu3Eg3NzdhZpGYmMjAwECam5vn2vEl6zm/j9svFovp4+MjZ40XFhZGW1tbDho0iGvWrOGECRNoamrKEydO5Op+RcHnz5/Zo0cP4d+3bt2SC0RRq1YtueukUil79erF5cuXyxhjvXr1ihYWFgWaseWHXwL/g3FychLMLB0dHWV2DD58+CATdHHChAk8e/askJ0kL6xcuZIHDhxQWn7v3j2l0VLCwsI4dOhQ2tnZ0dnZmVu2bMlT2uTDhw9z9uzZCsuyRs4sYchyHf1+GpySkkI3N7d8O/IUlPj4eLq6usocS09PlxF4CwsLhddKJBIuX76cpqamdHV1pZWVFbt165bnRBqFwS+B/8GcO3eO3t7ewiiYNa1OS0uju7u7TITW2bNnCzntNTU1cx0Xjcw0NT1+/LjS8rCwMA4fPjz/D5INnTt3VhrkkcwMLHnu3DmS5JgxY3jp0iWF5339+rXA4cIKgrOzs4znI0lB2Ldv355jeCky06T4Ry5P/pGmtf8mjIyMYG1tDSsrK5DEihUrsHr1atjY2MDLywv/93//J5x7+fJlNG7cGGPHjkX58uUxdOjQXJu5tmvXDsePH1dafuzYMbRr167Az/MtycnJ2LBhAy5duoSAgACcOHFCofVimTJlkJCQAAC4c+cO/vzzT4X16evrQ0dHJ1sLyaLE398fvXv3lrF6XLt2LQBgzpw5GDJkSI51aGpqFk0a8ELm52/hPxhPT08cPHgQFhYWWLZsGYoVK4YjR47A0dFROOfUqVOoVq2a8NEvXrwYx44dw7RcZopp0qQJ3r59i0ePHsmVffz4EYcPH863G6wi7t+/D1tbW6ioqMDV1RUmJia4d+8ebG1tERMTI3Pu1atXBb8GdXX1bGPNlShRAikpKYXWzrzQsmVLDB06FI6Ojhg9ejRWrlyJmzdvQkVFBXZ2dgXaLvvpKMzpwi+Uc+zYMZqbm/Pw4cOMjY3ly5cvOX78eLq4uMh5lk2bNo0AOHfu3FzVHRkZSUtLS86YMYMvXrzg27dvuWzZMhoZGcmlwS4I58+fZ/ny5WlhYUErKyv27t2bJiYmzMjI4O3bt+nu7i6c+/jxY5kwWh4eHkq3sbLW+0VlcZhbpFIpb926xWPHjvHu3bssXbo0R44c+UPblFv+c2v48PBwLlq0iJMmTWJQUFC+UzwXJVFRUZw7dy47d+7M/v3789y5c0pjl40bN44Ach37XiKR8Pjx4xw0aBD79+/PnTt3Fuo72LhxI1u3bi3TCYWEhLBx48Zs3749b9y4wV69evH+/fvcsGEDTUxMZPbyz507x/79+yt83vXr1ytV/hUFEomEBw4coJubG+3s7Ojq6sq9e/cKHc6HDx/o7OxMHR2dv13bnl/+M5Z2JDF+/Hg8e/YM3bp1Q/ny5XHjxg0EBQVhxowZ2UZm+ZnJyMiAnp4emjRpAltbWzRs2BAODg7CtDg9PR2HDh1CWFgYypQpg44dOwrRYwubT58+oU+fPqhQoQKmTp2KihUrCmVfv36FjY0N/vzzT5w/fx5SqRSDBg2Cp6enXMTfRYsW4ebNm/Dz88Pvv/+O9+/fY9WqVYiMjMTatWv/logvWVZ1tWvXFqzqYmNjsXr1apw8eRJRUVF4+PAh1NXVERQUJLP8+pn5z1jaLV68WOHUNysSjqKAGv8Utm/fziZNmggZSn7//XeOGDGC586do5GREZcvX85r165xz549dHBwyPUS4Ftev37NUaNG0dbWljY2Npw0aZLc1HvGjBk8efIkBwwYoDAw54QJE3jhwgVu2rSJ27dvz/Z+T548oa+vLx0cHNi7d29evHjxb00aERgYKOfUcvPmTU6ePJmqqqqsVasWd+zYUWg5BP8ufrop/YsXL+jj40Nra2va2dnR09OTly9fznd9ZKZFW3aJAi9evKjUGuqfxuHDh2lubk4A1NbW5unTp2XKpVIpx4wZw82bN+e6zuDgYFpZWfHatWtCtpazZ8/S1NRUZinRo0cPRkZG8sSJE5w+fbpcPfv27eO6devo7OwsF+LpZ8PS0lJmqTNx4kQCoJaWFvv06UNjY+Mf2Lr881MJ/LVr12hpacn79+8Lxz58+MDu3btz7dq1+aqTJB8+fJitUkUqlQoWbf8WHBwc2LRpU2pqasrtv2e5tuZmxExKSqKRkZHCcN/R0dE0NjYW1rT+/v6Cjby1tbWcJ93ixYs5ZMiQArl3/l1kWUBKJBIGBgYSAMeOHSs8q5OTU4Fiy/0ofhqBl0gkNDExUXitRCKhnZ1dvoMp/hcF3sbGhqmpqWzXrh1btmwpV96vXz85t01FbNy4UXDTVcSsWbN47Ngxkpm277179yaZmerZ09OTPXv25K5du7hu3TqWLVuWI0aM+OFa9txgYWHBu3fvCvnWu3XrJjPim5ub/yPy0n3PT2N4c+HCBXTo0EGhIkFFRQVDhgzBxo0b81V3vXr1cOfOHaUhqy5fvoymTZvmq+6fGU1NTfj4+ODGjRt48OCBTJlIJMqV0c6jR4/QqlUrpeWtWrXC48ePAQANGjSArq4uFi1ahBIlSmDHjh0YPXo0YmNjsXnzZkyfPh3z5s37e8IsFxANDQ20atUKaWlpuHz5MjZu3AgNDQ0Ame+kRo0aP0VuuqKiyAX+5cuX2cY4a9y4MV6+fJmvutXU1ODg4CATRDCLhIQETJs2TQjZ9G/B0NAQDx8+hIuLCypXriwT9PP48ePYsmULtmzZgj179kAsFiutR19fXwj8qYjIyEiZ5JALFiyAuro6LC0t0adPH0yePBkHDx7E6NGj0adPn0J5tqLm5s2bOHXqFEqUKIGdO3fKWP69f/8eQ4cOxejRo39gC/8GCnO6oIhDhw5x0aJFSsuvX7/OsWPH5rneLKRSKceNG8eOHTvyyJEjDAkJ4bJly9ihQweFXmL/dMLCwmhvb8+UlBQuXryYKioqgoddVuphVVVVAmCDBg3koq5k8eLFi2zdYB0dHRUq4CQSCT9+/PjTK+cU8ccff7BFixZ88uQJ3d3d6enpyYCAAHp5edHV1bVQjZT+bn6aNXxaWppgjaWI7t27MywsLM/1fk+W4c3EiRN/WsObwuLkyZM0Njbm6tWrWb16dTZq1IguLi40MTGhjo4OU1NTGRISQi0tLYVa9SyGDRvGFStWyKxZJRIJp0yZku11/0QSEhKooqLCNWvWCMciIyN59+5dRkREFOm9Q0NDOXDgQNrZ2dHa2prTp0/P1ukoP/w0Ak9m5hrr2rWrzPXp6emcNWvWP8Z08WcjOTmZmzdvpoeHBwFw/fr1PHHiBAHw9evXJEljY2P+3//9n1IllEQi4ezZs2lmZsbRo0dz5MiRNDEx4cqVK38qxdXnz585cOBANm/enFWrVuXvv/9OW1tbtmnThlWrVmXz5s0ZGBgobM++fftWsL94/Pgx+/btSzMzMwJgy5YtefPmzVzf+/jx43RycqKtrS0tLS3Zq1cvhoaG5vr6oKAguri48OHDhyQz3/nJkydpYmJSKANdFj+dpd2ZM2ewePFi6OjoQFtbGx8+fICHhwd69+79j1aSvHjxAnfv3oWuri6MjY2FvGJ/J9bW1nj27BnOnDmD+vXrw8PDAxs2bMDJkydhY2ODPXv2wNXVVen16enpCAsLg6qqKurVq/e3Kd9iY2Nx9uxZ3L17F/Hx8TAxMUGVKlXw6tUrtGjRAoaGhgCArVu3omvXrmjTpg2MjIzw9etXfPjwASVLlkSlSpXw5MkTHDx4EC4uLiApJAvp0qULvn79irlz56JevXpo2bIlSpUqBX19fTg5OcHDwyPb9i1cuBCvX7/GpEmThPDiz549w7BhwzBu3Dil3n9ZfP78Gd7e3jhy5AjU1GQjwn/69Ak9evTA8ePHC+X7/2kt7eLi4hgVFfVTjSD5ISIigq6uruzZsyc3btzIhQsX0tzc/IfkRg8LC6O6ujobNGjArl27UiQSsXPnzkxPT6ezszNLlSqV763PokAikTAgIEDQNVSqVIk1a9aUCTpRrFgxLlu2jNeuXeOgQYMIgPPnz1da56ZNm6ihocG6dety1apVDAgIIABOmzZNOGfRokVUV1dneHg4LSwssg1X/urVK3bs2FHhdxofH5+twVcWs2fP5tGjR5WW+/n5MSQkJNs6cstPNaX/t5GSkkJTU1O5GHRSqZSjR49mYGDg396m69ev09TUlCoqKrSysqK6ujo9PDwYGRlJVVXVn8bi8NOnT3RwcKBIJOLEiRP55s0boezZs2cMCQnhhw8f2KtXL0H4NTU15YRXEd8GoThw4IBgmZgVeOPLly/U1tbm8OHDuWfPHpnOOS4ujps2beL8+fN56NAhjhs3TmnADpKcPHmyXGiv7+nWrVu2ys3du3dz48aN2daRW34KgU9ISOCHDx/yFDbpn8CmTZuUWghKpVKamZn9kAynYrGY/fr1IwAOGzaMAOjq6sphw4ZRJBKxR48edHR0pJ2dHX18fJTGpS8KXr16xS5dulBdXZ16enrZjnxZvH//nvfv32d0dHSelbDz58/nmTNn+Ntvv8mEsJo9ezZVVFR4/Phx+vr6kiRXrFhBa2trbt68mcHBwVywYAHLly+fbRt3796dbQZdMlMpmt07XrJkCQ8ePJin51LGDxX4p0+f0svLi87OzuzXrx+trKw4fPjwf80MwcXFRaFJahZTp04tsJ9Afrh//z7nzJkjjGqWlpYEwMePH7NSpUpCuOXjx4/zwYMHdHd357p164q8XSEhISxbtiwrV67M+fPnF0rmn5zYunUr169fz8qVK3Po0KHC8c+fPxMAAwICOHv2bAYFBXHo0KFyU/fhw4ezTZs2Src1Z82aJefP8D0hISEcNmyYwjKJREJzc3OmpKTk7cGU8MME/unTpzQ1NRU0xVmcO3eOlpaW2QrKPwV7e/tsdRCLFi3K8WMoCrKE2snJSYhDr6Ojw3LlyjEkJIRz5sxh7dq1qaOjw4SEBEqlUrq5uRWqtvh7xGIx69evz2bNmsnFjStKEhMTaW5uTj09PZmdIKlUytq1a7Nq1ap8//49zc3NFc5As+wdFAUVTUlJoYmJSa5Mibt3786tW7fKfC/p6ekcNGhQgfxIvueHCbynp6dSW+4dO3YUKAf2z8KECROyXb85Ozvz3LlzvHnzJhMTE/+2dh0+fJgA2KhRIwYGBjIuLo779u0jAPbq1YtpaWl88+YNAdDHx4disZh37txROgoVBq9evSIAHj58uMjuoYwNGzawSZMm1NLS4qtXr0hmrvPNzMyoqqrKhw8f0tvbm/v37+fmzZu5YMEC7t+/X7h+3LhxrF27tswonKWszS5w6LdkZGRw0qRJNDc3p7+/PwcPHkxTU1Pu2rWrUJ/1hwh8XFycwgSFWaSnp//tAfqLgg8fPtDKykrhunL06NE0MDCgv78/J0+eTGtra44aNepvMwS6evUqHRwcBIWXr68vPTw8BCUembl2VFFR4R9//MELFy7IxNAvbJ49e0YAQvTaoiAqKoorVqzglClTuHv3bpl3HRQURC0tLRoYGLBz5840NzfnokWLBNuFdu3aycWhz3IUkkqlQoYgV1dX2tnZ0c3NLV/JLFNTU/nw4UM+e/asSHaofojAv3nzRsioqQx7e/vc3JJkplZ1wYIF7N+/PwMCAop06plXsmLUHT16lElJSXz//j3t7e1Zo0YNIb1TFvv27WOnTp3+1q3I7du308jIiABYrVo1Tps2jSoqKoJV2YULF1imTBk6OjrKxWUvTKKjowXhKgpmzZpFR0dH7t27l9evX+fy5ctpZGQk08Hs3buXALhp0yZKpVK+fv2aAHjy5ElhO/D333+nqampsE1IZk7rs4Q/JSWlQIrY6Oho7t+/n3v37i0Sy74fIvDJycnZuqPGxcXR0dExN7fk7t27aWlpyYMHD/Ldu3e8du0ae/bsyeHDh/80e/ifP3/mrFmz6O7uTm9vbzZr1kzpus7Pz4/Xr1//m1tInjhxgiKRiBMmTKC6urrM1lbFihVZs2ZNGXPToqBu3boyAS0Li40bN3LcuHFy30NSUhJtbGyE+P5SqZT29vbU1NTkjh07BIvER48ecc2aNYIZcVZHMHv2bKanp9PFxYUPHjwoUBszMjI4YsQIOjo6MjAwkGvXrqWbmxsHDBhQaAo78geu4QcNGsTg4GAhAoq9vT2nTp3KT58+cebMmblau9y7d48dO3ZUaH+/aNGin1IPsH//foW52LMIDQ3Nc1aZwqJGjRqsXbs2hw4dKpPoYvTo0VRVVaWOjk6RGQw9evSIALhly5ZCqS8pKYlr166lo6Mjy5Qpw4kTJyo0Krp9+7aMdj4pKYlWVlYsV64cq1evzvr16wtRfkaPHs0mTZrQ0dGRDx484LZt22hqapptRp/cMnDgQIVhv44dO5ZtirC88sME/tGjRyxVqhQHDRrE+Ph4SiQS7t+/n7Vr16aNjU2uRudevXrxyZMnvH37Nq9du8aEhAShTCwW51pD+neyceNGBgUFKS2PiorKU5LGwqRx48asX78+W7duzeLFi7NJkyZ0cnJinz59+OrVK/bt25cikSjXiqi8MHr0aJYpU6ZQdBjv3r2jsbExN23axLCwMPbr14+nT5+mubk5z549K3f+9/qily9f0s3NjW3btuWFCxeE47t37xbW7+7u7ly1alWhbCG/efNGqVBnZSQaPnw4V69eXWDvwx8WAGPMmDEIDg5GjRo14O7uDkdHR2zYsAHjx49Hamoq4uPjc6zj1q1b8PHxwZ49e3DmzBl4eHjAz88P6enpgr33hw8fCrvpBaJRo0a4cuWK0vKrV69mGxegKBk8eDAiIyMRGhqKlJQUhIWFQUdHB8uXL0f16tWxYsUK2NjYwMHBAcuWLct11pvccOnSJZiYmAhBJgqCj48P1qxZA29vb2hpaUFFRQVmZmY4ePAgpk2bhri4OJnzv7dRr1GjBoKCgnDp0iW0b99eOJ6YmCj8v6amJvr161co0ZkPHToET09PueN37tyBubk5qlWrhtjYWOjr66NXr16YPn16ob57hRRm7/HgwQMOGjRIaXlQUBCXLl2abR3Lly9n9erV5UbwgwcP0tPTU8jaGR4enpumC6SlpXHFihW0srKinZ0dLSwsOHfu3ELdNrO2tlYYJTctLY1mZmY/1Ic8JiaG3bp1E0YykUjEnj17CjOu9PR0Dh06lADYvXv3QsuTVrVqVQYEBBS4nvv378t8W1nJK7KWfbt375b5toKCgtimTRvOnDkzV95xvr6+BEBTU9MCtzWLOXPmyG3ffvz4kaampoyJieHDhw9l8tZNmTKFK1euzNe9fsiUPqdp7fepeb8nKSmJFhYW9PPzk0m2mIW/vz+Dg4NpYWGRJ8VdWloaXVxcuH79emFqKRaLuWfPHlpZWcksGQrCy5cvaWxszH379jEjI4NSqZQ3btygnZ3dD9mHVsTatWupqqrKMmXKEIDc32vz5s0UiUSFloBSX1+fc+bMKXA9GzZskGvr2rVrOWXKFJL/+7bi4+Pp4uJCQ0NDrlmzhps3b6abmxt/++03Ll26lLt27eKxY8fksv1ERETQxsam0HQNZGbU5O87u4kTJzI4OJgk5fb9s+I/5me5+kMEPigoiKtXr1Za/vTp02xnAFmKr7dv39Lc3FzOBDM0NJSNGjXivn37ctNsgaVLlyp1Ujhx4kSBIu58z9evX7lw4ULa2dnRzs6Ofn5+CmO5/0jGjx8vjPSK7MWXLl1KAFy8eHGB7iMWi6mqqprvUetbFH1bUqmUkydPpqurK1euXElPT0+2aNGC9evXp4WFBbW1teX22LN+JUqUYN++fRkbG0upVFokOiGpVEoLCwsZq9MsPVZkZCSNjIzkFNN+fn758nH4IQL//PlzNmrUKNv0SdnlAd+0aRN3795Nkrx16xZNTEw4ZcoUHjlyhIGBgTQyMmLr1q1z02QZLC0tle6hSqVSmpqa/tBUv383UVFR7Ny5M/fs2aP0nGHDhlFDQ0POIzAvZBndnDx5UmF5QkICDx48yKCgoBwj7cbHx9Pa2lrht/Xp0yeamprSwcGBLVu2pJaWlkIh19LSoq+vL2/evMkJEyZQX1+fpUqVoo6ODvX19bl+/fpczxxzmx76zZs3NDY2ZmBgIKOjo2lhYcGNGzfSyMhI4bv19/eXCeeeW36I0m7s2LF4+PAh7O3tIZVKERkZiaSkJADA6dOn8eTJE7Rt21bp9Y0bN8bly5cBAM2bN8fp06fx559/4v379yhZsiR8fHyyDeSgDHV1dairqyssE4lEKFu2rEyq4H87ZcqUwdatW7N9lzNnzkSpUqWwZs2afN+nYsWK0NTUxN27d2WOk8TUqVPh4eGBDx8+IDExEePGjUPXrl3lFG9ZFC9eHMbGxgoVWw8ePIC+vj5Kly6NGzduIDU1FQCgqqqKsWPH4tKlSwCA1NRULFiwAC1btsS7d+8wefJkeHp6wt/fH/b29ujZsye8vLyUtkEsFmPx4sUwNzdH586dYWtri169euHFixdK30G1atVw/PhxFCtWDEOGDMH79+/x9OlTHDlyBL/99pvce7l9+zbq16+f/YstCIXZe2RZJo0aNYr169cnAJYsWZJt27Zl165d5dZNirC1tZXxkc4iLS2N5ubm+VJ8WVhYZNsbW1hY/HTbfD8Do0aNooaGRp5COn1P7969qaenJxPDbfLkyQoDm16/fp02NjZyf6snT55wzpw5dHFxYbly5VisWDGWLVuWxYoVY+PGjenj48Pk5GQOGDBA8CVo2LChTFBKsVjMkydPsmvXrmzSpAnLlSsnjPwqKiq8c+cOd+zYweLFi7N69ercvn27zHcokUjYuXNnrlu3TuZbefbsmcLYCMp48+YNraysFDqRLV++PN/6jh/uD59lcKGjoyNohS0tLQUnBmW8fv2axsbGDAoKYnp6OqVSKa9du0Y7OzseOXIk1/f/lmnTpin1bb5161a2eoX/Mvfu3SMA7ty5M991REREUCQSCTqUuLi4bG33p0+fzhMnTpDMtFKztbUVIuAYGRlx2LBhHDx4MF1dXVmxYkXWq1dPuDZLk5+1R/89WQqz27dv09fXl/fu3eOWLVtYpUoVWlhY8N69e3z48CFbtmwpdAbNmzfn06dPefDgQc6YMUNhmz99+pRrC1KSQm7A9evX8/HjxwwODmbXrl05fPjwfC8tf7jAZxEfH89p06YJUUvmzJmT4zopLi6OS5YsERRfo0aNyrGj+JZPnz7x7NmzDAkJoUQiYVxcHM3MzOT0B3fv3qWxsTE/ffqU5+f6L5DlbhsTE1Ogepo2bcr27dszPT2de/bsyVax++bNG0FYs7z/AgMDGRMTw5kzZ9Lc3Jz29vZs1aoVtbS05Ex23dzcOH/+fK5atUrmeGhoKK2srCiVSimRSGR8Oo4ePSoMTPhL5/D69WthlgqAZcqU4ZkzZ5S2u3v37nlKXJqcnMxNmzZx5MiRnDFjRp6+b0X8NAKfxcuXL9mxY0fir3jp2YUPyi9fvnxhly5d6OnpyQULFnDs2LE0NTXl3r17+fXrV/r6+tLCwoLe3t60srJi//79f6pYbz8bFStWJIAC+y4EBwdTXV2d3bp145YtW7LNMBsdHU1vb2+SmbsF6urqTEhIoLW1Nffu3UuJRCJ4sRkaGtLU1FRmW/Xr169s3749W7VqxWvXrvHmzZscN24cra2thY49K6/h9/etUKECAQhhsCZOnMjevXuzXr16BMDGjRvz8+fPnD9/PleuXMlz585x+/btnDt3Lp2cnLLtEIqan07gSQoxxgwNDamrq8vIyMgC1Udmru0PHTrEZcuWsVmzZjJZT8nMaWGPHj2ErbyMjAzGxMT8kBBU/zTWrVtHANy6dWuB69qwYQMBcNeuXezVq5fS83bs2MEVK1aQJLt27cp69epx2rRpMvvVWcvFmTNn8siRI5w0aZJMHRKJhH/88QfHjx/PCRMmyKWkHj9+vLAXnkVCQoIwmlesWJF169Zl6dKlqa2tzapVq7JixYrcuXMnnZ2d5bT/GhoaFIlE1NDQYOvWrXnv3r2//fv6KQV+xIgRwkvS1dUt8P703r17aWpqysWLF3Po0KF0dXWliYmJ3OwhL1lVf/E/pFIpu3XrJkTBLcjfSyKRsFatWvzzzz/p4uIiZMv5lvj4eBoZGfH169ccP348VVVVOXv2bLlt00+fPhEAlyxZImyrfs+xY8fo7u4u881KpVJu376dXl5eCr+F7NbPJ06cYEBAAI8dO0YVFRXq6+vzzp07fPv2Ld+8eUNbW1uOHDlS+L4rVKhQ4Gl6XvgpBT44OJglS5Zkv379Cpx5Izg4WAjFTGam+U1OTmZCQgJtbGz45MkTmfP9/Pzytb+ZVyQSCY8fP04vLy/a29tzwIABvHv3bpHft6jIyMjgypUrWbFiRaqrq3Pv3r35ruvKlStUV1enlpYWS5UqxW7duvH9+/c8ceIE+/bty8qVK7NOnToUiURUV1fnhAkTmJaWJqPkCwkJEdbW79+/J5mZFkvRLktwcDBtbW3ZtWtXDho0iGZmZpwyZYrc6CuVSnnw4EFOmzaN69ev540bN+Q6hD59+rBy5cps164dXVxcCIBdunRhSEiIYF0ZHR0tpKAGQD09Pd6+fZuRkZGcPn06J06cyMDAQIWdXUH5KQWeZKGNsg4ODjKWeN9+FKGhoezbt6/M+TNnzizyXHPp6en09PTklClThOVKaGgoe/TooVTD+08hKSmJ7u7uVFVVpYWFBZctW8Zz587lOSLxkydPOH/+fBoZGVEkEgnKXBUVFdasWZPdunXjhg0bZHwlvp2dtW3bVrCUI/8XJfh7wsPDOXnyZDo6OtLNzY1r1qxR6n9+9uxZuWl6mTJl+OHDB5KZRjbfl2f9WrVqRXt7e4Vl6urqDAkJEXwUvv0Vdh67n1bgC4OkpCS5UFqDBw+WGcGtrKxkyp2dnRkdHV2k7ZoyZQp37NihsGzw4ME/VKlTGKSlpXHZsmU0NTWlmpoaAbB169b5mupnpbkaM2YMb968qTT3IJkZQzDLWi9rrz0rddPZs2c5ZswYmfP3799Pa2trBgcHMyMjg5GRkZwzZw5tbW0V+k1ERESwTZs2gsIuSyhnzZolnHP48GE2bdqUdnZ29Pb2ZufOnYUIOUBm4NCRI0fy5MmTfPr0KQMDA4U2z507V0bYGzVqxPj4+Dy/s+z4Vwt8XFwcPT09ZY6FhoayY8eOwjrM1tZWKLty5YoQqqioyMjIoJmZmdIZTEREBN3d3Yu0DX8nSUlJPH36NCtVqkQNDQ0OHz68yHwGYmNjaWZmxrNnz9LLy4u1atWiVCrl+fPnBc+zLF6/fk1bW1uFHcjFixfZp08fhfeQSCQ8ePAghw0bJsSnz2n2IpVK6efnRxMTE3bq1Il2dnYcNmyY3HJSKpUyIiKCCQkJTEhIKBIz7n+1wGdN477/g2zcuJGurq48ceIEO3bsyLi4OC5dupRWVlZF3vb379+zf//+2Z6Tl3h+/xQSExM5ceJE6uvrC8ZVs2bN4tWrVwtVSRobGysE0yhdujRNTU05atQoORuB0aNHZ7t0c3Z2LrRw2ampqXRxceGMGTP4+fNnSqVS3r17l56entlGPyoK/tUCT2Y62kyePFnueFhYGBs2bMjWrVvT1dWVu3bt+lu2SGJiYuRmHd8ilUrllhn/JpKSkrhu3Tp26NCBxYsXJwC2a9eOBw8elJu+PnjwgAsWLOD06dN5586dXHcMp06dora2NocNGyYX5z0pKYlisVipg00W8+bNk9uSyy+jRo3ioUOH5I5LpVJ2795doYt3UfGvF3ipVMrx48ezS5cuvHLlCj9+/MhTp07R3t4+W0uuosTR0VGpnuDs2bNy+8X/ViQSCQ8fPswWLVoQAFVVVWlpack5c+bQ2tpaWCtndQzNmjXjrVu3cqwzS8FXu3Zt1qxZk/b29uzWrRvLly9PFRUVlihRgioqKjQzM1OapHH8+PGFEkw0OTmZlpaWSstfvXr1t4Y0+9cLfBYvXrzghAkT2LdvX86cOfOHWs5dvXqVjo6Oco4Rb968oZGRUYG3Iv9pSKVShoWFcdmyZWzTpg01NDTYsmVLbtmyhenp6UxPT+eJEyfYtGlTampqZusrIZVKOXbsWALgb7/9Rg8PD5qbm7NVq1bs1asXFyxYwClTptDV1ZWVK1emuro6fXx8ZP4WBQkw8T2hoaEyGW0UUZTx/r/nPyPwPxvBwcE0NzfniBEjuHjxYvbs2ZPOzs5yqbf+iyibaqemptLR0ZHq6urZRkzKDSkpKTQ2NhZSTA8ePJhkprAPGzas0LK1vn37NltFsFgszjZke2HzS+B/IFKplPfu3ePp06f/VmurfzLp6en08vKiiooK586dWyCFX2RkJN3d3amurk5LS0vOnDmTpqamhZ4409LSUmlMxEOHDnHu3LmFer/s+CXwv/jHIRaL6e/vLzhYeXp6cty4cXz69Gme63r79i01NTXp5eXFs2fPFoni9tSpU/T09JQLwf38+XMaGxv/LVlys8itjIrInOPixsfHQ09PD3FxcYUSvvcXv8iOS5cuYeXKlYiIiMC9e/eQlJQEIyMjGBsbw9vbGx8+fMDdu3fh7e0NbW1thXUsX74cw4cPR3R0NIoXL15kbT169CgWLlyIli1bwsDAALdu3UJ8fDwWL16MypUrF9l9vye3MvpL4H/xU5Oamop58+YhJCQEJ06cQHp6ulDWqVMnbN++XeF1Y8aMwY4dO/DmzZsibyNJ3Lp1C9HR0ahXrx4MDQ2L/J7fUyQC//79+18C/4sfxpcvX3D16lVcunQJq1evBgCEh4dDV1dX7tzZs2dj/vz5+Pz589/dzB9CfHw8qlSpkqPAq+WmMg0NDVSoUAFVqlQptAb+4heFQaVKlbIt19PT+5ta8uOpUKFCjhl+cjXCA5lTq2+nU7/4xS9+LjQ0NKClpZXtObkW+F/84hf/fAo9meQvfvGLn5dfAv+LX/yH+CXwv/jFf4hfAv+LX/yH+CXwv/jFf4hfAv+LX/yH+CXwv/jFf4j/B9kgTZ2yhI+PAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSUAAAEpCAYAAABlfEeOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUxRbA8d9m03snlRQIvYP03ntTaQqKoqIoiIooiIi9oCKKgggCiohKU4qA9N57hzSSkN77ZrPvj3jHXQgIysMo5/v58HnP3c3u3XLuzD0zc0ZnMplMCCGEEEIIIYQQQgghxB1i9U8fgBBCCCGEEEIIIYQQ4u4iSUkhhBBCCCGEEEIIIcQdJUlJIYQQQgghhBBCCCHEHSVJSSGEEEIIIYQQQgghxB0lSUkhhBBCCCGEEEIIIcQdJUlJIYQQQgghhBBCCCHEHSVJSSGEEEIIIYQQQgghxB0lSUkhhBBCCCGEEEIIIcQdJUlJIYQQQgghhBBCCCHEHSVJSSGEEEIIIYQQQgghxB0lSUkhhBBCCCGEEEIIISqQzz//nLCwMOzt7WncuDE7duy44eO3bdtG48aNsbe3Jzw8nNmzZ1/zmMzMTMaMGYO/vz/29vbUrFmTtWvX/r/ewp+SpKQQQgghhBBCCCGEEBXE0qVLefbZZ5k8eTJHjhyhTZs29OjRg9jY2HIfHxUVRc+ePWnTpg1Hjhxh0qRJjB07lmXLlqnHFBcX06VLF6Kjo/npp584d+4cc+fOJTAw8E69rWvoTCaT6R97dSGEEEIIIYQQQggh7pDCwkKKi4vv+Ova2tpib29/U49t1qwZjRo14osvvlC31axZk/79+/POO+9c8/iJEyfy888/c+bMGXXb6NGjOXbsGHv27AFg9uzZfPDBB5w9exYbG5u/+W5uD+t/+gCEEEIIIYQQQgghhPh/KywsxMHB4R95bT8/P44dO2aRmLSzs8POzs7iccXFxRw6dIiXXnrJ4vauXbuye/fucp97z549dO3a1eK2bt26MW/ePAwGAzY2Nvz888+0aNGCMWPGsGrVKnx8fBg2bBgTJ05Er9ffpnd5a2T5thBCCCGEEEIIIYT4z/snZkhqEhMTqVSpEm5ubupfebMeU1NTMRqNVKpUyeL2SpUqkZiYeMPnvvrxJSUlpKamAhAZGclPP/2E0Whk7dq1vPLKK3z44Ye89dZbt+kd3jqZKSmEEEIIIYQQQggh7ho6nQ6dTnfHXs9kMmEymbh8+TKurq7q9qtnSZq7+vhMJtMNj7m8x5vfXlpaiq+vL19++SV6vZ7GjRuTkJDABx98wKuvvnrL7+l2kKSkEEIIIYQQQgghhLhr3OmkJJQlCV1dXS2SkuXx9vZGr9dfMysyOTn5mtmQGj8/v3Ifb21tjZeXFwD+/v7Y2NhYLNWuWbMmiYmJFBcXY2tr+1fe1t8iy7eFEEIIIYQQQgghxF3Dysrqjv+7Wba2tjRu3JiNGzda3L5x40ZatmxZ7t+0aNHimsdv2LCBJk2aqE1tWrVqxcWLFyktLVWPOX/+PP7+/v9IQhIkKSmEEEIIIYQQQggh7iLaTMk7+e9WPPfcc3z11VfMnz+fM2fOMH78eGJjYxk9ejQAL7/8MiNGjFCPHz16NDExMTz33HOcOXOG+fPnM2/ePF544QX1mCeffJK0tDTGjRvH+fPnWbNmDW+//TZjxoy5PR/qXyDLt4UQQgghhBBCCCHEXeOfWL59KwYPHkxaWhqvv/46V65coU6dOqxdu5aQkBAArly5QmxsrHp8WFgYa9euZfz48cyaNYuAgABmzpzJvffeqx4THBzMhg0bGD9+PPXq1SMwMJBx48YxceLEO/7+NDqTVvlSCCGEEEIIIYQQQoj/qOzsbNzc3LCzs7vjG90UFRWRlZX1pzUl7yayfFsIIYQQQgghhBBCCHFHyfJtIYQQQgghhBBCCHHXqOjLt+8WkpQUQgghhBBCCCGEEHcNSUpWDJKUFEIIIYQQQgghhBB3DSsrqzteU1JcS5KSQgghhBBCCCGEEOKuITMlKwZJSgohhBBCCCGEEEKIu4YkJSsGSUoKIYQQQgghhBBCiLuGJCUrBklKCiGEEEIIIYQQQoi7hiQlKwZJSgohhBBCCCGEEEKIu4YkJSsGSUoKIYQQQgghhBBCiLuGTqfDysrqjr1eaWnpHXutfxNJSgohhBBCCCGEEEKIu8adnikpszLLJ0lJIYQQQgghhBBCCHHXkKRkxSBJSSGEEEIIIYQQQghx15CkZMUgSUkhhBBCCCGEEEIIcdeQpGTFIElJIYQQQgghhBBCCHHXkKRkxSBJSSGEEEIIIYQQQghx17Cysrqju2+L8sk3IIQQQgghhBBCCCGEuKNkpqQQQgghhBBCCCGEuGvI8u2KQZKSQgghhBBCCCGEEOKuIUnJikGSkkIIIYQQQgghhBDiriFJyYpBkpJCCCGEEEIIIYQQ4q4hScmKQZKSQgghhBBCCCGEEOKuIUnJikGSkkIIIYQQQgghhBDirmFlZYWVldU/fRh3PUlKCiGEEEIIIYQQQoi7hsyUrBgkKSmEEEIIIYQQQggh7hqSlKwYJCkphBBCCCGEEEIIIe4akpSsGCQpKYQQQgghhBBCCCHuKpIo/OdJUlIIIYQQQgghhBBC3DXu9EY3JpPpjr3Wv4kkJYUQQgghhBBCCCHEXUOWb1cMkpQUQgghhBBCCCGEEHcNSUpWDJKUFEIIIYQQQgghhBB3DVm+XTFIUlIIIYQQQgghhBBC3DVkpmTFcOfSwkIIIYQQQgghhBBCCIHMlBRCCCGEEEIIIYQQdxFZvl0xSFJSCCGEEEIIIYQQQtw1ZPl2xSBJSSGEEEIIIYQQQghx15CkZMUgSUkhhBBCCCGEEEIIcdeQ5dsVgyQlhRBCCCGEEEIIIcRdQ2ZKVgySlBRCCCGEEEIIIYQQdw2ZKVkx3LlvQAghhBBCCCGEEEKIf5g2U/JO/rtVn3/+OWFhYdjb29O4cWN27Nhxw8dv27aNxo0bY29vT3h4OLNnz7a4f8GCBeUeV2Fh4S0f2+0iSUkhhBBCCCGEEEIIcdfQ6XRqtuSd+HerScmlS5fy7LPPMnnyZI4cOUKbNm3o0aMHsbGx5T4+KiqKnj170qZNG44cOcKkSZMYO3Ysy5Yts3icq6srV65csfhnb2//lz/Hv0uWbwshhBBCCCGEEEKIu0ZFryn50Ucf8eijjzJq1CgAZsyYwfr16/niiy945513rnn87NmzqVy5MjNmzACgZs2aHDx4kOnTp3PvvfdaHIefn99ffyO3mcyUFEIIIYQQQgghhBB3jX9q+XZ2drbFv6KiomuOrbi4mEOHDtG1a1eL27t27cru3bvLfT979uy55vHdunXj4MGDGAwGdVtubi4hISEEBQXRu3dvjhw58nc/yr9FkpJCCCGEEEIIIYQQ4q5xJ5dum2+qExwcjJubm/pX3qzH1NRUjEYjlSpVsri9UqVKJCYmlvt+EhMTy318SUkJqampANSoUYMFCxbw888/s2TJEuzt7WnVqhUXLly4HR/pXyLLt4UQQgghhBBCCCHEXeOfWr59+fJlXF1d1e12dnZ/+jcak8l0w2Mu7/Hmtzdv3pzmzZur+1u1akWjRo349NNPmTlz5k2+k9tLkpJCCCGEEEIIIYQQ4q5hPnvxTr0elG00Y56ULI+3tzd6vf6aWZHJycnXzIbU+Pn5lft4a2trvLy8rntM99xzzz86U1KWbwshhBBCCCGEEEKIu8Y/VVPyZtja2tK4cWM2btxocfvGjRtp2bJluX/TokWLax6/YcMGmjRpgo2NTbl/YzKZOHr0KP7+/jd9bLfbXZ+UXLBgATqdjujoaAC+++47tVvRP+lGx6HT6Xjttdfu6PHcisOHD9O5c2ecnZ1xd3dn4MCBREZG/tOHJf6jJIZvr507dzJq1CgaN26MnZ2dxWcrxO0m8Xv7GI1GPvroI7p3705QUBCOjo7UrFmTl156iczMzH/68MR/lMTw7TVz5kyaN2+Ot7c3dnZ2VK5cmSFDhnDq1Kl/+tDEf5DE7/+PyWSibdu26HQ6nn766X/6cMR1VOSkJMBzzz3HV199xfz58zlz5gzjx48nNjaW0aNHA/Dyyy8zYsQI9fjRo0cTExPDc889x5kzZ5g/fz7z5s3jhRdeUI+ZNm0a69evJzIykqNHj/Loo49y9OhR9Zz/BJ1JW2R+l0pJSeHSpUs0bNgQOzs7evfuzcmTJ//xi/AbHcfevXsJCgoiKCjozh/Ynzh79ixNmzalQYMGvPTSSxQWFvLqq6+SkZHB0aNH8fHx+acPUfzHSAzfXtOmTePrr7+mYcOGZGZmsnXrVqKioggNDf2nD038B0n83j65ubkEBAQwdOhQunTpgre3N4cPH+bNN9/E39+fgwcP4uDg8E8fpviPkRi+vaZOnYqVlRX169fHw8ODyMhI3n33XeLj4zl06BDVq1f/pw9R/IdI/P7/fPbZZ7z99ttcuXKFMWPG8Nlnn/3ThyTMZGdn4+bmRps2bbC2vnMVDUtKStixYwdZWVl/unxb8/nnn/P+++9z5coV6tSpw8cff0zbtm0BePjhh4mOjmbr1q3q8du2bWP8+PGcOnWKgIAAJk6caJFwHD9+PMuXLycxMRE3NzcaNmzIa6+9RosWLW7re70Vd31NSR8fnzuSKCsoKLhtFwPmhUkrmldffRU7OztWr16tAq1x48ZEREQwffp03nvvvX/4CMV/jcTw7TVlyhSmTp0KwPTp0y0aOSFuN4nf28fBwYGoqCiLmkHt27encuXK3H///SxbtowHH3zwHzxC8V8kMXx7TZs2zeK/27VrR/PmzalVqxaLFy/m9ddf/4eOTPwXSfz+f0RHR/Pyyy+zaNEiBg4c+E8fjriBf6qm5K146qmneOqpp8q9b8GCBdfc1q5dOw4fPnzd5/v444/5+OOPb/k4/p9k+bbZtPX27duzZs0aYmJiyp1iW1xczJtvvkmNGjWws7PDx8eHkSNHkpKSYvGcoaGh9O7dm+XLl9OwYUPs7e1VJ2PWrFm0bdsWX19fnJycqFu3Lu+//z4Gg0H9/Z8dR3nT1k+ePEm/fv3w8PDA3t6eBg0asHDhQovHbN26FZ1Ox5IlS5g8eTIBAQG4urrSuXNnzp0797c/y5KSElavXs29995rkfkPCQmhQ4cOrFix4m+/hhBXkxi+fTEMf62xFOKvkvi9ffGr1+vLLWLetGlToGynRyFuN4nh29sGl0dLGt3J2Tzi7iDx+/+J38cff5wuXbowYMCA2/q84var6Mu37xbSupn5/PPPefzxx7l06dI1CbTS0lL69evHjh07ePHFF2nZsiUxMTFMnTqV9u3bX7Ms6vDhw5w5c4ZXXnmFsLAwnJycALh06RLDhg0jLCwMW1tbjh07xltvvcXZs2eZP3/+nx5Hec6dO0fLli3x9fVl5syZeHl58e233/Lwww+TlJTEiy++aPH4SZMm0apVK7766iuys7OZOHEiffr04cyZM+j1evV+S0tL//S1dTqd+ptLly5RUFBAvXr1rnlcvXr12LhxI4WFhdjb2//p8wrxV0gM/70YFuKfJPH7/4nfzZs3A1C7du0/fT4h/g6J4dsXw0ajkZKSEqKionjppZfw9fVl5MiRf/p8QvxVEr+3J36/+uor9u/fz+nTp//078U/798wU/KuYLrLff311ybAFBUVZTKZTKZevXqZQkJCrnnckiVLTIBp2bJlFrcfOHDABJg+//xzdVtISIhJr9ebzp07d8PXNhqNJoPBYFq0aJFJr9eb0tPT1X3XOw6TyWQCTFOnTlX/PWTIEJOdnZ0pNjbW4nE9evQwOTo6mjIzM00mk8m0ZcsWE2Dq2bOnxeN++OEHE2Das2ePum3q1Kkm4E//mR/jrl27TIBpyZIl1xzz22+/bQJMCQkJN/xMhLhVEsO3L4av9sEHH1h8tkLcbhK//7/4NZlMpri4OFOlSpVMTZo0MRmNxhs+Voi/QmL4/xPDdnZ26jHVqlUznT59+oafhRB/hcTv7Y3fuLg4k5ubm2nOnDkWxztmzJgbfhbizsvKyjIBpk6dOpm6det2x/516tTJBJiysrL+6Y+gQpGZkjdp9erVuLu706dPH0pKStTtDRo0wM/Pj61bt/Lkk0+q2+vVq0e1atWueZ4jR44wdepUdu3aRXp6usV958+fp1mzZrd8bJs3b6ZTp04EBwdb3P7www+zbt069uzZQ/fu3dXtffv2tXicNrMxJiZG1el4/PHH6d2795++tp2d3TW33WhaskxZFv8UieHylRfDQlQ0Er/lu1H8pqen07NnT0wmE0uXLpXRefGPkhgu3/ViePfu3RQXF3Pp0iU+/vhjOnTowKZNm2TGs/hHSPyW7+r4HT16NPXr1+exxx675fch/hl3ekm15ELKJ0nJm5SUlERmZia2trbl3p+ammrx3/7+/tc8JjY2ljZt2lC9enU++eQTQkNDsbe3Z//+/YwZM4aCgoK/dGxpaWnlvl5AQIC639zVNae0E6r56/v5+eHr6/unr20eWNrzXv16UHZxpNPpcHd3/9PnFOL/QWK4fNI4in8Did/yXS9+MzIy6NKlC/Hx8WzevJnw8PA/fS4h/p8khst3vRhu1KgRULapR9++falatSqTJk1i1apVf/qcQtxuEr/lM4/fn376iV9//ZWdO3eSlZVl8bji4mIyMzNxcnLCxsbmT59X3Dk6ne6ODtrKdVf5JCl5k7y9vfHy8uLXX38t934XFxeL/y7vB7dy5Ury8vJYvnw5ISEh6vajR4/+rWPz8vLiypUr19yekJAAlB37rXr99dev2QGwPCEhIURHRwNQpUoVHBwcOHHixDWPO3HiBFWrVpV6kuIfIzFcPvMYFqKikvgtX3nxm5GRQefOnYmKimLTpk3l1nkW4k6TGC7fzbTBLi4u1KhRg/Pnz9/ycQhxO0j8ls88fk+ePElJSUm5u4PPnTuXuXPnsmLFCvr373/LxyP+f2SmZMUgScmr2NnZlTtS07t3b77//nuMRuNfmloOf/wIzad6m0wm5s6de9PHUZ5OnTqxYsUKEhIS1KgQwKJFi3B0dCz35Phn/sq0dWtra/r06cPy5ct5//33VQMVGxvLli1bGD9+/C0fhxC3SmK4jCzfFv9GEr9l/mr8agnJyMhINm7cSMOGDW/5tYX4OySGy9zONjg1NZUTJ07QqlWrWz4OIW6FxG+ZvxK/Dz/8MO3bt7/mMR06dKB///6MGzeOOnXq3PKxiP8v2eimYpCk5FXq1q3L8uXL+eKLL2jcuDFWVlY0adKEIUOGsHjxYnr27Mm4ceNo2rQpNjY2xMXFsWXLFvr168eAAQNu+NxdunTB1taWoUOH8uKLL1JYWMgXX3xBRkbGTR9HeaZOncrq1avp0KEDr776Kp6enixevJg1a9bw/vvv4+bmdsufQ0BAgMWJ/WZNmzaNe+65h969e/PSSy9RWFjIq6++ire3N88///wtP58Qt0piuMxfjeGUlBS2bdsGoGY9r1u3Dh8fH3x8fGjXrt0tP6cQN0vit8xfid+CggK6devGkSNHmDFjBiUlJezdu1fd7+PjQ5UqVW75WIS4FRLDZf5KDGdlZdGlSxeGDRtGREQEDg4OnD9/nk8++YSioiKmTp16y8chxK2Q+C3zV+I3NDSU0NDQcu8LDAwsN2Ep/nkyU7JikKTkVcaNG8epU6eYNGkSWVlZmEwmTCYTer2en3/+mU8++YRvvvmGd955B2tra4KCgmjXrh1169b90+euUaMGy5Yt45VXXmHgwIF4eXkxbNgwnnvuOXr06HFTx1Ge6tWrs3v3biZNmqRqctSsWZOvv/6ahx9++HZ8LDetRo0abN26lYkTJ3LfffdhbW1Nx44dmT59Oj4+Pnf0WMTdSWL47zl16hT333+/xW1PPfUUAO3atWPr1q139HjE3UXi969LSkriwIED6viv9tBDD7FgwYI7djzi7iQx/NfZ29tTv359vvzySy5fvkxhYSF+fn60b9+eZcuWUatWrTt2LOLuJPEr7jYyU7Ji0JmuF+FCCCGEEEIIIYQQQvxHZGdn4+bmRu/eve/o5kMGg4HVq1eTlZWFq6vrHXvdik5mSgohhBBCCCGEEEKIu4Ys364YJCkphBBCCCGEEEIIIe4akpSsGCQpKYQQQgghhBBCCCHuGpKUrBgkKSmEEEIIIYQQQggh7hqSlKwYZPsfIYQQQgghhBBCCCHEHSUzJYUQQgghhBBCCCHEXUNmSlYMN52ULCwspLi4+P95LEL8a9na2mJvb/9PH8YNSQwLcX0VPYYlfoW4vooevyAxLMSNVPQYlvgV4sYqegxfjyQlK4abSkoWFhYSFhZGYmLi//t4hPhX8vPzIyoqqsKejCWGhbixihzDEr9C3FhFjl+QGBbiz1TkGJb4FeLPVeQYvhFJSlYMN5WULC4uJjExkcuXL+Pq6npTT1xaWkr//v357rvvcHZ2trjPZDIxcuRIXnvtNUJDQ2/5oP+fEhISePzxx3n++edp3749Op2OrKwsZs2aRW5uLm+99Zb6MR0/fpw2bdpY/L2dnR22trbY2NhQUFBAQUHBdV/L3t6e7t2706dPH3r37q2CuKSkhHvuuYeoqCh8fX2xtrYmKCiIWrVqUbNmTfW/Xl5ef/uHnZWVxY4dOwgMDKRGjRrY29uTnZ1NRkYGer2e4OBgUlNT2bBhA8uXL+fMmTNkZ2djMpkAsLa2xs3NDS8vL1xcXLC1teXMmTPUrFmT/Px80tLSyMrKoqCgQAV9ZmYmXl5eeHt74+rqiouLC66urjg6OpKVlUVcXBxGo5GwsDACAwPx8/OjU6dOeHp64uTkhJOTE3q9/m+9b4AJEybQpUsXunbtanF7dnY2DzzwAAsXLsTT0/NPnyc7O5vg4GCKi4sr7In4r8Tw8uXLiYuLY+zYsdfcd/bsWWbMmMHs2bNv96H+bTNnziQ2NpaJEyfi4+ODyWTi0KFDvP7663zwwQdUr15dPfbBBx/kl19+Uf9tbW2Nra0ttra2lJaW/unIeFBQEIMHD2bw4MEWz7tixQoefvhhPDw8sLe3x8nJiRo1aljEcHh4OLa2tn/rvZpMJo4cOUJaWho1a9YkMDAQg8FARkYGGRkZhISEYGNjw5kzZ/jmm2/Yv38/sbGx5OXlodfr0ev1Kv48PDxwdHSkqKiI+Ph4wsPDycjIIC0tjby8PIxGIzqdjsLCQnQ6Hd7e3nh6euLi4oKzszMuLi7odDoSEhJIS0vD09OT8PBwPDw8uOeee6hTpw7Ozs44OTlhZ2f3t89dcXFxjBs3jm+//RYHBweL+3766SfOnDnDlClTbuq5KnoM/5X4NZlM9O/fn4ULF+Lu7n7N/Y8//jgvvPAC1apVu81H+/ckJyfz6KOPMnbsWDp16oSVlRXZ2dnMmTOHpKQkPvjgA/XbOX/+PPfcc4/F39va2mJnZ3dTbbCtrS116tRh9OjR9O3bV/2OSktLadWqFadPn6ZSpUpYW1sTGBh4TRvs7e39t3/HOTk5bNu2jYCAAGrUqIGDg4Nqg3U6HSEhIaSnp7Nx40b1u87KyqK0tBSdToder1dtsKurK7a2tpw7d45q1apRUFBAeno6WVlZ5OfnX7cNdnZ2xtXVFScnJ7KysoiPj8dgMBAaGkpQUBC+vr506dIFLy+v29oGT548mWbNmtG3b1+L2/Py8njggQeYM2cOlSpV+tPnqejxC38thtetW8eJEyd48cUXr7kvMjKSN998k/nz59/uQ/3b5syZw6lTp5g8ebL6/g4fPsy0adN48803qVu3rnrsY489xg8//KD+W6/Xq370zbTBfn5+DBkyhMGDB1OrVi11+7p16xgyZIhqgx0dHalevbpFDFetWvVvt8EAx44dIzExkZo1axIcHIzBYCAzM5OMjAyCg4Oxs7Pj7NmzfPvtt+zdu5fY2FhycnJwdHTEaDSi1+vx9fVVfVyDwUB0dDTVqlUjPT2d9PR0cnNzr9sGa+2vi4sLVlZWJCQkkJqairu7O+Hh4Xh5edGwYUMaNGhwW9vg5ORkHnvsMb777jucnJws7lu9ejW7d+/m7bffvqnnqugx/FfiF+Dee+9l7ty55V5LjB07llGjRlGvXr3beah/W3p6Og8//DBPPvkk3bp1w8rKitzcXObNm8fFixeZOXOm+u3ExMRcc/zmbXBhYSH5+fnXfS0bGxtq167N6NGj6devH46OjkBZ/6VTp04cOnSISpUqodfrCQgIoFatWiqGa9asia+v79/+Hefm5rJt2zYqVapEzZo1cXR0JCcnh4yMDEwmE6GhoWRkZLB582Z++OEHzpw5Q0ZGBqWlpVhZWaHX63F1dbVogy9cuECVKlUoKioiLS2N7Oxs8vLyLNpgT09PfHx8VOxqbXB2djZxcXEYDAZCQkJUG9y5c2e8vb1VG2xt/fcr8L355ptUq1aNQYMGWdxeUFDAgw8+yIwZMwgODr6p56roMXwjVlZWWFnduW1W7uRr/ZvoTFp26Qays7Nxc3MjKyvrpk/G27ZtY9u2bbz66qvl3r97927WrVvHG2+8cWtH/H82bNgwXnvttXIv1F544QV69epFhw4d1G1ffPEFTz31FE5OTkyYMAG9Xk9JSQlGo5Hi4mLy8vLIzMwkLy+P0tJSAIqKijCZTOTk5HDq1Cmys7MBeOKJJ3j88cepXbs2dnZ2t3TcOTk5XLx4kUceeYSjR4/i4OCAyWSicuXKvPnmm9x///0Wj09MTGTKlCksWLCAkpIS4I/MvflP4vvvv6dWrVp07tyZ7OxsKleujKenJ3Z2dhiNRkwmkzrBnjx5EgBvb29SUlJITk5m4cKF/Pzzz0RFRZGcnIzBYFDPPXPmTHx8fDh69Chnzpxh165dpKenYzKZqFKlCl27duWLL74o9/2GhobSv39/Bg4cSMuWLW/5Aik9PZ1HH32UFStWlHv/L7/8wrlz53jhhRf+9Ln+SnzcaX/lGAcMGMDChQuv+/gBAwawYMEC3Nzcbueh/i1nz57lzTff5Jtvvrmmo5KUlMTIkSNZu3atui05OZk2bdpw/vx5evfuTdOmTYGygYGSkhLy8/PJzc0lMzOToqIirKysKCkpobi4mNLSUhISEjhz5ox6vkWLFtGxY0cCAgJuqaOkPdfKlSt55plnVINub2/Pvffey3vvvYeXl5fF3/zwww+MHTuWpKQkdZuVlZU6zwC4u7uTlJTEhAkTmDlzJpUqVcLPzw93d3dKS0tVp8pgMHDhwgXS0tIAeP3113nllVfYunUr8+fP5/jx48TExJCVlaWeu3Xr1gwcOJDS0lLOnDnDmTNnOHz4MIWFhdja2tKlSxdCQ0OZNWvWNe9Xr9fTqVMnBgwYQP/+/fHz8wOTCW7hM3vllVfo3r07rVu3Lvf+7t27s3z5ctXJvZGKHsN/5fj279/PihUreOedd8q9/8iRIyxevJjp06ffzkP92x5++GGef/55i8SFZsqUKbRo0YKePXuq2+bPn8+jjz6Ki4sLL7zwgoo7LYZzcnJIT08nPz8fg8GATqdT7XNubi5nz54lMzMTgFatWjFjxgzq1Klzy53q3NxcIiMjGTlyJIcPH1ZtcFBQENOmTWPYsGEWj09JSWHKlCnMnz/fol3U6XQWbfCCBQto1qwZHTt2JD09nZCQEJVoMRqN6m8yMzM5ceIEAB4eHqSnp5OWlsaiRYtYuXIlkZGRJCcnWyR45s2bh4uLC0eOHOH06dPs37+fpKQkSktLqVWrFsOHD+fll18u9/1WrlyZfv36MXDgQFq3bo21Xn9L8ZuTk8PQoUNZvXp1ufdv3LiRvXv33tTAQkWPX/hrxzho0CBmz5593cHRwYMH89lnn+Hj43M7D/VviYqKYsKECfz444/XtIFpaWkMHTqU9evXq/vS09Np3749J06coFevXjRt2lS1s0ajkaKiIjIzM8nMzKS4uFgl5oqKiigpKSEhIYGzZ8+q15g/fz5dunQhMDDwltpgk8lEQkICa9as4YknnlDxb2dnR61atVixYsU1CXLt/HrgwAF129VtsKOjI6mpqbz22mu8//77VKpUSSUgTSaT6keXlJQQGRlJamoqUDZo/t5777Fz507mzZvH0aNHiY2NJSMjQz13ixYteOqpp0hJSeH06dOcOXOGY8eOkZubi52dHYMGDcLX15cPP/zwmvdrbW1Nu3btGDhwIP379ycgIOCW2+A333yTZs2a0aVLl3Lv7927N999991N/d4regz/leM7ceIE8+bNY8aMGeXef+bMGWbNmsVnn312G4/073viiSd47LHHaNKkyTX3vf3229SoUYOBAweq27777jseeOABbG1tefnll9X1mHkbnJGRQV5eHgaDwaIfnZeXx9mzZ9XvumnTpnz22WfUqVPnmsHmP5OXl0dUVBSPPPIIBw4cwMnJCaPRSHBwMJMnT+ahhx6yeHxGRgZTpkxh3rx5FBYWAn/MmDOP4SeeeIIJEybQoUMHkpOTqVq1Kt7e3jg4OGA0GlUMZ2ZmcvToUUwmE66urmRlZZGens63337L8uXLuXz5MvHx8RQVFannnj17NleuXMFgMHDmzBlOnz7NhQsXKC0tpVq1aowYMYJp06ZZ9BE03t7eDB48mAEDBtC2bVtsrK1vKX4LCgoYMGAAv/76a7n379y5k7Vr197SwEJFjuHyaMc8aNAgbGxs7tjrGgwGfvjhh3/VZ3Un/N82uomJiaFmzZrXvb9mzZrMmTPn//Xyf0lycjImk+m6M0eee+45Jk6cqJKSaWlpfP3111hbW9OlSxdsbW0xmUxYWVmpjpOtrS2enp4qcWMymbhy5QoXL14kJiaGnJwc9fxz5sxRn8n48eO55557iIyMJC8vj/79+6sZIRs3bmTr1q10796d8PBwOnXqxPnz5y2OtaCgAAcHB86fP8/ixYtVUjInJ4fNmzfz/fff8/333wPQqVMnUlNTKSwsRK/XU1hYSGRkJFCW+Khataqa3apd1FlZWZGTk0NKSgq5ubnEx8dja2vLCy+8wIEDB/j222955JFH0Ol0tGrVio4dO+Li4sKvv/5KZGQkI0aMUKPpLi4uuLu74+PjQ2BgIAAXL160mIXn5+eHnZ0dRUVFFBYWEh0dzYwZM1Rjf/nyZYKCgm76uz5w4AAdO3a87v09evTgq6++uqmk5H9VSUnJDU+W4eHhJCUlVaik5Ny5c3n++efLvRipVKkSVatW5eTJk9SpUwcom01x6dIlgoODqVOnDtbW1upC32QyodfrcXJyUgkAbcQ4JiaGixcvcuXKFYvXGDFihPr/a9asISYmhqioKCIiIrjvvvvw8PAgNTWV+fPn4+joyKBBg/jqq6+YNm2aRbKgsLAQa2trsrKyWLBgAaNGjVJJycOHDxMfH8/gwYMBaNasGa6urly+fBkou4g6deoUJSUlODg4kJOTw8yZM2nXrh01a9akpKREjdJduXJFJW3S09OpV68ePXv2JDQ0lFatWrFnzx4qV65M06ZNadq0KTY2Nmqg4OGHH+app57CZDLh7u6Oq6srVapUwc7OjtTUVNasWaNmoTg4OODr64vBYMBgMJCXl8eGDRvYsGEDTz75JONdXfnIxQVsbKBPH3jrLXBxueF3ffTo0RsOarVq1Yrjx4/TvHnzGz7Pf9WftcE1atQgNjb2Dh7Rn8vMzCQnJ6fchCTAuHHjGDNmjEpKZmZmMn/+fPR6PR07dlSdSvMYtrW1xdvbW108QNmgXFxcHNHR0WpQEGDXrl2qnW3bti1PPfUUly5dIicnh759+6rf0pYtW9i4cSNdu3alZs2adOzY0WJwAv5ogy9evMjChQtVUjIvL49NmzaxYsUKFixYAECHDh3IyMigsLAQKysriouLuXjxIgDLli0jMjKS/Px8HnnkEYs2OC8vj6SkJPLy8khISMDa2prx48dz7NgxfvzxR4YPH47RaFRtsKurK5s3b+b06dMMHDiQ2bNnc+DAAdX+hoaG0qBBA+zs7NixYweTJk1S76d69eoEBgaSlpZGeno6cXFxfPrpp3z66acAXKpUiXAHh5uO38OHD9O2bdvr3t+pUydmzpx5w+f4rysoKLjhao2IiAgSEhIqVFJy3rx5122DtRl7Bw8eVHG2YcMGzp8/T1BQELVr18bGxsaiH21lZYWzs7NFEr6goICoqCguXbpEQkKCxWs88sgj6v+vXr2ay5cvExUVRVhYGPfffz9eXl6kp6ervvvgwYNZvHgxr732Grm5uepvtf5wcXExe/bs4cyZMyopeezYMWJjY1Vipn79+lStWpWzZ89SXFyMnZ0d58+fV///ww8/5MMPP+T555/HyspKzYKGssHSjIwMsrKySEtLo1atWgwYMIDQ0FA6dOjAtm3bCAwMpEWLFrRo0QJnZ2c1kDRq1Cgef/xxSkpK8PHxwcfHhyZNmuDl5UVcXByLFy9WyVUXFxfq1atHaWkpaWlppKWlsWnTJjZt2sSYMWN43NmZOW5ut9QG79+/3+IccbX27dtz+PBh2rdvf8Pn+a+Kjo7+17XBWltSXkISYMyYMYwcOVL99nNycvjqq6+wsrKiS5cuakLN1W2wl5cX7u7u6vakpCTi4+OJioqyaIP379+vJge0bNmScePGcenSJbKysujduzetWrUCYMeOHaxbt45OnTrRsGFD2rdvz6lTpywG9PLy8nBycuLChQvMmzdPJSULCgrYuHEj69atU9eZixcvZvv27er7SE9PZ9++fUDZiqgff/yRtLQ0Xn/9ddWPhbLVhtpgQXx8PFZWVjz99NOcOnWKVatWMWTIEAwGA61ataJdu3a4u7uzdetWjhw5Qvfu3dm6dSvff/+9aoN9fHzUDO6dO3fyyiuvqPdTvXp1goODSU5OJiMjg4SEBGbNmqUG/s/6+lLd0fGm4/fEiRO0aNHiuve3atWKd99994bP8V8iS6r/ef+3pGRAQAAHDx687v0XL14sG5n7m2JiYpg7dy4nTpzAzc2NYcOG0bVr1780NfbPLuICAgLUTKHs7Gy6devGhQsXePrpp/Hz81OjP/DHaIu1tTWlpaXk5uZy+PBhIiMjLRKRDg4OBAQE4Ofnh6+vL2vWrKG4uJiPP/4YKJsppdPpeOedd/Dx8aFSpUqcPHkSW1tb3nnnHapUqcKVK1dwdnamVq1a5OTkcPnyZXJzcykoKGDYsGHMmzdPvd6iRYt4+umnLd7X2bNnadq0KQUFBWrZiZOTE3l5eaxatYouXbqQmprKfffdx7JlyygpKeH06dPs3bsXg8GAn58fHTt25J133iEiIoJevXrxyCOPcM899zBo0CB8fHywtrYmPz8fZ2dnPvvsMxYtWoStrS29evXC09NTJRvz8vLIz8+nevXqpKSkEB8fT5UqVYiPj1fL8Mo7cXzzzTeMGTPmpkccrK2tb7gkyGAw3Jblaf9mOp1ONerliYmJ+dsXQyUlJaxZs4YffviBvLw8GjVqxKhRo/7yueHixYs3XApTr149Ll26RJ06dfj+++8ZOXIkrVq1olu3bmpQQVsWaWVlhbW1tbotJiaGxMREDh8+rJ7PyspKJdN9fHzQ6XRs2LABgF69eqHT6XB2diY3N5cnn3ySdu3asWfPHkwmE8XFxYwbN44aNWpQXFyslm4mJSWRlJRESUkJjo6OrF+/3iKx1qVLF9LT09V/79u3j8GDB2NjY0NxcTEmkwkfHx+SkpK4cuUK1apVIzAwUCVZoWxW1/nz59m/fz82NjZUr16dTz75hCeffJL4+HhatmxJeno6zz77LPXr11ezvrKzs6lWrRrnz59n1KhRhIWF0aZNG4qLi9WIuJZQdXR0JCEhgeLiYvz9/YmKiuJ6E/N/zs5mZHY2dQDdrFmweTPs2XPDTpU2mn29OC0qKrqjI58VTUBAgPotlufSpUu3pQ2Oi4tj7ty5HDt2DGdnZ4YMGUKPHj3+0vkzLi7uhsvJvb291VKwvLw8evXqxZkzZ3jhhRdwd3fHysrqujGcnZ3NwYMHiY2NtZjxq7XBgYGBeHh4sGnTJnJzc9m+fTvbt2/Hzs4OKysr3n33Xby8vAgKCuLYsWPY2try7rvvEh4eTnJyMg4ODtStW5fc3FwuX75MTk4OBQUFDBw4kG+++Ua93tKlS3n00Uct3tfx48dp27ataoOzs7PVeWPt2rUUFxeTlZVFnz59WL16NUajkXPnzrFnzx6Kiorw9fWlTZs2vP3229SsWZP77ruPBx98kIYNGzJs2DD8/f1Vm+fv789bb73F8uXLsbW1ZdiwYYSFhanY1P43IiKCQ4cOsX37dkJCQrh8+TLnzp0Drp3NCbAwKYnxgPtNxu+ftcHmgyd3K1tbW7Kzs6/br4mKirqp5e03YjQaWbduHUuXLiUnJ4f69eszatSom16yd7WbbYPvueceVq5cyYMPPkjLli3p1asXwHX70UajkcjISI4fP26RiNSWMVeuXFmVU1i/fj1QNlPPvA1++umnCQ8PJz4+HqPRiMFgYPz48dSuXZvc3Fzq1q2LtbU1ycnJqg3W6/Vs2rTJIrHWp08fNQgIZUnKhg0bqpIJBoOBtLQ0lXCcPn06wcHB7Ny5kx07dvDss8+SmZnJ1q1bSUhIwMbGhoiICKZPn84zzzxDWloaTZo0IT09neeff55atWrh4uKiYqZ+/focP36cRx99lBo1atCvXz/0er3FDK9q1apRt25dNmzYQGxsLL6+vuzZs8diBpi5dbm5HM3NpT631gaXlJRcdwl8UVHRbVli+m8VGBjIjh07rnt/ZGQk/v7+f/t1EhIS+Oqrrzh8+DBOTk4MGjSIXr16/aXP/sqVK1SpUuW697u5uamEXEFBAX379uXw4cM899xzeHl53bANzsnJ4dChQ9fM+LW3t7dog3fs2EFGRga7d+9m9+7d2Nraotfree+99/Dw8CAsLIzDhw/j6urKu+++i6enJyUlJXh6elK/fn0yMjKIiopSqxR79uzJ0qVL1eutXLnympUL48aNY9KkSVSuXJnS0lIuXbrExYsXSUtL47XXXqNWrVrk5+cTERHB5cuXMRgM7Nq1i19//ZWCggJ8fHxo1qwZb7/9NnXr1mXEiBEMGTKEBg0a8Oijj+Lt7a2uMUJDQzl9+jS//vorNjY2DB8+nIiICIqLi1UMaxOkDhw4wPbt2wkKCiI+Pv6GbfCC5GQmAJ63qQ2+3rniv0hqSlYMt3bG+vOV3kqHDh145513ePbZZ8tdBjVr1qzrLgu6WYsXL+aHH37gxRdfZNq0aaSkpDBv3jzmzJnDd999d8tTv319fW84apWVlYWNjQ15eXlUqVKF1NRUJk+erGpIlJaWUlJSon7cWidh//797NmzR80os7e3p2nTpoSFheHg4EBpaakaPerWrRuZmZm4u7tjY2OjRovT0tLUhU6HDh1wdXUlMzNTJQa1BqB69erUrVsXo9GoOiPmHYYmTZrg4+NDSkoKULaM0tvbm8zMTOzs7NDr9Xh5edGuXTsMBgMHDx7EZDLRtm1bevfurUaxc3JymDBhAi+99NI1I/nR0dFYW1vTrFkzUlJSVB2NgoIC1q9fz/z58zl06BDJyclq6aiNjQ2lpaUUFxdjbW2NjY0NAQEBJCUlERkZqU6Ozs7OquaftjQgLy+PSZMmMWXKFPr27cuQIUO49957b3hR3KJFC6ZPn87zzz9f7v0//vgjvXv3volfzb/MLcTwfffdx8KFC3nqqaeuuS8yMhJbW1s8PDz+8qFkZ2czZMgQOnXqxCeffIKHhwfbt2/n0Ucf5cknn7ymztjNqFSpEjExMYSHh5d7f0xMDLVr12bFihUMHTqURo0aMWDAAEwmE9bW1qq0AqAuhjIyMjh48CCHDx+matWqAISEhNCkSRM8PT1VjGrLoVu1aoWzszOOjo7qojo/P58rV65w5swZqlWrRnBwMKWlpZw/f57Tp08DZQmZzp07ExYWhp2dHRcuXODgwYMWszfgjxpFmrp165KQkICDgwN6vR6TyUT9+vWxtrbmypUrHDp0iM8++4ynn36aAwcOYGdnR0FBAQEBAWzZsqVs6aVZ5/X06dMkJCTQunVr7O3tiY2NxcbGBqPRSExMDCUlJaxcuZJTp04RExOjkpBQNktTu5BzcXHB19eX7OxsNfMaypazubi4MDA7G31BAXuAo0A9oCowpLSUh0+fpsorr8Ann1z3u+7QoQNr166lT58+19xXWlrK3r17ee2116779/9KtxC/LVq0YOrUqdcdWPjss8948skn/9bh/PjjjyxcuJAXX3yRV199Vc1AmjNnDt9///11BzSux8fHx+Ji/2r5+flYWVlRWFhIzZo1uXz5Mq+//jouLi4YjcZyY1in03Ho0CH27duHk5MTOp0OV1dXGjZsSFhYGPb29moZZWlpKZ07dyYlJQUvLy9V881oNJKcnExcXBzp6el07txZ1V/cu3evKuegLbmqU6cOpaWl/Pbbb1y+fNmiHEvDhg3x9/dXs6z1ej3+/v4WbbCHhwdt27alpKSEQ4cOUVRURNeuXRk4cCA2NjbodDqys7MZO3YsU6ZMwdvb2+Jzio6OVqsU0tPTKSoqUrO+fvnlF+bMmcPJkycpKChQtWC1foK2FM3Gxob27dtz5MgRoqKiVBvs5ORESEgIw00mbM6cYRewG3gdeAfoUVrKkNOnuX/SJKx/n0VZnnvuuYdp06apEjBXW7lyJd26dbuJX82/zC3E8JAhQ/jqq6947rnnrrkvLi6OoqKistIXf1FeXh5Dhw6lVatWfPjhh3h5ebFr1y6efPJJHnrooWvK/twMrQ02r+9oLiYmhubNm7N27VoGDBhA/fr1GTZsGNnZ2dftR6emprJ+/XouX758TRusJUK0fnRpaSmtW7fGwcEBNzc3dV9+fj4JCQkkJiYSERFBWFgYxcXFnDt3TpUeSk1NpXXr1qoWc1RUFAcPHrQYxADo37+/miEMZTPe4uLiVJ9fr9dTt25d6tevT1JSEkeOHOGNN97g2WefVXWfc3Nz8ff357fffitbemk2gHb27Fni4+Np06YNDg4OxMbGqjquCQkJ5Obm8ssvv3Do0CFsbW3Jzc1Fr9er5K3JZMJkMhEYGEizZs2IjY3l0qVL6vm9vb1p1KgRXRMSuHzyJLuBI0BDIIw/2uBqf9IGd+vWjZUrV15Tjw7KBje2bdv231ttdAvx27BhQyZOnEhOTg4u5SSHPv30U0aOHPm3Dufnn3/miy++YMKECUyePJnMzEwWLlxI3759+f777295aaiXlxfx8fHXvV9rXw0GAw0aNOD8+fNMmTIFT0/P67bBVlZWHDlyhH379qm20NnZmYYNGxIeHq4GvbX4bd++PcnJyXh5ealr5NLSUlJSUoiLiyMlJYXOnTurlUd79+6lsLBQHVfdunVp2LAhJpOJX3755Zo2uF69egQHB6u+hpWVFSNHjiQpKQlnZ2f0ej1Vq1bl2WefJS0tjWXLlpGbm0v//v0ZOnSo2icjLS2N0aNHM23aNHx9fS0+p8jISPR6Pf369SMnJ0cNkhuNRlauXMl9991H5cqV6du3L5s3b6a4uFglX7U+h1Zi4cSJE8TGxqo22NHRkZCQEB40mXA4e1a1we8C04Fuv7fBg15+GdsblAaoV68eL774oirjdLW1a9dalKv7L5OkZMVwazUl/f1xtbNTU4NLnZzYs2cPcXFxhIeHU7VqVYskxfr16/nyyy/5/PPP1WhuQUEB77//PgaDgTfffPMvH/jp06eZOnUqS5cuvSaY1q9fz7p1665bx+NG+vTpw4IFC66p3wbw8ccfExQURN26ddWMSjc3N5o3b46dnR01atRQDY+VlRVZWVn89ttvHD58mGeffZavv/6arKwsmjZtSmBgIPb29uTn56saFVqnRBsp0WYfAWrkSetc2djYqBFdbSSpbdu2uLq6qs6JtkHNN998w4MPPqjeh8lk4ty5c/zyyy/88ssv7Nq1C1tbW0JCQnBycuLtt9/mwIED7Ny5k82bNzNkyBD27dvH+fPnLUZnmjRpwnPPPceQIUMsAuzBBx9USzeDg4Px9fUlPz+fixcvUqVKFerWrWtRQ2XEiBGqI1pQUEBeXh4FBQUUFRWRnJysTtJ6vR53d3dVtF/bqMO8Np6/vz8HDx5k+PDhBAYGEh0dzZUrV7jvvvt48sknLRKVb7/9Ns7OzjzzzDOqfhFAfHw8kyZNYvbs2SqxbWNjc90k57+hjsb1YjituJiNGzfi4eFB1apVCQkJUQkmg8HAkCFDGDRoEPfff7+Ks1OnTvHMM8/w1VdfXTf5dzMeeeQRHnvssWuWDxgMBvr378/s2bNvebbGrl27WLlyJR988ME19xUUFNCnTx82btzI448/zldffQWUlZJo1aoVhYWFVK9eXS0dKy0tJTExkc8//5xatWrRsGFDFi9eTGhoKDVq1FCDDCkpKWojDG2UWKfTYTAY1MxF85HjwsJCjEajugDbv38/iYmJhIeH06BBA/W71ul0aqbWuXPnLBKH+fn5bNq0ScVwYmIiDRs2xGg04urqyuOPP87OnTvZtGkTUVFRjBs3Tp0Ptfh1cnLioYceYsKECRYbjkVHRxMWFkZAQAB2dnaEhoaqC6OcnBzatGlDpUqV1BIyrayD9hnn5+eTl5dHUVGRqsdpb29PUVERrq6uWFtbk5KSwr6UFCr/HnP5wE5gKbAM0AMvengQPXgwMTExODo68uabb1KjRg11nBkZGdx7770sXrzYYraByWTijTfewMfH56aTbhU9hq8XvyZnZ/bt20d0dLRqg80HibZu3cpHH33E7Nmz1azIoqIiPv74Y1JTU/9WPclLly7x/PPPs2zZsmvOjdu2beP777+/bk3gGxkwYABffPFFucmW2bNn4+TkRKtWrdRsDhcXF5o3b06rVq0oKirCxcVFJTVycnLYsmULBw4c4Omnn2bx4sVkZGQwatQo0tLS1O8yKSmJiIgIrKysVBv3ZzEMqHZ2165dWFtb07ZtW9zc3FQbnJGRwbp16/jyyy957LHHLN7LhQsX+OWXX/j555/ZuXMner2ekJAQXFxcePvttzl06JBqgwcOHMixY8c4ffq0RRvcsGFDxo8fzwMPPGDRD9I2D3F0dCQ4OBg/Pz8KCws5f/48ERERtGjRgtdff109/tVXX8Xa2lqdv8wThQcOHMBgMODh4YGvry/BwcHo9XoeefNNXH+vQWsCooGfgSXAPmCIkxNhY8cSHR1NQkICffv25ZlnnrFIvnz88ccYDIZrNnKJi4tj+PDhrFq16j9Rjw6uH8MZJSVs3LhRlb8IDQ21KEMwbNgwevfuzbBhw1ScnT17ljFjxvDFF1/8rY2qnnzySQYPHnzN8lqj0ci9997Lhx9+eMNZU+U5fPgw8+fPL7dOXnFxMT169GDDhg2MHz9eJfaqV69Oq1atMBqN1KpVS83eMRqNpKSk8Pnnn6vf7cKFCwkKCqJBgwZqkCE9PR2dTqcG++Dm+9F6vZ69e/eSmJhIaGgozZo1UwNrer2eHTt2kJmZSVpamsUAf0FBAZs3b+aXX35h9erVxMfHU7duXbWBzLhx48ri97ffOH/xIs+7uvLJ78tUS35/DhsbGx555BEmTJhg8TlfuXKFgIAAQkJCsLKyIjw8HGdnZy5fvkxGRgZdu3bF19dXxbBWu1+biWUuIyODw4cP4+3tjZubG8HBwaqNeOSNN3D+vYZlAWWJjaXAT78f42QPD2KHDiU6OhpbW1veeOMNVfoGypbu9uvXj0WLFl1TPumDDz5Ar9eXm1AvT0WP4Ru1wQcOHODSpUsWbbB2/ty9ezdvvfUWc+bMUZ9RcXExn332GZGRkXz66ad/OUFx+fJlRo8ezcqVK69ZFbJnzx7mzp37lzbCGjx4sJrde7WFCxdSVFREr1691PtxdnamWbNmqg12c3NTbXBeXh7bt29n9+7djB49mmXLlpGSksKIESPIzs7GwcGBoqIiNVig9X01WhsMWLTB2kCgra0t6enpbN26Fb1eT48ePfD09ESv12NjY0NaWho//fQTM2bMuGbTzkuXLqk+9Pbt29HpdIwePVqtFgwJCVH96N6BgVyIjeWYwYAeMP7+HHXr1mX8+PGMGDHCoh80duxYfvjhB9WHDg4OpqCggBMnThAeHk7Lli1xdXXl2WefBVD5EG1igfYP4NChQ+Tl5VGpUiUVw05OTgyfOhU3s1VTsfzRBu8G+tvZUev554mOjiY+Pp4ePXowfvx4i/PY7NmzSUxMZOrUqRafe2JiIsOGDeOnn366qQ1foeLHcHm0Yx46dOht2fTsZhUXF7NkyZJ/1Wd1J9xSUnIRkAZ46HSc9PRkqYMDl+PiLB5bt25d3njjDWJiYrCysuLKlSts2rQJNzc3tYRixIgRDBs27G9lip955hkef/zx69ae6t27N0uWLCl3dOpGjhw5wssvv8z8+fPVRZzJZGL58uV89913LF26FGtra/Ly8jhw4AC7du1SU8yLi4tp0qQJpaWlHD9+XNXJqFOnDtu3b+fll19m586dnDp16prXbdSoEU2aNMFoNKoEmfkMSmtra3UxYl7sW6fTkZaWhqOjI7a2tipxoe0Itm3bNnVB37Vr13J3YU1NTeWTTz7ho48+UkvjXF1d1YWfVki9Tp062Nra4uLiQl5eHufOnSMyMpJhw4bx1VdfqQTe8uXLuffee9XzOzg40LJlSypVqmRRL0in0zF//nwefPBBSkpK1E6Lubm5qiHSdsTKy8ujuLgYg8FgsSxTK5asdSKdnJzIyMggMzMTR0dHVQ8wNjaWhg0b8thjj6nd27y9vXn77bfx9/dX9QQLCwsxGAx4enpaJIF0Oh1BQUHX7CQP/44TsXaM0wEnyt7PKicnNhYWqg47lHVqx4wZQ5s2bYiOjsbGxoZt27apmkzZ2dmEhoYyefJkKleu/JePJzk5maefftpi101zO3bsYMOGDbe8EZbJZOKxxx6jWbNmPPLII6qTkJaWxuOPP87o0aPp0qULJpOJqKgodu/eza5du9i1axcnT55US56OHTvGxYsXVafgm2++wdHRkUWLFrFq1apyX3vEiBFqpqD2e9ZmLWgdLW1msMFgUHFQUlJCamqqGmk1f2xWVhbr1q1j7NixPPTQQzRs2PCa82ZpaSnbt29n8uTJ7N69W91eq1YtWrduzZkzZ9i9ezc1a9YkICAAR0dHNePi0qVLFBcX8+OPP9K5c2f1t40bN7ZYpj58+HD1G9JeXztGk8mkdvYtKioiPz+fwsJCioqKKC0txdraGoPBQH5+vopXY0kJ+xIS8DMaudo5ymZNOgA6d3dcXFzIzs5Wy+9atWpFrVq1iIiIICoqimeeeYamTZvSqlUrUlJS+PHHH2ndujUvvvjiTbcxFT2GteP7FkihrA0+6+XF905ORMfEWDy2Zs2avPXWW8T93jYnJyfz22+/qd0ds7OzGTZsGA899NDfaoMnTJjA4MGDr1t7qn///nz99de3PJv65MmTjB8/nnnz5qlzjMlkYvXq1cydO5effvoJW1tbCgoKrmmD8/PzVa2648ePqxlOERERqv7Znj17OHr06DWv26hRI5o2bara4D+LYW2plZYUsbe3x87O7po2eNeuXeh0Ot5++226d+9e7ueRnp7OZ599xgcffKBmRru4uNCyZUuqV6/OzJkz8fLyom7dujg4OODs7ExeXh7nz5/n4sWL3HvvvSxcuFDNTF23bp3FZkBQtvFTUFAQDg4OakmdjY0N77zzDq+88oq6TUvqaG20tbU1tra2qs/x+xfCU++8g9PvGwRdbRSwAHD39MT99015Tp8+TZ06dXjiiSdUG+zj46MGQbV6f9u3b+fIkSPMmjXrphNiFT1+4Y9j/BBwBPQ6Hb84O/Pr730OjbW1NaNHj6Zz585cunRJ1fe8cOEC4eHh5OTkEBQUxKRJk/7WoGBGRgYjR45k5cqV5d5/4MABfvjhh3IH+P7MmDFjqFmzpsVAcGZmJqNHj+bBBx+kd+/emEwmYmJiLNrg48eP06JFC1XCQNvwAcrqRVeqVImvv/76uhsUjhw5Us1GupV+tJb8DAgIoKSkxCKGc3NzWbNmDaNHj+bRRx+lUaNG10yEMJlM7Nq1i8mTJ7N9+3Z1e41q1WidnMylzEx2AS/9/s8EHHR25qVq1Tjx+2D/999/bxGzrVq1smjPtcF/Dw8P9Hq9RQxr71mbDaYN0mvnK1tbW7WiQxvIt7ezY9S0aTiYJTU00UBNwBZwDQrC3d2dlJQUUlNTGT16NG3btqVmzZpUq1aNuLg4xowZQ4MGDWjXrp1KAjVq1IgpU6b859rg74Akytrg815efO/sTGR0tMVjIyIiePvtt0lMTMRkMpGWlsbGjRtxcHBQEysGDRrEqFGjbr4NLmcToilTptC1a1fatGlT7p8MGjSITz/99JZLPJw/f56nnnqKuXPnEhYW9vvLm9iwYQMzZ85k2bJl2NvbU1BQwKFDh1QbvGvXLnJycmjWrBlWVlYcP35cLdMODQ3lyJEjTJkyhb1795Zb3q127dq0adPmmvjVYlj73WsbymrnTWtra9UGazP/tZWGer2ezZs3k5+fz7vvvkv37t3LnXSUmZnJF198wXvvvaf6Dc7OzrS45x5qHzvGp+np1AFmA82AFJ2OnV5evBMUxKFjx+jduzeLFy9WOYetW7deM8twwYIFnD59WvUltFnV2uoHbdUgYDG4YmVlZbFyUq/XU2o08uTbb+N81SxuzTPA54CHlxeenp7Y29tz6tQp/P39mThxIrVr16ZWrVpqI6zt27dz//334+Pjw+7du9m3bx8zZ860mAjwZyp6DJdHO+Zhw4bd8aTkd99996/6rO6EW0pKQtmFYgHgDTR3dye/USOVRS8oKODo0aNq0xPtIlXTt29fNVpw5coVPDw8qF69OtWqVVNF1F1cXFQdxRvp06cPv/zyy3Xvf+211+jdu/d1L5hu5MSJE7zxxhsqObV3716cnZ0ZNWoUw4cPL3c5en5+PmPGjGH//v3Uq1eP+vXrU79+ferVq6d24j1w4AAfffSR2mDGXFBQEBkZGSoRZz47qVq1atSuXVudxLSTsXbS0jp9Wh1EbTQJyi52Dhw4QEZGBnq9ntatW9O1a1c6d+5M48aNLUZ2jEYj6enpKvGk1+tZunQpQ4YMoWPHjmpquTYLRKt3tHHjRho2bMjKlSvx9/entLSUBx54QL3P0NBQdXGpJae1jqD5iFdxcbFKaGhJG+2ErCU4DAYDhYWF6jvQZlhqCUuto2ZlZaUStW5ubhiNRi5evEhqaqr6bNzc3Jg7dy7VqlVTHT0HBwccHBwsfn8mk4mUlBRVT+TqWUH/hhOxdozWlHWIjUAroF21atgMHUp+fj7Z2dnExMSwadMmDAYDjo6OFBYWqs+rXbt2VK5cGTc3N7W5QpUqVVT8ajOlnZ2d/7SWzcaNGzl9+jTjxo0r936TyUS/fv34+eefb/m9Go1GZsyYwZo1awgNDSUtLY3jx4/TqVMnnnnmGerXr1/u323evJmxY8fi7e2t4rd+/frUrl0be3t7cnJy+Pbbb3n//feJvqoT6u7ujq2tLRkZGWrjl8DAQOLj47GxsaFdu3YqGaj9ZrUY1n6v5rvZG82SdVqC1GAwEBAQQPfu3encuTMdO3a8prOpzbx2cXFRHa969eqRn59PWFiYRQxrFzP79+8nKiqKTz75hDFjxgBls4XNZz60atUKKysr7Ozs1Hs1L2SuxbB5QlKLb+29aReB2syzbZcvE1TOjoJQNkvjirU1PapXV4MLSUlJpKWlkZycDPxRz7Nnz560b9+e3Nxc3Nzc6N279y1vvlTRY9i8DbYHCgFPoFNQEP4DB6rdlrOzs9mxYweRkZFYW1uj1+st2uA+ffpQuXJlCgoKSExMxM3NTcWvVlbA2dn5mnNgef6sDX7vvfdo2bLldS+YbuTMmTO8/vrrFBQU4OXlxf79+7G3t+eRRx7h4YcfLrc0S2FhIWPHjmXnzp1q6aT2T9uJ9/Dhw3z88cd8++231/x9cHAwGRkZagZVSEgIDg4OxMXFUbVqVerUqaOSk6WlpapNghu3wZmZmRw4cIC0tDT0ej0tW7ZUbXCTJk0szpWlpaWkp6eTlZWl2uCff/6Zfv360b59e+zt7VXsasmG3NxcNmzYQO3atVm1ahXBwcGYTCZGjRqlZslUrlyZiIgIrK2t8fDwwMPDQ513tESkecIG/kiqaokP82MsLS1l/KefWszSMGcC0t3dmf3CCxQUFKgN/rZs2cLly5fVucPZ2ZmQkBBGjhyJu7s7xcXFNGjQgObNm99Swryixy/8cYxa78EINAfaRURgN3QoBQUFZGdnc/nyZX777TeKi4txcnJSM+sBWrduTWhoKB4eHiQlJZGbm0tYWJiK34iICDw9PW+qDd65cyc7d+7kpZdeuu5j/izGr6e0tJRPP/2UVatWERoaSmZmJkeOHKFdu3Y888wzNG7cuNy/27FjB2PGjMHDw+OaNtjBwYG8vDy+++473n//fbURlEbre6anp2MymXBzcyMoKEgt+2zXrp3qe95qP/rYsWNqAK9SpUr06NFDtcFX1wTU2mBnZ2e8X38dZs2iaWkp9YCvzB5nBNZVqcKCBg1UiYTp06czfvx4dDqdmi2p6dChgxr08PLywtnZWQ3aazGsDfoDKuGh1+vV9ZimpKQEe3t7xkyfjsvvs52vVgLkeXoy6/nn1SDNnj17OHnyJImJiUDZOSIgIIBOnTrRsWNH8vLycHZ2pnfv3rc8GFXRY7i8Ntgd6BQYiP+AAXh5eZGRkUF2dja7du3iwoUL5bbBvXv3pnLlymp2oLOzM9WrV7dog11cXMra4NxcmDwZfvkFDIZrNiHq27cvq1atuu65cubMmdSsWfO6u6PfyIULF9TmT97e3hw6dAi9Xs/DDz/MI488Um5pluLiYsaPH8/mzZupU6eORQwHBwej0+k4duwYn3zyCV9//fU1fx8UFERWVhZ5eXlYW1sTEhKCo6MjcXFxhIWF0aBBA1VqSetHa+dGra26Op51Oh1ZWVls3ryZ5ORkdDodLVq0oFu3bnTq1Elt4KgpLS1VE1tCQkKwfu45Nn72GV1NJiIpK2+gHmtlxfnOnZlTqxZffvkl4eHh/Pzzz6pG87hx49Rs8NDQUBo3bqxq3Hp7e6tztHZO0mqkazUl4Y92WGvztdtLSkp49pNPcL/OwKAJyPD0ZOErr1BQUEBJSQmJiYmsX7+euLg4NfvUycmJsLAwhg8fjre3N4WFhdSrV49WrVrd8qB1RY/h8mjHrO0ef6cUFxezePHif9VndSfcUlLyDFCDspOxDZBoa8ugJk2wsbHB1dVVbbSQn59PpUqVcHZ2xmAwcOHCBXWiycnJwdraGmdnZ4qKikhPTycvL8/yoHQ6XFxcCAkJoXLlyly5coWYmBj0ej2NGjWicePGrFu3jk8//ZSIiAhV3Nrc+PHj1ay4P5ORkcH69evZunUrZ8+e5dy5cyQmJjJgwAAaN27M22+/jV6vJzc3l+DgYKZNm8bw4cOJjIzkjTfeUDMvnJyc2L17N5GRkTg7O1OpUiWaNGmCXq/niSeewNnZmSeeeIKsrCxee+01fv3115v+osaNG6cSFloHQRtF0i4ktK9Su2iAP5ZqZmVlqeLd2uYTTk5OjBo1ymJZ5+rVq5k4cSKOjo507txZbboTHBxMQECAxQiTnZ0dTk5OREZGsnv3brp27aoKjBcXF/Ptt98ye/ZsTp06pWZgat+vo6Mj1tbW2NvbqwSn1nHS3pd2MoayhHdOTg55eXk8/fTTdOjQgSeffFKNMGmuHl3S6XTqAtvR0RGDwaBmBnp5eTFx4kSVkNQ2GilPQUGBWtZ6dVL633Ai1o4xGfACiigbYMj28mL+K6+Ql5enCr8nJSWpzrderyc5OZljx46pi6bCwkKcnJywsbEhMzOT9PR0iyQalC1L8vb2pkaNGuh0OrVJTJUqVWjcuDHu7u6kpaUxefJkQkJCLOq9QNlGLA899BDLli370/dmMpk4evQoa9eu5ciRI5w7d44LFy7g5ubG008/ze7du/ntt9+ws7MjLy+PIUOG8MYbbxAaGsrixYt57733GDlyJBMmTCA7O5tffvkFGxsbnJ2dqVevHkFBQRw+fJjnn3+eJ554gi5dujBr1ixmzJhhUaz7Rrp06ULNmjVVgs48hq+mdUjMY9hgMJCSkkJycjJXrlwh7fcLCT8/P3755Rc1+JKens7LL7/MmjVraNGiBV26dGHq1Knk5+fj7+9P5cqVVf1WLeYcHBxYtWoV2dnZbN++XSWRzp49y8yZM1m5ciVJSUkWRa9tbW2xs7NTz2Ftba0umEwmk9qkQptppW1klZaWpjYzuvDsszyRnU1IOZ9XCfCtqytv+fqq5KmNjY2qh6l9LsXFxWpzr3HjxvHxxx//pdl/FT2GteM7BdSiLH71QIG3NwtefZX8/Hx14ZObm0tcXBze3t44OztTWlrKoUOHSE1NJS8vj+zsbPR6Pc7Ozuo7Ka8Ntre3Jzw8nNDQUBITE4mJiUGn06k2eP369Xz00UfUqFFDbfJkbtKkSdx7773XTUCYy8zMZMOGDWzZsoWzZ89y/vx5EhIS6N27Ny1atOC9997DZDKRl5eHu7s77777LiNHjiQ2NpY333yTrVu3cvjwYdzd3dm/fz/nzp3D2dkZX19f7rnnHmxsbHjmmWeAsiWrhYWFTJs27ZYSLs8//7wa+DJPst9sG5ydnU1KSgqJiYnEx8dTXFyMg4MDDz30kMUy919//ZUJEyZgY2ND586dsbKy4r333iMoKIiAgABVP1Kn02FnZ4ejoyOxsbEqdrWZWgaDgSVLlvDFF19w8uTJa2rTuri4YGNjg5OTE3Z2dmoGprOzM3Z2duqfNoMjPz+fqKgooqOjGTVqFJ0vXcJj9WqacW1xcqNOx6HmzVnbtasasCgqKlK1pTMzM8nKyiI3N5fU1FTOnTuHm5sbW7Zsue6g0Y1U9PiFP44xCfChrB99vTY4OTmZwsJC/Pz8VLmLI0eOqH5QQUHBTbXBXl5e1KhRA2tra1XKJiwsjMaNG+Pr60tMTAyvv/46ISEh1/RrCgsLGTJkyHVnUpozmUwcP36ctWvXcvjwYc6fP8+FCxdwdHTkmWee4eDBg6xfvx5bW1vy8vK47777eOONN4iIiOD777/n3XffZdCgQUyZMkVtsKido+rUqUNISAgnTpzgmWeeYdSoUfTo0YMvv/ySjz76iNTflx//mc6dO6tar3+lH62Vc0lKSiIxMVG1wdWqVWPBggWqDE1WVhaTJ09m5cqVNMvIoEt+Pu9RlsB6FehBWVILINHBgTE9emBjY8O6devIzs5m/fr1dO3aFShLDM2cOZPly5eTmJh4TRvs4OCAvb29+l8nJydVz9rW1lb1r00mk+q/HT58mIiICB5//HGKPvqInqdPE1rO52XU6TjSsiW/du9+zeeUnZ1NVlYWWVlZZGZmEhMTQ3R0NKNHj2bWrFl/aYOqih7D2vGdBGrz521wfHw8np6euLi4UFpaypEjR0hJSSE3N5fs7Gy1q7x2HXz1+Vmn0+ECBJlMhFE2OzOGsmRTQycnGj/xBJt37uSdd96hdu3a+Pr6XtMGv/HGG3Ts2FHtWP1n72/jxo1s3rxZXQfHx8fTvXt32rZty/Tp09X1vaurK2+99RajRo0iMTGRN998k/Xr13Pw4EF8fHw4dOgQp0+fxtnZGR8fH+655x5sbW154YUX1IqX0tJSpk2bdt1Zz+UZP368ujbUZk9qKxq0xF55tQG12/Ly8oiNjSUuLk7VQ7e3t6ddu3YW1+ObNm3i+eefx2Qy0SU6GofsbN4EXgYeAqqbPXeujw/LPviArVu3smDBApo0acKBAweAssTh0qVL+eKLLzh+/LjFJrdactLW1hZnZ2fs7e3VTE+tDdb61dp7LSwsJDIykujoaB5++GG6xcTgvno1zSnLyZgz6nQca92a33r3VqsJtRjWJtpkZmaSmZlJcnIyp06dwsXFhY0bN/6lyVxQ8WO4PNoxP/jgg3c8Kfntt9/+qz6rO+HWakoC5h9dorU13WvVwvb3zquWzdeSS9poozZapI3MmyeMtMx/VlaW2rVOSxzl5uaqAsHu7u4qkBISEiyC28nJifDwcMLCwmjYsCE9e/bk5Zdf5rffflMnp7Nnz7Jq1So2b97MsWPHcHNzw8fHh9LSUvbt20dpaSm1atWiTp06VK9enRMnTrBp0yby8/OpUqWKRdH5EydOEBISQlxcHHZ2duTn5zNgwAAyMzPZsmWLxWfn4OBAWFgYdevW5bHHHqNGjRoEBASonaih7OTUq1cvjEYjLi4uahMXJycn3NzccHJyUtPUtQTF1QkNrYOldba0wtfaxbz2HRw+fJj9+/erv6tVqxYnT55k6tSpaqlsREQEdnZ2REVFqYtArcZjeHg4derUUdPJ8/LyWLt2rXq+9u3bM3jwYEaPHk1aWpp6P7m5uSQmJqqC23PnzlUn7psVHh5Ot27d+P7771UyqFGjRqSmpqpZHtbW1mr06eraJNrnpCVkqlWrxrRp09Dr9ep3V7169evOwtGWMP+bk5JXx3CuuzvzX3uNvPx8CgoKLBov7bMyGAyqw24+UqfRlt1nZWVRXFxs8S8jIwOdTqdmyGrJ8cTERPX71el0BAQEqHo8nTt3JjExET8/P7VDnrZBw2+//caWLVvIzc3Fx8cHb29vtTGLvb09oaGhdOjQgbS0NC5evKgSFS1atCAsLIzY2Fh27txJbm4uAQEBxMbG4ujoqJIXe/fuvWajjRo1apCTk8O0adNo3Lgx1apVw9HRkfnz56tddJs2bYqPjw9WVla4ubmpjpOLi4uaSa69X4PBoD5f8wsg7fMG1LlQi12t9lVOTo4aGdcSSUuWLKFRo0Z069aN6OhoXF1dqVGjBgkJCWpnT0dHRzIyMggICOC9995j+fLlQNmFjVaTEMpKTVSrVo2ZM2dSqVIlMjIy8PHxwWg0kpqaSkJCApGRkZw9e5ZXXnnlln6DNjY2DBw4kOTkZHWetNXpeNZkYgqgFUYoAaLs7HgwPJzCq0aHtfOfXq/H0dGRffv28cADD9CkSROVNP4rF0UVPYavF795Hh4sfOMN8n6foarNMteSG+a/K+1cqCXVrp45ow36aLPOi4uLVRLT2dnZog1OTExU5UmgrA0ODQ1VdVF79eql2mDtu7hw4QIrV65k8+bNHDlyBFdXV3x8fADYv38/JSUl+Pn5ERgYSI8ePTh79iwbN24kJyeHiIgIOnfuTFZWFkeOHOHUqVNUrlyZhIQEbG1tyc/Pp2/fvuTl5bF582aLc5S9vT1Vq1YlIiKCp556iho1ahAYGEhxcbHFubxv374WbbA2cOfq6oqrq6tFm6u1F3+lDT527Bh79uxR59TQ0FCioqJ45513mDRpEgBVqlRRA37aDGBtBnJoaCh169ZVz11YWGiRXG3Xrh0DBgxg3LhxpKenq6Rjbm4uSUlJqg2eP38+e/bsuaXfYUhICL169WLp0qUqKVMXmAm0//0xRp2OVG9vvnrkEYp+r3FnPju8qKhIzaS2trZm7ty5PP300+zdu5eoqCg2bdpEgwYNbum4Knr8wp1pg7OzsykqKrIodZOZmalmDrq4uJCVlaVi2Lx0S0BAAGFhYVStWpVOnTqRk5ODnZ2dauMMBgOrV69WbXBWVha+vr54e3tz9uxZ1R/WSg5Ur16dJUuWsH//ftzc3GjTpg2VK1fm0qVL7Nu3j+zsbIKDg1XNYEdHRzp27Mi+ffuIuaokRVBQECaTiVdffZV77rmHatWq4eTkxHfffccDDzwAlNU49/f3V22w9t48PDwsJk3AzfWjtUS81tfVYljbZEZbGQAwf/582rVrR48ePTh//jzOzs7UrVMHDhzggNGInrIl+xlAJco2hHoISLe356nevTl0+LDaDM7Hx4dWrVqpGvbp6en4+vqqDS8TEhKIiori/PnzvPzyy9f8Fm7E2tqa/v37k5WVxcaNG8tuo2yp52tmv0ujTkeajw+LRo+m6PcLdS0xYt53sba25s033+Tjjz/Gzs6OZ555hhEjRvDVV1/dcKPJ8lT0GL7TbXDd06fxS0gglrLl9H5ACFAKHAL22dqSbLZzsqOjI6GhoWpGYa9evXjllVdYv369uiaKjIxkxYoVbN68mcOHD+Pi4qL6rfv27cNgMFCpUiXVBp8/f57ffvuNrKwsqlSpQufOncnLy+Po0aOcOHGCwMBAkpKSsLGxIT8/n169elFcXMymTZssEuh2dnZUq1aNypUrM3bsWGrUqKFmMbu5uak46tOnj2qD7ezsrtsGa5NXtP/WJuxom+VotA13tIkv9vb22NjYcPDgQTZs2KCSmz4+PiQnJzNjxgzGjx8PQJs2bbC3t+fkpk1cKS3FFSimbDBpAGUbyoQD+Z6efPnKK4w3q52qbQw7YcIEMjIy1KBBXl6eRRv8zTffsG3btlv6HQYFBdGvXz9+/PFHtWqoJmVtsFaAyTx+i+3sLK4zrhfDU6dOVSvYNmzYQNOmTW/puKDix3B5tGMePnz4HU9KfvPNN/+qz+pO+FtJycvW1nStWlUlgrRGW+t8aydc89u15Qbmyw7MC7tqAWMePNoSBG3kXutcrF27loYNG2Jtba1G7CIjI8nPz8fLy4vu3bvj7+/PhQsXWLVqFXZ2dlSvXp3Q0FCMRqPa/c5oNBIWFqaOsbS0lJycHBW02nRq7b7MzEyOHTtGYGAgNWrU4IcffsDKygovLy/CwsJo0qQJJpNJ1cTZsGGD6iRC2ZKlGjVqEBYWxsWLFzly5IjF5+3r60vz5s0JDw9X9TG0jlJRURHZ2dnk5eVRWFhIcXGxmoGRlJREUVGR2u06LCxMFR3WRk937typjuOZZ56hd+/edOrUyWLZR0REhJpNA2U1J4uLi3nggQfYsGEDeXl5arMLg8FA7969+eijj8jJySEpKQk/Pz+6devGp59+ipubG59++inDhg27phD/zz//TNOmTcnPz6e4uFg15qmpqWp5yJIlS2jbti2enp7Y2NgwefJkXnvtNVJSUjh+/Dg9evQAYN68eWoDJW2Zqb29vcVJxrwjWlJSQkhICC+88IKqdZmVlYWjo2O5s2v/q0nJLE9P5kycaPF70uLu6kZfY74JgvnIpPnuedrfac9hvoxIG8A4ffo0ycnJVK9enYKCApWw1JKCbdu2pVatWjg7O7NkyRLi4+MJCAigevXquLm5UVBQQEZGBq1btyY7O5tKlSqpXWO1UevCwkIcHBwwGAyqY1ZaWsrp06fJyMigcePGpKSksGvXLrx+r73SokULvLy8KCkpIT4+nu3btxMfH28xEBISEkL16tVxcnLi119/VbP3oCwZXrt2bQIDA2ncuLHq+GgX57m5ueTm5qrOZ0FBAenp6SQlJalZRAaDAVdXV+zs7HB1dcXNzQ0HBwdKSkrYt28fUJZEqVOnDpMmTWLZsmU89NBDQNnOmo6OjuTn56sdgjMzM/Hz86NFixasWLGC4OBg2v++ucHUqVMZMmQIhYWF5OfnExkZybPPPsuGDRs4ffo0Dz74oJpZqtHivG3btmoQRfv95OXlkZiYSFZWFq1bt+abb75RMwamTp1KaWkpL7zwAmlpaYx54gnWb9qEHkjz9yc7JYVNTk584u2NlZubah+03535xgVWVlZqtlCHDh344osvSE5OZtmyZQwcOPCvxUcFjeHrxW+2lxfzJk8mPz9fLZ03jz3zxIa5q2PYfIMTLYbNL6gA1V5r59Xi4mLWr19PrVq1VHmDjIwMoqKi1KBb37598ff3Jzo6muXLl2Nra6vaYIPBoAa7hg8fTmxsrPotaTGcl5eHyWRSFyhaDKempnLixAn8/f1p0KABixcvRqfT4e3trQYnTSYTubm5XLx48Zo22MHBgVq1ahEeHq522DXn7e1Ns2bNVIxrS6u0WcDZ2dlq1rg2W1drgwsLC9WAQWhoKMXFxbi7u6s2eP/+/er+Z555hu7du9OzZ09cXV3VOaZq1ark5ORc0wYPGTKErVu3kpmZSevWrVUNvL59+6p6lMnJybi7uzNw4EA+/vhjXFxcmDFjBsOHD7+mEP/SpUvp06ePSmQVFBRQWFjI5cuXuXTpEiUlJSxatIguXbrg4eGBra0t3377LYMHDyY1NZXTBw/SuW9fAD51c+N+o5HT4eGsa9kSo6OjOtdrv7mSkhKKiorU62iz0TIyMrCzs2PFihXUrFmT06dP/7X4qKDxCxWvDba2tla7PNeqVcuiDY6NjQXKlovXrl0bV1dXli5dSmxsLP7+/mpTx4KCAnJzc2natCmFhYUEBARQVFRk0Y8uKCiw2EFXqzF89uxZUlNTadGiBUlJSWzfvh0fHx+8vLxo1qwZHh4eGI1G4uPj2bVrF3FxcRZtcOXKlalevTouLi6sX7/eYra3Xq+nVq1aDBo0SH0WWj8aypZYawkgbXPFzMxMVTdRG5RxcXGhRo0apKWl4ebmhqOjI8XFxWpAvXbt2vTt25eJEyeyfv16Bg8eDJStwnFzc8M7OprQ0lJOAacoK3vVAfgR6AQscXLihXvvJTs7m44dOzJv3jyys7OJiori6aefZvv27Rw/fpx69eqxbNkytfO4+e9pwIABuLi4YDQa1fk0PT2dS5cukZyczD333MPSpUvx8vLCxcWFJUuWANCrVy/S0tJ44dlnWfH7oEaGvz/GvDxOVanCxrZtVRt8dYkJLemmLRlPS0vDx8eHOXPmkJCQwLfffquSxbccHxU0hu90G/zh8uX4XLWCwVyKszMv3ncf69ato2bNmjg4OJCTk0NmZqaaUOLk5ESfPn0ICAggPj6eH3/8EWtra6pVq0ZYWJj6zRQUFPDggw8SGxuLvb29RRucn5+P0WjE3t7eog1OT0/n+PHj+Pr60qhRI77//nuMRiM+Pj6EhITQuHFjtbrh4sWLrF+/3mLTGgcHB2rUqEF4eDiXL1/mwIEDFuc4Ly8v7rnnHnWuMS9xZDQaycnJITc3l/zfB3O0WfdaG6zNPA0JCVEllbR2eO/evWpQ7emnn6Zz587069ePkJAQde5r0aIFGRkZBF26hN5gYD9lgwqDgF2U1fZeCbTx9mbZ9Ok4OzuzePFi0tLSOHfuHHq9noceeogPP/wQe3t7pk+fzsiRIy1iaeLEiSxfvpx+/fqRkZGharLn5+cTExPDpUuXMBgMzJs3j549e+Lh4YGdnR3fffcdRqORzp07c+HYMdr9fh38nqsrz3t4sNPdnfVt2mB0dFSzpW8Uw8XFxSQkJGAwGPjxxx/VQOmtqugxXB7tmEeMGHHHk5KLFi36V31Wd8JfTkpqy+verlRJJSS1ROPVMyHNZ7BphWoB9XjzXZSvZl5gXpvKbD5iuXfvXuzt7QkICKCgoIC4uDgqV66sllrk5uZib29Pz549mTFjBnZ2dnz55Zfs3LmT7Oxs1cEqKSkhPz9fLQm8emai+bIOrQOo1aHQplprx2q+9CkvL481a9YwadIkCgsL1QjJmTNn1K6USUlJajRWSyJqiVptZzItwWI+sq2+RLM6UOY8PT0JDg4mNzeXhIQEi8TJ+PHj+eijj9R/G41Gdu/ezZw5c9TIGPwxq6tu3bosWbKEU6dOMXjwYPbu3cvs2bPJy8uzqPV48eJFIiMjsbGxITg4mPz8fBITE7nvvvv48ccfgbLl8tpughEREeqztrGxwcPDg2XLltGtWzc2bNjA3LlzGTVqVLm/y7i4OIvd4aysrGjUqBFxcXFqGYu7u7ua/q4lmbVOgo+PD0899ZRaDmdnZ6dqJl7tv5iUNOp0HGrWjNVduqjfmHnS9uoNH8yZxwOgOlfa7eYz27RZg1pSQ1vyq9frOXPmDFFRUVSuXBlHR0fVMIaGhpKQkKB2Wq9duzYDBw5k/PjxLF++nIMHD3L27Fn0ej0vv/wy27dvV7MLjUajGiEFLGZDmMew1khrmzdp5yXt+LSNK7755hseffRRunTpwtatW9UsBW15S2xsLEVFRarOYmlpKYGBgcTFxeHn54fJZFKznMyP689YW1tTuXJlXFxcSEhIIDU1Vf1tnTp1OHTokEUjmpKSwooVK/jkk09ISUkhOztbnc+srKx48cUXeeutt2jQoAG+vr4q8aEtOdKWD2ozKLy8vHB3dychIYGioiJ2795Ns2bNgLId+5588klVa1LrYDs5OeHu7s7cuXPp3r07Fy9eVAMM5ZkyZYradRDKOqq9evVi7969apa4FlPmHVLtt5mUlKRm1eh0OoYPH87nn39ebr2jG6noMXy9+D3cvDnrundX7YOWsDWP4atn5cL14xf+KB+gPc78MVo7pbXD+fn57N27F1tbW5WQiI2NVbvgarVnbWxs6NGjB506dWLIkCEsXLiQzZs3k5WVpXZynzdv3v8lhouLi/nhhx+YPHkyoaGhbNu2jejoaM6fP8+lS5dISEjgypUrqkZjYWEhjo6OahBAS76YnyOvdr022MPDQ7WD8fHxFm3w008/repNaZ/73r17+fLLL1m/fr2aZa59HjVq1GDJkiVcvnyZvn37smXLFhYuXKgStyUlJRQUFKjzk7W1NaGhoRQWFhIXF0evXr1YvXq1+j1VrVoVOzs72rVrB6Dev4uLCx9//DGPPPIIX3/9NTNnzlRL36+WnJxsUddWr9fToEEDNSjq7++Pk5OT+p6036X57/Xbb79V/ZrKlSsza9Ysevfufe2Lma7d6EFT0eMXKm4brG2WpO3oeuXKFYqKiggLC+PKlSuqDa5evToDBw7khRdewGQy8dprr3HixAl0Oh2NGzfG09OTvLy8/0s/+ocffqB///6EhYWRlZVFbGwskZGRnDt3jtjYWGJjYyksLLymDY6Pj6dGjRqkp6er39z12uDyYtja2prg4GDc3NyIj48nLS1NfQ9VqlTh5ZdfVjNJoWxDvVWrVvHxxx+XJUfS09EbjWQBVsBY4EPKaolaA7vGjmXk75MMtBjOyclh06ZNQNkEBU9PT2JiYigqKmLLli20bdsWKNsF+eGHH6Z///44OjpaDBq5u7vzyiuv0KdPHw4dOqT68+V56623LFY9uLi40LlzZ1VD3d3dXdXDvvr3VVpayq5du1i3bp36+6FDhzJnzpxrNxm9QfxCxY/hO9oGG418uW4dXoWF1z2edEdHJg4dSmFREXv27EGv1xMUFERxcTGxsbGqjrJ2HWxtbU23bt3o0qULQ4cOZdGiRWzevJnMzEx8fHyYPn06X3/99f+lDTaZTHz99ddMmzaN8PBwtXmmtlmqtqrHvA3WyokUFBRYrNa71TbY3d3dYi8L88GLb775hgcffPCPz720lAMHDvDVV1+xevXqss8hO5tCg4FCoCrwHZAFdAHW6nSEdO7M1v791WBSTk4OGzduZPfu3djb29OwYUNSUlK4ePEi1apV49y5c0BZf7tVq1ZkZGTQq1cvVd5EO/e5urrSpk0bevXqxTvvvMOECRPK/R1kZmZa1G+1tbXFy8uLESNGEBMTQ1BQEPb29jeM4bfeekv1TQIDA5k5c2b5A/v/8hguj3bMDz300B1PSi5cuPBf9VndCTeuhH0dJUCkrS2f/D7t2/xCEf4osKxdxGiBoM16hD92dtQ6JVrCUktamic4zQs2myc23d3d6d27N7m5uaSnp1OpUiXat2+vkqTaCVOreTZ69Gh+++038vLy8PHxoWnTpjg4ODBv3jw6d+5MtWrVKCgoID8/XyVJtaniWkdRWz6jvT9tWaX2/7Xl69pMPRsbGwwGAw4ODvj7+1OzZk30er2q71JUVMTYsWN5//33mTFjBitWrFAdiEcffVQlO2xtbdV7SklJwWAw8MADDzBgwABMJhOurq589NFH+Pv7s2HDBpKTkzlx4gTHjh0jIiKCOnXqkJ6eTlBQEK1atWLgwIEUFxerJZmpqalYWVlRUFBASkqKGjnXkpkXLlzgvvvuIzk5mcDAQBYtWnRNgtTOzk7NOoyIiCArKwt3d3c2b96slqo///zzqjZSWFiYShqb/yYGDhzIhg0baNKkicUu3lfTpsVrJ1PtZF5YWEhiYiJhYWE4/j5bQ0uamNcb0S6wtVH9oqIiLly4oOoJajU+brVg97+BUacjxcuL1c2bk5eXZ1E2wXx5sfnud/DHBY72vxotJs3j1fy/rx6A0O6vW7cu9erVIzk5GaPRSLVq1fDy8lLfjXkMa7Mqzpw5g7OzM+Hh4bRo0YLXX3+dxMREhg8frpZUabvzaRdj2nvTjlmbtW1eBF47t2jxq8Wwo6MjRqORK1eu0KhRI1q0aKGWZ+bl5fHLL79gMBioXbu2mh0QFxfHgAEDVGLTfPmX9vusX78+WVlZzJw5E0DF87Zt2ygpKSEyMlItJ2/WrBmVKlWipKSEevXqqSVYDg4OqkOnzVQ5ffo0Pj4+REREkJycTHJyMqWlpaxatYoVK1Zw7tw5+vfvf81SGC3ZFB4eTlBQkPqMtI1GtGXo9957Lz///DPh4eHk5+fj4OBg8Z3a2dnRr18/du3axYIFC274O0y/aqMMvV5PVFQUcXFxJCYm8sADD5CQkGDRCTYf2NJq3GqzTRctWqR2365SpQpVq1alW7du1KlT5++ES4WjLZFd06IF+bm5KgGgXQhpMWy+8sD8IujqGNZi1bzdNh9YhD9i3LwUi6urKz169CA/P18tM2zTpo3Fhkpa7UOAtWvX8uKLL5KTk4Ovry/NmjXD2dmZtm3b0qFDB+rUqaMSG7crhrXZl9osp86dO2NnZ2cRw2PGjOGDDz7giy++YMmSJWq2gnkbrMWwXq8nJSWFoqIiHnzwQdUGOzg48MknnxAYGMiGDRtISUnh5MmTHD9+nCpVqlC3bl3S0tLw9/endevWDBgwgOLiYrUkMyUlBZ2ubOO3pKQkatWqRWFhoWqDIyMjGTZsmEoE/vDDD6oN1r5LrQ22srIiIiKC/Px8PDw82Lhxo2qDp0yZwsGDB8nOzqZ169bk5eXh6OionsNoNPLUU0+xYMEC6tevz9ChQ6/7O8zIyMDFxUXNYNMGjs+ePcvBgwepXLkyrVq1IiQkRP3utH6i9vvq0KEDcXFxalmbNrOndevWVK1cmZrHjnH/+fPYlZRcs9HDv1lFaYO1skVJSUkYjUZVp728NlhbmXDy5EmcnJyoUqUKzZs35/Dhw8TFxTFy5EicnJxuez/a0dERnU6Hp6enavfN+9G//voraWlpNG7cmCFDhgBlbXCfPn1U3TbzGC4qKiIhIYHatWtjMBiYPn06JpOJ+++/n8GDB6v4On/+vFpO3qJFC7KysigpKaFOnTr07duXrl27kpeXp9rg/Px8AgICOHnyJD4+PlSpUYOSs2fJNhoxAmuAtcA54CsXF57Lz78mhh0dHQkPDycgIIDAwEBSU1Nxd3dn7969qi/68MMPs2TJEtWuaTPbtN+JTqdj8ODBbNmyxaJebXmurottbW1NXFwcBw4c4LfffmPQoEFERESoc6z5bwpQq0GioqKIjIxkyZIl/PLLLzRv3pwqlStT9dw5ukRFUV+n+8/F7/+zDTb+SQmaUisrrH6vu9q9e3fVBtvb29OqVSs1S928DdbpdKxfv56XX36ZrKwsVe/Rzc2Njh070rJlSxo2bHjb22C9Xo/RaFSbZ3bs2PG6bfD8+fNZsGCBmsH5yCOPUFRUpNpy7flTU1MpKChg+PDhDB48WM3inDlzJpUrV2bnzp0kJiZy7Ngxjh49SmhoKHXq1CE1NRU/Pz9atmxJ1apVKSoqIiMjg4SEBLURjsFgIDExkRYtWmAoKCD62DEKTSaigIeBZMqWTN/j58eyrl0pLCxUgwp6vZ4qVapQWFhIu3bt1EZlWVlZaifr/Px8mjVrRnR0NH369FHfm/n58sqVK/Ts2ZPq1aszYsSI6/4O0tPTCQgIICEhQd1ma2vLvHnzSE1NJTAwkNmzZ3Ps2DF1brg6hkeMGMGJEyeIjIwkPj6ee++9l+Dg4LIYDg6mxvHjDDp/Hgej8T8Vw6LiuaWk5BWdjhwbG3Z4eDA7MBArwAksOkaARadHC4Crl3TDHydhrbNw9QXP1RdI5s9p3tHy8fHB399fJSPNZ3JoDfWcOXMIDg6mVatWjB49GoPBwJo1azh9+jQfffQR06ZNIyAgAE9PT/R6vVpKrM0y0o7bfAkXlM3u0y7otWMz79w7ODiQnZ1Neno6Op2OwsJCdUxWVlacOnVKbQZydcHfefPmlfs9aMvJVq1aRYsWLdizZ4/qZBUVFVGlShVCQ0OpX78+0dHRqoakVv9j+vTpvP3229f9nh0cHOjxe/Ftk8nE+++/rz4Pf39/qlatSm5urlpWp41alZaWqnok2tJRW1tbDAYDW7ZsYc6cOSxfvpy4uDhVFFzr7GoXKtoFUkBAAMeOHeP8+fNqdtbVtN2yqlatitFo5PTp0/j7+7Nlyxa2bt3KO++8w+7du2natKn6vq7+bZonvM07DdnZ2aoW09UzMv/NMhwdKbGx4WxEBL+2bk3e70sizDcIMl/iZ2VlpZbKaswviswfZ560uHpgwfy/y4vh8PBwizIQV8fwsWPHOHToENnZ2cyaNYvg4GCio6OZPXs2w4cPp6SkhJ9++olRo0ZZLN8239hIe39ax13baEJ7P+ZLaLT4LS0tpWnTpqxbt46qVatiMBhUEl2ribZ9+3YmTpzI7t27LT7r6xXw1ul0+Pj48PPPPxMaGoqXl5eqgZmWlka1atUoLS2lSpUqtGjRgr1796qdkktLS9m2bRs//PDDDb/nOnXqqB1sExISWLBgAWfOnKFBgwY0btwYNzc3ioqKVKK0uLhYnbvq16+PlZWVGsHTlrloy1CWL1+Ov78/4eHhFBUVqRqs2mzkrKwsTCYTtra2/PDDD2pZ+dV++eUXPv/8c8LCwvDw8CAyMpLMzEzmzZuHl5cXP/74I5MnT+a+++4jNjaWgoICi0Epra3QltXZ29urWnWHDx9m79695OfnM2HCBF588UWmTp163Y2s/i0yHBww2Nhwrnp11rduTYHZRYPGfCDQfADGfObU1bOpzAcQtfg0j+Or22HzNtHKygoPDw8qma2aMF/VYPt7XcEvv/xSlTQYO3YsJSUlrF+/nqNHj/LRRx/x5ptvEhQUpAa2blcMa+Ub0tLS1CCheQxfuHBBnX+u3tTjRm2wXq9n1apVtGrVil27dlFSUkJcXBwGg0G1wfXq1aN169bs27cPk8lEUFAQKSkpfPzxx7z77rvX/Z5tbGzo2bOnaoNnzpyplvf6+fkRHh6uZnzY29urmoNafSx/f3+1IZmtrS1FRUXs2rWLOXPm8P333xMdHU379u1VrT3z0hZ5eXnY2toSFhbGyZMnOX36tJqddbURI0ZgbW2tdnfduHGj2hl6+/btvPfee/z000888MADODk5qcFB7fsrLS3F3d0dW1tb/Pz8SE9PVwnhbZs3szMtjQSTibeBuUArgFmzYPNm2LPnX3lR9G9tg0+fPs3u3bvJz89n5syZaqnjnDlzGDx4MHZ2dixevJhnnnlGlf+5Xf3oe+65h/Xr11O7dm2ysrKu6Udv3ryZcePGXVMK6XobWel0Onx9ffn5558JCgrC19dXbS6klSGKiIggPDyc1q1bs2fPHuLj43F1daW0tJSdO3fy008/3fB7rlWrFs2aNcOxe3eC1q5l1JkznAdG29nR1NWVg127kv/7UtarY7hBgwZYW1urDY20iQoff/wxXl5eLFq0CH9/f+rXr09BQQG2trbq91FcXKySHPb29vzwww+MHj263GPcuHEjH374IQ0bNiQkJIQjR44QExOjEjvLli3j5ZdfpmfPnlSrVg2TyWSx6k377rQd0rXSLXFxcSTExHBl61YWl5QwERgHvAE4/dvj9w61wUeCg+l87hzlVeY06nScDA9Xg3030wYDzJ07l8DAQGrVqsWECRMwGo389ttv7N27l+nTp/Puu+8SFBREUFDQbW2DtUHKxMTEcttgbUafjY2NxR4FUFavtTzaZqmrVq2iWrVqnDlzBpOprOa1nZ0doaGhhISE0KhRI2JjY9mxYwdWVlaEhoaSkpLCZ599xgcffHDd79na2prBgwfj7OyMTWEhUyZMILagAF9bW9rodDSpVo1v77+fwpI/NnXUzmshISEEBgaqWr/29vbk5+ezZcsWZs+ezSeffEJ0dDSdOnVSe0ZoA0DaLHOdTkdISAjnzp3j2LFjavOrqz3yyCMUFhbSo0cPSktLVQ3RK1eusGvXLj744AP69+/Pvn37WLFiRbkxrG1i27p1a9LS0tTGpAf37WPPsmXEl5byFvAlv9eO/pfHcHnMk7R36vXEtW4pKdkzLIywsLCyAuulpbiZTeU2P/GaX9QA6uLx6uUl2uPNl3+bd6aud3GkufoEr43SaCOr2hKs7777jqFDh/LTTz/xySef4ODggJWVFU8++SSLFy9mz549jB07Vm1cYZ6s0un+qOeonXSsra156623eOmllwBUHUPzES8t6F1cXOjZsyfvvPMOL730Ek5OTtjb22NlZUV6ejqzZ89mypQpWFlZsWXLFoqKikhMTCQ5OZmEhAQSExOxs7MjIiKC2NhY8vPz1Qlv7dq17N+/n379+vHFF1+wZcsW8vLysLOzUzVAatasSbVq1dTonXbCu3z5MsnJyWrHPm2Js9aQae/BZCorxB8bG8v9999PWlqa+ry1Cybtsdrza8lK7Tvr0qULBw8eZPTo0RYzabSENPyxNEDbaVK7kLwRrV5obGwsOTk5+Pj4MGbMGLVr6YULF9iyZQtdu3Zl69atFg2s1oiaKy9hrs0ii4yMJCsrSzWYQUFB3H///RYXCv8Gbw4dSiU/vz9mx5WWqvi6OhlnXtdViy/zKf/a466OV/OLn/IuiG41hktLS9m9ezcDBw5UM4h0urIlY59//jlPPPEEM2fO5NdffyUvL0/VYS3vGLSLu3feeYeJEyeqz0FbOqF1BrTftNa5WbVqFTt37qRhw4Y4ODioDsSyZcsIDg7G1dWVTp060a5dOzIyMkhKSiI5OVnt8Ofn54eTk5Oq2VO/fn0SEhL46aef8Pb25rHHHuOtt97i66+/VomzkpIS7O3t6d69uyqariXv09PTiYqKUqPP2kCFduzaMhq9Xq86f/fddx/+/v5qZrGWiDAajWoU3Dwx7+Ligl6vp2rVqmrk1WQyUa9ePQIDAzEajbi7u6vPUDs2re5tpUqV1NLw8vj5+QFlu5UmJiZSUFDA0KFDqVGjBnZ2dgwbNoxFixaxdOlSunXrpmYOFRYWotPp1Hlc6+Satzlam6LNAPvggw+YPXs29erVo2fPnjg6OtKjRw8iIiJuW2zdCa8NGoSnlxdOTk5lKw9K/9h1UnvP5rFpHr/m5zvtPi2WzZMZfxbD5p23q+MXULNlHRwccHJywsHBgRUrVtC3b19+/fVX3n//fVxdXdHpdIwcOZKVK1eyZcsWnnvuOT755BPGjRsHcFtjuHv37rz33nu8/PLL6pi0OsIzZszg5ZdfBsp2vi4qKuLKlSskJSVZtMHVqlVTyfHKlSsTGBjIr7/+yp49e+jduzdffPEF27dvv6YNrl69OlWrVrVogw0Gg5oNrJ3rtAtMbca/eRscHBzM2bNnGTRoEOnp6dcsz9W+O/Pag+aJip49e7Jv3z7VBnft2lUlVrUZNOYzd+Lj49VvrLyyOhp/f3+OHz/OgQMHyM7Oxt3dnWeffRZra2s6duxITEwMGzZsICAgQM0yMxqN6jsy7zNp/SztuCfl5fGAycRp4DGgNfAgEFFaitPp0/jffz+D16yxSOD9G/wb22CdTsfWrVsZMmQIly5donbt2uj1eurXr8+sWbN4/PHH+fzzz1XZAQ8Pj9vaj/b19eXKlSts27aNZs2aqRmUVlZWrF69Gi8vL7y8vGjfvj2bN28mOztblUbSYtbPzw83NzeioqJwcHCgXr16JCUlqRnHDz74IO+//z5Lly7FYDBYxLB5+6PFcFZWFlFRURgMBvU5Wf2eYLa2tsbd3R2AUicnjnXuDGfOMGDAALxq1cKYnEyJyYTNTcZwREQENjY2fPvtt2qgtHLlyhQXF6vZY+ZJrtzcXDUr+2ba4OjoaM6ePUtBQQH33nsvdevWxcnJiaFDh/Ltt9+yfPlyJk6cqEo1FRUVqXOH1n5oyaeAgAD8/PwYtGsXrY1GSoGPKdt5fAXwwO/x69S7N11mz6ZmzZq3L7jugDvVBv/ctCl1kpPxy8xEb/Z3Rp2OZE9Pfm3dGr1ef9Nt8Jo1a+jSpQvbt2/nzTffVH234cOH4+Pjw7p163juued47733eP7554Hb2wb36NGD6dOnM2nSJJydnVUbnJuby/Tp09Vu1z/++KO6DjZvg7UJKAkJCeTl5REcHExYWBjr1q1jx44ddO3alfvuu4/HHnuMBQsWqHbNzs6OGjVqULVqVbWqU2vrYmJiuHLliir3pa0mMJlMODk5qfeKvT1+desSu38/wz//nOycHNJ+jysrs3Oa+fernau1a90hQ4awadMmnnzySfz9/enfvz9OTk6UlpZib29/TRuclpamrn+0vnV5/P392bt3L3v27FGbEn722WdYW1vTrl07rly5wpo1a1i8eLFaBn+jGHZ1daVmzZpUr169LIYvX+Yc8DjQARgK1CgtxfH0afzuu4/Bq1erEhz/ZpKUrBhuqaZk/fr1qVy5ssWsMvNkpNYBNr9wMb9Q1v6/eefHfKZaeZ2p8mZrlDftXRsN0i7Q3d3d1UYRr7zyCm+88QazZ8/mo48+sphmnpuby6hRo/jwww95+umneeWVV8jJySEnJ0fVBzHfjVS7gDd/b1rHxXya/HNmO3EBvPTSS6xZs4ZGjRoREhLCnj17OHr0KMHBwbi4uNChQwc6duyItbU1eXl5fPzxx5hMJpo3b87evXvZu3cvVatWpV+/fly4cIHjx4/z8MMPExoaqk585rU2rp5mrxk+fDivvfYaRqMRX19fdDrLJTVa5+jqkTCdTqfq8QAWSxLMO9DmnWX4I9BLS0tJTU1VO55v374dW1tb1XnVdjrUlsBUqVKFxx9/nAkTJlw3eC9dusTixYtxdHTEy8uLAQMG4O7uTn5+Pk8++SSLFi0iJCSEkJAQHB0dLereQNlGIc888wx+v18gaO9Be/9Xj2bGx8czatQoMjIy1LI7T0/Pf0UdDe0YH3vsMfW9lzdaa/79mX+/V3d8zL/vq2McuKYjYx7HUP7SlevF8G+//Ya3tzdnzpxh+PDh1KlTB53uj1pUs2bNws/PT5UbaNOmjcUuhuYxrNW10pbsW1tbq6VlWsfAysoKZ2dnnn76afX55eTk0LdvX0pKSmjZsqXa8bakpITg4GACAwMZOHCgKqq9e/duli5dqpanfvfddxQWFjJw4EA8PT3ZtWsXnp6ePPTQQ+oz02JfO6doScirz5fp6ekkJiaqmqnmS4W0x119gau97/z8fItZSlfHsPnfmHdwtc9Ap9Ph4uKiavJ5enri7OysziFpaWkkJiZibW1Nz549eeONN6hbt+51f5cLFiwgISEBJycnGjVqROvWrdHpdGzbto0hQ4aQmZmpNlrQZk9q+vXrR3Z2NjqdTm2yotW4dXZ2tqjnpM0A086PxcXFNG/eXO0+XNFjWDu+Rx55BHd3d9WZvTp2tX/lnZ+1xwAW8Wt+zte+a/N4vnqgUHP1OUC7INMGurTfp5OTE1OmTOHdd9/lgw8+4LPPPlOxpm1aN2LECGbNmsUTTzzBG2+8QWZm5m2P4bVr1zJx4kTq1q1LaGgohw4d4vDhwwQFBeHq6krbtm3p3Lmz2s17xowZFBcX07JlSw4fPsz27dsJDw9nwIABXLp0iSNHjjBixAiqVKlyS23wiBEjeO211zAYDPj6+qoBgRu1wdpzXq8NNv9nfn42PzdDWd1ZrQbk5s2bsbGxUbNrtM0BYmJiyMnJITQ0lEcffZRJkyZdd/AtJiaGhQsX4uDggKenJwMGDMDT05PCwkLGjh3L3LlzqVmzJs2bN8fR0ZHPPvvM4u9HjhypZtMlJiaSkZFBfn4+9vb2bLx0iaDf37cRmAV8DmQD6UARkJCQgL+/f4WPX/h3t8E7duzA1taW+Ph4+vbtS4MGDSz60V9//bWauXT27Fm6d+9+2/vR+fn59OvXj7y8PJo2bYrJZGL16tVqR3o/Pz8GDhxIWFgYJpOJ/fv38+2333LPPffg4eHBkiVLyM3NZeDAgVSqVIkdO3bg4uKiakLeSgz36NGDGTNm4OTkhIeHh2qDbxTD2sqEvLy8vxzDWvvt7u5ObGwsp06dolKlSmq38cLCQrVRkV6vp3v37kybNo1GjRpd93f57bffEhMTg7OzM/Xr16ddu3bodDp2797NoEGDyMjIoGfPnoSFheHm5sbkyZPV37733nsUFRVhZWWl2n5thdHCPXuolJ2tHnsJGA8cA3Ipi+EePXqogf6KHsP/RBvsUFJCn/37qRcVhd5kwmhlxemqVdnQpg1FtrY33QY7OzszZcoU3n//fV5//XW+/PJLizbYaDQyZMgQZs+e/X9tg3/77TfGjx9P7dq1CQ8P5+jRoxw4cIDAwEBVQ7FLly6qDNcnn3yiai8eP36crVu3UrlyZe69916io6M5dOgQw4cPp3r16uqcovWjtVyB+YC5dv4zmUz8j73zjorq6v7+Zxh6r1JFAbEXROy9YRc01ojdGBNj79gVe++KvUWNvSv23rCgxi4KgoqA9F7m/YPnnMwAGk15fsmz3r0WC50Z7r1z79n7u88u3/3mzRsyMzNxcHCQHX3qOqhOEyT2weJZCf39lM6qc4qqc4mKhJ9IBpw8eRItLS0cHBzQ0sqjT0tKSuLVq1ckJSVRtGhRevfuzaRJkz6ZfIuMjGTDhg2SaszX1xdra2syMzMZPnw4K1asoEKFCjRs2BA9Pb1P6nBubi5v3rwhPj6exMRE7OzsWHL4MJb/qdLOJa9Scgl5nJoCg9WHWv3TdbgwUdfr/zan5IYNG/5V9+q/IV9VKSmy+UKpQbM0XT2wmD/qLP6d3+iq/z//8dSNtHrrt8gOqWcWROZGnRxcpVJJ/kgRwBDl7MKAiNfVDbswbOocLSJYpZ6t1tbWZsqUKcybN49Ro0axePFi6Uxt3bqV7t27y+81e/ZsZsyYwYULF1i+fDlKpZLNmzdja2tLeno6x48fZ8KECcydO5fZs2fTq1cvPD09OX78OCYmJgQFBcl282HDhpGYmIi/vz+jR4+WU3OLFCkiv5e6gyS+09GjR1m8eDFubm4olUqOHTtGyZIladmypQbQqN+P3NxcmTEWoKceMMnJ+Y0n9FNOtTi/GGZy+fJloqOjcXBw4M6dO/J5Ozk50adPH/z8/KhWrdrvZhLc3NyYNGlSgdcrV67My5cv5eRm0d7Sp08fNmzYwA8//CCzRHfu3JGBI/U1KCp3hSORnp7O48ePsbKyQltbGw8PD8mx928SoTPqrSXq+gy/DZcqLOCc/3P57UD+TKF6okEdVL9GhyMjI6lZs6Yc3iAqiiBv01CqVCnu3btHkSJFgN9skdBfdWchf8ZaX19fVkmJKq1ly5ZhaGjIzz//zLfffgvkkb+fO3eOiIgIDh48yOrVq+nXrx+NGzdGW1ubly9fEhgYSPPmzbGxseH06dMEBgbK9s158+ZhY2ODv78/o0aNon379hw7doxffvkFPz8/oqOjMTc3x8LCQt4L4SSJ+xgTE8PGjRtRKpXY29sTHR1NfHw87du3l+2a4vP5A4xCZ8XmT91hEk5lYZte0bKjUORNNhZTl4ODg7G2tiY0NFQ6aMbGxnh6ejJ58mQ6duz4RfrRq1evAq89e/aMxo0bY2pqSqVKleRgDKGLgwcPJi0tDWNjY0nEfufOHY2No6OjI5AH/On/IYsX1aPZ2dm8evWKRYsW/e71/dNE6I263qljq3hd6G9hOgwU+J1ff9U3SerJQ3WbrG73xSZMJJjUN/Pqw9sUCoXkmhIi9FUdf/4OHW7ZsiXNmjXj0qVLrFq1ChMTEzZu3Ch1JygoiPHjxzNv3jzmzZtHp06dJO/TvXv3OHnyJKdPn+bOnTuMGjWKtLQ0xo0bx9ChQ8nJySElJUXaoE9h8MmTJyUGa2trc+LECVxdXWndurXU+cIwWJ3/VWwE1ac0f8o256+kc3Z2xsjISE4zFtxbYg04OTnh5+dHt27dqFWr1u9icLFixQrF4Dp16nDv3j3q1KlDsWLFJN/XhAkTCAgIYMqUKaSlpckumkePHnH//n2NZ78gN69lzBBQkjckZDB5k0+7AW56etj/Z3P3b5J/KwZ7e3vLhFN+P7pUqVJcvHgRNzc3jXP+lX60oaEhp06d4t27dxw6dIjly5fTq1cvvL290dbWJjQ0lHXr1lGvXj1cXV05cuQIa9asQU9Pjx9++IGAgACKFi3K2LFjadiwIW3atOHs2bNs376dPn36EBUVhaWlJWZmZvKe59fh+Ph4NmzYwMaNGyXfY2xsLO3bt6do0aIyoPk5P1rg7R/RYQsLC5nEuHLlChYWFjx69EhinJGRER4eHowePZpOnTrJIY6fE/VBH0JevXpFw4YNsbKyomPHjujr68vhI5DXBpyZmSmTSjk5OaxYsUKju6mJtjar+Q/lAuAGHALSgPHkVU+OGjnyd6/vnyb/TQzO0tdnf/36HGzYEC2FAu3/dOgAKPhyDM7NzZUzDoACGCwC8pmZmRpJir8ag5s0aUJISAiXL18mMDAQbW1t1q1bh5OTExkZGZw+fZpx48Yxb948Fi5cSKtWrahbty7v3r0jODhYVkVevHiR8ePHk5GRgb+/Pz/++KO0W/b29vJ7qtswgZ2nT5/mzJkzsvr4wIEDuLi4SO5kcQ/Es1QPUqpUKvm+ur8p/i3snnrnp/BtxPvFixdHqVRy7do1SR1z9uxZ+b6DgwNdu3alW7du1KlT55MJQSGOjo5MnDixwOtjx45l1apVNGjQgLJly0pf+VM6fO3aNYKCguSzVygU2BoYMAUwJm9Q14D//NwAvgVsdXXp9p9n+2+X/DGr/8b5/hckKiqKkSNHcubMGT58+KCBYcBnq3wLk68KSpqYmMihBuqbFdAs81Z/T/0zwjAIUX9fKH9hoJw/S5k/sKm+eVY3pIITR3BJRUVFyQqj7OxsOd0yNTWVR48eYWFhodHiq56dzh88Fdc3Y8aMPAd6wQIgj1/lU/wt169f59GjR5iYmDBt2jSNbFLPnj1xd3dn+vTplCpVijp16qBSqTh48CBr1qxBR0eHbt26MXjwYFSqPM6KsmXLMnjwYBo0aEBOTg4vX76kYcOGtG7dWg53gTzg2rp1K0qlkpUrV8qMD+Rlavbt20efPn1I/Q/pdmHBDNF6I7Jq4jV1o6/+TLW1tZkzZw4AQ4YMkVnwyMhI7t69i0ql4vXr1/Tq1Yvq1avj5+enERj8nGRnZ3P+/HmSk5Pldaanp5OQkEBUVBTPnj3DxsZGDgYRLUCJiYn4+fnJCYo5OTmcP3+eyMhImjRpgqmpKTY2NiQmJhIdHS3bWwHJMyT4tVauXPlF1/pPk/wVFeqVFeq6l38TpK6Ln9JL4RSpOyvic+rOmriOL9VhIyMj3rx5Q+XKlTl06BDOzs5A3nCT5ORknjx5gqGhIWfOnKFjx46yMkO9+k+cR73dBfKCmrNmzZKb44ULF2JkZESfPn0K3LsLFy6gp6fHrl275FApYfMqV67MypUr6d+/PyqVioULF2JhYcHGjRupX78+Xl5e5ObmMnHiRHbu3MnUqVPlOnr79i3FixcnIiICgO+//54iRYpoODoJCQmsXLmScePGYWtrKwOMCQkJBAQE0Lt3b2xsbGTwTj1jK2yZuOf5s7jq1R3qSSFdXV1mzpzJ6NGjSU1NRVtbm6SkJA4cOIBCoeDNmzcYGRlRp04dpk2bRs2aNb8YaF+/fs39+/eljcnJyZtaGB8fz+jRo1GpVJQrV05m3vX09MjIyKBbt26kp6eTmJgokwaiesTZ2ZkbN24QHh7ODz/8wN27d3FwcMDU1FRW4Dx+/Jjc3FyWLFlCjRo1vuha/0mijpn5k3WgWYWRX0/V9Ve8pq7D6hubTwWo8+O3eAafqtgQlb8JCQkoFAqSk5OJjIzEysqK3NxckpKSUKny2g2fPXuGkZGR5E78O3T48uXLPH78GIApU6YAeWvdyMgIPz8/ypQpw7Rp03BwcKBBgwZoaWkxb948VqxYgb6+Ph07duT69etkZmbi5OSEh4cHQ4cOpWHDhkBeQL1evXr4+voWwOBdu3aRlpYmN+/iXp05c4Zdu3YxYMCAr8JgQZkiMDj/GtHW1pa8lcOHDycnJ49fMyoqSlYIh4aGygBkt27dMDMz+6J1KLAzKSlJXmdGRgbx8fF8/PiR27dvY2Vlhaurq0bSIy4ujmHDhhEfHy9tk0KhkD5as2bN2L17N3PmzGHWlCnsByYD7clzVscDS4HqwFpr689OAv2nyr8Rgw0NDXnz5g0eHh4cPnxYBtXT09NJSUnh0aNH6OnpERQUROvWrf9WPzo0NJSdO3cye/ZsihUrJo9ZsWJFli5dyk8//cTp06eZNWuW7Erw8vKiRo0a5ObmMnXqVNauXcvs2bOpXbs2S5cuJSoqChcXF96+fUtOTg79+/fHwcFB49qTk5NZtmwZo0aNwtnZWW7yU1JSCAgIoEePHjg4OPztOixohFSqPL5zQ0NDvL29mTBhguw0+BJ58+YNd+/eLYDBCQkJTJ48mczMTGrWrIm+vr7kn0tPTycgIECDJxTypo5nZWVRpkwZTp06RVRUFD/UrEkdoCcwEPACrgJ9gDBgroUFDf5jN/9N8n+GwfCHMVipVMp1mZubS3h4uCxiSUpKIicnh+TkZF6/fo2ent7fisGXLl3ixYsXJCcnM2PGDPkdBF1AhQoVmDZtGjY2Nnh7e6OlldcmvnDhQoyNjfHx8eHGjRskJyfj4uJCtWrVGDZsGI0bN0ahUPDs2TNq1apFp06dNIKHSqWS/fv3Ex0dzcqVKzWCuBcuXJD+tfje6s9Q+MlCZ8VrIskPyPsk7KwITmprazNq1CgCAgJIS0tDoVBw9uxZicGCDsPd3Z2NGzdK2offk9zcPH75hIQEDQxOSEggLi6ORYsW4ezsTKVKlUhPT/9dHY6IiEBXV5dvvvmGjRs3snDhQqaPH88u8qgXOgD65OHxAsAT2GRj86/E4MLk/wcl/5j06tWL8PBwJk6ciL29/Z/+Xl8dlDQ2NpaDaNQdqsIClVAw8Kj+U1jQMn+Fj/hs/sCX4KhU/3vhVKWnp8tsrODTuHfvHvXr12fy5MkYGxvz5MkTzMzMiIyMRKVSsWDBAr799lsSEhIk54K6Q6F+LeLa81d46urqapSqb968WQ55OHXqFPr6+hw+fJitW7fKFiWRMc3JyaFJkyZMmDCBn376CUNDQz58+ICbm5t0jhQKBZ06deLGjRu8fPlSDp3x9/eXBnP9+vXs2LGD3r17y+tMSkri5cuXrFy5UmbWhJHt1KkTU6dOJTk5GSsrKzIzMyVwiU2DyPSI37m5uXI4Tf4WU/VnPn36dJRKJRYWFmRkZHDq1CkePnxIsWLFSEpKwtLSkk2bNrFp0yaGDh1Kjx498PX1pUGDBhgaGha6BlUqFX379mXLli0F3lMqlbL82sTEBHt7eyAPLPT09Ni8eTO9evXSqFBQqVQEBwezb98+lEolHh4etGrVipIlS7Ju3TouX76Mtra2nGC8bNkymZX7N4rYaAiuovzVE6CZ3Vd/ruI99cwvaBrX/M6RukOTvyW4MJtRmA5XqlSJvXv3MmzYMLZv346BgQGXL19GpcqrJnnw4AF16tSR5Pfx8fFy4Il6+4w4v3Ac1O2SuDeCzw5g+/bt5Obm0r17d44fP46+vj6hoaFUqlQJ1/+QjIsWNnGe3r17M2PGDOzt7dHV1eXKlSuMGDECS0tLcnJyqF27NosWLSI5OZnx48fTt29frK2tadKkCbm5uURERDBlyhQmT56MjY2NvK6tW7cyZMgQKlWqpHGfLCwsmDJlCkuXLmXUqFGkp6drVEAKx0Ndf4UtVa+YzL9xFPYtICAAMzMzeV+3bt1K5cqVuXnzJp6enjx48IAzZ85w5swZihUrxqBBg2jTpg3u7u6fBKcHDx5Qt25dSd6vLiKDL6oyBN2DlpYWBgYGrFu3jo4dO2okDIyNjXF3d+fVq1eUKlWKjh07MmPGDJ48ecLMmTPltPbk5GTq1q3L+vXr/3VckkJEsFh0LKh3J6iLug7m3/So66/6M1d/X90Zz/9afvxTpwoQfyNa+rS08jjWzM3NCQ4OpmHDhkyfPh0rKyt+/fVXzM3NiYyMlJuazp07ExsbK9uU/w4dPnToEGvXrtWY6Cl0uF69evj7+9OvXz/09fVJSkrCzs4OJycneQ1dunTh5s2bREdHY2RkhLu7O+PHj5c6t2XLFjZt2sSAAQPkvUpLS+PBgwesWbNGrl2he+3atePJkyd8/PgRe3v7P43B6vclICAApVKJubk5mZmZnD17luDgYFxdXYmLi8POzo7t27ezfft2hg0bhp+fH76+vjRq1AgjI6NC16BKpeLHH38kMDCwwHuCowrAwsICk/+Q4KtUeZU4ixYtYujQoQUwomzZsmRmZnLkyBHq1q1L165dOdGuHQv276cvedUZlkA8MB8YolCg/Oabr1Gdf4z8GzG4QoUKbN++nVGjRrFlyxY2btzI9evXZdL3wYMH1K5dm4SEBDmY5e/yo6Ojo7GwsKBVq1a8fv26gB89YMAARo4cSdGiRdHW1uby5cv069cPKysrcnJysLKyYu7cuWRmZjJ27Fi+++47DAwMZLXyu3fvmDx5MuPHj8fOzk5e5y+//EL//v3x8PAo4EdPnz6d2bNnM2nSJPT09P42HY6KimLHjh1UqFCB27dvy8nnQUFBBAUF4ezszMCBA2nbti2lSpX6JAY/efKE2rVr8/HjxwLviWnJYo2YmZnJ52RoaMiECRMYP368xvozNTWlQYMGXL9+ndKlS9OhQwcmN2vGqyNHCFCp2Aw4A2/ISygcUCgo0737vzKg8W/FYFtbW65evUrjxo2ZOnUqjo6OhISEYGFhwfv372Vw3dfX92/H4IMHD8pOlfwYXL16dcaMGYOfnx/6+vpkZmZiampK8eLF5TV8++23XLt2jStXrpCVlUXp0qWZMmUKGRkZZGdns2vXLlavXi2xBpDVgOvWrZMYJWyij48PT58+JSwsTA60VPejRSu3elBY/Z4LH7qwQLRSqWTx4sUYGxujpaUlZ0HUq1ePBw8eULRoUe7fv8+vv/7K0aNHqV69OiNGjKBJkyafLNRRqVSSgzu/qGOwGCIs+DU/p8M1a9YkNTWVHTt28OTJE7p27crxdu1YvG8f35OXWLABYoAZwEiFAu1/KQYXJv8/KPnH5PLly1y6dAkPD4+/5HhfHZQ0MzOTk7TUHSp1x0oYxcIMrnhf3aiq/626w5WdnS031KICSPxdTk6OLI3O3w4uNuOpqaky2Ldq1Sq6devGvXv30NXVpXHjxqSnp/PixQt0dXUlT2BiYqI0bMJgqf+I86hvigHpVCxbtkwOwYC8yWGGhoaS2FdklsUQHlHiL5wYU1NTOYgiOzu7QLu8kZERr1+/5vXr1wQGBnLr1i1MTEykkzNkyBAGDhxIamqq5Gs8ceIEbdu2ldcgWrDT0tJITU2lQ4cOXLp0CT8/P/ndxY/IlGdlZZGenq7hMKkHNvI7vOL6MzMziYuL48SJEzx79oxNmzbx3XffUadOHapVqyYzrI8fP2bPnj2sXbsWbW1tGjRowMSJEwtM/Vy9ejVbtmyhQoUK2Nvbk5KSIoPkqamp3LhxAwsLC2xsbMjJycHCwkKSogOyEkQ8r8zMTJRKJaampsTExHD79m2OHDlCbm4uXl5eBAUFcfDgQZ4/f87YsWNxdXX9GpX5x4mBgQEmJiayvSD/xkQ96yrukboe53eOQHNqoPr7n9NhdQfm93RYT08PCwsLtm/fjpeXF2vXrqVKlSpUrFiR8+fPY29vz6NHjyhRooQGh5X6Rix/4E1kdIXk5ua1mS5atEg65SLouXnzZnnPXr16RbFixdDT05OTbQHpBHp4eJCWlia/T3Z2thzIIoJr2traLF++nKlTpxIaGkpaWhomJiZkZ2dTsmRJ/P392bFjB6NHj5bX+vTpU8aPHy/PqVDkkYmL+5ORkYG2tjbGxsbSlmRnZ8sNsAhOpqamamT21W1b/mejXjlz//59zpw5g6urKz4+Pty7d4+GDRtSq1YtcnJyCA8P58mTJ4wdO5aRI0diY2NDly5dWLhwocZ9zsnJoVWrVqSkpNCyZUuSkpKA3zbIwcHBJCYmUrp0aRQKhRy2sGzZMgDGjRuHubm5bIUT68vNzQ0nJyciIyP55ZdfWL9+PaampuzatQuFQsH+/fupVKkS33///b82oQBocEXl11/xf0Bjzas7nuLZ5t9YqB9HPZAhNtRCf9X51dQxXOgx/Ib1WVlZpKWloVKpaNSoERs2bKBr166yUrFp06ZkZWXx7Nkz2dGQlZX1t+twcnIyKSkpGBkZFarD5ubmJCUlyTZJgcHiHMbGxnz8+JGHDx+yYcMGunXrpoHBP/zwA0OHDiUhIUFyB54/f55WrVrJbpP8GNyxY0eOHTtG3759/xIMVn8vKyuLuLg4Tp48yePHj1mzZg1Dhw6lWrVq1K5dm3r16pGTk8OjR484ePAgGzZsQFtbm3r16jFu3DiaNGmisQY3b95MYGAgFSpUoFixYho2JSMjgwsXLmBhYYGdnR2pqalYW1trYLCRkZHkJxPPzNTUlNq1axMVFUVERASjR48mJyeHjvr6PMnI4Igqb+DNGMBdSwvKlIGAgL9Ut/5b8m/FYEdHRzZv3oyXlxfr16/Hw8ODqlWrcunSJWxtbXn06BHFixeXPvTf5UeHhYVRoUIFXr16VagfXblyZVJTUzUwWAzFUf/Oq1evZty4ccTGxhIVFSV12M3NjSlTprBhwwYmTZokbeSDBw8YOnSoLHRQ12H1wKigFfkrdTgjI4O7d+9y5swZHB0d6dq1KyEhITRo0ICqVasCeZWPjx49YsKECYwZMwZra2s6duwo7aEQlUpFmzZtSExMxNfXV9posRavXbtGXFwcFSpUkNcheIEBli1bJnkDAelHV6pUCXd3d+7fv8/hw4fZFBuLnZYWawF9lYq9QBlgoEKBsmzZf63+/lsxuF69emzZsoXOnTvz6tUrnj17RtOmTVGpVDx79gx9fX2io6PJzs7+2zE4Li6O7OzsT2KwtbW17IbJycnRGNomdCwpKYmQkBA2b96Mn5+fPE52djZ9+/Zl1KhRREdHSyqfq1ev4u3tLYdSqfvRaWlpdOnShZ9//lly1gtfXVBaKJVKaUtFkZC6rRTPRTw38YyE/n78+JFjx47x8OFDlixZwsyZM6lcuTI1atSQFc737t3jyZMntGvXDqVSSenSpZk3bx4tWrTQWIO7du1iyZIlVKpUiTJlyhATEyPvc25uLqdPn8bc3BwnJycSEhKwtrbGwMDgszpsZmaGj48PYWFhPHz4UBY7tTcw4El6OsdVKu4DI4Cy/3IMLkz+f1Dyj0nRokU14j5/Vr4qKGlpaSl5xYQBFAEh8aPuTOXP/uV3poRTIo6VlJTEhQsXePXqlTSulStXplSpUmhraxcgnVbP+KoHR8UxxUO3tLSkd+/erF27Fl1dXdzc3Dhy5AhpaWlYWlrKNqMjR47g5+cnQUEYYHV+DvWqUHUgUv+/EEEYLtoPRaZFlFLb2trKSZrie4mqTi8vL8zMzHj48KFGNvPYsWPo6+vTuXNnQkNDcXR0xNnZmbi4OOkItm/fnnPnztG5c2dUqrzhFq6urhrPSaHIayFRKpXY2NiQnp6Orq4uKpVKGuKsrCy0tbXR1dXFx8dHXsPGjRtRKBSkpKQQFxeHvr4+5ubm8l5dv36d4OBgmWmLjY3F1dWVQ4cOyey5Uqnkxo0baGnlTRasXLky8fHxGBgYUKJECW7fvk2XLl3kcJ8BAwZgZGRElSpVqFatGjdv3uTBgweFrlNbW1tu377NzZs3cXZ2pmTJkpQuXRp/f3+ysrJkoEOhyGsr1NbWJiMjAwcHBxwdHSVZ+N27d1m3bh1z5879GjX5R4uZmRkWFhYS5IXOqGddBcAKB0hdj/ODrrruifbYy5cvS92xtbWlZs2assL6j+pwy5YtuXXrFjt27KBatWp8/PiRjRs3oqOjg729Pc7OzsTHx0teKKHD6sFncV6R6VbPMqsnWYSI6jx9fX3Jx2NiYkJERITcXIjvIe5HSkoK2dnZMlheuXJlDhw4QMeOHcnJyeHjx48yyOjh4cGGDRuYMWMGlpaWUn89PDxYsGABuv8hMhfVI+rJH6G/gprAzMxMViPBb86iUpk3Uc/Q0JA2bdoAeUEFcd1RUVHSCRSfjYqKIigoiPfv35OZmUlycjLJycl89913DB8+nO+//x4bGxsePXpESkoKFhYWlC1bVjpvJiYmcmN548YNXF1dGTJkCDVq1EChUNC1a1dWr14tCe4LE8HxV6RIERwdHenSpQsuLi4y+y/4IUUiSXzX0qVLU7JkSZKSknj69Ck+Pj68ePGCZs2a/WU69H8ppqammJmZYW5uXkB/1authN6KYIR6klCsqZycHA3dFYmdixcvEhoaKnXBw8ODcuXKSe4h4ZTDbwES9WOo668IBJiZmdGrVy82btwIgLu7O8eOHZPJM2tra9zd3Tl06BB9+vTR2Jz91ToMSJ7hwnTY0NCQBw8eyGrBly9fEhMTI/Xj2LFjKBQKvvnmG96+fYuNjU0BDO7QoQOnT5+mZ8+eqFR5LZ7Ozs6fxWBxTV+DwampqcTHx6Onp6eBwbdu3eLmzZukpaXJDVHRokVlR0BaWho6Ojpcu3YNhUKBu7s7np6exMfHo6urS8mSJbl//z5+fn6ULFmSVq1a8eOPP2JiYkKlSpWoWbMm165d+yQGW1lZcePGDa5cuUKxYsUoU6YM5cqVY/r06fLcor1dVEynp6dja2srh5Z9+PCB/SEh2FaowLLERMjKAh0daNs2bzP0nyrMf5v83Rj89OlTLl26JAMKNjY2fwkGN23alLt377Jt2zaqVKlCYmIiGzduRFtbGwcHB4oVKybpGWxtbf82P9rU1JTIyEgZIMjvR6tTRejp6eHh4cHBgwfp3r07ubm5st3x7t27jB07lrFjxzJw4EANHS5btixRUVEaU63FlOtP6bCFhYXE2i/VYcgbPpWeno6lpaVs646JieHEiRO8fftWYnBSUhK9e/dmzJgxDB48GBsbGx48eEBycjLm5uaULl1aJhFFwGzVqlXcunULFxcXBg8eTJ06dQDo0qULy5cv58CBA59cp6mpqezduxdra2tcXV0JDw+nZMmS8jsJn0QEviBvWF+VKlWoVKkS8fHx3L5xg45v3vDQwYFV8D+hv383Bqenp3Px4kVevHgh7UHFihUpX778n8JgExMT+vTpw6ZNm2R1YVBQEElJSVhYWGBpaUnJkiU5dOgQ/fv3/1sxWEtLi+Tk5E9isJGREQ8fPqRt27YolUrevXvHhw8fpH4cOXKErKws2rZtS3R0NKampjg6OpKYmCh5xLt06UJQUBD9+/cnNzdXJsjU9Vf9PllZWZGSkiLPIZ6PeK45OXkUZCJJt2fPHhmEjY6ORl9fX3ZEZWVlce3aNS5dukRqaqocjGpvb8+uXbtk1bOHhwdXr15FqVTi7u6Ol5cXCQkJODg4YGVlxYMHD+jZsyelSpWiefPm/PTTT5iZmVG+fHnq1q3LpUuXCAkJKXSdmpubc+3aNc6fP0/t2rWxtLRk3LhxcgiOug6LFv+cnBzs7e1xcHAgLS2NV69eceTKFVR2duzT0/ufweDC5P8HJf+YLF68mLFjx7JmzRqKFy/+p4/3VUFJa2trihQpIrOCKpWKS5cuceXKFanAXl5eNGzYUGbN1cug1VsF4TeSXoVCIVsDW7VqhY+PDwpF3rTnU6dOcfbsWZo1a0ZmZqZ00vJX5Wlp/cbfIDbk4kdMpTI3N2fSpEns3r0bKysrfvjhB8zMzGQGIygoiKysLExMTGRATXA/5c9iiqwooHFOUS4tfovXRDapWrVqnDhxAm9vb548eSLvg7a2NnFxcVhYWHDy5ElatWolp5GtXbuWb7/9lpcvX/LmzRtKly6NmZkZM2fOZNy4cZLvTQSD7ezsePbsmQwSu7u7c/v2bWrXrk1WVpYEKWE8b9++TYkSJTScYuFoCTASHDbC6dm6dSuJiYnY29sTHx9PSkoK7dq1Y+/evdy7d4/mzZvj4uKCkZERbm5u9O7dmypVqvDrr78CcPPmTfz8/IiKiuLgwYO8f/+eEiVKkJCQwL1790j8z9S+d+/ecenSJV6/fs2yZcuoVq0aN27ckAERU1NT+SMCjQAfP37kwIED7Ny5k1OnTnHq1CkmT56MoaGhBMTIyEgOHjwIgJ2dHeXKlcPIyAh9fX3c3d1RKpXMnz8fPT09pk+f/rW69Y8US0tLLC0t0dPTQ1tbm3fv3nHgwAEiIiJQKpWYmJjg4+MjA0DiR6wVsdFRp1MQDtmpU6dISkqiR48esvXv9evX7N+/n/bt22NmZqZRQfG1Ouzo6Iivry+NGzdm6dKlzJw5kzp16pCRkcHjx49ZsmQJhw4dYtCgQZLvSqlUyutXb7FQdyDFedXb6sSPlpaWJPXX0tLC09OTn3/+GT8/P1khBL/py/bt22nTpg2BgYH06dOHhg0b8v3331OtWjXMzc2ZN28e7du3Z8eOHdy4cYPs7GxsbGxk4FFk1dUnGIp7JKZaCl4aoe8ZGRmy0kNU/qoHL8V9PnbsGDk5OZiamnL9+nVOnDgh7XlYWBiurq54eHgwa9YsrK2tadGiBSYmJpiYmPDNf9o0SpcuLZ9XtWrVKFmyJFevXpXHrlChAnfu3KFo0aJAnp7fvHmTnTt3EhkZiYODA3PmzGHSpEmEhIRw9epVOnTogKmpqcyiQ56jHRwczK5du1i0aBF3797F399f3helUsmbN294+PAhDx8+BKBq1arY2NhIB7NOnTocP36cZs2a8ejRo79Np/6bYmFhgZWVFWZmZpLC5MKFC5w9exaFQkF2djZeXl40b95cVuar47Cw52JjoW7zk5KS2Lx5My1atJAB7IyMDM6fP8+JEyfw8fEhIyNDTktWr3oSInQov/7q6upKOz19+nSOHj2KmZkZAwcOxM7Ojvj4eI4dO8aJEydITU2V3+/v0OGaNWty7Ngx2rZtW0CHxabk6tWrdOzYEQsLCxo3bsyKFSvo3bs3YWFhPHr0CE9PT8zMzJg+fTqDBg0qFIODg4M1MPjKlSs0atTokxgsKA++BIO1tLTYvn07sbGxcjOWkJCAr6+vbA9r2rQpbm5uGBsbU7x4cfr06UODBg24efMmANeuXaNHjx7ExsZy+PBh3r59i4uLCykpKdy5c0dWMUdFRXHp0iWeP3/OunXrqFy5MlevXuXJkyckJSV9EoPj4+M5ePAgO3fu5Pjx4xw/fpxp06ZJHU5OTubNmzfs378fgCJFilChQgWMjY1l8lhHR4flN25gNGYMs2fN+le2e+aX/Bj84cMH9u/fLycmGxkZ0bZtW0qUKPHVGHz+/Hk+fPggq3chr4Ju3759tG7dGisrqz+FwU5OTnJg1LJly5gyZQpNmjQhOzubp0+fsmTJEg4cOMCoUaOk/v7VfnSFChXYtGkTycnJZGZmFvCjt27dio+PDytWrGDgwIHUrVuX/v37U6dOHaysrFiwYAG+vr7s2bOHu3fvEhcXR6lSpQrosEiuideUSiUfP37E2tq6gA5nZmYSHh6Oubm5DNjA53X4+fPnHDt2DBsbGwwMDAgLC8PZ2ZmqVasSEBCAubk5rVu3lrRZvr6+GBoaamCwSqWiatWqXL58mePHj5OVlUWlSpW4c+eO5N4ODg4mODiY3bt38/LlS1xdXZk+fTrjxo3j3r173Lx5Ex8fH4nBIrGpUqm4e/cuu3btYunSpdy8eZMhQ4Zgb28viyzCwsK4d+8eN27cAKBu3bo4OztjYGCApaUl3i1bsnPnTnzMzXn44MH/hP7mx2AtLS0uXbrE6dOngbxgpKen5x/C4JSUFDZt2oS3tzctW7aUlXyXLl3i6NGjtG/fXgbd/igGm5iYMHHiRM6ePYuhoSGDBg3CwcGBhIQETpw4wcmTJ4mPj8fGxuZvw+B69epx6NAhOnbsWACDhX168OAB4eHh2NjYyGn3AwYMIDIykuDgYOrUqYOZmRkBAQH069eP5ORkee7s7Gzs7OxITEyUxy5ZsiRHjhyhZcuWpKSkyGpqYUuDg4MlrY8IUAlfWiRSVCoVZ8+elcHkzZs38/79e5ydnUlMTOTjx4+0a9eOU6dOcfHiRRo1akTJkiUxNjamaNGi9OvXj759+7Jz504gj6d+/fr1HDp0iEOHDvH27VucnZ1JSkoiNDSU5ORkIC9xIfiwt23bRvny5bl48SLPnz8nLi6OW7du0a5dO0xNTTEyMpIYnJiYyKFDh9i1axeHDx/m8OHDxMfHs3r1askdGhYWxs8//wzkFfTUrVsXKysrmeTX0tJi/9mzTBg/noDp0/8ndPhT8k8PFK5cuZJ58+bx7t07ypUrx+LFi6lbt+4nP3/hwgWGDx/Or7/+ioODA6NHj/4kV/POnTvp2rUrPj4+n01W5ZfOnTuTmpqKm5sbhoaGcg8npDCKkM/JVwUlrayssLKyktObZs2ahZOTEz4+PlhYWFCmTBkuXLjAokWLGDt2LNra2rKFOn9bgjCUwogcPnyYQYMG4erqKjdbWVlZFC1alLVr1/LmzRscHR2lUyM25eol0iJgBr/xPaiXYSuVSiIiIsjNzWXu3LkolUo5tc7X15ebN29y8OBBBgwYQHJysqygEw6fcFZE5ii/QyVaNPI7dMIo5ubm0rJlS+bMmUOjRo0oV64cN2/eREdHh7S0NMaOHcsPP/yArq6u5IVp0qQJy5cvp0uXLqhUKsaNG8fJkycZPHgwI0eOlMbQzs6ON2/ekJOTw71793Bzc5P3p2rVqqxdu5YOHTrI6X3CsRHfWZ2bQihm/nYEyAPcZcuW0aNHD1xcXGQVyMWLF1m1ahXv379n1qxZjB07tsD66d27NxMnTqR///4cPHhQDovx8vKiR48eBAUF0bNnT548eSKNcU5ODi1btmTQoEEax7p9+7bGdPP8YmlpSZ8+fejTpw9ly5bl8ePHrF27lrJlyxIWFoaBgQHu7u54eHhw79493r9/z/v374G8qd62trY4Ojpy+/ZtHBwcPq8Y/yIxNzeXFAyPHz9m3bp1NGnShDp16sg1s2rVKmrWrEndunUlaAvnRz2poO74REdHEx0dzbBhw6RhUigUODs74+bmxtKlS+nbt69Gm9LX6nBSUhJOTk5s3bqVhQsX4u7uTnZ2NqmpqZQqVYrJkyfTr18/yUEj9Fe9NU29ykRUbog2DqG/hWWbxbVqa2vTrFkzAgIC2L59O/fu3UOhyJsUevbsWUJDQyUpt7+/Px06dGDgwIF89913ANSrVw9zc3OePn3KggULWLZsGYmJifL4YoOTnp4uA4q5ubm0bt2adevW8eOPP8o2jVKlSgF5dlhMqy9Md9WBVltbm6tXr3Lv3j2mTJki33v69ClBQUEsXboUAwMDXrx4UYBTLjQ0FFdXVwwNDalevTrr168H8mg9/Pz85Puurq68f/+e4sWLEx0dTcWKFenatauGHhkZGVGrVi1q1apV6DpVKBRUrVqVqlWr0qJFC5o0acLMmTPx9PTEyMhIVm24u7vz9OlTWR0GeTjl5OSEra2tHF7wvyJiQruxsTEKhYLZs2dTpEgR2rZti7m5OWXKlOHatWvMmDGDiRMnymcosFc9EKFeTautrc2RI0fo27cvZcqUkRn03Nxc3Nzc2LBhA6GhoRQvXlyjykq91Uy9skC8p554FIm52NhYEhISWLBgAXp6etLhb9OmDbdu3WLfvn0MGzZMYulfrcPe3t6MHz+eokWL0r17d27duiX9DX9/f3r37o2ZmRmDBg2iVatW1KtXjzVr1tC5c2dyc3MZO3YsFy5cYPTo0QwePBh3d/cCGBwSEqKBwZUqVWLlypW8efNGVmsIDL59+za//PILCxculM/5cxicm5vL0qVL6dq1K+7u7jJRcfHiRdatW0dUVBSTJ09myn8G+ahLjx49ePDgAX379uXEiROsWrUKyOtIEZxfrVq14vHjx7KFPSMjg+bNmzN48GCNY925c0dOVf3UWu3Zsyc9e/akatWqBAcHs2rVKsqVK0dERAQ6OjqUKlWKKlWqcPv2bT58+MCZM2cAcHV1xdbWVhKnFylS5H9mM6SOwS9evGDFihV4e3tTq1Ytihcvjra2NqtXr6ZSpUo0btz4izE4Pj6esLAwRo0ahZGRUQEMXrBgAf369fvTGOzo6MjPP//MjBkzKF++vPSjS5UqRUBAAF26dCEpKQkrK6u/xY/W0tKiTZs2rFixgpUrV6Krqyv96GvXrnH//n05nGrkyJF06tSJn376SW7Gqlevjq2tLS9evGDWrFksX76cpKQklEql1OGsrCxZNSzsna+vL2vWrGHEiBGy3Vno8JIlS6hQoYK0mfB5HRaVzJMnT5b3+MWLFwQFBUmuvZcvX8rAspDw8HCJ+w0bNpQdB0ZGRnTu3JnIyEgcHR1xc3Pj3bt3FCtWjJiYGMqWLUvnzp1xcXGRxzI0NPxdDPb09MTT05O2bdtSp04dlixZIru4QkNDKVu2LG5uboSEhJCens6lS5cAsLGxwdXVFUdHR0qVKsX9+/fJVanQ+h/QYXUM1tLSYv78+ZiamtKmTRvMzMwoV64cN27c+EMYvHfvXrp3707FihU1MNjV1ZWtW7fy7Nkz6ff+UQwWVYORkZEsXboUfX19icEtW7bk3r177N27l7Fjx/5tGNywYUPGjx9P8eLF6d27t8TgnJwcJkyYQI8ePbCzs2PYsGE0b96cevXqsWnTJjm8ZvTo0dy6dYuJEycyYMAAypcvX8CPvnfvnhy0lpOTQ+nSpVmyZAlhYWFy3oCWlhYlS5YkMzOTrVu3MnfuXI3OTnHfxG/xk5OTw5w5c+jSpQvly5eXnVMXLlwgMDCQDx8+MHr0aDnsVV0aNWrEwYMH6d27N+fOnaNbt25AXjVsjx49OHz4MD4+Pjx+/Fi2sKelpdGsWbMCGCyCqNWqVSt0rZqamuLn54efnx8NGjTgwoULVK9eHTc3N5kEK1euHLVq1eLq1atERUWxZ88eIK8AwcnJCXt7e5RKZd6ch/8B/f2U/NMrJXft2sXQoUNZuXIltWvXZs2aNbRo0YJHjx7JBJS6vHr1ipYtW/Ldd9+xbds2rly5wo8//oiNjY0sMhESFhbGyJEjPxvg/JQsXrz4q//mc/JVQUkLCwtMTU3lBNqIiAj09PRwcHDg7du3bN26FV9fX7799lv27NlD165d5XQn9ayDcDzEJkWUcVesWBELCwsMDAxka1JMTAytW7dm48aNtG3bVvI2qbd7ABrGPn8mR0dHRxrwPXv2MHLkSNlCpFAoMDAwkI6ZMM4i26B+3aL6U93oqzuI6t9LnS8I0PjMoEGDGDduHGlpabi6uvL27VtevnyJnp4ey5Ytw87Ojv79+/PixQvmz5+Pjo4OLVq0kKTdFSpU4OHDh7LUW6FQyBao1NRUTpw4QWBgoEYWbdSoUUyaNIkOHTpga2vL+vXriYiI4NGjRwwcOFBjc6hUKqlVq5Z0MOA3hT1y5Aht27bFy8sLLS0tbt26xaxZs4iKisLa2hpTU1Nat25d6Ppxc3NjxowZDBs2jK5du3Ly5Ek6deqEi4uLrKK7d++e/HxMTAxWVla8f/+enTt3Ur58eRo2bMirV694+PAhjRo1wsXFhdKlS1OmTBmcnZ0pUqQId+/e5erVqzRs2JAGDRrw8OFDTp06xZo1azh48CC5ubk4OjpiYmIij3ny5ElZTfXy5Utev35NTk4OJiYmdOnS5WvU5B8toppFW1ubmTNnYmVlJdfO2bNnUalU+Pv7M378eLy8vKRzIURdh8WPQqHg+vXrfPPNNxQpUgRLS0sNHTYwMMDe3p63b99iZGT0h3XYxsaGmzdvYmJigrW1teRuFO1d79+/p0qVKly4cIGOHTvKa1ZvjdPS0pKT9ZRKpUayRN02ie+t3sIiOKsa/Gcqb61atWR26Pr166hUKiwsLBg4cKAM8h48eJC4uDhq1Kghr/ny5cu0b98eS0tLIK+iSFyjQqFgz549NGjQQFaWC06+BQsWMHfuXDp27Mivv/5KaGgooaGhckiI+vcV13fu3Dn5unDYTp06xbx582TrjGjj0tPTw8DAgGbNmhU65MLV1RV3d3f279+Pnp4eLi4uuLm50bZtW3755Rc2btzIhQsX5Od/+uknyQV57NgxVq1aRadOnbC0tGTXrl388ssvZGdnS/11d3fHwcGB3Nxcjh49CkCnTp1o3Lgx7969Y+PGjaxYsYLIyEi0tbUpWrQourq6fPfddyQnJ7Nr1y5JFxEbGyuvY9y4cX9QW/55YmpqirGxMYaGhhw4cIDQ0FAAHB0deffuHVu2bKFt27b079+fbdu20b9/fxkQADTWuDolQFpaGtnZ2VSoUAEbGxtMTU3R1dUlMzOThIQEvvnmGxYtWkTRokVlCxcUHGQndFa9EkRsvgTH6d69e+WkafU2MENDQzIyMuQ6VV+Df6UOK5VK/P39CQwMZN26dZQoUYJ3797x66+/Ym9vz5o1a7CxsaFv3768fv2aefPmyWREQkIC165do3Tp0ty9e5caNWoUwOCMjAwOHDjA6tWrNTB4zJgxTJkyhfbt2+Pk5MSGDRuIiIjg119/pX///hgaGn4RBp86dQpvb29q1KiBlpYWd+/eZebMmbx9+1Ymjdu2bVvo+ilRogQTJkzA39+f27dvc/jwYTp27EjJkiUlj9f9+/fl5yMiInB0dCQ6Oppdu3ZRqlQpmjZtSnh4uMRg0Z5dunRpihUrhq2tLSEhIVy5coW6devSqFEjbty4wdmzZ1mzZg379u0jNzcXe3t7jI2NKVOmDPXr1+f06dPy3KGhoYSHh0tO3s8lIP9tIjBYR0eHGTNmYGZmRlxcnKx6zszMZPTo0UyePJlq1appDB6BT2PwyZMnad++Pba2toVicPHixWU13x/FYGtray5cuIC2trZss1f3o9+/f4+npyfnzp2T1AV/hx9dt25drly5Qu3atXFxccHY2JgbN26Qk5M3yOann36iVq1aVK9enSNHjhAbG4uXlxe2trakpaVx6dIlOnbsKG1gfh0+evQotWrV0uAErFWrFnfu3GH16tU0a9aMJ0+esGTJEl6/fk1KSgqzZ8/WCGR8SodVKhWHDx/WwOA1a9awZ88edHV1MTIyomnTpgUCkoAMMO/cuVNWQDs5OeHr68vhw4fp2rWrxuf79u3LxYsXAQgKCmLVqlV07NgRa2tr9u7dy86dO0lPT5f6W7JkSRwcHFAoFBw9epTs7LxhmILvddOmTaxYsYLg4GAZxFUqlXz//fekp6ezZcsW0tLSZJJayNChQzWCsv9mUcdgwdPr6uqKs7Mz79+/Z+vWrTKJs2nTJn766acvwuDMzExSUlLw9PQsFIPbt2/P7NmzcXV1/VMYrKenxy+//EKvXr00+EQFBqempmJoaEhmZubfhsEKhQJ/f3/Wrl3Lxo0bcXd358OHD9y/fx87Ozs2btyIlZUVffr0ISIigoULF6KlpUXz5s2Jj4/n5s2bFC9eHAcHB+rWrSsDkuIas7Ky2LVrFytXrtQIAo8ZM4axY8fy7bff4urqyuXLl4mIiODx48f07NkTExOTAjydohJZ3ZadPXuWevXqUb16dRQKBffv3ycgIICIiAgsLS3R1dWlXbt2ha6fkiVLMnLkSKZNm8b9+/fZs2cPHTp0oFy5cjg4OPDhwwfZUQjI6uaPHz+yY8cOXF1dadGiBZGRkaxevZorV67g7Ows/ejixYtja2vLw4cPuXjxIrVq1aJJkyacO3eOCxcusGbNGnbv3k1OTg5FihShfPnylCpVirp163L27FmZ3H/y5AkvXrwgOztvmJkYNva/Kv/0oOTChQvp27cv/fr1A/KCgSdPnmTVqlUa+z8hq1evxtnZWQYNy5QpQ3BwMPPnz9cISubk5NCtWzemTp3KpUuXiI+P/91rGT58ONOnT8fIyAgXFxdq1aol43l/Vr7qKIIXQqVSsX79ejZt2kSFChWkkcrOzmbcuHF4enry5MkTWeIs2lTEBkQ4UZB3Q0QLklKplAMkhAFTKpUYGxuTkpJCcnKy5J9Qz6AKQ6ROxisMkcgOZWVlUatWLfbv34+pqamc1CscvpCQEGxsbDAyMpItGsKwqlQq2XIkMqfCQAmDrP5/deMtrkvdWbGysmLChAkkJSXJjOnAgQOpWLEiDRs2JCQkhMmTJ1OxYkWGDRuGgYEB9erV4+rVq0Ce42hoaMjgwYPp37+/fAYPHz5kzZo1cnKhyEYrFArc3NwYNWqUJOC3trbGyckJZ2dndu3ahZubmwYAiXOJaxYG+tatW8yfPx8TExPmzZvH1q1badq0KWvXrqVYsWL4+fnlVTUUIufOnZMVj9WrV6d69epAXntRRkaG/Fz16tWZPHkyVlZWxMTE0LhxYxkwvHLlCkuXLmXfvn2UKFGCp0+fsm3bNgmQQvT09AgICMDZ2Zlhw4bx3Xffoa+vT+nSpalfvz6nTp0iKCiIbdu2FXqt27Ztw8nJCSMjIywsLL5QQ/75ItopVq5ciampKT///LPURy0tLR4/fsz48ePx9fXl5MmTsoVEtGCoVzqrbyiio6NxdnZGW1u7UB12cHDg3bt32NnZ/WEdLl68OBs3bqRly5ay1UqcJzc3l927d9O3b1+WLl0qjyv0V0yfE61UQieFo5ifuFsAlLojra7jTZo0oWnTpoSFhbFp0yY8PDzo3LkzZmZmVKtWje3bt7N27VrGjBmDhYUFjRo1AvL0Smz8ZsyYQUxMjGxfTklJYf/+/Tx+/JiAgADZpgd5DuHIkSPZsGEDPXr0kHQUrq6uvH79mpMnT9K8eXPgN7C7evWqrLIRNvr+/ftUq1ZN8nL99NNPxMXFsXLlSr7//nvCwsKYPXt2oWtHcFeJSvnx48fL90TrEuRVQfbv31++v3HjRvr06QPkJYXWrFlD165dsbe3x8jIiEuXLpGQkKDRRigAbtiwYfj6+jJ27FjGjRvH9evXOXz4MDdu3CAoKIizZ8/KAKb6xl1LS4vQ0FDu379P48aNv1Q9/vGir68vKxJWrFjBqlWrqFq1qny+ubm5TJ48GYVCQVhYmMbGQbRPARo6l5uby9u3b+UGU1dXF319fQwMDNDR0SE9PR1TU1MyMjIkDquTv+cPHIgNkagoEHqmo6ND7dq12bVrF1ZWVgV0+NmzZxgbG2Nra0tUVJScnvt36LCFhQX+/v4kJydz584dbt68ybBhw+QEQWtrayZPnkzJkiUZNGgQBgYGBXTYzMyMwYMH891331GpUiW0tbV59OgRq1atkgOV1DG4WLFi+Pv7M2TIEOljODo6UqxYMXbv3k3JkiU1AhGfwuCrV68ya9YszM3NWbx4MevXr6dBgwZcvHgRNzc3+vXrh7W1daHr59y5c/j5+QFQpUoVqlSpAuS1aAvKFPHepEmTcHR0JCEhgSZNmsiA4ZkzZ9i6dSvbtm2jZMmSPHv2jB07dmhgOCBpTxwdHRkyZAgDBgzAxMSEokWL0rJlS4KCgjh16tQnMXjt2rWULFkSPT09bGxsCleIf6EIDBZ8jNu3b5eBPS0tLZ4/f46/vz9dunTh+PHj+Pr6fhEGf/jw4bMYLBIXoiXzj2Cwo6MjL168oF69eqSlpUn9F370zp076dWrlwYG/11+dIMGDWjYsCHh4eGypfHbb7/FzMyM6tWrs3PnTnbv3k2vXr0wMzMr4Efn5OQwa9Ys4uLi6NixI+bm5qSnp3Po0CHu3r3L7NmzNbg8FQoFgwYNYvv27fTs2RNzc3NMTU1xd3cnLi6OY8eO4ePjo4Fjhenwo0eP8PDwwNjYmPfv3/PTTz8RExPDkiVLGDhwINHR0XLIXX7JysqS3NaQl+gQop4QNDAwoF+/fkyYMAGAHTt2yKrmbdu2sXv3bjp27IidnR2mpqZcvXpV0sMIEYGkESNG0Lp1a8aOHSsr1ETr+6lTpzh9+jSHDh2Sf6Mur1+/5v79+zRs2PBrVOQfLQKDtbS0WLhwIYsWLaJ27doSA1UqFTNmzADgw4cPkm/z9zA4JiaGIkWKfBKDDQ0NycrK+tMYXLduXTZv3iwHkalj8OvXr9HS0qJ8+fK8e/cONze3vw2DzczMGDNmDKmpqdy9e5ebN28yePBgiUm2trZMmTKFokWL8tNPPxWKwdbW1gwePJh+/fpRpUoVlMo8Tt1Vq1bRq1cvufcXfrSjoyOzZs1i6NChREdHa2Dw3r17KVu2LJaWlvJ75ObmcuPGDWl/xPc5f/48U6dOxcDAgMDAQFavXk3t2rU5ffo0pUqV4qeffpJFB/nl/Pnzkh6nYsWKVKxYEcjrIPnw4YP8XKVKlZg4cSKurq6kpqbi7e3N7du3AThy5AhHjx4lMDCQMmXK8Pz5c3bu3FkAg/X19UlPT8fc3JzRo0fz448/MnbsWCwsLOjQoYPcB9+5c6fQax04cCBdunRBS0tLDgz6X5X/q6Ckut8FeX6T+mAyyJscf/v27QIdqN7e3hoYoy7Xrl3D29tb47VmzZqxfv16iSMA06ZNk0l49QTa52TZsmWMGTMGIyMjGjZsyLt37z4Z9/la+aqgpHAwDh06hIODA56enpLzBfIco4CAAPz8/LCystJwWgQfjCCkNjMzk62KxsbGvH37lo8fP6JQ5HFoiAxvQkICkZGRxMXF8csvv0gD6ObmRvHixSX5tdjEqreeqBMNp6enU61aNbZu3cr27dvp1KmTNNgXL14kMDCQCRMmsHLlSknArr4RADQcI5F9Erw46i0m6mXr6lltdWdLqcwjxj548CBz5szBzMyM2rVrA3nGaPfu3bRs2ZLhw4djbm7OxYsX5QZTS0uLsmXLMmTIEA4dOsTatWuBvCqIsWPHYmdnJz+r7tQtXboUf39/qlSposHv8+TJE6ZPn87s2bM1KrZq1arF+fPnpYEW915PT49Zs2axc+dOVqxYwQ8//CAVzNbWlvj4+EIXqMjU5ZeiRYty/vx59u7di76+PnPmzJHHUyqVREZGAmBvb0+5cuUoW7Ysp06dok2bNqSmpkpevZSUFDm8yNLSUmacRowYwaRJk6hbty4LFiygdOnScvBFfHw8z5494/nz5+zdu5e3b98SFhaGmZkZderU4cqVK1+jIv94Ec7BmTNnGD9+vHR6xKaocuXKtGnThqioKHnfxfoVQxgiIyMloa2oXDAxMSE0NFRuOvLr8NOnT4mJiZFOvoWFBaVLl5aV11+iwxkZGTRp0oT9+/fj5eVF+fLlAUhISGDJkiWULVtWOljiuoSu5ebmShukr68v9VdI/s2Zuh6rZ3rVdVqpzOM1dHJyok+fPlJ/Ab777ju5rmfPns2lS5cK8OkeP36cmTNnMmnSJHJyctDR0aFZs2ayRSU/X9iTJ0949OgRp0+flkkekRWfPn06VlZWVK5cWQNcRaBKSGJiIjY2NkRGRtK3b1+cnZ25ePGifJ52dnaf5AARiafCZOnSpbRq1Yo5c+Zw5swZrKys5Hui+gSgVatWFC9eHAMDAypVqkSpUqVk1l/ob25uLkWLFiUnJ4fQ0FAuXbrE/v37ady4MSYmJlSuXJnKlSszYMAAcnJyCAsLkzo8f/58jIyMcHV1pVixYoSHh+e1nfyPiFh3p06dokiRItSoUUOj4kKshc6dO2Nra0tiYqIMGIi/FZtPCwsL2UJpampKdHQ0cXFxMmBgYGBAdnY28fHxREREEBMTw88//yzXsJubG8WKFUNXV1fqsPomSKzDzMxMtLW1yczMpGLFimzZsoWtW7fSuXNnuYkLDg5m+fLlTJgwgQ0bNmBgYPBf0WFzc3MOHTrErFmzsLCw0NDhXbt20bp1a4YNG0aRIkUK6LC7uzsjRozg0KFDbNiwAcirJh41ahQODg6FYvCyZcsYPnw4NWrU0MDgFy9eMHXqVObPn/+7GAx5rZcLFixg06ZNLFy4kCFDhkjbbmdnR1xcXKEtPWIzmV9sbW25fPky+/fvJyMjg6VLl2pg8Lt374C8YG2lSpW4ffs2enp6tG7dWg6vExgshheJpOKvv/7KuHHjmDZtGo0aNWLKlClUrlxZDgxISEjg+fPnPHv2jIMHD/Lq1SsiIiIwNzenVq1aXL58+Q/pyj9VhG947Ngxhg4dKqsmBQZXqFCBTp06ERYWVigGQ14Fa7FixaS+QR4Gv3r1ClNT00Ix+MmTJ7x9+5br16+Tk5Mjh6OYmZl9FQY3b96c3bt3U6NGDTmp9uPHj6xYsYJixYphYmIiO2/+G350dHQ0VlZWDBgwAJVKJXW4d+/euLi4sH//fklPlN+PHjFiBNeuXSMgIEC2kjdt2pTp06dLfBXXrKWlxcuXL7l9+zZBQUHSHxI2Yc6cOVy5coWaNWt+VocTExOxsrLi7du39O/fHzs7O86ePUuJEiWAPG5VdcxUF/XnnV9mzZpF/fr1mTVrFqdPn9YI5KtvfFu3bo29vb0cmFGhQgU5OCU5OZm0tDRycnIoVqwY2dnZvHr1ips3b1K7dm0aNGiAvr6+pFbp378/OTk5hIeHSwyeN28eJiYmcgDhu3fvMDY2/jLl+BeIWHcXL17EwsKCevXqFcDgSZMm0bFjR4oWLUpcXBwmJiYaa1YMWxIBMMFhGhMT80kMfvfuHbGxsRoY7OLigouLy1dhcJkyZcjNzWX9+vV069ZNYvC9e/dYvHgx48aNY8eOHZQvX/6/gsFmZmYcOnSIgIAArK2tNTB4x44d+Pj4MGzYMBwdHQtgsKurKwcOHGD8+PFs3rwZLS0tihYtytChQ3F2diYjI0PDBikUClatWsUPP/xAgwYN5PVnZ2fz+vVrJk+erIF9AlOFzRKSk5ODkZERK1euZN26dcyaNYtRo0ZJG/d7fnRhGGxlZcW1a9c4ePAgMTExBAYGalyHCFiamZnh5eUlBwJ37NiR+Ph4MjIySE1NJS0tTfJy29vbyy6QiRMnMn36dJo3b86oUaOoWbMmjRo1YtasWSQmJkoMPnbsGI8fP+bt27fUqlWLGjVqcP369T+gKf8u+b8KSgr+fSGFUe/ExMSQk5M3OFZdbG1tJe1cfnn//n2hn8/OziYmJgZ7e3uuXLnC+vXrNTpUv0SKFy/O0qVL8fb2RqVSce3atU8Wb9WrV++rjv1VQUmhlBcuXMDCwkJmZJVKpdwci4DZnTt3ZHWFUqnk1atXLFmyhPDwcAD2798vnTHBe3L48GEsLCyoWLGidJ6jo6NZtGgRLi4uVK1aVRrohw8fEh4eTrVq1TAwMJDB0fwLS3BeiIll7dq14+XLl4wZM0Zed/ny5ZkwYYKs2jQ1NSUzM1MjawuaZfLCQIsstIGBAQYGBhIU8jtS6v8XP/fu3cPT05OWLVsWuNc6OjrUr1+fyZMn06FDB402GnGfixQpQr9+/TSOC0hnVJxbqVQSGhqKqakptWvX1uD2yM7OxsPDA1dXV548eULp0qWls3jlyhXpMAqQ09XVZdasWezdu5cNGzbQu3dvjet++vQpTk5Oha6fli1bsnv3biZOnFjgvfr167N27Vpmzpyp8fwsLCx4/PgxQUFB1KxZU2bBP378KNsMcnLyJh4KvkzhWBcrVozixYvToEEDzp49y7Fjx7h+/TomJiYYGRkxYMAABg0aRLVq1ahWrRrGxsZ8+PBB8v8BGgD5vyC5ubk8evQId3d3oqKiNKoc1PkLe/bsiYeHh2wfycjI4NixY2zduhWA6dOnU716dTIzM9HR0aFOnTrs27ePV69eUb58eWxtbSUxf1BQEA8ePODbb79FT0+P9PR0wsPDuXDhAh4eHtjY2Mjs8+/pcK1atbh48SK7d+9m1apV0gHy8fGhcuXKbNy4kdq1a2tMJxT6qn5M9coyUcEhJnyqV44WtjES72lpaXH8+HH279+Publ5gXttYmLC2bNnOXv2rEZAXj0ZUqdOHerVqyePJ97LT/6vVCrZtm0b/v7+mJmZye8iKlrGjBnDuHHjqFq1qsZGD36bzpibm4uzszM///wzgYGB2NvbExQUpBFAvHnzJmXLli107Yj22sTERExNTTXes7S0pGrVqlSpUkXjeABDhgyhUqVKvH37lm+//RaFQkGVKlV49+6dXGM5OTmSJ1E9wy6quV6/fs3evXvJzs7GwcEBIyMjihQpwoEDBySPZfPmzQkKCuLw4cPy3H+EI+WfLKIdSz3wq159ITCicuXKXL9+HTMzM7Kzs9HR0SE0NJSVK1fy6tUrIK+KIzg4GB0dHRwdHUlOTubUqVNYWVnh4eEhqwwSEhKYOnUqzs7O1KpVS048f/DgAa9fv6Z69epyQyQqSMRaFiJsQWZmJh07duTp06dMnDhR2p2yZcsyfvx4lMo83mdBdfB36/CTJ08oWbJkoZQjIkAxadIkunXrJvFSXI+o1BDTwn8PgyMjI1EqlTRo0KAABpcvX56KFSsSEhJCpUqVPovBxsbGzJs3T7an/fDDDxrX/fDhQ0aNGlXo+hEYXLly5QLv1a5dmw0bNjB27FiN+2xsbMzDhw85ceIEXl5eWFlZUb16dVJSUqQt0NXVxcDAQGMirUKhoGjRojg7O9OgQQPOnTvHoUOHuHTpkiTk7927NyNHjsTLywsvLy+sra15+vSpBoe0mBj8vyK5ubm8ePECFxcXOVE2PwY3a9aMHj16ULp0aYnBmZmZBAUFyanN/v7+NGjQQGJw3bp15dC6smXLYm9vL/Xu3Llz3L59m2+//VZWz0RERHDx4kUqVqyIra3tF2Owl5cXp0+f5uDBg6xdu1ZWUrVu3ZqqVavy888/U7duXTlM5+/2ow8fPszYsWML5UZs0KABY8eO5dSpU+jr6xfqR9euXVv6xeKYomU7vw7//PPPjBo1ClNT0wI6PGbMGIYNG0bdunU1gq75ddjJyYmTJ0+yZcsWrKysOH36tEYSPzg4WGOYjboIfyc2NrYAzpqbm1O7dm1JwaEu/fv3p0yZMoSFhclAVLVq1YiMjKRq1apy4rAYVKVuPz09PalSpQphYWHs3r2bjIwMicHW1tbs2bNHBseaNWvGiRMnOHLkiDx3jRo1vlJD/tkiMDgoKEj6ucbGxhoYrFKpqFGjhgxcQt6eLiwsjNWrV/Ps2TMAIiMjCQkJ0RiIdPLkSZlg1tHRISsri8TERKZPn46dnR316tUjKyuLpKQkHj58yLlz56hZs+YXY3BGRgZdunTh3r17TJ48Wdqd0qVLy2GCL168oEuXLqSnp//tGBwaGipnU+QXLS0tmjVrxsSJE+ndu7dMFAibkpOTw7Nnz+jZs6cG7igUCkkFI9azlpYW0dHRpKWl0aRJE2nnxL0pV64cNWvW5ObNm1SvXl1+J+GLq3N4WlpasnDhQnbu3MnChQsZNmyYxnWHhIR8cqBIy5Yt2b59e6H2qkaNGmzdupXBgwdr3Gd9fX3u3LnD8ePH8fDwwNbWVu6/4uLiZHGJgYFBgUp6Z2dnuQ8+d+4c+/fv59SpU1haWmJkZES3bt0YP3689LWdnJy4du2aRrX2/5oOFyb/V0HJN2/eaOyn8ldJFvY3QsSz/prPi9eTkpLw8/Nj7dq1n+ys+ZTMmzePAQMGMGvWLBQKxSepCj6XRPuUfFVQUmz0c3NzqVWrFmfOnKF169YaAxrEj4mJCfr6+gDs3r1bOlIAnp6eEsyVSiUzZszg0aNHskXXzMyMqlWr4urqypkzZzA1NZUT/nJy8qbheXl5ERwcTHh4OI6Ojujo6MiqSXWeDpGFysjIQFtbm1q1ahEcHEy3bt0k8CsUClJSUpg/fz5t27aVm6H8lUrqfBnqmV/hVOro6BAVFSXbXPK3E+ZfIIIo+uHDhxJQsrKySEtLIyMjgwoVKrB582a0tbU1AgzqXD/wW+BCHTTUM7UVK1aUPCd6eno4OTmRmJhIbm6uzKq0bNmS06dPU7ZsWelICqOsDkoVK1ZkyZIlLFiwoEBA8uLFi3IQRmEiePHu378vS9aFHD16FAMDg0KrO+zt7TX4LKpVq4aWlhZPnz6latWqsmos//MRP8bGxnTp0kW2P5QqVYrz589rtJMDnDx5koEDB2qc+9mzZygUCkko/G+XzMxMUlNTKVeuHCdOnKBXr14AGjqspaVFREQE/v7+Mqvr7++vMTBEbM5VKhWPHj1i1qxZqFQqOYXRy8uL0qVLo6+vz/79++nSpQs2NjZyA+Xm5oaZmRkXLlygfv36MnDyJTrcunVr7t69y9ixY2Urq0KR11Lx/PlzvL29ycjI0HAiRGAPKLBGFAqF5FNMTU2VbR3m5uY0bNiQc+fOaWyk8jt6r1+/Rk9PD319fbS0tEhPTyc1NVUj2GNlZaWxMVH/EdemrrvqAQ4PDw9+/fVXEhMTadiwIVFRUXLTJtp5rK2tpXMpnov6cAQhRYsWJTg4GAMDA06fPq2xscnNzWXBggWsWLHik+tn0KBBDBs2jMDAQA37lpaWxsiRIwudUq9QKAq0b9WsWZMVK1bQpEkTaTsL2wRCnn0TG+dt27ZRp04dkpKSOHHiBG/evJEbsPfv3xewPdnZ2XKN/VWcJ/+Xkp6eTnZ2NpmZmdSvX58TJ07QoUMH+byFngh9MjIykrQAYjARQIUKFbh+/boMCsycOVNjkrmJiQnt2rXDyMiI8+fPY2BgQKtWrUhLS5MVW9WqVePWrVuEhYVJrkmBY+KZimeYk5MjebU8PDy4du0aHTt2lDigUChIT09nzpw5ciq2On3Bl+qwrq4u0dHRsmJCW1v7szr86tUrypYty7179wrV4QoVKnD27Fm5PtV1WL0t7EswePfu3Z/F4BYtWrBv3z4qV678WQyuXLkys2fPJiAgoEBA8saNGxQpUgQzM7NC10+tWrWYM2cOwcHBeHl5abx3+vRpsrKyCsW6IkWK0KNHD/n/KlWqoKOjw9OnT6lRo4YGBosNkbr+Ghsb07FjR8lZVqZMGS5fvsyZM2cYOXKkPO7JkycL8OK9fPmSrKysTwZq/m0iuONKlSrF2bNn+f7779HT09PAYIVCQWRkJCNGjECpVJKcnMz48eNlUh9+23CISttp06aRm5tLcHAwkDe8qEyZMhgbG/PLL7/QoUMHihQpIjHYxcUFU1NTzp07R4P/cBh/DQbfvHmTMWPGSD9foVBw+fJl7t+/T6NGjf6wH52RkUFcXBxWVlaYm5sXCILk96MzMjIwNzf/pB9dvHhx4uPjcXJy+tN+dHR0NCVKlChUh7W0tDAxMZHUUJ/S4SJFivDgwQO0tLQ4c+aMRkBSpVIxd+7cT1KoQB4/49ChQ2X7v/p9GDZsWKEcygqFokDFSs2aNZk7dy4ZGRkYGBhIHc6PwUKfRbJ58+bN1KlTh9TUVI4ePcrr169la2dsbGyB6as5OTmcP39eVhT+20VgcFpaGk2bNuXw4cP4+fkVwGCRCDYzMyMlJYWjR4/KwWKQxy148+ZNdHV1pe8VEhJCSEgIkEeD4+vri4mJCVeuXEGpVOLj4yPXl66uLl5eXty5c0cOoftSDC5XrhyXLl3C19dXJqhEIG/GjBkS6/8IBuvp6REdHS2TUl+CweXKlfssBh84cKBQDFbvFlKvyFT3ocV5PDw8CAgIoEmTJpLDUgRwhR/dsmVLNmzYQM2aNeVx1QOhQoerVq3KpEmTGD9+fKEBSUNDw08GeqpUqcKsWbO4evVqgcDkxYsXiY2NpUKFCgX+ztraWoNbuVKlShgYGPDgwQOqVasmeXg/pcNiGJaZmRkxMTGUKVOGmzdvcurUKQ0qppMnT8pOQiGCN7dcuXKFfqf/BVHfc/23zgd5HLX5izzyi9jf5a+K/PDhQ4FqSCF2dnaFfl5bWxsrKyt+/fVXXr9+LakEAA0sfPr0KW5uboUe29fXF19fX5KTkzE1NeXp06f/N+3bwgl3cnKiSpUqLF++HHNzcypXriydAFH+u3TpUkn6e/z4cSCPP2HBggUolUpSUlJ4+fIlr169IioqivLly7N27VoCAgJ4/vw5wcHBkqfMwcGBoKAg0tLSSE5Olg5BqVKluHfvHlWqVNFotQA0DJJKpZLl6zo6OgwaNIgdO3bwyy+/4OzsTHx8PPHx8fj6+uLk5CSdKfWKnfxZH3USXx0dHY4cOcKNGzdwd3cnNzeX0NBQmjZtSqtWraQTlj+gYWpqSmxsrKx2EhknYfyTkpKwsLCQfB4iIysCv+L7imsRARqlUknt2rU1Sq6F0c7NzSU6Olq2AYnvo76pADSCJyIzqFAoePjwIRYWFoSHh/Pu3Tvs7e1JT09n586dcnjFp0RLS4utW7fK1tbWrVuTmZnJnj170NbWZvny5V+0Di0sLOjatSuHDx/Gy8tLAov4nvnbB8Rz79GjB8uWLaNx48Y8f/5coxz/4cOHvH//XsPoLlmyhFGjRmFsbMy1a9fk1MN/s2RmZlK8eHH27NlD27ZtZSBJX19fZl8DAgKwsbGhSJEiBAUFsXbtWqKiogCYP38+Xl5e5OTkEBkZSWhoKDdv3kSlUhEYGEh8fDxbtmzhw4cPhISEkJWVhZZWHpehOH56ejp2dnYULVpUTnazt7fXaMuAT+tw5cqV0dXVZdq0aZKXMDQ0lGLFivHDDz+Qnp4uzyv+Pn/biLoOa2trExMTw4oVK+S1vH37FqVSycePHylSpIj8W9DMqKkT4QsdFlUfgNRhoXvqrXCiGltL6zfeXRFsrFOnTgGuEIVCwatXr9DT08Pc3FyS86tnoNUzZ8KhUneqIiMjiY2NpXTp0ty6dYvmzZujVCp58uQJU6ZMoVOnTgXaCdTF29ubDx8+0KJFCznN89dff2X//v2MGzeuUGeqMOnfvz8LFizgwYMH1KhRQ94vUb2izpEk9Ll06dK0aNGC7OxsmjRpwokTJzTs1eTJk/nxxx/lOcLDw+nSpQvXrl2jf//+rF69+r+aCf07RKxtV1dXSpcuzbp167C2tqZWrVpyM/TixQv27NnD/PnzeffuHZs3b5a8m5UrV2bhwoWoVHkTm1++fMnLly95//49zs7O7Nmzh+nTp/P06VMOHTokSa/t7Ow4cuQIqamppKSkyA6HUqVKcevWLVmdnL/lUX0TI9a+rq4uP/74I3v27GH//v0UK1aMxMREYmNjadeuHa6urqSkpHyVDiuVSk6ePMnVq1cpUaIECoWCly9f0rBhQ6njhemwiYkJUVFREu/y63BCQgIWFhayWk1dh9UrOb8UgwXG/xkMvn//PmZmZkRGRhIREYGTkxMZGRns3r2bLVu2fBaDFQoFmzdvpn///tjY2ODj40N2djZ79+4lJyeH1atXf9E6NDIyokePHuzcuZOqVatiYGAg762gosjfwqerq4ufnx9Lly6lfv36hIWFaWDw06dPefbsmUawdNWqVQwdOhR9fX055O/fLpmZmRQtWlROkx06dCizZs3CwMCArKwskpOTZQts0aJFOX36NIGBgbKFfsaMGdSuXZucnBzevn1LaGgod+7cITc3byp7Tk4OGzdu5OPHj+zevVvq0a+//sr9+/dli66trS1FixalaNGiqFQqHBwcvhiDy5Yti66uLgEBAdjZ2WFsbMzr169xcHBg8ODBZGRkyCqrL/Wj4+LiCAwMBPK430QS9Pvvv8fBweGTfrTQD21t7UL96ISEBKysrP4SP1rI53QY+KwOx8bGEhMTg7u7O7du3aJ169YolUqeP3/OtGnTaN68uWzlLkzq169PVFQUzZs3p3Pnzri5ufHkyRP27NnDiBEjJCff70m/fv2YNWsWISEhslJUiEKh0JigLHxoS0tLfHx8iI+Pp3nz5hw9elTju06dOlWjQuzt27d07dqVixcv0r17dzZv3vw/g8GlSpXC0dGRbdu2aVQwZmRk8OrVK7Zv3860adOIiopi69atHDx4EMgbOCESvwKDQ0NDiYyMxM7OjqNHjxIQEMCjR484duwYcXFxQN5E86NHj8p9sLa2NsWKFaNkyZJcu3aNunXryj36l2DwDz/8wL59+zhw4AAuLi4kJyfz4cMHfHx8cHd3/0MYfObMGS5evEiJEiXQ0tLixYsX1KlT57MYbGpqyrNnz/4QBmdmZsrvLNaoerV37dq1uXbtmnx2AoOFHy2oEsR1qQfNRfBT/bqEPx0cHIyJiQnv378nPDwcZ2dnMjMz2bdvH+vWrWPnzp2fXUMbNmygf//+bN68mXbt2qFSqdi3bx+pqamsW7fui9ahrq4uffv25eeff8bT0xMDA4Mv0uFu3bqxaNEiGjZsyPv37zUwODQ0lNu3b2sUF2zYsIFBgwahUqm4dOnSF9uX/y9/nejq6lKlShVOnTqlUZV46tSpQiuMIS/ppN41BnnDzsQA29KlS/PgwQON98WskyVLlnx2HyjE2NiYc+fO4eLi8rtFH7Nnz2bAgAGFdhWqy1cFJdPT08nIyMDX15c1a9Ywf/58VqxYwfz58+UkPtHesWfPHo4dO4alpSWTJ09m6tSpdO7cmatXr3LlyhXOnz8vM7YlSpSgdevW1KhRgyNHjpCWlkZKSgrPnz9n9uzZlClThidPnmBqaoq5uTlxcXHcvn2b8//haVmzZg2enp54enpib29PamqqRpZTGFWVSkV6ejoGBgb07t2brKwsYmNjMTExkRyYycnJMsslqpjyExMLJRc8Hhs2bMDOzo4VK1ZoBAfWrFnDL7/8Qvfu3TXaKYUxrlu3LqNHj6Zdu3ZkZGTIIIX4zIEDB+jcubNGO6Y6+XjHjh3ZtWuXNNLC8KhUKq5evSqrUUNCQqhatSrHjx+nRo0aEmjgN6cpKChItn4CMksknDdxDZGRkXzzzTf4+PgwcuRIkpKSAPDx8WH//v0ya/4psba2Zv/+/dy7d4+LFy+ira3N5MmTcXFx+eJ1mJKSQkxMjHSuRXWU+E7imRUGnD169GDBggUYGRlx5coV3rx5wy+//EJQUJBsTYa8gOTQoUNp1KgRz549o0WLFly9ehU7O7svvs5/oojNiKGhIQ4ODpiZmdG3b1/Mzc3R1tYmLi6O2NhYfH196dGjB69fv6ZFixZoaeXRDVStWpUdO3Zw4sQJXr9+DeQ5S4J7pEKFCowYMULy4nTr1o26desSEhIiKxoMDAx4/Pgx586dIz4+nnv37uHs7EyLFi0oV64cqampJCcnf1KHU1NTKVu2LJUqVSImJobs7Gw6duyIQpHHn5WRkUFWVpZ0ooT+5t8oiyBgfHw8y5YtY9KkSdjb28vzRUREEBAQIPkahQ6qZ3qrVKnC5cuXZbWn2LwpFApiYmJQKpWyQjd/laQQodei1F1LS4vLly/LzdWdO3dQKpXo6+sTGRmJra2tbMEVf5OQkCCr2ITzpL4ZEo7bmzdvANi5cycnT55k5cqVMhDr7+9foIK5MPHz86N9+/YcPHiQkJAQXFxcOHny5FdVQbx48QItLS1iYmLkMwGk45o/sSCeXePGjdmxYwdHjhxBW1ubM2fOkJKSwpIlS2jcuDH169cH4OPHj3h7exMTE0PLli0JDAyUg0b+zSKqf9q2bcvixYuZP38+q1atYsmSJTg6Osp20Hr16nH06FEOHTqEmZkZU6dOZfLkybRp04bLly9z+fJlzp8/Lyuf3NzcaNmyJVWrVuXQoUMSg9++fcvYsWPx8PDg0aNHmJiYYG5uTmJiIrdv3+bs2bOoVCqWLVtG5cqVqVWrFsWLF+fjx48aLczqGxqBP35+fpIyRQy4EZXcX6vDP//8MyYmJjKxIPRwy5YtbNu2jX79+mlsMoT+1qxZk+HDh9O5c2eJreo6fODAAZlYBAro8NdgcJUqVfjll1+oX7/+n8LgiIgIWrduTZcuXRg3bpwcEtWmTRsOHDjwuxyqFhYW7N69m4cPH0pqCX9//88GQgpbh1FRUZLDSgzeUK/OEL/zJwd79erFkiVLMDEx4fr167x584Z9+/Zx5MgRtmzZIs8RGBjIjz/+SL169QgLC6Nly5ZcvXr1i5zlf7KIidU2NjaYmJjQsmVL+vfvj7GxMXp6enz8+JG4uDg6depEz549CQ0NpUmTJlSvXp3Lly9Tt25dab9fvnwJ5PlVNWrUoHbt2nh6esphSjo6OvTr1w9PT08ePXpEWloa5ubmGBoa8uTJEy5evMjHjx+5ffs2Tk5ONGvWjAoVKpCenv5ZDE5PT8fd3Z1Ro0YRFxdHVlYW33zzDXp6etJGfY0fnZSUJDnPRbeMqAyZMmUKU6ZMoUiRIoX60TVr1uTChQuyQ0Ldj46LiyMzMxNzc3NZufhn/GhTU1PCwsIoVqxYAR1OTU0lJiYGAwMDOXCiMB2OiIhApVKxdetWLl++jI+PD1paeXRMw4cPL5RaIb906tSJNm3acPjwYUJCQnB2dubEiRMySPol8vz5cxQKhayeEd9FPG/1ycni+SmVSurVq8eePXvktPAzZ86gpaXFkiVLqF69uqyySkhIoFmzZkRGRtKmTRu2bt1KsWLFCu2m+DeJWN+tW7dm1qxZLFq0iMDAQFasWIGDgwOxsbFoa2tTrVo1zp8/z8GDBzEyMmL69OlMnDgRHx8frl69ytWrVzl79izp6ekolUrc3Nxo06YNnp6e7Nu3T+rgx48fGThwINWrV+fXX3/F2NgYc3NzkpOT5T44NzeXZcuW4eHhQc2aNeXwpd/D4K5du5Kbmzdkx8jISM4j+CMYvGfPHhQKBcuXL5d+HOT5muvXr2fgwIGFYrCXlxdbtmyhe/fuKBSKAhh88ODBz2KweF34zuoDgIQfnZOTw927d/H09GT9+vU0b96cnJycAn70yZMnqVq1qjyu0F3xW9iMiIgImjZtSp8+fZg4cSJxcXGoVCpatGjBgQMHfpdD1dTUlJ07d/L48WNZfDVy5MivKnzJyMjg3bt3xMXFkZKSgomJyRfpsI6ODn379mXlypUYGRkREhJCWFgYhw8fZv/+/WzatEk+uy1bttC3b18aNGhAWFgY3t7eBAcHf9V+/d8i+ZNd/43zfY0MHz6c7t274+XlRc2aNQkMDCQ8PFwmgcaNG0dkZKT0oQYMGMDy5csZPnw43333HdeuXWP9+vXs2LEDyKMEEHMZhIiAYf7XPydiz/V7MnPmTDp16vTXBiV//fVX6fBWrFgRPz8/2rZty7Bhw3j16hXnz5/n7t27DBgwAD8/P2xtbXnw4AGWlpYsXrxYlgg7ODjg7OxMhQoVMDIy4sOHDxrZccEro1AoMDQ0/GQrQ2xsLK1ataJTp06cPHmSZcuWUbZsWdq0aYOLi4tGJZJKpWLgwIGsXbtWOgy6uro4ODjItkd1QykcF/WWJOFEiWyLSqXiw4cPxMXFMXbsWA1uL5VKxciRI/nhhx/IzMzEyMhIowoC8jja6tevz8KFC/npp580Mkhimp2Li4scDgJ5C6lFixbyGJ07d+bkyZMa16ruuIm/c3d3Z82aNdy7d0+DM06hUBAaGkpISAi9e/fWyAYJAyzOn52dTXJyMg8fPuTZs2d0796dJk2a/KG2SA8PDznp9GskOjqaVq1acf/+fbp27YqlpaU8v3pgQz0gqd5K5uDgwNChQzl48CDBwcH4+PjQvn17jh49Sm5u3gTnnTt3ysEafn5+JCQkMG3aNGrWrMmmTZuoXbv2v7YVNCEhgRcvXtCtWzemTJmCiYkJEyZMwMzMjDt37rB3716+/fZbduzYwevXr5k0aRJTp05lyZIlHD16lPr166Onp4ejoyPVqlWjdOnSxMbG4ujoKMvItbS0ZFuwu7s7zZo1K5TjTKVSMXHiRLm+tmzZwvr16+nTpw81a9YkKyuL9PR06RyICquVK1fKiYbi+QvHI3+loNAF0Yomzit+tLS02LFjB2PGjKFEiRIaVbempqaMGjWKnTt3Mnz4cI1WLyEdO3Zk5MiR2NraUqJECXn++Ph4Jk2axNChQ6XzJOyGkZFRAQ67Y8eOSb1Tvz719pTOnTszZ84cAgIC5PoTG6ZFixbJjCtQICAphsmIyrd9+/ZRunRpFi9e/IeoCQwNDQu0WX6pbN68mT59+lCqVCm8vb01OIbUK2rUM7zq1TpdunQhIiKCBw8eMHv2bOrWrcuECROoWrUqoaGhcvJ5TEwMkydPxs7ODiMjI8aPH8+HDx/w9/f/y1oN/tvy4sULmRGvXr06Xbt2pUWLFixevJiIiAjOnj3LrVu3aNy4MaNHj8bKyor79+9jb2/PihUrmDZtGpBHiVG0aFHKlSuHmZkZb9++pWrVqvI86txuBgYGzJw5s9DrSUhIwNvbm65du3Lq1CkWLFhAyZIlmTRpEgqFgri4OI2Ng/AfRKWhgYEB9vb2MpiuvmGBL9Phjx8/EhkZydy5cyW/tNDhIUOGMHDgQFJSUrCwsCigw3p6ejRr1oy5c+cyfPhwmVAEOHHihGyz/ZwOfykGFytWjI8fP3Lr1i0qVaokr0GhUBAeHs7169fp2rWrRtvYpzBYDL3q2rUrTZs2/UNtkeXLl/8q51NIXFwcrVu3Jjg4mM6dO8vWInX9FdirvnEVz87Ozo6hQ4dy9OhRbt68SevWrfH19eXYsWMoFAr27dvHrl272LNnD3Xr1qVXr14kJyczffp0yXvZoEGDfy0GC53o3LmznOA6duxYbGxsuHfvHnv37qVdu3YcP36c0NBQRo0axdy5cwkMDOTAgQPUq1cPXV1dHB0d8fLyoly5csTExGBrayuTpgqFQmJwyZIladiwYYHJnZCnRzNmzCAuLg6lUsnWrVvZtGkTPXr0oE6dOuTk5BSKwWvWrJF+tOgE+DN+9O7duxk0aBDu7u4afrSZmRkTJ07k559/Zty4cRrHEuLr68vIkSNxdHSkdOnSUr8TExOZNGkSP/74YwEqkz/qR3fu3JkFCxYwc+bMAgHAJUuW0LZtWw0OusJ0WGDwgQMHKF++PAsWLPhDXTgGBgZ06tTpq/8O8gJFfn5+uLq60qJFiwIYrB7IyN8GCtChQwciIyN58uQJixYtIjg4mHHjxlGrVi3CwsLYtm0b69ev5+3bt0ydOhUnJycsLCwICAjQwOV/ozx9+lTuTxs2bEiXLl3w9vZm8eLFREZGcv78eUlPMnz4cMzMzLh79y7Ozs4EBgbK/aydnR1OTk6UKVMGS0tLIiIiqF69ujyPvr4++vr6kgotICCg0OtJSkqSe5XTp0+zePFi3NzcmDBhAjo6OsTHx//tGJyYmMizZ89YtGhRAQweMGAAQ4cOlQNQ82OwlpYWvr6+zJw5k9GjR2vQlZ05c4Z3797JoTtf4kcLWyW6A8V3yM7Oxt7enoyMDK5du0aVKlXkd1QoFLx9+5bTp0+zfPnyAl1GWVlZZGdnk5GRQU5ODikpKbx48YKQkBA6deokaYi+VsqUKUOZMmW++u8SExPx8fHh8uXLfPvtt1hZWX2VDtva2jJixAiJwa1atcLHx4djx46hrZ03zHjXrl3s2rWLOnXq8P333/Px40emT5+Ol5cX27dvp3Hjxv8TdAxC/ulByc6dOxMbG8u0adOkThw7doxixYoB8O7dOw16FxcXF44dO8awYcNkwmTp0qV88803f+n3+FJRx+zPiUL1BZ9MTEyUHEXW1tbExMTI96ytrSlfvjz6+vo0bdqUqlWrkpaWxoABA3j16hU3btygWrVqXL9+ncTERM6cOYORkRHjxo2TCzo9PZ0xY8ZQunTpAhxJ33zzDStWrCgUwH7++Wfi4+Nly96NGzeYMmUKJ06coGzZslSoUIHQ0FDS0tIwMzMjMTFRkjEbGhoWKEUX2UxRgq/OVSG4dkRZuMgOHTp0CE9PT5o0aYKZmZkkmhWZ4oMHD5KSkiLbpNTL6sXP0aNHOXjwoJyi9vTpU6pVqyb5I6pVqwbAuXPn5HcXU2oBCTja2tqSYFhktdV/RHCtZMmSeHt7o62tzdmzZyXhsYWFhbxGMdxETC4Xv3ft2sXdu3eJj48nNzeXIUOGsHjx4i9abH+FrFmzhgEDBlCyZEnatWsnjbH6MlbPwousnnoLg+BWWb58OS9evCA9PZ1WrVrx/PlzMjMzef36NR4eHhQpUgQ9PT3ZQvXmzRv09PQoV64cnTt35qeffkKhUEj9SEhI+F1uiP8rEdfo5ORERESExnvVq1fHwMAAV1dXfH19sbKy4vDhw8yePRtvb29OnjxJSkoKx44dk47lypUrNYLbd+/eZcSIEfzyyy8aXCr37t1j7dq1hfIU5uTkyBYgXV1dUlJSWLlyJXPnziUhIYFOnTqRkpLC06dP5RCU3NxcGjVqRKlSpTQI+cWzVZ8SKjYB6vqqzpMliKGnTZvG6tWrsbKywtjYWA74EG06PXv2JDAwUGZK1Ss1tLS0iIuLY9GiRSQlJVGsWDGioqJIS0ujf//+MlBZrVo1Ll68SHZ2No0aNSIoKEhOAQVkdlhXV1dy6uRvm9HS0uLEiRMcP36c9u3b4+7uTkREBHv27KFq1aqy2ks4UeIeiMx+ZmYmYWFhbNiwgZiYGNLS0tDT0+P58+f/teojlUqFs7Mzb9++lZyCoro6/31VTyqot3MLRzE4OJi9e/fy4cMHrKys8PT0JDw8nPDwcLKzs2nXrh1Pnz6lXbt2nDlzhtevX/PmzRsqVKhA6dKlmTFjhgzI/tN1WB2DbWxsiI6Olu+ZmppSuXJl9PT0aNKkCbVq1SIlJYWBAwfy4sULLly4QL169bh16xYfP37kypUrZGdnM2XKFLmxzsjIYOLEidjb2xfgSOratStz5swplO93//79hIaGMmLECABu377N1KlTOXz4MKVKlaJ169ZcvXqVhIQESpYsSWhoKA0bNqRs2bLyuf5ZHQ4KCsLNzQ1vb+9CdfjYsWO8ffuWLl26fFKHT506xZ49eyhWrBh6eno8ffoUT09PevfuLYMr+XVYJBLgyzE4OTmZadOmUbx4cVq0aIG2tjYXLlwgODiYiRMnYm1t/bsYvHfvXoKDg4mLiyM3N5f+/fuzZs2av3jFfVq2bNlCz549cXV15ZtvvsHGxkZisNgwiuel3jamHtTIzc0lMzOTlStX8vz5c9LS0mjevDmvXr0iMzNTDkxzcnJCS0sLNzc3goKCePPmjeS3a9++PcOHD//XYbBoTVb3WapWrYqRkRHFixfH19cXGxsbTp48ybRp06hbty4XL14kLS2NI0eOYGVlxbRp01iyZIlGcPvhw4cMHjyYn3/+WcNffvLkCfPmzdPglBWSm5tL8+bNZYVtWloaa9asYfbs2cTGxtKhQwfS09N59uwZhoaGMvnXrFkzSZPwV/jRAQEBLFu2DAsLi0L96O7du7N+/XoZHMjvRycmJrJ48WI+fvxI8eLFiYmJISkpie+++04GKv8qP/rs2bPs37+fdu3aUaZMGd6+fcu+ffsoX748PXr00KioKkyHw8PDWbNmDbGxsaSmpqKtrc3jx4+/qlL5z0rJkiV58eIF7du3x9PTs1AMzo+/4t/qweaQkBB27txJVFQUZmZm1KhRg1evXvHmzRsyMjL45ptvePbsGe3ateP8+fO8fPmS8PBwypUrR8mSJQkICJB+5D9dh9UxuEiRInIaMuQFiKtVq4aenh6NGjWSnJtDhw7l0aNHnDx5Em9vb+7evcv79++5c+cOsbGxzJo1SwazMjMzCQgIQF9fv0BHR69evZgwYUKha+TEiRPcvn1bFv2EhIQwdepU9u/fT4kSJfDx8eHatWvExcVRqlQpXr16Rb169SQFw1+BwRcuXKBIkSK0bt26UAw+e/Ysjx8/pmfPnp/E4HPnzrFz506cnZ0xMDDg6dOnVKhQgX79+snkRWF+tOhCgjw/WlCFiGvMb6PS0tKYPn06Dg4OtGjRQlKDXLt2jYkTJ8rhRfn96IyMDNkNumfPHq5fvy4xuHv37hpV/n+37N69m06dOmns2f6IDmdmZrJ8+XKePn1KamoqTZo0ISIigszMTEJDQyldujTu7u5kZmZSqVIljhw5QlhYGLm5uXh4eNC2bVtGjx4tA9D/dB0uTMQ1Dxs27A8Flv+oZGRksGjRon/VvfozYmJiQkhICK6urp/93FcFJYcMGcLLly9p1KgRM2bMIDk5maNHj8ox42FhYRw6dEi2YHt7e2NhYUHz5s1p3769JO7etWtXgXOoVCpatWrFzp07NR7QgwcPGDlyJJs2bcLe3l6+fvnyZQICAti3b1+BdqXr168zffp0goKC5EAOjS+tyONs+/HHH0lPTwfQUFThTAi+GVEGLQy4cLR1dXXZunUrPj4+eHp6Ym1tjbGxsWxvSU1N5erVq4SEhNCjRw8NYnzh4Lx//56bN29Krk4ROBLl5MKhUygUMjMNaGSvRVZLXFN+3h7xu1q1aty4cYP79++zb98+YmNjKVWqFH369MHMzExWYoiMkHCmUlNTSU9Pl0Eacf4zZ85w4cIF3rx580my1b9acnJyWLFiBRMmTADgxx9/xNHRUQZIlyxZAqBRnaHebqBe3i4M0OnTp1mxYgUKhYIaNWrg6+tLo0aN0NPTY8iQIcTHxzN37lwiIiIYO3YshoaG+Pn5kZWVxcyZM/8VhlhcY82aNalXrx6GhoZMnjyZfv368cMPP6Cjo0NaWhoXLlzg4MGDXLlyhUqVKlGtWjVMTEwYPnw4jo6ODBo0iF69ehXKK3L+/HlOnTrFjBkzNF7/4YcfqFy5snQuIG8zMHjwYBo0aEC3bt00Pp+cnMyqVatYvHixxnAddTE0NGTixIk4OjrK9jDhWAmycbExEhWRwlERrcHibxYvXsy8efMoUqQIlpaWcuJhSkoKmZmZfPfddyxfvlxuiOA3R0qlUnH9+nXevXuHiYkJzs7OWFhYyAC/Or+PcHKUSqUcRiLsgdgMifaKwvRX3LuEhAQOHTrErVu30NPTo3Xr1jRq1EijLU04UZmZmaSlpZGWlibpN0QGOD4+ngULFtC3b1+WLl36J1bX18nz58/58ccfOX36NDVr1uTbb7+VdkzocH7qhfzVVsIm6+jokJiYyKhRo3j37h3W1ta0adOGdu3aUbx4ccLDw+natStz586lRIkSbNu2jc2bNzNq1Chu377NunXrcHFx+cfrsLi+kSNH8uuvv9K0aVPJGXn06FE5aODVq1ccOXKEAwcOkJaWxjfffINSqaRmzZr069eP6Ohovv/+e/bt21cgU6tSqfDx8WHjxo0aA5CePHnCoEGD2LhxI05OTvL1GzduMGHCBPbtT5FJRgABAABJREFU2yfbd4UEBwcTEBDA0aNHP4nB1atXZ9SoUaSkpPwpHd6zZw/16tXD09OzUB2+efMmFy9e5Pvvvy9Uh6Ojo7l+/Tq5ubk4ODhgaWkpg2Gf0+HU1NQ/jMGPHj1iz549cnBG7969sbKy+moMvnjxIkFBQbx69eq/lljIyckhMDBQVq798MMPODs7fxaD8ycW4DcMVqnyuKoWL16MSqWievXq+Pj40KRJE/T19RkzZgzh4eEsXryYd+/eMW7cOBQKBd999x1xcXEsXLjwH6+/8JsO165dm5o1a2JpaYm/vz9+fn4MGzYMHR0d0tPTuXTpEgcOHODSpUtUqFCB6tWrY2xszLBhw3B2dmb06NH4+PhQu3btAue4ceMGu3btYuHChRqvDx06FDc3NwYOHCjvf3p6OiNGjMDT05O+fftqfD41NZU1a9awaNEi2W6cXwwMDPD398fd3V12LvwRP1pHR4c5c+Ywe/ZsrK2tC/Wj+/Xrx/Lly6X+qfvRALdu3SIiIgJjY2OJwUKf/g4/+uzZsxw6dIibN2+ira1Nq1at8Pb2lt/7S3U4ISGBBQsWULVqVc6cOfNHl9ZXy6tXr/jpp584duwYXl5e9OjRQ1a9qWOweE7q/NvqHV3i9eTkZEaPHk14eDhWVla0atWKb775BldXV5mADAgIoHz58uzcuZPAwECGDh3KgwcPWLlyJSVLlvzH67C4vrFjx3Lnzh2aNWvG8uXLefXqFYcPH5ZJu/DwcI4cOcL+/ftJTk6mXbt26OjoUK1aNQYMGEB8fDx+fn4cOXKk0GqpDh06sHz5co3EQmhoKN999x0bNmyQlVEAd+7cYdSoUezdu7dAW+S9e/eYMWMGBw8elOtNXRQKBZ6enowbN47U1NQ/hcGiOKdGjRqFYvD9+/c5dOgQQ4YMKRSDY2NjuXbtGjk5OTg6OmJubo6jo2MBOiL4vB8Nv9F3/Z4f/euvv7Jnzx6ioqJwc3OjT58+Mpah3mWk7kenp6fLJL+wK+fOnePYsWM8f/78k4NB/mrJzc1l48aNjB49GpVKRc+ePSlRooRMrHytDmtra3Pp0iXmz58vEzg+Pj54e3ujr6/P1KlTefjwIWvWrCE6OpoRI0aQkpLC8OHDefPmDStXrgT+3UHJ4cOH/9eDkgsXLvxX3as/I39LUDIhIQETExNOnjxJnz59qFq1qmytOHr0KM+ePcPIyAhAkuELY7hw4UKys7Px8PCgadOmhZ5n27Zt5OTkaExahrzA5NSpU1EqldjZ2fHixQtcXV0JCAj45JTJAQMG8P3336NUKomMjOT169ekp6dTpEgRNmzYwNmzZ5k+fTrFixcnIyNDOs5CWdXbLQANA6yu3KdPn0ZHR4d27dphbm4ueR2EUxIYGIiLiwu1atWS2SGRTZ45cyaZmZk0aNAAlUrFhQsX0NbWZtSoUTLLpJ5REk6TuDZ1EUZHqVRSv359Ll68KDcA6u3MoaGhrFy5kkaNGmFra0tSUhLHjx+nePHi9O/fXwKRenVVamqq5BgR15OdnU1CQgILFy7Ez8+PlStXEhYWRnR0tGzL/zslMjKStm3bEhsby+DBg6XhVQch4fCKZyecTBHsEG0GO3bswNHRkfr168tpcQBRUVGMGTOGtLQ0Fi9ejI6ODmFhYRK83N3dWbJkCaampv94Q6yuw5mZmUyePJmVK1eye/duSYx/+fJlUlJSsLS0lO1cRkZGJCQkAHkOdIcOHQgKCir0HCqVCm9vb06dOqXxem5u3mRBUcGcmppKZGQkAwcO1Jj8pS5v375l0KBBrF27lrt375Kens7r169JS0sjKSmJ+fPn4+7uzvjx40lOTpZ6JZ6xetuUqN5RD1Crc61MmDCB+fPny2Ci2CgLR2TAgAGsXr1ackKJY926dYvAwEDJoxceHs7ly5fp3r071atXL1DVod4Soz7VUIhYow0bNuTixYsaFZLit5aWFnv37uXJkyfUrFkTc3NzQkJCuHnzJqNGjZJcV0JvxZRIsSESG0Tx/QQx+YMHD7CxseHly5eYmZnJKpi/S1QqFevXr+e7776jQ4cONGjQQKPdRj0Yqa7D6vdBTHoEGD16NOPGjZNV+yJgPHXqVIoUKUJSUhL9+vUjOzublStXEhgYyJQpU4iIiGDt2rX/eGcqPwafOXOGPn36ULZsWSZOnMi+ffs4evQoT58+lRVNycnJGhg8Y8YMTE1NcXZ2pm3btoWeZ+/evURHR2sMKwB4/PgxkydPBvIoMF68eEHRokWZOXMmFhYWhR5r2LBhdOrUCRMTE968eUN2drbsXLh48SLHjx9n9+7dsor/j+rwlStXSE1N5ZtvvsHU1LSADm/evBkrKysaN26socM5OTnMnTuX5ORkGjVqBORNv1SpVIwdOxZdXd3P6rBIaAr5UgwODw9n2bJl1KtXDwcHB1JSUjh+/Dj29vb8+OOPqFSqL8bgpKQkFi5cSLt27di4cSPh4eF8+PCB8uXL/y6v1Z+V9+/f065dO8LDw+UwmsIwWB2H1e2ZUqmUk5737duHqakpTZo0wdnZWWJwbGwsQ4YMITc3l7lz56Kvr09ERAR9+/bF1NSUihUrMnPmTGxsbP7R+guaOpyTk8O0adNYvHgx27dvR09Pj/Xr13Pp0iWSk5OxsLCQAxhMTExky29sbCxdunTh5MmTn7TPTZs2LYDBKpWKpUuXcujQIcqUKUN6errko2rfvn2hx4mJiaF3795s3bqVu3fvkpqaKv1oUVni6OjIkiVLiI6O/lN+9MSJEwkICMDCwqKAH52enk6fPn1Yt26dhk+sVCoJCQlh5cqV1KhRAzc3N968ecPFixfp0qUL9erVk4GFv9KP1tLSYt26dbx//55vv/2W+Ph4Hj58yLVr1xgxYgRubm7y2F+iw2fPniUoKEhya7948QJjY2NKliz5t2Pwtm3b6NmzJ23btqVp06Yy8CSelbqtzZ/MVSqVEoOVSiVDhw7F39+fcuXKSQxSqVTMmTMHU1NToqOj+emnn8jOzmb9+vUsXbqUCRMmEBYWxpYtW/5VGGxqasqFCxfo06cPzs7OBAQEcPjwYQ4dOsTjx4/lNPOkpCSNKvIJEyZQrFgxTExM6Ny5c6HnOXbsGE+fPi3QsfD8+XMmTZpEVlYWTk5OvHz5Ent7e2bMmIGNjU2hxxo3bhze3t7Y2toSFhamgcE3btzgwIEDbNmyRfr5fxSDb926xYcPH+jatWuhGLxr1y60tbVp2bKlBgbn5uaycOFCYmNjadSoEUqlkkuXLpGZmcnYsWPl8K+/2o9+//49S5YsoWbNmhQtWpSUlBROnjyJlZUVQ4cOlbopBnYJXc7vR+fm5pKSksK8efPw9vZm165dhIeHy6Gpf/c6jo6OpkOHDjx+/FhSyP1RHT569CgKhQJvb29cXFzknjo5OZl+/fqhq6vL9OnTMTY2Jioqil69eqFSqahXrx7+/v6ULVv2H6/DhYm45hEjRvzXg5ILFiz4V92rPyN/S1Dy4sWLLF68mH379lGmTBn8/Px4/Pgx27Zto3v37vj6+rJlyxZOnDhBjx49iIqK4vDhw2hpaVGjRg3evn1Lq1at6N+/P/v27ePOnTsYGhrSoUMH2rZty7Vr17hx40ah/HOQ55DFx8djb2//WTL3zMxMfHx85NRvIS9fvpSbkerVq6NSqejXrx8VKlSQWSJhuNQ5OPKXf6sb47S0NKZOncqsWbMwMTHB0NBQlo0nJSUxePBgAgMDZQZV/L2/vz/ffPMNtWvX1ig/v3LlCgcPHmTq1KmSBy6/MRbHEtem3uKpzrOUmZnJkydP0NLSolKlSuTk5DB8+HAOHz7M+/fvycnJkVN/169fT05ODl27diUrK0saX2GUBaG9+rSz3Nxcbty4waFDh2RGC/IcuypVqlCnTh2aNGkiW8X/annz5g2enp6UK1dOkqyrl6uLjJ4wxu/fvycpKUny24hW2eHDh7Nx40ZMTEzkMXJzc1m1ahXW1tY8f/6cWrVqyQm3d+7coUuXLjg5OdGrVy/69+//jzfEQocXL17MjBkzSEpKon379pQtW5a1a9eiVCrp27cvFStWpE2bNnh5eVGpUiVOnjxJREQEjo6OVKxYkfv377NmzRqUSiXbt28nISGBsmXL0r9/f1xdXSX5emGSnZ3NmzdvJB/W52TevHlUrFhRkqYLefnyJW5ubvj7+zNr1izq169P165dZeuCeiZUnRtH3TFRz/ArFAr27t2LhYUFLVu2RF9fHwMDA/nejh07UCqVtG/fXq5vpVLJixcvWLlypQxWC33MzMxk9OjRdO/enVKlSmlsiNSdqcLsS/5MrkKhIDIykvfv32Nvb0/p0qXZsGED2trazJkzh7t378r1HRsby7Bhw5g3b54k2heVniLDq05eLrLLGRkZbN26lTdv3mhs0IoUKUKdOnWoU6cO7du318jO/5UyYcIEZs6cyZQpU7C2ttYIRAq9FTYqKyuLiIgIdHV1cXFxkc7U8+fPuXnzJmPGjMHQ0FA+u+zsbNq2bcv27dvp1auXnIiYmprKuHHj2L59Ox4eHgQHB5OcnPyP1mGhv1evXmXJkiXs2rWLUqVK4efnx7Nnz9i6dStdu3alXbt27N27l71799KzZ08iIyNlEqFGjRpERUXRsGFDBg0axOHDh7l58yb6+vq0b9+edu3aERISwokTJ5g4cWKh1xEXF8fHjx8lT+enRLSF5k9ghIeHk5WVhYuLC7a2tqhUKvr370/FihVlBdPX6nB2djYTJkxg+vTpmJqaauhwamoqAwcOJDAwUAY5xDmmTp2Kt7c3jRs31uCbCw4OZvv27cyePZusrKxP6nD+ao/CMDgrK4snT54AUKlSJRQKBYMHD+bAgQPExMRoYPD27dv5+PEjvXr1+ioMvn37Nvv27SuAwZUrV6ZOnTo0btyY5s2b/y38T+/evcPT0xMXFxe6du0qK2jUk4KCI1BbW5uoqCiSkpKwt7fHyspKYvCoUaNYvXq13MwKDN64cSNKpZKYmBjKlStHw4YNycrK4sGDB3Tu3BkbGxu6du3K0KFD/9H6C7/p8PLlywkICCAuLg4fHx88PDxYv3492dnZ9OvXj6pVq9K8eXMqV66Ml5cXp06d4vXr19jb21O5cmXu3LnD6tWrMTAwYPv27bIts3///ri7u+Pj48O+fftkgkddcnJyCA8PR0dHB0dHx88GvZYvX46TkxO+vr4arws/esWKFSxcuJB69erRvXt39PT0ZPvk1/rRhw8fRltbm7Zt26Knp6fhR4uptN9++630h7W0tAgPD2fhwoUsWbIEIyMj6UdnZWXh7+9Phw4dqFix4p/2owUGFylShLJly7Jz505SUlJYvHgxDx48kDqcnJzM4MGDmTNnDsbGxl+sw6KFMj4+XgODTU1NZStwu3btfncz90dlxowZTJgwgYkTJ2JnZ4eenp6GfVX3owUGa2tr4+rqKpMKYWFhBAUFMWXKFA3/SWDwjh076N69O7/88gsqlYq0tDSmTJnCunXr8PT05OrVq2RkZPyjdVjo740bN1i2bBnbtm2jRIkSdO/eXdLidOjQgW+++Ybjx4+zfft2unfvzocPHzh58iS5ublUr16d2NhYatSowahRozh69CjXr19HV1cXX19f2e6+Y8eOT/I4x8fHExsbi62t7e8mnpo2bUpQUJCGngsMdnV1lYNt+vfvT+XKlf8wBufm5uLv78+UKVOwsLDQwOD09HR+/PFHVq1apYFRSqWSWbNmUatWLVq0aKGBwSEhIaxbt4558+YVSCx8qR8tgsGZmZk8ffqU3NxcKlSogL6+PgMHDmTGjBk0adKEe/fuye+xb98+Xr9+zY8//ihbz8UUctFxVJgffffuXXbv3q2RBFYoFHh4eFCnTh0aNWpEy5Ytv2oQ1ZdKdHQ0VapUoVatWtSpU0cm7D+lwx8+fCApKQlbW1vpc+vp6TF+/HjmzZuHjY2Nhg7v3LmTxMREMjMzcXBwoGXLlqhUKp49e4aPjw8GBgZ07dqVWbNm/auDkiNHjvyvByXnz5//r7pXf0a+NCj5VZGievXqYWtrS+PGjQkPD2f8+PEYGRkxduxYZs2aBYCtrS3Xrl1j7dq1ODk5UadOHbZs2ULx4sVZs2YNZ8+epUGDBixZsoQJEyaQmJjIli1baNOmDfXr1/8s6auVlZVGW9mnJCkpqdBBBm5ubsTExGBtbU25cuXQ0dFh3rx5VK9enQEDBkinvTCeHGGgxftCDAwM6Ny5M1OmTKFHjx6UL18eHR0dHj16xIYNGxg6dCiAzF4olUpevXqFiYkJDRs2lM6PqFBs0KABZ/4fe2cdFmX6vv3P0AwgICJidyEiKopYKCCioK6Bjd2t2F1r19qxdouB3d0d2GIrJiKdM+8f/O57nwF01XX3q/vudRwcwDwzT81zXud1X3noEE+ePCFXrlw6aetiP4A8P/ijFFz00tBoNCxZsoRbt25Rrlw5DAwMWLt2LQkJCbRu3Zq4uDgyZcokFXdKSgodO3akZcuWNG3aVCe7QZyXMNQEoQgCEZlvIuJiZGTEmzdvePfuHcuWLWPGjBlky5aNLl26MHDgwO8K+ly5clG5cmVCQkJkPz4RzTYyMsLU1BS1Ws2tW7dYvXq1VMJbtmyRzkgRkVc2bRby8eNHHB0defDggZy0bmhoSMmSJbGzs+P+/fssWLCA3bt3f7dr+ruld+/elC9fHn19fYKDg1m7di0lSpRg3bp1lChRQpYCrFixglu3bmFpacmsWbPo1q0b+vr6VKpUiT59+mBvb8/GjRuxtbXl/PnzBAYGUrt2bZ3SqLRiYGDwxVPbXr58mW4xBMjyiNKlS1OvXj2OHj3KtWvXaNu2LeXLl5dRU7HoUGbGKnErvnOVSkXdunWZMmUKHz9+xM/PDysrKxISEti2bRvPnj1j9OjRsvRLlHetXLmSUaNGYWVlJXVDUlISxsbGDB8+nF9//ZXx48fLBZRyQSSOL85TuV/x8+DBA+bMmYO9vT0FChTg/PnzTJ8+nejoaK5evSrLpAwMUpuCm5iY0Lp1a3bu3EmTJk2kY09EfJOSkqRjT7kg02g0uLu78+jRI4mX2NhY3r59y8WLF9m+fTv9+vWjevXq/Prrr7Iv1/eSZs2aMX78eOl4FdlWwhmpVqtRqVQsX76chw8fUqxYMRISEli4cCF+fn7UqVNHGp/K+yt+C4eP0lDT09OjcuXKrF69mgcPHlC7du2/xVj8O8TNzY0sWbJQvXp1Xrx4wfDhwzE1NaVPnz6yZDNv3rwcP36c33//nZw5c1KuXDlWrVpFwYIFWblyJbt27aJatWpMnTqVLVu2EBUVxZo1a/D19aVmzZqf7W0mson/TOLj4zN8n7IvpYODA2ZmZkyYMAFvb2+aN2+OsbHxV2PY0NCQFi1aMHbsWFq0aIGjoyNJSUncu3ePpUuXyiFySgy/fPlSZgWIjABIxXDFihU5cuQI9+/flyVRGWH4cxys1WpZvnw5V69epVy5chgaGrJhwwbi4uJk4C8tB7dq1YpWrVqRkpLyVRwsBkYJDjQ2Nubt27e8e/eOlStXMmvWLLJmzUrHjh0ZMmQIpqamf/r9fanY29tTvXp1Tp06hUql0sGbkoPv3bvH8uXLyZo1K7a2ttKJKjhY3MeMONjBwYH379/rODgdHBywt7fn7t27LFu2jKNHj363a/q7pXv37pQrV44CBQqwe/duNm7cSNGiRdm0aZOcvNypUycWLlzI3bt3sbS0ZMqUKfTu3RsDAwOqVq3K4MGDsbS0JCgoCHt7ey5dusSQIUOoVq0aMTExGTokIfWZ/RoOrlKlSrrXhR3doEEDQkNDOXHiBD179qRz585UrFhR9kr+Gju6Vq1akt98fX3JnDkziYmJMmtMcKnSjl61ahXDhg3D2to6nR09cuRIhg4dSunSpXUGVgj5Egw/efKE3377DVtbWwoWLMilS5eYPXs2kZGRbNmyhadPn+pg2MLCgi5durBt2zbatGmj05LlcxgGqFu3Lg8ePMDS0lK20nn9+jWXL19m165dBAYG4u7uzrhx4zIs2/8r0qxZM4YNG0ZYWBi5cuXScWgIDtbT02PVqlXcvn0bBwcHkpKSWLhwIT4+PjRo0EDaIRlJWp0gnoeqVauyZMkSHjx4QN26dX+aoRnly5fHxsaG6tWrExYWxsiRIzExMaFr167MmTMHlUpF0aJFOXz4MMuXLydHjhw4OzuzevVqihQpwqZNm9i0aZP8PoOCgoiNjWXdunXUrl2bevXqfZaDrays/nSCLaRiQdhPSknLwRYWFkyePJnq1asTEBCAqanpV3Owvr4+bdq0Yfz48TRv3hwnJyeSkpIIDQ3l999/p2PHjhgYGOhw8Lt374iJicHX1zcdB5crV45jx44REhIih9x8iR2tzNAXOuL8+fOy32dQUBBxcXH88ssveHp68vTpUzksU6vV0qxZM1q3bk1iYqJORrc4L7HvtHa0cmij6Ef75s0b3rx5w+rVq5k9ezbm5uZ069aN4cOHf9dKQltbW2rUqMH58+dxc3OTwfq0GH7y5AnLli0jc+bMZMuWjcePHwOpa0LRMi4jEYlgop+zwHCRIkXIlSsX165dY82aNVy+fBlHR8fvdl3/tIhn6J883v9PUrly5S+yPb/KKdmhQwesrKyYM2cObm5uTJw4kZo1a+pkLVasWJFHjx5x8uRJVqxYwerVq+XNr1q1KkOHDuXUqVMMHDiQFi1aYG1tTa9evXB2dsbf359nz5595aWmF0tLS8LCwjLcliVLFhISEjAzM2PBggVcvnyZli1bsn//flq1akV8fHy6VHWRyg7o9J8RirJMmTJky5aNnTt3smrVKiB1qtaQIUPIli2bVGDC6Dl27Bi+vr4YGxtjYmIiswLi4uKkkj5x4gQtWrRIFxFSRnSVkSFlr48pU6ZQuHBh+vbtC6Q6g7p164avry+nTp3C399fLnpEthSkDtQJDQ2lSJEiOot0Zfq+cjq3RqPB0NBQlqrGxcWRkpIie/kkJSURERHB48ePGTduHOvWraNJkyZUqFCBChUqpOtD9meyZ88enYmJhw4dYvv27VSvXh0DAwPpIAbYv3+/zKLasGEDkydPRq1Wy3sYGhrK0KFDmTNnjuzn4+3tLYkHUo3vCxcucOrUKbp06SLLbvr27cuTJ0/QarXkzJlTNqP/GaRHjx5cuXKFy5cvM3DgQBo1aqQTCBAOoFGjRjFkyBAGDRpEyZIldfbRsGFD4uLiuH37NnZ2dri6uhIUFESFChWoVq3adznPfPnycevWrU9Ohn78+DEBAQEMHDiQ4cOHM2vWLJ1IpTBehFGhXAwJ/ArDy8AgdeDTsGHDmDBhAlqtFmNjY2rWrEmLFi3kEBol9iIiIsiTJ49sAaBSqUhMTCQmJgZ7e3vi4uLk+4V8KitDGHqC8N+8ecPMmTOZOnUqNjY20kl3+vRphg8fzvHjxylVqpTUSwJ7NWrUoH379gQEBEh8iutVTh8Vfwsdlz17drJlyybLvZOTk8mZM6csA3/x4gUhISGy/2PVqlVxc3OjWLFiX0Wsu3btonbt2vJ/kVWqVquxs7PDxMQEMzMzWU548OBBTE1NGTt2LJ6envTt21dn4TNr1iy2bdtGgwYNmD17tuyXGR8fL+97YmIie/bsoVy5csTHx6NSqbh27ZqcgKnRaGRAbPv27V98Lf8rCQgIIHPmzCxatAgXFxfGjh1LrVq1dIxcFxcXQkNDOXv2LPPmzWPjxo3ye3J3d6d3796cPn2afv360aZNG6ysrOjWrRsuLi74+fnx5MmTv3yepqamvH//XierQSnJycno6emxa9cuFi5cyIABA+SiPjY29qsx7OjoiL+/P4GBgaxduxaVSkWhQoXo378/OXLkIDExUQfDx48fp1atWpI30mLY19eXw4cPU6RIkU9iWFkClZaDZ82aRfbs2eVwEcHBdevW5fTp0wQEBGTIwW5ubty5cwcnJ6cv5mADAwNcXFw+ycGRkZE8evSIKVOmsGHDBpo2bSo5+FPtbz4laTn4xIkTbNq0iYoVK36Sgx8/fsyqVauYOHGi7BWoUql48uSJ1N0VK1Zk79691K1bNx0HX7p0iTNnzhAQECA5eODAgTx48ACtVou9vT0jR47UGWDyI0uPHj24ceMGZ8+elRxcvHhxHZwsWLCAIUOGMHLkSLp27YqLi4vcZmRkhJeXF2ZmZly/fp0cOXLg4uLCxo0bcXd3T8fX3yqCgzPaX5YsWQgODqZRo0aMHj2ayZMnM2PGDCpVqoS1tfU32dH9+/fn5MmTTJs2jZSUFAwNDfH29sbf31+nJ6TA2ps3byhQoECGdnSWLFlkibbgWvhyOzo8PJwpU6YwefJkmeBgYGDA1atXCQwMJDQ0FBcXl3QYdnd3Z8WKFTIw8aUYtre3x87OTgfDOXPmJCUlhbi4OJ4/f87t27epXLkyTZo0wd3dHTc3NxwcHP4SByclJREYGIiJiYkMCqrVasnBhw8fxsTERGa09ezZU4eD582bx7p16wgICCAkJER+78rvOiUlhf3791OqVCnJwbdu3ZLtQJKTk6lVqxYeHh7s3Lnzi6/lfyUtW7bE1taWxYsXU7JkSdavX0+tWrV01jOlSpXiwYMHnD9/nilTprBt2zbJI1WrVqVjx46cOXOGXr160blzZzJlykSnTp1wdXXFy8uLR48e/eXz1NPTIyYmRmIwrYhnLzg4mN9//53+/ftjZmZG7969v4mDixYtyrZt2wgMDJQVRvny5aNPnz7kypUrHQefOHGCmjVrfpKD/fz82LJlC05OTuk4WBlI+JQdvXjxYszMzFi6dKk8ZufOnfH39+fUqVO8efMGS0vLdHZ01apVuX79OuXLl5d4BWTANCM7Wl9fHxcXF7RarbSjbWxsZLVUeHg4jx49Ytq0aWzcuJHmzZtToUIF3NzcvsjBrJS0GD5//jxr1qyhXLlyaDSaDDH84sULfv/9d8aPH4+VlZXE8PPnzxk1apTMeN+7dy+NGzfWwXC+fPk4deoUN27cYO7cubJtzbBhw7hz5w5arRY7OzvGjBlDeHg406ZN+6rr+VHkP6fkt4tGo+HBgwe8efMmXTsFEdj80uStr3JKLl++nJSUFPz8/FizZs0nvf1qtZo9e/YwYMAAnRu/fv16evfuzbBhw6TDqFChQly/fp1Jkybh4ODAu3fvdAbafIsYGKROZzx+/HiGkd7Vq1dTt25dDAwMKFq0KM2aNWP37t2UKVMGR0dHzp07x8GDB2XvnNq1a+Po6KijkMSPMKpsbGxo2bKlTlmKgYEBMTExMkoo0qETExMxNjbWST1XiuhlBbqZP2mHYigju+K4b9++lY2UlWn2enp62Nvbo9FoePLkCYUKFdLJ0hL7gT8ISJk9KK5TmUIPSGUuHJTK71ulUmFjY4OFhQU5c+bk5s2bTJw4kfj4eNRqNY0bN6ZevXpkypQJU1NTzMzMyJIli5zmmVbEYigqKooRI0bw22+/UbBgQTmUxtDQkJ07d6JWq2VZyerVq5kyZQo2Njby3DQaDU5OTjRv3lxOUezduzeOjo7yfSKbysvLi3r16qHRaIiKimLv3r1kz56dvXv30rJlS+7evfvTOCQBZs+eTfbs2Vm2bBn+/v6ffF+mTJlITEzUWZDExMRgYWHBzZs3qVKlCosWLcLd3Z24uDiWLVuGtbU14eHh3+U8mzdvTosWLfDz80tnUMXHx7Nnzx727NnDs2fPGDZsGIcOHWL16tU0bdoUrVZLcHAw9+7dQ6VS4ezsjI+PDxYWFvIZVpaKaDQa9uzZg6urK66urjrlh3FxcTotAUSmhsi8SquAhYiFihI7aUtPBOkr8WdoaMjKlSsZPnw4uXLlksfS09PD0tKSWrVqMXfuXJYsWSL3o8y0FPsVxxcizkEYUUq9IzIpxQJKeY56enrkyZOHbNmyERoayt69e1mzZg1arZYSJUrQoUMHihUrhqmpKaamplhZWWFnZ4eZmVk60lUaUsePH6dz587cvXtXDvkwMjJCT0+Pffv2yeju3bt3yZkzp8yIFOen0WgYOnQo7du355dffsHNzY3ff/+dVq1a6dzTKlWqMHr0aLZt20ZMTAxarZaRI0eyfv162Vu4R48ef1t5+veWDRs2kJiYiI+PD+vWrftk2YepqSn79++nX79+Ot/DunXr6Nu3L4MGDcLa2lpmIty6dYtx48ZRsmRJXr16Rd68ef/SeapUqYNsDhw4QI0aNdJt37hxo+wn6+npSZ06ddizZw8VKlTA2dmZ8+fPs3fvXmJjY7GwsMDHx4dSpUpJR0NGGL5x4wYtWrQA0MGwyBxTYjgxMVFmMGWEYWNjYxITE9PxnxLDSkeGkoMjIiJ48eIFw4YNS8fB2bJlk5mDJUqUSMfBAsPfk4Otra0xMzMjV65chISEMHnyZOLj4zExMaFRo0ayF6fgYFtbW7JkyZJhyxXBwTExMYwePZrp06eTN29eatSo8UkOXrVqFZMmTcLOzk6Hgx0cHGjXrh1BQUE0a9aMrl27ymFF4n6UL1+eYcOG4eXlhUqlIioqiiNHjmBmZsaBAwdo1qwZjx8/xt3d/Vsf1X9cZs+ejZ2dHYsXL5bPa0ZibW3N+/fvdRySwnn97Nkz3NzcWLJkCT4+PsTHx7N69WqMjY1lD+i/Ko0bN6Zhw4Y0bNgw3bOQmJjI2rVr2blzJ+Hh4XTr1o0NGzawY8cOateujZ6eHtu3b+fWrVuoVCpKlChB7dq1sbKy+qQdDamB8bJly+rY0aKHW1o7WpmplJEdLTIS02bSf4kdvXbtWvr370/u3Ll1MJwpUya8vb2ZP38+rq6uOo5NoRNE5tj3wrBaraZAgQLkyJGDu3fvsn//ftavX49Wq6VYsWJ06NCBEiVKSA62tLSUpb2f4+DTp0/TuXNnQkJCaNWqFVmzZpUl84KDTUxMePToEZaWljRs2FBer7AhBgwYQMeOHfH398fDw4O5c+fSqVMnHZ3m6enJ0KFDCQoKIiYmBoCRI0eyevVqNmzYwK5du+jbty/Zs2f/q4/sPyKbNm0iISEBLy8v1q1bR+bMmTN8n7GxMUeOHKFPnz46Nuy6devo06cPgYGB5MiRg4sXL+Li4sLdu3cZPXo0pUuX5vnz5xQpUuQvn6u7uzs7duygbt266bYFBwdLbnZ3d5etX8TQuEuXLrF7925iY2MxMzPDx8eH0qVLf5aDr169StOmTYE/52Bhc36Og5U4UWJdBCjEcdLa0bGxsdy5c4dFixbpDFgTHGxnZ8eNGzdwcXHJ0I4WuuFr7Gg9PT1pV4j3ivPLkiULVlZW5M6dm5CQEKZNm0ZcXBwGBgb4+/vTsGFDrKys0q2DM+JggeG4uDjGjx/P5MmTyZEjBz4+PtIhmxbDq1evZvz48XJNITCcKVMmunfvzoYNG2jfvr10jNvb28v74eTkxMCBA2UWZkxMDGfPniUpKYmDBw/SpEkTXr16haur62f57EeX/5yS3yZnz56lWbNmMlFLKUJXfI18lVNyzJgxtGrV6ouchg8ePEgXYb18+TLbtm0jJCSELl260KxZM2xtbSlQoAAzZszgwIEDXL169bP712q1vHr1iqSkJHLkyPHJMpURI0bQqFEjevfujY+PD3p6eiQlJbF69Wr27NnDunXrMDQ0JCIiQvazDAwMRK1WU6NGDfr06YO5uTlv374lKCiICxcu0L59e/T19XX6vigNIpFRJSIuQgGLUkShyBwdHTl06BAlS5aUZZWivCMpKYljx45RqlQpnUWQ8ssW/4sImDCGRMZXvXr1MDAw4OTJk+zfv5/IyEicnZ0pXrw4mTNnZuvWrfTq1UvuQ5zXhQsXaNOmDXp6eoSFhfHgwQPUajWFChVK54BWRpvF/0onjPgRkWdbW1sqV65MQkICcXFxPHv2jKCgIJYtW5buuzMyMuLEiRM6paIRERHs27ePXbt2sWvXLqKjo/Hx8aFSpUpYWFhgamoqy26EYo6OjiZPnjzY2dnJSBwg+/vUqFGDTp060bx5cwYMGECvXr1wc3OjTJkyfPz4kV27dlGiRAnOnz/PmTNnKF26NFu2bKFZs2aMHj2aWbNmUaZMGebOncuUKVM++cz+SLJ161b8/Pw+iRshjx8/pnjx4jqv3b9/n7JlyzJs2DCWL1/OoUOH8PPzQ6vV0qBBA3bu3PnJpvlKiY2N5fXr17KpfUZiY2ND06ZNadOmDRMnTpQ64dGjR/Tt25cBAwZIJ1bmzJnp0qULy5cvZ+vWrdjZ2cksMI1Gw/nz5xk9ejR9+vSRZQriuVViTPyt7MsmFkHKviwCi2/evCFLliwy+i8yk8QwIbFoyqi0WPmjxK/olVWiRAk+fvzItm3buHbtGhYWFtSqVYvbt2+jr69PfHy8zAwRRtLx48cpXbq0LKkRwwny58+PhYWFjg4RhpYyi0SJX6UxKM7LwcGBQoUKkZCQwPv373n8+DF9+vTJ0KD09fXV6S2q1Wq5du2axO+ZM2fIkycPvXr1ImfOnJiZmaXrfWNkZMTBgwcZOXIkZmZmsixGDO9JSEigWrVqnDp1ioCAAGbNmkX37t3x9fXF2tqaq1evcuLECfLly8eKFSto3rw5z58/J0+ePOzYsYMXL15w8OBBHj58yPDhw79LdsLfLcOHD6d169Z/2pMV4N69e7IcVMjFixdZtWoVoaGhdOvWjVatWmFnZ0eePHmYNGkSZ86c4fLly3/qlHz16hWJiYmf5eBBgwbRsGFDYmNjqVOnDnp6qT0dN2zYwKZNm9iwYQOQ+gw2adKES5cu0a9fP8zNzalWrZrk4Ddv3rB161bOnTtHt27ddBYg8G0YdnR05MiRIzK7IC2Gjxw5grOzsw4mID2GM+Lgo0eP4ufnh6GhIadPn2bv3r1ERETg5OREyZIlMTMzY8uWLRQqVCgdB585c4ZGjRqhp5fajP/+/fuYmJhQuHDhv8zBNjY2VKpUSXLw8+fPCQ4OltUdSjE0NOTQoUM6AbePHz9y4MABieGIiAi8vLyoUqWKdGqm5eDExERsbGzIkSNHhhxcrVo11qxZQ9u2bRk2bBj9+vXDxcWF8uXLExUVxa5duyhatCjXr1/n5MmTuLi4EBQURMOGDRk5ciSTJ0/Gzc2NBQsWyBZCP7oEBQXJoPjnJCPHxOPHj3FycmLChAmsXLmSkydP4ufnh0ajoV69euzcuZOGDRv+6TnExcXx6tUrrKysPtmOIVOmTLRr145WrVrJhS+k9qTr168fvXr1wtTUlBw5chAREUHXrl1ZunQpy5YtI2vWrAQGBtKyZUuSk5O5dOkS48aNo2fPnuTLl++72NGGhoa8fPlSViMp7ejo6GgiIyPlM/i1dvSDBw8oXbo0Hz9+JCgoiPv372Nqakrt2rW5d+8epqamREdHY2JiooPhs2fPymBDSkoKV69eJSoqinz58mVo63wNhk1MTHB0dKR48eLExMTw4cMHHj58SGBgYIYc7OHhwcGDB3WOdePGDXbv3s2uXbs4efIkuXLlkkE5wcFCT4rSz0OHDtG/f38ZaEjLwTVq1ODo0aP4+/szf/58unTpgp+fH1myZOH69escOXKEwoULs2LFClq2bEl4eDi2trYcOHCAO3fucODAAZ49e8bIkSO/S6Xc3y1DhgyhVatWOmXQn5J79+7Rq1cvndcuXbrEb7/9xuvXr+nRowcdOnQgR44c5MiRQ045vnTp0p86JV+/fk18fLycUp2R9O3bl4YNG5KYmEj9+vVlq5DNmzezYsUKNm3aBKTypL+/PxcuXJAZk1WqVKFnz55YWlry9u1btm/fzunTp+ndu/d34WAHBwd27txJ5cqVP8nBpUqV+lMOzsiOPnjwILVq1UJfX59z586xf/9+Pnz4gIODA87OzrJ9ValSpWQwQNjRJ06cYOLEiejp6fH27Vtu3bqFiYkJRYsWxdTUVOeY4tzSOuszOk/hnBSJHNHR0bx8+ZKdO3eydu3adN+dvr4+e/bs0RkMHBUVpcPBYkBQ1apVMTIyyhDD4rsQLX/SYrhixYosWbIEY2NjRo0axcCBA3F2dqZChQrExMSwe/duChYsyN27dzl69Ciurq6sW7eOOnXqMHz4cEaPHo2npyerVq36aTg4I/nPKflt0rlzZ8qWLcuuXbukM/uvyFc5Jbt27frFDTkzZ84s+4QJMTU1JSoqipIlS+Lu7k7dunV1HE9BQUGf7bWwbds25s+fT86cOTE2NubevXvUq1dPLlSUYmVlxebNm5k9ezazZs3CxMSExMREfH19pUMSoHjx4jg4OFC7dm169uzJ9u3buXnzJtmyZUOj0ZA3b14GDBjAvHnzOHPmDBUqVJCRFKUhkLZfTUpKik7TYNHQXSi3pUuXcuvWrXTE9uzZM65cuUJAQIDO1DHl8cQiUAkiofjFoIdWrVrJqVhiWuuOHTsIDw+nRo0asgxKRJyCgoIoWbIkb9++Zdy4cWTKlImiRYvy9u1bFi5cSP369WVUqXnz5vz++++SRJRp/MrIr1iEKslCKE5LS0uKFy9OQkKCjuH1/v17jh49qvN9xsTEkDdvXj5+/Ej27NlxcnLC2dkZW1tb1Gq17HmjzFwxMDAgNjZWJxIuImparZZs2bLJ+5aSkkK+fPmYO3cuZ86c4dmzZ3z48IGePXtia2vL69ev2bJlC3PnzuXmzZvkyZOHyZMny+mIXbp0+WmckmLC3Z9JlixZePHihc5rZmZmREREYGxsTIsWLdizZw/btm2T28Xz9Cn58OEDw4YN4/HjxxQoUICwsDD09VMHTmRkgAUEBJA/f3569+4ts9xsbW0ZNWoUTk5OQGr/PJVKxdy5cxk5ciQVKlTg4cOHJCUlyf4Vnp6elCpVilGjRjF16lTgjx6vaTOghKSkpOhMCTQ0NJSZP0ZGRtSuXZtp06YxYMCAdCUtc+bMwc/PTzazV5ZtATrvV0ZplZHknTt3snXrVnr27EmXLl0ICwtjw4YNvHjxAlNTU/lsi3OPiopi/vz5TJ06lbVr17J3715cXFxQq9Xs3r0bfX19unbtKjMYVSqVLDEX9yNtFFr8iBI4kQFiamqKubk5OXLkoHz58vJ7F9mjZ86cSddbdOrUqQwYMABjY2OKFi1Ko0aNcHR0lPgVpTtKfaavr090dLTM0BWvqVQqWWZuY2Mjp9l27dqVd+/ece/ePc6dO0fBggWZPXs2KpWKkydPMnjwYPlMu7q6smTJEtRqNU5OTuzcufOry2j+F9KjR48v5mCBYWVjabVaLfv0eXp6UqVKFZ1qgr17937W4blr1y5mz56Nvb09pqam3L17l9q1a9O7d+90Gc0WFhZs3ryZOXPmMH/+fIyNjUlISMDHx4cNGzbI/sJ58+YlX7581K5dmwEDBrBx40Zu3bpFjhw5SEhIIHfu3PTt25elS5dy7NgxmRX3VzCcJ08e7t69y40bNyhQoIAO34SFhXHy5EmaNGnypxjOiIPNzMwwNjamTZs2lC9fnoEDB2JlZcXRo0flpGIRoFNy8I4dOyhYsCCRkZGMGzcOU1NTihcvzvv371m8eDF+fn64ubl9Vw4uVqyYzgRTlUrFhw8fOHz4sM69TEhIoGDBgrKSpXjx4jg7O2NnZ/dZDo6MjPxTDhYL5Vy5cjFnzhwuXLggObhr167Y2dnx7t07tmzZwoIFC7h58yZ2dnaMHz9etpDo0KHDT7Mg8vLy+lOHJKQG5l6+fKnzmlqtJiIiAkNDQ1npoQz+pO2dmFYiIyMZPnw4Dx48IH/+/Lx+/RqtVsuoUaNwcHBI9/7GjRuTJ08e+vfvT2RkJFqtlsyZMzNo0CDKlCkDpOLQwcGBWbNmMXr0aNk+IjExETMzMzQaDdWqVaNMmTIMHTqU6dOn62Qkfasd7evry7Rp02RGslIWLlxIzZo10+H3S+1oKysrDhw4wLp16+jevTs9e/bk3bt3rFixgrCwMNl7WXCRKBv/7bffGD9+vMwadXFxwczMjL1796LRaOjRo4fk4L+KYUtLS9maQlkqr9VqOXfuXDoOnjNnDj179sTIyIgiRYrQoEEDnJycMuRgcVw9vdTpu7GxsToZpWk5+PXr16SkpNChQwfCw8O5e/cuZ8+eJX/+/MyePVun/UxYWBiJiYm4ubmxfPlyqYu2bt36U3Bwr169voqDnz9/rtMmQ2C4SJEieHt7U6JECZ2BjqdOnZK6MSPZv38/M2fOxNbWFnNzc+7evYuXlxeBgYHpcKBWqwkKCmLevHnUqlVLcnCNGjUICgqSNrLgYG9vb0aOHMnKlSu5fv06uXPnJiEhgVy5ctGzZ0/WrFnD/v375fn+FQ7Onj07z58/58qVKxQpUkSHg9+8ecP+/fuZM2fON9nRcXFx2Nra0rlzZ5ycnOjTpw+2tracPHmSOXPm8PTpU8qVK5dON+zfv59s2bIRHx/PkCFDMDAwwNHRkfDwcBYvXkytWrVwd3fXwYfIkATdwL6SU8U6U5ynubm5zIgUfdJFxqienh4fPnzg6NGj6XRj0aJFZSDGwcGBkiVLkiVLFp3hYGkxHBcXh6WlJQ8fPsTU1DRDDIuqkezZszN37lwuXLjA8+fPCQ8Pp2PHjtjb2/P+/Xu2bt3K4sWLuXnzJpkyZWLo0KE4OjpiZGREp06daNiw4Sdbbv3oonSy/1PH+zfI/fv3CQoK+mwf3K+R7z8S+f+kZcuWLFiwgNGjR8vXGjRowKpVq2jfvj3nzp1j3LhxcptWq+Xw4cOfnLy9bNkyLly4QHBwsJy0m5KSwpw5c+jXr59s8q8UAZqhQ4dmuE8fHx/27t0rR9nb2trSv39/evTowdSpU+nWrZssNxGN9N3c3IA/DBkRhVCmkwsRgBc9J0QTeiMjI7p3787o0aNxc3OjcuXKqFQqTpw4wenTpxkyZIic7iWiOEojRXl8Zeq7MPQnTpzIxIkT5ZAbrVaLp6cnbm5usndTzpw5KV26NOHh4Rw4cIC4uDg6d+5MYGAgo0ePlj3lANk43MjICCcnJ3bs2IGpqanOPRCkJM5N9AwT2VxpI8CiREX0YRFRcHEtSme26HMyZswYChcujLe3tyQ4scgR/yslW7ZsPHjwgOTkZGJjY2X2WkpKCpkzZ+b48eOYmprqkF3ZsmXlNenr61O6dGn5rECqU084BhISElCpVLLHxr9JcufOzevXrwkPD5flKQULFuTOnTtyYnPajAxlOUhaiYqKwt/fnzFjxlChQgX5+rNnz2jTpg1z587N0DEpJkBnJGfOnKFq1apYW1ujVquxtLRk+PDhDBkyhDlz5mBiYkLVqlVRqVRkzZqVkiVLcu3aNRwdHXWwKno8iWgr/NHgWxgtenp6xMbGSvwWK1aM0NBQ+vbtS/369cmVKxcvX75k69atFChQAFdXV+Lj43Um9AkRxxGYEUadwHhMTAxbt25l6dKlmJiYoFKpyJYtGz179iRPnjz06dOHIUOG8Msvv2BhYcGlS5c4cOAAPXr0YOfOnbx+/ZpFixbJBWqjRo0ICQnh119/ZezYsTr3UBnpVuoZ5SJI6BilsSUGWykXcyICfvbs2XSlWPXq1WP58uWEhoZSu3ZtMmXKJCO6wkASeBaiUqX2Bbx06RKenp4yG0boXJGB4+vrKzFsYWFBmTJlKFu2LIAsfSxbtizVqlXj+vXrnD9/Hh8fH5KTk6XBq+yL/G+RgIAAFi5cyKRJk+RrDRs2ZNWqVfTs2ZMjR44wePBguU2r1bJnzx66dOmS4f7WrVvHwYMH2bJli7xfGo2GhQsX0qNHD+bOnZvuM+bm5gwaNIhBgwZluM9ffvmFbdu24eDgQEREBLa2tgwbNowOHTowbtw4evToITO5mjVrJod5AH8Zw126dGHixIm4uLjg7u6Ovr4+J0+e5OTJkwwcOFD2R/sUhpXZEUoOtrOz49dff2X06NFUrlxZPrPu7u5UqFCBSpUqcfjwYQoUKEDZsmWJiIjg0KFDhIeH07t3b/r27cuwYcPImzevDgePGzcOQ0NDXFxcvisHCxEcLHSCkoONjY3p168fQ4cOJX/+/LL65M842NbWlidPnsjJyGk5+OzZszJrQ+ggUaafloMFt3h5edG9e3cyZ878r+bgrFmzyqoCOzs7IHW43/Pnz4mJiZEZl0rZu3dvhi2LILVCwd/fnyFDhui85+XLl7Ru3Zrp06dTokSJdJ8TbU0ykitXruDq6kqmTJmwsLDA3Nycvn37MnXqVBYsWICJiQnVqlVDpUodwlS+fHnOnz8v9fJfsaPz5ctHaGgovXv3pn79+uTNm5dXr14RHByMvb097u7ukoO/1o4ODw9n7dq1LF26FDMzM/T09LC1taVv3744OjrSsWNHhg4dSqNGjbCysuLixYvs27ePTp06ceTIEe7du8eCBQtkhVajRo24ffs2Y8eOZcKECajV6u+GYZHIoeTgixcvpuNgPz8/fv/9d27dukWtWrWwtrb+JAcLParkYHt7ex0OFiW8ly5donLlyhLDZmZmODs7y1JfkXhSunRpqlSpwp07dzh48CC+vr7SafVv5+DffvtNviY4ePDgwezZs4eePXvKbVqtlu3bt8sMxrSyZcsWtm7dyqZNm+T3rtWmDlXr2LGjTlsfIWq1msDAQAIDAzPcZ7NmzVi3bh3FihWT6+AxY8YQEBDAqFGj6NmzJ1myZAGQfZtr1qwJ/HUO7tSpE9OmTaN06dJy8OuZM2c4evQogYGB0uH+tXZ0iRIlGDlypLQXRAl3pUqVKFeuHFWrVuXkyZMsWbIEV1dXPnz4QHBwsAze9+rViwEDBlC4cGF53DZt2jB58mT09fXTtezKKGNU2AiihYTSjha/BeeKdbASw6DLwfr6+gQGBtK/f3/y589PzZo1Zcb45zAsZmyIAE9aDH/48AH4Q8+mpKTg5OSkowMEB3t5eXH9+nUGDBhAt27dZKUYpNooGQ0Y/lnkv0zJb5Py5cvz4MGDH98p6eHhwe+//8769etp3LgxKpWKX375hZo1axIcHEz//v11snQGDBhA48aNM5zAJiaT7d27V8eTra+vT69evWjbti1379796h4cly9fBiBnzpzs37+f4sWL07lzZyIiIpg8eTIHDx5kxYoV5MyZU/ajEwpF2ehWGDwi+itEnGtSUhLx8fEy2ij6PAwcOJCrV6+yYsUKIJW0R44ciYGBAVFRUTrNsMX+RLaBMjqlNFgKFCjA69ev05WpikhupkyZqFOnDqampgQFBaFWqxk0aBBJSUksXryYESNG4OPjw927d6WSMzExYfTo0fTu3ZsKFSpII04sypSGnlh0iKyptIpYnIsymiacH4aGhuTOnRuVSsWBAwdo06aNfM+oUaOIiYlhwYIF1KtXDxMTEzp16gQgB5woF1nCYMudOzdHjx6lQoUKOiR269YtFi5cSL169XS+Q6VR7OrqyokTJyR5GBgYULlyZTZt2oS/vz9xcXFoNBrevHnzVc/dzyIjR46kRYsWrFixAltbW1QqFT179sTPzw8DAwOdLMkHDx4wd+5cndeUsmjRIrp06aLjkITURdbvv//OkCFDWLNmzVed3+PHj0lKSsLZ2ZkbN27w5s0bKlWqxPHjx2nbti19+/alUaNGDB48GK1WS8mSJXnw4IHsDysWQsLgEUZE2gwKjUYjM3rFwtvIyAh3d3dKly7N0aNH2b17NzY2NjRv3pxs2bIRFRWlY6Qp8ZI2yyqt08/Y2Bg7OzuJc3E+ycnJvHnzhuzZs9OqVSv27dtHdHQ0RYoUYd++fYSEhDBz5kzOnDmDSqXi9u3b8l6VKVMGV1dXLl++TPny5eXraSODygirsjxcaWgpf5SfEb1s8ubNy8GDB3WM00KFCnHq1CmyZs3K3bt3qVatGqamprRt2xZIzZIXxpRSZ/n6+jJ06FDKly8v9Z847suXL3n8+DEFCxbUWbgqj3vy5EmdKH2RIkWYM2cOHz58kBmnsbGxXzyR9mcSNzc3Fi9ezMqVK2nZsiUqlYpatWoxZ84cDhw4QK9evXT6dI4YMQI/Pz8Z9FNKYmIiS5cuZe/evTrZGHp6enTp0oWuXbty7do1mcH8pXL9+nUgVQ/cvHmT/Pnz06ZNG1JSUhg0aBCHDh1iyZIlFCpUSC7gxff/PTAcGBhISEgIq1atkg6xESNGYGho+KcYFv3j0nKwyEDLkydPhhxsZmaGp6cnmTJlktkqvXv3RqvVsmrVKgIDA/Hz80vHwSNHjqRbt25UqVLlb+Vg0XfqwIEDOlkPgwYNIjY2lqlTp9KgQQPUavWfcrBKlTqJdv/+/bi7u2fIwXXq1PkqDq5WrZocrvFv5+BRo0YREBDAihUrZPZU3759qVu3Lvr6+jp8+/jxY6ZOnUpQUFCG+1q+fDktW7ZM57TMnj07K1asoEePHp/87KfkyZMnJCYm4ujoKBvdV6pUiZo1a8ogt5+fH2PGjAGgZMmSXL16lbJly34XO9rV1ZUSJUpw4sQJ9u3bh7W1NY0aNcLe3l4Hv19rR5uZmWFubi6fZyWGX716Rc6cOWnXrh0HDx4kIiKCQoUKsXfvXu7du8dvv/3G6dOn0dPT08Gws7MzHh4enD17VgZLvxeG03Jwnjx5OHz4sLwuSM2GO3XqFFmyZOHWrVt4e3t/loPFsXx8fOjfvz9VqlTRyXSG1Iy2mzdv0qlTp3Q9BoUIDhZZnvny5eP69eu8e/cOc3NzYmNjiYuL+8t9jH9EKV26NAsXLmTx4sW0a9cOPT09qlevzsyZM/Hz86Njx446PQgnTJiAu7t7hhWDycnJzJs3jz179uisk1UqFW3atCEkJIQLFy7oVB9+idy4cQNIHWy1e/dusmfPTvPmzUlOTqZfv34cOXKEhQsXUrx4cdmaI+0z+Fc4uF+/fty6dYvVq1ej0aS2NxsxYgRGRkbfbEeLpAolB4vzSUhIwNTUFA8PD2xtbdm0aRPGxsY0bdqU2rVrM3r0aHx9fWUrKqUdPWzYMDp16oSHh4eO7fwpO1qpV/7Mjhb7MTIykiX5Bw8e1GmD16dPH+Lj4xk1apQcWPtnGBa6Z8eOHdSqVUvqWHHcxYsXU7t2bR2n5J9h2MvLizVr1tChQwepk392DP/nlPw26dGjB/369ePVq1c4Ojqm8+F97eC9v80pqVKpWLlyJRMmTKBGjRoULVqUiIgIqdBWrFjBo0eP+PDhA4cOHaJx48Z06NAhw33t3r1bNlnOSDp27Mjq1avTZQH9mQwfPpwePXqwf/9+IDUbwMDAQGZqFCxYkCNHjtCyZUsZ7RHKRUQJlSAWD1laZSyMHvETExMjFXL+/PllGbBKpeLjx486D6syWiGMNaUhYmhoqNN49+bNm7Ro0YLu3bvLIRAqlYr9+/ezYMECJk+ezLx58+jQoQM1atRAo9FQqFAhbty4wb1792R5a5EiRXjy5ImM1qpUKnLkyMH79++xtrbOcFEjfkS/oLTOFqUCTvtbGIkWFhbkyZOH0aNHExcXR9euXeUxmjRpwtSpU3n06BHFixdn2bJlmJqaSgNWKE1BkiqVis6dOzN48GAePHhA7dq1MTMz4+XLlyxbtgwbGxucnJwyLO/RaDTs379fXr/IIKlatSojRoxArVbLXijfa7jLjyYuLi6MGzeOTp06yb6gosdZZGQkEyZMwM7OjvPnz/Px40dWrlz5ybIW0QclI8mTJw9xcXFERUV91UR2Pz8/ChYsyNGjR0lISMDNzY33799Tvnx5jh07xrBhw5g+fbqMEEdERGBiYiJxq/xJSkrSwZ3S4AF0DC9ANuE3MjLSMVBUKhXv379PtzAX20SJthCl8ZKcnCwX3ubm5gwbNowePXpQuHBhHj9+zLx584iIiJBlaZ07d5bnbWxszLlz52jYsKE8XrFixXj69CmQaojVr1+fiRMnyuc2rUEkzk9Ed5WLuU9hV6mLxGeLFCnCmTNn6Ny5MwsXLpT7t7KyolSpUly+fBkvLy/phFFOTlXqieTkZCwsLGjYsCE9e/akffv2ODg4kJyczPHjx1m3bh1DhgyR0XRlH0yhp0VpqNCVenp6NG7cmH79+jFgwAAyZ85MbGwsuXLl+uLn7mcRlUrF77//zuTJk/Hy8qJo0aKyBFOlUrF27VpevHhBZGQkBw8epG7dunTr1i3Dfe3fvx9fX99Ptn7o1KkTq1ev/mqn5JAhQ+jQoQN79+4FkM9Cp06daNCgAUWKFOHIkSPSOSYmgn5PDOfOnZsCBQrI90dERMiFj/hcRhhWZiYoOfjWrVs0adKE3r1706ZNGxo0aIC+vj579+5l3rx5TJw4kd9++42ePXvi4eGBRqOhWLFi3Lhxg5CQEOnAyYiDCxUqxKtXr7Czs/vbONjQ0JACBQowfvx4tFqtzjPRpEkTxo4dy4MHD3BycvoiDm7Xrh1Dhgzh0aNH+Pn5YWFhwatXr1ixYgWmpqYZltF9joMrVKjA6NGjsbCwoHr16v9qDnZycmLq1Kl0794dfX197OzsuH//Pmq1msjISCZOnEj27Nm5ePEib9++ZdmyZZ8cvLFr1y62bt2a4TZ7e3sMDAx4//49NjY2X3x+NWvWpHjx4pw6dYrExERcXFx4//49jo6O7Nu3j7FjxzJmzBiGDBmCoaEhHz9+xMTE5Lvb0VWrVtUZeBEeHv6X7Ojk5GSyZ8/OoEGD6NWrFw4ODrx8+ZIFCxbw/Plz6tSpQ3R0NJ06dZI4MzEx4cqVK/j6+kpdkhbD9evXZ8iQIXh5eelgU8hfwbCSg4sWLcqJEyfo0KEDS5culfs3MzOjTJkyXLlyhdq1a2fIwWJ/AsOmpqY0b95crilEUPfEiROsWbOGgQMH6nyHSuepcCKl5eAWLVrQr18/Bg0ahI2Nzb+WgwHmz5/P9OnTJQfHxMSQkJCAnp4emzZt4t27d8TExHDgwAFq1qxJnz59MtzPsWPH8PT0zDBxB1I5+Lfffvtqp+SgQYMICAiQ03FFK442bdpQr149ihcvzqFDh2SPefFMfk8OzpkzJ/ny5ZPv//jx4xdxsJC0dvSdO3do0KABAwYMoEWLFjRq1Ej2R501axZjxoxh7ty5DBw4kGrVqumc95EjR6Q9Arp2tCjnfvr0KXnz5v3LdnRaHIvPGhkZUaBAARYuXIixsbEOBzdu3JghQ4Zw69YtSpcu/UUYDggIYNiwYbx48YK6deuSKVMm3rx5Ix3BlStXTlci/zkMOzs7s2fPHoKCgvD09JTt0kSG588o/zklv00aNGgAIB3j8EeGtMDk18jf5pSE1GbpI0aMICkpiZcvX6JWq7G1tQXgxYsXXL16laJFixIYGPhJRQvw9u3bzzYVzpEjB+/evfvq8+vevbssBwY4f/48T58+JXfu3NjZ2eHu7s6cOXM4d+4chQsXpnDhwiQkJMhyA2FYAekWa8LwSUlJ0QGqKBmMi4sD/lgICCWr7FOh7P0gtikbgisNGBFp1tfXx8zMjAULFrBz506aN2+OVqvFzc2N+fPny4lnSUlJstfHjRs30Gg0fPz4Uec68uTJw7Nnz+Q5ZsqUSfafEOeR1ojS19eXpCOUW9oI76eUsbhmHx8fFixYIO+RkNKlS5MrVy6uXr0q+1iIY4qhJ0KEE1lfX58JEyZw5MgRhg8fTnJyMpaWltSpU0c6OARppG3WrCQRZUlN37595aCGzJkz8/bt269+9n4WEcN9wsPDiYyMxN7eXjabP3v2LB8+fKBGjRo6fesyElFe8CnJmjUrkZGRX+WUNDc35+rVqzRr1kw24R4/fjzbt29HpVLRsGFDJkyYgJ+fH9WrV+fBgwcMHjxYljAoF8EZ4VcsrkWzaEBGe0XEV7xPYPhT+FVmZ6QtURa4FgaVRqOhT58+3L9/nxkzZvDmzRuZAVKqVCnGjBmDgYGB1EN6enqEhIQQFxdHREREuvskjmFlZUVCQoKceJgWe0pniziXtDhQfi6jKK/IlHR0dCQ4OJiJEyfqDFLo3r07rVq1IiIigmzZskkMK8tAlQtQjUaDm5sbefLkYfPmzSxcuBCtVkvZsmUZP3485ubmOucpvs8aNWqwa9cunZJA0fenSJEi+Pr6Mn78+HRR93+b6OvrM3jwYPr37y/7kYoSm7CwMC5fvoypqSl9+vT5rEH57t27z/aazJEjxzfpwXbt2lGwYEHc/69P5JUrV2TVQ5YsWfDw8GDRokVcvXqV4sWLkydPHp0ypP8lhpXPa1oONjY2ZtGiRezevZuWLVui0WgoX748c+bMkcfKiINFv0AhGXFwUlLS387BNWvWZO7cubK0S0jx4sUpXLgwV69epXTp0l/EwSqVivHjx3Ps2DFGjhwpgw1+fn6ULFnymzi4d+/eBAUFsXnzZmxsbL7J/vtZxNHRkaCgID58+MDHjx/Jli2bdOydO3eO9+/f4+Hh8aflUyIL51Nib2/Phw8fvsopaWJiwsWLF2nVqhWbNm3iwoULjB8/XuK5YcOGjBo1inr16lGtWjUeP35M//79f3g7GqBLly4yGCgG8zVu3JhSpUoxadKkDDEcGxubDjNKDKfF7/fGsLhW0Z5p+/btvH37Vq67ILUnor+/P+/evSNnzpwSwyILTtwTJQZdXFzImTMnW7ZsYcmSJQCUKlWKcePGYWFhkaHzxcvLi927d8tzVnJwvnz5qF+/vuwDK76ff6Po6ekRGBhI7969efnyJUZGRjLr+fXr11y6dAljY2N69OiRYZWCEPF9fUq+dR3cvHlz8ufPL1uT3bhxg+vXr1OyZEmsra2pUaMGy5cvJyQkBCcnJ7Jly/bDcLDyOEo7WmBo4cKF7Nmzh9atW6PVanFxcWHevHkyA1rZwkfY0SkpKYSEhMgWQGmPYWlpSXJy8mftaPH7r9jRnp6eLFiwIF1f4fz58+Pk5MTVq1dxdnbWmbj9KQyrVCpGjx7NqVOnGD16NElJSZibm+Pr64uzs7PE7tdguEePHmzZsoXu3btja2tLREQEefLk+ern70eR/5yS3ybfe0Do3+qUFGJoaJjuYRXTxr5EihQpwunTp6ldu3aG269cuULhwoW/6dxq1KhBcHAwdevW5fXr13h7e3PmzBmsrKxYtWoVGzZsYP78+axcuZJZs2ZJQ0g5OTCjh1mkTisVsVJJiAmYoheGcNoIw1EoXaWCE4v3tFFTcTyVSoWjoyMrV66kRYsWNGzYkCZNmkhjS6PRsG7dOqpVqyYVMYCzszMhISFyMneePHlkD4mYmBi50Lh37578HtOWwiizLJQ9fNI6CzKK9irvoUqlIk+ePFSpUoVBgwZhYGAgswRCQ0N5+fIlbm5uGBsbY2xsLJ0ZgrTEPRYKVPxUr14dDw8P4I8Jh0pjT7koUkYB056veL+vry/16tUjMjKS8PBwWYb4b5XMmTPrZGDo6+tTsWLFL/68np7eZzMhHz9+LPvWfI2YmZmxZs0a6tWrJ4c5rVq1ipYtW+Ls7MyZM2dYu3Yt8+fPJ0eOHJiZmREZGakz3AHSY1iZUSHeJ7YLQ0NMnxQ4FxgVOEiLYYFzpU5QHk+UbJUpU4Z9+/ZRs2ZNRowYoZN5FBMTw507d8iZM6fMENTT08PJyYlnz54xe/ZsLl26hL6+PqVKlSJ37tzcvXsXlUrF+fPnKVGihDzHtNFZ5bmLxVBa/Gake5Tfsbhv9erVY8qUKdSuXZulS5dStGhRAE6cOEGWLFnIlCkTJiYmOrpOef/TfjfZsmWje/fuOtvFPVHiV7y2Y8cOnT5iSseGVpvae7dHjx5otVrevHlD69atf4om+98qBgYG6TjY3t7+k5yaVgoXLsyuXbs+OdlXNKv/FqlatSp79uzBx8eHd+/e4evry7lz58icOTNLliyhRo0aLFy4kKVLlzJjxgxSUlKIi4v7n2NY4DItBxcrVowFCxbQvn176tWrJ7OXv4SD7ezs2LBhA4UKFcqQg2/dukXr1q11MiL+Dg7OkSMH1atXZ9SoUZiYmNC7d28MDAx4+vQpjx8/pkSJEl/FweJ7Fs6q78HBPj4++Pn5SQ6+du3aNz1/P4tYW1vrBHhE1uiXirGxsU6P6LTy4MEDnR5mXyqmpqYsX76cuLg4du7cycGDB1m4cCGdOnWiWLFinD9/njVr1jBv3jxsbW2xsbEhIiLih7ajy5cvz86dO6lbty5Dhw6V/CR0z5UrV+jcuXM6DIthEBcuXEBfXz8dhi9cuECxYsUkTr83hpUc7Ofnx9SpU6lVqxbLly+Xg4xOnDiBlZUVlpaWOhyc1jGYVrdmzZpVp99wWg4WmP1SDra1tZWc/vr1a1q1avXJSfD/BjEwMEiXXGNnZ0etWrW+6POFCxdm1apVtGjRIsPtf2UdXKFCBQ4ePIinpyfh4eHUrVuXc+fOkTVrVubOnYu7uzuLFi1iyZIljB8//ofh4E/Z0QULFpR9POvVqyerFcSzuXXrVqpUqUJiYmI6OzpPnjzcvHlT2sVp7ehr167RsGHDP7WjhW74Vjs6V65ceHp6MnHiRMzMzOjfvz+GhoaEhYVx7949AgMD5eCvL8VwpUqVdPphpuXgr8Wwl5cX3t7ecm3SvHlzNm/e/E3P4H/yc8r3dkT/I07Jvyru7u6MHz+e7t27p1s4JicnM3fuXNauXfvN+69Tpw5Pnz7lxIkT2NjY0KxZM/Lly0fevHm5efOmjP7kyJFDglU0bhepzWLRoPwtIiciciG2CeCLSJFQAsqMA2Hsp1XSGaWLwx9GvqGhIWXKlGHOnDm0bdtWHlOr1XL//n2OHDnCzJkzpSJWqVRcvHgRIyMjRowYwahRoxg6dCinT5/WyWI6evQoxYsXl4NhxPUos0YMDQ2lIlaW2aUtycro/MW9EiRWq1YtkpKS6NOnD2vXrmXAgAHMmDEDS0tLqlevjomJiZwkllHWivKeiH2nXdhkdP+U369SGSuVtvisctrZf/J5ad68OXPnzs1w4MWRI0dwcHCQ03i/VszNzTlw4AB79uzByMiII0eO4OPjI0sSbt26hYWFhTTKRQaPIGPlc6fMplBmVygX2MoFkVarlQsjYXyJ5tVGRkYZ4leZzp7RgrtGjRpyoET27Nl1jLjJkyfzyy+/kJiYqNNn58qVK+TIkQNLS0vu3r1Lnjx5OHfuHOXLlyc+Ph6tVsvSpUtlhocSFwLjohROOe1Q6fT7nDGlvH96enqo1WratWvHxo0bcXJyYtiwYWTKlImlS5fSpEkTLCwsMDEx0TE6lTpA3BtAfkfKe5aRHlFmdogIuNA9aY1BjUYj+/EoB/b8JxlLhQoVGDVqFO/evUsXPNBoNMyaNUtm0HyL1KxZk+fPn3Ps2DGyZs1Ky5YtyZ07N/nz5+f27dvyexaLuh8Bw2mza5UcXKlSJaZOnUrXrl11OPjRo0fs2rXrkxw8atQo+vbty6hRo9Jx8NmzZ8mTJ4/MDoa/l4O9vb1JTExkwIABrFu3jsGDBzN37lxMTEzw8vL6j4N/MmnVqpWckJ1Wzpw5Q+7cuTPsZfclolar2b59O/v27UOlUnHmzBm8vb2pUqWKzDyytLSUQ+Z+dDu6evXqDB48mCJFisg+5+KY06dPl/ap0AUCw5kzZ8be3p47d+5QqFAhHQxDam/t0aNHS8eKuJ7vgeFPcfCGDRtwdnZm0KBBZMuWjXnz5lG/fn2srKy+KweL/5UcrOwzqNyWEQf/W6sVvpc4OzszZMgQXr16lW46t1arZdq0acyaNeub9+/h4UFYWBiHDx/Gzs6Odu3aYW9vT6FChbh79660W0X/7R+Bg5XXn5ZbPD09mTx5Mr169dJ5pp88eUJQUBAzZszQ0RvCjvb392fZsmUUK1aM+Ph4HTv66tWr2NraYm1trVOF83fZ0aJV0/Dhw1m/fj3Dhw9n8eLF6OnpkT17dumU/BEwHBsb+83P3o8gGQXF/u7j/VskNDSUmTNncvv2bRmY79WrFwUKFPjqfam0aVk5A4mMjMTS0pKPHz9+smfc3y0XL15kyJAhjB07lnLlyqFSqbh//z7Dhg2jQYMG+Pv767w/MTGR48eP8/HjRxwdHb86gnT37l3evHlD3rx5efbsGX5+fpQqVYqOHTuip6dHTEyMjrEA6CgmExMTaYSnVUoJCQnExMQQExNDdHS0TsRJGCtiGI5QNsrfQukpDS7l6/r6+gQFBXHlyhXc3NwwMzPj0qVLJCYm0q9fPywtLdNFh4UyCw4O5uzZszRv3lxOYwsODub+/fuMGTOG3bt3y6a3xYoVo27dulhaWsoyFqGIlaU5GSkycVzQXQwplWZSUhK3b99m7dq1vHz5kqxZs9K+fXvKlCmDhYWF7E+TdiEk/q5QoQKnT5/WOVZGUWaNRiMNwOTkZOLj4+W1KBdBaclDrVajUqX2L+rVq9f/FB9/Jv9rDGu1Wjp16kTevHnp1q0blpaWJCYmEhQUxMqVK9m0aVO6LMrHjx9z+fJl1Go17u7uny1tSSsxMTFcu3YNfX198uXLx4QJE5g9ezYTJ04kf/78MjqrjPIDEr/CEFKpVDr9rjQajcyWVmJYlLII40sYC6JPrdJoEPtWGlzCABPvfffuHbNnz8bOzg4HBwc+fPjAuXPnqFmzJj4+Pjr4FUacSqUiKiqKYcOGUbFiRby9vbG0tCQyMpKRI0fSqlUrbGxs2LBhA2/fvsXExISaNWtSvnx5UlJS0mFX6fhMW34CpDNE0y4oNRoNUVFR7Nq1S/aGq1ChAp07d8bS0lJONU1rRInfenp6uLq6cvr0aR1DVnkO4m/hhBS/ExMT5fTktNklQsTk0piYGBo1avQ/57jPyf8av5A6lKZv376MGTNGDjx7+PAhw4cPp2bNmrRs2VLn/cnJyRw7doyIiAgcHBxktuyXyoMHDwgLC5NN6+vUqUPRokXp2bMnhoaGREZG/k8xLLZ9ioMFl7q5uWFhYcGVK1eIjY2lX79+WFtbf5KD9+zZw5EjR2jevDklSpQgOjqaHTt2EBISwvjx49m3bx/Hjx8nJSWFwoULU69ePaytrf82Dr537x5r1qzh+fPnZMmShbZt21K+fPn/OPgr5X+NYa1WS8+ePbGxsaFXr17ymdm6dStLlixh48aN6YL+T58+5eLFi5iamuLu7o6pqekXH09kFOrp6VGgQAGmTZvG5MmTmTx5Mg4ODkRHR//QdvSHDx+YM2cONjY2lChRgsjISM6ePUv16tWpU6eOvKdpMRwdHc3w4cNxdXXF29sbCwsLbty4wapVq/D39ydXrlxs2LCBV69eYWxsjLe3N25ubhID34Lhz3FwdHQ0e/bsYe/evWi1WsqXL0+XLl2wtrb+Jg4W+/2Pg/95uX37Nt27d2fkyJFUrlwZlUrFkydPGDlyJBUrVkw3lyElJYXjx4/z/v17ihUrJgPzXyqiOi1nzpx8+PCBOnXqkDt3bvr164eRkdH/nIP/zI7evXs3J06ckBwcEhLChw8f6Nu3L7a2tp+0ow8ePMi+ffto1qwZJUqUIC4ujqtXr7Jjxw5+/fVXjh49ypEjR0hOTqZgwYL88ssv2NraprOfv5cdff/+fVatWsXTp0+xsbEhICCAChUqYGpq+h+G/6IIXI8cOfKr1ph/VeLj4xk9evRPda8ykn379lGnTh1KlSpFxYoV0Wq1nD59mmvXrrFjxw68vLy+an8/jVMSUiMcc+fOJSQkBH19fbJmzUqPHj0oVaqUzvuWL1/O6tWr8fb2xtbWltOnT/P27Vtmz5792Z4cGcn58+d1ptVCamZWrly58Pb2pmzZstKYFlFaAwMDHWNKGfEXkYeEhARiY2OlQo6NjSUxMRGtVitLT0RattJYEso2o9dF+rZ4LSUlhRs3bpCYmEihQoV0omsicps2ouXq6kpwcDCbN2/m8ePH5M2bl0qVKpErVy7GjBlD06ZNqV69Onp6epw9e5YlS5bQtm1bnJycdIwpZfRaKcrFi1Ciog9XWoUglGRKSgphYWHky5cPtVqNgYEBISEhHDt2jMTEREqWLImXl5dOpp3SgSGU+40bNwgLC8PW1pYSJUqgUqmkYhbKNzo6mtDQUN68eUNMTAzwBzmIiYzm5ubyO05JSeHFixdMmDDhf46Pz8mPgGGtVsvmzZtZs2aNJLlatWrRpk0b1Gq1fN+7d+/o1q0bpqamVK1alYiICPbu3Yuvry89evT46uPWrVuX7du3o6eXOslS6I6iRYvSpEkT1Gq1JGIgnTEl+kwJw0sYGkqDKjY2lvj4eDncQRhHaQ0m5aJHaVilLVcRv1+8eMGzZ88wMzPDyclJ4lZpfAjsioVYqVKlmD59OgcPHiQpKQkPDw8qV67Mli1bePPmDe3btydHjhyEh4ezceNG7ty5w5gxY+S1CaeA6PuV1hEgfiuj30lJSajVahkVF58RRtiHDx8wMDCQfSTj4uLYt28fjx8/xtLSEh8fH52oWtoor56eHh8/fuTSpUukpKTg5OSk49gRi9T4+HjevHkjh6gJA1elSp1MamZmJrM0DQwMUKvVvH//nsKFC1O/fv0fFsM/An4Bnj9/zty5c6XD38bGhu7du6frv7Ru3TqWLFmCl5cX2bJl49y5c7x48YLffvvtqyc0Xr9+Pd0AHUtLS+zt7fHy8qJixYo6xj/8MxgWzo7PcbBGoyEkJIT4+HgKFiyoUx77OQ7euXMnmzdvJjQ0lNy5c1OpUiUKFCjAiBEj8Pf3x9PTE319fS5cuMDixYtp0aIFZcqU+UscrKenl27CucCWRqPhxYsX5MuXDzMzMwwMDLh16xZH/2/ImIODAzVr1vxTDr558yYvXrzAxsaGkiVLZsjBMTExPHz4kNevXxMdHQ38wcFqtVpysPgOUlJSePnyJb/++uv/HB+fkx8Bw1qtluDgYFatWiXxULNmTdq2bYu5ubl834cPH+jevTt6enpUq1aNqKgo9uzZg5eXF3379v3qLI8mTZqwYcMGycF6enrY2dlRpEgRmTkvntsfzY4OCwvj2bNnqNVqnJycdHrZfQrDZcuWZebMmRw4cID4+HiqVatGlSpV2L17N48fP6Z9+/bky5eP8PBwNm/ezNWrV/n1119RqVTfhGHgTzlYDNG0t7fHyMiIhIQE9u3bx8OHD7GwsKBmzZo6yRsZcXBUVBQXL14kOTkZR0dHbGxsMuTgt2/f8vDhwww5WK1Wy/YtSg4uXrw4derU+WEx/CPgF1J7Qc+bN49Lly5hYGCAlZUV3bp1S7dO3bx5M/PmzcPDw0MOw3r8+DEzZ8780/6zaeXevXvp2rNkypSJ7NmzU716dapUqfI/4eAvsaO1Wi0hISEkJCSQP39+cuXKlc6hL/5W2tFZs2ZlzJgxPHjwALVaTdeuXTE1NWX48OE0aNCAmjVroqenx5UrV1i4cCH+/v5UqFBBJ0Pya+zoxMREHQ5Oi2ExmyNPnjyYmppiaGgoqx/j4uIoVqwYPj4+OoGjtBhWqVTcvn2bZ8+eYW1tTalSpXR4Wonh0NBQwsLCiIyMlJUhIgPbzMwMtVqt4wh+/fo1kZGRTJs27X+Oka8RgetR/9eq5p8SMUX9Z7pXGYmzszPe3t5MnDhR5/VBgwaxf/9+Ll++/FX7+6mckl8i69at4/Tp08yaNUsn4v/gwQM6duxIcHDwVw3TePLkSbpFlDCsIHUQSMuWLbl8+TLXr1+XfSvc3NzkZMj4+HippJTp3CJdXShiYYAIx4lQxELpKss70r6mNKbSloIIw0mpmJSp8OJ/AwMDnbISlUolSxs7derEpEmTyJ49u06kJCYmhg4dOjBr1iypWJWlJxpNav/FoKAgGfkSEeVjx46xb98+1Gq1LIFp0qQJpUqVShfBEoQhgFy4cGFq1aqFWq3m7NmzbN++nf79+1OkSBG0Wq2OsXb9+nXmzp2Lo6MjefPm5enTp1y5coW2bdtSunRpea6xsbHMnDlTTmP/lBgaGpIpUyZSUlJ0Bov8yPj4WTCcmJiIr68vU6dOpWTJkvJ1rVbLiBEjsLe315nI/iXSq1cv2V8GkKUVkLrIDQgIIHfu3OzatYu4uDg0Gg22trbUqVOHnDlzSpIWhoESy2JRpMSwMMKNjIw+uejJaIGUFoNKrCsNFEjf2F8YcOKzQvcJg+HEiROcPXuW4cOHA3/0mtFqtezYsYPQ0FDatm0r8SsMKo1GQ+3atdmyZQsajQZjY2N5nh8+fJBZzBYWFkRGRuLg4EDLli0xMTFJd77inhw7dozNmzfTpEkTHBwcePfuHVu2bEGr1TJkyBB5rWIxmpKSwm+//cazZ8+oVKkSenp6nD59GgsLC/r06YOBgYH8XkQ22evXrz/7TFhZWWFgYMDHjx91+pr9qPj4WfALsHXrVvbs2cP8+fMl90Bq5nPbtm3ZsmXLV/XvDAsLI3v27DqvKTm4cuXKNGzYkOvXr3Px4kXpKC9fvjxeXl7o6+v/LRhW8vPfzcF6enp07dqV0aNHkzt3bh1+jIuLo3379kydOhVjY+Ov4uCTJ0+yZ88eTE1NZaaav78/ZcqU+SQHJyUlMWrUKPLly0etWrUwNzfn4sWLbN26lV69elGiRIl0HHz79m1mzpyJg4MD+fPn58WLF1y8eJGAgAA5fTspKYm4uDjmzJnDrl27PvtMGBgYYGlpKQMeQn5kfPwsGE5OTsbPz49x48ZRpkwZ+bpWq+XXX3/FxMSEfv36fdU+Bw8erLNoUXKwkZERrVu3pkiRImzfvp3IyEi0Wi3W1tbUrVuXvHnzkpSU9NPb0ZcvX2bPnj2MHz9exxEAcODAAS5fvkz37t2lE+NLMBwVFcX69et5+vQpmTJlIjIykqJFixIQEIBarf4kB585c4Y1a9bg7++Pk5MT4eHhbNu2jdjYWEaMGCG5V9lyYc6cOYSGhlK5cmUMDAw4deoUpqamclCpONc7d+4wfvx4Xrx48dlnwtLSUma8i2cBflwM/yz4BdizZw8bNmxgyZIlOk7058+fExAQwIYNG3SGH/2ZvHv3Lt37lRzs6upK48aNuX37NufOnUNfP3XIi4uLC97e3hgYGPwr7Oju3bszaNAg6dQV15+QkECHDh2YMGEC5ubmX2VHnz17ll27dmFsbCzt3QYNGuDq6pouK1FgWKvVMnr0aHLkyIGfnx+ZMmXi4sWLcvCMs7OzDPYJDD948IDp06dTuHBhChUqxMuXL7lw4QLNmjWjUqVK8ruIj49n/vz5bNmy5bPPhIGBAXZ2dkRGRhIVFQUg9cDPgBEhAtejR4/+x52SI0eO/KnuVUZiYmLCjRs3KFSokM7r9+7do2TJksTHx3/V/v5VTkmNRoOXlxf79u3TUcRCNmzYQHh4uE6z5i+RLVu2MHHiRC5fvoyhoSGdOnXCxsaGcePGAamOlBIlStCnTx9y585NQkICBw4c4Nq1a3Tr1o24uDipjEXUU2QAJiYmSiMkOTmZ2NhY2WMjrfGU9kcYU2K7UhmnNarSZkaISLDy/UoDS2w3Njbmxo0bHDp0iKFDh+oYZ4JcgoKCiIqKol69ejpTFZOSkmTqbnBwMHp6epiZmWFoaMiKFSvQaDS0atUKExMT9PX1iYqKYvLkydSoUQN3d3ednlPifIYOHUqTJk1wcXHRiXZ9/PiRrl27Mm/ePBkpUqlUPHr0iEmTJjFjxgzMzc2loo6OjqZ///60b98ee3t7jh49yubNm7l//z4zZ87E2dmZlJQU1Gq1jmEOqQ2nnZycKF26NPb29mTKlOmHzrKCnwfD69ev58OHDxliVKv9Y6ry56aIppWYmBg6derEqVOnePz4MeXKlcPf35/t27dz4sQJIHUIQPPmzWUD62fPnrFo0SLq1atH3rx5iY2N1ZnUp8zYEIslgWXRwD+jZt1fgmERrVUukMRr8MdiSBhjytLPtHpAZHP17NmTX3/9FTs7OzkpWVmu0bx5c+bNm6ejo4TRWKNGDQC2bdsm+z99/PiRMWPG0Lt3bwoXLiz1ytmzZ1m/fj2TJ09OlzVlaGjIkydP+O2335g1a5aMYgu9JPRz+/btdV4fM2YM5cqVo1atWjpla8ePH2fr1q2MHj2au3fvsm/fPrZs2aIzHVWr1TJs2DCOHDkiz8XAwIAKFSpQunRpmb1mZWWFp6fnD4uPnwW/f4bR4OBgQkND6du371ftd+fOnYwbN45Lly6hp6dH9+7dyZIli8zwTUxMpEyZMnTt2pV8+fIRGxvLoUOHuHjxIv369ZNOi++JYbFY+ic4+N69e2zZsoWxY8dmyME7d+7k+fPnNG7c+Is5eP369Xz8+JEOHTpIDo6JiWHq1Kmy/UNGHDx69Gj8/PxkySn8kUXVpUsXZs2aJQO/KpWKFy9eMGrUKGbOnEmmTJkkB8fFxdG/f39atGhBnjx5OHbsGFu3buXmzZtMnz6dcuXKkZKSgpmZGc7OzjrPQ8GCBSlZsiQuLi5ky5aNTJky0aBBgx8aHz8Lhj+HUa1Wi4+PD1u3bv2qUu74+Hi6dOnCsWPHePToEZUrV+aXX35h586dHD58WPJDixYtaNq0KZDqQFm8eDG+vr4ULVqU6Ojon9qO7t+/P0OGDCFnzpzpMKzkYK1W+0UYjo6OZvTo0XTv3p3ixYvLc7p06RIrVqxg8uTJ6bKmDA0NefnyJZMmTWLOnDkYGRnpcG1wcDAPHz6ke/fuOq9PmjSJokWL8ssvv+hwsHBujh8/ntDQUPbt28fmzZspWrQo06dPl9niU6dOZdu2bfJc9PT0cHNzw9nZmUKFCmFvb4+lpSU1atT4YfHxs+AXUns0fwqj+/fv58KFCwwdOvSr9nngwAFGjBjBpUuX0Gq1dOvWDXt7e8aOHSu5s2TJknTt2pXChQsTHx/P0aNHOXnyJP379yc+Pv6ntqOfPXvGsmXLmDRpEoaGhuns6P3793Pz5k1at26tk+H8OTs6ODiYly9f0qVLF5khGRcXx6xZs3B2dsbX11eHgwWGJ06cSPXq1alatSqAxGpcXBxdunRh6tSpWFlZydfDwsIYNmwYM2fOlK8Lu2ngwIE0aNCAokWLyoSBa9euMWnSJCpWrIhGo8Hc3DxdRWq+fPlwcnLCxcUFe3t77O3tyZ07Nw4ODj8FRoQIXI8ZM+Yfd0qOGDHip7pXGUmuXLmYPn06jRo10nl948aNBAYG8vTp06/a37/KKXn9+nXWrFnDpEmTMtyemJhIw4YN2b59+zftXxjwW7duxdzcnJYtW7J06VJiYmJkhKB8+fIMHToUGxsb1q9fj1arpWzZsjoKV6RyK8slRYREpLArG9krFWdaZayMFCmjPZ9SxiLSktE+lZ8Rit7Y2JgNGzaQK1cuatasKcvPYmJi5OS0R48eMXfuXAYPHqyTrh4bGyvLceLj49HX18fKyoqIiAh+//13pk2blq5JfWJiIu3bt2f+/PkYGBjIUh99fX3evn3LtGnTmDt3ro5RJ4zToKAgoqOjady4sYwQDRkyhG7dulGgQAGd9yclJfH06VM6derEs2fPdJr0KiOAZmZmBAQE8ODBAw4cOJDueXN0dPwp8PEznCOkZuksWbLkk+c4ceJEypcvT7Vq1b5p/1u2bKF///48fPgQX19fYmNjOXz4sDRUrK2tadWqFQ0aNCAmJob+/ftLg0pZTqUcoCIMK41GI/tcieEygM7CRTy3StwpDSolfpWLG4FPsU1EctNiP+1iSDglO3fuzIoVK2T7ipiYGHm+CQkJ9O/fny5dumBpaSn7uQlHDiCNSAsLCzJlysSMGTNo0aKFnOatxPDOnTt58+YNzZs31ynfNDIyYsyYMQQEBODo6Ch1kjBKk5OTadq0KUuWLJH7fPXqFdOmTWP27Nk6ZWlClwYGBnLr1i3u378vj29iYqITnatYsSKlS5dm9erVOllVfn5+kgt+dHz86Ocn5N69e8yZM0cnM1kpKSkp1K1bl507d37T/qOjo+nYsSNBQUGYmJjQtm1bli5dSlRUlOTgcuXKMWjQIOzs7Ni+fTvR0dFUqlSJmJiY74phZe+qv5uDRYVHvXr1MuTgsLAwfv31V0aNGvVFHBwbG8usWbP47bff0g16SkpKon379tJpoeRgEYxYtGhRhhwsnKOtWrWSuB81ahStWrWiWLFi6Tj41atXtG7dmhcvXsh2KaDLwaampgQEBPD06VP27Nmj8zycP38eFxeXnwIfP8M5QupAnClTppA1a9YMt8+aNYvChQvj4+PzTfvfsWMH/fr14/79+/j7+/Px40f27dsnOdjGxoamTZvSqFEjkpKS6Nu3L0OGDJFZVD+rHd21a1eWLl2KkZFRhhgeOnQoLVq0IGvWrF+E4UWLFuHn50eZMmXS2dEHDx7k3r17tGvXLh0HT5o0iXr16lG2bNkMObh58+YsWLBAlt2+f/+esWPHsmDBggw5eNiwYVy5coV79+7J46fl4HLlyuHq6sq6det4+/atfN3T01Pa1T86Pn708xPy7NkzxowZw+LFizPcLrL20urSL5W4uDg6d+7M+vXrMTQ0pH379ixfvpyPHz9KDi5dujSDBg0iR44c7Nu3j7CwMKpXr/7dOfiftKP379+PRqPB398/Qzs6PDycwMBApk6dSnx8/J/a0RqNhmnTpvHbb7/JoKDAsEajoV27dsyaNUtmUAoMx8bGMnToUJYsWSL7VysxfPDgQW7cuEGnTp3kIJ6JEydSt25dnJ2d02H43bt3NGvWjBcvXsh2KeJ+i+oJExMTAgICePnyZTrb7dixY1SpUgX4eTCiFHHO48aN+8edksOGDfup7lVGMmbMGGbMmMGgQYNwc3NDpVJx8uRJJk2aRL9+/Rg2bNhX7e+nmL79pRIXF/fZ0mwRFfxWsbS0ZOPGjYSFhVG7dm25UDY1NSUuLo6yZcty7tw5duzYQefOnfnll18YOHAg5cqV00m7VpY1iYxOoXBMTU11Sr6FUtDX19cpGxGfUfZ6SNtjRtmHRvTpUTbVFQQgSqeVrwklqNVqMTMzIzw8nOTkZN68eSMNIHFuERER6aY2arVaSRgiQiSkffv2+Pv7y94UYuEjDE0vLy/OnTtH1apV5fUZGBhw7do1qlWrJvsEiXsnUs49PT0ZNmwYTZs2ldf75s0bChcuTLZs2YiOjkalSm24HBMTw6pVq7h79648L5VKhYuLC6VKlZIlMps3b2b+/PksXLiQzZs3c/r0ac6fP4+JiclX92X5T/5cEhISdHpbpZVMmTIRFxf3zfuvX78+9erVY+nSpZK0RZNmAHt7exYsWEDdunWxsrKiQoUKhISEUKhQIR2jX5REgO4UO/ijh5OYriveLxbkSvwK/AmjQolf8V5hbIh9iOOI15SZGwK/yrIrQOqSly9fSmeKMuPh48ePMqouXlepVDJ6W7duXXlOCQkJvH37FgcHBywsLOQEXrFI8fPzo02bNrRp00YuFIWBFxYWhqOjo3SWCsMnISEBlUqFg4MDL168IG/evKhUKg4fPky9evXImTMnkZGR8voTEhK4f/8+J0+e5P379/LcMmfOjIeHB5kzZ8bIyIg3b96wYcMG7t+/z9u3b3nw4AHHjh3j6dOneHp6fvNz9J9kLH/GwWkd2F8r5ubmrF27lpkzZ1KnTh3ZNkStVhMbG0vhwoU5f/48Z8+epUmTJtSpU4fevXtTtWrVdNj6Xhj+JzhYrVbz4cOHz3Kwsi+vON6nOLhbt240atQIMzOzDDm4du3anDhxAm9vbx0Ovn79OlWqVPksB3fv3p02bdrI633+/DklSpRIx8GxsbGsXr1ax5kBUKZMGUqXLi0dv9u3b2fhwoXMnDmTjRs3cvbsWc6ePYuhoSHFihX75mfpP8lY/gzDf5WD/fz88PX1ZfXq1bRp04aUlBQsLCxkCaC9vT3z58/H19cXGxsbPDw8uHz5MsWLF/+p7WiR1fk9MKzRaBg2bBiOjo6o1WosLS11ONjb25s1a9bQpUuXdBz86NEjypYt+0kOdnZ25tGjRxQtWhSVSsWxY8fw8/PLkIMfP37M8ePHCQsLk+dmZWWFh4cHNjY2GBsb8/79e9auXcvdu3d5+/YtT548kRmz7u7u3/wc/ScZy5/hV+jybxVTU1NWrFjB9OnT+eWXXyQHCzs6f/78XL58mRMnTtCmTRt8fHzo3r07Xl5efxsH/xN2tJmZGU+fPkWj0WRoR3/48EEHv39mR//222/UqVMHY2PjDO3oX375hUOHDlGvXj0dDN++fRs3NzedydtKDFevXp2VK1fq3KcHDx5QunRpcuTIoYPh+Ph41qxZo7MOhtS2dOXLl5dO2e3bt7No0SImTJjA+vXrOXfuHGfOnEFPTy9dv++fVdI+M//E8f4NMnz4cCwsLJg2bRqDBw8GIHv27IwaNYqePXt+9f7+VU7JYsWKyZLqjOTSpUvp6t6/Rezt7Tl37hy7d++mZcuW0pi6c+cOkJop1K9fP2nAGBsb60SElL3SlEZMSkqKLHkU/4vPKUV8Vul0yMiYEvsV70tJSZEGlVDQyuMLJao0slJSUqhatapM8c6aNatMxxXG4caNG/Hz89PpC5KSkoKpqWmGGW16enrkzJlTJ0qlPGbu3Ll59eqVzvWItPXY2Nh05CWuLyEhQUZ3ldE1SG3cLlL0k5OT6dWrF0FBQQBkzZoVPz8/fHx8sLGxIS4uDh8fH3755ReeP39Ou3btaN68OWZmZnh7e+Pt7f2Xn6H/JGNxcXHh8OHDn3QYHTt2jPr16/+lY+jp6dG+fXtq165NvXr1OH/+vNwWFRVFbGwsx44d45dffqFw4cLcvn1bTi0UxoF4/oSxJJ5fQPZyEs9z2r4woIth0CVEkTEC6OgIpf4QnxH/f2pBJBZBJUuW5NSpU7J3jPg8pPYLSkpKwsTERDYcj4+Pz9CZAamRxSJFisgyF4ErcT4C02l1kbgG5f1Lu3BLSEiQBrNKpSIhIQG1Ws2bN28wMTGR+7t8+bLOuVWsWBFfX185STwuLo43b97Qt29fsmXLJo20IkWKpGvY/p98PylUqNBnG1vfvHmTXLly/eXjZM2alZMnT3L48GEaNmwoOVhw07Jly2jXrp18FkWpNXw/DP+THFyxYkV69+5N06ZNyZUrV4YcXLNmzS/mYAMDA3LkyPFJDs6TJw937tzJkINFWeynOFg4Wz7HwRqNhgEDBrB69WogNTtOcHDWrFklBzdu3JhHjx7RsmVL2rRpg7m5OZ6env8FFP5GKVeuHIcOHcLX1zfD7UeOHGHs2LF/6RgqlYqWLVtSo0YNGjVqJNuoALLP77Fjx2jZsiVFihThwoULP70d7eLiwpEjR/Dw8EhnR3/8+JGIiAisrKxklufnMBwbG0v+/PnlOaflYLHuyIiD4Q+Hz1/h4Bs3buDt7S37Qbq6uuLn54erqysajYa4uDjCw8Pp3bs3tra2LFu2DENDQwoWLPhfQP9vlLx58xISEiId92klNDT0q/pJfkpsbGw4cuQIZ86coXbt2kRGRgLIXqIrVqygS5cusn3B38HB/6Qd7eLiwooVK2jTpo28BvF5SG09VatWLZ3hPZ+zo1++fEmLFi0+aUfnyZOH8+fPp8Ow4GBxv9JiOCEhQXKu+Iz4X4lhjUbDkCFDZEatlZUVdevWpXbt2mTLlk2W0G/atInQ0FD8/f3p3LkzZmZmVK9enerVq3/V8/Kjy39OyW8TlUpFnz596NOnj7TDv2ZuS1r5VzklM2XKRP78+dm3b186x1FycjLjxo1j8uTJ3+VYhoaG1KhRg9y5c3Pz5k369+9PSEgIe/bsISwsjPDwcJl9IKIkolmvskm3KGMS0y+FoWVsbCwHMAhFBchSFUAqM0BHCSnTs4ViVSpaZaRX6SQQ70tLFqamppQsWZLZs2fL7DJxrvv37+f9+/fky5dPpub/mdMuX7586OnpkSdPHl68eCGvR9yX+/fvU7RoUR1DSaPR4OrqSmBgIM2bN9cxSsX24OBgPD09JakJohLGXlJSEuHh4bRt25YzZ84AqYvb3bt3o1KpdEqAdu/eTVJSElmzZmXx4sX/GgXyo0v79u1p1aoVlStX1ulJCHD27FnUarXOFPm/Ivb29tSsWZMnT56QKVMmmjRpwpw5c4BUg9vf35/Xr19ja2sr+7AZGhrKEgxRciIyf0QkUxgV4j0ie0NpECkjvxllfSgdeMqftM9h2owMQAcTAidNmzalX79+2NvbkyNHDnlOsbGxBAYG0qFDB7kY+jNjw8rKipcvX1K0aFEAXr16JR0NwiAT9yMthh0dHTlx4gSVKlUiMTFR554kJiYSGhpKrly55GecnZ05duwYFStWJDY2Fn19fbZs2ULnzp2BVB3YvXt32rZtq6NLhd4VfWpFT67/5O8VtVpNyZIlCQ4O1skKgNRndfTo0YwYMeK7HMvAwIDq1auTK1cubt26RWBgILdv32bXrl28ffuWsLAwsmbNSnJyMiYmJmg0mu+O4X+Kg42MjKhQoQLTpk2jZ8+eOhx89OhRHj9+TIcOHWSp55dwsEql+iQH37t3T+oJ5fmJhVm7du0y5OBt27bh4eGhw8EGBga8e/eOLFmykJSUREREBB06dOD48eMAZMmShV27dmFgYJAhB1tZWbFixYr/OPgfkjZt2tC4cWM8PDzS9aS7dOmSXDB/D7Gzs6N27dqEhoZibGxMQEAA8+bNA1Lb4xgYGPD69WuyZMny09vR9evXp2/fvuTKlUvqFT09PRISEujXrx9t27aVzsg/w7Barebdu3dyem5aDlaWt2eE4UOHDuHp6ZmOg5OTkwkJCaF///4AkoODg4Px8PCQHLxz507atm0rz6dDhw507do1HQer1Wqio6OZMmUKtWvX/i7PzH/yeTEyMsLNzY0NGzbQpEkTnW0ajYZRo0bRu3fv73IsfX19KlasSK5cubh58ya9e/fm8ePHbNu2jcjISJ4+fUqePHlk0Pvv4GD4Z+xoQ0NDPDw8mDBhAoGBgXLfenp6nDlzhhs3btCuXbsvtqPz5cvHrVu38Pf3B9Lb0Xfv3tUZLCt+nJycmD9/Pl27dpXvVd4TgVXldZiamvL69WuyZctGbGwsMTExdO3aVQ51zZw5M3v27MHIyEhiWFx7YmIiarWatWvX6ujHf5v855T86/JXnJFC/lVOSYBJkybRrFkzzp07R9u2bcmSJQunT59m6tSptG3blsyZMzN9+nRu3LghHRGurq7f9ICYmpri7OzMs2fPiIqKYtKkSbJPR2JiIsePH8fFxUVmDghlrJyuB39EcYQhr6+vj4mJiWwIDH9kRCgX+0IRi3R0cQ1K5Sz2q1TaoGugCUmrjJXRq9atW7Nu3TpatWpFrVq1iIiI4OLFi+TLl4+RI0eSkpJCpUqVMrxPu3bt0jFIWrVqRZcuXfDw8CBHjhzcvHlTXmNCQgLHjh2jRYsWMhIlCEmtVlOoUCFWrlwp+0aKzz148IBDhw7x+++/y/sIqT0KZ82axeDBg7l27Rp16tSR26pWrYqPjw8mJiaSFJXXX758eXbt2sWUKVMoXbo0Hh4e6e6ZaMz/n3wfyZYtG3379sXX15c+ffpQvXp1IiIiWLlyJUePHmXdunWcOHGCjRs3Eh0djbOzMwEBAV81zVcpbdu2Zfv27dy6dQs/Pz8MDQ0ZMWKE7Hlz+PBhRo4cqRPNVGJYabgAEjMiOiwMGmVTe2VkV+BWlF+kfb4EbpULHUAHx6CL2Yyiwebm5owePZpff/0VMzMzChUqxKtXr3j48CGdO3emSJEi6YZJCEmLX0NDQ4oWLcrp06dxc3MjPDxcJ9MkKCiI6tWrS8MG/oiMN27cmH79+pEvXz4yZ84s96lSqRg3bhyNGjWSxqFKpaJ06dLMmTOHR48ekTNnTvz9/WVma65cucicOTPt27fXuSfimJaWlri6urJt2zasra0pVqwYjo6OOtcWHR3NgAED6NChw58+K//Jl8nYsWNp2bIlly5don379mTNmpVz584xdepUmjRpQo4cOZg1axZXr17F3Nycxo0bU7FixW/iYAMDAypWrMirV6/48OEDkyZNkpObk5KSOHz4sE4p8PfEsJJX/wkObtq0KUFBQbRq1YqaNWsSGRnJ5cuXyZkzJ2PHjkWj0XwxB7do0YJWrVpRu3btdBycnJzMvn37WLRoUToONjIyolSpUixevJiAgAAdffT48WN27tzJkiVLdDi4adOmTJ8+nZEjR3Lnzh1q1qwpt7m7u1OtWjXMzMwy5GBXV1e2bt3KhAkTKFu2LJ6enjoZMOLazp0792ePyn/yhWJjY8OwYcPw8/OjV69eeHp6EhUVxerVq9m/fz9r167lzJkzrF+/nsjISBwdHWnVqhU2NjbfdLyAgADWrVtHSEgIPj4+qNVqBg4cKINbu3fvZvjw4RIvP6sdrVarGTt2LFOnTsXY2JiqVaty/fp17t+/T4cOHXB0dCQxMfGLMKynp0fZsmU5fPgwHh4e6Th4586dVKpUKUMObtCgAT179qRIkSJkyZJF7l+lUjF58mTq1Kmj47xxcHBg5syZ3L9/n3z58tGqVSuOHj0KpNprtra2dO3aVedeiGOq1WqqVKlCcHAw2bJlo2jRoukGZsTFxTFgwAACAgK++Jn5Tz4vQ4cOpU2bNly7do2OHTuSPXt2Ll68yNSpU/Hz86NgwYLMnTuXS5cuoVaradiwoWxx8rWiUqnw9PTk7du3vHv3jvHjx7Nnzx7ZM/LkyZOy9/j35uB/2o6uX78+27Zto3Xr1pQqVQozMzOuXLlC1qxZmThxopwrkZGk5eAmTZrg7+9PgwYN0NfX18FwcnKybFuSFsP6+vq4ubkxd+5cOnbsKLdBapZqUFAQixYtkvdHpVLRvHlzpk2bxoQJE3j48KFO5rW7uztubm6Ym5vLrG9xLwDKli3Lhg0b+PXXXylXrhyenp7pnJP79+/n9OnTXz3A8EeS/5ySXy6lS5fm0KFDWFtb4+zs/Nlr+VzlVEbyrxp0I0Sj0XD48GHWrVvHx48fcXJyol27dly5coWZM2fSo0cPKlasyNu3b1m6dCnPnz9n+fLlXzXRV8jTp08pX748mTJlYs+ePdy8eZOIiAji4+NZunQpw4cPx8DAQCqIxMRE4uPjiYuLIyEhQUaBhHJWlqeI6WNarVYqgbTRWAMDA0xMTGT0WDTpVU4hS9vAN23DYGUzYOWP6D2iTHNPTk7m9u3bJCcnU7RoUbmYiI+Plz1zPD092bdvH0lJScTGxhIXF4eZmRkNGzYEUptw79q1i0ePHrF48WJu375NYmIir1+/Zv78+TRr1kynCbey149Go+G3337jyZMneHp6olarOXPmDO/evWPMmDFYW1vLeyOuQzg1kpKS2LVrF7a2thQpUoSiRYvSq1cvGTVXRnnFpLhWrVrJfoOVK1emXLly3Llzh2bNmmFra6uTlv8j4+Nnw7DA5sWLFzEzM6NRo0a4u7vTpk0bChUqRKtWrcicOTMnTpxgzpw5DB48+JtL+gIDA5k2bRpz5szBy8uLbdu2Ua5cOWbMmEGpUqWoVKmSTimWaGIdFxcnMSumB4rFj4gwimmhabM0hPElSq9MTEwwNjbOEKNpJwEqX0s7+TOjKaDCYBM/YWFhvHz5EmtrawoUKIBGk9qoWzQVr169OocPH5bN9sXzb21tLY2qLVu28Ouvv9KyZUt69OjB0aNHSU5O5siRI5w7d45x48ZhZGSUDr96enrcv3+fyZMnU7JkSUqUKMH79+85ePAgNWrUoHHjxtIpKc49LCyMAQMGUKVKFTnETEzmHTFiBPnz55fZMsqpjvHx8ezYsYPFixdLA6tDhw4YGhry7t07pkyZQqdOndi7dy8TJ05k0KBBPyw+fjb8arVajh07xpo1a/jw4QMlSpSgXbt23L17l4kTJ9KtWzcqV65MeHg4y5cv5/79+6xateqbGo2HhYXJHmmHDh3i1q1bvH37Fj09PebNm8eoUaN0+kR9LwwrMyX/aQ6+c+cOSUlJFClSBHNz82/i4P3793Pr1i1+//137t69S2JiIu/evWP+/Pk0aNAAV1fXDDlYq9Uyb9487t27h5eXF+bm5pw7d46wsDBGjRqFra1tOg5esmQJISEh6OnpERwcjJWVFY6OjuTNm5cBAwZ8koMTEhJo1aqVLA10dXXFzc2Nu3fv0qhRI/LmzYu7oi/dj4yPnw3D79+/Z9myZZw7dw5TU1MaNGiAl5cX7du3J2fOnLRt2xZbW1tOnTrF7Nmz6dOnD7Vq1fqmY40aNYrRo0czffp0/Pz82LZtG2XLlmXevHkULlwYDw8PnYypn92OfvPmDc+fP8fS0lK2lPpaDAcHB8tAXmBgIEePHkWj0XDs2DGOHz/O+PHjMTExyZCDHz16xIQJEyhevDhOTk58+PCBAwcOULVqVVq2bJmOg9++fUtgYCCVK1dm4sSJQGqrHVECWrhw4U9y8P79+5k9e7b8rtu3b4+pqSlhYWFMmTKFPn36sG3bNoYPH87YsWN/WHz8bPjVarWcPHmS1atX8/79e4oWLUr79u15+vQpo0aNokuXLlSrVk0G/W/cuMHq1avTzQf4Enn79i2lS5dGo9Fw6tQp7t27x7Nnz1Cr1cycOZNRo0bJwaX/Bjs6JSWFO3fukJCQQOHChbG0tJT652vs6CFDhnDx4kV69+5NrVq1OHz4MG/evGHhwoXUqlWLqlWr6uBX2V5i0aJF3LhxA09PTywtLblw4YL8bu3t7dNhePXq1Zw9exYLCws2bdqEhYUFzs7OZM+enSFDhkjbIi2GY2JiaNeunezdXqZMGapWrcq9e/eoW7cuJUqUoEKFCsAfVYk/C0bgD1xPmjTpHx90M3DgwJ/qXgkZPXo0/fv3R61WM2rUqM86JUeOHPlV+/5XOiUzkkePHtGjRw+2bNmSzvm4bds2Tp8+/c2l3QMHDmTGjBm4ublhbW3NmzdvKFiwIM2bNweQBpFWq5UGRkxMjOzNBEiFpjSmhIIApEISESIR9dTT05O9OjIypsRr4u9PTRtURozSGjDKCIJ4TURgxGIiMTFRKjN9fX1JKmKhIbarVCqMjY0xNjbmzp077N27l4SEBDJnzoy9vT19+/bFwcGBgwcPymlqgjiUEhERwZkzZ0hKSsLJyYnChQunA4aSSEJDQ9m4cSMvX77Ezs6OunXrUqBAAXmvRW8gca6CSFavXs2WLVvSfeelSpXizp07OhMGf2R8/Bsw3LNnT2rVqqWTaQOpyl0Mr8mePftX71eUN9jb21OiRAk5hKF+/fqULFlSGkSANKZEiYZ4XSyURNmSyMYQ/wtMiX0oo5/KvnfimRV/K3Gr/D+jiYHwBz4zwrDYrvwb0MGncuEncCEMRqGvDAwMZH+vvXv3cvPmTQwMDLC0tMTPz4+OHTty9OjRdPpHmeGk1Wq5du0aT548wcrKikqVKqFWq3UwrMxcSUxMZP/+/Rw9epSUlBRcXV2pUaOGnEyo1IsieyYuLo7IyEg6dOgge/AoxdPTkyNHjpCSkkLmzJkJDw//YfHxb8DvixcvaNeuHdu2bUtn/O3Zs4c9e/Z8cmr3n8no0aMZO3YsFStWJHPmzLx9+5YCBQrQsmVL9PX1/xYMiwyPn5mD79+/z549e4iLiyNz5szY2dnRu3dvnJyc/pSDP378yJkzZ0hMTMTR0VEOxlCKkoOfPHnCxo0befr0Kba2ttSpU4fChQv/KQdv2rSJdevWpfvOixYtytOnT+VkU3FOPyo+/g0YHjBgAG5ubtSrV0/n9cTEROrXr8/s2bPJly/fN+07U6ZM2NjYUKJECVJSUido169fnzJlyuhMoP7Pjv4DwxqNhv379+twsI+PD507d+b48eN/ysEhISE8fPiQTJkyUblyZczMzD7JwcnJyRw4cIBDhw6RkpJC2bJlZaXR5zg4Ojqajh076uBUSI0aNTh48CAajQZra2s+fPjww+Lj34Dft2/f0qxZM4KDg9MNVTpy5Ajr169n4cKF37TvKVOmMHDgQCpWrEiWLFl49+4duXPnJiAgACMjo//s6E/Y0Y8fP5YcrNFoKFKkCL169aJMmTIcOHDgsxiOjo7m1KlTxMfH4+DgQPHixdNl/Ckx/Pz5czZu3MiTJ0/InDkzderUoVixYjptJjLC8JYtW1i5cmW67zxfvnxERkZKh6WHhweHDh36qTCidEqmbVfyd0pcXNxP65T8O+X/G6fkwIEDqV+//idTq2vVqsWmTZu+KUokenccOXJEGjaJiYnSaBLKWChYMUxClCsJhaFMX4fUSFB0dDTXrl3j3bt3mJqa4uDgILMBlZEQZaTHwMBAnodS+YrXlNsyWmzAH6nbaRVvRq8pFZqIPCvJR5BHRo3Tjx49ilarTdfI+8CBA7IP3JEjR2TEWdwnoXgFaYh7KBR22qiSsjxAnC+gYwBqNBoiIiJkT9Dk5GQ+fvxISEgId+7cITQ0VOce5MyZEwcHB/bu3Qv8tyD6OyUiIoJWrVoRHByc4fYjR45w7NgxRo0a9U37L1myJMWLF6dXr17yWYuNjSU6OprY2FiSk5Pls5OQkEBUVBRxcXESf8q+UsryreTkZJ49e8bNmzdJTk4mR44cFClSRCdzS2BWmW0hFkfCqBJ/i2iw+Fvg91MlZF+CX4GLtOWiaTGi1WozxPCRI0fS4VfZ1/fo/5V6iR4/4pgCm0rHhRKzSgwrz1PZ+0cYsWJ/CQkJvH79mlevXsnyPwMDA/bu3cu5c+d0psaq1WrKlSvH48ePefz4MfDjYvhnxy+kRkyrVaumk9mmlDp16rBy5cpvasWwfft26taty/79+1Gr1ZiZmcngwl/FcExMDFevXpVN4kuWLEnmzJnl/v7j4L/GwWKBKjJpPn78SFhYGO/fvyc5OZmoqCiuX7/OvXv3uH//vs49yJ49O46Ojuzbtw+tVvtD4+Nnx3B0dDT+/v7s3r07w+1nzpxh27ZtMpv9a6V8+fLkypWLfv36SQ4UPRb/qh397Nkzbty4QVJSEtmzZ6dYsWI6HPyzY/hH4+A3b97w6tUrqXeNjIwkB4uMMUhtgeXi4sKLFy+kff2j4uNnxy/AxIkTcXJywsfHJ8PtDRo0YMGCBd80COfAgQPUqFGDHTt2YG1t/V05ODY2lmvXrvHq1SuMjY1xdHQkS5YsEiv/2dF/DcMajYb4+Hg58C46OpoXL17w/v17OfAmOjqa3bt360zqVqlU2NvbU6pUKfbt24epqSnR0dE/FUYEridPnvyPOyUHDBjwU92rjCR//vxcuHAhXfuWiIgISpcuzcOHD79qf/+6npKfklu3bsmyg4ykQoUKhISEfNJpef/+fbZs2UJcXJyMEAojRBhAKpUKtVpNYmKiTNcWyjgxMVFmAogMANH0F/7IKFBO4AoJCeHo0aO4urri5OREVFQU586dQ6VS4ePjo6O4AR1FKEQoJaGgRTbSgQMHOH36tEx7r127NlWqVJGfVyr7zynqtD9iu76+voxAi32mVboHDhwgOjqauLg4duzYgZ+fn9zm5eUlFXK1atVkQ17RkFxcozAIxTUqlbFSOSsJA/4oD3769ClqtZrIyEgiIiJ0HI9KCQoK4vnz51y/fp1nz57x8uVLbt68SXh4OP3792fKlCkZfu4/+T5y9epVKleu/Mnt7u7uTJ8+/ZPbk5KSCA4O5saNG1haWtKoUSOdKcCiFFNE/cVCSGA4ISFBllWJLB7RVD/tQkY8c0lJSWzcuBErKytcXV1lZtKGDRvw8vKSJRZClHpE+beypMTU1BS1Ws3z58/ZsmUL79+/R6PRULRoURo2bIitra3OwiajmFNa/AI6jgSxXVkeI/TAiRMndL6Hffv28eHDBzZt2oSVlZV0Ynh7e0unhru7OwcPHpRTAcViUOgJJYY/hV9xT5T36+DBgwQHB8vm3MnJyZ/sLdexY0c6d+7MxYsXefLkCU+ePOHu3bscPXqUcuXK8dtvv+n0m/1Pvr9cvnz5s0GDKlWqcPXq1U86LR89ekRQUJDsJevr65uOD/T19VGr1dLI/qsYvnv3LgcPHqR8+fKUKlWKqKgozp8/T1JSkizB+hYO1tPT4/Dhw5w4cUIe08fHR/Lj/w8cLMqDHz58iJmZGZGRkURGRuo4HpWyadMmwsLCuHbtGs+ePSMsLIwbN24QHh5Or169mDlzZoaf+0++j9y8eVOW6WUkrq6ujB8//pPbk5OT2bFjB1evXsXCwoKGDRuSN29euV2UZwoHwvewo1NSUli7di3m5uaUK1cOExMTHj58yPr16/Hw8CBXrlw6venEecCfY/j169ds27aN169fo1KpKFCgAP7+/mTLlk0+6/8Uht+/f/8/4eCjR4+ydetWDAwMZIaY6PmcVlq3bk2nTp24dOkSjx494unTp9y9e5fjx49TunRpNm/eTIMGDT75/Pwnf13Onj0rhxhlJNWrV+fSpUvpqpGEPH36lE2bNhEZGUnJkiWpU6eOxJ6ylPp7cvCDBw/Yu3cv5cuXx9HRkZiYGC5cuEBsbKwcpvctdrSRkRHHjh3j2LFjcpu3t7ecHfD/gx0dERHBsmXLuH//Pubm5nz8+JHo6Ggdx6NSNm3axOvXr7l8+TLPnz8nNDSU0NBQ3r9/T+/evenWrRv58+f/5PP1I4vye/ynjvdvkMePH0vOVEpCQgLPnz//6v39Y07J0NBQZsyYwYMHD6RS6Nq1a7rIwN8pKSkp0qAW8uLFC1atWsW2bdsIDw8nb9682NnZye1JSUl0796d5ORkmjdvjqWlJUeOHGH69OnMmTOH4sWLExoaipWVFUZGRjKqEBERQWRkpIzwCmUsFLJK9UfDbkNDQx2lZmBgQHh4OBcuXGDAgAGyJ2VCQgIFChTgxIkTnDlzhqpVqwJII025SEhr3Ailr9FoGDduHF5eXkyfPl1OqF29ejUXLlxg0KBB8vyUE7jSRoWE0la+JhSy8jNKhS6+6927d/P+/XuZnZiSksKrV69Yv369zrQ4b29vVq9eTYsWLWRaPKBTjmNsbIxarZbp7cqUe+UCSSmvX79m5MiR9OrVi0KFChEaGsrWrVsJCgoCoF69emzbtg1Ijd57eHiwbNkyDh8+TFxcHDlz5sTLy4shQ4bg7e2NoaHhv94pqdFoWLNmDevXr0dPL3ViZKVKlejevbvOwJK/S0TWREbntW/fPvbs2cPt27fZt28fXl5eOiUO586dY9CgQTRo0IB69erx5s0bBg0aRPbs2WVWx8OHD6lRo4YssYiJieHjx4/SoBJZd6KMRKPRyMWPMKYAGbE0NDRk69atVK9eHUdHR1lyZm9vj5OTE8uWLaNZs2aYmpqmK5vIKCoLyHKPc+fOceDAAbp160ahQoVQqVRcvXqVMWPG0LdvXwoVKoSenp4sIfkcfpWR1rQZTcoyGY1Gg7GxsTSkgoKCiImJwdjYWC4Mo6KidM7Xy8uL5cuX07p1a5KSkkhISJDZHwLDhoaGmJqaygboQndl5OBQyrJly+RwsZSUFI4fPy7LS0qUKEFoaChxcXEYGxvTtGlT1Go1w4cP5/79+xgYGFChQgX69euHl5cX5cuXT3fu/0Z5/PgxM2bM4O7du/JZ6tSpk05f3L9ThKPB2NhY5/VXr16xatUqgoKCePjwIUWKFMHe3l5uT0lJoVevXkRFRdGyZUsyZ87M8ePHqVGjBjNmzMDJyYnQ0FDMzMwwMzP7bhiOjIzkxIkTBAYGYmRkJDFcsGBBzp49y4kTJ2Qf26/hYJVKxZgxY3B3d2fq1KmYmZkRHR3NunXrmDBhAsOHD5eY/bdy8Lt37xg2bBjdu3enWLFiPHz4kODgYNavXw9Ao0aN2LRpE5Daw8rb25tVq1Zx6NAhYmJisLe3x8vLiwEDBuDt7Y2xsfG/3imp1WrZsGEDa9asAVKNfldXV3r27KkzsOTvks9x8KFDh9i1axe3bt1i165d1KxZUydz8PLly/Tr149ffvmFunXr8v79e0aMGIG1tTXTp09HX1+f0NBQKlWqRGJiInp6et/Fjt6+fTsVKlSgTJkyQKouyZkzJ87OzixZsoRGjRphbm4ur+NLMXz16lV2795N165dZeVDSEgIv/76Kz169KB48eKSy/8JDAud9k9y8Jo1a3j9+jXjx4+Xjpa1a9cCULhwYcLCwoiKisLAwIBmzZqROXNmOexKX1+f8uXL06tXL7y8vKhQoQLR0dFf+UT+fPLs2TNmzpzJzZs3Jed06NDhm3uxfq0YGBgQHx+friLwzZs3rFq1ii1btlCsWDFKlChBzpw55XaNRkNgYCBv3rwhICAAW1tbTp48SY0aNZgyZQply5YlNDQUAwMDrK2tvxsHx8TEcPjwYfr16ycTBpKSkihQoAAXL17k8OHD0oH6NXa0SqVi/PjxuLm5MXnyZMzNzYmNjSUoKIixY8cyZswYgH+1HR0REcHgwYPp1KkTvXr1klPTBYabNm0q26Y4Ozvj7e3NmjVr2L9/P7GxsWTLlg1PT09GjBiBt7c3dnZ2svfzzyj/OSW/TrZv3y7/3rdvH5aWlvL/lJQUDh069E2tXP4Rp+SFCxcYNmwYU6dOldNPhWPo1q1bdO3aVaYOp3Uafi/x9PRk+/bt1K9fX742ffp0Tp48SceOHdm+fTseHh6SIDp37gykNqKtXr06jRs3lp8rU6YMAQEBNG7cmO3bt/Pw4UNy5MhBUlISAFFRUURERBAdHS0NKRHhVRpSIuJqYGCgY4AYGRlx8uRJWrZsSd68eWUPzI8fP/L+/XsqV67M3LlzqVq1quwrIwwT+CNarIye6OunTj5bvnw5AQEBuLu7S2VlZmZGv379mDNnDkePHqV69epSmSrTu4WizUjZp114iPfq6enh5eXFgQMHdL4PYdwJMTQ01FkMAcyaNUs6w8S+RZ+L5ORk9PT0sLCw4JdffmHbtm3yXgplrEzjF9cSHx/PkCFDUKvVzJgxg4iICB4+fEjWrFkZO3as7C1RunRpevXqxdatW/n111/JnTs3Q4YMoWHDhhQpUkTnWn9mRfwlotVq6dSpE0WLFmXjxo2YmZmh1Wo5cOAAjRo1Yu3atWTJkoWEhARMTU3/FmXr4uLCiBEjdJ6/ly9f0rp1a6pXr06uXLkICAjg8uXLTJ8+neXLl2Nvb09YWBjDhg0jODhYJ0Xe29ubOXPmMHXqVFq0aEF8fDzZsmWT/Ww+fPggB1aJZvrC4FGWeomIqzJqaWhoKHuxeHh4YGpqioGBAQkJCYSHh2NoaEjlypVl9qe+vr40LpRRY/HcKrM/EhISCA4OZuHChTLjSqVSUbFiRYoVK0bPnj1ZtGgR8EeEVrnw+RR+M8rSEJ9RlmYqRVn2IhZ0Slm0aBEfP35k0aJFWFpayu0iOp6SkoKpqSmNGjVi27ZtctKiOJbYd9rjnzlzhh07dpAjRw4CAwO5ceMGcXFxeHt7M3v2bAYNGkRcXBwjRowgU6ZMzJgxg7CwMHx9fZkyZQrVq1fHwsLi+zyYP4lcu3aNwMBAJk+eLKesv337lrFjx3L9+nX69esnS2iVevl7io+PD5s3b6ZZs2bytXnz5rFv3z46d+5McHAwvr6+dO3aFXd3d3r16gWkDsFwcXGhVatW8nOlS5emZcuWNGrUiM2bN/Pw4UM58Eij0XwXDJ8+fZrGjRuTM2fOdBiuVKkSM2bMQKPRYGpq+lUcvG7dOho1aoS3t7cOB/fq1YvFixezb98+atWq9a/l4ISEBIYOHYqhoSGzZ8/m48ePPHjwgCxZsjBy5Ejs7e2ZMGECjo6OBAYGsmPHDiZMmED27Nnp378/DRs2lL2zhPz/wMHdu3cnZ86crFu3DnNzc7RaLUePHsXf35/Vq1djZ2dHfHx8ut6830tKlixJYGCgLJUEpJOiUqVK5MuXj6ZNm3Lz5k1mzpzJ0qVLyZUrF+/evaN///5s2bIFa2truT8vLy9+//13xo0bR8+ePYmIiCBbtmzfzY5OTk7mw4cPUt+ntaM9PDy4fPky1apVk60DvgTDKSkpbNq0iYULF2Jubi6fbVdXV4oXL06XLl1YvHgxhoaG/xiGRcLBP8XBly9fZtOmTeTKlYuBAwdy48YNYmNj8fDwYPLkyQwfPpyoqCgGDhyIvb0906dP59mzZ9SqVYvx48fj6en5U5csfovcvn2bHj16MGHCBFxcXAAIDw/n119/5fLlywwbNoz4+HjJS3+H1KlTh/Xr19OuXTv52u+//87WrVvp3Lkzenp6NGjQgD59+lC2bFkGDhwIpJZ9FylSRKcaydnZmZYtW9KwYUPWrl1LaGgoefPmlc/h9+Dgs2fP0qBBA3Lnzp2OgytUqMD58+dJTk7GxMTkq+zo4OBgfHx8ZKannp4e5ubmdO3alZUrV7Jjxw7pK/g32tGJiYkMHz4clUrFvHnziI6O5t69e1hbWzN06FAKFizImDFjKF68OEOHDiU4OJjJkydjZ2dH37598ff3p0SJEj+9Y+0/+XYRfaVVKpWObQ6pz3TevHmZNm3aV+/3b3dKarVaBg8eTFBQkE6vKDs7O+bOnUvZsmVZt24d2bNnJyYmBktLSwYOHIiTk1O6fV2/fp3Fixfz+PFjbGxsaNWqFe7u7l8EjNatW1OvXj3Kli1L7ty5CQ4O5vnz5wQFBTF48GA6dOiAr68vtWvXpkuXLhw8eJCyZcty9+7dDLPgsmbNSqdOnVi9ejXXrl0je/bsUiFGRUXJXhliglVGKeAimiscOULxGRsbEx4ejrOzM5aWlpibm6NSqXRS4nPmzMmHDx/ImTOnLFMRSjNtU27R+wZSM8JGjhyJqampjiJPTEykdevW9OvXD09PT6kgMyo7USpdEdESmRGQ6ixKSEgge/bs6Ovrc/z4cZmODsiFnFjMxcbGotFoWLFiBfr6+rRo0QKAmJgYrKysMDBInYwoUvUzkv/H3lmHRbV9//81dAoKSIiAYgd2XVvswEKxC8VOFLtbUexusBC7u66Jih14URGREOmu+f3B7+zvDOFVr3r1fnw/zzzAzOGcPefstdfaK94rNzJzyQiUxnXv3j1Wr17NixcvSElJwdDQEGNjY1q3bs2+ffvQ0tIiJSWF6dOn8/LlS0aOHEl6ejqrV69m4MCBuXIG/S/g0KFD2NjY4OrqKt6TyWQis7Bu3brY2tqSL18+IiIiaN68OaNGjcphWCUlJbF3716OHj1Keno6tWrVwtnZ+bP4a9TV1enQoQMzZ84U3bz69evHqlWrUFNTo3///hw9ehRdXV06dOiAs7Mzx48fZ8OGDUycODFXA3jo0KE0adKEUqVKAVkynZaWJuQ3ISEhB+m29N2ln5KjQdqASPIXGBhItWrVMDQ0xMDAQERCJceinZ0dW7dupWHDhmJTociNpbgZUpThkydP0rVrV/T19dHR0REZXKmpqZiYmFCtWjXu3btHpUqVRDkckOv6o/gdFLObEhISCA0NRU9PjwIFCojv1UChrFZyRkhGYnJyspBhNTU1unfvTnx8PHJ5VhMhVVVVpcBOdkgRcGljKf1UNOrS09OFAR8cHExQUBDW1taYmZmxdOlSoSRPnDjBw4cP2bJlC+/evaNBgwZcuHCBEiVK/O08+y9CLpfj5ubGnj17lHhfTExMWLZsGbVq1eLgwYNYWFiIDq9ubm4iu0gRT58+ZcOGDQQEBJA/f3569uyJvb29UmZyXujRowdt2rShZs2aFC1alNOnT/P48WMOHjzIzJkz6datGy1btqRFixaMGjWKY8eO0bBhQ+7cucPs2bNznM/IyIiRI0eydetWHjx4QMGCBQVn07eQ4dDQUCpXrpynDNvY2BAREUGRIkU+WwerqKjw5MkTxo8fj46OTg4d3LNnT4YNG0br1q3/kQ4OCQkhKSkJc3Pzn0oHP3z4kOXLl+Pv709ycjIGBgaYmJjQrFkzDhw4gI6ODunp6UyePJmPHz8yevRokpOTWbp0KcOGDftuQeufHadPnyZ//vxMnDhRvCeTyWjYsCGZmZnUq1ePYsWKYWBgQEREBPb29ri6uubISk5OTmbfvn0cPnyY1NRUatSoQf/+/ZWqg/KCqqoq3bt3Z+LEiYIKydnZmSVLlqCvr0+fPn04ePAgBgYGODo64uzszKlTp9iyZQtjxoxRckhKcHZ2plmzZtSsWRPI2hd8Kzv65cuXVKxYUchvdjvazs6Oq1evKpU9fo4MX7lyhfbt26Ovr5/DjtbQ0KB+/frcvHmTWrVqfbUMJyUlERISgp6eHsbGxsjl8k/K8I/UwYsWLcLX15f379/z7t07rK2tMTU1ZcGCBXTu3BmAP//8Ez8/P3bu3Mm7d++oXbs2J0+epEyZMn87z/6rGDt2LDt37lSStQIFCrB48WLq1avHiRMnsLCwICUlBS0tLcaOHZsrndiLFy/YsGED/v7+GBgY0KNHD5o2bfpZOrhz5860atWKunXrUqJECS5dusT169c5cuQIixYtol27drRo0YLmzZszYcIEfHx8aN26NZcuXeL06dM5zmdoaIibmxubNm3iwYMHmJqaflMdHBQUhIuLS546uFixYoSGhlKsWLHPtqPV1dW5d+8ew4YNQ0tLK4cd3a1bN/r370/nzp1FAORr7Oj379+LZAfF7/Vv29FPnz5l6dKlolGrvr4+pqamNGzYkEOHDpEvXz4yMzMZN24c4eHhjBgxgoSEBObPn8/o0aO/m8P834ai/fSjrvcrQ6ooKFKkCL6+vt+sWuO7W3jXr1+nVq1aOcjr5XI5w4cPp27duuTLl485c+YA8O7dOwYOHMiUKVOU+Gvmz5+Pv78/Y8eOpUyZMgQHB7N27Vq2b9/O5s2b/9ZhZGBgwObNmxk8eDAlSpTg8uXL9OrVi5YtW9KmTRv69u0LINK6+/fvz8CBA5WMgOxo164dLVu25N69e8yePVuUlqSkpIhueYpcF4oLgxQRkYx4LS0tYVxJZShS2fb27du5cuUKKioqxMXFYWNjQ2pqqhKPk5RhKZ1PMSorRYdiY2MpVKiQiDBL0RQp+mtgYJDDeFJcjCVIxpQ0XmnRv3DhAnv37hVRrefPn1OhQgWlzBhpbNn/lspxpIyH1atXi+h4dHQ0Ojo6HDhwIAenjWSEZr+/0t+SgRkaGsrWrVuFcrh48SL16tVDRUWFTZs2sXTpUiZNmoSmpiZlypTB0tKSe/fuYWVlxZEjRwgODmb48OGYmZl9cp79F+Hl5cWmTZtyvP/8+XOWLVuGlZUVe/fuJV++fGRkZLB792569OjBrl27hFy+e/eO3r1707NnTzw9PdHU1OTMmTN07dqVGTNmUKdOnb8dx+DBg/Hw8KBVq1aULl0aPT09Vq1axZs3b9i2bZsoSSlZsiQVK1bk+vXr3L59m2nTpuV6PplMRq1atVi2bBm2traYm5uTkpIiMjKkbCDJEFGcX1KpSGpqKlpaWkoE21LkNzY2FnV1dV68eIGnp6doniR1rszuSFDcwCteSzFL4+3bt7Rp00bItJQpLRkjdnZ2vH79WmTDfSqaqxg9VlNTIyEhgWXLlvHhwweKFi3Khw8fiImJoW/fvhQrVkzp3mVfJ6T1TrGRTHJyMnK5nNjYWNLS0ti7dy/q6upKHF7SOdLS0oSDRPG8ivd99erVWFlZcezYMdq3b8+GDRswMjIiJiaGDh06ULduXYyMjLC3t+ft27eEhYVhaGgonGx9+/bFwcHhfy666+fnR/ny5XMQUQNi46Ouri6imiEhIQwaNIjRo0crGdAeHh7cvXsXNzc3ypcvT2hoKOvXr2fr1q1s3779b41VXV1dtm3bxrBhw7CxseHGjRt069aN1q1b07hxYwYPHgxkzYnZs2fTvXt39PX1P0nx0qpVK5o0acK1a9eYN2+eyKT6FjIs8ccB7Nq1Szgw4uPjsba2JiUl5Yt1cFJSEgULFhTXyK6Dpe63X6uDr169ys6dO7G0tERHR4cXL15QpkwZevXqpXTf/g0dHBERwfr169HX1yc9PZ0zZ87QqFEjVFVV8fLyYv78+cyePRs1NTVKly6NlZUVvr6+FC5cmNOnTxMSEsKIESMoVKjQJ+fZfxHbtm3LtTN9QEAAc+fOxdbWFi8vL4yNjcnMzMTHx4du3bqxZ88eIZehoaH06NEDJycntm3bho6ODufPn6dnz55MmDCBRo0a/e04+vXrx+rVq2nRogUVKlRAJpOxadMm/P392bx5syjhKlq0KHXr1hW8qYoBzeyoX78+S5YswcrKSsjVt7Cj9fX1CQ0NRV1dnVevXrF7924+fvwo5nr16tWVdPDnynBQUBD16tXL0462s7Pj8ePH/PHHH2LMnyvDKSkpLF++nJCQEIoVK0ZERARRUVH06dOHkiVLKt237DL8I3Twxo0bMTMz4/379zRr1oxt27ZRsGBB4uPjad++PfXq1cPMzIyGDRsKvlcDAwMMDQ2ZOHEiPXv2pGPHjv9zOvjp06c5qMEkTJ48mUqVKpGens6aNWuArErCIUOG4OLiIhqdAKxdu5ZLly4xfvx4KlWqRHh4OBs3bmTz5s14eXnlCEJkh5aWFp6engwdOhRzc3P8/PxwdHTEwcGB2rVrM2bMGCBrTkyfPp2OHTtSuHBhateunecza9y4MQsWLODSpUtMmzbtm+pgRVoGb29vLl68KHSwpaUlKSkpItj3uXZ0eno6hoaGSpmTina01ABHEV9iR9+8eRNPT0/Mzc3R19fH39+f4sWL4+zsnMNG+tF2dFRUFCtXriR//vykpaVx/PhxUbGxf/9+Zs+ezeLFi1FRUaF06dLY2Nhw69Ytypcvz8WLF4WT0srK6pPz7FdEdrvrR1zvv4DXr19/0/N9d6fkq1evRMm2Im7cuIG2tjZTp05lxIgR4n1LS0v27NlDx44dOX36NDKZjNOnTxMWFsbWrVuVjps7dy5bt25l6dKlnyTvlVC0aFGOHz+Or68vly5dwsbGRkTnFWFkZCRKOP4OHz58QFVVlSpVqghDSjLEs6dxK0ZZpKiMYsmclpaWSOUuVaoUt27d4siRIzRv3hx3d3dSU1OJiooSUav27dsLowqUu3IpKgBp0dTX1ycyMlLwUyou0or8FNJYJUgLr+Lfigu6uro6x48f5969e2zZskVEnTIzMzlw4AALFy6kTp06SkIonV8y7NTV1UlOTiY1NZWlS5eSlpaGnp4eo0ePVrrfGzduJDk5WfyvFF3T0dER18zNQX3gwAEcHR0ZO3YsFSpUUNpsOzs707RpU1xdXcnIyODDhw/UqlWL1atXY2RkhFwu588//6Rbt25s2rTplyXy/VqkpqbmmuUwefJkduzYwdKlSwkJCSFfvnwiyyY0NJSDBw/i6OgIwJAhQ9iwYQO2trbi/1u0aEG9evVo06YNR44cEdxOeUEmkzFmzBhcXFzo378/ZcuWpWPHjtjZ2eU4tk2bNly4cAFQLrXIDrlczu3bt+nQoYPobqmY7ZN9zirOWym7KSkpScmAUldXp0KFCsybN49ixYpx9OhRXF1dMTIyIj4+nsDAQBYuXIiJiYkwqKSxSGVYkrEmrReSvBkYGBAWFiYCE9L/SnIbGhqKvr5+DvlV/Cl9N2kjJG3Cxo0bh6urK5UqVRKyFBkZyZgxY+jbty+1a9dW+n9pbZH4CaX7J8mwNEcU4eXlRUxMjBifYgaKYnlMdiQkJBAYGIiJiQmGhoYMGDBAONkMDAwYNWoUW7duZezYsdy5c0fwJzZs2BCZTEZ0dDRLlizh2rVrLFq0KNdr/FeRlw6+d++eyELr2bOneN/c3Jzdu3fj4OBA/fr1kclkXLlyRTjXpXlkbm7OjBkz2LNnD/Pnz8/T+a8IKcjz8OFDrl69irW1Nfv27cvBcZUvXz4lZ9enEBERAWTx/0pZVd9Chu3s7Lh58ybnzp2jYcOGuLu7C86nS5cuceLECVq2bPlFOlhLS4uYmJg8dbC0QfsaHXzu3DkuX77M5s2blXTwsWPHmDNnDqdOnfpXdfChQ4dwdHTEzc2NMmXKKAV8e/ToQfPmzUlMTERNTY3w8HAqVarEtWvXRPOumzdv0qtXL1avXi2y2/9XkJCQQMGCBXO8P2XKFLZu3cqmTZt49+4dxsbGqKio0LlzZz58+MCePXuEbA8ZMoRVq1Yp3bsmTZpQp04d2rRpQ6VKlXLV89kxdOhQ+vbty+DBgylTpgxOTk4iCKaI1q1bs3///r/dfMnlcu7cuSM60n4rO7pMmTL4+Phw584dDhw4wLhx47CwsCAxMZGgoCDmzZuHrq6ucOR8rgwbGBgQHh5OyZIlc5VhKRj2pTKcmZmJm5sbQ4YMoUaNGuK6MTExuLq60r179xyNhhT5L7+3Dk5JSeHZs2fY2Nigp6dH//79xZzU09PDzc2NjRs3MnXqVO7evUtgYCDu7u6C4zs2Npbly5czcuRIli9f/p/ZlH8O8tLBz549IzQ0lM2bNytloZuamrJz505atWolKtdu377N7du32bNnj7h3pqamgp5oxowZzJ8//2/HYmFhwcGDB3ny5Andu3fHxsaG3bt356C00dHRQVdXl5SUlL89Z0REBHK5nJo1a4ry6W+hgytVqsTVq1dFcpOiDv7zzz9xd3fH3t7+i+xobW1tEhISREAjux0tVSPmFnxT/Cl9N0U7+urVq5w8eZINGzYIvvjMzEzOnTvHjBkzmJGt0d+PtqOlgP6kSZMoUaIELVq0EN+nY8eObNu2jdjYWHR0dAgPD6dMmTJcuXJFONN9fX3p168fHh4euc7nXxm/nZKfjxUrVuDi4oKWllauwVJFKPr3PgffPX/UzMyMN2/e5Hh/69atDBs2jNevX+eIHunr61OhQgXu378PZBnBU6ZMyfX8vXv35tSpU5+1eZFQuXJlChUqRLt27XI4JCVkZGRQq1atHBwuijhw4IBwZly7dk2QcWdkZIioibRAKBo3EqTspuTkZEHmnZSURHJyMo0bN8bDw4MqVapQp04dkbEgk2V1I7O3t+fixYtoamqKBVVRqKQFV1pYMzMzRSQqMDCQxMREYmJiRLetlJQUzp49S40aNXJ1TEpQjAwp8o8dOnSIRYsWkT9/fvT09NDT00NHR4fOnTtjZGSEr6+vOIfiJk5x3Orq6ujq6qKvr8/48eNxc3MTx+zbt4+dO3cil8uVNmLS71LpTfZonPQ9/P39qVq1KioqKjx48IBixYqJjlEymYyaNWvy5MkTZs2ahbm5OYsXLxZOD5lMRt26ddm+ffsnI/7/ZShG7iArm0pHRwcLCwuCgoJypG4PGDBAkCTfv3+fokWLKjkkJejq6jJgwABB3v850NPTo3z58jRp0iRXhyRkOVJVVVWpWbOmcE5mh7TRlcpTpE6BqampYj5KczUv+c3IyCA5OZn4+Hji4+OFDENWEGTJkiVMmDABfX19kpKShMGhrq5OfHw8aWlpIkND8SXNW8lRIV2/SZMm7Nu3T1wzJiaG2NhY4Uw4deoUdevWzdE1MLshJX0vyZg5evQoXbp0oVatWujo6KCnp4euri5mZmYsWbKE7du3K927vErRtLS0MDAwYMyYMUyaNEl87uPjw969e0lPT88hv9Lfit9Zur/S6/Hjx1StWpV8+fIRGRlJixYtOHnypDh/y5YtuXLlComJiWzcuBFvb28aNWokxmloaMjs2bNJS0vjypUrn55g/zHkpYOlrMU3b97k0ME6Ojr88ccf3LhxA4B169Yxbdq0XA0pJycnrly58tmBPMjipzM3N6dDhw45HJISMjIyqF69OhcvXszzPEePHhWbucuXL4tuvd9ChuvXr8+6desoVaoUDRo0ELxYGRkZvHz5kkaNGnHu3Lkv0sFSBtdff/2Vqw6+cuWKyJr5Eh2soqLCnj178PDwyKGD27Vrh7W1tdK8/zd08JMnT6hduzbq6uo8ffqUwoULK80Zqfv6okWLMDQ0ZMWKFYLaQ8pq9/LyYuzYsXlPrP8o1NXVczRAiIyMJDMzE2trawIDA3M4Lfv06SOa9z1//hwTE5Ncnbna2toMGzYsxxr/Kejo6FChQgXs7e1zdUjC/+ngevXqKa3VipDLs8qSHRwcuHjxImlpad/Mjs7MzKRcuXIsWrSIiRMnYmBgIORMyj6SOnx/iQzb29tz8OBBUlJScshwcnIyhw8fpkGDBl8sw6dPn6ZVq1bUq1dP6GA9PT1MTU1Zvnx5jueTlwx/Lx387NkzKlWqRL58+YiJiaFjx45ifgHY29tz69YtUlJSWLFiBZ6enjRr1kyMMV++fEydOhU9PT3OnDmT9+T6D+JT++ChQ4fy9u3bHPKrpaVF48aNuXz5MpCVJTl9+vRcdbCDg4MIMn4uypYti4WFBR07dsyTYzs9PZ1KlSrx559/5unoOnPmDC1btkRFRYVLly59Ux1ct25dtm7diqWlJY0bNxY6ODMzk4CAABo1asTp06dFafPn2NEymYyCBQvy4sWLXO3oGzduULZs2Ry2N3zajlZTU8PT05Nly5aRP39+JTu6ZcuWlC9fnnv37indux9tR/v5+VG3bl00NTXx9/fH1NRUyencqFEjfH19Wb16NVpaWqxdu1bJNqxWrRq7d+/+rCSwXw3Z586PeP2q8PDwICEhQfye1+trmg9+90zJhg0bsmDBAkaNGqWUEi1l+0idn7LD1taWkJAQKlWqREpKSp716ioqKoLbKbdIcm6Q+CsiIiJyPW9QUBBGRkYYGBhQpkwZdu3alaMEOTQ0lI0bN3L06FG2bt3KmzdvKFKkiODNkBYIRR4NmSx30lnFFHZJgevo6KCvr8+DBw+IjIykbNmyREZGcv78eSpWrIi9vT3Tpk3j5MmTJCUlUahQISW+FsXNgOIi1adPH6ZNm8bcuXMxMzMTae+PHz9mx44dLFmyJMfGQrrPivdcivKqqalx7do1mjRpIsiKJR6L1NRUIKuL19KlSxkxYoToRKihoYGq6v91DZQ2bIoEzDt37iQ5OVlJgBUdoYoZHtKiLI1NuqdBQUF8/PiR0NBQli5dKgzEgIAATp8+LSJFKSkpHDlyhH379nHs2LFc503hwoUxMjLi9evXX9VV6ldFhw4d8PLyYsCAAeK90NBQbGxsCAoKQi6X5ygNNTAwEM//3r17Spmp2dGwYcPPyrJSRKtWrdi6dWueZd/e3t4MHjwYY2NjevToQdWqVXNQSKxYsYIWLVpgYmLC3r17SUxMFAuttPGWSqokWVAs15ReUkZXSkqK0vwrVKgQJiYmotNuvnz5uHPnDq9fv2bYsGH89ddf7Nu3D0NDQ5FdKXUyz76pl+Zz4cKFUVdXx9PTky5dughnQFpaGosXL8be3h51dXWlchlQjvJKL0WZuXTpEtu2bRNk4ioqKqSnp5OcnEzBggXJly8fx48fx8DAgOTkZBHZhf/rKggwcOBAcX/37t0rMtcUueAUS4wkec5eRid957i4ON69e8ejR494+PCh0sZ86NCh+Pr6YmRkREZGBklJSbRv355y5crlKHWT4OrqyuTJk6lXr97fT7L/CP744w+mT59OcnIyWlpa4v3g4GBsbW0ZN26coC9RRNGiRQkJCQGymk5YWFjken6ZTEapUqV4//491tbWnz0uAwMD3r9/n+t5w8LCRDftGjVqsGXLFvr166d0TEREBCtXruTAgQPs27dPbISkOfJPZVhLSwt9fX2uX79OXFwc5cqVIy4ujgsXLogs7enTpwsdbG5uTtmyZZWyunLTwb1792bmzJnMmTOHQoUKiXn/7Nkz1q9fj7u7+xfr4Lt37wpnRl462MPDQ9gkP1IHv3v3joiICEJDQ1m8eLFwRL579040H5R08OnTp9m5cyd79+7Ndc6Ym5tjbW3Ns2fPKF269GfPtV8dnTt3Ztu2bQwfPly8Fx4ejpWVFWFhYbnKp66urliX/fz8PqmDGzRooHTuz0GrVq1YunRpnhRH+/bto0uXLhQpUoROnTpRq1atHHbCxo0bqVu3LiVLlmT79u0kJSWRkJDwzexoS0tLTExMWLduHWXKlCF//vzcv3+fly9fMnz4cAIDA/Hx8cHIyAg1NTUlHQy5y7CpqSn58+dn+/bt9OzZU3DOZWRkCI5eLS2tHCWr8GkZPnfuHOvXrxcZT9ll2MzMjCNHjmBsbJxDhqWSWfg+Ojg4OJgHDx5w+/ZtMR7IyoKpX78+JiYmIsPM0dGRYsWKUbFixVznxahRoxg5cqRSWfJ/HVWqVGHChAkkJCQoBeHev3+Pra0t8+fPp0+fPjn+r2jRorx//x7I0nc2Nja5nl8mk2FnZ8ebN2++KIu8YMGCee5noqKigKwkocaNG7NmzRqGDh2a4xh3d3d2797NqVOniIuL+6Y6WF1dHQMDA+7fv8/atWupUKECCQkJnD9/nuLFi9OzZ09mzpzJ8ePHBX9juXLllLImc7Oje/TowYIFC5g+fTrW1tZizQgICGD58uUsXrxYKRjxOXb048ePqVatmsi+zm5HS1RV1apVE+/9CDs6MzOT9+/f8+HDB8LCwli0aJFwRH748IG9e/fSo0cPVFRUSE1N5fLly+zevZstW7bk6jgzMTGhXLly3Lt3j8qVK3/2XPvZ8ZtT8vOhWLL9y5Vvq6mpMWrUKHr16sXatWtFeUihQoUYP348+vr6lC1bNsf/PX36lLp16wIIBZyXZzk2NhZtbe0vGtfo0aMZMWJEDi6slJQURo0aJaITUmfA06dP0717dwwMDLhw4QLnzp1j7dq16OnpoaGhQWJiInFxcWIRVly8pIVEMj4UFw7FvyVI6dwSD0X+/Pk5duwYhoaGzJo1i8TERNatW0dMTAy2trbo6enx9OlT1qxZQ7t27bCwsBALpuLinJ6ejqWlJSNGjGDBggWoqalhamrK27dvMTIyYsGCBYKPIrdFWPqZ/RUdHY2pqakSya90H9TU1LCwsCA+Ph4NDQ0yMzPFYqqYXp+amkpCQgLr168X/yspEakcJ7sQK3JwSiU0knE6f/78HFmuwcHBlChRArlcjqamJsuXL8fDwwNNTU1u3LjB9OnTKVWq1Cc3O+XKlePVq1f/U07J7t274+joiKmpKW3atEEmk2FpaYmfnx99+/Zl9erVOf4nIiJCZCHr6OgQHR2d5/mjoqLyzJbKCxUrViQkJISrV6+KdULCpUuXiIyMpFy5ckBW58D27dvTtm1b/vjjDz58+ICnpydFihRh3rx5eHt7AxAdHS0yFxXnmqLcKmYFfUqGISuTxcHBgREjRuDu7k5kZCTNmzenUKFC3Lt3j6NHj6Kurk7Lli2JiorizJkzqKmp0b59+1wjahK9wvDhw9m/fz8DBw6kWLFipKWlERQURMeOHWncuHGuXDOfitZJ30Pi45LWL8UsDonAXJIzqcOrtDanp6eTkJDA6tWrxXonRcYVZVQR2a+heB9fvXql5ASXULhwYUFqrqenR7du3VBXVyc4OBgtLS2GDh1KYGBgnvNGahD2vwQVFRXGjx9P9+7dBQ8nZJVST506lYyMjFyb2jx79oxOnToB/0cPkJcOljgHvwRjxoxhxIgR7Ny5U8nATk1NZeTIkaJseOrUqbi6utKjRw+6d++OkZERly9f5uTJkyxfvhxDQ0M0NDQICgqidOnSJCYmfjMZ1tXVZeLEiZiamrJ//34KFCjAnDlzSE1NFZ2jraysyJ8/P8+fP2ft2rW0adOGwoUL56mDzczMcHV1xd3dHZlMhrm5OUFBQRgYGDB//nzhTPrWOjghIeGH6WDIiqAfPXpU6figoCAlHbx+/XrWrVuHlpYW169fZ9KkSZQqVeqTmx07OzsCAgL+p5ySjo6OdO7cGXNzc8HJZ25uzuPHj+nZs6dSV1wJMTExYs3V0dERzo3cEB0d/cU6uGTJkiQmJnLu3DkaN26s9NmNGzd49eoVVatWBbLmQqdOnUSTjY8fP+Ll5YWZmRmLFy8WgeD4+Phvakd//PiROXPmEBMTg1wu5+HDhzRp0gQXFxfu3bvHgQMHkMlktGnThujoaM6dO0dmZiaOjo45dKR0zvT0dFxcXDh8+LDQwenp6QQFBeHg4EDLli2FDv4SGZaeU14ybGZmRmpqap4y/K118Nu3b3MNVhUqVEhJB/fo0QN1dXVCQkKQyWT079+fx48f5zlvJA7K/yXIZDKmTp1Kt27d2Lhxo0igsbKyYt68eURGRirR40h49uwZ9vb2ACKolRs1BnydHT169GhGjx7N7t27lfbQ6enpjBw5klGjRgEwbtw4JkyYQNeuXenZsyfGxsZcu3aNo0eP4u7uLqiIgoODSUhI+KY6WFtbmwkTJmBhYSGC+DNnziQjI4M1a9YQHR2NhYUF5ubmQge3bNkSGxsbYbNkt6ONjY1xc3Nj1apVZGZmYm5uTnBwMHp6esyZMwd9ff0vtqNjYmIEX3RudrS5uTlJSUloaWkJuonvaUdDVoXLvn37lI4PDAwUOlhDQwNPT088PT3R0tLixo0buLq6Ur58edEhPjdIOvi/5JT80dmLv3Km5KeQkZHBo0ePsLa2/iw6mOz4Ia0M27Rpg4GBAf369UNFRQUdHR38/f3R1NQUqemKiIiI4K+//hLOyooVK3Ljxg0l4mjFYzMzM/NMP88LderUITw8nObNm9OxY0eKFSvG8+fPOXToEOPGjRObNDU1NdasWcPr1685ePAg8fHxVK9enfHjx6OiosLHjx959eoVzZs3F5EOaVGVUsWlRUIxqqIYKVL8KXE7yuVygoKCSEpKQiaT0ahRI7S0tEhNTWX37t1UqlSJjx8/Ur16ddGNu3r16qxfvx5nZ2d0dHRyLFBSKYqVlRWzZ88WBqCJiQm6uroiqpJXKbwUvVIUXrlcTvHixTl69CidOnUSY5cW2MzMTB4/fkzJkiXR0tJSMqAk3hHJCavIgyVls2pqagq+EOm80j3NHh2SIm2NGjXKUWpQqlQpLCws8Pb2FjyRc+bMEfe0ZcuWDBkyhFu3bhEWFpZnN8q3b98KI+F/BRoaGuzdu5cFCxawcuVKLCwsiIyM5MmTJ2zatCnXrLRVq1aJ5gotWrSgZ8+euUaCAXbs2CGcH18CqXHV9u3badeuHXK5nEOHDpGamsrGjRvFcVWrVuXs2bMcO3aMU6dOYWBgwNKlS0VmyZ07dzAxMRFRTWkTIs03qTxDmvfS3MtueEj/I5VNSJlgFy9epHbt2iJLLSwsjD179tC5c2fevXtHsWLFSEpKolSpUly5coWzZ8/SsmVLcR1FZ7s0vk6dOtGpUyc+fPggDB6ZTJZjM6QIxQ1WdhnW0tIiNDRUNJGQziXxAr1+/RorKyshY5AVLFKM7mpqagpeLUUjSYoaS98BcjozpHsI8OTJE4YMGZJj/F26dKFevXqiIcrbt2/p3bs3ixYtYvTo0Rw+fJgPHz5w9erVPOdMdHT035LB/xfRtGlT9PX1cXFxQS6Xo6ury8uXLwFEibYioqKiuH//vuiyK9Eg5Lb2SeWLUqnt56JatWr07duXFi1a0L59e0qWLMnLly85cOAAI0aMEPxpqqqqLFu2jLdv33LgwAFiY2OpUqUKY8aMQVVVlbi4OJ4/f07r1q1Fk4xvJcMS51RoaCj29vZChnfu3EnJkiWJiIigZs2apKWlCR28du1aevfuTb58+fLUwYUKFWLWrFlCBxsbG6Onp/ePdLCnpyc9e/bMUweXKFHih+hguVyOg4ODaJgjwdramiJFirB3714KFiyIXC7H3d2dpKQk9PT0aNCgAa6urjx9+pS3b9/mmXUbGBiYZ8nwfxVqamrs3r2bRYsW0bRpU8zNzYmOjsbf358VK1aIAJwi1q1bR/fu3YGsZhSOjo4MGjQo183Q1+rg9evXM2TIELy8vOjQoQMqKiocPnyY+Ph4tm3bJo6rUKECZ8+e5cSJE5w+fRo9PT0WLFhA4cKFgSwdbGRkhLa29je1o/X19dm/fz8tWrRAS0tL2NERERFs27aNLl26EBAQIBysJUuW5Pr165w6dQoHBweAXGU4IyOD9u3b06FDB6GDpWQASWd+qQzny5ePoKAgihYtmqsM+/v707t3b6WmHJIMf2sd7O/vn2tQsGvXrlStWlU0RHn//j09evQQOtjHx4fk5OQ8y/Uhy/Gc3bHyv4D69eujo6PDsGHDSEtLQ19fn4CAABITE7lz504OuYyNjeXq1atMnz5d/P+pU6do1apVjnMnJCQQHBws5OlzUaFCBYYOHUqrVq1wcHCgTJkyvHr1Ch8fH1xcXGjw/7OrVVRUWLRoEcHBwYKntWLFiiKQnpyczKNHj6hdu/Y318FSaXdwcLCQX4Ddu3djYWHBhw8fRMWUhYUF1atXZ82aNXTt2hVDQ8M87eiCBQsybdo0kVBkZGQk/AhfY0fb2tpy5swZoeOlY6W16NGjR9ja2god/L3t6G7duhEcHKw0dlNTU0qXLs3OnTuxsLBALs9qIBkcHIyVlRU1a9Zk4sSJDBs2jMDAwDwrjgIDA/9z1Ua/nZJfh1GjRlG+fHmcnZ3JyMigXr163LhxAx0dHY4dOybWkM/FD8sfrVevHgcPHmTHjh2sXLmSmzdvUq9ePaZOnapkvD569IiuXbuycOFC8d6IESOYOnVqjkhvYmIi/fv3/2p+gw4dOnDixAnMzMx48eIF1tbWoqRXEQkJCXh5eXHixAnu3LmDu7s7U6dOJSoqSnTzCw0NVYoASUa8tEhIJU6KC7FiREXRoJcMsgoVKvD48WPU1NRISUkhNjaW6OhoAgMDsbGxoWjRopiYmGBiYoKenh758+encePG3L59W8mAkya/YjObjIwM9PT0KFy4sCCol5DboptbZhVkGVOlS5fmxYsXvH37VvDsJCYmCn7MTZs20aFDByUjLTtXh5qaGlpaWmhra5MvXz7y5cuHrq6uUkm4tDBLnFcxMTEEBAQQFxcnyPYlTg3I6h66atUqxo0bx7Nnz1i6dCmdOnVi3rx5XL58mRIlSrBkyRKSk5OFo6NXr16sW7cu1/kSHx/PkydPct0A/Nehra3NzJkzOXXqFB4eHvj4+HD58mXmzp3L9evXxT1PSkpi6dKlBAcH07JlSyDLOVe9enUWL16cQ8mfPXuWv/76KweB++dAX18fLy8vxo8fT1BQEO/evWPixIl4enrmaJpz+/Ztdu3axc2bNzl79iyDBg3i1KlTQFYZXHp6OrGxsUKGpbIoxSjulClT8pRf6QUIY6pmzZr4+vqKOSlx5Zw+fZouXbpw9epV2rZtK5q3aGlpUb9+fQIDA0WGhCSD8H9ZGtJLypaROsIrRnUVx5dddhV/SutN586dWbVqFSkpKSQlJQn5TU1N5ebNm5ibm+fIRpc2Z9KmUUNDQ5S86uvri/JbxQZeUiMCfX19NDU1CQwMJDAwUKyZampqQh+ULFmS3bt306RJEz58+MDOnTsJDAykU6dOHDhwgICAAKytrWnfvj3r1q1DX1+fokWLEhwcnGc25KZNm3JQcfyvoFatWuzfvx8vLy9WrFjBjRs3aNOmDW5ubkqZzE+fPqVLly7MmzdPzL0hQ4Ywd+5c3r59q3TO5OTkf6SDW7VqxalTpyhcuDAvXrzAwsKCkydPKpH+Q9a6snPnTo4dO8adO3fw8PBg0qRJojtteno6gYGBaGlpfVMZrly5Mvfu3UNLS0vIcGRkJM+ePaNcuXJC/iQdbGBgQIsWLbh169YX6WApKCjhS3VwkSJFCA4O5tWrVzl0cEpKCuvXr8fR0fGb6+C4uLhcdbBiB+9169YJ7tLVq1fTrVs3Zs+ezaVLlyhSpAjr1q3j/fv3wtHRu3dv1q5dm+t8SUpK4vbt25/M4vivQlNTk6lTp3L69GmWLVuGt7c3V69eZcmSJVy5ckU8x+TkZFatWsXTp0/p0KEDkJXx27hxY+bMmZNDB1++fJm7d+9+Vvft7NDR0WHbtm1MmzaN9+/fExQUxNixY9m9ezf58uVTOvbevXvs2rWLGzducOHCBYYMGSIyacPDw8nIyODjx49Cbr6FHV2pUiX8/PzE/0h2tLTGXL16FQcHB4yMjIQM165dm5CQEDIyMv5WhiGrrDq7DoYvl2EnJydWr14teC4VZfju3bsYGBjkaGInyfA/1cFv3rxBTU1NyHliYiKQVVmwc+dOWrZsyfv379m5cyfR0dF06NABHx8fXrx4QbFixXBwcGDVqlUUKFAACwsLoqOjCQ8Pz3XObN++/asc4P8FVKtWDW9vb3bt2sXy5cv5888/6dGjB2PGjCEyMlIc9+LFC7p06cKcOXPEvBswYABLlizh1atXSudMTU1lwIABYv38UjRp0oTTp09ja2vLixcvMDY25tixY3Tu3FnpuJSUFHbt2sXRo0e5c+cOK1euZPz48YSFhREbG0tKSsp30cHVq1fn9u3bSjo4OjoaPz8/qlevTv78+TE3Nxd2tKGhIa1bt+bmzZs5AmaQ047W1dWlUKFCQgd/rR1dqFAhYmJiePnyZQ47OiUlhdWrV+Pk5JQjWPFP7eiEhARevXolKkYlGZYckqtWrWLLli04OzsTGhrKhg0b6N27N9OnT+fSpUtYWFjg6enJkydPmDhxIpClg6VO8NmRkpLCpUuXclSo/er4VBbs93r9F+Dj40OFChWALI73N2/e8Pz5c0aNGpWjQdPnQCbPLRSQDbGxsRgYGBATE5PD0PinOHDggOiqnZaWRrFixXB1dc1RHuvv78/YsWMpVKgQ5cuX5+3bt9y9e5fJkyd/sSf2S5CYmCgizK1btxZRnIsXLzJv3jz27dvHpk2bcHNzY+bMmRgaGqKnp4eKiopIY5e6aWaPuML/cUEoLp6qqqpigZwzZw4dO3akXLlypKen8/jxY+7evUtQUBALFiygYMGCpKSk8PHjRyIiIkhOTmb16tUMHjxYaZMhpcpL15cWrtyMLsWFWTEzIvsirahI3r59y9SpUxkyZIiIWr18+RIPDw/s7e1p1qwZKSkppKSkkJqaKgyvtLQ0pWwNKYIm3Q9JcQHCKH316hVbtmzB3Nwcc3NzXr16RWhoKObm5rRv357x48fTpUsXVq1axfDhwxk2bJiI+Eid0B49eoShoSGxsbFYWVnRsWNH8XnPnj1p3rw53bt3F9cODw/H2dmZ8ePH5+Ax/J7y8a3wvcYYGhqKh4cHfn5+IsLn5OREr169cpRSLVmyhLNnz9K4cWO0tLS4ePGiaKTypfQLX4JDhw6xZ88eli1bJjYP0dHRTJo0iXLlyuHo6Ejt2rUpUKAAPXr0EPInlTNKzS0Ugw6SrChGKqX3pQwjHR0dbty4wa1btxgwYIDg1J0zZw5FihTBzMyMfv36IZNllX58+PCBuLg4jhw5QvHixSlWrBgaGhpKPHHZr5e9jE3xfiu+ctsMSXIvnWPp0qWkpqbi4uKCqakpSUlJHD16lMOHD7NkyRI0NDSU5FZqriPJsGRsSeeTxqlowElj9fLy4vnz51SoUIH09HQePnwosk+ePHnCnj17CAoKQldXl4EDBypxzIWFhYlsnEqVKrFw4ULhYIasrJupU6eKNUK6HxJJ+N69e3OUQP3sMvw9x3f06FE2bdpEZmYmaWlp2NjY4OrqSvHixZWOe/36NaNHj6ZgwYJUrFiRd+/e4evry7hx42jatOk3HZMikpOT6dSpE7179xbZWHK5nD///JMZ/7/79549exgxYgQeHh5CTv+JDKuoqKCtrY2KigoLFizAwcGBypUrk5qayvPnz7l69SohISHMmzcPc3NzJR0sNXoYOnToD9XBwcHBTJo0SSnDJSAggBUrVlCzZk3atGnzzXRwYGAgmzdvxsTEhEKFCvHmzRvev3+PiYkJTk5OTJw4kVatWrF582bc3Nzo1q2b4JiTy+VcuHCBBw8eoK+vT2pqKgYGBvTo0UN83q9fP+rUqUPfvn3FtT9+/MiAAQMYOnRojozdn11+4fuN8cOHDyxbtgxfX180NTVJS0vD0dGRvn37Kq1zcrmclStXcuzYMezt7dHV1eXSpUsUKFAADw+PLy79/BKcPHmSzZs3s2LFClGhEBsby/Tp0ylcuDC9e/embt26mJub07NnT2JjY/+RHS2TZfHR6ejo4Ofnx6VLlxg6dCja2tqkpaUxb948ihYtir6+PoMGDUJdXV1Jho8dO4aFhQWlSpX6oTK8Zs0aIiMjGTp0KGZmZiLrcN++fSxZskR0Q84uw8nJyV+kg6XM2wcPHlCpUiUyMzN58OABGRkZtG7dmjdv3rBt2zYCAgIwNzena9euHDp0SGnOHTp0iLi4OOzs7HB3d1fSwQ8fPmTs2LFs3rxZZO/J5XKOHDnC1q1b2bdvnxJtljQffmYZ/p7jO3nyJOvXrxeOMisrK8aMGZODHzIoKIiRI0eSP39+qlSpQkhICDdu3GDUqFGie/33QGpqKk5OTnTu3JnOnTsL2btx4waTJ09m586dHD9+nAEDBrBw4ULReOZb6GA1NTUWLlxI06ZNqVGjBqmpqbx+/ZpTp04RHh4ueCEV7ejY2FiWLVvG0KFDhaPvR9jRYWFhjB8/HmdnZxo1aoSqqiqvX79m+fLlVKxYEUdHxxy692vt6ODgYDZt2kSBAgWwsrLi7du3vHv3Tuxjxo0bR5MmTdi5cyfTp0+nRYsW1KxZU3yvy5cvc+/ePXR1dQVVi2J29ODBgylfvjwDBw4UzzsqKoqBAwfSp08fkXSiiJ9dhnODNOa1a9d+131odiQlJTF48OBf6l7lBi0tLf766y8sLS1xcXFBR0eHZcuW8fr1aypUqJCjYubv8K87Jb8U/v7+BAQEYGpqSqVKlb67t3nRokXY2toKp1VaWhobNmzgyJEjxMXF8f79e7p27cqCBQsYMmQIFStWFBGNpKQk4uLiSExMJCMjQ0R+VVVVxcKjrq6OtrY2KSkpHDt2jKCgIOHcqV69Os2bN8fb25unT5+ir69PSEgI2trazJ07F1NTU2GERkVF8eHDB5KSkli1ahWDBw8WRpmUwaCoDLIbcdLCCogoc/bFWNGIAnIs0FFRUezdu5d79+4hk8kwMTGhS5cuFC1aVHBWSZsfyYhKTU1VKhPNzdiTxqWurk5QUBAbNmxgyZIl5M+fn4cPH9KpUyfatGkjou5SGayJiQl9+/Zl0aJFeZYW+vj4kJCQQO/evcV76enpuLu7c/bsWWxsbIiOjkYmkzFhwgTBkaSIn0k+8sLPMkapu11qaipVq1bNQXz/Pa4nZWNJRvCTJ09YsmQJISEh+Pn5UblyZQwMDDh37hwLFixAJpOho6NDRkaG6AaYnJysNC8BpRJHHR0dHjx4wMWLF0XkNF++fDg5OZGQkMD+/ftFx7ynT58KondNTU1UVVWJj48nPDycuLg4Dh48SMmSJbG1tUVbWxstLS2l6HNuGSOKjgNpbIpyDCjJr+LmSfHvGzdu4OPjQ2JiIpmZmdSvX59WrVqhqqoqSsUkOZaMK+n97A4NaXyKxpSmpiYeHh7UqFGD9u3bA+Di4oKxsTH79+8X4/fw8GDUqFG8f/+eGTNmsGHDhjyfsYODA0eOHFF678GDB8ybN4+0tDTy588vyk0mTJig1HBNws8iH3nhZxrfX3/9xcuXLzE2NqZq1arfXQevXLmS/PnzC6dVRkYGmzZtEnQqb9++pVu3bixZsoSRI0dStmxZ5HL5F8tweno6p06dIjAwEA0NDdLS0qhatSpt2rRh//79PHr0CD09PcLCwlBVVWXevHlYWFjk0MEpKSksX76cIUOG/HAdHBMTg7e3N76+vqioqGBkZISTkxPFihX7Zjo4NDSUFStWsHTpUoyMjHjx4gUODg507NhRyHCRIkW4du0a5ubmDBkyhAkTJmBlZZXr8z1+/DhBQUEMGjRIvCc1DTlx4gTW1tbExcWRkZHBuHHjcs2q/5nkIy/8LGNMSUnhxo0bpKSkULly5S+mXfhSpKWl0axZM06ePCmoM168eIG7uztBQUE8ePCA8uXLY2pqyvHjx9m4cSORkZFfZUc/f/6c8+fPA1kypKenR+fOncnMzMTb21t0BH/69ClDhw4VOji7DB85cgRLS0tKlCjxw2XY19cXb29v4uPjycjIEDpYQ0MjTxmWHByfq4NXrVpF2bJlcXJyQiaTMWLECNTU1Dh+/Lh4bvPnz2fChAlERUUxcuRIduzYkeczzk0HP3nyhLlz55KYmIiRkRFv376lVq1aTJo0SanhmoSfRT7yws80vlevXvHixQsKFChAtWrVlGy/74GNGzcik2XxhUKW3ty6dSs+Pj4kJSXx8uVLunfvzqpVq+jfvz+VKlX6Kh2cmZnJqVOneP36tdDBlSpVol27dhw6dIj79++jp6fHhw8fyMjIYO7cuVhaWuawo2NiYvDw8BBOyR9pR8fFxeHj48PNmzdRVVXF0NCQzp07U6ZMGSG3/9SOjoiIwMPDg0WLFmFubs7r169p3rw5Xbt2Zffu3UBWKfvNmzcpXLgwrq6uuLi45FmOLQUJJR5v6buvXLmSI0eOYG1tTXx8PKmpqbi6uuaZJfkzycjnQhrz+vXrf7hTcuDAgb/UvcoN1tbWbNy4EXt7e4oUKcKaNWto3bo1T548oU6dOl/M4f/LEXuUKFGCEiVK/LDrnTt3DldXVyDLuOrevTvNmzfn2LFjqKmp0bRpUxo1asSGDRvw9PSkZMmSGBgYIJPJxEYnMzNTcEMqppJLxyQnJ7Nu3Tr69+9P6dKlxeJ38eJFPDw8GD9+vDBGpM2Qvr6+KO9ITk4mISEBuVyOn58fpUuXFteSFl4p4qLIAxUcHMzu3bvFJktXV5cePXqIyGl2f7W0cZHIeSVDS0o/19PTw9nZmX79+pGRkSFS0lNSUpRKXiQODcXSE0VI41a8T1Jpyc6dO1m4cKHg71m5ciWQVSorOSXPnTsnDO3KlStz5coV4VTOjitXruTgzlFTU2PChAmMGzeOjx8/oq2t/cWcpb+RO7S0tGjYsOEPu96xY8fo1KmTcEheuXKFRYsWsWzZMooVK8bx48fx8/PDz8+PyMhIDhw4ILI8VVRURBdNRZ4rKWooRVu1tbU5e/YsCQkJTJs2DW1tbWQyGZGRkaxcuZJWrVoxefJkUlNTkclknDhxAk1NTZHxIJfLRedguVzOy5cvadKkiVIZm3QtxQiviooKJ06c4Pz586ipqZGWlkaNGjXo1q0bOjo6uXJaJScni+iz4mZJkveqVatSpUoVwekjvSQZlowqxRLU7E05spfTSXIsrTnq6uo4OTmhrq5OVFSU4BV2dXVlyZIldOjQQRCsFyxYkFevXglDLTvCw8Nz5YisUKECe/fuFSXzUnfV3/jnKFasGMWKFfth1ztx4oTY8GZkZNCrVy/q1avHkSNH0NDQoHnz5jRp0oTNmzezYcMG3N3dMTQ0FHPxc2Q4NTWVDRs20KdPH8qXLw9kGeXXr19n8eLFTJo0CScnJ9Exc86cORgYGOSqgx8+fEiJEiU+SweHhoayZ88egoODUVVVRUdHh65du1KtWrVcdbDEV5WXDtbR0aFPnz707t37u+rg+fPnY2lpiYqKCps2bQKgbNmywil58eJFkaUs6WDJqZwdly9fxtHRMcf1XV1dGT16NBEREb918DeEpqbmd60uyo7Tp0/Tpk0bsU7funWLGTNmsGzZMkqWLMmFCxe4ePGiKEHcvHkz/fv3FxQln2tHX7lyhYiICKZMmSL4WaOjo1m9ejVNmjRh6tSpJCUliWoZNTU1MjIycpVhqdHm38mwqqoqZ86c4dy5c6ioqJCWlkb16tXp1q2bKLVWlGG5XE5KSopwcErvKcpwxYoVqVixopIO/hwZ/lwdLAVOevXqhbq6OnFxcZw+fRqAKVOmMGfOHOzt7ZkwYQLwf9zYeTVZiY6OztUpVrZsWXbt2kVCQgLx8fG/dfA3RNGiRSlatOgPu96hQ4fE2p6ZmYmzszOVK1fm0KFDaGpq0qZNG5o3b8727dvZvHkzixcvxtjY+It0cHp6OuvXr6d79+6iy7dcLufmzZssWLCAKVOm4OjoKJrEzJgxAyMjo1zt6GfPnmFra6tUCZSXHR0eHs7evXsJCgoS9CRdunShVq1auepGSfb09PSUdLAkw9ra2vTs2ZMePXooybCUKfot7Ojdu3czbdo0rK2tUVVVZefOnQBK3dkvX74sspQlHZyXU/Ly5cs56DtUVFQYOXIkw4cPJyIiAi0trV/aefZ3+NEl1V9zrTVr1rB48WJCQkIoW7Ysy5Yt+2QZ/eXLlxkzZgxPnjzBwsICNzc3peDvgQMHmDdvHn/99RdpaWkUL14cV1dXevbs+dlj6tu3r2jCJ5PJaNKkCZCl57Nnen8OfmuIv4EUgYEsMvBGjRrRr18/8XmBAgWoXbs23t7eODk5MXv2bCZNmiQWB8WOpBJ5rhRNlaKWu3fvZvTo0ZQoUQIVFRWx8WjatKnobtiwYUMxllKlSnHgwAEaNWpEamoqycnJZGRkEB0dzfnz5xk8eLA4vyRoitEhNTU1Hj9+zI4dO5gwYQLFixdHRUWF0NBQlixZwrt372jfvr1YIB8/fszGjRtJSUlBW1ub6OhoWrZsSadOnZQiSdKCK31XaaGVfldchBUXZWnhz83ggf8rzZEWfmtra3R0dDhw4ABXrlwBENwFFhYWolkHZHFEdujQgZYtW+aIggQEBBAYGCg2odmhqqoquuT9xq+JoKAgUTaYmZnJzJkzOXLkiChVK1GiBOfPn8fHx4fq1atz4sQJAJydnQEEjw1kOfQU+dcgqwlQbGwsgYGBzJ49W7yfkZGBqakpU6ZMYfz48ZQpU0YYF40bN2bu3LlYW1uLkujU1FQyMzM5f/48JUuWVCphUfypaFzNnj2bihUrsmbNGrS1tQWtxMiRI1m5ciX6+vrI5XLS0tLYtm0bf/75J0ZGRmKDMHjwYKysrETZpqIsSi9Fx6RU3ivJr7Qpkowqqaw2uyNF0aFx8eJFnJycROTa0tJSHLdkyRJUVFSUspHV1NRo2LAhu3fvzpULct68ebi4uOT5/PX09HLwi/7GrwVp/QfYu3cvVatWZeDAgeJzMzMzKlasyJEjR3BwcGDKlClMnToVGxsb0tLSPkuG9+/fz6BBg7Czs1PitGrUqBHJycmcOnWKZs2aCY67ihUr4u3tTbNmzZR0cGxsLKdOncLFxeVvdfCLFy/YuHEj48ePp1SpUqioqPDhwweWLl1KYGAgXbp0EWN99uwZGzZsICkpCR0dHaKiomjatCldunQB+GE6WE1Njfj4eIoVK4aOjg4nT54UDuNZs2aJ56HYpKZr1660bt2adu3a5ZDFt2/f8ujRIyUOcUWoqKj81sG/OIKCgsRmWC6XM3nyZA4cOCA2uCVKlGDfvn14eXkRGBgoyoAHDRok5vLf2dFJSUk8f/6cefPmoampKexoTU1NJk+ezPjx4ylfvrzY5Ddq1IhZs2ZRvHhxUWIqyfDly5exsbFBQ0PjkzIsUTuUKlWKFStWCJvi6tWrjBo1imXLlpE/f36hWz09Pbl06RJGRkYkJCRgYGDA4MGDRSXRP5Xhz9XBly5donPnzkIHK9J0zJkzBxUVFVHmCVky2LJlS7Zt2ybsIkUsXLgw1/clSJx4v/HrQnIsAhw+fJgSJUowfPhw8bmlpSUlS5bk9OnTNGnShClTpjBt2jRsbW0/Wwf7+PjQt29fqlatqqSD69evT3p6utDvkg6uWbMmu3fvpm3btqIEOjU1lbi4OI4dOyY6x3/Kjn716hWrV69m7Nix2NnZiWSCFStWEBAQQJ8+fYQ8+fv7s2HDBuLi4tDV1SUyMhJ7e3t69OiBiorKD7Oj1dXViYiIoHTp0mhra3P16lU8PT2BrOxmABMTE6XAsaOjI82aNaNz584YGBgonff9+/dcv36dGTNm5Pns/1d08I90Sn4p9u7dy6hRo1izZg21a9dm/fr1tGjRgqdPn+ZahfL69WtatmzJgAED8PLy4tq1awwZMgQTExORpFWgQAEmT55MqVKl0NDQEHJTsGBBmjVr9lnjmjFjBuXKlSMoKIhOnTqJ4KOqqqoIbH0Jflijm18VUnQSsrzKih2E5XK5yKSzt7enYsWKaGtr4+HhIZwK6urq6OvrY2BgIDpbAoKoVi6Xk5iYSKlSpdDX1yd//vwUKFAAXV1dNDQ0aNmyJTdu3FDqftmpUycCAwNZvHgx169f59mzZxw5coSNGzfStWtXdHR0ROQye+mIZExt3LiRlStXUrZsWXR0dNDS0sLa2hoPDw9OnjxJXFwcGhoa3L17l3Xr1jF37lx27NjB+vXr8fT0JDExkfnz54tFXnHhVTSUFDlvJB6c7DxWip3OFBdxKUKlopLVFTQzMxMDAwMR+XJ0dMwR3cnuYDQwMGDKlCm0a9eOc+fOIZfLSU5OZseOHQwYMIBVq1Z9r6nzGz8BpAYakJW906hRIyUD2d/fH0tLS2QyGe7u7rRr144TJ05w+/ZtJV4bAwMDwXEll/9fp1ptbW2uX7+Oo6MjOjo6GBgYYGRkhIGBAdra2ujq6lKjRg2ePHkiyiB1dXVxdnZmwYIF+Pj48PjxY+7cucO6deuIioqiWbNmQjkqln8BYlN19uxZKlasSP/+/TE0NERbWxsdHR1atmzJmDFjWLFihXAiuLm5UbhwYfbu3cu6devw8vJi5MiRTJ8+nYCAAPGdJLlTNJakl7Rpkww/RUNKMsIkOZYgybKKioqIQCclJVGwYEEhw8eOHVN6XgMGDMixgXFzc+PYsWPMnDmTsLAwAJ4/f06/fv0oWLCgiMz9xn8T0nyELMMse2Z7aGgo+fLlo1atWlSuXBl9fX0WLlwoMhn+TobV1NSIioqifPny4jhFGW7WrBm3bt0Sx8pkMtF1d+HChVy7do1nz55x/Phx1q1bh5OTE/r6+p/Uwaqqqqxdu5aVK1diZ2cndLClpSXu7u5cvXqVyMhINDQ0ePjwIcuXL2fGjBns2LFDyLBcLmfmzJnCYfIjdLBMJkNfX1/Ib5s2bXJwmUmk5xJ0dXWZPXs27du35/Tp0yLra9euXfTp04c1a9b81JuB3/hnUNTBN27coGbNmkoZN/7+/hQuXBiZTMbSpUtp06YNJ0+eFHbv59jRt27dom3btiKjVtGO1tXVpW7duty/f1/Y0dra2gwePJjFixcLbsW7d++yfv163r9/T6tWrcTaAbnL8NWrVylWrBguLi7kz58fHR0ddHR0aNq0KZMnT2bZsmVizZg0aRJGRkbs2bOHdevW4enpiZubG3PmzMHf3/+b2NGfq4OTk5OVdPDhw4eVnlf//v1zZCWPHDmSq1evKjUcffnyJYMGDUJNTY02bdp8+4nzGz8NMjMzSU5OBmDnzp2iMagEicuwYsWK1KpVCxMTE+bMmYOuru5n6WBNTU1CQkKoUqVKrjq4UaNG3Lt3T0kHt27dmoSEBObMmcOff/7J48ePOXHiBGvWrKFDhw6iYlEaf3Y7WkVFhVWrVuHh4UHlypUFb2yhQoWYP38+fn5+hISEoK6uzosXL0TFhKenJ+vWrWPXrl3o6uoyefJk8R1/hB2tpqaGjo6OyNZu0qQJTk5OSs+jUqVKSn9ramqyaNEiOnbsyPHjx0Xlpbe3Nz169GD16tX/8zpYkUbjR72+BEuXLsXZ2VlU1C5btozChQvn2RRw3bp1WFlZsWzZMkqXLk3//v3p168f7u7u4pgGDRrQvn17Spcuja2tLSNHjsTOzo4///zzi8bm6OjI6NGjlZJMevfunaNh5efgt1Pyb9C4cWNB8KwYLYKsUlBFXsuiRYsya9YswZMjLYJqamro6emhr6+PTCYTvBGqqqokJydjZmYmjCvJsNHT00NLSwtDQ0OxcCsSA/fs2ZNu3boRFRXF69evKV68OGPGjMHc3FwsjIoLnuLm4s6dO9SvX5/8+fOLLpr6+vpoa2ujqalJ3759OXjwIGpqaqxevZr169djZWWFjo4O2tra6OnpMXToUNLT03n69KmScOW2KGc3qBQjvNkjwYqbouyOmPz58/P+/Xul7sObN28W1z5x4kSuXDUNGzZk+/bt3Lhxg7Zt29K1a1fS0tI4duyYSG//jf8mWrduzb59+0hLSyMwMJAyZcqIz+RyOevXrxdlhWXKlBEcPYcOHUJFRUVELrW0tDAwMEBTU1PMWakEJDIyEhsbG8EtKW2EJEdD0aJFiY6OFpnOcrkcS0tLJk2ahLW1Na9evSIuLo7u3bvToUMHIU+SfGSXXzU1Nc6fP0+3bt2EPOrr6wsi75o1a/LmzRsyMzM5e/Ys1apVo2vXrkpjKlGiBCtWrGDZsmU5Nl6S7EkbI6k8RpJhRYNKMSqs+P+Kjg5pE6empkapUqXw9fUVa0Dt2rWVIu6mpqY5nBrq6up4eXlRq1YtXF1dadOmDStWrGDEiBFMmjTpu86f3/j30bJlS9HoKDMzUynb7vbt2xQvXlxkUpYqVYpp06YRHBzMrVu3UFdX/1sZTk5OxsTERIkfVlGG8+XLJzb0ipUTXbp0oVevXsTExPD69Wusra1xdXWlUKFCf6uDHz58SPXq1TEyMsqhgzU0NOjfvz8+Pj6oqamxYsUKNm7cSJEiRYQO1tXVFaTiDx48+GE6WFdXl48fPwoOLLlcLsq3ISuLJrdsyzp16rBz507u3r1Lu3btcHJyIj4+niNHjuRoavgb/y00a9aMo0ePkpKSwps3b3Lo4NWrV9OrVy8ASpcuja6uLvXq1ePw4cPCAfl3dnRUVBQ2NjZ52tG2trZER0cr2dGFChVi0qRJ2NraEhAQQHR0NF26dKFLly5KDoa8ZPjMmTP07NkTDQ2NHDJcuXJlPnz4QGpqqiib7Nmzp1hTtLW1KVasGGvWrGHp0qXCKal4X75Ehv+JDq5WrRpjx44V17a2ts6hg1VVVdm6dSsNGzZkwoQJtGnTBnd3dwYMGMDs2bO/5/T5jZ8A7du3F9l4KSkpGBoais8ePnyImZmZqEQrU6YMkydP5uPHj1y9evWzdLDE/Z2XDtbT0xP6V1EHd+7cGWdnZ2JjYwkICMDS0pJx48YpZernZUf7+/tTrlw5ChYsmMOO1tTUxMXFBW9vb9TV1Vm6dCnr168XPO/SmPr06YOFhQW3bt36YXa0lpYWiYmJSv+3bt068X337NmTq8OrevXq7NmzhydPntC+fXs6d+5MREQEhw4d+qGUeD8rFLlCf9QLsjgtFV8pKSk5xpaamsrdu3dzNJRs2rQp169fz/X73LhxI8fxzZo1486dOyLIrwi5XM758+d58eIF9erV++S9WrFihQhSrFix4pOvL8Xv8u2/wbBhw3B0dERVVVUYBurq6pw/f54FCxawb98+cWxISAidO3dmz549rFmzhiVLlogIh8Q9l5iYKAwKVVVVjIyM+PDhA4AwQuD/UrUVOXTkcrlShNTQ0JCmTZvmMGAAsYgpGiNqamq8f/+e3bt3izH17t1bqTteRkYGpUuX5sKFC/j5+VGjRg0MDQ1FVFVKT5fL5fTt25etW7cKx4BiNDm7MaXY3TN7ersiH41iNEuKkEtlOqqqqtSsWZODBw+KLqyqqqqULVuWJ0+ecO7cOaVMVkWYmZkxderUbzs5fuOnh5aWFiNGjKBHjx60bduWgIAAIKuL3OTJk2nRooUoTfjrr78wNzdn4MCB1KxZkwsXLgheGYlcX0tLSxgUWlpaqKmpYWpqyrt377C2tiYjI0PwzEhzNjg4mCJFigh5lDIfMjMzsbOzw87OTshFdvmF/1OWEg/k+fPnefnyJQsXLqRFixa0bNlSlHRLMmVpaUlMTAxHjhxh1apVSl0HJYe+ubk5Ojo6hIeHCyNTUX6lDVn2iK5iJpW09ijKsKIzQ1o3JBlu2bIlgwcPpnXr1oL3q1atWqxcuZIuXbrkWUaioqJC06ZNv2uX59/4OeHi4iLKQiReOS0tLa5cucKsWbPYs2ePODYoKIhZs2bRrl07Vq1aJRokfUqGDQ0NiYyMFI6I7DIsyYLEQSfJcFpaGvny5aNJkyZfpIPDwsLYuXMnqamprF69mt69ewu6F0UdfODAAZ49e0b58uUpUKBAnjp4+fLlokLge+tgmUxGgwYN8Pb2pmvXriJwU6VKFe7evcv169fz5I4sWLDg7yDC/yDU1dVFB/auXbvy7NkzAGJiYpg+fTp16tQRGRZSt+fx48dTuXJljh8/Tv369UlKSvqkHV2wYEHev39P8eLFc7Wjg4KCMDU1zWFHZ2RkULZsWdEcS/F/IXcZhqyEhBcvXrBkyRIaN26Mg4OD+EySPWtraz5+/MjBgwdZuHCh0MGKMlywYEEKFizIu3fvMDU1Ff//T2X4Uzq4adOm9O/fn/bt22NgYIBcLhfl2m3btuXcuXO5lt3JZDIaNWqUozrpN/776N27N05OTqJTc3x8PLq6uty4cYMpU6awa9cuceybN29wdXWla9eurFmzRgStPqWD9fX1iY2NzVMHS+9l18Gpqano6upib28PoCQX0t+52dEfPnzA09OTuLg4ERSxtbUVlYSZmZmULVuWrVu3EhAQQJEiRTAxMVFqhiPZ0X379mXWrFlUr15dXOt729FNmjRh165d9O3bVxxXt25drl69yqNHj3JkTkowNjbGzc0NNze3bzxDfn38W5yS2ROjpk+fnmMPFBERISjBFGFqakpoaGiu5w8NDc31+PT0dCIiIgTnd0xMDIUKFSIlJQVVVVXWrFnzt9VnHh4edO/eHS0tLTw8PD75HUeMGPHJc2XH70zJv4GOjg779u3jyZMnvHnzhho1atC0aVMuXbqEj48P+fPnB7I6zZmamqKjo8OKFSv48OED27ZtEwuSlKou8d1Ii6WhoSH58uUjICCApKQkEhMTSUpKEo7HI0eOUL9+faVyKkV+CsmAUlxwpYVfSovX0tJCU1OTTZs2sX37dmrUqEGtWrWws7Nj1KhRbN26VSlbIigoCBMTE8LCwrCxsRHOv+zk91ZWVnz48EHJiFIcZ/bU9dz4M6T/yZ7WrKamhqampohsS4t1v379OHXqFCtXriQsLIy0tDRhQIWEhHxVuvBv/LfRtm1bRo0axaFDh5g/fz4tW7akT58+tG3bVqkMZc2aNfTp04fq1avj7OzM5s2befv2rdgISBt0KSsLsoyFli1b4uPjQ0pKipBhyeBKSEjg+vXrgtcyOy+UYqmGJL+KMizJr7a2NuHh4YwePZr4+HgKFy5Mv379ePbsGR06dCA0NFSp3DI8PBwDAwPS0tIwMDAQMqz4E7IUYkRERI7STcUMEcWNkSKflfRS3LhJ30PqsCgR+ktrhpaWFsOHD6d///5cvnyZ5ORkqlSpQv369Tl58iQrVqz4ny8j+Q1laGpq4u3tzatXr3jz5g01a9akadOmnDp1Cm9vb9HU7K+//hIUCh4eHnz8+FFEaj8lw9ra2piZmfHixQtSU1NzyPDx48epU6eOcDZm17+fq4O1tLTw9PRkw4YNVKtWjWrVqlG1alXc3NxYu3ZtDh1sbGxMWFgY1tbWeerg7PL7I3Rwz549uXr1Kh4eHoSEhJCamiqcjc+fPxc8l7/xGxKaN2/OxIkT2b9/P8uWLaNFixb06NGDxo0bK3V8XbVqFX379qVChQoMHTqUTZs28ebNG+Ry+Sft6BYtWnD48GERtFC0oxMTE7l06RI1atT4x3Z0VFQU48aNIzIyEisrK/r168ebN2/o0KED7969U5LhkJAQDA0NSUpKwtjY+Lvb0Z+rg9XU1HB1dWXAgAFcvHiR5ORk7OzsaNq0KRcuXMDDw0PJOfIbv6Gurs6ePXsICQkhICCAWrVq0bRpUw4ePMiePXswMzMDsjiCMzMzMTExwd3dncTERJYtWwZ8WgdrampSpEgRHj16lKsOPnv2LNWrV8+hg7/Gjt63bx9r166lWrVqVKpUiZo1azJ16lSWLVumJL9v377F2NiY8PBwbGxsRIl2djva1NSU2NhYgB9mR3fu3JmHDx/i7u5OcHAwKSkpjB8/HoA7d+7kmZzzG3nj3yrfDgoKIiYmRrwmTpz4yTEqQtHp/rnHZ39fX1+f+/fv4+vry9y5cxkzZgyXLl365L16/fo1RkZG4ve8Xq9evfrkeXLDb83zGZB4I+7fv4+FhQXDhw9n9uzZIrvIz8+P4cOHC+92iRIl2LBhA6dPn8bb21ukb0slKFpaWoIbQiaTMXDgQBYtWsS9e/fEYhwXF8ehQ4e4efMmdevWFVFhIEeph/SehoaGUtq79FJVVWXGjBlcvHiR+Ph4rl+/zq5duyhdujSbN2/m2rVrXLp0idTUVDIyMtixYwcdOnTA0tKS58+f52rAZWZm8uLFCwoVKqT0ufR7dgNKUhzZU9Wll2J0S9oMaWpqKnU5lJTZkiVLKFKkCJMmTcLZ2Zndu3cDWanMvx0av5EbatWqhbe3N9u3b0dXV5dNmzYJIt+kpCSmT59O0aJFBTm0u7s7pUqVYt68ecL5LRlUkpNfmpeFChWidOnSLF26lA8fPogNUWBgIBMnTsTJyUlEShUzKBVLxKS5nb10RSpfefnyJUOGDEFNTY0///yTqKgo9u3bx6BBg5g+fTpDhgwRa8TLly8xMDAQjpDw8HAlGVXs9vfq1SsKFiwo/s6tZEyK8GYn1VcsNVGUaWktktY5RR4ggGrVqjFnzhyuXr1Kv379GDhwIImJiejo6FC6dOl/bY78xs8LLS0txo8fj5+fHzY2NgwcOJC5c+cKw+jx48e4uLgwZ84cIKsL5ZYtWzhz5gy7d+8W3enzkuH+/fuzcuVK7ty5I7rxxsfHc/ToUS5evIi9vb3YIGXfPEj4lA5WU1Nj7ty5nDhxgqSkJK5evYqPjw9FixZl48aNPHr0iFOnTgkdvH37djp16oSlpSUvXrzIUwf7+/tjbm7+Q3WwqqoqixYtomTJkkydOhVnZ2e2bNkC/NbBv5E3qlatyu7du9mzZw+ampps3LhR8JEmJyczb948jIyMKFeuHJDVxMzOzo7Zs2fz8eNHpQB/djva2NiYKlWqsHjxYj5+/Cjs6Ldv3zJp0iQ6dOhAenr6P7Kj3759K5pI3r59m6ioKLy8vOjfvz9z585lyJAhJCYmkpqaSmBgIGpqaqKkOzg4OE8Z/uuvvzAzM/tHMvylOrhixYosXLiQW7du0a9fP1xcXIiNjUVNTS1H6fZv/AZkNaNxdXXFz8+PEiVK0K9fPxYuXCgqjZ4/f07fvn2ZO3cukNV0dMeOHVy+fJnt27eLasO8dHCfPn3YsGEDt27dEjo4ISGBU6dOcezYMVq0aJFDB3+JHa2hocGSJUs4ePAgaWlpXL58maNHjwpevqCgIA4fPizWiK1bt9KpUycKFSqEv7+/kn2saEe/efMGIyMjpUDC97ajVVRUmDt3LnZ2dsycOZN+/fqxevVqVFVVf+vgXwz58uVTekmNYhRhbGyMqqpqjqzI8PDwHNmQEszMzHI9Xk1NTdjNkKXzihUrRsWKFXF1dcXR0VE0TPo38NOWb0dFRbFt2zbBSeHg4ICjo2OuD+xHQUtLCx8fHxYtWsSKFSswMjIiOjqaYsWK4eXlhYWFhTi2T58+JCUlMWTIEKytrUVHMWmxUeRdMjY2ZubMmXh5ebFu3To0NDRISUmhatWqjBkzhpSUFCWPuGIHXul9KSoklVoplppMnz6dsLAwjh07JjZIy5Yto2nTphw9epSxY8cyc+ZMypYty+rVq7G2tsbCwgJLS0vmzZtHeHg4JiYmYsGUFtqNGzfSv3//XCNBuRlSUjRL0VuvuHhKCkVSVlKGxpUrVzh48KBImTcxMaF3794sXLiQ6OhoFi9ejJ6eHrVq1foR0+A3PgNyuZwbN26wbds2wsLCsLW1ZcCAAf+606l169ai83RKSgqamprEx8fTq1cvpe7OBgYGnD59mkaNGrF48WIWLFggyjEAUcIhGUPdu3fnypUrgiIgIyMDPT09nJycsLGxITExUcx1yZiC/9sYSTIrbbKk80vNpnbs2IGTkxOjR49GXV2djx8/0rZtWxITE5kzZw6FChXCz88PDQ0NJk+ezOLFi0lPT8fR0ZENGzYwadIkMXZpU/PXX3+RmZlJvnz5SE5OVjKU8jKeFCPSuTlmpA6fijIcExODp6cn/v7+aGpqkpqaSsOGDUXXbF9fX4YNG5Zrd+3f+PcQExPDjh07uHTpEqqqqrRq1Up0bf23oKGhgbe3N4sXL6ZJkyYYGRkRExNDkSJF2L59u1IpTNeuXUlOTqZfv34ULVqUihUr5inDhoaGzJ49m507d7J582Y0NTVJSUmhUqVKuLm5KW2m4P901efoYBUVFWbMmEFISAhHjx4lX758qKmpsXbtWpo3b86hQ4cYO3Ysbm5uVK1alQ0bNmBoaIiNjQ2qqqq8fv2akJAQzMzMcujgDRs2iKDH99TB169fZ//+/eL+FShQgN69e7NgwQJiY2NZtmwZ2tra1K1b9wfOht/4FORyObdv32bbtm2EhIRgY2ND//79hdPv30KTJk0wNDRkxIgRJCYmoqWlRWxsLN27d1fKEtHT0+PkyZPY29uzYMEClixZQnJycp52tKOjIzdv3mTGjBlinuro6NC+fXtsbW1JSEj4ajv64cOHbN26lXbt2uHm5oaamhoxMTG0a9eOpKQklixZQqlSpbh58yZGRkaMHz+eefPmkZ6eTufOnVm/fr0Yl6IMv3nzhvj4eIyNjUX3738qw7np4Li4OLy8vHj27JlY2+rVq0ffvn2RyWTcv3+fIUOG4ODg8INmwW98DmJjY/Hy8uLChQsiI7hLly5K3eh/NNTU1Ni9ezceHh40bdqUAgUKEBsbS+HChdm0aZMSR7DERdm9e3eKFi1K9erV89TB+vr6zJkzh127drFt2zbRlKlChQpMmDBBqZcAfJkdraKiwrx58wgKCuLAgQMYGxujrq7Oli1baN26NT4+PowePZoRI0ZQp04dtmzZgqqqKqVKlUImkxEWFsa7d++wtLTMYUdv2LBBBD0UX9/ajr516xb79+8X5zA0NKRPnz4sWLCA6OhoFi1ahKqqKg0aNPjeU+A/iX+rfPtzoKGhQZUqVTh79izt27cX7589ezbP6tBatWpx9OhRpffOnDlD1apVlbKUs0Mul+fKa5kX+vXr98nPpYD150ImlyTjE4iNjcXAwICYmBilrnnfCzdv3mTSpEmMGDFCREf27t3L3r178fT0VHL+/VuQy7O6OEtlJHmhatWqhIeHU6dOHYyMjChRooRYQJ88ecL9+/eBrMyOdu3aUahQIWGUJCUlic2GFE2RJrLi31I3PhMTE9HZTEph9/HxwdDQkLt374pugBoaGqiqqrJq1So2b96MnZ0dd+7coXjx4rRt25b27dsLAX3y5AmLFi1ixowZlCpViszMTFEWp6enR9++fUWpuUR+n70zYFpaWg6uHkBJiUhp6lJ0S8rS2Lp1KykpKQwZMgR9fX3kcjmvXr1iwoQJxMXF8erVK9TU1Dh06BAtW7b8bs/7U/jR8vE1+JFjzMzMZODAgRgYGAin/MOHD1myZAl2dnY/DZ+JZCR8KtBx+vRpmjdvTvPmzSlYsCAlSpQQHeCjo6O5ceMG4eHhaGlp0bBhQ+rXry+ysiRyaym7Q0EDSrgAAMqwSURBVOLCAWXeNrlcTnx8PDo6OhgbG4vIsbSujBkzhlKlStGjRw9KlSolHAVxcXE0atQIU1NT1NXVCQ0NpVKlSgwfPpxChQqJa02ZMoWiRYvSu3dvtLW1SUtL4/bt2yxZsoQ5c+aQP39+Jb4qaT2RXtk3Q4pQlF+JhFvK7tTU1CQ6OpqpU6cyevRoKleuLNYrHx8fduzYQVxcHBEREdSrV4/Tp0/n2qjqR+Bnl+EfPb579+7h6urKsGHDaNWqFWlpaezbtw8vLy+2bduGlZXVdx/D3+FzdXDdunUJDg4WOrhkyZJicyPpYLlcjrW1Ne3bt6dw4cLCeaCoy7LLcHYdnJaWhrGxcQ4dfPToUTQ1Nbl58yZr165V0sGbN28WHbjv3r1LsWLFaN26NZ06dRI6+OXLl8yaNYvp06dTtmxZMjMziYyMZM2aNQAMGjTou+rgXbt28fHjR0aMGEG+fPmQy+UEBgYyYcIEYmJiePXqFTKZjH379ikZzD8SP7v8wo8do1wuZ9iwYairqzN06FCKFi3K06dPWbp0KUWLFv1p+LWlzfqn1v3Lly/ToEEDmjVrhoWFBaVKlUJXVxfIuqfXr18XOrhBgwY0bNgQdXV14fj7HDtaLpcTFxeHlpYWxsbGYk2RbPUxY8ZgZ2eHg4MDdnZ2QoaTk5Oxt7enQIECaGtr8+7dOypVqsTQoUOV1shZs2ZhampK//790dXVJSMjgzt37rBw4UJmzpyJqanpP5JhRSdqdh2ckJDAhAkTGDFiBNWqVUMmk5Gamsrhw4fZtGkTCQkJhIeHU6NGDS5cuPCvObx+dhn+0eN79OgRI0aMYNCgQTg4OJCRkcH+/fvZtm0bmzZtwtbW9ruP4e/wuTq4adOmPH/+nPr161OgQAFKly4tdPCzZ8+4d+8ecnlWA8gOHTpgbW39WTpY0Y6WGshIOljRjj59+jQZGRncvHmTjRs3isxDdXV19u7dy/z587Gzs+PevXsUK1aM5s2biyC5TCbj1atXTJ06lalTp1KhQgXkcjnR0dFs2LCB+Ph4Ro8eLbI4v4cdffDgQd68ecOYMWNEhWZwcDATJ04kIiJClMl6eXnRtWvXb/2YPxs/uwznBmnM27dv/6FrX2JiIr179/7se7V371569uzJunXrqFWrFhs2bGDjxo08efIEa2trJk6cSHBwMDt27ACyyqrLlSvHwIEDGTBgADdu3GDQoEHs3r2bjh07AjB//nyqVq2Kra0tqampnDhxgvHjx7N27Vr69+//Wd8ju82XlpbG48ePiY6OplGjRhw4cOCL7ss3cUpmZGRw69Yt4uPjsbOzE/wSX4OEhARatWrF0aNH0dfXV/rs5cuXuLq6cuTIka8+/4/G1atXcXNz482bN4SGhmJubk6pUqUIDQ2lRo0atGrVCjMzM/766y+2bdtGw4YNsbe3JzU1VUROAaWUcAnBwcEicpI/f37Cw8MpVqwY/fr1ExmRI0eOZPny5cyYMYNNmzaJzmVSKUynTp1YvXo1gwYNwtPTU1xHgoqKCoGBgWzdupW3b9+KRb59+/bUqlUrV66b7GnqiiViiueVNkRSZFoqN5WiQyEhIWzZsgV3d3dx/PPnzzlx4gSbN29GXV2d5cuX06JFi3805/4pfoWF+O/G+P79ex4/foy+vj7Vq1fPtYPq58LDwwMdHR0GDhyo9L5cLmfkyJE4ODjQuHHjrz7/j0R6ejqjRo3i7NmzBAUFkZmZibW1NaVKleLdu3c4OjoKrqqzZ89y+fJlZs6cKTICpVITQKm0A7Jk+syZM9y5cwcLCwvS0tKIj4/HycmJGjVqIJPJuHbtGpGRkURERNC+fXsqV66MhoYGMlkW0ffp06d5/PgxpqamREdH07NnTyWCbJksiyT8yJEjHD16FBUVFVJTUyldujRdu3YlX758SvKanVA/+2ZOGrtkgEqZJIrcPdra2sKhMXv2bFxcXChevLjIdD548CDHjx/n+vXrgmusZs2aIrP738DPLsOfo4N9fX2JjY2lbNmyFCpU6KuvlZKSQvPmzTl48KBSl03IIrEfMmQIx48f/2VKhG7evImrq6vIOLSwsKBkyZKEh4dToUIFmjZtSuHChXn79i2enp788ccftGjRQmlDkZcMh4aGsm/fPtLS0jAyMhL8U/379xcbo9GjR7Nq1SrGjRvHjh07cujgrl27snTpUoYOHZqnDg4ODmbLli28fv1arM1t27albt2631UHR0REsHLlSpYvXy7Kt/39/Tl58iSbN29GJpPh4eFBy5Yt/9Vg8c8uv/D3YwwNDeXhw4fo6elRvXr1f7Qerlu3jpSUFEaOHJnjMzc3N+rWrUubNm2++vw/EpmZmYwdO5YTJ04QFBSEXC7HysqK0qVL8+rVK9q3b0/VqlXR1NTk4sWLnD9/npkzZ6Knp/e3drRcLufs2bPcunULc3Nz0tPTiY+Px9HRkT/++AOZTIavry+vX78mIyODhg0bUrNmTSUZvnz5MlevXqV48eK8ffsWFxcXJX5nyNLDx44d48iRI8IpWKJECbp3746hoeE/lmHJwZKbDl64cCFdu3alXLlyoonHoUOHOH78OFeuXKFRo0ZMnTqVP/7445MZNN8bP7sM/934MjMzuXPnDtHR0ZQuXTpHA4svQXp6Ok2aNGHfvn0YGxsrffbu3Tv69evH6dOnfxkdfPfuXUaPHk1AQADv37/HzMyMEiVKEBUVRdmyZWnWrBlWVlYEBwfj6elJxYoVadeu3Wfp4LCwMPbt2ycckh8+fMDS0pIBAwZgYGCATCbDzc2NpUuXMnbsWDw9PUX2oWRHd+/enfnz5zNixAglHaxoR4eEhLBt2zZevnwpmk46ODjQsGFD4Tz9HnZ0bGwsixcvZs2aNSJQ8ubNG44dO8bmzZvJzMzE3d2d1q1bi4Zh/xZ+dhnODdKYPT09f7hTsmfPnl90r9asWcOiRYsICQmhXLlyeHh4iE7Zffr04c2bN0p8kJcvX2b06NE8efIECwsLxo8fz6BBg8TnU6ZMYe/evbx79w5tbW1KlSrFyJEj82yU9LnIzMxkyJAhFC1a9IuTkP7xLtDLy4utW7dSt25dChQowJYtW9DQ0GD58uWiCcyXYPfu3Tg7O+dwSAIUL14ca2trHjx48MvwntStW5cbN24AWam2ixcv5uzZs+TPn58KFSqQL18+VFRUKF++PO7u7owbN47SpUtjYmKi1PUSUDJ03rx5w7Zt2xg/fjwWFhYiKuTr68v06dNZsGCBiObmz5+flJQUEhIS0NLSUkorz58/P/7+/tjY2OTguICsxdjc3JxJkyaJxVSKbkvRK0WuHsWyk+znUXR0SbwYioTEitxVqqqqHD58mN69e4vvf+LECcaMGYOenh6dOnUSm8t/0yH5qyMiIoKRI0eKDowfP35kypQpDBgw4KsaFmRmZnLs2DHOnDmT4zOZTMaUKVMYOnToL+OUVFNTY9WqVQDExcWxfPlyFixYgL+/P61ataJs2bKoqKigr6+Pk5MTZcuWZeXKlYwfP14YLvB/zkHF0qt169ZhbW2Nu7s7WlpaqKqqkpKSwqJFi0QGRlhYGCVLlhSdSKXyF8kIsrKy4syZMzx9+hRXV1clGZauK5Nldb1u2bJlDq4bKZqruPnJjURfOpckw4olcJLMZi97S0pKIi4uTskh6ezszI0bNyhRogTe3t7s2LGDOnXq/OjH+p+Ct7c369evp3bt2piYmLBt2zYAVqxYkWND8znw8fGhW7duORySkJXRX65cOW7fvk2NGjX+4ch/DGrWrMm1a9cAuHTpEosXL+bEiRMYGRkxYMAA0YSibNmyLFy4kEmTJlGmTBksLS0/KcPv3r1j06ZNuLm5iWNVVVW5f/8+U6dOVeq4Kzkoo6OjMTMzU9LBJiYmBAQEYGFhkacONjExYfz48T9cBx89epSePXuKzdO5c+cYMWIE2tratGnThhIlSlCkSJGfonrlV0VUVBSjRo0iJSWFP/74g6ioKKZOnUrv3r3p1avXF59PLpfj4+PDyZMnc/180qRJ9OnT55dxSqqoqLB06VKWLl1KQkICK1asYOHChbx48YLmzZtToUIFNDQ00NXVpWPHjtjZ2eHh4cH06dOVsghzs6M3bdqEkZER7u7ugt8uNTUVDw8PkpKSaNasGeHh4RQtWhQrKyuOHDlC7dq1kclkQoatrKx4//497969w8XFJYcDArJkrVmzZjRr1uy7yXBuOjg9PZ2wsDDhkMzIyGDQoEFcunSJ4sWLs2fPHrZv3079+vV/8FP9b+HgwYOsXr2amjVrYmpqiqenJ6mpqSxfvvyr9idHjhyhffv2uepvS0tLatWqJTKIfwVUqVKFK1euAHDt2jUWL17M4cOHMTAwoHfv3piYmKCiokKpUqWYP38+06ZNo2zZshQtWvSTOjgkJIQNGzYwatQobGxsxNx/+vSp2Afr6ekhk8nQ09NDX1+fiIiIHJmYZmZmonlHds5X6brGxsaMHTsWQMmOlmT2e9nRJ06coFu3bsIheeXKFYYOHYq6ujpNmzalcuXKWFpa/usOyV8dP3P5toQhQ4YwZMiQXD+T7H5F1K9fn3v37uV5vjlz5gge9m8JFRUVRo8eTYMGDX6sU9LLy4ubN29y5swZIWQjRozg7t27dOnShaNHj6KhofFF5/T19WXatGl5fm5vb4+vr+8v45RURJMmTbCzs6Nbt27Ex8czZcoUVq9eTdmyZUXUpn///hw9epRBgwaJBViCFMWUyWR4e3szffp0zMzMxMYHspygHz9+5NSpU7Rv316kjffr14/x48ezfPlyJYMqLCwMDw8PJk2aREpKitJCnD2JVtGYUiTbVkxNV+TUUCyVUeQBkQwpaXHOTqQv4f3791hZWZGRkcHhw4eZNWsWLVq0wNvbG01NTXbu3Mnbt2/5448/vutz+68iOTmZrl274u7uriRPGRkZDBkyBFVVVTp16vRF5/z48SNWVlZ5ZloWLFiQ5OTkfzTufwv6+vpMmTKFkJAQNDQ0WLVqFenp6UybNk1wwFSsWBFPT09iY2PR19fPU/EEBASgqqpK9+7dhfyqqKigq6vLzJkzGTp0KPXr16dgwYK8fv1akIBfu3aNqlWrCvl7+fIl0dHRaGlpUaBAASHDimUtEqT3FHmrsm+EssuxolGW/adiN1Fp/JIMy2QyIiMjsbCwICMjg9DQUGbOnMn169e5fPmy4J7LTZH+xufDx8eHs2fPcvr0aaEDhg8fzsOHD4UO/lIOSF9fX4YPH57n5/b29r+UU1IRDRo0oEKFCrRr146MjAwmTpzI6tWrKVmypJDhgQMH4u3tzahRoz7Z3XDfvn1MmTIFS0tLJR1cs2ZNoqKiOHbsGE5OTkLGnJ2dmTBhAitXrkRVVVXI8Lt371ixYoXgj/7ZdLC1tTWZmZkcP36cGTNm0KBBAw4dOoSWlhYHDhwgKCjoezyq/wlImbKzZ8+mWrVq4v3MzExGjRoF8MWOyYSEBMGZlhsMDQ1zlAD/KtDV1WXixIl8/PiR9PR01q5di66uLiNHjhRB+HLlyqGqqkpkZCT58+fP044OCgoiOTmZPn36CNlX5GEfMmQI9vb2mJiY8ObNG5o3b87GjRu5cuUKderUEXrU39+fhIQE1NXVsbCw+FdlOLsOjo6OxtTUlIyMDD58+MDs2bO5ePEiZ86coUmTJgB4enp+9+f2X8axY8c4dOgQJ0+eVJK5Z8+e0b17dw4fPoyent4XndPX15fu3bvn+bm9vT23bt36ZZySiqhduzZ2dna0aNFCcKCvWLGCcuXKCTkcNGgQW7Zswc3N7ZM62MfHBzc3N4oUKaJkR1erVo24uDgOHjwoqocSExPp168fkydPZs2aNWhqagr5e/v2LStXrmTEiBEkJycr8T7+23Z0aGgoDg4OpKenc+7cOaZPn06NGjVEj4gTJ04QGBj4HZ/Y/wZ+Bafkr4SAgADS09O/+P++2imZkZHB1q1blRySEqpUqULbtm05ePDgF6eBamtrExsbm2f5WUxMzL9K8vtP8eTJE1q1asXAgQMpVqwYR48epXjx4mJBKlu2LOvWrRPRTymNXNEIiY2NRUtLCxsbG0GGK3U2S0tLo1WrVowZM4a2bdtSo0YNTpw4QZs2bYiMjMTJyQl7e3vMzMy4ePEib968YdGiRZiamooyl7wW4uzdxxQjQYrk3Yo8PRIU+XkkI0p6T/F36Ri5XI6JiQl37txhw4YN+Pn50bVrV1asWCE4AF++fIm9vf0PfX7/Jezdu5cuXbrkcPCrqqqyevVqmjdvTseOHT/JFZMdWlpaxMfH5/m5XC4nLS3tq8f8M+Dt27ccPXqUokWLMmrUKAYOHEjhwoWF4VGuXDkCAwOpWLEi8H9GjKIBcuHCBbp27Yq+vr7oridFblVVValTpw6+vr788ccfjB49GicnJxYuXMiMGTPYsWMH9evXJzk5mcWLF1OrVi1cXV2F/CpmVkiQxqBYApY9oqtIwp2d9yb7JkhRdiWHhmJnQLlcjoGBAe/fv2f37t24u7uTL18+du/eLRySis1/fuPLkZmZybp16zh58mSOUk87Ozu6d+/O3r176dOnzxedV9LBeeFX18HPnz+nadOmjBkzhtKlS3P06FFsbW3F/C9evDihoaFCB0NOGZY2LsWKFctVBzdt2pThw4fTqVMn6tSpw5EjR3B0dOTjx4906dKFhg0bUqhQIa5du8bLly+ZP38+lpaWP6UO9vPzY8eOHfj6+tKxY0dWr14tOABfvnxJ5cqVf9zD+4/h4MGDtG7dWskhCVnPSmpG2K1bty8q5dbQ0CAxMfGTx/zqOtjf359Dhw5Rrlw5BgwYgJOTE4UKFRL6qGLFigQEBIgy+Nzs6AsXLtC5c2f09PRylWF7e3tu3LhBrVq18PLyokePHsydO5dZs2axc+dOGjVqRHp6OosXL6ZSpUpMnTqVpKSkv3VofA8ZzksH6+rqEhYWxv79+1mwYAHa2trs2LFDOCQlB+pvfB3kcjkrVqzg6NGjOYIApUuXZsCAAXh6ejJ48OAvOu9/XQcHBATQsGFDpkyZgp2dHYcOHaJUqVJCB1tbWxMZGflJHSxRLUg869nt6EaNGrFv3z569uxJw4YNOXToEN27d8fR0ZGuXbvSoEEDrKysuH37No8ePWLu3LkUKVLkp7OjjY2NefDgAdOnT+f69es4ODiwZs0awav7119/YWNj88Oe3X8Vv52SX4cxY8Yo/S1lMB8/fpzevXt/8fk+39uQDbdv36Zu3bp5ZkT17NkTHx+fLz6vo6PjJyN3Bw4coEWLFl983p8F+vr6REVFoaurS69evTh9+jRhYWHExsYSHx+Pr6+vcNwo8loo8sjExsZSsGBBNDQ00NbWRkdHBy0tLUGeL20Y5HI57du35+DBg5w8eZL69euzevVqjI2NuXXrFo8ePWL79u0UL16cpKQkEhMTSUpKIikpieTkZJKTkwV5sPRT8TPFdHXFsSoaUrlFgqQyMXV1dTQ1NZXS1SUHWGZmJjVq1GDMmDFERkZy6dIldu3aJcoZEhISuHr1KrVr1/7BT/C/g8OHD+dJiqympkb16tVFI6bPhb6+Punp6Xz8+DHXz319fSlfvvyXDvWngoaGBvHx8fTo0UNkC8XGxhIXF0d4eDgBAQGoqakJgyS3zUV0dDSWlpaCv00itJYipGZmZkRFRaGqqoqTkxNjx44lJiaGuXPn0q9fP96/f8/+/fvp0KEDkyZNIi0t7W/lV/o9OTmZxMREUbqd3ZDKbogpGk2SrCoShUsvKcorOTT09PQICwtj1qxZ9O3blxcvXigFqbZt2yYIl3/jy/Hw4UOqVKmSZ0ZUly5dOHTo0Bef9+90sLe39y9T+pkb9PT0iIqKQltbmz59+nD69Gk+fPggZPju3buC2iAvGY6Li8PY2DhPHSz9lMvltG7dmlOnTnHkyBH++OMP1qxZg4WFBXfu3OHOnTts3bqVMmXK/JQ6uFatWri5ufH+/XvOnj2Lj48PpqamQFam/ZkzZ2jUqNG/8yD/A/Dx8ckzE1JFRYV69epx69atLzqntEEPCQnJ9fOHDx9SvHjxLx7rzwQdHR1iYmJwcnLCwMCAQ4cOERcXR2xsLB8+fODFixfCwZiXHR0VFYWFhUWeMmxubk5kZCSqqqr06NGDsWPHEhERwaxZsxg8eDDh4eHs37+f5s2bM3PmTDIyMv41Gc5LB2tpaREXF8eUKVPo0qUL/v7+9OzZU9yDXbt2/e64/Q/g7+9P6dKl82yW2KFDB06cOPHF5+3YsSNeXl55fr5nz548u+7+CtDT0yMyMhJNTU369evH+fPnCQ0NFTr4/v37wmbNSwcnJiZSoEABJS5kRTtacvABNGvWjD///JMDBw5QtWpVQZ107949rl27xtatW6lYsSKJiYk/nR1do0YNpk2bRkBAACdOnODw4cMiaUtqWPUr+0R+FigGZX/U678APz8/pdfDhw8BWLJkCcuWLfvi8311pmR8fPwnOSP19PS+qK24hNq1a+Ph4cGFCxdyGLsrVqygYsWKX8VV+bOgSpUqTJw4kfT0dIYPH87SpUtF5+j4+HhcXFwAGDhwIA4ODjRp0kQpfV0ul2NkZMTbt2/F31KkU1oUIyIiUFdXJyMjAxUVFWbOnMnevXvZuXMn2traJCUlUbJkSZYtW4aWltYnuxMqXje7cZfdeMpOwC2dR7ELmmIUKDt/lbQYQ1YE18PDA21tbTp16qSUSfDu3TuGDBnCtGnT/jOC/W8gPT39k9HW/Pnzk5CQ8MXndXNzY8CAAWK+SQgLC2PSpEm/fMluhw4d2LlzJwMHDsTZ2Znt27djb2+Pnp4eW7Zs4eTJk/j5+VGqVCl69+6NmZkZcrlcOCohixfo+fPnmJqaisiuYne+58+fU6tWLdLT06lRowZ6enrMnj2bpKQk4ezo2LEjNWvWJDExMUdnv+zlXoolJ4oyq2g8ZTeiFDdCihuivKK7ivItk8k4ffo0T548wdbWFmdnZ0HmnJGRwd69ezl//jx79uz5gU/uv4W/08Ha2tpflQVTpUoV3N3dOXXqFM2bN1f6bMOGDdja2lKwYMEvPu/PgnLlynH//n1SU1MZMmQICxYs4Pjx4zRv3pyoqChBBO7i4kLr1q3FPVCU4Xz58hEcHCzez66Do6OjBU0KwIwZM/Dx8cHZ2RltbW2Sk5OxtbVl6dKl6Onp/ZQ6OD09XfDdSo3tJLx//55hw4Yxfvz4f9QU7X8dSUlJufKnS/haHSwR2u/atUtk1EAWh7SrqysbNmz4qvH+LOjcuTPbt28XlQrr1q2jefPmaGho4OXlxbFjx7h58yYlS5akb9++WFpaim6/kCVLkg4uXLhwrjL89OlTypUrR0ZGBlWqVEFPT4+FCxeSkJAgmty0adOGunXrkpiYqJT1+KNlWLF0VVEHX7p0CT8/P4oUKcKAAQMET3BmZib79+/n0KFDeHt7/8An999CfHx8rtzLEr6UvkxC2bJlSUxM5PDhwzmcjzt27MDY2PiX5hC0tbXlr7/+IikpCRcXF2bPni2+a1xcnOj8O2DAAMGHLjnpJB2so6NDWFiYkv2qaEfHx8crNbWaNm0aPj4+DBgwQOyDixYtytKlSzE0NPwp7WipiY2GhgZt2rRR4l8PCwtjxIgRjBo16l9tUPVfwe9Mya/DxYsXv+n5vtopWb58eTZt2pRrdz+AGzduULZs2S8+r0wmY8eOHYwePZo1a9bQuHFjkpOTOXXqFHXr1mXGjBlfO+SfAioqKri4uDB06FDR9XrHjh1UqlRJEJLa29ujpqbGokWLiIyMxNHRUSzIqqqqaGpqkj9/fh48eEDFihXFoitld3h5edG0aVMRgZXL5Tg5OYmsOOlc6enpJCQkKPFgKC7E0ngVobjg5hYJUuxqqPj/isZZdiJfxUVa+nn//n1evXqFr68v/v7+dOjQAS0tLVJSUihQoAAzZ86kUqVK3/TZBAQE4OnpSXh4OMWLF6dXr14YGRl902v8TChWrBh3796lSpUquX5+8+ZN+vXr98XnrVWrFoMHD6ZNmzbUrFkTGxsbHj58yF9//cWKFSt+aWMKsjLJHBwcqFKlCuPHj2fz5s0cPHiQZs2acfPmTSCLP/bAgQPcunULLy8vNDU1SUtLE5uMli1b4uHhQY0aNYS8ZWZmkpqaSlhYGI8fP6Z3796Cp6ZIkSJMnjxZSY4knpzsHToBJWNKUfnlVo4iITclmf14QJBxKxpRucmw5NTauHEjCxcu5Pnz5+jp6REXF0ezZs3YvXv3NzWm0tLSOHz4MJcvX0ZdXZ02bdrQoEGD/4zyz44yZcqwZMmSPD+/d+8etra2X3XuLVu24OrqysaNG2ncuDGpqamcPn2aatWqMX/+/K8d8k8BmUzGiBEjcHFxYePGjYwYMYLVq1fzxx9/CPmtW7cu+vr6LFmyBE1NTezt7YWcSXPc0tJScGtm18G7d+/G3t5eSQd37NhRcPT+Cjr44cOHPH/+nKtXrxISEkKnTp1QV1cnLS2NfPnyMXHixBxlx/8Ur1+/xtPTk9DQUGxtbenZs+cv7QD/O9jZ2XH9+vU8Kz6uX7+Oo6PjF5+3SpUqgsKnevXqFC1alCdPnvDs2TPc3d0pUqTIPx36vwoHBwccHByoUaMGrq6urFu3jhs3blClShXRWLJ58+YcOnRIcMSqq6sr2dFNmzZl4cKF1K1bVymAkJaWRkREBL6+vnTt2lXIcOHChZkwYYKSXpXL5UIH/5syrBhYUJThM2fOUL9+fXbv3s2iRYuYPHmy0MH29vbs3bs3zyy/r0F6ejpHjx7l4sWLqKqq0rJlS+zt7f+zyQMlSpT4ZCOJZ8+e5UlF9ndYv349bm5ubN26laZNm5KRkcHp06exs7Nj6dKlXzvknwIymYwxY8bg7OzM1q1bGTNmDIsWLaJu3br4+fkBUL16dUxNTVm2bBkymYzWrVvn0MHFihXj2rVr1K9fP4cd7e3tTYMGDQRXa3p6Om3bthXVOVJw/2e2o589e8bjx485c+YMCQkJdOnSRTSw0tPTY/To0UrBwm+Bt2/f4unpSXBwMDY2NvTq1et/opnsb6fkz4GvdkqamZmhpaWFr69vDsM0IyODBQsWsGLFiq86t66uLhs2bCAsLIzbt2+joaHBgAEDlCK+vzI6d+6MXC4XnQPT09OZP38+hQsXRk1NjXbt2jFs2DCqVq3KkydPaN++PXK5HBUVFRFZHTBgADNnzsTJyYm6deuioqJCTEwMe/bs4ePHj3Tu3JnExESxIMP/dfhSLM+SFmLFCK+E7Pw1gJKRpfietMBL501PT+fFixeEh4eTnp6OiYkJmpqaxMfHiy6ThQsXVhqXmpoaQUFBHDhwgOvXryOTyfD398fR0ZFu3boJvr28Fv0zZ86wY8cOYmNj0dPTo2fPnjRv3vxvDSK5XM6kSZMIDg7GxcUFKysr7t+/T/fu3endu3eeJc6/OgYPHsz48ePx8fHJcY+uX79OgQIFvtop26RJExo3bsytW7cICwvDxcWFcuXKfYth/+vQ1NRkz549jBo1iqSkJOrXr8+xY8dEWdyLFy/YsmULXbp0oVmzZgQGBlKkSBEhMxkZGRgaGlK7dm0mTpzI4MGDRUfeR48esW7dOlxcXJRKuzIyMnJkSUhODUX5za3LX3ZlK/2umOGkKOuSE+Xjx4/4+/sTFxeHjo4OxsbGpKamEh0djbm5ucjgVMy4yszM5Pz585w/f55bt25RuXJlEhMTWblypYgo58WPFh4ezqZNm7h+/ToAVatWxcXF5bM6+/r7+zNw4EA6duzI6NGjSUlJwdvbG3d3d7y8vH7p7Pq8UKBAAUxMTPjzzz9zdDDPzMxk7ty5zJs376vOra2tzZo1a4iIiODmzZuoqqri7Oz8xYT9PyscHBzIyMigRYsWVKhQARUVFebMmSP0lIODA2PHjqVu3bpcv36dxo0bi82QJMN9+/Zl+vTphIWF0aBBA1RVVYmNjWXfvn28ffuWtm3b/us62N/fn/DwcFJTUzExMUFbW5u4uDiSk5NFwEhxXGpqagQHBwsdDFm8kd26daNTp05kZGSIzI/skMvlXLhwga1btwrOsx49etCqVavP0sEzZ87E39+fQYMGYWNjw+PHj+nbty+Ojo707dv3ax/1Tw0XFxeGDRvGwYMHc6yLd+/eRV1dHXNz8686d/369alXrx6+vr6EhITQp0+fX7JBZG5QU1Njz549jBkzhujoaBo0aMC6desoWrQo1tbWxMbGsnHjRvr27UvdunV58+YNRYsWVbKjdXV1sbe3Z9KkSQwdOhQLCwvkcjlPnjxhzZo1ODs7k5ycTFpa2r8mwzExMTx58oS4uDi0tLREo8DY2FhMTU2pVasWOjo6OXTwpUuXOHv2LFevXqVs2bJER0fj4eHxtzr448ePbN68WXRKrlixouDM/ju8fv0aZ2dnHBwcGDlyJOnp6ezbt48lS5bg6emJiYnJ1zzqnxr6+voUKVKE8+fP5+C3l8vlzJ49mwkTJnzVuTU1NVm+fDmRkZFcv34dVVVVevfuLSpOfnU0a9aM9PR0WrVqhZ2dHVpaWsybNw8TExN0dXVp3bo1U6dOpWnTply/fp02bdrk0ME9evRg1qxZREVF0bhxY9TU1EhISGD//v28ePGCcePGkZSU9K/Z0ZmZmbx48YKQkJA8dbC071eU4bCwMCUdHBAQQJ8+fUSDvk/p4CtXrrB582aioqLQ0tKiW7duODg4fFZFw4IFC7h37x6DBw/G1taWZ8+e4eLiIvpg/Jfx2yn5dahUqdJnf5dPBXAkyOS5ufCzITY2FgMDA2JiYpQWxOjoaLp06ULr1q3p1asX+vr6XL9+nQULFtCrV68v7tz7b0IyRsLCwihatOgPiSRnZmZy9+5dduzYwerVq3Fzc8PLy4uqVaty8OBBtm/fTt++fVmxYoXSwiVxVkmZQXfu3BELbcOGDalRo0YO0mwp8qoYjQFEyUl2Y0qRSFuCNPEyMjKIjIwkKioKc3NzChQooLSodujQgQkTJrBw4UJUVFTQ0dERzU8kPo3k5GScnZ2xtbXl8OHDyOVyqlSpIjYl8fHx9OnThwkTJuDn58fevXsxMDDI8z4OHDgQMzMzhg0bhqmpKR8+fGDNmjW8efOGTZs2fXJB3rBhA1FRUYwfP17p/YyMDHr27Imrq2ue2YSQt3z8TMhrjLt27cLb25sJEyZQo0YNYmJi2L59O6dOnWLv3r0/7ffJDbGxsfj5+aGqqkq1atW+aQZAXggLC8PPz4++fftiZmZGtWrV2LhxI76+vlSqVInSpUtjbGzM2LFjRWQUssp6NDU1efbsGfv37ycuLo709HRsbGxo1aoVBQoUUDKQpOwL+L9NkWRQfY4xJf0NWWtdcnIy4eHhZGZmUqRIEbS1tcXx6urqovN3Wloaurq6gvwbsgzxuLg4LC0tmThxInfu3OHatWvUqFGDV69e0bBhQ9q1a8fw4cNRVVWlYMGCODg4fJL0+P79+7i6uuLm5kaTJk2QyWRcvnyZefPmMWPGDP744488/1dqLLJr164cG/i7d++ycOHCvy1R+9llOK/xxcXF4eTkRNOmTenTpw8GBgbcvn2bBQsW0LFjR3r06PEvjvrL8fTpU0JCQrCxsfnqLM8vQWZmJn5+fuzatYulS5cyffp0Nm/eTKFChbh+/Tre3t507dqV1atXY25ujoqKipBhbW1t0tPTOXbsGLdu3RKbhAYNGlCrVi0ht99LB0dFRREVFYWpqSlGRkY5dPDMmTOZMWMGMpkMXV1doYMl+yEpKYnevXtTtmxZDh8+TGpqKjVq1ODp06cMHDiQjIwMunXrhpubG35+fuzZs4cCBQrkeh/lcjnDhw9HT0+PkSNHYm5uzsePH1m/fj1Pnjxh+/btn2zW4unpSUBAQI5KmMzMTPr168eAAQM+yR/9s8sv5D3G/fv3s23bNsaPH0/t2rWJi4vDy8uLQ4cOsXfv3l8qoBIfH8/du3dRUVGhatWqSvQt3wsfPnzAz88PZ2dnSpYsSbFixVi/fr3okm1nZ4eZmRkjRowQDjlFOzogIAAfHx9iY2PJyMjAysqKNm3aYGRkpJQ59a1lODk5mbCwMDIzM0XTSsWMx+bNm1OwYEESEhLQ0dFRcoxKOtjc3JwpU6bg5+fHlStXqFatGm/fvqVOnTq0b98eNzc3EhMTsbGxwd7eXtBD5YYnT54wfPhwXF1dRTD/2rVrzJkzhwkTJtDgE52eMzIyaNasGVu2bMHKykrps0ePHjFt2jQOHjz4yef4s8twXuNLTEykS5cu1KtXj379+pE/f35hdzRv3hxnZ+d/cdRfjufPnxMcHIyVldUP4Z6Vy+Xcv38fb29vFixYwKRJk9i9ezf58+fn9u3bHDt2jHbt2uHh4YG1tbWSDtbQ0EAul3PixAlu3LghKpHq169PnTp1hH38vezojx8/EhUVRcGCBcmfP7+gUpAymV+8eCH2lXp6eko6WFNTk8TERLp3706lSpU4dOgQiYmJ1K5dmwcPHjBo0CA0NTXp2LEjY8eOFXZKXpUDcrmccePGIZfLGT16NJaWlkRFRbFp0yZ8fX3x8vL6JJ2Aj48Pd+7cYf78+TmyQgcNGkTnzp3/trHszy7DuUEas4+Pzw9tHpWYmIijo+Mvda9yw8SJE1mzZg1lypQRWbs3b97kyZMnDB48WMkGmD59+t+e7x85JSGLaPXQoUPs27eP5ORkypcvj4uLyy/VDeratWvMmjWLMmXKYG1tzePHj/n48SPu7u4/ZGOUlpZGxYoViYuLo3jx4ly4cIEhQ4awZMkSqlSpQmJiInPnziVfvnzCYJHKNqTIp2KkVtF4gf/reCxlWUrRHGlBVlywFY+BnOUiUhbYhw8fgCzjzMTEhIiICGxsbHBxcaFs2bKsWbOGEydOEBQUhKWlJdHR0SQlJVGwYEFSUlKYM2eOKAOsWrUqMTExvHnzhoMHD1KqVClSUlKoXbs2AwYMoEOHDmzcuJHNmzfnev82bdpEfHw8o0aNyvHZ2rVrkcvlDBkyJNf/lcvlNGnShFOnTuW6aXr9+jUzZsxg+/bteT6/X2Eh/tQYX716xfr163n69Cna2to4OTnh4ODwy/CUpKamMnnyZJ7/P/bOOiyq9Xv7HxppROyuYwc2dgEiIKCgYCEWBiBigYGtWGCCqIAoIAgooqJiYXciNnahAkrnvH/wzv45h7A9er7nvi6uc5zY8+w9s/Zaz4r7vnOHLl26kJuby/Hjx9HT08PZ2fmXVKR27tyJpaUlenp63Lx5k6ysLA4fPsyDBw8YOHAgEydOpGfPnhIBi3icTGx7n9qvuFtRjE+5bgCJkctPuXQ+5dD5uw3Lysry6tUrdu7cyZ07d8jJyQFAXV0daWlpUlNTMTc3x9zcHDk5Ofr370+vXr2IiYkhLy+PN2/eoK6ujoqKCtevX8fc3JyEhASUlJQwMDBg165d9OjRAy8vL6SlpfH398fd3Z1nz54xceJEFixYQIMGDYpcu/z8fHr37k1YWFiRpEdaWhrGxsYcOHCgxCTzzp07efPmDRMnTiz2+TFjxuDk5ETDhg1L/P5+dxsubX15eXns2bOHkJAQMjIyaNSoEWPGjPklvutH4cKFC7i5uVGvXj1q165NfHw8r1+/Zvny5fz1118//fPz8/Np06YN6enpVK9enSNHjmBiYkJISAgdOnQgMzOTWbNmoaysLNiwWK33V/vghIQENm3axJs3b4THy5cvz/v376latSpjx46ladOm+Pr6EhERwe3bt2nQoAEfPnwgPT2dChUqkJOTw7Jly4QkYIsWLcjJyeHevXvs3LmTpk2bkpeXR+fOnRk4cCC2trasWrWqRAGkwMBAnj59iouLS5Hn/P39ef/+Pc7OzsW+VyQSoaenx969e4u18ZcvX+Ls7ExwcHCJ39/vbr9Q+hqfPHmCj48PN27cQFFRkQEDBmBmZvbNnHS/Gnl5ecyZM4fr16/TtWtXCgoKOHbsGF27dmXGjBm/ZHx37969GBsbY2hoyLVr10hNTSUmJobExERMTEyYOHEiXbt2Fez2n4qj37x5w8mTJzl+/Liggq6lpUVOTg6ZmZmYm5tjaGiIrKwsQ4YMoUOHDpw5c4b8/Hxev36Nmpoaqqqq3Lp1C3Nzc+7du4eioiKGhobs3r2bDh064Ovri4yMDMHBwbi5ufHkyROmT5/OtGnTiu2WFcfBxSU9MjIy6Nu3L3v37i1xWi0qKoq7d+8yZcqUYp93dHTExsamVMql392GS1tffn4++/btIygoiPT0dOrXr8/YsWOpX7/+P7Tar8fVq1eZOXMmtWrVEiZ+nj17hru7+zdRsX0tCgoK6NixI4mJidStW5fDhw+jr6/Prl276NatG4mJibi5uaGmpvaPxtHS0tLExMRw4sQJCR+sra1NUlISlStXZty4cdSuXZvw8HBCQ0O5ePEirVu3FoR8KlSoQH5+Ph4eHoLPbNKkCTIyMsTFxREYGEirVq0QiUR0794dAwMDnJycmD9/PiEhIcVev4iICK5fv868efOKPBcSEsL9+/eZNWtWide/T58+hIeHF5uYe/v2LXZ2doSHh5f6Hf7uNlwcxGsODw//pdO46enp9O/f/4+6VsVh1KhRVKpUiQULFkg87ubmxrNnz/D19f2q4313UvJPx+XLl3FzcyM4OFiCcPzZs2cMHz6coKCgX8KncO3aNUaPHs2lS5eoUqUKr169YtiwYTg6OtKyZUvs7OwwNjYWbsDiaq+YP+PTP3F1V4y/EwCL278VFBSEm7v4NZ8Sb3+KjIwM/Pz8ePjwIWPHjkVPT4+aNWty7tw57t+/T9WqVVm/fj13795FXl5eSHiEhIRgaWlZ7DkfPnwYRUVFOnbsyLhx4zh69CiZmZkcOnQINTU13Nzc2L17N/fv32fUqFFs3LiRcuXKkZycTGhoKC9fvqRWrVps27aN/fv3F7uhyc3NxdDQkJiYmGLX8Pr1a2bNmsXmzZtL/G6MjY2Jiooq8fk/wT7+hDV+K2xsbDAxMcHc3Fx4TCQS4eHhwYcPH4p10j8aIpGIOXPm4OHhIVRVc3NziY2NZdmyZcTExODn54eSkpJgv59uhj4d1S4tmBL/V0z4raCgICTTxd0cYp6cv9vw9evX2bp1K02aNGH48OG0b99e4ApUUlLi/fv3eHh4CPeDgoIC6taty/3794s957dv3wqBo0gkQl9fn8uXLzNz5kzs7OxITk6mdevWzJgxAzMzM/z9/fH09EQkEnH27FmOHDmCtLS0IIo2bdq0Yj/Hx8cHVVXVEmkUJk6ciLOzc4nd7Xv27OHVq1eljp/87vbxu6/ve3Dz5k2mT59OUFCQhGjAq1evGDJkCP7+/l80Pvi9iIuLY/To0Zw7d07wwT169MDT05OmTZtia2tLv379UFBQEDZEv9IHZ2VlERAQQHx8PGPGjEFfX5/atWtz8eJFQbBj48aNxMXFSfhgf3//EruUjx07hrR0ocqzs7Mz0dHRJCcnExMTQ9myZVm6dCkBAQHcv38fR0dHVq5cSeXKlfnw4QOhoaE8f/6c6tWrExoaSkRERLFBfX5+Pnp6ehw+fLjYAlFKSgoTJkwgMDCwxO/GyMiIvXv3lvj8n2Aff8IavxVjx46la9euWFtbC4+JRCK8vLx48uQJ7u7uv2QdCxcuZNmyZcjJySESicjMzOTIkSNs3LiR8PBw/Pz8UFZW/kfiaHFH2LZt22jQoAEjRowQOqoPHDiAoqIiHz58EHiCxT64cuXKPH/+vFjbef/+PYcOHaJXr14oKCjQvXt3rl69yuTJk5k0aRJpaWm0atWKCRMmYGtri6enJ97e3ohEIi5evMihQ4eAQiqQxMTEEjn7t23bRm5ubokc41OnTmXEiBE0atSo2OdjYmKIj48vUYMAfn/7+N3X9z24c+cOjo6OBAUFSVA2JSYmYm1tjY+PD7Vr1/7p67h79y6jRo3i1KlTVKlShdevX9OxY0d8fHxo2rQpgwYNwsLCQvDBvzqOzsjIYNu2bcTHxzNy5Ej69OlD3bp1uXLlCnFxcVSvXh1fX1+uXr0q4YO9vLwEAb2/48SJE+Tl5dG9e3dmz57Nrl27ePPmDTExMWhraws2e+/ePVxdXZk7dy41a9YkNTWV0NBQnj59StWqVdm1axfBwcHFThSKiw4HDx4sdmowOzsbKysrIiIiSvxuPueD4c+0EfGaS4pffhbS09MxNzf/o65VcVBXV+fSpUtFuqrv378vNJx9Db6JUzIpKYm4uDjKlCmDjo7OH62+uGTJEnx9fYsoIFarVo358+ezZs2ab+bl+hq0aNGCCxcuMGfOHBYuXMhff/2Fv78/Hz9+RF9fn8DAQOLj4wVF80qVKtG/f39BNER8A/27mt+n5Nti7hvxjVI8ZiLuiCtONSwtLY2EhAQCAgJQV1cnNjaW9u3bC6/5lCdw5MiRhIWFkZycTKNGjZCRkSl15KNXr17C/7948YKYmBjq169PSEgI48aNw97entDQUGbOnEm7du24ffs28fHxREZGMmLECFq3bk18fDw3btxg7969AoHxp5CTk0NZWVngEvk7ZGVlP6sS/y0Ktr8zRCIRN2/eJDk5mXr16n0RZ9/viuvXr6OqqiqRkIT/I9I2MzPj/fv3P12wSEpKigULFjBixAh69+5NYmIi6urqtGnTho0bN7Jr1y6h00pcee3ataswqiy210//xLb8qapnfn6+0MEhJydHQUEBCgoKwtjK3wMpGRkZbt68ydmzZ4URt/Xr10sk8D/lI7S2tub8+fPIyspSv379UjvetbW1hUThyZMnsbCwoEOHDqxbt47Ro0dToUIF7OzsWLp0KcOHDychIYG3b99ia2tLkyZNMDExoaCgQOikGTNmTLFKlrq6ugQGBpaYlJSTkxPuacUhOzv7j+n6/VIkJydz8+ZNFBUV0dHRKXU09nfHkiVL8PHxKfLdV6pUiWXLluHh4fFLiP2bNGnCmTNnWLx4MbNmzaJBgwYcPnyYqVOnYmJiwo4dO3j48CHp6elIS0tToUIF+vfvL4wr/iwfnJGRwePHj/H390dJSYmjR4/SuXNniXWLMWrUKMLCwnj//j0NGzb8rA/u3r278P8PHjzgyJEj1K1bl8DAQJycnLCzsyMwMJDp06ejq6vLrVu3iImJITg4GBsbG/r168edO3e4cuUKkZGREkkpMWRkZNDW1iY9Pb1YTlJZWdlS7ReQ4Oj7N0BMF/Tu3Tvq1q37R4u/3b17l4KCgiLfvZSUFOPHj2fgwIG8evXqm7kxvwazZs1i2LBh9O7dmzdv3lC2bFkhqbFjxw5WrFghIVLTqVMn+vTpI8SGP8OGobDgcfnyZS5evMiQIUPw8fGRGGv7lJ7E2tqaM2fOIC0tTcOGDalWrVqJ0x5aWlqCX7x06RLGxsb07NmT9evXM27cOMqWLYu9vT0rV65kxIgRvHjxgqSkJGxtbalXrx5mZmYAzJ49m8zMTOzt7YuNlcR+vSR8zob/jT74w4cP3LhxA3l5eXR0dP7o83N3d2fDhg1Fvvvy5cuzevVqli9fjpeX109fx19//cXJkydZuXIlU6ZMoUGDBpw4cYJx48Zhbm7Ozp07efbsGenp6cjIyFC2bFkGDBggTIX8rDg6NTWVEydOcOrUKeTk5Dh48KDEKPOnPnjMmDGEhYXx7t076tevj6ysbKk+uEuXLsL/37p1iyNHjlC/fn0CAgKYNm0aY8aMYevWrUyePJmePXty48YNzp49i5+fH8OHD8fExIT79+9z6dIlIiIiiuVflpKSolq1aiQlJRXL7SotLS1RgCkO/7Z98N/xH6fkt6FMmTKcOnWqSFLy1KlTKCoqfvXxvmonk5aWxtSpU3n79i0dOnTgw4cPuLi4YGNj88dxV0Hh+YhEohI5Gjp27MjChQt/2XrEohkbNmygQYMGqKqqEhERwaZNm7hw4QIXL15k4MCB9O3bl8zMTLy9vTEzM6NZs2bCMcQjJeIbqrgqlJOTI1SAsrKyJFTFCgoKhCDt0+O8evWKtWvXUqZMGUGQo1y5ciWuX0lJiWHDhn3TucvJyUn8gPPy8oRN3/HjxzE2NubKlSvcvXuXffv2CQbdqlUrAgIC2LlzJ9WqVaNt27bFXteSxofKlSvH27dvSU9PL7ZKcvXq1V/Cq/KrcOTIETZs2EDz5s2pWLEiPj4+FBQU4OnpSYUKFf7p5X01du7cWSpXoaWlJXv27PllQgnZ2dmYmpqyatUqnJ2dmTdvHseOHaNdu3acPXuW5s2bY2RkRNeuXTl06BDz5s2TUNWG/3OOf+e6EVd3s7OzhYBK/Lv+dFMlhnh868SJE/Tp04eDBw8KSdCSoKOjg46Ozleft6qqKklJScL4tTjws7OzY82aNcTGxiIjI4ONjQ3u7u4SQZy1tTWpqamMHj2anTt3Fjn227dvS+SThcIKbkhICHPmzCn2+fDw8D9erVKMjIwMXF1def78Obq6uqSnp+Pq6oq1tXWJXSy/M3Jycvj48WOJSZlWrVoxc+bMX7ae7OxsOnToQIUKFdDT00NDQ4Po6Gg2bdrEyZMnOXv2LFZWVvTp04fc3Fx8fHwwMDCgdevWwjF+pA9OTExk7dq1yMjI4OzszPjx40u9TysqKn5zLKaoqCghvJGXl4eWlhYDBw7kwIED1KhRg9u3b3P9+nX2798v3Ht0dHTw9/fnwIEDVKtWTSJhKoZYqKM4qKiokJWVxYcPH4q189u3b/+STtlfhZMnT7J69WqaNGlC5cqV2bJlC9nZ2Xh4eHyzUu8/iZ07d5Ya91lZWbF7927GjRv3S9aTlZWFubk5S5cuZcaMGbi4uBAYGEjHjh05ceIE7dq1o3v37nTv3p0jR44wZ84cgXtVjB9lw1DI1RYbG0vv3r3Zu3cvhoaGpfrg5s2bf5MgkdgHiwV7xImYsWPH4u7uTmxsLFJSUtja2jJnzhwJPz906FBevXqFra0tu3fvLrK+d+/efdYHh4aG0qJFi2Kf37lzZ4ldmH8asrOzmTRpEg8fPqRTp05kZmYyc+ZMBgwYwNixY/+4ZINIJOLVq1cl0r00btyYhISEX7ae7OxsWrVqJfiSihUrcuzYMXx8fDh8+DCnT5/GysoKAwMDADZt2kTPnj3R1dX9KXH069evWbduHbKystjb2zNx4sRSCyzy8vLFFue+BCoqKuTn5wt+OC8vD1VVVQYPHsyOHTto2bIlGRkZXLp0iejoaGG9rVq1ws/Pj1OnTlG1alV69+5d5NgpKSkldgKKVcDfvXtX7B4/ISHhj9wffg3+S0p+GyZNmsS4ceO4fPmy0LB27tw5fH19S9yTlYavSkra2tri6uoqkdnPz8/HycmJvLw8bGxsvnoB/yQyMzNLdbRSUlK/lNNn1apVzJ49GyjsXtLU1MTBwYEpU6Zw+/Ztpk+fTkREBDdv3mTdunUsXrwYJycnGjduLARRn6p/ARIVH3GQIm5Nz87OFgKvT98n5thYv369QMBb2nX6ETA1NSUgIICcnBw0NDSE1vpmzZrh7++PpqYmmpqaBAcHFzHmv/76C2NjY1avXl1kBOz27dvUrFmz1BvAxIkTcXJywtvbWyJ5+fHjR1xdXUutEP9pCAgIICoqSmKDePv2bWHj8Ke1kaemppYqBKClpcXdu3d/yVry8vJo3bq1wMFUo0YNhgwZQlBQEGPGjGHOnDlMmTKFBQsWoK2tjbm5OWpqakRERNC/f39ycnIEAv2/d2qIuzHE9iu2YXGHnHgMTazKJy8vz4ULFzh16hShoaE/XXSsefPmODs7U7t2beH7EAdUtWrVYuPGjfTo0QMZGZkiKuzm5uZMmDCBihUrcuPGDYkiC8DWrVtLdW49evRg5cqVXL16tQhnVUREBFpaWn90N/CnGD16NI6OjhJd5uJuU29v7xJHhH5XZGdnF5lS+Dt+pQ9ev369wItWt25dGjduTFxcHI6Ojty7dw83NzfCwsK4desWa9asYdGiRUyaNIlmzZr9cB8sJycnFCj37t370wVPLCws8PPzIyMjo4gP9vb25sCBA1SsWBE/P78iRb7mzZvTvXt31qxZUyQp+ejRI8qVK1dqN6+joyOOjo5s3rxZ4nXp6elMnTqVFStW/NiT/Qfh5eXF7t27Jbi77t+/z5AhQ4iIiPijhG2gsLj/OR9cEgXIj4ZIJKJ9+/YkJyfTt29fqlSpwpAhQwgMDGTo0KEcPnwYJycnFi1aRLly5TAxMUFLS4ugoCCGDRv2w2340qVLxMbGEhAQwNChQ3/qudevX5/bt29TUFCAhoaGkNSQl5enQYMG+Pr60rNnT3Jzc4sUHvv164eNjQ3169fn4sWLRYr7fn5+xXK2i6Grq8vy5cs5f/487dq1k3hu3759yMnJ/RLx0F+BsWPHMnLkSDw9PYXHRCIRbm5ueHp64uTk9M8t7huQn5//2Y6mX+mDt2zZwoQJEwBo2LAhbdu25dq1azg6OnL79m2WLl1KSEgIV65cwdfXlwULFjB58mRatmwpdOz+qDhaRkaGzZs3U69ePaKjo0ttyvkRsLS0ZMuWLaSlpVGjRg2hANK8eXNWr15NREQEVatWZcOGDUUm/9q2bUu7du1Yv359kaTkixcvUFRULFXIxcnJCQcHB7Zu3SrR9ZuZmcnkyZN/CQ3Wf/jzMGPGDGrXrs3q1asJCgoCCu3W39+/ROq+0vBV7NO6uroSCUkorCx4enoSGBgokDb/KShbtixPnjwpcTQoLi6OhIQEnJ2d2bBhAykpKT91PWPGjEFTUxMpKSkOHjzImzdvMDEx4ePHj0ybNg0fHx/Wrl3L5cuXOXbsGMrKyvTp04fTp08LHDnwfxl/cbfSp8GU+Eack5NDdnY2mZmZAg+H+AYtIyPDu3fvSE5OZsWKFT89IQmFN+OYmBh0dXVZtWoVGRkZFBQUYGBggLy8PFpaWigoKHD06FE8PDyYOXMmS5YsIT8/n6lTp7Js2TJev34tccxXr15hb29fRFX77zAyMqJjx44YGBiwceNGoqOjWbJkCaampsyZM+ePEoz4HDZs2FAkAGnYsCHjx48vVcznd4WOjg4nT54s9rn8/Hy2bNnCuXPncHV15fTp08WOVv0oyMrKsnTpUqBwFDI2NpaePXuipqZGYGAgcnJyXL9+nfr167Np0ybS0tLo1asXly9fFiqVYnyqsvupEuCndpyTk0NWVhZZWVlkZ2cLJPxinqubN2+ip6f30xOS4vVOmDCBxMREnjx5QmBgoBAI9urViwsXLpCeno6uri4bNmxg1apVDBs2jAcPHlChQgUaNWpEXl6ewHElPtdNmzahrq5eKp+RlJQU27dvZ/HixdjZ2REVFUVYWBhWVlYcPnwYDw+Pn37+vwpNmjSRSEhCYVePu7s7u3btIisr6x9a2bdBRUWFt2/fljgadO/ePR48eICzszNr164lKSnpp67HxsZG4JDev38/L1++xMzMjKysLEaNGsWaNWvYtGmTwMdWpkwZTExMiI2N/eE+ODk5mbdv37Js2bJfkqgyNTXlxIkTdO3aldWrV5OamkpBQQG9evVCUVERNTU18vPzOXPmDB4eHsyePZu5c+eSl5eHk5MTK1as4P379xLHfPv2LWPHji1WAOdT9OrVCwMDAwwMDNiwYQPR0dEsW7YMY2Njpk6dWqxA1p+KDRs2FNkc1qtXjylTprBp06Z/aFXfjpYtW5bogwsKCti8eTOXLl3CxcWF2NjYn+qDpaSkWLZsGVDY4XTkyBG6dOkiqKtmZ2dz9epVmjdvztatW4XppLi4OEHV90fa8O3bt+natetPT0iK1+vk5MTjx4958+YNfn5+wnr19PS4dOkS2dnZdO7cGS8vL1atWoWNjQ137txBU1OTdu3a8eHDBw4ePCgcUyQSERAQAFCqUJyUlBT+/v54eHgwevRo9uzZQ3h4OEOGDCEyMvJfVdivUaMGffv2lXhMSkqKefPmERMTQ3p6+j+0sm+DrKwsGRkZJY7fP3r0iPv37+Ps7Mzq1at59+7dT12PtbU1NWrUAODAgQM8efKEAQMGkJOTw8iRI1m+fDkBAQHExcURFRWFkpIS/fv3JyYm5ofH0SkpKbx584YlS5b89IQkgKGhIRcvXqR79+4sXryYjx8/IhKJ6NKlC8rKyigoKJCVlcW1a9fw9PRk7ty5uLi4kJubi729PatWreLjx48S8VRSUhIjR47E1dW11M/u3LkzFhYWGBgYsHbtWqKjo1m5ciV9+/Zl4sSJ39S9/Sfh7wWpX/H3b4GlpSWnT58mKSmJpKQkTp8+/U0JSfhKoZsHDx6UmKBZunSpMBbxJcjNzRWIav9JuLu7U7ly5SJBw6JFi9i2bRtDhgzB0tKSGzdusGnTJkaOHPnNF/tL8P79e5YtWyYEVn/99RfNmjVjz549DBw4kM2bNzN27Fj8/Pzo0KEDVlZWXL58meHDh5OWlkZmZqbQoi4OlrKzs4XqUHZ2NhkZGeTm5iIjI4O8vDxycnLIy8sjLy+PoqIiZcqU4d27d4Ki8Y9UPy0oKCA0NJQdO3YIVax+/foxbNgw0tPTsbW1JSoqCl1dXZo3b87Vq1cF3g9ZWVliY2Mljte5c2dOnDjBvXv36NKlC/r6+tSvX58HDx6QnJzMkiVLSg2mPkVmZib79u0jMTGRevXq0bNnzy+6cfwJ5L6fW2Nubi6mpqbs27fvi44n7hAQE07/U8jMzMTQ0JCoqCgJvrInT54wdOhQXr9+TUREBHl5eezcuZO4uDih8/ZnITo6mqVLl3LixAmqVKlCmTJl0NDQ4OrVq1y/fp20tDT69etHXl4eY8aM4ezZs8ycOZP8/HxSU1MlNjxi+xUHSrm5uWRlZZGZmYlIJEJeXh5ZWVnBfhUUFFBUVERdXZ01a9ZQvXp1wsLCfuj5PXnyhLVr1xIfH4+0tDSVK1fG3t6epk2bEh4ejoODA+/fv2fcuHE8ePCA3NxcDh48iJWVFXfv3uXKlSsSx4uNjaVz585MmDCBmJgYBg4ciIyMDGfOnKFbt264uLh8sQOPj4/nxIkTyMnJYWBg8MXjkL+7DYvXd/PmzSKdpmKsXr2aevXqYWho+EXH/F188OrVqylTpgxjxoyReHzlypVs3ryZ/v37M2zYMOLj49m4cSPW1tY/dZOfkpLCsmXLWLJkCQBt2rShevXq7Nu3j549exIZGcnEiRPx9vambdu2DB8+nJMnTzJmzJgf6oM/fvzI1KlTuXr1aoljkd+CgoICIiIiCAwMFDjyjI2NsbGxITs7m1GjRrFr1y7atGlDmzZtuHz5sjD+VqZMmSIJqObNm3Pt2jUSEhLQ1dWld+/eNGjQQOCQXbhwYZHu55KQlZXF/v37ef36NbVr16Z3795fxFn+u9svfH6N+fn5GBkZER0d/UXH+118cE5OjqCS+ykv7IsXLxgyZAjPnj0TBBTCwsK4cuUK/v7+P3WTf/jwYZYsWcLRo0epUKECqqqqlC1blkuXLnHx4kWkpKQwMjIiIyMDOzs7rl27hoODA4qKij/Uhrds2UK5cuW+OK76Ujx79oz169dz48YNZGRkKF++PBMnTqRly5ZERUUxYcIEXr9+zbhx43j8+DHZ2dkcPHiQwYMH8+TJE06dOiVxPLFYzpQpU9i1axdWVlbIyclx9uxZOnTowOzZs79YO+Du3bscP34cGRkZ9PX1v5h64Xe3YfH6xErKxcHHxwctLa1i+e2Lg5jH75/2wT4+PmRmZhYRIlq/fj3r16/H0NCQMWPGcOfOHTZu3IiZmRmjRo36aev5+PEjK1asYNGiRRQUFNCmTRuqVq3KwYMH6dChA4cOHcLJyUnozLexsWHfvn04OjqSmZn5w+Jo8bTcmTNn6NChww87P5FIRGRkJAEBAQLPpaGhIba2thQUFDB27FhCQ0Np06YNbdu25eLFi0Ahj2nZsmWL+OBatWqRkJDA06dPad++PV27dqVJkyY8fvyYV69eMW/ePFq1avVFa8vJyREKsjVq1EBfX/+Lf5+/uw0XB/Gao6KifrnQjbGx8R91rYrDxYsXKSgoKNIhf/78eWRkZEq8V5aEr7oTfm5EIy0t7bPH2LVrF5s2bUJeXp78/Hzk5ORwcnIqlofoV8DZ2RkbGxsSEhKws7OjQoUKrFixgvDwcAYOHMisWbOAwtEIU1NThg4dSu3atb/6Qn8ptLS0cHd3x8bGhjVr1uDn58fbt28xMDAgJCSEtWvXsmXLFho1asTUqVPR0dFBXV1duKFmZ2cLHUqfcmoAQku6rKys0B0qdoriyq74veLuyBs3bvywpGR+fj42Nja0aNGCbdu2oaqqSlZWFkFBQVhYWBASEsLu3btxdnZmzZo1DBgwAGdnZ+zt7cnPzyc9PZ0mTZpQp04d1NXVhWoZFJKt9uzZk0WLFvH8+XOGDh0qCBB8CUQiESdPniQiIoLU1FSOHTsm3DT+ZCGnL4VYSfZzePv2LYsXLyYuLg51dXWSk5Pp2LEj06ZNK1bE4GejTJkyLFq0CDMzM6ZMmULv3r3Jzs7GyMgIFRUV9u/fT926dYFCMamLFy8KDv9noU+fPujp6eHt7U1ISAgnT56kf//+PHjwgK1bt7Js2TKuXLlCr169OHDggMCnmpubi4KCgtBpIR4BK47rSkZGRqj+fgpZWVlhTEVTU5O4uDhhrOxH4MKFC8yePZuFCxfSpk0boHATMnPmTKytrenfvz9du3alXr16nD17Fg8PD0HhW1dXl4SEBNq3b0+jRo3YtWsXycnJ5OXlCfemkJAQoYrt6uoqIcjzObx9+5bIyEhOnz4NFHar2tnZCVX3fwPEnJ3F4Ut9cFRUFBs3bhT8gLS0NI6Ojl9cUPzRmDhxIqNHj+bp06dMmDCBSpUqsWHDBrZv346xsTELFixASkqK+vXrY2xsjK2tLbVr16Zjx44/ZT0aGhosXrwYGxsbVq9ejZ+fH/fu3aNPnz7s2bOH5ORkvLy8aNKkCRMnTqR169Y/3Qf/qKRkQUEBo0ePpl69emzduhU1NTVycnIICQmhf//+hIaGsnPnTmbNmsWSJUswNzfHycmJqVOn8u7dO2RlZWnSpAm1a9embNmy+Pv7c/36dQCUlZXp3LkzS5cu5dmzZwwePLhUoay/QyQScebMGSIiIvjw4QMKCgqkpaVhamr6j2/afwVkZGS+6DyTkpJYsmQJV69eRUNDg5SUFNq1a8f06dP/kc2NvLw8y5cvp3///kyePBkDAwPy8vLo27cvioqKREVFCYXhZs2acf36dUaPHs2uXbt+2pp69epFjx492LRpEyEhIRw7dozx48fz8OFDPD09CQgI4MqVK+jr63P48GHk5eUpU6aMkGD8UTasoaHBtWvXyMvL+2G/4atXrzJt2jQWLFjAkiVLkJKS4sGDB8yaNYt+/fphZWVFly5dqFu3LqdOnWL16tWCOEeHDh24f/8+bdu2pXHjxsTExPD8+XOhQCUtLc327dtRVFQkPz+f6dOnSwjyfA7v379nz549QvPA3bt3GTdu3C9Rbv5VKM0Hly1b9ot88IEDB1i/fr0grAKFflBPT++HrfNrMGrUKMaPH8/06dOxt7enatWq+Pn5sWnTJnr16sXy5csFH2xkZMTYsWOpVauWhNjLj4Samhrz58/HxsYGT09PfH19uXPnDn369CEiIoLXr1+zevVqmjVrxqhRo2jZsiXq6uqC/f6oOFq8p7lx48YPS0qKRCKBrsjX1xcNDQ1yc3MJCwvDzMyMnTt3EhgYSKNGjZg9ezbGxsYEBAQwa9YsEhISUFFRoXHjxtSuXZvy5cuzZcsWHj16BBTyyrZp04ZVq1bx5MkTypcv/9W2d+7cOSIiIkhJSUFOTo60tDTMzc3/aCGn//DzMGHCBKZNm1YkKfnixQvc3d05f/78Vx3vq3aq586dA+DOnTtER0dz9epV4YZ6+vRpmjZtWur7ly9fzunTpwkNDWX37t3C5sjLy6tUKfqfCVlZWQICAujQoQPOzs4YGxvj6enJ+vXri3AoiMcz16xZ89PX1bBhQ7y8vDh79qzQjp2bm8vatWuRkpISOGEiIiIE5TdFRUWBrB7+L8gV82SIAylx16GYc0Y8diIeUZGSkqJChQooKipy8+bNH3I+d+/eZfLkyVSqVInJkycLPGKKiorY2toycuRI3N3dgcIu1UaNGjFt2jTu3r3L9evXqV27NtOnT6dz587s3LmTFStW0LVrV1atWkVubi5Tp07F0dGRqlWr0r59+69OSE6YMIHY2Fg8PDyIiorCx8eHu3fvMmTIkM+qkv1pyMzM5NixYxw6dEgYhxTzfpWGxMREBg4cKIzah4WFcfjwYdq3b4+FhcU/NrYiVme+fPkypqamdOvWjXr16nHw4EEhISlGmzZtKFu2LPHx8T91TTIyMsJvql27dkRFRdGhQwehyFC5cmUqVqzIgwcPgMIgSUFBgTJlykhsXsSBk9iGxf8vJycnbH6ys7PJysoSqsDijVGNGjV4+PAhmZmZ330+WVlZxMTEMGbMGLy8vISEJBR2cwcHB+Pt7U1KSgrlypXD29ubixcvsnjxYiFpYWpqSrly5fDx8cHT05O1a9eiq6tLhw4dOHfuHImJiejo6NCqVSvatGnzVQnJuLg4Bg0aRMuWLdmzZw9RUVGYmJhgZ2fH0aNHv/v8fxecPXsWKOSgi46OFrrYoFBA43MdaevWrRPUk3fv3s2ePXvw9fXF39+f4ODgn77+4iAjI8OWLVvo0aMH06dPx8TEhCVLluDp6cmyZcskNhMyMjIsXbqUtWvX/vR11a9fn/Xr13P58mUyMjLQ0tJCSkpK4BIT85f+LB+spaWFqqrqD/PB9+/fZ/r06SgrK0sksOTl5Rk6dCiOjo7Mnz8fQBDCcHV15datW1y7do3atWvj4uJC27ZtCQsLY8WKFfTq1QsvLy+BRsXBwYEqVarQvn37r05ITp48mQMHDrBs2TKioqLYsmULT58+ZdCgQZ9V5/6TIBKJyMrK4vjx4xw6dEgYh3z58uVn+VWTkpKwtLTExMRE8MExMTF069aNAQMGkJqa+itOoQhat25NSEgIt27dwszMjO7du1OlShUOHDhQZFKlefPm1KxZs0jH/I+GtLQ0Y8eO5ciRI3Tt2hVvb2/at2/Prl27ePXqFRUqVKBKlSrcu3ePrKwswS5/pA1Xq1aNV69e8fHjx+8+n+zsbI4ePYqtrS3r1q2jffv2wr2xbt26BAYGEhAQIAjDbdq0ievXrzNv3jzBB/fp00co+qxevZpVq1bRrl07OnfuzJUrV7h//z66urro6OjQpk2br0pI3r17FwsLCxo1akRkZCR79+7FwsICBwcHDhw48N3n/7tA7IMfPnxIdHQ0Fy9eFHzwqVOnPjvmunnzZnbt2sX27duJjIxkz549glinv7//z15+sZCWlsbLywtDQ0NmzZqFiYkJbm5uLFu2jNWrVxdJ6C1ZsoT169f/9HXVrl2bNWvWcOPGDXJyclBTU0NOTk4QLhTvg3fu3ImOjg6ysrI/NI5WV1cXivs/AgkJCcyaNYu8vDxmzZoldJbLyclhZWXFzJkzBV2J6dOno6ury6xZs7h27ZqwD545cyYtW7YkLCyM5cuX06dPHzw9PSkoKGDq1KnY29tTqVIl2rdv/9UJSRcXFyIiIli8eDF79uzB39+fxMREBgwY8MdRA30tPi0+/aq/fwPi4+OLFUdt2bLlN+2zv2p8W1dXF01NTapXry60Bl+7do2hQ4eyd+9eQkJCSjzG8+fPmTRpEjt37izyZeTm5mJgYMD+/fu/aiP6M5CUlMSkSZMEHpXiYGRkxN69e3/ZmqpWrYqCgoKw4Y6Pj6d69er06dNHcJAbN26kfv36ZGRkkJycTHp6ulABEretf6ogKObQyMzMJC8vDwUFBTQ1NVFXV6ds2bIUFBQwatQo7t27VySx8zW4d+8ezs7OVK1alRMnTmBoaMjVq1dxcXGRqLKJuediYmKQlpYmMzOTunXr8vLlS6CwQ6tNmzZ4e3vj5uZGYmIiUVFRJCUlERAQwPjx4zE3N/+mNW7fvp0XL14Uyz3p7+/Po0ePcHBwQEtLq9j3/wkt6+I1Dh06lMTERHr27ImCggLHjh2jSpUqpKamMn78+CLVjk9hb2/PsGHDJBJSYoSFhfH48WNBJOKfxOTJkxk7dmyJHb779+/n0aNHApn2z8aOHTuwsrJi0qRJ+Pr6YmpqytatW4mOjmbw4MEkJyfTo0cPlixZQl5eHikpKaSkpAjBUU5OjrDZyc/PF3isxGNlYnV5VVVVwYYrVarElClTaNeunUA+/C0QiUSsWLGCmJgYqlevTmJiInJycmhra7Nq1SoJbrTw8HBevXrFxIkTAfD29hYUV/X09Dh48CBv377F2NiY8+fPCxuWsLAwnj17hq+v7zfx1xYUFNC7d2927NiBtra2xHOZmZkYGBiwefNmqlevXqJ/+d1tWLy+9u3bo6WlRZUqVWjevDlPnz7l8uXLDB06lN27d5da3EtMTGT06NHFqqvm5+djYGBAZGRkqWTovwIZGRkMHz68WCV2MX61D65Tpw75+fm0bt2a3bt3C9ywpqamHDt2jPz8fLy8vGjcuPEP88EKCgpYW1sTFxdH48aNv3ntCQkJODk5UaFCBc6ePYuBgQFXr15lypQpgoIpFNq6vr6+IEyRnZ1Nw4YNhS6M2NhYunTpgr+/Py4uLgI1RkZGBlu3bmXEiBFYWVl90xrDw8OJi4vDzc2tyHOhoaFcvnyZqVOnllg4+93tF/5vjUOGDOHNmzf07NkTJSUljh8/Tvny5cnPz2fw4MF07dq1xGNMmzYNIyOjItzuUCgocuXKFWFT+09i5syZWFhYlNjhe+zYMS5fvvzL4gVxkcrR0ZGAgADatWtHdHQ0x44dY8CAASQlJWFgYMCCBQvIz8//ITasqanJihUrqF+//nd1hYpEItauXUtUVBS1a9fm2bNnKCsro66ujqenp8SEyv79+4mPjxeuq7+/PyNGjAD+j+ooKSkJY2Njzpw5g4mJCdOmTWPXrl08ePAAX1/fUjsBS1ujvr4+W7duLaJMnJ2djb6+Pl5eXtSqVatEUZXf3YbF62vTpg0VK1akQoUKtGzZkhcvXnD+/HmGDh1KWFgYUVFRJR4jOTmZwYMHs3fv3iLTKwUFBRgaGhIaGvqPn39+fj5mZmbs2bOnxNf8ah/cqFEjPn78SJcuXQgJCeHSpUs0a9YMCwsLDhw4QG5uLt7e3jRv3pycnJwfEkc/e/aMpUuXcunSpS8efy4Oz549w9HREU1NTS5fvoyenh6XL1/G0dERExMTidf26dOHXbt2CdNTzZo1486dOwAcPHgQPT09goODmTp1Ki9evCAkJISCggL8/f0ZNGjQNwsO79+/nxMnTgi8+J8iKiqKI0eOMHPmTMqVK1diQu13t+HiIF7zvn37fvn4dt++ff+oa1UctLS02Lt3b5FO4jNnztC3b1+Sk5O/6nhfNU+QkpKCiooKw4cPp23btmRlZbF161YmT5782Y2vv78/NWvWxNjYWCCPNjU1xcbGBnl5eczNzdm/fz9mZmZfdQI/GtLS0p/tjPuZRN3FoWLFity7d09IQPbt25fKlSszbNgwdu/eTe/evZk2bRpr166lSpUqqKioCDdfaWlpFBUVkZGREfhvpKSkhBHPjIwMYVQlJycHkUiEoqIiO3bsEEZAvhWvXr3Czs6O7du3U7lyZYyNjVm+fDkZGRkMGTIEJSUl4Ycs7s5MS0tDTU1N4K6KjIykUaNGQiKsefPmJCYmAoV8oKNGjSIyMvK7bibBwcFFNsAikQhvb2927tzJnTt3ePjwIe/fv8fBwYE+ffp882f90xCPL9vY2KChoUGvXr2wt7cnOTm51IRkXl4e165do6CgADc3N6SkpKhUqRIODg40a9YMMzMzDA0Nf4ukpLS0dInCGVB4Lr9yJF9cDd22bRtKSkoEBATw7NkzqlatytWrV7l8+TL9+/dn3bp1jB8/HmVlZXJycgShCXl5eaSlpYUNkTiYLSgoICsrS+CFk5eXJy8vD2lpad69e0dCQgIbN278rrUvWbJEGP1at24df/31F3p6ehw5ckQIwsUBio6OjoSozNixYylfvjyPHz8WOAC1tbWFxEJYWBj16tVj2LBhxVbavhTHjx+na9euRRKSCQkJzJ07l7S0NEaPHk2ZMmWoV68e8+fPl+A++5OQmpqKkpISw4YNQ1dXl+zsbIKCgnB2dmbLli2lvnf79u3UqVNHCILFHHa2trYoKipiZWXF7t27sba2/hWnUiI+Z79AieJ0PwuVK1fm2rVrnD17FhkZGUxNTalSpQrW1taEhITQt29fZsyYwZo1a6hRo8YP8cGRkZHCmOW34u3bt4waNQp/f3+qV68u+ODs7GyGDh2KoqIi3bp1AxA6u5KSkqhQoYJQtNq1axf16tUTEmEtWrQQROXc3d0ZO3Ys4eHhn+3yKw0BAQFs27ZN4jGRSMSWLVsIDg7m9u3bvHjxgnfv3jF+/PgiG7k/CRcvXsTW1pZRo0ZRtmxZ9PT0cHR05Pnz56Xer0UiEadPnyYrK4slS5YgIyODtrY29vb26Ojo0KdPH1avXv0Lz6Rk/G4+WLzpCwsLQ15engMHDtCtWzeqVKnChQsXuHv3LsbGxmhqajJp0iQUFRW/24Y/fvxIfHx8sZv8r4GHhwdpaWkcOnSIzZs3Y2hoSL9+/Th58iTW1tbs3r1biAl0dHQkEqDDhw+nbNmy3L9/n8GDBwOFI8aVK1cGYM+ePTRo0ICBAwcWW2z+Upw7d45WrVoVSUg+ffqUOXPmCD5YTU2NmjVrsmDBghKL/L87MjMz+fDhA87OznTp0oXc3Fx27NjBlClTPjtFt2PHDurVq4epqSkikYi8vDwMDQ0ZOXIkSkpKQjFu5MiRv+hsioeUlNRnfeyv3gdXqVKFJ0+eEBsbi7y8PAMGDKBq1apYWFiwbds2zMzMmDFjBmvXrqVu3bo/JI6+evUqzZo1+66EZHJyMsOHD2fz5s3Url0bY2Njli1bRk5ODra2tigoKKCvry+8vk6dOrx584YaNWogJydHTEwMERER1KhRQxjv19HR4cWLFwAsW7YMOzu7705m+/r6Fut/tm7dSkBAAHfu3OH9+/ckJiYyZsyYL+ZN/VPwq7sX/y2dkr1798bFxYXIyEihqSQlJQVXV9ciKvBfgq8a3163bp0wam1iYoK1tTUKCgpcvHixVNXA3NxcQVxi586dREVFsWvXLmRlZbGwsCArK4u6desKRvaliIuLw8nJif79++Pg4MC1a9e+6v3FQczRU9Io6u3bt6latep3f87XICwsDHNzc16+fElubi737t0jLS0NCwsLVFVVCQ8PR1tbm+HDhxMbG4uKigpqampC+7pYVVDMtSH+E5NzixOx2dnZ5OfnIy8vz+XLl9HV1f2uda9du5b58+cLAZA4aFNSUmLTpk2CmA8UbrYfPnzIlStXyM7OBgpb952cnCRu2H/99ZfA55mSksLw4cO/u7ohLS1dpDto6tSpZGRkcOjQIbp06YK3tzdhYWGEhYV9V+fZP43Tp09TrVo1xowZg7GxMevXr8fDw4Pu3bsLZMrF4cCBAwLv6v79+9m3bx/Tpk1j3rx57NmzR+By+RpkZmaydetWrKysGDhwIBs3bvwiPp7PwdDQsNQuq/DwcInf1M+Gvr4+QUFBqKioCJv5Y8eOoa+vT40aNTA3N2fNmjUEBgbi5OREdnY26urqKCoqCo5SPJbyKZG+oqIiCgoKyMnJCeMnOTk5SEtLC91N38OD8+HDB86cOcPUqVORkpKiXLlyPH/+HICePXvSoEEDgb8RCkeXPnz4QEJCAlDodM3NzZk8ebJEwnDgwIFAYVDbunXr70pIAty8ebPIverRo0eMGjWKOXPmEBoaSosWLYiOjmbgwIFYWFj8Y2OO34vly5fj6+vLvn37MDExYdCgQRQUFHDlyhX8/PxKfF9eXh6bNm2iTJkyhISEEBUVxe7du1FVVWXAgAFkZGR8kw++ffs2U6ZMwdzcnAkTJnDp0qXvPUWhQ+DDhw/FPv/o0aMiCeifjeDgYAYNGsTLly/JyckRhNQGDRqEiooKoaGhVKtWjREjRhATE/NDfPClS5e+2wd7e3vj6uoq0JmIu0YUFBTYvHkzK1asEF6blpbGnTt3uHHjhjCqVaNGDSZNmiShNlurVi3hvvL69WtGjBjxXQlJKNwY/n1DNXv2bBITEzlw4AD6+vp4enoSERFBdHR0qb/13x1nz57lr7/+Yty4cRgbG+Ph4cHixYsxNTUtIkDyKU6cOMHDhw+xtbUlOjqavXv3MmvWLNzd3QkNDRUoQL4G2dnZBAYGYmVlhaWlJevXr/8ho8aGhoalCqzt3LnzlxZ3u3TpQmhoKAoKCrx58wYo7Pzt3r07derUwdDQEC8vL3bu3MmUKVNIT0//bht++vQpwHfZcHp6OocOHWL27NlFfHDnzp1p06YNR44cEV5/+vRp0tLSuH//PlDog01MTHB2dqZixYrC6ywsLIT/b968+XclJKF4H/zs2TNsbGyYMWMGkZGRNG7cmP3792NjY4OlpSUpKSnf9Zn/FObNm0dgYCBHjhzBxMQECwsLMjIyuHbtGtu3by/xfQUFBXh7eyMjI0NQUBBRUVHs2bMHbW1tzM3NSU1NlZgO+1Lcu3ePadOm0b9/f8aPH8+5c+e+O2EoLS2NvLx8iUrbL168+OXdXQEBAQwfPpxXr16RlZVFQkICL168wNraGmVlZYKDg6lTpw7Dhw9n//79KCkpfXccLaYz+B5s2bIFJycnYZRaTMUmLy8vUBmJkZGRQVxcHHFxcWRkZACFk5IODg7069dPeF3VqlWFIuGTJ08YNWrUd38fOTk5RQoFixYtEmgK+vXrx+LFi4mMjOTEiRNs2LDhuz7vd8N/49vfhpUrV/Ls2TNq1KhB9+7d6d69O7Vq1eL169esXLnyq4/3VUnJVq1aUbt2bdzd3YXE4ogRI6hZs6agcFUcNmzYQKtWrWjVqpXAUaKgoICtrS1DhgzBw8OD27dvf5UggZubG6tWrWLEiBEEBwdjZ2eHt7c3U6dO/e4b8vjx43F2di5SKcrIyGD69OlMmjTpu47/tahZsyb+/v4cOHBAuPFcunRJaNOuUqUKZ8+exdzcHBcXF44ePYqqqioqKirIyckJBNZycnIC34aSkhLKysqoqamhoqIiEPuKyfqTk5MpX778d6376tWrEmIEurq6QgClpaWFnJwcb9++ZcqUKRgZGQGFQZWhoSFLly4t9nssW7asMFr/tUmwkiCubItx584dkpKScHZ2RlZWlo8fP6KoqIiysjI+Pj74+fkJidM/DbKysoKgQVRUFOvXr6dZs2YMGzasxERebm4uK1asoEGDBhK8sfXr12fHjh2sWbOGpKQkcnNzv3gdjx49om/fvuTn5+Pt7c2WLVtQU1PD2Nj4u/lbunfvzvnz5wUepU9x8OBBZGRkqFWr1nd9xtdASkoKKysrbt68KaEaPGLECIEE2N7eniNHjpCQkMDEiRMpKChAQ0ND6M4Qk3WLCfnFf+KN06eBl5ycHBkZGSgrK39Xwv7AgQMSlAjGxsaEhoYKtiL+zVy4cAEDAwMWL15M1apVWbx4MYaGhty9e7fY4w4dOlRITP6IUWF1dXVhoynGvHnz2LhxI3Xr1iUxMVHojOzYsSMTJkz47g7Sfwq6urrUqFGDxYsXC4nFUaNGUa1aNeTl5Uvc6Pn6+tK8eXNat24tXHMxl6CdnR1Lly79ah+8ZMkSFi9ezODBg9mxYwcODg5s3boVe3v77/bBDg4OODk5Fem2ysrKwtnZmcmTJ3/X8b8WVatWZdOmTRw5ckQYb7xx4wbW1taIRCIqVKjA6dOnGTx4MG5ubkRHR/8WPvjMmTMSNCndu3cXlIDV1NQoW7YsL1++xNXVFSMjIzIzM7l48SJGRkbMnz+/2G4ZdXV1oavxazjnSsPfffCjR4949OgRrq6uyMnJkZycjJKSEkpKSqxfv54dO3b8YxzG3wsZGRn69esnFAe8vb3R0dFh2LBhJQqw5efn4+bmRoMGDSQ46+rUqUNgYCBbtmzh3bt3XxWXPH/+HENDQ9LT0/Hy8sLf3x9tbW369evH1atXv+sc27dvT3x8fLGFzmPHjpGRkUGDBg2+6zO+BlJSUlhYWHDjxg0J1WA7OztOnDgBwJgxYzh+/DgPHz5k4sSJ5OXlfZcNZ2VlIS0t/U3j0GIcOXJEmC6DwtHO3bt3C3Yp9sFXr17F0NCQOXPmUL16dVasWIGBgUGJfLSWlpZCN97P8sELFy5k9erVNGjQQMIHt23blqlTp/4SXuCfgR49elC1alXmz59PVFQUkZGR2NnZUblyZbS0tITC898RGBhIgwYNaN26tTByLycnx6BBg5g6dSrz58/n9u3bX8WH7+HhgZubG5aWlgQHB+Pk5ERoaCh2dnbfPU0wadIkJk2aVGRyMCcnBycnJ5ycnL7r+F8LMRfqiRMnqFChAlDI62loaEhBQQFaWlrExsYyatQo3Nzc2L17N8rKyt8VR6elpX23Dz527BiGhobCv/X19YVuZiUlJapVq8ajR49wc3Ojb9++JCUlcfPmTczMzJg1a1ax36OysjKBgYHCMX4ExAVLMV6+fMm1a9eYP3++kKBWVVVFUVERT09P9u3bV2Lh+E/Ef0nJb0OVKlW4ceMGy5Yto1GjRrRq1YrVq1dz8+ZNqlWr9tXH+zGSrBQGuCUFRPv27WPVqlVs2LChyGalf//+HDp0iD179kjwG5WGiIgI8vLy8PX1pVmzZsjLy9OoUSO8vb3R1NQsMgb0tTAyMqJt27b06dMHf39/jh8/zpo1a+jbty+TJk0qQtz9q6Cvr8+lS5cE575r1y6hmqKsrExAQACjR49m3rx5xMXFoaGhIQRU4o2O+GYsDvBVVVXR0NBAVVUVZWVlFBUVkZWVJT09/bsrL2IScDEcHBxYsmSJ0NGqrq7OxIkTqVWrFikpKVSpUoWgoCDOnDmDi4sLCgoKlC1blo4dO+Ll5SV0NzVs2JC4uDiJCvH3oHnz5hIKUdu2bcPOzg4odHrly5cXquXiDcW/ibgbQFNTs8RN3t69e+nfvz8tWrQQAngx5OTksLW1ZerUqRKOtzSIRCLs7Ozw9/fH1tYWdXV1VFRUsLKyIjQ0FHt7+69KcP4dUlJSBAQEMHfuXBwcHIiJiWH//v2MGDGCHTt2/BKC7uKgqqrK1q1bhaJGbm4u4eHhwvPdunXj+PHjvH37VlCeVldXF6q4Yhv+dEOkoqKCuro6GhoaKCsro6SkRJkyZcjMzPzu7qWMjAyJMWcVFRXMzc1xdHQkOzsbDQ0Nnj17hpubGy1btqR8+fJcvHiRnTt3cvjwYRo2bIi6ujpVqlRh7NixEjYmJuH/EWqT4g2+2LdkZmby/v176tWrB4Cfn58E152xsTGHDx/+7s/9J1BaIKOhoVFiYXDXrl14eHiwadOmIkFu3759OXXqFKGhoV88Frt//37evn3Ltm3baNmyJfLy8vz111+sXbuW2rVr4+Pj8+UnVQx69+5Nz549MTAwwNfXl+PHj7N+/XoMDQ0ZM2bMZ8UEfhZ69OjBpUuXhE7Nffv2CYlgRUVFNm3axMSJE1m8eDGXL1/+Zh+soKBAamrqD/fB48aNY/Xq1UKySENDgylTplChQgU+fPhAzZo1CQ4O5vTp07i5uaGoqIimpiYdOnRg3bp1wiakTp06xMfHS3RKfw/atWvH8ePHhX8HBgYyZswYoDB5Jr5eUNjFY2lpWSp325+I0nxwTEwMhoaGdOrUiZiYGInnZGVlsbOzY9q0aV+lhmtnZ4ePjw9jxoxBQ0MDJSUlLC0tiYiIEDr2vxVSUlL4+/uzbNkyJkyYwKFDh4iOjmbUqFEljgn+CogLyy4uLkBhsvfTYmzHjh2JjY0lKSkJJycn5OTkvtmGxcIc37P5/LsPVlRUZOjQoYwbN47MzEw0NTV5+fIl06dPp02bNmhqanLt2jVCQkI4fvw4zZs3R1VVlcqVKzNq1CgJe129ejVXr16V6MD6VvTt25fw8HDBB+fl5fHkyROhiO3r6yvhg/X09Dh58uR3f+4/gb9zQX4KDQ0NYU/2d4SEhLBmzRr8/f2LFNt69OjBtWvXCAgIYMCAAV+0jqNHj3L//n2CgoJo3bo18vLy1KtXj1WrVtGyZcvvFmTt0qUL/fr1w8DAgE2bNnH8+HG8vb0xMDBgyJAhtG3b9ruO/63o1KkTFy9eFCbwzp8/L1B6KSgosH79eqZOncqSJUs4e/Ysqqqq3xxHZ2RkfHccLSMjI0FVMWrUKDZv3syZM2eAwvv+7NmzUVNT4+PHj9SrV4/g4GBOnjzJokWLBJ7atm3bsnr1aoGjr2rVqty5c4fLly9/1/rE6NKli8S+Njg4WChcJCYmCo0SUHh/Hzx48D8mUPwz8F9S8tuhrKxMp06dMDY2pkuXLmhoaBAdHV0qJ21J+Kqk5L1794p9PD8/nxcvXpQoUqCgoECVKlXo27cvdnZ2Ei3hz5494+7duzg7O3+x5Lyvry8zZswo9rnJkycLFYTvga2tLeHh4cjKynLlyhWqV6/OoUOH6NGjx3cf+3tQr149HB0dkZOTw8vLS6JKIiUlxYYNG9DT08PV1ZWcnByJm6z4JqyoqCgEU+IbsqamJpqamqipqQkbj7/zw0BhQuny5cuEh4d/dkygTJkygrOAwi7H4OBg1q9fj7GxMXv27OHixYvMmzePGzdusGvXLuLj44XRMUVFRQYOHIiKigr29vZ06NABGxsbzM3N+fjx4xfxwokJyUuDk5MTrq6uwshrYmIi1atX582bN9jZ2eHq6irxerHgx5+IkvhSjx07ViJvyoMHD2jRogWzZ89mwYIFHDhwQCL4fPHiBSdOnGDs2LFftIaTJ0/Stm3bYivC2tramJqafveGs1y5cuzatQtbW1vi4+MF1Ts/P78f1t3zLZCSkmLOnDmUK1eOVq1aFen4atiwIVFRUVy7dg0/Pz80NDRQV1cX7FY8Mia23TJlygidGmL7VVZW5s2bN8XaLxSOZe/du5fIyEjevn1b4lpbtWrFsWPHJB4bM2YMXbp0wdjYGCsrK06dOsWTJ09YuXIlJ06cICYmho8fP5Kbm4tIJKJSpUqYmZkRHR1N+/btGTp0KObm5ixdupS6det+1jGLlWpLq/pramrSsWNHFixYQEFBAR8/fqR8+fKIRCL8/PyQkZGRED2SkZH5Yl/zu+HWrVvFPl5QUCAUUIqDnJwclSpVEjpkPr1/vXjxggcPHjBmzJgSRQj+Dh8fnxIFNSZOnMjOnTu/u1ty8ODB7N69G0VFRa5cuUKlSpU4cODAFxcvfxZq1aoldNGvXr0aTU1N4TkpqUJ17n79+jF79mzS09O/yQenpaWRk5NTog1fvXqV8PBwTp8+XaptqKmpCeOe4n+HhISwZcsWjI2N2blzJ2fOnBGKhbt27SIuLk7wwQoKClhYWKChoYGTkxPt2rVjxIgRmJmZ8fbt2y/qAhOPtJYGe3t7FixYIIydin3wu3fvGDlyJDNnzpR4/Z/sg0squJXmg+/fv0+LFi2YPn06K1euJCoqSvje8/PzefnyJceOHcPBweGL1nDx4kUaNmxInTp1ijynqamJtbV1qePXXwIxXZOdnR23b9/mwYMHTJs2jW3btv1SQYG/Q0pKCldXVypWrEizZs2KCBzWrVuXvXv3cvv2bbZt21YkWfGlNvz+/fsS7Tc1NZV9+/axe/fuIh2Gn0JHR0ciWQ+F3ZGGhoaYmppibm7OxYsXef78OUuXLuX06dMcOnSIDx8+CHRJFStWZMCAARw5coROnTphbW1N//79mTdv3hf74MzMzFLvMyoqKhgYGDBz5kyBY7Ns2bKIRCKCg4NJT0+XED36FqqB3wUlJYFEIhHx8fEl0ntJS0tToUIFbG1thTFkMV69ekVCQgIDBw78YtsQi34W9/2NHj1a4h7xrbCwsCAqKgo1NTWuXLmClpYW0dHR/zinb7Vq1Zg+fToyMjK4u7tLUBMALF26lEGDBuHi4kJKSso3xdEikYi0tLQSbfjGjRuEh4dz8uTJUq9zuXLlBEojKEzghIaGEhQURN++fdm+fTsnTpxg5cqVXLlyhYiICG7cuCEUmBUVFTEzM6N8+fJMnTqVNm3aYGtri6mpKc+fPy9R/O1TiIW6SoOdnR0rV64UFJPFPjg5ORkbG5tifXBp+4c/Df8lJb8NCQkJNG/enCZNmtC3b19MTU0xMzMT/r4WX5WUbNOmDU+fPi1igOIAt6SLnJWVhUgkYuzYsVhaWjJ27FiMjIzo06cPs2fPplq1al/cZQWFP56SqhfiMdvPidV8CVRUVBgyZAiTJ0/G1NT0t9nIzp07l/T0dKGT4FPIysqybds2ZGRkCA0NFW604oqQoqKicGMW35z//pi4qvP3it/ly5fR19cnNDRUCKp69+5NbGxssescM2YMCxculHisfPnybNq0CSMjI6pUqcKjR48kbmwWFhbCWHZqaipbtmwhNzeXNWvWoKCgwK1bt7h79y6dOnUSlBKLw5kzZxgwYADm5uZYWVlhYGBQ4mhUpUqV8PX1Zfr06QwePJgnT54wbNgwxo4di4eHB/Xr15d4/bVr175LAOifxKpVqwBJoYjU1FT8/PwYNGhQse8pV64cz549Q0NDg7CwMM6fP4+enh7GxsYYGhpy//59Ro4c+cVB5oULF+jVq1eJz/fq1Uuiq+570KJFCxwdHZk4cWKxG7B/Apqamrx69YqLFy8WCaagsBI8d+5cAgICyMvLQ1lZGRUVFYkA6tPgSk5OTgiqlJSUkJeXR0pKiszMTInEUH5+Pi4uLgwdOpSnT5/y5s0bxo0bx/jx44UkxKdo1qwZT548ERIFYgwYMICIiAgyMzNRV1fn9u3bwkZbQ0NDItF6//59AgMDGT9+PKNHj+bixYukpKSwatUq2rZtW+KoflZWFgsXLqRXr14MGzaMPn36MH78+BI5D6dNm0b58uXp3bs3K1asEDg7nz9/zrp16yRem5GR8ctJ2n8UdHV1efjwYREfHBgYSK9evUoUjxBvUG1sbLCxsWH8+PH07dsXQ0NDpk+fTtWqVb+KuDwvL08iGfcpxOrsP4IfVllZGWtrayZPnoy5ufkPo+z4XkyfPp2MjIxik0AyMjL4+fmhoqJCcHDwd/ngv3e+Xr9+HQMDA7Zv305qaiqHDh2id+/eJXb+jhs3jvnz50v83rW0tPD29sbCwoLKlSvz+vVricRIv379hA7NtLQ0/Pz8SE9PZ+3ataipqXHz5k0ePnxIt27dmD17domx1oULF7C0tMTMzAxra2v09fUJDAws1va0tbUJCAhgzpw5WFlZ8eDBA0aPHo2trS1Lly6lSZMmEq+/du2a0An9p2HevHmApA/OyMjA29tbgt7jU2hra/Ps2TNUVVUJCwvj+vXr6OvrY2xsTJ8+fQRqkC8tuF24cKHUrsof6YObNm2Ko6Mj9vb2RWKpfwoqKio8e/aMq1evFptEatu2LYsWLWLDhg2kp6d/kw1LSUkV8TVioUArKyseP37Mu3fvcHBwYMyYMcV22NWvX5/k5GQhUSBGv3792L17N1lZWaioqHD79m2h+K6mpsa0adOE1yYkJBAQEMDIkSMZN24cV65cISkpifXr19OqVasSufhzcnJYunQpvXv3Zvjw4UKX+pMnT4p9vaOjI3Xr1kVPT48FCxZw9uxZDAwMuH37dpHOebGS+Z+IHj16cOfOnSI+ODw8HF1d3RJ9lFg0adCgQYwbN07g6jU0NGTy5MlUqlSJIUOGfPE6MjIyhDHmv0NGRoYaNWqUyAn5NShTpgwDBw5k8uTJWFhY/DbJZAcHBzIzMyV+62JIS0uzadMmtLW18ff3R0VF5avjaDFP7N99cHx8PIaGhvj6+pKamsqxY8fQ09Nj//79xa5z/PjxzJs3T+I+oKGhwbp167CxsaFixYokJSVJJKkNDQ2FvUFaWhrbtm3j/fv3rF27Fi0tLa5fv86jR4/o1asX06ZNK7Hx5sqVKwwaNAgTExMGDx6Mnp4efn5+xfpgTU1Ntm/fzqJFi7C0tOTOnTtMmDCBoUOHMnfuXFq2bCnx+j95H/wffhwcHR2pVasWb968QUlJibi4OGJjY2ndunWRgtqX4KvUt1VUVHB1deXy5cvcuXOHiIgIjh8/TlpaWqlCN61bt+bkyZN06dKFnj17SgRDly5dYtu2bV+VNf5cwlHM5fJvRmkJ0rJly2JhYUFgYCADBgwQRkjENyIx501BQQH5+fmIRCKB9FdBQQEtLS3at2/P/Pnz6devH7Kysty/fx9XV1dCQkIkNqPp6elYWVmhqqoqIVjx8uVLIfFSvXp1mjRpQn5+PhUqVKBKlSq8fPmSGjVqCNxFWlpaglOXkZHh6NGjREZGcvPmTU6fPs2xY8fQ1tZGXl4eNzc3Hj58iJubG0eOHGHFihXCGD9AVFQU27dvx8vLSxizy8jIYNGiRdy7d49Zs2YVuWY1a9YkNDSUV69ecf36dZYtW0ZERESR31FKSgqxsbHFHuNPQFBQEOnp6Xh6emJiYoKZmRkBAQEsWbKkRG4ScWLXysoKdXV13NzcJJ63tLRk2LBhX7yGMmXKlEqm//Hjx3+0m/FXQEwHUBKGDRsm8CI6OjpK2CogJOMLCgooKChARkZGUAiVl5cXuKdCQkKEZPOUKVNo0aIFS5YsET5nzJgxREdHM3LkSIkO8/z8fE6fPk3jxo3p1KkT1apVo3r16qSkpNC7d2+OHDmCm5ubwM+lqKiIqakpXl5eQmLyxIkTzJ8/Hzk5OVxcXJCRkaFq1aqkp6dz8OBBxo8fT5s2bXB3d8fCwkKoSGdnZzNw4ECGDx/OzJkzBd9w/fp1hg4dKigJfwopKSns7OwYPXo0cXFxvHnzBmtr62K76jZt2oSlpeVXfV+/C1RUVHBxceHevXtcv36dsLAwTp8+zdu3b0sV/+jYsSOHDh1CX1+frl270rVrV+G5uLg41qxZ89nf5Kf4nA/OyMj4bRKIPwul+WB1dXWsrKzYuHEjgwYNomzZsl/tg7t168bChQuFQt3jx4+ZMmUKwcHBEt0RmZmZDB48GBUVFdq3by88/vr1a548ecKdO3eoVq0aTZs2RSQSoaWlRc2aNUlISKB+/fpcuXIFKIwbQkND6dKlCzIyMsTGxrJ3714uXrzI+fPnOXnyJOXKlUNBQQFXV1devXrFkiVLOHr0KKtWraJFixbChvXQoUN4e3vj5eUlbJyzsrJYtmwZs2bNYtGiRUWuWdWqVQkODubNmzfExcUxb948Dhw4UOR3mZqaSnR09C/nFf1R2LNnD3JycqxatYrevXsL9zQ3N7cSx/WNjY0xMzMTRIVmzZolEYMMHTqUESNGfPEaypQpU6rY138+GIYMGcKsWbNYt26dQCf0NTbcu3dvIiIi8Pf3F76bmTNnUrNmTSExDYXjnEePHhX4IcX+rqCggLNnz9KwYUO6d+9O1apVqVmzJsnJyfTs2ZPY2Fhmz54tjFjKy8vTt29fNm3ahJaWFpMmTeL48ePMnz8fJSUlZs+ejbS0NNWqVePDhw8cPHgQe3t72rVrx6JFi7CysqJKlSpAYTevlZUVFhYWHDp0SIiDb926xYgRI9i0aVOxRV5bW1tsbGy4desWKSkp9OnTR4KXWgx/f/9v6qL5HaCsrIyLiwsvX77kwoULhISEcOnSJZ48eVIqdVjPnj3Zu3cv/fr1o2PHjhJ8+w8ePGDBggVfZXOf88FpaWlfPPnwp6I0H6ysrMyQIUNYtWoVQ4YMoUKFCl8VR2tpadGhQweWLFnC4MGDKVOmDC9evMDe3p6goCCJhHB2djbDhg1DRUVFEKCBwm7D+/fv8+zZM6pWrUrTpk2RlpZGTU2Nv/76i1u3btG8eXPBB2tqahIUFISBgQEikYgTJ04QHR3NyZMnuXz5MufOnUNLSwtFRUWcnZ1JTU1lwYIFHD9+HE9PT3R0dITvPDY2lpUrV+Lt7S0hNuvp6cmUKVOKFSGpVKkSgYGBvH37llu3bjFz5kwOHTpU5DpnZGQQERHBwYMHv+Vr+y3xq7sX/y2dkmfPnuXo0aNoa2sjLS2NjIwMnTp1YsmSJTg4OHw1P/VXZe5evHjBlClThIqeWDX27du3xYpKiOHs7MzcuXOLLO7WrVtMmzatxFHsklC1atUi3TtiPH/+HE1NzX99UvJzcHBwIDU1lcuXLws/FPF/xUS/4squiooKqqqqQiVYWlqa8ePHc+PGDaFavmLFCjw9PYt0xygrK+Pl5cXy5cuBwpvegAEDqFatGsOGDeP9+/doampy6dIlzp07x7Zt26hSpQr+/v6YmJjg5+eHt7c3np6edO3aVahO9erVCzU1NRYtWsTs2bNZsmQJY8aMQVtbmxUrVmBkZERISAj379+nTZs2aGhoMGPGDN69e4enpyfbtm2T2LgpKSmxaNEibt26JYxpF4dKlSphYGCAjY0Nw4YNk6gKi6tOS5cu/WN/X2fOnBE2PlFRUYwYMYInT55w9OjREivX6urqGBkZ4eTkJNFRl5OTw9y5c2natKng9L4E/fr1Y8eOHSU+HxgY+FVdW/9GiOkujh49KpBzi/9kZWUFsn1xZ7iYN0dFRQUZGRlat25N586d8fb2Bv6vSDB8+PAin9WnTx/KlSsndExER0dTo0YNunbtytq1a6levTrv378nNjaW2NhYNm/eTHBwMPr6+jRo0ICPHz/SoUMHtm/fLlAqiNdfr149Lly4QNeuXQXahgsXLnD8+HECAgKwsrLC0dGRypUrU7duXa5fv46fnx/9+vUrsplp3rw5GzZsYM6cOSVeNxkZGZo3b8769evx9PQkJCRECN7T09Px8PDg8uXLX9WR8DvhxYsXzJkzR+CeGzBgAB4eHqSkpJTq/B0cHFi+fDkXLlyQePzu3bs4ODiUOIpdEurWrVuiiEJiYqLA2fS/DEdHRzIyMjh//vw3+eBx48Zx584dgcfXw8ODZcuWFRnXKlOmDBs3bhR8cG5uLtbW1lStWpUhQ4bw8uVLtLW1uXLlCufOnSMoKAgNDQ2CgoLo168fGzZswN/fn6VLl9KzZ0/BB3fv3h1NTU3mzJnD4sWLmT9/PuPGjaNSpUqsWLGC3r17ExYWxrNnz2jfvr0w4v3+/Xvc3d0JCgqSoBNQVFRkzpw5vHz5kjt37pR43SpUqEDPnj2ZOHEiQ4YMkRh9u379OgMHDmTBggUldgX/7jh//rww9h4TE8OwYcN48OABx44dK3HETllZmUGDBjFx4kSJjrq8vDyWLl1KtWrVvkq8rW/fviUK2wFCQft/Gdra2piZmXH06FGAr7bhFi1a0KNHD8EHv3v3jrt37xZLc9OjRw/q1KkjxNtHjx6ldu3adOrUCQ8PD6EgePz4cU6cOMHGjRvZtm0b+vr6NGrUiJSUFDp37kxISIigoFupUiX69etHrVq1OHfunBAPmJqacvXqVaKjo/H19WXEiBFMnTqVqlWrUqtWLS5dukRQUBA9evRg0KBBEpvnxo0bs2XLllKL8tLS0jRt2pTVq1ezZcsWtm/fLnRyZWRksG7dOo4fPy4kU/80vHz5ksWLFwuTAFZWVixfvpzU1FQuXbpU4vvs7OxYt26dwCUoxsOHDxkzZkyRYv/n0LRp0yL+XIzk5GSB0/R/Gfb29mRlZXHmzJlviqMdHBxISEgQJhHWrl3LggULinSoKigosHHjRlasWAEUJjttbGyoUqUK1tbWPH78mPLly3P16lXOnj1LSEiIMM3Yr18/Vq5cSUhICHPnzhUK6VJSUnTt2hVtbW1mzJiBh4cHs2fPZsKECVSrVk3YM4eHh/Pu3Ts6duyIhoYG48ePJykpiQULFhAcHEzlypWFJKyCgoIw5VFShzQU3vu6devGtGnTsLKyksi33Lp1i4EDBzJ79uzfZnr0R+C/8e1vQ35+viDcVa5cOV6+fAlAjRo1ShQ7LQ1f1SkJheOQjx494s2bN0RERDBv3jyioqJQUlJi27Ztxf5Iy5UrR3BwMLNnz+bly5dUq1aNFy9eoK2tzbZt20rkbBDj9u3b7Nq1i6ysLNq3b4+TkxP29vbs2LFDglcwLS0NOzu7Yqvw/2sQJx+aNm1KXl6eUB361CDk5eWFai8Ubm7Eo59NmjRBTU0NX19fdHV1efr0aYkCP1WqVOHjx4/k5eWxc+dOwsPDmTt3LnJycuzfv5/69eujqKhIREQEaWlpGBkZISUlxcCBA+nbty9NmjTB3t5e4pgvXrzg0qVLLFy4kOzsbK5du8bChQsxNzend+/edO7cGQAvLy/Kli3LwIEDcXd3Z+XKlejq6pKZmVlsp8748ePZunUrc+fOLfX6DRs2jAYNGjB79mySkpIoKCjgr7/+wsvL65cqN/9oKCkpMW/ePKZOncqDBw9wdnbm6NGjzJo1Cz09Pdq0aVPs+8aPH09YWBgmJiZUrlwZGRkZnjx5wpAhQ4pNdH2K7OxsIiIiiI+PR1NTE0tLS7S0tNi+fXuR5JBYOOJTle//RTx58oSIiAg6deokjP18Oi4kJSWFrKysUBUtKChATk4OJSUlQQG0S5cuLF++nNu3bxMbGysoXheHIUOGEB4eTosWLXByckJbW5v58+cTHR1Namoq7du35969exw9epRmzZoJHchGRkYEBARQrly5IkmCFStWYGNjg6KiImpqasJmLCcnBzc3N9zc3OjSpQv79u0jJCSEgIAAWrRoIYy9is/zUzRo0IDk5GTS0tIER1gcVFVViYiIYPPmzRgbGwuCHwMHDsTf3/+PLSoANGnShLt375KYmEhkZCRz5sxh7969iEQiwsPDi00GamhosGPHDubMmcO8efOoXr06L1++RFNTEz8/v8+q5N27d4+IiAgyMjJo06YNjo6OTJgwgeDgYGETDIWbzjFjxhThH/pfhK2tLVBIg/AtPvivv/6iXLly+Pr60rNnT+7du1dkhEoMbW1tCgoKyMjIYP/+/QQHB+Pq6oqamhpRUVHUrVsXXV1ddu/eTWpqKn379kVKSgpzc3P09fVp1apVkdHhN2/ecPz4cVxdXVFWVubYsWPMnj0bS0tLevbsKXTbrlmzhooVK2JpaYmnpydr166lTZs2ZGZmFtupM2HCBCEJWhosLS2pW7cu8+fP5927dxQUFFC3bl3WrFnzR4+NlSlThpkzZzJp0iQePnzItGnTOHjwIPPmzUNfX58OHToU+z5bW1u0tLQwNzenfPnyQvfswIEDi/Ai/h05OTns3r2bmzdvoq6ujqWlJTVr1mTz5s0SatRQmCh98uRJibHA/wpevHhBYGAg7dq1Iycn55tsuFOnTixcuJDr169z7dq1UhO94o7Z9u3b4+zsjJqaGn5+fuzfv58PHz7Qrl07Hj58yJEjR2jUqJGQGOnfvz/+/v7CyOmnWL16NYMHDxYEe0aNGiX41MWLF7N48WLatm3L3r172bt3L97e3rRp0wYVFRX8/f2Boj64Vq1a5OXlkZSUVCqnrJKSEuHh4fj6+mJqairEJQMGDGDbtm1f1Zn/u0EstvnmzRuio6NxdXUlOjqajIwMDhw4UOx9T1VVldDQUObMmcOCBQuoWbMmr169Qk1NjU2bNlG7du1SP/Phw4eEhYWRlpZGq1atBEqcvxd/srKyGDNmDFOmTPnh5/2nQRxzNm/e/Jvi6Nq1a1O5cmX8/PwwMjLi+vXrEpNGn0LMO5ucnMyZM2fYunUr06ZNQ1tbm8jISGrXrk2HDh2IiooiJSUFIyMjpKWl6du3L71790ZXV7cIV+f79+/Zt28fkyZN4ubNm4SHhzN//nysra3p3r073bp1AwrtvGLFigwePBgvLy98fHxo3rw5mZmZKCsrF7HhiRMn4uPjw+rVq0u9fuKihru7uzBeXqNGDVasWCHB0/5vwH+dkt+GJk2acOPGDWrXrk27du1YtmwZ8vLy+Pj4fPaeVhy+yStIS0tTqVIlJkyYgJWVFa6urmzcuJHIyEiCg4MxNTUt8p4KFSrg4+MjKKOWLVv2s1L22dnZjB07FkVFRaytrVFRUeHw4cOsXLmScePGYWlpScuWLWnQoAEPHjzgwoULzJkz5x9T5vydIK5MamhokJeXR15eXrE8EtLS0sjKypKfny/85ebmIiUlhZOTE/PmzaNRo0afDSDKlClDXl4eCQkJaGtrIyUlxePHjwkKCkJBQYFDhw7h5eXFqFGjcHd3F0R6Fi5cyPDhw6lRowaTJ08mLy+PXbt24e3tzaZNm5CSkuL169dCh6aOjg53796lY8eO3Lt3j3HjxjFkyBCGDRvGw4cPOX36NCdOnMDPzw9tbW3u379P9erVyc/P5+nTp4hEIu7fvy8ElqWhbdu2BAQEfOM38HtDRUWFFi1acOTIEY4cOcLYsWNp27YtlpaW+Pj4FCtaNWDAAPr378/bt2/Jz8+nYsWKn72GsbGxzJ07FysrK/r378/r16+ZOnUqNWvW5ObNm5iYmNCnTx9kZGQ4ePAglSpVYvPmzT/rtP8YiDuJGjZsKGyGihvXEQdVYvvOy8sTOl579+7Nzp07MTAwwNbWtlQONlVVVYGD8tGjR0yePJktW7YInbAyMjL07t2b+vXr8/HjR27evEnTpk2xt7fH1taWy5cv8+rVKypVqkRCQgKrVq1CRUUFMzMzRCKRRAeQt7c3JiYmGBkZceLECdTU1ChfvjxGRkbcuXOHBw8eMHDgQO7evcvmzZtRVlambt263LhxQyDdf/369WcTE0pKSjg4OHyx+MOfBGlpaSpWrMjYsWMZNGgQc+bMYc2aNaioqBAYGFjseHq5cuXYsGEDWVlZvHv3Dk1Nzc+S6ufm5jJ+/HigUHhGXV2dY8eO4eHhwYQJE7C2tqZp06Y0btyYR48ecfbsWVxcXP7nExrwf3yQ2tra3+WDZ86c+UU+WEVFhezsbBISElBTU0NNTY3bt28TGBiIoqIisbGxbNiwgZEjR7J8+XL8/PyQl5dn2bJlWFtbo66uTpMmTSgoKGDPnj2sW7eODRs2IC0tLeGDmzRpwu3bt9HT0+Py5cs4ODgIxamHDx9y6tQpzp07h7e3N3Xq1OHWrVtC0vvp06dISUlx+/btL/LBOjo6QnLk3wZlZWWaNWvGgQMHiI2Nxc7ODl1dXczMzNi8eXOxCZ9+/frRr18/EhMTv9gHnz17FldXVywtLQX/7erqSvny5Xn8+LHA7y4vL8+hQ4fQ0tJi69atP+u0/xg8ePAAKPTB4qTk19pw9+7dCQsLQ19fH0dHx1KLrWIfDIU8kGPHjmXz5s24uLjQsmVLZGRkMDExEZKCV65cQUdHh9GjRzNu3Dhu3rzJ8+fPqVq1Kk+ePMHT0xORSCRMomVlZQm/FQ8PDwwNDdHX1+fChQusXbuWKlWqYGJiwp07d7h37x6DBg0iISEBX19fypQpQ7169bh586YgZPP8+fPPCl0pKioyfvx4wYf8myAlJUXFihUZMWIEFhYWzJ8/n+XLl6OkpERAQECx0xiampqsXbtW8MFiZffSkJeXh4ODA1lZWQwZMgRNTU1OnDjB6tWrmThxIsOHD6dhw4Y0bdqUp0+fcvLkSaZMmUKnTp1+1qn/MRB3s1apUuWb42h7e3tcXFyYNWuWUNwuCaqqqmRlZZGQkICCggIVK1bkwoULbN26FSUlJc6dO4eXlxe2trasWLGCwMBAZGVl8fT0FGK21q1bIxKJ2LdvH6tXr8bT0xMZGRkJH/zXX38RHx+PqakpsbGxODo6MmTIEAYPHiz44CtXrrBmzRpatGjB9evXqVq1KjIyMjx+/Bg5Obkv9sHNmjX7n9mT/VsShb8Ss2bNEia3Fi5ciJGREZ07d0ZLS4uQkJCvPp6U6AsY/z9+/Ii6ujofPnwoth18xowZuLu7o6qqSlpaGo8ePaJGjRpfvRjxZ23dupVDhw5x8+ZNdHR0WL58uQR/yatXr7C2tmbfvn3Ex8fz9OlTKleuTLt27f77Uf1/7Nmzh379+mFvb8+AAQMEBUzxTVlc2RVz5Igfk5OTE9ra5eXl2bJlC6GhoXTt2pWQkJBik1XZ2dkYGRkRExODvr4+SUlJKCsrs2PHDuTk5JCTk2PkyJGEhYUhEomws7PD3t6exo0bA4XjTOPGjaNKlSpISUlhYGDAkCFDBAW0fv36ERAQIHTFikQi6tWrx8OHD6lfvz6qqqoCUb+SkhJly5Zl0aJFRYjcy5cvz8ePH8nKykJLSwtPT09MTU0/GxR8Dp+zj98Bpa0xPz9fYsM7cuTI73JCFy9eZOPGjTx69Ihbt26xdOlSoVovxooVK1BQUGDYsGGcPHmS/Px8Onbs+EVKcv8LKCgoEDqUvby8UFdXJzc3V9gcFRQUCIEUIGyEpKWlBZuTk5MjLS2NoUOH0qdPH2rVqsXixYuL/bz169ejra1N7dq1adOmDZaWlhgaGtKnTx/k5OR4+vQpLVq0YNasWQJJu1g4SiQS0bdvX6ETokKFCowaNUrgtzt37hy7du3C3d1d+LywsDAsLCyAwu773Nxc3r59K/xGly9fzu7du9m1a5fEOitVqiRUbK2srJg8eTKtW7f+7uv9u9vw59Y3b9485s6di4aGBikpKdy9e/ebRSXExOrR0dHExcXRqFEjVq1aJXG8xMREBg0axO7du3nw4AGPHz+mYsWKdOjQ4T8f/P8h5vAcM2YMgwcP/mYfvH37dvz9/enduzcBAQESnali5OXloa+vz+HDhzEzMyMhIQF1dXVCQ0ORl5dHTk6OCRMmsH37dvLz85k8eTJDhgwRbOf69esMHz6catWqISUlJQhMiX1u//798fLykujIEW926tWrh5qaGomJiRQUFKCiooKKigoeHh4S/FpQWJxOTU0lIyMDDQ0NPDw8MDc3/26b+93tFz6/Rjk5OWHDbG1tLcHx+7W4cuUKGzduJCEhgevXr7No0SKGDRsm0UW9fv160tPTsbOz48SJE+Tn59O+ffsSxTP+1yASiejevTv37t0TCrW5ublfbcOpqamMGjWKXr16UblyZTw8PIr9vC1btiAnJ4eOjg5NmzZl0KBBdOnSBXNzc2RlZUlMTKRRo0ZMnjwZFxcXxowZQ0REhLBWc3Nz4fejra2Nra0tHTt2REpKiqtXr+Ln58eaNWuEz9u7dy/GxsZAYSdZfn4+iYmJqKmpkZqayvz584mNjSUoKEhinRUrVuT169dAYaHa2dlZgsv2W/G72/Dn1rds2TKmT5+OpqYmycnJ3Lhx45snftLT0wkMDBT2uLVq1WL16tUS02pJSUkMGDCA8PBwnj59ysOHDylfvjy6urp/9CTIj0RsbCzdu3fH1taWESNGkJub+01x9I4dO9i8eTN9+/Zl48aNxU53FhQU0Lt3bw4dOsSQIUO4evUqWlpa7NixQxDSmTx5Mv7+/uTm5jJ79mz69u0rJI/v3LmDpaWlkDvp3r07NjY2QuLfysqKFStWCLyvUCiKefr0aerUqYOGhgZv374lLy8PNTU15OXl8fb2RldXV2KdlSpV4sOHD2RkZKCmpsaKFSuwsLCQmDr9VvzuNlwcxGs+cuTId+cCvgZpaWn07Nnzj7pWX4qkpCQ0NTW/aS/wQ+5cLVq0AAoJyCtVqvTNm5InT55gampKxYoVhTGCGTNm4OTkxJ49e4TXVapUSSCFbt26Nebm5rRv3/6nbIbevn3LuXPnSuSw/F1hYmLC9OnTWbt2LZMnT+b+/ftCUqigoACRSERBQYFQ4RXffMUjmFlZWSQnJ2NqaoqUlBTp6em4uLgU+1krV66kZcuW9O/fn0OHDtG4cWOMjIyEY8rKypKTkyPwDo4aNUoi4G7Xrh1du3alT58+REZGMn78eNTU1MjPz8fNzY3OnTtL3DClpKR48OABIpGIu3fvcunSJZ49e8azZ8+Ij4+nTJky6Ojo4OrqChQq8547d47Lly/TqVMnXFxcSEpKYujQoYKS2f8yZGRkJIKd4hShvxRLly7Fx8cHFxcXWrduTVBQEGlpaZiZmQnVFIDJkycTGRmJiooKRkZG9OvX76ckJAsKCrh58yYXLlwoldj/d4O0tDQ7d+5EJBIJG9S8vDykpaURiUTCHxR+f5/amrS0NLm5uXz8+BEZGRnMzMzYvXs3Bw4cKJbj4/3792zfvp3ExET69u1LjRo1eP36Nfr6+sJxxRXaypUrU7lyZQoKCgSxIikpKdavX09GRgZeXl5s3rxZ2KQ8ePAAV1dXnJycJD5zwIABwjlcvXpVGIW6d+8ey5YtIyUlhZkzZ6Kurk758uWJiYnh3r17+Pr6YmRkRPv27QkODqZNmzYsXLjwj1Xy/FEQ++CUlJRiR+m/FC9fvsTExAQNDQ02b95M06ZNmTdvHtOnT5fgoCtfvjxjxowhKCgIHR0dzM3N0dXV/Sk++P3795w/f567d+/+Uarpenp6zJ07Fx8fHxwcHLhz5843+WBjY2MUFBRISUlh6tSpxV6DtWvX0qxZM6ytrYmMjKRly5bo6+sLCUlZWVlyc3OFe+yoUaMkkg3NmzenT58+dO/end27d+Pg4ICGhgb5+fksWrSIFi1aSCQkoVB9UyQSce/ePS5dusTTp095/vw58fHxQtelmErH0dGRs2fPcunSJbp3787MmTP5+PEjI0aMQF1dvVQutv8VfDrh8z0+2NPTkzVr1jB58mQ6duxIQEAABQUFmJqaSvjA8ePHExMTg6KiouCDf0ZCUiQSERcXx4ULF0oVuPvdICUlxY4dO5CRkcHS0pJt27YJ453w5TYsLS2NiYkJu3fv5uTJk8Vy8aakpLB582ZSU1PR09OjcuXKvHr1Sij2icevobDrq1y5cpQpU4a3b98Ka12zZg3p6emsXbsWX19fOnXqJEwsOTs7F1EpNjIyEnzwtWvXuHnzJm/evOH+/fusWbOG5ORkpk2bRrly5dDU1OTgwYPcuXNHEOLo3LkzYWFhdOjQATc3txIVgP9XIPbBycnJqKurf/N4emJiIiYmJigpKeHr60v9+vVZvnw5c+bMYfv27cLrypYti4ODA1u3bqV58+aYm5vTqVOnn5KQTEpK4vz589y5c+eP8sFdu3ZlyZIlbNmyBTs7O+7cuYOCgsJXx9G9e/dGRUWFly9fMnny5CLK6wA+Pj40bNiQESNGsGPHDmFfK05Iiu8b4mabv++DGzRowIABA+jQoQORkZFMnjyZsmXLUlBQwMqVK6lVq5ZEQhLg1KlTiEQiHjx4IIgtvXjxgvj4eMqXL0/9+vXx9PQECu/3586d4+LFixgYGODi4iLQ7WhqanLu3Lmf9C38GfiPU/LHQSzs+C34IZ2Sb9++ZeTIkejo6DB9+vRvVu0zNjZm7dq11KxZk4iICFJSUrC1tSU3NxcjIyO2b98ucJklJydjb28vcZP+kUhMTGTKlClkZWXRrFkzXr16RUJCAq6urgKf4e8OkUjEwYMHcXV15dq1a8yaNUtQ1hRXdsVBlTjAEnPh5ObmkpGRQZkyZbhy5QqzZs0iPz9fEJ+RkpLi8OHDnDt3ThjnrVy5Mq6uriQnJ1OzZk2Bt2rgwIEcOnQIBwcHVq9ezfPnz1m0aBFeXl7CWgsKCpg9ezYHDhygRYsWqKurc/36daytrYsQYru7u3PkyBHKlStH48aNGT58OFWrVgXg6tWr6OjoICcnR6VKlXj69ClQyJPk4+NDSkoK3bp14+nTp2zcuBEoJP+9f/8+wcHB7Nu3DzU1NapUqcLMmTM/y7UGf0Z16HNr3LZtG35+fixfvpxWrVp902ecPHmS4OBgNmzYABSS6e/du1f4rezbt0+iS8DZ2ZlRo0aVyFX6vRBXN3V0dFBVVeXChQvUrVuXJUuW/DGqhElJSbi7u7NmzRpq167NggUL0NDQEAJPkUgk8FyJN0dycnLCmHN+fj7KyspMmTKFq1evCjxX06dP5+jRo5w4cYK4uDhhtMvIyEhQdg0KCkJeXp7jx4/Tr18/oLBLvWLFitjZ2TFr1izB7qCQANve3l4Qm3n27BkyMjIsXbpUQi37/v37zJw5k9TUVOrUqUPPnj0xMTERNnKDBg0iJCREoJ5IS0vD1NQUS0tLFi1ahK6uLtWrVycqKkogeh87diwzZsxg4sSJpKWlUalSJXr06MHo0aO/6Dr/7jb8ufUlJyczcuRIGjZsyMyZMz9LjVISzM3NcXd3p169euzfv59Hjx4xYcIE8vPzMTExwcfHRwiMs7KyGDx4MOHh4d91biXh/fv3TJkyhdTUVFq0aCEkradPn06PHj1+ymf+DBw5cgQXFxcuXrzI9OnT6dWr11f74Fu3bjF9+nRyc3NRUVFh/vz5KCoqCj74zZs3wjjv9OnTycvLQ0NDg/79+yMjI8PQoUPZs2cPo0ePxsfHh/fv3+Ps7CwxGi0SiZg/fz6RkZE0a9aMsmXLcv36dSwsLBg7dqxEkOnh4UF0dDRaWlo0atSIYcOGCR0e8fHxNG7cGFlZWSpWrMjz588B2L9/P4GBgbx+/Zru3bvz4sULIQaQk5MjPj6effv2ERERgZqaGpUrV2bGjBlfxOH8u9svfH6NISEheHl5sXTp0m/uPLt48SJeXl5s2bJFuJ9HRUUhJSXFqVOnCAwMlIi7Zs2ahbm5OTo6Ot98XqUhIiKCDRs2CDHdxYsXqV69OsuWLfvme9SvRkpKCitWrMDDw4M6deqwePFigfbiS21YVlYWNzc3Ll++jJSUFO3atWPOnDmCD75x44bgg/v168eMGTOYNWsW27dvR15enrNnz9K3b18AHj9+TI0aNXBycmLChAkSNCb3799n/PjxFBQU0KJFC168eIFIJGLJkiUS/F6PHj3CxcWFlJQU6tSpQ7du3TAzMxMSaSNGjMDf3x8NDQ1EIhEfPnxAX1+fkSNHMn/+fNq1a0ft2rXZv38/p0+fBgp52BcvXsy4ceP4+PEjlSpVonPnzowbN+6LNqi/uw1/bn2pqamMHDmSGjVq4Obm9s1dVwMHDsTNzY1GjRpx7NgxLl++zJQpUygoKKB///6sWrVKuCfm5eXRv39/IiMjv+vcSkJKSgpTpkwhKSkJHR0d3r17R3x8PM7Ozujr6/+Uz/wZOHHiBC4uLpw5c4YZM2agp6eHSCT6qjj67t27uLq6kpubi5KSEm5ubmhoaHD48GHOnDnD69evyc/PR1tbGxcXF2RlZSkoKBCmxMaOHUtISAiDBw9m+/btpKenY2trKzHiKhKJcHd3JzQ0lKZNmwoClOKpx0/taP369URGRlK2bFkaNGjAsGHDBBt/+PAhdevWRVZWlgoVKvDixQug0AeHh4fz4MEDevTowatXrwQhLllZWa5duybs41RVVYV4ojTqp0/xu9twcRCv+dixY7+8U7J79+5/1LX6FfghTMPa2toSnYzfgps3b1KzZk1q1qwpPCauRsjJyeHo6Iifn59Q7fsSLoRvxcePH7GyssLT01Oi/T41NZUhQ4YgIyNTpCX6d4R4FFpPT48RI0awYMECNDU1adeuHfXr18fCwoLc3FwKCgoEDivxjVpcnRULZhw/fpzr16+zbt064eaopaVF48aNGT16NO3ataNRo0aIRCKuXLnC2bNnMTQ0JDc3l0OHDgGF7ecAFy5coFGjRsI6nzx5grOzMyoqKlhaWnLjxg3u3bvHkiVLivCivHnzpoha+6xZs7h27RrNmzcXlJ9yc3OFhCQUJrylpaXJyMggJiYGaWlpqlatyvPnz9HR0aF8+fK4ublJqEuLRCIhcflvx9ChQ4sIHXwtNm7cWKJ4Qa9evVi1ahUZGRnCZuRn2vDWrVu5cOECBw4ckKhYR0dHM3jwYMLCwv6ISlXZsmVxd3fH2tqabt260b9/f5o1a0aDBg0wMDCgbt26wijZp10cn46kSElJ4ePjw/Pnzzl+/Dhr167FyMgIBQUFqlevjoWFBbq6uujq6grOUUZGRui627dvH1DYvVOxYkWBd1LcOSW2k7CwMLp06UJeXh6nTp2iYcOGeHp6FhFeWbt2rUTX3fr16+nevbugcvr48WOgMCAWY/fu3Rw9epSPHz9y69YtoJAjUV1dnY8fP9KrVy/27t0rrBUKk9L6+voSCdF/KzQ1NYVRvm/F/fv30dLSEgJQKSkpwQfLyMgwZcoUNm/eLKiEikeffgYyMjIYNGgQ7u7uEgmTjIwMhg0bhpSUFN27d/8pn/2j0bNnT86fP4+dnR3u7u54e3vTvn176tati6WlpUC+X5oPbteuHceOHePmzZts2LCByZMnAwg+eMSIEbRr144mTZogEomIj48nOjpaGOkUx2eDBw8Givrg58+f4+zsjLy8PAMHDhQ62+bPn18kAfzhwwfh88WYM2cO58+fp23btsJoZ15enpCQBISkR3p6OkeOHEFKSopq1arx7NkzmjVrRuXKlVmwYAHv378X3pOZmfmv5XX+OwYOHFiqGNmXwNvbm5kzZxZrl506dWLZsmV8+PBBoOH5mT44NDSUmJgYoqOjJahbjhw5wqBBg9i1a9cfoaCuoaHBwoULsba2pkuXLhgbG9O0aVMaNmyIoaEhf/31F5mZmaXasIyMDJ6eniQmJnL69GlWr16NoaEh8vLyVK9eXeiQat++PVpaWuTn56OgoMC7d++oVKkSR44cAQr3QuLk/7179yQ6p3x9fQkKCkJXVxeRSMSpU6cEYai/N4p4e3tLJEM2bNhA69atuXjxIlAYk4OkDz548CBnz57l48ePxMXFAYXxiZgypHfv3kRHRxMVFSW8Z8eOHfTs2fNfJ4pRHMRCNt+Dp0+fIi8vL9ybP/XB0tLSTJ8+HR8fH0Fs5Wd2LWZlZTFw4EAhCS1GZmYmtra2iEQiQSn6d0eXLl04deoUTk5OLF26FG9vb9q1a0edOnWwtramoKDgs3F0q1atiImJIT4+nk2bNgniYmXLlqVhw4YMHz6ctm3b0qxZM6SkpLh79y4hISFYW1uTn58v2Jt4n/V3H/z69WsmT54sNPLcvn2bc+fOMWfOnCIJ4MzMTBwcHCQ6NufNm8eJEyfo3LmzQGeWl5cnJCShkJNYUVGR1NRUYmNjAQQf3LBhQ6pXr87ixYt59uyZ8J4PHz5IxOv/VvwndPN74LeRP7t58yYdO3YU/t2lSxfGjh0rKAN27NhRYtwoIiLip1VqfH19GT9+fBE+EFVVVbZu3crQoUMlHO/vDmlpafz9/ZkwYQKRkZGcPHmStWvXcvLkSSZMmCDwSElJSZGfnw8gkAIXFBSQk5ODsrIyHTt2pG3btly9epWmTZtKBLbiVncZGRnatWvH2rVref36NZUrV0ZOTo5x48bRvn17cnJy8PLyEm5yiYmJ2NjY4OvrK9ERkZqaipWVFXPnzpXgjKtQoQI7duzAyclJ4JYDhDGWvn37cuLECQ4cOEDbtm1JTU1FWVmZwYMHk5GRwahRo1BVVaVHjx4YGhpy7949qlWrhoKCAuPHj+fq1asoKCigoqJSJPn5H0rHhw8fJDrnmjVrxtmzZ4UEfuPGjXny5AkNGzYkPz9f4CP70cjNzWXbtm0cOnSoyChLnz59uHDhAkePHi3COfo7o3nz5jx8+JB9+/axd+9ezp49S1RUFMOHDxe6GMWbIXHHhtiGc3JyyMnJoXr16tja2tK1a1eys7Np1qwZ8H8bUxkZGXJzc5GXl8fCwgJvb29cXFyEjc/t27eBws1Jy5YtBXV7Dw8PPnz4QExMjISjjYqKwsbGhqCgIInHZ8+ezbt379ixY4cQVH+6aT18+DDe3t4oKSlRvnx5pKSkOHr0KBs2bKBChQrY2NigpqbG8OHD0dTUFH5TcXFxdOvWDXl5eaSlpenVq9cXdTr/h0LExcVJFNt0dXXZsGED9vb2wr/XrVsnPL9r166f5oO3bdvG8OHDi3RwKSkpsXXrViwsLP6YpCQU2qa3tzejR48WfLCXlxcnT55k/Pjx1KpV64t8cPv27WndujVXrlyhSZMmEjzLn/rg5s2bs3LlSl6+fEm1atVQVVXFysqKrl27kpeXx+rVq9m2bRtQ2I09bNgwNm7cKHE/Tk9PZ/DgwSgqKkr8LtTV1YmIiMDBwUEi6Sj2wT169ODs2bPs2bOHtm3bkpaWhoqKCiNGjCAlJQUbGxs0NDTo2rUrxsbGPHz4kEqVKqGkpMTo0aM5f/48CgoKKCkpMWvWrJ/91fyrkJiYKMG/3rZtW44dOyYkllu0aMHDhw/R0dFBJBJx/vx55s6d+8PXkZ+fz8aNGzl06FCRxGPPnj25fPky0dHRGBkZ/fDP/llo1KgRDx48YP/+/ezdu5czZ84QGRnJyJEjMTMzAyjVhvPy8qhWrRpDhw6lS5cupKen07x5c8E3im04OzsbGRkZBg0ahJeXF3PmzBEKgOKi+/Hjx6lXr56QbPTy8uLx48dFYh4xv93fi7DTp0/nzZs3BAQECD74087VvXv3snHjRmRlZalcuTIikYgzZ87g4eGBmpoa48aNQ0VFhWHDhqGtrU1CQgKNGzfm3r17dO/eHTk5OaSlpenSpcs3cxv/L+LWrVt06NBB+HebNm1wd3cXmnHatWsnwQu+Z8+enxbHhoaGMmDAAImEJBSKmvr5+WFsbIy+vv4fk1yRkpLCw8OD4cOHExkZyYkTJ9i4cSPnzp1j/Pjx1K5dW6KoUFwcraqqSrt27QQf3LhxY8qVKyd0SEtJSZGTk4O0tDQNGjTg6dOnPHv2jBo1alCuXDn69OmDvr4++fn5rFq1SuhS/PjxI4MHD2bdunUSk2OZmZkMHToUeXl5iXinTJkyREZGMnHiRKGAAP/ng3V1dbl48SLh4eG0bduW9PR0VFRUGDduHK9fv2bIkCFoaWnRqVMnTE1Nefz4MeXKlUNVVRVbW1tiY2NRVFSkTJkyzJs37xd9Q//hP/xGSUk1NTUePXok/LtcuXJUq1aN8PBwQTFQnAR79uwZQUFB7N+//6esJSYmpsR2eA0NDcqWLSsozf4pkJKSom3btrRt2xYoJACeMGECo0aNokOHDpiamtK6dWtkZGSEm6tYQVAcYCkrK6OgoEDHjh2FjdKnnTTy8vJCVWnOnDmCoE1ubi61atXi+vXruLm5CXxVUNglNWfOnCIjWqqqqkJyOCwsTOK5gQMHMmDAAG7evEnt2rWLtD537ty5yIj9ypUrWbduHc2aNaNWrVrcvHmTVatWsWDBAho0aCC85j98O8SdAuIE07hx4xg9ejRhYWGoqqry7t07wYbd3d2xsLD4KZ0SsbGx6Ovrl8itY2try9y5c/+opCQUVmTFHa2ZmZnMmTOH1atXExoaSr9+/TAwMBA6GcWBYnZ2toTydZkyZahfvz4ikUiwbfFmSE5OTuhq1NPT4+zZs8yfP5+srCyUlZWRl5fHx8eHqKgooeqblpYmjOb/PTg1Njbm5MmTnD9/XmIcUVtbm6CgIFavXs2bN29o0qSJxPtUVFSYMmWKxGM9e/bk5s2baGtr065dO3Jzc5k6dSrq6uoCZ06TJk04duzYj7nY/4NQU1OT4E5WV1enUaNGBAUFYW1tLWG/r169YsuWLT+tOLd3794i930xlJWVqV69Oo8ePfqi0d7fBVJSUrRu3Voosp05c4bx48djZ2dH27ZtMTU1pV27dj/MB8+bN49x48bh4OBAamoqNWvWJC4ujrlz5zJq1CiBCsfHx4epU6cWKRApKyvj5+eHjY1NkXjIzMwMExMT4uLiqFGjRhGS/Pbt2xcZQU5OTmb58uU0b96cunXrEh8fT+/evZk9e7aQuBB3AP2Hb4OUlBTZ2dnCfXzMmDEMHToUHR0dQQhBbMMeHh707dtXoiD0o3Du3Dm6du1aon+3tbXF0dHxj0pKQmH8b21tjbW1NdnZ2cybN49Vq1YREhKCsbExhoaGVKpUSfCrJdlwrVq1kJGRETq0irPhrl27cu7cOdzc3ISiodgmQ0NDhcJ+ZmYmu3bt4uDBg0V8sJ6eHqdPnyY2NpZu3boJj5ctWxZ/f39WrlzJixcvhAKlGEpKSkV4oPX19bl27Rqqqqq0bduWgoICXF1dUVRUZO3atQDUr19fmHj4D18PdXV1IbEEhb+Vtm3b4uvri62tLcnJyQJ1wNu3b1m/fv13T0iUhF27dpUotqWoqEjjxo25ffu2RLff7w4pKSlatmxJy5YtgUK6i3HjxjFq1CjatGmDubk5bdu2RU5OTmISpLg4ulOnTohEIkH4qrg4et68eTg4ODBu3DiSkpKoWbMmt2/fZu7cuQwaNEgo+Pv5+TFhwoQiVFZlypTB398fS0vLIkVYIyMjDA0NiYuLo2rVqoIgjhifxhpiZGZmsmDBApo3b07Dhg25c+cOenp6zJgxQ6CB+BlFqj8B/3VK/h74bSS6xON3n7ajL1u2jIMHDzJixAhmz55NkyZNmDdvHra2tmzevPmn8cLJyMiUSlJcrly5P4qwuzh07dqVa9eusXXrVgoKCpg+fTp6enrY29tz9uxZFBUVhcppWloaHz58ICcnh+TkZEHhTxxQ5eTkCGPg4u+vQYMGrFu3Tti0BgUFsWXLFtzd3QXFPygMXj8Nlj6FuDpc3LWWkZGhRYsWX8TFEBMTw7lz57h+/Tr29vYYGRnh4uJCZGQkixYt4t69e19+4f5DidDT05PYvFavXp25c+dibGyMu7s79+7d48KFC/Tv35+8vDzGjh37U9bx4cMHYcNdHLS1tfnw4cNP+exfhTJlyrB8+XJu377NkCFDiIiIYODAgZiamrJu3To+fPiAkpISCgoK5OTkkJKSQkZGBllZWaSkpEh0Z+Tl5QlqhGL7lZKSYu7cubRr147IyEhkZGSwsrJCUVGR8PBw4d5w4MABzMzMSnSwNjY27Nixo9jntLW1iyQki4NIJMLGxobly5cTHh6OmZkZlpaWAuG+o6Pjt1zC//A3dOnShUOHDkmMBC1atIjTp08zbNgwXF1dad68OYsWLWLo0KF4e3sLG6Sfgb+P/X+KcuXK/fE2rKury+XLlwkMDEROTg5XV1d69+7N+PHjOXXqlNAtCJI+OCUlRRB2Ks0H16lTBy8vL4E+JSwsDC8vL+bPn8+AAQOEdYiLOMVBU1MTFRUViY2yGOKOzC9R7Txx4gQxMTFcv36dSZMmYWRkxLRp09i7dy8eHh7COOh/+D4YGRlJjNpVrFiRJUuWYGZmhru7O1evXuXWrVtYWlry/v17Jk2a9FPW8TkfrKWl9UcJzxUHBQWF/9fevQdFeZ1xHP8hF1GDxOoElFLBW1RiYwTjaII2xmCNVjOKWBPL1CRVnGmjotVgjG00VSsaLxS0avCasXFGbAjSBMgIVkXxRhBdOmNKgxVWg2ZAJIjK9g9n32bDoiiwru73M7Mz+u5h34sezrvP+5znaOnSpSoqKjKyr6KiojRmzBglJCSooqJC7dq1q9eHq6urbX533akPx8XF6YUXXtAnn3wib29vTZo0SRaLRXv37jXqn33xxRcaM2bMfY3BHTt2rBeQbIj1Ye4nn3yi8ePHKzIyUjt37lRkZKRmzJjR6OuGhg0aNEgHDhwwvmNJtxM8Tp8+rddee03z5s3TgAEDtHz5ck2aNEkJCQnNsmqyPTdv3rxj3ddH4T564MCBysvL0+7du9W2bVvFxcXppZde0vTp03XgwAFjDP7+ffS1a9d05coV1dbW3vU+OigoSH/961918OBB1dXV6dNPP9WaNWu0cOFCo5SKdDujeezYsXaP8bHHHlOXLl1splRbtWrVyqj/fDd5eXlKSUnRqVOnNHfuXI0ePVpz5sxRenq6NmzYoJMnT97PJXxksNCNc3CaoKS3t7cmTJiguXPnGk8UrZk5gwcPlslk0uXLlxUeHq6MjAybos3NzbrKVkNMJtMjMS3Qw8ND0dHROnLkiAoKCpSUlGQsVvPLX/5SSUlJKioq0jfffKOUlBSNGzdOP/vZz/Tiiy/q/fffV3l5udzd3Y2i/VbWX8h1dXXGFLFf/OIXCg4O1n//+18lJiYqKipKs2fP1tmzZ7V9+3abp1Df16FDB1VXVzfpPNeuXauEhIR6gWYfHx/Fx8cbmVb3wtVXGrTn9ddf1/r1621Wlxw8eLD27t2rlJQU9e3bV6WlpcaUpJb6pdyvXz/l5uY2+P7hw4cbfSPu7Lp37661a9fqwoULxsr1OTk5ioyM1Pz585WWlqby8nIVFhZq0aJFev755/X8889rypQpxiJE1pUGJdmsSOjm5qa8vDxdvHhRQUFBGjhwoNq1a6f9+/dr2rRpmj59utauXavPP/+8wRXsO3bsqKqqqiad46FDhxQSElJvGpF0u0bOtWvXbOrHNparr9j9Q56enoqOjtbvfvc740uRh4eHEhMTNWLECJ08eVJXr17VwIEDlZGR0aLT8jp16mQzc+KHrFnyDzt3d3e9+uqrOnjwoM6cOaMNGzaoW7duevfddxUVFaWEhASdPXtW5eXlRjBg2LBhGj58uN577z2ZzeY7jsGStHnzZkm3A1bdu3c3ittbx+DCwkJt3bpV3333nd1jbI4+vHr1aiUkJNTLymvbtq0++OADffDBB/f8mYzB9U2ZMkXbtm2z+YIZFham1NRUpaamqk+fPiopKdHatWuNBQtbQkhIiI4ePdrg+0eOHFFISEiL7NvRgoKCjIzDTz/9VDNnztShQ4c0fvx4zZw5U6mpqbp69apMJpOWL1+u4cOHa+jQofr1r3+t1NRUtWrV6o59+Pjx4yotLdWPf/xjPfvss3rsscd04MABYybKqlWrlJWV1WBQoTkCwMePH1dgYKCGDh1a772f//zn8vDwuK+H+4zBttzd3TV9+nTNmDHDuDbu7u5avXq1xo0bp9zcXNXU1Ojpp59WVlZWi/ahgIAAo2SPPSdPnnwkpua3atVKEydOVHZ2tkwmkzZu3Kgnn3xSixYt0oQJE4yHZhUVFUpLS9OUKVM0YsQIvfDCC1q0aJFKS0uNRCZ799GtWrUypmmPHj1avXr10sWLF7Vp0yZjDC4oKNDWrVsb/K7bHGPwqlWrlJCQUO9hr7e3t9auXXvfMwUflT5MUNI5OM30ben2VJPt27crIiLC+AKcm5urPn36GHWGHHUcy5YtM6YkfF9WVpZ69+790Kwc2Fj9+vVTv379NG3aNB07dkwfffSRMjIyjMy31q1ba+rUqRo+fLjy8/O1ZcsWpaena/Xq1Ro4cKDNEyPrzVR5ebnx+YsWLTL+7Obmpp49e+ro0aNGjamVK1cqISHBJmvSYrHo3//+tzp16nTf51VZWam2bds2mFEZEhJiLKxxL6z19PB/Pj4+2rVrl+bMmaPr16+rf//+Ki0t1blz57RixQoNGzbMIcfRq1cvXbp0SefOnbNZmVK6Xetq1apV2rhxo0OOxVHatWunsWPHauzYsYqLi9OOHTv0+eef66OPPtK1a9ck3Z7evG7dOrVr104pKSlauHChvvjiCy1fvlytW7eud0MlyQj2FRQUqKCgwNifr6+v/Pz8VFNTo2PHjmnv3r36/e9/r3nz5tk8tT148KCefvrpJp1bWlqaXn311Qbfj4yMVHp6umJiYu7pc1ti2uLDLjo6Wp6enho5cqRCQ0PVvn17HTlyRN26dVNeXl69BRNaSkxMjJYuXaqNGzfWu3k7ePCgAgICHrkVC/v27au+ffvqN7/5jU6ePKmdO3cqMzNTaWlpkm6POdHR0XrppZd0+vRpYwxeuXKlnnvuObtj8JUrV4zPX7x4sfFnNzc39ejRQ0ePHlVFRYXeeOMNxcfHKyEhQSNGjDDaWSwWFRUVqUuXLvd9XtYp5h07drT7fo8ePWzqQzcWY3B9bdu21d/+9jfNmTNHVVVVeuaZZ3Tx4kUVFRXpvffes/m3bUldu3ZVdXW1ioqKjPI4VnV1dfrzn/+s1atXO+RYHKVNmzYaM2aMxowZo7fffls7d+7UZ599pm3btikxMVHS7RlEq1ev1uOPP66///3vWrhwoXJycrR06VJjxW7Jtg9bF6r417/+pXfffdfYX/v27dW5c2fV1NTIbDYrLS1Ns2bNUlxcnE2WanOMwfv27bvjIkxRUVHat2/fPQepGIPri4qKkru7u0aNGqX+/furQ4cOysvLU0BAgPLy8lp0dsL3Wcfg7du31xuDjx07Jl9f3wZ/pz+sevfurd69e+uNN95QQUGBduzYoczMTGOhOE9PT7322msaNWqUzp49qy1btmjfvn1atWqVhg4daqzcLf2/D3/77bfG5//pT3+y2V+PHj105MgRVVZWatq0aVq+fLkSEhI0atQom3YFBQXGAlf3w2KxqKqqSv7+/nbfDwwMtLlXuBePSh9m+rZzcLM0Yvku65Lp58+fd8gXgbq6OhUWFqq2tla9e/d26DLtVvHx8bpw4YJmzpyp4OBgXb16Vbt27VJmZqa2bdv2yAUl7bFYLCooKJDZbFZYWJjNAGT9IpOdna1ly5Zp0KBBslgs8vLykre3t1Ho+vLlyzKbzQoICJC3t7cuXrwoX19fPf7443J3d1dOTo4yMjJkMplUWFioLVu2aPz48ZJuTzf76quvjFXO7seVK1c0f/58bdq0qcE2EydObNLqYpWVlQoMDFRFRYXTflF2dB/+5ptvVFxcrA4dOrTIYjZ3c+HCBU2fPl2vv/66xowZIy8vL+Xn5ys+Pl6RkZFGYfpHXVVVlXJyctS5c2f179+/XhH86Oho9e3bVytWrJCHh4c8PDzUpk0beXp6ysPDwwhKuLu7q2fPniovL9f169fl7+8vDw8Pubu7680331Tv3r2NJ8yHDh2Sp6enampqNHHiRO3YsaNJU4wWLFigqVOnNvj/KCsrS+fOnbvnoOT3OXsffhBj8JkzZ1RTU6Mnn3zygVyThIQEFRUVKTY2Vt27d9e1a9e0e/dupaWlaevWrfLx8XH4MT0IhYWFOn/+vAYOHGjzgO7q1auKiYnRP/7xD73//vtGjasfjsHffvutSktLFRAQoDZt2shsNtuMwUePHtWePXv0n//8R/n5+dqwYYMmT54s6XYw4sSJEzYPFe/Vd999p2nTphmzJuxhDG5+ly9f1ldffSVfX1/16tXL4V+CLl68qDfffFO/+tWvNG7cOLVu3VqnT59WfHy8Ro8e3eSVxh8W165dU05Ojp544gkNGDDAZgzev3+/pkyZoj59+hhj8A/7sHUl31atWqlnz566cuWKqqur1blzZ2MMnjFjhnr27GlkWltLMNXW1ioqKkqbN29u0sP9JUuWaNy4cQ3OMDl06JCOHTvWpHIAzt6HHd1/LRaLzp49q+rqavXs2bPFpmnfycaNG3X8+HGj5nB1dbX27NmjlJQUJScnq0OHDg4/pgfBZDKpuLhYYWFhRlkxSaqurtZvf/tbpaSkaMmSJXrxxRdVW1tb7z7aOgZ37txZPj4+Kisrk4+Pj3H9rJmSly5d0okTJ7RmzRpNnTpV0u3yDFlZWU2qt1xXV6fJkycbteDtmThxonbv3t2kccLZ+7A91n596NAhh8aaqqqq9Nxzzz1U18oRGhWUrKmpUXBwsMxmsyOOCXjo+Pv7q7i4uMXqnDYVfRi4M2fuw/Rf4M6cuf9K9GHgbpy5D9N/gbtz5j5sjzUoefjwYYcHJYcMGUJQ8gcaNX3b29tbxcXF1PABGmB9su2s6MPAnTlzH6b/AnfmzP1Xog8Dd+PMfZj+C9ydM/fhO2H6tnNodE1Jb2/vh/I/GoDb6MPAw4v+Czzc6MPAw4v+CzyaHoagZFJSkuLj41VWVqaQkBCtWbNG4eHhDbbPyclRbGyszpw5oy5dumjevHk2Za42bdqk7du3q7CwUJIUGhqqpUuX6tlnn733E2omTrP6NgAAAAAAAODqPv74Y82aNUvvvPOOTp06pfDwcI0aNcpYjPSHiouL9fLLLys8PFynTp3SggUL9NZbb2nPnj1Gm+zsbE2ePFn79+9Xbm6ufvKTnygiIsJYXO1BaFRNSQAAAAAAAOBhZq0pefToUYfXlBw0aFCja0oOGjRIAwYM0Pr1641tffr00SuvvGJ3EaT58+crNTVVJpPJ2BYTE6Mvv/xSubm5dvdx69YtdejQQX/5y18UHR19H2fVdGRKAgAAAAAAwGVYp2878iXdDop+/3X9+vV6x1ZbW6sTJ04oIiLCZntERIQOHz5s93xyc3PrtR85cqSOHz+uGzdu2P2Z6upq3bhxQz/60Y/u5xI2C4KSAAAAAAAAQAsLDAyUr6+v8bKX9VheXq5bt27Jz8/PZrufn5/MZrPdzzWbzXbb37x5U+Xl5XZ/5u2331ZAQIBGjBhxn2fTdI1e6AYAAAAAAAB42D2ohW7Onz9vM327devWd/0ZK4vFcsdjttfe3nZJWrFihXbt2qXs7OwHupgXQUkAAAAAAAC4jAcVlGzfvv1da0p26tRJ7u7u9bIiL126VC8b0srf399uew8PD3Xs2NFm+8qVK7V06VJlZWXppz/96b2eSrNi+jYAAAAAAABcxoOqKdkYXl5eCg0NVWZmps32zMxMDRkyxO7PDB48uF77jIwMhYWFydPT09gWHx+vJUuW6LPPPlNYWNg9XLGWQVASAAAAAAAALsOZg5KSFBsbq82bNys5OVkmk0mzZ89WSUmJYmJiJElxcXE2K2bHxMTo66+/VmxsrEwmk5KTk/Xhhx9q7ty5RpsVK1Zo4cKFSk5OVlBQkMxms8xms6qqqprnot4Hpm8DAAAAAAAATmLSpEm6fPmyFi9erLKyMj311FNKT09X165dJUllZWUqKSkx2gcHBys9PV2zZ89WYmKiunTponXr1mnChAlGm6SkJNXW1ioyMtJmX3/4wx/0xz/+0SHn9UNuFmvlSwAAAAAAAOARVVlZKV9fX508eVI+Pj4O2+/Vq1c1YMAAVVRU3LWmpCshUxIAAAAAAAAu40EtdANb1JQEAAAAAAAA4FBkSgIAAAAAAMBlkCnpHAhKAgAAAAAAwGUQlHQOBCUBAAAAAADgMghKOgdqSgIAAAAAAABwKDIlAQAAAAAA4DLIlHQOBCUBAAAAAADgMghKOgembwMAAAAAAABwKIKSAAAAAAAAAByK6dsAAAAAAABwGUzfdg4EJQEAAAAAAOAyCEo6B4KSAAAAAAAAcBkEJZ0DNSUBAAAAAAAAOBSZkgAAAAAAAHAZZEo6B4KSAAAAAAAAcBkEJZ0DQUkAAAAAAAC4DIKSzoGakgAAAAAAAAAcikxJAAAAAAAAuAwyJZ0DQUkAAAAAAAC4DIKSzoHp2wAAAAAAAAAcikxJAAAAAAAAuAwyJZ0DQUkAAAAAAAC4DIKSzoGgJAAAAAAAAFwGQUnnQE1JAAAAAAAAAA5FUBIAAAAAAACAQzF9GwAAAAAAAC6FKdUPHkFJAAAAAAAAuAxqSjoHpm8DAAAAAAAAcCgyJQEAAAAAAOAyyJR0DgQlAQAAAAAA4DIISjoHpm8DAAAAAAAAcCgyJQEAAAAAAOAyyJR0DmRKAgAAAAAAAHAoMiUBAAAAAADgMsiUdA5kSgIAAAAAAABwKDIlAQAAAAAA4DLIlHQOZEoCAAAAAAAAcCgyJQEAAAAAAOAyyJR0DmRKAgAAAAAAAE4kKSlJwcHB8vb2VmhoqP75z3/esX1OTo5CQ0Pl7e2tbt26acOGDTbvnzlzRhMmTFBQUJDc3Ny0Zs2aFjz6xiEoCQAAAAAAAJdhzZR05OtefPzxx5o1a5beeecdnTp1SuHh4Ro1apRKSkrsti8uLtbLL7+s8PBwnTp1SgsWLNBbb72lPXv2GG2qq6vVrVs3LV++XP7+/k26fs3FzWKxWB70QQAAAAAAAAAtqbKyUr6+viorK1P79u0dut/OnTuroqKiUfsdNGiQBgwYoPXr1xvb+vTpo1deeUXLli2r137+/PlKTU2VyWQytsXExOjLL79Ubm5uvfZBQUGaNWuWZs2adX8n1EzIlAQAAAAAAABaWGVlpc3r+vXr9drU1tbqxIkTioiIsNkeERGhw4cP2/3c3Nzceu1Hjhyp48eP68aNG813As2MoCQAAAAAAABcxoOavh0YGChfX1/jZS/rsby8XLdu3ZKfn5/Ndj8/P5nNZrvnYzab7ba/efOmysvLm+mqNT9W3wYAAAAAAABa2Pnz522mb7du3brBtj+sQ2mxWO5Ym9Jee3vbnQlBSQAAAAAAALiM+1l8pqn7k6T27dvftaZkp06d5O7uXi8r8tKlS/WyIa38/f3ttvfw8FDHjh2bcOQti+nbAAAAAAAAgBPw8vJSaGioMjMzbbZnZmZqyJAhdn9m8ODB9dpnZGQoLCxMnp6eLXasTUVQEgAAAAAAAHASsbGx2rx5s5KTk2UymTR79myVlJQoJiZGkhQXF6fo6GijfUxMjL7++mvFxsbKZDIpOTlZH374oebOnWu0qa2tVX5+vvLz81VbW6sLFy4oPz9f586dc/j5WTF9GwAAAAAAAC7jQU3fbqxJkybp8uXLWrx4scrKyvTUU08pPT1dXbt2lSSVlZWppKTEaB8cHKz09HTNnj1biYmJ6tKli9atW6cJEyYYbUpLS/XMM88Yf1+5cqVWrlypYcOGKTs7u2kneJ/cLNbKlwAAAAAAAMAjqrKyUr6+vrp06dJdazs2936feOIJVVRUOHS/zo5MSQAAAAAAALgMZ8+UdBXUlAQAAAAAAADgUGRKAgAAAAAAwGWQKekcyJQEAAAAAAAA4FBkSgIAAAAAAMBlkCnpHMiUBAAAAAAAAOBQZEoCAAAAAADAZZAp6RzIlAQAAAAAAADgUAQlAQAAAAAAADgU07cBAAAAAADgMpi+7RzIlAQAAAAAAADgUGRKAgAAAAAAwGWQKekcyJQEAAAAAAAA4FBkSgIAAAAAAMBlkCnpHAhKAgAAAAAAwGVUVlY+0vt7WBCUBAAAAAAAwCPPy8tL/v7+CgwMdPi+/f395eXl5fD9OjM3i8ViedAHAQAAAAAAALS0mpoa1dbWOny/Xl5e8vb2dvh+nRlBSQAAAAAAAAAOxerbAAAAAAAAAByKoCQAAAAAAAAAhyIoCQAAAAAAAMChCEoCAAAAAAAAcCiCkgAAAAAAAAAciqAkAAAAAAAAAIciKAkAAAAAAADAof4H4Ux5tqlbj/UAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import Stddev\n", + "acquisition_fn = Stddev(model)\n", + "X_new_df, acquisition_fn_ds = greedy_alg(acquisition_fn, tasks)\n", + "\n", + "fig = deepsensor.plot.placements(tasks[0], X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(tasks[0], acquisition_fn_ds.sel(iteration=slice(0, 4)), X_new_df, data_processor, crs, cmap=\"Greys\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ExpectedImprovement\n", + "\n", + "The `ExpectedImprovement` acquisition function can be used to hunt for the most positive or negative values in the data.\n", + "\n", + "We will average the acquisition function over tasks sampled from 52 equally spaced dates in 2020 to make the acquisition function more robust to the weather on a single day." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:30:54.130468291Z", + "start_time": "2023-11-02T15:30:52.927018459Z" + } + }, + "outputs": [], + "source": [ + "greedy_alg_with_groundtruth = GreedyAlgorithm(\n", + " model=model,\n", + " X_t=era5_raw_ds,\n", + " X_s=era5_raw_ds,\n", + " X_s_mask=mask_ds, # Mask out ocean from search points\n", + " X_t_mask=mask_ds, # Mask out ocean from target points\n", + " proposed_infill=era5_ds, # EI requires ground truth after proposal\n", + " N_new_context=10,\n", + " progress_bar=True,\n", + " verbose=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:31:37.991317061Z", + "start_time": "2023-11-02T15:30:54.130384040Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 370/370 [00:42<00:00, 8.69it/s]\n" + ] + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import ExpectedImprovement\n", + "\n", + "acquisition_fn = ExpectedImprovement(model)\n", + "X_new_df, acquisition_fn_ds = greedy_alg_with_groundtruth(acquisition_fn, tasks)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:31:45.970680880Z", + "start_time": "2023-11-02T15:31:37.990869346Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9dklEQVR4nO2ddVxUy/vHP6QgAjaCHdh5r52kSGMgSBiYqNjdXdcOFMXuThS7RexEsUUFBOlygd3P7w8u5+fe3aVR7/fyfr32pZw5Z2bO7nnOzDzzhBJJoogiivhPoPyrO1BEEUX8PIoEvogi/kMUCXwRRfyHKBL4Ior4D1Ek8EUU8R+iSOCLKOI/RJHAF1HEf4gigS+iiP8Qqjk98fv370hNTS3MvhRRRBH5QF1dHRoaGlmekyOB//79O6pXr47w8PAC6VgRRRRR8FSoUAHv37/PUuhzJPCpqakIDw/Hp0+foKOjU2AdLAL48uULjh49ii9fvuDt27fQ0tJC+fLloaenh6pVq6JVq1aoVKkSACA0NBSDBw/GtWvXMHLkSEybNg3q6uoydX7//h1fvnzBtWvXcODAAQQGBkIsFqNKlSoICwtDWloadHR0cPz4cSQnJ+PgwYOIjo6GoaEh0tLSsHXrVlhaWmLTpk0ydffp0wfHjx/HjxbZZ8+eRevWraXO27x5M8aMGYMnT56gfPnyWLNmDe7evYsnT54gPDwchoaG8PDwQIsWLTBx4kSkpaXh+vXrAICYmBjs3bsXjx49wt27d/Hu3TsAgLKyMtTV1aGtrQ1dXV3o6uoiPT0d79+/R3x8fI6+by0tLdjY2GD8+PEwNDTM2Y+US0QiEQIDA/H582cUK1YMGhoaKFasmPBRVVWFiooKVFVVhQ9JfP/+Hd+/f0dKSgqSk5Px8uVL3L17F3fv3hUG2ypVqmD37t1o3LixVJvx8fGoXLkyUlNTsxR4pZzY0sfHx0NXVxdxcXEFKvASiQTnzp3DgQMHkJCQgKZNm6J///6oUKFCgbXxv4SLiwv27t0LZWVlVK9eHTo6OhCJRBCJREhNTYVIJEJERITMdStXroSOjg7u3buHwMBAPH78GOnp6XB3d0eVKlWQlJSExMREJCYm4t27d7hz5w5WrlyJkSNHytT17NkznDt3Dtra2hCJRPDy8kLbtm3Rpk0baGpqIjY2FrGxsTh58iQcHBywfv16lClTBikpKWjcuDFsbGxgaGgIf39/7N+/H1ZWVvDw8ECPHj3g7e2Njh07omrVqihRogSAjJeXu7s73r17h9q1a0MkEuH58+coWbIkGjZsCBUVFdSsWRM1a9ZE9erVUapUKRQvXhxaWlrQ1NSEkpISkpOTkZSUhK9fv+Lo0aOYPXs2DA0N8fLlSygrF54aiyQePnyIuLg41K1bF/r6+nmu6/Pnz7h+/TpcXFzQrl079O/fH9bW1ihfvjyAnMvoLxP4pKQkuLi4oGXLlujbty/KlCmDGzduYOnSpRg6dCjs7OwKpJ2fQWRkJPbu3Yvw8HDUqFEDTk5O0NbWljmPJF6+fIn4+HhBwH78KCsro1SpUjA0NEStWrWgq6sLdXV14aGMjo5GYGAg3r9/j/fv3yMpKUlq5Lhy5QquXbsm027btm0REhKCz58/C8eKFSsGLS0tlChRQvhoaWlBW1sbQ4YMgaWlZbb3LZFIMH36dDx48ACvXr1CWloaSpYsiZIlS6JKlSpYuXIl0tLSYGBgIFyT2Ya2tjZev34NBwcHHDlyBPb29jh58qRwXunSpVG1alVERkaiUaNG+OOPP1C2bFkUL14cqqqquH79OkJCQtC9e3ckJycjPj4e8fHxSEhIEP6vpqaGChUqQE9PD9HR0Xj16hVev36NT58+oW7dunj8+LHcGVJBcOLECaxevRrNmzdH+fLlcffuXaioqGDFihUoV65cnutdt24d9uzZg4CAAKipqWHr1q1wcXH5/QXe09MTPXv2hLGxsdTxtLQ0dO3aFevWrUPVqlULpK3CZOXKlbhy5Qr69++PatWq4dmzZ9i6dSsGDx6M7t27S5174MABODk5ydShpKSEEiVKID09HSkpKTLlKioqUFNTg7q6OsqUKQMLCwvY2dnB3Nwcqqr/vyr7/PkzKleuLFyjoqICAwMDNGrUCA0bNkTDhg3RoEED1KlTJ1vlTm4IDQ2FlpYWdHV1FZ4TFhaGW7du4cyZM3j27BnCw8ORnp6OihUrQl1dHaqqqtDQ0ICOjg40NDRAEtHR0Xj69CnKlCmDb9++ISoqCt+/f4dEIhG+N2VlZaFtbW1t6OjoQEdHB9ra2khLS0N4eDjCw8NRsmRJGBoawtDQEO3atYOlpSVUVFQK7Dv4ET8/P+zbtw+bN2+WeqE8efIEY8aMwYkTJ1C8ePF8tREREYHx48djx44dWLx4MQYPHoySJUv+ngIfHR2N/v374+jRo3LLb926hZMnT2LhwoX5bqswOXToEAICArB06VIoKSkJx9PT0+Hm5oZx48ahefPmwnGRSIS5c+di0aJFMDAwwJ07d6CrqwsNDQ3h+uTkZLx9+xZv3rxBYmIiUlNTkZaWJvz78eNH+Pn54d27d9DX10e/fv0wadIkYUaR+XP+2J+ckJ6ejkWLFuHdu3eIioqCSCSCnp4erKys4OjoKDP1TU9Px7Fjx7B+/XpcunQJQMb6snr16oiPj0dUVBSioqKgq6uLBw8eQFVVFd27d8fVq1dRrVo1NG7cGPr6+khPT0d6ejrS0tIQFRWF9+/f49WrVwCAqlWr4sCBA2jZsiXCw8Oxd+9evHjxAmFhYQgNDcWbN2+EtbtYLEZUVBSePXuGoKAgvHjxQvi3Ro0aWLVqFaKiouDh4YGIiAiZ2Y2+vj5sbGxgb2+fryUlSXTu3BmnTp1CsWLFZMp37tyJ79+/Y+DAgXlu48e2Zs6ciblz52LAgAHw9fXNXkaZA+Li4giAcXFxOTk9W65cucIlS5YoLJdIJLSxsSmQtgoTCwsLJicnyy378OED3d3dpY6lpqZy2LBhBMA+ffrkur1Xr15x5cqV7NChA5WVlQmAAKisrMxq1arRwsKCERERTEtL47t37/jgwQOmp6fL9CssLIwk+fHjRw4ZMoTt27dn3bp1hfoAsFOnTkIbly9flunLpk2bCIDFixenr68vd+7cyQkTJrBXr1709PRk27ZthbqOHDnCWbNmUUtLi5cuXaJEIpGpLy4ujteuXaOpqSkB0M7OjgMGDOCtW7fYo0cPqqqqUkNDg3/88QdtbGw4ePBgof4pU6bwr7/+EvqrpqbGBg0a0NHRkdOmTWPjxo2ppKTEP/74gwCop6fHqVOncubMmRwzZgx79eollAFgu3bteO7cuVz/PiT54sULjhw5UmF5SkoK7ezsZI6np6czJSVF4eefv+M/f4vMe89ORn+JwAcGBnL69OkKy1NSUujg4FAgbRUW8fHxdHZ2zvIcKysr4f/p6ens1asX1dTUuH79erkP/T+RSCS8cOECvby8WLlyZSmBVFJSYvXq1dm3b1+uWLFC6riqqqrwd8WKFTlhwgQePXqUtra2wgvC3NyckydPJgA2adKEAwYMYLNmzaTaUFFR4ZIlSygWi4U+Zbalra0tde4/qV+/vnDeiBEjOGjQIOrq6jI8PFw4RywWc9WqVVL3VrNmTfr5+ZEkd+/ezZo1a7Js2bJcs2YNo6Ojpdpo1KiR8HICwAkTJjA4OJhpaWlS56WlpXHlypXU0tKihoYGixUrRgCsV68eS5QoIXUfmZ+6detm+/vI486dO5w9e3aW59ja2gr/l0gkDA0NZVBQULaf0NBQhc/NoUOHfl+BT09Pp4mJidSD9CPbtm3j5s2bC6Qtkrxx4wadnZ1pbW1NS0tL9u/fn8+fP89XnQkJCezZs2eW51haWpLMeLD79+9PZWVlHjp0KEf1379/X3iQdXR0CICVKlXi5MmTefbsWcbGxgrnpqSksFWrVixfvjzHjh1Lb29v+vv789KlS/T09GTp0qUJgPXr1+fmzZu5adMmNm3alLq6uqxduzbLly/Pr1+/Cve1Zs0alitXjjVr1qRIJJLq19ixY2WEY8SIETL9j4+P59GjRzlo0CBqaWnRxsaG5cuXp4WFBc+fP89Lly7RzMyMANivXz/u3LmT9+/fl2pv8ODBVFJS4pkzZ2Tq//DhA83NzTlnzhxqampy48aN2X6nDx8+JABaWFiwdevW1NfXF0ZGQ0ND1qpViyoqKgRADQ0NmpiYcNWqVQwNDc3Rb0aSsbGxckfwTIKCgjhkyBDh70xh//btG5OTk+WO7snJyfz27Zsg9PLIqYz+EoEnya1bt3LMmDEyb6wXL17QxMSESUlJBdZOnz59+OXLF+FYcHAwbWxs5E5Vc4OlpSUTExPllr1584b9+vUjSS5dupQAWLp0ae7fv5+fP3/Ost7ly5dTSUmJdevWZceOHamkpMRFixYxNTU1T/0UiUR8+vSp1HcdGxvLevXqUUNDgwC4e/duqWsePnxIFRUVzp07V+p4SkoKDx06xN69e7NMmTIEwPLly7N///4MDg6WOlcsFvPJkycsU6YMZ8yYwcWLF0u9KDQ0NDhixAiFv7WJiQlbt25NIyMj7t27l8nJyYyPj+fmzZtpbGzM9+/fk2SW090fefr0KZWVlamrq8vmzZvTxcWFy5Yt4/3796Xu78aNG1yyZAmtrKyopqZGZWVlmpmZCbOT5ORkBgcHMz4+Xm47Q4YM4dWrV2WOSyQSuri48PHjx0K/M4U9J2QKvbz7nTlz5q8ReIlEwkePHnHixIk0Nzdn//79uXDhQh4+fJjfv3+XOnfjxo00MzPj0qVLuWXLFvbv35/du3cX1pj5JSIiglZWVnJnEklJSTQyMpKZ/uWGEydO0NPTU6b+79+/s2vXrnz06BHJDOGxsbFhjRo1hIe9atWqnDRpElNTU5mcnMw7d+5w06ZN9PLyYpkyZWhubs7du3dLnW9sbMxmzZoJo1CbNm1ytDRQxJs3b1izZk1Onz5d7nc0duxYamtrK/zd09PTef36dU6YMIGVKlWiqqoqzc3N6e7uTmtra5YsWVJYU1taWhIAW7RowfHjx9PJyUl4mZUuXZpLly6VuZcVK1ZQXV2dM2fOpKmpKQ0NDdmtWzdu27ZNoe4kO5KTk3P1nUVFRdHX15fFixdnlSpVWL58eeE3KVeuHLdv3y5TX0JCAi0tLblq1SphJvbw4UP27NmTPj4+wnkpKSkMCgrK8b0kJyczKCiIKSkpUsclEglr166dIxnNs5Y+PT0dT548wY0bN3Dz5k3Ex8ejdOnSePDgAV6+fInSpUujXbt2gjY1Li4OtWvXhpWVFZ4+fQoNDQ0UL14cKioqaNOmDSpVqoTGjRujVq1a2XUnxyxfvhx16tSBtbW13PKlS5eiXr16CstzwqZNm3DkyBG4u7ujevXqePr0Kfbt24dx48bByspK5vywsDAEBATgypUrWL9+PUqXLo1v375BIpFASUkJhoaGaNKkCYYPH4727dvj9u3bOHXqlNwdC21tbURGRiI1NRXJyclQUlJCuXLlcq2hV0RoaCiqVq2K+vXro1u3brCxsUGzZs3kGqukpKTA29sbAQEBiIiIgKamJtq3b4/27dvj48eP6NevHzZs2ICBAwdKXf/+/XssXboU3t7e6NWrFzZv3gxNTU0AGduMjRs3RkxMjHD+q1evCs1CLivWrl2Lhw8fomrVqqhatSoMDAywefNm7N+/H40aNUKLFi1Qv3594VOhQgWcOHECBw4cwPfv31GjRg0MGTIE9erVE+r8/v073r9/j+rVq+domzSr86OiolC2bNmC3ZabOXMm3r59i48fP+Lhw4dITEyEuro6WrZsiXLlyiEqKgpVq1aFs7MzzM3NoaamBiBj++DZs2cYNmwYnj59ChMTE2HP+fz58wCAMmXKoHLlylBWVkZYWBhEIhFq1aqFOnXqoHbt2qhduzb09PRQokQJaGtro0SJEihXrpzQRqaVmb6+vrA3PXz4cIwbNw7VqlWTe19nz57F69evMXz48Gy/bEVER0cLW0CRkZGIiorChQsXUKtWLbi6uqJr165SAiiRSJCYmAgdHR3cuHEDR48eRd26ddGkSRM0bNhQZn82NDQUPj4+mDNnjtRxTU1NuXv2P9K2bVtcvnw5X8YlZ8+exZYtW+Dv74/4+HhUqFABpqamwqdKlSoy15BEYmKisFW4evVqTJw4Mcv+HjhwAH379kXDhg1x/PhxwSrt3r17aNeuHVJTU9GuXTs0adIEFSpUQIUKFVCtWjXUrFkTVapUkbJHyClisRgxMTEoW7Zsrq/N5MKFC9ixY4ewBZicnAwAKFmyJAYMGIBRo0ahYsWKcq8tSIEvFMMbTU1N/PHHH6hcuTKaNm2K9u3b488//8yVEQdJKQF49uwZHjx4gM+fP+PTp08Qi8XQ19eHuro63rx5g1evXiE4OBhRUVEydamqqqJmzZpISEhAWFgYSEJDQwNNmjTBn3/+iZCQELRr1w729vaoVq2aMHJksmHDBpQtWxY9evTIUd9TU1Nx/fp1+Pn54c6dOwgODsa3b98AAE2bNoWdnR02btyIMmXKQFtbG7dv30bLli2xcOFCGBsb49ixY5g5cyZCQkIQFhYGTU1N3L17FxcuXBAs0Jo2bYomTZpAWVkZ8+fPx6NHjzBgwADo6elh06ZN2LBhg2B4khOSkpLybeQBZBhE3bx5E6dPn8bFixfx8OFDkMSff/6JO3fuCKP2u3fvMGLECPj5+aF27dowMzNDQkICdu/ejYEDB6JXr17o0KGDzCwhISEB1tbWuH79OiZNmiQ1o4mMjISvry+uXLmC8PBwfP36FREREYLNgYqKCrS1tVGmTBno6OhAV1cX5cuXh76+PqpUqQI9PT3o6upCTU0NMTExiI6ORlRUFA4dOoQnT56gc+fOcHBwQOnSpdGmTRu5L7GcIJFIEBISgqCgIFy9ehU+Pj5ITU3FiRMnYGZmJnP+rxD4XK3hM5Ukv4KoqCgGBwfz/v37vHLlCk+ePElvb2+OHDmS06dPp6+vL0+ePMnly5fT1dWVdevWldqeAsAKFSqwTZs27NevH/fu3UsjIyOZ9dDjx485Z84cGhkZUUNDg6VLl2adOnXYpk0bYSvKwMCAvXr14uzZs7l//36ePn2aLVq0YIkSJejo6Mh3796RJC9evMiWLVsSAPX19QmAjRs3FvaZ27dvT1VVVWpra1NTU1PoZ/ny5dmmTRtaW1vz2rVrjIiIENaJbm5uwnnLly/noUOH6Ofnxzdv3vD9+/cMDg7Ot3JVkRJMJBIJ++uZ91OuXDlh+zCzXxUrVuSqVas4ZMgQQW9Rrlw5litXjgDYqlUr3r59W6ruMWPGCNdra2uzZcuWXL16NcmMNXFCQoLU+ampqXzz5g3Pnj3Lxo0bU0VFherq6lRSUpK7zfbjR01NjXp6ejQ1NeWaNWvYsmVLQVtfrFgxTp8+vUCUxnFxcbS0tKSGhgbPnj0rU565hv/nM6iIrM7PqZ7tlzrPFDZisRgTJkxAZGQkOnTogM+fP+P9+/e4f/8+goKCoKqqChMTEzRs2BDly5fHlStX4O/vD11dXRgZGaFdu3YQi8WIiIjAt2/fBH1AkyZN5K6TJRKJzMhFEsePH8fJkyfRu3dvtGjRAsbGxlBRUUGNGjXw559/Yvjw4VBTU4NIJEJAQAD8/f3h7e2N5ORkiMViABm25XXr1oWhoSGio6Nx7tw5iEQioR1lZWXUq1cPRkZGWLhwoVxbfiBD9xIXF4e4uDi8efMGT548ET6fP39GfHw80tLSULlyZdSrVw9169ZFrVq1UKFCBZQsWRKdO3cW6po6dSrat2+PLl26YPLkyVi0aBEAwMjICDVr1kRISAiqVasGVVVV+Pn5ISQkBIMGDRIceObNm4epU6cCAOLi4nD58mVERkbi8+fPOHDgAEqUKAFXV1fMnDkTADBp0iSMHDlSZsZiYmICPT097N27FwCQmJgoWOM9ePAAO3bswKNHj9CwYUMEBARAS0tL5vfj36a8PXr0wJUrV6Cvr49Pnz7l2fw2KioKV69ehb+/PzZt2gQtLS3ExMQIS1Dg/0dsebNPeaSkpODDhw8/b4QvyG25n8muXbtobm5OZ2dndu/enTY2Nty5cydXrVpFCwsL1q5dm7q6umzcuDF3794to7kXiUQKbQYKg/DwcPbr14/fv3/n8+fPefjwYc6fP5/u7u5s1aoVK1SoIDNqqaqqslatWtTS0mK9evXYrVs3mpubs1WrVqxXrx4NDAxYvHhxmeuUlZWpqqoqMxsqV64cGzVqxDp16lBNTU3muitXrsj0OyQkhCtWrGCjRo2or69PAwMDli1bVhh1q1evzlu3bjEuLo4aGhocO3aswu+gb9++Qv+GDBnCESNGUE1NjQYGBgwJCRHOCw0NZbly5ejl5aWwLolEItSXnUbc0dFRatuwWbNm9PDw4NGjR3M86r98+VLqO/vzzz954sQJmfMKcluuaIT/B/xbkaSiopLtmpYkAgMD4ePjgydPnqBq1apISUmBnp4eJk2ahLp16xZqXyMjIzFu3Dhs375d4TkWFhbYtWsXNDQ0sGzZMsybNw9isRh16tRBjRo1IJFIpBxJtLW1kZ6ejujoaNSvXx/JycmYPHkyAKBjx46wt7eHtrY2qlatipiYGBw9ehQHDx5E1apV0b17d0RGRiImJgbVqlWDqakpbGxspGYz6enpgn6mWLFiKFWqFBo1aoTg4GCEhYUBALp37w5tbW18/vwZly9fxtu3bxU6SG3cuBHHjx/H/Pnz0bRpUwDAkiVLMHnyZISEhKBixYpISkqCsbExQkNDcefOHSmvvB/p06cPduzYgQkTJmDx4sVZfvfz58/Hxo0b8fnzZ2hqaqJy5coQi8V4/fo1ihcvDktLSyxevBg1a9ZUWEd6ejo2b94MPz8/XLp0CUlJSShXrhzMzMzQsGFD1KxZE7Vq1UKDBg0QExOD2NhYlC9fHsWLF5c7cySJ5ORkREREoGTJknLdbItG+Dzy8OFDmpubs1GjRuzbty/nzp1LExMTHj9+nG/fvqW5uTkfPnxYqH2QSCTs3LmzwtHo6dOn9PT0JEn6+PhIjbz6+vr8888/WbduXVauXJmlS5cWTEkzPyoqKhw4cCDbt28vHMvUO/zI8+fP2bVrV1avXp3Nmzdnq1atqK6uTgAsW7YsTUxM2KRJE2Ft/uNnypQpwr2EhISwUqVKwvq+devWWZpWK6Jr167U1tbm5cuXee/ePdatW5fFixeXMpyRx+jRowmAw4YNy/K8I0eOEAD79u3LjRs3CnqFzZs38+XLl1y4cCGrV6/O8uXL89OnTznqs0gk4uXLlzlp0iS2bt1asHrE35aTJ0+eLBDT2qIRPg98/PgRAwYMgKenJx48eIB58+YByNDO9+nTB4MHD0ajRo3Qu3dv+Pn5FWpfjhw5gqtXr2LlypVSb/3k5GQ4OTnhr7/+Qt26dSGRSPDkyRN8/PgRISEh+PjxIxISEgRvMC0tLeGTaeuwe/duzJkzB3FxcTA1NcWkSZPkapHlkZKSgoCAAFy6dAkvXryAnp4eDAwMUKFCBaipqQneb1ZWVoKrLpARby0tLU1Ys+aFkJAQ9O7dG9euXYOKigoaN26MnTt3on79+lleFx8fDwcHBzx//hxfv35VeN6sWbOwYMECjBo1CklJSThz5gxCQ0Nx7tw5dOzYEQDw9u1b1KlTB3379oWvr2+e7iMmJgbBwcGYPXs2/P390bNnT8ydO1fYCVNTU5MZ6dXU1LLUJxTKCF/YI9uvZvTo0bx79y7d3NxkbJZjY2MFp4chQ4bw1atXhd6f9evXs0uXLty1axevXbvG1atX08jIiJcuXVJ4TVpaGo8cOcLhw4dzxIgR3Lt3L+fPn09XV1cOGzaMN2/epEQiEXY9fhY3b94UTErzQ3p6OletWsX58+dTJBJRIpHw6tWrMo41IpGIx48fZ8+ePamhoUElJaVsZxWRkZFs1KgRa9asySZNmtDV1VXqmX/w4AFr1qxJHR0dnj59Ot/3IpFIuHv3bpYtW1ZqdqSrq8sPHz7kqq5CsaXX0dHhyZMnc9WRfxNdunQhKe3N9CM9e/ZkbGwsly5dKldpVRjExcVx69atXLx4MWfMmEE7OztaWVmxS5cudHZ2ZmBgoHDuu3fvaGJiwhUrVvDt27dcs2YNDQ0N+ccff/D169cMDg7mxIkT2atXLxmnmJwSHh7OgwcP8tChQ4yMjCyo28wzmUsaFRUVtm3blp06dWLNmjWFZUzjxo25ZMkSKUVfXjhx4gSLFSvGP/74g2/evMnRNZcuXaKlpSWbNm3KChUq0MLCgi9fvpQ5LyoqimfOnOGhQ4fYsmVLlipVSqGPhiIKReABsH379rnqyL+JTEHv06eP3AekX79+jIiI4IABA/j27duf2jcfHx8OGjRISqP7+fNn9ujRgydPnmR6ejpNTU358eNHkhkOQg4ODkxLS+OzZ8+kPLgOHz7MSZMmMTExkffu3ePz58+ztS9PSUnhkCFD6OjoyC1btnDz5s3s1q0bR44cmeeXR345ceIENTU12bBhQ7q7u9PBwYG9evXi+PHjuXr1aj59+rRA2omKimLp0qVpY2OT4z1zMkPnYGBgQE9PT06fPp01atSguro6p02bJqOfCQ8PZ7du3QiA8+fPz3UfC0Xgv3z5kmPPpH8jTk5ODA0N5dWrV6W2jCQSCdPS0mhiYsIvX74onAEUFhEREbSxsZErlCKRiMbGxjx27BgXL14sHB85cqTUdHT06NG8d+8eyQznnmrVqrFz586cMWMGR48eTVNTU+7fv19hH9zc3AQ/9R85ePAgBw0alI+7yxvr16+nsrIyK1euTBUVFSopKbFZs2bs1asXT58+natt1JSUFE6fPp0DBgygh4cH+/TpQzc3Nzo4ONDIyIhVqlQhkBEYIzc4ODhQSUmJffv2ZUhICJOTkzl9+nSqq6uzSpUqnDFjBl+8eME9e/awdOnSLFeuHA8cOJDbr4JkIQn8zZs3uWXLFnp4ePDChQt56tjvzNWrVzlw4ECKxWKOGDGCAwcOpL29Pa2trVm/fn3WqVOHzZo1Y1BQ0E/t1/Lly7NcSq1bt4729vZSI9o/IwZduHCBy5Yto0QioaOjI52cnKS026mpqfT09OT27dtl6n/y5AmHDh2qsP0+ffrI1fIXFmfPnqWSkhIHDRpETU1Nzp8/nxs2bKCenp4QeENPT4+DBg3iiRMnFLqxkhkuvI6OjixWrBhbtWrFNm3asF27duzYsSOtrKzYs2dPWlpacsSIEXL30rMiNTWV69atY7ly5aikpEQjIyOuX7+et27dYt++fYU4BwDo7OzMiIiIPH8nhTalz/x07Ngxz537nVm3bh27devGKVOmsE2bNmzVqhWrVavGypUr08PDg926dZPxHS9sRo0axdevXyssv3jxIs3NzYURnCStra2lZmN+fn5cvXo1L126xOnTp3PMmDEyQUDEYjFNTU1l/O7nzJnDGzduKGz/zJkzXLFiRS7vKveEh4fTw8ODSkpKNDExob+/PwFIrYslEgkDAwM5btw41qxZUzBKMjU1lSsM27dvJwCamZnR39+fBw8e5ObNm7lixQrOnj2bhoaGBMAaNWpw0qRJvH//fq5dkuPi4ujr60tzc3OqqKhQR0eHBw8eZEpKCo8dO8bz58/n+7spFIE/evSoYEM9YcKEfHcyt2T+mMOGDaOjoyMnT55cKGvpx48fs0aNGnR2dubIkSO5c+dOTpkyhePGjeOBAwdoZmYmY9tdmPz1119ZaoU3bNjAefPmSf0mS5cu5bFjx4S/+/bty7dv33LAgAF88+aNwohDS5YskYnnNmXKFMG3Xx7Xr1/nwoULc3NL2ZKWlkYfHx/++eefrF69OsuVK0dVVVWWLl2a3t7ejI6OpqurK4sVK8avX7/y4sWLvHHjhmBj7+Liwtq1a3P37t1csmQJAbB27dps2bIlfX19BWvKyMhIDhs2TCZkl5aWFvX19VmrVi2WKlWKAwYMEAJ+GBoacvr06VlGTfr06ZPc7/fr16/s2rUrNTU1c6z8ywmFIvBWVlZ0cnJisWLF2Lp16yyvSU9Pp5+fHydMmMDJkycL20F5RSwWc9CgQRw5ciRfvnzJ5ORkBgQEsEePHlyzZk2e65WHj48P9+3bx8TERPbo0YNjx47lvXv3GBQUxJUrV7Ju3bpcsGBBgbaZFeHh4bS3t5f7/aWmptLExITJycl0cHDgrVu3SJLR0dE0NjZmSEgI/fz8hOg7PXr0oKenJ/fs2SO3rW3btsmsI0+ePMm//vpLYf9mzJiRp+hBUVFRXLhwIS0tLWlra0tXV1dev36dJNmhQwcCYLdu3Thp0iTOmzePa9eu5bdv3/jy5Usp4SxVqhQXLFjAPn36sEKFClRWVqa+vr4QLCQzOMSPn/Xr10v1JSkpiR8+fGBMTIzCoCipqak8e/Ys+/XrJ9QjL7LNly9fhHJbW1tevHhRqs6EhARWq1aNRkZG+ZKJHykUgTczM2PLli05d+5cqWCE/+T9+/c0NTXlokWL+OzZMz548ICTJk2inZ0dY2JicnUjmSxfvlzmRyIzRv2BAwfK/eLzyrRp0/jw4UN6eHjI3fM+ffo0q1WrlueoK3lh9erV9PLykvpBv379ShcXFyFOXlxcHHv16kUPDw8eO3aM69ato4GBARs0aMDt27dz5cqVrFGjRpY27EOGDJHRUWTGIJQXT+3Dhw/s3Llzrh/cjx8/0tjYWErB9vz5c1pbW9PZ2ZkAuHbtWrnXhoSE8I8//qC+vj7d3d2poaEh+AkYGhrS1NSUI0aMoI+PD/v168fOnTuzY8eOrFatGjt16sRVq1bl+7fz8vISdAULFy7k8+fPuWnTJlpYWNDGxoZVq1aVesGUKFGCffv25d69e/nu3TtOmTKFampqeQ5b9k9+WUy79PR0tmvXjiNGjKCVlRWtrKw4depUfv78mYGBgXRycsrZHfxA5tpSkeb1y5cv2UaQzQ0+Pj5ct24dXVxc5Jbv3LmTffv2lavgKkxOnjxJGxsb2tra0srKit27d+f+/ft56tQpXr9+XVizv3r1ij4+PvT19WVISAgfPXrEXbt28dSpU3z37h2trKzk7ra8e/dOYQDG4OBgGhkZcfPmzYyKimJkZCQ3bNggFVsuN3Tr1k1qOXbkyBHq6ekJAlK2bFk+e/ZM4fUXL17krFmzSGbMSkaMGMHAwECKxWKpENaZn8GDBwvXZoYUyzTWEYvFvHbtGidNmsQFCxbw6NGjfPHihZQwhoaG8tSpU0LIKolEwhs3brB3795CXMCSJUuyT58+3Lt3L8PCwnjx4kXBpFjeZ8CAAbn+3hTxywR+yZIlrF27Nq9evUqJREKJRMJr166xc+fOvHXrFgcOHMgXL17k7C7+JiwsjP3798/ynILcKouJiWHjxo3lCnR6ejrNzc357t27PMWWLwjS09P56dMndu/enf369eP69es5e/Zsmpqa8uDBg9lev3//fqmYe2lpaTx06BCNjY2FfXx5JCcnc8GCBTQ0NGTFihXZrFkz9u7dO9cWmO/fv2ffvn1JZjxbmSO6nZ0dnz9/zrt372bp/UZmRLSVtzOQlJQkNdUHQCMjI8EyMioqik2aNCEAqqur8/Xr11y9ejWBjDgEurq6Uj4H+vr6rFu3ruDxp6GhQScnJyl//v3799PNzY2jRo1igwYNhOtLlizJxo0bC7H98Lc9/6lTp7hgwYICi92Y+T3+dIFPTU1lpUqV+ODBA5my+Ph4GhkZ8ciRI/T29s5JswLR0dFZjuASiYRdunShWCzmmzdv+ObNm3y7s3p6erJDhw5Shi6RkZHs06cPd+3axdDQUHp4eOSrjbwSHx9PExMTGdPYtLQ09uvXT0pZp4gXL17Qy8uLNjY2tLGxkQq4qIiLFy/SxsZGSln1+vVr9ujRg0ePHs1x/8+ePctVq1YxISGB7dq1o46ODnft2iW1LMguEYmrq6vC5aG3tzc7duxIExMTGceaY8eOSY2y79+/565duwiAkZGRlEgkDAsL46VLl7hhwwbOmjWLw4cP5/bt2xkUFCQMaABobGzMa9eu0dHRUcYg6tChQ1y4cCH79evHsmXLCuazxsbGOf6ecsMvEfjDhw/TyMhI4Qi+bt06jhs3TipyZyZv377lyJEj2bhxY7lrRVtbW4UPZEBAAC0sLGhqakovLy96eXnRxMSEPj4+eVaKREREsEOHDnRwcBCWJt26dROUU6tWreLhw4fzVHd+WbNmjUIDDZFIRHNz8wJTBv1Yr5GRkVyf8NTUVJqamma53/0j9+/f5+jRo2lsbExtbW2Z6DcRERHs1atXlnUsW7Ysy33xwYMHy7WXkEgkXLZsGU1MTITZ0OvXrwkgx/bx6enpPHz4MP/880+qq6vT0NCQy5Yt44YNG7h3714Zs9hp06bx0aNHjI2NLTS9zy8R+Dlz5nDNmjWcM2eO3PL79++zUaNGUo4BX79+pbW1tdRb90dljUgk4rx589iqVStqamryjz/+4PLly4WXwtevX1mjRg2OGTNGal2anp7OefPmCeu8vDBq1Cju379fWJpk8urVK7n71T8LGxubLNseMWKEXJvt/HD48OEsd0P27NmTo2QQZIbQ6evrU1NTk9euXZMpnz9/frbCFxUVRTMzM7mmrplmxTlFIpGwdOnSuXbZ/f79Ox0cHFisWDGWKFFCmPZv3bpV6jwXF5cCnb7L45cI/KpVq3j8+HF26dKFT548kSmfPXs2W7ZsKfwdGhoqWEYB4PDhw3nt2jUpwc3c4mjSpAkdHR1Zrlw5IS572bJlBS30+/fvGRERwVevXvHevXvCF5yfOPepqakcOnQoXVxcePz4cV64cIHjxo2jlZVVtskkckJmDP+bN2/KeHtlRXbT3RkzZmTrI55bFi1aJFc4M3n+/HmObTNevXpFZWVlNm3aVOqZkkgkPHLkCLt3756jJdnZs2dpYWEh5KtLTk7m1q1bBRPo3ODu7s7KlSvnyS/g4MGD/Ouvv/j9+3cC4I4dO4SyTF3LP3ny5Al79OghZSyVHwpF4CdNmpSl80BoaCgdHR0ZERFBe3t7jhgxgufOneOpU6fYt29fVq9ena9fv2ZUVBRnzJhBXV1dwZCna9euQj3Pnj3jkiVL6ObmJihYMhP0paen88SJExw2bBgdHBzkhnvK/FSsWJGtWrWilZUVT58+LaRTyi0hISH09vbmihUrpLzT8sOhQ4doamrK8ePHc/78+bS3t+fgwYNzZNDj6emZpdGHtbV1gRsGbdmyhbt27VJYfubMGS5dujRHdc2ePZslS5bk2bNnaW1tzd69e3PUqFE0Nzfn1KlTcyV0X7584axZs2hra8uuXbtyy5YteZo2Z6ahysvOS3p6Op2dnenr60sNDQ3hewgKCpKra9m9ezeLFSsmBNMsiOCwhWZa6+vrm+W5U6dO5V9//UWJRMIHDx5wxYoVXL16NadOncqJEydyy5YtQpTW0aNH8+3bt1RSUuLAgQM5ZcoUIcqrlpYWW7duzYEDB3LJkiUKrZJmzZrFc+fO8eTJkzx69KgQDeXQoUOcOHEiW7ZsKRXxxdLSssCENq/s37+fAwYMkJmWX716lVZWVtlmw3n69CmdnJzkjoL+/v4cNWpUgfaXzIgHYGlpqVA30L179xyPqqNHj2a9evWEv8PCwvjmzRuZzEQ/i9jYWJqamlJdXT3PPiKpqalctmwZS5cuTT09PXbu3JkDBw6U2Um4ePEiVVVV6ebmxpCQENaoUYN16tTJ95S/0AT+1KlTXLlyJRs0aMDq1avT3d2dQUFBfPXqFW/evMlr167xzz//ZNWqVTlx4kROmjSJpqamXL58OSUSCadOnUoANDc3F6buLVq0IJAR/tnW1pbOzs40MTGhjY0NzczMOGfOHIUj1v79+7PU+m/YsIF79uzhmzdvuGXLFiEtspWVFe/cuZOT2y9QMt1YFXkdLl++PEca7+3bt9PBwYEBAQEUi8X8+vUrFyxYQAcHh0JTDK1fv55eXl5S9YtEIk6fPp3z5s3LcT0DBw5kyZIlOXjwYM6bN69AjaZyS2RkJBs3bkxdXd0CiXGwaNEiamhoCI5ImS/lTKvC4sWLs1OnTsLL/tWrV9TX12edOnVyvQz5kUJ1nlFVVaWDg4OU3fGP+cozLYseP37Mx48fS41kly5dora2Ng0MDAQhjo6OZnh4OBMSEmhhYcETJ04IX5RYLObJkydpYWEhVwucqT2WFzAgM3/cjyNHeno69+zZIwi+sbExZ82axXHjxtHY2Jimpqa0t7fnkSNHCsUV+NatW5w5c6bC8ujo6BwbJ719+1awYHRzc8u1W2heOHz4MC0sLOju7s6+ffvSzMxMas2aE86fP09bW1s2bdqUpUqVopKS0k+NvvMjly5dIgA2bNiwQPQenz9/pouLCxs2bEglJSXa2NjQ1NRU2IuvUqUKu3XrxoEDBzIpKYlnzpyhqampYC3o6OiYpcGRIgrNPfbKlSvCWvj69eu8f/8+Bw8ezClTpvDs2bNs3749y5YtK+Xql5qayuPHj9PW1pbKysps1KgRJ02axEmTJkk5asyePZunTp2S24dTp04p1LhfvXqVlpaWvHv3rnDs3r17tLKyUmjjnZ6ezl27dtHU1FRQAsr7NG7cuECDd/r7+ys0GSUzFFdZpRv+8bxfFXiCzNgdefr0aZ5NpTNJSUmhvr6+YOv/K7h58yYbNWpEZWVlLlu2rMDq9fPzo7q6OpWVlWlnZ8djx44Jg9/58+fZrFkzDh8+nFFRUXz37h2rVq3KKlWq0NTUNNeznl+ipX/w4AFr1KhBd3d3khl52V1dXQWLp/LlywsZVn70Tsq0kTc1NVW4RpRIJDQzM1PY9rt37zh27Fhhz3zMmDE58qQbMmQIr1+/zgcPHvDixYs8e/Ys/fz8eOjQIZqYmLBYsWKcOHFitvXklE+fPtHNzU1h+e3bt7Ns7+vXrxw9ejTNzc3ZrVs3mpqacvbs2QWWXjs70tPTuXTpUpqYmNDDw4OOjo60t7fP0n02O5YvX04VFRUh5t33799/evis1NRUjh07lkpKSgUWxu3Tp0/s1q2bXGXxhw8fWKtWLalB6t27dzQwMGCjRo3YoUOHXM3WfqrAh4aGctCgQQTAmjVr8s6dO7x58ya1tbVZt25dTp8+nadOnSIAmpqacu/evfT09BSUaRMnTuT+/fuFmHJkhmb88ePHUm3a2toW6JQ1Pj4+S5PcL1++sGHDhlRXV+eWLVsKzJjF2dlZbvglsVhMBwcHhS+q8PBwGhsbMyAgQDgmkUh4/PhxWllZFbozj0QioYeHBzdu3Cj1O0RFRbF79+5y0ynlBJFIxHr16lFfX59Vq1YV9rOrVatGNzc3rl+/Ptfm2HlBLBbT3t6eurq6BbLLsX79eoVWj7NmzaKPjw+nTp0qdfzp06csVaoUq1atyjNnzuS4rZ8i8Pfu3aOLiwtVVVWppaUlREqtXLkygYxMIz+aHJqZmQmjur6+Phs2bEg3Nzfu2bOHmzdvZtmyZenu7k5LS0t6eHhwypQptLOz46BBgxgdHZ3lCJ8Xnj17lu3obWlpKeRz69SpU4EYtERERNDU1JTbt28XtjkfPnzI7t27c+fOnQqvGzp0qMJ15t69ewssCIVEIuGtW7fYv39/2tjYcODAgbx9+zZv3LjB8ePHy70mJSUlyxladty5c4e9evXipEmT6Ovry71793LUqFFs3ry5sOT6448/uHbt2kLV5gcGBhLIWYTmmJgYrlq1iq6urhwwYAD9/f2lXoQrVqxQqPXv27cvb926JddzccqUKQRANzc3Hjt2LFuTZ7KQBP7r16988eIFr1y5wjlz5lBZWZk1atTgihUr+OzZM1aoUIHly5fn0KFDefnyZRmll1gs5okTJ3jq1Cl26dJFajpDZgSJrF69OseMGSN1PCAggH/++WeBTq3JDAVLVg4w379/F4xczp07x5o1a7JUqVIFMn1OSkqir68v7e3taWtryxEjRmQ5iqWmpkrNgP5JWloaLSws8t0viURCLy8vjhw5UthSevv2Lb28vNiwYcMsl0nTpk0T/PELkoSEBB49epT29vZUUVFh/fr16efnVyhBSMaOHUsVFZUsIwyRGXojExMTHj58mLGxsQwJCeH8+fNpbW0tCF1AQIDCZ3bq1KkcM2aMjLNTUlISNTQ0qKKiwi5dunDNmjW0tbXlpEmTslQiF4rA/5g1I/OzZMkSdunShcrKyixbtmyOthb8/f3lBpCwsLCgkZERW7duzaioKJIZD+C5c+fYoEEDrlq1KifdzRU2NjYKrdx27NghZfcfHBxMAIL/+c/k27dv2XrnZWeBlxMyQ2LLo27dulkapmzatClHjjv54cmTJ2zevDmBjLxzjRs35rRp0/JtvBIfH8+RI0cSAFeuXJnluZGRkTQ1NZX74r9165bwO0kkElpaWsq1Ibl9+zb19PRkbDEcHR05b948Qe+lp6fHLVu2cMuWLTID4Y8Ueky7TEs2dXV1tm3blhs2bMixeeiQIUNkfqCQkBB6eHgwNjaW1tbWbNSoER0cHGhmZsYpU6bw69evhRItNjAwkNbW1jJ9v3XrFjt37izzo7Zo0YKqqqq0sbHh+fPnOWfOHJqZmQk2AwsXLiwUBVpqamqWI7hIJCqQEb5z584KrSm9vLzYpk0bhdcOHz68wEJDZ4VYLOazZ8/o6+vLvn37Ultbm0pKSmzSpAnbtWtHMzMz2tnZsV+/fpw4cWKW++uRkZHcvHkzK1asyOLFi3Pp0qXZLkuWLFmSpWLPyclJGPhCQkJoYmLCdevWMSIigjExMdy+fTuNjIw4ZMgQTp8+XdC93Llzh56enuzRowf9/PwYFBREV1dXYTnZpEkT7tq1ix8+fJDpY6EIvIqKCi0sLLhp06Z8WQZ5eHjIaC6fPHnCyZMnk8wwptmxY4eMxVlOBT4lJYUPHjzg06dPc6Tku337Nm1tbdm3b19OnDiRtra2HDJkiNy1U3R0NNeuXctGjRoJ9v+ZX75YLOaRI0doaWlZKEI/YsQIhVPmbdu25TvUl1gsFrYE79y5w/79+wsmq7t27eLjx49ZsWJFud9pWFgYLS0thb9TU1N5+vRpbt68mZcuXSpU+4DExERu2bKFgwcPZu/eveno6Ehra2u2bt2axYsXp7m5udT56enpXLx4MVu3bi0oCO3s7HKc7aVbt25Z6hF8fHx4/Phx4W+RSMR9+/axd+/edHV1pa+vr/B87NmzhxYWFuzatStr1qxJU1NTKaUsmeEz0Lp1aymLUUNDQ+7du1c4p1AEvqBCEW/atElGORUXFyc8bP3795dJ5ZTddhaZsY6dPn06O3fuzKlTp3Ls2LE0MTHhtm3bctSvL1++8NmzZzIGPgkJCbxw4QI/fvzI58+f8+3bt5wyZQqbNm3KFi1ayEzLDh8+XOBBHckMbbipqSnPnz8vvGTS0tK4e/du2tvb53tfXiKR0MLCggsXLuTAgQOFqWhCQgK9vb1pZWXFWrVqcdiwYUKIM4lEwoCAAJqYmAjuqMePH6eJiQmXLl3KI0eOCAk587N1l1cMDQ0FP4xMPnz4IKTHnj17tlx37Kzo1auXsOSUx/Lly+nv75+rOkUiEb28vLLUHZw+fZqzZs3iqVOnaGtrSwDCd/rLIt7khMTERBoZGckYbQwePJjbtm1jz549Za4ZPnx4tsYI/fr14+7du6WmO+np6Rw/fny+Rr9FixZJLWXU1dVpYmLCrVu3UllZmfXr15eKfScWiwt8RyGT6OhoTp8+XWoZsXTp0gLTXFtaWioM7bVt2zbWr1+fFy9epKOjI21sbGhhYcEJEyYI3oPXr1+nk5OTzMsnPj6elpaWP2V77Udq1aolFd4qk4CAAFasWJFWVla5rnP//v0Kn6fMl2Zetkj37NkjN25jJmPHjhXMwcViMevXr8/27dvz5MmT/PTp0+8r8GSGb3ynTp24Y8cORkZG8uPHj5w1axbLlCnDdevWCevIkJAQDhs2jLNnz862vhEjRsgty4yIk9t8XZmsWbOGALhgwQIaGxuzcePGgnffw4cP2a5dOwKQWtcVhALtV2Bra8uOHTvK6DS+fftGc3NzdurUKcvvsWvXrlJbsT/y8uXLn56lZtSoUTQwMJC7pFizZg1VVVVz5ZpMZixXzMzM5LqAL1y4kEuWLMlTX0UiETt16iT3+3v9+rXMy+nUqVNCMovq1av/3gJPZoz0GzduZJ8+fThw4EBhq2XTpk20tbWljY0N3dzcsvTDzmTcuHFZxk7fuHFjjuK9ySMuLk7w4gNADw8PqT1nsVjM2rVrc+DAgcLfhTXCFzY2Nja8d+8eLSwsOGLECK5du5ZeXl7s0qULHzx4wAkTJii09c4MCJEVWW0tFga3bt0iAG7ZskWm7MuXL1RSUpIJWJETIiIi2KNHD3p4eHDXrl309vampaUlFy1alC8DrUePHtHIyIi7du1iXFwcv337Rm9vb5qYmMjNSS+RSPj06VPBVv+3FviCZODAgVkqEo8dO8ZNmzbluf709HSpeOSWlpZSdvqZWzoNGjSgi4vLL0nUURBYWVkJOomnT5/yzJkzUgLer18/uQ8emfECl7cc+xFra+uC62wOcXd3Z8mSJeU+H61bt5aKxZBbXr16xT179vDYsWN5nkH+k4SEBG7YsIHOzs50dXXl3r17s9XP/PHHH/8tgV+1ahWPHDmisHzSpEky2s/c8v37dymhb9myJa9cuSI4shw7doympqYEIOw4/NtYs2YN9+3bJ7csLi4uyzWvRCKhubm5Qn1CREQEu3XrViD9zA3fvn1juXLl2KJFC6k4d1+/fqWWlhYnTZr00/tUkFy6dEkIBPOfEfhM01t5b8LQ0FBaWFgUmC38+fPnuXXrVoaFhXHChAk0NTVlt27daGJiwlGjRhFAvmYTv5KEhASamprKLI8SEhLo4OCQ7fJq+/btcmMaSiQSDh48+JclIQ0ICKChoSHV1dU5e/Zsfvz4kT179qSurm6WGvfflYiICB45coRt2rQhACE2/n9G4MkMJYaNjY1gspuens5Tp07R2Ni4wIM6/kjmCJ8Z7LJ9+/Y0NDTMVS7x34nIyEi6u7uzR48enDt3LocOHUoLC4scBYjIDHLSu3dv3r59mxEREbx8+TK7du0q5RYcGRnJ58+f59u9NjekpKRwypQpwpZc8eLFuXnz5p/Wfn65efMme/XqJSjoMq0Nf4xFkZ2MKpEksiE+Ph66urqIi4uDjo5Odqf/Ut6+fQtvb28EBweDJDp16oT+/fujTJkyMufGx8dj586duHDhApSUlGBubg43Nzdoa2vnqW2xWIyOHTsiKioKr1+/RvHixdGyZUuYmpqiQ4cOaNu2LVRUVPJ7iz+Nb9++4e3btyhVqhRq166dq2tfvXqF7du3IywsDNWrV0ffvn1RuXJlBAcHY9q0aVBRUUGVKlXw5s0baGtrY9GiRdDX1y+kO5Hm2bNnuHv3LhwcHFCqVKmf0mZ+SExMxJQpU7B27Vo0aNAA5ubm0NHRwYIFC9CpUydUq1YNvr6+AJCtjP7PCXxOefbsGUaMGAFPT0/Y2dmBJI4dOwYfHx+sX78edevWzXWd379/h6amJgCgbNmy+Pbtm1R5vXr1sHXrVrRq1QoAEBMTg0+fPqFMmTKoWLFi/m/qN+ft27cYNGgQtm/fjkqVKgnHnz9/Di8vLxw8eFDuizmnxMbG4ubNmwCAtm3b5liYU1NTsWXLFhw/fhyqqqpIS0uDpaUlBg0aJPyeiq47evQozp07BwAwNzdHt27doK6uLnPuly9f4OXlhTdv3iAmJgapqakAAIlEAi0tLRgYGEBfX1/4iEQihIWFITw8HA8ePEBsbCzmz58PLy8viEQiNG7cGPr6+hg6dChcXFxQpkwZREVFZS+jOZlK/Fum9DklLS2NRkZGUlF5MgkLC1OYSjkn+Pj4SIX5mjp1Kn18fFi7dm3BzbNLly6CyeqUKVPYp08f2traFnho6d+NPn36KLQku3jxImfMmJGnetPS0jh+/Hja2dlx7dq19Pb2poODA0ePHp2tdlskErFr16709fUVlI2pqancvXs3raysFJpIv3//XrCRDw0NZVhYGNevX09jY2MZj8L79++zYsWKrFSpEr28vIQYgBYWFsKzUrp0aVaqVIk1atRg6dKlWbFiRTZv3pw2NjYcNmyYVJ1jx46lhoYGnzx5IuPf8p9aw+eU48ePZxnKaP78+bk2jfyR4OBg7tu3j02aNKGSkhI7d+7MU6dOsVWrVlRWVhYEv3v37rx//z4lEgkjIyPZpUuXLG0J/s2IRKJsNfydO3fOU92enp5SduWZHDp0KNuchCtXrlQYk+/48eNyw6pl7kbIs73/+PEjzczMGBkZyVWrVrFVq1ZCtKe5c+dy8eLFnDx5MkeNGiXktPvnR0tLS2F25oCAACorK3Px4sUUi8Vcs2YN7969K8SgKBJ4OUyfPl1u/rtMAgICchWFVRFJSUncsmULmzZtSi0tLU6YMIFNmzYVtlDKly9PAELu9fDwcPbo0SPf7f6OxMTE0NXVNctz8mKd+O7dO/bu3Vth+YABA7IMkGlubq4wLLhEIqGJiYnM7s6PmWvlMWrUKOrp6QmOOT9+dHV1Wa1aNRoYGFBJSYm9e/fmrl272KdPH6kU0/9UkEokEm7evJlaWlps2bKlTJ/DwsJyJKPK2S5w/gcpXrw4YmNjFZbHxsZCS0urQNrp168fbty4gW7dusHHxwePHj1CVFQUgAwlX6dOnbB69WqIxWLo6elBSUkJMTEx+W77d0NHRwfh4eGgApVRcnIyJBJJrus9evQoXFxcFJa7urriyJEjCsuLFSsGVVVVuWVKSkooXbo0RCKR1PFbt27BwsJC7jUPHz7E1q1b8fXrV+FeW7RogU2bNiE+Ph6xsbF4//49tmzZAjU1Nfj5+cHKygrbtm3Dhw8fEBkZiejoaHTq1Emq3jNnzqB///4AgIsXL8r0uXjx4grv8Uf+kwLfvXt37N69W2H5nj170LVr1wJrT0tLCzt27MC3b9+gqamJtLQ0KCkpISoqClevXsWnT58QEBAAAChXrhzi4+MLrO3fBWVlZXTs2BFHjx6VW75hwwY4OTnlut6UlJQslVS6urpITk5WWC4SiRS+hICMl3+xYsWkjqmrq8ut88qVK/jjjz8QFxcHAPD09MTDhw9x584dDBgwQNj9efXqFSwtLdGuXTs8fvxYSrlYtmxZucrG69evAwBat24tCDdJJCcn4+vXrxCLxQrv4Uf+kwJvaGgIZWVlHDhwQKZs165d0NHRQdWqVQu8XVVVVdSrVw8AcOfOHRw6dEgou3//PgDgzZs3qFChQoG3/TswceJE7NixA+vXr0dSUhKAjJ2KefPmISgoCG5ubrmus0WLFrh06ZLC8osXL6Jly5YKy9u0aYOLFy/KLbt79y7q168PJSUlqeP29vbYt2+f8DdJeHt7w9jYGEDGy23Lli3w9vZG06ZNZeo1MDCAmpoa7O3tc7w78/HjR+F+VFRUoKysDFVVVWhpaaFChQqoXr16jur5T67hyQxN7Pjx42lra8tVq1Zx5cqVtLa25uTJk4XYYdHR0Txx4gRPnDhRYNZYR44coaamphDrzMXFhUBGxtGzZ89y3LhxBdLO70pqaip37NhBOzs72tjYsHv37jx69GierSDFYjFNTU3lhlbLjPKbVSy46OhouUEnHj58SGNjY4XKsz59+vDUqVNMS0uTWntXqlQpR5lrMz0Pvb29pVyrfyQ4OJguLi5MTExkQkIC9+3bxx07dnDLli3cuHGjkFXJ29v7v2t4k1vi4uJw+/ZtABl7t9ra2khLS8OkSZPw5s0bdOnSBQBw9uxZVK9eHYsXL5a7z5pTSKJRo0aIjIzE48ePoampCX9/f8TGxuLkyZM4cOBAjtdjRWTw+vVrDB48GP369UO3bt2gpKSEY8eOYdOmTfD29hZmVYqIiorC7Nmz8erVKxgYGCA8PBxVqlTBzJkzFRoDiUQijBo1Cu/fv8fZs2cBADVr1kSHDh2wfv16aGhoZNnm5s2bMWDAAOHvgQMHolq1avjw4QPMzc3Rvn17GBgYAABu374t2G7I48GDB/jzzz8BFBne5IkhQ4bAxMQEPXv2lDp++PBh+Pv7Y9OmTfmqf9GiRZg7dy7s7OyQmJgIFRUVdOvWDU5OTjLrxSJyRlJSEvbt24ezZ8+CJMzNzeHi4oISJUrkuI7U1FThGc/p7xAWFoZLly5BWVkZRkZGObYWTElJgYGBgVzlcb169aChoYGXL18iJSUFrVq1wubNm9GgQQOF9eVYRrOde/B/c0qviDdv3rBv374Ky+WF38otBw8eJACFgSIKErFYXGBOQ0UULI8fP6a7u7tUrLrMT6lSpXjgwAE2btyYALJd6uVURuXvR/yHOXbsWI62eSZOnJjnNjK3/JKSkvJlSpoVhw8fxubNm6Gmpoa0tDTo6upi/Pjx+OOPPwqsjbCwMHz+/BkGBgb/CdPgnJKYmAg/Pz/ExsaiQYMGSEhIwOzZsxEXF4ewsDCIRCKkpaVBLBZj7ty5iIyMxOnTpyGRSPDx40c8efIEL1++hLOzMypVqoStW7fC3d29QPr2Wwn8p0+f8PXrV1SpUgXly5f/JX3IbptHR0cHKSkpWdZx+fJlbNq0CQkJCSAJa2tr9O7dWxD09+/fQ1VVtdCEZN68eUhKSsKBAweEKe2XL18wbNgwDB8+HGZmZvmq/+3bt5g4cSI0NDRgaGiIt2/fIiEhAQsXLsyTD8L/EqtXr4a/vz969OiBihUrYteuXfDx8QEAuLu74/Lly4iLi4OSkhIcHR3h5OSEy5cv48CBA7h48SLi4uKgq6sLExMTDB06FO7u7gW7zMvJ1KOwp/SPHz+mnZ0d+/bty5kzZ9LJyYlOTk4MCQkplPaywt/fn/Pnz5c5/vXrV86dO5d16tRhixYtOHLkSLkWXDNmzODIkSMFrbFIJOLu3btpZmYmxE4bM2YMa9asWSj9f/36tcIglMnJyTQxMclXGuxPnz7R2NhYxqz0y5cvNDExyVECz/9Vtm7dyokTJzI0NJTe3t40MjIiAFaoUIGGhoacMmUKlZWV2a9fP7548YLbtm1jpUqVCIDNmzfnnDlzGBAQoNDyLyt+66i1PxIUFERzc3OZOPWvXr2isbExv379yvj4eAYHB/+0Ne8/t3mePXtGExMT7tu3TxCY+/fv087OTipw5ZUrVxQG0gwMDBRi3jk4OOTZbjw7pkyZkmVknwULFvD8+fN5rn/EiBEKnXxevHgh3ON/CYlEQn9/f5YoUYK6urpSORx27NhBkUjEM2fOsHPnztTR0RH+D4BOTk4F4jT1rxF4V1dXfvz4UW7ZsWPH2LRpU9rZ2XHMmDF0cnKio6OjwlDHIpGIu3btooODA21tbdmnTx/evHkz130KDg6mkZERt23bxri4OBoZGXHt2rU0MjKSalskEtHU1FQI4uDm5iaEa5aHvb09v3z5Ql1dXU6ZMiXX/coJvXv3ztJm4ODBgzmO0y+PfyZ1+CcFFVlIIpHw5cuXfPDgQaHkkCso0tLS6Obmxpo1a1JZWZmurq6cO3cuu3XrxuXLlwvnicViIe4cAFauXJl+fn4F1o9/hdJOJBIhPj4eVapUkSmLjY3F6tWroaGhgePHjwvHP3/+jL59+8Lb21sqKENSUhKcnJxgbW2NnTt3okSJEvj48SOWLFmCCxcuYMaMGTnuV+3ateHn54d9+/bBwcEBX79+RbFixXDq1CkpG3t1dXV4enpi586d8PLyQlxcXJbr8gYNGgg21T/uwRYkVapUwcuXL9G2bVscPXoUW7ZsAQCkp6ejcuXK0NLSgq2tbZ7rz249Wbx4caSnp0NNTS3PbZw4cQJr1qxBvXr1ULJkSTx48ACGhoZYsGBBlv7pv4K//voLJPHu3Ts4ODhg165dADLsLYYOHYqrV6+iU6dOUFZWhoGBAY4dO4bly5fj2bNn2LBhA9avXw8XFxc4OzvLWPQVCgX59sgt0dHRdHd3l1u2YMEC+vn5yfWgev/+vYzn1ejRoxVOVUeOHKnQmik7NmzYkGUesU+fPgmJDmxtbbMMa+Xh4cHRo0dTW1u7UFJRkRmZXp2dnTljxgxOnjxZ6jd78OABS5cuzcDAwDzXb2FhoTBIZVpaWr7Dcx86dIh9+/aVacPf35/29vb50j8UNGlpaTQ1NaWjoyPbtm1LIyMjqdnNly9f6OzsTDIjddegQYNobGwslVY6Pj6eCxcu5JAhQ/I1M8qpjP5SW3pdXV2EhobKdV64evUq2rVrJ/e6atWqISEhQXBgSElJwYsXLxRqnydOnIiNGzfmqY8lS5ZEeHi4wvKvX78Kzg52dnZSNtY/Ehsbi4iICAwfPhyJiYlSdvQFSY0aNaCnp4fDhw9j0qRJwo5DSEgIZs2ahW3btmHatGlZOoxkhaOjIzZs2CC3bNu2bfmaPYjFYnh7e2PTpk0yMwkLCwu0atVKsGr7HQgPD0etWrVgaGiIW7du4cqVK7C0tBTKDQwMkJiYCJFIhDlz5iAqKgorV66EhYUFlJUzRE9bWxuTJk2Cnp4eTp06Veh9/qUCr6ysDGNjY7lOLGpqali7dq1Ch4qyZcsiISEBQMY0v379+grb0dfXR2JiYp76aG1tjUOHDikUEF9fX2Hf3s3NDfv378eNGzekzomJiYG7uzumTZuGGjVqQF9fH+/evctTf3KCkpISBgwYAFdXV9ja2sLS0hJTp07FnDlzYGtri6ZNm+L27dsIDAxEYGCgjPtnVvTr1w9Pnz7FrFmzEBkZCQCIjo7GggULcPXqVQwbNizP/Q4MDESHDh0Uuqv2798/Sy/Hn8WHDx9w8+ZNnD59GleuXMHly5eFstu3b2PYsGG4f/8+Pn36hM+fPwvbsmKxGI0bN5Zbp5eXF3bs2FHoff/l+/Djx4+Hq6srvnz5gv79+0NXVxfh4eF48eIFKlasiClTpshcQ1KIBQdk7I1nPnzySE9Pz7H74D8pUaIEbG1tMWHCBCxcuFB4GEli+/btEIvFaNSoEQBAQ0MD+/fvx+TJk7Fo0SLUr18fX79+RUxMDKZNmybYQ6urq2e7l58fPn78iMWLF2PUqFEgKbU2lEgkePfuHTw9PQUX4OnTp8PIyAiTJk0SRh5FKCsrY9OmTThz5gxGjBiBxMREaGpqws3NLUfXZ0VsbCz09PQUlpcrV054yf9sSGLkyJFYs2aN1HEVFRWULl0aBgYGKFGiBAYNGgRjY2McPHgQQUFBqFChAvbt24cvX75kGQi0TJky+P79e2Hfxq8XeHV1dezduxfHjx+Hh4cHUlNToa2tjZ49e0JXV1euIsPf3x9//vmnIHx6enqIjY1FTEyMXF/iEydOoHPnznnu47Bhw7Bz505YWFigUaNG0NDQwP3799GpUyesX79e6lwdHR2sW7cOiYmJCAkJQcmSJQUnCACIjIzEhw8fsrSLzi8VK1bEmzdv5Lp2Tpw4EYmJidiwYQNat24NIONh9vHxwbhx47B8+fJs61dSUoKVlRWsrKwKtN/169fHwYMH4enpKbf8zp072TrCFAYSiURhtOEJEybg1atX2LVrF5SVlbF9+3YsWbIEixcvRr9+/bBnzx7o6upCJBLh06dPCttITk7+31faZYVEIuHAgQM5d+5cwWAlJSWFmzdvprW1tYzSKyAggLa2tjJ9fPLkCU1MTAqk72KxmC9evOCTJ0+yDY749OlTLlmyhAsXLuTt27cFhUxmrrPCTFTx4MEDDhkyROb4p0+f2KNHD6m8eD/i4uKicIv0Z9G9e3e5Bk1isZhdu3YVUlj/TBISEoTttGnTpnH//v10c3MTMrn6+/vT1NSU06ZN44YNG9i+fXs2adJExueie/fuClNT+/j45Gu79F+zD58VEomER48eZbdu3WhjY0Nra2tu2rRJoZb45s2btLKy4uDBgzl79mz26NGD7u7ucqPTFhYJCQl0cnKip6cnL126xGvXrnH8+PG0sbHh169fKRaL6e7uThUVlUJNjjFmzBguXLhQatdg5syZbNGihcLsMf7+/lkG9/wZfPnyhcbGxjxw4ICQ4y4oKIjOzs5yE0IWFLGxsVyzZg3d3d05aNAgnj17ljdu3OCXL18YERHB8uXLc+zYsSQzBp5/5siTSCS8ffs2T548yQcPHsjNoff8+XOamppKWSlKJBKeOHGCtra22Q4iWfE/IfB55c2bN7xz5w4jIyN/etuurq4yeewlEgkPHz7Mli1b8v3790xMTBSCXhQESUlJPHv2LE+dOiW83CQSCbdu3Upzc3N27dqVlpaWbNSoEXft2qWwnnv37nHmzJkF0qf8EB8fzzVr1tDGxoa2trYcMmQIHz9+XGjtXb9+XXjJREVFccOGDXRzc5PyXtPT0+O7d+9IZsyU5M2gfkRRQM6XL1/Szc2NdnZ27NevH83MzDht2rQ85ZP/kf+0wP8qXr58KWNaevXqVZqbm3P06NHs3LkzLSws2LVrV9asWZNt2rTJ1368RCLhvHnz2KVLFy5fvpzr1q1j9+7dOXjwYKl6RSIRxWIxjx07JmX99U+yS8ipiOjoaL579y7fD+2vICoqiiYmJkLm1+/fvwtC3rNnT+H/P75wEhMTaWdnp7BOkUhES0vLLNtNTk5mREREnuzm5VEk8L+ANWvW8PTp08LfAQEBtLOzEx6mJ0+ecOLEiXz37h2bNWvG4sWL09raWuEShdkYYsyYMYOrVq2SOX7+/Hn26NFDZp2emYAjUyfyIzExMTQyMsrVA/j8+XM6OjrS0dGRXl5etLKyopeXV5bPyefPn/n48WPGxsbmuJ3CZNmyZTx+/DjJjBeovb29IOSZ+pZhw4bJXNe3b1+FJt7bt2+nt7d3ofb7nxQJ/C9g9erVUgks7O3tpezanz59KuSNv3DhAt3d3amurs7mzZsL61XGx5NeXmS1amTFihn/enllHP+BqKgo2tvbK+zLxIkTeevWLZnj9+/fp6mpKc+cOUOxWEyxWCwonTKTcOaEZ8+e0dzcXCaW3LVr19i5c2eZmcvdu3cF/4bJkyfT3t6e/fv3/+WZW3v06CHoOdLS0mQCUZQoUUKugvXjx480NjaWGvkz1+PW1tY/PZFokcD/Ap49eyas7aKjo+nk5CRVPnfuXJ47d45kxsPRpUsX+vr6EkDG8fh4skEDUlmZBP7/o6yccfwHod+5c6fCjCmZfRk9erTcsoiICC5cuJDW1ta0sbHh/PnzZbwVs6NHjx5yA0eS5J49e6Qyxd67d4+WlpYywn337l2amZn9UucYFxcXmX55eHgIAj948GCeOXNG7rWZa3kLCws6OzvT1NSUM2bM+CVLmyKB/0U4OTkxICBARrHz8uVLWlhYSOWss7W1ZVpaGps0acIWLVpQPHy4rLD/KPQ/uN5u3LhRmIrK40cb/4ImKiqKjo6OCsv/mVbK3t5eoQJ1//79XL16dYH3MaccOHCAa9askTo2depUAmCtWrXYpUuXbPUs6enpTEhI+KWhxP4VtvT/i/j4+OCvv/7CsmXLcP/+fdy9exczZszAyJEjsXXrVsESLSIiAhoaGlBVVcW6detw9+5dbN67F1CUfUUiAU6cEP5s3ry5lEnnP7l06RJatGhRoPcGZHgl7tixAxEREfD395drwaiuri51n1paWihbtqzc+rp27Qp/f/8C72dOcXBwwPHjx/Hs2TPhWL9+/VC+fHkUK1YMRkZG2UYRVlFRQYkSJX6O4Uw+KRL4AkZXVxeHDx+Gq6srtLS0sHjxYpiamuLMmTNSEU0XLFiAQYMGAQDatWuH3r17Y1x0NB5kVXlaWsZ4D6BZs2Z48+YN3rx5I3NaQkICtm7dCmdn54K8NWzatAndunVDsWLFkJKSgsePH8Pc3FwI851JTEyMEMo7Li4uS3NZNTW1fJnj5hc1NTXs3r0bs2fPxoABA7B3715cuHABWlpaCA8Px4QJE35Z3wqDIoEvJJo3b46zZ89CRUUFN27cEHLFv3r1CgMGDEC5cuWkvPvWrFmDumpq6AzgmYI6oaYG/DCKrF+/HoMHD4avry8SEhKQmpqK48ePw8HBAQsXLiyQ/HhAhuntvHnzsHLlSpQoUQKhoaGoW7cu2rdvj2PHjmHWrFl4//69cP6qVavQu3dvABlmvi9fvlRY99evX395HP7y5cvj4MGDmDBhAiQSCcqVK4d+/fohLi4uz16Fvy0FuT742YjFYt67d4+XL1/+qdZ0uUEsFtPPz4+9evWira0tBw8erDCkUfTAgWwKUB+gKJs1fCYpKSncsWMHHR0d6eDgwGXLlhWo5jstLY2urq6sXr06g4KCmJKSwuvXr9PKyooNGjTgvn37ePv2bY4ZM4bR0dGcNWsWhw0bJrWeHTFiBC9fviy3/nHjxvHs2bMF1t+cIBKJuHfvXo4cOZITJ06UMn0mMxSeJUuWzHYv/XcipzL6r01EcfDgQWzYsAGtWrVC6dKlcfv2bWhra2PFihUoWbLkr+5e3khIQGCTJmj9/j2mA+gEoCEAPWVloF49ICAA0NZGeHg4Pnz4AD09vZznFMsjs2fPRvny5XH37l0heg6Q4VDi4uKCypUr4/nz57h37x7at2+P3r17w97eXmo9m5CQgJ49e8LR0REuLi7Q0NBAWFgYli5dCnV1dSxcuLBQ7+FHnjx5gpEjR8LJyQnm5uZITEzE7t278e7dOzRp0gTHjh3DgwcP0KBBA9y8eRO6uro/rW/54X86EcX+/fs5cOBAGSORwMBAWlhY5Msm+VeTFh3NrjVrCttCxZWUOKJJE549epSfPn2ik5MTnZ2dOXfuXA4cOJBWVla52j//keDgYM6bN4+TJk3iwYMH/98W4G9EIhHNzc0ZEhLCQYMGyVz/+vVr9uvXjyTl2o7/SKbjU2ZOORcXF168eDFP/c4riYmJNDIykgqGKhaL+ezZM7Zt25ZKSkp0dnbmjh07fhvDoJzyW2zLhYeHc+HChezTpw/Hjh3LR48e5ep6eYjFYpqYmCi0CFu7di337duX73Z+NcnJyXz96hU9PT2pqalJADQwMOC9e/ekzouOjmaXLl1y9d2mpaVx0KBB7N+/P69evconT55wzZo17NSpk9RyIzg4mKNHjxa+c3nhpWxsbBgcHMz+/fvn/WZ/Ehs3bpTyJQgJCWGbNm0yXqzFi7NDhw4Kvdl+d365wO/evZtWVlb09/dnZGQkHz16xKFDh3LIkCFSe9G5JTAwkFOnTlVYHh8fz+7du+e5/t+RhIQEtmnThiVKlGCDBg1kIuOGhoZmuS/+TyZNmsQ9e/bIHI+OjqaJiYmgA/j48aPgG+Dt7c0lS5ZInS8Wi9mlSxf26NGjQF7mhY2Li4sQYTguLo7t27dnxYoVefLkSUZFRXHr1q08ePDgr+1kHvml+/APHz7EyZMnceLECVhYWKBs2bJo0qQJ1q1bh2bNmuUoyIIiEhISskzPpK2tjdTU1DzX/ztSokQJaGtrIzAwEFFRUZg2bZpUub6+PtLT03MUxishIQFPnjxBr169ZMpKlSqFESNGYNu2bQCAypUr4+PHj0hJScGQIUMQFRUFd3d3XLt2De/fv8fMmTPx+vVrODs7o0mTJgVyr4WJiooKUlNTsWvXLtSpUwf379+Hr68vbGxsULp0aaSmpioMdPE/Q0G+PTLx8PDg69ev5ZZlNyXPjrCwMBmT1R+5c+fO/2SO9Ux3y+nTp1NHR4fx8fFSdvf9ixdnWKVKcu3uf+TSpUv866+/FJanpaXR1tZW+NvPz499+vQRfq+3b99y9uzZ7NevH2vXrq3wd/4d2blzJ5s3b04AdHR0lAn2YWdnJ8wA/m380hE+IiICtWrVklumrKyMBg0aZBnuJysqVKgAdXV1PHgga6IikUiwYMECDB48OE91/86oqqoiJiYGgwYNQnJyMjavWwe0aQOsW4f3Hz7gfHIyQj9/RuzatRnHFcR+U1JSgkSRNR8gEwPPysoK1tbWsLCwwIIFC3Dt2jVEREQgIiICfn5+Cn/n3w2JRIKDBw/iwYMHWLlyJQ4cOCCVD2H79u1CHPz/aQry7ZGJpaVllnbF/fv3zzJDS3ZERUXR3NycGzZsEBwv7t69y65du2YZ4OHfzLFjxwTdRe/evamvpcUEJSUSYJcfvLtUAXoBjM20o8/8Hf7+NykpiRYWFgrbkWdbTmaM/JcuXeLBgwf59OnTgr25n8C6desIgFu2bKGNjQ3HjBlDf39/Hjx4kD179uTo0aN/q5j3ueWX7sNPnToVlpaWaN++vUxZSkoKHBwc4O/vny/bY5FIhEOHDuHw4cNIS0tD7dq1MWTIEBgaGua5zt8Zkpg4cSLS0tLQs2dPmLRrB08SFQGsBxALYCuApwDmAJioro7ZFSoAUVHA9++AhgZQpgxgb4852tqoULWqYNqbydevX+Hs7Ixjx479a/afc0qXLl2grKyM06dPAwDu3buH27dvQ1NTE9bW1qhQoUKhtS2RSHD58mUEBQWhTJkysLW1hba2doG2kVMZLRSBDw0NRe/evbFv3z4ppwmxWAxPT0/Y2NjAzs4uh7dSxI9cu3YNmzdvRsDu3XgrFmMdgAoAugL4DKAigLYAdADIdUlRVoakbl1MMDXF54gIuLi4oHTp0kJ89bVr1/6SyLCKIInr16/j7t27iIyMRKlSpVCpUiXExcXh06dP0NXVhZubGypVqiT3+k+fPuHgwYNYsGABmjdvjpMnT+YqDVZISAj27NmDyMhI1KlTB7169cqVsD58+BDjxo2DsbExWrRogbCwMOzfvx/W1tYYPnx4juvJjl9uePPkyROam5tz8uTJPHToEFetWkUzMzPu3Lkzx3UUoZjEKlVoALAHwBd/T+c3/W2Gu/Pvv+/Kc7P9wUz38+fPXLt2LRctWsRz587la7s0LyQlJfHp06d88uSJsAT851LQx8eHAKikpMTq1atTR0eHAKimpsZq1aqxePHiVFVV5Z49e3jx4kXa2NiwRYsWPHbsGMePH89evXrxzJkztLKyYqVKldipUyfevn07275JJBJOmzaNzs7OvHDhAl++fMm9e/fS1NQ0S7fkH/ny5QtNTU1lTJ0lEgnHjRtXoMvPX74PT2bc2K1bt7h161aeOHFCcSinfxGhoaGcMmUKLSwsaGNjQ0dHR164cOHnd8TLizuVlAiA8wB2B6gO8BDAVICNAdYDmKRI6KtV+/l9/pujR4/S1NSU6urqUtlUa9euTQ0NDfbp00d41vbv308AUqHDEhIShJdTXFwce/fuLdTTqFEjmpiYUFlZWco68ODBgwTA27dv08zMLFsDGx8fHy5YsEDmuEgkYteuXXOkx5g2bZpMQNNMUlNTFYYLzwu/hcD/rxEcHEwTExNev35d+KHCw8M5bNiwLLe6CoX4eErq16cXQDWANQC2A6gMcBfA538r8JYqEviKFbONmVfQiMViTpkyhQDYqVMnrlq1itevX+f58+c5atQojho1ijNnzqS2tjbLlCnDBg0aCIKsKHpPZr179+7lhQsXKJFImJSUxHLlylFDQ0OwTBSJRCxbtiwHDx7MixcvctasWVnWZ2pqqnDrOCgoSK6p8T/JTnk9fPjwAouzXyTwhYCNjY3csE4SiYRubm58/vz5z+1QfDw5YgRfKSuzOkADgKY/TO+tAZYF+Ozv6f2pv6f/P3uEF4lE3L17N5s3b04lJSUuXrw4S0F4+/Ytp0yZwmHDhnH9+vX09vbOVQiu+/fvc+LEiWzYsKFUPvtly5ZRSUmJgYGBQkQeiUTCXbt20dLSkjY2NuzcuTNdXV3Zq1evLNv4MaKPIrLzLxgzZkyB5Sb46QKfmJjIjRs3sn///hw+fDgvXbr0S0P+FDQvXrygp6enwvJHjx5x5MiRP69DP1KtGp/+Leh7AZb7+//vANb8ewbgCHAlQM+/XwQvFaTpLmjev3/P+vXrEwDNzMwUuskWJPfv3+fUqVM5dOhQVvvhxZaWlsYqVaoIEXbJjDTj8+fPlwpjdfHiRRoYGGQ5bc+J6+zw4cMVmhxnN4vILT/V8CYwMBA2NjbQ1NTEvHnzMGLECFy5cgUODg6/LPlfQfPmzZsszUcbN25cqBlhs8JRRQWNkKGZbwPg2t/HFwIwBNAcwEEASwAsUlLCptq1MTQkBF++fCnUfiUlJaFjx45ISUnBgwcPcP78eRgZGRVqmwDQqFEjBAYGIiAgAG3atBGOq6qqom7durh69Spat26NgIAASCQSTJkyRSoIh7GxMQwNDTF+/Hi59d+/fx916tTJth/Dhw/HjBkz5Jp6+/j4oEuXLgoz5RYa+X17xMTE0NjYWG7Z9evXBffJfzuBgYGcMmWKwvKQkJBfdq9O3boRf4/eKX9P2Sf/PcrvAJgG8AJAJYDrjY3J+HgGBARw/PjxhdovHx8fqqioCBlbfiZLly5lp06dWLJkSangKJlRgq9du8b+/fvz/fv3QtmPo/z+/fvZuHFjmdjzCQkJ7NKlS47X3idPnqSpqSn379/Pd+/e8ebNm/Tw8KCXl1eB7or8tCn9qlWreOjQIYXXOjs758uq7ndBIpHQ1NRUYQhiT09Purm5sVu3bhw4cCCvXbv205Y0qampdDc0FBRcfQF+Aljhb8XdRiUlcvhwOjk5UVVVlUuXLmVycnKWFncFwdy5c6mnp1eobShCIpFwxIgRVFdXp5mZGQMDA7ly5Up27NiRJUuW5MSJE2ljY0MrKyuqqalRRUWFADh//nxBEHv06MEWLVpw586dvHz5MpctW0YjIyPeuHEjV32JjY2lt7c3hw8fzhkzZshNlplffprA9+zZM8swvr6+vrlOXySRSGSCMfwOnDt3jt26dZPK3CIWi9mvXz9WrlyZN27coEgk4vv37zl58mS6ubkV2BotW+LjGVyrFlv+LfR6ADsB7Pf3dl20nh5Tq1blyCZNqKSkxMaNGyvMf1ZQLF68mLq6uoVWf2JiIpcuXcrOnTvTxsaGFhYWXLt2rVQAlMWLFxMAPTw8ePToUaalpbFp06YcOnQojY2NZRJPAGBgYCDJjDV4YGAgt23bxqVLl/LEiRM/7/fMJT9N4F1dXaUiiPyTNWvW8NSpUzlphl++fOHw4cNpbm5OBwcHmpqactGiRb/V/v2NGzfo4OBAJycnDhw4kC1atGCzZs3kPgh79uzJcvunwPlba/+pUiVaFytGAFz+91bdxh+Mbpx1dFi3dm127dq1ULtz+vRpAuDNmzcLvO7MqfXBgwcFG3iRSMStW7eya9eugtCLxWK2bt2atWvXFjTiVapU4eTJk3n+/HmamZnx6NGjfP78uSDwCQkJQmCRguDt27dCBmE7Ozv6+PgI6ccKip8m8Pv37xeyjCQnJ/PDhw8Zrpt/Y2VllaPMIiEhITQ2NpaKuCIWi7l//346ODj8dmGrYmJiGBoayj59+ihco0okEpqZmf2SvkuGD2dVgM0B2gCsCjD+b6Ef+/eDbW5uLpPDvCA5d+6csF4uSL5+/crhw4fz5MmTcst37NghlXPv+fPnrFGjBqtUqcKLFy8SAA8ePEiJRMIhQ4ZwxYoVvHPnDs+ePct169bx7du3tLCwUBhsNDccPXqUNjY2QqDM79+/c9euXTQ2Ni7Qpe5PE3iRSMSOHTvSycmJ1tbWHDZsGLt27Uo3NzfOnDmTc+bMyVGH+/TpozA5n4+PD319fXNUz88mu2nxqFGjClWoFFKtGh0AVgQ4BKAmwDF/78m7A+yioUF9fX1qa2sXWp56GxsbNm3atMB0Gf7+/uzSpQvd3d1ZqVIlGhsbc8mSJTLKr7S0NHbu3Fnq2L1796iqqipY9f04A8gMc9WsWTNaWFiwT58+DAoKynd/w8LCaGFhIXd5+urVqwKdYf20bbnk5GSQxNevX1G5cmUYGxvD1tYWoaGh2L59O1xdXbOtIzExEVFRUQgMDMSQIUMwatQoXL16VYgJ7u7ujqNHj+a3q4WCWCzO0r88Pj4empqaP7FHyBjH09KgASACwDcAVQCsRcZW3TgAZ8qUQfDLl6hYsSLs7OzkJrTID6mpqbhw4QLc3NwKJCPL4cOHsXv3bhw6dAgbNmxA27ZtceHCBZQqVQpDhgyROldVVVVIhJHJn3/+ieDgYMEnPrP869evCAgIAACkp6fj9OnT2LZtW4E4EG3ZsgVjxoyRcdYhiaCgIDx8+BDGxsawt7fHjh07fkqkpnwL/Nq1azF58mRcvnwZXl5ewgN++PBhnDlzBgsWLMi2jqtXr+LBgwcQi8WYNm0ahgwZggsXLgj7+Jqamvl6aN69ewd/f3/cu3evwBMLtG3bFhcvXpRblpycjNDQUIWeXIWGkhKgpoaNAGYB8AMQDCAVwB4AbwBATQ3aOjo4ceIESKJ58+Y48UMqq/wSFBSE79+/o23btvmuKz09Hd7e3tiyZQu0tLSgoaGBmJgYKCsrY8CAAdDU1MS9e/eE80lCJBLJ1FOjRg306NFDyoOzXLlycHR0BAA8ffoUkZGR+e5vJo8ePUKHDh2kjkkkEgwaNAhPnjzB+PHjMWzYMOzduxfJycno2bMnvn//XmDtyyW/04XOnTtnuZ9oZWWV5Ro2ISGBHTp0kGu5dOPGDfbu3ZtJSUl50ii/f/+eDg4O9PDw4Jo1azhx4kSampoWaOKDiIgIGhsb89OnT1LHU1NT6e7urjDzaKHj5SUkpnz991oeAHUBagC85+wsnBobG0sHBwcC4O7duwuk+UuXLhFAgdiKnzt3josXL5Y65uXlJYTnfv78Ob28vEhm3MuAAQNoaGhIW1tb9uvXL9sw3klJSYLCTlHSy7zQv39/hoSESB3bsWOH4HexdOlSqfTiR44cybOS96et4bMTRHd3d6ltrH+yYcMG7t69mx4eHnzy5IlMuYuLC+fOnctt27blpKsCkZGRNDY2ljKsIDPio3fv3l2hF1NeePPmjaC/2LJlC+fNm0dTU1MePny4wNrINf9IPZ0E6cg4vXr0kDpdIpGwd+/eVFNTK5B48ceOHSOAAskItHv3bpkXUXh4uKDkjY+PZ69evfj582c2a9aMjRo14rZt2zhlyhRaWlqybNmyrF69Os3NzWltbc3FixfLvKAfPXrEgICAfPf1R86dO8fZs2dLHbOysmJSUhLFYrGMQjfT1iMvBjk/TeAtLS0VGqNkaqmzCh3k6urK6OhohoWF0djYWMoTLTU1lf3792fr1q1zvf85Z84cIRf7P4mNjS2UPehnz57x8OHDvHLlyu8RLunvbTpWq0ZWrMjgihUF33J5Nu2ZiSd0dHT44cOHfDXt4+NDZWXlAtmhuHv3rtzApGFhYRw6dChbtmzJxo0bU09Pj+3bt6eenp7c/fUuXbrQ0tKSGhoaVFJS4uTJk3nmzBlu27atQEf2TMRiMR0cHKSeQxsbG6anp3P06NHctGmTzDXZDZCK+CkCHx4ezqpVqypMQuDn55dlDHmS7Nu3L8PCwkhmTI8nTpxIMzMz2tjY0NzcnE5OTjxw4EBOuilFly5dsnxTurm55coD61/P3y/RwMBAmVnPj8TGxrJSpUp0cHDIV3PTpk1jmTJl5GroU1JSuH37dnp4eHDgwIE8fvx4li9IiUTCzp07y/29xGIxbWxsePr0abZr105KwFVUVKilpSX8Xbp0ac6ZM4d3797l7Nmzpc4tX758jpZfmbH9jh49mqPlSnJyMocPH05bW1suXLiQ1atXp4mJCbdv3y73fGtr6zzZnfwUgb9+/brwhS1btowbNmzg8ePHmZyczO3btwvTl6w4cuQIV65cqbDc1tY2T2l/shvBhw8fnuWD/1/mr7/+oqampsz6MzdkruF/XKOSGevtTp060dfXl+Hh4QwJCeHSpUtpZmbG8PBwhfXdv3+frVq14q5duxgUFMTLly/z5cuX7N27N319fTl+/HgpAS5Xrpww01qyZAnNzc2pqalJZWVlFitWjA4ODhw7diynTZvGgIAAdunShQA4duxYhbOSnTt30sTEhAsWLKCvry/79+/Pbt26yXWZ/iexsbG8fv06Bw4cqFCH9ObNG/bp0yfbuuTx06b0L1++5LNnz7ht2zapL7tOnTrCyJ0VaWlpNDMzk+tLvmnTpiwdVrKiV69eCn+IX2kQ828gKiqKlSpVoouLS57rkEgk7NSpExs0aCAcE4lENDIykjtSP3/+nPb29lLHQkJCOGvWLLZo0YJqamoyU/SKFSsK4aouX75MMzMz/vXXX7S2tpZ5mUdERLBXr148fvw4O3fuzPbt2wv28127dqVYLObSpUuppqbGBg0acOzYsVIGQ/v375ebNSk4OJjGxsY5Mi4jyW/fvtHY2FjG9fbTp080NTXNs83GLwmAcfToUTo4OEitoYyMjLKtPzw8nA4ODvT09OTRo0e5a9cudu3alRMmTMjzWvjq1ascPHiw3CnlgQMHOHPmzDzV+19AJBKxQoUK7PEPxV5uOXToEAEIM4X9+/dz3bp1Cs8fMWIEHz58SJJ89+4dtbS0WKJECfbq1Yvr1q3jsWPH6Ovry8OHD9PExIQ1atQQrs30L4+NjaWdnZ1M3QsXLuSpU6coFosFoxyRSMT169dTSUmJXl5e3LRpE69du0YjIyMW+9s02dzcnMeOHaOxsbFCPdLevXvp7e2d4+8lLCyMvXv3Fp5xZ2dn9ujRQ6HhWU74pRFvvn//zn379glCv3Pnzhw5wzx9+pSbNm3ijh07cqVESUtL4/Hjxzl//nyuW7dOmBouW7aMbm5uQpDE8PBwzp49mz179vwtnXN+FzLXt6tXr87+ZImEVKAriYqKoqamJnv27EmxWMyRI0dmue49ffq08EJYsWIFNTQ0GBsbyzdv3rB79+50dXXlrFmz2KFDBwLgsGHDpK4/ceIEu3fvTjc3N6njfn5+7Nq1qzB4/LjcS09P55QpU1i5cmUCYN26dZmWlsbw8HDWrl1b0AHo6ekpVGSKRCKpbD05JSYmhkFBQQWyk5FTGS0U7/tixYrByckJbdu2RZUqVeDu7o558+bB398f1apVU3hdw4YN0bBhw1y1de/ePYwfPx52dnYwNjZGREQEhg0bhvr162P27NkICgrCxo0b8f79e+jo6KB3796YNm0alJULJenO/wTlypUDALRs2VL+CQkJwMiRwK5dQFpaxjElJaBBA+DsWcDAAABQunRp7NmzB927d0etWrWgrq6O5ORkhe0mJycLFnChoaGoWLEi4uPjMWjQIGzduhVVqlSBWCyGr68vLC0tERQUhA8fPgjPlK2tLVRUVNC7d28MGjQIpUuXxqNHj9CoUSPs2bMHKioqMvn3VFRUMH/+fOjr68PLywsvX75EixYtoKKigtq1a8PAwABXrlzB169fERwcjOXLlyM4OBgGBgZQV1fHy5cvUbx4cQQHB+Pu3bto0KCBVDCNrChZsuTPz3RTkG+Pf3L//n0CoLOzMwHIrNHyyvPnzzl16lT26dOHderUkfvmXbx4cc5GqCJk+P79O5s2bcoaNWrIfrfx8WTt2vIDYwKkujr5D93JtGnTqKmpydOnT2epk3F2duaXL1+YlpbG+vXr09HRkcOHDxem+WTG1icATp8+nc+ePeOQIUNk6pk+fTo3btzIZ8+eySiNFy5cKDdz7qpVqwiATk5O9PT05IABA2hjY0NnZ2eOGjWKLVq0EJ7nHz+2trY0NjamhoYGAbBDhw7cuHHjT3ej/S2CWIrFYuGLUVVVlfJgygtisZjDhg3jwIEDGRgYyFGjRnHWrFk0MzPjiRMnZM4tyJhh/zXevXtHfX19qqurc9SoUf+/xPLyUizsmZ8mTaTqCg8Pp7a2Nu3t7WlmZsbr16/LtLdnzx4OGDCA+/fvZ7NmzaisrMzr169LBaEkM1yogYyUUWSGpec/9TQpKSm0s7Pj+vXrBYH/9u0bZ86cqVCvkx3Dhw+nv78/z58/TwDs06cP09PTmZ6ezm7duvHRo0ecNm2a8Lw3btz4pyba/C0EnsxYR/fs2TNHWxfZsWjRIvr4+Ah/W1tbUyKRUCQS0d7eXsbra+LEiXz8+HG+280J9+7dY58+fWhtbU1LS0uOHDmSb9++/SltFxYJCQmcO3cudXR0aGhomOHOWa1a9gKvqipT17Fjx4Q49Jqammzfvj3nzp1LBwcHVqpUiWXKlBGEpUWLFrxz5w4lEonUenvXrl3COZnGKfb29nIVuyKRiNu3b6ednR1tbGzYo0cPnjhxQq6wHzlyhF27dmWvXr04bdo0mUQVmcrH4sWLs1q1akIfFixYQBsbGy5YsIDr1q3jkSNHpIReR0eH0dHR3L9/Py0sLNi1a1f269evQE27M/ltBL6gkBe4P1PgSfLhw4ccPny41DWTJ09WGDW0INm7dy+dnZ2lBPz+/fu0sLDIUZaT3523b9+yQoUKVFZWZgd1dc4AeBSgRJHAKyvLVeTFxcXx9OnT7PZ3DD4ALFGiBFu3bs2BAwdyx44dMnv/5ubmwvZpq1atCIBNmzYlmfFM/HMGQJKvX7/mqFGjaGVlRUtLS06ZMkXGlDYTiURCXV1dYTs5s1+urq7COfPnz5druaelpcWePXvKHC9RogQB0NTUlOnp6WzUqJFUubq6ukLr1LzyPyfwQUFBHDt2rNSxqVOnSu2V/hgHPNMuubC18ZGRkbSwsJA7ysTFxdHExOSnp3AqDL59+0ZfX1/aamqywt8P7iCA3+QJvIpKlnWlp6dz165dvHr1arbbrhs2bBACrHh5eRGAYIjl4+Mjk+n27NmztLa2FhJQSCQSYWlw584duW0cOXJExhy3Vq1aUv319fVl7969uXHjRv7111/ctGkTGzduTACsU6cOT5w4IYRmT0tL4/nz54WoNqNHj2bFihVZp04d1q5dmwsXLszynvPC/5zAv379WmYE//TpEzt37syEhARKJBIpj7s1a9b8lGwwy5cvl9Ef/Mj8+fN5/vz5Qu/HT+PvNbw3QB2ApQBOAxiSxRo+P4jFYvbt25dz5syhnZ0d69aty6ioKM6fP5/u7u5SL4zExEQaGxszJSVFpp7Y2FgaGxsrfMEkJSXx5MmTPHnyJKOjo3M0UMTExHDAgAF0dXWltbU1raysOGnSJH78+DHvN5xH/ucEXtGIfePGDXbq1ImjRo3i4MGDee7cObq6unLs2LE/JWqsp6dnliaofn5+uTLK+O35QUv/FRm56LWRETfPBOAEZWXeK2CXYLFYzJMnT1JPT49ly5alo6Mjjx8/LjNz8vX15Y4dOxTWs2TJEvr5+RVYv65cuUJLS0sGBgZSIpFQIpHw5s2b7Ny5M2/dulVg7eSE/zmBJzOUNmPGjJER5M+fP7NBgwYcMWIElyxZ8lPfsDNmzMgySOOGDRt48ODBn9afn0J8POnhQaqpkciIlbcBoK22NvX/nhpbWlry0KFDUgFOExMTuX79evbv358jR47MlVfhpk2bqKSkxPnz50sdj4qK4rNnzxgTE0MPD48srdUuX77MpUuX5u2e/0FKSgqNjIzk+orEx8fTyMjopxp3/U8KPEmuW7eOFhYW9PX1pZ+fH2fNmkUTE5Ofpo3/J69evWLv3r3llonFYpqbmxe4gua34h+Wdunp6dy9e7egqFJWVmaXLl04aNAglilThioqKvzzzz9Z8W9X3T/++CPb304kEglr69KlS1NVVZUNGzakiYmJlDcckOH1tnHjRrmzuz179gjbefll9+7d3Lhxo8LyVatW5To8e374qammfiZDhw7FoUOHoKWlhQ8fPqBTp064cOECGjdu/Ev6Y2hoiAoVKuCvv/5Cenq6cDw5ORmenp5wdXX9+THtfiZKSsAPVosqKipwcXHBkydPEBISAm9vbyQmJiIgIABubm548+YN7t27h5CQEFy5cgVpaWlo3749rl+/rrAJdXV1rFmzBlWqVEGrVq0wZswYtG7dGuXKlcPYsWNx7NgxbNu2DWvXroWWlhYGDRqEjh074tWrV0IdJLF37144ODgUyG0HBQUptkREhpViUFBQgbRVkCiR2Qd5i4+Ph66uLuLi4qCjo/Mz+vWvgiR8fHxw8OBB1KhRAyKRCJGRkRg6dChsbW1/dfd+axITE2Fvb4+AgAAcO3YMnTt3zld948ePR1xcHDZt2oQ2bdrg1q1bSE9Px6xZs1CyZEmMGzeuQPq9bNkyNGjQAF26dJFbfvToUYSHh8PT07NA2suOHMtoQU4X/uuIxWJ++fKlQJwh/kukpKTQ2tqaampq9Pb2zpeyVSKRcPny5SxZsiSrVavGESNG0MTEpMCm8pl8+vSJTk5OCsu7du36UwOs5FRGi0b4In4LUlNTMXbsWKxduxb16tVDzZo1Ub9+fXh4eOQoU+uPpKSkoGbNmmjevDmWLVuGmjVrFoqz1JQpU1C6dGmMGTNGqF8sFmPhwoUgienTpxd4m4rIqYwWCXwRvxVXr17Ftm3b8O3bN9y+fRsJCQlo1aoVzM3N4e7ujg8fPuDRo0fo378/SpQoIbeOS5cuwdTUFI8fPy5U3Q5JrF27FsePH0eTJk0gkUjw5MkT9OzZE4MGDSqQePw5pUjgi/jX8/37d6xYsQIPHjzAyZMnpWLN29raKoyjv2vXLri7uyMpKSnHrqr5QSwW4/Xr11BSUkKtWrWgoqJS6G3+k5zKaK784ePj4/PdsSKKyA3Dhg0DAERHRyMwMBC3bt3C6tWrcfLkSXz+/Fnuw505vX79+jWqV6/+U/pp8HcMgKSkpJ/S3j/JqWzmaIT//v07qlevjvDw8Hx3rIgiiigcKlSogPfv30NDQ0PhOTkSeCBD6H9G7qsiiigib6irq2cp7EAuBL6IIor49/Ovs7Qroogi8k6RwBdRxH+IIoEvooj/EEUCX0QR/yGKBL6IIv5DFAl8EUX8hygS+CKK+A/xf0mhPLQalpfAAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGcCAYAAACY42pGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddVhVWfv+70M3SkgKikopit0KgogCJgrY3d2O3TXW2M7YOtbYLSrY3SKCgUhLIx3n/v3hj/31yAHB0Xec992f6zrXBXvtvfaz497PimetJSFJiIiIiIiIiIiIiIiIiIiIiIiIfGcU/mkDRERERERERERERERERERERET+OxEbnkREREREREREREREREREREREfghiw5OIiIiIiIiIiIiIiIiIiIiIyA9BbHgSEREREREREREREREREREREfkhiA1PIiIiIiIiIiIiIiIiIiIiIiI/BLHhSURERERERERERERERERERETkhyA2PImIiIiIiIiIiIiIiIiIiIiI/BDEhicRERERERERERERERERERERkR+C2PAkIiIiIiIiIiIiIiIiIiIiIvJD+J9veNqxYwckEgnevXsHAPjzzz+xevXqf9Smr9khkUgwZ86c/6g9ZeHhw4dwdXWFlpYWypUrh86dO+Pt27f/tFki/6WIGv6+XL9+HQMHDkTdunWhqqoqc29FRL43on6/HwUFBVi5ciXc3d1hbm4ODQ0N2NnZYerUqUhJSfmnzRP5L0XU8Pflt99+Q6NGjWBgYABVVVVYWFjA19cXQUFB/7RpIv+FiPr9cZBEixYtIJFIMHLkyH/anJ8CCUn+00b8k8THx+PNmzeoXbs2VFVV4enpiefPn//jFa2S7Lh9+zbMzc1hbm7+nzfsK7x8+RINGjSAo6Mjpk6diuzsbMyaNQvJycl4/PgxDA0N/2kTRf7LEDX8fZk7dy62b9+O2rVrIyUlBYGBgQgLC0OlSpX+adNE/gsR9fv9SE9Ph6mpKfz8/NC6dWsYGBjg4cOHWLBgAUxMTHD//n2oq6v/02aK/Jchavj7Mnv2bCgoKKBWrVooX7483r59iyVLliAqKgoPHjyAjY3NP22iyH8Ron5/HOvWrcOiRYsQExODESNGYN26df+0Sf84Sv+0Af80hoaG/5HGkKysrO9W4GvUqNF3yedHMGvWLKiqquLUqVPQ0dEBANStWxfVqlXDr7/+iqVLl/7DFor8tyFq+Psyc+ZMzJ49GwDw66+/IjAw8J81SOS/GlG/3w91dXWEhYVBX19f2Obk5AQLCwt07doVhw8fRs+ePf9BC0X+GxE1/H2ZO3euzP8tW7ZEo0aNYG9vj71792LevHn/kGUi/42I+v0xvHv3DtOmTcOuXbvQuXPnf9qcnwZxqN1nIYZOTk44ffo0wsPDIZFIhF8hubm5WLBgAWxtbaGqqgpDQ0P069cP8fHxMnlWqlQJnp6eOHLkCGrXrg01NTXBkaxfvx4tWrRAhQoVoKmpCQcHByxbtgx5eXnC8V+zQ16I4fPnz9GhQweUL18eampqcHR0xM6dO2X2CQwMhEQiwb59+zB9+nSYmppCR0cHrq6uCAkJ+dv3Mj8/H6dOnUKXLl2ERicAsLS0hLOzM44ePfq3zyEi8iWihr+fhgFAQeF/3i2I/AcR9fv99KuoqCjT6FRIgwYNAAARERF/+xwiIl8iavj7+mB5FDYMKCn9z8cLiHxnRP3+GP0OHjwYrVu3RqdOnb5rvv92xC/YZ2zYsAGDBw/GmzdvijSSSKVSdOjQAdeuXcPkyZPRpEkThIeHY/bs2XBycioSwv7w4UMEBwdjxowZqFy5MjQ1NQEAb968Qffu3VG5cmWoqKjgyZMnWLhwIV6+fIlt27Z91Q55hISEoEmTJqhQoQJ+++036OvrY8+ePejbty/i4uIwefJkmf1/+eUXNG3aFH/88QfS0tIwZcoUeHl5ITg4GIqKisL1SqXSr55bIpEIx7x58wZZWVmoWbNmkf1q1qwJf39/ZGdnQ01N7av5ioh8C6KG/56GRUT+SUT9/hj9Xr58GQBQvXr1r+YnIvJ3EDX8/TRcUFCA/Px8hIWFYerUqahQoQL69ev31fxERL4VUb/fR79//PEH7t69ixcvXnz1+P85+D/O9u3bCYBhYWEkSQ8PD1paWhbZb9++fQTAw4cPy2y/d+8eAXDDhg3CNktLSyoqKjIkJKTEcxcUFDAvL4+7du2ioqIik5KShLTi7CBJAJw9e7bwv6+vL1VVVfn+/XuZ/dq2bUsNDQ2mpKSQJAMCAgiA7dq1k9nv4MGDBMBbt24J22bPnk0AX/19buONGzcIgPv27Sti86JFiwiA0dHRJd4TEZGyImr4+2n4S5YvXy5zb0VEvjeifn+cfkkyMjKSRkZGrFevHgsKCkrcV0TkWxA1/GM0rKqqKuxjbW3NFy9elHgvRES+BVG/31e/kZGR1NXV5ebNm2XsHTFiRIn34n8FMeKplJw6dQrlypWDl5cX8vPzhe2Ojo4wNjZGYGAghg0bJmyvWbMmrK2ti+Tz6NEjzJ49Gzdu3EBSUpJMWmhoKBo2bFhm2y5fvgwXFxdUrFhRZnvfvn1x9uxZ3Lp1C+7u7sL29u3by+xXGKEUHh4ujJsdPHgwPD09v3puVVXVIts+D4csS5qIyI9E1LB85GlYRORnQ9SvfErSb1JSEtq1aweSOHDggDiMVuQfRdSwfIrT8M2bN5Gbm4s3b95g1apVcHZ2xqVLl8TIRZF/BFG/8vlSv0OHDkWtWrUwaNCgMl/H/wJiw1MpiYuLQ0pKClRUVOSmJyQkyPxvYmJSZJ/379+jefPmsLGxwZo1a1CpUiWoqanh7t27GDFiBLKysr7JtsTERLnnMzU1FdI/58s5IApF8/n5jY2NUaFCha+e+/OGpMJ8vzwf8KkALJFIUK5cua/mKSLyIxA1LB+xMVjk34CoX/kUp9/k5GS0bt0aUVFRuHz5MqysrL6al4jIj0TUsHyK03CdOnUAfJpIuX379qhatSp++eUXHD9+/Kt5ioh8b0T9yudz/f711184d+4crl+/jtTUVJn9cnNzkZKSAk1NTSgrK3813/9WxIanUmJgYAB9fX2cO3dObrq2trbM//IcybFjx5CRkYEjR47A0tJS2P748eO/ZZu+vj5iYmKKbI+OjgbwyfayMm/evCIra8jD0tJSWOqySpUqUFdXx7Nnz4rs9+zZM1StWlWc30nkH0PUsHw+17CIyM+KqF/5yNNvcnIyXF1dERYWhkuXLsmdd1FE5D+NqGH5lMYHa2trw9bWFqGhoWW2Q0TkeyDqVz6f6/f58+fIz8+Xu+re77//jt9//x1Hjx5Fx44dy2zPfwtiw9MXqKqqym1x9fT0xP79+1FQUPBNYYDA/4nw87A8kvj9999LbYc8XFxccPToUURHRwutuwCwa9cuaGhofNOyk98SYqikpAQvLy8cOXIEy5YtEz5C79+/R0BAAMaNG1dmO0REyoqo4U+IQ+1E/o2I+v3Et+q3sNHp7du38Pf3R+3atct8bhGRv4Oo4U98Tx+ckJCAZ8+eoWnTpmW2Q0SkLIj6/cS36Ldv375wcnIqso+zszM6duyIMWPGoEaNGmW25b8JseHpCxwcHHDkyBFs3LgRdevWhYKCAurVqwdfX1/s3bsX7dq1w5gxY9CgQQMoKysjMjISAQEB6NChw1eXTGzdujVUVFTg5+eHyZMnIzs7Gxs3bkRycnKp7ZDH7NmzcerUKTg7O2PWrFnQ09PD3r17cfr0aSxbtgy6urplvg+mpqYy4i0tc+fORf369eHp6YmpU6ciOzsbs2bNgoGBASZMmFDm/EREyoqo4U98q4bj4+Nx5coVABCiF8+ePQtDQ0MYGhqiZcuWZc5TRKS0iPr9xLfoNysrC23atMGjR4+wevVq5Ofn4/bt20K6oaEhqlSpUmZbRETKgqjhT3yLhlNTU9G6dWt0794d1apVg7q6OkJDQ7FmzRrk5ORg9uzZZbZDRKQsiPr9xLfot1KlSqhUqZLcNDMzM7mNUv9z/JMzm/8MfDmbf1JSEr29vVmuXDlKJBJ+fovy8vL466+/slatWlRTU6OWlhZtbW05ZMgQvnr1StjP0tKSHh4ecs938uRJ4XgzMzNOmjSJZ8+eJQAGBAQI+5VkB76YzZ8knz17Ri8vL+rq6lJFRYW1atXi9u3bZfYpnM3/0KFDMtvDwsIIoMj+38r9+/fp4uJCDQ0N6ujosGPHjnz9+vV3yVtE5EtEDX9fDReeQ96vZcuWfzt/EZHPEfX7/fRbmE9xvz59+vyt/EVE5CFq+PtpODs7mwMHDqSdnR21tLSopKREc3Nz9uzZk0FBQX8rbxEReYj6/f714C+BuKqdgIQkv3trloiIiIiIiIiIiIiIiIiIiIjI/zzi2roiIiIiIiIiIiIiIiIiIiIiIj8EseFJREREREREREREREREREREROSHIDY8iYiIiIiIiIiIiIiIiIiIiIj8EMSGJxERERERERERERERERERERGRH4LY8CQiIiIiIiIiIiIiIiIiIiIi8kMQG55ERERERERERERERERERERERH4ISqXdMTs7G7m5uT/SFhGRfy0qKipQU1P7p80oEVHDIiLF87NrWNSviEjx/Oz6BUQNi4iUxM+uYVG/IiIlUxoNl6rhKTs7G5UrV0ZsbOx3MUxE5L8NY2NjhIWF/bROU9SwiEjJ/MwaFvUrIlIyP7N+AVHDIiJf42fWsKhfEZGvUxoNl6rhKTc3F7GxsYiIiICOjk6pTp6dnQ1fX18cOXIECgpFR/RNnz4dnTp1Qr169UqV33+Ke/fuYfny5di0aRP09PSE7RcvXsSWLVuwZ88eqKioAABev36NunXrCvs0adIEmpqa0NLSgoaGBhITExEXF4c3b94gLS1N7vlMTEzg5eWF3r17w8HBAQBAEtOmTcP79++hpKQEJSUlmJubw97eHvb29rC2ti72oUqlUkRERCA3Nxd5eXmoUqUKVFVV5e5LEjdv3sTZs2eF/NXV1ZGcnIzk5GQoKiqiU6dOUFRUxKlTp7By5Uo8efIE+fn5RfJSVVWFmZkZDAwMEB0djQEDBiA9PR2JiYlITU1FamoqcnJykJOTg+DgYFhYWKBBgwYoX748tLW1oa2tDalUirCwMISHh8PExATW1tbIzMwE8OllLry3mpqaqFSpEkxNTUvxRIunV69emDNnDqpUqVLkvvTu3VtumjzS0tJQsWJF5Obm/pQOE/g2DW/cuBHGxsbo1KlTkbSkpCQMHz4c+/fv/96m/i1IYvDgwXBzc4O3tzckEgkAID09HWPGjIG3tzfatm0r7D9mzBjs2LEDAFCtWjWYmZlBQ0MDWlpaKCgoQEpKCt68eYPw8HCQLHI+BQUFNG7cGL6+vujcuTO0tLQAAA8ePMCKFSugoKAARUVFaGpqws7ODnZ2drC3t4eJiYlg25ekpKQgKSkJOTk50NbWhrm5ebHXm5SUhIMHDyI+Ph52dnaoXLkyMjIyBA03btwYNjY2SE9Px9SpU+Hv719swcnQ0BDGxsZQUlKClpYWWrRogaSkJCQlJeHjx49IT09Hbm4u4uLi8PHjRzg6OqJatWrQ0dGR+eaFhoYiNzcXtra20NfXR2JiIgwMDFCuXDlBvzo6OnBwcICysnKpnqs8Hj9+jM2bN2PDhg1F7uXTp0+xfv16bN68uVR5/ewa/hb95uXloUuXLjh69CgUFRWLpC9YsABOTk5o1qzZ9zb3b/H48WPMnz8fmzZtgqGhobD92rVrWL16Nfbu3Ss8o/DwcNSsWVPYp3HjxjJ+IikpSfDBqampcs9nZGQET09P9O7dG46OjsL2WbNm4fXr11BSUoKioqLgI+3s7GBtbQ0NDQ25+ZFEREQEcnJykJeXBysrq2LfKZK4e/cuTp06BVNTU9jb2wt2JycnQyKRoFOnTlBWVsaFCxewdOlSPHnyBHl5eUXyUlFRgbm5OfT19REbG4u+ffsiMzMTSUlJSE1NRUpKCnJzc5GdnY3g4GCYm5ujYcOG0NPTg5aWFrS1tQEAb9++RXh4OIyMjGBjY4Ps7GxIpVKYmJjI3FsLC4sSv02loX///pg0aRLs7OyK3JeBAwdi4sSJRdLk8bPrF/g2DW/fvh3q6urw9fUtkpaWlob+/fvjr7/++t6m/i1IYuTIkWjSpAm6d+8ufJszMzMxfvx4uLu7o2PHjsL+U6dOxcaNGwEAVlZWqFixovCeFRQUIDU1VfDBUqm0yPkkEgkaNWoEHx8fdOnSRbi3z549w+LFiwUfrKGhAVtbW0HDZmZmxfrg1NRUJCYmIjc3FxoaGrCwsCj2elNSUnDw4EHExMTAzs4OVapUQWZmpuCD69evD3t7e2RlZWHatGk4f/48oqOj5eZlYGAAY2NjqKqqQklJCa1btxZ8cFpaGjIyMpCTk4MPHz4gJSUFtWvXhrW1tVCG1tDQQFJSEkJDQ5GdnQ0bGxsYGhoiKSkJ+vr6Mj5YW1sbDg4OQn3mW3j58iWWLVuGrVu3FrmXL1++xNKlS7F9+/ZS5fWza/hb9FtQUICOHTvi6NGjUFIqWt1evnw5HB0d0bp16+9t7t/ixYsXmD59ulAHKOT27dtYunQp9uzZA01NTQBAbGwsbGxshH2+9MEpKSmIjY3FmzdvkJKSIvd8BgYG8PT0RK9evVC3bl3hXVq4cCGCgoKgqKgIJSUlwUfa2dnBxsZGsOFLSCIqKgrZ2dnIyclB5cqVS/TXDx48wIkTJ2BkZAR7e3toa2sjOTkZSUlJAIBOnTpBRUUFAQEBWLRoER49evRVHxwXF4devXohJycHSUlJSElJEXxwYT3Y1NRU8MGFGgYg1IMNDQ1hY2OD3NxcFBQUFKkHV6xYscRvU2kYOnQohg0bhlq1ahW5L8OHD8fgwYNRu3btUuVVag2zFKSmphIAU1NTS7M7SfLEiRNcu3ZtsekvXrzg6NGjS53ff4p27doxJSVFbtr69eu5d+9emW0BAQGUSCQ0MjKiVCqVe5xUKmVeXh4zMzOZkpLC+Ph4RkVF8a+//qKFhQUBEAAdHBy4du1aXrt2jXl5eaW2OTo6mufOneOKFSuEvAp/mpqanDp1apFj7t27R3t7ewKgsbExVVRUihwLgIsWLeKpU6eooKDAxo0bc82aNbxw4QKvXbvGy5cv88KFCzxy5AiHDBkiHGNpaUmpVMozZ86wY8eOVFZWlpv348ePOWrUKDZv3pz6+voyaUZGRlyyZInc4wp/9evX5+LFixkaGlrqe1XI27dv2bdv32LT7969y0mTJpUqr2/Rx3+ab7Gxbdu2Jb6HPXr0YGxs7Pcw77sREBDAX375RW5aTk4OW7VqxYKCAmFbQUEB27RpQwD87bffis23oKCAOTk5/PjxI5OSkhgbG8uQkBAOHz5c5p0cNGgQDx48yPfv35fa5tzcXD58+JD79+9nhw4dirzndnZ2fPHihcwxUqmU48aNo5qaGpWVlWliYlKsTlJSUti8eXOqq6tz5MiR3LdvH2/cuMHAwEBevHiRZ8+e5datW1m5cmUCoIaGBn/77TfGxsZy4cKFtLKykpvvkCFDeOjQIXbu3Jl2dnZUUlKSSff29pZ7PYW/cuXKsWfPnjxy5AgzMzNLfb8KGTx4MENCQopN9/b25ocPH0qV18+u4W+xz9/fn8uWLSs2PSwsjIMGDfoe5n1XvLy8mJCQIDdt27Zt3Lp1q8y2mzdvUlFRkeXKlWN+fn6x+crzwcePH2eVKlWEd7JatWpcs2YNr1y5wtzc3FLbHBsbywsXLnD16tVF3nN1dXWOGzeuyDFPnjyhg4OD4O/U1NTk6mTmzJn09/enkpIS69evz5UrV/L8+fMyPvjo0aMcOXKkcIy5uTmlUikvXLhAb2/vYv37/fv3OWbMGLZo0YKGhoYyaYaGhly6dGmJPrhOnTpcsGABg4ODS32vComKiqKfn1+x6U+fPuWoUaNKldfPrl/y22z08vJidnZ2sekDBgzgu3fvvod5343bt29z/PjxctPy8vLYqlUrmXKFVCoV/MTSpUuLzVcqlRbxwa9eveLo0aNl3sn+/ftz//79Zbovubm5fPz4MQ8cOEBvb+8i77m1tTUfP35c5LipU6dSQ0ODSkpKNDMzK1Yn8fHxbN26NVVVVTls2DDu3buXN27c4JUrVwQfvH37dlarVk3wwYsXL+aHDx+4ZMkSYfuXvx49evDYsWP09vamvb19kbJ2hw4d2K1bt2Lt0tHRYffu3Xno0CFmZGSU+n4VMnr0aD558qTY9O7duzMyMrJUef3sGv4W+65du8a5c+cWmx4bG8tevXp9D/O+K126dGF0dLTctH379nHdunUy2+7fv09lZWVqaGgwJyen2HwLfXBqaqrgg0+fPk1bW1vhnaxYsSJXr17NwMDAEvP6kri4OPr7+3Pt2rVF3nM1NTUOGzasyDEvXrygo6MjAbBChQrF+uBJkybx6tWrVFFRYe3atfnrr78KPjggIIAXLlzgsWPHOG7cOEokEgKgqakppVIpL126RB8fH6qqqsrN+86dOxw/fjydnJxYoUIFmTQ9Pb2v+mBHR0fOnTuXz58/L/W9KiQ+Pp5dunQpNj0kJKRMZcTSauSHNTzt2rWLBw8eLDY9MTGRvXv3LnV+/wnevn3LwYMHF5v+8eNHdurUSfj/0aNH1NPTo6WlJe/cufPV/KVSKR8/fswFCxbQ1tZWeEE/F0fh31ZWVhw5ciTbtm3LFi1acNWqVYyNjWVcXBxnz57Nli1bcvHixQwMDKSioqLcF7KwMWf69Oky1zh58mQ2atRI2G/Tpk3My8tjcHAwnz17xrlz5wppixcv5vjx42lkZFSksHDo0CGOHDmSrVq1opKSEqtUqcJTp07Rzc1NKAzUqlWLK1as4MmTJ/nw4UOhgWro0KG0srKigYEB/fz8OG/ePP71118MCgri27dvBWdZ6EhdXV05a9YsduvWjbVq1Spy7x49elSmZ3369Glu2LChxGfl5eVVqrx+dodJfpuNnp6eJaaPGzeuxIr/P0H//v0ZHh5ebPrs2bN5/fp1kp+e8dChQwmAI0eOLLGAX0hqaioPHz7Mrl27UkdHR25jSuHf06dPZ48ePdikSRP26dOH/v7+zM/Pp7+/Pzt06EA/Pz+eOnWK/fv3l6tfdXV1Kioq0tjYmG/evBFs2Lp1K6dOnSqzb3p6OhMTE/ngwQMGBwdTT09PqICGhoYSAFetWiVzLVFRUZw/fz59fX1pZWVFiUTCwYMHc/PmzVyyZAkNDQ2prq7Ofv36ce/evQwMDOTz58+FgnGhDU2aNOGoUaO4YcMGBgYGMjY2lnv37qWxsbGgX3Nzc44cOZKjRo2is7MzTU1NZexv06ZNmZ/1197PhQsX8saNG6XK62fX8LfYd+jQIe7cubPY9MzMTHbt2vV7mPfdiI6OLrFckJWVJfNdDgoKYoUKFWhmZibouiSkUimfPXvGRYsWsXr16kX8yOeFQ1NTU44aNYrt2rVj8+bNuXz5ckZFRTEhIYHz589nixYtuGDBAt64caPYzpVCH/x5RTwiIoJTpkxhy5Ythf1WrVrFvLw8vnz5kk+fPpXpdJk9ezZ/+eUXlitXTqYgLpVKefToUY4aNYqurq5UUVFhpUqVeOzYMbq5uXHKlCkEwBo1anDZsmU8ceIEHzx4wDFjxhAA+/XrRxsbG5YvX54+Pj6cO3cuDx48yGfPnvHdu3fs0aOHjA92cnLi7Nmz6ePjw1q1ahUpd9y+fbtMz/ry5ctcsWJFift8TeOF/Oz6JX+MD/7ll1/kNoj8k4wYMaLEcsGSJUvo7+9P8v86UIBPnTal6YBIS0vj0aNH6evrK+Nv5fngadOmsWfPnmzatCl79uzJc+fOMS8vj5cvX2anTp3YrVs3Hj9+nMOGDZOrXxUVFSorK9PQ0JAvX74UbNi1a1cRH5ySksKkpCQ+ePCAoaGhNDY2JvCpAff169eUSCRctGiRzLUUdu74+fmxatWqgi537NjB+fPn08TEhGpqauzVqxf37NnDgIAABgcHU0FBgaqqqpwxYwYBsGHDhhwxYgTXr1/Py5cvMyYmhocOHaKZmZnQIWRiYsJhw4Zx9OjRbNWqFc3NzWXsb9q0aZmf9dfKyCtXruSlS5dKldfPruFvse/kyZPctGlTsekFBQVs37799zDvu5GQkEAfH59i03Nzc9muXTvh/9DQUJqamtLY2JgBAQFfzV8qlTIoKIjLli1jzZo1qaCgUERznze8jB49mh4eHmzWrBmXLFnCiIgIJiUlcdGiRWzRogXnzp3LO3fuFNu5UuiDP294io6O5pQpU9i6dWthv0WLFjE/P58hISF88uQJV61aJaRNmTKFc+fOpYaGRpFv1KlTpzhmzBihYdnc3JwHDx6ku7s7Z8+eTQC0tbXlkiVLePz4cd6/f1/wzd27d2f16tWpq6vLbt26cfbs2Txw4ACfPn3K9+/fs2/fvjL3pHnz5pwzZw79/PxYu3btIp29gYGBZXrWt27d4oIFC0rcp7Q+mPwJGp4ePHhQbK8HSZ45c6bE3o3SIJVKefDgQXp5edHT05Nubm6cMWNGqXu5v+Tu3bucM2dOifsUfmiDg4NpaGjIunXrMjEx8at2Hjp0SHAshYVdQ0NDdu7cmZs2beLTp0+Zn59PFxcX4SWqXr0627dvTy8vLyorK1NRUZGqqqrU0NBgmzZtqK6uTk1NTWpra7NixYoMDw/nlStXOGjQIKFSPGXKFBlbPhdT4W/48OEy+zx9+pTdu3cXBNuwYUMC4Pr16ymVShkXF8f27dsLgurSpQtXrlzJrKwskhQiSNauXVskCiwoKEjoGbKzs2NYWFix9+3ChQvU0dGhvb09q1WrRiUlJWpqasp8qCQSCVVVVTlgwABevny5xB7vz7l58yZnzZpVbHpcXBy7d+9eqrx+dodJfpuNPj4+jImJKTa9bdu239RL9jmRkZGcNGkS3dzc6OnpyY4dO/LkyZPfnF+HDh1KfAe2bNnCY8eOUSqVcvz48QTA33///av5xsbGctCgQTKVLSUlJdasWZOTJ0/mqVOnmJCQwCdPngjpJiYmbNasGXv06CH0WGpqahL41CBbvXp1YT/gU2/vy5cv+ccff7BevXqUSCQsX748o6KiZGzR0NAoouHPo7ikUimXL1/OBg0aUCKRUCKRsFatWqxUqRKTk5NJfmqU0NPTo7a2Nps3b84hQ4bw3r17JMn3799TU1OTVatWZVxcXJF74eHhQS0tLQLgwoULi430TE1NZa9evQiALVq0oJaWFjU0NIr0/EgkElarVo0bN24stpdNHp06deLHjx+LTR89enSRSLHi+Nk1/C32BQUFFfm2f05AQMBX/d3XKGz8aN++veCDp06dWuJ3oySePXsmN0L3cwoLQq9fv6aJiQkdHBy+6vOlUimPHTsm9KwW+mB9fX127NiRGzZs4OPHj5mfny8TpWdvb09PT0926NCBqqqqVFBQoJqaGtXU1NimTRtqaGhQQ0ODurq6NDIy4tu3b3n9+nUOHTqUurq6BFAksnvTpk1F9Ovr6yuzz4sXL9izZ08hCqlevXoEwBUrVlAqlTIhIUGIzLC2tmanTp24fPlyoVDcqVMnAuCyZcuK6PPt27eCD65atSpfvXpV7H0LDAyknp4ebWxsaGtrW6wPVlFRYe/evenv71/qaO2HDx+WGFWcnJxc6obRn12/5LfZ2Lt37xKjZ9u3b/+3rzkmJoZTp04VfHD79u155MiRYr/rX8PHx6fE7/Lu3bu5b98+SqVSTp8+XSgrfo0PHz5w+PDhMo28ioqKdHBw4MSJE3nixAl++PCBISEhQrqxsTGbNGnCHj16CNov9ME1atQQoh0KO0Lmzp3L0NBQbt++nQ0bNqREIqGOjk6RzqwvowMBFCl3rFmzho0bNxa0Uq9ePZqZmQnRnMePH6ehoSG1tLTYrFkzDho0iDdv3hSuVUtLi5aWlkX8P/kpmrewjD9z5sxin9XHjx85cOBAodKqq6tbrA+2srLiunXrGBER8dVnUUjXrl2FMoU8pkyZwgcPHpQqr59dw99i35s3b9i/f/9i02/duvVVf1caTp48yY4dOwo+eNKkSaWONPuSV69eccyYMSXuU+iD3717RwsLC9ra2n617CaVSnn69Gmh3Fvog/X09Ojl5cV169bx4cOHzMvLo5+fn/Bu2tnZ0cPDg506daKamholEgnV1dWpqqrKNm3aUEtLi2pqaixXrhz19fX5+vVr3rx5kyNGjGD58uUJfGrU/lwjO3fuLKLfLzs/Q0ND2adPHxoZGQlldgUFBS5YsIBSqZTJycns3r274Ec7duzIxYsXMz09nSSFjpt58+YV0WdkZKTggytVqlRiOfX69eusUKECq1atSnt7+2J9sLKyMrt3785z586VOlo7ODiYI0eOLDb948eP7NixY6nyIn+ChifyU8VU3sufl5fHNm3afHMDEfnpJR4zZgznzp0r2CWVShkQEEBnZ+cyDXUpJD4+vsSCTnh4OHv37s3Y2FjhgQcEBMhU+r7kw4cPbNasGQEILZSNGzcutpcqNTWVUVFRRV7UxMREbtq0iStWrBAauhITE2lnZyfYsnr1amF/qVRKZ2dnVqpUSaYQEB4ezj59+tDAwIAAqKuryx49evDs2bNFzpmbm8vatWvT29ubPXv2lBGplpYW9+zZI/caqlevTj09Pb5+/Vpme0JCAt3c3PjkyRMeO3aMSUlJxd63Qj4fgqehocGWLVtywYIFfP/+PW/dusVff/2VnTt3Fj4OJiYmHDNmjIwzlOeUCwoK2KpVK0Gg+fn5zMrKEn6rV6/muXPnhP9LesY/u8Mkv32ojrwhIiR56dKlrzqnrxESEkJnZ2feunVLeEaJiYmcPHkyZ8+e/U15Tp48mXfv3i02fdiwYQwODuaiRYsIgG3btv1qw/G2bduopaXFcuXKsUqVKlRRUeHixYuFhtbPkUqlfPfuXZEGOalUylu3bnHmzJm8dOkSpVIppVIp//jjD+H91tHRkXnPrl27RgBcs2ZNEXuaNGkiOO5atWpx0aJFcoc9Hj9+nAB46tQpIaKy8LgWLVowPj6+yDGnTp0iAPbp06fIe//nn3+yb9++fPv2LS9fvlzifSOLVrLNzc3Zp08fnjt3jhERETx06BDHjh3L+vXrU0lJiRKJhM7Ozjx69GiR+/cle/fu5caNG+WeNyMjg61bty515eln1/C32ufl5SW3cT8/P58eHh7fXDgtZMqUKZwxY4YwPF0qlfLatWt0dnbm27dvy5xfamoqO3ToUGx6TEwMfX19mZiYKLxT58+fL7GxOTk5mc7OzoJWVFRUWK9ePaGh9Us+fvzIyMjIIu9+cnIyt2zZwmXLlglll5SUFNaqVUuwZcmSJcL+UqmU7dq1o6mpqczw/aioKPbv318Iq9fR0aGvry9PnjxZ5H3Ny8tj48aN6enpyUGDBsloSUNDo8iww0Lq1avHcuXKFSnQJicns23btrx//z5PnDhR7JDGz/k8MkJDQ4MtWrTgnDlzGB4ezjt37nDlypX09vYWGtArVKjAESNGyHxb5OlQKpXSxcWl2EjTVatW8fDhw1+1j/z59Ut+m43Xr1+XO0SEJG/cuMEhQ4b8LZvevn1LZ2dnXrt2TXhGKSkpnDFjRpFOy9Iye/ZsXrlypdj0cePG8eHDh0InaIsWLb76Hu7Zs4e6urrU1tZmtWrVqKyszHnz5snt+JJKpQwPDxcqgJ9vv3fvHmfNmsXz588L17tnzx7h/VZTU5OJKrx37x4VFBRkdE1+ajxr3ry5UPmrUaMG58+fL7eR6Pz58wTAY8eOCZ1GhT64cePGcv32xYsXCXwarv7lt+3w4cP08/Pju3fvhMixktixY4fMd8PMzIw9e/bkqVOnGBUVxcOHD3P8+PFs2LAhlZWVKZFI2KJFCx46dKjI/fuSw4cPc+XKlXLPm52dTRcXl/95H9y5c2e5jfsFBQXs2LHjN/nJz5k9ezYnTZoklGMLy5qtWrX6phEJGRkZMhFNX5KYmMguXbowLS1NeKdOnjxZYodDWloa3dzcCHyaUkZVVZWOjo68deuW3P3T09MZERFRxAenpqZy27ZtXLJkiaCbjx8/sn79+oItn9cdpFIpO3fuzAoVKsh8Ywo7kgujErW1tdmtWzehU/pz8vPz6ezsTBcXF5lhvRKJhGpqakJAxpc0b96cOjo6RYaipqWl0cvLizdv3uSpU6fkdu5+yedDbdXV1dmsWTPOmDGDYWFhvHfvHlevXs1u3boJjVkGBgYcOnSozLelOB/cunXrYgMINm7cWGw9Xx7/kYan8PBwLlu2jKNGjeLq1at58uRJmZ7OV69e0dnZmSdPnhQ+no8ePWLHjh155MiRUl+MPC5evFhsb1loaGiJoYIl0atXLz59+lRu2siRI3nt2jVGRETIjOfW1dWlu7s7Dxw4QPJTg83Tp0+5e/duoZfl8wpmq1atOGrUKPbv35/16tWjgYFBmcPUC3n9+jX19fVZu3btIk7v1atXVFVV5eLFi4scl5+fzxs3bnDKlClC41XTpk05adIkzpw5k23bthV6VDw8PKihocHy5cvT1taWhoaGVFJSooaGBkeMGFHkvRg1ahSNjIzYqFEj1q5dm4MHD+aAAQPo6enJhw8flun6bt68yYCAALmNcZ8jlUp5+/ZtjhkzhhoaGnR0dGTz5s1ZsWJFKisr09fXt8j9OXLkiNCj+OLFC+H34MEDBgYGMigoSNj28uXLYscb/+wOk5RvY25uLs+ePctRo0Zx1qxZ3LlzJ2/duiXzsZ85cyZHjRolNORmZGRw8+bNbNu2bYm9mqXB09NTbkGNJAcNGlTqnrLPefXqFb29veW+KxEREUJPza+//ipTGLOzs5P5UH/48IEXL14U5k1r06YNu3btKvSidu/enePHj6enpyctLCzYrVu3Mo1H/5xJkyZRQUGhSAMTSSFyIi0trUhaXFwct2/fzs6dO1NTU5NaWlocOHAgZ8+ezaFDhwo9S5qamkLjt42NDS0sLKitrS1UxE+dOiWTb2JiIhUVFens7Ex7e3u6uLgIPeIzZswo0/xzKSkpPHHiBJ8+ffrV6LikpCRu3bqVjRs3pqKiIr28vOjg4EAdHR2amJhw9+7dMs81JyeH7dq1K1LJSU9Pp7e3Ny9evFhqO392DRdnX0REBFesWMFRo0Zx1apVPHHihIym3r17RycnJx49elR4bk+fPqW3tzf//PPPv2XTjRs3ip2D5927dzLD0svCgAEDim0UmjRpEv39/RkTEyMz95iOjg7d3Ny4e/dukp8abJ4/f869e/eyZs2aBMAtW7YIFb6WLVty5MiRHDhwIBs0aMDy5cuXaqiePMLDw2lkZMQaNWoUiYwIDw+nhoaG3OjagoIC3rp1i7/88gtr1KhB4FN08cSJEzlr1ix6eHgIw4batWsnNH7b2dmxQoUKVFJSopqaGocMGVKkE2fy5MnU19dn48aN6ejoyIEDB3Lw4MFs165dqaYF+Jw7d+7w8uXLjIyM/KoPvnfvHsePH09tbW06ODiwRYsWtLCwoLKyMjt37lykQ/DMmTP09fUt8m24ePEiPT09S/2t+dn1S8q3MS8vjxcuXOCYMWM4Y8YM7tixgzdu3JBpbFi4cCGHDh0qzFmUmZnJrVu30s3N7W9fb6dOnYqdC2nUqFGlHqr8Oe/fv2f79u3ldtbFxMTQ3d2dJIvMxWJjY8NBgwYJ36+EhAReunRJaKBydnYWImgNDQ3p6+vLCRMm0MvLi5aWluzYseM3zRVIkrNmzaJEIpE7CmPcuHHU0NCQ21EaHx/PXbt20dvbW4jo7d+/P2fPns3hw4fTwcFBiMovHFprbW1NS0tLoXxdo0aNIh0taWlpVFFRYcuWLWlvb89WrVpxypQpdHd35+TJk8tU1khLS+OJEyf4+PHjIo1xX5KSksIdO3awefPmlEgk9PLyYq1atairq8sKFSpw69atMs81Ly+PXl5eRRrAMjMzhakESsvPruHi7IuKiuKqVas4cuRIrlixgsePH5eJGouMjKSzszMPHTokdHQHBQXRx8eH27dv/1s2PXz4kAMHDpSbFhUVVaZhUp8zYsSIYv3hrFmzhE6LzwMftLS06Orqym3btgnzGgcFBXHfvn1Cw9CGDRuEUQPNmjXj8OHDOXjwYDZs2JDa2tqlGqpX3LWamZnR1tZWZloK8tOwOh0dHbntBQUFBbx79y5nzJghdCDVq1ePEyZM4OzZs+nl5SVMW+Hu7k4dHR3q6OgIPlhZWVkYcfNl4/ns2bOpo6PDpk2b0tHRkX379uXQoUPp7u5e5rLG/fv3eenSJb5//77EIAipVMqHDx9y8uTJ1NXVpb29PVu2bElLS0sqKyvL7Yi8ePEiu3TpUqQ+d/XqVbq7u5dqCpJCfkjD0/Dhw+nt7c3BgwezSZMmQg+Bra2t0Juurq7OSZMm0cfHh76+vuzevTsbNmzIZs2a0cPDg6NHj5YZK/2t9OjRo9hKK0n6+vp+08THcXFxQo97ofOPjY3l+PHjOXPmTJl909PTefnyZS5YsIBOTk5CBfbzsaaWlpYcPHgwc3NzuXPnTqHy+uVvzZo1zMzMZGJiImNiYspUuUtKSio2tK5///7U1dXl6NGjeeHCBbkvUeFE4C4uLqxWrRqNjIzo7u7OBQsWCE5/1KhRMpXf2NhYzpkzh9ra2qxevbqM2G/evClzbaqqqiUOqfveLFu2jE2bNmX37t05bdo0Lly4kIaGhtTW1maPHj24cOFCHj16lCEhIbx06RKvXr3Kly9fMiwsjMHBwXz79i0zMjKEaKeMjAy+evWK7969k1vw/tkdJvl/Nnbt2pU9e/Zk7969hai3SpUqyUxO3ahRI06YMEGIdPP09GStWrXo4eHB9u3bc+fOnWX6GMkjNDS0xPnUQkJCOHTo0G/Ke/369ezXr59QCZRKpfT396ezs7NMFJ5UKuXr16+5a9cuDhkyhIaGhqxQoYLMvVBXV2eDBg145coVPn/+vMSJ/uLj45mWlsbY2NgyvQtSqbTY6M/3799TUVGRzZo149q1a4vtHUtMTOTEiRNZq1YtmpiY0M7OjoMGDeLOnTvZvHlzWlpayjTEFE483KpVKwJFh8x9OSn4okWLvrlQX1bi4uLYvHlztmvXjsOGDeOSJUuE72a9evU4ZswYbt68mdeuXeO7d+84fPhwenp6cvr06Rw8eDDd3d1LPa9EIT+7hgvtGzlypOCDW7RoIVRq7OzsqK6uLnxvJ0yYQF9fX/r6+rJHjx5s3LgxmzZtSk9PTw4fPvybJqL8kn79+pX4Xe/Tp0+J860VR2JiIl1cXHjo0CHBD3748IFTpkzhpEmTZN7TjIwMBgYGctGiRXR1dSXwafj350NJLCws2LdvX+bm5nL37t1CCPyXvyVLljArK+ubfHBycnKxlcERI0ZQW1ubI0eOFKJo5eHv78/WrVsLPtjNzY3z5s3j+vXrCXyazP/zyKkPHz5wwYIFLFeuHK2trWV6tx8+fFjk+r4skP9I1qxZwyZNmtDPz49Tp07l4sWLaWxsTE1NTfr5+XHBggU8cuQIX758yTNnztDNzY1Dhw7l9OnT2a5dO44aNapMw7h/dv2S/2djt27d2LNnT/bt21eIerOwsJCZ965evXqcNGkSu3Tpwp49e7J9+/asWbMmPTw86OXlxa1bt/7t7/H79+9LnE/t3bt37Nev3zflvXXrVvbs2VPwV4WjEVq1aiUzEb1UKuXbt2+5Z88eDhs2jMbGxjQwMJDp2FVTU2O9evXo7+/Ply9fcvny5cX64OjoaKalpTEuLq7YRYLkUTiFhDxiY2OpoqLCRo0acfXq1UUi+QtJTk7m1KlT6ejoSFNTU9rY2HDAgAHcvn07XVxcaGZmxrNnz8qc8/Lly8LUFDNnzpSpVPr6+spc25w5c77acPS9SEpKopOTE9u2bcuhQ4dy8eLFwrCi2rVrc/To0dy0aROvXr3K9+/fc/To0WzXrh2nT5/OoUOH0s3NjefOnSvTOX92DRfaN3r0aHp7e3PQoEF0cnIShhp/7oNVVFQ4duxY+vn5CT64SZMmbNKkCT09PTl06NASJ2UvLUOHDi2xPj148OBvWnwpJSWFbm5u/PPPP4W6ZWJiotAR/bkPzszM5NWrV7lkyRLhXbaxsZGZs9jc3Jzdu3dnbm4u9+3bV+y8ptOnT2dWVhaTkpIYExNTpgU+UlJSiq2XTJw4kZqamhw2bBhPnz5d7LczICCAbdq0obW1NStUqEBXV1fOmTOHW7ZsIfBp/rXPR0gkJiZyyZIl1NfXp5WVFYOCgoS0oKCgItf3Lc/iW9m0aRObNGlCX19fTpkyhUuWLKGZmRnV1dXp4+MjzKv84sULXrhwge7u7hw8eDCnT59OLy8vDhs2TG6Hd0mUVsMSUs4a4V+QlpYGXV1dVKxYEdbW1khOToapqSl8fHzQoUMHaGtrQyqVIioqCqtWrcJvv/2GunXrQktLC5mZmbh9+zaAT8t1m5mZISsrC7GxsShfvjysra1hY2MDa2trmJmZCUsKamlpoWLFitDR0UFWVhbev38PJSUlWFlZQSKRwMvLCydPnizW5nnz5qFt27aoX7/+1y5PhoKCAjx//hxbtmzB69evoaKigtDQUEilUjg5OWHixIkyS0fm5+cjJiYG5ubm+OOPP3Dv3j3UrFkTtWrVQs2aNaGrqwvg03Luf/zxB44dO4YrV66UySZXV1f4+/uX6ZhCPnz4gNmzZ+PUqVOIjIyElpYWWrZsCRcXF7i4uKBGjRpQUFCQOSYuLg4aGhrQ1tbG3r170bNnT2RkZMhdjjI4OBheXl5ISUnBsWPHhKW5t2/fjv79+wMAnJ2dYW9vD2NjY5iZmaFq1aqoWrUqjI2Ni13OVh7Z2dmIiopClSpVynwfkpOTsXjxYty8eRNBQUFISUmBpqYm/vzzT1hbW8PExATKyspQVVWVu/R4amoqoqOjUbVq1SJLwBfqIzU1tdTLrP6nKbSxfv36UFVVRWZmJlxcXODn5wdHR0dIJBJkZGTg5s2bGDt2LGJiYlCvXj1kZ2fj2rVrAABVVVWYm5tDV1cXcXFxyMjIQJUqVWBtbQ1ra2tUrVpVZmnu8uXLo2LFilBQUMCHDx8QGxuLypUrQ0dHBxcuXEBISAhGjRpVrM1f03hJ1/rXX3/h+PHjkEqlSE1NRWhoKGxtbeHr64sBAwbIPMMPHz4IS5gvWLAABgYGqFWrFmrVqoWqVasK78O9e/ewbt063LlzByEhIWWy6dq1a9+8bP3BgwexZcsWXL16FXl5ebC1tRX06+TkhPLly8vsn5+fj6ioKFhYWEAikcDe3h5t2rTBqlWriuQtlUoxb948zJ07F35+fti+fTtUVVUhlUphZWWF8PBwaGtro1OnTjA2NoaJiQkqV66MKlWqwMrKqtglaosjIiICurq636STCxcuYNOmTXjx4gVev36NgoICAICtrS2GDx+Ohg0bwtDQEJUrVy5z3j+7hgvtMzU1hZ2dHVJSUlChQgX4+PigY8eO0NXVhVQqRXR0NNatW4cVK1bA0dFR8J+3bt0C8GnZYnNzc2RnZyM2Nha6urqCfm1sbGBubi74X21tbUHv2dnZeP/+PSQSCapUqQIFBYWv6nP58uVo2LAhWrRoUaZrLSgowMuXL7F582aEhoZCRUUFr169Ql5eHpo3b45JkybB3t5eZv/C933Hjh24ceMGHBwcBB9cqI/MzExs3boVR48eRUBAQJlsatq0Ka5cuSLXN3yNxMREwQeHh4dDQ0NDxgfXrFmziA+Oj4+HqqoqdHR0cOTIEXTp0gUJCQnQ19cvkv+rV6/g5eWFuLg4HD58GK1atQIA7Nu3D927dwcAtGjRAjVq1JDxwVWqVIGJiUmRc5dETk4OIiIiUKVKlTL5buCTD126dCmuXbuGoKAgJCcnA/i0BHW3bt3g5+cHMzMzVKlSBVpaWmXK+2fXL/B/NtatWxcaGhpIT0+Hs7Mz/Pz8hCXEMzMzcefOHYwdOxbh4eFo0KCBjA9WUlKChYUFypUrhw8fPiA9PR2VK1cWytCFPrhQw+XLl4eFhQUUFBQQHx+PmJgYVKpUCbq6urh69Spu376NyZMnF2vzt/rgjx8/4ujRozhy5AgKCgrw8eNHvHz5EjY2NujatSsGDRoEVVVVYf/4+Hioq6vj48ePmDdvHsqXLy/44GrVqgm6e/ToEdauXYvbt28jODi4TDZdvnwZzs7OZb4WADh27Bg2btyIwMBA5ObmwtraWtCvs7Mz9PT0ZPYvKChAZGSk4IPr1KmDhg0bYuPGjUXyJomlS5fil19+QefOnbF7926oq6uDJOzt7fHy5UtoaGigS5cuMDExgbGxMSpVqoSqVavCysqq2CXliyMqKgpaWlpC3aQsBAQEYP369QgKCsKrV68EH1ytWjUMHz4cjRs3hoGBwTeV0X92DRfaZ2xsDHt7e6SlpUFfXx/dunVD586dUa5cOZBETEwMNm3ahCVLlsDBwQHlypWT8cH6+vowNzdHbm4uYmNjoaWlJejX2toaFStWlKkHm5ubo1y5csjJycH79+9BElWrVoWCggLat2+PEydOFGvzunXrYG1tDTc3tzJdq1QqRUhICDZv3ozg4GCoqKjgzZs3yM7ORosWLTB+/HjUrFlTZv+IiAhYWlpi7969CAgIQI0aNQQNF+ojOzsb27dvx+HDh3Hp0qUy2VSnTh3cvn27SP2rNKSkpGDOnDk4ceIEwsLCoK6ujhYtWggadnR0LOIHExISoKysDF1dXZw9exbt2rVDREQEzM3Ni+T/7t07eHl5ITw8HAcPHoS7uzsA4OjRo+jcuTMAoEmTJqhVq1YRH2xqalomH5ybm4vw8HBUrVq1zD7448ePWL58Oa5cuYKgoCAkJiYCAJSVldGlSxf07NkTZmZmsLKy+iYNllbDZWp4Ku0HQSqVytzIZ8+e4cGDB4iMjERUVBTU1dVhZGSEpKQkhIaGIiQkBK9fv0ZeXl6RvMqVK4eUlBThf11dXdSuXRsREREYMGAA7O3tUblyZVSuXBna2trCfv3798ecOXNgYWEhk19+fj7Cw8Ohq6sLPT095ObmIjAwEKdPn0ZgYCBevXqFnJwcAICVlRXq1auHQ4cOwdXVFS9fvkR0dDT69euHGTNm4Pr165g7dy7Cw8MRGRmJ8uXLY/Xq1Xjz5g20tLRgbGwMZ2dnVK5cGT4+Phg8eDA6duyIzMxMbN68uUSH/zkWFhZ49+5dmV+yzyGJZ8+e4cyZM7h48aJQiW3SpAlu3LgB4JPzX7FiBVasWAEAaNy4MfT09HD8+HF4eHige/fu8Pb2hoqKipBvQUEBfHx8cPjwYdSpUwf3798X7AwODsaWLVvw4sULxMbGIjY2Fh8+fBCOVVRUhLa2NjQ0NIRCkqGhIaysrGBqagptbW2kp6cjKSkJSUlJOH/+PN6/f49GjRrB2dkZBgYG8PPzg4mJSZnvRVxcHF6+fAlVVVWoq6ujoKAAVlZWRSrxhWRlZeHdu3eoXLky1NTUZNJ+docJlM1GfoqEFDScnZ2Nc+fOISIiAhEREUhNTYWRkRHU1dXx5s0bhIaGIjQ0FHFxcUXyKixAZWdnC9usra1hZWWFlJQUDBkyRNCvmZmZUMCMjo7G1KlTsWvXriJ5JiQkICMjA4aGhtDQ0EBYWBhOnz6NM2fO4NGjR4iNjQUASCQSdOnSBU+ePEFqairq1q2Lc+fOwcrKCvPmzUOTJk2waNEibN++HcOGDcNvv/2G58+fY8OGDVBWVoa2tjZq1qwJFxcXnDt3DqdPn8aiRYtQqVIl3Lp1CwMHDsSLFy9Kdf9Pnz6Ndu3alWrf4khLS4O/vz/Onz+PS5cu4e3btwCAEydOwMvLC1KpFIGBgRg3bhyePn0KU1NTuLq64uzZs1BQUECfPn3Qt29f2NnZyeQbFBSEGjVqAAD8/f3h6uoK4FMl86+//sKxY8cQExOD2NhYREdHIysrSzhWXV0dWlpa0NDQgK6uLvT19WFsbIxq1apBT08PCgoKgn7fvXuHkydPQlNTEz4+PrCwsECtWrXQvn37Mn/bcnJyEBoaiqCgIBw6dAhHjx5FkyZNcObMmR/qMP8p/q4PfvHiBe7du4fIyEhERkZCTU0NxsbGSE5OFvT76tUr5ObmFsnrSx+so6OD2rVrIzo6Gr169YKDg4Og4c9tGzFiBEaPHi3TUQN88hnv3r2Djo4O9PT0kJ+fj6tXr+L06dMICAhASEiI4IMtLS3RuHFjHDp0CC1btsSbN28QERGB3r17Y9asWbh79y7mzJmDV69eITw8HMbGxli3bh2Cg4Ohra2NChUqwNnZGdbW1vDx8UHv3r3h7e2N3NxcbN26FWPGjCnV/TcwMEBMTAyUlJRKtb88SOLFixc4ffq04INzcnJQu3ZtPHz4EMCnRqrVq1dj6dKlkEqlaNiwIUxMTHD48GG0adMGPXr0QLdu3WQq7VKpFH369MGePXtga2uLoKAg4dmHhoZiy5YteP78uYwPLiz2KSoqCvot7CwwMDBA5cqVhUbIz33wxYsXERYWhnr16sHV1RUGBgbw8fGRWxj/2r348OEDXrx4gbt372L9+vWIiorC7t27hcaysvCz6xf4exrOyckRyj8RERFCw7Ompibevn2LkJAQhIaGCr7vc9TU1CCRSGS+21WrVoW1tTXi4uIwYsQIQb/m5uaCD05ISMCoUaOwb9++InkmJibi48ePqFChAjQ0NBAeHo4zZ87gzJkzePDgAWJiYoR9O3XqhODgYHz48EH4RlesWBHz5s2Dk5MTlixZgj/++AN9+vTB77//jpCQEPz2229C+bBGjRpo3bo1AgMDcfDgQSxevBhVqlTBvXv3MGTIEDx69KhU9//IkSPo1KlTqfYtjvT0dFy8eFHwwa9evQLwqXOoa9euIIlr165h3LhxePjwIYyMjNC6dWtcvnwZeXl56N27N/r27Sv420JCQ0OF7+Tx48fRvn17AJ8qmUeOHMGRI0cQHR2NuLg4REdHIzMzUzhWXV0dmpqa0NTUFOo1xsbGsLa2Rvny5aGoqIjk5GQkJSUhPDwcJ06cgJqaGnx8fFCpUiVUr14dnTp1KlPlt9C2V69eISgoCIcPH8Zff/2FunXr4vz588WWo0viZ9dwoX0pKSmlarT70ge/fPkSd+/eFXywiooKjI2NkZaWJuj38/rn53zpg7W0tFC7dm18+PABPj4+cHR0FDT8uW0TJkxA7969UatWLZn8CgoKhE5FPT09FBQU4Nq1azhz5gwuX76MkJAQ4XthZmaGli1b4tChQ2jSpAkiIiIQFhaG7t27Y86cOXjy5AnmzJmDoKAgvH79GpUqVcLGjRvx7NkzaGlpwdDQEE5OTrC3t0f37t3RtWtX+Pr6oqCgADt37sSwYcNKdf81NDSQlJQk4/vKCkm8fPlS8MFXrlxBdnY2bG1thYbs5ORkrF27FosWLUJeXh4aNGiAihUr4tChQ3BxcUGPHj3g6+sLdXV1mXyHDRuGzZs3w8LCAmFhYcKzf/PmDbZs2YKnT58KPjguLk7wwQoKCkXqwZ/7YB0dHWRkZAg++PLly3j9+jVq164NNzc3ofHT0tKyzPcjPj5e8MEbNmxAeHg4tm7din79+n3T/f1HG56+hfz8fKSkpCA9PR0fP35EWloawsLCEBERARMTE1haWiInJwcPHz7EgwcPcPfuXcTFxck0Vunr66N27dpo1aoVLl26hIsXLwL49IHcu3cvjh49iitXriAtLQ3ApweupKSE3NxcWFpaws3NDTVq1ICNjQ10dHSwcOFCxMXFoUuXLpgwYQIKCgqwadMmLFy4EAkJCQA+9SRevXoVlpaW+PDhA3Jzc1GzZk1kZGQgMjISmZmZUFdXR6NGjeDk5ARbW1vY2dmhcuXKaNasGZ48eQJFRUXMnDkTEokElStXRvXq1WFmZgY9Pb0yte4mJiYiOjoaaWlpIIlq1aqhQoUKMpU6V1dXmZbmJk2a4Nq1a2jatKkQmTZ37lzo6+vD398fx48fh4qKCipUqIDIyEhYW1tj5cqVaNeuHSQSCR4/fozatWsL+amoqKBfv37YsGEDLly4gCpVqqBatWpCelZWFsLCwjBlyhRcuHAB5cuXR1ZWFrKysmSepbKyMgoKCqCjowN9fX3o6enB1tYWbdq0we7duxESEoLY2FgoKytjypQpmDJlSpkrBdnZ2QgLC4OlpSViY2ORlJQEKyurIr1Xn+/7v9Dw9K2kp6cjLS1N0HBCQgJevHgBiUQCS0tLGBkZITQ0FA8fPsSjR49w9+5dmYqusrIyKleuDFdXVyQlJaFPnz5Cz0Fh78vFixfx7Nkz4Rh1dXVkZWVBWVkZLVq0QJMmTWBjYwMbGxvcvn0b69atQ+3atTFu3Dg0aNAAz549w/Tp04VeXAMDAxgaGiIyMhLa2tqIjo4WephSUlIQGRkJiUQCHR0d9OrVC3Z2drC1tYWtrS1CQ0OFHtRu3bqhevXq0NTUhL29Pezs7KCrq4ty5cqVulElPz8f7969E76DhoaGqFq1qoyjDQgIECIaCjlz5gyUlZXRunVrAICDgwOmTZuGBw8e4MKFC3j27JlQwU9PT8fgwYMxb948GBoaAgB8fHxw8OBBIT8jIyNBm48fP4a7u7vwHSpstH327Bnc3Nygp6cnVGqysrJknGnhz8DAAHp6etDT04O3tzfi4uJw7NgxJCQkIC4uDg0aNMAff/wBBweHUt0nedy6dQtt27aFvb09zp07V+Z3/GfX8H/CvoKCAiQnJyM9PV3Q8rt374QGHUtLS+Tl5eHRo0eCD46JiZH5buvp6cHR0RGtW7fG2bNnhejevLw87N+/H4cPH0ZgYCBSU1MByPpgc3NztGnTBg4ODrCxsUH58uWxePFiREREoFOnTkJHzZYtWzB//nyhE6Nly5a4cuUKLCwskJCQgKysLNSqVQuZmZmIiopCRkYG1NXVUa9ePbi4uAj6rVKlCtzd3YWOl9mzZ0NBQQGWlpaoXr06zM3NoaenJ9PR8jWSk5MRGRmJjx8/oqCgANWqVYORkZHMN6BDhw4yvdSOjo549OgRWrduLZRZZsyYATMzM8EHKygowMjICJGRkbCyssKKFSvQoUMHSCQSvHz5UqYxWVlZGd27d8f27dvh7+8PS0tLmca/Ql82c+ZMnDhxAnp6esjKykJ2drbM91hJSQlSqRTa2tqCD7a2toaHhwf27t2L4OBgxMbGQkFBARMmTMD06dPLdK8+Jy8vD4MHD8auXbuwa9cu9OjRo0zH/+z6Bf4zNmZkZCA1NVXQcEJCAoKDgyGVSmFpaQljY2O8fv0aDx48EHzw5xVdJSUlVKpUCS4uLsjMzETnzp3RsWNHAJ8qUJs2bYK/vz+ePHkiHFPog5WUlNCsWTM0a9ZM8MEPHz7E6tWr4eDggLFjx6JJkyYIDg7GjBkzcOTIEQCfvhmmpqYICwtDuXLlEBUVBVNTU+jp6SE1NRURERGQSCTQ0tJCz549YW9vL5Sj3717J0QSd+rUCY6OjtDQ0ED16tVha2sLXV1dlC9fvtQ+uLBCnpycjI8fP0JfXx/VqlWTKfPdunULTZo0kTnu8OHDMDAwQMuWLQEANjY2mDVrFh4/fgx/f388fvwY5cuXB0mkpqaif//+WLhwIYyMjAAAffv2xc6dO4X8DA0Ncfr0aZiZmeHevXto27atoK3CRtuQkBC0bNlSxgdnZ2dDKpUCkPXBhfrV09ND586dkZKSgsOHDyMhIQGxsbGoW7cutmzZgjp16pTqPsnjwYMHcHNzQ+XKleHv71/mxqefXcP/hA/++PEj3r17h3fv3sHIyAiWlpaQSqUyPjgqKkrGBxdGC7q5ueH06dO4du0aJBIJ8vPzcejQIRw6dAiBgYFCxKlEIoGysjJyc3NhamqKNm3aoGbNmrCxsYGBgQGWLl2KN2/eoEOHDpg6dSoUFRWxbds2zJ07V2hgLvTBFStWRFJSEjIyMuDo6IjMzExER0cjPT0dampqQmNJoQ+uVq0aunTpgvPnzwMAZs6cCUVFRcEHV6xYEeXLly9TY1NhuT0tLQ0FBQVyR9f4+flh//79wv/VqlVDaGgoOnfujKNHjwIApkyZAisrK/j7++PkyZPIy8uDqakpIiMjYWlpieXLl8Pb2xsSiUQISihEWVkZnTt3xr59+3Dp0iWYmprKRGnn5OQgLCwM8+fPx4EDB2BoaCiUob/mg6tUqYL27dtj3759CAoKEhqxxo4di9mzZ39zw1x+fj5GjhyJLVu24Pfff8eAAQPKnMe/ruGprBRG2rRu3RoODg549+4d3r59iwsXLuD69esgiUqVKsHExATv379HVFQUnJyc4Orqivr16yM9PR3x8fHIy8sThoKV1jmlpaVh3759qFOnDurWrYtx48ZBKpWiSpUqaNmypdAQk5ubiytXrmDo0KEwMzNDcHCw0GAlkUhQsWJFaGhoCEP5FBQUBKdhYGCAbdu2oXXr1khLS8PHjx+Rmppa5BcVFYV79+7h2bNnQt6fU758edjY2KBixYqoUKECtm/fjszMTCgqKmLv3r1o2LAhLCws4ObmJjRIWVhYIC4uDpqamnBwcMCjR4+QlpaGsWPH4smTJwgICMDRo0eFAsmHDx8QHh4uDLV8+/YtTExMcO/ePSgqKmLQoEGYPXs2jI2NBbv69++Ply9f4ubNm8K27OxsREdH49y5c9i5cyfu3r2LU6dOwcPDQ+5zePv2rRDS27NnT4wdOxZ2dnalHv6TnZ2NoKAglCtXDpmZmcjJyYGmpmaRiJDCfcWGp+/LjRs3sGDBAvzyyy9IT09HWFgYnj9/joMHDyIxMRFaWlqoXLkytLS0cPv2bVSoUAEeHh5wdnaGoaEh4uPjER8fD0tLS7i6upbpugqHXPr5+eHx48fYsmWLEL7u7e0tvEORkZGYMGECYmNjER8fj1evXiE/Px8AoK2tjYoVKwpODoCgYYlEgvbt22Pnzp2QSCRIS0tDWlqajHZTUlKQnJyMly9f4s6dO3jz5k2RqE8FBQVYWVmhatWqQiG1sIC6YMEC1K5dG+7u7rh69arQCKalpQUtLS18+PAB1atXh6KiIh4/fgxNTU3MmTMH8+fPh7m5OYKCggB8+k69e/cOkZGRCAkJwfDhw+Hu7o4rV64gKysL1apVw8KFCwUnC3yKSDMzM5PRJ0kkJycjKCgIe/fuxf79+1G5cuUSe6R79OiBP//8E8CnBrTCwkZpv8WxsbHYtm0bAgICcP36dWRnZ8v0GJeWn1Efn/Mz2ieVStGjRw80bdoUderUQXh4ON6+fYtLly4hMDAQJGFpaQkTExNERUUhIiICzZs3R+vWrdGgQQNkZmYiPj4eOTk5aNmyJRwcHEr93NPT07Fv3z7UqFEDjRo1wsSJE5GTkwMrKys0b95cGGKfl5eHGzduoH///qhYsSJevnwpNFhJJBKYm5tDS0sLoaGhKCgokPHBenp62LJlCzw9PQX9Fmo4JSVF0HF0dDTu37+Pp0+fIj4+voiturq6sLW1FXzwgQMHhBD3/fv3o169ekJhsrBB3MLCAh8+fICamhpq1qyJp0+fIiUlBSNGjMCrV69w4cIF/Pnnn/Dz8wPwqeey0AevW7cOz549Q5UqVXDz5k0oKCgIEeBmZmaCXSNGjMDNmzdl9JmTk4OYmBicP38eO3fuxK1bt3Do0CF4e3vLfQ6RkZGoWLEigE8V/2nTpsHe3r5Mw39Onz6N48ePIyAgAK9fv0aNGjVkOhdKw8+ojy/5GW28d+8eZsyYgenTpyMzMxNhYWEICgrCwYMHER8fDw0NDWHYxe3bt6Gvry/4YGNjY8EHm5mZwc3NrUzDt+7evYtHjx7Bz88PwcHBWL9+PSwtLVG1alV06dJFGG4ZHR2NKVOmIDw8XBglUegnC6fkiImJESJCPtdw27ZtsWfPHigpKcn1wYVaLvTBr1+/LhL1qaCggMqVKwsV2MKKNwBMnz4djRs3hru7O+7cuYOmTZsCgBABHBcXBzs7O6ipqeHBgwdQUVHB4sWLMX/+fJQvX16IWs7LyxN88Js3bzBo0CC4ubnhxo0byMjIgJWVFRYsWAAfHx8hkiI5ORl6enoy+iz0wS9fvsSff/6JP//8ExUqVMDLly+LfQ5DhgzBli1bAACnTp1C9erVheGZpSE+Ph5bt25FQEAArl27hqysLOzfvx8+Pj6lOr6Qn1Efn/Mz2kcSffv2haOjIxo2bIj379/j7du3CAgIwOXLlyGVSlGxYkWYmpoiLi4O7969Q5MmTdC6dWs0atQI2dnZiI+PR1ZWFlq0aIFatWqV2gdnZmZi3759sLa2RvPmzTFt2jSkpaXBysoKTZs2RaNGjQB8atC4c+cOevbsCUtLS7x8+VJmdERhVE9ISEgRH6yrq4sNGzagS5cuJdaDY2JiBB8sb+SFjo6OjA8+deoUIiIiAECoy1tbW8uURytWrIiEhASoqKigVq1aeP78OZKSkjBo0CBER0fj9OnT2Lp1qzClTGJiIt69e4eoqChs3rwZt2/fhoODA65cuQKJRILevXtj3rx5MqOwJk6ciFOnTsnoMzc3FzExMbh48SJ27tyJa9euYdeuXejVq5fc5/DhwwehbtCmTRvMmzcP9vb2ZRqufv78eWEKgtDQUFSpUgWvX78u9fGFlFoj33PCqP80OTk5XLBgAV1cXNi7d296eXmxe/fuvHXrFvfv389JkyaxT58+HDZsmLCscHJyMrdt28auXbvSy8uLAwcOLHH59b/L+/fvOXz4cOH/+Ph4Xr9+nb///junTZtGPz8/litXjo0bN6abm5swIZuRkVGxEygW/tTU1KipqVlke+GSrQoKCqxfvz69vb3p4uJCe3t7Ghsbs2LFinInl01LS+PkyZNpaGhIBQUFqqqqUl9fn1paWuzWrRtfvXrFNWvWUEFBodhJjocNG0YAdHR05MWLF/nrr79SW1ubzZo1E/Z5/vw5dXR0il2NIS8vjzNnziQA7t27t9h7m5SUJDMhJwAqKiqyVatWXLt2rczKEvJITk7muXPneO/ePd67d49Pnz5lQkKC3KW5s7Ky+OLFC7kTw/6s+vicn9XG+/fvs2vXruzYsSN79+7NVq1acfny5Xz48CGXLl3KESNG0MfHh5s2bWJ2djYLCgr44MEDTpo0iZ6enmzfvj1/++23H3pdgwcPFhYyyM3NZUhICI8fP85ly5Zx+PDhrFevHi0sLOjq6iqsJKetrS3osLifRCKhlpaW3O2Fk1QaGhrSw8ODHTp0YMOGDVm5cmXq6Ohw+PDhRSa6l0qlfPr0KWvUqCF8F3R1dVmuXDmamppy//79TEhIoIWFBXv27Cn3WguXqVdWVubkyZN548YNYdLmwolRpVIphw4dSiUlpWKX633+/Dnt7e1ZuXLlEu/t56t9Fv5MTU05bNgwXrhw4auTSy5btkzmvvXq1YvBwcGlXsK5kJ9VH4X8rPbl5uZyyZIlgg/u0KEDfXx8eOPGDR46dIiTJ09m3759OXjwYGG12NTUVO7cuZM+Pj708vJi//79efPmzR9m44cPH2QmSU5MTOTNmze5detW/vLLL+zRowfLly/PRo0asU2bNoJuS+ODVVVV5Wr482XT69atS29vb+H7YGJiQjMzMz569KiIrenp6ZwxYwYrVKgg44M1NTXZsWNHhoSEcPPmzQQgM0nz54wbN44AWL16dZ4/f55r1qyhrq4u69atK+wTGhpKPT099ujRQ24e+fn5XLhwIYFPK/IWR1paGitXrixz7QoKCmzZsiVXr15d7Ippn5+nfPnywrEWFhbcsWNHmVdM/Vn18Tk/q42PHz+mj48PO3TowN69e9PFxYWLFy/m48ePuXz5co4cOZK+vr5ct24dMzMzKZVK+fjxY06dOlXwwatWrWJycvIPs3HMmDHC5Ph5eXkMDQ3liRMnuHz5co4YMYINGzakubk5XVxchFUstbS05JaPS+uDCzWsr6/Ptm3bCj7YysqKurq67N+/v9wVpoKCgujo6CjkW+iDjYyMuGvXLiYkJLBatWrs0qWL3GvNyMgQyrLjxo3jrVu32LZtWwKQWf1u3LhxVFBQ4LNnz+Tm8/LlS9asWZPGxsYl3tvdu3cXuX4jIyMOHjyYZ8+e/eoKel+uTujn58egoCDRB/+HyM/P54oVK9iqVSv27t2bHTt2ZNeuXXn16lUeOXKEU6ZMYb9+/Thw4EBhVfG0tDTu3buXvr6+9PLyYt++fXn16tUyP7PS8vHjR/r6+gr/JyUl8datW9y2bRunT5/Onj17snz58mzYsCHbtGkj6La0PrhwlebPf+rq6sIqtrVr16a3tzdbt27NGjVq0MTEhMbGxnJXeM3IyOD8+fNpZGRERUVFqqioCPVgDw8Pvnjxgjt37iQAuT6cJH/55RcCnyZZP336NDds2EA9PT3a29sL+4SFhdHQ0JCdO3eWm0dBQQGXL19OBQUFrlu3rth7m5mZSVtb2yLfr2bNmnHFihXF1tU/5/P7bGZmxj/++OOb3vMfMrn4z9TS+zlSqRTJycnQ0NCQGXf5OW/evBHmZTIzM4OOjg6qVKmC/v37Y+vWrTAyMsLcuXO/u21paWno168fDh8+LDc9Ly8PHTp0wMmTJ2FjY4M3b94IaRMmTEBWVhYkEgkkEglIIjc3F69fv0Z6ejomTJiAESNGIDExUZiwuTC8ODY2Fnv37sXixYuRlJQkDIEpV64cWrZsiVatWqFmzZqIj49HdHQ0EhISoKCggAsXLuDhw4dYtWoVUlJScPv2bVy6dElmTLm3tzcOHTok93pevHiBJ0+eoFu3blBUVEROTg6MjY3Rs2dPrF27Fk+fPhUmpL9x44bMvFyFnDx5Eu3bt0eTJk1w5cqVYofQfT5xm7KyMvLy8uDh4YG8vDxcvnwZBQUFWL58OSZMmCD3+OzsbLx58wYGBgbIyspCWlqa0NuloqIizP9kZGQEkmLE0w8kMzMT2dnZKFeunNyeNpLYsmULtmzZgri4ONSoUQNSqRT9+/eHkpISNmzYgC1btqBq1arf3bYZM2bAy8sLDRs2lJu+fv16YU6ywuFuAIQJuRUUFCCRSCCVSkESiYmJCAkJQYMGDVC1alVMmTIFwKeexzlz5kBfXx8KCgq4desWli5dilOnTsn0Ajk4OKBVq1ZwcnKCuro6oqOjER0dLYTZL1q0CG3btkWnTp3w+PFjYSLBz3n06BEcHR3lXs+OHTvQuHFjYXjOypUrMWHCBERHR8PQ0BCzZ8/GokWL8McffxQbjtuwYUPcvXsXJ0+ehKenp9x9cnNz4eTkhFu3bgn61dbWhq+vLy5cuIDw8HDY2dnh7NmzxY5f5/+fu+78+fM4f/48rl27htzcXGhqaqJKlSqoUqUKPD090bdv3xJ7cH92ffzs9kmlUqSkpEBdXb1YHxweHo4ZM2bgypUrMDY2Rrly5VCpUiUMGjRImFB3yZIlf2suQ3lkZ2eja9euxU6SXFBQgHbt2uHcuXOoXbu2zDCi8ePHIzs7W7CJJPLy8vDmzRukpqZi4sSJmDx5MiIiIqCuro7z58/DwcEBurq6iI+Px759+4Sh+YU+WEdHBy1btoSzszMcHR2FIfLx8fFQUFDA5cuXcfPmTaxZswYfP34UfHBGRoZgl4eHB06dOiX3ekJCQnDv3j34+vpCSUkJ+fn5MDMzg5eXF/744w+8ePECHTp0gKKiIm7duiV3SMzFixfRunVr1K1bFzdv3ix2CN3Zs2fh4eEBkoKG27RpAwUFBVy8eBF5eXlYsGABpk+fXuzzSUtLw+XLlwUNh4WFQSKRCBON29nZYdKkSbCysioxj59ZH8DPb2PhUI+SfPCOHTuwYcMGREdHw8HBAfn5+ejbty80NTWxdu1arF+/Xm7E+N9lwYIFaN68uTCU7Uu2bdsGNTU1mJuby+zj6ekpLHDy+XUkJSXh5cuXqF27NmrUqCGUEfv06YPFixfDwMAACgoKuHv3LpYtW4Zjx47J+ODq1avD2dkZzs7O0NLSEnxwVlYWFBQUMG/ePLi6uqJbt254+vQprl69iqdPn8rYfPPmTTRu3Fju9ezevRt169YVhuds3LgRw4cPx9u3b2FhYYFFixZh1qxZWLt2LUaOHCk3DycnJ1y5ckWYf0oe+fn5wvxZhfrV1NRE9+7dhXkkq1atinPnzhU7YThJBAUFCfotnLtOQ0ND8MHu7u4YOHBgiYsz/Oz6+NntK/TBampqxY76iIqKwvTp0xEQEABDQ0Po6+vDzMwMw4YNw/79+5Gfn4/Vq1d/dx9cUFAADw8PnDt3Tm46SbRp0wYXLlxAixYthMUUAFkfXFiOzs/Px9u3b5GUlIQJEyZg4cKFePHiBZSUlHDu3DnUrVsXurq6SExMxIEDB7BgwQKZeZW0tbXRokULODs7o06dOkhKSkJ0dDQ+fPgABQUFXLt2DQEBAVi9ejWys7MFH/zx40fBrsIpfeTx5s0bXL9+HX5+flBRURGGOrdo0QJ79+5FaGgoOnbsiJycHNy5cwcGBgZF8rh+/TqaN2+OGjVq4N69e0XqnYVcvnwZrVu3hlQqFTTcqlUraGhowN/fHzk5OZgxYwbmzZtX7HP9+PEjAgICBA0XtkOYmpqiatWqsLW1xYQJE2BtbS33+EL+JyKeSsvbt2/p7OzM8ePHy0TQ3L17ly4uLkxJSeGkSZN4+vTpH3J+X1/fYnv+9u/fzzVr1lAqlQpLUSorK8ttvTUwMGDlypXp4eFBZ2dnoXUSAO3t7fn+/fsi+aekpHDLli3cvn07//rrL86ZM4ctW7akioqKTORUxYoVaW5uTmNjYzZu3Fim5btwv5kzZ/LAgQPFLjsrj6ysLDo6OlJFRYW9evWiiooKa9SoUeIy2zk5ORw+fDgB8MyZM8XuZ25uzgYNGvDWrVv8888/hd4W8lM008SJEwmg2KXVv4xikkqlzMrKYnx8PCMjI/n69Ws+fvyYDx48YEREBIOCgsSIp3+I6dOnc+7cuWzRooWwpHBWVhZHjx7NjRs3MjIykm5ubj+kx+bly5fFLiudn59PV1dXZmVl8erVqzKa+ly/ioqK1NHRoampKR0dHYUeHi0tLWpra1NZWZnz5s2Te47r169z/fr13L9/P3fs2MF+/fqxUqVKMvkbGBgIS3IbGRnxwIEDwvE3btwQ9jt48GCxeiiO/fv3U0lJiXXq1GHDhg2poKDAxYsXl3jMvXv3aG5uztq1axe7z44dOwiA69at471799iiRQsCEHpL79y5Q0tLyyLfo5JIT0/n2bNn+euvv3LYsGF0cnIiALZo0aLEZYd/dn387PZ9jYiICDo7O3Pq1KkyETQPHz5kq1atmJCQwJkzZ/Lw4cM/5Px9+vQpdinj48ePc8mSJSTJLl26EACVlJSK+GA1NTUaGBiwUqVKbNu2LVu3bi3jg62trYWojM9JTU3l77//zm3btvHw4cOcP38+W7VqRVVVVZleW3Nzc8EH16lTRyaaojD6YsqUKdy/fz9jYmJKfe25ubls0KABlZSU2KtXL6qqqtLW1rbYZeHJT1ElhZFTJT2TatWq0dHRkTdv3uSBAwcIgB07dhSue/r06QRQ6rKVVCplaGgot2/fzunTp9PX11dYAnr58uXMy8uTe9y/QR//BhtLYv78+Zw+fTpbtGghXENOTg4nTZrEVatWMTY2li4uLnKjgP4ub9++LTY6r6CggG3atGF6ejpv3br1VR9sYmLCWrVqsVevXjQwMKCGhgbLlStHJSUlTp8+Xe45bt26xfXr13Pfvn3cuXMnBwwYQCsrK5n89fX1BR9coUIF7ty5Uzj+0aNHMj74/PnzZbr+o0ePUllZmQ4ODmzWrBklEglnz55d4jGPHz9mpUqVaGtrW+w+hZpdsWIF7927J9RB7t+/T6lUygcPHrBq1apFvkclkZmZyfPnz3PFihUcPnw4XVxcCICNGzeWO9KikJ9dHz+7fV8jJiaGzs7OnDlzJteuXStsf/bsGZ2dnRkbG8tFixZxz549P+T8n0c9f8mFCxc4Z84ckp98daFeCyOWPte0vr4+LS0t6e7uTnd3dxkfXKVKFbmRwOnp6dy6davggxcuXEhXV1eZb4SKioqMD3ZwcJCJuC88x7hx47h//35GRkaW+toLCgrYrFkzKigosGfPnlRXV2fVqlWLjVomP9Utpk2bRgAlPhMHBwfa2dnxxo0bPHLkCAHQ3d2d5KfItnnz5hEA//rrr1Lb+/r1a+7YsYMzZsygn58fK1asSFVVVS5atKjEUQil1cj/RMNT3759+eLFC7q4uBSpwJw+fZoLFy5kQkICO3Xq9EPOHxISwlatWhVpfAoMDKSrq6vcsPKPHz9yy5YtHDRoEEePHs0NGzZw9OjR7NmzJxcsWMCoqCieOXOGffr04YkTJ8rs7DMzMxkcHMykpKSvVuqmT5/OwYMHlyn/z8nOzubkyZOppKTESZMmMTs7u9h9X79+zXnz5tHa2poKCgrFVhZIcuDAgTIfJWdnZ6HxLSMjg/369SMAbtiwQe7xhQ1PmZmZxZ4jPz+f796947179+jv708/Pz926tSJo0aNEq7j36CPf4ONxREWFkY/Pz9u3bqVu3btkkmTSqV0d3dnWloap02bxuvXr/8QG8aPH88VK1bIDMPMyMjggAEDuH379iL7FxbaJk+ezEGDBnHevHlcvnw5+/Tpw0GDBvHkyZP88OEDf/nlF06dOrVMTqyQ8PBwvnv37quh8FFRUaxZsybv379f5nMUcv/+fdrZ2bFq1aolDovKycnh8ePH2a1bN6qpqcmEV8uz//MGcE1NTa5bt074ll29epWmpqY0NjYu8ZvxNS5dusQqVapQVVWVzs7O9PT0ZLdu3WQatX92ffzs9n2NIUOG8PHjx2zVqlWRocyXLl3izJkzmZqaSi8vrx9y/sLOpy8bW27dusVWrVrJHSZUWFgdPHgwR44cyQ0bNnDcuHHs2bMn586dy4iICPr7+7NPnz48cuRImX1wVlYWg4ODmZiY+FUfPH/+fPbu3fubG9ZzcnI4Y8YMKikpcfTo0SX6vLCwMC5cuJD29vYEUGxlgSRHjRol44ObNGnCsLAw4fqGDh0qVGy/lY8fP3Ls2LGUSCSsVq0a3dzc2KlTJw4fPpwZGRkk/x36+DfYWBzR0dHs0qUL9+7dy82bN8ukSaVSenp6MikpifPmzaO/v/8PseGXX37hokWLZBofMzMzOWzYMG7cuLHI/lKplE+ePOG0adM4cOBAzp07lytWrGCfPn04cOBAHjt2TGjwnjRpUomdocURERHBd+/efdU/xcfH09HRkTdu3CjzOQp5/PgxHRwcWKlSJV65cqXY/XJzc3nq1Cn6+flRXV2dHTp0KHbf6OhoYVg/8GmI8MqVK4Vv9K1bt2hhYUEDAwOhw+9buHr1Km1sbKisrEwnJyd6eHiwW7duPH78uLDPz66Pn92+rzF27FjeuXOHrq6uRRoPbt68yYkTJzIjI0NotPjevH//ns7OzkU6AO/du0cnJycmJCQUOSYzM5M7duzgkCFDOHLkSK5fv17wwbNmzeK7d+8YGBjIPn368MCBA3KnSSmJ7OxsBgcHMyEh4au+ddmyZfTx8flmH5yXl8d58+ZRWVmZQ4cOLVFP79+/55IlS+jg4EAAJU4HNGnSJBkfXK9ePaEDLCcnh2PHjiUALliw4JvsJj/VdSZNmkQFBQVWqVKFbm5u7NixI4cOHcq0tDRhv/+poXYlkZOTgy5dumDr1q2YPn06/vjjD5l0qVSKtm3b4vz582jfvr3MajPfk9DQUMydOxdZWVkwMDDAlStXkJmZibp16yIrKwtWVlb45ZdfULFiRYSGhmLIkCHo0qUL3N3d8csvv+D9+/dQUVHBzp078fbtW6xevRrdunUrdsKx4nj9+jXOnTuHgoICODs7o2bNmj/keuWRm5sLFRUVREVFoU6dOjAxMYG7uzuUlJQQGRkpLPmtpaWFTp06YeDAgWjRokWx+aWnp+POnTtQV1eHvr4+rK2tIZFIEB4eDk9PT7x58wYbNmxA37595R5fUFCA0NBQYbWRvLw85Ofno1y5ckVWQomLi8PLly/xxx9/ICAgAImJifjw4QO0tbX/Ffr4N9hYHIsWLULjxo1x5MgRTJgwAZUqVZJJ37lzJxQVFWFgYIA3b95gxIgR390Gkti4cSOOHDkCKysrREVF4eHDhzA3N4eFhQXS09PRs2dP9OzZEwAwb948hISEYNiwYUhLS8O0adOgqKiI/v37o2PHjti/fz8uXbqEvXv3Ql9fv9R25Obm4vTp03j79i2MjY3RsWPHMk3k+3coKCgASSgpKWH27NlYs2YNXF1dUadOHcTGxiIiIgJXr15FUlISatasiZ49e2LgwIElrm7z/PlzJCQkQFNTE9bW1sLktKtXr8bEiRPRtGlT7Nu3D6ampiXadvDgQTx58gQxMTFQV1fH9OnTZY7JysrCypUrERQUhISEBPj7+2PKlClYsmQJgJ9fHz+7fSVR6GMPHjyI4cOHY+/evTLpJOHu7v7DffDbt28xe/ZsfPz4EUZGRrh69SrS09NRp04d5OTkwMLCAr/88gsqVaqEsLAwDBw4EO3bt4eHhwfmzJmDV69eQUlJCTt37kRkZCRWr14NT09PDBw4sEx2hIWF4cyZM8jLy5NZjOQ/QaEP/vDhAxwdHWFgYAB3d3eoqqoiMjISwcHBuHPnDjQ0NNCxY0cMGDCgyCqan5OZmYlbt25BXV0denp6sLGxgUQiQXR0NDw9PfHixQusWbMGgwcPLnH4RmRkJPbu3SsMd2jXrh169uwpc8ydO3ewZcsWpKWl4e7du4iOjkZsbCz09fX/Ffr4N9hYHKtWrYKNjQ0CAwPRr1+/IsPpDh48iNTUVFhbW+P+/fvFTm/wdyCJrVu3CotWxMbG4v79+zA1NUWlSpWQlpYGPz8/9OvXDxKJBEuXLsWDBw8wfPhw5OXlYeLEiVBUVISfnx+6d++OgwcP4uzZs9izZw8qVKhQajvy8/Nx5swZvHr1ChUqVEDHjh3lThnxI5BKpZBKpVBSUsLixYuxePFiuLq6ol69eoiLi0NERASuXbuGhIQEVK9eHT179sSgQYNKLGO8ePECHz58gKamJqpWrSr4640bN2L06NGoX78+9u/fLzMpsjyOHDmCBw8eICYmBqqqqpg2bZrMMdnZ2Vi9ejWePn2K5ORknDt3DqNHj8aaNWsA/Pz6+Nnt+xqtW7fG6dOn4evrK6woWQhJuLm5wd/fH15eXsUOS/+7vH//HrNnz0ZSUhKMjY1x/fp1pKamok6dOsjNzYWZmRmmTZuGqlWrIiIiAv369UPbtm3RoUMHLFq0CEFBQVBQUMD27dsRHx+P1atXo1WrVmUu879//x6nTp1Cbm4umjZtKixG8p+g0AcnJyejVq1a0NbWRrt27aCuro6IiAiEhITg1q1bUFNTQ4cOHdCvXz+0adOm2Pyys7Nx8+ZNqKqqonz58rCzs4NEIkFcXBzat2+PR48e4ddff8WoUaNK9MGxsbHYtWsXoqKi8OHDB7i5uaFPnz4yw5QfPnyIDRs2IDU1Fffv38f79+8RGRkJExMTAOJQO4HExET26dOHaWlpxU7m5+npKQx1+9EkJCSwTZs23LNnj0wP6ZMnT+js7MzQ0FA6OTkJkxkvWbJEGJrw4MEDent7k/wUuufn58eTJ09y27Zt3LZtW4k9NhkZGezduzf79+/P06dP8/z58xw5ciQ7d+7MxMTEH3jFsiQnJ7N58+bU0dGhi4uLMNl548aN6efnx3379gm9mN+CVCplkyZNaGFhUeyki58THR3Nmzdv8v79+3z69CmfPXvGe/fu8cWLF0xJSWFWVhYzMjL46tUrvn37losWLaKKigqHDh0q5PFv0Me/wcbiGDduHENDQzlt2jS5UTuXLl3iypUruWfPHu7YseOH2lJQUMADBw7Q3d2d0dHRwvasrCwuWLCAU6ZM4a5du4Qw+PT0dDo5OTE5OZkFBQXs27cvr127RvLTMCNvb2+eOXOGmzdv5unTp4sdSkJ+Ckd2dnbmb7/9xsuXL3Pbtm1s3br1D7/mLzl8+LAw9M7R0ZHly5dn9erV2aZNG06dOrXECInScPHiRQLg+PHjS7wfhcTExBAATUxM2LBhQxoaGlJbW5urV68ucnxQUBAbNGhAZWVlmUkXf3Z9/Oz2lURGRga7devG7Oxsenp6yt2ncPt/wgcnJyfTw8ODW7dulekhDQoKYqtWrRgcHEwXFxfBn65Zs0YYmvD06VMhgkAqlbJv3748cuQIt2/fzm3btpU4kWdWVhb79+/PPn368OTJk7xw4QLHjh3LDh06lGn4+t8lLS2Nrq6u1NTUpKurK42NjWlubs5GjRrRx8eHu3fvLvPk3l/SqlUrmpqaCpPZfo2RI0dSRUWF9vb2rF+/PgGwZcuWDAoKktkvPz+fv/76K9XU1NinTx9h+79BH/8GG4vjl19+4ZMnTzhv3jzBf33OzZs3uWjRIh4+fJibNm36obZIpVIeO3aMrq6uMgvI5OTkcPny5Rw9erSwsIFUKmV2djadnJwYHx9PqVTKIUOGCFFZz58/Z8eOHXnu3Dlu3ryZJ0+eLHEoSWBgIJ2cnLhy5UpevnyZO3bsYJs2bYpEgf1oTp06RRUVFTo6OrJOnTosV64c7e3t6ebmxkmTJvHx48d/a9qB69evUyKRcPjw4V9d4IP8NFm0RCKhkZERGzRoQGNjY2pqanLZsmVFjg8JCWHTpk2pqKgoM9ToZ9fHz25fSRQUFLB9+/bCsFR5eHl5USqV0s3N7Yfbk5aWxo4dO3LTpk0yPjgkJIQuLi58/vw53dzchAjlLVu2cPny5SQ/TX3Rrl07SqVSQc8HDhzg9u3buXXrVr569arY8+bk5HDIkCHs2bMnjx8/Tn9/f06YMIEeHh4y5fkfTUZGBtu1a0c1NTW2bt2apqamNDMzY6NGjditWzfu2LHjb79n7dq1Y4UKFUq9eNqkSZOorKxMe3t7NmzYUIhgfvLkicx+BQUFXLNmDTU0NOjj4yOTJg61+/8UzsEilUrZuXNnoYAXGhrK06dP88qVK2zXrh0DAwM5Y8aMH27P9u3bi3XMr169YvPmzYVCbl5eXpHhgYMHD2ZQUBDT09PZqVMnVq1alX/99RcPHjzInj17csCAAXLD6Hv37s0LFy4U2f7gwQOh4e1H8/79e1avXl1mta8mTZpw7NixfPz4canziY+P55w5czhp0iSOHz+eY8eO5dChQ+nn5yeMJy9pXPvnSKVSLl26lCdOnOCNGzf4/PlzPnjwgP7+/jx79iyvXbvGhw8f8uHDh3RxcaGCggKnTJkiM9fTv0Ef/wYbi2PDhg08ePAgHz16xFGjRpH8FCIbEBDAc+fOcfbs2Tx16hTbt2/PpKSkH2pLQUEBXVxcim0cHTBgABs3biyE3v/+++/cvXu3kB4VFSV8rM+fP08TExNOmTKFJ0+e5K+//spWrVoJq8d9zrNnz9i+ffsi2i4oKODAgQPlHvMjWLNmDSUSibDqiJKSEgcOHMhNmzaVqbJ64sQJTp48mRMmTOC4ceM4evRo9uvXj506dRK+DSdPnixVXoXzZ9SrV4+BgYFMTk7m8OHDKZFIWKNGDf7222+MjIwUGo1tbGyKDHn42fXxs9tXElKplK1ataJUKqWvr69QWXzz5g1Pnz7Nq1ev0s3NjXfu3OHEiRN/uD379+/nqlWr5KaFh4ezadOmXLZsGcn/0/vnheMxY8bwwYMHzMzMpK+vLytVqsSDBw/yr7/+Yu/evdm7d2+5YfSDBg3iqVOnimx/9uwZ27Rp80PmxvmS6OhoOjo6ygyvadCgAUePHs0HDx6UOp/ExETOnTtXxgcPGzaMfn5+wjwxpqampc7P29ubqqqqnDp1KpOTk3nhwgVWq1aNSkpKHDBgAC9dusTnz5+zUaNGlEgkHDdunMw3+N+gj3+DjcWxfft27ty5k8HBwRw0aBDJT5W4wMBAnj17losWLeKhQ4fo7e3N2NjYH2qLVCqlq6urzBCPzxk5ciQbN24saHDPnj3csmWLkB4fHy9MqxEQEEAzMzOOHTuWJ06c4KpVq9iqVSueOHGiSL4hISFs165dEW0XFBRwxIgRMivO/Ug2b95MBQUFYSUvBQUF9u/fn+vWrSv2nsjj7NmznDx5MidOnCjjgzt37ix8Gw4dOlSqvIKDgwmAtWrVor+/P1NTUzl27FgqKCjQzs6Oq1atYkREhNBoXKVKFQYGBsrk8bPr42e372sU+rE+ffoIDTphYWE8c+YMr169ShcXFz558oQjRoz44bYcO3as2HlCY2Ji2LRpU86dO5fkJ727uLjINGBOnTqV169fZ3Z2Nnv37s2KFSvywIEDPHz4MPv168fu3bvLfU4jR46UO9fRy5cv6erqWqqOzr/Lhw8f2KBBA5n5perUqcORI0fyzp07pa6Lp6SkcP78+UV8cPfu3YVVMLW0tEqdX69evaisrMwJEyYwMTGRgYGBtLOzo6KiIvv06cMLFy4wODiYzZs3JwCOGDGiSJlfbHj6jGnTpvHs2bO8f/8+nZ2d6eHhwUGDBnH9+vV0dXVltWrVWKtWrR/uMMlPPbslza9gZWUlNMK8efNGqGgXcuLECW7cuJE+Pj68fPkyPTw8ZNLPnTvHXr16yWx79eoV+/fvX+w5Z8yYwatXr5b1UspEamoqGzRoQAsLC9atW5etWrXiqlWrqK6uLizlWL16dU6fPp3Xr18vtpfl48ePrFevHjU1NVmtWjXa2trS3t6etWvXprOzM6tVq0YXFxeZyfO+RkpKCmfMmMGqVavSxsZGaEFfunQpGzduTHNzcyopKdHe3l7u8pv/Bn38G2wsjpSUFGFceq9evdivXz+2bt2aS5Ys4fLly2loaMj69esXOzHo9+TKlSuCQ5THtWvXaGNjI/zfv3//ItEMHh4evH//Pjt16sTdu3fLzFuVlZXFzp078969ezLH9O/fv9ienLS0tCLfgR/BX3/9RQDs1q0bAfDYsWO0srJixYoVqaysTGVlZXbq1Inbt28XIjblcejQIUokElasWJHW1ta0s7NjjRo12LhxYzZq1Ij169ent7c3Q0JCSm3blStXWK9ePQKgnZ0dZ8+ezT///JMeHh7CRNEKCgqcPHmy3O/vz66Pn92+rzFv3jweOXKET548oZOTEz09Pdm/f3+uX7+e7dq1Y5UqVejg4PBNc52VlY4dO5ZYQbO1tRX8YXR0tFDRLsTf35+rVq1i7969efbs2SLaCwgIKNIT+P79+2InRybJBQsWyO0Y+p58/PiRzZs3p4mJCRs3bsymTZty48aNVFNTo7GxsdBhM3XqVF65cqXYueMyMzPZpEkTamhoyPXB1tbWdHZ25sqVK0ttW1paGmfOnEl1dXWqqamxc+fO3LVrF+fMmcPKlSsLBXRra2u58+T8G/Txb7CxODIyMtiqVStmZ2dz8ODB7NevH11cXLho0SKuXLmShoaGrFevHsePH//Dbbl79y6nTp1abPqzZ89YuXJl4f/hw4cXmV/Vw8ODT58+paenJw8dOiQTsZSTk0MfH58i80UOHz682Cj6zMzM/0i05qlTpwiA3t7eBMADBw7Q1taW5ubmVFFRoaKiIjt06MCtW7fKXWyokJMnT1JRUZHm5uYyPrhRo0Zs3Lgx69atyy5dupQ4GfiX3Lhxg40bNxZ0OmPGDO7fv58dOnQQFkySSCQcO3as3I67n10fP7t9X2P58uXcu3ev0HjQvn179u3bl+vXr2fHjh1pZWXFGjVqCHP0/Ui6du1a4kibWrVqCQtSJCcns2fPnjLp169f56JFizho0CAeO3asSCT1jRs32KlTJ5lGl9jYWHbt2rXYc65YsUJmzrEfQUZGBl1dXVmhQgW2bNmSderU4fbt26mqqkoTExMCYLVq1Thp0iQGBAQUO3dcdnY2nZ2dqa6uLuODHR0d6eTkRBsbG7Zs2VJYNKU0pKenc968edTU1KSqqio7dOjAHTt2cP78+axSpYrgg62srBgQECA3j9JqpPj1pf9B4uLi8OrVK2RlZX2X/KZPn461a9fi1q1bSE5OxsePH6GoqIizZ8/izZs3sLGxgampKUJCQr7L+b5GcctNA4Curi7i4uIAACoqKsjMzJRJz8nJQWxsLCpUqAAnJycUFBTIpLdp0wZqamp4+fKlsO3cuXPo0qVLsef09vbGmTNnvuVSioUksrOzkZCQgO3bt8Pa2hrPnz/Hrl278OjRI3Tt2hVjx45FRkYGIiIicPLkSTg4OOC3335Ds2bNoK+vj61btwrL1xayatUq3L9/H25ubhg7diz69OmDDh06oEmTJiCJV69e4dKlS7h58yaOHj2K7Ozsr9qqq6uL+fPnIyAgAH379sXdu3fh4+ODPXv24K+//sKBAwfw+++/4+HDh2jQoMF3vU//jeTm5uL169eIior6Lvnp6upixIgR8PX1hZGREUJDQ6GsrIzo6Ghs3rwZFStWRP369fHs2TNhudQfRXR0dLHLCgOAtbW1zLLn8jQslUqxYsUKrF27Fnl5eTJLlaupqeG3337DypUrZY6JjY1F1apV5Z5TW1sbGhoaSE9P/5ZLKpaCggKkpaXh5cuX8PHxgbe3Nzp06AA7OzsYGBjAy8sLr1+/Rnh4ON68eYP58+fj1atX6N+/P8zMzFC3bl18/PhR5pnk5+ejT58+UFVVxcSJEzF06FD4+PjAzc0N1atXx+3bt3Hv3j2EhITgwIEDpf4mt2jRAnfu3MHp06dRr149rFy5Er169YKzszPi4uKwa9cu3L17F0uXLi3x+yvyiQ8fPuDVq1dF3t1vZdKkSdixYwcCAwORmpqKjx8/QllZGRcuXMCLFy9gbW0NS0tLvHjx4rucryTy8/NLnJOlfPnyiI2NBVC8D05KSoKqqiratGmD/Px8mXQnJydUqFABjx8/FrZduHABnTp1KvacXbt2xenTp7/haorncx+8Z88e2NjY4N69e9i7dy8ePnwIb29vDB06FJmZmYiIiMCZM2dQr149bNiwAS1btoS+vj42bNhQxAevX78eN2/ehLOzcxEfrKKigtDQUAQEBOD27dv466+/SlWO09bWxrx58/DmzRvMmzcP4eHh6N27Nw4cOIDAwEDcvn0b27Ztw+PHj9GkSZPvep/+G8nLy8Pr168RGRn5XfLT0NDAxIkT4ePjA319fYSEhEBZWRmxsbHYtGkTzM3NUa9ePQQHBxcpk35voqKiSvTB1apVk9GsPA0XFBRg5cqVWLNmDfLz82V8sIqKCtauXYtVq1bJHPPu3TvUqFFD7jnV1dVhZGSEhISEb7mkYin0waGhoejZsyc8PT3Rpk0b1K1bF9ra2ujSpQtevHiB9+/f4+3bt1iyZAnevXuHgQMHwsLCArVq1UJycrKMD5ZKpejduzcUFRUxfvx4DBs2DL6+vmjTpg1q1KiBW7du4cGDBwgODsahQ4dK/U1u0qQJbty4gfPnz6NJkyZYu3Ytunfvjvr16yMuLg67d+/G7du3sWrVKmhoaHzX+/TfSHx8PEJDQ2XKk3+H0aNH4/Dhwzh79iwyMzORkpICJSUlXLp0CY8ePUK1atVQtWpVPHv27LucrySysrKgp6dXbLq+vj5iYmIAAMrKykV8SE5ODj5+/IicnBx06NChiA9u0qQJqlWrhjt37gjbLl26hPbt2xd7zh/pgxMTE3HgwAHY2tri6tWr2L17t+CD+/bti6ysLERERAja2bJlC5ydnaGnp4eVK1cW8cG///47AgIC0Lx5c4wbNw59+/ZFx44d0axZM+jq6iIkJARXrlzBvXv3cODAgVK9Q5qampg5cybevHmDRYsWISYmBn379sWuXbtw/vx53Lt3D3/88QeePn0KJyenv31jvsrXWrEyMjIYFhb2t1uCb926xfbt27NXr14cP34827ZtWySk+lvJysqih4cHGzRowHbt2tHKyoqVKlWih4cH3d3d2aNHDzo7O//t83yN9u3blzgkpXHjxpw2bZrwf5s2bWR66H19fTlp0iRev36dgYGBnDVrVpE8Ll68KIyHJcnVq1eXuHzr8+fPOWnSpDJdh1QqZWBgIDdu3MiDBw8KzygyMpIDBw6UWa0KAP38/PjixQsOGjSIwKcllz09Penh4cGFCxdy6dKlNDIyYrVq1bh27VrWrl2bioqKVFBQYO3atYXV7WJiYjhu3DiWL1+eSkpK1NPTY+XKlVmrVi02a9aMtWvX5tixY1mzZk0CoLa2Nnv06FEkrLeQ48ePy10J7f79+zQyMhLGPZfEv6En5Gs2xsTE8P37939ruEdubi5nzZrF1q1bc+zYsezfvz/d3d2/W0/+7du3aW5uznbt2rFhw4asWLEi69Spwy5dutDFxYVeXl4/bEWdQm7evFliZNW9e/dYpUoVpqSkkPwUgbho0SIhvXCoQuHKIR06dJA7PLBt27Yy793XIpr8/PyEc5aW+Ph47tq1i5s3bxaiLKVSKQ8ePEg7OzsZ/RobG3Pnzp28dOkSdXV1qaenxy5dutDLy4s9evTgtm3b2LlzZ0okEg4dOpRz5swRhuJpaGhw9uzZwvUcO3aMLVu2FFayMzExoY2NDRs0aMCWLVuyXbt27N69O7W0tAiAtWvX5qJFi+Tep+joaP7+++9Fhj9kZWVx3LhxlEgkvHXr1lfvxc+u4a/Zl5mZybCwsDK/A19y//59dujQgT169OD48ePZrl07jho1qkxDOIojOzubnTt3Zr169ejh4cEqVarQ0tKSHh4ebNu2Lf38/Ni8efO/fZ6v0aVLlxKH5Do5OXHMmDHC/x4eHjLX36dPH06bNo3+/v68c+eOXN9548YNzps3T/h/8+bNPHbsWLHnfPPmDUeOHFmm65BKpbx27Ro3bdrEAwcOCBqIiYnh0KFDqaqqKqPhwgiGkSNHEgDbt28v+ODCVTdNTExYuXJlrlmzhg0aNBB8cI0aNfjixQuSn4YKTJw4kfr6+lRUVKSenh4rVarEmjVrslmzZqxTpw5Hjx5NR0dHIdzfz8+v2G/z2bNnGRAQUMTPPn78mObm5mzduvX/hA+OjY3l+/fvy7wy0+fk5eVx/vz5dHV15dixYzlw4EC2adNGiB74uzx8+JBmZmZs164dGzduzIoVK9LR0ZHe3t50cXFhhw4dfnjUwMOHD0uMrHr+/DmtrKwYHx9P8lM07MyZM4X0t2/fsnfv3oIP9vb2ljvHmpeXl8zQm6/54P79+5d51ERSUhJ3797NzZs3C0NdpVIpjx49yho1asjo19DQkL///juvXLlCAwMDamtrCz64cNXfbt26USKRcMCAAVy4cKHgg9XV1Tl16lShfHfq1Cm2atVKGDZf6IPr16/Pli1b0s3Njb169aKOjg4B0MHBgfPmzRPu6efExsZyy5YtRXxEdnY2p06dSgDFRkh8zs+u4a/Zl5WVxbCwMLkrpJaFJ0+esFOnTvTz8+P48ePp6enJYcOG/e18yU9ldD8/P9apU4ceHh6sWrUqLSws6O7uznbt2tHPz4+NGzf+4VOv+Pr6ljivYdu2bTlw4EDh/y/LyYMHD+bMmTN58uRJPnnyRK7vfPjwoUxdeteuXdy3b1+x54yOjuaAAQPKdB1SqZQ3b97kpk2buG/fPkEDcXFxHDVqlMyQ9kKf++zZM06YMIEA6OHhIfxmzZrFlStX0tzcnBYWFly9ejWbNm1KBQUFKigo0NbWVpg/NTExkVOnTmWFChWoqKjI8uXLCz64adOmrFOnDkeNGsW6desKq1X6+PjIrOT8ORcvXuSFCxeKPPfnz5+zUqVKbN68eanqhv+RoXbx8fEcMmQIPTw8hImqe/ToISzlVxauX79OLy+vIgVCf39/enh4fHXJ8NLg7u7O3Nxcent7c+/evTI3MiQkhEZGRiUuFf492Lt3b7Eh6M+ePWOfPn3Yrl07wQmdPHmSAwYMYH5+Pg8fPsxhw4Zx1qxZvHDhAlu1aiV3QrTr169z4cKFwv/FCbOQxYsXF/tCyuPRo0d0cXHhnDlzePLkSW7ZsoVt2rThli1baG9vT319fc6bN4+7d+/mkSNHhEqtnp6eIEAFBQVu3LiRY8aMYbly5QRR2traygi18DdhwgQZGwonliuJ4OBgoQIMQLhXOTk53L9/v7DUc+Fv6tSpvH//vpDvkSNHhCFFJfGzO0yyeBuPHj3KNm3asF+/fhwyZAhdXFy4bt26MjseqVRKPz8/HjhwQObY9PR0du/e/bsURo8dO8YNGzbw2rVr9PT0lBmWk5uby5kzZ9Le3v6HOs3C+SWKe9Y9evTg9u3b2bt3b+bl5bGgoIBt27bl3bt3mZ6eTg8PDwYFBdHT05ObNm3iL7/8IjefL+dd6969u8xEqp+TmZlZqspZIQUFBZw6dSo7d+7MvXv38vjx4xw9ejTbt2/PrVu3EgDd3d35+++/c//+/fx/7H13VBTZ9vUlmdGRMSfMYVDH7Bihu4lNzjkJgoIEBVFBFBERREWMGDCBGVAURCWYMYGYxowYUFByjt37+4PV9Wg70ATfML/v7bVYLqu6qm5116lz7wl7JyQkoKysDElJSVz2Mnv2bBw7dozq+ZaWloaDgwPExMT42vDP76rmHFlVVRViYmIwZswYEEKgoKBA3eP79++xfv166tqEEEyZMgXHjx+nfEhDQwNmzZqFiRMnNvuddHQbFjS+oqIiODs7g8lkYtmyZdDX14eJiUmL2hQ5ePToEdTU1HgWFzdu3ICqqioXr11rwWQyUVdXBzMzMxw5coRrkf3+/XsMGjTol7ecxcbGcvnHpnj79i1MTU2hra1NBSyvXbsGCwsLSqZ80aJF2Lx5M+Lj46GoqMhX1CMjI4OLM/LNmzdcE+mfERoaitjYWJHv4cWLF1BSUqIm34cOHYKqqip27dqF6dOno3fv3li/fj2OHz+O2NhYaj7RtGSeEIKdO3fCw8MDv//+OwghUFNToyScf/5zcnLiGoMoPvjt27fYuHEjdQ5Oy1NdXR3OnTsHJycnrmusXLmSi+ciMTERhBChCwag49svIHiM8fHxUFVVhbW1NZYsWQIGg4HQ0NAWJ4HYbDasra1x/Phxrt+lqqoKNjY2OHPmTJvv4cqVK9i2bRsePHgAVVVVrnau+vp6BAUFYcyYMb/cBysrKwts1bGzs8ORI0dgYmKCuro6sNlsaGlp4e7du6iqqoK2tjaePHkCdXV1HD16VGAQS09Pj6vVxdbWluLG+Rl1dXUUl6yo97Bu3Tro6OggMjISFy9epIIMkZGRIISAwWBQPjg+Ph4lJSW4ffs2l71MmTIFUVFRoNFoVBBpyZIlEBcX52vDP7dRNfeM1dTU4MKFC9Q7YcaMGdQx2dnZ2LBhA2g0GnX+CRMm4MiRIygoKKDOv2DBAowaNarZ76Sj27Cg8ZWWlsLNzQ1qampwdnaGgYEBjIyMeIQRRMHTp0+hrKzME8BMS0uDkpISX+7AlkJDQwO1tbWwtrbG/v37uYKr2dnZGDZsWIt8UWuQmJjIFQxuio8fP0JfXx+Ghoa4efMmgMbgsbGxMWpra5GUlAQLCwvs2LEDsbGxXCTkTfHy5UsuzsiPHz/y0NA0RXh4OE6cOCHyPbx58wbKyspYs2YNJfKlrq6Obdu2Yf78+ejZsyfWrl1L+WAOfQYnGMT527ZtG7y8vNC3b18QQqCoqIhp06bxtd+fKXNE8cFZWVkIDAykzsGZG9bX1+P8+fNwdnbmusaKFSuQlpZG2XlqaioIITh8+HCz38kvDzwVFxdDQUEBgYGB8PHxQXBwMLKzs5GVlQUajSZU3YUf1NTUBA52z549LXogBEFDQ0Mosai1tTXU1NTafB1haGhogKmpKfbv308F09hsNm7dugV5eXm8f/8ehYWFMDQ0hIODA+Li4uDm5ob+/ftj7ty5iIqKgqGhIUaPHi3wxebt7c3D2aSnp8eXPDQrKwuKiooiT3JycnLAYDC4nH5mZiYWL16MYcOGQUxMTKDCR2JiIkaPHo34+HjMnz8fhBD069cPbm5uOH78OPr37w8FBQX88ccfmDFjBlxdXeHi4oJbt27xHZ+oTn758uUghKBTp05QVlbG2LFjsXHjRnz8+BHJyck8meFhw4bB0tISAQEBIIQ0++x1dIcJ8B/j4cOHYWZmho0bN8LHxwfR0dGorq7Gtm3beAJ9zSElJUWgI6mtrQWDwWgzee6JEydw4sQJKCoq8q0aLC4uxvjx43H//v02Xac53Lt3D6qqqlyL+5KSEnh4eMDX1xf19fU4c+YMFBUVsWfPHpw5cwZ//vknBgwYAF9fXxw6dAj9+/eHp6cn3++ktLSUJ7t6//59mJub82TD2Ww2Vq9e3ezCrCl8fX25bLSurg7bt2+Hmpoaunbtir59+/I9rqSkBEwmE25ubjh8+DBlL/Ly8jhw4AC1aJ03bx7Gjh0LMzMzLFq0CDt37uSb3RLFaQKNi2zOtcaMGYM5c+aAwWAgJSUFX758ga2tLY+DlpeXx6pVq6CoqMjF9yEIHd2G+Y2vrKwMDAYDmzZtgo+PD4KCgvD+/Xt8/PgRdDq9xcEnTU1NgYu5w4cPU+qqbYGGhgYuXLjAVQXYFE5OTr+88pjFYsHa2hq7du2iFpZsNhv37t2DvLw8Xr16heLiYpiamsLe3h4XLlyAp6cnBgwYgNmzZyMyMhIWFhYYMWKEQFGMjRs38lQZm5iY8K2++/z5M2g0msjEpt+/fwedTueyqefPn8PBwQEjRoyAuLg4wsLC+B6bmpqKUaNGIS4uDnQ6HYQQ9OnTB8uWLcOJEyfQv39/0Gg0yMnJUZVLzs7OuH79ept88Jo1a0AIgZSUFJSUlDB27FisX78e2dnZuHXrFiVWwPkbMmQIzM3NERgYCDExsWafvY5uvwD/MZ48eRJGRkYICAiAj48PTp8+jerqauzevbvFJL9paWkCyfnr6+tBp9PbTJ4bGxuLiIgIqKio8K2urKmpwbhx40SqcGkLMjIyoKSkRFXhAY3vQ29vb6xcuZJaVNHpdOzcuRPnzp3D9OnT0b9/f6xZswaHDx/GwIEDsWzZMr4VZpWVlTycTZmZmTA0NOT7HW7YsAFHjhwRefyBgYHYsWMH9f/6+nrs3LkT6urq6NatG3r06MH3OI4a2JIlS6gAFSGE4mvT1dXFH3/8QflgY2Nj2NnZITQ0FLm5uTznE9UHv3nzhuJKHDlyJObNmwd5eXkkJSUhJycHS5cu5fHBCxYswMqVK6GmpoaBAwc2O//r6DbMb3yVlZVQUlJCQEAA1q5di8DAQLx58wZfvnyBoqJiiziyAEBXV1dg1dypU6ewe/fuNt0D0OiDr169KnC+7unpifnz57f5OsLAZrPh4OCAbdu2cXX0PHr0CPLy8nj69CnKysooTtfz589jzZo1GDBgAKZPn47jx4/Dzs4OQ4cO5eFD5WDr1q08CW8rKysqmNUU3759g4KCgkBOpZ9RWFgIGo3GlUx99eoVlixZgtGjR0NCQkIgv9Lt27cxatQoxMTEUCTgvXv3xpIlS3Dq1ClqHTxx4kRMnToVLi4uWLp0KZKSkvi+q0T1wU27EBQVFTF27Fh4e3sjKysLaWlpVAEI52/gwIEwNTVFUFAQJCQkRHr2fnngydHREZMnT8aePXvw5MkTJCcnw9LSEm5ubnj58qVQMuuf8f79ezg6OgrcX15eDh0dHZHPJwimpqZQVVXl2zbAqWQwMTH55STj9fX12LdvH1RUVKCpqYkZM2ZgzJgxYDKZMDIygpKSEk6cOIGXL18iPDwcERER+PDhAy5fvozIyEjcv38fSkpKfIN7b9++haqqKs/DWFhYCA0NDaxcuRLr1q2DsrIy5OTkMH78eC7n3Ry8vb0pOd3a2lr4+vpCUlISI0aMgKamJoYOHcrXwQGNEeWTJ08CaGwHSEpKQl1dHWpqavhGdzkTm1u3bsHExAQBAQGor6/HlStXMG/ePEqhSltbG6tXr8bevXsRHR0NHx8f0Ol0+Pv7Uxme/Px8bN68GT179qSyQWPGjIGjoyN27twJa2trrkqNyZMnQ0pKCqNGjWpWTrajO0yAd4xlZWUYOnQorKyskJKSgidPnmDXrl1QUFBAeno6rK2tqfZGUWBrayuUzNLPz49vS2NL8OrVK+jq6gokFj1//jy8vb3h4ODQpuuIOhZ7e3uqRHnMmDGYPHkyzMzMoKqqCnt7e7x79w4xMTHYu3cvEhMT8fbtW5w4cQLnzp3DyZMn4e7uzmOnbDYbK1as4FshduLECSgrK2Pbtm2wtLTEX3/9hREjRsDJyUlk51NaWspFxJiZmYkpU6ZAQkICCgoKmDVrlsAFD4vFAp1O58qEcOxrw4YNPPbLaQOurq6Gt7c3LCwskJ6ejurqaixbtgz9+vWDjIwM5s6dCzs7OwQFBeH48eM4evQoDA0NYWhoiPPnz6O2tpZq7Z07dy7Vgte1a1coKytj/fr12Lt3LyVSQAhBr169MHjwYBBCuBSNhH0vHdmG+Y1v+fLlkJOTw86dO5GZmYnU1FTY2Nhg6dKleP/+vVAy65+Rk5PDJU//M6qrq6GpqdmWWwAA2NjYgMlk8g1wcSoZLC0t+VYRtSdYLBYOHjwIVVVVaGpqYubMmRg9ejRUVFRgbGwMRUVFHD16FK9fv8b+/ftx6NAhZGVl4cqVK4iMjERaWhrU1NT4Bveys7P5JnNKSkqgra2NFStWYMOGDVBRUcHEiRMxZsyYFqm6bty4kaoKq6urg7+/P6SkpCArKwtNTU0MGTJE4Lv42LFjiIiIANAYwLp69Spqa2tRV1fH1wdzqt/u3bsHU1NT+Pn5oa6uDikpKVi4cCE6deqEMWPGQEtLC15eXtizZw+io6Oxbt060Ol0rF+/nspGFxYWYuvWrejVqxckJCSoRezixYsRFhYGe3t7rkqNyZMno1OnThg6dGiz1XYd3X4B3jFWVVVh6NChMDc3R1JSEp48eYK9e/dCXl4e9+7dg6OjI9VaIQqcnJyEBpuDgoLa3IqenZ0NbW1trlbUpkhMTMTq1athZWXVpuuIgnfv3sHR0REqKipQV1fHmDFjMGnSJErVadGiRXjz5g1VKR0fH4/379/jxIkTlArlkiVL+PpOb29vnD59mmd7dHQ0FBUVsW3bNtjY2GDOnDkYOXIkFi1aJHJi7eeg1vPnzzFz5kyIi4tDXl4ef/31l9D1E4PBoIJfN2/epDpMtm3bxmO/nDbg2tparF+/Hubm5rh37x5qa2vh7u6OAQMG4LfffsOcOXNga2uLzZs349ixYzh+/DiMjY2hr6+P6Oho1NTUgM1m486dO1BQUKB8cOfOnaGoqAhfX1+Eh4dj0KBB1LV79OiBoUOHghAiMBDeFB3dhvmNz8fHBxMmTMD27duRmZmJGzduwN7eHvb29vj48aNQMuufUVBQABMTE4H76+rqwGQy23QPQGObmrq6usB1GpPJhL29fauqplsCFouFI0eOUD549uzZGD16NJSUlGBiYgIGg4EDBw7g3bt3OHDgAA4ePIh3797h2rVriIyMxJ07d6ClpcU3uPflyxfQ6XSeQE15eTn09fXh5uYGf39/qKqqYtKkSRg9ejQePnwo8tibBrU4lZ6dO3fG0KFDoaGhgcGDBwvs/Dpz5gz27NkDoPE3T0xMRE1NDRoaGvj6YI5QT3p6OszMzLB27VrU1NTg9u3boNFo6NSpE0aPHk2t7zk+2M/PD3Q6HWvXrqV+y+LiYoSFheG3336jAsnDhw+HnZ0dduzYgaVLl1K+mZDGFtvOnTtjwIABIlXb/dLAU25uLmRkZPj2nO7fvx8BAQFgMpkit8c9ePBAqFIU0BilraysRG5ubrOBAEG4efMmZGVl+TqaU6dOwd/fH97e3i1y9m1FdHQ0zM3NuVoMq6ur4evrK/Q7+fjxI1WSnZ2djQ8fPmDr1q1QVFQUqAz09u1bTJ06Ferq6nBzc8P58+dx4sQJKCgoCFTr+Bkc7pmSkhLMmjULkpKS8PPzo35rR0dHHgURDpydnfnu+/z5M/Wgd+rUCStWrKDu4dOnT1zZ0JSUFJibm0NGRgYhISFwc3ODsrIyhg0bRhlM7969oaqqiu7du0NMTAyGhoZIT0/HqVOnsHfvXhQVFSEmJgZLliyBnJwcDx8VIQSHDh1CdXV1uxrbP4mfx2hgYMB3oVlcXAwGg4GEhASBGRF+0NLSEspNceDAAVy4cAE/fvxoU6/6nDlz+NpFVVUVGAwGCgoK2mWBLCqqq6vBZDIRHx/P9V55/vw5aDSaQFsAGp2XgYEBrl+/jq9fv+LGjRswNDSkpNz5YdWqVfjrr79gaWmJoKAg3L59m6pKECX4dPHiRezduxdAY7ZdUlISkyZNQnp6OoDGAK2ggEVJSQmPuggHTVtmpk+fjujoaOp5WLduHbXvr7/+QnZ2NgghMDQ0REBAAMzNzTF9+nT06tWL+tzMmTMpjpghQ4YgNDQUZWVlUFRURE1NDZ4+fYqtW7dCRUWFUuT6+Q9oXOyK8r10dBv+eXwFBQWQkZHhy7lx/Phx+Pj4QEdHRyifYFM8e/ZMqFIU0FgRVVVV1SYf/ODBAwwZMoTvb3LhwgWsWbMG/v7+fNVDfxUuXboEIyMjqj0EaKzc2LhxIxdHxM/IycmBoqIiQkJCkJWVhezsbEqOXZDdZ2dnY9q0aWAymXB1dUVMTAzOnDkDBQUFPH78WKTxMplMsFgslJeXY/78+ZCQkIC3tzeVrXV3d8erV6/4Huvp6cl3X15eHmU3UlJScHV1pYJ/eXl5lHQ7IQTx8fGwt7eHtLQ0QkJC4O7uDlVVVcjKylKT2d9++w2qqqqQlpaGmJgYdHV18eDBA1y4cAHbt29HSUkJLly4ACcnJ0ycOJGn6pgQQlWkifIMd3T7BXjHaGVlBQMDA76fU1JSwtWrV1vEvWlkZCR0vsLhOGmrD5aXl4eXlxfP9pqaGigpKeH79+88KlO/ErW1tdDS0kJsbCzXe+XVq1eg0WgC2+MAYNeuXdDR0UFycjK+fv1KJTk3btwo8JgNGzZg1qxZsLCwQGBgIG7dugUPDw/Y29uLFHxKSkrCtm3bAAAxMTHo1KkTJkyYQFVqV1RU8H0ugMbvWF9fn+++lStXUrbz559/4vTp05QPbtpqM2XKFMretbW1sWnTJlhaWmLGjBlcPnjatGlUW9DAgQMREhKC0tJSqKiooLKyEs+fP6cqpTmKXD//sVis/7M+uLS0FDIyMnwVfM+ePQsPD49m1dua4t27d3B3dxf6GY4qem5ubqvpZ54+fYpBgwbxfVavXLkCd3d3hISECOTF/RW4du0adHV1uap4a2trERISguXLlws8Li8vD8rKyti8eTNV7b1r1y7QaDSBKtA5OTmYMWMG1NTU4OLiQgWhaTSayN0S6urqaGhooNQ+xcXF4enpSVVvrV69WqA/9/X15buvoKCAshtJSUksXbqUKi4pKirioqo5d+4cxSG1ZcsWihN7+PDhlA/u2bMnVFVVKZvW0NDA3bt3cfXqVWzatAllZWW4ePEiXFxcMHnyZHTp0oXHfkNCQlBbWysyx+cvDTz5+/vjr7/+4vtZNpsNJSUlmJmZ8fA11dfXIzY2lqfULT8/X2hkOCUlBSNHjoSWlhbs7OygpKSEVatWtYp0fPLkyTAwMMCTJ0/AZrPx7ds3rFu3Dqampqirq4OhoSHXBPRXoqamBnQ6XeAk3sTERKi0Jaec2MnJCc7Ozrh48aLAxT+nootfUCo/Px8KCgoilWGrq6ujvLwcc+fORe/evXnKHN3c3AQavLe3t8CocklJCbZs2cLTpldbW0vxuCgoKKChoQHbtm1Dly5deL43FouFHz9+UNsrKioQHh5O8VpMmTIFN27cwNevX1FcXEw5w4aGBnz48AHr16+HiYkJnJyc8PTp02a/Cw46usMEuMdYWVmJP/74QyDhaHx8PNasWYOlS5fy7Pv06RP27dvHsxjw8vIS+Nuy2WzMnz8fs2fPho2NDYyNjaGhoYHk5OQW30dKSgqGDh2KAwcOoLy8HCwWC1evXoWSkhJSUlLw4sULuLi4tPi8rcXu3bsRGRnJd9/r169hY2Mj9PjPnz/D398fDg4O8Pf3F1rpceHCBb4TfgDYvn27SJU9MTExiIiIQGxsLCQkJGBpack1gSkvL4eRkRHfY2trawUuKNhsNrKzszF//nyeSebly5dBSKOUcmJiIthsNmRkZODn58dznsrKSq6J2tOnT2FlZQVJSUn0798fKioqyM7Oxo8fP7jKoktLS5Geno4pU6ZgzZo1Ajl8BKGj2/DP4wsJCcHMmTMFfl5VVRW2trY8k+KGhgbExcUhJSWFazunGkcQ7t27h+HDh0NTUxN2dnZQVlaGh4dHq0jHZ86cCS0tLWRkZIDNZiMvLw8bN26EgYEBamtrYWFhwXcy/yvAaUESNIm3trYWGMQBGr/PixcvwtnZGU5OToiNjRXoR9lsNlRVVfn69KKiIsjLy4tU6q+uro6qqiooKChAWload+/e5dq/evVqgcmzjRs38rThc1BaWoqdO3dytQABjd+RkpISCCGYM2cO6urqsHfvXkhKSnK1SQCNPjg/P5/ywZWVlTh06BDGjh0LQhqFAhITE5GTk4Pi4mJq8dPQ0ICPHz8iMDAQBgYGcHJyooLhoqCj2y/APcaamhrIycnh3LlzfD+bkpICLy8v2Nra8uz78uUL9u3bx9Pqtn79er5tJMB/5n+zZs2CtbU1TExMwGQyceXKlRbfx7179zBkyBDs3bsXpaWlYLFYSE5OhoqKChITE/H+/XuhfGbtjYiICIG+78OHDzA1NRV6fE5ODjZt2gQHBwf4+fkJnXNfvXoVrq6ufPft27dPpMqey5cvY/fu3UhISICUlBSMjIy4Kvrq6uoEdniwWCyeFkAO2Gw2Pn36xNcHp6SkUItJDmfpoEGDsGrVKp7zVFVVcfngFy9ewM7ODlJSUujTpw8WLlyI7OxsfP/+nWvcZWVlyMjIwNSpU+Ht7c3XvwtDR7fhn8e3e/duTJs2TeDnNTQ0sGTJEp7AJ4vFQkJCAk8rdmVlpdCKpidPnkBWVhYaGhqws7ODiooK3NzcWhVEnjdvHlRVVSk+vR8/fmDz5s3Q1tZGVVUV7OzshNpBe4JTSS+oqnXJkiVCK4JZLBYuX76MZcuWYenSpTh79qzQxJimpibfbo7S0lIoKCiIFFdQV1dHdXU1lJWV0b17d57WYj8/P4HJs61btwoU+yorK8OBAwd42vRYLBY0NTWpxG5NTQ2OHDkCMTExHj/A8cGcOU11dTWOHj1KCQZNmzYNFy5c4PHBLBYLnz59wrZt26CjowMnJ6cW05b80sATRwnu50kHB+vXr8fMmTOpIEhtbS2Cg4O5ImlNAyDv3r3DrFmzYGBgAE9PT2pCCjRmLQYPHszloNlsNhITE8FkMltMeBoXF4dly5bB3d0dmpqasLKyQlJSElgsFt68eQMzM7MWna8tOH/+PHbt2iVw/82bN5utBBMVKSkpQh3B9u3bcf78+WbP4+DggDlz5kBaWpon0MB5gQiaeD979gxLlizhu4/NZkNdXZ0vbwCLxcK7d++obN6dO3dACBE5Q1xfXw9/f3+eaO7PZKmnTp1qUZ8+Bx3dYQLcY7x9+zYWLVokcHHe0NCAGTNmcHGhPXnyhEtlZfHixVyfDw8Px4QJE2BpaYnDhw9z/Y52dnaQk5Pjei5KS0thbm6OmJiYFt+LkpIS9u7dC319fWhpaSEgIIBqj120aFGLgoZthaqqqtDMk5aWVrsQQgKNDlOQalltba1I5Kbfvn0DnU6HlJQUjI2NeQLVp0+fFtrLbW5uLrCa486dOwKrZkpLS7lKj1VVVVvEp5ednY3hw4dz2W+nTp14yplby9HX0W345/FpampCQ0NDYOAnODgYM2fOpJ7N+vp6bN++nev7a/rdffjwAfPmzYO+vj6WL1+Ohw8fUs9SVlYWhg4dimPHjnFdIyUlhcp+twTXrl2Dg4MDVqxYAU1NTVhYWODKlStgsVj4+PGjwGz/r8CVK1eEVhg+fPiw2UowUZGWlib0XPv27aNa0YXB1dUVCxYsQLdu3XjalzkBBkHvpLdv3/INZnCgo6PDt4qO44M5CYeMjAwQQniCXoLQ0NCALVu28Pjgn8dy4cIF7Nu3T6RzNkVHt1+Ae4zp6emwsbHhIqBvCjabjVmzZnFxob148YKLmLZp9SmnbWXcuHGwsLDAwYMHuRaky5Ytw9ixY7kWZGVlZbC1tW0VfyqTycS+fftgYGAALS0tbNiwgQoWOzs7/3KexabgVIEIgoGBQbsoggGNXKn87ANofMZF4bLkJHo7d+4MHR0dnkVyXFwclyr1z7C1tRXYBpWeni6wDbKsrIwrKayrqwsFBQWhY22KL1++YNy4cVz2KyUlxUPVwVELbCk6ug3/PD5dXV1oa2sLrGgKCwvDzJkzKf/Y0NCAXbt2cX1/Tb+7jx8/QkFBATo6OnBzc0NaWhrlgz99+gRZWVmed+OtW7egqKjY4gTQ7du3YWNjg5UrV0JTUxNmZmaIj49HQ0MDcnJyhCah2hvNrXOfP38u8JluKTIzM4We6+jRo1QrujCsXr0adDodXbp04UniARA6L/r06ZNQGgQjIyO+iTc2m42srCzq+Xv58iUIISIn8FksFsLCwnh88M/tnVevXhUogNYcfmngSUNDA4cOHcLOnTv5ft7U1JSaUNTU1EBDQ4O6SWlpaWzdupXr5Txx4kRISEige/fuVFnY2LFjYWlpif79+8POzo4iwSsrK6OCTYcPHxYpy98UbDYbdnZ22L59O+WsOLLECgoKApWjRMG7d+9w8OBBREREiHSevXv3CpW5/fLli8BATUsRFBQkMNMJNFYWCGsr4IDz4PIb9969e7F161ahx9vb2yMyMpJrgcxisbBu3TqhC4CmqKqqgrS0NN9sjTAcPHgQtra2SEhIwJ9//slTsmxoaMjV98xms3Hq1KlmA3Id3WEC3GO8c+cOAgICQKfT+QYyqqur0adPH6ryLzU1FVJSUpQN6+rqcgV3Lly4AEIae/p///13iImJoXPnzlBRUYGWlhZkZGSoPuza2lqq2qyurg4MBqPFbTtPnjyBoqIiV1a/pKQEq1evpniFWoO6ujpcvHgR+/btw+XLl0WqAGyupcDR0VFg62tL0VwLoZGRUbNBADabjT59+kBOTo7ne+cIRgh7jl++fAklJSWeyTdHVEJUfrygoCB06dKlRXx6paWlmDNnDs6fP4+QkBAQQpCZmUntf/HiBU+VXm5uLvz9/ZutYu3oNswv8BQVFYXg4GC+n7e3t6cq12pra6Gvr0/Zb5cuXbB582auoOOMGTMoH8whmRw1ahQsLCwwaNAgmJmZUT64vLyc8sGnTp0SKcvfFGw2G05OTggKCqKeVzabjfv377dKmKQpPnz4gEOHDuHQoUNC21w5OHLkCKKjowXuLygoEMp91RKEhYUJVex7+/Zts60WACjlybNnz/LsO3LkiNA2IaAxMHDw4EEuH8xms7F582aRE111dXWQkZERWP0hCJGRkTA3N0dCQgJmzpzJk+G3sLDg+d2io6P53mtTdHT7BbjHmJGRAR8fHygqKvJ9N9XX16Nfv37UfOTOnTvo1q0bZcMaGhpcYjFXr14FIQTdu3eHjIwMxMXFKTEVPT099O7dm0rU1dXVUT6YEyxpaQL35cuXoNPpXMm/srIyrFu3TmBVriior69HQkIC9u3bh0uXLok0N2jOB7u7uwuswm8pmruWtbV1s76GzWZjwIABGD16NE+FY1lZGeh0utBzvHv3DgwGg4ej59OnT6DRaCKvYcLCwiAlJSWUm/NnlJWVYcGCBYiJicHOnTtBCOFSAn/37h1PMPn79+/w9/dv1td3dBvmF3g6e/aswIS+m5sb9bzU19fDzMyMsl9xcXH4+/tzzTEXLFgAcXFxdO/eHb179wYhBCNGjIC5uTmGDh0KbW1tsFgsygdz1q8XLlwQOA8QBDabjeXLl8Pf35+reyE9Pb1VwiRN8enTJ0RERFC8iM3h9OnTArsGgMZKMGNj41aPpykOHDggVGFb1DX3mTNnQAjB0aNHefadPn1aoFo1Bx4eHjzq4Ww2G9u3bxdpHQ40rpv79+/PVQQgCqKjo2FoaIiEhATMnTuXR8zFzs6O5/e/cOGCSAmKXxp4CgwMRHx8PCwtLbF161Yq2lpTU4OjR49Si9YzZ85ATk6O6jnkRNZYLBauX7+OoKAgmJmZ4bfffsPUqVNRWlqKrVu3YubMmRg2bBgXr0CPHj0o4klJSUlMmTIFtra2mDhxIh49eiQyGz3n+keOHIGamho0NDSgpKSE1atXt5pUvKysDObm5rC1tUVsbCzOnj0LMzMzODg4CHXoiYmJQoMtV65cafELRRDCwsIQHx8vcP+tW7eanbACjRUF48ePh5KSEs6fP48vX77gwYMHsLe3x7Jly5rN9tTX11Pk5uvXr8fq1avBYDAEKuEJwsqVK9GjRw+BFSD8wJG2f/z4MdTV1blKls+cOcPVolVbWwsjIyPKSQj77jq6wwS4x8gpEX3w4AGUlZW5KtfevXuHefPmwdLSEl++fMGyZcu4OLA4wZ68vDwcPXoUy5cvx5w5c0AIQUxMDB48eAB9fX388ccf6Nu3L8W7JSkpyTVx7tu3L9TU1ChJ8C9fvrRIgjkrKwvOzs5QUVGBhoYGNDU1RarYE4SLFy+CTqcjNDQUly5dwpYtW0Cj0ZrNJqirqwsN9rSmKlMQBJXYc6ChodHsRJ1TqTB37lysWbMGf//9Nz5//oyIiAjIy8vzVb78GU+ePIGmpiYWLVqEjRs3wszMDIaGhiIt9DkoLCxE9+7dRXayHFy7dg3W1tZ49OgRCCGU0EFZWRmYTCaXw7xx4wb69OkDQhpVf4T9Dh3dhn8eX2hoKKKjo2Fvb4/AwEDqPVhbW4sTJ07g999/R25uLmJiYvDnn39SPpiTyWSxWLh16xaCg4Mpzrzx48ejvLwcO3bswMyZMyErK4uePXty+WCOPUtISGDy5MmwsbHBH3/8gQcPHrToOWez2YiMjASTyYSGhgaUlZXh6enZ6ha7iooKWFtbw8rKCtHR0YiOjqYUcYTZ540bN4QGW27evNnilhFBOHDggNAg16NHj5qdsAKNVRejRo0Cg8FAdHQ0vnz5gvT0dCxZsgQODg5CufaAxt8+ICCAevd6e3uDwWBg165dLXoHr1u3Dl27dhVYAcIPHGn7+/fvQ19fHwsXLqT2XbhwgUsYor6+HpaWllSbrrDvrqPbL8A9Rk6F6uPHj6GoqIh79+5xVRjSaDQYGBjg27dvcHd35+Lf4PjrHz9+4Pjx4/Dw8KBUgqOiopCeng5jY2PKB3Ns/2cf/Pvvv0NFRQWqqqrw8vLCp0+fWvT7f/z4Ea6urlBWVoaGhgbU1dVx9uzZFp2jKa5cuQIajYatW7ciPj4e27dvB51Ox+XLl4Uep62tLfR319bWblVLMD8054P19PSarXDmVCrMnTsXK1euxPPnz/H582ccO3YMCgoKfJUvf8aLFy+gra0NGxsbbNy4ERYWFtDX1xfKZ/UzysrK0KtXL5GC3U1x8+ZNmJqa4vnz5yCEUMH0yspKaGpqcvHF3r17F/369QMhBDNmzBD63XR0G/55fOHh4YiKioKzszM2bNhAVdXV19fj7Nmz6NOnDz59+oS4uDhMmzaN8p2cZ4jNZuPu3bsICQmBpaUl+vbtC1lZWVRWVmL37t2YNWsWhg8fzsW71b17d+o84uLimDhxIqytrTF+/Hjcu3dPaOXfz2Cz2Th9+jTU1dUpH7x8+fIWBSKbgtOiZ2FhgXPnziEmJgY2NjawtLQUytP34MEDoZXADx8+bHGRgSBERkYKDXK9ePECK1asaPY8ZmZmkJWVBY1Gw5kzZ/Dlyxc8fvwYLi4usLGxaTZpzWKxEBwcDEVFRaxduxY+Pj5gMBjYtm1bi96fgYGBkJKSavG8ycDAALdu3YKFhQUXZUNiYiJXoq2hoQH29vbU89deCu+tCjz9+PEDDAYD+fn5OHnyJLS0tKChoUGpsrm5uVH9hMrKyoiLiwMhBI6OjnB1dYWsrCwIaVQlGj9+PCwsLHDmzBme6759+xZLlizBxYsXsWXLFuzbt48iiLazs8Off/5JKZF16dIFLi4u/zVuCA7YbDZ0dXX5KnZdunRJqDpFQ0MDaDQa35cxm82GpqamQOWBlqK58j4HBweR1O2mT58OR0dHFBYWIjQ0FI6OjvD29sbff//dovFUVVUhPT0dmZmZzU6Uf8bbt28xcuRIDBw4sMV8XIWFhTA0NMSsWbPQpUsXREVFwcjICC4uLtSinc1mw9raGp06dcLp06eho6OD7t27c2V2mqKjO0yAd4wBAQHYt28fsrOz4eHhATU1Nairq8PMzAwzZ86El5cXOnXqhN69e2Pjxo2wtbXFoEGDEBQUBE1NTWoy279/fyxcuBAeHh58n1ULCwvcvHkTe/fuRWhoKI4cOYJTp05h3bp1YDKZXAvbSZMm4dy5cyKrw7QX7t69CyMjI572lKqqKmhpaQntLz969KjAdtmHDx/y5clqLZYuXSpQBODr168iZYWuXLkCQgg+ffqEO3fuYPny5ViyZAmOHj3aokkL0LjwePDgAZekrChgs9mUCl5rWolPnz4NGo2GLl26UASvNBqN6x38/Plz9OzZE3Q6HfHx8ejSpQt0dXUFBuY6ug3/PL6ioiKqwuzs2bPQ1taGhoYG1NTUYGpqCicnJ0yaNAmEENDpdCQkJIAQgkWLFsHd3R0jR46k/ObYsWNhZmaGqKgonut++fIFNjY2iI+Pp3zwyZMnER4ejsWLF2Pq1KmUD+7UqROWLFnS6olrW2BsbIzU1FSe7deuXRPq91gsFhgMhkClWz09vXZT2MvNzRXKZenm5iZS4Hf+/PmwsrJCcXExdu7cCUdHR6xevVpkgRAOampqKB8sSnVnU3z48AFjx45F3759W2z/JSUlMDExwezZsyElJYWoqCiYmppiyZIlVAKRzWZjyZIlkJSURGRkJIyNjdGlSxceLg0OOrr9Arxj3LZtG7Zv347Pnz9j1apVUFVVhbq6OkxMTDBz5kx4e3ujc+fO6NWrF9atWwdHR0f06dMHW7Zsgba2NlWF3K9fP8yfPx8rVqzgW+3i4OCApKQkhIeHIzQ0FIcPH8bp06fh5+cHDQ0NLhntCRMm4OTJky2ek7UV6enp0NXV5Qlec8i0hYkNnDlzRmAC9+nTpy1S2G4OK1asEMhlmZ+fDz09vWbPcfPmTRBC8Pr1a9y7dw8eHh5YsmQJIiIiWty2/PnzZzx48KDFVdVsNpuiP2lNK3FsbCxoNBp69OgBIyMjKlHX9B38+vVryMjIYP78+UhMTET37t3BZDIFFgl0dBv+eXzl5eVQUFDA169fERsbC11dXWhoaEBVVRXm5uaUfySEYMGCBdTcy8rKCitWrMDo0aO5fLCJiQlfqo+CggKYmpri8uXL2LJlC/bu3YuTJ0/iwIEDcHR0xPTp0ykfLCUlBXt7+/8aP1NTWFlZITExkWc7RzRHEDi80D9zQnP2mZqatkhhWxgKCwsF8qcBjS10orSPKykpwdDQEKWlpdizZw8cHR3h5eXFVYEvCmpra5GRkYGMjIwWd358/vwZcnJykJGRafEcpaysDBYWFpgzZw7ExcVx7NgxmJubw87OjmsdsHz5coiLiyMiIgLW1taQkpISyE8F/KLAU3BwMJ4/f45jx44hMDAQPXr0gLKyMtLS0nDx4kUYGRlh1apVuHXrFrp06YJ+/fpRlQwjRowAIQSjR4/G+PHjQaPRKFJAHR0deHh48Ex+ysvLoaWlJXBcxcXFVPZsw4YN6N27Nzp37gxXV1cqAMVms5GZmYnExMRfIg95//59ocoj1tbWQssNr1+/Dg0NDS7DysvLg52dXYurgJrDsmXLcPz4cZ7t58+fb5YEmYPx48dDVlYWVlZW8PX1bbfAmKh4/vw5+vTpg/Hjx7eowuJnnD17FoQQTJw4EStXrkRFRQVev36NpUuXUouypUuXoqamBpWVlZg1axY6d+4MLy8vnlaQju4wgf+MMSMjA6dOnUJMTAxmz56NXr16Ye/evUhLS0NQUBBoNBqePXsGHR0dEEKoTMOJEyeoqofJkydj7NixWLlyJSIjI6mWAX6ZOn9/f74LQg58fX0RHR2NmJgYKCsrUwGo6OhoKgBVUlKCpKQkpKamtkpQoDno6+tzqWk0RXZ2NiwtLQUe29DQABMTE4SHh3Mtmq5cudJsyXxLkZWVBSUlJZ5zVlRUQFNTUyTOs5iYGBBCoKamhmXLlvGVjP7VcHFxASEEmzZtanV2vKamBrNmzaKUO5KSklBbW4uoqCgqKNWnTx9K/OD8+fNUpWxMTAyPk+/oNswZX0BAAF6+fIljx45hy5YtkJaWhoKCAtLS0nDp0iWYmppi+fLluH//Prp16wYZGRnqffXHH3+AkEYJ+wkTJkBeXh4HDhzAoUOHoKenB1dXV57ga3V1tVDerPLycjCZTDx8+BABAQH4/fffISUlhaVLl1IBKDabjWfPniExMVEoUXdr8eTJEyxbtkzg/uaSKnfv3oWamhrX2PLz87F06VKBdAKthaenJ196gMuXLzdLgszB1KlTMWTIEFhaWsLHx6dN9ACtwZs3b9C/f3+MHj26RRUWPyM+Pp4KdixfvhylpaV49+4dXFxcqEXZokWLUF1djerqaixYsIBSvf25daqj2y/wnzE+fPgQZ86cQUxMDBYsWABpaWns2LEDaWlp2Lp1KxQUFJCRkQFTU1MQQqh2xtjYWKrqYfLkyRgzZgyWL1+OqKgorFu3DgwGgy+dQkhIiFBKh02bNuHkyZO4cOECmEwm9ZucOnWKCkCVlZUhOTkZKSkp7cZZ2BSmpqYCn+PmkiosFgtWVlbYuXMnFbhis9lITk5uUfu3KPj8+TMYDAbPfKGqqgq6uroiVStxxDaUlJTg7OzMN+D/q+Hl5QVCCHx9fVvtgznCP5x14OXLl1FXV4czZ86AwWCgW7du6N27N5UQunz5MqSkpDBx4kScOXOGJwDV0W2YM77169fj9evXOHr0KEJDQ9GzZ0/Mnz8fd+/exeXLl2FhYYFly5YhIyMD0tLS6NWrF16/fg0AFEfbiBEjMGHCBMybNw/79+9HREQEDAwMsHTpUp7gK0fcQdDvxOlgSE9PR1BQEPr16wdJSUksXryYKwD14sULJCYmtrhIQBS8fv1aqKBAc0mV9PR0KCsrU5QcQGOQyM3NTWQKFlHh6+vL168nJydDX19fJHuYO3cuBg4cCAsLC3h7e7dpLdoafPjwAYMHD4asrGyb5lQc0YGxY8fCxcUFxcXF+PDhA5YvX07xuZmbm6OyspKq0pWUlISLiwv1TDfFLwk88fubN28eNm3ahF27dlGZr/v372Po0KHo3bs3FVApLi5GaWkpTE1N+SppnDx5Es7OzjzbFy9eLFDdJCAggIucuKSkBP7+/vjtt9/QuXNnzJw5E6NGjYKGhgbs7e2hoqKC2bNn49y5c+3mPH18fISqryQkJDQ7eeWoRnCqTgwNDX+JlGV9fT1Wr14NdXV17Ny5E3v27IGWlhbc3NxEluY8duwYjI2NMXfuXPTo0QO6urrtPk5hiI6OhpiYGP7880+BmSdRwGKxsH79eigrK6Nr164YOnQoZGVl0aVLF4iJiWHjxo3Yv38/FBUVYW5uDhMTE0r2WUVFhat8tKM7TEC4Dfv6+mLTpk1ISEhAQ0MDampq4OHhQVUpAo0TuZycHDx69Aiampo8AaDS0lKoqqryLPC+fPkCbW1tvi/z4uJiHkLsO3fuQFFREYQQDB8+HBMnTsSff/4Ja2trWFtbY9q0abCzs2u3DEhDQwPU1dWFfqY5wur6+nrs378fqqqqVMmyv79/uxGaNkVmZiZUVFTg7u6OgwcPYvXq1VBUVBSoZvQz8vLysHTpUqipqVGO5Wdlyl8JNpuN6dOnUxLwLa2yaopHjx7BwsICEyZMgJiYGIYMGYIhQ4aAkEZ+omvXrsHIyAgeHh6g0+mwtbWFpKQk5OTkQKPRKHUfoOPbsDD7nTZtGjZt2oSwsDBq8ZaRkYERI0agZ8+e1GSupKQEJSUlsLGx4ctzEBMTw3fy6OLiIjALuG3bNq7y6/LycmzevBkyMjLo1KkTZsyYgdGjR4PJZMLe3h5MJhMzZszAqVOnhJbftwQBAQFUyyU/pKSkNNuy/vr1azg4OFA2rKenh6SkpHYZX1OwWCz4+vqCyWQiLCwMe/fuha6uLpycnERuVTx58iRMTEwwb948KvD630R8fDzExcUhJycnMrk4P7DZbGzcuBGqqqro3r07Bg8ejGHDhqFr164QExPD2rVrERERATqdDisrKxgbG2PKlCno1KkTVFRUYGZmRtlrR7dfQLgNr127FgEBAZQycW1tLdasWUNVSAD/8cFPnz4Fk8nkqdIrLy+HhoYGT4Xu9+/fwWQy+VYSl5WVgUajce27f/8+1NTUQAiBrKwsJk2ahMmTJ1M+ePr06bCysmrXIHJzPlZNTU3ogrChoQEREREUfYaysjLWrVv3SxSqX7x4AVVVVbi4uODgwYNUm4yo74uCggIsW7YMTCaT6gwR9v76FZg/fz7ExMTg6enZprXQkydPYGVlBTk5ORBCMHToUAwdOhSEEAwbNgxXr16FmZkZ3N3dQafTYWdnh06dOlHFB0252zq6DQuz3wkTJmDTpk3YsWMHVX3y7NkzjB07Ft27d6eCLqWlpSguLoajoyNf3rqEhAS+iU4vLy+BtA979+7FoUOHqP9XVFQgJCSEarPl+GBVVVUsXrwYGhoamDFjBo4fP95u3/W2bduE8hempaU127L+7t07ODk5UT5YR0eHbwVVW8FisSi/ExoaSokkODg4iJzYPnfuHExNTTF//nz06tUL8vLy7T5OYUhOToaEhATGjRvXplgBm81GUFAQ1NTUIC0tjYEDB2LYsGFUS/bKlSupFmAbGxsYGhpixowZkJSUhIqKCoyMjLgq1X5J4OnkyZMICgrC+/fvsXDhQkyaNInKHBcUFODw4cNUr/mgQYNAp9Mxa9YsrFixApWVlcjMzBRKRmlubs5Tpp+fnw8Gg4FLly5RzrG8vBzBwcFYvHgxX2dUUlKC5cuXo1+/flytPE3/xo0b1+LSNn7w8vISWuKekpKCbdu28d1XV1eHs2fPYvHixVi8eHGzMpDthZcvX8LMzAx//fUXjI2NkZCQ0Kr2pkOHDoEQIlC6+VfhwYMHmDJlCsTExNqlYiMuLg7S0tIYNWoUAgICuDJvTCYTSkpKABp72JWUlNCtWzfs2bOHIu/t6A4T+M8Yly9fjrt371KE4JxsG4vFwsOHD+Hu7g4ZGRlISEhgypQpoNFoUFJSopQbTExMBJZ1v337FnZ2djzb9+/fj0WLFnG1wWZmZkJZWVlg0OP27dsYN24cNYnh9yesV1tUCJMu5kAYoWh2djbWrVsHGxsb+Pj4tBuJqTA0NDRg586dUFBQgLy8PNavX98qAvOGhgaMHj262ftvb1RXV2P9+vXo1KkTpk6d2uYkAIvFwuTJk9GtWzfo6ekhPj6eqp598uQJBg0aRCUHEhMT0blzZ2hra8PQ0JCa8Hd0G+aMLzo6GgEBAXj//j2UlJQwduxYKnNcVFSEY8eOQV5eHoQQDBw4EAwGAzNnzoSrqyvKy8vx6tUroWSUixYt4nmGOQHi8+fPUxUQlZWVCA0NhZWVlcAF7apVq9C3b1+BPnjEiBHtwn+2fv16oUmIu3fvIiAggO+++vp6xMbGwsHBAfb29jh58qTISZi24O3bt1Spu6GhIeLi4lrV3sSpRP1vBo8B4PHjx5g5cyYIITxqh61BcnIypKWlMXz4cGzYsIErg6yrq0tN7Kurq6GhoYHOnTtjz5490NHRAZvN7vD2C/zHhj08PHDz5k2q9ebgwYMAGhcBGRkZ8PDwQN++fSEuLo4///wTNBoNioqK1CJMWBX9p0+fuNTuODh27BgsLS255tfPnj2DmpqawODhvXv3ICcnh2HDhgn0wS0V9+EHNpvdLGm3pqamwDnqp0+fsGHDBtjY2GDNmjW/pLPhZ7BYLOzbtw80Gg0LFy6Ej49Pq1pyWSwW5OTkmuWOam/U1tZi06ZN6NKlC+Tk5NpsNywWC7NmzULXrl2hpaWFCxcuUGuZly9fYvDgwZSvTU1NRbdu3aCmpgZzc3NqbtnRbZgzvvPnz2PDhg14//49NDU1ISsrSyXQiouLERUVBQaDAUIaqSjodDpmzJiBpUuXoqSkBB8+fKCCyfzAj1KhrKwMKioqOHv2LDW3qaqqwu7du2Fqasq3VbqiogK+vr7o27cvVztt07/Bgwe3SxdBc+JVjx8/ho+PD999DQ0NuHjxIhwdHSnxqZZwNrcWWVlZsLa2xl9//QU9PT3Exsa2uOUc+E8lqrD7/xV49uwZ5s6dC0JIu3RH3blzBz179sSwYcOwbt06rs4eU1NT/PXXXwD+I1YjJSWF3bt3g8lkUnGYX8bxVF5ejrVr16Jbt27w8vJCZWUlmEwmRfzN4W+SlpbGwoULqQfc1dUVXl5eQmVWL168yFfKu6SkBJs3b+YiEj558qTQDIiBgQFyc3PR0NCAkpISFBYW4vv378jOzsa2bdtACMGOHTtEuX2h4HBfCMKKFSv4Tgo/fvwIOp2OXbt2IScnBzk5Odi1axfodPovLds7d+4c1NXVcf36ddTX1yMvLw+bN29ulex7bW0tRo0aBRqNhrS0NBw/fhzbtm3D9evXf0lLVFPU19fD1NQU3bp141JYaw3c3d2RmZnJ8zy9fPkSixcvhoGBAVVaXVlZifnz50NGRgbm5ubIzMzs8A4T4Lbh27dvY/78+ZCQkEBhYSFiY2MxcOBAENJIONq9e3cQQjB16lT8+eeflA2/fPmy2ey6oAnU7du3YWJiQvXAu7m5CVWvevbsGZycnAA0fufFxcXIz8/H169f8erVKwwaNAj9+/dvF9JQNTU1gc++sJ7wkJAQGBkZ4fbt28jPz0daWhrMzc3h7+/f5jEJAqetbvPmzcjLy0N9fT2uX78OJpMplHxXECIjI0FII2lgfHw8wsLCcPToUbx//77VJfii4vHjx+jevTtMTEzadK2CggLo6enxPYe1tTUSEhK4WrEuXrwICQkJmJubUxWbHd2Gm46vsrISfn5+6NGjB1xcXFBTUwMtLS2KdHT48OFUSw5HKYcQAgcHB6xbt05ohiwpKYmvMmlZWRlCQkIoH6yuro7jx48LTVhwEkk/++CPHz8iPDwcYmJiCAoKavN3k5KSIpQrzMfHh++kMCcnBwwGA6Ghofjy5Qu+fv1KLSZ/ZQD54sWLUFVVRXJyMurr6/Hjxw+EhISAyWS2+Pmrr6/HH3/8gTlz5uDevXuIjIzEtm3bfllLVFM0NDTA1tYWnTt3bnPga82aNVzy4RxwFmlmZmZUQqimpgYMBgM9e/aEtbU17t271+HtF+C24Xv37kFBQQHi4uL49u0b4uPjMXjwYBBC0Lt3b/To0QOEEEyePBnTpk2jfPCzZ8+aDVKoqqryfRfeu3cP5ubmUFdXh5qaGpydnYU+52/fvqX4kaqqqigf/O3bN7x+/RqysrKQkZHhy83SUmhqagoUiikrKxNYlbxr1y7o6enhxo0byM/Px4MHD2BtbQ1vb+9f5r84bXUBAQH49u0b6uvrcevWLWhqaoqk/PQzoqOjQQjB4cOHcfnyZezcuROHDx/G27dvf7kPfvHiBXr27AkdHZ02cWuWlpZCQ0OD73gdHBxw+fJlrmraq1evQkpKCoaGhlTQsaPb8M8CPZs2bULPnj1hb2+Puro6GBgYUNynw4cPh5iYGLp27Yr58+ejc+fOVPXipk2bhFby3Llzh6/QU0VFBbZv3075YCaTicOHDwtNWNja2uLdu3dgsVg8PvjYsWMQFxfH+vXr2/zdpKWlCeUKCwgI4MsNlJeXByUlJWzduhWfPn3Ct2/fcPDgQSgoKPyStnwOrly5AmVlZVy9ehV1dXUoKChAaGgoVFRUWvw+Y7FYmDp1KqZNm4b79+8jKioKW7duRVJSUruJGgi79tKlSyElJcWXZ7ol2LBhA1JSUnhs+OvXrzAxMYGtrS3VWl9XVwc1NTV0794d9vb2FJ3KLwk8hYSEYNSoUejatStsbGywY8cOyMvLQ0pKCuHh4fj27RsWLVqEzp07w87ODv379wchjeSHpqamGDduHGg0GkJCQqCjowMNDQ2oqKhQTPrXr1/nO+ltKaqqqoRm8dlsNoYMGQJxcXG4u7u3qeS/oaEBdDqdL6Hq33//zVcCnUOmxo8ALjs7W2g/b0vw8OFDbNy4Ef7+/khLS8O7d++gra3NN6qbmppKLfRbAo6ML+ePo74iKSmJWbNmwdvb+5dloCorKylSvuZQWlqKY8eOYfv27UhMTOR6WQvKtoWEhCA5ORkhISFci7Xi4mJMmjQJffv2hbOzM96/f9+hHSbwHxs2MTGBuLg4pkyZAn9/f6xatQq9evWCkpISbty4gY8fP4KQRsUVZWVliImJoUuXLlSLW9++feHu7o7Vq1dDSUmJWoRyAsHNZS5Fha+vr9Ag9d69e9GpUyeMGTOGypi1FufOncOqVat4bI4j+86vNfjSpUtwd3fna6dr1qxpVv5bFJSVlSEiIgLr1q1DeHg4ioqKsGTJEr4Eu/X19dDS0hJJvrYp2Gw2VSFDCEHnzp0posr+/ftDX18fp06dajdlvp9x7NgxEEK4evsF4dGjRwgLC8O+ffu4qhLv3LmDwMBAvsdwWjh+fi451x07dixevnyJ/Pz8Dm3DHPsNDQ3F2LFj0blzZ1hZWWHHjh1gMBiQkJDA7t27kZOTAycnJ0hKSmLRokUYNGgQCGlUkTQ2NoacnBwWLlyIkJAQ6OnpUeqeLi4uyM7Oxv3790VSN20ODQ0NYDKZQj8jKysLMTExODs7t+l75/hTfs/+27dv+S7E2Ww21NTU+Lbs5uTkgE6ntwvBckZGBgICArBhwwbcunULnz59ApPJ5FvZfPfuXb4Vo82BQ1bM+evatSsIaVQenDFjBlatWiWScEhrUFNTg4kTJ4pUNVlWVobIyEiEhoYiPj6e6/vV1NTk+y7dvXs3Ll26hN27d3O9h8vKyjB9+nTIyMhQVXod2X6B/9iwhYUFJCUlMWnSJPj5+WHNmjWQkZGBvLw8UlNT8e3bN0hISGDmzJlUUrdLly6YMmUK7O3t0adPH7i6usLb25tSlGMymVQgWEtLq10EOgIDAwWSuQON79AuXbpgxIgRfH1kS3Dp0iW4ubnxtdMVK1ZwtUVzkJSUhCVLlvB9bvz9/dulEq+iogJHjhyBr68v9u7di4KCAri7u/MNHDQ0NEBfX7/FtsZms6GiosLXB/ft2xe6urqIiopqU1u6MHD4TkUJHj9+/JhqEW5a4ZWRkQFfX1++xwjywRxJ+nHjxuHJkyf48eNHh7Zhjv3u2rULf/zxBzp16gRzc3Ps2LEDKioqEBMTQ2hoKD5//gwPDw9ISEhg0aJFVPv/77//DkNDQ0yePBlz5szBli1boK+vT/lgJycnvH//Hk+ePBFJ3bQ5cJ4rYeBwLzs4OLQpgMxms8FkMvny/mRnZ0NRUZHvO0lbW5sv51ReXh4UFBTapQPo6dOn2LRpEzZs2IDr168jNzcXysrKfKuqOPQNLcX9+/cpm23qg8XFxTFt2jR4enq2WPxDVNTV1WH69OkiVU1WVFTgxIkT2L59O+Li4rhiAXp6enyrvSMiInDu3DkcOnSISzm8srISc+bMQa9evWBqaorc3NxfE3gSFxeHoaEh9PT0ICkpCTExMSxYsICLZ+nTp09QVVXFgAEDMH78ePj7+1MPXGxsLBgMBsaMGcPlSB49egQGg4HFixe3OWoHNFYpCCMEBhpbqLZs2ULx+7TlocjKygKdTkdYWBiys7Px/v17bN68GcrKynyJDVNSUoT2u/r5+TUr4y4MRUVFFGH73bt3ce/ePaxatQojR44U2oeupaXVKl6a+/fv4+nTp6ioqACLxcKzZ8+wd+9emJqaUiWeKioqLV4UNwc2mw1FRUUsWLBA6Od27twJJpOJyMhIJCcnIzg4GDQajVJK0dXV5Rt8DAwMxO3bt7Fq1SouYryioiL07t0bXbt2xezZs2FkZNShHSbwHxseMmQIXF1dMWrUKBBC0KdPHzg6OnJxIYSHh2Pw4MGYMmUK5OTkuAhkFy5cCDk5OcybN496SZWXlyMwMBD29vbN8iWJihUrVggNWCYnJ2P16tVYsGABCCFCyYVFQWBgIIyNjXHz5k3k5OQgOTkZOjo6AvnZhGVoKyoq2sy7cubMGSgpKSEqKgoZGRk4e/YsFBUVMWXKFIHHNCd0IAgFBQW4ceMGvnz5AhaLhaKiIiQkJMDb2xuzZ8+msvBhYWHtrjh4//59EEKEKmV8/foV6urq8PDwwLVr13D+/HmYmZnB2dkZdXV1ePr0KTw8PPgeq66ujsrKSmhra3Nt9/b2piaDrq6uoNFoHdqGOfYrJiYGXV1dGBkZUapWc+fO5Wo5zsnJgYaGBvr3748JEybAx8eH+t0SExMpH9z0mMePH0NJSQlOTk7twm1UVVUFAwMDoZ9RV1fHjh070L17dwwaNEgkcnxB+PTpEyVH/OHDB2RlZSEkJASKiop821DT0tKESjQHBwfj0qVLrR5PaWkp9PX14e7ujjt37uD+/fvw8fHBqFGjuCZvP6NpdW1L8PDhQzx58gTl5eVgsVh48eIFwsPDYWFhARkZGRDSqG7YXtx4TaGhocElycwP+/fvh4qKCo4ePYqUlBSKRJsz3zM2Nua78AkNDcW1a9fg5+fHNTcsKytD37590blzZ0yfPv1f5YMHDRoEV1dXjBkzBoQQyMjIwM7OjmuuePjwYQwbNgyTJ0/G+PHjuYIZDAYDkyZNwuzZs6mEQGVlJbZu3QobGxsoKyu3y3i9vb2FKrrevXsXK1asAJ1OByFEKLmwKNi+fTv09PSQkpKCnJwcXL9+HQYGBgI7CvT09JCfn893X01NTZsTuOfPnweDwcCxY8eQkZGBmJgYqKqqQk5OTuAxzQkdCEJRURGuX7+OT58+UdUpiYmJ8PHxodppevXqhZCQkHZXHHz69CkIIXyDexx8//6d4oO9evUq4uLiYGlpCQcHB9TW1uLt27cCE9caGhqoqanhCTxt2rSJmoM6OztTz1FHteGmHE+ampowNTWlKplmz57NRf2Ql5cHHR0d9O3bF3JycvD09KR+t+vXr4PBYGD06NFcKnacakZXV1dcvHixzeNlsVh8Cx+aQkNDA7t370bPnj3Rv39/ocne5vD161coKSlhy5YteP/+PT58+IDQ0FCBXTyPHz+Gm5ubwPPt3LkT586da/V4KioqYGJigmXLluHWrVt48OAB1q9fjzFjxggl9Dc1NW0VdQVHIbasrAwsFgsvX77EgQMHYGVlhT59+oCQRnXDX0HubmhoiIkTJwr9zJEjR6CsrIzDhw8jJSUFoaGhXEqU1tbWfBVqw8PDcfHiRQQHB3PNDSsrKzFo0CB06tQJkydPhpWVFRVAb9fA0549e2BpaQlCGkmnmnK2/IzU1FSeqG16ejoGDhxIRUCbOoUHDx6gT58+7VLpw5FIFvSC5gRmgMZS7mHDhrUq09gUdXV1iI6OhpOTE1xcXHD58mWBizR/f3+hBv7gwYNWyYxzoKury5fzQl5eXmA5LABs3ry5XQJ/TVFdXY0TJ05QxN1KSkpYt24dbt261abfmsViITAwEIQQvkp9HERFRcHT05PnWiUlJVBSUsLnz58RFRWF8PBwnmPv3LkDLy8vMBgM6resrKyEoqIiRQo5dOhQhIaGdmiHCfzHhjdu3IgxY8Zg6NChVKuHIGhqavJM7P766y+4ublh165dOHnyJNe+OXPmtEvZLtDIXSKMP8LX1xc3b96kiAIJIW0ObH78+BEbNmyAo6MjNm3aJNT5NFfZpa2t3eoJYlpaGszMzHh+mxs3bmD27Nm4fPky3+Pas+KsKd68eYMlS5aAkEbSbhsbGxw4cEDgpF9UZGdnY/z48ZgwYYLAqtP6+nowGAy+QcjTp09j+fLlYLPZYDAYfLM1urq6CA0N5cp+R0dHY+HChRSJsbm5OR4+fNihbZhjv3v37oWtrS3ExMTg6uoqVNHs3r17WLFiBde2ly9fYsCAAVSypKmPevr0KWRkZNoluMipQhKUsWzaPvP582eMHj0aZmZmbbpmfX09Lly4AGdnZzg7O1NEzfwQEhIitJrj2bNnrZIZ58DY2Jgvd46CggJUVFQE+r4dO3a0O6l5TU0Nzp49i1GjRqFz585gMBhYu3Ytrl+/3qbfmsViUbQFwjgmoqOj4eLiwnPPZWVlUFVVxfv37xETE4PQ0FCeYzMyMuDq6spVgVZTUwNVVVVMmjQJhDRymW3ZsqVD2y/wHxvetGkTxo8fj4EDB1KtHoKgr6/PsxiQl5eHvb09Dh06hIiICK59NBqNx+Zbi5iYGISFhQncv2nTJly9ehVsNhtbt26l2vHbgi9fviAgIACOjo7w9/fn20nAQXNJLiMjo1a3m2ZkZMDAwIDnt3n48CFmz56N2NhYgcf+Ch/8/v17uLi4QExMDCNGjICVlRXCw8PbrNj3+fNnTJ48GaNHjxaYSGOxWDyKYxycP38eS5cupd73/KqyjIyMsHv3bq45dnx8PBYsWIDu3btDTEwMxsbGSEtL69A23NQH29vbQ1xcHEuWLBHK7ZWZmYmlS5dybfvw4QP69euHt2/fgsFgcM3zXr9+jd69e7eKa4gfVFRUBFarV1VVUVUyX79+xYQJE9osFtXQ0ID4+HgsW7YMzs7OOH/+vMB72b17t8C5LNBINi4sMNUcLC0t+SpqMxgMofGB/fv3t0vgrylqa2sRExODcePGoVOnTqDRaPD29kZycnKbfDCbzcaePXuapQ6Kj4/H4sWLea5VWVkJDQ0NvHz5EpcvX+bbOfD333/D0dERioqK1By7rq4OGhoamDJlCtXVFhoaiqysrPYPPBFCMGbMGGzZsqXZL8vGxoZn4ebs7Iy4uDgoKChAXV0dqampKCgoQHh4OOh0OiwtLdutJHz79u0UaePP8PLy4spmrl69Gt27d8eaNWuQkZGBNWvWUG1ESkpKCAkJaVeys6CgIKES89evX8fmzZtbde6MjAy4u7vz3aetrY2VK1cKJJNcvXq1UMnLtoBDCK+hoUFFf8eNG4dVq1YhICAA27ZtQ3h4OKKjo3H//n2BE3M2m41Hjx5RlRhr1qwReE3OglTQxI7Tl1xTUwMVFRWeYF1tbS0GDx6MXbt2Udv27t2LqKgoZGVlYcaMGTAwMKBso6M6TOA/NiwlJQV9ff1mebG+fPkCGxsbrm0/fvyAkZERVq1aBSsrK9DpdFRUVCA9PR2WlpZYtWqVSG2PoqCmpgby8vJ8J0M5OTlQVlamnpHy8nJ06dIF8+bNw8mTJ3H58mXo6OhQXBYmJiZUdVt7obmKJjU1tVY7FBMTE76Zh0ePHmHFihUCJ7ZVVVU8lT3tidu3b8PJyQlTp06FhIQEOnXqBGNjY/j5+SE4OBhhYWE4duwYEhMTkZubK/A8lZWVCAoKoqpNhVW2Nbf40dXVRX5+PuLi4mBlZcUTfNqzZw+GDBlCTYg5rdF1dXVwd3eHlZUVZGVlqeqhjmrDTX3wyJEjsWnTpmYDm0uWLOHhcPH09MT58+ehoKAAbW1tXL58GYWFhTh48CBoNBoWLVrUpsqjpti3b5/AisF169ZxZTM3bNiArl27wsvLC+np6fD19YWioiI0NDSgqKiIzZs3t2urSVhYmNBJ7/3797Fu3bpWnZszUeMHPT09+Pj4CKxo3rBhQ7snfzjgVMVoaWmhX79+IIRg9OjR8PLyonzwvn37EB0djbS0NKHvr8zMTEpIRligg81mQ1lZWeDih5P1rq+vB5PJ5Ln3+vp6yMrKcqkSHjlyBAcPHsSnT58wffp0GBsbU20OHdV+gf/YsKSkJLS1tYWqIQON/tbU1JRrW0lJCXR0dLB+/XpYWFhgwYIFqKioQGZmJmxtbbFixQro6+u3y3jr6+uhoKCAwsJCnn15eXlcgevq6mpIS0tTlR/Xrl2jWnmZTCYMDQ3bpIDID835YG1t7VbP2y0tLflWabx48QIuLi4Cr11bW/tLAk8c3L9/H8uWLcP06dMhKSkJKSkpGBgYwM/PD0FBQRRHY2JiotDCgKqqKmzbtg3du3fHwIEDhXZ8XL58WSgXn7GxMb5+/YorV67AxMSE5zs/cuQIBg4cSPHdcAoDOMqN5ubmGDVqFMVR2FFtuKkP5oggNNcKtnz5ch7xJV9fX5w7dw40Gg16enqIjo5GUVERjhw5AgUFBTg6OrabrRw5ckSgouvmzZu5kvbBwcHo1KkTPDw88OjRI2zYsIHLB2/cuLFdeQP379/P1S31M54+fQovL69WnTsrK4tn/cKBiYkJ/Pz8BFY0b9mypU0dR8JQXV2NHTt2QEdHh6IiGjFiBDw9Pbl88Llz53D37l2hPvj58+dUpT4n+CsIampqApO7L1++hKOjI9Wm/XNsgiNC1HQ+dPr0aezcuRPfvn3DtGnTYGZmBgkJCaogo10DT6mpqSJXqfCrrOFsq6yshLm5ORQUFGBpaUkpyezduxcJCQlCz1tUVIRz587h5MmTQiPNDQ0NlMrFly9fwGaz8erVK9jb2/NUZRQWFsLR0RG9evWCuLg4F99LQ0MDTp061SYn9jM4P7QgODo6tjoAFxwcjBs3buDr169Ys2YNJU1pYmICT09P+Pn58a1KaWhooCp7qqqqEBkZCW9vb4SEhAjNqrcGbDYbqampMDExwbBhw9C3b1/06NGDIsHl13pz+/ZtuLq6YuTIkSCEQE5OrlkJ2uzsbJ5sw8/j4PSfFxcXw8bGBvr6+tiyZQtWrVoFOp2OgwcPQklJCcHBwXj//j1oNBqCg4PBYDCo5y8pKalDO0zgPzYsKnE9v579ptueP3+OESNGwNjYGCtXrqR6u5ubdLHZbNy/fx+RkZG4evWq0MzOw4cPQafTqV7kmpoanDhxAgoKCjwL6gsXLlAl6f369ePan5OTAwMDg3bNYlhaWvLlaAOAb9++wdjYuNXn5qhEXLx4Ebq6uhQX3saNG7FgwQJoaWnxre45evQolQF/+fIlAgIC4OPjgwsXLrRbBo2D/Px8bNu2DVOnTsWgQYPQu3dvit+NEIIZM2Zwfb6kpAR79uwBk8lEly5dICEhAQ8Pj2b59ezs7IROoI8cOUK1jF24cAEMBgNeXl7YsmULDAwMYG1tjZCQEGhrayMpKQlnzpyBvb09jIyMsGnTJgCNk3APD48ObcMc+01OThbZB/Pr2edsq6qqgp2dHRYuXAhzc3McP34c1dXVOHLkSLMk9cXFxYiOjsbJkyeFCgSwWCw4ODjA09OTeu+8ffsWS5cu5eFUKykpgbOzM3r37g0xMTEuvhcWi4Xo6Gioq6u3W/BJ2MQUANzc3FqdhAkLC0NiYiLy8vKwdu1aigzWyMgIq1evxrp16/hOqDkLMs677uTJk/D29kZwcHC7C46w2WzcunULFhYWkJWVRd++fSEtLU0t/vi13qSlpcHd3Z1qERs3bpzQBBoA5ObmCv2eAVBcYGVlZbC3t4euri62bNmCNWvWgE6nU216gYGBePfuHRQVFRESEgIajUZVuaampnZo+wX+Y8PCbKYpXr58CU9PT4HbXr58iZEjR8LY2BgrVqygWjhE8cGPHj1CZGQkEhMThS6enzx5AhqNhpiYGNTX16O2thZnzpyBgoICzxw1ISGBan3//fffuVpKcnNzYWpq2qbWmZ+xePFivpwywH8EJ1oLzjN5+fJl6OvrQ1NTEyoqKvDz88PChQthaGjIlzj4zJkzlEDSmzdvEBgYCG9vb8TExLS7YnVhYSHCwsIwffp0vj7455bAsrIy7Nu3DxoaGujatSvExcXh6urarM0sW7aMi27hZ5w+fRpHjx4F0Ph9MRgMeHh4YMuWLTA2NqZ4kDQ0NJCYmIi4uDhYW1vD3Nwcvr6+YLPZqKmpwerVqzu0DXPs9+rVqyInFc3NzXmSp5xtNTU1WLZsGebNmwczMzMcPnwYVVVVOH36tNBWMM5YYmJicOLECaG/DZvNhouLC5eYT1ZWFlxdXXk41crLy+Hq6oo+ffpATEwMjo6OXD44Li4OqqqqbeJEboqcnByhVc6rV69udQDuwIEDiI2NxY8fP+Dn50f5YAMDA6xduxY+Pj5wcXHhOY5TuVdTU4Pa2lqcPn0a3t7eCAoK+iVUMXfv3oW1tTWGDx+Ofv368fjgU6dOcR3z8OFDeHh4YPz48VQHgjCaCqBxvtZcQQBnHVxRUYGlS5dCW1sbwcHB8PHxAZ1Ox969e8FkMuHv7483b95AVVWVapfnvIMfP36MqVOntn/gqSUvBFdXV54ouq2tLbVYd3R05Ml0r1y5UuBkr6GhAV5eXtDW1sahQ4cQGRkJCwsLWFpaChwXm83G9evXYW1tDQ0NDSxdupQrm5uTk4PPnz+juLgYnz59goODA+bNm4ehQ4fyLNSOHDmCPXv2iHz/zcHCwoIvQWFiYmKryM04CA4OxrFjx0Cn03Hnzh3qxfH161csWrQIQ4cOhbOzM9cxLBYLzs7OOHHiBFJSUkCj0RAREYFnz57h6tWrMDEx+aUqIU3HceHCBRBCuCYtFRUV6NSpEwghMDIywqVLl0Ry4u/fv4erq6vQz/xcrv3jxw/cvHkTjx8/5go+cspHhw8fzrOQ7+hqHEDLx1hQUMDD0ZKTk0PJwH779o3HaZSWlgot1X3y5AmUlJSwatUqnDp1Clu2bAGdThea9SgoKEBISAg0NTWhra2N8PBwyvGxWCyK1+Tr16949+4d5s2bR5VDN0VtbS3odHq7SaU/ffoUmpqaPBmg6upqga2uokJNTQ2enp7w8fGheE9YLBYuX76MCRMmYOjQoTwVBC9fvgSdTkdxcTFsbW3h6OiIW7du4cmTJ9i+fTtoNJpIBN5tRXV1NebNm8dDNuzn50cFBbdu3Sp0stQUNjY2+PHjh8D9UVFRXEpCbDYbmZmZuHnzJhdXztevXxEYGAglJSXo6OjwBA07ug23ZnxeXl48z6GTkxPld93d3XkqH9etWyew4obFYmHt2rXQ1NTEgQMHEBUVBWtra5iZmQnkBuQEOGxtbaGhoQEHBweuMeXm5uLjx48oKSnBx48f4ebmhoULF6Jfv3487/jTp0+3i/gIB/b29nx5TVJTU2FkZNTq84aFhSEiIgI0Gg03btyg/EheXh6WLl2KYcOGwdbWlusYNpsNDw8PRERE4Pbt21BQUMD+/fvx7NkzJCUlwcLCAh4eHu3OsfYzWCwWrly5AkIIV0VOTU0NpXaqq6uLCxcuiJSIy8nJweLFi4V+5mcfXFBQgJs3byI9PZ26X864XFxcMHz4cERHR3M9Hx3dfoGWj7G0tJSngjU/P59KavDz0ZWVldDS0hJ4zr///hsqKirw9PTEqVOnsHXrVjAYDJ4FTlMUFRVhx44d0NLSgpaWFnbv3k3dA5vNpnzwt2/fkJ2djTlz5kBCQgLbtm3jOg+nbbq9FI9fvXoFNTU1ngBQbW0tpTbbWjCZTPj6+mLlypUU/yWbzca1a9cwceJEDBs2jOed9+7dO9BoNBQVFcHBwQF2dna4ceMGnj59ip07d0JBQQGZmZmtHpOoqK6uBoPB4CEbDg4OpjjFgoODRRb9Wbp0qdAkf0xMDFfLJ+eZuHHjBlflc25uLoKDg6Gqqgomk8mzkO/oNtya8a1fvx43b97k2ubh4UFxp61Zswb37t3j2r9582aB7dZsNhv+/v5QV1fH/v37ceLECdja2sLIyIiLp/XnY9LS0mBnZwcNDQ3Y29tzXTMvLw8fPnxAaWkpPn78iDVr1kBBQQE9e/bkmS/HxcW1i/gIB87Ozjhz5gzP9jt37kBHR6fVa84DBw4gPDwcNBqNK1n348cPuLu7Y+jQoTzJYTabDR8fH+zevRsPHjyAgoIC9uzZg2fPniE1NRXW1tZwcXFpd461n8FmsynBkKbvsIaGBoozWV1dHTExMSKJ/hQWFjYbU/hZCKaoqAg3b97Ew4cPqftlsVhISkqCq6srZGVlcfr0aZ7no7i4+J8NPD1//pxapHJw69YteHl5UeSnTVFRUSGUDNDDw4OLiI2DO3fuQFtbu1UP6B9//EFFFgkhmDJlCi5cuAAxMTFMnjyZ60evra1tM2FwU1RVVcHBwQEmJiY4ceIETp48CVNTUyxevLhNWd2MjAzIysrybXVhs9kYPXo0Zs2aBVtbWxw8eBCbN2+GoqIijh49iqysLDCZTL7XDwkJ4Wo5+1WIj48HIYTHKSYkJEBGRgaGhoYin6tpFRc/PHv2jCcI1xyMjIx4yF87usMEWjdGCwsLHiI8bW1t5OXlYeXKlTzOcceOHXydCNDIJaCoqMjDC1RXVwcLC4tW8ZpwgpScv759+yIhIQGzZ8+GpKQkVq5cyZWd2b17t9AgV0tx/fp10Ol0bNq0CTExMQgKCgKdTm+zwg+NRhNYEXn//n307t0bDAYDmzdvxsGDB2FjYwNDQ0Pk5eXBzc2NL3nx9+/foaCg0G7ZKmGYM2cOj52WlZXB1NQUhJAWTb6PHTuGw4cPC9xvZmYmlAfkZ7x48YKvzXd0G27N+N6+fQtjY2Mu3/jo0SO4uroiLy+Px59VVVUJfV/6+Pjw5cJ78OABmExmq4IiM2bM4LJhOTk5XL58GeLi4vjjjz+4KmoaGhrajTgZaAymODk5wdDQEFFRUTh16hTMzc1ha2vbppaCly9fQlZWlm+lMJvNhpycHGbMmAFLS0scPHgQwcHBUFRUxIEDB/DlyxcoKyvztdPdu3cLJFpuT6SkpIAQwkMsnZSUhH79+rWolYjT7i6o4vLNmzctJqW2sLDg+W47uv0CrRujnZ0dT+uroaEhvnz5gnXr1vFU8YaHhwtUc/v27RvodDoPL1B9fT0WLVqE+Ph4kcfFwc+qxr1790Z0dDQUFBQgISEBd3d3roqPiIiIZqs5WoK7d++CTqfD398fMTExCAkJAZ1Ob3N1s5qamsDF2tOnT9GrVy8wGAxs2rQJBw8ehJ2dHfT09JCTk0Ml1n5GYWEhFZj61aDRaHzXWDY2NiCE8AQ7hOHMmTNCk+62trY8FejC8P79e74239FtuDXj+/TpE08A5fnz53BwcEBBQQHPmrempkYo/1BAQABfLrzMzEyoqKi0qrKdU6XI+Rs/fjxSU1MhISGBcePG4dq1a9RnWSwWFBUVW3wNQairq4ObmxsMDAxw/PhxnD59GlZWVkILSkRBVlYWZGVlBVYpTZ8+HdOmTYO5uTkOHDiAkJAQKCkpYffu3cjLywODweBL8xEREdEm/mVRweE7+9lOb9y4gYEDB4LBYIh8rqZVXPzw8ePHFhe7LFq0iG/y+Jeo2rX0QQgKCoKLiwvl6FgsFtTV1TF27Fi8evWK+lxeXh40NTV5IsMcfP/+XahCjo+PD27dutWisQHAuHHjQAihXsYcBYBHjx5h1qxZIIRwnfdX9G7n5OQgMjISkZGRrWLS/xnPnj3DqFGj+HLaZGZmYsGCBVi5ciWysrIQFxeH1NRUKnO4YsUKgbwDzRG2txcqKirQpUsXhISE8OzbsmULunTp0qLFc1hYGN8XdW1tLbS1tbmeQ1Fw5coVHjWkju4wgdaNMTc3FzQaDYmJidSi8u7duxgxYgTs7Owoh8lms3H27Fno6ekJdHyenp4CCfWbEg23BAkJCVQV3NixYylHU11djYCAAHTt2hUKCgrU55OTk4US8LUGLBYLycnJOHLkCK5du9Yu9qGiogJtbW2e75LTurRgwQJ8+/YNKSkpiIuLo0qoCwsLhcqanzhxQigJcHvB398f0tLSPI6urq4OMjIyLSJtrq6uhoKCAl8S1Rs3bvBUjogCdXX1f93CtbXj27FjBxwdHSnOMDabDT09PYwZM4ar2ik/Px+6uroCA8BFRUVC+cMCAgKaLfnmh2nTpoEQAjs7OxBCqAlVZmYm1TrbdOL7K3xwbm4uoqKicPz4caGZfVHx9u1bjBw5km/Fxd9//4158+Zh2bJlyM7ORlxcHJKTk6nMoY+Pj8BKDY6Ka3u37PyMmpoaSEtLw9/fn2ffrl27ICkp2aLF84EDB/iSltbV1cHAwKBZvsGfcfPmTZ5K5o5uv0Drxvjjxw8qkMLxLY8ePcLIkSNhbm7O5YPPnz8vsA0baOSWEUSo35RouCXgtDhqaGhQlUAvXrxAbW0tgoOD0b17d8yePZv6/J07d1rNXyoILBYL169fx5EjR3DlypV2aSvX1taGqqoqz3fJaV2Sl5fHp0+fcP36dVy4cIEKvJSVlQl9R8XGxrb7HIQfQkJC0LVrV54AOovFwsCBAwXywPJDbW0taDSaQHXQ1ohC/P9SdQw0BoMXLVrE9f2ZmZlh9OjRXNW/hYWFMDIyEhgALisr46lMaYpt27YJVSYUBE6XwOLFi0EIwZw5cwA0Bsjk5eVBCOEK5AoTqGotvn//jhMnTuD48eMityILw+fPnzFy5EikpKTw7Hv79i3mzp0Le3t7fP78GXFxcUhKSqLmqwEBAVxzjqbgcBa2J98kP9TX10NGRoZHoA0ADh06BDExsRYJCxw/fpyHOgVoTOaZmpq2uEPjwYMHfCuZO0TgCWjMkhkaGlI8JWvWrIG/vz8YDAYsLCygra0NQ0NDoUSLR48eFVoK/Pfff2P58uUtHtu1a9coqeGmk16g8QXdr18/ODo6ora2FnV1da1yzP9txMbGYteuXdDT04O7uztu3bqFO3fuwNPTE1paWvj27ZvAdihhLzWgkShP1PLctsDY2BiDBg3iiTh/+PABhBAuGfDmwGaz4enpCUtLS9y4cQNv377FyZMnQafTW5Xh45xv1apVVOVTfn5+h3aYQOttuLCwEAEBAVSPtI6ODnbt2gVLS0toamrC0tISDAYDGzduFNrGpqqqKtRZmZmZCSwVFoSGhgYYGhpS9jt//nyu9tXw8HCIi4tTzyyHtK+jQ1NTE+fOnYOioiKOHz+Ohw8f4tSpU1BVVcWhQ4ewfv16vi3Jly5d4mkxbIrKyspmJe7bA69evYK4uDjfBYadnR1GjRrVoonLy5cvoaCggLCwMLx+/RoZGRnw9PSEvr5+qypTOC0R165dowKqmZmZHdqG2+KDr1+/DiMjI8oHe3l5YdOmTVBUVIS5uTl0dXWhr68vNAt+5swZoZVnHz58EMqnJwg3b95E3759KRteuHAhtY/FYmHYsGGwsbFBdXU1GhoaoKSk1OJr/LeRmJiIrVu3wsjICC4uLrh58ybu3r2L1atXQ11dHbm5uQIXp+rq6kJtozmJ+/aCjY0N+vbty/NO/vbtG8TExPhWnwsCp4XB1NQUqampePfuHc6ePQtFRUWh6mDC4Ovri+XLl1OV3QUFBR3afoHW23BJSQmCgoIoH6ylpYWdO3dSFBKWlpZQVFTE+vXrhbZeNOeD7ezsWpz8ZLFYsLCwoOx37ty5XL/psWPHQAihaDeOHj0qVIW4o0BTUxNxcXFgMBg4fPgwHj58iLNnz0JdXR179uwRqACdnJzM02LYFPX19UJbIdsLHz58gKSkJF+BhGXLlmHIkCEtqlDl+Mxt27bh1atXyMzMxKpVq6Ctrd0qm/v48SNoNBoSEhKocTx79qxD23BbfPDt27dhamoKdXV1qKioYMWKFVS3CccH6+rqCm0PvXjxotDKM1H49PghLS0NAwYM4LLhpgHtcePGwcTEBFVVVVTyo6Pjxo0bCAwMhJmZGZYuXYrr168jLS0Na9euhaqqKt+uKw7U1dWF2oa/v3+LKgZbiyVLlqB379483UsFBQWQkJAQOtfnB39/fxgaGiIpKQnv3r1DTEwMlJWVhcZWhGHTpk1wdnamfEZ9fT2ioqI6RuBJENhsNoqLi0WKHDYnb/jx40c4OTm1ahyfPn3iKjNsmrV1cXEBIQS9evXCwoUL+VbhdDTcvn0bfn5+ABrb7gIDA7Fp0yaqAiorKwsODg58j+WQGguCm5sb3r592/6D/gmfP3+GtLQ034jqiBEjWlyaDzTe98aNG+Hu7o7w8HC+xJCigs1m48qVKzAyMoKmpiaUlZU7tMMEfo0N19TUoKioSKQJTHMVTYsXL+ar5CYKfH19KfsdM2YM9Qx//PiR6omeOnUqJk+e3K7qlL8Kurq6KCsrQ0VFBY4ePYoNGzbg4MGDVCB20aJFfCsz4uPjKWJTfigvL29Rq2pbsHLlSnTu3JmH/PXEiRMghAgkZheEuro6REdHY8WKFVizZg0ePHjQpqzbjx8/EBAQADU1NWhqasLc3LxD2/A/7YOPHz8usI0WaMxYtqb6DGgMZjT1wU1bRb28vEAIgbS0NOTl5f8rZe5tRXp6OlUV++TJE2zevBkBAQG4e/cu2Gw2vn79CktLS77HNhd4Wr16dYsrhFqD3Nxc9O7dm28J/h9//AFzc/MWnzM7OxubNm2Cu7s79u7dK1C+XVQkJyfDxMQEmpqaUFJS6tD2C/waG66trW03H+zq6tpqAt3AwEDKfocPH06N59u3b/j9999BCMGff/6JyZMnt6sy1q+CoaEhioqKUFlZiePHj2PDhg0IDw+nKv2acuU1RUpKilAeutra2v9K4Alo5OuTkpLiUVWLjY0FIaTF1f719fU4f/48VqxYgdWrVyMtLa1NPriwsBBBQUGUDzYxMenQNvyrfHBJSYlIvGfnzp2jSNz5gUNn0Br8+PGDywc35c1cv349CCHo0aMHFBQUeDo+OiL+/vtvqir2xYsXCAoKwsaNG3Hr1i2w2WwurryfoaGhIbRzwc/PT2D3RnsiPz8fffv2hb6+Po+dTZ8+vVXiCZ8/f8bmzZvh7u6OXbt2tbnt98aNGzAzM4OmpiaYTCblBzps4KklePbsGZYtWyZw//79+9vUN/727VtISkpSLPEcJn0OSd7ChQt5CK87KlgsFuh0usAFtqenp0ClgFWrVgmM5DbHl9TeCA8Pp9qoOCWFN27cACGkw1Wt/NP2IQr+6TGamZkJVEfkSNy39tlis9nYsmUL5TSdnJyoRU15eTkOHjyIzp07Y968ea0e/38TJ0+eFBhAKiwsFJipKSkpodqF+eHo0aNCq1baE5WVlRgzZgz69OmDEydOUI5TSUkJEyZM+OUtuy3FP20fzeGfHl9zXDzHjx/HwYMHW33+Dx8+QFpaGoQQjBw5kouU+8WLF2AwGCCE8G0h72jg8BoJCuj5+voKlGv28/MTqBTXVPXuvwFOtYquri6lLPngwQMQQjpc1co/bR+i4J8eo62trUBRh+a4uJoDm81GWFgY5YPt7OyoRU1lZSUOHz6Mrl27Yvr06a0e/38TsbGxAhPNpaWlAvleKyoqKIUofmiOL6k9UVNTAzk5OcjIyODo0aPU+1RLSwsjR4785S27LcU/bR/N4Z8e38ePHwUmLIDGwNTOnTtbff7Pnz+jf//+VPA4KSmJemZevXoFdXV1EEIEtut2JHBa4gQVGAQGBuLSpUt89wUHByMhIUHgeYXxJbU3zpw5Q5GJc5LNT548ASEEBw4c+K+MoSXoMK127QUdHR2+gZ+CggLIy8u3+UFoaGhATk4Ovn//Dg8PDygqKkJbWxsMBgMGBgZ8yTY7KhISEmBkZMSVUWSxWIiIiICtra3ALMWnT5/4GiubzYafn1+bFhYtBZvNRlRUFPr06YPevXtjxYoVGDx4MKZNm/ZfC36Jio5gH83hnx7j3bt3YWNjw/fZ27NnT7vwHhQXF6OkpATx8fHQ0NCAhoYGmEwmDAwMICsr+0v4YX4F6urqoK2tjYsXL3J9X7m5uVBRURHaluzl5cWVreIgJycHCgoK7aYoJApyc3NhZGQEQghUVVWptsj2JHhvL/zT9tEcOsL4jIyM+BLDFxcXQ0FBoc2VDCwWCzk5OcjPz8eqVavAYDAoH8x5jv4bJe7tgeTkZOjq6nJlFNlsNiIjI2FmZibQB3/79g2Kiop8VQKDg4PbtLBoDc6ePYv+/fujZ8+eWL58OYYNGwY5Obn/BY5bgX96jOnp6TAzM+M7f4qIiGgX7qWSkhIUFxfjypUr0NLSonwwh1eOwWD8cnXk9kBDQwP09fURHR3NNd4fP35AXV0daWlpAo9dt24dDh06xLM9Ly8PCgoK/9Xf/8ePH1QrpKKiIszMzEAIaVeC9/bCP20fzaEjjM/c3Jxv8qWsrAw0Gq3NVaQcH1xYWAhvb28uH8ypSBOUGOlouH37NjQ1NbkEjTh8tIaGhgJ9WH5+Puh0Ol/qj507dyI4OPiXjZkfLly4gEGDBqFHjx5wd3fH8OHDMXr06A4XOAZEtxExACDNoKysjPTq1YuUlpaSnj17NvfxX4Lv378TS0tLoqqqSkxMTEjnzp1JQkICOXz4MNm5cyeZPHky1+ffvHlDTp8+TcrKysikSZOIsbEx6dq1a4uu2dDQQAghJCIiggQGBhJpaWni6+tL5s6dS4YOHdpu9/YrcPPmTbJ161YiLS1NpKWlSVZWFlFRUSErVqwgEhISAo+7d+8e8fb2Jjo6OmTmzJkkNzeXREVFkZkzZxJVVVUSGhpKCgsLibi4OJGSkiJLly4lysrKv+w+CgoKiIeHB4mJiSF6enpk/fr1ZNSoUb/seq1BR7CP5tARxnjw4EGSkJBAli9fTqZMmUI+f/5MwsPDCQCye/duIi4uTn22traWxMbGkoyMDNKtWzdiYGDAY+PNgcViETExMfL8+XMSHh5OwsPDyapVq4impiaZPn066dKlS3vfYruhpqaGbNy4kTx69IiMHDmSFBQUEDExMbJ27Vry559/CjyuoaGBuLu7k7KyMmJqakp69uxJUlJSyO3bt8nOnTtJUlISiY+PJ507dya1tbVkxowZxMPDg/z++++/7F4uXbpEXF1dSefOnYm7uztxdHQkYmJiv+x6rUFHsA9h6AjjKywsJObm5oTBYBBTU1PSrVs3kpiYSA4dOkS2bt1Kpk+fzvX5d+/ekdOnT5OSkhIiJydHjI2NSffu3Vt0zYaGBiIuLk4OHz5MgoKCiKSkJFm/fj2ZO3cuGTZsWId7jpoiLS2NbNmyhXTp0oX89ttv5P3794ROpxMvLy8iKSkp8Lj09HTi5eVF1NXVyZw5c8iPHz9IVFQUkZOTI/r6+mT79u3k+/fvRFJSkoiLixMHBweirq7+y+6juLiYeHl5kZMnTxJtbW2yfv16Mm7cuF92vdagI9hHc+gIYzx+/Dg5d+4ccXd3J9OnTydfv34lBw4cIJWVlWT//v1cc8P6+npy/vx58vDhQ9KlSxeip6dHpk2b1qLrsdlsQgghL1++JAcOHCC7du0iy5cvJ7q6umTGjBktnpP/N1FbW0sCAwNJWloaGTVqFCkqKiIsFousWbOGzJgxQ+BxLBaLrFy5kuTl5RFzc3PSu3dvcuPGDZKamkpCQ0PJ7du3SVxcHOnUqROpra0lU6dOJR4eHqRfv36/7F6uXr1KnJ2dCSGEuLm5EWdnZ675VkdAR7APYegI4yspKSFmZmZkwYIFxNzcnEhLS5Nr166R8PBwEhgYSObMmcP1+ezsbHLy5ElSWFhIJkyYQExMTIi0tHSLrtnQ0EAkJCTI0aNHSXBwMKmvryf+/v5k7ty5ZPjw4R3aBz98+JAEBQURKSkp0rt3b/L+/XuyYMECsmbNGtKpUyeBxz179oy4u7sTVVVVMn/+fFJQUEBOnDhBRo4cSSwtLcm2bdvIt2/fKD9uZ2dHdHR0ftl9lJaWkjVr1pBjx44RDQ0Nsn79evLHH3/8suu1FiUlJaR3797N2si/JvBESKMBJCQkkIsXL5L6+noiLy9PTYA5YLFYZNmyZaShoYHY2tqSvn37krt375Jjx46RDRs2kIULF7bomqmpqYTBYPBsl5aWJqampiQkJIT6TgoKCkhBQQEZNGhQh3lxFhUVkZqaGtK/f3+hAaemaGhoIPHx8eTVq1dERkaG6Ovrk8zMTLJnzx4SFhZGZGVlqXOvXbuW/PHHH2TZsmWtGl9xcTHJyMggUlJSZPbs2SIFAwoKCsj+/fvJ3bt3iYSEBBk0aBBxdnYWGpj4/v07iYyMJJ8/fyaDBw8mlpaWZNCgQTyfq6ysJNHR0eTHjx+krKyMACBiYmJEUlKS9O/fnwwcOJAMHDiQDBgwgFRWVpLc3FySlZVFHBwc/nH7EIaOYsNfvnwhERER5P3796Rv377EysqKTJ06leszjx8/JitWrCCmpqaERqORkpISEhkZSUpLS8mhQ4eEOgx+oNPp5Pr161zbxMXFyejRo8nu3buJkpISIaTxuf/48SORkJDoMA61vr6e/Pjxg0hLS7fod/v06RO5cOECqa6uJrNmzSLz588nZmZmRFNTk5ibmxNJSUkCgNy8eZP4+/uT06dPt2riC4A8ffqUfP/+nYwcOZKMGTNGpONSU1PJoUOHSHl5OSGEEA0NDWJpacn1Lm8KNptNUlNTyZUrVwibzSZ0Op2oqanxfadlZGSQe/fukeLiYlJbW0vExMSImJgYkZaWpux34MCBpEePHuT79+8kNzeX3Lt3jwQFBf3j9iEIHcV+WSwWSUxMJBcuXCB1dXVk3rx5xNzcnPTo0YP6DJvNJsuXLydlZWVk0aJFZMCAAeT+/fvkyJEjxNvbmygqKrbomvfu3SNz587l2d6jRw9iYGBAQkNDyW+//UYIaQyO5efnk4EDB5JevXq16V7bC8XFxaSqqor0799faMCpKVgsFrl8+TJ58eIF+e2334i+vj559eoV2bp1KwkLCyMjR44khDRO9Pz8/MiQIUOIp6dnq8ZXWlpK0tPTiYSEBJk9e7ZIwYCioiJy8OBBcuvWLSIuLk769+9PnJychAYm8vPzSVRUFMnOziYDBw4kFhYWfBN41dXVJDo6mnz//p2UlpZy+eB+/fpx+eCqqiqSl5dHsrKyyOLFi/9x+xCGjmLDX79+JYcPHyZv3rwhv//+O7G0tOQJpDx//py4uroSAwMDoqioSMrLy0lUVBT58eMHiYiIaHHASF1dnVy+fJlrm7i4OBkxYgTZuXMnYTKZhJDG5z47O5va15F8cI8ePVr0TsnJySHnz58nlZWVZNq0aYRGoxFra2tCo9GIjY0NkZKSIgBIWloa8fX1JVFRUXznpM0BAHn+/DnJzc0lw4cPFzkofOvWLXLgwAHKxtTU1IiNjY3A5ABnvpCQkEBYLBZZuHAh0dDQ4PtOe/LkCbl79y4pKiqifDAhhMcHS0tLo9MDlgABAABJREFUkx8/fpDc3Fxy//59EhgY+I/bhyB0FPtls9nk2rVrJDY2llRXV5M5c+YQCwsLrjEBIKtWrSJ5eXnEzs6ODBo0iKSnp5NDhw4RDw8Pyt5ExZMnT3jm6YQQ0r17d6KtrU127txJJS+LiorIjx8/yIABAyi//E+jpKSEVFZWttgHX716lTx79oxIS0sTPT098vHjR7Jx40YSFhZGzXXLysrIpk2biLS0NFm7dm2rxldWVkYePXpExMXFyaxZs0RK0JWUlJCIiAiSmppKxMXFSZ8+fYiTkxOZOXOmwGMKCwtJVFQUycrKIv369SMWFhZk+PDhPJ+rra0l0dHRJDc3l5SVlRE2m0354L59+3LZcHV1NcnLyyO5ublk79695M6dO83bSHuWT3UErF+/ni8BW0VFBVRUVFqs2lFcXIwhQ4ZQvetdu3aFnJwcunTpAjExMfTt2xdr166Fjo4OTExM4OnpCW1tbSxatAg/fvxor9v6R1FfXw8ajcaXs4LNZkNbW5vigBAV1dXVcHFxgY6ODkJDQxEUFARlZWWEhIQILcV++/YtaDQarly5QpWMv3r1CkZGRnxbjIBGvihNTU1cvnwZHz58wLVr16Crq8ujPvL161dK3rtXr14YNmwYhg0bBkIIJCUlISYmxkXA9/NfR7aPf4sNFxUVgUaj8SW9i4uLg5ubW4vPuXPnTq7f6Y8//uCyaW1tbXh4eIBOp8Pd3R1OTk5gMBg4efJkO9xRx8ChQ4cQHh7Od19GRgYcHR1bfM5bt25BSUkJHh4e2LVrFxwcHKCpqdms8qWPjw+WL19OkcnX1NQgMjISysrKfEvFf/z4ATU1Nfj7++Pvv//GmzdvEBISAgaDwUOyHh4eDgkJCXTq1An9+/eHrKwsevfuDUIIpKSkBNouh+Ovo9rHv8V+ASAoKAj79u3j2V5VVQU1NbUWyyWXl5dj5MiR1G8lJSWFiRMnomvXrhATE6Nkh/X09GBkZARPT0/o6urCysqKRxHm3woOdyO/dkY2mw1DQ8MWE/bX1tZi+fLl0NTUxPbt2xEcHAwVFRUEBgYK9cEfPnzgUaR6+/YtzM3NERERwfeYI0eOgMlk4tKlS/jw4QNSUlJgaGiIwMBArs/l5eVh9uzZlA8eOnQoZGVlQQiBhITE/3zwfwHl5eVQUFDgalHhIDExEUuWLGnxOQ8ePMj1O02YMAFDhw6l/s9kMuHl5QU6nQ5XV1c4OzuDTqcLJVP+t+HEiRMIDQ3lu+/FixetUiS7d+8elJWVsXz5cuzatQtLly6Furp6s3y0Gzdu5FKkqqurw+nTp6GoqMi3xaiwsBDq6upYt24dXrx4gbdv32L79u2g0+k8hPRHjx6FlJQUlw/mEMwL88ESEhId2j7+LfYLAGFhYdi+fTvP9pqaGmhpafGIvjSHqqoqjB8/nvqtxMXFMXnyZHTr1g1iYmL47bffsGbNGhgYGMDQ0JBSHbawsBDI7fpvA4cHT9Dvb2Fh0eLvtb6+HqtWrYK6ujq2bduGkJAQqKmpwc/PTyilzJcvX0Cj0RAXF0e1DGZlZcHa2lqg2t3JkyehoqKC8+fP48OHD7h+/TpMTU2xbt06Ln9fUFCABQsWgBCCnj17tsgHc+Zp/2c4nkRBVVUVlJWVBU6abty4AV9f3xaf9++//4a7uzumTp0KQggMDQ1x+vRpjBgxAp06dQIhBP3798e+ffsoSfnMzEzQ6XS+XA3/NsTHxwuViL127VqL+AHYbDaMjY15CNw4JNH+/v4Cj1VTU+Mb5GpoaIC6ujrPvqSkJDg4OPA8E2w2G8uXL8f58+dx7949uLq6ok+fPujVqxf279+Py5cvIyoqCqmpqXwNTE1NDdevX8e7d+/w9evXDm8f/xYbDg0NFSqxraWl1WIlBjabjX379sHc3BzdunXD4MGDERQUBD8/P66gg4GBAV68eAGgcSK2YsUKoSpx/yYwmUyhUtvq6uoiqZtx8OjRI2hqaqK8vJxr+9evX0Gj0QQGolNSUrB8+XK++9LS0vguarS0tHiUeYDGBTBnonzo0CHQ6XQQQqCsrIykpCTExMQgKioK1tbWPPbbt29fbN26FY8fP0Zubi6Kioo6tH38W+y3rq5OKI/L/fv34enp2eLzvnnzBitWrMDMmTMpwutTp05h3LhxlA/u06cPdu3aRT3nL168AI1G47uA/rchJSUFAQEBAvffvn2br3S6MFhZWXEpCHKwc+dOeHt7CzxOS0sLHz9+5NnOYrGgo6PDE1i8ffs2rK2t+U6k16xZg1OnTuHhw4dYvnw5+vXrhx49emD37t24fPkyTpw4gZSUFL4+WElJCampqXj79u3/fHA7Yt++fUKTLvr6+vj+/XuLzslms3Hw4EFYWFhAWloaAwYMQEBAADZt2sQVkNDW1qa4VOvr67FmzRqhKnH/JmhpafH4y6bQ0dFpkdry06dPoaamxvM85eXlgU6n87VRoJFvc+nSpXz3ZWRk8FUnNTAw4Mst+fnzZ9BoNBQUFODIkSOUwjONRkNSUhJiY2MRFRUFZ2dnHvuVkZHB5s2bkZGRgW/fvqGwsLBD28e/xX6bE+t58uSJULEuQcjKyoKHhwf++usvEEKgqamJU6dOYdKkSZT9ysjIYPv27dRc8vXr16DRaP8nEkBpaWnw8fERuP/Ro0dYuXJli865ePFinD59mmf7wYMHsWLFCoHH6evr4927dzzbOWvrnxUrHz58CFNTU768Vv7+/jh8+DAyMjLg6emJAQMGoFu3btixYwcSExNx8uRJJCcn8/XBHDt/8+YNysrKUFJS8v9f4Onhw4fw8/MTuJ/NZjcrKSsMDQ0N2LFjB8aPHw8xMTG4uLjg999/h5SUFFURIyMjQ2Ub4uPjeTJ6/0bs2bNHIMs/0Oh8BDkyfrh//75QA9XS0uIbsMvMzIS7u7vA45KTk7Fx40aubbq6unwzOECjBDhHxUHYn4qKCjw9PanAI+cvIyMDwL/DPv4NYwQAbW1toaR5O3fuRGJiYqvP//LlS1hYWKBLly6YPn06NDU10b17dxBCqH/t7OwANL4vVFVVWzQZ7Khojljd0dGxRdWgBgYGAhcfaWlpAiV3TU1NhU5CNDU1ub7v9PR0gYEqAFi0aBG6desm1H5///13eHl5QV9fHz179qS2N1Um6uj20dHHx8GzZ8+Eyi231QezWCzs2bMHcnJyIITA2dkZffv2RadOnSAhIQFxcXH89ttvePz4MYDGgE1rkk0dDYcPH0Z0dLTA/fn5+S2qmGhu8aGnp8c3YPfq1Suh1ZF3797lCVoZGRkJtPni4mIMGDCgWR/MYDDg5eWF6dOnc22/c+cOgH+HffwbxggAxsbGQn3ewYMH+QYsRcWbN29gY2ODrl27YvLkydDV1eXxwWZmZgAa3xeampptlv3uCBCmOAsA7u7uAlUH+UGYUnBmZiYlJ/8zrK2tBQalgEbbLywspP7/999/C53fL1u2DD169BBqv7/99hs8PDxgZGREVSATQiAvL0+dp6PbR0cfHwfv3r0T+NtzwGQyW31+NpuN/fv3488//wQhBEuXLkX//v3RqVMniIuLQ0JCAj179sT9+/cBNM4HW5Ns6mg4deoUIiMjBe6vqKiAsbGxyOd7/fq1UKVgExMTvgnc7OxsvsFhDh4/fswzZ7a0tBRo8xUVFRg4cGCzPlhBQQGrV6+mkn+cv6SkJOpcotpIx2KXayPExcUpQnB+4BAdthYSEhLEzc2N/P3338TBwYEcOHCAFBYWEgCkoaGBTJgwgZSVlZGwsDBCCCFqamrk5s2bbbpmR8DgwYPJ+/fvBe7PyspqUW/62bNniZWVlcD9enp6PHwAhDQSVArrX505cyZ5+fIl17a6ujq+xMmlpaXE0NCQfP/+ndomKytLAgICyJMnT8iXL19Ibm4umTRpErl69SqRk5Mjjx8/JsXFxSQlJYWkpaXx7Xn+H9oGCQkJoTZcX18vMlcZP0yYMIFERkaSO3fukLKyMnLp0iVSVVVFCGnk91JQUCCHDx8mHz9+JGJiYsTIyIhcunSp1dfrKGCxWKSurk7g/q9fv5LevXuLdK7KykrCZrMFckL99ddf5MmTJ3z3VVRUkAEDBgg894QJE8iXL1+o/9+8eVMgcXJMTAw5fPgw9ftJSEgQbW1tEhcXR969e0fy8/PJ8ePHSWFhITl16hQ5e/YsKS4uJi9evCCJiYnk8OHDIt3v/yA6mrNfQghB87SSAiEuLk6cnJwoDpqIiAiSn59PWCwWYbFYZOTIkaSmpobs2LGDEEIIjUYj9+/fb/X1Ogqa88Hv378ngwcPFvl8586dE+qDjY2NSVxcHM/2V69etdgHV1VV8bX5iooKYmhoSPLy8qhtQ4cOJX5+fiQzM5N8+fKF/Pjxg8yYMYOkpKSQESNGkPT0dFJaWkpSU1PJnTt3eMh0/4e2o7l5dFt98NixY8mRI0fIgwcPSF1dHcWDREijb6HT6eTkyZPk9evXRExMjJiZmZHY2NhWX68jgeOr+OHz58+kT58+Ip2nvr6elJaWkiFDhvDdP2XKFPLmzRu++woLCymeVn6YNGkSyc7Opv4vzAfHx8eT3bt3k4qKCkJI47Ojrq5OYmNjydu3b0l+fj45c+YMxdN54sQJUlhYSF69ekUSExPJiRMnRLrf/0F0NOeD0Vhw0urzi4mJEQcHB5KZmUlWrlxJjh49Sr5//05YLBZhs9lk0KBBhM1mk23bthFCGueDT58+bfX1Ogra2wdHR0cTS0tLgfsFvfdev34tlEtxypQp5N27d1zbioqK+Np8VVUVMTY2Jrm5udS2QYMGEV9fX5KRkUE+f/5M8vPzybx588iNGzdIv379yMOHD0lZWRm5fv06uXXrFqHRaKLcLhf+TwWeJk+eTO7duyfQqK5cudJicnF+EBcXJ+Hh4eTly5fk999/p4z85cuXpKGhgZw+fZqw2WxK+e3fDjU1NRIXF8d34QqA7N27l1hbW4t8vsrKSqGL3N69e1MTkab4/fffuQzkZ+Tm5hIZGRmubfyCjbm5uWTevHnk1q1bhBBCtLS0yNWrV8mHDx+Ij48P+fPPPymy1vfv35OIiAjq/n777TdCp9PJnDlzOgTx5f81qKmpkZiYGIH7k5KS+BINtxTTp08nb9++JWpqalzvi5s3bxIA5OzZs4SQxpdwUVFRm6/3T0NLS4ucPHmS774XL16Qfv36CST2/hnV1dVClVHExMQEvvcAkNraWoHH5uXlcb0bJCQkSH19Pc/nDhw4QAwMDAghhHTp0oUEBASQz58/kwsXLhAtLS0yevRoUlZWRqytrYm8vDy5e/cuERcXJ+Li4kROTo6oqqqSgQMHinS//4PoGDduHMnMzCQsFovv/uvXr5PZs2e3+TpiYmIkLCyMZGdnkz59+lDXe//+PampqSFnz54l9fX1RExMjHTu3LnN1/unwWAwyNWrV0lNTQ3f/bt37yY2NjYin6+iouK/5oP5PQv5+flk4cKFJDk5mRBCiIqKCklISCDZ2dlk/fr1ZMqUKWTIkCFkzZo15Pnz52Tfvn3E0dGREEJIz549CY1GI/Pmzetwylz/F8BkMkl0dLTA/YmJie0yj540aRJ59eoV0dfX59p+48YNQgghZ86cIYT83/HB+vr65NixY3z3vXv3jnTr1k1k8vK6ujouQQd+ECTCIiEhITQAlpubK5IPPnbsGNHU1CSEECIlJUX8/PzIx48fSXx8PNHV1SVjxowhNTU1xMzMjMyZM4c8ePCASEpKEjExMTJ+/HiiqqraooX6/yAahg8fTt68ecP3NyOkUaxDmDKyqBATEyNbtmwheXl5XD74y5cvpKKigpw/f55UV1f/n/HB8+bNI7dv3xZoO7t27SK2trYin68tPrhpsuZnFBQU8MzP+fngoqIioqioSBISEgghjUm6uLg48unTJ+Lv70+mTZtGhg4dSjZs2EAePnxIwsLCiJubGyGkUSRAQUGBLFiwoFVJiP9TXltKSopoaWmR4OBgnn35+flk+/btxM7Ort2uN3ToUEqVJS4ujrpuWVkZycrKIuXl5f8nJkadOnUibm5uxNLSkvz48YPaXlFRQVatWkVmzJjBV51GEKZNmya0EuzmzZt8I7o0Go0kJiYKXNQcOnSIWFhYcG3r3bs3ycnJof7/4MEDMnz4cPL3338TQhoDEHFxcURZWZnntxo+fDjp1q0bsba2/l+Q6b8EU1NTEhERwVX1wsGBAwfIX3/91WJJdmFgMplkzJgxZP78+eT58+dkwoQJhJBGZTRCGqXNx48f327X+6dga2tLYmNjSUxMDFcwNj09nbi6uhJ/f3+RzyUjI0NycnIEVpAWFhYKVA7R0NAg586d47uvqKiIFBcXcwWEfl4E1dfXExcXF2oROmDAABIdHU18fHx4qi4HDBhAOnfuTDQ1NVv0fvofWg8JCQliYmJC/P39eRJARUVFJDAwkDg4OLTb9fr160f9tmfPnqUqnWpqasirV69IdXW1QH/xb4KEhARZtWoVMTc35wr8VFVVkbVr15IxY8aQ0aNHi3y+6dOnC/XBN27c4OuD582bR65fvy4wo87PBw8YMIBkZWVR/3/8+DEZOXIkyczMJIQ0BiCuXLlCmEwmzyR2+PDhpFOnTmTRokX/88H/JRgaGpJTp05xVb1wcOzYMSInJ9euipFMJpNMmDCBzJgxg/z999+UOnF6ejr17/8FH2xmZkaSk5OpxDQHT58+JY6OjiQgIEDkc3Xr1o0UFBQItEOOIjM/6OrqCqw0Ki8vJ1++fKFUMwkhRFVVlSsZ2NDQQDw9PalAd//+/UlUVBRZv349j5/lJLSYTCZf9az/of0hJiZGbGxsiI+PD88zUFpaSjZs2ECWLl3abtfr2bMnVU1z/Phxsm/fPkJI43Py/PlzUldXJ7Ta/t8CcXFx4uvrS0xNTcnXr1+p7dXV1WTjxo2kb9++ZOLEiSKfr7U+ePr06eT+/fsCv1N+PnjEiBHUmpeQRtXSsWPHknv37hFCCBk/fjxJSUkhWlpaPHP34cOHEwkJCWJvb99+8QyhjXgt7NvrCGCz2fD394eOjg5Onz6NlJQUbNy4EQwGA8+fP0dqaipMTEygoaEBNTU1bN26la+SkqhYvXo1+vXrB3t7e7BYLIwZMwaEEBQWFiIwMJAvcdi/FXfv3oWBgQGYTCa0tbWhpqaGmJiYFp+Ho5rCj2gxOztbKAdIVFQUFi9ejJqaGmobm83GiRMnYGlpyUNqm56eDj09PdTU1ODUqVNcvamKioq4ffu2wGulpaWBEAJ1dXW4urrykC+z2Wy4uLhAX1+/w9vHv8mGs7KyoKysDB8fHyQnJyMmJgZGRkZYuXIlCgoKEBQUBDU1NWhoaMDMzAy3bt1q9bVKSkoovpgPHz4gMTERhBCsXr0aRUVFQkka/22orq5GQEAA6HQ69PT0oKioCBcXF0pdriUICQnB4cOH+e7z9PQUyAlXWVkJZWVlpKWlcW0vLCwEk8nEw4cPeY6xsrLC1atXUVtby2W/TCYTGhoaQhW4mEwmJk2aBENDQ5w7d45n/7t37zBq1Chcu3atQ9vHv8l+2Ww2goODoampiZMnTyIlJQWBgYGg0Wh4/Pgxbt26BTMzM8oHBwUFtYnDZcOGDRg0aBAsLCzAZrMp7om8vDyEhobiyJEj7Xdz/zAePHgAIyMjqKmpQVtbG6qqqq2aY1RXV0NeXp7v8/TlyxehIi3R0dGwsrLiEitgs9mIjo6GkZERz3HPnz+HpqYmqqqqEBcXx2XDysrKSE5OFjjOzMxMytadnJz4zhk8PT2hrq7e4e3j32TDnz59gpqaGlatWoXk5GTExsbCxMQE7u7uKCwsxNatWykfbGJigtTU1FZfq6KigvLBL1++xI0bN0AIgYuLC0pLS0Gj0VBfX9+Od/fPoba2FkFBQWAwGNDV1YWSkhKcnJxapfy1e/du7Nmzh+++tWvXCpyb19TUQE1NDTdu3ODaXlJSAi0tLb5z4sWLF+PixYtoaGjg4T9VUVER6oP19fUxfvx4GBgY8CWt//TpE8aMGYNLly51aPv4N9kvAOzYsQNMJhORkZFISUlBcHAwaDQaHjx4gLS0NFhYWEBDQwOqqqoICAgQyIUrCkJCQiArKwt9fX2w2WyKgPzz588IDw8XqLT2b0RGRgZMTU2hpqYGHR0dKCsrIzIyUqgN8ENdXR3k5eX5zn1yc3OFrj3i4+NhamqKyspKru2XLl2Cnp4ez3Fv3rwBk8lEeXk5rl69ymXDampqiI+PFzjOV69eUT7Y0dGRL//y2rVroaqqKrKN/J8LPHFQUFCAiIgIbN++HcnJyWCxWPh/7H13WBRZ8/UZclJQVBRz2tU15xzICCJBEAQBUREzRhRRzKsYMa0iohgwoWJGMSuKomLOgoEoSJwhDBPq+4Ov+zcRwXV3dd89zzOP0rfn9u2eW11161adWrp0KU2bNo0luhQKhXTixAkyNTWlrKysb7pOcXExNW3alIyNjamkpITy8vLo5cuXtHjxYpowYYLUZBSLxdWenD8ihELhnzYEbt68Sebm5hQbG0sikYhKS0tp7969ZGJiUinxIRFRTEwMWVhY0MSJE2n27Nlkbm5OixYtUjqmc+fOsYtt/H8m/n79+n3VaSYSiahRo0ZSQsqUep49ezatWbNGqu1Hlo+fTYbFYjHdvHmTNmzYQDt27KDMzEy2hKhkGe+0tDSaMGECrVmz5puvdeDAAQJAq1evJqKKl/T169fJwsKCJZD/t4HP5/+pd5FQKCQvLy8KCgpiCRBfvnxJY8eOpSVLllT63YKCApowYQLZ2dlRQEAAeXl5kZ2dnUKnE1FFtVIfHx9yc3Oj2rVrU7169Wjw4ME0YsSIr24ayDqb69evT/Xr1ycVFRW6du0atWrVinU0/sjy8bPJLxFRXl4e7dq1i9avX08XLlwgkUhEa9asoQkTJrBE9kKhkM6cOUMmJibVIreXRGlpKbVs2ZLq1KlDxcXFVFBQQC9fvqTff/+dfHx8/jWOY0mIRKJKizBUBXfv3iUzMzM6ffo0CYVCKisro6ioKDIxMfkqyfHZs2fJ0tKS/Pz8aM6cOexGAVPVVxaXLl0iExMTcnZ2ZkmF+/XrRwcPHqz0OmKxmJVR5tOzZ0/WMbF58+b/dPBfBLFYTLdv36YNGzbQ9u3bKT09nV0QnThxgq2QlJGRQVOnTpUr7FIdMA5JpjjQ69evKT4+nqysrCghIeG73M+Phj+rg0UiEY0bN44CAgLo06dPRET05s0bmjBhAgUGBlbad1FREU2ZMoVsbW0pICCARo8eTUOHDqVbt24pPL+srIzGjx9Prq6uZGRkRLVq1SITExMaPny4FBG5IsTExEjJaN26dVm7+vLly9S2bVsCQNOmTfuh5eNnk1+iClsrMjKS1q9fT+fOnSOhUEibN2+mMWPG0MePH4moYh6dP3+eTExM6P379990HT6fT23atKGaNWsSl8slLpdLL168oDVr1pCHh4fCamo/O76HDk5KSiJTU1OKiYkhgUBAfD6fDh8+TCYmJnKV6WRx4cIFsra2Jl9fXwoICCArKysKCAiQCsqQxI0bN8jExIRGjBhBAGjgwIHUv39/ioyMrPQ6YrGYOnToICXDDMH4+PHjaefOnezxtLS0KskIh+jrLGNFRUXQ19dHYWEhatas+bXTf0jcvXsXu3fvxvbt2+XaXrx4gRUrVnwz0d2aNWuwYMECWFpaAgA0NTXh5eUFOzs7NjyciCAWi8HhcP4V6XffAiKSCpfPzs5GREQE7ty5A1VVVdjY2MDd3b1KXDNEhA8fPqCsrAwtWrT4ag6xQCDAuXPn8OnTJxgbG2Po0KFVyjuOjIxUmLfbrl07PH/+HP3790d8fDwA/NDy8W+QYRcXF6xcuVIupYSI4OPjgxkzZnxz7nqtWrXwyy+/oG7duhCLxejSpQsmTZokxUHAvCr/S/moABHh2rVriIyMRH5+Pho1agRfX98qk+4zYf21atWqEt/S+/fvERcXB5FIBFNT0yqlXwgEArRt21Yq1YdBy5YtwePxoK+vjzdv3gD4cWX43yC/jx8/xoYNG7B79245GXr79i3mz5+vNA3za9i6dSumTZsGGxsblmPMw8MDDg4OUvqW/j+x6v+qDpZFbm4udu3ahfj4eKioqMDa2hoeHh5f5Y8BKp7lx48fUVpaiubNm0NLS6vS84VCIWJjY/HhwwfUr18fdnZ2X/0OABw6dAgjR46UO96mTRu8fv0affv2xe3bt0FEP7R8/Btk2MPDA0FBQfjtt9/k2vz8/DBmzJhv5nBr0KABGjdujHr16oGI0L59e0yePBlNmjRhz2Hkl8Ph/M/qYUk7mohw8+ZN7N69G7m5uWjQoAF8fX3RvXv3KvXF4/Hw6dMn6OvrV4lv6ePHjzh//jxEIhEGDhxYpdQikUiEjh07yhUdACqI5nNzc2FkZMS2/6jy8W+Q39evX2Px4sU4cOCAnPx8/PgR06dPR0xMzDf1vWvXLowdOxa2trbgcDhQU1PDyJEjMXz4cKkU6v90sDTy8/MRGRmJa9eugcPhwMLCAp6enlWeY58+fUJxcTGaNWsGbW3tSs8ViUS4cOECkpOTUa9ePdjZ2VVpvX3ixAk4OjrKHW/VqhXev3+Pnj174t69e6hduzays7O/KiP/M46nsWPHIigoSCp3WRKurq7YtGkTjIyMqt13TEwMnJyckJWVpfT737povXnzJsLDw1FQUACggiTYw8PjqxOsKuDz+eByuTAwMFDKyfJvBhHh6dOn+PLlC1q0aAEDAwPcu3cPaWlpyM3NhUAgQGJiIpo1awZNTU1ERESAx+OhTp06qFWrFogIBgYG/zme/gakpqYiKCgIe/fuVdj+8uVLbNmyBVu3bv2m/rt164auXbsiPDz8zwxTDgUFBdi9ezcuXboEFRUVGBsbY9KkSd+F3JGIUFBQADU1tUrJvv/NKCwsxMOHD6Guro4ePXrg1atXePv2LTIyMlBaWsq2Dxo0CBcvXsSNGzego6ODxo0bo7CwEF27dsXVq1chEolQXFz8w8rHzy6/ADBp0iRMnTqV5VGThZeXF1asWPFNfFznz5/HkCFD8OHDh0orNn0LEhISEBYWhtzcXACAra0tPD09vwvX3H86mPD8+XN8/vwZzZs3R506dZCYmMjq4PLyciQlJaFevXqoVasWwsPDUVRUBENDQxgaGkIgEMDIyIglpP6R5eNnl+HPnz/D398fhw4dUtiekpKCFStWICIi4pv679+/P5o1a4b9+/f/mWHKoaioCJGRkYiLiwOHw4GRkREmTpyIbt26/em+GWeniorKT/mbfg9wuVwkJSVBRUUFPXr0wLt37/DmzRtkZGSgpKQEXC4X9+7dg4mJCa5cuYJr165BS0sLTZo0QVFRETp37owbN26Az+ezOvtHfJY/u/wCwKxZszBq1Cilm4O+vr6YO3dutfgCGVy/fh2DBw/Gy5cvvzsn271797Bt2zbk5OSAiDBkyBB4e3tXaYPkaygvL2d/239DMbBvwcuXL5GRkYGmTZvCyMiI1cFfvnxBeXk5njx5gho1aqBBgwYIDw9HXl4eDA0NUadOHfD5fDRq1AiXL19G165dkZSU9FUZ+VstHSLCp0+fUF5ejmbNmv2tP3J2drZSpxNQUREvJSVFoeOorKwM0dHRiImJgUAgQPv27eHn58eS5TFOocoIF79ld2bp0qXIzs7G77//jkaNGqGsrAyHDx+Go6MjDh8+/M0Ejx8+fGD7rlu3LtLT09G1a1csWLDguwhydSEbCfV34Pr161ixYgU6dOiAxo0bY9++fTh8+DBKS0sVni8Wi2FnZ4fY2FhcvHgR9+/fh1gsRrdu3XD06FG2wta/HTweD2lpaahVq9Y3OWm/FW/evKk0kqZt27b49OmT0vbXr18jLCwMb9++hba2NkaMGAF7e3v2HVRQUFBphYlvQWpqKry9vTFt2jScPHkSampqePXqFZYsWQIrK6tqVaGSBBFhz549iIqKQv369VmDbdq0abCwsPiu9/Cjgs/nY968eXj37h0GDRoEPp+P6dOns4S0svDx8cHhw4dx+vRpXLx4EZcuXUJ2dja+fPkCPz8/TJ06FS1btvyb7+LvBxEhNTUVZWVlLHHz34XU1FSlTifg/8oAK3I8lZeX49ixYzh27Bj4fD7atm0LPz8/9jdjdLCBgcF3HfPq1auRnJyMJUuWoGnTpuDz+Th69CgcHBxw+PBhuQpuVUVqaiqWLl2KjIwM1KtXD+np6ejQoQOCg4O/K3Hzj4yEhAQsXrwYbdu2RbNmzXDgwAEcPnxYYSUfoGK3dujQoTh37hwuXryIxMREiMViaGho4NChQ3Bzc/ub7+CfQXFxMdLS0qCvr4/69ev/bddNTk5mib8VoUWLFlLFZ2Tx7t07hIWF4dWrV9DU1ISzszOcnJzYd9BfoYMzMzMxatQoTJw4ETExMVBXV8e7d++wdOlS9O3bFxMmTPjmvg8cOIDIyEjUq1cPQqEQXC4XkydPho2NzXe8gx8XAoEAQUFBePHiBQYNGgSBQIA5c+bg7t27Cs/38PDA4cOHcerUKVYHZ2Vl4fPnzxg3bhz8/f3xyy+//M138c8gLS0NJSUlaNq06d9a8e3t27fo3Lmz0vauXbvizZs3Ch1PAoEAMTExiI6OBp/PR+vWreHn58f+ZowO/t4yvGnTJjx8+BALFy5EixYtIBAIcPz4cdjb2+PgwYOoV6/eN/WbmZmJJUuW4NOnTzAyMkJmZibatGmD4ODgb9brPxvu37/PFidp2bIlDh8+jEOHDoHL5So8v7y8XEoH37lzByKRCGpqajh27BjMzMyqZoNVmoj3//E9cltPnDhBFhYW5OfnRzNmzCBzc3NasWLF35b76eTkJDd+kUhEMTEx5OzsTM2aNWNJtiRzo3Nycsjc3JzCw8OJx+Oxee9Dhw6l48ePExFRUFAQNWzY8LuO9/r16zRlyhSFbbdu3aIJEyZ8U78pKSlkYmJCr169Yo+JxWKKi4sja2trObKy7wFlueay/Fd/FxISEsje3p54PB59/vyZtm3bRh07diQApKury5KFt2/fnvbs2UMbN26kNm3aEAAyNDQkV1dX2rlzJ8tF9TPkfv/ZMRYUFNDEiRNp6NChNHv2bPLw8CB7e3tKSkr6ziNVjEePHtGsWbPkjqelpdGCBQvIwsKCjI2NaeHChXJcMTt37iQXFxd2rAUFBbRx40aWbK+8vJxUVVW/OwGig4MDJScnyx0XiUTk6OhIKSkp39TvggULaOnSpVJ8KoWFheTt7f1VzpR/C9zd3enkyZMkEono5s2b5OfnR5qamgSATE1NycDAgDQ0NGj8+PF05swZ8vT0JE1NTeJwONStWzeaN28eXb58mSVI/tFl+HuM7+zZs2RlZUW+vr40c+ZMlhvvz/IUVBWurq5yfCAikYhOnz5NI0aMoBYtWpC5uTmdOHFCipcpLy+PLC0tadu2bSy5dGJiIjk4OLDzfcWKFVS7du3vOt7ExEQaN26cwrYHDx6Qj4/PN/WbmppKgwcPpmfPnkkdv3r1KllaWiok0P478Hfq4AcPHpCtrS0VFhZSTk4O7dixg7p27UoASFtbm0aOHEkAqE2bNrRr1y7asmULS0Bdq1YtcnZ2prCwMPYd+qPLL9GfH2NRURFNnTqVbG1tafbs2eTp6Ul2dnZ09+7d7zxSxXj9+jVNmjRJ7nhGRgYtWrSILC0tqX79+hQYGMhyDjHYt28fOTo60r1799h72bp1K1lZWVFBQQGJxWLS1tam9evXf9cxu7i4KORKEYvFNGLEiK/yqCjDihUrKCgoSIpPhcvlkq+v799ezOCf4o318fGhI0eOkEgkotu3b9PkyZNJR0eHAFD//v2pdu3apKamRmPGjKEzZ86Qj48PaWtrEwDq0qULzZkzh+Li4tiiPT+6DH+P8THrrLFjx9KsWbO+yo33veHp6SlXTEYsFtO5c+fI1dWVWrduTSYmJnT06FGptXlhYSENGTKENm/ezN7/gwcPaPjw4ex8X7duHeno6HzX+fj48WO2aIgsnj59Su7u7t/Ub2ZmJg0ePJgePXokdfzWrVtkZmamkED734Znz56RlZUV5efnU25uLkVERLD8iZqamuTl5UUAqHXr1hQeHk7btm1jC7cYGBiQk5MTbdu2jd69e8f+Pj8Uufi+ffsUViKLjIykMWPGUFZWFl28eJFu3779l1WvOHToEG3cuJH9WyAQkLu7O61cuZI+fvxI1tbWlJOTQ4sXL6axY8eyhq+bmxs9fvxYrj+BQEA2NjaUlpZGI0eOpIEDB1Z7TAKBQOn9jho1qtJKF3Z2dlRUVFTta3p6etLbt28Vth04cIA2b95c6fcZgvSqvlz+7EvoeyvVpKQkatiwIbVu3ZoMDQ2Jw+GQqqoq2dra0uXLl+nSpUtUv3591qDr0qULqaio0IgRI+jKlSsKiWp/dIVJ9OfGWFxcTBYWFnKVyLKzs8na2pru3btH9+7do7i4ODmD83tBLBaTubm5VGXB27dvk6WlJd24cYNWrVpFJ0+eZEnB79y5Q0RET548IVdXV4Xz6Pr16zRhwgRKTk4mAHThwoVqj0mZ4/zt27dKF63M2AMDA6t1PSKid+/ekYeHh8I2gUBA5ubmSskF/w0oLi6mwMBAMjIyoiZNmpCuri4BIGNjY1qyZAnl5OSwyvPq1au0dOlS0tDQoKZNm1JISIjSIhI/ugz/2fFFR0eTt7e3lPyIxWI6ePAgeXh4UHZ2Nl28eJHi4+P/MkfUyZMnKSQkhP1bJBLR6NGjaenSpZSamkrm5ub05csXWrFiBXl6erKy5eXlxS5YJSEUCsne3p6Sk5NpzJgx1KNHj2qPSSwWK9XBY8eOVeg4ZuDk5PRNlYB8fX3lnE4MYmJi2CIH/1Y8fvyYmjZtSq1ataI6deqQiooKqaiokJWVFV24cIHi4+PJ2NiYLC0t6f79+9SjRw/icDjk5OREFy9eVPjO/dHll+jPjbG0tJSsra3lKpHl5uaSra0t3b59mx48eEBxcXFfLc7yZ2BlZSVld967d4/Mzc3pypUrFBoaSocOHWJJwZlqs2/evCFHR0eFttPdu3fJx8eHMjIyCACdPHmy2mMSCAQK58SnT5/I09NT6fcePnxI06dPr/b1UlNTycXFRWGbSCQiS0tL4vF41e73Z0FJSQktXryY6tWrJ6WD69evTwsXLqTPnz/TgAEDCACdP3+eVq5cSZqamtSoUSNasWKF0iq6P7oM/9nxnTp1itzd3aXmhlgspmPHjpGLiwvl5OTQpUuX6ObNm3+ZIyouLo4l8Geu7+fnRwsXLqRPnz6RmZkZ5ebm0po1a8jV1ZW1BXx9fRUSz4tEInJxcaEXL17QpEmTqH379tUeU2U6eNKkSfT8+XOl33Vzc2OLhVUHU6ZMofv37ytsO3/+/FcL5PzsePbsGTVv3lxKB3M4HDI3N6ezZ8/S/fv3qVGjRjRw4EBKSkqiPn36EAAaNmwYxcbGKl33/DCOJz6fT+bm5goHWlBQQG3btiVzc3MKDQ2lxYsXk6mpKe3Zs0fuXIFAQNu3bydra2uys7MjS0tLWr58+VerGjEoLy8nOzs7io2NJaKKUpMRERGUl5dHw4YNkyrJHhoaSjt37qSPHz9WqriuXr1KwcHB1KxZs2pHIIlEIiorK6Pi4mKFCnno0KFSf2dnZ1NSUhL70p43bx49efKkWtfk8Xg0bNgwpe3l5eVkbW1dqWOpMseTWCymnJwc2rdvH+3cuZOePXv2pyr5fW+nExPloq6uTnp6ejR06FDy9PQkExMTdh6JxWIyNDRkWfrbtGlD58+fr7TfH11hEv25MW7dupWioqIUtu3bt4/q1KlDgYGBtHHjRho1ahSNGDFCoTJ4+fIl+fr6smWYnZ2dq1WG+dKlS2zkIp/PZ8uBnzx5khwdHdl3TGFhIQ0ePJjKy8tp4sSJShd5RBUO3G3btrGlX6sDRoYVKc2TJ0/Sjh07pM59/vw5PXnyhPh8Prtori4WLVqksNwxg61bt9KxY8f+lMzduHGDwsLC6OjRo1KOin8anz9/JjMzM2revDkBoN9++42V3127drHnBQcHs/KrqqpKEyZM+OoO1o8uw39mfAKBgExNTRXOUy6XS506daJBgwbRhg0baOnSpWRmZiY1dxkIhULauXMnDRkyhOzs7MjCwoIWL16ssBywIgiFQnJycqKTJ0+SWCymsLAw2rJlCxUWFpKTkxNdunSJPTcsLIw2b95MmZmZNGLECKV93rlzh+bMmUNt2rQhb2/vKo1DdkylpaUKnW2yOjgnJ4eSkpLYiMolS5ZUO9qEz+eTjY1NpeOxtLSsVp+yyM3Npf3791N4eLjCTbPq4Hvr4LCwMLKxsSENDQ3S0dEhGxsb8vT0pEGDBrHRcGKxmOrWrcvKMFNqvTL86PJL9OfGuGvXLoqIiFDYFh0dTXXq1KG5c+fSxo0bydvbm4YPH65w45KpemZtbU1Dhw4lR0dHiouLq/I4bty4QcOGDaO8vDwSCoU0ePBgys/Pp9jYWLKzs2PliMfj0eDBg6m0tJRmzpxZaXXY4cOHU0REBAGgN2/eVHksRJXb0XFxcVKbzSKRiF68eEGPHz9mN2dkZbwqWLVqVaXPLCIiQqm9VBUwWRU7duygI0eO/Ckn1veW39zcXLKwsKDWrVsTAPr1119p1KhRZG5uLhUxLlnxWUVFhcaNG/dVJ/2PLsN/ZnwikYhMTU0VOpSKi4upe/fu1LdvX1q/fj0tX76czM3NacuWLXK/n0gkosjISLKxsWHXwQsWLKCcnJwqj8PV1ZWio6NJLBbTnj17aM2aNcTlcsnV1ZXOnj3Lnrt3715avXo15ebmkoODg9I+Hz16RFOnTqVOnTpVqquVgdHBiuwTOzs7qb9zc3Pp4cOH7Ltt9erVdP369WpdTyQSkYWFhdJ2sVhcaXtVkJ+fTwcOHKDw8PC/LSukqoiMjKQhQ4aQhoYGaWtrk7W1NXl5eVH//v3p8+fP7Hn169dnZbh58+ZshldlqKqM/OUcT5cuXYKtra0Uqz1QUeHEzc0NCxYsQGJiIvz9/QFUcOnMmDEDYrGY5UARCoXw8PCAubk5Tp48CQ0NDYjFYpw/fx7Ozs44cuTIV/NK1dXVcfjwYQQHByM0NBQvXrzAgAEDcOLECQQGBqJPnz7suX5+fnBwcICRkRH69euntM+BAwciMDAQHz58qBZfC/1/Vn9VVVVwOByIRCK5Kh1EBD6fj8+fP2Pu3LkgIvzyyy/48OEDeDwegOrzWeTn51fKCaCuri5FcEoSvPMcDkfqb9l2kUiE+fPnIzk5GU5OTjA0NMTWrVuRlZWFbdu2yfEBkUxlDtnnAlTMBdl5861ISkrCvXv38PLlS+jq6iI5OZnN401ISMCcOXOwY8cOcDgcdO7cGXXq1MGrV6/Qv39/REVFYfPmzZg7dy4GDBjwXcbzM+Hs2bMKK13ExsYiNjYWZmZmmD59Optr/erVK7i7u+PkyZMs6XV8fDxWrlyJ9evX49dffwVQwbu2YMECvHr1ChMnTvzqOMzMzKCurg53d3dwuVyoqqrCxcUF3bp1w8GDB9m5UrNmTTg5OeH06dNITU1Fu3btlPbZo0cPbNu2DWZmZtUiNWbmrJqamlSlHQa1atXC48ePAQARERE4cOAAunTpAnV1ddy/fx/du3f/Ji6Xz58/s9xyitC0aVOW64qUFDRQdvzJkyeYNWsW+vTpg+7duyMzMxMODg5wdnaGr6/vV8fGPAemWonsM/mz8Pf3h5mZGS5fvoylS5di4cKFACreEy4uLhgwYABatWqF7t27w9vbG8+fP0f9+vWhqakJNzc3dOzYEUuWLPkuhRl+Jty4cQPm5uZy5NUikQgjR47EvHnzcPXqVUyfPh0AsGDBAsybNw/bt29nOVBEIhFGjx6N3r174/jx49DS0gIR4dKlS3B2dsahQ4dQt27dSsehqqqKAwcOYPHixdi6dStevXqFgQMH4vz58wgICJB6t/r4+MDGxgZt27aV0s2y6NmzJ2bMmIFXr15h27Zt1XouzPxUV1dXKMOqqqooKSlBQUEBAgICUF5ejjZt2uDTp08oKCiApqamwmprlYHL5Vb6nFRVVb+Zd0ssFmPRokV4+vQphg8fjrp16yI8PByfPn3C9u3bq1Q58q+U4efPn+Py5ctISUmBpqYm3r17x+qMpKQkzJgxA3v27AGHw0GnTp1gZGSEp0+fon///jh69Ci2bduGWbNmwdTU9LuM52fCiRMnFJJ6X716FUeOHIGNjQ0mTZrEVoB79+4dvLy8cOzYMdY2TkxMRHBwMNatW8fqxC9fvmDx4sV49uwZZsyY8dVxDBgwAGpqavD29gaXy4VIJIKbmxs6dOiAw4cPs5yJurq6cHd3x7Fjx/DmzRt07dpVaZ+9e/fG1q1b0bdvX7Ru3brKz4TRY4wdLRaLpSplGRgYICsrCwCwb98+7NmzBx07doSWlhbu37+Pbt26fZMuyMrKqlQHN2vWDI8fP/6mgkIvX77E9OnT0a1bN/Tu3RvZ2dlwdnbG0KFDMXny5Eq/K2lHS64nvqcMz5w5E+bm5pg7dy7mzJmD1atXs9dwd3fHwIED0a5dO3Tq1AmjRo3C69evUadOHejq6mLUqFFo06YNli1b9o9wyf6TuHv3Lvr16yf3bicijBo1CnPmzMHZs2dZGZw/fz4WL16M0NBQ9phYLIavry/at2+Po0ePQltbm60sPGLECERFRX31Ha+iooK9e/di+fLlLOfpgAEDMGLECMyePVvq3eru7g5LS0v06dMHPXv2VNpnp06d8PDhQzx+/BgrV66s1nP5mg7W1NREUVERSktLERAQgOLiYvz2228s8bW+vj6srKyqdc2ysrJK/QUcDqdK1VaV3c+yZctw//59Vgfv3bsXCxcuxLZt26q8xvjetjODd+/e4eTJk8jMzISamhrevn0LY2NjAMCzZ8/g7++PgwcPAgA6dOgAKysrJCUloX///jh16hR27NiB6dOnV/uZy+GrLqxqeLEUYe/evXT48GG548eOHaPQ0FDKy8uTiyoSiURkZmbGekB37typlH/l1q1bNG3atGqNqaioiCwsLJSmXRBV7IRcvXqVfv/9d6Xn5OTkUNeuXUlNTa1aOaEikYjdnRGLxSQSiUggEFB5eTkJBAISiUS0fft22rRpEw0ePFguNe7FixdkaGhY7d0hJlxbGXg8Hg0dOlQqqknRhxm/5LG5c+fSzp075SKcnjx5QhYWFnLebFlPPpO2xOfzpfr/XvD19aULFy4QAGrbtq1cJIe9vT3l5+dTRkYGNWrUiI4fPy51/YKCArldeQY/+k4N0Z8bo6JdQWZXoKSkhGbOnCnFGUZEdPjwYTZtk9ntUcRdIhaLyd7eXo6X6WuYOXMmnThxQmlaWWJiIi1ZsoTs7OxYHh9F8Pf3p1q1apG/v3+1rq9oJ0ooFJJQKGT/b2pqSiEhIbRgwQKpiE+xWEzDhg2rNPpQGVavXk3nzp1T2r5y5Uo6f/78V2VY9pOenk5mZmaUnZ0td19Tp05V+A6XBSPDku+G74XU1FTy8PAgLy8vatSoEW3atEmq/d69ezRnzhwiIho5ciQNGDBAjk/o3LlzNGzYMIXRLT+6DP+Z8UVHR1NkZKTc8bNnz9LKlSuptLSUnJ2dpdoY+WbkKyoqitatW6ew/wcPHtD48eOrNaaysjIyNTWtNEze3t6ebt26RQsXLlR6TlFREXXp0oUASO3WVQWyHIOyMhwZGUnr168nExMTOS6YlJQUMjQ0rDQNQBEEAkGlEU1f09GKxs5gyZIltGXLFrnjr169IjMzsyqlbzC2yPeWX6KK9IaLFy+ykRKykRwuLi70+fNnys3NpYYNG9KhQ4ekxlBUVERubm505swZub5/dPkl+v46mIhoyJAhxOVyKSgoiB4+fCjVdurUKTZtUywWk5mZmcIMAbFYTC4uLtXmHJw/fz4dPHhQqX598uQJzZs3jxwdHSuN2pk3bx4ZGRlV+x0iO0cZ+WVS75hIz9DQUJo9e7aUDSoWi8nV1fWbIhs2b95Mx44dU9oeGhpKJ06cUKhnZccueTw7O5tMTEzk3olisZjmzJmjMBNEFkzaklAoZN9p3wvZ2dnk7OxMfn5+VL9+fbmU4CdPnrC8tGPHjqVevXrJ2ROXL18mGxsbhXbbjy7Df2Z8p0+fpm3btskdv3LlCgUHB5NYLJaL7hGLxWRlZcXKzvHjx2nFihUK+3/27Bl5eXlVa0x8Pp9MTEyUpj4SVfAyJiQk0OzZs5WeU1JSwvLzffz4sVpj+JoOPnz4MK1cuZJMTU3lMnzS0tLI0NBQ7r1XlWuamZkp1W/l5eXfHHUcEhJCa9askTuenJxMJiYmVc4gkFz/fk89PHv2bIqLi2MjiWXnsoeHB6WmplJRURE1bNiQ9uzZI3V9Ho9Hnp6eSt9/VZURFQW+qO+Ktm3bKqw0dOTIEXh5eeH+/ftypRdVVFRgYmKC27dvAwCOHz8OHx8fhf337dsXb968QXl5eZXHpKenx5ZVVQY+n49+/frh8uXLEIvFCs/Zs2cPpk6dCgBKS8wqguRuBIfDgYqKCtTU1NiIIxUVFXh6emL9+vUYOXKkVIWBwsJCzJ07F1u3bsXvv/9epevR//cka2pqomXLlkhISFB43o4dOzBixAi57yn7iMViEBHy8vLw4sULjB49Wi56qX379rC0tMS5c+fk+pUdI4fDgZqaGvtMvqfHNzMzE71794a+vj5evnwJHR0dlJWVse1dunTB27dv4efnB0tLSzg6OkpdX19fH/v378eqVavkxv5vh46Ojly1muTkZLRq1Qra2tp4/fo1GjVqJNXu6OiI8+fPA6jYlTUzM1O4y8XhcDB16lRERkZWa0yNGjWChoaG0oognz9/hoGBAezs7BAdHa3wHD6fj+fPn8Pb2xv79++v1u8qOzdVVFSgqqoKVVVV9v9eXl7YvHkzgoKCpCL3zp49C3V1ddSpUwdv3ryp8jWBipLzW7ZsUfhO4vF4iIuLg5mZmdRxWXmTlGEG27Ztw4IFC1CnTh2p4yoqKli7di3Cw8Pl+lAEFRUVVna/p/y+ePECvXr1wq+//oq0tDRMmzYNK1asYNu7deuGly9f4tOnT7h48SJOnz4tV5lkyJAhMDc3Vxi9929GmzZtFOrg6OhopTqYw+HA2tqaLVN/6NAhjB8/XmH/Xbt2RXp6utJqZIqgqakJNTW1SiNwS0tL0bNnT9y6dQsikUjhOfv27cOkSZOgpaWFqKioKl8fkJZhRudIyrCbmxu2bt2KYcOGST0fLpeL2bNnY+vWrVJzsCpQU1NDx44dcfXqVYXte/bsgZOTE/u3Mt0r28blcnHnzh1MmjRJrs9ff/0VTk5OcvNemQ5mIki+947rhw8f0LdvXxgaGuL169fQ09OTmjPdu3fH69evMXnyZPTv3x+urq5SY6hRowYiIyOxfv16pTbZvxUGBgZIT0+XOpaeno4GDRpAT08Pz58/l4vCsbGxYedZQkIC+vTpozDKlsPhYPr06YiIiKjWmBo3bgwNDQ2l0QGMDnZyclIqm0KhEImJiRgzZgwOHjwIgUBQrTFIzg9GftXU1Nh/J06ciJCQECxZskQq4vPixYsoLS1Fy5Yt8eTJk2pd08PDA2FhYQrfSSUlJThx4oTCynbK5Jf5f3h4OObMmQMjIyO5bIPff/8de/fulZv3ivSwpA6WjAD7s3j16hV69OiBX3/9FVlZWQgICEBAQADb3qFDB3z48AEZGRk4efIkzp49KxfdaWpqCkdHx2qtl/4NaNOmDR48eCB3nFkHJyUlsZkADDgcDuzt7XHp0iUAQFRUlML3OwC0a9cOXC6XrSxXFWhoaEBdXb1SHVxUVIRu3bohKSlJqWweOnQI48aNg56eHvbv31/l6wNf18GOjo7Ys2cPTE1N0aFDB/bckpISzJw5E5s3b662DuZwOOjbty9iY2MVth84cAC2trbV6hOosFcuX76MWbNmybW1aNECnp6eOHz4cJX6klz/fk89/Pr1awwcOBD169fH27dvoa+vLzVnevXqhRcvXmDGjBno2rUrvLy8pK6vq6uLiIgIbN26ValNVhX85Y6nbt264cmTJ2zIK4PS0lLo6ekhNDQUY8aMkfte7dq1WaNERUWl0tC3hg0bIj8/v8pj4nA4aNKkCV69eqWw/f79+2jXrh3U1dUxatQozJw5U+6Ff/v2bVy5cgWjRo1Co0aNKi3lLomqLm51dHTQokUL3Lt3D/b29ggKCsLYsWPh4eGBefPmwd7eHg8ePICDgwPs7Owwc+bMKi1ily1bhuDgYJw+fZq9p9LSUmzatAlJSUls6oCiharkccl/L126BDs7O4XpggDg5uaGkydPKlS8kv/KOpyICCKRiHVwVReZmZnYuXMnJk2ahCdPnqBjx44oLCxk21etWoWcnBwAwJs3bxASEoIPHz4gJCREYX/a2tro3LlztQ2Vnx1jxozBunXrpI7xeDzUrl0bt27dQtOmTaGrqyvVrq6uzv6O79+/rzTdrX379vjw4UO1xuTi4oI9e/Yobd+3bx9cXFzg4eGBPXv24OnTp1LtAoEA48ePx7Rp09C9e3fk5uaitLS0Steuzlx0cXHBsGHDMHnyZMyfPx/W1ta4ceMGoqKiYGZmBi8vL9jZ2cHJyQn79+8Hn8+vtD8jIyO4uLjAx8dHaiHy4sULuLq6YsmSJVJOrq85ixh5fPDgAZvqJCl/RAR1dXW0atUK79+/r7Qfye9KHv9W+RWJRLh+/ToWL16M7du3Y8OGDVLO9rCwMFy8eBFisRjZ2dn48uULRowYASsrK6VpjN7e3lVW/v8WtG/fHu/fv0daWprUcR6PBwMDA6xdu1ZhKmWtWrVYHUxElaZHNG/enH2XVhW//PILHj16pLDt+fPnaNGiBdTU1ODr64vJkyfLGTr37t3DyZMn4eXlhebNm1dZBwNVk2FNTU00bdoUr1+/xrBhwxAUFARfX1+4urpi2rRpcHBwwMuXL+Hg4IBhw4bB398fL1++/Gq/CxcuxKpVq3D8+HH2nsrKyrB9+3ZcvXoVPj4+Cp3FsuOX/Fy7dg1DhgxRek1XV1ecOnXqq/evyOH0rfILVDgfdu3ahUmTJuHp06do164dcnNz2fYVK1awtuGbN2+wefNmvHjxQk7fMNDU1ETfvn2RmJj4TeP5WeHr68umNTFg5PfBgweoXbu2HPUCs4ADvq6D27VrV20dzOgsZdizZw/c3Nzg4uKCo0ePIikpSapdKBRi0qRJmDBhArp37w4ul4uioqIqXbuq85FJw3Z0dMTEiRMRFBQEGxsbxMbG4tChQ7C0tMTYsWNhZ2fHLnIlNyQVoVatWhg9ejS8vLyk3jmvX7+Gm5sbFi5cKJfWrMhZLNlGRLh16xYsLCwAyOtRxmH94sULpc+A6Ud205axo79FhsViMW7evImlS5di06ZN2LZtG4KDg9n2ffv2ITY2FmKxGPn5+Wxq4MCBA2FoaKiwT3d3dxw/frzaY/mZ0apVK3z58kVOxng8HmrVqoWQkBCFGzu1atViqVX4fH6l9CqtWrVCZmZmtcbVqVMn3LlzR2Hbu3fvYGRkBHV1dUydOhV+fn5yzqfHjx/jwIEDGD16NH755RekpqZW6/pfg7q6Oho3bozMzEzY2toiKCgIfn5+cHJygq+vL4YPH47U1FTY29vDzs4OU6ZMwbNnz77a79y5c7FlyxYcPnwYQqEQQMXz3bVrF06dOsVSDFQGWR18+/ZtmJmZKXUUubq64vTp09V7ADLX+hbk5OQgMjISkydPxvPnz/Hbb79J+WOWLl2KjIwMABU6eOfOnbh//z7Wr1+vsD91dXWYmZnhxo0b3zQeAPjLOZ44HA42bNgADw8PBAUFwcTEBBwOB40aNYK1tTXGjh2r0OMaHx8POzs7ABWLRIFAwOaPy+Lz58/V5ksJDAyEr68v9u3bx+Y4AhW7cgEBAdi3bx8AYPTo0di7dy8sLCzQv39/6Ovr49atW6hVqxYOHToENTU1iEQi1oBUtgADKl7ijCOF8ewq25EgIujo6GDz5s3g8/n48OEDatWqhSZNmiA3Nxd2dnbQ0tLCjh07UK9ePSQlJSEwMBBOTk7w8PCQ6ktyIWlgYICjR4/ijz/+wJYtW1i+rOHDh2PXrl1QUVFR6BxSNkag4vdRxktBRNDS0kJ5eblcDjrzf0YxikQiud1W5v/V8fpmZ2crjGZr1qwZxo0bBwMDA2RkZCA+Ph4vX74Ej8fDkydPcPLkSSxatAh16tRR2nfDhg3x5cuXKo/l3wBLS0tcvnwZc+fOxaxZs1CvXj00adIEZ8+exb1793DkyBG577x584aV6wYNGuDt27dK+09JSal010URGjVqhGbNmiE0NBT+/v5S82n9+vVo1aoVm+9+6NAh+Pv7g4jQo0cP5OTk4O7du5g2bRrs7Oywd+9eAKiSB19yEfa1HcX8/HyYm5tj3bp1SE5ORklJCRYsWAAdHR3s2rULR48eRcuWLREVFYXi4mLs378fw4YNw+HDh5UaGEQEb29vtG7dGnPmzEFRURFEIhGaNm2KdevW4ZdfflFokH4Nsg5fWXnT0tKCQCCQM5gZ7jdGhmWfybfILwD8/vvvCAoKkjvu5OQEIyMjaGlpITExEfv378fmzZvx/v179OvXDyNGjFAa0QlU8H9Vd1f934DQ0FB4eXlh3rx5MDc3h4qKCpo2bQo7OzuMGjWK5YaRxM2bN9nfQCwWg8/nK40wTE9Pl4sw+xoCAgLg7e2NyMhIqeszEW1MBIabmxsAsHwThoaGSEhIgI6ODg4fPgwNDQ0pHfw1iMVidtOFiQ5QBm1tbWzYsAECgQApKSnQ19dHs2bNUFBQgGHDhkFLSwsbN25E06ZN8fjxYyxatAjW1tYKN9MY1KxZE8eOHcP27dthY2PDjt/R0RH79u2T4zWUNG6VyRGjgxU5fjkcDrS1taV0sCwYB7GkDmbwLfKbm5urUI82atQI48aNg76+PrKzs3Hnzh2kpKSAx+Ph4cOHiImJwfLlyyvlKvlf1MEDBw7EpUuXMHPmTAQEBKB+/fowNjbG5cuX8eTJE4XO9I8fP7JcJg0aNMDdu3eV9v/+/ftq6+B69eqhU6dOWLVqFQICAqR4wf744w/Uq1cPTZs2BQAcPnwY/v7+4PP56N27N3Jzc5GQkIAJEybAxcWFjUqWlGFl813SkSIZoacIBQUFMDc3R0hICDIyMsDj8TB//nzo6uriwIED2LdvH5o0aYJjx46hpKQEhw4dgp2dHQ4ePFipHejm5oYWLVpg/vz5yM/PBxGhUaNGWLlyJX777TelTiHZKAbZyCZF7yLmHC0tLQiFQjk7WvJvgUAgtYHLXOdbMgg2btzI8v5JwsHBAfXr14eOjg4SExNx4MABbNu2DR8/fkSXLl3g6+urNJoEqNhU/1+LWAQqdLCPjw9mz54Na2trVge7uLjA2dlZIb/ZjRs3MGXKFAAVv2FxcbHcJi+DT58+fZVnURYzZ86Eu7s7du7ciRYtWrDHs7KyMGHCBJY30cHBAWKxGNbW1ujduzfq1KmDxMREqKmp4dChQ9DW1q6WDmb0DXNflc1NTU1NrF27FkKhECkpKahRowaaN28OLpcLBwcHaGhoYNWqVWjbti2eP3+O33//Hf369VMaHQZURO4cPXoUYWFhGDp0KNTV1SEUCmFvb49Dhw4p9DV8zY4WCASVBshoamqyTi5lkLSjZfVudeU3Pz9foU3WoEEDjB07FgYGBvjy5QuSkpIwc+ZMFBcXIykpCdHR0diwYQMaNmyotO8/rYOpCvgeubdZWVm0ZMkStqKVm5sbDRgwQCGT/cOHD8nd3Z39OzQ0lA4ePKiw3+fPn9PYsWO/aUwvX74kJycn8vT0pEWLFpG7uzu5uLgoLKEsFAopJiaGQkNDKTExkT3+4cMHAsBWkiovL5ersMFwn5SWlhKPxyMul0slJSUsl4IsxGIxlZWVkYWFBeXm5so9I3d3d0pKSiJTU1O5HHcHBwe58SviZ2LyaBV9BAIB+ykvLyc+n098Pp/loJL9vHv3jtzd3RX2xXBlbN++XerazP8lP5LfkeWQUvacZCESiVgmfsmPv78/WVhYSJXljo2NJR8fHxoxYgRbpeRr5Tu9vb3l8ph/9Nx0oj8/RrFYTBcuXCBXV1eys7MjW1tbMjExoVOnTik8d9SoUWw1h/LycjI1NVVapt3T01OOx6yqY1q/fj2ZmZnRvHnzaO7cuWRmZkahoaEK58aHDx9oy5YttGvXLinOiXHjxlHbtm3ZPpl5LnsthoOsrKyM+Hy+UvklqpiHZ8+epUWLFslV9Hzx4gW5uLiwlackkZiYSKNHj1Z4r7IyXJkMKZNnZbLn5+dHT58+ZfuXvQ7DEVNd7qhvwbFjx+Tkt2bNmrR27Vry8fFhuWrKysrI3t6erfIiEAjo8+fP5OrqqrTv9+/fk4+Pj9zxH12Gv8f4cnJyaPny5WxVOjc3N+rdu7dC7p/nz59LlQwPCwuTqhwoiXfv3tGoUaO+aUzv3r0jZ2dncnd3p0WLFtGoUaPIycmJXr9+LXeuSCSiU6dOUWhoKCUkJLDHs7KyCABbSYqpdCX7vmH4T8rKyqi0tJStSFmZDNva2lJWVpbc+8DHx4fu3LlDZmZmcvxtTHlpZVAkJ1+T5a/Jb3p6Orm4uCiVw+joaPa9WNmnKnq3KlCkg/38/Mja2ppu377NnnflyhXy8PAgDw8PtnLdrFmzKq2CNn78eLn58aPLL9H3GePly5dp5MiRZGdnRzY2NmRhYaGQf08sFtO4cePYZ81wDirjRPT19a20+qsyiMVi2rJlC5mZmVFAQAAFBgaSubk5rVmzRuHcSU1NpT/++IN27txJRUVF7PGpU6dSs2bN2D4ZO1q2D0a2S0pKqLi4mMrKylg+I0W4evUqzZo1i0pLS6XkNDk5mezt7Sk6OlqOL/DRo0dS6w9F91wdPSxpSzMfRXp62rRplJiYqPTdwHBqViarsuOoig2t6PjZs2fl5FdXV5c2bNhAHh4e7Dzi8/nk7OxMu3fvJisrK+Lz+ZSfn0+Ojo5Kn196errC5/ujy/D3GF9ubi6tWrWKrUrn5uZGPXr0UMiT9ubNG6nKx3v37lXKdfzp06dvqihHVGEXu7q60siRI2nRokXk5eVFjo6OCtdBIpGIzp07R6GhoVLVlfPz80lFRYV27tzJnqdMB8va0ZXJL7OmTUtLk9PBEyZMoOvXr5OlpaWUDSO7/vgzqKrdLRZXVHR3dHSU4maS/Jw5c4ZWrVpVrWtWRf8qO0+RDvby8iIbGxu6du0ae158fDyNGDGCfHx8KDo6moiIFixYQPHx8UqvOW3aNIUVc6sqI3+b40kRjh07RkOHDqX4+HgSi8XE5XJp+/btZG5uLlV6s7i4mKytrSk2NlbqAT958oQGDx5c7TLoskhPT6cHDx4oJTp9+/YtOTg4kLe3N61cuZJ8fX3J1taWHj9+TBkZGaSjo0OWlpZUVlZGBQUFdP/+fSouLma/LxaLqbS0lPLy8igvL494PB5Loq1sYgkEAtq1a5ecAk9PT6eRI0fS/v37FU7iO3fuUEBAgNQxScJfSQJGWWWo6MM4ncrKytgXBdMmuaB1d3enGzduyDmlcnJy2LL3iozmb13EFhYWUmRkJIWEhNDRo0eprKyM7ZMRskePHtH+/ftZkuu8vDzy8fEhJycnWr58OU2bNo2MjIyknJqPHz8mLy8vhb/Lu3fvaPjw4XLHf3SFSfTXjLG4uJiGDRtGa9asYYmcHz58SCNGjKDt27dLnRsTE0MjR46UInwuKyujJUuW0IIFC/7UOMrLy+nx48f0+PFjhY5ssVhMoaGhZGZmRgsXLqSlS5eSlZUVLVy4kIRCIQUEBJC6ujqdP3+edV7IEhUzjmQej8eWX6+MuJMxnk1NTeVK3U6bNo3u3r1LJiYmCgnXhw8fLkXKKWtkShq2ihzBij6SMivrGBaJRPTkyRNydHSUIvdnPmFhYbRy5coqy2ZVnVD379+ndevW0caNG9lCCWKxmC5fvkwAKCAggD5+/Ejm5uasoRsTE0NmZmY0c+ZMWr58OZmYmFDbtm2lnqOHh4dS5/HEiROlFr4MfnQZ/qvGd+bMGRoyZAhdu3aNxGIxFRcX086dO8nMzEyq+EZZWRkNHTqUTp48KfVbvnjxgkxMTKpNTCyLzMxMevDggVKi0/fv39Pw4cPJ09OTVq5cSX5+fjRkyBC6f/8+ffnyhWrUqEGDBw9mHcIfP36U2yBgFp5FRUVUUlJSJRk+dOgQLV26VOqec3JyaPjw4XTs2DFatGiR3PceP34sV/BEUgYkjdiqyrCkTpaUYUk59fHxoStXrsjJb0FBAZmYmFB+fn6VZbMq53G5XLbk9pEjR6isrIw9T0NDgwDQw4cP6ejRoywRcUFBAfn6+pKjoyMtX76cpk+fTg0aNGAXLEQVZOiurq4Kx/Xx40eFRRl+dPkl+mvGWFZWRk5OTrRy5UpWzzx58oQ8PDxo48aNUueeO3eOnJ2dpfQRn8+nVatW0axZs/7UOAQCAT158oQePXqkcINJLBbTH3/8QWZmZrRgwQJatmwZDRkyhObNm0fl5eW0aNEiUlVVpZMnT7Jz9vr161JkvGJxxYZsXl4eFRQUVLp5KzkuMzMzufdKQEAA3bx5k8zMzBQWBho5cqRcwRNZe1VSfr9mRzO2tKQNLelMFgqF9PLlSxo6dCiVlpbKbdDu3buXFi1aVCUdXFU7WiwW08OHD2ndunUUGhpKL1++ZM+5e/cuAaCpU6fShw8fyMrKil3TnDlzhszNzWn69Om0fPlysrCwkCMq9vHxUbrwnzlzJl25ckXu+I8uw3/V+C5evEhWVlZ0+fJlEovFVFJSQpGRkWRqaio1B8vLy8nBwYGOHj0q9Tu+efOGTE1NFW7WVAdZWVn04MEDpYV+UlNTycXFhTw8PGjlypU0adIksra2poSEBCosLCQDAwPq06cPq1vfvHlD7969k+qD0bdcLpdKS0u/Kr9ERCdPnqTAwECpYwUFBWRnZ0fnzp2juXPnyn3n1atX31ysoDJnriLbWfK9MGHCBIXFfYqKihQW7/nWsTHg8Xi0f/9+CgkJoUOHDrEOTLFYTLVr1yYAlJSURGfOnKElS5YQUcWznzhxIg0bNoyWL19Os2bNImNjYykH/IcPH8jBwUHhb5Oenk5DhgxROM6fwvFEVHGDgYGBZGdnR8OHD6eoqCiFuzJcLpfmz59P5ubm5OHhQdbW1uTn51ftaljVRWpqKpmYmMg5t16/fk29e/emq1ev0pkzZwgAXb9+nQoKCigmJoYePXokZdTy+XzKyMigjx8/Eo/HU2rwvnr1iuLj4yk9PZ34fD6NGzeOgoOD2QkbExND9vb2NGLECKUKXlF1BFlBkoxmYnaAq/JhFKekA6q8vJy+fPlCtra2tGDBAnr27Bm9f/+eduzYQQMHDqT79+8rFVhJwZUVcEYxSzroxGIxhYWFkaWlJe3evZuuXLlCixYtojZt2pC2tjYtXbqU1NTUaPny5URUEc0iO0e+fPlCCQkJ9OLFC9q/fz/t27dPqn3NmjU0YcIE9nuMl1/RPCD68RUm0V83RqFQSCdOnCBXV1caOnQoTZ8+Xa4CFIPr16+Tg4MDOTg4sBVl9u7dWyWv/p/BkiVLaNWqVXJG16pVq2j48OHE5XKpf//+NGDAABKJRJSamkr379+X2oWSdB5zuVy5KCYGXC6XEhIS6P79+1ReXk5JSUlkZmZGFy9eZOWvf//+ZGtry0bZySIkJIRu3LghdUxy/isyehmZlHUSy35kncaSchkdHU3m5uYUExNDaWlplJiYSOPHj6cJEyawclhVZ7Ei+Wbw+fNnGjZsGPn7+1NcXBxFR0eTh4cHGRgYkJ2dHQ0aNIhq1KhBhYWF9PnzZ/L29pZ7Fk+fPqU7d+5Qfn4+2djYSLVnZWWRiYkJnThxgv2dMjMzafr06bR48WKFz/xHl+G/cnypqam0cOFCsrOzI0dHR9qzZ4/CHdiSkhIKDg4mMzMz8vDwoCFDhtC4cePow4cP331MkmB+T1nnVkpKCvXt25cuXLhAly5dIgB0/vx5EgqF9Pr1azp16pTcwrWkpISysrKoqKhIqQy/efOG4uPjKS0tjUQiEU2ePJnmzZvHOuLOnz/PPitlESSyOlgWkjIsqYclo7EkP19btIpEIiosLCQHBwcKDAykZ8+e0adPn2j37t00aNAgunv3bpU3eGRlmOlfEnv27CELCwuKiIiga9eu0dKlS6ldu3akqalJv//+O2loaFBQUBARVUSzyEa05ubm0p07d+j58+d07Ngx2rFjh1T75s2baezYsazzUCQSUVxcHJmYmCiMSP/R5Zfor9XBZ86coZEjR9LQoUNp6tSpSqOXbt26RU5OTmRvb09ubm5kbm5OERERf7kOXr16NS1evFhqHonFYtqwYQPZ2dkRl8slc3Nz6t69OxFVLCw3btxId+/elfpOeXk5ZWZm0qdPn9joH1kUFxfTnTt36N69e8Tn8+np06dkampK58+fZ/saOHAg2dnZsVF2sti0aZNS/cyMXVZ+GRu5pKRE7qPMjpaV5ZMnT5KZmRlFR0fTp0+f6N69ezRp0iQ20reqm7aydrRsVElubi45OTnRlClT6Pz583T06FHy8vIiQ0NDsrKyInNzc9LR0aGcnBwqKiqSiyIWi8X0/PlzunPnDuXm5srp4JycHDIzM6OjR4+ym4HZ2dk0Z84cmjdvnsJn+qPL8F85vvT0dFq8eDHZ2dmRg4MD7dq1S2EFtLKyMlq2bJmUDvbx8ZFz8HxvfPnyhUxMTOTe4x8/fqT+/fvTqVOn6NatWwSAYmJiSCAQ0P3792nLli1yOri0tJQ+f/5MXC5X6Tr43bt3FB8fT6mpqSQSiWjWrFk0a9Ys1oF848YNsrGxoaFDhyqtFKesEqgiSMrz1zaDKtvA5fF45OzsTHPmzKGnT59SWloa7du3jwYPHkw3b9786oaP5HhkbX1ZGT506BCZmZnRjh076MqVK/T7779Tx44dSV1dnVatWkXa2trshkJAQIBcVcD8/Hy6c+cOPX36lM6dOye3UREeHk6enp70/v17dkyXL18mExMTpU7OqsrIX87x9DU0bdq0StXZ9PT0sGLFCojFYvB4POjo6MgR+P0VWLduHVavXo3GjRsDqMh9nTNnDkpLS9GtWzeMGzcObdu2hZqaGq5evYpevXqhYcOGSE1NRaNGjViCPQ0NDdSqVQuFhYUKc1pv3bqFZcuWoVWrVmjUqBH++OMPCIVCrFmzBk+fPsWUKVNQUlICHo+HOnXqICoqSuH9FxUVyeWZKiL8luRm+fDhAwQCAZo0aSLFLyHLtST5fdn+a9asiePHj+PGjRvYvn07+Hw++vTpgzNnzkBbW1vuupK56ZJjk/wAkMtVP336NB48eICTJ09CRUUF0dHRWLJkCXx9ffHq1SsEBwfD3t4ec+fOVfqbGhoasr/Lw4cP5cYxe/Zs3LhxAwEBAeByuRAKhRg4cCCOHj1abR6TfztUVVVhb28Pe3v7r547cOBADBw4EGVlZRAKhdDV1f3ulZNkkZuby3KHMIiKisLu3bvRoUMHJCcnw8rKCpqamnjw4AEKCgpgYGCAz58/4/Pnz2jcuDE7BzU1Ndm8dNlxl5eXY+HChXj27Bn69u2L0tJSzJ07Fy4uLti/fz/Cw8Oxfv16cDgcZGVlYdu2bWjfvr3CMX/58gU1atSQOiYph7Lzlcvlshw7koSepIBTQhaS5zg6OmLgwIHYt28fzp49i1q1amHy5Mly45T8jqRcS/6tSIaZ497e3lixYgU6duzIVrJs1aoVCgoKWPLFq1evombNmgqJXjkcjtJnB1QQsMfExGDnzp2ws7ODqqoqdHV14evrK1fx7z9U8O4sXbr0q+dpa2tjyZIlf7sO3rhxI5YsWYLmzZsDqCDLZPjNunfvjgkTJuC3336DlpYWrl69CisrKxgZGeHt27dISUlB27Zt2TmopaWlVIYTExOxePFiNG3aFE2bNsX27dtRVlaG1atX482bN5g+fTp4PB54PB709PRw+PBhhVwQxcXF1XouRISPHz+ivLwcjRs3lvquMn4lSR3K/Kurq4vo6GjcunULO3bsYKsCnjlzBjo6OpXyT8r2LfmRtVcuXLiAa9eu4fTp01BVVcXZs2cRHByMiRMn4vnz55g/fz4sLS2lSIhlUbt2bfTq1QtABSmzLKZMmYLbt28jKCgIhYWFEAqF6Nu3Lw4fPlxtHpN/O1RVVWFra1ulSkx9+/ZF3759wefzIRAI/hYdXFRUhOvXr+P06dPstaKjoxEWFoZ27dohMzMTFhYW0NHRwfPnz5GdnQ0DAwN06NAB9+7dQ+vWrVmuKnV1ddSqVQtcLlduXgqFQixevBgPHjxAv379UF5ezhbiYXT+pk2bwOFwkJmZiQ0bNqBr164Kx/zly5dKiynI6jsej4e0tDTo6+ujTp06Uu8Y2Y8kZO1iGxsb9OnTB/v378f58+dhYGCAMWPGoEuXLuz5slyMimxykijqoahoz+jRoxEUFISuXbuy9ru+vj5yc3Nx4cIFAMD58+dRp04dcLlchff/22+/KX0+derUQUxMDHbt2oVhw4ZBVVUVOjo6GDNmDKysrJR+738VxsbGWLRo0VfP09TUxIIFCzB//nzweDxoa2sr5T7+nvjjjz8QGBjIVljPy8tDQEAAcnNz0aNHD0ybNg1t27ZFzZo1ce3aNdjb26NJkya4e/cunj17hm7duknpYGW66OHDh1i4cCEaNmyI5s2bY8eOHeDxeFi1ahU+ffqE2bNno6ioCCUlJVBVVcWZM2cU8guXlZVV+b3G6LnU1FSUlJSgadOmrA6uzIZWJIva2to4dOgQ7ty5g4iICBQXF6N79+44deqUwveJItmVPM7IsawM37hxA6dPn8aZM2egpqaGa9euYf78+Zg8eTKePHmCefPmYcCAAVi+fLnS+zYwMGB1sGzhGQAYN24cOnbsiMWLFyM3NxcikQi9evXCwYMHFXIoVwuVuqWq6cX6N8LS0pL9f15eHpmYmEjtJg0ZMoQyMzOpSZMmpKKiQkePHqW8vDyKj49nI30kweyOSHou79y5Q3Z2dlI570QVHFQmJiaUl5fHHhMIBDR48GClfDkbN25k8zQloWgXJCoqikxNTcnX15cmT55MJiYmtHLlSioqKiIul0s8Ho/drSkqKqKLFy/S6dOnKTU1VWE0hbLoCmVRFoo8yZI7R8wOjySGDBlC+fn5VFZWRhkZGWxa3ebNm6lmzZoEQGoX+siRI2yqnSK4ublRenq60vaq4GeQj59hjH8FIiIi6NChQ+zfYWFhNH36dHYX7tatWxQcHEzr168nTU1N6tWrFxUUFFBmZiY9e/ZMKmWW6P94YmTn5ahRo+jYsWNSx0QiEQUFBdH69eulju/Zs4e2bdumcLzl5eVkZmZWafoLI8OZmZk0ZswYNtJsxIgR5OTkRElJSVK7q4w8vnv3js6ePUvx8fFsSlJlH2WcbV/jtWDkmOGykMTly5dp8eLFbNu5c+dYGd61axfLxyZ5zxYWFkojS168eEG+vr4K26qDH10+fvTx/ZWwsrJi5aGwsJBMTU3p4cOHbPuwYcMoLS2NWrRowXI9CYVCev/+Pd28eVMunVWRDD98+JDVLZJITk6mwYMHy6W+VsaXExYWJhdFK/ldSRlmogzHjRtHU6dOJRMTE1q2bBnxeDwqLi5m9W9ZWRkVFxfT1atX6dy5c5SamlqlFL2qyK2iSGMmwqq8vFzuXWRnZ8dyT3758oVNq1uzZg3Vr1+fAEi9N0+fPs2m2imCl5fXn07V/Bnk42cY41+BqKgo2r17N/v3nj17aOLEiawNm5SURHPnzqVt27aRlpYWdenShQoLC6mgoIBOnTpFCQkJcvqWmaeSc3Ps2LF04MABqfPEYjEtW7aMVqxYIXX86NGjtG7dOoV6luHDUhYRKWlLZ2dnk6+vL9nY2JC/vz+5urqSvb093blzh7hcLmtLFxcXU2lpKb19+5ZOnz5N169fZ1P2v/ZRpIuVpf8w+lcyi0GWfuD27ds0d+5c1ga4evUqq4MPHjxIAOR4Jq2traV4MSWRkpJCXl5eCtuqgx9dPn708f2VkNTBPB6PzM3NpfhyXVxc6OPHj/TLL7+wtpxAIKBnz57RsWPH5Na2RP+Xusrg+fPnZGlpKUWzQ1QRVWViYiK1TmPsQmVzcu/evXJRtIogFovp1KlTZGFhQePGjSN/f38yMzOjJUuWsBxyktGJZWVldP36dTp79ix9+vSpUq7kyviKq5LSJ5nJIPsucnJyouzsbBIIBJSbm0v16tUjALR48WJq3rw5AZCyey5dusSm2imCr6+v0kyV6uCnSbX70SEZrrd8+XKKjY2VandxcaGSkhL6+PEjNW7cmNTU1GjHjh2UmZlJt27dkuK0YcBMLEbo7O3t5YSNwdmzZ6W4nAQCAe3du5fGjRsnp1Bu3bpFQ4YMkXNKSabWMZN58+bNNHnyZCosLGSFq6SkhDZs2EATJ04kHo/HOp62bNlCJiYmtHjxYlq3bh05OTnR6NGjKTc3t1JeqMoUqaLzmTBlRknLGhb5+fnk5ubGGsTHjx+XI09r1aqV1L0zPDtMuKAkYmNj/ycWrUQ/xxj/CmzYsIEuX75MRBUh+JaWllJz6vXr1zRz5kwiInJ1dSUdHR3q0qULZWRkUGpqKqWlpVXqBCKqIARn+lB03pAhQ6SUAJfLJQsLC6kiBUQVc9Xb25tOnDgh149sGHBOTg6ZmprSnTt3pGTpw4cPZGpqSo8ePWIXrB8+fKDhw4fTqFGjKDQ0lAIDA8nExISOHz+uVGF+zfmk7HxJeVaUvz9r1iyWi0uSj4351KhRg0JCQqS+c/DgQQoICJDriyEX/xZSXFn86PLxo4/vr4Rk2tq6devo+PHjUu1eXl6Um5tLWVlZ1KRJE1JVVaXNmzdL8Ux8TYZdXFyUcjwy6dySOHr0KHl7e8sRs9+7d4/le5S9lqwM79y5k3x9famoqEhKF27bto3Gjh0r5XQKDw9ndXBoaCiNGDGCve/KZPhrzmPZ8xnjWpL4VRKlpaXk6OjIyu/58+flZLhFixZS3xEKhWRubs7yuEni8uXL/xOLVqKfY4x/BbZt20ZnzpwhogrKCTMzMylH0qdPn2jixIlEVMENpKenR+3bt6eMjAzKzMykuLg4KigokOuXkSmiCl6rSZMmKR2DnZ2dlFO5rKyMrKyspAiSiSrsa19fX6nNKsnrSeq6/Px8MjMzY51IjMx8+vSJzM3NWecTj8ejDx8+kIuLC40cOZJCQ0NpwYIFZGJiQgcPHqxSWk9lm0KKNm6ZFD9FPHYLFixg7QaRSESqqqpS8qunp0fBwcFS34mJiaFp06bJvUcZcvHvQeT8o8vHjz6+vxKSOviPP/6Qc/D6+flReno65eXlUZMmTYjD4dDatWuJz+fT/fv32cI1spA85uHhIcfLyCAhIUGOu/jMmTPselASjx49IjMzM7lNY8lrMp8DBw7Q6NGjWfoMRidGRkaSp6enFGXF3r17ycTEhIKDg2njxo3k5uZG7u7ulJOTI5eWXhmdzNccTpIbP4oKoIhEFUVPmHX9tWvX5HQwU6hB8p6trKwUcp/Gx8eTm5ubwmdVXfw0qXY/OkQiEVvC8saNGwgMDGTbhEIhcnNzoaWlhSZNmqBbt274/PkzAgMD4eHhgdq1a+Pp06fo06ePVDigiooK+Hw+xGIxuFwudHR0lKZwWVtbY/PmzVKpY25ubtDU1ISVlRV69OiB2rVr486dOzA0NFRYClIyRJBJkzh58iSOHz8OVVVVqXC/CRMmYMKECXjz5g1+/fVX7NixA2lpaTh37hxbenratGm4desWPD09cfz4cbm0ApJIs5E8puj/io6pqKhAXV1dLjy4vLxcKrTY3t4eMTExcHR0BFBRbla2JKm6ujp27doFX19f9OvXD0OGDEFJSQkOHjyI0tJShIWFKXzu/+HfgY4dOyI+Ph6mpqa4cOECHBwcpOTh9u3b6NixIwAgKCgIampqiIqKQlRUFCZPnozU1FTk5eVJpbAxEAqFUFFRwaFDh+Dj46Pw+hwOB05OToiNjYWLiwuICNra2jh8+DBmzpwJHo+HHj16sGVNp0yZUmnaIiNbYWFhmDRpEjp16iQV8tugQQOEhYUhKCgIe/fuBY/Hg4+PDzZv3oxff/2VDfcXCAQYO3Ys1NXVYWNjU+XnKSvHsuWcmWOKylwTEYRCodQxLpeLTp06ISUlBQAQEBAgVy7Yzc0NGRkZcHBwwOjRo9GkSRM8evQIUVFRCAgIQLt27ao8/v/w84HD4aCwsBD6+vq4ePEim44JVOiztLQ0GBgYQEVFBb1790ZWVhYCAwPh6+sLY2NjPH/+HLq6ugrLxQuFQpSUlEAkEiktJz948GCEhIRIHXNwcICamhpsbGzQtWtXtrx0jRo1cPjwYWhqasrdg6SclJSU4MCBAzh16hSrgxm5GDNmDB49eoSnT5+iY8eO2Lt3L549e4bz58+zMjV16lQkJiZi5MiROHXqFNTV1StNh5eEMhlWJL+y5d1F/79cNtOHlZUVLl68CAsLC/acX3/9Veo7qqqqiIyMxNixY9GzZ0/Y2tqCz+fj8OHDyM/PR3h4eKXj/Q8/Nzp16oRTp07B1tYWV65cgY2NjdS8unXrFquD58+fj5KSEhw+fBg7d+7E/PnzYWxsjPj4eFhZWcmloQqFQgiFQhw6dAijR49WOgZXV1ecOnUKXl5eACrswoMHDyIgIADr169H7969kZ+fj3v37sHPzw8uLi6V3pNYLEZERAS8vb3RtWtXiMVi1l6tW7cuwsPDMWPGDERFRaGkpAQ+Pj5Yt24d2rdvz8qXSCTCxIkToaamBicnJ7lrVCbHyuxp5v+M/KqpqSnUwZLPkMvlomfPnnj27BkAYO7cuXJ0HQ4ODkhPT4ednR1Gjx6N5s2b4+nTp9i3bx/8/f3ZVMD/8O+Euro6cnNzYWhoiLNnz+L48eNsGxEhOTkZdevWhbq6OgYNGoSMjAzMnz8fEydOROvWrZGQkAB9fX2WskYSQqEQAoEAhYWFaNKkicLr9+rVSy4VcciQIQAAW1tbdO7cGfXq1cODBw+goaGBw4cPQ0dHp9J74vP5CA8Px9mzZ+V0sIeHBx4/foz79++jR48eOHz4MG7fvo3z58+zMjV16lQ8evQI7u7uOHXqFDQ1NZWm0lb1mOTamUmvU2RHM+8PDoeDgQMH4tatW+jXrx97Ttu2baX653A42LNnD8aMGYNOnTph2LBhEAqFiI6ORmZmJnbu3Fnps/reUPn6Kf/b8PDwwObNmwFU8DRJKszIyEjY2dmxk6Ju3bpYvHgx8vPzERYWhgYNGiAtLQ1HjhxBeXm5VL/5+flISkrCmzdvoK+vD5FIhLKyMhQXF0MgEEjxozCOJKFQCJFIBCKCo6Mjzp8/D1dXV/Tp0wfh4eEIDw9HzZo15e6BUUKMIXnu3Dk4ODiwbUQEkUiE8vJyCAQCeHp6so6ZU6dOYcmSJey5zL32798f/fr1Q1xcHHsd+v/5qMxH0piV/Cg6h7lXNTU1qKmpKXQ6aWtr4/PnzyzvCxFJGbxXrlxBnTp15O6/adOmuHDhAgYMGIALFy7g7t27mD59Ovbu3Qttbe0qzYP/8HNi8ODBuHHjBrKzs1FQUCC1uCwuLsaePXswYsQIABXcQJqamnBxccG6devA5/OhpaWFhw8fIisrS6pfIkJWVhbS09ORn5+P2rVrQywWQyAQQCgUSikXSZ4EhvuhZs2aiIiIwNatW9GnTx+4u7vj4sWLrFzKgnH6Mu+f69evw9ramm0Xi8UQiUQQiURo1KgRSktLweVysXfvXowfP551yDIyrK6ujvDwcGzcuPGrXGuSH6ZdVnaZvpl3jKyyFIvFKC8vx8CBA6UcB7q6uhg5ciQAoHXr1khLS4Opqanc/c+cORMRERHIzMzEmTNnoKWlhbNnz0o9g//w74S3tzfWr18PAKx+YHDw4EGYm5uzcmFkZITAwECUlZVh/fr10NHRQc2aNXHkyBF8+vRJql/6//yGz58/R40aNVj5kZVhRl4YMDJsZ2eHuLg4uLu7o0+fPti2bRt2794NAwMDhffByC+Hw0FcXBxsbW1ZeRSLxRAKheDz+RAKhRg9ejQOHDiA8vJyHDx4ECEhIXJcMb169cKQIUNYeaqK3MrqYWWGrqzTiVmwqqiosDxXzHFJeb19+7ZCG6Rhw4aIjY2FmZkZ4uLicPv2bUycOBEHDhyQczT/h38XevfujaSkJGRkZCA/P19KB5eWlmLHjh3w8PAAUCG/Kioq8PLywsaNG1FQUIAmTZrg4cOHCAkJkXKaAEBhYSFu3LiBjIwM1o4WCATg8/mskxSQ18FisRg1atTA9u3bERYWhj59+sDFxQVxcXFKnU6ydvTFixdhZ2fH8qAxdmppaSlq164NFRUVZGdn4+DBgxg1ahTatm0rxdeipqaGP/74A9u3b5dzHsnKZ2V2tOymLeNwktXBzBqjX79+Uu8MLS0tuLq6ss//y5cvCnXw5MmTsXfvXnz58gVnzpyBiooKTp8+jWHDhlVtIvyHnxbjxo1jN184HI5UIEVMTAz69u3L6sgGDRpg1qxZAIBVq1ZBT08PtWrVwtq1a/Hu3TupfokI7969w5MnT6Crq8vqYD6fj/LycimuNMlrMs4XGxsbxMXFwcvLC71798amTZuwb98+hRvFDBiZuHbtGqysrFheY0bHlZeXQygUwsfHB/v27YNIJMLu3bsRGhrK6kRGB3fu3BnDhw9HdHS03H1VFnwhec7X9LCsHS0UCiEWi5Gbm8u29enThz0nPj5eznEMVMj2mTNnYGtri0uXLuHmzZvw8fHBkSNHFOrsvxL/OZ6+And3d6SnpyMgIADl5eUoKChATk4Oli5dihs3bmDq1KkA/s+INTExwYQJE7Bo0SJwuVy0atUK79+/x9atW1khAoCSkhKkpqaiuLgYz549Q3l5ObhcLnJzc5Geno6cnBwIBAJkZWVBW1sbIpGINfxUVFTYhWaHDh3Qv3//SgUNABvlsH//foSEhCAyMhJeXl44c+aM1KQXCoWoW7cu8vLycP36dVhYWMgZo8y/3t7eOHr0qJwziREkRQ4oWUXJPDtJ55OksDEvA4FAAJFIBHd3d/z+++/sd7S0tODr6wsAWLlyJaZNm6b0/k1NTbFw4ULMnTtXziP8H/6dUFFRwaZNm+Dm5oa8vDzcvn0bRISrV6/CyckJS5cuZZ2Pd+/eRbt27bBu3ToUFRVhyZIlqFu3LsRiMWJjY/H582epvrOzs5GWloYmTZrg+vXrEIlE4HK5rJOLcSDfunULHTp0YJ3GzNwWi8UwNDRE//790blz56+SIXI4HLx9+xYzZ87E48ePMXz4cCxatEiKGJB5LxgaGqKwsJA1jiXlllFs2tra+OWXX5CcnKzQmFWmPCXfY5LHmTHKkr4yjm2RSAQLCwtcunQJ79+/Z9u8vLxQs2ZNtG7dGvn5+Upls06dOpg0aRIWLVoEDw+P/5zG/yNwdHRESUkJZsyYAbFYjJycHOTm5mLlypU4ffo0Zs+ezZ775s0bDB48GP7+/li2bBlSU1PRuHFjiMViLF26VMr5RER4/fo1Xrx4gVevXqG8vBwikQj5+flISUlBXl4eysvLkZ+fzzq7GNlgFppisRgdO3bEgAEDqkR6LRKJcODAAaxYsQJRUVFwd3dHTEyMlLwJhULUq1cPubm5SEhIwKBBg6T0r6TzidHBzP0w8isSiaR0razzSVaGJaOdJB3cku3MxpePjw+WLl0qJfOM3g0JCWFtIllwOBwMGjQICxcuxLx58yotEPAf/j3gcDjYsmULRo0ahaysLFYH37x5E05OTggKCmKLaTA6ePXq1RAIBAgKCoKuri4GDBiAQ4cOYeTIkVI6icfj4dSpUygrK8P58+chFApRWlqKZ8+e4dWrVygsLIRYLGajqhhdxMxzIoKBgQH69euHrl27ys17RUhJScGcOXPw8OFDjBw5EosWLcLHjx8B/J8MCgQC1KlThyXrZiKt1dXVWftWRUUFmpqa6Ny5M549e6ZQfmWdS8qcTpK2taSuZyC5udyvXz/cuXMHb9++Zds8PDxgaGiIjh074uPHj0pJ12vXrs2ub7y8vL4aVfIf/h0YMmQINDU1MWXKFKiqqrIbrmvXrkVUVBSCgoLYc1+8eIEBAwYgICAAISEhSElJQZs2bSAUCmFqaork5GSpvhMSEnDs2DGkpKSgtLQUQqEQXC4Xb9++RX5+Prs2lpUBSRuzffv2GDhwYJVIr0UiEQ4fPoyFCxfi0KFDcHV1xbFjx6Sc2iKRiNXBDx48QO/evVmZkpQrDoeDUaNGscWLvrb5o+gcSUiug5XZ0UKhEGPGjMHixYulvj9v3jwAwNq1azFlyhSF987hcNCvXz8sWLAAgYGB6Ny581ef11+B/xxPXwGHw8GmTZtgY2MDPp+PXr16Ydq0aejRowciIyNZb+np06fRs2dPqKurY/ny5ewuQuPGjWFoaIiSkhLcunWLnSj6+voQCATQ0dFBixYtcPLkSTYqiplgKioqCAkJwbhx4+S8oBoaGtDU1JSqQlcZSktLMWzYMDx//hz+/v6wsbHB1q1b8fTpUzlnzcOHD9GqVSvweDzo6+srfCYcDge1a9dGcXExqygZw7SyiCemjelHUlFLGsOSx5m0RFVVVYwcORI1a9aEm5sbLly4gDdv3rBh2p06dUL37t2r+Qv/h387fvvtNxw9ehRisRh79uyBpaUlrl27ht27d2PAgAEAAIFAgM2bN8Pb2xuNGzfGokWLsHHjRhw/fhzt2rUDEeHatWsQCARsv7q6uhCLxTAzM8P27dvZqpNEFak0HA4HaWlpePbsGbp37y61qGPkWHZHozKcOXMGvr6+6NmzJ7p37479+/djyJAhGD9+vFR1RiLCp0+f2PTdyqqe1KpVCzweTypiSnYHRpkilXQOM9+XVaSMDDPGPhNpNXHiRKxcuRLPnj0Dj8dD06ZNcfv27f9SX/+DHDgcDtasWYPhw4ejvLwcffr0waRJk9C+fXscOHCAnd8XL15Eu3btoKWlhUWLFqFWrVpwcnJCeXk5hg4dCqCiQh4jwxwOh9XNzZs3x759+1jHVlFREQoKCqCiooI1a9awqbSSjlUmsqAqi1WgovLlsGHD8PDhQ8yYMQPm5uYIDw/Hu3fvMGHCBKlzk5KS0Lp1a/B4PKURVECFHcHoYEkZVhbZJLv5I+kEZ2RfEpK7wIwOdnJyQqNGjeDs7Ixz587h9evX6NChAwCgRYsWUiH//+E/ABXRrMePHweHw0F0dDQsLCxw4cIF7Nixg600KhKJsH79eowdOxZGRkZYvnw5wsLCsHfvXnTr1g2mpqa4ffs2Ll26xPZrYGAAgUCAhg0bIjw8HIWFheDz+UhNTcXbt28hFovx+fNn3LlzB/3795fSwUzUEUPrUBXExcXB29sbHTt2RO/evREREQFHR0c29VXSHk9JSUGdOnUgEomk0nBkdWRldnRlcszoYMmsBVkdzBxnIkhUVFSgoaGB8PBwTJ8+HcuXL8ezZ89QUFCAZs2a4c6dO3972s1/+DmwbNkyeHh4oLy8HP3794efnx9atWqFI0eOsNFI8fHxaNKkCfT09BAYGAhjY2NWbzPr2LFjx0plADVt2hQZGRmoW7cuIiIiQETIyMjA8+fPkZeXBxUVFYSGhsLT0xPA/+lgyf9XVX6FQiGGDx+OhIQEzJo1C4MGDcKuXbuQlpaGMWPGsBGJHA4HSUlJ+OWXX8DlcqXWwbLyq6Ojw24yM/KmKKNHmU0tKcOSdrRspBMTic1EerVv3x4ODg44ffo0Xr9+zVJO1KtXT2HE4o+E/xxPVQCHw8HgwYNx9epV2NjYoEmTJujSpQsbdr5161ZERERgwYIFACoWc2fOnMHTp0/h4eGBgQMHQltbG8nJyewuKmPMqaqqwsvLC7t378b27dvx/v175OXlITs7G5MnT4aBgQEsLCykdmgkxyWZ/qYMycnJ6Nq1K8rKylCjRg3Ex8dj69atePHiBQIDA9GsWTMcOXIEQMUCPDIyEi4uLujQoQO7OyW5KGX+f+XKFXTu3Jn9+2tOJ1mBZaCiogItLS2Wp0JSWZaWlkIgEKC4uBiPHz/Gq1evMHv2bGzYsAHPnz/Hrl27kJubCwBo2bLl9/i5/8O/ELVr18acOXNw8+ZNiEQi9O7dmw35f/jwIVxcXDB58mQ2cnD27Nnw9PSEt7c3bt++jS5dukBTUxOZmZmsI0VVVZV1Ho8ePRojRozAnTt3UFRUBAA4efIkvL29sWXLFik5lV30fQ1EhHXr1sHLywu9evXC27dvkZqaCmdnZ/Tq1QsHDhxAYGAgqzQvX76Mjh07QkNDA/Xr18ebN2+UGq5JSUlo3ry50kgnZfIrO3ZZA56RYcm0pQ8fPiApKQk6OjqIjY1Fly5dcODAARw/fhyNGzeGrq5upYvs//C/jf79++PixYtwcXGBsbExG6FQUlKCsLAwbNy4EUuXLgUA1KhRA2fPnkVycjJsbW1Ru3ZtuLi4oEaNGkhOTmZlWE1NDaWlpTA3N8eRI0ewevVqfPnyBbm5ucjOzsaMGTNARLCzswNQdZmVxadPn9C9e3cUFhbCwMAA169fR0REBO7fv4+AgAB06tQJe/fuZaOZw8LCMHLkSLRv3x4JCQlymzaMPF6/fl1KBytKgZU8XxKS7yNVVVWoq6tLlZFmjF0mEqysrAyPHz9mN6/++OMPvH79Grt27WKjQWU5Fv/Df2BgYGCA6dOnIyEhgS3NbWxsDAB4+vQpXF1dMXr0aFYvT5kyBePHj8fYsWNx5swZTJs2DWZmZrhx4wby8/PZSHhG1/Tu3RsuLi64ceMG0tPTUVRUhIsXL8LDwwObNm1i5/u3yvAff/wBV1dX9OrVC+/fv0dqaiqGDx+Orl27IioqCsHBwaxz586dO2jWrBm0tbXRpEkTPH36VGpRKfm5e/cuWrduLWdHf00Py9r+Ghoa0NDQkEodknQ6ERHS09Px6NEjaGpq4uzZs+jduzcOHDiAo0ePolGjRlBXV/9q9sR/+N9Fnz59cO7cOYwePRr16tVDt27doKqqitLSUuzatQsrVqzAqlWrAFQ4ZM6cOYOMjAxYW1vD2NgYCxYsQL169fD06VN2HaympgYul4umTZvi9OnTWLFiBbKzs5GdnY28vDwEBAQgLy+PpcT4VmRkZKBXr17IzMxE3bp1cfXqVURFReHGjRuYOXMmBg0ahB07drDnb9myBV5eXmjbti3u3r2rNHopMTERbdq0kcv2+drmLQC5NYGkHS3pyGJocEpKSlgdPH78eERERCAlJQW7du3Cx48foaamhjZt2vyp5/R3gEPKvAESKCoqgr6+PgoLC/+2XEDGOcLlciESidC8eXPMmDHjHzdsiAiXLl3C7t27weVyoaamBhcXF7i4uMhFFsTHx8PMzAwrVqyAl5cXcnNzWcWQm5uLx48fo3bt2tDX14eqqiqSkpJw4sQJCAQCtGjRApMnT0bv3r3Z/hilBEDhTiszUSWPp6WlwcPDAwKBABcvXmS9w9euXYO7uztWr16NIUOGwMfHB8HBwVi1ahVcXFxga2sLFRUVjBkzBoGBgWjXrp3UolIgEMDJyQk7d+5E3bp15ZShpEKUJFaVPIcZL/NMmGNMlBMjbL///jtev36Nnj17ori4GA8fPsSYMWMwbNgwXLt2DfPmzYNAIMDdu3f/EaX5T8hHdfF3j5HH42Hbtm24dOkSNDQ0IBKJMHz4cIwePbrKUXp/Fb58+YKdO3fi5s2b4HA4aNmyJSZPnoxffvlF6jyhUAg3NzfExcUhKyuLDQNm7ufz589IS0tDjRo1oKWlBbFYjPDwcLx8+RJaWlqwtbXF6NGjpXZLGIUkuWsjCdmdDgD4/fffkZCQAGdnZ4wcOZJtt7KyQkFBAc6cOYOdO3eibdu2yM3NRUxMDPbu3Qs9PT08efIEmzZtwu7du9lIDUYWL168iAsXLmD16tVS11PkzJb8nqQBz5CqKkqPZRxOiYmJWLlyJZo2bYqGDRvi2bNn0NDQwLp161BQUID9+/djxYoVWLduHWbOnFnt3/N74EeX4X9ifHfu3MGWLVtQUFAAkUiExo0bY8aMGT9EmvLVq1cRERGBwsJCqKiowNnZGSNGjJAj9U5MTMTgwYOxYMECzJo1iw3d19LSgkAgwIcPH3Djxg3o6emhQYMGKCwsxMGDB9kIgOnTp6N///5SfUqmtFRlEZudnQ1XV1eUlpbi2rVrrKzcvn0bjo6O+P333+Hi4gJXV1esWrUKy5cvx7Bhw+Dk5AQVFRX4+vpi+vTp6NKli5TuZHZvN2/ejIYNG7LXY8YkmxJQmQ6WtSckncZCoRArVqzA06dP0bNnT5SUlCApKQleXl4YMWIErl69isDAQBQWFiIxMbFK6Q7fGz+6/AJ//xhLSkqwfft2xMXFQV1dHSKRCA4ODvDx8ak0CvbvQF5eHnbt2oWrV6+Cw+GgWbNmmDRpEn777Tep88RiMVvEJjc3F6Wlpfj8+TM0NTWhpqaGnJwcHDt2DJmZmahXrx66dOmC69ev48aNG1BTU4O7uzv8/PxQq1Yttk9mYQigyjIcGhqKS5cuYejQoVLRjw4ODvj06RNiY2Nx4MAB1KtXD2VlZYiOjkZ4eDhq1KiBlJQUhISEYN++fazsM7IXHx+Pw4cPIzQ0lB0b07fs2CT1q6SMMzpYkkicqIJvinEaP378GKtWrYKxsTGaNGmCFy9egMPhYN26dWyhg8WLF2P58uVSaVN/J350Gf4nxnf//n1s3LgReXl5ICIYGxtj+vTpP0Sa8s2bNxEeHo78/HxwOBw4Ojpi5MiRcvxCjx49woABAzB9+nQEBQUhMzMT5eXl0NHRgUgkwsuXL3Hw4EEAQLdu3aCnp4eoqChkZWWhTZs2mDZtGgYNGiQnp4psZWXIz8/H8OHDWR3MyMqDBw8wZMgQLFq0CD4+PnB0dMT69euxfPlymJmZwd3dHRwOB5MmTcK4ceNYLiXJAIkRI0Zg1apVaNmypZyOrWoklqQMS94fo4PLy8uxevVq3Lt3D7169UJ5eTnu378PV1dXeHp64vr161iwYAGysrKQmJgoZQ/8naiqjPyQjqeIiAjEx8djxYoV7I7Is2fPMGfOHAQHB0sRaf3osLS0ZBnn27RpgylTpkBLSwvJycnYsWMHXr9+zS7EzczM4OjoyIbadu7cGbq6ulIKiPGqMg4koVCIa9euITc3F7/++is6dOggtbCfPXs2+vbti+PHj2P79u1SyunWrVuYMmUKGjRogCdPnsDa2ho+Pj5o06YN239+fj4mTJgAJycnjBw5Erq6urh58ybWrl0LPz8/WFhYSL0AGKUq6bFVFmLMONE0NTWhrq7OGtPFxcUoKyuDiooKJk2aBHd3d5bEncOpqGRiY2ODW7duQSgUok2bNjh58qSc4+Dvwo+uMIG/d4yFhYVwcXHBxIkTMWzYMHZHZPfu3YiPj2cNsJ8B9+7dQ8+ePdGuXTu0adMGI0aMgIWFBUQiEaKjo3HkyBFWOTRp0gQeHh5o0qQJBAIBWrZsyVbbkg2blXTufPr0CYmJidDQ0ICJiQnLdwFUKExPT0/WMG/VqhX7PZFIhGHDhrHcUkVFRZg4cSJcXV2hra3NymFkZCSuXr2KOXPmoGvXrsjLy0NkZCRu3bqFvXv3soaC5BiVKUzZ3R5mAc5EKzLkh0wodVJSElavXo29e/dCX1+fve/r16/D0dERhYWF0NTUhL+/P1atWvXNu9F/Fj+6DP/d44uKikJsbCxWrlzJVqJ5+fIl5syZgzlz5mDQoEF/+Ri+F+zt7REXF4f+/fujTZs2mDVrFmrVqoW3b99i27ZtePXqFetU7t+/P7p168ZuhpiZmaFu3boKN3kk5fDGjRvIyclB69at5fjaFi5cyKbG7t+/X6qS7IMHD+Dj44OGDRvi8ePHsLS0xNixY9G+fXvWoVtYWIhx48bBzs4Oo0aNQo0aNXDr1i2sWbMGo0ePZtMIAWmnseRGkTIdzCzAGe4ZySgJgUAAFRUVTJgwAfb29nB2dmb7Z949ly9fhkAgYFOp/qkF0Y8uv8DfO0YejwcXFxf4+PjAyckJampq4PP52Lt3L+Li4qRSVH90MNUdf/31V/z2228YPnw4rK2tUVpaimPHjiEmJgYFBQUoLCyEoaEhevXqBQMDAzaqytraGlpaWnJ8KZJpLunp6UhISIC6ujqrg5nzeTwenJ2d0b59e4wYMYK1sZk+nJ2dwePxUFxcjLy8PIwePRrDhw+Hrq4um457/PhxxMbGYs6cOejRoweKioqwd+9eXLlyBZGRkVJcSZI2tCJnkyI7mqHfYHRweXk5m/b/+vVrLF++HPv27WNJzzkcDu7evQsbGxsUFBRAQ0MDEyZMQGho6H86WAn+7vEdPXoU0dHRCAkJQbNmzQAAb9++xezZszFlyhSpwko/Otzc3BATE4MBAwbgl19+wYwZM1CrVi0kJycjPDwcz58/R0FBAcrLy9G5c2c0btwYAoEAxsbGGDdunEIdLAmRSISbN2/i8+fPaNmyJbp16yY1j1etWoW2bdsiIiKCTfkFKmTp+fPncHV1Zaslm5mZYdy4cejcuTO7DmaqQ1tbW8Pb2xv6+vq4c+cOVq9eDVdXVzg7OyvcmJV0MkuCkWfJ6CgOhyMlwwKBAGVlZSAiTJ8+HYMHD4aHh4cUz/OIESNw9uxZlJeXo3nz5jh27Ng/WmHyb3U8paSk4Pjx4+DxeOjatStsbGykPHfVQVZWFnx9fXHy5Em5iVZUVAQHBwdcunSpyp7EfxppaWkIDQ3F+/fvcfnyZRQWFuLXX39FjRo1sGHDBjYMFwBiY2NRXFyMmTNn4vPnzygvL4ehoSFq166Nhg0bSilPDoeDI0eOICwsDJaWljA2Nsa9e/fw9u1bbNy4kXXCWFpaYt++fRg7dixOnDgBDofD7oIIBAKMGDECW7Zswbhx4xAZGSnFQcP8KxAIcO7cOZw7dw5CoRCdO3fG6NGj0aBBA4V8EbI5q7IKk1HYjNHL7AKVlpay1XK0tLTw4MEDxMfHIzg4mB1PZGQkjhw5gitXrqBhw4a4cOHCP15O/UdXmEDlYxQKhTh9+jQeP36MGjVqwNnZGU2bNv3ma82cORP29vYKF6dbt26Fjo4Ou2v4M+DgwYO4ePEiXrx4gbt370JdXR3du3eHqakppk+fjpKSEmRlZSElJQUbN25EUFAQ6tevD4FAAAMDA9SsWRMGBgbQ1taWem8VFhayJIBmZmYoKSlhw98XLFgADqeiBCqTpjZ48GAMHDhQqrLF3bt3cfbsWTZdztXVVYq8lPk3OTkZkZGRePfuHVtJzsrKSqmRKblolYQix5OkvDMpTMzujZubG8LCwlCnTh2oqqoiIyMDixcvRlxcHLhcLhwdHdk58U/iR5fhr43v48ePOHbsGIqKitCxY0fY2dl988IyNzcXo0aNwpkzZ+QcxMXFxWw1t2/V8X83MjMzsWHDBqSkpODq1avIy8tD69atoa+vj/Xr16NLly5IS0tDQkICLly4gMLCQvj6+iI/Px8qKir49ddfUa9ePRgZGUFPT09KZk6ePIlNmzbBzMwMjRs3xsOHD/Hy5UusXbuW1UtWVlY4duwYnJ2dERsby0YjMHLs7u6OkJAQ+Pn5sel2jCOI0cFCoRDnz59nuSA7deqEMWPGoFGjRlKGq7IICeZvSR0MQC7yQyAQoLS0FEDFhtDjx48RExODkJAQ9pyoqChERUUhLi4OxsbGOHv2LDp16vSPLViBH19+gcrHKBKJcO7cOTx48AB6enpwcnJCixYtvvlaQUFBGDhwIKysrOTaIiIiwOfzMWnSpG/u/+/G0aNHERsbi1evXuH27dtQVVVFnz590L17d7a4wNmzZ5GYmIhr167B0dERurq6bIn2rl27olGjRmjcuLFUdSwul4tp06aBz+fDwsICfD6fnc9Lly6FiooKoqOjkZeXh9zcXHTp0oV9pmVlZRCJRHj48CGioqLQpk0bfPnyhc1+YJzXTIW5tLQ0HDx4EG/fvoWuri5cXFxgY2MDFRUVKV4X2Y+iDVxJOZaslCcWi8Hj8cDn86Gurg4dHR2MHTsW69evR4MGDaCqqoqcnBwsWrQIFy5cQEFBAWxsbBAeHg49Pb2/+VeVxo8uw18bX1paGqKjo1FYWIh27drB3t5eaq5V91oMh56sni0rK4ONjQ3Onz//zf3/3cjOzsb69euRnJyMa9eu4cuXL2jRogUMDAywZs0a9OjRA+/fv8exY8dw/fp15OXlwczMDFwuF/Xq1YOFhQWaNGmCBg0ayNmKsbGxWLt2LQYPHoxmzZrh6dOnePz4MVavXo1OnToBqCBHP3HiBIYOHcpWYheLxSx/8OjRo7Fs2TI2fU1dXZ1NPWdS38RiMS5cuICYmBiUlZXht99+w/jx49GkSROlVBTKnMWK1sKSMsxQzKiqquLt27fYs2cPmy6sqqqK6OhoREZG4sKFCzA2NkZMTAx69Ojxj+pgoOoy/KcsR5FIBH9/f3C5XIwaNQq1a9dmK6Ft3LiRJX2uDiIjIzF16lSFjqWaNWvC1NQU165d++HJsxg0atQIa9euBVCRYxoeHo6lS5eCw+HgyZMnaNasGXR0dKCqqgo/Pz+sXbsWjx49QsuWLdlIhKKiImRnZ6NmzZpo3LgxatSogfPnzyM2NhYXLlxgX0weHh749OkTxowZg0OHDqFevXqs0qtZsyZSUlLQokULdsdSJBJBT08Ply9fRteuXeUqzjHRVRwOB8OGDYOjo6NUZR2mCoAix5JkKKIiMA4uhjuCSa8TCoVsBNSJEycwffp0ABWphQsXLkRISAgsLS2xfft28Hg8pKam/uOOp58ZSUlJmDVrFhwcHGBnZ4fc3FwsWLAAhoaGWL9+fbUdvAKBAM+fP2fLn8tizJgxcHZ2/qkcTyNHjmSr6Vy7dg2TJ09GQkICysvLMXbsWGhra0NVVRW//fYbQkJCEBwcjPXr10NNTQ08Hg9lZWXIzs6GhoYGGjduDB0dHaioqMDDwwMLFy5Er1692GtNmDABmzZtwrJlyxAcHIzCwkI0a9YMPXv2REhICAYMGCAlb4aGhigqKkJMTAy2bdsm5cxlZJeI0Lx5cyxbtkyqKhbThyJlJasYZSHZB/PeYN4pjHLMy8uDrq4uateuDVVVVWRnZ6N79+5QUVGBra0t5s6dC39//3/c6fQzQywWY/bs2cjOzoanpyfq1q2LmzdvwtLSEmvXrkW3bt2q3ef+/fsxceJEhVGJurq6sLW1xYULF2Bra/s9buEvR4MGDdh00s+fPyMiIgLBwcEgIjx+/BidO3eGlpYW9PT04OjoiCNHjuDp06do1qwZysvL8fz5c7x9+xaqqqpo1KgROnfujBo1auDatWs4cuQIzp8/zzr5PD09kZmZiVGjRmHfvn0wNjZm9bOxsTFevHiBtm3bQkVFhS2ooa+vj/j4eLRv355dgDLvXckIZzs7Ozg4OEhVvGH0q6L0WEB5FUrmO4yhy0RZMw4xxuiOjo7G2LFjAVS8U5YvX47g4GCYmZlh8+bNUFFRwfv37/+x6jj/Bjx9+hT+/v6wtbWFnZ0d8vPzsXTpUujq6mLjxo3VdvAyGxLLly9X2O7p6Ylhw4b9VI4nZ2dnNqrgxo0b8Pf3R3x8PLhcLiZOnIgaNWqgdu3aMDY2hru7O6Kjo+Hu7g4NDQ2kp6dLpefZ2dnhl19+gZaWFjw9PTFr1iy2yAhQoYO3b9+OoKAgrFy5ko2kGjBgAJYsWSJV6ZnP58PAwABFRUU4deoU5s+fz6aYS+pYsViMBg0aICAggF3MqqqqShH6y+plBpJREbKQzHwoLy8Hn88Hn89nK+YxERPMWiAvLw/dunWDUCjE0KFDERAQgOnTp//jTqefGUSEwMBAfPz4EV5eXjAyMkJCQgKsrKywcuVKKbqUquLQoUMYO3asQtnX0tKCs7MzTp06BWdn5+9xC3856tWrx3I/5eTkIDIyEoGBgUhJScGDBw/QrVs31lbs168f4uPjkZaWhrp16yI7Oxt79uwBh8OBlpYWHBwc0L9/f+jo6ODWrVvYvXs3zp07J5Vmn5ubCzc3N+zcuRNNmzZlM2pat26NR48esVHJjP6rXbs2EhMT0bJlS6niI5IfVVVV2NjYwM7OTiplVlIHS/4ruQ6WtaMVZQkxephZCzMbUDExMfD29oZYLIampibWr1/PRp2vX78eBgYGePfuHXr27PnX/5DfCX8qbGjRokXo2bMn9uzZAwsLC3Tr1g0zZ87E0aNHMX36dOTn51e7z+TkZLZCiiJ07NhRrhzjzwJjY2N4eHhg9OjRGDNmDCZPnoz79++jfv367MRm8tl1dHRQq1Yt1KhRA9ra2jA0NIRYLMbr16+Rl5eHTZs24Y8//pB6MYlEIujr62POnDlsdSgiQmFhIWbNmgU/Pz8kJyejqKgIpaWl4PP5+PDhA/bs2QM3NzfW+GQqazAf5u/y8nKUlZWhrKwMfD6fFThJwVJUiYNRiAxnExOtIUmcxnieGUeZiooKCgsLUbduXeTl5WHChAkICQnBvHnzcOHCBfj5+cHIyAgFBQX/xE/5r8CXL18wZ84cHD9+HP7+/ujWrRsbIdeuXTusWLGi2n3m5+ejUaNGSttlo35+JnA4HJiYmKBnz544duwY0tLS4ObmBh0dHTY039DQEHXr1kVWVha0tbWhp6cHHR0d6OnpQU1NjS0ecP78efTp00fK6QRURJ9NnDgR9+7dQ1FRETp16oSEhAQ0b94c+vr62LhxI0pLS9kF4u3bt5GcnIyBAwdCV1dXipBQUVlmSdlWtiAF5HdVlRUOkG1n3mMqKirgcrmoW7cuVFVVcfbsWfTr1w+lpaVISkrCzp070bp1658m5fJHxcqVK/Hrr79i//79sLKyQteuXeHv74+YmBjMnTsXOTk51e7z36yDjYyM4OnpCVdXV0yePBlTp07F5cuXoa+vj0aNGkFFRQU2Nja4cuUKtLS0oK+vj7p168LQ0BCGhoYoLi7G9evXkZGRgQ0bNmD79u1SkWVEFeXZFy9ejK1btwIAy+k4Z84cTJ48GW/fvkVxcTG70cIQdHt5eSmUVUa2GKNUUo8q2klVZOjKvgtkHctMBDQAdrdXRUUFRUVFMDIyQlFRESZPnozg4GD4+/vj0qVLmDJlCoyMjFBYWPhX/2z/WhQUFMDf3x9HjhzBrFmz0K1bN5ibmyMyMhJ9+vTBokWLqt0nj8dDvXr1lO5+a2ho/DRpdrLgcDgYNGgQevfujejoaDbCSE9PD7/99hu0tLSgq6sLQ0NDfPnyBXp6eqhTpw6MjIxYGY6Li8P58+fZaHlJpxNQISujRo3Cy5cvkZubi44dOyIhIQF169ZFkyZNEBISAi6Xi/z8fJSUlOD27dtIT09Hhw4dULNmTSndKxAI2A+jd5moQiaqQVElSVkZZuRfUndL6mImPVYoFEJVVZXdvC0uLoahoSHU1NQQFxeHvn37oqCgAPfv38euXbvQpk2bn3Yu/CjYsGED6tevj4MHD2LIkCHo2rUrJk+ejFOnTiE4OBjp6enV7rMqOjglJeXPDPsfQ926deHt7Q1HR0fMmTMHAQEBiI2NRc2aNdkIpa5du+L58+fQ09NDjRo1oK+vD319fejq6iIuLg6RkZHIz8/HmjVrsH37djluRwMDA6xYsQIbN24EUOGsy87OxqxZszBz5ky8evUKZWVlKC0thUgkwtOnT7Ft2zZ2k0VWBzPyK/m35FpWErK2MfOvbOVoWQJyJr2OSXFnnNNFRUWoV68eeDweZsyYgYCAAIwfPx5Xr17FjBkzfkod/M0rwOLiYpZgUhaGhoaYOnUq9u7dW+1+69evjw8fPiht//Dhwz9CXvm98PHjR3To0AFhYWH47bffEBUVhRo1aqCkpAQikQhGRkbIy8tjPaVCoRBlZWVsO1BB1qavr4+ioiI26oiIUFpaCi6Xi969e+P27dsAKqI1wsPD0bhxY/z++++YM2cOxo8fjyVLlsDa2hoCgQAbNmyAgYGB3A6NpJAwC0rJ8H/ZUvCyAigZKiwpbJIKWfI7THqOhoYGiAjt27fHrl270LlzZxw/fhybN2/GsmXL2PMTEhIqfTn/h8oRERGB2bNnSxFvMhg3bhzi4+PZtIuqombNmsjOzlbaLrnA+VmRm5sLJycnbNu2DYmJiXj16hW0tLTYKh1NmzZFZmamlAwzRiGTL37w4EHY2dlJPQtJJ+2wYcNw8eJFDBw4EImJicjMzMTKlSshEAgwdOhQBAYGwt/fH/PmzYOtrS38/PzkopkklZskb4TkR9niRFEEhawSlVSaTN+S74WGDRvi5cuXGD16NOzt7dGqVSskJiaiQYMGACqiT3R1db/77/O/grKyMty4cQPjx4+XazMwMMDs2bMRERFR7X7/7To4NTUV7du3x8aNG9GtWzdERkZCVVUVtWrVAo/Hg5aWFsuPwuxElpSUsBs2YrEYb9++ZUukSzp4ysvLUVxcjO7duyMpKQkAMHr0aGzduhWNGjVCaGgo5s2bhzFjxmDx4sWwsLBASUkJQkNDYWRkxG68AP8nZ5JRjGpqalKbM8rkWHa3lulPkQwz5zP6l/kAQPv27REREYG2bdti//79WL9+PdasWcNe5z8d/Oewd+9eTJkyBXXq1JFrGzVqFB49esTSD1QVOjo6yMvLU9rO6JmfGenp6Rg+fDh27tyJJ0+e4NGjR6wNW1xcDAMDA7YUO4fDAZ/PR1FREQoLC0FEyM/Px759+zBgwAD2GAM+n4/8/HzY2dkhNjYWPXr0wLNnz5CVlYXAwECoq6vDzs4OCxYsQGBgIObOnYv+/ftj3LhxrNNWsliOZFEgpnok4/yTlGXZNFnJD9MuW9VSMmKK0b8aGhrQ0tKCqqoqjIyMkJKSAj8/P9jY2KBRo0ZITExEkyZNAFSQvP/nePp2CAQCxMbGwt/fX66tRo0aCAoKkqqUVlUYGRn9q3Vweno62rZti9WrV6N///7YvXs3W1GRx+NJ2czM/Geqm4tEIpSUlODTp08AKlLCZdeefD4fbdu2xcuXLwFUrGc2bNgAY2Nj/PHHHwgODsaoUaOwaNEiWFpaIi8vD+vXr0ejRo2gpaUlVR2SkV/GHmBsXEkdrCzimIFs2qxkYIbsZhDjdGI2f9q1a4eoqCh07NgRERERWLVqFTZv3sxe72fUwd/seEpMTISJiYnSdjs7O1y5cqXa/Xp5eWH79u0K24RCIU6dOgVra+tq9/ujoGHDhkhOTgaHw8H48eNx4sQJFBYWQiAQ4MuXL9i+fTv4fD6ysrJQUFCAgoIC5ObmIi8vD0VFRewk19XVZckMeTweSktLUVBQwP7LpLE5Ojri8+fPCAoKglgsxqZNmzBlyhSUlZWhYcOGOHToEGrVqqVwd4WpisHwtgBgBQ+Qj3Ri2mUVpqyCBSC1mysp0IzRq6Ojg1atWmHhwoXo0aMH3rx5gylTprAG8YcPH/5Ls/uTuHXrlkIOCKDidxw4cCAePnxYrT61tLRQt25dvHr1SmH7iRMnYGlpWe2x/kioVasWMjIyYGtrC2NjY2zfvh06OjooKirCixcvcPnyZYjFYhQVFaG4uJgl/i4pKQGHw4GOjg4EAgE0NTVRWlqKsrIyVtEyf2tqaqKkpARisRhr1qyBt7c3Tp48iTFjxuDIkSPo2LEjXr16hYiICLi7u0stIAHpRSsjYwyqoiQlz5Nd4CpybDHnS56rra2Nt2/f4tixY4iKisKFCxekSr2GhIRg3Lhx3/fH+R/Co0eP0K9fP6W/paWlJeLj46vd76hRo5Qaywyp/rBhw6rd748CY2NjKR186tQppKeno2bNmsjLy8OxY8fA4/GQkZGB3Nxc5Obm4suXL8jNzQWPx4Oenh60tbWhq6vLkgozepLH44HH47EVb4kItra2KC0txYwZM1BeXo4//vgDs2fPZjkcjx8/jnr16gH4v9QZ4P90JKMnAXkZk4QijhjmO7LGMnO+rMHL6GBGb//yyy8IDg5G+/bt8ebNG8yYMYNdqKalpeHFixfflM75Hypw+fJl2NnZKW03MzPD3bt3q9WnmpoaWrRogUePHilsj42NxcCBA6vV548Gxjlubm6OZs2aYdu2bdDT00Pt2rXx4sULPHz4EIWFhcjMzGRLs3/+/BlfcnLYzSGgInWYsa3LyspQXl6OvLw8FBQUsHxJALBu3TpMmDABUVFRGDp0KMLDw9GhQwe8evUKK1euxIgRI+Q2aAGwG8cMryogLY+yssq0y+pbxiksyf3GOKIkHU/MOYwdraWlhdTUVOzfvx+7du3ClStXpAoArFu37qeiPfjR8OLFi0q5dQYOHIj79+9Xu193d3dEREQoTK8Ui8WIioqCk5NTtfv9UVC/fn28f/8eADB+/HjExcUhJSUF+vr6KC0txc2bN8Hj8ZCXl8dGB5aVlYHEYhgYGLAFBGrUqMFyNTHRR4zjmKl4CwAWFhbQ1tbG5MmTUVhYiC1btiAwMBBEBF1dXZw6dYrdEJWs0sxsHDORxrKp7VVxNkn+X1Z3S9rpzG/NvBuYNfOvv/6KpUuXokWLFnj9+jUCAgJYbq+srCzcvXsX/fr1+wt+pb8Of2nOiyKh+Rpat24NY2NjdnefQWFhIcaOHYvx48f/NIRqitCmTRskJycjPz8fY8aMgZ6eHjZu3IgGDRrg0qVL+OOPP3D37l0MGTIES5cuRWpqKvLz81FcXAwNDQ0YGRmhU6dO+PDhAwwNDaGhoYGSkhIUFBSAz+eDw+EgOTkZenp6bERUcHAwevbsiZUrV8Lb2xtr165Fz549sWHDBpYLRlGKjmxaHPB/u66SClDSYGU+jGJkdng0NTWhqakJLS0t1qPM9KOhoSHVrqGhAS6XC39/f3Tp0gVaWlpIS0sDUKHIjx8/jjFjxmDz5s3/5E/5r0BlMvot8gsAixcvxqRJk9jdBgZXr17Fjh07FEZo/ExgIhg0NDQwbdo0REVFIT09HXp6eggNDcWjR48wfvx4DB8+HOfPn2fTSDU0NGBoaAh9fX307dsXd+/ehZaWFsRiMcrKylBcXMzu8Fy8eBGdOnWCQCBAmzZt2Mofbm5ucHd3x4sXL7B161YpzidJSEYtSkY9KYp4knUUKzJ6JReusotYRcfV1NSwatUqpKeno0uXLsjPz2eN+I8fP2LKlCmoUaMGzM3N/+6f7z98BU2aNEGbNm2wePFi8Pl89jiXy4Wfnx88PT2hra39D47wz6FZs2bsYtTT0xN16tTB6tWroa2tzXIqvHnzBrNmzcLOnTuRnp6O0tJSqKiooEGDBmjVqhXat2+PtLQ0GBgYQE1NDWVlZSgqKmIjTT5+/AhtbW2UlZVBLBZj0aJFGDhwIJYtW4aRI0di+fLl6Nq1K8LCwtiiIYoiDBXthirbbZXUxZIFBiT1s6z+lpRXyQ0iVVVV8Hg8+Pr6omPHjtDV1UVqaiqACh188uRJeHl5YdOmTX/vj/cvQ2ULF+DbdfCCBQswc+ZMtnANg/j4eISGhrJFLX5WMPafmpoaZsyYgSNHjiAlJQWdO3dGQkICMjIycPr0aURGRuJJYiJsLlzAoshILNq5EzM2bUKfQ4cwqFcvPH/+HA0aNGD5GHNycpCVlQUVFRVcu3YNbdq0QXFxMZo3b44dO3bg7du3GDt2LHx8fJCUlIQlS5Zg0KBBrKNJVp9KpuvIRiYpi15UFM0o6VTS0NBgP5IEyIz9zHBZqaurIzQ0FMnJyejRowcKCwvB5XIBVDiNZ8yYwXI9/Ydvx7fKaGWoX78+evXqhcDAQJSVlbHHi4uLMWXKFDg5OUlVP/7Z0KBBA5SUlCA9PR2urq5o2LAhVq9eDV1dXbRq1QqPHz9muZ0unz+PwVeuIOTIEaw+eBDzduxA74MH0djAAFlZWey8Z+zoL1++oKSkBLm5uVBTU2Mr1gYHB8Pe3h4rVqyAi4sLFixYgDZt2iAiIoLlXVW0cSMpv5J6WFZWFdnRssck9a3kWpk5JinXTJSXj48P2rZtixo1aiA1NZVdp589exbu7u7YuHHjV/XIj4ZvrmpXXFzMVmlRhOPHjyM1NVVhCOLXQETYvXs3Dh48iAYNGrC8Qv7+/jAzM6t2fz8akpKSEBgYiLCwMBw/fhxz5szBmTNnsH79ely6dIktNRkcHAwnJycMHToUOjo6+OWXX9CyZUuoq6tj+fLlaNmyJTw8PFBeXg4ul8uGIc6dOxfj/x97Xx0W1dq9fQ8dCoLdgd15ji3dCCogigqoYLfHDkTswK5jezx2dwt2K7aCpCKCdA8z9/eH7+yXgRnAPJz3993XxaWz955nr71nr72eZ8W9fHzQrl07qKurIzMzE4mJiUKZgIqKivCAAyjABwP8N5tBTU0N2tra0NHREZxCMqVQUVFRSF6aPyVY9lmmpDLFkSmzbJtIJBKU7/jx43B1dUVkZCQyMzOxbt06gVfEwsJCaGmpCLL2sl+DnJwc7N+/HwcPHoRUKoWuri4GDhwIc3PzIpW6pHfjABTLuHjxYjRt2hS2trYFjicJa2trHDt2TCC5/xpERkbCz88PHz9+RPny5fHhwwc0b94cM2fOLLH3qLggCW9vb7Rq1Qru7u5o1qwZWrdujYkTJ8LBwQFaWlrw9/fHunXr8OjRI+zbtw8GBgaoUqUKatSoAW1tbSQnJ6Nnz544duwYSpUqhdzcXIHz4dWrVwgICMCuXbuErIns7GykpaUJzniZnuTVwfy6KPu/bFKqaJIru57CrjVvOVH+SGv+7+aN5rZp0wbNmjXD5s2bcejQIezfvx9isRhly5aFt7e30ihN3gn61+Dt27dYt24dQkJCIJVK0b59e/j4+BQrJb2k67Ai+bKystC9e3ecO3dO4TvqzJkzePLkCaZMmfLV5yOJv/76C7t27ULFihWFbJ6RI0f+qzOOZXj69CnGjx+P9evX48KFCxg+fDiCgoKwd+9erFu3DsOHD0fVqlUxffp0DBs2DOXKlYOOjg46dOiAli1bQldXF0uWLIGhoSG8vb0F/ZWV7UyZMgWenp7o3LkzVFVV5TIpcnNzoaamBl1dXYGbQpGTWJbir6GhAR0dHcExJpus5i3PKa4O5/1OXnufFzL9PXv2LOzs7PD69Wuoqqpi/fr1eP36NUjC1NQUXl5eCsu0ZWN/rQ3Ozc3FgQMHsH//fkgkEujo6MDDwwPW1tb/szZ41apVqFq1Knr16qXwO3Z2dti3b983kT+/f/8efn5+iI6ORoUKFRATE4NGjRph1qxZSn+3fwtIYuTIkahbty4GDRqEVq1aoV69epg7dy5MTEyQm5uLdevWYdP69bhz/z7CAeTt00sVFWTUrw8bAwMcOnYMZcuWRU5ODlJSUhAfH4/w8HCsXLkSu3btgpaWlrCA/fjxI2JjY5GVlQVtbW3o6elBV1cXIpFIjj5C1tlVlrEo44srVaoUtLS0BD2WLUjzc7IB8l0oZZ9l8+W8dj9vFoZMx2W2vlOnTqhWrRr+/vtvHDlyBHv37kVOTg4MDAwwaNAghZ2HZfdXNtbX4N27d1i3bh1evXoFkmjXrh2GDBkiZJMUhpKuw4rkE4vFsLGxwYULFxS+o65evYorV65gzpw533TOvXv3Ytu2bShfvjwkEglSUlIwdOjQQrMk/y14/fo1hg8fjnXr1uHWrVvw8vLChQsXcPr0aQQEBGDw4MGoW706psyeDU8A2/J8lyoqEDVqhNWenuB/AsDAl98jNTUVqamp8PX1Rc+ePWFmZibMo2U6LOtYW6pUKejp6UFdXV2uCicvf7FYLAZJlCpVCrq6usL7IH+JbF5dLcqtkt8xLcuWlOmwbC0cFBQEMzMzPHnyBPr6+li/fj2ePXsG4Es23aBBg1C2bFmF5/gWGyyRSHD48GHs3bsXYrFYaMBgb29fLOdWcXX4mx1PADBz5kwYGRnB09NT7vj4+Hi4urri8OHDKFOmTJHCKoOsFltdXf1f7d1VhJcvX2LhwoX4+PEjbt68KdSN79u3D/PmzcOECRPg4OAglJhpaGigYcOGaNq0KdTV1ZGUlITJkyejatWqGDRoEAwMDBAYGIg///wTtra26Nu3r7DglBnFlJQUgRAR+FIbK+uoJ1MwWdmPTPFkx2hrawvOKtkiVlbOJ1OYvOSJqamp2LlzJ968eYO0tDRUrVoVWlpa+PDhAzIzM+Ho6Ah7e3uBz0nm5Dp06BAOHjyIyMhIvHz5EkOHDsWUKVOEmnRlSE1NxZIlS3Dz5k2UKlUKaWlp+P333zFp0iSlDioZMjMz0bt3b9jY2GDAgAHQ1dXFx48fsWLFCuTk5GDZsmWFKl1JN5iAYhnj4+PRu3dvHDhwAIaGhnLHb9y4EfHx8Zg+ffp3nTc7OxupqalCZsD/CqRSqeA4Tk5Oxr1792BsbIxSpUrh4sWLyMjIQHBwMFq2bImpU6eiVatWqFatGurXr4/SpUtDIpHgzp078PPzw7Bhw4Q687///huXLl3Ctm3bUKFCBblJpmxxK8uMkjmfZKUveXnZ8k5GZXqbt4wmrxNYZugAyBnBK1eu4MSJEwJRerVq1ZCcnIz379/DyMgIgwcPRr169SASiZCRkQEdHR1ERUUhICAAb9++RWBgIKpVqwZfX1+4u7sXabgCAwOxcuVKIXNTVVUVI0aMKFZp5qlTp7Bx40b4+voKHTovX76MBQsWYOXKlXLlBYpQ0nVYmXzz58+HgYEBhg0bJnd8YmIinJ2dsXfvXpQvX/6bz0sSSUlJQmfU/yW8efMGCxcuxIcPH3Dr1i2IRCKMHz8eCxYswPTp0zFjxgy4uLjgxYsXsLOzg1gsRrt27WBqagpDQ0NkZGRg/Pjx0NPTw9ChQ1GpUiXcunULa9asgbm5Oby9veU4myQSCTIzM5GQkIDk5GShZF5HRwdqampyJe55bbAsSzjvgjVvVpNMXwH58tfk5GRs374dz58/R1paGqpUqQIdHR18+PAB6enpcHR0FFq/53VyyUpjo6OjERwcjMGDB2Pq1KmoU6dOofczPT0dy5YtQ1BQkGCD27Zti0mTJhWwL/mRnZ2Nvn37olu3bvDy8kLp0qURFxeHVatWISEhAWvWrPmftMHJycno0aMH9u3bV0BPZfMnZd3piguZQ0VfX/9/is+HJDZv3owDBw4gNTUVt2/fRrdu3aCmpoZLly4hJycH7wYORMO//sJuAH3zf19FBbccHTH182cMHToUtra2SElJwY4dO3D27Fn8+eefQldKmZNIIpEgNTUVMTEx+Pz5M0QiEfT09KCvrw81NTWhWY6sAYgsg1nmpNLW1pYL4CrTYZk+3rx5E8ePHxcyO6pVq4aUlBS8f/8etWrVgre3N+rXry/YYG1tbcTExGDlypV48eIFrl+/jgoVKmD27Nnw8PAo0pF08+ZNBAQEID09XXhvDR06tFgdTC9evIiAgAD4+vqiXbt2IL90AZ43bx6WLFmCVq1aFfr9kq7DyuQLCAgAAIwbN67A8c7Ozti+fTuqVKnyzeeV2WAVFZUi1zL/Nrx79w4LFixAZGQk7t27h9zcXIwZMwZLlyzB+GbNMO/1awxITcVNAK8B5HWjUEUF0uHDMeo/Tt4RI0agZs2aePDgAZYvX47ff/8dY8eOFeaSMv2ScUV9+vQJ6enp0NHRgZ6enrBWztshUtbER+ak0tXVleNxUzSPzpupnJSUhJ07d+LZs2dISUlBlSpVULp0abx//x6pqamwt7eHm5sb1NXVhWYhGhoaOHr0KHbu3IkPHz7g8ePH6N+/P2bOnIl69eoVej8zMzMREBCAy5cvC3Q8LVu2xOTJk4ucB4rFYvTr1w+//fYbBg8eDH19fXz+/Blr165FZGQkNm3aVOT745c4niQSCcaNG4fExET069dPcH6cOXMGq1atKnKyX5KQmJiI/fv3IzY2FkZGRujZs+cvKSeQSqU4duwYevbsiTlz5mDLli0oW7Ysrl27hps3b8LS0hL9+/dHs2bNUL58eTRv3hylS5eGWCxGlSpV8Pz5c+zevRvx8fEwMjJC3759Ub16dcFwydIQZWl7iYmJ+PDhA1JTUyESiaCvrw8DAwNh8pmRkSFkVsi6Y8iMpMwBFRsbi1u3bgkEca1atUJERARq1qwJQ0NDGBgYYNSoUVizZg06dOgAPT09REVFITMzE9WqVRMMqrW1NRo3boxt27ZBIpGgXbt26NatG0aNGoVXr16hQ4cO2LhxI/bt24d169ahQYMGCu9hamoqnJ2dMW7cOFhZWQnKf+nSJSxatAgHDx4s9IU9bdo0dOrUSaFxnTVrFtq0aQNHR0el3y/pBhNQLuPjx48xfvx42Nvbo3Pnzvj8+TP++usvVKpUCUuWLPnXdKAjiVu3buHq1atQVVWFnZ3dL3v/ZGVlwcTEBOnp6YIe79q1C/369UO3bt0QFRWFP/74A1WqVEHdunVRqVIlSKVfWqNKJBL89ddfuHnzJjQ0NGBvbw9bW1shQgNAcBbJnMPp6elISkoSeKJKly4NDQ0NYWIs42bLm6Kfl7hfIpHg3r17ePr0KSQSCSwtLQUn/2+//SZEhmSLRUtLS6SnpyMqKgplypRBlSpV8ODBA6Snp2PmzJm4ePEiLl26hHbt2kFLSwsrV65Ey5Yt0atXL3z48AFOTk54//49Vq1apXTxuG/fPiHrU2YgExMTMWXKFLRt2xbe3t5K739ycjJ69eqF06dPFyjDjouLQ58+fZRGJGUo6TqsTD6pVIpJkybhw4cP6N+/P8qWLYsbN27g+PHjWL58eZGT/ZKEpKQkHDhwADExMahduzZ69eoFHR2dn35eqVSKc+fOwdbWFlu3boWfnx8kEgmePXuG4OBgdOnSBba2tjAwMECtWrVgYWGBBg0aQCKRoGzZsggODsbOnTsRFxcHIyMjeHh4oFatWsJkVObwlelnRkYGYmJiEBcXBxUVFVSoUAFlypSBurq6UC6QkZEhdKiSlaXLso/V1dURGxuL69evIyoqCvXr10fbtm0RERGBGjVqoFKlStDU1MSkSZOwZMkStGvXDoaGhoiOjkZ6errQdfT69euwsLBAu3bt8OeffyI7OxsdOnRAhw4dMGHCBERERKBp06ZYu3YtDh8+jICAAKUkphkZGXB2dhai8TIbHBQUBD8/P+zfv19pZBYA5s6di0aNGilsD75gwQLUrl0bbm5uSr9f0vUXUC7j8+fPMXr0aFhZWcHY2BiJiYnYvXs39PX1sWLFin9N50+SuHv3Li5dugQVFRXY2NgIXap+NrKzs2FtbY2YmBj06dMHvr6+2LRpE7znz4d1eDgiATwEkD93O6dqVSQ9fIhDhw4hKCgIGhoasLW1hY2NDTQ0NAQnrowyQpbFlJaWhtDQULx79w7q6uowMjJChQoVhAWkrBlBVlaWoLeyeXTp0qWhpqaG+/fv49mzZxCLxbCwsICKigoSEhIEGyzjnwG+ZPlnZmYiMjIS+vr6qFq1Kh49eoSkpCTMmjULgYGBOH/+PFq3bg0tLS2sWLECbdu2hbu7O168eAEPDw+8fPkSGzduVGoHjx49ir1792LlypVClnBycrKw4B01apTS+5+eng4HBwecPn26QIZ8QkICnJ2dcfHixULnkyVdh5XJRxLTp09HaGgoBgwYgAoVKuDWrVs4cuQIFi5cWKBzcUlGSkoKDh48iOjoaNSoUQPOzs7flG35tZBKpQgMDISpqSnWLluG/ZMnIyY3F7cBhAJoB2ALgIH5v1ezJsSvX+PZs2fYsWOHsH739PSEkZGRXCZhXidRbm4uUlNTERoaiqSkJFSoUAGVK1cW1vwyHU5PTwdJgS9NTU1NWFN/+vQJ169fR2RkJIyMjNC+fXtERkaiWrVqqFKlCiQSCRYsWAA/Pz+0atUKFSpUEBxO1apVg6qqKq5du4auXbuiW7du2LhxI9LT09G5c2e0atUKU6ZMEdb1K1aswOnTp7FgwQK0bt1a4T3MysqCi4sLvLy84OTkJOjazZs3MWPGDOzdu1fgklSEpUuXCl1/82PFihXQ19cvkg+u2DrMYiA5OZkAmJycrHB/eHg4ly1bRj8/P548eZK5ubnFGbbEYPXq1bS3t+eBAwd49+5dbt68maampjx16tQvOb9UKqWNjQ319fX5+++/U0NDgx06dGBCQgLt7e2pq6vLCRMmMCAggBs3buT+/ft58uRJvn37tsC9zs3NZWZmJhMTE/nu3Ts+e/aM4eHh/Pz5M2NiYvj27Vs+ePCAx48f5/79+3nixAlev36djx494qNHj3jz5k1euXKFly9fZlBQEO/evcunT58yLCyMt27dYufOnQmAAKinpyf8HwD19fW5fPlynjlzhs2aNSMAPnv2TOE1nzhxglpaWtTV1eWYMWNoZmZGkUjEvXv3Mj09nZmZmTQyMuKAAQP4/v17du/eXen9mzNnDk+ePKlw34ULFzht2jSl383JyaGFhQWlUqnC/QkJCXRyclL6fbJo/SgJKExGsVjMY8eO0c/Pj8uXL2dkZOQ/IOG348OHD7S1teW0adN448YNXr16lSNGjKCbmxtTU1N/iQx3796lSCTi77//TiMjI6qqqnL79u28d+8e1dTUaGFhwW3btvHw4cO8efMm79+/z9DQUObk5BQYSyqVUiwWMyMjg4mJiUxKSmJGRgYzMzOZmprKhIQEhoWF8eHDh3z06BHfvHnD6OhoxsbGMiYmhpGRkQwLC2NERASjoqIYGxvLxMREpqWlMSAggKVLlyYAamhoUFNTU06HrayseOXKFe7bt0/4rAgZGRm0tbUlALZp04bLli2jhoYG27Rpw5SUFEokEu7evZsA+OrVK06cOJFXrlxROFZaWhrNzc0pFosL7JNIJLS1tWV8fLzSe79mzRoeOHBA6f6ZM2cyMDBQ6X6y5OtwUfJFRUUxICCAfn5+PHr0qMJ7WZKxadMm2tjYcO/evbx79y63b99OMzMzHjly5JfJ0KNHD5YuXZpWVlbU0NBg/fr1GRcXRxcXF5YpU4bdunVjv379OGnSJP711188d+6c0udSIpEwOzubSUlJjI2NZXJyMjMzM5mWlsb4+HiGh4fzypUrPHDgAC9cuMDg4GBBZ9++fctnz54xODiYL168YGhoKGNiYpiSksI3b97QxMREqQ0uVaoUV69ezWvXrrFDhw4EwDt37iiU8fz589TR0aG2tjZHjBhBOzs7AuDff/9NiURCiUTCJk2a0MXFhZ8+faKNjY3Se7d48WKlOnj9+nWOGzdO6Xdzc3Npamqq1AanpqbS3t5e6ffJkq+/ZOEy5ubm8uTJk/Tz8+OyZcsYFhb26wX8Dnz69IkODg6cNGkSr1+/zsDAQI4ePZrOzs6/7Dd58uQJVVVV2b59e1arVo0AuLFMGQYD1AQ4DiDz/aXq6zMqMlLhsyeRSJiVlcX4+HhGRkYyMTFRsMExMTF89eoVd+3axYULF3LLli28ceMGX716xTdv3vDhw4e8fv06r169yhs3bvDx48cMDQ1lfHw8V65cSX19fQKguro6tbS05HTY1NSUFy9e5N69ewmAXbp0UXi9mZmZdHJyIgC2aNGCy5Yto6amJps1a8bExERKJBIeOXKEAPj48WPOnDmTp0+fVjhWVlYWTU1Nlc5HHB0dGRMTo/Teb968mTt37lS6f/78+Tx37pzS/WTJ1+Gi5Hv//j1XrlzJOXPm8NChQwrvZUnGjh07aGVlxd27d/Pu3bvcuXMnLSwsuHfv3l8mQ9++famrrs5eAEsBbAEwBuAAgKUBvsunv1nlyzMyIkKp7ZBKpczOzmZycjJTUlKYnZ3NnJwcpqenMzExkc+fP+fmzZu5adMm3rhxg2FhYYyOjmZERARfvnzJhw8f8smTJ3zx4gWjoqKEube5ublSG6yjo8MVK1bw2rVrNDU1JQBevnxZoXxXr15l6dKlqaWlxSFDhrBHjx4EwK1bt1IikVAqlbJt27a0t7dnQkICLS0tlV7rqlWruGvXLoX77t+/z2HDhim971KplKampkp9NxkZGbS2tlb6fRmKq8M/pPalZs2aGD9+/I8Y6pfj0KFDCA0NxfHjx4VIQLt27dCvXz/06dMH1atX/+mtCkUiEXbu3Im5c+di7dq1KFOmDB4+fAhLS0vs2bMHDRo0wL1791CvXj0kJiYiPj4eVapUESKXeSFLKZQRg8v4sWTk49ra2kLLyo8fPwrphLKMCbFYLNSXytKDS5UqhRs3bmDcuHHQ1tbG3r17YWFhAUNDQ7x8+RJv375FtWrVsGTJkgLPQUxMjMLOc/b29oiOjoa6ujr09PTQv39/2NnZwcPDA0+fPkXNmjUxePBgzJ49G9OmTUO5cuUQFhaGWrVq4erVq9i+fTsSExNRqVIlPH78GDNnzlR4b83MzLBw4UKl9z4uLg516tRRGgUyMDAQSh7+V6Gmpobu3bv/KztVSaVSeHp6YuXKlXId07p164bAwEAMGzYMu3bt+ulytGvXDidOnMDUqVPx/v17GBoawtPTE9u3b8fo0aOxZs0a9OrVC2KxGE+fPhWio1SQcCrLVJJlDchS9vmfFF5tbW2UKVMGqampyMjIELKc8nfJUVFRgZaWlsApNWvWLGzbtg0+Pj7w8fFBq1atkJWVhaCgIGhrayMhIQHDhg2T61YqIyPND21tbZw4cQLR0dGoXr06IiIiBD6DCRMmYOPGjejRowfKlSsHf39/oXzJ2NgYnz9/xrZt23Dt2jUAgJ6eHnr06KGwFFNFRQWDBw/Gnj17lBLiPn/+vNBn9/f/kMj+2zs5FYZq1aph7Nix/7QY34RTp07h0aNHOHnypBCla9euHfr27Qt3d3dUq1YNbdu2/elybNmyBf7+/li9ejUqVKiAsLAwtGzZEoGBgTh+/Dg+fPiAOnXqICEhAUFBQWjatCkaN26scKy8HGoy7hc1NTVkZ2dDU1MTBgYGyMzMRHR0tMAZU6pUKeGdIEvj19LSgoGBAXR1dREUFAQfHx+IRCLs3r0blpaWKFeuHN68eYOXL1+iRo0aWLlyZYHMhE+fPimU0cLCAlFRUVBVVYW+vj68vb3Ro0cPeHh4oG3btqhbty58fHwwfvx4zJw5E7Vr18arV6/QoEEDXL9+HVu3bsXnz59Rvnx5PHv2DDdu3FB4nk6dOsHX11coWciP5ORkVKtWTakN/hUR938asizd4pQ0lTSQhJeXFxYsWCA3V+7atStu3boFb29v7Nu376fL0bx5c5w+fRpTpkxBXFwcDA0NMSQhAesBTASwCMAkAAYAPgMoAyBLIkFqWprCZy+/DickJEBdXV3Q4QoVKqBRo0YICQlBREQE0tLSULZsWWhra0MikQgE36VKlUKlSpWgqqqKadOmYdOmTfD09MTw4cPRunVr5OTkICgoCJqamkhJScGwYcPkmm6kpaXJlcPLoKWlJXDpVq9eHR8/fsTFixdx8+ZNjB49Gjt27ICtrS2qVKmCuXPnYt26dRgzZgxsbGyQmJiI7du34+rVqwC+zHNtbW0VlmKKRCIMHToUu3btwh9//KHw3r948QJDhgxR+tv8/vvvePLkyb++o3FhqFKlisA19G/DpUuXcPXqVZw+fVrOBvfp0weenp6oVq3aL+mctm7dOlQ7eRIrxWKUAxAOwATASQBHACwBsA5AAgAxALXsbHyIiUFVJfYjL2+SjEaG/8l40tXVRbVq1VCpUiXcu3cPGRkZqF69OvT09AT6GVnGcYUKFVC6dGncuXMHgwcPRk5ODnbs2AEbGxuUL18eISEheP78OWrUqIENGzYUmIt9/vxZ4fV269YNkZGRAIAyZcpg9OjRcHZ2hre3N3777Tc0btwY3t7eGDZsGN69e4dmzZrh8ePHaNmyJW7fvo0tW7bg06dPKFu2LF68eCHMqfOjTZs2mDFjhrDWz4+srCyULVtWaXattrb2j6VKKdKFlc+LJZFIeOHCBc6fP58BAQEMDw8vzhAlFpaWlszIyFC4782bNxw0aNAvlef48ePU0NBggwYNKBKJWK9ePY4dO5YikYgVK1bkb7/9xvbt27NJkyZcu3atwjGkUimTkpIYEhLCmJgYxsfH8+PHj8Ln9PR0RkREcMOGDVyzZg23bdvGXbt2CX979uzhoUOHeOPGDa5Zs4ZNmzYlABobG/PTp09KZZdKpQwJCeG9e/eYlJTEtLS0Yl+3vb09U1JSWKpUKU6aNEnwUNepU4fdu3fn4sWLeeXKFQ4aNIhTp05ldHQ0STIkJIQ1a9bk5MmTlXqCHR0dlWYAJCcns1evXkrlkkgkSrM+8o6BEhypIeVl/PTpE9etW8d58+bxyJEj/7rsiLw4d+4c582bp3T/wIED+fbt218mT3p6Oq2trampqSnozerVq1m+fHmWLl2azZo1o4WFBdu2bUsXFxfhOc4PqVTKjIwMpqenMysri1lZWUxPT2dqaipzcnKYk5PDqKgo3rhxgzdv3uS9e/d4//59Pnz4kMHBwXz27BnDwsIYHh7OgQMHUltbm1paWty6dWuh8qempvLJkyd8/vw5MzIyip29GhgYyEWLFtHf359qampCxHXr1q1C1oW9vT0fPHhAU1NTnjhxgrm5uczJyaG7uztbtWrFFy9eKBz72bNnnDJlitJzT506lffu3VO6f8uWLdyzZ0+h8pd0Hc4rn1Qq5eXLlzl//nwuX76coaGh/7R43wVbW1umpKQo3BcREcF+/fr9UnnOnj1LLS0tdunShSoqKqxevTonT55MADQwMGCDBg3YuHFjNmjQgJs2bVI6jlgsZmpqKjMzM5mdnc3MzEwmJyczIyODYrGYKSkpPHnyJDdt2sRt27Zx9+7d3L9/P48cOcLz588zKCiIERER3LdvH1u2bEkA7NSpEz98+FCo/O/eveO9e/eELMfiwsHBgRkZGTQwMOCECRMoFouZlZXFhg0b0sLCgqtXr+bZs2c5fPhwTpw4UciMDQsLY+3atTlmzBilNriw7NPMzMxCM5qkUiktLS0Llb2k6y8pL2N8fDw3bNhAf39/Hjx4kNnZ2f+0eN+MwMBAzpgxQ+n+YcOG8enTp79MnszMTHbv3p3q6upsq61NAAwAWBmgIUBjgN4A7QFalSlTqGw5OTmCzmZlZQlZyOnp6RSLxUxKSuL69es5fvx4TpkyhbNnz+b8+fO5dOlSbty4kXv27OG9e/fo5eVFHR0damhocN26dYXKn5aWxidPnvDp06fMzMwstg2+e/cufX19uWzZMopEIn748IESiYR79uwhAF69epX29vYMDg6miYmJMPcTi8UcOHAgW7ZsySdPnigcOyQkhGPGjFF6bj8/PwYFBSnd//fffxc59yjpOpzfBgcFBXHBggVctmwZ37x580+L911wdHTk58+fFe6LiYmhi4vLrxFEKiWrVuVlgLoArQDqAKwAcOZ/MooaAHQH6AGwpY4O/f39ldodkszOzmZWVhbFYjFzc3MFPc7NzWVubi7DwsI4b948Tpo0iXPmzOGiRYu4cuVKbt26lQcOHODDhw954MABtm7dmgDYrl07RkVFFXoZYWFhvH//Pj9//vxVNtjR0ZEZGRmsWLEiR4wYwczMTGZlZbFFixbs3Lkz//zzTx45coRjx47lmDFjhMzYyMhI1qlTh0OHDlV6L7y8vJSu33Nzcwtd50qlUlpYWBQpf3F1+KsIXEJDQ2FpaYlbt26ha9euaNCgAWbMmIGRI0ciNzf3R/jBfikSExNRvnx5pVxO9erVQ0xMzC+T5927d7h79y7U1NTQsWNHtGnTBm/fvgXwJZoTGxuLlJQU/P777xgyZAiePn2KpUuXFhiH/8mSACCQl+rq6sLQ0BClSpUSvLgyrpiEhASh3XlGRgaysrKgq6uLM2fOYOTIkahSpQouXbqEy5cvF0pQJhKJYGRkhLZt20JfX1+oTy8O9PT0hKhRlSpVkJmZCW1tbTg6OiI4OBghISG4cuUK2rZti/nz56Nq1aoAACMjI9SrVw/q6uo4fPiwwnuRlpam1Furp6cHFRUVpb/z2bNnlXb++Ddi8eLFQqcvExMTREREwMLCArdu3fqnRfsmnDt3Dj169FC638nJCefPn/9l8hw6dEioKx84cCBUVVWxf/9+1K5dG5qamvjw4QPU1dUxZcoU9O7dG/369VP47MnGyNt6VdZKWVarrqamJkeEKBaLBW43kUiEnJwc2NnZ4dChQ5g+fToiIyOLrNEuVaoUmjdvjsaNG0NbW7vY/CJVq1ZFaGgoYmNjUblyZaFpQO/evQEAN27cQKlSpTBhwgQcPHgQ9vb2Am+Gra0t+vfvj1GjRinssvX69WtUr15d6bn79u2LLVu2KNxHEgcOHPifaRkdHh4OKysrBAYGomvXrmjcuDH8/Pzg4+MjdDz8NyEzMxNaWlpKm4fUqFEDCQkJv0yeyMhIgW+tc+fO+O233xAVFYWcnBy0aNECiYmJyM3NRYsWLdC7d2+EhoZi7ty5CseSEQbn1V8ZQbhMf0UiEdLT04VOPBkZGUK2sqGhIQ4fPgw3NzcYGBjg/PnzuHbtWpEdomrXro22bduiTJkyX2WDy5Urh5CQECQnJ6N27doCR2TPnj3x9OlTvH37Fnfu3EHdunWxZMkSQSdr1aqFevXqoXz58ti9e3eBcUkiPj5eKV+XrONXeHi4wv1Xr15F+/bti30dJR2rVq2Cl5cXypYtC1NTU3z8+BFWVlYICgr6p0X7Jpw/f75QG9yzZ89faoOPHDkikPsOW7gQWgD24EtXO3UALwFIACzS1YV6q1YYOnQooqKiFI4l02EZobCsw6Sso6yMPzEtLQ1JSUlITk5GWloacnJyIBaLYWBgAC8vLxw4cACTJk1CZGRkgUYQ+aGrq4vmzZujadOm0NLSKrYNrly5Mt69e4fY2FhhXSOVSuHi4gKRSITbt29DS0sLY8aMwf79++Hk5CS8m+zs7ODm5oaxY8cqzPAvyga7ublh69atCveRxJ49e+Dk5FSs6yjpiI6Oho2NDc6dO4fOnTujadOmWLRoEby8vJCdnf1Pi/fVkDW1UNYAolKlSkhLS/s1wohEeC8SIQiABoBGABYA+AQgHUBLfCEZDwPQSUsLhk2aIDw8HDNmzFA4XN55tGzeLNNjWUajhoYGsrOzkZycjM+fP8t1gNfW1sbNmzfh5uYGXV1dnD59Grdv31ZYbZQXtWrVQps2bWBoaPhVNrhq1ap49eoVEhISULt2bYFr2dnZGc+fP8fbt2/x9OlTlC9fHitWrECtWrUAANWrVxe63m/evFnh2DExMUq5jlVVVVG1alW8fv1a4f7bt2+jZcuWxb6OovBVjqfRo0dj586dmDlzJjp16gQbGxvs2rULHTp0UPrDl2SwaF71X4qDBw/C398fGRkZsLGxgaWlJcqXL4/169fj0qVL2LBhA1RVVXHw4EHk5OTA2NgY165dQ1xcnNw4zEOGRlJYjObtRCfrcJeQkCB02UlPT4dUKhXK7pYuXYqhQ4fi7NmzMDU1LVY7xW+Fh4cHduzYATU1NSQnJwvXYW5ujvDwcDx9+hQ3btzA4MGDC3y3W7duaNKkCbZv315g3/nz59GhQ4dCzz1z5kx4enoiPj5ebvuzZ8+wdOnSIicK/yaQxJEjR9CzZ0906NABY8aMwfHjx+Hr66t08lXSUdhz+TOf2fzIzc3F0KFDce7cOcybNw8NGzbE0KFDce3aNTRu3Bj37t2Ds7MzTp8+jQcPHqBUqVKYO3cuFixYoHC8vJ04ZO+qvG2UZSV4skmuzOGkoaGB0qVLY/369cJCevr06d/V3awoGBkZ4f379wC+EI1mZGSAJHR0dNCpUyesWrUKRkZGcHFxKdDK28nJCadOnULXrl1x6dIluX1SqRSbN29Gnz59lJ67adOmIIlt27bJvdNzc3MxZcoU2Nra/s+U64wcORKbN2+Gr68vOnXqBCsrK2zfvh1WVlaYNGnSPy3evx7Hjh2Dn58fUlJSMHjwYPTq1Qtly5bF6tWrcebMGWzduhWlSpXC7du3kZubCxMTEzx9+lR49vNC1j1SlurP/7Qnl33Ozc1Fenq6UO6ek5MjdC4qV64cVFRUMHPmTHh4eODixYuwsLD4qe8zLy8vbN68GRoaGsKcgiQsLS2F7rs3btzA8OHDC3zX0tISNWrUUOh4unbtGlq0aFEosfCMGTPg7e2N2NhYue2vX7/G3LlzCyU2/rchMTERx44dg7OzMzp06IARI0bg5MmTWLhwIUJDQ/9p8b4JJcUGk8TIkSNx8uRJzJs3Dyp6emjRvDnuAqiuo4P7lSrBuXRpbAPwx++/I1dTE507d4afn5/C8WQLVdnYsnJRmQ7Lmn3InMWyhaKhoSFq1aqF06dPIzQ0FNevX8fs2bMF0u6fAVnHO1n3W5kNVlVVhZmZmdCgx87ODuXKlZP7rp2dHc6dOwdra2ucOnVKbh9JbNiwQSHpsAz16tWDvr4+NmzYIGeDJRIJfH190blz5wJ2/9+K4cOHY+3atfD390fnzp1haWmJzZs3o1evXv/KcncqKOPMj1+pw2fq14cvgEQA0wCMAtAGwCoARwHs0tJCVvny8DUwgGHNmvj8+TPCwsLw7t07hePJ9BX47zw6bwfJzMxMoZGHzJlsYGCAatWqoXLlypg+fTpcXFxw5coV2NjY/NSGS15eXti0aRM0NTURHx8vlN5bWloiMTER58+fx61btxQ+Zw4ODjAwMMCBAwcK7Lt79y6MjIwUltnJMG3aNAwfPrzAXCY0NBTTpk37oXRKX3UHBwwYoLAtpLu7O54/f46UlJQfJtivgIGBAT59+oTMzMwC+yQSCdavX48XL17AwcEBAwYMQGBg4E91Vo0bNw6urq4AviwwHjx4gObNmwP4wlVkbW2NFStW4P379zh37hw+fPgAc3Nz7N27V24cVVVV6OrqQk9PDySRmpqK+Ph4QcEyMzORkpICTU1NodNdXFwcEhISkJmZidKlSyMyMhJZWVkYNWrUT3npZGdnIyYmRrj3FhYWiI+PR8eOHbF06VKkpqYiOzsbNWvWhLa2NgwMDFCuXDnMmzcPzs7OaNiwoZCRNm7cOKGjgSxjgiROnz6N5cuXK61Ll6FZs2ZYuHAhBg8eDE9PT8yYMQPOzs5YsmQJ9uzZgzJlyvzw6/+nMHHixALbSpcujVmzZmH9+vX/gETfBwsLCxw9elThvqioKMyYMUPIeFm8eLHSWusfATU1NVy8eBF6enrw9fXFuHHjUKtWLVSoUAE7duzA/v37sX79ehgbG2Pz5s148+YNtLW18fLlywLvFdmEV1VVFVKpVHAsySa/eVutA18yR2T6raGhAQ0NDTx9+hTm5uZKeWi+FwkJCYiLixNknzdvHh4/foysrCz4+/sLWVf16tVDeHg4Pn36hEqVKsHd3V1YRG/btg3a2toYNmwYrl27Jhf1j4+Ph4+Pj0JnVX6sXbsWHz58gKWlJaZMmYJx48bB2toaTZo0+Z9atDo7O6NGjRoFtvfq1QsRERE/9fn+GdDW1kZmZqbCiKpUKsWWLVvw7NkzdO/eHf369cOlS5d+qg0ePny4sMDq2rUrgoKC0LJlS6ioqKBjx47o0qUL1qxZg7CwMNy9excPHz6Eq6urQoeLLMsJgOAglumwRCKBWCxGuXLlULp0aaHLjqzbbJkyZRAeHo60tDSMGjXqp0x2c3JyEBMTg4yMDABA586dkZ2djfbt22PJkiX48OEDpFIpatSoAV1dXZQpUwba2tpYvnw5nJ2d0aRJE9SoUQPR0dEYPnw49u3bh7i4ODkbfPHiRfj5+WH69OmFytKwYUMEBARg2LBhGDBgAGbMmAFXV1fMnTsXu3btKrBQ/jdj2rRpBeZUurq68Pf3x5o1a/4hqb4d5ubmSm3w+/fvMWXKFBw9ehT29vaYP3++Us6xHwGRSITz58/DwMAAfn5+mDdvHqrWrQtNTU0cyMjA1qFDsTo5GdY2NrgbHIwaNWogNjYWISEhCjNG8+qwWCxGdnY2JBKJkCWSnZ2NypUro3z58iCJ5ORkpKSkQEVFBZUqVcKLFy/QrVu3n9bdLzExEZ8+fZKzwXfv3gVJzJkzByKRCNnZ2ahXrx4iIyORkJCA6tWro1+/frC0tIRIJML69euhrq6O8ePH49y5cwgMDBTGT0hIwPDhw2FjY1NoRywAWL58OVJSUmBpaYnJkydjwoQJsLKyQvXq1f+ngiK2trYwMjIqsN3e3h6JiYm/tErmR0DmcElMTCywTyqVYvfu3Xj69CkcHBzg7u6O8+fP/1QbPPDwYXj/Z77XCsAEAEMA6AIwV1ND2+vXsenMGXyIiUFWVhYqVaqERo0aYefOnQXGkmUci0QiQWdlPE+y4I+sUqdMmTLIyspCQkICsrKyoK+vj/j4eCQnJ2PkyJE/pbuoWCxGTEwM0tPTAQBt27aFpqYmfvvtNyxfvhyRkZEQiUSoUKGCwLesqqqK9evXw8XFBc2aNUOFChUQERGBQYMG4cSJE0hMTERWVhaALzb46tWrmDp1Knx9fQuVxcjICOvWrcPo0aPRr18/zJgxA25ubpgxYwZ27NiBSpUq/bDrFrEYT5CsRV5MTIzSk69ZswZGRkawsbEp8qSpqal4+PAh1NTUhBv9T+HAgQO4c+cOlixZIkwGcnJy0KdPH7x9+xZr165Fly5dEB0djeXLl0NVVRWLFy/+aR5gqVSKkydPYtKkSXj9+jXKlCmD5s2b49WrV2jatCkuXbqEzZs3Y/jw4dDW1oaDgwOqVKmCxYsXFxhLNtmNj49HZGQkdHR0YGhoCBUVFaSkpCAsLAwvXrxAWFgYMjIyoKuri/Lly6Nx48ZITk7G0KFD8fz58x+6cE1ISMDs2bMREhKCatWq4ePHjyhfvjzmzJmDKlWqYPny5ZgxYwbKly+P+vXro3LlykhJSUFycjKysrJw7949ufEqVqyIjx8/Ii0tDa1atRJKmrKystC5c2eMHz9eaRmHIkRHR+Pjx4+oXbt2oe2f86Kkt4EFipaRJOzs7HD69Olijffy5UvExMSgVq1aqFOnzo8Wt9iQSqWwtrbGmjVrUL9+fWH7lStXMGXKFOjp6eH8+fOQSqU4e/Ysli1bhjVr1vw0ZwzwZbK9atUqQScrV66M3377DceOHcOlS5fQtGlT9OzZEzdu3ICDgwMkEgkOHz6s8D0oW6RmZmZCLBZDU1NTID7Mzs5GUlISPn36hNjYWOTm5qJMmTKoXLkySpcuDS8vL+jq6uLIkSM/9PpOnTqFNWvWwNDQEBoaGoiKikLfvn3h5eWFN2/eoF+/fnjw4AGMjY0hEonQtWtX+Pr6wsPDA2fPni2Q1XD48GH06NEDixYtwr59+1CpUiWoqKhAU1MTI0aMgKmpabFly8nJwYsXL6CmpobGjRsXe8Fe0nVYJp+swYIibNmyBQYGBujZs2eR46WlpeHhw4dQUVFB27ZtC7TA/pU4ceIEzp8/j1WrVgl2NTc3F/3798eLFy+wdOlSWFhY4MOHD1i5ciUyMjLkjv3RkEqlOHPmDCZPnoznz5+jUqVKqFOnDl68eIEaNWrgyZMn2LVrF7y9vaGmpob+/fsLDhll4+Xk5CAlJQUaGhrQ1NQUnLJJSUmIjo7Go0eP8OHDB2hra6NBgwZo3LgxwsPDYW9vj/v376NNmzY/7PqSk5Ph6+uLly9fonr16oiNjYWBgQF8fX1Rs2ZNrFmzBpMmTYKhoSGaN2+O8uXLIyMjA1FRUSCJ+/fvy40ns7eZmZlo0aIFatasCS0tLWRlZaFDhw4YP378VwVvPnz4gA8fPqBWrVrFdjiVdP0Fiiejra1tsW3w69ev8f79e9SoUQN169b9kaJ+FWRzhyVLlsg1krlx4wbGjx8PLS0tXL16FSRx4cIFLF68GMuXL/9pzhjgS1nJ2rVrMW/ePACAoaEh1NTU8OnTJ5w8eRLt27cXshgaNWoktHNXlpEk0+HExERoaGhAS0tLcOrExcXhzZs3CAoKwtu3b6Gjo4OmTZuiU6dOmDt3LlRVVXH27Nkfen3nzp3DqlWroK+vDy0tLURGRsLFxQU+Pj549+4d+vfvj1u3bgk22NjYGLNnz4aXlxeuXr2KsLAwufF2796Nvn37YvXq1di6dSsqV64sZH8MHz78q0jBxWIxXr58CZFIhCZNmvzP2eAXL16gUaNGCo+RBSDc3d2LHC8jIwMPHjwA8IX8WVkp8q/AhQsXsH//fmzcuFH4vSQSCQYOHIgnT55g7ty5cHBwQGxsLFavXo24uDisX7/+p2X/MCUF5wcMwJQzZ/A4JwcVVVTwu64uLkskqFy1Kt68eYN9+/bBy8sLmpqa+P3331GuXDn89ddfisf7j6MpKytLmEerqKgIGU9xcXF4/PixUEFUu3ZtWFpaIi0tDd27d8e1a9fQuXPnH3Z9qamp8PPzw5MnT1CzZk18+vQJenp6mD17NoyMjLBx40aMGzcOenp6aNWqlWA/nz9/Dh0dHdy9e1fhNWZnZ6N58+aoUaOGYIPbtWuHCRMmFHs9CwAfP35EdHQ0atSoUaTDOS+KrcNFskXlIYz6+PGj0mPWrl3LU6dOFTpOdnY2J06cSDs7Oy5evJj+/v40Nzfn0qVLCyUH+9kICAigg4MDDx8+zIcPH7Jnz55s0qQJjx8/XuDYmTNn/pIWzxkZGQwMDGSNGjWooqLCdu3aUSQSCaRmBw8eJAB27NiRgwYNUnj/pFIpc3Jy+OnTJ54/f547d+7k5cuXGRISwqioKEZERPD+/fucNm0anZyc6ObmxmHDhnHBggU8fPgwVVRUiiRC/BokJSXRzMyMN2/elNv+/PlzmpiYCNe2c+dOAuDy5cuZnp5OOzs7Ojg40MnJiYMGDeKSJUu4Zs0aAmCTJk1Ikg8ePBDID7/lWUpNTeWsWbNoamrKHj160MzMjBMnTiy0jbsMJZ0UkSxaRqlUSltb2yLHuXPnDq2srDhq1CguX76cgwcPpoODA1+/fv2jRS423r9/T2tra86cOZN37tzh+fPnWbVqVfbs2bMAaXFsbCzNzMx+yfvmw4cPnDVrFkUiEVu2bMkqVarQ09OT5Bfi4bZt27JVq1Zs3rw5MzMzlY4jlUqZnp7O6Ohovn//nikpKQLpYEZGBqOjo3nq1Clu27aNR44c4c2bNxkaGsphw4axYsWKP5S4dseOHfT29pYjTMzJyeHcuXM5c+ZM4XOTJk3YokULhoeH8/HjxwTAffv20djYmJMnT+aWLVtYv359AuD9+/dJkr179+b79++Fa/5aBAUFsWfPnrSzs2P37t1pZ2fHY8eOFeu7JV2HZfIV1sxj69atPHjwYKHjiMViTpkyhTY2Nly0aBHnzZtHCwsLzp8//x+1wevWraOtrS0PHjzIhw8f0s3NjY0bN+aBAwcKHDt//nz+/fffP12mrKwsXr9+nXXq1KFIJGK7du0IgCEhISTJU6dOCYTfkydPLnSsnJwcxsTE8M2bN/z48SPT09OZmZnJjIwMJiQk8OzZsxwzZgxHjx7NZcuW8fz583z69CnV1NS4bNmyH3ZNqamptLS0ZGBgoNz2169f08TERCArPXDgwBdS5oAASiQSOjs709zcnG5ubvT09OTixYu5YcMGAmC1atVIfrHjPj4+JL9Nf9PT0+nn5yfYYHNzc44dO5axsbFFfrek6y9ZPBmLY4MfPnxIGxsbDh8+nMuXL6ePjw/t7Oz4/PnzHynuV+Hjx4+0tbXl1KlTefv2bV6+fJnVqlWjg4MDExMT5Y6Nj4+niYlJsUmzv1cuf39/ikQidu3alTo6Ovz9999JfiHU7dSpEzt06EADAwMeOnSo0LFkDT2ePn3K6OhopqWlMSMjg2lpafz48SO3bdtGExMTduzYkd7e3tywYQMHDRpEQ0NDpqen/7Br2rt3Lz08POTmNmKxmIsXL+bEiROFa2vTpg0bNWrE0NBQvn79mgC4Z88edunShZMmTeLmzZsFwuRr166RJAcMGCC8A75Fh2/dukUXFxfa2tqye/futLGxKdImyVDSdVgm36tXr5Qe8/fffyttaS9Dbm4uZ82aRWtray5YsIALFiyglZUV58yZQ4lE8qPFLja2bNlCa2tr7tu3jw8fPqSnpycbNmzI3bt3Fzh2+fLl3LJly0+XKTs7m7du3mTDhg0pEoloZGREAEJDgMuXLxMAW7duzY4dOxY615VKpczMzGR0dLTQZCs7O5vZ2dlMT09nWFgYp06dys6dO9PNzY0BAQG8dOkSNTU16e/v/8OuKSMjg9bW1rx48aLc9tDQUJqamgpE9SdPniQALliwgGKxmP3792enTp3o6enJAQMGcOHChdyyZQsBUE9PTxjDw8NDuN6vRWZmJufPny/YYAsLC44aNUqYlxeF4urwVzmetmzZwtTUVG7ZsoXTp0/n6tWrGRcXR5Ls3r07ExISCh1nwIABBV7uUqmUixcvpq+vb3FE+WmIi4vjmjVrOH36dDZu3FgpE31iYiIdHR1/mVzJycnU0NBghw4dqKWlJTxUssWchoYGnZ2dlS5IJBIJU1NT+fjxY+7bt48nT55kWFiY0B1LLBbz3bt3tLW1pZWVFd3d3Tlt2jTu27ePmpqaXLJkyXdfQ1paGrdu3cquXbvSx8dHoQPzyZMnHDJkCMkvz4SnpycBcNmyZSxdujSnT5/OJ0+e0MbGhu/fv+edO3c4ffp0BgUFMSYmhqampoyIiPhm+aytrXny5ElBWaVSKa9du0ZTU1PhGVeGkm4wyf/KmJiYyEePHnHu3LmcNWsWL126RKlUytu3b/OPP/4odAzZ/U9KSpLb/v79eznH4T8BqVTKq1ev0tfXl05OToUaitmzZ/PKlSu/TDY3NzeKRCLa2tpSQ0NDMJq9e/emiooKGzVqxNu3bxc6Rk5ODhMSEgTHU05OjvCsSiQSvnz5kqtWreLWrVt5/vx5hoWFcezYsdTT0yvUqVVcPH78mDNmzGCdOnV4+vRphROkvn37CpPWe/fusVKlSmzdujVHjRpFTU1NJiYm0sfHh3///TcfPnzIy5cv848//mBubi43bNggTJq/BYcOHWKfPn3kunakpKRwzJgxDAgIKPL7JV2HZfKtXbuW6enp3L59O6dPn86VK1cKC3NnZ+ciF+ne3t4FnDZSqZSrV68utHPgr8Dnz5+5bt06zpgxgw0bNizwnpEhLS2NdnZ2v0yujIwMwfZqaWnR1dWVJPny5UuqqqpSQ0OD3t7ehS4uZXY4PDyc79+/F7pVSaVSwbE8efJkurm5ccqUKTx69CiDg4Opq6tLPz+/774G2TNjZmZGT09PhZ3xXr9+LTjGpVIphw4dKgSADAwMOH78eL58+ZKWlpZ8//49b926RV9fX168eJFxcXE0NzcXnHJfi8zMTNrZ2fHo0aNyE+bbt2/TxMSEMTExhX6/pOsv+V8ZP3/+zODgYPr7+3PWrFk8d+4cJRIJnzx5wpEjRxY6huz+5+9A9fHjR5qamvLdu3c/8xIKhVQq5fXr1+nr60tnZ2dOmzZN6bELFy7k6dOnf5lsAwcOJAC2bduWIpFICHZ4eHhQJBKxfPnyHDFihNLOi+QXHU5JSWFISAgjIiKEzlgyHU5JSWGPHj1YtWpVIbg+ZMgQ6ujoFDpucfH06VP6+vqyVq1aPHbsmELHnaenp+AYefz4MatWrcomTZrwjz/+oKqqKmNjYzlq1Chu3bqVjx8/ZmBgIMeNG8ecnBxu3769yOevMJw8eZLOzs5y8/vU1FROmjSJCxYsKPL7JV2HZfItXbqUGRkZ3LVrF6dPn86AgADhfdq3b98i58Gy+58ff/75J8eOHftTZC8uEhMTuWHDBs6cOZONGjVSGnjPzMwsstv3j0R2djZ1dHTo5uZGTU1NOjg4UCqVMjQ0lOrq6tTU1KSVlRWDg4MLHUfWiTImJoZpaWkUi8Vy8+gbN26wZs2a/O233zh+/HheuXKFenp6hb7LiovMzEzu2rWLlpaWSp+T8PBw9unTR/g8duxYAuCiRYtYoUIFDhs2jKGhoTQ3N+f79+95/fp1zps3j2fOnGFCQgItLS2VdocuCtnZ2XR0dOT+/fvl5vf379+nsbFxsdZ3P8Xx1LBhQ3bp0oW7du3i48ePeeTIETo4OHDgwIEcN25coWM8evSIo0aNYlpaGsPDwwu8iB0dHYt0XP0KfPr0iQMHDiz0GAcHh18kzRfUqVOHhoaGbNu2LQEwMDCQb968YZcuXYSW7UOGDCkQWSK/TAays7OZnJzMkJAQvn79mklJSRSLxcIxEomEM2bMYLt27dizZ0/OmzePCxYsoLa2drEyfgrD8ePHaWpqyp07d7J9+/Y8duwYnZycuGjRogLHWllZCXJJpVJ26NCBAKirqyssaK9evUqRSEQAnDhxIocMGUJ7e/tvVjaSXLRokdJo17Fjx4TMCWXKVNINJvlfGZs2bcrRo0fzxo0bvH//PufMmUMzMzMaGxsXOWl1c3NjVFQUP3z4wOjoaLkFwt27dzlhwoSffRnFwujRowttMX/u3DmuXLnyl8lz9OhRAqCjoyOrVavGrl27Mjs7mxs3bmS9evVoYGDAOnXqCO3JFUGWvZiRkcHs7OwCjp/s7Gxu3ryZ69ev59WrV/n27VuWKVPmu3+T9PR0urm5cdSoUZwzZw5nzJjBefPm0czMrMDzcvXqVc6dO1f4fP78eaqoqAjvJ/KL4be0tBTsycKFC2llZUU/P79vjvZlZmbSzMyMOTk5BfaJxWJ27tyZGzZs4P3795VGgUq6Dsvka9y4MTt37szt27fz8ePHPH78OJ2cnOjp6cnhw4cXOsbLly/p4+PD9PR0hoeHF8gGzL9o+KeQkpIiN/lSBHt7+18kzRc0btyYFStWZMeOHQmA586dY2hoKE1MTNi8eXMCoK+vr5xdzQ+JRCJkOSlaNF65coXOzs6cOnUqr1y5whUrVlBDQ6NIp0tROHv2LE1MTLht2zZ26tSJx48fp7OzM/38/Arog729PTMyMoTPpqamBEBtbW0hq/XOnTtUU1MjAI4ZM4bDhw+nra1tkZP+wrBy5UqFkXXyy/va0tKSR48eVTjHIUu+/pL/lbFJkyYcPnw4r127xvv379Pf358mJiY0MzMrNJuC/OIoCQkJYUxMDKOjo+XemcHBwRwxYsTPvoxiYfLkyXz27JnS/UFBQVy4cOEvk+f8+fMEwK5du1JDQ4MNGjRgdnY2t23bxnr16tHQ0JB169blmTNnlGZNSKVS5ubmMjMzk+np6Qp1fc+ePaxUqRJ79OjBTZs2sUKFCkW+l4tCZmYm+/XrJ1Qj/PHHH1y0aJFcdoQMd+7ckVskBwYGUlVVlQA4YMAAkl8ybhwcHAiAderU4eLFi4WM8W/NQsvJyaGpqSmzsrIK7MvNzaWJiQnXrFnDu3fv/uttcNOmTdmhQwdu2bKFjx494qlTp+js7MwBAwYUuXZ89+4dBwwYwIyMDIaHhxe4Vnd390Lngb8KYrGYTk5OhR7zq21w69atWbZsWTZs2JAAeOzYMYaHh9PS0lKwwaNGjZILPuaHVCqlWCxmZmamXPBWhqysLFpZWbFNmzb09/fnjBkzqKqq+s1JDTJcvnyZxsbG3Lx5Mzt37swTJ06wd+/enDZtWgEZevbsKfdc2NnZCUkmMhv76NEjamlpEQCHDx/OkSNH0tramg8ePPhmGTdt2sTNmzcr3BcYGEhTU1MeOXKkQNAjL4qrw19VoFm1alWIRCLExsaCJAwMDFCxYkXcvn27yHa327ZtQ2RkJNzc3LB48WK4u7vDy8sL0dHRAAAXFxccP378a8T5KdDR0VFIsiYDSeTk5PxCiYAGDRogISEBb9++hYqKCnr06IGpU6dizZo1CA4OhoeHB7Zt24Zly5YVIEiUtYItVaoUqlevjmrVqkFLS0uuNlckEqFXr14CkbGmpibOnTsHS0vLr6oLzY/g4GBs374dZ86cQf/+/VGuXDl0794dhw8fRmJiIv7++2+548uWLSsQnYpEIly9ehV37txBSEiIwGvC/9TqysafMGECTpw4obTmuji4dOkSHB0d5balpqbCy8sLe/fuRXh4OKKiouDu7o7Zs2crbPn+b0Hjxo0RGxuL1NRUqKmpoUqVKkhLS0NKSopC0mIZsrOz8fbtWwwcOBDTp0+Hr68vLCwssHXrVpBEu3bt8OzZs194Jcqhr69foNNjXsTFxSltK/ozULlyZaiqquLixYtISUlBUFAQWrdujZycHAQHB+PGjRv49OkTXF1dERkZqXAMmR7nbceeF+rq6mjRogW0tbWhpaWF58+fIykpCW5ubt8l+8iRIzF48GCsWrUKBgYG6NKlC6ZNm4atW7di8ODBcu+bGjVqyBHHWlhYICoqCrdu3cK6desAfCFrlenPq1evUK1aNRw+fBgzZ878Zr6AkydPwtnZWSCBleHMmTOwsrJCnTp1cOXKFezduxc2NjYIDg7+pvOUBFSoUAGqqqqCDS5TpgwqVqyI+/fvo23btoV+d/v27YiNjYWrqysWL16MAQMGoH///oiIiAAA9OnT54fzgX0LtLS0Cm1U8k/Y4IYNGwokxCoqKnBzc8P48eOxbNkyPHnyBEOHDsW8efMKJYdWUVGBlpZWAfsrQ4sWLVCnTh3o6ekJNtjY2Pi7SD1fvXqFtWvX4syZM/D09ISBgQEcHBxw4MABoRNkXlSsWFHu3p89exZ3795FSEiIwKHH/5CyAsCTJ08wevRonDp1Cs2aNftmOc+cOSM0VpEhIyMD3t7e2Lp1K2JiYhAdHQ0PDw9MnTpVYcv3fwuaNm2KT58+ISUlRbDBWVlZiI+PL5QvUSqVIjg4GMOHD8fUqVPh5+cHCwsLoZNYs2bNEBIS8guvRDn09PRKlA2uUKEC1NXV8fjxY0ilUrx+/RotWrRAYmIiHj9+jLt37yIuLg6TJ0/GkydPFJIni0QiqKqqQlNTE1paWgrJhrt27YrffvsNZcuWxefPn/Hp06fvtsHjxo1Dnz59sG7dOpQtWxadOnXCpEmTsGvXLvj4+AhEwkBBG9y1a1dER0fj5s2b2Lp1KwDIyf3u3TuUK1cOBw8ehJ+f3zcTKJ8/fx729vYFeCovXboES0tL1KxZE5cvX8bhw4dhZWUlcBv9G2FoaAhNTU18/PgRJKGvr4+KFSvi4cOHRdrgnTt3IjExEb169cLixYvh6ekJd3d3oZulu7s7Dh069Csuo1CoqqoKazFl+Cds8OfPnxEXFweRSAQPDw+MGDEC/v7+ePLkCcaNG4f169dj/fr1ChuGAf8lG9fU1BRIx/NCXV0dbm5uMDIyQrly5XD79m106tSp0LVRUXj37h2WLFmCU6dOYdCgQShTpgzs7e2xd+9elClTRpgby1ClShU5H8TRo0dx//59hISECDZWRUVF0PvHjx9j2LBhOHPmDFq3bv3Nch49ehT9+vWT25aVlYXhw4dj9erVSEhIQFRUFAYNGoSJEycqbMZQbBTHEybzYj19+pRisZhHjx7l9OnTOW/ePL58+ZLp6em0trZW+v1Pnz6xatWqBTigXrx4QRMTE75//55nzpzhmjVriiMOyS8e9o0bN9LGxob29va0trbmmjVrfkhZiaurq9KaxsuXL3PWrFnffY6vgexa9fX1CYAAWKFCBSHjIDMzkwMGDCAAent7Fxq1kEqllEgkcl5WqVTKjIwM7ty5kx4eHtywYQMrVKjAOXPmfJfcAwcO5Nu3b4XPVlZWQkQkKyuL5ubmQprytWvXaGRkxAULFgilSMruhbu7OwGwVq1a3yWfDPk991KplN27d2dQUBDJL5k+sgy99evXc+rUqXLHl/RIDSkvY1RUFJcuXcpp06bxr7/+YmZmJpcsWcITJ04o/f6SJUvYsGFDuYhWTk4O/fz8hDLZr80EfPHiBX18fGhra0s7Ozt6eHjw4cOH33aBefD8+XMhwyY/pFKpQt6Jn42QkBDa29sL+gtALks0KCiIFStWZOXKlXn37t1vOkdmZiYfPnzIZ8+ecfny5RSJRIVmYBSFiIgIuru7C59Pnz7NxYsXC59Xr14tcPAkJiZyxIgRtLGx4a5duwotO7p3755wDxRx+HwtAgICeOHCBbltQUFBdHFxYVZWFkNCQgT+N1lJUP7S5JKuwzL5Hjx4wNzcXJ48eZLTp0+nv78/nz17xqysLFpYWCiNJickJLBGjRrcv3+/3PY3b97QxMSEERERvHr16leVVovFYm7ZsoW2tra0t7enlZUVV6xY8UP4TPr37y9kuebHrVu3iiwL/tEQi8XcunUrDQwMhGfX0NBQyALKzs6mt7c3AXDgwIHfpHe5ubkMCQnhoUOH+Pz5c9aoUeO7yx+HDRsmZ0/t7OyE30csFtPU1FSwwbdv32a9evU4b948Pn78uFA5ZaVLhoaG3yWfDIpssIuLi8CD4eXlJUSyt23bxvHjx8sdX9L1l5SX8f3791y+fDmnTZvGHTt2MCMjg2vWrCmgn3mxYcMG1q5dWy4jTSwWc9GiRcJz8rU2+PXr1xw2bBhtbGxoZ2fHfv36fbP9yYuQkBChbFMRevXqVSzurh+JsLAw9uzZU84GDx06VHhn3rp1i1WqVGHFihV59erVbzqHWCzm/fv3uXz5ck6fPp0AlNJ2FAcxMTF0cXERPl++fFluXv7nn39y586dJL88X+PGjaOFhQW3b99e6HkfP35MbW1tAhC+/z3YsGFDAU7cO3fu0MnJiRkZGXz//r3A/5aQkEALCwu5tYFM/pKswzL5bty4QYlEwjNnznDGjBn08/PjkydPKBaLaWZmpjRzOzk5mbVr1+b27dvltr97946mpqYMCQnhnTt35LLGi0Jubi537NhBOzs7wQYvW7bsu545GQYPHsyXL18q3CerYPqVyM3N5a5du1iuXDlBf0uVKiVkVorFYo4YMYIA2KdPH4XZd0VBKpUyNTWV+/fv59mzZ2lkZPTd5Y/jx4/nvXv3hM+Ojo7CMy6RSGhqaiqs2e/fv88GDRrQz89PKAdWBIlEwuHDhxMA1dXVv0s+GRTZDnd3d8FvM3z4cCEb7++//1aYyflTSu0KG6x3794FUvdlmDx5MidPnswdO3YU2Hf//n2OGjWKU6dO5fXr14sjDrOzs9mzZ0/++eefwsOVk5PDnTt3FkgV/xY8efKE1tbWBVLK3r59SxMTk0JT+X4moqKi2KZNG0HpmjdvLrzkpFIp169fTxUVFY4YMaLYxGKySadUKmVSUhJnz57NXbt2UUtLi6tWrfouefMTZa5fv54bN24UPg8YMIBPnz6lra0tXV1d6eHhwXPnztHV1ZWmpqa8ffs2X7x4UeAl+vHjR5YqVUpuUfw9sLS0lFsoXL16VSBKlkqlNDc3lzMmTk5OciWIJd1gkkXL+PbtW6WGJCkpiTY2NnIvyLxwdXXly5cvv2rSe/HiRTo4OMiVSL57946urq7FJqMsDN7e3ty5c6ecHkgkEs6dO5fz58//7vG/BTIdlaW+4z+E2zK8f/+e7du3p4GBwTeXjiYlJTEsLIz+/v4C4eC3YseOHdy7d6/wOTc3l8bGxoITNioqij4+Pty0aROtrKzYokULnjt3jsuWLWObNm24ePFiPnv2jGFhYQXeRzNnzqSWlpacQf5WHD58mKtXr5bblpdz8NSpU3IEzffv3//XLVyLI5+np6fSxZyvry+nTJki9/6V4dmzZ/T29qafn18BB54yiMViurq6ct26dYK9zcnJ4Z49e2hjY/PdnCYvX76khYVFAVsbHh5OExMThRxFvwIfPnwQSsDxn3LRvLZjy5YtVFNT4+DBg7+J3DMnJ4fBwcGMiIhgmTJlFJakfw3y2+Dt27fLlRkPGTKEjx49ooODA3v37s3evXvzwoULdHd3Z7du3Xjjxg0+f/68wO+ZkJBAfX199urV67vkk8Ha2lquxOnOnTtynG9WVlZypbQuLi5yJYglXX/JomWMjo7m4MGDFe5LS0ujpaWl0pLifv368fnz57SxsSm2PEFBQbSxsZFzTIaHh7Nv374/hLx/1KhR/PPPPwsEOZcsWfLLg7d5z79t2zaqq6sLOpzXERAbG8suXbpQT0+PT548+aZzZGVlMTAwkDNmzKC6uvp3NW3Yv38/t23bJnyWLVRl/HdxcXHs378/d+zYQQsLC7Zs2ZKnTp1iQEAA27Vrx3nz5vHZs2d89+5dATkWLFhAdXX1Yq+7CsOZM2fkglKkvHPx0qVLcrybT58+5bBhw+SOL+k6XBz5hg0bppRvd9GiRZw6dSpXrFhRYF9ISAgHDBhQZAA4L3Jzc9mvXz+uXLlSLphw8OBBWlpaKuVILC5CQkJoZmZWoNQ7Kirquzh1vxexsbHs1q2boL/VqlWTczL99ddf1NDQoLu7+zfpnlQqZUxMDB8+fMiKFSt+dwJGfj7Kffv2yZUZjx07VnDSurm50cnJiZcuXaKHhwc7d+7MoKAgPn/+vMBzl5KSwnLlyhWrIUVxkN93kp9z0N7eXi6o2K9fvwLPwC93PLm6uip1PFlYWDAtLU1u0ZIXnTt3pqWlZbEfkoCAAKVe+sOHD3+Vx1gZ7t27Rzs7O3p7e9Pf3599+vShq6vrP15/m5aWxjp16ghM9vkzvGSdZvIbAWXImwGVkJDACRMmcNOmTQUM8rcgv0KIxWL27t2ba9euZUZGBvv168euXbvS19eXdevWFa4r/5+Ojg7d3d3lFuM/sgPTsmXLuGfPHuHz6NGjBa6FK1euFCA93rlzJ//66y/hc0k3mGTRMr5584ajR49WuG/r1q3cvXs3ly9fzj///LPA/nPnztHc3LzIrjAyZGdn09jYWKGDOCcnh+bm5t99L2WdQywtLTl79mxOmzaNpqamXLt27T/avYv8EqWUPdv5jVpiYiKbNGnCGjVqfBO3S1JSEt++fcvJkyezatWq3yXnzp07CyxArl27RhsbG2FxbG1tzb59+7Jbt25ChxxFf02aNGFAQICc4/JH/Q7Z2dk0MTERJh/JyclClFgqldLe3r6AQyZ/hm5J1+HiyOfh4aE0KGJpacnMzEwaGxsrnJCamJjQ1NS02Dxb+YMIeXHmzJkfQsb5+PFj2tvbc9CgQfT392e/fv3Yq1evQvnbfgUyMjLYqFEjwTbl/022bdtGAN9ECi4Wi/nw4UNGRERQVVWV69ev/y5Z89tg2WJFlpnm7e1NY2Njzpkzh0ZGRkLXoPx/2tradHNzk+Nx+pHv0XXr1sktsCdPnsxHjx6R/EIwnp/0+MCBA3K2qKTrL1m0jFFRUfT29la4b8+ePQKHX34nO/nFiWRmZiY3LykMMt4dRfPx3NxcWllZfTe/pyzQY2FhwVmzZnH69Ok0MzNjQEDAP26D//rrL+HZzp9VmJKSwtatW7NKlSrfNN/Pzs7m5cuXOX78eJYtW/a75Dxw4ECB7mGyzsKPHj3ip0+faG5uThcXF5qbmxdqgxs2bMjFixfLOcp/1O8gFotpYmIizOmysrLYvXt34Rw9evQoQE6cn5y6pOtwceQbOnSoUoeMrOLD2NhYIU+OpaUlu3XrVmyere3btyt0YpFf1i35g2vfgufPn7N79+709PSkv78/BwwYwB49ehTgFvvVyMrKYsuWLQXuo/zvqj179hDAN81DZI6ne/fuUVdXl8uXL/8uWW1tbQsEwAcOHMjFixczNTWVo0ePpqmpKefOnUsjIyPWq1dPof5qamrSxcVFjsfpR75Ht23bJtfF3tfXV+hA//jx4wK26eTJkwVs0U9xPClz9qSlpRUaaZGlUV+7do0WFhZCF4/s7Gzu27eP5cqV+6oIv4WFhdJUdllE4EchNDSUt27d+scirIqwb98+du7cWWknrMmTJ1NVVbVYKdNSqZRZWVlMSUnh4cOHaW1tzYkTJxIAL1++XOD4+Ph4rly5kuPGjePSpUsLXRz7+PgUSNWUlWdYWVlRT0+PtWvXZunSpZU6nLy9vTl79mzhuHr16rFixYpCm+fCkJ2dzWvXrvHy5cuFev8zMzNpb2/Pffv2MTc3lz4+PoyKiuLZs2dpbm5eoCzryJEj/9pJr7KMiIULFxYohZVh8eLFDAoKYm5uLj08PDhz5kzhdw8NDWWfPn34+++/F/sleOjQIYWTZxn27NnDDRs2FGusopCRkcG7d+/ywYMH31V29iORnZ1NOzs7jh49WmH0OjIykhUrVvwq8kYZ+XhwcDBv3rzJXr16sWPHjgqPCwwM5JQpU/jHH38o7VBHfonAu7m5Fdj+5s0bjhgxgg0bNqSenh6bNWumdLJbuXJlbty4UejgV7duXVasWJHdunUr1uQlLCyMFy9e5JMnTwp9vk6dOsVevXoxMjKSnz59oqenJ+Pj4+nj46PQQZL/3pZ0HZbJt2nTJoX7MzMzCw3eyLIR79y5QzMzM+F3F4vFPHToECtWrPhVJTZ5y6bzQyqVFlpy8LUICwvjrVu3GB0d/UPG+xE4cuQIO3XqJLQhz4/Zs2dTJBLxxo0bxR5TIpEwPj6e69ev58WLFwlAYeevhIQErl69muPGjeOiRYsKbXU8atQowYEjg6w8w9bWlnp6eqxZs6ZcGX9+Gzxw4ED6+/uzbt26LFWqFOvXr88KFSpw0aJFRf7GOTk5vH79Oi9fvlxo85js7Gw6OTnxr7/+olgs5pgxY/jmzRtevHiRpqamBRYWZ8+elbMhJV1/yf/KqOz3WrlypdJs31WrVgnzZm9vb06ZMkXQh/DwcHp5ebFFixbFtsGnTp0qNDh59OjRYnUDLQ6ysrIEG6zI3v0TyM3NpZOTE4cNG6bwPRYTE8Nq1arRzMzsq6oHxGIxo6KiOHXqVHbv3p2tWrVSeNyNGzc4depUTpw4kSdOnFDqbPj06RN79uxZYHtoaChHjx7Nxo0bU19fny1atFBqgytUqMANGzawb9++VFVVpZGREStVqsROnToVa90VERHBCxcu8OHDh4XeiwsXLtDR0VFoHtW7d28mJCRw5MiRCpu5/FttsLLGNLKgaVE2+NGjRzQ1NeXx48eZm5sr0NdUrlxZ4ZpLGfKWTSuClZWVUqL8r0VERARv3br1j3auzo/Tp0+zY8eOvHTpksL9CxcuVLqOVQZZA5CTJ09y3bp1BKAwoJ6UlMR169Zx3LhxXLBgQaEO6kmTJvHWrU4/dEsAANu1SURBVFsFzrN7927a2dlRX1+f1atXlyvjzx/06devHxcsWMAGDRpQR0eHDRo0YPny5Tl37twiHZVisZg3b97kpUuXCg0miMViuri4cOvWrczJyeGUKVMYHBzMwMBAmpiYFGg8ExgYWMCG/BTHEwA+fvyYUVFRwkJeKpVyxIgRPHbsmNLvW1hYCAbn48eP9Pf3p729Pbt3787Vq1ezW7duxRFDQFElPT179iwxBu6fQE5ODo2MjNi3b99iTf5zcnL44cMHzp8/nz169OCUKVOooqLCtWvXyh23bds22tjY8OjRo3z9+jVPnz5NR0dHpRMUmbdclpWVt6xv7Nix7NSpk5yCaWhocOvWrRw1apTc9nLlynH27Nm0s7Oji4uLwGdlY2Oj0JEilUoZEBBAc3Nz+vv7c+nSpezevTvHjBmjdLGUkZHBRYsW0cLCgi1atGCTJk3o6+ur0GE1fPhwufT0km4wyf/K2L17d+bm5jI6OlqQ99WrV7SwsFD6Ajty5IhgbKVSKS9cuMB+/foJ2Qhz5sxRmAmlDIsWLRL4sxThxYsXv5zDpaRh165dBFCAB0EZZDxtQUFBvHr1KkeMGMGKFSvKPe+fP3+mvb09p0+fzsePH/PZs2dcsGABzc3NlRpOHx8fnjx5Uu485JfSTGNjY9aoUUNOVzt06MBr164VMJ5ubm4cPXo0HRwcOGrUKGERu2vXLoXnDQ8PZ48ePejl5cUVK1ZwwoQJNDc355UrV5Teg3v37tHd3Z3W1tYsW7YsnZycFJaOffz4UY43gyz5OpzXBt+5c4fR0dFyNnjChAlyZZv5YWNjIzwLnz594oIFC+jg4MDu3btzxYoV7Nq161c5iopyivbt27fE3stfgdzcXDZu3Jiurq7F/o5YLGZISAgXL17Ma9euUV1dXa5ElCR3795NKysrHjp0iK9fv+a5c+fYq1cvpe3K3759S1tbW6FcPa8NnjJlilzJAvCFL2LDhg1C8En2Z2hoyPnz59PR0ZGurq4cPHgwRSIRzczMFAblpFIp165dS3Nzc/r5+XHZsmV0cnLi8OHDlVIhZGVlcdmyZbSwsGCrVq3YqFEjzpgxQ2F2wIQJE+QcpSVdf8n/yijLLMxrg0NDQ2lqaqp03nrmzBmhPEMqlfLy5cscMGAA7e3t6eXlxXnz5n0VNYLMkaUMYWFhBbLM/q/hwIEDwpqnuMjOzub9+/c5dOhQ9u/fnwYGBnLOgaSkJDo6OnLKlCl8+PAhnz9/ziVLltDU1FRpV+FRo0bJLX5lNjg8PFyhDW7Tpg1v3rxZwAb36tWL48aNo4ODA0eOHMmGDRtSW1ubmzdvVugsiY6OFrq1BQQEcNKkSTQ3Ny/0uXn06BEHDBhAGxsblitXjg4ODjxz5kyB4z5//kxHR0e5bSVdh/Pa4KCgIH748EFwpkulUk6fPl0hnYwM9vb2wnv48+fPXLJkCR0cHOjg4MClS5fSxMTkq9atRdngQYMGlYgutf8UJBIJW7Vq9VUBXIlEwuTkZK5atYorV66ktra2XIkoSR48eJDm5ubct28fX79+zQsXLrB379709fVVqEcRERG0srISKsJk9pck58yZI3SOlf2pqqpy5cqVnDFjhtx2fX19zps3j46OjnRxcaGPjw9VVFTYtWtXpQ7BzZs308zMjHPmzOGyZcvYs2dP+vj4KKVCyMnJ4cqVK2lpacl27dqxfv36nDp1KuPi4gocO2PGDAYGBspt+ymOJ0tLS3bt2pWampoEQFdXV7Zq1arI7ISVK1fKpVHnxb59+5ROmpShMK9ycfb/X8D8+fOpoqLCmzdvFnkvpFIpMzMz+eTJE86fP5/Lli2jq6srK1SoIDygV69epZeXV4HFicyJdOTIEWFbdnY2Dx06xCFDhrBOnTpUV1enoaEhtbW1WbNmTVpaWnL16tUcMGAA9fT0WKNGDTZr1owpKSmCciYnJ3PlypX08fFhuXLlhPbNsvTJffv2sXz58qxUqRJXrFjBR48eCdc5f/58zp8/v8B1nzhxgm5ubkXej/T0dHbr1k0hAfWLFy/+dQaT/K+MnTt3FhYblSpVopmZWZGcKTk5OTQ2NlZIWJidnU0zM7Ov4nTZvn27UocD+WWS/TUkx/+LSE5OZqVKlQrUhxcGiUTCxMREIUtTTU1Njs+qZ8+eCtuthoaGFuAxCw0N5fz582lra0sdHR3q6OiwbNmy1NDQoJWVFa2trfnmzRs2btyYAFivXj1u3bpV0C2JRMLw8HC2b9+eXl5e1NPTE/TXwMCAERERggO5d+/ePHjwoKA/nz59oomJSQFy6bS0NDo5ORUri2TVqlUKm1VIpVIOHTq0QBSspOuwTD4rKyuBgwQAXVxc2Lp1a6Up9zJs2rRJLo06L44fP/7VnCsWFhaFOqqsrKxKTIbhP4WAgAACKHbWk8wOh4eHMyIigh4eHjQwMBDs0K1bt+ju7l4gQCBzIuUtF8/JyeHRo0c5bNgw1qtXj+rq6jQwMKCOjg6rVatGKysrLl26lEOHDqWhoSGrVavGhg0bMjk5WfjdUlJSuGnTJg4cOJAVKlSQ48WZOXMmz507x8qVK7N8+fJcvnw579+/L+h/QEAAZ86cWcDWnj9/nj179izSBsvKsRVFaGXOtLwo6fpL/lfGLl260NjYWHgXWlpaskuXLoVGzWWlcYquTywW09LS8qsaZuzdu1dp9iT5Zb73LaWi/0tIT09njRo1aGJiUuzvSKVSpqen89mzZzxz5gw1NTUFvlDyS6Oa/NkP5JcsZxMTE7l3Znh4OBctWkR7e3vq6upSR0eH5cqVo4aGBi0tLWlpacmQkBChvXyDBg24Zs0aORscERHB9u3bc+jQoXJZjaVLl2ZoaKjQEKFHjx7cv3+/8AwlJCTQxMSkQFZyZmYmnZ2di5VFsmnTJoXzONmaIX+GfUnXYZl81tbW7NSpE8uXL08AdHZ2ZuvWrYvk49u1a5fSsq0LFy58dbDVysqq0GwXBweH7+Y7/rdDRj0ja1JRHIjFYsbGxvLly5f09PSknp6eQGHw6NEjuri4KJzbzJkzR87PIRaLeeLECY4YMYINGjQQbLCuri6rVKlCGxsb+vv7c+zYsaxQoQIrVarEevXqyb3HU1NTuXPnTvbv35+VKlWihoaGoMMTJ07khQsXWK1aNRoaGnLJkiW8c+eOoP/r16/nH3/8UWCedvXqVTo4OBQZaJSVzypyXoaHh9PKyqqAHf9pHE8ZGRl0dXUt4E3PGxXPj5ycHLq4uAjcPuSXF9jmzZvp6Oj41ezz06ZNU/riu3v3rtDB6P8yHjx4QAD8+++/C3SxU4bc3FwmJibyzp07/PvvvwlAMA7Ozs5Ky7RSU1OFUstPnz4JEZgaNWqwc+fO/P3331m/fn3WrVtXbsxTp05x4cKFXLJkCc+ePVtg3EGDBvHNmzf8888/uXnzZp4+fZo9evSgoaEh/fz8uHTpUmECB4BVq1blsWPHhMW6IsWaMGEC79y5U+S9uHfvHo2Njbl3716mpKTw06dPXLVqFc3NzQsoYkk3mKS8jJcuXaK6urpQ4qihocEmTZoUGm25evUqbW1t5Qg3X716xZ49exboZlIcWaytrRX+PlKplL169Sq0fOT/CmxtbWlkZPTV3xOLxUxLS2Pfvn3ZsmVLkgWJAvNjwYIFQlnP0qVLCXzpGNKtWzf26tWLnTt3ZvPmzamrq8vmzZsL7xMbGxsmJyfT3Ny8wJiRkZF0d3enRCKhubk5g4ODuWfPHqqqqrJv377cs2cPV69eLTchXrJkCSdMmKCU5FpRpFQRJBIJhw0bxlGjRvHFixfMyMjg7du36erqqtBJU9J1OK98WVlZ7N+/fwEbXBjHWm5uLvv27csVK1YIDuTs7Gxu3769yJR9RZg7d67S0tzg4GClXSX/L+HVq1cEoDTopgyy8nfZ92XlV3379lUa2czMzBS6GiYkJAhcTUZGRnRwcKCNjQ2bN28ucFPJuklevnyZs2fP5urVq+WCRzIMHz6cwcHB/Ouvv7h27VqeOXOGvXv3poGBAdetW8cjR47Qzs5OeAbLly/P48ePK5yUyjBjxoxidQ17/PgxjY2NuXv3biYnJzMuLo7r1q2jqalpgbLLkq6/pLyM169fp6ampuBAVldXZ506dQrtynzz5k1aW1vLBQ/evn1LV1fXQrvhKUJ6enqhzuO+ffsq7Sr5fwm9evVilSpVvvp7sgxkT09PNmjQgOSXDoLKyOPJL87aw4cPkyTXrFlDkUhEHR0ddu7cmfb29uzQoQObNGnC0qVLs0GDBoJ+ybr0KioLlGX3SqVSmpqa8tmzZ9y/fz81NDTo7OzMnTt3cs2aNTQ0NBR02N/fn9OmTVM6r0tJSSkWobHMwTR06FA+e/aMGRkZvHfvHvv27StHrixDSdfhvPJlZ2dz0KBBBECRSCTcu7zO//yQSCT09PTkkiVLhAB7Tk4Od+/eTWtr669uyLF06VKlpbmvX78utKvk/xW8e/eOAJQG3QqDWCxmaGgoAQiBci8vL4aEhCg8PicnR9DBlJQUwSFcu3Zt2tnZ0dzcnE2bNmWTJk0IQMiOu3XrFidNmsTNmzcrbOogy+49dOgQly1bxrNnz7J///4sXbo016xZw4MHD7J79+7CM6inp8fjx48XWiY8b948hZmI+fHixQsaGxtzx44dTEpK4ufPn7lx40aFgWHyF5GLBwcH09ramgDYvn17obWwIojFYm7bto329va0t7ennZ0d//zzzyJrUNPT0wUHlZ2dHadNm8YnT57Q1NS0QEekJ0+eKPXQ/V9D2bJlCUBIU8+b3lcA+bbn5uby3bt3rF69Ort27cqsrKwiMy+cnJyYnZ0tdNabO3cujY2N+fvvv3PcuHFcvHgxy5YtS01NTUFxJRIJLSws6OnpWSCyEhQUJHStu3z5slByEBMTw44dOwpKNmrUKEZERMjxzNSqVUsgB8+P4ODgYpPuJScnc82aNezduzf79+/PAwcOKHTOlHSDSSqWMSMjgxs3bhTu26pVqwp1Ar9584ajRo2ira0t7ezs6OPjI1dyqAxPnz7liBEjaG9vTxcXFx46dIjr1q3jiBEj5Ba8WVlZnDFjBufNm/d9F/s/gLt37wrRtCKhxIG3Y8cOAuCxY8e4YsWKQlPknz17JkTcqlatyl69enH//v3s3Lkzp02bxkOHDgkTrbycE7KsivxyyhoJyJy8edOdN2/eTF1dXcFIRkVF8fDhw8JzKBKJlKYtk1+ixorKbxTh3r17HDlyJF1cXDhlyhSlk4aSrsPK5Hv+/DkdHBwIgK1ateLz58+VjiFrR9y9e3c6ODjQ1taWGzZsKHSxS355T2zbto1OTk60t7fn5MmT+fjxY5qZmRXI5nn+/DmNjY1LFBfEP4VatWoRQNH3QipVqMO5ubls1KgR27dvz4yMjCJtcJ8+fZiUlCSQmx8+fJgDBgygnZ0dN2zYwN27dwtRU1kLaqlUShsbG3p7exfo4nX79m2hJPXWrVvCezkuLk6uRG/OnDlMTU1lu3bthG3VqlVTahvevn2rsBWzIqSmpnLDhg10c3Oju7s79+7dq3DOWNL1l1QsY1ZWFrdu3Srct2XLlhWqj6GhoRw3bhxtbGxoZ2fHgQMHFuDwUoQXL15w9OjRtLe3Z69evbhv3z5u2bKF3t7ecpnM2dnZnDt3rlyWzv9VPHnyhACK1ylQSebJ/v37CXzpXrtx40YePXpU6RChoaFCcKhu3bq0s7PjX3/9xTZt2nDEiBHcvHkzhwwZUkCms2fPcvDgwQVKinJzc9m/f3+B1sDBwUGwqbt27WKpUqWEwGNISAhPnz4tZ4OnTJmi1AZ7enoWOzj48OFDjh49mi4uLpw0aZLSdWJJ12Fl8r169YrOzs4EvhC4523AkB8SiYR79uyho6Mj7e3taWtrK5eQoQxZWVnctWsXe/ToQXt7e06cOJGPHz+mpaVlASf+69evlToG/q+hadOmBKB0PShAiQ2WSqVs2bIlW7VqxdTU1CJt8MCBA/nx40fu3btXCAa6ubnRxMSEixcv5tatW1m1alWqqanx/v37wjkcHBw4fPjwArzNDx8+FAKtjx8/5owZM0h+yUg0NzcX9HXs2LGMj49n586dhW2VKlXiw4cPFcoZHR1NLy+vwu/Jf5CWlsbNmzcLNvivv/5Suk78ZV3tZN2jZBcruzHfC6lUyujoaJqYmHD79u3MzMykVCoVuirt3r2bw4cPp42NDQcPHkxbW1t6e3uXKBLwfxJWVlYEoDySnZJCjhpF1qpFVq365d9Ro75s55f7f+zYMWppadHDw6PICIeDgwNzcnI4bdo0litXjqamphw5ciT37t3L69evc9q0aVRVVeVff/0lx/IfHR3Nhg0bsnfv3rx79y6vX78uGClZVGD16tUFatzzdt9p3Lgxu3btyi5dugjb1q5dS3d3d5qYmHDQoEHs2rUrTU1Nhc4RxeXOKQ5KusEkC5cxJiaGVapUIQDWqVOnUAfy10AikXDVqlV0d3cXFjqJiYlctmwZHRwcuHfvXlpbW9Pd3Z0DBgyghYVFoSV4/5dw//59oaRFId6/J5s3J1VVSRWVL/82b/5l+3+Qm5vLnj17UktLi5MnT1aaoUJ+MWpTpkyhWCymiooKp06dyq5du/Lt27dCpmvVqlXZvXt3Dho0SC7Ddc2aNSxbtiwPHjzIhw8fcteuXTQ3NxeicbJSkLy4ffu2oKv16tVjq1ataGVlxfr16xP4wut27do1tm7dmk5OTvTx8WHLli2FqNG+fft+aBp5SdfhwuSTSCQCkaYsBftHQCqV8uPHjzQzM+OWLVuYnp5OqVTKW7du0d7enjt27OCoUaNobW0tLHwGDhz4j3d+LSlwcnIiAMWR7JQU0suLVFcngS9/IhHZtKmcDt+6dYs6Ojp0dXUt0ga7uLgwNTWVc+fOpaGhIb28vLh06VJGR0czLS2N69evp0gk4q5du2hpaSmUaXz8+JFNmzalk5MT79y5w5s3b3L8+PHs0aOHkPa/efPmAh3T8nbQatKkCbt16ybnkFq+fDm9vLzYrVs34V9TU1NaW1uzQ4cOP8zOkCVff8nCZYyNjRW6+taoUUOwl98LiUTCjRs30tXVVeAqSkpK4qpVq2hjY8MDBw7QxsaGffr0oYeHB83MzORKpv8v4+nTpwTAcePGKT7g9WuybNn/6i/w5XOe51oikbBv377U0NDg9OnTlWaofBnuNceMGUOJREItLS2OHDmSbdu25eXLl/nq1SsmJiayTp06tLKy4rBhw+TG2rx5M8uWLcu9e/fy4cOH3LNnDy0tLbl7925BDjMzM7nzPXr0SNDVOnXqsGXLlrS0tBSyIkuXLs2bN2+yTZs2dHR05NChQ9miRQuam5uzRYsW3L59u0L6hW9FSdfhwuSTSqVctWqVcD9HjBjxQ3RIKpUyLi6OFhYW3Lhxo3C/7969S0dHR27evJnjxo2jlZUVBw8eTAcHB3p4ePx/p9N/0KdPHwJQXIZcTBv86NEjli5dWgjWFYYBAwYwLi6OS5cupa6uLgcOHMjx48czODiYkZGRQlBox44dNDMzExIZ4uLi2KpVK9rY2PD27dtCFlT37t2FcvPdu3cX4NLNyw8lWwfnrQKaN28ehwwZwq5du9LDw4PGxsY0NTWljY0NW7duXaD51/filzmeSAqOp3LlyhFAgcjZ1+DRo0fs27cvra2tWalSJXbt2rVAGnF2djYtLS356dMnZmVl8ePHj0VGbf+v4fHjx9TS0mKvXr34+fNn5ubmMjs7+0ttakoK2aTJlwVrXqOpovJl+38cPuQXfi6RSERHR0elbUI/f/5MJycnpqens2nTpmzcuDHbtGnDLVu28MCBA3z69CltbW0JfHnc5syZI1dzGx8fz3bt2nH27NmcO3eunJc2KyuLJiYmclFOqVTKwYMHs0yZMhw4cCBHjx7N3r1709XVlW5ubrSxseGtW7cE5VNTU2OtWrXYvXt3If0RAIcMGcLw8PDvvtcl3WCSRTuP1dXVWbVqVQIokry/MIjFYoHYvUuXLqxSpQpHjBhRoDTi/PnzHDt2LMkvz09cXNz/n+zmw4ABA6itrc3Tp0/L35v370lNTXndlf1pasoZzczMTNapU0eIjivDjBkzGBQUJERqrK2teezYMUZERDA9PZ0vXrwg8KX1dFpaGq2treW+P3bsWI4cOZIzZ87kli1b5Bbbf//9dwGS5OvXr9PQ0JAODg4cMWIEfXx86OTkRA8PDzZt2pRXr16lo6OjoKuVK1emsbExnZ2dhTr3+vXrK+xY9y0o6TpclHwLFiwgAMGBrKzjaXHw9OlT9u/fn9bW1qxSpQo7duzI3bt3yz2DYrGYtra2jI6OZnZ29v+3wQrw4sUL6urq0tHRUZ6rKCWFrF9fsf4CpIaGnA7LJqs9evRQGjBJSUmhnZ0dMzMz2aZNG7Zs2ZJdunRhcHAww8LCmJ2dzZ49exIAc3NzuWjRIjnncVJSEtu2bctZs2bRz89PLps8OzubpqamBRy9I0eOZOnSpQUb7ObmRhcXF7q7u9PU1JQPHz4U9BcAq1evzl69eglRaAAcNGiQ0izEr0FJ11+yaBl1dXVZuXJlAlBYulxc5Obmcs2aNTQ3N2e3bt1YqVIlhXOdwMBADh06lOSXCPr/t8EFMWTIEGpqavLo0aPy9+b16y+LVEX6KxLJOZ+ys7PZqFEjWllZCVn8iuDv78/z58/z6NGjBMC2bdsKtCJPnjzh27dvCYCjR49mVlaWUForw7Rp0zhs2DDOnDmTf/75p9xzdvjw4QIkyXfv3mX58uVpa2vL4cOHc8iQIezRowc9PDzYokULnj9/nm5uboKuVq1alV26dKGzs7PA81unTh2FXIrfgpKuw0XJJ+P0k1GNFNYIpSjI+IWsrKxYrVo1tm/fntu3b5f7vXNzc+no6MjQ0FDBBv9f53TKj7dv31JPT69gI6qvtMF79uyhrAJBWSZvRkaG0O23U6dObNKkCRs0aMD9+/fz0qVL/PTpk6BPWVlZXLVqlVDyTn7JLJLZ4Dlz5vD27dvC7y0Wi2lhYSEkY8gwYcIElipVil5eXhw9ejT79OlDFxcX9u/fn507d+bz58/lbHDlypXp7OzMli1bCts8PDyKzggrJn6p4+nYsWPCRTg6Ohbaur4wyEivIiMj+erVK/r4+DAtLY3Tpk2jr6+v3LGnT59WWCf8I5Gbm8tTp05x6dKl3LZt2zdf1z+FvXv3UkdHh/r6+lywYAGTk5MZHx/PnKFDKc3vdMrrfBo9WhgjLS2NlSpVYoMGDdiuXbsCnvT09HTa2Nhw4MCBrFOnDtXU1GhiYsKhQ4dy9+7dvHv3LsPCwmhhYcGmTZuS/JKamp+Ha/v27fTw8GBMTIywLSwsjD169ChWLaoMUqmUHTt25LVr13ju3DkC4IABA5ibm8v09HSamJjw9u3bcoq3devWr7+5eVDSDSZZtIxt2rQRnMeF1akXhtzcXPbu3Ztbt26lWCymp6cnQ0ND+fDhQ4WpvzY2Nj80YqYI79+/5/r167l8+XLeuHHjXzWxlj2vAGhiYsJnz5594Wtr3ly5wQTIFi3kxpERLDZt2pQBAQEFykXPnj3LVq1asV+/fhSJRGzbti3bt2/PsLAwJiQkMCcnh2/evCEA7t27lyTZr18/gXCR/LLwtbKy4tGjRwXeELFYzN27d9PBweGrnBL79u2jq6srIyIi2KFDB2ppaTE4OJhSqZT79u3jjBkzOHPmTEF/ra2tv5sTrKTrcFHynT9/XrgfNjY2xS5FzI+bN2/SxsaGYWFhDA8P54ABA5iens45c+Zw8uTJcsdeuXKFs2fP/qbzFBcSiYRnz57lsmXLuGXLFqGL0L8FR44cYalSpainp8d58+Z90d9RowrX33w6nJWVRSMjI9atW5etW7cu4HzKyspi9+7d6eXlxXr16gk2eOrUqXz58iVTU1MpFovp6urKunXrUiqVMiIigj4+PnLj7N27l3379pULEkRERNDFxaXQEqH8kEql7Nq1Ky9dusTAwEACYJ8+fYRW1WZmZrx37x7btm0rPLMbNmz4rndzSddfsmgZZRnbBgYGhXbHKgwSiYT9+/fnhg0bmJOTw6FDh/Lly5cMDg6mqalpAUoDBweHnz6vjYmJ4YYNG7h8+XIGBgb+q2xwVlaWUD3QuXNnIWtMmj/TKf9f2bJy4+zcuZMA2KxZMy5cuLBAueiVK1fYokULDhgwgCoqKjQyMmLFihW5detW3rhxg4mJiQwLCyPwX844b29vuexS2Vz8wIEDQjZjbm4u9+/fT1tb26/i8Tt58iSdnJyEznlqamp88OABpVIpjx8/zokTJ9Lf31/QXzMzM6WB6eKipOtwUfLl7eZrbm6ulBO3KNy/f59WVlZ8+/YtP3z4wN69ezMzM5MLFy4ssG6SZcb8TEgkEl64cIHLli3j5s2bFTZ8KMk4ffo09fT0WKpUKfr6+lIsFlM6ahSlX2GDxWIxGzduzJo1a7JFixYFHDXZ2dlCB8hGjRpRTU1NyEA6cuQI37x5w4yMDHp4eLBq1aqUSCSMjY1l//795cY5cuQIXVxc5PQ6Ojqaffv2LbRrsSKYmpry7NmzvHPnDgHQyclJSECxsrLivXv3+PvvvwvP7MqVK7/73fxLHU/Z2dlcuHBhoRwiRUGWCipbiO7bt487d+4U9vfv31/ux05LS6Obm9s3n68o3LlzR6jLvHz5Mv/66y/a2dkxICDgp53zZyAmJoYjRowgAA4cOJD3799nWoUKhSqctFYt4ftZWVn08fFh9erV5RZ6FhYWrFChgkCsV7p0afbq1YuTJ09m7969OWXKFJ49e5a3b98WoiNz5swh+YURPz/HQ1ZWFufMmcOmTZuyWbNmtLCw4IABAwrwF+Tm5grZUzVq1KCNjQ2PHTsm7D979qych1f2t2LFCnbs2JFdu3alk5MTu3btKrc/JCSEvXr1oqqqKsuUKcOGDRvy2rVrxbrHJd1gkkXL+ODBA86YMaOAR/1rsHfvXrmuHXk5B0JCQtinTx+546dMmVIsjqhvQW5uLseMGUM3NzceOXKEFy9e5NSpU2ltbf1Dstx+FWQlrw0aNGD58uV54MABpihzGsv+1NTkxsjMzKSXl5dAJm9oaEgPDw82adKE2tragg40adKEw4cP5549e9itWzfGxsYyKSmJK1asEI6RvZ8HDx5cwNnz6NEj2tnZsW7duuzYsSMtLCwYEBBQwOl04cIFli5dmnp6emzZsiUnTJgg53DOW6cu+6tVqxZnzZrFFi1asFu3bnRychJIGgHQzc2Nt2/fZpkyZaimpsZKlSpxwIABxe6sVtJ1uCj5xGIxly5dWmiTj6IglUppbm4unOP48eNyGWXe3t5yrcVlEdefBZnDev78+bx8+TL37NnD7t27c+HChf+qxWtsbCzHjh1LFRUVDhgwgE+qVCl60ptPh48ePSqXKWRubk4rKytWrFhRsMGlSpWik5MThwwZQnd3dy5dupTh4eH8/PmzQB48ZcoUQab8HA/Z2dmcP38+mzdvzqZNm9LMzIzu7u4FuDQlEomQPVW9enVaWVnx4MGDwm8iczbl/1u6dCm7dOnCLl260NHRUXCqy/6ePXvGfv36CTa4fv36vHTpUrHucUnXX7JoGZ88ecJp06Z9VXe6/Dh27JgcR2JeGxwZGclevXrJHT9nzhzevXv3m89XGCQSCSdOnCjwOl66dIkzZsyghYXFD8ly+1WQSqU8ffo0mzRpQgMDA+7Zs4dJRekvUGCMvn37CjZYX1+fHh4ebNasmZwNbtiwIRcvXkxTU1NWq1aN165d49OnT+XKuGTPx6hRoxgaGip3nmfPnrF79+6sV68eO3ToQAsLCy5ZsqRAJkxgYCD19fVZunRptmjRgmPGjJFzOFtYWBTQ3woVKtDPz0+wwT169JDjVnV0dOSjR49oaGhINTU1Vq5cmW5ubkXy+MpQ0nW4KPlyc3O5YsUKhU0avgZWVlZCgOX8+fNyzVBGjx4tl80s4wf6WXj69ClNTU05d+5cXr58mfv27aOTkxPnzJnzr7LB8fHx/OOPP6iqqko3Nzc+/gYb/PDhQ6FBliwYbGNjw8qVK1NFRYUAqKOjQwcHB/bo0YPVq1cXuli+fftWqCgZ/Z/EjuTk5AI+DLFYzCVLlrBFixZs2rQpzc3N2adPnwKdMGXvE+ALn6K5uTn37t0r/CYyjtj8f/Pnz6exsTG7dOnC7t27y5XqAeC9e/fo7e1NVVVV6uvr08jI6KsSP36p4+lH4OrVq4JjgvzipcyrcPfu3ZOLuEZERBTaIeJ7EBERQUtLywKRIKlUysmTJ/8reWjWrVtHHR0dAmBVFRXaAYxRonC5lSpRnJNDqVTK1NRU+vv7c/r06dy6datQ/lKmTBm2bNmS/fr14+TJkzlv3jwuWLCA8+bNo7+/P62trXnz5k2hTh6AYCTXrl0rl1Vz/vx5Ghsbc926dbxx4wb37NlDW1tbhSm8cXFxgiMr75/M6Xnv3j2FCpf/r02bNnR1dWXZsmU5bNgwSqVSgfBY9jc6T+ZXYSjpBpP8NTI6OTnJOa5sbW3lsmucnZ3lMjG8vb1/Wi36lClTFEaNw8LCaGJi8q8rC4qLi2OHDh0IgJoAmwFcp0R/pSoqckSJWVlZvH37NsPCwnj+/HmWLVuW6urqbNiwodBh5syZMzx58iS3b9/OEydOCCnFmZmZnDhxIgEI9e1isZimpqZCZpPMsTVw4ECeO3eOQUFBnDZtGq2trRUSK0+bNq2APtauXVvY7+npWaT+6uvrs3v37jQ2NmbZsmX5+PFjrl27Vu4YkUhUoMRTGUq6Dv8K+e7cuSM4JsgvUfgFCxYIn589eyb3Tvz06VOhpSPfgw8fPtDMzKxAhpNUKuXs2bMLbQVfUrFlyxaB0LcKQGuAUcXU4Tdv3vDy5ct8/fo1hw4dSuBLdmrHjh05ZMgQLlu2jDt27OAff/zB8ePHc8uWLXRxcRH42WQ6IeN02LJli1y3vatXr9LY2JirV6/mjRs3uG/fPtrb2xcokSW/PIv5bSUAIStKRspc1F/Lli3Zu3dvli9fnl5eXpRIJEKLctmft7d3se5tSddf8tfI6OLiImdju3fvLkcE6+7uLseDOnr0aL548eKnyOLr66uwFDoqKoomJiY/Pdv5RyMxMVEIWGoAbAowAFC4gJUClOYJekilUt69e5cbNmzg0aNHWbFiRaqpqbFevXrs3r07Bw8ezFmzZnHGjBns0KEDW7duzfbt2/PMmTOMjY0V6Ew6dOhA8otTz9TUVMhsys7Opre3Nz08PHjmzBleu3aNM2fOpKWlpcI5lp+fXwF9LJsnS2vYsGFF6q+enh7t7e1pampKAwMD3r17V44oP/+8vyiUdB3+FfIFBwfLZTXdunWLs2bNEj6HhobKvROTk5OL14DmGxAXF0cTExO5zHYZFi5cyJUrV/6U8/5M7N69W+gkWgmgBcCwYtrgtLQ0rly5kmfPnuXIkSMJfAni/vbbb+zXrx/HjBnDhQsX0s3NjfXq1WPnzp1pamrK0NBQJiYmCvogoyL6+++/5brt3bx5k8bGxlyxYgVv3LjBgwcP0tHRkfPmzSvg5MvIyJDrBi37k62rX758WSwb3Lx5c/bu3ZuVKlVinz59mJubKzRFkf3169ev2Pe3uDqihhKC6OhoNGjQQPhsYmKCgIAAjB49GiKRCPXr10d0dLSwf/v27ejdu/dPkWXdunWYM2cO9PX15baLRCLMnTsXNjY2cHd3h0gk+inn/xkYNmwYPD09cenSJdzo1w+bk5PRBMAcAIMBaOU5VkVTE1BTg0gkgo6ODvr37487d+4gJSUFLi4ucHR0hFQq/XKsigoyMzMRHx+PrKws6Ovro0qVKkhLS8O7d+/w+++/AwB8fX1Rp04dfPz4EQcOHMC5c+cAAC9evMDq1atx+vRpaGtrAwA6duyI3r17Y9y4cTh06BB69eolyFauXDkEBwdjypQpOHfuHBo1agR9fX1UrlwZANC2bVvEx8fj9u3b+O2335CWlgYdHR3Y2dnhwYMHcHNzg4qKCurXrw8vLy9Ur15d+B03bdqEly9fQkNDA6VKlcKQIUN+6m/yv4bc3FyULl1a+GxlZYVjx47B2dkZAFC7dm3ExsbC0NAQ6enpiIqKQq1atX64HMnJyXjx4gUWLFhQYF+tWrXQp08fHDp0CO7u7j/83D8L5cqVw82bNxEaGoqT9erhConhAI4DWASgeZ5jRSIRoKIifNbU1ETLli2RmZmJ1q1b4/Xr18jMzIRIJEJubi7U1NSQlZWFmJgYpKeno1y5chgyZAjmzp2LXbt2CXp54sQJAMCKFSvg4uIClf+cY+zYsejZsyfs7e2Fc3bp0gUhISHw9PTE2bNnoab2X1Pj5+eHKlWqYM2aNfjw4QOaNm0KU1NTYf+2bdvg4+MDHR0dlC9fHioqKggKCkLv3r3RqFEjtG3bFhoaGrCzs4ODgwNUVVUhEolQqVIlfPjwARoaGhCJROjWrRuqVq36w3+L/1Xkt8GdOnWCv78/Jk2aBBUVFdSrV++X2eBNmzZh+vTpMDAwkNsuEokwc+ZMWFlZYdCgQcIz+G/AwIED4e7ujss1auDap0/YCqApgNkAhgDQyXNsfh2uU6cOKlSogLS0NPj6+mLixImQSqXIzs6GSCSCSCRCbGwsIiMjoaamhmbNmuHMmTN4/PgxOnbsCDU1NUycOBENGzZEfHw8du7ciTNnzgAAQkJCsHjxYpw8eRK6urrCOV1cXDB16lTs3r1b7l2pp6cn2ODTp0+jXr16MDAwQPXq1QEAzZs3R0JCAm7cuIHff/8daWlp0NXVRc+ePXHjxg24urpCTU0NRkZG8PLyEmyASCTC2rVr8eTJE2hqakJHRwc+Pj4/58f4H0VmZiYMDQ2Fz/b29jhw4AD69esHADAyMkJMTAwqV66M7OxsvHjxAg0bNvzhcqSnp+POnTs4ffp0gX3VqlXDwIEDsWfPHgwePPiHn/tnoUyZMggMDERYWBhO1amDqwDGATgJYAmAVnmOFQFAHpsnEonQqlUr1KxZE0lJSQgMDARJJCUlISMjQ7Bhr169QpUqVaCmpob27dtjzZo1+Pvvv6GpqQkACAoKAgCsX78e9vb2UFVVBQD88ccfsLKykpsrd+7cGeHh4Rg4cCDOnj0LDQ0NYd/06dNRqVIlrFixApGRkWjWrBm6dOki7F+3bh08PT2hpqYmzK3v3r0LJycn1K1bFx06dIC6ujqsra3h5OQEtf+sF+rUqYPp06dDXV0dKioq6NixI+rUqfPjfoT/cURFRcnZ4Hbt2mH69OmQSCRQVVVF7dq1ERMTI+zfuXMnXF1df4osW7duxcSJE1G+fPkC+yZNmgQLCwsMGzYM6urqP+X8PwN9+/aFs7MzrtaogaDYWGzHl7nzDAAjAOjmOTa/DdbR0cHAgQMRHx+P6tWrw9vbGySRmJiI9PR0lClTBgkJCUhISEBkZCQ6duyI169f48WLF7CwsECpUqUwePBgNG/eHImJidi0aROOHz8OAIiMjISvry+OHz8ut4bq1asX5syZgy1btsi9K7W1tfHkyRNMnToVJ0+eRO3atWFoaIjatWsDABo2bIjk5GQEBQXht99+Q3p6OkqVKoW+ffvi4sWLcHFxgbq6OmrVqgUvLy8YGRkJ1xwQEID79+9DU1MT2traP+cd/SO9WN+DwMBAuYwnkly/fj0nTZpEiUTCu3fvChlPFy9epKOj409L9cvbdU0Rhg8fznfv3v2Uc/8SjBrFGJGIgwCKAJYFOBFgIMAkkYiSUaPkDpdKpfzw4QOvX7/OsLAwxsXFMTw8nLGxsUxLS2NGRgbfv3/PnTt3ctmyZdy5cyePHTtGU1NTTp48mQDo5+fHtWvX0tjYWI5J38fHRymzvoysTRmK+/tLpVKOHTuWrq6ufPjwIRMSEhgYGMgePXrIeZy/FSU9UkP+uoynvOMnJyfT1NRUiKjKMp4yMzPp6urKCxcu/BQ5jh8/zvXr1yvdn5iYWKDs7/+xd99xOe///8AfV3uqpFIhMrO3g2OEkgiVUWQfsveWeaxjz07D3iF7lJ29t0RCFKJSadd1vX5/+Lp+rtMVhcvnjMf9dju3c3qP1/v1ftf7XDx6vZ6vf5Tq1YUMEHsAUfb/fivRFBAbABEBfKwBpUR2dvbH+e0ymZDJZPIRS5/vj46OFg8ePBDv378XmzZtEk5OTqJjx47CyMhIXLx4UfTq1UuMGzdO/u7FxsZ+ccrz0qVLvzj0vKDvcHh4uGjYsKFYtWqViIuLEzExMWLZsmWiVatWP2Ql07/7O/wz+nf16lWFEU9CfCxsPXz4cJGbmyvu3bsnH/F07tw50bZtW/lv3H+0r30GjxkzRjx48EAl11a5/6vx9BYQAwGhBghjQIwExGng4zSev9RpE0LIayTl5uYKmUwmcnNzFd5hqVQq3r17J86ePSvu3LkjYmJiRLt27YSPj48AICZPniz8/f1F8+bNFaY4jxgxIs+U9k+ysrJEq1at8v1eFOYzeMKECcLNzU1cv35dJCYmivPnz4vOnTsrTM/+Vn/391eInzfi6fMaLGlpaaJVq1by37J369ZNvH79WmRlZQkvL68vrnT6PY4dO/bF72tGRoZwdXVVybV/iv+r8XQQEBX+7zO4ESDWAeIhIKRFiyo9TSqVirS0NJGTkyOkUqn835/eo9zcXBEdHS02bNggjh8/LjZs2CAcHBzki2pcvnxZ/Pbbb2L48OHyd//du3fCzc0t367++eefX6zbWdB3ODIyUjRs2FAsXbpUvHnzRrx69UqsXLlStGjR4oesZPp3f4f/FyOehPhY2Nrb21vk5OSIJ0+eyGvzXb58WbRu3TpPzc4f5Wuf7z4+PuL69esqubbK/d9ncDwghgFCHRBFADEUECcBkZjPZ7AQH//flZGRIaRSqcjNzZW/w0J8fJfS0tJEaGioWLVqlbh69apo3769mDhxogAgxowZI9asWSOaNWsmbty4IW9zwoQJeabTfZKbmytatmyZ58/rnxQmB5k+fbpo3769uHLlinj//r24dOmS8PT0FHPnzi1wG19S0Hfkb/Prwl9//RVnz55FWlqafNvAgQNRoUIFODg4oF+/fpDJZOjQoQOCg4Oxbds2lY04+vQbxPxoaGhAKpWq5No/xZw5KF65MtaoqeERgF4A1gJoBsACwKD/G630iUQigbGxMeLj4xEWFobY2FhYWVmhWLFi0NfXh66uLiwtLdGmTRtUrFgRRYsWhbW1NYKDg5Geng4AuHHjBooWLYrQ0FCF37C9fPky39+46erqwtzcHPHx8Ur3F/T7HxAQAGtrawQFBaFWrVowMTFB06ZNERwcjJs3byIsLKxA7dCXeXh4IDAwUP51kSJFsHXrVsyaNQvt27dHVFQU5s2bh3bt2qFPnz5o1aqVSvrx6bdD+fnHv79Hj0KirQ1XAOEAggCoAegNoBKA6llZ2LlzJ7KzsxVOy8nJwblz53D06FGkpaXlGS2iqakJKysrWFpaQktLC15eXlixYgWuXr0KXV1dHDlyBJMnT8aCBQvk797JkyfRvn37fLvq5uaGkJCQfPcX5B3OycnB4MGDsXfvXgwZMgTm5uawtrbGiBEjsGrVKo5M/EHq1q2L69evIyUlRb6td+/eqFu3LhwdHdGjRw9oaGjAzc0NmzZtwo4dO774nqnSP/odnjMHqFABZgD+BBAJYACALQDsAZgDGFS9usJnMPBxdPGzZ89w6NAh3L9/H2pqagrvsJqaGkxNTVG9enWYmZmhWLFiOHDggHx08p07d6Cvr4+QkBBUrVpVfl5kZCRq1qyptKtaWlqwtbVVGOn2uYJ+Bm/evBn6+voIDg5GnTp1YGJigsaNGyMoKAhPnz6Vj4Cm7+Pl5YU///xT/rWenh62bduGBQsWoH379rh37x6WLl0KZ2dndOnSBc7Ozirph0wm++L/G9TV1eU/l/9IFy8CEgnaAbgPIBiALoC+AOwAVDUxwbZt25CVlaVwWk5ODi5evIgjR44gNTUVGhoaUFNTk79H6urqKFGiBJycnGBjY4MuXbrA398fV69eRZEiRXDgwAGMHj0ay5cvl7/7Z86cQdu2bfPtqru7u3x0ozIFeYelUim8vb2xa9cujBw5EhYWFrC0tMTQoUMRGBiIAQMGQAjx1Xboy6pVq4aIiAgkJibKt3l4eMDe3h6tW7eGh4cHdHR00KlTJ/j7+yMoKEilI46+NKL43/AZbApgBYAoAEMB7ATQEh8/g/tXqYLIyMg8p8bExODw4cO4c+cO1NTU5O8wAPksoSZNmqBJkyYoUaIEdu/eDQMDAwDA/fv3oampiaNHj6J27dryNu/duyefHfRX6urqqFq1KqKiopTuL+hn8K5du5CTk4P9+/ejfv36MDY2xi+//IJt27YhMTER+/fvL1A7P8SPTLG+V1hYmGjXrp1C8d8PHz6I8ePHi/79+4vTp0//lFVthgwZIv8N0V/9dW71P1ZKysfV60qXFsLaWmTb2Ih73buLWVOmCBMTEwFAlC9fXkyaNEls2rRJNG/eXGHeZ4UKFcSePXtERkaGwpKPkZGR4ty5c+LOnTvi+PHj8uM7duwoOnXqJGbOnCk8PT2FlZWVqFevntDT0xP9+/fPdx54r169lM4xLiiZTCZatmyZ728FXr9+Lbp06VLodj+vT/B3/02NED+nj7m5ucLT01OsWbNG4Xlfv35dNGrUSGzbtk3cvn1b5UUJ4+LivjjvfevWrcLPz0+lfVC52NiPv5HR0Pi4EqWGhnhXpYo4vGmTcHR0FMDHQofOzs5i/fr1YubMmcLc3Fz+Pmpra4t+/fopXaEkKytLZGZmCqlUKjw9PQUAYWFhIZycnMSoUaPE1KlTReXKlUWVKlVE8eLFReXKlYWfn5/S38i8fPkyz+pZhbVr1y6xYsWKfPePGjXqm37z9vnP4d/9Hf5Z/bt06ZJwcnJS+P9xamqqmDp1qujVq5c4ffr0T1nVZuzYseLKlStK930qgq6q3/T+FCkpQvTtK4SmprymRA4g7pcrJ+ZOnCiKFSsmAIhy5cqJ8ePHi61bt4p27dopfAaXL19e7NmzJ0/Tubm5IjU1VWRlZclXowQg2rdvL9zc3MTMmTOFl5eXsLKyEvXr1xd6enqiX79+4tFnS8B/buDAgd+9YpWDg0O+dfXi4+NFx44dC93m5wsH/N3fXyF+Th+lUqno2bOn8PX1VSjqfPv2bdGoUSOxefNmcfPmTZV/BicmJn5x4YE9e/b84xbqyePRI/nIp0//xJuYiJA1a0Tbtm0FAKGrqyucnJzEunXrxJw5c4SlpaX8fdTS0hJeXl5KVz/Lzs4WSUlJ8vqJwMfVDtu0aSOGDx8upk2bJqpVqybs7OyEtbW1qFixoli1apXSv5fEx8fnWT2rsA4dOiT++OOPfPdPnjy5wIvxfO7z/v7d3+Gf1b+bN28KR0dHhRUo09PTxezZs4Wnp6c4ffr0d/2dqKCmTp0qzpw5o3SfTCYTjo6O/7haqQry+QwOL1dOLPDxERYWFgL4WH90zJgxYtu2bcLV1VW+mAfwcdGbz4t6fyKTyURKSopISkoST548kR/frl074erqKmbMmCF69eql8Bncu3fvfEdxjxo1Kt/P54L60iriycnJom3btt/U7re8w3+r4EmIj4Upe/ToIZycnES7du2Es7OzCA4OVvl1PxcREZGnKOMnS5Ys+eJfgv6R/vLSpKSkiKCgIPHbb7/JC5jVqFFDbN68WcTExIhDhw7J/3I7YcIEhR88qVQqUlJSxKtXr8SJEyfklfxLliwpqlatKszMzETFihWFh4eH6NChgyhTpowoVqyYMDQ0FHPmzFFoKzMzUzg4OHzXH5ISEhK++qH7+cov3+Lv/oEpxM/rY05Ojli5cqVwcHAQLi4uwsHBQYwYMeK7l7svrIEDBypdjeHdu3eiefPm4sOHDz+1PyqlJPC5c+eOWLBggbwgua6urhgwYIC4deuWePTokZg/f74wNjYWZcqUyXfasFQqFb///rv8Q7N27dqiTJkywtLSUjg5OYm+ffuKLl26yP8w3bRpU4Xhw0IIsWrVKrFz587vur3Ro0d/8UM3NDT0u/+f/Hd/h39m/x48eCB69+4tWrduLVxcXESbNm2U/uFKlZ4+fSqcnZ3zrMYkxMepI1/6S9A/jkyW5x1OTU0Vu3btEt7e3vIV6apWrSrWr18vYmJixNGjR+Wru/r4+Cj93shkMvHs2TNRvnx5AUDY2NiIWrVqCXNzc2FnZyf69OkjPDw8RKVKlYSFhYXQ09MTM2bMUAj0cnJyRMuWLb/re5+env7VArjf+ofeT/7u768QP6+Pubm54s8//xSOjo7CxcVFODo6iiFDhvyQ6VCFMXLkSHnB+c8lJiYKe3v7n/JL5J9GSeBz//59sWjRIvkqrTo6OvKVpSMjI8XChQuFqampKFmyZL7lJqRSqViwYIH8M7hWrVrC1tZWFC9eXLRq1Ur07dtXXhxYIpGIRo0aKax6JoQQa9asUbrQSmFMmTJFYUXTvwoLC/vu/yf/3d/hn9m/R48eiX79+sk/g52cnMTmzZt/6mdwTEyMcHR0VBpWbNiwQcyYMeOn9UXllHwGp6WliT179ohBgwbJfxFkZ2cnAgMDRUxMjAgNDZUvtjV69Gilv3iVyWQiJiZGvgJziRIlRK1atYSFhYWoVKmS6N27t/Dw8JD/EldHR0f4+Pgo/NLgRwx2kUqlon379l88pm3btt/981XQd0QixNfHR6akpMDIyAgvX75EkSJFCjiW6vsJIf5nBbyPHz+OFStWoEePHqhduzZev36NTZs2oXjx4pg1a9Y/qrD498jKykJ6enqeIq9CCMyfPx/z58/H6NGjMW3aNIVnIpPJ5EOpc3NzoaamJi+g+Pkxt27dwvz582FmZobt27fj999/x/DhwyGEwKxZs1CpUqXvKmD74cMHDBkyBJs2bcr3GHd3dwQHB3/zNVJSUlCyZEkkJyf/1PejMP4X7/D/8v3NzMzEkCFDYGpqiq5du8LQ0BCnT5/GgQMHsGDBAlSpUuV/0q//hfj4eBgbGysU+AY+FjRs3749MjMzceDAAVSoUEHp+Z8+IvL7Xg4aNAgVK1bE9OnTUaRIETx+/Bi6urqIiYnBwIEDsXfv3u8aDj5jxgy4ubmhevXqSvcfPHgQ7969Q9++fb/5Gn/3d/i/+Bl85swZLFy4EF5eXqhXrx7evn2LzZs3w9DQEPPnz/9HFRb/HtnZ2UhNTVUoGg18/N4sX74c06dPx+DBgzF37tx8v1df+j4+fvwYkyZNQpkyZRAYGIgpU6Zg/PjxAIA//vgDlpaW6Nmz53f1v0ePHggKCsr3GDc3N+zZs+ebr/F3f3+B/95ncHZ2NoYOHYoiRYrAw8MDRkZGOHv2LIKDgzF37tx8p3f+GyUkJKBIkSJ5PgdfvXqF9u3bIykpCQcOHEDlypWVnv+1z+ARI0agVKlSmD17NnR1dREREYEiRYrgzZs36NevH4KDg6Gjo6P03IKYP38+WrRogfr16yvdf/z4cURGRmLw4MHffI2/+zv8X/wMvnjxIubMmQNPT080aNAACQkJ2LJlCzQ1NbFo0aL/2VT7ny2/z2AA8PPzw4QJE9CvXz8sWrQo3z+XfOn7+OzZM4wePRoVKlSAn58fxowZg2nTpgEAVqxYAW1t7e8qKSGEQKdOnb7499zv/QwGCv4OFyh4yszMRJkyZfDmzZvv6hTRv1Xx4sXx7Nmz7/pwVyW+w0Rf9nd+h/n+En3Z3/n9BfgOE33N3/kd5vtL9HUFeYcLFDwBH1+6vxarJaKPtLS0/pYflp/jO0yUv7/7O8z3lyh/f/f3F+A7TPQlf/d3mO8v0ZcV5B0ucPBERERERERERERUGP+NIglERERERERERPTTMXgiIiIiIiIiIiKVYPBEREREREREREQqweCJiIiIiIiIiIhUgsETERERERERERGpBIMnIiIiIiIiIiJSCQZPRERERERERESkEgyeiIiIiIiIiIhIJRg8ERERERERERGRSjB4IiIiIiIiIiIilWDwREREREREREREKsHgiYiIiIiIiIiIVILBExERERERERERqQSDJyIiIiIiIiIiUgkGT0REREREREREpBIMnoiIiIiIiIiISCUYPBERERERERERkUoweCIiIiIiIiIiIpVg8ERERERERERERCrB4ImIiIiIiIiIiFSCwRMREREREREREakEgyciIiIiIiIiIlIJBk9ERERERERERKQSDJ6IiIiIiIiIiEglGDwREREREREREZFKMHgiIiIiIiIiIiKVYPBEREREREREREQqweCJiIiIiIiIiIhUgsETERERERERERGpBIMnIiIiIiIiIiJSCQZPRERERERERESkEgyeiIiIiIiIiIhIJRg8ERERERERERGRSjB4IiIiIiIiIiIilWDwREREREREREREKsHgiYiIiIiIiIiIVILBExERERERERERqQSDJyIiIiIiIiIiUgkGT0REREREREREpBIMnoiIiIiIiIiISCUYPBERERERERERkUoweCIiIiIiIiIiIpVg8ERERERERERERCrB4ImIiIiIiIiIiFSCwRMREREREREREakEgyciIiIiIiIiIlIJBk9ERERERERERKQSDJ6IiIiIiIiIiEglGDwREREREREREZFKMHgiIiIiIiIiIiKVYPBEREREREREREQqweCJiIiIiIiIiIhUgsETERERERERERGpBIMnIiIiIiIiIiJSCQZPRERERERERESkEgyeiIiIiIiIiIhIJRg8ERERERERERGRSjB4IiIiIiIiIiIilWDwREREREREREREKsHgiYiIiIiIiIiIVILBExERERERERERqQSDJyIiIiIiIiIiUgkGT0REREREREREpBIMnoiIiIiIiIiISCUYPBERERERERERkUoweCIiIiIiIiIiIpVg8ERERERERERERCrB4ImIiIiIiIiIiFSCwRMREREREREREakEgyciIiIiIiIiIlIJBk9ERERERERERKQSDJ6IiIiIiIiIiEglGDwREREREREREZFKMHgiIiIiIiIiIiKVYPBEREREREREREQqweCJiIiIiIiIiIhUgsETERERERERERGpBIMnIiIiIiIiIiJSCQZPRERERERERESkEgyeiIiIiIiIiIhIJRg8ERERERERERGRSjB4IiIiIiIiIiIilWDwREREREREREREKsHgiYiIiIiIiIiIVILBExERERERERERqQSDJyIiIiIiIiIiUgkGT0REREREREREpBIMnoiIiIiIiIiISCUYPBERERERERERkUoweCIiIiIiIiIiIpVg8ERERERERERERCrB4ImIiIiIiIiIiFSCwRMREREREREREakEgyciIiIiIiIiIlIJBk9ERERERERERKQSDJ6IiIiIiIiIiEglGDwREREREREREZFKMHgiIiIiIiIiIiKVYPBEREREREREREQqweCJiIiIiIiIiIhUgsETERERERERERGpBIMnIiIiIiIiIiJSCQZPRERERERERESkEgyeiIiIiIiIiIhIJRg8ERERERERERGRSjB4IiIiIiIiIiIilWDwREREREREREREKsHgiYiIiIiIiIiIVILBExERERERERERqcR/PnjasGEDJBIJnj9/DgDYtm0bli1b9j/t09f6IZFIMGPGjJ/an4Lq3bs3JBJJnn8qVar0v+4aEREREREREf1kGv/rDvyvtW3bFpcuXYKlpSWAj4HP/fv3MXLkyP9pv77Uj0uXLqFEiRI/v1MFpKuri1OnTuXZRkRERERERET/Lf/54MnMzAxmZmYqv05GRsYPC19++eWXH9KOqqipqf3t+0hEREREREREqsepdp9NtWvevDkOHz6M6OhohWlin2RnZ2P27NmoVKkStLW1YWZmhj59+uDdu3cKbZYuXRrt2rXDnj17UKtWLejo6GDmzJkAgNWrV6Np06YwNzeHvr4+qlWrhgULFiAnJ0d+/tf6oWyq3f3799GhQweYmJhAR0cHNWvWxMaNGxWOOXPmDCQSCbZv344pU6bAysoKRYoUQatWrfDo0aMf9UiJiIiIiIiIiABwxJMCX19fDBgwAFFRUdi7d6/CPplMhg4dOuDcuXMYP348GjVqhOjoaEyfPh3NmzfH9evXFUY03bx5Ew8fPoSPjw/KlCkDfX19AEBUVBS6deuGMmXKQEtLC3fu3MGcOXMQERGBdevWfbUfyjx69AiNGjWCubk5VqxYAVNTU2zZsgW9e/dGXFwcxo8fr3D85MmT0bhxY6xZswYpKSmYMGECXFxc8PDhQ6irq8vvVyaTffXaEolEfs4nGRkZKF68ON69ewdLS0t07NgRs2bNQtGiRb/aHhERERERERH9ezB4+kzlypVhbGwMbW3tPFPFdu7ciZCQEAQHB8PNzU2+vUaNGqhXrx42bNiAQYMGybe/ffsW4eHhqFChgkI7S5Yskf+3TCZDkyZNYGpqij59+mDx4sUwMTH5Yj+UmTFjBrKzs3H69GmULFkSAODs7IykpCTMnDkT3t7eMDIyUrjPLVu2yL9WV1dHly5dcO3aNfn1Zs2aJR+l9SU2NjbywuyfnkeNGjVQtWpVAEBYWBiWLl2KkydP4tq1azAwMPhqm0RERERERET078DgqYAOHToEY2NjuLi4IDc3V769Zs2aKF68OM6cOaMQPFWvXj1P6AQAt27dwvTp03HhwgUkJiYq7Hv8+DEaNGhQ6L6dOnUKLVu2lIdOn/Tu3RtHjx7FpUuX4OTkJN/evn17heOqV68OAIiOjpYHTwMGDEC7du2+em1tbW2Fr0eNGqXwtYODA2rVqoVOnTohMDAwz34iIiIiIiIi+vdi8FRAcXFxSEpKgpaWltL98fHxCl9/WiXvcy9evECTJk1QsWJFLF++HKVLl4aOjg6uXr2KIUOGICMj45v6lpCQoPR6VlZW8v2fMzU1Vfj6U3j0+fWLFy8Oc3Pzr17789pT+XF1dYW+vj4uX7781WOJiIiIiIiI6N+DwVMBFStWDKampggJCVG639DQUOFrZYHMvn37kJaWhj179sDGxka+/fbt29/VN1NTU7x+/TrP9levXgH42PfC+tapdvkRQkBN7T9fy56IiIiIiIjoP4XB019oa2srHXnUrl077NixA1Kp9JumwwH/P4z6fHqaEAKBgYEF7ocyLVu2xN69e/Hq1Sv5KCcA2LRpE/T09ApUJ+qvvnWqnTK7d+9Genr6N/WDiIiIiIiIiP65GDz9RbVq1bBnzx78+eefqFOnDtTU1FC3bl14eHhg69atcHZ2xogRI1C/fn1oamoiJiYGp0+fRocOHeDq6vrFth0cHKClpQVPT0+MHz8emZmZ+PPPP/H+/fsC90OZ6dOn49ChQ7C3t8e0adNQtGhRbN26FYcPH8aCBQsUCosXlJWVlUKIVRDR0dHo1q0bPDw8UK5cOUgkEoSFhWHZsmWoUqUKfvvtt0L3g4iIiIiIiIj+uRg8/cWIESPw4MEDTJ48GcnJyRBCQAgBdXV1HDhwAMuXL8fmzZsxb948aGhooESJEmjWrBmqVav21bYrVaqE4OBg+Pj4wM3NDaampujWrRtGjx6NNm3aFKgfylSsWBEXL17E5MmT5bWi7OzssH79evTu3ftHPJYCKVKkCCwsLLBkyRLExcVBKpXCxsYGw4cPx+TJk6Gvr//T+kJERERERERE/3sSkV+aQURERERERERE9B1Y7ZmIiIiIiIiIiFSCwRMREREREREREakEgyciIiIiIiIiIlIJBk9ERERERERERKQSDJ6IiIiIiIiIiEglGDwREREREREREZFKaBT0wMzMTGRnZ6uyL0T/WFpaWtDR0flfd4OIiIiIiIjob6VAwVNmZibKlCmDN2/eqLo/RP9IxYsXx7Nnzxg+EREREREREX2mQMFTdnY23rx5g5cvX6JIkSIFajgzMxMeHh7Ys2cP1NTyzuibMmUKXF1dUbdu3cL1WMWuXbuGhQsXws/PD0WLFpVvP3HiBAICArBlyxZoaWkBAJ48eYI6derIj2nUqBH09fVhYGAAPT09JCQkIC4uDlFRUUhJSVF6PUtLS7i4uKBnz56oVq0aAEAIgUmTJuHFixfQ0NCAhoYGSpQogcqVK6Ny5cqoUKFCvgGHTCbDy5cvkZ2djZycHJQtWxba2tpKjxVC4OLFizh69Ki8fV1dXbx//x7v37+Huro6XF1doa6ujkOHDmHJkiW4c+cOcnNz87Slra0Na2trFCtWDK9evUK/fv2QmpqKhIQEJCcnIzk5GVlZWcjKysLDhw9RqlQp1K9fHyYmJjA0NIShoSFkMhmePXuG6OhoWFpaokKFCkhPTwfwMdj59Gz19fVRunRpWFlZFeA7mr8ePXpgxowZKFu2bJ7n0rNnT6X7lElJSUHJkiWRnZ3N4ImIiIiIiIjoMxIhhPjaQSkpKTAyMkJycnKBg6eDBw8iOjoaQ4cOVbr/4cOH8PPzw/LlywvXYxVr27Yttm3bBiMjozz7fH19YWxsjG7dusm3nTlzBi1atIC5uTlev34NiUSS5zwhBKRSKXJycuSBUHZ2Ni5duoTRo0fjxYsXAIBq1aphwIABqFmzJn755RdoaBRsJuTr169x9+5dPHjwAGPGjFHYp6+vj2HDhmHevHkK269fv45evXohPDwcxYsXR2JiotKplHPnzkX16tXRvn17NGjQAB4eHrCzs4Ouri5ycnKQm5uL1NRUhIaGwt/fHwBgY2ODZ8+eISQkBAEBATh8+DBycnLytH379m2sXbsWt2/fRnh4OBISEuT7LCwsMGrUKEycODHf+65Xrx7c3Nzg7u6O8uXLF+hZffLs2TPMmjUL69evV7r/2rVr2LVrFxYsWPDVtr7l/SAiIiIiIiL6LyhwjafCSkpKgoWFRb77LSwskJSUpKrLf5Nnz56hRIkSSkMnAOjZsyd69uwpD55u374Nd3d3lCpVCjt37lQaOgGARCKBhoYG1NXV8fjxYxw6dAhbtmzBo0eP8HnuFxkZiWHDhgEAbG1t4ezsjKioKKSlpcHV1RWenp6QSCTw9fXFmTNn4OTkhIYNG6Jly5aQSqV5rmtqaoqEhASoq6sr3KOfnx/Onj2L8PBwAMCMGTPQr18/PHnyBLm5udizZw+mT58u7/upU6dgZmaGs2fPysMwIQSCg4MRFhaG8PBwnD17FmXLlsXy5cuxYsUKjBw5EitWrECNGjUwf/58VKhQAdbW1vD394e/vz8GDhwINzc3pKSkwMHBAQ4ODqhcubI81Jo4cSImTpwITU1N5OTkoFWrVmjUqBEiIiLw6NEj3L17F9euXcO1a9cwadIk3Lp1CzVr1izw9/rhw4eoX79+vvvr1q2L33//vcDtEREREREREVFeKgueqlSpgq1bt6Jz585K91+5cgVVqlT5rmsIIbB7925s3rwZQghkZ2ejfv36GD58OMzMzArdXnx8/BenbxkYGMinmUVERMDR0RFlypTBsWPHFKblKetncHAwJk2ahCdPnkAikUAIATMzMzRp0gSOjo5o1KgRKleujNatW+PkyZN4+vQpTp8+jbJly8LIyAjjx4/H2LFj5QFWkyZNMGvWLKipqUFPTw/GxsY4f/48nj9/ji1btiAoKAgJCQmYMGECZs+eLe/L/v3784ziuXv3LjQ0NFCpUiV5fx89eoTQ0FBMmjQJDRo0QFxcHAICAjBo0CC8e/cO/fv3x4EDB1CpUiVUqVIFCxYswKBBg6Cjo4OVK1dixYoVWLlyJYYMGaIQyA0fPhyHDh2Cn58f7OzscO3aNZQuXTrPMwsKCsJvv/2GTp06oXz58oiOjsaZM2egra2NjIwMeWAnkUigpaWFVatWoXv37mjatKlC0JYfExMTXLlyJd/97969g6Gh4VfbISIiIiIiIqIvEAWQnJwsAIjk5OSCHC7Xpk0bERMTk2d7Tk6OaN26tXj79m2h2vucTCYTI0aMEDNnzpT3SyaTidOnTwt7e3vx4sWLQrf57t070blz53z3R0dHi549e4o3b94IAAKAOH36tJBKpfme8/btW/Hrr78KAKJWrVpCQ0NDNGzYUNy+fVvp8cnJySI2NlbIZDKF7QkJCcLPz08sXrxYJCQkyLfZ2dnJ+7Js2TL58TKZTNjb24vSpUuLDx8+KNxDr169RLFixQQAYWRkJLp37y6OHj2a55rZ2dmiVq1aolOnTsLLy0t+HQDCwMBAbNmyRek9VKlSRRQtWlQ8efJEYXt8fLxwdHQUd+7cEfv27ROJiYn5PrdPTE1N5dfU09MTzZo1E7NnzxYvXrwQly5dEosWLRJubm7CwsJCABCWlpZixIgR4v379wrP4q+kUqlo0aKFyM7OVnrduXPnisOHD3+1f0J8+/tBRERERERE9G/3XTWeXrx4gaCgILx8+RJly5ZF2bJlUbduXRQvXhzAx+LbAwYMwOjRo9GmTRuoq6vj9u3bmDlzJnr27AlXV9dvDsxOnjyJ0NBQpTV4IiMjMXXqVOzYsaPQ7fbs2RPjxo2TF/r+3LBhw9C1a1eULl0av/zyC2JjYwEARkZGaNiwIfr06YMuXbogJycHERERuHPnDubMmYOIiAisWbMGv/32GwCgRYsWqFKlCtLS0nD37l08f/4chw4dQoMGDQrd36ioKDRo0AClSpXCoUOHFEZsPXnyBFWrVsWMGTPy1EqSSqW4cuUKDhw4gAMHDuDhw4do3LgxGjVqBB0dHVy/fh0XLlxASkoK2rZti9OnT0NbWxsWFhZISEjA+/fvoaWlhT59+mDu3LkKPxfDhw/Hzp07UaZMGWRlZaFevXqQSqWIi4vDrFmzUKtWrQLf36VLl5CVlYUKFSrA0tIy3+mMQghcvXoV27dvR2BgICpUqABDQ0M8f/4cb968gbu7OxYvXqzwfPbu3Yt9+/bB399foSh4SEgI/P39ERwcrLQw/l+xxhMRERERERGRcoUKngYPHoy3b9+iaNGiuH//Pi5evAgdHR2ULl0az58/R2ZmJnR1dTF06FC8ePECEokEampqiIqKgqamJoyMjFC2bFkMHjwYFStW/K6Oe3l5YcGCBflOjfP09MSyZcu+WGdKmbdv38LDwwPDhw+Hi4sL1NXVERcXhwULFkBfXx+zZs2SH5uWloarV6/i4sWLOHHiBM6cOQM7OztERUXJC3Xb2NigdevWWLVqFbZv345Dhw5h165dea67fPly9O/fHxkZGcjOzkaxYsUKXFz8/fv3MDAwgKamZp59/fr1Q3BwMHr16oV27dqhadOmeVa5E0IgJCQEixcvxosXL5CSkoJatWrh119/hb6+PkaNGoVhw4Zhzpw58ulncXFx8PPzw+LFi1GqVCkcOHAAtra2AD6GRY0aNZK3r62tjYiICKVT6lRh4cKF2L9/P2xsbGBjYwMDAwMsW7YMmZmZaN++vXx1wMqVKyMiIgKrVq1C+fLlYWJigps3b8LOzg5z5swp8Ap1DJ6IiIiIiIiIlCtU8FSyZElUqFAB79+/h5WVFbp27YoOHTrA0NAQMpkMsbGxWLp0KVasWIE6derAwMAA6enpuHz5MgDAzMwM1tbWyMjIwJs3b2BiYoIKFSqgYsWK8uLThoaGMDQ0hIGBAUqWLIkiRYogIyMDL168gIaGBmxtbSGRSODi4oKDBw/m2+dZs2ahTZs2qFevXqEeiFQqxf379xEQEIAnT55AS0sLjx8/hkwmQ/PmzTF27FiF0Cw3NxevX79GiRIlsGbNGly7dg3Vq1dHjRo1UL16dXmh8tTUVKxZswb79u1DWFhYofrUqlUrHD9+vFDnfPL27VtMnz4dhw4dQkxMDAwMDNCsWTO0bNkSLVu2RNWqVfOM6omLi4Oenh4MDQ2xdetWeHl5IS0tDXp6ennaf/jwIVxcXJCUlIR9+/bh119/BQCsX78effv2BQDY29ujcuXKKF68OKytrVGuXDmUK1cOxYsXz3cEkzKZmZmIjY1F2bJlC/0c3r9/j3nz5uHixYt48OCBvLC9jo4OPDw80LVrV1haWqJcuXLQ19cvVNsMnoiIiIiIiIiU+66pdvmRyWQKYca9e/dw48YNxMTEIDY2Frq6urCwsEBiYiIeP36MR48e4cmTJ8jJycnTlrGxscLqd0ZGRqhVqxZevnyJfv36oXLlyihTpgzKlCmjUAy6b9++mDFjBkqVKqXQXm5uLqKjo2FkZISiRYsiOzsbZ86cweHDh3HmzBlERkYiKysLwMeV5erWrYtdu3ahVatWiIiIwKtXr9CnTx/4+Pjg/PnzmDlzJqKjoxETEwMTExMsW7YMUVFRMDAwQPHixWFvb48yZcqga9euGDBgADp27Ij09HT4+/tj/PjxX32WAFCqVCk8f/68UCHNXwkhcO/ePRw5cgQnTpzA2bNnkZOTg0aNGuHChQsAPhbUXrx4MRYvXgwAaNiwIYoWLYr9+/ejbdu26NatGzp16gQtLS15u1KpFF27dkVwcDBq166N69evy/v58OFDBAQEIDw8HG/evMGbN2/w9u1b+bnq6uowNDSEnp4eDAwMYGJiAjMzM9ja2sLKygqGhoZITU1FYmIiEhMTERoaihcvXuCXX36Bvb09ihUrBk9PT1haWhb6WcTFxSE8PByXL1/G6tWr8fbtWwQFBcHNza3Qz5bBExEREREREZFyKgmevkVubi6SkpKQmpqKDx8+ICUlBc+ePcPLly9haWkJGxsbZGVl4ebNm7hx4wauXr2KuLg4hbDK1NQUtWrVQosWLXDy5EmcOHECAJCdnY2tW7di7969CAsLQ0pKCgBATU0NGhoayM7Oho2NDRwdHVG1alVUrFgRRYoUwZw5cxAXFwd3d3eMGTMGUqkUfn5+mDNnDuLj4wEATZs2xdmzZ2FjY4O3b98iOzsb1atXR1paGmJiYpCeng5dXV388ssvaN68OSpVqgQ7OzuUKVMGv/76K+7cuQN1dXVMnToVEokEZcqUQZUqVWBtbY2iRYsqnT6Xn4SEBLx69QopKSkQQqB8+fIwNzdXCKxatWqFkydPyr9u1KgRzp07h8aNG8tHps2cOROmpqY4fvw49u/fDy0tLZibmyMmJgYVKlTAkiVL4OzsDIlEgtu3byvUbPpU98nX1xfHjh1D2bJlUb58efn+jIwMPHv2DBMmTMCxY8dgYmKCjIwMZGRkKHwvNTU1IZVKUaRIEZiamqJo0aKoVKkSWrdujc2bN+PRo0d48+YNNDU1MWHCBEyYMKHAUxP/KisrC71798auXbuwY8cOdOrUqVDnM3giIiIiIiIiUu5vEzwV1qeRNg4ODqhWrRqeP3+Op0+f4tixYzh//jyEEChdujQsLS3x4sULxMbGonnz5mjVqhXq1auH1NRUvHv3Djk5OfKpYAUdUZSSkoLt27ejdu3aqFOnDkaNGgWZTIayZcuiWbNm8iAmOzsbYWFhGDhwIKytrfHw4UN5YCWRSFCyZEno6enJp/KpqalBJpMBAIoVK4Z169bBwcEBKSkp+PDhA5KTk/P8Exsbi2vXruHevXvytj9nYmKCihUromTJkjA3N8f69euRnp4OdXV1bN26VV6Y3NHRUR5IlSpVCnFxcdDX10e1atVw69YtpKSkYOTIkbhz5w5Onz6NvXv3omPHjgA+TueLjo6WT7V8+vQpLC0tce3aNairq6N///6YPn26vOg88HFEWkREBC5evCjflpmZiVevXiEkJAQbN27E1atXcejQIbRt21bp9+Hp06fyaXdeXl4YOXIk7OzslE4JzM/+/ftx8OBBnDp1Cs+ePUO9evVw9erVAp8P/D3fDyIiIiIiIqK/g28bIvI3oK6ujm3btmHhwoWYNm0arK2t8f79e5QsWRIXL15EdHQ0bty4gbdv36JmzZoYNmwY7OzskJSUhL179+Lo0aPIzMyEhYUFGjRoUKhpbEWKFIG3t7f86+XLlys9TktLC5UqVYKTkxNWr14NAIiPj8ejR4/w8OFDPH36VL7qmp2dHQwNDXH27FlkZmZCXV0d7du3/2I/dHR0oK6ujrS0NIXtenp6SE9Ph5qaGsqVK4cSJUogMTERDx48kI8gOnr0KKpUqSI/58SJE/jw4QNmz56N9evXIycnB2lpabh//z5kMhm6dOmCIUOG4MiRIwgLC0ONGjXk55qbm8Pc3Bz16tXDsWPHcPbsWRQrVgwnTpyQr2J4//59nDt3DgDw4MEDBAcHo0uXLnnux9bWFgMGDMCbN29w9epVJCcn53v/JiYmsLKywqtXr7BlyxZs2bIF6urqaNasGVxdXdGxY0eUKFEi3/MzMjLQs2dP+Qg4W1tbjBw5EmlpaYWu80REREREREREef1jRzx9TiaT4f3799DT04Ourq7SY6KiouR1maytrVGkSBGULVsWffv2xdq1a2FhYYGZM2f+8L6lpKSgT58+CA4OVro/JycHHTp0wMGDB1GxYkVERUXJ940ZMwYZGRmQSCSQSCQQQiA7OxtPnjxBamoqxowZgyFDhiAhIQFFihTBsWPHUKlSJRgZGeHNmzfYunUr5s2bh8TERHz6NhsbG6NZs2Zo0aIFqlevjnfv3uHVq1eIj4+Hmpoajh07hps3b2Lp0qVISkrC5cuXcfLkSaSnp8v71alTJ6Ur8wFAeHg47ty5gy5dukBdXR1ZWVkoXrw4vLy8sHLlSty9e1dekP7ChQsKdbk+OXjwINq3b49GjRohLCws3yl0e/fulddk0tTURE5ODtq2bYucnBycOnUKUqkUCxcuxJgxY/L9/iQlJeHkyZMIDQ2V15CSSCQoUaIEypYtiypVqmD8+PF5aoV97u/+fhARERERERH9r/wrgqevefbsGfr164datWqhTp066NatGwDg2rVrmDRpEoKDgzFnzhw0b94czs7OP/z6np6emD9/PmxsbPLsCwoKQlxcHIYNG4Y2bdogNDRUHqJ8TldXF/r6+jA0NETlypWRnp6O06dPw9raGrGxsahcuTJCQkJQsmRJhfOSk5Oxc+dOaGpqwtDQEPfv38fp06dx6dIlZGdnA/g40sjMzAxCCOTm5qJMmTK4cOGCfBTYp39PnToVVatWRfPmzWFubl6ge8/MzETDhg0RHh6Orl27IigoCBUqVMDhw4fzDXOys7MxatQo+Pr64siRI2jTpo3S40qWLAkrKyssX74cz549Q7du3eDp6Ylt27YhKSkJc+bMwaJFi3Dy5Em0aNHiq30VQuDx48e4cOECoqKi8OTJE5w9exYfPnzA3LlzMWTIEKirq+c575/+fhARERERERGpyn8ieOrTpw/Gjx+PYcOG4fjx4wrT6o4cOYLbt2/D29sb/fv3x549e3749R8/foxBgwZh3bp1CuFTWFgYZs+ejb1798LAwEDhnNTUVGzfvh3Xrl2Drq4uKlWqhIiICCQmJqJSpUro06cP7ty5g6CgILi7u6Nt27YKKwl+TUZGBqKjo2FhYQFjY+MvTjX08fHBu3fv4O/vX/ibx8fi3dOmTcOSJUswatQo/P7779DW1lZ6bFRUFLZt24YtW7bgyZMniIiIUChO/rn+/ftjzZo18q/t7e2xceNGlCxZEunp6Rg6dCjWr18PX19fDBo06Jv6npKSgkmTJsHX1xcVK1aEjY0N9PX1UaJECSxcuBDa2tr/+PeDiIiIiIiISFX+9cFTVlYW3N3dsXbtWkyZMkUhqAA+TtP7NNKoffv2OHDggEr68fjxY8ycORMZGRkoVqwYwsLCkJ6ejjp16iAjIwO2traYPHkySpYsicePH8Pb2xvu7u5wcnLC5MmT8eLFC2hpaWHjxo14+vQpli1bhi5duqBHjx6F6seTJ08QEhICqVQKe3t7VK9eXSX3q0x2dja0tLQQGxuL2rVrw9LSEk5OTtDQ0EBMTAzCw8Nx7do1GBgYwNXVFb/99huaNm2ab3upqam4cuUKdHV1YWpqigoVKkAikSA6Ohrt2rVDVFQUfH190bt37y/2Kzo6Gtu2bcPr16/x7t07dOzYEV26dFEI4y5cuIC1a9ciJSUFly9fRkJCAt6+fQtDQ8N/9PtBREREREREpEr/2OLiBZWWloZixYpBT08PSUlJefarqalBS0tLXj9JVSpUqICtW7ciISEB3bt3x7Rp0+Dp6SkfpXT37l306tUL/v7+8Pb2xtatW2FlZYU//vgDrVu3Rr9+/XDz5k2MHz8eu3btgr29Pby8vGBiYoJ3794BAFq2bJnv9LX09HQMGjQIGhoacHd3h4aGBgIDA/Hq1SsEBgaiaNGiKrv3T7S0tJCUlARPT09kZmaiWLFi2LhxIzQ1NVGiRAmUK1cOo0ePRvv27Qu0Mp2BgQFatmypsE0IgW7duiElJQVXr15F1apVv9rO77//ji1btqBcuXLQ1dWFh4cH1qxZg9WrV6NChQoAgMaNG6NBgwZYuHAhDh48iL59+yqtT0VERERERERE/9+/PngyMjJCbGwsDAwMIITA27dvYW5ujsjISERGRsLAwAAymQxnz55FvXr1VN6fgwcPwtXVFd27d1fYXr16dQQEBKBv377o0qULrKyskJubi+PHj+P48eMAgNq1a6No0aIIDw+HjY0NMjMzMWrUKMyfPx8ymQxTpkyBtrY2Vq5cmafI+qBBg+Dl5QUHBwf5NkdHR9y8eRO9evXCgQMHCrWy37d4+fIl2rRpg2fPniE9PR0nT55Eo0aNUL9+ffTu3VthpbwviY+Px+rVq5GWlgapVAqZTIbMzEwkJyfj7du3uHjxIipVqlSg0AkA3rx5AzU1Nbi5uWHcuHE4d+4chg4dimrVqqF3797o1q0bjI2N0a9fP9y6dQvjxo3DjBkzvuNJEBEREREREf03/Oun2gHA5MmT0bRpU5iZmWHcuHHQ09ODlZUVatasib179yI6Ohp6enoIDQ2FhYWFSvvi4uKCnTt35rv6XtmyZbFnzx7UqFFDPqVuxYoV8v0HDx5EbGwszpw5A29vbyxevBiHDh2S7w8NDcXWrVuxadMm+bYnT55g3rx5WLt2rdJrTp06FY6OjmjSpMkPusu8UlJS4ODggDdv3sDMzAxGRkZwcXHB5MmTUaRIEcTFxaFKlSro2LEj2rRpg/r160NTUzNPO6mpqbC3t8fDhw9hZWUFdXV1qKmpQVtbG8bGxoiJiUGpUqXQsWNHDB06tEB9S05Oxvz587F06VKoqamhXbt2aN++PR4/foyNGzfixYsXAIDKlStj/fr1qF+/fp57+ye/H0RERERERESqUvBq1D9RXFwcIiMjkZGR8UPamzJlClauXIlLly7h/fv3+PDhA9TV1XH06FFERUWhYsWKsLKywqNHj37I9b4mv9AJ+DhCKy4uDsDHqWnp6ekK+7OysvDmzRuYm5ujefPmkEqlCvtbt24NHR0dREREyLeFhITA3d0932t26tQJR44c+ZZbyZcQApmZmYiPj8f69etRoUIF3L9/H5s2bcKtW7fQuXNnjBw5EmlpaXj58iUOHjyIatWqYcWKFfj1119hamqKtWvXQiaTKbS7dOlSXL9+HY6Ojhg5ciR69eqFDh06oFGjRhBCIDIyEidPnsTFixexd+9eZGZmfrWvRkZGmDdvHp48eYJp06bhyZMn6NGjB/bt24dLly7hwoULWL9+PW7evJkndCIiIiIiIiKi/P2Q4Ck9PR3Pnz9HSkrKd7Vz+fJldOjQAePGjYOfnx/c3d0xevToPOFLYenr6yM4OBghISHQ0tKCgYEBjh07hvv376Ny5crIzc1F0aJFf8r0KTU1NaSmpua7X0dHB2fOnAEAlChRAjExMQoBXHBwMNLT09G1a1ecPXtWaRDStWtXhVFQUqkUGhr5z6rU0NDIE2B9jRACYWFh8PPzw65du+Tfo9jYWPTv3x86OjrQ1dWFmZkZ+vbtixYtWuD69evYunUrZDIZQkND4eLiAhcXFyxcuBDh4eE4ffo0ihcvjpUrV6JcuXLw9vaGpqYmateujcjISAAfV7IbNWoUzpw5gxEjRmDhwoXYsWMHzp8/j9zcXNSqVQsjR47EgwcP4ObmBnNzc3h5eSEsLEzpfRw4cAAXLlyQP++JEyfi5s2buH79Ot6+fYuBAweiYcOG6N27d74r8RERERERERGRct9V4yk+Ph4+Pj6IiYlBmTJl8OrVK+jq6mLWrFmwtbUtVFsXLlzAH3/8gY0bN8LExES+/cSJE+jSpQv27NkDLS2tb+6rjo4OpFIpzp8/j27duuH333+Hh4eHvLj348eP0bRpU1y6dAkNGzb85ut8TdeuXREYGIhRo0bl2Xf//n1UqFABd+7cwc2bN1G7dm0MHToUw4YNg7+/P/bv3w8TExPo6uoiPT0d8+fPx5YtW5Te6+eF0u3t7REYGAhHR0elfTp48CDs7e0LfA+3b9/G2LFj0aRJE9SpUwevX7+Gm5sb3N3dsWzZMsTFxcHHxwdlypSBvr4+bG1tUaNGDZiamiIxMRHAx8Bn9erViIiIwMKFC5GUlCSf3jZs2DCF6926dQv+/v5YtGgRihcvjiVLlmDx4sUA8MW6VBEREQgKCsKMGTOwdetWvHr1CpaWlsjOzsbevXtx5swZ+Pn5yY+fOHEiOnXqhNq1a6NOnTr4888/4ebmhgMHDqBDhw4Ffj5ERERERERE9NE313hKSkqCq6srHB0dkZaWhiJFiqBLly6QyWT47bffsHbtWpQpU6bAHXF2dsaOHTuU1sjx9fWFsbExunXrVohby8vFxQVeXl54/fo1Ro4cmWd/79698fbt2x8+7exzUqkUPXr0QPPmzdG7d2/5inrnz5/H1KlTsXbtWpiYmGDgwIEwMTFB27ZtcerUKezYsQNly5bF4MGDsX//fty6dQv79+9H5cqV81xjypQpcHJyUqjZ5O7ujilTpqB27doKxz59+hTe3t4IDQ2Vh3BfEhsbi169emHnzp3ylfBu374NX19fhIaG4uXLl/Dz88OAAQPynBsSEoJhw4Zh2bJlmD9/Ps6fPw9zc3N4enqiTp06GDduHOzs7PD27Vvo6enJp8917twZjRs3ztM/IUSBCqKPHj0aS5cuhZaWFpo3b47nz5+jR48e6NGjB548eYK2bdsiKytLfnypUqXQrFkzVKxYET4+Pti6desXf/ZY44mIiIiIiIhIuW8OngYOHIhLly7B29sbjRs3Rnx8PDZu3IiiRYvC29sbixYtyreY9V9FRUVh4cKFCqNPPpeamooePXpg7969hbi1vLp164b3799j586dMDQ0VNgnhICjoyOKFSuGZcuWqbTIeG5uLtasWYN9+/ZBS0sLr1+/RnJyMsqXLw8DAwO8f/8evXv3Rq1atXD27FloamrC3t4eERERSEhIQPny5TF16lT4+/vnCfciIyMxfPhwHDlyRCGUSUxMRK9evWBnZwddXV1cvnwZsbGxkEql2LNnD+zs7ArU9ylTpqBNmzb49ddfkZ2djdmzZ2PevHkoWbIkqlatitu3b+Pq1asoXrx4nnP9/f1RpEgReHp64s2bN7h//z6aNWsGmUwGHR2dPMcnJSXByMgI586dg6+vL6pWrYoJEybg5MmT+P3333Ht2jWUKVMGlSpVgp2dHUqVKgVzc3PcunULly5dQvPmzdGjRw+ULl0a8fHxWLNmDebNm4fU1FTIZDKUL18eLVq0QJUqVXDjxg1s2rQJn16H6tWr4+HDhyhVqhQePnyotND5JwyeiIiIiIiIiJT7puDpzZs3qFKlCqKiomBsbKxwbEBAAN69eycv7lyQ6XFXr15FSEgIpk2blu8xLi4uCAoKQkpKCkxNTb8YBOTn7Nmz6NmzJ549e5ZnpMyOHTsQGRmJzMxMeHh4oFq1aoVu/1sEBwdj7969WLlypXyKYWZmJubOnQsNDY18n0l0dDT69euHdu3aoWPHjhBCYM+ePQgJCcGGDRtgbW2d55zIyEh07doVVlZWKFeuHJo3b4709HQEBgZi5cqVqFq16lf76+zsjMOHDyMlJQWOjo64efMmfHx8MGnSJGhpaWHgwIGYNGkSbGxs8pw7dOhQjBs3Ls++ly9folSpUgA+FlQfOnQoRo8eDWtra7x48QKVK1dGWloaAODkyZNYt24djh49ikmTJiEmJgYPHz5ERESEPEgzMTFBgwYNcO7cOaSnp6NTp06YMGECIiMj8f79e3h4eOD06dM4fvw4zp07h8jISIWpiQCwZs0adO/eHVKpFPr6+l98JgyeiIiIiIiIiJT7phpPgYGBqFChQp7QCfhY/Ll169YwMzNDWlqaQvCUm5uLgwcPwtTUFE2bNpVvt7W1xf379/O93qlTpxAeHg5PT0+YmZnhxYsXqF27NqZNmwY9Pb0C97tp06YwMjJCly5d4OPjg+rVq+PNmzfw8/NDZGQkNm7ciO7du8PKyqrAbX6PrKws+Pr6IiQkRCFI09HRwaxZs+Dp6Ynnz5+jdOnSec61sbFBSEgIDh06hIULF0IikaB169YYOXIk1NXV8xwvhMDgwYNx8ODBPKGUo6MjOnfujOPHj3+xCDnwsTh6WloanJ2dERkZiUuXLqFu3boKfc/JyVF6rpGREd6+fZsneCpZsiSSkpIQEBAAIyMjhWl6xYsXR+3atXHu3Dk0b94czZo1w+3btxEcHIwRI0YoPDeZTIaEhAQYGxtDU1MTaWlp2LJlCxYuXIi6deuiZs2aWLZsGTIyMtCiRQu4urpCIpFAKpXixYsX2LhxIx49eoSiRYuiXr16SkdhEREREREREVHBfdOqdleuXIGxsbHCamufSCQSNGrUCJGRkfLRH9nZ2ViwYAE0NTXh5uaGZs2aITY2Vn5OUlISoqOj0blzZ4wbNw43b96UT3mKiIhAz5498ccff2D//v1Ys2YNQkND0bx5c3Tu3BmZmZmF6vvvv/+O4sWLY8OGDejQoQMmTpyIJk2aYMuWLXj27Bk0NTVhamr6LY+l0I4ePQpXV9d8R28NGjQImzZtyvd8DQ0NdOzYEatXr8aqVavg4uKiNHQCgNOnT+PXX39VOhKqWLFiaN++vcJKePmxtraGo6Mj7t27h9DQUIXQSSaT4d69e0qDMgDw8PDAunXrlO4rUqQIwsLC0LVrV4XtWlpaOHPmDCIjI3Ho0CGoq6ujQYMGyMzMzBNWqqmpwczMTP489fX14e3tjYiICMyaNQu3b99G8+bNYW1tDRMTEwwdOhQAoK6uLp+y17p1a6xevRrVq1f/6rMgIiIiIiIioi/7puBJIpGgU6dOWLNmjdL9jx8/RtWqVaGuro6srCy4u7tjwoQJAABDQ0MsWrQIlpaW8uNdXV1x48YNHD16FIGBgahTpw4qVaqEnj17onnz5nBycoK7uzuEEPjw4QOysrLg5OSETp06YfPmzYXqu4uLCzIyMlCqVCkEBQVh48aNaNmyJS5evAhvb2/88ccf3/JIAABPnjzBmjVrsG7dOsTExHz1+NevX39x9T9bW1u8fv36m/vzuWvXrqFFixb57m/ZsiWuXr361XaqVKmCS5cuYceOHahXr57CPn9/fzg7O+c7aqpatWrIzc3Fli1b8PkMT5lMhhkzZqBZs2YwMjLKc56amhrKlSsnn/JWu3ZtGBoaIigo6Kv9BT4GdFOnTkVgYCD69OmDw4cPo0aNGoiLi1M4bs+ePXBycpJ/LYTAjh07sG/fvgJdh4iIiIiIiIgUfdNUu0aNGqF48eIICgrC4sWLMWDAABgaGiIrKws7duzA8ePHERERgZ07d2LWrFl49OgRgI8jXrZv3w6ZTIazZ8/iypUruHv3LmJiYlC9enWcOXMGgYGBCAoKQlxcHPbt24cPHz5g7dq1CAoKQnp6OmQyGTQ0NFC1alXUqlUL165dQ61atVCtWjVoa2t/te8SiQQBAQHYtGkT3N3d5eFYnTp1sGPHjm8qKv7hwwcMGjQIWlpacHFxQW5uLiZMmAADAwMsX7483ylbZcqUwb179+Ds7Kx0/4MHDwq1MuCX6OrqIiUlJd/9ycnJBZq2GBISgkqVKmHZsmXIzs5G3bp18erVKwQGBkJHRwfLly//4vl//vknfv/9dzg5OaFhw4bIysrCtWvX0KVLF6Ur4eV3LwMHDsTq1asxadIkpWGVMn379sWePXtgaWmJEiVKIDU1Vb5v586dKF68uLwoenZ2Nnr06IGdO3dCTU0NBw4cQNu2bQt0HSIiIiIiIiL66JuKi7979w6enp7ykGnHjh2QyWSQyWQwMDCApaUljh07hocPH8LR0RFDhgxBhw4d4O3tDW1tbezfvx/R0dHQ1dWFjY0N6tatCxcXF3Tp0kXhupGRkViyZAmcnZ0REREBQ0NDGBsb4/3797hx4wauX7+Ou3fvQggBHR0d9O/fHxMnTvxpNZqAj6Ni3N3dMWbMGDRu3Fhh36FDh7B37958V/eTSqVwcHDAwYMH8xSwFkKgQ4cOCAgIULpCXGG9ePECkydPxpYtW5Tu9/b2xsiRI7+6ul3dunVRt25dzJ07F5s2bUJERARMTU3RvXt3VK5cucD9ycjIQHh4ONTV1VGtWrV8pwgqExkZCScnJ2RkZODevXuFmhqZmJiIgQMHIjo6Gnfv3sWaNWtw4MABWFhYYPHixdDU1IQQAn369MH27duxadMm+c/58ePH0bBhwzxtsrg4ERERERERkXKFCp7++OMPODs74+bNm4iNjcXcuXPRqFEjzJgxA/Hx8diyZQvKlCmDtm3bwtHREUWKFMGNGzdgbW2NsmXL4tmzZyhXrhw0NDRgaWkJLy8vSKVSHDlyBGXLlsX8+fMVpmmlpqaie/fu2L9/v9J+JSUloVevXpg8eTJCQ0OxbNkypKenw9vbGxMmTICVlRWEELhz5w7evHkDW1tbVKhQ4cc9PXysdxUcHIwFCxYo3d+7d29MmzYt3yl1Z86cweLFi7FkyRKUL18eABAXF4cpU6agfv36BR4FVBDDhg1D/fr10aNHD4Xt+/btw/79+7F+/fqvtmFnZ4eMjAw0a9YMNjY2GDx48A8Jxgrq/v37sLe3R7FixRASEqJ09byC2LVrF7p06YKqVauiTZs2mD59OmJiYrB8+XKEhobi6dOnGDRoEJYuXQqpVAp7e3vcuXMHI0aMwMCBAxVGojF4IiIiIiIiIlKuUMGTMo0bN4azszOKFCkCd3d3WFpa4sqVK+jcuTNSU1Nx5coVlC9fHklJSVBTU8PAgQPRq1cvtG7dWqGd7du348KFC1i1apXC9gEDBsDb2xt16tTJc+05c+bAzs4Obm5uAD5OF1uxYgWWLFmCjIwMVK9eHYmJibCzs0Px4sXx8uVLJCUlYezYsWjTpk2eUUbfwsfHB66urkr7BwBHjhxBVFQUhg0blm8bDx48wNKlS/Hq1SuoqalBT08PQ4YMQbNmzb67f5/Lzc3F1KlTce/ePbRu3Rrq6uoIDQ1FmTJlsGDBAoUVCPOzadMmHDlyBC9fvsTdu3fh4OCAPXv2/NB+fklwcDA6d+6M6tWrIzAwME+dqYKSyWSYNWsWLl26hHPnzqFYsWJQU1NDXFwcsrKyMGvWLJibm2PXrl2wsLCAVCrF/fv3ERkZiebNm8Pc3By+vr4wMDBg8ERERERERESUj0IFT9u2bcOLFy/QqVMn9O3bVz7lTVNTEwkJCThw4ADWrVuH8+fPw8rKCpUqVUJqaip+/fVX/P7773j8+DHWr1+fbx0gLy8vzJs3DyVLlpRvi4+Ph4eHB0aOHAlnZ2eoqakhNTUVvr6+ePLkCfz9/SGRSBTaSU5OxsyZM7F161ZkZmYqrW1UsWJF3Lt3L98V5QpqwoQJ6NGjB6pWrap0/6lTp3D79m2MHj06z76cnBzs27cPx48fBwA4ODigY8eO392nr3n48CFmz56Np0+fwsbGBj179oSTkxPU1ApXa37t2rX47bffcPfuXVSrVk1Fvc3r6tWr8Pb2xp07d7B9+/Y8K+EV1oEDB+Dl5QVzc3P06dMHvXr1QokSJQAAbdu2RU5ODo4dO4b09HR07NgRFy5cwMKFCxEWFoagoCAGT0RERERERET5KFTS0LZtWwwZMgQbNmzA9evX0aZNG+Tk5KBt27YwNzdH37598fLlSwAfC27n5ubi6tWrWLJkCSZNmoTt27ejW7du+bbftWtXHDhwQGFbsWLFEBwcjPv378PZ2RkuLi7o1q0bSpYsqTR0AgAjIyO8fPkSd+7cQWJiIpKSkpCQkIC4uDg8e/YMixcvxqNHj+Dr61uY21eqadOmOHr0aL77Dx8+jKZNm+bZHh0dDScnJ8TFxWH69OmYPn064uLi4OTkhOjo6O/uV352796NcePGoX///jh37hyWL1+Ou3fvwtXVFWlpaYVqq0ePHihbtixGjBiBS5cuYfPmzViyZAnOnDmD9PR0Fd0BUL9+fVy7dg0eHh7o27cv7t69+13tnT59GmfPnkVkZCSmTJkiD50ePnwIa2trGBkZ4e3bt9DT08O+fftQu3ZtTJ06FZqamrh9+/YPuCMiIiIiIiKif6dCjXhauHAh/Pz88OrVK3Tt2hU1a9bE3r17cfHiRaxcuRLt27eHj48Ptm7dCi8vLxw6dAhxcXEwNzdHy5YtcfPmTVhZWcHZ2RkXLlxAbm4ucnJyULlyZYwaNQpRUVG4ceMGxowZ8103lZGRgW7dumHv3r1K9wshUKpUKbx69QrDhw/H77//DgMDg2+6llQqhaOjIzZs2KAwUgsAwsPDMXHixDxhmhACrVu3RkBAAEqXLq2w7/nz5xgwYABCQ0OVhmqFce3aNYSGhkIIgVatWsHMzAxjx47F7t27FWppAR/Dl927d2P16tWFusaxY8cUpk3q6OggMzMTGhoaqF27Nlq1aoVevXr98NpaAJCeno5atWqhdu3a2L59+xePTUlJwb59+5CQkAA7Ozs4ODjIC5q7uLjg4MGDec5ZtGgRatWqhVu3bqFevXryqY9JSUlo2rQp3rx5gy5dumDUqFEoV64cRzwRERERERER/UWhRjxNmDABtWvXRps2bbBlyxaMGjUKMpkMO3bsgLe3NywtLTF9+nTY29vj8OHDMDExwaxZs/D69Wts27YN8+bNg5qaGgICAtC7d28cPHgQISEh6NatG/r06YNt27bhl19++e6bysjIgKGhYb77JRIJqlevjvnz58Pf3x+VK1fG/fv3v+la6urqCAwMRO/evbFixQo8f/4cUVFRmD9/PkaNGoXAwMA855w+fRqNGzfOEzoBQOnSpdG4cWOcOnXqm/oDAO/fv4erqyuCgoLQokULODg4YP/+/WjdujWGDh2aJ3QCAHt7e8TExCApKalQ13J0dMTly5dx584dpKamIi0tDXfv3sWKFStQtmxZ+Pr6omLFinBycsLTp0+/+Z6U0dXVRalSpRAbG/vF41auXAlPT0+oqamhevXq8tpUV69eBQBoamoiNTU1z3k5OTnQ1tZGfHy8ws+TEAIxMTFITU3F9evXMXny5B96X0RERERERET/GqIAkpOTBQCxevVq0aNHDwFAjBs3TsTGxuZ7zqlTp8TkyZMVtl2/fl1YWlqKZ8+eiVatWgmZTCbfd+XKFVGsWDGFbd9KKpWKli1bitzcXKX7ExMTRceOHYUQQjx9+lSUKlVK9OvX77uumZ2dLXbv3i0GDx4shg0bJo4cOSKkUqnSY2fNmiUuX76cb1tXrlwRM2fO/Oa+uLq6iqtXr+bZ3qxZM9GuXbt8n/G8efPE+fPnv/m6ymRkZIitW7cKGxsboaOjIxwcHMS0adPE2bNnv+t7LZVKxdy5cwUAsWnTpnyP27Jlixg7dmyeayUlJQkHBwfx4sULsWXLFuHn55fn3PPnz4vx48eLli1byr+XaWlpolWrVsLOzk4AECVLlhRLly4VAERycvI33w8RERERERHRv1HeoS9fMGTIEJQvXx4LFizAmDFjvliMetOmTZg9e7bCtvXr18PPzw99+vSBvr4+zpw5g+rVq2P37t3YuXMn2rRpg4iICNjZ2RU6QPucmpoa2rZti/Xr1+O3337Ls3/+/Pno168fAKBMmTLo1q0bVq5cCXNzc3Tq1Am7d+/G9evXoa2tjaysLDg6OmLYsGHQ1tbO95qamppwd3eHu7v7V/unpaX1xRpI6enpBVphTpmbN2/CxsZG6WpvxsbGqFChAi5duoRGjRrl2Z+cnAxdXd1vum5+dHR00K1bN7Rv3x6+vr44d+4cfH19MWvWLFSsWBEdO3aEoaEhdHV1oa+vj2LFiqFEiRKoX7++0qmGQgjcuHEDQ4cOxZUrVzBp0iT06NFD6bWFEFi/fj2OHj2apy0jIyPMnDkTvr6+mDFjBjp06IDatWsrPLd69eqha9eumDhxovxnfePGjejduzcaNmyIrl27onTp0hg1atQPfGJERERERERE/x6FqvF06tQpNG/evEC1h1xcXHDgwAGFYz9ty8jIwIABAxAbG4uSJUuiTZs2cHd3x9q1a2FjYwNnZ+d8233//j1OnjyJnJwcNG7cGKVKlVJ6nFQqxW+//QZLS0sMHjwY1tbWePToERYvXgxra2vMmDFDfmxiYiImT56MHTt24MOHDxg3bhzmzZsHiUQCqVSKXbt2YceOHQgKCvpi+FRQDx8+xPLly+Hn56d0/8CBAzFixIhvCuAWLFiABg0aoHz58li1ahVu3boFDQ0NGBgYoESJEjAwMIAQQuH+gY/Pq3Xr1jh27BiysrIQHByMhw8fwsTEBB4eHvKC2z+CEAJnzpxBQEAALl68iIyMDGRkZCA9PR0ymQwAEBoaCkdHR/k558+fx65du3Do0CE8ffoUVapUgZ+fH3799dd8r/P8+XMsWLAg3yLyQgi0bdsWR44cQVJSEkaNGoUPHz6gQYMGSEhIwLVr1+Dp6YmdO3eiVatWcHd3R//+/eHk5IRjx45h3bp1KFWqFE6cOAEHBwfWeCIiIiIiIiL6i0KNeKpTp06BC17b2triwYMHqFq1qnybmZkZXr58iVKlSsHAwAD+/v4KRaefPXuGBg0aKG1PKpVi8uTJePToEVxcXKCtrY0pU6ZAIpFg1apVef7Cr66ujnXr1iEsLAw+Pj5ISEhAyZIlMXjwYNSqVQsAEBsbC5lMBkNDQ0yePBlCCDx48ADbtm3D7NmzoaGhAXV1dXh4eCAzMxNr167F4MGDC/PIlLKzs0NaWhpCQkLg5OSksC8kJARpaWnfNeorOjoas2bNwqxZszBnzhxIJBK8evUKU6dORVBQENq3b69wvEwmw4gRI9C3b1+cOXMGs2fPhpeXFzw8PPD69WuMGzcOtra2mD179ncXPAc+1tiyt7eHvb19nn4cPHgQHTt2VAi60tLS0LJlS2RnZ6NLly5Yvnw5WrduDU1NzS9eRyqVfvEYiUQiH8lkbGyM9evX4927d3j48CEMDQ3l4WOfPn0QEhKCZcuW4dmzZ6hYsSJGjx4tr5VVv379b30URERERERERP9qhRrxVJgRHffv38fChQuxceNG+bZz587h0KFDGD58OAYOHKiwklhaWhpcXV3zXc1t7NixqFq1Knr37q2w/cKFC1i4cCH27t1b6FCkSpUqCA8Pl39ds2ZNzJgxA66urqhWrRpWr14tH1GTnZ2NDh064OjRo4W6Rn4yMjIwcuRIpKSkwMXFBRKJBAcPHoSBgQGWL1/+zVPebt68CTc3N1y+fBnFixdX2CeEQIUKFVC0aFFUqVIFjRo1Qnx8PE6ePAkvLy80adIEw4YNw+7du/Ncf9GiRdDR0cHQoUO/+Z4L4vDhw2jXrh0ePXqkEEoeOXIEPXr0QMuWLbFz584CtfX5KC5l00Lv3bsHf39/rFq1qsD969q1q3xa5iff8n4QERERERER/RcUalW7wqhatSoqV66M4cOHIy4uDgDQuHFjPHjwAC1atMDChQvlx8bFxcHT0xM+Pj5Kw6O3b98iOjo6T+j0qc2qVavi/Pnzhe6jVCoFAHm7JUuWRIcOHXD16lXo6OigSZMmOHfuHICPdZmUrQb3rXR1deHv749FixZBJpNBKpVi4cKFCAgI+K46S5qamtDQ0MCLFy/y7Ltz5w4sLS3RrFkz+Pj4wNzcHA0aNMCRI0fQq1cvrF69GrNmzVJ6/dGjR2Pfvn3yZ6YqzZs3h46ODg4cOKCw3dnZGRMnTsTBgweVrkCnjLq6Otq3b48VK1bk2ZednY2pU6cWOkjr27cvlixZUqhziIiIiIiIiP6rVDbi6ZMTJ04gICAAGRkZyMnJQe3ataGrq4uwsDBYWlriw4cP0NLSwoQJE1CnTh2lbWzcuBHa2trw8PBQuj88PBxr1qwpdCBw/PhxeHh4IDExEQDQsmVLnDhxAsDHaV+WlpZwdXXFihUrIJFI4OLigpCQkEJd42fbu3cvYmNjcfr0aZQqVQpubm5QU1PDvn378PjxY/j5+WHIkCHYs2dPnnPbtm2Lw4cP59v26NGjMXDgQIWRSKrg4eGBc+fOITw8HEZGRvLtz549g62tLXbs2IGuXbsWqC0hBMaPH4+4uDj069cPVlZWuH79OtasWYPRo0ejbdu2herbp/bU1dUxevRomJubIz4+HmZmZhzxRERERERERPQXP24ITz5atWqFVq1a5dnu4+OD5ORkaGtrf3WET1ZWFooWLZrvfn19fWRlZRW6bw4ODrh16xZsbGwAACdPnsSxY8fg6OgINTU1+bSqHTt2oEaNGnBxcSn0NX42MzMz3L17F8HBwbh58yZCQ0MhhEDnzp1Rv359PH36FGZmZvmeL4TId8qiTCb7ITWevmbhwoWoUqUKxo0bh4CAAPn2MmXKoEyZMjhx4kSBgyeJRIKFCxfi6dOn2LZtGxISElCpUiXs27cPhoaGhe6bRCLBggULcOzYMQwbNgwZGRnf9LNHRERERERE9F+g8hFPP8K9e/cQEBCAlStXKt0fEBAAfX19dO/e/Zvaj4yMROXKlZGbm4uyZcti06ZNaNSoEYQQuHv3LoYPH46zZ8/iwYMHqFy58vfcisrJZDI4ODjgyJEjSlfgGzduHFxdXdGoUaM8+yZOnIiOHTvil19+ybPva/WSfjR/f38MHDgQXbp0wYoVK2BhYYGwsDA0b94cu3btQqdOnVTeh4L6X78fRERERERERH9XKh/x9CNUq1YNMTExCA8PzxP8JCQkYNu2bQgNDf3m9suXL4/MzEy8efMGmpqaWLBgAaZPnw59fX2kpqbKC0nn5OR81338DGpqahgzZgx69uyJgIAA+VQ1mUyGDRs2ICEhAQ0bNlR67uDBg9G/f3/s3r1bYTSQEAKzZ8+Gh4fHTwmdAGDAgAEwMDDAyJEjYWdnhz59+iAoKAi1a9eGm5vbT+kDEREREREREX2ff8SIJ+BjAfIePXrAyckJHh4e0NbWxuHDh7Fu3TqsWLEC1atXVzj+0aNH2LFjB1JSUlCtWjV07dq10EW7c3NzAQBr167F3LlzYWhoiKlTp6JRo0YoWbLkD7s3VQgLC8OiRYtgaGgIQ0NDREVFoXXr1hg9ejTU1dXzPe/SpUuYPHkyOnbsiHr16uH169fYsmUL6tWrBycnJyxduhQJCQlQU1ODpqYmBg0aBEdHR5XdR3x8PMaMGYPg4GC4ublh+vTpKFu2rMqu9y3+Du8HERERERER0d/RPyZ4Aj4GQYcPH8aBAweQk5ODZs2awdPTE3p6evJjpFIphg4ditzcXPTp0wdmZma4cOECNm7ciJkzZ6Jp06aFuuapU6fQsmXLPNsNDQ3h6emJhQsXyp9JfHw84uPjYWVl9bcJIBITE5GZmQkLC4svBk6fy83NxaFDh/Dw4UMULVoU7u7uuHXrFlavXo3ly5fLa2IlJibCx8cHlStXLvTqcJ+8f/8eN27cgKamJho0aAAdHZ2vnhMfHw9/f39cuHAB6urqsLKywpAhQ/KEj5+Li4vD5s2b8eLFC1hbW6NHjx6wsrLKc1xaWhp2796Nt2/fIiUlRV7zSkNDAxYWFrC0tISlpSWKFy+OtLQ0vH79GlFRURgwYMD//P0gIiIiIiIi+rv5RwVPBTFjxgyUKVMGvXr1UtielpYGd3d3rF27FtbW1gVuLykpST7VDwB0dXVha2uLqKgoZGVloVixYvD29sb9+/eho6ODEiVKIDIyEqamppg/f/4XC3n/U+Tm5sLR0RGHDx/OM2pMCAFXV1f4+voqDXLyk5mZifHjx+Ply5do1qwZsrKycOrUKTg4OGDMmDH5FjGPjIyEt7c3JkyYAAcHB6ipqSEiIgLTp09Hhw4d0K1btzzn+Pv74/Dhwxg0aBAqVaqEJ0+e4M8//8Svv/6K0aNHy4979eoVXFxccPPmTRgZGcmnKb548QIaGhqQSqX40uvyT3g/iIiIiIiIiH6mf1XwlJGRgY4dOyIkJERpcBEWFoaTJ09i1qxZhWo3PDwcgYGBCAsLw61bt9C5c2e4u7tj0qRJiI2NRXZ2NiwsLDBjxgz07dsXWlpauH37tnyKmLGx8Q+6w/+Nw4cP49GjRwohzeeOHz+OGzduYOLEiQVqTwgBT09P9OzZE87OzgrbFy1ahMzMTEydOlXpuc7OzlizZk2ekEsqlaJDhw4ICAhQ2HfixAns2rULfn5+Cj8TQgiMGTMGTZs2RfHixbF9+3Zs27YNOTk5WLBgAUqWLInExERYWVmhRYsWefrRpk0bjB8/HiVKlICenh6sra3/9u8HERERERER0c/2cypF/yT3799Ho0aN8h0t07RpU9y8ebPQ7VauXBlLly7FtWvXsGzZMty7dw+enp5o164dDA0NoampiYSEBAwePBiWlpYIDw9HzZo1MXr0aPz555/fe1v/c9HR0ahUqVK++ytVqoQXL14UuL2rV6+iVKlSCqETAEgkEowbNw7Xr19HUlJSnvNu376NihUrKh1Zpa6ujlGjRmHdunUK2319fTF37tw8PxMSiQQTJ07EwIED0bBhQ6xYsQLx8fFITk6Gt7c3nJ2d4eXlhRYtWqB169YYO3YsatWqJT//6NGjKFKkCMqVKwcDA4MC3zsRERERERHRf8m/KnhSU1OTFwRXRiaTfVf76urqGDFiBB48eIABAwYgICAACQkJEEIgNzcXdnZ2SElJwfLlywF8HBUTFhb2Xdf8O7C2tsaTJ0/y3R8VFVWoaXY7d+5Ez549893v5uaGI0eO5NkeHh6OevXq5XtevXr1EB4errAtOzsbpqameY5NTk5G586dERcXJ99mY2OD2bNn4/bt23j58iVev36NatWqITQ0FFWqVMHNmzfx/v17nDx5EhcvXlQIooiIiIiIiIgor39V8FS9enVcunQp3zo8ISEhhS4uroyamhr8/PwQHh4OU1NTedgVHh6O3Nxc7NixAzKZTL7y2z9dmzZtsH//fmRnZ+fZJ4SAr69vnppaX5KWlgYTE5N895uYmCAtLS3PdlNTU7x+/Trf816/fo2iRYsqbFMWNr5+/RqNGzfG2bNnAQDt27dHaGgonj59iilTpqBGjRooUaIExo4diydPnmDt2rXy+zM2NkaLFi3QsGHDfEfWEREREREREdFH/6rgSVNTE+3bt8cff/yRZ9+7d++wZMkS9OvX74ddr2TJkihZsiQAYP/+/fLrpqSkICoqCh8+fICa2j//EWtpaWHEiBHo0aMH3r59K9+empqKCRMmoG7duvLnUBC1a9f+4kiwsLAw1K5dO892e3t7HD16FFKpVOl5a9asgZeXl8I2ExMTeWF4ALhy5QpKly6NBw8eAADq1KmD/fv3w9HRMc/3qnTp0tDT00OvXr0YMhERERERERF9g39+KvIXw4YNQ05ODlxdXREUFIRTp05h9uzZ8PT0xPLly3H37l14enrCxcUFzs7OWLx4MZKTk7/pWpqamnBycoK5uTkOHjyIsWPHonz58gA+js5ZtWqV0lXW/onat2+PESNGYMiQIWjbti06duyILl264JdffsH48eML1Va3bt0QGBiI1NTUPPueP3+OR48eoU6dOnn2aWlpoU+fPhg0aBCysrLk24UQ2LZtG+Li4tCgQQOFc0aPHo0RI0YgKysLO3bswC+//CIfudWqVSssW7Ys3362bdsWCQkJ6NChA0aMGIGMjAyF/UIIDB8+HH379i3M7RMRERERERH9Z/yrVrX7XEJCAvbv34/k5GRUr14d9vb2mDNnDuLj4zFp0iQUL14cUqkUhw4dwooVK7Bt2zZYWFgU+jrp6emoXLkycnJy8OTJE2RmZiIuLg5BQUF48+YNfH19/3WjZaRSKYQQ0NDQ+OY2zp8/j5kzZ2LMmDFwdHREdnY2du3ahfXr12P9+vWwsbHJ99x9+/bB19cX5cqVg76+Pm7fvo3GjRvDx8dHaZ+OHj2KRYsWwdjYGHv27IG9vT2ys7MxevRouLm55XsdmUwGGxsbhRFTDRo0wJUrVzB27FhYWFhg3Lhx8n3/pPeDiIiIiIiI6Gf41wZPf3XlyhWsX78efn5+efaFh4djzpw52Lp16ze1vXDhQvj4+MDR0REAoK2tjZ49e8LFxUUhdJLJZJBIJP+6IOpbvX37FmvXrsXly5ehrq4OZ2dndOvWDXp6el89VwiB58+fIzMzE7a2ttDW1v7i8Tk5OThy5AhevHgBKysrtGvX7qvnAMCGDRvQp0+fPNurVKmCBw8e4Ndff8X58+cBMHgiIiIiIiIi+qv/TPDUr18/TJkyBba2tkr3d+3aFStWrPimUU979+6Fm5sb3rx5803nf8m5c+cQGBiIpKQkAB+nvHXv3h26urrf3XZWVhY+fPgAY2Pj7xq99E8lhMC9e/cQHx8PW1tbGBsb49q1a4iJiUFCQgJycnJw9epVlC5dGtra2li7di1SU1NRrFgxmJiYQAgBY2NjBk9ERERERERE+fipaYMQAi9evEB2djZKly79U1d8e/v2bb6hE/BxRbynT58qDY4yMzOxa9cu7N27Fzk5OahatSq8vb1RunRpAEBSUhIkEgmMjIx+aJ9nzZqFt2/fYu7cuShRogQyMzMRFBQkr1/1rdd7/vy5vG0zMzPExsaidu3a8PHxgYGBwQ+9h7+rsLAwzJkzB9WqVUPJkiWxefNmBAUF5anj9IlMJoOLiwuOHj2K48eP4/r165DJZKhTpw52796NTp06/eQ7ICIiIiIiIvr7+2nB0/79+7F69WrY2tpCT08P9+7dg729PSZMmAB1dXWVX19LSwspKSkKI1JkMhkOHDiArVu34vr167hw4QKGDBkCZ2dn+XS4+Ph4eHp6omvXrti8eTP09PRw+fJlDBs2DH379oWrqyuePn0KKysr6Ojo/LD+nj17Fu/evcOqVavk23R0dNCrVy+UL18eEydOxJ9//lnodp89e4Z+/frhzz//RMWKFQF8DARPnDiBzp07Izg4uEBT3f7JLl++jKVLl2Lv3r1IS0vDnj17cPPmTWRkZEBfXx9OTk4IDg5G1apVMW7cOCQlJaFy5cqIiIiAqakpWrVqhQEDBqBVq1awsbFBSkrK//qWiIiIiIiIiP6WfspUuy1btuDs2bNYuXKlvK6OEAKbNm3C2bNnMXfuXNy7dw/6+vqoV6+eSqZ9BQUFIS4uDsOHDwcA5ObmolevXqhWrRq6desGb29vbN68GatXr8bLly8REBAANTU1eHp6YtKkSahevbpCe7m5uejQoQMCAgIwbtw4xMbGIiwsrFB9kkqlkEgkUFPLu7hgjx49MG/ePJQoUULpue3bt8fWrVthaGhYqGv27NkT06ZNQ7ly5fLs2759OxISEjB06NBCtflPcuvWLbi4uEBPTw+JiYlITEyEmpoanJycMHr0aAgh4OXlhXr16sHHxwcDBw7EnTt30KlTJwwcOBDNmjXL8/36N0xFJSIiIiIiIlKFvInHD5adnY2NGzfizz//VCjmLJFI0LFjR1y6dAleXl548OABjh07htatW2PTpk152snNzYW/vz/atGmD9u3bo3Xr1pgzZw6Sk5ML1A83NzecOHECISEhAIDVq1ejZcuW8Pb2xrBhwzB58mQUK1YM06dPR7Vq1bB+/Xq8ePECmpqaeUInANDQ0MC4ceMQEBCAS5cuoXLlyoV6LkIIyGQy5OTkQFn2l5SUpBA6vXv3Drdu3cLr168BfCxu/fz580JdMy0tDcnJyUpDJwDo1KkTDh8+XKg2/yo+Ph5btmzB2rVrER4e/l1t/WgrVqyAj48P3r59i9evX6Nhw4bw8vJC06ZNsXXrVrRo0QItWrRATk4ODh48iAYNGiAjIwNHjhxBUFAQ7O3tlYaERERERERERKScyqfanThxAm3bts0znS43NxceHh7w8fHB1atXMWLECAAfp7+NGjUKMpkMvXv3lh/bvXt3tGrVCvv374eWlhZkMhlCQkLQqVMn7Ny5EyYmJl/sh6amJoKCgjBt2jQsW7YM4eHhaNKkCfbt24dJkyahYcOG8mO9vb3RsWNHWFhYoHHjxvm22bRpU0yaNAnPnz+X97UghBAQQkBdXR0SiQQymSzP8xFCICsrC3FxcZgwYQKEEKhQoQKeP3+O1NRUAICxsXGBrwkA79+/h6WlZb77NTU1v3m0mVQqxeTJk/HkyRO4ubnB1NQUq1atwps3b+Dn5wdzc/MCtSOEkE9z/Py/v9fNmzdx7do1PHz4EPr6+oiKikLRokUBAJcuXZKHiBKJBDVr1kSxYsUQERGBX3/9FVu3bsXKlSsxYcIENGnS5If0h4iIiIiIiOi/QOXBU0JCAqysrPJsP3DgAJycnNCmTRv5KCQAUFNTw9KlS+Ho6AgvLy9oaGhg48aNaN68Ofr3769wnLOzM4yNjTFjxgwsX778q33R1dXFwoUL8eHDB7i7u2PJkiVKi4nr6OhAU1MTBgYGSExMzLe9xMREZGdnQ0NDQ14vqaAkEol8mt2n0U+fghaJRAIXFxcEBARgz549CAwMVBil9PDhQzRp0gSZmZmFumaxYsUQHR2d7/60tLRCtfc5Hx8fVKxYEX/88Yd8W8eOHXH//n14eXnhyJEjBQq1Ph/99aNCJwDw8/NDjx49sGXLFtjZ2SmsCtiwYUP88ccfSEpKQkZGBh49eoQhQ4agY8eO8j4kJyejb9++yM7ORsuWLX9Yv4iIiIiIiIj+zVQ+b8jOzg7Xr1/Ps33nzp3o2bMnrl+/jkqVKil2Sk0N9vb2uHjxIgBgz5496NOnj9L2GzVqhMePHyM7O7vAfTIwMIBEIlEaOn2SlZWFxo0b4+TJk5DJZEqP2bhxI4YNGwYA2LFjR4Gv/ylc+vxrNTU1qKurQ01NDRKJBD169MCSJUvg6empEDolJydjwoQJWL16NebOnVvgawIfA7WyZcvi0qVLSvcHBgaia9euhWoT+DiSKjw8HH379s2zr2rVqmjdujWOHDlSoLY+3f+PDJ0A4PXr1/jll19gZGSEhw8fQk9PTyG4q1WrFiIjI+Ht7Q1HR0e4uroq9MHIyAhbtmzB/PnzlU6NJCIiIiIiIqK8VB481alTB3fv3sWbN28UtmdkZMDAwADLli1TGlgULVpUPgJHTU3tiyvGWVtb4/379wXuk0QiQalSpRAREaF0//Xr11GlShVoamrCy8sLo0ePzhM+Xbx4EadOnYKXlxdKlCiBFy9eFPj6BaGnpwdbW1tcu3YNHTp0wJQpU9CvXz90794dEydORIcOHXDjxg107NgRLi4uGD16NB4/fvzVdn///XdMmzYNBw8elN9TRkYGVq5ciRs3bsDT0/OrbXyaKvjpnxMnTsDFxSXf4z09PXHgwIGC37ySa32L169fY82aNRg8eDDu3r2L6tWrK9QEmz9/Pt69ewcAePz4Mf744w88f/5cYdTW53R1dVGzZk3cvXv3m/pDRERERERE9F+j8ql2EokES5cuRffu3TFlyhTY29tDIpGgRIkScHJyQr9+/VC8ePE8550/f14eZuTk5CAnJweamppKrxEXFwcjI6NC9WvSpEno378/Nm/erDAV8Pnz5xg/fjw2b94MAOjduzc2bdoEBwcH/PrrrzAyMsKFCxdgYmKCHTt2QENDA1KpFFKp9KvX/Dys+TSq50sje/T09ODr64v09HQ8f/4cJiYmKFWqFBISEuDi4gIdHR0EBATA3NwcN2/exKRJk+Dm5obu3bvn26aJiQmCg4Ph6+uLVatWyetlderUCRs2bMhTa+pTv78kJydHoXD8X+no6Hx1RJpMJoNMJpMX7/7riLDCePv2rdLRbKVLl8Zvv/0GY2NjvHr1CufPn8fDhw+RmpqKu3fvYv/+/Zg+fTqKFSuWb9vW1taIj48vVH+IiIiIiIiI/qtUHjwBH6fbbdu2Df7+/li0aBHU1dVhYGCAnJwcdOnSJc/xt2/fBgD5qm5t2rRBcHAwPDw88hwbHh4OCwuLL46IUsbW1harV6/GsGHDoK+vD1tbW0RGRiInJwdr1qyBtbW1/NiePXuie/fuOHjwIKKjozFx4kTUq1cPABAdHY2XL1+iQYMGEEJAKpUiNzcX2traCoGJEAK5ubnyUUbq6upKQ55PcnNzkZ2djfT0dBgaGqJGjRryfcOHD8eCBQswduxYmJmZAQBq166NXbt2wd3dHQ0bNoStrW2+bRcpUgQTJ07ExIkT8z3m87Dpr8HTX4OgRo0aYerUqejRo4fSYw8fPvzVotyfptjld438+vjX44QQSkOnESNGIDw8HN7e3qhbty4AICQkBDt37gQArFu3DrVr10apUqUQHh6e7yqFt2/fhpub21f7RkREREREREQ/KXgCAAsLC0ybNk1h2549e+Dq6oqJEyeiUaNGSEtLw9atW7F7926Fmkn9+/eHu7s7jI2N0bp1a3nYcO/ePQwfPhybNm36pj5VqlQJwcHBePXqFd68eQMrKyulo6+ePHmCcePGwcjICJUqVUJgYCBmzpyJuXPnwszMDHp6evD390e7du2QlZWFx48fo0qVKgph2KcgSSKRQENDI0/Q8ldqamrw9PREYGAgxo4dK9/+6tUrCCEQHh4OR0dHhTbU1NQwceJE+Pv75ztdTJn8RjR92v7Xgt+fvv50bRsbGwAfpx9+vjog8LEA+9q1a3H48OGv9kNZiJTf/pSUFOzduxdxcXEoV64c2rVrB01NTYVjbt++jfv37+P9+/cYOnQo3r9/jzFjxiA5ORm1a9fG27dvceTIESxbtgwODg4APq5o+Mcff2DDhg15+hMVFYXU1FSUKlXqq/dCRERERERERIBEFKCATkpKCoyMjJCcnIwiRYr80A5ER0fD398f9+/fh5aWFtzc3ODu7p5n6lZqairmzZuHq1evwsLCAgkJCbCxscHUqVMVRif9aDExMejZsyc2btyIkiVLyrc/fvwYvXr1wrx585CWloZ27dohLCwMtWrVwq5du1C/fn1UqVJFHl5IpVKkpaUhNzcXBgYGeUKSTx49eoT4+HjY2trC3NwcAwcOhJWVFYYOHQozMzPs27cPGzZsgLa2NrZs2ZJn+qEQAh06dChQTaXPgyVlIVN+PvX78/5/+PABPXr0QM2aNdGtWzfo6+sjNDQUW7ZswdKlS1GzZk2lbXypT5/+/an4+qev16xZg927d6Nbt26wsbFBWFgYduzYgRcvXmDSpEmYOXMmZsyYgSlTpqB///6YMWOGws9IQkICIiMjYWRkhJs3b0IIAS8vL/n+RYsWISoqCj4+PrC2toZMJkNoaCgWLlyY5+cAUO37QURERERERPRP9tNGPOXHxsamQKuzGRgYYM6cOZDJZEhNTYWenh40NFTf/cWLF2PBggXysOHNmzcYN24cMjIyUKdOHfz222+ws7ODhoYGTp8+jYYNG6JixYq4desWbGxsYGhoCODj1Dp9fX1kZmYqHe104cIF/P777yhXrhxKlCgBX19fSKVSLFq0CHfu3MHQoUORnp6O1NRUFCtWDFu3blV6/ykpKYWadiiTyfD8+XPk5OTAxsYmz/S/L01/+3yqm6GhIfbu3YuwsDD4+voiKysLjRo1wpEjR6Crq5vnul8aZfV5EPbXOlgHDx7EjRs3cPDgQaipqWHnzp2YMWMGBgwYgICAAEydOhUdOnTAhAkT8r1nU1NTmJqaAgBu3bqVpy9jx47F2bNnMX78eHz48AG5ublo2rQpdu/ejaJFi+bbLhEREREREREp+p+PePq7a926NUJDQwEA79+/h7u7O1auXIkqVaoAAJydnbFu3To0aNAAMTEx2LVrF1q2bImrV6/C3Nwc1atXz1PrSQghH8EDAFeuXMGcOXOwdetWeVAFfBz9NGjQIAQHB8PExATAx5FTjo6OOHbsmNIaUStWrICVlRU6der0xfsSQiAoKAhr1qxBuXLloK2tjfv378PJyQnDhg3LU+Q7NzcXV65cQUZGBmrVqiWvLaXMtxQG//RjKJPJFAqwa2hoKLTh7OyMHTt2QE9PD4mJifJ6TqtXr8bkyZORnJyMzMxM+Yi5Xbt2IS4uDkOHDlV6XU9PTyxevFihwHxh/ZffDyIiIiIiIqIvUfv6If9tWlpa8v/29fXF+PHj5aET8HEklpGREc6dOwdra2t07doVu3btQo0aNZCSkoK0tDSF9j5NG/s875s3bx7Wr1+vEDoBQMWKFTF27FgEBATIt6mrq6Nfv34YOHAgcnNzFY6/ePEiQkJC0KFDB6X38inQkclk8PPzw6VLl3Dw4EH4+vpi6dKlCA0NhY6ODsaNG6dw3po1a9CuXTucO3cOjx8/xtChQ9G/f3+kpqYqrM73tVX6lPXl838+rWwnk8nkz+nz9pKSkmBsbAx9fX2oqanh4sWL8n1DhgxBcnKyPET7pGPHjti7dy+eP3+epw8hISEwNDT8rtCJiIiIiIiIiPL3P59q93f3qTaTvr4+zp49i0mTJsn35ebmIiEhATo6OihVqhTq1KmDuLg4TJw4EV5eXjAzM8P169fRpEmTPKOTPq2Al5SUBD09PfnUr79ycnLCypUr5VPHhBDw9PSEpqYmWrdujXr16qFo0aK4fPkyTE1NsWPHjjx1n/563dTUVOzbtw8HDhyAurq6fHSRRCLB4MGD0b9/fzx+/BgVK1aEn58fYmJicOzYMfkxw4cPx4ULF9C9e3fs27dP6cirvw6kK0gB80//raamBnV1dYVRYZ9WBZRIJJDJZFBXV0fHjh2xb98+dOzYEQCgo6OD8uXLK7SvqamJdevWoX///mjcuDHatGmD9PR0bN++HRkZGfD398/3WRERERERERHR9+GIp6/o3r07Vq5cCeDj6KfPw5ANGzbAxcVFPirHzMwMM2bMwPv37/Hnn3/C2toat27dktdr+lx6ejru3LmDly9fwsTEBDKZDDk5OcjKylI4Vk1NTWmQ1KlTJxw/fhxdu3ZFw4YNERgYiMDAwC9O9foUHB0+fBju7u7y7Z+unZ2djdzcXPTu3Rtbt25FZmYmDhw4gNmzZyucDwCNGzdG48aN5dMQP/k8QFL29efb/rr9U+CkLHSSSqXQ19dHXFwcMjMz5dsdHR3lx506dQrFihXLc982NjYIDQ1FkyZNEBoaiitXrmDkyJHYtGmT0vpTRERERERERPRjMHj6im7duiE2Nhbjx49HdnY2kpKS8O7dO8yaNQtnz57FsGHDAHwMQZ4/fw57e3sMHDgQ06dPR0pKCho0aIDNmzejf//+Cu1mZGRg9+7duHv3LsLDw5GTk4OcnBzExsbi1atXSEtLgxACcXFx8nBEJpMB+BgAfQptatasiSZNmuQ7Yupz2dnZ2LhxI+bOnYs1a9agW7duOHDggEJ9JalUCgsLCyQmJiIsLAyOjo5QU1NTmPb2KYDq3bs3du3aJb//z+szfS1w+utKep+Pdvo8dPq0Pzc3F1KpFN27d8ecOXPkx+vq6sqf7bx58zB8+HCl9y6RSNCiRQtMnToVEyZMgJ2d3VefFxERERERERF9HwZPXyGRSLBixQo4OzsjKysLDRo0wPDhw1GvXj1s2LBBPs3s4MGDqF+/PjQ1NTF79mzo6OigS5cusLW1hb29PY4ePapQk0hPTw9ZWVkIDw9HiRIlcPDgQUilUoSHhyMyMlIerMyfPx+//fabvC+fwp+/hkFfk5GRARcXF4SHh2PUqFFo164d/Pz8cPfuXQwZMkShRtONGzdQvnx5fPjwASYmJvlew8TERB6QfV6f6VMABeQNmz7f9ylA++s5n3wKnLKzs+XT67p164YiRYqgS5cuCAkJQUREBKpXrw4AqFGjBurWrVug50FEREREREREqsfgqQAkEgmaN2+O06dPw9nZGaVKlUKtWrWgpqaG1NRUrF69GmvXroWPjw+Aj4HMoUOHcO/ePXh6eqJnz55o164dwsLCkJKSAqlUitzcXGhoaOD9+/eoVq0a1q1bh+XLlyM2Nha5ubl4+fIlBg8eDGNjYzg4OMj78S2ePXuG2rVrIysrC4aGhjh37hxWrFiBBw8ewMfHB7a2ttixYwfU1NSQm5uLtWvXwtPTEzVq1MD58+eVjlACgNOnT6NWrVpKA6dPx+U3+unze/k0nfBTiPcpjMrNzUVOTg6kUinS09Nx+/ZtPHz4EOPHj8fy5ctx//59rFu3DomJiQCAsmXLftPzISIiIiIiIiLV+NsWFz9//jxWr16NDx8+QCqVokyZMhg1alSe4tE/k0QiwZIlS3DixAmMHj0aHz58gIaGBjp37ozdu3cr1GKqX78+jhw5gpYtWyIkJATz58/Hu3fvkJiYiA8fPiA5ORkWFhaIi4vD+/fvMW3aNNy+fRuBgYGQSCSoUqUKBg0ahAYNGij04fPRQgXx+vVr9O3bF0WLFsWJEyfko5pOnz4Nd3d3LFmyBAMGDECPHj1QpUoV/P777+jfvz+MjY1RtGhRpKam4u7du6hWrZr8mkIIZGdnY8mSJVi/fr18CmBBn+Hn9yKEyFPTSSqVygOnrKwszJo1C48ePUL9+vWRmpqKW7du4bfffsOgQYNw6tQpTJgwAWXLloWLi0uB+0FEREREREREqicR+S039pmUlBQYGRkhOTn5i8Wrf5S1a9fi/PnzmDNnjnyp+/v372PcuHGYNm0aGjZsqPI+/CiOjo64cOECGjduDDs7OwwfPhy6urqIiopCQEAAwsPDkZqaCjU1NdSoUQPW1tZQV1dH+/btUb9+fWhpaX2x/dzcXJw5cwYJCQmws7OTTzv7ZPz48WjatCl27dqFtWvXQk1NTR4UXfx/7d15eE3n2sfx7x4zT4JEEkRiHhuzgzq0IQTRlAQxi3mmiMZUQahyYoqqqqihqKRmDU0rplapagwxhZhjjERk2Nk7+/3DyT5SiYqhp33P/bkuF/Za61nPWjv+8Lvu534OH2bo0KG4uLjw66+/4uvry8CBA6lWrZppKd/9+/fp378/Xbp0oXv37lhaWhIfH8+8efMYMmQIPj4+pl3xgAJL9oACx35fDZVfIZVf7ZTfRFyn06HT6VAoFAQHB9O9e3c6duxoGlev19OmTRsOHjyIXq+natWqbN26lcqVK7+27604/ux/H0IIIYQQQgghxN/FawmeLl26RExMDBkZGdStW5d27dqhVr9cMVVKSgoDBgxg69atzzSZTk9Pp1OnTnz33XfPHPurun79OhEREVy+fJm4uDjS0tKoUqUKdnZ2REREULFiRQ4cOMDPP//MkSNHyMnJoUmTJhgMBry8vKhXrx6lS5fG0dHRtBQt36ZNm1i+fDmtW7fGxcWFY8eOceHCBSIiIkwhTJs2bdi8eTNBQUGmRuI5OTmmRuKdO3dm6dKl9O3bl9WrV6PRaNBoNKjVatMOc7m5uWzbto3t27eTm5uLl5cX/fv3x8XFpUDD83z5AVF+RdPTwdPTy/Xyr83/LnNzc8nKygKe7CD4008/ER8fz/Tp01GpVCgUClatWsWGDRuIi4vD1dWV2NhYatSo8Qa/wT8mwZMQQgghhBBCCFG4V1pqZzAYGDVqFI8ePaJHjx6UKFGC+Ph4vL29Wbhw4TPVNy8iKiqKESNGFBos2dra0qpVK/bt20erVq1eZep/Gjc3Nz755BMAbt68yYoVK5gxYwYKhYLffvuNSpUq4ejoiK2tLd7e3uzcuZO7d+9ib2/PkSNHOHz4MGq1GhcXF3r27EmZMmXQaDTs3LmT3bt3Exsbawr5evbsyY0bN+jZsycbNmygdOnSpiDJ1taWS5cuUaFCBdRqtamiyMbGhri4OLy8vNDr9SgUClPT8vxwSKlU0rlzZwICAgo0NC9qiV1h4VJh8quv8nes0+l0GAwGtFotGo2G6Ohoxo0bh0KhQKVSERoaSnh4OK1bt+bTTz8lIyODa9eu/deDJyGEEEIIIYQQQhTulcqGpk2bRsOGDVm9ejXe3t7Uq1ePsWPHsnnzZkaPHk1qamqxx0xKSqJWrVpFHq9duzZJSUmvMu3/GhcXF4KCgujTpw/9+vVjyJAh/Pjjj5QvXx5bW1v0ej1NmjTh5MmTWFtbY21tjZ2dHTY2NmRlZbFixQp+/fVXdDodixcvJjIy8pnKslKlSjFp0iSWL18OPAl/0tPTmTRpEsHBwVy+fJmsrCz0ej16vZ7Lly8TFRVFUFCQKSjKb36em5trCoXyz3/6s9/3myqqmXj+mE83IX/6/PzQyWg0olarUavVKBQK0tLSKF26NA8ePGDAgAGEh4cTEhJCbGwsgwYNwsnJiYcPH/4J35wQQgghhBBCCCFexksHT48fP+b48eP06tXrmWOOjo6MGDGCL7/8stjjOjs7k5ycXOTx5ORknJycij3uX8WVK1eoVasWy5cvp3r16qxZswYrKyu0Wi0PHz5Eo9GQkZFhqjTK39Ht8ePH5OXlcf/+fRISEnBycnqmKkyv15OVlcXbb7/N4cOHAQgKCiIyMhJPT0/mz5/PBx98QN++fZk8eTItWrRAr9ezZMkSnJyc0Gq1qNVq07hPh0RKpdK09C6//9PTvZyeVtjnvw+lfr8LXv74+XNQKBQF3lN0dDSLFy8mLCzMNOaPP/743JBSCCGEEEIIIYQQ/10vHTz9/PPPtGzZssjjHTp04Pvvvy/2uL169eLTTz8t9Jher2fbtm34+PgUe9y/CldXV5KSklAoFAwcOJBvvvmG+/fv4+DgwI0bN9izZw85OTk8fPiQrKwsHj9+TGZmJhiNuLq6UqVKFTQaDdbW1qYm3PnVRJmZmaSlpZGZmWnqBxUQEEBKSgpjx44FYPny5YwdO5bs7GxcXV2JiYnB0dHRtJwtP3R6usm3Xq83zf/3zcOhYO+mp4/l/zk/qMr/BRSofvp9+KRUKtFoNFSsWJHQ0FAaNGjA+fPnGT58uKnCKzk5WZbZCSGEEEIIIYQQf3Gv1OPpj7xA3/JnVKpUCRcXF8LDw/nggw/QaDQApKWlMXLkSAYOHPiHO739lVWtWpWkpCRSU1Pp168f06dP51//+hfDhw/n3r17HD9+HHgSEFWvVIkwpZK3b9zAXK3GzMoK5enT5E6fzrlz57CyssJoNJKbm0tubi63b9/G3Nycc+fO4eDggE6nA2Du3LlER0cTGhpKZmYmVlZWvP/++3h7e6NQKAo0CM//lb88DigQKj1d6fT7qqbCAqmnz80/lt/b6ffVVAqFwlRxlZqayrBhw/Dy8sLc3Jzr169TqlQpU/i4ZMkSVq1a9Qa/KSGEEEIIIYQQQryql97V7vHjx3Tu3Jndu3cXek1MTAzXrl1j1KhRxZ6U0Whk1apVfPXVV5QpU4bs7Gyys7MZNWoU77zzTrHH+6s5fvy4qQ9TTEwM48ePZ8+ePUyaNImjR48yZswYHCwtmTprFqOBfz11rVGpRFGtGjP8/PCsXp2goCDy8vLIzs4mNTUVo9HI2LFjGTFiBA0aNECpVKLX60lNTeX27dvodDrMzc2xs7PD3NwchUJh6tn0dBhkMBjIzc3FzMwMKysrLC0t0Wg0poqkp4Okwn6Env4sv1H509fk3y//8/zflUolarWab775hs6dO3P16lWysrKIjIw09fby9vamd+/e2NnZFfp+DQbDMzsA/hGdTsemTZvYvHkzeXl5WFlZ0a9fP959991ClxM+TXa1E0IIIYQQQgghCvfSwRPAlClT8PT0pE+fPgXOv3fvHgEBAcTExGBvb//SkzMajaSmpqLRaLCxsXnpcf6KEhMTmTNnDikpKRw+fBiNRkOrVq3YsmULcxs3ZlxCAh0ePeImcAx4OvowKpXkDh5M8KNHODs7M3DgQJycnDh48CCLFy/Gz8+P3r17myqJ4MnStpycHB48eMD9+/dRKpXY2NhgbW2NSqUy7S6Xk5NjqqAyGo2Ym5tjZWWFubm5KXh6OnzKy8srsMtdfpj04MEDVq1aRWJiIo8fP8bV1RULCwtu3LhBVlYW/v7++Pv7o1ar0ev1psbiGzduZOPGjVy9epUzZ84wePBgQkJCKFeu3HPf56NHj5g3bx6HDx/G2tqajIwMGjVqxIQJE4oMqPJlZWURGBhI27Zt6dWrF1ZWVqSkpBAREYFOp2P+/PnPDZ8keBJCCCGEEEIIIQr3SsGTwWBgzJgxpKam0qNHDxwcHIiPj2f37t0sWrSImjVrvtHJv06pqals2rSJ27dv4+npib+/PxYWFm/8vnl5eWzduhV/f3+mjh/P1k8+QWk0cgA4DLQGYoD3fn9d+fJw6RJHjhxhzZo13L9/nypVqtC3b1/Kli1r6rv09DK2/PDp1q1bXLt2DbVajZubG/b29qbwKScnh8zMTHQ6HUqlEq1Wi0ajQaPRmMKnGzducPDgQa5fv0716tWpW7cuycnJeHh4UKpUKbRaLSNGjGDJkiU0adIEW1tbrl27RlZWFm5ubhgMBg4fPky7du2oVasWK1aswGAw0LBhQ1q2bMnIkSNJTEykQYMGLF++nI0bNxIZGUmVKlUKfYePHj2ic+fOjBkzhjZt2pgqqOLi4pg7dy6bN29+bvj04Ycf0rRpU3x9fZ85NnXqVOrVq4efn1+R10vwJIQQQgghhBBCFO6Vgqd8V65cITo6msePH1O3bl18fHyKvdTpv2nJkiXExsbSu3dvypcvT0JCAuvXr2fcuHG0a9fujd/faDTi6+vL4bg4Wul0fAu8BewEegE/AaeAp/fy05UuTV5yMuZFhGMGg4GcnBxycnIwNzdHrVaTl5eHTqfj8ePHnDlzhvPnz1O2bFk8PDywtbVFoVCQk5NDVlYWer0etVqNpaUllpaWWFlZcf36dYKDgzl48CAAtra2pKenm+5pZ2fHnDlzqFmzJsOGDSMhIYFTp04V2gB8x44ddOnSBZVKRXBwMKdOneL7779n8+bNdOrUCaPRSJUqVWjatCnh4eEMGTKErVu3FvqsM2bMoF69eoUGR9999x0//PADs2bNKvTa3NxcfH19iY2NLbSqKb8X1zfffFPo9SDBkxBCCCGEEEIIUZTX0ly8fPnypl3T/m6io6NJSkpi27ZtpuChQYMG9OjRg27dulG2bFlq1ar1RuegUCj48ssvCfPwYKlOhwtwkifVTl8BVYHFQBhwHzACZno95OYWGTzlV/3o9XoyMjJQq9Xk5uai1WqxtbXF3d2dkydPcubMGR4+fIiTkxNmZmYYDAbUajUqlQorKytTf6e4uDgGDBiAubk5GzZswNvbmxIlSpCYmMiFCxdwc3Nj3rx5DBkypMA8bt26VWjw1L59e65fv45Go8HW1paePXvi6+tL9+7dOXfuHOXKlWPgwIFMmTKFDz/8kJIlS3L58mXc3d3Zt28fUVFRpKam4uzszIkTJ5gyZUqh7+Gdd95hzpw5Rb77u3fv4uHhUeRSOgcHB1OTdSGEEEIIIYQQQhSPsrgX5OXl8d133xEeHk5ERARXrlx5E/P603z22WfMnj37meDBzMyMuXPnsnDhwj9lHiUdHVloa8s3wG2gJXAcaAeMAGYDNYCxwAeAj9FYZAVQPpVKhb29PQ4ODlhbW2NjY4OlpSXm5uaUKVMGDw8PMjIyuHTpEr/99hsJCQkkJSVx9+5dsrOzcXR0ZO/evTRu3Bg/Pz+qV6/OsWPHCAwMpESJEgBUq1aNjh07UrduXdavX8/Fixc5evQoDx8+JCMjg3fffbfI+Tk6OpoqhB4+fMj69evRaDR8/vnn6PV6RowYgZubGxMmTKBq1apcuXKFAQMGsHfvXmbPns22bduYOHEid+7cYdKkSYU2OVcoFFhbW6PX6wudg7W1Nffu3StyjvlVYkIIIYQQQgghhCi+YgVPSUlJtG7dmh9//JG3336bKlWqMHnyZIYPH17kf+z/ylJTUylVqlSRvZwqVarErVu3/pzJKBRcAn7mSRlaAyAEuPDvw7WBROA60MbCgqaBgfz222988sknhQ6XvztdfjNwlUqFVqtFrVajUChQqVSo1WoyMjJITU0lNTWVjIwM9Ho9er0eZ2dn1q9fT1BQEC4uLsTFxfH9999TqlSp5zyCAk9PT+rXr4+dnR1WVlYv/Pi2trZcuXKFjIwMypUrh16vx9zcHD8/PxISErh48SI//PAD9evXZ/bs2bi6ugLg6elJpUqV0Gg0xMTEPDOu0Wg0VXwVdV+lUlnk9/ztt9/SokWLF34OIYQQQgghhBBC/EexgqeRI0fy5ZdfMmXKFJo2bUrbtm1Zs2YNTZo0YfLkyW9qjm/MC7S3+lNtLl+emUAmMBL4CKgILAPigE+BOwoFY6ysuHz3Lp06deLgwYPcvXv3mbHywyX4z3MqFApTZVf+EjzAFMpYWFjg5ORE+fLlMRgMTJ06lcGDB/Ptt9/SqlWr5+7s9qp69+7N6tWrUavV3Lt3z3Sv1q1bk5yczMmTJzl06BDBwcHPXNuiRQtq1KhBVFTUM8f27NlDkyZNnnvvKVOm0KdPn2cqn06dOsUnn3zyzPJBIYQQQgghhBBCvJhiBU+9evXCxcXlmc+DgoI4ffp0gUbTfwcODg7cuXOHrKysZ44ZDAaWLVvGmTNn6NChA7169SI+Pv6NhlVjtm8n4N+BS01gJtCfJxVQ7wA+QETp0ty5d4+cnBz27NlDt27d2LBhwzNj5Vc5wZPqp9zcXPLy8jAajRgMBvR6PU5OTpQtWxaVSkV6ejrp6emo1WpKlCjBxYsXyc7OZsSIEW8kcMrfXS//3Xt7e3Pv3j3+8Y9/EB4ezr179zAYDHh4eGBhYYGDgwMlS5Zk1qxZdO7cmapVq5oq0saMGcPq1au5ffu2qdLLaDSya9cuFixYwPjx4587l1q1ajFnzhyCg4Pp06cPkydPpnPnzsybN4+vvvoKe3v71/78QgghhBBCCCHE/4Ji7Wp369YtnJ2dCz1nyZIleHp60rZt2z+86aNHjzh+/DhqtZr69etjZmZW/Jm/Jl9//TVHjhxh3rx5poBFp9PRrVs3Lly4wNKlS2nevDnXr19nwYIFqFQqPv744zdW/ZM3aBA7PvuMCcA5wBkYBEQBnkDcyJF8XqsWQ4cORavV0rt3b+zt7YvctS2/wXhmZiZqtdq01C43N5e0tDSuX7/OoUOHOHPmDObm5nh5edGwYUPOnz/P+++/z+nTp6levfpre74HDx4wbdo0Ll68iJubGykpKZQqVYqPPvoIFxcXFixYwOTJkyldujTVqlXD2dmZhw8f8vDhQ7Kzszl69GiB8ZycnEhJSSEjIwMvLy8qVKiAmZkZ2dnZNGvWjLFjx2JjY/PC87t+/TopKSlUqFABR0fHF7pGdrUTQgghhBBCCCEKV6xd7Z4XtiiVyj+sBtLpdISGhpKYmEiLFi3Q6XRMnz4dHx8fxo4d+0aXchWlS5cu3LhxAz8/P/r27Yu7uzszZ87k3LlzhIeH07x5cwDc3NxYsGABU6dOZevWrXTq1OmNzEf5ySd0PHQI7zNnOGo00pMnu9kFAyuA60OGEFy1Kg4ODnTu3JnDhw/j7+9f5HgKhQKlUkleXh4PHjzAxsYGCwsLNBoNjo6OWFtbk5aWxi+//ML9+/extbWldOnSlCtXDqVSSXx8/GsLntLS0ggICCAsLKzA8rczZ87Qu3dvvvzyS8aPH4+zszO9evVi8uTJDBw4kI4dO2Jvb49KpaJ27dpUrVoVCwsLhg8fTsmSJQE4f/48vr6+REREYDQai/2zlJGRwbx58zh48CB2dnakp6fj5eVFSEjICwdQQgghhBBCCCGEKKhYS+127txJRkYGX3zxBZMnT2bJkiWmvjixsbF/2EtnwIABNGnShB07djB+/HhCQ0PZs2cPeXl5zJgx4+Wf4hWNHj2aL774gps3bxIdHc3Zs2c5cuQIHTp0eObcsWPHFtpL6LWxsYEff8RixAjednfnZJkyqIFbJUui1WqZPGcOABUrVgQgMTGRW7dukZ2dXeSQCoUCCwsLzMzMMBgMKBQK1Go1Wq0WW1tbmjVrho2NDWfPnuXmzZukp6djNBrRaDQ8fvz4lR/p8ePHrFq1io4dO+Lp6YmHh0eB49WrVyciIoKZM2cC0KNHD/r06cPgwYNZsmQJ8fHx1K5dm48++oibN2/SvXt3GjRoQGhoKMuWLSMlJYXx48czduxY0/MWd35dunShYcOGfPfdd8TExLB37178/PwICAh47q53QgghhBBCCCGEKFqxgqd58+bRrl07tFotXbp0wc3NjX79+tG/f388PT1xcHAo8toTJ05gZ2dHmzZtTLuXwZOQYPz48fz666+kpqa+2tO8gpIlSzJs2DBGjRpF48aNi9yRzd7e3tRH6I2xsYGFC+HyZWxv3MDNw4MDej2ubm6sXr2a/fv3Y2lpSfPmzalUqRLLli1j4cKFRe4sqFQq0Wq12NvbY21tjVqtRqlUmgIaCwsLAgMDTec5OjoSFxeHUqmkb9++r/Qo27dvp2PHjqjVanQ6Hb6+vgwePJiPP/64wHm1a9cmOTkZvV6PQqHgiy++oEmTJowcOZK8vDyCg4OpXbs2EydOxM3NjUaNGpGTk8O6desYMGAAS5YsoVy5ci81x6VLlzJgwAB8fX1N70ShUNCsWTNGjRpFnz592LZt29+uh5kQQgghhBBCCPHfVqzgydXVFYVCwe3btzEajTg4OODk5MRPP/1E48aNn3vtqlWruHr1Kl27duXjjz8mKCiIvn37cv36deDJkrdt27a9/JO8JpaWls8NwIxGIzqd7s+bkEJBlSpVePjwISkpKSiVSt577z0mTZrEkiVLSEhIoHfv3kybNo3PPvusyOWO+aGSVqsttCKodu3aNG3alNKlS2NpaUlsbCytW7d+pWVmCQkJREVFsXv3bnr27EnJkiXp2LEjMTExpKamsn79+gLnOzo6kpmZ+e/HVrBv3z6OHDnCxYsXcXd3B568//xnTEhIYNy4cWzfvp1q1aq99Dzj4uLw8/Mr8NmjR4/o27cvGzZsIDk5mWvXrhEUFMS0adPefPAohBBCCCGEEEL8P1Gs4CkiIoK4uDgqVqzI5s2bOXToEOPGjePo0aOsWrWqyOvu3r1LdHQ0AwcOZPv27SxdupStW7cyYcIEevXqxc2bN3F0dDRVQb2I3NxcPvvsM9q1a0eHDh1o27YtS5cufe6SsxdhZWWFRqPh5s2bhR7ft28fjRo1eqV7FNfWrVtZvnw5Go3G1KvpwIED2NjYoFAo+PTTTwkMDGTYsGEMHz4cg8FQ5FgKhaLQ4MnOzo5x48ZRo0YNHBwcOHPmDHXr1n2leS9cuJC5c+ei1WqBJ99ZTk4OCoWC6dOns2rVKlOQdPDgQY4cOUJkZCSnTp0CQKvV0rBhwwIN7Zs2bUpQUBDwpK9TpUqVXmmO+ffJ3wEQnoRbPXr0oF+/fqxfv55atWrRu3dvtm/fTpkyZZg8efIr31MIIYQQQgghhPhfUKzgqVy5cqjVavz8/Jg5cyYffvghVatWxdLSEjs7Ox49elTodfPnz6dHjx7P9MqpVq0a8+bNY86cOezfv5+33nrrheah0+no2rUrSqWSb775hu3bt7Nt2zZsbW3p0qULWVlZxXmsZ4SGhtK/f38ePHhQ4POLFy8SFhbG8OHDX2n84tJoNAwcOJBTp05Rr149AO7cuUOnTp3Iy8vD3NycqKgoli1bxqeffsqYMWP+sNH776lUKtzd3alatSq2trakp6c/d+nki0hJSTH1ogLo1KkTq1evBsDMzAwXFxdOnz5N+/btWbx4Mc2aNaNu3bqEhYXxzjvvcOTIERITEwv0mdJoNMyfPx9ra2uaNm36SvPLp9PpCixT3L9/P3Xq1KF58+YYjUbu3buHpaUlAIMHDyYxMZH79++/lnsLIYQQQgghhBD/nxVrV7vneV7Qcfz4cb755hvat2+Pv78/1tbWpmP16tVj9OjRWFpaMmvWrBe6V2RkJJ06daJnz56mzzQaDT179sTa2pr58+e/UlVK7dq1CQsLo1evXri4uFC+fHlOnz6NwWBg9erVlCpV6qXHfhVubm6mRtuXLl0iOTkZnU6Hubk5CoWCwYMHm34vV64cH3zwQbHGVygUGAwGDAYD2dnZ2Nravtb5BwcH06NHD/R6PX379iUvL49hw4bRqlUr1q5dS15enimYAkzLNy0tLXnvvfcIDQ2lWrVqODk5kZ6e/tp2QWzTpg2bN2+ma9euAMTExDB06FAA4uPjeeutt1Aq/5PR+vv78+2335oqr4QQQgghhBBCCFG4YlU8bd26tdDPHz9+zKNHj7CxsSn0uJmZGVZWVoSFheHv72/ayU6n07Fp0ybOnj1LRETECwcJu3btolu3boUe8/Pz44cffnixB3qO+vXrs2PHDkJCQnjnnXeYP38+GzdupGzZsq889quwsrIiPDycZs2asWfPHszNzQscHzRoEBMnTiQkJITjx4+/0JhGoxGDwUBqaioHDhzg7NmzAIU2675//z6LFi1i7NixzJ8/n5SUlCLHdXNzM40FoFarWbt2Lebm5rz33nts27aNa9euMX/+fC5evMilS5cKXG9pacmQIUMICQnh8OHDNGrUiMqVK+Ps7MzChQv/sNeSTqfj4MGD/PDDD6SlpRV53tChQ1m3bh2bNm0yhW5WVlbExsYya9YsQkNDC5xvY2PzylV1QgghhBBCCCHE/4JiBU+9evXit99+4/r166b/yBuNRiZOnMjgwYOLvC4nJ4fc3FyaNWvGmjVrOHr0KH5+fnTp0oU7d+5Qo0aNYjWHNjc3R60uvFhLqVRib29Pbm5ucR6tSB4eHjRu3JgyZcq8lvFeh4CAAA4cOFBkr6mwsDDc3d1ZtGjRC42nUChMvaMePHiAubk5SqWSxMTEAudFRUXRs2dPypcvz+DBg6levTqDBw8mIiKi0HFHjRrFxIkTTX23jEYjKpWKvn37Uq1aNWrVqsXly5dNSzS1Wi1ffPEFI0aMACAzM5Nly5axePFigoODadGiBXXr1qVt27aMGTOG9u3bc+fOnWfuazQaiYiIwNfXl/j4eI4fP06vXr0YPXo0OTk5z5xvbm7Opk2bSE5Opm3bthw5cgQfHx9++uknNm/ejL29fYHz9+7d+4fN9IUQQgghhBBCCAEK4ws0A0pPT8fOzo7WrVuTnZ3NkSNHyMnJISAggAsXLjBo0CAGDRpU5PWLFi3C1taWPn36PHNs06ZNXLp0iZCQkBeetLe3N3v27CmyQuqPjv8vCA8PZ/Lkyfz888+mvlDPYzQayc7O5tatWyiVSiZOnMi+fftISkrC2tqa+Ph4Vq9ezeeff15g2ZnRaGTs2LG0aNGCTp06AU8qjXbs2MGePXvYu3cv165dM1UJlS5dmipVqtChQweOHj3Kli1bcHBwwNbWlkOHDmFmZoZWqyU9PZ2oqChOnz5NTEwMDx8+NPVhmjVrFjVr1iQ4OBiVSkVISAgtWrSgTp06KBQKwsPDAQgJCSnwM7Bjxw7WrVvH+vXrn/uzkZmZSbt27diyZcszoVNiYiKTJk1iy5Ytps/y/32kpaW99uWJQgghhBBCCCHE31mxgqe0tDQ0Gg19+vRh06ZNBc7ZsWMHvr6+hV6fm5tLUFAQ//znP+nbty8WFhZkZ2ezbt06tm/fzsaNGzEzM3vhSYeGhvLuu+/SsmXLZ44dPXqUdevWFVmF87/i+PHj1KtXjw0bNhAYGPjC1xmNRnJycjh79ixeXl7s3LmTdu3a0aVLF5YuXUrp0qWfuSYjI4OAgAB27drF3bt3qV+/PlevXqVSpUpUrlwZnU5HSkoKOp2Oc+fOmcbctWsXJ0+eRKVSUatWLdq0aVNg3ODgYCZOnEh8fDwKhQIXFxdWrFjBgQMHmDFjBqVLl2b58uXs3bsXAFdXVyIjI/nss8/YsWNHoc/3wQcfEBAQQMOGDZ/7Ho4dO8b48eMZPHgw7dq1Izs7mw0bNrBt2zbWrl2Lk5OT6VwJnoQQQgghhBBCiMIVa6kdgIWFBRs3bsRoNJKQkICPjw8AM2fO5Pz584Veo9FoWL9+PZaWlgQEBNChQwc6d+6M0Whk06ZNzw2dMjMzWblyJZ06daJ9+/aEhoYSGBjIzJkzOXbsWIFzExISmDhxIpMmTSruY/2/07p1a+BJ9ddzGY3wVK8khUKBubk5NWrUwN3dnblz55KTk2OqViqMtbU1ZmZm6HQ6oqOjuX79Ohs2bKB27drk5eXRsWNHxo0bx/379zEzM6NKlSoA+Pj4EBcXx+nTp/Hw8Cgw5oEDB8jOzqZSpUp4enqSlpZG27ZtiYyMpHLlygwdOpTOnTvTsmVL0tLSqF27Njdu3MDPz4/Tp09z7ty5Qufau3dvNm7c+Ifvr379+mzdupV79+4xYMAAxo0bR5kyZdi1a1eB0EkIIYQQQgghhBBFK3bF0+8rOgwGAzNmzGDGjBkATJ48mbCwsFeemNFo5ObNm/Ts2ZPevXsTGBiImZkZhw4dYvbs2fTo0YNDhw5x+fJlXF1duXnzJq6urnz00Ud/qX5M/y0+Pj7ExsaSmZmJhYVFwYOPHsGoUbB2LeT3wlIooEYNiI0FFxcA9u/fT5s2bQgMDOTu3bvs3LmzyPt17NiR6Ohopk+fzqpVq2jSpAmNGjWiU6dOODs7s3LlSsaPH8/q1atZv349O3bsQKFQcOPGDd59913q1KnDuHHjTA3nb926xcqVK7GxsWHJkiW4uLjg7+8PPPnZqFSpEklJSQDUqFGDUqVKkZeXx/79+wFYunQphw8f5ubNm3h4eHDhwgXUajVqtZqcnBw+//xzKlas+FretVQ8CSGEEEIIIYQQhSu8Q3cxqFQq059LlizJzJkz6dKlC7Vr136p8U6cOMG8efN48OABJ06coHLlylhaWpp2b2vWrBlbtmyhQ4cOrF27FltbWx4+fIidnd0zO7z9L5s7dy7x8fH06dOH5cuX/6dX0aNHUL8+/L46zWiEU6egQgW4fBlcXHj77bdZsGABw4YNo2PHjly9erXQne4ePHiASqUiNzeXbdu24eDgwNWrVxk+fDjZ2dlotVq+++47DAYDQUFBJCUl8f333/POO+/g6urKwYMHadu2LTt37kStVtOnTx+8vLyAJ43pY2Ji+Pbbbwvcs2XLlty/fx9/f3+sra25ffs2RqORrl27kpaWRt26dRk2bBjwpHqqbNmyvPXWW5w9e5bExEQqVarEoEGDmDRpEuXLl3/t718IIYQQQgghhBAvsdSuMPnNq+/du4efn99L/0c+Pj6eqVOnMmfOHCIiIujYsSO7du3ixIkTfPTRR6bztFoto0eP5osvvsDMzAwnJ6c3EjoZDAZ27drF/PnziYqKMu3k93dQp04doqKi2LFjBxUqVOCTTz7BaDRiDA19NnR6mk4H7dqZ/tq7d2/c3Nw4e/YsnTt3Jjk5ucDpmZmZ9OjRgxIlSlCrVi3Onj2LwWCgXr16aLVaypUrh0qlQqlUUrNmTQACAwPZvn27aQxHR0eGDRtGcnIywcHBptApOTmZbt26MWHCBLRarel8hULBihUrSE1NZeXKlSxcuJANGzawceNG1q9fT1paGnq9ntjYWAB69uxJUlISa9euxdnZmZ9//hkvLy+WL1+Ou7s7q1atetXXLYQQQgghhBBCiEK8luDJx8eHOXPmEBsby5YtW7Czsyv2GHl5eYSFhfHVV19RtmxZfvvtN5o1a4aVlRWzZs0iKSmpQN+et99+mxMnTryO6Rfq559/xtvbm9OnT1O3bl00Gg1BQUF/q6blgYGBJCUlERQUxPjx4xk4cCBnoqP5w7WVp0+b/mhpacmMGTMwGo0cPXqUChUq0LZtW1q3bo2TkxPW1tbs3r2br7/+Gi8vLxo3boyDgwNly5bF1taWjIwMbG1t2bFjB126dAHA3Nyc3Pwlfv/WtWtXPDw88Pb2pnbt2rRu3Zpp06YxdepUUx8xeBIG+vr6olAoKF++PO3atWPbtm2m43v27OHw4cM0b97c1Kx81apVLFq0CG9vbwwGA7Nnzy7wM9qvXz+SkpLo3LkzarUaBwcHqlWrxsGDB1/yzQshhBBCCCGEEAJeQ4+n1yU+Pt5U8QSwe/duzp8/z6hRo4Anu4xt3ryZOXPmAHD16lXCwsJYsWLFa5/L1atXGTBgAJs2bSoQUBiNRiZNmkTNmjXp0aPHa7/vm7Rs2TI++OADMjMzcQXeAj4HnAs516hUosjNBaUSo9HIiRMnSEhIwMvLi3/9619ERUVRsmRJPD09qVChAuXKlcPS0pL4+HjS09Np1aoVV65cYdGiRVhaWpp+ZpKSkvDw8CAyMpISJUrQtWtXAPbu3cvs2bMJCAigTp06XL16lTVr1tCuXTvTcrl89+7dw83NjZycnAKfx8bG0rp1a44dO0aDBg3+8H3Uq1cPT09P4uLiCAgIYOnSpdjY2PD48WPTOSNHjmThwoV/OJb0eBJCCCGEEEIIIQr3lwme1q1bh1qtJjAwEIDs7Gw6duxIbGwsCoWC9PR0hg4dytq1awGYMWMG//jHP3j33Xdf+1xCQkLo1KkTjRs3fuZYbm4ubdu2Ze/evSgUitd+7zcpKyuLOHd3Dt25w+dAHvAREAwUWKioUoFeb/qrXq8nNTWVhw8folQqefz4MVlZWWRmZqJWq1GpVFy4cIG9e/cC8P7777Ny5UomTZpE/fr1MTc3Z/r06UybNo2UlBS6detGbGwsWq2WM2fOEBISwsaNGws0QTcajYwZM4bmzZvz/vvvF3iO8+fPExISQmxsLNWqVcPOzo6IiAhq1aoFwP379/npp59o2LAhGRkZWFpa4uvryy+//ELXrl1RKpVUrlyZvn37UrZsWdP3uH79ehITE9FqtVhbWzNo0CAsLS3/8L1K8CSEEEIIIYQQQhTulZuLvy5ly5Zl3759pr+bm5vj7+9PSEgI4eHhnDt3Djc3NwDi4uI4fvw4U6ZMeSNzOXnyJOHh4YUe02g0VKlSheTkZCpUqPBG7v+mWFhY0D4wkPaLFzMKmAyMBKYDfYEOPKmEsv13L6Z8arWaEiVKYGlpiZmZGUqlkry8PBQKBUqlEoVCQaNGjfjnP//JDz/8gJWVFREREYwcOZK6desCoFQqiYyM5Ouvv2bZsmWmnk0LFy7k448/fmbnPYVCQXh4OO+9994zwVPlypWJiYnBaDQWGv45Ojri6+sLQKlSpTAajTRv3hxPT08mTJiAu7s7J0+eZPTo0Xh7ezNkyBAAunfv/krvVwghhBBCCCGEEAW9lh5Pr0OzZs3Yv39/gaVOgwcPpnLlynh7e9O/f3/y8vLw8/MjOjqa9evXv7GKI4VC8dyx1Wo1BoPhjdz7jZs1CypXxpknS+3OAb2BlUALoDQwom7dZ5qIq1QqLl++zPbt2zl79iwqlQqVSmV6TyqVirJly9KmTRvKlSuHi4sLO3fuJCsrC4BffvmFEiVKEBsbS9WqVU3jXrt2rcDfn2ZhYUHp0qW5d+9eocdf9Pv/7LPPcHV1ZePGjXh5eeHg4MDbb79NdHQ0x48fJz4+/oXGEUIIIYQQQgghRPH8ZYInpVLJ1KlT6dq1K1euXDF9HhgYSP369WncuDHt2rUjKiqKyMjIF1oC9bLc3d1JSEgo9FheXh6nTp3621U7mdjYwLFj0K8faDRUAuYDt4GTFSsS+sEHrNuyhQoVKlClShU+/PBD1q1bh4+PD7Vq1cLf358aNWpQvXp1du7cWWBopVJJyZIlcXJyQqFQcOrUKRYsWAA8CYmio6OZM2cO3bt3x9XVlYYNGxIfH8/AgQO5dOlSodNV/rvP1MsyGo18/fXXpl5hT1MoFISFhREZGVnscX/fHF0IIYQQQgghhBDP+ssstYMnO9XZ29szZcoU7t69i1qtJi8vj/79++Pv7/+nzWPEiBFMmDCBTZs2YWZmVuDYwoUL6dSpEyqV6k+bz2tnYwMrVz75ZTSC0YhGqaQmUBMYPXUqu3fvZu/evURGRpKWlkadOnVYs2YNLVu25MSJEyxatIj27dsTFhbG5MmTTUNrNBocHBwwGAxotVrKly/PlStXOHHiBPb29uzfv59SpUrRpk0bsrKySE1NZevWrWzYsIGQkBAmTpxoerc5OTncvHmTkiVLvvSjpqam4uLigkajKfS4s7MzmZmZxR63qPGEEEIIIYQQQgjxH8UKntLT09/UPEzc3d1ZsmQJQIEePn/GvfOVKVOGXr160bp1a3r27EndunW5desWX375Jc7OzsyYMeNPnc9/g4+PDz4+PsyePZvMzEwcHBxMx5o3b06zZs2YM2cOU6ZMITU1lalTpz6z9K1MmTIkJCQU2YsJICEhgVmzZlGmTBlCQ0PJy8tj5MiRGI1GZsyYQZcuXXj06NFLP0dWVhbp6enP/b6ys7Nf6fv8//6zIIQQQgghhBBCvKwX2tUuOzubChUqkJKS8mfMSYi/HWdnZy5fvoy5ufkfnyyEEEIIIYQQQvyPeKHgCZ6ETzqd7k3PR4i/Ja1WK6GTEEIIIYQQQgjxOy8cPAkhhBBCCCGEEEIIURx/mV3thBBCCCGEEEIIIcT/LxI8CSGEEEIIIYQQQog3QoInIYQQQgghhBBCCPFGSPAkhBBCCCGEEEIIId4ICZ6EEEIIIYQQQgghxBshwZMQQgghhBBCCCGEeCMkeBJCCCGEEEIIIYQQb8T/AYswF5s3QDjNAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.placements(tasks[0], X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(tasks[0], acquisition_fn_ds.sel(iteration=slice(0, 5)), X_new_df, data_processor, crs, cmap=\"Greys\", add_colorbar=False, max_ncol=5)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Heuristic baseline acquisition functions\n", + "\n", + "Acquisition functions that don't use a model can be used as baselines in sensor placement studies." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ContextDist\n", + "\n", + "Distance to the closest context point. Maximising this acquisition function will place context points at locations that are furthest from existing context points." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:19:53.987259574Z", + "start_time": "2023-11-02T15:19:46.750436832Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████████| 10/10 [00:00<00:00, 30.19it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+r0lEQVR4nO2ddVwV2fvHn0s32KCoiN2Ka62u0g0iSEkYIErZioFdrF2oKIqK61oY2LnqGogBYoAgKiAl3XG59/P7g2W+Xu+9NOr+lvfrNS9lzsyZM3PnOXPOeYoFANRMM838JxD50Q1opplmvh/NAt9MM/8hmgW+mWb+QzQLfDPN/IdoFvhmmvkP0SzwzTTzH6JZ4Jtp5j9Es8A308x/CLHaHlhaWkrl5eVN2ZZmmmmmnkhISJCUlFSNx9VK4EtLS6lLly6UlpbW4IY100wzjY+ysjJ9/PixRqGvlcCXl5dTWloaJSUlkYKCQqM0sBnBxMTE0J49e+jEiRNUVlZGI0eOJFNTUzIxMSE1NTVKTEykFy9eUFZWFqWkpNDRo0eJw+HQpUuX6P3799ShQwfq2LEjtWnThkRE/jdjY7PZJC4uTkREb968ob1791JISAiJiIhQhw4daNasWeTg4FDrdrLZbOJwOCQhIUFJSUn05MkTCg8Pp4SEBJKRkaHExERKTU2l7du3k4KCAhkZGTHntm/fnqSkpKi8vJw+f/4ssP6OHTvSxIkTafr06RQeHk52dnZMWdu2bUlfX5+8vb2pdevW1KJFCwJABQUFVFhYyPOviIgItW/fnlRUVHje3aysLFJXV+e7bkZGBklISNT6Ody8eZPs7OyooqKCiIi6du1Krq6u1KNHD1JSUiIJCQlisVhUVlZGffr0IRkZmVrXXVvy8/OpY8eOVF5eXqPAs2pjS5+fn0+KioqUl5fXLPBNiJKSEuXl5RERkaOjI5mZmRGXy6XPnz9TeHg4PXz4kFJSUoiISFRUlFq0aEF9+/al+Ph4PsGRlJSkjh07UufOnalXr15kYWFBmpqaJFZSQgO7dKGorCwylZKisdLSdE9Rka4nJ9OFCxeoZcuW9OHDB5KSkiIlJSUaO3YsT8dBRASA2rdvzzfi69GjB/Xo0YNKS0upqKiIiouL6eXLl7R8+XLKz8+n+/fvU0REBAl65dq1a0fu7u7Uvn17AkB//fUXnThxggYNGkRHjhyhX3/9lYqKigQ+NxaLJbDOb5GTk6MOHTpQmzZtKDo6mrKysoiIqG/fvjRy5EgyMDCgCRMm1FjPt2RlZdGpU6coODiYHj9+TBISEjR69GgaNWoUiYiIUGlpKZWWllJZWRmVlpZSRUUFz8bhcIjL5ZKUlBRJS0szW9euXWnEiBE0aNCgajuhushns8D/REhISBCbzebbLyMjQ4MGDaJRo0bR6NGjaeTIkSQiIkLTp0+nkJAQsre3JycnJxoyZAilpqZSQkICJSQkUGJiIiUkJNCzZ8/o48eP1LpVK7LkcqlNTg5tIaJyIppLRMtYLBovI0N3BAjUH3/8QRMnTuTbLysrS4qKiiQhIUGysrI0YcIEWrVqFc8x4HJJT1+fREVF6fr16wSA3r17R/fu3aPIyEgqKyuj4cOH05s3bygoKIgkJSUpISGBZGVl6fPnz9SzZ08qLi4mIqI+ffqQgYEBycjIkKioKImJVQ5OORwO5ebmUnZ2NvNvWVkZsdlsKisro+LiYuJwOCQqKkosFotERESoTZs2pKmpSdra2jR8+HBSUlJq6E/HEB8fT1euXKEbN27Qs2fPSExMjCQlJUlKSoqkpKRIUlKSxMXFSUxMjMTExHjupbS0lEpKSqikpISKi4vp/fv3VF5eTpKSkqShoUEjRoygUaNGkYWFBYmKijLX/FcLfFlZGb148YI4HA4NGjSI5OTkmvR6PxtsNpvev39PGRkZ1K5dO1JRUSF5eXlisVjMMR8/fqQxY8bQ58+fydDQkGbMmEFsNpvKy8uprKyMZ8vKyqKHDx/Sw4cPSbNDB0pITqaP31zzMBFZslgUaWlJWY6OpKKiQhERETRz5kyaNm0a+fv787VTW1ubwsPDSU5OjthsNuXk5FBMTAx1ad2aypcupdxLlyiutJT0MzPJd/hwmnn6NE2cPp2uXr1KRESKiorEZrOptLSUXF1dafr06TRkyBA6efIk2djYEFHlSCIxMZGePn1Khw8fpnv37lFZWRnzRfwaMTExUlNToy5dulCLFi1IVlaWZGRkSFZWlgBQUVERFRUVUWJiIt27d49ERUXpzz//JCsrq8b8+RqVsrIyevnyJYWFhVFYWBhduXKF8vLy6MyZMzzt/lcKPADatm0bXb16lcaMGUPi4uL0999/04ABA2j16tXM/PPfQHZ2NhUUFJCysjJJSkrW+fyqn+RrIf+a+Ph4mjFjBr1//56SkpKIw+HUql4XOTkaUVhIz4joCRFF/rNflIgE1WBsbEzBwcHUsmXLaus9deoU2draCizrTkQvWSyaqahIgbm5RERkZ2dHQ4cOJRaLRRs3bqS0tDTKz88nW1tbevToEY0YMYI6d+7MbKWlpXT48GFavXo1aWpqEovFovfv39PixYuZL56qqipVVFRQfn4+FRQUUH5+PuXn55OEhAQpKytT27ZtKT09neLi4uju3bvk5+dHgwcPphcvXtTq2dUVAHThwgUKDg5mtFtWVlY0ceLEOq0RfE12djapqalRQUEBde/enSZOnEhLly6lkpKSf5/Ar1y5kuTl5Wnu3Lk8L/qpU6fo2rVrdOjQoSa5bmPy4sULWrt2LYmLi1ObNm0oLi6OBg8eTCtWrCBpaWmeY48cOUJ//vknFRUVUWFhIbNV/a2goEAqKirUvXt36tixI0lKSpKEhASJi4szKpjhw4fT0KFDmRe76piioiKhw1QWEXUjon5E1JOIWhCRHBHJEpFcy5Yk98cfJCsnR4qKitS3b1+++bswkpOT6Z2XF326cIGkAVIiIiUi6ktECkT0kcWiw0OHUkS7dhQREUHZ2dnMcF1HR4fc3NyovLycQkNDKTc3lzIyMigxMZGys7N5riMuLk6ysrIkLi5OXC6X8vPzSVpamkpKSgROhwQhISFBWlpatHTpUvrtt99qdU5d4HK55ObmRmpqauTp6UktWrSg4uJiCg4OpitXrtDJkyd5FtcAMHN5YVQN/UtLS+n27dt04cIFOnLkCGlra9PBgwdJVVX13yPwWVlZ5OrqSufOnRNY7unpSR4eHtS3b99Gv3Zj8fTpU1q5ciUFBQVR27Ztiajyh7x69Srt27ePQkJCeEYpu3fvplmzZhGXy6UxY8bQiBEjSE5OjmRlZUlOTo5yc3Pp8+fPFBcXRykpKcyQverfqg6iRYsWZG1tTa6urvTLL78wneW5c+coJiaGmSu2atWK+i1aRL1SU0noOrGaGtHHj1RSUkJRUVFUXFzMqGR79uwpdMSRm5tLwcHBdGfRIupaXEz9qbITySKibCIqIKLJRNRdTY2ynj2jGTNm0MWLF6msrEzo8xQRESFVVVVSUVGhQYMG0YQJEygrK4vS0tIoOTmZsrOzqbCwkD58+ECfPn2i3r17k4uLCykqKpKCggLJyMgw04xXr15R69atSUdHh8TFxenhw4dUUFBAcnJyPFuvXr1o0KBBQu+zthw7dozS09Np3rx5fGXnz5+nyMhIWrlyJRFVasBSU1OZzq86ZGRkSEVFhRkh3L59mywtLUlNTY2ioqJqJ5+oBXl5eSAi5OXl1ebwOnPw4EH8+eefQsufPHmCZcuWNcm1GwtjY2NkZ2cLLNu9ezeOHz/Os4/L5WLmzJkgInh5edX5ehUVFdi3bx8kJSVBRCAiDB06FH5+frh27RrKysr4T/L2BkREACKejUuEKBYLfxoaYvny5Ux9X2+9e/dGZmYmX5VbtmyBjIwMxMTEMEZCAl2+Oof11f97EaGifXv06tULrVu3xpYtW/Dq1Svk5+cjOzsbX758QUpKCmJjY7Fz505IS0uDiKChoYGQkBC8efMGXl5eUFRUFNg+IsL79+/h4OCAvn37QlxcnNkvIyMDIsK4ceMwbtw4EBHatGkDZWVlyMnJ8dTRuXNnzJkzBw8ePKjzb1KFiYkJioqKBJZxuVzo6OigoqICHA4HMTExiIuLQ25uLoqLi1FSUsK3FRcXIzc3F3FxcYiJiQGHw2Hqe/nyJVRUVGotnz+FwG/fvh03btwQWh4XF4fZs2c3ybUbg48fP8LV1VVoeX5+PsaPH8/8zeVyMWvWLBAR3N3dUVJSUqvr5OTk4NSpU7CysoK8vHylULFYzMta9cMTEdTU1DB79myYmZnhl19+wbx58xD58CG4ffrgDouFcUQwJ8IJIhz9qo5vtx49eoCIMGbMGJSXlzNtOXXqFBYtWoSWLVsyx15r1w4gQgERsonwkAji/5RZECGxQwcQEQ4ePMhzXxUVFQgKCoK7uzvGjh0LMTExdO3aFZcvX8b58+cxc+ZMiIuLo127dli8eDFu376NmJgY5OfnY+jQoSAi+Pv7Q0VFBaqqqvDw8MDu3btx+/ZtpKamgsvl4tSpU+jQoQPExMQgIiICJSUlzJgxA5s2bYKHhwd0dXX5OpNvO+naYmpqWm25s7MzsrKyUFJSgrdv3wrtHL6lqKgIb9++5Xtf3rx58+8S+Hv37mH58uVCy4OCgnD48OFGuRaXy8WDBw8wc+ZMTJkyBTt27EBOTk6D6nz27BlWrlxZ7TFVLwGXy8XixYtBRNizZ0+t6o+Pj4eNjQ1EREQYIRcVFUX//v0xb948nD9/Hunp6QDACAARoWfPnjAyMoKjoyNat24NIkLbNm1AROgvLo4R/3wFe7dogRZKStDT00NhYSFevHiBRYsWoV27diAiaGlpgc1m87Spe/fufJ1DkK4uzwgikwizidDjn3JpMTEMGDAA3bp1Q0FBAXNvo0aNAovFQv/+/WFjY4Pt27czL3VUVBTExMSgpaWF0tJSvmdja2uL3r17g4jwyy+/IC0tTehzLCgogJubG4gIpqamaNeuHSQlJSEvL888WyKCiIgIxMXFYW9vjzt37qCioqJWv1MV+vr64HK5QstNTExQWlrKCHxtO3xhx9dFPn8KgedyudDT00NKSgpfWUFBATQ1NVFcXNzg65SUlMDGxgaLFi1CTEwMvnz5gpCQEGhra+PmzZv1rjcjIwPW1tZCy5OSkuDk5AQAWLNmDfNlr+6lACqfi4+PDyQkJKCsrIxu3bpBUlISa9euFfo8MjIykJCQwPeSlpeX4+LFi5g1axauX79eeW0uF3fv3oWEhARatWoFIsKFCxd4zps7dy6kpKQQGxvLs//IkSNM5yIiIgINDQ1sWLkSH7t35582iIhg7z+jj0ePHkFSUhISEhJQVFSEuLg4VFRU8Pfffwu8nwULFkBKSgqOjo48X8KKigps374ds2bNQnFxMY4cOYLCwsJqnycAHD16lKeTEhUVxUhlZaxXUkJCu3a4r6yMDSNHwszIiHkm7dq1g5eXF16/fl1j/QCwcuVKoe/T+/fv4ezsDEC4AAvj5xV4AS9yVFQUDh48iBs3buDDhw98X4yYmBhoaWnhzJkzKC8vB4fDwY0bN6Crq9ug+dTXzJw5E5cvX+bbX1JSAgMDA3z+/LnedTs4OAh9IWbNmoV79+4BAJycnJiXrW3btrCwsMCmTZt45sccDgfx8fHYvn07iAgLFizAsGHDQEQYOXIktm7dinPnzuHChQvYuXMn/Pz8av3SCOLIkSMgIgwcOBCpqak8ZYWFhejSpQvGjRsn8Nzk5GTs378fpqamkJKSgpiYGDz698efrVvjSqtW+L1FC5iqqUFJSQkdOnTA9OnTwWKxoKioCFlZWeZZjBgxAmfOnOHrBENCQkBE8PPzw5gxY2BpaYlp06ZBW1sbO3furLHT/JYvX75g7969uHz5MuIiIsDu00dgB4W+fcHNy0N4eDjmzp0LFRUVtGnTBitWrMDkyZOhpaWF4cOH4/z583zXyMrKgra2NqKionj2JyUlQVtbG3FxcQAaT+Cjo6N/gMDn5wPe3sjo2BHnW7ZEQKtWOG1khDW+vujbty/f8E9KSgpLly7FnTt3sGfPHgQFBeHQoUOYMWMGTExMYGZmhjVr1lQ7RKsLubm5MDMzE1p+586daqcVNZGWlgYtLS1cvHiR+bpmZGRg4cKFWLx4Mc+x2dnZuHLlCpYuXQotLS1IS0ujS5cucHd3x6hRo5j5ORFBVVUVWVlZ2Lt3L6ytrYXOtQV1ZHUhLCxM6BcyMDAQLBYLO3bswKdPn4TWUVhYCD8/P555vaysLHR1dbFy5Ur88ssvkJeXx86dO5lnVFxcjAsXLkBLSwtEhGnTpvEsOBYWFjKLblXb7t27eRau6o2QRUxG6GfOZA6NjIyEpKQklJWVMXz4cNjY2EBbW5uZHgQHB+P58+fMKCQ1NRWTJ0+GhYUF5s+fD1tbW1hbWyMmJoaps7EEPjc3t9YC3yC1XHJyMj1//pwSY2Pp5bp19CA3l2L+KWP98+vIioiQxYQJZOfkRNra2pSamkrx8fH0119/0datW6m8vJzPFlpSUpImT55MHTp0oLKyMkpNTSVJSUnq2bMnY6+tpqbGY15YE/fu3aPw8HBasGCBwHIAZG5uThcvXqx1nd+Sm5tLBw4coDt37pCYmBgVFhZShw4daNy4cWRmZibUseHTp0/k6OhIOTk5NHDgQBo4cCANGDCABg4cSCoqKoya6PPnz2RkZESvX7/mOb9Pnz7UtWtXKiwspOLiYuJyuaSiokLt2rUjLpdLvXr1ojlz5tTpeX1NSUkJ2dnZ0ZUrV6iiooL69etHxsbGpKurS6NGjeJzCAFAhYWFlJ2dTR06dGBMR5WVlcnT05OWLVsm8DqHDh2iGTNm0K+//kohISHUqlUrIiIKCwujkSNHMsedOXOGOnfuTMrKyqSiolLv+6IuXYg+fRJe/o+a8uv7+lplB4DOnj1Lixcvpri4OCKqNJZSU1OjPn36kIWFBZmbm1N2dja1bt2aWrduzVN9aWkpffz4kbp06VIr11Zhxze5pV1MTAxt2LCBjh8/ThUVFSQhIkI9uVz6jYhGEdFoIlIlolwikmGxSMrbm2jHDr564+PjKTU1lUaNGkUVFRVUUFBAy5Yto8TERPr8+TN9/vyZpKWlSUVFhUpLSyk2NpZKS0uJqNIQQV5enuTl5UlOTo4UFBSoe/fu1LZtW0pKSqKEhAQSEREhDQ0N0tDQIBEREXr37h35+fkJvMeysjKysbGhCxcu1PQ4GEpLS+nevXv09OlTevfuHcXExFB6ejq5u7vTr7/+SpMnT6aUlBQqLy+njh070sqVK8nZ2ZnExMQoIiKC1q1bRyNGjKD58+cTEVFCQgLl5+eTnJwctWrVivnxcnJyaObMmQSARowYQefOnaOwsLBa6W6rePbsGQ0ZMqTWxwsiLy+Pbty4QZcvX6Zr165Reno6SUhI0K+//kpz5swhc3Nz5tjk5GRasmQJZWZmkq6uLunp6dHgwYPJ0tKSNmzYINBTjeh/VnsjRoygx48fM/tv3bpFO3bsoCtXrvCY1YqLi5Oamhp16tSJ5OXlSU1Njdq2bUvt27cnVVVVUlJSYjZFRUUiquyYs7OyKH30aNqXmUlfiGg6EY2kSkMkpvvq0IEoKYmoFnr5vLw8iomJobdv39Lbt28pIiKC7ty5Q+3ataPg4GDS1dXlO6dKgNXU1PgMswRRUlJCnz59+r4CX1FRQerq6qSgoEBz584lGxsbUv71VxJJSBBewTc9ZX2p8hx79+4dffjwgfLy8hg3yJycHIqNjaXMzEzGS6y8vJxevHhBMTExzAhCSUmJunTpwmxdu3YlLS0tevbsGRUXF5ObmxvP9SIjI+mvv/6ihw8fkpiYGLVp04ZatWpFL1++pFu3blFxcTG1bNmSevXqRT179iQRERE6fPgwcTgcUlVVpevXr5OoqCgtX76cTp06Rb169aIePXpQaGgoiYqKUufOnWn+/Pn06tUrCggIYF5mFotFv/zyC+nq6tLt27dpw4YNpK2tzbRt79695OHhQUREenp6NHz4cFJVVSUJCQkqKSmh0tJSatmyJamrqzMmqo1FTk4OrVq1it69e0fXrl0jIiIbGxs6efIk3bp1iw4fPkznz58nOTk56tevHz148IDKysqodevWlJ+fT+Xl5TR27FjavHkz/fLLL0y9b9++5TGumjdvHmloaPA477DZbMrIyKC0tDRKTU2lT58+UXx8PIWEhFBiYmKd76U9EakT0YOv9jkQ0e9E1KGB7+27d+/I29ub7t+/TxcuXCADAwOecg6HQ7GxsdS2bVtmNFMdWVlZ9OXLF+rRo8f3cZ5xcXGhc+fOUVlZGcXHx1O7du0qZzwdOxIlJwuvoA49ZVNQWFhIb968oX379lFiYiKpq6vTp0+f6OPHj5SQkEAVFRUkLS1Nrq6uNGbMGGrXrh29e/eONm7cSHFxcSQtLc14qH358oUyMzOpa9euZGJiQqamptSnTx+eoV5cXBzl5eUxI4sqnj9/Tr6+vpSUlEQLFiwgNptN06ZNIzExMercuTNNnDiRTE1NqbCwkD59+kQ3b96ky5cvU0FBARFVDol79erFdBppaWm0bds2kpSUpLZt21Jqaip16dKFhgwZQsOGDaOpU6fWyv+6qKiIXr9+TVFRURQVFUUpKSlUUFBAbDab1NXVmWuqq6tTu3bt6P3798wQu8oEd8WKFfTbb7/xXG/nzp1EVNlBFBcX0507d+jp06f0yy+/UGlpKb1+/ZpcXFxo7969JC4uTrm5uTRr1izKzc2lgoICevfuHaWkpFB8fDwtW7aMYmNjadGiRWRpaclnDWdhYUG5ubm0detWysnJocTERPr06RMlJSVRZGQkRUZGkri4OJmZmZGDgwO1atWKWuzbR91PnCApgGKI6CMRxRLR7H/qvD5uHOmfP1/X142hpKSE7t69S3Z2dlRWVkaRkZHUq1cvnmNSU1MpNzeX2rZtSzIyMgKt/ABQcXExffnyhZSUlEhFRYWnvMkEvkOHDuTk5ERTpkyhHj16/O+AOs6FfhT4x0Hn1q1bZGFhQS1btqS//vqLnj59St26daO//vqLx8fb0tKSvLy86Ndff62XE0xNcLlcSk9PpzZt2jDz3G9xcHAgV1dXSktLo5iYGIqOjqaYmBiKjY0VaJoqKytLCgoKlJmZSRoaGmRra8vjUJKXl8dsubm5lJeXR2lpacwISFZWlrHZlpCQIGlpaWZtoApRUVHG7vvNmzfUp08fpiw6OppOnz5NISEhFBUVxbiAlpWVMecNHjyY/v77b5o6dSqdO3eOeZG/5ciRIzR58mSSkpJiOpY7d+7Q8OHD6cSJE6SmpkZERBUVFTR48GDq378/HT9+XOBzTEpKIkdHR/r48eP/RgIFBUQjRxJFRxP9M7LKo0ofgCrGjx9Pffv2pTFjxpCmpmatnbhcXV0ZxxlFRUXS19ennTt3krKyMs9xACgtLY1y/3Esqg4lJSVSVlbm6xTqIvC1jmlHRPT69WvBThlmZkT+/sxD40FEhOirud2PhMVi0dy5c8nNzY2uX79OhYWF5Obmxrh/AqCcnBxKT08naWlp5oXKzMykgwcP0qVLl0hERIQqKirol19+IU9PT77eti6IiIjUeH5ZWZnADqeqs9i1axdxOBxmQXTu3LmUmppKoqKilJKSQsuWLSMFBQVSUFAgeXl5UlRUZOzNhwwZQmw2m/bv309ERAMHDqRu3bqRgoICderUiVJTU+nChQtUWlpKEydOpB49ejBf/xYtWpC9vT2PsBMR9e7dm5YvX06dOnWiKVOmMJFgqp5/3759aenSpXTo0CF6+PAhOTg4CHX0UVZWJnFxcfL29iZfX19SUFCgAwcOkJubG7169YrU1NQIAM2cOZNiYmJo9+7dQp/jjh076P79++Ti4vK/nfLyRI8fE/n6EoWGErHZJCcmRtPl5ekBh0NpX75QeHg43bt3j9auXUtKSkpkampKU6dOJS0trWp/t759+1K3bt3o7du3VFBQQImJibR3714aMmQIde3aldTV1UlaWppYLBapqKhQ27ZteZ1/AJ4Rsbi4eP0XJ7+mNuqAKrVcQkKC4APy84G+fYXqM5GfX5vL/HRkZmZi0qRJGDhwIIYNG4apU6dCX18fN2/exL1796ClpcVnkNLYbNiwAVeuXBFa7ujoiISEBCQlJUFCQoJRXbVq1Qqurq5wcHCAhYUF9PT0MHLkSAwYMABKSkrMMWvWrEHXrl0ZVWlycjJP/SUlJdiyZQujahMTE4OYmBiIKu3Rra2tMWfOHNjZ2WHMmDHo06cP+vfvj44dO4KIEBcXh5KSEjx+/JjxHSAiSEhIQFZWtlpjFi6Xy2POCwBLly4FEeHp06fIy8vD5MmTQUQ4cOBAtfUMGDAAYmJifIZF3xyIVatWgcViwcTEBNOmTYOqqipkZGQQERGB5cuXo2/fvmCxWDh06JDwer4iMTERgYGBsLa2RosWLXjUixoaGnj06NH/Dv5HtQ01NaBDh8p/vb1rlJ8mM7xRVVXFhQsXBDtm5OdX6i2/buzMmf9aYS8sLISOjg5CQkJgb2/PGHgUFRXBysoKt2/fRnJyMkxMTJq0Henp6dDV1RWoq33+/DkmTpwIoNJY5+zZs9iwYQNmzJgBY2NjDB06FGPHjoWxsTGsra0xefJkeHp6Yu3atbh06RJcXFwYW/z27dtj69atQvXbJSUlyMvLA5fLRVFREW7evIklS5Zg5MiR6NGjBzQ1NTFx4kTMnDkT3t7ecHd3x8KFC3kE9sqVK4yRTV0NZqp49+4dBgwYAAkJCbRv3x7y8vIICgqq8bzs7Gz06NEDQ4YMqfa47t27Q0NDA4GBgVi3bh2ICOrq6kx7ORwObG1tISMjw5gz1xYul4uUlBTcv38fQUFBGDZsGFgsFry8vJCfnFzvj2aTCXyVZ5aCggLs7Oz4LIm+urPaVPtTs3fvXhw7dgxz587FixcveMoKCwthaGgIAPDw8MDbt2+btC03btyAnp4erly5gvLycmRmZmL79u3Q19dHVlaW0PNev36NtWvXYvny5bh48SKOHj2KWbNmYdGiRXj27BmASm+r06dPC7RTb2yysrLg4+PD2NHXl9LSUvj4+MDU1BQfP34EUGnx921nxeVyERERgfnz56PDP447Nfk87N27l/kCy8jIwN7eHomJiUz50aNHISMjgz59+gj1jqwtFRUV2LZtG2RkZCAhIoLWRFAjwi9ESKjGCOhbmkzgq7YJEyZAWloa0tLSjebU8rNhamqK0tJSjBs3TuBXz83NDR8+fMD+/fsRGhra5O1JT0/Hhg0bMH78eFhaWsLa2hp6enowNTWFubk5Tp8+zXyFSkpK4ODgAHd3d9y/fx/Hjh1Dly5d0KtXL9y6dQvPnz/H7NmzYWdnV2+T3I8fP+LSpUv4+++/6+xc0tjcunWLmWI4ODhg8uTJ0NHRQZcuXUBEaN26Nby8vPD48eNajSwKCwv57onL5cLDwwNEBGdn51rZ7RcUFMDHxwf29vbQ1NTEuHHj8ObNG77jPn78iO0tW2ItEYYRQYwIyd9a/qmpCb1Okwl8t27d+Ew6RUREkP8vHbZXR5V329SpUwWuXSxduhQRERHw9fXF48ePv1u7kpKSoKWlhb/++ot5efPz87F69WrMmjULXC4Xbm5uuHr1KoBKs0stLS1kZ2cz51Z9za9evcq457569Qrv37+vUSBSUlIwYcIETJ48Gfv27cPq1auho6ODkydPNu2NC+HVq1do37491NXVYW1tjSFDhmDEiBGYMGEC5syZg8uXL/OtA9SHKqeb2no4AsDx48dBRNDU1IS9vT26d+8OMTExLFq0iNcllstFafv2WEoEUSJMEWTq26GD0JFzkwn8x48f8eDBA4SFheH58+eIiopqkMPJz8zkyZPx4cMH3L17l8cWnsvlgsvlwszMDOnp6dDR0an3fLQ+2NnZCV0oXLhwIf7880/Y2dkx+3bu3InTp08zf+/bt4/x8y4rK2Pm3z4+PnB3d4eenp7Qha2CggJoa2vz2IMDlUNTFxcXhISENPT26sTt27ehoKCANv+4/FYJ15w5cxAREVGnutLS0rB69WosWbIEixYtwoIFCzB79mxMmTIF48ePZ+q/fft2revctWsXiCoDb8TExKCkpASrV6+GpKQkOnXqhPXr1yM+Ph5Pnz5FX3FxiBFhFRHKBAn8j/jCf1thVlYWbty4AT8/v+/+Yzc1YWFhcHFxAYfDgbOzM3x9fWFtbQ1jY2OMHDkSnTp1wm+//YZr1659tzalp6fzCPO3pKSk4Ndff0VwcDCzz8rKimfYnpaWhilTpoDL5cLW1hZubm64ePEiU15aWoqpU6cK/GLv2bNHaGSi8vJy6OrqfrfOLy4uDnJyctDV1UW7du3g7u6ODRs2QFxcHG3btgURoX///li2bBmePHlS7bQjNzcXAwcOhKysLNTU1NC1a1d0794dffr0wciRI6GpqQlzc3PY2NggPj6+1m3kcDg4fvw4OnfuDBaLhTFjxsDf3x+PHj3CxIkTGacgFosFjTZt8JLFqpUjz7fUReDrpIcfNmwYoxeOi4ujp0+f8pRzOJxaBz382Rk+fDg9fPiQXFxcSENDgw4dOsQYpXz69In69u1L0tLSlJSU9N3alJiYyGep9TVVPgdf25qLiooSm81mbK/xjwPI3bt3Gd+Dr/W7kpKSFBAQQIaGhmRpacljEHTlyhUKCQkReG1xcXHq378/RUdH8+nmG5PS0lLasmULrV+/ntq1a0fLly+nMWPGkJ2dHf32229MHLnr16/TqVOnaPfu3bRmzRpq0aIFWVhYUGBgIN87umDBAnr58iUtWbKE9PX1mYi3VduiRYuIiMja2pqeP39OysrKtbJgFBERIXt7exo/fjydOHGCTp48SbNmzSJRUVHauHEj7d+/n0JDQ6mwsJAmW1mR+JgxPEZA/1RC1Ls30dq1jfMAa9NTVfUgM2bMwNy5c6GhoYHhw4fj2LFjGD16NIgIw4YNq3XP11jk5uZi165dsLCwwPjx47F3795GX094+PAh2rdvDxMTE1hYWGDWrFmYNm0aZsyYgUOHDkFfX19grLemICEhAVOmTBFanpuby6jgqjhy5AhPSCl/f3+cPHkSrq6uSEhIgLGxscBntn79ety5c4dnX02hm1auXInw8PDa3k6tuHv3LoyMjNCvXz906dIFCgoKEBMTw7x58/DlyxfMmTMHRITo6GicP38eV65cQWFhIT58+ABHR0cMGjQIBw8ehLu7O4gIQ4YMgYmJCU9ItUePHkFHR4dvfUpUVBQtW7aEnJwcunfvjsGDBzMuv/b29rhw4YJQ7UZ+fr7AICWZmZnw9PQUPD2op2q7yYb0WVlZqKioAJvNxq5du2Bubo4pU6agTZs2kJCQ4Atq8TWlpaU4duwYpk2bBnd3d1y5cqVBPs1RUVHQ1NTE6dOnUVZWhtLSUhw/fhyampp8c8yG8Oeff+LAgQMoKCiAhYUFlixZgjdv3iAxMRGHDh1C3759sWDBgka7Xk2YmZkhIyNDYNnWrVtx6tQpeHh4MPPwkpISaGlp4ePHj/j48SO0tbVRVlYGKysr7NmzR2hw0EOHDvFN0zw9PYWrYlHZIdQ1KhKbzcbBgwdhbGwMU1NT6OvrY8uWLSgsLMTq1asZAxVvb28sXrwY69evZ6IVfS2cLVq0wNatW+Hp6YkOHTpAVFQUKioq6NGjByQkJASG5Pp2sTUxMRGxsbFIS0tDcXGxwOlJXFwc1q1bx4TVGjFiBN8xpaWl6NSpE6MhOHHiBE+nyuFwMHbsWHTp0kV4PLs6TI2aVC0nLy8PNTU1sFgsaGlpQUNDA9OnT6/2RYiOjoampiYCAgLw+fNnfPjwAX5+fjAwMMCXL19qfWNVsNlsaGpqCnzxU1NToa2t3TgBEgD8/vvvuH//PqZMmcJErfmasLAwdOzY8btpKiIjI6Gvr8+jG64K0mhlZQU2m43S0lJMmTIFU6dOxY0bNxASEoJu3bpBTU0NR48exalTp9C7d2/Y29sLfU4zZszgsy948+YNJkyYIPCcmzdvwtvbu073wmazYWdnB39/f+ZrWFpaijVr1qB///5QV1fH+PHjBV4vOzsbo0ePRqtWreDk5AQ5OTkm0m3Xrl1hamoKZ2dn7Nq1i1GLjRw5Eh06dICxsTEOHDjQoHckKSmJkQk7OztcvnwZFy5cgJmZGSwsLJiR79ebiYkJ9u7di4iICCbKUGPYcDSZwO/YsQPr16/HlClT8PTp01o1pqysDEOHDoWzszOMjIxgbGwMFxcXvHz5ElFRUTzRXGvLuXPnsG3bNqHla9euxfXr1+tcryD++OMPbN68Gfb29gLLz58/j0mTJsHf379RrlcbXr9+DXt7e5ibm2PSpEnQ0dHBnDlzEBAQgIMHDzJqxNjYWGzevBnr1q3DnTt38PjxY+zcuROBgYF4/vw5zM3NBb70nz59EhodKDg4GOPGjcOjR4/A4XCQmpqK9evXw9zcvNbRV6s4cOAAj5orOjoaI0aM4DG/rc6K7usoRSdOnIC3tzfTrokTJ/IJ3Jo1a5hz09LScP/+fUafnp+fj6NHj8LLywubN2/GpUuXEB8fzyz2lZeX4/bt27h79y7zzDIyMrBlyxb07NmTUVH/9ttvWL9+PcLDw5Geng49PT2+dlRtI0eObJRFzh8f0+4rli5din79+vEYHMTGxsLS0hKhoaHw8PCodnQgCF9f32rVLg8fPsT69evr3FZBFBUVoX///gJttblcLkxMTPDx40fY2to2yvXqQnFxMT59+gQnJydMmjQJISEhOH36NJycnODi4lJj4M8jR47A1tYW0dHRACrVaxcvXmSmAMKIj4+HkZER2rRpA1VVVWhoaGDKlCl19iswMjJCSUkJuFwutmzZAklJSfTo0QO3bt1CXl4e9PT0qp0menp6CrxmQUEBI1RycnJgsViws7NjTGHfvHnDxKPv2bMnSktLYWxsDCJC9+7deUJqiYiIQFlZmfE/ICJ07NgRK1asYNZuCgoKMHLkSGzbtg2mpqZM3SwWC507d+YJf925c2f8/fff2L59u0AjnPrw0wh8aWkpOnToIPDGysrKoK2tjTNnztTJmAGoXFC6e/eu0PIrV65g27ZtePr0KS5cuICXL1/Wqf5vWbhwIYYNG8Yz/cjJycGMGTOwb98+fPnyBY6Ojg26Rn2xtbXFX3/9xbf/+vXrTKTc6oiMjISbmxtMTU1hbGyMTZs2VWuuy+VyMX36dGzfvp3HpyI2NhZ6enqIjIysddurFgFXrVoFIsKcOXN4OqlJkyZV25apU6cKjXkYGBgIAwMDGBkZ8anSNmzYwAhg//79UVFRgSmOjhjUujWgpgZO+/ZIUFXFNXNzBOzYgVWrVmHVqlV49uwZHj16hOnTp0NGRgYyMjKYPXs29u/fz2NxWlZWhkePHuHgwYPw8fHByJEjmZwBLBar0VWXP43Anzx5Ejo6OkI9oo4ePQoPDw8EBgby7OdwOLh48SIGDRqEwYMH832pYmJi4OrqKtSCSl9fH6NHj4aPjw/279+P2bNnw9DQsM7GGFXk5uZi5MiRsLKyYhaXzM3NGR38rl27cOrUqXrV3RAiIiIwsxr9rJubG/P1bizu3LmDRYsWCSzLyMiokzORvr4+fv/9dxCRwBGZsbGxYEetf9i3bx/++OMPoeUzZswQ+LFhs9lYs2YNLC0tKxd48/OxV0UFokQo+lb/LcRxJSMjA8uXL4ecnBw6deoEW1tbLFu2DH5+fggLC+M59u3bt1i4cCE4HE6DogsL46cR+HXr1sHf3x++vr4Cy1++fInevXvzuGQ+fPiQcb+s2r4e8r98+RIWFhbMsGn06NHYu3cv8/VdvXo11NTU+Bw0MjMzoauri/fv39fpHqpYtmwZAgICwOVyeea90dHR0NXVbRTzzbqyZs0aPHz4UGj5rVu3sGnTpka9ppOTU7XWlTNmzKj10N7FxQVEJFBT8ObNm2qz+QD/y1kgaMH07du3sLCwqFU74O2NF/94Df5VR6OXGzduoFu3bmjXrh1UVVUhISGBMWPG8Bxz5syZJl3jaTKBr1J3sdlsJCcn1zg0OXDgAP7880+YmZnx9XoA4OPjg9GjRzN/37p1iydW+eHDh/mGbHv27AERYfr06dDW1kabNm0YF09ZWVkoKSlhy5YtePr0Ke7evYvz588jNDQUSUlJePXqFTw8PGpzy3xwOBz4+Phg/PjxOHbsGC5cuAAvLy+Ym5sLTKBRF7hcLrOgduDAAb7Y8MJYvnw54/UmiAcPHjTaWkYV1YX6BipzzQmaYnwLl8vF8OHDoaioyDc9e/v2LbS0tHg0EcJ49OgRtLW1cfbsWZSUlCArKwv+/v7Q0dGp9XOEmhoqiKBOhAl1NGsFKlWf2traKC0thY2NDXR0dJiyiooKGBgY8GU3evnyJcaMGYN9+/bVro3V0GQCLy0tjV69ejGJ+kaMGFHtMDk7OxvGxsbIycmBvb09Jk+ejNOnT+PYsWOwsrJC165dkZSUhCdPnsDExARExMSw37p1K1PHnj17YGdnhz59+kBUVBRExGQqyc3NxZ9//gkfHx9MnToV8vLyPPnWvt7atWvHJBMIDQ2tl3tjRkYGjh49ioCAgAavDQCVxjRGRkZYuHAhrl+/jtOnT8Pa2hrz5s2r0Qvt5s2bPCvP37JkyRKhGV3qy6RJk6oVRDc3NybRQnWkp6eDiLB//37MmTMH+vr6mDp1KkxMTIQ6LAkjOzsb27Ztg5WVFezt7XHy5MlqpwI8cLmVRi5EWEOVCTA/fSvw1TiuVHHp0iVYWVnByckJ3bt3B1Bp6uzk5MRj6gwAFy5cYLL9sFgsgcks6kKTCbyPjw9mzpyJ3bt3448//gARMWlzysrKBC6g7Nq1C7Nnz0ZJSQnev3/PJJyYNWsW/Pz8GJfDXr164dixY3j27BmICI6OjtDT04OkpCRERUUxaNAgWFpaYvPmzbh165ZAdVJxcTEmTJiA7OxsPHv2DLGxsUhPT0diYiLOnz8PX19ftGnThkkhJCcnh8WLFws1ZGlqqoxiPnz4wFcWGBgodCpUBYfDgZ6ensDz3717ByMjo0ZfILp37x7mz58vsCw9Pb3Wc/i4uDgQEWPNV15ejvT09CaZ49aImhouEkGGCCO/ncfX4gtfxfPnzzFmzBgQEbS1tWFra8uXNenJkyeQlpaGpaUl875KS0vXySnnW77LHL6iogJiYmKYNm0afHx8GIcFBQUF+Pv746+//sK2bduwb98+yMvLQ0lJCU5OTpg8eTJ0dXWZXm/jxo1gsVgYO3YsOBwOKioqoK6ujo4dO8Lc3BxOTk4YNWoUFixYgPXr12PcuHGYPn260CAKurq6Qnv3vLw8mJqagsvl4uPHj/Dx8YGsrCwj+F+byJaUlCAlJaVJX8CjR49WG5rJxMSkxh8xISEBOjo62Lp1Kz58+ID4+Hhs2rQJurq6fOGqGgMulwtPT09s3LiR59m8efOm2gXab4mKimLUYMbGxvD29v5hHe8ZIyOIUGWG2+I6zuG/JSsrCywWC926dYO9vT2jtQgPD4eVlRWkpaWhpqbGTAOLi4uhq6sLSUlJ7Ny5s/Yjk6/4bot2w4cPBxFBSUkJM2fOZOKYCdrat2+PL1++ID09nfnqlJWVYdmyZWCxWLCwsGD2V/174sQJgavx9+7dg7GxsUAdbUBAALZs2SLwPhYvXoxz587x7Pvy5Qsj+NLS0vjtt98wZMgQDBo0CLq6utDQ0ICRkREuXbrU4Ln6t9jZ2SE3N1do+a5du3Dp0qUa62Gz2Th37hw8PT3h5eXFk+6qKeByuTh8+DAMDAxgZmYGfX19TJ8+vU6eZGw2G9u3b4eHhwfMzMwgLy8Pd3f3JmtzdezfuRMsIgwkQlgtV+mr4/Tp03B3d0ePHj0gIyODnj17MovMAwYMwMGDB6Gjo4PLly9jzZo10NHRQffu3ZmR7MaNG+s0MvtuAs9ms5GXl8cIZF5eHtLS0hASEoLAwEBkZ2fDzc0NysrKjEVTVdihefPmoU2bNhAREcHw4cNhaGgIHR0d7N27F1wuFxUVFdDW1hb64lYlVPwWLpcLLy8vzJw5E7GxseBwOHj9+jVcXFyE2o0DlYK/fPlytGrVivlxvt0kJCQaZd5ehbW1dbXWaQEBAdUHXUTl0PjMmTO4fv16vb4ODYHNZuPq1asICAjA5cuXqzWSqYl169ZBQkLih8VXeHr3LjTatAGLCMdatGiUmIxFRUXo168f5OXl4ebmhidPnjCCXFpaCjU1NWzYsAFcLhelpaUwNzeHpKQkvLy8hKo+BfFTqOXKy8uxf/9+tG3blvHh9vf3Z5wKlJSUmEionTp1gr6+PiNYwcHBePToEVasWCG0/uzsbKHWbVwuF2FhYZg+fTrMzc3h7e1dK4OQOXPmICwsDBwOB4WFhcjNzUVmZiY+f/6MoKAgtGzZslEDXuzevbvaSDFWVlZCAyWmpqbCysoKLi4uCAoKwubNm6Grq4v9+/c3Sttq4saNG9DW1samTZsQGhqKLVu2QFtbu9oIu9WRm5uL1q1bw97eHunp6Xj48CFOnDiBly9ffrcQWhUVFXB2doaUlBSeP3/e4PqKiopgYGAgsOzDhw8wNDTEwoULmX2lpaXQ09ODvLw8dHV1az2i/KECz+FwcOXKFfz6669gsVhMhNf169dDVFQUNjY2uHHjBpPi1tDQEL6+vujUqRNYLBZ69uwJAwMDaGtrw93dHRUVFQgLC8OKFSuwbNky3L17lyfqTGPB5XKhq6tbbfmgQYNAVBnTrzHmx3l5edDU1BRoTXbt2jXMmDFD4HlFRUXQ0dHhM6rhcrmYO3duraK41oWysjJkZ2czC6XPnz+HhYUF3/pGaWkprKys8OTJk3pd5/DhwwJHVgoKCjA0NMS6desQ18RhwUtKSjBw4EBoaWnV6TxBH4Hw8HChHy0/Pz/cvHmTz+W4oKAAw4YNg6KiYq1Vqj9M4I8ePYoePXqAqNLveN68eYwPsbS0NJydnXn8hxcsWAAxMTHIy8tj7Nix0NLSwuPHj8HhcPDixQv069cPysrKzJf36dOnWLZsGQwNDXH58mX4+PjUpvm1gs1mC82BXoWpqSn+/PNPtG3bFgoKCrWOTV4dERER0NTUxN69exEbG4vnz59jzpw5sLW1FWoLHxgYKDR4KIfDgY6OTqN8FePi4uDs7AwTExM4OTlBR0cHK1euhK2trVDVXEpKSr39CrhcLoKDg3H27FlERUUhMzMTd+/exdply2DYqRPk/1G3/iYpiXuWlk0WAn3u3Lno2LFjjcfFxcXB1dUV+vr6MDU1hYGBAQ4dOsQIf0REhNCh+ZIlS/DixQuBMQamTZsGMTEx9OjRA9bW1jh8+HC1fhHfTeCjo6Oxbds2JmQwEcHS0hI3b97E8ePHIScnh7Fjx+L06dNCo3xmZGTgyZMnsLW15VO1qaqqwsfHB3PmzOHZ/+bNG7Rt27beVnPC0NHREeoyWVFRwYwAsrKyMHHiRLBYrEZZyKvy5Z89ezYWL15crTENAIwbN67aF6AqrFNDiI6Ohra2Ns8z5nK5OHv2LNq2bVutZWGjqgO/SnJSTITjRBj+z5ffUVERRwMCEBsb22jXe/36NeTk5ODg4FDtcVFRUdDV1eUZZZWUlGDz5s3w9PTkWYcS9E6dPHkS06dP51tgfvbsGWRkZMBisTBq1Chcv34dhw4dgpaWFj59+iSwLU0u8G/fvoWTkxNERET4hl+jRo2CvLw8iAhaWlq1aoQg3+vIyEi4uLhAR0cHAwYMYFQ2ERERsLKywvjx4/kisjSU9evX8wR8/Jpjx47x/DhZWVkQExPDnDlzmHssLS1FaGgoDh06hEePHjVZfDcTE5Nq6964cWO1zkW1wcrKSugCWr9+/XD06FGh5wpzu60X3t58yRk4RNhJhJ5fvXc9evTAxo0b8e7dO6SkpCAnJ6dOi5hsNhtbt26FnJwc+vXrV2PsfGNjY6GxHObPn8/ETggMDMTixYv5fq+PHz9CSUmJR4hLS0sxduxYvHz5Et27d2dGy+PHj8fjx4+FdqRNJvCLFi1Cnz59eAS8yvKtX79+8PDwgIODA5YvX14nV0lBc/GtW7fi5s2bKCoqgqmpKTQ1NWFqaoqZM2ciOjoakZGRPNFkG4OSkhKYm5sjKCiIeVlKS0sRGBiI8ePH871As2fPBovFgpSUFMzMzKCtrY0dO3bgzJkzWLJkCfT09Bp1Vb+KRYsW8aYo+gYLC4tqvcxq4ttgmcnJyQgPD2c6ACMjIxgZGQk8Nz8/H8bGxvW+Nh9qaoIDO/6zZXfsiMuXL8PBwYFJlPL1JicnB3V1dezevZuvai6XixcvXmDNmjXo06cPWCwWvL29q1WVApVGTcLWV4DKyDmTJ09m/t6+fTsMDQ1x4MABnD9/HgsXLoSBgQFOnToFXV1d3LhxAxwOh/HH19bWRmRkJDgcDk6cOIF27dpBWloaKioqMDMzw+bNm3k+kE2eiKJqGzRoEPz8/Bo8tDY1NeUbIm7bto2JOzZz5ky+sFUvXrzAkiVLqq23ykbdy8sLjo6O2LBhg1B3yipKS0uxd+9eGBkZMS6jAQEBQr8WSUlJsLW1hYiICN/UIyMjAzo6Oo2uavr48SNMTEwEDqvv3LlT7ctYG16/fo2FCxciLi6OMRddtWoVnJ2dMX78eOzbtw9qamp8Xxsul4v58+cz6tJPnz7Bx8cHxsbGMDY2xtKlS5GUlFT7hnxl9ip0+8rsNTMzE7du3cLFixdx6tQpHD58GJs3b4aioiKmT5/OU/WTJ0/Qvn17EFVGcbK0tKx1UJdbt25VG4AF4I//V1BQgJMnT2L//v0ICwtjnl1aWhrWrl0LExMTqKmpYf78+Xwjh+zsbGzcuBE6Ojro1KkTZGVlwWKxMG3aNHC53KYTeBkZGejq6mLu3Lm1fji14dvY6UDlPH3GjBkoKyuDnp4e38u1dOlS3L9/X2id5eXlcHJywvz58xEdHY2cnBxcvXoVhoaGQoftteHNmzdMDrW5c+di9erV0NfXh7GxMdTV1fnUOX///XeNHVN9uHDhAgwMDHD9+nWUlJTg8+fPWLt2LczMzGqVFaU6cnJyYGBgINCB5fPnz/jtt9/Qq1cvWFlZ4c6dO0hJScG9e/dgbW2N33//HUClcZSBgQEzteFyubh//z709PQEOlIJpYYvfE1mrxUVFRAVFcWOHTt49sfExEBZWRmSkpJ1VsHV9QtfWxYtWlRtW06ePInAwECUlZUxbsV37tz5OfTwdSEvLw/a2tp80wBbW1sYGxvzGZ9ERkbWOI/19fXFiRMn+Paz2WxYWlrWO5bY+vXrQVSZhUdOTg5ycnKYMmUKIiIi0K9fP7BYLLi7uzNfXy6Xy+Sha2xSU1Oxdu1aJhPMtWvXGm3u3LNnT5w5c0ZgmZeXFwwMDJCYmIg1a9Zg2rRpWLVqFTMfLSkpgaampsCOp0oVWWsjHQFz+Lqavfbq1UtgtN+0tDR07twZLi4utWvLVxgbGws1Bf56Dl8Xnj17htmzZwst/9oug8vlYuDAgVBWVmYSZfxrBB6onCdaWVlhypQp2Lt3L1auXIkxY8bg119/hbu7OxNPbM6cOTA3N6/W7rqkpAQGBgZCO4SXL1/Cy8urXu189OgRiAg2NjbQ0NCAjo4OPD09AVSOKrZu3Qoi4gmIUVN455+RMWPGQEtLC7du3eLJnLtp0ya4uroKHHVV8ccff1RrALRt27bae4g1QipyHx8ftG7dWqBV46JFi9CyZcs6xzN4+fIldHV1eaaaVav07u7u9V6wtbOzY9KEfU1AQABfdOQ3b97Ay8uLian3rxL4KuLj43Hx4kWeJIWvXr3Cpk2b4OfnV6upRFRUVI0Leg0RwuDgYCbG2bBhw6CpqcnzZe3SpQt0dHTw8OFDvHv3rtpY8j8jXC4XpqamyMzMxIoVK6Cvrw8zMzMYGxsjODgYHA4H5ubmQnX9S5curXax8tGjR1i3bl3tG9TAVORxcXGQlJTEvHnz+MqeP38OIqpX0NPY2Fi4urrCwMAA5ubmMDAwwMGDBxuknSkpKYGHhwfGjx+PPXv2YMeOHTAyMsKKFSuEjt4SEhL+vQLfGMTExGDWrFlCyysqKhq8klyVsZSoMk7Zzp07mbKgoCAoKyszBkeCphY/O/r6+kIXKqvSSglj06ZN1QrQuXPn6h8Bpp7C5OfnBxERET531ezsbIiKijY4MlCjqSH/ISMjAxcvXsSVK1dqVBHm5OT8twW+ykxW2DDt8uXLzOJSQ6j6OhARk545IiICX758weXLlzFgwAAQ1S0B4c9CQEAAdu3aJbBs3759AtVcVSQmJgoN6w0AlpaWQn0Emgo2m42RI0dCTEwMvr6+jFnw4sWLISMjU/voOD8RHA4HZ86c+XcP6RuLkydPwtPTk6/n/fz5M7S0tJokPdTLly8xf/58TJ48GRs2bGBGAV+nevq3wOFwMGXKFKxcuZJRE2VkZGDNmjVwdnau0XTXx8cHW7du5Xn+HA4H69atw6pVq5q07cIoLS3FihUrIC4ujp49e8LGxgaioqKNbs/RVHA4HLx8+RL79++Hi4sLunTpwowwayufLACgGsjPzydFRUXKy8sjBQWFmg7/aQgKCqI///yTTExMqF27dhQeHk4xMTG0c+dO6tatG9/xZWVl9ODBAyopKaFBgwaRqqpqva8NgIKDg+nw4cMUGRlJfn5+NGrUKOrdu/e/JuEmALpy5QoFBwdTUVERycjIkKOjI5mYmNR4DwBox44ddPHiRdLQ0CAAFBERQRMmTKAZM2ZQQkIC7du3j968eUOioqJkYmJCEydOJFlZ2Sa/rzdv3pCXlxelp6fT9OnTyd3dnSQkJJr8ug0hOjqapk6dSmFhYSQiIkK9e/em1NRUYrPZ1KlTJ3rz5k2t5PP/tcATVQrxzZs3KTc3l/r27UuDBw8WeNyePXvo/PnzpKurS4qKinT//n0SERGhnTt3UosWLep83aioKBo4cCDffklJSRo8eDD5+/uThoZGnev9t1FRUUHv3r0jFotFPXv2JFFRUQoNDaX9+/fT0qVLacSIEVReXk6nT5+moKAgOnr0KHXo0OGHtDUmJobOnDlDRUVFNGTIEBo3bhyJi4vXeF50dDSlpaWRmpoadenSRehxsbGx9OzZM8rJyaGSkhJisVjEYrFIUlKS2rVrRyoqKszGZrMpNTWV0tLS6O7du7R+/Xrq0qULbdmyhcaMGUOWlpb0+vVr2rFjB9na2hIR1U4+azOU+DcO6euCv78/lixZwre6+vTpUxgYGNQrsENRURGTwFBRURGysrLo27cvFBQUmGHYtGnT8ObNG+zatQsmJiYwNTWFi4tLjc4z/2bS0tKgr68vcH0lNja2XqnHqnj69CkcHR0Zyz5HR8daaXXKy8vh4uKCadOm4f79+3j16hV27doFTU3NaoO0hoWFwdDQEN7e3tiyZQumTp0KCwsLgUE8T5w4wZj+iouLQ1FRkQm0Isgn5etNVFQUixYtYtYdDh06BCJCSEgIz3H/6Tl8bakKOiBMlbJt2zacPXu2XnW/efMGjo6O6NevH6O7DwsLY9IFS0lJgcViQV9fn0ntFBsbCycnJ+zdu7e+t/RTs379eiaBhyCmTZtWr+y/Z8+ehbW1NY8zyqdPn2BtbS0wMtLXzJ8/X2AikaysLGhpaQmMbhwZGQkjIyM+u/ukpCRoaWkhOTkZFRUVuH37NiZPnsws7KanpyMlJQUxMTH466+/+IRbTU0Nzs7O+OOPP3D37l3ExMTwrNKnpKRASUkJzs7OePfuHYgImpqazQJfW27evFmtSiYzMxMTJ05s8HV2797NxPybO3cufHx8ICYmBhaLBUlJSUhKSsLZ2Rnl5eXgcrmwtbVtlMyiPxs2NjbVmv4eOXKkzll8CgsLoaOjI3DUUF5eDm1tbaGhxHJzc6sNpHL27Fls376db7+NjY3QICiPHj3ChAkTmPRSVVvV6K5q69atG9atWwcDAwM+wRfUSSUmJmLkyJFo27Ytz6JzdnZ2s8DXltDQUAQEBAgtLy8vr30GkxqoqKiAn58fM6yTl5dnhnVVyQyrXvbIyMhqbQn+rbi4uFQbc37Lli0CLc2q4/Dhwzhy5IjQ8qCgIKHlN27cqNYRpry8HObm5jz7qrwqhREcHMwnwKqqqli6dCmOHj2Kixcv4vLly0yIt/DwcBQVFeH27dtYt24d1q9fz2dJWqUClpWV5cs29K+zpf+RJCYmVhvs4Pr161i7dm2jXjMuLo4Z5lVtAwcOZGKZVfFvNMmtiZs3bwpVy3G5XOjp6fFERaoNNWXgefr0KVauXCmw7NatW9i8ebPQc0tLS/kiIWVnZwtN1Ll9+3ae39Xc3BwXL17kWQeqikrEYrGwZMmSWq0RVTnLCAq9VRf5/Hfoh5qQjh07EgB6/vw5X1lZWRlt2bKFXF1dG/Wa3bp1I1dXV5KVlaWWLVvSunXrqKSkhAoKCujhw4fE5XIpJyeHZGRkGvW6PwPa2toUERFBt27d4tnP5XJpwYIFZGVlRZKSknWqU0VFhT59+iS0/OPHj6SioiKwbPjw4XT79m2h5547d44MDAx49ikqKlJycjJxuVxmX0VFBc2dO5dmz55NRERycnL07t07unDhApmampKYmBhPHS9evCBPT09at24dX5kgTpw4QUREiYmJZGNjQxMnTiR7e3syMTEhU1PTGs9nqLFLqGMP8m8kKysL+vr62LFjB7KyssBms3H9+nXo6+vzDC/z8vKQnZ3dKJFsuFwuevbsCVFRUaSmpuLJkyfMVyE7OxubN2+ucbHp30pxcTE8PT1hbm6O33//Hb6+vtDW1q538M2srCwYGxsL/F24XC6T7kwYy5cv58tgDFQukAlLVrlp0yamvampqUwiFvpnbl5dVlsAsLe3h4aGBhITE4WuaRQXF+PMmTPgcrm4c+cOzM3NYWxsDH19fWhra0NbWxsWFhYYO3Zs85C+rpSXl+PMmTOwt7eHhYUF1q5dy5hbXr16FcbGxrCxsYGjoyN0dXVx5MiRBgv+iRMnwGKxGF/ttWvXwt/fHzdv3oSZmVmD4rz/G8jJycG9e/cQHh7e4KCbe/bsgZeXF8+KdkFBATw9PWvUeFRUVGDOnDmws7NDaGgo7t+/j9WrV0NHR0eoxoDNZsPR0RErV65kohkTETQ0NODj41Pju3HixAmeof+pU6cQGRmJ8PBwJCQkoKKigqlXUMrrr1m2bFmzpV1j8ccff9CdO3do+/btJC8vT0SVQ30/Pz8CQCtXrmxQ/aqqqiQqKkrGxsbUqlUrioiIoG7dutGGDRv+Xw7pm5LQ0FAKCAhgnltRURG5u7uTmZlZrc5PTk6m8+fPM4Y32traxGKxhB7P5XLp1q1btGPHDsrMzKSePXuSh4cHjRgxosZrlZeXk4qKCmVnZ/OVtWnThqytrWnPnj1ERDRnzhxat24dSUtLC6wrOzubWrVq1Wx401Cq8n4J+/rY2dkJjSRaW4yMjGBmZob3798jMjKyRs+oZmqmsLCwwVF/vgcXL15kErN8vUlISICI4O/vzzhgVWfvXxf5rHm14D/MpUuXaMKECSQqKiqwfPr06RQcHEy+vr71vka7du3o7du31LVr13rXUR0JCQm0Z88eevXqFbFYLOrVqxd5enqSurp6o12DzWYTm80maWnpar+I34vvYY9fE8nJyfT+/Xtq06YNqaqqUmBgIH369ImSk5OpuLiY2Gw2lZeXk5eXF40aNYqCg4MpKyuLVFVVKSEhgdLS0mjz5s306dMncnZ2Ji8vr0Zp108t8GVlZVRWVkby8vI/5EVKS0ujHj16CC1XU1OjkJCQaut4/vw5HTp0iFJSUqhz587k6upK/fr1Y8qTk5Mb5KRTHY8ePaLVq1fTypUryc/Pj1gsFj19+pS8vLxowYIFpKWl1aD6X758SX5+flRQUECysrKUlZVFVlZWNH369H+Ng1Bj8/nzZ5o7dy5JSkrSgAEDKCkpiS5dukQfP34kokoNzfv374mocrXf2dmZevbsSX369KFr167R/v37qaioiFq1akWGhoYUGhrK8740mNoMPb73kP7Zs2ewtrbGuHHj4ODgAB0dHezatavRgwzUxOXLlwVa4ZWUlCA4OBijR4/GgAEDsGPHDj4TSy6Xi9mzZ8PT0xMxMTFgs9mIiorC1KlTsXz5cua4rl27CozE0lDKy8uhqakpcIpQVFQELS2tBqXCfvjwIUxMTHgi8paXl2Pnzp2YPn16k8Xk/5mpMsWNjY1FUlIStm3bhoEDB4KoMlz2hg0bICoqirZt28LPzw+vXr2Cs7MzJCUlIS4uDm1tbWzYsAHPnj2r07v+rza8uXfvHszMzHgCErDZbPj7+zNhecvLy1FQUNDkL1VFRQW0tLR45oNJSUnQ1tbGvn37oKuri6SkJJw5cwZaWlo8jhoHDx4UGmRj8eLFOHv2LNhsNsTExLBnz55Gb3tISAhPFJ5vOXDgQI2qI2FUBRgRpK4CgHnz5vFZg/1/p6CgALq6uujWrRsT7UhCQgLjxo3D7du3kZmZiV9//RVEhAcPHmDXrl2QlZVF+/bt8fvvvwtNalEb/rUCz+VyoaOjI3ThatKkSdDT04OxsTFsbW2hra2N7du3C11US05OxsqVK2Fubg57e3tGyOrCvXv3YGJiwqhGTExMcP/+fTg6OiI4OJg5LicnB5qamsxXszqLsby8PJiamuL+/fsgonpFOK2JtWvX4vHjx0LLIyMjsXTp0nrV/eLFC8yfP19o+cePH+sVCVYQBQUFSEhIqDa11o/m/v37GDp0KERFRaGkpARDQ0MYGBjA2tqaJ0yYkZERz+Kcu7t7o8jUv3bR7sWLFzRkyBCSk5PjK3v27BljMVVldVRRUUGHDh0iV1dXOnToEM88PzQ0lPbu3UsLFy4kX19fys3NpaNHj5KZmRmdOHGCFBUVa9WmMWPGUNu2bWn79u306tUrSk1NpX379pG3tzeP+kVJSYmcnJzo1KlTZGtrS/Ly8kItxqpUJ3v37qVu3brR6NGja/2MakvLli0pNTWViIgiIyNp586d9OXLFwJAampqNHjwYGrZsmW96k5JSal20a9z586Unp5er7qr+PTpEy1btowKCwtJRUWFEhMTqWPHjrRmzRpq3bp1g+puTNLT02n58uWUnp5OMjIy9OnTJ+bdCg0NpUWLFtHWrVuJiEhdXZ2uXLlCf/31Fz19+pSSkpJo0qRJZGdnV+3icKPS2D1IQ7h48aJQIwlDQ0NkZWUJ9Gzy9fXFzZs3mb8TExNhZGQk0HsqLCysXkkCgErjjkuXLgkt//TpEzw9PWsVJNPQ0BA9e/aEo6NjvdpSE1++fIGFhQVCQkJgbW3Nkx3o1atXUFFRERp3viZev35dbZjv6OhoeHh41KtuoDIKa9Vc+GvCw8Ohra1drdXc92bt2rVMaHIdHR2+zEampqbIzc0Fl8uFtrY2bGxssGXLFmY6lJ+fj61bt8LW1rbehlb/Wlt6dXV1evPmDd/+mJgY6tq1K6WmplLnzp35yj08POjIkSPM3wcOHKBFixYJjFYyfPhwKioqqtcXSFpamvLz84WW5+fnk4yMDImKipKCggIlJycLPC4mJoY6depEdnZ2dO7cOSooKKhzW2qiTZs21L9/f1qwYAEFBwczaj8Oh0NXrlwhR0dH8vf3p4qKijrX3bdvX4qPj6eMjAyB5Vu3bm2Q/8GaNWto9+7d1L17d579Q4cOpQULFtDu3bvrXXdjExYWRoaGhsRisej27dukpqZGbDabKR87diy9ePGCLly4QGJiYmRgYEBz585ljLjk5eVpzpw5pK+vzxjaNCU/lcD36dOH4uPj6cuXLzz7U1NTSV1dnbZu3UrTpk3jO09FRYXy8vKYvyMiIui3334Tep3ffvuNXr58Wef2mZiY0JkzZ4SWHzt2jKysrIiIyMfHh2bMmEGFhYU8x+Tk5NCsWbNo/vz5pKenR0VFRZSUlFTnttQGZWVl0tXVJWNjY5o1axbNnj2b9PX1SVZWln7//XcyNzenCxcuUHh4OIWHh1NZWVmt6964cSPZ29vzPMf8/HxaunQptW3bVmgosZpgs9mUnJxMffr0EViur69Pf//9d73qbiw4HA4lJSXR06dPKTk5mbZu3Ur4x2C1tLSUXFxcGNVbTk4OnTp1ioKDg6miooKcnZ0F1uns7EyXLl1q8rb/VHN4IqJNmzbRxIkTaePGjUzMNyUlJTpy5AhZWlrSgAED+M759OkTtWnThvlbUlKSCgsLmV70W/Ly8uplttqmTRvq0aMH7du3j2bMmMFTduvWLfrw4QMNGzaMiIgGDRpECxcuJAsLCxo2bBh169aNoqOj6eXLl7Rhwwbq3r07M1ooLi6uc1tqw/v372nevHnUrVs3io+PJwDUtWtXEhUVJQAUHR1Ne/bsIXt7e2KxWOTr60taWlrk4+NTox69X79+FBgYSFu2bKG4uDgSFxcnFotFU6ZMofHjx9e7zcXFxdWuLYiIiPywgJPZ2dmkpqbGNyKLjo6mli1bEovFomHDhpGlpSVt2rSJUlJS6OnTp7R7926ysLAgS0tLoZ5xYmJiJCUlRVwut2ltGBp7jtAYJCQkYPbs2TA0NISZmRnGjRuHYcOGCY0wMnPmTB410PHjx4Wquqp8kes7X+JwOFixYgWMjIywc+dOBAQEwMrKCm5ubgKjqnC5XISFheHs2bN4/vw5jyoxMDAQIiIiTTYn3bBhA8/axtf4+PjA0dGRJzAEl8vF3r17+bLgfk+qfh9hKteSkpImy9VXHS9fvhQYb65Pnz4YPXo0E9QjKioKurq6iIyMhJ+fH7Zu3crUoaenV+01aioXxr9WLVcd7969g5aWFk+gg/z8fKxcuZLPcKUq4+y3AQi5XC7mzp3bKHHiCwoKcPnyZZw/f77apApsNhvnz5/H4sWLsWrVKrx69Yopmzt3LhQUFBo9nXQViYmJsLGx4dv/+fNn2NjYwNDQUKAu3cHBocE+Ag3B19dX6OKov78/Dhw48J1bBGZhTkxMDCtWrIC/vz+TbOPDhw8wNDTEggULcOnSJfj7+6NNmzZYs2YNT8c1c+ZMoYE6nj9/jpm1SIwpiP+XAg9UvsBz5syBgYEBzMzMYGpqilOnTgn8GmRmZsLe3h4ODg7Yt28fNmzYAB0dne/6srx9+xZaWlrYunUrXr58iYcPH8LDwwOOjo4oKSnBx48f0alTJwwfPrzJ2rBy5UqsWrWKR2OxefNmmJiYCA3tdf369WqjwDQ1RUVFMDY2xpEjRxg9dmFhIbZt24aJEyc22JVWGOHh4ZgxYwbMzMwwY8YMPHr0CFeuXEFFRQV27doFImK+5DNnzuTpvKtGcvv27cOxY8fg7u6OyMhInvqrkqB8G9X2/fv30NLSqnfH//9W4OtDYmIiLl68iDt37tQ5Q2hDKCwshKamJp+aJicnB0uWLIG+vj4SExMRGBgIFovVKIYlJSUlOHv2LPbv34+///6bycseFBQEHR0dTJ06Fc7OzujWrVu1qbZevHiBZcuWNbg9DaGkpAR79uyBsbExTE1NYWZmhuDg4CYR9qqRn6enJ2JjY8Fms+Hh4cFnKPO1MZG5uXm15q/79+/nS3MOVKpu7e3tMWHCBCxYsAATJkyAvb19g0ZUzQL/E3DgwAEeS7yKigosXrwY5ubm2L9/P4YOHYoJEybA1NQURIT169c36HqHDh2Cnp4e9uzZg/Pnz2P58uXMXBKofKnT0tKQkZGBCxcuYMuWLULr2rVrF06fPl2n65eUlODx48d49OjRT20VJ4ijR4/yZLO9cOECiAhLly5lhH3kyJE86z7Tp08XGH++ikWLFiE8PFxoeVZWFt6+fYusrKwGt79Z4H8C7OzseJ7XwoULecIoHThwACEhIXjw4AF69OgBIqp3LPqQkBB4eHjwfXEyMzOho6PDN1Rks9lC463n5uZCU1Oz1qMhDoeDDRs2QE9PD6tXr8batWuhr6+PVatWVZveODQ0FLdu3RKaofZ7YmBgwHRS0dHRjJCrq6vD29sbRMQXRTYsLExoVOEqu/rv5UDULPA/ARMnTmQEKiMjgy+jyr59+5iYdUuXLsX48eNBRHXOaltTpNf79+8LtJl//vw5dHR0cO3aNXA4HHA4HNy4cQO6urp48uRJra+/YMEC7N69m+/lDgwMhLe3N8++qnUVR0dH7N+/Hxs3boSuru4PTbrB4XB4rDerkjt8vXXq1Inv/rhcLjw9PbFt2zaezjE5OZnxk/heNAv8T8CRI0eYL/rRo0dx7NgxnvJx48YxHUJ0dDRmzpyJsWPHolOnTnVaa0hISMC0adOElnO5XBgZGQksS09Px7p162BiYgITExOsWbOGb82hOj5//gxbW1uh5U5OTvjw4QOAStdZfX19vHjxgq99Pj4+2LdvX62v25hwuVwYGBjw7KuoqOAR+K9Dh397bkBAAHR0dGBjYwNTU1PY2try3WNT0yzwPwElJSXQ0tJCQkIC9u/fj/PnzzNlx48f51ElJiYmYsaMGXj+/DlERESqTYzwLe/fv+f7kn6LiYlJndtfG3bs2IGLFy8KLb958yYzYjl58qTQnPJV7rY/ang/ZcoUHl8DAIywHz16FFOnTq32fC6Xi6Kiou+6KPw1zQL/k/Dhwwfo6+tj+vTpsLCwwOXLl+Ho6AgPDw+eBaDAwEDGAMbDwwPy8vJISUmp1TXYbDZ0dHSEzpejo6OrHQHUh4qKCoSGhuKXX36BsbExAgMDBRodRUREwNfXF0BlaqZvg4R8zfr163H37t1GbWdtefv2LQwMDHgMoC5dugQiQv/+/REdHf1D2lVb/rXOM//f6NKlC127do3s7e0pLi6OHjx4QGvXriV/f3/GxDInJ4eCg4PJxsaGiIjWrl1LUlJSZGlpWSunGjExMTI0NKT9+/fzlVVUVNDy5csbLR4aEVFGRgaZmJjQu3fvyNPTk3755RcSFxcnExMTPv+EBw8eMCmzS0tLhZo6E1WGe6qziXHNAZdrRe/evWnt2rVka2tL8+bNo4CAALp9+zZJSkrS8OHDqVevXo1ynZ+Cxu5BmhFMWloa9PT0sG3bNqSkpCA7OxvHjh0TmJI4PDwcCgoKGDt2rNAkiF/D4XDg6ekJNzc3PHv2DCkpKbh48SIMDAzqnJixOt6/f4+uXbti1KhRMDExga2tLTQ0NJCZmYmsrCyeACBVAUGqhrkrV67E7du3hdZta2tbu1FNfj7g7Q2oqQEdOlT+6+1dub+BcLlcREZG4tKlS3j69Cm6du2KKVOmNLjepuY/OaQvLy9HSEgIli5dCj8/P7452c8Am83G2bNnMWXKFDg4OCAgIEBodJ8HDx5ARkam2vDE3/Lq1Sv4+PjA1dUVmzdv5lMlNYQnT55g1KhRsLKyYvYlJSXBzMwMvXr1wsWLF7F//34EBQXh6tWr0NHR4Qn5lZycDENDQ4Hz9CdPnsDZ2bnmRuTnA337AiIiQOX3vXITEancX0uh53K5uHr1KrPQZmZmhkOHDjGajpSUFEyaNAliYmI/bJpRF/5zAv/ixQtoampix44diIiIYHJyu7u7N5kZ5vfAzs4OLVu2xKJFi7Bnzx6eOSaXy2UypKxbt45vlNCYcDgcaGtrY9euXTh79ixfmYGBAXx9faGrq4tOnTph/fr1AmO0Xb58GQYGBrhx4wbYbDYyMjKwdetWGBoa1s6ByNubX9i/Fvpa2KJXBRddvHgx4wNRXFyMwMBA/Prrrxg8eDCICCIiIjh8+HCtns+P5j8l8JmZmdDW1hZoRHL06FFm0ejfSGxsLAwNDdG5c2eIiYmhXbt2MDc3R3h4OIyMjLB06VKEhYXh77//xsyZM2FtbS00sKQwcnJysHnzZhgbG8PMzAxTpkzhc/D466+/sGrVKgQHB/OpF4HK1fj169fj3bt3NWoMUlNTsWbNGowfPx4ODg44d+5c7T0X1dQEC3vVpqZWYxVVVohf8/LlS2zYsAGSkpJQUVFBcHBwg4JKfm9+SoGvqKhAYGAgDA0NYWpqCj09PaxatUqgoNaFTZs2ITQ0VGi5oaHhvyILSU18+PABM2fOZNRFc+bM4TMG+fvvvxkPrtqQlJQELS0tXLhwgRkJvX//Hs7OzjyONYGBgTh37hy+fPkCS0tLvnrS0tLg4uJS4zy9QXC5lXP26gS+Q4fK46ph/PjxPO/czp07ISoqCikpKTg4OEBXV7fO6ap/ND+dwFdUVMDR0RG7d+9mFnW4XC6uXbsGbW3tBs01zczMqh22//777/+KeVhtCQoKwsiRI0FEAt0pXV1dhSZA/BZLS0uBax1cLhfW1tZMTLnQ0FBs374dQKVl3aFDh3iODw8Px6RJk2Bqatq05qSN8IWvsqrjcrn4448/ICEhgenTpzOLi+7u7khMTGy6e2gCfjq13MmTJ0lDQ4M8PT1JSkqKiIhYLBYZGBjQxo0bG5SqiYiY8EKC4HK5P0X6o8bizZs3FBgYSH5+frRr1y4mMm0V48ePp5s3b9ZYz4cPH0hJSUlgiisWi0U+Pj4UEBBAREQGBgYUGhpKFRUVtGHDBnr37h1ZWFhQUFAQ/fnnn2Rvb0/Z2dl07Nixpn3WZmZEwqLBiIgQmZvXWAWbzabo6GjS1NQkBwcHMjU1pc2bNzPxDzMyMv5fJ0z9LgJ/4sQJgbHoiIiGDBnC5NuqD9ra2nTx4kWh5Xfv3qWhQ4fWq+6fFQDk5uZGUlJSFBgYyFdWG969e0e//PKL0HINDQ2Ki4sjIiIJCQmaMWMGubi4UFFREfn5+dGhQ4dIUlKSQkNDSVtbm0JDQ2sd+rverFtH1Ls3v9CLiFTuX7u2xio6d+5MQ4cOpdTUVLpx4waFhIQwYdFTU1OJxWI1/X38SBp7yCAIU1PTass9PT3r7Q+cnZ0NLS0tgYss+/fvx6pVq+pV78/KjRs3sGbNGgCVw8+2bdsynl5fvnyBoqIiJkyYAH9//2oXnh4/flytz3taWhpfCO0bN27A1NQUdnZ2mDx5MnR0dBAQEPB900rl51euxn+th585s1YquZiYGCgoKKBFixZ8yT/S09Ohr6+PqKiopmp5k/HTzeGNjY2rXQgZP358nVeXv+b169fQ0tKCn58fHj16hEuXLsHe3h5z5sz57vnomhoOhwN9fX28ffsW79+/h7i4ONauXQsAWLJkCYgILBYLRAR5eXmcOHFCaD3a2tpC7dfXrl2Lq1evCizLycnBly9ffnz+uDpe39zcHN27d8eHDx8wdepUWFhYMLH9xo8fzxeh5t/CTyfwe/fuFarTfP/+faMkY+BwOLhy5QrWrVuHHTt2ICkpqcF1/qykpqbCyMgIixcvxsSJEyElJYXJkydDX18fRIQbN24gIyMDw4cPx6hRo4TWc+HCBTg4OPAFrAgNDYWlpeX/q86Sy+WiZcuWWLlyJbMvNzcXr1+/5sljWN359e3gIiMj4erqClNTUxgZGcHHx6dRFwZ/OoEvKSmBqakpLl68yPPQoqOjoaWlxbhQNlN7uFwuHjx4gKVLl0JWVhampqaoqKiAhIQEk0Ryy5YtEBcXr7bzu3btGgwMDODm5gYfHx8YGhpi4cKFP5VqqqioCLNnz8bAgQOhrKwMdXV1aGpqYtiwYWjfvj3U1NSwcuVKpuNKTExEVFQUuFwuYmNj4ebmBn19fYiLi6N79+7VqnG/5erVqzA3N4eJiQmMjIxgbW1dp0SZp06dwoQJExjNCZfLxaNHj6Crq9tobrR1kU8WUPMqT35+PikqKlJeXl69VzCLi4vJz8+PHj16RMrKypSdnU3t27enZcuWCcwm828hJyeHrl+/TqWlpTRixIgf4mixf/9+mj59Oj169Ih8fHzo8+fP9OjRI5KRkaHOnTuTubk5T2YeQSQkJFBRURF16dKFpKWlv0u78/Pz6c6dOxQWFkZfvnyhYcOG0YABA+jjx4/UvXt3JsZ/REQEaWhoUKtWrWjmzJlUVFRECQkJJCsrS6qqqpSamkrBwcGkoaFBqqqqFBISQhwOhwwMDIjL5dKOHTuod+/eZG1tTe/fvyddXV1SUlKipUuXVtu+PXv20OvXr2n9+vWkpKRERERpaWk0e/ZssrW1rTH+flZWFjk4ONClS5f44tFnZ2eTtbU13bp1q8GajTrJZ2P3IDXB4XCQm5v7w3yHGwsOh4OlS5fC3NwcQUFBOH36NNzc3GBlZfXdrbQqKiqgoaEBOTk5ODk5oV27dujatSs+fPiAw4cPg4jqHKOuqQkICICkpCSICB07doSGhgZERUUZwyIWi4V58+bh1q1b2LRpE4ioWkeW+/fvo3Xr1lBXV8euXbtw8OBBsFgsODk5MaPK8+fPg4gQGRkJR0dHvH37Vmh96enpMDMzEziMLy8vh7a2do2joK1bt1Y7mlixYgX++uuvauuoDT/dkP7/I8uXLxcYmikqKgr6+vr1TnRRXzIyMuDj4wNRUVEMGTIEHTt2ROfOnZGQkIDRo0dDQ0Pjp+hkMzMzMX36dNA/6ZLj4+N5yiIiIpCTk4ONGzdCXFwcRJV51omoRr9+DofDCGh4eDhMTExARAgKCgJQKaiqqqoYN24cnj9/zpPyOicnBwEBAVixYgUOHTqE9evXV5s4dM+ePTV2om5ubtWGng4NDW2USD8/jcCXl5cjJiYG8fHxP35FtxHJzc0VmMW2iq1bt/JEuPmehIaGQlJSEpMmTUKLFi0gJyeH06dPQ1xcHCNGjMC4ceNgamqK8ePH4+TJk9/NuSgzMxNubm6QlpaGpKQk9u/fX+M5eXl5iI+PR2ZmZp3fn1OnTuHIkSMwMTHBkCFDmP2nT58GEeHy5cuwtrYGUGk6bGRkhJMnT+LZs2cIDg5Gp06dsGPHDqH13759myerjCCWLFlSbeTavXv3NsrI64db2nG5XPr999/JyMiI9u/fT1u3biV9fX06efJkU1zuu3Pnzh0yNTUVWm5nZ0cXLlz4ji2q5PPnz5SRkUFSUlKkqqpKAQEBVFhYSPn5+TRq1Ch69uwZJSQk0KhRoygwMJCSkpLIycmpXhlkq+WbZaHExEQaOXIknTlzhpYsWUKJiYlCDbG+RkFBgdTV1alVq1Z1nue2b9+eyXDbpUsXZr+VlRVJSEjQvXv3SEVFha5fv05PnjyhS5cukY2NDQ0ZMoQcHR3Jy8uLzp49S48fPxZY/7t376hjx47VtsHR0VFgYBKiShk5e/YsmZiY1Om+Gkxj9yBApUHItwYZZWVlmDVr1g8LVtiYnDx5kicn27fk5ubCwcHhO7aokhkzZoCIIC4uzgSj1NXVhbS0NFasWIG///4bBgYGzBcOqIxnX2Un3yCqCUxhZWWFDh06fNcYBVU56vr378/n8KOrq4t27dohIiICZmZmAkNvpaenQ1dXV2CQztrO4YHKDDW7du3iUXGWlJTAw8OjUVKeAT94SP/69Wu4ubkJLONyudDX169VFJefmYSEBDg5OQkt//PPP+Hr64urV6/i9evX361daWlp6NKlC+Tk5ODp6YnIyEjk5uZCRkYGvXv3ZqZW/fr1w6BBg5CcnAw2my00KmutqSEwhZKSEmMd+D25c+cOBg4cCCJiLOtKS0vh4OAAIsKzZ89gamqK48ePY/fu3fD19cWmTZsY4dyzZw86derE412XkpICW1tbJsR4TXA4HGzbtg06Ojrw8vKCq6sr9PX1ERIS0mj3+UMFfvHixTyRTr4lICCgUcMu/SicnJzw+PFjvv13795Fy5Yt4e7ujt27d8Pb2xuGhoZNGqDiazIzM7Fo0SJmtdvZ2Rm//vorunXrhjZt2iA/Px/Pnz9Hhw4d0LJlS2zatAnjxo1r2Fy+hsAU8uLiTZqrLj09HVu3bsXcuXOxbds2Hi3JkydP0KpVK8jJycHS0hK6urrYv38/WCwWdu3ahaFDh/LFoR8xYgRz/tChQzFu3DiYmJjA2NgYNjY2ePToUZ3bWFFRgQ8fPiApKanR17N+qMDXtDJ58eLFWg/r2Ww2QkJCMGnSJEycOBH+/v4NMsFtTHJzc2FiYoJVq1bh/fv3SEtLg5+fH1q0aMHnE56VlQU9PT3G3fR7EB0dDRcXFygpKUFCQgLBwcFM2GWg0lpvzJgxaNmyJfT09Br2EtbgttpVTEzoqK+h7NmzB2ZmZrh06RLevXuH0NBQvkSZkZGREBUVxerVqwFUfuWJCEeOHMHgwYPRqlUrJrZ8ldADlWG5qob0DbG0q6orKCgIgYGBjf4e/FCB3759e7Ur1MuXL+dzXBBEeno69PT0sH37dqSlpSE3NxcnTpyApqZmtSOI7wmXy8WtW7fg4eGBqVOnYtSoUUKdL2JiYuDq6vqdW1g5BG3dujVGjBiB3377DSNGjGCGrE5OTpCTk+PLilMnahGYYqK0NLp27dpId/Q/rly5Ag8PD4FZYdzc3HDjxg1m3/z580FEWLt2LV68eAEiwu3bt3Ht2jVMmzYNHA4HeXl5UFJSwtKlS8FmszFx4sR6fc2/pqysDB4eHrCzs8PJkydx9uxZuLq6wt7evtqw3XXhhwp81dfs7t27mDRpEszMzGBhYYFjx44hOTkZOjo6teopLS0tedLxVlEVDfVni2IjKIPJt+jr63+n1vDi7e0NSUlJHD9+HEQEf39/AJWhqWRkZEBEGDduXP319NV84fOJoMBiwcfHp1HupaioCAEBATAzM0O7du3g7OwsMOd6VlYWLCwsmL85HA48PDwgLS0NNTU1KCsrM/e7f/9+dO/eHYMHD8aDBw9w9OhR6Orq4uTJkw1u7/Tp0/niAAKVuenMzc0bZXj/w/Xwtra2UFdXZ3rY/Px8zJkzB61atRI47/2WN2/eYMaMGYiOjkZoaCgeP37Ms8r5dRqnnwUOhwNzc/Nqj2nyiDBCWLBgAeTl5aGpqYkuXbpAWloaNjY2sLGxQVxcHI4fPw5xcXGBX8taUc0c/s9/PPeq8qo3hMzMTOjq6iI4OBjFxcUwNTVFbGwsJk2ahF27dvEdb2JiwnM/OTk5zJrKzZs3mf137txhhvIWFhY4dOiQ0GjCdSEhIUGotqakpATm5uZwcHDA+vXreQyQ6soP1cPfuXOHlJWV6eLFi3T+/HkyNTUlW1tbkpeXJ39/fzp16lSNdYSGhlJ4eDjt3LmTUlNT6fLly6Svr0/Xrl0jIiJ9fX0KCwurdxtR2dHV+3xBiIiIUFlZGZWVlQksLykpITab/UOi7zg5OVG/fv3o7t279OXLFyopKaG3b9/SmjVrqFu3bmRvb0+7du2iPXv2kKWlJeXl5dXtAtUEpnjQogX16NaNOnXq1OD7mDt3Lm3atIkcHR1JSkqKuFwude/enYKCgujJkyd8iTC4XC7P30pKSrRz5066evUq6erqMvs5HA6J/NP2vLw8mjJlChMUoyFcvXqVJkyYwLf/wYMHZGRkRIMHDyYJCQkaMWIErVq1imbPns3X5kansXsQOzu7at0NDQ0Nq80fnpqaij59+vDphktKSjBhwgTcu3cPsbGx8PLyqk3Tebhx4waz4mpiYgJLS8tGjXcXFBSEjRs3Cixbv349T7747w2Xy8WhQ4cgJiYGIoKUlBTU1dWRmZnJHHP+/HkoKiqie/fuSE5OrtsFhASmsPjHJbShpKenM5ZxVVhZWTGhpt++fYsZM2YwZVeuXEHv3r0xZ84cnDx5ssa8df7+/iAidOvWrcFtrWLXrl18MQWSkpKgr6+PgoICvHv3DrNnz2bK9u3bhw0bNtT5Oj90SF9TdJs5c+ZUu0rp6+uL0NBQnvlXFVUmrfWJjhoYGIhp06bx6FQzMjLg7OyM48eP16kuYXC5XHh7e2P27NmMy298fDy8vb0FRpn9EcTExKBLly6MnfrkyZN5yuPi4qCqqoqBAwfW33fiq/vU1tauNsNsbXnw4AGfMDx48AD29vbMXNzU1BRFRUWwsrJCz549sWfPHpw6dQqurq7o3Lkz5s2bx8Rm+LZDKy4uxtSpU6s1qKorkZGRfGG7fX19mVTS27Zt45nfV6X+rmtSzR8q8EZGRtU6jjg6OlabktjAwABcLhdLliwR6Jyiq6vLHFNbsrOzYWRkJDCgQ0VFBXR1dRttEZDL5eLhw4dwcXGBqakpXF1da7Vu8T0JDw9n5qzfxmgHKjPYKCoqQk9Pr8FBMAYPHtwoKrlXr15hzpw5fPvPnDkDHR0d7NixA7/99htGjx6N3r17Y8yYMYw33tdb1QhHREQEBgYGiI+PR0lJSe0SYdQDCwsLHs1N1bpCcnIytLS0+GTF19cXz58/r9M1fpjAc7lc2NvbCx2WZGdnV+t0AvxvhMDhcLB8+XKYmJhg3759OHLkCCZOnIgePXpU69YoiD179uDMmTNCyw8fPtyoPfu/gQ0bNmD37t1CO85bt26BiAQuhtUFWVlZrF+/XmBZXl4egoODsWvXLty+fbvaTrwqpXRVmPOvqfo6jx8/HoMHD4aioiKfoNM/Lrf6+voICwtDQEAA1NXVGU88UVFRLF26tFaaivLyciQkJPBMh4Tx5csXGBoaYt26dYiLi4OWlhZ27twJLS0tgSPdxYsX19lI64cJ/IcPH5iHe//+fbx//56Zz+fl5cHU1BRhYWHV1mFnZ8cz3MrLy8O5c+dw8uRJJCQkQEdHp86up4sXL642OOGjR4+wbt26OtX5X8DGxgb9+vVr0Fd+6NChAqd527Ztg7GxMY4cOYJr165h9erV0NHRqTau3LVr12Bra8usAVVZB/79998wMjLC8uXLeQRcVFQUvr6++PTpE1RVVXnKxowZg40bN8Ld3R2+vr5Yvnw5xMTEMGLECKERmMrLy7Fq1Sro6OjA3d0d9vb2MDMzqzECDofDwfXr1+Ht7Y1hw4bB19dXYMfC5XLr9X7/0CH96dOnsXr1ajg5OTG9p4aGBgYMGIAHDx7UeP7du3cxffp0gb390aNHhX4tqmPv3r3VmvMGBQUxFmjN/I87d+6AxWJh9+7d9a7j6NGjjJFLFUFBQVi0aBHfb5yZmQkdHR2+KV9UVBSWL18OPT09KCoqQlxcnLEf6NixI2bMmIH8/Hz4+/ujffv2GD16NIYNG4Z3797x1PP582dYWFjAxsYGPXr0YIJ9EhFCQkLw+PFjqKmpQUFBARs3bsTDhw+Zzo7D4cDOzg5//vknT7uzs7Mxfvx43Lp1q1bPIy0tDTo6OsjKyuIr+/3335nwZHXhh+vhq1izZg2IiBliycvLY+nSpTWet23bNtjb2+PFixfgcDhISEjA4sWL4ejoWK/AEjk5OTAwMBD4pWKz2dDR0fnpDHl+BgoKCtCiRQvehac6LjxyuVx0796dWUGvipYrzHb/1q1bTGhxLpcLOzs7EBFatmzJLNj6+vrC09MTgwYNgri4OCOA2dnZGDduHDIyMmBjY8NX9549e3DixAlkZmbC2toaX758wfXr1zF8+HD06dMHV69exZs3b5hrVs317969i4sXLwoNeV5UVARdXd1arytVJT/9/fffcf/+fZw5cwaWlpZYsWJFvRZ2fxqBryI6OhrOzs7MQxRkQSfonLlz58Lc3BxTp07FvXv3av0w8vPzcfbsWfzxxx/MPCkoKAhTp07lSWuVlpYGBweHRrGo+v+Ip6cniAjHDx5sUE52T09PtGnTBgkJCYiOjha4+FYFl8uFsbExgMp3gIjw+++/Iz8/HytXroSOjg4cHR0xduxYSElJYfjw4TznL1y4EGvXruX7sMTFxfGE5f56mhEVFYVOnTox7+eBAwdQVFSECRMmMPvk5OT4Umx9zYIFC+oUlLKiogKXL1+Gn58f9u3b16CwaD+dwFdx8+ZNRh1kY2PTKNZMX8PlcrF+/XoYGxtj3759OH78OFxdXTFhwgR8+fIFd+7cgaWlJYyNjZkIpH///XejtuH/E9OmTQMRIaVHjwblZE9NTUWXLl3Qu3dvPH78uEYzWxMTEwCVdhNEhOjoaIwbNw5nz55lOn0TExN07NgRo0eP5smlx2azGTVcSEgIbty4gfnz58PY2JiJ3puXl8fnP1BeXo5hw4YxAu7g4AAvLy9MmzYNgwYNAhFBVVUVqampWLRoEVasWIE//vgDGzZswLx582BiYoKgoKAfonr9aQX++fPnICL07t0bRFQv45lv4XK5uHPnDlatWgVDQ0PMnTuX75ioqCjo6uoyCyUN9Xz6r/D+/XvIiYtjAhHYgmzla5mTHQDevXsHCQkJbNiwodrh79OnT5kRwLJlyyAnJ4cDBw7wqGjz8/NBRHByckJiYiKfQQ5QqR728/PD9u3b8eTJE57rbd26lW9Ux+Fw0LlzZxARBgwYgN9++w19+/ZF586doaGhgR49euDQoUOML/3XW/v27ZkPWYcOHXD58uVGc4ypDT+twFe5JVZtDc3dnpiYCH19faxYsQJ3797F0KFD4e7ujokTJ/IF2di5c+dPF7n130BImzZgEaEnEU4RgfOt0NciY2sVkyZNQsuWLeHt7c3jvlpFaWkpTE1Ncf/+fSxbtgzi4uLw8vKCmZkZz+9ZUVEBIsK8efMAVGoTvlWRRUdHQ0dHh0f1xeFw8Mcff8Da2rrOa0EvX77EpEmTEBkZiU6dOkFcXByxsbFIT0/Hp0+fYGpqyljrVW1Pnjyp0zXqy08r8EDlfG7IkCENdnGtWmyrcjq4evUqtm3bBqByKDh16lSe47OysjBx4sQGXbO2PHz4EE5OTkymkS1btnzXHr/R+Mf19QURjP55iSd/K/S1yMleRVZWFtTV1Zk58YABA3Dnzh0cPHgQtra2UFZWhoqKCogqw3T5+voySUyqiIyMRLt27UBEjEHT/PnzER0dzXe99+/fY+rUqTAyMoKNjQ10dHTg5+cnUCUWHBwMT09PrF69GqdOneIz/540aRLatGkDdXV1GBoagogwduxY3L59G2PHjsWBAwcQGxsLf39/RoMgJiaGGzduICEhAd7e3nBzc8OKFStw7dq1uvwKNfJTC3xjcfbsWUbAgUo78K8joTo4OPB4aJWWlsLKyqrJ27VlyxZMmzaNuTabzcbZs2ehra2NlJSUJr9+o/OV6+vRf4S+AxE8iBBEhPgOHepUXX5+PkJDQzFz5kyIiopCREQERARZWVloaGjA29sbZ86c4TGBtrS0ZP6uWkgkIkbrYmFhwdehxsbGYvbs2UzGmLVr1wo1lImIiGDqlJeXZ/7/tdutnJycQGOewYMHQ0tLS2CZtLQ0Xrx4gQULFvCVNVbWGeA/IvDu7u48GWeTk5NhZ2fH/H3y5EkmHjlQmUdty5YtTdqmyMhIODs7C5yfRkdHN4pN+XfnG9fXR0SYSYQu/7y4ihISOH36dL3WRG7cuAE/Pz+8efOm2vPPnj3LJMwMCAgAETHGLlFRUZg0aRLP8RcuXIC5uTkjsBUVFbh48aJQ67bS0lK4uLjwCeXXi4svX76EhYUFJk+ejCVLlmDBggVMfH0iwuzZs7Flyxa8ffsW+fn5uHLlCjMCOXLkCNOZyMnJQUdHp1HjOv4nBR6oHHZVRSj5WuALCwuhra0t0Nihsdv05s0boeUTJ06sNvzXT0k1ASqze/WC6T/D29GjR+Ps2bNNkoCDw+HAxcUFW7ZsweLFi5mv+82bN6GlpcXjnZmZmQk9PT2Bw/bk5GQYGhoKvc6rV6+wefNmXL58GTExMbW6l927d0NHRwempqYwMzODjY0Nrly5IjAKT1PxnxD4b4f0QGU7TUxMsHbtWowbNw5RUVE4deoUtLS0vov6rSZPwc2bNzdKaqHvTg052a9fv44RI0Ywq9QuLi4ICAhoVLUrh8PBkSNHoKamBklJSWax9tth+pYtW6pN7zR//vxGC5FWWFgIY2NjBAYGMnP+L1++YMmSJZg5c+Z30wT9JwSezWZDW1ubL1IIh8PB+vXr0bNnTzg6OmLXrl3fbcHM2tqaZ+75LXPnzsXLly+/S1uajGpe4oiICHh4eGDw4MEQFRVFq1atsHLlSsZisopnz55h0aJFcHV1RXBwcK091e7duwd5eXmeqRtQuS7w9u1bFBQUMDYXwjhz5gzPVK8hLFiwANevXxdYtmLFilqHsm4o/wmBByrVcgYGBli+fDnCwsJw9+5dzJgxAw4ODj8k9v3Zs2eFrhMUFxc3PDrsv4iEhAQmhlzVl9/d3R2ampogIigrK6N///7M3Hbv3r01PpsqAxgJCQlISUmhZ8+e0NPTg5KSEs/cu0OHDjh06JDA+vbs2dMoglhWVlZtjMKcnByBMR2agv+MwAP/M7xZvXo1NmzY8F0TP3wLm82Gubk5X5STqi/P11FU/yuUlJTgr7/+goeHB7p27Qp9fX2enHZJSUlwc3MDEWHu3LnVCv2FCxfQu3dv/Prrr5g7dy7c3NwwYcIE+Pj44PTp0zh48CDWrl2LHj16oMoj7usRYFWg0eoiLtWWxMREngg7gqhpitdY/KcE/mejuLgY8+fPh5GREebPn4+pU6fC2Nj43zl3/47s2rULRAQ3N7cGJ7h0dnZmVGFVkYTZbDbmzp0rMKhKfcjLy6tWzVtRUVFjFOPGoi7yyZulvpkGIy0tTZs2baKSkhJKSEggOTk5UlVV/dHN+unx8vIiWVlZcnV1pZSUFDp8+DC1atWqXnUFBgbSqlWrSF5enpKSkmjevHkUGRlJU6ZMIUdHx0Zpr4KCAomKilJKSgq1b9+er/zy5cuko6PTKNdqVBq7B2mmmYZw+fJltGjRAjIyMhgxYgTGjx9fLz1/VlYW5OXlYW9vj9evXzc4VJcgXr16BT09PSaQZhUvXryAtrb2d1ssrot8soCa4zXn5+eToqIi5eXlkYKCQtP3Qs38p/ny5QsdOHCAPnz4QG/fvqWwsDDq3LkzjRgxgqZNm0a5ubn08OFD8vLyInV1dYF1nDt3jiwtLSkxMbHGtM4NISoqilauXEkyMjKkqqpKMTEx1KpVK/r999+pdevWTXbdr6mLfDYLfDM/PVeuXKG7d+/S2bNnKT4+ntkvISEhNA9AQEAAubu7E5vNJlFR0SZvY3p6OmVlZVGHDh1IUVGxya/3NXWRzzrN4fPz8xvUsGaaqQ+jR4+m0aNH05IlSygmJobi4+PJ0dGRysvLKTw8nHr16sV3DofDIQAUHx9PysrKTd5GaWlpZq3me8tJXa5Xqy98aWkpdenShdLS0hrUsGaaaaZpUFZWpo8fP5KUlFS1x9VK4Ikqhb68vLxRGtdMM800LhISEjUKO1EdBL6ZZpr599PoySSbaaaZn5dmgW+mmf8QzQLfTDP/IZoFvplm/kM0C3wzzfyHaBb4Zpr5D9Es8M008x/i/wApFMg84uSZ2wAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAACnCAYAAADAFS+PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhU19bGfyNxN2JAEoK7OxR3d5dS3Iu7U6RFihda3AsUL06huAa3ECAE4i4TmZnvj9y9eyYJLbS93+39vrzPM0+SmcmZM+fstZe9ay2V0Wg0kotc5CIXuchFLv6jUP+nTyAXuchFLnKRi1zkKuRc5CIXuchFLv4RyFXIuchFLnKRi1z8A5CrkHORi1zkIhe5+AcgVyHnIhe5yEUucvEPQK5CzkUucpGLXOTiH4BchZyLXOQiF7nIxT8AuQo5F7nIRS5ykYt/AHIVci5ykYtc5CIX/wDkKuQPYNOmTahUKl69egXAjh07WLZs2X/0nP7oPFQqFTNnzvxfPZ9Pwe3bt2nQoAG2trY4OjrSrl07Xr58+Z8+rVzkAsiV+b8bffr0QaVSZXsULVr0P31q/1iocltn5oyIiAgCAwMpV64cFhYWtGjRggcPHkhh/U/h987j6tWr5M2bl7x58/7vn9gf4MmTJ1SuXJmyZcsyceJEdDod06dPJyYmhrt37+Lm5vafPsVc/D9Hrsz/vejTpw979uzh7NmzJs9bWVlRpkyZ/9BZ/bOh/U+fwD8Vbm5u/ytKIiUlBSsrq7/lWFWrVv1bjvPvwPTp07GwsODIkSPY29sDUKFCBQoVKsTXX3/NwoUL/8NnmIv/78iV+b8farX6H3+O/yTkhqw/AGX4qk6dOhw9epTXr1+bhF4E0tLSmDt3LkWLFsXCwgI3Nzf69u1LRESEyTF9fX1p0aIF+/fvp1y5clhaWjJr1iwAVq1aRe3atcmTJw82NjaUKlWKRYsWkZ6eLv//j84jp/DVgwcPaN26NU5OTlhaWlK2bFk2b95s8p7z58+jUqnYuXMnU6ZMwcvLC3t7exo0aMDTp0//8rXMyMjgyJEjtG/fXipjAB8fH+rWrcuBAwf+8mfkIhd/Fbky//fJfC7+HHI95I/A6tWrGTBgAIGBgdmUh8FgoHXr1ly8eJHx48dTvXp1Xr9+zYwZM6hTpw43b940sYZv377N48ePmTp1Kn5+ftjY2AAQGBhIt27d8PPzw9zcnICAAObNm8eTJ0/44Ycf/vA8csLTp0+pXr06efLk4dtvv8XFxYVt27bRp08fwsLCGD9+vMn7J0+eTI0aNdiwYQPx8fFMmDCBli1b8vjxYzQajfy+BoPhDz9bpVLJ/wkMDCQlJYXSpUtne1/p0qU5deoUOp0OS0vLPzxuLnLxv4Fcmf9rMi+QkpKCh4cHEREReHp60qZNG2bPno2zs/MfHu//JYy5yBEbN240AsagoCCj0Wg0Nm/e3Ojj45PtfTt37jQCxn379pk8f+PGDSNgXL16tXzOx8fHqNFojE+fPv3dz9br9cb09HTjli1bjBqNxhgdHS1f+9B5GI1GI2CcMWOG/LtLly5GCwsL45s3b0ze17RpU6O1tbUxNjbWaDQajefOnTMCxmbNmpm8b8+ePUbAeOXKFfncjBkzjMAfPpTneOnSJSNg3LlzZ7Zznj9/vhEwvnv37nevSS5y8e9Grsz/fTJvNBqNS5YsMS5ZssR48uRJ48mTJ41TpkwxWltbG4sWLWpMSEj43evx/xW5HvJfxJEjR3B0dKRly5ZkZGTI58uWLYuHhwfnz59n8ODB8vnSpUtTuHDhbMe5c+cOM2bM4NKlS0RHR5u89uzZM6pUqfLJ53b27Fnq169Pvnz5TJ7v06cPx48f58qVKzRp0kQ+36pVK5P3CY/29evXMg80YMAAWrRo8YefbWFhke05ZajtU17LRS7+SciV+ZyRVeZHjx5t8nfDhg0pV64cHTp0YP369dlez0VuyPovIywsjNjYWMzNzXN8PTIy0uRvT0/PbO958+YNtWrVokiRIixfvhxfX18sLS25fv06Q4cOJSUl5U+dW1RUVI6f5+XlJV9XwsXFxeRvIWDKz/fw8CBPnjx/+NlKBSuOm/XzAKKjo1GpVDg6Ov7hMXORi38CcmU+Z3yMUd22bVtsbGy4evXqH773/yNyFfJfhKurKy4uLvz88885vm5nZ2fyd06L9qeffiIpKYn9+/fj4+Mjn7979+5fOjcXFxfev3+f7fl3794Bmef+qZg9e7YkpfwefHx8ZJmGv78/VlZW3L9/P9v77t+/T8GCBXPzx7n4r0GuzOcMpcz/HoxGI2p1Lp84J+Qq5I+EhYVFjlZrixYt2LVrF3q9/k+FmOA3gVWGfIxGI+vXr//o88gJ9evX58CBA7x7905ayABbtmzB2tr6T5Uj/JnwlVarpWXLluzfv59FixbJDevNmzecO3cuN3SVi38kcmU+E38lTZUVP/74I8nJybmlUB9ArkL+SJQqVYr9+/ezZs0aKlSogFqtpmLFinTp0oXt27fTrFkzRo4cSeXKlTEzM+Pt27ecO3eO1q1b07Zt2989dsOGDTE3N6dr166MHz8enU7HmjVriImJ+ejzyAkzZszgyJEj1K1bl+nTp+Ps7Mz27ds5evQoixYtwsHB4ZOvg5eXl4mgfyxmzZpFpUqVaNGihUljEFdXV8aMGfPJx8tFLv7dyJX5TPwZmX/9+jXdunWjS5cuFCxYEJVKxS+//MKyZcsoUaIEX3zxxSefx/8L/IdJZf9YZGVcRkdHGzt06GB0dHQ0qlQqo/LSpaenG7/++mtjmTJljJaWlkZbW1tj0aJFjQMHDjQ+f/5cvs/Hx8fYvHnzHD/v8OHD8v+9vb2N48aNMx4/ftwIGM+dOyff93vnQRbGpdFoNN6/f9/YsmVLo4ODg9Hc3NxYpkwZ48aNG03eIxiXe/fuNXk+KCjICGR7/5/FzZs3jfXr1zdaW1sb7e3tjW3atDG+ePHibzl2LnLxV5Er83+fzEdHRxvbtm1r9PX1NVpZWRnNzc2NhQoVMo4fP14yvXORHbmtM3ORi1zkIhe5+AcgN7Oei1zkIhe5yMU/ALkKORe5yEUucpGLfwByFXIucpGLXOQiF/8A5CrkXOQiF7nIRS7+AchVyLnIRS5ykYtc/AOQq5BzkYtc5CIXufgH4KMbg+h0OtLS0v6d55KLXPy/gLm5+X9Nq9Bcuc9FLv4efIzcf5RC1ul0+Pn5ERoa+recWC5y8f8ZHh4eBAUF/eOVcq7c5yIXfx8+Ru4/SiGnpaURGhpKcHAw9vb2n3QSvXr1YvTo0ZQrV87k+Tdv3jBs2DAOHDiQbaj1PwkBAQFMnTqVOnXqUKlSJcLDw/nxxx+pUqUKo0aNMmkcf/z4cXr06GEyki0naDQavL29sbCwwNzcHHNzc7RaLRYWFpQuXZqmTZtSvXp1tNrfbo9Op8Pd3T3bsVxdXSlevDjFihWjePHiFCxYEDs7O2xtbbGxscHa2hobG5s/fY3j4uKIjY3FwcEBOzs7k+OEhoZy/fp1bt68ycOHDwkODiY+Ph5ra2sqV66MtbU1iYmJ6HQ6+R3i4+O5f/8+6enppKamftQ5qFQq7OzssLOzw2AwEB4ejl6vR6VSkS9fPvz9/alRowZ9+vTBzc3tT33P38ONGzdYtGgR69atMxms/uuvv7J06VK2b9/+0co1Pj6efPnykZaW9o9XyH9W7t+8ecPo0aPZtm0bVlZWJq9t3ryZ8PBwxo0b93ef7t+KFStWcPHiRTp06ICHhwe3bt3i7NmzzJ49O9te9sUXX7B3794/PKadnR1ubm6YmZmZyL29vT116tShadOm+Pv7m/zP4cOH6dGjh8lzKpWKAmo1xfV6igPFAG/AFrD+108bDw8sHz9G9SeGOBgMBsJKlIB373AArACxyxmAh8BNJydutWjBixcvCAsLIz4+Hn9/f4oWLYpWqyUyMhKVSoXBYCA5OZmIiAiePHlCeno6BoPho87D3NwcW1tbbG1tSUhIkG1FraysKFCgAAULFqRdu3a0aNHCZK/8uzBt2jQ8PDwYPHiwHIaRnp7O3LlzcXd3Z8iQIR99rI+V+4/q1BUfH4+DgwNxcXGfJJgPHz5k9erVrFq1KsfXFy9eTNGiRWnZsuVHH/N/E6GhofTo0YM9e/aYbMRGo5FZs2bh7e1N//795fPh4eH07t2bn3/+mTx58tCyZUvUajV6vR4LCwu0Wi1JSUnExsYSFxeHwWBAr9fLR1paGi9evCA+Ph47OztatmzJ4sWLZR/ZkJAQwsLC0Gq1aLVa3NzcPkoBJScn89NPP3Hv3j10Oh3p6emUL1+eli1b5jhWLSIigh9++IHvvvuOoKAgqlatSpEiRdi+fTsqlQqVSkXNmjXZvXs31tbW9O/fn+3bt6PRaHB0dMTOzg6VSoXRaMRoNBITE0N8fLw8fqVKlbh+/TrJyclcu3aN06dP8/79eyIjI4mIiJCj2U6cOEH16tWJi4vj8ePH8vHo0SPc3NyYP38+7969Y9q0aURFRUnhFY/ChQvTtm1bSpUq9ZfmLbdo0YJt27blOCLy+++/R6PR0KdPn4861p+Vpf8E/uy5Tpw4kdatW1OtWrVsrxmNRho1asSRI0c+ahjBfwIbN27kxYsXzJ0712TdxMbG0rFjRzZt2oS3t7d8/tSpU/Tt25eQkBDKlSsnN96MjAxsbGxQq9UkJyeTmJhIamoqBoMBo9GIXq/HYDCQmJhIcHAwer2ecuXK0bFjR8aPH49Go8FoNPLgwQP0ej1arRYzMzN8fHywLFYMfm+ykq8vz0+e5NixY7x9+5bU1FQsLCyoX78+9evXx8zMLNu/3Lx5kzVr1rBr1y6cdTpKGQx4ArFA1L8e7YGZwP08eWhja8vLly+xs7PD3t4erVZLRkYGKpWKjIwMoqKiSE9PBzIHT2zYsIFu3boRFRXF4cOHuXfvHhEREURGRhIUFMTz588pU6YMp0+fxtLSkuDgYB49eiTlPjAwkCZNmjB58mTmzZvHoUOHMBgMJjJvb29PrVq1aNWq1Z+abCUQFBTE9OnT2bp1a7bXjEYjLVu2ZPv27R/dG/xjZenfqpBXrVpFgQIFaNq0aY6vP336lHXr1rFkyZKPPub/JmbNmkWtWrWoV69ettf0ej2NGzfmxIkT0ms0GAxyVFn58uXp1q0bqamppKSkYGlpiaWlJWZmZlhYWGBmZoZGo0Gj0UhL8vXr19y8eZNjx47JhWxnZ0eJEiXInz8/c+fOpVChQqSmphIREYG3t7fJhhEXF4eFhQWWlpYEBgayceNGHj16RGBgIPfu3ZPv02g06PV6ypQpk23cm7DkhFFgaWlJSkqKPB+9Xi8jAKtXryYmJobZs2ezevVqAgICcHFxkQJqb2+PtbU1r169YsmSJbx8+ZKuXbui1Wrp168f06ZN4+LFi2i1Wjw9PXF3d+fVq1dynuwvv/xC79695Ug3rVaLu7s7Li4uvHz5ktTUVFxcXAgNDcXCwgInJyd0Oh2pqamkp6fL89RqtXz55ZdMnz4dGxubT1oDb968YdasWXz//fc5vp6SkkKXLl04ePDgRx3v/4NCbtGiBYcPH/6gETR16lTat2+fzdP8J8BgMNCwYUNOnjyZY1TpwoULnDp1ijlz5sjn3r17R6dOnbhy5Qpt27bF09OT+Ph4VCqVlHsh++bm5qhUKin3qampvHjxgrt37/LgwQN5TA8PD4oWLUrNmjWZPn06ZmZmREdHA2Q6ByNGwKpVGA0GwoE8ZHqxh4CTQJCvL1fj4+X/2Nvbk5qaSmpqKl9//XW2gS7bt2+nR48eWFpa8sUXX2C9eTMPExKIAJyBS0DCv94bA1QzM0NbpAhDhw7F1dVVRtLS0tJwcHDA0tKSS5cusW3bNmxtbWnQoAGDBg3i6tWrrFq1ipCQEGxtbfH09MTDw4OLFy8CMGjQIPz9/ZkyZYrkLlhZWeHi4oK1tTXPnz/H3d2dhIQEkpKSKFWqFF5eXlLuY2JiePbsGSqVitq1azNw4EC6dOnyyetg/vz5VK9enTp16uT4+vbt20lPT//bDfF/67QnjUYjN/KckJ6e/reHq4V98Vc8IoHr168zffr0HF/TaDSULVuWp0+fUrx4cYxGI0OHDmXdunV06tSJevXqkZSUhEqlwsrKCisrKywsLLCyspLhKr1ez507d7h58yZXrlwxGbGmVqvJkycPhQoV4uLFi1y9epU9e/aQL18+goODgUxlPX78eGrWrMnmzZvZvHkzdnZ2tG/fHpVKxQ8//ICtra28HuLa6PV63NzcWLx4sfy8uLg4qlevTlBQkDyPhIQEihYtCmSGL9PS0nj9+rW0ghctWkTDhg2xs7Pj4sWLcti5Xq/n8OHD3Lx5k9DQUPR6PeXLl+fKlStUrFiRGjVq0KxZM0qUKMHmzZtp27YtZmZmpKens2PHDgYNGkSjRo1o2rQpvr6+zJs3D1dXV6ysrEhOTiY+Pp7IyEjOnTvHjRs30Gg0pKamEhkZibm5uRRk8Z0zMjJYtGgRefPmZfjw4Z+0BqKjo3930o2VlRW57eCzw2g0flAG/x1ybzAY/pYZuy9evKBUqVIfPL9atWqxcOFC+ff79++pXbs2UVFRDBkyBCcnJ2JjY1Gr1VhbW0vZF/JvZmZGTEwMd+/e5d69ewQGBpqEcM3NzXF3d8fNzY3z589z/vx5tm3bRkREBElJSajVaho1akTPDh3Qennxzdu3XAeKAH2BdcAroIaHB3ZGo1TICQkJGI1G6tevT8+ePeXn/fjjjwwYMEDeK51Ox8GDB3nQvj12W7agMhgIAzz/9f5CwG6VilgzM5pXqYK/vz8NGzbku+++IzIykiNHjhAcHExcXBwqlYqBAwcyd+5crl+/zpw5czh//jy9e/emf//+lC9fXhrOtWrV4smTJzx69Ii1a9fSqlUrSpYsibW1NXq9ntTUVMzMzEhMTOSnn34iNDQUGxsb7t+/T0JCAubm5rx7947k5GQZmRPXr1GjRiYRzo9BVFTU78q9l5cXd+7c+aRjfgz+rQq5cePGzJo1i1atWuX4+t69e2nevPnf8lnHjh1j7dq1GAwGDAYDdnZ2jB49+i/N3fwjpW5mZoZer8doNDJ+/HjWrl0rPzMuLk6+TwimtbU1lpaWmJubc+XKFTZu3Eh4eDiWlpbodDqKFi1KtWrVKF68OPnz5weQyvHixYuULl0aOzs7ihUrhkql4sWLF8yaNYuMjAysra0pV64c6enp7Nq1C6PRiIODA6VLl8bKygqdTkdUVBRv374lLi6O4cOH07BhQ3mOMTExPHr0KNt3dHFxISMjg/T0dNLS0jAzMyMqKork5GTevHkjPdXk5GSSk5OxtLTk/PnzvH37lj59+lCpUiVKlChB9erV0Wg08nM8PT05ePCgDG8LwQwMDOTLL7/ku+++o379+uzcuZMbN26QkJBAXFycDPOZmZlRp04d3NzcOHbsGM2aNeOXX34xCQmK8LpQmBMmTGDZsmUUKlSIY8eOfdQG7uvry8OHDz/4+tu3b//USLv/y6hatSpnzpwxWV8CBoOBmzdvMn/+/L/8OSkpKSxdupSzZ89ibW1NcnIyFStWZNy4cdI4/FSI0PCHINYUZKaoGjZsSExMDKNHj8bW1pbY2FggU+ZtbW2l3FtZWaHX6zl69ChnzpyRx9BqtZQtW5YSJUrg6+uLg4MDOp2OmJgY7t+/j9FoxMPDgwoVKuDr60t6ejrnz5+n+7/GF9by8GCdTscFnY7JOh1FnJwwxsRQpUYNJtWrR2RkJKdPn+bo0aPExcWxfv16kzTVkydPso18/Oyzz4gYORLLy5cxe/ECd4OBAODwvx6DjEb6tGnD999/T9WqVZk5cybPnz9n//79uLq6MmzYMEqUKEGlSpUoWLAgkOkhnjt3jnHjxjFp0iRpRGdkZJCYmIitrS09evRg27ZtrF+/Hjc3N2JiYoiNjSUmJgaDwYCFhQV58uRhxowZbNiwgStXrtCgQQMePnxIQkICiYmJmJmZ4eHhQWhoKAaDAa1WS/369alYsSJTp07Fx8fno9ZBsWLFuHnzJoULF87x9Zs3b1KiRImPOtan4N+qkP38/NBoNBw/fjxb2Fp4hjNnzvzLn7NixQqePXvG1q1b5eb4/v17Ro0aRY8ePf50jrpYsWLcuHGDypUrZ3vNaDRy48YNGc78+uuv0Wg0VK9enYiICJn/sbS0xMrKShKszM3NmT59Onfu3KF+/frcu3cPMzMz5syZQ8mSJWVIOD09nZSUFNRqNf369aNLly5kZGSQlJQkH/7+/qSnpxMVFUWePHlQq9UYDAaKFy/OTz/9RHx8PBcvXqRRo0Y4OjpiZWWFp6cnz58/Z9asWfTq1UsuUF9fXy5evMi+ffs4fPgwgYGBWFtbY2FhQVJSEi4uLuh0OiwtLbGxsSEmJoakpCTKli1LlSpVTDZYW1tb5s2bx7hx47J5GqGhoSQmJlKwYEE2b95M165dsbOzIzw8nDVr1hAfH88PP/zArFmzsLGx4cqVK2RkZMiHyLeL/Ls4/s8//4ylpSV2VlY0SE1lQFoaxYAMlYqd1tZscHQk2WDg/fv3vHz5Ent7e5YvX06/fv3Q6/W8e/cOgHz58pmcr6OjI05OTty6dYsKFSoAmZu2iPysW7eOAQMGSOIaZHo5f4e39t+KAQMG0LVrV8qVK2eSxzMajcyZM4eOHTv+ZQ9Zp9PRqVMn+vbty8SJE1Gr1RiNRi5cuECnTp3YvXv3n8ohFipUiLt3737Qw7916xaFChUCoE2bNjx8+JBevXoRFRWFmZmZ9M6EzItHREQEy5YtIy0tjUaNGnH8+HHq1q3LkCFDsLGxIS0tTRq2guA5Y8YMUlJSJKHR3t4eW1tbWrRoQXR0NAaDAX9/fzQaDRWMRtx37mTJkiVotVouXLhA5cqVycjIoHz58vj7+/PNN99Qt25dgoKC5Hf78ssvyZ8/P4cPH+bEiRMkJCRw4cIFVri40OHbbym5cyc2Z85QND2d/BoNNvnycfXaNQaPHMmVW7dMODSFCxdm48aNVK9ePdt1CwgIwNbWlkuXLnH69Glq1qwJZCq2pUuXMnjwYHr37s3KlSu5cuWKDH+np6ej1+tlqs/CwgIbGxvs7OxIT0/n9u3bFChQAP/8+WkUFUXrFy9w1OvReXpyuUwZThcqxNU7d9iyZQsbNmygevXqbNy4kcKFC5OcnExwcDDe3t4ykijQpUsXWrduTfv27bNxHeLi4jh+/DhffvnlJ6+vP8JfyiG/ePGCnTt3cv78edzd3SlYsCCFChWidevW8n0pKSkMGzYMvV5Phw4dMDMz4/Dhw7x//57vvvvuT1uyAu/fv2fw4MEcOHAgmwClpaXRtGlTjh8/jrm5+ScfOygoiGHDhvHjjz9mY4uuXbuWuLg4JkyYwIMHDxg/fjxPnjwhKCgIyFRwxYsXp0mTJhgMBiIjI7Gzs+PWrVvs2bOHb7/9loMHD3LmzBksLS0pVKgQZmZmPHnyhOTkZAA2bNiAp6enVMBpaWkkJibKvwXE9xZKymg0EhQUxMmTJ6lYsSJ+fn6SZKLX6wE4evQoffr0Yc2aNdm+t9Fo5MmTJxw+fJjdu3dz+/ZtnJ2dpRd++fJloqKi0Gg0fPbZZ5w9e5bKlSuTnJyMTqcjOTmZd+/e4ePjw7Jly2jTpo3JsQsWLIi3tzc2NjbcuHEDX19fvLy8aN++PTVq1JDnqtPpSElJISkpiYSEBOLj40lMTJSP1NRUkpKSiIqKyqyXjYpi9d27+KelodzuM4BXFhYMr1gRM2dnUlNTefLkCSEhIdjZ2REfH4/BYEClUtG4cWMGDx5sEtWJjo6mc+fOfPHFF9SoUYOEhAT0ej1xcXGo1epsZC+1Wo2fn1+Oa+6/MoecPz/2rVvDvHnora05d+4cu3bt4vXr15LtWq5cOerXry/X4r179xg9ejR169alWrVqhIeHs2vXLqpVq8aECRP+ckpp2bJluLu707Vr12yvXb16lZ07d7J8+fI/dexvvvkGCwsLhg0bZvK8TqejY8eOLF26lIIFC7Jp0yZWrVrF06dPSUhIQKvVUqFCBfLnz0/hwoXR6XRUrFiRgIAAjh8/zuPHj7l27ZrMnbu5ueHr60tCQgJPnjwBoEyZMowePVrKemJiInq9Hjs7O6ncRQjc3Nxc5qIhU/5XrlxJQEAAw4cPx8HBQR4jLS2N27dvc/jwYS5dupSj0kxNTeWXX37h8OHD7Ny5k5SUFMqUKYOTkxPR0dHcunWL9PR0PD09sbe35/nz51SpUgW9Xk9MTAzv378nMTGRxo0bs2HDBvLmzSuPffnyZWrUqEHbtm0JDAwkLCxMsrK7dOlCnjx55N4RHx9P69atWbFiBfHx8SQlJWFpaSmNYycnJ0mW8/T0xCojA8927dA8f45KEf43qtWk+/vzYutW3icmcurUKdatWyejqImJiUCmA9GpUyc2bNiQrWpmzZo1zJkzhzJlymA0Grl69SozZ85kzpw5OTpqH8K/hdTVqVMn3rx5g6OjIxEREdy6dQsbGxsKFChAWloaCQkJvHv3Dm9vbxo1asSjR4+kh5iSkkKlSpXIly8fderUoXTp0uj1etRq9V8SzsWLF1O6dGkaN26c4+srV67E29ubtm3b/qnjnzlzhnnz5tG3b1+qVKlCWFgYGzduxM7OjqVLl2bzhN69e8fly5c5ffo03333nSRFQeaNL1WqFOXLl2fWrFkYjUauX79Ohw4dTPLHAsuWLcPDw4PY2FhZTmQwGEhKSpKKVxmWNRqNJsxtEWZWWpoiJHfv3j3u3LlD48aNad68Oc2bN5dhciWMRiP79+/nwIEDhIeHYzQaqV69OjVr1iQ0NJRevXpRoUIFihUrJkutbG1tiYuLIzAwkMOHDzN37lwmT54s7/PSpUtNrMvhw4czYsQIGR1ITU2VeaPk5GSSkpJITEyUCln8nZaWJn+PjY2l3717dAwPJyffKwPY7+HBlgoVZJg8ICAAR0dH8uTJg6enp2R/WllZydSBeOTLl4+rV6/i5uaGk5MT5ubmODk5ZbOsDQYD7969w8zMjPz582db2/+NCrkBoAMcbW25YW1NWHg4Xl5e+Pr6EhISQnR0NAkJCTRq1AitVktMTAxWVlaYmZlhMBioX78+7u7utG7dGicnJzIyMv5ymUrjxo05evToB4/zR6//HoxGI2PHjiUyMpLPP/8cT09Pbty4wQ8//MCECRNo1KiRyfv1ej0PHz7k0qVLbN26lRs3bgBIUmHevHkpXbo0zZo1Y+jQoTx69IjLly+beJcCarWatWvXotPpiIyMlFEyZT5aRK6UBDFxHkJ+hDErUklCwW/fvh0rKytat25NixYtqFevXo5Ex7i4OJYvX869e/cI/9f9rlWrFjVr1mTq1KncunWL4cOH4+TkREJCAgkJCcTGxvLixQsePHhAeno6P/30E1WqVAEy5aJGjRqyggIylbSlpSUGg4G0tDSpkBMSEujSpQuLFy8mISEBg8GAlZUVDg4OODk54ezsjIODg9xvPL76CuuNG02UsbyXajUx3bvzcsQIEhISOHbsGFevXpXEM61Wy6NHj7h//z7FihWjXLlyJnKfkZHB2rVrefnyJUajkdKlSzNkyJAc98rfw79FIdvZ2eHs7IzRaMTCwoISJUpQqlQpnJ2dZRghNjaWzZs38+rVK5o0aUJ6ejovXrzg2rVrQGY4z9vbm5SUFJk/LVSoEEWKFKFw4cIUKFBAfpatrS1OTk4UKFAAMzMzIiMjefPmDc7Ozvj6+qJSqRgxYgRffvklvr6+OZ77yZMnefr06SeTeSBzEb19+5Z79+7x6NEjwsLCSElJ4cCBA+TLl49WrVoxatQok005OTmZyMhI8ufPz6lTp7h8+TKlSpWiTJky+Pn5mSjwsLAwNmzYwI8//piN7fwxmDt3brYSI6Go09PTpUIWuRohsFqtFpVKxf379wkMDCQ4OBiDwUCxYsVo0KAB9evXp06dOtlyo0ajkRcvXpA/f34sLCxYvXo1I0eOpGXLllhYWGBraytzZ8KaP3v2LIcOHaJr165s2rRJeo1DhgxhzZo1WFlZUbFiRVxcXHBycsLNzQ0PDw+8vLxwcHCQXrAyMiB+T0tLk+UkMTExbL98Gav0dGIA/xyuV4i5OZ//63spjQfxEMSyCxcu8PbtW4KDg3n//j2QaUwdPHiQokWL/i7ZAzI3s3fv3lGwYMFs5SX/rQrZE4gGfIoVo/qUKeTPn5/09HSio6OJjo4mICCAAwcO4ODgQLVq1UhOTmb37t3yWI6Ojri4uBAZGUlcXBzu7u4ULlxYyr23t7eUeTs7Ozw8PPD29kav1/P27VvCw8MpXLiwjEa0bNmSw4cPf/Dce/bsyYoVK3IsVfsj6HQ6nj9/zs2bN3n16hWJiYk8f/6cu3fvUrx4cYYPH06zZs1MjK2QkBDs7e2xsLBg5cqVqNVqypQpQ+nSpbNFAa9evcp3333Hjz/+SEJCQtaP/11UrVqVTp06ZWNsAyblk1mVcnp6OsnJybx//56goCDev39PQkICFhYW1KhRQ5ZDVahQIZsRk5ycTGhoKH5+fqhUKqpWrUqJEiWoUKGCjGAlJiaSkJCARqNBrVZz8OBBwsLC2LRpk2Q5x8TEUKZMGYKDg8mbNy8FCxbE0dERZ2dnXF1dcXV1xd7eHpVKZXJMUTkiPGRRySHWS77PPiMoOBg3IKe7nebtzf2DB2Utc0xMDCkpKbL81MrKSuacL168SEhIiPSe7e3tGTVqFCNGjPhL0dx/i0L+7LPP5MUQG69y8xWbmvhbWfweHBxMUFAQYWFhhIWFYWZmhrOzM4mJibx69YrXr18THBycjWAAmcQHc3NzGcoFcHJyonz58qSmplKyZEmaNWuGn58ffn5+Jhbf73nIaWlpRERE4OLigqWlJenp6Vy6dEkSL548eSI9V3Nzczp37swvv/wi6wVPnDiBk5MTU6dOpVevXmzcuJGvvvpKEqg0Gg3r1q2T+RMnJydq1KhBtWrVuHHjBjNnzmT8+PHUr1+fZ8+eMWzYMM6cOfNHt0Ni0aJFcgELhZyRkYHBYCAjI0N6xjqdTnrOguFqYWGBWq2WSujly5e8ePGCFy9eSGbm+fPn+eyzz4DMmvKxY8fy888/Y2VlRe3atbGwsODQoUO4u7vj4+ND0aJFsbe3N8mdvX37lqVLlwKZrPVKlSrJ879z54403kJDQwkNDSUkJER6FiqVyqR5isghCS9Bq9WSnp6eSehISKD6+/f8bDSSANQFagCuQCcyFUqYmRnda9XC8V+erVizyrWrXNMiIvH+/Xtev35NpUqVcHJywsfH53frv1NSUnj16hV+fn7ZmgD8NyrkOECcaXrevDw+elSmDMQGl5ycbHLtRIrn0aNHREREEB4eTkxMDPb29lhZWfH+/XvevHkja+tzas9pa2tLcnKyCQvZ39+f8uXLc+vWLSZOnEjBggXx8/Mjb968Jork9zzkmJgYMjIycHZ2RqPREBUVxc8//8zRo0e5evUqr169kkTAAgUKULVqVX788UcqVKhAUlIS9+7do2bNmnz11Vd4eXkxe/Zstm7dSv/+/Vm7di0REREsXLiQ1NTUTIWRLx8NGzbE39+fyZMnk5SUJJ2I/fv306tXL5O97fdQsWJF2rVrJ/saKElmwiAXUTGhkEXvgeTkZDIyMuT/JiQkEBYWxrt37wgODiY1NRVXV1fCw8Ml0XL//v2MGTOGkJAQ8ubNS4MGDTh//jzh4eGUL1+ekiVL4uLiIo1kjUaDjY0NFy9e5MaNG3h5efH27Vt5jmlpaezfv5/jx48TGhoqPz8iIkJ+R7VajYWFBRqNBjMzM6ytrbGzs8Pd3R1PT09cXV3RarXodDqSkpII272bk2lpWAOdAT+gINCRTJJUurs7944cIf5fXrxYr3FxccTFxWFmZmaSpxc5/dDQUC5dusSxY8ews7Pj0qVL2Rq3fCz+LQq5WrVquLq6yg1MKGXRDUqQlqytrU3CKmZmZiahaWVoVSiM5ORkabWIi5aUlITBYCAuLg6NRkP+/Pnx9fUlOTmZoKAgnj59yvPnz3nz5o1J6YmbmxvFihWjcePGHDp0iF9++UUm5mNjY9m4cSMnTpzg119/lblY4eUmJibi7u5OuXLlKFSoEI0bNyY9PZ3jx49z/PhxypcvT48ePfD39+ft27esW7eO48ePZ15MlYrChQvz+PFjSpcuzdu3b4mOjpYh/djYWMkotLCwYODAgZQuXZqiRYtSuHBhXr9+TbFixQCoUaMGjRo1IjU1FTc3N9zd3WXuQ3hdotRDKGQl2UkIpTLvLDY3Z2dnrKys5ILXarWcP3+eAwcOmNz3K1euYGZmRsWKFYFMqn/ZsmWJj4/n1atXvH37FhsbG9zc3Hj16pUkjpw7d06ui5UrV0ovU3Qo2717t8xFV6tWzURpZWRkEBwczOLFi1m7di329vbSsFB2QFPWfru4uODs7Izz69dUT02lPLABCATCATNgCtBZq6V3tWqyeYlYs0KJmJubm5BxRJjQ3NycChUq8OTJE+zs7IiJifldpazT6QgKCvo/qZAz3N15fPIkCf9KGQiFHBMTg7m5OTY2NrLuVpDbNBqNXLuiQ5vwrESEIykpiZiYGOLi4tDpdBiNRnQ6HY6OjuTLlw9PT09iY2MJDAzk5cuXPHv2zMS71Gq15MuXj0qVKlG8eHHevXvHunXr5Ov37t1j06ZNnD17loCAACBTXl1cXCRBqkCBArRt25aiRYtSpEgRnj17xvfff09kZCS1atWiW7duqFQqLl26xMaNGwkKCkKtVksDJC4ujgIFCvDy5Us0Gg0uLi6kp6cTERGBXq8nT548eHl50bt3b4oWLUrRokXJnz8/69evZ9CgQQD069dPemKurq5YWloSFxcnvWFheCsjbcIAFwa5CFsreRfCURL3Rcj9Dz/8IA1wyOS+BAUF8c033zB27Fggs648f/78PH/+nAcPHvD+/XtcXFxQqVRERkbi7+9PxYoVZcMinU5nEh2xtramYsWKnDt3jrdv3xIZGUn58uVN1lpiYiIvX76kXbt2vH37VpbMiu+lvM8ZGRmYm5vj6uqKi4sLrs+f00OnIxjYC0QCYUApYDlQw9ubu/v3k5iYSHR0NDExMeh0OuLi4oiJicFoNMr9QGmMd+zYEYCdO3cyc+ZMkpOTOXfunGSO/ylZ+jsVcv369bGxsZE3Vyhe5UOr1cqNTKmQhTUnIBaOCK+kpKTIh8h7ZGRkyBCWvb29CdNQ5FMsLS3ZvHkzjx8/pn379sTExPD69WuuXbsmvdkCBQpQqFAhHB0dOXbsGGlpaVSoUIEqVapQuHBh4v9VQO/s7Ey9evXQarUyhylyrkrFJ8pqxPk/f/6cCxcuULZsWczNzdm0aRO2trZ4e3tTqlQpqlatKoX21atXbNiwgRcvXhATEyMtQ5VKhY+PDz4+Pjx+/JiIiIhs9a1FixalZ8+elC1bFkBucGJTEyGehIQEgoODefHiBW/evCEqKsrkOFqtFhcXF9zd3XF1dcXR0ZHQ0FAuX74MZDKHPT09adGiBZcuXaJWrVpAZrcdNzc3YmNjpdUaEhKCTqdj+PDhPH36lJMnT1K1alWqV6+OtbU1EydOlIs5MTGRLVu20KNHD65evcqLFy9wc3Nj0aJF9OzZ04R5O3fuXFasWMGMGTOkpZ+YmEhkZCQhISE8fvyY4OBg/Pz8eP78eeY//atZAgqPKgzw+Nfvrfz8WPPrr/Tp0wcHBweTNSwUctZcnaWlJRYWFoSEhFCoUCFcXFxkPWi5cuVy5D/8X1bI6d7ePD52LJuHHBsbS2pqqpR70QhDaYiL9aqUecERUK5jtVqNvb09Dg4O8iHyhpaWltja2qLRaBg9ejT169enYMGChISESCJjYGAgGo2G8uXL4+3tTWJiIqdPn8bFxYXKlStTsWJF7O3tpeFfvnx53NzcZMlRQkICZmZmsnmPsp5dnHtiYiKXL18mJiaGIkWK8OLFC27fvo2Liwuenp7UqFEDPz8/nJ2dUavVPH78mIULF2JjY8OrV68kK1+k7FxdXbl8+XK2drKWlpY0atSIOnXqSKdB7E0inaPkUYhUS3h4uAnzH8DBwQErKysZGra3t+fnn38GMg3c9evXU6lSJUqWLMm0adOYO3cuAO7u7qjVahITE/Hw8EClUkmZ++abb/jmm2+IjIykdu3aODo6YmNjw/z58xk1ahRpaWkEBQUREBDApEmTWLJkCampqTRu3JgFCxbIvUygSJEiODs7U716dZKTk2UfB+Gx3rlzh8DAQGbNmvVbj4gRIzCuWmWSQ/4B6Pev34+1aoXZ8OGSfBYbG4tOp5Mha51OZxLVE3pFq9Vy9+5dnjx5wvPnzwkKCqJ///589913f16W/k6F3Lp1a2xtbaUlpAwpCPKWVqvN1p1GvFeUJsBvwikENCUlReY9hDJWqVSYm5tLJfwhhazRaPj111/ZsWOH9BTt7Ozo1q2brH979+4d0dHRlC9fnj59+shQ7NOnT7l48SJxcXH4+/vTunVrXrx4IUM+4pyUG6/4DHHuylyNCA+LDcXCwsKEIWltbc1XX33FkCFDqFChgizDEUXxQUFB3L9/n9DQUBwcHNBqtbx+/Rpra2ucnZ0JDQ3F1dVVeheCNZ0VIhSdE+zt7SldujQWFhYybBQVFYXRaGT27NlMmzbN5P1Go5Hbt28zY8YM7t69S2RkpOz2JYTru+++IyYmhrJly7Jz504uX74sPU7lAh85ciQAxYsXp0WLFvzyyy9cu3aNIUOGyBar8fHxks08dOhQE4NNMLAXLFhAyZIliYyMJDExMTM0mZAA1arB48dSKSeRGa5WZuq0Wi3NmzcnNDRUGmrW1taYmZmZkGaEcklLS2POnDmsWrVKei158+bFwcHh/5VCNqrVxHbvTtCoUVIhC6UmvFvhgYlUlUqlkt5c1uiNkBvRCU6Qj9RqteSRODo6SllydHSU8mRlZYVKpWLHjh1cvXpVEkdLlSpFkyZNuHnzJrdv3yYiIoL09HRatmxJ8+bNqVKlCg8ePCA8PJybN2+iVqupUqUKjo6OUtaTkpKIj48nLS3NJBKj9PCVMi+UolarxdHRUZ6rs7Mzzs7OMtc5fPhwdu/ejZOTE8+fPycwMJBHjx7x9OlTXr16xdWrV2X4ND4+ntjYWDw9PaWHazQaZQj6QxCljzlBpJXi4+MJDw8nLCyMxMRELCwsGDNmDPPmzTN5f3JyMgcOHGD+/PlERUURGxuLRqMhLS0No9HI1KlTmT59OuPHj+f7778nODiYjh07yv1Oq9ViZWXFixcvZKVL9erV8fLy4uTJk0RFRXHp0iXZYlXUrn/22WcULlxYdji0t7eXPz/77DNatGhBy5Yt+eGHHzJPNAe5Pwlkpfn6+/vj6+tL0aJF8fb2Jikpibi4OBISEkx6RYj96urVqyY9ytu3b8+SJUs+jdBlNIJK9e/p1CUUilCySkWbnp6O0WiUzTKE4GVVyPDb4hb1tmKRi83W0tLSJDeiDL/qdDppuYrjifrfWrVq5ZhPKV++vDw3EbpevXo1a9euJSQkRA50OH36NMuXL2fatGnyoovjCFavOH/ldxSKWwiLpaWliSedFba2tkRHR5OYmIizszN58uShSpUq8nrs2LGDhIQEmjVrxpIlS9i3bx+xsbFYWFgwceJE4uPjTSIPWq2W2NhY3rx5Q40aNdBqtYwYMQKAtm3b8uWXX+Lk5MT169cJDAzk4sWLXLx4ES8vL9zc3LC2tiZ//vzUqFGDihUrkpCQgFqtJiQkhHfv3pGSkiKZ2SkpKVStWlUS7FJTU7ly5Qp16tQhLi6O/Pnzc+fOHROymWCFa7VaGjZsSN68eSlXrhxmZmbkyZOHW7duUaBAAQC+/vprzp49y5s3b+jbty8pKSkYDAY0Go1MiaSnp9O2bVtCQkLYtGnTb3lCOzu4cgWmToVDhyA9nfeAVXQ0CQoWu4WFBeHh4Vy7do2bN2/So0cP9Hq9zHsKb0jcX3Nzc0aMGCEVtWh3KKJBwosWCuP/IoxqNWn+/rwbMkTKqVIuhTyI9q3KqJhSJpUyr5QbtVqNpaUl1tbW8r1iX1Aa6qLZg+AX9OrVi759+5qkbdLS0nB3d5ctb4VRGB8fz7Bhw9i/fz8qlYp69epRtmxZFi1ahKOjI2PGjMHKysrEk4+KijKJjCm9ZGWqTazvnORdPCcGKyQkJJA/f34KFChA/fr1pUPSrVs3Fi1axPPnz1m5ciW//vor79+/p3Xr1vj6+krOh7i2kFnVER8fT//+/Zk9ezYXLlwAMqtPatSowbFjx4BMx+Py5cucOHGCMmXKyPVao0YN6tSpQ6NGjcjIyCAmJoZ3794RGhqK0WgkLi6OR48ekT9/fooVKyYVuV6vZ/PmzWzatIn379/j5+fHF198gaOjI2q1WhoNGRkZODk5UaZMGSpUqICbm1tm3XSFCpw+fVr2QejZsydHjhzB29sbX19fGSkQa0WtVhMWFkaNGjXw8vIy7aCYg9w/S0lBFR2NuBu2trYULVqUgIAAzpw5g4uLC99++y0XLlwgPT1dpkeVadQSJUpgZWVFYGAgz58/Z9++fRw4cAB3d3dq1qyJv78/xYsXp1OnTqZyn5AAU6bA4cOQng5mZvCBKqCs+CQP+YsvvsDW1lYqA41Gky2cC8iaTmXYJ6ccstJLBmTzdBEmyvp+KysrExKZshZP+X/if5TNJEQ4PTU1lZEjR+Lh4YGVlRWLFy/mzp07LFmyhC5dulC5cmX69+/PihUrsLGxkeFzQccXdYHKEJZy40hPT5fevPCQhVcvwqNBQUHs2bNHFvELw0KwoLt06SLJYZ07d+bt27d/2J5R5NCCgoJku8snT55QpEgR1qxZIzdCEYaPioriyJEjaDQaHBwcCA8P59atW0RERJjcy6yoXLkyPXv2lF7B/Pnz0ev1NG3alNjYWIoUKUKhQoU+yBkQG5f43mFhYSxbtoxy5coxduxYpk6dKpVxkSJF5OeK/xXfIyAggGPHjlGhQgWuXLmS80UxGqlRsybXrl2TlQCi7WhGRgbv379n9+7dTJo0ia5du0qFL7w8ZcrFxsaGUqVK4e3tLddRSkqKSdMSAG9vb+zt7Xn9+vX/GQ850ssLdf36vBsyhGSNRsqCmN4lyDFxcXEkJSVlC/cq17fSEBcGuwhtK/cJsWY0Go1MV4m9R3hgIgKnDCsLhSw+R8hdQEAA33//PampqYwbN47KlStz8OBB9u7dy6pVq7h27RpnzpxhypQpMv0jPH+dTkdiYmK2qJ7SUxbrRoTYlTWzgjC0fPly2rZtS+XKleW+Jc7z5cuXzJgxg/nz5/PTTz+xaNEik14DH4JgdkdFRUmyaFpaGp06daJly5aywZCQnSdPnkguhFA2jx49IjU19XflvnPnzri7u8s87E8//QRkhpjNzc0pXbq0rA2G34wQIbfCIRL3WEyJGzFiBF5eXkybNg0HBwfatWsnHRpl1YjgJxw/fpy7d++yatWqD05bevL4MaX+VWbWrFkzXr16xYIFCxg2bBjffvstN2/eZMmSJezatYvTp0+zZs0a2cxFGeHJ2nc8Li6Oly9fEhISIkPfCQkJODo6cuTIEWrUqJGjtw4Qr1Lh8C8D52/zkAUBRmxSWT1VAaWlIdiDWTdocbGFpSuYf8L6y/p+saBE+FgpgIIAkNULz6qMzczMmDZtGpMmTeKrr77iwIEDmJubU6tWLapVq0bnzp2pUKECI0aMYM+ePXzxxRfZIgEASUlJ8thCQKdOncqECRPQarUmEQBBQlAqlEKFCpGYmMi+ffto27atyYa1YsUKihcvLtmox44dk2S30NBQSfAQwm9hYUF6ejpeXl44OTlx7do1vv76axISEpg6dSpTp07l7t278lzNzMzIyMjA1dWVEiVKmNxLyBymcPv2bbRarSwx0Gq1ModraWkpPaKMjAzc3NwIDQ2lSpUqJgZSTvdPbMhiQxPGy8CBA/nxxx/p2rUrvr6+TJ06VeaqlGtKkDxEowAnJydZnpAjVCpJQrS3tycyMhK9Xi97EXt6etK3b192797Nli1biIuLY8GCBSZrMKsSSU1NRaPRSIFV1n8nJCRIQkpUVBQ3btzA0tKSsmXLfrAF338Dnu7dK+97qsJAFXXiOp1OKkGRKklJSTExrJXXSTB9xV4iGP/KYSvw2z1XHkuES4UxrFxvyrVlMBhwdHTE3Nyc1NRUvvvuO8aPH8/Jkydp1KgRKpWKzz//nM8++4zJkyezceNGjh8/TlhYGI6OjnK/UKZ+EhISZAlheno669ato0uXLqSmpkreSVbDUazZtLQ0evbsyaRJk1i2bBk+Pj5SIUdHRzN27FhGjBhBeno6jRs3pkGDBnJgg1i3YlSjUvH5+flhNBrZsWMHW7dupXLlynTs2JERI0Zw9OhR0tLS5B6RkZFBvXr1aNmypTQ+NRoNGRkZPHz4kKCgIGlMWFtbS4MrOTkZMzMzEhISpJEDmWmnWrVqmXjtSoNK6RQpU5OA3HtWrVqFXq+ncuXK1KlTRypBcf+VBlZkZCQuLi6Ym5v/rtw7Ojmh1Wq5c+cOAQEBsklRly5dUKlUVKpUiREjRvDjjz+ybt062RlN7PPwG8cp62wEPz8/8ufPL/fTsLAwrl+/Ts2aNfH09KRpYiJ1EhOxMxppCMh6n4/sd/9JHvLEiROlEsjpJgjkFI4W1mTmuRnRaDQmTdeVlokQTHEhlApeKANhzSgVuVqtzhYWF60era2tiYmJYd68eUydOpUffviBZcuWSQtepVJx8eJFjhw5wuTJk+nYsSMbNmyQm4+yW1RcXJxshCLCdyLknnUUmLDo7e3tqVu3rrxG6enpjBw5kmfPnlG1alUyMjK4cOECLi4ulCpVCn9/f5nn1uv1mJubc/PmTZk3UavVPHr0CAsLCypVqiTLxQYPHkyxYsXkdcp6P4QiVE6eEvk+cR3E9RaGhLh/SvKY6KCTmJiIjY2NXBOiXEFJ4lPeP9EEQHgYIlQJmZ3RRCj7wIEDaLVaypcvj729vSyduX37Nrdv30an01GpUiW++uor6tev/8G1GxgYyIoVKzLbatrZ0aZNG9mD9vbt23Ts2JGQkBBat25NyZIlMTc3Z8KECSbHEGxdd3d3afgoPTplekK0Mj1x4gRz5syRDE4xfvK/0UM+efIkFhYWZGRkSHkQKRyhpMQaE7IgHuJ/IFPusw5cEHIvNkOlt6sMEYtUlcjzC9kXylxJvBKpBFFvvn//fnx8fHjy5AmtWrWiSpUqcg9SqVQMGTKEPn36yLxumzZtSExMJC4uTnaBE9UfIgog1rAItzs5OclomL29vcwlf/755ybX9OTJkyxevBhnZ2cKFy5McHAwDx48kFOLqlWrhp+fn5RXMzMz9uzZwy+//IKzszPh4eGEhITg4+ND/vz5efv2LUWLFmXgwIFoNBrpsGR1ioS8ieiCMJ7LlSvHo0ePTMLq4nqLPU/kWePj44mPj5cMbkdHx2z7dlaFrNy3hQ4Q+4+lpaWskfbz8yMxMZFz587h4+ND4cKFSUtLIzo6mvfv33P//n1ev36NpaUlrVu3ZvXq1b87MGL37t1cuXIFW1tb8ubNS9euXXFwcMBoNLJs2TLGjx+Pk5MTtWrVwtnZWdaPC0yZMkX+npGRIXP6ycnJsr+/cFLS09MJCgrizZs3GDIyEH7xt4DofhEPOMDf7yGLzVeplLOGioWVKJSUMkSZkpIimXNK4RQCpgyHC2RVyDqdTt5YkV/I6q2LELew0FUqFc+ePaNSpUpyTqnYAITiqlKlCosXLzZR7FmR1X4RoUthRS9YsIAZM2YwatQo1q5dy+eff87evXvR6XRcuHCB2rVrA5mkq9WrV5OQkMCdO3fYt28fVlZWtGrVCg8PD+7du0efPn0YPXo05cqV4/Tp0xw/fpwVK1bg5+dHu3btmDx5Mk+fPsXKyoqVK1cSEhLC8OHDGTVqFMWLF5d5DeXGJr6buH+iU86+ffs4ffo0kJljbdeuHbVr15YEkazCJchOzs7OkrCVtcwta8MCJbNep9PJ+yXWgJeXF+bm5vz666/s27cPa2trk/IJgIIFCzJhwgS6d+8uewr/Hvz9/Vm2bFm2558+fUqVKlVwdXVlyJAheHh4yHr39evX079/f7Zt2yYJRgA//fQTGo2GVq1ayZIeIeTiGomWfOHh4TKEqBTu/0bEx8fL+y2ITMLTERvrhwhbQj5FVEPJalca5MoSPGX0S0TFLCwsJAFMKH2lVyP+R6VS4ezsLGVerVbz8OFDunbtyoMHD6RXLrwflUpFrVq1uH//Pk5OTr87nU4gPT1dMnVTUlKwt7dn27Zt9OrVi6VLlzJ58mS5L2zbto0ePXrI/23UqBGNGjUiKCiIBw8eyCEFotPg3r17iYiIYO7cuZibmzNt2jQ+++wz9u7dy+vXr5kwYQIrVqzg22+/ZcCAAZQoUYKzZ88yduxYli1bhp2dHfBbDl7IvLgP4vpbWVkRHh5O//79CQwMBDJLnrp164anp6c0NLPKvLm5OQaDQU5fU06vE/s8YDLzWUmEMzMzIzU1VZ5Hnjx55D3cuXOnbCKl3GfVajX169dn1qxZtG3b9qMM2c6dO9O5c+dsz9esWZPLly9TokQJKlasKDkgwimYN2+eTOOJNbVy5UqZ6oLMyEChQoWkYZ6eno6Pjw9Ojo7su3uXuQYDG4E2f3iW2fFJClnUaCrrDHNShCJ0JAgwOYWgxc1UCqZgaSvzquL9ynCUUKSCDSn+VnplgvUtLDWj0YiNjQ2xsbEUKFCA27dvy/yEUMgiHBwQEEDevHnlovrQT+V5JSUlSfKPra0t8+fPx8bGhtWrV2NnZydr2pR4+PAhVlZW3Lt3j/T0dPbu3YuZmRkqlYo6derQq1cvevfuzbRp09iyZQt79+7FxsaGPXv2UK1aNVkX2adPH969e0e+fPlYv3493bp1o1ixYrx7905alJ999plJfkcIUFpaGiNGjKBNmzZs2bIFKysrIiMjWb16NRcvXmT69OkmgmVhYYFOp5P3ycLCQqYEcloTSktZhJ7E/4vayx07dkjCVHBwMEuXLsXGxgZXV1fKly9P0aJFad++Pfnz58fV1fWjW62KaIDSoBNhwJYtW5KRkUGfPn1wdXU1MVAsLCzYv38/Dg4OJuv26dOnPHjwADc3N3r37s3u3bvZunUrfn5+lClThjx58pCSkkJISAh6vZ7Lly/TsGHDD+a6/lsQHR39W8j6X4pQXBvlxq3X62X4WqwBoQgAWZGh7GMglINIAwjZF8dMTU2VnpRg+CYlJaHT6UzeL+Do6Ggi8waDAWtra2JjY6lcuTInTpygZMmScp8CiIyMxMnJiTNnzlCvXj0TzoPyp/K4RqORhIQEUlJSsLCwoG3btpibm9O/f3/s7OwwMzNj4sSJOV7Pq1evYmtry+rVqxkyZAjVq1eXiqxhw4ZcunSJqVOn0qZNGwoXLkyvXr0wNzdn0aJFfPfdd3h4eFCuXDkGDx7Mnj17aNSoESEhISxYsEB6sPny5aNTp07kzZtX8nnExCQLCwsePHjAunXrmDhxIhUqVMBoNBIQEMCCBQvo3bs3ZcuWlV66uNZCtkXkUclIzkrkE9dIGaoWry9atIh58+bJ+5+RkcGxY8d49OgR1tbWeHt7079/f4oUKUKxYsXImzfvR88xF/XrynsnUn5hYWFcvnxZkmjF5wtdsXTpUhwcHKRDAZlNfoKDgylUqBDNmzenU6dOjBkzhoMHD9KrVy+pVwQBrrHBwEvgayDf755pzvgkhSzatSkJL0oLVVwQ0bBC/K30jgQTUVjE4qG0sJQXRECQZpTCb2ZmJjddwe4W5yHye+J/AEqWLMmSJUvQaDRUq1aNHTt20LBhQ7Zv386rV68IDg6mdu3aLFq0iDFjxkihzSrgH/pdPJS5JLVabTJ/9Ny5c5ibm1OjRg1KlChBUFAQe/fuZefOnSbXUpROiXx3s2bNZHjuxx9/ZM2aNVJZDBw4kJ07dzJ+/Hh27dpFREQEo0aNokGDBkRHR7Nt2zZJIhOKUniw33zzDYMGDaJBgwZSmNzc3Jg8eTJfffUVp06dom7duvJ/hNchjqPMQYt1kdOayMjIQK1WS8/EYDCwadMm+vTpQ7du3Th69ChPnjzhyy+/pHLlyjx48ABvb2/ZrOTYsWMMGjSI1q1b4+npyR9BtPVUNhPJCdHR0Xh4eMjvITYs5doW+ckGDRrw6NEjli5dSkZGBj169KBt27YMHjyYJUuW4ODgQMGCBXny5Ims6+zXr99fHqTwn0ZqaqrcXJVzfZVtG8XmnTVNITo+ic1YuYeI9SIiLOIeCIg1k9PxEhMTZZRFKDNlTl/5aNy4MXv37mXSpEl07NiRTp068f79ew4cOEBycjK//vorCxcu5Pnz54wYMYKkpKRs8p1V5pXyLr67iLYpSX4AmzZtwsbGRhrlovOXl5cXVapUMcldGo1GKleuzKFDh9i6dSurV69Go9HIQSb58+cnIyMDd3d3PDw8CA4OxsHBgaNHjxIcHMzBgwdxcHDg3r17rFy5ksqVK9OiRQsTUpXRaGT58uVs3bpVdiszGo1UqFBBGvSrVq2Sjo4ylSDuubJznrLEVSkvyrSAcm+cMWMGs2bNYtWqVajVarZu3crDhw/x8PCQjXcmTpyIVqulXbt29OrVi/r162cjSGaFTqejVatWnDp16nffJ8rIxEN8DyWXSdwPc3NzateuzcWLF9mxYwdFihThp59+4vDhw4wfP57o6Gjc3d0lWbdCnjzcioig1EfmjLPiT4WslV24lAIhIBalkkGpFFRhYSlHEyqtrJz+R9n2Mae6RsFIVKlUsuVhVjKVVqulffv2TJgwgfnz59O2bVtmzpzJsGHDKFOmDCdOnODatWvUrl0bPz8/dDqdSQ9o0ZZSCKeSiCK8REE8EeQfvV7PqlWr5HXr1KkTly5d4s6dO9jY2BAdHY2Pjw9eXl6yllEQLYxGI+XLl+f169ey7EGtVpOWloabmxtpaWmoVCqKFCnCnj17uH79Ok+fPqVLly7S6/P09GT06NEcO3aMFStW8OWXX5KRkSG9lxcvXrBw4UIT61Z4DoMGDWL48OE0aNBAfk+1Wi29EmVDmObNm3PhwoUc0xjingsPWenV7N27FwsLC06ePMl3333HmDFj2LdvHw0aNGDKlCls27aNPHnycPr0aYYNG8bgwYOpVKkSDRs2pHnz5jlOrTl06BDDhg3Dx8cHOzs7maIQ6/fZs2dYWlpSvXp1ihUrJr+D8OBatGgBwKVLl0xyYk2bNqV69eps27aN7777jm+++YbChQvLIex79+7lp59+ok6dOqxZsybbKMf/VsTHx+Pi4oKDg0M22Rf3WEl6U9Ygi/pZwZgWqSol18La2jrHkLWQOeXxxBoyGAyyC5VIWTk4OMjzECSrjIwMypUrx7Zt2zh//jxz586lWrVqFC1alKFDh3Lw4EEyMjLo2rUrS5YskQa+sjuc0sAWBqkwIISHKHKKyjLPadOmYWNjw8SJE9m1axcnTpyQvJLLly/TvHlzE/KYCKHr9XpatmzJuXPncHV1Ra1WEx8fL9uDChkqWLAg4eHhLF26lGHDhrFmzRpJhqxUqRLfffcdgwcPpkSJEnJUq1ar5eLFizRv3lzmToWTZDAYcHBwoH379pw5c0Ya6UKexV6vbI8s7p8IXWfNIee0JlQqFatWrSIjI4MtW7Zw+/ZtNmzYQJ8+fVi+fDlWVlbcv38fvV7Pzz//zJ49e7CysqJhw4Y0bNiQtm3b4u3tnW2d9u7dmwsXLtCgQQPZM1/sZWlpady5c4f8+fNTtmzZbOMxlbMODh8+bPI9xo4dS8uWLdmxYwdDhw5l6NCh1K9fn+3btxMeHs6OHTu4ceMG8+fPZ9ygQWhr1crGskal+ihi1yeHrJVduIS1q8y5KsObyo1XGQYSoU9l8wVlDlmr1RIREcGDBw+wtLSkUqVK2cJTStKHsNpEzlp8hrIkRdRJi9nIDRs2lH+vX7+e1NRU6tevT/fu3fnpp5/4+eefadiwoQm5QuTRhCJUlm0ovUSxeIUwi3AuwIkTJ0yGUYiNKiYmBgsLCxOSmXhYWVnx9OlTmjZtitFoxMnJiaCgILy8vDAajdy7d4/8+fOzYcMGJk2axJw5c+jXr5/0GFQqFc2aNWP9+vUmRk1ERAQ+Pj4mHrNWm9kfWq/X4+TkJDehrA+R+xXK7OLFi9na8mVlvItN8u3btwQEBEgG57lz5wgODmbgwIGym8/AgQNxcXFh1KhRGI1GOnXqxN27d2W3o1WrVjF//nxWrlyJn58fjRs3llbtrVu3ZOgqJiZGfh9xPwQePnyIu7s7VatWpV69evj7+2Ntbc2lS5ckeSgrccvCwoKRI0cyYMAArly5wsmTJxk7diw9e/Zk8+bNOY6z/G+HKDcUJYdC9rOGrAU/QOlhCAUijEBhhCuPKTxkM7PM8aMRERF4eHhIYo8yRyzWp2Dom5ubS8NZyWgWBCexFr/66iu++eYbLl68SIMGDUhOTmbUqFHkyZOHLl260KBBA8aNGyeJfcoQrV6vl3uUyKUKkqBgKyuVlmCGC4UtCEhZmwspFZSyaRIgvdB3795RoEAB8uTJw4sXL0xY/w8fPqRp06a8ffuWEiVKyD1VKHWAUaNG8d133zF16lT5eUFBQdSpU0fKvAhDi4qVcuXKsW/fPpOomLgHyjSVIK4q14TSIwZMmPD3798nJCREGlLnz5/H0dGRHTt2EB0djVqtplq1alhZWVG1alX0ej29e/dmy5YtXL16lZcvXzJq1ChWr17N1KlTKVeunGw1rNfruX37NqmpqYSFhRESEiL3anG9ILOP+b179/D19aVcuXJUrlwZOzs79u7dK3Wbg4ODScRCr9dTtmxZihUrxvv377l48SJnz56lWbNm/Pzzz7LbmUSWmmhZh6xo5fohfJJCFl6tkhUtbuaTJ0/Q6/UUK1ZM5oKzfikhLCqVyqTeUxm+0ul0TJkyBYPBINunbdiwgc8++4xevXoBpnlqodCFkhfNOYSXqgw9ikXasmVLzpw5Q9euXWU9qsFgwNPTU4avL126RJMmTUysQpETF4pOGWJXGihZ67PFOXfq1Injx4+bhL88PT0JDAyUBoy1tbVkrer1mWPdSpYsyenTp+nXrx8ODg707NmTr7/+mkWLFmE0Glm1ahUrVqxgyJAhUvl4e3ub5Hvi4uLkghIhXzs7OyIjI01CciKvLhZ5TiSXZs2ameR9hZWtZL3fuXOHX3/9FcgkUpQtW5b09HTmzZvHwYMHpSFiZ2dHhQoV+Omnn7h//74cKv/DDz/w888/yxCmmZkZp0+fJj09nRo1atCjRw9WrVplMrP20aNHFCtWjFmzZtGuXTs2b95MUlKS7PQkGLD29vbUqlWLmzdvsmfPHg4cOMDBgwextLRkzpw51K1b1yR0ZTAY6Nu3LzqdjlmzZuHr64tGo6F27dpUrlyZUqVK8e2332Jrayu7jf1fgvCE7OzsTPgjMTExvH37Fnt7e3x8fOQaFmteGKOChCXIhEpyl/g9ICCAtWvXUqZMGXx9fTlx4gTLly9n5MiRFChQQK5NtVot2duipEnIvbKiAzAx4i0sLBg6dChhYWFyJm9CQgL+/v6kpqYyf/58mQ7q1q2bieIRxrcygmdmZoaTk5PJPphTLbUyvC1kS4SlT5w4QfXq1cnIyJCdxoQnfvz4cTp16sT69euZPXs2FhYW5MmThytXrlCmTBliYmIkA7pkyZJs3LiRrl27yj1JOCZFixYlLCzMpB7c0dGRsLAwwLQnhJD70NBQk1y8eN+IESNYsmSJrAlWMrZFlODkyZMEBQXh5ORE06ZNcXZ2JiAggNmzZ8t2m6Lr1rBhw5g0aRLdu3fnxIkTAPTv3x9XV1dSU1Oxt7fnzZs3PHjwAIBhw4ZhZmbGnTt36N69O5A5ROT48eNoNBoePXrEwYMH+fnnn2VZqFLmPT09KVGiBAcOHJByv3//fvz9/Zk3bx52dnYmhsWDBw8YNGgQvXr1ok2bNtjZ2aFWq2nRogW1atVi0aJFdOrUif79+7N48eLfBMbODpYvz3wYMzt1ER//9ytkpdIRv2/evJnz589TpUoVVCoVy5cvp2LFigwePNikfEGElkUoQVk2pQyLjB49mgkTJsg5miqVimHDhrFw4UK2bNlCr169pHIXAmc0GqUgik1UKGRlXkOcu0qlQqfTUatWLXr16sXChQupWLGi9KAiIyOpVKkSV69elc8LL1k8RNhIq9VmY54ra5fFdzAaM2sFHRwcTEJgBoOB5s2b8/333zNp0iTi4+Pl+5OSkpg3bx5jx44lOjqafv36MXfuXCpWrMjRo0cZM2YMcXFxNGjQAEdHR8LDwxk5ciTr1683yXclJydjNBqJjY2V5Ai9Xo+NjQ0qlYq3b9/i4+Nj4pFbWFjw448/UqtWLZN8mcFgkA1FlMaU2MASExOZMGECpUuXltGII0eOsHbtWurWrcuBAwdYtmwZX3zxhdzsBJTh55cvX+Ln50dCQgJXrlzB3Nycli1bMmTIEEaNGvWHnuj69etJTExk06ZNH3xP06ZNadq0KWvXrmXatGksXryYcePGceDAAUqUKEFiYiL79+/nzp07svlIq1atsLGxoXv37tSqVQsfHx+aNWvGmTNnOHz48P9JhSwUk1CeKSkpzJkzh/T0dEqWLEl4eDgvXrygX79+lC1b1iRcKWRNMP6V+4f4GRQUxA8//MDGjRtlpyej0UhERAQDBgxg8uTJuLm5SeNQpBeUPbEFyVP8LYwBZb7zwYMHNGjQAAsLC65du8bevXtxcHCQIeqzZ8/yxRdf0KVLF1nmJYxjIdfKCJiQE2UIP6fSLWUZociLlyxZkvXr1xMaGkrJkiWJjY2VYfp79+7x5MkTvv32WxYuXMjXX3/NoEGDGD9+PAMGDOCzzz7j7NmzLF26lLi4OM6ePUvx4sWZNGmSiVEtokQC4rUGDRowa9YsWrVqJfO9gGxJvGvXLsaPH2+S7tPr9SxbtizH3LGVlRU3btxg48aNdOrUic6dOxMSEsLixYvx9/eXEasLFy5QrVo1kxSn6B4mIKpLTpw4wbt377C1tWXTpk28ffuWb7/9lvDwcJO1KSppxNpau3YtgKwYyQmDBg1i0KBBvH//Hi8vLwIDA9m1axfDhw/H2dmZwMBADhw4wPPnz0lMTGT16tWsXr2aevXqUa5cOcqVK4etrS29e/dmxowZ3Lt378PC84n8kU+qQz527Biurq5SOFesWCEtmbS0NJnb27lzJ7dv32b69OkmPV9F/apOpzMZdSWs5V9//ZVXr14xZsyYbJZ2Wloa7dq1Y+3atSZKJmuzCWV/WaPRKK0j5WhIKysr+vfvT+PGjfHw8KBLly4yxCyEp3379mRkZLBhwwaTgRfCKhW1eAkJCSbeYdY8eOY9+a2MQ1iHSma5ubk5S5cu5c2bN3Tv3h0vLy8CAgLYuXMnvXr1onbt2piZmfH8+XN++OEHIiIi0Gg0xMbGolKpZIjFaDTSs2dPWrRoIT9ffG5UVBSff/4569evl9N0zMzMeP36NfPmzWPNmjV4eXnJ4928eZPRo0ezZs0aSpYsSUBAgCx3iY+Px2AwmExMElGCwYMHM23aNMqUKYNareb58+dMnjyZmzdvEhUVhaurq8moNSWSkpJo3rw5R44cYfXq1UyaNIkGDRrQs2dPihcvTuPGjYmLi5Mb89ChQ2nQoAEFCxakZMmS2Y6XlpbGs2fPZC7595CSksKkSZPYtWsXYWFhkmXfvXt3vvjiC/R6PVOmTMk2EUsMLLh27RqNGzdmx44dHyVL/011yLt27cLT01Mac8OGDaNRo0ZER0dja2tLq1atcHd3Z+jQoXTr1o0SJUrICoiUlBTJbNfr9dk6WNna2jJ58mSmTp1KgQIFTDpYpaWlce/ePdauXcukSZNk7XPWUhrlgIXExETpyYt+0o6Ojtja2nLnzh3ev3/PL7/8ws6dO7G3t5dyL+rH27RpQ5cuXWjcuLGsRU5JSZGdmUQtclpamknZliBcCmNcGRkzGo0mPa6Fh5mcnCxlpXnz5gAcPXqUgIAApkyZgodH5liUkydPcuTIEVk2KpS6m5sbKpWKV69ece3aNRmiFyHr1NRUduzYQWxsLO3atZPTsWxsbNi6dSsZGRmMGzcOCwsLXF1d0ev1LF68mJCQEAYOHCgjc6JfeXx8vEwxODs7y301LCyMpUuX8v3332Nra4tKpWLv3r18++23vHjxgtTUVEaPHs2SJUtyXGcnTpzg2LFjfPPNN1SqVInXr1/TuXNnevTowY0bN5g0aZJcDyqVii1btmBjY8Nnn32WYy1yeHg4cXFx+Pn5ZeM3ZcX9+/eZOHEiJ0+eRKPRyKE7Q4YMoX79+ty9e5fhw4cTEhJi8n+FCxfG2tqau3fvcuzYMZo2bfpRsvS31iErvdrQ0FD27t1LixYtaNKkCXZ2dpw5c4YOHTrw9ddfc+XKFUJCQnB3d8/G1hNhJGFJilzF8ePHmTVrlglxCH5rDtKgQQOuXr1KtWrVsLGxMWE0KxmxkKnERbu7rMxIo9GIq6srBw8e5NChQzK/IPJdMTExaDQaHB0diYiIkDOHszKMBWkl62Qg5XUS5y+sX1FGkPV8R4wYQXh4OEeOHOHs2bPS2xf5bJ1OR8eOHVmwYIHMCxsMBjmfMzAwkKSkJIYMGYK/vz9FixaVx05MTGT48OH079/fpEGH0WjEz8+PyZMnM27cOJKTk4mMjCQ6OhpHR0eZr3327JnMI4mckwhPKu/rvXv3KFasmFTGq1atYtasWXh7ezN06FCuXr0qQ0054fLlyzRp0gRbW1vGjRvH4MGDpSJ1d3cnMjLSpGdsuXLlaNOmDWlpaQwfPpyTJ0/Spk0bFixYwPLly5kwYYLsP25jY0O1atUoUKAAnp6eREVFyQH3Q4YMoXfv3ixbtoxFixaxc+dOJk2ahFqtZvHixSxfvpwqVapQsGBBevbsyYEDB2SnoNq1a6PT6XBxcZFjKv+vQTBozczMWLlyJVFRUdja2tKsWTMSEhLYsGEDqampLFmyhCFDhkhD3czMTOaORbQo614AmR2w8uXLZyI3wtAWaRZlREZZV5+VSJQ1miOOYzAYKFu2LD/88ANFihSRaS6ReoJMMk/Pnj05fvw4zZo1k/Kp9HrFXqV0JIS3qCSmKXkHIqcsQuuiCsXa2poVK1Zw9+5dDhw4gF6fOY0oLS2NlStXyvKlLl260KhRIxMDu0yZMkCmQrl06RLdunVj2bJlWFtbo1Zndpi7d++erK4QDYzEXtm7d2+OHDlChw4dJGcnNjaWqlWrMm3aNPR6PdeuXZPfydLS0qTcUUlG2759O1OmTMHe3p6oqChGjRrFkSNHaNWqFT169GDbtm1MmjTpg+tr586dzJkzB61Wy5UrV2T1RmRkJDVr1jR5r9FopG7dunh7e/P06VPatm1LQkICCxcupFatWrRt29Ykp2ttbU2TJk3Ily8fbm5u3Lhxg1OnTuHv78+MGTNo3bo1R48eJTQ0lNGjR3P79m2ePHlC//79yZMnD9WqVaNNmzb88ssvMnQOULduXW7fvk2LFi1kLv/vwCcpZOWC+/LLL+nSpQszZ86UN6ZMmTJ06dKFnj17Mnz4cI4ePcoXX3xhUi6jzKsCJr8Lz/lDr9vb28uFDZh4yKIAHn5jeYt8qvhblN2I+tPevXvLOkdxfhkZGYwfP57Bgwfz888/k5CQIIvEcypfUTKNs3Yeylp7Lc5FNE5QWtFabWaryn79+rFv3z4ePXrE5s2bZVMKtVrNxIkT0el0DBo0iEePHlG8eHEePHggNyMrKyuWLFnC7NmzsbKyolSpUoSFhXH//n0GDBhAxYoVZf5N5NMFW9PV1RWDwcDAgQMpX748r169YtWqVVSoUIFevXqZhN1EYwVxf8R9vXTpEk2bNkWv19OvXz/279/PyJEjZc3h5cuXOXfu3AfX18uXL6Wnq1KpTJocVKxYkWPHjqHX6xk8eDBjx46VAym2bt0qu+x8/fXXjBs3jl9//RVzc3PJQ0hNTZXNGEQrwPLly6PT6Zg2bRrTpk2jdevWLFiwgIiICNatW0eLFi14+vQpp06d4uLFi9y+fZvnz5+bDJOPjo7m/PnzH/xO/xcgFKFOp2Pv3r38+uuv5M+fX27KtWvXZs+ePaxcuRJ3d3fCw8OzTYUTSiIrBMdBCSEX4qeQJbEehFGpbCAkDF4RJctK6BQksHz58vH27VsTsqJarebVq1fs3buXzZs3y4EMynMA5P4iFLJSKWetpRZevlDIotOdIKWJ756enk7x4sUpXbo048aNo3PnzrRs2VJGvMLDwxk2bBgbNmyQ6x2QKRSj0Sg7j3Xr1o0yZcrg6urKvXv30Ov1LFiwQBJelbl3MzMzqlWrxuHDh6levTr169fHx8eHU6dOMWzYMKZNm4a3tzd6fWZXRJGrz+qQqNVq3r9/T/HixXn58iXNmzfHYMhsNNSuXTsAXr9+LRvJ5ITo6GhZkaBcC3FxcbKFp7u7O1OnTqVv375yCMywYcPkMI0VK1ZQrVo1Tp48iYuLi2StazSZkwDFnuvm5ka1atV48eIFHTp0wN3dnWnTpvH5558TFRUlw8+XLl3i1KlT3Llzh+PHj/Pq1SuTc27RooUMj/+d+CSFLG5GVFQUiYmJshxGyb718PCga9eu3L1712SAuEBaWhpXr17F3t6eOnXqmHivpUuX5sKFC7Ro0cIktyGU7okTJzA3N2fPnj2S/dimTRtatmxpEhZWksTEwAfBxhbeXeHChSlYsCBt27alXbt2lChRglevXrF//3569epFrVq1WL58OZ6enjk2BBGPrJ2HPlS6pbSWtVqtDLcpyVQ2NjYkJSVx4sQJ9uzZI/v9CqxcuZIWLVpQo0YNLC0tuXv3rmwKLzYmR0dHli1bRlhYGK9fv6ZixYqMHj0ag8EghVIQVMSGuX37dooVK8bgwYPl/fT09KRixYqMGTOG69evU6FCBZOSktatW0vlqiwDS09PZ/jw4Rw8eJADBw7QunVref6ClPMheHh4ZFv4kLkpHj16lEuXLnHy5ElmzZpl8nqzZs0oWbIkDx48YOHChbi6ukrSjCgbEeFR0ehfpDKEwXP06FF27dpFkSJFKF++PCtWrODly5c4OTkxbNgwWRZhNBpZsmQJiYmJ5MmTR3oq/5chDPEDBw6QP39+vL29s8l927Zt2bp1K3nz5iUxMdFk3UImu/XOnTtUrlxZdjcTxL6EhASSk5Olt6usoIiNjSUiIoKRI0dKo9DV1ZW+ffvKSUFKjopS8Sj/Njc3Jy0tjdGjR9O1a1d69+5N27ZtcXFx4fz58zx8+JBVq1bx/v17nJycsnnaSlKWkHdBdlOWbglPWZluEx6ymZmZbGoijHORixZVHW3btjUJw7q6urJhwwZGjx7N/PnzZZrMYDBI1jNkDn2pUaMGz549IyEhgbp16+Ls7GwyBCU5ORl7e3uZx585cybLli2jUKFCcv/o0aMH9erVo1+/fqxbty4b41zcG8BkH3z16hXt27fHycmJc+fO4e7uLr/DH8m9tbU1UVFRuLi4mDzv7+9PUlISgwcPZsyYMRQsWNDk9QEDBnD16lXUajVff/01tra2FC9enOrVq8tqFldXV1xdXU2GfoiWn3FxcRw/fpwRI0awevVq3N3dCQwMxMbGhooVK8ppYYAcMzt69GiCg4Mlx2ndunUMHDjwI6To4/BJClkI382bN6lduzZXr16lbt268kaJHGzTpk1p3749vXv3ljcwKSmJc+fOMX/+fHm8woUL4+/vT0ZGhhzdN2nSJA4ePCiboNva2mIwGNi/fz/Xr1/n4MGDshdxYmIiK1eu5KuvvpJ5hqy1i0IpiuYGQlnq9XpGjBjByZMnyZcvH48ePcLDw4Pdu3djZmbG+fPnyZ8/vwwzKTu/iN9FqEqZD1aWbilzSeL6iOdFPkgIljJs37VrV8zMzOSmpqyHbN++PUePHqVDhw7SaBGddJTlJSJ/Bpg0xBchXLVaTenSpXnx4gWnTp2SvaOz1iJPmjRJTscR56hWqzl69KgcVScetWrVYsqUKTx69Ihdu3aZKGOAffv20bt37w+uryZNmtC8eXMGDRqUY+5n7dq1zJw5M9vznp6e3L9/n7i4OKlgq1SpInOATk5OH/xMozGz1/Tnn39Or169GD9+PBcvXpQCB5nt9CZPnixlQKvVUrly5b8tTPVPh1if165do1ChQoSEhFCwYEFJqBTrs1atWvz4448MGjRIysnLly/ZsmULN2/eBDJJO0uWLJH/8+zZM5ycnOjatSuVKlWiWbNmVK1aVR63b9++uLu7s2bNGnkfAwMDmTRpEl988QUlSpQgIyNDyp1SeahUKhlRs7S0lF5y5cqVad68OVFRUYSFhdGsWTOmTJlCWloac+fOpWPHjibetVLmDQaDSdmWMPSUA2yyhqxFaD1rLbWyrv/kyZP88MMPJo1RRNmOvb29bIYiwudxcXFyP1P2fVCOjRU5d2VrX7VaTeXKldm1axclS5akYMGC8twgU3l6enrStGlTLly4QI0aNWSaUavVynnvSr6Nh4cHrVu3xtbWljNnzpgo47S0NIKCgnKsGxbo3r0769atkzKmRExMDG/evMmmjAE6duxIu3btSElJkXtllSpV2LJlC3ny5JHvUzLFxU+j0Yivry+TJ0/m888/Z/DgwTx69EjqFq1Wy9OnT2VUQqyhrHva36mMAT5stvwOVCoVhQsX5ty5c7JsRsBoNBITE0NwcDBNmjSRBfzCwgPIkycPw4YNw9/fXyrztWvXMnDgQHQ6HcePH2fQoEEUKlSI9u3b07VrV0aNGsW+ffsoUaKEXMi2traMHTsWg8HA7du3TULiwmtUdmARYSQhYFWqVMHFxYVTp07RpEkTWrVqRWpqKj/88AMrVqxg3LhxJgpHGSIXuRjlI2vxvEajISwsjPfv30vvvEyZMibvE9dTPMLCwvD19ZXsVJFvEvD19ZVlDOKhzE8Lz0AZqhNNDsRDfCZAbGws3t7esiWlMrevUqlwd3eX4SblZwIm18ZgMGBjY8ODBw8YNmxYtlah165d4+3bt5QrV+6D68rCwoKBAwfy+eefExsbK59PTU1lzpw5+Pr6ypx5ThDKGKBixYom4xbF2lSWomQVUEtLS9auXcuMGTPo378/hw4dwsPDQw7uEO89fvw4derUMfnst2/fsnTp0t8dHv/fDrVaTffu3fn6669NSmIgcyN/9uwZ7u7usrd1QEAA48aNk8q4YsWKDBgwQDJj9Xo9AwcO5Pjx47x8+ZLNmzfTvHlzKlSoQO/evWnSpAnv3r1jy5YtMgyp0WgoWLAg69atY8WKFVLOlaFUoZyF4lQqEEFk+v777zEajXTp0oUyZcoQGBjIl19+SYECBShRooSJAhbGsFgzSpnPagSIksjQ0FA5ilLZBS5rNzJlSFyEYoXCVu5lXl5eUibE/4hol/j5oYeIEigjdgEBAdSuXRuVSmXS11/soXXq1CEgICCbzOdUymVmZkZ4eDgHDx406aJnNBqZNm2anFf9ITRv3pwHDx6wbds26QhApkx169aN2bNnf/B/NRqNSTSmTp068noojyXWqjLKKX4vWLAgJ06coFatWmzatIkFCxaQkZFhMlHq8ePHMiKjxMmTJzl48OAHz+9T8UkesvgiVapUYerUqcyfP58ePXowcuRIGjVqhNFo5Ny5c4wZM0bWDB88eJBVq1ZJZm3Lli2ZOnUqZmZmREVFce3aNZ49eyZzIjdv3sTS0pJvvvmGw4cPc//+fUl0aNy4MZ6ennLyhr29PWXLlsXPz4+lS5cyf/58HB0d5eISQqksfRK5LJFzHjJkCAEBAcybN4+YmBjUajVNmzaVrSnFzc2q2ARjWln2oKzPPnLkCPv27cPPzw+NRsOzZ89o2rQpnTt3lvM+RRhZqSjy5cvHkydPqFy5MoBJCQNk9lPOly9fNuWi0+lkLWDWXL1Q2BkZmePXLl++LO+pubk5ycnJxMbGmtSVK/Gh9pPKhhsqlUp21QoODmbEiBG0bdsWo9HIgQMHCA0N5fvvv//DNdaxY0ecnZ1l/14LCwvCw8Pp0aOHXFMfAxsbGwYNGsS3335LkSJFZL/ZrMQf0RFNGVbr3r07AwYMkLWWwiAxGo3Mnz+fhg0bys0TMsu6evbsSWxsLNeuXWPHjh2/G6L7b4O4PjVr1pTD6AcMGMDYsWMpVKgQsbGxbNmyhaNHj3Lw4EHCwsLYuHEj+/fvlzXBCxYsoFKlSmi1Wp4/fy4nK6WkpFCjRg3Onz/P9evXmT9/PgEBAVy9epWoqCgAypQpg4WFBXFxcSQmJlKgQAFKly6Nubk5u3btonHjxiZKUvQjVpKthCyLEPGKFSs4duwY/fv3x2Aw4OLiQqdOnShWrBgpKSky1KvT6UwUnlLOs/JHUlNTWb58Oa9fv6ZAgQJERUWRnJxM//79pSEp+CKis6BYkyJ0L4wZsS7F482bN7i4uJgYkqLqQTn4QdmYQxjnYsiCIDECskQRkOF0pdIUo1azQjRdEddE7HVt2rRh6NChtGvXjvLlyxMSEsLWrVupV68e3bp1+931pVar2bx5M0uWLKFhw4Z4e3vL/PGiRYsoVarUR6/Vjh07MmnSJKKiomSJqdJ4UHKKlE6MjY0NX375JatXr2bo0KHyukCm0zJ69GhWrFghP0ev1zN8+HDWrFmDSqXKlp77s/gkhSy+lIODA97e3jx58oSNGzfKVoJGo5FixYrh7u4uJ5i8evWKZs2a0bFjR/r27UujRo04dOgQv/zyC5cuXcJoNMqC7QYNGshB8gsWLGDBggUAHD9+nDNnzuDt7S3nlTo4OBAZGcmNGzc4duwYoaGh1K5dGzc3Nxo1aiTzGco6WaWiEkrMYDBQsmRJvvrqKxPPT6/XmwijYEcrO3Xl1KXL3Nycbdu2ERERwd69e2Xdc3p6OitWrGD58uWMGjVKfoZgPIu/GzduzKBBg+jUqZNJ6FiUMezcuZN169ZlY4+LEWvm5uY0a9aMU6dOmXwfsfhEbsVgMPDgwQNsbGxITU0lKipKDkcQn6vX67l58yaFCxfOFikwGo3yuggCSmhoKCVKlGD//v0EBATInrL9+/endOnSH73O6tevT/369UlKSiI9PV2S6j4F4eHhXLhwQV4f5XcSD2UEQdmARKvVsmzZMmbOnEl6ejo//fQThQoV4vjx4zRs2JAvv/xSfs6vv/5Khw4dqFatGrVr12bOnDnkzZuXxYsXf/I5/1MhNq9mzZoxbNgw1q5dS3R0NEuWLCEsLAytVouXlxeDBw9m06ZNbN++Ha1Wy6hRo4iMjOTo0aOUKlWKHTt2cPLkSYKDg9FoNBQpUoT69evLjaxy5cpy8D1kTuxp3769ZLeKOb2PHz/m5s2b3Lx5k19++YWvvvqKUqVKUbduXcqWLSvbUyoJlspIkshXN2nSRNbKi9eUtcxC4Sn3AWHgK5skie5YEydOZPDgwXz22WdSJsLCwhgxYgRDhgyhQIEC0rgVeV0hm82bN2fTpk2MGjUK+M0LzsjIICAgAAcHBywtLeVMYqFoxJ6k7BYGpu2GV69ejZWVlcyN37p1i7p167JkyRJatWollT/8Rojdt28frVq1yhYFy8j4bfqWIKbGxMTQsmVLunfvzuHDh7l48SIuLi5s2bLld9NFSpiZmTFhwgTGjRtHXFycJMh+Ks6ePUtMTIyMZAjejlIRiz1LRA/EHuDv70+vXr1YsGABWq2WJUuW4Ovry+3bt/nqq69MpsuNGTOGdevW8eWXX3Lr1i06d+7M2bNnc2zl+yn4JIV8/fp16tWrR1BQEAMHDmTkyJEsXbpUNoI4e/Ysd+/eZdGiRaxdu5ZXr17RoUMH9u7dS1JSEgMHDmT48OFotVrKlClDzZo1ZWMNlUpFgwYNcpzq4ePjIwkZOeHNmzeyfeGFCxdYt24dBw4cYMiQITRp0sRkgocIvxQoUIBnz55JwoXSo1GGgJUMSTH2UXjHytyK+D0pKYlff/1VEs/E52m1WkaPHk2/fv0ICwuTTd1FBzHB8LaysqJHjx7079+fOXPmkD9/foxGI2/fvmX69Ol0797dpF2geOj1ejp06CC/Q8OGDdm/fz/wGylOnKP4W/xf//79GT16NOvWrZPXX2wms2fP5quvvsrWzETZJlHkshMTE3n//j1ff/01+fLlo2fPnib5pE/Fx054yYrAwEAaN25MSEgIDRs2xMXFxaTDlNgslQpZhBqFsWVlZcU333zD1q1bmTlzJjdu3GDw4MG0atVKphZ27NjB9OnTKVGihGyUDzB79mxUKhWLFi36P6GUQ0NDZb6yf//+tGrVirJly9KrVy/i4uL46aefpMJu3rw5Op2On376idatW7Nx40Y2bNhA8+bNcXBwoEyZMnh5eeHs7IzBYMDDw4NatWrl+LkFChTAz8+PTp065fj6nDlz8PDwkISz5cuXU7hwYdq0aUOjRo2wsbExMcaFpy9kXqRolIRQ8ZqoaxaGruB7KEt+lINVjh07RvPmzWWXN7HGvL29WblyJSNGjGDp0qUyAiUam4i1V69ePaZPn87atWvp2bOnjKL98ssvshxPyQVR8kqEEhf49ttv5fcR9035P+np6bI3+c6dO+nSpYtJDvnkyZOEh4dTsGBBkpKS5HVRGgKiUkF4+keOHCElJQU/Pz/GjRsnDYNPhVqt/mglnhWbNm3iiy++wMLCgnz58kkCp+iTIL6fkHFheClL50qVKsX3339P9+7duXTpEj4+PqxcuZIiRYpgNBq5desWy5YtY/v27UyaNIkOHTrQtm1bRo0aRcOGDTlx4kS2Uq1PwSc1BgHw9vbOViQ9YcIE2QNVsHFv3bpF7969cXBw4O3bt5ibm3Pr1i0gMxwiakULFy4MZFLc586di5OTU47J/aZNm7Jjx44cb9b48eNp0aKFnDUcHR3N0qVLWb58OXq9nu7du5MvXz6eP3/Oq1ev0Gg05M2bl969e+Pr6ysZz8IbVZb4CLq8aDYilJGZmZlk6SpLIA4dOoSdnZ0kZgmvXAjCyZMnuXHjBv369SMpKUmW0AgmqwiHPXr0iI0bNxIXFydLgPr27UvJkiXlBlGuXDnOnj1LQkKCHNotvAFl71mlNS+MBPG7IKJdunSJDRs2UKNGDfLly8fDhw959OgRkydPxt/fXxojYrMSfajF9xahq4MHDxIeHk5ycjIFCxbk8ePHf1ic/3dj5syZzJo1i/z58/PZZ5+ZhBYFG15ZpqZsjJ91vmtycjIjR47k4cOHxMfH06lTJ+Li4ggICCAsLAw3NzfKli2Ll5cXY8aMYe/evWzbto2XL1+SL18+unXrxtixY2VL0P/GxiCurq4kJSWZlK4UL16cFi1aYGVlRb169XB2diYlJYWlS5eyc+dOhg0bxooVK0hLS+P8+fMUKlSIdevWYWFhwbhx42Te7+HDh4wePZrFixdnY6w/e/aMefPmsXnz5mznlpKSQosWLWRDB4Dbt28za9YsDh06ROHChenatSs6nY47d+6gVmfOZG7Tpg01a9ZEo/mt57TwEHOSdxGlEYavvb29bG7i7OwsSV0jR45k7dq1uLi4yAoGZQ3ykCFDGDx4MDY2NqSlpREXFyd5F2INmpmZceTIEfmd0tLSKFu2LN26dcPS0pKUlBTpgX3//ffExcXx5ZdfyslIynppMSdAyL7oVKhseanValm1ahWvXr2ifv36aDQazp07h4ODg+TPiEZAoilKfHw8GRkZJq1Uly9fzps3b4iMjESv1zN9+vRslRD/G/D39+fly5fkyZMHb29v2RRGfF/xUEY5lH25RU25mZkZly9fZsWKFbx+/RqNRsPEiRPZuXMnERERxMTEUKVKFdRqNV26dKFIkSJs2LCBU6dOkZCQQIUKFRg+fDg9evSQBvnHyv0nKeRp06Zx/vx52rVrx8WLF9m/fz8bNmyQilCv13Pr1i327t3L8ePH8fHxkRviF198QalSpTAajdJ7y+nEevTowfTp06WiFrh16xaTJ09m7dq1+Pn5AZn5jDVr1vD48WMZy1dCKOatW7fy+vXr7F/+X4pu2LBhdOnSRbIRRTcgYcGKvKyS2CXq87J2G9u8eTOVK1emXr16Jg3nRXj3/v37bN68mTFjxkihFwIsFIE4dwsLC1l7qaxpFKEW0aVIdCgS4SyhWJQLUOkdKhuSAPI1tVrNzZs3efr0Ka6urtSrV0/WHCvbFKakpMjyC/FZWq1WKjORM+/fvz/btm373WYg/w6kpaXJemyNRkPLli3x8fGR12P06NFs27Yt22xvYcAor40wqCwsLDhz5gyjRo1Cr9dTvnx5evbsSceOHbGxsWHfvn3MnDlTjvjbunUrY8aMoX379kRFRbF7927y5MnzX6mQGzdujJeXF+XKlWPSpElYWVnx448/yvMXpXoHDhzg4cOHNGrUiAIFCmBtbc3MmTOxs7Pj1q1brF+/PsfazcjISNmQIytmzJiB0Whk4sSJWFtbA/D+/XuGDBnCkCFDaNiwYbb/uXXrFosWLeLQoUM5kuzUajV58+blm2++wcvLi4SEBGJjY03WubJPAPxWM2w0GmWnMScnJ9mtasSIEWzdutVkGpZIM6WkpDBz5kwaNGiAl5eXVMjKKXeiLCsxMVGWJsFvZVPinOLj42W3wISEBFJTU4mPj5e9/IWiFPIvGhYJg18QWy0tLalZsyb3798nKSmJq1evEh4eTvny5SlevLjJZ4q9RShkZbMd5bAhjUbDli1bOHPmDCEhISYky/8NvH79muHDh3P48GFcXFyoVq2a7NK2Zs0aZs+eLfcAc3NzeW2yRlHE74LBPm/ePFly27JlS3r06EHNmjXR6XRyFv3KlSspUKAAffr04dq1a/Tq1QtLS0uWLVuGSqX69yhkcbCIiAi++OILrl27xvHjx3nz5g07d+7kypUrvHnzBkdHR+lRKXHq1Cmsra05duwYc+fOzfGzbt68yY8//ijzx0o8fvyYhQsXEhYWhpWVFQkJCXTq1Il+/fp9kERjMGR2+FqzZg3Pnj2THp5gHs6dO5f4+HgOHTqEq6urtGjj4uJMQtHKTkAi95Oamio9ZOF9Xbx4kZCQEEaOHGkSshYCvW3bNhISEmjbti3JyclkZGTIaTdarZZNmzZx4cIF8ufPL2e+9u/fnzJlyqDX601yWsq2gQkJCXLOp7m5uZzMo/Rgq1Wrxr1790wUssivil6/q1atwtvbGxsbG+7fv0/58uUZOnQoRqNResgpKSkmBoCIGCgHTWi1WqZPn054eDgPHjyQ90tYpv8bCAoKok2bNiQkJNChQwdcXV3lhiWujTJyoLzXypwjZNZKBgcHs2rVKjkVSBnm27BhAzt37mTNmjUULlwYlUrFd999x+jRoxk8eDAGg4G1a9f+Vypkca5Xr16VnfkGDBjAhQsXOHHiBLdv3yY5ORk3NzdJxBJRIScnJ0JCQvjyyy8ZNWoURYoUyfGzRowYwYABA3Jsgbp79242bdokp63Z29szduzY3+2MdunSJbZv386gQYN49uwZGRkZJCQkkJKSwqNHj9i2bRuVKlVi4cKFJCUlERMTQ0xMjCyTUnJOshrDWq0WZ2dn2f7Tzs6OKVOmMH36dHx9fU1C1mI/6dWrFzNnzpSh0rS0NCmbMTExrFq1ivj4eFxdXXn//j358+dnyJAhWFpaSsM9MTFRyrp4pKWlSbkS5yKmMNna2tKmTRsuXLhgYogLp0Io6p07d3L37l3ZOz44OJhevXpRpUoV2TJYtD+Ni4szqaMWRriQoYSEBMaOHcvo0aNZuHAhBkNm58Os067+XTAajezbt4+uXbsyePBgWRIlro14iPalWUm/yn4RQlmvW7eOAgUK0KFDB/LkySPXRHp6Ou3atSM9PZ2DBw/KYSft2rUjICCAVq1aMWjQIGrUqPHvaZ2p0+nYsWMHY8aMwWAwMHToUB48eMCUKVNIT0+nQ4cO1KpVi86dO1OqVClat27N27dvZYP/H3/8keTkZMkgjoqK4vLly6hUKmrWrImjoyNFixbN0ZsFKFasGJs2bZIbpbJ84EM4ffo0DRs2pEiRIiabgSBDmJmZMWXKFCZMmMDs2bPx9PREpVJJJaasZRZkJqGQhfeoDHHXrl2b3r1706tXL5ycnEwUcmJiIjt37mTt2rUmLT+Fdzp58mRq1qzJgQMHZDlYVFQUI0aMoGvXrlSrVk0qQGVPX8EKNRqN0stW1kcrw+DKkYLwG4P2+PHjXL16lcOHD0tmbEZGBvv372fChAl8/fXXJi0zRZ20MrecdcCHCNeWKVOGsLAw4uPj0Wq1+Pj40K5dO2rWrEmdOnX+bYrJz8+PgwcPUrFiRUJDQ/H29jaZVqYM5Ss7LCmJf0pG/qlTp+jTpw/Fixc3Ud4Ax44dY/To0Rw/fpwSJUqgUqkYMmQI0dHRzJkzh5IlS/7XlkS9efOGBQsWsH37dry8vKhYsaIcElKlShWmT59OVFQUixcvpmPHjnh7e3P58mWuX79Onjx5+Oqrr7h+/Tq+vr4APHjwgOfPn+Pm5kb16tVRq9UUK1aMN2/e5KiQO3fuTOfOnU0qCP4I69evZ9asWfj4+EhCoZB5e3t77t+/z/nz51m9ejXdu3eXCsvR0dFkSAyYjpQVfBJljbLYmFevXi0dDaVCvnXrluxfL9JewniNiYlhypQpLFq0iKJFi8pysBs3bjB27FiWLl1qMuhCHFMY5GL4Rdb58qJhyeXLl2VZk5JJLTqVjR8/noEDBzJ27Fj5WmJiIqNHjyY9PV3uOeL4omOX2O+Eh65shtSwYUOWLFnCsWPHePr0Kenp6djY2NCgQQNq1qxJrVq1qFSp0r+lEkGlUtGhQwciIiIYMmQILVq0oGTJknIvFNdGKGTltC4BIfPiPj5+/JgZM2bIML9oCSv65KekpMjyUQsLC/bu3Uvjxo05duwYOp2OGjVqfPT5f5JCLlasGNHR0ZQvXx53d3eOHj3KN998g7OzM7/88osUJlECcf/+fTw9PSlQoACDBw+mTp06nDlzhjVr1rB582by5s1L48aNMRgM9O7dm8KFC9OlSxe8vLz+8KJ/jDKGTK86J0taNApo0qQJR48e5d69e3Ts2JHp06dTtWpVSQQQm7RyIQtig+i4pSRXabVaxo4dS58+fZg4caL87AcPHvDVV1/JOcWi2Yiwpm/duoWHhwe9e/c2CZu6ubmxdu1aunbtSs2aNSUZRNlgRCgGZU1k1ok64vewsDC2bNnCs2fP0Gg05MmTh+7du7Nnzx7OnTtnUgKhVqvp1KkT9+7d4+7du5QqVUpeD6HIlBEDsUEkJydjMBiwtbWle/fuPH36lGLFiuHs7ExiYiIvXrxg3bp1LF68GDMzM7p06cKoUaMoX778R6/Fj4Wvr68Mh1atWjVbeZry99jYWHbv3s2tW7dQqVQULFiQ7t27y9rK1NTUDxLNNBoNzs7OPHr0SCoNozFzuPm6det4+/YtU6ZMMWl/+N+CUqVKYWlpSbVq1dDr9cycOZO4uDgaNmzIzz//jFqtJjAwkA0bNrB3714g0xiqWbMm48aNw8vLi7Nnz1K5cmWsrKyoXLkyZcuW5d69e8ycOZPRo0cTGBhItWrVfvc8PoWLEBUVla1uVCgVyKyJ9vHxYfv27Zw9e5ZBgwZRsGBBGcYU61xAKF4xwEGUGwmjvkKFCvz666/MmDGDIUOGkCdPHtLS0jh27Bjbt29n4cKFJrXBwktbt24d8+fPp0SJEiaDIWrUqMGgQYPYuXMnffv2lb3BxUNpOAqFIr5fTu18r1y5wr59++R+VbVqVfLmzUuJEiWoVauWTNlAJuN5xYoVdO7cWe454jOcnJxMSjaFYSBKJzUaDRUrViQsLEzWM1tbWxMaGsrNmzc5evSozEGPGzeOESNG4Ojo+NH39WMxaNAgpk2bRlRUlJRzoZSFsyX+fvLkCbt375YTt+rVq0eTJk3ksZT7vxIhISH4+/sTFBQk67zNzMxwcHBg+vTptG/fnkuXLjFnzhzKli37Uef9yQq5du3aHDp0iIsXL9KuXTsWL15Mw4YNTZr+Hzp0iJMnTxIfH8/69evZt2+f9ILKly/P8uXLqVChAuXKlWPQoEFAZoP/nTt30rNnTynUfwdcXV159+7dB19/9+4dVapUYc+ePQwbNowZM2bQt29f+vXrl2MLTI1GY8I2FF6UsqSmTJkyzJs3j23btkmmbd68eRk/fjy+vr7Su1UW3QtPVNmcQ7SjtLGxoUKFCgQEBFCsWDGprJUF++JvZdMRZcMErVbLgwcPWLp0KZMmTZKGwrNnzxg1apQMkStLJ8Tn9OzZk5UrV1K6dGl5LYQHL85RWRKVkZEhN6zKlStTsWJFk+skemqLPttHjhxh+/btjB49mm7dulGqVKmPNrj+CNHR0Rw6dIi8efNmayChHHIQGBjIrFmzGDFiBGPGjEGlUnHr1i1mzJhBnz59qFatGuXLl+fcuXNUqFAhWwvBjIwMTp06Re3atU2enzZtGuHh4djY2ODr6ys5Av9NqF+/Pvnz52f37t14e3szYsQIOnbsSMmSJeX6E4SaI0eOEBwcTEZGBtOmTZPHmDBhAkOGDKFQoUKMHj1a8kBSU1Pp1q0bb968MZ0p+xeh0WSOY/yQARUeHs78+fOZOnUqXbp0Ydq0abIbmDJaomRgZ2VjZ+2XPXLkSK5du8aUKVNkWFe04NVoNNKzFjKu1+sJCwujWLFiJoQs5XVft24dn3/+uUmFSE4PZdcvZWMiMRAkLS2NefPm4e7uTkZG5tziiRMnsnv3bpMeDYBsklOxYkXu378vy32Ua1dEK8T7hccsSKqiL4W4Vnnz5qV06dKkpKTw9u1bXr9+zZw5c6RBUrduXfLly/e3hbUPHz4sh6Ao5TxrM6etW7fy6tUrRo0ahZ+fHykpKfz000+MGDGChQsXYmtri4ODA8HBwRQqVMjEAfHw8CAwMJDAwEA8PT1N9j5REWRhYUHZsmVln40/wifFDKKiovj666959uwZ+/btY/PmzbRo0cJEGUPmRt6kSRMePnwop4AIPH36lPLlyxMfH8+BAwdk5yidTsfLly+lAvq70KpVK3bt2mXSVUjAzs6ODRs20L17d2xsbBg+fDgNGjSQF09YUCI8ERISYhIKFl6iWq026YiTmppK9erVZUegDRs2MGPGDPLnzy8tSkG9F8IZFRVFvnz5pGAIgbKxsUGtVuPt7U10dHQ2QczamUxJ3hBtTYUHvWjRIjZu3Ei1atWk11yiRAn69evHgwcPiI2NNVHg4tienp5y1KNKpcLS0tKEMKYMBymJJKI9qDLnJXLdoha0dOnS9OrVi5o1a0pDzcHBgSZNmrB3714ZOvozuHz5Mp999hmxsbHUqlXLZLPK+vvs2bP57rvvaNSokby31apVY8uWLaxdu5bk5GRq1qzJL7/8IhWOsvtZ5cqVOXToELVq1ZKvnT59msjISEaOHIlWq2XEiBH/lob0/27cuXOHjRs34uPjw+3bt5k9ezalSpXKtnk6OjrSrVs3Tp8+na1S4sqVK1SsWJEyZcrw7bffyudFKkPU8v5d6NChA1u3bs3xtbi4ODmer3jx4ixcuBBzc3MuXbokuSB2dnbExsby8uVLdDqdDAGLh42NjaxVVrKyP//8cxYuXMiKFStYtWqV7FinLJsUcqXT6XBycpIyr9VqZcTM3t5eprOU8v0hZSzWct++fU26ht2/f5/k5GRmz55Nvnz5sLa2xs7OjlatWlGoUCFWrVolj6F0QNRqNe7u7iQkJMjXRR/orH2hRd5a7AeiB7nIOQsiWnx8PImJiZibm1O4cGHq16+P0WikT58++Pj4kDdvXoYOHcrdu3f/9H3PyMhgyZIldO3aFV9fX8qWLWvSVU0ZLRRVN8uWLaNYsWLY2Njg7OxMz549mTBhAkuXLkWr1dK1a1cWLlwo923BAfD19eXq1atUqlQJ+K3V6ZgxYxg7diylS5cmLCyMtm3bfnDkbFZ8kodsbW3N4sWL6dq1q0mv0A/h5s2bzMzSe3j//v2MHz8eGxsbevbsSb169ciTJw+JiYn06NGDxYsXc/DgQUaOHPkpp/ZB2NnZ0aJFC8aOHctXX30lrTyDwcCKFStwcXEx6aLTrFkzRo0aRYMGDWjRogWQ2amldOnSxMbG8uTJE3neSqJXcnKyiQV9//59E2WZE0va2trapK/q/fv3qVixorS0jMbMuc8ODg48evSInj17mnTvUXppgIn3p9Vq5Qaj1WaONatbt65sQSgK/G1sbChVqhTe3t7s2bOHoUOHotdnTuURn3H79m0KFiwoGYhik1BaxqJRvjLXLr6vyHOLdnZKRSam9pQqVYpSpUoRFRVFaGgoDx48oFOnTtjY2ODg4CCVvpOTE+7u7rRs2TLHzl2pqan88ssvbN++nS1btuDl5UXXrl1xc3OT10VsOMKAuX79OtWqVcPT01MaMyJ0aGtrS8+ePTl69CidOnVi3rx5DBgwgI4dO9KyZUuMRiOHDx/m7NmzuLm5sX//flq3bo1Go2HVqlX07duX5cuXc/PmTZ49e8a4ceP+lnX9v4natWvz+eef06RJkz+MXLx8+VK2t1Xi9u3bHDt2jO+//57JkycTHBxMcnIyzs7OLFmyhAULFuQ4YODPolOnTrRr145ChQpRv359+Xx0dDS9e/dm6tSp8jmtVkvt2rXZsmULFy5coFmzZjx69AhPT0+8vLx4/vw5BoOBL7/8UoZXxToW3a4EH+TSpUsm3IKsuWeRyjAaM4dUhIeHm1RvCO80ISEBOzs7k45dyqY88Jt8KqNhu3fvxsnJSSrYH3/8kUmTJsk0luhWZmFhQfny5bl37x4RERF4eXlJAqPYq+7du8fnn3+O0WjE1tY2m0cswvXis5UNiIRyEs1VlHlvsVeKiXRFixYlMTGR2NhYfvjhB1avXo2Li4sMudvY2ODq6oqnpyeTJ0/OkRgYFhbGsWPHWL58ufTqhRGuNFiU5M29e/cyatSobK2V1Wo1lSpVYuXKlSQmJlK0aFHKly9P7969GTRoEKVLl+bdu3ds3rwZHx8frl+/zpMnTyhYsCBhYWFERUURFxdHhQoV+Pnnn9m0adMHScxZ8UkK+dy5c3+ZgJOSkiJbXopJS6VKlZKK8vLlyybj7T6EgIAAjh8/jl6vp06dOlSvXv2DFvbQoUPZuXMnzZs3p2DBgpiZmfHo0SNatWrF119/Ld+Xnp7OiBEjKFSoEJcvX2bBggW4urpy9+5dWaifkpIijYV69eqZ9HMVzQOEECpDUP/D3llHR5Ftb/uJGzECJBBcgru7O4FAIMHd3SVAcHeCS3DXEHTwwQa3wd1DAnG3/v7gO+ee6gQGmeHemd/stWqlU91dXV1d+2x797tV4yWiPjXl7enpyaJFi1i5cqV8Trzn999/59WrV7IfWCiuytQl0NKpRdAuLi5s3bqVIkWKcPfuXebNm0dUVBQ2Nja8e/eOunXrEhsby40bNzSsPULBFi1axKRJkwB49eoV27dv582bNzg5OeHu7o6Li4smpacSh4havYmJCXFxcZproDbmi0jV1tYWBwcHChUqRGhoKC9evNCkBYOCgrhy5QoBAQEagxwQEEDv3r355ZdfiIqKwtramjp16lC6dGnJnfy57dGjRxJkohptkY4XypmcnEymTJlYs2YNhw4dYuTIkQBUrVqVNWvWAJ/ICdzc3LCysuLSpUtkyZKFtWvXkjlzZnLkyEHx4sX/ECPxvybr1q37Yb0X17Rbt27s3buXzZs3a7ASYrTqlyQhIYF9+/Zx584d7OzsaNGihYY7WRVTU1O2bdvG2LFjmTNnDvny5SMoKIjw8HDGjBmjGR4SFxfHyJEjGTp0KDNnzmTJkiX06NGDSZMmSWf64cOHDB8+nNmzZ8tZyhYWFrJPV4AdBUJbLO7Jycmyt1kgfkXKU6fTUaRIEY4ePUr9+vXR6T7NORf4ksWLF1O7du0UpDwqr7aq92oAIB6Hh4eTNWtWtm/fzq5du3BwcCAmJgadToerqyu//PILjx8/llz28MmJePz4McHBwdJQi3GEcXFxFC1alMaNG8vsnXiP6mSLNU6tt8fGxsosmU6n03RlmJmZkTlzZrJnz05wcLAEvyUlJREcHMybN284evQoFStW1Bjkffv2MXnyZC5fvgwg2zWdnJw02QVxPYSOi6xkrly5NFTL4rcxNDSkYMGCvH79mhw5ctCoUSMqVKjA7t27WbNmDfb29ri6ukoQ8ty5cwkMDJQ0z9WrV2fhwoWYmZkxdOhQXF1dv4oC9C9lbChVqhS//vorVatWlfvKlCnD8ePHKVq0KJcuXWL8/5+nLOTYsWNfZDqJiIiga9euODo60rx5c9lMP3XqVFavXo2Tk1Oq72vVqhUtW7bkxYsXJCUlkT17do0Xv2PHDt6+fcvr168JCQkhe/bstG/fHl9fX06dOkXjxo3lAr1gwQI8PDxkM73YAJmS0a89qxGj4J5VOVWzZ89O/vz5GTp0KMOGDcPJyQmdTseFCxeYNm0aEyZM0LBy6T9WI2V9L/rRo0ekTZuWixcvsnLlSpYuXSoRr3FxcaxZs4bk5GR+/fVXDh48SO3atTE0NOT+/fvMmDEDV1dX0qdPz6JFi3jz5g29evXCxcWFp0+fSnavESNGAP8x4iq5hvBOraysJDpeBaUYGhpqCPrFtbOzsyNnzpwp+kGXLl2a4uYOCgri8OHDxMbG0qpVK4mEVq+/el1Usba25sOHD9ja2hIdHa3JPFhbWxMYGCj7wUXKsWHDhpJ2USwchoaGdO3alR49epCQkECvXr2YOnWqdDa/BYz4d5WcOXNy9+5dmTERYmNjw5s3b3j79i358+fX1COTk5N59OjRZ40rwG+//caoUaNwd3enfv36BAYGMnDgQPLkySMNp75YWVkxd+5cYmJiePXqFba2thrmuOjoaHx8fHB0dJQ89vb29jRo0IDjx48zZMgQWRssUKAA/fv3Z9u2bRJfIu5rsQiLRV1/2pOIDoVeiBKXqakpnTt3ZujQoYSFhdGkSRNMTU2JjIxk8+bNXLp0iSlTpqTg0lcdVOGcC1H1Hj7V0sePH4+dnR07duyQnO4BAQGS4Wvu3LmMHz+enDlzSqauFStWMHXqVMLDwxkxYgTVq1dn4sSJWFpa8uuvvzJ06FD69OlDwYIFSU5OxtLSUhpdocOiE8Xa2lqm0EVmSpAKWVlZSUCauHaOjo6atTM5OZmPHz9y8ODBFHp/7do1Ll++jK2tLQ0aNJBjMFW9V/+KxzqdTuIMnJycpBMksgHR0dEEBQVJRzQ6Ohpra2vZYqvSsDo5OeHt7Y2h4X+m4LVp00bzHcQUrj+Sv9Qg9+jRg44dO1K8eHH5xRo2bEitWrWIiYmhfv36mgXqzZs3nDlzRgMGSe2Yffv21dDtlS9fnnv37tGxY0cOHjz4WTi9gYGBNET6ok/PV6xYMfbv38/jx49p2bIlzZs3Z/bs2aRPnx5zc3NKly7N3bt3yZs3r/S4hHcrbsrUImR1NrMKHklOTqZTp05cunSJ4cOHS2rMggULSiS7qE+rXqj6v0A9qykuYSxq1KhB5cqVuXz5skSACmnXrh1Lly6lW7du3Lx5k5UrV8oa0oQJE7C2tubo0aMkJSWxbds2WVcS9cAZM2awb98+GjVqJJVRrc+KvmixoKj1aUB6yPqzpPUR7uI7WVtb8/LlS83vVbhwYS5fvkzt2rV5+vQp5cqV03xGnz598PX1lUPTz58/L69PzZo1GTRoEC1atJB4CJGyDgkJYdOmTXTs2FHymxsYaAlEkpM/zfK+ceOGPHfx3YOCgsiYMaMmuvkni6GhIS1atGD69OmMHj1a7u/Vqxdjx47l3bt3LF68WPOedevWUadOnc/SLb558wZvb2/8/Pw0kXrDhg2ZPXs2Cxcu/GKJy8LCIgXREMCRI0dklkNIo0aNGDZsGC1atKBEiRJ4e3vTt29fAKpXr87SpUs1ZSHhjIeFhWlAQ6oxEfppbGws7x+BmhaDdPz8/Gjbtq0Ec9atW5cpU6ZIZLc67ELovjDMQi9Uvmbxf8mSJTl48CBHjhyRjoBOp8PGxoZJkyZRuXJlJk+ezNy5cwkODiY5OZly5cpx4MAB3rx5w6hRoxgzZgx16tQhLCwMADc3N6pVq0bbtm2ZO3euzBioDrVwTkTmQ6UYFkQ7wiAL/U+t9VBcQyEvX77UoPHHjRtH2rRpGTBgAAkJCbL2rr9mdO/enW3btskgJikpiZo1a7J7925Zdxfrgej1fv78OZkzZ5YsdcLpUst1VapU4ddff5W/Z9myZZkzZ45s0/tW+UsNcqZMmZg0aRJNmjTB3d2d8uXLExgYiIWFBStXrmTKlCkyNSFAYitXrvxs6vn+/fukSZMmVe7b/PnzU7FiRU6cOEGtWrW++VxLly5NYGAgjRs3xsfHBysrK5ydnTl16hTr1q1j+PDhDBgwgM2bN2NgYICDg4O8QcX5ivRIRERECqOjpnJFRKhG0UKxSpYsSZkyZTQ3o0Duqb2+6gQaNc2sfpYQAwMDAgICyJcvHzNmzGD69OmkSZMGA4NPs1kXL15M2bJluXHjBrNmzaJr164Asrb+5MkT/P392bJlC4BszxCf2a9fP9q0aUOTJk009VmheEZGRnJREQuTel30249UTzo15SpWrBgHDx7UzD8GKFiwIO3bt2fRokWSMUm8d8OGDbLGJsgBhINkaWlJ+fLlmTJliqy3CYO8YcMGDAwMJAJTLLAishe/0blz56ShtrS0xNDQkPbt2zNu3DiZuhLX+58u3bt3Z9KkSTRv3pyOHTuSKVMm7t69y5kzZ3B2dpYAxlevXrFs2TKCgoJYtWrVZ4+3bNkyxo4dm2rafPDgwdSuXZs+ffp8M0Vr/vz5gU8GJjw8nOfPn+Po6Ei1atV4+PAhY8aMYfjw4WTLlo0GDRpIRwu0Og//AfToo7NFJCVmMcfGxmrYoETqtlmzZpqBMmpbkQCMCYMsjLIYTPO5zI+BgQEfP37EzMyMkydPSodZ8BsMHjwYNzc3QkNDGTt2rFy/RPvq1atXcXBwoE6dOgDSWU1OTsbOzo7OnTvj7+9PixYtNA64AKWJPmWxXw2UBDGKYPlT51mriHPx3WxsbMiQIQO7d++W06vEd+zbty9jxozh5cuXFC5cOAXxUVJSEosWLcLOzk4TENWuXZtBgwbh4uJC+fLlZR08PDycfv360blzZ01mQsyjVg3y3r17NUGHvb09lpaWHDlyhHr16kkH/HPOpr785STDZcuWlTMj/f39sbOzY+XKldja2rJ582Y5K1P0Awt6vNTk2LFjuLm5ffb5pk2bsm7duu8yyKtXr6Zt27ZyxFbOnDm5du0aJUqUoGPHjjx//pyFCxdy8eJFihQpwrVr16hdu3YKsIU+yEKtq8Ino6KSZwiFFlGyvsES+1RCEJUxSyitKvr1JAMDAwIDA6lbt64k68+aNStmZmbcv38fV1dXZs+eLW90Ucu7ffu2RNPGxcXJtK2opyckJGBoaCiRqaL2Ij5TKJvaNy2MmRCV1EDtDVbR4vpgkipVqnDw4EFGjx5N3rx5iY2NlWCpFi1aMGPGDF69ekXx4sWlIohFTiyO4loK5e/UqRPbt2+nWbNmFClSBBMTE65fv06ZMmUYO3asXHDVOpk4tlh0xbUQnQOlS5cmICAADw8PWrZsSa5cubh169Y335t/NzEwMMDb25uAgAC2b9/OlStXyJcvH7///jsvX75k1apVTJs2jfTp09OhQwfKly//RYS1QHanJoaGhpQqVYq7d+9+00QxgHz58rF06VKGDh1KVFQU+fLl49mzZ+h0n+gxFy9ezOHDh9m0aRNFihSRaOPU8Bv6ei9EfV1sbCzGxsbSIADyfhROKPwnpaqCwQRLl4rWFuuIuObieqhtkR8/fmTJkiWsW7eOVatWkS9fPj58+EB0dDTDhw/n2bNnBAUFyc+CTyxnFStW5Pfff9f0z4rxrqIcUa1aNfbu3Yunp6fUeWNjY+zt7WWKXnxn/eBERMii51tl/EqN+yE5OZkyZcrIoT3p0qVj/vz58jt37tyZNWvW0LJlSxnoiOsvHG+1E0b8XjNnzmT+/PksWrSIggULEhcXx927d+nUqRNFihSRyGqBFVDXdBEICQS6AM0NHz6cSZMmcfjwYdzc3GQf+NfIT2H9NzExoXnz5pppRPDJk+7evfs3HetLivsjbROFCxfm7Nmz5M6dm8DAQDZs2MCbN284duwYBgYGeHh4sHz5cmrUqIGjoyOZMmUiffr0MmoSi72BgYEmbaIPdBI3hkhdqUZc3OjqzajeUEKp1bFwwlCktlCoC0bmzJnx9/dnwIABNGvWjPfv30uQUlJSEo8ePcLBwUGej0gzCdpLAa5ImzatvNZqajwuLk6zT5+fWxhXYayEcRX0e/qtZGovpWpUk5KSsLS0pFWrVixevJjTp09LLnXxO1pYWPD06VOqVauWooasXn+11KDT6WjatClNmzbl2bNnJCUl0bNnT+lEqBkJ4S2rx05MTJSIduFcGRgY4OrqSq1atTh06BAHDhz47kk2f0dxcnKif//+mn158uRhxowZf+rn/Ije9+zZU7bg3L9/n6dPn7JlyxY5w7dXr154eXnh7+9PxowZ6dmzp4ahSxgogUJWSXVUrIca7QodUOvL6ixjUcsU6WpB9ytoLIVRTkxMlPeauL+F8RLHz5w5M8+ePZNlwA8fPmBtbY2NjQ2xsbEcOnSIwoULy2NERkZiZmbG1atXMTMz4+PHjxr0u3AodDqdnN8sonNBHCLOW+BF9AMTAQAV5CXCIKsZMpXKUnyn2rVrc+vWLa5evcq1a9c0v2PZsmVZsGABiYmJsgYN/xknKYyqOLY4B3Nzc0aNGkV0dDRv3rzBysqKXr16ye+QkJAgr7cIgFRHQWQB1XS7ubk5EyZM4OXLl5w6dYr4+PivDhJ/7hieHxRByVa/fv1Un9+zZw9169b97uNbW1tz//59mjVrxqlTp9DpdLRu3ZoxY8ZQsGBBnjx5wpQpU5g1axbFihXTjDMTiikYePQXe33EpbGxsQZAJGouau1ZP+UlFFtEx2KLjY3F0tIyVaIS8TdTpkx8/PiRV69ekTVrVjJkyECaNGkkH/WSJUvw8PCQjoOq7MnJyWTIkIGHDx+SP39+6WxYWloSGxvLq1evZDpRGFgV0KJmC0QNS5yXaP8QLQ5CMdXmff0IOSkpiWbNmnHp0iVq166Nm5ubnMG7evVqYmNjqVu3LpaWlhqnKCkpSSq8iDBU5RIpckFQkJycrBk4IpRalBBU50JET+J8RapKtMO4ubnJcsa4ceO++x79vyjFixfn3LlzqYI9dTodV65c+eq2ktSkRo0anD17lkqVKhEfH8+KFSsICAiQgKv69evTo0cPzp07R7p06TSMW6KTQH+AA/yn3CSMsehbFnSXwlCoXOr6BlnNiKmpazUQ0K8fq6AvNzc3pk2bRrly5TA3NydjxozY2try8eNHgoODOX/+PO3bt5ekJQL/kpSURKlSpRg2bBjdunUjNDQUY2Nj0qRJg7m5OZGRkezcuZPatWvLtUKUgQTVpn6niThPkU1SQV2CQcvc3FzWoVW9FWtnp06dmDJlCtmyZWP37t1UqlQJnU6Hj48PuXLlIm/evJrfQHye2isu1iEVgGpkZCRH3UZGRkpHKSEhQTOKUzjiYg0zNzcnOTk5RVSekJCAo6MjrVq1AtDMUv6S/K0Mct68eYmIiJDKo8r9+/c5c+ZMqqMbv0Xs7e05efKkHMJ9584dFi9ezKtXrzAwMKBRo0Zkz55deskqgEKNBtXUEfznZhSPVYVUvcHk5GRp8FTDpT+BSk2dqr2K+oAudfPy8qJnz55MmDCBUqVKSYIEHx8fTE1NKV68uBxDqW46nY7x48fTu3dvCfkXLRVhYWEMHz6coUOHSlSlEAFqEOcj6ldqrUkf/CXSViLaELVkcRxh2C0sLJg6dSq+vr7s2LGDhw8fUrt2bZYvX06dOnXImzevhkhBpJZUIxodHa1Jj4nvKz5DXUBUp0hcd5HiExkOsV9cA9WREBGz+Px/5eulZ8+edOnShZ07d8qyiZB58+bRqFGjb64f60vFihU1jqifnx9du3YlLi4Oe3t72rZty7lz5+T4QfV+EE6kcKrV312UdeA/a4AwCKrDLqIt8T7VIOtnZ8R+kRXTz4ipLVLp06enfPnyjBgxgpEjR+Lk5MSHDx+4d+8e3t7eDBw4MMV6Id6fJk0a6tevz4IFCxg8eLC8VsHBwVy5coVz587RsmVLyW8tjiO+h6GhoVzjVDIe/b5glbBDbYUSx1FbkXLnzs2oUaNYv349lStXpkuXLnz48IELFy4wefJkWSbTN47q9Rc4DkF3CaSIyFWDrIJpRUChrtVGRkby9xF93uJ3/BzA+HPyXdOe/psSERFBly5dyJgxIy1atMDExAR/f3+uXbuGr69vqm1PgYGB3L59G0tLS0qXLv1DyvvgwQPWrl3L9OnT6dOnDxUrVsTR0VHyUqs9teqPIW5y9YcTk5qEYdCfOKQfIasRtj7qUp30YmZmho2NjRzOLdjFzMzM+PDhA2vWrOHBgwcSoNK8eXNq166tSZFFR0fL7yPee+fOHebOnUvRokVl29OVK1fo168fxYsX5/Tp0/j7+xMVFUXu3LklL7k4Z3GuAsUoRrmlNplKRBtq/Uk1kMJBiY2N5ebNmyxbtoyAgAAaNWpEz549SZ8+far1Z/FecU5GRkZUrVqVa9euaZwA8R6h0OpYPpGyFlt8fHwKpjKRutJv8YqMjKRmzZr/E7r0R/K/pPcXLlzAy8uL5s2bU65cOcnJnjNnTqZMmZIiba3T6bhz5w7v3r0jR44c5M6d+4c+/8iRI0yaNIkHDx7Qr18/smbNKtvYxG+uZnTE/SruN3VikxizKEavqhGhqvdqVkw/MxYZGSkjcxsbGzmbXTBo6ev/lStX2LJli9SbjBkz0r59e5ydnTUlsLCwMM1ENAsLC9avX8/FixepUaMGadKk4ezZsyQnJ8uhQvv27ZP871WqVKFOnToYGhrK9UQ4/oK1Kzw8XLZDiYhbZf4T6V/97KI64S4sLIyTJ0/i5+dH+vTpadmyJY0bN5brhlpOUrNbkZGRskTg4eHByZMnU7SqiXVCP0LWZxs0MjKSgyrEPGX9gRXCOJcvX/6vG7/4vyA3btzg4MGDJCYmUr16dSpVqpRCKcPDwxk0aBDh4eFUqFCBsLAwzpw5Q/v27enQocN3fW7p0qW5cuWKZp+pqSnZsmWjV69ecg6yurADKRZ2oWDixxUgCJVJCv4DaFANsv4xDAwM5M0tbhAxfk1/5q9anxGiD3oQ6R1hUERdt2DBgjx79ozbt2/z7t07ihQpgpOTE7GxsQwYMICyZcvStm1bHBwcuHLlCgsXLqRWrVq4urpqpuSoBlm0KogbWq0hq+eqRhLCaxUGWYzME4ujePzmzRvZm1yoUCGqVKkiFVQ4CMJwCiCZoeGnQQmRkZHkzJkTGxsbjZcsamMRERHcu3ePV69eERwcLB0yMzMzbG1tSZs2LRkzZiRDhgyYm5vLGvyrV68YMWLE/5QufU7+1/Q+Pj4ePz8/DTGIs7NzitdduHCB8ePHkz9/fnLkyMGdO3cICAhg1qxZnx3/+CV5+PBhqu+ztramUKFCDBgwgCxZsmjKLIDGIAtDEh4eLickibnGqYEX1Xtdvf+EsxweHk7atGnl/SaMsrW1tfxfNciis0ONHFV9F46CMMhizruFhQUlS5bkxo0bXL58mbi4OBo3bkxkZCS3b99mwYIFdOvWjZo1a5KYmMi+ffvYunUrEyZMwNHRUaZ5Q0NDCQkJkYZZUHja2Nhgbm4uHQA1qFENpAhm1OsoonjB5Ce+5+XLl7l16xZmZmZUq1aNLFmyyGsnvqcwomJdTEhI4MmTJxgbG5M7d27pAIheY+FIBAcHc+fOHT5+/EhERIRmsIe9vT3p0qUjQ4YM2Nvby0FAISEh2Nvb06VLl3+uQf4jSUxMpEmTJowZM0bTt5ac/IkCr2jRonTq1Ombjzto0CDmz5+PjY0NERERpE2blqioKDlar3r16gwdOpS3b9/i5+cn6SmbNWtGxYoVpXIJT1fcXGKuqTAS+nUXtY4ijqF6gaK+I2oyKueuOjQ9NeUXBl+lt4uKipITr1T+V3XBEZ87ZcoU6tWrR61ataRnK861a9eu9OrVi2zZsklAi1DSsLAwkpKS6NChA8eOHZOLh6ghBwUFsW7dOh49eiQzCGIMpTDI4jqq01uMjIyYPHkycXFxtGjRAltbW8k05O3tTY4cOaQhVx2OU6dOsXbtWgoUKICDgwM3btzA2tqaUaNGYW5uLj8rISGB5cuXs3nz5q+6Z8zNzVOMXvw76NLfUe9v3ryJl5cXW7Zs0Zzz27dvadeunZwy9y0SGRlJnjx5CAgIwMLCQrYwRURESEesU6dOuLm5cfz4cemw58yZEw8PDzJkyCDvnbCwMOLi4jQ8z+Hh4QCpGmTVWRYsffAf9LaJiYk0vuqmOuTC2dRP5arRuwgKIiIiNPOU1WhP//z69OnD2rVrSZ8+PcbGxjKb9/TpU4YOHSo54FWDLDiuJ0yYILttREZP4EiuXLnC9u3bZUtnrly5aNeunWQZE9cxISEBOzs7ucZ9+PCBcePGUbFiRapVq0ZUVBR79uwhLi6OMWPGyGBAGGTRA7106VIePXpEyZIliYuL49q1a9SpUwc3NzdNAPHixQtmzpz52fHAqoh1UL9E9X/WIO/du5enT59qah9CkpOT5bzKb2VOiomJYciQIZw7d45bt25RvHhx2rRpQ1RUFOPHj5cLd/78+ZkzZw5ly5YlMDCQlStX8v79e8aPH69B7qlec1hYmAQP6NedBNBD7fFVXyM2KysraZzUFKoYxK3fmqGPABfOgmqQRRpZRT0LhGJiYiKDBw9m8+bNmJmZkSZNGg1o5ebNm6xYsYKxY8emiJDDwsIkmvX06dMaYNeTJ0+YNGkS3t7ecjJVYGAgs2bNIkOGDHTu3Fl6r8IgC4M+b948ChYsSKtWrTT1nHfv3tG5c2eWLVuGiYmJTMubm5tz5swZ9u/fz8KFC+Vwk+TkZC5evMj06dNZunQpcXFxnDx5kh07dnDhwgWmTp1Ku3btJKq2UqVKPH36VHO/VK5cmXLlylGwYEGcnJywtramYsWKfwtd+jvqfcuWLZk7d26q9KSXL19m27ZtGrrcr5Vr164xbtw4rl27xtu3b6lduzbNmzdn3bp1XLhwQWZxmjRpwpQpU7C1teXq1avMnTuXli1bUqpUKRlpxcXFyWhRNcwq/ayaOv2jlqrExEQZ0YpIU8z9FTqhDzhTM00CuR0fHy/1Xt+ZF8Zc9AwfO3ZMthuJ51Vk+Pjx46lWrRouLi5S10NCQuT3Fqhvf39/uW5YWVmxZcsWAgICGDp0KBkyZCA5OZnr168zZcoURo4cSebMmYmOjpbBi52dHWnSpMHY2JiePXuycOFCsmfPLoOGhIQEDhw4wPHjxxk2bBhRUVES52FlZcW4ceOoW7cuzZo1kzX5+Ph4ZsyYgYWFBW3btuXly5ccOnSIrVu3YmJiwpYtW8iTJw+JiYlYW1vLzhMhGTJkoEKFCpQvX57s2bPj5OSEjY0NxYsX/79rkFu3bi2HR6Qm06ZNo0KFChpaz2+VM2fO0LdvX27dukXFihWpW7cuM2bMkLWh+Ph4GjRowLx588iQIQMLFiwgTZo0uLq6ytSTqqTCIIupKELUgekqO1BqUbTaD6vO/9Qn3VDT+/opIRE9CoCEUEq1pivqJQ8fPuTUqVN4eXnJlh4VkBIfH4+np6f0loVHLlLWgkQgTZo00okwNzenY8eOLFmyBGdnZw1qNSEhge7du9OzZ0+yZ88ur6OxsbGk5hw0aBA7duzQLEDinHbs2MG7d+/w9PSUhtzMzIyOHTuydetW6TWrNcCVK1fy22+/cezYMUkGY2hoKAfOC2nRogU5c+bE19dXM93F3t6e4OBg4O+lS3+nc4VPIB0PDw/8/Pw++5p69epx+PDhH/qciRMnMn/+fEJCQujZsyeBgYHs3r1b6pWdnR3dunVj+PDhRERE0Lp1a2bNmiWpGmNiYjTGSTXMAv1rZGSkYa/7HLeBijFR2a9E54LIOOnjI9QSmopFESMr1fcLZ9zS0hIbGxtMTU1ZuHAh3bp1o0CBAlLvRd1VtFM9evQId3d3aZCDg4MJCQkhMjJSlnXs7e2lQQ4KCmLZsmWsWLFCRvVCbwMCAujTpw9LliyRNd2YmBhsbW1JkyYNx44dQ6fT0aFDB+kgiHOKjY2lU6dOjBw5EjMzM4msfv78OYcPH2bq1KnSaRHXMyYmBg8PD0mqIlrJ0qdPT0hIiASsmpqaMmjQIJ49e8b27ds198nIkSOZNm0a8PW69LdCWX+LREdHf3Hwddq0aTVG73ukcuXK3LhxgxMnTtC4cWPOnz+PhYUFTk5OBAQEUKlSJQ4cOEC+fPmYMGECXbt2pV27dri5uUmjqka8wsiqbFempqZSKVRqPvG8iq5UwV+CQF5EzsIr1Kf2Ay29nwCMifSY4KQVaR6RDhdevLm5uTRSUVFRmtoPoEEip+b7GRgYpGhV++WXX8idOzcZM2bUnK/IEojZ2V5eXvJaie3mzZtUrlxZXh8B8BBIzYYNG9KxY0datWolX/Po0SMKFSokATICwSre8/z5c3bt2qU5x2zZslGxYkU5uOLZs2fs2LFDTnx5+PAhv/76K/fu3ZPMR//KXyuxsbEpUNj68mfMo/b29mb48OF4eXkxb948LCwssLOzIzQ0FPjUDTJ9+nSaNGmCi4sL7du35+DBg7i5uckoU8WKqBsgIz61VPQ5oKgwIKIerLZSqv23qbHeCdCYcMKFIVKj89jYWAnAUqfTmZubEx4erulWEMfV6XSEhYXJ9kexX4jQu5YtW2qua7du3ejZs6cG6yLelylTJlxcXHj06BFZsmTRBCVGRkacO3eOyZMny2ur/s5GRkbUqFGDa9euUbFiRXmtDx8+jKenJxkyZCA6Olp2gcCnCX8vX77UUPQaGhqSNWtWyRSZmJjIpUuXmDFjBhMmTCAmJoZLly5x5swZQkJCUtAxf438Yw1ysWLFOHv27Gcj4LNnzzJlypQf/hwDAwNq1qwph7P37NmTgIAA4NMouhw5cuDr64u3t3cK4nOVSUt/E83yIqUqvD4Vja0ql1prEr2vAsmtth6ojfqCKk415sKTNjU1lTenqJFbWFhgY2OjaY/ImTMnDx48kEoPyOMmJSWxb98+qlatmmobVlJSUgqlhE/OVLly5eS1UJ0PAwMDChYsKNvQ9JGp+qIuCPrPi/8jIiLktBuhmMIB6N+/P2vXrgU+1YLr1KlDkyZNyJUrl0RePnjwgC1btuDg4MC8efMwMDAgb9683wUg+le+X2xsbAgICEgx2EJIWFjYD5GIqCI4qNu1a8eQIUM4efKkfE58hujGKFWqFMePH0/Bnpfa/yJTJLANQvfVKFm/P1cFZIpyk5qSVnkRUmOwEtdLZIvgP1SgAiBqaWkpHdTk5GRq1arFjh07KFmyJJaWljK4EUbe39+f8ePHa/Av4q8YRKMvwcHBFChQQJ6nmL4k1pP8+fPz+vVriXAXouq1vgPwJf2PjIzEwcGBkJAQmUVITk7m5cuXuLq6SmOcKVMmGjZsSKVKlTA0NCQ4OJj+/ftTo0YN3r9/T9WqVenSpQvm5uZUqVJFQ1T0rfKPNcjdunWje/fuVKxYMUWb061bt0hMTPzqCRxfI46OjnTq1IkxY8YQEBDAuHHjOH78OGfPngXg3r17uLi4yD420E4gUjdAk2oWhll4fvrALFW5BBBCvEYoqKDkVKNxcQ6CbUYAwlSlBzRkA0LB1K19+/YMHjyY+fPnyx7i5ORk7t69y4YNG1i6dKl8b2Ji4h+WCRwdHbl69arkqRY1aZENePHiBenSpZP/q32BRYsWZc2aNfTr10/W39Qe4/3791OpUiWNY5AzZ07WrVunWThCQkLo2LEjhw4dAsDZ2Zndu3dLIv2oqCi5KIaEhBAREcGJEyeoXr36n3ZP/SvfJoInwNfXl27duqV4fubMmXTu3PlP/bzixYvTunVrTp06RebMmfH09GTDhg3ApwEmOp2ODx8+YGNjk6qeq49FKUhgNkTJSR+QmRphhoiEBeGQKA+pwx6EoROfqUbgas8+aLNmau+9oL7NkycPHz9+ZP/+/TRo0EBTm165ciXZsmUjTZo0MiAQk9G+JI6OjsTFxWFrayvBV6qevnr1ijJlymj6rcV1qFixIvv376djx44kJCSkWLuOHz/OqFGj5DXT6XS4uLhw8eJFsmXLJlPQv/32Gw0aNJAgzE6dOtGnTx+io6MJDQ0lODgYnU7HxIkTCQwMxMrKiuPHj381V/Ufybd1Lf+NxNnZmW7duuHm5sa5c+fQ6XRERUWxYsUKBg8eLDmrIyMjefjwIR8/fvzhzzQ0NKRixYrAp3Fb27Ztk8+9efOGy5cv4+LiookQVcVSDYzwjlWAhj6SUiCpxWN1nwBJCNSxaK8Sm0hRCYSj/qa2TojHFhYWmhFwYiGoVq0aVapUoXnz5kyZMoWlS5fSo0cPpk6dyty5czExMaFAgQKULFlSg3gXcuTIEc3/5cqV4/z585JTW10YEhMT8fX1xd3dPQWRQVJSEubm5uTLl48tW7Zo6tjx8fG8efMGX19fGjdurHEyRNvElStXSEhI4NKlSzg6OkpjnDt3blauXCkHxqv0hGZmZhQtWhQrKyvOnDnDmzdvPlsKuX79Ordv3/7h++xf+bz069eP8+fPM2bMGN69ewfA48eP6dWrFwBNmjQB4N27dzx69CgFD/z3SMuWLcmZMyehoaEMGDBA1g1v375NfHw8mzdvloMGRDZKbKrBEU64qtdC/+zs7LC3tydt2rRys7e3x87ODjs7O82aIPQ+ISFBYjVErTomJgZDQ0ONXotjpHZcW1vbFPwHoqTl7e3NqVOnaN++PVu2bGH+/Pl4eHgQHBxMjx49iI2NpWzZstSoUSPFNVuyZEmKfR06dJD7raysNIQo4eHhXLp0iUKFCqXoOElMTKRGjRrs2bOHZ8+eyRS82Pz9/XFwcJADL0TwUr9+fTZs2CBr95MmTaJGjRrSGBcuXJghQ4ZofjORTbCwsKBAgQJERkZy6dIlWbbTF51Ox65du4iIiPiqe+kfC+oS8uLFC1asWMHt27cxMTGhWbNmNG/enMjISEaNGkVAQAC5c+fm7du3JCUlMXHiRDkF5nvk8ePHlCpVirJly7Jjxw4OHjzI2bNn6dSpEwMGDGDu3LnY29tLL1YgjlVQl2iVEsAplVJO5UxVvVk1dSVqQeL44q/wmFXUtXistjXpe9LqscW5CaVXe3jh0yIUERFBrly5yJQpEwkJCRrauFOnTlGtWjX5/7Zt2zTTW4QcP36cRYsWsXLlStKlSyd7llevXs3NmzeZMGECycnJ8joKKk+17Sk6Olq2PZ09e5bjx48zYcIEsmfPLoFrwvGJiYmhb9++uLm5aZD5JUuWxMPDA3d3d/kekR5UUemzZ8/mwYMHhIeHU61aNYYPHy5HZpYsWZL79+9TqlQpnJ2defPmzd9Cl/6ueq/T6Th58iRr164lJCSETJky0bVrV0qXLs3p06eZOXMm6dKlI23atNy5c4dSpUoxbtw4ma79HvH29mbSpEnS4Rs9ejQVKlQgIiKCkydPMn78eI0zLFqABKArPDwcY2NjaVRFT71+26JKmKHyZKttlAL0JDY1Ha4eUz/7pg8YU+9vAVYTbUoqYCw6Oprff/8dIyMjihQpgrHxpzGTojtCXwQK3c7OjrZt22p+t969e1OoUCF69Ogha9Tv379n6NCheHh4ULJkSfn9wsPDsbOzk+tkUFAQ3t7elC9fnurVqxMVFcXu3btJSkpi9OjRssNDMApaWVlx/fp11q1bR+3ateW4UCcnJzJmzMi0adPIlCmTJHEJCQnRXOvg4GCmTZsmmb/GjRtHrVq1ZMaxRIkSjB49mmnTprF48WL69Onzfxdl/SUJCwvD3d1d1neEvHnzhg4dOrB48eIfqv+1bt0af39/GjZsSLZs2Xjy5AlxcXGMGDGCjBkzaqY1iTqkIAuIjIyUiGFVgVRqPn2OZ9WDEwZZtFQJgy9uYqGMqtKrBlkfwa3PcCW85NTeJxwFIeo5qSMjxTkJhivRN6nPZX3r1i1WrVqFgYEBVlZWst2kTZs2svYlHA/RhiXOycTEhLdv33LkyBGio6MpXLiw5L0VHr6gRxXvSUxM5NChQ2zbto2kpCTy5s1L+/btyZkzp/zuIjJW03jR0dFcvnyZCRMmpHo/jBo1ioULFxIVFSV7kv8OuvRP0/ujR4+yfPlyfH195ffR6XTs27eP9evXs3379u9OPep0OqysrMiQIQP169fHzMyM69evU6RIEbp166ZhqBN9tOoWHR2tyX4J4go14tUf1CAiRXVEo8okJR7rdDoNM5ZYU/SNvQBIqUAxdbiF6IjQJ9UQeq/vvAsDKEhQwsPDZVeCMO52dnaaPmQzMzN27NjBsWPHyJgxozSgXbt2pUCBAhpiFDF+1draWq4dBgYGXLlyhVu3bmFqakqNGjVwdnaW+i5KTaJN0sLCguDgYDZv3sxvv/1GmjRpqFGjBq6urrKGHR0drfleIgiIjIxkzZo1XL9+PVX8yowZM2S9vFatWrJL41+DrCczZswgf/78NG7cOMVzL168wMvLi02bNn338efOncuYMWM4ceIEQUFBODk5kT59+hRsWLGxsVJpBDFIdHS07CdUFVIYZBXgkdpEKHXsmb6nLAyyyuglji2Oq98WpQ8YU89djdyFIVdr0/rEBqKupXJci3q3+j3LlCmjuZ4CVGZvby+dkJs3b5KYmEjJkiWBT6M59ettqQ2mUKkIBQev2FTyBLXuLIAl6j7RJiaOExUVxZo1azh48KCGBETU0x0cHChfvjz79+8H/iUG+dmi0+moU6cO+/btw8LCIsXz06dPp1ChQjRq1Oi7P6N48eLkyZOHdu3akZiYSI4cOSTPsTAkghhEJQURY/1EiUhlrxKOqtAzcX+K+1KllBRriTi2MIKANMiixVAYfv0IOTU+Z9WxF2uEinFR8SwqOlsYZMGtoB99W1tbawyymLssfq/g4GDZEiXkzJkzEuW8cuVKDSOZCnxNzUEQAZCon+vTXKrfQdSh1TU2Nda1ly9fsnnzZh4+fCjPG/4zDU+ktQVA7P9s29OX5OTJkwwdOjTV5wSjlOjH+x4RYxnNzc3JmzcvOp1OTgnSp71U6zLx8fGaIQv6lJeCNevWrVusX79eentp06alU6dOkq9XndIkbkaBzhbGRxxXRXIKo5yUlMSrV68wMzMjU6ZMkkRd9c710z+inUO/nUr9zqKnWTX2ItKMjY397BQvgahWe8qLFi2qeY3wQNXF5HMGWU3FqSAbwU0s3mNgYCCv+2+//caHDx/Ili0bpqambN++nffv3xMUFERsbKyc+nLgwAF++eUXrl69Kqnznj9/Trp06di/fz85c+ZMQR7yr/z1cvPmTYoVK5aqMQbo2rUr/fr1+yGDnD59eoKCgiQpiSgdJSQkaNLJar+/0Htra2upl8JIishYEPT4+flx/PhxTExMiIuLo3Tp0rRq1Up+J9VRFDonOgbUmeOqwy9039TUVPYKOzg4YG1tLdcN4WQnJiYSHh6umYCmz9ks9EvUd8X0KJWjQDgRImvQpk2bFNfyypUrcp1Qs5jCGMMn4O7q1avldxeDQVLLHqqRvqg/i/VHpc0F5DoZFhbG5cuXAShRogS//vorV65cITAwkPDwcDn7PHPmzBw7dox+/frx9u1bGXUHBQWRmJgoUdv+/v5/eA/9dIOs0+l49OgRMTEx5MmTB0tLy599CpobKDURNcvPGeTff/+dJUuW8Pr1a9kC0KlTJ4kKfvXqFba2thJIBinTyiLtoTblx8fHS6Sz8ET1H+/fv5+zZ88yefJkyeP79OlTxowZQ6tWrWS7kDA+qjFXjyWMsfhfwP6XLl3K5cuXKVCgANHR0Tx//pz27dtL9LC+YQsPD5fv1e+TFCAIMzMzrK2tNcQG4pqIKDo14Mdvv/2mmSt99epVGRGnJqqDoM8JLoyu6iCoBllM2xF1drFQHTt2jI0bN8rU1+HDh1m9ejVJSUlUqFCBx48fyyikcOHCBAQE4ODggImJCVeuXCEoKAgTExOcnZ1ZsWIFzZo1I126dJ/9Dv9UiY6O5tGjR1hYWJAnT54/rf3oa+XDhw+p8l4LSZcu3Rd5CZKSktizZ48EC1paWtKhQwfq1asnv8urV68oUKAAERERGmIZtR1JGGSh92IUq6qjooyiRsZeXl5UrVqVDRs2SIa8X375hUGDBjFnzhzJl6461kLPhaMpjL1I1Zqbm0vKyfnz56PT6ciSJQsvX77E2NiYAQMGaEg/VBxJeHi4LPno41lERsnIyEhyOgvdV52G2NhYOnbsqLnOgrlLde6PHTv22XnCkZGRMvBQGcn0CVBUHnBAUu8Kp0KN+o2MjJg1axZBQUHUqlULIyMjvL29OX36NPBp9vLdu3fR6T4xqNWrV49jx46RNm1anj59ys2bN4mLi8PBwYESJUqwYcMG8uXLJ+3Dl+SnGuQ9e/awePFiChQogI2NDVevXqVw4cJMmjTphwAV3yqGhoZERERoSAR0Oh0HDhxg3bp1nD59msDAQFq1akXz5s01bVMbNmxg//79jBs3jgIFCkhC9aZNm7Ju3TqyZMnC06dPyZgxo/zx4T83qj6XtaDQFJynKqGFSAGL6DYqKgo/Pz+2b98ujSCAi4sLq1atwsPDgzJlykiydJVIRN1Ev6G6EBgbGzNy5Ehq1qyJl5eXdFhiYmIYOnQo0dHRNGjQQH4PsXiI+a6qQRaKJ5i39Fs2UmvXOn36tGyHOnjwYIp+a7HA6cu2bduIiYmRCOsmTZqwf//+VFvD9CN2EUWLVi3xWJzvxYsXOXbsGNu2bePu3bts3LiRXbt2kZycjLOzMyVKlOD8+fNUqFCBDh068PbtW7y9vXny5Al58+alTZs21KpVi6pVq8q0mzDe/1dE8AjfuXOHEiVKEB4ezr179+jTpw9ubm4/7TxcXFxkO5IqoaGhrF69Gj8/P16+fEn37t3p3bs3xYoVk69JSEigTZs2lC1bFl9fX2xtbQkKCsLHx4d9+/axZMkSdDodz549o3LlypIgRJBvqKQdgs9dgC1F6Ufouuo4Cx0QrXqdO3eWBlaQ3KRNm5Zly5YxZMgQTcSqX0YS+/VHHYaEhDB27Fjmz59P9uzZZXbt4cOHDB06lBkzZmBlZSUNnuAnCA0NlUx3qkEWE5DUOcdqGUw4v6JctGnTJhkhr1y5UkOCJNLOgr9byIIFC6SDY2ZmxoABA1i0aJF0DvSnPen3aQtbIxjRVEYyc3NzJk2aRK1atWjatCl79uxhw4YN/Prrr9jb21OoUCFev36Nubk5jRo1on79+vj5+dGnTx/i4uKoVq2a1PtixYrJ9edr9f6nGeStW7dy/PhxDh48qGFR2bdvH23btmXr1q08ePCAuLg48ubN+5dGzm3atGHRokWMGjUK+PSj9ezZk4wZM+Lh4UHOnDkZM2YMvr6+tGzZks2bN2NqasqLFy/YtWuXpMmDTyTizZo1o2jRogwYMIDdu3fz5MkTMmfOLBd/NRIUKSo1ZS1SQMLIqgw0KpPXvn37NNRwKqF7mjRpaNiwIadPn5ZenXosCwsLaXTU58QNfPv2bTJkyECrVq00o8iMjY1ZsGABTZs2pX79+holF+cQFhYm09oCgKUCRlJDcIM2pV2hQgX5+wjwlH4duH79+vj7+2t6GgUVoYja165di6mpqeTIVmXnzp0aMJZaQxPXVEQkv//+O3379sXExETOv86ZMyeDBg2id+/evHjxgr59+5IpUyZ69erFkiVLuHDhguQ3rlChwk+PAv/XRKfT0bZtW9q3b8+sWbPk/vj4eHr37k1cXBwNGjTg4cOHWFlZkTdv3r/smmXNmpWoqCgeP34sSzuvXr2iQ4cO9O/fn6xZs7J48WJMTU2ZMGECtWvXlsNn5s6di5ubm+aeSp8+PRMnTmTmzJls2rSJatWqERcXR5YsWSRwUXXCVYCUAAKK+1Zl5tOnxzU2NubYsWOsWbNGY2iFkapYsSJz586V+qduYvCEGFgj9gm9MjU1ZfXq1UyaNIk8efJojGCBAgUYM2YM69atY8CAARoHQRAPqbz7KmhM8GoL4y8iVjVCFjrXtGlTeU2Fg6I60126dAFg2bJl9OzZE0AC44RzIxDyXl5eqf72c+fO1ZTuRGlABcwKQJivry8HDx7kyJEjdO/eHQMDA6pWrcrGjRvx8PBg0KBB/P777zRo0IDChQszbNgwEhISGDFiBF27dk2VQ/1b5KcY5MTERFatWsWRI0dSpIobN27MunXrKFOmDNWqVcPKyorLly9TtGhRJk6cmILqLikpiR07drB161Z5U7q7u9OmTZuvHhTRokULevXqxcSJE+nXrx/79+8ne/bsZMyYkbVr17J9+3asrKwYMGAATk5OzJ49Gy8vL1auXMmwYcM0aVkhuXLlwsHBgevXr3P58mU6dOgglUyAkvRRx+pcY9F7LCQ1Nq9Xr15Ru3Ztud/Q0FC2BhgbG5M/f36uXr2a4n2qcog+RJWty9DQkL1799KrVy/NoiBQnKamptSqVYvffvuNsmXLat4vHAeBelZrYfr1ahMTE4KCgnjw4AEWFhYUK1YsBTIbkDzggutaPC9+87Vr18pUl2gjEQa5R48eqf7ma9eu1SyQNjY2KSIR8b3nzZvHlStXCAkJoXTp0rRv357Q0FDi4uIYN24cRkZGODo6EhkZKacIZc2alf3799OwYcOvugf/L8jx48cpVKhQClIIU1NT5s2bR4ECBdiwYQOlSpUiJCSEu3fv0r9//1RJJAIDA1m6dCm//fYbRkZGpEuXjj59+lC6dOmvPp/58+dLEpv69evTv39/Jk6cyIYNGyhRogSFCxcGYOPGjTRv3pxq1aqRPXt2jh49yi+//JLqMfv27UuLFi0kUDF37twYGxuTnJxMaGhoqjovassCdQ//0VfxWNUvQRiiOufBwcEyWnZyciIyMlJGfgL7YGdnJ9PKgoVPdcoNDAx48eIFRYsWlUZQGFydTkfp0qWZPn26/EzVmRfnJ4B/IsWuIrhVB/fx48cEBQWROXNm6bTor6MWFhaEhYVJRLehoSGzZs2S/AyTJ09mzJgxcrBETEwMcXFxqfY0C5k4caL8DUT3ipohEOuTyAQ+fvyYuLg4GjVqRO7cubl27Rq9evWiWbNmwKcOmj179rBr1y527dpF48aNWbx48TdPEPuc/BSDfObMGRm16cvq1auxsbGhSJEizJkzR+7fvXs3HTt2ZNOmTfJGFaP6RF7e2tqa6Oho1q9fj6enJ1u2bPmq1LeBgQFLly7Fz8+Prl27cvbsWUqUKEGzZs3YtWuXxjC2aNGCOnXqMGrUKH7//XfGjx//2eOWKVOGJUuWyJmhqpKpNJb6SN/4+Hh53gL0kBqbV4YMGXjx4gX58+dnzZo17Ny5k3Tp0kmDJAax6zN+Cfi+8BBTk9DQUBwdHTXXSD1/R0dHmYrTf40QtW6l1qmFI+Dl5UVCQgLlypUjLCxMRt76qUvhhJmYmGjoDlXk9rx58yQ4RADGjIyMmD9/vsbAqucnFho1MyD+iojhxIkThISEcPXqVfLly8fFixflMVavXs3ChQsZNGgQBgYG5MyZk7lz57Jw4UISExNZsWIFPj4+tG/fnlatWv2fj5A3b97MpEmTUuxPSkqibdu21K5dm/bt28u+9Li4OHr06EFCQoJcAOHTPOKePXsyZswYvL29JXf4uHHjJG3h10jmzJnZtWsXK1euZObMmTx//lxGXpUqVZKvMzQ0ZNiwYaxcuZJRo0aRIUOGVJ1wQBrKJUuWUL58eZycnAgNDZW/vZi/qwKthEEWxjI1tj6xBqjAzKioKObMmcODBw9Inz4979+/J2fOnLx580YCjABpBNWoXBCg6IMuBSBMNf6ColYYdlXU94vn1RqsqE2Lc7hz5w5Lly6lYMGCZMmShdOnT/P27VuGDh1KxowZNccWBjIsLEzW4cV5itTzgAEDNNfR3Nycfv36aQbnqKUq9ZqKNUKsD2oaf9y4cWTLlo1Lly4xe/ZsBg4cCPxnjG+ZMmXInDkzVlZWtG7dGgcHB/z9/dHpdHTt2hVHR0eGDx9OwYIFv+pe/Jz8FIMcGhpKhgwZUuyPi4tj27Zt7Nu3L0WKsVmzZly6dIkLFy7IdObKlSupVKmSTF3AJ4Xo2bMn9vb2zJ07V6ah/0gMDAxwc3PDzc2Nxo0bs2/fvlRfZ2hoSIYMGYiIiMDOzo7AwMDPpiXev38va9N2dnYamkz4tBBFRkZqWK5ELQXQKKE+A1VycjKurq5MnDiRc+fO4eDgwI4dOzA1NSU5OVkOs5gwYYI0OFZWVpo6rbghBQG9qvi5cuXi2rVr1KpVS2Ye1HO5du0abm5uGjYxfepK/ZSY+B+gf//+jB07lpIlS0plSUhIwMvLi927dzNkyBB5nUQqXhhLMZpOnMuIESOYNGkSSUlJKRyk1atXa9oY1IVUjZD1PX3x/65du6hUqRKJiYk4ODjIejlAx44dqVOnDgMHDuT169fEx8ezePFili1bRrZs2YBPaTeRURGMTf9X5XN6f+DAASpXroy9vb3GyTMzM2PlypXUr19fDmKATzPIN27cqNG7HDlysG7dOpo1a0bNmjXJnj37V52Tvb09w4cPJ1++fLx//z5Vik345FzPmDFDMzwlNRF97S9fvpQcxvr6odaOhfMsujhUpi51Ypv4m5iYSKVKldiyZQv79u1j7NixlCtXThrqnTt3sm/fPslZLYya0HlBp2lmZibT6EKXDA0NNYRBqi6LHn99+kp9/Vf1XHy++PvgwQPWrFnDunXrsLOzk8b+1atX9O7dm8mTJ2uupYrfEH2+8J91ccmSJXTu3BlfX1/N+0aPHi3fq2JZ1DZFweiVGq4mMDAQExMTnjx5QpUqVTQDJYyNjaVzNmHCBI4cOcKTJ09ImzatbLUEePbsGX369GHcuHGULVv2q+7F1OSnUGcWKFCAS5cupdh/7NgxGjZsyOXLl1OdiNOlSxdNP/CePXs+y0XbokULjh8/nmqD9h9JXFzcF98nJpe0bt1awuz1JTExkZMnTzJq1ChCQkI4e/ZsqkZLKLDwelUghz47lnivUNR06dKRJUsWjh8/Trdu3SR4ISIigkmTJjFmzBg2bdok6d30ASJqZKjvjXt4eLB06VI5LUp1BN68ecPjx4/Jnz9/Cu9d/aumsNW029GjR6ldu7Y0xup5TJo0ib1798qUH6AxkuKYIpOQkJDA+PHjGTt2bApjvHLlSo3HLtJRamuXeCxEPxOQnJwsU5fnzp3TIKKNjIzImDGjnOcaGhrK1q1bpTGGTw6it7c3QUFB/+dpMgsWLMjFixdT7N+yZQudO3fm4sWLFChQQPOciYkJFSpUkO0mt2/flqxv+mJgYMCQIUNYtWrVN5+bvb29HAKTmrx//x47OztMTExIly4dT548SfV1586do2TJknTo0IGjR49q6DBVHVMnqUVHR2vAV6q+q+BD8djd3R0fHx+qVatG8eLF0ek+8c8/ePCAzZs3M3HiRHx9fSVPwecAXKrei2NXqVKFHTt2aJx/4Qhs2bKFWrVqpQgU1O+lDq1QddvQ0JBVq1Yxa9YsbG1tNQbQ2dmZESNGpOB6UNP0wpiqbaEdOnRIYYxHjRqlST3r67mKERGOtX554OHDh5QqVYrcuXNz8uRJ5s2bx4IFC+RnVKlShRs3bvD27Vt27NiBk5MTo0aN0rTQ5ciRgy1btjB27NjvskFCfkqEnDdvXgICAnj27Bk5cuSQ+8PCwkiXLh2zZs1i0aJFKd6XIUMGjQctFtrUxNDQEHt7e+Li4jQL7tdIqVKlOHPmTKpTOp48eUL69OkxMTGhVq1aLF++nAMHDmhqhQKk0r17d4oWLYqlpSVv3ryhRIkSKZRL/C+mCokWBFFvEcAuFXwk6jripnd3d6dDhw7Y2dlJ6H6PHj2oUqUKgYGBbN68WdZ+q1evToYMGVKkcURrglDAdOnS4erqSpcuXRg1ahR58+YlKSmJkydPMn/+fKZMmaLhc9X/C2jamlQlPXjwID4+PtJzFWlzkfKqWLEie/bsoXDhwkRFRWnAaCoqOzIyMkXUOXPmTEnIL+rXKnvY5yJkERUYGhry9u1b3rx5w8ePH7l37x4TJ06U7wkPD6dPnz707NmTrFmz8uzZM9q3b0+BAgXInDmzhrRAlf79++Pr68u8efO+6V78J0m3bt3o168fFSpU0PwOkZGRhISEEBgYiIuLS4r3qXp///79L7a6lSxZUrN4fq1UqFCB8ePHM2rUqFTLOKtXr5a0jqNHj6ZHjx5s3LgRJycn+ZrHjx8zduxYtm7dyrlz55g5cyZhYWHyHtMfwqLOGVeBj6KsJPpjY2NjMTAwkA6otbU1zs7OJCYm4uHhgZOTEx8/fiRr1qysWrUKOzs71q9fz4kTJ3j//j1OTk5UqVJFM+VJACVFZk5k6Vq2bImXlxchISG0bdsWGxsbwsPDWbt2Lb///juTJk3SBBDqkAnh+KsANKG7wrF3cnLSEA6p9enZs2dz69Yt4uLiJEOhum4IRzwmJoYdO3bI6969e3dJl6mydAlgptr2pLY6xsTEyOBEp9Nx7949IiIiuHXrFteuXePDhw/yM0Tpy93dndDQUN69e0ebNm1wcXGR6Wx9sbW1pWjRoly/fp0SJUp88z0JPxFlvXDhQjp27Ej//v1p1KiRNEAjR47E29s71clLFy5ckNEK/CeS/VxtLjw8/LvmnQ4YMICWLVuydOlSDWXmu3fv6NGjB0uXLgU+Gf1NmzYxZswYFi9eTMmSJQkLC+PevXv07duXJk2ayFSrAG+Im1jsF3VVnU4n2wIsLS0laYbq4amGS/wNDAxk8ODBTJo0ieDgYPl6QUDh5+dHhgwZ6NmzJ1FRUcyaNQsbGxu8vLwwMzNLkcIRUbqhoSENGzbExcUFHx8f3r9/T3JyMqVKlcLHxwcbGxsZpepPfxEIblVUTzcuLg4bGxtNBK1G1HZ2dpLJJ7VNlX79+mnaKoQxVvl5hWLqM4ep6XsTExMuXbok+WtVSUhIoFixYpiYmGBnZ0flypVZs2YNL168IDw8nK1bt/Lbb7/J4RepiYuLC69fv/7me/GfJFmzZqV58+a0atVK0yZoZGSEp6cnu3fvTvV9ly5dkix66dKl48KFC5/9jLdv32oIY75WjIyM6N27N926dWPZsmUa7Im/vz83b96U94aLiwsLFiygd+/eWFtbkz17dh48eICBgQHr16/H0dFR3mcRERHSoRZOtKivCnSyYMjTN8rCmRSi3v/p06dn8ODBODg4EBwcjK2trTT0O3fu5P79+0RHR1O8eHEePXpEnz59aNOmjSz3GRoayihdtP4IAzh9+nSOHz9O7969SUr6NAO9YcOGeHp6aoiM1E30YqskOurfuLg4rK2tNQ66iNDF9xIZPlXH1TKTeqzatWtjZ2cnEdz61MLCKIvrq6ashTMhwG0LFy7k3LlzKe6HXLlykS1bNpKSkihXrhzW1tYSO1SpUiWmTZuGp6enROmnJkLv/+cNctasWdm9ezdr1qzBzc0NAwMDMmfOTMaMGVONTBMTE5k/fz7r1q2T+0qWLMnZs2c1bC1Cbt++Tc6cOT8LvviSZMiQgfXr1zNixAg5DOHFixfExMTg4+OjGY5gbm7O7NmziYqK4tGjR1haWmqIDu7evSuHK4ibTr1x1ZSRMM6Cp1ZA8MX4NdXTE+/NmjUrd+/exdHRUd6AIkru1asXZcuWpVmzZhKk0qRJE7Zt28bs2bMZMWKEjGoF6ENFO4pa8oQJE1Kkz9XUkboJNCX8hy5O/Z6iheLcuXOSXESAT4Rz8NtvvzFq1KhU0/vqBmjSceL6qUZZnzpTKLyaOjQxMeHo0aOpzsP28vLit99+Y/369Tg7O/PhwwfatWsna8IbN24kS5YsvH37Fj8/v8/eUw8ePCBLlizffC/+06Rdu3YUL14cHx8fXr9+jU6no2jRouh0ulSRqffv3ycuLk466FWqVGHy5MkMGzYs1S6KFStW0L59++86N3d3d8zMzHB1dSVPnjzY2tpK/ulNmzZpdK9gwYLs3r2bt2/f8v79e5ydnTX18QsXLuDo6IiVlRXx8fGSuU3ce+JeFwZDOOKqUVYdSlX/4NOs4MTERCIjI0mTJo083vnz59m7dy/58uWjR48eGBoaUrNmTdq1a0fv3r1xcHCQBkQdBqH26iYnJ1O9enVq1qwp96nAU3VIjVgHBNGPCrhUy1fW1ta8e/eOhIQEyROv1so/fPgge5710+jqPnF+6rUR10qdjCWuoTD8wkHSd8JTQ/CbmZkxceJE3rx5w7x58zA0NOTEiRPMnTuX4cOHM336dGbNmoWxsTFZsmTh4cOH5MuXL9V76sGDB58dqvE18lOJQezs7Bg0aBCDBg2S+54+fUrHjh0ZMGAADRs2xNjYmOvXrzNx4kS6d++uQf4OHjwYT09PfHx8NGi2J0+eMGDAADlI/nskc+bMbNq0iY8fP/LmzRsyZMigSU+pEhERwfr16zly5Ag6nY7cuXPTq1cvXFxcCAoKAj4Nqihfvrz0koW3ptZpxowZw6JFi2RbkMoPq8/HLGrJzZs3Z+rUqVSuXFlDluHn50e1atU4efIkVapUkUYyKSkJT09P/Pz8JKuWmmISk1xURKeawhOfKxRUTXlZW1t/Fs2sprNbtmzJmDFjKFeunIzSxeuuXr0q21gE4EV9r6qgojdZH8WtXztS+b5VQgLx/vj4eDmar2XLlrRp04YbN26QP39+3N3defToEb179yZDhgwULFiQzJkz06JFC/z8/CRlZ5kyZRgzZgzh4eGpctPOnz//s/Ss/9ekUKFCMsskxNfXlzZt2uDt7U3+/PmJj49nz549rFixQlNbFJFsly5dWLZsmeQn0Ol0bNq0iXfv3qU60vNrpVGjRjRs2JCnT58SHR3NmDFjPsuBcP/+fZYuXcrTp08xMDCgfv36tGvXjjRp0hAUFCTHHWbIkCEF17wolxgYGLB69WpGjBihMcjW1taaIRIiayVSruXKlWPfvn00b94cQOr+okWLqFatGh8/fpSGXAC2JkyYwLhx45g8eTI6nU6WceLj4yWns9B54eyIzxT7VS5r0c2grk+qUdUfKyn6dzt16iTPSaTNfXx8aNasmcy2CX1XsStiA1LUw4UjrnLzqylrNTMmImR1jVq9ejX58+dn7Nix7Nu3D0tLSzZs2ECdOnWoWLEitra2vH79mvHjx+Pn5yfXxC5dujB//nyWLVuW4v4IDQ3l1q1bmp77b5X/Opd1zpw52b17N76+vrJJPGfOnMyYMSNFfSl9+vRs2rQJLy8vQkNDyZ49u+Rc9vX1TTXt/a3i4ODwxRTYq1ev6NixIz179mTXrl2YmJhw7do1RowYQZs2bXB3d2fw4MHMnTuX6tWr4+TkpFFM4a0lJCQwf/58qYTq9BEVhKBPR5khQwbKlCnDoEGDGDVqlHRYtm7dKsFdAjwhPtfIyIi6devy22+/UaNGjRTpZDWdK9LqarpXrfuqbQVqFK9GoqpiJSQkkD59elq2bEmrVq3o168fFStWJDIyki1btnDkyBEWLFigUUz9TSxmgo0rNRpQFd0pUlNr167l/PnzmJmZERcXR7FixYiLi6NTp068f/8ea2tr1q5di5mZGUuWLGHkyJEA5MmTBz8/P54+fcrz58+pU6cOERERmlSVgYEBEydOpGXLlvj4+JArVy7gU310xowZZM6c+YdbIP7J0rlzZ0qXLs3ChQt58+YNAPXq1cPPzy9FXd7d3Z00adLg7u5OxowZsba25u7du1StWhVfX98fbi8zMDCQv9/nZMuWLezatYuxY8dStGhR4uPj2b17N02aNGHDhg3MmDGDCxcusHbtWiZNmqTJOgk9MDMzw8DAgIEDB8rpRgL7IAyyPloYPq0brVq1YtiwYcTHx9O0aVNMTU2Ji4vjyZMnREdHs3HjRmmMhM5kzpyZyMjIFN0ERkZGsnNBnJc6TU5EvmINEVGniYmJjPLF+iTWCHWIjDDknp6eTJo0Sa6Zzs7OPHz4kCVLluDk5ET58uWJioqSr1fnG6uO+eeAamotXqSsnz17xvr16wkKCpJrZ/78+UmbNi0lSpQgY8aMNGzYkM6dO3Pv3j0KFCggHbB27drRunVrrly5QnR0NG5ubgwbNkzD6Fi8eHFsbW2ZMGECQ4cOlfTKjx49ol+/fkydOvWH7sf/ukGGT5Hz4MGDNXNoPycZM2ZkzZo1hIeHExgYSLp06bCzs/vrT/L/S79+/VixYoVGgU1MTMiZMycDBw7k0qVLtG3blrlz5/LkyROyZ88ulVLUek1NTTWcyapBUXt3TUxMuH79Onv27CE4OJjcuXPj4eFBu3btuHjxIkOHDpVR5cuXL1m2bJmGKEFF+wlgWGqiKp34XNXQgpZVSzXIqvFXDbJ4rThG9erVKViwIFu2bGHx4sWYmZlRv359li9fDqBRSBGF6wNIRB1eba8S10zdl5CQQN++fenYsSPDhg0jMjKSFi1aEBkZia+vr/zMjRs3ypqdOK4qOXPmJGfOnMAnRygsLEzjrJUvX57Zs2czZcoU3r17JwkhOnbsSIsWLb77Hvu/IoULF04ROX9O6tatS926dXn79i0xMTFkzZr1q4mAflRevnzJli1b2LNnjzRAohzl4OBAxYoVmTp1Ku3atWPKlCmyt1itX5qbm0vnVwUeCqMinHELCwuSk5M5dOgQ58+fBz4NVKhTpw6zZ89m9+7dtG7dGhMTE5lSXrFihQbxq+r950p4QpcEz7xKOyn0WTjpIjJWa7/CQKopa5WRTOiTt7c3N2/eZNq0aYSGhpIxY0Y8PT3JlSuXZriG6MtWe7aFcdZnH9M3zGLNvHPnDsuXL5fMY0eOHGHLli3s3r1b4jmyZcvGuHHjAAgJCUnRC21kZKRpWxKzjlWZPn0627Ztw8PDQ9bmM2fOzPz58z+byv5a+Z8wyN8jNjY2P30k3IMHD3B0dJTGWKfTMXDgQGJjY+nVqxeVKlXC398fb29vMmbMyMKFCylbtiwWFhYpBj2kZlTU/w0NDRk+fDhOTk4MHDiQTJkycePGDaZMmUL16tVp3rw5ZcqUkUbQz8+P+/fvU7ZsWY1CCm/z2LFjjBgxIkWd1sjISOMUiAg0ISEBf39/2XPn6uoq0drCgKtesmqQxUJkZGQkFyGd7tNUqn79+qUw8irXrEqWIji+xaaP5FRpBlWlXbFiBV27dpXgwW3btnHp0iWqVq2KhYUFMTExLF68WDNlxszMjA8fPnx28MOjR49Sbb0pUKCAbMX4EuDwX/lz5EepCb9HBEOfMMavX7+mY8eONG7cmHnz5jF06FCePHnCnj17iI6OZtGiRfTp00cSVwh0r3CKVYOillssLCwICAhg3LhxeHp6MmfOHAwMDNi/f79kFnR3d8fT01PqYL9+/SSAVKSEhV4FBQXJlLJIA4vIU8VdCByLsbEx79+/59ChQ0RFRZE3b15q1qypYdMTuqYCJ0EbIYvxhOL7FixYkCJFimiMvEiBiz5oddCOapDFwB21pUpdO8W1NDIyYuHChaxbtw4HBweMjY0ltsDPz48mTZoAn1ptBXYhd+7cX0ToP3z4MIXBhk/OWMuWLWnZsuWfrvM/pQ/5nyK3b9/WcC4vXryYnDlzsnz5cooVK0a9evWIiIjAz89PslH16dOHjx8/pmhGV9sFhFFTGaZWrFhBjRo1mDJlCvny5cPGxobKlSuzefNmLl++zJ07d0hOTpbcuA0aNGDr1q28ffs2RZR54sQJzMzMSJcuXYp+Q32QlKmpKefPn6dr165YWlrStm1bihUrxtSpU/Hx8ZFRtEqNef/+fWbOnCn7oAUDkdhUYn0BDlGnXYktNjZWs081zqIGpN9Spf+/kZERly9fpn79+hgbG3P+/Hl69+4NwKxZsyhQoABGRkYpCCE6d+7M3LlzU/3dT5w4Qb58+f6wne5fY/zPlFu3bkm91+l0Epndv39/nJ2dqV69OkWKFGHfvn24uLiwefNmli9fLrNIqhOuzxYlNmHgJkyYwIoVK2jXrh1OTk44OjrSsWNHlixZwoQJEyTuIyIigoSEBDw8PJg2bZqcHKVu06ZNw8PDQ5Z+RKYpOTk51R79WbNmsWLFCipUqECrVq1kO+WDBw9SAKqMjY05fvw4U6ZMYcaMGVy5ckXD1AXIGewREREp5rJHRkbKWdARERGSk15f90HbTqkS+qhUntevX6dChQqy53n48OHy91u7di3W1tYUL15cU3bKkCEDJiYmqfIF6HQ6pk+f/lkqXiF/ts7/a5C/QWxtbQkMDAQ+RXd79+6lb9++8vmgoCBsbW0xNDRkwYIFlCtXjqdPn9KrVy9NnVU1Juo+8TgxMZELFy7IlIjqHRoZGTFy5EjWr1+vAXsJko0uXbqwdOlS7t69y5UrVxg9ejTr1q1j3LhxGg9ZfZ/6GU+fPmXTpk1s376d1q1bU6hQIWrXrs2aNWswMzNj+/bt8vXJyckMGTKE/fv306ZNG0aPHk3WrFnp3bs3Z8+e1TgeIsrVb5lSa0appanFBqTaL6rfIiUQmeJ6Fi9eXPP6q1evUqRIkRTHql+/PgkJCQwfPpz3798Dn4Zc+Pr6Mnv27FQpIP+V/xsipjvBJzS1/sIu9N7Z2ZnOnTvTpUsX1q9fz+bNm1Povf4aoBqb8+fPU6VKFTJlyqQx3EZGRmTOnJly5cpx6dIl2VaVmJhIhQoVyJkzJx06dODw4cM8ePCAQ4cO0b59e/LmzUu5cuVSMH+pw2mEYVu+fDkFCxZkwYIFVK1alUKFCtG5c2fWrl3LwoULCQkJke8RU7Hi4+MZMmQIvXr14uHDh/Tq1Uv2EwuHQ6SlP9eloU5eSw1DIqJf0Bo/tTXKwMCAN2/e4OLiIv8XnP/wiVAqIiJC0y0jZN68eQwaNIjt27fL7o+XL1/Ss2dPChQo8MUe+L9C/rYp6/+GVK1alRkzZjBkyBACAwPluDIhvr6+kgI0S5YsGBgYsHDhQjp06MDNmzdxcXFJNbLTV9KAgADy5csnlVHUakS6OUeOHISGhsr3ilpttmzZJEGAmHrUoEEDChUqJIETqgEUYDJVQTds2MDYsWNTtDUkJSUxaNAg3N3dad68OaampsydO5eGDRvSrFkzef6ZM2emTp06tG/fnly5cpEuXTqpbGqvMWgBL+qgDcH5rc6MVee4qrVD/dYoQ0NDYmJi5LWysbHRoEgLFy6Mg4NDCs/WwMCAmTNncuzYMQYOHEhkZCQGBp/oVXfv3v3NZDP/yj9HWrVqha+vL15eXpw7d4569erJ5wR5zogRI4BPwLTQ0FBq1arFL7/8gqurawrCHKFXarRnZGTErVu3aNCggdRFMTzCwODTfPOqVaty/PhxydYVFxcnmbzq1q2Lv78/J0+exMnJicmTJ2NlZZWiTpucnIytra1srRSEJDdu3GD48OGyZCVIPNKlS0ffvn3Zs2cPHTp0wMDAgKlTp7J8+XLpOMCn9O/NmzeZPHkyM2fOlIjymJgYQkJC5HcWOi8Mski367dWie4PUV8XWQQhAn0t9D5Dhgw8evRIlusaNmzIvn37ZD+7j48Pb9++TfHbpk+fnr1797J27VqaNm0qCaZ69OihyYb+LPnXIH+DmJqa0rZtW/r374+3t7eGGOLQoUPcvn1bAgbgk7K2adMGHx8ffHx8vpq1ydzc/IvD0sVNLSQxMVEzsrBatWrUqFEDQPYQC4MsjLIgHlHBZMLTLFCggCYlJG5yMzMzcuXKxbt370ibNi33799nypQpGgCYqKkMHjyYrVu3MmDAAOmJi3NRe5X1a8giXSV4eAVHr0iHCaMs0mZq3UxclyJFinD69Glq1qwJfDK26dKl48OHD/Tt25dXr16lel2FZ6161//Kv1K3bl2WL1/O0aNHMTU1lXPOBXiwc+fO0jAJWsw5c+ZQokQJHj58+NV17z/Se3U6lPgsUac1NTWlZcuWUgcTExNT1GljY2Nli5AYjWpiYsKjR48oVaqUBttiZGSkaV9asWIFRkZGnDp1ikaNGpEpUyYNeVFiYiJFixYlffr0vHjxAicnJ7keifS0em5qG6VwyNWyliATEnVuQaYizlscR6Tgy5Qpw8qVK+natas8JxUPcvny5VRJgADSpElD3759NdnO/5b8a5C/UTp27Ii5uTmtWrXi+fPnjBkzhuvXr+Pi4qKZTHX58mVZr1y8eDHlypVj165d1K9fX/bkiahNvzE+Q4YMBAQEEB4ejr29PYDGuzx9+jTFixfX9OcKg6yOWYP/AKdU1jCVfEAY5AMHDrB3715u375N8+bNyZ49O8OGDUuR5klO/jTU+9GjR5QuXVqTdjM2NpZKXLZsWebOnZui3mtg8Il7W6TNVSSqCuwSSqqiUgX4RN9rFghQEQl369aNvn37YmRkRKVKlTA0NOTkyZMULlyYBQsWSPTqv/KvfI0YGhqyZcsWRowYwZ07dwgJCeHYsWPcuHGDnj17yt5g+NQe1alTJ4oUKSKHDUyaNEmyVIkIVOiySpZRs2ZN1q1bJwl0AFnCSkxMZPfu3XTt2lW+PiIiQgIw1XYltdNBGLnExERsbW1la5WFhQWxsbGsXr2a8+fPExERwdWrV6lbty59+/bV9GKLaNTIyIirV6/Sq1cvTRSvAkRr1KjB9evXadiwoUbvBXBL6Lw6YEcEFAIMJshPRH1bRPP67GaCcER8/y5dutC7d29mzJhBxowZyZMnD4MGDWL+/Pk4OzunStP6vyb/GuTvkJYtW+Lh4cHKlSvZu3cvmzdvloYTPrHqjB49mpUrVwKfSCT69++Pj48PlpaWFC5cWNPqoKaIhCJ17tyZwYMHs3jxYukV63Q6Xr16xdy5c5k/f76GQEOkflQUNGhJCUQfr9p3aGJigre3N0lJSfTt25dffvmFVq1aYWVlRZ8+fZg+fTqFCxeWn/H8+XMcHR0JDg4mNjZWc11UdHdSUtIXAQ9i6pVYXFSPWa0piYZ/1SCrwBIVNCOieQsLC3x8fFi6dCmzZs3Czs6O0NBQrKysaNCgAba2tn/avfCv/N8QCwsLFi5cSHh4OO3atSNLlizMmjVLc48fP36c9+/fU6xYMQAmTpyIv78/s2bNkkZMUL4KdLN6/2fOnJnExET27t0rOwREunrPnj0YGhqSMWNGqTvC4AoQZWppYYG+FgQawshFRUXRp08fGjVqxPz58xk/fjwbN27kwIEDtGnThg0bNmBkZERSUhLHjx+nZMmS6HSfJroJsBVodR4+4S4+146WkJAgJ06p1L3iXEW5Sn84hOBmsLKy0lBninZHQXZSpkwZLC0tGTlypMysvXnzBp1OR4cOHf78m+IvkH8N8neKoaEhPXr0wMHBgebNm9OwYUOyZs3KjRs3+O2335g5c6ZmCtCcOXMICgpi3rx5DBgwgIoVK2qI5VW0dUJCAhUqVCA6Ohp3d3cqVapExowZuXXrFs+fP2fy5MnY2tpKhROGTZyXGrWClm1LpKnFOLY+ffrw7Nkzunfvzo0bN7h58yZnz57l6NGjrFy5kl69erFjxw4SExOZNGkSLVq0IDk5mXz58jF9+nRNRK56+wcOHKBixYoaxh0REQiPWtSKRR1ZNcqixp0aGYC4Zmoft7GxMeHh4bx69QobGxuyZcvGsGHDMDQ0JC4ujoCAANzc3H5oEsu/8q/Y2NiwY8cOyRooasQHDhzA3NxcM43I1taW48ePU6VKFZYuXUq/fv2kIRF0j+IeF1mu0aNHM2/ePLZv3y4j5ZMnT5IpUyZpaNRMksBNCFIPYcR1Oh1WVlbExcVJDgShP/fu3WPIkCGUK1cOGxsbNm7cyPv375k9ezZjx46VYMb27dsTEBDA8uXLmTlzpozi9+zZI3nJhT4JPT548CDDhg1LQYMpHouOC5UgSei9KAWkSZNGw8mgEicJx0IYaRMTE169ekVERATOzs4ULlyYGTNmyM88deoUgwYNShE8/K+Kge4rVqjw8HBsbW0JCwv7qb2/SUlJbNy4kR07dsiUZN26denevbtkSPlfkISEBI4dO0ZgYCC5c+emQoUKqUaHiYmJ1K1blydPnrB8+XLZIiDSruqAbUDWiS9fvkxISAg5c+bExcVFepbqODf1BlX7dUHLEAafRgSK1h9TU1NmzJhBzpw5JXisXbt23Lhxg06dOnHmzBnKlSvH2bNnKV++PO3bt5cznHfv3s2bN2/w9vbWeOcvX76kV69eLFmyRNbcYmJi5LD2sLAw2e4QERGhYekSf8WiZW1tLf9aW1tLD1n0TVpYWBAZGcn06dOJiYmhYMGCBAYG8vz5czkn+8SJE2zatAlzc3MuXLjwXcMI/iz5b+nS98h/61zfvXvHwoULuX79unTIevToQZ06dX7aOXyNvH//nhMnTpCUlES1atVS5eaGTz3shQsXpkGDBpI/W9RHRclINaQ6nY6wsDBu3LgBQIkSJSRHdkxMDNHR0XJGs0jlqo6pGiWrY16trKx4+fIlCxculFG3cGzfv39P1apVyZs3L82bN2fp0qXUqVOH06dPM3LkSLJkySI7GPr27cugQYMoW7asZq3asWMHly5dYvDgwbIOHBYWRkhICKGhoYSGhkrdF864CCrEWubg4IC9vT02NjbY2tpKvgkLCwvs7OwkIM3S0pIbN26wevVqcubMiYODA3fv3sXKyoqBAwdy584dTp06xbZt2+jfv/9/fera1+rS/2yEnJSURPv27SlXrhw7duyQ5Bp79+7F3d2d7du3/88saCYmJtSvX/8PX2dsbEznzp1p27YtHTt2JGvWrNSrV486derg6OjI06dPWbNmjWyxyJAhAx07dqR06dJyXnBMTIw0XMJLVtPQItpOSkri3r17JCcnU6BAAQnAEAQbp06dolq1apw/f57cuXNLg2pqasqmTZuoXbs2zs7OJCcn8/r1a2bPni0XBdET7O7uzvr162nevDkNGjQgXbp0XLx4UYK9BAlHam1OKiBD0OeJ7yWmR+n3aovFWe3Xjo+PZ8CAAUycOJESJUrIxSgkJISaNWvy9OlTOYZy0aJF/1Vj/K/8sTx69IgePXowadIkSUMYFBTE1KlTuXLlCl5eXv/tU5Ti6OhIq1at/vB1efLkoVq1auzZs4fbt2/j4uKCq6srhQoVwtzcnGPHjrF//34ZdJQtWxZPT08qV64sxxhGRkbKTgWR9hUMW+rghZCQEJklyp49u9R3AbBatWoVXl5erF+/XuJIjIyMyJIlC9u2bWP58uWEhoZKqtg2bdpI51/UiSdPnsy0adPYsGEDNWrUID4+nkOHDuHo6MiAAQNStDSprFtqiS0sLExG8DExMXL+tMrXoE+LK/7euHGDrVu3snbtWjlJLjExkRMnTlCvXj0iIyMlqdLMmTN/wt3w58ifZpBv377NrVu3sLGxoVatWhoqt++RdevWUb58eQ3yzdjYmObNm5M2bVomTZr0QyTe/y1p3bo1NjY2XLlyhZs3bzJx4kQmTpxIvXr1SExMZPLkyXIE5IMHDxg/fjwtW7akQoUKshVIrb8IcJi4UYXSnTlzRnqwPj4+FC1aVF5LQ0NDDhw4wLRp03j48CFv3rwhV65ckv5Op9NRs2ZN7OzsyJw5Mx4eHpJxSBhkIW3btsXDw4NTp04RGBhI/fr1GTp0qFQ6fTpMFcihKmh0dDTJycnScVDBYGq/pGqoTUxM2Lp1K+3ataNEiRKSx3fatGkcOHCAp0+f4uLiwrVr1/6nMir/FElISOD48eN8+PCBvHnzUqpUqR8mShgyZAgbNmzA2dlZ7kufPj3z5s2jU6dO3Lp1iyJFivzoqf902bZtGxs3buT58+f4+/vTq1cv7OzsKFSoEJUrV2bVqlVYW1uTkJDA4cOHGThwIHPmzMHU1FSCnUSdNTo6Gjs7Owl2Ero5ceJEdDqdzBI9ePCALl26ULx4calncXFx5M2bl8DAQGn8RM9/kSJFePnyJRMmTODgwYOUL19eZrXEjGbBcT158mTevn0rsxijRo3CxsZGE8XrU2IKh1wY6ujoaNm+aWNjI+vg+kQ/KomKMNK+vr74+vqSNm1ajI2NefbsGaNHj+bChQsYGRkxZMgQZs6c+Vnq0P9V+eGzffnyJY0bN2bFihUYGxvz4sUL3Nzcvpqj9nOya9cuunTpkupz1atX5+bNmzJq/DuJgYEBrq6uTJgwQaKaGzRowOHDh3ny5ImGNats2bL4+vqycuVKDaerTqeTrUz6HK/z58/H1NSUPXv2MGbMGLy8vNizZw+5cuVi4sSJmvYMOzs72rVrp/mtRJrLxsaGd+/e8fTpU3Lnzi2VWW30F6w6ADVq1KBJkya4uLjIFobUXqv2RapsYgJwpoK21D5MlZ5TRW+ePn2axo0bSyMteMRLlizJvn37qFSpEiEhIf+V3/qfLNu3b6d+/frcuXMHExMTdu7cSb169bhz5853H1NQFarGWJVhw4axYsWK7z7+f1NsbW3p06cPs2bN4saNG+zduxdDQ0POnj3L27dvsbGxwdzcHCsrKxo3boyXlxcLFizQRIwiBazPfZ+UlMTw4cMZMGAAvr6+DBs2jJkzZ7Jhwwa2b9/OjRs3JI++AHY5Oztz69YteX5CF42MjNi9ezdVqlSRjn9ERARhYWFERkbKyU9RUVE4ODhQp04dqlevLsc6CpS0+ldlD9PvphDpezU1LYyyfr+20PG3b9+SOXNmycoVEBBAxYoVuX37Nu3bt+fSpUs8fPjwb2eM4QcNckREBB07dmTBggX4+Pjg6elJ3759OXz4MM+ePWPNmjXff2KGhp+Nsg0MDHB2diY0NPS7j/+/IoUKFaJly5ZMmzYNMzMzGjVqJNNM0dHRWFpa4u7uzpEjR1KQiugz/gQHB/P48WP69OmjYckyNDSkTZs2JCQk8PLlS3Q6HYULF+bcuXOUK1eOqKgo5s6dK9NSSUlJHDlyhDVr1jBs2DANGEuf9edL7Fuf25faiDV9alF1E6KSiqj7TExMePLkCU2bNsXf359169axdu1aXF1dSZ8+vay3/St/jhw8eJBDhw5x+PBhhgwZgqenJzNmzGDDhg0MGDAgVQKGr5EnT558MfrNnz8/L168+N7T/p8Rc3NzmjRpQuXKlVm+fDmbN2/G29tbo7OlSpUiICCA2NjYVHVdjST9/Pxo27YtBQsW1OiNtbU18+fPx9fXF0NDQywtLQkKCiIxMZFRo0YxbNgwLly4IDEmQUFBBAYG4u/vT7NmzTR6qp+C1neq9feJx/qZMP21Q6XYVWl8hZ6r+i4eR0RE4ODggE6nY+/evdSoUQMTExOuXr3K7Nmz/xbtTZ+THzLI69evp2fPnuTIkUOz38DAgOnTp7Nx48bPThj6IxFI289JUFCQZizW31keP35M7dq12blzJ+/eveP48eMyPWtgYEDBggV5+fIlQApjrHqQv/zyCy1atEgRNQtF9/T05MCBAyQlJeHh4cGiRYuIjY1l9uzZWFpa0qRJEzw9PalduzZ37tyRPNpqqkl4zCoXteo1q1zVIlJWeWr1KfREhKyiQNUB5OrgcXVouXhsY2PD7NmzKVOmDHfu3GHnzp20bNlSXtvff/9dg3b/V35cfHx8WLx4cQr60QwZMjBu3DiWLFnyXcd1dHT8osEVhDT/FElKSqJ79+4MHjyYbdu2ybYikabNnj27hpFP1XfVeJ87d44GDRqkGEVqYmKCra0tGTNm5P379yQlJVGjRg3WrVuHvb09K1euZOvWrTRs2JA2bdpQvXp1smXLxpw5cyQTmMhwiZpvWFiYBGeltqnALTWiFuuByldvamoqx04K1Ll4LFLY+kx8Op2OzJkzc+vWLdq2bUvbtm0pUqQIv/32m2w9ffbs2d8WK/JDBvnw4cO4ubmlfmBDQ8qWLcvNmze/69g1a9bE398/1efu37+Po6Ojhkrt7yxiISpYsCDlypVj4cKFMiIFOHr0qIahR+zX58OOjIyUC5ZQXDXVmy5dOqKiooBPLDZt2rShdevWnDp1StIDVqxYEXNzc/bu3UvWrFk1BlSluFRJ4vUHRoh0lSCVF0qZGnl8fHy8rAvpT75R2xysra1lxkSNrg0NDZk+fTo9e/bk3r17uLu7S0/69OnT5MiRI8V83X/l++Xdu3c4OTlpiCNUqVSpElevXv2uYxcvXpzr16/L9hd9Wbp06d+mn/RrJDk5mfj4eDp37kxwcDAbN26URic0NJTbt29L7IPqjIKWw10Q/Ij1QOWnNzAwIG3atBKj4eHhwfXr1xk3bhwRERGMHTuWiRMnYmtri5ubG1OnTpUgK1HnFTobEREh0dIhISGEhIQQHBwsN4GmFultsYljqGuEyP4J/RYtoPpG2cbGBlNTUwAN7e/t27c5d+4cfn5++Pv7S25xnU7H1KlT6dmz58//Qf8E+SFQl06n++JMUtEH9z3Sq1cv3N3dcXBwoHLlynL/gwcP6N279w+lw//XxMPDg86dO9O0aVOGDBlCixYt+PXXXylbtiyXLl1i9uzZwCdgiJubG66urjJ7oLJ85c+fn99++43KlStLMhC1leLChQvkz58fnU5HfHw8VatWpWDBgmzdupVFixZhYmJCgwYNWLVqFYBm/KHqKQtwiRqBg5ZNTNSi9evOosVBKLwYr6Z696I3U42QVa9foMhPnz7Nzp07qVOnDjExMQQEBJAzZ04iIyPZuHEj+/btY/v27f+dH/UfKnFxcV8EyAlH8HvEwMCA0aNH07p1a1atWiWpD5OTk9mwYQMvXrzQsFj93cXV1ZVt27bRrl07XF1dmTVrFu7u7uh0OkaNGsXly5clv0G7du3ImjWrZLhTN1tbW168eIGLi4s08mrf/7179+jevbsc4OLt7c2tW7eYOnUqISEhODk50bx5c/Lly6fBewjHWs2EqXOTVa4D8XkqFaYgLlGNsTDSAh0u2jUFI5dqpIVxFnVlY2NjkpKSmDRpEvHx8RQtWpT3799L4/748WOmTZtGgQIFNDON/07yQwa5YMGCXLx4kXLlyqX6/Pnz5+nfv/93Hdva2podO3Ywfvx4pkyZQpYsWXj//j0ODg6sWbPmH5WGTJcuHdWrV2f48OGMHz+eEiVKMHLkSPbs2SOR5J07dyY6Opq5c+cSFhZGixYt5MAJoXgVKlRg2bJltGvXjowZM0qPOjk5meDgYHbv3o2vr6+s3xgZGWFvb0/fvn1lVKk/o1htr1K95fj4eGmQhScO/3EQ1BqySm4vvG9hpAUyXCX/UIe3q0qrjrEzNDRkz549lC9fnsOHD3Pp0iWmTJlCYGCgROPv3btXetd/puh0Oi5fvsyjR49Inz49NWrUSHUS1T9RMmfOzP3792V2Ql+ePn362ZnSXyPVqlXDwsKC7t27Y2RkhK2tLc+ePaNu3bqsWbPmHzXiskOHDri7u+Pk5MSECRMoWbIkS5YsoWbNmhw9ehQjIyM6dOjAqVOnGDJkCGPHjsXJyUlDpGNoaIiHhwfz58+XvbaCsS4+Pp6TJ0+SNWtWTExMNKQ7+fPnZ9y4cXINES1VwtnWB3AJoxoXFyc7HkTPM/yHl17ofWxsrOy0EMY4PDxc4jlUDgZ1E1GyykEgon8TExOioqI4evQoS5YsoXPnznIqXVJSEo6OjvTq1YtSpUr9Jb9XTEwMR48eJSIigmLFilGwYME//TN+iBjk2bNn9OvXj927d6dY+Pbv38+JEyc+O2P2WyQ+Pp7g4GBsbW1/uJ3qf1m2b9/O6tWrMTAw4MiRI+TNm5du3boxdOhQ1q1bR/v27WnWrBmPHj1i6tSpstlfGC1zc3OePXvG+PHj6dmzJ3Xr1sXQ0JBTp07h4+PDwIEDKVSokFQu4XWqiqVvkEVLkloTFkZZ9ZLVhVKlA1RbnoTXLAx8WFiYbKdInz491tbWxMXFYWBgQOnSpXF2dtbQ/Qke4NDQUA4fPsysWbOoUqUKu3fv/uqoLDk5mWPHjnH+/HlMTU1p0qTJNynWrVu3GDp0KCVKlKBYsWK8evWKI0eOyIzOH8k/gRhE0JHqz5ROTk6mffv2DBgwgNKlS/8pnx8TE0O6dOm+O+r+X5fIyEgmTpzIzZs3efnyJU+ePKFmzZrkypWLZcuWScNmbm5OixYtqFmzJpaWltjZ2WFjYyNpOLdu3cqjR4/o378/Li4uhIeHs2XLFk6fPs306dMxNjaWRlGQ6qjXVO0PFtFweHi4BgcSGRkpuezVchho2QDVtUO8PzIykrCwMEkFCp+Mcvr06eW+tGnTUrJkSRwcHDSoa9EKef/+ffz8/Ni4cSM7d+78Kn0TEhYWxvbt23n58iVZsmTB09Pzmyh0Fy1ahL+/P66urjg4OHD27Flev37NokWLyJIlyx++/2v1/oeZuvbv38/ChQslHeSHDx9Ys2YNjx8/ls3n/8rXi06n4+PHj3Tp0oXLly9z8OBBatWqRYsWLVi6dClHjx6lTp06zJgxg3LlykljKmqwZmZmhIeHs2vXLi5dugRAsWLF8PDwwM7OTpN6VuchqwZZHfggpi4JI67WgUVPor5BTkpKIioqStL6qZF2UlISq1atoly5cly8ePGz18HExISOHTvi5ubG/v37efjwIW3atOH27ds8fPhQsgm9f/+enDlzMnv2bEqUKPHFa/v06VO6d+9O9erVqVu3LtHR0WzZsoXIyEhWrFjxh87e69ev6dixI1u3btVEgQkJCXTp0oV27dr94aSof4JBTk5OplevXpiZmdGjRw+cnZ25du0a8+fPp1mzZnTs2PG/d9J/U0lISODBgwdUrFiR+vXrU7lyZfr27cv58+cpX7487dq149dff2Xy5MmkSZNGQ5QjiEGePn3K9u3bef/+PaamptSrV48qVarIiFoYZFFnFs60OndcZMKEEVaj4+joaEmVq2+QhSMv5iGLCF5NVa9fv17yfH9O7O3tGTlyJJaWlhw8eBBLS0vatWvHwoULyZ07N+XLl6dz585UrlyZrFmzsnz58s/iGYRs2LCBjRs30rlzZ/LmzcvDhw/x9fWlZcuWX3Wvrly5kqdPn0qiGiFPnjyhW7du7Nu37w9xKj/NIAN818VnvAAAQbxJREFU+PCBtWvXcuvWLaytrWnVqhUVK1b8W6aXkpKS2LRpEzt27AA+KUqtWrXo2bPnTwUHPX/+nPz581OjRg0cHBzYsGED/fv3Z/78+VSuXJm3b9/i6+uLra2tVAzhvYr0TmrUmaIlQaSMhaeserr6qGrVCKszipOSkqRDYGBgwNOnT7l16xbv378nJCQEMzMz0qdPj7OzMw8ePKB06dLkyJEDExMTdu/ezbt37wgNDZX96wkJCWTJkgWdTse0adOYM2cO8MmTdnFx4datWzRv3pyVK1diaGjImjVrGDRoELdu3WLAgAFs2rQJR0fHVK9nfHw89erVY926dSk82sOHD7Nnzx6WL1/+xd9kxIgRuLm5Ub58+RTPRUZGShT7l+SfYJCFXLt2jQ0bNvDhwwdcXFzo3LnzZ3uI/9clICAAHx8frl69Kg1d165dv4qB78+UOXPmMHz4cIYNG8auXbsIDg7m119/xdDQkGLFitGwYUP69euXghrXyMhIQ6yhlo2EIyyoakW5SUTI4rWi/qxfR1brwFFRURpqXjH6cNasWYSFhZGYmEjGjBmJi4vDycmJN2/ekD17duzs7IBPQMuBAwcybdo0IiIiePnyJba2tjg7O/Pw4UO6dOkiQYE5cuSQTsT69eupVq0axsbG1KtXD1tbW4YNG8bGjRtZu3btZ6/nqVOnWLduHatWrdJkBJKTk+nWrRutW7eWY1pTE0F3fPTo0VRLNJs2bSIqKoru3bt/8Xf9qQb5nyJJSUl06tSJkiVL0q1bNywtLUlKSsLPz49ly5axfft2eWP9DFm5ciUDBw7E1NSUzJkz8/vvv9O1a1e8vLwoXLgwLVu2ZPjw4SmGSKhjGEGbQhbpY8GkI3qAVfBXamknUVtSUdKiDg2f+LavXLlCyZIladiwIYULF+b169ccP34cBwcH3r59y9GjRylTpgyRkZHcvXsXgMDAQNKnT5/q99+yZQtv3ryhY8eOWFtbkzVrVkJDQzl48CAVK1YkPDxcjomsXLkyFy5cYOzYsfL9IlK3srJix44dhISE0KtXr1Q/q2XLlsydO/eLs2vr16/PwYMHP+totmvXjnnz5n2xhvp30qW/07n+iIhIZ8KECVSqVAkDAwM+fvzI9OnTsbKyYvz48T/tXBISEnB3d8ff35/8+fPz4cMHYmJiOHPmDCdOnGDIkCFs2bKFvHnzpgqoErV9sRYIAysmLUVGRhITE6MpNemvGwLvoW7iveHh4QBy7OOdO3eIiYmhUaNGVK9enUyZMnH27FkePHhA9uzZ8fPzIzIykqJFi3L79m1CQkKoW7cuhw8fTvX7h4WF4ePjQ/78+XFzc2PTpk307duXXLlycfToUaysrFi/fj29evXi/v37TJs2jbFjx5IzZ055DBEsWFpa0rx5c5YvX56qTn78+JGuXbuyZ8+ez/4ely5dYv/+/UycODHV5+Pi4vDw8MDPz++Lv+u/Bvk7ZMOGDXz8+JGBAwemeO7XX39lz549P52k/MOHDzRv3pxLly6RL18+rl+/zujRo3n9+jW7d+9mw4YNhIaGEhQURNasWSWgQQArxJxkVdlEWkpEwur8ZH3FFKQAKuOWaqCbN2/OnDlzuHDhAlOmTGHkyJGpGiydTsfatWv59ddfSU5OpmjRoqRNm/ar05s3b95k8+bNnDx5EoALFy5gaGjI0KFDWbJkCbdu3WLQoEHs37+foKAgpkyZwt27d0mXLh1BQUEEBASwfft28ufPn+rxN27ciKGhIa1bt/7sOTRq1Ij9+/d/9vmePXsyduzYL0aJfydd+jud64+Im5sbPj4+qdYCu3fvTo8ePShZsuRPPaeTJ0/StGlTHBwciI+Pl4MsGjZsSMmSJRkzZgzXrl1Dp9NRqlQpnJycpE6Kuq2quyJlLYyrOqIVtHqvrh3iWCK6joiIICYmhk6dOrFw4UKMjIzYu3cvZcqUSfV7BAcHM2PGDN6+fYuTkxP29vbUq1fvD8tLQoYMGULFihVp0aIFs2fPpl+/fsTGxlK4cGFy5cpFv379ePfuHT179uTMmTPMnTtXzlAPCQkhMDCQ69evf9aJbtiwoeQRT03OnDnD+fPnGTFiRKrP63Q6Gjdu/NkWXSFfq0vf3IccERHB0qVLadKkCa6urkybNo3AwMBvPcz/pGzfvj0FUEVIlSpVuHfvnobH+WdIunTpOHToENbW1lSuXJkSJUowZcoUunXrhqOjI+7u7vzyyy+kSZOGK1eu0KFDB27fvq0hDxCRsWqQVQS0fkuT+KvWkfUJ4sPCwjh06BDu7u4YGhpy5MgRRo0a9dkb28DAgE6dOrFmzRrWrVvH4MGDv6nWKMjx69aty4MHDySCfOzYsZiZmbF161bgkwPj6elJy5Yt+eWXX9i8eTNHjx4la9as9OjR47OsXV8zltHOzk4StKR2fo8fP8bJyemrv9PfSR48eMDgwYNxdXXFw8OD3bt3/y2pa/VFkEh8DpgzdOhQOdf8Z0r16tVZt24dT58+pV27diQkJNC9e3d2797NmTNnaNGiBSEhIVhYWLB48WK8vLxSpKL1iXhUVi3V4KqvS43iUnXAP3z4wNOnT5k8eTJNmjThypUrnzXGAGnTppUsbrNmzcLLy+urjTF80ssCBQqQJUsWHjx4AHwqYY0fP57jx48THBxMcnIy+/btY/HixaxatYq9e/eybds2/Pz8iI6Oxtvb+7t/hyJFinDu3LnPPn/27FmKFi363cfXl28yyE+fPqVJkyakTZuWHTt24OfnR/HixWndujUXLlz4007qvylf6rHMmjUrHz9+/IlnA4sXL8bS0pLAwEAyZcrEwoULAfD29qZkyZJUrVqVzZs3M378ePr06cPatWuZP38+796907QJ6XQ6TbO+aGtQPd+IiAg5FjG116pjFI8cOUKaNGm4cOECZ86c+UMw049KwYIFuXTpEpcvX6ZEiRIyHWdubk6OHDk4fvw4xYsXZ9q0aUyePDlFK16HDh0oXLgw8+fPT/X4/v7+1KhR44vn0KdPH7y9vVM13suXL6dhw4b/SDTwunXrGDt2LG3btsXf358VK1ZIznpBNPN3lSdPnlC4cOHPPu/i4sKbN29+4hl9MkI1atTAzc0NZ2dnypYty/Dhw7l37x6zZ89m0qRJAHIC1pIlS2jXrh3e3t6aiUiGhobExMRIFi2h4wLxnBrjlv56oDJwBQYG8v79e9zd3Xn16hUrVqz4Yonnz5AaNWqwZcsWXrx4QbFixWQgUaBAAQC2bt1KlSpVmD9/PuvXr9cwdFlYWFCkSBEePHjA48ePUxz7w4cPmJmZfRHrZGtrS/bs2Tly5EiK5+Lj45k2bdof1o+/Rb7JIItJLJ6ennJ2b7169di7dy9eXl5y0MDfVUQE+DkJCAj4Jqj8nyEZMmQAPt1cuXPnxtbWlpkzZ3LixAny58/PL7/8wunTpwkMDGTHjh2kS5eO8ePHs2bNGk2/oHgskI8qgjI8PFxu+oY4NSaup0+fEhkZycGDBz/bg/5ni6mpKTVq1MDCwoLz589z7949qZxNmzbl119/pUmTJty6dYsKFSoAyPQcfEpL3r17l2PHjqU49v79+3FwcPjD6LZ8+fJUqlQJNzc3Tp06RVhYGL///jt9+/aVwLJ/ovz6669s27ZNRjZ2dnYMGjSIIUOGfDaV93eRP6LrfP/+/U/XeUAi/suUKYOpqSlubm6UKVOGY8eO0bRpU548ecLQoUPZtm0boaGhVKlShezZs3P//n2JwBabAHwKBzwqKkrSW4q/4rFqgAX7VkhICOHh4YSEhFCsWDG2bdv2Q73m3yL169fn7NmzuLi4sH37dhmt58yZkzx58nD79m1evnxJo0aNZOvtx48fpdPcv39/IiIiUhBJJSUlMXTo0K/iyZg5cyYrV65k7NixPHnyhNDQUPz9/SXALmvWrH/a9/0mNoMSJUqkWh9LkyYN7du3Z9u2bX/rloe6deuyZ88eWrRokeK5nTt3cufOHTw9PUlMTKRQoUJ/+o+RmrRo0YL169fTr18/mjdvTtasWZk5cya5c+dm/PjxREVFMXPmTNq3b8/w4cMJCgqid+/ePH/+XKKn1XFmYhOoazGLWEVZC5CIfl0pLi5O3ugGBgZfjCx+VKKionjx4oVEYAIMHz6c/v37Y2JiQufOnVmwYAFXrlzh6NGjmJiYcPLkSaysrFJ4vNu3b6dFixasXbuWUqVKMW7cOOrVq0dUVBRbt24lKSmJZcuWfdV5de3albp16+Lr68uqVatInz69HHH3T5URI0akGkVUr16duXPnEh4e/retMRcqVIg7d+4QGRmZootCpIkDAgJwdXUlOTkZNzc3OnTo8JcQzggxMDBg9+7ddO7cmS1btsg1qXz58rx69YqyZcuyb98+hgwZwqZNm6hZsyYzZ86kSZMm+Pv7kydPnhS9wmIdEMQ8ERER8vNUnVeR2Wqro4gkCxcu/JdOUQoICCA4OJgsWbJgbW2NkZERa9eupUmTJpw8eZIZM2ZQuXJlTp06hYmJCQEBAdy/f5/nz59r7lFzc3Pu3LlDlSpVuHv3LpMmTSJfvnyy7Wn9+vV06NCBatWq/eE5mZubs2PHDs6cOcOcOXMkMcjWrVv/dM7sbzLIqbV7CKlatSoLFiz4aoMcHR3NxYsXSUpKolSpUj8Vvfw56d69O+7u7pI5S8i0adNYuHAhO3bsoFKlSsAnVHGXLl2YNWvWH/bW/ai0a9cOd3d3xo8fz6xZs2jTpg158uRh2LBhzJo1i+7du+Pr60uWLFmYOXMmZ8+elb15X9N6JlCJ8B/lFH2FgvEnISFBsmdZWFig0+kkZd2fKZGRkXh5efHkyRMKFSpEUFAQ79+/x8vLi4oVK7Jo0SKKFi1K9+7dmTt3LtWrV2fVqlWUL1+epKQkzUg5IR4eHpKUvnjx4lSvXp0TJ05gamrK8OHDv3k6TJYsWRg3bpzk4f47jnn7FvnS9SlVqhQPHz78anakly9fcu/ePWxtbSlTpsx//doZGBjg7e0t6TpFRio2NpbKlStjYGDAqVOnsLS0JDY2lo0bN+Lp6cnWrVv/Uo4FMzMzNm3axMSJE/H09GTHjh3Y2dnRtm1bLly4wKhRozh37hyXL1+WnPSDBw/WZPi+NDEpMTGRkJAQDcpabXkUNWedTidpLD9+/PiXlSiuXbvGhAkT5DCMe/fukTFjRmbMmEGWLFm4cuUK1apVY9GiRQQHB1OnTh1y5cpFr169cHZ2ZujQoZrjxcbGsnLlSqZNm0bevHnp0qWLnGKXOXNmdu3a9U3DiQwMDKhSpQqVK1eWDIN/RVvvNxnkL407DA4O/qo+3eTkZKZPn86ZM2fk2CwfHx9y5crF9OnT/1LP84/EysqK7du3M2HCBKZPn06WLFnkAnL27Fly5colX1u6dGm2bduGp6cnv/zyy1/ec21pacnMmTOZMmUK06dPZ9y4cVSpUoU0adKwceNGxo8fz6RJkzh79iyRkZGkT59eM95Q5b5V/xciaC3FcypZgKGhoZxVbG5uLgEw+/bt00xW+lGJj4/H09OToUOHahyisLAwOnToQFJSElWqVKFbt24cOHCA8+fP4+7uTlxcHOHh4djb29OiRQvJamRkZESBAgVk9Cp4r6tVq/ZVnnFqkpyczMqVK9m5cye2trZER0fj4ODAyJEj/xIqvf8F+RKQ8Wv1PiAggAEDBmBubk6ZMmV4//49Y8aMoU+fPjRt2vTPPN1vlkqVKmFubk7v3r3R6XTY2dnx66+/UqJECTZt2iRpUc3NzenatStp0qRhwYIFDB8+/C8/t1y5cnHlyhVevHhBy5YtWbRoEYMHD2bu3Lk8fvyY3Llzs3HjRgl6atiwoUbvU9N/sQaYm5vLDJjQeRVhbWRkhI2NjaSwzJAhA4cPH5YG6c+Sa9euMXr0aDZs2KBJhV+8eBEPDw/27NmDlZUVW7ZsIV++fDJTKZzvBg0aULp0acaMGUORIkVYunQpM2bMoHTp0uh0OhYuXIiPjw+ZM2f+7nMMCAhg6tSp3L9/H1tbW4KDg6lSpQrDhg37U4OSb2p7atSoEfv27ePChQtcunQJCwsLGjduTMaMGenXrx9du3b9Q8SZl5cXzs7O9OnTR7Pfz8+PXbt2sX79+h/7Rn+SJCQkEBwczNKlS6lcufJnm8dHjx5Nw4YNZd3yZ0mFChV4+fIlDRs2ZNOmTfz++++yJ1ewVo0aNQoXFxeZdhKgDfE3ISFBUzeOiIiQBAHJycmSAUwQvAuD/O7dO7Zs2cLJkye/27CpEh8fj7+/P7t27cLCwgIfH58UN3lkZCQtWrTg0KFDwCcFcXd35+HDhzRs2JB169Zx+/ZtcuTIQfPmzWWmw9jYmBw5cnDz5k22bt3K9u3bNZOzvkV0Oh29evWiQIEC9OrVSw5WefHiBT179mTChAlfRJzC36uVSJzrypUradOmDX5+frx9+5bs2bPTqFEjdDodrq6uHDly5IsOaUREBG5ubixevJh8+fLJ/QkJCXTt2pXmzZvj6ur6M77SH4po62nTpg2HDx9OFaSXlJRE3bp1U8Uj/JUSFxeHpaUlXbp0Yd++fZQsWZL9+/cTExND/vz5ef36NZ6ennTp0gVDQ0NZ/xUUtSqISzXMaoujQFxHRkZiaGgoKSytra25du0aSUlJPHny5E8BL759+1aio6dPn06DBg1S3Edbt27l48eP0l4cOHCANm3aULRoUYKCgjAzM+P69eucPXuWqVOn0rJlSwoVKsTNmzepW7cuEydOpHDhwinszbfIu3fvaN26NbNmzZKZIJ1Ox/79+1m2bBk7d+78Q5a/v6TtydnZmQIFCrBv3z4KFSpE+vTpGTRoEI0bNyY0NPQPjXFgYCAPHjxI9eI0adIEW1vb7x7X+GeLiYkJjo6OPH/+/Isp6eLFi/Po0aOfd2L/X4oWLUpUVBQfPnzAwsKCfv36cezYMe7fv0+vXr1ISkqic+fOPHr0SNaFxF8RCQv+WrVmLMaricZ6YYTFJlJ3RYsWpWrVqj/8PQ4ePEj9+vV5//49r169omTJkri5ubFlyxbN69KkSUOOHDkkWtLJyYm1a9diYGDAunXraNasGYUKFcLKygofHx+6detG06ZNmT59OkOGDCEwMPCHjDF8anGwsbGRdWwh2bJlY8uWLQwbNoyrV6/+dCT+Xy1z5syhRo0asnb29u1b6tatS4MGDRgwYMAfZofWr19P9+7dNcYYPunYihUrWLhw4Ve1nf0Msba2Jn369HLCUGoiOOS/d9b794oYvnDkyBGqVKnCwYMHWbt2LevWrSNr1qz07duXAwcOMHPmTKKiojQti4J1Lzk5GRsbG2xtbeVmZ2dH2rRpsbOzw8HBAXt7e+zt7bG2tpYG2cTEhFevXtGvX78fNsZJSUkSFGhubo6joyPnz5+nQYMGKQB27u7u0gmHT33DEyZM4OzZszx8+BAvLy/gU5ajcOHCdOjQgcqVK7Nr1y769+9PixYtfsgYA4wfP54FCxZoyjIGBga4urri6enJ+PHjuXXrFgkJCT/0OfCNKeu7d+/SpEkTrl27JudURkZGkpCQ8FWUeXv27CFNmjTUqVMHMzMzYmNjKV++PIMGDcLe3p727duzY8eOP7Wv60clffr0vHr16rPF+5cvX6ZYaH6G5M2bl9DQUG7evIm1tTWHDx/G2NiYZcuW4ezsTEREBGXKlGHw4MGMGjUKZ2dnTS+xOltUbKLHWIxDU0ciipS1mZmZZAz60TT9tWvXWL16NQcPHsTMzIxDhw7Ru3dvevToQZcuXXB0dNS0ImXMmJHg4GD5f548eXj37h2vX7/WgOuuX78uH+fIkYMNGzb80HkKWbNmTaqsTRcvXmTSpEl8/PiRVatWERQUhJWVFbNnz/4sC9nfSfLly4epqSmnTp0iKiqKwMBAiSH4Gr3fvXs3uXPnZs2aNZiYmJCUlET79u3x9PTEzMyM/Pnz8/DhQ/LmzfsTvs0fi4GBAbGxseh0us/e42I4y8+WfPnycfXqVTJlyoS5uTkjR46kf//+HD9+HFNTU1xdXalbty42NjZUr15d1oRFWtrGxkaet+qYC0ddneIWFxcnZxUHBgZKFrEflTFjxlC8eHHat2/PgwcPuH37NlOmTOH58+d06tSJgwcPSsdZoMRVGTBgAB07diQhIUGT4hbsf9HR0fTv3586der88LnGxcXx+vVrihQpotmv0+mYP38+/v7+ElB25coVGjVq9FVO6ufkmyJkDw8Ppk+fjr+/P5UqVaJkyZJs3ryZI0eOcOfOHUmrlprEx8ezePFinJycOHjwIP7+/vzyyy9UqVKF5s2b8/HjR+zt7b8LNPDs2TO8vLxwc3OjU6dOHD16lOTk5G8+TmrSrl27zyJwExMTOXjw4F/eg5uaDBw4kKtXr5I2bVqePXtGYmIie/fuZcWKFcAnT/+XX37B0dGRAQMGcOjQIQ05gEryIQyzAHEIA6z2NAqDnJCQQFhY2J+CKhYj40Q9Kn369Dx79gwjIyPmzZuHj4+PfK1Op+PXX3/l3bt3vH37Vu43MjIiW7ZsGgVo3LgxHh4eAF9s6v9WEWxoqly5coWJEyeyceNGevbsiZubGzt37mTIkCG0bNnyizrxd5H58+ezbds2Zs6cSaFChWjWrBknTpxgy5Ytf8hcd/v2bW7dukW/fv04fPgw/v7+bN++nYcPH8qWqe/R++TkZI4ePSoHkHh5efHs2bPv/o76UqxYMc6fP5/qcxcvXvxLOwy+JL/99hsrVqzg7t27xMbGEhgYyNSpU7lz5w4AtWrVYufOnRw5cgQfHx9evnwpJ6rZ2tpib28vI2P1sVortra2xtbWVhpjS0tLoqKisLOz++Gxt2FhYdy5c4f27dsD/xnnCZA9e3Zat27Nzp075eufPXtGVFQU586dIy4uTu63tbVN0Xo1Z84cMmbMCJAquPN7zze1dsjRo0ej0+k4fvw4hQoVYvr06dLujB49+rs/75sMcpMmTYBPqZMqVapQvXp1mQ+vV68eZ86c+ex716xZQ4MGDWRfLHzyRGvVqsXUqVMZP348J0+e/GaKujVr1jBkyBBcXV3ZtWsXU6ZM4cKFC3h6emp+wO+VIkWKYGJiwqJFizQpqsjISLp27Ur37t016cufKSVKlNDQuhkbGzNx4kTJq5olSxbOnDlDhw4dWLp0KefOndO0M6n1YrGJVgl1oou6CRSnvb39D5//x48fNQaue/fuTJ8+XR5fkN0fOXKE8uXL8/btWx4/fszAgQNp2LAhV69eJSQkJMVibmZmxuzZszEyMvpT25EyZszIkydPNPsmT57MunXrsLOz4969e3LBKlKkCH379mXVqlV/2uf/t0T81s7OztSqVYtSpUphaGhI9uzZCQoK+uJ7R44cSYMGDTTRZJo0afD29iY6OppLly5x9epV8uTJ89XnExcXh6enJxcuXGDq1Kns2rULV1dXBg8e/MVBA98iQ4cOZezYsSkW9t9//52RI0f+FEBXamJsbEy3bt34/fffKVGiBIaGhsTGxlK3bl3JQte0aVMuX74MwOrVq4mNjdU42aL8pO7Tz4qJKFms1wkJCdjb2/9wVuzMmTOagR1WVlbkyJFD2o4WLVpw4MABEhMTGT16NDVr1iR79uycPHmSevXqMXjwYAICAggNDU0BNnRxcWHUqFEAGm7rHxE7OztNAADw5s0bnjx5wuDBg2UpAD7Zs8GDB/P06dMU7/la+SaD/CXDI1JRnxM/Pz/Gjx/PlStXePXqlea5smXLcv/+fTZu3Ejz5s2/+nxu3LjB0aNH2blzJ+XLl8fIyIhMmTLh7e1Nu3btGDdu3Fcf60uyYMECkpOTqVOnDj169KBdu3Z4eHjQqlUrGYn9t8TY2Jjp06fj5eUlbwyVNc3MzIzly5fTsWNH1q5dy507dzT8tiqVXnx8vFROVSlFlGxmZiYzD38GIElfucuVK0e2bNno06cPr1+/xsjIiCNHjjBhwgQSEhIoVKgQ8+fPZ8eOHRw8eJBSpUqRNm1a0qRJQ7ly5ViyZIl0wrJkyUJMTAy7du364fMU0rVrV01E+OHDBywtLSVf9rNnzzTlC1dX158O/PnZ8qW2pfv375MjRw6GDBnCxIkTU9SJBw0axIQJE8iVK9c3taCMHTuW9u3b4+3tTaZMmTAyMqJ8+fLs2rWLI0eO/Ck4lAwZMrB582Z8fHxwdXWld+/eNG7cmHnz5rFp06b/OkVqlixZOH36NC4uLiQnJxMUFMTr16/l83nz5pX33pYtWzAzM8POzg47OztZIxb/qxGy2KysrLCyspJ166SkpD9F55OSklKk+qdOncqUKVNYv369DBg6derEtWvXyJs3Ly9evGDcuHGcOnWKefPmkTFjRnn+rVu35vTp0/JY/fr1Iz4+nmbNmv3wucInQqLcuXNrRsXu2LGDDh06AJ848EWgKqRdu3ZyWuC3yjcZ5C8hoH/55Zcv9ikbGRlhbm7OkiVL6NChA5s2bZJjwfz9/blz5w5eXl7fBLpZvHgx48ePT3VRaNy4MTdu3PhT2MMMDQ3p378/R48exdvbm7lz53Lw4EHq1q37w8f+s2TIkCHkypWLpk2bpkiZGBgYsGLFCmrWrImfn5/0LvX5rUVfreoZq4w/pqamsvXtc7XD2NhYHjx48FV0g5aWlrx//16zz8vLi5YtWzJ06FDOnj1L586dMTQ05Nq1a2zfvl2z6MCnzMy0adP+X3tnHhdV2f7/98AMCrggJoq4RGLgkmmafitRURADQUVDCS1EWzRFE0VFKHdB8skE8kkyl5DFBRJSERU3THIhSwVD0cDcIJFlQNa5f3/wzPkxsTyY2GM179eLlzKcOefMnLnnOvd9fa7Phb6+Pl5eXgwZMoQxY8YwcuRIaZbQVAwcOBADAwOWLVsmdb4xMTHh0qVLuLm5sXbtWo3tf98E/q/K3bt363z83r17DZZ8ZGVlYWVlRZ8+fbCzs+ONN97g3LlzUs/vmJgYzp8/z5o1axp9LiUlJVy8eLFOVbaOjg4ff/wxn3/+eaP31xAdOnQgLCyM6OhoFi9eTGRkJJs3b37idpGNpUWLFnz88ce0b9+ezz//vFbZnZmZGadOnaK4uJi0tDSNYFwzKP8+IKvrjg0MDKQb8YKCggbLhn777TeuXLmiYThSF6+++iqJiYkaj7Vq1YrY2FhKS0uxtbXlxx9/5OTJk1y4cIGEhASSkpI0UpAtW7bE19cXT09PTp8+zbBhw3jjjTcYMWIE77777n89h0dl6dKl+Pr6cvjwYYQQ5Ofn07ZtW7Zv387+/fvx9PTU2L59+/YNlgg3xCMF5IULF0o5uZp3uwcOHKB9+/YNCljUwoJu3boRFxdHcXExkyZNwsXFhZ9//pmePXs+cgnNvXv3GjQt6NevX60lxsdBR0cHMzOzp1KoY2xszLVr14iJialztqFQKNi+fTulpaWcPXu2zg5O6kCsXp6uKyCr5f2//8CVlpayaNEixo4dy6ZNm/D398fR0VHqzlQXs2bNYtGiRbXy/YMHD5ZWOkAzD2xiYqJxw3Hw4EHJnGXt2rWUlZVJs1Vra2uWL19e78qNEIIDBw7g6uqKs7Mzjo6OhIaGUlJSUu85BwYG0qNHDyZOnIiXlxfh4eFs3LiRsLAwevfurbFtTk5Okxun/C+wtrauVbeuUqlYvHgxs2fPrvd5ZmZmkire09OTgIAAoqOjGTNmDLNmzaJt27aMGjXqkd6ja9euNZiGsLKy+sPLhfVhYGBA586dG/S5/18xadIk7t69W29b0V69ehEUFMS2bdsoKyuT1NRqZXXNoNy6dWtpdmxgYCAtYatXzOoKMmlpaUyYMIHZs2ezefNmpkyZwvTp0/ntt9/qPJ927dphYmKioZyGaqvQ8ePH07p1a6ytrcnKytK4EbSzs5O8CYqKiggICODw4cN4eXkxefJkLl68iFKpZMeOHbz44osNpk8LCwv59NNPcXBwwNnZGTc3N5KSkurdvm3btuzevZuTJ09ib2/Pt99+i4eHB/n5+URGRtZaOU5JSan1XdBYHkllbWRkxPz582nWrBnHjx9n2bJl5OTkkJeXx1dffdXgcx0cHNi1axdvvvkmLVq04N1335VMuX/88UeuXr36yMXm6uWN+mYhBQUFf4svxKaiffv2jB49mtjYWDp16oRcLpeC8cOHDzEwMKiVP1b/Xz1j7t+/P8bGxixdulRaMamqqsLd3R0PDw8pBwzVA2fatGlUVFTUUjxmZWVx8+ZNbt68SefOnenduzcqlQpjY2PKysoYNmwYzz//vDSwO3bsyPDhw/nqq69QKBR4eXmRnJyMv78/urq6bNiwAZVKhbm5OQUFBcyfP58TJ06wbNkyjhw5wqZNm7CwsNBoyq7+LIeGhtKuXTvKy8vZs2cP48aNIzo6uk73OJlMhqurq5Sq8Pb2ZtSoUZibm9faNigoiGnTpjXJtftf8swzz+Dk5MR3333HgwcP2LRpEzExMUycOBFra+t6n9e7d2+uXLlCfn4+RkZGWFhYEBQUJP19/vz5TJ8+/ZHORV9fv0GhnFoXoeX/88Ybb0h9lJcvX66hsq6srJTSU+Xl5ZLvtVrsKYRALpczaNAgvvzySxITE6WxfOXKFebMmcO2bds0Vg1SU1OZOHEiMTExGj7gVVVVnD17FnNzc2bNmkXz5s2xsLCgsLCQHj16kJ6ezoYNG/D29pae07FjR0JDQxk7dixQnabctWsXKSkpnDt3jnnz5tG8eXNMTU0pKytj9erVBAcHM2zYMPz8/Jg7d66G3iUnJwc3NzdmzZpFXFwccrmcO3fuEBgYSHJycr2dodq0acOyZcuAaoGyvb09Hh4etYysCgsL2bNnT61VgEYjGkFBQYEAREFBgSgrKxPjx48XgDAwMBCAGDNmjIiJiREqlarefTx8+FA4OjqKvXv3amx35swZYWNjI27fvt2YU9EgKChI7N27t97j2dnZNXhO/0R++uknAYiBAwcKZ2dnYWNjI15++WXRq1cvMXjwYOHk5CTc3d3Fe++9J7y9vcXixYvF6tWrRXBwsNi+fbv45ptvxKxZs4RMJhN5eXlCCCHi4uJEQEBAncd7+PChsLW1la5DWlqaGDJkiAAEIMzNzUXfvn2FqampMDIyEoDYt2+fEEIIpVIpXn/9dVFYWChsbW1FWVmZxr4zMzPF1KlTxYMHD4S9vb0IDw8Xs2bNEl26dBEDBw4UsbGxwt/fX7Rt21YAonXr1mLp0qVCCCH2798vFi9eLIQQoqioSGO/p06dEjNmzGjU+1lcXCwcHR3Fxo0bhVKpFEIIcfPmTeHl5SX8/PxqbV9zLD3t1DzXX375Rbpm6p/Zs2eLK1euNLiPM2fOCHt7e/HLL79Ij5WVlYn169eL999//5HHp0qlEra2tqK0tLTOv3/zzTdi3bp1j7TPfwJz5swRurq64vLly+LKlSviSnq6uHz5srhw4YL4/vvvxfHjx8WhQ4dETEyM2LJli/jss8/EihUrhJ+fn1i3bp348ssvRffu3YWTk5O0Tzc3N5GVlVXn8eLj4zW+E8LCwoSJiYkAhJ6enujdu7ewtLQU7dq1EwqFQpiamory8nIhhBAREREiJCREpKSkiLlz59ba94oVK8ShQ4fEl19+KVasWCECAgKEp6enAMTMmTNFSEiIsLOzEzKZTADihRdeECdPnhRCCDFlyhTx008/CSGEyM/P19jvjBkzxKlTpxr1fp4+fVrY2dmJY8eOCZVKJVQqlTh27Jiws7MTp0+frrV9Y8f9Izl1qV1GhBBkZGRw/vx5Zs6cKan7ioqKGrTRKykp4ZNPPuHEiRMYGRlRWFhIz549WbRoUaNEEiqViuzsbHR0dOjcuTP5+fmMHz+ezZs3a8xQKisrJQeg0aNH/9f9/pOwtbXlyJEjDB06FLlcLrVZ09XVlfJKrVq1ksof9PT0NEohWrduTXFxMW5uboSFhTF9+nTc3NwICQmpt1bbx8cHNzc3+vXrx6hRo/jpp5+YP38+FhYW7N27l+zsbFQqFfn5+aSmpnL16lUsLCyA6vKuESNGEB4eTnR0tLRPIQTTpk3j/fffZ+DAgTg5OUlNwmNiYiT/alNTU9555x2EEAQGBlJaWoqBgQGmpqbs3bu3XrtLJycnIiMjG2ULWV5ezq5du9i9ezdVVVUYGRkxffp0hgwZUmvbv6JTl/pcS0pKuHr1Kl9//TUhISGUlZXh4ODAvn37GtzP5cuXWbt2Lbm5udIM94033mD69OmN8rIuLi7mzp07GBsbY2xsTHx8PDExMYSFhUkVG1DdHnb69OnExMQ8Fd74TwtKpZKWLVvSvVs3zllbY3D4MFRWglxOkY0Ndz74AKVMRkVFhUZrxvz8fIqLi6Vl7cOHDxMfH8/Vq1cxNDRk8uTJxMbG1nlMlUqFg4MDCQkJ3L59my5dujB48GA8PT0pKipi3759lJWVUVlZyZUrV+jWrZtUZlZWVoa9vT1jxoyhe/fuGt/h6hnuoUOHuHnzJmvXriU0NBSoLsvdtWsXCoWCnj174uDggFKplMonu3TpgomJCSkpKXWuqmZlZUmd8hrDrVu3+OKLL0hNTQWqq17ee++9OvU1jR33j7RkrUYmk2FpaYmlpSVubm4EBgYSFhaGiYkJy5YtY968eXW+YAMDA6mfbHl5OXp6eo2S0QshCAsLY+fOnZKq8Nq1a5JyeM6cObRr146XX36Zu3fvcvz4cWbMmKENxnWg/tCru76oWys2pHJVd4tRX6sOHTowcuRIPvjgA6ysrCguLm6w60nHjh0lQ4+0tDTGjh1Lu3btCAkJYfHixfTr148DBw7w5ptv8vzzz2uYf6xevRpXV1du3LghLX1eunSJgIAABg4cKFlV1jTVd3Fx4fz583h5eXHixAnWrFmDl5cXs2fP5sqVK/z4449kZmbi4eHBiRMnOH78OC1atMDKyop79+6RnZ2NkZERv/76a6NMX/T09HB3d8fd3f2/bvtXxsDAgBdffJEXX3yROXPmsHDhQnbu3Im5uTlbtmypVwPSq1cvtm3bJi2FNtavPi8vD19fX3799VcsLCyk3PCyZctwdHTE3t6eYcOG0aFDB86ePUtubi5bt27VBuPfoa66eC03l5bbtyOrsaRvtGMHBikpZGzdik6zZlITGfVPTT3FiBEjOHDgAMOGDSMuLq5BLY2Ojo50na9evUpVVRXe3t5ERUXRvn17/vWvf2FsbIynpyfFxcU0a9aMhw8fSuZDgYGBeHp6Mnr0aBwcHFCpVMTHxxMcHExISAg6OjoUFRVpWFZGRkYyadIkxo8fLxkm9evXj7fffpvs7GyOHj1KdnY2oaGhODs7Sw0sunfvTkpKCiqV6pF6X5uZmbF8+fJGb98Y/lBArolMJmPmzJlS/ZePjw/379/XyCXW9ZzG5Itv3LjBpUuX2LNnDxYWFpIbFVSLxPz9/cnNzSU2NparV6+Snp6OlZUVvr6+fwt165NgyZIlfPzxx9y9e5dmzZpRUlKikXMT9TSh+P1j/v7+3L9/n7fffpvXX3+dy5cv1zvb/OGHH3BxceH+/fvcvn0bExMTvvjiC3bt2kWLFi3Q1dUlMjISExMTzpw5w7hx4zh06BC6uroYGBjwzTffMGTIEN566y2EEHTt2pWFCxdK5gyXLl2qlcPt06cPJ06cAKrvuGvmLqE6iE6dOpV3332X8PDwOs/71KlTvPnmm/j5+T2W5ebfkc6dO/Pqq68SGRnJL7/8go2NDampqQ0Krmp+SdeHSqUiJSWF7OxsNmzYwPr16zX8wX/99Vc8PDwIDQ0lMTFRymsvWLDgkWqZ/0kMHz6cnsbGnM/LowSoKU2TqVToZWbSceNGbnp7a1RZqLUj6rHfpk0bAgIC8PLyYsuWLWRlZdXrZlZYWCg9funSJXR0dEhLS6NLly7Mnz8fhUJBXl4eCQkJfPjhhwwdOpRVq1axcuVKoLoUdvfu3UyYMIG0tDRkMhnDhw9nz549Uk44PDxcwzlMV1dXI0AnJyeTnJws/S6Xy2nVqhWvvPJKnZoPqI5N/fv3JzAwkGHDhmmswPwZNEnvM319fY3kfc2arT/C3bt3cXV1Zfny5aSnp5OamsqxY8eIioqStlEoFKxZs4akpCQePHhA9+7dcXZ2xtraWhuMG2DhwoVYW1tz/fp17ty5I1kEit+paIFawbjmNgqFgrlz53L9+nXat29PQEBAnX7EV69epbi4GIVCwdSpU9HV1UWlUuHm5qYhIsvNzUVPT4/WrVvz+uuvc/DgQWkfcrmc4OBgZDIZ0dHRhISESME4Ly+PefPmaQhBoHpg/frrr1y9epX79+9TUVHBvXv3uH79OoWFhaxfvx4jIyMNf9rt27dz/Phxjh49yksvvUSLFi1YtWoV+vr6zJkzp0m8av9OqLt+qcdbTcvSP8L+/fsZOXIkBw8eZM+ePbRu3ZqVK1dKSm2odnb66quvJHGStbU1zs7O2mDcALq6ukQ3b8514BVgH9UiADUylYqWR49q9EuvuSpW88bcwsKC119/nY0bN2JhYaExTmsSEhKCu7s7hw8fZs2aNQwZMoSDBw8ybdo0STCqrm9WKBQ4Ojry/fffa6x09ejRQ6p+iIuL0xBoJSUlce3aNf7v//5P47j29vakp6eTnZ1NUVERZWVl3Lhxg1u3blFcXMygQYMwNTWVaoft7e0JCQnh0qVLksFUWloadnZ2KBSKJi+d/G80SUBWKBTY2toC1TVb6lzeH6GkpAR3d3eWLVvGli1b0NHR4ZNPPpHuhmsGZZlMxuTJk5vU/KE+KisriYmJ4e2338bNzY3g4GApd/5XQi6XExsbi5eXF0qlkrt371JWVqbRYELt5FXzp6bXtdpqs1evXri4uLB06VJOnjxJv379uHDhApWVlZw5c4aFCxcyYsQIMjMz6dSpE8nJyaxbt467d+9KLkPqpaizZ8/i7OwMVLe2TE9P1zjv/v37S41M/P392bJlCwsWLMDNzY2AgACN1pgAP//8M8eOHePGjRsolUrkcjkmJiaYm5vTsmVLcnJyWLhwIdevX5dMBDIyMujQoQPLly9n3rx5REZGSuUkGzZsYMiQISiVSm7dusXWrVuJjo7m0KFDDZZJ/Z1RK+7NzMyIj49n6tSpf3hfR48eZfv27ezbt0+q8/7222/5/PPPeffdd8nJyZG27dKlCw8fPkSpVDbFy2iQnJwcAgMDmThxItOnTycxMfGvp+IWgt4yGceANsBowBEorbGJrLIS9Ty3ZkAGJK9rtW/BlClTUCgURERE4OHhgaenJw8fPiQvL4+9e/fi5OTEtm3bWLBgAXZ2drRr1w5fX19kMpnkpZ2bm8uqVauAas8ImUxGly5dNNJVAKtWreLOnTs4OjoSEhJCWFgYrq6uREVFsW3bNo3ZuUql4siRI6SmpnLr1i1UKhV6eno8++yzdOzYUepyNWzYMGxsbJDJZBw8eJA+ffpw8eJFzp07x9y5c9m8ebNUTjtw4EACAwMBOHHiBFu3bmXPnj1cuHChqa8S0ARL1mp27tzJ/fv3H7tGd8eOHUydOpUePXoA1QXnZmZm6OjosGHDBkaNGoWrq6skBlEXvz9JcnNzcXd3x9HRkbVr12JgYMDBgwcZO3YsAQEBDBo06Ikev6kxMjLi008/Ze7cubi6upKRkcHt27epqqpCLpdLnWxqdoRS90qtrKyU8v9yuRxfX1/69evH999/T1JSEoMHD5YGLlTXHZqZmTFu3DhsbW155plnyM7O5t69e/Tq1YsffvhBKiFSu7SpBTw1qaioICcnhy5dupCamkphYSGTJk1i7dq1tZbM6sr9Dh48mJ07d2Jqakp5ebnUJGLDhg3SNitXriQ+Ph5jY2MmT55c6327ePEiBQUFuLq6avgcDxo0iNOnTz/xnthPG506dSIrKwuZTPbYNbrr1q2THKWg+iZfV1eXTp064efnx8aNGzWc99q1a0dhYWGjRHd/lP3797N+/Xo+/PBDZs2aRV5eHtu2bSM0NJSIiIinsi65TmQyUCgYABwD4oGJwMD//GsLPKujI82af98vvaKiQsOzwMDAgODgYJKSkjh//jxbtmxh9+7dKJVKaQnb0tJS6ncwaNAgWrduTUVFhXQzs2TJEiIiIgCklMT9+/drXc+cnByaNWsmefNbW1sTHBxM+/bta73MTz/9lPnz50u/6+npMW/ePMl4Zt++fSQkJADVYlE1Y8eOpX///ly6dInhw4dLEwU13333HdevX6/V3S4kJOSxO0n9niYLyDo6Ok1imPHtt9+yc+dO6XdLS0tSU1Pp1asXcrmcAQMG8NNPP0ktEdX2ak+SmTNnsm7dOg1D+QkTJjBy5EjGjBlDfHz8E/1ieFJ07dqV/fv3s3r1amJjY8nIyCAjI4OuXbvy2muv0bx5c2T/UV/WdPRS1y2q3dfGjBnDuHHjyM7OZt26dTz//PMMHz6c5557DkNDQ2lA6+npoVKpcHJy4rPPPmPo0KGSl7WlpSVDhgxBCEFkZKSGK9zNmzfx8PDAxcWF1atXo6OjQ1xcHL6+vmzatKnWcqWhoSEvvfQSqampyOVyKisrSU5OJiQkhFWrVqGnp8fGjRv56KOPMDMzk15bSUmJZLvYp08f+vbti42NDaampuzbt4/x48djZmZW61p36tTpHxeM1TTF5z4nJwdjY2MNYaFMJqOoqIiWLVtiY2NTSwOQlZVVq7lAU3Lz5k1CQkL49ttvpby3oaEhfn5+HD16FG9v73qbzjyVODlBaCgylQpn4BDwGbAG8AOa5+SwLCGBQYMGaayQqW/EawZklUpFmzZtJBOQuLg4kpOTGTx4MAMGDMDExASZTEZVVRWlpdXz8KqqKgYMGMDhw4dxcHCQ0h1RUVHo6OiQlZUlNbNQExUVxddff83cuXOZOXMmd+7cISwsjEWLFtVS2AO1NCzl5eUEBATw9ttvY2VlhbOzM1OmTCEmJoaBAwfy888/06lTJ86cOcOhQ4fQ19fHxsZGGvdKpZLk5GRWrVpVp+OjupFFU/KHyp6eJM7OzsTFxUm/FxcX4+zsLLXoW7NmDUOHDuXVV19FqVTi5OREYmLiE2vw8PPPP7Nu3Tqpi9LviYiIoKioiPfee++JHP/PQghBZmYm+/fvx8fHBx0dHfr370/Pnj1p06YNhoaGkqWe+l9DQ0PJzaemeUjNfaqXuyoqKtDX10ehUKCvr09QUBBmZmZYW1tjY2NDbGwso0eP5qOPPqJt27ZSTlgIgYODA6GhobUM42/fvs2UKVNITEyspRuoqqoiIiKChIQErKyseO6557Czs8PExKTe96CsrIwJEybw4MEDyQu7f//+TJ8+XWPw5eXlkZ2djYGBATKZjG7dujWqfAf+2mVPT4qsrCyCgoIICQmRHtu5cyeZmZmSWLTm98KRI0dISEioFaSbEn9/f+zs7OosXYNqJX9YWFiD1QVPFUVF8MorkJ4ONWZ/pTIZaebmrOzVi9j4eF566SXGjh2LqakphYWF5OfnU1paquFzrS6FVFtr6unpScvcNYN4RUUFDx8+lDpHVVZW4u3tzbJly9i9ezfh4eEolUru3LnDW2+9RXBwsLSydfHiRVasWEFkZGStsR0eHs6NGzfw9/ev9TLVQfvy5cvY2trSoUOHWs1Nfs+ZM2eYPHkyL7/8MiUlJTRr1oxx48Yxbtw4DRFiRkYGFRUVKBQKWrVq9Uh+5o0dS09dQJ43bx7u7u4aXZ8SEhLYuHEjK1euxM/Pj23btpGZmYmfnx9Llixh8ODBT+x8tm/fTvPmzettIpGbm4uPj0+ja9f+Cvzyyy8sWrRIUkF37doVc3NzevToQceOHaVgrK+vL5Up6OjoSMpMHR0dSZGtzj0LIdDX10cul0uBeceOHezZs4eLFy8yfvx48vPzmTJlimTcDtVKyYSEBEl9+XuCgoLo0aNHk5S45efn4+bmhr29PW+99RatWrXi+PHjBAUFMXv2bBwdHR/7GNqAXJuKigocHBxITEyUVhqEEMyYMUNKd6xZs4avvvqK6OhoIiMjpc/mk8LJyYm4uLh6Vz7+9a9/0bdvX41+3U89RUXg5wdxcVBRAQoFODvDypWIFi3Yt28fPj4+pKen07NnT6mJQ7t27aSgamhoiEKh0PC6VqevoPq6qVec1ONe/Vx9fX1KSkr47LPPOH36NEqlEgcHB8rLy1m+fDk9e/aUTvX9999n7ty5dZYdCiEYOXIk+/bta3QJXUMkJSWxZs0avL29sbW1RalUEhERQWxsLBEREU2y8vtE65CfJDNmzMDHx4fdu3dLdzWjRo3i2WefZdGiRVy4cIE333wTKyurOmdNTU3z5s0bFI8olUoNqf3fgWeffZaoqCgCAwPZtGkT0dHRxMXFceDAAfr164eNjQ3dunWTAm55eTlpaWlkZWXRpk0bXnnlFQwNDTVmyOolbpVKhUwmQwiBi4sLJ0+eRKFQ8NFHH9G7d29ppqnOU586darBRuP29vZERUU1SUCeM2cOy5cv5+WXX5YeGzFiBNbW1owZM4Z+/fo9NY0F/k4oFAqGDh1KRESEVMstk8nYuHGjtHJiZmaGi4sLzs7OxMTEPPExJ5fLKS0trfc4f8lx37IlfPZZ9Y8Q1bnl/yADRo8eLfnP//vf/+bw4cM8ePCATp060a1bN1588UVMTEyQy+VUVVVRWFhIeno6hYWFPP/881haWiKTySSdSU1bTl1dXWQyGfr6+kyaNIkjR47w6quvsn79emnVSv19IpfLG/QAkMlk9O3bl+vXrzfKJ6Ah8vLyWL16NfHx8dL1NDIyYubMmVhbWzNr1iwNQ6InzVMXkLt3746bmxtjx45lwYIFvPbaa9y/f5+9e/eiUqlIS0v7U8UUI0eO5K233qrV0UPNjh07mqzV19NG165dWbVqFatWreLBgweEhYXxySefcObMGZ555hl69+5N+/btSUlJISsri+bNm0tNKhwcHHBzc0OhUFBRUSHloxUKhTR7jo6O5siRI0B1a8NmzZrxwgsvcP78ec6cOYOJiQm5ublYWlqyZMkS3N3da81Y1KYCj8vt27cpLy/XCMZq9PT0WLBgAWFhYU3W0lOLJosWLcLDw4P09HTJ7eiHH35g586deHt7N9jE4kng7OxMVFRUncpxlUrFiRMn8PX1/VPPqUmpZ+avrvcdPnw4QgguXbpEYGAgkZGRHD9+nL59+9KmTRvKy8tJTU2VzDwePnxI586dGTVqFH369JHEoPr6+lIwVotEfXx8ePDgAWlpadja2tK9e3dMTEyIjY0lLy+Pli1bUlBQwIQJE1ixYoUk8K1JcXFxk8yOt27dipeXV503Vy+88AKGhoZkZmbWquJ4UjRJ2VNT4+rqyueff87hw4eZMGEC3t7e9O7dm9jY2D9d2WhkZMRLL70k2a/VJCUlhe+///6vtWz1B2nTpg0+Pj5kZ2eTlJSEp6cnGRkZxMXF0bNnT44cOUJJSQnZ2dn4+/uTmJjIkiVLuHPnDsXFxZIgpKSkhNLSUkpLS7G0tJRmnEIIqqqqOHToECqVinfeeQdnZ2emTZtGQUEBU6ZMwdHRkYyMDI3zioyMlIznH4cff/yxwUYJw4YNe+w6Wy31I5fL+frrr7Gzs2Pp0qW4uLgQFRXF8uXL//RgDNVdlMLDw7ly5YrG40IIqUXon20a8Wcjk8l44YUXCA8P59atW0RERNC9e3dOnTpFZmYm77//PtnZ2SiVSr777jv69u1LWFiY1OK1qKiI4uJiCgsLKSgooKCggMLCQsnRTalUYmhoSEZGBomJiVhZWeHh4SGpnpOTkxkwYAC+vr4aHgBlZWVcu3atXnOPR+HcuXNSF6m6sLGx4fz58499nMbySDnkmzdvPvV5ryeBSqVi7dq1nDt3Dnt7ewwMDDj6n0L6oKAgDVOUfxLqmW5dgonU1FRcXFzo1KkT33zzzWMpYr28vGjVqhXBwcE899xzUmBMSkpix44dbN68+Q/vW83Jkyc5e/Ys8+bNq/PvBQUFzJkzh61btz7WcQoLC+ncufNfKof8Tx339+7dw9vbGyMjI1577TXy8vI4dOgQjo6OvPPOO//r0/ufUVlZWefNiBCCtWvXsnr1aj788EM+/vjjP1x98NtvvzFlyhR69uzJl19+yZIlS/Dx8UGlUjFv3jyGDx8u+RY8Dh988AFLliypNxX1xRdf0LVrV0aNGvVYx2nsuG9UQC4tLcXc3LzeRuVatGhpPB06dODGjRtPvR2ndtxr0dJ0NGbcNyogQ/XgLC8vb7KT06Lln4qent5TH4zVaMe9Fi1NQ2PGfaMDshYtWrRo0aLlyfFUirq0aNGiRYuWfxragKxFixYtWrQ8BWgDshYtWrRo0fIUoA3IWrRo0aJFy1OANiBr0aJFixYtTwHagKxFixYtWrQ8BWgDshYtWrRo0fIU8P8AvBwBO7yuuqUAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import ContextDist\n", + "\n", + "acquisition_fn = ContextDist(context_set_idx=0)\n", + "X_new_df, acquisition_fn_ds = greedy_alg(acquisition_fn, tasks[0])\n", + "\n", + "fig = deepsensor.plot.placements(task, X_new_df, data_processor, crs)\n", + "fig = deepsensor.plot.acquisition_fn(tasks[0], acquisition_fn_ds.sel(iteration=slice(0, 55, 5)), X_new_df, data_processor, crs, cmap=\"Greys\", add_colorbar=False, max_ncol=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Random\n", + "\n", + "Random acquisition function leading to random placements - a useful baseline!" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:19:54.004954079Z", + "start_time": "2023-11-02T15:19:53.986986055Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|███████████████████████████████████████████████████████████████████| 10/10 [00:00<00:00, 251.40it/s]\n", + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9q0lEQVR4nO2deTxU3//H32OLhHbRKmlP9Wn/tGEsYWxFZElIpaJ93xft+6JEuxZtREr7nrQvUgoVhci+NZh5/f7wcX+mmbGrPt+P5+Mxj3LPveecO3Pf95zzPu+FBQBURx11/CeQ+N0dqKOOOn4ddQJfRx3/IeoEvo46/kPUCXwddfyHqBP4Our4D1En8HXU8R+iTuDrqOM/RJ3A11HHfwipip7448cPKigoqM2+1FFHHdVARkaGZGVlyzynQgL/48cPUlNTo6SkpBrpWB111FHztGjRgj5+/Fim0FdI4AsKCigpKYni4+NJUVGxxjpYB9HXr18pICCAvn79SjExMSQvL0/NmzcnZWVlatu2LQ0YMIBatWpFREQJCQk0ceJEunPnDk2bNo0WL15MMjIyQnX++PGDvn79Snfu3KFTp05ReHg48Xg8atOmDSUmJlJhYSEpKirS+fPnKS8vj06fPk1paWmkoaFBhYWFdPDgQTI0NCQfHx+huh0dHen8+fNU2iL78uXLNHDgQIHz9u/fTzNnzqRXr15R8+bNaefOnfT48WN69eoVJSUlkYaGBjk7O1O/fv1o3rx5VFhYSHfv3iUiovT0dDpx4gS9ePGCHj9+TLGxsUREJCEhQTIyMqSgoEBKSkqkpKRERUVF9PHjR8rKyqrQ9y0vL08cDofmzJlDGhoaFfuRKgmXy6Xw8HD68uUL1atXj2RlZalevXrMR0pKiiQlJUlKSor5AKAfP37Qjx8/KD8/n/Ly8ujdu3f0+PFjevz4MTPYtmnTho4dO0aampoCbWZlZVHr1q2poKCgTIFnVcSWPisri5SUlCgzM7NGBZ7P59OVK1fo1KlTlJ2dTb169SIXFxdq0aJFjbXxv4StrS2dOHGCJCQkSE1NjRQVFYnL5RKXy6WCggLicrmUnJwsdN22bdtIUVGRnjx5QuHh4fTy5UsqKioiBwcHatOmDeXm5lJOTg7l5ORQbGwsPXr0iLZt20bTpk0TqisiIoKuXLlCCgoKxOVyyd3dnf7++28aNGgQycnJUUZGBmVkZFBwcDCZm5vTnj17qEmTJpSfn0+amprE4XBIQ0ODQkNDyd/fn4yMjMjZ2ZksLS3Jy8uLhg0bRm3btqUGDRoQUfHLy8HBgWJjY6ljx47E5XLpzZs31LBhQ+revTtJSkqSuro6qaurk5qaGjVq1Ijq169P8vLyJCcnRywWi/Ly8ig3N5e+fftGAQEBtGLFCtLQ0KB3796RhETtqbEA0PPnzykzM5M6d+5MKioqVa7ry5cvdPfuXbK1taXBgweTi4sLGRsbU/PmzYmo4jL62wQ+NzeXbG1tqX///jRu3Dhq0qQJ3bt3jzZt2kSTJ08mU1PTGmnnV5CSkkInTpygpKQkat++PVlbW5OCgoLQeQDo3bt3lJWVxQhY6Y+EhAQ1atSINDQ0qEOHDqSkpEQyMjLMQ5mWlkbh4eH08eNH+vjxI+Xm5gqMHLdu3aI7d+4Itfv3339TXFwcffnyhTlWr149kpeXpwYNGjAfeXl5UlBQoEmTJpGhoWG5983n82nJkiX07Nkzev/+PRUWFlLDhg2pYcOG1KZNG9q2bRsVFhaSqqoqc01JGwoKCvThwwcyNzenc+fOkZmZGQUHBzPnNW7cmNq2bUspKSnUo0cP+uuvv6hp06ZUv359kpKSort371JcXByNGjWK8vLyKCsri7Kysig7O5v5v7S0NLVo0YKUlZUpLS2N3r9/Tx8+fKD4+Hjq3LkzvXz5UuQMqSYICgqiHTt2UN++fal58+b0+PFjkpSUpK1bt1KzZs2qXO/u3bvp+PHjFBYWRtLS0nTw4EGytbX98wXezc2NRo8eTdra2gLHCwsLycLCgnbv3k1t27atkbZqk23bttGtW7fIxcWF2rVrRxEREXTw4EGaOHEijRo1SuDcU6dOkbW1tVAdLBaLGjRoQEVFRZSfny9ULikpSdLS0iQjI0NNmjQhAwMDMjU1JT09PZKS+v9V2ZcvX6h169bMNZKSkqSqqko9evSg7t27U/fu3albt27UqVOncpU7lSEhIYHk5eVJSUlJ7DmJiYn04MEDunTpEkVERFBSUhIVFRVRy5YtSUZGhqSkpEhWVpYUFRVJVlaWAFBaWhq9fv2amjRpQt+/f6fU1FT68eMH8fl85nuTkJBg2lZQUCBFRUVSVFQkBQUFKiwspKSkJEpKSqKGDRuShoYGaWho0ODBg8nQ0JAkJSVr7DsoTUhICJ08eZL2798v8EJ59eoVzZw5k4KCgqh+/frVaiM5OZnmzJlDR44cofXr19PEiROpYcOGf6bAp6WlkYuLCwUEBIgsf/DgAQUHB9PatWur3VZtcubMGQoLC6NNmzYRi8VijhcVFZG9vT3Nnj2b+vbtyxzncrm0atUqWrduHamqqtKjR49ISUmJZGVlmevz8vIoJiaGoqOjKScnhwoKCqiwsJD59/PnzxQSEkKxsbGkoqJCTk5ONH/+fGZGUfJzlu5PRSgqKqJ169ZRbGwspaamEpfLJWVlZTIyMiIrKyuhqW9RUREFBgbSnj176MaNG0RUvL5UU1OjrKwsSk1NpdTUVFJSUqJnz56RlJQUjRo1im7fvk3t2rUjTU1NUlFRoaKiIioqKqLCwkJKTU2ljx8/0vv374mIqG3btnTq1Cnq378/JSUl0YkTJ+jt27eUmJhICQkJFB0dzazdeTwepaamUkREBEVGRtLbt2+Zf9u3b0/bt2+n1NRUcnZ2puTkZKHZjYqKCnE4HDIzM6vWkhIA6evr04ULF6hevXpC5UePHqUfP36Qq6trldso3dayZcto1apVNH78ePL19S1fRlEBMjMzQUTIzMysyOnlcuvWLWzYsEFsOZ/PB4fDqZG2ahMDAwPk5eWJLPv06RMcHBwEjhUUFGDKlCkgIjg6Ola6vffv32Pbtm0YOnQoJCQkQEQgIkhISKBdu3YwMDBAcnIyCgsLERsbi2fPnqGoqEioX4mJiQCAz58/Y9KkSRgyZAg6d+7M1EdEGD58ONPGzZs3hfri4+MDIkL9+vXh6+uLo0ePYu7cuRgzZgzc3Nzw999/M3WdO3cOy5cvh7y8PG7cuAE+ny9UX2ZmJu7cuQM2mw0igqmpKcaPH48HDx7A0tISUlJSkJWVxV9//QUOh4OJEycy9S9cuBAbN25k+istLY1u3brBysoKixcvhqamJlgsFv766y8QEZSVlbFo0SIsW7YMM2fOxJgxY5gyIsLgwYNx5cqVSv8+APD27VtMmzZNbHl+fj5MTU2FjhcVFSE/P1/s5+ff8effouTey5PR3yLw4eHhWLJkidjy/Px8mJub10hbtUVWVhZsbGzKPMfIyIj5f1FREcaMGQNpaWns2bNH5EP/M3w+H9euXYO7uztat24tIJAsFgtqamoYN24ctm7dKnBcSkqK+btly5aYO3cuAgICYGJiwrwg9PT0sGDBAhARevbsifHjx6N3794CbUhKSmLDhg3g8XhMn0raUlBQEDj3Z7p27cqc5+HhgQkTJkBJSQlJSUnMOTweD9u3bxe4N3V1dYSEhAAAjh07BnV1dTRt2hQ7d+5EWlqaQBs9evRgXk5EhLlz5yIqKgqFhYUC5xUWFmLbtm2Ql5eHrKws6tWrByJCly5d0KBBA4H7KPl07ty53N9HFI8ePcKKFSvKPMfExIT5P5/PR0JCAiIjI8v9JCQkiH1uzpw58+cKfFFREXR0dAQepNIcOnQI+/fvr5G2AODevXuwsbGBsbExDA0N4eLigjdv3lSrzuzsbIwePbrMcwwNDQEUP9guLi6QkJDAmTNnKlT/06dPmQdZUVERRIRWrVphwYIFuHz5MjIyMphz8/PzMWDAADRv3hyzZs2Cl5cXQkNDcePGDbi5uaFx48YgInTt2hX79++Hj48PevXqBSUlJXTs2BHNmzfHt2/fmPvauXMnmjVrBnV1dXC5XIF+zZo1S0g4PDw8hPqflZWFgIAATJgwAfLy8uBwOGjevDkMDAxw9epV3LhxA7q6uiAiODk54ejRo3j69KlAexMnTgSLxcKlS5eE6v/06RP09PSwcuVKyMnJYd++feV+p8+fPwcRwcDAAAMHDoSKigozMmpoaKBDhw6QlJQEEUFWVhY6OjrYvn07EhISKvSbAUBGRobIEbyEyMhITJo0ifm7RNi/f/+OvLw8kaN7Xl4evn//zgi9KCoqo79F4AHg4MGDmDlzptAb6+3bt9DR0UFubm6NtePo6IivX78yx6KiosDhcEROVSuDoaEhcnJyRJZFR0fDyckJALBp0yYQERo3bgx/f398+fKlzHq3bNkCFouFzp07Y9iwYWCxWFi3bh0KCgqq1E8ul4vXr18LfNcZGRno0qULZGVlQUQ4duyYwDXPnz+HpKQkVq1aJXA8Pz8fZ86cwdixY9GkSRMQEZo3bw4XFxdERUUJnMvj8fDq1Ss0adIES5cuxfr16wVeFLKysvDw8BD7W+vo6GDgwIHQ0tLCiRMnkJeXh6ysLOzfvx/a2tr4+PEjAJQ53S3N69evISEhASUlJfTt2xe2trbYvHkznj59KnB/9+7dw4YNG2BkZARpaWlISEhAV1eXmZ3k5eUhKioKWVlZItuZNGkSbt++LXScz+fD1tYWL1++ZPpdIuwVoUToRd3vsmXLfo/A8/l8vHjxAvPmzYOenh5cnJ2xdu1anD17Fj9+/BA4d9++fdDV1cWmTZtw4MABuLi4YNSoUcwas7okJyfDyMhI5EwiNzcXWlpaQtO/yhAUFAQ3Nzeh+n/8+AELCwu8ePECQLHwcDgctG/fnnnY27Zti/nz56OgoAB5eXl49OgRfHx84O7ujiZNmkBPTw/Hjh0TOF9bWxu9e/dmRqFBgwZVaGkgjujoaKirq2PJkiUiv6NZs2ZBQUFB7O9eVFSEu3fvYu7cuWjVqhWkpKSgp6cHBwcHGBsbo2HDhsya2tDQEESEfv36Yc6cObC2tmZeZo0bN8amTZuE7mXr1q2QkZHBsmXLwGazoaGhgZEjR+LQoUNidSflkZeXV6nvLDU1Fb6+vqhfvz7atGmD5s2bM79Js2bNcPjwYaH6srOzYWhoiO3btzMzsefPn2P06NHw9vZmzsvPz0dkZGSF7yUvLw+RkZHIz88XOM7n89GxY8cKyWiVtfRFRUX06tUrunfvHt2/f5+ysrKocePG9OzZM3r37h01lpWlwSwWJRQVUXRREWUC1LFDBzLicOj169ckKytL9evXJ0lJSRo0aBC1atWKNDU1qUOHDuV1p8Js2bKFOnXqRMbGxiLLN23aRF26dBFbXhF8fHzo3Llz5ODgQGpqavT69Ws6efIkzZ49m4yMjITOT0xMpLCwMLp16xbt2bOHGjduTN+/fyc+n08sFos0NDSoZ8+eNHXqVBoyZAg9fPiQLly4IHLHQkFBgVJSUqigoIDy8vKIxWJRs2bNKq2hF0dCQgK1bduWunbtSiNHjiQOh0O9e/cWaaySn59PXl5eFBYWRsnJySQnJ0dDhgyhIUOG0OfPn8nJyYn27t1Lrq6uAtd//PiRNm3aRF5eXjRmzBjav38/ycnJEVHxNqOmpialp6cz579//77WLOTKYteuXfT8+XNq27YttW3bllRVVWn//v3k7+9PPXr0oH79+lHXrl2ZT4sWLSgoKIhOnTpFP378oPbt29OkSZOoS5cuTJ0/fvygjx8/kpqaWoW2Scs6PzU1lZo2bVqz23LLli2jmJgY+vz5Mz1//pxycnJIRkaG+vfvT82aNaPU1FRqq6pKNg8ekF58PEn/UzWIKILFoilycvRaRoZ0dHSYPeerV68SEVGTJk2odevWJCEhQYmJicTlcqlDhw7UqVMn6tixI3Xs2JGUlZWpQYMGpKCgQA0aNKBmzZqRtLQ0ERFjZaaiosLsTU+dOpVmz55N7dq1E3lfly9fpg8fPtDUqVPL/bLFkZaWxmwBpaSkUGpqKl27do06dOhAdnZ2ZGFhISCAfD6fcnJySFFRke7du0cBAQHUuXNn6tmzJ3Xv3l1ofzYhIYG8vb1p5cqVAsfl5ORE7tmX5u+//6abN29Wy7jk8uXLdODAAQoNDaWsrCxq0aIFsdls5tOmTRuhawBQTk4Os1W4Y8cOmjdvXpn9PXXqFI0bN466d+9O58+fZ6zSnjx5QoMHD6aCggIaPHgw9ezZk1q0aEEtWrSgdu3akbq6OrVp00bAHqGi8Hg8Sk9Pp6ZNm1b62hKuXbtGR44cYbYA8/LyiIioYcOGNH78eJo+fTq1bNlS5LU1KfC1YngjJydHf/31F7Vu3Zp69epFQ4YMoT59+gg27uFBtHs30T/GEQJISBCmTCHWjh3MoYiICHr27Bl9+fKF4uPjicfjkYqKCsnIyFB0dDS9f/+eoqKiKDU1Vag6KSkpUldXp+zsbEpMTCQAJCsrSz179qQ+ffpQXFwcDR48mMzMzKhdu3bMyFHC3r17qWnTpmRpaVneV0BExT4Fd+/epZCQEHr06BFFRUXR9+/fiYioV69eZGpqSvv27aMmTZqQgoICPXz4kPr3709r164lbW1tCgwMpGXLllFcXBwlJiaSnJwcPX78mK5du8ZYoPXq1Yt69uxJEhIS5OnpSS9evKDx48eTsrIy+fj40N69exnDk4qQm5tbbSMPomKDqPv379PFixfp+vXr9Pz5cwJAffr0oUePHjGjdmxsLHl4eFBISAh17NiRdHV1KTs7m44dO0aurq40ZswYGjp0qNAsITs7m4yNjenu3bs0f/58gRlNSkoK+fr60q1btygpKYm+fftGycnJjM2BpKQkKSgoUJMmTUhRUZGUlJSoefPmpKKiQm3atCFlZWVSUlIiaWlpSk9Pp7S0NEpNTaUzZ87Qq1evSF9fn8zNzalx48Y0aNAgkS+xisDn8ykuLo4iIyPp9u3b5O3tTQUFBRQUFES6urpC5/8Oga/UGr5ESVIm7doBROI/7dpVpEkhUlNTERUVhadPn+LWrVsIDg6Gl5cXpk2bhiVLlsDX1xfBwcHYsmUL7Ozs0LlzZ4HtKSJCixYtMGjQIDg5OeHEiRPQ0tISWg+9fPkSK1euhJaWFmRlZdG4cWN06tQJgwYNYraiVFVVMWbMGKxYsQL+/v64ePEi+vXrhwYNGsDKygqxsbEAgOvXr6N///4gIqioqICIoKmpyewzDxkyBFJSUlBQUICcnBzTz+bNm2PQoEEwNjbGnTt3kJyczKwT7e3tmfO2bNmCM2fOICQkBNHR0fj48SOioqKqrVwVpwTjcrnM/nrJ/TRr1ozZPizpV8uWLbF9+3ZMmjSJ0Vs0a9YMzZo1AxFhwIABePjwoUDdM2fOZK5XUFBA//79sWPHDgDFa+Ls7GyB8wsKChAdHY3Lly9DU1MTkpKSkJGRAYvFErnNVvojLS0NZWVlsNls7Ny5E/3792e09fXq1cOSJUtqRGmcmZkJQ0NDyMrK4vLly0LlJWv4n59BcZR1fkX1bDVraQcQtW5N9PWr+HNatiSKjyeqoXVmWfB4PJo7dy6lpKTQ0KFD6cuXL/Tx40d6+vQpRUZGkpSUFOno6FD37t2pefPmdOvWLQoNDSUlJSXS0tKiwYMHE4/Ho+TkZPr+/TujD+jZs6fIdTKfzxcauQDQ+fPnKTg4mMaOHUv9+vUjbW1tkpSUpPbt21OfPn1o6tSpJC0tTVwul8LCwig0NJS8vLwoLy+PeDweERXblnfu3Jk0NDQoLS2Nrly5Qlwul2lHQkKCunTpQlpaWrR27VqRtvxExbqXzMxMyszMpOjoaHr16hXz+fLlC2VlZVFhYSG1bt2aunTpQp07d6YOHTpQixYtqGHDhqSvr8/UtWjRIhoyZAiNGDGCFixYQOvWrSMiIi0tLVJXV6e4uDhq164dSUlJUUhICMXFxdGECRMYB57Vq1fTokWLiIgoMzOTbt68SSkpKfTlyxc6deoUNWjQgOzs7GjZsmVERDR//nyaNm2a0IxFR0eHlJWV6cSJE0RElJOTw1jjPXv2jI4cOUIvXryg7t27U1hYGMnLywv9fvjHlNfS0pJu3bpFKioqFB8fX2Xz29TUVLp9+zaFhoaSj48PycvLU3p6OrMEJfr/EVvU7FMU+fn59OnTp183wldo5KilEb46+Pn5QU9PDzY2Nhg1ahQ4HA6OHj2K7du3w8DAAB07doSSkhI0NTVx7NgxIc09l8sVazNQGyQlJcHJyQk/fvzAmzdvcPbsWXh6esLBwQEDBgxAixYthEYtKSkpdOjQAfLy8ujSpQtGjhwJPT09DBgwAF26dIGqqirq168vdJ2EhASkpKSEZkPNmjVDjx490KlTJ0hLSwtdd+vWLaF+x8XFYevWrejRowdUVFSgqqqKpk2bMqOumpoaHjx4gMzMTMjKymLWrFliv4Nx48Yx/Zs0aRI8PDwgLS0NVVVVxMXFMeclJCSgWbNmcHd3F1sXn89n6itPI25lZSWwbdi7d284OzsjICCgwqP+u3fvBL6zPn36ICgoSOi8mtyW+z0jPFG5a3iaOpVo+/bymqxx8I8iSVJSstw1LQAKDw8nb29vevXqFbVt25by8/NJWVmZ5s+fT507d67VvqakpNDs2bPp8OHDYs8xMDAgPz8/kpWVpc2bN9Pq1auJx+NRp06dqH379sTn8wUcSRQUFKioqIjS0tKoa9eulJeXRwsWLCAiomHDhpGZmRkpKChQ27ZtKT09nQICAuj06dPUtm1bGjVqFKWkpFB6ejq1a9eO2Gw2cTgcgdlMUVERASAWi0X16tWjRo0aUY8ePSgqKooSExOJiGjUqFGkoKBAX758oZs3b1JMTIxYB6l9+/bR+fPnydPTk3r16kVERBs2bKAFCxZQXFwctWzZknJzc0lbW5sSEhLo0aNHAl55pXF0dKQjR47Q3Llzaf369WV+956enrRv3z768uULycnJUevWrYnH49GHDx+ofv36ZGhoSOvXryd1dXWxdRQVFdH+/fspJCSEbty4Qbm5udSsWTPS1dWl7t27k7q6OnXo0IG6detG6enplJGRQc2bN6f69euLnDkCoLy8PEpOTqaGDRuKdLP9fSN8VhbQrRsgISE4sktIFB8XY6zwp/D8+XPo6emhR48eGDduHFatWgUdHR2cP38eMTEx0NPTw/Pnz2u1D3w+H/r6+mJHo9evX8PNzQ0A4O3tLTDyqqiooE+fPujcuTNat26Nxo0bM6akJR9JSUm4urpiyJAhzLESvUNp3rx5AwsLC6ipqaFv374YMGAAZGRkQERo2rQpdHR00LNnT2ZtXvqzcOFC5l7i4uLQqlUrZn0/cODAMk2rxWFhYQEFBQXcvHkTT548QefOnVG/fn0BwxlRzJgxA0SEKVOmlHneuXPnQEQYN24c9u3bx+gV9u/fj3fv3mHt2rVQU1ND8+bNER8fX6E+c7lc3Lx5E/Pnz8fAgQMZq0eiYsvJ4ODgGjGt/X0jPBFRdjbR4sVEQUFEhYVE0tJEpqZEq1cTiVlb/gl8/vyZxo8fT25ubvTs2TNavXo1ERVr5x0dHWnixInUo0cPGjt2LIWEhNRqX86dO0e3b9+mbdu2Cbz18/LyyNramjZu3EidO3cmPp9Pr169os+fP1NcXBx9/vyZsrOzGW8weXl55lNi63Ds2DFauXIlZWZmEpvNpvnz54vUIosiPz+fwsLC6MaNG/T27VtSVlYmVVVVatGiBUlLSzPeb0ZGRoyrLlFxvLXCwkJmzVoV4uLiaOzYsXTnzh2SlJQkTU1NOnr0KHXt2rXM67Kyssjc3JzevHlD3759E3ve8uXLac2aNTR9+nTKzc2lS5cuUUJCAl25coWGDRtGREQxMTHUqVMnGjduHPn6+lbpPtLT0ykqKopWrFhBoaGhNHr0aFq1ahWzEyYtLS000ktLS5epT6iVEb5KI1s1LMF+NTNmzMDjx49hb28vZLOckZHBOD1MmjQJ79+/r/X+7NmzByNGjICfnx/u3LmDHTt2QEtLCzdu3BB7TWFhIc6dO4epU6fCw8MDJ06cgKenJ+zs7DBlyhTcv38ffD6f2fX4Vdy/f58xKa0ORUVF2L59Ozw9PcHlcsHn83H79m0hxxoul4vz589j9OjRkJWVBYvFKndWkZKSgh49ekBdXR09e/aEnZ2dwDP/7NkzqKurQ1FRERcvXqz2vfD5fBw7dgxNmzYVmB0pKSnh06dPlaqrVmzpFRUVERwcXKmO/JsYMWIEAEFvptKMHj0aGRkZ2LRpk0ilVW2QmZmJgwcPYv369Vi6dClMTU1hZGSEESNGwMbGBuHh4cy5sbGx0NHRwdatWxETE4OdO3dCQ0MDf/31Fz58+ICoqCjMmzcPY8aMEXKKqShJSUk4ffo0zpw5g5SUlJq6zSpTsqSRlJTE33//jeHDh0NdXZ1ZxmhqamLDhg0Cir6qEBQUhHr16uGvv/5CdHR0ha65ceMGDA0N0atXL7Ro0QIGBgZ49+6d0Hmpqam4dOkSzpw5g/79+6NRo0ZifTTEUSsCT0QYMmRIpTryb6JE0B0dHUU+IE5OTkhOTsb48eMRExPzS/vm7e2NCRMmCGh0v3z5AktLSwQHB6OoqAhsNhufP38GUOwgZG5ujsLCQkRERAh4cJ09exbz589HTk4Onjx5gjdv3pRrX56fn49JkybBysoKBw4cwP79+zFy5EhMmzatyi+P6hIUFAQ5OTl0794dDg4OMDc3x5gxYzBnzhzs2LEDr1+/rpF2UlNT0bhxY3A4nArvmQPFOgdVVVW4ublhyZIlaN++PWRkZLB48WIh/UxSUhJGjhwJIoKnp2el+1grAv/169cKeyb9G7G2tkZCQgJu374tsGXE5/NRWFgIHR0dfP36VewMoLZITk4Gh8MRKZRcLhfa2toIDAzE+vXrmePTpk0TmI7OmDEDT548AVDs3NOuXTvo6+tj6dKlmDFjBthsNvz9/cX2wd7envFTL83p06cxYcKEatxd1dizZw8kJCTQunVrSEpKgsVioXfv3hgzZgwuXrxYqW3U/Px8LFmyBOPHj4ezszMcHR1hb28Pc3NzaGlpoU2bNiAqDoxRGczNzcFisTBu3DjExcUhLy8PS5YsgYyMDNq0aYOlS5fi7du3OH78OBo3boxmzZrh1KlTlf0qANSSwN+/fx8HDhyAs7Mzrl27VqWO/cncvn0brq6u4PF48PDwgKurK8zMzGBsbIyuXbuiU6dO6N27NyIjI39pv7Zs2VLmUmr37t0wMzMTGNF+jhh07do1bN68GXw+H1ZWVrC2thbQbhcUFMDNzQ2HDx8Wqv/Vq1eYPHmy2PYdHR1Favlri8uXL4PFYmHChAmQk5ODp6cn9u7dC2VlZSbwhrKyMiZMmICgoCCxbqxAsQuvlZUV6tWrhwEDBmDQoEEYPHgwhg0bBiMjI4wePRqGhobw8PAQuZdeFgUFBdi9ezeaNWsGFosFLS0t7NmzBw8ePMC4ceOYOAdEBBsbGyQnJ1f5O6m1KX3JZ9iwYVXu3J/M7t27MXLkSCxcuBCDBg3CgAED0K5dO7Ru3RrOzs4YOXKkkO94bTN9+nR8+PBBbPn169ehp6fHjOAAYGxsLDAbCwkJwY4dO3Djxg0sWbIEM2fOFAoCwuPxwGazhfzuV65ciXv37olt/9KlS9i6dWvlbqoKytykpCQ4OzuDxWJBR0cHoaGhICKBdTGfz0d4eDhmz54NdXV1xiiJzWaLFIbDhw+DiKCrq4vQ0FCcPn0a+/fvx9atW7FixQpoaGiAiNC+fXvMnz8fT58+rbRLcmZmJnx9faGnpwdJSUkoKiri9OnTyM/PR2BgIK5evVrp70JUGzUu8AEBAYwN9dy5c6vdycpS8mNOmTIFVlZWWLBgQa2spV++fIn27dvDxsYG06ZNw9GjR7Fw4ULMnj0bp06dgq6urpBtd22ycePGMrXCe/fuxerVqwV+k02bNiEwMJD5e9y4cYiJicH48eMRHR0tNuLQhg0bhOK5LVy4kPHtF8Xdu3exdu3a8m8kKwtwdy+2tmzZsvhfd3eRthmFhYXw9vZGnz59oKamhmbNmkFKSgqNGzeGl5cX0tLSYGdnh3r16uHbt2+4fv067t27x9jY29raomPHjjh27Bg2bNgAIkLHjh3Rv39/+Pr6MtaUKSkpmDJlilDILnl5eaioqKBDhw5o1KgRxo8fzwT80NDQwJIlS8qMmhQfHy/y+/327RssLCwgJydXYeVfRagVgTcyMoK1tTXq1auHgQMHlnlNUVERQkJCMHfuXCxYsIDZDqoqPB4PEyZMwLRp0/Du3Tvk5eUhLCwMlpaW2LlzZ5XrFYW3tzdOnjyJnJwcWFpaYtasWXjy5AkiIyOxbds2dO7cGWvWrKnRNssiKSkJZmZmIr+/goIC6OjoIC8vD+bm5njw4AEAIC0tDdra2oiLi0NISAgTfcfS0hJubm44fvy4yLYOHToktI4MDg7Gxo0bxfZv6dKl5UcPEmGQlUqEtSwWDBs0gImhIezs7HD37l0AwNChQ0FEGDlyJObPn4/Vq1dj165d+P79O969eycgnI0aNcKaNWvg6OiIFi1aQEJCAioqKkywkJLgEKU/e/bsEehebm4uPn36hPT0dLFBUQoKCnD58mU4OTkx9YiKbPP161em3MTEBNevXxeoMzs7G+3atYOWlla1ZKI0tSLwurq66N+/P1atWiUQjPBnPn78CDabjXXr1iEiIgLPnj3D/PnzYWpqivT09ErdSAlbtmwR+pGA4lHf1dVV5BdfVRYvXoznz5/D2dlZ5J73xYsX0a5duypHXakKO3bsgLu7u8AP+u3bN9ja2jJx8jIzMzFmzBg4OzsjMDAQu3fvhqqqKrp164bDhw9j27ZtaN++fZk27JMmTRLSUZTEIBQVT+3Tp0/Q19cv/8F1dxcQ9s9E0CbCRSLwWCzAwwNv3ryBsbExbGxsQETYtWuXyKri4uLw119/QUVFBQ4ODpCVlWX8BDQ0NMBms+Hh4QFvb284OTlBX18fw4YNQ7t27TB8+HBs37692r+du7s7oytYu3Yt3rx5Ax8fHxgYGIDD4aBt27YCL5gGDRpg3LhxOHHiBGJjY7Fw4UJIS0tXOWzZz/y2mHZFRUUYPHgwPDw8YGRkBCMjIyxatAhfvnxBeHg4rK2tK3YHpShZW4rTvH79+rXcCLKVwdvbG7t374atra3I8qNHj2LcuHEiFVy1SXBwMDgcDkxMTGBkZIRRo0bB398fFy5cwN27d5k1+/v37+Ht7Q1fX1/ExcXhxYsX8PPzw4ULFxAbGwsjIyORuy2xsbFiAzBGRUVBS0sL+/fvR2pqKlJSUrB3797i2HIVUdj95FQ1kggxpf4+16wZlJWVGQFp2rQpIiIixFZ3/fp1LF++HEDxrMTDwwPh4eHg8XgCIaxLPhMnTmSuLQkpVmKsw+PxcOfOHcyfPx9r1qxBQEAA3r59KyCMCQkJuHDhAhOyis/n4969exg7diwTF7Bhw4ZwdHTEiRMnkJiYiOvXrzMmxaI+48ePL/97qyC/TeA3bNiAjh074vbt2+Dz+eDz+bhz5w709fXx4MEDuLq64u3btxW7i39ITEyEi4tLmefU5FZZeno6NDU1RQp0UVER9PT0EBsbW6XY8jVBUVER4uPjMWrUKDg5OWHPnj1YsWIF2Gw2Tp8+Xe71/v7+AjH3CgsLcebMGWhrazP7+KLIy8vDmjVroKGhgZYqKujdrBnGysvjebNmZa7HwecXr9n/Ee6PRBj3z/8ziWDzjwCYmprizZs3ePz4cZneb0BxRFtROwO5ubkCU30igpaWFmMZmZqaip49e4KIICMjgw8fPmDHjh0gKo5DoKSkJOBzoKKigs6dOzMef7KysrC2thbw5/f394e9vT2mT5+Obt26Mdc3bNgQmpqaTGw/+see/8KFC1izZk2NxW4EfpPAFxQUoFWrVnj27JlQWVZWFrS0tHDu3Dl4eXlVpFmGtLS0MkdwPp+PESNGgMfjITo6GtHR0dV2Z3Vzc8PQoUMFDF1SUlLg6OgIPz8/JCQkwNnZuVptVJWsrCzo6OgImcYWFhbCyclJQFknjrdv38Ld3R0cDgccDkcg4KI4rl+/Dg6HgzePHjHr8Q9EsCRCAJXjIFVqhL9MhO1EyCbCYCIoEsGvaVOBZUF5iUjs7OzELg+9vLwwbNgw6OjoCDnWBAYGCoyyHz9+hJ+fH4gIKSkp4PP5SExMxI0bN7B3714sX74cU6dOxeHDhxEZGckMaEQEbW1t3LlzB1ZWVkIGUWfOnMHatWvh5OSEpk2bMuaz2traZd5XVfktAn/27FloaWmJHcF3796N2bNnC0TuLCEmJgbTpk2DpqamyLWiiYmJ2AcyLCwMBgYGYLPZcHd3h7u7O3R0dODt7V1lpUhycjKGDh0Kc3NzZmkycuRIRjm1fft2nD17tkp1V5edO3eKNdDgcrnQ09OrMWVQ6Xq1tLSKfcJ/Wo8XEIFNhKwSoRcRp770NU+JMOOfNbwCER7+s4YvITk5GWPGjCmzP5s3by5zX3zixIki7SX4fD42b94MHR0dZjb04cMHEFGF7eOLiopw9uxZ9OnTBzIyMtDQ0MDmzZuxd+9enDhxQsgsdvHixXjx4gUyMjJqTe/zWwR+5cqV2LlzJ1auXCmy/OnTp+jRo4eAY8C3b99gbGws8NYtrazhcrlYvXo1BgwYADk5Ofz111/YsmUL81L49u0b2rdvj5kzZwqsS4uKirB69WpmnVcVpk+fDn9/f2ZpUsL79+9F7lf/Kjgcjui2/+mjh4eHSJvt6nD27Nn/3w0REeTkOBH2lfwtKshJKS09nwgqRJAjwh0WS2hW4OnpWa7wpaamQldXV6Spa4lZcUXh8/lo3LhxpV12f/z4AXNzc9SrVw8NGjRgpv0HDx4UOM/W1rZGp++i+C0Cv337dpw/fx4jRozAq1evhMpXrFiB/v37M38nJCQwllFEhKlTp+LOnTsCgluyxdGzZ09YWVmhWbNmTFz2pk2bMlrojx8/Ijk5Ge/fv8eTJ0+YL7g6ce4LCgowefJk2Nra4vz587h27Rpmz54NIyOjcpNJVISSGP73798X8vYqC4Hproi97aX9+uHpnTvV7l9p1q1bhzt37gitx0s+b4gwt+Tvli1FG9ZkZQEeHnjfsiUkiNBLWhqZEycyws7n83Hu3DmMGjWqQkuyy5cvw8DAgMlXl5eXh4MHDzIm0JXBwcEBrVu3rpJfwOnTp7Fx40b8+PEDRIQjR44wZSW6lp959eoVLC0tBYylqkOtCPz8+fPLdB5ISEiAlZUVkpOTYWZmBg8PD1y5cgUXLlzAuHHjoKamhg8fPiA1NRVLly6FkpISY8hjYWHB1BMREYENGzbA3t6eUbCUJOgrKipCUFAQpkyZAnNzc5Hhnko+LVu2xIABA2BkZISLFy8y6ZQqS1xcHLy8vLB161YB77TqcObMGbDZbMyZMweenp4wMzPDxIkTK2TQ4+bmVmz0ISbYiDERsjt3rtFgIwcOHICfn1/xHyJG+EtE2FTWCF+KFStWoGHDhrh8+TKMjY0xduxYTJ8+HXp6eli0aFGlhO7r169Yvnw5TExMYGFhgQMHDlRp2lyShqoqOy9FRUWwsbGBr68vZGVlsWnTJgDFaaVE6VqOHTuGevXqMcE0KxQcthxqzbTW19e3zHMXLVqEjRs3gs/n49mzZ9i6dSt27NiBRYsWYd68eThw4AATpXXGjBmIiYkBi8WCq6srFi5cyER5lZeXx8CBA+Hq6ooNGzaItUpavnw5rly5guDgYAQEBDDRUM6cOYN58+ahf//+AhFfDA0Na0xoq4q/vz/Gjx8vNC2/ffs2jIyMys2G8/r1a1hbW4M3daqQsIcSYXpZa+kqkpGRAUNDw+KlzU9reBBhFBG+VrDdGTNmoEuXLszfiYmJiI6OFspM9KvIyMgAm82GjIxMlX1ECgoKsHnzZjRu3BjKysrQ19eHq6ur0E7C9evXISUlBXt7e8TFxaF9+/bo1KlTtaf8tSbwFy5cwLZt29CtWzeoqanBwcEBkZGReP/+Pe7fv487d+6gT58+aNu2LebNm4f58+eDzWZjy5Yt4PP5WLRoEYgIenp6zNS9X79+ICoO/2xiYgIbGxvo6OiAw+FAV1cXK1euFDvy+fv7l6n137t3L44fP47o6GgcOHCASYtsZGSER48eVeT2a5QSN1ZxXodbtmxBQEBAufUcPnwY5vXrI4wIPCJ8I8IaIpgTIa+CI21l2bNnD9zd3ZH37Rszs+ASYQkRVpenpS+Fq6srGjZsiIkTJ2L16tU1ajRVWVJSUqCpqQklJaUaiXGwbt06yMrKMo5IJUuT1NRUrF27FvXr18fw4cOZl/379++hoqKCTp06VXoZUppadZ6RkpKCubk587e8vLxAvvISy6KXL1/i5cuXAiPZjRs3oKCgAFVVVUaI09LSkJSUhOzsbBgYGCAoKIj5ong8HoKDg2FgYCDS66lEeywqYEBJ/rjSI0dRURGOHz/OCL62tjaWL1+O2bNnQ1tbG2w2G2ZmZjh37lytuAI/ePAAy5YtE1uelpZWMeMkPh8xysqYTwRTItjTP1Zrpafa4tbS1eDs2bMwMDCAg40NxnXpAl1ZWRxp1Kj45eLhUaFlxNWrV2FiYoJevXqhUaNGYLFYvzT6Tmlu3LgBIkL37t3LjY1XEb58+QJbW1t0794dLBYLHA4HbDab2Ytv06YNRo4cCVdXV+Tm5uLSpUtgs9mMtaCVlVWZBkfiqDX32Fu3bjFr4bt37+Lp06eYOHEiFi5ciMuXL2PIkCFo2rSpgKtfQUEBzp8/DxMTE0hISKBHjx6YP38+5s+fL+CosWLFCly4cEFkHy5cuCBW43779m0YGhri8ePHzLEnT57AyMhIrI13UVER/Pz8wGazGSWgqI+mpmaNZs0NDQ0VazIKFCuuyko3XPo8btu2vy0k+Ldv3/D69evivfBqvFTy8/OhoqLC2Pr/Du7fv48ePXpAQkICmzdvrrF6Q0JCICMjAwkJCZiamiIwMJAZ/K5evYrevXtj6tSpSE1NRWxsLNq2bYs2bdqAzWZXetbzW7T0z549Q/v27eHg4ACgOC+7nZ0dY/HUvHlzJsNKae+kEht5Npstdv+Yz+dDV1dXbNuxsbGYNWsWs2c+c+bMCnnSTZo0CXfv3sWzZ89w/fp1XL58GSEhIThz5gx0dHRQr149zJs3r9x6Kkp8fDzs7e3Flj98+LDM9r59+4YZM2ZAT08PI9XVwSbCCiLk/izsNbyGL6GoqAibNm2Cjo4OnJ2dYWVlBTMzszLdZ8tjy5YtkJSUZGLe/fjx45eHzyooKMCsWbPAYrFqLIxbfHw8Ro4cKVJZ/OnTJ3To0EFgkIqNjYWqqip69OiBoUOHVsp47JcKfEJCAiZMmAAigrq6Oh49eoT79+9DQUEBnTt3xpIlS3DhwgUQEdhsNk6cOAE3NzdGmTZv3jz4+/szMeWAYs34y5cvBdo0MTGp0YQQWVlZZZrkfv36Fd27d4eMjAwOHDhQY8YsNjY2IsMv8Xg8mJubi31RJSUlQVtbG2FhYSU3AH7XrjjPYsGo9Nq9lkKC8/l8ODs7Y9++fQK/Q2pqKkaNGiUynVJF4HK56NKlC1RUVNC2bVtmP7tdu3awt7fHnj17Km2OXRV4PB7MzMygpKRUI+7Pe/bsEWv1uHz5cnh7e2PRokUCx1+/fo1GjRqhbdu2uHTpUoXb+iUC/+TJE9ja2kJKSgry8vJMpNTWrVuDqDjTSGmTQ11dXWZUV1FRQffu3WFvb4/jx49j//79aNq0KRwcHGBoaAhnZ2csXLgQpqammDBhAtLS0soc4atCREREuaO3oaEhk89t+PDhNWLQkpycDDabjcOHDzPbnM+fP8eoUaNw9OhRsddNnjxZeJ35z972iaZNsVVJqVJraXHw+Xw8ePAALi4u4HA4cHV1xcOHD3Hv3j3MmTNH5DX5+fllztDK49GjRxgzZgzmz58PX19fnDhxAtOnT0ffvn2ZJddff/2FXbt21ao2Pzw8HEQVi9Ccnp6O7du3w87ODuPHj0doaKjAi3Dr1q1itf7jxo3DgwcPRHouLly4EEQEe3t7BAYGlmvyDNSSwH/79g1v377FrVu3sHLlSkhISKB9+/bYunUrIiIi0KJFCzRv3hyTJ0/GzZs3hZRePB4PQUFBuHDhAkaMGCEwnQGKg0Sqqalh5syZAsfDwsLQp0+fGp1aA8UKlrIcYH78+MEYuVy5cgXq6upo1KhRjSQazM3Nha+vL8zMzGBiYgIPD48yR7GCggKBGdDPFBYWwsDAoNr94vP5cHd3x7Rp05gtpZiYGLi7u6N79+5lLpMWL17M+OPXJNnZ2QgICICZmRkkJSXRtWtXhISE1EoQklmzZkFSUrLMCENAsd5IR0cHZ8+eRUZGBuLi4uDp6QljY2NG6MLCwsQ+s4sWLcLMmTOFnJ1yc3MhKysLSUlJjBgxAjt37oSJiQnmz59fphK5VgS+dNaMks+GDRswYsQISEhIoGnTphXaWggNDRUZQMLAwABaWloYOHAgUlNTARQ/gFeuXEG3bt2wffv2inS3UnA4HLFWbkeOHBGw+4+KigIRMf7nv5Lv37+X651XnsNJRSgJiS2Kzp07l2mY4uPjUyHHnerw6tUr9O3bF0TFeec0NTWxePHiahuvZGVlYdq0aSAibNu2rcxzU1JSwGazRb74Hzx4wPxOfD4fhoaGIm1IHj58CGVlZSFbDCsrK6xevZrReykrK+PAgQM4cOCA0EBYmlqPaVdiySYjI4O///4be/furbB56KRJk4R+oLi4ODg7OyMjIwPGxsbo0aMHzM3Noauri4ULF+Lbt2+1Ei02PDwcxsbGQn1/8OAB9PX1hX7Ufv36QUpKChwOB1evXsXKlSuhq6vL2AysXbu2RmYAP1NQUFDmCM7lcmtkhNfX1xdrTenu7o5BgwaJvXbq1Kk1Fhq6LHg8HiIiIuDr64tx48ZBQUEBLBYLPXv2xODBg6GrqwtTU1M4OTlh3rx5Ze6vp6SkYP/+/WjZsiXq16+PTZs2lbss2bBhQ5mKPWtra2bgi4uLg46ODnbv3o3k5GSkp6fj8OHD0NLSwqRJk7BkyRLGMvDRo0dwc3ODpaUlQkJCEBkZCTs7O2Y52bNnT/j5+eHTp09CfawVgZeUlISBgQF8fHyqZRnk7OwspLl89eoVFixYAKDYmObIkSNCFmcVFfj8/Hw8e/YMr1+/rpCS7+HDhzAxMcG4ceMwb948mJiYYNKkSSLXTmlpadi1axd69OjB2P+XfPk8Hg/nzp2DoaFhrQi9h4eH2CnzoUOHqh3qi8fjMVuCjx49gouLC2Oy6ufnh5cvX6Jly5Yiv9PExEQYGhoyfxcUFODixYvYv38/bty4UavZd3NycnDgwAFMnDgRY8eOhZWVFYyNjTFw4EDUr18fenp6AucXFRVh/fr1GDhwIKMgNDU1/X+nrnIEfuTIkWXqEby9vXH+/Hnmby6Xi5MnT2Ls2LGws7ODr68v83wcP34cBgYGsLCwgLq6Oths9v8rZf/h8uXLGDhwoIDFqIaGBk6cOMGcUysCX1OhiH18fISUU5mZmczD5uLiIpTKqbztLKB4HbtkyRLo6+tj0aJFmDVrFnR0dHDo0KEK9evr16+IiIgQMvDJzs7GtWvX8PnzZ7x58wYxMTFYuHAhevXqhX79+glNy86ePVuxoI6VJDU1FWw2G1evXmVeMoWFhTh27BjMzMyqnRCCz+fDwMAAa9euhaurKzMVzc7OhpeXF4yMjNChQwdMmTKFCXHG5/MRFhYGHR0dxh31/Pnz0NHRwaZNm3Du3DkmIWd1tu6qioaGBuOHUcKnT5+Y9NgrVqwo9rysRIDNMWPGMEtOUWzZsgWhoaGV6ieXy4W7u3uZuoOLFy9i+fLluHDhAkxMTEBEzHf62yLeVIScnBxoaWkJBTCYOHEiDh06hNGjRwtdM3Xq1HKNEZycnHDs2DGB6U5RURHmzJlTrdFv3bp1AksZGRkZ6Ojo4ODBg5CQkEDXrl0FYt/xeLwa31EoIS0tDUuWLBFYRmzatKnGNNeGhoZiQ3sdOnQIXbt2xfXr12FlZQUOhwMDAwPMnTuX8R68e/curK2thV4+WVlZMDQ0/CXba6Xp0KGDQHirEsLCwtCyZUsYGRlVOuOxv7+/2Oep5KVZFQee48ePi4zbWMKsWbMYc3Aej4euXbtiyJAhCA4ORnx8/J8r8ECxb/zw4cNx5MgRpKSk4PPnz1i+fDmaNGmC3bt3M+vIuLg4TJkyBStWrCi3Pg8xhiYlEXEqm6+rhJ07d4KIsGbNGmhra0NTU5Px7nv+/DkGDx4MIhJY19WEAu13YGJigmHDhgnpNL5//w49PT0MHz68zO/RwsJCYCu2NO/evfvlWWqmT58OVVVVkUuKnTt3QkpKCmmursLCXoYBU0FBAXR1dUW6gK9duxYbNmyoUl+5XC6GDx8u8vv78OFD8cupFBcuXGCSWaipqf3ZAg8Uj/T79u2Do6MjXF1dma0WHx8fmJiYgMPhwN7evtgPuxxmz55dZuz0ffv2VSjemygyMzMZLz4igrOzs8CeM4/HQ8eOHeHq6sr8XVsjfG3D4XDw5MkTGBgYwMPDA7t27YK7uztGjBiBZ8+eYe7cuWJtvUsCQpRFWVuLtcGDBw9ARDhw4IBQ2devX8FisXCwSZNKmygnJyfD0tISzs7O8PPzg5eXFwwNDbFu3bpqGWi9ePECWlpa8PPzQ2ZmJr5//w4vLy/o6OiIzEnP5/Px+vVrxlb/jxb4msTV1bVMRWJgYCB8fHyqXH9RUZFAPHJDQ0MBO/2SLZ1u3brB1tb2tyTqqAmMjIwYncTr169x6dIlAQF3cnIS+eABxS9wUcux0hgbG9dcZyuIg4MDGjZsKPL5GDhwICxkZcsW+DKckN6/f4/jx48jMDCwyjPIn8nOzsbevXthY2MDOzs7nDhxolz9zF9//fXfEvjt27fj3LlzYsvnz58vpP2sLD9+/BAQ+v79++PWrVvFjixcLgIDA8Fms0FEzI7Dv42dO3fi5MmTIssyMzOFppWl4fP50NPTE6tPSE5OxsiRI2ukn5Xh+/fvaNasGfr16ycQ5+7bt2+Ql5fHfCWl3+aEVBPcuHGDCQTznxH4EtNbUW/ChIQEGBgY1Jgt/NWrV3Hw4EEkJiZi7ty5YLPZGDlyJHR0dDB9+nQQUbVmE7+T7OxssNlsoeVRdnY2zM3Ny11eHT58WGRMQz6fj4kTJ/62JKRhYWHQ0NCAjIwMVqxYgc+fP2P06NFQUlJCaiXX8H8CycnJOHfuHAYNGgQiYmLj/2cEHihWYnA4HMZkt6ioCBcuXIC2tnaNB3UsTckIXxLscsiQIdDQ0KhULvE/iZSUFDg4OMDS0hKrVq3C5MmTYWBgUKEAESVBTsaOHYuHDx8iOTkZN2/ehIWFhYBbcEpKCt68eVPlTERVIT8/HwsXLmS25OrXr4/9+/dXWkv/u7h//z7GjBnDKOhKrA1Lx6IoT0ZZAEDlkJWVRUpKSpSZmUmKiorlnf5biYmJIS8vL4qKiiIANHz4cHJxcaEmTZoInZuVlUVHjx6la9euEYvFIj09PbK3tycFBYUqtc3j8WjYsGGUmppKHz58oPr161P//v2JzWbT0KFD6e+//yZJScnq3uIv4/v37xQTE0ONGjWijh07Vura9+/f0+HDhykxMZHU1NRo3Lhx1Lp1a4qKiqLFixeTpKQktWnThqKjo0lBQYHWrVtHKioqtXQngkRERNDjx4/J3NycGjVqVHwwO5to8WKioCCiwkIiaWkiU1Oi1auJqvg81BQ5OTm0cOFC2rVrF3Xr1o309PRIUVGR1qxZQ8OHD6d27dqRr68vEVG5Mvo/J/AVJSIigjw8PMjNzY1MTU0JAAUGBpK3tzft2bOHOnfuXOk6f/z4QXJyckRE1LRpU/r+/btAeZcuXejgwYM0YMAAIiJKT0+n+Ph4atKkCbVs2bL6N/WHExMTQxMmTKDDhw9Tq1atmONv3rwhd3d3On36tMgXc0XJyMig+/fvExHR33///f/CXA4FBQV04MABOn/+PElJSVFhYSEZGhrShAkTmN9T3HUBAQF05coVIiLS09OjkSNHkoyMjNC5X79+JXd3d4qOjqb09HQqKCggIiI+n0/y8vKkqqpKKioqzIfL5VJiYiIlJSXRs2fPKCMjgzw9Pcnd3Z24XC5pamqSiooKTZ48mWxtbalJkyaUmppavoxWZCrxb5nSV5TCwkJoaWkJROUpITExUWwq5Yrg7e3NTK8aNGiARYsWwdvbGx07dmTcPEeMGMGYrC5cuBCOjo4wMTGpkRBLfzKOjo5iLcmuX7+OpUuXVqnewsJCzJkzB6ampti1axe8vLxgbm6OGTNmlKvd5nK5sLCwgK+vL6NsLCgowLFjx2BkZCTWRPrjx4+MjXxCQgISExOxZ88eaGtrC3kUPn36FC1btkSrVq3g7u6OJUuWYPXq1TAwMGCelcaNG6NVq1Zo3749GjdujJYtW6Jv377gcDiYMmWKQJ2zZs2CrKwsXr16JeTf8p9aw1eU8+fPlxnKyNPTs9KmkaWJiorCyZMn0bNnT7BYLOjr6+PChQsYMGAAJCQkGMEfNWoUnj59Cj6fj5SUFIwYMaJMW4J/M1wut1wNv76+fpXqdnNzE7ArL+HMmTPl5iTctm2bQBz50pw/f15kWLWS3YjSCVVK+Pz5M3R1dZGSkoLt27djwIABICqO9rRq1SqsX78eCxYswPTp05mcdj9/5OXlxWZnDgsLg4SEBNavXw8ej4edO3fi8ePHTAyKOoEXwZIlS0TmvyshLCwMq1evrnY7ubm5OHDgAHr16gV5eXnMnTsXvXr1YrZQmjdvDiJicq8nJSXB0tKy2u3+iaSnp8POzq7Mc6pinRgbG4uxY8eKLR8/fnyZATL19PTEhgXn8/nQ0dER2t0pnblWFNOnT4eysjLjmFP6o6SkhHbt2kFVVRUsFgtjx46Fn58fHB0dBVJM/6wg5fP52L9/P+Tl5dG/f3+hPicmJlZIRiXKXeD8D1K/fn3KyMgQW56RkUHy8vI10o6TkxPdu3ePRo4cSd7e3vTixQtKTU0lomIl3/Dhw2nHjh3E4/FIWVmZWCwWpaenV7vtPw1FRUVKSkoiiFEZ5eXlEZ/Pr3S9AQEBZGtrK7bczs6Ozp07J7a8Xr16JCUlJbKMxWJR48aNicvlChx/8OABGRgYiLzm+fPndPDgQfr27Rtzr/369SMfHx/KysqijIwM+vjxIx04cICkpaUpJCSEjIyM6NChQ/Tp0ydKSUmhtLQ0Gj58uEC9ly5dIhcXFyIiun79ulCf69evL/YeS/OfFPhRo0bRsWPHxJYfP36cLCwsaqw9eXl5OnLkCH3//p3k5OSosLCQWCwWpaam0u3btyk+Pp7CwsKIiKhZs2aUlZVVY23/KUhISNCwYcMoICBAZPnevXvJ2tq60vXm5+eXqaRSUlKivLw8seVcLlfsS4io+OVfr149gWMyMjIi67x16xb99ddflJmZSUREbm5u9Pz5c3r06BGNHz+e2f15//49GRoa0uDBg+nly5cCysWmTZuKVDbevXuXiIgGDhzICDcAysvLo2/fvhGPxxN7D6X5Twq8hoYGSUhI0KlTp4TK/Pz8SFFRkdq2bVvj7UpJSVGXLl2IiOjRo0d05swZpuzp06dERBQdHU0tWrSo8bb/BObNm0dHjhyhPXv2UG5uLhEV71SsXr2aIiMjyd7evtJ19uvXj27cuCG2/Pr169S/f3+x5YMGDaLr16+LLHv8+DF17dqVWCyWwHEzMzM6efIk8zcA8vLyIm1tbSIqfrkdOHCAvLy8qFevXkL1qqqqkrS0NJmZmVV4d+bz58/M/UhKSpKEhARJSUmRvLw8tWjRgtTU1CpUz39yDQ8Ua2LnzJkDExMTbN++Hdu2bYOxsTEWLFjAxA5LS0tDUFAQgoKCyvR/rgznzp2DnJwcE+vM1tYWRMUZRy9fvozZs2fXSDt/KgUFBThy5AhMTU3B4XAwatQoBAQEVNkKksfjgc1miwytVhLlt6xYcGlpaSKDTjx//hza2tpilWeOjo64cOECCgsLBdberVq1qlDm2hLPQy8vLwHX6tJERUXB1tYWOTk5yM7OxsmTJ3HkyBEcOHAA+/btY7IqeXl5/XcNbypLZmYmPXz4kIiK924VFBSosLCQ5s+fT9HR0TRixAgiIrp8+TKpqanR+vXrRe6zVhQA1KNHD0pJSaGXL1+SnJwchYaGUkZGBgUHB9OpU6fEr8cAop9GmwqV/Y/z4cMHmjhxIjk5OdHIkSOJxWJRYGAg+fj4kJeXFzOrEkdqaiqtWLGC3r9/T6qqqpSUlERt2rShZcuWiTUG4nK5NH36dPr48SNdvnyZiIjU1dVp6NChtGfPHpKVlS2zzf3799P48eOZv11dXaldu3b06dMn0tPToyFDhpCqqioRET18+JCx3RDFs2fPqE+fPkRUvuHNf3aEL4uJEyfC399f6PiZM2cwfvz4atdfkmPMxsYGHA4HZmZmOHz4sGink7IisVQiSsv/Ojk5OfD19YWVlRUsLS3h7e1d6ai2XC4XycnJlQomkpCQAD8/Pxw/frw4ck4FycvLY1xaf/506dIFvXv3ZpK2DBgwoNz0U390xJs/mejoaIwbN05suajwW5Xl9OnTICKxgSIYyrLx7tIF6Ny5XPtvHo9XY05DddQsL1++hIODg0CsupJPo0aNcOrUKWhqaoKIyl3qVVRGRe9H/IcJDAys0DbPvHnzqtxGyZZfbm5u2aakixYRvX1L9PN2FZ9P9O5dsYj/DJ9P9PYtnbWxof0ASUtLU2FhISkpKdGcOXPor7/+qnK/fyYxMZG+fPlCqqqq/wnT4IqSk5NDISEhlJGRQd26daPs7GxasWIFZWZmUmJiInG5XCosLCQej0erVq2ilJQUunjxIvH5fPr8+TO9evWK3r17RzY2NtSqVSs6ePAgOTg41Ejf/iiBj4+Pp2/fvlGbNm2oefPmv6UP5W3zKCoqUn5+fpl13Lx5k3x8fCg7O5sAkLGxMY0dO5YR9I8fP5KUlFT5QhIcLCzsJZShelnN51Pu/ft06ssXatCgAREV23JPmTKFpk6dSrq6umW3Ww4xMTE0b948kpWVJQ0NDYqJiaHs7Gxau3ZtlXwQ/pfYsWMHhYaGkqWlJbVs2ZL8/PzI29ubiIgcHBzo5s2blJmZSSwWi6ysrMja2ppu3rxJp06douvXr1NmZiYpKSmRjo4OTZ48mRwcHIS2BatFRaYetT2lf/nyJUxNTTFu3DgsW7YM1tbWsLa2RlxcXK20VxahoaHw9PQUOv7t2zesWrUKnTp1Qr9+/TBt2jSRFlxLly7FtGnTGK0xl8vFsWPHoKury8SJmzlzJtTV1cvuCJ9fvC4vKzCDiM8HItiKidKSl5cHHR2daqXBjo+Ph7a2tpBZ6devX6Gjo1OhBJ7/qxw8eBDz5s1DQkICvLy8oKWlBSJCixYtoKGhgYULF0JCQgJOTk54+/YtDh06hFatWoGI0LdvX6xcuRJhYWFiLf/K4l+zho+MjISenp5QnPr3799DW1sb3759Q1ZWFqKiospf89YAorZ5IiIioKOjg5MnTzIC8/TpU5iamgoErrx165bYQJrh4eFMzDtzc/OK2Y23a1dpgV9IhLAyorSsWbMGV69ercQ3IoiHh4dYJ5+3b98y9/hfgs/nIzQ0FA0aNICSkhKI/j+Hw5EjR8DlcnHp0iXo6+tDUVGR+T8Rwdraukacpv41Am9nZ4fPnz+LLAsMDESvXr1gamqKmTNnwtraGlZWVmJDHXO5XPj5+cHc3BwmJiZwdHTE/fv3K92nqKgoaGlp4dChQ8jMzISWlhZ27doFLS0tgba5XC7YbDYTxMHe3p4J1ywKMzMzfP36FUpKSli4cGH5HXF3Fx+JhcUSeXwsEVJZLLFRWk6fPl3hOP2i+Dmpw8/UVGQhPp+Pd+/e4dmzZ7WSQ66mKCwshL29PdTV1SEhIQE7OzusWrUKI0eOxJYtW5jzeDweE3eOiNC6dWuEhITUWD/+FUo7LpdLWVlZ1KZNG6GyjIwM2rFjB8nKytL58+eZ41++fKFx48aRl5eXQFCG3Nxcsra2JmNjYzp69Cg1aNCAPn/+TBs2bKBr167R0qVLK9yvjh07UkhICJ08eZLMzc3p27dvVK9ePbpw4YKAjb2MjAy5ubnR0aNHyd3dnTIzM8tcl3fr1o2xqS69BysWT0+iGzeEFXcSEkSdOhWL+Pv3AmVtiOhdu3b09+rVFBAQQAcOHCAioqKiImrdujXJy8uTiYlJhb+LnylvPVm/fn0qKioiaWnpKrcRFBREO3fupC5dulDDhg3p2bNnpKGhQWvWrCnTP/13sHHjRgJAsbGxZG5uTn5+fkRUbG8xefJkun37Ng0fPpwkJCRIVVWVAgMDacuWLRQREUF79+6lPXv2kK2tLdnY2AhZ9NUKNfn2qCxpaWlwcHAQWbZmzRqEhISI9KD6+PGjkOfVjBkzxE5Vp02bJtaaqTz27t1bZh6x+Ph4JtGBiYlJmWGtnJ2dMWPGDCgoKFQ8FdU/6aAF9tpL0kGLKItxdITNqFFYunQpFixYIPCbPXv2DI0bN0Z4eHjF2haBgYGB2H3qwsLCaofnPnPmDMaNGyfURmhoKMzMzKqlf6hpCgsLwWazYWVlhb///htaWloCs5uvX7/CxsYGQHHqrgkTJkBbW1sgrXRWVhbWrl2LSZMmVWtm9K+Y0pesl0XdqIGBATIyMsS6TJqamjJCk5eXV2a884SEBOaLrywnT54sMyDlkydPMH/+fADFKbQOHjwo8rz09HRwOBzExMSAxWKVmYVVLGU9EKXKpk2bhm7dugn8Xp8/f4apqSmCgoKgp6dX5YfL19dXbHZVHx+famX4LSoqgo6OjlilVckg8KdQ8rIvyedOREIJPTkcDpN2fNSoUXj58qXIupYtW4agoKAq96WiMvpbnWckJCRIW1tbpBOLtLQ07dq1S6xDRdOmTSk7O5uIiqf5Xbt2FduOiooK5eTkVKmPxsbGdObMGbEeVb6+vsy+vb29Pfn7+9O9e/cEzklPTycHBwdavHgxtW/fnlRUVCg2NrbynSlryleqjMVi0fjx48nOzo5MTEzI0NCQFi1aRCtXriQTExPq1asXPXz4kMLDwyk8PFzI/bMsnJyc6PXr17R8+XJKSUkhIqK0tDRas2YN3b59m6ZMmVL5+/qH8PBwGjp0qFh3VRcXlzK9HH8Vnz59ovv379PFixfp1q1bdPPmTabs4cOHNGXKFHr69CnFx8fTly9fmG1ZHo9HmpqaIut0d3enI0eO1Hrff/s+/Jw5c8jOzo6+fv1KLi4upKSkRElJSfT27Vtq2bIlLVy4UOgaAEwsOKLivfGSh08URUVFFXYf/JkGDRqQiYkJzZ07l9auXcs8jADo8OHDxOPxqEePHkREJCsrS/7+/rRgwQJat24dde3alb59+0bp6em0ePFixh5aRkam3L386vD582dav349TZ8+nQAIrA35fD7FxsaSm5sb4wK8ZMkS0tLSovnz55OERNljgISEBPn4+NClS5fIw8ODcnJySE5Ojuzt7St0fVlkZGSQsrKy2PJmzZoxL/lfDQCaNm0a7dy5U+C4pKQkNW7cmFRVValBgwY0YcIE0tbWptOnT1NkZCS1aNGCTp48SV+/fi0zEGiTJk3ox48ftX0bv1/gZWRk6MSJE3T+/HlydnamgoICUlBQoNGjR5OSkpJIRUZoaCj16dOHET5lZWXKyMig9PR0kb7EQUFBpK+vX+U+TpkyhY4ePUoGBgbUo0cPkpWVpadPn9Lw4cNpz549AucqKirS7t27KScnh+Li4qhhw4aMEwQRUUpKCn369Im6detW5f6UR8uWLSk6Olqka+e8efMoJyeH9u7dSwMHDiSi4ofZ29ubZs+eTVu2bCm3fhaLRUZGRmRkZFSj/e7atSudPn2a3NzcRJY/evSoXEeY2oDP54uNNjx37lx6//49+fn5kYSEBB0+fJg2bNhA69evJycnJzp+/DgpKSkRl8ul+Ph4sW3k5eX97yvtyoLP58PV1RWrVq1iDFby8/Oxf/9+GBsbCym9wsLCYGJiItTHV69eQUdHp0b6zuPx8PbtW7x69arc4IivX7/Ghg0bsHbtWjx8+JBZM5fkOqvNRBXPnj3DpEmThI7Hx8fD0tJSrN7E1tZW7Bbpr2LUqFEiDZp4PB4sLCyYFNa/kuzsbGaNvnjxYvj7+8Pe3p7J5BoaGgo2m43Fixdj7969GDJkCHr27CnkczFq1CixDjbe3t7V2i79VyjtyoPP5yMgIAAjR44Eh8OBsbExfHx8xGqJ79+/DyMjI0ycOBErVqyApaUlHBwcREanrS2ys7NhbW0NNzc33LhxA3fu3MGcOXPA4XDw7ds38Hg8ODg4QFJSslaTY8ycORNr164V2DVYtmwZ+vXrJzZ7TGhoaJnBPX8FX79+hba2Nk6dOsXkuIuMjISNjY3IhJA1RUZGBnbu3AkHBwdMmDABly9fxr179/D161ckJyejefPmmDVrFoDigefnHHl8Ph8PHz5EcHAwnj17JjKH3ps3b8BmswWsFPl8PoKCgmBiYlLuIFIW/xMCX1Wio6Px6NEjpKSk/PK27ezshPLY8/l8nD17Fv3798fHjx+Rk5PDBL2oCXJzc3H58mVcuHCBebnx+XwcPHgQenp6sLCwgKGhIXr06AE/Pz+x9Tx58gTLli2rkT5Vh6ysLOzcuRMcDgcmJiaYNGmSWO12TXD37l3mJZOamoq9e/fC3t5ewHtNWVkZsbGxAIpnSqJmUKURt7v07t072Nvbw9TUFE5OTtDV1cXixYurlE++NP9pgf9dvHv3Tsi09Pbt29DT08OMGTOgr68PAwMDWFhYQF1dHYMGDar4frwI+Hw+Vq9ejREjRmDLli3YvXs3Ro0ahYkTJwrUy+VywePxEBgYKGD99TPlJeQUR1paGmJjY6v90P4OUlNToaOjw2R+/fHjByPko0ePZv5f+oWTk5MDU1NTsXVyuVwYGhqW2W5eXh6Sk5OrZDcvijqB/w3s3LkTFy9eZP4OCwuDqakp8zC9evUK8+bNQ2xsLHr37o369evD2Ni4UgEXSrN06VKR+95Xr16FpaWl0Dq9JAFHiU6kNOnp6dDS0qrUA/jmzRtYWVnBysoK7u7uMDIygru7e5nPyZcvX/Dy5UtkZGRUuJ3aZPPmzTh//jyA4heomZkZI+Ql+pYpU6YIXTdu3DixJt6HDx+Gl5dXrfb7Z+oE/jewY8cOgQQWZmZmArHwXr9+zeSNv3btGhwcHCAjI4O+ffsy69WKkpqaCjMzM7Hl8+bNw4MHD4SOP336FGw2G5cuXQKPxwOPx2OUTiVJOCtCREQE9PT0hGLJ3blzB/r6+kIzl8ePHzP+DQsWLICZmRlcXFxqLFZgVbG0tGT0HIWFhUKBKBo0aCBSwfr582doa2sLjPwl63FjY+Nfnki0TuB/AxEREczaLi0tDdbW1gLlq1atwpUrVwAUPxwjRoyAr68viIg5XlGOHj0qNmNKSV9mzJghsiw5ORlr166FsbExOBwOPD09hbwVy8PS0lJk4EgAOH78uECm2CdPnsDQ0FBIuB8/fgxdXd3f6hxja2sr1C9nZ2dG4CdOnIhLly6JvLZkLW9gYAAbGxuw2WwsXbr0tyxt6gT+N2FtbY2wsDAhxc67d+9gYGAgkLPOxMQEhYWF6NmzJ/r161epfHb79u1jpqKiKG3jX9OkpqbCyspKbPnPaaXMzMzEKlD9/f2xY8eOGu9jRTl16hR27twpcGzRokUgInTo0AEjRowoV89SVFSE7Ozs3xpK7F9hWvu/iLe3N23cuJE2b95MT58+pcePH9PSpUtp2rRpdPDgQcYSLTk5mWRlZUlKSop2795Njx8/pv3791e4nb59+wqYdP7MjRs3qF+/ftW+n5/Jzc2lI0eOUHJyMoWGhoq0YJSRkRG4T3l5eWratKnI+iwsLCg0NLTG+ymWn0ykzc3N6fz58xQREcEcc3JyoubNm1O9evVIS0ur3KwukpKS1KBBg19jOFNN6gS+hlFSUqKzZ8+SnZ0dycvL0/r164nNZtOlS5cEQh6vWbOGJkyYQEREgwcPprFjx9Ls2bPp2bNnFWqnd+/eFB0dTdHR0UJl2dnZdPDgQbKxsamZm/oHHx8fGjlyJNWrV4/y8/Pp5cuXpKenx4T5LiE9PZ0J5Z2ZmVmmuay0tHS1zHErRHY2kYcHkZoaUevWxf96eBBlZ5O0tDQdO3aMVqxYQePHj6cTJ07QtWvXSF5enpKSkmju3Lm127dfTU1OF+oQhMvlYvTo0Vi9ejWzPx4VFQUXFxehZJWZmZno378/mjRpgtevX1eo/vj4eOjo6MDHxwdZWVngcrkIDAyEjo6OUGKF6sDn87Fq1Sp07doVI0eOxOLFizF27Fjcu3cPmZmZMDAwYPaogWIDn8DAQADFNgJlbVElJSVh9OjRNdZXIcqK/Fsqui9Q/Nv4+fnh7NmzWLlyJaSkpKqcNvxX859Yw/N4PDx58gQ3b978pdZ0lYHH4yEkJARjxoyBiYkJJk6cKDakUVpaGnr16gUVFZUKW13l5+fjyJEjsLKygrm5OTZv3lyjmu/CwkLY2dlBTU0NkZGRyM/Px927d2FkZIRu3brh5MmTePjwIWbOnIm0tDQsX74cU6ZMEVjPenh44ObNmyLrnz17Ni5fvlxj/RVCRNQgLhFOEGEaEeb16SNg+gwUKzwbNmxY7l76n0RFZfRfm3nm9OnTtHfvXhowYAA1btyYHj58SAoKCrR161Zq2LDh7+5elQkPD6eBAwfSkiVLaPjw4dS9e3ehKXFSUhJ9+vSJlJWVK55TrIqsWLGCmjdvTo8fP2ai5xAVO5TY2tpS69at6c2bN/TkyRMaMmQIjR07lszMzATWs9nZ2TR69GiysrIiW1tbkpWVpcTERNq0aRPJyMjQ2rVra+8G1NSIPn1i/nxFRNOIyJqI9IgoR1WVjtnZUWxsLPXs2ZMCAwPp2bNn1K1bN7p//z4pKSnVXt9qkArLaE2+PX4V/v7+cHV1FTISCQ8Ph4GBQbVskn83hYWFsLCwYLaF6tevDw8PD1y+fBnx8fGwtraGjY0NVq1aBVdXVxgZGVVq/7w0UVFRWL16NebPn4/Tp08L2QJwuVzo6ekhLi4OEyZMKD5YaiT88OEDnJycAECk7XhpShyfSnLK2dra4vr161Xqd4X5KfJvDhG0iPC91GjPU1VFxOvX+Pvvv8FisWBjY4MjR478MYZBFeWPmNInJSVh7dq1cHR0xKxZs/DixYtKXS8KHo9XZlSUXbt24eTJk9Vu53eTl5eHDx8+wM3NjUk5pKqqiidPngicl5aWhhEjRlTquy0sLMSECRPg4uKC27dv49WrV9i5cyeGDx8usNyIiorCjBkzwMvIgE6rVihq21YopRWHw2H0En8kpSL/7iOCXylhjyPCoH+yvtSvXx9Dhw6tVLqoP4nfLvDHjh2DkZERQkNDkZKSghcvXmDy5MmYNGlStRQh4eHhWLRokdjyrKwsjBo1qsr1/4lkZ2dj0KBBaNCgAbp16yYUGTchIaHMffGfmT9/Po4fPy50PC0tDTo6OowO4PPnz3AdNw7o1g1eLBY2/KT04nXtihG6urC0tKyRl3mtUGoNb0uE9H/6n0mEIURoKS+P4OBgpKam4uDBgzh9+vTv7nGV+K378M+fP6fg4GAKCgoiAwMDatq0KfXs2ZN2795NvXv3rlCQBXFkZ2eXmZ5JQUGBCgoKqlz/n0iDBg1IQUGBwsPDKTU1lRYvXixQrqKiQkVFRRUK45WdnU2vXr2iMWPGCJU1atSIPDw86NChQ0RE1Lp1a/p84wblR0bSJIBSiciBiO4Q0Uc+n5ZFRtKHx4/JxsaGevbsWf0brQ08PYm6dCGSkCBJIiogIj8i6kRET1ks8j1yhDgcDjVu3JgKCgrEBrr4n6Em3x4lODs748OHDyLLypuSl0diYqKQyWppHj169D+ZY73E3XLJkiVQVFRE1k8ZYl1cXJCYmFhuPTdu3MDGjRvFlhcWFsLExIT5O6R5czgSofCfkTGGCCuI4ESEjkT4oKpaxTv6hfwT3fdo06boKy0NIoJVhw74/OaNwGmmpqZMjoF/G791hE9OTqYOHTqILJOQkKBu3bqVGe6nLFq0aEEyMjIiDVT4fD6tWbOGJk6cWKW6/2SkpKQoPT2dJkyYQHl5eQJWeR8/fqSrV69SQkICZWRklFkPi8Uivrh8dUSCMfAAMpKWJmMiMiCiNVQ8uif/8wkhog4slpD12h+HggLxt26l03//Tc94PNq2bRud+vCB2pQKfHr48GEmDv7/NDX59ijB0NCwTLtiFxeXMjO0lEdqair09PSwd+9exvHi8ePHsLCwKDPAw7+ZwMBARncxduxYqKioMPc+YsQIRqsvJSUFd3d3sVrm3NxcoVDKpRGyLf9H6VVIhBtEOE2E16XX8mJSWv1p7N69G0SEAwcOgMPhYObMmQgNDcXp06cxevRozJgx44+KeV9ZfqvSbuHChbh7967Isry8POjr61fb0eDHjx/w8/ODhYUF8wNWN2/7nwyfz8ecOXMwffp0PHjwALKyspgxYwY2bdoEdXV1NGnSBEFBQfD09ES9evWwdOlSsXWtWLEC3t7eQseTkpKgpaUl+LIoK92VhITYlFZ/GgYGBgKGNI8fP8bOnTvh6+tboaVQdeDxeLh27Rp27NiBY8eOCS3HaoLfaniTkJBAY8eOpZMnTwo4TfB4PHJzcyMOh0OmpqZVnJP8t7lz5w7t37+fwsLCKCYmhnbv3k0tWrQgCwsL+vLlC7Vs2ZL+/vtvUlRUFOuUwufzae7cufTlyxeytbWlxo0bM/HVd+3aJRgZNjubaNAg0emuunQhCgsjUlCotfsFQHfv3qXHjx9TSkoKNWrUiFq1akWZmZkUHx9PSkpKZG9vT61atRJ5fXx8PJ0+fZrWrFlDffv2peDg4EqlwYqLi6Pjx49TSkoKderUicaMGUMKlbjf58+f0+zZs0lbW5v69etHiYmJ5O/vT8bGxjR16tQK11Mev93w5tWrV9DT08OCBQtw5swZbN++Hbq6ujh69GiF66hDPDk5OVBVVYWlpSXevn0rEAn36NGjIKJyDXK+fPmCXbt2Yd26dbhy5Yr47dKy0l1Vg9zcXLx+/RqvXr1iZnw/z/y8vb1BRGCxWFBTU4OioiKICNLS0mjXrh3q168PKSkpHD9+HNevXweHw0G/fv0QGBiIOXPmYMyYMbh06RKMjIzQqlUrDB8+HA8fPiy3b3w+H4sXL4aNjQ2uXbuGd+/e4cSJE2Cz2WW6JZfm69evYLPZQqbOfD4fs2fPrtHl52/fhweKb+zBgwc4ePAggoKCqhzK6U8iISEBCxcuhIGBATgcDqysrHDt2rXf0pcSwV69ejVGjRoFGRkZnDlzBgUFBdDU1ESXLl2qFTNPJDXg8x0QEAA2mw0ZGRmBbKodO3aErKwsHB0dmWfN398fRCQQOiw7O5t5OWVmZmLs2LFMPT169ICOjg4kJCT+3zoQxVlziQgPHz6Erq5uuQY23t7eWLNmjdBxLpcLCwuLCjk4LV68WCigaQkFBQViw4VXhT9C4P/XiIqKgo6ODu7evcv8UElJSZgyZUqZW121BZ/Ph7u7O6SlpdG+fXsMHjwYEhIS8PPzw5s3byAlJYVNmzb98n6Jg8fjMXnYhg8fju3bt+Pu3bu4evUqpk+fjunTp2PZsmVQUFBAkyZN0K1bN0aQxUXvKan3xIkTuHbtGvh8PnJzc9GsWTPIysoylolcLhdNmzbFxIkTcf36dSxfvrzM+thsttit48jISIGXiTjKU15PnTq1xuLs1wl8LcDhcESGdeLz+bC3t8ebn/Z1fxXv37+HmpoaVFVVwWazmem9sbExmjZtioiICDx+/BgXLlwQG3ixNuFyuTh27Bj69u0LFouF9evXlykIMTExWLhwIaZMmYI9e/bAy8urUiG4nj59innz5qF79+4C+ew3b94MFouF8PBwJiIPn8+Hn58fDA0NweFwoK+vDzs7O4wZM6bMNkpH9BFHef4FM2fOrLHcBL9c4HNycrBv3z64uLhg6tSpuHHjxm8N+VPTvH37Fm5ubmLLX7x4gWnTpv26Dv3E69evQUQ4ceIEmjVrBiJCbGws1NXVIS0tDSsrK2zbtg1ubm4wNjau1SQYpfn48SO6du0KIoKurq5YN9ma5OnTp1i0aBEmT56MdqW2DQsLC9GmTRsmwi5QnGbc09NTYOlz/fp1qKqqljltr4jr7NSpU8WaHJc3i6gsv1TgHz58CC0tLRw9ehSJiYl4//49li5dClNT01rZgvgdBAcHY+/evWLL+Xy+gIXar8TS0hJEBEVFRXz69IlR4rm6umLEiBEYNGgQ43yTmZmJhIQE6OjoVMsWoiLk5OSgdevWUFNTw7Nnz2q1rdIUFBRAV1cXvXv3Fhqp9fX1oampiZUrV+LBgwciX9J8Ph/Dhw8Xm4L8yZMnmD59ern9ePfuHUxNTUV6b3p5edXoMvCXCXx6ejq0tbVFlt29e5dxn/y3Ex4ejoULF4otj4uL+233am1tDSKCm5sbEx55wYIFICIcOXIEhYWFuHbtGlgsFvbs2QOgOGb+nDlzarVf3t7ekJSUFIiG86vYtGkThg8fjoYNGwoERymJEnznzh24uLjg48ePTFnpUd7f3x+amppCS6Ds7GyMGDGiwmvv4OBgsNls+Pv7IzY2Fvfv34ezszPc3d1rNJrOLxP47du348yZM2KvtbGxqfWR5FfA5/PBZrPFhiB2c3ODvb09Ro4cCVdXV9y5c+eXLWkKCgrg4ODAKLjGjRuH+Ph4tGjRAlJSUti3bx+A4hdDiSIvLy+vTIu7mmDVqlVQVlau1TbEwefz4eHhARkZGejq6iI8PBzbtm3DsGHD0LBhQ8ybNw8cDgdGRkaQlpaGpKQkiAienp6MIFpaWqJfv344evQobt68ic2bN0NLSwv37t2rVF8yMjLg5eWFqVOnYunSpSKTZVaXXybwo0ePLnPrx9fXt9Lpi/h8fqUTM/wKrly5gpEjRwpkbuHxeHByckLr1q1x7949cLlcfPz4EQsWLIC9vX2NrdEqQlRUFPr37w+i4lxow4cPh5OTE2RkZJCWloaCggJMmzYNLBYLmpqaYvOfCVHFF9f69euhpKRUpWsrQk5ODjZt2gR9fX1wOBwYGBhg165dAlPo9evXg4jg7OyMgIAAFBYWolevXpg8eTK0tbWFEk8QEcLDwwEUr8HDw8Nx6NAhbNq0CUFBQb/096wMv0zg7ezs8P37d7HX7ty5ExcuXKhIM/j69SumTp0KPT09mJubg81mY926dX/U/v29e/dgbm4Oa2truLq6ol+/fujdu7fIB+H48eNlbv/UFvHx8TA2NgYRYcuWLZCQkGBGeaB41tW5c2dYWFiIryQrq9istrSxzT9BLyrKxYsXQUS4f/9+dW5HJCVT69OnTzM28FwuFwcPHoSFhQUj9DweDwMHDkTHjh0ZRWWbNm2wYMECXL16Fbq6uggICMCbN28Ygc/OzmYCi9QEMTExTAZhU1NTeHt7M+nHaopfJvD+/v5MlpG8vDx8+vRJQFFnZGRUocwicXFx0NbWFoi4wuPx4O/vD3Nz8z8ubFV6ejoSEhLg6Ogodo3K5/Ohq6v7W/rO5/PRtm1b9O3bFxwOB23btmV+l1mzZoGIoKenJ9r/oBKRXsviypUrzHq5Jvn27RumTp2K4OBgkeVHjhwRyLn35s0btG/fHm3atMH169dBRDh9+jT4fD4mTZqErVu34tGjR7h8+TJ2796NmJgYGBgYiA02WhkCAgLA4XCYQJklPiDa2to1utT9ZQLP5XIxbNgwWFtbw9jYGFOmTIGFhQXs7e2xbNkyrFy5skIddnR0FLtH7O3tDV9f3wrV86spb1o8ffr03+bUY25ujpYtW2LSpEmQk5PDzJkzERERAQcHB4wYMQIqKipQUFAQ3qKrIYcZDoeDXr161ZguIzQ0FCNGjICDgwNatWoFbW1tbNiwQUj5VVhYCH19fYFjT548gZSUFGPVV3oGULKL0bt3bxgYGMDR0RGRkZHV7m9iYiIMDAxELk/fv39f9gyrkvxSLf3QoUOhpaWFSZMm4cyZMzhw4AB0dHTQrl07xMTElFt/dnY2OBwODh06hIkTJ2LatGm4desW86Dk5eWVa8TwuzA0NCxT2+rs7Iz4+Phf2KP/x8bGBtLS0rC0tESnTp0gIyMDOzs7JgFiVlYWOnfujI4dOwoGLCkVB07kpwIusVwuF7KysjVm6XfmzBk4ODggJycHubm5GD16NHg8Hnx8fIRSdAOiX8QxMTE4ffq0QNqrhIQEAbPcmtSce3p6igzBzefzERgYiHbt2kFLSwumpqY4fPhwtWaCv0zgV61axdg5v3nzBgcOHMCJEyeQnp6Ot2/fVii44YULF6Cqqor9+/cjPj4eb9++xeLFiwX28SusYBJBTEwMLl26hMePH9e45rx0gsifyc3NrbF1YFXIysqCp6cnEwSzxAnl7NmzzDnv37+HhoYGlJSUip1Cfor0KvLTsmW5irznz5+DiERmsK0shYWFAlGSeDyegAWdh4eHgKMQn88XKC+vbisrK+b7SUpKqnZ/S7CyshLa1eHxeBg/fjxWrlyJ3bt34/Tp08jNzcWePXtgZmZW5ayzv0zg9fX1y3wrGhkZlfnmys7OxtChQ0VaLt27dw9jx45Fbm5ulQT+48ePMDc3h7OzM3bu3Il58+aBzWbXaOKD5ORkaGtrC43iJVtl4jKP/ko+fPiAvn37goigpKQkYGMOFG8bmZubg4hw7NixGhnhb9y4ASKqEVvxK1euYP369QLH3N3dGSF/8+YN3N3dmXsZP348NDQ0YGJiAicnp3K9BnNzcxmBF5f0siq4uLggLi5O4NiRI0cYg5tNmzYJpBc/d+5clZW8v0zgyxNEBwcHgW2sn9m7dy+OHTsGZ2dnvHr1Sqjc1tYWq1atwqFDhyrSVYaUlBRoa2sLGFYAxfHRR40aJdaLqSpER0cz+osDBw5g9erVYLPZAiPp76ZktlHyYP9sgcbn8zF27FhIS0vjurl5tdfwgYGBIKIayQh07Nix4hdRKZKSkhglb1ZWFsaMGYMvX76gd+/e6NGjBw4dOoSFCxfC0NAQTZs2hZqaGvT09GBsbIz169cLvaBfvHhRo+m5gOIX1YoVKwSOGRkZITc3FzweT0ihW2LrUZVlxS8TeENDQ7HGKCVa6rJCB9nZ2SEtLQ2JiYnQ1tYW8EQrKCiAi4sLBg4cWOn9z5UrV4qdamdkZFRriSCOiIgInD17Frdu3fojwyVFRUUx03pRNu0liScUFRXxSUOjWlp6b29vSEhI1MgOxePHj0UGJk1MTMTkyZPRv39/aGpqQllZGUOGDIGysrLI/fURI0bA0NAQsrKyYLFYWLBgAS5duoRDhw7V6MheAo/Hg7m5ucBzyOFwUFRUhBkzZjDxC0pT3gApjl8i8ElJSWjbtq3YdXpISEiZMeQBYNy4cUyIoeTkZMybNw+6urrgcDjQ09ODtbU1Tp06VZFuCjBixIgy35T29vaV8sD6XyE8PFxo1lOajIwMtGrVCuYcTrWCXixevBhNmjQRqTPJz8/H4cOH4ezsDFdXV5w/f77MFySfz4e+vr7I34vH44HD4eDixYsYPHiwgIBLSkpCXl6e+btx48ZYuXIlHj9+jBUrVgic27x58wotvwoLC3Hjxg0EBARUaLmSl5eHqVOnwsTEBGvXroWamhp0dHRw+PBhkecbGxtXye7klwj83bt3mS9s8+bN2Lt3L86fP4+8vDwcPnyYmb6Uxblz57Bt2zax5SYmJlVK+1PeCD516tQyH/z/Mhs3boScnNz/rz+roOgsWcOXXqMCxevt4cOHw9fXF0lJSYiLi8OmTZugq6tbpsLs6dOnGDBgAPz8/BAZGYmbN2/i3bt3GDt2LHx9fTFnzhwBAW7WrBkz09qwYQP09PQgJycHCQkJ1KtXD+bm5pg1axYWL16MsLAwZrkza9YssbOSo0ePQkdHB2vWrIGvry9cXFwwcuRIkS7TP5ORkYG7d+/C1dVVrA4pOjoajo6O5dYlil82pX/37h0iIiJw6NAhgS+7U6dOFQoOWFhYCF1dXZG+5D4+PmU6rJTFmDFjxP4Qv9Mg5t9AamoqWrVqBVtb2yrXUeJx1q1bN+YYl8uFlpaWyJH6zZs3MDMzEzgWFxeH5cuXo1+/fpD+J5586U/Lli2ZcFU3b96Erq4uNm7cCGNjY6GXeXJyMsaMGYPz589DX18fQ4YMYeznLSwswOPxsGnTJkhLS6Nbt26YNWuWgMGQv7+/yKxJUVFR0NbWrpBxGQB8//4d2traQq638fHxYLPZVbbZ+C0BMAICAmBubi6whtLS0iq3/qSkJJibm8PNzQ0BAQFMNNq5c+dWeS18+/ZtTJw4UeSU8tSpU1i2bFmV6v0vwOVy0aJFC1haWlarnjNnzoCImJmCv78/du/eLfZ8Dw8PPH/+HAAQGxsLeXl5NGjQAGPGjMHu3bsRGBgIX19fnD17Fjo6Omjfvj1zbYl/eUZGBkxNTYXqXrt2LS5cuAAej8cY5XC5XOzZswcsFgvu7u7w8fHBnTt3oKWlhXr/5JzT09NDYGAgtLW1xeqRTpw4AS8vrwp/L4mJiRg7dizzjNvY2DCxCavKb4148+PHD5w8eZIR+qNHj1bIGeb169fw8fHBkSNHKqVEKSwsxPnz5+Hp6Yndu3czU8PNmzfD3t6eCZKYlJSEFStWYPTo0X+kc86fQsn6dseOHdWqJzU1FXJycoyRzLRp08pc9168eJF5IWzduhWysrLIyMhAdHQ0Ro0aBTs7OyxfvhxDhw4FEWHKlCkC1wcFBWHUqFGwt7cXOB4SEgILCwtm8Ci93CsqKsLChQvRunVrEBE6d+6MwsJCJCUloWPHjowOQFlZGZ8+fRLZby6XW6VYCOnp6YiMjKyRnYyKyqgU1QL16tUja2tr+vvvv6lNmzbk4OBAq1evptDQUGrXrp3Y67p3707du3evVFtPnjyhOXPmkKmpKWlra1NycjJNmTKFunbtSitWrKDIyEjat28fffz4kRQVFWns2LG0ePFikpColaQ7/xM0a9aMiIj69+9frXoaN25Mx48fp1GjRlGHDh1IRkaG8vLyxJ6fl5dHMjIyRFQc6rxly5aUlZVFEyZMoIMHD1KbNm2Ix+ORr68vGRoaUmRkJH369Il5pkxMTEhSUpLGjh1LEyZMoMaNG9OLFy+oR48edPz4cZKUlBTKvycpKUmenp6koqJC7u7u9O7dO+rXrx9JSkpSx44dSVVVlW7dukXfvn2jqKgo2rJlC0VFRZGqqirJyMjQu3fvqH79+hQVFUWPHz+mbt26Uf369Sv0/TRs2PDXZ7qpybfHzzx9+hREBBsbGxCR0Bqtqrx58waLFi2Co6MjOnXqJPLNu379+mqPUP9Vfvz4gV69eqF9+/ZiR7XKsHjxYsjJyeHixYtl6mRsbGzw9etXFBYWomvXrrCyssLUqVOZaT5QvPVJRFiyZAkiIiIwadIkoXqWLFmCffv2ISIiQkhpvHbtWpGZc7dv3w4igrW1Ndzc3DB+/HhwOBzY2Nhg+vTp6NevH/M8l/6YmJhAW1sbsrKyICIMHToU+/bt++VutH9EEEsej8d8MVJSUgIeTFWBx+NhypQpcHV1RXh4OKZPn47ly5dDV1cXQUFBQufWZMyw/xqxsbFQUVGBjIwMpk+fXq196qSkJCgoKMDMzAy6uroisxIdP34c48ePh7+/P3r37g0JCQncvXtXyET269evICpOGQVAZBaj/Px8mJqaYs+ePYzAf//+HcuWLROr1ymPqVOnIjQ0FFevXgURwdHREUVFRSgqKsLIkSPx4sULLF68mHneNTU1xSZUrQ3+CIEHitfRo0ePrtDWRXmsW7dOIEWSsbEx+Hw+uFwuzMzMhLy+5s2bxziK1DZPnjyBo6MjjI2NYWhoiGnTplXIcehPJjs7G6tWrYKioiI0NDSq5c4ZGBjIxKGXk5PDkCFDsGrVKpibm6NVq1Zo0qQJIyz9+vXDo0ePwOfzBdbbfn5+zDklxilmZmYiFbtcLheHDx+GqakpOBwOLC0tERQUJFLYz507BwsLC4wZMwaLFy8WSlRRonysX78+2rVrx/RhzZo14HA4WLNmDXbv3o1z584JCL2ioiLS0tLg7+8PAwMDWFhYwMnJqUZNu0v4YwS+phAVuL9E4IFiZ42pU6cKXLNgwQKxUUNrkhMnTsDGxkZAwJ8+fQoDA4MKZTn504mJiUGLFi0gISGBoUOHYunSpQgICKj0SJmZmYmLFy9i5MiRjFA0aNAAAwcOhKurK44cOSJke66np8dsnw4YMABEhF69egEofiZEOcl8+PAB06dPh5GREQwNDbFw4UKxHot8Ph9KSkrMdnJJv+zs7JhzPD09RVruycvLY/To0ULHGzRoACICm81GUVERevToIVAuIyMj1jq1qvzPCXxkZCRmzZolcGzRokUCe6WlXWhL7JJrWxufkpICAwMDkaNMZmYmdHR0atTl8nfx/ft3+Pr6wsTEBC1atAARYcKECWVGOxJHUVER/Pz8cPv27XK3Xffu3csEWHF3dwcRMYZY3t7egpluAVy+fBnGxsaMcxCfz2eWBo8ePRLZxrlz54TMcTt06CDQX19fX4wdOxb79u3Dxo0b4ePjA01NTRAROnXqhKCgICY0e2FhIa5evcpEtZkxYwZatmyJTp06oWPHjli7dm2lv7Py+J8T+A8fPgiN4PHx8dDX10d2djb4fL6Ax93OnTt/STaYLVu2COkPSuPp6YmrV6/Wej9+NV5eXlBUVESjRo2wePFioZG5puDxeBg3bhxWrlwJU1NTdO7cGampqfD09ISDg4PACyMnJwfa2toiXUwzMjKgra0t9gWTm5uL4OBgBAcHM/H/yiM9PR3jx4+HnZ0djI2NYWRkhPnz5+Pz589Vv+Eq8j8n8OJG7Hv37mH48OGYPn06Jk6ciCtXrsDOzg6zZs36JVFj3dzcynzYQ0JCKmWU8W/i27dvcHd3h4KCAiQkJKCjo4O5c+cKuN7WBDweD8HBwVBWVkbTpk1hZWWF8+fPC82cfH19ceTIEbH1bNiwASEhITXWr1u3bsHQ0BDh4eHg8/ng8/m4f/8+9PX1ayQOQGX4nxN4oFhpM3PmTCFB/vLlC7p16wYPDw9s2LDhl75hly5dWmaQxr179+L06dO/rD+/g6ysLOzduxcmJiZQUVEBEcHQ0BBnzpwRmPLn5ORgz549cHFxYaIaVdSS0sfHBywWC56engLHU1NTERERgfT0dDg7O5dprXbz5s0ai8CTn58PLS0tkb4iWVlZ0NLS+qXGXf+TAg8Au3fvhoGBAXx9fRESEoLly5dDR0fnl2njf+b9+/cYO3asyLKSyCw1raD5kykqKsKxY8cYRZWEhARGjBiBCRMmoEmTJpCUlESfPn3QsmVLEBH++uuvcn87Lpcr4PEmJSWF7t27Q0dHR8Abjv7xetu3b5/I2d3x48eZ7bzqcuzYMYFIwD+zffv2Sodnrw4VldF/nbnZ5MmT6cyZMyQvL0+fPn2i4cOH07Vr10hTU/O39EdDQ4NatGhBGzdupKKiIuZ4Xl4eubm5kZ2dHcnJyf2Wvv0OJCUlydbWll69ekVxcXHk5eVFOTk5FBYWRvb29hQdHU1PnjyhuLg4unXrFhUWFtKQIUPo7t27YuuUkZGhnTt3Ups2bWjAgAE0c+ZMGjhwIDVr1oxmzZpFgYGBdOjQIdq1axfJy8vThAkTaNiwYfT+/XumDgB04sQJMjc3r5H7jIyMLNMSsX///hQZGVkjbdUkLAAo76SsrCxSUlKizMxMUlRU/BX9+lcBgLy9ven06dPUvn174nK5lJKSQpMnTyYTE5Pf3b0/mpycHDIzM6OwsDAKDAwkfX39atU3Z84cyszMJB8fHxo0aBA9ePCAioqKaPny5dSwYUOaPXt2jfR78+bN1K1bNxoxYoTI8oCAAEpKSiI3N7caaa88KiyjNTld+K/D4/Hw9evXGnGG+C+Rn58PY2NjSEtLw8vLq1rKVj6fjy1btqBhw4Zo164dPDw8oKOjU2NT+RLi4+NhbW0tttzCwuKXBlipqIzWjfB1/BEUFBTQrFmzaNeuXdSlSxdSV1enrl27krOzM3Xq1KlSdeXn55O6ujr17duXNm/eTOrq6rXiLLVw4UJq3LgxzZw5k6mfx+PR2rVrCQAtWbKkxtsUR0VltE7g6/ijuH37Nh06dIi+f/9ODx8+pOzsbBowYADp6emRg4MDffr0iV68eEEuLi7UoEEDkXXcuHGD2Gw2vXz5slZ1OwBo165ddP78eerZsyfx+Xx69eoVjR49miZMmEAsFqvW2v6ZOoGv41/Pjx8/aOvWrfTs2TMKDg4mLpfLlJmYmFBQUJDI6/z8/MjBwYFyc3Mr7KpaHXg8Hn348IFYLBZ16NCBJCUla73Nn6mojFbKHz4rK6vaHaujjsowZcoUIiJKS0uj8PBwevDgAe3YsYOCg4Ppy5cvIh/ukun1hw8fSE1N7Zf0U1VVlYiIcnNzf0l7P1NR2azQCP/jxw9SU1OjpKSkanesjjrqqB1atGhBHz9+JFlZWbHnVEjgiYqFvqCgoMY6V0cdddQsMjIyZQo7USUEvo466vj386+ztKujjjqqTp3A11HHf4g6ga+jjv8QdQJfRx3/IeoEvo46/kPUCXwddfyHqBP4Our4D/F/dpZK0sIz9B8AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from deepsensor.active_learning.acquisition_fns import Random\n", + "\n", + "acquisition_fn = Random()\n", + "X_new_df, acquisition_fn_ds = greedy_alg(acquisition_fn, tasks[0])\n", + "\n", + "fig = deepsensor.plot.placements(task, X_new_df, data_processor, crs)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:09:50.864902602Z", + "start_time": "2023-11-02T15:09:50.864551220Z" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/user-guide/active_learning.ipynb b/_sources/user-guide/active_learning.ipynb new file mode 100644 index 00000000..48be89c0 --- /dev/null +++ b/_sources/user-guide/active_learning.ipynb @@ -0,0 +1,419 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Active learning\n", + "\n", + "DeepSensor allows you to perform active learning with your models to propose new context locations that are expected to improve the model's predictions.\n", + "This functionality is based on the study ['Environmental sensor placement with convolutional Gaussian neural processes' (*EDS*, 2023)](https://doi.org/10.1017/eds.2023.22), which may be helpful background reading.\n", + "\n", + "The core active learning classes in DeepSensor are the `AcquisitionFunction` and its children, which assign a utility value to query locations,\n", + "and the `GreedyAlgorithm`, which greedily optimises an `AcquisitionFunction` to propose new context locations.\n", + "\n", + "```{admonition} What does 'greedy' mean?\n", + ":class: dropdown\n", + "The term 'greedy' comes from the active learning literature and simply means that the algorithm\n", + "iteratively optimises one sensor placement at a time, rather jointly optimising all $N$ placements simultaneously.\n", + "This breaks the overall optimisation problem down into smaller, lower-dimensional problems.\n", + "```\n", + "\n", + "This page will use the pre-trained ERA5 spatial interpolation ConvNP from the previous [](training.ipynb) page and use DeepSensor's active learning functionality to propose new context locations based on some random initial context locations." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T14:56:36.644211281Z", + "start_time": "2023-11-02T14:56:28.857833227Z" + } + }, + "outputs": [], + "source": [ + "import logging\n", + "logging.captureWarnings(True)\n", + "\n", + "import deepsensor.torch\n", + "from deepsensor.model import ConvNP\n", + "from deepsensor.data import DataProcessor, TaskLoader, construct_circ_time_ds\n", + "from deepsensor.data.sources import get_era5_reanalysis_data, get_earthenv_auxiliary_data, get_gldas_land_mask\n", + "from deepsensor.train import set_gpu_default_device\n", + "\n", + "import cartopy.crs as ccrs\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T14:56:36.662088501Z", + "start_time": "2023-11-02T14:56:36.661816347Z" + } + }, + "outputs": [], + "source": [ + "# Training/data config\n", + "data_range = (\"2010-01-01\", \"2019-12-31\")\n", + "train_range = (\"2010-01-01\", \"2018-12-31\")\n", + "val_range = (\"2019-01-01\", \"2019-12-31\")\n", + "date_subsample_factor = 2\n", + "extent = \"usa\"\n", + "station_var_IDs = [\"TAVG\"]\n", + "era5_var_IDs = [\"2m_temperature\"]\n", + "lowres_auxiliary_var_IDs = [\"elevation\"]\n", + "cache_dir = \"../../.datacache\"\n", + "deepsensor_folder = \"../deepsensor_config/\"\n", + "model_folder = \"../model/\"\n", + "verbose_download = True" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T14:56:45.310217999Z", + "start_time": "2023-11-02T14:56:36.662050024Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading ERA5 data from Google Cloud Storage... " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 120/120 [00:02<00:00, 41.53it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.41 GB loaded in 4.31 s\n" + ] + } + ], + "source": [ + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir, verbose=verbose_download, num_processes=8)\n", + "lowres_aux_raw_ds = get_earthenv_auxiliary_data(lowres_auxiliary_var_IDs, extent, \"100KM\", cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "\n", + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "era5_ds = data_processor(era5_raw_ds)\n", + "lowres_aux_ds, land_mask_ds = data_processor([lowres_aux_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "\n", + "dates = pd.date_range(era5_ds.time.values.min(), era5_ds.time.values.max(), freq=\"D\")\n", + "doy_ds = construct_circ_time_ds(dates, freq=\"D\")\n", + "lowres_aux_ds[\"cos_D\"] = doy_ds[\"cos_D\"]\n", + "lowres_aux_ds[\"sin_D\"] = doy_ds[\"sin_D\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:56:47.228943175Z", + "start_time": "2023-11-02T14:56:45.315636868Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(3 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature',), ('GLDAS_mask',), ('elevation', 'cos_D', 'sin_D'))\n", + "Target variable IDs: (('2m_temperature',),)\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds, land_mask_ds, lowres_aux_ds],\n", + " target=era5_ds,\n", + ")\n", + "task_loader.load_dask()\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:56:47.460634919Z", + "start_time": "2023-11-02T14:56:47.433216142Z" + } + }, + "outputs": [], + "source": [ + "set_gpu_default_device()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:56:48.379045357Z", + "start_time": "2023-11-02T14:56:47.473209353Z" + } + }, + "outputs": [], + "source": [ + "# Load model\n", + "model = ConvNP(data_processor, task_loader, deepsensor_folder)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialising a GreedyAlgorithm\n", + "\n", + "The `GreedyAlgorithm` class searches over a set of query context locations, evaluating\n", + "an `AcquisitionFunction` at each query location, adding a context point at that location, and repeating until\n", + "`N_new_context` points have been added, returning the proposed context locations as a `pandas.DataFrame`\n", + "and the acquisition function values in a `xarray.Dataset`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:56:49.839894774Z", + "start_time": "2023-11-02T14:56:48.381867637Z" + } + }, + "outputs": [], + "source": [ + "from deepsensor.active_learning import GreedyAlgorithm\n", + "\n", + "alg = GreedyAlgorithm(\n", + " model,\n", + " X_s=era5_raw_ds,\n", + " X_t=era5_raw_ds,\n", + " X_s_mask=land_mask_raw_ds,\n", + " X_t_mask=land_mask_raw_ds,\n", + " context_set_idx=0,\n", + " target_set_idx=0,\n", + " N_new_context=3,\n", + " progress_bar=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialising an AcquisitionFunction\n", + "\n", + "There are various acquisition functions provided in the `deepsensor.active_learning.acquisition_fns` module.\n", + "Here we will demonstrate one simple acquisition function, `Stddev`, which returns the standard deviation of the model's predictions at each query location.\n", + "This can be used to find locations where the model is most uncertain.\n", + "\n", + "For an up-to-date list of acquisition functions see the API documentation for the [](../reference/active_learning/acquisition_fns.rst) module.\n", + "If an acquisition function is missing, you can easily implement your own by subclassing `AcquisitionFunction` and implementing the `__call__` method." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:56:49.852341816Z", + "start_time": "2023-11-02T14:56:49.843788679Z" + } + }, + "outputs": [], + "source": [ + "from deepsensor.active_learning.acquisition_fns import Stddev\n", + "\n", + "acquisition_fn = Stddev(model, context_set_idx=0, target_set_idx=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calling a GreedyAlgorithm\n", + "\n", + "Calling a `GreedyAlgorithm` requires a `Task` (or list of `Task`s) containing context data, and an `AcquisitionFunction`.\n", + "If a list of `Task`s are provided, it's assumed they correspond to different dates,\n", + "and the acquisition function will be averaged over time when finding the best query location.\n", + "\n", + "When the `GreedyAlgorithm` finishes the search process, it returns a `pandas.DataFrame` containing proposed placement locations and an `xarray.Dataset` containing acquisition function values for each time and placement iteration." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:57:28.986428552Z", + "start_time": "2023-11-02T14:56:49.850439243Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 549/549 [00:31<00:00, 17.69it/s]\n" + ] + } + ], + "source": [ + "val_dates = pd.date_range(val_range[0], val_range[1])[::date_subsample_factor]\n", + "placement_dates = val_dates\n", + "placement_tasks = task_loader(placement_dates, context_sampling=[100, \"all\", \"all\"], seed_override=0)\n", + "\n", + "X_new_df, acquisition_fn_ds = alg(acquisition_fn, placement_tasks)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:57:28.987151568Z", + "start_time": "2023-11-02T14:57:28.986231236Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": " x1 x2\niteration \n0 68.50 -118.75\n1 70.25 -159.75\n2 69.00 -131.25", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
x1x2
iteration
068.50-118.75
170.25-159.75
269.00-131.25
\n
" + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_new_df" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:57:29.219786973Z", + "start_time": "2023-11-02T14:57:28.986345476Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAACfCAYAAADdy7STAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7vElEQVR4nO2ddVhU29fH19AiopioCOq1FbsTGLpDUBBRDDAQEa+Kjd3dio3dCYqdiIEoISagIEp3zMz5vn/447yOEwwI6r2Xz/PMo5x9zj77zJy1Y+0VHACgKqqo4j+B3O9uQBVVVPHrqBL4Kqr4D1El8FVU8R+iSuCrqOI/RJXAV1HFf4gqga+iiv8QVQJfRRX/IRRkPbGwsJCKi4srsy1VVFHFT6CkpEQqKipSz5FJ4AsLC6lZs2aUnJxcIQ2roooqKh5NTU368OGDVKGXSeCLi4spOTmZPn78SOrq6hXWwCrEk5eXRydOnKCzZ8/SnTt3SCAQULdu3ah79+7E4XCIYRjicDhUv359On36NOXl5VFERIRQHXw+n54/f05PnjyhJ0+eUFpaGrVo0YJatmxJLVu2pBYtWtCbN2+oTp061KRJE6pdu3aFPkNhYSEREamoqFBMTAz179+f+Hw+W87hcKh69epUp04dmjx5MjVt2pQtk5OTo65du1LNmjWJiOjkyZN0+PBhSkhIoISEBCoqKqJFixaRt7c3MQxDCQkJ9Pz5cwoODqZZs2aRtrZ2qe0bNWoUnTp1SuhYYGAgWVlZyfyMAMjR0ZFCQkJkOj8yMpKaNGkic/1lITs7m5o0aULFxcU/L/AlqKurVwl8JfLp0yfavHkz7dy5k7KyssjAwIA2btxI1tbWVK9ePXr27Bndv3+fnj9/TpmZmXT16lX68OEDubq60qpVqyg9PZ20tbVJR0eHdHR0qHXr1qSnp0dycv+vquHxeDRlyhRydXWl3NxcIvomYPv37ydXV1eZ2llUVERXr14lACQnJ0cRERH04MEDCg0Npby8PFJVVaWMjAyqU6cOrVmzhu7cucMKe82aNalmzZqkrKxMycnJFB8fT76+viL3kJOTo+HDh9OWLVsoJCSErl+/zpa1atWK8vPz6dChQ1S3bl2qWbMmqaurk6mpKd26dYtycnIoOzub8vLyqHbt2tS4cWOhDwBq3769iMBHRkbSsGHDZPoO4uLiaN26dfT+/XtSVFQkHo9HcnJy5OrqShMmTKCePXsSh8MRey2fz6dLly7RmTNnqKCggHr37k0jR44kDQ0Nme79M3BksaXPzs6mmjVrUlZWVpXAVxJFRUVCPbOXlxcpKSlRcnIyffjwgZ49e0ZFRUWkqqpKnTt3prp165KysjI9f/6c3rx5w77YCQkJlJWVxdajqKhInTt3psGDB5OjoyOpq6tTq1atKD09nZYuXUqGhoa0evVqunTpErm6ulL16tUpLS2NVFVVqU2bNuTt7S3S1suXL5OFhQX7t7q6OvXp04f69OlDderUoby8PGIYhsLCwujs2bN0+vRpKi4uppCQEAoNDaX09HTKysqi/Px8to5BgwbRggULqFmzZlRQUED9+/en1NRU8vDwIG1tbbp48SIVFxdTYWEhFRUVUW5uLqWlpQnNGkqeV11dndTU1EhZWZkyMjIoNTWVxL3mmpqa1LdvX+rTpw/17duXevbsSQoKpY+BL168oKlTp9LKlSupS5cuVFxcTMePH6cFCxZQXFwc8fl8atKkCTVp0oSKioqosLCQbXdRURFlZmaSvLw8cTgcEggE7DOoqqpSjRo1qFq1aqShoUHdu3en3r17U+/evalVq1ZCHfePyCqjVQJPRF++fKEdO3ZQaGgoycvLk6amJnl5eVGnTp1+aTt69OhBDMPQp0+fqKCggBo2bEiampqkpaVFPXv2pH79+lGnTp1IQUGBduzYQVOmTKFmzZrR5s2badCgQSQvL09ERFlZWZSQkEDx8fEUFxdHN2/epMuXL1NhYSF169aNateuzU5DXV1dacuWLTRu3Dg6deoUaWlpkaamJqWnp9OrV68oKiqK2rVrJ9TO27dvk56eHrVs2ZLy8/NJXV2dPD09afLkyULnff78mRo1akR79+6lkSNH0pMnT+j27dv0/PlzioyMpPbt25OjoyO9efOG1qxZQ507d6agoCAiIrp16xbNmzePXr16RSkpKVSrVi1q3749qaiokIqKCtWoUYPU1dVJWVmZvnz5Qp8+faL4+Hj6/PkzMQwj8TuuV68e9e3blyZNmkQGBgYSR2FpmJqaUmBgINWtW1ekzMXFhQYNGkSvX7+m9PR0UlFRIWVlZbbdZ86cIT09PdLW1iYFBQVSUFAgeXl5SkxMpM2bN5OGhgbJyckRwzAEgOLj4wkA1apVi3r16kUTJ04Uu+yoEngZefXqFU2YMIFmz57NvgCxsbE0f/58sra2JhcXl9/dRBE2bNhAPj4+RERkaWlJWlpa7OhR8ikoKKCIiAhKTU1lr/Pz86P3799TYmIiJSYmUlxcHBF9W7sqKytTVFQUFRcXk5qaGl28eJHCwsLo/v371LNnT6H7Z2dn07hx44hhGFJTU6OgoCDS0NAgX19fatCgAWVnZ1NmZiadOXOGwsPD6dWrV7RmzRpatmwZqaioUOfOnalt27Z0+/Ztev/+PY0bN45atWpFfn5+FBYWRh07dmQFEQDFxsbSkSNHKCEhgQoKCqigoIBycnIoKyuLsrOzqVatWtSiRQv666+/SEtLi6pXr04fPnygW7duUWFhIcnJyVGvXr2oQ4cO9OjRIzp+/DhlZGRQXFwc6ejolOm7j4iIoH379tG6devEloeHh9PBgwdp7dq1ImUfPnyghQsX0t69e4WOR0dH06RJk4jL5ZKqqir5+PhQYmIizZ8/n9q2bUudOnWi0NBQmjt3LrVq1Yo2bdpEgwYNImVlZaHfpErgSwEAmZmZ0b59+0hTU1OoTCAQkLW1NQUEBFDDhg0r5f48Ho9yc3MpLy+PcnNz2U9xcTGpqqrSX3/9RZqamiKj0Pv37+nQoUMUFxdHHz58oKysLFJWVmY/T58+FRL0ElxcXCg1NZWioqIoMTFRbJvk5ORITk6O6tSpQydPnqT+/fuX+hyrVq2irVu3sqMREZGCggLVrl2btm7dSjY2NqSqqko8Ho9q1KhBurq67LT75MmT1LlzZ3rw4AHp6urSu3fvSFVVVUgXoaOjQ/Xr16e6detSnTp12KUPwzDslDgnJ4ftBI4cOUJFRUXUuXNn0tbWppo1a9LDhw/p6dOn1LVrV7p58yYlJSXR0aNHaciQIWX6zc6cOUPp6ek0evRoseV8Pp8cHR3pzJkzImXHjx+nwsJCcnNzEzpe8g6qqqqSh4cHHTlyhIi+vZ9OTk60YsUKat68OQUGBtKcOXMoPj6eatSoQStXrqRx48YRkewyWial3T8RAPTo0SO6efMmycnJkbm5Oenq6hIR0bNnz6hDhw4iwk5EJC8vT1OmTKE9e/bQ7NmzK7xd/fv3p/v375d6npqaGjVo0IAUFRVJSUmJ/bdGjRpkYGBAU6dOFZlyP3/+nLp06SJ0jMPh0KNHj6hDhw40cuRI6tChAzVv3pxOnDhBRUVFNG/ePFJXVyclJSUCQLt376ajR48KCfzDhw9px44dlJ6eTgzDkJmZGY0YMYKmTZtG06ZNo4KCAsrIyKCaNWuSqqqqUEeVkpJCYWFh9OjRIwoPD6f3799Teno66ejoUKtWrcjHx4cGDhxIXbt2JXl5eSouLqacnBwKCwujU6dOUVpamkzfK4fDISUlJapXrx6lpaVReno6e626ujrl5OSQqakpjRgxggYMGCBTnd/TsGFDevr0qcTyDx8+iH2fiL7tWPzYET9//pzatm1LDRo0oKSkJKpWrZrQs/j6+lJAQAAtXbqUXF1dadiwYfTy5UvavHkzjR8/nuLj42nJkiUyt/9fLfBfv36l0aNHU/v27cnKyor4fD7t3LmTUlJSaNeuXRQTE0Pdu3eXeH2PHj1o//79ldK2SZMmUUxMDKWnp9PcuXPJ2NiY1NTUSE1NjVRUVCg7O5vevHlDb968odTUVOLxeFRcXMz++/XrV1q4cCH5+flRhw4dyNbWlubMmUPKysrUuXNnevPmDRUUFLBrxMaNG1P16tWF2pCZmUmvXr2i8+fPs8KZlZVF586do3fv3tGtW7fI1dWVjI2NKS4ujj59+kQLFiwgHR0d4vF4dObMGbKwsCAul0uHDh2ixMRE6tChA7Vt25Z4PB4rcPLy8nT48GEyMDCgmzdv0unTp0lOTo60tbVJS0uLEhIS6N27d8Tj8Sg1NZWSkpLYNnp6elJ4eDjx+Xz68OEDnTlzhhISEiglJYVSU1MpLi6O3r9/T76+vrRgwQIaMmQIzZgxgz5+/EgxMTEUExNDycnJ5OHhQcOGDSNtbW16/PgxPXv2jP2+1dTUSENDgwwMDMjc3FzqCNmrVy+aM2cO5efnk6qqqkj5li1byN3dnfLy8ujQoUN06dIlYhiGWrZsSW5ubrRjxw6aMGECe/7bt2+pc+fORER06NAhsre3F6qvS5cuQssHDodDHTt2pJ07d1Lbtm3J19eXPn78KHGJIQJkICsrC0SErKwsWU7/I2AYBmZmZnj58qVI2Z07d+Ds7IzLly9j7dq1EuuIjo6Gt7d3pbTvzZs30NXVhYqKCm7evFmmawsKCnDlyhWMGTMGRMR+GjRoACMjI0yePBm5ubkAgPz8fKSmporUkZGRgb179yIwMBARERGYOXMm7Ozs0K5dO6E61dXVQUSoV68eGIYRqiMvLw81a9YEEcHKygorVqyAm5sbevbsiUGDBqFfv35sPTNmzMDx48dBRFiyZAnS09NF2sQwDF6/fg1bW1sQEfr164fo6GgkJibCzc0NKioqICLUrVsXnTp1wsCBA9n6L1++jGHDhgm1vXHjxjA0NASXywURYcCAAWyZjY0N3NzcYG9vD2NjY+jq6oKIoKSkBHNzc1y6dIlt1/379+Hi4gJLS0uYmprC0dERRkZG+PLlC3sOj8fDxo0bMW7cOCQlJcHAwAAHDx5EYWEhAODJkyewtbXF0KFDsXLlSva6W7duYfHixXj8+DFMTU3B5/OFvpPY2FhMmDBB4rtw7NgxKCsro3///jLJ6L9W4K9fvw5/f3+R4wzDoLi4GGPHjsXz589haGgo8iWX4OPjg7CwsApvW2xsLBo0aICWLVvi+fPnMl2TmJiIrVu3wsTEBAoKCkIvtrKyMrp37w5vb2/2WO3atdGoUSP274EDByIgIAA3b96Eg4MDOBwOatasCUdHR9jZ2YGI0KdPH/To0QNycnLsdXJycqhWrRoOHjzItiUrKwtdunRBhw4dhNrxoxC7u7uDiMDhcDB58mT4+/uDw+EgLi5O6LwTJ06gd+/eqFGjBttxHThwAAzDIDs7Gx07dkSDBg2wbNkyfP78GcHBwbC2tgaXy4WCggKqV6/Odp6tW7fGgwcPkJmZKXSPixcvolmzZiAiqKioQF5eHr169UKXLl1Qq1YtKCoqCj0LEaG4uBg7d+7EyJEj8fHjR7ausLAw9OzZE0ZGRrCxscGwYcPA5XKxfv167N+/H82aNYOLiwuCg4MhEAjY6/h8PiwsLODj44M2bdqgXbt26NixI1RUVKCnpye2E5wyZQpCQ0Olvht3796FhobGbxT4H0aC38GMGTMQERHB/p2UlIRJkybByMgItra26Ny5MywtLbF3716MHTsWBQUF7LkMw2D//v1wd3ev8Ha9f/8eTZo0Qdu2bfH169dSz8/KyoKfnx+UlZUhJycHBQUFdhTavHkzwsPD2Q6rsLAQWlpaICI4Oztjzpw52Lt3L3bv3g1DQ0NwOBwQEVq1aoX169fDxsYGysrKaNGiBVRVVTF8+HAAgEAgQEhICNq0aQMiQocOHYTa9OHDBxHhEDdZzMzMxIEDB+Di4gJ1dXW0bdsW2traGDhwIJ48eYKIiAgMHz4cRAQTExMsX74c586dE3rP7OzsoK6uzs7Utm7dinHjxrHC8fbtW7Rr1w5KSkpYuXIl/P39ERISIva7fPfuHTQ0NKCtrQ1ra2toa2ujVq1a4HA4UFZWhqamJvssqqqq4HK56Nixo9BIXkJqaiqMjIyQn5+PzMxMvHz5Enp6eli2bBkcHR3x7t07LF26FGZmZkIzrLNnz6Jp06Y4cuQIzp07hxMnTmDt2rVo3bo1pk2bBgC4evUqbGxsoKurCy0tLQwdOhSPHz+W+p6cPn36Fwt8djYwaRLQtCnQuPG3fydN+nb8NzBjxgy8ePECAPDx40fo6+vjyZMnbPnly5cxcuRI2Nra4sSJEzAyMoKHhwemTJkCLpeLRYsWSRz5y4tAIEC1atVARJg7dy5evHghNAL8yIsXL1C/fn1Uq1YNFhYWkJOTg7W1NZKSksp1/0+fPuHOnTvsPQUCAbp06QIFBQUoKyuDw+EgMzMTxcXFiIqKQt++fTF48GAoKSnh/fv3QnVdu3YN48ePZzsYNTU1ODk54datWyL3TU5ORq9evWBnZ4dDhw6xHQ8RQUFBAR4eHuzU90caNmyIiRMnsvVYWVmJLC2Ki4uRmpoKAwMDJCYmQl9fH69evRI6JzU1FSYmJujYsSOICHXq1EGfPn3g5uaGI0eOICcnB8C3d/3q1avw9/dHs2bNICcnB3l5eZiamiI+Ph7At5H606dPmDZtGh4+fIjCwkIMGjQIX79+xblz57Bz5072vuHh4Rg8eDD7t6urK/T19UWe88aNG2jatCnatGmDtm3bYuDAgVi9ejX4fD4+fvwIBwcHXLx4Uex3dPPmTXbp9WsEPjsbaN8ekJMDiP7/IycHtG+P18+eYcGCBbC2toaXlxfWr1+P4ODgCheo7wkJCcHChQsBACNHjkRUVJRQ+bhx4xAVFYWdO3di165dYBgGcXFxiI2NRVFRUaW0SSAQwN/fH1paWpCXlwcRoWbNmrC0tMSrV6/AMAwSEhJw4cIFLF68GD169ICKigoeP37MCoiOjg5MTExgbGyMhg0bgojQtWtX5Ofnl6tNERERaNOmDWrUqIGjR4/C398fPXr0QNOmTWFsbAx9fX0oKSnByMhI7PW5ubno3bs3/P392XVw//79MWLECIwYMQKtWrVi225paQllZWVoa2tj5MiRMDY2RpcuXUBE0NTUxLZt20SEefTo0dDW1sa6deswYMAA+Pj4SHyWLVu24NSpU/j06ROcnZ0xZMgQ+Pv7Y/To0bCyssLTp0+Rk5ODtLQ0mb6bYcOG4c2bN9i6dStq164NHR0dNGvWjJ3+165dG97e3jh48CB27NgB4JvwLVmyRKiesWPHIiYmBqmpqbCwsGBnUj/y9OlTaGpq4uPHjyKyUVhYCH19fbHvppubG/sd/xqBnzQJDIeDV0QIIMJIIpgTwZUI3f7XEDU1NRgaGqJ9+/as8qVbt26YNGkSTExMWIWGu7t7uUew72EYBiYmJnjy5Amsra2Fyh48eAAnJycA3xRg5ubmP3uzMl+Sm5uLGzduYNGiRWjZsiXU1NTYdVhJRzBw4ECsWrUKAPDo0SNs3rxZ7FS6ZP2cnZ2N5ORkfPnyRURwpJGcnIwFCxagUaNG6NKlC6ZOncqO6Lm5uWjdujXk5ORgZGSEo0ePIiMjAwCQk5MDe3t7XL9+HcC3Du3IkSOwtbVFnz590K1bN0yYMAFHjhxBcHAwiAg+Pj7Iy8sTun90dDRGjhwJIsLYsWOFXuo7d+6IPKukgeLatWtYv349+/eXL1/w+PFjEZ2BrEyZMoVdFu7evRtOTk6YNm0aNm/ejDNnzqBt27asQtPV1RUbN27ElStX0K9fP6E2nj59Grt27cLjx4/B5XKFFILfs2rVKvTo0UNiezZu3IgzZ86IHOfxeAgKCqpcgS8oKMCuXbvg7u4OrooK6pYoeYjQmQjWRBhAhMFEOFGvntAIJBAIcO/ePXTu3Bl169aFnZ0dzM3NWaUKEaFhw4bo1q0b2rVrh9q1a6Nx48YwMDDAuHHjsG7dOpw7dw63b9/Gs2fP8Pr1a6GXvGQaFBUVBT09PXTr1g1hYWF48OABpkyZAgcHByGljqWlpSxfgzA/LGH4Ojp47+aGyEeP2FM8PDzQs2dPeHh4IDY2VqSKjIwM8Hg8ZGZmYsaMGVi0aBHOnTuHuLg4sQLL4/HQsmVLoZdfSUlJYifw/chaGrdu3cKsWbPElqWmpkJbWxt16tRhlXANGjRAixYtsGHDBokzovT0dCQnJ+Ply5c4ceIEiIidFotjz549UFRUxMCBA5GSksIeP3jwIPssPXr0wKRJk7BkyRLs2bMHt27dwqdPnyAQCLB161acPHmy1Gf9nqSkJIkdSHh4OMaPHy+2rLi4GAYGBjh16hRatmyJVq1aCf0WKioqWLBgATIyMnD48GHs378fhw4dgra2tsT7DR06FD169MDnz5/Fll+9ehUbNmwQWyarnq1clnY7duyg+fPn09evX6l79+7UNDKSWhcUUH8i6k1ENX+soHFjoo8ficTYLQMQMqO8f/8+vXr1ij59+kSJiYmkqqpKmpqalJeXR7GxsfT69Wt6/fo16375PTVr1iQNDQ369OkT65DQpEkTysvLo44dO1Lt2rXJzMyMTE1NqVGjRiQnJ0f5+fk0ZMgQunDhgtTvgMfjkYKCwre25uRQeo8edOX1awoCKJyI3hBR0f/OtbGwII169Wjfvn1kampKkZGR9PnzZxo1ahTNmzePGIahJUuW0J49e2jJkiU0ffp0ysjIoG3btrHmqjo6OqSvr0+1atUiyskhmj2b6MIFQnExnePxyKewkOJzckr76Yjom7HI93vb4hgzZgzNnTtXoqnpwoULSU9Pj+rVq0dHjhyhJ0+eUGhoKGVkZBDRN9v3QYMGERFRWloa+fj4UGBgICkpKVGzZs2Ix+PR+/fvycTEhMaOHUuWlpZCpqFERKmpqdS7d2969+4drVmzRsiL7s2bN7R27Vo6efIkaWpqUnJyspARS8lvo6WlRTVq1KDatWtT/fr1SVNTk5o3b061a9emGjVqUF5eHqWnp1N6ejqFh4fTuXPnSEdHh0aMGEFaWlrUrl076tevH1uvl5cXtWnThsaPH8/6KuTk5NCECRPIzs6O7O3t6fr163Tr1i3W+69JkyZ069Ytev/+PSkrK5O2tjY1b96c/vrrL3r//j0dOXLk2+/6P0JDQ2nhwoX06tUratKkCWlpaZFAIKA1a9ZQ48aN2fO2bt1KDRo0IAcHB5HfR2ZrWKndwQ+9R3p6Oi5cuAAOhwNnZ2e8fv362wlNmwqv3X/8NG1a6j34fD7OnTuHefPmYcWKFXj79q3EcwUCAT5//ozY2Fg8ffoUt27dwunTp7F06VLMmDEDW7ZswcWLF3H06FFMmzYNDRs2RO3atUVGxlatWqF9+/YYOnQo3r17J3QPhmFw9+5d/P333+jatSurydXS0kK72rUh9796OhFhPBE2ECGYCIEcDpqqq6NVq1bw9/cHn89HQUEB1q5dizp16kBFRQWKioqoW7cumjRpAh0dHQwcOBC1a9eGqqoqGjRoAFVVVXZLrE/PnphTty6Ocjh4ToT8/32nm75TfPn5+WH//v04duwYXrx4gU+fPuH9+/dlWtfb2tqiuLiY/S0yMjLYvXwACAgIwOnTpwEAu3btAtH/79ETEYKDg/Hhwwd2FiAvL49p06Zh7ty56N27NzvqlYyCf/31F86cOSM0kxk3bpyQllxXVxcHDhwAAMTFxSE7OxubNm3CxIkTkZGRgYKCAsTExGD79u3s9qSKiorQtqK4j5KSEho2bIiuXbti06ZNcHNzg4aGBqtMtLa2Zt8HgUCADRs2wMDAAGPGjIGLiwssLCyEdgL4fD7q16+P7du3C32ncXFxUFVVhYKCAh79b+YXGhoKCwsLdgbz+PFjWFhY4PTp0zA0NIS1tTUYhkFsbCz09PRYfUPJjEKScrNSRviGDRvS58+fqXv37nTv3r3/76G9vYm2bCES56UkJ0fk5UW0YYPE+l++fEmTJ08mS0tL0tPTo4yMDAoMDKRq1arRxo0bZXJZlEZycjK5uLjQzJkzqWHDhhQXF0dv376loKAgioiIoMzMTCoqKqL27dtT165dqX79+vTw4UN68OABNWrUiLhcLvXr14+Ki4spJSWF0tevp445OWRORFribti0KdGHDyKHs7OzacuWLaSoqEjjxo2jkydP0o4dO6hZs2b0119/0ZgxY9gRNj4+nq5evUpXV66ku2/f0pf/1cEhIh0iakVE6kT0sHp1SszLE7qPpqYm6evr0+bNm0UCWzAMQ7m5uZSZmUlZWVmUkZFBMTExtGPHDuLz+SLutVpaWtSmTRv68uULGRkZUceOHSk0NJS2b99ORET+/v6kqalJY8aMoUePHrGjY/Xq1cnMzIwSEhJIQ0ODmjRpQnfu3KHXr19Tq1atqFmzZnTlyhWaOHEibd68mYiIcnNz6dGjR/T582dKTEykLVu2UNu2bUlLS4v27NlDdevWpTlz5lDTpk1p9+7dxDAMMQxD8vLydPHiRQoKCiJTU1Mi+jYKJyUl0cePH+ncuXN05MgRSktLo3PnzpGVlZVYLzmBQECLFi2iBQsWENE3M1kdHR026MjXr19JSUlJ5Du9cuUK3b17l96+fUtqampkampKr169ouPHj1NaWholJSWRvr4+3bhxg4iInjx5QkuWLKFq1apRWFgY6ejoUJcuXWjhwoW0c+dOiouLo4ULF9KDBw/o2bNnNGbMGJo8eTI5OTmRnZ2duDeuckb4sWPH4uHDh6Lry1K09NK25jIyMqCvr8/2eDExMZgwYQIsLCzQqVMndO/eHW/evJGlmVL5+vUrZsyYASMjI1hZWcHY2BgbNmxAcXExcnJycPr0abi7u6N///5o1aoVBg4ciAsXLog+K8N823aUNqNp3LjibBH+N3tKJ8JDIuwhwnQi2P5PV1Lrf6NS9erVoaysDCKCtrY21NXV0aRJE/Tp0wft27dHkyZNULNmTaEtsZIPh8MRe5yI0KhRI3Tr1g1qamqsVV3Jx9PTU6S5BQUF6NatGywsLNC4cWM0aNAAmpqa7HZks2bN0K1bN9ZKT5ol46BBg1ht+Lp16zBmzBjIycmhTZs2YBgGAoEADMNgw4YNICKEh4dLrOvmzZuQl5dnlaCS2Llzp9Az1qlTB/r6+li9erXILLCEUaNGISEhAcA3oyovLy+hOqpXr4727dtj8eLFQnv6b968gbm5uZANCACcP38elpaWsLS0RL169eDg4IB79+5JbbesI3zF7sN7ewvvw3t7l7oPv2HDBpw6dQoAEBQUBGtra0RGRrLl/fv3h7Gxsdj93d9GBSxhZELGzkXA5yMzMxNTpkxhp7M9e/bEyJEj4e7uDi8vL0ydOhWzZ8/GggUL4OvrixEjRiAwMBCjR49mX8y+ffti4MCBOHDgACIjI7F371506tQJRITOnTvDxsYG/fr1g5mZGWbPno3IyEi2QywuLkZ8fDyeP38OU1NT9OrVCzVr1oSTkxMGDRokJPD16tVDly5dICcnJ1GIgG9aaR8fH6SmpuLJkydwdHREgwYNoKGhAS6Xyypv5eTkpG7XXbt2DXJycujatatEhVgJO3fuZC3+iL5tgw4YMIDtTDt37izyLjo5OQktf4qKiuDr64tGjRqhVq1aICJUq1YNPXr0gJaWFmbNmoXg4GC8fftWolIQ+H/LPFmoFIGXWQNahtHNxsYGxcXFyMvLE7tGWbNmDc6fPw89Pb1K2x8vM5Mmic5mvp/VVKT9vYydS4mlVclHQUEBNWvWFDHDLflUq1YNcnJyGD58OGuC261bN4SGhsLNzY21G1+wYAGOHDkCU1NTmJmZYdiwYejfvz9bb7169VC/fn2x9+jfvz/7GDweD4aGhuz6fOjQoaWOtiXcuXMHlpaWSE5ORuPGjaGtrY1r167B2NiYXXNLs+mIi4tDixYtoK6uLtVi7fnz51BQUICLiwvOnj2Lbdu2geibH0BOTg5OnDiB/v37Q0lJCc+ePWOvW758OS5fvsz+nZWVBS6Xi8LCQggEAlhbW2PKlCmwsLBAixYt2NlU+/bt0aNHD4lbqCkpKUJGO9KoFIEnIri4uOD8+fPlNvT4kRKB37dvH/bt2ydSvnr1aoSEhGDTpk1l3nKpNH5iCVNmytC5ZGZm4sWLF7h48SK2bNmCFStWYMuWLdi3bx9OnjyJoKAg3LlzB4mJiSgqKsK6deugoaGBhg0bYsWKFSL259LIzc3FlStXMHfuXCxatAi7d+9GUFAQ7t69Cw8PD/j5+Ynsf1tYWICIsHTpUpnvwzAMjIyMWEu4N2/esEpARUVF6Onp4caNG1LryMjIwKpVq0BErOJRHCUGToMGDQKXy0WdOnWgoaGB4OBg9pzXr19DUVFRSBC/fv0KIyMjdkDaunUrjh8/DuCbjYGDg4PQfebMmYPt27eje/fuICJWCfjgwQNERESwsvX3338jKChIpu+pUgS+ZFpW0ksvWbJEqmmoLGzatAknTpzAzJkzhWzfSzAzM0NOTg7u378vYsH0WynnEqZc96nEzqWoqIjVzlcUxcXFGDx4MNatW4fs/7UvPT0ds2bNgr29fZnemWfPnrE25iXweDzs3LkTERERSEhIgI2NDbZs2cLqeng8HhISEnD69Gk4ODiwZsMWFhZCU+/vCQoKgr29PVq0aIF69eqhbdu2mDhxopBJ8fnz56GhoQEdHR0hM23gm6m2qakpbt68ifHjx+PVq1fYvXs3uFwu3r9/j48fP7LPfenSJWzZsgU8Hg8rV65krS5LPtbW1pg4cSLmzp0r8/dUaSM8EWHw4MHs1pGFhQV4PJ7MDfuRzMxM6OvrY8GCBULTIgDYv38/Zs+eDQA4fvw4a774x1HZzkK/qnMpI+np6Vi/fj08PT0xc+ZMId0Lj8djre4sLS3h4OCA06dPl3mAKBEOSeTn56N69epCSrbvt+W6dOmC1atX49OnTxLr8Pf3x9SpU1knF4ZhcOfOHejr67M6hn379oHom1utOK824JvPxrx589CyZUvo6+vD1NRUSNHZt29fREREYM+ePTh8+DB7XUZGBrZu3YquXbuC6JvX4oMHD8r0PVWKwPv5+UFRURHa2tr466+/0KZNG/Tr14+dbpWXyMhI9O3bF7q6unj06BGCg4Ph6uoKLy8v8Pl8MAwDKysrmW2gKwOGYXDz5k1s3LgR+/fvZ81Lf0NDfs99f+Ds2bMwMjLCmTNn8PHjRzx+/Bienp5wc3PDrFmzYGFhASsrK2zatOmn3KpjYmIkKrZSU1PRtWtXyMnJoV+/fnBycsK8efOwY8cOXL58WabdnadPn2Ls2LFiyxISEmBtbY3Pnz+DiGBsbCyTyXJkZCQ8PT1Rt25ddO3aFfv378fhw4fRtm1byMvLo2nTpkhMTGTPz8/Px7Rp0yAnJ4devXqJmB7Lwq/X0v8kfD4fw4YNg4GBAVatWoUPHz4A+Dbl9PPzw5o1ayrt3qURGRkJQ0ND+Pv74+rVqwgMDISVlRWWL19eJpv1fwvR0dFChjolXLlyBe3bt8e4cePYuAPHjx+Hnp6eiLddWTA3NxfRrn/+/BktW7aEsrIy5OXlWSecevXqoXfv3ti9e7dMOglPT09ERkZi5MiRaNGiBZo3bw4dHR00adIEtWvXFtqurFu3rsxt9vT0ZHc4Bg0ahJCQEOTk5EBPTw+KioqoUaMGhg8fjj179qB169ZQUlLC8uXLyz1brhSBf/DgAUJDQ1FQUIDY2Fhs27YNI0aMABHByMjop19+hmEQEBDA2sx7eHjA0NAQgYGBQucVFBTg9u3buHnz5k/PLkojJSUFBgYGIj7RDMNgwYIF2LZtW6Xe/09kwoQJIpGEMjIyYGBggPz8fBgYGAh1BvHx8T/loBQTEwMDAwM2GEliYiIGDBgAVVVVDBw4EEpKSkhLS8OsWbMwadIkGBsbg8PhQFFREUZGRli7di1evnwp9v20sLCAu7s7FBQUMHnyZPj5+WH27NmYO3culi9fDjs7O+jq6mLZsmVSrT9/hM/nY+HChejcuTPq1avHKhn19fVx7do1LFy4kHW+6dWrF6Kjo8v9/QCVvIavVq0aFBQURLZ8StZn2dnZSElJKbdCTyAQID4+HgkJCUI/kkAgwNKlS2FsbIxly5Zh5cqVsLCwwIwZM35KjyCNH7dcfmwnl8utVDffPxFxe8MbN25k7Sl8fX0RExMjVD5lyhQ8ffq0zPdiGAbv3r1DUFAQhgwZgpYtW0JeXh5KSkpYtGgRXFxc0K9fP5Hr4uPjMX78ePTu3ZvdQ588eTJev34t9Hs5ODhAQUEB6urqGDt2LNzd3eHg4AAjIyP06tVL6P1u2bIlZs2ahRcvXsg8uBUWFiI8PBxHjx6Fr68vGjduDCUlJVy+fJl1h66I96dSBP7atWt4/PgxVq1ahbVr1yI1NRUnT55kDRRu3rwJa2trODo6YsSIEeByudi8efNPa/JL8PPzw+bNm0W+7KNHj2LMmDEVco8fsbCwkNp+Pz8/oT3Z/wJmZmYiv8GoUaPYWdCECRNERsNTp05hz549QscYhsG5c+dgY2MDS0tLGBsbY9asWUhOTgbwzYOvZOuq5CMvLw8fHx8kJyezIb3at28vNNOLiYmBvb09iL5F9zl79iz69OkjVM+xY8cAAMHBwZgwYQImTZoEXV1d9OnTByYmJnB0dISbmxu0tbWxbNkyXLp0Ce7u7qwhTbt27TBz5kyxtu0pKSmYNGkSHj16JPI95efnw8TEBA0bNpSo/CsPlSLwO3fuxNmzZ3H37l02QGHJVt1ff/2FwYMHCz1ESWC/koglP8Pnz5+lGiGMHTv2p6dF4rCwsJDam8+bN6/U8EP/NubNmycSeNPHxwdRUVEoKioCl8sV+c527NiBEydOCB2bOXMmZs2axSpAv9eOh4eHQ0lJCd27d8eZM2cQFhaG6OhoVpM+c+ZMIQHu3bs3du7cyQaq1NbWxqZNm0Ti7n2/9QV8m6W5uLjg4MGDQh37169fYWVlhTt37gi1uaioCBcvXmTrWbVqlcizPnnyROhe06dPR2hoKFv/x48foa6uLtU6sKxU6pS+pIfbuXMnVq1ahevXr0uMxgEAEydO/OlRcPv27eyUURx3797FggULfuoe4pg5cybu378vtoxhGBgbG4vYQv/bSUpKApfLFfJZf/jwIaZOnQofHx8cOXJE6HyGYWBqaiq0B/7gwQN4eXmJnHfgwAHY2dmx3o2SAjh++fIFJ0+exOPHj9lZppycHIyNjXHw4EEEBQXBzMwMenp66NixI/r374/Fixdj9uzZePz4sZCQ8ng8LF26FAYGBhg9ejQcHBxgb28vNYDp95aNnTp1wrx583D37l1WdxEZGSkiM40aNYKzszPWr18PDQ0N+Pr6yv6ll0KlCHxiYiLi4+MREhIipJS5ceOGVKOYyMjInw73vGrVKqnhnKOjo0UMNCqC+Ph4mJqairUs3L9/v9jIuP8FIiIiwOVyMW/ePFy8eBE7duyApqYmxo0bJ3SeQCDAnDlzRMKBjxo1SkhzHx8fz5rK9urVC02bNsWkSZNkNgoqsSAEgNu3b4sYihERO+3/8uULpkyZgpkzZyI9PR0FBQWYOXMm/vrrLzRs2BCDBg2Cl5cXNm3ahDNnzuDmzZvw9PREjx49MG3aNHbHgM/n49KlS3BycmI7qBo1asDKygorV67E2bNnsXDhQtStW5dtQ/fu3aGsrIxq1aqxDjcVwS/dljty5IiIJv17cnJyMHToUFluJZHr169LHcG3bdsmZMxQkZTMYA4ePIh3794hNDQUHh4e8PDw+M8p7L6HYRjcvn0b27Ztw7Fjx5CWlgZfX19YWFhg6dKlmDNnDgwMDET8xAHhKENXr15FjRo1oKWlxSpIV65cidu3b5erXbt37xayCPXx8WGFSyAQsNtlRAQvLy9ERESwRjWzZ8+Gvb092rVrJxS6WkFBAS1atICcnBw4HA6sra2Fdir4fD7CwsKwZMkSDBo0SMgY6PvPnj17UFRUJDQ7qgh+qcCHhYVh+vTpEq9/8OCBxPBJ0oiPj2d7bYZhwOVyxXo7ZWZmYtCgQRKDA1QEubm52LVrF7y9vTF37lyRoJhV/D/Z2dm4d+8ewsLCJO6eDB06FF+/fsXt27dRrVo1mJmZCe2bT5w4USTyrKwwDIOIiAjcuXNHJAlHiREX0bdAGBERESgqKoKysjLWrVsndO758+fh5OSEZ8+escuRtLQ0+Pv7s5r/kSNHilXqMgyDpKQk3Lp1C7t27cK0adNksvsvL79U4EscHMRlOGEYBoMHD5bqBvnj+bdv30br1q3ZXrFE+xsTEwN9fX3s2bMHV69exe7du7F3716hPdqSOkJDQ3Hw4EEEBwdXuK14FT/PxYsXMW7cOKipqYHL5QrpQTIzM2Fqalpp9y4uLsa1a9eE3pk+ffrA2dlZ6DxjY2OJTmKXL1+GlZUVm9CjcePGaNmyJXr37l3uoJk/wy+3tAsPD4ehoaHQXuvnz5/h6emJjRs3ytRogUCACRMmCE2BevToIWRSu2bNGqFyDoeDfv36YePGjQgPD8ezZ89gZGQEPz8/HD16FKtWrQKXyxXREFdRPgQCAS5fvgx3d3cMGTIEK1euLNf0lMfjoVatWmjWrBnrYAN8UwiamZmVmm3lRxiGwbVr1+Dq6gpLS0u4u7vj3r17Mu+X+/r6QlNTk50lJiQkSN3qFQgEMDMzQ0hICFauXIn58+ezqb+uXbsG4Ns0//z58xg6dCgsLS3h4+PD2ifk5+fLPAjKQqUI/LJlyxAWFobAwEAsW7ZMxNrqw4cPmDJlCkxMTGBpaQlHR0eZpzDx8fEYMmQIK8hmZmZCvWtubi4ePXrEZiq5desW0tPTsXfvXhgaGrLrLXl5eejp6WHSpElsoglHR0d07dq1zC6gVfz/jGvUqFEwMzND06ZNMXnyZCQmJiI3NxcXL16EoaEhrl69WqZ6S7a2PDw8wOVy2d/KyclJauQacQgEAowaNQqzZ89mQ5zHxcVh8uTJmDJlikxCHx0dDQ6HwyaRiI2NxZQpU6Re82M04JiYGBARbt68ifz8fNja2mL58uXszPfZs2dwcnKCn58fWrduDUVFxQqb4leKwH9vV1ziLbd69eqfamhcXBw8PDygqKiIOnXqYOLEiaxAf/r0CZs2bUK3bt2E7q2joyOU6wv41mM6Oztj3LhxsLCwQLt27dCnTx+YmZmhf//+QkqUli1bYujQoTh69Ogfq3TLy8vDqVOnsHfvXhFXzF8Fn8/HyJEjMWPGDMTFxWHkyJHYu3cvXF1dsWLFCva8goICGBkZlRpN5nuWL1+OWrVqAfgmsCkpKeVyGgG+uVhv3bpVbNmiRYtEtgnF8fbtW9SuXZsV4qKiIhgaGkrsLN6+fYtRo0YJHSssLISqqipWrlwJX19fsRaaT58+hYKCAtq0aQM9PT3UrFlTyMuwvFSKwIeHh+Px48fIyspCYWEhiAjTpk0Dj8fDuXPnsHHjRsTGxoqsmTMzMyVOX0qCGYwcORI5OTmIjY0F0f9HRFVQUICdnR12796Nx48fS30pTE1NJf5AfD4flpaW2LhxIyZNmoSePXuy9gRHjx6tMGvAimDz5s0wMTHBtm3bcOrUKfj6+sLMzKxMttwVwapVq7B7924A35JVODo6Avg26nt5eQlFbr1y5QoWL14sc91z5sxB/fr1ERMTI9FHXRZKlLmSlIM5OTml2vGHhYWhXr16aNWqldBWob+/Pw4dOiRyvkAgwLBhw8R2xCYmJujXrx8GDRok8i4mJCSgUaNG0NXVxfDhw5GVlYWOHTtCU1Pzp5XAlb6GZxgGtWrVQtu2bdG4cWORdbebmxs6d+4sZI8sThhv3LgBOTk5NGrUCAzDgGEYzJ49G/PmzcOZM2dkSrhYQmkJFzw8PIT8okNDQ2FqasoK/oEDB8p0v8pgz549mD59utiXRV9f/5e55fL5fHC5XLYjvHz5MjZv3syWf/nyhe0ASs7/McOPNFasWCH0znTv3r1cuyz5+fmlhoGS9l4UFhaiRo0aUFNTE1G28Xg8uLq6YsaMGXj79i3y8/Nx584d2NjYiJgJl7B161b2mVq3bo3IyEgkJSVh+fLl0NbWho6ODj5//sy26cuXL9DV1UW9evXYXIjl4Zco7VavXg07OztMnDgRT58+hb+/P9q0aYNGjRpBXV2djTpaYoL4PUVFRTh58iQba2zr1q0izjKSKCgowMePH0VGBldXV4mZTfh8PgwMDMRO4R8+fAgTExMhK0JjY2OYm5uzvgEeHh7Yu3dvqW37GUraKGm2cfr0aZGto8oiOTkZo0ePZv++ceMGli9fzv7NMAz69u2LZcuWYc2aNSJJE0ujxCnm1q1b2LlzJzgcjtj9+tLg8/kwMzOTeo6xsbHU8lWrVkFFRQVNmjQRmYYzDIN79+7B09MTjo6OmDt3rtTsOSXmwSYmJtDV1UW1atUgLy8PFRUVNlcdj8cTmnWkpqaiS5cuqFOnjtioT7LwW/3hs7KykJqaCoZh4OjoyObLKioqQkhICLy8vFiXwe8TL5Q4O0gaZVNTUzFhwgSYmZnB09MT1tbWcHNzY3vmhw8fws3NTazAbN26tVRh+fjxIwIDA9kftyRaC5fLZRMlVmb03PDwcMyYMUNiOY/HK19arHKQlZUlNIIXFhaya9r4+HgYGRnhr7/+wt27d3HlyhX06dPnp2whnJycoK2tXa5Yia6urmz8hB959uyZTFae7969g7GxMRQUFHD37t0yt+FHTExM8OXLF8yZMwfbtm0TmpmdOnVKKAce8C16UJcuXaCpqVmupdtvD4ARHh7Ors9LUi+XTO+1tbUxdOhQEH0LWzxv3jxMmjSJFfoLFy6I1JeZmQkulyuyXfPq1Svo6+uzvW5AQACsra1x48YNZGRk4MWLF5gwYQLGjx//U+t0gUCAnj17olOnTlKn1VFRUdi3bx+OHTtW5h2BsLAwqdaEDMP8MoEHvgUY/d62YtOmTZg9ezb09fVx4sQJ+Pn5AQBevnwJLpeLkydPlttRKjY2FkpKSnBxccHMmTPh6OgIKysrLFmyBLdv35baEURFRcHExEQkIlJSUhIMDAykjsjfU1xcjIEDB6JBgwZic8KXheDgYLi4uIj4l8TGxkJfX599N7Kzs/H06VO8evUKycnJaNmyJZo3b17mhKq/ReBLtnDs7e0hJycHXV1dLF68GNOnT8dff/0FIsKlS5fAMAwyMjKgoqKCdu3asTqAPn36SAy4v2jRIol+6VFRUUJ7ph8/fsSCBQvg6uqKKVOmlHmbRxJhYWFQU1ODpqYmjh07JrT8+Pz5M+zs7DBu3DgcP34cAQEBsLS0xIIFC2TeC87NzZU6PQ0NDa0UfwFJ3L9/H3Z2dqywMQzDRoZp2bIl1q9fD3d3dzg6OrKzMkdHR9a9tawsWrQIHA4H2traMDAwgJGRERsjXlFREYMGDcKePXvEBj158uQJzMzMMGHCBKxZswZjxoyBlZWViF9+aSQlJYGIcPDgwXI9w/dcuHABBgYGmDlzJjZs2AA3NzcMHjwYiYmJyMvLg7e3NywsLDBv3jx4e3vD0NAQAQEBUFFRgaura5nu9csFPjk5mV2zt27dGlu2bGF9kuvUqYMxY8aIuBqGhobC3t4e48ePF/Fg+hFjY2OpI7SZmdkvsaj7+PEj7OzsQERsJ1PiEirOPXft2rVlCss8ffp0sV6BRUVFsLCw+KlQUeUhJCQEXC4XM2fOxPbt29GmTRvo6+tjx44dOH78uMj088CBAzJtg0niR207n8/H8+fPsWnTJhgaGoLD4UBDQwP79+8X+768evUKN27cKPeOxuvXryEnJ4dNmzaV6/ofYRgGjx8/xpUrV9iZBp/Ph42NjYjtQmFhIQwMDEBEmD9/fpkiSFW6wKempsLPzw/t27dnEwgSEdasWcOauxIRtm3bViGCWNpU1tXV9ZcGlly2bBnk5OTg7e2NgQMHwsLCQuLU0dTUVOY95qKiIgwbNgxTp05FVFQUvn79irNnz8LQ0FBiXvHKhmEY3LhxA2vXroWhoaHU/fbAwMBKc2ICvtltuLq6goigpaXFhsP+PihkeYmNjUW7du3QqlWrSjXQunDhgpAdw/eEhoayOq0OHTogMDBQJsGvFIHPyMhg/Z5LplqScpLp6+tX6A9vamoqUSFUshf7q/bSGYaBt7c3OBwOOnXqhG7duuHs2bOwt7cXa0a8fv16mRMKlPDo0SP4+PjA3d0d69atq9DoKGUhLy8PXl5esLKywvz582FiYoI2bdrg/PnzYs8fOnRohQhfady4cQPTp0/HwIEDoaKiAnl5eVhbW2POnDlYsmQJ1q5dywZsCQ8Plyo0ubm58Pf3h5KSEpo1a1YpgVS+x9nZWazfSQlz587Fxo0bYWlpCaJv8SJv3Lghdcu4UgReS0tLRLDl5OSgr6+P9evX49mzZ7h586bMSpKysGvXLonWVJcvXy6XN1552bdvHxYvXoxTp06xEVa6du2KhIQEjBs3jrWlLmHHjh04d+7cL2tfCV+/fmWF1NLSEnZ2drh48aLM1/N4PFhZWeH69evsscLCQgwaNAiDBw8WWXpcuXJFYsjnyiQzMxNbt25Fr1690KRJE9StWxfVq1cXGox+NJJJTEzExo0bYWJiAmVlZSgqKmLWrFnltvYrC1ZWVlI7oM2bN7P6qkuXLkFHR4d9jjp16sDY2BjBwcFCdVR6xJtOnTph8+bNP63NlBU+nw9nZ2ds2LCB/VGKiooQGBgIMzOzn7LWKms7vs+BxzAMJk+eDBUVFSxYsABfv34VSS3k5OSE2NhYrFq1ihU+a2trEcVfRRIfHw99fX1cv36dvUdqaiqmT5+OOXPmyFTH2bNnxeZ/e/v2LfT19dG8eXM8efIEd+/exYQJE+Di4lJhKcgqAj6fz/rG/7gMKQnR1rFjR6xduxaPHz/G27dvK9XFuoRp06ZJjabz/VYz8G33ICoqCidOnMDChQtZK9ESu3+gEhNRHD9+HDExMb8lHjufz8f+/fvZVLqmpqbYvHnzL3nJEhMT8fbtW/j5+YGI2KglXC4XaWlp0NDQgIqKChYuXCikab9z5w6GDRsGLpeLM2fOsIY/2dnZWLZsGTw8PCrlu5TmkjxhwgSZMpsMGTJEYvIPgUCAoUOHwt3dHQsXLiyXlVhRUREOHToEOzs7WFpaYuLEiSIOWT/Ltm3bICcnJzIgPH36FM2bN4eGhgbMzc3h6uoKb29vGBsbw8/Pr1LDlr1580Ziyq1Xr16VasBUYt/StGlTvHnzBnw+//fvw/9bCAoKgomJCdzd3eHt7c1mWp07dy4aN27MhmwOCQlBkyZNIC8vD1VVVbx48QLz58+HtbU1Ro8ejUePHomtf9GiRVJj9ckCwzBC+72fPn3C8OHDJZ7//v17EccPcVhaWkrtjDZu3CiUaLEsZGVlwcTEBFu3bmW32V6+fAlnZ+dyWdxJ4s2bNyASn0Ryz549ICIhXRPDMDh//jxsbW0rLfR5yb2HDBnC2tAXFRXh6NGjMDAwkMkJKSIiAioqKiD6FkD22bNnVQL/s5w6dQrDhw8XWte9ePECcnJyUFJSEjEZzs7OZhNz2NjYsIkypO0wZGRkwM7OrlztK/E0NDY2hr29PZu158aNGxK1wCXIYsDz999/S516urq6ljsu29ixY8XOMhiGgYuLS7lNTMXRsWNH6OvrC3VeJUFbWrduLbZzXLVqFc6cOVNhbRBHREQExo0bx85YN2/eLBQboDS+fPmC4OBg/PXXX2wq7iqBLyc8Hk8kg0oJp0+fZgWeiBAbGwvg/0ctDQ0NNGjQABMnTsSxY8cwefJkqfeysrIqc/tK1tE/xlU7cOAATE1NJeZjA76t5Z2cnEq9x+vXryVOPaOjo2WqQxzp6emwtbWVWB4dHS0SDPNnCA4OBhGxnn/At8CqPj4+mDdvHtTV1UVG89TUVAwcOBBr1qzB7t27f2tew9KYOHEi2rdvL5OMylEVYrlz5w4ZGhqSoqKiSJmdnR3Nnz+fOBwOERG1bt2a5syZwx6/d+8eubi40Llz52jIkCH0+vVrifcpKioihmHK3L7Zs2fT3r17qUOHDuwxeXl5Gj58OJmYmND9+/cpKytL7LUBAQE0bNiwUu/RsmVLsrS0pGHDhlF0dDQRERUXF9ORI0fIy8uLNm7cWOZ2ExG9fv2aunXrJrG8bdu2lJiYWK66xWFiYkIjRowgX19funTpEhERpaamUqNGjSg2NpbU1dVJTu7/RSEiIoKcnJzo69ev1KVLF6pevTq5u7vT0qVLCUCFtasiSEtLo7dv30r8rUWQpQf5L47wx48fx759+ySW5+fnw8bGBs7OznB2dsbNmzdFRsLNmzeDw+HA3t5eJGBHCQcOHChzfrqUlBQMGTJEYnl2djYGDhwIc3NzITNXhmFw7NgxODo6linwx4sXLzB+/HhYWVnByspKaN1dHqKjo6UmYSj5biuS9PR0Ngz20KFDER4ezlqG7tq1iz0vOTkZBgYGbGTi71m4cKHEreGfIT8/H/v27YOLiwtcXFywb98+qYpohmEQGxuLGTNmQFVVlY2oK4uMVgm8BF68eCHVy+ru3bulbm89f/4c8vLy8PX1BZfLFfG3DgkJEQnlJQuRkZFSveqAb2v0J0+eYPDgwRg8eDDGjBkDQ0NDLFiwQGLCkB8pKChAYGAgpk+fjsWLF+P169dlaqckGIaBoaGhxC2wvXv3Ck2/KwqGYXDw4EHUqVMH8vLyICJ069ZNaDq/aNEihISEYPTo0SJ795WRS/DNmzfQ09PDnj17kJ6ejoyMDOzZswd6enpC6a5zcnKwbNkymJqaQkNDg7WBoR+2y6sE/icwNzcXazXGMAxsbW0lumQC3xx6OnTowMYyb9GiBVq1aoWePXvCzc0NJiYm+Pvvv8s1UqalpUndusnIyIC9vT37d3Z2Nj5//lwmrfP9+/ehp6eHnTt3Iioqio1rN2HChAp54S9dugQXFxcRoX/69CmMjIwqdav169evWLp0KZvK+sKFC+wzcblcTJgwAcuWLRN77YwZM34qUMX3lHQg3wdlKSExMZG1Hg0JCUHTpk2hoqICc3NzzJ49G02bNoWGhgZmzJgBeXl5eHp6Vgn8z1Liynjt2jVWw/vu3TsMHz4cAQEBUq89ceIE2+v+mGVXXl4e8+bN+6m9XhcXF4kj7vLly3Hy5Mly152UlAQjIyOxGuM9e/ZUWEqvCxcuwNDQEFOnTsXy5csxePBguLm5/VIFWXp6OlasWAFTU1NYWlqiUaNGUgNLzp49u1zel/fv34exsTE6d+6MZs2aQUdHB/Xr10etWrXQrVs3WFpaYuzYsZg/fz7WrFkDPz8/dOnSBR07dgQRCY34kydPRrVq1XD16lX2nbp161aVwFcEycnJWLBgAftCjBgxQupWVQl8Ph96enqsgNevXx/btm1jw3BzOBw0atQImzdvLpd1V0JCAvT09ITiAxQVFWHr1q0YPnz4T/kV+Pv7C5nTfk9F59P7PmnEr7LalIafn59Eo6TSliKSrjl06BCUlZXRpUsXjB8/ns1B//2AUK9ePWhpaUFTUxPVq1dHs2bNoKuri7Zt22LXrl3s7/ngwQNwOBysWbNGyORW1ik9Byhd7ZidnU01a9akrKwsUldXl00b+B0CgYACAgLo9OnTpKysTIWFhdSpUyeaOHEi3bt3j86fP088Ho/69etH7u7uVKdOnTLf40+kqKiIQkND6eHDhzRv3jxSU1OjESNGUPv27cnT05NUVVUpLy+PGjduTLNnzyZXV1dSU1OTuf7k5GRavXo1vXjxgpSVlam4uJjs7e1pzJgxJC8vX+52W1lZ0fnz59ldiB9ZuHAhmZiYUK9evcp9jz+V+Ph4GjduHJ06dYpUVVWFynbt2kUpKSk0a9asUut59+4d7d27l44ePUrv3r2jFi1akKenJ+Xl5VFGRgbVrFmTjh8/Tq9evRK5dvny5TRjxgy6ceMGPXnyhKZPn05ERPn5+dS9e3eqUaMGPXjwgM6fP0+FhYUUHBxMBw4cICIqXUZl6aV+ZoQXCAQYPnw4tm7dyiqLSvKC16pVCytWrEB2djaKi4tx/vx5GBgYyGT2WQLDMPj48SPevXtXqZZRP8vr168xffp0qKmpoVevXhg7diwGDBgARUVFNtlgs2bN/ohnsLS0lLpOnzdvnkyznH8qN2/ehJ6eHvbu3YtXr17hzp07cHd3h5eXl0wzp5CQEKipqYmMvsrKymjYsCHatWuHGjVqoEaNGujduzeWLFkiFFPRwMAAADB69GjWxiMiIgLt2rVDtWrVRHQIPB4PQUFBf8aU/sSJE2KtvqytrREcHIxhw4YJHc/Ozoaenp5MyqwzZ87A2NgYY8eOxaRJk2BgYICVK1f+MjfZ6OhoTJ8+HcOGDcPs2bNlyiRy8+ZN9OvXT0TDOnr0aBARzp49+wtaLp3ly5dL9L0vmdbKqun/p5KXl4c9e/bA19cXCxculHmH4nvdDf0vUo+joyNCQkLY97KgoABubm4gIrRp04Y1++XxeEhJSQGPx8OZM2dY82eGYVg9kKS063+MLb2dnZ1IMIGIiAhMmjQJAODg4CDi6x0YGIgdO3ZIrXf//v3w8PAQWksKBALs2LFDqpVZRcAwDGbNmoWRI0fiyZMnyMjIwIMHD+Dk5CTWu0wcBw8eFHEzJiK4uLhUattlISUlBQYGBmJTSK1evVok9XMV39i2bRv7e6qrq2PlypVi9RILFiwAh8PBhg0bUFBQAG9vb9jZ2WHXrl3YtWsX7Ozs4O3tzXaqoaGhbL2hoaH4/PkzUlJSEBcXhxcvXuDz589/jsCLMxvdvXs326tNmzZNJOBAUlKSVL/qkgiqkkbycePGVagt9o8cOHBArKa6xFVWlsg0xcXFaNOmDezt7VljDyJC8+bNK6PJZebFixcwMDDA0qVLcfv2bZw6dQoODg6YO3fub/GU/JMpKioSyonYvn17qaHIjh8/DiISsstISUnBqVOncOrUKZGO9sGDB2KDzHz/kdXwRqFU7cNPIicnR7m5uULKqGrVqrGmgPHx8VS/fn2ha7KyskQUJt9z5coVsrGxETKH/B4PDw86ePAgrVq16qfazjAM2xZlZWX2eGBgIJ07d07kfA6HQ/Pnzyd3d3cyNzeXWreioiJ5enrS9OnTaefOnbRhwwbS1dWlhg0b/lSbKwpdXV0KCQmhkJAQevToEamrq9PWrVtFfqv/Inw+n65fv06fPn2ievXqkY2NDVtmZ2dHBw4ckKp8NTY2JgUFBZo/fz5pamrS8OHDqX379mRvb8+ew+PxaPjw4cTlcmns2LEUFRVFSUlJxOfz2Y+qqiopKSmRvr4+vX37VrbGy9KD/cwIf+jQIWzYsEHoWEZGBqytrfHhwwexJqKzZs2SGht89+7dUl1Kv3z5And39zK3tYTCwkIsWLAAXC4Xw4cPh4WFBYYPH47Y2FgUFBQIGbWIo8RltjQ+fPgAImJnBBEREb8skEcV5ePy5cvQ19fHypUrcfr0aXh7e4OIoKamho0bN8qsP7K2thbS4zg4OMDe3h5du3ZFdHQ063XZuXNnqfUUFBRAT0+PXeP/9ik9j8fD4MGDcfDgQSHN74QJE9CiRQuR6KLXr1+HnZ2d1Gnj/fv3MXv2bInlly9fFsqSUhaKi4tha2uLU6dOCbXh3bt34HK5ePHiRakCbWJiItO9+Hw+lJSUKixCahVl5/nz5/Dz88P48eOxbds2qe6pjx49gr29vYgNQl5eHqysrMq0jLx9+7bE6bm1tTWICI0bNwaHw8G4ceNKXUb9MWt44JsQrVy5ElwuFw4ODjA2NoaHhwemT58OExMTrF27Flu3bsXgwYPh4eFRalyxEl9mcUolPp8PU1PTchtxHDx4EFu2bBFblpiYCAcHB6mx12NjY6XmFf+RVq1aSXUkqaJy4PF4cHd3Z9OkJSQk4MiRI9DX1xdKkvk9Tk5OEoNTvH//Hm5ubhLvxzAMUlJS8OrVK7x48QJPnz7F3r17MWrUKFSrVk1I4GvVqoXJkyez0Xnbtm1bqrHPHyXw31NUVCTUW+Xl5eHq1au4ePFimYT0xYsX4HK5uHPnDltfbGwshgwZ8lNx0W1sbKROq11cXHDp0iWxPX12djbMzMzKFPW0SuB/D7Nnzxb7nhQUFMDMzEwkEKtAICh1Zmdqair2eMn0XNwnKioKeXl5uH37NrZs2QIPDw+0bdsWRIT69etj8+bNMm2B/rECX5EkJiZizpw5MDU1hYWFBUaPHv3TWWZKiwTj5+eHly9f4sqVKzAwMMCSJUtw9OhRzJ8/H1wuF/fv35f5XlVT+oqBYRiEhYXh4sWLePXqVann5+XlSRROALh37x5mzpwpdIzH45Xqsvtjh/Dlyxf4+/uzwu3p6ckGTunbty8uXLiAc+fOwczMjF2D6+joYMyYMTh27FiZHKtkldFK19JXJo0aNaJFixZVaJ0qKiqUlpYm0bz39evX1LhxY+rQoQNxuVy6desWff78mbhcrlBQDFlITEyk4uJiat68eUU1/z/H9evXafny5dSjRw/S1tamixcv0qdPn2jt2rXUsmVLsddERkZSnz59JNbZt29fWrZsmdAxBQUFKi4upry8PKpevbrINRkZGSQvL0+fPn2ioKAgOnHiBN24cYOUlJRo4sSJ9Pfff9PQoUOpefPmtGHDBlJTU6MxY8ZQTEwMde/endatW0cmJibUokWLMr1DZaYie49/A+fPn4e/v7/YsqioKKnBIctKSEgIiKjM+c+q+Ma9e/eEct+V8OnTJ+jr60tMyPjs2TOpeQz4fL7Ymd7x48dFRn7g2wxj2LBhaNasGWtEpa+vj61bt7IJJ65evYo6depATU0N2traICK0bNlSYnDTsvKfmNJXBgzDwMPDAytWrGDX8gzD4Nq1a1JfohJKYuWXpJoePXq0RLvzUaNGQVtbu0IDKvyXsLGxkehKe+fOHYk7OTweT2qmonPnzmH16tViyxYuXAhnZ2fcv38fX758we3bt2FhYYGaNWuiQ4cOOHbsmEibDhw4gFGjRmHdunXo3r07WrZsiRUrVsDHxwdr1qwpwxNLpkrgfwKGYRAYGAgLCwtYWlrC2NgY8+bNE7sr8D05OTkwNzcXCgH15s0bjB49GitXrhQ6Nz8/HyoqKli0aFGlPce/mYyMDKlBNBmGkbo9un37drEJG0tSTEvzyX/37h3mzp2LUaNGwd/fH3Z2dmjQoIHYYCm5ubkwMjIS26kzDAMbG5tyZ9v9nn+MwL99+xbLly/H7NmzcerUqV+SAbay8PLyws2bN8WWeXp6Cin0eDweGjZsWKHRWf9LlGZ+DUhXwMbFxUFPTw/16tVDp06dYGVlBU9PTxgZGcmk+PseY2NjdO/eHTt37hTRqAcGBmLPnj0Sr7106VKFjPKyyuhvi1orEAho4sSJtHjxYurZsycNHjyYEhMTydjYmMLDw39Xs8pNbm4uffjwgfT09MSWz5o1i3bs2MH+raCgQCNHjqTjx4//ohb+s0lISKB169bRokWL6OLFi1SnTh169+6dxIi/ycnJVK1aNbFljx49Ig8PD1q2bBm9efOGpk+fTrq6uhQZGUlTpkyh1q1by9wugUBAPXr0oCdPnpCHhwe5uLgIlSclJUlVyjZv3pw+f/4s8/1+lt+mpff396devXqRm5sbe6xz587k6upKgwcPpuPHj/+jAmHExcWRrq6uxHJtbW1KT08XOZaVlUUAiMPhEMMwFBMTQ8XFxdSmTRuJL+x/CYFAQFOnTqXU1FRydXUlDQ0Nunv3Lq1du5Y6duxIBw8epBEjRghdA4CWLFlCnp6eYuvz8/Ojc+fOsYEiSoS0qKiIzM3NaeDAgWI18QDo/v37tHHjRrp37x5Vr16dvn79StnZ2ew5JiYmQtc0a9aMoqOjadCgQWKfLyoqipo2bVqm7+SnqMjpgqzk5uYK5V/7kfPnz8vsZvqnEB8fL9XCrqioSGSfdtWqVVBWVoZAIEBgYCAMDAzg6+uLOXPmwMTEBDNnzvxHL3Eqgvnz54uNYJuSkgI9PT0MHToUs2bNwsePH9lwWcOHDxfRmZRw4cIFiQo54Julpbj7laSs+vEzevRoXLx4ESEhIcjIyBC5rrCwEPr6+mIt5fh8PkxMTCokFfgfvQ//9OlTiT0eEZG5uTnt3LmT/v7771/Yqp9DW1ubEhMTKScnh2rUqCFSfvr0aREPups3b1Lfvn1p9+7dFB0dTVeuXCEFhf//SU6cOEHDhw8nPT09evv2LdWrV49cXFyoSZMmlf48JfD5fIqOjiaGYahdu3akpKT0y+6dn59Pjx49In9/f5GyunXrkre3N8XFxVGXLl1o7ty5lJaWRs2aNaMZM2ZQ+/btxdYZExNDPXv2lHjP7t270+7du4WOMQwjsqffokULsrGxoUWLFkmdiSkrK9Pff/9Nzs7OtHbtWnY0//z5M82YMYOdtfwqfovAczgcqRk88L8p7u8iPT2djhw5QgkJCaSlpUUuLi4yLS/8/PxoxIgRdPDgQaEpYUREBAUEBNDZs2eFzm/SpAnt27ePsrOz6fHjxyLPrKioSKGhoaSrq0tjx46ljx8/0rRp06hNmzZlNvIpKwBo27ZtdPr0aerevTspKCjQo0ePiMvl0vTp0yW6Jlckjx8/Jn19fYnlVlZWZG9vT1OmTJGoO/mROnXqUFJSksTypKQkkd9aTk6OFBUVSV5enj58+EANGjQo03dvbm5OjRo1ovnz51NqaipxOBxSU1Mjb29v6tu3r8z1VAgVOV2Qlfz8fKlbJqdPn8a6desq5F5lZffu3TAzM8OpU6cQFRWFM2fOwNzcvNQIPCXcuHEDJiYm8PLywuLFi+Ho6Ag3NzexW3qFhYVo3bo1WrVqJVL2/PlzODg4iE2IsXDhwkpJ1PA9ixYtwuLFi4X2qhmGwY4dO6Qm6KhIbt26JTUpJo/Hg7W1dZnqTE9Ph4WFhUTvs2HDhuH9+/fIy8vD/Pnz0b9/f+zevRsKCgpYsmRJme71K/njt+UWLlwoVoi+fv0KfX39ClnXlJVr165h9OjRIgYZAoEAnp6euHLlisx1xcbG4uHDh6Xu3dva2qJGjRoi1mKjRo3C69evkZaWJuKFVVxcDC6XW2mRZ1JTU6XajY8YMULErbkyKE3Xc/bs2XJtaa1duxZ+fn5C+hGBQIA1a9Zg+vTpcHJyAhHBzMyMXavb2NgInZ+Xl4eYmBixSSR+B3+8wAsEAvj6+sLZ2RkXLlzAgwcPsGzZMpGMqL8SW1tb1hTyR9LT0ys83xkAHD16FAoKCujfvz+eP3/OCnGJgu/SpUtiFVCjR48u1eqvvOzatQvHjh2TWH7r1i0sXry4Uu79I3PnzhWb4y81NfWnBob9+/eDy+Vi4sSJ8Pb2hoGBATZu3Ij09HRWyF+/fs3+v8QzMi8vD1OmTIGZmRmmTZsGd3d3mJub486dOz/1nD/LH620I/q2LlqzZg0lJibSqVOn6MWLF9SlS5dftj78EQDE4/EkrtU1NDRIIBAQwzAV1r709HQKDg4mNTU1evDgAdnb25O2tjb5+fmx7dmwYQMdOnRI5FqBQPBTseelkZmZKdHxhIiofv36lJmZWSn3/pH58+fT5MmT6caNG+Tq6kp16tSh27dv0/nz52n9+vXlVni5ubnR8OHD6cOHDyQQCKh58+YkLy9Pbdq0Yc9p27YtEREtXbqUVFRUiMfj0dChQ8nLy4vWrl3LnpednU0jR44kPp8vVefwR1CRvcc/GYZhYG5uLvUcc3PzCptG5+fnw8jICE+ePMHbt2+hq6sLIsL06dMxZMgQDBgwAPr6+jhz5ozEaytrSh8UFCQxtxrwTc+xf//+Srm3JN6/f49Vq1Zh/vz5OHPmTKXF73/+/LnQtlurVq3Yex07dkwkXFsJeXl5MDY2/m0BPv/4KX1FkZeXh4CAADg6OmLw4MHYvn17uVMZDx48WKJd89evX+Hg4MBm91y5ciXOnz9f7hcvICAAe/fuZf9OS0uDrq4uVFRUYGRkhIYNG2LgwIEiwTgYhoG3t/dP5Y4rDYFAAH19fbH25Hl5edDT06vUZI+/myNHjrAC/32abwcHB6ky4O3tjaioqF/RRBH+eNPaiuDt27dkYWFBioqKtGfPHtq/fz/VqFGDrKysKDo6usz1+fj40JQpU4jH4wkd5/P55OvrS40aNSJXV1dSUVGhnj170tu3b8nIyIgePHhQ5nudP3+ehg4dyv5du3ZtNhJu165dycHBgTw8PMjKyorWr19Pt27dooMHD5KFhQW1bduWHBwcynxPWZGTk6O1a9eSk5MThYSEEMMwrJWZg4MD+fv7/6utANu1a0dERLVq1SItLS32eFFRkdQ0To0aNRKxpvzjqMje41dSkmpXnIfSly9foK+vXy630xMnToDL5SIgIAB3797F7t27weVy4eXlhWnTpolM2bKzs2Fqaio1Drk4xMXrB74lKVBUVISnpyfCwsLA4/FYd839+/dLDbJY0SQnJ2PRokWwsLCAhYUFZs6cKRL66e3bt5g9ezZcXV0xY8aMMjue/KmsW7cOSkpKQu/Q2LFjpWagGTJkiMSYd5XNv35KHxISItW1dPXq1Th//ny56s7Pz8ehQ4ewfPlyBAYGIjc3V2p6pbCwMEydOrVM9xg7diybN+x7CgoK0LNnTygpKeHevXvscYFAgHfv3uH9+/d/TCKIlStXYsiQIbh//z7S09MRFhYGNzc3zJkz549pY3m5dOkSiEiog3vy5Amb/ulHIiMj4ezs/KuaJ8K/XuCXLFkiNX5ceHg45syZUyH3io+Ph6enp9RzSlP4/cjTp0/h5uYmVjCCg4NRp04d1K9fH3Fxcdi2bRsMDAzg5eWFCRMmgMvlit2q+pVcvHgRPj4+Yts/f/58HDp06De0qmJgGAbDhw+HkpKSyNbnihUrMG7cOHZtz+PxcOrUKRgYGFSIX3t5+dev4atVqybkpfQj2dnZUrPXlAWGYUrdAiurmWvXrl2pR48eNGLECDZlcF5eHu3cuZPWrVtHjx8/ppycHHJxcaHU1FS6evUqbdq0ibZs2ULBwcH05s2bn86s8zPs2rVLonnvjBkz2PTFvwuGYSgoKIjc3d1p8ODBtGTJEkpOTpZ6TWJiIi1fvpxat25NBw8epPbt25O/vz9FRESw50yfPp2GDRtGM2fOJGtra7KxsaGEhAQ6c+YMNWjQoLIf6+epyN7jV/LhwwepccA9PDwqbD1Zoi+QpBN4+fJluRNYhoeHw9PTE5aWlrC1tcXBgwdZzyobGxsQETgcDpo3b469e/fizZs3AL6NQlZWVhINhSqb0qL72tra/rYMs7m5ubCyssLSpUuRmJiIgoICXL16FSYmJhKXeffu3YOGhgbk5OTQsWNHBAYGAgBiYmLg7OyMgICAX/kIZeZfP6UHvmWvOXz4sMjx06dP/1SqKXFs27ZNrF13YWEhbGxsyhSLXlZWrlyJpUuXIiAgAKampqzwr1ixAvn5+Th+/LjMNv4VjbQwz8C3Jc7vitXn6ekpNvJQcXExLCwshNblp0+fRosWLcDhcFC3bl08fPhQ5DqGYeDg4CBzyujfwb9+Sk9EtGHDBgoPDydra2vasmULbdu2jWxtbenOnTu0ffv2Cr2Xp6cnZWVlkYuLC127do1iYmIoMDCQzM3NycPDg7XKqkjS09PJ0tKSRo8eTZcvX6a4uDjS19enWbNmkZGREampqVFaWlqF31cWGjZsSO/evRNb9vnzZ1JTU6s0S0BppKWl0devX8V6zykqKtLMmTPZyEOXL18me3t7atOmDa1YsYJMTEyod+/eItdxOBzy8/MTilj0j6Uie4/fRWZmJi5evIgLFy6U27Y6Ly8Py5Ytg5GRESwtLWFoaIgFCxaIPHN8fDyWLVuGv//+G7t27Sq3kY8s7N+/X8g4p4TQ0FDUrVsXHTt2ZNNu/2oiIyNhbm4u8vz5+fmws7OTGKm3srlx44bUABcMw8DU1BTTp0+HoqIiBgwYAIZhEBwcjM2bN0u9TtJW6p/Af2JKX1Hk5eXB3Nwcp0+fZj3lGIbBpUuXYGRk9NueOy8vD/r6+iIprQBg+fLl4HA4leZAIwt3796FgYEB/P39cezYMSxZsgT6+vpl8iqsaB4+fIj58+dLLH/06BGqVasGFRUVLFiwgLUYfPjwIebOnSvxutTUVAwdOrSim1thVAl8GVi2bJnE9NNXr16VmrSgsrly5QosLS3x/Plz9lhYWBgMDAygrKyMhQsXssezsrIQEBAgNtRSZSEQCHD79m0cOHAA169f/+0x9nk8HgwMDMTGnH/+/DlUVFSgra0tYiglEAhgYGAgMaTYihUrym3X8SuoEvgyYGhoKDEpAcMwlep7zufzkZycLNWCLjY2Ft7e3jA3N4e5uTmmTp2K9+/fY8KECahTpw4r4PPmzQMRQV5eHo0bN8aWLVsqzcnkT2bPnj2YOnWq0G+Wn58PLS0tqKmp4evXr2KvO3PmDNzc3ETiz129ehXW1ta/vTOTxh/vHvsnoaKiItHllcPhUM2aNYnH41VoPDc+n09r166lq1evko6ODmVnZ5NAIKAZM2ZQr169hM5t1aoVbdiwQaSO2bNn0/79+2nhwoW0du1ayszMJHl5eVq5ciU9ffqUvLy8iIhowoQJFdbufwLu7u60c+dOMjY2JhMTE6pTpw4dP36cPn36RFeuXKF69eqJvc7W1pYUFBTI0tKS2rRpQxoaGvT06VNq2bIlHT169LcoISsaDiAluNz/yM7Oppo1a1JWVpZU54HSiImJoVOnTlFeXh51796drK2tSVFRsdz1VRRGRkZ05coVsUIPgIyNjenq1asVFkMOAI0YMYIMDAzIzc2NvW9qaiqNGTOGfHx8ZI7RtnTpUpo/fz5FRUXR69evycrKiuLj40lbW5tatWpFffv2pX379lVIu38XAOjRo0cUHR1NmZmZ1LBhQ6pbty59+fKFkpKSqHPnzmRoaCjy+xUXF9OtW7coNzeXoqKiaP78+VRYWFhqxw2A3rx5Q3l5edSyZUtKTk6mVatWUXx8PCkqKpJAICA3NzcaMmTIb429+D0yy2hFThckUVxcjFGjRsHDwwN3797Fy5cvsXHjRujp6QmtTX8XixYtwoULF8SW3bp1C9OnT6/Q+12/fl1i3rMSu31ZlxAFBQXQ0dGBlZUVXr16BSJifdVXrFgBRUVFEYeXPwk+n4+PHz9KbeO0adNYd9Xq1asL+auX/N2tWzd8/PgRe/fuhZ6eHry9vYV2EB4+fAgiErvPLo3nz5/D0NBQyM4iNzcXCxYswLRp08r+wJXEH7WGnzp1Kk6cOCFyvCRMUWZmZrnqrSiys7NhYmKC4OBgVtAYhsHNmzfB5XIrPL6em5ubWC+/EqZNm4anT5/KXN+JEydARFiyZAnMzc1RrVo1BAUFISsrC40bNy6352BlcvfuXQwePBi1atVihbd9+/bo2rUrGjRogFmzZrEKtNmzZ4OI2LV3VlYW3r17h9zcXDAMg1u3bqFBgwZsPQYGBlBTUwOXy2V3OHg8Hho0aFDmAJxmZmYSrRknTJiAx48f/8S3UHH8MQKfmZkpNbLoyZMnsXHjxjLXW9FkZ2djzpw54HK5sLOzA5fLxfTp08UK+88q8EozS928eTOCgoJkro9hGHh5eUFeXh46Ojro1KkTFBUVcfbsWdy4cQNEhCNHjvxUmysKhmGwZcsWKCgooGPHjvD398fFixdx8uRJuLu7Y8yYMZg4cSIUFBTQpEkTNhLQ9zMXcbx//x4rV65kR+Lbt29DRUVFaCttxowZqFWrlsy7GJGRkZg0aZLE8tevX5fqVPWr+GMEPjg4WGJYIOBbRpbKCA75MxQXF4v1e58/fz4MDQ1hZWUFQ0NDzJs3r1zfycSJE6Wa4np4eEg04xQIBDh8+DCsra1hZWUFc3NzbN++HQUFBYiJiUHTpk3RsGFD9O7dG0SEo0ePolOnTmjWrNlvjbAqEAhw8eJFGBoagogwefJkqTsIjx8/xuTJkzF27Fhs3boVGzduFIn+UxoHDx4EEbFelZ8+fUKNGjVkFtLLly9jy5YtEsv/JGOcP0bgr169irVr10osLygogK2tbZnr/ZVkZ2fD2NgYly9fFpryBwcHw9jYuMzfy/PnzyXa+n/69EniS8Tn8+Hm5oZVq1ax23iFhYXYu3cvLCwskJeXx8ZkCwwMZA1MXr16hSZNmkBHRwd37twRa8hTmWRkZMDAwABEhO7du0u0eahovnz5IjIz8Pf3h4qKikzXR0REYMqUKRLL379/j9GjR/90OyuCP0bgS3KmS+LQoUPYvn17mev9lfj7++PSpUtiy4KCgqRaaEliyZIl8PHxYdelDMPg3r17MDAwkDi67927V+Js6cKFC2jbti2ICLVq1UJCQgKrqFq9ejXi4+PZ8m7duv2yABUMw2DAgAHQ0NDAlStXfmlgjAsXLoCIEBMTwx47deoUiEgmZ6eSHPOSdExTpkzBgwcPKqy9P8MfI/AAMGfOHLE5shMTE6Gnp1ep9ugVgTSteYlhTnkIDg6Gg4MDLC0t2eSR0kxlzczMJAaPZBgGjRs3BhFh2LBhSE9PZwNeEhGuXr2KwsJC7Nu3D0SEw4cPw8fHB8bGxrC0tISFhQWOHz9e4QIZGhoKIsLly5crtF5ZSE1NRbVq1YS06YWFhahbty4mT54s9vwfCQsLg6mpKT58+CBUx5o1azBx4sQ/JrLPHyXwfD4fPj4+cHZ2xvnz53Hnzh0sWLAAhoaGYsM8/UnIsk6ztraWaKlXkZSm7Bs2bBjGjRsHBQUFEBHs7e2RmJgIQ0NDKCoq4sCBA+Dz+ejUqRPk5OTg5+fHWpVlZ2fD398ff//9d4W2+fLlyyCi36Y/WLx4MRQUFBAZGcke+/vvv1G7dm0wDMNaJ5Z8WrduLRK5JjIyEm5ubjA1NYWtrS2MjIwQEBDwxwg78IcJfAkfP37E5s2bsWLFCly7du2P+sKkUVkjfFkxMjKS2rGYm5ujqKgInz9/homJCYgIGhoa2LVrFxwdHVG7dm0UFRXB3NwcTk5O4HA4GDFihFAdkyZNqtBp6vXr19ksLr+Dkvx9/fv3Z7+7devWoXr16igqKhKbAlqSzolhmD82ffdv8Yf/+vUrbdy4kebMmUP79++n/Px8oXItLS2aOHEiTZ8+nbhc7h9jpVQa/fv3p6CgILFlV65c+WUZQAcMGEBXr14VWxYbG0sNGjQgJSUl0tTUpODgYEpJSSFzc3MaO3YsdezYkdLT02nPnj3UuHFjOnbsGDVu3FjE0nHKlCki6ZJ/hg4dOpCSkhIbgrssvH37lqZPn07W1tY0bNgwunz5MjEMU6Y6lJWVaevWrXTv3j3y9fUlPp9PqamppKGhQUpKSnT//n26du0axcfHk62tLRF9SxktDg6H80dYhv4UFdV7rFq1CjY2Njh//jyeP3+O/fv3w8DAQKIF2z+JEi39pUuXhLT0QUFB5dLSl5cSbfeTJ0+Ejr979w76+voSQ2W3adMG48aNQ58+fdCkSRM2co+FhQXk5OTg4uKCd+/esedX5FbT69evweFwypztNiAgAA4ODggLCwPDMPjy5QuWLFkCOzu7cu0yrF69GhwOB7NmzULTpk3h6OgoVB4SEoLIyEjs2rXrlyzPKppfOqU/fPgwZsyYITLtLSoqgp2dHV68eCFjs/9cvt+Ht7a2hqGhIebOnfvLPQhTUlLYGHheXl6wt7fHsGHDhAT2R3r27AlXV1dERUVBQUEBvXv3BvDNg2zTpk3Q0tJC06ZNkZaWhqSkJLi6ulZYe319fVGvXr0yCemzZ8/g4uIidhl16dKlMocEL8HV1RVEBGVlZaxbtw4uLi6wtLRE+/btQUQwNDQsV71/Ar9M4BmGgZGRkYhLYQmxsbEYM2aMLLf5x/C7dQ8lZr8rVqxAYGBgqWmfHBwcWCXewIEDoaqqKuTbHRcXh9q1a6NHjx6YNGkSrl27VmFt1dXVLfNe9dixY6UGIDU1NUVeXl6Z28IwDN6/fw8XFxfMnTuXVc61a9eOXb9XRmzCX8EvW8OnpqZSo0aNSFlZWWx5q1atKCkp6Wdv80fxO3UPMTExZGpqSleuXKGWLVtSdnY22dra0s6dOyVec+zYMQoMDKS7d+/SnTt3KD8/n6ytrdm1uo6ODl2+fJnevXsnsZ60tDQKDw+nT58+ydxWhmEoKiqKunXrVqZn/Pz5M7Vu3VpieZcuXejt27dlqpPo2+9WonNZuHAhG1Z6y5Yt7Dnr1q0rc73/KH6290hJScHw4cOlXm9mZibLbaooha9fv4pNeMAwDCZPnlyqvfzXr19haGgIeXl5KCgoQEFBAQMHDsSQIUPA5XKxZMkScLlcqKiosOaonz9/hqurKwYPHoy5c+di5MiRsLa2Rnh4eKntzc7OZs17y4K5ublUs9vx48fj7du3MteXlZXF2iUYGRmJ1bRPmDABRIQePXqUqa1/Cr90Sm9sbCxxjRYdHQ0PDw9ZblNFKSxatAhXr14VW1ZcXCxTZJ7i4mIYGxsLeagZGhpi1KhRePXqFQoKCjBw4EDUrl0boaGh0NfXF8mImpKSAmNj41J1M58+fSqX0c26deskmt8WFBSUmio7Pz8fAQEBsLCwgLa2NuTk5NgQ33JycmjRogXmzZuHuLg49hoej4e0tLQ/xja+rPxSpd3x48cxZcoUMAyDgoICdn1VUFAAa2trIaOHKsqPubm5VA2yt7e31P3u9PR0fP78GcOHD4ecnBxsbW3Z9X9sbCyMjY3x5MkTpKeno127dqhfvz7OnTsntq7ExEQ4OTlJbe+9e/dARDLNBr4nMzMT+vr6bNKNEoqLi+Hm5oaLFy9KvPbFixfQ1NQUu7/u4+ODNm3awN3dHTVq1IC6ujp8fX3h7OyMNWvWgMfjwcTEpExt/VP45YY3GzZsgJGREYgIjRs3ZgNc/M4Ipv82DAwMcPv2bYka+RkzZojtXG/cuAFLS0s4OzvDxsYGjRs3xtq1a0U6j/T0dBgbG4NhGLx48QIcDkeqn4O9vb3UWHy3bt0CEZXLZ/zTp09wcHCAu7s7tmzZgnnz5oHL5UoNy3316lUhAZeXl2d96el/PgZ169aFg4MDnj9/DhsbGzRr1gx9+/aFnJwcunTpUury9E/lt1jaffjwAc2bN4ecnBz2798PJycnNG3aVKSnrqJsREZGwsrKCm3btsWUKVMwZswYWFlZ4eXLl+w5DMPA0NBQZLfk7NmzcHZ2Zn+7iRMnIjIyElu2bBGbHsvX15cdkWvXro327dtL1IiPHTtWqu1/cXExNDU14eDgUNZHZnn//j3Onz+PgwcPYufOnZg9ezYWL16MWbNmYerUqULxCr5fqri6urL2CoWFhTh8+DAWLlwIR0dHKCkpscsZMzMzzJo1C2fOnIGysjJq1qz5y7z5KpLfalpbsr7q3LkziAhNmjRhTRbLomyp4ptRDZfLRXJyMmJiYmBra4vi4mJ8+fIFXC6X/T73798vFLIa+P+Qzd8rqb63+584caJIZJ2dO3ey0/j+/fuDiMQG4yjpYEozNS1x1ilPp19cXIz58+ejUaNGICLIycmhSZMmqF+/PvtOzZgxgz2fz+cjNja21AAXoaGh6NatG1q2bAkdHR0QEfT19fHw4UPY2dmxJslDhgyRat/wJ/FH2NKXZISZNGmS0FSrCtnx8PAQUpqdPn0axsbGOH/+PO7evQsHBwd4eXlh9OjRImGsQkJCsGzZMqFj48ePZx2WIiMjRbzGvg+v1atXLxCRkHKrhPPnz0uMy/c9WVlZkJeXx7p162R5XCG2bdsGIoKnpyeuX78utHyIjY1FjRo1yuWaXML79+9x/fp1NGvWDKqqqujUqRPWrl2L48ePY9asWez7amxsLDU1eUXA5/NRUFAg8VNaiLI/QuC/JyUlBaamptDU1IS+vj5u376NvLw8xMbG4vPnz+Wu99+OOCVSamoq1qxZg1GjRqFp06Z49uyZ2GsPHTokkqf98ePHmDhxIoBv22bOzs5sWVZWFqsB5/P57As/ffp09jfKycnB5s2bYW1tLbP13PDhw6GiooJ79+7h/v37cHR0hLm5OSwsLGBnZ4cbN26IvW7MmDHo1q2byPGioiI0b94cbdu2RVpamkxtkEZKSgqWLVvGPu+OHTvw8OFDLFiwAI6OjuzxQ4cOIS8vD+/evWOXOZ8+fUJ8fHy5M+UyDIOkpCRER0eX+klKSpK4O/HHCTzwrUf9fqTv1q0bfH19MXz4cFhZWSE0NPSn6v+3wTCM1HiAwLcpuqSXICwsTGzE3SlTpmDZsmW4du0aO0J++PABZmZmQlFdXV1dUbt2bRw8eBDOzs6wsrKCra0tDh06VCavsZKtvpo1a8LJyUmog09JScGoUaPE5tDT09MTG/7s5MmTICJERETI3IbS2L9/v1jN/vefu3fvSiyrX78+Ro8eLeLnUBolwp6amor8/Hyxo3t+fj5SU1NZoRfHHynwHz58ABGhWrVqICIhZU56ejosLS3/mAgifwrGxsYSzZYLCwthbGws8doSG4mUlBSR43v37kX9+vVhZGQEExMTuLm5iWj409LS0KxZM7Rs2RIXL178KZPip0+fgoiwadMmkTKBQABTU1NWAccwDI4dOwYOhyM2cMqaNWvKrf2Pi4vDzJkzYWlpCVtbW+zduxf5+flIT0/HkSNHcO3aNTx9+hQREREICgrCjRs3EBsbC4FAgC9fvkBLSwtEhA4dOsDX1xd37txBUFAQvLy82J2BRo0a4ePHj6W2hc/ns8IuCyVCL256/9sEns/n49SpU2wkF2dnZ6HQRioqKuy67MepfGZmptRwWP8GMjIy8OHDB5mnwwEBARL9s9evX49du3ZJvb4krvqjR4/YY58+fcLo0aOxbds28Pl8qYIcExODgQMHgogwYMCAci+/AgMDMXDgQCgrK8PV1RUBAQFs6Cg+n48tW7bA09MTU6dORceOHVnb/x+/p5SUFEycOBG1atWS2BFK4uzZs7CwsMD9+/fBMAzy8vKwe/duGBgY4OnTp6zh0Y/k5ORg1apVOHToEMLCwlC3bl3IycmJxNKPjo5mw4jJy8tj586dAL4NZk+fPkVUVJSQDBUUFCA6OrpUX4gS8vPzER0dLbaNv0Xgi4uL4eTkhNWrV7M/ZnJyMmbNmoUJEyawMcLu3r0rsY4xY8YIhRP6txAVFQUnJyc4ODhg4sSJMDU1hbe3d6nfqUAggKenJ/z8/NhY9omJiZg5cybGjh0rkytnfHw8/v77b5iamsLS0hJDhw6V+hv8SIkrcMOGDdG2bVvs3LmzzIK/dOlS3LhxA7Nnz0b37t0hJycHXV1d2NjYsIMAEUFLS0uqcY2GhgaIqFSjnx9JSkqCqamp2KXI94kuSsxrv7cO3L17t9hp/NixY5GQkABLS0vUqlULf/31l1Cc/ebNm6OwsBD169cXuq5EgVki8LJ2/tLO/y0Cv2zZMhEl0fdlhw8fLjVM07x588q8DvrTiYqKgqGhocg07/bt2zA2Ni7V84thGFy/fh2urq6wtLSEq6trhUYM4vP5uHr1KgICAhAcHCxRIxwZGYlBgwaxpqq1atXCxo0bZWrHgQMHsG/fPvbvly9folWrVujbty9WrFiBuXPnYuHChaXWVSI0Zc1YtGjRIolegP7+/mIFumSJER0dLeRRJ+6jrq6OAQMGYP78+ZgzZw66du2Kv//+GyNGjBA5tyRM9j9a4EtCPUkacXJzc2FhYQE3NzckJCRIrMfe3r5CNK9/Eo6OjhJjuh0+fBibN2/+xS36f27cuAEDAwMsW7YMp0+fxooVK2BgYIDg4GCJ16SkpODYsWNwd3cHEWHQoEFCSwZxlKTQEteZCAQCmJuby/S7a2trl8sazs7OTqom3dvbG126dEHLli0xZswYLF68WGjJwOPx8Pr1a6EO6fDhwyAizJs3T6iuoKAg1irwy5cv2L59O0xNTdGvXz+cOHGCnWX8owU+KysLw4YNEzqWkJCAGTNmwMzMDBYWFtDR0cGBAwfg5eUlto7w8HCRGGv/dNLT00Wiq3xPSYy538Hz589hZWUlMsMoKCiAnZ0dwsLCSq3j8uXLaNOmDTsV3rVrF2JiYsQK9pEjRzB8+HAhJWJ6ejo8PT3Z9W5p1K5dGz4+PjKd+z1ubm5SlyErV65ESEhImevNyMgQ6gTi4uJgbm4uVr9w+vRpoQi6/2iBLyoqgoWFBfv3kydPYGRkhAcPHoBhGDAMg759+8LOzg5DhgyBj48Pu8VQXFyMEydOgMvlimiU/+m8e/eu1HxmpS1zKovhw4eLNaoBvukJhgwZIlM9PB4P586dg6mpKTgcDogI2tra2LJli8jLeevWLdjY2GDAgAEYNGgQrK2tZfa3uH//PjgcTqmKSnFcvHgRy5cvF1tWYjVY3r307/Hz85O602RmZsZm0PkdSrsKC2KppKREtWvXpri4OGIYhqZNm0bHjx+nPn36EIfDofv379OgQYPo2LFjlJaWRnp6euTr60tWVlZka2tLSUlJdObMGapbt25FNemPQFNTU2qwhoyMjArNO18WUlNTSUdHR2xZo0aNKDs7m1B6NnFSUFAga2trCgoKopSUFAoJCaH+/fvTpEmTqG7dumRubk579uyhiIgIunnzJt29e5fu3r1Lt2/fpujoaIqNjSWBQCD1Hl++fKF+/foRAHr27BlNnjyZ9u/fT7t37yYul0tWVlZkampKw4YNo5MnT4q029TUlO7du0d37twROs4wDE2dOpWGDBlSIb9DZGQk9e7dW2J537596eXLl0REbEDMH4O9SqLkvJ8KpClLzyJr7/Hq1SsYGRnh+PHjWLJkCXv87du30NfXZwM3nDx58reuW381EyZMkGiauWDBApw5c+bXNuh/lDazsLa2/qmss7GxsVi2bBn09fXZkV9VVRWTJ0/G/fv3cenSJbi6uoLD4cDQ0FBqQpK4uDgoKyuD6Jtfe4m2noigq6sLLpcLAwMDdOrUCUQECwsLEbuCnJwceHh4wM7ODqtXr8a8efNgYGAg1uinvFhaWkoN3jFz5kwh/4V/vOHNixcvoKurCyMjI/j7+2Po0KFwcnIS2rP88OGDxHX8v5GMjAwYGRnh2LFj7MuQkZGBhQsXYvz48b8tRp6VlZXENEq5ubkVGqkoISEBd+/eFetOe+PGDdSoUQN9+/aV6viSl5eHhIQE9pzc3Fyx0+Hz58+jYcOGEq3xUlNTcePGDYSGhlZ4Gu3169dL9LYTCAQwMDAQuue/wrT28OHDWLVqFR4/fiwSjgn4thabP3++THX9W8jJycGGDRvYvXBbW1ucOnXqtwbEvHDhAnx8fMS2wc/PDydOnPhlbQkLC4OGhgY6d+4sYtBSHm7evAkiqtCAnLKQmZkJPT09kZ0ohmEwc+ZMifqHf7TzTE5ODkxMTCS+zCNGjPhtmUiqEGbVqlVwdHTEnTt38OXLF9y/fx/Ozs5YvHjxL2/LixcvoK2tjdq1a2PevHkICAhAeHh4uTrFK1eugIhw8+bNim9oKbx79w5mZmbw9fXFqVOnsGPHDpiamkpNm/6zyCqjHKB0rUx2djbVrFmTsrKySF1dXSbdwPbt2+nVq1e0cuVKVhnCMAxt3ryZ4uLiaO3atWVTNlRRacTFxdG+ffvo48eP1LhxYxo5ciQ1b978t7QlLS2NZs2aRYcPH6bc3FwiItLX12eVu82aNaP4+HhSVlYmTU1NifU4OztTZGQkPX/+nOTl5X9V84V4+vQpRUREUM2aNcnU1JSqV69eafeSVUYrTeCJvoVHDggIoObNm5OSkhJFR0eTtbU1eXt7/2PSTFXx++DxeHThwgVauHAhxcbGUnFxMenq6lJERAQREYWFhVGPHj3EXtu5c2fq06cPbdu27Vc2+bfxRwg8EREA+vjxI/H5fNLR0fltvW0V/2zy8/PpyJEjFBYWxsbOd3Z2psOHD4s9v3///qStrS2xvCLIzMyk5ORkat269W8fwCpF4D9+/Fhmga+iioqmJPnG8+fPac2aNeTu7i5UzufzqXHjxmRtbU27du2qlDa8fv2aLCws6OvXrzRixAhat24drV+/nvr370+9evWqlHtKIzs7m5o0aVIxAl9YWEjNmjWj5OTkCm1kFVVUUXFoamrShw8fSEVFReI5Mgk80TehLy4urrDGVVFFFRWLkpKSVGEnKoPAV1FFFf98KsyWvooqqvjzqRL4Kqr4D1El8FVU8R+iSuCrqOI/RJXAV1HFf4gqga+iiv8QVQJfRRX/If4PjTRcS0ys2gcAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.placements(placement_tasks[0], X_new_df, data_processor,\n", + " crs=ccrs.PlateCarree())" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T14:57:36.924652421Z", + "start_time": "2023-11-02T14:57:29.219220122Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Averaging acquisition function over dims for plotting: ['time']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAACjCAYAAABxLiOCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVdf2fzOTMpPee0gCgUAgtASQ3pv0Ir0I0gQpCgiIUqQIyCNFmiLSlN6kivTee0uAkARCQnrvmcz3R9zbM4DteXy/R9937uuaK2VmztnnnL32Wnute62lMhgMBkwwwQQTTDDBBBNMMMGEX4X6vz0AE0wwwQQTTDDBBBNM+LvDZDSbYIIJJphgggkmmGDC78BkNJtgggkmmGCCCSaYYMLvwGQ0m2CCCSaYYIIJJphgwu/AZDSbYIIJJphgggkmmGDC78BkNJtgggkmmGCCCSaYYMLvwGQ0m2CCCSaYYIIJJphgwu/AZDSbYIIJJphgggkmmGDC78BkNJtgggkmmGCCCSaYYMLvwGQ0K7Bu3TpUKhXR0dEAbNq0icWLF/9Xx/R741CpVMyYMeP/63j+DK5fv06LFi2wsbHBwcGBrl278uTJk//2sEz4PwSTXP+1OHv2LEOGDCE0NBRLS0uje2uCCf+/YJLrvw56vZ4vvviCNm3a4OPjg5WVFZUqVWLy5Mmkp6f/t4f3t4LK1Eb7FyQlJREZGUmNGjWwtLSkffv23L1797+uEH5rHBcvXsTHxwcfH5///wP7HYSHh1O7dm2qV6/O5MmTyc/PZ9q0aaSlpXHz5k1cXV3/20M04f8ATHL912LmzJmsXbuWGjVqkJ6ezsmTJ4mKisLf3/+/PTQT/g/BJNd/HbKzs/Hy8qJ37960bNkSFxcXrl+/zuzZs/H09OTq1avodLr/9jD/FjD7bw/g7wRXV9f/L4ZcXl7eXzYB33jjjb/kOP8TmDZtGpaWluzfvx87OzsAQkNDKV++PAsXLmT+/Pn/5RGa8H8BJrn+a/HJJ58wffp0ABYuXMjJkyf/uwMy4f8kTHL910Gn0xEVFYWzs7P8X5MmTShTpgxvvfUWO3fupF+/fv/FEf59YKJnKKAM9zRp0oQDBw4QExODSqWSL4HCwkJmz55NxYoVsbS0xNXVlUGDBpGUlGR0TH9/f9q3b8+uXbuoUaMGWq2WmTNnArB8+XIaNWqEm5sb1tbWhISEsGDBAoqKiuT3f28crwv33L17l06dOuHo6IhWq6V69eqsX7/e6DMnT55EpVKxefNmpk6dipeXF3Z2drRo0YKIiIj/+F4WFxezf/9+unXrJg1mAD8/P5o2bcru3bv/43OYYMIfgUmu/zq5BlCrTWrDhP8+THL918m1RqMxMpgFateuDcCzZ8/+43P8b4HJ0/wrWLFiBcOGDSMyMvIVA6+kpIROnTpx5swZPvzwQ+rVq0dMTAzTp0+nSZMmr4Qyrl+/zoMHD/j4448JCAjA2toagMjISPr06UNAQAAWFhbcunWLOXPmEB4ezrfffvu743gdIiIiqFevHm5ubixduhRnZ2e+++473n77bRISEvjwww+NPv/RRx9Rv359vvnmGzIzM5k0aRIdOnTgwYMHaDQaeb0lJSW/e26VSiW/ExkZSV5eHlWrVn3lc1WrVuXIkSPk5+ej1Wp/97gmmPBXwSTX/5lcm2DC3xEmuf6fkevjx48DULly5d893v8ZGEyQWLt2rQEwREVFGQwGg6Fdu3YGPz+/Vz63efNmA2DYuXOn0f+vXLliAAwrVqyQ//Pz8zNoNBpDRETEb55br9cbioqKDBs2bDBoNBpDamqqfO/XxmEwGAyAYfr06fLvXr16GSwtLQ1Pnz41+lzbtm0NVlZWhvT0dIPBYDCcOHHCABjefPNNo89t27bNABguXLgg/zd9+nQD8Lsv5RjPnTtnAAybN29+Zcxz5841AIa4uLjfvCcmmPBXwCTXf51cv4zPP//c6N6aYML/L5jk+n9Org0GgyE2Ntbg7u5uCAsLM+j1+t/87P8lmDzN/wb279+Pg4MDHTp0oLi4WP6/evXqeHh4cPLkSd599135/6pVq1KhQoVXjnPjxg2mT5/OuXPnSE1NNXrv4cOH1KlT50+P7fjx4zRv3hxfX1+j/7/99tscOnSICxcu0KZNG/n/jh07Gn1OeIZjYmIk/2rYsGG0b9/+d89taWn5yv+Uoak/854JJvz/hkmuX4/XybUJJvxTYJLr1+O35Do1NZU333wTg8HA1q1bTZQsBUxG87+BhIQE0tPTsbCweO37ycnJRn97enq+8pmnT5/SsGFDgoKCWLJkCf7+/mi1Wi5fvsyoUaPIy8v7t8aWkpLy2vN5eXnJ95V4mcckBEl5fg8PD9zc3H733EojWBz35fNBqUCqVCocHBx+95gmmPD/Cya5fj1Mm1sT/skwyfXr8WtynZaWRsuWLXn+/DnHjx+nbNmyv3us/0swGc3/BlxcXHB2dubHH3987fu2trZGf79ucu7Zs4ecnBx27dqFn5+f/P/Nmzf/o7E5OzsTHx//yv/j4uKA0rH/WXz66acyGeK34OfnJ8vslCtXDp1Ox507d1753J07dwgMDDTxmU34W8Ek16+HUq5NMOGfBpNcvx6vk+u0tDRatGhBVFQUx44de21O0v91mIzm34ClpeVrd5Dt27dny5Yt6PX6fyskA78IpjJEYjAYWL169R8ex+vQvHlzdu/eTVxcnNytAmzYsAErK6t/q+TNvxPuMTMzo0OHDuzatYsFCxbIhenp06ecOHGC999//0+PwwQT/gqY5LoUJnqGCf+bYJLrUvy7ci0M5idPnnDkyBFq1Kjxp8/9fwEmo/k3EBISwq5du1i5ciWhoaGo1WrCwsLo1asX33//PW+++SZjx46ldu3amJubExsby4kTJ+jUqRNdunT5zWO3bNkSCwsLevfuzYcffkh+fj4rV64kLS3tD4/jdZg+fTr79++nadOmTJs2DScnJ77//nsOHDjAggULsLe3/9P3wcvLy0ig/yhmzpxJrVq1aN++vVFzExcXF8aPH/+nj2eCCX8FTHJdin9XrpOSkjh16hSAjCQdOnRI1s1t3Ljxnz6mCSb8pzDJdSn+HbnOy8ujdevW3Lhxg8WLF1NcXMzFixfl+66urpQrV+5Pj+V/Jf67eYh/L7ycjZuammro3r27wcHBwaBSqQzK21VUVGRYuHChoVq1agatVmuwsbExVKxY0TB8+HDDo0eP5Of8/PwM7dq1e+359u3bJ7/v7e1tmDhxouHQoUMGwHDixAn5ud8aBy9l4xoMBsOdO3cMHTp0MNjb2xssLCwM1apVM6xdu9boMyIbd/v27Ub/j4qKMgCvfP7fxdWrVw3Nmzc3WFlZGezs7AydO3c2PH78+C85tgkm/BGY5PqvlWtxjte9Gjdu/B8f3wQT/ghMcv3XybU4zq+9Bg4c+B8d/38TTG20TTDBBBNMMMEEE0ww4XdgqiNiggkmmGCCCSaYYIIJvwOT0WyCCSaYYIIJJphgggm/A5PRbIIJJphgggkmmGCCCb8Dk9FsggkmmGCCCSaYYIIJvwOT0WyCCSaYYIIJJphgggm/A5PRbIIJJphgggkmmGCCCb+DP9zcJD8/n8LCwv/JsZhgwv8qWFhY/O1bhZvk2gQT/hxMcm2CCf878Udk+w8Zzfn5+QQEBPDixYu/ZGAmmPB/AR4eHkRFRf1tFaxJrk0w4c/DJNcmmPC/E39Etv+Q0VxYWMiLFy949uwZdnZ2f9kA/x3o9XrWr1/P/v37MTMzo7CwkOrVq/Pee+/h7OxM165d2b17969+v0uXLr/5/r+DGTNmsGjRIvm3RqPBzMwMc3NzoLRHfU5Ozq9+38LCgpCQEIYNG0bHjh2xsrKS7w0bNoy9e/fi6uqKRqPB2dmZ4OBggoODqVSpEsHBwdjZ2dGtWzfWrVuHq6ur0bFv3rzJ4sWLWbduHQBr165l9+7dNGzYEFtbWy5evIiVlRXz5s0jKyuLa9euUb58eQIDA9FoNGRmZpKWloaFhQXe3t7k5ORw/PhxNm/ezN27d0lJSUGv16PRaNBoNFhbW+Pq6oqjoyM6nQ6dToednR2JiYmkpKSQmppKXl4eer0etVpNSUkJBoMBBwcHnJycePz4MbVr18bV1VW2Ok1ISMDW1haNRgNAz549CQsLw9bWFmtra6ysrFCpVL/7nHbv3k1ycjJDhw597furVq3C09OTTp068fz5cx4+fIi9vT2BgYGMGDGCTZs2yc+ePXuWixcvMmHCBAoKCujTpw87d+6U7z958oQaNWpQWFj4t1Wufye5Bjhw4AAbNmzAYDBQXFyMr68vY8aMoVy5cnTv3p3NmzdLmXoZQ4cOZc6cObi5uf1l49m2bZvRXNFoNJibm2Nubo6ZmRkFBQXk5eXxa/2hVCoVQUFBDBo0iB49euDk5CTf+/LLL5k2bRre3t6YmZlha2tLpUqVpExXqlQJX19f+vXrx5QpU6hSpYrRsV+8eMGQIUPYvXs35ubmHDlyhC+//JLQ0FA8PT25desWaWlpzJs3Dzs7O86cOYOPjw8VK1ZEq9WSnZ1NWloaRUVFlC1blqKiIq5evcq3337LrVu3ePHiBYWFhajVainXzs7OODk5YW1tjYWFBS4uLiQlJZGamkpKSgo5OTkUFxdLWSwpKcHGxgZnZ2cSEhLw8/PDz88PnU5HQkIC8fHxaDQaXFxcePLkCYMHD6ZRo0ZSrq2trVGrf59BGBERwapVq4zWYCXOnDnD2bNnmTJlCqmpqdy5cwcLCwtCQ0Pp0aMHu3btkudJTU1l4sSJrFmzBoCuXbuybds2zMxKVWV6ejp+fn4muf4TuHLlCitXriQzMxMAW1tbRo4cSa1atRgzZgzjx4/Hz8/vtd/94osvqFmzJk2aNPnLxnPv3j3q1atn9D8zMzPMzMzQaDTo9XoKCwspKSn51WP4+PgwcOBAevbsaTT2Q4cO0a9fP9zd3TE3N0en0xEUFGQk1wEBAUyfPp26devSvn17o+Pm5eXRp08fli9fjpeXF/fu3WPatGkEBARQoUIFoqKiCA8PZ+rUqVSpUoWTJ0/i4OBApUqVsLe3Jy8vj9TUVLKzsylfvjwGg4Hw8HC++eYbrly5QmxsLDk5OajVatRqNba2tjg4OODs7IytrS3m5ua4ubmRlpYm9XVWVhYFBQVSRkpKStBqtbi6upKTk4OZmRlVq1bF2tqatLQ0nj17RnFxMWXKlOHq1asMHz6cxo0by7XD2tpaytNvITc3l/79+xvpVSUSEhKYMmUK3377LXl5eVy7do2SkhJq1KjB2LFj+fzzz3F2dpafV9p+48aNY/To0UatwTt37syJEyd+V7b/MD0DwM7O7r8qhHq9nrfffpt69epx4MABLC0tMRgMnDlzhiFDhrBu3TocHBx+c4zW1tZ/+TXMmTOHrKwsvvnmG8qWLUvZsmXRaDQYDAZUKhXFxcUUFRVRUlKCXq/H3NwcS0tLaWzm5eURHh7O8OHDGT58OPXr1+fLL78kODiYLVu2/O75N23aRP/+/SlXrhwGg4GkpCR27drFu+++i6OjI9nZ2ZQrVw5fX1/eeOMNTpw4YWRkrlu3jrCwMJKSkuRCodFopEErsHfvXgIDA/nwww9JT08nODiYypUro9PpKCoqori4mJKSErKysrhw4QIFBQXY2Njw/PlzrK2tOXToEOvXryciIoKYmBi5iAKEhYXRt29fPv/8c3x9fXnw4AF37twhJSUFc3NzBg4ciI+PDzNmzODYsWNG169SqQgODqZr16506dKF6tWrG13fzZs3OXfuHCqVip07dzJs2DBsbW2NjpGZmcmhQ4fYsGEDQ4cOxdLSktDQUBISEpg9ezZ6vZ7ExEQCAwOB0rno4+ODnZ0dGzZsoFu3bkbz6teUwN8R/225Bvj000/Jyclhy5Yt2NvbA3D//n3ef/995s6di6WlpdEC+DJ8fHzQ6/V/6XUMHjyYtLQ0PvzwQ9zc3GjWrJmR0V5UVERhYSF5eXkUFhai1+uxsLCQRn9RURHR0dFMmjSJSZMm4eXlxaZNmwgNDWXq1KlMnTr1N89/+/Zt/P39pYJPTU3l7NmzdO/eHQsLC/R6PX5+flSsWBEHBwcOHz6MpaWl/P758+dp1aoVKSkpMlSvUqlQq9Xo9Xr5uX79+rFkyRImT57MvXv3CAgIoEqVKlhZWVFcXExxcTEABQUF3Lp1i8zMTFQqFdevX6datWpcuHCBNWvWcOPGDZ48eUJmZqZcNzw8PFi0aBGTJk2ievXqhIeHS6Mc4M0336Rly5aMHj2aDz744JV74OfnR6dOnejatSsNGjSQG2eAqKgoDh8+TElJCVFRUaSkpBAQEGD0fb1ez6pVq/jiiy+YMmUKcXFxNGrUiNzcXBYuXIiNjQ2nTp2iU6dO8h57eHhgZ2fHjRs3CAoKMtrs/JPwd5Dr7du3s3v3bpYuXYqXlxcAz58/Z+LEiaSlpZGTk0P58uV/1Ujx9/ensLDwL72OunXrsmfPHrp3746trS3lypWTm0MonTNCpktKSigpKUGn06FSqSgqKsLc3Jz09HTmzJnDnDlzUKlU7Nq1i4YNG9KzZ0969uz5m+fPysoiKiqKL7/8Uv5979493nrrLeLj49FqtVSrVo3g4GAMBgNHjhwxcoY9f/6chg0bkpiYaOSMMzMzk7IKULt2bc6fP8+8efPYt28fHh4eeHt7Y2VlhV6vp7i4GLVaTWFhIeHh4aSmpgLw3Xff0bdvXx48eMA333zD2bNnefjwIZmZmUYbifnz5/P555/TqFEjHj9+zOnTp4mNjaWkpISaNWvSokUL9uzZw0cfffTKPbCzs6Nr16507dqVli1bGj3/5ORk9u3bR3Z2Ng4ODly9epVmzZq9cozp06czfPhwvvzyS06fPk2zZs3QaDSsWrUKrVbLxo0bmTZtmvy8lZUVdnZ2pKamkpiYSI0aNYyO5+jo+JvPTd7nP/Spvwm2b99O9erVeffdd+X/VCoVjRo1YunSpUybNo2MjAxpjL6MgoKC/xGe19WrV9m1axfW1tbS0yUmJSCNZ3Nzc6ysrNBqtdLb8/z5c54+fUpaWpo83rlz56hZsyYALVq0YMKECURGRhIfH0/Tpk1p3LgxGo2G+Ph4Nm7cyNGjR1m+fDlTpkxh+fLlZGVlSaMxLS0NnU5Heno6ycnJfPzxx/K958+fEx4ezvz586U3d9myZURGRhITE4NarebRo0ecPXsWKFXCly5dIj8/n6VLl8qFxWAwkJ2dTUxMDCkpKSQmJlJQUECXLl344osvSE9Pp2bNmkRGRhIQEEBQUBBubm4kJSVx+/ZtAPr06cM777xDfn4+GRkZBAYG0q9fP4KCgoiIiGDlypXSIDA3N6dNmzZotVqeP39OUlIS9+7d4969e8yaNQuVSkVycjJFRUUMHz4cf39/2rRpQ15eHjY2NlSuXJn169dL78Xp06eZM2cOo0aNolu3bixcuJBGjRrJ51FYWMhbb71Ft27d2LBhA48fP+bGjRucPXsWV1dXtm3bxo4dO4zmxKVLl/7SOfa/Gffu3ePJkycyGiIgNo09e/bE0dGRhIQE3N3dX3uM8PBwfH19/9JxRUdHs3r1aszNzQkODkar1RpFR8zMzFCr1Wi1WkpKSqTizcnJ4dmzZ0RHR5OcnCyPFxcXJ+dcxYoVWbFiBU+ePCEmJoZq1arRvn17LC0tyczM5LvvvuPcuXN07NiRtWvXMmnSJJKSkuSxioqKALC0tOTatWtMnTpVykdGRob07sXHxwMwa9YskpOTiY2NRa/Xk5aWxqlTp4BSw/bIkSPcunWLDz/8ELVaTX5+PiUlJRQWFhIXF0dmZibJyclkZmZSp04dli9fTvny5WnSpAmnT5/GycmJihUrEhISQnp6Onfv3gVg3rx5DB06lBcvXpCRkUG5cuVo3749FStWJCMjg6VLlxptgt944w2cnZ1lZOr58+csXbqUpUuXAnDnzh0CAwMZNWoUxcXFdO3aFXNzc7y8vKhTpw5ffPEFvXr1wszMjDt37vDpp5/SqVMnRowYwcCBAxkwYIA810cffcRHH33Ehx9+iI2NDXq9ntu3b3PixAlOnz7NjBkz+P77743mRGJi4l8yt/4vIDs7m6+//ppDhw4ZeRa9vb3ZsGEDbdq0oXbt2ly6dInGjRu/9hiXL19m9OjRf+m4MjIyWLRoEXq9HkdHRywsLORmV6/Xo1Kp0Ol0WFhYyO8IB11GRgbx8fHSwIRS/d6lSxcA6RyKjo7myZMn+Pr60q1bN+zt7SksLGT79u1cvHiRqlWrcvr0afr378/Tp0+NxpeTk4OFhQU3b96kVatW0mAuLCzk3LlznDhxgqioKAA2btzIlStXiIiIoKCggJKSEk6fPg2UGoERERHs3buXjh074ujoSG5urnTeJSUlkZeXR0FBAenp6ZQtW5alS5fStm1bBg8ezNq1a9HpdJQvX54KFSqQkZHBo0ePKCkpYc6cOXzyySc8fPiQqKgoypYtS4MGDQgKCkKtVrNy5UpGjRoljezg4GC8vLxITEwkPT2d1NRU1q1bJ9f8H374gQ4dOjBjxgzu3LlDjx498Pb25tmzZ/Ts2ZOxY8fywQcfYGVlxbNnz/j888+xsbFh8+bNeHt7c+jQIekJnzBhAps3b+aTTz7B39+fihUrcvHiRaKjozl16hSfffYZc+fONbrner3eaK3+LagMvxZbVCAzMxN7e3syMjL+qzvXzp07s3HjRuklLCwsZNeuXRw9ehSVSsWtW7fo2LEjvr6+DBw48JXvL1u2DEtLy18Nz/87uHLlCs2bN8fBwYGQkBAKCwvRaDTSQ6NSqTAYDEZhxvj4eJKTk40eklj4/fz8cHd35/Lly8TExMj31Wo1Op2OnJwcXFxcaNCgAQcOHECtVlNQUIC1tTVBQUFcv36d999/H0dHR44fP8758+dlmLV///5GhkmHDh3Yv3+/0fV88sknNG3alNzcXHJzczly5AibN28mOzsba2trWrZsyQ8//MCJEyeIjIwkPz+fmzdvSuqD2CXPnDmT1q1bk5mZSf369UlKSuL999/H1dWVlStXEhQURMOGDdm2bRvHjx8HoHLlymi1WpYuXYqlpaV8lZSU8OjRI2bOnMnVq1cJDAzkyZMnvxk++/rrr9m6dStLly4lODjY6L2VK1eydu1aXF1dMRgMlC1blpiYGOLj4wkICECr1ZKbm8vcuXMJCgoCSsNmtWrVIiUlBWdnZzw9Pbl06RK2trYsXLiQ3r17k5+fz/bt2zl37hw//vgjMTEx/3WZ+S38XeT6gw8+YODAgVSrVg0oDf8dPXqU3bt3k5+fz/Pnz2nTpg1xcXEsXLjwle+fOnWKnTt3SsPqr0BsbCwNGzYkMzOTpk2bYm1tLRWnmHfip8FgID8/n4cPH5KWlkZ0dLQ8jkajwd3dHV9fX9zc3IiPj+fq1atG57K2tiYnJwdra2vatGnDkSNHyM3NlRSmN954g3PnztGtWzdCQ0M5d+4cp06dIjs7G4DQ0FCuXLkiN8MfffQRn332mdE5QkNDmThxItnZ2RQUFHDv3j2+//57MjIy5Kbg1q1brFixguTkZHnfL1y4wMOHDzEzM6NChQqMHz+et99+G4PBQLdu3Th8+DADBgygfPny7NixAxsbG+rVq8edO3f44YcfMBgMuLm54ezszOzZs3FycsLS0lJuNOLj41m+fDk//vgj5cuXJzIy8jflesKECbx48YI+ffrQtm1bo/dOnDjB6NGjKVOmjLzvmZmZxMXFoVarCQ4OJiYmhsmTJ0sjzWAwULduXZ4/f46lpSUBAQHcunULgOHDhzNr1iz0ej0//vgjhw8f5sSJE9y9e/e/LjO/hb+LXK9duxYzMzP69+8v/3ft2jW+//57UlJSyM/PJzg4mKtXr/LDDz+8QsWJiYlh9OjR7N279y8bU05ODm3atOHy5cvUq1eP3NxcrK2tMTc3p6ioCIPBIKMker2eoqIisrOz0Wg00sEDpc46e3t73NzcsLe3R6VScfnyZaNzabVa8vPzMTMzIyQkhMTERJ4/fy4pIA0aNOD8+fOEhYXRuXNnrl27xqlTp6Rd4O3tTWRkpNwMb968mT59+rxyTWvXriUlJYWsrCzi4uLYtWsXKSkpqFQq/P39iY+PZ9CgQUAp3z0zM5OkpCRpXAcEBDBo0CAmTpyIVqtl6tSpfPbZZ7Rv357y5ctz7do10tPTqVOnDpmZmezZs4f8/Hy0Wi3ly5enb9++VKhQARsbG6ysrCgpKSEpKYktW7awfft2fHx8SEpKoqCg4FefS8eOHalRowb29va8//77Ru89efKE9u3bExAQgFqtxt7eHo1GQ0xMDImJibRp04bbt28zaNAg+vbtK7/Xt29fLl68SHFxMYGBgURHR5Oamkrr1q3ZuHEjZmZmXLp0iR07dnD9+nUcHBzYvXv378rNP8po7tChA/v27QNKb+SQIUN466236Ny5MyUlJfTr14+8vDzc3Nxo1KgRQ4cOxd7entTUVFauXMnjx49Zs2bNH+LJ/RFcv35dcgibNm1KamoqOp0OvV5Pbm6u9DSrVCosLS2Ji4vj4cOHWFtbU1RURG5uLiEhIfj7+2Nra4uFhQUqlQozMzMyMzN5+vQpPj4+km9kaWnJixcvuHPnDrGxsdSrV49mzZpx5coV9u3bJ/nFwcHB0vNZXFxM586defToEaNGjWLZsmVy/J999plR6MTc3JwFCxZQuXJlioqKyM/PJy8vj7y8PB4/fsz69eupVq0aubm53L59GwcHB1QqFdHR0XTq1In58+dLLrTAjBkzmD9/PgsWLMDX15eFCxcybNgwKlasSHFxMRqNhoiICC5cuMCVK1cIDAykYcOG1KlTx0h56vV65syZw4EDB7CxsZEGg1arJTg4mKpVqxIXF0dUVBTR0dEUFRVhaWnJgAED6N27N02aNDGibLz11lssX76coqIi+vfvz5o1axg9erTkiMbFxdG/f39Wr15N2bJluXLlCr169WL//v0EBgaSk5NDbm4uffv2JT8/n0GDBrF582YaNmzI5cuXadSoEVOnTv2vy8xvQcp1ejp2P1Mi/hvo2rUrW7duxdzcnIyMDPr160edOnXo27cvNjY2fPzxx5w7d45atWphb2/PxIkT8fb2Ji8vj82bN7N9+3a2bdv2CuXm30VcXBze3t7odDreeustAMmvFZEVATMzM8LDw7lz5w55eXnY2tqSkpJCcHAwFStWxNHR0cjLJqhYwpAUnPy0tDQePHjAkydPqFy5Mk2aNCEjI4M1a9aQkpKChYUFNjY2/PDDDzLnYeLEiRw7dow6depw4cIFeY4dO3bIcUPphvu9996jRo0alJSUUFxcLOfv8+fPOXz4MCkpKfTp04c1a9bg7Ows8wlq1KjBihUrqF69upHnbefOnXTv3p3hw4dTtWpVDhw4QJUqVWjevDl6vR69Xo+VlRXff/89V69e5Y033kCtVvPWW28ZUUOKi4s5dOgQy5cvR6fTkZubi8FgwMLCAi8vL0JCQsjMzOTZs2c8f/6cgoICNBoNDRo0YOzYsbRr185oXFOnTuXNN98kNDSUTp06MXPmTDZs2MAHH3xAYGAg2dnZDBgwgDFjxtCkSRNevHhBkyZNmDp1Kn369CErK0saejk5OTRo0ICzZ89So0YNYmNjsbOzY9WqVSa5/gOYPn06HTt2JDQ0FL1ez/Dhw7G2tmbo0KF4enry/fff8+WXX9KmTRsSExOZPn06wcHB6PV6Dh48yKJFi1izZs0rlJt/F3l5eVSrVo1Hjx5Jqo+ZmRl2dnZGUWiDwYBGoyE7O5uEhATpMX769CleXl74+/tjb28vjVnhGIuMjMTe3h57e3usrKywtLSkoKCAp0+fEhMTg4eHBw0aNMDa2prVq1eTmpqKtbU1BQUFrF+/Hn9/f6DUe7x27VqcnJyIi4uT479+/TpvvPGGjDKp1WpGjRpFQEAAxcXFFBQUkJ2dTW5uLikpKdy4cYMHDx7w+eefM3HiRJydnbGwsCAjIwNnZ2dWrVpF48aNsba2lud4+PAhQUFBtGnThrCwMB48eEBRURG9e/eWjsA6deqwYMECbt++TWhoqLQtlHJdVFREZGQk8+fPl2uOYACIqFRhYSEJCQkkJCSQl5eHSqWiatWqjB079hW649atW0lNTeXdd9/l7bffpk2bNqSlpeHh4UGXLl0oLi5m4sSJVKxYkeHDh1NcXEzdunWpV68eixYtIisrC0tLSyZNmkRUVBTOzs7k5OTg7u6OwWAgLi6Oli1bMnLkyN+V7f+YnpGcnMyDBw/w8/PDx8fnLzNIfw25ublotVqGDRvG+vXrjUKyzs7OfPzxx0yaNAl/f38GDx4sSd39+/dnypQpf+n4ROguPj6emJgY6tevz/Xr12Woz8zMDCsrK9RqNTdv3iQ2NpahQ4eyZcsWGeb08PDA0tKSwsJCUlNTcXJyoqioCBsbG6pXr45Wq0Wj0cjQr0gIEOEjKysrWrVqxaVLlzAYDLx48QIPDw8OHz7M/v37iY2NJS8vj3LlyrFmzRr+9a9/SWGfMmUKY8eO5ejRo6xcuZKzZ8/y/vvvU7ZsWbp27Yqbmxtt27bl4sWLMrwaEBDAvXv3yMjIICMjQ96LjIwMwsPDKV++vNE98vf3p6CgAEdHR168eIGXlxc1a9ZEp9MBpd66OnXqMGDAAObNm4dareb777/n+fPntGzZEo1GQ3JyMlu3bkWj0dC6dWscHR1xdXXF3d0dPz8/VCqV3MWam5ujUqlYunQprq6uHDlyhNWrVzN27FiCgoKIiYkhNjYWW1tbDh8+zPXr11mwYAEBAQGSQgPg5eXF8uXLmTdvHl9//TWLFi2iffv2FBYWYm5ujoODAw4ODuzfv5+lS5cyevRomjZtSlZWFkuXLsXDw+N3Oat/G1SqBJaW0KEDzJkDtrbk5ORw7do1Gf34tQS8vwJeXl5ERkZSsWJF3nvvPaZOncobb7wh33dxcWHJkiXMnj2bCRMmMGnSJDIyMlCr1XTu3Jndu3f/pUlZP/30E1CqZO/cuUO9evV49uwZHh4eMmokznf79m1OnjwpvRqRkZEMHTqUrKwsrK2t0ev1ZGRkYGNjg6WlJdbW1tSqVUtukEVyoa+vL/7+/mi1WszMzNDpdHh6ehISEkJUVBRRUVH4+vpy8+ZNDh48KGldoaGhXLp0iZiYGMmj7969uwzlbtq0iS1btrB06VKcnZ1p3bo1ZcqUwczMjODgYOLi4sjOzpZepMLCQknpgFLP1O3bt2UUQEAoeBsbG8zMzEhJSaFNmzbY29tLI7agoIA1a9Zw4MAB7ty5w8mTJ1m/fj2tW7eW9LRjx45x7949mjRpgrm5OY6Ojjg7O+Pt7Y1GozGi01laWnL48GFJBevatSstWrSgV69exMTEEBMTg62tLbt27eLhw4f06tWLN954gxUrVkheso2NDRs3bqR79+40adKEr7/+mu7du8tn4eDgAJRSAXft2kX//v2pW7cuycnJjB49muDgYFatWvWXzbX/UbxGrouKirhy5QoODg4EBATIdfh/AkKuQ0ND+eyzz2jYsKFRBNjNzY0JEyZw9OhR+vTpw5dffik5sU2bNmXnzp1/mGf6R3Dv3j0ePXoElNJs6tevT/369Y2irVZWVlhYWJCSksL58+dp3rw5Xl5enDlzhtatW0vdLChMUJrIb25uTsWKFaVcq1QqLCwssLW1xdPTkwYNGkidrdVqady4Mbdu3eLJkyc4OzsTHx/Pzp07iYmJ4dGjR4SGhnL+/HlJrQCoWbMmBQUF3Lhxg927d7NkyRK+/PJLtFotY8eOJSUlBUtLS1q1asWZM2e4fPkyZcqUIS0tDZVKRUpKirxOR0dHbt++Td26dY2MZg8PDywsLNDpdGi1Wu7du8enn36Kp6enlOvk5GTWrl1LVFQUM2bMwNPTk5UrV9K2bVtsbGwoLCzk+vXrnD9/ngYNGpCdnY2LiwtWVla4urpiZ2dHRkaGpK1aWloSERHBo0ePyMnJ4Z133mHBggVMmTJFyrW1tTURERGEhYXh5OREr169WLhwoZRrMzMzvvjiC9q0acOAAQP48ccfadGihaTNiTyZxYsXc/LkSTp27EiFChVQq9UMGDCANm3akJ2dzciRI393Hv0pT/P58+dJSkrC0dGRqKgoNm/ezJEjR+QOw9LSkpCQEObNmyd3NKKCQmBg4H+c2b5u3TpZTuf69etMmTJFvvfkyRM+/vhjNm3axMcff0yrVq2MeKn/EyguLubmzZucP3+ec+fOce7cOZ4/f079+vUpLCzE19eXW7duERkZCUD9+vVZv349I0eO5Nq1a0aTWCAwMJC6deuiVqtlRq/gXAmla21tjY2NjfyfTqejoKCAf/3rXxQUFGBmZoazszNFRUV4eXkxatQo1qxZw+rVqxk0aBBz5szB09NTnrOwsJAOHTqwbt06YmJimD17NgcOHJDvq9VqqlWrRpUqVdiyZQsODg706NEDX19fo1BPREQE3bt3Z/369dIblpycjIeHh9Eu9MaNG1IIi4uLycvLIzs7mwcPHrB3717eeecdDh8+zKlTp9Dr9eh0Olq2bEnVqlXleARnXOywRYKTeH311Vf0798fHx8fZs+ezYkTJzAzM5PhtAcPHuDt7Y2zszM7duygbNmyjBgxgg8//NDI8G/dujU//vgj7dq1Q6VSsXXrVmxsbIye2ddff82KFSu4fv263JT9XaIzvwUxxpvAU8BWpSLNx4dttWuz99AhcnNzgVKKQbly5Zg6dSohISE8e/ZMyrWvr+9/nPR4/fp11qxZw6RJk/joo4/47rvv5Hs5OTl06tSJI0eOsG3bNpKTkxk1atR/dL7fg8g4FzJ97tw5Hj16RNmyZSlfvjwuLi7cunWL8PBwiouLZdWXoUOHymS4l6FSqRg5cqQM/yoNZq1Wi5WVFVZWVlKxmpuby7m8fv16oqKi8Pb2Jjc3V4aDx48fz9mzZ5k1axZhYWF8//33RnPXYDAwfPhwBgwYgLOzM1988QXffvutUQSnQoUK1K1blwMHDpCbm0vTpk0JCAigsLCQnJwcbt26xb1796hVqxZ79uyR64bBYMDPz49nz57JY23ZsoWwsDCsrKzQaDTk5uaSmZlJRkaGjDBdvHiR48ePk5+fj0qlolatWtSoUUNW3yksLDSSayFPIgJ3+vRpvLy8CA0N5ccff2TLli2oVCqcnZ1xdnaW4ezy5cuzevVqQkJCWLlyJf7+/nTu3FmO9d1332XChAmMGTMGPz8/Ro0aReXKlY2e2YULFxg7dixr166V7/2T5Poh8BDQqlToy5RhV/Pm7PjhByO94+vry4gRI+jWrRvh4eFotVp0Oh2urq5UqlTpPxpHeno6ffr0YdeuXXTo0IGffvrJqLJKu3bt2LJlC8+fP+fLL79k5cqV/96JDAb4A9WTAJ4+fcrZs2elzr59+zZ2dnayusWtW7e4e/cu+fn5qNVqIiIiWLRoEadOneLevXuvPaYwaoVcq9VqI90sdLZWq8Xc3Fy+d+zYMa5evUpQUBDPnj3D39+f1NRUxo0bR2xsLFOnTsXR0ZGDBw9So0YNo0ipoDC2a9eOr7/+moULF5KXlyff9/b2pmHDhty5c4fw8HCqVq0qHUPFxcVERUURERGBu7s7+/btk7oVSpNzDx06JP/+5JNP6NWrl6x6kZOTQ0pKCpmZmSxdupTevXvz4MEDTpw4QVZWFiUlJVSoUIHq1atjbm4uiyIUFRXJ5OnCwkLMzMykXD99+pTExERatWrFkydPWLFiBVCaMOjk5CTzpBo0aMC7775Lu3btuHz5MufOneOTTz6RY12xYgVeXl4cOHCAsmXLEhAQQK9evYyeV3JyMm3btmX8+PFG7/1R2f5TRvPL8PX1pUKFCri5uclQ/v37918htgu89957+Pj4YGNjQ3x8vPSAVqhQgaCgILy9vX/TE1xUVESPHj3QaDRMnjyZsLAwoHQHOXr0aBnKOXfuHKdPnzYyqv9T5OXl8fXXX+Ph4UGzZs1eKe0GpUJz7tw5evfuLUNB1apVo2rVqlSrVo3KlSvL3dqpU6deW0anfPnyqNVqybV1cXGhTJkynD9/HgcHB8LCwtDpdNjY2BjtXEWZpu+//57IyEiaNWtG48aNcXV1Ra/XU1JSQu/evSWfskaNGrRr1w4XFxcOHjzI2LFjefPNN+U4YmNjiY+PJzc3lxo1amBnZ8f27dvp0aMH8+fPl7tttVotDYBbt27x9ddfExwczA8//ICPjw9Qmo2r5LWtXbsWf39/fH190el0FBYWkpWVxc2bN/npp58YMmSI5I4WFBRIJSo4niIZSyQqCeUqjBCNRsPZs2cpLi7mzTffJD8/X+52zczM0Ov1fPzxxyQmJhIbGwsgw8FFRUXMnDmT/v37Y2FhQbdu3STtom7duixevPiVZ9avXz8SExM5dOiQpKb8k5Try/C3sMC6fHlJv9Hr9cTHxxtxdZUYMmQIfn5+ODk5kZSURFpaGn5+fgQFBVGhQgX8/f1/t8TQ+++/T3JyMk2aNOGdd94BSmkSI0aMYPz48TRu3JjMzMxXSv/9pzAYDKxZswYLCwsaNmz4q6Hgx48f06NHDx49ekTVqlWlTFerVo2QkBC5kXrx4oXRhlQgICAAOzs7WUrP3t5elmSytLSkXr16UrmKsnYij8HW1pbbt2+zadMmOnfuzBtvvIGfn5+Uifnz58uoV7ly5ejQoQPlypXj1KlTksYgkJSURGxsLGlpaVSpUgU3NzfCw8OpVKkSgwcPxsPDQ8q0kKmEhAQ2bdqElZUVe/fulUnKN27ckL9DabJh1apV8fX1xcnJieLiYrmpnj59Oh988IGsLCLC4YJHKs4n5Fq8r9wIW1hYEB8fz8WLF+nfvz8lJSWkpaXh7OyMmZkZBoOBzZs3c//+fSnXGo0Gb29vsrKymDBhAu+99x52dnbMmDGDDh06MH78eBwcHNizZ88rz2zBggXcuHGDyZMnS0/7P1mu3S0s8KpcGV9fX0m7S0lJITw8/LVlE+vWrUvLli1xd3cnLS2NpKQkPDw8pFwHBgYaVWt5HVavXs3Ro0dxc3OT1SIyMjKYNGkSYWFhDBkyBDCmXv4hZGXB1Kmwbx8UFYG5uZFHHWDPnj0kJydTu3ZtI6NQiZSUFN5++22OHDlCcHCwkc6uXr269GS+nJck4OTkJHWsqALi5+eHg4MDBw4coFq1atja2spNsXCCWVlZyeTAGTNm0KNHD6pWrUpwcLCsvHPgwAHmzJmDwWDA1dVV8n7v3buHwWBg+fLlRk6amJgYkpKSKFu2rHRkWFhYULduXQIDA430tSiZefjwYZKSkti6dausIBMdHW20Dr777rvUr18fPz8/3NzcKCoqIiMjgxcvXjBz5kyGDx8u5Vo01VHyw4VOFDQNka8h1jhRSWz37t28/fbbqFQq0tPTsbOzQ6vVotfruX79OqdPnzaKgnl4eJCXl8dbb73FzJkz8fLyYufOnWRlZXH06FGioqI4ceKEEX0LSssCbtmyhRYtWhjZJf8jRnNgYCDly5fH1tYWrVYreX5icRXE9ydPnshKEsXFxZKrl5eXR0ZGBoWFhTKsl56eLj0f5ubm0hi0srLC19eX8uXLY29vT0xMDM+ePcPJyYkHDx6gUqmoUKECxcXFBAQEMHXqVMqUKQPAkSNHuH37NuPHj/+9SzNCSkoKR44c4e7du0RERBAREYGXlxdTp05l69atLF++HCidiFOmTOGDDz7Azs6Ox48f89lnn1G+fHkmT56MwWDgyZMnsuSam5vbL+FjhbDvycxkYU4O536DIP8yxo0bR5kyZWStVOEZEEbz+PHjWb16teQlqlQqaVzm5OTw1ltvUa5cOU6fPk1qairFxcVotVqaNGnCuHHjaN26tTzXqVOnGDFiBFlZWbi7u5Odnc3Dhw955513CAkJQafTyQoConat8Pj7+PgQGRkpldn69euZP38+4eHhRtfj7u6Ol5cXtra2xMfHU6FCBcqXL4+rq6vkeYu5AUiudXp6OmfPniU9PZ1PPvmEWrVqsWPHDiwtLeV3Pv/8c8aNG4ejo6Pkr6nVah48eMDBgwcZPXo006ZNo1WrVvz0008kJiaSlZVFXl4eWq2W7777jqVLl9KhQwf+9a9/cfnyZSM6UHJyMp999hmbNm1Cr9dTtWpVGjRowMSJE9Hr9f8Y5boNqAfkAhpAp9XydqNG0lCxsrIiPz+flJQUDAYDnp6elJSU8OLFCx49eoRerycnJ4eCggLpTcnJyZHRBY1GI6vG6HQ6/Pz8KFu2LJ6ensTGxhITE4NWqyUlJYUXL15QpUoV1Go1Dg4OfPjhh7I00IsXL5g8efIrVTZ+D6K2+I0bN3j48CERERFoNBqmTZtGRESELHWmUqkYNmwY06ZNw8vLi6SkJD7//HPS09P5+uuvJfctLS1N1h+WPGqFXF/JyWFqVhZHfg7f/hH07t2b2rVro9Pp5MZP0DRsbW1ZunQpI0aMIDg4WH5GlMbKyclh5MiReHh4cObMGZKTk2VCct26dRk0aBCDBw+W54qMjKRPnz48ffoUNzc3mUTdtGlTqlevjq2t7StynZuby/z589Hr9Tx8+FBuiA8fPsz8+fM5ceKE0fU4Ojri4eGBk5MTmZmZWFhYULVqVVmrVRjIQneUlJRQVFREZmYmDx484OnTp0yaNIkWLVrIey9k+/vvv6d169aSDmhhYYGZmRmpqal8++23jBo1inXr1hESEiJpcQUFBWRlZaHRaPj000+5ePEibdq0Yf78+SxfvtyoXm5BQQFffPEFa9euJTExkbCwMCpVqsSUKVOwsbH5x8j1OqAJoAcKAFc7O+YNHSpzbgwGA4WFhcTGxpKVlYWLiwsqlYrU1FQePnxISUkJ+fn5MpnNwsJCOjEAWWVCJHZaWlpSp04dAgICSEhIICYmhuLiYszNzbl58yYhISGSrjhq1CjatGkDlBqk7dq14+DBg3/sArOyoG5diu7f55zBwCVKPeoRQIalJROXLMHO3Z233npLjrVTp07MmTOHypUrk5uby8qVKzl16hRbt25Fp9ORmprKs2fPsLW1xdHR8RdaiEKuo/PymJCVxc6fI3B/BLVr16Zp06ZSV2s0GrmmOjg4cOLECcqWLUvHjh2lTSSeT2ZmJv/617/Izs7mxo0bRsl01atXp1atWnz11VfSA52enk7//v25cuUKLi4usg9DYGAgNWvWxN7eXtaiFjKj0WhYu3YtCQkJHDt2jKZNmwKlG+J58+axfft2ow2VtbU17u7uMpKdlpZGaGio5HGr1WqKi4tldSFx//Py8oiNjeXRo0eMHj2arl27MmfOHACZ8H/27FnKlClDxYoVjeS6qKiIDRs20KVLF65du4ZGoyElJUXOL1EC880336RChQr4+PiwZs0aunbtyqxZs+TYDQYDa9euZfny5URGRlKzZk28vb2ZNGkSVapU+Z8xmhs2bIinpydOTk5Gnj2xsIoQm9hZqNVqioqKePToEXl5ebi7u1OmTBlZz1fU9k1NTSUjI4O0tDS5UyksLCQ/P18qAHt7exwdHWU5JxGKUKvV+Pj4SFd8QEAAZ86c4V//+hchISFG16HX67ly5QrHjx/nwoULWFpaSuPs3LlzXLx4kZKSEuzs7AgLCyMrK4vIyEhSU1NlowJXV1diY2N5+vQpjo6ONGnShN27d6PX67G2tmbOnDlcv36dDRs2yPMKb8foYcNo8u23VIqKwvrn254FKB+PqI8qqkYYDAZsbGxwcHDA1dUVX19fyTkSoR7RQMTGxobJkyezZs0a7OzsZG1Jsfjl5eUxcuRIZs6cSVFREStWrODBgwdcv34dKPWYbtiwgbVr17J582aOHj2Ku7s7Op2O6OhoNBoNlpaW5Obm4ujoyIQJE/jggw/Yu3cv5ubmMqNe4L333qNq1aqyWonBYKB37940bdqUcuXKER8fz5MnT4iIiGDLli2/2iTi1+Ds7ExAQID0npuZmTFq1Ci8vLzQ6XSkpKSwdetWQkNDqVmzJnq9nsuXLxMXF8fEiROxsbFh165d7N27l08++YSgoCCaNGnCwoULWbhwIQkJCfj7+7N48WK0Wi27du1i1apVqFQqkpKS6NmzJ7NmzWLOnDn4+Pjw1VdfcfDgQZYtW8a3336Ll5fXP0K5ZmA8B5MtLRnWti3mP4cRBadeeItFuC02Npbs7GxsbGwoU6aMLNkkQnCZmZnk5+fL4vgiPCcWOpG5bmdnR0lJCYmJiTLBE0qfb1BQkJTrmJgYWrdubZQhDaXz6t69exw/fpzTp0+j1+txdXXFycmJmzdvcvLkSQoKCnBxcSEoKIigoCAOHjwoawX7+vri7e1Neno6UVFRqNVqOnbsyP79+2Ud1KVLl/L48WNWrFhhZDRUqFCBnp0702LrVqrExOComMMBQPTPv9epU0cm8wpPjFarxcHBQTokhGEijFW1Wi1ri86ePZulS5dib2+PnZ0dlpaW0muTnZ3NsmXLqFmzJuXKlWPnzp2cP3+eGzduYDAYqFq1Krdu3eLIkSOsWLGCffv2YWtri5ubG48ePcJgMGBra0tWVhZarZYhQ4YwY8YMmWFuaWnJ7NmzZQRx0KBBVKpUidGjR0tnwIwZMygqKqJVq1bEx8cTFRXF48eP2bx5s1HY+I9Aq9VSu3Ztmd0PpTxtT09PSUU7cOAAvr6+Mu8jIiKC8PBw3nnnHdzd3YmIiGDFihUMHjyYsLAwevTowYoVK1i+fDn379/H3t6eL774gjfeeIOJEyeyc+dOtFothYWF9OjRg759+3Lv3j0OHjzI5cuXuXHjBh988AHLly+ncuXK/0i5zrSzY/EHH1D8c/MOIY+iBJmISMbFxZGeni4rOonQen5+Pjk5OXJDLMqVCaqcXq+XDX+EYSiS2rOysuQ47OzsqFChgpRrUebt888/f+VaoqOjOXbsGCdPniQ9PR1XV1dcb90i6vp1DgOZgC0Q9PMrCxC1NoQeFZSCvLw8unTpwvnz56XsT506lZKSElavXm1UzcrT05Pe3brRcu9eqj97hrvBgCBHDAA2/vx7pUqVZFMQZbKbvb29pKUKb6qQaVF61tHRkY0bNzJixAgqVKiAg4MDWq1WFglIT0/nyJEjJCQk0LBhQy5evMgPP/wg84uglFr56NEjZs+ezQ8//CCdiJGRkRQXF0sjUK1W06VLFxYsWCDLaGq1Wg4ePMi5c+cAqFatGl26dGHEiBGytKfg9o8cOVJuhCIjI9m1axcJCQl/al6qVCoaN24sK3pBKWVV2GAGg4FLly6h1WqpXLkyDg4OvHjxgtu3b9OuXTvKli1LTk4OCxcupGnTpjRp0gQLCwvat29Pu3btuH37NhYWFsycOZN+/frRv39/tmzZIpP9xo4dK43yESNGSIfNu+++y7Rp0wgODv7rjebmzZtLZSQ63ondgPgpDGhzc3OuXr3KhQsXqFKlCvb29jx//pxnz57x1ltv4eLiIvlrer1ehuOVSregoEAqW2WtY7VazaFDh/Dz88Pa2prs7GzS09NJSUmRuzELCwtq1KhB3759ZX3AhQsX8uTJEywtLfH19ZWlonJycmjSpAkpKSm4u7vLnY/g46WlpWFraytpAGZmZrJeY2ZmJj4+PmRnZ8vSRmLnDchQY0lJCRQWItJaygAVf345AfuAa5SGHJKTk7G3tyc0NJSwsDCys7NldyElv1np4beysiIvL4+5c+fSpEkTkpKSSE9PJzMzE1dXVypWrIi9vT07d+7ko48+oqioSHqf1Go1DRs2ZNq0afj5+ckGHlBa4ikxMZG8vDyeP3/OvXv3yM3NpXz58tLjNG7cOCpVqoRKpeLChQvs3r0btVpNbGwsiYmJnDlzhlmzZvHkyRNmzpwpE626deuGmZkZW7duZf369fTt25fy5cuTkZEhn+WLFy+4f/8+BQUFhISEMHXqVDkHy5cvz+3bt7GxseHp06dcu3aN6dOnA/Do0SP27dtHSUmJbKZiaWlJ/fr1qV69uvRaLVmyhPj4eKpUqULv3r1xcnLi6dOnbNy4ka1bt6JSqYiIiKBcuXJ8/fXX7N27l3fffZdt27ZRo0YNTp48SePGjTl48CBLliyRlUvCw8P55JNP/pHKNdHKirEdO8qFXvmysLDg+fPnnD59mjJlyuDk5ERGRgbR0dE0aNAAPz8/o2YfItwuQo7Cc5WVlSUTaUQyiIWFBY8ePUKj0eDm5kZeXp70uKSnp5OXl4darSYwMJAhQ4bIDfiSJUu4cuWK/J7oFJqbm0vt2rV5+vSppD2IZyHmtCglJ6gQRUVFJCYmEhcXR0BAAK6urhw/fhy1Wo2dnZ2s+6lSqcjOziY6OpqYBw/I/NmQducXufYFTgFHAFdXVzIzMzEzM6NmzZqEhobKDbqFhYV0NihpLCKZSK/Xs3LlSurUqUN8fLz0yNrY2FCxYkWsrKy4ePEib775JmXKlOHtt9+Wx2jQoAGDBg3i7bffNqpqM2zYMGlwZ2RkcP36dTIzM/Hy8pIe2T59+lCnTh0ZTZw+fTparZbk5GTi4+PZvHkzBw8e5OjRo7JxSEREBD179sTJyYmTJ0+ycOFCwsLCCAsLIzc3l7S0NFJTU0lNTeXx48fk5OTg7e3NjBkzJMXH39+fS5cuUalSJcLDw4mMjJS1en/66SdatmzJ2LFjSUxMJCYmBnNzcypXrkydOnUkL/zYsWNcv34de3t7Bg4ciK+vL+np6fz0008sW7aMgoICDh48SNu2bTl69Chz585l8ODBPH36lMzMTBITE7G2tiYjI4M+ffrQpk0bwsPDmTVrFps2bfpHynWagwNLxo6VoXShdwX1QNwfBwcHSbmMjo4mMDCQoKAgSekQhrbQ0UKeRTQzJyeHoqIiqa8tLS3lmiCSaUUFF2HMQikPd+jQoQQGBqLT6VizZo30Pjs4OGBmZkZJSQm2aWl4GAy8CbQDagBK4sR+oOfPXk+x8RQOqKysLLlRffz4sXR2ubi4EBAQID29L168IPnxY5J+rlThwC9yXRa4A+xRq7H5mWJRWFhItWrVCA0NpWfPntIJJNYWYbeUlJRInW1mZsaBAwfw8vKS9zUjIwMzMzOCgoJkBRsnJyfCwsKkhxSQlbNmzZpFvXr1ZPWczp07Y2lpSUZGhqTLJiUl4eDggI2NDYmJibRo0UI2AqlWrRqffvqppNXFxcXx2WefkZ6ezurVq2nUqBEtWrRg79699OjRAz8/P27dusXs2bOxtbWlSZMmsmpHeno6GRkZPHv2TM7BKVOmULVqVZydnfHx8eHEiROkp6dTvnx54uPj5Vq1bNkyRo0aRY8ePaStoVarKVOmjHQ46HQ6YmNjZYWrgQMHUrFiRQoKCvjhhx/YvHkzmZmZzJ8/nw8//JDw8HDeffddOnfujKenJ3v27JER8CpVquDk5MTYsWPJzMzkrbfeYtu2bTg4OPy1RnPLli3x8PCQZZSEUhWJK+KnVqvlzp073Lt3T5b/uHr1KufOnSMvL4+oqCh69+5NSEiIFD7hfRbKVUxEsSMWk14IQnFxMefPn6eoqAg/Pz9KSkqIjo7GwsKCKlWqEBcXR3R0NAkJCZSUlKBSqQgJCaF+/fosWbKEWbNmkZ6eLo3xpUuX0qtXLxlSVqvVst0zlCb9id2RMOzz8/Pl2HJycqRXTtRCVe7QS0pKuFNURAYQ/vPrwc+vKODllisqlQpra2sMBgOOjo74+PgYeQfEhkKj0ZCRkUFWVpb01AqPsPisoGokJycbdQwS2LlzJ127dpV/37lzh06dOqHVagkPD8fa2lo+C0AWPF+4cCGtWrVi9erVBAUFGS3E+fn5nDlzhs8//xyVSoWnpycuLi7cvn2b4OBgNmzYwOXLl2UXteHDh/Pxxx9TsWJFo4iFubk5LVq04K233uLAgQM8e/ZMhoZfxpUrV6hdu7a8B8HBwbRq1UqW4ROUIsGVMjc3Z9y4caxbt45Lly6xa9cubty4IT1qInrSp08fRo8eTY0aNUhKSmLDhg2yYka/fv3w8PAgISGBESNG4O3tTfPmzfn444+5f//+P0656oEjFSqwtV49uUETmzQLCwvp/Rg0aJA0ci9evEhubi6xsbHUqVOH2rVryzkq5sTL8zY3N9doQ6w0GGNiYsjKysLZ2VmG4oqKivDx8aGoqIjk5GRSU1OlbHp7e1OjRg22bdvGu+++S3Jysjzm3r17qV69uvys6IYlShIqveciMUXMPdGeXXh7lV4ikV2u0+no88knxKSmSrkWsv2IUsrLyxAt4YuLi6lataq8L+Jnfn6+TKTOyMiQ9DUl/09E30TjovzXUEHmzJljVFLy6dOnvPnmm1hbW3P16lXZ8U98V61WExQUxM6dO6latSojR46USlGEXEWZOtFEyMbGhrJly3L79m3c3NzYvn07jx49Ijs7Gy8vL3r16kXnzp2pVauWpJ2I0OuQIUMYNGgQGzdulAbsb81TgUaNGlFYWMjEiRO5evUqdnZ2WFtb4+TkJGvFzpgxg4ULF/LixQu2bt3K7du3JXdXbNKaNm3KBx98QPPmzcnNzWXLli3Mnj2bfv36ydrTeXl5jB49mvz8fDp37sy8efO4du3aP0+uVSou1qzJwZ/pd0KfCi55UVERO3bsoGfPntja2hIbG8vVq1fJyMggMTERb29v6tatK+eLkGcRwRQt1EXJs6KiIulBFvIk5F5EU8S80mq1WFhYyOiykFU7OzvKly/PkSNHcHR0pEqVKuTm5HDu2TM8FYnlL+O5SkVlW1v4mbur0WheK9darRYvLy+0Wq2UcyHbOp2OiStXkpSezn2M5fohkP6a84pco5SUFIYOHcrZs2dlZE1p06jVajIyMox0sVarxWAwyJ4Ltj9XMFJ66AU++ugjSW2A0gZmomLOxYsXJT0xV0EjCQ4OZvXq1fTp04eyZcvSq1cvI6qN2PB89tlnsvJX+fLlefToERYWFmzYsIGCggI5F4YNG4afn5/09op7a2Fhwccff8yIESNYs2YNc+fO5cMPP/zVZ2VjYyOjebVr1yY7O5sJEyZw8uRJHB0dsbW1xdnZWcr4hg0b6NGjB3Z2duzdu5dbt25x+/ZtOWd0Oh0VK1Zk0qRJ0qbZt28fM2bMoF69egwePJhatWoBpdGxW7du0b17d3bu3ImFhQXbtm37a0vOiWoOwpMsFI24YcILq1arOX78ODNnzkSn0zF//nzKlSvH+PHjsbKy4uTJk+zdu5fw8HB69uwplYKo2yu8zspMc2GMiXIuGo2GZs2akZmZyfPnz1GpVNStW1fybF1dXalatar0OqnVaulVElxfKysraeDCL+XKALkjFDUYBYQ3HH5pNV1SUiKNCtHQxNzcXF6DRqNBrVJhU1REEFD7pftaArwAbllY8GWzZqBScejQIRmqrly5MpGRkdKjrNPpcHFxkZ61ypUrc/r0adkkxNbWlnr16skSVo8fP2b//v2Ym5vTp08fiouLycjIwN3dnc6dO1OhQgWj8ZQtW1YquQcPHuDg4EBqaiqFhYWoVCratm3LjRs3mDNnDo6OjvTu3ZubN2/KeyKuWVSnmDRpEq6uruzcuZOEhATu37/PmDFjpDHctGlTKleuLDnpyixhlUrFunXrOHjwoCz/82vw8vKiSZMm3L17l6ysLOLj4/nuu+9ISEjA2tqa0NBQ+vTpg62tLSqVisLCQsnfbNOmDZ07d+bAgQOMGzeOtLQ0ioqK0Gg0pKamyhDa5MmTefvtt7l+/ToTJkyQ53Z3d2f37t3cvn2bixcvvrYj5d8deuC5nR27Q0NfoVuJBfH8+fP07dsXFxcX2Xykb9++ODg4EBsby1dffcWzZ8/o1KmT5LPDL0pa2ZpdJKQoW7dDaTJsYWGh3OT5+PjIUk4WFhYyGiQ4sSIzXafToVarsbGxISMjQy7GFhYWRucQSuFlhSrGJdYxIcfiuEqOr0zo0emwMBioBhgXZQMDkAKE29lx/IMPKCwq4osvvpCKsF69ejx8+NDIALe3t8fc3BwPDw/Kli3L8+fPZTURa2trqlevTmBgILa2tqSlpbFz506Ki4vp2LEjDg4OJCcn4+zsTMOGDV9pE+vr60tAQAANGjTg8uXLskasMJqrVq2KWq3m/fffp7i4mJEjR/Lw4UOZ6V5SUmJUFq5///54eXlx6tQpkpKSiIuLY9y4cdStW5fRo0fTvXt3WZNVJP6I565Wqzlx4gRbt26lYsWKUpG9Dubm5nTr1o0LFy6QnJzM48ePyc3NlZEqUVdW8FDFM7WxsaFWrVo0adKE27dvM2TIEJ49eyYjf7m5uXz22WfMnj2bhQsX0qdPH/bs2WPEg9TpdHzzzTc8ffqUo0eP/o+WaPufgl6lItHJiR8bNJC6S+lhBrh16xaNGzfG29ubK1eucPv2bVq3bo27uztZWVmyAU3jxo2NdJuQA6G7RQ1h4QgTEA4QnU4nnVHCUBRri7m5Oc7OzvJ/IslQPFdRGq3od/x8xYDZz7pcJNXDL+uNMJhFlRfxfyHbFhYW6LRazA0GKgAVXnOODOCBrS1bBg1CrdGwZcsWWdzgjTfe4MiRI9KRJhL1RdSoXr16aLVa2ajJ2tqasmXLEhQUJOs/b9++nZycHOrWrUtwcDAJCQnY2NhQpUoVJk6caDQW4UUeMmQIHTt2xNraWtY8h1KqSbly5ZgxYwYxMTGyS6/IewCkE9TDw4O6detSqVIlrl69SmZmJrGxsXz00UeEhYUxceJEpk2bRk5OjqyprYRGo+Hx48ds3boVR0dHyVt/HQwGA0OGDGHPnj0y0bywsFAmgvv4+FC3bl1ZflREQ3x8fHB3d2f27NmkpqYybNgwbty4YUQB3LBhA3PnzmXRokU0b96cdevWsXLlSiPbYubMmaSmpnLw4EGsra0JCQlh27Ztvzm34E8azVZWVtjY2GBjY2PEY1aSywXnVVzYrl27aNu2Ld26dZNd5tq3b8+pU6cICAjg/v37hIWFyQsW/CixQ1NSOJSlkoTQOjs7S6FS7p7FC5BJM+np6VIpCIUoFOq7774rDV/B7xLhFGGwKz2p4ncxUZSTz9raWl6DWJSKi4spLigoLY/zEtSAF6BSq7H9uUqFEiUlJXh4eJCTk0N6ejqxsbEykQNKQ5a9e/eWRnOFChUoKCjg9u3beHh4kJGRIbO/9+7di52dHSqVigMHDvDtt98SGBhImTJliI+PJy4uTvKlVCoVAQEBPHnyhOLiYk6ePEn//v3ZtWuXbDv69ttvc/PmTUpKSqSRJLzHog1ybm4u06dPZ9iwYdITsWDBAllKx83NjfHjx8vFS3nPioqKJDdTZDK/DoIvffv2bWrXro25uTkHDx6kZ8+eMnx17NgxZsyYwRdffCHrY4u26yKcePPmTWbOnEndunVly82nT59y//59Ll++zHfffUdQUNCvNtIQGdBbt2791bH+3ZCg0ZBrYcFtf3/21qqFmY2NkaEsokfW1tbk5eVRtWpV7t+/j52dHXPmzJFJVs7Ozri6utK4cWOuXLlCixYtpFdKKcvC6yKa/CjlWtmNy9bWVsq0UtaEXAuvteDsCUNd1EcvKSmhTZs2WFtby82vUPTKqi9CuYo1Rim3Yk4L76TwTMs1Rq3G8CuVQVSAC1BTqyUxJIT58+cb8Xtzc3Px9vYmJyeH7OxsXrx4QU5OjpGB379/f+zs7CTNytbWllu3buHp6UlmZiZ+fn7SESE2D4Je5OnpSXBwsKSbiFJjIuR9/PhxKlWqxOnTp5k5c6Ysy+jh4UH79u15+PChlGURNRN5IEuWLMHc3Jz58+fTvHlz7Ozs2Lx5MxMmTKCwsFAa4B999JGRnhBrp6gOIPjUv1VdZfz48ezdu5caNWpQvnx5Ll26JMPrkyZN4vLlyyxfvpwJEyZQuXJlGQrPzMyUz/7x48e0bt2aAQMGcOnSJebPn8+LFy8kP7RWrVq4ubnJ56GsXQtQpkwZBg8e/Mra/HdGsoUF+ebm3A8M5HCDBpRYWkr9o5Qnc3Nznj17RteuXTEzMyMyMpKvvvqKwsJCUlJSSE9Pp2rVqvj5+XHu3Dlat24t5Vp4T21tbWUCW15eHvn5+TJ6rNw4FxcXS9kUL0BSDeEXuU5NTUWtVuPt7S0jDZaWlhy1smJAdvZrjZdi4Kefo4hCtkWURBj2gPSOCr0laBRKuS75DceHPVDF0pJKwcHs3bvXqKpDamqqTLrLyckhISFBeuKhtMRmt27dKFeuHJGRkRQUFODn58edO3fw9PSkqKgIW1tbvLy8uH//Po8ePcLKyooXL16wZcsWFi5cSM2aNUlPTycuLo6EhAQMBoOsN71q1Sp69erF2bNn+eabb1i/fj379u3Dzc2NkJAQUlNTZQMh5doqbCNLS0u2bt2Ki4sL7dq146uvvqJ79+60atWKevXqkZeXx4ABA2RnPiG7Ildl5cqVRsnfv4ZVq1axZMkSKlSoQEhICI8ePZJG+qhRo7h79y7btm2TCc3m5ua4ubkRGRmJk5MTeXl5JCYm4uDgwKlTp7h27RpLly4lLy+Pq1evkpiYSPPmzdHpdFSvXp379++/UlbSycmJfv36cfXq1T9covhPGc12dnbypSzvJTwzgvwvFkIrKysuXLjAtm3bjKo8iCSYAQMG8NFHH8myYEJYlIpV/FTyI5X8Z1GODH5RqEIZCsUnwplil6l8iQx1QeAXBrPwRin/FkImIFpg5ubmcv/+fcl1VCZECa4SwGELCwYXFPyqsJ/+mYT+5ptvyh2T4H4K75Oy8Li9vT0ODg5cvnyZr7/+GktLS1q3bs3KlSs5fvy4NGYcHBxwdHSUYxdGR25uLg8ePODWrVtkZWURHBxM48aNsbOz4/jx41SsWJEmTZpw//59NBqNLMkGMGbMGDp16mTknRNJhy/v7FetWsW4ceOoVq0avr6+fPLJJzRs2BCDwUClSpVkwXLxPbHAiUW2Ro0ahIWFyUSHl0vIQKnA3rt3DxcXF/Ly8mSt3Dp16jBmzBjGjBnDnTt3qFq1KufOnaNr164UFBRQqVIlWQgd4OzZs7zzzjuoVCry8vLo27cvHTt2JCMjg3v37snKDVevXqVz585MmzZNlgpzd3fH3NycrVu30qpVK7mJ+btjUJ06BJQtW9ri+Gc5VnJsLSwsZMhQp9Ph6OjIkSNHmD17Ns7OzjLhJD8/Hzs7O9q1a8fJkydxcXGRpcPEplgoWfF/pWJVKlJhaCvlTShWofhEVQ8R7lXKv+j0VVJSIjfGSgUBv8iBcsNbUlLCoUOHaNeuHUVFRezcuZMBAwbItUREH0QouaCggMfBwYScOYP6Ne2fS9RqYkNDycrK4q233iI0NFSGvMUmXiQSCaeDVquVVYI2bdpEcXExb7zxBt988w2nTp0iNzeXrKwsmSAs1kblevfkyRPCw8NJSkrCy8uLqlWrYmdnx8OHDzEYDDJKJ5oxCcXXrFkzRo4caWS4i0ifoLkJj/+xY8do1qwZHTt2JDMzk4SEBPr06YNKVdq+18XFBW9vb+nJVsp1UVERTk5ONGzYkOPHj/P8+XPZWORl3L59G29vb1m9JD8/n3feeYdy5cqxY8cO0tLSZEWgSpUqkZWVRd26ddmwYQNDhgzB3NycjRs3Mnv2bCwtLXFycqJ69eqMGTOGhIQEnj17xvLly3FxceHGjRu88cYbfP311zg4OGBtbY2rqys6nU5SUP4pGNuyJR6KxH1zxYZTzBdLS0usrKykQbJnzx6GDx+Oh4cHxcXFODo6kpubKzdgERERMoFV5CcImRZdIAsLC6XeE7pTVOoQOl4ph8pqDoD8vjIpVhh5arWar3x9afjkCQEv6dJiINLMjEXOzlj+rP+VUaSYmBjKli1LUVERly5dok6dOjJfSNgIIvKSm5vL/XLlqJWWhuY1jq4StZrIKlXIzs6mRo0aODk5kZWVRVJSkuR3iwR9sYZaWlpiZ2dHQkICh36ug1+hQgW+/vprTp06RZUqVcjJycHc3BwnJ6fXynVSUhKRkZG8ePECW1tbQkNDcXBwID09nSdPntCuXTvs7Ow4c+YMJSUl0tFUsWJFxo8fb1QCTsi1sFnEev/s2TNsbGzo378/arWa5ORk5s6dy9y5c3FycpIJ1SJCr+z4J5wg9evXZ9++fVy/fv2VSLbAnTt3ZFJzRkYGmZmZNGrUSPKP9Xo9YWFhHD58mNq1a5Oenk5oaCgbNmzA19eXnJwcvvrqK0mr9fPzw9bWlvHjxxMXFyfzLlxcXLh48SJNmjRh06ZNeHl5YW1tLasfpaamEhER8YpB/Wv4U0azMA5E5QbxEjdbueBHRUVRWFiIg4ODVDSi2PeDBw/w8vLCzc0NCwsLKYAiG1cIoVJxK7N7xe+CD6k01JRhZaH8BVdI8KWUXnLhfXrZwy3OpfxdCL8SLi4u/Pjjj4SFhckdrUguVBrq9vb2DLt/H+rWpfjevVeE/YmFBSu9vSE/XzYxEUX7hYdLeT+Et0yj0dCoUSMpPB4eHhw5coS8vDx0Oh1ubm5yURCfF6FmURawWbNmRgaJRqOhVatWfPTRR7Rq1ap0jD/fh2HDhnHw4EHp1ROLsHgOLzcZgdJ6u7Vr15bn27t3L9988w22trY0bNiQoUOH4urqSuXKlbG1taW4uJiUlBTu37/PxYsXuX37NlDqcXqdwXz58mUWLVqEt7c3MTExpKWlUbFiRdnFD+DkyZP07t0bd3d3goKCJP1m2bJltGjRgpycHKpUqYK3tzdFRUUcPnyY48ePM2fOHIqKirC2tsbHxwdzc3MGDRrEyZMn2bdvHz/88IMcR48ePWRL6G+++YbJkyf/GfH6r8HZxcUogiQUmHiJ+SiMKyGnIvlUKAMRCnVycqJcuXKYmZlhb29Pdna2TAQS5atEOFQYUcrNqTKELCAMYRENErIrFJzSYySUgpiTQqaFrIuX8thiwycgPKe9e/eW48nPz5fKRRjsANX27YO6deHBA1BGw9RqMjw9OdemDdmZmRgMBnx9fXFxccHX19do4y/OIcYhcjDKly8vcwIqV67MgQMHKCkpkbWJhdJ72YFRs2ZNateuLZ0bSqPk008/ld5zMYbWrVsTHR3N4MGDpXdIKFOlU0K51l++fJkvvvgCV1dXWeZp7969PHv2jI4dO/LBBx9w+vRpypYti6Ojo0x0evr0Kbdu3ZIJvh06dHhtI43IyEgWLFhAYWEhaWlppKen4+vryzfffCPrq4qGSvn5+VStWlU+188++4yWLVuyZs0aunTpImX4+vXrrF69mpkzZ2JhYSGNHScnJ5o0aYKvry+HDx+mXr16chyiC+D06dP56quvjCoj/Z2h+7m7nbJqg9KbqpRtb29v4uLiePLkCYGBgeTk5KDVaiWvNCoqirfffluG0IXRkpubK41n4WgSifhCtsXmWMw/YUDDL55uQTsUnP2srCwyMzOld1g43TQaDSXW1oy0s+OdqCga/mzUFqtUHLO2ZrGzM8VqNRb84shR6m1HR0euXbtGaGioUf1/Qau0tbWVjr03jh17rVzrVSpSXV35qWFDMn/OJ3B0dJSOrJftCeVaU1RUhKurKy1atECv1+Pt7U3jxo3Zu3evTAwWm3cl3VXoZ0dHR4KCgowKMQjZ3rhxI+np6TJfQtSODgwMpH///rKalngG4prF+iFoKxcuXGDAgAGyFOxnn31Gx44dOXXqFB06dGDVqlWcPn0af39/adxnZWWRmJjI48ePZWe/6tWrG5WwFUhJSWHhwoXcvn0btVpNTEwMbm5uzJkzh1GjRqFWq0lKSqJ///7cunXLiOLx8ccfo9FoWLRoEb179yY6OpoyZcoQHR3NsmXLGD9+vCwHmpmZKaMUzZs35+zZs9KegVLq1ZkzZ5gyZQrz58//w3L1p+kZYsckHpoyq175s1atWuzfv1+WnRIPXhTjHz58uKzj9zoXvph4Sk+m8ASLB600mIVShF84c8oSTkJRi9CrMJyFohc7TWVHKuFdFr8LJSOUU/v27dHr9bRo0UISx9VqNZcvX/7Ve9jQzIwBOh2tCwsp4+EB5uZ8n57OCk9P1BYWmP+s5PPy8oyU3bp16xg4cCCFhYUyrCLGXlJSIo3sjIwMSTUQ1y6MV3FflM8sMzOTH374gVu3bqFWq6lbty6dOnXCy8uLJUuW8PXXX7Nq1SpsbW3JyMggJCSEZcuWSe+88jmI56Y8V25urkxEFDwytVrNBx98QHZ2Nm5ubjx9+pQvvvgCKF3UMjMzpRFRp04dFi1aRM+ePV/r5dm3bx8bN25k8eLFku+cmprKRx99JLnuu3fvpnv37lSpUoX3338fGxsb8vLypKF47NgxVq5cyaJFi7h7925pRYSfk9Fq1aqFnZ0dQ4YMoWbNmtKgqVevHkFBQZw6dYqYmBgSExM5e/YstWrVYtu2bUbtf//ueFmuBe9f/C5eZmZmtGvXjtWrV8uGNPDLs166dCndu3fH3Nxc1n1VbkxfzlUApHyJeao0YJXfEfgtuRYKWBgHSqNZeECUHmflOMTvxcXFsmxi7969paxZWlqyevXqX7+JFy5woXlzgh4+xNxgwNbJiVtlynCuTRsKFZtxZYKUubk5CxYs4L333jPqaqmEkP+srCymTZsGIA0Lcf9epseJslXnzp3j0qVLlJSUEBwcTKdOnfD09GTBggVs2rSJMWPGyEQcLy8vPvvsM9mURDyDl5+X8NyJc4rEO5ufKT0DBw6USYAZGRmsX78eKM2zECF9gKCgIKZOnUqfPn0oV67cK7fzzp07fPDBByxdulQa1Hl5eXz55ZfcunWLwYMHyxbnwrvk5uZGdnY29vb2qNVqjhw5IpN279+/L8tMZWRk0KpVKywsLHjrrbeoU6cORUVFmJmZUbZsWfr378/169clpSU2NpZDhw6xbdu2127a/64Qc+nlZ6fUf0KuW7VqxcaNG7GxseH58+fycyKZtnLlylhbW5Obm0tgYKA0DpXzQ8xtsSET+l0kGippjcrcIPgleV3oB7E5FnKh9IgLnbPe0ZGv8vMpyM+nWNA39XqsXrPWFBUVyXkUGhoq+dRmZmZGpQ1fwYULHK1bl2oxMZgDDi4uXHRx4XCDBkbRM+XGV61Wy41V69at5YZe+Vw0Gg06nY6MjAxZklWr1Rpt7oV9Iu6FeGZ37tzh0qVLFBYW4u3tTceOHSlbtiwTJkzg8OHDfPLJJ+h0OvLz87G2tmbMmDHSGSTkWumsUD4vjUZDZmam7AXh5OSETqejffv2NGrUCH9/f9atWyedRcIOEPrO09OT4cOH07dv31e6GEJpc6VevXoxbdo05s6dKzc127dvZ8uWLYwfP56UlBRq1apFcnIy/fr1o0yZMmRnZ0sba8qUKVSvXp3Vq1fz6NEjxo8fL6un9e7dG4AmTZrwxhtvSHvJ0tKSZs2aERkZSVJSkrQxvvrqK1asWEFgYCCZmZl/SK7+lNGsVKbKcKIyMVBM6D59+vD5558TGxvL0aNHCQ0NJTw8nPXr19O5c2fKly/PtWvXXqmWIBSgkpP8axBKU+ktfhlioRCcJUtLS1QqFUVFRVy+fJn4+Hi0Wi01atTAw8NDnl94vARF5GVFAr+EuIQhLbrbiRDs48ePXxnPmZ8T5gAwGKhbrx4ZP2frWivurXKXWVxcLDsnvaxUlYaBoI8oDWvhWVcmO4jdaWRkJF9++SV9+/Zl0KBBqNVqTp8+zdChQ3F3d5cC5eHhQd++falUqZLcQYtrVlI+XvbiGQwGWS85MDDQqEuX4Jj36NGDjIwM2dCkUaNG+Pr6kpGRQc+ePSlbtuyvPv+CggIWL17MoUOHjJSZk5MTK1eupF27dtSvX5+uXbtStmxZPvroI2mECPrFyZMnUalK2/nWq1ePKVOm0KBBA+bOncvYsWOpU6cOhw8f5osvvqBixYrScFer1bII/vXr16lcuTJnz56VIeZ/ktEsPDzKuaH8WxmVqVmzpizvJwrOJyQksGPHDuk1SUpKorCwEGdnZxluVBq3vwelXL/sdVZuooWciPkkjO7Hjx9LxR8QEIC3t7f03oiXku4lfjcYDEZtX5XGoVqtlp0q16xZ8+qgbW2pKzbLBgP/+jnhT1NcjLrkl7J7yvMWFhYyYcKEV5KeBZTyJNYsIf/KRGVl+FckAM2fP5/WrVszc+ZMrKysuHPnDjNmzJBdyEQUQHQYVEbZlGvqy/deST8zGAyUL1+euLg4eb8MBgN5eXn07t2bR48e4e3tjYuLCz4+PrRs2ZK4uDj69etHlSpVfnN9nzJlCps2bTLqvKrT6fjwww8ZN24c+/fvZ+TIkRQWFjJu3Di58VOpVOTm5rJ9+3aZDPjuu+/K2q+zZs2ie/fudOzYkQcPHrBw4ULOnj0r55GgDjo7OxMeHi5LDgYHBwP8YcX6d4AyCU5cn5jfyt8NhtKOcw0bNmTXrl2sWLGC0aNH8/DhQw4dOkRqaipTp06loKCAmzdv0rVrV7Kzs6UhJxLE/4i+FkmEr4vaAnIzKT4r5rxGo5GlDg0GA25ubnh4eMiGakp6gNDdSnkT65mQGxGR0mg0tG3bVtK8Dh8+bDwgW1ta3L1b+rvBwIeTJpGRkYGmoAD1zxvxl+W6pKSEvn37yohlixYtjPjUSgNbbHDFcxCfU0YCxIYBYOXKlQQHBzN69GgcHBx4/vw5GzdulPIr1u9GjRrRsmVL9Hq9pNAoI/JKvOw4cHR05NmzZ9jb20uqiXK9+uGHH7C3t8fDwwM3Nzc6duxIREQEQ4YMISwsTF7n6zBjxgzmzZtnlPir0Wjo1asXubm5fPnll5w8eVLWT3ZxcZEOktzcXFasWCHnXLt27XByckKj0bBmzRrKly/P4sWLSUtL49NPP5UR6uDgYAoKCjAzM8PJyYnnz59jbm7Ojh07jLog/1H8KaNZq9XKMIl4OEIhKnnCYnGdNGkSZ8+eZc6cOYSEhFCpUiVmzJiBi4sLT548YdGiRcybN88orK+kHii9RUrvr9IDIgTq5ZCrkvesNMpVKhXh4eEcO3aMxo0bU6tWLTIzM7lw4QLZ2dl06dIFCwsLqdyViUBK3qVQYqJUjhACwaWUHYUo3dlqNBrpga5WrZpcFBITE2XFD6WCViY8KblCL4fYlIuVUpkpjXkxMZVGs0ajYenSpaxcuRIHBwf5HcGdTk9PZ8uWLahUKp49e8bcuXPp3r079erVM3rOyoVZ/C3GIO692J3WrVsXHx8fHjx4QF5eHoMHD+bhw4fyO+fPn+fatWv4+/szduzY3y3pdODAAbp168Z3333HtGnTyMvLk0a8CBkeOnQIQHaTFM9OzCNl2TMLi9K22WvWrMHBwYEVK1ZgYVHa/bFt27YMHjyY8PBwnj59SpUqVbh9+zbPnz9n0qRJTJs27Xdbyv5dIWRa0K5ECSjlRljcMyitBVq9enU+/fRT7t69S9myZenbty9lypQhMTGR6dOnM2TIEHmvhYIWyYAv8/5flm0B8b2XIxlKuRZzGkojDD/99BNVqlSRZclE857mzZvLihvKqJSAci4LeVeGkIXMKKsnvP/++9KzLUpATZ48GTMzMzn/RHk55bhfpnsJb9zL+QBKiI2xsv67GJsyzG5tbc3ChQv5+OOPKVeunLwuQfNKSUnh66+/xsbGhrS0NFasWEFMTAw9evSQjgFx/pdpLspxGAwG6tWrx7Rp0+jVqxehoaFAKVXqs88+Y9++fdKbd//+fSIiIrh69aqU698ysB4+fIivry93795lyJAhUnGLZ5Kbm8uSJUvk562srGRirlifBT0OSr31jRs3ZsWKFbi7u7Nz506sra1lDde2bdvKboJBQUG8ePGCJ0+e0K9fPxYvXoyzs/OvjvXvDGU0WBhfLztk4JdnWrVqVQIDA5k7dy6ffvop/v7+NG3alEqVKpGTk8PSpUtp3bq1kWdS6TATc0QYrEIvijwl4WQSOki5KVbKhdi8CmdPQUEBZ8+exdvbW7bDfvbsGWfOnJHNbdRqtTTuBMS8FfNYvCe4uGKzKapb7N27V363Z8+eWFtb8+233wIwYMAALCwsJPVSJMGJa1B6b8WroKCAli1bGuln5bxX5m8oDU3lvbW0tMTW1hY7OzvWrVtH9+7dqV+/vpGc5uTkYGZmxpgxYwgKCiI/P59t27axaNEixo0bZ2RTiHVTjEesN2IcUFrbfdOmTUyaNImaNWsCpd2Bjx49yr/+9S+ZyBkbG0t0dDQ3btxgxIgRMkrwaygsLOTJkyc4OjpSrVo1WXNe2FLKxlZiTLa2ttJxKORa3Ftzc3MCAwNZu3Yt3t7ehIeHs3DhQhYtWsStW7do3rw5kZGR7NmzR9b0f/z4MY0bN2bNmjWvjXD9EfypOs2LFy/Gw8MDOzs7Iw7d64w3+CVs+/TpUxniF7xTvV7PuHHj8PLyoqSkhMjISI4cOUJubi7lypWjevXqRsXSBUlfWcFCST14OTyiVqul4ld6w9PT09m8eTMTJ06U4SMRYjl//jwxMTG0bNnSqHaqUOrCcFXynpWCruQxifuQlZXFuXPn8Pb2luMUnMTw8HD8/f2xt7fHxsZGhmGU2ebKRUnJSRaLnvKzYgMj2pCLWsTKklbiderUKbKzs3nnnXfk/cnMzGTAgAFs2rSJJUuWULNmTRo0aACUhkYHDhzIV199hVqtpnLlyly7ds1onig5qUoDICcnh2nTptG3b19q165NUlIS8+fP5+bNm5QpU4bHjx+zatUqjh8/TmFhIVFRUdy4cQO1Wk39+vVp3bo1bdq0kYpZYPHixWRlZTFjxgzefPNN2WBFnDs7O5stW7bQuHFj2rVrh5+fn1FZQdEyFOCHH36Qi+zt27clxeLp06cUFRVhb2/Pe++9R6VKldi+fTuHDh2iQoUKrFu37pVxKWXmn1DP9cMPP8Td3R0nJycjvr9SvgSUcpeVlcXatWspKirC399f1k8eOHAgwcHBlJSUEB8fz9GjR0lNTcXFxYUqVaqg1+vJzs6WjQ2EnInnJtYNYagrk9DEPFcaAeKZfvfddwwePBgbGxujSh1Pnjzh/PnztGnTRlI1lKFkpcGuPL9yAy+MSCGfen1pwxHRnVAY3BYWFtjZ2ckIlWgZLe6dcsMPv8jMy55m8VPJZxSyLCIDgoohjEY7OztevHjBnj17mDt3rtyMl5SU0LNnT5YtW8bFixd5+vQpb7/9tjynSJR1cXGhVq1anDx50mhTIe6juGdKw2Tx4sWEhYXRtGlT8vPz2bBhAwcPHqRs2bI8efKEDz74gPj4eBITE0lNTeXevXsUFhZSvXp12rRpQ8uWLWncuLGR0XDs2DEOHz7MqlWrqFixIg0bNpT3T3jivvnmG0JCQmjSpAkVKlSQtXah1OARWLVqlbzn8fHx7N69m9zcXF68eCG5t3369KF9+/bs27ePXbt2YWNjw1dffUWHDh1+VWb+CXI9fPhw2QhKSVtS6mwwzh0QhuCOHTt48eIFgYGB5Obm8vTpU9q1a0fdunVllPDkyZPEx8ej0+kICgqSdD8h24LvLBL/hAwJSpbS2SSiJMqcKaG/f/zxR5o0aSIrSwh9nZqayrFjx6hXrx5FRUXyfEpPs3gJg11Em5UOAWGcCs50RkYGx48flzkBIsHRzc1NnsPJyekVmqjyBb+U3Xv5/sIvuVfiubxc+13ocDs7O1mGbu7cuSxfvlyWpdRoNIwdO1Ymu65atYqZM2fK8y1btoxy5coRFhZGk587FysdgEpqiXIN1Gg07NmzB0tLS9q2bYtarebYsWNs3bpVdmZt27Yttra2PH78mKKi0q7PwnZr06YNrVq1omXLlkZOhsTERN5//30uXryImVlpmVdx70Rfix07duDp6UmtWrWoXLmyLPcJpR2GBWbPni0dD9nZ2fz444+kp6eTnp5Obm4uGo2G5s2bM2rUKDn27OxsFixYwIgRI15r3P+PtNEWZdkqVapESEiIkWdGeZiXw41isgql6ubmhouLC1CqND777DNUKhWtWrXCysqKa9eucfr0ad5++23c3NyMBFCZ1KPkaMkLUihcJW9LhC+3b99Os2bNCAsLk27/4uLS7kTJycnMnDmTgQMHUlxc2qJW2WBF1PdUKg9xLnEtooB7cXExWVlZJCcny4cISINaZCCr1WrJB4TSYt9KLrLYmb/sLReKVCwsSg+yEEJx3UpjWQjmqlWr6N69OzVq1JBcsbVr12JhYUGXLl24ePEi165dY8yYMXKhWr9+PTqdjrZt2xoleABERUWRmpoq26wrw2P37t3j6dOnnDt3jqioKJKSkjAzM5PJPMePH2fBggVGobbY2FjWrl0rj52Xl8fChQupUaMGTZo0Qa1Ws2PHDhYvXsy5c+eoUqUKNjY2ZGdny8QzZZtPrVZLnTp1aNiwIbVq1ZLeCbF7FYaLsmB/bGys7F4WGRnJzZs36dChA3v27CH/54TNX9tZ/5OU68CBA1Gr1fj7+xMWFiaNQqVsv87gE4Zlbm4uSUlJMmQHSCM2MjJScv4fPXrEiRMnaNy4MQEBAUaGs7JCjnJ+i2OJ8yk3iFqtVhqPd+/exdzcnC5dusj6q0KxJiQksH79emrXro1Wq5VlsZQbYjHvoFShiQ2nCPkLxStCxqKElJgDYgE3NzeXMizGKhKkXlawwCv3V1yv4EAqI1AiUUf5EsrWzs4OW1tbTp8+jU6no2fPntjb22NhYcHly5fZs2cPkydPJjc3l8mTJ/PVV1/JNe3SpUv89NNPjBo1ysg5AZCQkEBcXBz29va4u7sbVUqIjo7m2bNnXL9+naioKFJSUigpKZEdx6ZOncrnn38uE5BE17AffviBnJwcWWngvffeo23btjRr1ky2xB4yZAhnz57Fz88PT09PWZYvKytLli6FX5oY1apVi9DQUKytraUzJDs724gKI7z/SUlJpKamylru4eHhODs7ExkZaUQT/C2Z+SfIdZ8+fdDr9Xh6ehIaGiq9u8qIpNJTquTJC2MxISEBS0tLfHx8pByeP3+eY8eO0bBhQ1xcXHjx4gXnzp3D39+fqlWrSsNZvJTzSdxbJX9f6eBSyrROpyMrK4u7d+/St29fnJ2dpTympaWRkJDA4cOH0Wg0MvErMzNTFhNQ2gvi3OK4gp4h5oZYW8QcEzoXfqFCOTs7GxVBeFn+lZWAXrcpBqRNoozSK8ellGlra2vs7e1xdHQkOTmZU6dOMWnSJNnEJycnh+HDh/PVV18BMHDgQDZt2iRzol68eMG0adOYNWuWrEgioi+ZmZlER0djbm4u+c7CeZGUlERMTAwPHz4kMjKSjIwM2ZH3ww8/pH///gwbNgxvb29UKhVZWVnk5ORw8eJFXrx4QV5eHmlpabRv356hQ4fSsGFDHB0dKSgooFGjRly+fFkmi4vGOGKeKOlPfn5+hISEUK1aNRwdHeWcFI4WMWdFp8qMjAxpb6WlpRETEwOUJguLa/ytEnh/VLb/FD1DrVbj5eXFpUuXWL9+PZMnT8bX19fIw6h09ysnj1qtlgu7wWAgJycHtVrNypUrqV27Ns2aNZOeBD8/Pxo3bsynn37K+++/b9ScQCjql3dwL3O2Xk54E7yghIQEateujaOjI9bW1jLLNzMzEwsLC6pWrUpeXh7Ozs5Gu3Fl0psIKyuVuxCwlwVKlOARn1dSF4TX7syZM0Cp51McSxjMr/P6KT0EyvMLY1vprf41r4JOp5MNPMTYIiMj6dKli/QiinIwdnZ2JCcnExwczJkzZyQ3TKUqrWu8cuVKypQpg6urKzt27KC4uJjRo0eTk5PD/PnzJbcISkOp48aN4/3336dNmzbcu3cPQHb6y8vL48yZM+zatYvU1FQqVKhAr169WLt2rVEzkTt37tC+fXtWrlzJ3r172bZtG3q9XpZEtLW1Zdu2bYwaNYomTZqwZ88etm7dyuzZs4HSnvcffvihNJjE8zt16hRbtmzh7bffxtPTEzs7OxkWDA4O5vvvv2fKlCnMmzfvz4jO3xp5eXlUqlRJLrIDBw6kRo0acm4ooztKT6PYZKjVatzd3SkpKZG1VU+fPk1BQQFTpkyRuQGenp6EhYWxdOlSbG1tsbe3N6IZCANWaUgqPb5C2YifIrRqZWXF8+fPGTx4MJ6enjg4OEiuYEpKClqtllq1apGRkYGXl5eRsjYYDHLzJ7xUgh+v5DYr57yZmRk2NjavcARfpgZZW1vz9ddf079/f6MNlpLOJH6+7GhQrgNCqRoMBubMmcOcOXOMNuvKY1haWpKeni43fwCPHz8mKChIyrWtra3cFLi4uFCpUiW5YRbrjMh3sLKywtfXl7i4OJKSkujXrx8ODg6sWrWK8+fPy/Obm5c2IJk3bx4TJ06UlWOioqIIDAykqKiIe/fucfjwYeLi4nBycqJp06bs3buXZcuWsWzZMqCUcvXmm29ia2vL4cOH2blzJ+np6UblTk+dOkXt2rUZPHgwx44dY9u2baxdu5a1a9fi5+fHmDFjMDc3Jy8vT8r1o0eP2Lx5M82aNcPb21t6YH18fAgKCmL37t107NiRo0eP/mVy9d9GYmKijNguXryYZs2a0bx5c4qLi41KPiqNZ2E4izno6OiIXl9a6kyj0fDs2TMuXrwoy5cVFhbi4uJC+fLl2bNnj6TWaLVa6VRSlqVT2gPKyKqykIAwIG1sbIiJiSEsLExunkS52/T0dJ4+fUp2djZHjx4lKChIPmtlrXOlXAsal3CkCVkWRi+U6sX79+9TrVo1I7oJIDcBDg4OnDlzRrZ3fpn+obSBxOv06dPUq1dP6mclrQrg22+/5b333nslai8MQwuL0g6hygpE0dHR+Pv7GzknRY8IDw8PI0qXsAdSUlJYtmwZubm5+Pv7k5GRQXR0NK1bt6ZSpUps27aNU6dOGUXtGzVqxKJFi/jhhx+koysxMREXFxf0ej1xcXGcO3dOdmQOCwvjwYMH7N+/X9aO/vLLL3nvvfeoWbMmkydP5vz580RFRWFvby/l+tGjRxgMBj755BNu3rzJtm3bOHToEAcOHMDe3p7+/ftjb28v6TVqdWmVjR07dlCpUiW8vb3lplmn0+Hl5cXFixdp1qwZjx49+k2D+c/gTxnNPXr0wNXVle7du5OUlMS4ceNYtGiRNAwBuasD47qc4uGL94XHJiYmhtGjR0thUatL22taWlrSqVMnzp8/T/PmzaVSEF4fMdGV3hmlJ0rphRXHFoLycthZTGQR4nN0dJQJXUJpi0n8cu1JcW5xXnEuEdIRDRqEYaqsxCEmVJcuXWTynuBwGgwGIyNBnOdlfqFyl6w0mJWeaqXBLMbSuHFjtmzZQq1atdDr9ZQpUwZfX18iIiIIDAxky5YtzJ8/X+5Q9Xo9MTExuLq6yuu+ffs2a9euZcmSJWi1WjkHoqOjmTVrlmwpun//furXr4+1tbVcuL799ltpMAPMnTuXKlWqcPHiRfLz8+nTpw/vvPMOH3/88WtLPBUWFqLVannvvfdYtWoVkydPlmHcjIwMPv74Y4YNG8aIESOAUq7p5MmTiYiIoGLFipw7d459+/bRsGFDOZfMzMx48eIFmZmZLF26FCjt2ubn54ePj4+kDa1evfp/ldE8YMAA3N3d0el0DBkyhPHjx+Pq6kqZMmVe4cvDLwu50rsiDF4xZ0+cOMGsWbOMvDr5+flkZmbSq1cv9u3bR5cuXV4xFIUhq0zqVfKilWFbJT1BKB9lmF+tVssyUCKy4OjoKJWS0oOrDFcKmVImPSuPKzzOgBEPWKxtWq1WRkl69+4tP6P0NolrVVK7lBQV4Z1W1sxWqVTMmjXLiDIino0Id1erVo0ZM2bQo0cP9Ho9bm5uBAQEcODAAQoKCli/fj3t27eXhoQoAefi4iLHJ+hT06dPx8nJSRo76enpzJkzBx8fH27cuMGaNWvo1KmT7HYGpZzmHTt2yHu1cuVK6tevz/Xr18nKyqJZs2Zs2LCBZcuWyXwDJYShP3fuXEaMGMHEiRNlNZOCggJWrlxJUFCQjE5WqFCBd999l7i4OCpVqkR0dDRbtmyhQ4cOcqMj8lKys7MlbzUoKAhfX18Z+q5RowYnTpwgMTHxH1WL+bcwdOhQPD09sbKyYsCAAcyfP59r165Rv359I/2nTO5WlmBTRlWFgScaadnb28sIZXZ2NikpKXTt2pVVq1ZRoUIFI7kWUV+RK/QyfVNsgF/eCAvPqzCwldQlS0tLSWu0sbHBxcVFrhOCbqjcFAsHgFhHxO/Ccw2/rHGNGjWSvF1xfwyG0t4TJ0+eBJAN2cTGGn4plKDczAqHQWhoqFEUR8xLYVuMHDnSKD9MjKe4uFhWeoqNjZUNigICAjAYDDx+/Jjs7GyOHTtGgwYNZNRURFKUbICioiJmz57N4MGDCQgIkA3SCgoKWLFiBZGRkbKT87Bhw3BwcJD3PTMzkxkzZsjr2rNnD8+ePePJkyekpaVRpUoV9uzZw7Fjx1i7du0r/GTR1GnGjBn07t2bbt268fnnnwOl6+nu3bu5fv0627dvR6vVEhwcTJ8+fcjIyKBfv37s37+f9evX06dPH3Q6nXSoiLFdunQJgJYtWxIfHy+jcpUrV+bq1aucOnWKJk2a/GcC9TP+lNHs7OyMs7MzGo0Ga2trhg8fzp49e3j77bcBjHaSwrAUO1plmEQI0MOHD6lVqxZmZmbY2trKNtf5+flkZGTQvHlzpk6dSuvWraXSURrPSiULryp2+EUwxUJQrVo1Tp06RcuWLY0mvVBaERER9O/fX1IzlIIvElHE/5R1Dl/2DikNitdl6hcXFzNw4EDMzc1xcHCQu36dTmcULhY8NHEtQtlrtVqj2oKzZ8+WRoVS2SsXD3H+oqIiyQ/bsWMHkyZNAkrLu3388cfk5+fj7u6OtbW1nPzis19++aUcx1dffcWCBQvkBkOr1XLs2DGWLFlCdHQ0+fn5DB48mHbt2r0ylwYNGkSnTp2ws7MjNjaWqlWrEhcXx9SpU3nzzTf58ssvadmypXyO7dq1k0qgVq1acmHp0qUL7u7uzJ8/n8mTJ8vQ+IgRI4zOK55ZUFAQ58+fZ/LkyaxZs4bNmzcTGBhISEgIlStXpkOHDtSoUYOZM2cCpaHI8+fPo9VqZeUIkRzxvwWenp64u7tLb++0adNYsmQJn3zyCWDsOVFmqQu+otJg1ul0ZGdn4+HhgbW1tUyKtbS0lA0LgoOD2bRpE+bm5pLLJuTjZS/wywloLyeqCb5tjRo1+OmnnyhTpoz0xAhFUVxczOXLl2V7VhGGfHlTqUxKEt8VvyvDykpPuDCehWEhjN7hw4fLDTeUGvMibKrRaKSnV7nxF0pXWdpOOBSEsldukAV/XxjM4hg1a9Zk8eLFssqH8Iw1b96cO3fuMHLkSNLS0uSzXb9+PT169JD3fdOmTbz//vuyrX1JSQn37t3jX//6F48ePeLatWvUqlWLwYMHvzKXateuTWpqKjqdjpKSEkJCQnj48CHDhg3jrbfeYv/+/bz55ptyvBUqVGDx4sUyWU/cr+rVq7NhwwbmzJnD559/Lpu49OzZkxUrVrySXOXl5cW1a9eYOHEiBw8e5Pr16/j6+hIYGEj58uXx9PRkwoQJbNiwgcTERCIiIoiIiECj0RASEkJsbCx2dna/2mDlnwgfHx+8vLyknHz00UeMGDFCOqGUOkEYd0oai5AdQSG0srKioKBAVkRxcXGR8i7oBIJqKORPOb/FJlVJBRGOHwEh18LIDQoK4sCBAzRo0ICSkhIyMjLkvM/KyuLChQsyGVB4WcG4c6hyDRHriJB/QXMSm+KXHQNKfnRJSWmHUWWCspmZmaQViAiU2BQry9bqdDppcAN069bNSK6VtoNyE69sINKyZUtmzZrF1KlTASTH+syZM2zfvp358+eTnJws78+OHTto3rw5UCrXJ06coEWLFlSvXl1uAmJjY1m5ciV3794lPT0dnU7Hxx9//Art0M7OjoyMDLnGt2nThosXL9K9e3f69u1LREQE/fr1k/aCSFw0MzOjefPmsvqHu7s7W7duZd68edSpUwd7e3v0ej3NmzeXBjP8Itf29vZs2LCBCRMmsHPnTlatWoWHhwfe3t6ygdKgQYM4ffq0zIsTCAoKIiUlBbVaTWBg4L8vSC/hTxnNtra22NjYAKVGVMuWLWXXpZfpC8JgFqEZpfdUWXdQQOnBBYyUo9gtCmFWhkmVXmPx8+XJrvR+N2nShHnz5lGuXDnc3d2NBGvlypU0a9bMSIELxaYcvzi38AwpDXixIVDyHF8nfGIxEscSO16xqHz33XeMGjVKhtJE6NXe3p4FCxYA8MUXXxgZLMpsaaUXTVyf0uNVUlLC2LFj+fbbb2nXrh1BQUHo9XoiIyP55ptvWLdunVTweXl5zJ07l5YtW8odeFpaGjqdTiaZiFbZW7dupUWLFgwePJjvvvvuVz2yKpVKZqUHBASQkJAguY/z5s1j3bp1RoIbGhpKp06d0Ov1DB06lH379tG1a1eWL1/Ozp07OXjwoHzOotbzpk2byMjI4PLlyyQnJ+Pk5MSQIUOYMWMGp06dIjo6mq1bt3LkyBG2b9/Od999h5eXF+7u7rRo0YLHjx8THR0NQJUqVShTpgxZWVnSwPjfAgcHB9mmtqCggMDAQNLT02XERFljVdkJTxif8AsPV2z6lJEZMT/hF76kmIcFBQXk5ORIz+fLtCTxWaEIlMpcSdHy9/fnwIEDXLp0SVIRhMwePXoUR0dHLCwsJBdWyMrLSauWlpZSUYkNtZBxIVdKo1lJW1GuX+K4yvVA8LwHDRokq0CICjz29vZ88803QGm5NbG2KCkayrVHKcfKZyQU0JEjR2jVqhX+/v5otVry8vIYNmwY69atIzc3V37/+++/R61WU65cOTn2x48fM3HiROm9F/SJypUrM3XqVLZs2cLGjRt/dT4pKwfdu3dPGgWnT5+W9CiBcuXK0bZtW6C0IcmyZcuoVq0aW7Zs4cSJE2zfvl16qaytrcnKyuLYsWMUFhZy5coV4uLi0Ol00nO1e/dukpOT2bZtGz/99BMnTpzgyJEjODo64urqir+/P3Z2drIcqIuLi9wET5gw4R9Vh/n34OLiIjvC5eXlYTCUNtdJS0uTyaoip0fo1ry8PDkvlTIhvL5CroVeFzpcyQMXxxQ8U3FuwVlWelgFZVEp10q+tajIcPjwYerWrWtkVIaHhxMTE0Pjxo2NOO4WFhbo9XpZUQWQVa6Ehxd+oZCKcSk36srN6Mvl4gT1UiQOajQaLl26RKNGjYzuoVqtlnkeoq7xgAEDjBq3CaNZrC9KG0qt/qW+dUlJCQEBAeTk5PDBBx/QsWNHEhMTyc/PZ8KECSxcuJCSkhKys7NRq9WcPHmSM2fOMHfuXLkenzp1itmzZ2Nrayvzuz777DPs7OwYN24c586dY9iwYb+ap6Pk+e7fvx+DoTTxOSEhQRrnAiLRT6fTsX37diZOnIibmxtbt27lyZMnbNy4kaSkJPlsUlNTuX79OmZmZly/fp3o6GjUajUtWrRg4cKFrFmzhi+//JJdu3bx448/cvToUa5du4ZOpyMsLAydTkdgYKBRmd8WLVpw5coVRo4ciY+Pz5+Wn1/DnzKalYYsYMS1VU5mITCCeK4MRQiiv7m5OVWqVGH79u306NGD9PR0ScCHUq/10aNHqVatmlErXmULTjHhhAGuPD8Yl2ATL0tLS0aMGMHcuXMJCAigUqVKZGRkcP78eUJDQ2nYsKGRoa9MuFMqMSGYyuMrS9goFe7LxrMQVnHPxP+V/OIJEyawfPlyo/s/a9YsPvnkE+bPn2+0uVDSQgQ9Q2k0K71jL4e9hw4dSmFhofS69OnThwsXLjBy5Ejs7OwwGAzk5ubSu3dvGjVqJI39zMxM6ZVJS0ujd+/ePH/+nLVr1zJw4EBUKhVnzpwxqrP6WxA7UUB2ItJqtbRr144PP/xQFqbftGmT9KCtXbuWuXPncv36dcqWLcuYMWOIj4/n+fPnPH36lP3798tdZpcuXbhw4QLz589n6dKlTJ8+nXfffZdJkyYxadIkuWM/duwY9+7d49GjRzx79kyO6f79+1y5cuUPXcs/DS/LtZLCJOaQmJ8icUP8Dciwqsj4Njc3l0le+fn50gA3GEpr+N69exdHR0cj41sYzWDcwER4Y+CXzfDL1S7EvB4wYABbtmxBp9MREhJCUVER169fx8nJiU6dOsnSZWLcSq6y8GyIsnTCOwUYbUiFIan01CnlW8kvVHqLBO1g2LBhkrohMGbMGJYuXcr48eNfKfumdDAoFa1yvRVrnhiPmZkZLVu25M033+TRo0cUFxczb948nj9/zqxZs1CpVFhZWZGSkkLLli0ZN26cjLopvePFxcV88MEHHDlyhE8++YQpU6ZgYWHBrVu3/rASUvIIVSoVrq6ulJSU8MYbbzB58mRZnefKlSt89NFHQGkH0YiICO7du4dGo2HOnDkkJiby4sULEhMTOXr0KIWFhbJ+fHh4OBs3buS7775jzJgxTJgwgZEjRzJy5EhZj//o0aPcunWLhw8fGsl1QkKC5G7/b4NyHomXmN9CvoU8ic2riLCKzwrj0MrKSnpSo6OjycnJISEhASsrKwyG0hyl1NRUKcfCeBRJ2cLjKkojisouQnZFxOhlo1mv19OsWTOOHz/OpUuXqFy5MhqNhoiICIqLi6VcCxsBjA1noWetra3lRlRAyL+geSm948ros/I4QuZEJ1LhWW3duvVvNknp0aPH/2PvrcOqzrr+/xfdLYig2ImKMordYncHotg1do2JYgd2d47d3Y7d3S2KQXdzfn/w3dt9Duitc888zz2/517XxYVyzvmcT+y1V73Xe8kgRMBN1Ommukw98DXRJe6Fvr4+RYsWpVSpUnz69Ils2bLRtWtXDA0N+f3334mJicHGxoawsDBKlSrFuHHj5F4nnrUIDhYvXsy8efPo2rUrc+bMwdbWlqlTp0qWr38lasIzISFBNnYXKFCA4cOH07RpU/T19YmLi6NTp04kJSXx9u1bzp49S2pqKiEhIbLxOCQkhIiICC5fvkxUVBQ2NjY0aNCAsLAwTpw4QdGiRWnTpg0TJkzAx8cHHx8fNBoN9+/f5/jx49y8eZO4uDiZ4BLi5+cneyX+Svkppzk6OlpmW9LT07lx4wb58uWTi0EVNQsCX0nLb926xfXr1+nZsycODg4UKlSIgwcPUqtWLalwGo2G0NBQ9uzZw4ABA4iPj9c6jp6enqSYEcotulpFRkoVXYyRjY0Nv/32Gy9fvuTdu3eYm5szZMgQDA0NZVe8ytIhsr+iPKqnpyc7kcW1CmOnTk9TDavqwOtisdX7p6+vz2+//Zbpfgp2iZkzZ8rzEgGDWuYRxl11eNRmQTXCFxunpaWlpE0zMDCgWrVqVK9enfj4eIyMjLCysqJIkSLcu3dPfs7Ozo6XL18SGhpKz549CQsLk1k+QGaO/4z4+vri6+ub5WuCV/Xs2bMsWrQIOzs7vLy82LJlC6VLl5asKEuWLKFNmzbUrl1b3vv09HRJgzVmzBh+//13xo4di4WFBebm5hQrVkxr7GdKSgqvX7/m+fPn/7Gd8n+FiNGrQq9F04+6LtWNXIVpiM8FBwdz+fJlWrRoQZ48efD29mbdunW0adNGGs309HQSEhJYv3499erVk7omjq+npyeD4tTUVOmIqwZN1TlVhEHw9fUlJCSE169fo6+vT4sWLeTIa2EExbmDNiMHIDONKmRDlHEFP724D+I8dB1oVdLT07G0tERfXz/LqsuwYcMwNTVl2LBhMlDPSqfFOarwDN2GYd1gx9DQkKJFi8oKWOHChQkICJCVKzs7O5nNEs9SGNewsDACAwM5ffo0R44coXbt2vJ+hISE/Ckns0qVKnz58iXL13755Rd69uzJli1b6NmzJ2XLluXp06csXLiQwoUL4+HhgZmZGRcuXKBo0aL06tVLK5j78uUL06ZNY/HixWzatIn58+djbW2NhYUFOXLkYMKECVrPJCgoiGfPnpGUlCT3qRMnTuDt7f3T1/WfKiEhIdLuisrvixcvcHJy0oJSCvukUo+JtRcXF8cff/yBh4cHHh4eeHt7s23bNjp06KDFYJCamsqhQ4coUqQIEREREnYFyOcUExMjs7SiWVs48ULPRFVHzbgaGhpSvXp1SUealpZG+fLlsbGxkX0IIuEkPq9WiQHpLAq9FvuOaNZXE10qxFQ32SSCYnNzc6k/YuqlKj4+PvLfInBWE1tqr4IuPEMNXoVPo1alDQ0NyZMnD4CEeg0YMEBWsW1tbTE0NJTVLPFd9vb2PHnyhEePHjFv3jwWL15M37595XneuHFD9gD9jOTJk4dXr15l+ZqFhQWTJ09m+vTpeHl54evry4P/NywmW7Zs5M2bVwbwu3btYtKkSXIPSk5OJjo6mrVr17Jv3z727NnDggULZMOfnZ0dQ4cO1YJqff78mWfPnvHlyxfc3d0B2LZtmxYN5b8rP+U0R0VFyYeUnJxMYGAg48ePz5RlEZGeuoivXr3K3Llz5bHMzc0ZOHAgXbt2Zd68eZIfU3SnRkREyAcYGxvL2bNnefr0qbyh+fLlo3DhwnJBi0Y6deKbKDOomRixsCADFpA3b175HmE8hNMMXzFWwmkWixu+Glz4ioVSeaHFcXUNqnoeqvEXmXghCxculOXwhIQEGZ2L+ysUSDRQ6tLYqE6zUMDq1atz/vx5DAwM+Pz5Mx8+fMDe3p727dtz5coVrWcmysqJiYncuXMnU+BSpEgROnbsSEREBGfPnpUOM8D06dPleNAfldTUVM6cOUNYWBiFCxemdOnSmd5jZWXF4cOHtf5Wrlw5Zs6cSXh4OLlz50ZfX5+nT58yadIkWUKDDONgb2/P1q1b6du3L48fP6Z169byOA4ODoSGhsr/BwUF8eDBAywtLfHy8vqpa/knSUhICOnp6ZITc9asWbRu3VoLAqFCj0QmCuDt27daFZHw8HCmTp1KpUqViIiIYPz48VhbW5OUlISlpSWfPn2iQYMGEh/54MEDnjx5AmQ8fwcHB/LmzUtaWprMegl6P1X/VNiWrj7Z29vLsrRw8MW6VgcgCP0V+ERxXLVKI2BnamAujgvaAwLgKyxDdZ6FbgoZN26cNGiqXosMlKrDIgDWdZ7FHif2m9atW7Nnzx7ZmPXq1SvMzMzo27cvx48f1+LKhYx9KjExUSYZhNOip6eHt7c3ffr04fnz5+zZs0c6zADr16+nYcOGWomIfyUajYYrV67w9u1bXFxcqFy5cqYSsL6+PsuXL5f0WZCh15ABF/Hy8sLKyorTp0+zYMECnJycpDMg2AJWrFhBx44dCQ0NpUOHDlrH//TpE9mzZwcgLCyMO3fuoK+fwQwgruX/Tw4zwMePH0lNTZVc4Tt27KB8+fJajbvwFapkYmIi9T0+Pp59+/ZJZ+jixYusWrWKXLlyUaVKFRYuXCgHTxgYGPDp0yc8PT3JkSOH5HV+8uSJ9A3EkI709HTi4+NJSkoiJiYGS0tLGRSrsEbhkIu+HrE/FSlSROqbyrkubLdq71SYpfib0BthywwNDeU0SfEZIbqQUzUJCF8zxkK6d+8uezwEi5CAiIigW4VQqmQFqvOs7rX9+vVjxYoVsnnx/fv36Ovrky9fPi2IqPA3ROJPvY9iv65bty6TJ0/m6dOnzJkzR8thvnr1KnZ2dnLf/FF5+PAhDx48wMbGhpo1a2YJbxo2bJgW85W7uzvm5ua8fPlS0slt376dX3/9FVdXVxnACGrP8ePHExYWRnh4OH369NE69smTJyU0JD4+nlu3bpGcnEzFihWlL/VXOszwk07znTt3yJcvH0+fPmXbtm107doVFxcXrXKpWuoUC3Tv3r0yGhOMBzVr1pTRaKVKldizZw+urq44OTnx8uVLwsLCmDNnDoULF+bly5ey3ChKIg8ePODMmTO0aNFCwimEoonFJzo/VdyfbrZYjT7FQhOiGlL1dRXHrMJCxGIXTrMaAal4R+Ggq5G9uG8JCQksWbJEbirCQRUZNzUaFecgzk2cj1A4cQ7C0YiKimLGjBmEh4dz8eJFHB0dqV69OkeOHGHBggV07dqVX375hV9++YWbN29qNUsBWoERQNGiRVmzZg09evSQZZ2XL18yc+ZMXF1dtYztv5KdO3eybNky6tSpg6urKxs3bmTMmDFyfPX3pEqVKpiYmHDw4EH69+9PREQEefPmlZPtxH0QG6iIVC9dusSXL1+IiIhgx44dcoTqly9f+PXXX7GwsKBKlSq8efOG2bNn06JFC7y8vJgwYQKLFi0id+7cP3x9/8ly4cIFSpYsSUhICDt27MDLywsvLy+tPgPdDJSeXsZkzWXLlsnjdOvWTXZwJycn4+XlxapVq8iWLRu5cuWS0JkdO3ZQuHBhPn/+TIECBfDx8ZG4ytevX3Pnzh1q1qxJamoGf7rKjy6CIKFzqh4JgylgVKBdmhaiGlIhqg6rBkz8TR2monss1ZCqUCu1hyEuLg5/f3/Z5CzOScDVVOiFet7qXqoyDKhVJdEVHxUVxfXr19HX16dx48bcvHkTLy8v6tati7e3NzVq1ODMmTMSqymOrSYS9PT0yJ8/P48fP6ZKlSpyAltISAhLly7l+fPnrFu37ofX1tWrVxk7dizlypWjaNGinD17lkmTJjF69Ghq1qz53c8WKFCAvHnzcuTIETloQmTM1JK6yEbq6+vj5uZGYGAgcXFxfPnyhdu3b7No0SIJGRg6dCifP3+mbt26pKam0qlTJ9zd3enVqxcBAQH06NGD8uXL//D1/SfLsWPHKFOmDOnp6Rw5cgRDQ0MJxRH2UuXaF05cdHQ0GzZskDjhxo0bU7ZsWamLBQsWJCoqisjISFmW//TpE2fOnKF8+fKkpWWwsjRp0kRmgkNCQrhz5w5FihQhKSmJyMhILSiHlZWVFlZfpbsUOqfiflWbrOL7xf/FtYiEl+o0Cx2DjOBRZfhRbbZInEHmKYfCWY2Li6N3794kJCTIpjPhe6j2R4VUqecukl6q3yDst4GBAWPHjiUqKorHjx8TFRVFyZIlKViwIHPnzqVo0aI0bdpUzlbYunWrrOqJwEBtEra3t+fjx4/kyZOHOnXqABn0fJs2bWL37t1s3779h9eWYD1zc3OjQoUKPH78mDlz5tChQwf8/Py++1nRHHj27FmaNm2KkVHGZOTixYtL1hRRHRH78C+//EKBAgVkQ+Lbt2+ZPXu2DPKmTZvGhQsXqF+/Pubm5gwbNgwTExMCAgKYM2cOFStW1EqQ/TvyU06zcCqKFi0qcTC6G64Ksn/w4AGbNm3i0aNHQEaWcNeuXZiamvLu3TtevXrFvXv3uHPnDgATJ06kW7dupKWlce7cOY4dO8bmzZv58uULq1evllhWITY2NuzatYuyZcuSM2dOnJ2dSUlJISoqShov3ZKLWERqxkUtc6pRqKqIWRlZNSulYp9FZ7yqIKLRQmDA1AhZbQ5UMZdq44VuJCrusdoIqGabhcKKpow5c+YQGxtLqVKl2L59Oy4uLtjb21OrVi28vb2Ji4tj5MiRWFpaZsqSq069mmE7duyYnOzVq1cvEhISyJ49Oz179vypzOyRI0c4ePAgR48eld/dsWNHPn36RMeOHdmyZYvMEmUljo6OdOjQgZ07d9K7d28sLS0JDw+XjpZwDsT1iGdsbm5O9uzZsbKyIkeOHMTGxhIREUGHDh2YP3++LO9AxsjkRo0a0a9fPwAaNGjAxYsX/3/RbX/jxg2uXbuGm5sbgwcPJkeOHJkgDOpghHfv3rF7925u3rwp76sYPR4REcGZM2eIiYmR/NwdO3Zk3rx5aDQabt++zYEDB9i5cyfBwcG8fv1aq+MZMvaJ48ePU6lSJVxcXHBwcMDf358+ffpIQysMnLr3iMYmAV1S9Vq8RzgIajZYdVbV0qjQKWHYhHFVK0xCr0WJX2S1VcYgwUogstyqXot7m5XBFg1DuoMfBN7fwMCATZs28fTpU8qVK8e+fftwdHTEwcFBTvNMSUlh7ty50hCr165W39SmyhMnTmBlZcWYMWMYO3Ys4eHhWFlZ4evrm2Vn/bfk6dOn+Pv7s2vXLi14U3x8PB06dMDa2poyZcp88/N6enr8+uuvDB06lJCQEMkyJJwW8TzVxqnY2Fjs7e1l07qg6AoNDWX48OH4+PjIxkOAPn36MHr0aIoUKUJycjLbt2/n5s2bFCpU6Ieu8T9Z3rx5w9OnT8mePTtNmzYlX758WhBB4YSKcechISGcOnWKa9euyQzqoEGDKFKkCCkpKdy/f5+UlBTu3btHfHw8VapU4dSpUwByXPGhQ4e4du0aiYmJ3L17V+t8zMzMuHv3LuXKlSNPnjxYWVmxdOlSmjRpQnR0tGyKFdVk+BrMCr0UvUNqkCn2eUDr2rKqCqvwRaF7IiGlUkump2ewcwh9V/VY2G21zyo9PV02LQobo2aRxbmJtavqtQiera2t5bn88ccfnDlzhrJly3L58mV5ft7e3ri4uODl5SUhC35+fhw8eFDaaLVxW33eT548ITo6mo0bN7Js2TLevn2LkVEGv/r+/fu1subfk6ioKPz8/FizZo2EiQAMHDiQQYMGYWpqSvv27b97jAEDBuDt7c39+/fJkSOHrJCJvVFXr6OiosiWLRvZs2fHyclJnmtoaCgBAQFYW1trVaC7devG9u3bKVy4MAkJCSxYsABbW9u/pJr0U05zs2bNcHV1lWMcRVMYZEQPJUuW5P79+8TGxjJ48GDu3r1LhQoVOHbsGPPnz+fZs2esX7+eBw8ecPfuXWxtbSlVqhQNGjQgf/78NG/eHMgwXDVr1qRatWrcunWL58+fc+PGDT5//oytrS3W1tYEBwdz9epVVq5cyb59+wgPD0dPT4927dpRo0YNrKys5KhUQKvEKZRSZCjU11WnUDiLQlQssJoREsopoku1Ie/x48esW7dOlpdCQkKoXLkyzZs313KURalZNA0ZGn4d4KI6zmokLb6zXbt2Ws/pjz/+kOdiYGDAyJEjad26NVWqVGHu3LkEBARQpUoVDhw4wLx58ySn8qxZs/jtt99YsGCB3KhAu+SsMpFERUWRP39+WrRoQYsWLX5mKWnJggUL2LVrl3wWQpydnRk3bhxLly7FX+GI1JXDhw+zbds2ChQoQFpaxoCT1NRUgoKCtBhSxPM6efIk5cuXl06CgYEBZcqUITk5mZkzZ9K2bVsthxng6NGjHDt2DBsbGwYPHsysWbNo0qQJhw8flowy/1SpXLkyrq6uODs7S+iViqGrWLEily5dwsTEhIULF3L8+HEKFSokdXnFihWcO3eO+/fvc/v2bczMzPDw8KBcuXJ06tRJ6rWenh6enp54enpy8+ZNLly4wMuXL3n58qWk+4qMjOTGjRssXLiQCxcuEBwcDGRkw+vUqYOhoSHv37/XYrhQS7tiT1IxwMIBVsuvqpOo6pPqYKsOs7m5ucS+Gxsb8+XLF9atWyeZCASkqHXr1ujr62eaJCqca4E1VEX3+4UxHzp0aKZndeDAAVnSXrt2LdmzZ2fw4MEcPXqUVq1a0bVrVx4+fEhAQAArVqwgLS2NCRMm0K1bNxo2bKh1/WrQrTY8RURE4OzsTJ06dWRG6s/I7NmzJbZYFXNzc5YuXcrgwYPZunXrNz9///595syZQ/bs2WVGuXDhwly+fJny5ctLhgIhQUFBMmMpHJNixYphYmLCxo0bcXBw0HKYAR4/fszSpUsxMTHBz8+PPXv2yKllgnLvnypFixaVtHMWFhYkJCRoMbBYWVnRtGlTDh48yPHjx/n9999xcHBg2rRp2NnZ0b17d0JCQuR0WI1GQ/HixSlZsiRNmjTRWhv58+dn6NChvH79moULF2JoaMj9+/cxNzfH1taWlJQUbt68ybJly3j06BHv3r0D4PLly1StWhUzMzOCgoIkU4puxhWQz1Q3sFX7gnSxx2o/j1p1Ep9VqfLMzc1JSUlhx44dvH37Fmtra6Kjo3FwcKBZs2ZYW1tLlg/VVsfHx8t9Qt1T4Kuzru5JgYGBmZ7VmjVrsLGxwcrKikuXLvH27VuWLFnCmzdv+PLlC/7+/oSEhDB+/HiWLFmCsbExfn5+DBs2jKSkJK2+DaHTam9WenrG4CmAevXq0aRJkz+9rtavX0+/fv20HGZxrYGBgdSrV4+2bdt+M7j+9OkTI0eOlJNMxdyIHTt20KlTJ+Li4jIlHJ88eULfvn0l9MTBwQE3Nzc5PvvAgQNa3xEeHs748eOBDNjVy5cvadKkCWfPnpWwrz8rP+U0P378mLi4ODQaDWFhYaxcuZLChQszf/58AIl7FRhjgF69elGnTh0eP37MkSNHpIMSEBBAvXr1tLowdSUmJkYOXRCDK1Rp1qwZDx48YP/+/bx7947Dhw8zbdo0tm7dSvv27Rk3bhyPHz+mefPmrFy5UmKKRFklq8YZQP5NxUqpWUp1MQjDI7JeKs7wzp07bNq0icmTJ2NnZyffK8Y///bbb6SmpsrpSaKLWdBeCfiKUER1gzAyMqJdu3YcPnyYY8eOaUFNVIzakydPcHZ2xtvbGyMjIx4+fMj48eMxMDDA19eX8+fPEx0djaOjo4R2JCYmyqyUGq3qMoDEx8dz4sQJ6tevj5ubG7169fppDuPg4GBcXFy+2VhUrVo1SbGXlezatYu2bdtSqVIl/P395XPr3bu3HL5jY2MjlfDly5csXryYJUuWaOFg8+bNi729PfPnz6dp06ayqTA1NZUDBw7g6+tLhQoVyJUrlwxEpkyZQqVKlTh//vw/ulHw0aNH6OnpSdzY/v37iY2NZdmyZVhaWnLhwgW5CQunq2nTpvj6+nLq1ClmzZrF2bNn8fT0ZNCgQbRs2RILC4t/+b02NjbSiValbt26BAcHM2rUKIyNjTl79izTpk1j5MiR1KpVC39/f+7cuUP//v2ZMGGCZOxIS0uTm6pqqFQcssgACeyhWNtCVAyj+L/4nHCeQ0JCmD17NqNHj8bNzU1mci5dusSsWbPw9/fXmgQqjKsuo5AatInvMTY2ZsiQIbKyJgJwEdSLpqXU1FRevnzJqFGjMDIy4ty5c8yaNQsbGxuqV6/O7du3uX//PuXLlychIYFy5crx7NkzChUqJO+NyJCpuO/U1FRiYmJ48+YNtWvXJleuXLRq1SpLrvV/Je/fv/9mxlZUdlQ6QlVu375NlSpVcHZ2xt/fX1KktWnThrFjxzJx4kTp1Orr6xMZGcmIESP47bfftCbdGRkZUaxYMRYtWkSFChU4cOAAjRs3RqPRcOnSJXx8fLCzs6N+/fpERETQt29fFixYQJkyZbh27Vomx+CfJE+ePJHO3M2bN7lz5w43btxg2rRpFCxYkJSUFA4cOCBL+mlpaXh6ejJ06FA+fPiAiYkJJ06coHTp0sycORMfHx+yZcv23e989+4dxYoVQ09PT6vHBTL2cjFhsnLlyly5coU5c+awePFiSpQowYQJE7hz5w4BAQH06tVL6rWenp7sbxDOstokqwaaYr6BblCsQjhAG9ZhZGQkJ8nNnDmTLl26UKpUKWnnxHTMQYMGkS1bNi04aEJCguSgVxmAVKiX+L+VlRWTJk1i6tSpEoIgbLXquB8+fJgVK1ZgaWnJjh078PHxwd7eHkdHR/r168eRI0fo3r07sbGxNG7cmKtXr9KgQQPS0tIkvZ9akRF6HRkZCWQ4kbly5aJatWo/3XcEGZWoPXv2ZPmaoaEhpUqV4tGjRxQvXjzT61++fKFixYpERkby22+/kStXLolBHjduHLlz58bDw0M+s5SUFPz9/WnXrp1W9S49PZ1ixYqxbds23NzcWL58OT179kRPT49Hjx7Rq1cvPn78iJ+fH9euXaNly5Zs2bKF6tWrc+rUKSpWrPjT1y2v8WfeLCa4qCLKI6pTFRkZKTvGDQ0NCQ8PZ+DAgfTp0+eneDAtLS21GrN0RTT26OnpkTt3bvr06UPXrl1Zu3YtU6ZMoVixYvzyyy9cunSJtLQ0SUX16tUrGa3Y2dlpZXPVCFfgrcQCVKEaahlH/NbFc69atYpVq1bJ0Z+QES136dKFKVOm8PTpU9zd3bXKpOr3605QEoZTnMuhQ4ck1ECUMdQSlIGBASdPnqR58+ayDGdmZoaVlRVmZmYSd7Z48WKqVq1KkSJFsLOzIyUlBQsLCy14htgMRCksLS2N5s2bc+PGDcLDw7lx4wZnzpzh8ePHWpixfyWJiYnfzdSqkJ+s5P3797Lb/927d9K45s2bVzrOjo6O5MiRgxcvXmBoaMiMGTNkYCIUUF9fn3HjxjF9+nQuX75MpUqV6NSpEwcOHODLly+ULVuWiRMnsnfvXoyMjChSpAjjx49n8uTJ1K1bl6NHj0qu43+abN68Ocu/C5pFsVGJhjzxGkDp0qVlZ/jPiNq8m5UEBwdjZ2eHpaUlbdu2pXXr1uzdu5eJEydSpUoVihYtyqNHj+S0rIoVK3Lr1i3Z+GRvb6+l18JxFtzTgu5OOLC6DUQqjEet+BgYGLB69WqmTZtGvnz5tBoG69evL5uWGzVqJPHGao+BCEpV+iuhs0KvV65cKbHZYk9Qae+MjIy4dOkS3t7e0pFPT08nV65cEpLQqlUrJkyYQHx8PDlz5pST/QR2E77qsvi3CNrLli2LRqMhPDychw8fsn37dt6+ffsvHSZd+Z7eAtL5z+p9nz9/lgxJgvFBPNtRo0YRGBiIvr4+efLk4ePHj0RFRfHrr7/i7OysFRDp6enJZvM3b97QpEkTfHx8uHjxIq9fvyZ37txMmzZNTlZzc3NjwIABLFy4kGrVqnH69Gny58//U9f9nyLHjx/n+PHjmf4uMqrCCUlISNDq8wEktlkXw/+vxMnJiXfv3n2z3+P169d4eXlhY2ND3bp1qVu3LhcuXGDixIm0atWKXLly8fbtW2JiYrC2tqZevXpcuHCBxo0bs3PnTjk8RYjQWWNjY5mAErotnr9wrOEr646wZ2oD/6FDh+jQoQM1atSQEI7U1FTs7OwYPHgwe/fupVevXrIZWiSX1D4idSaF+O7JkyfLsfIzZsyQtl5tPBYV6g8fPlCoUCGsra2xtLQkPT2dPHnyyACxdu3atGrVirx582Jra0u2bNl4//49pqamcv9QaSuFjicnJ0v8cXh4OC9fvmTz5s14eHj8qSb37+m2lZWVrBjoisDCiwRW/vz5Jd3l8OHDWbt2LWvXrqVgwYJER0cTFBRE27ZtKVmypOyVEftxgwYN+PjxI+Hh4fTu3ZtNmzaRkpLC1atXsbW1ZdSoUZibm3Pr1i0cHBzo0KEDW7dupW7duhw+fDjLROwPXfvPvPnIkSM8efKEjh07MnLkSA4cOMDvv/+Oh4cHcXFxrFu3juPHj3Po0CEsLCzw9PRk7ty5rFmzhjlz5lCqVKlMx9RoNOzdu1dCGJKTkyldujQDBw4kR44c5M2bl9u3b2fJpHDw4MFMzSSCh9nPz4+tW7fKstOHDx8yfd7ExIR169ZhaWmphX0VCiDon8SDUvGTYlGKaFXAFoTCPHz4kBIlSmiNGwVk17yvry+LFy+mdOnSWjhqcQwhItpSlUGco1i4agOg2nGvp6cnSzciyjY2NubTp0/Y2dmxZs0a1q5dS65cuXBycmLjxo1cuXKFESNGSCOuMnComEuNRkPJkiUpXrw4Go2Gx48fM2nSJLZv3/4v8Uyq5MqVi0ePHmk5OKq8evVKDkHJSgYOHEjp0qXp3bs33bt3Z968ebL8IhomgoODiYyMpHnz5nLwgojIxfUYGBhQtWpVHj58SMmSJTl9+jT79u2jZs2aNGrUiGLFigEZ3cJ169bFzMyMkiVLMmnSJCZMmECVKlW4cuXKP5Lv9caNGxw5coRu3bqxceNGRo4cye+//0716tVJSUlh9erVXL16le3bt8ts1OHDhzlx4gQTJkygQYMGWR734sWLLFq0iJiYGNLS0siVKxeDBw+maNGiNGrUiG3bttGpU6dMn3vx4oXWICXIMI4tWrSgWbNmHDx4kIMHD3Lq1CmePXsGoMXHqaenx5gxY3Bzc9NqeBOOJ2TovoBQqFkp3XWuGlfBKiAGwFhYWGhh8GJjY2nSpAn9+/eXkBQhGo0mE2ZQOHYq7Z7QY/jKpiOoqtReiaSkJCwsLGRAW7RoUTkd7dixYyxcuJDExESePXvGgQMHOHPmjCybi+9Wy9UCi5mWloaLiwtNmjSRjvOsWbMIDAxk6tSpP7KctJ6Z4F3VFTFSXWULUqVevXrcu3ePPn36MHHiRObPn0+JEiWkEzN27FjCwsIICQnBwcGB7Nmzo9FoZCVU/BgaGlK8eHHJqpGUlMTu3bvx9PSkd+/eeHp6YmBgwIEDByhbtizW1tbkzp2bYcOGMXfuXCpUqMDt27d/mL/2P0meP3/Oli1b6NixIw8fPqRp06aMGTMGZ2dn6taty6pVqzhz5gwnT54kLCyMEiVK8ObNG0qVKkWfPn0krZ+uPH36lMDAQN69e4eBgQGWlpb069ePKlWq0KVLFxYvXpxldTA2NpZbt25lol6sXLkyJ06c4OLFi+zcuZNz585x584dNBoNGzZsAGDJkiVAxkAvjUZDdHS01EnVForKjggI1Oqw6kiqGWFxnDt37tC3b1+Z9RVJq6ioKDw8PFi2bJkWJaVYY7osWCpEQqPRMHbs2EwsV6I/QkwkFK8lJyfLIDgtLY3ixYtz/vx5XF1defDgAVOmTOHDhw88fvyY9+/fc+rUKTp16qRVXRZOqJphFwFn1apVpZ78/vvvBAQEZII2/CvJnz//N30yyGj+zQpaBhk2+cmTJwwbNoz169djZGREvXr1ZOKia9euxMXF8enTJywsLHBxcUFPT4+oqCh5T8QzdXV1pUePHuzdu5eWLVuyfv168uTJw+DBgylbtiwmJiZcvHiRokWLympz586d2bx5M97e3ly4cOG7PRXfkp9ymitWrEiNGjWYN28ee/fupVy5chgbG9OuXTv27t1LUlISefPmRU9Pj9jYWMzNzQkKCuLmzZs0bNiQ9+/fZ1JCUYLdsGEDNjY2smzWsWNHVq1axfjx4+nYsSOBgYHS6dZoNJw5c4ZFixaxa9euLM/VxMSEzp0707lzZ+DrxMGbN2+SnJxMVFQUvXr1YseOHfTq1SsTnZpoIBSYIicnJ9mMpjp4aqOC+D9kANRz5sypZZTEcUWXd1hYmNbrqlMusk/qQlGbGtRGQxXnpf4uUKAA9erV4/z587KZo1OnTsycOVNOz2nQoAHNmjXDxcUFOzs7bG1tGThwICtXrtTCUKv3JquNtECBApQuXZqRI0dSsGBB3r59y9u3bylQoAAVK1b8ZpbKyMiImjVrsmHDBvmshKSnpzNhwgQGDhz4rSUJQNWqVblz5w5NmzZl3LhxrF69GmdnZ1kVyJ49O87OzoA25k39LTIRLVq0YPLkycyZM4cxY8ZoYdrv3buHtbU1jo6OcuqTi4sLEydOZMyYMbRp00bSfv2TpGDBgnh6erJhwwaWLl1Kvnz5cHJyYvDgwaxZs4bo6GhcXV3RaDRaw4WuXbtGw4YN+fLlS6YhNuvXr+f06dPMnj1bOhxisxw+fDh+fn60atUKe3t7GjRoINfU48eP6devH2vWrMnyXPX19WnSpInE5AnjdPbsWdm8M3XqVHbt2sXw4cO1yP1VXQkLCyMoKAgzMzN5fmr3PWhTVYr1ERUVJa9VbRAW+ilo+8Rx1I55FV+pUmIJEU6zLmxMtwxtYGBAy5YtmTBhAk2bNiUpKYn27dszZswYunXrxpYtW+jdu7fECr548YLw8HDmzJnDnDlzZOVLPbdv6bbI4s+dOxdvb29JZ+fk5ETlypXJlSvXN9dV9+7dCQgIYPbs2ZleCwwMpGPHjt/8LGSMwT116hRDhw5lyJAhzJw5Uw45Ephc0YirZszFs4Ov0JeqVasybNgwJkyYQIcOHeSeqq+vz5cvX3jx4gXdunUjISGBiIgIzM3NGTp0KDNmzJCDK36Wjut/W5ycnBg/fjzHjx8nICBAVsguX76Mr68voaGhODg4aFU6LS0tuXbtGn369KFo0aJUq1ZN65gXL15kypQpzJ49WyYSPn78yJgxY3j27Bldu3Zlw4YNLFmyhJ49e0pn9tOnT/To0YPx48d/M3NdqVIlKlWqBHx1PPfu3UtqaipVqlShW7du+Pv7M378eFnFga/VSH39jGEaQUFB6OnpkSNHjkz9LKoTKZ6/0F+Bn1b1VG08FLzQot9I1R/xfhUKpmZj1R4LkR0XAbJKJ9miRQuWLVsmK3s1a9bEx8eHIkWKMHnyZCZPnszu3btp0aIFUVFRPHr0iPPnz1O6dGly5colz12c07f02tDQEC8vLw4ePMjmzZtxdHTkxYsXmJiYULlyZQoVKvTN59S3b19GjBjBzp07M2WcDxw4QLFixb5bPXZycmLDhg1Ur16dbt26oaenJ9eZ6DNzc3OTyQHITO0p9sicOXMSGxtL7ty5JV2leEZiQN7IkSNJSUkhJiYGyODQXr9+PfXr15e+0c+InkY9k29IdHQ0NjY2LF26lCVLlvDkyRPq1q2Lu7s7t2/f5vjx44wbN45OnTpx9epVOnXqRIsWLXj9+jW3b9+mcOHCLFy4MFPn4qVLl9i6dSsLFizI9J3v3r1j0KBB7N69m48fPxIQEMCrV69wdHTk06dPlC5dmrFjx/40lvTFixekpKRQtGhRGYVXrFiRPn36aOF6nz17xsqVK8mVKxeurq68efOGkJAQ+vTpI3GMoD0EAb5yN378+JE9e/Ywbdo0mS0SWeP4+Hju37/P1q1bGTVqlFbGSaWqEpgk8Xe1RCyUTuVuVTPN4u9paWl06dKFJUuWkC1bNvT19Zk7dy6bN28mMDCQTZs2MXHiRLZu3SqbOFatWoWrqys1atSQ5ysgKsnJyRIDJ8qgIlP28eNHxo8fL6efqRtbkSJFqFq1qpwsqOLC09IyRmPb2dnRs2dPXF1duXnzJoGBgTRr1uxfUtgIiYiIwN3dnYoVK/Lrr79qbRpApmemiupEXLx4ka1bt9KxY0c8PT2JiYnhyJEj3L59m5kzZ3LixAkOHDggDU5kZCRFihRhy5YtsklQ6ExUVNR/LN5ZnOO2bdtYtmwZZ86coWLFipQqVYqPHz9y4MABOnTowMCBAzEwMKBUqVJUrVoVyGjMc3JyYvLkyXTr1k3ruCEhIXTp0oUDBw5kagaJi4ujcePGnDhxgqSkJKZOncqVK1fIkSMHYWFhuLq6Mnbs2J+m87t3756EFty6dQsvLy/y5MmDr68vbm5uUq9jY2NZvXo15ubm5M6dm/DwcF69ekWLFi0oXry4VvAMXynkjIyMsLS0xMTEBH9/f9auXSszzaKxOC4ujpCQEIYOHcrs2bO1GHIEzEsti+tmw0RHvSj5ir1EUFIJiIf4PWzYMPr370+RIkXQ19fn8OHDTJo0iYCAALZu3crkyZPlGOklS5Zw7949rl+/Tu/evWUDkyh5Cs5okUlXhzslJiaybt063r59CyCdBgA3NzcqV64scc+6cJtp06bx8OFDBg0aRNGiRXnx4gWLFi3C3t6e6dOn/1DpPzU1lapVq2JsbEz//v1l0kA8p6z0WteZMTAw4NWrVyxatIiGDRtSoUIF0tPT5RTQsWPH8u7dO7Zt2yadpy9fvlCgQAGJgTx69Og/Sq9PnjzJqlWr2Lp1K4ULF8bT05OUlBSOHTtG2bJlGTduHKVKlcLFxYW8efPi5ubG2bNnMTQ0ZOjQoYwZM0YrAZCWloa3tzf79+/P5BSlp6fTtGlTVq5ciZOTE4sXL2bv3r04OzsTGxuLiYkJI0eOlEO0flSuXLlCYmIiRkYZg1Y6dOggq04CHiWqFTt27CAuLo4CBQoQHx/P8+fPKV++POXKlcuUeFJhj2JQxvTp01m4cCHZsmXDwsICExMTyRUcHR1Njx49JM2Z6E8QvUcqhZ9qy+Grw6zyUavTFsVvse6WLFlC6dKlqV27Nvr6+jx48IBBgwbRuXNnbty4QWBgIEePHmX37t1MnjwZMzMzpk2bRkBAgJzYKgbMiCmP8fHxcg8Sep2SksLjx485ffo0gAweNBoN2bJlo1KlSjRu3Jg2bdpojSSHjF6iVatWMWTIECpUqMCXL19Ys2YNz549Y+PGjT/MxNG9e3d2797NlClTMum1KmriTr2nBgYGxMbGMn/+fMqWLUvFihUxNjbm4cOHHDlyBD8/P0xMTNi0aROJiYmYmpoSGhpKjhw5ePz4McbGxrx48QIjI6Mf1u2fcpohIxp0dnbm6NGjxMXFUaxYMbp3786gQYNkZDBw4EA2bdpE1apV8fPzo3nz5lliYLp27cr48eO/2WzRpUsXJk2aJPE8ogRqZWX1U7jZb0lwcDAHDx5k3LhxxMbGMmzYMLy9vXnz5g1Llixh6tSpWFtby6gmNDSU0aNHM27cOLJnz57JwKolQWNjYwYMGMDs2bPJkSOHvH5hhIcMGULXrl3Jly9fpk52FZskMs1qSUksLjUiFg6zupjEPXrx4gWTJk2iVatW1KlTh6tXr7JmzRpev35N4cKFcXJyon379tSsWZP09HQ+f/7Mb7/9RmBgoNwgdGl2BP5RNbApKSkEBQXJjIWJiQmRkZEEBQURFBTEo0eP+PTpE/nz5ycwMFCrg1ej0XDt2jU2btwomQi6dev23UyWrmg0GsqXL4+hoSH+/v4yUFEbQHQjb/FbzRrq6ekRHh7OgQMHePr0Kebm5tSrV49q1aqxfPlyNBqNdBQFJtDf358zZ84QEBDA2LFj/1HGFTKCmpIlS3Lq1CnpvLZv357JkyfLrvBp06Yxa9YsihQpgp+fHx07dsyy4S8wMJDChQt/s3ls9uzZuLu7SyaDtLSMaWEWFhZ/SZb+9evX3Lhxg9GjR/Pq1Svatm1LmzZtiImJYfbs2QwfPhxXV1f5vJOTk5k0aRItW7akaNGi0qio/RrwldN13rx5tGrVijJlymg156amprJy5UocHByoXbu2DIBVmiq1uVi3uVJl+BFrV5frVaXCi4qKYvTo0VSpUoUmTZqQmJjIoEGDCAsLI1euXDg6OtKkSRMaN24sG/86derEypUrJZtHfHy8XMPCuApnQBjY5ORkwsPDiYuLk+eTmJhIaGgonz9/5u3btwQFBeHo6CjH06vB0rNnz1i9ejXv3r3DxcUFPz+/LJuEvifdu3fn9OnTTJgwQcJU1D4SNbMPWTvN+voZg5pOnz4th5tUrFiROnXqcOnSJc6fP8/w4cMxMjKSe9vmzZvZtm0bzZs3Z9u2bf84vc6RIwcVKlTg2rVrvH//HltbW5o3b8706dNxcnICYMuWLYwcORILCwv8/Pzw8/OTr6ly4sQJbt68KfG5unLs2DHu3LnDyJEjASSMQsAQ/h158uQJRYoU4ejRo0yYMIFr165RoUIFunbtCsDixYtl4Kv2waxatQoXFxeqVaumlZkW5ycCVnNzc86cOYO1tTVt2rSR2H/hXJ47d45r167RvXt3Lao5FQqiwjhVeIY4HxX7LJxmsZbVQDktLY2AgABy5cpFy5YtcXR0xNfXl6SkJOzt7XFwcKBatWq0b99eDonq3Lkzc+bMkUmu6OhorVHfQq8F3lvodVxcHJGRkVhZWUnfIzIykqioKEJCQnj//j1mZmYMGDCA8ePHa035/fTpE2vWrOH+/fvY2NjQoUMHqlSp8lMY+AULFjBw4ECmTJmClZWVhMWqlSDdajeQye9JT0/n5s2bXL9+nbS0NNzd3WncuDGfP39m5cqVEt8skgSXL19mxYoV5M2bl4cPH6Knp/f3OM0jR44kODiYrVu30rp1a8aMGSNLNH9GGjdu/F08zaxZsyhXrpzMbv3VIvB2IpK7efMm9evX548//qBhw4b4+fnh6OioRb324MEDdu7cyYgRI7LEOasG8O3bt8ycOZORI0dSokQJ9PT0iIyMZPHixVhZWdGnTx95DNU5Vh1mXdyUitHSpbJRS7vCmIuf5ORkDhw4wIkTJ/j8+TOFChVi4cKFkpdZwENE1snPz48VK1bILJnKOStK9CJyVZ0C4dgL5g+1SVSj0fD+/XuJWatUqRKVK1emQoUK1KlT56fHbotGAsjIdEyePJkJEybw22+/Ua1aNczMzOTaOXPmzDdx07rlc9UAq6W0sLAwZsyYIfF16nM6d+4cvXv3xtDQkDZt2tCvXz8qVKjwjzCuPXv2JCUlhb1791K8eHFmzJhBuXLlvkkZ9K+kX79+jBgx4pvZ4qNHj/Ly5UvJef1XS1hYGA4ODty7d4/Zs2ezadMmWrRowb1798iTJw/9+vUjV65cMkss6JhGjx7N9OnTtZr0VL0WjnRcXBwTJ06kc+fOVK5cGQMDAxITE9m5cycPHjxg4sSJcm2ojDNqJUllpFH1WjUGwmlWeWWFkVAhZOfPn+fAgQOEhYWRkpLC9u3bcXJy0qo2CSfZ19eXFStWyM5/EfSqmWdhXLPS68TERK3zFhnnmJgY7ty5w+3btylevDg1atSgfPny1K9fX/YR/Kg8ePBAy6nesWMHbdu2pUWLFtSpUwcbGxtMTExo1qwZkOH0qWV28dzga6OYmkhQy/mCmWTgwIGSrUSwDyQlJfH27VvZuV+/fn369u1L48aN/xF63apVKywtLTl9+jRGRkYsWrTom1PbfkSWL1+Oq6srjRo1yvL1Dx8+EBAQoDXw6O+Qhw8fcuXKFbp3707dunX5+PEjaWlpDBgwgGLFikmIVHp6OomJiQwcOBB/f39ZuVUdsaZNm7Jjxw65NgIDA6lYsSINGzaUI77Pnj3L3r17mTRpkqTaVStF4rgiywxo2XOxh6hwDHXCqFiHwmaLc7l37x579+6VzuvOnTtxc3PTmkwqhqD17dsXf39/9PT0tILfuLg4+aObHVf3OZEEE+cunP7k5GSCg4N58OCBZOEqX748devW/amEFmTA+dSmwxs3blCrVi3y5MlDmzZtsLa2xtTUVDJ6zJ8/X6vfQjfZpfZyqQlEY2NjyTI0evRoAgICcHR0lAmMxMREYmNjad++PZGRkXh5eTF48GDq16+Pra3tv9Ttn8I0z5gxA3t7e/r27cv06dP/7ejR0tKSkJCQTHhIIa9fv6Zp06b/1nd8T0Q0LjpuRYRlZ2dH8eLFGTZsGAMHDqROnToSY1S6dGlmz54tgfsqMF3tzE1PT8fNzY0JEybw+++/M2vWLLlBC85ksWh1cY0qO4eKwwJtiIGaHVU7hHUxigYGBty+fZvDhw+TL18+ChYsyP79+xk6dChTp07FwcFBOgapqalcvHiREiVKyHMSkVx6eroWNZ+RkZF0jFVcdlYbh3jN1dWVVq1aUbx4cR49esTKlSuZMWMGdnZ2+Pr6yk1PcDg6OTmRN2/eLJuJhMP84MEDevfuzcWLF/Hx8ZHTwyCDs1p1lNVnpGYchAMi/q/ec3FPBVxBlNJEd3Vqaire3t6MGjWKW7ducerUKX7//fefXY7/a7JixQrMzMxo0aKF5MX9d8TZ2Zk3b95802l+8+aNxJj/HSIaR9X96fXr1xIPLZgRevfuDSDLvzY2NsTHx8usi1gHQj9Fpsrc3Bx/f3/27t3Lhg0bpB7UqlWLsWPHatFUqkG00BvVaQO09F8Yc5VPV/2s+LwwEK9fv2b37t3Y2dlJiJBwEgoVKqQF8woODpZldd2+CTULpvLTZ6XXanAvnHJLS0vKly9Prly5ePnyJVu2bGHhwoWYmprSunVrKlasKPXa0tISJycncufOneXeLxzm4OBgBg0axI4dO6hQoQK1a9eWQW16ejq7d+/OxF4k9iL4SvulNgaquHXxc+3aNapXry55uIVDEh8fj7m5OYsXL2bVqlU8e/aMxo0b/5kl+b8iO3fuxMDAgDp16jBjxgytPf3PiNDrb8mbN2/+7b3jR0QMRzMzM+PNmzcYGhrSqVMnjhw5woULF5g2bRp6enrSaSxfvjwvX76kRIkSMugTa+TAgQMYGBjI5MeAAQM4c+YMQ4YMkTCkMmXKSJpWkTAS60jop66tEKL+Xe1RUFk31M8IvY6Ojmb37t2kpKRQvnx5tm/fzpAhQxg6dCiVKlWS+4sI7iIiIjA1NZVNgIJNRDQzqlRtaoCu6rHwZ8T/RdXL1dUVa2trPnz4wN69e1mzZg16enrUr1+f+vXrS5iahYUFjo6OuLq6ZulQC4c5JiaGCRMmMH/+fHLmzEmTJk3kvUlPT2fFihVaxAq6+5F6/uI96rWIvTIkJAR7e3vJUy4C4ri4OMLDw1m3bh0jR44kPj6e9u3bU7ly5R9afz/lNG/dupXmzZv/6UhVVzp16sSyZcsYN25cptciIyN5/fr1/8hkplmzZuHr68svv/zCli1bCA0N5dq1a6xdu5a+fftSvHhxXFxcpGOljskW2CgVqC4ecFpaGvb29vTv3z9TlCRwv6roRlEiK5KYmMjvv//O9evXpRKUL1+edu3ayTKuMG7qb/Hvq1evsnnzZg4fPkxERAR6enp8+vSJ6tWr06VLFzZs2CCnQiUnJ7NkyRJmzpypZfDFotY1POI14WSoUaoahQslEAu6ePHiksczPDycu3fvsn79eqKiorQ2GoDs2bPz6dMnrb9dv36dgwcPcujQIW7evImbmxtz5syR5TlxX+CrEyzOt2rVqpw4cULLcRaKKQyt2nQpnm1ISIgs66s0YOJaxVSxYcOGsXbt2m9Suf2nyapVq7LErf1Z6dSpk8z264rgKT948OBf8l3fk3379mFvb8+UKVNYtWoVr169YufOncycOZMFCxZw+fJlqlSpgpGREcnJydja2pKWlibXji78Sqx/QZPWunVrOVhIrC9hlIXo6r0KrwA4dOgQ586dk40rRYoUoW3btlrOrboehXHT19cnODiYKVOmsGvXLjnoQ09PDycnJ4YMGcLcuXNxcXGRxmT+/Pm0a9dOy3Cqui2Milqt0s2Wq1AsldpK6I2bmxsuLi6SxeDly5ccOnSITZs2ZdJrAwMDCdkQ8uzZM/bv38+hQ4e4cOECFhYW/Prrr3h5eUnaUF2on7inLVq0YOPGjZmYiMS+JLDphoaGWn8PDQ3F2dlZZgNNTEzkPUhJSaFAgQI4ODgwfPhwjhw5kmky7X+qLFmyhObNm/9lAWq9evVo0KCBrKjpyrJly/D/zhCqv0pCQ0O5ceMGs2fPZvXq1dy6dYs1a9Ywa9Ysbt68yYYNG+jRo4ekdbOzs5N0dHp6eloOmdBztZpUpUoVqlWrJnUN0JqboOqzqisikWJgYMD169c5duyY1D1HR0datmxJzpw5Ae3GQF0YUWpqKqNHj2b58uUyi1qgQAHu3LnDsmXLSE9P55dffpHnu2nTJmrVqpXJQRfOuQoxU79D6LSw2SoPsnC0RV+FoaEh5ubmJCQkSPjitWvXOHLkiFbQL+TkyZPUqlVL/v/jx4/s37+fw4cPc/LkSVJTU2ncuDFVqlQhPT1d6rVwilUb26tXLwIDAyWtrhChw6mpqTIAEZ/XaDJmiYjhZgJaJ55XUlISTk5O2Nra4ufnx/379zl06NAPrb+fgmf81SWp9PR0OnXqRN26dfHx8ZE35MOHD3Tv3p2JEyf+KQ7Bn5HIyEg6dOggRzAmJyfj7u7Oixcv2Lp1KwYGBly4cEHCMWJiYujfvz+1atXi6NGjkpIuZ86cdOvWTWKdVQdSdch0nVrVcOkqoyj7Dh06lPbt21O9enWp3KdOnWLPnj3Mnz9fgu6zOqa+vj6dO3dm9erVWFpaytfCw8Pp1asXTk5OFC9enK5du3Lx4kWWLl2Kj48PNWrUkOeswhDUgRAq5lo4zcKwqtGtioHWxW2rBk2UUFVDvGfPHj58+CAnSEFGA2mlSpXQ19enVq1aFCxYkJw5c+Lo6EjhwoW18O7qhqFm6cX5gXYWUH1GohRerlw5Hjx4wPbt23F0dKR58+Zy6ITYFOPj41m2bBk5cuSgbNmyhISE/GPKuH/HOQqIwujRo+X6jIqKYtCgQdSpU+enaAn/jKSnp+Pt7c2RI0ckTq5atWpcunSJ3377jTp16jBt2jSWLFki12y3bt1o1aqVJO4XGdQOHTrIaZNCB3TLsaA9/Ut1kFW9VrNTAQEBlChRgqZNm8qM0927d1m+fDkBAQFajDOqc1u8eHGePXvG+PHj6dGjB4ULF5b7RUpKCgMHDsTS0pKkpCSmT5/O48ePWb58OcWKFaNTp05aOqfbdKyrv+IaxfvUkeDq8BYVp61ijYWDottzcffuXU6dOkVMTIykaQwPD8fZ2ZmUlBR++eUXihYtipOTk8yii+qeMIoqE47QWzFIBr5y7otnKe69wGUbGRlRo0YNli9fzo0bNxgyZAjm5uaYmZnJexkbG8uZM2e4desWzZs3Jzg4GD8/v/+zer1jxw4OHDggxxJDhkM5c+ZMkpOTCQgI+Eu/Lytp374906dPl5Wsnj17smPHDmrWrMnIkSMZMGAA69atk+X4cePGUa1aNY4dO0ZsbKzUw8aNG+Pp6amFRRblexW6oMtco/5ftd1iXW3evJn4+Hg6deok13ZQUBCLFi2iR48eWolAda/w8vLi7t27bN++HWdnZxo2bKh1/FmzZvHp0yeCgoLYsGED79+/Z9OmTURHRzNq1CgtmKewswJzreqryE6re4BK1ad+Ru1t0A2e9fT0pLMr9CksLIyDBw9y48YN2fSp0WjIly8fb968IX/+/JQsWRJra2tsbGwoWLAgFhYWsnr0Lb0W8DLVNg8YMADIwEXr6+vLCrCZmRmtWrVi9+7dkv7Q2toac3NzDAwMSE5OJiYmhtevXzN//nz8/PwIDw+nTZs2ZM+e/a+FZ/zVoq+vz/r16wkMDMTb2xtXV1eioqIwMzNjxowZlCxZ8m/53uTkZP744w9iY2PZsmULR44ckVFIly5d6N27N2PHjmXw4MEMHTqU27dvS7qSZcuWkZCQQGpqKsuXL5dlgadPnzJu3Dg5JQy+ZqjS09OlEVIhDqoB1VVA8Z4NGzbQtWtXatWqpZW1EgNLtmzZQo8ePTJhMMWxgoKCyJUrF9bW1lqsGmZmZmzfvp2dO3fi7+/PH3/8gbu7Oxs2bJAMGaoDKY4tjB9kEODfv3+fLVu2SN5MZ2dnWrVqRY4cOaQiioWqr68vh9GIiF9krdV7IrJe5ubm6OnpZcqAlilThv79+7No0SJev34tHdiHDx+ycuVKunbtKvkXVZ5e0G7WzKqRU0TXotFIT0+P69evSz5Jf39/+vTpg6GhIW/fvpUOSGxsLCdPnmTFihWZxiT/X5QJEyawadMmGjdujKOjozRGAwYMyMSi81dJeno6V65c4fPnz7Ir3MbGBiMjIzw8PJg8eTItW7Zk4cKFxMbGEhkZSWhoKHp6epw5c4bU1FTu3r3L9OnT5RCUz58/M2vWLFq0aMEvv/yi5ZympWVM4BKOtDB+QkdE5lYNykTZ8+zZsxQpUkRSLok1WK1aNVxcXFi6dClTp06VRkoNtp8+fYqBgQHBwcEULVpUrn+xF61cuZJTp07x66+/0r17d3LlyiU5luPi4uTxVAiYCFZFJS0oKIjt27dLmlAzMzPq169P3rx5JeZZNBWJvUYcV62+qVhiQ8OvY4sFb63aZW9vb8+MGTMYMWIEX758wczMDHNzc758+cLu3bupW7euHN0sHHhx/mr/hAiGhQjnScV4C2f+7NmzuLu7S5pKFX/98OFDUlJS2LhxI8OHD89Uhv+/KK1bt8be3h5fX1/Z0Pblyxd8fHzw9fX927733r17vHz5koSEBLZu3crWrVuxs7PD2NiYS5cucejQIcnWY21tzYMHD8iePTtv3rzh/fv3HD9+nIEDB2JjYyMbj1etWsX79++pX7++rCKJtSQyy4JaTh0uJPRN6LSa1f348SPBwcFMnTpVK2DOli0bc+bMYdiwYSxcuFDqtfi8vr4+d+7cwcjIiIsXL7Jq1SoZwAlb5e/vz/Xr1+nbty9dunQhe/bsNGvWjE6dOnHp0iU5pEbVa5ElFsNPIiIi5LwNofOVKlWiWLFiWlNLhd0W5yacaKHX4rjCYRZ6LfwklZ5RT0+PefPm0blzZyIjI3n16hVFihQhKSmJc+fOUaRIEVq0aIGhoaHsrxD3RTj2JiYmWnz2Qg/nzJkDIIe+CV3fu3evhOdZWFhQsGBBeT43btwgJSWFTZs24e3tLZ/9j8KN/1edZsiI4kaMGMGwYcOIioqSU+v+Llm5ciXbt2/H29sbe3t7rl69CmQwdaxbtw5DQ0MGDx7M1atXuXLlCsOGDcPV1ZXnz5+zefNmQkNDKVu2rNZQBo1GQ9GiRZkyZYpkGFDhGioEQBgUXRoajUYjox8zMzOKFy+OkZERt27dknPahWEUx2nSpAnt27enb9++WgMa1MxWXFwc2bJl0yrzCmUxNTWV3MJr1qwhNTWVnDlz8vz5c9LT0yW28MmTJ8DXqFhkbw4dOsTp06cZOnQo2bNnJz09nWfPnjFv3jw6deqEu7u7VglKt1QtSmNqtk59X3p6Ou7u7qxZs0Y2d0GGsz5u3Dh+//13TExMJFm+u7s78fHxNG3aFGtrazw8POT9EiIiZrERqhlzEeUK4yicZuEMmJiY4O3tTaNGjRg8eDA5c+ZEo9Hw4sUL5s6dS48ePbSi9v/r4uPjQ8eOHYmOjsbAwOC73J3/rhw/fpwZM2ZQqVIlcufOzdGjR4GMkdy3b9/G0NCQatWq0b9/f9avX8/8+fOxtLQkODiYQ4cOcffuXaysrBgyZIgMEtPS0iQP97Bhw/Dw8JBrQw1wRYZKrB1Bg6XCtd68eYO+vj7u7u6Ymppy9OhR5syZI/GAwjAmJSXh7u4uHVIRzKsNRcKYqJzQwiEURqZatWqULFlScr4WLlyY27dvS10QA4CuX7+u5UDr62dQXC1btoz+/fuTL18+0tLS+PTpEytWrCAsLIwqVaoQFxeXSbdVuJMuvEXXMc+fPz9Hjhzh8uXLWlhCEQx//vyZLVu2yPL0L7/8wqBBg2STttAxcY9FBk0NeIUBVTGRujoufi9ZsoR69erRu3dvihUrhkaj4fPnz6xYsYIKFSpgbW1NbGzsNyed/V+SWrVqUatWLeLi4khJSZGDI/4OefjwIcOGDaNw4cKUKFGCP/74A4CiRYtiampKUFAQefLkYd68eQwbNoy9e/diaGhI06ZNOX/+POfOnUOj0TB+/HgZoInnP2jQIH777TfKlSunlVlU7Y+olqpVCrWK8v79e9LT0ylUqBAWFhYcOnSITp06YWFhoTX8KDExUU4kfvHiheRBzgrqqK//tTFQrVbp6enh4eFB7dq1adasGTlz5pQZX+HQimFvZ8+eBb4G6fr6+oSEhBAYGEinTp3o2bMnqampEjt97NgxWrVqRUxMDMbGxsTFxWWy2+r+owt5FHot4ItHjhyhb9++8p42bdoUT09POWQpW7ZsGBkZUb16dZYtWyanLQpGD5UQQQQDwl6L/TYwMJDk5GR5jeJ5ifuRnp7Oxo0bqV+/Pu3ataNs2bJABqZ6586dJCUlUahQIaKiooiPj//hNfm/7jQL0dfX/+ku65+V1atX8+zZM44fPy6VvEyZMpQpU0Z2/Iqy/7Zt2zh79iydOnXi48ePrF69mubNm7Nlyxbatm0LoFWiT0hIIHv27JiZmfH582ccHR0zNfipGU11hDPAmjVrCA4OpkSJEiQnJ7Nw4UIaNGiAlZWVVgOBSiWXnp4uGQBEpkccX4ibmxuPHj2SBkRkuoXSv3z5Ejs7O63sS1pamlb3epEiRbh//75W1igqKop9+/bJQEMECZ6enixatIiePXuyePFirWsWv1VYhhrdqxAVcTwxh37o0KF069ZNjr5cvHgxPXr0YPr06cTFxeHq6iqnPgYGBjJ06FCWLVsm74uAlIhnIfBuonFAZQhQ8Y7iuYnsVfXq1XF2dmbRokVERkai0WjIkSMHv/76Kzlz5pQZiqww6/8XRU9P728fL37x4kVWrlzJoUOHZLagRYsWuLq6sn//fjQajQxy/f39ad68OT179uTatWvMmjWLxo0bk5ycTPny5WVWVXTOx8bGkpycTNmyZblx4wZlypTR6opXIRkq5lds+Hv27OHBgwcUK1YMIyMjNm7cSMmSJUlJScHKykpmroTTLJw6Nzc3wsPDcXNz08LyibVpYGAgO+Th6zAFkWmNjY2VTUtCr9PT0ylfvrzWvStbtixXrlzRYuxYsmQJS5YswdraWuqBra0t06dPp3///lSoUEFWf4QOq/hQteql6pB6/i4uLtja2jJs2DBGjRolmTD27dtHy5YtmTVrFs+fP6d69epARpPZr7/+iq+vLy1atJB7YVZBt7j3gFaZXex5qrEXn0lJSWHAgAHs2bNH7hsWFhY0bdqUAgUKSAaCnzGu/3+XrOgm/0p59+4dAwcOZMuWLZICz8/Pj9OnT/P48WMgA2etr5/RXO/l5cXYsWPZtGkTS5YskWO6k5KSMDY2xsLCAjMzM9LT04mKiiIhIYH69etz+vRpmjRpIhMq8BX7K9aILlXktWvXuHz5Mnnz5sXKyopDhw6RLVs2YmJiyJs3rwycRQJQ7A8FCxbk8+fPMjBTbbX4v5WVFUFBQbi5uUm9Fk5kcnIyT58+xcnJSQselpKSIqswkGGnTp48qcXrvmzZMgICAiSsJTU1lWzZsjFkyBBmzZrFx48f5VARtbFW/VHtuK5ei3PNly8fkydPJj09nf79+wMZQ6vc3NwwMTHhxo0bdOvWDX19fR4/fkzVqlXZs2cPiYmJWFtbS3ssAmHIaNZWYaKAVkVX1XlRAdTX1+fs2bMMGjSIY8eOSZYUfX19mVSIiYkhNjaWuLi4H16X/zFO898tqampbNmyhRMnTmhFxaVKlWLatGlyKEe7du3w9PSkYMGCcjLahw8fuHLlCpaWlkRERMgSj5p1FU5Vzpw5+fLlC/b29plwzOo8e5VgfPbs2dSuXZtu3brJRW5sbMzKlSt5/vy5xFAKJ08Y1vT0dK2Mplq2EIvY3NwcJycnLl68SLly5SQ8Qrxn7ty5dOzYUW4Iz549Iz09g/NQJaIvUaKE5DM0MDBg3759+Pr6YmFhITPg4nqMjY2pVasWN27coGzZslrYKbG4xaYkNgpVCVVltLGxoWnTpmzevJnhw4fL87l27Rpbtmxh5syZXLhwgd69e0ujGB4ezrt37+jatSsmJibUqlWLunXrSqdAXDug5UyLewhIYy/OrWLFily6dInU1FQKFSokJ1upTZ+iivDfTPP/rMyaNYu1a9dqldfs7OzYs2cPPj4+hIaGMmXKFGrVqkWNGjXImzev7KZ+8OABdnZ2hIWF0apVK6nHotlZbMxCr9WqhMh+iHWiwjbS0tLYvn07NjY2DBw4UJayO3TowIULFzh8+DAxMTFao3XVjT84OFhWVlS9hq9rs1atWmzevBkfHx+J9xPrV0y8Emvx9u3bpKenc+bMGQwMDLRoPNXruXnzJhUqVMDJyUlmwAFJSefr68vp06dp2bKlFs+0OCeh6+reB19L0GqA3KxZM9atW6eVXNixYwfLli1jx44dnD9/ntatWwMZ+vXlyxfMzc3p2rUrVlZWlClThoYNG0oYlxA1EFchHOI11dEX9zU1NRV7e3t69eqltc+q5WKB7/yv/M/I/PnztfikIWMdnTt3jmrVqvH+/XuOHj3KqlWr6N69O66urhgYGODk5MSrV6+4efMmZmZmckgXICtAopLj4uIiy/ViLQsbJ1hxVJudlpbG9evXefv2Lb6+vnIMto2NDcHBwcydO5eXL19ia2srAywBb0hPT+fdu3dUrFhRqyIDX5mm9PT0aNGiBYsXL2bChAmy8U687+LFi7i5uaGvry+hYRcuXCAlJYUDBw5osbukpKRIvumYmBiMjIwkO5Wa7EtOTqZ79+7MnTuXQYMGZaLGFNet268AaAUWkKFf1atXZ82aNYSGhsq/79y5k+7duxMeHs758+cZO3as3C8jIyPJmTMngwcPxtHRkfz589OwYUPs7e21ji3ul9pXpe4pKqZbVOMgYy9v1qyZFpGB4KYXa+Fnklx/joj1HyhXr16lWrVqmR4CwPDhwxk4cKBcmJUrV2bw4MH069eP3bt3c/HiRVq3bs3u3bt5+/YtoaGhxMXFERUVRVRUFDExMZLX9N27d9ja2mo9WPiKGxTGUzQNPH78GFdXV8qUKSP5BQXtUf/+/UlKSuLs2bMkJCQQExMjI6OkpCROnjxJmTJlsjQC6gIaPnw48+fPZ8OGDURFRcloddCgQeTPn19OQhMOoViIN2/e5O7du1r3Shz/3bt3FC9eXAvXJDLvRkZGuLu7ExwcrFVmEphqNWP9rRKQ+C49PT3ZAV63bl0uXrwIZMB6Ll++THp6upwMZWhoyLlz5xg8eDC5c+cmMDCQhQsXotFo6NOnD1FRUVpjS9XvVjOG4rvVjPOFCxekM5BVA5Wa0RLP+7/y90tUVBTGxsZZVqnq1q3LggULpONXs2ZNxo8fT/PmzZk6dSq3b9+mf//+XL9+nQcPHvD27VtiY2MJDw8nPDycyMhIYmJiSE5O5s2bN9ja2mpN/RKlVeH0mpqaShxiYmIiX758oVatWpiYmGBlZYWdnR1GRkbUqVOH7Nmzs3z5cjlcIDw8XGa/Xr16hZ5eBpZf1W1Vp1NSUmjdujW3bt1i7ty5fP78maSkJD58+MCMGTN4+vQpjRo1ktnm0qVLa1Wk/vjjDy5dugRAxYoVpV4HBQXh7u6eaQiD4IYtXry41GuVNkvFcqs/ulldIXp6epQoUQIPDw86d+7M9u3b0Wg0JCQkEBYWxvv378mXL5/cL168eEHXrl1xdnamX79+LFu2jLx58zJixAjZ1yAmJ6pYTLHX6Oq1Wv4V+Gih00KfRcVIdx//r/zPyMOHD2Vviir58uVjz549Mkju0aMHo0aNol69etSvX59bt24REBDAly9fOHbsGK9evSIiIoIvX77w+fNnQkNDiYqKIi4ujtevX2Nraytx+uo+Luy1wNYLHbh16xZNmjTB3NwcW1tbHBwcMDY2plChQlSuXJn58+dLvQ4JCSEkJISoqCgiIiK4efMmJUqUyNQIr+p1yZIlcXBwYMyYMbx48YL4+HhCQ0NZt24da9asoU+fPrL5NiUlhcqVK2NsbExSUhIHDhzgyJEjANSvX19+R3BwMAULFsTIyEhmwM3NzWX23c3NTQ4vEpU2oeOqDdfVa9X5F06sg4MDVatWZfLkycyZM4fU1IyhdKampty4cYOiRYtqTWjt2rUrhoaG1KtXj6VLl1K1alXmzp3L9evXJd+y2GtUv0HVc/U+qrAa3RkT39LrrPzCb8n/mUxzQkLCdzsip02bxq1bt3B3d8fKyormzZtTunRpAPLkyUPFihXZv38/bm5ubN++nc6dO5OQkEB0dLQsSwYHBxMdHS0nz6hOIXzdcMUC1Gg0XLlyhdatW2NlZYWlpSXW1tbo6+vL6Kd169ZMnToVY2NjvLy85EK9fPkyy5cvl93/YrHAV2dT/N/CwoLly5dz+PBhBg4cSFpaGo6Ojvj4+ODu7q7l4N+/fx8DAwM8PT25e/cuSUlJXL58WSqOWKz29vYEBQWRN29erQYZEY2+f/9eYqlVp1Q4tyLbrAspUY2S+KyRkRFDhw5lyZIlVK5cWTrAAwcOxMvLiwoVKpCYmEhERARz585l69attG3bVlJZderUCS8vLyZNmsSiRYu0HGL1R9wDkWkS56Vm79Us1v3799m2bZuk+9JoNDRv3pyyZcvKrun/yt8riYmJ36XKa9++PRs3bqRMmTLExcVRs2ZN/P395SYZEBDAnTt3ePHiBbt27SJPnjxER0cTGhqqlQm5cuUK1apVIzIyUquBV4hYpyI7deHCBapWrYqdnR0ODg7SYRa42M6dO7NgwQJy585N/fr15fFevXrF5MmTmTx5cqZBKKCtJ3p6egQEBHDhwgUmTZpEQkIC5ubmNG/eXI4OFsb40qVLEtcNGZjHiIgITpw4gbe3NykpKRgaGmJnZyenegqcJCAzZSIDLpIAqk5rNBq5t6n7kXq+6l4oyupieMnGjRuxsbGhTZs22Nvb07ZtW1k2HTJkCCtXrmTMmDGULl0aCwsL6tevj5eXF3379mXp0qXy3gsR1y5ENa7it3p+Qr+DgoLYsWMHISEhkgqwUqVKVK1a9b96/T8o36O2LVOmDG3atMHd3Z3Xr19ToUIFJk2aJD8zbNgwwsPDWbhwIZcuXaJixYqEhYURHBws4TgpKSkcPHiQtm3bEh4eDpApyFKDLzFyuVChQmTLlg0nJyecnZ0xMjIiJiaGqKgoWrZsyYgRI1i5ciXt27eXTCxhYWFMmzaNbt26SSdOF8oEX21Mly5d5ByD8PBwDAwMqF27NjNmzNDKXKekpHDy5EkMDAxo1aoVe/fuJTw8nK1bt8qhPEZGRtja2hIcHCwzrOJ7hfMtkg+6tlrotvhRoWm6EA1xHXp6epQtW5aYmBiGDx/O77//Tp06dejXrx8hISH4+voSGRmJqakpQ4YMwd/fnyNHjuDp6YmZmRkVK1akdOnS9OvXj2LFimFhYaGltyLzL/Rdt8qkvhe+VtJiYmI4cOAAb968kUFG0aJFqVq16k/12/yfcZo9PDxYtmwZgwYNyvL18+fPU65cuW9S5iQkJNC6dWs5pWb37t3Uq1dPbswvXrxg+fLldO3albCwMGlE1ewHaLNbiAaBbNmyaWVt9PX1ZcTr6OhImzZtOHbsGAsXLpRUQiVKlGDBggWYmppKqEdWUVNkZCQbNmzg9u3bEkrSqFEjmjRpkgm7pMInbt68qVV6FgB7gQls1KgRc+fOpXz58vI1+MoUcujQIRYuXJgpmlaZMnS/V9wflXZOSJ48eZg2bRpHjx5l3bp1JCQkYGNjw9y5cyU37vr16+nVqxeHDx+mWrVqWFtby+xRsWLFsLe3Jy0tTW6sulAWVVToiGp4hVy8eJHjx48zePBg2SkcHx/PqlWr+Pjxoxa+7L/y94mjoyNv3ryRa0tXPn/+jKWlJZMmTcry86mpqTRr1ozu3buTM2dO1q5dK/G1qampfP78mc2bN1O1alVCQkIkzEodcAPaY9gFJs/R0VHCQExNTbXWvbW1NRUqVCAoKIju3btjY2Mjsfn+/v6ScUTX+RT7SEpKCjt27OCPP/6Qxqxy5cq0bt1aMn9kxcV69uxZrcaj5ORkzpw5Q40aNbhy5QpeXl4MGDCA9u3bZ8IMpqWlsXnzZnx9fbPsS1BZBlR8tvq6roG1tbWlZ8+e3Llzh507dxIREYGxsbHkiY+Li+P8+fNUrlyZz58/Y2hoSP78+SX0wtjYmPr160s6K90gWJS8hbFVz0nVe3Fer1+/Zu3atfTp00cG3WlpaRw/fpwNGzb87VSJ/5WvYmxsTGhoqBb1opC0tDTev3/P2rVrs9R7jUaDt7c3s2bNwt7enqVLl9KyZUuMjIxISUkhOjqa48eP4+rqSmxsLLGxsbLRT9hs1VaLoDY9PR07OzssLS0xMzOTEKaEhAQJoXR2dsbCwoKhQ4diYWFBcnIyFhYWdO7cmaJFi0p7pTqBqhw/fpwjR45I597d3Z127dpJHnl1DoKABKampnLgwAFpP5OSkti5cyetWrXi5MmT2NvbExwczMePHyXsQYV5btu2jdq1a2sF6UI3xJ4nAutv6bUaEJuZmdGoUSNKlSrFoUOHmDZtGvr6+vTo0QNra2uio6MljayjoyPXrl1jzJgxQEYixNjYmF69enHz5k1pS9WklTg33f4JsTZ0faGYmBiWL19O8+bNad26tTzfBw8esGHDBrp16/bD6/L/jNPs6OiIjY0NFy9epFKlSlqvpaSkMGPGjO+O/2zfvj379u3DyMiIP/74gytXrrBkyRJsbW3Jli0brq6u9O7dG2tra+Li4qTTnJaWJpv1xIIWC8/AwID8+fNz7949KleuLMHugCwl3Lp1i1atWtGsWTPptAoDDGTCzqoZnbCwMAYNGkTfvn1lsJCQkMCmTZsYM2YMkydPzpRJVY2hh4cHN2/elOeuZp8dHR3JlSsXs2fPpmfPntIRjY+PZ/LkyTRo0EAqr8prK8qgYvHrkuSrBl33mszMzGjdujX16tUjMjKS27dvy3JVsWLFuHLlClFRUQQFBbF27Vo53QwyFKlSpUqcPHmSevXqaTkwamOkei9EBSE5OZmwsDBiY2Olc7Z+/XrGjx+Pra2tjNBNTU0ZMWIEQ4cO1aK4+a/8faKvr0/Dhg1ZvXq1HL8qRKPREBAQICf/ZSWTJk0iICAAExMT2Thz6NAhLCwscHBwwNbWljp16pAtWzap1yr+WO1sFw4jZAR5jx8/xsPDQ3aDq/i5W7dukTt3bry9vWnbtq2c3iWOp8vSIPYOEcAOGzaMevXqsWTJErmOjx07xuDBg5k9e7YMkHXhCOL/NWrU4OTJk1qOseh3aNq0KSNGjGD06NEyy5OSksKGDRuwsrLC2dlZi3JOQNNUTLbY48Q5iGsQv8W/RQm8UqVKVKpUidDQUGJiYti1axfZsmWjfPnyXL9+naSkJPz9/dm4caPca4QTU7FiRfbt20fhwoWl0RfHFfovsmPicyLbFxkZKekyjYyM2Lx5s+TbNzc3l/tRmzZtWL58Offv3//ZJfpf+ZPSs2dPJk2aJBNVqqxcuZKmTZt+s6y+c+dO2rRpg4mJCX/88Qf6+vrcvXsXY2Nj7O3tMTMz45dffiFHjhyShlFUQFNTU2WvgbDjwl67uLhw/fp10tLSiI6OljolGkVfvXqFs7Mz5cuXp2rVqqSnp2slznQbzlSfQE9Pj9mzZ+Pk5MTUqVNlVePWrVv89ttv+Pv74+DgkAmyJc45NTWVVq1asX37dkkFCcimuM6dOzNkyBDGjRtHtmzZ5OfPnDnD7du3GTNmjNa4bUFBJ+w3fJ0ODGRymlURWepChQpRtGhRQkJCsLCwYPfu3eTPnx9vb2/u3LkjnWORAISvTZPly5dn3bp1NGzYUCa7xP4iMs3CZquVoqSkJCIjI4mNjZX76tmzZ6levTq5c+fG0tJS7o+VK1cmOTmZ8+fP/zAzzv8Zpxlg7ty5ckhI586dsbOz49y5c8yZM4e+fft+d5a6SN+LTVg4gHFxcURERFC3bl0KFy5MQkKCfFjwNfOqGgwVm1OnTh2mTJlC2bJlpeMmsjrv37/n06dPuLi4EB8fLzOwQgl0ccAqLYueXgYZ+sSJEylWrJh8v5mZGf369WPu3LmcPn2aGjVqyGvUhSlcvnxZCzx/48YNaXyNjIzo3r07Bw8epGvXrmTPnl1S2LRt25aKFStKYyrKzKIcu3nzZnlP1GYqcX/Eb91rE80Zzs7O5MyZE09PT16/fs369ev59OkTL1++pEmTJrJJT7dxQTQcqFlB9foEXEQt8b569YpJkyZJZg5VRNbJzs6OHDlyYG5uTmRkJB8+fJCUP/+Vv18GDhxIr169ePbsGX369MHNzY179+4xZ84cPD09JQ1TViKgHSL4FMYnISGB8PBwOnTogIeHB/Hx8cTGxmpldkSZUOibitkvUqQIe/bsoXbt2tjb22sN9omJieHMmTOMHTuWqKgoWRIWx1SrUmqwLRzzLVu20KRJE5o2bSrfo9FoaNGiBebm5mzYsIHu3btrXacwrkIfjh8/Lv+emJjImTNnSEhIkMGlsbExQ4YMkY2+nz9/platWnTv3p2EhATi4+NJTEyU5ywGDUydOlUGlmqlSlyPuDb1+gTTgKmpKc7OzpiZmeHp6cmBAwckq1D16tXZuHEjVlZW0oCLTLrg9tctKYt9VA2IRWYvKiqKGTNm8Pr160xrYtiwYUDGnu/i4oKlpSUJCQkEBwcTFRX18wv0v/KnpE6dOty5cwdfX1+GDBlCiRIlePv2LUuWLCEmJua7SS4BxRR6LdZ5YmIi0dHRVK9enbJly5KWlkZYWBjx8fFynQjbravXRkZGmJubk5KSwuvXr3Fzc5M6I2AO+/fvp3Xr1kREREi9VnH2Qo9VeyaC5WvXrmFjY0P//v216BmrVKlC9uzZWbx4Mf7+/loOqtBrkYHesmWLdDrj4+PZvXs3cXFxJCUl4ezsjK+vLzNnziQtLQ0rKys+f/5M8eLFGTRoEDExMcTHx0sqQY1Gg5GREQEBAQwYMEArwST2HPFvXX9Et9dDNBaPHj2ac+fOMXDgQGJiYrC3t2f16tWysgbIxFpMTIxMOAqdFs6uatfVJJwI7nV7sQBu3rwJZDSDuri4yEr0p0+fCAkJYdu2bT+0Lv9tpzk2NpYdO3bw5s0bXFxcaNu2Lba2toSHh/Po0SMsLS0pWbLkTwGt/y6xtrZm//79HDlyhGHDhhEbG4unpydr1679l6NG582bx9u3b7l69Srp6em0aNGCunXrsmnTJi5cuMDMmTPZunUrXbp0oVq1apIgHNBqHDMwMJDcggYGGQMQmjVrxujRo+nYsSPFixcnNTWVc+fOceDAAQYOHCinGAnFU5vYVGUUimZgYEBsbCwxMTEUK1ZMAumFU5icnEzXrl0ZNmwYtWrV0ipXqotQLdUIB0F9TV9fn7Fjx1KzZk3J22plZSUpX9TGGpXOp2PHjqxZs0ZeiziW6qzqRq7q31RYR4ECBRg7dixGRkZcuXKFu3fvyglGomQjnOITJ06wYsUKeSzd0pJ4n9hIz507x/r163F3d2fx4sXY29tjYmJCy5Ytef/+vTwvQ0NDHBwccHV1JWfOnBgbG3PlyhVOnz797y3Y/0UR3dj37t3DxsaGVq1akStXLhISErhz5w76+vqULl36u7jD/ykxMDBg5cqVXLlyhRkzZvDlyxcKFCjA+PHj5aj2b8mgQYO4fv06hw4dIj4+Hi8vL5o3b861a9fYs2cPv//+OwcPHqRVq1ZUr15dZl9U/dCdeieMRfv27Zk1axaNGjWidOnS6OnpcefOHfbv30/Tpk2Jj4+XwbDaaKNys6o4aeFwXr58mfXr18uGHVHRSkhIoG7dumzcuJGePXsC2g2tKtuFbkVF7FciSzt48GAKFy4scc3CwMTExGhND1Mna8JXbLDapJMVtvlbJXVxTx0cHOjduzempqaSXzY9PYMCUDXY6enp7Nq1S1YZVJ1Wm4TEc4qNjZXPwNDQkK1bt0pHff78+WzZskXrXO3s7HB1dSVXrlzkyJGDTZs28eDBgz+zTP8jRKPRcPbsWc6fP4+RkRGNGzeWjeC3b98mOTmZEiVKfLdP4H9SRowYwZMnT1i1ahUvX74ke/bsdOnShXLlymVpI4TUrVuXkSNHsmLFCiIiInBzc6NVq1aEhoayceNGLly4wOXLl+nZsyeFChWSuF5h31QGJDXJZWxsTOPGjdmyZQteXl6ULVsWQ0NDXr9+zdGjR+VsgrCwMC24ktBr4SgLZ1k4pnp6ehw8eJBx48ZpkQGkpqYSHx9P4cKFSU9Plz1ToG0HVQpboXN6ehlzGkRwm5CQQJ8+fbC0tJT7gWCeEdSaonIk9Nv//41FF7ZUwEd1GXJ0sc3iM+Jvwv6bmZnRokULOnTogKGhIYMGDZLsHqpep6WlsXPnTurWrat1PJEUFDou9DoxMZHHjx9z8uRJIiMjWb58OQUKFMDS0pJnz55pzdVIS0vDxsaGXLlykStXLpydndmxYwcLFy6UPR/fk39rjPbOnTtZvnw5nTt3plixYrx69YoVK1aQkJCAo6MjXl5eREZGcuPGDXr37k2rVq3+5Qn9p0tKSgqLFi1i/PjxxMXFMXDgQF6/fi2hGykpKeTLl4/GjRtTt25duRAFtYvKhyqmYhkbGxMSEsKxY8fkEIQyZcpQqVIluTCEMROKq9uxrstiERQUxO7duxk/frw0riL7Is6nU6dOLFu2TMv4qdQ6uk00QhmFoogFdubMmUxZW/E+AcsQDoK+fsbc9/j4eNmpK84L0DKw6nWp3fG6m5C4H/r6+vTr14/u3btnguDMnDkTBwcHunTpouXsqNCRlJQUgoKCmD9/Pjdv3pTXL3hahcNQsWJFYmNjuX79utZ3VKxYkYsXL3Ls2DGuXbvG+PHj/5Hjdq9fv86IESNo0aIFFStWJCQkhHXr1vHu3TusrKyoUqUKaWlpXLhwgfr16zN48ODvGrB/gqSnp7Nv3z769OnD58+fadKkCdmyZWP9+vVAhrNhZ2dHjRo1qFOnjjRU8fHxUl8ExllfX1/imJOTk7l8+TJPnz4FIH/+/Hh5eUmDKIycMKK6vQ3ibwI/aWZmxuDBg1mzZg0WFhbSuIrMUlxcHN27d2fmzJlaHeNiHxJVHxUfKJxygf8V+/S2bduknsHXJl9xXHH9YhBCenq6nAhmaWmp1TugmhlxvSqGVO2QV7v2RZl83rx5FCpUiLZt22qttQMHDnD16lX8/f21cJ7iR1DlRUZGsnbtWm7cuCHLsIULF5aMRAkJCZQuXZq4uDgePXqktTYMDAxISEjg8+fPDB8+nK1bt/4j9Vrg5ytUqECDBg1ITExk27Zt3LhxA3NzcypXroy5uTkXL16kUKFCTJs2TWti4z9RNBoN169fx9fXl6dPn+Lh4UGlSpVYu3YtiYmJci1WrlyZatWqoaenJ9d1fHy8dBTVJJcYKnT//n0ePXqERqPBwcGB0qVLSx5oFaYk1rFY24LBQky9tbKywsLCglGjRrFixQqsrKywsrKScASRAAsMDKRy5crkyZNHVnrUH9EHJZxKVa8BOWxk4cKFWn1WwvEW9lD4B9HR0fI6oqOj0WgyOKTFmlADchGkimsUWG+h1+K3uH/m5uaYmJhw7NgxXr9+zYgRI2Qgraenx927d1m6dCmBgYHA18q+2M9E5S82NpZ9+/Zx5coVCX1xc3MjJSVF8qoXLlyY2NhYvnz5kgmC8erVK3LmzEnjxo0lRejfNkb76tWr7Nq1iyNHjshNtWTJkqxZs4Zs2bLRvXt3GjRoAGQ4mv369SMtLU0OBvmWxMfHs2XLFg4ePEhaWholS5akV69ecjT13ynp6encvn2bqKgoihYtSo4cOTK9x8jIiMGDB9OjRw8WLFjAmDFjcHBwwN3dXW625ubmzJ8/n6JFi+Li4iKjOuE0i8yq+C0yGj4+PtL5FBGmKK0IOINwHoWznZaWJsf1wlfMkeiWFUoAyOgwOTmZ2NhYrcyq6iirVGrCqKu4JbEpHDp0SF5HVkoooCnCUIsNo3Pnzlr3dPPmzRL7JT6vm61Sy7zqb3FvxbXPnj2b6dOns2bNGsqXL09sbCxXr16lbt26+Pj4yPcWLFiQJ0+eaCn9mzdvGDFiBJ8+fZLnZmxsjJubG05OTlhaWhIbG8vWrVsxMTEhODiYW7ducf78ee7du0fdunXRaDKmi82ePZvx48f/Bavyf1Y+ffrE6NGj2bt3r9ZQkn379mFsbEzx4sUZMWIEkHH/AwMDmTBhwjcb7YSIRpWtW7cSHx+Pm5sbvXr1omTJkn/r9Qh5/PgxwcHB5MmTh/z582d6XV9fn+bNm9OoUSN27NhBly5dMDY2xt3dnZcvXxIXF0f+/PnZuXMn2bJlo1SpUnJ9qw17Irskjik4y+vUqSMD4Li4OMmiISoiKrWb7pheQAbIaWlp0kAKblGxD4iypjAeqhMpnFzxHrWCJDLFIshdvXq1/LvQWd1stUqzKBxc3SZr0aQrHG9hvFV4lJCseitUve7Xrx9r166lS5culC9fHgMDA65cuUKhQoUYNWqUhF+UKlVKlmGFXsfFxbFgwQLu3Lmj9bwtLS0pXLiw5LLdtWsXqakZgyvi4uL4448/uHr1KkWKFMHQ0JAFCxbg4+PD1q1b//Q6/N+S1NRU/Pz8WLFiBfny5ZN/v3fvHuHh4Ziammo1wR88eBBfX1+2bt363YBYo9Fw/vx5ObXVzs4OPz8/qlev/j8SSL97947nz5/j6OhIiRIlssx2enl58fjxY86dO0ebNm1YsWIF7u7uBAUFER4eTs6cOTl58iSlS5fG3t5ey14LO6bCpkRQXLJkSTw9PSXLjnBuhW5qNBrpOAonUTjVYq2rg7UMDAyIiIiQSTUxOlpkij98+ICNjY2WPgudFr+FHojjwleIqGjGU/snxDNUbb84lkhIzZw5U+uejho1ioSEhExNv7p0dEJU51qci2Dw8Pb25ujRo3Tt2pVffvkFKysr7ty5g5mZGQEBAfJzFStW5I8//tCCT6anp7N27Vpu376tdX6GhoYUKFBA7qlnzpwhKiqKRYsW4eXlJek2LS0tsbe3Z+vWrTRs2PCH19yfzjR36NCBWbNm4erqKt+3e/duOVSiY8eOHDhwQL6WmppK3bp1OX78uBauTZXg4GA6depE586dJYj/0qVLTJ06lT59+tCoUaMfvrCflb1797Jw4ULKlSsnuzkNDAyYN29elt27Qq5evcru3bvl6GzIGFF79epVmjRpQs+ePYmNjSU6OpqkpCSZYRZRmYjIdGECYgGrvMyAVDwRuan8yGKRiNeGDRvGmDFjtHC8kLHYNm7ciJGREQ0bNpROeVaZV7WDVjw3sfjVhhoB/xDOg27jn5mZGT4+Pt+8j5s2bZLOv27JRzgM4kcYYXFOKjxFOC2RkZE8efIEU1NTPDw8tBqThKjZ9Vu3bsmSNkDevHlltUBMRouJiWHQoEG8ffuWrl27EhISwvz586UOREREMHbsWIoVK0anTp1+KGr935Ss9DogIIAKFSpQu3Zt+b6nT58ya9YsVq5cSZ06dTh06JAWLKNly5YsW7YMR0fHLL8nISGB9u3bU7VqVfz8/LCzs+PRo0dMnz6d0qVLM3jw4L/tGq9fv864cePksKLHjx/z6dMnZs6cSZEiRb75uSdPnrBv3z4CAgKkE1qoUCE+ffpEjhw5GD58ONHR0URGRko9EWtSVEZEw64uBjE5OZmYmBiio6PlUBKRdVJ1W19fX2J9LSwssLS0xNzcnNWrV1OhQgUqVaqkRX2Xnp7OtWvXOHbsGH379tUqs4r+AgHBUANiFXssyrpCb9XBRerekJSURHp6xvAkEURlJTNnzpQVIXUv0cV0qhzv4jt19VzQvz169Ag9PT2KFy+OmZlZpiBat3I0btw42anv4OBArVq1qF27Nk5OTmg0Gho3bkyFChW4fv06HTt25OPHjyxYsAB3d3cgo5t/0aJFvH79mqlTp2Jra/uP0+u9e/fy+vVrLV2Lj4+nefPmHD16FF9fXyZPniynxUGGc9SkSRMqVqyY5fdoNBp+/fVXzMzMGDBgALly5eLDhw8sWrSIiIgIlixZ8rfBMt+9e8eQIUOwtLTEw8OD9+/fc+/ePUaPHq3Vp6MrwcHB7N27l6lTp8o+FWtra7Jly0ZkZCSjRo2SfUqi0U9UfYReC/y8uDahN8nJyURFRZGYmEhMTIxsVhMVIVEpEplXMzMzLCwssLGxwcbGhsuXLxMVFYWPj49WEkrgbqdMmUJAQIDMsApIlarjunotIA8qwYBodFSZMIRzLnwBAwMDbG1tmTJlSpb3cejQod/Ua5FdF063mmlW+z5UDmg9PT2ePHlCcnIyBQoUwM7OLlMgLSrWooF3+vTpPHnyBMhIVJYrV44qVaqQO3du0tLS6NGjBw0bNuTw4cPUrVuXhIQE/P39ZUAnICBbtmyRzZN/a6Y5KipKy2GGjHLe8uXLsba2xsjIiKSkJJk9NDQ0pHLlyly/fj3TKFch/fv3Z+nSpRQqVEj+rVKlSuzZs4fGjRvj5eWlNR3or5L9+/ezd+9ejh49KoHmAHfv3qV9+/bs379fjsPUlXLlyuHp6cmGDRv49OkTLVu25MyZM/Lz6qahwgqEM6gaK9XhBGTUp+IoVTJ+4UyqgxVUcHzv3r0ZOnQo/v7+5MmTRxrvU6dOcerUKWbNmiWNqW4GSc0QA1pOt7qYhZIKRRVGSzRW9OrV64eegXCod+zYIe+V2jChG1iIcxL/Vs8pLS0NW1tbrc1ebUYS91wc+9ixY4wcORLIyGpNnz6d8uXLZwo0oqKieP78OWvWrMHPz4/r168zfPhwIiIipJHv06cP9erVIzo6+oeu+z9Nrl27xtixY7X+JnjJ9fT0qFixIvfu3dMaOtC+fXv27t2bib1CyLhx4+jduzf16tWTfytWrBjr16+nZ8+eXL58mQoVKvzl1/LgwQPGjx/P1q1bsbW1lX//+PEjPj4+rF279psVrCJFilCkSBHOnj3L0aNHadSoEbdu3SI6OloaU9BuZhOOrgppUPVRNLoIaIdoqBMGQeh1fHy8NJrCSAs9S0tLo3nz5rIhSIyZh4xhEAsWLGDixImyA14YVPGjjtYWDrLqAIjrEk6xaP4RToE4339VWRAiHGrBj64b5KqDhtSqklpdUitiJiYmeHp6Zqo+qQ2R4pwfPnwoK5wAffr0oU6dOtIJElWygwcPcvfuXdq2bcumTZt49eoVs2bN4tWrVxgbG5OSkkK7du0YOnSohJ/80+TEiRNaE1Uhg9pMNJM2bdqU06dP4+fnJ1/v2rUrixYt+qbTvGHDBnLnzq11XFdXV6ZNm8b8+fOzZLT5KyQsLIwuXbqwatUqrax5fHw8Pj4+ko0lK3FxcaFv3768f/+eadOmUaNGDV6/fs2rV68A+PLli8Rzq81nwhnMCtKgNgcLex0ZGUliYiKGhobSsTU1NSUuLk4mywQdnaiqlChRgrlz52JtbU316tXlGg0ODmbWrFn06tVLDmUR8AxVr9VE1/f0WmTP1SSXOJ6RkdF3GyyFzJkzB4Dx48fLXi1Vr3UhlLq6DWj5PQYGBri7u2udry5WWuyxoaGhjBkzRgY99evXp0mTJjJJIaBiGzdu5OHDh3h6enLkyBEiIiKYM2cOU6dOxdTUlMTERLy9vdm2bRsmJiY/PMX3L2XPENy535Js2bJ905l4+vQp2bJl03KYhYjS35o1axg1atRfdr6Q8eAWLFjA4cOHtRxmyOB29vHx4ffff6dr167fPIaRkREzZsygc+fOdOzYkVKlSjFu3Djevn2rxaWoi78VC0LXsApQv3BAReZEKGhSUpKWIotMjaWlJSkpKbLj3d7eniFDhrBo0SKioqKwtbUlJCQEDw8PJk6cqGVAdR1mFdusGjtAy0lWlVEtJ6tZW1UE6fq3RC1XqcZNbapQM8xqw48u84YQcd7iPWKSo7g/J06cADI2/IULF5IzZ075WXGtkIGVypUrFzdv3qR27doUKVJENg6J7DhkGCjB8fpPFPVaICNzJbLIWRWmsmXLxtu3b7M8VkJCAg8fPmT27NmZXtPT02Ps2LGMGzfub3Gap02bxooVK7QcZoAcOXIwa9YsAgMDmTdv3nePMXXqVI4ePUrZsmWpWbMmQ4YMASA0NFSufxXLp1LQCb0WzrCYQiX6CsTfVIywbiXF1NRU6rVwWsVQgO3bt7N06VLs7e2JjIzExcVFOqmRkZFaGECxb6id9qpx1c00C2c1KSlJqzI4ceLELO9TYGAgGo2GoUOHZvl6//79mTt3rhbcS1yniuMWP2owouo4aDPrCJ02MDAgPj6esLAwrK2t2bBhg5bxIIqaQQAAxBNJREFUnzt3LsWLF5f/F89GBM+lSpXi8+fPvH79GkdHR5YuXQpo68LNmzd/mJbqnyD/Sq8dHBy+G/xv3bqVPXv2ZPla7969ady48d/iNC9btoxRo0ZpOcyQkW1cs2YNvr6+7N+//7vHGDVqFPPmzSN//vw0atRIrtvQ0FAZKOnp6clsqAo90O3XETArwdCRlJQkKeggo1KhZlrVypGK0TUzM6Nz584cP36c3bt3Y29vL//evn17zM3NCQkJkRllNRgWP1kFw2q/gljzAjYlxMDAgFWrVmV5r0aMGJEJoiFk0qRJ0ifT1Ws1m6xmmdWqsG6QLI6jnn9qaipfvnzBzMyMq1evMm7cOPn9AwYM0BpLrkJD09LS8PDw4PLly7x69QonJyeZOVf1+s2bN7x8+ZKyZct+d80I+dNOs42NDe/fv9dyMIoWLcq1a9coWrQoKSkpmZoIrly5QosWLbI83t27d6lSpco3v69KlSps2LDhz54ud+7cYfHixXz8+JH09HSqVq1Kjx49+PjxIx4eHt9kAWjbti3t2rX7rtMM0KJFC3r16sWFCxdo1KgRbdu2JX/+/FoNdSolkpohVWmRRNQpHO2sHFhAGh9VSVRnWpRWnZycGDlypMxuWVhYaLFoiO9TMc2qI63ikXSbAdXzUbM+34JhiOl569evz4RrFtK8eXN27Nghu/aFAVW//1tKp5ut0jWuT58+Zf78+RgYGODk5MSFCxd49uwZALVq1WLixImZyr1qZlpkWtesWcPixYspW7Yso0aNwtbWlsTERKpVq8bBgwdp167dv8Tu/6eKl5cXp0+f1oJneHh4cP78eQoXLszly5czZaIvXLjwzerRmzdvKFGixDe/L3fu3ERGRv7p8xUUVPfv30dPT49ixYpJ+sioqKhv0kh6enoyevTof3n8UqVK4e7uzpUrV/Dz88PPz4+4uDgsLS1l1lFs8GomSsUAi01cOMeimqTLvqHCnsQah694ZhGUioyrr68v+vr6chKg0Pv4+HitSpHuv9Wqlhpoquet6oBwVkU1RlcCAwOJi4vTMmZZib6+vtaUQfjKTKA73l5Xj3X1W31dTAIVlJKPHj2STboFChRg+vTpODg4ZHl94vjly5dn4cKF5MuXDxMTE1avXo2LiwtxcXGUK1eOt2/fUrZs2UzV1X+KeHt7s2fPHi14hoeHB2vWrKF169bs378/Uyn+woULeHh4fPOYAq+blQi4kcDq/qyEh4ezatUqzv6/YTxifHrp0qW5cOECv/32W5afs7W1xcrKipCQkG/CxSADktG0aVNu375NxYoV6d27Nw8fPiRfvnyy30cXRgRfdVTXVorKjJr0EpUl4WgnJSVJhxzQqrRARmXZ1NSU2rVrU7duXVmpFz1OguFCZaTS/S32GtWJFOetwjR0M77z588HYPTo0UydOlXep0GDBv3LxIK+fkZzf1a+gG4wrMJGsnKg1Z+UlBSWL1/O8+fPyZMnD58/f+bkyZNARoA0Y8YMcufOrbV/qs3VGo0GT09P9u/fT4ECBQAkq0ZCQgJFixbF1NSUvHnzAvwwneSfdpoHDhzI8OHD2bhxo3zovXr1YvDgweTIkYM+ffpovf/+/ftoNJpvbjpWVlYEBwd/8/vCw8N/atShKhs2bODIkSP4+/tL6pajR4/SunVr+vXrJye6ZSWmpqZajA7fEtFU8v79e/T19enVq5fkbFZZKOCrgVIXO3yNktQMlC42WJRUVGdRdayFAqsZbZXCKiYmJhMcRP2/+E61WUg4jGpGSpwvfI0MxYJdvHgxgFZkKe6BaF5as2YNpqamsjStr6+PlZWV3FzExqPeLxUPJRTv5s2bvH79GhsbG2rWrImFhUWm6FVfX59nz54xdepUFi1aRPbs2UlPTycyMpItW7Zw8uRJ5s2bJ89TvTfwNQuTlpZG48aNJZ/j9evXadmypXyuw4cPlxuMLrPGP0V69OiBj48PZcqUkRnaVq1aSchJnTp1tALMkJAQzpw5800H1MrKSo6ozUpUKsKflQsXLjB58mQmTpzI9OnTgYz7Lob5WFhYfPfzP0KXp6f3daiPnp4edevWJS4uTg7E0H0vfMXfqQ6q2pWuMjsIVh2RlVGb33R1WyQidNlzhOOs0kAJ3RXfL/YVNfgWxlV1QFXDqkIY0tLS5DNWewvE+SYkJDB69GgMDQ0lo4f4PoHVFlk4Va/F9C+VXUBfX5+XL1/y4MEDTE1NqVy5Mg4ODlrVJWFsIyIiGD58OBMnTqRIkSJoNBoSEhLYs2cP27ZtY+bMmdjZ2cm9SXUq1Oxb+fLlWb58udx71MDfz8+PvXv3Ahnr/Z8ojRo1ol69ejRp0kQ2wnp4ePDy5Us5MEaFKiUnJ7No0aLvcteqVINZiZgn8LPy5s0b/Pz8GDZsGEOHDsXAwIDnz5/j7+9P7dq1tXD8WYm9vT1xcXHfdZohI3A+dOgQhoaGuLu7U7hwYSIjI6UDDNoUhmqFSM02C+5ndX0LRhZABqti3RoZGUm9F3odGxsrdUB1MEF76Jiq46peq425wl4LogH1GGoQqsJLunTpIr9z0KBB8nyTkpLw8/OTHNWiEpySkiJ7LNQhKOKeifslYKMCyx0aGiobcj09PXFzc9OqHAu91mg0DB8+HB8fH8aNGyevVUzm7Nu3L4UKFZLXLvY1NVhIT08nR44c5MyZU1LEqnDRqlWryl4HyBiY8yPyp53mcuXKSWPq6+tLsWLFePnyJW/evCEoKEieXEJCAlu3bmXLli38/vvv3zxejRo1mDt3LgMHDsyy63bdunV/Knv37t07du3axZ49e7TK9A0aNKBEiRL06NHjm3hlyMBF/ihzR758+QgKCtLKpKgZG9EpL65PUNuIzUdkcdWyqtrFKzZ+EQWri1ONfIUR1o3ossIB6ooaPauOo7gGXeiDroiSlrjXqiEUwZXaqGNiYqKFo9OVI0eOyCYr0eBx8+ZNiTv09PSkZMmShIaGMmDAAOrUqSNZSNQS79y5c1m6dCkuLi7yHjg6OvLrr7+SPXt29u3bR7t27aSDojpA4rdGoyFnzpwMHjyYTZs2ZTKgs2bNokyZMri6urJv375vXtN/sjg7OzN9+nSaN29Os2bNJOWckZERCxcuZOXKlXIDPnToEPPnz2fBggXfNGI5c+YkODiY2NjYLIPeAwcOaGW1f1SSk5MZN24cBw4c0Dqul5cXO3fupFGjRjKQU2FDQmJiYn4oGIYMvT58+PA39Vo4ycIoCgYLMeFTrDfdUqqKQxSOrDB04nOqbgt9UbOzKhxEPT9dHVUrSio0QbymlkfVz6tBs6rXoilK6LU4lnpN38oGAqxdu1bqtdjXz5w5Q2RkJLNmzcLZ2ZkKFSqQmJjIzJkzyZkzJ0OHDs0E3diwYQPDhw+nVKlS8h4YGxvTqVMnPDw8WLduHb/99pt0UMS1qdkoAQUbPHgwmzdvJigoKNO5urq6UqdOnR8egPCfJoaGhqxbt47u3bvj5eUlKedsbW0ZPnw4M2fOJDk5GSMjI9l8P2TIkO8mlPLkycOjR48oVqxYpteeP39Ozpw5v2srviUDBw5k3bp1Wk2JBQsWZOPGjTJJ8enTpyxnK2g0Gp4+ffpD8Lh8+fIRExPzzQyjsKXCAU1NTZUT80QCKy0tTfYPxMfHy0Y6oeOqwyvWrW7DfXJyMqampploZHXtNWTWa7F+xR4ivku8V4U1ZXWv9PT0tJJqenp6WmQC4n0i2E9NTZVZ6axkxowZUq8F1n3btm2kpqaybNky0tLSqFKlCvr6+pI1a/To0bJSJva1Q4cOUaNGDerXry/vQWpqKo0bN6ZKlSoMHDiQwMDATBVldb8Vz8zHx4ddu3bx/Plzrfv5xx9/YG5uTuvWrdm9e7ccavSv5N/CNLds2ZJ69eqxc+dODh06RI4cOTh37hyfP39m2bJljB8/HgMDA5o2bfrdZjrIyOg2b96ckSNHMn36dK0HferUKW7duvUvy39ZyapVqxg6dGiWCydXrlwUKFCAz58/c+HCBSpXrqz1ukajYfLkyT/8vXZ2drLcrxohtWwgsIUiahVOs7q4deESauZTKIWK9VMXiEptJ46pKiF8jQR1ccFqBlxVdvVHPY44lnpMYUx1GS9EFCuic0DOlFdFTCozMzOjSpUq1K9fP9N7XF1d6d+/PwsWLJDZBD09PXx8fJgyZQoHDx6kRYsW8roiIiIwMTHBxcVFBhBCwVJSUmjatCmdO3fGx8dHKzv34cMHAgMDCQ0NlVOjIiIigAw8X1hYGDdu3MDAwIC3b9/y4sULPn36xI0bN2jcuLEWe8w/ScqUKcOJEyc4ePAghw8fxsbGhnXr1qGvr8+qVavkWNvq1auzY8eO7xpWyMjA+/n5sWHDBq094MmTJyxcuPCbuMjvyf79+2nVqlWWjriFhQXt2rXj8uXLrF69Ostm1MDAwG9ChHTF1tZWVmiyglaJdSSyMyJzJEqWaiVGzYqozjBkOK9qdUg11uL4urzs6noGbTo33QyyalRV/Rafy4ouSjW8ql7rZrwBufd06dIl0z3ctm0bycnJWFlZ0axZsywD5SpVqlCpUiVGjx5NoUKF5He3aNGCXbt2sXjxYoYPH651Tvfv32fChAmyjC0yaElJSZQsWZJ3795hZGSklQCIi4tj0aJFvHr1SrIdhIWFARlNrWXLlpU0Vl++fOHVq1ekpqaybds2vLy8uHbt2g+tm/80yZkzJ0eOHOHcuXOcOHECY2NjRo8ezdKlS9m4cSOtWrUiPT2dkiVLsmTJEi2nNSsZMWIEPXv2ZMuWLVoN+qGhofTr149Fixb99Dk+efIEFxeXLL9bX1+f4cOHs2TJEiZPnpzl8ffs2UP58uV/qIpkZ2cHZAxos7KyysQOpfYTCWhRVFSU3AtEUkpUJ9R+IBWSJdaemsRSnWYV86wyyKgQCl2cr/qaWkHJSq/FXiJEdTLF9wg9VuchiNdElSwrlpyFCxeSnJyMtbU1PXr0yBLC1bZtW2rXrk39+vWpVq2aPP+GDRty584dAgICpE0R+9DRo0dZtGiRDCZEsBEfH4+DgwM5cuQgNDSUbNmyyfubkpIim/9Epl9UOUuXLs3UqVO5f/8+KSkpREdH8/btW9LT09mxYweFChXit99++24CT8i/3QhoYWGRyfjY2toyd+7cnz5Wnz59WL16Nd7e3lSuXBkrKyvOnz+Pq6srW7Zs+VNR6+PHj7+LXSxbtiz6+vpMnTqV+vXr4+vri42NDbdu3WLatGnUr19fUg/9K3n79i05cuSQEZwuplHglMUiV5sEReYD0MoIqZu9utiFqOVUcVzRtas6zariqGWirDCE6jHV7xHZMDUqFaIasqwGNahdrRqNJtNo47Vr1xIXF0f27NmlInyLVWHZsmX07dsXR0dHeWxx3NGjR9OpUydatmwpryUyMlJu6urGI5wWlRpMXHtISAgTJ07k+vXruLm5ER4ertUElJKSwqtXr7h16xYPHjwgLS2NPHnyUL9+fbp3706RIkW+2xT7ny6GhoY0a9aMZs2aaf39zwSuNWrUIDU1lSZNmuDh4YGLiwu3bt0iNTWVzZs3/6n79OjRoywDKiFly5blw4cPXL16lXfv3tGvXz9cXFx49eoVc+fOxdTU9IeHLb19+xZnZ2et7LJqHHUhDyqcSgSKYi9QM0IqV7JqBAEt6ICamVKzMWrTHHydmKWrc2omWs0wi2tRs8lqYC1+q9kolSNezXqL6kyHDh207t28efOIiYnB1tYWJycnUlNTOXLkSJbPbv/+/VSrVo1ChQrJpkpxT9u2bUuPHj2IiYmR60Wj0ci+GRWyIQy9gHyJJEBaWprkWT948CCQ4UgKh1msm8+fP/PkyRPu3btHUlISjo6O1K5dmwULFlClSpVMjaX/JBHBbvXq1bX+3rdvXzn84kclX758zJ8/n65du+Lq6krhwoV5/vw57969Y/bs2Vk29f8refLkyXcbssqWLUt8fDwlSpTAz8+PkSNHUqRIEUJDQ1m5ciW3bt1i8+bNP/Rdb968QU9PT1KKZpV8UhNICQkJxMXFSbYIoUcCaqHuCeI1NXml7gNq0kbYawHREpzOKpRCVHmETVV1GzIPEMoqw62b7BJ7ifheMXBFDYghg5Vk4MCBWvcuICCAqKgojI2NcXZ2JiUlhU2bNmXZz/T06VPMzc2pUqWKPLZwgr28vDh16hRPnjzB3d1d7lOC0EDsPUKvRQDs7OxMZGSk9BXi4uI4f/48u3btAjJ6UVRe9rJlyxIZGcmbN2+4f/++DJSqV6/O6NGj8fHxIT4+/n/Gaf6rpVu3bnTu3JmbN2+SmJhIt27dZET4Z8Te3p6PHz9KsLeufPz4ES8vL/bt28fevXvp3r07iYmJFCxYkMmTJ//LMbyqvHr1iipVqmSKVFU8nRqBCuVRlUBVLOG4qgtGF5ahNvSIzJRQRKEQus0YwvFVS0Kq4ywUDbSZKNQMlaqwqnKrWTC1uUc3GyYy++fPn2fo0KG4ubnh4uLC0aNHSUlJoX///pnoBc+fP4+BgQGnT5+mU6dO5MmTh+DgYHmvhaHMnz8/L1++lN3VTk5OvHjxQgvzJBz41NRUQkJCMDY2Jjw8nCdPnrB27VrOnTuHgYEBv/76K0WKFKFfv37Uq1ePjh078scff9CrVy+Sk5Np0KABvXv3xtvbW2toxj+Vcu7vEm9vb2rXrs39+/cJCwujbdu2/1ZTldDrb8nHjx9xcHBg4sSJnDlzhlGjRhEREUH27Nnp1q3bT7F1vHr1CmdnZ4lhViEVuhkltYFW5SsVRldthBP6LDLMQofEccTxRRlYXePCsIostXpMU1NT0tLSMjHNqKLqrxp0A3KvUPVaZKxUXmWReVaPv337dtq0acPz58/x9fXF1NSUAgUKcOPGDb58+UKnTp0yDZfZu3evhA8MHTqUokWL8ubNGy1suEajoVq1aly4cIF69erJ7xM4cfF/FaKWnJwsqb8+f/7MihUrOHv2LLGxsbRv35727dvTpEkTPD096dSpE0FBQUyaNInIyEiqVavG5MmT8fb2pkSJEvL4/9VrbXF3d+fgwYO8ePGCoKAgGjduTMGCBf/08ezs7Hj48OE3X//48SP29vaMHDmSO3fusGDBAoKCgrC0tMTHx4cRI0b8cOPhq1evcHV1RV9fX4thRrdJV31NBGoiMyz0VMVBC+dWt/Ff9QtUB1fF4wp6SZXJKz09HTMzM4yMjOSkQBV+qSavdJ1jFcsMmcfMC/0Vtjorpzk1NZXFixfTr18/wsPDadKkiZy0l5iYyOHDh/H29qZ06dJa93fjxo3ExcVx/fp1ateuLYfMiGqcmLhYq1YtTpw4QeHCheX529jY8PbtW/LlyycDYpHxTklJ4cmTJzRq1IgbN27w+PFjtmzZQkhICLVr1yYgIICKFSuSJ08eWrdujampKatXryY4OJiSJUsydOhQvL295WTWn5X/OKcZMrJc5cqV+0uO1bFjR1auXKnVESokNTWVkydPMmzYMAwNDWndujWtW7f+U9+TnJzMu3fvMhlXkXECtKJTFeOrOplqxAtoLXjVsRbKJ46vZqGFsRHH18X6pKamysUiDLSugqvOuVBCNSsljqcL4FedZvVvqtNsbGxMxYoVuXr1KrNnz2bBggXY2trKctCrV6+YMmUKO3fu5OHDhzLTb2hoiIWFhTy+4GnUdb6yZcumtYmZmJjg6urK5cuXKVeunCyji01x7NixPHv2jDJlypCWloaXlxdTpkyRTAm+vr5ARsaxR48epKSkMGTIENn0+l/5MdHT0/vLJgC2atWKfv360aRJkyxfX79+vSz51axZM1Nl42fkxYsX5M2bVwaoohyrZpTUMqqK+xXGR23kEThJ1VEWWVU1yyXWp3BOAWnQxfcI3VdLlIBWOVjtUFcdYhWSoRpx9Tqy0ms1GFaHMAA0a9aMDx8+0KtXL0aOHEn27NmlzkZGRjJx4kTmzp3LlStXJOOKsbExtra2pKdnDEt5+fIlenp6mSjFbt26RXh4uNZ9r127Nr///js+Pj5aPNipqamsWrWKjx8/UqlSJZKSkihUqBC//vor3bt3x97eXmbPIiMjGT9+PDExMbRr1w7//9cw/l/5cSlQoIBkKPh3pHLlykyaNImRI0dm2YuwatUqOnbsCGRkE5csWfKnv+vFixfY29tLZ1hwLAunVtg3QAahAtJgbm6OsbGxVqMvfA04daGRwrFOSEiQ1JPC+VWZrITO6TJCqDMv1Imhqn6qzrCuXqvVJHFdqp1W9VoExYaGhrKZr0ePHiQmJtKuXTvatGlD0aJFsbKykg2/S5YswdrampMnT2r1qNjb28v7df/+fYyMjDJVIIyMjLhw4YJMCEAG9HfJkiVMmjSJhIQELXjb9evXuX//Pi1atCAmJoYcOXJIhrMSJUowb948NJoMWj0xqbJSpUrs2rWLcuXK/SnEgip/z7ie/yCpUqUKb968YceOHVqGITExkV69etGjR48slVPIkydP+PXXX2nUqBENGjRg4sSJWmOWhezfv5+0tDTZwa3CKtSSqljw6qJXs5+GhoZyUpDIJqnDS8RkIZXeSkTFoA2TUKEgKkxELS+LTI4u16MunZxqMHUJy9W/i9/q9anKLV6DDA7ctWvXkj17dmxtbbGxscHCwgJ3d3e6dOnC1KlTtZ6NUOZcuXLx7NkzXF1dMznMGo2Gy5cvkzt3bq3rHz58OLNmzWLXrl3ExMQQHx/Px48fGTp0KPv378fe3p4lS5bw5s0brl69ytChQ4mNjaVz587069eP3LlzS8d6/vz5PHr06N+qgPxX/j1xdnbGw8ODKVOmaLFYpKWlMX36dIoUKfLdgObTp0/4+/vToEEDGjVqxIABA3j69Gmm9z1+/JhHjx6RP3/+TBUg4fiKzJOubqvBrqDgsrKykl3nZmZmmJuby/+L7JWq10IfhQFWcYy6Oq1mxtRGQ7V0rKvbQn/VzJVaMdKd2KdeowrPMDY2lnj1OXPmMGPGDPLly4ejoyOOjo7Y29uTM2dORo0axciRI7UyPGJ0uJeXF+fPnyd//vyZHGbIGHzk6ekprz89PZ1WrVpx4cIFli1bRkhICHFxcYSFhbF48WLmzJmDgYEBU6ZM4cGDBzx58oSAgACyZctG69atadiwIcWKFeP9+/c4OzuzbNkyPn/+/I+GVf3TxcDAgL59+8qKrxCNRsOuXbt49uxZJmiJKjExMSxcuJCGDRvSuHFjOnfuzOXLlzO9Ly4ujqNHj1KoUCEt+I4Kq1Cn7wp7rDbDivfY2Njg4OCAnZ0d1tbWUsft7Oywt7fHxsZGMsqIQFdNdqlsIGqFWoVxiUy3YKpQB5xkxZyhC+FSnWsVPikyy7pThdUfoddixkLZsmVxcXHBxcVF6veAAQMICAjQ0msrKyusrKwoU6YMly5dokSJEllOYV21ahWenp5aCUMPDw/Mzc2ZOHEib9++JTo6moiICPbv30+fPn1ISEhgyJAhXLp0iaCgIBYsWEDJkiXp2rWrZNKKjo5GX1+fwMBA+ez+XYcZ/kMzzX+l6OnpsX79eiZNmsTKlSspVaoUMTExvHz5kl9//ZXGjRt/87MHDhxg9erVTJw4EQ8PDzQaDWfPnqVjx47MmzdPi3921apV/PLLL+TJk0drKo9YROJhqY0/YoGo2EbhdKrTbcRrKuZYzWjpwibUjNL/x95ZR1WVfm/8c+kOQQxM7Bq7WxEMsFtR7G7HjjHG7u5uUbG7xbEwsMUOUBQkpOP8/mC975x7AQdmnBnn9/VZiwXcc8+559579tn73fvZzxbbU+NFqzPaupxH3SyzetWtG+QLI1T/1g2i1Rqz8fHxBAcHY25uTqZMmaR8jViRJyYmUr9+fTZs2ICBgQFPnjyR03oSEhJo27Yts2bNImfOnHIf0aS1Z88eOV5YzesyNzdn+fLl7Nq1iy5dusjP+u7du5QoUYLTp0+nkCibMGECy5Yto3DhwrJJRnwelpaWrF+/PoW04g/8cxg/fjyrVq3CxcWFEiVKoNFo8PPzo0WLFmlqCgP4+fkxZMgQxo0bx8SJE9FoNNy+fZsRI0bQo0cP3Nzc5HPXrVuHra0tFSpUkM5V3UADv1dyRHYItJuJNBqNDDDhd71icT2JADs1frP6HiGCU/GaahqIeh81H1rdPKwOlNUUK3VlSWwXi1vdMbjCiaqHPqirNpDMNy9fvjz+/v4yYIDkylvhwoWJjIxEX1+fmzdvyjHiCQkJ1K5dm6FDh1KxYkXMzc211C7u3r2Lvr6+1jAOQW+bMWMGR44cYfDgwfK9hoSEYGVlxdmzZ1NodS9fvpyePXvSvHlzWrRooZUcqFChApMnT/5LGcwf+Gto0aIFxsbGNGnShLx582JlZcWdO3coV64cmzZtSjPwCQoKol27dvTu3Rtvb28MDQ15+fIlv/76K7/99pscTASwZ88ewsPDqVWrllS5AbSSOvB7/4L4W9i5uG4FxdHCwgJDQ0OioqKkTxXNqeoMsu6iV9i8+n4itql7h8Q2YRNqgQAgBb1LHS+oF++69CpxjiYmJink4USFTPTyeHt7s337dp49e0amTJmwtLSUGV1DQ0OKFClCYGAgly5dkoNdFEUhX758rF27ll27dpE7d26tfg/RTC+4xOr7SK9evbh8+TJTpkyREryQzCE/efJkitkAJ0+eJG/evHTv3p3u3btr2XXnzp3x8PDg8OHD6b4O08LfEjR/+fKFrVu3cuHCBQwNDXF3d6dx48Z/ij/yLWBoaMiUKVOIjY3l2bNnmJqaao2VTg2fP39OMSlQo9FQu3ZtSpQoQbt27Thx4oQ8hrm5OS9evJA3c+HMxAWozgSpu1tBWy1DNPsAWitNdVZaODXBhRTPExDBupqbrN6mzhKn9hmog2e1s9V1rurmBd3GP/WPblZcURQiIiLkwAH1Slh9/uomP319fcqWLQskSx1t376dypUrkzNnToyNjSlSpIjUp548ebIMZNSfjaGhIe3ataNNmzbysYoVK1KxYkUuXryoNeY5MjKSz58/a62M1Vyxtm3b0rRp0/+poDk+Ph5vb28OHTpEQkICtWrVon379n+oh/x3QaPRyGqRv78/kFwm/hqnUVEUOU1PXH+QXOrdvXs3jRo1onr16jLbaGFhIXl0altU27WweUDLtnU1lnUrQ0LqTLwX3aYcAfXCVZ2JVtuuOmOl2y2vfu+p/ejeD9TOVd0cJP4WgYI6aFbLNIqgQ511F/dDQbESTtPQ0FCOaU5MTKRBgwY0atSILFmyYGFhQe7cuTE3NycwMJBZs2bJ+4GaOw7Jw4lq164t7bpnz544OTlx/vx52rdvr2W7p06d0nKe6s+qdOnSvHjxIgWv9P8zFEXh7Nmz7Nixg4iICEqVKkWXLl1S9JT8k3Bzc6NRo0a8evWKqKgonJyc0hykIjBkyBAWLVqk1bifJ08eVq1aRZcuXbh165bk3VpYWKAoyVJqavs1NTWViSp1AKe2a0F/FD8iIaTbAKz2fYLKIeTl4PfFtrC31HyyukKrrkqL81Cfm3qBLI6vpm2I8xB2LexZ3M9E5UvwpwWdVP06oiok7Fo8Hh8fT6ZMmeRiwsjICFdXV3muvXr1onfv3tjY2GBjY4OdnR2Ojo48fPiQX375RcYxunZdsmRJihUrJv9fuHAhWbNm5e7du5QsWVJLjWnTpk3MmzdP/q/+rDJlykSuXLnw9/f/S5x7+BuC5lu3bjF06FB69uzJ0qVLiY2NZefOnTRo0ICtW7eSJUuWb/2S6YaxsXGqmpKpYcuWLfTp0yfVG6e9vT1Vq1bl4sWL1KhRA0huYGzUqBFv377FwsJCrixFQJGQkECzZs3YvHmz7BwVjlRwnMQKVkAYswg0dbNKwjDVmWR1Qx+gFUyrnaOa46jb8KP+Ua9UUzNCNQ9KN2hW///kyRN27dpFQEAAWbJkoWnTpjx+/Jh3795hYmKi1aWclJTEhw8f5OJGjfv379O/f386d+7M6NGj2bt3L48ePSI4OJiQkBC2bNkiDVD9Iz4HdekrOjqaXLly4e3tjbe3N2fOnJFa0J8/f/6q1qf6pvG/gICAADp16kTTpk2ZPXs2RkZGHD58GDc3NxYuXPjNuMp/Bnp6eunmoJ4/f57q1atrBcwCRkZG9O7dmy1bttCvXz8g2a5/+eUX7ty5Q758+bQWdIAMpmNiYrQqL/Hx8dIhi8ZcAd2gTyx+1Xanlp4TWWa17akrQmo6hTpoVtu0rr2rbVt9jLQa/kSZWrecGxQUxO7du3n27BkWFha4urqSmJjInTt35FAR9fuMj4/n8+fPlClTRsupPXjwgHHjxsmJb6dOneLGjRuEhYVx+/ZtVq5cqXU8tcKQunwt/nZ0dOTIkSNcuXKFN2/eaGlG6/KwdZE5c2a+fPnyP0G/io6OpmPHjpQoUYIxY8ZgZ2fHpUuX6NixIwMHDtSquvzT0Gg0Ke7/aeH9+/ckJSWlqnSl0WgYPXo08+fPl6PV3d3dsbe3x9fXl+LFi8tsqQgcRe+CaKgXAWdsbKzM5sbGxsqpoCLIFtegOmusbvQ3MTGRWWlRjVYnlcQ+gHxNXe6x2k6FD9a9P4j3rbZrdbOfsGVBGzEzM8Pc3FzaeXR0NAcOHODOnTsYGBhw7do1HB0d8fb2pkSJElrKX8K+79+/z7hx47QkSH19fdm4cSORkZGcOHGC27dvc+HCBcLCwrh+/Trjx48nb968WskFdRN0TEyMlOXVaDQ4ODjw7t07evbsyYoVK/D19ZWvFR4e/tX40snJicDAwO8raBY8k71792rdcAYOHEi9evXo3bv3n9Jk/Tfw4MEDmjVrlub28uXL8+DBAxk0iwEoX758QU9Pj6ioKO7fv09iYiJFixYlb9687N+/X45pFg5EPTVIlCBSazBSFIUJEyYwefJkAC1nJLLOQKrGow6o1c5ZOFB184La0aqzV7oBt9hPt0lIzX0WQfOcOXP4/Pkz3bt3J2/evDx69Ii1a9cSFhbGqVOncHNz01olJyUlMX/+fNq1a8fr16+11EHWrl1Lz549ZQf9gAED5D4HDx5k3bp19O3bV4sfJfQdDxw4wM6dO3n27JmcZKReVKiNyc7OTmtakC6ioqJSNE/9f0bv3r1ZunSpVnDaoUMH6tevT4sWLTh+/LhsVPme8fDhQypUqJDm9vLlyzNz5kz5v6OjIxqNhqioKCIjI1EUhadPnxIXF4ejoyP58+eX2SKRlRKLX7UNioUa/D6aWiy61q5dS7du3QC0OvFFxkZcZ2rnqZspVjtT3cyxrvNUL37Vz1U7Yl07VgfLIkt18OBBjh8/Ts+ePRkwYADv379n+/btfPjwgfXr1/Pzzz/L7JqwxW3btlGrVi2ePn2qdV86e/YshQsXplevXujr68tyamJiIv7+/sydO1cOM1CXyePi4jh//jw7d+7k3r178j2IpkAghf6+2C8tLd/3799jaWmZ/ovqP4wRI0bQq1cvLc38Bg0a4OzsTLNmzShRosQf6jV/D3j69GkK9QY1ChUqpDVx2NDQkOzZs2Nvby8n+n348IHo6Gjs7OwoUqSI9G1qu46KitIKcMUEQHFNCvtJSkri3LlzANSpUwdFUYiKipJNwMbGxpJGoa7aAPI+ISQe1ZKxagWt1BbEuo2B6gW1bhOviYmJzCqreyzu37/P8uXL8fT0pFOnToSGhuLt7c2VK1d48eIFy5cvl7QMETRfu3YNS0tL3r17x6tXr+R9JyAggFevXrFkyRIMDQ3JlSsXjRs3JikpiZCQEHr27Mm6deuA3yth4v7p5+eHl5cXt2/fJjExEVNTUy3Z17Zt22p9x8JnpzWM7uHDh7Ru3Tq9l1Sa+KZB865du+jUqVOqK/QiRYrg6OgoOaTfO2xtbQkMDCRHjhypbn///r3Wiio0NBRIvuC3bNlCWFgYzs7OWFtbc+nSJTZv3syQIUPIlCmTNDAxgUlPT0/ypgR3V93cpDbcCRMmMGrUKOB356vbTChWp7rZZrVjVWeQxfNSyz6pf+tmqdRBstpw1QHz4cOHMTMzY/LkyfJ1KlSoILmDixYt4uXLl3Tq1AkbGxuePn3K4sWLyZo1K1WrVpXBg7i5+Pr6MnHiRK3VuwiM3dzcWLduHf3799daMNy5cwcPDw+t7y8qKop58+ZRpkwZbGxsKF68uNbN0NTUlNy5c3Pjxg3KlSuX4vtft25dunV+/+u4desW+fLlSzWba2dnR7t27dizZ08Kjd7vEcKu08L79++17l+hoaHyZu7j48PTp0+pVq0aefPm5fnz5xw6dIiOHTuSO3du6Tzj4+Mlb1dtU+rAWVzTwu7Xrl1LmzZtZMlW7QTF89UOTzxPTXtQV43+6Edty6kFzLpVJHWDr7GxMU+fPuXixYts2rRJZt3t7OyYPHky3t7erFy5UjZbOzo68uHDBzZu3MiLFy+YPn26/HzF6xw5coRly5bJUb3i/cXHx1O0aFFiY2MJDw+X/OikpCQCAgJo3ry51veXlJRE+/bt6dSpE2ZmZpQqVSrFYs7d3Z2tW7emqsl6/vx5fvrpp/+JKlJYWBivX79OdciUoaEhY8aMYcWKFVrf1/eKP7Lr8PBwretAUZL1+wMCAggICOD69euUKFGCvHnzEhoayvr166levTrFihWTSay4uDhJZ1D7RjFCWk0BunjxotQKFgOxhC8zNTXVUrZSV3Hgd96yrr1DSh+t669TWxSntRBW/4jFcFxcHMuXL2fjxo1YWVmh0Wiws7NjyJAhuLi48PPPPzN48GAGDRpEoUKF+PLlC15eXhw/fpxZs2bJ9yRe89ChQ/Tt21dm19VUFj09PUqXLo2fnx9FihSRn1FERAStWrVKMaY9b968LFiwAFNTU0qWLJliYdutWzfmz5+f6oyQt2/fEhIS8k0WgN/0znDlypWvDhJxcXHhypUr/4mguUOHDixatChVoXVFUfDy8sLLy0s+dv78eYyNjbl8+TJ58uShcePGWFlZYWBgQLVq1Xj16hUjR46UY5z19fWpXbs2pUuXlgan7oYXgaAIjAGGDx+eguMsOnjFc8T/guAPyRforVu3+PTpE1ZWVlSqVAlra+sU3GpheGqkRc/QXcGmtsI1MDBgz549kjKhdoZJSUmMGDGC+/fvky9fPoYMGUJ0dDQODg506NCBUqVKab134eQtLCxSZL8Bme0zMTHRaoxMSkrSCpiNjIwkx97Dw+OrvPbJkyfTpk0bRo4cSb169dBoNMTGxrJx40Z8fHzYvHlz+i+o/zB+++036tWrl+Z2FxcX5s2b958Imt3c3GjVqhVdunRJ9btfs2YNQ4YMkf9fvHgRSOa4h4eHM2zYMOzt7TExMaFKlSq4u7szZswYMmXKJK/tsmXLym5wtXKNLmdPXLstW7aUtAJhy+pGWvh9MSy41IJH/OLFC96/f4+xsTHFixeXYv9qXqMu91n3t+4CWZ2RUvMy1YvkLVu2MHr0aBnkqnmgrVu3Zvv27bi4uDBjxgxCQkIwNzenZcuW9O/fX+vzFu8rISEBW1tbrXuImlqVN29egoKCyJ07t7wHiuy8QKNGjahZsyYDBw78atWje/futGvXDo1GQ4cOHWSp/MiRIyxatIjdu3en72L6j8PPz0/yyVND5cqV/xMBM0DRokW5f/8+0dHRqU4e3rhxo5ac7KtXr3j9+jXOzs6SjpItWzZsbW3RaDTUq1ePuXPncuXKFTSa5EbXfPnyUapUKdmkqrZr9aRfgCpVqpCQkEDx4sWJioqSdiOCU1NTU2l7ghYhBpokJSUP13r9+jX6+vrkzp1b0g50e5dSs2f1Nt3gWTfjrPuzf/9+unbtKqXiRJCbkJBA2bJlKVKkCI0bN2bz5s28fv0aAwMD6tevz/LlyyVVFH5P0AUGBlK0aFGt1xcLfX19fQoUKEBAQACFCxeW98f169drBcw1atSgWrVqDB06NFVanUC1atXYt28fU6ZMYciQIXJa7PXr1xk5ciQrV67M4FWVOr5p0GxiYiK7JlNDRETEH5L5/w6cPHmS1atXyxVh3bp16dGjx1elhYoVK4a+vj5r1qyhW7duWmXWUaNG4e7urtUAVaFCBeLj4zl//jybNm3C3Nwca2trNBoN4eHhrFixgkKFClG+fHkaNmxIWFgYe/bs4fLly1LNQZ01FkGfriMTpQvd5jyxn7qBx9DQkPv373PgwAGqVatG9erViYiIYNu2beTNm5cWLVpo8aXF8VKDrqKGbpYqNU60oigYGRlhbm6uxbkUNxnxeP369alXr56Ws1ffHNSrZ3V3sjhf9SJDfMdiRHliYiJOTk7o6+vLEefphb29PV5eXixatIg5c+bIYRKCm/6/kI2C9Nl1ao7q78atW7dYsmQJHz58IDExkVKlStGvX780q0OQ3ADk5ubGzz//zPTp02VQqigKa9askV3gAkWLFsXKyooDBw7IJhR7e3v09PSIjIxk5cqVODk5YW5uTu/evYmKiuLs2bMsW7aMTp06paBAqFUf1JlcQdVSq1ro7qvOCH369In9+/dTpEgRqS9+5coVIDkIV/OeIW27Fu9dl+esu/jVte2PHz9SsGBBrSYm8VqJiYkUL16czJkzM2/ePK2eAt1gXr0oDgsLw8bGRi4o1IuMV69eYWNjI3mkcXFxVKhQgePHjxMdHZ0hv2JkZMT27dtZtWoV7u7uGBoaEhsbS61atfDy8sLKyirdx/ovw8TEhC9fvqS5XWQD/2m8fPmSJUuW8ODBAzQaDTly5GDAgAEUL148zX00Gg0jR47Ew8ODDRs2yIAJ4PTp05w4cYK9e/fKxzJnzoyTkxO7du1i0KBBZM2alTx58mBlZUVMTAx79uzB0tKSyMhIRowYQWxsLLdv32br1q00bNhQK0mkroqoK62iqiyqTOoKkrpnQQTRJiYmxMbGcubMGezt7SlWrBiGhoY8evSIO3fu4O7urqUNrX7vX4Pa1nQTXLpJMD8/Pzw8PLQCa7VdV6tWjdDQUCZOnKglaqCrziPOKWvWrDx79oyffvpJqzom+MvPnz+nXLlyxMTEEBERwZcvX6RU6IMHD7TuxX8EjUbD3Llz2bVrF23btkWj0RAXF0fx4sXZtGnTV/1CRvBNvX6zZs3YunUrU6ZMSXX73r17v1m0n15MmDCByMhIlixZgoODA4mJiRw+fJjmzZuzbdu2rxLHlyxZwqxZs+S0m9jYWB48eECXLl2kwLpAvXr1aNOmDbt378bCwgIrKysZlK9cuZJGjRpRqlQpZs+eTZMmTbCxsaFTp05s3ryZixcvUrly5RRBKKB1IYoLWzfbrHZuIhtlbGzMx48fOXnyJOPHj8fa2hpTU1P09fVxdnZm/fr1+Pj44OzsrCV7JyCcrjiH1DLSqVE5dDNbgs8oFgHq36KUrVa50H0dscoXKFmyJOfOnaN69epan1FiYiInT56kZMmSnD9/nps3b7JgwQKqV6/O8+fPWbBgQYauGwFbW1smTpz4p/b9/4JGjRoxYMCANAf/bNu27av8/78D27dvZ//+/UydOpX8+fOjKMn63F26dGHOnDmULFkyzX379evHli1baNCgAUWLFsXY2Jhbt25Rr149Fi9erPXc/PnzM2vWLHr37g0kL6REtuPixYtYW1vTv39/Ro0aJTVcXV1dsbS05MiRIzg7O8sgVF0Zgd/pVeJHLCbVGufqBbPocIdkOcxu3bqRNWtWqUFarVo1fHx8OH78OK1bt5a2pbsA1Q1g1U2F6vNUn6/u/UhwikWWVre6ExERIRf56m549bHEPSMxMRE3Nzc2bdpEjx49Utj1q1evSExM5N69ewQHBzNs2DDKlSuHn58f3bp1+1OJGCMjI/r3758i8/2/hDJlyjBq1CgtKU01vLy8aNSo0T96TlevXmXChAlMnTpVVnkfPnzIuHHj6NSpE02aNElz37p166Knp0fr1q0lX9nPz4+CBQuyY8cOraZ+c3Nzjh8/ToECBdBoNGTPnp1s2bJhYWHBgwcPePz4MYMHD2bGjBno6+tjZmZGmTJlsLW1ZefOnbi4uEgbEXxksXAU9iWqHZaWlkRERKCnp6elxS6a8oRdGxkZcfToUerWrYuTk5Oc01C2bFlevHjBkSNH6Ny5s9YsBdBWdUot8ZRahVjXzuH3sfRfvnwhc+bM0i+rK2bh4eFkzpxZqxFQdyGsvq80b96cVatWMXv2bKmsIY4XERHB1atXKVu2LLdu3aJnz57kzJmT0NBQKlSokKqm8x9Bo9HQpk0b2rRpk+F904tvGjRXr16defPmyRHJaqxZs4b8+fNjb2//LV/yq/Dx8eHz589ajlBfX5/GjRvj5OTEsGHD2LJlS5r76+npMWrUKIYNG4a/vz+Ghobkz58/zZVd4cKFSUhI4Pbt29SpU0c6qOvXr9O9e3fJjxTNPfHx8bi6ujJ16lQ5qUYYk1qwXHTjqoNLUcIVNAy1EYrO9hMnTtC+fXusra3l4BADAwMSEhLo0aOH7I5Wl0HVzk1tELpBte5NVm0ownEmJSVha2vLy5cv5UQ19ft49uwZmTNn1nKsqQXNAomJifTq1YuePXsSHx8vPzNFUbh8+TJLly6lYMGCdOrUia5duwLJgU3v3r0ZOHAgAJ8+fWLz5s34+/vj4OCQ6ljfH9BGlixZyJkzJxs2bMDT01Nr2/nz5/H390+hmfl3IigoiM2bN3Pw4EEtzm+VKlXYsWMHbdq04eTJk1/NwHTs2JEOHTrw9OlT4uPjmTZtWpoSY6LB6ObNm5QuXVq+5pEjRxgxYoQMcAW1QvBw9+7dK7u+dfn/wumJe4T4XzhhcSw1BUvwHq9du0aVKlXImjUrdnZ2ZMqUSaps1K9fHx8fHyA5MNB1bLoyVepgV3yOaugG1uJcy5Urx8mTJ6lfv75WEJ6YmMiXL1948eIFWbNm1aKcCQi7FveIxMREXFxcGDBgAObm5jRq1EjeX/z9/Zk0aRJNmjTB09OTjh07AnDjxg1KlizJkiVLgOQehR07duDr64uFhQWtW7eWEpU/kDr09fXp2LEjI0eOZNasWVrf/dOnT1m7di0HDx78x84nMTGRUaNGsX//fq1sf5EiRdixYwcNGjSgVq1aX60Q165dm9q1a/P69WsiIiLIkydPmpKY+fPnx9jYmJs3b0ptf319ffbv34+Hh4eclSAkEuPi4rCxscHExITQ0FCtSpGxsTFRUVGSjywaUUXvEiQH0RYWFnI4mZquYWJiwocPH2QG3MHBAQcHB4yNjeXr+vn5ERISQtasWaW0ndqu1Pas9sOgbde6zxHHiY+Pp27duuzevZtBgwbJRb06M3zy5EkWLFggA/fU7Fok9jQaDXnz5sXMzIw5c+bQqVMnSS37+PEjkyZNomnTpnTq1EnShN68eQMkD4sTFLRDhw5x5swZ9PT0aNiwIc7Ozv9KBUTgmwbNGo2GzZs3M2DAAJYvX46rqysxMTEcOnSIEiVKpDrK+u/E6tWrpdqELooXL05cXBwfP36UgvlpwdDQMF1SdU2aNGH27NkMGDCAypUr06ZNGypXroy9vT36+vr4+PhQrlw5LeejO6VGnVkSAxDEc+H3Lnx1I5zYX9eAPnz4QL58+TA0NMTExARLS0v09fWlI8+TJw8hISFkzpxZBsW6epTiMfUqWpc/pWuAgp8NyXqpw4cPZ9WqVfJGqCgKYWFhjBgxgnHjxqXqWAXUDhaSG/QWLlzIihUrmDdvHlZWVkRERFCsWDEGDRoku2Pt7OzImjUr79+/Z+nSpWg0GrZt28bmzZvp168fLVu25PXr10yaNAlHR0emTZv2h2Wu/2XMmjWLsWPH0qRJE9zc3DAyMuL48eOYmpp+deDA34ENGzYwcOBArcZNATs7OypXroyPj0+KhbsuNBpNuuSHihQpgq2tLUuXLuXixYs0bdoUd3d34uLisLW15fHjx1qcQzGRz97eni9fvsiFrZojLBaq8Lvuq1qeSt3cq7uYfPz4MR4eHhgZGWFlZYWNjQ0GBgbExsai0WioXLkyL168oHTp0tK56pZQdbPD6gZF9f1E3HvU9w09PT1atGjB4MGDKVCggNbwkNjYWH7++Wc8PDxSnUAoXkP8Fs5PURSmT5/Oxo0b8fDwwMrKisjISLJly8aAAQNkX0JAQADlypXjxo0b+Pj4YGJiwuXLlxk7dixdunRhxIgRhIaGsnHjRubOncv69ev/E6ou/xa6dOnCihUrcHV1pVGjRtjZ2eHj40NgYKCkGf5TOHHiBA0aNEiVHmNoaEjPnj3Ztm1burTx01JQUCMhIYHs2bNz5MgRnj9/Tu3atWnWrBnPnz+nR48efPr0Sdqkespm1qxZZfAqFrmmpqaSDigCZRFoC5k69cJZlz4F8OLFC4oUKSLt2t7eHiMjI5mhrVatmpS+1Nf/fRCYbhCsGzSrK1qAlkyjoF+I+025cuXYunUrFStWpGzZslpU0eXLl1OmTBn09fVTDdrFvUOt2Q7JykuHDh2id+/emJmZERcXh7m5OW3btpWL3mvXrlGvXj1OnjzJjRs3yJIlCy9fvqRbt264ubkxaNAgEhMT8fLyYt68eWzatOlf0xH/5qRMS0tLNmzYwNu3b7l8+TKWlpZs3rz5XxlNGhIS8lXjKV68OC9fvvzDoDk9OH/+PFOmTKFixYq8efOGmzdvkidPHqnLHBoayp49e5gzZw7h4eFSfkaMuAXtaX0ia6zmAanF1lMLWOF3py3+Fk5PrAqF4ah/C86i2uDEscVvdZlGQF3WUQf26vNycnKiZ8+edOrUiTJlyuDk5MSzZ8+4ffs2Q4YMIW/evDKjrn5N9XsUEO/HxMREroRFRzMkr04FZs+eDcCiRYvQ09Pj+vXrHD58mEOHDsnzzpkzJ1WrVmXGjBmsWbOGHj16ZPh7/1+Bvr4+M2bMIDQ0lLNnz5KQkMDs2bNTjDH/J/D48WM6d+6c5vYyZcrw+PHjPwya04OnT5/So0cPGjRowIMHD/Dz8yN//vwcPnxYcufXrFlD165dCQsLIyQkhJiYGKn2oA7Y1NUh+D1wFfYJaDkpXSqHWr5Nnf0RGWp1wCuoWuqMrq5tC3tWl2HFeYrzE03KuvQMExMTJk+ezMiRI8mRIwc//fQTQUFB+Pj40KpVK6pXry41a3UrWOJ9CqjPr127drRt21YqC0Eyt1HcH86cOQNAjx49MDc35+PHj0yYMIGDBw9KHmvu3LmZN28ehw4dYsSIESxcuPCvXQT/z9G7d288PT05c+YMERERDBo06E+Vxv8qHj9+LMekp4YyZcrIIOuvIjQ0lHbt2uHi4sLVq1e5ffs2hQsXZuzYsSQmJhIYGMiuXbtwdXXl06dPfPz4kejoaGnXoqEffm9mFdefsCshHykafOH3a10sGMVzdRNk4n9hN2o6hZBK1K0Qp5ZlVlOj1P5avKaogonHFUVh8uTJzJs3j/Xr11O5cmUiIyO5cOECZcuWxcPDQ0rj/pFdq+8vNWvWpGbNmsTFxcn38unTJ+7evQskL2BOnjxJlSpVKF26NImJiXTv3p1169ZpKV6MGTOGxo0b06NHD/bv3/9NroWM4m/rZMqRI8df0sSLjY3l5s2bKIpC6dKl/1SjkYGBAREREWlqbr579w47OztJlUhLt/OP8PnzZyZPnszBgwfRaJI7st++fcvdu3fp0aMHY8aMoWfPnkycOBFzc3MZNCckJHD37l3y588PaF9wenp6kuekNkC1AagzNupRt8LxZs2aFX9/fwoVKkRERAQajUZ27UZHR/PmzRs5wEPdyKPrWMVKVJ1xVkNtnLor3qSkJEqVKsX69eu5ffs2Hz58oFatWpIuoeZd6r6+GmoDFO9ZlIJECbpevXpYWFjIYxcuXFhyFpcsWcK0adNSzU4OGzaMBg0a0L179x/Z5j+AjY3NX+IvJyUlcevWLaKioihWrJiWbGN6YW9vL4fkpIZ3796RM2dOuajSreakF4qi0KdPH7Zs2UL27NkZOnQo79694+zZs8ycOZORI0fSqVMnevXqRd68eQkLCyMmJobIyEgpQSlknATUdi0WuGqb0p3mJxRh1Go4+fPnlyXljx8/otEkd+ALfvC1a9cYPny4lqqFeD/it9qe1ENC1LanXoCL/dQLeDs7OxYtWsTTp0958eIFhQsXpkOHDujp6cmmRt1Fve7nqy4Pi89HnbFKSkrCycmJ7du3065dO7nvokWLgGTpx6FDh2o1fgm4ubmxatUqQkNDsbGxSf8X/z8IExMTGjZs+Kf3VxSFhw8f8unTJ/Lly/enFtP29va8e/cuze3v3r2T9E6xqPqz9+uBAwcyadIkKlSowMqVK/n111/x9vZm1apVTJw4kUGDBuHm5kaVKlX49OkT0dHRfPnyhYSEBN6+fUuZMmVk5UX4R0tLSzkYJS4uTjbsi2y0unFcTOETVA1FUciZMycPHz4kd+7cBAUFoa+vj42NjWxo8/HxkTQS3Uy12oeq7VrMcFDbn1oLHtCigSYmJmJsbMyYMWP49OkTDx8+xN7enqlTp8qst5p+mZavViuLKMrvjcaAjBUMDQ21NOoBdu/ejZ6eHkeOHKFevXqpSsQVL14cJycnfH19/xUK1nfX/p+UlMSsWbM4e/asbPYSGdzx48enGvSkhVatWrFp0yY53UuNsLAwHj9+zLRp03jz5g0WFhaEhYXh7u5O//79M/Q6mzZton///lJDdO/evUycOJHJkydz+vRpHB0dURRFlrpEw9Dz58/x8vKif//+MuOrzu7o6pUKCEMUf6ubicRjiYmJODs7s2XLFoYOHSrVK8TzV69eTYMGDVIE36kZozBCETTrchjVZWZdqLNmxYoVo3jx4jKYUe+jW6pSP65roOqMvO5+YgECcOnSJfnegoOD09RoNDQ0JHfu3Hz48IGsWbN+9bv+gT+Pbdu2sW7dOipWrIi1tTXz588nc+bMzJ07N9WgJy14eHiwdOlSli9fnmJbYmIie/bsoUyZMixevBhra2tCQ0OpXLkyI0aMyJAygrgHiQBg/vz5VK9enRYtWrBlyxYKFy5MYGCglG8UC9d3796xZcsWGjZsKDM5okok+MkiwBWUCki+1nUdoprXDMn2WKJECTZv3kzBggUxMDAgNDRUlpHPnz+Po6OjVO6B3wNR3WyUmj6h/ludpUprMauuLuXIkUMuUnSrRqlVkHSzYeqFsHCw6vMEtHphrly5Ipv/fHx8GD58eJrfYZ06dbh+/fpXJRN/4K/h4sWLTJ06lcKFC5MjRw7WrFlDdHQ08+bN06Lu/BGaNGlC69at6dSpU6rB8MqVK8mVKxd169bFxsaGiIgI8uXLx5gxYzL0OgEBAcTHx8shR7169aJq1aqUL19eTjf18/PD1taW+Ph4qW7x6dMnDh8+TMmSJaV/FhUioYIBv9OtRO9SdHS01lAi4Q91ZynY29tz7do1Xr16hYGBAZ8+fSIxMREjIyOePXsm6ZbwewyhvneoA19RhVJP2FP3EKhtUx1LiHNJSEjA0tKSihUrysfUg9h07VNd6VYn0UQ/lrqpWL2vhYUF2bJlIzAwkClTpsgk3vnz51PMVlDDzc2N8+fP/wiaAUaPHk3OnDk5duyYluFs2LCBQYMGZag807JlS1q0aEH+/Pm15qAHBwfTvHlzoqKiGD58uCxFJSQksHHjRjp37symTZvSTTa/du1aCqH8iRMncvLkSe7du0e7du0IDg5mzpw56Onp4eDgwPPnz9HT06Nbt24y2BZBs8goq52dLoSD0h2WIEo/Go2GTJky4erqyowZM6hevTrFixcnPDycEydOULx4cdzd3aVTDgkJ4enTp5iamlKiRAktlQ7R2a9+LfXKVR1Q656j2nBSuxHqdtvqlnd0V7Pq46iNVjyWOXNmmjZtire3txaVJLVMlxqxsbFpNoL9wF/H5s2buXLlCsePH9dakF64cIG2bduyf//+dC9UxSCa5cuX06tXL3ndRUdH07t3b4KCgmjSpAlz5syR19fJkydp1aoVXl5e6Z72du3aNerUqaP1WPPmzenZsyfbt2/nl19+4fz58+zdu5fw8HBy5sxJQEAAYWFh1KtXD3t7exk0C+eaEbsWjkYsMNXSi02aNGHr1q0UKlSIcuXKodFouHTpEsbGxgwaNEg66ejoaB48eIC+vj7FihWTjlwsxA0MDGTGTLfpVt2ArHuOutQN3YBXl86h+5hu9kuX36xr1/r6+gwYMIDFixdryaSJSlNa184Pu/57ceXKFebMmcOePXu0Fr5Pnz6lU6dOeHl5fVVbVw1LS0saN27M0KFDmTFjhqQ0JCYmMnfuXHx9fXF3d2fatGnyWvHz86Nz586sW7cu3SO3b926JSf5ChQvXpzZs2czcOBA+vfvz/v377l37x5HjhwhZ86cfP78mffv31O0aFFy5syp1dwLvw8uUTfBiccF1AtUkcQSj4vrv27dupw5c4ZHjx5Rvnx5zMzM8PPzIzg4mH79+mm95tOnT0lISKBAgQJYW1tLnrKgfaqTS6A9cU9Ny9BdqAt7UjdZ6yI1G1UvxAXSCpjhd2po//79GTt2rNb1I2Qg08K/adcaJbU7tw7Cw8OxtrYmLCzsb9WwDAgIYMiQIezcuTPV7Z6enowfPz5DagdRUVH88ssv+Pn5UahQIclN+vz5M9u3b5eagGpMmzaNYsWKfVXeRo3u3bvzyy+/pNABvHXrFuXLl6do0aK0adOGGjVq8OXLF0JCQtDX1ycmJkaS8cWFGxcXx5cvX2Szn8hIxcTESK4kIFetgpohOnjVk8HUI7P9/Pz4+PEjdnZ21KtXj8yZM6Onl6w1O2fOHGJjYylbtiwRERFcu3aNJk2a0KRJkxRZKHXJRWxTZ4rUjUy62q5qpNZMqP5fPCZ+UsuapbafRqPh7du3uLu7c+HCBapXrw4kl+O6deuWqhRZZGQkLVu25OjRo+n6vtODf8pm/gr+qXNMSEjA1dWVkydPproQnT17NoULF8bd3T3dx0xKSmLBggUcOXKEwoULEx0dzdu3bzEzM2Po0KHye1fj4MGD3Llzh3HjxqXrNRYuXEiBAgVSlK2Dg4MpVKgQNjY2lC1bljZt2hAfH8/nz5+lTYWFhcmyrJ6entQXFs2/olk2OjqaqKgoLbuG34NItWqGuEeIxw0NDXn16pUc+1yzZk1y5col7w1r167lxYsXlC9fHkVRuHbtGiVKlKBbt24y6BXZKPEjHK/IUIlz0p0MKJy+rh0LqANp9WOgnYFWv9ev2bWAs7Mz8+fPl9XD1atXY2pqKlU11FAUBVdXVw4cOPDN5gP8sGttNGnShPXr16dKszp27Bg3b9786sCz1LBr1y5Wr15Nnjx5MDIy4tGjR+TIkYPy5cunKhH47NkzJkyYwNatW9N1/DNnzsiBF2okJCRQoUIFAgMDyZo1K71790aj0RAWFibtNDQ0VErHaTQaOYI7ISFBKt4kJSURExPDly9fCAsLIy4uTiurbGhoiIWFBWZmZpKeIXyksPfPnz8TEBCAsbExZcqUoVChQtIOjx07xm+//UbZsmUxMzPj9u3b2NjY0KdPHwwNDYmJiZENiKJnSvcHkIIDgictKCTq4WG69p1aAK3OlqubitWylepeDd39jIyMGDVqFBUrVmTFihVA8mJs3759zJw5M9XvsEuXLowbN+6bKl+l126+q0zz3r17U735CXTq1Indu3fLMdLpgZmZGbNmzSImJoaAgAApXj527NhUA2ZIbozo3bt3uoPmli1bsnnzZkaPHq31eOnSpdm4cSMdO3bEycmJypUr8/TpUw4cOEB4eDgxMTEULlyY2rVrY2VlJaWo4HfHIoJm4czUq1hdOoa6a1U4NOG4q1Wrhrm5uRx6IjB69GgGDRpE2bJl5cWdlJTE5MmTOXDgAE2bNgV+b1pSUzTE8XVLvuL5wujUgZJ69avOUgmos1XiPYrXUTvi1DLQ8LuDh+TRmQKDBg2if//+7Ny5U8sgEhMTGTx48P+0XuvfDR8fHynBmBo8PT0ZPHhwhoJmPT09hg4dyqBBg3jz5g1GRkZkzZoVFxeXNBsAGzVqlEKH+Wto2rQp48aNSxE029nZcejQIWrUqIGRkRFNmzYlMDCQEydO8OHDB2JjY8mcOTMVK1YkS5YsWmoyaqqRWIyKH91mPjU1S23XwsEaGBhQrFgxKlWqhIWFhexXMDAwYPbs2VSqVIlRo0bJe0GfPn3YsWMHS5cuZciQIVoUKfWPOL6wNZFxBqQ+vK5TVTcW624T70Vtr7qLavV56AbU4nd8fDympqZavNf27dvj5uZG9erVU9CvFixYQN26df+VgVr/CwgODsbMzCzNvgQXF5c/1YTZunVrWrVqxbt370hMTCRnzpw0bdpUyojqIl++fMTGxqabu16tWjWmT5/OiBEjtK5RAwMDvL29KV26NG/evCEsLIz4+Hh8fHx48eKFXPCWLFmS7NmzpxhuovaRoklYqEyok1mAzAir7VptEzly5JCDlYT0naGhIUePHiU6OlpO4BN2evXqVaZPn86vv/6qleVWN/qqbVNdSVL7VN1AV/07tSSYrl2LAFy9wBfnoh41ro4BjIyMiI2N1bLrihUrMnPmTK5cuZJCzvTo0aNoNJp/TSr2uwqaIyIivlrKsbe3JyIi4k8d28TEBCcnJyB5rKL4OzVkypRJ8nfSAxcXFxYvXsxvv/1G5cqV5eOKovD69WtatGjBnj17ZFDr6emJqakpkZGR+Pr6smjRIvr27Ssnjam5SvB7JkbQNwTUF7C67CKCTPWqUTdw1dPT4/z589SqVYuKFStqzYUXQXPbtm1p0qSJvDkIhyoCW/WP2tnpNjfpPlftkNU3Et2V7atXr7hx4wZ6enpUrVqVPHnyaHG3dHlVCQkJnDlzhmnTpmFjY8ObN2/4/Pkztra25MuXjwkTJtC0aVNcXFwoWbIkr1+/xsvLCw8Pj39cxP9/CX9k13Z2dl+dTPY16Ovry7JsTEyMbJxJDSKTk17kzp0ba2trtm7dmmKY0fv376lbty5nz55l06ZNfPz4kZYtW2JnZ0dERAT+/v7s27ePBg0ayGBO7YzUtiAconqhqL4HCIejHkqg64TVn0dAQAD6+vo0b95cZqQhOeDt1KkTAwYMkNkUQQNRO1C1kxRZIzVHUTxX3FPU70s95EHtONXn+vnzZ65cuUJ8fDwlS5akePHiWnxMXepGUlISd+7cYe7cucTGxhITE8ObN2/ImTMn5ubmrF+/nt69e1OiRAlq1arF58+f2b17NyVLluSXX35J9/f9AxnDly9fvtrIq6en96dL6BqNJkXlVtAYU0OuXLn4+PFjuoJmIyMjmjdvzrhx45g6daqWDQUHB1OkSBGePXvG7t27CQsLw9XVlapVqxIREUFAQACXL1+mSJEiFClSJAX9QJy78NdGRkZycSoWtOL5ulQNcR/QpTOoff+NGzdYtmwZ5ubmsjk4KSmJ2rVrc+fOHe7evctPP/0kk2xiP/U9Re2z1Uk6dWCtvgeo7znq6pJutSk2Npbr168TFRVF3rx5JW1M3ZSo67ffvHnDypUrefToEaVKleLevXsUL14cjUbDhg0b6NOnD2vWrMHd3Z3ExET27t2Lqakpy5YtS8dV9PfguwqaS5UqxaVLl6TQtS4uXrz41Ulf6UWOHDnw9/dPc3tQUFCG9Cn19PTYvn07AwcOZOHChdSpU4fIyEiOHTuGi4sLu3btIlu2bJw5c4aaNWty5swZypUrR1JSEoULF8bGxoaNGzfSt29fufJSN/6IrK26rKte3Ymsr5rKoEv2B+2Mkp6eHidPnmT69OmyJCQaBYUhCV3I0qVLp5kV1pWsUnOq03LEIlhWQ33DEJQaU1NT6tevj0ajYc2aNcTFxTF16lTZSKX+HLy8vJgxYwZxcXFkyZKFXbt2ERERQbt27fD09KRt27ZUrlyZU6dOcerUKZ4+fYqDgwMHDhz4V0ZA/y+hRIkS7Nq1S07V08WlS5f46aef/vLrGBsbywFCqQXOovEuI1iwYAHjxo2jcePGuLq6oqenx/Hjx8mTJw/79++nYcOGnDp1iho1anDjxg1KlChBXFwcmTJlonHjxuzdu5euXbtKB6qu5qgHl4gqk+5CULfRRixe1dvUdq7RaDh79izNmjXDxMQEc3NzyWMWHf3NmjXjzJkztGzZUiu7pZuh0pWLE7atm2kSTl3YtgiUdBfvGo2GxYsXExQURMOGDbG0tOTs2bOsWrWKSZMmYWdnl0JX2tfXl7FjxxIREYG5uTkrV67E0dGR4cOHU6xYMcaPH0+ePHk4cuQI165d4+bNm5ibm7Nu3bo/pczyA+lHtmzZePLkSZr29uHDh292b9XT0/uqEtbLly8zpNvbp08fli1bhouLC66urlhbW3PhwgUSExM5cOAA06dPZ+7cuZQvX54HDx4QFRUlF4I1atTgxIkTZMmSRQavarsWti3eu6A66VZk1X5TrawBKXn/enp6kottZmaGhYUF5ubmktMfHR1NixYttLSU1f0K8HufQmpycerKsbp6pL5HiaBfo9FIupagbO3bt48rV65Qv3598uTJw4MHD9i2bZvUchc8a/G6b968YcKECQQGBmJgYMAvv/yCq6sry5YtIzo6mlWrVmFtbc22bdt48uQJZ8+eRV9fn2nTpqVLg/vvxHcVNLu4uDB79my6du2aYnJgWFgYu3fv5sSJE3/5dbJly0ZsbCyvXr1KVVFh6dKlX9WBTQ1WVlZs2LCBgIAArl+/jomJCb1795aGU6VKFWJjYwkLC+PUqVNs27aNokWL0rZtW2xtbVGU5GEkWbJkkatO+H2YibigRXCpK+ek7l4V9An136nNiY+JiZG0EHU2WexnbW1NVFRUimBZDTVVQresqnbkageqziYLwxT8KgMDA4YNG0b37t2pUqWK/BwaNWrEpUuXGDNmDAsXLpQGf/DgQc6ePcvJkyeltF3JkiXlazRp0gQPDw+cnJyoUKECenp6uLi44OLikqHv9wf+PHLnzk1sbCz379+nWLFiWtsSExOZNWtWqkoYGYVGo6FixYqcOnUqVbWEffv24ezsnKFjGhgYMGPGDMLCwrh06RKKomgFZNWrV5fO7/jx4xw4cIBs2bLh5uaGubk5OXLk4NGjRxQpUkRe36LZRt2QIzJC6oBRzREU17OxsbF8TATa6n0guSHS2tpaa5iCmi5lbW1NZGRkis9OnS0Tx9OVoVM/V70Yht+1ZNXbhV0bGxuzZMkSihcvTtu2beV9wNXVlWfPnjFq1ChWrlwpz/X69eucOnWKI0eOkDlzZg4cOEDVqlVlQO7s7Mwvv/zCpk2b6Ny5s/zuRbf/D/z9MDIyolKlSnh7e6cqQzl9+vRvpn3ftm1bVq9ezdChQ1Nse/jwIZaWlhmeBdG3b1+6devGxYsXiYyM5Ndff5UBWa1atbh48SKWlpb4+flx7tw5bGxsqFSpEpkyZSJ//vzcvXuX8uXLa/lrXXlJkR0Xflz4YnWTOiRXwtWZZ7XihXiu2q7FoCR1BdjW1paoqCggde6xQGqNuOJvdbVaVAqEL1fTwkQSwMTEhHPnzhESEsLGjRulXderVw9PT0/69evHpEmTsLGxITExkSdPnnD48GFOnz6Noijs2rWLRo0ayc+pYsWKeHl5MWbMGDlroWDBghQsWDBD3+3fiX9vFmEq0NfXZ+HChbRp04aDBw/Ki+bYsWO0aNGC2bNn/2ktZV3MnDmTLl264OvrKx+LiYlhwYIFBAQEUL9+/T913OzZs9OkSRNcXV21VtkJCQkcOXIEHx8frl27Rrt27bh58yaTJk3iw4cPODk5ERQUpOVoxCpOZIPE40ICR+i9qrPS6oY9YRjqBgA196pw4cJcv35dawWqNtarV69SsGBBrX10oets1Y5evZpOrWlQHUyLn8ePH5M9e3Zq1Kghx4uamppibGxMrVq1sLW1xd/fH40mWYpwzJgxhIWFUbhwYa5cuUKpUqW0bhj6+vpMnz49Q1zWH/j2WLx4MYMGDWL9+vWS+nT9+nVatGhB586dMyQZ9TWMHDmSOXPmcPjwYXmtJSYmT5LasGEDAwYM+FPHtba2plGjRri5uWllMD99+sS6des4d+4c9+7dY/jw4bx7944VK1bw7t078ubNy6dPn7QWjboNdWIhbGxsjJmZGWZmZhgbG8vMtLpnQW2foslHjLQVdlaoUCGuXbumJT2lHoRy+fJlihYtmmIwQmq2KV5f2LVaUkp9TF0qlm7JOTY2lufPn+Ph4YG5ubnMlJmamlKoUCEaNWrE6dOn0dPTY9++fQwaNIhnz55RpEgRLly4QK1atVKU+seMGcOWLVtSvS/9wD+DcePGsXXrVmbNmkVISAiQPPq8Z8+e2NvbZ3iRmhZatWqFr68vK1eu1OLi+/j40Ldv3z89bdjY2BhnZ2eaNGmilcF89+4dY8aM4eTJkzx69IgFCxYQHR0tpwfmypWLsLAwAC1/rW6mE9e+qPhYWlpKLWcR7Arus9o3q4eeCZ+ZkJAgtYl1VTKE/V++fJnChQunsGtISZEUUPtr9Y9a6UN9DBFIGxsby59Dhw4xbtw4uXCxtrbG3NycrFmzMmTIELy8vNBoNNy8eZP+/fvLQTLr1q2jVatWKWg3LVu25OHDh4SHh/+p7/TvxncVNENyKXf37t08efKEpk2b0qRJE27dusW2bdsoX758ho518eJF2rdvj7u7O/Xr12f8+PG8f/8eACcnJzZt2sSWLVtwdXXF3d2dZs2aYWVlxcqVK7+6UvszMDU15fPnz0Byg+C6devw9/enevXqzJ49m0+fPpEpUyZZChEBo5mZmQyORQlUN4MjHKyak6x2sqJ8IwxRbGvevDnLli0jKipKqnOIH19fXxRFIXPmzFrGqw7GdbNR6oyz+PtrJSE1J1vcZM6dO0fTpk1TLBzE4sHd3Z1Dhw4xadIkduzYwbx58zh27Bhly5ZNk6+aO3dueUP/gX8HDg4OHDx4EEDa5K5du5g7dy6tWrXK0LEePHhAr169aNSoEQ0bNqRfv348fvwYSK74eHl5cfPmTerXr4+7uzsNGjTg2bNn7Nq165tTcezs7AgICACSrzOh+967d2+2bdvG27dvsba2lnxqsdgVdi0GEqmDZ5HBUdu2um9B3RgcHR0tu+WFfVetWpWjR48SFBREZGQkX758ITIykujoaN69e8fly5cpU6aMdLa66jjq4Fht27pOVTeIF2V6NeVD2LGvry/Ozs5S5Uf3vuXm5saJEydYs2YN8+bNo2vXrty7d49cuXKlOercyMgIR0dHPn369E2/0x9IP4yNjdm5cyeFCxemT58+uLu7M3v2bHr27JlulRqBgIAAxowZQ/369XFzc6Njx45cvnwZSE5+bNy4kaSkJBo3boy7u7tURtmxY8c3n0xqZ2dHYGAgALa2tgwYMICAgABmz57Nb7/9xsOHDyU9wtTUFHNzc/kjFr6C8ijoDMKvm5qaYmFhkYISKX7i4uKIioqSPluoZjk4OBAcHMyjR4+Ijo4mPDycsLAwvnz5wufPn9m4cSP16tWTvH9d5Qxd351awKzbnCyeq5tlFveqoKAgnJycZCOyuKeJ+1rFihW5d+8eBw8eZNKkSZQvX55Hjx6RLVs2WrRokebnX7t2bW7cuPFNv9Nvhe+KniGQKVMmhg0bxrBhw/70MRYtWsT9+/flqF9FUbhw4QLt27dn5cqVFChQgBw5cjB//vxveOZpo127dqxbt07rPeXPn58DBw5QsGBB7t+/T+/evYmOjkaj0WBiYoKenp7WUJPY2NgU43bh9wY69Y8uFQOQRiS4TpkyZaJ58+Z07dqVPn36UKFCBSIjI9mzZw/Hjx9n9uzZchWsKzmnzjal9lqQctiJeru6cUg4WdHUICa4qXmW4vedO3dYtWoVBgYGzJkzh0GDBhEREZGi3KWLH9mofx+mpqZ06dIlhaZ5RnD06FFWrlzJtGnTKFq0KAB3795l+PDhDB48mLp162Jpacn48eO/1Wl/Fe3bt2f69OlafRjZsmVjyZIlvHz5kvPnzzNhwgTZOa5WuBDXdExMjJYGutpG1B3y6gBWTccSWSehXWpkZMTgwYPp06cPnTp1ok6dOiQmJnLixAm2b9/OqFGjpFMVTlrtXNWZa/ViWEBt6+rzFees20AkKmFqCUxdu3727Bnnz5/nxIkTDBw4kMmTJ6c4dmr4mkbzD/wz0NfXp3HjxjRu3PhPH+PBgwcMGDCASZMmSQWIN2/eMHHiRO7evUuvXr0wMDCgT58+9OnT5xuefepo0KABzZo1o0ePHrKSamNjw/Dhw/n06RNz586lY8eOMqA0NTXVauoVEDMX1H0+6v4k0RCotmvxPLVNi+pcnz59mDp1Kg0bNqRRo0aYmJjw22+/sWHDBtq2bYuhoSFfvnzRWkirF9TqjHZq1WNdH63OMqtpISKJpdFotN6L2q41Gg0fPnzg7t27XLp0iTZt2jB//nwp1yc+i9QgaCrfI767TPO3wOPHj/ntt99YsWKFXIFqNBpq1qwpJ+T903B3d+fSpUscOXJE6/Ho6GhMTU0JDQ2VTiI+Pp6XL18SFBQkuYhq56nufBVBrbqjXWzX5Uiqny/+rlatGmPGjOH06dN06dKFIUOGYGJiwsKFCzEyMiI6Olprn9TKvSKIFp9zahxo3aBe3VCkNriqVaty4sQJrZK0MPZt27YxZcoUypQpw5MnTxg2bJjkXoeHh6epwCB0Pn/gv42oqChmz57Nzp07ZcAMvzca/vrrrxlu9PurKFiwILa2tixevFiLIyiCucjISNlEFBcXR1BQEIGBgdJhCLsWSEpK0soU6WqeAlplU3G/EBnn2NhYoqOjyZkzJ5MnT+bZs2f06tWLfv36ERgYyK+//oqDg0OKDLRutlo419TKu2roOkndYFnYdtmyZTl//rxcbIvgPD4+nitXrtCuXTvs7Ozw8/Nj7ty5shE7d+7c3L9/P9XPPjIykpCQkB8Nf/8PMGzYMLZv3061atXkNZUzZ07Wrl3L8ePHefny5T96PmZmZrRu3ZqBAwdq3VOSkpIwMzMjISGByMhIFEWRGuxv3ryR9wChq64OJBMSEmQlV9i1elGp23wbFxcn/W9MTAyRkZEYGhoybtw44uLi+Pnnn+nTpw9Xr15l0KBBFChQgJCQEJl9Vt8TUlsMQ0r95bT8dmqSc/r6+uTMmZPHjx9rZcljY2MlHatRo0ZS1WrHjh1S5tfV1ZV9+/al+tkrisKZM2e+2/6E72q4ybfC8OHDadeuXZojFvv160f//v0pUqTIN33dpKQkXr58iZ6eHrlz505xAcbExDBx4kTu3LlDsWLFCA4OJjg4mJ49e9KmTRvatWtHnTp1CAsLk+L9uXPnpmrVqri4uMghJyIgFk4Hfr/YxUpV8KtESUWsFNXlYV1upYDaeHX5UbqPqzO8qXVRq7Ph+vr6smwjSrNi1apuBGzfvj0zZ86kYMGCcgHg6+tL/fr1yZIlCy9fvkyxCj18+DD79+9nxYoVWkFIVFQUbdu2ZcaMGVqB1t+N/4LN/BfOUY1NmzaRlJSEp6dnqttXrFhBpkyZaN269Td9XUVRePv2LXFxceTOnTvVTveFCxdy6NAhihUrRlxcHE+fPqVLly788ssvckplTEwMS5cu5cOHD2TLlo2CBQtSp04dNBqNtGth42q7VjfVCvqWUNwQ9q0uEav7HdTnqjs2Wx0YC3tWl3HVqhlqmxKPifMRvE1DQ0NZnhb2rbb1MWPG0Lx5c2rXri3f0/v376lVqxYJCQk8fvyYLFmyaL3Oo0ePGD58ODt37tRSNEpKSqJ///7Ur1//L2U4M4r/gs38F85RjVu3brFlyxbmzp2b6nYfHx+OHTvGlClTvvlrBwUFERYWRo4cOVKlbnl5ebFq1SqcnJwwMTHh3r171K9fn0uXLnH9+nVatWpFQkICFy5c4O7du2TKlAlHR0eqVauGsbGxrIKK4FrYtvBfwsaEDauDbQMDA6mUYWFhgYGBgZy1oO5lUnOcU8smi+26dq2GOtEGvy/SBZ3EyspK9iKI+4+gYmzevBkjIyOZlU9KSiIqKoomTZrw7Nkzjh49Ss2aNbVeLyIigsaNG7N161Y5OltgyZIlhIeHZ3gozl/Ff3K4ybeCv78/pUuXTnN7qVKl8Pf3/2ZBs6IoLF++nD179lC0aFESEhLw9/fH09NTa1iLiYkJM2fOlDqjYu46wODBg5k/fz716tWTne0VKlQgb968bNu2jS9fvtChQwct/lNqmWX1OYmSsKIoWlJVwpgEb1Kts6rLddJVxtClYeg6U3UmXPec1OcmAnPB6VIfe968eQwePJjq1avTsGFDEhISGDFiBPr6+ly6dCnVsk2jRo34+PEjDRo0oG3btuTJkwc/Pz/279/PuHHjyJMnDyEhIdjY2KQ45x/4b8Df35+WLVumub1UqVKcPn36m77mgQMHWLp0Kbly5cLMzIz79+/j7OzMzz//LK9DjUbD4MGDGTBggFzQiUWzRqOhffv21KlTB2NjY4KDg3F0dMTZ2Zlt27bx+vVrBg4cKO1BlHvVx9a1IeEEhV2rqRoiII6Li5OOVdijLr1KV3VDVy1DnWVSL4ZTo2WIx0UmWa07Lc5t4sSJDB8+nFOnTtG8eXNMTU2ZN28ewcHBnDp1KkXADFC4cGF+/vln3NzcaNKkCSVLluTVq1fs2LGDVq1aUb9+fYKDg6WqwA/89/BH/rp06dLfvJH7xo0bTJkyBUtLSxwcHHj06BEFCxZk6tSpWuOcW7ZsSYsWLXj9+jXx8fHkyZMHAwMD6tWrR5kyZXj79i3ZsmUjNDQUfX19WrRowd69e9mwYQPDhg2TFV1RWVJTKcUiVUDXX6t9b2Ji8oRgMUVUXaHSpUqqm/dSa/LV/S3+Vie9dOlY6oqvoJ+I8+rcuTMzZsxg4MCBtG7dGjs7Ow4ePMi9e/f49ddfUwTMkDwyfdWqVXh6elKpUiVq1apFSEgIO3bsoGDBgvzyyy8EBwdjaWn5zcQfvhX+8l0mPj6e/fv3c/jwYRITE6lVqxZt27b9qhD5343MmTPz5s2bVOXkIHlSXPHixb/Z640bNw4bGxtOnDihJRU3btw4FixYwODBg7Web2JikqK5ZcyYMWzYsAFvb29atGhBlixZqFatGnPnzsXGxoYDBw7g6emZIiOs1odUTwwUv3X5h+ryqKBZiIw0/G4gqcnS6JaR1f+rdVvVjloYc1BQEE+fPiUyMhIbGxuyZMlCVFQUISEh5MuXj6pVq0o9WXt7e7Zu3cr58+dl80dMTAwuLi5pfqeQPFmuVatW7N+/n9u3b+Pk5MT06dOZM2cOixcvxsrKinfv3tGoUSMGDhz43XKmvgcoisK5c+fYuXMnERERlC5dGk9PzxRSkP8k7O3tefPmTZpa7W/fviVz5szf7PW2bt3KuXPn2L9/v5wqpyjJknN9+vRh1apVWs/X19dPMaWqbdu2LF26FG9vb7p27UqRIkXImjUrGzZskGOB4+LitHiQaj1nQAbIAsKukpKStCSh1BQq9YJY8Ad1m/t0S7S6ELYs/lYvrEXmKjw8nJcvX0qamaOjIwkJCYSFhZEpUyZq1aqFhYWFzDovXrwYPz8/vL29iY6OJiQkhLx581K3bt00v4eaNWty8uRJjhw5wu3bt3FwcGDevHnMnTuXffv2YW9vT0BAAGXKlGHcuHFaQc8PpMSdO3fYuHEj79+/J1++fHTt2pW8efP+a+djb2/P1atX09z+5s2bb2rXV69eZcqUKWzcuFFr6NKZM2do3bo1+/bt02oq12g0KfxOyZIl6dGjBzt27MDT05PcuXMTHx8vA8GqVavy5csXjI2NJXVSN8ur1i0GZPVY+F71ABQRrMbFxckqkm5zsC5PWTcgVr8ftV2LKrR60R0TE8OrV6+IiYnB0NAQR0dH9PX1iYmJwcjIiBo1amBnZydfc8SIEbx69YqDBw8SEhIilS8GDRqU5vdQoEABjh8/zoULF7h16xbm5ubMnDmT5cuX4+7uTrZs2fj48SOOjo5MmDDhu6FY/iV6RkBAAJ06daJJkya0atUKQ0NDDh06xPr166Um57+B8+fPc/z48VRlaGJjY2nUqBEnTpz4JhnHV69eMXr0aLZt25Zim6IouLu7s2XLlnRNKtqwYQNdunRhyZIlrF27lvj4eG7dusWDBw8oWbIkw4cPl9Oz4PcpXULXUS1doxvQ6vKrhPSVuiSkDnRF1kl9DHVgrX6PwvnZ2tpibW2tVToSJaUKFSrI46gDcQMDAxISEihatCjz58/n8uXLHD16lKpVq9K/f39pzJMmTeL06dO8evUq3comFy9eZNasWaxZs0ZmsRITE1m/fj0+Pj6sW7fum6ukCPwXSqRpnWN0dDQdOnSgRIkSdO7cGTs7Oy5evMjChQsZOnQoDRo0+FfO9/379/Tt25c9e/akSgNq0qQJGzZs+CYc17i4OBo2bMjx48dTXVwNHDgQT09PypQp84fHun79OhUqVKBXr148e/YMX19fnj17hp6eHjlz5qRq1arUqFFD2puamqGnp0dMTAzR0dHS+Yr3LhoF1QMJRElVBM0iqFYH2uoslG4wLCA4lWFhYRgbG2NnZyePpygKRkZG1K1bF0dHR2JjY1PYtb5+8pRBEeC+fv2aQ4cOkTt3boYNG4alpSVJSUns2bOHCRMm8OnTJ2xtbdP13bx8+ZKuXbuybNkyChcuLM/31KlTzJs3jz179vxtSZv/sl0risKQIUOIjY2lT58+5MmTh7t37zJ//nxq1qz5p+UY/yoSExNxcXHh2LFjqU4QHDJkCO3atZM+5K/Czc2NzZs3p3q9rV69GiMjo3TNaQgKCqJAgQKULl0aW1tbvL29Zcb6p59+Ilu2bJQpU4YvX75oZYyFvcXExBAVFaXVBAzIRkF1VlpkqQW1UiyI1dUd3YA5LbtOTEyUfGx7e3utQSx6enoMGjSIokWL8vDhQ3ks3QW2qakp48aNw8TEhIMHD2JsbMyAAQNwdHQkMTGRBw8e4OHhwaVLl6hatWq6vpcvX77QokULRo8eTa1ateTj9+7dY+DAgWzatOlvDZzTa9t/KWh2d3dn7ty5KYSnP378SOvWrTl+/Pi/klpXFAVPT0/q1q2Lh4eH/KLDwsLo0aMHXbp0+WaOf8aMGZQvXz7NTMn27duJiYlJl2JAUlISlSpVIiIigipVqrBx40ZcXV3x9vamQ4cOnD59mokTJ2JraytXmcJxCkOIjIzUGo0pGgnVUjFqaoUIntXjdtVlWnXJRu2sNRoN586d49SpUzx69Ei+Tr58+YiIiMDExITBgwdTtGhRwsLCaNmyJWPHjmXKlCmEh4cTGBiIvb29DMjatm1LYGAgenp61KlTh7Nnz9K8eXN+/fVXAC5fvoynpyeXL1/WGlWeFhRFwdXVlb1796aaeRozZgwuLi5axvkt8V92rv3796dJkyYpBoTExcXRtGlTVq5c+c10lTOK6dOnExUVxfjx4+W9JTY2lvHjx5MtWzaGDBnyTV7n8OHD+Pv7p6gSCdy7d4+1a9emW32nS5cuHDhwADc3N/bs2UPevHk5f/48S5cuZdKkSfTq1YucOXNKu1YvcmNiYoiIiCA6OlqLiqGnpyf7AtSd7rpaqmJBnBrVSh2EC+f87NkzTp06xePHj2UTlBhVLqZsVqpUCRsbG9zc3HB2dubYsWPExsby9u1bWfJ+/PgxHTt25NatW0DyhNG7d++SP39+li1bhpGREcHBwbi4uLB8+XJ69uyZrs+yc+fOjB07NtWBB9u3b+fTp09/WwD4X7brFStWEB0dncJGFEWhT58+tGnThtq1a//TpwuAt7c3u3fvZsWKFXLqX1JSEuvWrePq1ausWrXqmyQ4Xr9+zeTJk1mzZk2q26OiomjXrh379+9P1/HmzZvHzz//TLNmzbhw4QIajYZLly7x4MEDmjZtSuPGjcmdO7fWwlZkiaOioggPDycqKkqrb0jYtQic1dQK3WSXro56Wg1+BgYGhIeHc/bsWZ4/fy4zwVmyZEGj0RAXF0etWrUoX748dnZ2jB07lqioKD5//oyiJE/wMzQ0JFu2bAQFBdGvXz/5GZUoUYKwsDASEhJYsWKFzEA3bdqUtm3bsmTJknR9lrNmzaJgwYI0bdo0xbZ79+6xePFiVq5cma5j/Rn87ZzmGzdupDmpJXPmzLRs2RJvb+9v3pSTHmg0GtauXcvs2bNxdnamYMGChIeHEx4ezvDhw7U4Nk+ePOHdu3fkypUrRWk1PRAcxbSQPXt2rl+//tVjBAUFERUVhaOjI2vXrqV9+/asW7eOQoUKceLECZydndm5cyclS5bk4MGD9OjRQ/L31BMChWMUzlUEskAKZyl+YmJiZMOBmZmZFi9QnZFSP5aQkMCqVas4e/YsTZs2ZdCgQRQuXJj79+9z7do1cubMyYkTJxgyZAg5c+aUOrYPHjxAo9FIAXSBGjVqcOXKFRlU5MmTh61bt+Lh4UGxYsVo06YN5cuXJ0eOHCxcuDBdQfOdO3coWbJkmqXavn37Mm7cuL8taP6v4vPnz7x9+zbViXpGRkaMHj2alStXMnXq1H/h7GD06NFs3LiRhg0bkidPHhRF4fXr13Tt2pV27drJ5717944nT55gb29P8eLFM+xwg4ODUzSoqJE9e3aCg4O/eozQ0FA+f/5M1qxZmTVrFq9evWLTpk3kypWL58+fU65cOXndHz58mMGDB0vnqm4GErQl0Uykdoy68nNqu46JiZGNebqNR+qSsPqzOX36NPv376d69epMnz6dkiVLEhgYyJkzZ8icOTOPHz9myZIleHt7ExoaCsCLFy/Q19fHzMxMyx8ULVqUs2fPsmXLFqpUqULp0qW5cuUKzs7OzJw5kzFjxmBjY0P16tVZsmSJHDf+NURGRvL58+c0J4S1bNmSxo0b/2tZ0+8ViqLg5eXFsWPHUmzTaDRMmjSJAQMG/GtBc9OmTbGwsKBdu3bY2NhgaWnJkydPaNCgAStWrJDXaEhICHfv3sXU1JSyZctmmGIXHBws+4hSg5mZWap9OGpERkby4cMH7O3tGTBgADdv3mTbtm3Y29sTExNDuXLluHr1Kh4eHuzatYuBAwdqyS2KYFht10IpR22Pqdl1bGwsUVFRxMbGSq1n3QqwLvVKo9Hw6NEjvL29yZ8/P8OHD6dChQrExMRw7NgxTExMiIqKYtWqVVy6dImEhAQ510C8jjo2cnR0ZPfu3WzevJncuXNTp04d3rx5Q7Vq1Rg9ejQLFizAyMiIBg0asGXLFiZNmqRFg0kLp0+fTlNmuHjx4rIZ+9/mOP/poPnKlStfHUXs6urK0qVL/5WgGZJXVqNHj+bnn38mMDAQU1NTLT7mrVu3GDduHLlz5yZ//vxs376d9+/fM3PmzAw1CBYuXBhfX19ZJtSFr68vhQoVSnXbuXPnmDNnDpkyZcLa2ppHjx5Ro0YNbty4waxZs5gwYQKlSpXiwoULtGzZkk6dOrFgwQJq1KhBqVKlpBGqS1qCWqErGaXmP6mNMD4+XmsMrljp6jpXUX599eoVS5Ys4dOnT+zYsYM2bdrI165Ro4bU0Bw/fjzr16/n1atXZM6cmcyZM1OtWrU0P8dcuXLRv39/+X+HDh24f/8+M2bMoF69etjY2NC/f39GjRpFjx49vsqBhORSvsiOpQZHR8c/DHr+F+Hn5/fV76latWrMmjXrHzyjlOjcuTOdOnUiMDAQjUZD1qxZpaMJCAhgyJAhGBkZUapUKQIDA/Hz82PkyJF/eM2oUbhwYfbu3Zvm/etrNv/w4UMmTpyIoihky5aNZ8+ekTdvXvbu3cuxY8fo1KkTuXLl4t27d5QuXZqxY8fSr18/rl69KpUlRGVI0C8Eb1Hwk9VZKTXHWCyO1R36YrCK2q5B28k+fPiQK1euyOad0aNHawXTHTp0kM/du3cvt2/fxtjYmAIFCqT5OUDyJEWhBARQqVIl1qxZQ7t27XBzc6N48eL07NmTjh07smTJkjQz+wKhoaFfDXqEAs8PaCM0NBRHR8c0P5ssWbJILeB/C87Ozjg7O/Px40diYmLInj27vIYjIyMZPnw4Hz58oEqVKkRERDBmzBg6duyYpppOasiTJw8PHjxIc/vbt2/TpFIGBQUxduxYPnz4QJ48eXj79i2mpqZMnTqV/v3706hRI7noLVq0KDt27GDbtm18+PCBQoUKkZSUlELrWPQhqPsO4Hd/q5aIU/cICfsWSlmgbc/iHhIYGMjz5885e/Ysnp6eLF++XPZnADRp0kT+3bFjR06dOkViYiI//fQTDg4OaSadDA0N6dq1q/w/V65cHDp0iFKlSnH8+HEaNmxIixYt2L9/PyNGjGDt2rV/+N2oaZ2pwd7eni9fvvzrEpN/+u5ibGycpi4uJF/kaU1o+ydhYGCQopT86NEjRo4cyfbt27VWQO/fv6djx46sWbPmqwGXGm3atKFJkya0bNkyxfuNiIjg0KFDnDhxIsV+R48eZf369Wzbtk2WAhRFYceOHXTt2pUFCxawf/9+HBwcKFKkCNu3b2fIkCE0bdqUSZMm0a1bN6pUqSJvhCLwFc0FBgYGKRp+dPVdxf8ajUZK1sDv9Avxt76+PqGhoUydOpX379/Tvn17RowY8dXFhaGhYbrLrWmhZMmSks9pbW1Ns2bNWLZsGQcOHPjDAMjJyemrJbbHjx//axSD7xl/ZNexsbHfRQOlRqNJkQkODQ2lY8eOrFixQisTGRUVhYeHB4aGhtSoUSNdxy9fvjzjx48nKCgIBwcHrW2JiYksWLAgVUfw8OFDBg4cyPr167X4dz4+PrRu3Zq1a9fStm1bzp49S48ePVi8eDHBwcGMHz+eKVOmEBERQcWKFXFyctLiNqrlJYUzFdBdCKudrWjkgZR2Lex+7dq1PH36FDc3N5YuXUr16tW/+rm3aNHiq9O8/gg//fQTkPx9KYpCsWLFqFu3LgcOHPjDoNne3p7Xr1+nuV1wNX9AG4aGhkRFRX31Oepr6t+EbtNfUlIS7du3Z/DgwVqZ8KSkJH7++WdWr15Njx490nVs0Xdz69atVBU75syZQ/fu3VM8HhISQrt27ZgzZ47Wfs+ePaNbt24sXryY4cOHM2bMGMaMGcO0adNYtmwZW7ZsoWPHjjRq1IhcuXJJuxacZHNzc+Lj42XQrFavEXatm+QS9+CYmBhJ3xD+Xz0x+OjRo/j6+lK5cmV2795NixYtvlpxq169+ldt/49QsGBBTE1N5XhxOzs7WrdunW6qi+jLSi1uVBSFwMDA74IS9ac74Ro1asTu3bvT3L5161aaNWv2Zw//t2LGjBmSe6NG1qxZmTdvHnPmzEn3sSwsLBg+fDitW7fm7t27QPIXfO3aNVq1asWvv/6aYnWflJTEnDlz2Lx5s9ZFoNFoaNeunRyZ6evrS926denZsyd58uRh3LhxLF++nF69erFmzRr69esnM8o3btzg2rVrREZGao3yFOM8hWar4DcLmTlxvomJibKRUJ210miSR4BOmDABKysr/P39Wb9+/TfXuE4NDx48wMrKiqxZs8rzLVKkCGfOnPlDx1iwYEHevn0rR6HqYs6cOem+0f4voVy5cly8eDHNEqWXlxdubm7/8FmlD6tXr2bw4MEpSvdmZmasX78+QxlyjUbDvHnzaNeuHefOnZPXm7+/Px07dqR9+/ZkzZo1xX6TJk1KETADVK1alQYNGpArVy42b96Mq6sr1atXp1q1aixcuJAOHTowb948Tp06xcSJEwkMDERfX58nT55w8+ZNwsLCsLS0lONqhR6z6EVQZ6XVHfNCnk491VN8t4aGhmzfvp2wsDBJE/krTjO9EJk+EUAAFCpUiOvXr391wQbJi7r8+fPL8cq6WLNmjVb16weSYWFhQXx8PJ8/f051++3bt9OkvPzbOHHiBBUqVEhBHdHT02POnDns2rVLJnzSg1mzZvHzzz/j5eUlFwofPnxg2LBhWFhYpCqRtmjRIkaPHp0i0M6XL58MpMeMGUO1atUoUqQIbm5uXL58GXt7e/bt28eFCxdYsmQJjx8/xsjIiPfv3/Pw4UMpq2Zpaak1hls9x0D8FratVsCKjY2VC2ph24aGhrJqtHv3bi5fvkzLli3/tqZ3gVevXhEVFUWePHmkvy5QoACfPn36anZfoFmzZmzYsCHVbWfPnqVUqVLfRRXpTwfN2bNnJ0uWLGzdujXFtnPnzvH8+fNv1u36LZGUlMSHDx9wcnJKdftPP/2Ev79/ho7ZoEEDZs6cycqVK3Fzc8PNzQ0vLy9WrFiRKv/22rVrVKlSJc1MvFrUOzQ0lKSkJMaPH8+bN2/o0KEDc+bM4cWLF0RFRTFp0iRGjx7NmzdviIyMZOvWrXI6mXoOvHCsaueqDpzVE33EiheQjUHv379n48aN5MqVK0OfzV9Bq1atiIiIYOfOnfKG0a5dO+7du8fVq1dJSkriwYMH/Pbbb5w/f57Hjx9r7T9nzhw6duzI1atXZdDz+fNnRowYQc6cOb+qDfq/CgMDA9q2bcvYsWNTLEyePn3KunXrtLjD3xPOnDlDo0aNUt1mZWWFnZ1dmouo1FCsWDG2bNnC2bNnadSoEe7u7sycOZMRI0ZIuoIaohkmrQ7vHj16yHKnGGXv6emJiYkJTZs2pUOHDoSHh+Pg4MCGDRuYNm0ajx8/Ji4ujvPnz7NixQqioqJkwGxiYiJtWl32FXatDppjY2O1Mlciy3znzh1mzpz5j96rXVxcsLW1ZdOmTXIR37JlSyIjI9m+fTuQzJO+fPkyV69e5dKlS1r7T548mYkTJ3Lw4EG5AIiOjmbJkiVcv36d9u3b/2Pv5b+EYcOG0bt37xQBZkhICCNGjPjDLP+/hZ07d6ZJwdBoNNSvX59z586l+3gikA0ICKBJkya4u7szaNAg6tevn2avxm+//ZZmdbNMmTIyO54pUyYiIyNxdXUlf/78tGnThnz58hEcHEytWrU4e/YsixcvxtfXl8TERPz9/dmyZQufPn3CwsJC2rZIcomeBvUQMCFFpx6RLWxbKGHcuHGDfv36fVXX/lujYMGClCpVim3btknqaM2aNbGzs2PFihVAcjX/8uXL3Lp1i0OHDmn5mK5du3LmzBlWrlwpG5ATExPZt28fM2fOZNy4cf/Ye/ka/lLYPnfuXEaPHs3u3btxd3fH0NCQo0ePYmpqysaNG//2lc2fQUJCwh/KEf0ZonnhwoXT3SX66dOnr0qnlC5dGhcXF6ytrZk6dSpTp05l3LhxjB49milTplCjRg2uXbuGi4sLx48fx83NjYoVK5I7d26aNGnCvXv3mDdvHhMnTkSj0UgKhpqmIYJlIfkmHlcPTYHfpaOAVDNrfyeKFy9O3759mT9/Pm5ubjg4OFCzZk3s7e05dOgQBgYGlC9fXmufefPmye7wQoUKsWnTJhYuXMjEiRNlqbt79+5pBlc/kBzcLVmyhPr16+Pm5oadnR0XLlzg/fv3bNq0SWsy2/cE3cmWurCzs/vDTKYusmXLxqRJk9L13NDQ0FQHdAhYWFhQvXp18ubNy8aNG1m5ciWdO3dmwIABzJo1i1KlSnH//n26dOnCrFmzKFOmDKVLlyZfvny4urry4cMHZs6cSc+ePTE1NZVlXV27FtxH0B5yJOxaBNXiOV/jCP8dsLKyYvr06fTu3ZuWLVtSqlQpHB0dqVy5MocOHcLZ2TlFUqN9+/YyQWNra8uePXtYtmwZS5cuxcjIiISEBFq2bMnGjRu/C/rQ94jq1asTFhZGgwYNcHZ2lgOgbty4wcyZM/9VreavISIi4quNZJkyZcqwXVtaWjJw4EAGDhyYrucbGRl9NZ6pUaMGBQoUYNWqVRw4cABnZ2e6du3KwoULKVeuHNeuXaNv3760b98eR0dHChYsSIkSJTA0NCQ6OpoFCxZQp04dsmTJQlxcXAq1G+GHExISMDY2lotftb9WTwiNj4//x+1ao9GwePFiqlevzvHjxyXToEGDBhw6dIiJEyemOKc8efLw8OFDmQDYunUr69evp1mzZhgYGBAXF4ezszN79uz5bvTXM5RpFsLbAgYGBsyePZt169ZhbW2NsbExc+bMYd26dd+tYzUyMiIiIkJrEo8aat3EvwsFCxaUMkyp4fbt2xQvXpxdu3bx22+/Ub16dWbOnMm2bdvo1asXN27c4Pz58yiKwq5du7hw4QJr166VxlWyZEmqVq3KrVu35CpVd2y1eEydiRa8KrFqFRCLjHfv3mX4vSYkJHDnzh1u3bolV48ZwdSpUzE3N2f27NnA77JYhoaGWiXa/PnzA6TQy3Z0dGTWrFkcO3aMAwcOsG/fvh8Bsw50h2dAsuyct7c3efLkQaPRMGjQILy9vb8bgfnUYG1tzdu3b9Pc/uDBg7+Vx54lSxZevHiR5nahebx06VL8/Pxo1KgRe/fuZf78+XTq1IkPHz6wa9cu7ty5w4kTJwgODmblypXyXpUnTx48PDzw8fGRMpFqPWb12GqRiRZ2rZ4YJr5roc36Z+xaURQePXrEjRs3pHxVRtCjRw8qVKjAtGnT5HmJ+5P6MxS9Jbp2bWVlxahRo6RdHzlyhK5du/4ImFXQvY9DskaxoDsIbfMTJ06kS2/830Lp0qVTVBvU8PHxSXPg0beCoC+mBkVR+PjxI7/88guPHz+mc+fO3Lp1S07ANDExYeLEiZw6dYpDhw5JGmhUVBR6eno4ODjQp08ffHx8UoyoVlM0jI2NMTMz01LEEf5azUdXFAVzc/M/ZdeQrIN+/fp1goKCMrxvtWrV5KyJL1++aNl1TEyMfJ7IzL98+VLrcQMDA3r06MGRI0c4cOAAx44dY/jw4d9NwAwZDJq7dOlCvXr1GDZsGB8/fpSPZ8qUiZYtW9KmTZuvyq99L2jWrFmKaV4CixYtSrX0+i1RsGBBAgICePPmTYptiqIwa9Ys2URXqVIlLly4gK+vL9HR0XLq2a+//oqrqyutWrXCxMRErrRFENy4cWMuXrwoA2QjIyO5TRijiYkJZmZmshSkbg5Ua0MWLlwYQ0NDjhw5ku73qCgKS5cupX79+uzYsYO9e/fi7u7O9OnT/1DSRw0bGxvmz5+Pl5cXEydOJCIigk+fPpEtWzYGDhwoJbi8vb0BtMaW/0D60LlzZxo0aECXLl148uSJfNzU1BR3d3fatWv3j3DY/yp69erFr7/+mirf/fDhw5QqVUqrc/xbQ0z6vHDhQqrbFy9eLK9PJycnDh06xKNHj8ifPz9Hjx6ldOnSLFu2jMyZM1O3bl2cnJykooGlpSUmJiZUq1aN58+fy8yMcLCC36z+X5R5RbZZ9D8ImJubkytXrgzZNSSPFndxcWHFihUcPnyYDh06MGDAgD9sNFNDT0+PFStW8PDhQ3r16kVsbCwvX74kW7Zs1KlTR9q1n58fgFan/g+kDx07dqRx48a0bNkSHx8f+bi+vj5169alffv2VKpU6busCKvRrVs35syZk2qi69GjR4SGhv4pudiMoEWLFmkqQBw4cIBq1aqhp6eHtbU1GzZs4OXLlzRr1oyff/6Z8uXLc+rUKZ4+fYqrqyuVK1eWNAs7OzssLCzImzcvCQkJkq5kbGwsg2Nh28Jfi74GETQLSqWAvr4+BQsWzLBd+/r64ubmxq+//srRo0cZOHAg7du3zxClDZI54/r6+nh6evLp0ydev35NtmzZ5CCkpKQkgoKCyJ49O2XKlEnX4LfvCRmiZ2zduhUrKysuX75MmzZt2LFjR4rO8v8CevXqRa9evRgzZgz9+/cne/bsvH79mgULFpCYmMjIkSP/9nOYP3++FOmvU6cOGo2Gt2/fMnnyZCpXrpxCpq5EiRI0bdqUgwcP0rVrV2bOnCm70MePH8/w4cOpX78+U6ZMoWHDhtjY2EhZGmGMYpqXKOeIEo+QvhHOVXfYga+vL/Hx8RnK0E6dOhUDAwOtyYuKorB69WqGDBnCwoUL032sdu3a8fHjRwYNGiQ1rytWrIiXlxeJiYk8evSI169fExwc/J8zwO8BQsHF39+ffv36MXv27L89c/N3oHr16ly9epUuXbowcuRIihQpQkhICGvXruXy5cuSL/t3YsqUKbRq1YqAgABatGiBoaEhoaGhLF68mICAAMaOHav1/OzZs9OtWzdp06NGjZLX8PDhw2nfvj2tWrWid+/eciEt+MtCLlKUcEVJV0hHqn/U1A1Itu3g4GBev37NxIkT0/3+9u7dy8GDBzl8+LAWje306dO0bduWffv2pTvbW7p0aU6ePEmdOnVo27YtL1++xMXFhf379xMXF0dISAje3t68ffs2XTqvP6CNHTt2YGVlRVBQEAMHDuTTp09aEmP/FWTNmpW+ffvSvHlzRo8eTeXKlYmJiWHXrl1s2rQp1b6qbw1PT086d+5MTEwMPXv2xMLCgpiYGLZt24a3tzc7d+7Uer6FhQWDBw9m69atVKhQgUuXLsleqR49euDt7U3v3r2pX7++5OqamprK5JWu3apVNUTDn+g9UlO0BA3Lz8+Pbt26pfv93b59m3HjxrF161YtSbdHjx7RoUMHvLy80i31Zm9vz2+//UbFihUZPHgwjx8/Zs6cORw7doywsDA0Gg1Lly7lxIkTKcaT/xfwpycCXr9+nY0bN6abx/u9QVEUzpw5w4YNGwgNDcXe3p6uXbtSrVq1f2zlHRQUxIoVK/jtt98wMDDAysqKPn36pKmTO2jQIDZu3Mj06dNZsmQJHz9+lCWU9+/fM3jwYLy9vdm2bRvBwcHcu3eP9u3bExUVpTU1SGSSReNfbGws0dHRcuqYoaEh1tbWWFlZYW9vz6pVq3jz5g1Xr15N1/v69OkTPXr0YN++falu9/T0ZPz48RnKDiQkJPDLL79w7tw59PX1yZYtG66urty6dYvFixcDcOTIkX9txLMu/quTwz5+/EiXLl04dOjQv3x2fx63b9+W16yZmRnt27fHzc3tHyvdR0VFsW7dOo4cOSKHGXh4eNC0adNU7y1r1qyhR48ejB07lnv37nH48GEpJxUREcH06dOZPn06c+bMoUSJEixcuJBBgwYRGhoqJSSFNrNaxzU6Olpr6pihoSG2traYmJhga2vL5cuXOXz4MO/fv09XBj4pKUmOO06ti33OnDkULFiQxo0bZ+jzWrZsGbt37yYxMRErKyvc3NyIioqSgw6mTJny3TQB/VftOi4ujgYNGnD06NF/fTjEn8XLly9ZuXIl9+7dQ19fn8aNG9O2bdu/bWS6LhITE9m1axc7duyQNKcmTZrQqVOnVJv6r169SqVKlfDw8EBfX58NGzbg5+dHiRIliI+PZ+PGjfTq1YsuXbrg6enJoEGDGDZsGCEhITJIFo28IlAW/joyMpIvX74QHBxMQkICtra22NnZYWdnR0hICEuWLMHf31/SFv8IrVq1YvHixan2LR0/fpwbN26kWPD/EQ4cOMCyZcuIjo5GX18fNzc3MmXKRM+ePYmPj6dFixZ4eXll6Jh/J/72iYBCxzQ+Pj7VefHfOzQaDXXr1s3QwINvjejoaAICAqSuclBQEDdv3qRSpUqpOiVPT0+uXLlC37595WOlS5fmzJkzZM2alY0bN+Ls7Ez79u3JmTOnbNpKSkqSTlhkqYQRqjWexRQx4XQVRcHQ0BAfH58MlUf37dv31Q72Ll26sGPHjgwZoYGBAVOnTqVt27Z069ZNTqzLmjUrS5cuJSkpiSFDhnw3QfN/FZkzZ8bR0ZFnz5797SXPvwulSpVi2bJl/9rrx8XFERAQQFxcHFZWVoSHh3Pz5k3q1q2b6s24YcOGsiwqkDNnTs6ePUuhQoX49ddf+fDhA8OHD6dQoUKMHTsWS0tLEhISiIiIAJDBuVoFR2SWhda57lCEx48fU7169XRTVoTqT1qyT126dKFfv34ZDpr79u3Lhw8fcHBwkINQnjx5woQJE4iMjGTWrFmMGTNG3qd+IOMwMjKiadOmHDlyJNUxxf8F5MmTh+nTp/9rr5+UlERgYCCRkZFYWloSFRXFrVu3qF+/fqq9Ej/99BPdu3dn/fr10sYqV67Mvn37qFevHt27dyciIoKhQ4dy6dIl3N3dsbe3JzExkbCwMBRFkVxmsTiOi4vT6lMwMjIiJiZGys7p6+vz8uVLObQtPQgPD0dRlDQb/evVq8f8+fMz/Hk1btyYmJgYzp07x5IlS+To8AkTJvDmzRv27NnDhw8fvto8/T3iL92FHBwctLpWhZh+aj9/d3Pdfw1Pnjyha9euDBgwgOPHj7Nv3z6OHj2Kubk5nTt3TvXzEmNoly9fLh+7ffs2FSpU4N27dyiKwtChQ7G3t+fp06ds2LABU1NTzMzMCA8PZ926dYwaNYpx48Yxd+5cXrx4IbWc1dqvoiEQkp3x+/fvM9RZHRYW9lXajoODgxRAzwhu3rxJ1qxZtUY8N2jQgBkzZgDJxv+1RrAfSB/y58//p5tI/tcRGhpKq1atcHZ25uTJk+zdu5eTJ09SvXp1KaGoi+zZs0vKgyiBBgYGUqFCBXx9fYmLi6Nbt24UL16cJ0+esGHDBoyNjWUAfuTIEWbMmMHcuXNZunQpT548kZqv5ubmkgMpZObEYvnz58/f1K6F3FZGERoayq1bt7QmBxYsWFBmoWJiYjhz5kyGj/sD2ihQoMAPu/6TSEhIoGPHjtjb20t/ffz4cXr37k3nzp15/vx5in1MTU1ZvXo1N27ckGowkZGRNGzYkD179hAXF4erqysuLi48f/6cAwcOAMkqP0ZGRly7do0VK1awevVq1q9fj5+fHyYmJlhYWMgfKysrzMzMpAa7qE5lxK6/fPnyVfqT7tTh9EJRFFatWsXChQvlgtfMzIyLFy/K56xbty7Dx/238Zck5z58+IClpSWKovD+/XtCQ0O/+nwbGxutkbf/yxgzZgwbNmzQWqEaGBjQrVs3Pn36xP79+2nevHmK/TQaDb1796ZSpUo0bNiQwMBAnj59SokSJTA3N6d27drcuHGDHTt2MGTIELJlyya71Lt06ULv3r3R19cnMDCQlStXUq5cOerVqyczznp6eoSHh0t9SNF8kZFSZPHixfntt99SFYmHZM3L4sWLf/UYISEhnDt3jsePHxMUFERYWBj379+nUKFCHD58GBcXF2nIffr04cOHD2TKlImDBw/KUd4/8Ofw+PHjf1Tf8/8TZs2axahRo6hTp458TKPR4OLiQkJCgpSCTA0NGzbk7t27NGrUiNu3bxMeHk7t2rWxtLSkZMmS7Nixgzdv3tC4cWNmzJhB7969mT17NvXr16dly5YYGBjw5csXvLy8ePz4MW3btpUyVHp6enz+/FlLXSMqKgpra+t0v7eiRYt+lT9648aNr47UhmTqyrlz5/D39+fNmzd8/PiRjx8/kpiYyNatW2natKlUXnJ1dWXSpElkypSJvXv34uzsnO5z/YGUePTo0X+2evRvY/fu3VSuXJlOnTppPf7TTz+xdu1axowZk2bPRKlSpfjtt99o3749Bw4cICEhAQ8PD2xsbMiTJw9Tpkxh/vz51KxZkzFjxjB9+nQ2btxIgQIFGDhwIKampsTGxnLhwgW2bdtG165dpb/WaDRoNBpiYmIwMTGRz81I9jZz5sw8f/5c9jvpIiQk5A+D5oSEBC5dusSjR4948+YNL1++RKPR8PnzZ1avXk2rVq2kYkbu3LlZvXo14eHh/8nF8J8Omn18fChSpIicbx4aGoqDgwNmZmYpPnhFUYiKipL8239aP/B7w/v37zE2Nk5T/qpnz5706NEj1aBZoFSpUrRq1YpFixZhbGzMqVOnpP5rly5d2LlzJ+/fv2fSpEkUK1aMNWvWYGRkJBsL8ubNy/Tp0xk0aBAVK1bExsZGGqAwSAsLC5k5ykiDnYuLC7Nnz6Znz54pmgciIyPZvHlzmp29Qmh/8+bNKUT4bW1tef36NZs3b8bBwYFFixaRM2dOkpKSmD17NmfPnuX27dvpPs8fSInAwECCgoK+W83W7x3Xrl3Tolmo0aBBA+bNm/fV/bNnz87IkSPlAJk1a9bg7u7Onj176N+/P2vXrmXdunV4eHjw8OFDxo4dS7Zs2YiPj8fAwABLS0sGDBjAokWLeP78OQULFpR0DDHQSFSfwsLCMmTXOXPmJDY2locPH6ZQU0lKSmLGjBnMnDkz1X3j4+OZNGkSS5YsSVFlcnBwQKPR0LFjR8zNzZk8eTLVq1cnNDSU0aNHExoayogRI9J9nj+QEjExMRw4cIDjx4//26fyn8TOnTvZvHlzqtvy5s1LYmIiwcHBaWZszc3NmTlzJocOHZLjvydMmMCJEyeYPn26HNZTp04dBg8eTMuWLSldurQcK21jY0Pr1q05ceIEV65coVatWnJBrK+vT3R0NNbW1lhYWBAeHp5CSOBrMDQ0pFKlShw4cCDVRtG5c+fSpUuXNPdfsWIFU6dOTVHFsLW1lXKlgwYNok+fPnTt2pX379/Tpk0bLC0tOXv2bLrP83tBhoLm8ePHM3v2bM6fP8/MmTPZtWsXiYmJMmD+WopfaIIGBQXh4ODwP62nGRgYSM6cOQkJCcHGxiYFV8/W1jZVTciQkBCWLl2Kj48PCQkJ3Lt3j759+zJgwACZ4Rk8eDAVK1ZkyJAhrF69Gh8fH27dukWmTJnk9CBjY2O5Su3UqRPHjh2jc+fOsqEIkrPepqamku6QPXv2dL8/PT095s6dS+vWrRk5ciR169ZFo9Fw6dIlfv31VyZNmiSvBzU+fvyIh4eH1o3dyclJlr6EVE/Lli3Zvn07bdu2lc9r0qQJuXPn1nrsB9KHrl27smXLFp48ecKQIUP+s829/zbE4KSQkBCsra1TcH81Gk2q131MTAzr1q3j0KFDaDQarly5QteuXfH09JRjrTt27EjNmjXp3r07x44dw9fXl4ULF5I5c2bZ2GVsbCwD5I4dO7J48WJKlSolG4og2a5NTExko2BGExhi5LdY1BsZGXH//n2mTp2Ku7t7qjzK6Ohohg4dKqeCgbZdV6pUiXfv3jF9+nQuX74sGwABypYtS/v27VOdrPoDX4erqytnzpzh48ePDB48mBEjRvwn+4++B4h+gLi4uFQbKfPkyUNQUJBWDKQoCrt372br1q0oisKVK1do3bo1TZs2laPeGzRoQI0aNXB3d2f//v2sWbOGDh06YG9vLysuFhYWGBgYoNFocHNzY8SIEbi7uwPI5n5B2zA3N+f9+/cZtuuxY8fSrl07Xr58SZcuXbCysuLt27fMmzcPAwMD3NzcUuyTmJjI4sWL5TAxSFbO+PTpE5A8UTUgIIApU6YQEBDAjBkzZNN+rly5mDRpktRh/y8hQ5zmRYsWUa1aNdasWUObNm20yvfp6WAVz0lrsMj/Avz8/Jg0aRJbtmxh8ODB1KtXj1mzZmmJkwcHB6dozgkICKBly5ZUrFiRo0ePUq5cOTZu3IitrW0KXlDlypUJDw8nODgYV1dXIiMjOXPmjKRciPGc+vr6lChRgtevX2uN7FQPTChRogRGRkbs3r07Q+9TjNO8du0ajRs3ljeFPn36YG5uzrVr1zhx4oTW+65fv74MmLNmzcqiRYu4d+8ey5Yto0qVKty/f58DBw7Qq1cv9PX1adq0KV27dmXNmjWcP39ea/zmD6Qfe/bsoVy5ckyePBlXV9fvdjDR94x3797Rt29fLl++zNChQ2nYsCHDhw/XyqqKhlw1oqOjadWqFZaWlnh7e9OhQwcmT55MhQoVWLRokda9MmfOnJQrVw4fHx9at26Nnp4e+/btk0NN1KN2HR0diY6O1hqCIvoXTExMyJw5M7lz585w93rWrFnZv38/oaGhtGzZksaNG7Nw4UKaNGlCsWLF8PX15ejRo1rc7f79+8uA2cLCghEjRnDjxg2OHj1K9erVefjwIbdu3aJ79+48ffqUpk2b0r59ezZs2CDH3v+g9GUcV65coUiRIgwcOJCffvrph2zfn0BkZCSjR4/m2rVr9O/fn2bNmtG1a1devXql9bwXL15oUSIURaFPnz48e/aMLVu2MHXqVFq3bk27du1YvXo1wcHB8rnm5ub07NmTLVu20Lp1aywsLKRdizkKwr7FnAX1ABRRORK67CVLlsTb2ztDcZaJiQm7d+8mW7ZsdOnShcaNGzNy5EiKFy9OixYtuHPnDkePHuX9+/dyH3XArKenR+fOnfH19eX27dvUr1+fkJAQ3rx5Q79+/Th27BiNGzemefPmrFixghw5csjs9X+u301JB8LCwhRAOXjwoJKUlKQUK1ZMAZSKFSsqtWrVUu7cuaNERUX94XGio6OVBw8eKNHR0el52f93uHbtmtKgQQPl7du3SuvWrZUXL14oiYmJyqZNm5T27dsriYmJiqIoypQpU5T9+/dr7duuXTvl0aNH8n83NzclKSlJURRFGTJkiHLu3Dmt58+bN085ffq0cvjwYaVQoUJKjhw5lMePHyv37t1THjx4oDx+/Fh58uSJcujQIaVTp07K7du3latXryoXL15Uzp49q5w/f165cuWKcvfuXaVPnz6KkZGREhwcnOH3HBAQoEycOFEpUaKEotFoFEDrZ+jQofK5vr6+yujRo5Xt27cr8fHxaX6GefPmVfLly6fo6ekpgNK4cWOlYsWKSsWKFRWNRqPUr19fmTFjhhIUFJTh8/1WEDYTFhb2r53DH0Gc4549e5S4uDjFw8NDAZSCBQsqlpaWio+PjxIbG/tvn+Z3j7dv3yq1a9dW/Pz8lPHjxyvHjh1TFEVRzp49q7i4uCjh4eGKoiiKt7e3MnXqVK19J02apOzbt0/+P3ToUOXJkyeKoijK+vXrlUWLFmk9/+TJk8qCBQuUN2/eKMWKFVP09PSU06dPK1euXFGuXbum+Pr6Krdv31Z8fHyUGjVqKBcvXlROnDiheHt7Kzt37lT27NmjHDhwQDl37pzy66+/KoDy22+/Zfg9h4eHKwsWLFAqVaqkGBoaprDrevXqyec+e/ZMmTBhgrJ69eo07SEwMFApUqSIUrBgQcXIyEgBlKpVqyqVKlVSXFxc5P+jR49W/P39M3y+3wr/Jbs+cOCAEhoaqsyaNUsBFBMTEyVTpkzK3r17lYiIiH/7NL97REVFKQ0aNFCOHTum7Ny5U5k9e7aiKIry8OFDpXbt2srz588VRVGUJ0+eKB06dNDad9++fcrkyZPl/+vXr1f27NmjKIqiXL9+XenZs6fW8z98+KB069ZNK75aunSpcvr0aeXs2bPKxYsXFR8fH8XHx0cpX768cvLkSWXv3r3Khg0blOXLlytLlixR1q5dq3h7eyvr169X9PX1lVWrVmX4PcfHxyubNm1S6tWrp5ibm6ew6xw5cihxcXGKoijKp0+flGnTpimLFi1S3rx5k+rxYmJilKpVqyqFChWSxytQoIBSu3ZtpXHjxoqenp5SvHhxpX///sq1a9cyfL7fEum17QxlmmvUqIFGo2Hr1q306tWLqKgoXrx4QUBAAK9fv/5Lwfv/AiZOnMi2bdtwdHRk+vTpdO3alVu3buHh4UGRIkU4ePAgS5cu5enTp1rlkKCgIJKSkrR4SkZGRnIC17Bhw1JMKwoNDcXc3Jx69erx7t07qfuoFkVXFIUdO3bQuHFjyXcU2WaRadZoNLRr1464uLgMk/bj4uKoVq0as2fPpnDhwsyZM4eDBw9y8OBBjhw5QpYsWbSumzJlyjBt2jTatm2bpqxV+fLluXfvHqNHj6Zt27Y4OTlx/Phx8uTJQ+vWrRk3bhyRkZGMGjUKBwcHRo4c+aNj/A/g7OyMoaEh06dPp3///uTMmZOIiAiqVq36I+ucDkyePJkFCxZQokQJfv75Z+bNm8fhw4epWbMmffv2ZenSpezfv58VK1YwePBguZ+iKFy4cEGLR2hmZiYbqjt06JBCL1vYdY4cOQgNDZXDTMQkT2HbR44coU6dOlo2LZQ0zM3NMTQ0xNnZGWtra44ePZrh99y2bVuGDh2KlZWVbILy8vJiz549lC9fXsuunZycmDRpEt27d0+zoThr1qz4+fkxc+ZM2rVrR6lSpbh8+TKZMmWiYsWKzJ07V16jBQoUoH///ty9ezfD5/2/hJo1a2JtbU2fPn0YNWoUrq6uhISE0Lx5cywtLVNUPX5AG2vXrqVDhw64urrSokULbt++zcqVK3FycmLlypVMnDiRa9eu0bNnT6ZNm6a17+bNmxkwYID8X23X5cqVIzAwUEt57PPnz5ibm6PRaLC1tQWQEpJq/fW7d++SL18+9PX1ZVXY1NQUKysrLC0tMTIywsnJiZIlS2Z4IiDAuHHj6NSpExEREfTp04d169axfft2tm7dSuvWrXn79q2kcNrZ2TF69GgGDBhAjhw5Uj2esbExFy9eZPXq1ZJi5u/vT2xsLLly5WLZsmVkzZqVJUuWUKFCBbp37/7dNwf+Kcm5kiVLsmLFCvz8/Ni2bRuQXMYIDAyUX+4PmTltPHnyhLx588rGGycnJzZv3szmzZtxdXXl4sWL9O7dG0NDQ9atW6fFc3758iVFixbVOl6zZs1kJ7ujoyOfP3+W2xITE/Hx8aFcuXJcvHiRL1++oKenR0REhBxqEhsby/bt24mNjaVw4cLSEATXWfxWFAUHBwdKlSrFsGHDCAgIkA0D7u7u1K9fnwEDBvDixYsU79nf35/nz5+zbNkyfv31V9zd3SlQoACFChVi69athISE0L9//wx/lmZmZnTr1o2tW7fi5+dHr169OHfuHMOGDSMmJoaVK1fKyVGzZs0iR44c7N+/X05Z+oHU4ejoyOLFizl16pT8PhMSEhgwYABv3rzhy5cv+Pv7ExIS8i+f6feD+Ph43rx5I6dzWlpa4uXlha+vLy4uLqxZs4bZs2dz7949vLy8tBYhsbGxsllGoEWLFmzatAlIbtDR5U/u3LmTxo0b8+7dO969e4eenh4xMTFao7IvXbrE2bNnqV27tuyIV6toqF+vTp06zJkzhxs3bnDlyhXat29Po0aNaNiwIR4eHvj6+qZ4z4mJiRw/fpxhw4Yxc+ZMmjVrRsGCBcmbNy83b97k+vXrDB06NMOfpYGBAU2bNmXDhg34+voydepU3r59y5QpUzh//jwLFy5k/vz5VKlShc2bN/PTTz8xa9YsgB92/RVYWFgwffp0vL29CQ8Pl7xzDw8P/Pz8iI2N5enTp1ql9x+Aw4cP07p1ayB5NPXGjRtJSkrC3d2dYcOGcezYMTZv3sy2bdvIlSuX1r7x8fFaTbb169fXGvaVP39+rc9706ZNtGrVCoBLly4ByfYvfHVsbCyPHz9m+fLltGjRQuo26+npSaqlSDQlJiZSs2ZNOanQ39+fPn360KBBA9zc3GjWrFmaC+Vjx47RrFkz5syZQ4sWLShYsCCOjo6Eh4fj5eVF//79Ux3k8jVoNBqqV6/OihUrOHfuHJs3b8bAwIAlS5Ywd+5cZs6cyZYtW6hSpQonTpygbt26eHp6At+nXf8lyTlIzg4+fvyY+Ph43r17R2BgIJaWlpiYmBAbGyv5df/rDQjv379PQXp3dHRkwYIF8v/GjRvLUblqODg48ObNG63HWrVqhbu7OxUrViRv3rzSuSYlJTF48GA8PT0lZxmSg/QhQ4aQKVMmTExMePnyJZUrV+bnn38mOjpaa2yn+FEPSpgzZw4eHh5UqlSJtm3bsnHjRnlTuHPnDj179mTu3LkyeAAk78vR0RFABuMhISFs3bqVuXPnpilLl16Ym5szbdo0Fi1aBMDs2bOZPXt2imAjMjKSPHny8Pr1a/LmzcuLFy8kV6xu3bo4OzvTo0ePDN8Q/r8iT548fP78GVtbW5YsWcKKFSuoXLky5cqVk5rgkyZNSqGi8L+GL1++YG9vr/WYpaUlEyZMkP+7u7unOsjH2Ng4hZJEqVKlCAsL48CBA7i7u2tx9FesWEG+fPlwcHAgISEBBwcHef0bGhpiZWXFu3fvyJ07N2PHjpW2qw6o4+Li0NfXl0Op+vTpw9OnT3F2dsbFxYX58+dLe3316hXDhw/Hw8NDa2BJQEAAiYmJZMmSRSru6Ovrk5SUxOrVq+nQoUOq97GMQE9PjzFjxsjGoQMHDnDgwAGZYYuOjgaSJexatGjB3r17yZIlC/Hx8YSEhGBqakrZsmVp3Lgxnp6eUu7qfx2Wlpb4+/uTOXNmWRkoXrw4derUITQ0lE+fPjF8+HBq1ar1b5/qvw4xCExAX1+fPn36SEnTPn36MHLkyFSb7pKSkqTyBSRLtookzs8//8y7d++kstTp06d59OgRU6dOBZKlJ0+ePMmGDRuIjY0lU6ZMfPz4EXNzc/r164eiKDJJJmxa/XpGRkbUrl2b+/fv4+HhQYUKFVi5ciXFihUDkgUFJk+ezL179/j555+1zvnNmzdUrlxZLrY1Gg1GRkZs2rSJn376SSte+bPo2LEjp06d4sKFC/j7+1O2bFk0Gg1mZmZSrSs8PJzZs2czYsQIzMzMyJ07Nw8fPsTY2JiCBQvSqlUrWrVq9YcSl38H/nLQDGgNwkhKSsLCwkJeSFFRUTx//px8+fJ9l6uGfwp58uRh/fr1aW5/+fJlCuer3jcwMJCQkBBpaMbGxmzfvp2BAwfy6NEjSpcuzZQpUzh37hydOnWiY8eOQLIG46pVq+jZsye9e/emWbNmKIqCjY2NnDCUlJSUIgMlxoSK79bU1JTOnTszY8YMGjZsqLWKLlmyJNu3b8fDw0OuYMPDw1m4cCG5c+cme/bs8th6enp8+PBBHjMjiIuLw8vLi927d5OQkIC9vT09e/akUqVKzJkzh9DQUPLnzy87iBVFIVu2bJQpUwZjY2NZMhaOtly5ckRERLBv3z7279/PL7/8Qu/evZk8efKP6WMgAxMTExNiYmLIkSOHlEx7+/Ytnp6eLF26NEPyRv/fYGVlJa+11JrVYmNjtZpd1dBoNBQsWJCbN29SpkwZ+fjq1asZOXIkM2fOxNLSkrlz53Ly5EmqVKkiy8AGBgZ4eXlRp04dChcuLCd2WlpaAsmKHCJpIa5lNT1LnJNGo6Ffv3707t2bKlWqyIAZkvVUt27dSoMGDahXrx6mpqbEx8czY8YMjIyMKFWqlJZdx8TEEBQUlGG7VhSFEydOsGHDBr58+YKZmRkdO3akUaNGzJ8/nxs3blC0aFGsrKz49OkTMTExODg4UKJECYoWLUqBAgWA5LkBzs7OODs7ExkZycmTJxkxYgTjx4+nVatWrF279j87QvpbQ6PRYGxsTGxsLIqiyGAoIiKCbt26ERcXh4uLy797kt8BIiMj06SovX79Ok2f3bhxY3bs2EHnzp3lY6NHj2bu3LnUqlWL0NBQtm3bxpkzZ3BwcGDz5s3SlpYtW0bZsmUJDQ2ld+/emJiYyAA+Ojpa0jwMDQ2lCpmw6aSkJHnf7tChA2fOnCF//vwyYIbkIUTz58+nffv2+Pv7U6BAARRFYfny5YSEhFC6dGkAeU8zNDTEz8+P4sWLZ1j17MaNG6xcuZL379+jr69Ps2bNaNOmDZ06dcLW1paiRYtiY2NDREQEoaGh2NnZUbRoUSmpC8n+Om/evDRp0gQDAwOuX7/OhAkTmDBhArVq1eLgwYNYWFhk6Lz+CjRKOiJZMZN7+fLlHD58GEgOqpo2bUrHjh159uyZ5EfZ29uTI0cOLU5qWFgYUVFRGBkZERQUJLVD/+v4+PEjT548wdrammLFiv1hh3fz5s1ZsGBBilIOwKBBg2jdujVVq1ZNdd8bN24wfvx41q9fL8ddKooiuZL9+/fH2tpayrLpYtq0aUydOhUTExPGjBmDi4sLMTExkpYByPNXL4Lgd7mdZcuW8fDhQ4KCgvD09KROnTq4uLigp6dHfHw8PXr0oHDhwjx79oyDBw8SERHBrFmzqFu3rvy+k5KSOHHiBAMHDuTevXtaxvw1REZG0qZNGxo2bEinTp2wsLDg5cuXzJw5k8yZM+Pp6Un27NlTqI4kJCSwceNG7O3tyZMnD6VKlSJ37tzs378fExMTEhMTMTY2xsvLi1GjRgHJ6iNeXl5ky5aNly9fEhcXR9asWTM0CCK9c+z/TYhz3L17Nzt27CA2Npb4+Hhq1apF7969sbGxkVrd7u7uzJ07VwYokJyJHDNmzFcHXvwX8eXLF+7evYuhoSGlSpVKk18vMHLkSFxdXbUGmgisWbOGhIQEevfuneq+gYGBtG/fniVLlmjZwo0bNxg6dCgDBw7ExsaGKlWqpKpQtGPHDgYMGEBERARdu3alffv2cmS2gFgQC6cqtNgTEhKIjo7m9OnT3Lhxg7t379KtWzdq1aqFu7s7JiYmJCUlMXfuXAIDA1EUhUOHDvH8+XMGDBiAh4cHBgYGKIqCgYEBjx49olWrVinkIL+GpKQkevfuTZYsWejfvz9ZsmQhODiYFStW8ODBAyZNmkSWLFnkYkANoeiTL18+WrRowatXrzh8+DAODg4kJiZiamrKjRs35ILCycmJPXv2UKpUKQICAoiIiMDW1pbMmTOnW53jv2TXZ86cYcOGDYSEhJCQkECJEiUYMGAAOXPmpEKFCly/fp3y5cuzYMECqlSpIvePiYnB3d2dEydO/L9SLYmPj+f27dskJiby008//aHi15YtW/j06ZNWH4LAlStX2LJlS5rynDExMTRv3pwhQ4bg7OwsP8dXr17h6elJp06dyJYtG+XKlUs18Pbx8cHT05Nnz57RqFEjunXrJtV3hA0Dsp8hPj4+hV2/ePGC06dP4+vrS/v27XF2dqZJkyZkypQJRVE4fvw4GzZsoECBAhw9ehRfX18aN27MoEGDMDY2lpnmyMhIWrVqRd++fdPUoE8N8+bN4969e4wZM4b8+fMTFRXFtm3b2L17N/PmzSNr1qxkypQpxTV25swZAgICKFiwIOPGjePkyZOsWLGCokWLkpCQgL6+Ph8+fKBr1658+fIFCwsLduzYQaNGjQgODubTp08ycZuR5Fd6bTtDQfPs2bPp27cvZmZmxMTEsHXrVg4ePMj8+fN5+/YtTk5OqX4ISUlJvHjxAj09PWxsbP7zw01CQkIYOnQokZGRlC1blo8fP/J/7Z13VFRn2sB/Q9OAioICgoh6LCxs1LM2YgyWiOIawQYaCyqyayGuERAJwQJI0YR1IyYUSUDWVSCABY0m2EE9YgFNsGQVSzAWWhg6wzDfH5y5h5FBh40xwe/+/vJw7319773z3Pd5n3rt2jW8vLyYMmVKq9cVFBTg4eHB5s2beeutt5BIJJSXlxMREUFdXV2rjQGUXL16ldDQUORyOUZGRkKIhb+/v0ZhBY8ePcLPz4/ExET+9re/MWHCBGxsbARBk8lkKkmCurq6aGlpCULp5+dHaGgokZGRZGVl8fjxY6ZOnYpUKuXcuXOCsj1o0CDs7e1ZtGgRRkZGQu1YiUTC2rVr2b9/v9CRTFOUZbye7QpWWFhI7969BS+GsouSp6cnEomEw4cPq60x6eXlxcSJE/n4448pLi6msbGRp0+fCmV6IiIi0NbWVvlgvvvuu3z77bcabfja0+L64YcfEhAQgLGxMY2NjRw5coR//vOfQvLHunXrmDp1qtoxZsyYwe7du1+LhMH6+noCAgLIz89n9OjR1NbWcv78eVxdXZ8bbiCVSnFxcWH58uVCUm1dXR2JiYlkZmbyn//857nhaQ8fPmTjxo08efIEc3NzCgsLsbKyIjAwUKOwgoqKCj755BOCg4N57733cHR0ZMiQIXTo0AGZTCZYu5W/bWWIAzRZcXbt2oWDgwPZ2dlkZ2dTUFCAnZ0dxsbGHD9+XDCIWFhYMGbMGFxcXLCyshLipKFJwfj000+F56FOyVVHfHw8v/zyi0qtV2h6F1ZWVkLcp7IU1vr16+nYsSMPHjzAysqqxXjjx4/Hx8eHrVu3cuPGDTp16kRpaalgnVu8eDELFixQ+Y706tWL3NzcVq2GzWlPcu3q6sqWLVvo06cPCoWCnJwcAgIC2Lp1KyEhITg6OrJkyRK13zM/Pz9cXFwYNmzY73AHLxeFQkFkZCQHDx7k7bffRldXl7NnzzJs2DA2bdrU6qZYLpezaNEi7Ozs8PDwEDaRR44cYdu2baSkpLRo3tWcqqoqgoKCyMvLw8rKiqKiIvT19dmwYYNG3jmZTEZ8fDwffvghtra2zJw5U1D25XI5NTU11NTUCImCyt4KjY2NVFVVce7cOTp16kRDQwMnTpwgPz+fvn37Ymdnx+HDh4XQMCMjI0aPHo2TkxO2trbCWAAXL14U1sArV64IVugXcfHiRaKjo4mLi2uhD44fP55Tp04BTU3TXFxc2Lx5MyYmJigUCqGrYXO6devGzp072bNnD6dOncLIyIjy8nKKioqApnruaWlpWFtbC98rLS0tcnNzVUJGn8dvojSrG+zrr78mLy+Pnj178u6777Y6xs8//4yNjU27b6NdU1ODs7Mz4eHhKi7V2tpa3N3dcXNzw9HRsdXrHz16xPbt28nNzUVPT0+obzh9+nSNn0tFRQWVlZX06NFDReDv3r3Lnj17KCoqYtCgQcybN6+FdVShUBAQEEBsbCzFxcXo6Ojg4OBAcHAw0LRYNW+EoAy5kcvlfPLJJyxfvpw333wTbW1tUlNTCQ4OZsiQIYwbN05QMJSNCJTWLuVHWUtLixUrVpCZmUliYiILFy7U6H5ramqYNWuW2mzgmzdvqo2r/e6773BwcODevXs4Oztz7dq1Vsfv3r07o0aNYuTIkeTl5fHgwQPMzMy4efMmd+7cEc4zNTXlzp07GimI7WlxVTfH/Px8wsLCKC8vJyMjo9Ux/v73vxMYGNjuN8IKhYKFCxcya9YsZsyYIfy9sbGRjRs3YmRk1EKxa05lZSXR0dEcO3YMXV1d5HI5zs7OuLu7a5zPoXS9duvWTcVjUlxczO7du7l37x7m5uYsWLBAbbOhuLg4Nm/ezP3795FIJAwZMoTg4GAMDAyExRVUlWaZTEZGRga9evVixowZdOnShUuXLrFq1SosLCyYMGECRUVFdO3aVWgh3HwcZZ5CamoqQUFBzJs3r02ehylTprBv374WHqKKigpsbW1b5HJEREQIBovZs2dz9OjRVsfu1KkTf/nLX7C3t+fx48ecO3eOfv368fDhQ3Jzc1XOvXHjhkbxke1JrsvKylp0fCwtLcXV1RV9fX0OHjzY6hiRkZEMGjTotQjR2Lx5Mzo6Oqxbt05ljd2zZw8nT55k586drV4rl8tJTEwkNTUVbW1t6uvrhao4mnoe6+vrKSkpoXPnziphBNXV1SQnJ3Pt2jUMDQ2ZM2eO2rUsMzMTb29voVpM7969CQoKwszMjJKSEurq6oQqOko5UnbuvH//Pt7e3nTr1o3CwkJWrFhBY2MjEydOxMDAgPz8fNavXy+EY9bX1wtVsyQSCQ8ePGDu3Ll07dqV0tJSjXWUpUuX4u/vr7Zt+7hx4zh9+rTK39zc3Ni1axfQFCvevBGSOoYPH864ceNQKBRkZGQwcOBApFIpZ86cUTlPmRuiCa9EaS4rK0MmkzF37ly0tbU5cuSI2vi9mpoali5dSnp6ukaT/yPz5Zdfoq2tLWR3Nqe2thZnZ2eOHj36SjcGCoUCf39/CgsL8fDwwMLCgtzcXGJjY/H09GT69OktrpHL5Zw/f57Lly+zYcMGdHV18fT0xNHRUUjqUVbPaGxsRCaTkZ+fT3Z2NoGBgUJmv9LtW15ezrJly4iLixNCPpq35IYmpdnX15crV64I3cA04ccffyQmJoaIiAi1xwsLCxkzZgz6+voMGzYMMzMzvLy8BEVOLpdz584dBgwYILyXLVu24Ofnx759+4TnU1RUxPvvv8/ixYtxcXGhrKyMuLg4jhw5gq2tLRs2bGi1tM6ztKfF9dk5VlRUUF1djaenJ5WVlXz99ddqLYcKhQJHR0cyMjLafaxoTk4OycnJan9jCoWCqVOnkpKS8kpj56DJEpuamsry5cuxsbGhoKBASMr08fFRO9dr166Rk5NDWFgYjx49ws3Njffee0+wlEGTbMrlcmprayktLSUmJoZ//etfQqIwIFRBWrZsGaGhoSqxyspmSNCkPO/Zs4fQ0FDBfaop06ZNa3VTJpVKGTlyJB06dKBfv3707t0bDw8PIblZoVBw+/Zt+vTpI2xM9u3bx5w5c9iwYQMBAQFAk9Iyf/58Ro0ahYeHB3p6esTGxpKZmYlEIiE8PJw///nPGs23Pct1TU0N5eXlfPbZZ9y+fZsNGzYIz/JZ3N3dWb9+PX379n1V0/5NKC0txd3dnf3796s9vnz5clatWqVxmODL4vTp0wQGBrJ48WJGjx5NUVERCQkJSCQSPv/8c7UyVFBQQFZWFrGxsZw/f56ZM2cKXTmVllmJRCLENdfW1hIVFcXWrVuxsLAQjD0ymYza2lqCg4NxcnJSecdaWloqSvOVK1fw9PTkwoULjBw5UuP7e55cy2Qypk2bxsOHDzExMcHW1pZp06bh4OAgnPPgwQOMjIyE7+3Vq1cZN24ckyZNIjk5GWiS/3Xr1tHQ0ICXlxcWFhYkJCRw7Ngxbt++TXh4OOPHj9d4zr+p0nzo0CE+//xzunXrhq6uLkePHmXEiBEsX75crSs8IiICExMTjS2Lf2ScnZ1JTk5uYRlRsnr1alauXPlKk6OioqKorKxUyYQFhA1NYGDgcxeFn3/+GX9/fxITE+nSpQszZ87Ezs4Oa2trOnfuLCye9fX1bN++nYEDBzJ//ny6du2KtrY2jx8/Zt26dSxZsoTBgwcjl8vR1tYWOpQ9a2kuKSkhJydH4/tTjq/ciT5LQ0MDTk5Oba5LWV1drRLXtmDBAnx9fVu4cxQKhfAcNc3WbY+L66VLlwgLC0MikWBoaMjJkycZMGAA9vb2aqs/ZGZmkpmZKZT9as94e3uzZMmSVuUkLi4OQ0NDITnlVXDmzBkSEhKIi4tTic1TKBT4+vpiZ2fHrFmzWr2+oqKC8PBwIiIiUCgUTJkyhXfeeYeBAwdiZGREfX09NTU1VFZW8s0331BSUsKaNWvo2bMnurq6VFRUEBoairW1NZMnTxbkWpmhr1SadXR0iIqKIiYmRkhC0pTJkycLXUDV4ejoyJEjR9pkhKiuruaNN94Qrtm8eTMDBgwQWhc3Z9OmTQwePJiZM2dqNHZ7lOt79+4RGBhIcXExpqamXLp0CX19fSwtLUlKSmrxbO/evYuPjw9paWm/0x28PBISEujQoQPvv/++2uMXLlzg8OHDBAUFvbI5KY1b6enpLeKqExMTKSgoYNOmTa1e39DQQHR0NBs3bqSsrAxHR0fs7OywsrKie/fu1NXVUVVVhVQqJT8/nwsXLuDn50e/fv2EpO6EhASePHnCokWLaGhoQEtLiw4dOggdCJVKc1ZWFl5eXty7d09tOFRrODk5kZKS0qqetHLlSry9vdVaolujvr5eKLEHcODAAS5evChUHWlOWloaP/zwAxs3btR4fE1lu83VM+Lj47lw4YJKzdGJEycyePBgvL29efr0KfPmzaNjx4788ssvREVFcfv27ee6NtsTyj7vrWFsbIxUKn2l80lLS1O78Ojq6hISEsK2bduIiYlpdQxzc3MSEhLYuHEjMTExJCQkEB8fj56eHq6ursyfP5/u3bvT0NCAh4cHJ0+eZMGCBULMc8+ePVm9ejX9+/dHJpMJ5euUrlvlgn/v3j1ycnKYPXt2m+7RzMyMsrIyoQTasxw4cOB/ciM2/2A9evRISBB5FolEwkcffUR0dPRLKbnzRyQ7O5utW7cSFxeHiYkJ0ORis7GxITo6GrlczqpVq+jWrRt1dXUkJSWRnJzc5vbqf1SkUulz44eNjY1VaqG/Cnbs2EFkZGSLZBaJRMKmTZtwcXF5rtLcuXNnQkJCWLNmDfHx8ezcuZMDBw4ATbHorq6uWFpaolAoGDt2LHl5eXh5edHY2IiOjg6dO3fG1dWVESNGCC5gZVKhMp5ZIpFQUVFBZmamxvGOzbG2tm5RPUTJrVu36NWrV5u9ds3lWi6Xc+rUKbWbPoA1a9bg5uamsdLc3rh//z7u7u5ERUUJhpzPPvuMmpoa4uPjcXd3JygoCEtLSxobG/n222/ZunVrqwaK9oZUKn1uWczu3burtHx/FcTExPDxxx+rTURcuHAhjo6O1NTUtFqFRkdHhw8++AB3d3eSkpIEBRrg7bffxtXVlf79+yOXy4Xcgy1btlBTUyMYshwcHJgxYwbV1dU0NjYKeo2WlpYg2zKZjG+++YYuXbpo7GFV4uTkRHJyskr1ECVVVVVCRbW28Kw3U6mnqGPmzJlERUWpxGe/LNo0WlVVFXv37uXo0aPChzw3Nxdra2tCQ0P58ccfKSkpYfbs2UKpkvnz57Nu3brXpoSXubk5t27datWSnJeXxz/+8Y9XNp/CwkIGDBjQqkvU2tqawsJCjcbq27cv4eHhhIWF8dNPP5GUlMSnn37K7t27sbS0ZMKECZibm5OdnU1+fr5wXY8ePXjrrbeEj5NS6JonAGppaeHm5kZpaSlnz57F3t6eN998Ez09PZKTk4VC7mZmZri4uODl5aUiJP7+/ixatIjdu3er7AK///57oqKifnXoz82bNxkxYkSrx4cOHaoS3/w6oVAoCAoKIj09XXCHlZWV8eTJE7788ksqKiqQy+V4eHgIdX+dnJxIT09/7gayPTF48GCys7NbVULPnTun1lL5W1JVVYWpqanaYwYGBkJC9oveQffu3Vm7di1r167l6dOnHDp0iLCwMPbt24exsTHTpk3D1NSUq1evcu3aNSGp1sDAABsbG4YPH06HDh1ayLXy30FBQVy/fh1jY2Ps7e3p168fpqamZGRkUFxcjIGBATo6Ojg5OREQEKCy8V27di1ubm4kJCSoVBV6/Pgxnp6ez93sa0JZWRmWlpatKt6GhoYqFYReNzZt2qSiMMvlcqEj68CBAzlx4gQfffQR5eXlNDQ0MHbsWFJTUzE2Nv6dZ/5yGDx4MKdOnVJx/Tfn7NmzGieKvSxyc3NbtWxLJBJGjx7NDz/88Nz1CJo2h+7u7ri7uyOVSjl58iRhYWGsXr0afX19Jk2ahIWFBf/973/Jz88XEuSUvTPGjBmDgYGB0ChFaQRTbooTExM5duwYAA4ODhgbG9O/f39Onz7N9evXMTExobq6mkmTJrUI5Zk/fz7Tp0/HxsZG5T6qq6tZvHgxvr6+v/Yx0tDQ0CJmX4lEIqFPnz4UFxcL1cZeFm1SmqOjo5k7d66gAN+8eRMvLy92794NNAVw5+TktGj9+jqxYsUKQkJC2LVrV4sP8fnz5+nRo0erL/K3QNmo4Hm0dVGQSCT07t0bX19fPvjgA06cOMF3331HUlISxcXFjBo1itTUVCZPnsyNGzeIiYkhICCAvLw8QkNDhTjo5gurlpYWDg4OfPXVVzx58gRDQ0OOHTtGQ0MDI0eOFH7YxcXFrF+/XogvVZbxsrOzw9fXl7lz5wq1n7///ns6duzInj17frWr1NDQUMjEVUd5eflroyA+S1xcHDY2NoLCrCwpqHQRrlixAm9v79fCXdsaCxcuZPbs2UydOrXFe/7pp5/Iz89n+PDhr3ROL5JbpVu1LZiYmAgJy9nZ2Rw7doy9e/dSUFCAtbU1X3zxBXPmzOHp06f8+9//FroFRkZG0rFjR6ELWfNOZMOHDycjIwOpVIpMJuPSpUtUVFQwcOBA3nnnHWQyGTKZjLi4OFJTUwkJCRHqyPfq1YvY2Fi8vLzQ19dnwIABFBQUUFZWxvbt29tsjXqW5u2L1aFMfnod2bFjh5AUDk0Ky6pVq3B3d0dPTw9nZ2diY2Ofm0zZ3hk7diwhISE8efKkxQa0qqqK+Ph4oYzuq0SZuKcOZQOittClSxecnZ1xcnLi8uXLHD9+nJSUFPbv34+5uTn+/v4sXboUhUIhJO1evnyZHTt20KNHD+FbopRrXV1d/vSnP6Gnp0d9fT1SqZTS0lIuXLiApaUls2fPpq6uDj09PY4ePUpaWhp+fn6CgfSNN94gKSkJHx8fwsPDGTp0KE+ePOH27dusXbtWbXnOtqI04LS2IS4tLf1NclDaFNOsrFmqrHNpaGhIQECAYLq/c+cOO3fuJDw8/KVP9I/Ezp07ycnJwdvbG2trayorK0lJSeHQoUMkJCS80lg3hULBjBkzSE5OVlt27vLly6SlpQlNEX4Nyg5j6txK6enpeHh4MGXKFL766qtf1Vnv8uXLTJ8+ncrKSq5fv96iMkNBQQGlpaX07dv3pVlEFAoFzs7OpKamqk1qi46OxtTUVKWywvOQSqVYWlq2i9hHJycnrl+/zrhx4ygpKUEul+Pt7c3QoUOFc11dXUlJSfn9JvsKOH78OF988QU+Pj7Y2dnR0NDA4cOHiYuLIzIy8pUnRS1btgx/f3+1sYRlZWWsXLmSvXv3/ur/R6FQUFlZqTbZ89KlS8yaNQsrKyvBMv2/8uDBA1auXElWVhYZGRnY29urHH/06BEPHz7EzMysze7g5+Hu7k5wcLBK4xYlWVlZnDlzptXwjWdpT3K9du1aEhMT+etf/0pNTQ3FxcUsW7ZMJZTt/4Nc37p1C29vb1asWMHkyZPR1tYmKyuLbdu24ePj02pvhN+Kbdu2YWtrqzakULkOpaenv5SwAqlUqvZ3WlhYyLRp06iurubgwYO/KgervLycoKAg4uLi2LJlS4ua9KWlpRQUFNC1a1ehhfvLICwsDDs7O7XJfi/Kg1KHprKtkdJcW1tL3759xd70IiJtwMzMjLt37/5hLdSiXIuItB1RrkVEXk80kW2NlGZAqJ4gIiKiGXp6en/YhVWJKNciIm1DlGsRkdcTTWRbY6VZRERERERERERE5P8rr0dJCxEREREREREREZHfEFFpFhEREREREREREXkBotIsIiIiIiIiIiIi8gJEpVlERERERERERETkBYhKs4iIiIiIiIiIiMgLEJVmERERERERERERkRcgKs0iIiIiIiIiIiIiL+D/AKJiVbimN1fNAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.acquisition_fn(\n", + " placement_tasks[0], acquisition_fn_ds, X_new_df,\n", + " data_processor, crs=ccrs.PlateCarree(), add_colorbar=False,\n", + " cmap=\"Greys\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/user-guide/convnp.ipynb b/_sources/user-guide/convnp.ipynb new file mode 100644 index 00000000..cdd89998 --- /dev/null +++ b/_sources/user-guide/convnp.ipynb @@ -0,0 +1,602 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ConvNP" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[The `ConvNP` class](../reference/model/convnp.rst) implements a convolutional neural process, and is a subclass of `DeepSensorModel`.\n", + "This page will walk through the ConvNP architecture, explain important features, and provide some tips for using the model.\n", + "For further background reading, check out the [](../resources.md) page.\n", + "\n", + ":::{seealso}\n", + "The `ConvNP` class wraps around the fanstastic [`neuralprocesses` library](https://github.com/wesselb/neuralprocesses) by Wessel Bruinsma. Go and give it a star to show your appreciation! ⭐\n", + ":::\n", + "\n", + "\n", + "```{note}\n", + "The 'ConvNP' is actually a *class* of model architectures, rather than a single model.\n", + "There are different variants of the ConvNP, such as the conditional NP (ConvCNP), the Gaussian NP (ConvGNP), and the\n", + "latent NP (ConvLNP). Each of these can be instantiated from the `ConvNP` class by initialising the model with\n", + "different hyperparameters. By default, the `ConvNP` initialises a ConvCNP with Gaussian marginals.\n", + "See the further reading options above if you are still confused after reading this page!\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## ConvNP architecture\n", + "\n", + "Here is a high-level schematic of the ConvNP architecture used in DeepSensor:\n", + "\n", + "\"ConvNP" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ConvNP learns: $p_\\theta ( \\mathbf{y}^{(t)} ; \\mathbf{x}^{(t)}, \\phi(C))$, \n", + "where $p_\\theta$ specifies a predictive distribution over target values $\\mathbf{y}^{(t)}$ given target locations $\\mathbf{x}^{(t)}$ and the context data $C$.\n", + "All the distribution parameters $\\phi$ (such as the mean and variance of a Gaussian likelihood) *depend on the entire context set $C$, including the $y$-values*!\n", + "One effect of this is that the ConvNP's uncertainty can hypothetically become *more uncertain* if neighbouring observations disagree.\n", + "This makes the ConvNP far more flexible than standard probabilistic models, like GPs.\n", + "\n", + "Other benefits of the ConvNP are that it can handle:\n", + "* Fusing multiple context sets\n", + "* Off-the-grid and gridded modalities\n", + "* Multi-resolution data\n", + "* Missing data\n", + "* Predicting at arbitrary target locations\n", + "* Predicting multiple (disjoint) target sets\n", + "* Uncertainty quantification\n", + "* $O(N)$ inference cost (for most variants)\n", + "\n", + "```{caution} \n", + "It's important to note that the flexibility of the ConvNP makes it a *data hungry model*.\n", + "It has to *learn how to condition on data* from scratch, which requires\n", + "seeing many examples of different context sets and target sets during training.\n", + "The `TaskLoader` provides the necessary functionality for this.\n", + "However, if your data is spatially or temporally sparse (and there isn't \n", + "a more abundant dataset to transfer learn from), then the ConvNP may not be\n", + "the best model for your use case.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## Initialising a ConvNP\n", + "\n", + "The key arguments for initialising a `ConvNP` are:\n", + "* A `DataProcessor`: Used to inherit the high-level `.predict` method from the `DeepSensorModel` base class (detailed in the [](./prediction.ipynb) page).\n", + "* A `TaskLoader`: Under the hood, DeepSensor will use the `TaskLoader`'s context/target data and configuration to infer sensible defaults for hyperparameters that are not set by the user. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false, + "is_executing": true, + "tags": [ + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "import logging\n", + "logging.captureWarnings(True)\n", + "\n", + "from deepsensor.data import DataProcessor, TaskLoader\n", + "from deepsensor.data import construct_circ_time_ds\n", + "from deepsensor.data.sources import get_ghcnd_station_data, get_era5_reanalysis_data, get_earthenv_auxiliary_data, get_gldas_land_mask\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "# Using the same settings allows use to use pre-downloaded cached data\n", + "data_range = (\"2015-06-25\", \"2015-06-30\")\n", + "extent = \"europe\"\n", + "station_var_IDs = [\"TAVG\", \"PRCP\"]\n", + "era5_var_IDs = [\"2m_temperature\", \"10m_u_component_of_wind\", \"10m_v_component_of_wind\"]\n", + "auxiliary_var_IDs = [\"elevation\", \"tpi\"]\n", + "cache_dir = \"../../.datacache\"\n", + "\n", + "station_raw_df = get_ghcnd_station_data(station_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "auxiliary_raw_ds = get_earthenv_auxiliary_data(auxiliary_var_IDs, extent, \"1KM\", cache=True, cache_dir=cache_dir)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir)\n", + "\n", + "data_processor = DataProcessor(\"../deepsensor_config/\")\n", + "era5_ds = data_processor(era5_raw_ds)\n", + "aux_ds, land_mask_ds = data_processor([auxiliary_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "station_df = data_processor(station_raw_df)\n", + "\n", + "# Add 2D circular day of year variable to land mask context set\n", + "dates = pd.date_range(era5_ds.time.values.min(), era5_ds.time.values.max(), freq=\"D\")\n", + "doy_ds = construct_circ_time_ds(dates, freq=\"D\")\n", + "land_mask_ds[\"cos_D\"] = doy_ds[\"cos_D\"]\n", + "land_mask_ds[\"sin_D\"] = doy_ds[\"sin_D\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T16:34:26.726834767Z", + "start_time": "2023-10-27T16:34:23.841387529Z" + } + }, + "outputs": [], + "source": [ + "import deepsensor.torch\n", + "from deepsensor.model import ConvNP" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "start_time": "2023-10-27T16:34:23.611416160Z" + }, + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(3 context sets, 1 target sets)\n", + "Context variable IDs: (('TAVG',), ('2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind'), ('GLDAS_mask',))\n", + "Target variable IDs: (('TAVG',),)\n", + "Auxiliary-at-target variable IDs: ('elevation', 'tpi')\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[station_df[\"TAVG\"], era5_ds, land_mask_ds],\n", + " target=station_df[\"TAVG\"],\n", + " aux_at_targets=aux_ds,\n", + " links=[(0, 0)],\n", + ")\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T16:34:26.756677397Z", + "start_time": "2023-10-27T16:34:26.737097138Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dim_yc inferred from TaskLoader: (1, 3, 1)\n", + "dim_yt inferred from TaskLoader: 1\n", + "dim_aux_t inferred from TaskLoader: 2\n", + "Setting aux_t_mlp_layers: (64, 64, 64)\n", + "encoder_scales inferred from TaskLoader: [0.001, 0.0022727272007614374, 0.0022727272007614374]\n", + "decoder_scale inferred from TaskLoader: 0.002\n" + ] + } + ], + "source": [ + "model = ConvNP(data_processor, task_loader, internal_density=500)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T16:34:26.765549160Z", + "start_time": "2023-10-27T16:34:26.753638506Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ConvNP with config:\n", + "{\n", + " \"dim_x\": 2,\n", + " \"dim_yc\": [\n", + " 1,\n", + " 3,\n", + " 1\n", + " ],\n", + " \"dim_yt\": 1,\n", + " \"dim_aux_t\": 2,\n", + " \"dim_lv\": 0,\n", + " \"conv_arch\": \"unet\",\n", + " \"unet_channels\": [\n", + " 64,\n", + " 64,\n", + " 64,\n", + " 64\n", + " ],\n", + " \"unet_resize_convs\": true,\n", + " \"unet_resize_conv_interp_method\": \"bilinear\",\n", + " \"aux_t_mlp_layers\": [\n", + " 64,\n", + " 64,\n", + " 64\n", + " ],\n", + " \"likelihood\": \"het\",\n", + " \"unet_kernels\": 5,\n", + " \"internal_density\": 500,\n", + " \"encoder_scales\": [\n", + " 0.001,\n", + " 0.0022727272007614374,\n", + " 0.0022727272007614374\n", + " ],\n", + " \"encoder_scales_learnable\": false,\n", + " \"decoder_scale\": 0.002,\n", + " \"decoder_scale_learnable\": false,\n", + " \"num_basis_functions\": 64,\n", + " \"epsilon\": 0.01\n", + "}\n" + ] + } + ], + "source": [ + "print(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## The ConvNP's internal grid\n", + "\n", + "The ConvNP uses a discretised internal grid to process the context data.\n", + "The density of internal grid points is defined by the `internal_density` parameter.\n", + "An `internal_density` of 500 means a 1x1 patch of input space will contain 500x500 internal grid points.\n", + "\n", + "Generally, the `internal_density` should be as high as the highest-resolution context or target variable.\n", + "Beyond this point, increasing the `internal_density` will not improve the model's performance.\n", + "Thankfully, DeepSensor will determine the highest-resolution variable and set the `internal_density` under-the-hood\n", + "if you don't specify `internal_density` in the `ConvNP` constructor.\n", + "However, the computationl cost of the model scales quadratically with `internal_density`, so\n", + "you may wish to lower the `internal_density` to speed up training and inference." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## SetConv context encoding\n", + "\n", + "The SetConv encoder maps the various context sets onto the ``ConvNP``'s internal grid.\n", + "This works by placing a Gaussian kernel at each $(\\mathbf{x}, \\mathbf{y})$ context observation, weighted by the $N$-D observation values $\\mathbf{y}$, and then evaluating the sum of the kernels on the internal grid. These $N$ channels are called the 'data channels'.\n", + "Each encoded context set also has a 'density channel', formed using the same Gaussian kernel procedure but without weighting the kernels by the observation values, capturing the density of context observations and revealing areas of missing data.\n", + "\n", + "The output of the SetConv encoder for a particular collection of context sets is the concatenation of all the density and data channels for each context set in a `Task`." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:04:02.256685722Z", + "start_time": "2023-10-27T18:04:02.213115404Z" + }, + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SetConv encoding tensor shape: (1, 8, 432, 608)\n" + ] + } + ], + "source": [ + "task = task_loader(\"2015-06-25\", \"all\", \"all\")\n", + "encoding = deepsensor.model.nps.compute_encoding_tensor(model, task)\n", + "print(f\"SetConv encoding tensor shape: {encoding.shape}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "The gridded context encoding of a particular `Task` can be visualised using the `deepsensor.plot.context_encoding` function.\n", + "\n", + "This can also be an extremely useful debugging tool. For example:\n", + "- Help with understanding the `context_sampling` schemes provided by the `TaskLoader`. Try using different `context_sampling` schemes and visualise the SetConv encoding to see how the context sets are sampled (as well as printing the `Task` to see the data shapes).\n", + "- Do the length scales of the encoded data seem reasonable (i.e. avoids blurring high frequency components while not being so small to induce checkerboard artefacts)?\n", + "- Are the channel magnitudes in the encoding reasonable?\n", + "- Are there any nan values?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:00:20.312048109Z", + "start_time": "2023-10-27T18:00:18.708191318Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAN6CAYAAAC0RUE8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZgkVZ0u/vecExGZWfvWVdU7DQrDJnABAVdwAYEZ16t4r8ug4hVxGUF+zDCuI+M2Ml5cQWdYVMbRe2VcZkRHvILoCI4sojiCokB3V3d1dVV17bnFifP7IyqjMjIjMyOrsiqrOt/P8+RDd2ZkxMnM7kPnW9/zPcIYY0BERERERERERLTGZLMHQERERERERERErYnBFBERERERERERNQWDKSIiIiIiIiIiagoGU0RERERERERE1BQMpoiIiIiIiIiIqCkYTBERERERERERUVMwmCIiIiIiIiIioqZgMEVERERERERERE3BYIqIiIiIiIiIiJqCwRQRERERERERETUFgykiIiIiIiIiImoKBlNERERERERERNQUDKaIiIiIiIiIiKgpGEwREREREREREVFTMJgiIiIiIiIiIqKmYDBFRERERERERERNwWCKiIiIiIiIiIiagsEUERERERERERE1BYMpIiIiIiIiIiJqCgZTRERERERERETUFAymiIiIiIiIiIioKRhMERERERERERFRUzCYIiIiIiIiIiKipmAwRURERERERERETcFgioiIiIiIiIiImoLBFBERERERERERNQWDKSIiIiIiIiIiagoGU0RERERERERE1BQMpoiIiIiIiIiIqCkYTBERERERERERUVMwmCIiIiIiIiIioqZgMEVERERERERERE3BYIqIiIiIiIiIiJqCwRQRERERERERETUFgykiIiIiIiIiImoKBlNERERERERERNQUDKaIiIiIiIiIiKgpGEwREREREREREVFTMJgiIiIiIiIiIqKmYDBFRERERERERERNwWCKiIiIiIiIiIiagsEUERERERERERE1BYMpIiIiIiIiIiJqCgZTRERERERERETUFAymiIiIiIiIiIioKRhMERERERERERFRUzCYIiIiIiIiIiKipmAwRURERERERERETcFgioiIiIiIiIiImoLBFBERERERERERNQWDKSIiIiIiIiIiagoGU0RERERERERE1BQMpoiIiIiIiIiIqCkYTBERERERERERUVMwmCIiIiIiIiIioqZgMEVERERERERERE3BYIqIiIiIiIiIiJqCwRQRERERERERETUFgykiIiIiIiIiImoKBlNERERERERERNQUDKaIiIiIiIiIiKgpGEwREREREREREVFTMJgiIiIiIiIiIqKmYDBFRERERERERERNwWCKiIiIiIiIiIiagsEUERERERERERE1BYOpdeiWW26BECK4JZNJDA8P45xzzsFHP/pRjI2NNXuIASEEPvjBDwa//6//+i988IMfxBNPPNHwa42NjeHiiy/GwMAA2tracNZZZ+H//b//1/DrEFE8xfNUtdtdd90VPOfTn/40hBA44YQTQuf61Kc+BSEEvv/971e83j/8wz9ACIF/+Zd/Ce7zPA+33norzjvvPAwODsK2bfT09ODMM8/Etddei/Hx8bpe0+233x6a00r98Ic/xFlnnYW2tjYMDAzg4osvXldzMhERERHRRiOMMabZg6CwW265BW94wxtw880340/+5E+Qz+cxNjaGn/70p7j55puhlMLXv/51vOAFL2j2UHHvvfdi27Zt2LZtGwDgG9/4Bl75ylfizjvvxNlnn92w62SzWZx22mmYmprCxz72MQwODuJzn/scvvvd7+KHP/whnvvc5zbsWkQUz7333hv6/TXXXIM777wTP/rRj0L3H3fccejq6gIAnHzyyXjooYeC559xxhkAgImJCWzduhUvfvGL8X/+z/+JvN4znvEMPPbYYxgZGYFt20in03jJS16CH/7wh7jooovwkpe8BFu2bMHMzAx+9rOf4cYbb8TRRx+Nn/zkJ7Ff09vf/nZ87nOfQ9T/Gn/84x/jBS94AS688EK87W1vw9jYGP7yL/8Svb29uO+++5BIJGJfh4iIiIiIfFazB0CVnXDCCTjttNOC37/iFa/A5Zdfjmc961l4+ctfjt///vcYGhpq4giBM888c02uc+ONN+Lhhx/Gz372M5x11lkAgHPOOQcnnXQSrrrqKvz85z9fk3EQ0ZLSv/+bNm2ClLLivHDffffhoYcewoUXXojvfve7uPHGG4Ngqr+/Hy95yUvwrW99CxMTE+jv7w8995FHHsE999yDd7/73bBtGwDwrne9C3fccQe++tWv4n/8j/8ROv5P//RP8d73vhf/9E//1KiXi//v//v/cPTRR+Mb3/gGLMv/3+euXbvwzGc+EzfddBPe+ta3NuxaREREREStgkv5NpgdO3bg7//+7zE7O4svfOELocfuu+8+vPjFL0ZfXx+SySROOeWUssqDwjLBO++8E29961sxMDCA/v5+vPzlL8e+fftCx/7oRz/C2Wefjf7+fqRSKezYsQOveMUrsLCwEBxTvJTvlltuwStf+UoAfmhUWMZzyy234JprroFlWdizZ0/Za3rjG9+I/v5+ZDKZiq/7m9/8Jo455pgglAIAy7Lw2te+Fv/5n/+JkZGReG8gETXNjTfeCAD42Mc+hmc84xn42te+FppP3vSmNyGXy+GrX/1q2XNvvvlmAP58AQD79+/HTTfdhAsvvLAslCpoa2vDm9/85tjju/jii/G5z30OQHiZ4hNPPIGRkRH84he/wOte97oglAL8Kq6jjz4a3/zmN2Nfh4iIiIiIljCY2oAuuOACKKVw9913B/fdeeedeOYzn4mpqSnccMMN+Pa3v42TTz4ZF110EW655Zayc1xyySWwbRtf/epX8Xd/93e466678NrXvjZ4/IknnsCFF14Ix3Fw00034fvf/z4+9rGPob29HblcLnJcF154IT7ykY8AAD73uc/hnnvuwT333IMLL7wQb3nLW2BZVlmYNjk5ia997Wt405vehGQyWfE1P/zww3ja055Wdn/hvt/85jeV3zAiarp0Oo1//ud/xumnn44TTjgBb3zjGzE7O4v/+3//b3DMC17wAuzcuRM33XRT6Llaa3zlK1/BmWeeieOOOw6AP+e5rosXv/jFDRvj+973Pvz3//7fASCYv+655x5s3rwZDz/8MABUnIcKjxMRERERUX24lG8Dam9vx8DAQKjC6bLLLsPxxx+PH/3oR8FP88877zyMj4/jr//6r/H6178eUi7lkC960Yvw6U9/Ovj95OQkrrrqKoyOjmJ4eBj3338/MpkMPvGJT+Ckk04Kjvuf//N/VhzXpk2b8NSnPhWA31OmdDnPq1/9avzDP/wD3v/+98NxHADAP/7jPyKbzeKyyy6r+ponJibQ19dXdn/hvomJiarPJ6Lm+sY3voHp6Wm86U1vAgBcdNFFeNe73oUbb7wRf/7nfw4AkFLi4osvxt/8zd/gwQcfxCmnnAIA+N73vof9+/fjQx/6UHC+QvXlzp07y67lum7o98UVTtUcddRRwfLo0vmrMMdUmoc4BxERERERLQ8rpjao4sa8jz32GB555BG85jWvAeB/KSvcLrjgAuzfvx+PPvpo6PmlVQaFKoAnn3wSgN+g2HEc/K//9b/wpS99CX/84x9XPOa/+Iu/wNjYWFAh4Xkerr/+elx44YU44ogjaj5fCLGsx4io+W688UakUim8+tWvBgB0dHTgla98JX7yk5/g97//fXDcG97wBkgpQ1VTN998M9rb23HRRRfVvM4vf/lL2LYdutW7M181leYazkFERERERMvDYGoDmp+fx8TEBLZs2QIAOHDgAADgyiuvLPtCVqhEKv1iVtpYuLCbVDqdBuBXDvzwhz/E4OAg3va2t+Goo47CUUcdhU996lPLHvcpp5yCZz/72UEPl3/7t3/DE088gbe//e01n9vf3x9ZkTA5OQkguoqBiNaHxx57DHfffTcuvPBCGGMwNTWFqampYNlccQi1c+dOPP/5z8dXv/pVZLNZjI+P49/+7d/wyle+Ep2dncFxO3bsALAUphccc8wx+MUvfoFf/OIXdfWXqqUwZ1aahzgHEREREREtD4OpDei73/0utNY4++yzAQADAwMAgKuvvjr4QlZ6O/nkk+u+zrOf/Wz867/+K6anp3HvvffirLPOwrve9S587WtfW/bY3/nOd+Kee+7BAw88gM9+9rM4+uij8cIXvrDm80488UT8+te/Lru/cN8JJ5yw7DER0eq66aabYIzBN77xDfT29ga3Cy+8EADwpS99CVrr4Pg3velNmJycxLe//W3ceuutyOVywRLAgrPPPhuWZeE73/lO6P5UKoXTTjsNp512WhDeN0Jhjqk0D3EOIiIiIiJaHgZTG8zu3btx5ZVXoru7G295y1sA+BUCT33qU/HQQw8FX8hKb8WVBvVSSuGMM84IKp0eeOCBiseWVl6VetnLXoYdO3bg3e9+N374wx/isssui7UE5mUvexkeeeQR/PznPw/uc10Xt956K84444yGfgElosbRWuNLX/oSjjrqKNx5551lt3e/+93Yv38/vve97wXPeelLX4r+/n7cdNNNuPnmm3H00UfjWc96Vui8mzdvxhvf+EZ897vfXVFYXqrSHLZ161Y8/elPx6233hoK0e699148+uijePnLX96wMRARERERtRI2P1/HHn744aBX1NjYGH7yk5/g5ptvhlIK3/zmN7Fp06bg2C984Qs4//zzcd555+Hiiy/G1q1bMTk5id/+9rd44IEHQjtfxXHDDTfgRz/6ES688ELs2LEDmUwmWG7zghe8oOLzClUDX/ziF9HZ2YlkMoldu3YFy2CUUnjb296Gv/zLv0R7ezsuvvjiWON54xvfiM997nN45StfiY997GMYHBzE5z//eTz66KP44Q9/WNdrI6K1873vfQ/79u3Dxz/+8aDKs9gJJ5yAz372s7jxxhvxp3/6pwD8cOg1r3kNPvOZz8AYg4997GOR577uuuvw+OOP4zWveQ2+853v4CUveQm2bNmChYUFPPLII/ja176GZDIJ27Zjj/fEE08EAHz84x/H+eefD6UUnva0p8FxHHz84x/HC1/4Qrzyla/EZZddhrGxMfzVX/0VTjjhBLzhDW+o/80hIiIiIiLA0Lpz8803GwDBzXEcMzg4aJ773Oeaj3zkI2ZsbCzyeQ899JB51ateZQYHB41t22Z4eNg873nPMzfccEPZuX/xi1+EnnvnnXcaAObOO+80xhhzzz33mJe97GVm586dJpFImP7+fvPc5z7XfOc73wk9D4D5wAc+ELrvuuuuM7t27TJKKQPA3HzzzaHHn3jiCQPAXHrppXW9L6Ojo+b1r3+96evrM8lk0px55pnmjjvuqOscRLR6/vzP/9y0t7eH7nvpS19qHMepOG8ZY8yrX/1qY1mWGR0dDe576KGHDACjlDL79u2r+Fyttfnyl79sXvjCF5qBgQFjWZbp7u42T3/608373vc+s3fv3rpeQzabNZdcconZtGmTEUIYAObxxx8PHv/BD35gzjzzTJNMJk1fX595/etfbw4cOFDXNYiIiIiIaIkwpmh7N6I18JnPfAbvfOc78fDDD+P4449v9nCIiIiIiIiIqEkYTNGaefDBB/H444/jLW95C575zGfiW9/6VrOHRERERERERERNxGCK1swRRxyB0dFRPPvZz8ZXvvIVDA8PN3tIRNQiPM+D53lVj7Estl0kIiIiIlprDKaIiOiwd/HFF+NLX/pS1WP4v0MiIiIiorXHYIqIiA57TzzxBMbHx6sec9ppp63RaIiIiIiIqIDBFBERERERERERNYVs9gCIiIiIiIiIiKg1NaXTq+d5+MUvfoFMJgMhRDOGQNQyjDFIJpM4/fTTIeVSFp3JZJDL5WKdw3EcJJPJ1RriusB5iWjtcF4iIiIiooKmBFO/+MUvcOaZZzbj0kQt695778UZZ5wBwP/yt2tnB0bHdKznDg8P4/HHHz+svwRyXiJae5yXiIiIiKgpwVQmkwEAPAsXwILdjCEQtQwXefwUtwd/7wAgl8thdEzjsfu2o6uz+oremVkPTzltD3K53GH9BbDw/hz5xcshU4kmj4bo8Oals/jj//rfnJeIiIiIqDnBVGGZjAUblmAwRbSqFrc3iFqe1tEp0NFZfdmah9ZY1lZ4f2QqAdXGL7pEa4HzEhERERGx+TlRC8sbHetGRLRWVmNe+uhHP4rTTz8dnZ2dGBwcxEtf+lI8+uijq/QKiIiIiKgeDKaIWpgHE+tGRLRWVmNe+vGPf4y3ve1tuPfee3HHHXfAdV2ce+65mJ+fX6VXQURERERxNWUpHxGtDy485GMcQ0S0VlZjXvr+978f+v3NN9+MwcFB3H///XjOc55T5wiJiIiIqJEYTBG1sLwxyJvqlQe1HiciaqS1mJemp6cBAH19fSs6DxERERGtHIMpohamYaBrLImp9TgRUSPVMy/NzMyE7k8kEkgkqu+qaYzBFVdcgWc961k44YQTVjZYIiIiIlox9pgiamF5E+9GRLRW6pmXtm/fju7u7uD20Y9+tOb53/72t+NXv/oV/vmf/3mVXwkRERERxcGKKaIW5hqBvKm+7bpb43EiokaqZ17as2cPurq6gvtrVUu94x3vwHe+8x3cfffd2LZt28oHS0REREQrxmCKqIVpCGhU/wJY63EiokaqZ17q6uoKBVOVGGPwjne8A9/85jdx1113YdeuXQ0ZKxERERGtHIMpohaWNxJ5U31FL5fyEdFaWo156W1vexu++tWv4tvf/jY6OzsxOjoKAOju7kYqlVruUImIiIioARhMEbWwHBRyNVrN5VgxRURraDXmpeuvvx4AcPbZZ4fuv/nmm3HxxRfXdS4iIiIiaiwGU0QtzBgBr0YvF8MeU0S0hlZjXjKGpZ9ERERE6xWDKaIWljMKdo0lMzkGU0S0hjgvEREREbUWBlNELcyDgFdjyYwHVhoQ0drhvERERETUWhhMEbUwvzJB1ThmjQZDRATOS0RERESthsEUUQtzoZBH9S+A7hqNhYgI4LxERERE1GoYTBG1MG0kdI1eLppNg4loDXFeIiIiImotDKaIWljeKORrLJnJ8/sfEa0hzktERERErYXBFFELyxsrxhdA7n5FrccYASFWP/0wRsAYQEomLQWcl4iIiIhaS/VaeaJVIGwHwlrKRNXRRwFi9b9kCNuBtW3rql9nI9GQsW5Eh7v0dBKZuQQAIJ+zoP/QgXyusT+7MUbA88JzXXbBhvtkBwyDlgDnJSIiIqLWwoopWnMylYRxXRjXb18r0tmGX0PYDtTgANyRfcF9Jp+Du2+04dfayFzImpUJLrdlpxYg5iwY2wM6ACE9eLaBbHDFVDZtQ0w4cLbNB9VYdtKF3mLWrDoLwJpcayU4LxERERG1FgZTtOb0zEzo9+6evZHHqd5e6KkpYBlNbk0+B3f/gfIHPF33uSoSAsKyYfK5sodUby8AQB861LjrrYK8UbBqLpnhF0A6/CW2zAe/tiwP2DlXdoznCbi724HNWTiJfN3XcJJ5uENeKBhSyoNSXtl1lru0z/MEPC1h2eVzXT5nAcLAcdb3nnacl4iIiIhaC2vhaf3SKwyRYoRQ1vZt9S0jLDpWWDZkX0/kYfrQoXUfSgFLu1/VuhEd7oSIV7VkLADLrDiSsnYo5HkC2akktI739650eaCnJdxcdKhjOy7siMBqveG8RERERNRaWDFF61ZpZdVqcEf2x67IErYDNbQJ7t4RAH5Vlj4wtprDW3WsTCCKT0qDxLbySqpGEgKwu7KxK6a0FtB5hUTKr+CybB1ZLeWfe2P8Xea8RERERNRaGExRa6tjaZ/J54JQqiYhlrUEca15MZoIeyysJKpLoYqpdIleHEIYWFb8uUMpA6WWqrA8T0CI6BBKawkp16af1UpwXiIiIiJqLfyXHW1ownZgbd3SlGtb27cBMvqn+taWzRCJxBqPqH55o2LdiCi+fM5CbiK5JjvtFS9BNGZxGaAb/b/23Eyi4TsNrgbOS0REREStZf3/C5WoCn+nvf1Nuba7d6RiVVTxboDrWd5IqJpLZuqv+iBaD4wRTakOsh0Xql/XvHahN9RyG52XEsLA6a68DDDRnanYUq9Z71UUzktERERErYUVU9QQamiweRePsWRO9XQHO+WtlLCs5S/VkwrWzu0NGUcjeEbGuhFtNG5ewf1DB9wK1UOrSQgTaxlfdjaB7ExjKivdvILrSijlVQyYKi3j01oiO++sSYVXHJyXiIiIiFoLK6Zo2YTtQCgJL5OBmZuv/YQm0lPTFR8TlgXjxt8+XXZ3wWSy8OaX8Zo9DXf33vqft0rcGEtiXFYm0AaSnkkCWsDpyiLfpZFoUDXSanA6chUfy+UsKOXF7lOVX7AhbA9K5euufJLSwGnLrZuKKc5LRERERK2FP3KkZRO2Bdg2ACwvpFkFwqo/a1WbBiBsJ/bxemIS3vw8rM3D4R5TQsAaHqp9gnXUFD3vqVg3og0jL4C833g8NbjQsGVyy2WMQC5rR1YjVQqejBHQUw7cfPy/e8muLJxkHplDydDztJZITyeDZYNRhDBNf5+KcV4iIiIiai2smKJl8xYWmj2EMCGghgbr7u/k7h9d1uX0+GR4Vz9j4FWpzIptDXf00zF2v6r1ONF6kupPN3sIIVoL6Gkbql9DqXh/r4UwSG6q73X41U4CqiMPWRR2SWmgkrpib6m48jkLll27b1YjcF4iIiIiai3L+pfdk08+iZ///Of4z//8Tzz55JONHhPR8hizoqbjqqurvsvly5fheJnMsq9fYG3bWnG3v0ZzjYp1q8fdd9+NP/uzP8OWLVsghMC3vvWtqsffddddEEKU3R555JEVvDKi5jNGQCk/ZIq7JK9ACANjgPREClrH+1+1EAaO44aqn4QwcBL1L+8r5nkCZl8Sueza/CxrNeYlIiIiIlq/6gqm/vf//t/Yvn07jjzySJx11lk488wzceSRR2L79u247rrrVmmIRLVZW7fUtRwvkmM3ZjAr5O7ZG67EWkV5T8a61WN+fh4nnXQSPvvZz9b1vEcffRT79+8Pbk996lPrej7RemKMQHa0DbmstbIqIy2avvpXSgO5bQFOIn4vvpVYjXmJiIiIiNav2D/+vOaaa3Dttdfir//6r3HeeedhaGgIxhiMjY3h3//93/HBD34Qc3NzeO9737ua4yWK5O4/sOIwR49PNGg0KyMsC7K/D/rA2Kpfy8TY3crUufvV+eefj/PPP7/usQwODqKnp6fu520UrivheRKOszZf7qm5hDCQ/VlY1vLnJSkNUoPRS6YLPasasbTOGFHzPEIAuawFJ+Gu+nK+1ZiXiIiIiGj9ih1MffGLX8SXvvQlvPSlLw3dv2XLFpx88sk4+uij8fa3v31dBFOyrQ2yqxPu6IFmD4XWyipWGKmuLkCKqjv7lanQJ8rauqVmiGa0bkyvqhjyRkDU+IKXX/wCPDMzE7o/kUggkWjMVvcAcMoppyCTyeC4447De9/7XpxzzjkNO/d6oPe3ITUq4Z0+U/tgOiyUhpCeJyBEY8Kk7LwD4wmkuuItH64UZBkjkJlIwerKwa4SmkppoKy16TFVz7xERERERBtf7B85TkxM4Jhjjqn4+NFHH41Dhw41ZFAr5S0sMJRqZUL4S/saFJro2VnombnYx8vOTqj+vuhzHRirHaIZA5PN1jPEZfMWKxNq3QBg+/bt6O7uDm4f/ehHGzKGzZs344tf/CJuu+02/Mu//AuOOeYYPP/5z8fdd9/dkPOvF9aWBWRPWmcbBtCacfMK7p52ZOdXuOR4kZXMw24r73NXiecJaF0e5ghhYHXloGpUdglhYFn19clarnrmJSIiIiLa+GJXTD396U/Hhz/8Ydxyyy2wrPDTXNfFRz7yETz96U9v+ACJ6qX6+2Dm5xsX7hgDmPgVWd7cHKyuzdGnctfXMq68kTEqE/zH9+zZg66iBvGNqpY65phjQqH3WWedhT179uDaa6/Fc57znIZcYz1Qyqu7ATYdPtzJJEzKQ6JKmBRnSV1BvSGREAbatWCUKbtGtUqpZqhnXiIiIiKijS92MPWZz3wG5557LgYHB/Hc5z4XQ0NDEEJgdHQUd999NxKJBO64447VHCtRLHF6RVnbtsLdO7I6AzAmNAa1aRP0+Hjk0r5mc42C9KrvblXY/aqrqysUTK2mM888E7feeuuaXItoLTibFqou49NaIj+egj1Q/w5+cQiBNVuKt1L1zEtEREREtPHF/pHjiSeeiN/97nf48Ic/jK6uLjz++OP44x//iK6uLnz4wx/GI488guOPP341x0qtRir/29Qq0AcOxjpOWFZ9Y1g8trhayywsVAylZFsbZDIZ//wNZiDg1bgZrH0vlwcffBCbN0dXnVHr8DwR9EZaL3JZG7lc7J/pBKQsr1Qqe7w7BylrB0f5nAWt4/3v2xix2NvKbJiKvfU6LxERERHR6qjrX9ednZ1461vfire+9a2rNR5qEmvrFuixcZj84jKTQhjTxCof1d0FaA090/hm0cHrrEH29sLMzsLL1G4wLCwLaniorBLLm5+v/CTPg2nie+x6CqJWZUKNx0vNzc3hscceC37/+OOP45e//CX6+vqwY8cOXH311RgZGcGXv/xlAMB1112HI444AscffzxyuRxuvfVW3Hbbbbjtttvqf0F02DBGQD/eAXcwh1SnH/QWAqFm7myop23/RzoDjR2DEAaJZD7WsW7agkzoWEGT5wnksxYSqfyGqJYCVmdeIiIiIqL1q/4f+9JhqXSnONXTAxgv/k50FXahWwm9xs30ZTJZFkDpg7Urq1RXF/TMDIzr1r08ME7gtZrcGL1c3Dp7udx3332hHfWuuOIKAMCf//mf45ZbbsH+/fuxe/fu4PFcLocrr7wSIyMjSKVSOP744/Hd734XF1xwQV3XpcOLEAZmWwZOUVNu72ASkAbYHC8UyqZtSGUa2kMpuSndsHMVFKqaSoMmYwRyWQu244YqqVLd1ecNzxNw8/7zlPIgN1AoBazOvERERERE6xeDqcNd3MCoZKe4ekMhNbgJZnYO3sLq7Dqmerph8i68+fnIACkuYTtQQ5siAyTZ0w3vQLb+gK2oCbiwHRg3v+yQztq+De7I/to79zWIZwS8Gkulaj1e6uyzz65aBXbLLbeEfn/VVVfhqquuqusatHEZI5DPK1iWrrlszUmEK4gSW6pUH0awH08i1+fBHm5cMFUc8KQPpQDLg9OWX1FVUj6voKcdJAfSZc/30ha8GO9VKa9oBz6tBaRE3ecIzuWJqv2xGm015iUiIiIiWr/4I8fDnLVjm9+raZXpA2OrFkoBgDefhpfOAFJB9nQv+zwmn6tY1eSOHoBMJPy+UnUorqqSPd0Qlr3s8bl7R9YslAIA15OxbkSNYgyg/pBCPlv/z0WEqN6nqexax8zDGaw9L2ktl9XLSqZcqISG8QTMwvJ/zmPbGon+8lBKCINkTwaeVnDz8edxKQ2SbbngfNpV8LzlBzm1+mM1GuclIiIiotbCiqnDnPvknmYPIcTauR3unn11hy/FPaHc0QOxnqO6uuBls6FG5LUIx/GrfdzlVVjEWfpX1Rr3m9JG1Fwyo1mZQA0kpYH71Hk4qvqfdWPEisOQOD2YjBHIH0hBDmTr7l1V3BPKGogXzKdnkpCODj3XD9yijxfC+NVPK9gIwkm4G2opH+clIiIiotZS948c3/jGN2J2drbs/vn5ebzxjW9syKDWs2buoLYahO3AOmLHmlRVAYC7e++aVQQZ1wV0fdfSMzN1BVkhUsHatnV5z22SwpKZWjdav4wRSB9sq6uiptksy6salKQnU3B+1on01OrPt0IYWINp2PbazEtCeRB1LqlLtuWW3fBda4nsgr3udjeshvMSERERUWupO5j60pe+hHS6vPlrOp0Odtk6nMme7jULcdaKSWcAs0bbiK+wIsjvETUY61hvYcEPp2JSXV1lwWM9QaSQomoQpvr71t2fHS6Z2fiMAZIHLLi59fVna0UEkOsEZGJtwqJaQVkt2YyN9FhbrPAn2V5fyJSZd5DLLi0PNkYgm4kfNBlPwFRZxrfcZYyrifMSERERUWuJvZRvZmYGxhgYYzA7O4tk0Rd2rTVuv/12DA7GCww2srjLyDYKk89BHxhr9jBiM24eXtydAus9dy5XFmTJ3h54+0fjPV9reIemKj+eyVYNANVAP/TE5Jou52OT4Y1PSgNz/CySG2ipVi2p3jTQm0ai9qHrglIeTEfjGqwXEyrc38mYxYbotoaqsRwSAKTyYCV0xeCtWiBnjIB2JdQKg7t6cV4iIiIiai2xg6menh4IISCEwNFHH132uBACf/M3f9PQwVHzqf4+PyxZJ1R/H8xCGnG/IslkEsJxoGdmah4btdOfGzOUAgAYU3W3QG+++o5iJpur+vhq0DG2Zdfcln3d20j9g1bK8wTy+9ohBzOwl7m8rZGMEcjPOBDJyuFPqcyCA+NKpLrK5wu/gsmv4gLCfawAP4hM9ZZXLRePB1j6MyGlgazyPlXbqU8IAzThzxbnJSIiIqLWEjuYuvPOO2GMwfOe9zzcdttt6OvrCx5zHAc7d+7Eli1bVmWQ1ER19mhabd7UNEzRmGQyWTUMMtoDctGBj+rpBpRadvCmensB40HHqeASAtaObVWb0XsRvdtWm/YkRI0lMZpLZmidMWptd4mrRggDqzMPIf0gyRiBzJwDpy1fsfm6VAZeherJ3KwDeAKyJwNjRKwG7qHnL+526CTcYHzVxu5YGtl85X8KFAKytcR5iYiIiKi1xA6mnvvc5wIAHn/8cezYsQNiBTsE0cYRK3RZQ8KyQsvtZE83vLF80FBdtrcDWKpOMvkcTL78PMDSa5NtbZBdnXUv09RTUwAANTQIMzcfXFP1dMNoLxw0GeM3fl9nuGSG1oLrSqgGhUlSGiQ3V68+XEvGCOicgpVYem1izoJO6CBUSk8nAYGgQspJ5FFpnWKy2998IZu2YdIKqf7K1VFRClVk+ZwFKT1Yi03d3bwChAkFTcYI5Nz115uM8xIRERFRa6n7R447d+7ET3/6U7z2ta/FM57xDIyMjAAAvvKVr+CnP/1pwwd4WFuFcM/avq1hDbaF7TTkPI0ke3v8XQQX3zt39EB4lz+tIbYO13VOb2GhvlCq8LkZAxgDfWAstEzPm5uHNx+xdfwa9o6Ky/MkdI2bx8qEluG6Evlc7J9XxOJ5AuL37chlVn5evxopAa3X2Z/JWQveSAquKyGEQWJ4IdzgXBqoSSvWuIXwA7xEKo9Eb+Vq0FLGCBgj/KV70sB2XKiiEEoqL3LZ3nprfA5wXiIiIiJqNXX/y+62227Deeedh1QqhQceeADZrP/T3dnZWXzkIx9p+AAPV7K9HWpgoOHndUf2h4OaZVI93VBDm1YlPFsJd/+ovxyuQsjj5fIQ7spfv7AdyM5OAAj+W2Bt2QyRqNyW2bhurM9ADfRDtrWtbKArpCGgTY0b1tefAVo9+ckksCfV0LBCCEAfmYGdWFk/KK0lMpNJqAPOugimPM8PggpBlNyaDpqRl1aGWQkNL1FfxZgQpixIcvPKr6QyArmcFfqcchkLWovQ84uvVwisanHzqunvL+clIiIiotZS978+//Zv/xY33HAD/uEf/gG2vbSF9TOe8Qw88MADDR3c4cybn4c+eHAVTtygnlCWBXfvyLqo8imrAqs2Jk/D/eMTDb2+KNqBEgDckX0wi4Es4C8FVF1ddZ/Xm5qGl65vmU6jFaosat2oNSQG0pBHzDe0f5MQBk4iHysUqckIyCPmw9VITeB5ArmxNuTz/rwkhIFlV25+bjuuH16VBk2urP/vl1gs1tTh5zlJN7RLn+tKuO7S/+LjXqdSZdVa4rxERERE1FrqDqYeffRRPOc5zym7v6urC1OLPXeoCaSqWsVTLz0+UfMY1dPdsOtV4+4dqR64CQG1aROEZUH190UeYm3bWnFpYtRz1EBf0CPKO3SorGqqmMnl4KWXltxY27dBWEvLltTQYOTySuO6ECp62aVIJELnWC3aE7Fu1BqkNHU3264ml7WRnknWPjAGpTykBhaqjs/zBNITqVWv+JHSQPVlYduV5yXXlUiPtyGbsZGeTJU97nkC7kQqaFZe+lh6Ogmv6O+e5wnk523YjgspDSxHB8EYEF0hVVzwms+FlxIq5UUGaf7zmhtMrea89PnPfx67du1CMpnEqaeeip/85CcNHj0RERER1avuf71v3rwZjz32WNn9P/3pT3HkkUc2ZFCHm7UIGIRtQXZ2rPp1QiqEKg1Xo2pLKAWTycB4JnIXQWvzMPToAZh89O58yJdXX3jTM+FrVFnSaFw3dG5370ioQbuZnYsO1oSAGh6KPKdMJdfkz4232Kul1o0OL54nkJl3Vr3qRGcU5Iy/5EzrZVQHLccaBam241YNcHReAdZi9ZEngqV/hVtutA3ozAe755UpqVoSApBJHWpxhyrvZ2nIaDtu6PfVqo6aXY20WvPS17/+dbzrXe/Ce97zHjz44IN49rOfjfPPPx+7d+9ehVdBRERERHHV/S+7t7zlLfiLv/gL/PznP4cQAvv27cM//dM/4corr8Rll122GmPc2ISA2lxfM+7lMNlsUOXUyAbo1eiJyVW/RhxqaBAmnQY8DdHe7ldOdXUFVU56fDIUFAF+RVLhPdIzM2Xn9BaWmpcb1408pqKSIK34XKXHuXtHIh/SU9PwMvEbHy9XYferWjc6vLiugrUvEarIWQ2p7gwS2+b8pWd/aEwD9GqkNEhtql5VtRY8T8AcciCT2l/i5wq4eYXMTAKZmYQfaPXkYSfC4VYua8N1pf86OrNlS+oSyXxwvGV5wQ58cZSGaNU++2ZXTK3WvPTJT34Sb3rTm3DJJZfg2GOPxXXXXYft27fj+uuvX4VXQURERERx1f0t4aqrrsL09DTOOeccZDIZPOc5z0EikcCVV16Jt7/97asxxvVJiFj9l2RHB/T+0TUY0JLYvaGkgpCiLLRZMSEgU6nKgUzUUNraqh8vlV8ZVVL1ZG3b6ldDLb4Gd2QfAD8MEo6/dC+qUkp2tMPML8DLRFRY7dzuN1gvvBzbgervrbpzn7AdQIpQ7ykAsLZugR4br1yt1WSeB4ga4YTX3O/4FJPWEsYTsKosLwP8ahg95cDbkkVyjQIcKQ3cI9JwaowNWOy75Mm6Qpc4tJbIp20k2nOxghfPE8ilbSTa8hWPd/MKnifhJPLBfcYI5A62QfTlkEj69yeGFiCEQU4a6KyCMQLJtlxZOKSzCsbxQ6fSseemE0j0ZIKwys0ruFkr9HoKzdiLxwKUB01uXq2LXlKV1DMvzZT80CCRSCARsaw9l8vh/vvvx1/91V+F7j/33HPxs5/9bGUDJiIiIqIVWdYanQ9/+MMYHx/Hf/7nf+Lee+/FwYMHcc011zR6bOuWbG+HGtwU69hqS8BWTcyG5TKVhOxob/z1hYRor+O8QkB2Ve7hBAAymYgcq7tvFMYzkCUNyo3rQvb1+gGiELB2bg89ricmK1YkuXv2lZwrD31oKnSftXN7aMdCYVtBEBYe3/51G0oBbDJ8OMnNOXAPxuvnJJrwmTo1lr4V6LyCzjd++ajxBEwmfiWpMQJmwao6nbp5Bb0Q3h1PCAPV61c7ZdN2cB8AWJYG0gpa+0sbsxOpUDiV7MwGYVYxKQ3szlyoZ5RUHqSz1HDd8wQyc06sKjhleettw9WQeual7du3o7u7O7h99KMfjTzn+Pg4tNYYGgovnx4aGsLo6Nr+8IiIiIiIwpa9rqKtrQ2nnXYaZmZm8MMf/hDHHHMMjj322EaObd3y5ueB+flYx9a1BGyNeTFfQy3CssJVV56ub8dBY6pWIwF+BZRKJSHb2mByOb9xuO3AaA2hFERHO1RnZ3Bd1d8Hb3zCD8mk8MMmqaC6u6APHQrOKzs7gybnweuxLcALV2epzUNwn1jqQ+Lu2RcKAKst11vPPCNqhhRcyrcxJLuyMNXz3cUv9EByqDF/91dDIpVfcRhqjEA2bSORKlr6Zmuo/nTNcMzzBITwm4MnB6ofn0jlkUkrZOcdSNuDZbtw8xak9KC1hLdgIZ2x4HRloZSH7HQSot2F8SQ8AHZPFp4nkJ13kOzwK5+MEchlraDJObAUbGlXhirivJyCWdwNUAjAToV3P6w09mYv1aulnnlpz5496CraFTWqWqpY6Q+LjDHN+QESEREREQXq/rH0q171Knz2s58FAKTTaZx++ul41atehac97Wm47bbbGj7AjUrYDqxtW5s9jDWhNg9jOT9+t47YUdfzvOkZeJks1NAghGVBdndCJhMw+Rz0+ARMUQWUNzcPL5eHbG/zK60Kzcdl+HoimSwbg7AsP5wqMCYUSgnbgbVl9fuGrQlP+JUkVW5r1UyaVkYIU3NpVnbBRn6kfd1Xwa00ONGuhBpNQOuSv9sxQqn8SDvcxd3uah0vhIHqcKEcDe+Q4+98N2/BzSskknkk+zIQ9tLudzLpQtke3KyCTluwbA3jSaCkQsy45Y3iS/sqSWngtC0t49NaIJ+21/1nG0sd81JXV1foVimYGhgYgFKqrDpqbGysrIqKiIiIiNZW3cHU3XffjWc/+9kAgG9+85vwPA9TU1P49Kc/jb/9279t+AA3KpPPwd0X/gewSCSWFeCsd+6evcuqDHKf3FPX84zrAp6GO7IPxjMQJX2sZFdnsJOd6uuFUAre/AL01DSAxeV2bW2hc+qDB8ublc/PhyughAg1k4/6bDcqY+Ld6PBgJ12IoUyoJ1F6NgHXXZ87LxrjNw2vN2yxbA1r11xZr6ZahADkUKZmn65iTiIP23GRGPKbrou8hFO0HM/kJLzFHQm9WRueJ6ASGolOv1pK5xREZun9F8Ig2ZEta+DuOC6cor5bWsvQsj2lDJwq/bA2ktWYlxzHwamnnoo77rgjdP8dd9yBZzzjGQ0cPRERERHVq+5vI9PT0+jr6wMAfP/738crXvEKtLW14cILL8Tvf//7hg9wQ/PCX25kVxeEWv3d8par3gqmMlLVtxtgjG8WfvVSee8mP6DaH7pLHxgLlhTqg+Mwbh7W1s1+43TbgRro90O0CNbWLRXHIDs6oHq7y65/ODCejHWjw4NSXijcAAAxZ0G763Ne8jwBb18qqGCqRyGgyWVt5LJ27OfYMXphRZ1TCANleUF/qcJ9VkceUvlVU6o7D2VpeAeTcF2FfM4C5iw4wwuRu+alD6Uq9owqND8PXb/JuxE2ymrNS1dccQX+8R//ETfddBN++9vf4vLLL8fu3btx6aWXrsKrICIiIqK46u4xtX37dtxzzz3o6+vD97//fXzta18DABw6dAjJZLzGuxtazN34otTVd6kJiperLYfqaAekCCqUGkEuVjjpQr8nIWANDcIdPeBXQKkERHs79MGDQSglk0nAtmFmZ/3wytMwi5VWlejxiYqPlfagOpwYz7/VOobWr0JV0XJ2sRPCIBERiqwXSnnAtoUV7R6np21AANhU3lR8OYwR0AsWoAywuBtfPmdBTybgDC74gdJMEshJJPrSsBZ7QGXTNoz2d/DzNmVgWdr/38mgG/n6hABUm1vxZwVOosG7qa4jqzUvXXTRRZiYmMCHPvQh7N+/HyeccAJuv/127Ny5c3kDJSIiIqKGqPtHju9617vwmte8Btu2bcOWLVtw9tlnA/CX+J144omNHt+6IixrWX2j1NDgYbmEr5SemWloKAUhIHq7ww3kjYE3M7v4sL/jHrJZyM5OqJ5uQAgYY4C8/4WxUDFVi8lmyy9vO/45G0UIqIH+xp2vAbgr38aXy1owI5Ura6JoLZGeSEFruW5DqQKlvBWNMbkpjeRAumHj0VpAZCWc9qXNEaTyYNr9EMloARgAtofsvINMYamkAITy/GBr2oF2VdW+YEIYOInypXn5nIXMvLPY8Hzln50x/g6B68lqzkuXXXYZnnjiCWSzWdx///14znOe0+DRExEREVG96q6Yuuyyy3DGGWdg9+7deOELXwgp/X/QHnnkkYd9jynjuhWXglV93tw8G/UshzHwDhwsq1Ir9H/yipqdQyoIKaAGN8HMzgXHLOfzCi6vNUy+gVUJxgC5xlRtNIoxi42EaxxD65eTcOHtmK+rqkhKA5HU6z6UaoRGv0alDNwOt+Q+D6lOP9xOFgVWhf5Y+ZkERFIj2eY/luhPQ0oThInFn50xouqYhfQgVGP/Tq63Pwecl4iIiIhaS93BFACceuqpOPXUU0P3XXjhhQ0Z0OHIm1+/W7Ovd2LnNog/7oYpLOWTKrq/k6dhPL/PVBTV3wfk3aXqK6lgbR6qurwPnm74Zxeq/loPjPBvtY6hdcvvLVRfsCCECQUoFJ8xgJi04Q56UIsVUPmcFdmbqtBE3epdmrM8TwRBVHYmASgThFpuXiE/nUCiL10xaLQsr+6m7tX4lVcNO11jcF4iIiIiainrq35/HVvujnqFXeJawmp8uzlwEMbNB+e3tgzHfqq1fVswJj0xGYRCIpEAjBeEWLKtrbFL9jYSE/NG61I2Y9e9o54xArms3TIVJ25eNXSpmhCA1+MGoZN2JcyBBLSu/H4Wlt15nkD2UDL4zBJdWSQWA8Js2v9MVFcOUvo9qTJziYaNe0PhvERERETUUhhMxSS7uiCseDs7BYSA2hw/SNnorG1bITs7G3pOPTW9tIzPGLh7R2I/1x3Z7z+3ZLdA2dMNYdlBs3STy8FLZ0LPVb29foDVSPXsWLhWPBHvRuuOMQLevAVP1/fnys0rmIOJllhdbIyAO55Ebi5iZ89lEsIg1ZUJdsCzbA1723xZFVNU8Celgd2dhVIGuZwF11WQ0ix+ljY8TwS7JkplIO3wOV1X1tVLLO7rWXc4LxERERG1FAZTMemDB5eWk8VlzIp6HG00JpOFyZQ3ES8mLCteQCNV7Aosa3gIwo744rm45E91dfg7Bi7SB8ZCn6Vx3bLm597CQmP7SwGwtm9Zd03wjYl3o/VHCINUfxpOYqlvWZzKINtx4WytryfVRmYcDzIRsfy3SC5nIZ+rXd1aqfoq6r3MzCZC5yw07LYsv5m7nrWh5/0fdghhkBpYQCK59Fnajhv6bAvXafQU4ljrr9cY5yUiIiKi1lJ3MLV7925/17MSxhjs3r27IYNa94SAdcSOZo9i3YkT3smOdsj2tprnUn09kG21jwMAPXFoabkf/H5Sqqtr6fGp6bp7O5lsNhRmNYL75J71922KlQmHDa0lcoeSsSpqooKIw3EHRiEMkn2ZUOATRWcsuNnagXl+1kE+Ha9y1kq6UNZSIJadd5Atem6yL4NkTybqqRUJsbh0sIGfVTZvrb/PnfMSERERUUupO5jatWsXDh48WHb/5OQkdu3a1ZBBrTXZ3h47BAHgV0I9uWfZ11O9vQ1f8rZR6KlpeLOz5Q8IAZlMLh03PhG78bjJ50KBj548BB11jQgikYAa6I9+0LH9x4cGY51rIxJevButvWzaRjYTf/mwUh6c3syyK6GyaRu57OHXEy9ONVCyM4tkR3mo7uYVMvNL1ZjJ3kzQE6oW23FDn4WdysMpCsgKfaei5HIWMnOJyMDIMwJaC+Tz63BpcINwXiIiIiJqLXUHU8YYiIi1BHNzc0gWBQsbiXHd0LIt2dkZvTQs9KTlV77o6Rl4c3PLfv7hSFg2RKPCOmMgnMqfn7Cd4PM1eRfe7Jy/xLDkz7Uen/D7T01MNmZc61Fh96tatzrcfffd+LM/+zNs2bIFQgh861vfqvmcH//4xzj11FORTCZx5JFH4oYbbljmCzp8CGVCwUZmLoFctnpQVeh7tByWs9TQu9VUCom0ljBpq+ZxcUhp4OatihVtnieCx5TyIB0NzwtXRglh4DgulDIr+qzXvVWYl4iIiIho/Yr94/ErrrgCACCEwPve9z60FVUYaa3x85//HCeffHLDB7gWSvsLrTpvfX75k+3+0rW4lUqNZPI56IhKvOWSPd3wJiYhO9r9BupFhGMH14SnYbIaamgQZnoGXjYbDh2NCZqkVyMSibX/c9QI3uKt1jF1mJ+fx0knnYQ3vOENeMUrXlHz+McffxwXXHAB3vzmN+PWW2/Ff/zHf+Cyyy7Dpk2bYj3/cFVogh2yir2ASpt3rxfuYmXQckMzY8Syw6REMg/UWAZYD71gAe0GniuRSOVD4yoOrKQ0UMpFLmvDEwbK0qGQUggDGePHSlKahjdLXxOrMC8RERER0foVO5h68MEHAfgVU7/+9a/hFFWkOI6Dk046CVdeeWXjR9gEkUvNiljDQzDGQB8YC93vV93I+pukh04imtaHKE4AU4mwLKihQbgj+xo4onoHsfTe6QNj/u9V+XKXQvCm+vsArf0eVAfGYG0ehphfKOtHZe3cDnf3XsAYqK4uGGPK/oyogX64+/avvx5StcTp1VLnF9vzzz8f559/fuzjb7jhBuzYsQPXXXcdAODYY4/Ffffdh2uvvbalg6lSyY7qwWehf1EiFQ5SCg247aigK6ZC1U6jmmTXCotCj6/gmm5eIZ+2kezMrlmD79LXprVcbFpukOzJwBggm1UwJlykWQgGM/MOhDRIpPKwHRfZtA2DcFBpjEA+Z8F2XAhhKn4+UnrwvA245G8V5iUiIiIiWr9iB1N33nknAOANb3gDPvWpT6GrqLl0qzH5PMz8Qtn9IpWCEAJ6BcGUtW0r9OhY3eGWsB2/AXhJMGJt3QI9Nh55PtXVBSgFfegQgJVVjhnXLQvqVpu1fRvcvSPBa7aGh+AdmoKXWWwovPjNT3V1lYVNqrcXevLQ0vslBCDl0nFSBZVt7u69wXO8uXnAlP+ovlogJywLxjORlXKqvw/wTPAZrDVhan/vLzw+U/IeJhIJJBKJFY/hnnvuwbnnnhu677zzzsONN96IfD4P247fZ6mlieilfNqVgAGiVifHrSbK5ywoS0Op+sId15VQqnz5Wy5jQdk6skqrtEJqJZVcyvKAksqk1eR5AtmJFOzeDCzLgzECuakEZJsbVEgVwqhcxkayrWh3UCOQXbBhJ8O9qYQ0sBffi8LnJYQJQqlqXLdyKKWUP76oiirb0jA1nr+a6pmXiIiIiGjjq7vH1Mc+9rGKodSvfvWrFQ9oPVD9fVUf1xOTS+FHEW92NnL3N5lMwhoeinVtd8/eZVVcqf5eiIjqIHf/gejzSQU9Ows9NVX3tSpZScXVcuj9o6Egzt0/Wva56InJyo3QS5bsFcIlYTuwBgfKjzMeTD4X/Tpl5S9wsqO94g5/emISemoq1NNM9faW9btaNSbmDcD27dvR3d0d3D760Y82ZAijo6MYGgr//RgaGoLruhgfH2/INTY6Y4RfOVOlr04imY9c7pZsyyEZ0bDbdWXsZue249bd08gYAZ1X0cFHwo0MuYwRkMrzA6VlKN2tTgizpn2zhACs7lzw2oQwSPRm4CTDc4bTFm6EHj7HUpAnhIGTWKqKKp6yikOpSr2vlPIqhle20rBV9HuTdxU8T8Iq2lWwPZlbs4CvnnmJiIiIiDa+uoOpE088Ed/5znfK7r/22mtxxhlnNGRQTefV+BdvlRAi8nSZDNyx1f2C7Y4eiA5MKvSzsrZv8X+x+E1H9XT7FVQxqd5eWNu3xQ5Q1EB/w8OWWEGYMZHL66pVKJl8Du7oAf83UkH1dAPGlPWqKmZtHvKXckbQU9PQc/OhPzfCsoIAVCgF2ddTNIC1a54ijIDwatwWv+jv2bMH09PTwe3qq69u3DhK/mwYYyLvb2k13grXlVWDq1JKmdjL+5YTSAjhL0eLCrQKS9uKmcXd5oRYup7rSrhu/P9N6cWwLU5fJWMEMvNOQ3owae2PMaqSKeq1KuWV7Z4ohEGyPRd5f/G5on5dSUcyWzFQzORs5FxVdv6kkw+u2+YshWe1/rfYSPXMS0RERES08dUdTP3lX/4lLrroIlx66aVIp9MYGRnB8573PHziE5/A17/+9dUY45qrtazK2ro5MpxSPd2QRU3hQ+poeC4SCb9qpk7CdoIG5tEHiKByy31yTyiw0TNzfngSkz50CGZhARDx/giZbP1VYMKyYG0eDt1n7dweDrikql7hJpUfipXe3d4OtWlTyQXF0jVqhI/W5uFQEOXuP1AxmPKv1xaqmjJaw6T96q7SZZB6anrtelXVUZnQ1dUVujViGR8ADA8PY3R0NHTf2NgYLMtCf3/5Z9cKSpdYCWGQSFZekuZ5AvmpJLQu/7KezdjI5cr/bPoNtOP/OXNdGXmeWjxPBMFNFGNEED5ZllcWlNSzfFBZ5YFPNaLOpYmA/z5k5hJBCOh5ArlDydBr1Foim6lc4eZ5IvJxraODOGME3LyqGTy2J8PB1lwmAVUlVPRDwOLrAK4ng7HMLCzttJvOOnUFnyvCiikiIiKillJ3MPXud78b9957L/7jP/4DT3va0/C0pz0NqVQKv/rVr/DiF794Nca4qkQiAWvrlrL7VU93xZDH3bM3Mmjy0hmY3Aoany8yeRcmnV7xecpPbODNVFjW5um6dwvUE5Oxn+PNztYdthjXhR6fDN1XGqjBeDCZKr2xjBcEQKHxzM9DFy8TkwrWjm1L1yi8Lk9HVkrpg+Ohii2hFESF5XpAxDJPY+AtRPQpqxJurQbhxbutprPOOgt33HFH6L4f/OAHOO2001q2v1Q+r5CdTZQFAenZBDIL5c2ipDRI9KUj+zH51Tkr/xClNA05T6VzR4Vule6vpFCxFCecKoR99QRZhTFZiaWqqMJ7X1yZJISBqDH2qNcWFcQVlulZtq64i19BJm+VBZq2VXmO9rxwAOqHhOWhfMKu3c+qkdbDvEREREREa6fuYAoAjjzySBx//PF44oknMDMzg1e96lVlPWI2CpPNRjau9ubTdTcDN9ls9eVlQkRW75RVR3na75VUZRmTSCTKQgyTzwU7zlUSFYbEJZPJ2gc1WK1+W2pgACZXZTt3Yyq/J8UBl6f9QCruuEo+Z5PPQY9PxH5+JWp4aO36SwGrUpkwNzeHX/7yl/jlL38JAHj88cfxy1/+Ert37wYAXH311Xj9618fHH/ppZfiySefxBVXXIHf/va3uOmmm3DjjTceNrt8LodtayQidpJTCV2x/1KlgMWq0GS8wPMEctny6p3S30tpYFle1aVvWsuyx/2wpfL1663cKh1jnEqiRpKyvG9V8fiNEcgtOJA1QqmoZZRRvaLq2RGxtDLNdRXm0iurbBTCoKctvezPaFlYMUVERETUUuoOpgqVUo899hh+9atf4frrr8c73vEOvOpVr8KhJu0sthoqNrle0UkNEBWiyOgvVYUKnigylYxXXSOEvzRtpYSA7OkuH0elpYulT7esVQlcvJkZfzfCFZDt7VBDg6H71KZN0RVzJa9BDQ3G6jkmk8nQe6Ui3ksAoV0G18JqVCbcd999OOWUU3DKKacAAK644gqccsopeP/73w8A2L9/fxBSAcCuXbtw++2346677sLJJ5+Ma665Bp/+9Kfxile8omGvc6OpFNY4jhu7L1T8ayH2FmfGCOSr9HDyW7qtbkhUtvytZOmbMQK5nBVrHFFB2koJYaAcDVlns/hSSnmh5uOAv1QvYZd//qV/Vvo6FsqeG8W2dFBRJYSJPLcxAgemO6sux2w0VkwRERERtZa61w0973nPw+WXX45rrrkGtm3j2GOPxTnnnIPXve51OPHEE7F3797VGOdhQ8/N+98Ei/s7TUxGHlutgqd4eZmwnVBlkUwmAdsOls+5e/ZBdnbCm5uLHXoI24Ea6IO7f7H3jzFLDcGLj+vsAIqrsKSKXN4n+/vgTU3XXYVWS/H5ZDIZuVtiLd78fPg1YPEzKW1CLgSsHdtCn4uZnoGQInSobG8PVWkJ24ExBsIrOmiNl+xV5An/VuuYOpx99tlB8/Iot9xyS9l9z33uc/HAAw/UdR1qDCH8iiZjwrlrVIWOEAZOsvKyruLKLClN2TKx0vN6XrjZeS1uXsHNqWCXwUKD9WLGAF5ewlg6eD1uXkFZ5TvUuTm12JeqsTv3FcJDYwS0K5e1M6DWMrQ7nzEC6ZxdNoUr5aG/fQEHZ9uD93ghZ5f1yk8lcsjk/Mq44DMvOWYtl+tVtQrzEhERERGtX3X/CPQHP/gBPvaxj4V6vxx11FH46U9/ire85S0NHdzhSPV2Q3Z0LPv5IpEINwQXAmpwIHSM0V6415WnIRw7dqNyYHFnugMHax7nTU5BFDXBrtQYXh8Ya3goFSIVRHfEroJClDdHj2qYvvhtz9q6BcJ2/HCt9BugMXCf3BOqfvIyGajNw6Fv9KKtben3i5+PyWZDoVkjlv01gjDxbnR4y2cs5GM2Nq8UXhTfL4SBrWqHMfVWVynLg5WoXjEmpd/fKZe2g2vkDyXg5svnJSfpLis0issYP2AqfZ1Ryyf9XQnLq78AoKstA8vSkdVdWkscnG2HY+lgR72ca6GvfSHoYyWEQdJ2i6cltCdycF0V9JQyRiCTWx893TgvEREREbWWuoOp5z73uQCAxx57DP/+7/+O9GKTbiEE3ve+9zV2dBtEPb2X9MSkX8kUV8m2SUIIwCn68mBMWY8sk8+VhUD1NCoPLB4vLKviznfCtiCcpWbMlRrDrxZhO/777+nQznYhumg8UpU1TBe2EyyLdPftD6rP1KZNUD3dwU6GkArCsvxqoKLqJ3fPXgilgsBQHzwYhFrCsiN7mIXGs5Y9pUrFWS7DJTMbTr29lxJteTg1Ap/S81c7tzEC2Xw46Irqn6RUeRVTNUKYoCpLaxmEO2XBjyth8jKoDkoMpCv2dIqj3gDNzSvkcpbfGH1xN8XCOINzLV67eAfG0nCv8PvZdDIIkHrb0+jtWEBvh1/lqZQHS3nwis7teQJjMx1Q0sOmznkYI3Bori24jpQepudTFcfvN8xvYvLDeYmIiIiopdQdTE1MTOD5z38+jj76aFxwwQXYv38/AOCSSy5p2WbFskJo0wjW1i1QTz0y+L2XydTVpLsiqZYClxqMZ2DSGaiBfsjOztBj3sIC4HlQxzxl5TvKSQVre+W+WlGEkqFgDFjqGaX6+6C6u5aWPUrlV3SVNEQXycRS1VfxEsvxcejpGXiLz5fJBGRnZ1D9JNvbobr8Ki3jutAHi3b5w2KgNzjgV02V9JSytm/z7+/tjt2na1V4MW+0oRjjL1OLKyo0qnX+8oLClQeshUAtjsKYMzMJZOfDc0CqMwuZ0MhMpODm1YpCFjevkJlI1fX6jBEwOlwBlctayM47yKZt5LMWHMddDKwQVKsVj9OvdvJ/XVwpNbWQwkw6ifRidZNjuUg5eeRdhWzeQnsyh45U1n8vtcTkQjiAsiyNzmQWUhp0pJYa7AthMNg1BykN2hM5JOyV9e5bEc5LRERERC2l7mDq8ssvh23b2L17N9qKvlBfdNFF+N73vtfQwW0UVStiSlgly75qnnvvCPTv/rCcYVUPPDwNfWgq3ok8DW9hAXpyCvC80NI9wO/RZPYdgPGKvvwJUTWoUj3dfqVT8Xvhabgj++ONqfCUTAbGdUMhmzc/Dz12EHryEPT0TPj8e8p7oHmzs2U791nbtvq/MAYi6b9eb2EBuqjBv8lmYbQOXqdxXf91244fOm3dvPRnQ4W/bOv9o5BtbX4FXY2dFFcTl8wcnqQ0SLbnYoVNxgikp5N1NbeWcvk76dVqNl6rafhS1Y+/s53dtrh8rWgpojECdsKFbM9DFI3TdWXouFKZuQTSM8nQMcryYHXFey8LbMf1m7BPJ0L32ak8LMeF5SxVcUpp4CTK+3aVNmYXwiwGToXeXP7x6ayDmYWlqt2sq6CkB9vSfjjlqsVKMw0pDbqSWUwtVkspufReGyNwaCGFhJ3HbDqBdDYc9q0lzktERERErWVZPaY+/vGPY9u2cGXLU5/6VDz55JMNG9jhyjs0FasBubVta8Wd20KqhFyyq7PqcbV6PllH7CgLjsqO2boFwrL85YlFj8tUKnIXv+DauTxEdxdUaV+oOpcBys5OeJks3KJlfNbmYcAYWEODkKmlagGRSEAN9JefJOK98SYPLX1OKrqCw7iuv5SxKKgTlg3Z1wMYAz065ldUGVPW4N64LmRnR3OX8QHclp0AACqpYwUvcZd4VaouKixbKzxeelyl3QiLn5+dS4RCNMvWEMoDis6ZmUhBuwqJVB6qKOhyMzb0jBM6X+j6lofkbgdiT9G8IUxdOyEaI5CeTcCyNRI9fl85rSWyMwkIYfwxFI1fa1m2s2Cl8+bdpeWZFTZzDZb8Fe+wp5SHNicPzxOYzzpoS/i/np4PV4JpT4Z6UTUN5yUiIiKillJ3MDU/Px+qlCoYHx9HoqSShspF7Rpn7dweBBSFX5tMBiZf9GWopNdU4IwTIdvbI69VvIuetXN73WN1n9xTFqJ58/OhQEsfGPMrhUp4CwtBg2+ZTEJt2lT++IGx0O6CBbKz0686qkImk1C9vX5TdyA0Tm+xEsw9MBbqBWVyOXjTS/29ZHs7hO3A2rGt7L2Vm5YCrKhdE2V7O2QyCT01HVQ8qa4uyPbUUq8rrSPfG2E7sLZu8T+fmLskrhZhavdyYWXC4SUqDHIS+bJAqLQxd9RzK1VOFYdPpdeyFnfHM0Ygl7HqWiInhEGiI1t2zUQqDyeRX7pGVw7KKg+5E+05JPv9voj5nIVsOtzsO5HMwzt2DvKI8irG9EQKmYXq81J6NoHsgTZgMWgqjFNKA5Xydwm0U/nQjnmFZu21CGGQdJb6Vc1nysfSnswh6eQxPZ/CXNr//3FHKouk7QZVVa4noSOq1ixLozOVCfWiahbOS0REREStpe5g6jnPeQ6+/OUvB78XQsDzPHziE5/AOeec09DBbWhCQJx2QqyKGHfPviCgcHfv9StsxidCS7zUcUfD2rK5/Mk//3XFpWDFlTzuE7srjlP19kY/FiM0iQpeSnnZLLyiJXB1ESK8y9/i++nl8n64FdHUvRD+CaUgSnpiCcdeqpqSEpAiCOCE7QTvRelugwBC1VbCtsqX583NQ8/MBb83ruv34IK/dLFwbpPPwd1X35LFVcPKhJZijEA2bccKHkobcQN+4FT83E2dc+hMlYfthd3goq5f3OjbjljCVjgun4sOrSqdu5jtuJGBWXEvLWVpWEWVUIUwTSkvVGW19OSlX2ot4RZVObmu32hdOR5Mu4tUbzq021+h6ip4H3V50OdWqJqyLI1UIhc0lC8emxAGXW2Z4LyW0rBKxp7O2UE/KikNtJbB7nsJ2w128nNdhdl0/I08VhXnJSIiIqKWUne36k984hM4++yzcd999yGXy+Gqq67Cb37zG0xOTuI//uM/VmOM659UUL3d0JOH/EqYvSOAMZC/2w0dpyLG035j7i3D/nMjiIkpeDMRu/kJCZjyygBx2gmQU/PQf3hiaYc424EaHgzGFzARX8KkgnRsP+QpBEPL3W3PmFCApQb6gVweemYm8vDiXQtlWxtEW5u/0x38yi/3yT2Ap2Gy0eOxNg9DHxz3g6HFQEy2tUF0dkCPHQTSfuNyk06HxmW0hkmn/dfreYBX8tnl8oAQsLZshpmdC72HwnYAKYJqMmvn9iBkBFBeGbZ4f+lxay3Y4arGMbTxaC39JtvJPLSrgqDEcuIv1SosravUf2o+5yDvli91rRQcaV0IpZbOHSxNk17N6il/Vzs/YCkEOYVd+upVWu2Vy9gQi7voRUn1pYNfuzkFL69gdWXgeQL5qSTQk/GrtiIKh40RyIynoLr8yi5jL70WY0QwjoTt+hVNRe+350m48JfjRb0/2pN+I/NkBtqTcIuea1saUhhk8xaEMBjomMf4XHsQDuZKPrvC/ZalgyWBzcB5iYiIiKi11F0xddxxx+FXv/oVnv70p+OFL3wh5ufn8fKXvxwPPvggjjrqqNUY4/pnPJhMFhASpm3pJ86VgpeopuBCCphk5WUi7uiBoPqmQLa1wZxxQvQTHvod9GOPhwIPk88B+Xyo7xKMiVxOJ5SCaPeXbKqOdqiujopjC1U0LVKbNgFCQHZ2lvXK0uMTFd+b0Bhsx29kvhhKAYuVX0WvKbREcHEcenwyCJzU8BAgRLB00O8crP2KJ1Hyx9/T8DIZWFuG/cbm+Vx43Itj9mZmoWdmQp+HsK3Q7oClYZNsb498n5oZSgFsMnw4E8JAKv/DKwQaxUvpSlXq7VStOmkunUA2Xz6fVTqXUgZKmbJqLNsOVziVVhgVFIIcAHCzFtxMeCleMa1l2XLEXNavFnPzKtgJr8BfDli9AtQYgVzOgp1wkezMBq810ZcOAjLPE0hPpILm5bnsYrVSZx6q0JA8449DSgOlvKCSS8ryz8bz/N5S3akM9GIz8+LxzGccGCOgPYm5dCKohgLCFVTGiFAo5T/uRYaUzQylAM5LRERERK2m7oqp3bt3Y/v27fibv/mbyMd27NjRkIFtKMYEy+lq7aAnLAtq0wDc/aPhU7iuHyTVwVtYgLjnoeghlYQqBcV9p6ox+VzQW6k0RAp2odMasq0Nsqe7rNeUWVhYfF8WICK69IpEAsJxQtVRpdTggL/krUpwYwrL9iwLamgQ7sg+GDcP1d8HPTFZsQItKowrcPeOQCaT/vhKwkBh2ZAd7UvjFgJqcNNSX6lgYOExi2QCIpstL05rco+pWNuuszJhQ/J3e/Orfwr/rXaskh48LxxImJIgJK5KSwUrhVxxr+GHV4vVRW3h1+S6EkIAnpZwpx2INhdWwoVlhQMvf3Vw+R9qIfzKMOPJ0DK8UnrBguzwQpVapUGcSPgBUz5rwUwmgC0uhDTIj6XgDC0g0e7Pz8aI0HtSbSe8Q/MpOJaGst2yMFBJD0nLxdxiuZZSHvrbF3Bwtj0UzpV+LpbS8IxAaJ3iesB5iYiIiKil1F0xtWvXLhwsqmApmJiYwK5duxoyqMOZcd2yUKpUrcbfy6WGBqH6+1Z8HtnW5vdfEhKirW0xDApXGgR9r7zoBuDwDKCLvvxF/NjeHVnqvSWT0b1PCgGRcV3/+IKixvGys7Os+Xq9Cu+byefCn58xMHPRPb6K6YnJWP241lrNBsMxltTQxleoyqkmsu9SA7hueOla3Gboxf2iAMDTyq9S0gLWjIKTyofCo+IqrEpN2/0Dl6rMSpcwCmGQ6snAsjx4nt+vK6ohfHKxQbuTdOFsnvfHCsBYJljGmMtayM7Hn+uNEYsh0tJ1BrvmIKVB3lUYn20PHbuQLx9bqXTWqbhMs5k4LxERERG1lrr/RWqMgYgIEebm5pCsEB60LCFgDQ+V3x2xlK/4MX3Gccu6nLV9G2RJs++QXD7omyQsC9a2rQCWdqeLovr7ykIjPTPjB0+eDi2zq4fJ55aqkaTyd8arRAjI3p7aJ5XKH6sxoSovb3YWenw8fMoa4Z+XyYSrpXR0BYXq6YZQ0V/oVU938FnL9va6QkHV0x2rcf6KsclwyyluQF6sYlCz+FhXKlN1WV8lhaVqlRT/MddaIp9X/pK5xzuRPli+A6wxAtmMHRkaKeUhkcrDOnIucpfBWkGNUl5oSV5u3qn4HGMEvHm7atGjEMav4HIlbMdFatNC8F7YjgunLbqytZK8q4JqKWP8HfaidLeloWR0cpMoWjbpv97w3FbpsxLCoLdjoeqfk4bhvERERETUUmIv5bviiisA+Lvwve9970Nb29IXBq01fv7zn+Pkk09u+AA3NGMiG5arocGypW/BU1wX8qe/LLvfGh6CNzUd7DgXeblMFshHLNkphDVFO+OVVRhVki8fozzpWIjHRyr2iVJdXUAiET+08rTf0LwSY2pWmQGA6u4CtI4eV3GjcsuCGuhbOudiQ/Nq70elpX9elWopk3dhFoNAb2EBSC99diKR8Jd0VlhqWNb/apWwyXDr8YOH8rDFsVzkXCsytPI8gan5VFlIE9Wsu1S1YAcIV2L5lUzarzDyEAofPE8E1UaiZGc+YwQGv5XEwVME8NTZyHAln7NgPL+XVBxKeUh2ZisGNUp5SPanIx8vHmt+xgGUgdUTnrsr7Rq41AzeoK99ARNzbZHvoTECk3PlwR0ALGSdiuP2ypb2FfWcsjTanDxmFqJ/yLRWC/44LxERERG1ltjB1IMPPgjAr5j69a9/Daeo0bPjODjppJNw5ZVXNn6EG1xpjyIAFQMQmUwCUkY/Z2y85q54lYIg1dMDGK/iznDBsrvC8U/ZBbN3P7xMZinkkQrW5iF/2d4jf4SXK/pJvxBQPT1B8BWnsXmjqKFBmIW0XxVVFLxVU7ac0hjo8Yn6rtvTDT09AwgJNbQpMmAKva/GhHZPNNls5VAKiP1aVopfAFtTVGhR3DS7WCFAiQqscq6qWYVUqd9UYYe+0h5QBfZRsyiMyPMEcvvbgZ4cku05OI4fmBeqv6Q02P9cA9GVhYWlHe/cvBUs37Mdt6y6qbgpfJRaFWJRjxsjkB1PAQkPqe4Mkn2Vf5gQ9dylXwOzmUTk+1scYBXf19OexvRCCkIYbOmawROTfaGG8QBCSzZLz+G6CrMVQsZqQVijcV4iIiIiai2xg6k777wTAPCGN7wBn/rUp9DV1bVqg2pVsrcHsKzIYKpWKBVFWJbfVL0QcixWTtV8XjoLnc2WXb/Q4NsUPab6+/yqobKu3mGysxMi4cQKgArjjqOs6fgymdLXi8WqpoH+6CBxsaLJ5HNw9474VWK2FTSM3zDiLInhkpmWVlgSVtoYHYjfD6pYIVQp3Z2vGmMEjO3BTrjQWgZVVn6/KP+/yaH5xXEKqF92YmGHC9W1FKAXGp8XNxyPW0VljIB2JVSFHQ1LX5/dlwkCveUsfyxcM2rHw4TtojuVwdhM+U6pYvF62byFJw/1IuXkIYTBXDoRjKPWZ7acz7ThOC8RERERtZS61wvdfPPNDKVWSFgWrCPKdy9094/C3bO3MdewHaihwaXfJxKwtm4pO062t5fdVwhirO3hvk9BWCRV0KPJpDP+krW8C1m0vBNChJ7vzc2FQxshwscX3a82D9d8fWvBZLP+roAR9KFDoZBPz8wEr092dkIN9K/JGFeK27JTsajlZXlXBVU2yw1ZCgqNxwu/dvMV+rOV9KVSykNyUxqeVrAf7EAutxTYFI6T0sCyNIQAsv0eRFJDSi+ozAL80Cq7YAdVXJbtwnJ06PGoMXmeQH4u3JeuWoBjWd6q9WLKuQrjc+XzdqGiSWsZNG5fyNqYz/jjbk/m0NOeXpUxNRrnJSIiIqLWUncwNT8/j/e97314xjOegac85Sk48sgjQzeKya1eAaWOOzqycTqEgDz5uMjG2NbwULB7ncnnQpU+atMA9IHypX6ioz26ybYxcEeWQhlhO35zcQDSsSG7Ohav4wY775niflTGAJ7n795X+H1xnyelINpS0dctCeesrVtqNgJXmzYtXauRYlSYlfJmZzdM5RR3v6J6tCXySNjR1YyVQquE7QYVTsU73WktkXiwHempcD8jIQysiMbdQhhYtov5Y7KwbX/+VGopAFLSQ8Ly+1Mld80i2ZGFEOGwTQjASeWD+6Q0oR5XpTvfFSjlIdmz1Pzd8wQy04mKyxQL0uNtyCw0dpfVSs3rKx1bCNDmMw6mFyLm3HWI8xIRERFRa4m9lK/gkksuwY9//GO87nWvw+bNmyN36KPqjOtW7S8EAPqRP0QvjzMGYu+B6MDEsgAZnTW6I/vKnmNt2wp332joftnWBqM14Bn/v4X7O9phcjl48/N+A/ZMxq9uWuyvFLUUTh8YC50j9DJcN3pZn1Rlyxb1+EQwRtXTHdmI3JuZgSnqeyUSCchEomq/K2vzMNxR/70UtgOTj79Dlmxvh3Ccyr2gSj+fxQqx0n5e6wIrD2hRrcBjIRvdh2o5lPKw8LQ0Es5S0CWEwXD3LA7OtYcqkjpSWWhPIK8VLMsLxmkrDe1JeJ4KKruEMHAsF5mcHQqdCuev9r8spbyy5wCA60ooFQ64VJsLIRarsGYSSHRly6qkRJsLy16azzKj7bBmJKyjyzfFKIyvtz2NqYUUjAEs5YV6QtWSdPKwlIe5dHlIX+i7VXo9pTy4dVxjzXBeIiIiImoZdQdT3/ve9/Dd734Xz3zmM1djPFRQpaeUHp/wQ6H+vlC4UzXsKnwjKQp+9OiBiteRHe0w2WzQ7yoygDGm6jXj9okqZm3d7J+z6BtUKPRS0V+gyoIxrcuur7q6oOfml17/5OJyPKmCXfqEZUF2d9WseCrdZa8mISFSSWCdBVNsMkz1qLZ8rVCd4+YVLFsH1UVRfZIKEsl88NxC76mDc+1lu/wVrmsrDRdL/a6iGrYbIyo2cl8OYwTy8w7QngsatQthQg3YEVQmhdOUZFs47DaWgZco+QGBpYPld8YIzGcdf1qSBh3JLKbmU5DSoD2Rq7hbXkHOtZDX9SU6ShjUP1OvLs5LRERERK2l7qV8vb296OvrW42xEOCHJD3dABD0cYokJMzwprpPb23dHCyLiwqOvIUFmGwW+tCh6CbsKyASCQirehbq7tkLGOP3vooobYi7RM64bs3xB2GWp4Nd+ozWMHECJ2PKQ71qpRieDkJEYTvRyzSbgL1cKA6lPHQv9ieq1jvJ/2uxsipaN2Knv/mMg3TWv9VTQRRHnGbmya4slDLIpu2yqjIpDVK96chKq1KpgQU4O+eqHpPNW8GSx0NzbUFglYvxuj1PlIV61RQ3WJfSIOlUbwK/VjgvEREREbWWuoOpa665Bu9///ux0ODQgsqpwYHKYYen4T38SPBba3go6AEVEALyhD8JnaMQ/DSDTCUhnHDYpnp7IwM4kUoGO9+thLAsyM5OAH6D8pq7Gxqz7ECuuMdX1Uu4eeiJCksA1xh7uVBcUphgmVylMEdKg0QqHzze1ZaJDLJKn7/SpuorVXr9bNqG68qyx718eWi2UlFBXCnPW34VmGXpWI3YjQHyen0s6eO8RERERNRa6l7K9/d///f4wx/+gKGhIRxxxBGw7fA/lh944IGGDa4leTrooVTcvLxAWBaMZ4Jjg6dNTZeHLsZAHJioP4gSArKjA95suA+K6u2FnppadrAV1RvKZLORfagi+09VIDs7YXK5yD5XAGr2QVvp6yooVF3VZExd/axWlbd4q3UMtbRC9Q4QvXyuENzkcxZEUUNxv/qnMWPI5yzoiQScoYVQ0FJYBrhcxaGQ5wn/NajyXlRCGKS64i/fdfMq9F7UK5XIIZsvr9CqV9z+UX6V1jrpGcl5iYiIiKil1B1MvfSlL12FYbQwIaC6u4LQRnV1Qc/OVgxJ1PatfrCRzsDMzgXVPV4m+guTPli+E59s97car9aIWzgRP503Hqwd26BH9i+rf1R4EArqyB3wnthTu4opgrV1y1Jw53mAF/1+Gdet2gDdP6h1v+HEWRLDJTOtR0qDlJPHfMavZmxP5pDOVQ5JrMXwZWHOgUy6UKmlYCpKVIVQYbe/is8BILPRvZyK+zStRPZQEpvusTDxggyUU9+8UNZfi39xlo3zEhEREVFrqTuY+sAHPrAa49hwhGX51UvGRFfqCBG/Aqd4yZq99JGo3t6ypuPu408Gv5bJpB9k1QpeAFhHHgEzPgk9M1M9VJIK1uahyGotPTUNMZ9eqtiKSVhW+TU9DRyajn4shuKKqpXudBdVydUqhGcganyetR6n9aNQPaSUV1evoSjFVUiFXxfvGlccUhX6PiV7Mv7SMWFCvaAKjc1L9XYsIJ2zkcnZ0FVCJSEMujrSyBxRPlcIYYLlcPVUTkW9R4neDA4+PQWxjMohIQyk8oIxWNbKAu90tkqPwcNcs+elJ554Atdccw1+9KMfYXR0FFu2bMFrX/tavOc974HjtO7nQkRERLRa6g6mCu6//3789re/hRACxx13HE455ZRGjqvpZDIJuWUY7h+fiHxcpFIQO7ZAjE2WVSUJ24F32rEQ9zwEAEvhkVSwBgdgsrmlwMkY/9dSAcaL3dwbAER7G0RHO7AYTAnbgRociAyVzKFpeIsBWqUlbwBCTbojr5lMQDp27HEKy4IaGgyNSfX3wZuZC51DdXVVb1guBFRfb/Ccqq8hjkI/rmVUa60Fa3gI3sxswxvQl+LuVxuL1hKelrAXd4QrDXyMARzbD4ZKQ5dCYOW6CkIYtCdzmEsnIIRBwnahpAkqpDxPBI8BwFw6EZyjGiEMLOnBUl4QTCVsFz1taRyY7iw7PpO34Hr+OKstOTNGVO1/5LoSMAKWHe/vs1IeOpJZTM+ngvssS8PzJMSmdPA60zNJCOUh2R699FZridyCjWRHLnh/V6Jw3Ub3sWqU9mQOOVc1vAF9qWbPS4888gg8z8MXvvAFPOUpT8HDDz+MN7/5zZifn8e11167ehcmIiIialF1B1NjY2N49atfjbvuugs9PT0wxmB6ehrnnHMOvva1r2HTpvp3iluPjPaA7OKXEalgbRmGu3ckeNybnYV8Ym9ktY7J5yB+/vDSHYnE0mMVwhdr5zbAGLhP7F78/Xbokf1Vx6gnJoGicMfkc3D3+c+RJx8H85vHgl5GpZVX1VQLfUr7TtU8l+uGgzIhYHL5sr5SXjYLRPSaCp0r17gdo1T3YhBW5+tZK+6BsbVpUm9Quioq+hhaF8RiA3LAD1I2dcxjdLozCDKkNPCMgBtRLVXY6c0/D2ArHZxLexI64ot+W8L/O1cIrBK2W1YtVSqbt5At+quacxXG59ohhMFw9ywOzrUHIVQ9VUHVKsDqrU7SWoZCqaVAKBy+SUdDVGkcLoSBXGFlVDGlvPXV66lEOmevzd4ZTZ6XXvSiF+FFL3pR8PsjjzwSjz76KK6//noGU0RERESroO61Hu94xzswMzOD3/zmN5icnMShQ4fw8MMPY2ZmBu985ztXY4zNIYu+GHga7r7yxtbe/HzVXfMCrgvV0x1UI6mB/rLnuY8/GYRSACqeVw30Vx/34rcG8ce9MG4dQU7E9azhocqvb5lkKgXRlgq9P2poECbvVl/SZ0x5iCQEVFfXssahDx1at6EUgDXbOZG7X21AhTBJSxycaw8t3yvcX+mvbSHA8jyBmXRyccWxH2R1p8p30FvI2ljIVt8NTgiD3o6FitVUhUDMGIGpdLKuJYal4xHCYGvv9Iork6Kuo4qqz4zxm6DbjgvHqTwvle5CCPjvfzZtL6vqyXXVipdgribPE2tSzVXPvDQzMxO6ZVdaTVvB9PQ0+vr6VuXcRERERK2u7n8Bf//738f111+PY489NrjvuOOOw+c+9zl873vfa+jgmkn19vjVR1JBWFYQpMhkEtbmYf8gqWDt2Bb5/EIPKmAxBJmbhxoa9H8/XnunPPeJ3ZFBjcnG281Nz8zEDjdEIgGcfkLZ/d5MdBN21dsL2dYW69xl51xYgD4wFrrPTM9A9XYH71dd7GWvRiUwmNpohACUMrAsDWtxWR4AdKay2NnrV0Uq5aG7LR35fNvSsC1/LtNaQkkPQ91+QDudTpb9dTcmHERkKjRAr7bMrlg668QONixLo689HHj54VZ0xVZ6rA3p6WSsc5fSWoaarhf6RQ12zwVN2ethVriTXqurZ17avn07uru7g9tHP/rRho/nD3/4Az7zmc/g0ksvbfi5iYiIiGgZwZTnebDt8p+g27YNzztMvsEKAdPfAwCQ7W2QHe3BQ14mA3f/YvWUp+E+uSf6FKkURGppqYjRGmba7wW1kv5Iq1HlY7JZ4L7/Kr9W8ZJDISA7O4MxeJno17CccMkYA0hVtrwvxhPr6sm1poSAsDdGk9zCDliVbsvx+c9/Hrt27UIymcSpp56Kn/zkJxWPveuuuyCEKLs98sgjy3xFh6dCFQ8AtCdy6Ewu/R2cTSfwxKRfzaG1xFTRMrViCdsNBS3ak5jJJPxzLzYQX8645tKJhlXSFJYruq7C5Hxb2XnnM0vhlhAGScevDJWdeahUdIi0nAqr9lQWCcut2pS90rWS7bm6GrGvFSlNEEyud3HnpT179mB6ejq4XX311RXP+cEPfjByrim+3XfffaHn7Nu3Dy960Yvwyle+EpdccslqvVwiIiKillZ3ivC85z0Pf/EXf4F//ud/xpYtWwAAIyMjuPzyy/H85z+/4QNsCmOg/+t3kcvHVE839MxcedNsIfzd9RbvL32eTKXKw5x6du4DINvaIDo7yiqOlsvathWmPQX96GOxmoCLhAOluqvuYqeGF3f0Wwyb4jYXNwsLsd4LmUzCy2RinTOkzvd6pYTjQPZ0N+yzWi2rsfvV17/+dbzrXe/C5z//eTzzmc/EF77wBZx//vn4r//6L+zYsaPi8x599FF0FS3NPFz61TWKEAaW7UIIE+qPBABdbRnMZx14nl+5VAhurMUQolBZVWhiXiyTC/+gwbZ0WXPrak25C2HXzMLyqpVK9bSn4SiNA9OdVXtZ+eMCnMXqsUo7/wF+kDeXScDz/HBPWbpsmWCUqXSqalN2wH9PPE8sK/yyLB0sc1wLttJoS+RwaG55Fa9rpZ55qaurKzRvVPP2t78dr371q6sec8QRRwS/3rdvH8455xycddZZ+OIXvxjrGkRERERUv7qDqc9+9rN4yUtegiOOOALbt2+HEAK7d+/GiSeeiFtvvXU1xtgclUKMon8sy2QSUAre/DysoUGYvm4/0IogHBsi78IUBTXWjm1wd+8NXUv19vq780WEP97CApCOXqKzHO7IPj9Mi8MYmHQGYttmYDpimaAQsIaHQg3irc1D0AfGqveOgl+xZbJZv8pIKf94IaD6+8I7BEoF0d0FxAim1NAgzNx80JzeGh6Cd2hqeaHWImFZgFLRFW8lwZfJZtd9KAVgVZoMf/KTn8Sb3vSmoLrguuuuw7//+7/j+uuvr7rMZnBwED09PfVdrMXECVM6Ulko6WF6PoX+9gUklIvdk72Rx/qBkwj+6EppcPymUfzm4HAonNrZdwieEZHnybkq9lK+OKYXUrGrjTxPIK8lelIZLGSdsmmpsGteoQ+XMQLulAPTk6vaOwpYCuz8Ci7/WlpL5OYcJDqzob/yWstYwVRpwLetexrjC+2RgWFc1UJDrSWkXGqY7zem3wDLn1ep+fnAwAAGBgZiHTsyMoJzzjkHp556Km6++WZIuX57fxERERFtdHX/C3X79u144IEHcMcdd+CRRx6BMQbHHXccXvCCF6zG+NYdPTMT/NoYA7G4/MwdPQBUCSKigqaoZYCF3fNEIgFoDeO6fsgyPeOHKo2s+jEGMPGXdXjz88Cjj5U/sPgNTY+Hl9WFduOLIVRltBiEAYCwHajBAbgj+2KHPaXHBcsvV0A4DoRjQ0cEU9a2rdD7RyuGcKq3d13uAih07WxS1LHyJ5fL4f7778df/dVfhe4/99xz8bOf/azqc0855RRkMhkcd9xxeO9734tzzjkn/oVbXHEFlfYECqu0x2Y6qu5fUNpo2/MEfnVgS1ml0t7pbhgj0J7MwV3sxzTYNYfZrLPYN6phL2Xx2vEriNJZB5lcebNxy9IwRsBOLv2dFMIguSld1zI7KQ1spZHJ2X5IZXkQAnDzCm7aQrIrWzPkKigd4+5DvTWrwmoRwn9dpTv5GSOQW7DhtOWhVPTrtS0NA9SsCltrjZ6X6rVv3z6cffbZ2LFjB6699locPHgweGx4eHj1LkxERETUopb9o9MXvvCFeOELX9jIsWw4JpuFHOiHMMavovH3Goe1dcvScrZlkm1tMOk0jOtCH5wAzPrp36V6e+HNzgYhTKHyy+TjNWavpLTKqFDtZPI5vxF9g8jOTgjLCkJA/04F1d1Vdl/xUkRvYQEoartVzN2zt+o19fRMxc9Q9XTDm0+v+P1bjnqWzMwUhbIAkEgkkEiEKz3Gx8ehtcbQ0FDo/qGhIYyORoeDmzdvxhe/+EWceuqpyGaz+MpXvoLnP//5uOuuu/Cc5zyn3pfU8tJZBx2pbLAkzxg/gNjaPY09Uz2Lu/ZVXvYWFZQUgov29hwW8jayeQuTCyl43vqoIjFGoK9jAfNZB9m8BaU8nDq8F/ePboMQ0csS49JaBgGelAbJdv/vqWVryMUlhMtV/F4nnTws5YWqp6Q0SNh5pLNL/epKl1pWCvKEMEh2VO915VbZAbAjlUU2b5Ut61wLq7HEuB4/+MEP8Nhjj+Gxxx7Dtm3hDU7MGi4JJyIiImoVsb9V/OhHP8Jxxx1X9uUU8LdRPv7446s2OD5cedOzMLmiQMEYmKQD9ZRdEJbl7+BXrWShAn3o0NKyM083tFJKJBJ+RdYymWwWpuhLgfvknrrGJywLaqC/zouWbBtvWct6XwHAm5vzg6LQ+T2gpPm6tXVz0QUFrJ3bI88nEomgMXyBbG8PH1TlMzS5fLjx+zJf13LUajBc3Gi4nt2vhCit3jBl9xUcc8wxePOb34z/9t/+G8466yx8/vOfx4UXXohrr722Ya+z1WTzFnRRaKQ9id2HevH0zbsx0DmPZ2x7YllNsMdmOoLgxHXViqt9ipU2Zq9XTqugUbnWEvft316zEqg4tLEsjY5U/I0phDBly/dsSy+r1xQA5FwL6Vz5xiLFAaKUBsOds6FrVAueSh8r/bxKd10s5moJr+ixteqDBdQ3L62Giy++GMaYyBsRERERNV7sYOq6667Dm9/85sgmo93d3XjLW96CT37ykw0d3EZg8rmywEH/4Ql4Pe1Q27ZATx5a06bbcQilINTyfwruLSzEbmpeYG0e9ntyYXGHwoWV9cqS3V2Qbcts4GtM5Ph1yTK7UBWUMRV3YIRnykIt2dlRdpjq6orcqS/0fgoBa8e2smNWSz3bssfZ/WpgYABKqbLqqLGxsbIqqmrOPPNM/P73v1/Ra2tl+ZLQyPMElPRwetfjOKFvPx6dGqxaLdMMUnqQcvmVoXPpRCiIKl2mGGWwaw6phP+DBc+TK64O6kxmkVrcJTCO4p5hhR5WxYzxA6viY/ZOdYeOixsYFZq0lx4fdR/g99gqXMcPsGJdpiHqmZeIiIiIaOOL/c3koYcewote9KKKj5977rm4//77GzKo9UD1dEP19y3ruUIpyMf3wd09EmqUrXp7yyprlp4klh+01MlbWPDDkGJSraiKqpiK2E3N3T+6VAFmTPn166QnJoOlfrUIy4K1vXrYIzs66v68ZXs7IARMPlf2etzRA2XHG61rL8msFoCtgsKSmVo3YGn3q8KtdBkfADiOg1NPPRV33HFH6P477rgDz3jGM2KP68EHH8TmzZtrH9hipFyq0omq2KkmYbv40eSf4OejOzA+2x6EEV1tGbQno5eR2pbGQGe8v2fF/Ibh9SUZ6cV+VcUsSyNZR9BTiZQG23unyprHH5ztCJqce55ANm+taGne5Fxb7EbmSnnobqve7yrp5NGWCH82tYKoao8rVf/nAvifZ5zG+41Sz7xERERERBtf7B5TBw4cgG2XLzMITmRZoQahG11xs3JhO1BDm0I7zlWjhgbh7j9QVpVTtnysiFAKoi0FVAtsSnZ+A+AvicvlQ03Zl0M6NkR7W2Rj73qZmKGTtXM73D37Qu+TsB0YN1+5ykwqSMeua3c947rln50QEI4TBIfe7CxQZ19y0dYGpDNlDeRVTzcgZLhfFRZ7ZkkFa/Nw1WbsatMm6PHxtam0W4Xdr6644gq87nWvw2mnnRZss757925ceumlAICrr74aIyMj+PKXvwzAr8Y84ogjcPzxxyOXy+HWW2/Fbbfdhttuu63+13OYK+4n1JbIY3vXITx6cDDYdQ6IDiakNDhpYB8eGNtaFv4sRDQOLzzHsTR6kmmMz7aXPV5gWRpay9A5OlNZaE9iPlNeIVgPS3pIOfkgPFouY4CZXKLsr1TUUsTOVBZzmURZ/6e8VhWrsGxLI+XkMbOQjD0mrSWm5lOh900IA0t5QeVW6We1EvmcBWOARDIc9ElpkM9ZcKcdJAcqB2UdqSwWsk5Dl29WtEq78hERERHR+hQ7mNq6dSt+/etf4ylPeUrk47/61a8O2woHk8+Fgg3Z2envzjYxGXl8xd3oopa/LS7dcp/cAz0+UXUc1tYt0KMHQju/1XpOLaqrC3p21g966gh7qglVMkkFYVuhyrECd/fesvBF9nTDm5mJPB5YDPBSqfrHWtqjSimo3p7IyibZ1gYoVXMHPV0hiI3agTHgaX95Z7WhLiys2fJPoQ1EjUoIoesby0UXXYSJiQl86EMfwv79+3HCCSfg9ttvx86dOwEA+/fvx+7du4Pjc7kcrrzySoyMjCCVSuH444/Hd7/7XVxwwQX1v6AWspC18fuJTUGwMdg1h04ni8cODpQd63kC94wcUbWxeTHb0jhxcD9+Obo18nwFQhgc0XsIe6Z6kM0v/e9kNp1YUU+igc55TKWTyOTsFYdSgB/WFe9c6OYVtCuRSJVXY0WNvSuZ9Xcg1NFBkaU02p1cXcFUYVzFpDRIOfnIJYWFY2tVPFV63K6yc6BUHmRH9cq0QiP9tbAa8xIRERERrV+xg6kLLrgA73//+3H++ecjmQz/4zudTuMDH/gA/vRP/7ThA1yPvLm56ntZC+E/XiGICv3r3hi/aiiGuBVbdRneBCVF9TBlBYRSkB3t0ZVYEd9yKoU9wVPyOehDK9+9zrhuZCjlX8Mt6xkVh+rvg8lkay4xrBS6FcRdotgIwtTu1bKclU2XXXYZLrvsssjHbrnlltDvr7rqKlx11VX1X6TFGSOg9VJYMTHfhqmFVMXjlfTgWF5k0COlgTFL4YerJX5zcDgyyCre0c8YgT9O9Ec21V4uIQwGUnPQRuDQ3Oosb9ZawluwYJJuWZATNfaxmfKeccWiliEud1z1hlu1FD6bakvxlPKgUtUnguLgcbWt1rxEREREROtT7B5T733vezE5OYmjjz4af/d3f4dvf/vb+M53voOPf/zjOOaYYzA5OYn3vOc9qznWNSESicq7ognh9yqq0Dy7QHZ0QPV2Rz5mDQ2W95KqcC5r+7ZV36FN/+4Pywql4vajMvlcxcqydUcICMuCyef88KjOvlve9Ay8dGOqztaMn0bUvlFT2ZauGCwkbBfP2v5HGCOqhgeDnXM4oif672Jf+0Kol1Olc0lp8NSBcVhFO/o1emmXMQK/Gx/E1HzlkK2SVCIXq4dSIplHsi+zon5Sa6nQs6sQCtbzngvh3yo1OY9DyuX1plo2zktERERELSX2j0CHhobws5/9DG9961tx9dVXB9smCyFw3nnn4fOf/3xdu26tV7KrC97UtL/bHvyG5Sab9ZtbGwN3ZH/Nc1RbAlapSieK3j+6bv/xrQb64e7bv27HV4lMJuFls5HjlokERGdnULUlHRsilYrdd6uwxNLauR16ZH9oyWVc1vAQvJnZFTeHjyvO7lbc/ar5EraLTN6C5/lLvAa75pBxLcwsJJFzFR4Y215zF7p9U10AyndVBYCJubayXkdAefWQ5wnsnu6JtePdSiwn7JLSYKBtAfvcrqCSrJr1FEp1tWWwkLMjl1VKaaDkUt8pP2CqXgFVrBBm5RYcWMk8LKv+131E3yQm0m2h5ZCrifMSERERUWupqzZ/586duP3223Ho0CE89thjMMbgqU99Knp7e1drfGuudCmZNzcf3kmtSqXUcsi2NojODugDY2WPLSfYWCsV+2gBgBBQAwM1l+U1g+hoh9BeEDwWK+2ztdy+W1G9s2I/98DYmoZ9whiIGter9TitvtKd3uZzDrS3tJwuTpPxatUyxf2LhAB62tIYSM3jdweXdtgsBByN6Pm0GjxPYM+hnoqPK+VhoGMeYzMdK1pquBq6ExnktYwMpjxPBIEkgLp2YiwQwsBpyy27APfJQ71r0/R8EeclIiIiotayrB979/b24vTTT8fTn/70wyqUiiLbU5Dd0VUGxUQiEVr2JazqmZ+1fRvUU4+Et7AAPVYU4EgFa+f2ZY93VUkFtWlT7eOMgWlEI3Wp/FsNsca0SI9PwORzEIkEZHGvNCHKr1XlW5y1fVvFsVnbtsYad+R11vjLltAm1o3Wl3Ynh962dM3jBjrn0dfhV98JYdDdXnnXNQA4ZfMITt+yG9PpJB4/1Bfcn7BdnLJ5JHaVzlqyLI2Bztp92YwRyLgr75NkWTq0lDGKUh6O3nQw1vslpcHeqW6ksw6629Oh16KUh4Qd/gFFtc8v6eQrPp5wXEgZL9QSwqCrbWmpY+mui6uN8xIRERFRa1nd9RiHAT01HatHkrAsCLUYRggBtXm46vHuyH7oPzzp/6Y4jPB07Gboa854MBGNuYVlQXZ2hu6rtaNdHKqrA6qretNhALFDMDXQD9Xlh4xCCEAthUcylYLq6wkf398H1RPdK8wd2V+xeq7aY7KtLRhDgbVj9XuJVeSZeDdaV8bn2nFgpjPyMdvSQaCQsFwkLD/YSNguzhn+fdWKm99ODOKhsS3QWoZ2hsu5Cv81PrSmVTNxeZ7EfEQVl+cJuHn/NQhh4Hn+znwrDVi6kll0Jasv7zVGYDqXjJUzb+2exqbFMMqWHlRReNSeyGGgIzznKuVV/Ayzeavi63OrhEsDnfMY6l6asx1L4zU7fwGnRgC3ajgvEREREbWUtdtm5zAgk0lAyqD/j7VrJ7z9B+BlMuGd1IwJV0FFqbYksMHLBRvGmIq9j8Ri43C1eRjunr0NuVzcpuxxQzA9MRmEgN5imFXoOeUtLAAlr02PT1S56PI+P5N3YUp2/HOf3FNj5KtHmNq7W62jVjy0qDggKlS2TM+noJSHF2x/FL+a2op9U10YObQUrGbzFu4cfWrV/lCVdpZb70v4qu2IZ1kaPakMxmfbG3K9yZKdAqU0ZYGd5wkcmI4ODkvtm+kKAqPCGFOJHLJ5GzMLybJd+qKW+xXEWa4ZJZ23Q5VW2byFL/7umfA8AdvSoZByLXBeIiIiImotrJiqQQ0NVlyW5T6xG7K/L7LaRW0aKH9CPcu7GkgkEhD24he3WpU5yxijcV3omRkY14W7d2QZI4xBCFibh8PL7+oVUb4gOjuXKt2iLms7Da1mKuz4J9vbw8s9m7SEk0tmNqbejoXQcjK5+C3d8wTu2vcUDKVmy6pqpDTY3D4TWl4mpSlbKraaiq/dnswhlcgF91dbolZtV8Jq17JsDddVmJxvq/2EZbAsjROG9qO3Y/mbFWgty4Ktdicfqpwq1dexALvOaqZqyw/nMw7m0gn0dSwEn4nWEj3taVz+J/+v5tLFRuO8RERERNRaGEzVYKZngubnXiYTVAyp3l6o7i6/CXhhh0LLCpZplQY0IpGAtbkxuxaqoUE/1FgMa4L7N20KgpTikENYFoTthyDW0GDVcMca2hTqlVUvmUpBtjemMqGYtWUzvENTQaVTo+iDB6s2mZc93RBWHZUiJe99cLcdrugQSgGi6K+fp/2m6WuNS2Y2pHTOhuf5f35mFpI4tFjFs6lzHu1OHg/s2xZU1tiWRldbBlpLPDI2FKqY6khmcVTfeEPGNNA5j4TtwrI0tvZOB0FT4X6lPBzRNxkETJbSsJXn76bXMR8EZEKYshBquHMWCTu/7LHZSq9KALepYx5PzvRieqGxu9WNz7ZXrFISwuCYnjF01FhOWCxhuzh722OhsLK0jxQAWCVh2NR8Cp977OyqVVqrgvMSERERUUthMFWDl8lEVtroqSno6Zmy+02FpiImm62+k10N/jJCBWFZ8Kam/eVgxkBPHloa68wMjJsHjAlCDmFZ8BYW4C0swNq2FXriUDBG2dkJNdAfuo67fxQmG/8LTymj9arsJuiO7Gt4KFWNbG8HhPCDq4gd/Coqeu+LqeHB0O/1zEz5eZuwy1Rh96taN1pfMjk7st/T5EIKU+ny4NmrsIxrZiGJ347VF5gXqmekNOhIZSGlHyTNZhLIawWtJSYXlno5zWUduJ6E1jLY3c2yNGbTScxlEnjO9j8gq1UQkOzsO4QThvaHrlloDr5c2gjoVWjePTrdien51Jr03hLCYHvvFJTycM/eI4IwMo5s3sJPRo4KhZJKeThpINzQfmymI/Q+x93xsdE4LxERERG1FgZTy2WMf5PK34UN/pK2RjT9BhBe2iUEZE83ZHsbZEe7Hxwt/qO8ECKp3l7AM34jbamCx2V3F2TK/2m+u28URmuoPn8nRW92NlZj93qYbHZFwdZ6IdrawhVN9Yj4wtSovlsN5xlA17ixMmHDcF0F11WQ0gRLsvKuwly6chVkrWbgxcFFwnZx8tBIsPSuO5mBrTSU9JDNW/A8AWOWej4VKqfaEzlIaYJgJGm7cBabsv/iwA5kcja6klkIYbB3uhu/PRgOy5bbsLwQdhXel0Zb053qBDDUNlNW1RRXNh9uKem6Cj/dc2TVnmNNw3mJiIiIqKWsw3+Rbhyqvw8ymYBJruAnykL4t9IeQ55eaoptDNzRA36QFNEQXFgWjOs31XZ37w0139YTk3611BE7/CWJnoa7f3TpySUhSumSs7jU0CBk2+r0cWkGffDg+m1C30DCMxCeV+PGL4AbSV/HAtoSOfSkMlX7NlVT2PnNtjSO7J8IzpPNW3hwdBs8T0BriZFD3cjmrchlZ70dC7ClhudJzGUSQVWREAZzab+66uThEWRdhWzewoHpThgj4LoqdD4p/SVny7Gpcx7tyToqHtcxzxO4b2RHw5rQC2HWNFirB+clIiIiotbCYGoFTDoDk8tBuMsPMFSf36sqssdQnKbbQvgN2LX2g5RC0CQErO3bgsPcJ/csVVGVNt4uOpca2rSs16EPTsBLp5f13EZQA/3hxu0NbFi+EiKRgDXcmN5iq6JQ+VfrRhtGTvvBTl5XrxCq1kx8oGMevW1p5F2FJw71hgIMY0TNwCuVyOGc4d9DChNUUgF+4LWtZzqonvr12Oagkqm7PR3ZB8qxXBzbd2BZIdvkQgrpJu4muLV3OtQ7a62biFfSkcriqIEqu442G+clIiIiopbCYGoFvIUFfye6QmVTBL/p+XDo94XG5QAWAyXjB0lbNoeeqwY3BVVIqr8vcsc8NTAAs5AOmrIHjIE7sj/0+2AMpY23i5+z3F31ikOxJjAL6aBJ/XoKg0wuBz2+9AVQdsbbQn6tcPerw89cOoFs3sLkfFvFipikk8fW7unQ7wsNygvkYhPy/vaFUIjVkczCsTSEMDhyYCIyTDp7y2P44/wA/jge7mGntcTobGcQVBVXRikRvTNfJmfjP0d2LKu6x3XVmvR/qmQhbwe9rZJOHps65ps2lmLpnI29090A/IBysGtu2dV1q4HzEhEREVFriSibobpVCWRMNgt39EDwe5lKAkJCtKX8ht5z88E5igMMANAHxpbOk8kGwUvomIMHK4+rwlI0PVPetH2jKw7mTDYbXq7YTMYsNYMXAiKZBBrVh6wR4lQesDJhQ6oWyGTzFvbNdAW/T9guEsoPmw5Md2I6nYQxAp4nFn+99NyZBb+5uhAG83knsqn4vz95bMU/NpV2m5us0sx7vS45q6W4QXk66zRsGd5KaS2D3lJCGHQ4WYyL9vXzV53zEhEREVFLYTC1For+AR30iDrk76ZXvINdtabh3vz6+Ek7rYAx1YPEZvA8QNRopuwtr9kyrV/GCGi9FPZMz/sbJBSqZooDlEphijECB6ajKwCbWaW0nq3HgE1rWVbZ1nScl4iIiIhaCoMpohYmtIFA9coDLplpHesxOKHWw3mJiIiIqLUwmCJqZVwyQ0TrDeclIiIiopbCYIqolWkPQI0lMZpLZohoDXFeIiIiImopDKaIWpnxavdqiWi6T0S0ajgvEREREbUUBlNErcwzQI1eLv4xRERrhPMSERERUUthMEXUyjwNQMc4hohojXBeIiIiImopDKaIWpn2ai+J4bbsRLSWOC8RERERtRQGU0StzCDG7ldrMhIiIh/nJSIiIqKWwmCKqJVpDRgumSGidYTzEhEREVFLYTBF1MqMiVGZwNIEIlpDnJeIiIiIWgqDKaJWxl4uRLTecF4iIiIiaikMpohamPE0TI0lM7UeJyJqJM5LRERERK2FwRRRKzMGNbsIc8kMEa0lzktERERELYXBFFEr0xoQNSoPWJlARGuJ8xIRERFRS5HNHgARNY/ROtatXp///Oexa9cuJJNJnHrqqfjJT35S9fgf//jHOPXUU5FMJnHkkUfihhtuWO5LIqINbrXmJSIiIiJanxhMEbUyz8S71eHrX/863vWud+E973kPHnzwQTz72c/G+eefj927d0ce//jjj+OCCy7As5/9bDz44IP467/+a7zzne/Ebbfd1ohXSEQbzSrMS0RERES0fjGYImphRnsxKhPq2/3qk5/8JN70pjfhkksuwbHHHovrrrsO27dvx/XXXx95/A033IAdO3bguuuuw7HHHotLLrkEb3zjG3Httdc24iUS0QazGvMSEREREa1fDKaIWlijl8zkcjncf//9OPfcc0P3n3vuufjZz34W+Zx77rmn7PjzzjsP9913H/L5fP0viog2NC7lIyIiImotTWl+bhZ303GRr7nxDhGtjAs/3DERu1i5JguY6pUHhefPzMyE7k8kEkgkEqH7xsfHobXG0NBQ6P6hoSGMjo5Gnn90dDTyeNd1MT4+js2bN1cdX6MU3h8vnV2T6xG1ssLfs5XOS0RERES08TUlmEomkwCAn+L2ZlyeqCUV/t4BgOM4GB4exk9H4/0d7OjowPbt20P3feADH8AHP/jByOOFEKHfG2PK7qt1fNT9q6nw/vzxf/3vNbsmUatbybw0PDwMx3FWa2hEREREtEaaEkydfvrpuPfee5HJZNb0iydRKzLGIJlM4vTTTw/uSyaTePzxx5HL5WKfo/Tvamm1FAAMDAxAKVVWHTU2NlZWFVUwPDwcebxlWejv7481vkbgvES0dhoxLzmOEwq2iIiIiGhjakowJaXEGWec0YxLE9GiZDLZ8C91juPg1FNPxR133IGXvexlwf133HEHXvKSl0Q+56yzzsK//uu/hu77wQ9+gNNOOw22bTd0fNVwXiJqvtWYl4iIiIhofWPzcyJqqCuuuAL/+I//iJtuugm//e1vcfnll2P37t249NJLAQBXX301Xv/61wfHX3rppXjyySdxxRVX4Le//S1uuukm3Hjjjbjyyiub9RKIiIiIiIhojTSlYoqIDl8XXXQRJiYm8KEPfQj79+/HCSecgNtvvx07d+4EAOzfvx+7d+8Ojt+1axduv/12XH755fjc5z6HLVu24NOf/jRe8YpXNOslEBERERER0RoRJmpLHCIiIiIiIiIiolXGpXxERERERERERNQUDKaIiIiIiIiIiKgpGEwREREREREREVFTMJgiIiIiIiIiIqKmYDBFRERERERERERNwWCKiIiIiIiIiIiagsEUERERERERERE1BYMpIiIiIiIiIiJqCgZTRERERERERETUFAymiIiIiIiIiIioKRhMERERERERERFRUzCYIiIiIiIiIiKipmAwRURERERERERETcFgioiIiIiIiIiImoLBFBERERERERERNQWDKSIiIiIiIiIiagoGU0RERERERERE1BQMpoiIiIiIiIiIqCkYTBERERERERERUVMwmCIiIiIiIiIioqZgMEVERERERERERE3BYIqIiIiIiIiIiJqCwRQRERERERERETUFgykiIiIiIiIiImoKBlNERERERERERNQUDKaIiIiIiIiIiKgpGEwREREREREREVFTMJgiIiIiIiIiIqKmYDBFRERERERERERNwWCKiIiIiIiIiIiagsEUERERERERERE1BYMpIiIiIiIiIiJqCgZTRERERERERETUFAymiIiIiIiIiIioKRhMERERERERERFRUzCYIiIiIiIiIiKipmAwRURERERERERETcFgioiIiIiIiIiImoLBFBERERERERERNQWDKSIiIiIiIiIiagoGU0RERERERERE1BQMpoiIiIiIiIiIqCkYTBERERERERERUVMwmCIiIiIiIiIioqZgMEVERERERERERE3BYIqIiIiIiIiIiJqCwRQRERERERERETUFgykiIiIiIiIiImoKBlNERERERERERNQUDKaIiIiIiIiIiKgpGEwREREREREREVFTMJgiIiIiIiIiIqKmYDBFRERERERERERNwWCKiIiIiIiIiIiagsEUERERERERERE1BYMpIiIiIiIiIiJqCgZTRERERERERETUFAymiIiIiIiIiIioKRhMERERERERERFRUzCYIiIiIiIiIiKipmAwRURERERERERETcFgioiIiIiIiIiImoLBFBERERERERERNQWDKSIiIiIiIiIiagoGU0RERERERERE1BQMpoiIiIiIiIiIqCkYTBERERERERERUVMwmCIiIiIiIiIioqZgMEVERERERERERE3BYIqIiIiIiIiIiJqCwRQRERERERERETUFgykiIiIiIiIiImoKBlNERERERERERNQUDKaIiIiIiIiIiKgpGEwREREREREREVFTMJgiIiIiIiIiIqKmYDBFRERERERERERNwWCKiIiIiIiIiIiagsEUERERERERERE1BYMpIiIiIiIiIiJqCgZTRERERERERETUFAymiIiIiIiIiIioKRhMERERERERERFRUzCYIiIiIiIiIiKipmAwRURERERERERETcFgioiIiIiIiOj/Z+/NwyUpqvThNyIyq+re3qCbpbtZukGlaQQEBRVllUU2HQF1xh0QdNgcRMRxgwZFBZcBF0SfGRaFRlQWBQEFZRFt/IG4guDwTaMoogj03rcqM+J8f0ScyMisrLt037q9EO/z3FtVuUZuJ0+88Z5zIiIi1gkiMRURERERERERERERERERERERsU4QiamIiIiIiIiIiIiIiIiIiIiIiHWCSExFRERERERERERERERERERERKwTRGIqIiIiIiIiIiIiIiIiIiIiImKdIBJTERERERERERERERERERERERHrBJGYioiIiIiIiIiIiIiIiIiIiIhYJ4jEVERERERERERERERERERERETEOkEkpiIiIiIiIiIiIiIiIiIiIiIi1gkiMRURERERERERERERERERERERsU4QiamIiIiIiIiIiIiIiIiIiIiIiHWCSEyth7jiiisghPB/rVYLM2fOxAEHHIBPf/rT+Mc//rGum+ghhMCCBQv874cffhgLFizA448/Pq77+ctf/oLTTz8d++23HzbZZBMIIXDFFVeM6z4iIiIiIiIiIiIiIiIiIiImFpGYWo9x+eWXY9GiRbj99tvxla98BbvtthsuuOACzJ8/H3fccce6bh4AYNGiRTjhhBP874cffhjnnnvuuBNTjz32GK6++mo0Gg0cfvjh47rtiIh1iZ/85Cc4/vjjseOOO2LSpEnYaqut8C//8i/45S9/OaHtePLJJ7FgwQL8+te/ntD9bghYtWoVFixYgLvuumtdN2VEXHLJJcOS9l/60pew4447otlsYrvttsO5556LLMsmroHPUyxfvhxnnXUWDjnkEGy++eZdgzohHnzwQRx00EGYPHkyNtlkExx99NH4v//7v4ltcMQGg4my3Y8//jiOOOIITJ8+HUIInH766X3dVz8GIId77uowku1fsWIFTj/9dMyePRutVgu77bYbvvWtb41PYycI0TZF9Asj+SPjhY997GPYdtttkSQJNtlkk77ua//998f+++8/rts89thjMXfu3DGts3DhQlx00UU953/rW9/CbrvthlarhdmzZ+P000/HihUr1q6hE4BITK3H2HnnnfHKV74S++yzD4455hj813/9F377299i0qRJOProo/H3v/99XTcRr3zlK7H11lv3fT/77rsvnn76adx+++0444wz+r6/iIiJwle/+lU8/vjj+I//+A/ccsstuPjii/GPf/wDr3zlK/GTn/xkwtrx5JNP4txzz43EVA1WrVqFc889d4Mnps4//3z8x3/8B44++mj88Ic/xMknn4xPfepTOOWUUya2kc9DPPPMM/j617+OdruNN7zhDT2Xe+SRR7D//vuj0+ng29/+Ni677DL88Y9/xD777IOnn3564hocscFgomz3+9//fvziF7/AZZddhkWLFuH9739/3/Y1a9YsLFq0CEcccUTf9jEajGT7jz76aFx55ZU455xzcOutt2LPPffEW97yFixcuHBiG7oWiLYpol+YCGLqe9/7Hs4//3y8853vxN1339134cYll1yCSy65pK/7GA2GI6auvvpqvOUtb8Gee+6JW2+9Feeccw6uuOIKHH300RPbyDUBRax3uPzyywkA3X///bXzv/3tbxMAOvfcc0vT77//fnrd615Hm266KTWbTdptt93o2muvrd32T37yE/r3f/93mjFjBk2fPp2OOuoo+utf/1pa9sc//jHtt99+NH36dGq1WrTNNtvQ0UcfTStXrvTLAKBzzjmntO3q3+WXX07nnXceKaXoz3/+c9fxHHfccTR9+nRavXr1qM7P/fff77cbEbGh4+9//3vXtOXLl9OWW25JBx544IS14/n0XHU6HcqybNTLP/300yVbN14wxtCqVavGdZsvfvGLab/99uua/s9//pNarRa95z3vKU0///zzSQhBDz300Li2I6IMYwwZY4ho+PvpTW96E2222Wa0dOlSP+3xxx+nNE3prLPOmqjmRmxAmCjb/cIXvpAOO+ywvu6j3xirHR/uWf3BD35AAGjhwoWl6QcffDDNnj2b8jxfy9ZODKJtiugXevkj44lPfvKTBKDWl95Q8K53vYvmzJkzpnWOOOKI2nXyPKdZs2bRIYccUpp+9dVXEwC65ZZb1qKl/UdUTG2AOPzww6GUwj333OOn3XnnnXj1q1+NJUuW4NJLL8X3vvc97LbbbvjXf/3XWrb6hBNOQJqmWLhwIS688ELcddddePvb3+7ns2S70Wjgsssuw2233YbPfOYzmDRpEjqdTm27jjjiCHzqU58CAHzlK1/BokWL/IjXe9/7XiRJgq997WuldZ599ll861vfwrvf/W60Wq1xODsRERsWtthii65pkydPxk477YQnnnjCT5s7dy6OPPJI3Hzzzdh9990xMDCA+fPn4+abbwZgc9PNnz8fkyZNwstf/nI88MADo27DXXfdhT333BMAcNxxx/n8dqGc/4EHHsDrX/96TJ8+Ha1WC7vvvju+/e1vl7bD+fF+8pOf4MQTT8SMGTMwdepUvPOd78TKlSvx1FNP4c1vfjM22WQTzJo1C2eeeWYpjIzDNy688EKcf/752HbbbdFqtbDHHnvgxz/+cVe7//d//xdvfetbscUWW6DZbGL+/Pn4yle+0nVsQgh885vfxAc+8AFstdVWaDabeOyxx/D000/j5JNPxk477YTJkydjiy22wGte8xr89Kc/LbVp8803BwCce+65/twce+yxAHpLsBcsWAAhRGmaEAKnnnoqLr30UsyfPx/NZhNXXnnlqI9lJMydOxcPPfQQ7r77bt9Obtttt92GoaEhHHfccaV1jjvuOBARbrzxxjHtK2Js4OsxHPI8x80334xjjjkGU6dO9dPnzJmDAw44ADfccIOfxvf1woUL8aEPfQizZs3C5MmT8brXvQ5///vfsXz5crznPe/BZptths022wzHHXfcmGX8vUIW1iTsALD34IEHHohp06ZhcHAQ8+fPx6c//enSMt///vex1157YXBwEFOmTMHBBx+MRYsWlZbhZ+u3v/0t3vSmN2HatGmYPn06zjjjDOR5jkcffRSHHnoopkyZgrlz5+LCCy8src/n7qqrrsIZZ5yBmTNnYmBgAPvttx9+9atfdbV7LG166KGH8Ja3vAXTpk3DlltuieOPPx5Lly4tLUtEuOSSS7DbbrthYGAAm266Kd74xjd2hUTtv//+2HnnnXH//fdjn332weDgILbffnt85jOfgTHGH8tItnsk/PnPf8bb3/72ku35/Oc/X9qHEAKPPfYYbr31Vr+P0aRs+OAHP4hp06ZBa+2nnXbaaRBC4LOf/ayf9swzz0BKiS996UsA6kP5xnKOly1b5t9BkydPxqGHHoo//vGPoz4n3IbhbP8NN9yAyZMn401velNpveOOOw5PPvkkfvGLX4xpf+sKG5ptuuiii/z9WMWHPvQhNBoN/POf/xz19v7617/iPe95D7bZZhs0Gg3Mnj0bb3zjG0tRKSM9I0Bxz372s5/FBRdcgLlz52JgYAD7778//vjHPyLLMvznf/4nZs+ejWnTpuGoo47qyhnMft4NN9yAXXfdFa1WC9tvvz2++MUvdrV7LG363Oc+hy984QvYbrvtMHnyZOy111647777urY5Fj/vzjvvxEknnYTNNtsMM2bMwNFHH40nn3yydCy9/JHRwBiDCy+80Kce2GKLLfDOd74Tf/nLX0r7+NjHPgYA2HLLLUdt+x566CEIIfCd73zHT/vlL38JIQRe/OIXl5Z9/etfj5e97GX+d/W9ONZzfMUVV2DevHn+mn3jG98Y7SkpteEHP/gB/vSnP5VyUgPAfffdh7/97W9dvt6b3vQmTJ48ufSsrpdY18xYRDdGUkwREW255ZY0f/58/3vHHXek3XffvUsFcOSRR9KsWbNIa13a9sknn1xa7sILLyQA9Le//Y2IiL773e8SAPr1r389bFtRGVn5zne+QwDozjvv7Fr2Xe96F22xxRbUbrf9tAsuuICklLR48eJh9xPi+aTsiHh+YsmSJTRt2jQ66qij/LQ5c+bQ1ltvTTvvvDNdc801dMstt9ArXvEKStOUzj77bHr1q19N119/Pd1www20ww470JZbbjlqNc7SpUu9bfjYxz5GixYtokWLFtETTzxBREQ/+clPqNFo0D777EPXXnst3XbbbXTsscd2PYe8je22244+8IEP0I9+9CO64IILSClFb3nLW+ilL30pffKTn6Tbb7+dPvShDxEA+vznP+/XX7x4MQGgbbbZhvbee2+67rrr6Dvf+Q7tueeelKYp/fznP/fLPvTQQzRt2jTaZZdd6Bvf+Ab96Ec/og984AMkpaQFCxb45e68804CQFtttRW98Y1vpO9///t088030zPPPEOPPPIInXTSSfStb32L7rrrLrr55pvp3e9+N0kpvQ0bGhqi2267jQDQu9/9bn9uHnvsMSLqPdJ1zjnnUPUVy+3YddddaeHChfSTn/yEfv/734/6WEbCgw8+SNtvvz3tvvvuvp0PPvggERH953/+JwGgFStWdK232Wab0Vve8pZR7ydi7dBLlfDII48QAPrKV77Stc6ZZ55JQgivLOb7es6cOXTsscfSbbfdRpdeeilNnjyZDjjgADr44IPpzDPPLD2Dp5122pjaud9++9WOdq/J6O5///d/kxCC9t9/f1q4cCHdcccddMkll5R8ER7RPeSQQ+jGG2+ka6+9ll72spdRo9Ggn/70p345frbmzZtHn/jEJ+j222+ns846iwDQqaeeSjvuuCN98YtfpNtvv52OO+44AkDXXXedX5/P3TbbbEP/8i//QjfddBNdddVV9MIXvpCmTp1K/9//9/+tVZvOPvtsuv322+kLX/gCNZtNOu6440rn4sQTT6Q0TekDH/gA3XbbbbRw4ULacccdacstt6SnnnqqdP5nzJhBL3rRi+jSSy+l22+/nU4++WQCQFdeeSURjWy7R8I//vEP2mqrrWjzzTenSy+9lG677TY69dRTCQCddNJJfh+LFi2imTNn0qtf/Wq/j6GhoRG3z7YztN077rgjDQwM0MEHH+ynXXvttQSAHn74YSIq3gXh+2W059gYQwcccAA1m006//zz6Uc/+hGdc845tP32249JMTWS7X/lK19Je+65Z9d6v//97wkAfe1rXxvVftYnbAi26emnn6ZGo0Ef/ehHS9PzPKfZs2fT0UcfPept/eUvf6FZs2bRZpttRl/4whfojjvuoGuvvZaOP/54+sMf/kBEo3tGiIp7ds6cOfS6172Obr75Zrrqqqtoyy23pB122IHe8Y530PHHH0+33nqrPx+ve93rSu2ZM2cObbXVVrTtttvSZZddRrfccgu97W1vIwD02c9+1i831jbNnTuXDj30ULrxxhvpxhtvpF122YU23XRTWrJkiV92rH7e9ttvT6eddhr98Ic/pP/+7/+mTTfdlA444AC/3HD+yGjwnve8x9t0voc233xz2mabbejpp5/2+3j3u99NAOi2224bk+2bNWtWSUH+mc98hgYGBgiAjyDKsoymTp1aUgRW34tjOcd87qrvnW222WZM79SHHnqIXv3qV9PMmTP9uV20aBEREV166aUEoFYFv8cee9Bee+016v2sC0Riaj3EaIipLbbYwhNT//u//0sA6HOf+xxlWVb6u+SSS0ove972bbfdVtoev3zvu+8+IiJ67LHHqNFo0Mtf/nK64oorSo5aiLEQUw8++CABoKuuuoqIiLTWNHfu3C7DPBIiMRWxseNtb3sbJUlCDzzwgJ82Z84cGhgYoL/85S9+2q9//WsCQLNmzSqF2N54440EgL7//e+Pep/DPVdjJb6rTuYb3vAGAkBf+MIXStN32203eulLX+p/8wt+9uzZpdDeZcuW0fTp0+mggw7y01772tfS1ltvXQorICI69dRTqdVq0bPPPktEhZO87777jngO8jynLMvowAMPLJGCw4U3jJWYmjZtmm/bWI9lNOglnT/xxBOp2WzWrrPDDjt0yb4j+ode99PPfvYzAkDXXHNN1zqf+tSnCAA9+eSTRFTc19X35+mnn04A6H3ve19p+hve8AaaPn36mNo5XsTU8uXLaerUqbT33nv7kKEqtNY0e/Zs2mWXXbw94XW32GILetWrXuWn8bMVktpE1p4AoOuvv95Py7KMNt9881Jnlc/dS1/60lJ7OCzphBNOWOM2XXjhhaU2nXzyydRqtfx+Fi1aVNv2J554ggYGBro6QADoF7/4RWnZnXbaiV772tf632vjEzFhXd3HSSedREIIevTRR/20OXPm0BFHHDGm7a9cuZIajQadd955RGSJAAD0oQ99iAYGBjy5deKJJ9Ls2bP9esMRUyOd41tvvZUA0MUXX1xa7vzzzx/XUL4XvehFpevAePLJJwkAfepTnxr1ftYXbCi26eijj6att9669FzecsstBIBuuummUW/n+OOPpzRNfR+pDqN9RviefclLXlJq10UXXUQA6PWvf31pfT4f4Xt/zpw5JIToEgUcfPDBNHXqVO/njbVNu+yySym09P/9v//XdT3HW+BAtOahfH/4wx9q9/GLX/yCANBHPvIRP43tApNVo8Xb3/522n777f3vgw46iE488UTadNNNPfHP9/2PfvQjv1wvYmqkc8zvk17vnfEK5WM7F14HxiGHHEI77LDDmPYz0YihfBsgVq5ciWeeeQazZ88GAC83PfPMM5Gmaenv5JNPBoAuWeuMGTNKv5vNJgBg9erVAIAXvOAFuOOOO7DFFlvglFNOwQte8AK84AUvwMUXX7zG7d59992xzz77+PCUm2++GY8//jhOPfXUNd5mRMTGho9//OO4+uqr8V//9V8l+TAA7Lbbbthqq6387/nz5wOwst7BwcGu6X/605/Wuj2PPfYYHnnkEbztbW8DYCX9/Hf44Yfjb3/7Gx599NHSOkceeWTpN7enmsh2/vz5tW08+uijS6G9U6ZMwete9zrcc8890FpjaGgIP/7xj3HUUUdhcHCwq01DQ0NdEupjjjmm9vguvfRSvPSlL0Wr1UKSJEjTFD/+8Y/xhz/8YZRnaGx4zWteg0033dT/XpNjWVMMF64xUihHxMRhLNdpLM/as88+u06q8vz85z/HsmXLcPLJJ/c8tkcffRRPPvkk3vGOd0DKwjWdPHkyjjnmGNx3331YtWpVaZ26YxdC4LDDDvPTkiTBC1/4wlo789a3vrXUnjlz5uBVr3oV7rzzzjVu0+tf//rS71133RVDQ0M+ZOfmm2+GEAJvf/vbS8/6zJkz8ZKXvKQryfbMmTPx8pe/vGub42HbAVsVdqeddurax7HHHgsiWusCHIODg9hrr718QuLbb78dm2yyCT74wQ+i0+ng3nvvBQDccccdOOigg0a1zZHOMV8/fmcx3vrWt67VsdTh+WZT1xfbdNxxx+Evf/lLKdH15ZdfjpkzZ5ae/5Fw66234oADDvBtq8NYn5HDDz+8ZC+GO27AhuSFePGLX4yXvOQlpWlvfetbsWzZMjz44INr1KYjjjgCSin/e9dddwVQ+Ihr4ufVPYfhNtcG/Axz2Czj5S9/OebPn1+b2mGsOPDAA/F///d/WLx4MYaGhnDvvffi0EMPxQEHHIDbb78dgLVLzWYTe++994jbG+kc8/uk13tnvNHrWV3f7VIkpjZA/OAHP4DW2se4brbZZgCAD3/4w7j//vtr/3bbbbcx72efffbBTTfdhKVLl+K+++7DXnvthdNPP32tSuG+733vw6JFi/Dggw/iy1/+MnbYYQccfPDBa7y9iIiNCeeeey4++clP4vzzz68lbKdPn1763Wg0hp0+NDS01m1aE+J7LO2sa+PMmTNrp3U6HaxYsQLPPPMM8jzHl770pa42HX744bVtmjVrVtc2v/CFL+Ckk07CK17xClx33XW47777cP/99+PQQw/1JP14o9qONTmWNcGMGTMwNDTU1ZEGbK6/6rWJmHjwgNEzzzzTNe/ZZ5+FEKKrFPa6sAljBVfsGq6CLx9z3XM6e/ZsGGPw3HPPlabXHePg4GBXvsqx2hluy5q0aaRBv7///e8gImy55ZZdz/t999034iAib3O87NMzzzzT8/h4/trioIMOwn333YeVK1fijjvuwGte8xrMmDEDL3vZy3DHHXdg8eLFWLx48aiJqZHO8TPPPIMkSbqWq7vea4MZM2b0fFaB7vtzQ8b6ZpsOO+wwzJo1C5dffjkA4LnnnsP3v/99vPOd7yyRAyPh6aefHrGy+FifkbU97l52KdzXWNs0GrsEjK/AYW0wku0dL7sEWPLp3nvvRZZleM1rXoODDjrIE1933HEHXv3qV2NgYGDE7Y3GLgHDX9/xwEjP6vpul5J13YCIseHPf/4zzjzzTEybNg3vfe97AQDz5s3Di170IvzmN7/xycfHE0opvOIVr8COO+6Iq6++Gg8++CD+7d/+rXbZkQzTUUcdhW233RYf+MAHcPfdd+O//uu/1nv2NiJiInDuuediwYIFWLBgAT7ykY+s6+Z4hMR3r1Kz8+bNG9d9PvXUU7XTGo0GJk+ejDRNoZTCO97xDpxyyim129huu+1Kv+vszFVXXYX9998fX/3qV0vTly9fPuq2tlottNvtrum9yKRqOzbddNMxH8uaYJdddgEA/O53v8MrXvEKP/2pp57CP//5T+y8885rvY+ItcMLXvACDAwM4He/+13XvN/97nd44QtfOKFFQlqtVldSaWDsRCknkA6T1lbBzvTf/va3rnlPPvkkpJQlpeF4oJed4bb0o02bbbYZhBD46U9/6v2lEHXT+okZM2b0PD6gsP9rgwMPPBAf//jHcc899+DHP/4xzjnnHD/9Rz/6kbdvBx544FrvC7DHlOc5nnnmmVJnse56rw122WUXXHPNNcjzHElSdKf4+d2YbOr6Zpv4nfnFL34RS5YswcKFC9Fut7sSPo+EzTfffFi7BEzMMxKil13itvSjTevCzxsOoe2tEodPPvnkuJzzrbfeGjvssAPuuOMOzJ07F3vssQc22WQTHHjggTj55JPxi1/8Avfddx/OPffctd4XUBzTcNd3PBD6ejvttJOfnuc5HnnkEbzlLW8Zt331A1ExtR7j97//Pe677z7ce++9uP766/H+978fu+66K1auXIkbbrjBO3sA8LWvfQ0//vGP8drXvhbXXHMN7rnnHtx444349Kc/3VUxZDS49NJL8eY3vxlXXnkl7rzzTtx666044YQTAGDYUS1+EX/961/HvffeiwceeKDE2iqlcMopp+Cuu+7C4OBgl0xzOHz3u9/Fd7/7XS9RfeCBB/y0iIgNGZ/4xCewYMECfOxjH/NO+0SjF6kcEt977LFH7d+UKVPGtS3XX399aRRx+fLluOmmm7DPPvtAKYXBwUEccMAB+NWvfoVdd921tk11SoMqhBBdHcHf/va3XRW3hiPc586di3/84x+lCj6dTgc//OEPR3Ws43UsYVvr2nnooYei1Wp1VWnlCjtveMMbRr2PiP4gSRK87nWvw/XXX18iR//85z/jzjvv7Nlh6Bfmzp2LP/7xjyXi9ZlnnsHPf/7zMW3nVa96FaZNm4ZLL70URFS7zLx587DVVlth4cKFpWVWrlyJ6667zlfFG09cc801pX396U9/ws9//nOvRu9Hm4488kgQEf7617/WPuvcqRgL1kapcOCBB+Lhhx/2IUKMb3zjGxBC4IADDhjzNqt4+ctfjqlTp+Kiiy7CU0895VXyBx10EH71q1/h29/+NnbaaSev9lhbcJuvvvrq0vSFCxeOeVvDndujjjoKK1aswHXXXVeafuWVV2L27NmlAYANHeubbQJsON/Q0BCuueYaXHHFFdhrr72w4447jmkbhx12GO68886uMLUQE/GMhHjooYfwm9/8pjRt4cKFmDJlCl760pf2pU398vPWVN35mte8BoAdPAxx//334w9/+MO4kdgHHXQQfvKTn+D222/3dmmHHXbAtttui7PPPhtZlo1ayTkS5s2bh1mzZvV874wVvc7tK17xCsyaNavL1/vud7+LFStWrJNndSyIiqn1GMz8NxoNbLLJJpg/fz4+9KEP4YQTTiiRUoB9Ef+///f/cP755+P000/Hc889hxkzZmCnnXbCm9/85jHve7fddsOPfvQjnHPOOXjqqacwefJk7Lzzzvj+97+PQw45pOd62223HS666CJcfPHF2H///aG1xuWXX14ioP71X/8VH/rQh/COd7wD06ZNG3WbqgTbV77yFZ+vqpezGxGxvuPzn/88zj77bBx66KE44ogjuvIJvfKVr5yQdvCI6NVXX4358+dj8uTJmD17NmbPno2vfe1rOOyww/Da174Wxx57LLbaais8++yz+MMf/oAHH3ywVHJ3PKCUwsEHH4wzzjgDxhhccMEFWLZsWWnk6uKLL8bee++NffbZByeddBLmzp2L5cuX47HHHsNNN900qtwoRx55JD7xiU/gnHPOwX777YdHH30U5513Hrbbbjvkee6XmzJlCubMmYPvfe97OPDAAzF9+nRsttlmmDt3Lv71X/8VZ599Nv7t3/4NH/zgBzE0NIQvfvGLpfLoI2E8joWxyy674Fvf+hauvfZabL/99mi1Wthll10wffp0fOxjH8PHP/5xTJ8+HYcccgjuv/9+LFiwACeccEJpZC2iP7j11luxcuVK37F7+OGH/cDK4YcfjsHBQZx77rnYc889ceSRR+I///M/MTQ0hLPPPhubbbYZPvCBD0xoe9/xjnfga1/7Gt7+9rfjxBNPxDPPPIMLL7ywVC5+NJg8eTI+//nP44QTTsBBBx2EE088EVtuuSUee+wx/OY3v8GXv/xlSClx4YUX4m1vexuOPPJIvPe970W73cZnP/tZLFmyBJ/5zGfG/fj+8Y9/4KijjsKJJ56IpUuX4pxzzkGr1cKHP/xhAOhLm1796lfjPe95D4477jg88MAD2HfffTFp0iT87W9/w7333otddtkFJ5100pi2OZztHgnvf//78Y1vfANHHHEEzjvvPMyZMwc/+MEPcMkll+Ckk07CDjvsMOZjrEIphf322w833XQTtttuO7zgBS8AYM9Fs9nEj3/8Y7zvfe9b6/0wDjnkEOy7774466yzsHLlSuyxxx742c9+hm9+85tj3tZwtv+www7DwQcfjJNOOgnLli3DC1/4QlxzzTW47bbbcNVVV40ppGxdY0OzTQCw4447Yq+99sKnP/1pPPHEE/j6178+5m2cd955uPXWW7HvvvviIx/5CHbZZRcsWbIEt912G8444wzsuOOOE/KMhJg9ezZe//rXY8GCBZg1axauuuoq3H777bjgggs8Ed6PNvXDz+vlj4yEefPm4T3veQ++9KUvQUqJww47DI8//jg+/vGPY5tttsH73//+MbelDgceeCAuueQS/POf/8RFF11Umn755Zdj00037cr1uqaQUuITn/gETjjhBP/eWbJkCRYsWLBGoXy77LILrr/+enz1q1/Fy172Mkgpsccee0AphQsvvBDveMc78N73vhdvectb8L//+78466yzcPDBB+PQQw8dl+PpG9ZR0vWI5zG++MUvEgD6/e9/v66bEhGxzsGVl3r9MXpVRAJAp5xySmkaVwkJywuPBtdccw3tuOOOlKZpV2We3/zmN/TmN7+ZtthiC0rTlGbOnEmvec1r6NJLL/XL9Koo2qtqyrve9S6aNGlSV7svuOACOvfcc2nrrbemRqNBu+++O/3whz/sau/ixYvp+OOPp6222orSNKXNN9+cXvWqV9EnP/lJvwxXCPrOd77TtX673aYzzzyTttpqK2q1WvTSl76UbrzxxtqqY3fccQftvvvu1Gw2CQC9613v8vNuueUW2m233WhgYIC23357+vKXv9yzKl/1Wo3lWEaDxx9/nA455BCaMmWKL10d4uKLL6YddtiBGo0GbbvttnTOOedQp9MZ0z4i1gxz5szp+ZwvXrzYL/fAAw/QgQceSIODgzR16lR6wxve4EvUM3rd12N9BkfClVdeSfPnz6dWq0U77bQTXXvttWOuyse45ZZbaL/99qNJkybR4OAg7bTTTnTBBReUlrnxxhvpFa94BbVaLZo0aRIdeOCB9LOf/WxUx1K1J4z99tuPXvziF/vffO6++c1v0vve9z7afPPNqdls0j777FOqhDoebeLrEV5fIqLLLruMXvGKV9CkSZNoYGCAXvCCF9A73/nO0v6r7Q6Ps3r+h7PdI+FPf/oTvfWtb6UZM2ZQmqY0b948+uxnP1uqLEa0ZlX5GBdffDEBoBNPPLE0/eCDD66tIDtcVb7RnOMlS5bQ8ccfT5tssgkNDg7SwQcfTI888siYzw3R8LZ/+fLl9L73vY9mzpxJjUaDdt1119rKdes7NkTbRET09a9/nQDQwMBAV1Xb0eKJJ56g448/nmbOnElpmtLs2bPpzW9+M/3973/3y4zmGenld43lfPAz9t3vfpde/OIXU6PRoLlz53ZVNF7bNhF1V1UnWjs/j48zrMo+kj8yHLTWdMEFF9AOO+xAaZrSZpttRm9/+9vpiSeeKC23NvfPc889R1JKmjRpUskPuvrqqwlAqZoro1dVvtGe4//+7/+mF73oRdRoNGiHHXagyy67bI3eqc8++yy98Y1vpE022YSEEF3+5sKFC2nXXXelRqNBM2fOpPe97320fPnyMe1jXUAQRalJxMTgV7/6FRYvXoz3vve9ePWrX40bb7xxXTcpIiJiPcLjjz+O7bbbDp/97Gdx5plnruvmREREbIS46667cMABB+A73/kO3vjGN67r5kREREQAsOHTO++8M26++eZ13ZSIiHWCGMoXMWE46qij8NRTT2GfffbBpZdeuq6bExERERERERERERERERERsY4RiamICcPjjz++rpsQEfG8AxGNmO9IKRWrY67n0FoPm0tPCLFB5TSJWHcwxsAYM+wyYZWx4RDvy/UTE2H3N/RrH+YRrIOUElLGGlETifGyTdHvWX/Rb7sxnu+3dYEN3a6uLaLFjYiIiNiIcffddyNN02H/rrzyynXdTABWxk5EMYyvBi94wQuGvYbjVaUmYuPH8ccfP6JNGC0OPPDAYbfDia7XJ+y///4goo06jG8i7P6GbJMef/zxEc/Peeedt66b+bzDeNmmK6+8csTt3H333X0+mrHj8ccf3+jD+PptN84777wRr/36LJTYEN+p44mYYyoiIiJiI8by5cuHLYUM2GqaM2bMmKAWRawJfve736HdbvecP2XKFMybN28CWxSxoeLxxx/HP//5z2GX2WOPPUa1rUcffbRUPr6KZrM5qipMEeOLibD7G7JN6nQ6+O1vfzvsMqOtbBgxfhgv2/TMM89g8eLFwy4zb948TJkyZUzti1h79NtuPPnkk3jyySeHXWbXXXdFo9FY4330E8/3d2okpiIiIiIiIiIiIiIiIiIiIiIi1gliKF9ERERERERERERERERERERExDrBOsn+ZYzB/fffj6GhoZh4LiKizyAitFot7LnnnqVEnkNDQ+h0OqPaRqPRQKvV6lcT1wtEuxQRMXGIdmn0iLYpImLiEG3T6BFtU0TExOF5YZtoHeC+++4jAPEv/sW/Cfy77777/DO4evVqmrmFGvW6M2fOpNWrV68LczFhiHYp/sW/if+LdmlkRNsU/+LfxP9F2zQyom2Kf/Fv4v82Ztu0ThRTQ0NDAIC9cTgSjL76S0RExNiRI8O9uMU/d4BN/PnUPzQee2AbTJ0yfETvsuUGL9zjCXQ6nfWbZV9L8PmZ8+GPQ27ExxkRsT7ADA3hT5/+RLRLowCfo9mf+ki0TRERfYYZGsKTH/lUtE2jAJ+j7c44G7K5cR9rRMS6hmkPYfEXztuobdM6IaZY7pkgRSIiMRUR0VeQ/aiTWQ9OIQxOoWFXzzH8/I0FfH5kqxU7fxERE4Rol0ZGyTYNRNsUETERiLZpZHjb1GxBRb8pImJCsDHbpnVCTEVERKwfyMggG8FOZWQmpjERERERiHYpIiJi/US0TREREesjNhbbFImpiIjnMQwIegQG3WwADHtERMTGg2iXIiIi1kdE2xQREbE+YmOxTZGYioh4HmNjYdgjIiI2HkS7FBERsT4i2qaIiIj1ERuLbYrEVETE8xgZCNkIDPpI8yMiIiLGE9EuRURErI+ItikiImJ9xMZim4ZP3x4REbFRQ9Po/saCe+65B6973eswe/ZsCCFw4403Drv8XXfdBSFE198jjzyy5gcWERGxwaIfdikiIiJibRFtU0RExPqIjcU2RcVURMTzGDkEMnRXd6guMxasXLkSL3nJS3DcccfhmGOOGfV6jz76KKZOnep/b7755mPab0RExMaBftiliIiIiLVFtE0RERHrIzYW2xSJqYiI5zEM2b+RlhkLDjvsMBx22GFjbssWW2yBTTbZZMzrRUREbFzoh12KiIiIWFtE2xQREbE+YmOxTZGYioh4HqMDic4IEb0d97ls2bLS9GaziWazOW5t2X333TE0NISddtoJH/vYx3DAAQeM27YjIiI2HIzFLkVERERMFKJtioiIWB+xsdimmGMqIuJ5jIzkqP4AYJtttsG0adP836c//elxacOsWbPw9a9/Hddddx2uv/56zJs3DwceeCDuueeecdl+RETEhoWx2KWIiIiIiUK0TREREesjNhbbFBVTERHPY2hI6BH4ae0+n3jiiVIOqPFSS82bNw/z5s3zv/faay888cQT+NznPod99913XPYRERGx4WAsdikiIiJiohBtU0RExPqIjcU2RWIqIuJ5jHwUDHruYpKnTp1aIqb6iVe+8pW46qqrJmRfERER6xfGYpciIiIiJgrRNkVERKyP2FhsUySmIiKex8hIISM1wjITz7H/6le/wqxZsyZ8vxEREese66tdioiIeH4j2qaIiIj1ERuLbYrEVETE8xgaAnqE8qEjza9ixYoVeOyxx/zvxYsX49e//jWmT5+ObbfdFh/+8Ifx17/+Fd/4xjcAABdddBHmzp2LF7/4xeh0Orjqqqtw3XXX4brrrhv7AUVERGzw6IddioiIiFhbRNsUERGxPmJjsU2RmIqIeB5jdAz72Lb5wAMPlCrqnXHGGQCAd73rXbjiiivwt7/9DX/+85/9/E6ngzPPPBN//etfMTAwgBe/+MX4wQ9+gMMPP3xsO46IiNgo0A+7FBEREbG2iLYpIiJifcTGYpsiMRUR8TxGRgk6IxqysTHs+++/P4h6W78rrrii9Puss87CWWedNaZ9bBDYAF4AEWuIdT3oROtBG/qIftiliIiIiLVFtE0RERHrIzYW27ThE1NCQDabgFz/SyBGRIwFlOWgrNPXfRhImBGqOJjIsIwNBDSfFZjyZwOp7bkrvQtE7xdD7TtD9Jg/qumix/Te+xi2TaPYZ3VbI74He8wfro1UPYcjnLdRg8qfgqhEApEUgLBtI+mm1/wGABhAkN2WoN7XlkR5O6XZ4aNHgDCA0PYvPEZSgFGA1MV+/bYq2+Ztkqhsf5QwCdCZRqA+eg/RLvURLYPm5DakJNAID2d1fIGX7xp3CLYTbpMq8yl4vvxyZOcTBduhYnrpe7hhAkTX8nY5QeEy7tOUly0dOdV/rz5/wy7j2iKCY/T7D9vYtR66EO43fI5J2GedFECSQAqAtLaHpD0ocr8Bay9K8HYNvcltI+x6de0K21u3fvX4gmMWRtSfz9DuCSrZQ3/8bMPChnjbWVxMUgClBFoTwzZKRNvUP+gGQbfc9QyeXQDl55oRPseV57387Ll1Tc386qdbhp8B/+nnUfEuDrdVed8LQ93PG4LfQHm+P47yvbNGt/JI61T9OOdPUc1zV/IjUPa9SAZ/CjCJACXl7fC6xTL2k9fnfYTnxNstqmyj4sP0PM7KeS+d/y476mynDPw49x3S2SOJko0a0bcsXU+7sMwBtUpA6v4RQxuLbdrgialk9iw89u9z0NkiX9dNiYgYP5DAZr9QmHHVL/tKTnVIIRmBYe+s/3ZsvYLIga3uWg786g8gQxBSAEIC0nVc+MVeJdMr04vl+G3stiHKv4UQ5XX9fFFZ3n4nGfwOP6vfZWU9v49iGuAcFYnSsnZ6ZTsOvciycP+FE1Ds068nqt+79zNaIrBYwd7k1vl0350TKgzZ/QnAKAFKpHWwUnsuSbrpyn1K57tostswzkkVoot4YseM1+9JTDlnTeaEpE1QbePWt+vpVCBvSTuvY0qdRm4TSXbs2WsTANHYHF+ybV42V6E9o3+GIdqlPkECM2c9h22mLKmdbYIb0JCACSr8GAg3TfjliASMu9F4miFhp7s/CqZpI2EcKaWNtPOMhDECxthlyLj1jABp+wkS9rk0wv4xXGcRJPyzxsSKfQb5z5EtvAyCjiRvp0IilTvF5d9dpAuRf5b8friz6ju21LszzM9habrduFHCdvhcx043BHTT2h+TAroBUMKdQoJxHa6wLdWOvnDnrDiY4BbJBEReO6t0bOBNiMp8Z3uYROdzJDOyxHlwvu2MoBPs7JQn10KijTvAvKziZYQl6dx8PQhQI9qmDQ0kCdl0DTGYA8YR1fy883f/bASEtak8+yEBZcrf/cBO+F0X36Um+5m737m9Z4Uh/1to+xd+F9pAZgYwBiK3fzAG0G6aIfubCM4Auu/Gv4/JzyumASimjQVmhBsw9CmVBISEUBJQqvDhlASktP4i+5XsT7KfliqYVgKTSOiWQj5ZIW9JGIWSn0YSzlYJ6AFrs0IyuWR3dWgz4X0OIHDlqna4hiDnay619cl5MI8S2xaTAtqRUkxSmZRACYFSAiQBiiASglDGnQKCkMadAmIXqnzq+X0F+57zh2YE8n800VjWP2JqY7FNGzwxZTabhjccuQinz7h3XTclImLcMETAa5LTsdm1SV+JKUOy1PmoX2YDsGTrEYQRkEtXQWv7JiQjIaQBjD3P/nS7+aJEBkk7XRQvNJB0y2g3tMQkl90mSdiOjRDW0QkJL4OCSGLyxfjNFtO5DeF3Q4UDQ2T7NuFyQLAsCnIq3EZ1Oyg6XCREvVNRRXh7VkipYpkKoRW2bTiExAw7c7wtuI6w27910By5RNbZgSKABCQIBgKSnIohHPUT6FZaodhmOOrYpTbz/6yjZRImopQltFyHNG8BuiWghoDGcgnVKY7LJALGvemtQ146Sd3qF3R3SP29437KDKO7dmuIaJf6h8E0Q8MxBKaLCUWFaDIlwslAwghRmiYc6SQFFeuieGy79oHCYSenlCIahpTyf3AEleuYVjuiTFDpgBTS9n7vIqXCW6fHbUQCZYWQOz/V5auEU/V71zIjgIkX4zqBJnEdugZgHCmlG7ZjRQqWjEoAUuTJGk9IkbDiorzYtzB8DrmN5evjO3IUzGKbF5JSVYUoTyMAriNa2m4moNqAyAvCvjiHwfkiO59tI583/7hLd1qZcBOV7YyxDz9WRNvUR8jgZVdVSFbBpFSVoCqRUKJMQtWQUbWElCb3ney88Dv/5cYRVAbIDYTWEJqAXFsySgfkVIWI6iKh+LuhchoMw85axd9aq3Ms7bMX+HYQlhgT7D9W98P7NwASCVLWNlEiYVKFfFAhn6TQmSyRt5g0DgYKpSOEkoBQRnCdQqIaxe8SkV4hpUIFVPhZUl8JqyQXAaHt25AAJrHKb5Lue+pIqcRYUkoShCJIaQkpKd13t4OqO2yMdEpkS0QVJ0BAuLb0ExuLbdrgiSkAaMkMLRFD+SI2JhjndPWPXQeADHLkmOQNQPq53kFJiMR55lWlFFAmj6rXuKKkKimnetg5r5pip4JHt3j7dWqpqmKqh5LKK6KC6V3qKT8dKCuXuju+1eOuU0f5dUX5e6iOqq5XlZyXMAryxTtbsnCqWI4vDHkVlModsSZhHbPEduaZnPJtYCLKkWl1BFQxTZTW4W10HZMofvAopFEApdaxkh2BfJLtAPI5YaWFIEB2ADVEXWqRqkqjWz3i9ll1BvuEaJcmBrLyEBhHsgLocY0NQLJEQrmpdnuE8vSAgLIKKuu8axL2U1u1VImQcqRULSFlgs+g08K/e3VKQ5VPCO6sCEeyUuWZ8CQ0EyNUcFNFP0lAWBq72I57nEm6kyO5vcXzheCrf6ZFYQssIQXopoBuwamkqAiV4dH+MPQkkDKJ3JJ0quMUUJWOXqjmKoXJsNIJ5Q6dD3/h70EYThehLi1hFvaRhHbElC5CBQuyzJEEednmApZ4IAPAEf5Q7o/77HYpAOTVqv1EtE19REiW1oXxUsUGhM86ufvWwIZL1RBSoXqGySiebhVQrJIahowy5U8mpaANhCOlWCkFY0DGDE9CheSTMT3zs9Yq7Xup73uu63xIr3xyqntp1VH2z/qRxAoqWZBQpBQolTANBdNQ0C2JfEAibwnkgwL5gCXSe5HWTBqpDN4mexs0Ft+iZrvhdE8AsX0qhRxSoU5n28bTVGCUSFi7I6ydVQEpVSimnC/oBlaEewEQvwwCcnUi+KCNxTZtFMRURMRGiT53/gCbLC8ZIVnMhlDFYX0DpQqiwcRU4TSIKlEjR3GRQzJquFC+Kik1HCFVJa6Cz96k08hkVJeaqXK8tYqmkIhy63aF6oWKqJp8COE+QzLMEy01p5lz2vjbm8NIXEieXV84B1RA5tap9B0fXjYVXrlUdNZE0ZnjaS4PVImEYqIqhIAPx+k1nzujJlBJkAJ0yyCbwucu6KgRIHKBZEhADQnf8ZS5JaukUzGEI9B1+TK8tL7fxFS0S32DNhK5u6mYhDI1D0g1rK80D6Jrmibpw/dsyJ6ADkL4tOHPInTPaFmvkGJiKuiIhrmPvDqKf9tGBfNFiXipjsh7NVTw236pkFS1RNQw5JSsLEAoP4PB80UonluTwIfmmZR/A6ZBMAnBNJwSsyb5VEjuWMWYsB3wDJC5cGRP0Ak0RS46b4cQfA9tTjV8Lgyrq7MB3FELw/BcxxAg6BYvV3RSvY3JOYywRuUSEGoeoV0k2PtDArrPPcBom/oIR0hR8Mz3sgNhiG7X92qonielXGgeT/O/rUJquFA9G85H9eqokJDSukxGadNNRIUkFCu1q+F67PexjxcqmcJ0D3U+ZLCuW7CYHhJRdWF7QgCJAqUK1EwdCSWhG1YpRUogbwnopvtsCJhGb3+l8D8AaZwqzRHQpedZBHaGByVL04rl/K0S2hlPPMH7RqUw4ZCIEmHjAluU8/3nDL+y18wAyGEHcoQjqKQ03f48b9a9RIQyhZ9JArrPrPnGYpsiMRUR8TyGgajtlFSXiRgDBIFSBdlqut+V81dVPZHpnjYcqgqs0ZBSVUKqlAuqnnDy87hppXWKtoTKpq75dcdfQ0RVfzMZFaqiSo5JDQlVd5sywVSFz/sEFB1WAwjHushK2CPgHC8li3xTLkSOFI8SCu+UlVRPgcPExFc1h0rYkbVOFe8PdhQv3Gjo3LhOn3XGOHEwFeeCgn5yQsgHgTzoHAoDqLaA7FjnX3UKosorK4JwKM67NYJafK3RD7v06U9/Gtdffz0eeeQRDAwM4FWvehUuuOACzJs3b22ausGhrRVWZM0utRRQEFWMqvqpK48URBcZRUBBQFFZIdVFSGkmpaTtdGr38FfVUT5EJwjdAwKSCgGJGixfIaRC1BMrwbZ4OZQfOSZyBG/D7beaGF6EBAk/S6bYhlE2NI/zRJkmoJsEk5INg1PkE5rXhbF4gsudI6s4KjrnkpVJvMuqcizszIXqJz7GKgklqPacCdfxCjt5ISnFtqk6r1iZj0mUFJsgFCSbJ61QEFXBcRHsa4aASqjy+CP6TH0EIVBLwj7vurADVhFVIS61KIXnMenqCai8PlSvqo6SuVVASU1uMMoNRGnj/gicQ8rnjgoJqTwHMQk1BjKKavJBCSaUpIDgvE/S5YGqyzXqlvXrr4lvqFgRpWAGEmRTUugBibwpLfmUwNsIzmlnEvhQOL9vJrwJXaRgKdQydGtKBJLwNq9KPnWRUOG0pMgV5dfzjap5CQiU7ZFgIqsgpTicj+9LLey9Z4TNHcvKqToU6ipn+0hAq2Y51HCcsbHYpkhMRUQ8j9GhBGoEhn1DSJa3voGUhEidYmrEcMy1CDxnNVYvx0PVOyUlMipcHwEZVVVFAWVlVC1pVNmuQx2B1E1MYXgyyn2WCKwaNVFpv0Fy8q4kw8Z2hIRLbgpjnScZdCh9DiifgLgI9WPyyCcuDxwlfzyiOJ91DlWpAxd2Av20oIdcSsJgfxZqBio6q8F829krr+pnu/XzAQIG7Xasgkp4Ikq1AdkGZFaEOogg71a/0A+7dPfdd+OUU07BnnvuiTzP8dGPfhSHHHIIHn74YUyaNGktWrthYfnqFrQpX0DpHGgpyN9uTFzVhfvxJ7lPbaQL17NElE98TqIgo4wA8XKu8+k7oVr4Z3LU6iiqzA+IqK7vIUIbUXMP+TC8cFFHeoA7FQKl0IyCjArOU2gjg3bYfCYo1FEp2VBcly/KdrCo/IyVHmzePyGsNMjPrMzdQZA7FmnbboDyqybomBWDAYHdqailvMop7Fz6UEDqVkn5vxpSqkb5Zc+NO+7A9nG+dGufraJKZsKTDP6emSBEn6l/ELkAuRs2JKR8WF5AOoeklGTCMi/IJ09A5ZVQPVZIaYLM3DuNCanckVIhEVVHSIX5o/LcKqRcOB/IWIKqjowKiahQIeXIpbBQDhNSgsPplAKkqlfJA4HvJcrTmICqJDAnKct+HgBqJNCDCbLJCTpTFLJBm9uOfAEVRzSHRBHbxNBgUqHGVm2y/oN2BI/3qYrtce7M4Qhyv44brPPheJ4Ap5Jfxe0oznHw2y3viaiQKJewRLp0pJSAzTXlbJkAArLJEk6siPIklbCqKqUIShooaa/1atVfw7Cx2KZITEVErK+YAAOSk0I2QkxyvgEky1vfQEoCScW89uM8hg5IQEJ1qaTcvN4KqO7pXSF6FfIpDKsrVc0Duggiv41gXjfZhZHJKP7dixihYHm3nCeO4BxbXYTj2ZF4A5kR1OocamUbnLmZlIKe2kBnSmpHDFPhQ/G6nCVHVoUjf8UxodRp6ylPr3SYbQc8PO5yB48VT4UEvbyP4HSUTo/vZNfcjlatUTh4IhdWRdV2YYCrrcPPVXf6hX7Ypdtuu630+/LLL8cWW2yBX/7yl9h3333H3MYNEgSsWtHE0FAaPM5FeIIQwWcPYgooyCnL9YquJObGVdUiV3mPc0fBfwJhDqlh1VFMMLkd1iqkhiOkhrtN6u5hCp4xp8zyIXqV7VVFjBROr9gCnm7Df+HD84wjo6zNoRKZ43cQ7sh3sGw1uqpCiDuKbCONDBrc65mtdgYDG8MEUWGv7fUUCJYJl6/ux5FkQg6juOJFIWwHPrTvrjoWb9sLTrQAdEFUicypGZL++ivRZ+oTyF7LULVY3Pfw96IoTSvecKyWsqFiFFTWQ1cy81pCKgzXM93EVC0ppTUo14DRlpgyBNK6NyFVrbgHeB9KOPJJKOU+ZVElTykbfqdUyc8L1wcwrDrehuEpR7y4sDyvThIAEUhJ5C1bWU83XKhey9qrXiF64MskC9sjcvatCKpjz7tPuSQKgskO7gXKq4rd5AE7T0i5qqNMLHkyq6os7bq3uNGOiFKFTakSVlVwTikpQyKxyDNlC3k4ZZS7N4tLQEiURqqMnS+jbRoNIjEVEfE8xuiqOPRZHrExQgogUYUT0qt875q+JEpS7bIzMqxKikfIqqqpapheTYheTyLK951CEqXmUH3HRpR/l4iu8vqlNvB2ZLBMZUSsO7dT8ZtzrMgcUB1jEwO3NeSQhlqdQawcglixyo4sNhswUwctCeXyv+i0LF0Pk5aXFE81KoNSm/2BhMdZTAt87bJYSlhCTAj4wdawJDv7RezEVaUiXj1R7UzWgLdlGgTTJIhJAnnbJi+WHQHTx3LswNjs0rJly0rTm80mms3miPtYunQpAGD69Olr2MoNEATQygSaO3USNlxBmaICkaAux9uvXmJeUISvlaa5/biy2b7sO3/2yhnD3wleASN448VAdKCWqpSGHwMh1UV+13E3TO5QeX5ps27havRYaAuKZ42KzljKeaOoGKH39jEgn1z4XS2jw41hdRncPnkb6LZFpfWCXfbafDGTqubEVx8NeYKQQGRwiJ01TuRtWakt3l5XOovCHh+EPSahbOdOVMKVdS6BTHrlXT8RfaYJgL8HbIUzYUShZJTwg0elkF4f8kleOSUdQeVD9zKXPyobmZCyRHkPQsoppKwyShffte5NSAFlf0/YF3ItIZUk3WSUUmXfjlHNMRUQUV4ZpZzaO1Ugp/w2KlzGnm+TCOimRDYgbNj/IKBb1ucBUMrZxdVPSwNlsNdAsVLKkVIQgHaqKOP9JxEooFAM8IkKGVXKo1kmoygJiPwaW157T4VqKKB4R7nv4egCsc0Sxr/riop8TkUVOHLCkVdWLWUgBTkXfGLIoI3FNkViKiJifcVwzuI4ISMFNVIVhw2AYV/f4KXTXCaYnSmgcE6GO6/G1E+vSrerKqmKXHu0hFRIGoWjaJ6Mcu+yrkp5QDe5gmJbpXPiO4OiZlrxWSWjat+jlfVqCalg+9zxVR2DZJWBamuIzEBmBiLTEJkNGKFJA6BWE2ZyA/mkFNkUBd2QTikFp8CCc+6Cjic7UhUSqisMJuxAh4cTTO861HB6sM2QbPMddwDQheMXriOky42A8rUiGa4cgLftzqVuEUwTrjqR6Gv1q7HYpW222aY0/ZxzzsGCBQuGXZeIcMYZZ2DvvffGzjvvvFZt3dCgVknb2ZfkR6Ft7jQAiqBVQUwxqoRUT+c/nE6iTKoYWLWDD9ET3SE6vI2w/xb+ZuIpDO2rklNrgvBYKx0c4jagZhl+FkOVokA5FM4rK12YXoOAxEAkQf4RI4qNBueeFQRc0t0TNhz6mAvIDDbsiZiUCi5TSPaUDgDF9alOD04HET/+1c6vPcaifa5DV7mG3HEVAm5f7gBC2yjd+VKwaoZSA9x3ty5xJ0/Cl3AHAJUYmKar7jikgE7/Ol/RZ+oTBPlQVg9nGwiuvIBBoUxxNkQyCZUBquPCxjImpWxyc09I5ZaMkpmpJ6SInKKaChKKqCCl2J8zpjcppZmEqiGlvM8UEFKsiEoTH64nEuXIKWnVTYkqvldTLZTOofN7mHBKpFN4c1U9AZNKGzrn80RZJTjnjDINQDecUqrhQo0FfOGGItekv2zF8+4UaqpNdhBL23WNEn67nKsKwimv2acKB/YUFdX92Hayr8UheI5gAtu46iPvCaRiUin8mm1u4Ft1qWIJTsXJvjAFtlH426Fw7oRXHPNmci2Ra5av9rdTt7HYpkhMRUQ8j5GRHIUhm8AEDhsLHDHQVUWol3KqjogKHRkAvZJY+lE0LvXbg5AC0GMahiWkCtKnTHTYNvUgn0JUSCLeRvV7ifSSlWVK++juJPE6VGmPS70EqQkqIySrDNJlHcgVHYhOZh1Sd00oUaDBJvIpTeSTU+SDslBJuXBAX7kvDOFTRWhbneqLj73kwIWKp3B6pUPHx+A76wEpVZenqrqPro5xUCY57LSWVBWhcxZ09oXgzrW7hbL+OVljsUtPPPEEpk6d6qePRi116qmn4re//S3uvffetWvoBgZBAmqVgOrY0XKjyJKsAkWifXb6g/u455Uu3ePdtk2w408oheZ5dVQvtVOI0rPRI5dU7bHWbKrgRbpJ8R7TuAnljfMzSGViqkROFc8cOG9UYiAaBpLLkpMrSe7CQYBKf1MUjbX5TsgmindkjeBk8Sj2zx2osJ1156X66Q80nB6ej/DYKueJXIJgsEiY7QiVCexSB5Pb6c4TwnaHjS7H+tkOJZ97I0uqPhHa3z4h+kz9A6UENEzJZpC7zwnkEqDbhPiyI2wOo06Ry0h1ApUUE1MZq6WMG1QxjqQyZWUUFzzx5JP79OwD/DQyNpdUrVIKQF3+KLsj2Z1HKlBJCaeUQqIKQsp/lygroSo3eiXtAklRKKWky5GpXEoCpwDXTQHdBHQzqAjq/Rxn10iUKhmGA2H+EH1+L/JEoTD2WddcbdQVeqhuv+xLVdRRnqxiAsq9Z6oKdP9Z5IKCgFdWVskpXwGWjZyoV1AJAUASZGKca0yl7dhLLUuKYaPhE6OX7m2yPlN/B/Q2DtsUiamIiOcxNEnoEaSdI82P6AZ5FRNqyCnAk078dpOym5xismm0YXvVPFJVggrFNNtGjJ6QEsXyft2wnV3HH86v/94zb5SozK/paFS3T0H7uQyxDdsj1xG2I6Oq7co8B+eXGsqOJjZT5JNS5JMU8gGuRMPJ07njDjfSGPwOO6Y9UCpd78Lv2Nmrjtj1clxCFYQIvvN+OSEsT+8ipCpEVlHFr3ze7QZ6H0u/Q2WAsdmlqVOnloipkXDaaafh+9//Pu655x5svfXWa9XODQ4EpCsF1BCKpLOljoFwZIuoEAhu/YCcCJU4VskS2Al0Ex5FbqiAkKpTOtXch12kFLqX9zxKwG2MthNQEO1lYqc23NXbQhQKpbo8TKyaSsiO7CdF58emmpH+fJQGsYPzKpl0IV5PgKsXCl2c6FJfpBcZRfD5uHopNKvnV6C8LeKJonK8wX3SVbCBgo1wp5I7mKK8va5z0ItdNLZz6a8Bn8NhiMrxQvSZ+ghFkKm297wRIPd+JAFIIyGdQtBWknXFOTqAyqhQSYVqqbxMSnmlVKiSCjFcnz1QS/nfvcDJzEscQZC43Pl1TExBSUtKpSmQuJA9R1BR4kgpKd0AgiW1OKclUPaVqv4aMUklnSrKkVJ5SyAftCF7uunySDkyqKh6GFTC9NPK/gzA04u8XiD4nJyW8BJF9T5R+ExFrqmAkEoCQsoRQz7kObQZAKqkNZNMELCh6bKcrBwADAmXDqEg78PlbM4o+BeIALwys+Syum0aGAhyFWvJFgCBUbWCtn4rpjYW2xSJqYiI9RUT0AEcXbK89Z9hX+/ABA+YcBGu8ptxzoSwo28hOaWC6+DD7UTxOwzZC37DhfD1JKRCYgtrTkiFoXi9lAVd58Chtiqf7F522PDAyr58m913YQjK5Ziwf8aOiobJzp00n5oKNJDCJBLUkNCphGlImIYbSWywooQ78AAlokxQyRpSKuz0cbN9p7C3Y1c+MCAsNV8qnywtMRYqn1hCbxJAD9h12EH0OWYcAeDzT0ny57/UDhF8r6gWrMMqvOqkn+iHXSIinHbaabjhhhtw1113YbvttlubJm6YICBZBaQryHcYwlFsq/wLwlT9PV50CHxoViClKgiLMrFT7Lde6STC+26YNpMAioCe0mZLy/VS+1WaUuwzIFSYVCn9rlvGHV+poEHp/ASdp2q4CR+PZ5ntZ6n6k6Qi0a7r8JAWMLn0Cb85HBICKBVhCo65ON9BLq7h7E6IuuOuO4+B3Su+u86hDM9FL7ad2+J2UFLqFR3Hrm0EhJ2o3jy1st3xQ/SZ+gMSsMSUIhDIqVrsebZKKVhVTqiUCqvFekWPS3DO03MXspcboBq6B6Akj5FkE/uH06rlN332/QCObBLGlPwa4f04WV6O/TalCqVUYkkqVknZ0DsFJNL6KUqUFFDeL+Pv4fOIwG8A+wvCD0ZwqB7nkNKtgpCyyeODaoduEA08T9vwyJLPABT2JfAzjMvP6VXlgc/EykuSoUoq2B6V3RG/L7YFNb6hCPJHhaG+bEc92SQIQsEpqop8inyJ7CdVinrAjycX+aUApcjlFLNVZyFgi310GUz0HRuLbYrEVETE8xhc1nukZSJGDxKASSWokUJkuXdmSAICMnCEKo4R0EUiFeSWKE8L1FOlsr89Q/jc9pmQAjAsKRUSUbJYptqps9vucX+ETtJwJFR1WTHcNNE1zeY9IK9M82SM24cQKEL2HBloUgXTVJaMcqOIRUlk25Ej13G2o5SuA+9IoVKbgO7ONqGskDLdy4Xr2uOgUme9iNCh8oioJxBQIhBMYsmGUHkl3Ogyk2GkXK6oVPh9F51V67SZBIUSIeigCi0g2/CEV1dOh3FEP+zSKaecgoULF+J73/sepkyZgqeeegoAMG3aNAwMDKxxWzc02OS0BJkLaO68uZBVSSipbwiwg/8u7IG4r1PpFAgURIUQsHk5qs9HuNHKPd7Vxh6Ekn0W3I+aCkd+pNtto6xEKm8r3FEpXxzf845M8h0mnzcqIFsESqRUGEpiSaZin4YTc3MnyH/aNkhpoJQlpbg/rLUE5ao4Lpc8nivxUfUckCgTT4E6rei4d9vQEIJcZ7GiAvX9RSa7DBXnK7gAAnD5WwjCK/Aq5BzgCDYBkUmrshCwyoggpNTuNOgBBx1CECx5wR1FXl6GLNn4I/pMfYSL4pOCYKRwlRyFtxml/EbGvfd5OlFp8IfnS00QWXf4noeXH1eeJSnsoBaH9LmBRbLlRj05JdgHM8aG5dWlYHDLIQjj87mkWBmVJk4tZckoSpX1I1NLTHEonk8aHhReCZ/DnhywZAVTOd8TFzHwA2Z54S9YtVlASAVJ5dnHIPYbgcInESj2VVGXV/0WwPkfAoCGXUhR4X8QfJ4xtgFMItbZXX+8AETwHNrXhi3uITg5OStYvSsuwJVpJS/rCCpNAsbIEo/p5+nC0JOxAwmFilMUNr7PnNDGYpsiMRURsb5iAuxHRgpyI4hJXt+gmxJmMIVcBQhXRhhEdgSZnLPTi9BBDyIKKEL53HTON1AfwhdscLSE1EgqKe8Eia77s0shXOoI1vRwUOnUVLcX7Lvr/JQ6Q1TKVVP6TkXVHXYkWSVlGtI5TgEpVeqUIhjVC/74PHDzfCcw6ACGyoQa0qpYvkxG9QyjYScwmGlVXGFS0KIzzQIEatgRUakBtdpW1WssFWXiLGibSVzS06Q4fnuMdh01ZBU3nWlANq1/Q4D9sEtf/epXAQD7779/afrll1+OY489dkzb2pBhmkDeEr6qktCFiekikHuZqDpiNeggCdehqJJTpW3Xfafio05NVTz3BdPV7WdT+VkJ53ibAv+MhKqnosNUqZinbEU4oYyLwrGj8VYA4UbgA9JEuE4NwZJLWkvkQtkOi9snK6Ps+paYSpTxx29M0NkpqRctcST8Q46i8yOoyD1j+CQK2+EL7HcXmHR0pJVVRvKFLVFDvHihnAxspl/FwL0zLNFUIvJ4I+68kgBEW9qQIe063c3g3Ae5X0qdPd63S5yupIZUBiaTfRUn9MM2ffrTn8b111+PRx55BAMDA3jVq16FCy64APPmzVubpm5QEAQgk9BDCSh1Mel8jyQEykVJqexRGgByRBSrpjLjSSlWS9u0BxUeyoSPhVumTikFdKulOJeoqrknvOJdFr+lyynFuaRYJZUmtmqeI6RMozxwVvJTQl+lmvKAn8EK0WbzTNnQurzl3vMpivxwbLul24ZByVZ4oooHM4I8mSTJJjjnVAc1BWJKp5cHyiQssacAMi7hed27AzW/eVplMIAHR+ylKuspq5uQ0nSpskqVZgEkyqCV5GgmOULLYiCQG4lMK6zOErSzFFkGANLynkTFe9Bfg5pjGEdsLP25SExFRDyPsbEYsvUKwo0UNRPrtOTG/mXaV3opJQouZVpE+TuPsvF3r4AqSKiqYsrOR5APquK4jIaUKh1PPSlVzQnlD6cHCeXbNZp5lfPQa2QfFITpGSoScHYMZEcXo6RAMNooYZS05ZIDKXyoCiMOZ+LQN+dg8MheteMj/QhtmZSq5nLpIqK6Dgolp8x3sHn/GjZvhSeybM4NCEBXqusRk1UNY4UWiYDQEskqQHaK8xaeW+mqHAFwVYoKB5SkTZIalo/uF/phl6g6Iv58hACyQdtJETm82sDai2KxkIhl0qJrU5XRYH+fBvuq7rvKcHRdERH0r2qW5+8hQVuH2ivtn3Eqvoe5oDjkTjERZSATRx4pgyQxUNIgURpKEpQ0UKIYWQcAJQ0MCWgjoUlgdSdFniuYUtU9+BF7pYwntKQ0fju6FEISHLAMTkhIcofng1UAIjyJxb7J2cwuW8zzqsrTYLkgGiYgw+DyaLnm1BGQJTLJdR7deSbYvr6EtIoZVlIkNt+QSpz9dufCZNISfKz8codnSEAwcdVH9MM23X333TjllFOw5557Is9zfPSjH8UhhxyChx9+GJMmTVqb5m44IAG52l5bkziWkyv0KVvN0uQCshru5UmpyvvWBOy0gM3NVJZKBeQ3gbR7P0tYIhdA7c0kBWCkJVyrMqVqQvIQQlhFlZS+4p5XSTUSUCMpEVKaB86c6siowCcp+WPFMVbPZzjdK79d5T0u5gIqzoMfqPDKKJTnUXHOqwgLwTCBBnK+kS63k9tvB9dsjimTAqZprzMFxSHseaXCtjn7xmHPJfJMwA8ScKOr45psb5NEI5HGq6EYUpBVHhkJSIMUQDPJMaO1ElOSNqQwyI1C2yQY0gmGdIqBNMHqLEdupFcksdqqkyu0sxR5LtFRjV53x7hgY+nPjZt7+Zvf/AYvfelLobUeeeGIiIj1AhuL9HN9g04F9ICCbkobt9/RUEM5RCe371EdvBzqCClgREKqp0pqGELKTsfIpFQ1fK+OlPIOTz0R1U1wlX/2vK0qnkTtdijsIMGdY4JqG8iOJQJlbrpJP3++arYZHKsgKocjscNGsImLVdAvc3J34SrRdIXque0HffhSX7Ha+RtWWVJ1ssjuF7ARA6ScXy5RDosxgMglVAdFMlMq9l0a3WRnEoXDD2Hv6c40IJ88Ark2Doh2qU8QQD6JQKkoEo8blHKGhM+7J6XCzo/v/AlPUJAABKioyObQRVZV2lIHArrCRMskSkAs8Xa4XcMcd0hKseqoThEllCWNkkRDKYNUaTQSjVTa76m0HZpEGCSy8HelICTCwEBgKE+xPGtidSe1hAqHgIiClEpTbcmtuvgOR8KQI3Ks4MKA4B5QggsNF66vzRcvOB8SANsxBMQRKtc4OPHVfHNdton34ZRfYYGFosBG0FmsIxb5d6DIKt1fouh4SkVIUu1DbrSWyISy5BS5nFu5BGmCJsAo6dvWL/TDNt12222l35dffjm22GIL/PKXv8S+++475jZuqJAdFwbF6sXEqqWKBagUOla8/6mwS/7+d+RI4tInaAKkk0qRe8dzOB7BkzS1ZBT7YEwsaQ1AutxC1GWvPMigSIReUUmlif1rKphGUpvr0qulnBLJhvGz74bexFQv8sjbBfduz1AKN+Z3QeHPFNvxeaGUgBFU2IqKP+hPGStyKSAIXTtJCegGgBTQDUI+iWAmachJOZrNHEmiIQUh1xJZZp0tfqYEUFKr+qaz2rNCRjFRFapOlTJIpIGSZF1xJqLCc+U23VAaU9IhTEtXY2oyBABYrRvWzuvEtytVGgNphlRqNKRGIjU6JsHyThNLjESe91kuhf7YpnWh5hzXcc84IhkRMY6YgMcpHwXDviEky1vfwFXgRDBqR4mEyIPhuOpQTkhE+Q1VSKZRkFK1RFEpP9QIL6bhRv0qKCXYrJIotcv32NBw4Xp16wTHIsglO+8YyLa2lfdYneaWISkhIF1OFufAGPIqJw5/KZJy8kHBk1L80++aXP6FjLoq7JWcuTB/TY1v0kuKH04rVbAJq9tIAjUs4+Vl8AzuMLqcDALwA8ZMSEAB+SSBbDJgGtbpV0O2apvMggSopqj8JbN6R3Q8Ee1SHyFtPjJPlhqb/4hzEJU6OyGq5BSDeJLt1JVUfsG6obigtx2g8vIVG0DhwxeQK9SLJa3aEF7PkVJCFmSUlE4V5cioRDERZdBUOZQ0vsPBn0qQD+9gtVPbKKxCA5m296+UBkladJykJCSJRiPJoXyOE+EjhMIOFCupCNJVzCKQttW5YGA71mTJKVEhZHz+KUWgppsYJGMXLvcTaVkkVfeKiGJbYUif7dAKpy5x16NaMYuJPkkohd4BhX0MlA6Cj0vyaINb1AivkhKCq2K5EEnOgaX5uN2yivpOTI3FNi1btqw0vdlsotls1q1SwtKlSwEA06dPX8NWbqDgS8cJyMlWn/S2Q9v8aqUqcdXXQDgwJNy73QBCOZ7IEbkE4fLn2fdjL0LK5pwUtuoxE1FueWEsc9O776tsbikr0SlySYVhexyylxYKKS7AYokpzm0ZhDKyT8HnLNh9STXmmejgfAi3jAYUq2UD38P6NPCJ5P12WS3uiEHvsrlthm3i9cIE6mwvSFkyivMa6gGCmZqjObWNqZOGMK01hCnpEBJpsCpvYEWnieXtBtpZWs5T7xSrDCZcCPB2o5ysvFBeAkBuJOzYpYAxouSC+ohPQUikQUNZW29IQEMiI4mVeQNLOwNYlaXItIIUhFaSQ7nBidwoW7jCkUUl5Wuf0A+/aV2oOUdNTB199NHDzl+6dCnESB2eiIiI9Qq5kZBmBENmogpyTCAgGSIkK7NyBRgqKsOUQvSAgpgRAbFUyvdSmS+D6XWkVIWE6iKlhskr5ZfvYc+L/EsVUqqOoBoOIymjwuPoaoTrB2mySqmOgcqK88wJTgVZQsUqoCqbds6ZdOErJoUP4fPng+wIIhHBOAUVBcmEVduWpy5CCYq98LUoVAXBea5pS50yzI+KhsRUpSpgMboMO7oc7oMZArcNk9rljBsxNUpAN4HOpgZmkgYSg6ytoFZIR1AJV/3IOlXpSoBWuRLTg/3zsqJd6h9Iosj740e8yecRA+CVgYKEJx38M1532XmEnp8P14cr2wcKvpfXtTsN5olgnWCaX6U0vSA5ymRY2FsrlvVlxINcUZx0nEfSQ1IqVRrCdVCkMO6TPCklBSGVGpoEOibBqryB5Z0mVmcptJFFyB7gFFJkSakgbE8bCRgJbWzeEptkV0Ap7kTYkBOjBIy2o//GhbORsaQSqcCICEcOJS4kURGka0eS2E6WEITcSLTbKfLMqpDASXtNxSAFRJKvQBWe5/BaSEAmluwriCm4hOjCb0+43FokrIKPOI8Pd6gzAS0kIBSILKFHZBNiK7d9k0hQGwUZNQFc9Vhs0zbbbFOafs4552DBggXDrktEOOOMM7D33ntj5513Xqu2bnAQAKlCdSy0sJX0yBLnqgOoNnw1PlZ9lv44/5EpBgYFkctF1eOdNZyoIlCsA7D2kO8zl/RcgJ8Ltx0pCkJKqSJsLyCkKFX2/k0dKZUUpJRJK6SUqwgcVrWrEv/+UFAy7SX7WlI3EUqKKE8U+xyZ1EX6VfN7hekAimrFAqxiKynaXRVE7fwR3QTyQYKeqtGc2saMqSsxY2AVZjRXYkBlAIBlTpHqSSdWTQmqHT+1+eltjidyKikhyAnoCuWUocJ+hdsMTyj/NiTQ0QqrdQoAyIzCyryBZZ0Wlg61sLqTQmtpw/ZShVUqhXLvCAEXll1znfqBfvhN60LNOWpi6qabbsLBBx+MLbfcsnZ+DOGLiBhnTADPayBsh3uEZSLGhmSVhlo2VEwIHR8lA8KoQkJVw/bqwCopt3wtKRWsWyKZJE/rfU3D5etCOXzSStiKOV2S8pFQbZufzhN7NSxYlEmp3P25JKcyN1ayLwS49DOESxrKOaWE64Ab8o4bO2IgCUECWhCEc7CYiJKwlYK4ik3YFptwNWiqI6OM6h7t7FKDVI7Xjyy6XCtdpF/wu47QCkkpYbjDaskH0xDIAMi8qN4lNNBYIpFlAnqKBpoaZjCHziXEagWRCd8B8P1KXr9PiHapf2BRis0lIooqVkwuBctAuOddWHXBsM94zbwuHiu8j+vW8x0n8iG3noSqW75aIS8gwPzinrSyy3AFNyaliuTlbDrJdypEQD7xJ2A7K5qEJ6syo9A2Css6A1ieNbGy00Antx2EkOjinFTKhQIa2E5SphU6AIyTHAhBQf4pKpkKHuHXWsK4EuUEJn7coSpCmmqkaY5WmqOV5BhIMqTK+ultnWBVlmJVu1EcuyJ7PkOVU90zznm4wmsRKjPceZZBqXYiFyrs3oOCSULA5swTGpSYIncUK7jaynbsUgGVaigXZmmTVwtoaaAlgXJZHH9evUnGF2OxTU888QSmTp3qp49GLXXqqafit7/9Le699961a+iGCEdGlRRRWkDkoqgIlwGyExBQTGQGIXo+96TzE4rfFJDv7l7ke5eJqxoCi2TlfSdh/Qyez6QUq1GMBJSwxFVVJZVIkJKWwHE+iVEBGZUwORWQUlzZLvQfGNVbkYrHkNzv0mxVLAcOt2M1FPtyym1YFOeLeuyr8FdEKR8nhA35k/60WgNrGkA2RaAzjZBPzzEwfTW2mLoCWwwux7R0CKnUWK1tKPSKrIm2tjTFQJqX8vkJQT6XnzYS2pH5wu2TLy6TUMZK4b39ZQRC96DpxT4MCQzpFOgAK2UDuZHomMS3C7BqWGMk8lwV9tSRYESA0Xawoe9hxhPgN02EmnPUxNT8+fNxzDHH4N3vfnft/F//+te4+eabx61hERER/UdmFMQIDHs2wvyIbtgXtfTOD0nnqAAVYiZ4SVQVUiMoUL1z0oOUKqmkZLhesezIBBV6LlvezjANHU3OKD+ze7pwjqJ3DANSphjZoyLBfG68c0pS+nNJfE5DUsfv16oAZEZg+T+FBBJ/D0YZbaUfO40cEQbYdXXq1ElVQsqrnMrngZ07QUFO3xqpPqu8QHBEgQC4Mh87mOG6BF9dx7QIHWW8My9zq4iSHVttT7YF9GqFbLKEmaIhWzlEUxcdSDckLQTQea6FdEn/7EK0S/2DGrLhmiLMLVUzql7YD/dn4BQu6EmqFnEiZdhnzc6rC9ELV2dSisJy4LwRVNYLlq9LdNu9cfIhh7Y5dpotEW7zPaXKhm40k7yUL4TzSklhvFrKkEDbpFiRNbEya2JF1rAJz10niUfplTRI3faZ5FLSQKFQA4S5P8rhfOSKsfJov51PSVHC3HaMbDhKmuZoJhqTGh1MbrQxNbWhMUoQMqPwXGcAK7MGOnmCTq58Z04lRWeM22DzY8GGDzJZBfgwQE9iQXTdC5wDRgjj29dl/N01k4qPGyAjYbSAyaU3hmQEjFYANJQKO45OSZUar8wypPraARyLbZo6dWqJmBoJp512Gr7//e/jnnvuwdZbb71W7dwQIa1QBkJbIoqTcIeVbi1ZRcHv4HsQ60WBPRA8EFWprFeQVcG80aJX+F/pgKStuJdYQqrbF3IDZk4tlTddCF8D9pMVzkERllAUaTdSbVe4A3jyqNdy4QCVpGAdVkzx+4BzdgXbr7YlJM7sObekmnS2hZRAPgB0phGyTTUmb74SczZ9Dpu3VmBAZVitUyxttzwhpV3eJyUNmtJAsq12f7mRdlAgt7meFIcSOkdIG2GVqI6cKvF5rtHKJUAPYZztBoCOVljabmEZWqXTyva6keRWfZor5LmE0SrwK10RC0ea93MwDxibbVqTMOOJUnOOmph62ctehgcffLAnMdVsNrHtttuOW8MiIiL6Dw2JfIQaprpnZseIXjANCRpIi9wDQY6n2rCtKqq5osDrBqN01VxSVULK7bdLJSW6fxeqq6CtdaSUQMk56XkcvVRRwf5HBDH5FCTaDNorTDm3lMhMQUrBkYGJ9OWXSVnJvFUi1eTcCjrbQpNNJu5GAQ1L1AWcQitwlp3Hw2oqW/VGlHNBVTr5VSUa5930VzdcxvXPEdw3gpxPXFFUhY4o+e/C79e0jP0ubbLgzOXskEMCySoBmQmkK4BMKlBqIJRNQuo7kEGy0X4i2qU+gYB0hUC6El0ksB8t57DRKinLz10Nv8Db4HxtpPgZLM+vLu+JKJ7v9xOQUqFiqkpSVZ4jzg3C37uP35I3bkC/dF+zsimRrG6yOaUaKkdDuqTnwiCV2pJSEFiRN7xKqp0nPq+Ucs+MdEQXV3ryuZsEACM92SSF3T9QVPYLwQou7hBxOIo0VpUAR9Y00xyTGx1MSjqY2liNqUkbk5I2AGC1TrFMt7C800JHKxiypdClJKu8ctvlc2dcp45Jd2GEpfXCa1aFsOcYzv5Ip0iTUnhyqtoJDBUGdt9kO+OpgFdbBZeZCTgbzijL/e3+8VEe/bBNRITTTjsNN9xwA+666y5st912a9PEDRKC7OAI533kvI0lJbIILnEwWBPejnYAyiqeyeVRBLmwUQgIbQpCCsUncR5GznUGVIikYCeGutZHmLtHCh/Cx8sLTc5qSJ9KgaRTSDUF8pZAPmD/dBPQDYBSmw+wZI9dU7zSycDm3ar4lV4xZmzTwvMmmIjy5F9B7pXILBQ2nMkmP2DHKQqC6XbH9q88wObsirI5pbJpBo1Nh7DVtKWYNbAMA6qDlXkTSzstrMob0CQt+eQUniEhxQm+w+p3iTRWAOaq4nXZGIweQlApdxWRQCdPoI1VZlEwPQz/ky402QAgXWlDQOr3E2OxTWsSZjxRas5RE1OXXnrpsOF68+fPx+LFi8elUREREege4egDYvWr/sAmseweIUNNrqNa1JFMtRPqiJ9gQkhKVQkpoEyauHXDDmnXujX5pXrtu+SojAYVB5NVUuGoHWCXUa4Cn1qtITNt5fpKgFRSjEIq6arNuT8lgoo2orRNPibOBWUSOFk9irwJgFdJhbkZeDSzl+y+53G6c9+VyBSV7yIwBaEDXrd9EkVeDU4aG6qnFFyVI2HDcRIDkgQ9CdBTJUTHJYhPCDKx+WhCMiosw9xPRLvUJxCQrALSFYVyqURA+cS6QZVGUfNZIYSA4HmX8OSETYTN08BCpaBzUyadSom2Q1KqSmCFn2EDBHUTUtwwfuZQhMZBELoUQrAdHCnIhz0wKcXISCI3CkM6xercJr/lkuPKyQ5YKcWdHEOW6EEN8QTYZ4tD7XqByOagImHz7igJpDJD04XqTU7a2KSxGgOyg6a0oS+rdYpl+QCWZi0s67TQ1gkEgEaiXVUqG0polVcoCCSn+iop6sDX0PVGJYdDE1gdwKQRGQljCIDxxJPNQ1u+QMU8Kk0L7Y6vUOjA6qvq9IlAP2zTKaecgoULF+J73/sepkyZgqeeegoAMG3aNAwMDKxxWzc0hAVEQtWmf/S17fhLI7ztYDvlQ44FTxe2h5vDVuZzxWgIEtDG3sN1N490tLOGJZj0MDcYF1gJiSoR5JcKWXLjMrD7PFFOKdWwKql8QCCbZBVFeoBgGgEppQI76UgoeCJJ+Bxags+hccu58yhcEzzhxyGReTHo5z9LJB/8fovKh8ITMNX3RuhPkqskaFLy+bFMaqvvpVPb2GzaCrRUjqVZC0uzFoa0VZpaNVQ5txQAT0oRCR8CzURU+EfeDltFagY4tWVRoMJekjJ5xDaIc1cZsracFVXaWCWU1pwDEKX1We1JnPfPn8Bifr89lrHYprGGGU+kmnPUxNRoYqMjIiLGERPQ78pHIf3MY8jM2CAcudEozptPvlkd3q9d3y1TM/CxJj54LSlVfW+GCqKadasEThehVVon+DGae7hW2UAlNRKPyrFCSrUN1FAO0Q46cso6gia1CUV1Km0+B9fRrkrSmYQKO+iskGLViHHyeS55zKOUJOx8SECnwjpgASEVDlr5kUvu4IXHy8vWOOG157eqVuOOezAKCjiFgbHLGw71c4yAbb+7H0nYoU1JQGqApiWihMvlYvPcWKetpHboMykU7VKfQDZhf7qKPClaVksJlxuN7L2j3DMyDDFVEhcIdtDdn7JJrX1eNirUVCUwKRUSXhyix997EVI1D0ytaso9L0IGJAhxCJyAFgKSCsddoqi4t1qn6GjlR/MZuZHoaIVMq65OTkgyEYLtus9qp6ucfLeYXj3WVGkfCthSGVoqx6Skg0lJG02ZoyUzaJJYoZtYmg34RL1tnXilFW9bAz7ROuet8tXwwOfLGhjyNszaC6nId+YMCZsfym2blWA6lyCFII8X1VzAcgeP1+/1m5c1YbjeBJJT/bBNX/3qVwEA+++/f2n65ZdfjmOPPXZM29qQEeZvLD26HH7uvpNynJBTCxmXaF+yrfH6QkdOuWqjMPxdOhUT77jCvHY1rPcNRmzwfOJzO60gvwOSin0OJf1AmUlsCJ9VSwH5JIJuAqZhB4iIc78xuPAA2WO3Gb9FMWAGa8dKMibnG0iNoupebqsJA+Ao55Kv4m08T+Mzaqgr5xbJ8u5MattvUktGUcOG24qmQdrK0Gzm6OQJnh0aLOXc84eIgmjisL2QH6ySUoTCLghBaCiNSWkHQhBWZQ2szmxYH6ucqGKD2f5KAZ9/ymjpCCnpSSxjClKKyfESEcREvp80nDM3/hiLbRptmPG6UHOOmpiKiIjY+BCTDPcHngzh3xA23KLkAPU4r2tzuuv8JyaTgm2HhJT/XVFLcfvLoXui3L6QoArCFcdCSFVVUjIHVNtV2AvaJHMqFFJtDdnJgSyHH6Z3yUWFEjBONWUSSxpVK+RxktFS+WUFGGVHH7m8sR+ZrJJKISGVBoRU6MwFx+mPMSD5/HmtdvT5nNRtyy9LpWsFoEhUzJfI+Uh8bNy5p1ClwjskWILKEQuCAHIdVVsZrNzh7DeiXeofktVAulKXSOeCrCVPRJlE2BLrikpKqqqCypNA4f0aqvTYWVfBQ+BuaoLwnS4BGypWUkoh+B7+rqAUXhasK7gH5xeEV1Tw8txnVIKgJCGVNum4gcDKvIElbVsSvJ0lyLXLeeKq7FU7RAJcea/IU6Jdp0YbiRxAu9RuCjpFtj29wvikI6VSqTGYdNBSOZoyR1PlaEj7HQCeywbxbGcSlmUtr+bKXZ4VBpFApqVVepUUAPa8+NPtwux87ifDBqJy/gH4LMcV7omouN5ldVpw7dy0qnIqnB+eMwvTpXqYCPTDNtEwxMfzCV3K4eCdKzQKMt2H2RMMARIChm885oEkCrJGCpeH0t1fmtw7lGxon0GxozABel3IHlAoqVweUeJpQgBKQSSJrcSnZJEAPXEDZS4BumlImKbLK9WyVepM05E6TQNqENAwkKmGUAXRZbSAyRSQC5fSgAtYiFL4o9COrHIhez5xfEaQHaecciSTH1xwPoQgChTkKPko/H4oDaTxaWLbH/om0r5D7LHYUb08VxiCJYusctPm4APgC0uE+aVUYCdDMGllSEBI420tAegYhYa0206UhhC26mlp/fDeIwFNgKGAkIJ9L3hFlhGelOoqOhH4vkJYO0jshAmCmAB/pR+2aV2oOSMxFRHxPEZuJISRIy4TMTawTLtrOkQ58eYabXyYeb3eOSGBFJJRfn43KdWlkqpup0JKjdgG1/YuEYCxlfWsvNwgGdJQKzOI3IBcZRsSgMhscnPBsvhcQ2gDENkRSCGsw5dIR0jZhKJFfgbucMONVMIpilCQVAqQmR15Zbl710iiBLSXqVdIKT7GkMziyTVydz7fzo/pOld1EM7hsW2hkkMUXhdyDiEl5EOpyh38+u/ChUMZVlNBujwxQeeyz6F80S71CSSQtAnJSl08576zIdzzwGGv5J8L45P4U0DmFg45CSaHeD/BPqsEqp8YOO9OHSUgXCfdze9hS0qV9tzmPOEUzg+XqTbJ5z8yrvNic0ENuXwimVY+oa3OFSi3sgCZ2HWK5N8i2BZBSwklDbQRLqwPyLVE7oidkEhhJVFYbar7WMmHlIShGoYEOtKWMW+qHBKEjCRWZE081x50eaQKlYCtXFWQZNpIaC2htfCqSMW5wYLqeV79BANByndAmZQTLlTIn/+AqLN5toqqhxYFQRkSUeE1q5JWVcUUhwUKaXP2hBUJ+41om/oHkxQXkdV5PRNGcy48xyMJl1uKpIB0oX1CoZQ4HcoRVJqcwpggtITIbVEDMsYXRCgawmRs8AnAsc+AEBBKFcsqCShVSnpOSgGJLKm5dVMib0roJlfks8fPCiPR0kgHMjSbGRJpoI1EJ0vQ0QmQC4i2tNUKM0dA5bagiVdPMxnVsakPfD4pbY+bC1+QpGCgwfmBVM4z6v2JsCgMo+65I9iKr5IvDnzBBEMCyKV/9oUuCHlWdOa6qLCnnD0Nw6KBsspUCbL58OCiGEmgo5UPyVaCAGkgBYf7ufuNyJPbTET5kG6+1LJ8A3IFPrY5PtwZKN5D4blxJ2siQvn6YZvWhZozElMREesrJsDRik5Wf2DDYbpfQ4JQEEOVUdIR+/osFQ9Hqnh/onv9kvNQJaN65YIKSShUflcJFb9MsO2wc1EZUROmKOEMYR1F2SGoIY1ktYYcyiCHcqCTQWR29J8SVU4iqrnsnOtAKSfZSBSoqWCaCUzTJjtnUsokwicvD9VRfp6roAdiiXuReJWdN267PaZuYk9wclEmpVzogSejqqSUqHz3Jy2YXiG2Qiex2K9LSByotYrtU3ldEawjqQjhCzv5rnMpJNU6UUWOqZqZ44hol/oH1TZIVmYFGSUCUkpJSAmYVEIq4YlX4ypDmcRVaWPS03VWhAjudX6+mWz1z7+rlMUCPB10AKVTS8ng/vTyvXL7vToqIC2EtNMKgqRIqF1HbvBvKQtSqJMr5DpF1klsCJrPYxSsAwGTA0aUwyWEFDBe+QVIVZBeAOcl4e05+4GC0BGSKuFucHmWbEeZyOaC0rIoj54lCkrYZO1JbmBg80+tyhpY2WlAG1HKmcKkFIe+8DngKnd14XJFCItTCJhinm83241QvSQIQhooRT4Berh9Y+yNEu437BBWr1NVqVm0wd0GIrjX+oxom/oDS5CjGESxDENRvCNYTkjnApCAScgrpEhalafhXEqcGNzY5P2WtClGgYQBRG7zVVJHW2JHCAhhbMJwIVxuKGeTRlK2OWKKiShKFYxTSplU+sEy3ZA2r1RL2CTnTpXkIQmqodFqZmimOXJtSan2ygZotYJsS8iOJaSsz2KrGIYDfyII2+NiLT50Twk7uCYCvyRUq4W+R+gXBj5doaBCaXCOryFJKn4rS+h7i1+xNZkunhfDCcwBb/vY9Q1JIk3CK0n96UehME2CKqgArOIT8OorDgdklxKBrWMFKQBIKVAm1gFWAde9I6oSTz8vJLD6hH7YpnWh5ozEVETE8xj2/T98L3PizdKGDyYj7I9geulUi9J87wfUjkCRzaFUmlZsk6Rw+Y+CF34v8qimCQXpIQonpUJKdTW7SkLVESdM1GiC1FQQN9rmikpXZJArOpArV5fD8pyDJ7QBSUs+USKB1A6RCk1+WRLCJjcVwfmU8PkbNKumQnKI56eF6kl25LkRXQABAABJREFUrAOnMvLkFDuynlxDzfMQqKMEFb8LhVqRq8oTiFS0peoAli5P5d6x15q65vnjrjYw3GZQ2VAYzvXjyCk/shfcVL6zCfdHVZ+rb4h2qT8QZHNMidWZJXOkLFSJyipQSElITTBKQOZWfSgTq54yusg7ZXyHpMjrUr3nq3aQyaniXq3csDy9q+HwZFOJPHW/pShyR7FySUrjOypS1ssubKdIYaidIs8UTEdZwozgErfbIgBC2X148sQEnRITED2sCjDCkTbS74cPLxxBZypLGEDXHIcJ8oVIp5qCO6ZMK+RCInM2XxuJzEgMZYnPecXhhbzvkFRS0tjKoyFZRmUyyk/jalQCECjOP5NOgMv5xEoDCBfVZErXgQkm4TqMTEoVIYWFwisks8pEGQqyrGoEJsA+RdvUP/B7mt+fQgBGECSfb5cryrh5NlzPqfa0Jaj5HWyMCAaWCl+E7RST6knbhi8rCSATEEoCKUFmGqQJwpjC56i21+WN8v6VlLYIixQubM+qo0qklFdHOeLfKU8tkSR8AngC0O4kGGqnyNoJaLWC6EiojrBqJLd8qITygwBuezYlQUDuE6wfBhQ5NgNiqTiwwk9h2MTxwhZQEQhyEBa+ld+WInuMTQI1DURTI0nzkuiMn20dECVso3zFO1ZYGWmTmJPwpBKDyafQlWVSKhGmK19VSF5ZoksG450FOc4DCYC1kwAVeaa0vQnrSKcuH9sfWA/ffhyxsdimMRNTxx9/PC6++GJMmTKlNH3lypU47bTTcNlll41b4yIinteYACcrNxKIo3/jDiaL7I/hlxUV77p25Jc7FFWSi0MuXOfEEkQ1icwrBFR3e4vRsDpSqqqU4v0U30vNLHZrXE6DnJyEHi55uYZclUGuakOsGgJ1OnZ0NFFAswFqNkBp4hOaM/lkk5W7PFC5KcgpKezoZCq9g1WQRdah8s5opWNtlVuOlOoESdfDcyPJf+fzI5gbq14vHs3l8+IcEnJt8g6fcx79+ZUBccXbLJ1v3gB8NR5/oCEpVb3GzlGXHQGRWWedFKAbBNMyRdU03nHQYba/OfG59EWIfC3oPiHapf5BdgxEuwNWGkJKQBkgkRBSggyBjIRIhBULGAGjhe38JOTDYGWoRiTAwFVd4/sf7ta0goNyxweot4sCKJKgu0/pCB9JnowSTpHD1dsKQsrlI5EGqSrCP8KRcx4pz4xEO0vQ6STIVqegtvR51gpm2T1vYbMpIEqMsEQWd2ycrSBt22yCNofrV4/f2gvBRftAIshjwkSNMkAK5JoghOrKRcXhKGEyc255V3gKgLJSqbydOtWSbQf8+ZGBIoqcssHeCI48ctX9pCwSCvvKV0C3kssIGzIJOBLQdbNE0WbbYXQElnFhjbU9wf4h2qb+gZWYcM8DJAADaOl8B86bJAEkKOVUAhNRBk4hBZ9MXXAluxqbYxRgGgKCrH/Bvgol0qUKgMtDRah5MAp/i6v/sgo1ccnNA1KqSBkQ+hFWzSVzwLjwO9OW0DKFRgpo4RRRHLInfN4oEQw2cWVCO/Dn5rsqwqXBL6CLwAp9PxI+21+3b8PPPw+2hYN9rEJPXdLzlgG1DORAjtZAB4PNDInSIBLo5EXBiIKMKuwq78wqOgOVlBFlRT+ATm7Jew535hyBUhBykr5iqhKEgTRDKjUyo9DOE5t7LwivLpHeRvr3SpJoL/LNM7s/Hz4cnp/QgZtYswRg47FNYyamrrzySnzmM5/pIqZWr16Nb3zjG5GYiojYgLCxGLL1DjUdsV65Ekov2ooD4Ukr10ciUV1OFHxCQBCVFFA92tfVjkDK3UVKVYmn4UipkvPDhFRRTU+2c8ihDGIoc5p7WxWLSIMyY/M1DEpQK4FpJqV92hE+R9JpS04JsiSgabjcUrKYL5kgVEXbSLrOtKukx4lBVUZlRy88NgTnw4UasIPMuaqAcofcn2rTPY2nhwnQwR348DpSsAysUypN4YzzqK9pwEvnw3vPLmM7yyYlSCMg2gKy7badCJuDiuwB+9sqDPGjwk31CZL7jGiX+geZGYihjg05MQbCJeeFJiBxN5yxn1I7kooLCRgbKiPIPrqsRjA8YuxydnAp864qlT4EByUb5IlZSQVJ6ioDCkkQqlAtFWFyVOQeCb87IsonvpUGidCemMqNQscorMoayHXYyQhIKSZ5tQAJCaMMhCwIFx/GwfaCCnLKh007Mo0CYq04YLtOKUxQuHV8nie7D8olhCRQWpww7miFoXDSEXZpopGQsZ2/XPlKe3XwaikR5LgKQgntp71gLAwpSKoid5RgmQoAw8awEq4TrlccM0FJlCoYGt39XPucMI6U4opZ/l4CimvWZ0Tb1Eew+pJHccJKxgI2XFZZggru/cf2SGhHgockFRUkVUkFFJAyXOgBkBAJwbgcTNZvkYUSnVCopigI7WcynkOiBRNPwquSinQCTP4Uh2W3Z/+kBlTb2Zzcklh+gI0TmoeKbOWYZgEgDzZZ8T88eYfCzJWWC/bhFdRA4E8In48zrFocDvaZBsE0AM0qqcEcjWaOVjPDlFYbm7RWoyFzGJJY0h7Ac6sGkOXKKzPtaXW+WxA6xwpL/h4K1zg0uZFotJIczcSmgMiNJaTajvxqKI2pzSFMb67E5KSDJZ0BLOkM4LmhARhT5P8zxubc4wEBApDn9lmW0lUmlVzu2N5n3aSfKP+eQGwstmnUxNSyZctAZEcxli9fjlar5edprXHLLbdgiy226EsjIyIi+oPRVLWZ6Ko3GwO6qtehm6iqQ5W8ItH94vPS7NB5cPOr+x12n3Xk1CiTnNcqqKrbdA4NcUeTCSOCzcEw4LalCVIIiEzZ7TdSmGYK01B2pNElM4coHD2SztniEEG4fblcUiYV3uH0+RvCkCL2vcKRPuVSLpngeFD+ziRSiVCSgS9S+K2FI+z2WXfeQ7ETL1bqX1XOa1hdh0tdk4Cr6iOgWwRKECi8gmvRIOhUwzQkZOZCGJOwYW4F7hRwpzfofPLtkaG/iHapTyDYogKdDoSUEDopCCqlrFNrAuVUwtXa7E3PhaokAUitcpErtXF1KNIEkTjFjyo/XwBsBS1hSafiPqfgeWJSimw1Kg7NUwbK/SUuWXmiNJSw1eqqRFTiVFKJsImNlbAV8nKjIHUCbSSGZGIVV5JASZfxdQ227eBwQGMkiMPW+BZ0yjI+x8Q9R5fHjYRwnUhmWETRqQntuCRo5SrhaQHkwpJjEtC5ALWsbUkSAVIGqdJeeeTD8wS5pL9OOeVIHD7P3taQ8DmjhOswh/mtQtIpVKMBKHLAoMjxYqRAmuhSOE4V1TxfPC1NtAsLdERa0EH1bXVKBk9KmYoN8La2v3Yh2qb+gfMRsYLQE8USVoknYAeDXFJtoUSQ2BylkD3D6iHOLRXkfmSyygqy7BuXhCPdOS8VFWojT0w58r0LgZLap0PgohEy9E1QFJJQ8LkvvW+nAdkGUi1gOkWaAS/EYXKJQ6T5ePwJDI7TFN9ljtIgJyv6u0LxuC1MOLF/E4bq8TyXrJ3cIJ92CinR0kgbOVqtDJOaHbSSHJPSDqamQ2iqHKt1CtFpWeUqk+YVMryo5Cn88xbaBP5uSPiqe83EFoDoGIWOLhRZShoMJBmmpkPYJF2NAZVBgpBI+45YIgewdHULmVYw2uW3YltuBLRR0Lkq2mZgC2G4cD4+p2UfryD3qiq1fmJjsU2jJqY22WQTCGFHtnfYYYeu+UIInHvuuePauIiI5zUmYvSvNJw9zDIRowe/2CtqJTHcBeXOSaB0KW2vtGiPERl+cUrUz+f1qyqq4d5TYyGlunZU2b4hX0XP5mGQtspeuwNaPWQ7w5MHYSYPQE9tWEIqLarWlCoFgkcCLTHlSRpHXOlGkcuBnTjO8+Tbxn1EBaAFH6bnk7T781V3TkThrHGHOry84ehseL5EeRm/XHUZ0f1YknDqLPYvHTkHskQVj9TqhHzbOLk58QFJAg1qeH1CRckhmBjgJrnOaRguBTe9n4h2qX+QuQE6me2E5BoiURC5KsL6XDUp5BKCE/gaCanK6ilh7HNpO4MCxnX2TCJ8OI1RApRYZx4EVCtoCe74BGFzfE8KRZCcPLuGlGoojVTZzkUqLTHVUDkSYZBIjVQU+Zik+27cPZNQUelJSgORFHJFH6IhCSIxSJu5y5VE0NpKvizJZkBGuWdYgKtPAeh+zu3ibh+AV1iF64UkMuCIK2G3rV3n1gj/PCaBUozD+qyiwIUqamVH/3mzAdFMJiAcERBRYeXNYJ0wV5UQ5NVarNKSwfJhZa3c+OxAULKcxLwu2boSBCgbGmhzTskil1TQQe0ipSYQ0Tb1CYKKKrJMABnhVFA2VFS43G6FAooKEoYcCRUQMl4ZVSFqhAsJ9DYIzh4ZUV43QfF8o9gnEPhR7CP5z4KwDgmfao7LgmyyDoAkAK6Kng2JE3bAqeWIOSag2FRq+AToPv2Aa0PXkyGc3yiKNnn1k6qkOaj5LAbjqFBIJQClBNMwQMNADVhCqpHmaKY5BtMMTZUjVRotlSGRGpoEVuUNrGg3kWXKqyPrCGt+JxCVE52HqksmyrWRWJWlUIJ8Pilrh+y1a+sEq/IGlsgB5DYhIppSY2o65Cv45dpVXzXBO8BeaG9/vErKCAgdLMM+lvcFgytQ8gv7a7M2Fts0amLqzjvvBBHhNa95Da677jpMnz7dz2s0GpgzZw5mz57dl0ZGRDwvMQF+lx5FFQe9AUg/1zfwi75McBTOTRUl0oq63y3DEVWl/VZIqZFC+bxzNBJGQ0r1IsJkpR1O4SQ7OcTK1aAVK0HtDsTUKaDBJvTkBvKWshL4hkDekjaBuWQnMyBStB1FD8MZSQK6UVQU8/sPyKnS6J8CNDtrKYpcDqGSgZ1Bvg7OAeTzRwiIKB619I5NsU9/noJ54X6KHC7BsgI+ZxUlBK2EHw0O22RHLskloyaXpJTK2yO3MeEazPvkRMPsa3NH1XWCpTR+2nDXerwQ7VIf4RRTACCUAuUKSBIIbStgCq2B3FXC1ArIDZSrLGVLn0tIp2QU2obWilTYKn6uPLtUNhm2SAjG2M4PDKyaDwDIKhXsPWcThZNTPQDu/uMqdT6vFFyYHnlCikkp+92G6zEplUirpnJpu50ywkAJ6RPoMqHjQ2hRPC8yMUhcZSzlyrUTWWWQ0JU8fkwuC5TDEf3zTN3PTDhdAnDqMDYIZITNW6Ncpzk1SFKNJNEFoSbKiYD5u3Yj+ZIribnnF0ARbixgFWmiqKBX10EMIR0ZJivLMTllO8428FdJA6UVDBX5X8JqWIXqAT4/FqEI12M1BYfUVM9ddaov297nAb1om/qIyrNCgSoInpSigCCAV1GR8w0EqwDdOuF70v9JuEqewr/3SBaklK3cJ0rv8OJ7D0KK2x/Aq6c8sROsHvgK1ZuWfRgmkJAWt7YgQOQ25E91glVDMszZUa6gapzd9SqtRJTC8iBQSm9gUqu8JlWkB/DH7OwbKbKh34mBahg0mhlajQwDjQypI/058TgAdIzN6bQya6Cdq1ERy2z3QzJKSuMJcZ6upB2oaKocRAKr89TaEyOR5RLLtMRQnmB51sSUtI1WYjXfhgQSYdBKcrSTBHmuYLRCKdS6QkiBCdCqrfE+Vnghy/dEn8fzNhrbNGpiar/99gMALF68GNtuu60d8YqIiNigsbFIP9c7sMPSax5/9aREQFp5xyUYUea8C+PRLt5mhVwa9qUZZs0NN0eBUxa+hEPCxeVAEiShXc9Urs6BTga0XQd5cAA02AKlRRUqkwrkTVtWmR0rW5WnkM0jKfbbJT13zmapekw1540o1jeJc3CVC5VjlYdbR4Y5LNyxyxwuBCY4Jz7vTHBORXCuApLLLxs4ud6R5faKYn3jOrCGnVwU2+fEsZQ6YqqX/xHKz0NlhAx+82Uk/iscw5E6r+OBaJf6B6E1qJPZ0FqtgTSFIAOiBDAGQktAGVudKteWoFIKQln1FJNTIpGQyiX27dgkv1LZnGUm4cpTcN+dmooVCSm8wsG4TiCnkyFWHLjPgkipv++448NEU25UEeYidS2JWhA4Lll4mCsKlrBRqcZgq4PBprVRnTyxlZ0kgZzKgUOUKaEixxTvjxWL4TT/3RoHrioopHv+uH1aFHmpBCAVQSWWlJKSPIED2E5aoiwp5xUESiBRBjoVyLXyy3PycJLakc4uX5fr3HFnj1VPYZ83URqNRCMNCSZHKPE5ZXJKAGglOUjpQsHgznfGSihWeQVtC0P2woipav4rnwPG2dnasu19QrRNfQSTtIB7ubnny3BhBQoU425ghVVVCN7rruSlcPRlGFkVwgCQQkBLWOW1V1+JChlV7x+VSJseqCWv2O/g7VY+mSTXmYDUAjot3svCAKojoIYA1UaRyy+orMd5MG0IYaGgpsAul0L4EpsjSjfsJ6WmXBAFlbZXBrzI2FxMeWKVmoYEKLdOW8vlfWqpDIbsoMCkZgdKEDp5OXQXQBA6XOQNFG5AoqG0T2AekuNSEAaTDgZUhrZOsKQzYMO2tbQ2KldoZ4n9ayaY2hyyydGNtInQtbKJ0LUEcXghE09MSLkbpkRKeX+zIFP9/ePum/LNMPy9srbYWGzTmJOfz5kzBz/96U/xta99Df/3f/+H73znO9hqq63wzW9+E9tttx323nvvfrQzIiKiD7Cjl8Mbqmr1n4iRwWqaEZ0W1Dg8TOi4lUvKmwDVan7dbajZeYUo6b0uEPp/VP1O5fl+HZ4uysfG+Z6kEpCZgVy+CliyDJTnQLMJMdACcQJmIlAikA1K5ANcUrnc9urxhARUifih8khgadRSFOtzXqkwNI9LMPPIa13OACaXurYXbNf/FuXzWB1xE0ymBdVuqmQVmLBiEopJNkXwo5mh4xiep+pzXPnJZd5Z8VCQU8JX47MjmAL9drCiXeofhCaYPLM3nFIQUtsL62pm2+eWbA4NafNNQWkb5pcriMSSU5CFikoqCcoMDBNVQRUqT1DllqAyKWxlqRQuT5yAaJALB7ThdjafKSxpBQDQkFLACBueoY2Ech0LSKCjYdVWBnYZCBhXKlyiUPgwmQLYkuINZcmeXNnKTXD8u5CEJDFopjlSl1sqExyKBp/sXQj7HFpDEzwXTEpVKvIVF8F1qrlqnzvvpTCSYL6tgMc5rqwhIElIBSFJirCZ8Dg5nCUnaQk4EsiMdPmnCpVBwrmz3HnJtPLLaZcQmMGElXQKqZAM8+QTn1/enpHo5Aq567Aa09154gTIYXUsTxJWX1TElbwQdCADdUO0TRssrArHFNdRF8+CfyG59x6TBmTIhlXxQE/wHgYqv0VAXrnfjt+1ys8wB1WFMLINDLaJmu+juffqSCmv5qLgu1tQ2kp0XK1Q5gKyAyRDgFpNkNr6OCa1g3mlvH6AHYCgYFpa+EkmgVVhNwDTcmF5PKhV5yBWfVp+9nNL5qw2EnlDodXIvEqSVZ05KUgQJiUdNFWOrKHQ1om3NUxYpy6R+UCSuRx65Gy4QUvlaLpwbSmMD80GnM1zjbNh3Ro6kRCafGhwO7OqrY5WkIKwupMiyxXyXEJnCoZzR/H9V1VIcfh1eL2FDQElQUVId919EG3TqDFmYuq6667DO97xDrztbW/Dgw8+iHa7DQBYvnw5PvWpT+GWW24Z90ZGRET0BwbCdkZHWCZibOBcR70XQDHa1ONl5UmdYKFSaGDlBVNLNIXER6kmuPsYLt8UVX/bnliJnArWK6mn3DSW4gv/m0NTBESSAM0maPIg9GAT1FTQrQT5JIX2NIVs0OaKIje6V0c6+aaFpI1ri69cx2RP0La6EdRwGgnbb4crPy2r+0KNfxY6sDXnp+TPhIRThSyrjmYWy1EhxVeuehHL6pmQClQWpXawU8XTRLB8cCKZnKp2BosKXZgQRLvUZwgJIYVVRQlhOy/S3vSC4ydkIAW0UhuIHDbXi5ZWScV5qJQjsdx36T5NKm2obENaUsoRVtqFiphU2E5R5pL9uu+6YavQUUrQ2uWYMxIm1Y5wsZ+pKz9upCNhpEQiDQxp5EKiY5TrxBR5pnKjPLnSTHK00tyOlCOxCceBIqeUsSEghoSvcGcceUShqoefJf7uSKW6ED5PNgk734aqwPaQg2eTFYzSLWOMcHlebQn1VGkMNjJMSjsYSDIfyuhVY7DPyADIh9TkTmlkk8UXRFbHJOhoBV2Tf8SHO5JAO0uw2v2Wgkqhfdwp4vdSO0tAJKyCwpQJqWHHVPwyTrFVIquC916VkJogRNvURwjOc2ZvEJLCK1bIVByMYMCIdEByM0Gl7UKCk6ZXCCr/zuV3rCzuMUGionyucRgQbIvbUxxGuZ3htJCM4k9NJXLKFjlxZL1LoK6bjpwCXBJ1QCauzSU/ISDfmHgj9klRVAdUNmTPpIBpWqW1JdTRbbcEUO9gwhMuRMKOZSi780aSo+GKUpTVTQYtqTGYdLqIdABe+WRI+nxImgQMWXK9rROsdNPD4hbLOgN4dmgQmZHItYI2whPyWksfGpxnCu12Yt8nWlgyyhNPBdHtCSltf/vQ0CpProW1136ktjgtE42NxTaNmZj65Cc/iUsvvRTvfOc78a1vfctPf9WrXoXzzjtvXBsXEfG8Rp/ZdcDFG28EMcnrHULnYA1RKiUehD10K6d4+Qp55YilguDiDkbBeHXl6eBlUCafCt/L7SN4uVUVVOF0AedEcSllGOiBBHJSC0IbkJIwk5vIpzaRDypkg9IppQDTED7Jph3Zs86U0PBqpjBxcJiMXBCK5OA8AFZxIEXQziIEAEUVG94+6p2MWsejSsyF08M2BERUOIpbJdi6fAh2EL0io0JKcTUz7uyGF8KpqnwIUZBXSsgexoYECLbyGuegETWd7fFGtEv9g2kkkAO2qrJQyhJSSgHShutBueqYSnpyiorSbwWR5TfodEnGQBKBtABpO9Ivc6uikhm5CplMTDklVQqoFPZ3ap95kwKqYckpO02CUoM8JehUIUsNOi6sjSvzpZwUXVrCRgkVVOXTXt3jm+w6QoYKokdKA4KEkAbNZo5GkkMIQqa5oyNdSKt7XgjlJLmuQ9f1bPlnnpVP5VxOHJJGwtjtqXpS2H63FewGGhkmNTqYlHZsYuEgCWEOiURa4k6iCIPLjUKijO+YGJIY0gqZsRWscs7xROUcUEoaHyKiSSAP8sNwKGBdInMmoroIqcBwhoMrpaP2hFNluWD90rbCQYE+9wijbeojqEjwD9h737/fFIqXWpBfyisXmVTRsKoXARvip6mUekYYd6swmePvseJ7l1qKiYlwHKdKPonCt+rynepIKffHIYS2kIslpoSGKzBhCSqZ2fx9oCLZOSlLVlWV4KVBO1Z0s2/EaiquqOcUUzbpvE1i7n0B9wyG9qdEKLMCiI9d2Rx4jUaORBX0h4Hg1IGQgqumlnMASkFoyhyJtGVZVusUz3UGsCJrWhuCglQPQ4MF4CuyrsgaWLa6ZZOqh6ohKvLUkRZF2K+7h0rHEXwXrupemETf/w6vOYpzD0nFYKK/kUJE2zQajJmYevTRR7Hvvvt2TZ86dSqWLFkyHm2KiIgA+t75A9wo7EjSzxHmV3HPPffgs5/9LH75y1/ib3/7G2644Qa84Q1vGHadu+++G2eccQYeeughzJ49G2eddRb+/d//fUz7XZ9QIjvWemNlH6hrxMY7U8Iva50oKqmbCl7GlkIe6f6qC9Ertsc7rWNsimXtMgUxJLyKQoBSW6reNBPopkLeksgHJPJBIJtUhPD50DbnpAohfAqZotNXJn3g2hnOL30Oc8ySR19N3QKV4wynh21A4NRW1i+1kwm1cP0qaeWOm1xOztJy3ml3npOoXJJQ3sWdZhHktBHU85QUnUmrLmFyYgLMUl/sUoQFNZUlpoQEpFXhlMgop5ay4bGymCZsSIllO2TlO3zIib3XXJ4oA0hYwsUnSs8FZIdD/QgmFVAJoNMiHIXJKcPTGsqO7jckdEBQqcS43EvGlw0PSSoVJEcPQ0I418mAS4LrR+6NgFIGrdRWk9IuBwkTWFLChRkaGEhIZq4dWRWYSogg4bhSBmmiMbnVRioNciPRzhPkrjy5ryLl7ukw1xP/lpI8ITW1OYTBpINE2ONjaBI+nBEAZKCWYrIKZJVkq/PUVu7jfYdKKFZzkeAIz9r8JRzmy0qu8nTZlSsq7CR235jBslQho9z8+hua/0S3ve0Dom3qIwyAXMIX7WC491bpPc5OACdAh63cVztSxus6wqqkthqhSVWSqlR0hEkmN4+CMHfhNs7jQiHpxUqpLlJKk1VKaUBmlpAS2iopBStzeNCMfYSgjTJQXoVkrS0EI6ATQDfJD/KRIpgWgQZztCZ3kKY2eXi7nUBnClwZFEBBBNf5NZKgUoOGI/SlSwdQFDgorgUXqFCCvG0dcFX7mjLHs51J+PvQFCwZGkBHK7++NgJSwBdLKBKfWxpjKEvQ6SReGYXgnHNhBOJ8UUxKAYVd8ddXwOeSMuF1r/wO/WN3P/YapHU3RN+xsdimMRNTs2bNwmOPPYa5c+eWpt97773Yfvvtx6tdERERE4B+JMtbuXIlXvKSl+C4447DMcccM+LyixcvxuGHH44TTzwRV111FX72s5/h5JNPxuabbz6q9ddLCJTD5Nb2XUC1X4vNE3k1VeGUBI66m+9zMJjebStd7mHnuU4TFdO7wvnqDkVY1QYm2898cop8QEI3BXQTyAdsmWSThseHoswzOwThyJTbLofwAcF5cOclHB0Njy0Mw/OkFJWXGRaBg+jVT6ETG7Svuu/wN1fSKU2TRXlmn1fKhfCVlFKB015SSo2io0buxPlDYM+ZO8WAr5DWs/3jjI0lied6BwGYVCEZGHDhe04RxeooN41sCTyQlIALvbVlxYUloFxON3Lfi5Ljwj8P5O1D0Ptz0/leF2TViQD55aUmmNyF9zFRFYT52fATAWpI5ImBThTy1EAqjSRR6DAx5dRUSiReSSVh854A3EEyvpKTDfuAT7ILwBNSnIdJO/JICGGr4qmCdOLtcugaJxdPlcZAmmNyo42WymEgsDJrAAASF+4d5nMKk45z54u3MbU5hKmNIUxSHa8uUIJ8qIuEVTYyNAkXppf4fFsGwuV0UcVlEUWuKBU85wRAyaKNJhOAYgUVr4saUsqpwPg9FMwblpRiQqprPXgD3zUWwvNC9UMfEW1Tn1GnyPXXn+eHy1i2gqQjp1hCxZ/h+9k5AhziXxrkEwhURRXliw+7c+SEG7iq/vn3vruPOfwLhgCJ+sGuWtKLoFZrgAhqSAFIodq2fUxK+dybKB4VmQOqA6gOWaUYWeVVZxKHAxJ0C1YllRKoYZBO6WDK5NUYSHNbNa/dcKpQ2zgyFUInvE4SEMo4UipzpJQ/nZZQh7Wf/JkI423WiqyJ1XmKSWnbVVPVaBuF5Z0mhvLEk1E+RNjZ2JCwT5S2OexyBcOVPE1ARPEJMigfQ4kwR5EfygRVmU1FKcfXPrBHPjqizu6EdmACSPONxTaNmZh673vfi//4j//AZZddBiEEnnzySSxatAhnnnkmzj777H60MSIiok/Q1ZdNr2XGgMMOOwyHHXbYqJe/9NJLse222+Kiiy4CAMyfPx8PPPAAPve5z22wxNSYFVPhKa5lnnpPsyM27kVtAmKGQ/ucwy7CkRxBtSM7Xe+sMMeM+177XqtzJIP2hWSSbkmQbEBQA6RgVVItgXxAIJsskA8CumVXkHkwSlWTVyrcdsm5q7SF1++6JsHoJWgUpFQNsVV77O6zpIDiZUUxPTwOqzopzl0vUsp+UhHOV713qheInXkUl5HIOvPwI7xOGi/hwvVQUnywYoPDeVDnYI8j+mGXIixMKkGthldDkZRAkCeKlPCEE9x3o4SfDmk7OxDw+U/IfRa/Uc6RFj6XwfPgSWF+BlznTeZwIS2uk8D5Y/h7LmC0y0OVFHmojLEheToxyDRBSWXJKUlIXcJ0xWoqUSirmiq3IYaBagiwYSKpqywHALlWLiEvfMWoVBoMph00pEbHKCxrt7A6s661koTBNPPzc5JeqZQqjQFpbP4qp1zSQdJxIchX3BtMM0xrrMbktI0BlSF1eVUAePWXcZ29ELlR6MCG03R0EYLXcTmolCCf3J3Bai1WcvG50O68EMpEFKNcUY87jkBY1VM4wtsOolSJJ7ZLlbxRfuBAePJAcLhy2NkMqmFRTfvGC9E29RESEElIcgbzupgkBMkfrZHx71VjCXChHRFFBXkg2G+o+mhB3iWbQoB8NWQeFPMv98BvKNkm50eEqmubEsBWDpSVEcbwvhdMrmmwLAiqrSE0odGQEMYO3gFwubdQ9kFEYXcB5+JJgbwpkA+6wb4GYAaMrSLa1EgHMmwyZTVaSY7VWYpV7RRZpmxFvERD56p4xlxoGwQBCUE4xWqS2rDq1NlZfs5D1SqrpKq5/nKSaOsEShp0TOLtLK9XlGgMbYXwKk9+3jOt7DvACJvziQIbQkH7PclUdXzhVVJ8PbsIQ54fDjZKa+C8f0vBfYg6whF9xcZim8ZMTJ111llYunQpDjjgAAwNDWHfffdFs9nEmWeeiVNPPbUfbYyIiOgTrPRzeAaFpZ/Lli0rTW82m2g2m2vdhkWLFuGQQw4pTXvta1+L//mf/0GWZUjTtMea6zEC4oHRc6CiSiwM894oyYeBYITPviRlRk6BAB9W452nQDpeW7GvZl/eF+TQnEp7Rzv4wg4jV+oSA0X7dcMmQNYt+wkAqi08UeSPu+KT+kHRgAhiByDsEPt5QImc8gor73SUz++wfZse5JVwid7Dc1Wn7KqG/fllBbyzHS4XklKlBKV1bWJnjLdVpzII1vEKBTfBCAFJ5MQ0xT5KCYz77NyMxS5FjA3kwu/gqutRaj+Nq7BnEmGnO5tiE+a6/FBJQD6FeUuYnOLKT1yJr+k6eDJ4tlgZaACZ2QpTKgNkBh/CArZXgcLB/3EVPyNgNFxidIC0zV1FiU2ULpWBUQW5oo2wYX5MPkmbsLshNVqNDJPSNnLXOO5AGggkwoYCNlyoyYDKMKA6PuE3AKTOUK0yDfxjaAqebQ9iKLfvLSWNzePkwla0kVCODJMunIW3pTxJJD2BliqNgSSzFalcCAxgCakwka1VJBRhfYYkchTHo6ko5R6G7amAmOLpXL3QhxgGI/G8x2rOLkJBQgHOPoPAWkwfGgwEHUeU5hWddVGf/wWinMdFCyC34aFcOYsSAqrq03FEtE19hCKIhGNHUVx//g105T2CCggpP6gD9+4r7j13O8LApgPwdkhQN5GOYnuFOobzMtn7iwS55NjCht/lwvtaMhNFVV9d5Kw0jizjVH1wKkYi2GTmFBD9iQTaGnIoR+M5QOYpsknK+0vsn9lUAK7R0ubl6ziVq0mtX5VNAvLJBN1y7W8YyNQOPK3upFjVbtjcTFq6QSgDY+DsqixIKTeIJRKNRitDmrow6Qq5LR05xXY0/LRJzC05LgVZFWg6hGnpakxNhgDYYgwShJVZA7mRpdBmbaRPZm6MQFuk9vxpVcoh5e1GSFxXn8vAtpRIRk9U8Z/wv/396E2ArcjnlXIoE1KckJ/VVv3ExmKbxkxMAcD555+Pj370o3j44YdhjMFOO+2EyZMnj3fbIiKe3+jfoF9pFyPthudvs802pennnHMOFixYsNZteOqpp7DllluWpm255ZbI8xz//Oc/MWvWrLXex0SDhCiP2g5HUlWJqQqqKqHuBVAOoeEKdsG63u/Xlrzq2j713lfd/VEiXoI2dXElFYLOKoOC0S9ZSNKFBpLVALXDDXQfa+mz2nY+3goZxO0UlfNTe1x8THXbpso5CttVJRXZaaz6CXWkFG/MOcncllr1SWVb5ZKBKDp04f7gqh0JdCcvDwgtMtaJJylgDPnkxkTCyuTdMkL317kZi12KGBtEwSD4aayOMomAaUibhDzhPwSfACXCVYbsvjdDdZ9JAOMSmCMJQk9dj0rkAqIjoNoCNCRsrvUOAAgIp1QotVsHBaO0gMzg8k8BJpdW6WAEjBagtAg3I7J5o0JIQTDSQMEm5G1IjUlJBwOqg8mqjUHVgQQhI4VpySrMTp/DFmo5psghKNgcTBlJDFGCIUqRUQINgSHTwNMDU/Dn9gw8tnJzrMiaJdWRIeFzQhEJZCSRBx0JAfgS66kjpVKpbYJzp7hq56qUNBjgpMJWkaBgXGVCRzLBEksr8wYyI9HJWc1lrLkoEWIurNB1ALnNlpyC62yWc8bAXaowRIQrFxonBR02JWHPPDaibMtYEcW2hwBoUe5MwvWfVf+sQ7RN/QEJAC5nHE8g/2dJEjvA5K5/8CIWilxBBioRm5QIV4zB2ZvczvPhxe7WMw0qig5o4YgkAclkAlnbhhSgBkG0NKSzKSaX0Lm0BGnmcug5op1yAZHZdUVuCSopBKCZ+IZrBEHC5sji0DnTkNA6gRrKLTnVyZEsT6AHElsoZrJE3mSCjbzimgRArpCEbsIN+hFMGhwjE/lCYXVuHY6CKLYhxWQAk6lCaeSaCkmQqUGaFiopQ1ZNypVSuWACJz5nG9QxCi2VexvI3yepDpoyRyo0Nk1XAYDNw6dttVDjbJJxYdJhlT3beGd/eNDMV9eDC80T3X4R30Ls1wWqt5CQ4iI41YHL8JxQZTtwFSRDolLmPXy4ccTGYpvWiJgCgMHBQeyxxx5YtmwZ7rjjDsybNw/z588fz7ZFRDy/MQHEto/HHmEZAHjiiScwdepUP3081FIMUfFYfYW5iapPP96oEDJADRnVg2Qqr1RZr0IgCQKQA8qQJ1uMK8MOcuoD33m04S8yEaXt2Y6eVVOFIVpeNTTSmywgm/y7ulIPfLh8WyIHlIbvuIZkVkEUiWLdOjIsbKcoRhNL+3Md5+rxuMHQ4jd3tEv5BFCQUqGTFnzWjbjWqqOC3yXu0jlXxHkLBG+PKtvscUGcEzacjI1L1XverZozIliGR0EN577JZdFh7LN3Mxa7FDE22HtSlP96LGeUJaV0Az4pOVfTIwmXRJeKe9/dIlwtkhJ050OzW7fzBJA7hZVuOqUBdwLyooPgR5+dvZMGVlWVFwSVbgiYnEAN4dRTBGrA9WgLSAFkgqCMhHKJ0BmpsKqozZLlmJ6sQEtkmJksxUzVxhQh0RQJUpEgI41VlOFpnWMV5VAgpMIgI4lN1EpoSDyTTQKAEjGVG+mVTrmRMAFDnjhCyrbRlkFvJjlaKkPDdeSWZ010TIKGzG1ZdZm5dhukQfXBVGhkUMhcqMyqvIF2nqCTJ+i4jqiSwua4UhqSRFcIH7fdqhSKqnyh8smPDwQkoCURnMrKlG1FaDb8vIC46soF4+2u+85h6WH4VLjt9cxnihgbkqbGpIGOV+BxAn1W6tp7S5bfXf5GdO+v6kbdfWlyCWTB+9ERnRRUs0UufeoD//7Pg5d14eBAKPseFUqDEgOTW8Up5TZnHymAMkAoS1DJYJBJ5sKriPi5MezshQ/JgAIlArJjILSBzA3Eig5UW0F1EuimtHaPBw5ctdNQtcrKHqGFtZkCILKkjtaFI+kr+YYjkp4EFsV5Dl0GYUmpTCsMDaUgI2GamSfWQ9LdCIFEGOTSoJMrrMobriiDwUrVwBSdwjQEUqGhIZEbhbZWaGeJzW/nCCkeIDNOxdWVlD2wK2DFkq6c1+DeCAkob1f4vRMQUkxQAoCQbnCz6g+yz6y5omLxjhLGDez0MQBkY7FNYyam3vzmN2PffffFqaeeitWrV2PPPffE4sWLQUT41re+tcHmhImIeD6CjBhR2smGbOrUqSViarwwc+ZMPPXUU6Vp//jHP5AkCWbMmDHu++s3usiIYQioYZcJPP8wFwv7LyE5RbDEE3cKeZuUCJhAtSOUsJ1JWWxDZmQTa3L+gOGIpuEIiZIPI9CTP6kSUzx4GVaa4XOoirbYBO/C72oY/sVvl9vsz5dAt4Kpq4FFh5gl3X574ShZDYEGdljCZVAs16W4ksGn68yDdxOuSygIqnC6v/jccQtOiiRPBIhwPSa/SPjS9v6cyUIlBThSSqsuJ7CPKVxsE8dglyLGBhu+l9i8UqmyIXyKq/BVWNoQVQ7TPxvcEeAHGSh1EJho4ITCHGaTGEtONQT0gM1h5Ee4MwE1JCHbgOqISliF6zRoS1CR73zAhvblwiq+jLED12nRcCEIuQtXybTyRE5iFJok0TYpVmhCSw5CCsImaiWWmxZaQmNIaAyKDqZIhaVG4/F8Mp7MNgUAzE6fwyZiCKkwmCKHMDNZiqWtQaTCYEk2UITOKQJgc1YZyYnJlVcXcGdVudDBVpJhQGVouPjsIZ1CgtBSOaYmbUxK2qWwvFTYba/WKZZkg3i6PdnntMpcJ5HVUUxEsTKKz1KR66pIxs6Xpiu5bqha4Y6tv9GEJwWKW4g7486eVIgrf9+EoTc834SkZfGdbW/X/vuEaJv6BAEMDLax2eSVPuS1GlLKBQq8gsZXfnT3KLspVFSJ9PNSAd3ofvkzp2UyVQr3IleUjpXG3ofKBAgJdGYgGgZS2Qq3MjFeEW5vb2tLhRSOvC9UMxx+J3MAwqqdJOcmgHC+jwBlZFMfNKSr3FeQYyJ3+Zp8w2wYIFzBiJKf55XyNvxZSJubjzT7FNTtczACPyr0IUxgH2xYnXTPhv2euWuUaYVcSSTSIBcGK/OGzWfVSX1Y80Ajw5RGG22ToClza7/aAxjqpMiDsL2SL+JsRIlIC3whVklV80WV3mO6UDWFNqVKSJWS27vdCunuN/atCH4wReaO6ArCOUHuegzzCKwtNhbbNGZi6p577sFHP/pRAMANN9wAYwyWLFmCK6+8Ep/85CcjMRURsQFhfajisNdee+Gmm24qTfvRj36EPfbYY8PMLwV4WXXpdy9USarKdK/+CUkNqixPgMzJK6P8ZPZZKskXvewbAFxuF0Hkkh4D1c4pcecT5TYMh17HM+I6TErJ4rtvQ4912Ln05FXJiUIhCmHuzXWYOcdUSYHGRBSfs/A4e5FNrh2elFTlY/Hnnopt+vAnn6+HK+6hIKlEca28WooJKYHy6GCIargeT+Z1UXz6KjqOkJIugSk7m8aFQpSq2fTZJqwPdmljBAmrgKKmsmRUakfkDeeWcuF8NjQ4IBT4eQnIWtvhgesEAOENxwSUUWTDaXwuPNchYs/TKRWEJAhlE7SREaC2TQYujIAJBE9dSiq/Qxs6Y9U0LveLKSo05by+y30idG922kC4UD2FtkmxyjSxRFv1U0t2MEUOYYkexJPZplhuWpimVmMmLbUEjgAaMNgqeQ7pQI5U5jDYHCtymzwvrKDHSiqulBcmG2/I3Cc6b8ocTUdMpcLAQGCSamOyaltlFClkpKCEsXmkSGFJNohn2pOwMmv4xOrF8RfPlyabi0q7PC4AvEJKszKlx3PWFbrHnVXfSQ2WCQgDr5BidVRVJcI2MgzHQWCrQ0WDmx6MF/S354dom/oGAUxqdjCjtRIAqwvts5K7kFcmcPl77u7Rai40Jq9MOM0ISzLx7kTxrssyBdJFanJWKhNQ+BL8LjY2JJCEI0hcIn5WhIoEIBgQJAzYDXSKKIEiCsC/552i0n0nCZAjM4wCJBMrhryfBtcukq7oQyqscirM76fg/R04+ywEQRprg2GEJ6gQpp4IfK4ikVVwnVzeSmMkMhd1aYwtwMD+piaBdpb4Ag4EeKKxnSdouyp6TCBmWmEoS7Aqa7i8exLLh5rIsgQ6l1596XNIVcP1Kio4T0iFOaKqMEwioSt5PdsaGEss+fxSzl/zNofvCQq2U8kt5qMQJsAkbCy2aczE1NKlSzF9+nQAwG233YZjjjkGg4ODOOKII/DBD35w3BsYERHRP/RD+rlixQo89thj/vfixYvx61//GtOnT8e2226LD3/4w/jrX/+Kb3zjGwCAf//3f8eXv/xlnHHGGTjxxBOxaNEi/M///A+uueaasR/Q+oKApADG0I+vWc6vy4KEgNworUrFMrxOdVmWkrPEW3ZQlB9OxLBt9tvoQVCJ6vSabdROC/ZHSc1+TVFKviol52kEFMnQTeBgwTmQhBJRyGRS12gYyh2erjaP8jqSI6fKsXqOQQuSr3PIXqiGIgFfka/uWOGcWD6OrhPGSim3PSGLzj+ECz8Q5RvIlra3aikhUHQwcwnKOflp0Ix+d/42Ekn6+ghKANNIfILdMNm5J6e4upN7pmAs8W1VPeDq50U4Q0C+hnk4pAhJKZcTKnVERmrsuonLC2NEQbYCNpEv2wPePo9gaxQJaatksg+TEbY/5n7lVDjlpMohadyBNSSQJTZReTtJMGRSrDINPC2mYJVuwkBgUHagSWKVaSAVGi2RYyU1kFJe6sBNkm3MTpdghW4BmILMcCJyASNc0nPYhOW5Uf5ZT4QpKaJSof3fponNv6KckdKuJ8i/M1JYlrewNGthSFv3PkzSDjDxJP1lk4JcRftgmWDZuo5MqEwBnIJF26TzptezGxJSfL2rgxwVIitct+iElhcFivdc7brjjGib+odWkmNauhoAfIhtTtIXDmCCisNhDYkSYcXPsA7UOtoI5NqO+BCRI1GLe1cI4dU+gCPcA5+rrJpm+wFASJfLTAKOVOd3rEvzbckptz2bQ8puk0zAV9gXMiiHJ3coIEqMH0ATsBXgys+ISQWyQYG8JexgQIJCLcV+wv/P3r/G2pYd5cHwU2OMOdfa+3SfvuAL9kv7lkQEG3ORLQXHMthcLEikOEQKRgoWIIyCHEhsBxGixLHBiUCycUzeYMdWJAhBAv/gJw7GCRApkKBg0GuCgS8QJe2YRsbddnefvfdac84x6vtRVWPUnGud073bZx13n17VOr33XmtexrzVrHrGU08p0FafEwV3OSjwpGOYxSFOPL4hv1LCCFiJfytFpiAMLlLQaoIA8QhFrgeAMQdsx070oZwPKSUi54DN0O0HuHPQbntY+AID7cynuPeC/93fZBXg3gNIufeJbxpU32m2CYvvYe8kx5CaWiOPut6BmVL10G4T33RpYOq+++7Df/2v/xX33nsvfvmXfxm/8Au/AAD47Gc/i/V6fdMHeLSjPW3tlniyx7GfS47jt3/7t/Ga17ym/v3Wt74VAPCd3/md+Jmf+Rk88MADuP/+++v3L3zhC/HhD38Yb3nLW/BTP/VTeO5zn4t/9a/+1VOafcnkggLCHFiZLfg4N7gDTvEcIGL3MzMCU03qCJByPk0MDZyiogKdKkDuE0wDSGbgzOIXhtsvJFnZy6ZyxzzLcZYAmP/pt+M/37NOZUx5MM42Qe2fD9RmgYhFiItrsTPWxb6XwFVlSy2Xrb8L5X/fJV/uq5b21ePkypraBataMNkAKW7sKA2YTVvKQCmRF5LRGFMKkIBzmlRcNJOAUl5weM+5uul2AL90NLHWKIFq+R6rj6oz9r4Dn5t5D5P4HSrCSgCU9OJ8nTGoDPu0Z6Ak0drIK024OKD0+vCFpq1mCQZIE6zk2m/XhEGStDlY5Vp5K3MqjFrKTASGMIcYQIwFJWVkJikVSUGT2YCJI4YSsS0RQ0rYloSOMq7lFS60bWiggqjMJmMs3RXPcWeUpFo0pyZ0NOGedIZr0wqArCsd+sIMCApUhEARpEzv7u4Cd3fnOA0DujCp4HpBBCODZJ8lzbryZU3aL3KHoSQwGxOj1JKoeg+4n6YbtSyHqssugKl9y1lZT2U07Nx01MDHBRNq5vzqu2y+jZpQ1xsB7T2x8EmHBs2PvulwlkLBKkw7HR8BYGJ5fqcSUUAVrDIGlX0+FQGyrAMlcxP39vpnYEKeALCW8Q1BtIbsHjQ9MwMqgBb7FPUrMYCpAEQIqQVAFIo2WWFwCOBI0Da32oVPngFWXMu0L42tKSWEuv/KVOU2HjNG05PSRhDW3MXAKUBBJosn7NgItTyWNRaQ9wGUBUZgfyMHCMOVpMlE5jhrahBC0Qmz3ZtfwELCMCVMU5j5FNtGba7CTacOxbG1l2V7aMCTHUeL6ahNWizi0sq6tAmO2fV275jFhKWPJWXf+lNZYyErIDVhxmxjo4w9loTEzbDbxDddGph685vfjL/zd/4O7rjjDjz/+c/Hq1/9agBS4vfSl770Zo/vaEd7+totALaZHwfCfknq56tf/eoqXr7PfuZnfmbns6/7uq/D7/zO71xqP09qqyAFteu4BFVwuSB6dhlms0ZckzligEagJBY9qYiqMWWimMaEMHmC0pECVbwzHl6MeRkU1Z/Lf4/zluHFy/66L1YP+gA757Jth6pmkiXgvNi+BSSzY7ieLQCw2b6xOB+z6zMf9/Ljvcw4K+mLPCvla7OXyxXc9mesKDckD0xBAmb5vC0TAiPGIrO1gMyCevq+AV8VATy8HcIvHU1MQHNJQEi7QFEgoLD6BAUeAu34DPkC4msmfdT8Mva9BfiWFGhCxJZcKDOAorI0wbWrFgJLw4bCzR9YKSs0kWGWZMT2NSkQVfU8qM16T0BQtgQXIGdC6QpyDoixYIoi0jvGgCFLQjukiCEmDCVhGxNWccI2J1zkrmpBpZDRUcJUYgWnNtwhKhciEGNbOnx2uoJt6TCWWLtRRWJ0ccQqTkjUuumtwoQ74hbrMOI0bCvbKbusJnOsjJGRIzI3kMtEgy1hBxobDEBN/AzTsc9m94dLDq97D/nvuQmd185YZopMttI9/95aPL8elJq9Z6gml0vmgme23Co7+qbDWaRSy1bDTnA0NkYUWpmfgVSTCv1vcqrrjqZJxU04u3ZzM9Ajk3TUs3+uwyPbuzeiAvICBjWw3O5lZpnsMTAYgUCRqzB6SQzuAspACFsgRAAD1XvYqgwLSXmblZPxEiRbnpYaA7QYogqeG4CTtZuufshuHdsGB5pNeNaJAtuQTZblADYhcPXNFAuQAoIGViEIcB9CQQyi45cxF7G3E8w6WVDZPg6UajqF6gNm/sMBUKV9V4FEH49Cvm8TG3Pgad9P+aexJLlYEvJd8DEkt+1WHbA9MeOh7XbxTZcGpt70pjfhr/yVv4L7778f3/RN34QQ5M590YtehH/+z//5TR/g0Y52tMPZ7UL9fLJZ1XraA0btMIiuA254xtIOKGKBepHrQ2AV6ySEietLsrZ4d2U5lc1QUFlVYRTBxkqD8MfiUIyGVbQMoQI0GhB8XjPXSyDHAoKqsbS7XP3MjtEo+QE7OZIP7K53TfaNaS8LygdAwOy4ebmu34UH79y2mSDskIgGTi2DQ39+yH1ujCgPTOk+DBulPRfEQKkUCkIoostRtyXrMkFmSn1QfGCXcPRLh7OSCNyFGWguAbj4DnveKAOUqHbmM22NGUigGh1sDCdyyzhtDUuWfPvskqD+gmeOkEjvfxagtHZUss+dU7RkUTpdAaYvV0v9Mks5YQE4AyVFKR0cA3IqKIkFmEoRU5cxpowxi3DvNiYMJWKIEX3MmErAJovmYR8m9CB0cUAKWZhNlHFeelzLa2xKJ3oqRRhXk5a8ZCYEKrgzDrhDdaJO4xZrGis4FakgoKBAGFxCs9TSPXUGInrcymjqteU5GOUFpCcta7qRtfIa7BXRnQmML5JK8w87Auj20zNTr5McVVDK+dSm90JtfaAClQCgPelnuzyUHX3TYYwJOE0D7koXtUR1aQa2+u8Lk+rBJSQSjSJM0ikOsDJTB0pNygSeCDQF0EgIw7yky0qPrZy4okbmq0jAKhs4Z8BK+kogYQ8RIwYD4BWg6rRzXxfAWxEoD0Mrdw7GtgmeAcRzn+qeL2Ok1ljHvftt8s2LdssEAtXSPovfYLpJy1jUxwz7mNMEIBUgKRgVGSllJAWkYii12YI1WRDf0vQMdthR5h9sEsMBUDMwSgGrWfndDJSieo7quVuwofaCU7YNPe8yHyfapcTiioN7DzZgime6h0yQkvFFHHpIu11806WBKQB42ctehpe97GWzz/76X//rN2VARzva0W6lLZCA6y5ztEuZA1O87XtB0b7vDKzw37kY34IIyvqSrBoIjfVEmQVssrGgJYsVDHG6L9F1wJoNbM+YZ7MuDFTWloFfFvD4JGOfLYC4yubwwVZowZcc43wdPwwK80DM73tnGMvj2zfO64FSHkyyoC+0YzCW00ynZ8/26/EpU4ojBJxS6n0Foxbnau9xAMqGaADWTOzcFicBqWIsSLGgT7m1igdcyUM7NlmR67FI98BD+oWjXzqIEaN0hGkdd58jA6myVJ2wdZAyfajonjee31Y7JRN+GYYkcQaU+hnrDJg6btVfSRCAdZWBjsBDAI1BBHxJt2VlMwzwJDc6s87kG/szE4gJXJQhEAhBEzOOjJICkBglMkpXMHURMRWMXcaYI1ZJfm5TQhcymAmDAkxTDAAGBAhQNZWIR8IagRhneYULBbCSMkBiFNFzK/+7I25xVzqvgFZPk0olixko1YAoObEBGYUDthxmybl9vwoTrqQB51OPbU6YVGvHupl5ayV5TXNnxmjgVt7XhNHbunVzbNeP2g2yw3ra85n/bvnT3mG+VMf7UK/NZx/b8ezidTfZjr7pUHZXv8GzukccKyoI00ZF/U3cHyr0D2DGJgxU9J/cFzPxc1bx7FE0E2nU7p9b+Uda1scJyEHewSVBy9eAWeMR83eTgN4IBOYC5gAKDI5BNZfETwVilMqgYtG6AhxLGuCRwKpNFCbnH4uynbi9f+GGAWA2eQiglufJd2jgbl1AviBARNndF8bOpspaQn1+ZxOlkcFdAXUFqZ+wWk3o04Q+CQNUXG7bdooZfQoiel5BqEWJrwFfBQ2k9myoPeDUHFiiGVhk52nW6MazpRbbWAKB7lTpgbvtKKN33wSsTUxXBtvjcRk3xW4P3/SEgKmjHe1ot8BulNDfLFPn/JjLHO1SNhOevJ5Zkr/vXbIERPwLDi3OpwJggGt12zqjWG17LV1zAEp92TKaYKbuI4xCU74uDdlhElam43VHrqt/Zeu6Y78eo6yWENnnDpyyGTLPXFrOJM5AqeXn+47pOp/54G6HuUXzczTrsmcgU6hf71bCeXBLQaydc74Ep5YJ3owhRXVZ6z5EkKSStPuQgVJEXEGpFGVqdZiia8HtdCBsmx7kCgfO/o5+6WCWO0JZ0c5z4XXw7FYKmSVhCqwdoBb3vnsGZsCB3ZNW8mAJTWU1mr6dgKG1TATQslQgRAZSQQmqa5WDJIK6PnU6dR0JPJESagJCBVbUV0ytXKYCxuRAqsQiAt8XTIkxdRFjnzB0Ey5Sh1U3Yt1NiFpWx2j+rnDAJic8GlboQ8aVtJUSFjSg6CQK+NQFETBfhRFrmrAKYwWkoj5XeeYIUcsCrXRpwx3O8wrX8grnpa/Leb0qK+PbTql2NluaHcMOIGU/64JUl5+5ICdc7jvvzcTNeb6N64JS9V1Bs3VqwpkbK4L9NXT+VtbXBcK+Hd1EO/qmwxgB93Zn+H+6hxSAShg5YuCIDfe1SyYKsOVUGYkjR0wca6ntUCI2+tPHJVyoNvKgUcr2gsZNMBCIRPrA2NcGdnBQaQRrLFK05G8kEAToZg5Ats7Islzx70x9vir4osfMUZsTkPhYyhL7WNxWy5NLk1wAUCf+SGOuZRfL4MCpyg6aINpTucV7pnvJsHHr2BbPX9VxIpGK4ASgL+jWE07XA05XA/qY0YdcgeyxRGymVNlrFeCegkwo1DHTDIBaakYtAacaV1b2P82/w+6ydh6XzKkZGIX5OoD6FwO3CJUZtdSfmsVuLnb3fuvgdpv4piMwdbSjPY3tdqF+PumMsCt2uC9e3gOULBO/CnbsoQTX4MIYU0UEhsNggbpLMrzWlBsbE8CJkU+AfAqka4R0gTbr5vfJiz8X37UN6q8OqLpead8M3CEtHTKRdg8+2TYMzPEJ8WJ7ttwso0L7fYedtu940AAwA5n87Jdnc4F4Nl7/XWW3BdSEGcAMbGvb5RbUWIef5TWYIYOyjpXwVfAJqCLnJmweKjjFTv+h6HUiuMrTdvwVIDNwS/aXD5z8Hf3S4ax0QO7tZgRgnfN2Lj4qeF1nmgNEb8U9Rzbjv3yOLLjPHqxSUKkitSYQa/7S3eumfUXEkvglZUFlqsxKCgxKBaRMwxJVx2VLCAP2tgIPlqzaMxpJE63YfnaMbUrYdoyLvkfXT1j1UwVxx8CiS5UiVnHCKQ312PvQdKNWYcI6jBWQsu56ESJIPiAtRNBbOV9HE0ZOOC8rPJrXFYw6m4SR5bV0piKi7cYQuTasBJjK85KnBkhRLamxLmXgJgrtRY3rNdWTVktvLKEEbgxIwX+GvTYr4XNaMLNSHXN7M5ARFZxv+mX793Gz7JC+6X3vex/e9a534YEHHsBLXvISvPe978WrXvWqJ7Stp6JdTRs8Mz6qmm0JG+5Et62wlMdSwEgRgRkZwiicOOIid/JMTB0upg5nYy96cVPElIWlU4YIjKGCUjaZB0bV4iyJUXqg9MayFL8jAHgDmAA04IYhD0rW27sAdhPOGMew5WXZ1snNMZGUiWzi56S+ddYdrtAcRFkADeyAJTLwxol8sx2v0wbkgCojIOs60XcPGOnhc8fgviD2BUkZ17kEsMYTKYhu32ZKePj8BOPYhNLzGCtrrYJHKnC+A0Y58If0eOv7yANW3kfY8qX99ABfY0pxu368u37bqf7K3CZaijvv+p6sDQxD284tBaVw+8RNR2DqaEd7stqt8B9LR3y9ZY52KZsxplxitpf2uw848ewbAzs8A8e9sFk7sABwSR8QdGaOsgM+/MvSdqlJBSu4UjqgaNvb2fgX4NK+RNYWn89aSQBy3dvI5y9BjqUsBJWttn+Hjo75uTaaNV9nzHXcC7Cnssz2AFN1Hx54UibTktE1KzustC5dR4PUGsAQJOGuiT070fMlAujGbBEa7Xbemw16DygViCsYJXrXDeGblfos2FIhctXNIAJcvnsYO/qlwxgBpSdMa+dDFOTx4JRnJTafw1XPCd6/qQng3S6K+RX7Y8kuLB1QVgXcuXudWJgBAEDUtM60/KV1/+MKYiCwsKtiBvdZhIbXAWUMoG1A3CoLdBDQnpwfsec5kOi9cCQBtxKBY0DpGNxHbFcR00lC6iakJHpsU1ax9BSlVK7bYuKAs2mFQAUnccRUIi6oQ0eiu2Ig1T7rKNfOe4EKCgc8nE/w58OdeGRcYyix6lxtc0IuwZXYUdWSyiWITlaOs257Vq5rgFTVkWLHknJsM9jtYSAiMNeD8de3JnV0/efyOoAVKVtitkz9zn0284fkhIkx94uHtgP5pg996EN485vfjPe973145StfiQ984AP4lm/5FnziE5/A8573vCcy0qeWEXBXOscXhS02HHHGGYELQil1ki9DSvlGipVNCAjTsLCU2p6NPc62PYYpYhwjpiGBLyJoEMZlu5+EOclJ/UsQQKpcyaA+SyleZMSUEQJjHBKmTQJGtPexsY2MucwK4uQ9gAnNb/2Zf5ydB57JGVABSEuhd0ryDDhiLbV2vpmhQIyCXGa1NFs7nhaTD4htjOSfOWrHV6UGVgXUK0g/RpQSsB0Lhi5i1UWs04QxR1zbrLDZdChDbGC2gVCZWpluLa9zYFUdcPs504FyLKoZm8qX5xUHSGWAMu9dZ35NdHeLiZL6vnRsK3tHEuw8tfNW3aHFjq7i4WB2m8RNlwam7r//ftx3332gRU0rM+OTn/zk08OBHu1ot4lJp4obe8vH+v5oC9OX+4zaizlOcT3zQXaxQMGSwOuwGup6kJdvKQA6+W6nxA2oL+UlG4og+8knDJAyryZlXy1zqT1g2mwXPhCq/9uzDmO2PhNq2+OSfMIKDTJIae2YMdL8S58WM1p7z/syAHNjMXCMaXHcLkh7zCCjMp24JnAV5KpjXoBSPsEi1NbMO5uuAFT72wAqAmrpngBSpZbvBf23zyx5DcqoaqCXBLUhFJAKpd8KO/qlw1nuocCUT9Kcn4EL7N0zAbi/VXOqmgdoQ1t058FXv1Z6SW6wygidsvYygRXxpMAgB4aCGIW4fr80IkZUwAgruZ+nKSCPEdM2gjYRYSMix3FoPsT7wRkD01qAQ0sNEZvuL2fESCghYCoCUG2mhLOxRxdV+JekoUCiUgWb13HEnWmLkzhiFUYkBYh917xALOVLJWGbE85yj2vjCmOOFYTa5oQhxypsbuvZtqYcpIRPwSezWn64AKX2lfp546WPZDRdGA9GLRPtvTMC8+00UeOFhpRflWR/5hZZS2oYpqfn2tobxe+Adijf9J73vAff8z3fgze+8Y0AgPe+9734yEc+gve///34sR/7sSc01qeanYYBdwZCxxmhMCJY3vPufV87UKoG21QiOirYQAS2L8aE802PaYgoYwQGAajDCLk/Qiuz59TATe4KsC5Y37nF6XqLzpqCEGMzJTxSCDlEWIMFW89KyZiVjekBEgdQAXCd81QUPShgX6ixbjRgqs+dj5V0XzuMKZ2QbCCIPjDJjc/iEQeUVMkB3wk4uCeotHuZjTUWGZSMpc3gEjAVgEh8zpgjNqETfb5Nh7yNwNQYUgZIGWPMmFGz5x/td3Ln08dR/px40GoORKF2yqtsqeW23d/V9DrUS+BBMQ9MFUZgA6DsPLltGJgXMZtoPZTdLnHTpYGpF77whXjggQfwrGc9a/b5Qw89hBe+8IXIef9s0NGOdrQnoZno4GMtc7TL2+K0PRYo5ddrOlF+tqW9PWf6S275AAINbdHlbI7/J91mIC/gIKF9SQx0kjjSROiuiShopYLf6Dg8SLb8/XEeuzEp8oorOAQ7dIa0ZNZgYwmszcAmDagMWKrgjw7K09rr6pakKqWfA2Yzlf5Y9u3bjnemfaIBDpV5oLn3vJAFhhr8xdK67HFLLD0QZbsmBaAAVGHzEBoYZSV8QUEqYJ7MmtnvpMdSNakWzKvr1mXeLDv6pcMYCeib105bxcrplDW1M0Ns4LG79zkA3GHGkJqJ//sS12DPpHY1SiKaiySlIF0/IYRSO2cVlnKEdj/LvSrlLS6jcGydCqwGrh0msQKmHDGdBmE7jBF5CBhHZU6UeZLjfc2cxaoLTYQyEUjpB6UwiAJyKBgzY0MJ0T1rZoGAGAr6mPFwGnFnv8Gd3RZXopT/See+iKlEFBCmEjAUBZ84zIArZsJYAoYpobjjjqHtkxxA7RlTO7cCAQyWV4BtnxTu2ZOwsTFfi90EmD+nPrGk+r+5WRJpLClftlf3SfWc1/cXMAenNEGs4JSORwl3u2X0N9Mu4ZseeeSR2cer1Qqr1Wpn8WEY8LGPfQw//MM/PPv8ta99LX7zN3/z8xvvU8h6mrAiQaIyFRRkZIwoFFAwIlNADqTvtYKY20TJyAGP0BqlBExjRLlIwlxScKiynCNrObK7uSMjnE5Ynw64+8oF7lptsI4jANROnNt+QskBY+kqKOvZl0sGlL0mycqJCyoYVpK81Gcl/AGVLVonvyqDWjeq+5iDJM2X235nMZh+KD9R44waV0Zu+4gMJCmPBtA6GAJSzq+TZS0usfJggIhQRkKeAjZMKJkEGBypMaSsfNF+Op+xE1IsgbglcGXrzIAiNPH4yQFSvhRyT+hCLhDkQPU9xrPz7rZjoJTBHZU5pzFspJ0473HH/5+P3SZx06WBKWbeYUsBwLVr17Ber2/KoI52tKNhrwM9yD4eaz+3Yhy3my3AmRlQtEx89qw7Az4MsNgH+NTvXSK4pfm2DIyyzlrKCMorbrORNmabRQPk7aCBUDpvpX07+3a/1+/dOVgyEsysBHGZBJakjAp7OymARPYzUGvV7PZbt+symZ1gpzSQaPld8UGEAwZNa2sJBs6O3xhP+8xtb+86ts+ooFQSUCokZYzAEseWeFZGk5rXjyLS1s0uSbbWzQB2WVNF+oGxMjCsTXxlYe3593iBxidsR790MCtJWFOt3MGx+cw/mM/yz4kld27WvywjyArKcmMkRL1UmRFGave8JooxFnQxI8eCaYoCIGliwyE0bbay0D5SR8pFNFlyJoRAKEQIELCmi6OUuPWjJKxVU2l+A5sAeMkq+l8AzpqUWSCvU+NVJJx0HNWJUsNoFmBZDAVjDBhLwMRSjveoJr5TiZgUgMolVHCqCaxT1YfKJei/eYleYZmUAJQRpcfk9aSYaQaYma9gyyw1E6uXe4fh5Mr39L6xrl0z4XIFvGaApruHaket+hNz9p5tZF8y564/+/vXJZAU0RhUh7BL+Kb77rtv9vHb3/52vOMd79hZ/DOf+Qxyznj2s589+/zZz342/uzP/uyJj/UpZgEFHSIKGB0xOhT0XDDShIEjOppwJQCRVYsN0mggQpiJ19KAtGD1cuCa6dY4yoM9ANAV9OsJ91y5wDNOznBHt0UXMsYSUTigixmrbhLNqiGCKcziG/9K9X6TJojAupYQg5SpCEYhWdGXUJdO3v8cGeiKAEEGxhsonFtHO2EfcQN68rwUVwaEWQxZ47HgzoN/Tu0fARSLIOt6YOQmIiwuq4C17qwA4isyAZOCUVMTm591wrsOAdtYXtgHJtl1c+V0tWxvMlCKVV9wDkhVAOo6YFidXHETwhVg1P2FPBc/9/G11wu9JUDU0m6TuOlxA1NvfetbAQBEhLe97W04PT2t3+Wc8Vu/9Vv4qq/6qps+wKMd7WlrtwRhx3VfDrNljnZpm8X1Yf75vpfWDLCi9oIsSre2WeA683WdfdWFNLgoHZA7BYEiV/2motouMsNEs3UseMtXGKAgVPBh/iLfYQ3NDqaN346fU9tnPbaVBmF2TLZ9Xzo0jyXkNzdr6M9fXTbsfk6ZanmasfF3zps7x+SOY5Z0aUA3B9Ta0Owc2QzpDqBog3JJfJ2tjA6UihkxOjAK82QxhDJLfr2w+ZIhFUOZAVKeJUVKx/fduWbsi2Bgl9OoOna+emqa+gNjElZRc/fsVxDb3d/LZ8uXF5sxUGf463f+/g4O/A3tQclZtJJKIeQckKcgM+0s69bZeXWQ5J6nqjXFkJKSqY2lFAF2hbHEiCEjcZlprVk3PGEhRYw5yhiyAlj6XMx0l1ienwAoU9GeFXculsCXfsYs3fIKE87Gvi5rz6N/Lv0TtgSkfAmf7StrkpiZdPyhJo6NEDAHp9qxOeHzgsaKqsvJMvWZ86CUK8czsJ20A0MFqODAK1fGs9SUWXoVct81tpUdycKsNDMC6Jdf3kS7hG/65Cc/iatXr9aP97GlvO2TSNlHBHg6WATQgbGijAwCAhC5YMMFKEAmQkcR6zBi5IiTIF3hUsyIsaBE8w00Y3bCWMnOj4RU0HUTrnQDTtOAVZgwcsD51OHhYY1r2xXOtx2GbSed/SCxlLH/arzg2HtVTqBVI8tyJkXgYyljLnUFtCpIfUbXT4hRmKTTpM9zJhSjo2YIw5H0+CxQ0WPexwYF4IAoho9b6pcKylcgKrRneEc424PV7Lal/qGKzE9wnaMN1KEdYKiub895wS54ZDhZmQuRG1MqjNzEzo1Ztg+Qcr6kglHWCMSX3VWftQCl3Llkojm7vzCkxHhx/g/9KN8mcdPjBqZ+93d/F4A4yt/7vd9D3zfP3/c9vvIrvxI/+IM/ePNHeLSjHe1wdj2UZLnM0S5lbTa9/b1jy3e8+9zPwtRW6vsid4uv9AVt+in1ZW4gkAJRJQHcsQBEWqYGoip83WZ79APrdtXT7EXugZrdbKIdr2dY5BPGdKJlPLUO32UkdcbOn7g958uDNNySm5o8etDFfw4NFsJiey7pnIFI+/aNPZ8tzsEOYGcJvwWD/hzbslW7oSCkghhLK8cLolITiIVJogmnldkBuwwpA6RC/ZvrMC3JBTAHoJS9wiysE/lct616GykqwHVol3D0Swez0nEtpbJOezXYXvge6zDkBXebLhrmz42xLV05oAnbWmcrXhlIJUkPF8I4RmQFjWuDAP2O9HdjTS311cxI8yIDleSelfu5Mv0gz1AIBSG2v4sCRgZKFcdWqiAOYe/95pmMM38Be6bmoLLpQk1OH8rMxmLL+mYEfl0PHNeE2AFbFVSr29oZ9hyQKkHAKJZkkg1oqgeC5lct6TS/68rxbOFadh4A8hfKg1KuI1oFndCu4w7Qb/eg/j3TSVl+f2Ps5/O3S/imq1evzoCp69kznvEMxBh32FGf/vSnd1hUTwcLROj0xotUEHlExwWxMDIHnEEAmqyBRNQbMFHBOk3oVxOmMYJLFJDAQFN/b/pGDQHoYkYXs+q8BVwbV3hocwUPnp1ic9EjjwE8xKaVpHo+y654gLt9AySG2hdLWNyh73/uCugko1+P6PsJXcyNyVkCyrRgcPptUYvdLNap7NLrAVTLAatfXq5Qu10ubQlEudhLyvZQWVJ1AsTAaM+Eaqhe3d4OS8oP1XzATEMKoLxgSXlQah8gpT+ZnIuzdx/NTwPxYrx2qP6829gz6jUgosb2v86pv6l2m8RNjxuY+rVf+zUAwHd/93fjJ3/yJx+Xsz3a0Y725LYZ+n+DZY52Sbve+8FAj+UMin85W3KoopS1hMyC+D2zSBaY04T5bA7QggK71hNJoqcAAwcGOt1HZPncMSHyiWyQTjToYCBupB27H3dlfDlQKq9YGBqAdrgqwBKYshNiG7BAoqJbi/NXwSzWwInbsouAx/AoMKkOgA+6XPDigr0KIM0u1O753hdQtTG6jx0gxZHbMZjpbKkwpaT9ckpS3uSBJkDixmmxK68hBTRNm7SHJdX+2a6plvglS+J1WUuAAzFSzOhiQVSQ7NCMqaNfOpxxBHKv2huR4DU4AMwA8Xr7V+ajgtv6twcVqvm8iSGJDdDAVwdMAZBSPIQq1B9TFu3xTO1ZUpDHBjQr6as70vK/KSATI3cC7FLQnwQpG9RNl8peUi2qSYApYwXUTnXAXj9gJX8ThwpAeUCLyP8uGlmF2/NWz5E+37mCSwYcOW0p3V9xY5N1nd9iKeMr+1qG2/mz42JI6W6RkhuuDChq7Cd/Ef05mJXhLZLM6vvJXSTMQam8eL733T/kPme3vLEsihva0lccOAM8hG/q+x4ve9nL8NGPfhTf+q3fWj//6Ec/ite97nVPYJRPTespo6Po7qUCy+yzOpKCgMIBAycUR42+XmMP+ZIb8OJ8T/06ZvRJaKRDiQgUMLF0wRyGhDxE8BAaS9C0qzJmQJG/NytoAUaBxFxgi+va96a5Z6BU1wkgtR07MAPTFOUZnUzIyO9M2FLEJMC//94e26XvsvjJYsBlLKan3TN+9j5TBlRbfOX9gYHP9qwrIFWfHVeG5zc3O497PgcUhJrcdj2TybGklmP2ADc51J9A83jcACea70O60u6JvW1VY2yGtm/fETGw4ndx//o3w26XuOnSGlM//uM/fl1Q6uMf/zi+4iu+4vMe1NGOdrRbY8sc+XrLHO2S5sEJH7D7z280e2XsA9NnMTzDdZOq5oL1NlvTZn9Es0lKeCrAZeUapjuQXBJh43L6Bjm5WadJaVCFqu6UHZtnI5UE5DVQTovrElNAiVtw1NZuP2srcvfVDKhyWQuxIDGsb30DnwokWKvrc2VjtM888MXzawSL+/Y8HG7XszH6zRkwuQ+QsllbN4vru5DFWNCnqbGTvJWApDOpQEtqDUCyz7pQ6uwvIAnxmEW7Z58YMpGIIMv/ck2MLanuU55tcxnY32w7+qXDmZTO6rNSWLsutnKvKhLsAWcrVKkdhhRUMt/DLoFYArYz8FY6qBGwoxPFCKJpAnkewOKjaptx25ZPWurn7uErsiBTQEkFpBpQMTYAtzAwTQlTbiWsxZW/7WVqut2ACWxAFJMeD7fjcWg9EbWmAQg7mw7Emge2bzwoVYdAjBAasASgMqOsy14pgiYaoxIKNMtpa5pSM1Bqagn3LNlcnADy37Eknw3cdxffTgOjXS8PSmWa+06/m8X7ccZUwJ7fXSLmyW2HtEP5pre+9a14wxvegJe//OV4xStegQ9+8IO4//778X3f931PZJhPSQtUZLKECKM7x5mBAkKu/8JsnY4yOsooTNhMCZOBOCp03ia90H4qQBVjwXo9YhUVmMoJBQJaX4xJwGpjKjlQqrIFbZzFXffF/eE7+ZoPlYk6K9/LSJ2WIBqLdIrNB9ozum/7fsLtBoCM96E7gurkzou4qf1glN+/O5czQMqe8X0sqcU/z8yk+r/2szbO0H1WYfMKbs/1nmbHDFS2lJ2DkAGvPToLKWfvKVRdqZAXY/bjI8zK+GbnU/dvk57E2NVkvMl2u8RNlz5NL33pS/Fv/+2/xd/4G39j9vm73/1uvO1tb8PFxcVNG9zRjva0tsPmfroPAvYkqjvLHO1StheAWr50fcJz3Q0Bwc0A1TIG/xL2M1BajlOU8VAiUFYQMXFyeZ2t75hTs8EYu8FaAgcSmkGm+bq1HNAdUwBKYuSVglKrvJcpse9Y60y/p4b7oNLG50/eviQnQPQ5rkN7N6oHBzRAy7/V/f7cuZ/tZ3ktfMDHbT8zUMr/1HNLoXW9s/IjEys3DRyGgEuiISXBuFllMQFVO2cVJ6RQqqAyCLVDXwwFWJTy2e+RGFGTXyv3i6GgCwWrNKHTNjSHBqYO6Zfe97734V3vehceeOABvOQlL8F73/tevOpVr3pC23qqGduzrACw3aPFd9drSIYA2ADq3LmBDkBlAzDmj019DgB3/+sznPUzJhQuqLVbZDmKCncvBMrr79e77eqzSg3oTY0xFSMLE1HZSmOOGMeEnJ2OlIH1+6bu9+5eEw4D92fjnQNDzEW6Vmknv7qFynZszyLdILPwQuZVE65Q7WToQTwmyGy9nWLHAGO/vAoq1wNkzEEof44NEJ/5RNpJ9ObruES1zEGpnftmz7p+P8ttk9+O99eHtAP5pte//vV48MEH8aM/+qN44IEH8OVf/uX48Ic/jOc///lPcKBPbSvMGJkxAhhBGFlK9zIHFT4vCFSQOdb34VAitmNCKYTYCTtb4h1lU2aSd21XpFwuiaj5Ok1YRZll2+SEbU44G3pcbPv2TOl9XAEi823GFCI4oHwPQGDafUlY5NwVoGNQnxE6mW0cx4iSpXsoPEPqenSinb/JxTnqlxQw8jHJzBagFWB+2geZflmL0YCd7ppLUKrM/67g0BLosfNJ7mdw3xtA5NhLdjy27HKScOkbgl/P77NqJjYfWMFuB4Bd16/sAaWqP7LjBp5ouHI5u03yuUsDU//oH/0jvP71r8d3fud34l/+y3+Jhx56CG94wxvw+7//+/jQhz50iDEe7WhPT7sV/mMxa3HdZY52OVu+LO0zLN4Li4THz76FyQkqLsoe5owpF+B7MeIgLKliwMhiOMKK4FnZXmX0mNaABjcUGDwF0BRAgwQjNSBwx8JBgq58wignWTvMcQWkKPAsxvGlOcY+YAPAKqhE8+AvsABn+4Il+M/m53g2TgOHuOXGdVkZGKwT2E4ZCWO+79l+CVS4zvTtxDIWGAZLQtvnXgsHECApqbiygUTQ8jyPfXWxJdwA0IWMXgGkCQEZqOwLggJZ1MqOlqVFACqDw8YQQ0EAV3Dr4HYgv/ShD30Ib37zm/G+970Pr3zlK/GBD3wA3/It34JPfOITeN7znvdERvrUM8136g36GLprdTErk5gAAgHdvMy4JgqBd3XUDJRyO+FgwJguH0vTujOAyN9rN7rtHEvI67SllKs+mgE+w5QwjlK6Z0ln1VfSZ17OE4P2OM6Z2K8+yzNxZXY/iNTnhXpqd4AnB0yR8wP1axsCozK6ZsLsDlCrwD41DS/x4TQ7fTNAypLWJSC1x6/uA+dvaB6UMpaJS/wWi87uP2Ms2Dg882OHBeLHd2g7YMz0pje9CW9605ue2Mq3kWVmZAgotWHCeUk44w6jq4MS7amCUVv02ntv1U3YpA456zsscAV0iYCUMtbdhJNulHcntYYIUwnY5lTFzschCVspk7J+qJGdgd37n67zGe0BpRILg1yFy/MYpenDSG1ibs925pOIN/CPe+Ke6pPd8qTszx3bN/lnPqI+x+RAJvd7BkJlT2EvILX0AUwai3mtLPMDMz0pGWuJ1ErMjT3lYzPM90V53qVZ9kMVlFrG2uZ/fNlfjevcdSAVOq/n2L0vwTLVUhwj+aB2m+Rzlwam/uE//If4xm/8RnzHd3wHvuIrvgIPPfQQvuZrvgYf//jHn5YifUc72lPZbpea5Cedudmfndnk5U9nvkoNSijYB4LsgFuL5LDO3BQRROcsujLLlrZ1u/tAUE16LHBCAaAd/CQA4DrLxIGVng6UdQGvJPCSErWi5UJlfjJ0Bt+Ed6W9cJglSoAGQjoTZ4AfMxqANhsz5gnWzjG5be495vmfLTjRhY2ub6DT4lpKEk8gKx2cbWjP7liSfC5AoYBSZIa3cNOEispyCiyiyR4cImKs4oQ+1qwfiXIVUg5QoWRuQFNhUgHzG0dKXjjdfk8ks9SHBs0P5Zfe85734Hu+53vwxje+EQDw3ve+Fx/5yEfw/ve/Hz/2Yz/2BEb61DNWwEXxV9UomfsUu+dnGISbwSbGvBS4Jk0NlGorXuf3ytiS7XAJuyUV1GL+ugl7hn3eZACTMg9DEFCqTxldkufBuu4NQyvP8UysCkoV91nAri1AGy4AovnqxYlUR8F6LqWUjupxeI2sGXDltzPLppQdlReMp5mv0f/pBd4p3bX957bujPmp52Gve/ClN0vXu7x2CiZ5UGoGNnmjRU4/8/9oZXtLcGphvLz3DmDHmOlwVjhgQsaILOEGAyMHDAgYOWFkSVk7ysKeIv0cAgDc25/j/LQHM+F8EPn0VSfvx6Sl6JFKnchZTrJMrvFBCIwQC3JQOrUB8+TuRwNf3DbqY6S+q0DW4SRNZ7hjAaWURc45oAwETNQAsGVMZoAS8Z5JOehzvLjxnUg7StueaCo5sMVik32Al2dHeV05ewaXgJQ/J74EblkOx4td2DndE381thTX56pEki7TOvkbdIzeN4TMc22oAonLDIxSEGzpt+ZsUHdd7V3gxl2XBTumsTbyILeeAWwHBqduF9/0hCoeX/SiF+ElL3kJfvEXfxEA8G3f9m1HUOpoR3sq2p6Xwd5ljnYps6DEfq+27zP9vL60FoBRxVAc4NR25H6QASPuu/rilNr8SkJS1oSxkGRMmin5e8LKPwh1IAJCGctCFuQAlBWjKCBVywC1o5YlW372n5lQJtVPmEi0qyaXjC2SnPlMmGjVzD5cvnCX97YvOfHtol2iuUNmyLrvPcGKl7Xxk5DWQWw+DmoLKjujUu11DIWBTBFTsI5helhMNZC2n1GZU5GKBN3U9KS8rpTZDJBy381wAve9AVfktpdCQR8nAacOXsq3GNz1lrmEDcOAj33sY/jhH/7h2eevfe1r8Zu/+ZuX29hT2fQZBtBACs/QqYCU8wdqJc2Da6+5UW+32TNC7nueoQ9SWsYOCAltLA7oql3e9uMrM6dXWZn6XWYCpigaa1NsbdcXpYJto2jAOOkzavvX4/CgVHWOBbVl+y6QJjBgFVP3yU49kTT/cFm6Q+JDZ2CUSxCrmU8mKHtqsV1vypaixUTAjJ20sOt9zoSdc/S4QCl14cTOZy7fb8tJhhmC5fe//zBvuh1jpoPZwBF5QS0JYEQwOppET4ojNlyAAmQirEJALoRIBVfSFs89fRjrNOKRYY3ChHWcsE4jkjqrwoSC1gikfsYy6dPFjFWaZHKokHT3s9gIqILnJsJdwxCL1RzYUW/fyCJy3nNjozPAEwFTmLEJZSfzn9Un6mQc2fNd/ZV7Rhg7zEcq1J5REr88i4GAhWO341KfxuorDPgwJjljwYJagFKz8js4UEoAIgOkwc3leeCkgVoCLsm5JGnAEZ1PcWMIGQgTz0TR/T5b11lCiWhsKf/+cueB6yB1G2j7XcaDEqa6mBhN9P6W+ITbxDddGpj6jd/4DXzHd3wHvuiLvggf//jH8Ru/8Rv4gR/4AfzSL/0SPvCBD+Cee+45xDiPdrSnn90CB2Itbx9rmaNd0pRNtMOWct8vjSv4s7tS/TXw7HPyv/DilqmdtFRo08/+syYMbtsEat1ripu5s8ALQBi0/XsE8mmRQMtsoUtl2it1lyU07Ihbu3JMBBoCaJRgx4KGejQ+UVqAUxLQyHKm/zCbVXcleBYcWXDDyRhk3PYxm5VftDR3gZWdXw4tsCLWz0o794Am4JUOTi4YdOdbT7UIGJNqQxGIAkLMtZuXtYwXgXOZBU6Uawc+C7Sn0roK1duBGHkPOOW/11HNWVKhCAAWJimVCNMNdXBuhl3GLz3yyCOzz1erFVar3Z7xn/nMZ5Bz3plEe/azn73Tpv22Nn9al7Pl9jxZ0lDmTQM4YO5jfGBuII2BVIt7pM7Um18yDTiX6MjqmigEBoIlUDQfa/1dQahUtHmAsBwAYBwjxiHV5Mp0mGzcdg/vbQYwNXCKo4wD3p+5ZLT+rYxOOw12ruvsue3/RjPWnrFlJ7UmvbwfkPLnpG4H85fOEgzSxJUm5zMXqyzXm/nFxfKSZ9NuSaPr2rczU+8S6XYMu8t4BkNlV0D87A5r65Ywpo4x0yGtVLU5YK0v3kgjOi4YOWCjaWumgJ4iNgwFrkQA/SQMeEbPuKu7mHXtAxooNZaIAsKE0MApB1Zllq54202PcpFAo8QnYVJAZkIV8TdfZ7EAc/tZ72ntvic70pjHM5DUKli01P70fmbSBgrmNw3UglvWnnEsnhEDrCK3ZZcPs4+zFNSCddhzcZXFVMJooqqn5FlSYVKx8smJlOt+uU46AExUqwPYxlD370Cp1EApWLw2AXFk0NRAKRFIZzdeOZcekJr5nMXjSm7/7TOufqjGhcWxjUkLv9mAKb0QCgIW0MHZSreLb7o0MPX1X//1eMtb3oJ3vvOd6LoOX/ZlX4bXvOY1eMMb3oCXvvSl+L//9/8eYpxHO9rRDmG3CcL+ZDObOZnlBo/nfTCbtdo98cTzz9m9UWebJ8xbu7sEwijomFoSZS9wjqT6Vi3wmh8YUHrGdFLA61aut1NS55ZnlsCDtQuU13ABAOhsYgXWbLw+YfUgkwYYJlgeWIMmLTG0bfgZuDApqKZdBDlBxNk7AHaOzEoLwmZAlA9gLMixfdAiEHXbAjutGrcdSeL05FspEBo4lSmIIHmQtYNjOZn4sWlA2WwwSECpwmHOmIIGRsR1Pa875c1mjROJtpSBX+s44SSOIoB+aE76JfzSfffdN/v47W9/O97xjndcdzVaUFqYeeez29oW9+gsAbJEJHCbKXb3/5LIY+ssrxUZqGPLL0DqCoxby3Ubl0+Klht0zCmKWiIcrcNfa6pgXefqkJad9pbPqIEtBBUzViBqar4HEXMWZPUDbqP7gBU7Z8Y8WwJTM2RHk7vJnWjV66q+wq6PS/B2un7C9rPnRBbM2RTO183YHnpedsEk2v+K8tfNJ9F7DtW/b65nhJb8LkEpO6fLS/C43q83w44x08EsEqOjiGDoDgqyBRHqKEZ9EAtC7c6XQSKKXsv0RgSOmFg60dr7sID0b8LEob4r7fdtTrgYOzx6scLF2Qp8nkADIW5C09hT49DKt3h578P9rcuJv0P1fcvYoiS0Z71q/hnKZTu1f1S3V7cF94zY6rYP+7z6Er89Nwnp9kFF4iWq0g2LZ1A/CxpT1m55eSFUnrl+Nz8vdh41VkZ7qOtzr+erMqUUUKpMqgUoRVq+V8GhOl6q+/JSFtZRz7vh5nOWDmweE9YSwfpq48X70U68/KTCyHl5g9xkO5BvutUNYy4NTP3Kr/wKvu7rvm722V/4C38B/+W//Bf8i3/xL27awI52tKe93YJA63apSX7SmXvP70+0Fn8/npcFYzcxXIBUNUgPjNKL2CZNhKCUc9LEJxhAYwGCrafaovuEKQFoxz0IU2qhIWXZgySGC/0WE9qdgiRelgRawhktyOM2nkygUU4WuXc85QYw2XmobKgIlB7KhmI9FqotmmnUgKuI9laYhNnG2jHHxC3rNh041yj5FtxwTdQ8q0TGKYFI/WCR1NbZ1Zpwu2vJ0va9BEYpAVMGEDOg+lKmOUXEO4LkU2kBuH1eWLWpYAE96rW5Hii1isKOSioom0LGStlSQMuzD2WX8Uuf/OQncfXq1fr5PrYUADzjGc9AjHGHHfXpT3/6aSVFwEsQmea/M1jACyx00vyyrP4G7e96+9py9hnp8+/XyMa+1JA+8gxsRtDn1/yKL+czt+J8DAWuiQQXm32fJ2Dtnm/JXhU919JaIvUdJvDnutXVkjc7PgNIDDCu7MfFw+61SfxXnqFgyaHTbLFlROfPnWcFnBpTw/zoIoldWi2ra+y0eo0KqVh6zeE0QXOskOsZ++Xr4bRrsBAGruu4v30lUv3e69ncyNw1eSzA62bYMWY6nEUUJESAcn2P9QQUMEZ3XbPOJBnItGRGBXs3MiOrwzCm1MQBQ44YSqqaUhMHbKeE86HD2cUKw3kHbCNoIIShPY9+km/xlLcP9wC0lCHxTAVc2iQaR/E5SNx8CND83VIHzp4bA4/cpFwNNex0lBqWCegcGIgqBO/GUw8mtPHSZOWKslyJDHim0SKeFGYU5iV8TpB81mBD/27AHrmT6LatAKXFaEDbdpgcIFXm+xKmq9ucCvpxQC3fW47BX1RjR3nzbDFwA6UqiOVcnR1PcBfM4s5D2iF80xeiYcylgSkDpf74j/8Yf/Inf4Kv/dqvxcnJCYgIb3vb2276AI82t0CEckB5/0Nv/1bb8Xw9hj0OR/ZU6OLwpLNFcPKYs7kWVDvzszg7tg+ksv35Gv1MjS1U2rr2viSGlJ7Zvhx7YQZGRe0mkxhlzUBfEPpcu+yRdXZTUIXrfrRkz4TN2SXGBfom18SzKzKmYOVDoQZZbISgApkldGyGmhApuLQ8YUwAogS3RCQzeCNpINVOorCoJBCadXOxWccwv1CzRNXOPQFtsleS0n3BX9Eywhrk6b95By4pNQCExNFFYTB1eq6Zm1aGXT8Do4LzSYEYhQjMwpqS7dHse/sp289VT2odR3RUkEJGPDRLytsl/NLVq1dnwNT1rO97vOxlL8NHP/pRfOu3fmv9/KMf/She97rXfR6DfYrZDho5B3AQ5F6hJaDql3ks8wmaAz8auOySKUAAEGP+KDtJdFF0Q6b1puOvQ9DkrZb+KRjSQBHM/RCAWhZopXX12ZyLvVeAXDVMgAVQQvDQnGw38ix5BcF1I9xzDhmNweRYD16XJCyP3fyF6364Izi/NGJhgbmyOl4COe50VbDKfKxP3vZu370vzP85v8b+M3b7ts8WQ62iytzOid/PjODoALZb4qGOMdPBLFBBpIDCbtKFueEsTBgQURAwcKysqQyq77Z9ZuV5BkptcodcAoYSkUvAWAK2Y8L5pse4ScAQKmguk2iLV70+r/Ke3x+7kdfxNMDDlblR0Uk+nUTjJavUyrJsgsxileAkCJYTjQGqP4V57Fn9roJc6v9qeZ6CNCW5AzEwKbYJijC54+F2HMaQ8udLnnvPeG/i5d6PWQOdGoP615EDrIT5zrWUMhgI5mIdA692Y2dq3+8BxuTL+b/qG71fM1Bq5r/3gVj2GSHoRE8p3O6pQ9kBfNMXomHMpYGpBx98EN/2bd+GX/u1XwMR4X/+z/+JF73oRXjjG9+Ie+65B+9+97sPMc6jqR0aBHlKgyx77Hi+HsN8YHqjZY72+I0WL7xlEA3sPaezj9w6XLOF3QDIVqylg5AEjwohbHVTjNmLFMB8NilKeZ4xisJILSghAaSmUwafZlCfQZERAyOmrB2w2qByDtJKh1RgWBMMrgOBS/gswBEkiCK3JHkWFLICPC5RBcsyFvTocUgHFKozdwBmQp1eiLNRurmyEMLg9KimecDFFqDG64hlkoBbxes3uO/JwLPUlm/0LB8QepF4CaiJCbmEmbZTgTChJgraLU+CeRNIr8sxIVUldRGYXepLefOaO5EYKcgJyL5+5tB2IL/01re+FW94wxvw8pe/HK94xSvwwQ9+EPfffz++7/u+74mM8qlrdh95JpI9i0WesSaQbqvQ7O+l8T7/tAj6W5LiHZxLAkrTsKs6IjaLP7qSFXt2I7cytkwVgGl+Ys84eb7v+c92jDP9q2XCUo+pZUC1494SmNo7iOv8rT6B3f53SnUMwLMXA8MJtl9vP3Ju6jnlxex9q0eZgVIeuOLl9vcBS3qNvX80IIl5MbwlIGXbVCBwB7gi1PKpvV1Vueach7VjzHTLrUDeP9KdL2LgiJETBk4YOWIsCZlDZVLNdaOCviujlvDFWspnoJR17CwGnieu4HwB15ihlr5WcMndbeQ6sxkW5UAVYjRtKvODwQHZ1UdSLXGuguK6vGDY2lNVn2HCAnAB5iV75LZr4wZVfShStmhJQLDjt23ps0veDznwY2fyrp6LFmOy+f2JGrPIjbv6tD3AVBs711is6kc5HzFjX9n7gufXwLOzavketWXruMp82zd8ll1szg4tt+MMI9d31eNhM33edgnf9Hi0Ob9QDWMuDUy95S1vQdd1uP/++/FlX/Zl9fPXv/71eMtb3nIEpo52tJtltyC4WebE11vmaJe0BRi1cwppd7Hrru9skWfsfkdcgxAfLNhLeN/MXkmMvGbkK0WCj0Fnl6wcLjHC6YTVakJUYWFSZo6VlAEKooSAkgg5B+QcUHLQYI/AQacQAyubiFs0sjyQBTNhBv5ETZxJhScXFOmWRMq2q1ipBWHQQCayA7NEByFuqc7GhVH/TU18s3RNfLOWPVrQygpMJWrbddeSVdC0AVwCuCFAO4lxTXDJ/bRzayB4UaCqiZjLzK8v3QMaEwoAErIwtbiV+GVdLrPjfZSAQgRMQKJclwEwY0wdGo8/lF96/etfjwcffBA/+qM/igceeABf/uVfjg9/+MN4/vOf/8QG+lQzwlzvyZefMTX0oTgUooKkDcBdag35Z9SXfnmmCxVUNk5lBXnWozEQSJ7pYgCHjtESjrq/fTcAkzCUFv7XJ37X9TmWvC2Apx1Qyo7Tldaw7sA6dvnEro2D59ujRfK4M87FIbrza9+zJccEmMhuPXYr3VseM7lGGHvArBkgxXuWs124sdWvmZr+E7UBswPG7XDbOnpq6nldXAc9j6a9wyTs12DLlN3xHNKOMdPhrHDAyBnF/mPGyFLGNyooNXLChjtsSoet/pPP5Z/vtGcsKSvhm4r8y6Y5pRM+RUv6AHnnmt+pALEBGKqfZHqVxPIuL8kBLA5sMaMisYRnekusgLnsgOrumcbnrBmLuWMrCzR2EFCJ52A4xhS17bpzbABZUN9g410C0XbMYSKVQHAAzswPuhioDggzsMzApToxaHFpkM99p7yZdqfbtulJhRFNJsF0DPf4MTuGZbkg+2sEIBQgDtwmIH1V6OJcGJvTzqMs33Zc3WyhyuSSsmmex7QHssv4psejzfmFahjzhDSmPvKRj+BLvuRLZp//pb/0l/B//s//uWkDO9rRjnZ4O+olHMgsMVv8vTR2C+20GV9sz5K2CjYBraZ+seJOqYQbD2tSV5NMJ7RJV0eEyKBQkFJBjAI8EYAUM4IDSwDUzm2sAR5QRIxcP8/EoKwipdRALWb3kp6xDvS7mqixtimeH6R16lLYRgLGkRBGaImgBH41prPkxjrxRaWt+wRNZxGD0eBdcBRGG6ac8KLgkoF9YRAAy6wkEo2vTvcVUUEoA/sQuXYTsxb3NY/Xc2HnXoBA7FguARMxptyiKWFISRc9E0cvks1hojBb3zOnDIQyQKsrCVOZMCkbK1J2IuqHjbEO6Zfe9KY34U1vetMTW/l2MAN7ID9r2ZsDB+QB4h0nxOR0ovaAJnVJB041JAotgVBWEFsnowUYQvpocmVPMdC7DoEOJNnL4vEfVkd5HbN9GkPKPRPXA6VsGQ5+QbecDcGSVT9GV84yW242Jqr7rUkuu6+oLWcsBgCg4MApRi0BMv0XANLZqlOtvNiWrRsPACbTGds9V7PrpatQcMBSPSbfol49dYQhSzqpgOpDfeK3FIZmLV9CqK5adGPsxPnSpd1R31Q7xkyHM2FCCTA1csEIxghg4IANRwGkFJTacIfz0uO89BhLA6WydtqTrrQRY4kYSsSQE6YFIJVZut9ORSfSSmidMy3mqKCovPck1kDV7SwMkIFTAXNgA+1+mcUwASgdo6xY9Dptsg4e8FBf656FGTCk+5+BQAtrzCaqIA+KxEoGqlV9P1vHwBct9Zvpky7GMgOlXNzk41p/DkSLynXZi8Kqt+PIPSOvac6g8s0xbL/mF1U7ql4n/V2qBzD/3PvN5fVRzSq5furbLR6b+f3W6c+DXrb8YsuttDDsvzduth1CmxPALW8Yc2lg6uzsDKenpzuff+Yzn7nhgR3taEe7pB3uuZ/boSO5p6Ht5Ec3upb2YvMvwBts078P/OIuVxFwxV7gqhFVf1etqDBIsmIzTjTJWzN1GTEWdDEjOD2jQEAMonNk+zMQYyxzYMTGGYJQ4gPzLFG1pISZVDxdIo0yBrB1pVIUjfaVqVjCo79rriNMItVk4NIYUVL2o8KXHaP0ZQZK0SQBUoYua4LoQUAmm6XjSHWG1ALREoFIADaEODDiAFAu4EDIPTCdEvIJkH1yGQSYosgCBJKAgZ4lZYcZQ0FSfSkTPk+hiHaBMqQae4qq2DmQVKdDlyeeLVfvoRqoGzDVmFVWIngSx1rKl5kOzpiSgd2CfTwdTbtoznSYIL+LrpN+XtFwtOB8B0Bpv86YisbcZKB2DvXgTgV2FYHKWvYLzEAqKgpeLIRz57SsPcfI7Scpi8czGJbrz4THPbDkfrI7F1TmHZhm4I4bg+VODXySBHe2j+UMvQJpHFtmxO7cVS29IOcYmaT8mqHAt0tUXXKXLrRMMgBlRZhOGPmEwR3PBsAMUFKWhOpbzYAjTW7r+O39sTx8zRl5H6JuLt1padWkV31/JfEZuOc0BG3yQhpA6PvmVoJBR990ECsIGJGFKQXGoGyp7Q4o1WNb9PfSCbAEA50CRg6YSsS2pApKDQpSeVBqmCKGKWGaIsYxSvwxxCYTAFTdOyj4ypP6k6L6bwSU2fPQENsKFLjvbVLMmrTIgVMFkWlCe+ZsNXs27PlmYW2FUeK5ktxz7EDmypw38MWxsDxTaunbBUAWcJqDA4ecH6os1+XxmU+w7SvoY+xzA7rsWBroxfXdkXuSTsU1XrLzRgBzZXu1cz6/jwyI2umsVxdoABdgsdx8I7MJhsXy9TxbqOp1sgyV8+8EAnZmng9lj9M3PR5tzi9Uw5hLA1Nf+7Vfi5/92Z/FO9/5TgCCpJVS8K53vQuvec1rbvoAj3a0ox3OjrN/B7LrzaT4aeY969QX3/IFaNvkRQzhXn51hilAZjRYGEUlSgJSOogmS1eAjpEnaiV1iRG6jG41IaVcmVB1N/q7MXgAzErHbHki1DIxX45GpDNYmmkwo3bEsgykZAJvg3av0cBDk8U2836d8x0A7hlTBEIHSaos4NGgqiQFpVZlXs7EAHdAjgxKQRLCwCiJQGu4pMmBOV7TgSG0/B4oGwJfMLozoD8roEcZ43nAcJUwXCVwkFJAGkn2Y+WAJFpdMRbR7dJzG0JBFwVYSlo2mUJBpAY0CYCU6zWx4LxAyhjAAUXV4y0oZzRwKpeAXNrnADBMcabFIywsEUDPTOASrnspboYd/dIBjSBA8PJ3NN/CdmP7D4FWprbcpE+GDFzQWWsDH6pGi2FCxFVzjaJzeB68slJXQ551zE2EbX5cMgTGUlCcSNZvbCIFP1ypG7nlZ0naIvGhgt1z4M7Rcnk7P1yPqSVgO4CW+ZSKQrXjqM+jbyfvyogJEHBPWU+cWP6R+NDS6aoZwBZIkPLqnDKwKqCuVMYqTwE8kkxWZBHtpQzRibHj8ce5JxmqulLLd5ods/+n35PpedWEDzOWay1/Luy6Ly7O34Ht6JsOZ6IZVVCACkoNHKq2lOhKxQpKbUvCtiRMRV6kBVq+50CpTe4wZAGlsnatFVAqYcxxDkpto9zjNjlGAkqxMf4MGEoAZ63O0mfR4owKcrv4xcwkBEqvjVZCW4Ym05Wi+lwYEBy3+q7uucYMgMUd7TkHgEpON3/G7fPiYrqqM+pBJvPdfjk3oUYM8TkOTDa9J3FVEtPY5J35s5Kk6QxP+nYxIXQCci8TeEDT9wwja6dUWYYj1bEzEXhS0Kn6ivZemoXWfvLCuVsDmQQM232mdwi2zPNnep9/3+d73Jj2vRdutt1s3/SFahhzaWDqXe96F1796lfjt3/7tzEMA37oh34Iv//7v4+HHnoIv/Ebv3GIMR7taEc7kB2DrANZfRG1BHD+/SIRs18taSK3mA/+7UXH2D8B4/LJumGbbV5n0KogRCkfCyQlZDFKyZ4BH0Qibm7sGq9z5Du4hZ2399yYafavfl6AMgUVK4ZRdMDbCBqCBIUecAtopUfLXS5f9pFRAgCdPZSAz4FbmozWa1OTRKFrcCezdUVBu5r0mRipO7UV9DImkbKnSkcoUcqe+rOC7rwg5IAwAsOoM6McoBOj4DABQdhlKRasugl9zDPQr9O/A4QxVUGpBSMKgDKm9MQRatttQEv/SqgBOitTKttnVk5AjIuhq0DWxdShi1kZVEWYbje8+p+fHf3SAU0BEao/0SJr4p3SrAqOmO8J3BIYB4rPAAhGA4ccwFUTIBlIBafqeuTAhwrQWLI3ZxHsTwSsm+CiFbr5CSv1cInVfBJgMSZdzbSgGgOh7bzN6nNr/e59to67+iC/r+KWNdCKUP0dswOnTD3cli8A1awYdaK+jqkYGCaJ8AQgJNXRywCNQNwACEFA+Z4RO2loUXJA7gPKGIBJWKw0kjb2I8HFPCDmjqEdH3Y6hNVzUhPD+d/+pHPgykqFvQOC3X8ueXdlhbeCyXT0TYczAZ8YGcDIcovNtKWULTVyxFaFz+39ZqXoNiljzOGpiMbUmKOW7sm7bsoB0xSRp4AyBfCok2KjvKsrkqD0oipgPrrr6/Arr7FEC19ln3Nk5BVkcswmpVTsfOlLa+nbIKW4xRhEJqDOUg4oOk3zrsukmI3ICDREZqbf5vyiAcgCbLeBW5c+GQsBg87pGeDPJkau+wJrqXDT3QqVFSngVNQyyDgU5FWQWGklcVOdXOV2+uH2x/q+EtbYHPCz6zE733C+3vnGCozx7veyrivZc+vIGKjF93pu5ESQjlW1tNgtbxOZB/ZPh/BNX4iGMZcGpl784hfj4x//ON7//vcjxoizszP8rb/1t/D3/t7fw3Oe85xDjPFoR3t62i0IsmYzll/Icdxmxi65qH9fzzwINftlnmzYRuqMsr1Q3bbZtrcQ37ZkirO+2QlSSqZMnRQKQiizcj0CZh3ejGETFyAImCrIYWVhRUGOUkhBtMaoyjlIIIN2jsqooFR2L/2ZkK8Tc1+cSw4u4d13ryqlPmSARwGdyrqAVyw6Txq9UE0MhdlkzC7KBNpCyo3sfOrJJu3SM5uVTEBeA4MyEvprBem8qAZWkACPla0QgZICQpTr0KeM027EOo0ydA26rWwvEKMPGYGKgFfu4azC5wTVlVL2lNIrCmRbDNTSPdMGs7zXgCnTqWcmbHPEVAJS1vJOMMpEswqkm25Hv3Qwq+WiHpSC/KRgiZgHRBxIJQvKZ8X5HktuoJ1BK6CLOcuK6+JSNwtqjC3bR1SFkAB4PSv/jDvsfk5CVfEzn1TMNKP8Oj45M2MbkySRdVV23Tp9y+/ZvqhqNhnAZB2veMG4bOtb5rUY3ELEfMY2cuOU1vGWEAGNZaYAoxsrJ5bGBoGFnaH+K2wBjlHKvSMjhIzUZYRYUKJq74wBHAJKCHLNhz3PvyW5/pTq+2lZUTM7E8ukUE9LLcPWskVWUEp0pkQjq3ZvtcT6Ru/Zm2VH33QwGzliw3LLZ5DqSjWmlJXrZXcHFZayvOLQZOlOm5E4IJR5CbuBUmOOVVcKCnzPwBsDoopjMmnibyLee+9vff7rI+tBI9OYJDRg1223lv9lIA7ybFaNJxKQyu71kuRz0Y+bN7sBhEmVE8/LfotIHNgx+mYJe6vebDwz0Aa1jJGygi8me9AR8grIK9Qyvn3Pd+vOxyBmMCmY1aHNE7p3SNPpan+3yV/9Pe4Bs1p4V8G3Oqayf2x1ksX5dtHF0iYOdfJgOdHAjaXP7O4P9V2PAzT6vO0AvukL0TDm0sDU/fffj/vuuw8/8iM/sve75z3veTdlYEc72tPebkGQdZz9O5AR7wbJtPi554W496VRgStuqzFqslS1qdz264Q+WaKkScomginIrP7JVN/KxpIyHSNjT3lWlDG/EzWdKaPHL5k3OYcKdBABIZaqV0XEmJgkSXLngq31uxs3CoG2AXEjs4YomAuWu8XtJPrgZRmocIDoqiQCdwr0afcddh3H2nSYjUuizxpETtqtZsJOQOiD0Lwy/a2CMDG6i4KSgrCy9B/3AbzK9dyYmWi5Y+6LqHmckKhgFSdlTLVOfDZzXDjULkTWwGbIEdspYTMmmdzTIN2DigZahMC1Cx+zsL8mXTbcggzw6JcOaAtQahZbK0Bri4lv4Qoume9hhoA3C1SdA2my4hKafcGyYTEZCpbrxwH1OWOfMVjS6BMGGbAD9G3Qji0F952tCzem5W2s61hXK9IE02+P3YTDDLzzouMs4FoViw924uZjaePWXxXIB5OA5qT/aumwrmQdtbRcZqYDY9oumkB64I47KekmK89T3xW2BA7CKOETQuqylHQHYdXmwCiBVSg5yMUfaOc5NX+7LOEjO053jrE4jXIC5BzNSl+IZ2V8co8SSm8LMiJURNnv50B29E2HMwGmhPE0csCZ6kqNnOoESyBGR7n+G0OWSTC9nwLJBJs0+yhIVDBpzOI70ZZC4CL3TX33AxUADQZI5blW1L7rPwN6AOcHXHxAbVlM1H73sYMuHwdC3ABxK5+Xbr5NK3EFgLih2tjAfEHrNkyo2k2YL7MTo5J7ZivLE6BRYx0H6AhLqumWAhDmkxOBryDfwg+XCGFjJkbuCNOKkFcCaFVgKrd1w6ivICbEIvsM2Tonti5+ovcp7xJjN1XfB7l28JMpmI9tb0jDaCWDNwJ9nKsG5D1YzwFz+/sp6ptudcOYSwNTL3zhC/HAAw/gWc961uzzBx98EC984QuRc77Omkc72tGedHYAhP1omL+AloCU+5yXL8nrgFbAnhcnM5ZdpKoFe3FbgN9erqLXQihIUp4XGF2kplekjKl9pXpWSpZCqUCF/bNhl0LIOpNNBCkTTPJekBlK1ZMaXQbFbiZK6fTQ8rl0RuiuEeLgzoMP/LL73IvpatBkM3Em+i6d8rjul8GS6NXZ93my7ct2pKPNApQCGhjG7XdAtBXGK4zSBcQtS6vpLCU0cQ3kkUQ4VQPlKQdsg0BRqzjV8jkAlSXVhwmrkNGF1iWvzhjXe0i6I0p3Iokcs84sCwuLHbvNrhXXks4QSgUqAcyur2hMHTjCOvqlg9r1dFhnHxs4XJ9RBoyjV/aALZC/ORryQqJHoovNzAMX5P4pmDID6X2CtyyR8WCTO4LZPhUo2T0+/c6vaTiTASF+pZrQzQ9k9ihUnwEBpPyxoYFavhRtdiwFooelp3UGSBmrc5HocWIgcfvcxpNJEmBjFxjw78sUJ0LYir5N3BjLFZiuoALU0sCiAJ2MX/M7gIIwOIDZJAAHxkxEfnGMe0FDOxa3Wjt2t22faRrQpjeLMFFbonwwO/qmwxgD29JhyxEZVMv3MgcMHKvQ+ajiSB3JO7DjrExA2YyxiMuiA21YgPACZum7zK6pAaHGhgkKcmiHyRlD1LSc3PjtuyXDCkBl9FQGlfNdbOsVAZriVmIEyhK35E4m1AC3vdAAIw6oYuoG0lijAFKB9tmp9iCZflBB/xkI1yYEaeFfyJ0zeUVw2w7my9ZzFkVTSgAo6Vw8nRDyWuMzvWTWUbmC1EFLAkEIA1fQiqN2CdbXk7Gv6v7cOCtw5AEkF37OxypfcIS866LeAxG7pXyMWr4nE6wCTIEMpAv12pdLIy6XtNvEN136NF2vTeC1a9ewXq9vyqCOdrSj3Ro7zv4d0PaAUzcimiwmtfTDxXaW62j3lL371iRhqdcCSGJEo7CaxsDo+6mycwqL+Pi+Dm4FAmSMRcq7TLcBwEwY3TryWXc/UsbNOEZMm05Ezms7ZhUbLQBlSZSsgxRloDsDumuMOEi2VhJVYU2hvMssWu5s1k0CnqyddET3CZhOtD1zJ2KhDcQiZWS4SMO+U5CMlC4fJkir5Tx/LsIkgWSYuF1Lgoh2ptbhL4wW0ApjwYDFkgk5BwyTvJINNCJirLsRfchIIaOjUn8GKrV8IRo9Qksd6rgUbDQQEQBSLJUFJWAU122kWNCnCZ0DpApL+V9rrx2AA/uEo186oBnQYb9axG7go7t/BJdSQMQaJWTa3R5Qn6WqxbIHjALc5x730d3L75otWDKo4LOVn+1s05KO6xzuLKF0iVQ7Abp/wd0k2Ulo5S9Lx7zMapw4chVpXwJOfn87A9yzfLFlNSnS/TF4MR498Orn3bITCaPAjztASri1MyMKIfcBtBGQiUYCUUQJgmmF0GonCXJ+KLF0PGUBqQycasey+NuG5a/7EkRzoB/7z+3rYqebdsq6OaiujU2+eEbbAezomw5nwphKyCBkBGRIKfqGOzxSTnBeetWVEt2pvCjfA2QCZ+IojGH9lzm4ph9oupeze5Vm9yVHue9LslKu9v2uNh3m96SCTDZZBRhQpMsvmFeVGDkSwiBMKQOcRJOKZ4CXsYrAAkjlvnUgbhtEex4NcPJgkg3Hxq5A1PLYzH/aMZUEUGrH5ycBZyV4Dnyr8xQdif9QkKd0Mv7S6TUcUJntrJ2PTWC+MrNGoEzK2iry/qqgdMGCudrGIl0JuV0T/9pbhH+NralxUmgnzJYLuQFSNDHitoCKNM0pqyD6WR0h947V5envB7DbxTc9bmDqrW99KwCAiPC2t70Np6en9bucM37rt34LX/VVX3XTB3i0ox3tcHa7OLIntT0OUOqx1l1aTeIWy8z2oS9oXiYtQEtwmFCGiGFIiGSC6MK2mcr+qecqoO0SWRFGB5KKdE8xCPsqZsTAyIUwTQ6U0gOggRAvAtIZIZ0rG8nakZMEhOkcSFtGmGQ2cHsXYbyqIMt5S2DzipBPNNixzjlGWbeuTtqpqpbJ+HNoAY1FJotOOZIg75avGN08XTDShWzTqOm1o43OYNYgK1G7dAYA5gBOuZbY5VAqSNDAqDbmbUkoHBD2PKCRGEXZb8CEqfR1f1G3GwOQtP7FGHKEua5YBaLUyhO6iS9vR790OFuW6NbnwIFVO9f5hoi6fD8rHbPSu/q9S4oWAFVNCCyRIv2QxW/Nnjuv52aDXQJewIzZZHjFbLyEKqTtt+E1jSo4Xb/E/Kfunz0q5st2bLue5eUZVzqGHQ2pGz1ii+R5xtJIBRQMRITM1Hs6l12XSVvAJ4BiAdbCpCoxglTTpmwCMhJKn3c7JgKq+SSgXElAQAPk7Doz5Jo2Vsb8vM1++kUW54CylSqRS7aBCmbZaYn69YEZU0ffdDgbS8SGOwGmOFRQ6ryscF56XMvrCkiNLJNj29Jh1Ive6WTNWCK2OWHI2nnPN/0wqQFfNlsBJ5oBUAYkcICRaASQmBoYU20CIlNdx/s3jqL5VDqJRQxoB6OVCyrYEqa2z9IrE4oEADZgqPS7TSNmzxJbk4YGysxcvvqFJTl8BzQ24Ne2p8tIPCU+evkqodyOwQNhJUL0IIyN5p5fe2/4c1sSACvv693x6fXqzlnOF0N0szKE6RZ1X3ZsC1AqTMJc95OHBhzNzoGjx9lroJYIFoiQ+5ZBU6m6UhwJpQ+YTgLG0yCgoo7FwLhD2u3imx43MPW7v/u7AABmxu/93u+h7/v6Xd/3+Mqv/Er84A/+4M0f4dGO9nQ1fuxFbso+Hms/t2Ict5ktqcGXyef3VNDtbnu5zZpcov20pMlAKetsZGYJ0UTYXlshTxF0xwX6VUZUfSNeDHzSWccxR+RC1lCvLiflHwUdcf0sECODMI1R9GQCgMKgTUT3KKF/mLD6bAN1hNqtQZu2BZYOL4RpTdg8gzBcZaQzQhiEFj6tRXA8r7iejhqgmM20YfQkWVIZuZVF+jKb5cyf0vwrS6PIGO0ZMUHQkqhS0OsunRZDDVZ0GCEqIBhYy+gkehCdqCjtsAMQwQhMGJBwNvUYckIKGadpqMCVnzkuum72+lCACt23rn9e24oVlLTr/AWxo186nBn4CrT7nZq2lIHWrPpwAJqO3fK6MOC7PJE+Q7OZ8yUgZaWjPgHyH+hjKaw+VDDCtjkrE/Pr+2Hpc71TolGPH62Lnk8uZ+jWnn34oD7yTDxYkktN+DrVlzJgm/U0wwnmVhFd7J5XP+5lsrhzsO0fBWWtRh2szfRbyVIWVhQKgfsC7gnUFYQ+q4ZUrN9jJDAi0DXWVEvkqY2xCjovmUzye2WP3OCasV1jf97dOa+lUeRK1CMas0z3x8QHB6aOvulwJoypTkv5Ui3hOysrnOcVznOPbZFufBNHYW5ribpMxkjcsi0Jm5ww2Pc6kTZMcSZ6zqozBS27gwNzqvn3uPNzBngYm4cjBBDO83VLEsZT7t12dJu+qy93KuXnQLGs2lJRRc9LL139moC6sLhpdECZ85ceebLJuR1w3x2XB3MagE/zuBJQPScBpD1hn92+PSuVCaJJSO5vA+X0XBYFuRHb5KQxzEsnx20vpJAJYZRYK2QGDJQKjKLMe7suxkYT7S4Bk2ySs/TaQTmglQAyt/HXd5YAWnHLVfDdSvgEjCLklWiH5hUhKxOMowPhlvHoIew28U2PG5j6tV/7NQDAd3/3d+Mnf/IncfXq1YMN6mhHOxr2B6E3exeWODzGMkd74tZe0Lz4oCUsl96W394iaJjN4lsSaqCUB2fsxatJyFQSzlOPq+stEhUUavpRzIRRS/emHCrQAaAKnHs9IlJgqtMxVuCqK+AhIFwk9J8LSNekTC+MwjLa3k0Yrwo1PYyEdE5V+DxMjGlNmE5RafHjHcB0Ckx3FOTTImUqY0DYSCDntRZQBXR5/mzV80i4bhJogQUp+EYkbZvtukQB1DgCNGmHmV6CEqGc807iacGZRaMpCVjkRegNSJpY9F+mEjCUVFtgFyZ0IaMw4VQ7+dl1GUrEJnfYZlmeuemImRkotfyciDHmKIKxuu6ttKNfOrDVzOA6J1HBWQYwU25Ylmm5MpHKDCrqdhygS7qsB6l2gCn9hfR/O2xHQi2V2zdsnwhV8fQlOFX/dqCU95XXA4CcCDJXIAbz9RbuXZZXoKqWU+t3DGUz8ZxF9Vi2D9zxYFF1KpIIokiXRJCU7zExGFH18bRLawIoArEvAk51WsenyToX7VJoyTvbz/l46utNz0/VuClUS6GrNsye4633TmnbkeRbtXSKHDQHSBv7JehvuooHdgxH33Q4u8g9HilrjJxmzKjz0itjaoWL3GOrEy4Fjdmdggqdc8CQI86nHmMRIGosoYJS4xiRp4gyETjrvZ6pPq+NPWRAxfx6zkrVioYN0SkTlMXzbo/5pM8QQUBxXQ9QnbqgpWyZpMpWpQgAAzVYy948MGL/HKPU+RkPvnPUdab5MZAH0rx5kMkBXhWMTkAxxqdfx/taoALvtZMh9J1Cjdlekkwqlk43vyWVRoBqi1JlnIGFjR43AFSHSzrmNbDPjrlEBbImRtow4kbK7YghgJsZA7Rgf9kxyBgKwpar6LqxrEoKVVOqJFTxd9ExdZOTYc7iOpTdLr7p0hpTP/3TP32IcRztaEf7AtjtQv180pkLDuTv678NfKB+6ZeGS46qhpQPDuqsvPyctYe36ezIIkSeBYDqojCmUKQcDyQgB4BatpdLwDQFlCy0+BAYqTOBc0LfZwTt7AcomBMLKAfwGNA9Qug/K+VvYZQX+nAX4fy5BfneCZQKeBsxXATEiyCzY8VmziTYmk4ZvCqgkwmpz+h1/8OQkM860OC0kEiTyVSkPCgYYIZadlQvAMFdEJe8QgLLQEAhrrOFVEt+BFyjJMeUzvScu4CxJDkXJioat4RpFP2WLmX0Sc59F0SbqwtZtaQkAN/kDhdTV8vrjPWUOeDRUTQeo4qkG3hlpQwGPnmxetsGFFS075lplgMX1onTJRh6IDv6pVtj5K5pBR+VGcNMUsRgH18PnNRnqAILBlhYwmRAlAeqfCns3oFpMhUEYOKoz9ljHpD90/vUA9O2XQ8oeSuLbdRjU105K70JyhIFKwOKBTDThBOsrKQFcIOla1GQh/kxwClNBHdfDoza5p6ssyjazL+uS1D2KgMUGbzK0llP1+UhImeX0QQGOgATtPRPz6H3lcYqdZ3LrGMqRy2X1nGXroASSXevkQBLnheHyOySZKaabM6O2O4LBSrt2nomytE3PUWNpTz9vKwwsKSmBkpdy2s8Mq3x6LSuTOGJW/OVQIxe35UTS/fZwb37xhywHTvRuBwjeAqiwZZJ72Fymo+oD6kPlXZAWAUzZAJsfkMbmEOlgU0CWrA+I8rSgd3DqOEYm66S/QsNnAdQ9ZRm4JjzrxzUR0UH6uvzIaVsrXGLv5ftmaqTcKkdSwXn9LtMAKU2hhlTMmIW+/r52OqabZzqwlhBOAIcQ1LBPP29TNTKIHV/IYu2ExhAUKZ6lOYuACEo+ykOAkqFLIz34gTKwyT+uzLfAirjXfajE5Fo3fVKRxV4ahMsNNM5rWWg1K7Boef3bhffdGlg6uzsDD/+4z+O//Sf/hM+/elPo5T5Uf6v//W/btrgjna0ox3YlsHz9ZY52uWt1m+4E7h4Mz3hF9WMEYVZScnO9wZKBa6fk32vtAiZvZcOfas4IVHBRgM+C/xEHFuEzAsTJhXaLmOoxxFiQSkBwwCkpPT6wEKbZ9GzitciukcI3TUFve4ibO8Bhnsy6J4Bd9yxRRdFa6nOcOZQz6UdVkoZKRVJaPSYSiHEWIDTCZkiaBsBnW03lkM9D4BM+WmJixyAZY96HnW2i7mdywKSScDCYOsceMHozrgGO3FghNECpRYM5E72Y23e84rB64J+NaJPWTS5jMWkgygcUBjY5ITN1GFcaD4FZTcBwJVuQAoFQ44VlFrqRHkrTLM22nYL+XVMP4yIqz7VwdmcR790MDNw2p6ZZac3X5Zr19nWmfW1su/scSrNpVRdNj8z7xOhGwXH+oDPyh4s79PsaF/r7cqEqj5R1wnctN7c9mcrzlASriA/ZSkX9mwfKPvH9Exs+5ZoVV2XyvIBrDuqaNzpboxlpsmoZ2HNdKssCXXsLrs2VoZkPtAAKEsSDYCHsaMs6S6t7BBWumes0lSA1I4fE2mzCDemYA4RtVwR6kor+ubBwMRyzUeCBwftvVVc4iznbf5wF7TW9KYdyHZdQ7v2FcQ7pB1908HsInd4NJ/Uv0eOOM8rPDyd4Gxa4WzqcT71lQVs76guZuQShOmr770hSwn7lJUtNSTkKaCMccYItO55ntnprfq0+n37V8XLjQnofEz9jlBL/GqJWVTmk3/GoaBPzwj6rJbEYNetrvpSA5amxpQiLWst0XAaAb3rmIqUwPluwl5UfKZ/ZJNpxg5lmpfJcvPvM39O7qf5y9LOj+3TT1REVgBqQ+1cqk5V7bg8AiG27caBEQcgjFwbzhTrhKf6V0UZYmFixKEICKbAlbGcbPIjd9ItkBMaaKXHOk3y3YqAMIj/nlahgvU1tlsRphP56cHAeo6Pvulx26WBqTe+8Y34z//5P+MNb3gDnvOc5+zt0He0ox3tJtgtcCDkHOuNljnaE7RLnLxLneclIOUD8xoctL8NjKG9zCmASgETVe2hQKWKYFddImJEDQaZSUr6pliTnhxEJwlM8jkLSESZsR0ThvMO4XMJq4cI3ZnMZE1XCJtnMoYvHtHfMWC1GrHuJunk5w7X55QMVFZPLgGbMaGUduAhMJAycALkyMA2gjZBgsLJdFJC27A/72X3fWbtzyvTInLVv6EsHXTiILoIUweMV0hn+5zOgT5jJRLKChhPgelOxnh3RnfHgHU/1lJIBmpQvUpTHUfmMOuuF4jBEBCpMGlnPtGFOhv7Ci6NWsIASLlldOLmzISJQi29nIES+jOQrOc/O7Qd/dIBjVieEbU5KLXntUP+6UP1NSYIbO2zawLnZvBnArylJRuzWXi4x9GBSkGxjJA1wbLvI1pDhzrwNrwZI8rYNcF11aKGm8zLxhywQZL0hUGZFOQSKhP31Y0YQDUrd2HxB0G1Yar4sY3ZkkqG+k/VJNFxkOqlLMuOKTAooHXLAwT01zEayOhFzwXQKuASG0NkcsCU+iqAhNHBQVhcZlnBMzs/0Y1Jk9aqW7MEE+0YAgM5VtZEvQ4B4F4ZVnZerKzKup8yGovEgMAKkGniHNy7ULdzKDv6psPZUIQhJcLnhJEjrk0rAaWygFJnYy8TLzkKq5O4akwBqGV7kwFTU8A0RZlAGwMwSSxgbEjTxGuArjml6+e2cg9w82Pa4ZIccOM3Ue95BY8YmHfsq8xO1Hu4grDeX7GCUq4ZRMiixQQAuUedTDPwyDt0JgDJwF19nxswB/FrQWOZ0onGFfcCTLMCXtCxsB1/PUDbp4JWaMfrz0kD0tj5gTbZsKPnxSJajknfNQomlaQd8KI4ldwH5BVVPVIBsbh2RiZjOlUgmyqbqXQqv5Colhba9TCgPG8NLGxssqDXMPfyb7b9hd0SxtRt4psuDUz9h//wH/BLv/RLeOUrX3mI8RztaEe7hXa7UD+fdHa9F5CxqG5k13txeMDJ/l6CUoEXy+4HpYjmgtfQFuAhMKYSsO5GSC2HWKAIIEtASKLZEEKasSp4CpiQ6uw7dYw+TWAmDNsOuIiiGbWVeyqvgOFOYLyroDsd0fdTHfYwJQxTBENmQ7tYauc40z0ylk8KBVPNUqmyQGKScsIpMjh3oC2BpqgzgGiJqwf0bAbVzqFmw3VGfsZRR51BzT0w3Bkw3AWMdyiQZ7P/moibiGdZAfm0gNcZYZURkzxgRSPQiamWzgHASLF+nxU8MtaagYbMhAzg2tgLGKXirsMUMWy7yiTr+qkdurv+tRNgCaoZxohRdK4QCkgDf7YywAMHN0e/dCDTeH0mag7sL9Ojtpz9LS2Q0ES1LQmyG3aRiFRxWzcDTpOUYCyFspnaTDUHNzYT7LWGAVragtBuwzrMBUDFHoDzvpKpzujXLnwVSNGxW/meaRqRHZMKDmsL+aqdYowCTSRnrApCZTgE/czwcetEBVZmkuvexAkzIKiVVzJiZGWJMgoJXSsEYY3WUqQgzzERY4zKGJkCeIYgAVlZnaINxbXkmTMBqtOCyKLhZ2XQCK3L6aQ+0lhMVs6n2yIF88tEoM3ch3JkEVgHZDuRpWSaQwMFbTlzzdwS9gZO6b/psLSEo286nA05VWBq5IiL3OEi95UpdTF1uBg7AZ6cbmIuhKjd4wSUEjAqZwFtyxQAlSugTPJzxpKCQ5G4/jSGaPWD9jx7ppCLtbzNmJtL9gyablpRkIhJgaFRx+YmtCqItQQeAsBFASmIv8g9Oxbh/nDTgDLzXdYNMF4A3Zn4+OkKge8AMIrfKWCZFCBhOJIxJB0rs7JiM9dOnSXJsqQAGk1WPtfOk3QalONogJADuYzBRarfpCATcZDugFBgSLsdh4nFp+r5z728zKrOk00cZAZbWeAk45jWEDBLr1MapANguijK4KIKlsWhKKgWHCin+7Vzra/MW0I0uE1806WBqXvuuQf33nvvIcZytKMdzduB0XUAbZbosZa5pL3vfe/Du971LjzwwAN4yUtegve+97141atetXfZX//1X8drXvOanc//4A/+AH/5L//ly+/8yW43AqfY/ST3tyVFAEzMtgEqDpTyMbkCNPuYUqTTbxZwBQhjKoWCPmSs44gSAoK+xUxoNKADK0jRxYzcicZU0ZYrnAkUGKvTEffeeYY7ugEPXZyiTJJgTKcss31MdZYPENBlHCNiLGAkTFPEMCRwJoTIiFq218WMVTdV1k8MRbSsFmwfMk0AAmIqmE4nICfECxlnDUZd4GYJqs2mmqAu0GbYrPzGJ9R5DQxXCeOdjHzKYBUnzcaK0LImK+UpqwL0BdSV2op9yhHMypiqdZEF4+MQHjcGFStwZS2xKyil57BfTTO2lJ0r3z2Rg0TEpRDGMWHUZWKUc1/Ht4dZdlPtQH7paKidMwFUlpwnyHi3Y38DaKAUKZvHQB2bRs8srEvIZ+ZbKjA1CpgTRgWp3Gx7qQK9BmwYsIIFm6Gtw0D1d7y8F8j9s6TTlenOS0t4LmZu49ePPFNHEkEGj4QQqLImrLtW1UgK3Fhj2f41n1cig1dayhuEWRWye/YtWesI3BXR/1PwpXCBoHQZMcp5DrHIz1BAFEBUkFLGKmWs0oSkvmSYEjZjwnabkMdYzzEXVMA7KCOLgpQBWfcyCtoggRhcgogxAyhrdaIk4sTcGSDFoFQQotxvmRiFgRwUcAIaUyrTfFIlynaKJeJ2Xlx5KIzFUS8kDu+XbD9H33TTjVgZU4qybEuagVLbKYl21BSxHZOU90Pu/0l1LplpzpCaQi3bMw0pYwjZfUX+elKLr65r/isD0eOcNbkEhWZsoBqzGaOaKxMqbqXUDoA0JVAgu+66bo9r6TBFaoD/CAW4ZZnco8Yjfn3K4m/CRAgDkDZAvGB0Z0B3YWhYEPAnA9gK6FM6oKxYy+XQ2Is+DlW2UtE4rIJfpH7aa8yRssg7BZZWMnlXO276+2PGbgXCCaF0hPGCQFrOJ3pSch7iKOMsHalmFDVQUAGpkGU5gCHdnwnjacDWnax0zlh9rqB/WJvL9EEYWAwEBabAAFOA1w8jHau92y7V5OKJ2m3imy4NTL3zne/EP/tn/wz/7t/9O5yenh5iTEc72tFukR0CYf/Qhz6EN7/5zXjf+96HV77ylfjABz6Ab/mWb8EnPvEJPO95z7vuen/0R3806/b5zGc+83I7frLZvpfQnpdCjYGu93P5e53YU+FcuKTLgU224SVTyr6bCR/r713KuKPb4o40YHQiL5FEu6GPEjVZ55sQZJZeWEiMkBgnp1s89+ojeObJNRHuBuGR9RpDIZRVwdBHEEd0j8gQ47WAKfYoJxn96YAYJanKOSBzRMmEPHbYFgJFRkwFqctIKWPdTYhBWANDDotyNC3rCxkhFoyRMfUJ4TwgXRDSGc3ubQGOqL3cg1K7HUPDB7DGBilJALfpCoP70kBCANxDk6kGZsl2JGrlQshTwIAkZZRBQMOoJXTGUPLglOhPobKmdu4nBR5iJKzWI4iEudanXEv7PJjlSwNTKGBilECVPZWzlENsuavnl4YjK+Epa85HCOMGVZ/IGlMuqUhkYHqA+JzKMgC4Qy2ZQ4F2q1Tx6ky1fIsJCFrOF0duIA4BZLogbAyC5ZjbWOpPX76l4NPyea7LR67LkrF7TKTXdb/yNiuhyZqwGjiVpJMWWekZAZSVQcWowAvQwClkoGhShp6QQwGvirR/vwiIG9N/MRBG/UsOyj5qbKKctYxFO3kCUCBJWSRBfPaVfsAd/RbrOKIPcsLPpx6PjitsplQ1egrPgX3Pplx+J+xK7RA6JAyhR04RJn6OVEAKSsWUEaMA26UjjJGR10HxTRbgYBudxh+a71wVcCLQoK3hp5bkkpY/goECrfvktg3PlLvZdvRNh7OxRGxLQuGAkQMucoehxPYvRwxTwjhGFKebGJQxCEA67g0RGIKWg1JjR9bYCc1feFC++j2qfmUGXAEzP8RQ8EFLvxrzE/N4wQNfVZOO6+c0GQtT/paubs73GDgONEZOBZmAdA50j6o8wgkhryV2CaOyiIibsHonAHf1zQaKDXO/nC5knNOJAC1xI+uPmUC9TSI0zaxGY3STBsY0JZn8KJ2eDqKqDeX1mGoJJCAlhxpLNfDLPeY9o/SEaUOIWwHYTHfKygSl5E80pFp5o7zraudQZb/GoSAVRtxKfLq9S0Atu26UtaNfYQRF2aRBAyEGIPWEvCJgrfdEB9UOdECiZ+QfwG4X33RpYOonfuIn8Cd/8id49rOfjRe84AXoum72/e/8zu/ctMEd7WhHO7AdAGF/z3veg+/5nu/BG9/4RgDAe9/7XnzkIx/B+9//fvzYj/3Yddd71rOehbvvvvtyO3uqmSVR1zPGDSfrajJoSRKgM0sO+PAb0Jf5UlNqZ1j2sieuLClAACjRMJLIIVEB4oQTDiJMPkVMKVQGVt9n3HN6gbtWFwAkObpndY7zuzo83Imo6UXfY1t65FWoLCIqcjwpFay0M90qZaHklyAz/JOIHJRCGDYJ29zjXEGqoLP7s4ZUxDXhDqGgv3ODcoWwOe8xPtyDckA6I8RhHvxZItmCC6ptjavobkQNbE0LArV0xU9xAmBlJXk9BlJR0iwd9UoJlaUQYwEliQ498GR6wOGxZnQhs5OrlEE01RJIn2D6xNN36jPAy4TurcRvOyRszzrQeQINhDgeeOrvNpn5ezKagMmNMSXPjGmv0f7TSlxdFym4ylavxmjlsQzkQgjbANLnozDqLDcVQhhl2TAp24itUxJLyQUkaSha0ibaH7IPAlWQq4pf262oIH1LLlsC6Ev0KlAlh91ADHbbUl9QwFUvDhNQih0r1WU4MIIyLxgM61TXtgHVedLdWJmNPdtdEWZQDgh6ToOWC7KCXDyRJJQJ1W9wJpRCKEEYscQNUGJ9pidN3vuQcW9/jpM4oDBhWzotk7LEP2FQHTrr3mnmO58F4trtM5eA7Sri0VSw6Xphxeq5C6kIy7LLUoqt/iyvBjATkpZmn217nD26RrlIUiaYSp1IAaOWHXKmRsqw0p5BgLwyKrNM2aeeIXIQO/qmg9lUQgWmJv03lKTl6VaiF1BybPcbWggEQMDOISBsgmrEtWR8BoKU9rjLl2hMSgNAXLxmHe5Kp/GBY11W1qfXmgNauZ+Nj9q+DAwPDnDlAHCn4BGjdfcMbXsGzFopXroAVp9jdOcsk2QnVDWQ4oWGI+qfSqfA1YkBN1yZUL6bXhgZq6EgbQK2VwPyGlr9LFIMYZIDsthHygdp/mwYkKR+t/40gEyDtQq4sTu+GfgnbE0/B1ersROAVQPEwoTGYGOu3QWl/E9K8MJksRTV8nERRw+Im4x0MSnYGDFesf0QOAZQyQpIKVCVGaWfl0VzAPIJMN7JKMmW1bjLM4UPYbeJb7o0MPU3/+bfPMAwjna0o+3YLXAgNxthH4YBH/vYx/DDP/zDs89f+9rX4jd/8zdvuO5Xf/VXY7PZ4MUvfjH+6T/9p3vL+54qtgxq9tkMW9AXyg57ym2wztwlSbRYdUBoCK2lN+SlT5asBNSkknwZF1PVEiJl6Rhb53zqtRMcoYB2EhNpzawC5TrgmApOVgNO+xEnacQmd9jkDus4IlHBF52co9dSsIfTGo8QMF0NCJ1EdykUrNdjLRezbnFJu+30TgR8yhGbbYfhPIDPEgZKQFcQVxld18ZkAs/MrSsgEbA6GbElYBs65JXoXqULqKiodHwBCyAFkgA06HnNHVB6nYEMLDNkRUpx4qMB+RTgk6KiwHoP2MxoLXvSn1NQoocAWiVqAFakO2LhLCAUGihlZiDS8rN6b7mbS/QhsMN68Oux+91vNwZGigJulUIYpwAa54HYIex2mfl7MhoRqlCwVLNYRkdattWWnYG9pG21Dew2sKcKoeg6U5BcrEg9A3WyIxOY5agCs1sBqYKVdfnkS1kBRVusc7RudtzKtVhZWZYIBgWGzE+6WXbfeUsAI15kpW38YDh2DlWBYTlhVLW06v0X5PhqOR+34zD2hBy3JptFWJghA3wR6rNd1ozSs7AnrNxRdeo4CnhfMoTpEFmF6oPqOokfZ9WAMlmoqQRcTOKHtyVhFUaswoSTOOJKEnbKUBKuTT02uZuxJ4MDtwpLWXdQNuXEovHTxVh1/4bahAKV9WqlhF3MSKEgQJZNoSBRxlm/wp+HgmtpLb4nFEQFmEoh5MjIUP9H0gmrtqlnKX1KZwTugOkEKP3hg6YvpG/63//7f+Od73wnfvVXfxV/9md/huc+97n4ju/4DvyTf/JP0Pf9YXZ6Cy0XBaJ0MsyafdgE2aQs3pIJnIM5MFnZHrwpCGg5zpl2oMX9sWQe2XPvSsaMZclRGqmUJEBSSVp2V/S7Xkr69/oVD2yZryq2PzSNOl2mRAPulUFpsaHGk7WRxCgMoXTOSBsZ23AnYbxDxhJGAA5AY91v3Eq8IgctwE1eA9NEiBsZcJgYcZPRPTKhezRguiNie2fEcKf6JZ3MA4lvCyun30TtOOu5dc9DBZXWqJ1X7RjteoXUSvo4Qpo5aCwbrBRTgbmgbLMwQrv0oQFg9s86qLJoZZGOkbQEs8RQJyjCWBAmAfpYhT6JGSa6bp/Ji1S3H1ujm9ID4xXGdM+EeDrJvXqWEDbhoGwpO8+3Q9x0aWDq7W9/+yHGcbSjHW1pByYlAKjU1MdaBgAeeeSR2eer1Qqr1Wr22Wc+8xnknPHsZz979vmzn/1s/Nmf/dne7T/nOc/BBz/4QbzsZS/DdrvFv//3/x7f8A3fgF//9V/H137t1172kJ5cVmkG+ve+U309UMolOTWhSoyyZtEd6UpNRuCSJAqq7eHKGVKX0XWTAjTAOEgSQUHLaxKLdhMxro0rbLIwYT3YEYiRqCBQwcRRwSPG6XrAST+ijyKO/tDFaU22rvQj7l5f1Jn7QIx7Ti/Qp4ztmCpzw1thkZgxcKWLGTFQTZQCSQDLa8IUogSomZAvhPu9Wg9Vb4KonXzTpGAWYXTcCUyrgklnV+MFoXtUIqswQQEndw0BhBWQsyTzpReNmDCSUOmvEfJZxHhnQD4pMnNvbdX9LCIAa1VdS/uCDgxA1QDTcxEehx/YV9I3+27P9wZILTvxeVF1uxZ9yrj7zguc9xmb0x75cz3So4cr57uMXzra5SyoLhsrCFncdS+T3iuqF0LQ58g+A1q5HyBaSqY3xcLigQpWl3WRWWbrXFTk2RnvcEmXdZdS0MiSDUt4qhBuISC3mXFAh2NacnYr6tc1mctAE+UVQKj0DHQsVAKGA7p02UHK6gQc0qRW3VRUtpOf+S57ouiK1dnjzyIwLqUs3BKxQTIkTqrN1In2VGECbaXkOAw66z4oSJVUl6Vn0aWLch5YATeKBRMwK8krTDifejwYT7GOAkylirahLjOVWAGo9nnAUCICBfRB9KqK+tIARhcKTlcDYijVz6dQ0KeMPgowdZJG9GHCOk5YhQkpZERiXPQbnKQRn1uf4HzsZoB5LiSs3BQx9Ql5CCJgPUlpNGnX00jir6WpBjWA4ED2hfRNf/iHf4hSCj7wgQ/gL/7Fv4j/8T/+B773e78XZ2dnePe7332Qfd5KG4uU7wHtfhy1A591A64+wHxNZSTpe2wihJEqmFx16xQ4qOVc0VhO6te0FLWCRNTWqWw8kmsb1oRpRG2eYB3rZmV/1LYBYFbOFSZCHKgKfFs5XEk8A7pJdZA8eBZGIGxlAs2WmdaE8ZQwXgXKClXTLwwyHnZsLspAVECsJIBPxC+NV+QZSlsCbwSMCWNGGDPitihIFpB71ZpS9Ft0rYAQ23HUV8iyVNI6mkLDHwWI6mQH6/HKjJ2w1LPz70wImZwwejvWdMFI50DaMijr+8ux2uo1ChL3kgKAnIHciV5V7ghxCPX5tUnKqvsl+hd1ckV0qQJKL+clr1B1uMLJhDvvuECXMs6u9Nic98gPrhC3h0vsbpe46dLAlNnHPvYx/MEf/AGICC9+8Yvx1V/91TdzXEc72tFugZEHRG6wDADcd999s8/f/va34x3veMf+dWjufJl55zOzL/3SL8WXfumX1r9f8YpX4JOf/CTe/e53P/WBKeDGAOMNQCn/NwegrAq4Z2CVZ1pLADCNEXmI4CIlOQRJFEvWdsqBEGOo2EeIpTKlANSWy2fbHo9uVpKkFqolZiEIq8lKMKwsLMWMe0+2uGt1gc9uT/Hg2SnGMdXtDlPC2aCBZglY9yPuWV8grQoexhq5hMrgMRDGEip20ZglSjY7L93+5DiYCdMYUc4T8lnChiFC33EOes0EngkIkUHrDKwz6C4W0dTPdeg/G9FdA7prrBoNaLNkxoywANbaBk+iwRA0eZy2AaVvM7TGnqj6JywJL0eAVxJhURCR964TdoG3uNBMWZbatGPcB0ApycPAA2XA8WJ51miS0JhTnnkVQ8GdJxusuhEPXUTgkMDUJfzS0S5nIbB2sBKwCGigEucAKx2xpMFKUSu2rj7L/IwE99L9CgZsAVIuRwUopJ2PBFiW5M0cm/xoQBJVphArU6F2mNLMr81Y28r7j9PKXUJB1W4qnSyfEwmrMQAwP5EJNAkolc4UmFJQKjhwyu/aSn+dHF89lsqOYEuetMX5unXgqmLemdpxBgaiaL1NFBApqP6MlvdliIZTIdGf6p14OwNcpNwpTwFTryXXOeAidtW3RvWjHrgas3ZBDQUrY0ky1bK9GApSJ7VJBfJ5UfC/CwXoJiQFD2Io6GPGSRqxShNO04ArccCVtMVJHLEOIwIYBYRnrR7FRe7w6LTG2dRjyAlDiRgVlJiKlnOPCZuhE32hIaIMAZykK1fcNgHoQzMCvpC+6Zu/+Zvxzd/8zfXvF73oRfijP/ojvP/973/qA1MsbGgrKTVAtLKlsmsEwgJKVQ2pNv8k98EogFVlrgcDlRrIwFoeXJnmVpY7ObBLQakKtOhzXbTpALHDXcjtD24uyPkpX4pq+5BudCYPIL4mKNsrbhpQz9QAmDhyA8YjYTqR8rHco7KiumuyLBXpgJx7BXoITavNQLPIKCvCeEVYU3FLyGNQZqiBNAX9NSD3AdOakDsrlWt+aVZajfmzKPts3fiMnVZ6NLZRaOc1jLLN1kJWzo09534fYWR0Z8JyCqMyrdyMngfmWsmm3DdZr2vOAJ3KuY8jqk5VHOWYSgpaUkjgRC1ETyTA4IloTNl15CzNaNah4OrpBjEWPHqtA1M4mH+4XeKmSwNTn/70p/Ht3/7t+PVf/3XcfffdYGY8/PDDeM1rXoNf+IVfeOoLFh/taE8juwz185Of/ORMnHzJlgKAZzzjGYgx7rCjPv3pT++wqG5kX/M1X4Of+7mfe9zLP+mMGDsJ02O9EPZ9b8lGZAGleunkFlJBvxqRYlHdF00wtHuSlbTlLMBPSqUCQERA17UOa8yowJPpCY1DQrlIUiZos15LUdnEiHeMiPcy7lmfAxBWUikivgugtmy2UsFhinh4u5ZlS6hjAAQ8iaHUY7Hv4cCrFArWSZIm+94E2DebiHAtoUyE8S4gngy6fXeKNZEiYgG1ikRBfS+6VmepYJt6lD6idKqnMIgeDkdCPpGSEeOjhyyim2GwAE6CtHRO4AG1fbGUXlriSU0fx7VgD1GuU4pld6yPI5pYglJ+Ysx+vx4otbTgWFsAZmPo4lKc4+bb7UJJfzIakXbULAG5RPEBRf750hjrFmVsKEBdFEOWrWiR/p0dKGX1GsYgsMQxcN1G1XdyyRxlQhkbm8qXg8iYANOOmqkZ27HZdnUfreyFankgAoFJOs1xYiDp/ayJbhisLGSeCJnQbU1yTHPGJz1AZYiVBNk+t259pKfXRM/JkmA7BwxlgZCcq1URppWK+9bxZMGviE0wXpY33wIGeAwYpwAuk+jyRfGt7arJZME0hVqCB0B8UBJtKAO0AwF9mpCoYFJ9wamWR3Pt9mk+IhLXEr51HHElDriz2+CudIG74gVOwxYdZUQqCCgYOeG8rHBeejw8neBaXuHRaY2L3CkwJQDF2djjYuxwPnTYbjtMQ0TuE4rpCRWqQMOh7DK+6fGwzD9fe/jhh2+bTum5EAalIBamqi1ljKlS5l1EycApx8wx1uWsJM+eL/1nAIWVtFVg3Fg4vqRPy7RA3NhAGcLcUQF+0Z6Sd3wJABYTSbIh/UHKsiQW8KxTjSYCwpYQBtIueUDacAVhpOMcI23Z+U+AtHunvyeFQchIF1KWF0ZC6AWMM4anCIOjAWkqTTBeIaRNqOLkwgoTEXEpMRQQaJXFH44nJLpWWqZdD9e2q0ANsWOasoDrHLULoWprkR6nZ6QaoBhGAbaCnvN6/Ppd2jDituh5puqXc68spm7ndbFjxFS7G4aREIemJwqOck6Y9Z6QjVnXv6oDNgFxQ5iudTgLjGmKtZnPsZTv8dmlgakf+IEfwCOPPILf//3fx5d92ZcBAD7xiU/gO7/zO/H3//7fx8///M/f9EEe7WhHO4xdxpFdvXp1Bkzts77v8bKXvQwf/ehH8a3f+q31849+9KN43ete97jH9bu/+7t4znOe87iXfzLZdSEEeowF/PeadPkZOLhZNgEOWr6XUhZdDy2r6GOuM+CmJyPtwiMmDfIsoehTxh2rLa50A6YScG1YiShtXGHcJGAbQduAsAGohPrSZgLGqxEPdhlXugEXY1c75czbt2vwRwWlBFwMXdOBogaqxVAQlbklY5RSQRBXGn9hmYUKxDjpx3ocOU0YNgl4JCFeBOQuYeomBejcSBZgy7Ld/Go1YnOVMCbGeLeUi/QPRaw+R8g9MNzNmE5Ex4BUByYMkkCXTspIANF+yACQhNZdOq7BKCcGOgZ1BRRbO3VLCM1aKeLc9pXtGXDgwah9wJN19Mtu2/tYU2Y26Wg6VRWwOgJTT1nzl46NGang1IypqcCSMKTE0zAv7isFrCkVcAkCqDhQqrVmp8YG4gY6Ic3Bbg4sUamBXov7UZbR7ZANwB+PHmAtpSNAk9SqGTUxAoTFJW3eZSw0kZbwUSsBsWQyAmVFyjxA7ZjlATaftFqJjz3znslDljv1BbziBuhVtMhdg8TglGWGvg8oIykAY8tqMjsCDAHaSkf1PPNImEg6m4J0AqLLM/H7UghcgoJ5hCFHTFPAEFLrEqpg+RkkMfVaVNFA61A0K5fy6y4oKJWEKXVXusA96Qz3xmu4O57jStgigtHRhAzRsRo44pxX+Fw+xZ9Pd+Kz4xVcyytMLAyq7SrifOpxbVzhXEGqiysdNpsOeRul1M8A1gPZZXzTZVjmT8T+5E/+BP/v//v/4id+4idu2ja/kDaVgG1Os78zSxdIY3HXcj4r45qAWTdLzK8Rx1au3AByXY6tNK49UwZshQlNqDtB2TBc/ZkBGJRlGdOAo8iw0lpA9uW91MxtWXmhlu+FUcvpzoF4IdpRYQJCNoCJK5vUNI8AtM6DVnK8VS0pbTCRtgLo5I4QFEzPK1QwnCaLYYDpCjAMBCoBHdBE2YP6ycKIW0Z3bUIYM/JJwubeDtu7gk7atfNoTChAfDO78sSi2w4GMKm7twkBts8NCJy4scdqaZ+ctzhwbarBkbSsTsobp1PrUtiO1y6ElWnO9A0zVf0u3qien3Z9jEOR0kXbvelq2bGMQIwAn8kFmkqPiyEi9FmWm2j5OrupdrvETZcGpn75l38Z//E//scKSgHAi1/8YvzUT/0UXvva197UwR3taE9rO6ADm+3jsfZzyXG89a1vxRve8Aa8/OUvxyte8Qp88IMfxP3334/v+77vAwD843/8j/GpT30KP/uzPwtAuva94AUvwEte8hIMw4Cf+7mfwy/+4i/iF3/xFy9/PE8yYw+EVDYBADCkx5QuB5d/UV2hrVuAMASJ+ztLKoyhpLoeKeN0NeCe9QUCMS4mKaE7SVI2MbEI4X7uYo3tkFCyUJNTzLiz3+LZ60cRqOBChcuvXV3hYuow5IjzbY+zix7TkDBtBKiikcAdI2fCxdRhOyUVS7ZueHCMLJmdRyiiAc4idGvgmCU4AHAxJpxvVgihYN2PIriszAAwIZeIGBi9Cuom3c72Soezsw7xWkB4NGLLa+DuTWWP+YTaxmdWSkAmEe09OR0waqe/lDLO715h/IxoA5QoQFTIogcxnrJ0F9SONNy1kj4OwJQYec0oqyKaNqkg9gWpm6oOVinkztUuGMUKxt3IrEzPlveC5kIS0QQzMAqzO6eyP8ZifTRAc74fSwxuOJzP3w7gl442t2xJXw5zUGppjMostGtfn+9CwuCMjFydWQOjZvoiBVK6ZrpNASgFIF9yoeCVtSIXzQz3HdmMu4H2Ci6T+FoRZ3eAcwEAqmBRZUQoK4JFjKkKEYdR9eVkgryWppQEjHcw8qkkP2GgKrJrrC5f3mdliEU7xBE53bqR6ow7rQvCKs/OfdGOe8aaouDbspOyDKiWPcatnG9OjAwSJoKCZZIMBZRBaCOlK8hTqOByTBkpFcQ4gYgrw5UZKjItJ3IK0kBiyqGCWjEI8w4lqEC5HIMImxf0IaMPWXUJGdpfT8oIqVRQqqOMNUTfsKOCDMJ57PDF6WE82N2Bh6Y7cF56bEqHbUk4Lz3OphXOph6bnHA+9dhMHc7HDuMU8cgjJyiPzruF31S7hG96PCxzAHjHO96BH/mRH7nhJv/7f//vePnLX17//tM//VN88zd/M/723/7btQPyU92mKWI7tbTUWFNTlvuy5CAgayYFvWn+3KI9i/acF+um64ItmlyYpTp3QUu2Kktdf5cObfJ8sYLpOTBKJ8+esKVRS+OsRMzYVHD7noPZqillQNhA0ojlHIgbYUbFKugtuknGYkIglCDgy3AlYLhKmE5luwJsMbrzUvWr7LhDlm6ncEypGVBBArxv7yFwkJKzdF7qeRGdKRaB8O2EsBmBwkinEeOVIGV01U+1c2+gkzC7GDQwYlYmU1BQcGrgUb1mVt4IZYUu2Kl+/GEKdYJgWhOGOwjjHXJeSucm01xgVJLILXCS74WBp2WEUeK90pGyh1XbLgs4R6yTCqTg4UgISXy1EMcEnMojoawDELQs8JB2m8RNlwamSinoul2n33UdSnkKQHFHO9pTxQ7MSgAAaX36GJ6KL+fJXv/61+PBBx/Ej/7oj+KBBx7Al3/5l+PDH/4wnv/85wMAHnjgAdx///11+WEY8IM/+IP41Kc+hZOTE7zkJS/BL/3SL+Gv/bW/dunDeTIZLwEG8lAUsA+c2rFl8EDStS1PASEGrPoJIWUUJqy6CafdWMstACCAkSiLcDkkSQBklupi6FCKsJM+tznBHWmL+04/i/vWnwUAjByROWDkiLNphc8MV/DZzSk+c36KzdBhmqRm4srJFoGkTO96LB/mBlTppJcCdewPs5aCpJRx0o9YpwlDjhiLzdC3bc6EdoMsf3FlROYO4SIgPhKxLSeY7hyRuqkm09KNEHsAIFR9lLiS87TqJpzcO+KzkZE/vUb/kDDGSg/kuxl8mlGuTticJMQzZZMRVYp5OiOELaGsCNMpo9zJwqDQ/UfTyNJympwDSFlTBqZln9zvAa3sp4EM4xiRpwieBHCQ7mmiSbY+GbDuJsSYNegXoCmX0IAHdy9WMBA0Y7cd3A7gl44mZsle1vut5CAt1mvJLtsDqjpS8px6fRfTmULRsrjAmAn6o32vq7QSG2MUsf50TCIiS2pYy/4cO8gnlporcdCxmG8lNI/K8nfViGJNHCOJOC77BNaJnLNqRkVIJ86VCKbnKwVYFWlFP0ZhGaAlPYzmp1lFlTm1e5S5acuEbagstXIyIXQC3khJL7Q7orIhCGBWsAnBKlVkn4VQojLATN/FmLUJMolRCDDtsELgoV3vEjqMq4y4ykhJ2KUhsLKoRGPQBPGH8w4hFcRU0PUTUiyYcpjp33ndKgAoIFzkDhe5w0PDKf43fRF67Qq4ChMiZPl1GHEaBtybruHeeA1XwhZrGvHF6XO4O57hrKywKR023ONaXuPhdIJr0woXpa9aVyNLyd//Nz0X5wcFph6/b3o8LHMA+P7v/358+7d/+w2XecELXlB//9M//VO85jWvqRN/t4XpRNtmSrNS8jHLs2KTcLXBQu2Y2XTpKvDDrhysF1CD1K/JJJ8BDHOwqJYO67Nfokw2FX2Ow9BAFsCecapd6ogkNhAf2nyKSUZWrbpgJXXacTMT0oWW8G0YcWila6Z1JECKANqlV12jK4ThKmG8Ij7Hyo7ThpHOCzgJeFWilO1ZZ1QT6ray11oeB1RQfrpC2I4SY4mPlG3GbQZsXFVwnpEuCqKWRo4nwHgnaSdVAI7pVCLARIjGgNJrT4VB1j3PhmJlf5XNxjN9KSYCgrDZxiygHEcIKKXnpfRcXwW+rJyj+HbuizJM2/uCizSXqMdXbCZG3nVhVPYaMzBJbCRlfzqBo8cRB/XLIYA7Pngp3+0SN10amPr6r/96/IN/8A/w8z//83juc58LAPjUpz6Ft7zlLfiGb/iGmz7Aox3taIezQ1E/3/SmN+FNb3rT3u9+5md+Zvb3D/3QD+GHfuiHLr+TJ7PR4iegs3A3Bqf2bgM6e6QlYCG1C3K6GnDXalPbeycSYVoAiHrhJo4IzPXzVZzwzCvXgCuSpBp1fijaAjxlnIYBgQqi1kScdytcTRe4n+7FUCLWnUQHWds5j1oKQg50WTKUgAakzMvF5i/KdTehTxmn3aidwuavqRTzjM0zlQCiiFWacPfdZ9icdthueuRrCTQF5GsJfAU4OZXugVMOFUQzwMzGZkmu17oCpKvhtmNNQkXE2Dp+xX4C7s2Y1kk0rnpguEuPbZRZ1XihM4jrgDIG5FDQdQVXVgO6ULRcIVTAwMAi9udMz5UXLGagMuZyDthedOBrUs4YJmNZSII89YyzKWBYTej7CX2aNKmUJKCUULEJgtP4cvs2zatDz7rdLpT0J6MxE8asrdi1RJaVfVBt6ZBm5Z7L7c0e53YDqXD6spEDQo3x52LBYbENXlxjlzzWbRkzAa1Egi35nFSXaUvzBCijlvL5zk4+YZGkVFgRRYWJaSRgigiDPM9xY34ZVfzcSjs4smrOcD0XxRgHmkiHiUTEOxPySUZRv07EoCDsTVL9PEAE23OMKNsoYGBicE8o1t3LcisDoDRBCasM7oqAUcT1OhMTMAIYE8q1hG1koBcGV7AuZCxJGoYAGgQsG1cF00lE6nNtoBGjNMjoorBTg75TjKX7yGaN7RSrryIHPBCk6+cqTVilCVe6Ac9eP4ovWX8Wz+4ext3xHOsw4kraAgA2scdZ6XHerZAREFHQUUZGwLZ0+D+P3oNzunIwH3UI3/SMZzwDz3jGMx7Xsp/61Kfwmte8Bi972cvw0z/90wghPPZKTxHLWUTuYygV8JyxpSYCptCaJCgIO9MlMrBZdeEAa3qw8EPOhBE1c3MKBDG4a76JMoCpAdkeiK5ANwO5g4DlBkQrEwcGyut4ZWXZluhKsZThDVq6p7NSrGCO6EIRcgdMJwJMTWs0LTvdbhhl3RybHARHWXa8wzpXyufkZAm8HwQLo2k8DVJilwWMSWeMMGTQVAQIGQvSeda4SDX4KCCvZYy1HI+0PDKSaGqZxENWQXHTptDJjbD02TaZYOeQIJMX+h6xToGlE1BsvCIyCvX1oziTxdKlYyAq6DRS7eZYr6u9TxIwrQX8mq6IflTcSJllVPCwlhfaOhHIa2C8omz5W/SI3i5x06WBqX/9r/81Xve61+EFL3gB7rvvPhAR7r//frz0pS99aosVH+1oT0O7XRzZk9KWyV2Nix4bnKoBUs02ZH1S5gsFRt8LQ+re1TlSyBhKwmYSsdhAImbu9YiGHHE+9hhLwCpmrNNYy+HM/ny4Axelx73dGe5NZzgNW2y4w0PTFfz5cCc2OUlpoOo+ZS3v2I5J2EaxVGYSkc8gd08FOYDFA00EVN2SWjoGVHH0qMfmNZJyCUih4Eo/Yt1NyCdb5LsCzjY9tptOWGY5IGn7cqIOY45Ns2J2NVD3lzWJSyljczphnDrRMiDojBowbSNCV9DfOSDctUXWmqZSAoZHO9AmSj64KqArE6ImoJEYq5ixitNs/9ucsJnSDKSy89QnSfy2Y5J22lNEngRcyGMAnyeEbWgdvBRvYEDKgoiRp4iLHLBBj5gy+n7C8kotQSkAYC3DvBV29EuHM+u2WUxM2AXhAPSm0cTBGAQe9VmaMR9VfNv0fTioV1OAhEEKSjUGgCc3VZshTC7gtwQrNEHaynowDStiLcsjTSCcDkxo2iZQdpYlk/CHR+0nFSBdWMe30EoC9WfWpKi2lNffbQym3VLLGA1wywJMxS2ke14G+BRVjyZ0GZTEx5uvYyYMXcQ2dihjez7LGIBRgCMrL5TxEngMoL4IeN6jMk5KYPA2qp6KdjYDUDoBzktXpDEDoA5EE7dBtlmmDmMXa/OG0BXEWDCliGFKOA8FKWYwEzZDh2HbyX1GfpLC7h/Ud5vZ/y89E6frAVfXWzzj5Bqef/oQ/p/V5/CM9Aiuxg2uhAHrMCKCsQ4D1jRiwx0+l69Ih8AD2hfSN/3pn/4pXv3qV+N5z3se3v3ud+PP//zP63df/MVffJid3kIrY8AwJqSUwUqlzCXUpiqcg7KlBOCtDEwrpav+gB2LSkS9S6/PKHSyp1cwhwWENgDKz51ZkxJ7bjkC6NCeMcfmNDCjdYDjqrEHMKIyLCt4rA0MrNGCgB1NL4kWfpmVie19U5ikPIyTdvzsUfWVSqeMJV0vd8KCGq8yplOuDKswELprwvqqulrK+JZzI+BMFjormAj95wakMQujK0+gRxmUC8oqYlpHkGptGnDPDJCV5kH2k4Ha1RSBkfvWNbUddAMc6zUuqKy24jSeSpJzVHo0cXlGi21IJPC443ofQOMkGkWeoYre2ztAw2/udOynDFwl7ZqoEwxaniel21IKOV1hTFeLsLEmAg2h3p+HtNslbro0MHXffffhd37nd/DRj34Uf/iHfwhmxotf/GJ84zd+4yHGd7SjHe2Adrs4sied0eLnwljfmI3aK+BUW5/b+vqC5Sid5KAz1KskoEYKGR0VTBBWlAejrNV3AeF87JBLwEk34ko3oA+TiMrmiG1OeITXovUUCu7qL/DM9TVcTRuMHPHweILPbk+xyakydkYFL2RmswAlgKIxpURD6nq6SbvnQ6ywCJuv0oRVnDCVHoADpbRUhBxwBbeu/d3HjJPVBnestvhcd4JrZ2uMQ8Lnrp2i66YK9kiS5EAxHacAMzJre9IJ2LXdJozbiIJQu3+BIYK7XcE9d57jSj/gfOyqftOjneyXiNF3GafrLboogOFpN+KOXssgc2zXiskxChQYi0XF4BsgNwwJ4yaBNxE0iuZXHGiWbJNp2uhsMLPq6nAAbwMm7rHtlMquekGk5YWk+jZlFKZESAWxy4iRgemwU4BHv3Q4s3vTyrXmX9pPy86gKMv1HNkC0iRu9bb2sQFQ1pEPaGWDuo29uBc5wH4vyC/jqu3XTWiX2+JsCYaVufHjuG8s6VTtmZbsounNaHJa2RSh7TSMkuyJkPo8eTUxYJ90CigUMAHgdRHB8xyQJ2AkRugZfSwgKqrLB4wxVr0dSbKKsiuDlLqwHbxoVoVAiKkgpUnKfVlYAvE8SMLWcRNg3gTwEGQcmsDVzmd2vUaID4myXhkDSmJM2qzCyqa4qF6W+YvAIg4NtE6OJk5m2mCBkZGwfWSFz4Y78X9X9+BP7ngG7j69wJVuwNVuU8H87CY1Hh1XeHRY44HPXr3efMhNsS+kb/qVX/kV/PEf/zH++I//GF/yJV8y+46fAiU6j2U8BUyjoheanZrWWS3hK+3ZDMtnVPV/Qm6AtJTuAeRK13xnzxLQWDQJqB31jBVlABiUQZUgzHf3XMvg9YdulzI1X6SgTIlKnpns3Qzp4jayCm6z/J55BmIIOCbv6ABWHSthA5VIoA4CPEdgOgW2d4cKXJUooud5JQ1cis/6DSTjBo6BZHnbr/k4YiklnE4IVKRUNj26BW1G0DghjRllnQCsMN4RULpQheMN7EFWXadEVeeunkcDsdzkQC21HPX8GlCU0IAsuwZ22fT4aJJzxVaWDbsudk31XmK7Dk430F3X+v5gAbYQGVPflqu+3CZRgvrTAtB5lPfAIBMRs/vlAHa7xE2XBqbMvumbvgnf9E3fdDPHcrSjHc3brYgzfC3TjZY52uXtei8g97mJKmpWsZvM+bxP2VJ9n7HqRlzpB2VFhdp1JoCROWAzRWymhDEH9CmjU6bRM688imeur+EkDtiWhLNphT+f7sAjm5VQ6BWU+DTuwP/t767gSaIiAue5tXIGUIESotA0kbQkzAZfSzYIFXBZlu9FBcT6IIygPmbpyFOE5QSgCqQvdUzsOwO17O+JhTl2uhoQQsHFVthTwyZhdTKKsLorOYxBtp1LK/WLQdqmj6PrNRxVLFx1J2idcdfVc3zJnZ/Tc3OlllUCwKZLIEgJ4kknpSpEjNM0oHCo48wlYJtj7UhojDTSY5NxicD8dtshn3WgTUDchBaEa0LKgaUTzUmRca4yQlc0UTRKhyScGEStOW7IMNBZop80iJZgUESubfb3YHb0Swcz72bkb++QyPkguxk8YO6+q+tg118pi8mX3AFQIWDREqnL6U/Yrvz+fLIHSz6pJi4NRIJ0+CPJtJig5bbaTdJpqFT2w2LyoJXBuWdJ922z8FIW25bhiFqmYWMLA0TE+EISPQOnTMxXdGLadrMxF7ZB9VcEZMqDMJOmKWJrIuWhiOA4gG0O8iybcH0wTSs9t8bgmgKygswxiv/lTEhnAd2jhLISUXdeFQG4tWU9tOxGklZqTAVqNAS7xlwA5NaJrOor1nebnWvxTZbomRi+0MRMuF4vhCaPeQj43Cbic+GKlDam9k6p5diZwEMExgP7JdnpF8w3fdd3fRe+67u+6yDb/kIbMYCJULJqIqkWpLGajS1FY5D70RhRviRXQSnzCWGSybqgXfbkOTGAiudNC4pqz+k9TZkQBzRNKGUOcdJ7U5+H6pv8sWSqGnScGCWYYyTQVl1l1pK7EVXkPJp2kWfWUPMf1gxCmFPK8vFAA0M1l4DxhNCfCQBXOvlHLKVoxowKmRC2QHfmugBm2VBJUoqXe/FXxhTnqBpXVyQWjH0CjRk0TAjXtkhECPd0dTy+jBrQc9kBUPDLi9ZbSR5oDirGLbfugKqVlXtZ1r8bZvdTkftJ/IyUR2NUf6ZgYysTVOZTgSvlbkCTjT9kZRi7Tn5+f0G3n5zfC6r7RUWuS9nf/+Dm2G0SNz1uYOpXf/VX8f3f//34b//tv+2I+T388MP4q3/1r+Lf/Jt/g1e96lU3fZBHO9rT0m5BjHW7IOxPOnusazfLvfaoTLkAv35HQEwFq27ESTehi1mFzQsCGFfSgJM4YuKAB89OsR1TFUS/q7/APf0FnrG6hjujsKDOc49IjM8NJ5hKwDikqnMyDgkX5ytsrmxwdbXBaRpwMXUVyPE6R4G4dsLKpWlGFSxyWqcp4hlUxuCwycw+ZvRhwpBXdfsEVDaX6SwZOGbbWnaRs3XXacI6TQgETKPoVcRYcMdqQCCuzC/Zb8bEAY9uBajLRcRYz7a97C8VSX4jI6yydCRTPYxN7tCHqc7mBxLNlexYKVMRzZUuZkwcZ23XV1HWvZg6bFRXi/X82JHlHDBsE8omggYZd1kV6dRls5I6S1hOM+Ido5ZFkMxEe0FlBarCRRCGxxYt4HeJtCXppYMwJTBPyA9hR790WDMmY+2w6DWmDGjy2lD2GYAZg0oTofp5kG3VEhbPJmADqmkHyPLldACakLeflXY/a7lcZfG07Rjz1Hd1Krou2Yy7m5Vflo7M9qNt1adTRlmXCsbQSLXSDUBlR1iXPGNC1Hb2WlIk3fW4tp/Pa02uLBKfSM5tVqApMPIUkEPEEGViInUZMRbElJFHE1iR88uR67ngoL9P0mGLtQy45Ahso2jfbQGQJNG8Fp+AEhoAqElM1fIhyAnTE8kOAPMTKLO/DcAyK9Q6BgKzkidSUG3Whn0isGaBTFICtHO9MiFu5TjKilH6wzmHo286oCkAxaUoYM6qgQcBg6b2bIXJ6QHZ/el+GohjOlOzZ704BgvkfgtRtI4qWd18WAByZCkBsy6bFXQQALdtE7UslqOV1ukYCkk5m47D/FccnaaU/pv5zupDqWnYKbiTV6JlZAxOmhoIIowpeU6NPYXaMVjjAGVtxa2WPjKk+58Ce9OaFJDXdZQJ1l0D4rYAkTDe2YMKI52NCJ87Q3jkAt0jK6SLUFlNSxCndI3ZlC6UZTphzoBCG1vcyjnMPYnW3krOq3XoIwPH0db3umCUqU06uH/GoDW2nWH6ftKilpLb+4ZQAfm6TQdC2d/+3eRjqEPa7eKbHjcw9d73vhff+73fu7fDxF133YW/+3f/Lt7znvccgamjHe0pZPLyvjGC/phdHo623/aVry01Wmp+17pK7VKJ58CVVcp0IeOe/gL39mdYhQlrLXa/s9soG4dwmgbc25/jNAw4jQNWqstxXvoKIK3jiCurQduES7Jq2kP3nl5grWAXgKpbVZhqPlqYkFTAmzkKSGWAVTuMur8dUApSkpGnhBwCVkkivW1O2E5SBifAEs/Ev5esqXZ+5p8HLXG80g/AncDZphcB6BKqHglByvcmYnTKkhJgirAZE0oJWK1GjMS11GB1MuLKesCUAzZjwmfOr+DO1RaRJKi+yKIDFQMr+Cb7GGxcHSOFjPOpx1ZLJFdxwkkakVn2u9l0kkj686bJIK8yqC/oVlMr68kBbJ10VrmBhDmgbKKU1AQJwFEAGqRrYE2mTcOhzrKyzBISqgi0bHCez99sO/qlw5lnSDHQSqoKQEyN7WK+yAMLFqh7wGkCmMI8oie08jlbzrpLmS0AoabHglb+Up2H8xkGZikry2u6tMTTwCkGtB05B4eV6Ez4juA6oSaFdXa+l6583AtFggsjFDm4MInOFGBJHZzGFmrLdNJkhpxvt+/yilFWXIEt2kZ53lZFSvsiV/ApD6Ip169HnK4H9P2Ei/MVprOudb7SLl92HigTeCLkWLBaicbdqOeGkwJqWwL3AZwKuGMUlgTWxloialWnNyoKBBoLKnADqgABtoxl4O4lshJEvU8YrPouuqyVAiaeg6LeSrtn7P7kJGDeIe3omw5oRfyR15asLF8FpqpItQEwTldqxp4y4MBckj3XhNolz/wAFQFAZ0Q/ffY5oWk7TQLOsGHrVjJYZDz/f/buO06Sqlwf+HPOqerqnrg5AJtIy7LkBQGRrGQTmFEygoiCiNwfcq+AIl6vqFxRBK5LVlFAUIIkCQYWBQSUnHbZhc1pYoeqOuf3x6mqrp6wM7M7PT0783w/n2GZDtXVPdNnup56z3tU9J4JXSCsQ7KaX8VUwzg4ToUnMjBRVVD5y1YQAhD2XxGtUmqkrWKKm5+HXhTupqY1yiKQ6bCr6OmMgHZkReBb0UsrVf0ZCmGn8Ym4V1J5upy9r7D7qY2dxhcaGFdFY7KBCEKgUERmTRa5JgeARLG5HE7Fzzn9OQPGVpbGYbgw9rHtzsUhjw3O4tun/wYlP9fo55SeWlcRHnUJbZJAC+XXpCLQMrC9zHRqO6nxOz7pEAdRSfCZfG5PblrZJ7GKRsrY1O9g6oUXXsD3v//9Xq8/7LDDcMUVVwzKThHR0Ej+ePdxGxqYioM7IPUHzaRvVHGbuANLT2v0GWkAx/YYcVSIJq+ALetaMNlrRbPTCVeEcKOa6TpZwtRMC0Ij4RtV8eWaEEqE8aLjAICsCjA+1wlPhSgENkzJqBATch2QQqOlmEtW9JOIqpWE/fAojEBOhsg5Pgqhg5ZiFqF2uoVD6TAq/f/aABIiabYdVz3FIY3vKIRdKqPS0o8jseFfVE8F8HIBHBWiLZ9Fe8FLVqaLq7EQqnLwFk2vk8LAc+Om6hLtBQ+lop322JQtIOf4KIYO/ND26wqETPZLCQNE0wONlrYTjLar8jnSNp5fV3TQUbJBoa/s47cVPHR2ZJOl2k20GhGEATLa9oJy7L+OE8LxfBt6FR0EcABhkibrACBkdIAb91DQArIg7YplsAGU/VAXlbjLaCnl6EDXbiT6mbnRQWQVG3lyXBoayUjTJXyKL+saGNnsXEQ9VqLTy1LAxEllfGAXV+ug8n4VU/u6fNBP/kkfQEQBjjGVVTbxgSQQHzyWjyjjaagQNjSS0dLtSZNaWT7T3jXESB+YJgdwCuUqIGmPLuIpcyIUkGF0oBqdmQeQNMK1K1XFB6TlkMVWTtkDGycvEEYHjUIjWUUwMBJB1r7H44ULdCCBwK5QlnFCjPc60eIGWIt6hHnHBnLRyxz/PEVJQPkSgQB8L4DjaCCjEWZVUs0lA0D7wk7dy2g7bdeNGqqn+mTFTd7j5sLx6mhaCJiMKfeQin/+Jjq41uVwzQDl6esVv2/lsccA5ebr8e9JRciZqsoz5dc8mSZYRRybqicOJo22U/kAu1CDiQIpETecjqsQ43+j6Vjx77IMTTJFTCs7Rc/Ji6Q5tZ2aa5LwOz2dOGbiSqHova0KIprSF1cmRlUz0fTduFpGu7DTYz07ZsQr88qinRqoina/ATslTTsmqlyyoYII4nDBlMcKJaBhxzZbbWQDpDiMsS9e+U0iQwMnr+HkQ4ShhCui6XsqDodEOYiJxrl4u9qx083CTDnoSSp+hJ3eF+QkICVEawdkEH0QEAKmMw8Ui1Dr25FdlUGQ9VBqFOX3rkyK0JKwJz7ZpUom+l6Um5pHL4OMV+Xz7etnHNFlTEr1ltLl17f8e1U5tievWVwFmozL5dsbiSR8TKpfw1S4pqNKMz/+WdrXLzmhEgeagK2Ui8OrKhopY1O/g6kVK1bAdXuvQ3Mcp2KFCCIa/kZK6eewJHr4/4qDtdRfqvhMi0kFVOnrsiEydT7qPB/NXgHjvE7klK2K6gw91Klit4fXEFBCw0/KXCwpNFwZoBGF1FQyjTqnhM7ATllrcItodIpo8bPlaimhbb8GGBsCCRsM5RwfY71O5EMX7SUv6SPVdbW7+LK4GXr8bxxOKanRkCna5rYyQFb5aMoUsKZQX7FKXHr6W/Kc4tesl7+6CuXHq3N9FH0H7R1ZhK5ENuPDUTp5vXVo+0tJGU1rEQZK2r5XGbeEjAqxTuSS5zc114qcKmFlsRHrCnUohk7yGVcKUxGsGWMPQgu+gzWFeuQcH47UGJfrhK9tKBWGCkGgbCglYJuRa5UckKGoYFwNkbEfCMPoIBXSfvoS0XQf1w0RBBKB78Bo2DOuGW3PPOcFZNRTSjuwyybHDVYRVXI02I6vqsMGWEYAYZ22vWg6FWS+ep+yOC5VT/z+TL6kKZ/t7fL2Kfe/E+XhynSZehz/XibBkYluLyq3lw6iUN5m+YAgCnui/7U9QIT9RK8AQEQr/dkD2PggoeJsddQ3xKR7gJTK/UTKYZMpV1pVPOEu+yui0NYxFQdKcSgifbuPRqF8Rj1+jHiKXnwAlprXHB8Ix1WKsiTswWBUPZUcWAUi6fOUDly0EfBDCQmDsdk8jBFoETkERcc2iYb9mdgD+WgqT1Gi2JFB6NmjTJ0xCD2UKxHiajWl4eTs2BIUHegWFyqwT1/HQZ0w5b9ZiAK5APYvQ9x3UBq7Ghfi3xsk3xgd9VaMqxtQ/jkmlVRdHiP5QcWBqEByhGuSapFUxV+VcGyqIg0gkDCBQRiFxjo6KVMOpUQ0lS8OLGzFURJKJVPiogbZDpKpa+lKYABJU/Ny9VD8P/YkjgiifkRRdZZ2AJGxlYY2/EVlqJEKveNFGURg3992UQT7JUIDo0RqupmB9HW54iU0qR53wlY2QiJUIglG0qFZvPJezFYlGchiaMdDaYPcpL9dEszb67Sw7+1keqBXfo3sqp3xe9NeV2qQCD0FVfKBoi0TM8YAQWA/SAQhVCGAU8hAFRGtiBi9zi5s8/Do9TMCCHMi6QMo4pXuZCqAjJrBC2l/3qoQ9Q90o+cf/3xU+cdndyr1M4L9OcVhU/r6rifZjCjfL+lZFv1u2UpaO3aJ0DauT8quhAHi18qIcqN507/QaFONlLGp38HUlltuiX//+9/Ydttte7z+X//6F6ZOnTpoO0Y06g1Fsh2aimkSvd6GBkZ0+bcn9tRx5WmU1IdwI0wytUZ5IZrqCxiX60RTxgY32kgUtQNXhlDRL4uCsRVRQsODPZXjSR/aSLgihCd9uCKEbxS0kfCi04qOCNEhytP0Gp0iGt0C8qGb6hllg66sClDSKgltAiOxpliPYuAgNCKZahj/Fe6pcjgp0zei4iBZCmOfGwRKUeWVFAa+sasvpUOpiv+PArOewrD4NvH+xE3JtZYAwmhVwWglvlRjdSmQ1PwbI1AIHEjXoMkrQAqDlnwW6/NZLHOaMDHbDgkb0gF2GmJ6lcCuMo6tMstEVVN1TgmFwEUhdFAKlX09lCmvagXYCoL4g7MvbRYgwqSpPIyAlAbCDeF5vn29dPl1BpAcLBonOgCODv7js732YD06qHc1Mo0lqAl2amLGDZDL2Oe3YtkYIF/Fhgkcl6pKwFYSSaUhHdscG/EqUkYgXjW06zRiEYVUiP+Jp06lwwMjys1/02FUKmQwUfCQnpJhorAmmY4SRM2I422kDjYQVUxJEx0QOgBUXHkQL6se3SF1xr9rJVRcNZXsh4hvLyo/wEePiVBA5SVUobzqHky076lfx/gg0Yguj5nqv5Q04E1NMYqnzAoXEL6A06qgPQmdjRYxEMaGMUbADxXygYuGTBHjcp0AgFaZRVBS0NJOy4YGTPQeFwEgOhwEYXRW39MIjYQpRVVNUThlQgmtbe886WqEroYp2b8wFUutp56z0LDhkABMSUbVJvHqfCZZ/dQgqvqUojx9LywHmEkfn2SaX3mFPxhUrCJp4sqsqCF2/DyrPV2GY1OVROOG0QbGjxZQESZq8B8HFKicwhcgqjCKx4xUA3Ftq3uS6WvR+z0Ot5JASZXfr8mUrXIZexJQJEF2PG6IOKg1MKXyim5JfzRdzleTALfiPWOgSoDbaZLpcUkoFU17FkmZjbTT96PFE+KpcUkQEYfKcWDnR2FdoCGFgFLCpjpAVH1ldyoJjKPn2i1AEfazQuDaXZDRlH8IQJZCmPYOIAwBNwOhJJDN2k15LmDsVMJMm7SBWB2Sasj4M4YMAAjbyFxko6ozEVUmVYR+NvTRqZ+hCE10ud1VCZTLseLXRZR/tknwnQrwktAqNY4lG4svT++HQhIo2t+1cn8u5QO+jn42bhyAln8uXau4qmKEjE39DqaOOuoofOtb38KRRx6JbPTLF8vn87j44otxzDHHDPoOEo1a1f6AhdQfztruxsjU9YVLf0KpkD6iSX2wTl0spUbO9ZMwIw5PHKnhRkGUgoGM/rL62kUIAT86ZePKAK4IkY26V/uwU/tagyyK0W3i6XpOFM6UtJOEUaGxZ+frnJKdPuJn0VK0VUN+qBAYCb9rLyQgapRu/1+b8nVJUCIMpLDBkTECLcVssg/5wP5VD6JqqXTo1ONJn9RLG1dQxcFXcrkw0MIgl/ER1BdQ75WghEExbjZuRNS03QZlKrVNYwQ6fRehlmjyChDCYH1nDivaG1EMHXgqgCN0Ek51+Jmo71b3n3kYNUHXyvYBq1clZGSAJtgm7AJA0fMRhPZ1LRRcO1UnFQwgFHbFLSXhO/a1l9LAdQJknDBZWVAIu5KVCQW0H/XqiKb82KbBsGdTXYPQNdA5DZEL0TSmE1Ma29CYKaDRLaJelaAh0OpnsXp9A4DqBVMcl6onLtyRUkMpQIcaoTKIcuzkQ3iP0j8T2SWk0KkqqdSqR0lZUyqkSVcpxAEYgKSfkolWYIpXgysHOyiHFHFflehAykT7ER+sGRNXComKlZ+SbQmUK6fiD/PGhl1JLxhhqx2ElrZBcknAbRNQUcPe+EBTJ88DScBVGYKlKrSioCWEQbIkPcr7YxsVCzjtUQ+rrIAfCBtORaGNDgVKJQft0la4ek6A+kwJ2gDtyCKAraoysAf4shQ9tyKgjYLx7NRendW2miIsh1PSDSFVqoRARoGRgG2OHh/oBaJ80GZsiGj/fNnHhTbJ1Dqh4iNnG0rFTdWNQsV0vKRPVfQllIFU8VgOO46Z+PfXBqs6lAiDqLdeEKd7vfz+DgKOTdVjw6aoKigOMaNpm3FvsnJlFLpM4YsqpXwb9KR7GpkoKJJ+FNRGIYN27JdxTFI9KQCIuG9U3AdJ2Kl/OpOaOhyFF8n+xmG0Kt/HxIFGKpQHouEwsNPSVNEGSBWVUslwJABhK6a0JxFkZdKQPG5cHg0jSZWPLAFOwdj3nyNtdVfqg4wdj+x0uThkiSun0lP7kgBOIWn6rlJjsiz4MB2dgFKQ2SzgZQApYRwFZFwYKSB9DSev4WYkIAWCKDoQwr44Qsf9KwFfior3VfpkQvzaKj9qzB43QvdEsopf+Qmi8m8Cop9B6vr0Z2wRh4/RY8IgafieDunsx+TU53Nhw7E4CAUkZAYI6gSCOhFVndltKtigrepT+TAyxqZ+B1P/+Z//id/97nfYfvvtcfbZZ2P27NkQQuCVV17Bz372M4RhiIsuuqia+0pEg2ykNMsbdnr6CxGdNQZQGUClz1pF02C6hlM6VMj7Lgqug4wK4MkAjiz3lSqmlvsIjUQxWuYpjCqllNEVf5FU9Mk9H2bQFnhwhIYrQ2RVAG0E8qGLjmhaXzZaKQ4AStrBulIOhbD8eBqiojqopxXzeguokpcmqa6y4ZQAouork7xEFVP4Uv8fdgmfyq+1JaMDx3i/QmObnntONBWuy74mr5HU3UKlUqBQChSUtAFUyVPIl1y0lzLQrkC9W0JW+Xa6pAqTFfbiBuZdt22M7eflqQAeAF8rOCLEmGw+mTqZD1ysVvVo1Tloo5IKC1tVUN5nIQw8N4DnBuXXSmoIIRFGK/LFDVRFYJeEl4H9YK0zxq48ltMQdQHGjm3HjOZ1aHCL0EbawE2V0KCKmJxpxXPelvCRQ7VwXKqe9GrRQgBSaQhXw/iyPH24P5Lxy37SF1oA0bSxJKhKQpdoTIubWkuU+zFJ2JP5woY2RkQr90WBTrdP88Y+pnEFdNTLSMTLgAflQCyuurJTZ4Bun8jjg7BkrBXJgbFIPT/bX0YmlQhJKKVNshpm18LX+GUx8b/JGfeoP1MchMUHl2G554ssCbitduUrGRgEvj2qDbRMVpwzQsKXDvIiWlDBVXBViKwbwPf8pLLIVoNJaCntGfuoGgxFaQ+sQ1ROX0rmD0X3N3Zfk6mMEkDUu87+TO1Ox1UriKbSCUQr9kVTPA2krXxK/b4kPwM3eoHiUCqqlkoqQePXM+oFGG9HynKlLRDN4hQyClird/jFsal60j0OTfwmjKojkxUuU9VTMpriJZMG6FGlUFRxpEoGqmSDcaOi/lWpnkTaKfdXjANlHf/uxX2qjJ1CbKfmmijEKq8kmSwEEv9Kp/oZAeV9TU8pi1fJU6Wouqvrr0vc+FwJhJ5C6En4dRJBLpq+pqPwCfY5BFoAcehj7HszqFfQrn2fhxkbrGsVr7IXBVMOon+j3lJuZbAWj8HlRQhsnyyvJYRs6bAfRTIZwMvAZD1ASRuGucp+ReOjKgGmwyZoYS76iGvKfSq1gySNSKrfUq+JjKbzwQiogrZT6pqUrSiL/rZUVL2iexiYvq5iynU0BTNZ0TG1zeTjeryIRfR3xW4/+r0SUTP6rIBfZxvSxxVt0kcyhbM/0+w21UgZm/odTE2ePBlPPvkkvvSlL+HCCy+080kBCCFw+OGH4+qrr8bkyZOrtqNENPhGykA2rHX94xgfrcS6TT8oh1PJ2fW8wjpRB8BW1NQ7JSjopIdUQbtJL6l0I3QpQtSpIhplIbrclg74RqEzzCSVT42ZAprcAnLKrggXaIUWP4t234uqiOxUOT9UCLSsrF7qoSoo3f9Jd61aip6sjk6eV0y3QzmAiquXum4v7PLYtlG6DXcCLVEIXPjRbVRU/WWbtodRbxaFTt9FEC2nlZ5GmN7/rvsdP0etJYqBrZDKOgEEbIWXE/XpqlelaAqiRkfgYVW+Aa3GQ6jLFUxZJ0C9a3szZGQAR9gquHzoojPIwNcKjW4RWeXDESHynmsrp6SLsBg3lzBRk1iJYsGFVBo5z/asMtFzCLVEa6BgCspO1YqrDxzb28v2xzHwm0LIRh9SAMoJ4SqNknZQCDWyyocnAzQ7eUzPrEaTKuC+7FysR/VwXKoeY0SSg8dVU9KJqqa6TufrcQOpf+2JYvu7aIC4wblIf0UHbibuEyXiD//p7UT9o+KKq7jqxZQPEOwBn0hCp/LqW8IeqAiRHNgKAxv6xNN9THQG3J6ojyqq7MPH0xOT5uWps/Tx/ksfcDsAWbQHw8mBTWrYsxVP6W2mjm3i22lhA634IEmYqGIpPiCzoVR2rYEqlA+ctGsPhOzzslVQWgAlAFrbxSMyjg2lPSdEmAlgjAst4qnISPrMxD83WUhXSkUrbkrAaIHAV+WxLz4wjQ+so5U9ASQVc0akFkPQIqmGQOo1MU76+uj3RpmK3yPhaiSN04GKqczC0fb1iL4PA5FMoUyv3FbtsgSOTVUUhRJGiqSyE12bnHftOxT/f3zgn3pfO3kThcFRvx+R+kJlyAUAtrk5opAUSe877dgAVcc948J4unIUmgUoT/81cThU3o9k/3X0uxEFaDKM30cC2sjoxJF9/tqxlVJB1gZSgSeS95CIpo4l09mM/dc24AbCLFDSsqJZd7eG5woIXdvbLqkcS/eQQ+q5Fu2/TpuAt9Ygu7oEhBqisRGiLgtTn4POuTBK2i9HQmdkFIiJaNqiHeO1J6LX2UCaVDVrOhAD7FS++PXTUdsB2Pee9DVkICF9kex3UmkW/73oerKgSy6u49dClW8PCeg46BKpvxnR9ExRQrK/wtjfqyBrrwuydtqo9KOpiBJJv6y4N1VyEqBKRsrY1O9gCgBmzJiB+++/H+vWrcObb74JYwy22247jB07tlr7RzR6DcX4kZqfvsHb0MB1DaTS0j/bLmepk8qqdGAVSOiSQhDKZGobYCtsbA8m2zjbFSGy0keDKqBO2vCqXhYhhYZvHBS0i4JxsdpvxLJiM1blG9BRsp0om90CGl0bYLUGWQRawdepSp9UZUEsrpTSqYPdrnoLqeKAqusKfumKq3KD9O7hV7wdR2qM9ToxNtOJjsDD2mIdOv1MEkIZAH5oq5w8FcLXEn6goqbmusdt9rRfXd8GdY4NltqKHgyAJi9ATvlwZAglDBqdAsa4eZS0Qrufqdj/UqjgSAcSBq2lHDwZYovseox1OpFTPlYX6xFoW6kklUHO9RFkJZTU6IAH7UtbFaEFdCAQhi6E0shkAjgy6hUmDBwVQil7sCdKEiJvz6DapehD6Cis8pqK8DIBgtA2g2/0bBP6qdkWTPFaME51YIzqRL0swhVBt9dt0HFcqhpjbLiaBLJRJUrcbDj5AN9L1UnyttAiafQKdP/QnQxf8c8pvp2w/0l6O0WPmQ5N7AFc6vsoaLIHeSI5A13eJ1F54BFvI930XMA2+U/1FRE6dZ4grjKK+6xFVUKyJJI+TMnKekgf8KFiCl/yEko7/ce4SJ6nMLClPakpIXHwpYoCTifgrTXlaghXREvJx48f38n2mNOwC23a17VcPRSHjyJ+WeLxNAqCkhX7AkBq+zjIGEAZSNe+sFLYqXKBMgjhVEyTE6G00y9FtM14ip4WlX3IZPfqqfL0Tp1M3azo8xJv19jtmWgRCEhhF/eL5i2Z1OMAsPsX/85UE8emqhEatupSGTvlDnHwI5JqyLgJdTydT0ahlEz1ZoobW9qm6OXQpmt/IVmy248DCqNsP7S4kjJ+78YBrAwQJRqoDL/DuPoYyfS/+DczrrJJqr3i+0S/I8aJTsY58XvGBlDxynuhZ3swaTd6H2hAGgOt7Weo6BxVecqZa0MS+9r1ENBE+xRXcWpVnrqWbopud8ZWO0lfQhYBb51Bpl3bCqvxTRCBhnYVwjoXOqOS8Ms4UYVWJqrMEiIZ5+J+SyJOHkX0ugb2/5PxNB7z44BKR9M0SxoqH0TT+TIIM6JbqFVRDZsKquK/IaacrZevS48b8WsTV0npcsgkQjs+Jc3WMyJVrQdI3/5d044N5OJwsKJiq1pGyNg0oGAqNnbsWOy1116DvS9ENMRGSsI+LG3oj1AS8vRweXzWJx2MRAcSMgodQiPgGwVpDFzYMErCJNVRY1Qn6mQxqqhysCZowAq/GeuCOvhGJaGTIzUyKoSGQIufTZqdry/lbA+kLiFUrGt4lJ7K19OKfOn7xdvqOnUuvX3Ty7biCqn0beLLOwIP2gg0ZQrJCoPF0EGn76KjYMM3zw3gKA3XCZNqqnib6W13/THF+65kuY9XEK+ipwWkkMgqH+PcDvhGYW2pHvnQhSM0WkvZbv23SlFPKyVs4/a6qEqq2cljcqYVjgixstiIQuigELrIR72tpDDIZAJ7ps53bM8owK6klQlRl/GRdfxkhT8AyHkl+HUOAgFAKBhl4DYX0VBfSELOpmwRDZkisirAzIY12CG3DFu46zBGdSIrbPP8Vp1Fp/HQqrMIukxNHGwcl6okCqXCsDwNKp5Smr5N1/skH9zT10VTt4SwAQSCuBl4FEAIg2RKBFDOYuIPxtHRR3llKnuAlwRQ6eApjHqbpJeKTx1YJPvY0/7GZ77js+gVz01AJE2LjB1mJex0HdcGJ6EjbdWAb3topQ/24gO6nl47o4ytRsjYXkvJNCVtez0lB6wlgUwr4LYZeK3aVnk4tprBnnWPVvSKV/tSgIyWkDdCwigbKgaBShaLAKIxOnpe9jUU5b8t0Yp9KlqZ00hT8TfGcewY6bmBXcFUC2jt2OqVOJwyojzdUsJO4Qthm6DHP58oQBKhPXo2jn190z9/4dhV/EwoYQIBEygIV0NFAZnJIJnCZ7RAGEq7ymiUKIqoctRomVT8VRPHpuoQxr63jYINIxEFAr6dPiZLUUiSqp4qT+krhz4i/f4PNIROp1Hl2xljH0sDSWiVfMULgKQ+pyX97JIpX/ZfVbJ9GuOw3IYSqAhEKiq74mA7Ci+MFAjdJJVN7p9Mu3Pi20X7omxVT9xbKa6oDDP2tggBnQHCUNhFcbpOIzTR76cRMIGB9OPPcShPdQxFUjklSwJOHlAFG8yEGYH8hAycBidZrQ/piiyU/98oEb3mJtp1AafTDkI6k6rSkrbfFkz5+7iXFFAO1lRJQxZCyPYSVFsRWgmUGjIIs+Um910lwV36RIVTvi4OsUT08zIOEGTtawjYn6uMQrOgrvwzsv0LbY8wp1B+feMpk7YC1TaaT8LG6n5sGjFj00YFU0Q0BKqdrgPRX6M+Bqq+rqfuugQcld+nTqvHQRS6X93tfsIkfZrafQ8A0OCUUK+KSThVJ0toVAXUySI0JNYHdVgbNuC94lis9+sQGIk230NJ29XfioFd+c6VIdp9D8XQ6TFU6hpKxdPp4pAsrmjqGu6kg6Wujc8rth3dL769NgL1mZJtgu67tr9K6jHj/RDCwNcSyzuaEBoBV2pMyLVjbCaPOqeEdt9LprQFoYSjdBJIxXuhUgdy6VywKwHAVWFSHba+mEPW8TEmV4A2AqXQwVq/HqERKIQO1hbrUAyd5DV2lEao49fJ9oZRUZPhklZoDWzPptYgh9bAQylUWFuoR2vBS0IpbQTGNnRibDaP1mIWq9vqUSq60KGwvYKEQZg6LdySz6J9XR1EpwJyIRq2bMXkxnaMz3Ygp3ysKdZjbb4OnhOgwS1iUrYd2+VWYMfsexgjC1AwcKOEoFGW4BuJEiQ8p8pLzHBcqhodSHtyWpT79WidqjaJK1iiypWK0+2pq4DKoEfEB28aUVNdU14xL/WmSg7sZBRqq3JFQlyBkBz4RVPsVDE6MEov6x0HUjrVMLjLG9dOxxDlCoj4LHrSQ8WUlzEXUcAS9zlyTBTqaIQ5YafQZSorI7qe4a/oIRKKZLqRiSrERGhDJidfPpiVJcBr1ci02UbBABBCQsRhmo4OaOPl51NT5QziUEYkU/qM1HCcEFoL6KA8t1BEU1/in4EsVjZ3Lr+mAkppeG6ARq+IRq8IAGg3WejO6Ig7qoyK27GYqC+UrZCKXvioSbKQ8dTF+OgyDsIABBIGGsZEoVIUYCEDuJkArhPCUSFyrq0E9bVEwXfghwpaS/sco69AOPZ3MZDVrQrg2FQ1Ioh/J0158YKS/V1N3i9+VC0Vxgfi5QNyG7jYQUn6GpC2kkpGY0jyB96Uwxzt2WllSdWUY2wfp3h8SfVhi8eOuPIxrnJ0OwxEFKppNxUAA8m4kC6M1/G05qiBOqLUXkdVSzawiYLfnsKW+DZxj6hkCl75+ri6qhwSV4YSydiiy/eLK7t03MrSCDvuluxjhDlbweU3RONJUJ7anDxGOpxPjflCA6Kk7YqIAgjilg6qPC4n43vyPAS0ivqDSfu6ykBDaA2UfGTWFeCNc6P+WKkVGCUqxvn4dbYnFYydrgfY1fNUlJUH5d+N+PcOiF4P14ZSoWfKJzkCwOkU9nGl7RemoyqxpILLAMIVqSb7G/rtHwQjZGxiMEU0io2UhH1YqghoyhebeJpeX/erKNexl+VLLtaKOrQpD+tUHTIyRM7xUeeUMMFrx5beeihodGgP64J6LCs1o8XPYV2xDqWoimZ9IYeOYgaO1Kj3ShiTzSOrfKwr1sEPy2fduwZBdt9tj6f48106kALsgaavRUUYpaKpQvHtlNTISJ2EW3WuDykM2kuZpBLHcwKMz3agzimhtZTD+mIOnb4LJTVUFIyFWsYrAyePXQoV1hVtLy5HagTRFMd46pkbrXjXtTIqrafKqZ6u08Y2Ls+qAKXoVFjcnyvuExXvR3wdILt9LtBGoDPIYHWpHr6RcIXGrLo18LXC22oCCsE4tBccBAZQSmNsNo/9x78JKTRebZ+KV9dPwtJlY1Fcn8UaLWCaBBypbSi1uh6qRUF7BtmmInaauBwz69bAlSF8rRBGr1lGhahzSnCiZhu+UejULuqkj0ZhUCfs2VdPCGiEaPIKWNnrK7jpOC5VjwmFDT6kQbwcuQmiYCDdoFWUp4lUTj0uH0vZAwob4BjXwMS9VgIAUiQrOiX9V+JNxPPQYJL+U0bEYVU09EVT9pwC4HTGPUZQecCXqpQAymfb414xJlV1YOLpKtEKXNq1+xxX8Jj0uBtVBdnpivZAKswZaM9EQZmwwU6XoTw5Kx//vxYwxSikEyJpxh4Hbapolxx3Ow1kKQru4yXQ4xBNIGkeX17hz5Sn0AmT/H2JxxZHahg3ei9H43E8HSVdWWIPbKMAMdVtWAoDN+rbNyaTx8RcO9Y01mNlWwPaWnMwnfHUvvQvlj2QjadBCiXKVVqpn7sRxi5TFYeRxdRyaNIGgjKqopLCIOsGGJfrRJNbAGBPypS0QjF07MIS0d+gfMlFseSg2JEB8tUrTeDYVD0iBBACUtrZeDYgENHqdfbgX8ShVGgqw6k40A4NZKghQg3hGzjtEhlPQjvR323HVuuEOYEwaysak4qiOMRQdhVbO/2uPC7GK3bG1ZtOHnDbjW3uHQ0ZQtreSRXTymQ8VgqIaCVKnYRq9mZG2WqkMFs5hcxeWf43DpK0m6rAicZpk76tSIaHZByJ3/c6an6uVbSdqGIsXYEG2H8d+7ZD6KFcHapFeWXE9JiSCsLiaZUynnoZGshiHDJJiBB2Vb0MKvr5JVVTIg76bPWoE4V1ccgtQg3Z0on691xI30OpUaLUUG4OL+J8OqmCq3wN495ScU8oO9XQwOm034cZoDjG/pcugFYAALRwSURBVDzCrEGYNVGVmoEsSqg4eI/HrvTfSlN+HqEb/e3IIKr4rV7FwUgZmxhMEY1iIjTdplT1dBsaIGE/oFQetfQzkIruXzGdLzqlVMhn4PsKStmz4o7UUNIg49hwxJMBOnUGLUEOywtNWFeog4ZAW9FD0bfDvR8qBIGEzJgkNOkMMsl0MwDJFK84fAJQbv4d/RtGjbfj1eDqXD+a2ibtVMPU9jqKGTsNzQmRdQLkHB/F0IEjNCbXtUIJg6VoRj6wUwnHeHmM92xVT4NTQkYFaPftVD1f2+bl8b5IoGJaUt53UQoboYTtIRVGz8VVtvfThkKprro2ZI9/NCZ9HWxYlXV8jHHzKGoH60u2+slNl3hoCaRW+ovDMm0EiqGD9cUcCoGLBreIJicPV4aY3bAC9aqEl9dNxpr1DQiVRqAlQiMx1unA9vUrkFP2dV+5pglByUFnycVWzS2od0t4zwjkcxlksz6mjmlFfdQXqzPMYEWxEetLdUmlVKNTQKMqoF4WERqJklDImiCZeWOfq0YIU/F6VAPHpSoKo+BY2ilmMLBTZ6IgRejUmW6gWygV/2viICEOT5SBcQRQsgduENHy6nE1kQ/IOPyKVt4KZXRSuxT1REr6dAiovK1EUIXygURFT6rUgYyIDgLiqof44DOeLlKxJHx6O0htL6oaS6qI4sbc0WXdeoREIVpSKaRFxUEaAMCPD9biSiuTTEVyisYeaEcVH0YJhI5teqxdYQ9ovGjZcS+u7jDlA0nXAK4NcaTUtleYtGN6g1eCq8Ik8F/v1aEgsxC+Y6dLRT+7ZHWyTBwmmWT1O1dqe+JD+RjjdmLb+lVoH+Ph7fYJWNbWhPWtdQg6XBvcAckqi1AGMhfYExFFZXsGRdVQyVs6DsECCeELG15mQwiloRyNjFfuY6eEQVb5qHeK8GSAJrcAXysUoxMA8cIThdBBu+9hoRmPUjWDKY5NVZMEpoFdbCV+36iSDXFtj59UGJV8mcoxIa6iCjSczgCeEghzMpoea8Nq27cp/nxV3gcZCKAkkpAhDrpNVIEULwLgdAKZNgNVjO6syn2UksUBZHlaVzLupKukUlVLRkZT8DJIqnK6Bb/p3lSpsCW+bTKlMZpiF6+yFwcw8UfQ+L42JIpf/HJIFVdOxZVStm+VDbLj/TAOoKOgJd3YvdykXiQrJMrABu9OwX4eEqFCpl2gVC/hNwgEOdFtXI6nNAotoF2D0BVQrrD9qxwJOAoiCOGszyOnDVQpAyMduypePOYn1bB2v1XJ7p8fT32Ucd8wJMFk/FpqBwhzgN9ooF0D7WnANXY86yz/zMJoyp92yicPkimWTnnsNm4UWFax2HykjE0MpoiGq6EYP7r+8avVfow08QFb1xdPRM1gk9NzPdw3FUqJJJyKt1c+Kx73htHGrpa3plBvwx8ZotXPYm2+zlZGKY1SYBunx2fWXdf2WCqGCkHBhijxrsRT8+LHAGzwk1Eh3GjqmR8qFAIHcb1SGK1UF4c1rtRwU1MvtLYNTTNOAE/F0zLsbQtRXytXhfCcAHVOCc1uHk1OwfZ1gsYED8jIEGujqq54v3oLmUItoaPKKoHydD2gsuqpp1X3etpm1x5U2tjl29tKdqqgIzTaYadXBlraaXpCJ9dJFTWaTk1JTD+uhm1kb4xAYCQCMwEZGWBcphNj3E5Ma1yfHCxOrWvFuqAO64I6aCPgyBDbjVkFT4VY1VYPrSUcqbFt4ypMrmvF2qiRelYFaAvsPuZDF61+FnVOCVOyrWh28nBFCE/6CI3Eel2HehQBCbhao1NohAbQMPCNRKef6fF1HzQcl6onSopMPP5oYQOCKDRKpmPE4VMX9oN3NB7F08DSTafjM/NxryHHHqTEPUqSAycJe6CROiCRIZLltZ181ATcdOmxEo2PWsQHe+VtlHvEpCoBlOnW1FcYW4kBX5SnEcZVRcmBnyin0BUHrtHBa+o1ElrY4C05cEbFkvbSj5euR3KwZkOsKJDKCOisSKq8Qtce+IWZKJjK2IqFMBOFSBkNuBrCsWOLcrQ9WSE1HKWRc3w0e3k0u3aa8YpcIxa7Y9CGBuh2VZ5y6diDLpMxgKsh3Wg70ZTnjArgSHsCpE6WMM7pwCS3De/WjcVr2UlYuq4ZhfaMrXqKwkmRDeF6NpiyLcckjIi6DYfC/s5EJ22EH72O0jZdV06ITCZA1g3gqBCeCjEu24Ep2VZMyrShQdnpxfFKtEXjwBMBXBnA1w46dQarOuqxdm22euMDx6bqiEOaKPgAys3O4y/ppwIpkwqo4n5E5Q9H9t+o+7/0o2oXNw4MRBJKxL3fbL8pA6cokhUxwxwQZKP3SFRRJEU0rTCqGLKPE/1jkIyhSdVPulqz69Q8Ufm8gajPVhTcJ9Ns49DNVH5fLhdPhXSp8Eo7AtI3cPPlqi6TWn0vmfIX/04nFZmVFV9JeK3Kj2UCW/1lVKrvl7Y9B22FPOxCBSL+OUVfvkamZBuoS9+BMMq+1lGfKK2ifRTl10QEdizUGQmdUZAlBXgZwAmjFUE1RGAbswst4dcBkAJhOgwU8Xgc/Wyj/n8yEJBOVBkmolDLBfwGoNRkEDaEtoozF8BxQ5Q6MoBQ0I6BkAIi/pvipn4uSP0dUtH0Zj+1cmm1jJCxicEU0XBV3aIE+xA6mq/dx21ogAQqVxeK9fVHoadQKrUtEV3ebQUmAxQCB8s7miCFQSFw0FHMIAwl/DAOYaKHSN03CBVMdGa6aw8oIezZ95zro9EtoM7x4ckAvpFoLeXQUsqiFCr4oUKoBTqCDKTUSVWUI3VSeZVxQtt0POrvFPeMCoxEaykLJ7q8yS2gyS1AwiAfZiCFhitC5GQJrciiGDrwoyqtdNiUvHxdLovDJNHl+x5f+i6Xd+2FlZ7eGAu1RAhAS/tcimH5T2rcRgUAJKJKLantWbMeaCMQQEIZjULgIpASJe3Ylf6ExrTG9chIu/JfR+glUwXta2R7a3nKflJucIooagcNTgmu0OgIM0mD+o4gk0zrlKlfSAmTHPR1ag86OopXsD8DbSRCCBSMCz/dULYKOC5VSfzB1Qg7VwZRJUv8FV8X3Tj5v66/snGVVNf3jDRJ41sRnXFXUX8Yt90kDYJlaKIz+iLpq5Ic3MWrbQUmOpCqPANul1GPDixSB3wAKgtM4wqpaH/jPkhxBZTwowOpOITvWqHadZyIg6swfq5IQjjZpSmz9AHlm2Sp8OT7kkmCKVtJIaLwKQqn3LjCSyTBmnbtAZSOQynXAMo2DZeODXOU0nBVNMaq0I7dQsOVITLR0bNuFlgmDNoasgjzjk32ou3EwZbrhvBcH158AiEaWxQ02kMP64I61KkSxrkdmNmwFo7QWJlpQFt7DtqXkErD9QK4bmibsStjVyZU8fxGQGVCeFkfYShR7MjYA9yMhuMGyGQCeNHCFJ4KMamuDVOyrdjSW48ZmdVoVHkoGEho+FAo6Iw9AQCdLPSxIDcLawfwlhgojk3VE7+/ZFyNGFUByTDVVyrVQDzdX6qiv5GyfdfsjQBh4mCk/B5WJVvBGTfEtpVC0UIDgX0fJj3vSlFQo+NV6uymQxcQqvw4SeAjo7EtDsc3EEZVNHI35W3EjcGT+wCVgVRPHyPiqqnU1DS3MwpsoqlzRonKoc2U/7WBVlT5o2xFqw2mooUL4jzewE4FD8tVQumgTguBuNeXDu1rIQIBraRdPTE0ECUDpzOMQkIJXwNBTiQhPIRJqjC1b1cmDD0BVYzCqdCUp2E7EmFWAgbItGuookBQAPx6gaCuXDUb5ARkWF6UIvSAMKshswJhViTVpGHWIKg3MJ4GMhoyEyJXV4Ln+mgJJcKsYxfCKJlkal66Miv5fxFVCUcnZJKQrEpqOTYtWrQI3/nOd/Doo49i+fLl2GKLLfD5z38eF110ETKZgZ3IZDBFNIrZ0ts+Sj83gznJw1IqCIr/+MdVCvZEninfKPW/vYZS0lSESkB5KluoAdu4wwYofmgbw26orDeutkIU9CSfgaLKnJzjI+f4GOt1YpzbkQRNq0oNCIytCor7LLmZEMYIuCpEo1tAc6YAR2i0BR7WF3MITWWlUCY6Cx+HJVIYNDhF1DtFhEagPcxACYN6VYKninBliLwuoNW1K9yFvYQ7fenamL2ny9OrC6Zfq/h2PYVbobbLp4fR/eyKWDb4se19U9VWPfwcjLE/q66rIAZaosPYaZASBoFWyTRB2wtMI/65Z1UAJ9uJjAxsGBVVR0mhbQAl7DY1yqsotgcePD+AK0LUuSW40VF3aCRCIeEbB206B1fY22QQwhXhgKZDbgyOS1UUh1JRNQHiFeeiFeMAlFdUiyo/4ykgybS5eLxKjVmAsBU4nonO7kcfyKNltuOqoXQwFS+lHa/glJ7KoR2RqnwqH+SFrp3SFk+PMHGFVlS1lUzBiZtsx0NsXH0gbMNwKJT7LkW5SdJAFyhXfMUHFEg9/zi3SpavLx9oytCGUKoQh1PRlL24Uio+USBFuXGx6PI6xFUD0b86bnIc9chCPOVO2kBJRZVSjgrhRica0kG5I0OMyeThNyi70l69vVxGU8FVVOEa95VypEZW+cgpH570kynJfmhXc5XCYIzbCdQD9W4RK71GdBQzyTalAErRGBEqAaUMshkfjdkixmU7UeeUsL6Uw7JME/JFN2m27rlBsv+uCuEIDU8G0ZhjL88KH2NkHgDQKr3ksjhUj8P5auHYVD1xzyIAFdPGkul7UV+p+POUDZxQ8b6EBDQkhBDJz8nElVOhgfLtKmo2BLK3MTLqJYTofZYrv+dl0a6iaR+vPF4YZYMSoaMTkFHlZrw6XrJip+jyPMLKEDte3ECVytuNQylh7FTAMJ5GB9iwLCi/Bul+dHHQJX2TrGKoitH0usAkbd3iqrGkgihuGp6cuChvO151s6LnXTL+x59tos81AhAS0UlQ+8TD1KINwkjb1xA6qho1UAUNVwpoZUOkMGsDI1vVagP8JKCPpjrHjeFt4KMh8wGcvJs0nrcVbRJ2RUaBIGd/L+zPWCSrJhrXQGc1wuh1FdG0Y+NEVamOgXRDuJkAdV4JWSdAMeujI+dC+8pOQ04HTQL2lwjlv5eyiCTsDHJ2al+11HJsevXVV6G1xrXXXottt90WL774Ik4//XR0dHTgiiuuGNC2GEwRjWYG6HsVhyHZk5Ej+uNd2fAcqT/28SeoLvdB6n6ivGJWfFnXKMZEn0S0EVBRYJV1AmRkiFBLlOKVbXqohLL9R+zxqTaAhJ1OllEhxmTzaHCLSXWOF50GC7REa5BDu+/BDxU8J0AOBjnHR9axpxAdoTHGzWOK14KxTgcUNDq1h7YwixWlJizuGIt8YPtD1UX9jpIm6xDoCLykAqjeKaJB2S8lNBqdAiZ67QCA1mI2qcbqr/Qy6j1d3tP36ZCqp9UK05JQydgGv3H403UFu0x0kBeY7tP6AKSapgtIY8OnnvZRwlRUX8VBWPz/ngwghUExtUZxvE86ChZDLZF3XPhG2TAKAjAOQpRXtiog+nnJIsardnsQWOVgiuNSlRmRHICIuEdImDrzi+g6XRlOAYDRsNORRbQynEolNVJAZ2ySYwQgMvZAKcwKBHUCKh8fDKWbGHfZrdQqU9oVUS8YRP2iTNJfKQmeYMc2EZ2hr2hknA6nomkqAOK+67aJbV5AFaNgTiD1fFOvURxOpSoG4l4h6abu9uAmPig0cIq6XCUVlBvTGilgTNRDJwRMgGSqoV0tUaBbgi1MuTdTl2EjXqE07qsXV6XmQxc6dWNPBchLF3CDZEyLT0R4ToB6p4QGt4ic8iGjUCgOhupkCWOdDvhGoahdaCPQ6BbgSLsARGvWVrQGWsIYgYwjUVD2hIXnBhibzaMpU0BO+bZHVGgbl7tuiIwToD5jK7WU0AiNhB8qtAce8mEmqeLMCj957q7QGCPKK4f6RsI3ClXHsalq4ul6gIDR5cviACWpmEpPYevyszDKhhZG2/BXGFMRLMvABlN2Oq5dACLwoqlkUZ8nI015ldFU6BxvA4j6H0kAUYVRudrRhsfpaXiIPmPJIApNfCQBgo76XgkTn5C0IYaTt+NGkJMoOgJhFE4LASCuThJRZZdBRQNv2yzehnBxSC99QOVDCG2n1trKVhvKSZmckygHUF3/P/4+HoN01BdQ2OcqpYAJbLVb8tnX2OAuTFJ3eyJNCgEZ6mhBCANV0lC+sNuMX7f0aogqfp1SqzAGGiIMAW0gCyVk1gBhXQZhTkErAVWyC0TEKyDG/bYq/r5kNERdAKkMwqICOlQUIsZ9GDWUGyLn+WjOFpBzfJRChQ4Vtb9wgSDVpyxujB8HUfGKsk4hWp1ViqoGU7Ucm4444ggcccQRyfdbb701XnvtNfz85z9nMEU0YgzFh5swfXpkQ7ehAYkOFGwgZefdV/y9EF16TaUuT0KpVEhVcT2QTN+LLwujqidHatS7ReQDF53CIAwltJZJY1whDDwnxJhcHhIGrSUvWS3PjUKpcV5HsvJdSTvIhy4CrRAYiXbfS4KlxkwxWslNQwqdTP0qagedYQYTnDZMcVvQKO30izVhA55zZ+BfLVsiH7goaSdZBS6ZJieAnPLR5BTQoIpwRZgcqChoeCpAVvnIKzcJdXqaYtebHgOeXkKWrj2l4gO5DT1efHm8eiC0hCOiioaoCiEjQ3QGLjp8DwGkbUnRpVLK18r2qZI6Cajs/nY5Wk3tRhD1lmpwSpicacU4pwOdOoM3OyehELrR9EmZbEPDVmTZL4WWMIeWMJdsr06W0KgKFdUKY1Qn6uFXvWKq1uPSYJalDzup6WoiNY0vnh4igIqz5nYlteh+cfVU/OEd0TgmU+OYBEzGIIzO+BsZNdYOBZwOCVUQSRgWf4BPpoDElULpXlEZIIz7m0QHRsnUvfhoKvWrkM4mjDSAQnkFOwmIqJeSVCF0qODnFYJOBZWXFasqaWWg0n23UgGaiAOw+PukWbCBk7cHIk5Bw8lrqGIIEURnAABACtskHhLC6CgAq5yzYyQgVXQclzR4jnrhOAbQgNECRksYo7uNR3H4HBgJHbq22jIKwkMj0FHMoFRyEIblpjdSajhuiKa6AibVt2O815GclIi5wlZMKpgoyI6m+wpjQ6/QRSlUCIxCKVRJn0FXahRDB0vbm9FRctFZ8FAqOhACyNUVkXUD1LklW/Upw2S8CrSEH41ZEnaqXsG4aDUaymhkRQBXBLZaCkAJquoLM9R6bBrJ4vcRYP/W2qpKk2rqbcOabi9/nI3H7x8B+z4zxq4UGVXYlKfxmaRfFYAoGCq/r+NeR0IZCBWNM3E4paOqoNT5xXTPpmTKcLRfIqnEQdKQHLC9quLG4nacKzdPdzpslaUMbX8rVQQAARVtT0bhN2DHRwBJ03cVheLx1GFbZWZsKBVoCK2iqsx4OnG0aIUpnxjQUZVUXIFWruaMLpem8rlFfQfjE5zS2LHL6CjAi8awMA6ahIRJNWMXIeB2aGSV/dAbZpFMsUym60X7UZ66WflLIPwQshjY5+bZcDwOIYGoR58nKoM2CTiuDc9RklCdEkLbaX5wNNycj4a6IsbW5TE+24GMDLCqs96meAK2KXqUosSLdiBadTXTauB0mnKAGP8eVdMwG5taWlowbty4Ad9vsw+mRGcRt7+xOxZvNfAnTzRc+VohuzgDhNXtlie0huh6sNvDbWgADJJPLAKwfVjSfw1F6oZxpUH0b7rKKqmcSr4v/0GxwVT5YDBeDa8Y+BifDTEu24nQCKzvyCEIHNs/xPHhqBD1mRKaM3m74pLjQ0OgGDjJdLPOIIMgqrLRECiFKjmD7Wv7r4qm+gHlsCTuGRVEB1lx6NOYyWOa04rZbitmuqsx3VuDZaUxKGoH7aGHwKik0seTfsVZ+uTsuVEIIeFrhUBLSNiqr3ip8K6r5w0kOEkHUOmeS/HUt4Ey0c/HVSEyMkxCqcnZNkzMtGF9UId2P55ml6rgSH8fhXSIpkvGPbiQCpbi28X7GK9QNSHTgcluCyY6bVjij0NgJEqhk1RO6NSRe6glOoMMWgMPrYGXHBACQINbxNRsK7bKrMN41Y6JTiuaRBGusE3zq6nW49JglqUPKyL1Fa1GlFQYxdKfbbvk5hW3QXxmOT74M+WDiCgIMoC9LKNhhIHvKGhHQpZs9UCYQxSQpQ70oi8Th1DpXivx09BdzuSjMr+PD6gqzvBH+21CO+VGOEDG8xGoEL7M2CAtXgI8mdqYmnbTZUhJ9tVES9kXbLN22+TcTlFRnQFUMQS0tm9yCRhlUzep40Baony0i2hKkG1ALFTUb0eJ8opXgYhuEy1+EVUuGGP/TVegxmF1PH03q3xMrgvRlCmiteShLZ9Fqegg8BXCzgz8UCDvZtE2xkN+jIupdS02jJIhfKMgjbY9nqLef1npQ8H2oJKwfa3ywkVgQjgiGiMCF8VQobMzh0LRRVBS0CUFSAOvvoSGbBGNmSIa3CKyKoAUdrxscItodvPYwmvBONWBellCCIE1YQNWBo0AgKz0MUZ2oj6aa9WpPRSiEyfVUuuxaUSL3k8iCjYEUDGNL35PprL1CulKHztuicr8wiCqWrQRlgxMsnJbPCVYluy4Fuai0MGN7hj1mxJB5YnEJJBKPXQS2mgbVqgCkv56QHnMreiPF00rliXbF8rp1PZ9H1XdyDhsiqrKZGiDpTATT5WLq7wAVdL2Nr6GLIZQHSWIfAkm48KobNKTy1Zcxf2bUF7104lPBJjUa4mKMR4wUVWatD25ojl+Kqp6Kk+djk80iGSaon3CsjztzBi47TbIdzsVik3S7k80hRvRz0qY6DJPQYQuIAREUH6v2edf7kEWV5Ip35QXyXDK10EDQdGBKUmoNgXpI1qNT8OpC1CfK6EpW0RzJo9mNw9tbOAVr0QKE1e/2T6KKi/gdgBum4HXqiEDA+0K+HXx80FVDWRsam1trbjc8zx43uCVc7311lu46qqr8MMf/nDA993sgym9cDFmfX0qVmQm1npXiAaPMZjV8gbCQqHqj9N36SfP/g2EACDaHARxg8rkj6SoPOCLL0sxgP2wk175Kt5odF23/lNAUnETBBJ534U2QL6YQaEzA1OSCJVBGChIqVEouWgrZuAqHfWJsk3Q44BGSXt5vD9a235VWtsDIaMFhDRoL3jIuuVlvW04Zvcj44RYlBmHVzOTMSU7DVO8FtTJEtrCLN4tjEWLn0UhdJEPykFIHGQlq9mlthtXEXX6LjqLGVv9E599S72GXafb9dbQPL68/G/PP8uuv/rx/Xub1pdeDEgpnfQEEwDW53J4L9OM9pKHlnw2CdU29PZKN7oXKE/Z6el5+aHt/bK+kMPqUj3qVQlrivVY3tGIou8kP9/4wDXUEmEosc7JYXWm3q4IGMqkf5fnhHgvOwZveRPQ7BZsA3xZwopiE5a/Mx5V/YxV43FpMMvShxWD6Gxv/IuKqMKofKCS3C4mKgOjZFOpcajHx0mPfRqI5yMbxxYPJQcu0WOLLiGYiR87XsUtvlyix8c06f1O73N6h6Prta9sLqeiccQgqa6yg4GtBdPGALL7akoV2zbxVMO4gW40TTFQcIpO1Ow8tQtxH6nU/8dTgLo2PTdOdFbeRWWT+OjgSPu2D5wOJXxHQyk36jcVQkmTjBdp8RhQKLkIAltRa0KRNME3kCh0ZrBCNSDvu1iZaURWBcioIJmGnJyE0BKBUUk/vLjSM9B2HAlClawI65dsAGZ8mRzYhYGyi3REK5wm/bGiQK3VzaLFz2Gp2wxPBgiM7XEVn/xwoinfcWXXymIjFi8f12fRwCbhZ6bqEHYltHg1zOT8SbSYQugKqLjKqSIFqlQRTgHoNpbJctWMiD6j+fWie5PyOCAzlZtLqtZTAXpyffrzXeoEZdz0OrlPPA45qaAmyny0EXZVOaGgoz5WYZQXGMdOLZSuDarjFTyTHnvRc5KhiAJ1Axk4UI0uVDGH0JMI6hX8OoHAEwhzdttGoRw4mXKA1rWHRFIdGweIujwNvCIslHbsCpEKpFxje3IFotuUzDhQAoAgK6OFHkQ0LdLeJvQESg2AkQp+nYQquZVVb8K+PnYRiWhMVeUwTLsimg5ufwZC26ncxohk+p2Iw1BfIsg7aDM55IsuWrwsVniN0EZgzfoGiKK0AWWc20WBpYjCxtAD/HqZ/G0IslEPsyyqawBj07Rp0youvvjii3HJJZd0u/kll1yCSy+9dIObfPrpp7Hnnnsm3y9duhRHHHEEPvnJT+K0007r376nbPbBlAkCBO8sqfVuEG2ehlnp50jh5AVMvsqnR3oQwsN60ZB8r7r86AzsAjOljX0AU/6nIIANxaarAUAAL6DyA1+3YqYuHxz78/jDWnSA3bUFbydQebBeJZ0AlokplfuzAQF6/jnmAawHsDg+OZj6MO9W++cwDMeljS1LH3biLrVAVJkziK9jTydrNQA/LqWyfT3Qw2xIYSrf/F1X/NtoXX+VdBTqFGX3hQgcE02vBnS2r8Goh8fZ0Pe9XtlLuNetGiR1n+g1NT5goOy3vdxvg7rshhG2MkS3u2jrcNGGxgFsrJ+PE38fCgSlDNpaM2gbnEexql2sNAzHppEizPV28N7lj9Cm6BI+dTv5F5GBgOkSSFd0VYg30csuJUGN2sDzSt1Xeyj/Wo3vmnj1IK6q7u26Xva7W3CX/mwWCNi1AzbudRYG0VQ/u0iFfcDk2g3uY+WGerhLDig1i4H9DmxgXJW+gNva/XWSRSBTFECLi6hcDp0i+vwG+5la9fT6xs3VPQBNAnlgg79fVTGAsWnJkiVoampKLu6tWurss8/GZz7zmQ1ucubMmcn/L126FAcffDD23XdfXHfddf3a7a42+2CKiDaeiJo/9nUbGrih+DvUo75+XIP14+zPdrqebRyMbW4OenseQ/X8BvNxBvozHAQDGZeqXZIObFpZOqFfv4+DFkT1RzX2Z6gH/GqOMf04vhmUx0j/u5ngZ6Yq29D7aLDfY31srz9DQL+Hif7su+jl/we6va4ZUD8eGhjAcxmI3vZzoD/LKgQ8PT3f8jTA8gMN6CEH8jMcZAMZm5qamiqCqd5MmDABEyZM6Nfjv/feezj44IMxb9483HDDDZByYAsUxTbuXkQ0MoS6f19ERENlAOPStGnT0NzcnHx973vf63Wzl1xyiV1GfANfzzzzTMV9NrUsnYhGEH5mIqLhqIZj09KlS3HQQQdh2rRpuOKKK7Bq1SosX74cy5cvH/C2WDFFNJoZbRuz9nUbIqKhMoBxqb8l6UBtytKJaAThZyYiGo5qODY99NBDePPNN/Hmm29iq622qnzIAVaQMpgiGs3YyJOIhpsBjEv9LUkHalOWTkQjCD8zEdFwVMOx6aSTTsJJJ500KNtiMEU0moUhunV47Er3cT0R0WCq8bgUl6VPnz49KUuPTZkyZQP3JKIRjZ+ZiGg4GiFjE4MpotEs1H2XdvZVGkpENJhqPC4NZlk6EY0gw+QzU7FYxN57740XXngBzz33HHbbbbeqPyYRDWPDZGzaVKxNJxrN4tLPvr6IiIZKjcelk046CcaYHr+IaBQbJp+ZLrjgAmyxxRZVfxwi2kwMk7FpUzGYIhrNtLEJ+ga/hv9ARkQjCMclIhqOhsHY9Mc//hEPPfQQrrjiiqo+DhFtRobB2DQYOJWPaDQbIXOSiWgE4bhERMPRAMam1tbWios9z9vgqqH9sWLFCpx++um4++67UVdXt0nbIqIRZIR8bmLFFNFoNkJKP4loBOG4RETD0QDGpmnTpqG5uTn5+t73vreJD21w0kkn4cwzz8See+45GM+GiEaKEfK5iRVTRKOYCUOYPhJ2sxkk7EQ0cnBcIqLhaCBj05IlS9DU1JRc3lu11CWXXIJLL710g9t8+umn8eSTT6K1tRUXXnjhAPeaiEa6kfK5icEU0WhmTN9zjjeDhJ2IRhCOS0Q0HA1gbGpqaqoIpnpz9tln4zOf+cwGbzNz5kxcdtlleOqpp7oFXHvuuSeOP/543HTTTX0+FhGNUCPkcxODKaLRLAwB0UeC3tecZSKiwcRxiYiGoyqMTRMmTMCECRP6vN1PfvITXHbZZcn3S5cuxeGHH47f/OY32HvvvQf0mEQ0woyQz00MpohGMROGMH0MZH2VhhIRDSaOS0Q0HNVybJo+fXrF9w0NDQCAbbbZBltttVVVHpOINg8j5XMTm58TjWZVapZ39dVXY9asWchms5g3bx7+8pe/bPD2TzzxBObNm4dsNoutt94a11xzzcY+IyLa3I2QJp5ENMJwbCKi4WiEjE0MpohGs1Db8s8NfukBbfI3v/kNzj33XFx00UV47rnnsP/+++PII4/E4sWLe7z9woULcdRRR2H//ffHc889h29+85v46le/ijvvvHMwniERbW6qMC4REW2yYTQ2zZw5E8YY7LbbbkPyeEQ0jA2jsWlTcCof0ShmSz83nE8PtPTzRz/6EU499VScdtppAIArr7wSDz74IH7+85/3uFzyNddcg+nTp+PKK68EAMyZMwfPPPMMrrjiChx33HEDemwi2vxVY1wiItpUHJuIaDgaKWNTTYIpE5WSBfCB4V9VRrRZC+ADKL/v0nxdgunjTRjfv7W1teJyz/O6rQ5TKpXw7LPP4v/9v/9Xcflhhx2GJ598ssftL1iwAIcddljFZYcffjjmz58P3/fhuu4G92+wxK+PLhSG5PGIRrP4fbap49JowLGJaOhwbOq/ZGwqcmwiqrb4fTaSx6aaBFPZbBYA8FfcX4uHJxqV4vcdAGQyGUyZMgV/XX5vv+7b0NCAadOmVVx28cUX45JLLqm4bPXq1QjDEJMnT664fPLkyVi+fHmP216+fHmPtw+CAKtXr8bUqVP7tY+bKn593vned4bk8Yho08alKVOmIJPJVGvXho34NVr6zctrvCdEowfHpr7Fr9HCH327xntCNHqM5LGpJsHUXnvthaeeegqFQgFCiFrsAtGoYYxBNpvFXnvtlVyWzWaxcOFClEqlfm+j63u1a7VUWtfb9nT/vm7f0+XVxHGJaOgMxriUyWQqPqCNVBybiIYOx6b+49hENHRGw9hUk2BKSom99967Fg9NRJFsNjvog9OECROglOpWHbVy5cpuVVGxKVOm9Hh7x3Ewfvz4Qd2/DeG4RFR71RiXNnccm4hqj2NTdxybiGpvJI1NXJWPiAZNJpPBvHnz8PDDD1dc/vDDD+P9739/j/fZd999u93+oYcewp577jlk/aWIiIiIiIioNhhMEdGgOu+88/CLX/wC119/PV555RV87Wtfw+LFi3HmmWcCAC688EKccMIJye3PPPNMvPPOOzjvvPPwyiuv4Prrr8f8+fNx/vnn1+opEBERERER0RCpyVQ+Ihq5Pv3pT2PNmjX49re/jWXLlmGnnXbC/fffjxkzZgAAli1bhsWLFye3nzVrFu6//3587Wtfw89+9jNsscUW+MlPfoLjjjuuVk+BiIiIiIiIhogwPa05SEREREREREREVGWcykdERERERERERDXBYIqIiIiIiIiIiGqCwRQREREREREREdUEgykiIiIiIiIiIqoJBlNERERERERERFQTDKaIiIiIiIiIiKgmGEwREREREREREVFNMJgiIiIiIiIiIqKaYDBFREREREREREQ1wWCKiIiIiIiIiIhqgsEUERERERERERHVBIMpIiIiIiIiIiKqCQZTRERERERERERUEwymiIiIiIiIiIioJhhMERERERERERFRTTCYIiIiIiIiIiKimmAwRURERERERERENcFgioiIiIiIiIiIaoLBFBERERERERER1QSDKSIiIiIiIiIiqgkGU0REREREREREVBMMpoiIiIiIiIiIqCYYTBERERERERERUU0wmCIiIiIiIiIioppgMEVERERERERERDXBYIqIiIiIiIiIiGqCwRQREREREREREdUEgykiIiIiIiIiIqoJBlNERERERERERFQTDKaIiIiIiIiIiKgmGEwREREREREREVFNMJgiIiIiIiIiIqKaYDBFREREREREREQ1wWCKiIiIiIiIiIhqgsEUERERERERERHVBIMpIiIiIiIiIiKqCQZTRERERERERERUEwymiIiIiIiIiIioJhhMERERERERERFRTTCYIiIiIiIiIiKimmAwRURERERERERENcFgioiIiIiIiIiIaoLBFBERERERERER1QSDKSIiIiIiIiIiqgkGU0REREREREREVBMMpoiIiIiIiIiIqCYYTBERERERERERUU0wmCIiIiIiIiIioppgMEVERERERERERDXBYIqIiIiIiIiIiGqCwRQREREREREREdUEgykiIiIiIiIiIqoJBlNERERERERERFQTDKaIiIiIiIiIiKgmGEwREREREREREVFNMJgiIiIiIiIiIqKaYDBFREREREREREQ1wWCKiIiIiIiIiIhqgsEUERERERERERHVBIMpIiIiIiIiIiKqCQZTRERERERERERUEwymiIiIiIiIiIioJhhMERERERERERFRTTCYIiIiIiIiIiKimmAwRURERERERERENcFgioiIiIiIiIiIaoLBFBERERERERER1QSDKSIiIiIiIiIiqgkGU0REREREREREVBMMpoiIiIiIiIiIqCYYTBERERERERERUU0wmCIiIiIiIiIioppgMEVERERERERERDXBYIqIiIiIiIiIiGqCwRQREREREREREdUEgykiIiIiIiIiIqoJBlNERERERERERFQTDKaIiIiIiIiIiKgmGEwREREREREREVFNMJgiIiIiIiIiIqKaYDBFREREREREREQ1wWCKiIiIiIiIiIhqgsEUERERERERERHVBIMpIiIiIiIiIiKqCQZTRERERERERERUEwymiIiIiIiIiIioJhhMERERERERERFRTTCYIiIiIiIiIiKimmAwRURERERERERENcFgioiIiIiIiIiIaoLBFBERERERERER1QSDKSIiIiIiIiIiqgkGU0REREREREREVBMMpoiIiIiIiIiIqCYYTBERERERERERUU0wmCIiIiIiIiIioppgMDUM3XjjjRBCJF/ZbBZTpkzBwQcfjO9973tYuXJlrXcxIYTAJZdcknz/8ssv45JLLsGiRYsG9XF+97vf4bOf/Sy23XZb5HI5zJw5E8cffzzeeOONQX0cos3Rv/71L5x66qnYZpttkMvlkMvlsN122+GMM87AM888k9zukksugRACq1ev7nVbjz/+eMX4k8lkMHHiROy333646KKL8M4772xwX4499lgIIXD22Wf3eptXXnkFX/jCF7D11lsjm81iwoQJ2GOPPXD22WejtbV14C/AMLBo0SIIIXDFFVds8rYuv/xy3H333T1e5/s+Lr30UsycOROe52GHHXbAVVddtcmPSURERERUKwymhrEbbrgBCxYswMMPP4yf/exn2G233fD9738fc+bMwSOPPFLr3QMALFiwAKeddlry/csvv4xLL7100IOp73//++js7MRFF12EBx54AJdddhmee+457LHHHnjppZcG9bGINifXXnst5s2bh7///e8455xzcO+99+K+++7Dueeei5deegl77bUX3nrrrQFv9/LLL8eCBQvw2GOPYf78+TjooINw/fXXY86cOfjlL3/Z431WrlyJe++9FwDwy1/+EoVCodttnnvuOcybNw8vv/wyvvWtb+GBBx7ANddcg6OPPhoPPvgg1q5dO+B9HWk2FEydddZZ+N73vocvf/nLePDBB/Hxj38c55xzDi6//PKh3UkiIiIiokHi1HoHqHc77bQT9txzz+T74447Dl/72tfwgQ98AMceeyzeeOMNTJ48uYZ7COyzzz5D8jj33HMPJk2aVHHZIYccgpkzZ+LHP/4xfvGLXwzJfhANJ3/7299w1lln4eijj8Ydd9yBTCaTXHfIIYfgy1/+Mm6//XbkcrkBb3u77bareH9/5CMfwde//nV88IMfxEknnYRddtkFO++8c8V9br75Zvi+j6OPPhr33Xcffve73+Fzn/tcxW2uvPJKSCnx+OOPo7GxMbn8E5/4BL7zne/AGDPgfR0tXnrpJcyfPx/f/e538Y1vfAMAcNBBB2HNmjW47LLLcOaZZ2LcuHE13ksiIiIiooFhxdRmZvr06fjhD3+ItrY2XHvttRXXPfPMM/jIRz6CcePGIZvNYvfdd8dvf/vbitvE0wQfe+wxfOlLX8KECRMwfvx4HHvssVi6dGnFbR999FEcdNBBGD9+PHK5HKZPn47jjjsOnZ2dyW3SU/luvPFGfPKTnwQAHHzwwclUoBtvvBHf+c534DgOlixZ0u05nXLKKRg/fnyP1RWxrqEUAGyxxRbYaqutetwm0Whw+eWXQymFa6+9tiKUSvvkJz+JLbbYYlAeb9y4cbj22msRBAF+/OMfd7v++uuvx+TJk3HTTTchl8vh+uuv73abNWvWoKmpCQ0NDT0+hhCi3/sTj2ePPvooTj/9dIwfPx5NTU044YQT0NHRgeXLl+NTn/oUxowZg6lTp+L888+H7/sV27j00kux9957Y9y4cWhqasIee+yB+fPndwvI+jMeduX7Pk488UQ0NDQklWR9EUKgo6MDN910UzKGHnTQQQCAu+++G8YYnHzyyRX3Ofnkk5HP5/HAAw/06zGIiIiIiIYTBlOboaOOOgpKKfz5z39OLnvsscew3377Yf369bjmmmvw+9//Hrvtths+/elP48Ybb+y2jdNOOw2u6+JXv/oV/ud//gePP/44Pv/5zyfXL1q0CEcffTQymQyuv/56PPDAA/jv//5v1NfXo1Qq9bhfRx99dDKd5Gc/+xkWLFiABQsW4Oijj8YZZ5wBx3G6hWlr167FbbfdhlNPPRXZbHZAr8Pbb7+Nd955B3Pnzh3Q/YhGgjAM8dhjj2HPPffE1KlTh+xx99prL0ydOrVi/AGAJ598Eq+88gpOOOEEjB8/HscddxweffRRLFy4sOJ2++67L5YtW4bjjz8eTzzxBPL5/Cbv02mnnYbm5mbcdttt+M///E/86le/wumnn46jjz4au+66K+644w6ceOKJ+OEPf9itH9OiRYtwxhln4Le//S1+97vf4dhjj8VXvvIVfOc736m4zUDHw/Xr1+Pwww/HQw89hCeeeALHHHNMv57LggULkMvlcNRRRyVj6NVXXw0AePHFFzFx4kRMmTKl4j677LJLcj0RERER0WbH0LBzww03GADm6aef7vU2kydPNnPmzEm+32GHHczuu+9ufN+vuN0xxxxjpk6dasIwrNj2WWedVXG7//mf/zEAzLJly4wxxtxxxx0GgHn++ec3uK8AzMUXX5x8f/vttxsA5rHHHut22xNPPNFMmjTJFIvF5LLvf//7RkppFi5cuMHH6cr3fXPQQQeZpqYms3jx4gHdl2gkWL58uQFgPvOZz3S7LggC4/t+8qW1NsYYc/HFFxsAZtWqVb1u97HHHjMAzO23397rbfbee2+Ty+UqLjvllFMMAPPKK69UbOe//uu/Km5XKBTMxz72MQPAADBKKbP77rubiy66yKxcubLfz9+Y8nj2la98peLyePs/+tGPKi7fbbfdzB577NHr9sIwNL7vm29/+9tm/PjxyevWn/Fw4cKFBoD5wQ9+YBYuXGh23HFHs+OOO5pFixYN6DkZY0x9fb058cQTu13+oQ99yMyePbvH+2QyGfPFL35xwI9FRERERFRrrJjaTJnUNJM333wTr776Ko4//ngAQBAEyddRRx2FZcuW4bXXXqu4/0c+8pGK7+Mz7vGKW7vtthsymQy++MUv4qabbsLbb7+9yft8zjnnYOXKlbj99tsBAFpr/PznP8fRRx+NmTNn9ns7xhiceuqp+Mtf/oKbb74Z06ZN2+R9IxpJ5s2bB9d1k68f/vCHg7p902WaW3t7O37729/i/e9/P3bYYQcAwIEHHohtttkGN954I7TWyW09z8Ndd92Fl19+GT/+8Y/xmc98BqtWrcJ3v/tdzJkzp9tY1R9dq5HmzJkDwFZxdr2866qCjz76KD74wQ+iubkZSim4rotvfetbWLNmTbIC6kDGw3/+85/YZ599MHnyZPztb3/DjBkzBvx8NmRDUx0HMg2SiIiIiGi4YDC1Gero6MCaNWuSvjErVqwAAJx//vkVB6Ou6+Kss84CgG7Lw48fP77ie8/zACCZVrPNNtvgkUcewaRJk/DlL38Z22yzDbbZZhv87//+70bv9+677479998fP/vZzwAA9957LxYtWrTBZeW7MsbgtNNOw6233oobb7wRH/3oRzd6f4g2ZxMmTEAul+sWtADAr371Kzz99NP4wx/+UJXHXrx4cUXfqt/85jdob2/Hpz71Kaxfvx7r169HS0sLPvWpT2HJkiV4+OGHu21jzpw5OPfcc3Hrrbdi8eLF+NGPfoQ1a9bgv/7rvwa8P10bfsf9tnq6PN3L7h//+AcOO+wwAMD//d//4W9/+xuefvppXHTRRQA2bjx8+OGHsWLFCpx22mkYM2bMgJ/LhowfPx5r1qzpdnlHRwdKpRIbnxMRERHRZomr8m2G7rvvPoRhmDTEnTBhAgDgwgsvxLHHHtvjfWbPnj3gx9l///2x//77IwxDPPPMM7jqqqtw7rnnYvLkyfjMZz6zUfv+1a9+FZ/85Cfxz3/+Ez/96U+x/fbb40Mf+lC/7huHUjfccAPmz59f0ROLaLRRSuGQQw7BQw89hGXLllX0mdpxxx0B2N5Ig+0f//gHli9fjlNPPTW5bP78+QCAc889F+eee263+8yfPx+HH354r9sUQuBrX/savv3tbw9pn6TbbrsNruvi3nvvrehxd/fdd3e7bX/Hw2984xt46623cMIJJyAIApxwwgmDtr8777wzbrvtNixfvryiz9S///1vAHYlVyIiIiKizQ0rpjYzixcvxvnnn4/m5macccYZAGzotN122+GFF17Annvu2eNXeln2gVJKYe+9904qnf75z3/2etuulVddffzjH8f06dPx9a9/HY888gjOOuusfk0/Mcbg9NNPxw033IBrr72226pURKPRhRdeiDAMceaZZ3Zbba4a1q5dizPPPBOu6+JrX/saAOCVV17BggULcNxxx+Gxxx7r9nXooYfi97//fVLps2zZsh63vXTpUrS2tg7aCoL9IYSA4zhQSiWX5fN53HLLLb3ep6/xUEqJa6+9Fueccw5OOukk/PznPx/wfnme1+MY+tGPfhRCCNx0000Vl994443I5XI44ogjBvxYRERERES1xoqpYezFF19MekWtXLkSf/nLX3DDDTdAKYW77roLEydOTG577bXX4sgjj8Thhx+Ok046CVtuuSXWrl2LV155Bf/85z+Tvk79dc011+DRRx/F0UcfjenTp6NQKCRLv3/wgx/s9X7xGfvrrrsOjY2NyGazmDVrVjJ1UCmFL3/5y/iP//gP1NfX46STTurX/nz1q1/F/Pnzccopp2DnnXfGU089lVzneR523333AT0/opFgv/32w89+9jN85StfwR577IEvfvGLmDt3LqSUWLZsGe68804AQFNTU8X97rnnnh7D6k984hPJ/7/xxht46qmnoLXGmjVr8Pe//x3z589Ha2srbr755mQ1zLha6oILLsD73ve+bttsa2vDn/70J9x6660455xz8MUvfhHr16/Hcccdh5122glKKbz66qv48Y9/DCkl/uM//mPQXp++HH300fjRj36Ez33uc/jiF7+INWvW4IorrkgC9tjGjIc//OEP0djYiLPOOgvt7e34xje+0e/92nnnnfH444/jnnvuwdSpU9HY2IjZs2dj7ty5OPXUU3HxxRdDKYW99toLDz30EK677jpcdtllnMpHRERERJunWnZep57FK03FX5lMxkyaNMkceOCB5vLLL+915aoXXnjBfOpTnzKTJk0yruuaKVOmmEMOOcRcc8013bbddcW/eAWteDW9BQsWmI9//ONmxowZxvM8M378eHPggQeaP/zhDxX3Q5dV+Ywx5sorrzSzZs0ySikDwNxwww0V1y9atMgAMGeeeWa/X5MZM2ZUvCbprxkzZvR7O0Qj0fPPP29OPvlkM2vWLON5nslms2bbbbc1J5xwgvnTn/6U3C5ela+3L2PKY0H85TiOGT9+vNl3333NN7/5zYpV5kqlkpk0aZLZbbfdet23IAjMVlttZXbeeWdjjDEPPvigOeWUU8yOO+5ompubjeM4ZurUqebYY481CxYsGNDz7m086231wRNPPNHU19dXXHb99deb2bNnG8/zzNZbb22+973vmfnz5xsAyWqh/RkP06vypf3gBz8wAMy3vvWtfj+v559/3uy3336mrq7OADAHHnhgcl2pVDIXX3yxmT59uslkMmb77bc3P/nJT/q9bSIiIiKi4UYY02V5JaIqu+qqq/DVr34VL774YlJ1QURERERERESjD4MpGjLPPfccFi5ciDPOOAP77bdfjw2GiYiIiIiIiGj0YDBFQ2bmzJlYvnw59t9/f9xyyy0Vq0oREcWMMQjDcIO3UUr1a+GE4SQIgg1eL6WElFyThIiIiIhGF34CpiGzaNEiFAoFPPzwwwyliKhXN910E1zX3eDXE088UevdHLC+ntMpp5xS610kIiIiIhpyrJgiIqJhZc2aNVi4cOEGbzN79uweVxYczp555pkNXj9hwgTMnDlzaHaGiIiIiGiYYDBFREREREREREQ1wal8RERERERERERUE04tHlRrjaeffhqFQmGza15LtLkxxiCbzWKvvfaqaKxcKBRQKpX6tY1MJoNsNlutXRwWOC4RDR2OS0REREQUq0kw9fTTT2OfffapxUMTjVpPPfUU9t57bwD24G/WjAYsX7nhlc9iU6ZMwcKFC0f0QSDHJaKhx3GJiIiIiGoSTBUKBQDAB3AUHLi12AWiUSOAj7/i/uR9BwClUgnLV4ZY+OwMNDVueEZva5vGrHnvoFQqjegDwPj12eqS/4Qcwc+TaDjQhQLeveQyjktEREREVJtgKp4m48CFIxhMEVVVtLxBT9PTcg0GuYYNr3/gj5L1EeLXR2azDKaIhgjHJSIiIiKqSTBFRMODb8I+D/B8o4dob4iIOC4RERERjTYMpohGMQ0DjQ0fAPZ1PRHRYOK4RERERDS6MJgiGsUCaPj9uA0R0VDhuEREREQ0ujCYIhrFfGP6MWWGlQlENHQ4LhERERGNLhte9oaIRrQQpl9fA/HnP/8ZH/7wh7HFFltACIG77757g7d//PHHIYTo9vXqq69uwjMjos1VNcYlIiIiIhq+WDFFNIr5xn71dZuB6OjowK677oqTTz4Zxx13XL/v99prr6GpqSn5fuLEiQN7YCIaEaoxLhERERHR8MVgimgUC4yAb7ov1971NgNx5JFH4sgjjxzwvkyaNAljxowZ8P2IaGSpxrhERERERMMXp/IRjWIhRL++hsLuu++OqVOn4tBDD8Vjjz02JI9JRMPPcBqXiIiIiKj6WDFFNIr5RsI3G86n4ykzra2tFZd7ngfP8zZ5H6ZOnYrrrrsO8+bNQ7FYxC233IJDDz0Ujz/+OA444IBN3j4RbV4GMi4RERER0eaPwRTRKNafyoP4+mnTplVcfvHFF+OSSy7Z5H2YPXs2Zs+enXy/7777YsmSJbjiiisYTBGNQgMZl4iIiIho88dgimgUC4zqszIh7uWyZMmSiubkg1Et1Zt99tkHt956a9W2T0TD10DGJSIiIiLa/DGYIhrFSkbB7eMAsBQdADY1NVUEU9X03HPPYerUqUPyWEQ0vAxkXCIiIiKizR+DKaJRTENA97EGgsbAmrm0t7fjzTffTL5fuHAhnn/+eYwbNw7Tp0/HhRdeiPfeew8333wzAODKK6/EzJkzMXfuXJRKJdx666248847ceeddw78CRHRZq8a4xIRERERDV8MpohGMVuZoPq4zcC2+cwzz+Dggw9Ovj/vvPMAACeeeCJuvPFGLFu2DIsXLy5vv1TC+eefj/feew+5XA5z587Ffffdh6OOOmpgD0xEI0I1xiUiIiIiGr4YTBGNYgEUfGz4ADAY4DYPOuggGNP7UeONN95Y8f0FF1yACy64YICPQkQjVTXGJSIiIiIavhhMEY1ioZEI++jlEm4gZKJe8CXb/KVbGJnoe9PDdUNluP1OVfE14LhERERENLowmCIaxXyj4PcxZcbn8d/AGEAYQHUKSJ8NmjdHOmNQmhQArga0gFrnQGcM3BaJMGcQjgvsD3nIdkjAWe3C6ej59ymsMwgzBpkWWd0AS8A+/4wph3VVwHGJiIiIaHTZ/IMpISB3no3OGU3o4wQr0WZDlgzq/vkOwhUrq/o4vnH6cQDIcGWgcsslpv1+BdDSBmgeQW82pICQEh27TcNh3/8zPt70HN4OxuG8X58MM6WI6bcDiw/P4taDrsU4VRiy3VoSNOFrV5+Bab9dDGhdeaUQWHHkdKzbEZj1y2UQHXkYravzeycF/B22xDtHZm04VSUcl4iIiIhGl80+mJKehzc/Pxb//bFfIitLtd4dokHxXOdMPPzNA5C9t7rBVAiJsI/Vr8JhN4do+KtfpqHffgcmYCecYU8ICMcFpID0PLR+cA6W7StxSMPLmJOpw3i1BvW7rkWDV0J+8iS4O7Zil0yIOlk/ZLs4UbahsGcHFovpEF1yKQigbW4JM6etwuLjtoS3zmDKH5cgWPJuVfbF1QbOAdtVNZjiuEREREQ0umz2wRQABA0h9s4uRb1gyRSNDAoGD3gHVv1xAsg+KxMCHgAOmNCAYaXU8CMEZC4Hnc8DxgBCQG07Cws/NwXFcRomo3H8vk/iy+MWYJKqAwBMUvV4bI8b8UyxAT/88uG4Zevfok42VG0X23UBEhJ1MpNcNlbV4e8f+Dk69uuaSln1QsIVEm2zA7zsN+OM7U/H7KsdmHUtvT9QGCJsa7Ovw0AYXfV+VxyXiIiIiEaXERFMEdHG6V+TYQa+tHlTTU2AUjAzpuLdw8Zg+h1LbWgjBd46YTIu+MTvcGzD2/CEA084UKIyeGqWORyU9XHA9vfAFdUJpdp1AUsCjR+t+BAme624dOILUKmTLWNVHcb2sY0GCUx1Qtx07NW4cOfj0JKf0uttW1c2YLubfLjL1gPGQK9cDd3RMThPZhNxXCIiIiIaXRhMEY1ivlFw+uzlwsoE2jzJxkboubPwziENCLMGcsc27D/9OTzeuBsgpmLLP/uoWyZw2ZPH4JAPXolZbqbXbSkhseF3yqZ5sHMSfvT2B3HO1n/CTHc1lHB7vW1oNJ4thZgoi5jldg/K9stKPLbTnb3eX8NgWZjHNXu9H2v8eqwp1uONO3bFpGc74a7thH79bZgwHHg11SDhuEREREQ0ujCYIhrFeABII46ImmIbg3CnrTHph+/ggsl/we/X7YHtcivx95ZZ2P2Q1/CVqY9g0ScnAgCmOOuxhePVcKeBQ3LLsc3sX2NuxoG7gVAKAAKEuHzxMdhv/Jv4xri3eryN2sDUdgVgutOAyyf/CwDgmxALznkEi0oT8It39kf+N3vBa9VofmYZwneXDnlIxXGJiIiIaHQZGcFUPxbnkUJAd/kg25/LNvZ+vV22sfvVH4O5Dxu7/ZH4elXzOW7svg8W3Y8mw7qP64mGDSEgdtsRxpXA0y/CWd+JJ5+djQVjZqH5b1k8NFVABoB2Daad9Afsl12TuvOGw6Bqa5JZzMmEcEXfdVmecHHd1r9DnVAAspv82K5QOCALHJBdjY/O/RXe+ZbA0qAZX3riC6h7cys0L9QY8+BrMPk8RDbbr7+5m4LjEhEREdHoMjKCKRqQwQyraPPmGwXFygQaSRwJ40gIAOGrb2KHixrRccAO8BsMWrcBPvOhv2JR53g0y2pOzBu4xwsurl32IfzfzHvRLHN93n6S6nlVQN+EWKcLGC9zUEIiNBprdB5jZbZfoVezzGGXDLBLpojnD78KnR8KcWvrrrj68IOAkgSMgCxUtwE6xyUiIiKi0WVkBFP9+HzaU8jSn8s29n69XTZY99uUbVXzOfL12vRtDSXfyH4cAPa8EhjRsGMMzDMv2oIeYyCzWWDyBISewIqji/j5vrfi0FwRGgau6Dv8GUpTVDveP/YtuJvYyeoV38cZr5yAW3e8Cdu4DVgWduLTL5+A/9n+Duw3wOKqZplDswTOG/sGvnrYqwiNwcIgxIcfPxtiXfUqzDguEREREY0uIyOYIqKNoo2E7mN1q76uJxpWorBX1tWh5cO7YMJZi3BQ85M4pul57OWJqjcx31hzMznMzSwC0HsD9v7YQoX4j20fxGRl/7yPkxn8xzYPYLabB9BzlVVf7GsmAQFkRTsgqhuoc1wiIiIiGl0YTBGNYoFR8PuoTAhYmUCbEeF50PN2wNL31ePgL/wDl09+EnUyAwzLOGpwhEajaAJc17I9nmmZiQu3+CNc4aBofCghcHRdO5TYuFCqFjguEREREY0uIyOYEpWHHNVuTl2LZt7V3NZwfr0Gc/tdDYfnWOteXr5WkLqPKTOaB4C0GRACctc5eOeYMZh56CLcNuvn2Np14YlNq0DaHNzX2YAnWnfASy1T8forW+HDb2wNCMD4Eiob4lvz7sER9e8k7cIVBBqk16+eU7XAcYmIiIhodBkZwRSAMPX/g9mHqCfDdfv93YeN7Zm0MdseyO2Gej+q/XoN5j5US9iP1a/6up6o5qSC2HUHLLxQ4g97/wAznAw8UVfrvaqadWEnlofAFo5As8xBCY0mp4Bfb3c73p7l4KuvfQZrF0zBzDvXAgD+d79P4r8nlJfSCxoNjj/yCXy06TnILtPyxsgAW6o6KFF+37foPN4NgBACi/xJMKGs6sJ8HJeIiIiIRpeREUxt5LF9tZtTD4dgYnMKzKq5D5uy/cFU6yCqq6Afq19xyszAFZsF5E7bQSxehnB9S613Z2SLQql3vinx0N4/x3SnodZ7VFWh0bho+SF4+LHdcfIRj+KbE17DEblOHJF7EUrUYZ4CHt/5djy2bRbXHHoQ3m0bA/fXBpMfXwXzzrvQJR+yvg6PPbEf/jjugMqNC2DtTgJnffiPmOLY39sQEj99+yD4d0yCUzAIMwLubCDMGFQrneK4RERERDS6DCiYuu+++3DXXXdh3LhxOOWUU7DDDjsk161btw7HHXccHn300UHfSSKqjtAIhGbDR5d9XU9dCMA/rAWzTlmEJ363B7b4ax7OP1+H7uio9Z6NPEJA7jIbi74pcf/7ahNK+SbEn/J1eKBlZ+gNvFfe3/gmjmtYvcnT55SQOHPi45h7zHs4ov4VAA143S9gSdCMQ3NFKCHhCoXD6nwcus2DKJoAd207FZc+dzS2+/o46PeWQre1wfvj0/BE9/0dN2EC7v/DgTAqqkgyBmPXdkK//jSMNlATx6Njq21tMFUlHJeIiIiIRpd+B1O/+tWvcMIJJ+CII47Aa6+9hquuugq/+MUvcPzxxwMASqUSnnjiiartKBENvlArBH30cgnZy2XAZoxdh/+Z+jjePuNx3PLJfXH/7ftiyt+LcP/ybxi/VOvdGzGk5+GtTzfjwff9ALPcoQ+lniqEuOCNT2DdI1Mx7d5VQBD2fEMh8LeD98SSrzyE88a+UTFNbmPskslil8wSAPY5P9o5G4+tmY0PzLofdameWkpI1IkM3p99B357BqbkV24oXcEpFaBDhKtWQaxaVVEMFQIQjoPwwF2xarYHv766lZ/VHJeuvvpq/OAHP8CyZcswd+5cXHnlldh///17vO3jjz+Ogw8+uNvlr7zySsWJOSIiIiLaNP0Opq644gr8+Mc/xle+8hUAwB133IGTTz4ZhUIBp556atV2sF82k+bnMjo7Pdwajw+HfRiK7Xc1HJ5jzZufGwHRx7LrPisTNoonXOySUbh88jM468y/4Esf+jSC7+wE9fhzlYEADYjMZiEyGUAK5PfeDjvt9ya2cnJDvh9PFUIcf/eXMfvqFahf+jzCzs5ebyscB1PyRVzzgQPw1UNehRrk/kgnN72Fzze9jjrZ8+vQZhw4q10gCLrvm5uBGj8Waw+ZhTEvrodYvAymUIQuFLrcUKJjSgbt0wHjVvf3t1rj0m9+8xuce+65uPrqq7Hffvvh2muvxZFHHomXX34Z06dP7/V+r732GpqampLvJ06cOODHJiIiIqLe9TuYev3113HMMcck33/iE5/AhAkT8JGPfAS+7+PjH/94VXawvwar+flgNrre2H5VQ739ajfzHuzLqnm//txuJDU/10ZC93EA2Nf11DvfhHjdL2G9rsOaznqMLfRSUUP9IjwPq76wO9YdUIDrBXjftNfxv1s9AHeIG52/G7Tjc/d/HXP+9z0E7yzZ4G2Fm0Hx0F3xzudCfGn3J+Bg8FfCq5MbXnlwrpvBAQf9G0t/tRWwfn05GBUCxUN2wTuf0zht98fw8Iod8N7qmcg+XY9pdy8FfBtkmXwe4dr1GPvo22h+fSIWfaQZfmP1KimrNS796Ec/wqmnnorTTjsNAHDllVfiwQcfxM9//nN873vf6/V+kyZNwpgxYwb8eERERETUP/0OppqamrBixQrMmjUrueyggw7CPffcg2OOOQbvvvtuVXawXwax+flQ29ybbQ/1a7i5P5/h8DuX5hvZj8oEBlMbo9OUMH/9XNx4wxFoWhRi/KJ2mOdeZLXURlITxkPP2gKhJ3DuHo/izDFvQ0JA1WD1vU4jUL9IQa9e2/uNpIIzcxpadp+MKee+hd/N/AOaZLZiGl9oNJ4uGiwOxuFDuWUYq6rzXJSQOG/KwzjmrHMw54qZCN9alPwe5ha3wATNmOy24H+3+w1WbV2PNfMacO8nd0WgFTQE/v7vbTHrjhBvHuNiu12WoPh6PWS+euPCQMal1tbWiss9z4Pned1uXyqV8Oyzz+L//b//V3H5YYcdhieffHKDj7X77rujUChgxx13xH/+53/2OL2PiIiIiDZev4Op973vffjjH/+IffbZp+LyAw88MAmniGjzEhgF2Ucvl6CP1bGou9eXTcKnwk9izW3TsNVvXkTY2rqx+TkJAWfyJCw8fRt88hNPYHpmDQ6vfxOuqM3qe0Xj4+GOHdC+QwliyynA629121+hFMwec7DwAoOLdr4Dx9S/i2bZPXTKmxLOffXzWPXaBDR9+AYcUVes2n7PzeRw1+FX4ePybGz50CSIEMiuLkH+83Xs+F0ft8z5ML57mEJ2lcTJn3kQ86c/BlcohEZj0VZ/wOMHbot9cgvhCo0jFn8VqGIwNZBxadq0aRWXX3zxxbjkkku63X716tUIwxCTJ0+uuHzy5MlYvnx5j48xdepUXHfddZg3bx6KxSJuueUWHHrooXj88cdxwAEH9HgfIiIiIhq4fgdTX/va13o9q3jQQQfh3nvvxU033TRoO0ZE1WcgoPtY891Ua034kcoATX+qg/On9Zi44oUN9h6i7oRrp6UZvwTV1IT1R+6Ile8DrvjIzfhAdgWuW7cH3gnqsNWA1pTddJ26hKIJcOXavXDfVQdgxweXIFy+srzfjgM1eRJWHj4DhXEC7gFr8NBu87GV0wCg595PDTKLX8+9ES1zXGzvCgAbnpK3qfu/vSvwxBE/xtIP5hBC4MZV++Nvf9gVbiegCgbb39KGMOvg7g/sii+PeQWuUFBCYhu3Ads0LweQw1t+OyCqG7MOZFxasmRJRf+nnqql0kSXlQiNMd0ui82ePRuzZ89Ovt93332xZMkSXHHFFQymiIiIiAZRvz/aH3jggTjwwAN7vf6ggw7CQQcdNBj7NHA9ND8HujcZ7+myoWxYPtj7UOttDeZzHMxtDeQ59rX9Wr1eQyXQCqKvyoQ+rqfu3E6D4J13Ac2eUgOhJk7E4lO2gyoAW/3hPSw9ckt87qwHcWLzv3B3+3a4aNnOCLTCrnXvACj0ub1N1a4LWKsDvOE344tPngG5LIvxLxhMvOsFBKnAUTU1YeWn52LtB4q4ar8bsEdmNRqlgwbZd1VXX6sJduoSNDQaZHZA+96pS1irSxgjHbwdAJ9++nRsM3E1btv2LkzP2vf0nls9jrVnPIgQwDtBHU55+iTU5/K4c87NqOvHvlfLQMalpqamimCqNxMmTIBSqlt11MqVK7tVUW3IPvvsg1tvvbXftyciIiKivg3xOecqMRvX/HxjG4oP9baGwz5sTvs6HPZhsLdfLUE/erkE7DFFQ0BNGI/iztNx9GeexL4Nb+KKIw/DGdN/j1ObF8MV9ZjproJuEDihaSE84QCDvLJdzDchXioFWKPrcPEbn0PbA1OQaTHY4dF3ES5dAROG0Dq0FVJTJsPkPLx39BR88Yv34OSmt6JG5IMT6oRG4wdrdsNbnRNw4dQHMM2R/Q6orly7M+Y/ejCOPeDvOHP8XzBn8nJs17gKrigHPp5wMdVxAQBbOcC/PjA/urx2oRRQnXEpk8lg3rx5ePjhhysWa3n44Yfx0Y9+tN/bee655zB16tQBPTYRERERbdjICKaIaKNoI6D7WHa9r+uJNobwPIgdtkbY4EG7Em9+JIOPHfgPfHn8XzHdacCHd74jahRug5TD6nyg7j1Uc7qbb0JctW473DT/CIx93Ufjex1oeOkZmMBHkAqMhePAP3BXrDq3DXtPWYxTmx/BR+rXwRWDu29KSBzT9Dzeyk3E6a9+HmfPegyfaVzXr/se1fgvtB/o4SPNz2EbtwG3b/MgNAzkBlYF9IQ7WLu+Sao1Lp133nn4whe+gD333BP77rsvrrvuOixevBhnnnkmAODCCy/Ee++9h5tvvhmAXbVv5syZmDt3LkqlEm699VbceeeduPPOOwf+pIiIiIioVwymiEaxQEsI3UdlQh/XEw2IVBC774BV85ow7fi3cezkZ6GEwR7eEmzvZqGiap306nVDoVOXcNW6ufjtTz+ILX9tG9brXm4rx47Fsi8V8efdbsAEVR9dWp0pr7tlHMxxV2Gb2bdhhuMDqO/zPgCwm+dht8n/SvbrVb+IK5YfhmLo4NQpf8ZBWT95jUOjh/z13pBqjUuf/vSnsWbNGnz729/GsmXLsNNOO+H+++/HjBkzAADLli3D4sWLk9uXSiWcf/75eO+995DL5TB37lzcd999OOqoowb82ERERETUu5ERTG1kQUdPPYCGWrX3YTg8x8G0ub9ew+3nwYqpzZ/wPEAbGL9U613ZIOF5EI6DYI/tsfaCDszf6Ups74po6hsAdF+1bqj8Ka/w5WdPRcODDZj02xcRtrVt8PbCUZg+bh3Gyp6bmm+qTl2CjxB1IoNft03Gla8fiq/PfgTzvDUbtb3QaDyVn4Un/rEjVF7i71vMxPz334SDchq+CfGDNTtip9wSfKR+eDTqr+a4dNZZZ+Gss87q8bobb7yx4vsLLrgAF1xwwUY9DhERERH134BPOZ5yyilo6+FDe0dHB0455ZRB2amN0bX5edcG0v1tKN2f+23sZT3tV3/3ob+X9WfbQ/0cN+fXq7ft93Wb/m6/v8+xWkIjEBi5wa+QwdSwpSZPwnvnzMPqE+ZBZgfWHHuoyLo6OFvPxOLz5+HVH+8IdelK/HG3G7Cb56VCqdopGh8/e+8QbP1feUy4+VnoPkIpADBao6WYRdEEg74/7bqAj792LOY9cRaeK2msCJqxbk0DVgWNCE1vNVxlvgmxOuyouO2zpRCXPfERyPElOFu3Y8ofMrhm+UHwTQgNjU6dQcEMj2l8AMclIiIiotFmwMHUTTfdhHw+3+3yfD6f9GUYcj00Px+ujbQ3Zvu93W8wt9XX/Wqx/eHwevW2/Y25X3/3dSgFWvbri4apfAFjXw/QvLAEE/YdWgw14ThY9dld0XENcM2pV+Olo36Ge2b/AZNU/6ajDYW/FrJY+JvtYJYs7XfVmV7fguD2Sbi3c+KAHustvx0rw44N3sYVCvtPfBP7zFqI8bKI5cVmOCszWFkqrzy3OGjHQ50ulgXt3e7/iu/jwy+egEVBufppkT8B0x4AtvufAmZ836D54Vfx+i2zcc36rSEhcfHE53Fcff96Vw0FjktEREREo0u/p/K1trbCGANjDNra2pBNnZ0PwxD3338/Jk2aVJWdJKLq4FS+zVvY2orc758GjMHwmSCaIiRatwMenvMrjFV1qGbj8o31VmkyJj3bDt3Z/2lspljEhGfW4c3CFKChpV/3adcFfPjpM7HvVotw3bQ/99jT6aVSHne17g4Jg0u3vBfbuA34wrgFGH9kB45pegErwwA3t+yOa/5+ILZ8QGHlcQWctcsTOLHpZTTJLJSQmOEYXLjtHzFZlf+8H5Jbip+cuRpt/zcR2bU+vPp6TLntZdwgjgLOvh9njVk4rHpMcVwiIiIiGl36HUyNGTMGQggIIbD99tt3u14IgUsvvXRQd46Iqivsx7Ls4QCXZachNox6lvXEoP/TZmtGb8RrKAf2vpCQaK7PY1ymo9cQ6I6Wefjl/QfCKGDyh1uwTfNy28Tcew3rQo1jXjoB3o/GYcd/v4tw1Wo0/30K7t7lQ7jmxP0xbfx6nLTVk/hUw8qoV1T55NEEVY+7596CZ74/Du/5Y/G9ez+O2T97D5OfXI9rP/QBnPy+19Aghs9UUI5LRERERKNLv4Opxx57DMYYHHLIIbjzzjsxbty45LpMJoMZM2Zgiy22qMpO9kl07zEFVE6b6qnpdH8u29j79batjdmv3u5X620N5nMczG1t7s9xKIX9WP0q5JSZ0UMICMcd9EbqamNXqBgCCho6o+x7sZ/vQ1lfj/cOHYM9697u9+PUyQzu3+kWuEIiHRqlfX38P/HZzz0NBYOpKoN0hVmb0Vjd0oDGGS68v7XBBAGCJe8iu2w5tv57M0Q2i//55KfR8cW7cWrTu93CrwmqHkfUFQEsx9zjforPjj8D0g1x5+7XoEEOn1AK4LhERERENNr0O5g68MADAQALFy7E9OnTIYbZGfCuPaa66u+Bf7X7CQ31Pmzs/YbD9ofD61Xt7dd6hT5OmaGEVDB774Q1c+sw8VcvDGhqW1/C4TnREADw/tzb+O5nPOywZluI9W0wWkOvXb/BcE401MN8YD3GqE4sDorYUtX1ayqcnc5otesC3gkMwm6hnYKCgUZlz7DpTgP+sd+1+MKUjyN4Ygrw+lsAABMECFfb1fq2vDmPK+s/hh1OuRoHbCBr2ier8O/DfgoAwy6UAjguEREREY02/Q6mYjNmzMBf/vIXXHvttXj77bdx++23Y8stt8Qtt9yCWbNm4QMf+EA19nPDNvKYp9ahwFDsw+a+/aF+vM19+wOlteyz8kCzMmFUcKZOxivHZ2FkiEl3uMAg5VKZFoHftG2DLd21ODC7ftgFIXMydbj96Kvw/d2ORLvvYXlbMxqun4m6P74AUywCUsGZviWM60AvehfGL0Gvb8Gkn07DV6d+Bat3Ffja0ffiiPpXsI3b0ONjLAva8WRhi4qV7/7vnf3RfvtUOJ3dxwS/QWDqZxfhs1P/ARUFVFnp4wPZDnxz2n34/BlfxuwriwhXroKcviVMnQcACBo8FGfnMU21A+h5X2Jdfw5F4+OJfB3W6zps767Ezhm3Zn2nOC4RERERjS4DDqbuvPNOfOELX8Dxxx+Pf/7znygWiwCAtrY2XH755bj//vsHfSeJqDpCCKCPyoPuFR00Euk1a7H9/LGQhRLC1u6rvW0M45cw87b3MP/dj6IwXuCis36JT/WzWfhQmudl8Nut/4TQaORNCedM+iDeMLui7v7nIbIeFn9qKxTHGmz3k04Ey5bDFItw/vQsmoXAuIcn4q77P4QrPn0kjt9nAT7Y+BL+2LoLOgIbFmkIPPLW9tjiZg9uq588Zt26PLKvPwsT+N32R3oewr9vjWtnHId12zvQDuA3Gfznx2/H8Y0rcdPHr8YJ6iyMf24aGr/wHg6d9BKU0PCkjw83vIhZvQRkG/KmH+CMR05GbomD5g+swJ92/jXqRG2a1XNcIiIiIhpdBhxMXXbZZbjmmmtwwgkn4Lbbbksuf//7349vf/vbg7pzRFRdxgiYPg4A+7qeRgZdKADPvVQxLXpQtrt6LVbPmwqML6BeFjd6O6HR0DBwher7xgPkmxCuUFBCokFkcdbkR/G59+2MbZ7IIWxpxfSb3wIcB+Gq1ZV3NAbhipVQK1dhzssT8fft98TvDtwf0//YAtkSlZwphe2K66GXr4QJy9Pz4v8TTrmKClJAz9sBK3eug1YCbbMMLjzmd5iZWYWs8LFTpgglctgvCzz08Suw6iM57JTxu1Q/DTyUAoDt3QzuOPynaNNZTHNaUSc3bjuDgeMSERER0egy4GDqtddewwEHHNDt8qamJqxfv34w9mngemh+PpgNy0dD83O+XsPnOQ6lUAtA91GZ0Mf1Xf35z3/GD37wAzz77LNYtmwZ7rrrLnzsYx/b4H2eeOIJnHfeeXjppZewxRZb4IILLsCZZ545oMel/pPZLHTJB/Rgx1DdCSFgxpVw0Z5/xFWLD8Ue2/4GU52BhR5F4+PKtTvi1Y4puHKrh9Asc73ebm1ow69xyoMn3B5vl/ZKqRPfXXoUfrDVvZjqNGBd2Ik/tO6Fmfd0IGxpBYxBsHzFhjcSBVRy1RrM+GcWJggAz4MY24x3PzwVnVMMILbsc9q5UQbb7P4ubt3m58gKjawAJiX9qySA8vPexm3ANi5Q+ddv47lCYZ6nYCOz2oVSQHXGJSIiIiIavgYcTE2dOhVvvvkmZs6cWXH5X//6V2y99daDtV8DYzau+fnGNuAe6m0Nh33YnPZ1c3+OQ6kalQkdHR3YddddcfLJJ+O4447r8/YLFy7EUUcdhdNPPx233nor/va3v+Gss87CxIkT+3V/GhhZX4+1x+6C8U+tQPhG/1eV21g6X8C02x1c+e9jAQEs/VIGU/v5l2eh344VYQ53teyFP/10X9SvCPHp85rw6+1uTxqJh0ZjUdCJVWEON6w+AH/5w+6AAY795F9w6cQX+uyTlBEaTW4BS8MMVoRFHPvEVzDuLxlMeuM1hAN4f6rx4yAyGYRr16Fw6C5Y8rkAzU2d+P6O87Fvdn2v99PG4I3AxdqwARNVG+a4QJ2s6/X2Q2Fl2AEAmKTqa/L4rJgiIiIiGl0GHEydccYZOOecc3D99ddDCIGlS5diwYIFOP/88/Gtb32rGvtIRFUSagkM8rLsRx55JI488sh+3/6aa67B9OnTceWVVwIA5syZg2eeeQZXXHEFg6nBJgTkxPFoWlwA1q4fkoc0fgkNT7+DxR+ejhP2fhLbun1XaS0O2vH7trn48SNHYupfDbJrA0x86l8wxSIK4e648r/3wqUTXwIArNF5fOjer2PqEwK5VSXMWvgu8ttOxKtHTMaa8Xk82rkVts6sxLyM6hZSFY2Pl0qT8EbrRHzyqa8AWmCHn61C+OYihAOoJpP19Vj4lR1QmBRgzo/rsG47Fw/t/2NMd3LR1MOeK7wA2xj904+fiUmPZrBqL42/feyHqJO16e0E2Nfks699FitaG/H7edf22tC9mqoxLhERERHR8DXgYOqCCy5AS0sLDj74YBQKBRxwwAHwPA/nn38+zj777GrsIxFVidaA6GNKjNYbvHqTLViwAIcddljFZYcffjjmz58P3/fhun1Pxxr1pILadiZEsYTgnSUAAGfWDLTtMhlGlX++2hFYtr/BFk8Acu26Idu9it5KxiQ9ndLiHlILgwKO+tvZmHmdxJxXFyJYsRIwJunJVP/iMrzSNgXhhH+XgyYDCG1QGO9i0TFb4KzDH8IH6l/Dp145Hu2/nQrxsTV4YrdbK5p5+ybEpSvn4eGr9sPEp9Zgzrp3AMBO2xtApZQzYxrWv28L5PZYA//1sRCdBdSt1HigYw5Oa34boREbrNoapzx8dJcX8PL/zYXfUIfOj/bvcYvGxx3tU/D+7Dsb1ey8N88VJd5dsCVm3tOOD335qzhxt6dw7vhne50+WQ3DYVwiIiIioqEz4GAKAL773e/ioosuwssvvwytNXbccUc0NNSwJwUr+ok2ykCmzLS2tlZc7nkePM/b5H1Yvnw5Jk+eXHHZ5MmTEQQBVq9ejalTp27yY4xkzrStsPzIachPFJi6oAhn8bsQSmHpUVviwnN+ienOWgBACQrrwzpcveRg+HdPGdJ9DFevxo7fknhi9/fjlk/vg4YxnThn9mP4RONCKAgUTIjvrdwfDyyag/x7Ddjh2vUIX34dQQ8BkensxDP/3A7/3vJ+7OZ5GC9zePjDP8Sqo2xwMlnlMd2pw+OFLFr+sAVadglx29xfdqtCWqcLuOvuD2Dmb15A2NFRcZ1w7W2NX9rwExMCa/bfEs7nV6JldTNkIABHYewfX8Evxn8YVx3Qhhnj1+H/trsN03vpq+UJF58btwCf/cSekCXghnX74uKJz/fZ5L1T+7j53X0xfkY7Zrkb31S+q6fzdkq+35TBmAUZ3Cz3xucP+Aeah7BAiVP5iIiIiEaXjQqmAKCurg577rknWltb8cgjj2D27NmYM2fOYO7bgIzk5ufV3tfhsA+j9Tn2dJuhpI2A6OMAT0fXT5s2reLyiy++GJdccsmg7IcQlftgotek6+XUXWG7yQiOWo8xv25G5qlXoIWE2WMO5BGrcVTdimTFthtbJ+HSxz+GyX+VGP/yIphxY+0GtIHu7IQpDl640U3UQNx7cDV2+Fs9kMvi5x/5OP57O8AIQITA1AUhZvz1TZiSj7C9vaJqSTgORCYD3dmJcO067PCTlfi4dzaeOPLHmO40pBqBA3Hj7plOCyYf+w6unXU33ud1r7oLjYHTYXtgpTlbbYnFn52BTKvBpF+9CN3WtsGn1rSwgJZfTsbsBcuBdS0I1q4DjMHk/3sW6r4peOVrW6Jjmw2nOvMyCgs++UPc2rIzVvhNfb+eAMaqOvx29u1RFdjgrVT4xTFv4qgTfoALD/4oPjL2LXyu6SWMH+KeVwMZl4iIiIho8zfgYOpTn/oUDjjgAJx99tnI5/PYa6+9sHDhQhhjcNttt9WmJ8wIb35e7e0Ph32o9vaHwz70d1tDSguYvla3iq5fsmQJmprKB82DUS0FAFOmTMHy5csrLlu5ciUcx8H48eMH5TFGJCGgxo+Ds3A1JvxkArKvLQYmTYCoz+Gd/9B4ZNfr0SDLVTp/Wb896t5x0PmJdSh9qjmpOCkFCmN+04iGO56u/ip9OkTY2gq0tmL8/DWYoMqBignD7n2dpIIzeSI6d52GtbNdbHH9v6Hb2hC+tQjT75mIRw/cGl9oXN7jVLlt3AbcM/sPcHtZmW9J6MHp7PJw9fV484zpOOaop/DENXsDvt/rUxGOA7XlVKyZlUX7x1qx7qgmbHHrBGQfegHGL9mgT2vM2nEZZjgb/lOrhMQkVY9zxr4JDdNntVSsGtPrPOFiG9fFL2c9BAkBJWrQAH0A4xIRERERbf4GHEz9+c9/xkUXXQQAuOuuu6C1xvr163HTTTfhsssuY7Nios2IMX2304mvb2pqqgimBsu+++6Le+65p+Kyhx56CHvuuSf7S22AamzEiuO2x+RHV8D98wtY94k9sewgjbp3HHxzp99gapepY+dPeQivnfI8jqxbBydVYbMy7MQHn70AjVLADGXfHh3CbCAIc7baEp1zp+KtEwOctNNf8Os35kH8MgO0ATAG9U8vwvd//QlM/ML1OCLX2WM41VvAUzQ+Tv7nSZjxyIqKMExkMpA7tOO1tsmY9Lc1CAuFHu8PAHLmNCz6fh2+MucenNC0ED5CnDH9aCzHrsg+8i+YUgmmpRXLH52LF7cReF8/clwl5CDWPm2a/oZj1TCQcYmIiIiINn8DDqZaWlowbtw4AMADDzyA4447DnV1dTj66KPxjW98Y9B3kIiqx2gJ08fqVn1d31V7ezvefPPN5PuFCxfi+eefx7hx4zB9+nRceOGFeO+993DzzTcDAM4880z89Kc/xXnnnYfTTz8dCxYswPz58/HrX/964E9oFAnbOzDlvsXQq9fABAHGPPb/27vz8Kiq+4/j73tnJpM9hIQsQICwBwRFRLai4gJqVVyquCG1LqVUrVC1P22t1qW2dcMVtWpdq9a6Ky5UxQ2QVUA22cOShSyErJOZe+/vj2AkJCGZkGQS8nk9zzyP3Nx77rlDOGY+Oed7NhO9vSsbLoWjvDs4cCe4jLBIMsJKgJ/CPsuxea+0P1E7HRw7tJ/0DU8YgbFHEIhwEbl4M9sn92T6Fe9wRvR6Cmw3/9p2AlRurz7fysml95MGNxi/wrrkOX4eWXLQIuP78zsWZTlRODu21DjuBAK4lsSwd30EkZtW1Hu9GR5O/ugUbjniP1wSkw9U1aR6sucH/OaW01nf/WjCih18cQbDz/yeQR6L/d93ObiWGJdEREREpO0KOphKS0tjwYIFdO7cmY8++ohXX30VgMLCQsLDw5u9g43SxBn9oa7v0xp9aAvP2Jz0fjUvx6bBWTLBzqJZsmQJ48ePr/7zzJkzAZg6dSrPPfccWVlZZGZmVn89PT2dOXPmMGPGDB577DG6du3Kww8/rNmXDbEtAjt2/vTHgj2UpaSD4bDbigIO/hfndyz+tTeNR58+m+7vrK69jK6VmXExbP4VmK4AnmMH0GlUDpfFbiHSjOaJ3CH0+W85jmWB6apechjIziF9tsNNxi+JuvRJTopo+Bn8jsXze/thVpg4g3rDku+rv2aXlNBj9vfY5RX1Fj433G6KJh3F6OsXc05UFj+GUlC1tO6pnh+y7eY5+B0Tj2GT7nYRaYbo/43tVEuMSyIiIiLSdgUdTF1//fVccsklREdH07NnT0444QSgaonfkCFDmrt/jdaU4ud1ae3i543tw4HXNbaQel1tN+a6tlIY/MC+1vdMLfV+1dd+az9jS2mJ3a9OOOGE6uLldXnuuedqHTv++ONZtmxZUPeRmoxwLztPtbl29KfctO48/jvkX/XuBOd3LF7Y241H/3k23Z9djbWnqJV7WwfDJCLKx7DUncwY8wkDPHZ1oDM6egMvXzYaT+FQen5Ugfnld9Vruazc3fR6twtzzjiSkyJqfw+V2BXkWAEsDCzH4MOSI3jhqVPp8YO/qg3D+GldmONU1cA6WDe9XrImBLgr+es6A6doM5zBYXVcKI2mXflEREREOpagg6np06czcuRIMjMzOeWUUzDNqun0vXv35q677mr2DjbKYV78vC30oT31tb0/Y2tynIaLDOsDYPvgVPjo/qHJKwsm4utksHtQGD3qGeE3+n3cM+ds+swvgeQuuAwTq7CwdTtch05R5TzTcy5eo2ays70ygdj1biJybTy5JdhhYbg6x+P4/Thdu7BlUiwz41bVuMbn+PnW5+GvW88j542euMur/q1FFFh0/ex7rOJiHGhSsSLDbYe0BtPhTuOSiIiISMcSdDAFMHz4cIYPH17j2M9//vNm6ZCItCJn36uhc6TNM1wmFXEmnjKH1KlbKLbD+WteP86IXcHQsJoze9LcJjec9h6ZJyZQYnmZ+/4Iej+5mUBWdj2tt579C7P7HD+vFafy8JrxpL+9E2tHFvRPZ88vhpFzgoW7wM3wn63H/jKev289jaMHvEKiKwrLsfnW5+Hah6eT+kURyd8vwQn8tMOedSiBsGXhyvKy3m8xNEx1o1qExiURERGRDqVJwZSIHCYco+rV0DnSdhgGhqv2bB3HcUiam0llehKxngqueOdqer3v59NbBvBJxts1CoNHm+FM67QT2Inl2My9dCUzuIL0xyys3btb8WH24/ORvaYPqwdWVgdpOZaPO5aeiff7CHJOjCF+Y2eyjo7g55d9zZT4hfgcF/8tOoYdS/vh/zaFOX/rictweHb7WLbndaL3F0U4362par+ZZifaPh99Xyrkb+NO48Venza64LoEQeOSiIiISIdyeARTRtNqTLV2zaS6tIW22vL71dT2G6MtPGPIi63bRtWroXOkbTBdGMMHkTkhBttb+/vGVW6QtNzPmhczGPjhToqGp3Jcwtbqr/ucqllDXuOnmT4uw+SUiHKmn/8B73xxEq55ec0W4gTDKi6m38vFPHv8z7g/ZREBLO7MmohhOEy79AP6ebO59o1f0e/5PN5IGMvnw/vxbMaL/PvrMQz8ZC1GQjx3vXU+UTsMur6zjb4VO7H3FOHK6IcvNQbPFytwAoGmdc4wMCMiqupRAUaFj5KAtxmfXmrQuCQiIiLSoRwewRRNqzHVnjRn/xvTVlt5v1qyH23hGUPdB8dpOINoA2+T7OMa0Jvtt1h8cPQ/6GTWnKmz23YosMKZuvhy0u8tx87NI3d4NybEfs9qfyW2Y/C3XacR4fLzVNq8GjWSXIbJ6dGreeDCCWRs74W1aWvr/8U7DubmXXz0/rH8aurXDPC4iHBVYtsGj751Ou5Sg67fB8gdnQAOVL6dxIdpR+ApMqt20duaSZ+/5OBYNoH9d9SzbAyrnmcxDFyd4zHCfqpp5dg2dsGeGrvyuZOT2Hhtb/xpPgzDwR1m8feuczVbqoVoXBIRERHpWIIOpjIzM0lLS8Mwav620nEctm/fTo8ePZqtc43WxB9QQ1FIu7mua862Gnu/w+39amr7Lf2MrUozE9oVX2ostw9+nXRPzd32/I7FzJ0nkOQt5r1Rszn12mvJ+L9Yer++l5tXXY1jguFAZI6fzRcZ+Lt/Wqt4dx9PNG9NeJRzuIb+z0Tj2rQTK7+gNR8Pq7CQbl/62HxxIkPDSngw9VtOjFvLPZ9MIWF+Fs6uHLxH9iM6O4zIzXt4M+8U0rfuxdU9FTsmAgBXYQmBHTt/2rVv/UZcPxg1dop0xcfjdEsmEB/BD1NdZPTZVf21nJJYIp9NJ2rOdzg+H5guKgd05eIzvuD/ElcAYGKq+HlL0rgkIiIi0qEEHUylp6eTlZVFUlJSjeMFBQWkp6djWVY9V4pIW2PYVa+GzpHW54qNpfLovgQiXbDvM3jBQA8p7j1AzZk6HsPF75L/R4Xj5p3ioftq9Diwaj3xlX0gJw8rvwDT6yVi1NHcmjOK33X5kh7umgHXUV4vcyY+xKujRvCft44PSUF0T5GPd/KHcVrkZ3gND+MjdpN78zs8sOokuryaROzybMzFOyGhM2HFcZSkR5N7o4vLBi0C4NllYxlwXzT26vVV78G+mlzGoL6Ud4/BMQ1yj3Zz+qSFpIUXMCn6e3q4I6vvX+5U8rs/nMzKTkcTlRvAH2lSdmkRV8cvwmtE19dtaUYal0REREQ6lqCDKcdxas2WAigpKSE8PLyOK0SkzVKR4bYrKYHNv4J7R71GJ1cpADFmBUeGwYHBFEBGmMnlW09m+339yVi8g0BuHma4l/yjO5OwDMjLx66ooNeT6/lu4TBeeLCMPyWuq6OdSP6cuIrRl27keuMKej/ix8rLb7HHNDxVy+gcywLbwtxTyry1/Snq9hFJLg9xZgRXx+3i7NFPsHBYF3735cV0WtaN4l4ON53xDv3DshkUVkySKwqAi8YvYYLrWvrfOwCzqJTdJ3SnMs4g/NRcbu//Ah4jQIqrhIEe776leDXDpmgjnEe6f8bKW7+g1AnDY1gM8pSS6FIo1Wo0LomIiIh0KI0OpmbOnAmAYRjceuutREb+9Btmy7L49ttvOeqoo5q9g41SR/FzqLlsqr5jjTmnoevaUlvN+YzN2Zber+DbbxX2vldD50irMywbw3QYF5FVHbqAp97zi+xKVryfQdqcpQR8PgDssjI6v7kSxzSrCnc7DlZePt4d8RRb9f8i4ceC6Fec9zFzPxmHkV9w6EV9DAMzMrLmjoLdktl6bhcCMQ4pCyxiVuXyw9UpvHT8Y/s9c5UkVxRnRZUxbsLDFJ9iE24YJJgR+8Kln87t44nmk+Me4ezoqykt7sITY55mYFghnU030eaPzxxx0K5GmmGMCoefqhdGHeRsaXYtOC49/vjj3HvvvWRlZTF48GBmzZrFuHHj6j3/iy++YObMmaxevZquXbty0003MW3atKbdXERERETq1Ohgavny5UDVjKlVq1YRtl+x2LCwMI488khuuOGG5u9hYzhNK37ekrWD1Jbaas72W4xqubRZVmIsEwesZbM/HMspIdXd8Iwd2wOG211VG2kfIzKSnZf2I+WbYtw5e4CqWlWRZmU9rVRxGSaTYlYy+6KTGbi+86HNmjIMjKMGse6qKMK7lFcf7hJbwr/7P0h3d4B7ThnHNzm9eWbgbMaG119UPN4VSXwDt+vjiebbEc8BVSHTgbOipI1roXHptdde4/rrr+fxxx9n7NixPPnkk5x22mmsWbOmzvqYW7Zs4fTTT+eqq67ipZde4ptvvmH69Ol06dKF8847L+j7i4iIiEjdGh1Mff755wBcfvnlPPTQQ8TGxrZYp0SkdRhO1auhc6T1mRsyWfPnIUzvOYzel2zgld4fH7TgdrwZzilnLWbNV0Nwfb6s+rgR7qVyTDHJF2wjYFdd3zksl8s6LaKhwKaPO4IxR68nr2c3jF6pVQFTuR82bsWuqGjwGVwJnTHCw8GyWDczjM+Oe4Du7pqzlTyGF/Dyj5Ql2CmLm62oeFUgJe1RS41LDzzwAFdccQVXXnklALNmzeLjjz9m9uzZ3HPPPbXOf+KJJ+jRowezZs0CICMjgyVLlnDfffcpmBIRERFpRkHvdf23v/2t3lBq5cqVh9whEWlFTiNf0uqsPUVEfZ/F3j4wo9snTQ5srOxcUp4JpywQxuyec/h3+uc82u3bWjv71cVlmAyJ2cn6qyM57tnFnP38Z8Q9mcveM4/E8HoPfm2XLmydNpC1t6RRMag7I3tvpYc7Eo/hqvHa/17a6U6AFhmXKisrWbp0KRMmTKhxfMKECcyfP7/OaxYsWFDr/IkTJ7JkyRL8fn9wHRARERGRegUdTA0ZMoR333231vH77ruPkSNHNkungqaVRiJNYvDT7IR6X6HuZAdleL0UjunOA2c/X+/SNp/jp8SuoMSuIDNQzv/eHoHn2wMKmjs2EfPXs+mV/uwIBN+P38av4ovTHuQPCWuZ1mknT/b8gIrLCnHFdzpI5w3Kj+7J9Ze+zXs/n8Xu68o4Lv6HffWgRA4umHFp7969NV6+/Zax7i8vLw/LskhOTq5xPDk5mezsuneezM7OrvP8QCBAXl7eoT6miIiIiOwT9K58f/jDH5g8eTJTp07lwQcfpKCggClTprB69Wpee+21luhjoxxY/LyhotONPdbcbUHbLAyu96vtPGOrUo2pNsmV0JntVwzE87N8RoXv5sDi2yV2BWv8LqYu+RX+rdFVH9QD0POrcuzyqhpOhicMV2Jndp3Tm6KBFvHpeXRxBV8xOtoMJ3pfnmQ5Np+Xd6FifiJ2aVbdFxgG7vSe/HCOySmRP5DuiWb+Mf/Ca3ioOVKL1COIcSktLa3G4dtuu43bb7+93ssO3FW4vp2GD3Z+XcdFREREpOmCDqZ+//vfc/LJJ3PppZcydOhQCgoKGDVqFCtXrqz1m8VW00zFz+s61hbaagt9aE99be/P2JoMu+rV0DnSuozoKKLH53DfgNeJ37eTnM/x832lw24rhj+uvQDngwTSP9+NvfUHsKu+j5yAv2r3PMPAf9wQ1p/v4uRhKzg/YREjvEXEu5q+u5zl2LxXFsstz11Gr6c3YBUX19HxqlBqzY1J/Hfio9XLBX/aDU+kYcGMS9u3b69RXsBbzxLTxMREXC5XrdlRubm59f7skpKSUuf5brebhISEBp5CRERERBor6GAKoHfv3gwePJg33ngDgAsuuCB0oZSINF1jarWoxlSrs7Jzibkrg2ljr2H8BYvp5t3DutIUvntpCHGb/SRlFuOsW4wVqGdtnuMQ/kMO6W+msOHdQdzcfSgDpq5jWFwmADFmBefG/EBSEEFVvl3ODW//lv5Pb8Tavbv2CYaBq08v1vy+C/899VGGe1V8XJooiHEpNja2UZuxhIWFMXz4cObOncs555xTfXzu3LlMmjSpzmtGjx7Ne++9V+PYJ598wjHHHIPH42nwniIiIiLSOEEHU9988w2XXnopCQkJrFy5km+++YZrr72WDz74gCeffJL4+IY28haRtkIzptomx+fD+OY70lbFsvGD3mxwmxh+i5St32GXldGYv5LA9h14tu8AwyCqezfWhGfwXWwGAJWdbFImvcTZUSWN7pPlODhuB8Pct67PrFqW54qOouxnA6jo7CJnnMVbEx7hqAYKo4scTEuNSzNnzmTKlCkcc8wxjB49mqeeeorMzEymTZsGwM0338zOnTt54YUXAJg2bRqPPvooM2fO5KqrrmLBggU888wzvPLKK8HfXERERETqFXQwdeKJJzJjxgzuvPNOPB4PGRkZjB8/nilTpjBkyBB27NjREv08uCaWemjOekKNbb8pfWisprZ1KM/Tnt+vprbfnO9XyKnGVJtm7d0Lq/ceUhuuhM5svbQHN079L0eHZ2I7BpWYdHX5KLHdRJvhlNmV+Jz6K6P7cbg75yQMG5zOcZhdOrHzlM5YXqiMdbjy5/9jYvT3JLv8pLob3u1P5KBaaFyaPHky+fn53HHHHWRlZXHEEUcwZ84cevbsCUBWVhaZmZnV56enpzNnzhxmzJjBY489RteuXXn44Yc577zzgr63iIiIiNQv6GDqk08+4fjjj69xrE+fPnz99dfcfffdzdax5tbSgUCbCxwOUUd4v1o60GrtPjTFjztcNXSOtD9meDhml0S2XNaD26e+zHlRhbiMcNZWlnHBwqswNkZh9y7nkWNf4Y9rL6BkRUK9s1AM2yBpSYD+X66B5EQ23B7HO2Pvp4vLxgTizHA8hhfQTCk5dC05Lk2fPp3p06fX+bXnnnuu1rHjjz+eZcuWNe1mIiIiItIoQQdTP4ZSGzduZNOmTRx33HFERERgGAa33nprs3ewURrxA2pbKHR9KP1qjJbuQ0d9vw7n4uc0YslMo9aNSZtiRkWRd8FQ9p5aygnpy3Hh8EFZNGW2l5u/upKM+4uwN67D7NWdv4y4nKQ1e+myeik49f9lO7aDZVs4Q3pz89EfMjgsohWfSDoUjUsiIiIiHUrQwVR+fj4XXHABn3/+OYZhsGHDBnr37s2VV15JfHw89913X0v0U0Ragk3DH/D0AbDdcQb2Ys8p5bAtig3PDGajNWjfF2DQlt0EtmaC42Bt2Ezsxi0/BaSGUbWr34FMF64+PfGlxVM4IIxunsLWexjpeDQuiYiIiHQoQQdTM2bMwOPxkJmZSUZGRvXxyZMnM2PGDAVTIu2IlvIdnoy1W+j352Qo2omVl1cjbKpVScpxMLxeKk4ciu01iP5sXVVtq33cPdPIO747haeXctfR/yXJVcyx3gpAu+61JZZjE8ACwGu07x3jNC6JiIiIdCxNqjH18ccf07179xrH+/Xrx7Zt25qtY0FpA8XPm7PweEcoft4W3q+mtt/Sz9iqgtiWXdoPu6wMNm5p9PlmpzgKfl3CBb2X80b3E0l9dT2OrxKzSwLrrkth9hlPc7R3D4muqH1XKJRqSyzH5r6CATy9aixuj8WjR/+bE8L9uAwz1F1rGo1LIiIiIh1K0MFUaWkpkZGRtY7n5eXh7cBbhLepsKEdONzer/b6PJqZIABOcQnGvL4MHZxJ4vR3eGDsyVgBk9jYcl4Z+gjHej1AVIPtSOh4TT+2bRDzfjRX5l3B/05/gD6e9rlDosYlERERkY4l6GDquOOO44UXXuDOO+8EwDAMbNvm3nvvZfz48c3ewUZp4g+ozVnourHtN6UPjdWcBcWb2n57er+a2n5zvl8h59BwrZY21mUJjuF2Y/ZKw4kKr3m8vBIK92K4XeB2E5tpscsfz1Vx27niuGerz/O082VhHYHLMLm202amHr+G+48Yic9209lsp7OlQOOSiIiISAcTdDB17733csIJJ7BkyRIqKyu56aabWL16NQUFBXzzzTct0UcRaSFGI3a/anB3LGmzDLcb//FH4ruxkDO7Lanxtc9392fT4r4E4izMaD/XD/uIX8T8gMuIwhWi/krTuQyTeFckdyWt2nek9szm9kLjkoiIiEjHEnQwNWjQIFauXMns2bNxuVyUlpZy7rnn8tvf/pbU1NSW6KOItBAtmTm8GWFh5A73cmefTzgzcm+NmkO/jV/Frj4W4YaDB0h1R6PletIWaFwSERER6ViCDqYyMzNJS0vjL3/5S51f69GjR7N0LCgGNX7D35zFqZu7LSDo9uu7rjnb0vvVdp6xVWlb9sOaXVZGj39v48bEKUSe+zSDwgpxAZ1dXqLNcPq349VeEjyf48fvWESb4Q2fHEoal0REREQ6lKCDqfT0dLKyskhKSqpxPD8/n/T0dCzLarbOBWP/uza2tk9z1kxqybbaQh/aU1/b+zO2Ji2ZOfwFduyk/8Nwy4YrqYwxsLxw5Blr+W3qp3RxldPHHdF+d2+TRrMcm3vzh7CtPIHHu3+Jx2i7CzY1LomIiIh0LEEHU47jYOyb5bG/kpISwsND9FtYTekXaRpty94hBHbsJOGZbADMMA95Xw7kDym/IX+IiwvPmccv4pYyOCwixL2UluQyTE6OXs2eyEhMav8/fH9+x2KRz2BVRRoA/bzZHBde2XphlsYlERERkQ6l0cHUzJkzgapd+G699VYiI38qrGpZFt9++y1HHXVUs3dQRFqOZiZ0IHbVvFK7wsL45juiDIPYefF8M/dY3r5pKIuOeblNz6KRmizHxsapDpkaM+ttVLgL8AFm9fUAZU4lT+05ghV707AdgwrLzfqP+pG8yEf+EC++0cV8PfoJEl2tU4NM45KIiIhIx9LoYGr58uVA1YypVatWERYWVv21sLAwjjzySG644Ybm76GItBh9AOzAHAcrvwDXdz725GdQZFcQb2pZX3tQYlfwp5yfMT87nYt7LWZrRSJ/Sf6KOLPhWW8+x8+2QCXXbpzMtvx4APw+N6lvhxG3ZBcYBnuHpcJA2Dk+jKlnfsrkuKXEm623y5/GJREREZGOpdHB1Oeffw7A5ZdfzkMPPURsbGyLdSpodRQ/h+CLX7dGkfGWbqs5n7E529L7FXz7rUJLZjo8p9JP6iduRlTO4L4TX+XsqD0Kp9qwEruCa3ecwoZ7B9FleQ7/Hncavs4GF177LaPCq2ZS7bUriDXDKXF8FNkWHiDGdJNjBfjdlvPZ+GUver21l96btgFVv3ByyssJBAIYbjeFk7vzjyueZZAnj+7uCDxGdOs+pMYlERERkQ4l6BpT//rXv1qiH4fGaZ7i5+2pQLbaan9tHUr7LUXbsovjryTmP4vp9HkCf8q6lIGX3696U21UiV3B73aczMZ/DCL6g+8I+Hx0ztyB2S+di4ZezUM/e4WNvhQeXXoCfx31Fm/nDWPZlwMIRNv0HJhN3ifdSFlQRq/Fy3AqK7HqGGscyyJlUQXXx1/O9We9z287bW/159S4JCIiItKxBB1MlZaW8re//Y1PP/2U3NxcbLvmfPrNmzc3W+dEpGXpA6AAYFtYObl0+6I7L589kr8kLW9X9aYsxybfLufN4v4U2+GcGLWW4d6whi9sJ/yOxYdlMTy18zSKHupB1JzvcHw+AJxAAGvdRjLu7sUD/S8BoJvX5I+us7ljxLt0m7CHTSVd2PBxH9L+VwSr1uMEAlUNGwYcEE65k5PIHBfOaScv5sTI9UDrLeH7kcYlERERkY4l6GDqyiuv5IsvvmDKlCmkpqbWuUOfiLQTDtBQrRZ9AOwwvJkFvLryGG48cSHxrtYPJIJlOTYvFqfwZs7RrM9OIvU5L/5okwXX9ua1Ph9hYhwWyxLzrHJueuUaer+SR9Tmn0Kpao6DtTkTb+dockfEMPiSNdyZ/CVjw/1cEpNPiV3BZ5d35tZjJ5H8j8G412ylbHR/fJ1cxG4pg0WrwbZwpySz+dd9uG/Ks5waUYbLCNH3gMYlERERkQ4l6GDqww8/5IMPPmDs2LEt0Z+maWI21tgaQA2dE8yxpvShsZqzD01t/3B8v1r7GVuTigzL/sp7J/Dnke8Ra4aHuiuNUu5U8pd5ZzPoH7n0Kc7C3lOEcdKRxIeVs9bv5x+7TuXmrh+2+6WJxY5BRLaBtX5z9e6KBzJcLvb0j6JogMX8H/pQFvAwrPe7xBkRRJvhnBVVxoij/8lZt/yK4mWDmHD6EjyGxbwnR9JlqQszLpYtV+0fSoUu0NO4JCIiItKxBB1MxcfH07lz55boS4tqa4FAKDVnWNXS2ko/Wkqon09LZmR/tsekq7uw3cwy8hguhmRkUt4tFfPrbeA4RMxfzxffHMFn0Rmkv25zxgXX8f6Eh9tdOOV3LHYEyil23Fy9ZipdlpfWG0pBVa2wTq8vJ/4tN4bLxeZfHkHB7y3izJptuV0WZqXB3PdGELXLIfnN9Vj+SkjoRt+TN9PLXUi+bZPkimrFp61J45KIiIhIxxJ0MHXnnXfy5z//meeff57IyDay1KMRP6C2leLXzXXdobSlYuGt04emttWaWmpmwuOPP869995LVlYWgwcPZtasWYwbN67Oc+fNm8f48eNrHV+7di0DBw4M/uZySFwhnIric/x86/MQbvgZFmY2WOfKchw25yfQI6+kupC3VVJK31dKMIvKsDZtI2N7OmfQ/sKpLyvCuPa5a4ne7hC/pgSWfN/gNY7PV7XMzzDwFjq8U3IEvcLyWFDSl/f/M4aorKq24lYsBcvCsR2sfWGXk5PHngczmJowk/wxfv4+7nVOiNgVkoBKM6ZEREREOpagg6n777+fTZs2kZycTK9evfB4PDW+vmzZsmbrnIi0MJuGa7kE+QHwtdde4/rrr+fxxx9n7NixPPnkk5x22mmsWbOGHj161Hvd+vXriY2Nrf5zly5dgruxHLoQlgz0OX7+lHMsn88eRWWswfDzV9ErIp8L4pbQ3xNe7yyuivIwjIqSnwp52xbOku+rd2q1fthExoN9uSx1KvOPfhmv4amznbZmU2Uy3f9XirFwZa0C5Q1yHBLnbub97SfimAauigA9Vq3CLikBx6nzdzl2cTER7ywmwjBJ/rQbjx0xmdumljN90JdcFreOOLMVQ70WGJdEREREpO0KOpg6++yzW6AbIhIKLbFk5oEHHuCKK67gyiuvBGDWrFl8/PHHzJ49m3vuuafe65KSkujUqVNwN+uIDAPD9dNMouod1g6Rq1Mcu4/00MVVCrRejSmf48fvWPwldzRf3T+SLm+tAJeLnPeSyIrrxfOXjeP4EWu4t9tHJB4weyfSDOOl0U9z8e+nk/pFCnGfb8Qq2FNzyZvjYG/OpGLBcD7PiGZ8REmbD6eK7HKe3jyWxILS6plgwQpk5+DKzqn+c6NyHMcBxyKwNZPwzJ30XpHK68Mn8vnM/jyT/k6r1R7TUj4RERGRjiXoYOq2225riX4cGgP2X/DRnMWpm7stIOj267uuOdvS+9V2nrE1GbaDYR/83j9+fe/evTWOe71evF5vjWOVlZUsXbqU//u//6txfMKECcyfP/+g9xk2bBgVFRUMGjSIP/3pT3Uu7+vwTBccM4jMCTFYXoewvQZp7+Tg7MwOqhnH58MICwPbxq6oAMBO786pv1jIYE9Yk7vnc/wU25W1jseYYbXCoBK7gvkVMVy79DIqC8NJnWcS/+5K7LKyqhOKi8EwGLghlg0nD2L+PUs5K6qsVtujwl18c9b9fHxyb+745BxS5hvE7d/Ovuft9ewmbrCvwDWqkOePfI7+HoNIs+nP2pJWVEZg/jsBe9OS0HXCtghs30Fkdi6FFUdy9NnXc8moBZwWuwLHNlp0cl0w45KIiIiItH9BB1M/Wrp0KWvXrsUwDAYNGsSwYcOas19B278k7KHUIWoL9YSasw9Nva491V9qyferudtvzzWm0tLSahy/7bbbuP3222scy8vLw7IskpOTaxxPTk4mO7vu8CQ1NZWnnnqK4cOH4/P5ePHFFznppJOYN28exx13XFDPc7hyxcZixERTmZ5E3o0VfHDUP+hkmmwOuJl2/KUU7Onf6LbsChdJX3goOAI8JQa9Xs0Gw+CHS2K4u/NCXEbTwppCq4yLNpxP5uc9MfabxGWHQcZJG7izx7v09bjxGh7WVpZx5vzpxHwdSd/3MrHzC3AqK7EPnP3lOFh7iohbms3131zEmJMerjVrCiDVHc2UmGwmnfMg9x83kk+NscS+trjGzKlAdg7dH9yD2SuNy34+A8/4PB4b/Apxpo/eHk+bmUW1yV/CL7++joFL8rCaaTbcoXD8lYR9soyM+VHMO2UMbw0YhyvewXE5Lbb0UzWmRERERDqWoIOp3NxcLrzwQubNm0enTp1wHIeioiLGjx/Pq6++Gpq6ME38bB/qUKA1+tAWnrE56f1qZg4N//vZ9/Xt27fXqAF14Gyp/RlGzU+sjuPUOvajAQMGMGDAgOo/jx49mu3bt3PfffcpmAIMr5ftVx9B19My6Re7jheS/0eqOxqA4S6YP+yVoNorsX28NDqDE6PWsduK4vGJVTPTnu/6OsO9TQ+lfrH+QvhrF3p8tQTH+ikQMjxuij/N4OJjfs/YS5ZxVHQm93xzOhn3F2GtX0Wgnp3mXIkJAFh5+QS27aDLZ135emwyZ0burbPelMswiXdF8vuEb/n3mDHE/68z1u7dNc5xfD6s9Rvpumkrxmf9mTnwt5SmmJz5y6+4JXFpyGdQ+Rw/56+4ggH3lWH9sCmkfanBtrD27iXqzUXEJnVh69V98cW34FgZxLgkIiIiIu1f0MHUtddey969e1m9ejUZGRkArFmzhqlTp3LdddfxyivBfUgSkdAJZmZCbGxsjWCqLomJibhcrlqzo3Jzc2vNojqYUaNG8dJLLzX6/MOdFQF/TH+fsV4blxFd42sN7Vx3oHhXJNfGbwMiAJsTen+67yt1FxdvjH8XD8B6IJnwL5fXqnnl+CzMr7+j67JINn/Vh43eAQzamUMgc0e9Rb3dad3ZeHUaMZmQ8MwisC0S527hDwOmEDn5acZHVNT73LFmOH8+5S3++dW5RL+eV+c9nEAA57s1xKwwiIuMZG7+z/juiu70jdnNhfHfMsJr1FtsvSUt8bmo+DYBZ+2S4AuetwbHActq8VBIM6ZEREREOpagf/L+6KOPmD17dnUoBTBo0CAee+wxPvzww2btnIi0rB+LDDf0aqywsDCGDx/O3LlzaxyfO3cuY8aMaXQ7y5cvJzU1tfE3Pow5Ph/pL2znl+9N47vK0C/tqksX915KUt0Y7vp/12GXleEsXY0xfwWBbdvrD6VSU/jhmjT+OvllypIMDLNqpl0gK5u+j27hdy9cxalrz2F1ZXmd17sMk9OjtpB1nIO7Z9pB+4TjYJeW0vn15Ti/9LB+al+m/vsaTl93Fj/4Sxv/BjQDy7G5fcsker2eg+OvXaerI2nucUlERERE2raggynbtvF4atfi8Hg82HaIfoVZR/HzAzX1WHO31dLtt+Z1Ld1Wc7bfFvrQ2LZalfPT7IT6XsHOjpg5cyZPP/00zz77LGvXrmXGjBlkZmYybdo0AG6++WYuu+yy6vNnzZrF22+/zYYNG1i9ejU333wzb7zxBtdcc00zPmj7Fti2nf7PFfNW0fBQd6VOk6LyMM7Jx4iJOeS2KvuncuNZ7zAuIqtWDaNAVja97l+B97pwzvjkOhb5/JTYFbXaSHJF8e/TH2fdnQnkXH0s7tQUXJ3iql9mZGSN8+2KCgJbM7G/X0fve1Zizojm1M+vY6mvss72W4LLMBnf5QcKh3epKnLfVIaBGRNT43n3fxkHWYLbZrTAuCQiIiIibVfQS/lOPPFEfve73/HKK6/QtWtXAHbu3MmMGTM46aSTmr2DjdWU4udtoZh3W2i/LfShpdtvC31obFutqSV2v5o8eTL5+fnccccdZGVlccQRRzBnzhx69uwJQFZWFpmZmdXnV1ZWcsMNN7Bz504iIiIYPHgwH3zwAaeffnrwD3QYMysq8dlN3q+ixfgdi7WVNmW+5ike7pgGCa4Ssi0XrgpwDvj+s0tLYe0GMu5N59crf4c5MY/3j3y2uu7Wj0aFu1gxfjbvH5vKPRNOxR9IrOpvpZuoBZGkPvNdjZ37arS/aj0D/96XXy2/np7nbuaNvh8EvWSyKX7b+TueHnMCnd7yYFfUXXurPq7YWIz4OALJnVh/WSTe5DKMA6YVWZZJ5JfRdP1wF/gqsXJyay29bAvawq58hYWFXHfddbz77rsAnHXWWTzyyCN06tSp3mt++ctf8vzzz9c4NnLkSBYuXNiSXRURERFp94L+lPPoo48yadIkevXqRVpaGoZhkJmZyZAhQ0JXE0a/ORVpmhYqMjx9+nSmT59e59eee+65Gn++6aabuOmmm4K/iYSU5dgs9jn8u2AUX7w8gm6LyrD3FB1yu67yAK/kHMuyzT0Y+GE+Vl3F0R0Ha8Nmkrdk4izK4OQ//JpbjviIM6J2EGdGVJ8WbYZzYUwh5494GXvfN/Kswv6899pJOP6DBDKOg7V2A113ZLNq0EDsvjY15+W2jHDDjTuxAvuo/rjWbcNq4P00vF7Mvr0IxIazbXwUGaf9QPfILJ5InEd3d0St821s3hmWyPuXHsmKnG4kPpyK56tVbW/pYBsofn7xxRezY8cOPvroIwCuvvpqpkyZwnvvvXfQ60499VT+9a9/Vf85LCy0BfVFRERE2oOgg6m0tDSWLVvG3LlzWbduHY7jMGjQIE4++eSW6J+ItCDDgoZqPBvBTdyQw5Tl2BTa5czKH8Xm0kTKAmH8MLcPPT4oouvGVdjFxc2SFZirNpF/9yA6d3eDUwKGUW89KicQgCVr6PmHHjwx9Bc8cHkhGQm5/KLLkhq797kMszpWCjcClKS6sCcNw+VziF62g8CurLrvYVngHNpyW8uxq0MxOHixehOTl0Y9zRsDR/D+f8bQeX3VPz7HoGpZowMReZW4F68H26b01KF0mpHJ2UlfMdS7neHeH9uPrucOLi6ILuKC6C/J617KpX+6gILnhxNWauMut4lcsg1rd/7BH8jlqrXEsrmFelxau3YtH330EQsXLmTkyJEA/POf/2T06NGsX7++xi6iB/J6vaSkpLRc50REREQOQ01eF3LKKadwyimnNGdfRKSVtYUlM9L2+R2Lu/KG8uLyUfT6t0HE+hywHXoVfY+1d2+zTV4xPGGYyV3IPNXFHaf9h1u/ncTAe/pird1Q/0W2hbVxC1HbdhL7bSIFEfHceu5l5F/+Jr+I2YIHF5HmT7NWLo9bz5g/bMDvuNjqT+SW/11A0oIedP5oA/aeomZb2uZz/GwLVHLdpgvYsacTlmXi8QS4YeBcJkVvr9Evy7H5qsLN79dcQGm5F9s28Pf2U9bToGfvXG7t8x5RRiUWBi/kjeWrd4dh2HDsWat4pPtcos1wgp3RleiK4rX+/2Xj7S78jot1lancOedconb2Peh1jgv8MS07JoR6XFqwYAFxcXHVoRRU7RQaFxfH/PnzDxpMzZs3j6SkJDp16sTxxx/P3XffTVJSUov1VURERORw0Ohg6rPPPuOaa65h4cKFtbaMLyoqYsyYMTzxxBOMGzeu2TvZoDqKnx9Yu6epx5q7LSDo9uu7rjnb0vvVdp6xNTVmdyvtfiV5Vjkvzx3HwL9twCrYQ6Cu5XWHyIyMZPdFR7LnxApeGfMIw8NcpP3sWf5w1DRi122sd9bUjxx/JYGduwBI++ceHi86h7/1hrC+e3nrmKfo74kCqpb3Dd9X/7u3Zwdvnv4w34zvy33HnUrqZy7i3l1ZZ+2phuRZpVQ4DsmuqiV0U7dO5LtPB5CyMEBEspukT7aBZfHQpPO5sw9E9t/Dp8OfJtEVxTq/j6ve+C39/pmD4a8qtu6UV1AxJI3AjQYjvaX7wic4ptuXFFxdtetlZ5cXrxEedF9/FGdGVL8XI7zZnHH+/fgbeJ83ByK59IurMPc0T02xugQzLu3du7fGca/Xi/cQC7xnZ2fXGSYlJSWRnZ1d73WnnXYa559/Pj179mTLli3ceuutnHjiiSxduvSQ+yQiIiJyOGt0MDVr1iyuuuqqWqEUQFxcHL/+9a954IEHQhNMOYd38fO20If21Nf2/oytqXqHqwbOkRAzDALxkUS7fK1+6zyrlEt/uJhe71di5Rc0GBA1lWNZuCrhpqM/5lhvVejRyazAaUJpJ6uwkC7PLKaLYWL2T+fUG6/jo/EPV4dTAEV2OWO/+i3u9ZFccO4XPDj+FV4dfCxbXUOJf2tfOGXbuEpNciwfPdz1BzFFdjmjv/ot7h8iufCceQyL3Mrib/sz8PHNOJaNZ1B37PwC7IoKEv+ZRxePm7xLj2b3UQaJLtjkTyBxuUPByCT2nl1CIGAS81kUzhkFfJDxItHmT0vzvIaH1IP0palchkmiK6rB88qcEgyzpWdMNX5cSktLq3H8tttu4/bbb6/zmttvv52//OUvB2138eLFVe3XsWOq4zh1Hv/R5MmTq//7iCOO4JhjjqFnz5588MEHnHvuuQe9r4iIiEhH1uhgasWKFfz973+v9+sTJkzgvvvua5ZOiUjrCPWSGWkcV1wsa38ZxpOdFlF//aDml2eVMnn9RRh3J+L+eiVOHaGU4fVi9uyOk7kTu6ICw+3G7JWGk5VbtcNdIzk+HwlL89lUkQRxuw657z8uybPW/MDAf/RjovU7Zo6ay0Wxa0h0RfF1RTxxn0WQ9MZavvliJPNixrL9FAPXzyuIX90LvluD7fPR99VSzuxzFR8d/c9aO//9yO/YOLvC6f3CLr6aN4rPon9G1ACTisHdcX+2DPPLvJ9CaNvCqbQx9/ttyrjwPL6/+XMSPcVcGrMVPxYfDuvK8RHb673n4SyYcWn79u01fmF2sJlJ11xzDRdeeOFB2+3VqxcrV64kJyen1td2795NcnLyQa/fX2pqKj179mTDhoMsRRURERGRxgdTOTk5eDz1/5bW7Xaze/fuZumUiLSSNrD7lTSC10u3Hvn0cEe22i2L7HIu+uHCqlDqq5V11l4yPGGU/vwoCi4pIeyzo0leVIy5cQe5J6SQNA/YuCW4mzoO9n7Fxv2Oeejff/t22Bt0W1f+M+JUrLsMftNpA7N3nEb8+gqsPXtwzVuGyzDIWJKM0ykGJ3NX9bXO0jUkPTiUZx45hj8lrqvzFvFmBH896xXuyLuEHs9swJWXR/fFXcDnw6pvhpkDPseF5djEuyK5JXH9vi9U1Z26MKaQ1gwh25QgxqXY2Ng6Z3LXJTExkcTExAbPGz16NEVFRSxatIhjjz0WgG+//ba6bEFj5efns337dlJTUxt9jYiIiEhH1MC+Nz/p1q0bq1atqvfrK1euDN0PX03cIcg8yJT81tLSfWjv7bf2/dp7+8EyLKdRLwkdw+tlzwm9OSV1XfUuc61ho99F0Yvd6w2lAAyPmz19Xdw4eC7jLl9MweBo7LIykv6zGnvr9ibf2+9YZAVKuGXzucRuKT/05YOOQ2DHTmIX7+ChRSex2/LxUPrrbL4azCEDqnf+C2RlY63dUHOml20Rtn4Xz8w/jpWVFXU27zJMzosq5ObLX2PHlH6Y0dFYOblYe4rq7o9hErOjknO/mM4Dhf2wHK2X3V+ox6WMjAxOPfVUrrrqKhYuXMjChQu56qqrOOOMM2oUPh84cCBvvfUWACUlJdxwww0sWLCArVu3Mm/ePM4880wSExM555xzWqyvIiIiIoeDRn/KOf300/nzn/9MRUXtH8zLy8u57bbbOOOMM5q1c8E4sPj5gQFAYwOBxlzX1GN19auxfWjssca03dS2DqX9xrTVFt+v+tpv6JzGtt/YZ2wxTiNfEhqGQfmEIxny+xXcmPBd69++gbzELiujxwubeOiRX7DgsWNIfHsNjs9XtVNfU3a3s2y2l8fzf9kjOP6lGwn8NRlz0eqmdb4OgZ276Plfk6/L0+jhjuBfY//FummxuLt1Pfh1OblkPJDPpE+uZXVleZ3nuAyTfmHZ+Do7mLExB23P3SuNXT/zEr8gjNlLj2evXXfg1WG1gXHp5ZdfZsiQIUyYMIEJEyYwdOhQXnzxxRrnrF+/nqKiqvDR5XKxatUqJk2aRP/+/Zk6dSr9+/dnwYIFxMQc/PtBREREpKNr9FK+P/3pT7z55pv079+fa665hgEDBmAYBmvXruWxxx7Dsiz++Mc/tmRf66fi5yFpq632tb0/Y2synEbUcglxHzs0w2RvTzeXJX5DpBnWqrfu7Q7gTM7DXNgT64dN9Z4XyM4haXYeANYh7tbnZOWy6x8Z5Pgc+nxVVYC8rrpWTb+BQ+T6PG759hw6jXmZ38ydSrfPDJzSBnbhcxysDZvJuN/gDOc63p/4MIPDImqd1tXlo9/PtrKlNJ0eH8RiZGbVOWvKKS4l4XuLiBwf7vIInj9mENfHb22mh6xahrkr4NDfE96qs+yaS1sYlzp37sxLL7100HP2/96MiIjg448/btE+iYiIiByuGh1MJScnM3/+fH7zm99w8803V/9AZhgGEydO5PHHHw+qKKiIhJ525WvjbIuuc3Yxpf9vmHr8V1wRv4jurVAM2+9YzC1PxTQc8DTifxOHGEhVN1NcTMS7VbuiNSm03bckr87jgBkZSd7YFM4fsoBrF11Exv27sTZtrb8O1P4cB+uHTWQ80IcznN9xxZgvuaLTEpJckSz2OXgMi6FhEZyTvJy/D00iZdJOlrw5hLRn12Pl5ddsy+cjdm0hGAa5x7mZGLUGaL76Yf8rS+aBzSfzzuAXG7XTXlujcUlERESkY2l0MAXQs2dP5syZQ2FhIRs3bsRxHPr160d8fHxL9U9EWpDhOA3OPNCMqdAKbNnGwLvLmDdnLK5/2PUW4G5OeVY5t/7nYvo8n4O9NbPF71dDU77fTBfupEQKj08nMrcSz4I1OFZVcmGmp5E/KgnbBb7OBhMvWUBGxC4iF43B3rYmqPu5e6ZhxUYw6K6dzB12HPF/L+XquK08mn0SizJ7cHTaDmZ2/Zj/jHqKru4Ak0/pzO7d/eny1pqaM6eSE8kdk4DLB784eiE93UH9r7hBJ0fmMGjgS8SbtWd1tQcal0REREQ6lib9NBwfH8+IESOauy9NZ9SuMQU1f+NuGkat38A35lhTr6uvrab0q77rQt1Wcz5jc7bVGs/Ykt8TrcmwHAyjgQ+AKn4eWo6DlZNLxLY4igItHzT4HYs/Z00k9ZsA1sYth154vIUZXi97zh9Gzs9s7hn/Gu/nH8miL4dhBAADnD6lzB7xFLdtmETB2iT+u3AEn2wYTbeX1mP5K4O6lxUfQ3lKBFEbStjTx02fsFw8hou/dX+fi4unsGRrTz6MPpIXVx/LwK455H7ejSjbwQgPB34KpqxN2+iyKwfD4+azyFG8ffyRvDz6nxzrrX/n22DEmRHEte7Kz2alcUlERESkY2neX9OGUFNqTNWlLdQTas4+NPW69lR/qSXfr5ZuP9Q1prCdqldD58hhz+9YbAlUsNuK4LNvhtD/y1Wh//5sBDMinNwJlTw99nl6uYs4q0cOvkvmVH/dY5hsD9gUfpHCgMe+xwkEcPyBoEMpAGfFOiJWGThhYbgqHDZVJuGP2Ep3dzRzBr/CtoDD3TtPp/9dZZSndqVH/h6c1RsJBPw1G7Kt6p3/ujy7lC7LBvD5kEEc691wSO/FYUPjkoiIiEiHcngEU038+bQtfOhq6T60hWdsTu39/Wprfx+GU/Vq6BwJMdNFZXIM8e4yLMfGZZj4HD8LKrzsDMST5slntNfCY7gabqsOPsfPw4UDeeH5icRst+m3oRi7rIGC4C3I1SkOp0cqmFWFu40yH/bmbXXu9GeXlNLnnw5/+vAqCjMMLj/nf5wVs6K68LffsbhtxwRSF1ZgFRcf2gww28KxwQkESHlrE7N6ncGJF95PRlgkBXaAi7+7iuI9kWQUZeFeuwEbGryf46/EtbecxXt6Uha/utWL3LdFGpdEREREOpbDI5gSkSbRkpn2wYwIZ8eYcJbs6cH0is4A7K6IZsur/UhcVU7OsRFMv+IdrojLrDOcspyqekt2HSm+jc2sgkG8/vDJpL32PVZxcfA74e1bkmq4PRiD+lDevapAe3huBaz8AcdfFSi5uiRQcWQPrLCfdoozHIfwXWUYtk1592gcwyBvqJtTz1tIircI2zF5edMxpM3sjuMyMSr9BLZtr77eCQQwv1pOrGEQ3zme/30ylqfOPYkTxnxPemQeV8cv5VcpX3NzxgCSvjDBaZ5C7YbHQyC5kvX+JLYF/IwOL2dU162se2YIVm5eUAGYs20Hux49inN/fQ5Xdf+KM6Lyce9boF7XrnqWY2PjYGLUe86B59enLe7ap3FJREREpGNRMCXSkWnJTLtgl5XR69lN+F6NYgf7dlmzbVJyv8MuK6P7qjhmBybhmfYmV8RlA1VhhM8JkGNV8vtt57ClMKHOtisDLiLmxNLlP1WhVL1MF4arduhlxsVQeEo/Kjqb2B6InJjDXf2fBeDB7RPIfHc4Ll/VucW9bf708zfp5cmrvt7C4K9bfk5FwM1tff9LmGHRxVXKQI+3OjRJ9hTxj4t/QXl6JQkLPSQ8s6v2ToCOg5VfgPl1AQPWdiY7LpEtvQfw7GVjCI+sJD6vebdxs7Jz6P1iCn/ccBllaQFOHLaGz1ZmkLEuL+hlgnZFBbFvL8e1OJU7z7iUO04sxDQc+iXs5qEe75C6306M88pN/rjhXMp8VTOrusUV8UD6f0l3h9cZSmYFSpix/SzW5yVhmjanpa0lxxfLqvxUhiRkcV+3/xHX1oqka1wSERER6VAOj2CqkcXP6zrW0Yp5q/h5cO2H6v1qLdr9qp1wHALZOfV+2dpTRLd/b+DvoyYycexjdDLd/HX3sbyycBSePS56v1lC6uad9X6Yt8s2Yvt8dTduunDFxVJ0ygByhxs4B0ywsWIsbjvhTY6P2IzLgM6mm2gzHIDRfd8h7/qfQppwwyDBjKg1S2f0wP9iY1dfBzWDkotidrL63AW89dlIOm30wUFmAAFY+QWQX4Bn63YGLokGw8QuK8M5MMw6BE4ggHved/RYHEn5uIFsfnsgGYs2YhXtbVp7Ph/WziziNifhWhdF+LIt7OnXnQk3Xc1/hj1NjFn1zPdsvZC4GS7isnPANLDSUjjjghvoO3obL/R9nURXFH7HotCuYI8Nk7+7ki7/CCd1XSaYLuYdNwbTcigZ4Oa7cSa+rs0b2DUHjUsiIiIiHcvhEUw5TSt+3haKebeXPrSnvraFPjR3+y3GdqChJTGamdAu2IWFdH2pFydtupHUY7OoeD6FjPfWYPt8OJWVWE34vjI8YVSOH8rGKRaXDv2K6zsvxlPH0q8IIwyXEV3reKQZRo9G1ExqqK6SGxdfZfdhwIOZBLJyGr9Mzraw9hQ1fF5T2RZ2cTHej5YBYB1i8GUfk0H+EW7SPtqDlZePUbCHbndncNHoG3DcgAPRu2xit638qQZYQSF91nmpHDWISf83hbv7vc2He4/i3bfG4C2ElIXFOEtXVfct6q0CXLHRFKUP5u6Bb5HkijqkPrcIjUsiIiIiHcrhEUyJSJNoZsLhwwkECP/fSnrlD6BgUyqJKwqxSkprL3lrgCsxAbtXKo5pUNo9krjrMlnS5w1izXBcRmQL9b5hiZGllA/sijcQwMrJDVk/6tRMM7E823bToyASa/3m6nadJd+TvGy/OcGOXTO8dhzsigpcX64gpnggt/a4Cu8eP70WrcAur8Bx7JpBnm1hl5YTvdOmzPECB+wY2AZoXBIRERHpWBRMiXRktgNGA0t5NDOh3XB1SWTrjRbXZrzLw2vGk/aPQRjL1uLU9Xd4YGBhGLhTktl8dW+mnPcpiZ5iOrlKmRiZTZwZukAKqgp0P5L+Ov+ZNYzXHz6ZhGfymy0Magnu9J4UD03G9DtEbsinrG8C4XkV8N16HGtfvw98/4HAjp11N9iYZ7UtnGVriFrhwrEdHNPANaA3RkUlgS3bapxqxsWQNc5hUFgO0EZnTGlcEhEREekwDotgyrAMim0T22x7tTJEmmKvHd4q26EbloNRx05tB54jbZ/hCaPguDSmDfyQaZ12csaxT3DmH68k8PWxGHXkGhF5DgnvrcMqLMQMD2fvWUeRPRoeO/MZToko368OVNsojJ3uieaSuOW8FHdKqLtycIaBr1cCO040cfkMEjslMfL3S1i9J5WsT47B3DdBKTbTIub9FdgVFc1zW7cb38nDKMjw4BjgmFB+dBmxXyXS5ckdNcItq2APPebYLJvQnf6ewuBv5rRsHTyNSyIiIiIdS7sPppxAgG6fwdlFv69VlFekvXKXGfRal0eLzwlxnIbr9WjJTNAqOpnEx8Vil5S22j3N2GhyT/MxOXYNZbaHzmYYc4Y9zZ4jaw+MNgZ/z5rI7mVdMUpKMRMT8E/N58MjnqOry4XPMWkgFwgJnwMYYIZ5cKzaO9C1FZ5F6xm4Jgpsh8oj0hgUuYtbkr4gv09VoOPH5JcrpxK3oDNObl4DrTWOGRXB1nPgrQkP4t2XRBY7Hq5Y/rs63y9PSYA9ViRldv1F9euyujIJx2fSotGUxiURERGRDuWwCKYi31lC+vtt90OKSFNYgVao/WLbjVgyo5mIwSrp5bBrSgbu0tb78Oy4wS61OGf1lEaFBrl7ook8MRr3yHgsr0HRbh+Xr23ctaFSabnwxTvsvnRYmwzO6lLZyeChNeN5IWpU9TEHKMyPhrM6Y1b2bJb7OC4wAja/XX9R9d/hwd6vyk4Gj6w9gZeiRjb6HpZjkJsfi1nWwv+/1bgkIiIi0qG0+2AKqKqt0YbrjYi0VVoy0wIMsN0Oxb1a/30zy02y1yY1+vziXj9+uHcwCj1kFzb+2pAJdygcFOpOBMOBzBiyiKlx1ASK+jXv94hRadT++6/3/aq7X22BxiURERGRjuXwCKZEpGm0ZKZltOVpR/trL/3cX3vsc31a41na4/ulcUlERESkQ1EwJdKRWTbQwJIYS0tmRKQVaVwSERER6VAUTIl0ZI7dcK0WRx8ARaQVaVwSERER6VAUTIl0ZLZDg1WkbS2ZEZFWpHFJREREpENRMCXSkdkW0MDGAdpYQERak8YlERERkQ5FwZRIR6aZCSLS1mhcEhEREelQFEyJdGS2Q4NFhvUBUERak8YlERERkQ5FwZRIR2ZZ4GjJjIi0IRqXRERERDoUBVMiHZnjVL0aOkdEpLVoXBIRERHpUBRMiXRklt3wtusNbdsuItKcNC6JiIiIdCgKpkQ6MMe2cBpYMtPQ10VEmpPGJREREZGORcGUSEfmNGL3Ky2ZEZHWpHFJREREpENRMCXSkVkWGA3MPNDMBBFpTRqXRERERDoUM9QdEJHQcSyrUa9gPf7446SnpxMeHs7w4cP56quvDnr+F198wfDhwwkPD6d379488cQTTX0kEWnnWmpcEhEREZG2ScGUSEdmO417BeG1117j+uuv549//CPLly9n3LhxnHbaaWRmZtZ5/pYtWzj99NMZN24cy5cv55ZbbuG6667jjTfeaI4nFJH2pgXGJRERERFpuxRMiXRgjmU3YmZCcLtfPfDAA1xxxRVceeWVZGRkMGvWLNLS0pg9e3ad5z/xxBP06NGDWbNmkZGRwZVXXsmvfvUr7rvvvuZ4RBFpZ1piXBIRERGRtkvBlEhH5tiNezVSZWUlS5cuZcKECTWOT5gwgfnz59d5zYIFC2qdP3HiRJYsWYLf7w/+mUSkfWvmcUlERERE2raQFD939u2mE8Df4MY7InJoAlSFO04du1j5rQocDl6r5cfr9+7dW+O41+vF6/XWOJaXl4dlWSQnJ9c4npycTHZ2dp3tZ2dn13l+IBAgLy+P1NTUg/avufz4/tgVFa1yP5GO7Md/Z4c6LomIiIhI+xeSYCo8PByAr5kTituLdEg//rsDCAsLIyUlha+zG/dvMDo6mrS0tBrHbrvtNm6//fY6zzcMo8afHcepdayh8+s63pJ+fH923H5Xq91TpKM7lHEpJSWFsLCwluqaiIiIiLSSkARTI0aMYOHChVRUVLTqB0+RjshxHMLDwxkxYkT1sfDwcLZs2UJlZWWj2zjw3+qBs6UAEhMTcblctWZH5ebm1poV9aOUlJQ6z3e73SQkJDSqf81B45JI62mOcSksLKxGsCUiIiIi7VNIginTNBk5cmQobi0i+4SHhzf7h7qwsDCGDx/O3LlzOeecc6qPz507l0mTJtV5zejRo3nvvfdqHPvkk0845phj8Hg8zdq/g9G4JBJ6LTEuiYiIiEjbpuLnItKsZs6cydNPP82zzz7L2rVrmTFjBpmZmUybNg2Am2++mcsuu6z6/GnTprFt2zZmzpzJ2rVrefbZZ3nmmWe44YYbQvUIIiIiIiIi0kpCMmNKRA5fkydPJj8/nzvuuIOsrCyOOOII5syZQ8+ePQHIysoiMzOz+vz09HTmzJnDjBkzeOyxx+jatSsPP/ww5513XqgeQURERERERFqJ4dS1JY6IiIiIiIiIiEgL01I+EREREREREREJCQVTIiIiIiIiIiISEgqmREREREREREQkJBRMiYiIiIiIiIhISCiYEhERERERERGRkFAwJSIiIiIiIiIiIaFgSkREREREREREQkLBlIiIiIiIiIiIhISCKRERERERERERCQkFUyIiIiIiIiIiEhIKpkREREREREREJCQUTImIiIiIiIiISEgomBIRERERERERkZBQMCUiIiIiIiIiIiGhYEpEREREREREREJCwZSIiIiIiIiIiISEgikREREREREREQkJBVMiIiIiIiIiIhISCqZERERERERERCQkFEyJiIiIiIiIiEhIKJgSEREREREREZGQUDAlIiIiIiIiIiIhoWBKRERERERERERCQsGUiIiIiIiIiIiEhIIpEREREREREREJCQVTIiIiIiIiIiISEgqmREREREREREQkJBRMiYiIiIiIiIhISCiYEhERERERERGRkFAwJSIiIiIiIiIiIaFgSkREREREREREQkLBlIiIiIiIiIiIhISCKRERERERERERCQkFUyIiIiIiIiIiEhIKpkREREREREREJCQUTImIiIiIiIiISEgomBIRERERERERkZBQMCUiIiIiIiIiIiGhYEpEREREREREREJCwZSIiIiIiIiIiISEgikREREREREREQkJBVMiIiIiIiIiIhISCqZERERERERERCQkFEyJiIiIiIiIiEhIKJgSEREREREREZGQUDAlIiIiIiIiIiIhoWBKRERERERERERCQsGUiIiIiIiIiIiEhIIpEREREREREREJCQVTIiIiIiIiIiISEgqmREREREREREQkJBRMiYiIiIiIiIhISCiYEhERERERERGRkFAwJSIiIiIiIiIiIaFgSkREREREREREQkLBlIiIiIiIiIiIhISCKRERERERERERCQkFUyIiIiIiIiIiEhIKpkREREREREREJCQUTImIiIiIiIiISEgomBIRERERERERkZBQMCUiIiIiIiIiIiGhYEpEREREREREREJCwZSIiIiIiIiIiISEgikREREREREREQkJBVMiIiIiIiIiIhISCqZERERERERERCQkFEyJiIiIiIiIiEhIKJgSEREREREREZGQUDAlIiIiIiIiIiIhoWBKRERERERERERCQsGUiIiIiIiIiIiEhIIpEREREREREREJCQVTIiIiIiIiIiISEgqmREREREREREQkJBRMiYiIiIiIiIhISCiYEhERERERERGRkFAwJSIiIiIiIiIiIaFgSkREREREREREQkLBlIiIiIiIiIiIhISCKRERERERERERCYn/B353z85aThfDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.context_encoding(model, task, task_loader)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "It's tricky to see the encoded station context points, so let's zoom in on that context set specifically to get a feel for how the ``ConvNP`` receives station data:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T17:58:28.441062531Z", + "start_time": "2023-10-27T17:58:27.925913959Z" + }, + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAHZCAYAAAAWtKLAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZxkdX3v/9f3e5Zaept9ZWZYBJRFQEFARCGiXiREE6PmxqiouUlckhjjNdfc3Bu9JmruTX7ilh0Yo9flRiKuMVciiFxBWRwUkWVghhlm33rvqjrnfL+/P2q6maZnuqu7q2vr9/PxqMdMV58651vVtXzrcz7fz8d47z0iIiIiIiIiIiIi0jJsswcgIiIiIiIiIiIiIpMpcCsiIiIiIiIiIiLSYhS4FREREREREREREWkxCtyKiIiIiIiIiIiItBgFbkVERERERERERERajAK3IiIiIiIiIiIiIi1GgVsRERERERERERGRFqPArYiIiIiIiIiIiEiLUeBWREREREREREREpMUocCsiTbV582aMMROXfD7PmjVruPLKK/nIRz7C/v37mz3ECcYYPvCBD0z8/NBDD/GBD3yA7du31/1Y+/fv57rrrmPFihUUi0UuvfRS/v3f/73uxxERERGR+Tt2Pjvd5fbbb5+4zSc+8QmMMZxzzjmT9vXxj38cYwzf/va3T3i8f/iHf8AYw7/8y79MXOec43Of+xyveMUrWLVqFVEUsWTJEi655BL+8i//koMHD87qPn3rW9+aNPd9pltvvZVLL72UYrHIihUruO6661pq7i4i0gmM9943exAisnht3ryZt7zlLdx00008+9nPJkkS9u/fz5133slNN91EEAR86Utf4qqrrmr2ULn77rs56aSTOOmkkwD48pe/zGtf+1puu+02rrjiirodp1wuc+GFF9Lf389HP/pRVq1axac//Wm++c1vcuutt/KSl7ykbscSERERkfm7++67J/38oQ99iNtuu43vfve7k64/66yz6O3tBeD888/ngQcemLj9xRdfDMChQ4dYv349v/RLv8T/+T//57jHe+ELX8jWrVvZtWsXURQxNjbGq171Km699VZe//rX86pXvYp169YxODjID37wA2644QbOOOMMvv/979d8n971rnfx6U9/muOFDL73ve9x1VVXcc011/DOd76T/fv380d/9EcsXbqUe++9l1wuV/NxRETkxMJmD0BEBOCcc87hwgsvnPj5Na95DX/wB3/Ai170In7lV36Fxx57jNWrVzdxhHDJJZc05Dg33HADDz74ID/4wQ+49NJLAbjyyis577zzeN/73scPf/jDhoxDRERERGrzzHniypUrsdaecP5477338sADD3DNNdfwzW9+kxtuuGEicLt8+XJe9apXccstt3Do0CGWL18+6bYPP/wwd911F3/4h39IFEUAvPvd7+Y73/kOn//85/mP//E/Ttr+F3/xF/mTP/kT/vf//t/1urv85//8nznjjDP48pe/TBhWwwqnnHIKl112GTfeeCNvf/vb63YsEZHFTKUSRKRlbdy4kb/6q79iaGiIv/u7v5v0u3vvvZdf+qVfYtmyZeTzeS644IIpGQnjZRhuu+023v72t7NixQqWL1/Or/zKr7B79+5J2373u9/liiuuYPny5RQKBTZu3MhrXvMaRkdHJ7Y5tlTC5s2bee1rXwtUg6rjy982b97Mhz70IcIwZOfOnVPu01vf+laWL19OqVQ64f3+yle+wplnnjkRtAUIw5Df+I3f4Ec/+hG7du2q7QEUERERkZZ0ww03APDRj36UF77whXzxi1+cNO9829veRqVS4fOf//yU2950001AdV4JsGfPHm688UauueaaKUHbccVikf/0n/5TzeO77rrr+PSnPw1MLgOxfft2du3axT333MMb3/jGiaAtVLOAzzjjDL7yla/UfBwREZmeArci0tJe+cpXEgQBd9xxx8R1t912G5dddhn9/f387d/+LV/96lc5//zzef3rX8/mzZun7OM3f/M3iaKIz3/+8/zP//k/uf322/mN3/iNid9v376da665hjiOufHGG/n2t7/NRz/6Ubq6uqhUKscd1zXXXMOHP/xhAD796U9z1113cdddd3HNNdfw27/924RhOCXYfPjwYb74xS/ytre9jXw+f8L7/OCDD/Lc5z53yvXj1/3sZz878QMmIiIiIi1tbGyML3zhC1x00UWcc845vPWtb2VoaIh//ud/ntjmqquuYtOmTdx4442TbptlGZ/97Ge55JJLOOuss4Dq3DhNU37pl36pbmP8b//tv/Grv/qrABPz3Lvuuou1a9fy4IMPApxwvjr+exERmT+VShCRltbV1cWKFSsmZci+4x3v4Oyzz+a73/3uxFn+V7ziFRw8eJA//uM/5k1vehPWPn1e6j/8h//AJz7xiYmfDx8+zPve9z727t3LmjVruO+++yiVSvyv//W/OO+88ya2+/Vf//UTjmvlypWcfvrpQLVW2TOXwf3ar/0a//AP/8B//+//nTiOAfjHf/xHyuUy73jHO6a9z4cOHWLZsmVTrh+/7tChQ9PeXkRERERa15e//GUGBgZ429veBsDrX/963v3ud3PDDTfw5je/GQBrLddddx0f/OAH+fGPf8wFF1wAwL/+67+yZ88e/sf/+B8T+xtf5bVp06Ypx0rTdNLPx2bITue0006bKFP2zHnu+Fz0RPNVzVVFROpHGbci0vKObYiwdetWHn74Yd7whjcA1cno+OWVr3wle/bs4ZFHHpl0+2dmH4xnBzz55JNAtTFEHMf81m/9Fp/5zGd44okn5j3m3//932f//v0TmRPOOf7mb/6Ga665hpNPPnnG2xtj5vQ7EREREWltN9xwA4VCgV/7tV8DoLu7m9e+9rV8//vf57HHHpvY7i1veQvW2klZtzfddBNdXV28/vWvn/E4W7ZsIYqiSZeDBw/W7X6caE6quaqISP0ocCsiLW1kZIRDhw6xbt06APbt2wfAe9/73ikT0fFM1mdOSJ/Z0GG8y+3Y2BhQzSi49dZbWbVqFe985zs57bTTOO200/j4xz8+53FfcMEFXH755RO1wb7xjW+wfft23vWud8142+XLlx83U+Hw4cPA8bMbRERERKT1bd26lTvuuINrrrkG7z39/f309/dPlCU4Nki7adMmXvrSl/L5z3+ecrnMwYMH+cY3vsFrX/taenp6JrbbuHEj8HRSwrgzzzyTe+65h3vuuWdW9W1nMj63PtF8VXNVEZH6UeBWRFraN7/5TbIs44orrgBgxYoVALz//e+fmIg+83L++efP+jiXX345X//61xkYGODuu+/m0ksv5d3vfjdf/OIX5zz23/u93+Ouu+7i/vvv51Of+hRnnHEGL3vZy2a83bnnnstPf/rTKdePX3fOOefMeUwiIiIi0jw33ngj3nu+/OUvs3Tp0onLNddcA8BnPvMZsiyb2P5tb3sbhw8f5qtf/Sqf+9znqFQqEyUWxl1xxRWEYcjXvva1SdcXCgUuvPBCLrzwwokkiHoYn4ueaL6quaqISP0ocCsiLWvHjh28973vpa+vj9/+7d8GqpkDp59+Og888MDERPSZl2MzEGYrCAIuvvjiiUzZ+++//4TbPjNz95l++Zd/mY0bN/KHf/iH3HrrrbzjHe+oaenYL//yL/Pwww/zwx/+cOK6NE353Oc+x8UXX1zXibeIiIiINEaWZXzmM5/htNNO47bbbpty+cM//EP27NnDv/7rv07c5tWvfjXLly/nxhtv5KabbuKMM87gRS960aT9rl27lre+9a1885vfnFfSwTOdaK67fv16XvCCF/C5z31uUpD57rvv5pFHHuFXfuVX6jYGEZHFTs3JRKQlPPjggxO1avfv38/3v/99brrpJoIg4Ctf+QorV66c2Pbv/u7vuPrqq3nFK17Bddddx/r16zl8+DA///nPuf/++yd15K3F3/7t3/Ld736Xa665ho0bN1IqlSaWqV111VUnvN14NsHf//3f09PTQz6f55RTTplYPhYEAe985zv5oz/6I7q6urjuuutqGs9b3/pWPv3pT/Pa176Wj370o6xatYq//uu/5pFHHuHWW2+d1X0TERERkdbwr//6r+zevZu/+Iu/mFhNdqxzzjmHT33qU9xwww384i/+IlANnr7hDW/gk5/8JN57PvrRjx5339dffz3btm3jDW94A1/72td41atexbp16xgdHeXhhx/mi1/8Ivl8niiKah7vueeeC8Bf/MVfcPXVVxMEAc997nOJ45i/+Iu/4GUvexmvfe1recc73sH+/fv5L//lv3DOOefwlre8ZfYPjoiIHJcybkWkJbzlLW/h0ksv5aUvfSlvf/vb+fGPf8wf/dEf8fDDD3PllVdO2vbKK6/kRz/6EUuWLOHd7343V111FW9/+9u59dZbpw20nsj5559Pmqb86Z/+KVdffTVvfOMbOXDgAF/72td4+ctffsLbnXLKKVx//fU88MADXHHFFVx00UV8/etfn7TNeOOIN77xjfT19dU0nlwux7//+79z5ZVX8ru/+7tce+21E9kXL3nJS2Z9/0RERESk+W644QbiOD5hYHPFihX88i//Mt/4xjcm+jpAtVyC954gCHjTm9503NsWCgW+/e1vs3nzZg4ePMi73vUufuEXfoHXv/71fP7zn+d1r3sdW7durXk+CvDrv/7r/OZv/iZ//dd/zaWXXspFF13E7t27gWp5hm9961vs2bOHa6+9lt/93d/lyiuv5N///d8nMnVFRGT+jD+2XbuIiNTVJz/5SX7v936PBx98kLPPPrvZwxERERERERGRNqHArYjIAvjxj3/Mtm3b+O3f/m0uu+wybrnllmYPSURERERERETaiAK3IiIL4OSTT2bv3r1cfvnlfPazn2XNmjXNHpKIiIiICM45nHPTbhOGaocjItIKFLgVERERERERWSSuu+46PvOZz0y7jcIEIiKtQYFbERERERERkUVi+/btHDx4cNptLrzwwgaNRkREpqPArYiIiIiIiIiIiEiLsc0egIiIiIiIiIiIiIhM1pSK48457rnnHkqlEsaYZgxBREREpO1578nn81x00UVY+/T5+FKpRKVSafh44jgmn883/LiNoPmriIiIyPxp/jo7TQnc3nPPPVxyySXNOLSIiIhIx7n77ru5+OKLgeqk95RN3ezdnzV8HGvWrGHbtm0tPfmdK81fRUREROpH89faNCVwWyqVAHgRryQkasYQRERERNpeSsKdfGtibgVQqVTYuz/jyftOprencVWxBoccm56/nUql0rIT3/kYf4xP/fs/wBZyTR6NiIiISHtyY2We+K2Paf5ao6YEbseXl4VEhEaBWxEREZE5Odpi9nhL97t7DN09jVvS7+js8gHjj7Et5AiKrTmxFxEREWkXmr/WpimBWxERERFZWJl3ZL6xxxMRERERmSvNX6dqXP6xiIiIiIiIiIiIiNREGbciIiIiHcjhcTQuZaGRxxIRERGRzqP561TKuBURERERERERERFpMcq4FREREelADkcjq3Y19mgiIiIi0mk0f51KgVsRERGRDpR5T+Ybt/yrkccSERERkc6j+etUKpUgIiIiIiIiIiIi0mKUcSsiIiLSgdTcQURERETaieavUynjVkRERERERERERKTFKONWREREpAM5PJkyFkRERESkTWj+OpUCtyIiIiIdSEvNRERERKSdaP46lUoliIiIiIiIiIiIiLQYZdyKiIiIdKDMezLfuCyCRh5LRERERDqP5q9TKeNWREREREREREREZBof+chHuOiii+jp6WHVqlW8+tWv5pFHHlnQYypwKyIiItKBXBMuIiIiIiJz1erz1+9973u8853v5O677+Y73/kOaZry8pe/nJGRkTnf55moVIKIiIhIB8oa3JW3kccSERERkc7T6vPXb3/725N+vummm1i1ahX33XcfL37xi+s5tAkK3IqIiIiIiIiIiMiiNDg4OOnnXC5HLpeb8XYDAwMALFu2bEHGBSqVICIiItKRMt/4i4iIiIjIXDVr/rphwwb6+vomLh/5yEdmHKv3nve85z286EUv4pxzzlmwx0QZtyIiIiIiIiIiIrIo7dy5k97e3omfa8m2fde73sVPfvIT7rzzzoUcmgK3IiIiIp2o0Q3D1JxMREREROajWfPX3t7eSYHbmfzu7/4uX/va17jjjjs46aSTFmZwRylwKyIiItKBHIYM09DjiYiIiIjMVavPX733/O7v/i5f+cpXuP322znllFMWaGRPU+BWREREREREREREZBrvfOc7+fznP89Xv/pVenp62Lt3LwB9fX0UCoUFOaYCtyIiIiIdyPnqpZHHExERERGZq1afv/7N3/wNAFdcccWk62+66Sauu+66+gzqGRS4FREREREREREREZmG943PVFDgVkRERKQDZQ2uEdbIY4mIiIhI59H8dSoFbkVEREQ6kCa+IiIiItJONH+dyjZ7ACIiIiIiIiIiIiIymTJuRURERDqQ8wbnG5dF0MhjiYiIiEjn0fx1KmXcioiIiIiIiIiIiLQYZdyKiIiIdCDVCBMRERGRdqL561QK3IqIiIh0oAxL1sDFVVnDjiQiIiIinUjz16lUKkFERERERERERESkxSjjVkRERKQD+QY3d/Bt0NxBRERERFqX5q9TKeNWREREREREREREpMUo41ZERESkA6m5g4iIiIi0E81fp1LgVkRERKQDZd6S+QY2d/ANO5SIiIiIdCDNX6dSqQQRERERERERERGRFqOMWxEREZEO5DC4Bp6jd7RByoKIiIiItCzNX6dS4FZERESkA6lGmIiIiIi0E81fp1KpBBERERFpuDvuuINrr72WdevWYYzhlltumXb76667DmPMlMvZZ589sc3mzZuPu02pVFrgeyMiIiIiUn/KuBURERHpQI1v7jC7pWYjIyOcd955vOUtb+E1r3nNjNt//OMf56Mf/ejEz2mact555/Ha17520na9vb088sgjk67L5/OzGpuIiIiINF6rz1+bQYFbEREREWm4q6++mquvvrrm7fv6+ujr65v4+ZZbbuHIkSO85S1vmbSdMYY1a9bUbZwiIiIiIs2iwK2IiIhIB6o2d2hc3a7xYw0ODk66PpfLkcvl6n68G264gauuuopNmzZNun54eJhNmzaRZRnnn38+H/rQh7jgggvqfnwRERERqa9mzV9bmWrcioiIiHQghyVr4GW8A/CGDRsmsmP7+vr4yEc+Uvf7tmfPHv71X/+V3/zN35x0/bOf/Ww2b97M1772Nb7whS+Qz+e57LLLeOyxx+o+BhERERGpr2bNX1uZMm5FREREpG527txJb2/vxM8LkW27efNmlixZwqtf/epJ119yySVccsklEz9fdtllPO95z+OTn/wkn/jEJ+o+DhERERGRhaTArYiIiEgHalZzh97e3kmB23rz3nPjjTfyxje+kTiOp93WWstFF12kjFsRERGRNqDmZFO1fk6wiIiIiMhR3/ve99i6dStve9vbZtzWe8+WLVtYu3ZtA0YmIiIiIlJfyrgVERER6UCuwXW7HLPLWBgeHmbr1q0TP2/bto0tW7awbNkyNm7cyPvf/3527drFP/3TP0263Q033MDFF1/MOeecM2WfH/zgB7nkkks4/fTTGRwc5BOf+ARbtmzh05/+9NzulIiIiIg0TKvPX5tBgVsRERGRDpR5Q+Yb1yl3tse69957ufLKKyd+fs973gPAm9/8ZjZv3syePXvYsWPHpNsMDAxw88038/GPf/y4++zv7+e3fuu32Lt3L319fVxwwQXccccdvOAFL5jlvRERERGRRmv1+WszKHArIiIiIg13xRVX4KepK7Z58+Yp1/X19TE6OnrC23zsYx/jYx/7WD2GJyIiIiLSdArcioiIiHSgDEvWwKVmWRssNRMRERGR1qX561RqTiYiIiIiIiIiIiLSYpRxKyIiItKBnLc438DmDtOUPRAREZHG8N7gPVirz2VpP5q/TqXArYiIyAmYMMT29ZIdPgJt8KEuciwtNRMRkU7jvaE0HBPEjjiXNHs4LSfLLP7xLqJhw9hqR379cLOHJDIrmr9OpVIJIiKdyszQIdMY3OUXEDzrlMaMp90Ygz39FLb+4ZkEfb3NHo2IiIhIx/LekDzRQ/ZID0nlxPll/qEeVn4vZum/5xkbzDdwhO3BZZZ4wGATyB+0eD/D9wERaXnKuBUR6UD+heeRdkfk7ngQVyoddxsTxxT+bA+P3XYqGz+4XRmlz+Q9buuTnP7pEdKBwWaPRmTWHJA18Auba9iRRESk01R2dbHs5xBUPEdcgeyMEYJg6idL/iAYB3iI90TQe/x5bifw3lAeiQlzKWGU1XQbGzjSIgQlqPQ5YqP5vbQXzV+nUuBWRKQDBaPVpWM+O/FHkS+XSX8145Tyg2SdHrS1Af6Scwgf2Ul26HDNN/NJhXTX7gUcmIiIiIj40E+sFvMhnChsM3B2yvL7AryF7OQSQeOG2HDp490UBgze5kjPHSYMZw4xBYHDnzVE6gyRatyKdAQFbkVEOpDb8hAGZqzYkx040IjhNJ2JQvZc2sVJR5bDLAK3Iu3MYXENrIrVyGOJiEhnya0e5dDzi5jEEKw5frYtQGHFKMMvMxhDR2eTem8IygbjAQfOWWrNDTTGEwSd+9hIZ9P8dSoFbkVEpOP5cpl1H/8RWVbbMjOpkQ2w+Rw+SfFJpdmjkWfIvCVrYFfeRh5LREQ6izGe/OqRmra1iyCT1BhP5bQx/PY8Sa8jV2OpBJme94Y0CUjHQkzkyBUSTAefAGhHmr9OpcCtiIjMjzFtUR/Xp2mzh9BxwpM3cODFa+nbOoa9c0uzhyMiIiIyLe8NlVJI9ESByvKM3OrRlg3c5fIJPDvp6HIQjeacIasE4Aw+taRJQBTrO4K0NgVuRURkzoIlfQy+9Nn0/uQA2WNPNHs4UqujmbJudHReu8l27mbFN0fwpVJbFPZfbBwGd8IqgQtzPBERkVaWJAHd9xUoHHAk3ZYjPRH5rsW9ash707LB63HeG0rDMSSWsDuZc7DVWo+NHFlqMIEjCJXJ3Go0f52q9XOCRUSkZfnMEQ9lmErS7KG0BBOGmLD1z4kGz3kWT77nfGw+P6/9+KRCduAAbmioTiMTERERWTgGcGH1P96CWQRlF6aTVEJKhwqMHSmQZa0bHnLOQCmAzJAOR3PejzGeOJeQ7yuTKyaLouyGtL/W/3YpIiItyw0NEf3fe9ECIwiWLmXs4meR5QyFr98HroXP4O/cw6ZbDE4B946mGmEiIiKTRXHK2PNGGduTJ+tLKBQW71zIOUNaDrBjFm+hEsQUekvNHtZxWevBevAGovmv82r1DOPFTPPXqRS4FRERqQM3PELx4X1gLWmTgrYmDGuq5ZsNDsKDgw0YkTRThiVr4OKqRh5LRERkruI4hU3DzR5G0xkDNnR4CwQeEza+8FWWWbI0IIzSabNfjfHkl5VwzhAEKtDVyTR/nUqBWxERkTrwSYV0+46mHT9YvoyBl55B7zd/ihuprSuziIiIiCxOxnjifEq2uppwEDY4cOu9oTIcgzNkQUC+pzxtJqwxniBQpqwsPgrcioiIdAJjSPMGbOufNZbGcN7gfAObOzTwWCIiIjJ/xnjCsInBUAOobIEcQ/PXqRS4FRER6QDZwUMs+ezdOK/Jr4iIiIi0NmM8UbFClgREuVR1Z0VOQIFbERGRTqGgrRzDNbhGmGuDGmEiIiLSOsLQNbxEg7Q2zV+nUuBWRERE5s4YBYxblPMW18BOuY08loiISKtzzuC9wVqvbNJ58N5MTDWna2BW676cMxP70t+l9Wj+OlXrj1BERBY9k8sRLOnDhDrfOF/B8mWYXG7+OzKGYPkywvXrqsFbEREREQGqQdvy4QLp7iLl0WgiWCizlyYB5YMFyv15/DzrkSaVkGRfgWR/gfJoVKcRiiwsBW5FRKTl2WedTP8rnkOwZnWzh9LWTBiy/1fOhLOeNe992UKB8nmncOClGzFxXIfRSb1lmIZfREREBNIkJBixBGMGczgmS4NmD6ltpYMxtmKxowFpMvfH0XuDywwmrV58RX+TVqT561RKXRIRkda39wBLkhR3pL/ZI2lrPstY+aN+zO6DZPPclxsdJf7Bz1gRx2Tlcl3GJyIiItIJbJCRxh6TGVzBEVjVcZ2z2OETAxZsMPfH0RhPEDrSQnUftpDWa4QiC0qBWxERaXnZocNw6HCzh9H+vMc98PO67c6VSlAq1W1/Ul+qESYiItIcYegwq8ZwmSUXZvOuzbqY5XvKZAWLsZ5gHoFbgChOCVdU0xdU37Y1af46lQK3IiIiIh0og4Yu/5pvFreIiEgnCQI370BjrcZrv3ZiMNIYTxjVb5ZRr8eokx/zZtL8darWDy2LiIg0kMnlMJFqtjaSLRbVeE5ERKQFOGdIUzvvJlDSOFlmKY9GaoLWQFlmSZOATK8VaQB9SxIRWSAmijH5HG5oqNlDkVoZg3nOaZgkI/vZI80ezaJgcjmyC84gevIA6a7d4JW1UC9aaiYiIrORppakP48ds6RLE/LdqmHfDiojMdHeCCxU1kK+q9LsIc1LO2SyJqUQXw7AAD1lwrB1x9puNH+dqvVHKCLSjmxAsG415YvPUPZmOzGW0uoilZVdzR5JXdhiEZvPN3sY0zJhyOiaHL6nCEbTEhERkWbw3pCMRSzdErD0IUP+8ZwyCduA9wayauMuD/isvedSWWYpj8QtnT088bowQAsHl6VzKONWRGShBAFpV0BsW3PSIcfhMuLv/LjZo6gbd85p2FICP3m42UM5ITcyQtdX7iXzTtm2dZZ5S9bALIJGHktERObHezMlo9EYyPIGX4Es9sryagPGeHJ9JcppAUy1kVc7q4zEhAei6v/XQr7YetnDxnjCXEpmPSbwBIHmr/Wk+etUCtyKiMyTiWJ8mkwOOrmM9IntFLbvxLt2KHkuEzrl72UMSW9MGAUNLO8/R53ymLcYj8E18K/vW/+ZJiKy6HlvSCoh2VAEgSe/pIQxvhqMyicMnhEQDge4dSVyyiZsC9Z6CitH67Iv5wzOGYLAN6dUgQdvqWaytvDTLwwdYdiYxnOLjeavUylwKyIyDyaK8RecSbhjP+nefVM3UEBq0bJdXZh8juzIQHOeB94TfXcLeE0qRUREpMp7sDvz9D0BadEw8oKEOE6Bo8GoVaOwqsmDlKZIk4BkOIbMkHUl5ApJw8eQ6ylTzkw1e7j49PHboe6tyEJR4FZEZB5MFNJ/ehfLhvvgeIFbWZxsgNm4jsrqHqIfPYwbrU8WxKwdJ2Bse3rwpTI+mcXSMxtUA8AqZdBWtNRMRESeyXtDOGwwzmNTcIkFtWMQqg234v0hOEhSg8+nDQ+UWuspLBubPK5KSFoOMNaTKyY1jSnLLGlSvU0UZQr4thHNX6dS4FZEZB7c6ChLv/Yz3NjYzBvL4pKkBKUUXAtlvNqA8qVnUnjsAOm2J2u6icnlMGeegh0aq/k2IiIi0pqs9YxtSvBhRJb3xE3IqpSq8bIV3kOca3yQ9Jls6MjyHpMafNQ689d0MCYYCsB6snUZYTT9SjbvDUkphIEIF3rs0vKMtxFpZQrciojMkxsaavYQBAg3bQBjSHfsan6JCpeRbd0Gjxtci2WpJt0B+TiqeXsTx4yt7yF/MIJtCzgwqTvnDa6BHcEbeSwREZkbYzyFpWO4vhKB0dLzZkoqIf5ADhxUVkLchAzXY0W5lGQVZElAVKgts7UhrAfrqTUx0nvwqcU6Aw6cs4ACt+1C89epWj8nWEREpAaVDcupbFqOCYJmD+VpLRa0xWV0fe0+skcfr/0mw8MU7nwY89PHFnBgshAybMMvIiLSHqxtUvMpmZCNBQRjhnDM4Maan1NnrSdXSCj0lloqQzXqLZP1Zri+lKCGhmDGQFhIcV0ZvpgRRmkDRin10urz1zvuuINrr72WdevWYYzhlltuWZgH4hiaYYuISEeIt+0nfnw/PtWSv+n4NJ1dQNl73NAQrlRauEGJiIiILDJBISPtcSQ9DltQcPFEwtBRWDpGobdU08kGYzxRnJJfUiLfU8ba9jpBkVRCSiPxREM2aS0jIyOcd955fOpTn2rYMZt/WkdERKQO0l27mz0EaTHBkj5Yu4rs4a2tl/3cAFpqJiIi0rriXEK63FUbxqmBVt214+OZZRa/J09YMZSWBRSWL74+Kq0+f7366qu5+uqrF2g0x6fArYiISKOYoxODRRhEbAazbCn95y6n57Ft1UxjERERkRbSSiUJjidNApLRCDyExZQo1nxqIWWZJXfQYhwYF8LyZo9o8RgcHJz0cy6XI5fLNWk0k6lUgoiISAOYMMSefSb2uc/GRHGzh7Mo+IFBeh8dxGet/aVooThswy8iIiJyfN4bnDNttQQ+GYmI90Tkdkekw1Fbjb0dWeuoLPUkPZ7KMs1fGzl/3bBhA319fROXj3zkI01+JJ6mjFsREWk7Np/HFApkA4Pg2mdS44oRPrAEgcWrFO+Cyw4dhkOHmz2Mpsm8IWvgF6xGHktERKSdOGcoHy5gEgM9KXGx0vK1V703kFqCkgEPpPqcX2hh6KisL1EpB+S6y80eTlM0a/66c+dOent7J65vlWxbUOBWRETakNl0EqOnLaX4g0fJ+geaPZya+DTF/nw7xhiy8uKciImIiIgsRkklJDoSEJQMldTg8knLB26N8diuhNLaauDWdKdtWTe23cS5BHLK8Gi03t7eSYHbVqLArYiItB0zMkb+QAFfaa9JjRsaavYQZBFp9eYOIiIii4W1HheCCT0u7wjb5CMzV0hwuWpdW9MmY5b2pvnrVArciohI20l37Ybde/FtVCZBmsdEMSawuFKp2UMRERGRRSiMMsqrymSpJSq2frbtsdpprJ3Ce0OlHIKHKJfqb9BChoeH2bp168TP27ZtY8uWLSxbtoyNGzcuyDEVuBURkfbjPXgFbaU27gVnUVkSkfvWvdXnziLhvcX5xjUM8w08ljSHc4Y0DYiiTMtlRURmwRhPvqvS7GFIm8hSiysFAKT2aPmERaLV56/33nsvV1555cTP73nPewB485vfzObNm+s5tAmaYTeJCUPCk9aDDZo9FBERkY4WHh4hv29sUQVtATJMwy+zcccdd3Dttdeybt06jDHccsst025/++23Y4yZcnn44YcnbXfzzTdz1llnkcvlOOuss/jKV74y24dOjsM5Q3RPD33fK2Ae6FFncRERqVmlElIazpFl7R2Ccs5QGo2plCOcW8DPQeMZn1YtthOlrT5/veKKK/DeT7ksVNAWFLhtmmDFcna/ahO2q9jsoYiISBsJ16zGveh8bLG9Pz9MGGIuOpfwlE2YcGEXALnHtsEDjy7oMWT2RkZGOO+88/jUpz41q9s98sgj7NmzZ+Jy+umnT/zurrvu4vWvfz1vfOMbeeCBB3jjG9/I6173On74wx/We/iLTpYGLH8oYemjZZY9nC228yAiIjJHWWZxR3KYwxGVI/mFDXgusPJQDnM4xh3MkSbhgp3EDAJPWEgJiylhpFWGi51KJTSJGxxi1T1D+JI6i4uIyCzkYipLYsKgySs2jJlfBquxVPpi8qP5+o3pBHyaLvgxWpHzjW244Gb5dLj66qu5+uqrZ32cVatWsWTJkuP+7vrrr+dlL3sZ73//+wF4//vfz/e+9z2uv/56vvCFL8z6WPI0GziGTgrpeQoGNwVqUiMisoC8N3jfGfVlvQdTNtjE4CvmaLCzsfdr/PH03mCtn3sWa2Kx5eoHYJYt3AehMZ4o1vy1Ucdrdcq4bRI3Ogr3PoRPVOdGRGQhmSgmWLmyY1rhun0H6LpnO25ktCnHN2FI8KxTcC8+f16Zsj5NyG/Zjt/+FD5TJkEnGRwcnHQpl+t7kvqCCy5g7dq1vPSlL+W2226b9Lu77rqLl7/85ZOue8UrXsEPfvCDuo5hMbLWc/iihB2vsAyfW150SzdFRBrFe0NlZxfZE92MHWzvFVZQzR51S1LSvgyztNKUYLT31ZUjWWbnFXANehLSJSnp8oQwTvVZKA2hjNtmUjd0EZEFF2xYx65fXMfafxypnjRrc65UglKpuYMIArLIEph5nP/1nuzgofqNSaZwDW7uMH6sDRs2TLr+T//0T/nABz4w7/2vXbuWv//7v+f5z38+5XKZz372s7z0pS/l9ttv58UvfjEAe/fuZfXq1ZNut3r1avbu3Tvv4y92xngKS0qwpNkjERHpbFlqifstNgWbBvjlpq0DhMZ4ct1lnDMEwTyyXedpoqzBPLI5ozjF9mUY0xnZ0K2oWfPXVqbArYiIdCQTxQD4g4dZ8/0ufEUrHOrBpyn+yafI7z9EplUjLc1hcLNsuDDf4wHs3LmT3t7eietzuVxd9n/mmWdy5plnTvx86aWXsnPnTv7yL/9yInALYJ6RXe+9n3KdiIhIq0lTi3uqiMkMLvYYb0h6HfX5FG0ua31TA53GQBBm8y4/YYwnDBWwXUjNmr+2stYPLYuIiMyWMZRefh6lq87DjY7iH3h40dY5XQiuVCIbGFzwpmLSnnp7eydd6hW4PZ5LLrmExx57bOLnNWvWTMmu3b9//5QsXBERkVaTHM6TO2yJ+w1pl6f0rBLhylJbZ9u2CmOqmb4uC0iTsK0bpMnio8CtiIh0Hu8pbj1C8fHD1fqpKk1TVzafx19yDiPXPl/B2xaWedPwS6P9+Mc/Zu3atRM/X3rppXznO9+ZtM3//b//lxe+8IWNHpqIiMjs5NzEKn7Xl5IrJoSR5rD14L3BZRaXVC9p2uQmv3JCi2H+Olv6tiUiIh3JPb69+h+vLIV682lKtPsIwXARp8ZiMkfDw8Ns3bp14udt27axZcsWli1bxsaNG3n/+9/Prl27+Kd/+icArr/+ek4++WTOPvtsKpUKn/vc57j55pu5+eabJ/bx+7//+7z4xS/mL/7iL3jVq17FV7/6VW699VbuvPPOht8/ERGR2cj1lCmd4ar/LyR1z7R1zjS9zmyzGONhkd1n6RwK3IqISEdayNIItqsLu3ol2Y6nFmUJBp+mpDt2YYLgxIFxY8BY8E7B8yZp9eYO9957L1deeeXEz+95z3sAePOb38zmzZvZs2cPO3bsmPh9pVLhve99L7t27aJQKHD22WfzzW9+k1e+8pUT27zwhS/ki1/8In/yJ3/Cf/tv/43TTjuNL33pS1x88cXzvHciIiILy1pPrpgA1D2wmiYB2b4CJjEk3RmFle3fsHe2gsBjCtXHV43FWlerz1+bQYFbERGR2bABZuM6dr90JWs/d4Ssf6DZI2oOl+GnKUERnryR4bNXU9wxiPvJww0cmIxzGFwDl3/NtrnDFVdcgZ8mqL958+ZJP7/vfe/jfe9734z7/dVf/VV+9Vd/dVZjERERaQULlQnrvCEYMxgHvmTx3izKrNsgWFz3uR21+vy1GRS4FRERmQ2X4bftZN3NQ6SDw80eTcvy/YN0PR5jjgzimj0YERERkUXMWkfa67CjFteTLrqgrUg7U+BWRERkllyphNuzd+YNF7Gsvx8GBqulEurERDE+qdRtf53OYxqaReDbIGNBRERk3GLKOg0Cj1kxhvcQNqhMgD+aNblYHmOpD81fp1LgVkRE5scG2EIeNzqqWqYLxBaLmDAkGxpqzmNszOyP6z34+jUuC9evY9evnMy6LzxCdvBQ3fbbyZxv8FKzNujKKyLSLApitY4ssyR7i+SOWErLMvLrRpo9pAXX6DIBWWapHM5jKhazvEyca1yWr/fVJmxZGhBGqerZthnNX6dq/Sq8IiLHssFEEEtagDGEJ2/gqXeeR7hmdbNH07HKLzqLg798NsGypY09sDGEa9cw+uoXYHt6GnvsZ3CDQ6y6fxQ/OtbUcYiIiMyGc4bSrm7sj3so7+4iTYJmD2nRy9KAwl5LOAK5wwFZprBIvSWlEFuy2ATccIRzDcyg9FAZjsnGAiqj8cRJE5F2pciHiLSV4PRTOPSClSx9aBDuf0gZns3mPW7vfjbcEpAdPtLs0XSs/I8eI5/LkR1pQiM0a2mFFURuaAj7wwdxadrsobQNdeUVEWm+SikiHjBEw4C3jHZFhEumX5GSZRZjPMYoQ3chGONJi55o2JDFnkAZmXUX5lLSKAJvMMXGZr16b8AD3kzbBFVak+avUylwKyJtxe/czYrhUdzgUE0fxMHKlZBUyAYGFeRdIG50FB57Qo/vAsr6mxCwBfCedPceur5+ENcCtWW9grYiItJmolxKlsvhQkj6PDY/fdB27HCB7kcjbApD55fJdVUUvK2zMMpwZ4xQyixB4PT4LoAwdNhVo3hvsNY39DG21hN1V46WSsj095W2p8CtiLQVNzpaDRTWwgYc+MVnUTyQUfzug7XfTmZPQdvO5b0agrUp1QgTEWm+IHBw8giljQZjPfEMmYfxgZBwFGzmMf0RrpA0tDbpYjBe7zUI6tdAVaaqZtku3HP3RM3ljPGEYfVvrKBt+9H8dSoFbkWkc7mMlTf/DJ+mCtpKazBHJwatFOg2hmDFClz/gAK0HcY1uCtvI48lItJOgsBBjaVtk/UV0oEcJjX4ZeWGN1by3pBlhrQSEucTNXZa5LLMUhmJITUE3Qlx3PzVT94bymMRfjSE0JHvK58wgCvtR/PXqRS4FZGOlg0ONvX4QW8vrF2Fe2KHgmJtzoQhJgxxpdKcb5++6LmkxYDiDx5tXvmDZwj6enn8957FaV84RPbQo80eTn3YANz0S1FFRERaUa6rQnJhdc6Ya0KN2/JIzNIfxEQjnuGT8mQXDi3aANiJMjrbRZpa0v0F8IZgZYloDkHXymiE7Q8xDjLrcWHWEsF8PxqCA1KLc6bts9K9N3iP6lrLcbV+FV4RkXZlA/zGdex65Spsb3ezR9M0JgyxXV3VYFqbMlFM5Yrz2PeWCzDh3M55+iwj3tVPYccQvlSu8wjnLhsY5FmffgL32PZmD6UugiV97P3diwlWLG/2UJpufKlZIy8iIjI/xnis9Q2vCwpHg0epIR72BBVPOArOLb739jS1jB0okj3Wzdj+YrXZ1TGqQbbWfly8N6TlkGDUEpQM2ZHcnPZjrH+6Sa15evFYs5lCWh1X4FsikDxf44vxWmlRXrNo/jqVMm5FRBaKy3APPca6rRHZHLM0254xcN6Z7L24j7Xf2Uv22BOTfme7uyHLWr6UhU8T8j/extqt3aRzbZDl/eT73yq8J927b8bNTBTjs6zlM1l9JaFve4ovK8NdREROLE0C0nKo5l/HMMYTFFOOPDuiuMcwdIojtwjrwKaVkPhwgK0Y3KglTYKJbNWxwTzB4RAXe8yyCrl80uTRHp8xniByYMEb8IW5zd9yxYQ0cnggF7ZGoy9jPPmuCr6YTPz8TOMlP5LRGBM6coWkJcYuMhcK3IrIvAVLl+JOW4+//+ctH9RpOJfhSov4MfEe8/NtrH2qG/eM0gDBihUcfsVpRCOerq/fh59rQLQRvCc7dBgOHW72SJoiWL2KA9ecxtJHxjD/b0uzhzMtNzpK4Wv34JSyoOYOIiInkCYBhR92YVMYW5nDnN3c0lqtJI5T/HOGGXsO5BZpoCsIHUm3Jx4AF3tyUXUu75yBisUmBpMa0mIALRq4BYjiFHfyMN4b4jkG4I3xcyqx0AjTBWK9h2QsgtTgnSWLLGHUut/JrPVtX5qjXjR/nUqBWxGZv3Wr2PULvZz0YLS4g5RyXG50FI6TUZsdOsyyb1TAebJWDtoKrn+AVbfvwQ8O0RavcAVtAU18RUROJMssNgE8hKOQKWAyyWJ/LKI4JVw3gl87uc6wMUDk8EGAiz021/qzomoZgfr9PdMkIE0Cwihr6UCoMWAjh0ssWLBtkDm+2F934zR/nUqBWxGZt+yhR1n/aIRT8y2ZDZe1TIOuZgjXryPZtJJox0HSp3Y1ezjT8uUy6RPbmz0MERGRuohzKcMbPPGAYezMMnkFTJrCe0OaBAQt0vDqWMb4KfVcjfEU+kr43vLEz4tJmgQkAznsqCUpOnxvpaWzceNcio9TNfyStqfArYjMn/d4BW2byuRy2GedjN+xGzc01OzhSC3iiLQ7IoqjZo9EOpQyFkREjs8YT/SsITyQb/ZgFinvDZWnughHDGkO7EmjLZ3BeaxmNI1zzhC0Utaor2ce78I4XvBdWp/mr1MpcCsi0gGCpUvYcfVyNnw1geFhLRU/AVssYlevJN2+o+mPUbrtSaLtO0j1txIREZFFxnswqcE4sEk1OClTOWfItnVX6zEvzSisal5D3zDKcD0JWRQQFFKiNgm0i7Q7BW5FRDpAuncf6z/ZT1apND0g2dKetZGtr1vKqR8+UK2922z6W8kC8oCjcV+E9WwWEZlsPBipZdpTWevJlqRASLYkJRcqCHg8WRpgU6r1mIcC/Mrm1mOOcwnkWrch27HU7Ks9af46lQK3ItIexte5KNB1Qr5cbvYQWp5/aCun/c8iWSsEbduECUPskj5c/wBeTeTaipaaicyfAm8yW94bkkqIOxKT3xtQWeoIThptrWXuLaKwdAyWNnsUrS2MMipdnqBkSFdViPReNCPvDeWxCF8KMLEj11XRe3gb0fx1KgVupXGMwYSRaqHKrIRrVuPWLKe0ukh+7wjuJw8reCtz5tOUbHCw2cNoH8YQbFjP9l9bz6Yv7yV77Ilmj0hEpGGcM7gnuinsNQydXybfrROkMrPyviLLtlh6diZEQyWS3phdV3TBs9SDQGbPGE/upGG8N4QKPtbEOYMvB+AMPjXVshytH5sTOSEFbqVhgtNPZe9LV7HqxvuVGSi1sQGls05i4JSY4qEMkypTQaShvCfbuYtN/ziK6x9o9mhklpSxIDI/lVLEmh97bOYIx2JGr1LWlswsGLXEwx5vDT6w+KA9luJKbbw3Ezkk1jbuL9vs9552Wn1gjMfEWTV4G6hBWbvR/HUqBW6lcY4MsuzhPshUv0hq5DLC27ew4vsBPk3IlGnbUUwUY7u78OVya9SbbRATxeBdW5Ud8KVS3VZLmLA69Win+y8ii5MNHS4CjCEttv4XO2kNbl2JIyMFinsMSU/E8KaMeM1ws4cldeCcoXy4QG5/QKXPE6wsEcWdP5+pVEKyoQhCT9RVIQxnTqYZD3Ab05xgr3cGrCfMZfM+vvcG56qfAdb6tgheS2dR4FYaJjtwgOC2AzrjLLPjMrxTsL8T2ZNP4vDFq+jZXsL+vwcWRQkM29PD2IufTTiaEX7/JzUFL20+j8nnyAaHocGvBROGcO6Z7H5xH+v+Ycv8A+zGkF12LlkuIH//NrKDh+ozUDkuZSyIzE8UZex/eQUGI6KVwwT6si41yOUTODdh9JxqY6R8swckdZMmIXbUYhNDNAyV7rDjA7feG7LRkGAwBOtJrCfsmX71rHOG8qECtmxheZk4nzY02OmcgXIAQDo2/7+R90cDwYADrG2PzON2pfnrVArciohIU7htO1i27yC+UsEtgqAtgK9UKG4bgEpC5mq7z+mFz+bImQVWfeNxsn37F3iEk/ksI9j2FOtHy2SlOpS48Z5o9wBRGOBHx+a/P5mWJr4i82OMJ1+sQFH9GWT2FNjpPGGUUi5GZKOGpMcRFjo7aDvBgg88WDA1lIdIKiG2bDEpuMGYLMoIw0aWlQCsBw+mhuzg2nbqwVdPxtTztd1OJSgaRfPXqRS4FRGRpliMjcJ8uUz20KOzuk34wOOs3lokO3R4gUY1De/J+gegjvVtF6rBWbhmNW5waFGV3RAREZHGsdaTXz4GyyHH4gi2GePJdZdJ8ynWeIIaAqFhlFGJHdZbfDFtaC1ggCBw5JeWcM4QBPMP3FbLI0C9q1WnqSVLAjAQ5xqblSztRYFbERGRFuaGhnBD6kQ9HRPF7HjTaay7fQh+9NNmD6dlVOvLNS6LoJHHEhERabTxWqfG+IYHI585jkYG+az1xLMoNxAEjvzKsabWuDXGEwT1O+5C3IcsDapzJ8/EYyWavx6PArcisvgYsyjqqbYyE4aYXA5fSerW9Gqu41CTrPbnkwob//d23JF+6rQgTkREpCV4b0iSAO8MYZTVJYNQZs97Q2k4xgxG+K6UXG+5KcHbLLOkSYC1vqXr61ZLCjR7FK0tCLOJjFs9VjIdBW5FZFEJensxK5aRbt/Z8EZP8rTgpHWMnLWawo4h/IMPN2cQNoALnkOw9SmyI0eaMwapm3TX7mYPoeU4DI4G1ghr4LFERBaLLLUUthQJR2HwNIdZP9LUbM/FKkkCzFBINGTI0pBK7Ko1sBs9jr1F4gGDCyE7bWRegXznxjOIaYsTAo3ONF5oYegIgvrWzO0Emr9OZZs9ABGRRnJnbGT3K9cRdHc1eyiLmu8foLj1MOZAE+q2HmWikN0v7oE1K+qwr5hgxXJMLleHkS08E8XNObVvA2xXV/X4suDGmzs08iIiIvWVlEJsGUzqyR+wbbGstxNZ6/Cxx4XgYo+tV9Or2Y6jcrSZlQOXzT2c45yhPJjDP9lF5VAe51r7eeWcIU0C0rTxISxrPWGYLcgJEwVtp9L8dSpl3IrI4vLAo6x9NE+mmqFNVe+GV3Phy2XWf/p+snJ53vsK1q/h0GXrWHbvQbJHttZhdAvIBriLnkP4yM6GNzwLVi6ndO4G8k8eIdu6TSVLREREZpDrqlBZmiMYM4xuTMkr27YpwtBhlpbIei2hdYTTBG6dM9Wg6tE6q/UMzvk1JdJ9OVzBk4vmvnowTULCQxFByeBtQLokmFUd20YrD+egbMGAXTbW0KzzwDriMCNzjkoatnyQWzqPArcisqj4pELWxJqqMkvGEKxYgR8ZwY2O1n33rlSqz372H2T5DwzuYPMyiGtl44i9z+ti7cGl0ODALWlKNJxgShUFbRtAzR1ERNqftR5/9hCph4KCtk0VBK6mkgLlkZjwQExWcPjl5brWos0VEjg5mfd+rHWk3Q7jLS7niI7eL+8NWWbAG4z1rVNC4ZhhVOcb/ug8p3rdQgdyndc8p1E0f51KgVsREWlZtlik/xdOo++RQcyDj7ZsIzE3Oorb9uSU64MlfZiuLrL9B5vahO1YrlRi9T/cR1Y5ZjzGEK5fhx8ermZDz8QG4N2sg6/ZocNw6DCt+VcUERFpTWr01D68NwSHI6IBQzQUMNYdEEbZtFm3aWpxztYcGK6HMMqwK0dxyyxx4CYCn2kSkA7E2DGL60vJ95ZbYjl/1JWQjEaY8OnHKMsMyViEsZ5cMZl2nN6P1/OtvpZmc5/SzFaX1LvGBhRFxilwKyIijTf+7WOGwJ8vl1ny08NwqB+XzbwczEQxwbrVZLv2ND/IawOyMzYyvKlI3+0J2YEDzR3PMfwzykOYOObgL2xkyaMjcPdPpr2tyeUI1q6GzJHufGohhynz1Oi6Xe1QI0xERGQussySJkG1kVeYTRtgdXlPVvT4AGzoZgwopocKhAOWyoqU/NJSwwKl1nqsnTy/zhJLMBxgM3AVi/fNaYvwTGGUEfY9PVbvDWklhKPB1CwzhOHxHzfvDVlqScshJnCEcUYQ1P4YT2QhS0No/jqVArcicmLGaDmz1J0JQ4K1ayCwpDt2gTtxQNanKdlDj9a872DFMvb+h5NY/X+GyY4cqcdw585lBA8/yZIdheaPZQa+UmHFbTvxwyPMFB63xSIjZ63GVhzRU7v0HtHCtNRMRBabSjnCJZYwn0xbg1RkNrw3VIZjon0R3kJlWYotpgRhNuV5ZownXjlK0hcSBI54huehc4b4kMVWDHZvSNZ74gBkI9jIkXVluMRC7FoiaHs8xniC0JF5qnVvZyiVMB6c887gnYGgAYOUOdH8dSoFbkXkuGyxiDn5JLKHH582sCYyWyaXY/SsNfjQUBwrYeIYd/gIbmRk3vt2A4OsursfrMFEcdPLE2SDgzA42NQx1MT7mrNns/5+Ct/9KQBOQVsREWkRzhmCJ/IUjxiGN0UE60ZaYon3fHhv2v4+dIzUYBMDxmMPhHgbkizNMEtLU7JvrfXk8rXVobXWk3R5QsCFkIzG2O5yQ5tvHSuOU9yKDO8N1ta3sVq9RXFKEJoZSx8YU63V68OjdXt1UkfajAK3InJcduVydl+5gjXbn1qQplCNZsIQn2XKDmwBbnSU/J0/B2vxp57E6Ppuuh6y9Qncjo5ifvYYpasuoPjwPtInd+pvXm/e162pmyws3+ClZu2QsSCyWFUqId4Z4lza0oGY+XCZpXjAYBNP11OWdF2zRzQ/5VKEKweY0M1Yv1MWljEek89I+gJMBrZiCEqGrGTJMjuvurTGeIKTRkn2FAmHDPHuiPTUlLiODc1mqxo0bt7zrVqLtrY6tLUGuBtZP1jmR/PXqWyzByDSboLeXoLVq5o9jAXn9h1g7f/diyuVZ964xZkoxl10NsGSJc0eikA18Dcyghsagieeonjfk7i9++u2e9vXy64Xh2TLe+q2z7ZkDMHKlZhQ52hFRBazpBJitxeItxYoDcfNHs6CsYGjtMJTXmoorWzvIKf3BrsrT9ejMbkn8qSJ1nU3W76rQrx+BNaWSJZkJD0OV5y+1m2tjPEEYwbjDMYBbRBIWihpakkqYVs/570amUmd6ducyCz5U09ibG0XuW8f6OhMPlcqwWNPNHsY83O0Rq/J5zh8TpHVe3qgv7+j/27txg0NwdBQXfdp4pjunWC37yFr0791PTLETRgxdPmp9Py/bWT76hcYbySbz2PXrak2myu3/0mkRvM09u2uPV9tIp0vHYpY/jgY5/E2hrM68/3UWk925gjlNCCK2zOzuFIJcYkliBxBmaPZnXp/bRXG+GopgeUZfpkhqlMpAe8NHI3xZTkIoyY32J2DNAkmso+DYxqyjTcGM9bXVHohGYsgMzhTbUjWjq/jLLU4Z7FBRhDUljksT9P8dSoFbkVmyQ6Oko+CtniBL2a2qwtO2wCP78QND7Pqnx8iGx5R0HYRSPfuY/VnBsnGxpo9lDmxPT34Z59MsH0v2YEDT//CGIJnPwv2HyI7fKSm57I3YFq1q0QNTF8vR16whiW3DpEpcDtrDoOhgV15G3gsEZmF2FFZYjApJD2OXLPHs4DaeTm0cwZ3MEc0ZEmWOLJljiy2uLwnbNP71E6qDZGq/870HKp3KYEgcIwtTTGlAN+TErbZx6n3hmQ4xpQsSeygrzzRYC1JArKxEKwn11WZsdmZCXy1eViTavzOl/eGLLPVJmg+IAjaLwjfbJq/TqXArcgspU9shzZPRF0MbG8Ph89ewrID/biREbL+gWYPafEwBtvdjTGm2pyr0bxv67rMplhgaFORvkNdcPDgRIDWhBED5y6n76fAkQHw0zcN9EmFrq/cS9rGzQX98Ai9jwzhR9szCC8i0gry3RWGzrSYxBKvbN/Px07nvSEctdiyIRyw+JPHCFZlhDXW+pS5896QJgHpUAQWwq6EqME1ZgvLx9q2GZ0fj2N7wJlJpR6yUghJtUKnK5gZa9LG+YQ0CLHW1fRYjJckaKVGatZ6HLXX3xWZiQK3ItKRssNHWHZnWM1MlIayuRz+WRtxuQB++FNlOc9SduAQPf82Vs0YPuax82lC3/374OBh8DVm3swiaBv09sL61WQPb22Zv5kbGYEf/0wrHOaomj2k5g4ii50xnsIynQBrddZ6Sn0ZLrJkRUccOAV+GsR7SMdC4gMhPoQEGh64hfYN0FvrsYUUZwNM7LDHZCwHuYwMwPians/WeuJcUtNxvTekaYB3hiDMJrJ8m8kYTxhlONdaweR2ovnrVArcikhH8uUy6c6nmj2MRcsk1YBh201VbICxBp82cVmTy6q1f5/Je7Kt2xbmmMZgli/lyHOX07v1SXxSmXH7VgnuioiIdAJjPPkVY2SpJQpryzaUOrIeF4EPPITtU5rCe0NpKAceoq4KYZPGnisk+PzU2tJxLiELq7Vq630iwntwiQVvyOCE9/3pZmEQBAsfTDXGEwR6/Ur9KHArIiJ15Uol+Nkj1R8WKrh3vMBhHYKJwWmbSNb0Ye/c0pzApA2q2bSNPrb3+P5B+h4u4rJpsnRtQLh+LdmKPvwDD8+c0dus+yMAOG8wDcwicG2QsSAinaddl5cfz3i23kLKMkuWWaI2bfy0EKz1RIWEZIWZqMVab5VKSFYOCHPZRNOt8euifDrnv3uSBET7I/CQrDCES+eeXZ9lliwNsEFWcwA4TS1pJcQGnjBKj1vDdrxmcJbZugZwjQEberyffp/OGdJKUM2sjLJpH2tj/MRXinbIxOxEmr9OZZs9ABFpEcZgorjZo2grtquL8OSNzFhlfzGqznYWZNe2pwdz4TkES/omrgt6e/GXPhdbLM5r376Yo9IXzXeIBL29hKeeXC0/UCOTy+EvOYdw04ZqwHMa4UnrJ93/esiOHME98PNpg7EmCHB93ZTWFjF2+ue97enBPvdMgtNObpnXiO3pwYSL55z1+MuwkRcRkUbx3jC2v0hlVxel0VhBlhpkmSXZX4A9eUoDndymbvbC0FHoK1HoKdc9M9Q5gzuSI9oXkx3OkWXVDFB3qHpdciSHc3N7/npnwIFxQDr310CaWipDMe5wTDIck2Uzh4q8NySjMQxEZAMRaXri+WtSCUnGIipj0Zzv6zNVT3RUg97TBWO9B59ZcAbnpr9f1nqiICMIlPXeLJq/TqXArYgAEK5fR+ll52FymsTVyq5eycCFazHB9EE2qS+TzzOyoYjJ55++spBneEMBE88v6OoffoLi934+709w09dL6eTlmL5ZBG6DgEpfjC/mp9/QBoycuw7Wr5kxwFtvPk3gyV103b8DP11mLmDCkLQnh++a4f7UIFy7hnDDSfO6vyaKGb7qLIL1a+c9HqmPO+64g2uvvZZ169ZhjOGWW26Zdvt/+Zd/4WUvexkrV66kt7eXSy+9lH/7t3+btM3mzZsxxky5lEqlBbwnItIMaRLQvT2k53FLuCvXFl++my3LLPm9AblDlvDg/E9US228NwQjlqBkCIcs3tmJ62wFwsFg1icessxSLkWEUUayLKOyPCPom3umsHMWMxoQjFjMWLVubE1Sg0kN5mjJghOOtxLgSwF+LMTVEBSulbV+xiCrtR4bZ9jIYYPaMpsN8887GK/VOt+TStUsYL3BLWaLJ+1ERKYXWLKcxRjTfnVJm8SPjFLcVcI7PWKN5AYH6b1nF9mR/qev6x9g6Q93k43MfnmYLRYxG9aRPbYNXy7jy+V5j9EPDJLfFuAHBmu+jRsbo3j3VvzY2PQlCLwjv3cUMzhSe5OyevEeNzR0/Bq8z5ANDBI98Hi1XvA8v01nJ60k7YoI9x/Al+e+hNSmHhbR67XVmzuMjIxw3nnn8Za3vIXXvOY1M25/xx138LKXvYwPf/jDLFmyhJtuuolrr72WH/7wh1xwwQUT2/X29vLII49Mum0+P/8TCCLSWjxg0mqmYVDW/LUW1niSHo9NIO3LUOi2Maz1VJakZLkAn88mGs9VlqZkZYvPO3KzCMw5Z0j2FgnKhkpvRn55df47n+CetY6smJEZ8IUMU0PWsTEeW0xxgQfrpw2K2siRJRaMr14ayFpPdDQjd6bHyDlDij06h5r7McfnRN63zMKzttHq89dmUOBWFiUThtVsMZ2an5Dt2kPPkQEyZSXVLNu3H7P/gJ5HjWSD4zae8+Uy6fYd1XIfs6x1a5cu4dBFK1iyfee8goLHygYHYbD2oC1QbT525EhN2/ktD5G2+vPOZdXHoQ6CvUcIopA0mXvTOJ9UKPzfB0gr9a9bJ3Nz9dVXc/XVV9e8/fXXXz/p5w9/+MN89atf5etf//qkwK0xhjVr1tRrmCItoTScg8EQX3DEveWJmpGLWRRlDJ+cYSuGbElK/hnfvceXY9d72Xs7C0JHeV2ZtGKJe/R52AjlUoQbDTH5DNudEIbZxHMyt7REZTSGsYByf57cklJNz1fnDPkDFpOBrQSwfH5BW6iWijA9FbKixVpX83tMLp/g4mpt2+nGEMUpGI9tUuOuWh8f7w1ZNv9AnjH+aP3tee+qLQKLsrAUuJVFx3Z1Ubr8LIoP7ibdtVtBt6N8mp4wyGKLRUwckfUPNHhUbUDPn4YJenspX3g6+YeeIt23f8pjb8KQ0VeeT89P95Nue7Lmv40fGqbv0RGYYel/S1lkz7tnBurnqh7Z1O2kWRkLg8/4LMnlcuQWoAyPc46hoSGWLVs26frh4WE2bdpElmWcf/75fOhDH5oU2BVpN94bgn0x+QOGtBhQOT0lKChwa4wnt3YU7yF+RrArTS1uZxfGQWVNmfwCNJtqR8Z48sUKzK8lgNTIOYM/HBMPWrJCgFk7OTBrrYfhkNxhiw8g6w6wcfUktfeG8mgEBnKFZFLgsZqt6whGDZVlGYU6ZbAGQe0B22PVEmw2xhPHcz8B346eDt4urnn7fCnjdirVuJVFydejaM0i4s8+jeGXnKnHTJrLGrK8hWlqCtuKBzd1whmcfSbhqScf9zbZ4CDc82B1Sb9IB3HeNPwCsGHDBvr6+iYuH/nIRxbk/v3VX/0VIyMjvO51r5u47tnPfjabN2/ma1/7Gl/4whfI5/NcdtllPPbYYwsyBpFGsRWwKYSl9viS2Sgn6lCfDMd07TIUdxvsfvVvkOaxZYutGILSCYJRmal+OX3G9LU0lCPYl8Puy1EpT863s9bDmjKV9Qnx8tmtlhyvjVtL8zGZPwVtZ69Z89dWpoxbWXTc6CjFux6t1sJcZFlrc2WPDFME1Q6TpsoGhyn+6AmygaHjvnZ9mlK482GysWe8to2htLabeCCGJ06w8zm8FwRL+vAnr4eHn8CpxIjIhJ07d9Lb+3RjvoXItv3CF77ABz7wAb761a+yatWqiesvueQSLrnkkomfL7vsMp73vOfxyU9+kk984hN1H4dIIxjjqaxNSHpDfOyqS45lWiZ2uBhMBllXG62okY4xHhjNlidkXRYiTxxOfS6a5WXK+RAs5I79fckSjBmMh1IlgHwy6XZxLoFcwmykqSXpz2MqhkrBkV9SmnNgcbwUyUwlEtrFeFC9E+6LdB4FbmXx8V5L/mcpe3w7GKtAtzSeMYRrVuPHxsgGBskOHpp28+M2zfKews/34CsJdfvqZgymu5vB03rofbIA8wjcBiuWA9UGazVn/dqjWcfTNTFrEtvTgykWqvdnkZUmaDXeN/Zte/xYvb29kwK39falL32Jt73tbfzzP/8zV1111bTbWmu56KKLlHErbS1NLVF3BborBIG6i9ciV0gYPi0Ab4iW6OSqNFZpOAdD1VBLsKyCLZ74tZvLJ/hcdf43qRxCb0LlaDOvMF+fkzXeWYIRi8kM8ynjWqmEZKMhZIagOyWK0xnflyZKP3hDXKy0VO3pibq23mCsVw3xJmvW/HU2/vqv/5r/9b/+F3v27OHss8/m+uuv5/LLL6//4I5SfrwsKsHyZQRL+p4OekhtvG/JAFFHqZ6ubu4YWvB1YcKI4Qs34p61ARPHc95Pums32YED9RuY97jDR+j78T7c8Mjc92MDkrM3kpy9EVusseCcMbgXnou/9NxqM7YFYMJwbvs2BrNxHWMXbCJYtrT+A5NF7wtf+ALXXXcdn//857nmmmtm3N57z5YtW1i7dm0DRieLgfdmItOsEcYG85jHuwge7iYZixp23HZnjKewfIzCilHCcOGDMN4bkkpIaTQmTVpvPlVv3hvKpYixg0VKw7mmle8ojcSMHSySVOqfj5amltJwjtJIPOv750cDwiFLNGhxiZ3xhIsxU3+fyyfYlSXs8gpZYknT+YdubODI+lKyLofvnnsw2FUCzGiAHQ3IKramwFelHOJHQ/xoQFIOF+Q5M9faqN5Xg9rOWbxrbH1VaT9f+tKXePe7381//a//lR//+MdcfvnlXH311ezYsWPBjqnArTSNiWKClSsbF6wyhrELTyU571Rslyryt7Jw0wbMRecSLF0cgZ9g9SrcZecRPPtZzRvDypUMve4ibD5f933bYhF7zrOx5zx71q93nyZ0PXKI4KkD+GR+2QYmivGXnY/t6ZnXfsa50VHSJ7bjk3k0PHEZ8RMHiJ84gBurMSPIe4KRhGC4DL7GL6OzeNxNFJNe/lySF587+/dn72HfQYqPHsANHif7WRqqmrFgGniZ3fiGh4fZsmULW7ZsAWDbtm1s2bJlYuL7/ve/nze96U0T23/hC1/gTW96E3/1V3/FJZdcwt69e9m7dy8DA0+vovngBz/Iv/3bv/HEE0+wZcsW3va2t7FlyxZ+53d+Z96Pp0iWWSpPdZFt72bsYGPmksGRkMI+Q2GvxwxGdel2LvWXJAHpYAz9EclI1NDgfjNkqcUNRkSHA8zhiHITTio4V61fHB8KcPvzdQ22OWdIRmOC/THmUEx5ZHYns00xI8t70oLHzOPEQRynuP4YeyAm3V847n1Mk4DScK6mmrVB4Ih7KgRLy+S6KnPO3rdxho89PvbY0NU+XfRgnIEatnfOUCnXXot3fB4yPveZjYlyD+MXaapWn7/+f//f/8fb3vY2fvM3f5PnPOc5XH/99WzYsIG/+Zu/WZgHBJVKkGYxhuCktex5xTpWf3YUNzKPjLVaeU/x0QOQZmQlLd9tZT4KyfIhNlwkb1FpSjCWYMqzq1NVV95hE49fiHUpQYDPh3M7SeM92WNP1GW9jIlCjpxZYOXWAhynpELQ20vpBacTf//Bhi7xT3c+NevbmJ8/DlBTaQUTxZRfeh6FH24lO3Jk5p17R7x/BG8Mbg6Pe3bwEBw6rNIqLaDVu/Lee++9XHnllRM/v+c97wHgzW9+M5s3b2bPnj2Tshf+7u/+jjRNeec738k73/nOievHtwfo7+/nt37rt9i7dy99fX1ccMEF3HHHHbzgBS+Yxz0TqXKZJXfIYjIwaYBfvvDdwrO+lKQrJogMvpC21PJieZp3BpMYbFJdcl19P+zsv5XxBptWe8I2657apFrH2FYW4LMuM9gEcIY0mV2+W1yskBwNaIZRtYzAXGqoem8IRiw2AZtUA0zHTqe9N6QH85jEUCkEFFaOzrjPIHDzLgUQRRm2r4zzhjDMarpPUZyS9D79/5luUx6JIbFkQUC+t7yg77XGeILQYX3n1OxtZ82avw4ODk66PpfLTenTUKlUuO+++/gv/+W/TLr+5S9/OT/4wQ8WbIyLJCoiLcd7/JF+Vt3b09gAyfYdE8eX1uWf2kN0qP/49Uo7UHZkADtWIptnRul8uP4Ber+3lawyj+zRE+17ZJTg0eprL5vLa+8Zt7E9PfhKZdbvHa5UZtXte05c4zqXY2RdTC4IWv6r1myaoZnAMrYioBDXlg3j0xT36La5Du3oTlr9EZRWcMUVV0x7smg8GDvu9ttvn3GfH/vYx/jYxz42z5GJHJ+xjqzgCUqGtMsTNuDLfa63zOgZHpwh6mqtupDytDDKSHoTssQSFLKO/zsFocMtqVDOBZjIEeUaP4c1BpK1FSgHmGJKVMfXozEQdCVUVgCWao3pWbDWkzummVi5FOH7q1m74fISYVRbCTpjPOnKCrY/wnVl5J8Ry/IebKl6Mgks3i/8yaTxcdV6H8ZZ64lzaXXMtbw+UgvO1HxWoHq/595grFquYtY3kw6yYcOGST//6Z/+KR/4wAcmXXfw4EGyLGP16tWTrl+9ejV79+5dsLEpcCtNk/UPwP3Dja2dqmBCW3Cl0ryaPbUdl+FGZz5DvpB8ms7Y+GvOXEb2jDOYc2XCkIFrzqb7yTHs/Q/PLnjrMtIntp/41/0DrPjuDtI2yMg3YYhdvgx36PCMWbeuXGb5bTvIDvfXvP95lX+QluFpbBaUPmGl0wWBp7KxRJJZgrgx81drPYWe1v9cWuyCwGEKCT5vsLbzG8gZ44ni9Gg2aXMyFI3x5LsruKKpe6DcGE8UZQRL3ET906QSEka1ZZc+kxuMiIYseEh7AoKj5ROm29d4w6y4mJDlMuLATdneGMhWVDCjIfQkLf+8K49F+NRio4w4P33WbdiVkJYDgnjq/T6RVr//UptmzV937tw5qbnuM7Ntj2WeEeX33k+5rp4UuJXmUsMrkUXDhCHB2jUQBtXs9zmcSPFZxpKfHMYcGSRNUjAGWyjgxsZOvD8bEJ68gWzXnmkDvT6pkD6167i3b7X3qmDFcp56/Wmc9KXHSffum35j70l37W7MwEREOpgxnlyhiWWNpKVVg4eLJ3DUChmKxniCYGEec2M81kJpOCY8EOOtp7QspdB74uSS8XqZU4LZOYcPgmqN18BTGsxhSgG+mJLvPn6t2dLBAsGIxYcQrx+Z2Ga8QeL4CYJcVwWXTyeCwd4bKqUQNxoSdKfEuenfs8YDxM5ZolkGprPM4jKLraH8gvcGn1hIDc4F+Fw67fMnjDJs4Do+e11aR29v76TA7fGsWLGCIAimZNfu379/ShZuPak5mYhInZlcrnFN99qIyeWonLqSsdNXYoKnOy6bMMQ8o56xCUOClSuxxWc0f/Ge7OGjwUqXEa5Zzb43n0e47sQd420hz85fXkew9hkfpjYg3HDSlGMfK1i9iiNvegHBDB/ik/b3/LOn3edxj7NyJfa85xCsWF7T9q5/gPW3HsKdqOyDCI1u7KAuzCL1oteTNJL3htJwjvSxHkq7u1ruudfM14P3QGIJxgzBmIFKtRxBaTSmtLuLsYNF0iSYGGfpSJ7kqS5KBwoklafngnF3Bb++hD+pRBBmmOGQYNhi+4/fcNB7QzgYEIwZwhEzqdldeX+R7Kki5X1FvK8GcI/NBPYe/OEcwXCAOxLP+NilSUDSnycbmF0TtiyzVEYj0qGIymhtTcRM4MGCiWZuaFYNyteebSudo5Xnr3Ec8/znP5/vfOc7k67/zne+wwtf+MJ6PxQTFLiVjmbzeUw0uy6gIvMRLF/G4f/4PIIzTmv2UCYzhmD5slkHFOvJjZWIHniC/H1PTCzvD5YuZew/PI/s0nOrma1HBStXcPgVp8EZJ08NgrtsIrvWDQ6x6t7haQOYbqzESV/fh9u7f9L1wdI+tr1pI3b5shMPupLQtTetrQmYNbhlPYye1DXrx9l0Fymt7cZ01dal3JVKZD/fWlOtW5PLYfP5WY1HOoRvwkVE5mVsIE+yvZvKri4q5dpqk4vMR5ZaoqdickcMuYPBpIBjs40dLJJu66bcpICyMWALKUmfI+lzBD1JNTA6EhINWKIjAclo9XXqnMGULOFoNeiapU+HWoLAEecS4lxSzRA2Hgz48PhZy8Z40qUpPoKk209knXpvCIYsQckQDtsTLjYzjmp92Bp6kHlfbaxnUoNPa3+MvQcyU72kFu+mv60xnrhYIeopExemL+vgnGGsP89Yf35S0FoWiRafv77nPe/hH//xH7nxxhv5+c9/zh/8wR+wY8cOfud3fmfu93kGrfOuLFJntqeH/mvPpntHieCHD6lmozSEHxll2YNDcOhIs4cyie3uZsd/ejabvrSLdNuTzRmEy6Y0BvNjY3Q9dhhTrpD6p2eX2eEjLP9eiB8YnLakghsZwWx5BDfd69tlZI89MWU/bmCQk//lAG6a2q9Zfz/57z9ULcUwA5+mmMeepHtHjmyWjdOyp/ZQONJPNjLzcSbUUr7BGEb/w3m4yNB1849U51tEpIV5b7BDIbkjBm8NY90Bvobu6yLzYjxu/ByBAWtriPY1gPeGqL+adRqUIFttCMPGvhaM8US5FLfawbFlGY7GEr0BjgZVrfX4uPpYZt1uonTB8fYZriyRZZZwmlIAcV+ZrDshNE/XTDbGk/U4zJAl7XLkjhv0BbO6hKsEBPHMpQ+CMMP1pPjMEBZqbzIXBJ4sn+EsBMeUapiOtb6m0gdJOYSkGviujEXku/Q9XlrH61//eg4dOsT/+B//gz179nDOOefwrW99i02bNi3YMRW4lY7lx8ZYeu8BzNAIaap6ZNIYrlTCPPAoWYs95/zYGBu+cRi370CzhzKJK5Uwj2/HOz8pqOjL5Wq92RoCjTWdlDnOfnyakj28dcZjmCAAY8HPHCh1o6Mwh0ZzPqmQ9S/ApNR7eh7YC9aSKmi7+DR6eWmLLa8VaUc+8PgAXAgEnd/kSpovCDzphjGGVwXY0BHXEIBrBGM8adFhK5YsB0GTap1Wg42T54DRkhJpV4CxkIuqwU7vIeyt4HshtG7a2rthlBGE05cBCI4GdZ+5Tbh8DLfUEtoT3z4biggHQrIuR7hq+uCttdVMWJhdpTdjPHEuPXpyqb6NwYLQTSQLB1FrPB+lgdpg/vqOd7yDd7zjHQswmOObU+D2ySefZO/evRhjWL169YJGlkXmyqcp2dbt4J2yzKShWjG726cp/qHHWq7JFjClDEHQ24spFnD9AzWVArD5PD5zJ3zcTRhi4rgaVJ1y8BmyEFatZMdbnsWm/72DdOdTM46lFaU7jtNwTUREWk41E2+M8tIAY54OCIksJGM8UZwSRtnEz60iXDVGujw42iishcYVPh2YNcZX68QeyRGMBGRLUoLe8rSPY7WubA48xMtLUxp7eW+o7OrCpMDa8qQGY2HomK4GgnOG6EiIrYBxFrfCTBtEnk+TuYVqUBeEDpZWvwMsVPM5kXYyqxq3H/vYx9iwYQOnnnoql156KZdccgmnnnoqGzZs4Prrr1+gIYrMwzG1MGtSPV24cOMRaaYWDNoejztjI/2Xn4xdt2bmjW3A4dddQHL5udWmcMfb38XnsPe68+dU79r1D7Dx64dwBw7O+rYtw2Vt87eX+vK+8RcRmZ8wdMS5aif4WgJVWWYpP9VNaXdXTc2BpPlarfnXOGNaL8O7+npIiOLWO4lx7OOVJgHBmMUmYMbsjK/FZDAmGLUEY5akHE55TpTHIsKRakM0vz838XvvDUll6vbjv0uTAO8hy3u8ARe2TsDbOUOlEtZUs9YYTxg6whmykqUzaf46Vc0Ztx/60If4y7/8S/74j/+YV7ziFaxevRrvPfv37+ff/u3f+MAHPsDw8DB/8id/spDjFVk4xlD6xYvIHyhh7n2opmZE0lwml4Ms09+qw5iHnqDv8RzZ8MjMG7uM5T/YixkeJa0cP+M2fHQXaw/2TSpfYXI5zOmn4B95Ymqmrg0InnUy7D1ANjhI9vOtLRX4DHp7Sc89lWDLY7iRGh4jWbQa3Ym7VYMRIu1mNoGKdE+R/L5qkGi0kCO/pKRARwsb688THo7Iio5gWbklA5Iye1EupdIVgrf4rowwnH7eaPIZfjQAD/Y4pSnCOMXbHMaD66qWOvDekG7rxlYgyXuiTSMTr3XvDaUDBaKBABeCXT9Gtqpar3iu7wfjn+n1eD/x3lA+XMCkhnLkyC0ttUxAWVqP5q9T1Ry4/fu//3s+85nP8OpXv3rS9evWreP888/njDPO4F3vepcCt9LW8vvGCAbGyJw+SFpdsHwZB689kyWPjmJ/9DMFbzvIbOvEZo9vr/7nBKdLs4MH4dDhSb+3S/rY9pplnPKp/WSHDk/a3hby7LpmNeu+E8GDg/MO2tpiEROGZENDdTmla3q6OfycAqseLYICtyIii5ofX67tAC0pbmnOVZvPRUOGcDSg1BUocNtCvDdzDlIGgSO3bAy/1BDWUNYhV0zI4myi4dkzjxsEnuzkUTJvyB0NAnsPQQlMZuA4uw+Hg2rGr4MMiOfx3EoqIelgDA5MVzrv5mDeU63u4ICs9YNkIq2m5sDtoUOHOPPMM0/4+zPOOIMjR1qri7rIrHiPuf/n1aBtC2XXyfG5wWFW3LkX+gfJsjb6e9mgo59fJoqxhTzZ4GDjDjpTMNT7KY3FsgOHOOWvPdnhqZ9bbnSU9f/0MG5weN5DM1FM6fKzGF0dsfzrD5PV4XMy3bOPlV8aIhue//ikw3nT2IZhbZCxINJpolVjjBZisJDrnr6upjSXMeBDj7eQxR7TBhmHzhnKgznCgxHpioTCkpl7D7SbNAlI9xewFUO2dO73sRqsre1vaoyfqClc6++t9YytyIiPBFSWZxSe8VrPVpdhT46s4MlNs+9aZKnFlC3GgYvtvILa42O3PQluNCToSVSZUKan+esUNQduX/CCF/Dnf/7nbN68mTCcfLM0Tfnwhz/MC17wgroPUKSRlLXZPnxSqWZatkNRGgBjCE47mf7nr2bp97aR7t3X7BHVnQlDOP9MnnpxD+v//qe4oaFmD+nEXEZ24MDxf+f9lCzcufJJhcIPH6MQxWQDdQpmu6y1H1tpGY2u29Uub8cinSQIHPm+MtBaTaVkKmM88epRkuUB1nhyx1ki32oqozHFx2PCMShXItLuytHmWJ3Be0OWWaKhaharHwrxfdMHKavLuKv/b/Ry/9yKMfxyQ/4ZxzXGkysmuFNSgjrUKrahI4sdpAYT1qf2cZxPIZ9OjFfkRDR/narmwO0nP/lJXv7yl7Nq1Spe8pKXsHr1aowx7N27lzvuuINcLsd3vvOdhRyriMhk7fAuO857zPAo3U+V8KXOy1aA6okP+/B2NuxfQjpSQ6kDGxAsW1INlB4+MuPf0+Ry+CStPWPZGGyhUC290ERZ/0BTjy8iIp1NQZD2Ya2f1xL2hjMejiaj+Q7s4WxMNfPZxWAycPnpa8J6byj154n3hfgQyisTCn2lyb8fykFmiLorpEmAORTjQ0+wvLaaxmMHiwQjFreiMqVEwXRZveZo2YV6iKKMcPnY0f3WZZd6nxKZh5oDt+eeey6PPvoon/vc57j77rvZtm0bAGvWrOHP//zP+fVf/3V6e3sXbKAiIu0u3bsPs/8gWQeXSnBDQzVngwbdXfS/9HSCxNP1zS34cvnpXxoDF50D1hA8tB2fpux703ms+OkY9t6fT972RPs/7WS2/9paTv7Uz44fPO3wshUi1L5qs37HE+kglXJENhARLSt1VJahSK1yxYTSWb66xL07IQ4663XgXDUq6U8aw1hHfobAp/dAYgjKBp9AkkwuI1A6kic6FGITKK8GOxoQjhjAkPRawmj6bN40tYQDQbVm9f4c/uRk0vblUoQfiLFLKsS55IT7mS9jfMcF6aWNaP46Rc2BW4Cenh7e/va38/a3v32hxiMdKlixnKEXP4vubz2A69BsQ5GadGig0ObzmFM3YgaGSXftruk22dAQfd/4KXiPO04g1njwzuO9x5XKrPn3fXBkgKxyTPaBMSfM1PV79rPpaznc8NQGXsGK5ez+j2ey7rMnCOqKiMiilmWW+KECNoP0QDf+rKGmZox5b0iS6hL7IJx7p3iR2TDGk8sn+Fzacc855wzlI3miwyEu9ri1JcJw+oxYaz3kHWmXx4UeUzzO4+KZqJnpY48fM2DAHA0Kjw3mITXEfWWCZwTCg8CTBB7jDS4/+XfeG8yePDYDP5bDb2rdv8l4OQljlGkrUg+zCtyKzJUJQ8aWWbqDoNlDqdYafc7pmJExsl17VNdWpA5MV5H+5y6je0cBU2PgFu9xI1ODquO/8/c+CIA7GpjNHnti8jYvOJe0Jya+++Hj7seNjMBPHj7+7ssVenek+MrCZSvUgy0Wsb09ZIeO4JP5dfRtNUFvL8QRbmCo4+5bq6h+cWpcykwjjyXSCMYdvbTAOdfSQI7gSITPoLK+RJxv3aCNdJ5OfK45ZyYacJnMkCUW4plvl+8pQ0+Z432rzS8tUQpz4CDqSghCR7bMYqwntp7ySExwKMJmUHGG3LKxSXVyjfGEG0dwmSV3vBM0xlONAs/rri8o5wzlwwVsyeJ6UnI95YbXAl4o1ZrI1cZZNnAdc79ajeavUylwKw2R7t3His2HcK0QJDWW/ucuo7ivQnTgkAK3InWQHTpM75fvxbs6TmBmqHlryylBaCdvZwOMNTO+rt3QEIWv3TMRFG5V/sxT2HV5H+u/9hTp9h3NHk79GMPYpWcwtiJk+R1Pke58qtkj6lyt/RQXaVnWekbPKBMcjGFdibjZgavEYrJq3MaldiKbTUTmJgg8bkWZ1OVxeUe+WNvJ/OmC2MZ4Cr2TV5eG0TFnfsZv65/+v3OG8sECJjNEq8YIAoe1U88WGeOxJ42SjMbEXZWWDaZnaYBJDTgwYwGuy3RMgNMfzab2E5fOPKnREvSwTqLArTRMywRIXTYRYHIdumxdpBka/Rp3D/wcY8zTwVdjKF/9PJKugJ6v/njmOrgtHrQF4KePsHZrobZmb+3Ee3K3/5R8EJCWZq5XLCLSaMZ4Cj1lfHdrBEiipSVSV8AbT5RPOyYQItIsxlQbxfn1IxM/L7RcMaG8CjJniIsJ1nrGBvKEwwF4qBzJk18+dsKxhKEj7G3tsoNhlJFGDpyFnqSj3quMAYzHMF4HuHPum7Q2BW5lUWqZILJIp2l0w69jg6/e0/XQfnwUkiWd8Rr3aYqvsdlbu/Hlsk6mLzAtNROZv1b5Yh6GjnD1CcoLiciceG+olEP8QAzdCfmuhS3dZIyfcgyby/A2xGQGk2//pCJjPIXlY5OatnUKYzxh2Fn3qRVp/jqVne0N3vrWtzJ0nC+RIyMjvPWtb63LoEREpP2EJ62n/zdeQLh+XdPGkG57kuzRx+cVPDZhqPWnIiIiIh0uTQLs7jzhgMUejMmyWYdH5i2XT7Drx2DDGLk5lkBIU0tpVzdjB4s1BaG8N6RJsKD3t9OCtiLNNOtX6mc+8xnGxsamXD82NsY//dM/1WVQIiLSfvzYGN1PVfCjUz8j2oXJ5Tjw1ovwlzy35u2DZ51CuGb1Ao9MZA58Ey4iIiJtxB9dyu9t84KNYZQRxXNrOOi9Id1fIBwzhP0BldL0i6qdM5T68/gni6S7iyQVLcKWFqP56xQ1v0oHBwfx3uO9Z2hoiHw+P/G7LMv41re+xapVqxZkkCIi0uJsAEv7SLsCotH2rcfqk5SV9w0S7D1CLcUW7JI+jrxgNd27yti9+xZ8fCKzY2hs62llqouISHsYX45tEwMGfOCnrcdaqYRkoyE2n5HL19bIrFF87GEUsBCEbtptnTOYsq3OEDLIKgFR3BklxqRTaP76TDUHbpcsWYIxBmMMZ5xxxpTfG2P44Ac/WNfBiYhIG7EWF878wReuWU26cRXhniOkO59qwMCeZqIYn0xTv8xl+Pt+VlPQFiDbt5++/3MY79rgVK2IiIiIzFqlHMGeHMXDlkqfp7wOcoXGBG8rlZCsP8Z0pcetwWuMJ798jKQnxFpHGE1fLiwIPG5phTTL4XPuuPusBrXpqMZiIu2s5sDtbbfdhveeX/iFX+Dmm29m2bJlE7+L45hNmzaxbl3z6hqKiEgTuYzs0ccpPvYE3s8wycvnSJbkCAby029XZ7anh6d+51w2fuFJ0qd21W2/J2x2aAxBXy+EIdmhw5MbqYk0QqOXf+kpLm0uyyzeGYLQtUx9xvF6la0yHpFOYYwnjFIq68v4UkDcVz7htt6BdUdfix68a0yGnvcGdzCHTQ2UY1whOW4w1RhPnDtxINk5g8vsxHtbnEtg/fG3L43GmEMx3gJLKgvesE1kCs1fp6g5cPuSl7wEgG3btrFx40aMGrfINILVq6Cvp9okqEWYMKxmxTWy473IsYwBYzv7OVhDcDLdvoPoyZ1kDQ5k+lKZVfeV8YNTG2zWyhaLmJPW4rbtnD5zF7Dd3QxfcSbl3oClX7ofXz7xFwIREWmuNAlgexE8lFYlFJaUmj0k0iQg3V/AeDAry9MGZkQWQppakqEcZIZ4aYkgmH4Zfrux1pMvVqA4/XZxPqW8usxYIcJ3ZeSLjXktGuMhALLxGryz30eaWtzOLoISVLo88YaRE54I8t7gM4NNDQbIygF0zesuiEgdzLo52aZNm7jzzjv5jd/4DV74wheya1c1a+mzn/0sd955Z90HKO2pfM4G9ly1ulr3shXYgOFXPZ/0yvOxPT3NHo0sQjafxzz/bCovf17rvC6aqQnZpz6pEH73PrLBwbntwBjMutU8+aurCZYvnXFzNzxM17d/wrKbfzK7oK1OjEq9qLmDSM3Scohx1Ww6M9IazXrSQ3nifkt82JKNhLgGZfmJQDWIl4zG5PaExAcDkoOFZg+paYzx5Lsq5NeOUOgtNTQDPrdqFFaWideeOOA6He8sQRmMq9bznW4KbozHRg6Xc7iCwxZqKx7mvcE5M7FCQGReNH+dYtaB25tvvplXvOIVFAoF7r//fspHv4wODQ3x4Q9/uO4DlPYUfe8BVt9wX+tkFnpH74OHyD9+AF9S1ps0nvceU0oJh5Ut07JmCph6T/b4djZev4V03/6Z9+c9rlTCjYzUPoQwxFx4DuGmDQrwy/x50/iLSJvKdVVIuzxZzhOuGmv2cADwkcOHHh8Aodd5PWkqr3qnTWGMJ5efWiLBe0OlHFEei6YNmAZhRmVFRpbzpH3ZjHVrc/mE3NpRcqtHa67jm6WWNAlJKjrBJHWg+esUsw7c/tmf/Rl/+7d/yz/8wz8QRdHE9S984Qu5//776zo4aV8+TVtrWbD3ZI9sJd2+Y8blzSILwYQhPgqIDo+2zgkNmRBu2oA998yZN/QeNzrKQmUMmzhm4FldZCv7MEEHBm6NIVi+rLryQREIEWkhxnhyJw0Tnzw8Y3OfRskvK5GdXCI9fZR8T1l1bqWhnDOQGnwALgZTaI3XRbupNvqqfzZqpRQSP1Qg93CB0jTZ0NZ6CitGCU8bprBitKZ9G+P1fnOMIHAUchXy8fFrDIsstFmvA3rkkUd48YtfPOX63t5e+vv76zEmEZGOY+KYyrI8wViIwlVzZAy2uxs/NnbihmBzVDptFcMnxSx5MGhqYN2NjtL7pXvw3i1YcLiZbLHI/lefSffulMJtP8WVml9DspN539inUQc+ZUWaaqaGQyILyXvAmYlktIVqyHVsQLMRwULvTUODkpVyiBuOIHLE3ZW61Ql25eoJfuMhGJ05H28h73MQOkirg+nE8/LWeKzh6P3zoG9zC0rz16lmHbhdu3YtW7du5eSTT550/Z133smpp55ar3GJiHSU7MgRwu8u8KoEYzBxjK9UGvMJZBsb5Ax6etj7hrNZfdcAPPhoXYO34e1bWGoNvhWyoVthDAvEjY6y6l8exlcqCtqKSNuqZs8d7TmqrDTpUGHo8L0VEmIIPPme+q+m9N5QHonxowFBX0IUpwv6msoyS5oEBGFGGC58ozXvDW44wpYsvmzJCumMgdvxQPZMj0Out0xlaYhJDXZ9bZm0C8UY3zIrFRaC8wbnWZDMaZFazDpw+9u//dv8/u//PjfeeCPGGHbv3s1dd93Fe9/7Xv77f//vCzFG6WAmDLHF4tybBYm0kwUOpoYbT2LgonX03vYY2aHDC3osm8/jzz0d+8iTDXv9utFR1tx+EPYexGUzTw5NGIKxtZVHcRm+sxoltybvyY4cafYoFo9GN1xQ/EoWAecM5cEcVCzBkgpxXN8VICKtJIpTohUL9xzPMkOwP8ZWIBu1ZCdlhOHCfJhkmSXdUyQcMWQ5j9s4suDL3o3xEDp8YMBWMzenMxHI9tW629ONz1pPfPJwvYcsx5FllrEsbvYwFg/NX6eYdeD2fe97HwMDA1x55ZWUSiVe/OIXk8vleO9738u73vWuhRijdCobYM84lT1XrGDNjfcr+0pkvsoVckdSSBb+S6Tp7mLvxT2sO7gUGhS49WlK9vPHar/BBc8h7Y4IvvdAW2axmjDEZ1l7rN+R1tTohgvKQpFFwGUWOxSCh6w/hlUK3IrMhw883hr8rCMTs2eS8boPBudMQ+qV5vvKZN3VY810vEopxByJMB7KzpDvba/a1s49/biqFqzMmeavU8zp7fHP//zP+a//9b/y0EMP4ZzjrLPOoru7u95jk07nMthzgDU/CHEV1e8Sma907z7CvftoRIgyO3iI1X93L2nawq9d5zCuPSeNtqsLf9apBNt2kx081OzhiIjIUcZ6fOirGToLlBlYL7UuuRZpljB0VNaWSMZCoq7KgpYvsNaTrC7jD8e4YkbcgFIJcLSMwCzeK7yt1q1ttzKq3huScohLLcZ6ony1LITeh0Tmb87ntYrFIhdeeCGDg4PceuutnHnmmTznOc+p59hkEciOHIE2WDZr83m89/hy/Ws7ibSrmkoQNJG/72fM3KphgdgA5tFgzBSLHH5ON8sHlsChw+A9JooxgcWVy8rClZoYf/TLXwOPJ7KQsqz6rm5t8zqeB4HDrB4lS4OWrunonKEyFoGBOK9O6NK64jiFOpQcmanpmDGefLECxdadv8b5lPJSg3eGfFelYe9z/mgGsncGjCcI6vMe670hSy3eG4Iw0/uQ1ETz16lm/Z32da97HZ/61KcAGBsb46KLLuJ1r3sdz33uc7n55pvrPkBZGMGSPoIVyzGRarXMyBjSi54Dzz2DjmyTKfIMNp9v9hDamu3pIThtE8GKFXPeR3bgAEs/fw/ZY09MBGntGaeQXHIWtlis11BFRNpGmloq/TmS/QUqpbCpDWKs9QveRGm+KmMRDEUwEJFUGrAGXaSJKpWQ0nBMpc2f6+PB5Xx3Y0skOGeoDMek+wsk/XmybPbvr8Z4gijDRo4wrgZps8yQlkPSckCaNPd9W6SdzTpwe8cdd3D55ZcD8JWvfAXnHP39/XziE5/gz/7sz+o+QFkAxlA5/zSGLn8WwfKlzR5Ne1B2mywSNp+nctnZCg7Og122hMHnrsRtXDWv/fg0nfzeM/5/vR9JrXwTLiILJK2EmIrFJAZXCucUWFhUzNFL05aeiDSG9wb7ZIH89hx2e0HBwTnwzkBqqpmHHlwWzGk/YejI5RPCKMMYX815Gv9XpFaav04x61NSAwMDLFu2DIBvf/vbvOY1r6FYLHLNNdfwn//zf677AGUBeE+85XHiKCbrH5h5e2MWd6DAe+z/ewC/mB8DWTRMPsfB5+ZY/0ABRkebPZy2lO54iu7d+6qNxeooe+hRgp8bnN6LpFZq7iAdJIwykjgAYzG5jCA48Xuhc4Y0DTBHb9fKmbELJVdIKFPNgotzaqAmi8B43zHfGYsknaveiXqVF5iu1mwQOlx3SuYN5DKiOpSugGppGR9neG8W7XuxzIHmr1PMOnC7YcMG7rrrLpYtW8a3v/1tvvjFLwJw5MgR8lpe2zZqCtgCGENw+qmw/2Dtt+lECpTIIpH1D7D2U/eStXj92tmw+TxYi6tHINoYbLGIicITvyd6P6X+rwmrH7c+nedEWO9FIrJIhVFGsKw0EZSZLgBQHsoRHozwoSdbPzqrxkCdYqKep0iHM8aTrKmQHYlwfSmFDqij6pyhMhrjPcTFhCCYXyM15wxZGlR7Kh6n1mz1BE8CuWTSbcaDx/OpedvKtcBF2sWsA7fvfve7ecMb3kB3dzebNm3iiiuuAKolFM4999x6j0+azMQxe1+6itU/iGFwGJzeeEU6Xas3HZst/5zT8JGFex6cd+DTxDH+rFMp98VE/35/TfszuRz25A0AZI8+ruCrNE6jl3/pqS0LzNS45NYMh5gMjDO4LMDXqdGOSL1Ml/0os1foKUNP5zSRroxF2APVXjSVFUfvHzM3YDue8cZjWWLBQAbYGTJqva+uWsjGQjDg82ndsnBFZqT56xSzDty+4x3v4OKLL2bHjh287GUvw9pq4aRTTz1VNW47kC+XWfPlrfihIQVtpSUFvb34NMWNjSkgJsfl8iE+tpPK/JkorpYymO37WpZh+0fIVVJqzX0wcUx5fR8A0ePB/LNuRURkWr4nJfMh3nqiUMtzpbVkmSXLqrOS42U/igDVE07HPDWyzJKlARhPNIuyA9UTXgZjPcywWmHqjY+OhdY/2WCMV31j6Vhzarv4/Oc/n+c///mTrrvmmmvqMiBpPdmBA80egsjx2YDkuacSDpYwj2zDlzvnTLvUj7n7J9V553hg3xg47wzCAwOkT+6c1b58mpI99sQJDnT8euBuaIjw9i3V27sMk8uBm1pOoSXYgHDVCrJDR1pzfDI7yliQRarQW8J1mxlLKog0Q5oEuHIAHkwRTIvW/jw2CNaK4+tkuWJCKbXgId9dnY8lYxEMRGA82crSrEoQWOsJ4+r242UXxjNxvasGdY8tx2CMn6hPawxY60iTasOyYA4nG8ZLLizUe7K1nsA6nDcTJ0WkjWn+OoWe1dI8xkzUfRSZK5N5TNbi77Y2wPb06PneLN5PDqgay8AZ3aRrl9btEEFvL8FpJ1eDssfjqtm9Jgwxp5+CPeOUOT0fwpM3EqxeNXPXDTu3bsC2q0j/5ScTrFg2p9tLi1FXXlnErK1/eQTnDGkSkFRCBQdkzoz1YD3Y1g2Iem9IkoDyWESSBMpkbDBjPIW+EoUlpYnniE9NNQPXG5yb3fvPeCD22OCsc4bKSEwykCMphVP+xkHgyOUT4lyCywLSkah6SWY3f80yS1IOScrhtIsjvTcTl9mKw5QwyIgCrRDuCJq/TqEogjSFLRYx61aTrurF3vPzuWV2GQPGqoTDYuYyzN0/IWvxEgnBsiVUztlE/LOdymBvBS5jyb9swadpfT6njYHVK+h//iqWHBkgmy7zOwhIVhYxzhNsDWA2ZRNswND5a8jvK2MP95/wfdN2deGfcwpseXj2ZRmyjPyhFF9Rtq2IyLG8NyTlEDcWgjOYfEbQPbuVPuMNgpwzBGFGGM6v4VAjzaW2phxfFGXjK9AJQteSj2uWGbLBGJMYssgTLhurqb601G62pQei7gqJM2CoS71Zl1nMWAAZeBtAMTnudtVg6tyPk2UW78zRgPOJV0I4Vz1O9aTbLI/hLIF1ZLMMaIu0Cz2zpfGMwWxYx4HL13DwvCImjua0j/Ck9QTPPq3aMb5dGIPt6po5W64dNes+tXjQFsCEIWkxwIRzy4KU6ZkwxBaLs3oOulKpGtSsx/PWe/zeAyy9ezducPiEm9l8nmDFcuKHniL4fz+dfWkPl9Fz327Cx57Cp8efXAPYJX3su7j3xNm/0x1idJTwu/eRHTo869suOGPmdJ8WNW8af5mFO+64g2uvvZZ169ZhjOGWW26Z8Tbf+973eP7zn08+n+fUU0/lb//2b6dsc/PNN3PWWWeRy+U466yz+MpXvjKrcYkcT5YZ3EgEWfV57tPZf36kaUDaH+MP5UhG47bJYqzW1rQdl2VcbcBUv/s1sfR8hr+rMZ4orjZ7asWgLRydHh2tiYpq8NbEOUNSCUlTO+NzwHtDeSyiNByTVKZmux5PGDryS0uEXUnNt5mODRw+n+FzDhMf/ySS94YsPRp4DR0mlxGEs0uastZhAo8J3bQrIca/0s3lfiVpQJIFpC34HmWPlqFQLetZaPH5azPM+pm9Y8cO/HECJd57duzYUZdBSeczSUrProQ1X96KGx2dww4s2eoljJ7Sh8m3zxf5oKeH0oueQ9DX2+yh1JUJQ+x5zyFY0leX/QVLlxKetL5jgjTp3n3kvn0/6Z69zR5Ke7AB4YaTCJYvqymwGmxYT/q8M7CzfL4EK5Zjzz2zLsFbNzREun3HtKsHTF8v5TPW4FcuqzZGm4N051NkBw9Ne8Ii23+QdV/bgRsrzekYrSro6SG57JzqyS/pCCMjI5x33nl86lOfqmn7bdu28cpXvpLLL7+cH//4x/zxH/8xv/d7v8fNN988sc1dd93F61//et74xjfywAMP8MY3vpHXve51/PCHP1youyGLyfgS99gRFGb/Pu4zg0ksJmMiANzqvDeklWDi0i7B5lokSUAyGh9dwj2/++VctbRAUgmrga42f5ys9UQ9FXzX/8/ef4dZst3lvfj7XWtV1Q7du9P05HzOnDhHJ+goA8pCwtgIE8T1Rb7GElgXg0Eyj23ZRhLWww+4YJDABHEtOGBskI1I10hCCeV4cpgzM2fmnMmhc9ipqtZa398f1btnerp39w61Q/esz/P0Mz29K6yqXVV77Xe96/1qyLx2olMDxKGCnkuiB2p5sPXQsQRN+VATPvSC37APhRnQ8z7stI+w3Lz5yRiBaElcltIiUwjhD4cI8tGagirzkmNWC5BgKM+siFtoBKUs/EDDD9a/jmpO21YHM4zpz/su8GLkgwiBV9904XBsRNNRCYcOHcLly5exffv2FX+fmZnBoUOHYFr8Muq4iWCGfv4MvBfOtj7F3RrQ06eQO+nDFEvptq+TeArVUYWs5/e6JSsgpQASLRcjIqUw86IhbJsrAnPzbTaGgF3jqOweRKZSWX/a+WbCRXo0jMgEKN+1E5nLRdD8wobT/TkbIB7yoGSTjubxUczeM4zhY7LpSAGRy4EO7gWfvQhbauwZxItFBC9MgUuV+sJrnQJn6yF3bAeGCzDPvQBYA44j6PMXmtpGxyACKS8Rqtu9B7IZLBzwMf6YDzR4zm92iIFumrma3ddb3vIWvOUtb2l4+d/7vd/D/v378aEPfQgAcOedd+Lhhx/Gr/3ar+EHfuAHAAAf+tCH8MY3vhHvfe97AQDvfe978cUvfhEf+tCH8Kd/+qfNNdDhuA4pGXYgBluC57cmZEllEQ9osCaITP+6LVdBN/zbB9QyWAFAtVAsiZlgQgkYArMAZ9obx7WWYGORTAcnQGLzxGCsBVEi0jVTAOtmhjlx5KtFCRBgMgbrfd1jILmfmrzmrBEQFQFiwJQVkG/8u5u1hKjsARUJk7GQg+FS9m39eycpTMZgZSEkJ/nMNx5LA5EPjTzrknu4P56JUlp40kBb0bYgLGjlv46N6ff+ay9oWrhlZtAan2rFYhGZzTRl3dF72pzibqtVoNqmo0xIgG3Xptub6RkM/cVjMH2WHyluOwwzEIAefbb5TEwANoox9rUrsJPT7TeGGZieQybW4C3mGHQ0BkcRsmfmQAtF6AYGA83x08g8J2GbHXi4eBVjYdzQPm6EBgcwf/cIhmfmGxZubbkMe6b+zBR1cD9YSfCFy8nzrUF4xyhKhwrIPX8O3GcDBHJ0BPbgLqjpxJHcDmZyGtv+vAJTrB9H4biBHlXlXVhYWPHnIAgQpDCD4utf/zre9KY3rfjbd3/3d+OjH/0o4jiG53n4+te/jne/+92rlqmJvQ5HqxAx/DZzJZVnIAt2eXutYC3BGgEsCS6dFn9rAp4RIpny3CffcI0WMCUvee7kqenYASKG9C2sSMSodiffEAFCMdgyhNjcoq2jRQIDkyVAJtfCenieQbWgYTXBK0QNX39CWsR5AzCBss09j6wlUFmBYoIFwAMbD1bU7n8hk3v/xgGSWv4tM0H0cbG9ZiBi5IMIg0GISuxhoRpA69bj7iItIUjA9KEbuG/pUf+1n2lYuH3Pe94DACAi/PzP/zxyudzya8YYfPOb38R9992XegMdvYU8P8lS3AQ5os1Cng/70rvgnb4MfXWia8fYdK5lFzADAeKCD59azAWyBubUC+m15+oEcHUite05NhesNcyJU42vYE1LgqVZWABuEJgahecXMPT4JOzCYkvrr4IIevsQbKDgTc81NShFlyYxWKy2JEB3GvJ96EIAUU5hsMoa2MUmz7eQIEEtDUg5Wmffvn0r/v/+978fH/jAB9re7pUrV7Bjx44Vf9uxYwe01piamsKuXbvqLnPliouquVlI8liTL9n9mCHabnt0rGBCCRIMkWtc8GmHG6vR9wPXO+Ba7cL7QQzr1S+W1AxySdhKBKzOC+qO/oKIEeQjaN9CCAu5QeFBIkZ2qHmDihCMYKQKa6np4oZCMDhrwFIAvm342bGRK7d2LzJvjTIu1x+DSOE+jm8QfWvPhvVcvBk/BhGjGnl9Gf/g6D4NC7ePPfYYgMRx+9RTT8H3r3n/fd/Hvffei5/7uZ9Lv4WO3iEk4u+8B5nnJ6HPnt9y4i1JgfKuAIWrOWBCANx/oke3oMdOwBfUclRC+w0gkJTJdOrNcp21MKXdsXWw1Srw3PPpbZAZ8rkLkFI0LU6aqWlgKgW3+xKkFCBlKoNM+spVqJlZ2A6IynJkBBC0biE1efthxGN5iK8+4e7XLnL+/HkUCtey3NNw29a4cdZXre7C9X9fa5m1Zos5tiZxqMCV5IuyGDJQGzjfNhvWEMBJXm7yhX5rHV+jKM/AZpNz0Y5A3052a60QWc2J2E9TvdeCmWBMIlT3mxC/FRCC4QedzzG9dq01v15mMITRYtlBmwa17fTyY5aIkfGTcx/GHqxtvTHWEiqRB8uEWMtUizIKwRjIJBEVxWqw5raVMhjPJ7P5ppBDJeyviEVHb2hYuP37v/97AMCP/diP4cMf/vCKDrlja0KCEBckAt8DaOsJmzYMUfjCKdjF4k2fP9ozwXYJtXsXosM74B0721g1+1rPoFdCjJCgB+6EnJxPBjUcjhQws7O9bkJybd9xK/RYFuJLj7d/jzF3bJaBvmM/2BcQX56v+wy3OR9xwcPWKHO4eSgUCh3pJ+7cuXOVc3ZiYgJKKYyNja27zI0uXMcWxm6OCtGtksQW8HL25M0KESPI9K7YD3MSWWGZliIk1nftMtOS0IuuRFyshTEEE0vQ0pT2bl8/NZHKOZJ7Ry36IM3t9cO4qJIW23JlWBDmKkCp2p7YGWu5yinbKFLa5fv9RgIvxmg2KcxurECxsrqHSrj2LPGkRaWlVji2Gk0PH/zyL/9y3c74k08+2XaDHP0Da438556FfeH81hQ2mWGmpvsyuuCmw1PQOQmoxsaS5JHDEPfcDjE42OGGrQ0JQnVHFnYonxSparDdaSF3bIccH+/6fh29hTwfcmw0yebuJJJgVXrugpYggrz91uR463wjUAtVqPkwySmvt5lnTiP75eM3rduWcK3AQ1d+Onw8r3jFK/CZz3xmxd8+/elP48EHH4Tneesu88pXvrLDrXP0CyrQoJyGyMfrTu9thSTPsbcqhfIM/ED3ZQzETUsD14S1tBzjYUxvriNrxZLgTIgjhTjqXj8yjhSiko+o6EPHsuf3kaN7CMHLUSKblUbb7imDfBAhF0RrDoxoIxEahdhK6DpOXm0EZio5zFWzKN2kbtut1n9Ng6a/md1zzz34m7/5m1V//7Vf+zW87GUvS6VRjv7BLi52xI0pBgchXDE7xxLmwiVkvvIsTCPFzYjAuSApptYj4ZKNQf7R86CrMyi/7ijEwX0br5QWRNC37oY5tBOU4vTjriPk1gjCSgOihs6H3L0Dxe+4FbIw0Lm2WAM+dhreV55OXeyUIyNQB/Y1NOBCUqJ4xygwNpLM+FgDc+wk7BPPrttOW602n4u7lWDq/k8TFItFPP7443j88ccBAC+88AIef/xxnDuXFLJ773vfi3/6T//p8vLvete7cPbsWbznPe/Bs88+iz/4gz/ARz/60RVRXT/zMz+DT3/60/iVX/kVHD9+HL/yK7+Cz372s/jZn/3Ztk+nY3OgPIMgGyPIxqkKBXGkUJ3LoLoQtDUNNw0Sl9vmFUG2CkImeaYNTztnWiq605vrR0oLoSzAgI0kTCS7di2bWIAqElSWMLrHg8M30KiIHEcK1WKAsLr5c0etXdsR2gzGCGgtNtyOFBZKtJ6T3ci9tSx2VrKoRF5L+6lHLeO7EYd64GlklEbOW/vzJ9YSs+Uspks5VOu0k5lQrARYKGdSjWnYVPR5/7UXNH0l/Nt/+2/xtre9De9617tQqVRw8eJFvO51r8Ov/uqv4mMf+1gn2ujYYpDno/rK28F339LmhmhrCD+dds/1G2sIVKw1bKnUmLObGXjuLNTTL8DMt1ZYqm2YoS9fgZ2bh9AMMl3MCWOGujoPNbnQVwWXSKlEkGvgnpQjI6AX3wV5W5PPgE7d7y1ul5SC2rsH8vZb22qb2rsH/LKjUDu2r79gGCGYicEtXG+yUEjcqw3AcdSZmQhjw4gOboMobCzcsjEYODkLTM/Wd9QmZYxTbqSjmzz88MO4//77cf/99wNICuHef//9eN/73gcAuHz58rKICwCHDh3CJz7xCXzhC1/Afffdhw9+8IP4zd/8TfzAD/zA8jKvfOUr8Wd/9mf4wz/8Q7zoRS/CQw89hI997GPOXHCTkbaoyUzQZQU5LyEWWncqGiMQVj1EYXsZjL0kyUkViCLVd6JCGmLUWtSO+frjrUUNKNWYoCMEQ0gDqZoQelNGSgulDChlJ3ojCM+CPQv2GKIH+18LawlhxUNY9hBtcE9bS9BVBZrzYBe9hp8BWif3StrXZW27rQjI1lLi/G4jv9XaJCqktp312sEAbAuzFYgY+UyEXBBvKPoyE0pVH6Wqn+q5JmIIYkjipUiU9a/dMFaoaoVyXF/cr0ZeXdHW4ahH072Of/2v/zXe8IY34Ed/9Efxohe9CDMzM3j5y1+OJ5980uWHORqDLfzZEKIYotUABpHJAHccBksCP3Z8c0Y5EEFuH0f1nn0Ivn48ES77BHX4IGBM6vmtslBA9MCtCM5OQ79wtuXt9Mu54jBE5gtPQUfdzVgzp17o6v42hAhy727MvXQ3Cn/71MbvjyCwJEA23lmUO7bD7h2HOH0BZm6+zQZft93xcURH90F+8YnmnyNSwm4bQjSahXqujRxwQcnPBuKvvjoBMTEF28LzTt99CNGIj+CTs42JnUJC5HOwxWJ64uj0HHxtYBcacMAywzz7XDr7vZnpdp2cJvf1mte8Zrm42Fo89NBDq/726le/Go8++ui62/3BH/xB/OAP/mBzjXH0PbUiUL2CFIMFwKK1bFlmgo4lbNEDiMF59DSjtVWYgbiqwEaAPQOR6Q/3b02MAgAok1p+a62gl7UChNbzWYkYUgJAb8+XEEnGqV06jm7l3HqeAQ0kHxNKmb65ZmzJAxgwvgV79dvFTIAFYAEy1FDXKBF7PXAsYAMBPxOncr6ZCXHFAyyBDSHINvccWY58IW6ri3f9qsz1u7HGiJZqOitpMRAkRgLLQMWsHxtAxMgFMZQ0iYCagjjKTInojGtRI+sRa7ksUm/Wwbm+oM/7r72gpeHiw4cP4+6778bHP/5xAMAP//APO9F2k0Cen4gmUdQzpxJrDXr0WRjb3v5ZErgJ4acfISFgshIQfXQcRKgeHIOsatC5C+lfJ0nierrb7CG2Wu11E/qDaojMVAyYjUVFMzsP8VQIbmDZGpQJEI1kkPHSzXqiTIDKuI9BKcFNCqIca4gLV5GZzkI3sC55Psj3wFG8IoLGXLoKOTUDs5HLlbllcVhNLUJWMrAN3s9qxzimX38QI3/9TGpRA2Z2FuiHAmwOh2NTYS0hWhI/VFZDrSOurLeNjYpHrQcRw8vGiEcBCIbXanEfRiL+EIE36Zd6ZgIbATD66hiud9sKJqT6Tbw2lbZNsbEfxErg2tTvbkLE8Pz+mSkGLH0dEZwUNNxAkBeCIXMaRjJINlbgK7lXCDAE1jXRLw3hFoBO7kEbS6BJ4VYIBgu7/PtGXH9easIl0VIRLlEbzFivvY0J3TdimRAbCUEMbTaeoUoEDGcr8IRBWfqpuVqT50rjjuF+m4ng2Bo0Ldx+9atfxY/+6I9ibGwMTz75JL761a/ip3/6p/G3f/u3+MhHPoKRkZFOtNORFkePQA8H8J8+DzM52fTqctsY7Hz7ubftTvG2YQhx/AxIiJbcZ30BM8zUDPLfsjClcq9bcw1mZE5PANpApyzammIJ/iOnNhaoHJsLZuirE/CmZ2EbeTZY07Rr2k5OIxtGMAvpxmPY6RkMf5OgdQuuJ2tgphrIZV5C7t2Fyi3bkDk7C/Pc88t/5zjqSJb49TTr0uYoQnZSNyTEO/oY51hwbAF0rMAlBYoJmpJc0WaKjlVLPrisAMEIRqotO96ktJADrfdfiBjSM+ABWv59MyIEQ2U0rKW+KjiUiFFJW9JsExFDSAvQ+uKUY/MhBEMOxAAThFhfyCZKBmxqgzaNXGNCMGTGwCoL4TUWqdEIRIDIarAhSK95AZ6IIZVd/r2R/dWofTVMHOTc0ZkQxggsVpN6HrFuLFrQLjlkbYqZpZs9z3hT4vqvq2hauH3d616Hd7/73fjgBz8Iz/Nw55134rWvfS3e/va345577sGFCxc60U5HSsj5EsgYoAXhjIIAk//wNox/+QrM6TO9zRZk7pvp8u3AcQRzdaLXzVhF2hEJy1iTuvDm6BOYOyo+2nIZtpz+AIctl2HPdmfghBeLyFzOgBZ78Oxq8nltZmYRfOEp2M04yEIEUl7HxfDNQK1abjf353CkDV1X8plamaa+4EGVBVgAdoi6NjV8LZSykDIZKOwXwbNZiK65DfvpGIRgQJlrv6e87XYc247+hIjhN+ECbvb9r7mM2UOq1w8Rww+uDZ60uo1GqcUgrNWV7PQ90ahgCyTO2JlSDkLYhhy6/UYhV0VGacxXMgjj3hTg7hdc/3U1TV8Rn/70p/HqV796xd9uueUWfOUrX8Ev/uIvptYwR2fQZ86DBMG24KLiWGPkRBmYW3AFYRwOh6NJzPQMMDNXv9hWP8HcmQJlXUDt2I6J7zmMbf/jMRdl4nBsAZRnwIVoyV1mmnY9cmDBVQH2+sMx2Umho1s5wP0qYHZSlO/XY3b0J7VM65q7Ne3rp+Z47Qa1iIfN4DzdrIInEWNnfhEZFSOjYpybcbPYHStp+squibanTp3C6dOn8V3f9V3IZrMgIvz8z/986g10pIw1rWsG1kB86xmYm2DqrBwegq1UmxYuyPPBOnbCtsORFkSQt90CijXM+Uub20XZRkato3E4jpG/qsFmEwjkncZNNXNsAZp1xd2IVwihMwYkuleIqRfoWEJHEiAgyMZNOupquZW9Pz+1YmBErRcCuxkxRoAtNZS96ug8UahgywqwBFuIkuJsm/ha3gyi7WZHiaUZA5v4OkkN139dRdPJydPT03j961+P2267Dd/zPd+Dy5cvAwDe+c534ud+7udSb6Cjv2Ctt7woSUph6q13ge44DIjGp1mITAbTb38x1N49bTYgnQ9G8nzwq+6DOri/qeO42VF790Dcd9eWKqC22Yl3DkJvGwR5m3MU3dFdzOw8sl86vrlFfofDkRpKWWRyEYJMc2LmZkNHEhxJcCRgTON9mHYFmZqzMI5UKuKO0QJGS+hYbvWvHKlhjEBU9hBXPERhOgWZHO3BWoBiAYqXCpRtMojcoEk3YSa8MDeKM/OjuLxQ6HVzHH1I08Ltu9/9bnieh3PnziGXyy3//W1vexs++clPpto4h6MXsDEYfWIBdGUaaKLwGRuLwQsxuFJpab/k+ZB33w7zmvtTE1rjQQ8c+CDRnQ4DBQHUvr2bWvS024aweMsgQK4iaF/ADO+Zc5DPXYCtbrKp+0RQu3ZCHT4IUo2LzmJwECKT6c59tInv1bpYA7u42OtW9Afcgx+Hw9EThFoKBaTmIwPaEUiNIehQwUQScdx+/9Uyge3STxddfptZpGIGoAVgCFZvwc/1TYjKxOCsAefMciGwzYIQDF8ZBJ5uOEPXUwZD+QpGBsot5+42076RgTICr71i541CxF1x/1dCH4uVYNPGPaSK67+uoqWM27/7u7/D3r17V/z9yJEjOHv2bGoNczh6BjP4ieMwTWZKcBwh+OqzMJU2MhWtBcXpfNixjpH99mlwpZo4pbuA3LUDF75vL3b/19lNWzyOnr+AockB6CZE+2TFpY6ys4ekjpma7nUTWoKkhN43jnA8g+yViYbuQ1IKi999F7JXI6hHTnSkINvyvoIA5bfci8FvnIW+crVj+6khh4dAAwOws3P1nw9EkIODsOVy155bWxlX3MHhuHlQnoaQtaJhja+XiBFtum4tJQ+AFIRWpQwMrokl3aAmyBBtjhzPG5GSoQMDWIIKGv/stJYQVbyW4jVagZlgtICQdkvHlgCJ05/yycyfzRb5kdx7FoIAYxmNfCPK+jEG/AgCjErkwZjOGWB2DS1gyK+gmvFwZmYU1nbunhWCkQsiZJRGKfJQjbw1nxEZP0bgaURa1l2mETbj86cTuP7rapoWbkul0gqnbY2pqSkEQZBKoxyOntOsaFdbrQ2xkuMI9vlzUBd82Bb3v3KDnBRD6iJ2Ygp7PpttT7zuMWZhAVhYaGod8nyYV94NGIb4yuOdadh1iFwOuO0g6MLVTStq3gywMZAnzyF3NoBp0C3MxqDwxCSoWIaJmp/qLzIZsLENxwRYSd1z3e7ZidLBAvLHFOwLaz8r5bZtuPqPb8WOz12BOX3GDYQ4HA5Hg4g2MnzbEZWkZCAbg5kgVfv9VyEY5NUE6O5+BvSTaFLL+m3kfSVi+Jml96BBtyMzIQ4VuJLIAZFgBJm47Xavt7+w4oFjAQiGn4s77szsNZv1+KwlaCMhiGFsYwJspCW0J5pap4aUFtsGSmAmTC7mN7wPA6nhi+5kOQth4UuDQGkYJkRarRlFE3gaGaXhCYsw9lz31ZE6TQ+FfNd3fRf++I//ePn/RARrLX71V38Vr33ta1NtnMNxs8Fh2N9TfDcQeGy5DHPsZMvCdycgz4e4907IQgfzgthCLkRQxe5kalI2g8VbB4GRoa051X2rwAwzNw9zdaLxe4IZ5nTigG3acSokZn74fpiX393QdcFRhMIXnoOZnGpuPy3CZy4g9/BZ2Mv13b28uIjtX50FJqadaJsGTN3/cTgcNxVEDKkslGdSc1Gmma/JTBs68phXxjLc+P9eEJZ8xAsBwoWgIUehENy8UEgAllbpRneSDQGaAC3cR3wfw0zQRiDSsmE3axgrTBXzmCzmoZt02w5lqxj0QxSCakPxBxfnh3ChOIyz8825bVt5phgjEGqFUCtUIq/u/owVyWBIk6K1ow6u/7qKph23v/qrv4rXvOY1ePjhhxFFEf7Nv/k3eOaZZzAzM4OvfvWrnWijw+HoBEI2JbCqwwcx/8AODPzVI+sLSrWemJBQe3aBqyHM5GSbjW0dygSYfOkwdixWgMXFjohBrDXEs6fBXeqF2vkFFL5wClws3fTilshkAAC2unld3qtodeCDLcYemQHNLUI3cl204soXEnKoANZ640GmG+JDbKkEbDArwVarwLHn+mrwx+FwODYTcaRgLcEPdNccq93ajxAMTxrEpjFB6XrR1trGsn+tJdgl4Ukq25Mp7syUOFMNActZv+m2g4jh+Rp6KPm/2kAwq8UcWCZ4nmn6vBAxVGBgCBDe1o9KWI9aRAVb6lvncbMDFzWHeCuEWsEu7S82G+dkh7FCbJLihWrJ5a/1+utl/BjbB4oITSIw14tyEIIRePHSfhKhthx6qESJi7beeSmH/tIyGw8UORyt0PSQwF133YUnn3wSL33pS/HGN74RpVIJ//gf/2M89thjuOWWWzrRRoejJ8hbD4FfcW9TRYU2C3JsFAs/8hLIHdsbX8kYyCqDbWMdLZEJMPeKvYjv2rvxwh3ElsrY8YmzMBcvd1TktNUqOGxgOryQUHt2Q955pOUidKw1zNT01hIrW4EIxbfci8rr70niIzYbQqZWiBAAwAx74jT0pcvNrUcEefutUAf3b7ioHB3G4mtvQ/TS29a151AQgF95L+x33Afy/Oba40Tb9HDFHRyOmwodS+h5HzzvIyz5PXeNpk3gxfCUQeB1Lo/VLgmlyU9HdrEhRAyZ04BiUE53TOQUIhFvPX/9fTATolDBXM6Cr2RQnW8tHlF5Bn4u2nB/W504UuBIArGA0XJT3adEjGwQYShfWRZN26Ucejg/N4xzc8MNZ+NaS8gFMfYPz2Hv0Dy8ddoiBGMgiDDghRj0Q2T9+pEggRdjNFfBaK6yvFxNjF3vfbKWYIxwom1abKH+6y/+4i/ila98JXK5HIaHh1veTtOK1Llz57Bv3z78wi/8wpqv7d+/8Rc/h2MzYAdzCMcCZGmTTHlopjhWrJGZMUDUeJaVuXgZuZm5hvN3baWCob8/DYRhQ6H2HcMa6IuXetmCFZCnoPdtQ3l3Fvnnz4FDJ1K1DDMKj14CLEM3mCG7FqRU07EEtQGdlgtoEYFfcQ90XiHz6AupZRWv2Z4N3PUkJYp3jsKf15Bnzq27fTs3j8LXziSDB+s9ayxDFsPkOJss9OhID1fcweG4ubBMIEOABVhvDgEhiUVAU4KHaHDRpMhS0jVuNApACIbl5OHZyzQqz9eQyqQaG1EPowXisgd/IKrr/mRDUBGBAdi4te9G1ONz2i9IaWEFA5YgRGt9pDhSMJGEysRQqvFcY6MFQAwpW7uuAk+jkAnhCwNjBUpGtC08MxPiGxyzA9kQGaUxU8rVfTZkvRgZGcMyIfD0qm1c2z5QijxEGYWKTtyz9RAECDcK3XO2Uv81iiL80A/9EF7xilfgox/9aMvbaVq4PXToEC5fvozt21c69aanp3Ho0CEY40QIxxbh2CnkTvmwDRb56SlEiN/4Yiwc8LD9S5MwJ06tu7hZXETmS8/AVCoN74K1BjeTv8vc04iEXiBHRhDdewjeN47VdcNyGEI8eQqDxz2YRhy6jnXR5y4kv7Roi5Hj47j8Q0ew87891XC+tMjnUXn1XWBJyPzvb7e2b2Z4l+egAg/cwWJ+8rZbMPmq7Rj7k0fqFixjrTHwhRPgWGOjrj9rDX2lfkbt8nJxBBw7vbyOw+FwODqP5xmEAxpsCF4+6vtK9omwmrRRiI3F2zD2IISFtY2LRc2KhUIwiOzyur2ClsS1TmO0AJ3OIRMRdN6DOFxcddxEDOlZxMMGZAiy0LkiZjcDUlnQQNInS6635t5nZoIuK8ASYuNDDW3cj6y5Ri0TiAmWbEvX141Z0J1ASovt+SIEJdEol+fWrlMyW84iUBraCpTD+rO7mAnVyMMLM6MbRhlUIg8TZgBAUnDN4WiXmuH1oYceams7TQu3zAxa49OvWCwis5Q16HBsBTgMG5v63icYX0BnCVANfMgww5bLnW/UzQQRKJfF/OEA448HwDoxBrZcBtzpT4d25zGGIYbOxEDc+JcQDkPkn50AiBrLkq2DPnMeJKi+sLmUJ2uLpbqi60bQYgmFcxF4g0FVMze/el2lkvVaPMZW2+xIkW7HF/S3RuRwbHmIGEE+AnNjea6bDWsJ1nZeTOl3wbuGtQSi9trLTFAhgTQg1vnYVp6BGEn6tlvx2uomqYjyTE19xt84gNHqNRNpielSDgRA13Hbjg6UMZotoxT7mFgcADPBVxqRVg1nUwtiCPBy9u1aGCNweT4RdWvbVcpgx2AR5djDbPFajFqjGbzWEkK79WISNx2u/7qKhq/K97znPQAAIsLP//zPI3ddnqAxBt/85jdx3333pd5Ah8PRAMzIff5p5L+knCDbAurwQfDCYnvT1ZmhL1/F+J8XYZpxJjsao5kokCYwi4vIfO5J2CYGaVhr6DPngHZjVKzBeikCcmwUF//PI9j9+Rnw089B5HPQD9wK74nn1xRa10JfuQpvZhbcZG6sLBQw/da7MfbIDMwzJ5pa1+FwOG52agWuelHcajNNR0/cb8lH/E1ea7VpotCDqUiAgGAwbFlMlcqgsj+GmlXQ4xGyda7XbjmAtxLWEqKyDxDDy+jUipARMfxCCGNEU9sUguF5Znkb621fCF7TncpM6xYCI2IUgioGVIiMjDFTymHbQAlZFSPUChfnh1Zts5ZPW4s6sJZwdnYEShqEcf1Yg9qy1+97d2EBBb+KrPKwWA02LFp2/bq140ubVuJgHL1hYWFhxf+DIEAQtJbpnTYNf+t87LHH8Nhjj4GZ8dRTTy3//7HHHsPx48dx7733tm3/dThWQAS5Yzvo/rtBfXLDdB0hGy6OZstlmIUFNy25WYTElTfuQnz3/sYD0OphDczCgvv2kTKkFKrf+xLQg0ch0p7Zwby+s54IYnBw9X3IvGERLTk2CnrJPZC3tVa4087OYu9fngdOnQOsSRzdhzKgbHbt/d11G+SRwyuv442Orw4cRRg+WQJNzzW1nhgchNqzGyKfb3qfDW378MEtWTCyY/C1nLBu/GwGx4LD0Wm0FgjnM4gXkgJhNxs1scc0mH3ZSOEfx2psLABLgEkGCWo0ex6FYGSGqxAHSsgMRLCWkuJZm/z96IdrKiz54LIEil5TRciYCTpeuXztbzXxT0oLzzN1hVutBaolH2F1pfC5UWZyItBb+ErDV80XkWMmVLQHzQILUQaWCZIsFBkESq/adz4T4ZbRKdwyOoXMdUXDYi1RCf2mxc74Okd+o+dbCEYhV8Xu4QUM5SupDrYRMfYOz+Pg6AxGBsqbxs3fc3rUf923bx+GhoaWf37pl35pzeZ94AMfABGt+/Pwww+nekoa/vbz93//9wCAH/uxH8OHP/xhFAprZ404HKlBAjw+ipkXFbDtdHDT5YGKXA4zP3gvpu5j3PH/vNBQruSWQEiAbffET2uw42PHwNUwKUax1AY5OgwzPdN6durwEPjgHvCzpzdV5MYKiKB274Kdnqmb2dsN2DIyVysQcyVY07izgIIAeNFtoKeeu9Z+IUEP3Alx8lwism+AHCrgwjvuxu7PzwOPPdNcw4WEyShQZX23QD1Y6yTDd+kaNBOTGPufRei1sqmJULxtGLJi4Z8+C/AGDtsN7E22WgW+9Qx0s4XFDu3BzN3DGHliBjh2srl1l5CFAuxaUTW37MOFVw9jzx/NNuw4vulxU80cju7DiZgGALwkHt1MX9aTcc1ESLTATeHSNEbAGgEhbWquyo3wsjEi4wOCIZeKU1UmcpAVATNgkB1rvI5FzU2rtYCezIIMoZqxUIUIyjOb7vqtzGUg5xWsAoLdpZ61n+i6j8UG28BMqM5kQFoglozMWCIkVucyoEiABSOzrbKuAMtM0JECWwKYmnbmEpIiXabF0zaxMIDJxQEwJ22ZLOVRyCjMVzIwZqVvMFAaSlgIYgSeRnWdwmFEjLGBMiIjsVBebeRgJlxdGMRsOQttxap91UMKi4zS8ISBJ5J7uObUJeKGBOCMH2M8XwIAXFooLO9bSgtPGvhCY8CLMIe1zReOG+hR//X8+fMrdM56btuf+qmfwo/8yI+su8mDBw+m1ToALWTc/uEf/mGqDXA46mIN+PgpjD3vN1VEa6vAscbAhQgm8ME9FM26iTp8EIv3bMfAs9MwJ093bb83ikBqzy6c/Kl9OPLLx2FmZ5vfoJDAjnFcevUwduMWgAj8+LFN58QV2Sxe+OcHceD/GwYeP9a7hlgDPHwMpklBXwzkcfYNgzh4fgj2ylIuWybA+dcXsH9uDGhAuDULRez7y0uwk9NN9x/M1BTk12dhbRvv+/XHu142NTPyn3oSzLxxLIKQqPzDFyN/ZhH2iWfrL9dkvAIA8LPPY/iFAPb6Z7aQkCND4CjesAAcBQEu/9OjGHu6uqrIHz9zCnvOZGHmN37fHA6Ho1cIaSEGYthIQmVWO8wcW4tld7ElMMSKgmudREqLTCEZ4CRiWEuQJQkygFyU4NEWBgyYQDpRGyki6DkfJmeQGdg8BgRmgigqkCYIC+hYwvN7MxsxyEeIfQkCmhPADQEWIFwnGOqlvy051DcaEBHKwhgJNHk9MlOSXYtrbvhmYaYV3ddK6KMaeWsKoHPlLLJe4rRdrKw/q27n0CJ2ZBdhQTipx9cUea2ldcXftdBGoBgGEMSoarUs2hZyVWzPF1HRHqaKeYRxfelsKFtFViXH4UmzLNxqLVGMAuS8RMDutQvcsT6FQqEhg+q2bduwbdu2LrToGk0Lt6VSCb/8y7+Mz33uc5iYmIC1K0dvnn/++dQa53Cw1jft1H+OI6gvPI5tX5YwN0mRH15YRP5MFpjvbUasuTKB235PQrcqEFkD89wL2DM9C33bXpR3Z5B/QmzsguwzbKWCg79/CrYf3I3XiYiNFs0yM7PY/1+egi4Wr22mXMa+33kKptRgFrQ10C+cbU10Z+7q86sZV7SsWlCc0vUoJEQ+B1gLW1pdSE2OjWL6LbciO6mR+cxj654TjiLs/vjz4FJ51SwLjiOYuZvjWZgaznHrcHQdIRh+oIHg5hRthWAQWTC3n0C1WSAkjz9Cd4/5+uuLCLCBhawKmJyF38K1J6RFPKRBpSW3oSVwAwWd+gkihh2KQdMerM8IvN71vYmSTFkiRhQpmDkf8C38waiuA5aIIQZj2JIHyl3rL8mhCGbBB4L68Qg37lcp01Lxuo1ybOvtcz1Rst5r1hIuzRXWXaaZ7TVD4GmM5ssItcJCNcCV+cHl7RIxfGmQkTEUGcyrzLrCbTEMloVbbVc6fScX8wCcaNsUW6j/eu7cOczMzODcuXMwxuDxxx8HANx6660YGBhoeDtNC7fvfOc78cUvfhFvf/vbsWvXLtDN8onsuLkQEiIT9L7QlzVNFxXazJipaaCNeIK04DhKxLp2sAZmahpibh4DJHr7PgrZknsSzDBXJ9JvTxuIXA6T/+RejD88D3765PrCKPOaDs+NXJ9rbacrEEFuHwcq1aTAXaf2aw38zzyWOJhTQI6PYf67DkEYIPdXD6+61sz0DMb+5hg41rAbCdnM0JevpNIux3XZXV3cn8PhaL1iezssT7GOBcRIBM/vnXC8mQqktYsQDPLMslDdy3Pu7yyDmZARvJSHKpq6DoRgZAZDmBwhrniAJfgDvRkwjSIFs+BDDMTwmxwEyQxE4HzU0/ejRk3QtLMBVFEAJGGyZmmAY+22+RkNZPTy+gDg+xo81nhfvpv3YOBp5IMIghhzlcyaoq+nDIwVazp4GxU0r8wPoqoVIq3WFVEbQYgkmiGQGoosIiNR1NemxTMTIiNRNR4q2ttwf6Wqj3I4srzu9UK2E2ybZyv1X9/3vvfhj/7oj5b/f//99wNIomhf85rXNLydpq/4T37yk/jbv/1bvOpVr2p2VYdj00D334ELrx/Cvt97uqEczJsR8nyIgXxrUQLr0WdxAmrfXuhdI8C3n26pbU07LlMurSwLBVz9kbux82+e3xI5yRxF2PZEEeLKNLTZWoMa5PuY+Ee3YPC8RubLx2BLpZULCAm89G6osxPJe9nOdbIkrpJSoGy2cTFbyBXrA4CZnMbQZ0LAMsxaAwTWtJZJuyRk27n5zZsT7XA4HF3CaAEKBcgS7JwPbL85Z6xtRBwlX3/TzKPtF6E6mRK/JNpeygIMVAsK2dHm8m6VYsglwbYR4TMKPZgFDwgsMoNh22IpM8FOZqBCApcEzG6LeNGHN5hk7jZyDP3wftQgYrBggLD078YFwm6kFj/QjRiOZvGUgSeT90US48Ynz8hAGYN+0o+7OD/UcPbsjTATZos5EDFuG59ETkU4NbcNxcr6RcyltBjJVWCYMFfKLkdARFoithKhVqiuIcwulDNYXNp2o4UWgeR4RzIVxEbi4vxQS3ETjq3DQw89hIceeqjt7TR914yMjGB0dLTtHTsc/QydPIf9f34JpljaeOGbFL7/drzwM3cmBaD6HaKkyn0LvTi9ZxQzRwcAauBx2WYvUY6PQ7/uAdCL705trh1rjcGLGhxGIM8HXnoPxOBgKtvuBaw1+OGnWxYuZaEAdWBfB1rWPhyGGP+zp5H5wlOrRVsA5ClMH83D7hgFyeamsNXlnttx5t33QGTWzxUDknMXvvkBVP7Ri1den0vCbNqDXGJgAGd+4lbgrluvCcYOh8PhWBMhLSCT2mic2VoDm2nBTMszcG2L4lE3qZZ8VKazCCtr54PWwxgBLBWmonj949SxRGUmiyhaKVytV/xqxfpawM75CCYUvKseqgvpfi9gAga/kMO+TxDG/iYLrfv/fVuLzLYKeE8VYm8ZXh3xOYkoWO1KtZZQnc4iXLoWGiERersjGIaxQmQkYiNXxQQAgLdUfEw0eE1thJIW45ki8irCwaGZdZclYmT9GAN+iEE/xGD2mhGgGnm4NFfA1GK+bjREK+dxwIvgC428F0KI7hQrdGx9mn7yffCDH8T73vc+lHs9hdzh6CB2cRH6+TOtTS9vAVIqEdP6aXh4A8TTp3H4/z2zKZxwav9enH33vVD79za/8reewdgff3vDa0GOjWLhR14GOT7eYisBxBG8hQiimN45teUygk88DDM7C8oEuPD6QYhtm3zwbSPBVkjIu2+HXCNcPn7RYZz5J/sSEbsB5I7tkEcOt9LKlrCLi3WzajkMse2PHoF94tnUsnPp5Bkc/pNLsA3cx7ZSRf7ZCQw8PVn3PSClUhNZbbGIg797Ajh2qmvPYofD4disCMEItpfh7SwjU2jf9bgRRAxPGWT8GEptjmc0ES+XexIpuW07hbUErkrAEmzJa2qs2g80TEHD5iy8bfXdtsYImMtZqDkFvpppyRlIBHDtWqOlnzYhYng7yzDbI8hdFXhFBmlAVRnWbI6BXGsJlYUMqmUf1iZT5/0ghlK27r1Znc3AXMkhupxf8V4YLZPCZJZgKxtPmLaWEFUVoqqCjjt/vmItMVvMYaaYW9NNO13KoRgFmKms/XqzGCtQMR4sE6ar+XWXrRVbAwDDAtENAi0zIfA0dg0vYGSgnMpzcyEKEFmFUhzAriFkOxyt0HRUwn/+z/8Zp0+fxo4dO3Dw4EF43spRn0cffTS1xjkcNwPk+Sh97/0Yf/fzqL5rF8yxk71uUkPYcrn3GcANYq5M4OCfKZgrLeS1WoOGokAtQ2hGYwuvjZmbB779FFL/+rPU27eLi9j3649AR5unwBMpBfOqe+BNlmCfO7Oq8NVaCN/D2X80hv2fEMCTK7Ni5TePYf8TAWwD2yGlEB7dh9kjPra/cK47hcY2iMpo5PibwZZKsM83NrNgo+xntWsnFl5xAP68hvr8o+1HfjAnudeO1tlCxR0cDsfGEPGG1ebT2xfgLwu2FhqdFYiuLxrUDp6vlzMo6+2n13m1wJKXQ3JiOfWa61sSMbJjjccjtPPsltLCGwkRZg2Esshk0ukrSWkhB5JB5YlXMMYelVg8CChvc0SAhFNZeHMSxEC0hxDkow2vJ4pEItBS4ggXIrm/lGegFYMtoAbiDfdt7TWXqO2C61aIxNWqTSKM3uhQNUZganF9gbUZrCU8dnkPhOCGhOBq5OH83PByW25sez6IMORXEEgPsZEbRi9sxHwpi4VyxmXbtoPrv66iaeH2rW99awea4XBsDUQuB46iugKPyC1VXr/OUcc6RuGxy5j48GEULh3vaPsoCFB5070YeOoK9LmLHXWxiXweuHU/+Njp1MWmZuEwhDn1Qkf3YWZnMfDn34LpdEavkIk43OJ+NoNDegUkEA8oyAUPEI11gGy1iv2/8ShsFK86TxxHDV+PrDW8Lz6B7V+RTYu2csd22P07IM9PNJwtLHI5lN54FPnTC+Djp7ojFDdCg8Xt7OwcCo/6QKyhW7w+RSYDCAFbqfRd3vVmZCsVd3A4HJ3henFhPTHzxteZAcvJR3OnBQpjxPJHgpTtC6rrHWdY8sGWQMoik+td/5WIkRkKOyoiS2nBuyqISx5UTrecn6o8s272rDEiKXYmGF6gm84WzuwsofgWgmjjHKwn1qeB1gK66kH4Bp5nQEzJZ2ITuxQjEeysD/YsfHXtHBExsqOVho9BSoaVDGZ0xQ0/mK2i4IewIEwsDiCuEzvQKtcX+qrBTDCm/nNHKYPxgRJKkY+FcqauwMsMaCtgWcBY0VLbhWCM5svwpMFUMY94DfHa0Ryu/7qapoXb97///Z1oh8Ox6aEgwLmfvQ97P18EvvHkqtdFLoeZH7gXMmIM/s9vXhMlmKHPnEP+zLn0nZY3tmF4CHe/70k8+uH7MPLnE7DVDu2RCGLHOF743hEcvDAAM71+/tCWocNCEwUBFv/RfchfCiEfOV53Sn0nEfk8OAw7JirKQgF8aA/E1Dz0xUvgOELwiYfBTZ7btM4Naw00cqxCggRdOy+DeZR3ZzEwm2t8Z9bCKxpQFMPaDnxBGx8Hl8tr5ufWXWfbGKb+wW3Y9vUJmJOn113WVquwZ8613kAiLP6De6EzhNFPnbx5nhsOh8PRY2ri4NqvXXOgXi8cMROqkZe4A7dI8R1mgC0theBSx8W+jehGkS3lGajhzn4DicoeUE0EMSMZQjSfddrq+8BMqC4EyJ3yoXMMur2YeoEvYwT4bB4DEwSdAyqHIvjbKohUACiGn40bar8fxMDO+o5aawk6VvD89UX2WixDI6TlZLdpZGSsQT4T4dDwNLQVODG5vSFBVAjG3qF5DHgh8l6EcuStm2G7WAlQCv3lomXNkvVjBEpDkkUuiLBgnNvWkT5NC7c1HnnkETz77LMgItx11124//7702yXw7Hp4CjCgf95GZiYXlOAtZUKxj55Mpn+24bAR0EA8n1wNWzayWquTuDMG4cwXHq0oaniLcMM/cJZHPjPV2B6IC5uVTjWGHy+CDlbgumBG1MMDuLC/30Pdn25BPr6Ex3ZBw0OYP62AgaFAC5dXvoWlW4HW46MYOF1t2Hwb59IReAVmQz0S+7E/C0ZjP73R8BxBHPqBWRPn2nqXrfVKtTnHunIAA4phXPvOILtD4fwPvtIw+txpYrhUxVgfrEDrbpxZ4zC544DJGDm0y10dlOzCVwEDoejt2wkDtZev1HcqYm6GyEEYyhXwVBQxWy1+WnEyX47L4QQATIwsLGA9E1PRdutBAkGE5LPo5QKVDUKM5A940NVAWEIxZKP7GC6s8/YEsgi+dEADEFK21xcxUb7YEI0HwCWEEqF7Eh6265tv9X3ZaGcQRgraCvqCqStMp4vQpGFkhYZP0YlbKxGRWyTdlimDXNmN3LvCsEQwi45/1cvV40VYl8CMollcKJtSrjH7wqaFm4nJibwIz/yI/jCF76A4eFhMDPm5+fx2te+Fn/2Z3+G8XYK8zgcaUMEkc2uG1+QGszrT8dPI6+RCPbFd2D29hy2fXsW/HTz0Qpmbr69NjQKc08coVsaa8CPPINeTaC3pTL2f+w87MwcOlXSQ1+8hIGPXwW3EQexERT4KG8XGJRNdC6JIAcHYcvlVc8SG8Xwn7+KbdMDMPo6h0MfTfVnrbH/I8+CK5Wm3jtbKoG++ngqYrLasxt22xDo4kTdZ2HXnk8Oh8PRx0SRggklhGc3dNe1y4a5mymIbFk/xkimAkUWOS9GWfpNTUlOjr/zn6nLTsX2Ii6XScvNuNkJcjGMb4AuZjDXIAKq4wayImE8wMs25kRtBuUZVLZpAArxiIFf6FAsWQunTmsBoyWEYHh+/W8QjUUwWHjSrBJoa+77mpO6UeGSiOErs2Yubo2rxQHkhiNoK1GNvDWXuRFrCZfmCpj2coiNbGtGgJQWA5kQGaVRinyUQ3/V9owRmFgYaHkfDkcjNF3m7qd/+qexsLCAZ555BjMzM5idncXTTz+NhYUF/Kt/9a860UaHo2XEvXfi9B/cirkfebDhKvL9jNq7B6W9WQxejIFTZ3rdnI0tGmnswvOh9u6B2rmjK/tzrIM10GfPwy522H1pTUdFT33lKsY/8q0mIwO24ey/PAq6+8jqF62BvngpKSzYQLvlju3gV94Ldfjg6heJoA7uhxwfT7JlG0DkcrDfcV+Sob0OtlhKcn97BA8PorxvEDToOrddg3vw43A42sJago0FYAg2lLApVGHvJUoZDGcrGPYrUMKgqtVylfdekLjr1nbOpUkcKYQlH2HZg9ab+z1sFyJOIhmU7bqITcQIdpURPliEvXcRSq09fJ3EEGws8iUu89XLZEcqUEcWkd1WbjrDtxGIGF4hAmXWF4avbxszwRoJMOrGAFCDDmghGIVsFdsHihjNVeDdkJ2bz0TYUVjEzqHFVa/VY+/wPA4Mz2Lv8HzdNoSxh8Uog7kw29Q9WxOTGyleth5EvJytLEX3r9+bFtd/XUXTjttPfepT+OxnP4s777xz+W933XUXfvu3fxtvetObUm2cw9EudHESOz52GIPHp1c64TYrcYzyNoFwyMN4M27BNFkSk+RAHrPfexeG/79nOirkicIAZr9jH/xFg8zfTfdPwaY+pzZQ0e3CcCKfBx3cC5y/DLNQZ7o7USIyMsOWy11t3zLrFNsS+TzEtlHocxeWhVg7O4uD/+0sbLuueSSxBSaroILVzgHyfUy8bg8GL8QIvtpYHq0oDOLKK3PYdyIP1DmfpBQm//mLMfZUGfS1lGIuiECy8cJt5thJZI6htcJlTe7LkeCKOzgcmw8iJKkAyz+b+8ayViA2ElWjEFkFYzsvmq5FTcCxy/9iXQfijTQzlZyZEi2AAQKBrQA6Nldp62AtIZzPABbwh8PUBFAihlL13zutBeLZDGRZIM5aBNsqa7rcq2UfmPXBvoUciuA3cf00yvWZ0jdeb+sVgWNOhGcAENIunzshLAyLpYiK1Jt7rW3SQBBDgCGFRYz1v6cSJcsBgCfr98l3DS1g0K8iz4T5ShLJ0C6BpzGUrWIx9DeMXtBaohz6iJVBNVZNC8FSWghi6C4MFm0lXP91NU1f+dZaeN7qL5ue58Fa94Hk6CBCAmtNn06qJay5ipmcRO4vJzte9Gtd1mlfs+iJKez+VBasJGzYoWk460GEyZ94KaxP2P3fj0MHBGq0F0AEOToCjA4nkRINnhMzPYPCxx8F2DrRplGIUPqH98MqQuF/P9lVcVSMj+Hyd45i5+dioI5wK7dtw9zrboHQjIG/fqQj7yspBblzB8yVq81tnwh8x0E8/w+GcPD/mVyO+2CtoS9cTKVt+uIlqEuX18y/5TDE2H9/FDAGtsF26ytXsec3ZmGuF+mJIIeHk6xYa8DGYPzhBcgrs+lEbRBB3nIQcw/uwMhXL0Cfv7DxOm08B8W9d2L2aAEjf93ZgSKHw+FIEx1LxFUF4Vn4gV4WYuxS4au1ijQRMfxMDOsJCGk7GpOwHkLwUsx8e2KDtYTF0EcgMyBimA3yJjuBMaJl5/L1+ZdCoKH3gyjJxGRFIAHIBh2Ia+17PbG418XT0iaqeEBMIEuIyh4yA1F3jo8JFC/FWtjEmXrj+2wtgSMBGQNsBEyggJSFW2ZCdCEPVSZEgxbBrnJLx8+WAHnN6SxvcDrXMlubyaO1lrBYDRAbiTBWq6JOSqEPubSP2Gy8XWbC1eIARnMVTJdyy8+ZfCbCaLaMUuxjpphDOfYw6FVhWUA38OyovW/1nNOeMtgxuIiM1JDCIoy9DV3WYaxaEoyJeIUo3Uw8jMNxI01fga973evwMz/zM/jTP/1T7N69GwBw8eJFvPvd78brX//61BvocACA2rkD5fv2I3NhEbaW60oE8aI7EI7nkHnshb6sQE6ej/I/uA+5ixXwt59qf4PWQD9/po0GtS8im4BgMoCZncfoQ99ouPgSKQ/69n2YeDCPXf/1Cmyl0nBb2nGNkudD7twOc2Vi7e0QASTWdWBuOphR+NYFgAi62l2BX589j+0fvbKuw91Mz2D40xpg27Eia3LnDpz8qf247UMa+srVNZchpVaLuszAEydw6Lnc+oX1iCC3bYPdvx144kTz4vM6A1DcwqDMjde2HCrg1L+9A0c+cgn6hbMAc+P5yESQ28dBRHXPHZiB+SIKpwfAxcYjJ1pFTM1j6JQCR911kG96uj39a+voBw5H22gtEJc8UChhlYVeypjUsYQOFdgSZGDg+XqVOJMIK73rl3jKQC0JDo0IGxtRCX1c0snXznanLrcLLbn8WslaFYKhlGlI8FLK1p2W3wg6lrBMEMJCypUCPzMhLPngWCAYqvZM3E8b6VloATAY0u+eIUwqCzMSwS744KxZ830jAsizYAWwxxB++vcnMyCrBFhAFcWy8/Z64kjBRBJ+LlrxvtciD5gJ4gan8vXXjpQWOwuLkGRRjALMFNeP2boerSWK1137tYxawwStZVPbApLnwsUbHK/D2QqksBjwQ8xSFrPFHIrVAHYp4mQ9Ak/jltEpaCtxdm5kTbGVARgWsCDYBosrtkNtcGVr3KFdxPVfV9G0cPtf/st/wfd93/fh4MGD2LdvH4gI586dwz333IM/+ZM/6UQbHQ5wHMOfqUKUrhXWIeXh0mtGsHA0xh2TO4A+FG5FPoupHy1DfqOA3Q+n57xtqS2Dg4hechuCJ8+0XiSNGTt/8+stCZ0cRxDfega7nxtB/MBtkKFJR8zeALlvN174P3bj0J8Q9Nnzq14X99yO8oECsp98tH8dvS0I7mm5Q5uGeWOh3RqY2dmONkNfuoIjv1aFnplb83W1by+mXrMPI3/2yKr2stb1Yx6WICnBu8Yw8dICdhwP2rp2RC4He/QWqIn55BpN4TlhFoo48vuXYS5dab49QYD5Vx+GlUDhzybWndGAye7MaNAXLgIXLm6GfpXD4XAAWBJcajrDddOe+TqxoDaRrN8i/MUKd56Fte07xVoVbK8Xp1oVkK+fct/K9PtESGcUclVYJlSBptyKzXJ9jipbAdwwlTyOFMS0B1hCaLLIjFV65rytV4CtlqlKS1P0G2mf52vI0eRYuylGEzGCbAysU7iMiJHJR+BcvPz/9Vgv8qAeQjCivIUqCeiCRXDD5W4tQS/4AANhlEF2tLLi9XoxCjceh6SlGIU2r5mRfAXDmQq0Fbi6OJhKjEEl9iA8RmSvFSxrxKlKxMgHEZRIognyQbRme7SWuDxfgCcNYlO/KFoaMBMiLUHU+rPL4ajR9N21b98+PProo/jMZz6D48ePg5lx11134Q1veEMn2udwAEgcepieWeEW4zjCrt95GLs9lbg3+xAzN48D/zQGxxrc4wrzfPsBvOw/fxtf+/cvQ+Yz860LTcwAtzjlS2twuQwyDOjujKTrM+dx8LdnoReKa75O2kJEvY95Ic8H+R44DFe8N6QU6I5bIYpl6HMXt5YzuAEoCEBKwVaqzR27NesPUFgLVW39fWetwU+dwPZjsuFIg3pQEKC0L4eB2ALnRMv31wracOfbahWDf/0YiAg2zedWvbgbR8dwGWEOR++Q0sLPRzCBhBB2WVSRyiTTrg1BSO5Lt2SkJQIvce91UqBslGYq1dej1bzUmvDYaMGlNCDixBlsxbJDeOUCDG5CEGyUeiJsPZKCXgomEol73DPL6ybO0ESs9zK6IVER6J5g24qwCjS2rLWEcCoLWZKw4xGC/OrIh0TUXr29zO4SmAlqo/20eDsYIzBTySGjNOYrmdY2gpXtFg0WOGuE2VIW8yLT9EAPL2XgDmcCaCswV87WXdZaQmgbk8GESLJ4G3H81muX6/Y2j+u/rqblYZE3vvGNeOMb35hmWxyOpuE46mjxJZHJAJ7XVqZiz4ov3cjjx/H4m3ciM/NET52ltlQCff2J7jnnrIGZm6/7sjl2Ev6xlGdICAnhe8v5qBtCBH7xHZi7JYfRb15NMoBrLwUBFu8YQnYyC3nxCrjPhFtSCmJsFHZ6piPXlX3xHVg4lMXYVy9Bnzm36nWRySQiapP71hcvYeDPL7c3oMKcyjGb2Vnk//JhcIqiJgUByPdbfnZxGKZ6T8jhIdgj+yGnF5ejGxxdwE01czh6iryuSFANIRhBprMFc7NBBEFAJWot5qBWkb0fSD4uei9+aCNQjrylzNvOxz0k0/XXFpt9XyMcD2FiicxgmIpoxkyIQgXWAl42bkjotkbAhBIwBCsZVtqVERRMfamIWEsIFwNQWYIDi8xINVURPKp4kGUBGQF23oP2zYpCeHGkYK9kwB5DjVdWRTPUa4sQDG8ohI4l/BafIcyEYiVAEUFL61+/ncVqAAZQbTED9kaIGPtG5pCRGs/PjjY9aGSMwPNTY2234/r2DGRCDAYhYiMxW866nNpu4fqvq2j4U+fzn/887rrrLiysMX10fn4ed999N7785S+n2jiHo9dEr7obkz98FBS09+HWD7DWMFfr5Lw60kNIyDtvxfSP3N/4dcMMeewMxj5/Bnzh8oqXbKmE/F88DPGlx/vyvZO7duLsP78Vct+ejmxfPf0Cxj5/Buby6qxVUgrzb70PuP9OkLd+Vdg16fW3wOuxJtX26FfcjYl/chSkGutIN7pcy3g+qtsysIP1HRAOh8PhaB8pLeSSS8xXfRoB1QS1Kfe9rshecx/3OqO3RpCNkS00JjheH71w49/NUrV7Ywi2rMChQFRuTLQnwSBlAcEgsdI9LpWB8A1kYFZlrjZKrd1pv/fMBCpLkCFQLFKfxq58AxswrAI4t/r4+XIGwaxA5qpEXPFWHR8zJVnY8eqp/MozyNyQb9srYi0xW8yhEvrLWa7tCOAZP8ZwUEFORdg1uLHxQEqLbBC17KZ3ODYTDX9T+9CHPoQf//EfR6FQWPXa0NAQ/sW/+Bf49V//dXznd35nqg10OHpJ8MQZ7Didh3YFcRwAICRI0GqXJRFENrtUcM2CpucwfCIDmMbdsWZhAaiXq9qmy1YMDkIUBqEvXU5drDSXr+DgH8Yw053JrF3vvLAxKJwqQk7OQ9c513J4CJTNQl9uPuu1V4hcDqQUTLHU8nvvP30WOy4UYBq4BkU+D/3gbVDffLZxl3iTmMlJBJ+aSjd6wbExzrHgcNx01EROw9RQFXbH1qYmAjKwIsqAmVCdDxBc8lDdpeEXQkAwwARqUBSU0kJkY2BpTPbGIljtCGrMhLCS5PiqoPGohUYgYnDWAFUJ9mzqIqjyDMSOMpgJGbFazKyJusSAWKMQmo4lgidzEDGweGeE7PD6fbOaaNpLiBgj+QryXoTJUr4lx36kFSIjIYgxH64f40DEuHv7FWRljMU4wLGrO1ttel2YCeXIg2VCrKVz23YT139dRcOf5k888QTe/OY31339TW96Ex555JFUGuVw9AtmajqZnu3EBgcAcfQIcP+dq/4uR0cw+/0vghweBpihr1xN4iD6pNiZedEtuPiPD0Lkmqv22gisNfSVq71xAzODH346KehVR+CsvvQILn/foYYcuf3irNcvvh1zb7kLateOlrdhpqaTyI0Gnl00kMfVB7OgfPrXxwrcc9ThcDg6DjOhVPVRDr2+yKfdCvTa7dsOcSyhF3yYBR9ReM2zZbTAyCMeCs8DQ08mIps/GMEbiBDkGp+GX3NZpi0cGkOATSIyjBapvgdCMLLDVQQ7yqnHJFy/DyntmtsOdpQRHawiPlKBn9GrltELPmQIiBjwr6x25K5YVgtEVdVzJ3jgaeS9CIHSGGjRBWuMwMmp7TgxtR0L5Y3zd8WS2pZmxu6NaC1RrASpREE4HO3Q8BV49epVeF79kROlFCYnJ1NplMPh2HqQUqAggC2Vet2U1iBCPJqDzkkERCtFKGPgF21TDttuIh85jt3HczD9krfcRYKvPoud3/ZhNhCWZaGA8nfejuznnuqY67RRvKfPYORUADOzvouZlAKb9iMWzNUJ7P7NuQ3PkWPz4Yo7OBw3L5tZbOwXlmMaLEGqtUW4vue664BviAQwAUFohvUTAVYIBvpE65eSoQWDGB079/W2eX1BqWaLlzW630y+fp/LGwoR5xXIANHuGNl12qmns4ABIo+RHe9dPz82EqFRIGJU4vrZ2kIwsn4MbcSaYmiy3sbPLmbC8/Nj2J4v4kpx0D3vthiu/7qahoXbPXv24KmnnsKtt9665utPPvkkdu3alVrDHI4tDRHI98Fh2OuWdAchIW47jKmXjmHbXx+Hme3MtPqOwgz5xceS/uwNQpmZm0f2b74N06eOQlutAo2IkUK2HctwIxQEIKV6JtjbUgloZN9BgIX9ClnPa+xcdZCG7g8hwQ/eBXXmKvTVibbF237MT3akgJtq5nA4UkQIhhAW1qafC9qPMAM6SpRMy7QiamDlctfORb+Ju56vYXMEcJKLW0Mqi+KDFdDVALy9iqAPMlOvh4iRyUUbxgAkGb21azOdYzCGEBd9QAuoQrSisFg3UJ4B37sIy0B2g2NiYhAl118vIxOMEZhczC+3ox4HR2ewPz8Lw4RvXDrYVvzAQjnTkDPXsQlx/ddVNOyp/57v+R68733vQ3WNL7SVSgXvf//78b3f+72pNs7h2JIQQe3eheL33teRqev9CAmCHslh8tUR7OHd9ZfzfIjBwURA7EeY6wtkfSraNoocHoK845bEWpAS5PmgOw6j8l13tVY8rIuYyUmMf+RbsIsbF0PoB0hKTB/Nw24fAajN6XHdvN+ETPUaczgcjq1OvzjJhGCMDxYxPlDCUK7S6+Z0j+sMgGt19WqFveJIJdP7b8AYAa3bF7pbLdJWE0Az+WiFqEfECDIx/APFFYJuv7GeEMlMiGYziGcziKrNZ6rW26YOFbxJD96shJ7rTf912QG9wTJyKAZnLNRQ1PNBg0YKySm6FqEg2mivlBaeMqkUJtvovNXei16d305EkTg2Hw07bv/jf/yP+Iu/+Avcdttt+Kmf+incfvvtICI8++yz+O3f/m0YY/Af/sN/6GRbHY7WIYLcPg4uV2CLxZ6KbCQlSi/ag8M/9yymHx6DPdtf09flyAhoIA994WJq54m1hvjm07jz5AhsvQJcRBCH9qF86yhyj5yFuTqx8mWlACnBUdReu4ggR0dgZudTd5duZvjAblx44wj2nD6bnhOcLahURTDrAbwJKr5uouuB4wjb/ugRWB23dT+ITAZ0ywHYE6fby2QWEiKbFOSrFzUhCwVgxzZgdh5marr1fbWIyOXAsb653MXOseBwbGpqU7YTJ13zbk4iTk34JeJloUX2oYiglAEB0Ca9PFSiRCCyTIl+u8ZmrSXoSAFLwizLayJLHCnYiQxUiRBu1wiGqi27Qo0W0KGC9A1UHefvzYYxtPw5x6EEUvLDkEiKhwEAZOfOc02Mb0SkrYcfxEDQv8L7jbwwOwoAKGkfUYtuWyLGkbFJDPlVXC4XcG5mpOX2SGmR8TS0EYi0XPPZ4SsDT5nleIduDqZJaTGUrSIyEqWq3zcDeR3H9V9X0bBNZ8eOHfja176Go0eP4r3vfS++//u/H29961vx7//9v8fRo0fx1a9+FTt2tF5IxeHoJCIIMPv6wzBHD4P85kZOyfMhh4dSawtrjcznn8T0Dw5An7+U2nbTYu67b8fJn9oHkc2mul3WGmZysr4oyAxaLCFzuQxUVgs/4uA+4OitSQGwNhADA5h5y22QY6NtbWerwcdOY99/fSbV+A7WOimQ9Y0nO1uojQhyeCgR97sBEWShkAiRPYTjNgcxAIjxbTj7fWMQA/m2tiNHh6EfuA247WDdZWhsBAv3joN3jzfmuk3TnSsk4pfeAXFoXzrbc6TG7/zO7+DQoUPIZDJ48YtfjC9/+ct1l/1n/+yfgYhW/dx9993Lyzz00ENrLrPWjDGHo9+pibatfFlXyiDwdGrTx60llGMPoVaoxM27GzvpGpPSQgkLKSx8ld4gLBFDeQaeZ+D5q4tILS8nGBCrQxn5UgZ7vmBx6C8WMPSUhzhsrZ/CnEzd56qEXvSa+uiPI4XKVA5hJR1H6vVtMkYsRRX0RkySkgHfAooh8+mIl0QML9DgXVXY7SGCkc59dkShQjyVRVgMuhY90mv3ZqwlTk6O4+LsUMvXDREw5FehyGI0aN0ARcTIeBoDQYh8EEGt4d69/nwlv2+8TSltKk5gANhdWMDdo5dxz9hlBF5/FL129IamPj0OHDiAT3ziE5idncWpU6fAzDhy5AhGRlof5XA4uoENQ4x+7RJ4sQgTNee2knt2YvG+ncj97eOpObU4DKEvtiDaCgk5VACMgannXG2T7GSMgbNBUvSoy+jLV4DLV7DWnjkTwAz4EO2Kc8YgM22AJoVEUgp09xHgxAupFq8ipSDGRkFEqWSVtgrHEczc5nQiku9j8XV3oPCtC8l91eFzKLJZxPffAisF1N8/uuH+yPMBQX2ZaW0uX8GB/zeEmW/zeaI11EIVVK5/jPrsBQxcugIb643fI6IkumNiGmZ6JpX3NB5U8LL9HdmRNv1e3OFjH/sYfvZnfxa/8zu/g1e96lX4yEc+gre85S04duwY9u/fv2r5D3/4w/jlX/7l5f9rrXHvvffih37oh1YsVygUcOLEiRV/y2RcDp5j85GIBM3fxESMwUwIAqCkRbEStN0WZsJ8qbVBfSktPGmSqe11XG3ttq2W72k6ICKuJ3RJaZedzaumUxNgFcFkPbBoM/ZCcnIpiI3FoxrMhOCJHG792xlMvmIEi29IZ2o5AMSxhCl5gGB4uRjK6/73BiJGdqiaerarEEmMRCdhJohLiRubhYQ5oiE6nKW7Unhc340vBCPw4qV7VvVVprW1hMvlAga8ENPV9owHlgFjBQzTmk9aZoK2iddRN5DtnQtiFDJVWCZMFfMwps04MwDaSsTc/nY2E/3ef+0FLSkgIyMjeMlLXpJ2WxyOzsEMfeZca+saCxH2x90sB/II7z8MGRrQ15/qyNRu9blHsP3zBO6zzFb7zAkIoO0CYLZcRvDJb68pDq+HGBvFufcL7P+P+4FjJ9tqw4rt5nKo3LcfLAmZT0931pm6hZGhBbo02MBRBO/iHCDEhtdjLYqAicDPnOi7LOSaE75dzNw8MDe//kLWgMPG3iPyfUy8cgzbHvFAc/Pt3xfWIPO/v41NENiRLn0+1ezXf/3X8Y53vAPvfOc7AQAf+tCH8Hd/93f43d/9XfzSL/3SquWHhoYwNHRtBsxf/dVfYXZ2Fj/2Yz+2Yjkiws6dO5tvv8PRZyRiVGuilLEiETL7QHBRwiLwdDI1nKmtgkRrYS0hhkyOtw2hpCZkNXu+E1fz6nXk3jKuvjSPYDqH0kGNTItZskSMYCCEjhWkajwmwRjCoY88AzM3j/EX8ph51R2QA+0PIjMT2BCw9GO06IlwW6NfYyM2up6sz7ARwKo7x5C0h1e0rR4DmRB7B+egrcSV0mDfFQE7NzPSdhQMM6EaedBGwi45yNdCawmNxp5ZvtIQS7EyabynF+eHYEGoxB6qUbqu+b6mz/uvvaBL80odjs2LPn8BwYWLfSFk2jBE5sw0YAx0JzND251+PTgIIkrXFdxMm4jSF8jCEPzwEGjhbKqbNcUSst86DQiCcaLt2ggJkhJcJ8+VwxDBJx6G7tI9uhwB0QhSIh7JApIgSADchzm6QoI81VeOYA5DbP+fz8BWqukNZvTBM/xmYeGGZ38QBAiClY6/KIrwyCOP4N/9u3+34u9vetOb8LWvfa2h/Xz0ox/FG97wBhw4cGDF34vFIg4cOABjDO677z588IMfxP3339/CkTgcvaeVL//MhFLoQwnbco5kmhimJXEEsB2aVp844doTcWrFxaRMR0iT0kIeXoQ9DGzkVTZGQMcSRFgzlkEITvJM67CWSEgEmDsOQJ66CN6zHaTS+e5AxBCSYT0LiOR3x0qYCVGoYGMBGSRxGzcWh5M7y4jmA4ichp/Se9NIuzai1k5tJWwb91QnIWLkghhEjGqsoFt8znHKA0nlMJnZZZlgbfsuWWsJF2fTi2x0bF6ccOtwNEKffOHnMIR+/kyvm7E+QsLeeRCsBOhrT/Rk//LIIWBqBmZmtun3Tu3dAw6jVS5EMzePvb/09ebEQSKAxPrOaGtgZmebauPNhtq+DXbHKMQLF+sPBvTJPXojtlSC+NpTS//poWi7zmCG2r0Teu8Y8M2n+uo8dioO5maiV1PN9u1bmSX8/ve/Hx/4wAdW/G1qagrGmFX1EXbs2IErV65suK/Lly/jk5/8JP7H//gfK/5+xx134KGHHsI999yDhYUFfPjDH8arXvUqPPHEEzhy5EjzB+VwbFJq+aPtkkaBM60lrBXLmb39iDEEsyzgGCjVvYcnMyFaCOBNK1gJxHsq8JuYNl9PdJbS4uQ7Mxj91m2YvZuRyRQb25YWADGkrO8a9Hy97LLtV8drL9GxhLiUgV8khNsMzHh1lStZKQs1VulRC+vDTChHHiZFHsYKFKvtR620SsZP4hrCeKVspaTFA9vPQxLjuYXxvhE3w1itaqujeVxUwmrcVeVwdAHyfIjD+8EXLsOWSr1uTscRkUk65z3Yt9q9E1e/axzj3/ZB8wvNufWIULx/D/zZCGKt6eNNiFqkFOSuneBcBubEqcbb4FgFjw6hdHAQgxM5YDOKeb0UbJdQhw4AlWqSI309RLDbhjB/aw7DD0sX1eFIhfPnz6NwXfG+G92210M3hDUy86q/rcVDDz2E4eFhvPWtb13x95e//OV4+ctfvvz/V73qVXjggQfwW7/1W/jN3/zNBo/A4XAASYEzTxpoI9t2pfVTRuZaEF2rh5lWXcxGiUIFNasgqwRBQKQF2Gs8IsNaApYE8eQZeu217HAVlTdV0chE95poG5c8gADOanjrCMitCrZpZ9L2I9YQhAVAAOnWCgz2Eq0lZou5trYhBLd132eDCEdGp2CZcHxq+wpXrRTXHMqBvHaN1jKc0xi0cjj6CSfcOhxdQI6N4MQ7x3HkvyngyeO9bk5nsQb28WM92TUphfLduzB0OgKdvwLbrAjFjPyzk6BKiHblK1IK0YFtCLf5yD4n0xfvatPbo6ivXJKdwBw/jdxzElp3tlBEP0JKQQwPwc4vtl4ckQgL9+5AZiaCuFG4ZYZ98gSGn1XXRFsiyG3bkviOqxPtHYCjt/QoI6xQKKwQbtdi27ZtkFKuctdOTEyscuGu2g0z/uAP/gBvf/vb4fvrF5wTQuAlL3kJnnvuuY3b73A4liFi5IMIkhhGGSyYzKYTn5pBCAZU0ldLq4BXo/CcDxEDLBg6x5DKNiVsEnFNt21adDZGICr5yXR+XydRFpaSwmom/SJyRgtYJghh13X0bnb8jEZ12MBmBHgk6mkGcC/IBhGynkYlVqhGXkvPjtFcBYMqifHKBxHm9bXAkTBWOFschRIW5+eGASQDTcPZpID0bDnrxNvNjMu4XYUTbh2OLsDMkBFAZhM8FTYxbBn+bAg1tQgz35ozs+Hs0hsREmrHOOzCImypBBuGUI89B09KmE4Ukdu9E2bnCOSp80lhqK2MNeA+cK32AjE8hPJLDiP36NnWRVRmFL51HhyGaxflu6FoGCkP+rY9YEUQE5NbfmBgS9PHHV/f9/HiF78Yn/nMZ/D93//9y3//zGc+g+/7vu9bd90vfvGLOHXqFN7xjnds3CRmPP7447jnnnsab5zD4UhENisgpNnSgm0NWooG6AXsWxg/EZl4RwivSZFPCL7OLdz4MVhLMOdzGD1JqI75iO4pQ0oL69skKiFlsdFaSty8WsBmDEQu6ri7mZnAXHNUd+/9JWJkt5VvCnfxjRAxdgwUUfCrKGsfZ2ZHWsqgnSlnkVcDsEgyu6+HmXBuZmTF3zKexmimDM0CVa1QrPQu4sHRJn3cf+0VTrh1OLqAuTqBQ++f2TrFp5YceXZ2duOp1UQg5bXuFmwGa4BvPdW2W7YVRCZA6YF9yD87Cft8KXEydjAWg/NZVLdnkTvfpU6JkJBjozDTM30x9f+mgRkysoBp75zri5ca36UxUFfnASIYJ9o6Osh73vMevP3tb8eDDz6IV7ziFfj93/99nDt3Du9617sAAO9973tx8eJF/PEf//GK9T760Y/iZS97GY4ePbpqm7/wC7+Al7/85Thy5AgWFhbwm7/5m3j88cfx27/92105JodjK1EOffhKQ1uxJcRbomsCZyNTuNPI922EYLiKyPcBwfCDa4XJdCxhjIDn68QRvEFbm0Vrie0PA0PHZhGP5nD6sIfsSAUiH7W0zbUKpK18feXvyfKd62dcXyBMKIsg2/2ZWzebaFujoj34wqCiW3PbAkAl9HF6ZgzM1ND9GmuJkvZh1yk4JmXiZm+1mJnD0SuccOtwdImtlB1Jvo/51xzG0N+fgpmaXndZOTqC8N5D8L/xLGy53KUWrkTkcqDBAZjJ6Y6JjmwM/JkIqFTb25CQENkMYAxstf62zHMvIHPmPEzUBUEcgMjnsPBdh1H4vHbF1LqImZ6B+vxsdwVUa9Z3nhNBDg+Dhgahz553jtw+pr0a663trxne9ra3YXp6Gv/pP/0nXL58GUePHsUnPvEJHDhwAEBSgOzcuXMr1pmfn8fHP/5xfPjDH15zm3Nzc/iJn/gJXLlyBUNDQ7j//vvxpS99CS996UtbOSSHY9NTE45aEU+sJVQjL+0m9QwpLWpSobXrCzc1oZSovZzORhCCkRkIV/xNxxI4m0NQIlR2aQTbKhuKt03vlxjF3QLB7AAq2xTIS4TNmmBtjAARN7RfrQWMliDBUMqsuY6UDJMxYM1QwcZiNNB+Hi7P+0nGrGJwRt+0Qmo3YSbMlHKoxB7KkddWZEEz64axwsTiAACsKdxKaTGWL8OTBjPlLCrh+lFLjt7R7/3XXuCEW4ejQcTROwAB2KdOOKECDVZfJAJlMiju8THme0CTui2p5BHVruhNu3egcus2ZL5cat8FK9bOq+UwBH39iVVuX5HJgPbtBqZmGxI85UAe5q6DkAtV4Nnn6l9rN0xv37DZuRxsNWxduLZ2U1Tc3JL02fOGpAR2jaN0cAiZi1e646Z3bFl+8id/Ej/5kz+55msPPfTQqr8NDQ2hvM4g4G/8xm/gN37jN9JqnsOxqbledLO2NfF2K9GNaetJ5MK1AkmtnvO44mH8WcAvGiyUFCrDEmKdQmHroZSBEhbaihVOQ+UZlB8so7otCz1kESw5bWtZtEYLkGR4nln3vDETdKTAFQlIBnKAv0ZbiRhBpnHXq9YC1grQUltbee9YWZAV4B7FYNysxLr9goat7rcenjTYmU+i9CyTE24dmwon3DocjUCEK68ehfWAXcc6UHmdCCQ3T0V3DkPk/+LhhrJbzcQUxv66CLO42NQ+KAhAd96S7O/JE205ZakawZuP2p5uLvJ5VL/jTmS+fKxh9zAN5FE+Moa8sUCDTlVOOfCLggClNx7FwDfOtJyTaksl5P6qsffcsbVhy6CZeeSIYNq8pxwdxmWEORw3NUIwRE3sEoBJudiUUgaSGNqKTVEIyFoCE607HqpjCXspC6uAYHcJQjRXqExKi5wfwzKhCtXylGxSFuEwASQQDTOoyXZcz3C2iqyKUYp9zBRzK17zfQ3ctrhCFGBeEp2NAGDBauOiZyQYLAAIXLvm2kRHChwLgNBScS8ihleIEFcVZLCx8NuNPNxeZe46AGMFpqt5SLIoRU607Wtc/3UVTrh1OBpk6PkYLAmctlAhJOQdt+DKq8ew83+d3DB6oC5EkKMj4CiGLRY779LbQMAjpUB33QrSFubYyaY3T1LCZJPpeUIQuI0Cv/rCRdDFS7BtnhPyfRR3e8iqxh+dXCwhf3wSPNOYaGsWFiCfPAUM5BOXbEo5uTojlh3MLdOgaEtKQQwPgYuldeMe2kJIyJEh2PmFTTPgsWWwBvrKVeDK1V63xLEBxA3Ojkhxfw6Ho3+wlkCy9aiE9RCCMZgJ4QmLqlZYKGda3lY7cQ41lEr6KOsJpTXRrB7WEsyVLHZ8G9ABYdLLIru9ueliaZ3lIBtj4Q4FWRLA7iq8NhyjgdKQwiJQjfWXiBIB2mBl4bP6yzOkMqAcIKSBUm102tfcAS+Lnc2iPNOQ6GstIY4UbChBysLPxqlHUzATqgsBEArAY/iFcNmd7eg8sZa4ujgASYzIZdz2Na7/uhon3DocjcCM4FMPL/+eJiQIeiSHuTsYu7LZlrcjBgZw8e13YPCCweDfHYNt0uG63J7770Y0noX32cfay4MlAT2UBRnbUifWlssQjx4HkFI+cAPvmxwZgS2W6k79NvML2P6pF6CLa4ipQgJsV+3HVquwz59pqqmiMIjo1l3wrswDzz3f1LprwWGIob9+HDoMN144BcTwEKoPHEL2uUnYF852ZB+yMIDF7zqCwtfPJCKiw+FwOByOFSRFfRInbNo5rUQMXxoIYkhhWy7kdX3BMKC1bUhpkQ8iCGKUQx9h3NpXXGaCKhO8koHQBFlqXtwxVqCylAtcO/etQMTIjpeB8fWX85RB4GkYW3/q91wlCyUNtFl5PEQMJS0YKwXvRIi1ENI27AxVykL4Zvk6uFZ8rHWUr2GlBGhj8bhdrCXYogdREbCBhfUNhEjXrMMMqCkPqkSwAcPmYyfcdhmtZU+KWDsc7eKEW4ejUTrkYGWtoY6dxe1/sBNmYrLNjaFWcaG19Ykwe7SAhUOEA19UTWWormqKjuE99TxgGU1vhQhgBndJaAQA8nzMv/F2DH/zYlJwaS2sgb58ZfW6QQDz0rvgX5yFblKkXQuuhlCzFVA5Pbdqx5yva6E1vLkQqHbw/bMMVTbObdssS/eW4ybBTTVzOG56OlVYy1pCMQwghUWkZU/zcz1pEMiktxl4umXhVghGdWeMqXt8WAXY7Y31nYgYvjLwlEE1Vl3N9hzIhMh5STRDGHtrvt+lqr+msK6kRXYp1qFsxYp1qQWx9HpXbBrXg1IWSNu9WwciAJ4FxwRIBqXstq1hfQaHgAm4oUiJmgietvsXSLYphYVuI4u5GwSehhDWZdLeTLj+6yqccOtw9AFmdrbh/NN62MVF7P6vTwDGtC7SMWP0qXnkL2fBcZuCGDPM3Hxz6xBBHdgHMz4EOn6mOddwLSfYmNaEKbbwSgbQrWRoEXRewQvSqbxsZmeBubm2ox16hZmbB779NPR67b/Ws29tHwsLCD73OEyDwi0pBfL9hrOJm0EWCsCu7bBnznd1sKFZavcWP/KME28dDofD0RbMhHLogag9cTgRjNqLSoiNRLjkJq25XVuBiJEphIjviQFiZBoUDX1lsGNwETkVYaI8iNlStuFjGcgmwutCNUAYq+X1pLRJJu8G2zFWwDLBWLHuR/ta26k5pdNKJ04c3puzCJ4QDC8fQXsKUtk1nbBxpKArCuRZBNm46YxaIRg8FiHMSVDWwNvg+rKWIB8fhKwCi0d04sBOCSEYw7kKAqWxGAYoVoJVy6QRYdIuUlpsGyhBgDFDySBEL0giQ7ihe9Lh6AROuHU4thBp5KHax48hHfmxNTjwoQc8+LK5bqTauQPVO/cgeOb8tQJcRJC3HgImp2HmF9YVq1hrZD79BLRuvNptDRuGyH7jJDhNh2m/CGtCQvhe84MB67RfDg/BHtoLUazAtBEF0YzbVhzch4X7tmPgrx5J16VLBBoZwuKdoxi4Oglzg3BLSkEMFYBYwywspLffFrBDeVR3ZLG6a9491J7d4HwWfHmi5TgXR5P0yaPE4XBsPTbKjG1mO+1gjECxGoCIWy4GVoOImy6EJYRFTkXISN1wjiyQiFI7BxYxHhRx1R/EublhaC2RDSJkPQ3DhMVKZl1hvFgNEBsBa5t3TUY6EYotU2rO7H4QtZgJYcUDLEH6Bp6/8XtCxFCKoVSduDQjoIse1IyCzTCiMUaQbf47QyYXAbmNlwOAcDHArV+uQFZiTC0OovQmSq2gmRAWw5kKFCXicanqr3jvAk8jH0TQVqAU+j0rPiiIkVUxBBhZL+6JcCsEI/BiSMEIY9X3DuUtg+u/rsAJtw6Ho39gBp+/BH9qBmah2PbmSHlYeNE4Ck8CWCgCvH5HvF627Ya04i7eJKh9uzHzyj0Y+vNHWz8/NyIlbEZBhN37CKJYwyt2YLodM3h2HgMnMrCV1eK2GB5CfPd+yIUIePxYTwV5On8V+ZnF9Z3QHYaHB6GHs1Azc4DTbTuOK+7gcDhuFnolLAGJAHq5VIAnLEqR15Soo8hACQNf6OWaEFlPI+8lfa5S6MPa+mK0XSfbdiOsJYR268kBzACXFMgStKaGhNtGtglDEBrgmGC7cL2RZLAigAgmSFcotFZgtppFZslxe/01KwQj48cYzZYRaoXYCFTMymtMCIYQFvaGiI20MVZgupKDJMZitTfWAyEsPGmhlmIldA+fNTcLrv+6mq33pHY4HCshAki0V2isi9hyGWhhOruZnIJfLMFWKst/Y2NQOD4HzMwlhcMczRPFCBZMqufPzi9APfNCV/Np9flLyFydhG1in7JQABuzoZPdLCwAddy0XKnCu7IIqoZrCqZicBC0YxswPZdEZHSQNCJZ2ubSBLxpH2ax/YEZh8PhcGxd4ihxgypPdyTfM02MEVgoZ5qOjTBG4FJxCDPVPEqRvywIlSMPSljEVrRV4OymJuWMTCkZZiBGtJSF6wWd78P6uQjn3zAAEWZQ3Rcj24C6JATDVxrMtG72tLWE+XIWxSUx8nqYAW0kQq1Q0R7iNYraDWRC5P0IVa2wUMl0bOCk1k4i7tngjDECYawQCwvdgrPd4UgDJ9w6HFsc+x33Ye7WDLZ/6oU1C2t1FSLIoQKgFMzUdKqbZq3BN069tgbmmROp7udmQ1+dRPbvF5oSPDeCdQ9iA6yBrTY+eEFKofwdt8Ofj0Fffbz13ZZKwMnTdV8XhUFUD4wiY7n3omoX6LQ47bgBV9zB4XBsQrQWMJEEWwJbwAt6K97WIiFq8fxrTVdvNTZioZzB4g2Fw8JYYXYpu7aTbsatChEgCjHASwXOUtkmw89o8JJg243rUQgG31YEM5BtcH9SWPgq6e9qK2BM/evHWlrTzc1MqEQeJm0e2opV8SNCJLEFg14IRRblDkcpJPdA7+6DmghOJN392C1c/3UVTrh1OLY48YBCOEJA0PtKnCIIoO88iGjYR/Cpmf7JcXXUx5qOFPTqd9gysucSp2zbXvV1rnM7N4/MSQGe723+bb9AQQAigg1D93xwOByOPkMpAwIQt5kjuxFcK7RlAe4joeR68Tbd7dKq/3f6HG9liBhBJgbz6kzY2rluJSuWiDvy/qe5T7uUWQy0lzdsLaFap9CftYRS5EMQoxT5qxy5W5H1BmaIGIGnQcQIY8+Ju46O4IRbh6PbCAm1Yxycz8KcemH160SpCha5R88id2oA9spEattsFdYa3oVpqOkAxoky6UAEkc3CVsPuxWEsOac5ireuqGsN7LHnOh6xYUulVIoKbgmIYF5+F4wnkPnWcz0v5rYVcBlhDocjLQJP48DwLCwIE6UBLJQzy6/V8i5NSkV7pDKJUGIBqWzXxTJH56kJksydK2h2vTjLTIhjCbPgA4LhD4WQcuvFqBkjUFkSXDslIDITyqGPaqw6nnG7GVDSIvA05JJzPoyVi1NoE9d/XY0Tbh2OLkNSQu8bR7gtg+D0mWsiLRHUnt0Ij+yA983jqQli5uoEcLX3oi2QCLf6wsVeN2NLIbdtw8x334Kxr1yCPnu+Ky5FEQRYfN0dyF6pgr72RMf31zM2SS50x6hFmwRB8hzpNMzwLs3DUzJx3Drax001czgcKVBzlI0FJVgQSrG/LNwKwcj6MYgYMUmEcftfL4VgKE8v7bu+O5JuiBjoFMn+W3dqOlYjBC+/f+tN508TU/IgygIQgM7JLSncAt0p1FcvZqEfIGKopffWdEFYttc9g4zLwE0H139dhRNuHY4uwzqGfP4S8pcyq4sVKQkTSHhdthbIkRGw1rA3ZsQ2uv62MUBrmLn5jRd2TttU4XIZQ6fK4MViU+eWPB9sTEviJGuNwWdnQItldK+8mKPbkPKg7zqI8q4M8n853RUh25w+m/xys4vmDofD0UfUMi+vVgcBALPl7IrXpbBJ8SCRXv91owxRpQyGs1UAwEwp15I4U9tHI+s6wbb3WEsIiwFIMIJ81PR7QoEBShIsrwl7jq0HEaBk0o9koOMCszECxWrQ0wJqjq2PE24djm7DvHZhLmaYy1eRXSzCVKrdaw8R5t9wG7KTMdRXngQ3WYSKggAn/uMRBJMC+/5/X3fCbJexpRLokeMwOm58JSGx+Nb7MXC2DHzrqab3yVrDnHi+4zEC3YDuvxtkLewTz/a6KX0H6xje81dQmMjBdEtIdYJtqripZg6HIy1iLXF+bnj59xrMQDnyIImhbfdEi3wQYcBPZmcUQ79uHmc9rhf9uuXcdVzDGNG08BqVfaAqwARoX8LzG//OkhQXi6HHE6evTKloWa+onTt33a6mFr/BTLBdeiY5wTZdXP91NU64dTj6CA5DmG5PEWbG0GMToEoIbVpwX8Yaez9r4ZUiJ9r2CI6jJlewGDhbhppcaN0xuxUENiKYgg/S3MNatX0MM/SVq52pxOJwOByOTcdaBbOYCVpLmC6Ln9XIQ+xHEOiuYOxIj6avl5oLmwESzQuvQjD8oAmjQ59yfcEy99VrNbWc2drvDsdWwAm3DocD5vSZ5JdWPv2tQfYzTwCW+y8epsVCbyKTgY3irSFOrgUz6ImTMC0I9b2GgiC51poVq9eCGd4TzwOW0YkzQWqp09iki73vcN8KNi8uI8zhcHSJbgskYaxwdXEAAKDXEJQ3Yr0q8b2CmRBeyUEVBczeKvyMbtiVev3xbBQzsVnxMzG0siAAUm6eY7SWEEcKYMALdNvvT3Kvdeb4lTIYzISIjUSp6m9a4XOzttuxhOu/rsIJtw7HVkBIyMIAuBrCVpdiFogggqAxAbLNniv3YSEhedstKN8yitzXTzaWvbsEeT6u/PMHsOuL0zDPnOhgC3tLP75nG0KE8pvvhapYBF8/0XIm8/U0c200gxwfR+WBA1BVA/Glx5346egNruPrcDj6GE8Z+MpAG4FISzATqiUfXFaAb+EPROsWkGpFsO1nqkUfg2ckvEVGuZKFvqPccBxAbXp47fetkMnLTIjP5WEV4O8qQQiG5yXfaTbT8WktYWMBMMFIBnmm7fZ3QpgUgpHxNAb9ELGV0EY0HUHicKSC67+uws0rcTi2AOLoETz7a0cw/bb7QZ4PAJDDw5j6J/dDHD0CiK3VsW0EimJ4izHYNDeVio3B9ocXgYkZgCgpvLYFzp+47y7I22/t72nvSeno+q8zY/CpCWRPXAVXKt1rVwtwqYTs8zPwz8040dbhcDgcjhtIKr8bKGkQeIkLkZnAZQVZEhALqm9zI4kYUtp1ReWWtisYIgZE3F7moudpBJ6GUptvZtUKnh7Eob8Jccv/qkKfz4OZlmIC+qdflUSFCOhY1hVTRS3agLiliIducb34b5cyYh0OR3/gHLcOR0pQEEAM5GGmZ+ovoxTE4CDM3FyqYg5dmsSBvxhE7uzMcpEqWy5j28OzoEuTfVtEioIAYt9ukGXo58+kum1z4RLUxBRsswKfNaDHTsDoGHJsFC/8y9tx6PdOwVydSLV9XYUI1Z15qKIP+byXTsxAypDnQ3/HUYjIQj5y/Jpz/Ab0mfPJL30eY2HLZdAL58C2f75cOG4+XHEHh8OxHkSMnUOLUGQxVc6hEvprLjM+WIInDearGRQrQSr75uuEIXu9QETJD0vuS4cRESPwNEZyFcRGYrEaLOdptoufjTF/t4SoSPBIiMBrvK+TCN/J73JJ3FTE0Ni85oNgFvAmS4Cx8BZyiGMJv4mCZN3AGIKpOb+JodTqD0KpLEgk38+E6C/h+XqYCZXIw2VdAMMV3HL0Dtd/XY0Tbh2OtDh6K86/dgh7Pvzw2sIYEcSRQzj/vePY+3tPpTLNu4aZnkHmc0WYWC8LwhyGwLFTsMb0reNPZDMI94+CLEO+cDbVdrLWLWeL1t4/O7+Igx+fgZ2ZS61dPYEZma8eB+3Yhun/48UY/fiTsKVSr1u1AjYG3kwFpC3sei7pPhdsr2fTZ9s6HA6HY0sjpUXeSwp8jeYquLiGcCsEY8APocgCGaQm3AJJTm1s5FL198RN6Y9UYQoCihhS9afxQEkLT5jl38OU6l0JwQhGquBhakngqy1vmSCJYTZ50baFB0Ko0hiiIUoE/YtZ8MFifwmftUGHdZqUOLT7qM3rYC3B2s0r9jscWxUn3DocKSGeO4998+Vlx+sqmMHnLmHfX1uYUjndnTOvmVnac+GICOT7dfNUzfwC/G8eBwDYNERbISHyOXClksqxcxyBjz23qcTCetjFRchMBpkZA/RjUTJrwMdOg9n2/rp1OLYKLiPM4XCsgzECkZFQwmK+mllzGWZCbCQggXK8dt6lp5LIg2rkNTW9mplgzMrlpbQ9dSUSMUbyFeS9aE0XMjOhGissygDGClRSyAANlqINwlgtZ/22Q6wlNIlNP9U9yEeYeTXDOx+ANIH6UMdP3LTJtbpVi8I5HF3H9V9X4YRbR18gMhmwseA4SjJaN6F4YxYWgMXFdV2jtlQCnnt+7WWEhNq9E2bHMPDEidSPX+7YDhgDMzPXHSFSSNjvfBGm3lPBrp+YWTtqgDlV56favROXvu8Adv39FMyzz6Xj4N0Com0NMzWF3GcX68YQ9Jp+jHBwODYzxAzq4oyLbu7L4eg1zASjBUAM3zfIBRGMpabFy17CTLgwNwwihrVrt9lawsX5obrLZPwYd227CkEWl8tDuDg71Ha7aqKtpwxG82UoYTGxOIC4C8XIpLTYmV+AIIYUFmfC0VXLaC0xV8oCaL9IFBEnwrewID9eciC3tUkAgLUCxiTO3V4JikIwPGmgrWhp2j0RI8jGiA4wbFlBDcT95bbF5nLTOhybBdd/Xc3mnj/h2BLIQgHTb7sf+juOQhYKKH/Pfai85YGWiyhREEAd2Ac5trqj1XEauenrLENSwm4bwsKtg4BMt2NKSuHZDx7AyX97G9SuHQ2sQCDV5rgOW3gTRcRfHwUq3REKzeQUdn/yEvjsxdRiFygIEP6Dl0COjKSyvVaQw0Ogl9wDtXdPexti7lvR1uHoBm0/1xwOx6YlTTG15hRlJoAJQlh40sBXyU8rCMFQykBK21VxylqCMeu7M9dbRgpGXoXIyhiBTNd0MJAJkVXJdgcy4YbnZXSgjP2js20X5RLEyz/14JSKNzETjCUwAJ2SaAsAcaSgI4U4Uj0ZSCBiDGar2DZQwli+3PJ7QsTwA41guApvnXzbzTJY4nA0i1IGQ/kKAm9zmdoc6eK+wTiagoIActsY9OWrqTkRbbmM8S9dAqIYHAQYfPIqYC10iz0X++CdOPnDGez8GlD4+MOtOVeXRGO5bRvs3HxXnIAcR8AzpzB0UsHWiRZoedta447/sgiKDczE1IbLyyOHcfmNO7Dzo4+2LvQxw5x4Hvt+6xJMl/JUOQyhU87KJSmxuEchn0kv061pggDV7Rnkirnk2mzg+MTgYEuREa2utyFEICnBfZy57NjayEIBl/6vo9jzv05DX7na6+Z0BzfVzOEAAIQVD2wJwrOpFDdKKtsnYpuQFjk/icliJugWckWJGEJYELBUJWW1CCUEI+vHCLWEXsN5mmyDkQ8iDAVVhEZhcjHfcUGrGiucnN+OrIpxeaGQ6rYrkYcBLwKERWUDJ7OUFrsH5qHIwh8xODW5raV9ai3x3PQ4ckGEhcra8RFpU408VJciF9J6v2p1ibmOk7obCGJIsrCC1riiVyOlha90EkdxXQRFcr/VX69a9iEvB7Aew99XSm3gg5kQhQq26AGBQWYg6jvHr2PrM5qrQAqLQBpM6s4/0/sC139dhXPcOppC3HoQi38QgO6/o2VH7I2w1jDnL8KOFHD2nUfAC4vQ5y60vD3v3BRu+fMQI9+4uKb4JHI56Ne/GGrXzjWPQe3cgeIPvhRq9y48/1NHIG490PqxNrkexxFsOeX82yXsUydgjp9qTISemcO2J8rti3fWdL8IVsqioC2Xsf1Pnuip0GMmJpH57JMwJ+rEbNyAyGRw4V/cA9x/Z1MOQ/J8nP+X94AfuLOd5q6JOrgfxbe+GHTfXalvu2cQgYIAEK6Iw2aAowgjJyNwudLrpjgcji5iLSXiFROsFnUjAZpFSgs/iDE8UAERIzYSxWrQViX29RyeOwqL2FeYxcGRtR2lvjLwpEFGaXjSIOdFLXVfiRj5TNSwu8sYgYmFAZydGUEYp+sJqkYeLs4P4dzsyAohby2uFzMi097nchgrzJWybb2XzVBz76YpyHiBhlAWytc9ERuZCcVqgLlqFjOlHHQD59KTBlIwZJPxDuJqABkCqpQIrWmhYwlb9CAqAlRO3MtbASktskHj97ijt9jrngs3hWjrWJOt8fRxdA1+4TzK//NeDBQnYepN+VcKINGUS5W1Bj1/Dgf/tAw9O9+W+KYvXIS4eBma106wJ6VQ2eYhk60/ik4W4FIJt/zXczATky21R2QyuPzjD2D8sTLEVx5vev3UaeIYzNQ0xNfmwGu5qht0fG4lOiWmN0yd4nP1sGGI/X9xCTw1A9OE+M46xv4/vwxMTCPtZF+enkXhSQXMLqS+7V6h9uzGle/Zj+3fmod9/Fivm+PYAFutIvjc403dE5sd4iXzXhf353D0G0IwSDCYUVfAImLsHZ6HFBbnZkeaEneNFZDCQpvWReEkekHALnWx1vpyrshCCQvYtfy41yhFPjIqRmxbm3Y/NlBGVsWwoIZzZTspJjR6Tq0lHJ/aDm+pSNr1EDG2F4qoaoX5pWzajdjsAokQDM8zPXWIxlo2lUuc3EsMy8191TCDBjKUYAkoL71eJgkLLOXXskxc8ZsdIoavdCKOk0Vs6udbO/qD6WIOvjJJkcibBNd/XY0Tbh1NYctlbPvjR2B0XHeZ6hvvR3mHwsgff6upOAVbLsOeOdd+I5kBrr9fs7CAwl88Cq3jNXsF+uoEBv5mFiaOgLn5lptBvo+FF4fITmew7sQxIohcDqx1U+Jcx1njvSPPx9n/8CB2fDNG8Mlv96BRjoZgbi0yghnm9JmOCPONFO/bbNipaez4vA9MzfS6KY4G2WxFL9vGTTVzOAAAfkbDaAGq4+QbzIYYyZQhwAgLCpfnGpvyz0woVX0QcdtCX+K4rP/6lcVBVLSHUuSt6V6MtIQQjDAmlMPh5W02ixRJxq7g5PcYa4sFnjIYzITQVmCxEvSF0KnrxEgcGptBwUuiv54z4yhV/W43rSdstmn9sZbQG+Qtr0VmrAIzlNzfUqYnriplIYaqsAMCKuVt9xJrBaQwsNz4wIijdzBT6rMZ+h7Xf13FTXYFOFJjnZ5l/unLyD2fgUkpA7cTLLuB13KPMqeSaWsWFnD7T58EV8N1nwXi7ttx+j8EGPhSDuO/942+F7bCcYN4UKKHia+OdRCDg4AxrbuEO3n99fm13Sy2WgVOvdDrZjgcDodjA6xNpqELWlt4qUReMh2VEsdqs3RDtIy1xNRiHlJaCMEwZuU+awXT2mWqmMdYvozYirrxBEIwBjMhPGkgiBF4esMog15SKzRmmTadmHkzIAQjF0QQxChWg6a7i0ScqtP2xrYJ0b/faZulJgJGWvbFYIvD4WgMl3HraAq1Zzcu/uyDkGOjdZfR5y/AnDjVxVa1Br3kHsSvfyARutZbTqmWM27t4uKGIjBduIy9H1XY+YWpvhe2OI5w+79+AoN/8XCvm9I8KWUy9zVCYvKHj6L0xqMQuVzj690M58bhuAmpTTXr5o/D0W8wE6wRYACmzrTtWEs8O7kDxyZ3YKHcnYJUrSAEQ4kkMmE9958QjF3DC9heKDYtVNYya2eL9fsRzNdyZC1TS1N4pbQIPN1UlmmrvDAzipkwh8vlAoqVzWM98JTBnpF5ZIPOF0nuJcnUfbv80wg6logj1bfiY9qZxWnTz21zOLZK//XMmTN4xzvegUOHDiGbzeKWW27B+9//fkRR889057h1NIWdm8fOr5fBpR5nfqaAKEdQSgBmnVFUITHzf74EQ2eqEF96vDNTyOfm4X3u0bqZwRuhdu0EjxSAy5Mws7Mpt241tlrt+D7SRgwOYvb77sbYF85DX7zU9wJ5y1iD7X99EohimEpjBZjo/rtROjiA3F8/3FS0SbcQg4NAHG/K687h6DluqpnD0bBw2a1CVN1gfLCIIT/pByyGPiphutEAtYiISuQlwniT0609ZbCrsIDhoIKr5UFMFfMdPf/GCJyZrm866Vdu3zaBEb+MvXmFR67sXTMGYisQGwlfGVgkObcbYYyAjpJzwQB8v79ikKLQg1lMHOiqEMHrs/Y5HH3PFum/Hj9+HNZafOQjH8Gtt96Kp59+Gj/+4z+OUqmEX/u1X2tqW064dTSFLZUgvvI42kn4Ic8HG1NXJCLPhygMwMzMdlRgM8+cABHBrrcPthh7Yh5idhG6T6eQm51jKO/PY7BcBbog3PYUIpCUyfXTVNUCA79ogZsg39JMTTe1vAhjqLIB6hTz6yUik8HEPzmKwXMa2S8dgy2Vet0kh8PhcGxClGeWipO1tn7gaTyw4wLm4wyendixyq0mBGM0X0agNBbDoGOuXWtpOXN2PbG0qhWsLyDIQneooE070QxKGvjSQIDhiyRuof+GjtMjG0QYDKKOIGFNDwAAXxdJREFUiOiNULte+zUmwhjR1073ZjFVCdIE8LWYln499w6Ho3O8+c1vxpvf/Obl/x8+fBgnTpzA7/7u7zrh1tFBhGzbkScyGUz8X/dj9HgV4ouPrb2Po0dw5nuGcPAjJ5oWoZrmOvGPPB98Y8EyZtjHj7UlVHcafvwYsk8I6D4U3tJGv+4BXHidj11f0Qg+9XDD4q0tl5H962+3Lb6LXA4c61QykPsFc+wk/Gevy3peK/e5R9gwxI6PnwSHUeuZvQ7HTYyryutwXBOtWp2ST8S4e/wKtgVFDHtlXMwNYb6UXbGMEBY5L8nozCiNhbZbXZ/rBdvA0zgwPIuS9nF5vrD82nwpi3LowzL1pZO4EvqYLOcR+gpT5RziLeokBRJ3cSETIqtiSGFhrWi40NCzkzswkqtgvpJp2W0bVj0Ex7OwHmDvKG6JAltSWnCgASYoz2B7oYicF+Hc7EhfFNsSvoGNBcDJc8eJtg5Hc/Sq/7qwsPLTOwgCBEG68Trz8/MYHW1+Bkj/fZI7+hJZKODqv3wZ1N49ay8gGutM2CjGji9NwT9xqc4CBjh2Cgd//zmYmbnWGrsEeT4oCBqyV4hMBlf+7wdBD9yVZNpuJpiT89YnYlsn8SdLGD4BZCbKzR9vm+eHlMLld9yH6hvvbWs7fcnSuaH778bi217W8P3ccZhhpqZhFxdviuvb4XA4HOmS5Eyu/VohV8Ud268i8NafjcNMmKwMJFmuLFFewzFprUA59hFbiapuvR8ppcWekXncNj6JfGbjQeIDw7MYC0rYn5+FJ1eaK2It+1K0rTFfyuL87HBPHKjdhHFt8MAyJUXwGsQYganFfFvCtjyfgQwBVQai2a3jalXKQnkG2SDC0ZHLODwwjdu2TfS6WQCAIBsjM1ZBZlul72IcHA5Hffbt24ehoaHln1/6pV9KdfunT5/Gb/3Wb+Fd73pX0+tuMoXK0StYawyd0eA1cjPVrp248MOHsfsPnkoElvWwBubZ59bfVxjCTE6201yACJU334c4JzDypTPQl6+s36woxq4vzoIuTsCsl3nr6Cn2yeMYforAPRDxWGvs+cuz4FJ5y07nE6UqMlOZvoxNcDgcLbBFMsIcjla55r7jFeP4QjDuGbuMQGgM+VV888KBdbdzfnYYE8UBaCvWFEOtJUwt5ttubyFbxUhQhi8MBoIQ1VitK75WtAcbEAwnP47+Q2uJmXIWJeUj1LLrObXxmIY/74FFkre61bBWwIIgwIhs/0gbzmXrcLRBj/qv58+fR6FQWP5zPbftBz7wAfzCL/zCupv89re/jQcffHD5/5cuXcKb3/xm/NAP/RDe+c53Nt3E/nm6OfoaURjE1QcVbnksu+o1rlQwcioGt1Adr2MwI//10wAJmLn5jZe3BvaJZzvfLkf79NB5qS9c7Nm+Ow4RzMnT8E72uiEOhyNN3HdHx80KMyGuKrAlEAFBPloWU5ix7HyMbWNCWqPT29uhEnkoax/CC5Oc2g2mfZ+fHcaVxUEYK/piirhjbXQXBNvA0///9u48SLKrvhP995x7b66VWXtXVaurF3VL3a2W0NISUkuAkUFiC5thjJFnJuSZZ7AfAX7D8jwey2MPDI5nBxEYy4zNNuExQ2ALOSywjMFGAgNCaENLa2t1S61eqrq69iX3zHvvOef9kV0lVdeWWblnfT8RFVJX3bp5c7t18nt/53eKVeEX3U64Jwc3XoCUBs4m24U0q2jIRVc4hyenhhGwFOYzKz+nElFrasT4NR6PLwtu1/Lbv/3b+LVf+7V1t9m9e/fS/58/fx633norjhw5gq9+9aubOjYGt1QSNTuPS/9uFmp6ZuXPFhIIfvfnTVdoU/P+uNR+hABuvApWMg91rIYJphCAkBX3jK4We9cwpn5xB3r/9mmYQqHRh0MtRgSDEIEAdDrNlhZE1DSEMMBilnlRYGWMwBPjOxEP55HINk/Yk3cdnJ4t9r67eAG0tbRzf9hWJIQp+bmrlo5wAX2R4gKu48n4iosMtl35TCopDSJBF8YIZAtO3e/jxSxL42DvBCxh0BkI4tjkYEOPh1qLbSv0RrMI2x7mcpG2WhyPaq+vrw99fX0lbTs2NoZbb70Vhw8fxl//9V9Dys21MGJwSyUxngv14olGHwZdRNg2YFkwnt80IWA1yGgUMtYBvZCAzufretvZ7WEEQzasY7XZv4zF4F1/GfyIheA/P90cz5vrIZjUgGboRuURtg3/yCHMXhnC0DfrsKAklceY+obpDO6pyQTDHoy5cL30ovIdpSTm05EGHdnaGh2I1ZoQBrFwAdGAi4VcqG163Nq2wlAshYFIEmOZLkwkYnV7Li35WjArZfXbXQlhELB9dIby0EZACIN0rroL9pTLGAFtJCyhyuobTAQAttToDOQhhUbY8ZASwbY/97aUNhm/nj9/Hm9961uxc+dOfO5zn8P069qBDg6Wd7GJwS3VlYxGoXP55girXkfYNozfes3jzXUHkdwXRfczsxv2Dm4Z0sL0r70B+fck0fu/dyH0T0/U77aNQeTbr7s9ISBsB8arXhsQ47oIjCXghBzoJukl649PIPqtyYb0DqbWZnwfzs9PYOjFSMULShIRVZsQppQ1atcVj+Sxu3MOs/koxuY7KzqWagYDlqVhSw1PWS3VJiFgK0QDLsK2BxWU8FT9+77WQiTgoT+chiM0OgM5LATqF0onsyFIYaCNQK4QQHdHFhHHw0QyVpUF6oqL/ImlxdXUGq+317++a93jVWuBF6cHEQ26dWmRYIxYep9JadjDtsUpLZHzHTiWgqsshrZUEw888ABOnjyJkydPYseOHct+Vu7n7uZdapTajtXViTO/czWsvesvALEe4QRgxeMQTvUGQvauYcz/uxtg9feXfSyNZh0/i56fjMCcbaPeq1ph2z+exM7/5iL6cAOqvBev8EkL8qr9mPy/r6/qc20KBaiXX4V+7viaV/dEMAgZjQKyjh9k6hXaSgvW5Xshrj1U3/dQqY+lEE3x3m4lOpMpLijZZBfkqNgfrN5fRO1ECINLO2cRtVwMhFOwrPIvuFqWxs6eefzCzlexu3duU/tY7bgCtg/HVgg6XskhUmc0hxt3nEVHuPy2SLatEA66FQdWvpYo+DZ8LS/08W2Pj6MFz8aCG4ZnJFJeCAXPqdttGyMwn44gkQmjpyOLgUgKnYEcLuksYZ2PEvZtjIDrW5hKdWA2E1k1kPZ9ifxMGP7pDuQT9aleLHg25tKRutyW8iW8vA0v58Dz6jc+L/X91tORxZWD4wg6rVeI1Aieb2F0vgunZ3uacubFVtcu49f/9J/+E4wxq36Vqz3+UlJL0OkM9vzdNMzYxPobrlUaIQTM4QN49XcPYeGO6yBD1elFY7J5dIy5QBm9Pa2+Xox/5HpYXWVWXggBq78f8soDa9/PMqhkEv7YeehstuJ9NRM1PQ310iulLSxXI/5br0Hq8k70PZuDUZUHUsIJFFtbbLihgH/kEObfdxXs3cMV327NFeeflr65ZcHbFkNuRxQiUJ8PNSIYRPpXroc1sG3Dbe0dl2DyN6+HjHAQR23ANOCLqI0YI5bCuLxae7EwKQ1CAW/VUDYc8HBpbBYB6WMonMS2WLoqx7X431JDKyEM3jb0MvZGpvH27SfKCmDDQRd37nsC/2HPk7hqcHxTx7xIKYn5TBij811IZkMtVS28noJn4/RsD54eH8b5hXhD7lc8kse2SGqp+ragKptc63sW8gsh5NMBaC2hlFyzOtrLObBTFqQHiJwFv47hZrmMESjkHbjl9uqtc1VmsbK3+N/1WJbG9f0j2BWZw/WDo3U6uvbAStsmxfHrCmyVQHVjfH/D6fwyEgH27YQYGV8Z2hkD69gZ7IgW+4Nik42dL6amp2H/6zTKieZMwUX3SQ/G9cq6LWFZUHsGMXV9DAMnqjsFn6rLznqwcj7EY89VXI1q9fYgc/M+WDkF54dPr78/Y+A89Qp6XghAJVIV3W5VCLF2ZbBtQxzYBwDQLxwvaXfGcyF/9ixCAHSdqnyFEPCiEqKEc4bJZtF1yiv2jW4xwgkARrdk2xciomZ1ZrYHo1YXtF49JLVthQN9UxgOz2Pa7cDT48PLQruCZ+NctgtD4QQK2q5aP86860BKs+ZxrSanHDhCIasDZQUWAVshJIp/W/oCmU0d7+u1a1hSDNIbd/uLry1tBCazsYoqCbUW8PI2hCthfAHXthEMr/25xw4qqIgG0hImqGHZjZuFs9jKYLU2EcYIFDIByOkAIA0KfQKh6MrPY4uv0cULHJatYYyCQfE930yMEfC1Bcjie7zVOBcez0oXWrz4OSNqJwxuqanInm6M39yNwbwHrFJtqZJJ2D98CrYQdQt9VqNTKQS/+3OUO9nN+D7w5DEMPGOVH9quE6BRDTz2HKr1sUKnM4i+NA3hK/glPIc6lQKaILO1d++E6u+EefKFVV97wrZR2N4BAHBeXOX1udgjWKnl0+jr/DrW+Ty6/89jJT32anYOgX+Za4ULr8sJgdw7r4FV0HB+8ExFbQtkLAZoDZ2p/MM5NZbQxa963h5RO1qvT6gA0OnkIYWBIzQsqaH1awGE51s4NduLqVAHbKmRyFVpxpgRUKr0kYoxAg+O7kdvNIuZdLSs20rng3g6tRMxO4/HJ3eV/HuWpZcCtHYNa5tJOhfEqOkGAGTylbV9EgKQtoYWBpAGwlp/ZOQEfNgDCmYbYK+yGGC9SGnQFckBALKug7y7Msg0r3vfGH/5e9sYUWyLkHUgAwqBkH+hV7aBE6jvhXGtRUm9sbUWeGjsUsRDhbr0+60m21awreKYVRux6Z7Mvi/hJYOANAjGCxtWKZdj8bXMc1j9cPy6EoNbair+2Hls+6tpKH+DStZWDjC1gikzVLEGtgHxDpjR89D5fI0OjGrFFApQJ083+jDK5m3vRmJvBF1PScCsfM3qfB7Og08V/7HKe9Ie2IbMtTsRGUlCvdiAfsWv18rnjFIYg8jZJISnoCpY9E6GQph/7yEE0hrh+39e1cfN6uuFCAahZmZhymhNQ0TUzHwl8fzsEPZ1zWAyF1u1akxrgWS2OoFtJXzfwmQiVvbvKSXx+LmVge3i4m/F5QGWhxrhoIvheAIdTgFjmc5N3S6Vr9LAdpEQBoGQD+UoCIGSejNXYzHASkn52nFaq4R3QhgEOly4vgAEEIovH48oJeClAhB5Ce1J+Fb9A9vXKzUs9H0Lcy3Yq3Wx3UslizcaI+DnHUALQAt4hfWrw8shpUE44MG2FLKFQMVVwUSbxR631FyMKVaitnvIchERDBbD2dUWUJIW/L1DmL9hG0RnvP4HR+Vr9Ki1SsSjz6Hrb55Yv3pzcTG31X5UcBGayUOk26sHc7PSzx0vtqOp4PypCwX0PHgKHT89Wd3zsBAoXL0bCzcPw+rvq95+aX0t0CPsi1/8Ivbs2YNQKITDhw/jpz/96Zrb/vjHP4YQYsXX8ePLW7Xcd999uOKKKxAMBnHFFVfg29/+dvkHRlQiY4qh7NPnd2Bsvsy1D1qYbSvs7ZvFkUvOYEfXyllyljQI2cXwRApT1Qo4qj4pDYKOv6wNgBAGtq2rsqBevfi+hZxno+DbyBZWbxtgWRrh3hzCPbkVlcFCALBMMSW5UGlLtaOUhOvbyLvOpvtCC2FgBVRxhSnLwHKq18rCksVZFFIYWFLz9VAvLTB+rTdW3FLzkhZgdOnhQau2EpAWxGV7MHZbDy75W0BNTi3/uVYQj72Azp9bUOyJ2/SEbcMavgQmmYKanWv04VTGmFUrbUul5ueBn8+j7TquSgvC2kS7k1ZgzMpzUJX26zz0PBwp4Ltt+Lg1qVqulLvW7ZXj3nvvxcc//nF88YtfxC233IKvfOUreNe73oVjx45h586da/7eiRMnEI+/diGzv79/6f8fffRR3HHHHfijP/ojvO9978O3v/1tfOADH8DDDz+MG2+8sez7RFQOIQwsS0NrWVIIIWUxDDBAy7UTsKXGzsg8gtJDbyiAc6Jz2fHnXAfnUl2IB/NIFYJtswhZq1mvKnqRlAY7uhbwlr6TmPWi+MHo/pauLMwVNl91bFkagQ4XKmRBSg27iiFgIwlhYFsatqVQ8MoPSSupiN1INc4NTsCH3VN8rqoZrvpKwvUt2JaArys/R0tp1n0vUlGzj18bgRW31JRkKARr325YvT0lbS9sG/Yl24tVq61W7agVcPIMdnzzFPRaQZ9W7RkStRIhYA8OQNjrX++SsRgmf3E7/ANrhw7UwqQFe+cl8N581YavhYsJJ1BcgHG1yvotwHhusUVCFS6wWX29xceSWtrnP/95fPCDH8SHPvQhHDx4EHfffTeGh4fxpS99ad3f27ZtGwYHB5e+LOu199Tdd9+N2267DXfddRcOHDiAu+66C29729tw99131/je0FYnpUE8ksfOrgUMxFMlVZgOdSZx+87juHFoBPFIa7XC8rXERD6GpB/GghteEUQoJTGXjuDMbA/SuWCDjpK6ozm8YeA8tncl19xGCIPh6AIc6SNseegIbe12RpalEQh6bRPaAsX7NNy1gKFYCj3R0mfCCWEQDrroiuYQdEorxVhcHK7eRA0qpI0RyLsO0rkg/AovZji2wo6uBQx2pli5S2VjcEtNSXZ3Ye6N/dC7BkvbvjOO+TcNI31kN2RHR42Prvp0Pg9/fIKrwTcxKxbDmd/YC2twYN3t1MIC+u95FvKJY3U6Mqo3Ew6i0GMDoow/oUJAHLwUubcegr29hPOaEJCxWGnhsBBbKgwWto3JX7kc6urLWu9CXb0ttjKp5xeAZDK57KuwSk9j13Xx1FNP4fbbb1/2/dtvvx2PPPLIunfr2muvxdDQEN72trfhRz/60bKfPfrooyv2+Y53vGPDfRJVSgiDkO0X2wJcmFa7HikNglZxe20ElJaQ0sCx1bIP9VKapUW+monvWzg2OYhHx3bjzGxphRZUf7vjc4jaLoYiiTUvJmgt8PzsEMYK3RjJdSORba0Frqg02gjoMis9A7ZCLOiiw3ERCngbXpAKB10MdSYRDblNd85qtL6ODEKWj5hTQMBun4sCNdGg8WszY3BLTcmfmETXvU/DPHN8440BqLl5dP3wVciCgT60B9bANlhdncs+1AsnABkK8YM+bYrOZrHrH2agZ2bX39AY6Gy2KSqkhW1vqUCvLrSCeukVRO97orzn2BjI6QVETi/ApNMbbm71dCP5zitgDV+y4TnL2tYPa/+l1XmuW+D8aJTC4IPjsI+PtMRAaysaHh5GZ2fn0tef/MmfrNhmZmYGSikMDCy/GDYwMICJiYlV9zs0NISvfvWruO+++/Ctb30L+/fvx9ve9jY89NBDS9tMTEyUtU+ialFKYi4TQcoNIu1uvIiN1gIL+TCemNmFn5zah5mZGK7YNoH37HoRvR3FirjFKeyHtk00bRCyVVsgSNkafXvnChFk/ACSbnjN52qxT/MDpw/gybGdDX1OhShevLAvuoBBlVFKYjLdgfl8GHOZ0mcsKSPgaQnfSCgt1x12CWEwFEthR3QBl3bNbhhOLr6HGvE8N6JVQaoQhKst5JUNT/HzGZWHPW6pOS0uUlbO9qkUQhNZCKWQumUP7KxG6GfHoVMpAIC8bDf87gjsY2eLvTep8YRYmu6sM5kGH8z6jO9DHXu50YdRFrl/L0Q2D//sufUXGGsmi+Fjsx/vJgJDf3wCGC8tPDL5AqLnCzDZ3Ia35e/bjrkDYfSfHoXOb/5xE8Eg5PB26DOjJVX/C9uGCAahs9n6BqjGwD91pn6318Ia1SNsdHR0WQ/aYHDtadLioosFxpgV31u0f/9+7N+/f+nfR44cwejoKD73uc/hLW95y6b2SVRNnm9hMhErefu5dARuwYHKW+jZlsSh2Dj2BKdwMtqPRC6Evo4M3jnwInYHZvDPzlV4YnwXCh4/vjWaYyv0RLNQuhjWN3N4fWa2B7atoFRz1Gtt1Cs1EvTQH01DCoPRha6W6LUrpYFjFcdfnrKa8vVgjECuEECuzC4Yvm8hkQ0jJXVJfbg9ZSGnHOR9p+Tq3kqXqVkMfksJY40RMKZ4wUlK1PXiSzoXRLYQKKnHrTFiS1+4YI/blfiXn9qGzueBZ16EEQLx6YFimBsJQwLQ6XTxL4I2xQXPqClYnXG41+yFUAby4aOsniuVEJDhMIzrrh2wCYHkgS6E5jzY58Zhmj0IBQAhYO3dBaE01Oj5pqhabhSdyUD87ChKedbk4y+g/ym7eA6sgDW4DWd+dQi7vryw8cUtIWANX4Ls5f0IPXJi6QJZUxEC9iXboaZnir11t6J6r5R74bbi8fiy4HY1fX19sCxrRSXs1NTUiorZ9dx00034xje+sfTvwcHBivdJVE9OwIeUGj2RHGJWHlkdxBviYwhZHhbcCLIqiKQKwdV22dOcqfqkNOgIFTAQSSHvO/C0RCLT3K0FKu3NWS1Bx0ck6CLnOih49qrhlW2pZf/fCsFtLJzHrvg8AtLHq4k+zKfbqwe/1gJab/w8GCMwlujEXC6Cgm9t+LozphjaVivoLmUBNWMuvB+MAIyGlPX9fFTKfTVGQGtR7ITWAlX9NdGg8Wsza45Lb0RVJCwLCDhAOITEW/ZAXXkphO1AvfQKxKPPQi0kGn2IdIHJFxAYW4AzvsDQtgxWZxzuTQeL/XbXqiIzBh33PwXrJ8+2TAAqLAvZfb3I7euDDIcafTgtw/h+xaEtAKjzk9j99TNQibUXMFl+wwZCbeJ9KwSEE6h5Gw8ZDGLs3+6CNcTArhkFAgEcPnwYDz744LLvP/jgg7j55ptL3s8zzzyDoaGhpX8fOXJkxT4feOCBsvZJVE9CGNiOQmcgh04ri5D00G1ncF18BBkvgB9O7ce3Jg/j2antLRFitTtjilWFWT+AvLLh8jkpiRAGA7EU9nbO4NLutafRp3IhJAvFr7zr1PkoN8cSBrbQsISBALZ0paTWApl8oKSLBYsBZaUWw9pS2x8IYFMllovHW+s2C4uPSSPaOVDzYsUtlafSuQx1IDuimHjnDggf6H0xA/vMJHzfa/Rh0Sp0Pg+8cqrRh9F6hIQKSsBa/9pbqy12Z3wfoQefAQCoFjv2DQkBYVkw2jRtGwjjufDHzpe4sYF/ZgTO2VHoMv8myI4O4NIdsKbmi+0jakS7HgZ/moCe3bqtcZp9qtknP/lJ3Hnnnbj++utx5MgRfPWrX8XIyAg+/OEPAwDuuusujI2N4etf/zoA4O6778bu3btx6NAhuK6Lb3zjG7jvvvtw3333Le3zYx/7GN7ylrfgs5/9LN773vfi/vvvxw9+8AM8/PDDVbuf1HrKmUrbCFIaDIZSGHaKffRHvV6MFbqR923MpyMYb/Dx0WuMKQZTZ71uAGCYXgZlJFxtw9fWmtXjWgvMtVjFajIfxJjViYBUyLpO3c8zllWcTVqLdhhSFhdaNBf236zn0FKPS0oD2ArGiLKrWZUSMFpCCAPLrt2CkYuVw1v5AkCzj18bgcEtlcXeNQyTy0NNTjX6UNakkmn0vJhDdigIezIBf2KyrN8XTqBlKhRpa1Lz8wj+y5Pwm/wiymY0Mmy2ensgwmH458aqv+9YDBjaBpHOlh6OtoJNvAZlNILEvjhiygATk7W7GKgVzDMvtsLspy3rjjvuwOzsLD7zmc9gfHwcV155Jb73ve9h165dAIDx8XGMjIwsbe+6Ln7nd34HY2NjCIfDOHToEL773e/i3e9+99I2N998M775zW/iD/7gD/CHf/iH2Lt3L+69917ceOONdb9/1ByEMLAvBBt+kwYPWgucz8VxPtaNQTuBEbcXP5ncV/KUa9tWsKWGr2XTTItvZ8aILR3YLoZ5SsuSKyaNEZhJR5HzHGRdB36T9NytBr/M3tbVJKVBbzQLS2pMp6NVff8LYRAL59EbziLjBTCbibTF+aUY2JY3Orz478Zim4dakNJc2D9HsPQaBrdUOiGw8MbtCE+5sKZnm7ZqDFpBPvI8YlLAV+Udo4xEoK6+DNZzJ6u2WBaD4BppgervjchIBCLWAb2QKL8HZ4vf96YjBPwDO5HZHkTH35+v+uMr4jFk9nYjNBkEzo839PkTtg2jVMOOwZ+cQsc/zkM38Bi2jOIKGPW9vTJ95CMfwUc+8pFVf/a1r31t2b9/93d/F7/7u7+74T7f//734/3vf3/Zx0LtSUoDeeEDcDMOHYorq2ucnOvDP+JqXBabxpOzO7FQRt/UoVgKsUAeaS+I0fmuisPpaMhFwPaR92zkCoGK9kWvsSy9FLA3y2Jh5bIsjd5oFtsiKUxk4phNR0p+vRU8m4vrVVnA9hFxip8zY6FCVfvrSmlgXTh32rLYCqKR8+EWX2eNCDSFMJAS0NCQ0tQstH397W1pLTB+rTeeOal0xqDrodMwBRdqvdBWWsUFwOr8BhBOADIcgi4UYAqFTa1BJqJRTF8bxfbTHVUJbmUkAnXt5bCeOl6VHpRVIS0Ix4Zx3ZY4Sa1GRiKQg9tg5hMbL6LUxMQlg8ju60X0ubH6VGE24yfWZmEM7JPn0TUeqUklsz92HqHJ6YacG5cRArjmAOxz02XPRlh1X5u5L8bwYladcKoZ0YWFdcRiz8DVt7EsjWjQhTYC6VywbscmpUFfRwaD0SQmszG8MtuP41Pl9eUWolj9CBTDlUr/1EtpcMvQKVwSnMfpXD9+fHbf5ndWRUGnuIib69stGXoKYZYCz9l8tOrVkfUScnzsic+ix8lAG4GFXKim90MIA8vSMEa05PNea56ykPOLvYBzVe4JrJRE1nUghUHOcxraz9kYsXRe22xoWnwNFX/ZskzZ4WjxItvy32lkmNzOOH5diWc/Kos/Mbl+UCYExNUHYG8fWnubGrEG+uFfuQfW4LZN70PNzGDw/zwLv0qtIESsA1OHIxDh5llt1h7oh7l2P2QTHVO5ZHcXklcPANu31W6eSj3MLSByah4mla79bUkL8qr9sLo6a39bLUpNTsE/daY2O78QVja677CwLMy+IQY92Lv5fdg27KFB2Ht2Vef9JwRkJFK7xcpa+RxBRBVbnNbu+daalYF9HRn8wtBJ3Dx4Gs4aiybVQjjg4XDvCH6p71m8se8sOkJlzr5B8f7N58OYL0Qwk41WfG1QCINuOwtHKHTZ2aYIJKQsLmw1HE+gO5JrimMql5QGIdtDyPLQHczCsZp05uIGfCUxne/AtNuBlBuC1rWNE4KOj65wHvFwvmme92L1ZfnBXy0oJTGd6sBMOlqTxdzyroOZVBSZfKChbWZef17bzHEYI6B8CS8TgJcNQPmVv27dgoN8KohCzqnKImuvZ9sKjq2a4jVGzYEVt1RdQmL+yji6XxJAvfs4KgXpKkBtotR2kTFVa5EAAGp6Ftu/Xih9lfY6MPEOpIfD6DwRBLLZRh/OpqipGcQe9mAymZauIFWzc8DsXF1uSzg2pt/YjW05F1hIlPe7tl2TRbWEE4AIOMUK+VZdjEwICNuB8b2WeC0a30f/378Indv8DAARCMDbMwC3O4DgmVHAVPa6kB0d8K/Zh8DJ8WIVcBUfR2tgG8xQH/SzL7XE81N15bdxq/z2iFpQfzgNRyhYUiPo+HXrX6oNkPTDmPZjSPkhqE2GYIlMGAlU54K81gJPLezEQCiF8Vy86mHNYuBVzursUuqlbaUwLTmBSGuBlBuEFAZZLwBPtV61LVBsd3B2vhvnrTg8ZVU9sLpYOODBsRQsI8p63qU06AgVoC8sJlet1/HifqMBF6lCsOGBJoALz0F5x7DYtkMZ0RKV34vPvRCbr27VRgC+AATgexZsZ/PjV2ME9GwAgZSECgD+doNAsDqLoS/2LbalxmwmUpNAvulx/LoCg1uqLq3Q+51jMPlC3V///vgEMDHZ2AWbpLU83NIKqsyQrFRWPA44NnQiWVbopV45jdiZUahye6o2EeO5UNPTjT6MlmJcFwMPnoOeni3vF4UArtoPK5WFOnm6qsdkDfTD394De3S6+P5tQVZnHOrALlgnRlumbYdKVnYhSedysI+dge0E1m+bUyJh28j3BRAYC1W8r4uZgR7MXdWJ7hes1r04QEQ1dybRAykMfC2RXaenqxAGkaAH21JIZkMVBza5QgDPzw5hPBfHTDZa1zYNi8JBF2HHR9Z1kHcdGCNwcroPr4reqgdSjq3QE80iIBVmspGS++f6voVEIYSc7yCRC9U8LKwFYwTm0xEksuEL7Rtb7z4sUqp+PXpzrgNtxLKp8qWIhfO4onsSnpF4fmp71XrrBh0Pl3bOYndkFicz/XjF72+5vr1SGsTDeXQ4LnK+U1af4kYRorK+ssUqaQ0VKLaTqSS0BS5cQJCAkQBkdef1S6kRkMVq20jA25rBLa3QWmcZagmlBpVWXy/Q3wN1/GT1Lps3MLSVkQj8w/thPXGs/IWmyiUEzKU7oMIO7BdPlxfEaAVTaM3pWVQBY+CfHS3/94REdmcUoWkb4mSVj8mSMLYErOa/0r8WEY0ivTOCrrEoUElwKy3IUBDGbXw7hQ0ZU9ULUmp+HtHvPFVcTLLa5/BXR9E3vQC/2R/TGmGPMKLSpHNBPJ8f2jC8CNgKNw6cRdzO4dGZPVVZST6ZDSGZrf6Fq1IIYXCobwJ7IrN4Jb0NR8cvWfpZLYKcWKiAffEZhC0XGoMY90qfYtyox6hcUhoE7OLfnIJnr3gcWzF03iylJIxZvTdoqfKus+rjuJGI40EKAwcajq2qFq4aI+AbiawOwK9xm4haEcLAkboYZlZYwf7656XZp/XbtobVUVxjodJjldIAMQ+ebUOEFAJVbLGjlETaC0AAyGzRxSE5fl2JwS01hrSAgT4kD3Sh45X2qIQS4RBmD4Uw+GywLtWsIpOH5evi6vDtSFqwhwYAKeGPjVd9mn4rkbEYRDAAnUjVf1EnrRD9wYuAUqigCcmq/LOjECPnGlslXyF/fBLx7ybgV9B6AChW7nqHdiFwdgb+ubHWmwNaoVr9DdCZTFXb37QcbYpf9bw9ohZVSjAUdHwcjBZbgR3silQluG20neF5RKSL4cg8nhXba1p55yoLCS+EgrZQ8O22/FPXESrg0s7i7KZTid6WCZyrzfclvFQQ8ARE1Ecg7G06vN3Ma3ImHYUjFYwR61bRlyvvOjiT6EGiEMZ8Ptxy1bZA8eJBMh9EwbHg+pW1u1j+HhZNH95W8/hCUReIVv9z2WJ1vhCm6Suha4bj1xVa70xD7UEr4PwU4gUXqk2CR51IYuifRuCn6xASGAP1yqna304DyYCDwuWDKHQ7iLkuVJUWjGtFYscg/J4o7JfHGtIioqbBV6t/atOqOo+PFFAhC3Ca8M9yKzYTJCKqgZzr4GhqJ4LSxyvJ/kYfTsWMEXgucQniTh4LbrjmIUEmH8CruheOpZG90Jah3XQG87isYwqetpD1A8i5Tt16JjcTv2DDWrBh5wBXC+iAgpT1+8zn+RZG5rprsu90LtiQtibVYoxA/kJrlEo16xBxsbVGJT1xG60dz4+0eU34CZG2CjU/X9nU4iZjfL9YKUdVoV0PznweuT4Hpr8H2MrBbTYPW0qg3tW2VDdqdg6BHydr0y6gAlZvD/z9w5BPHa99CxiqPi7uQFRVnm/h8fGdcCxVcn/WUiyuUm+MqPtU+pPTfbAsXZeepcYI5AoB5Gp+S42T9gI4n+9C2HIRsr26LnbXTKRtoIMaSksYR7fGXGTalMXes80SkBojoJQAjICQBpbVHMdFZeD4dQUGt9RWhG1DxmIwhQJ0NlvxvoDaTeGlDWgFvDqKzkw/RDpb9Wn6rWRTvWmp5TTduUYIiEgE6eEwOp+1GdwS0ZYUdHx46rXpxL5vVXUVdiEM+mMZ7OhYQNILYXSha9PTrxdXvBfClLV4WqWh7eLCQVupf+takrkQToht6AunkfGCWzK0BQAn4MPtAXxPwgn5sO2tPJJvX80S1q5w4dzXRLUQRBVhcEv1IQTs7UPQC4maTruWXZ3wDu2EM5UGKln0TAjoNx6ClfVgnjtRt/6qMhKBiIShZuf4lwaATqWAVKrRh0G0NRkDPT2D7p+Zinv4UmMI1Hlxh/rdFFFdDHUlcWlsFik/iBcmh2oSTFqWxmWd03hz5wmMe93458IhTHkdm9pXJOhiR2wBAOD6VlWrgtdi2woDsTQsobGQD2/Znq6LlJKYz4aRcR34ytqywa0QBsGQB2ztlwM1iLjQT7lpg2VaF8evKzG4pdVJCzC6auGhsB0kbhpG/NkgcPJ0Vfa5KteDlXQhcoWKj10HLEivjleHpQWxYwjZy3oQ/mEGOs+gpGk1a0Mnaj/SgpCiYdW4Op+HZguY1mVMfc9VPC9SA0lpEHQ8GCM2tQr9xYQwuK5nFFdFRpHVQbwy11eTINQYgYQXwowfx7jbiby/+Y9nltSQF1aKl3X6JBq0FfbHpyCFxojVs+WDW6AY3uZUc60GL6VBLJxHwbOr0tuUtp7Fyvri0GL9E4zvS8AISEtvelG6zRKi2B7BmOZfLI3WwPHrCgxuaQVh23DfejXCJ6fhj4xVp9rUaETG8xCZ2na1UskkcPRY5avUGwPnieMwStWt2hYARK6AwJwLozidqFkJ24a65So4x841ZKEwan0yFoPs74VJpqBmZtfd1tp/KbzeKOxnXy1WoDcDaUFYFkwz91yWFyqc6nj+JqLG6ggV0BnMwzcSU6mOYo/DdSx+oF8rgDBG4NV0H4YCCcx4HfBVbSonlZI4vdCLRCGMpBtEqoJFj9L5IMZEJ4DiQmr1oLTAnBtB2PKQ8lp3waZ2NxBPYSiSRNoL4uRsH9taUNksS8OWxb7FvpJrnju1FtDKgrnwcVYI3ZAA9fW3qbWA5xajL9tRsKzm+6wthMFgZwpSGIwn4nyP0jIMbmlVOihh7NIGqDIahbCsYmi6BuP7EI8+V3mgWooq3UalPXLLv0EFf/QcxNg4DMOG5mVZyG4LoOsUP5zQ5siOKNzhbjjjFrBBcLtIiOYYvAknALlvF/LDnQj869Hm68t7gbj6AFTUgfzZsy1xFb1WhKnzVLOt+1BTE7ClhiU1hDEbhgSWpTHctQAAGEt0rjmd/ZXZfmS8IDJeoKZT3jP5ADL5yis0lZKYT0eqcESlc30bJxf64FgKqTzHRs2qN5RB1C7AkerC+6M5xhVUW5alobWoygwESxjYVjGE1YsLgLUAYwS0ktDZYvTlhwEr3HzBbSxcwFXd52FBw1MWppKba5nTDjh+XYnBLa1gfB+RR04Wg8sSAkT/2svgdzgIfP/J9T8gb+EPz2VhaNvUjOui64nz0NMzjT4UqhchYG3rh0mlq3JBRydTCJyyYdIb9/vWp0Zgn7Wgck2yBrfRgNL1bSOzGRKA1RofKIioOlL5IFxlXVhRfP3FtuLhPPbFpiGFQUHZGF+Ir7qdUhKj8101ONr2obVAuoIqYaqP0VQXksEQ8r7DSr4tQAiDrmgOQ9Ek8srBmbmeip53YwSUERBKQmm57r6EAKSlAFlsldDodgVLt7/4nwpD7FqxpEZEFmezORbzAFqOwS2tSs3Pl7ytM5uBlQnAbPFgVjgBGN9jQN3ujIF/drTRR0F1JMNhJN+0B/GX5oFjL1e8P53JlLxIoykU0ExnFOP70KdH4Zwbh27SalsAEMfPwLEsqK1+PjZAXV9AW/zhpsbyfGvd6buv5/o2CtqGIzSy3tbt9xl0fOzpnkXWD2BkrrvRh0M1lMiEkSkEoEp8j5RKCNO0QdhWJgQwHFvAvug00iqI8VSs4h7dSkloLTfscSuEgW0314BAWhpWh3/h/5szFE3mQvj53C5IGEyltm61LQCOX1fB4JYqpk6cavQhNJywbaTfey3iz89CnTjZ6MOhViMtyHAIMKb+LTpoQ8bz0XEqDTG/djuYrcR4bnP3twVKDsbbnTAGoo7hdT1vi2g1pQZI2YKDF+aGAACp3NZdTOuy3mkcio2joG1MpTu4aFWb86vc7iMactEfTSPnO5jLRGraToTKYwwwnevAYCiJhBeGV4Ue3caIlq1PktIgEPSaesEypSTOX5j9sdUvhnD8uhKDW6ocp/bDaIPAgg9RaO4wg5qT1RlH4bpLYeUVxCNbuydnMzKeW51FD4mIqCkYI5DKBxEJeFvmT65tKziWWlZ1J4WBIxS0LL0HJissCSgGYR3BAoaj88j4xTYl9e6vTGszRmAq1YGf+zvhKavqoX2ratbQdhHPrbQWBrdUMSseh39oD+TPX2zahWqqyR4cgOmOQx0/+VrAphWCjx6HKhRK2ocIBiEjkbJaUlD7MrkcgqMLEJ6P9n8HtagW/2RvdXfDFApVqegWwSCEEND5fBWOjGpKX/iq5+0RtQAhDK7on0TMLmAyH8PJ6b5GH1JNDXUlcWPvGShIvJQcXLq/r8z1YTYfhacsuBsEO7atcEX/JGyhMZLqxkwqWo9DpzJZlkY44CGTD9Q0BDIGxdeNtpH1HeQ9xgprCQddaC3h+lZdg7lGLFZYTVIaBJ1ilWzBsyt67MSFhdUAlNxShxqI49cVeIaliolYBxb2R9D7jF374FYICNtpWC9ZEQzi5EcvhZMR2HHy7LLpwiVPzZUWxGV7MHO4Gz3ffBqmxLCX6suKx+Ee3gf74RdqPi1c5/PAyTPFhZ9aPCCsGSFg7d0NkclBTc80zUUi4RQrl5q6dYC0MP/O/YiN5CF+drSyXUWj8K+7HF7MRvCfN1iQkoioSUlpcEloAbbUkELjJGoX3FqWxvZ4Ege7JnAy1Y9TM71rHpNjKfhabri4WrneM/gCrgiNYVYV+yYuBre5QgDnXaekECNoK1wZOw8JA0cqBrdNSAiDXd3ziNguEqFwTRfWM0YgkQvhBX8ISheDtVazGOZttNhWJYa6kjjYOQlbKjw2uRupXLDhoWE05OKGgREkvRCemxpatxpXCAPL0iUt+lhtAdtHwC7O7PWUBaU2/7hJaRCwFbQptjNtRAXyYrVvo59/ak2td4alpqNn59D/UAC+69X8tqx9e5A50IeO58bXXCBKBIOw+nphMhmohUR1D0ApDD6hEJwtFMPjzTAaYnIWPc9ZMF5zhE+0inAIyV1B9D4qYWr/0m7pliMyFILYeQnM2ETteosKiexlfQjO5iHnF+oX3AqxZjhpxePI33Q5pKth/eSZdUNM4QRgDfTDeB7U5FTJNy9jMZh8obJgWCt0Pb8AuZCquKLbuB4CY/Nwgg4a9YqV0SigFCt+S8AeYUSr01rghYXtGIgkcSpR22rbeDiPX9x2AgdDY4jIfTifjK/oJSulwRsGzuNI1ymcyffikak9SGTCVTuGlAohJDw4wsfTc8PLflZqiOAriYQfRlD6mM5v8YVzmlhXIAdHFv9Cj6KrprellERGVbbgVaNIaXBJZwLdoSySbghn57prEqj1h9PYFZ5BSPh4PrAdqVyw6rdxMcdW2BZLYyYdXRGoW5bGnq5ZvDF2CgsqgrlCBGdme1bdjxAG3dEcdsfnkPUdjCa7kclv/Hxbloa8EFJWUt3qa4nAhd+tNFg3RhRDW1N6W5hq6u7I4t/v/DkA4K9O3sx+4hvg+HUlBrdUMZ3PQ586U58bS6YRGQ3BpNcOh6zuLqSu34Ho2TTwbLKqFWHG9xF58Dlot4KKX2OgZmaA2bmWDuvanZ5bQP+PzsFnRfSGRGccszduQ99Dbu2CW60QPToKky9A1eEiEVAMTbO/cBDRh45DJVcuTKYLBYTOLgBKQW1wPpDxDuSuGIKd8SGmZ0t678tIBLO/ciV6jyaAF16uKKzWx16BNpXPAzKeC//MKIRcO9Au2zrh+GrbJt9zFcJTLqyHnuU5dCNclZdoVcYInE/GMZ1ZGWxUm9ISWV0MOxQklF5ZtWZJjd2RWVwXPo0BZwEvJoaqGtx+99whPB7ZjZzvYHqTq5W7voWfjO+DFAZZhg5NyRiB08kedIdymMps7nk2RkBrASlN0/cDrYSUGgORJOJ2AbbQGJVdFVV0ruXUQi9idvGzRDIfqnloKKXBdYPn0ONkMB3pwFPnh5fdpjECaa8YHnvGQtpdO0gWAugIFDAUSiCnApjLR0sKbqUwsK3i+Expuenhou9byFwIWit93LQWKHjO0v9XyrYVdnQmkPMdzKSjG1Yj3zr4Ct4ZfQkSwE96LseLk4OsvF0Px68rMLillqKmZyHmFqDXqXZV8wuIPWXDpNM1mcZblSovYwDDwKGZGc9ds6q7FDISAS7dCZwdg06lqnhkzUcvJND30zHoyema3o4/PlHT/V9MWBJeVAJy9YGVKRSgXz1T0r50Mo3QsyOA70OVGDYa10Xv0/MQ47PQqsLzRTUDTq1QhQwYQLESufCLb0D4XAr65dMbVxYbg87nZyHSOfjVOggi2pKUql5LgvUW7Erng/j+2EE8HNiLjBuAt8oUXaUlTmX7cDy0Hc9mhjGdqW4bgnQuWHHPU2ME0nWoFqTKLGTCSOWDm3ptGyPgFmwYJSAsg0DQb9vwVimJM8le7OhYwGw+WrNWCZl8AE9N7ig+tnWant/jZNBhF6Cw8jWgtcC5RCf+t3sLlBFIZNe+QKS1QMoNYjzfiaQXQiIXKun2F18xxcB1M/fgNdVsz1DN53hfzwyu6jwPZSR+6F++4YW2Y8lBpDodSGEwkYkztKWyMbilpiFsu7hg1yqVbUu0gtkggDCFAvxzY1U+OqLyyHgMs9d0oTeRXh7cSgvCspq7J2qZTKEA/8xIow+j6lQyja5/fRUqmV5zm1KrYI3nltUiYXHf5oVX2rv3sdGwswpwPZSaBqsTp9r7MakmY+r7OPE5oS3GthVuHBpBl5PF8wvbMTLXvWIbrQWS2dC6vS21FnhpegBnEj0oeHZNAh4GBVuDMWLT/TuLdSUC5qKAS0qDWDgPSxhkCoGW7Gd7MWME5jIRpPJB+Lp2i1UZI+o6LV5rgUem9mAomsRkNrbq/fJ9q+Qe1YlsGC8WBqHKeF0pJaEvVNq263knYClEZPGznFXCxY2Tc334ROEDAIC5TOsuGFc3HL+u0PpnXWoNG02FlRbk/r0Yf2svBr/2bO2mWxPViZqdR+8PBdTc/NL3hG0DV+9HYn8MXfc/z9d5s9MKarq2VcSlHEM7M74P++mXoV2v9FYQbf6YEFFzsCyNXd3zmMlGkcyuXmkWcnzcED+NgPAhhcHofNeaQcVGAYbnW6tW4xLVixCAHVDwPQvSfu1iqmMpdIdyS31L2yG4BS5Mn9ftcV9eL5kNIVMIlFWtKoSBECurUjfzGFWj0rbZvTzbj/l8BAVll1SJ7PsWJhOxOhwZtav2O1NR0xHBIDLvvgbxx86uPdVZK2BsAkM/BrTrFVdqN3pzPR2FgAwGYZRuq6pGai3Gc1e83o1SsCfm0aUMTJ36tFJ9yUgEsjMONTcPw/7IJeEFjNoRpvhVz9sjahdvHBrBjvA80rEgHhg5sGoI4iuJeT+KTiuLgrZx686TmHGjeGFyqOxpud0dWeyKzSPtBzG60NU24Ri1DiEMLFtDWhpCYKlNgn59j9RGHRyVrNyqa9tW6I1m0R3MYi4fxXQq2raVstWSdx2M+Z0VVxVLeeE9VqNWHa2K49eVOCKgutA2ALn+VT+1kACSaVg9XUjcug+R8QLkw0fLvi2rM46Fdx5EdLwA62fP12/1eaKNGAN/fBJiamZrXlQQotgmQpv2rJoUAmL3Dkzf0Iv+nwTasn1Es5KxGIQQ67fa2Yo41YxoVUIY2JZed8XzqF0oToVd59NSwbPxd2euRTTg4cqecRyMjKM/EMVEJo6pZOmLQwlh0BvOYjgyD19LzOUiDG6pIRYrL1/PVxLnEp0QwKqL67W77o4sruiexGQ+hlOzvW0XstlSozeUQcR2kVcOpIzUZKG2dlPp6yAeyePuA/dCCo1PnrgDc2m2UFjC8esKHBFQRWQkAv2GfRDPnFizuswUCuj8/kvw0yVUVWkFnUqj89kZiEwOm4lcdSaH7icmgGwOfqUL+tDmLI74WuAkWHcl9GluV/bgANKHdyKw4EL+7Nn2e30YA3PmHPrnElDzC40+mpYmbBtGqdJeI0IgfdsV8IMC8W8+3n6vKyKquh1dCQRtHznfwdh856rb/Gx8D3Z1zmMqG1tzyrExArlCAK5vYyTYjcsjEyhoGxl345XXL96Pqyz4WiKtglCsdqs7IQwGO4trEkwkVu8NulVV0je31Tm2wnBsAQej4+gPpJDxAhhfiDf6sKrKUxZmch3oC6eR9QJVDabDQRdaS7i+1fbvqXDQxd7uWcwXIhhPxDd8HH9h6CQOBwEJC+/e/iK+8fINdTpSakUMbqkiItaB8Vs6sON4CGqdacHlVEGZQgHq5JmSF6pZ8fueC//MaNmL14hgEMZ1+aG/QsK2od94CMaRkA8dXf3x3Kjn8WZut5L2GlRbF4J8nUwhenwaIu/Cb9P3mc5mobPZqu/X3rMLcD3445PtWa38OjISweyvXo2+J2aKC5FtdH+NQexnpyGkbNvX1WYJXfyq5+0RNTshDIK2j4D01/0klCsE8Mpsf0khhlISZ+e78beZG+Arualq2bFEJ6bSHVBawi+xN+VAZwqXxmZxJt3DsHEdlqXhWGrdRaJ6O7I41DUO31jQRqzoR2lZGp3hPHKejVyhvGB+veMa7lpAyPJwZqGnrotY0focW6Enmi0uLuYXn5esDiDrtd9zpJTETDqK2UzkQn/a6pxHdvfO4ZcHnkVEFvC/R97U0BYMtq0QDxWQygdr1kv8UN8E9kRmkY86+EH28g3PEz+bvBQzvQ/DEQI/nNpfk2NqVRy/rsTgliqipmex4+sGKlHB9FQhICMRmELhtdCt0mCizN+3+vsx9u8vw45/GIU/cq61w9v1QlFpbRxor1Mta/X1Ql26HXjy2JqPsdEG0lXF6fCr7aO3B7kb9iJ8cgbq5OkN705JpIXse66BlTcIP/Zyse0GNQWrqxPutXshtAF++hxwamTTF2W2LGkhcd0gggs+AvMLNQmGS2V1dUJfthPylZGavc+M56PrZA5iPlnya0VNTmHF3E4iolUYIzCV6UBXKIfZ7Porq69VaSuEQSxcwMGeSSTcEE5Mb4NSEulcsKRjkNKs6I2olCxrMSEpDQ51TWAwmEBfMI1/SR9s2cXNHFuhO5JDxg0gW3CWPS6WpTEYTyHnOVjIhtcM0vtiGWgjMJ8JL/t9KQ2uHjgPRyqMZ+MYmete+zjE6mPbxWPoDmaR9QMYVV1Veay3xdK4JJKAIxXm8lG4vt300/ClNBDClPVabTVSGsRCBVwSTcDVFqayMdxz5nooLdq2hUnxdVfd197ujjlsd+YRlQX0hdOYSUcb8hE7FPBw2/AJ7AzO4pXcAH44cnlNXr/aFPdpQZcUUM9nwnjv8/8XACCTr87FIGpf7XnmofqpwqrrVm8Pxu/Yj4HHk8CTL5T8ezIUguiMA7l8xX0NTSqFoZ8loecWWjq0teJxpG89gI6TCaiXTi4LV4UTQPLfXofOlxZgjp1cvTJVCPi3XgeroCAeWWUq+7ZeTN0Qw8Az1trT/bUCjh6HEHL1BQyUKu7fr2LVoFaIHZ0AlIbK5Kq331qRFuyhAZh4tLSKwhZmXA+ByTRgDFQb38+a0gqxB44BSkHnGvv6Fp1xLFweRe94B1Cz4NaFfPyFYqubcs7HLXzurhn2CCNaVSoXRDof3HRIJqXBvq4Z9AXSCEgfZwPdJVVhSmnQFclhe0cC84UIJlMdm56CbgzgGQllJHLKadlFo4Qw2BZLoz+Uhh+ReHW+d9ljOdy1gKFwcZz/jHvJqlWpPR1Z7IzNAwCU6UUiE176mSU1wpYHKTS6gjmMYPXgdi4Twc+xa+n/LyZhIEXxq1qPddZzUNAWpNAoKKvpT6GOrdDXkYEUBol8qOQLFa3GmNcWYdNGIO/bDNY24fGJnRgIJBGSHkaS3Q27KGFJgwEniS4ri047BykMSvlEIoRBKODBmGJgv1EY+9zUEE6HepBznZICfmNE276HKsbx6woMbqnh9EIC2783BjM7X9JJdJHYMYTEdQOInssVQ8ZKjiGfB55+qeV7jxrfR3DWhcjmV1SqGaUQPV+ATGTg6zVOTsbAyvvFitlVfqxfPoWhcxNQGyystV67ApVIwn74har3H/bPjl648eY/8QrHhrd7G9LDIXSeHoXOt/brbj06mwWOv9row2h5OpVq9CEAAPzR8+j+hzn4uXzpvyQtWJfuhPAV/JGxki5UsOVJlRjUdwnw5j/9EgHAhenAm/99rQWmcx3oC6bhahuFEqdPW1KjI1BAyPIQc/JIOCGkNx3cCjx6fjeCtkLBt1q2B+liGCKFqegcIi/Mdb04XPF8C2fSPegOZvHKbP+av6+1wOyFxYEW97HYHiFTCGA8FUPSDaLg2Ws+1h3hAvoiGUxnOkoK+pLZEJ4tXAIA6y6U1ywsqeFItfT/7coYgUQ2jGPuAAC0bZVtreUKAfz9qWsghGno+SnnOvjO+FW4rmcULyaGSq6W39s3i7f2vgwpNP5l8tC61foA4PsWFi6q+KdN4vh1BZ6FqOGM7xdXXy9zBK3PjCI+OQN4HqoydGjx0BYohmTWY2tUqmkF69HnN6xik0+8uGabA+P7m6pultEozBWXQp4ag5qdg9kg+LWHd8C/pAfW6YniFOhStEBgu8gUCpBPHEPnM3bxokG7a4P3Fl2gFXSmhIUmX0cGHGQO9kO6GqGJqba+UEFEW4MxAucWOjGeKvaVLbWSzFcSiUIIHU4B84UIshX2SvVbOLB9vYlkDIl8CJ5vwb3o/ozMd2MuF4HrW2sGaPOZMF4x/TBGILVKBdv5hTjGxcaLBb0+cLFthXfsPI5DkTGcLfThvtNXL6vkvVh3Rxbv2n4MB0Pn8UhqH340dtmGPWuNES3V3sJTFhKFECxhkKlSn99mpbVgz+EyCFH8HHZxaNkMLTW0FphKduD7qYNlfVyM2C567DQAIGT5EMJsGMoytKVaYXBLzWEToZvxfZgmqUKrCyEgbGf5Alyr9KNdr1KtlCq2TVe6rdMbV3REMXNVB/rnO4HZude2F3LVUM+EAvDiAdiB9h0UGs/dMMCmrUeGQoBlQefybRN463we4QeKsyL0OotYUvUJYyDqeFGrnrdF1GjGiLJDU2MEEpkwktnQ0r/bwVqhDQDEI3nsjM9jvhDBRDIGrQUCtoKUGq5vL/X2XWvKsNZi6fFay+Ljut7PV18r1yAeyUMKg/n08vYIljDYFkgiIguIWXnYUsNYAr3RLCypMZXqWBZKWcIgIl2EpIug9Jcek3ailEQiEy4pwKKtI+j4eNfOY7g8PIF7xt6IcwudTff62Mwsi1MLvfiZfRm0ETifjjfdfWpnHL+uxOCWqFlIC1a8A8b1Vl18yL5kOxaO7EBo1of9o6cBIeG/9RrogKzNglxCQFhWaUGutKB+4Wr4IQvBf3lyRXirpqbR97dJKNcrbh4KQV9zOdI7I4h968kVt6FOnkbg9EjV2ykQNTUhkLv1KhS6LfT8ZAT+2PlGH1HVGAa2RLSFWJZed3pwuwQAQhj0xzJ407ZXMZ7vxM8nhpfdZ9tW6Arl0BfMIGq7yHkOMoUAokG32CvWiKpX5EVDLoK2j0QutOG+oyEX/ZHiLBJ9Ufjr+hbuP3c13jJwEsdTAyh4NiJBDztjc9BGQgqDsfnOpe1n0xF8Z/wqvBjbjleTfSX1PG5V7fL6perY0z2LA+HzuMSZxxu6xzCTjbTF6z+dC+KRc7sB8DVPjcfglpqWCAYhLtsD1RlafaGsNmMPDWD67bvQMebC+cFTK36uZ2bR9ZiAcV0oYwBoBM8tALYFk68wFFklpLWuuBxjb+/F9q88vfF0fqPhzOVgB2yY1Z4nY5btw/g+7IkFxHxdbMuwyvbscUlbjjGI/OwEIo4NlahswUUiAFzcgagBbFshGizOqMmL0hapaVUBW2FvfAaddhY6WKxGnUzEln6ulERB2VBGIOUFkfNsaCOW2glWGoZc3j+NgXASP5/YibzrQEqDjmABUhh0R3KYSUXX/X31utYJSi8PeY0RmEtHcH/mqqV/a1NcOV4bAX+V7ScTMUwlOxjy0JYymuzGua5eRKWLE6mBknt+twK+lxuE49cV2nckQS1PCAETsuFHbThCAqa9qy/98Un03Z8pVtyu8nOdz0OPnnvtG8ZAvVydRZ/k1Qcx9cZObPub517rXzk5g4EnQtAXqmTXZQz0c8dLvr2lvsZnRUucKInqZTM9pInWVLzGV9/bIyJIYaCNaOnp8uu1P1jk+hZeTfZhR3ge024Ms5nl7QaMKfaWnElHl/UCTmSL0+0rWWU+GnJxZed5xKw8rCGDh0b3LhtSenrjSt5cIYBziWLV7Fr9TF9///Oug+enhmBJvWYgz6CHtppMPoC/PXn90nua7wGqGMevKzC4paalCwVYr44hPBaE38K9Hq3enmIYu1E/Xq2q3+6gRHJiFv3PWDCvC2nVzCzE7FzpwerF2wkB2dEBnU6vvY+tENpe6E3MfrZERETt6fUhpwDQHcrB1xKzav2Kz2YVDbm4pn8MBW3hmYkda7YcWAxm/z51zdK/V9tGqeXfLwa2lYU7rm9BGwFlJBbc8IUCLYHpVAek1CX3H359YCuEwd6+WVzWMYVX0/14ebp/xX3xfAseWmdBsc2Q0qArkkNPOIvxVByZfOtPe6faqsZ7mojWxuCWmoe0YPX2AJ4LtZCAjESQvWkfUsM2+v96riWDLxkKYeID+9FxXiF8/xONPpw1+ROTwMTkyh9UEKzaO3fg1Q/uwN6vnG2rXp1lkRasA3sxfmsfhv72Jaj5+UYfERFtIVzcgai2hDCIhQs41DOBlB/EiZltCNgKAenDFhLRgNtyoZcQBpfEEghbLhxpldRyoN4VdpalobTEd88eQtDxkckHlo5BawGtNxesWpbGGzrHEJIe9nZM4+RsX0VVwRuRsnjOrOVtbIZjKVzaOQNLGEgYvFLoYxUlEdUNx68rMbilpmF1d2Lql/eh47yP4D//HDqTQfhHzyPsONDNHtqusZCXzucxeM+xNdsfNJo9OACdSr/WHqGK1MQU9n7Ngpqaqfq+lxEC1rZ+oFAo9gVtphOvVsWWE484qy44R0RUUwZ17hFWv5siagZSGmyLpmFLhajtoiNUQDofRNYvBomJXKjRh7iunT3z6ArmcGx6YKlC1RiB0WQn+kNpFLSF+Wx4g73U1zVDY/h/t38fCgIfffE/IJ0Llr0PcWFhtItpLTFZiGN7aAELXqSmgerOnnm8qe9VBKWH+89djbl0ZONfqhNtBFxtIyB9uNpiaEtE9cXx6woMbqlpqLl59N/zLIxSxfeOEJD9fXAv7Yf9+EsbL5DVQOKaKzB1Uxzb/tfPV4S3jWp/sBHhBDD6H/ai/5kCnJ8+X3ZFs4zFIGx7zSpSUyjAP3WmCke6PhEIYOqX96JjzEf4J8dqEkJXQs3OAbNzjT4MovpabBGiVPECBhFRG1JKYiwZR9zJI+s7SGTDkFJDGQkJg0jQbdrFyUIBDwc6J2FBw96m8fT5HUs/yxUCeOTc7qYM7N7Z+zz6LRcSwEBHCqcLPSUfp2VpHNo2AQA4MbNtxXOjtcAj53ZDSrNme4hquSSSQJ+dghQGUcfFvAg3zePt+RZemByCYym4JbacoNKEgy5Cjo9ENtx0ldZbnRAGg50pHOycxKl0L0bmu/kcUdNozpEEbU3GLK9KFBImHkV6exBdjgM0cXBrTcyi71m7GFK0COO52PG/XoAuFMpvQyEEUu+4ApltFrZ9+fFNBzPCtiHCYehMdtP7MIUC+v/2ORjfhy4UNrUPaj32nl3wBzohn3+16cJ6AqwD+zB/bS/ip7LAY881+nC2Lq7KS1RzuUJgWegpJSBhIIRp6o6PvpbQRgBCIu2trFotN0QsZTGzSghhIATwzfE3YveuGeS1g/FUrKzb6wznEZDFAottHWmMznet2Ga1nryvZ1kal3QmsKtjDmfTPRiZ6y77vgDAiYVt6Aum4QiFRCHUNKHtIq0FCppRQTWFgy5uHBxBl53F8dQAXpntX/MCwVpV4VQ7kaCHnR3z6A+kgA4gUQhhvokq4bcUjl9X4NmYmpdWUC+eQPyYgK72m0mIqr5B/fEJiPGJynckLVjdnYAQUDOzle9vtZuIRiFCQaj5xOZXsDcGse8fQ9y2oTZbTScExKHLcP4Xu7HjH8bgnz67uf0ADO62INXVgcwlYcRPBIB1nn+rvx8mk2GrijozI+fRk8rCpNNonctZRESVU0piOhNFwFbIFKrX37YzmkPQUpjLhkteeGs9vm/hJ+f2Iej4m2o38HpBx8e2jjRcbWEuE4FX5SrNoOPjTw59G/udWdx17pfx28/9u009BolcCG6s+PF3Kt2xqWMJ2D4ujc0iLF30BLMYszo3VZ07l47gO+krN3UM1JocS0PCQAqDkOUvXey4WDySx76uGfhG4oXJIVZ91kneszFfiOCS0ALm3AiyVTx/E1WKwS01vyqHtuLwIfjxIALPvFq9NgbSggwFVw2HhBOACAWhU6kNd2N1dyL1C5fBDwrE711YvQq1wtDZvekA5vYHMfR3JyoKh0u5P+syBjhxGjsm56BmuWgXlcccPYboUUCt814QTgAjH7wMg4/nYf34mZa4mtoudCbDCyrNQKO+izw3YzN3ojozRiDvOsi7TtX2GY/ksbdzFlG7gFNWHyaSsapM5b9q2zj6gmk8MrFnWXgrpcGlvbOwhcLp+d512z0IYeDYCpbUCAAIB7wVwW1nNIf+SAZTmQ4ks+X3/b2sdxq77Hn0WBZ+tf9J/H+z74KP8oNbpSSeG99eUTWjryxM5GLYHk4i7Qdr3lKB2kcyG8JLiQF0B7N4da5vzYsPg9EUgtKHA4Gg4yHHALEulJJ4ZaYPr871whixZmC+WP3PQL2GOH5dgX9paMsRnoIsKBi1/jtUhkKQ0fVX0V3a53UHMfLxayCCF1UsSAv+m67E2G9dBWFvfJ1Ezc0j+t2j6Pr20VVDW/vS3VBvvRb2ruGSjms1gZ+9iKFvvFDsvdpgOp+HPzFZfqsGohKm0BjPxc6vvATn0WMMbZuQFY/D6u0p6dxIm7O4Km89v8r1xS9+EXv27EEoFMLhw4fx05/+dM1tv/Wtb+G2225Df38/4vE4jhw5gu9///vLtvna174GIcSKr3wTt1si2og2otjW4ML/rxU6SmlwxcAErhkag2MXx5GWpVet7AsHXeyNTqPbzuKN20aW/SzoeOiwCwhZPobi68/OMkag4NkoKBs531lRZdwZzeHGbWdxW99LuLpvDOFg+WO+EzPb8IrXh0ml8TcTN8L1K/u7UckUdM+3cHxqAD8e3YeT030VHQdtPeMLcRybHFz3YshYqhM55SDjB1DwqncBiDZWbJUi1wxlQwEPN+84g1/d+wyGupKQkp8vaqEVxq/1xk9LtOXo545DYOMLK+l3XY1cj0TfN56GcV1Yl++FOTe+ahWZfHkEu1LboNyLBqNaIfDUSQy/EoN/0aJlqzIGplBYe2FDrSFdDWwQOq9H5/NN3S+YqJrWWjyPGkwI5G7ej1yvhd6HzsEfPdfoI6IGuPfee/Hxj38cX/ziF3HLLbfgK1/5Ct71rnfh2LFj2Llz54rtH3roIdx222344z/+Y3R1deGv//qv8Uu/9Et4/PHHce211y5tF4/HceLEiWW/GwqVX+VH1CzSuSBOog+OpZDMhdYMFboiOcScAmyhMRRPQhmJ/lAavpF4cXJwWWBZ8BxkVQBB6eNctmvZflzfhqstSGEwl9u4x6PnWxhfiK/6M7MsdN5czZDnW7jrufct7a8ZsNqOaiWTD+Do+CWNPgxaRW80i/5AChGrgKFIEnOZCHtB07p++Zd/GUePHsXU1BS6u7vx9re/HZ/97Gexffv2svbDVxnRGmI/fhmxgAPlupDhME7fsQ27v2UDLxxfsa1KJoE1+sWu97Ny+WdGIM6MoIQImIioeRmD4I+eQ8iy4Oe5qGDNNPniDp///OfxwQ9+EB/60IcAAHfffTe+//3v40tf+hL+5E/+ZMX2d99997J///Ef/zHuv/9+fOc731kW3AohMDg4WP7xEzWxUvrQJvNB5JSDgPQxm41iOD4PKQxsaFiWXjY1W2uBfz5zBSypV7Q2UEripamBqkwHTmZDeGxyN06EBjCXi2x62nezBLZEtHVNpjowEu6BgsRIqhtulft50wVNPn4tx6233orf//3fx9DQEMbGxvA7v/M7eP/7349HHnmkrP0wuCVaw+sr9XQ2i91/+ix0jpWqRETVsO7sAmppyYsuVgaDQQQvaiXkui6eeuop/N7v/d6y799+++0lD2a11kilUujp6Vn2/XQ6jV27dkEphWuuuQZ/9Ed/tCzYJWpXvm/h+YkhAMWgcxTdGI7PI+MFV+2nqbWA1qsHD8aIqn2WTeeCFS+ARkTUaL5v4enzO/A0djT6UKhFfOITn1j6/127duH3fu/38G/+zb+B53lwnNJbobDHLVGJdCaz+mJhREREzWixYqGeXwCGh4fR2dm59LVa9ezMzAyUUhgYGFj2/YGBAUxMTJR09/70T/8UmUwGH/jAB5a+d+DAAXzta1/DP/7jP+Kee+5BKBTCLbfcgldeeaWCB5KodZjX9cDN5AM4PjWA0fmuxh4UERFRqRo0fk0mk8u+CoXqzgqcm5vD3/zN3+Dmm28uK7QFWHFLRERE1J4aNNVsdHQU8fhr/S4vrrZ9PSGWT382xqz43mruuecefPrTn8b999+Pbdu2LX3/pptuwk033bT071tuuQXXXXcd/uf//J/4whe+UPJdISIiIqIGaND4dXh4+QLwn/rUp/DpT3+64t3/1//6X/EXf/EXyGazuOmmm/BP//RPZe+DFbdEREREVDXxeHzZ12rBbV9fHyzLWlFdOzU1taIK92L33nsvPvjBD+Lv/u7v8Pa3v33dbaWUuOGGG1hxS0RERERrGh0dRSKRWPq66667Vt3u05/+NIQQ6349+eSTS9v/l//yX/DMM8/ggQcegGVZ+PVf/3WYMoNpVtwSERERtSMNoJ7r+ejSNw0EAjh8+DAefPBBvO9971v6/oMPPoj3vve9a/7ePffcg9/4jd/APffcg/e85z0b3o4xBkePHsVVV11V+sERERERUWM0aPy6WHCwkd/+7d/Gr/3ar627ze7du5f+v6+vD319fbj88stx8OBBDA8P47HHHsORI0dKPkQGt0RERERUd5/85Cdx55134vrrr8eRI0fw1a9+FSMjI/jwhz8MALjrrrswNjaGr3/96wCKoe2v//qv48///M9x0003LVXrhsNhdHZ2AgD+x//4H7jppptw2WWXIZlM4gtf+AKOHj2Kv/zLv2zMnSQiIiKitrEYxG7GYqVtuf1zGdwSERERtSFhDEQde4SVe1t33HEHZmdn8ZnPfAbj4+O48sor8b3vfQ+7du0CAIyPj2NkZGRp+6985SvwfR8f/ehH8dGPfnTp+//xP/5HfO1rXwMALCws4Ld+67cwMTGBzs5OXHvttXjooYfwxje+sfI7SEREREQ11ezj11I98cQTeOKJJ/CmN70J3d3dOHXqFP77f//v2Lt3b1nVtgCDWyIiIqL21KDFHcrxkY98BB/5yEdW/dliGLvoxz/+8Yb7+7M/+zP82Z/9WdnHQURERERNoAXGr6UIh8P41re+hU996lPIZDIYGhrCO9/5Tnzzm99cd+He1TC4JSIiIiIiIiIiIqqCq666Cv/6r/9alX0xuCUiIiJqR9oAoo4VC7qOt0VERERE7Yfj1xVkow+AiIiIiIiIiIiIiJZjxS0RERFRO2qTHmFEREREtEVw/LoCg1siIiKitlTngS+af+BLRERERM2M49eLsVUCERERERERERERUZNhxS0RERFRO+JUMyIiIiJqJRy/rsCKWyIiIiIiIiIiIqImw4pbIiIionakDerat0s3f8UCERERETUxjl9XYHBLRERE1I6MLn7V8/aIiIiIiDaL49cV2CqBiIiIiIiIiIiIqMmw4paIiIioHXFxByIiIiJqJRy/rsCKWyIiIiIiIiIiIqImw4pbIiIionbExR2IiIiIqJVw/LoCg1siIiKidsSpZkRERETUSjh+XYGtEoiIiIiIiIiIiIiaDCtuiYiIiNqRQZ0rFup3U0RERETUhjh+XYEVt0RERERERERERERNhhW3RERERO2IPcKIiIiIqJVw/LoCg1siIiKidqQ1AF3n2yMiIiIi2iSOX1dgqwQiIiIiIiIiIiKiJsOKWyIiIqJ2xKlmRERERNRKOH5dgRW3RERERERERERERE2GFbdERERE7YgVC0RERETUSjh+XYHBLREREVE70gZAHQejuvkHvkRERETUxDh+XYGtEoiIiIiIiIiIiIiaDCtuiYiIiNqQMRrG6LreHhERERHRZnH8uhIrbomIiIiIiIiIiIiaDCtuiYiIiNqRMfXt29UCizsQERERURPj+HUFBrdERERE7cjUeXGHFhj4EhEREVET4/h1BbZKICIiIiIiIiIiImoyrLglIiIiakdaA6KOCy60wOIORERERNTEOH5dgRW3RERERERERERERE2GFbdERERE7Yg9woiIiIiolXD8ugKDWyIiIqI2ZLSGqeNUM9MCU82IiIiIqHlx/LoSWyUQERERERERERERNRlW3BIRERG1I041IyIiIqJWwvHrCqy4JSIiIiIiIiIiImoyrLglIiIiakfaAIIVC0RERETUIjh+XYHBLREREVE7MgZAHRdcaIGBLxERERE1MY5fV2CrBCIiIiIiIiIiIqImw4pbIiIiojZktIGp41Qz0wIVC0RERETUvDh+XYkVt0RERERERERERERNhsEtERERUTsyuv5fZfriF7+IPXv2IBQK4fDhw/jpT3+67vY/+clPcPjwYYRCIVx66aX48pe/vGKb++67D1dccQWCwSCuuOIKfPvb3y77uIiIiIioAVpg/FpvDG6JiIiI2pDRpu5f5bj33nvx8Y9/HP/tv/03PPPMM3jzm9+Md73rXRgZGVl1+9OnT+Pd73433vzmN+OZZ57B7//+7+M//+f/jPvuu29pm0cffRR33HEH7rzzTjz77LO488478YEPfACPP/54RY8lEREREdVes49fG4HBLRERERHV3ec//3l88IMfxIc+9CEcPHgQd999N4aHh/GlL31p1e2//OUvY+fOnbj77rtx8OBBfOhDH8Jv/MZv4HOf+9zSNnfffTduu+023HXXXThw4ADuuusuvO1tb8Pdd99dp3tFRERERFQ9DG6JiIiI2lETTzVzXRdPPfUUbr/99mXfv/322/HII4+s+juPPvroiu3f8Y534Mknn4Tneetus9Y+iYiIiKiJNPH4tVHsRtzo4qpt7/vzX8Q111zTiEMgIiIianlHjx7Fjz92/6or4vrwgDrO/vJRDE+TyeSy7weDQQSDwWXfm5mZgVIKAwMDy74/MDCAiYmJVfc/MTGx6va+72NmZgZDQ0NrbrPWPsux+Bj/P3NDuGbnNRXvj4iIiGgrOnr0KD4GNNX4tZk1JLgNhUIAgI997GONuHkiIiKitrI4tgKAQCCAwcFBPDzxvbofR0dHB4aHh5d971Of+hQ+/elPr7q9EGLZv40xK7630fYXf7/cfZaK41ciIiKi6mmW8evg4CACgUDdb7dUDQlub7jhBjz22GPI5/NVGUgTERERbUXGGIRCIdxwww1L3wuFQjh9+jRc123I8Vw8tru42hYA+vr6YFnWikrYqampFRWziwYHB1fd3rZt9Pb2rrvNWvssB8evRERERJVrtvFrIBBYFiI3m4YEt1JK3HjjjY24aSIiIqK2FwqFmnoAGggEcPjwYTz44IN43/vet/T9Bx98EO9973tX/Z0jR47gO9/5zrLvPfDAA7j++uvhOM7SNg8++CA+8YlPLNvm5ptvrviYOX4lIiIiqp1mH782SkOCWyIiIiLa2j75yU/izjvvxPXXX48jR47gq1/9KkZGRvDhD38YAHDXXXdhbGwMX//61wEAH/7wh/EXf/EX+OQnP4nf/M3fxKOPPoq/+qu/wj333LO0z4997GN4y1vegs9+9rN473vfi/vvvx8/+MEP8PDDDzfkPhIRERERVYLBLRERERHV3R133IHZ2Vl85jOfwfj4OK688kp873vfw65duwAA4+PjGBkZWdp+z549+N73vodPfOIT+Mu//Ets374dX/jCF/Arv/IrS9vcfPPN+OY3v4k/+IM/wB/+4R9i7969uPfee1kpS0REREQtSZjVlnEjIiIiIiIiIiIiooaRjT4AIiIiIiIiIiIiIlqOwS0RERERERERERFRk2FwS0RERERERERERNRkGNwSERERERERERERNRkGt0RERERERERERERNhsEtERERERERERERUZNhcEtERERERERERETUZBjcEhERERERERERETUZBrdERERERERERERETYbBLREREREREREREVGTYXBLRERERERERERE1GQY3BIRERERERERERE1mf8fFygpHUjWHaIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.context_encoding(model, task, task_loader, context_set_idxs=0, size=7)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## Breaking ConvNP stationarity using auxiliary variables\n", + "\n", + "The convolutional architecture of U-Net module of the `ConvNP` is translation equivariant.\n", + "This means shifting the context data results in a corresponding shift in the output prediction.\n", + "If we only had one context set, the `ConvNP` would be *stationary*.\n", + "However, environmental data is often highly spatially *non-stationary*.\n", + "The behaviour of geophysical variables can vary significantly in different regions of the globe.\n", + "Modelling this spatial non-stationarity is important for making accurate predictions from the\n", + "available data.\n", + "\n", + "A trick for breaking stationarity/translation equivariance in the `ConvNP` is to add auxiliary variables to its\n", + "context sets.\n", + "Now, if an observation is shifted, the static auxiliary variable/s will be different, and the `ConvNP` prediction\n", + "will also be different.\n", + "\n", + "It is generally advisable to use auxiliary variables that are physically grounded (rather than\n", + "hand-crafted features like latitude/longitude).\n", + "Elevation can be a good auxiliary variable to use, as it is often correlated with surface geophysical variables,\n", + "and it allows the model to transfer knowledge about topographic effects from one region to another.\n", + "\n", + "To add *temporal non-stationarity*, we can also add a circular time variable to one of the context sets.\n", + "This is shown above with the `cos_D` and `sin_D` variables (the cosine and sine of the day of year).\n", + "DeepSensor provides a `construct_circ_time_ds` function for this purpose (shown in one of the collapsed\n", + "code cells above).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Receptive field\n", + "\n", + "The use of a convolutional architecture (U-Net) in the `ConvNP` model means that the model has a receptive field. This is the area of the input data that influences the prediction at a given point. The receptive field is a function of the U-Net architecture, such as number of layers, filter size, and internal discretisation density.\n", + "\n", + "The receptive field can be visualised using the `deepsensor.plot.receptive_field` function. This will unnormalise the receptive field and plot it on a map of the globe, which can be useful for understanding the spatial extent of the receptive field.\n", + "\n", + "Some things to consider are:\n", + "- Is the receptive field too large (i.e. much larger than the range of context and target data)? This can cause excessive zero-padding.\n", + "- Is the receptive field too small (i.e. smaller than the correlation length scale between context and target data)? The ``ConvNP`` cannot learn correlations greater than the receptive field.\n", + "\n", + "You can increase/decrease the receptive field by:\n", + "- Increasing/decreasing the number of layers in the U-Net\n", + "- Increasing/decreasing the filter size in the U-Net\n", + "- Decreasing/increasing the internal discretisation density of the U-Net\n", + "\n", + "Note that the first two options will also affect the number of parameters in the model, decreasing or increasing model capacity. To counteract this, the number of channels in the U-Net (which has no effect on receptive field) can be adjusted." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T16:38:05.153574672Z", + "start_time": "2023-10-27T16:38:04.749887821Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGNCAYAAADNfQ/dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddVhVy9fHv+fQJSAgDSISKogtKpL2tfXagXXFxo5r1zWu3d3d7RUVRBFssRGUTpXuE+v9w5f98whIHc7h4P48z36U2bNn1qw9e2adiTUcIiKwsLCwsLCwsLCIDa60BWBhYWFhYWFhqW6wBhYLCwsLCwsLi5hhDSwWFhYWFhYWFjHDGlgsLCwsLCwsLGKGNbBYWFhYWFhYWMQMa2CxsLCwsLCwsIgZ1sBiYWFhYWFhYREzrIHFwsLCwsLCwiJmWAOLhYWFhYWFhUXMsAaWFDl48CA4HA5zycvLw9DQEAMGDEBoaKi0xSsT7969w+LFixEREVHonqenJ2rXri1xmQBgy5YtqFu3LhQVFcHhcJCamlohecryLIfDweLFi38ZJyIiAhwOBwcPHiyXPCziw9XVFa6urpWWfsH3XtQ3UhIPHz7E4sWLkZqaKhZZCupdcVenTp1KTOPw4cMYMGAAbGxswOVyi/0u/Pz8is0nKCioQvJXxe9G1nXLIj7kpS0AC3DgwAHY2toiNzcXAQEBWLFiBXx9ffHhwwdoa2tLW7xS8e7dOyxZsgSurq6FGoMFCxZgypQpEpfp5cuXmDx5MkaPHo3hw4dDXl4eGhoaUpOnKAwNDREYGAhLS0tpi8JShXn48CGWLFkCT09PaGlpVTi9gnr3MxcvXsTq1avRq1evEtM4cuQIEhIS0KJFCwiFQvB4vF/GX7lyJdzc3ETC7Ozsyia4DMDqlqUA1sCqAtjZ2aFZs2YAvv+KFggEWLRoES5evIgRI0ZIWbqKIy3j4e3btwCAMWPGoEWLFlKXpyiUlJTg6OhY6flkZ2dDVVW10vOpyuTk5EBZWRkcDkfaokid4urd3LlzoaqqioEDB5aYxn///Qcu9/skSNeuXfHmzZtfxreyspJIXZc2rG5ZCmCnCKsgBcZWYmKiSPjTp0/RvXt31KxZE8rKymjcuDFOnz5d6PnY2Fj89ddfMDU1haKiIoyMjNC3b1+R9NLT0zFjxgxYWFhAUVERxsbG8Pb2RlZWlkhaHA4HEydOxK5du2BtbQ0lJSXUr18fJ0+eZOIcPHgQf/75JwDAzc2NGaIuGL7/eVqtcePGaNu2bSG5BQIBjI2N0bt3byYsPz8fy5cvh62tLZSUlKCnp4cRI0bgy5cvv9Shq6srhgwZAgBo2bIlOBwOPD09i5QHAIgI27dvR6NGjaCiogJtbW307dsXnz9//mU+wHddjhkzBjo6OlBXV0enTp3w8ePHEp8Dip7qWLx4MTgcDt6+fYuBAwdCU1MT+vr6GDlyJNLS0kpM09XVFXZ2dvD390fr1q2hqqqKkSNHAgBOnTqFDh06wNDQECoqKqhXrx7mzJkj8t6vXbsGDoeDJ0+eMGHnzp0Dh8PBH3/8IZJXw4YN0adPnxJlunnzJjw8PKCpqQlVVVXUq1cP//zzj0icy5cvo1WrVlBVVYWGhgbat29f5EjAgwcP4OHhAQ0NDaiqqqJ169a4du2aSJyC6bhbt25h5MiR0NPTg6qqKvLy8kBEWLNmDczNzaGsrIwmTZrgxo0bhfIRCoVYvnw5bGxsoKKiAi0tLTRs2BCbNm0qsbylxcfHBz169ICJiQmUlZVRt25djB07Fl+/fmXiLF68GDNnzgQAWFhYMN+Xn5+f2OQAgE+fPuHevXvo168fatSoUWL8AgOgKlGWuuHr64tx48ZBV1cXOjo66N27N+Li4ipFruqgW5ayw77FKkh4eDgAwNramgnz9fVFmzZtkJqaip07d+LSpUto1KgR+vfvL9I5x8bGonnz5rhw4QKmTZuGGzduYOPGjdDU1ERKSgqA76MZLi4uOHToECZPnowbN25g9uzZOHjwILp37w4iEpHn8uXL2Lx5M5YuXYqzZ8/C3NwcAwcOxNmzZwEAf/zxB1auXAkA2LZtGwIDAxEYGFioMy5gxIgRePDgQaF1Zrdu3UJcXBwzaicUCtGjRw+sWrUKgwYNwrVr17Bq1Sr4+PjA1dUVOTk5xepw+/btmD9/PoDvU7CBgYFYsGBBsfHHjh0Lb29vtGvXDhcvXsT27dvx9u1btG7dupCh+yNEhJ49e+LIkSOYPn06Lly4AEdHR3Tu3LnYZ0pLnz59YG1tjXPnzmHOnDk4fvw4pk6dWqpn4+PjMWTIEAwaNAjXr1/H+PHjAQChoaHo0qUL9u3bh5s3b8Lb2xunT59Gt27dmGddXFygoKCA27dvM2G3b9+GiooK7t27x0xXJCUl4c2bN2jXrt0vZdm3bx+6dOkCoVCInTt34sqVK5g8eTJiYmKYOMePH0ePHj1Qo0YNnDhxAvv27UNKSgpcXV3x4MEDJt69e/fg7u6OtLQ07Nu3DydOnICGhga6deuGU6dOFcp75MiRUFBQwJEjR3D27FkoKChgyZIlmD17Ntq3b4+LFy9i3LhxGDNmDEJCQkSeXbNmDRYvXoyBAwfi2rVrOHXqFEaNGlVoHRSHwyn32q1Pnz6hVatW2LFjB27duoWFCxfi0aNHcHJyYvQ8evRoTJo0CQBw/vx55vtq0qQJgO/fCZ/PL/ESCAS/lGX//v0gIowePbpcZSmJCRMmQF5eHjVq1EDHjh1F3qs4KGvdGD16NBQUFHD8+HGsWbMGfn5+zI+yAljdslQIYpEaBw4cIAAUFBREPB6PMjIy6ObNm2RgYEDOzs7E4/GYuLa2ttS4cWORMCKirl27kqGhIQkEAiIiGjlyJCkoKNC7d++Kzfeff/4hLpdLT548EQk/e/YsAaDr168zYQBIRUWFEhISmDA+n0+2trZUt25dJuzMmTMEgHx9fQvlN3z4cDI3N2f+/vr1KykqKtK8efNE4vXr14/09fWZMp44cYIA0Llz50TiPXnyhADQ9u3biy0j0f/0+3M5f5YnMDCQANC6detE4kVHR5OKigrNmjWr2Gdv3LhBAGjTpk0iz65YsYIA0KJFi34pY3h4OAGgAwcOMGGLFi0iALRmzRqRuOPHjydlZWUSCoW/TNPFxYUA0J07d34ZTygUEo/Ho3v37hEACg4OZu45OTmRu7s783fdunVp5syZxOVy6d69e0REdOzYMQJAHz9+LDaPjIwMqlGjBjk5ORUrt0AgICMjI7K3t2fqccGztWrVotatWzNhjo6OVKtWLcrIyGDC+Hw+2dnZkYmJCZNHwbsfNmyYSF4pKSmkrKxMvXr1EgkPCAggAOTi4sKEde3alRo1alRs2QqQk5MT0VVxFMgUHh5e5P2C9xEZGUkA6NKlS8y9tWvXFvvs8OHDCUCJ149l+xk+n0/GxsZka2tbYjmK4o8//hD5Ln7k+fPnNGXKFLpw4QL5+/vT/v37qV69eiQnJ0c3b94sV35FfTdlrRvjx48XSXPNmjUEgOLj45mw31G3LOKDHcGqAjg6OkJBQQEaGhro1KkTtLW1cenSJcjLf18iFxYWhg8fPmDw4MEAIPLLqUuXLoiPj2d+fd+4cQNubm6oV69esfldvXoVdnZ2aNSokUhaHTt2LHLqwcPDA/r6+szfcnJy6N+/P8LCwkRGIUqLjo4OunXrhkOHDkEoFAIAUlJScOnSJQwbNowp99WrV6GlpYVu3bqJyNmoUSMYGBiIbYrk6tWr4HA4GDJkiEg+BgYGcHBw+GU+vr6+AMC8mwIGDRpUYbm6d+8u8nfDhg2Rm5uLpKSkEp/V1taGu7t7ofDPnz9j0KBBMDAwgJycHBQUFODi4gIAeP/+PRPPw8MDAQEByMnJQWRkJMLCwjBgwAA0atQIPj4+AL6PapmZmcHKyqpYOR4+fIj09HSMHz++2LVPISEhiIuLw9ChQ0WmRtTV1dGnTx8EBQUhOzsbWVlZePToEfr27Qt1dXUmnpycHIYOHYqYmJhCo1A/T18GBgYiNze30Ptq3bo1zM3NRcJatGiB4OBgjB8/Hv/99x/S09OLlJ/P5+POnTvF6uBXJCUlwcvLC6amppCXl4eCggIjx4/v41csXrwYT548KfHatWtXsWncvHkTsbGxGDVqVLnK8SsaN26MjRs3omfPnmjbti1GjBiBhw8fwtDQELNmzRJLHuWpG0V9XwAQGRnJhLG6ZakI7CL3KsDhw4dRr149ZGRk4NSpU9i1axcGDhzIrAspmKKaMWMGZsyYUWQaBWs2vnz5AhMTk1/ml5iYiLCwMCgoKPwyrQIMDAwKxSkI+/btW4n5FcXIkSNx7tw5+Pj4oGPHjjhx4gTy8vKYdVIFcqampkJRUbFUcpaXxMREEJGIEfkjderUKfbZb9++QV5eHjo6OiLhRemsrPycppKSEgD8cmq0AENDw0JhmZmZaNu2LZSVlbF8+XJYW1tDVVUV0dHR6N27t0i67dq1w5IlS/DgwQNERkZCV1cXjRs3Rrt27XD79m0sW7YMd+7cKXF6sGCt3K/qyLdv34qV2cjICEKhECkpKSAiEFGx8X5Mqzg9FNz/VZ0uYO7cuVBTU8PRo0exc+dOyMnJwdnZGatXr2bWSVYEoVCIDh06IC4uDgsWLIC9vT3U1NQgFArh6OhYqvcMAGZmZqX6Bn+1uH/fvn1QUFDAsGHDSi1/RdDS0kLXrl2xc+dO5OTkQEVFpULpFdSPstSN0nxfrG5ZKgJrYFUB6tWrxzTYbm5uEAgE2Lt3L86ePYu+fftCV1cXwPcG/8cF4D9iY2MDANDT0ytxVElXVxcqKirYv39/sfd/JCEhoVCcgrCfG6nS0rFjRxgZGeHAgQPo2LEjDhw4gJYtW6J+/foicujo6ODmzZtFpqGhoVGuvH9GV1cXHA4H9+/fZxrZHykqrAAdHR3w+Xx8+/ZNRBdF6UySFNXg3717F3FxcfDz82NGrQAU6VupZcuWUFdXx+3btxEREQEPDw9wOBx4eHhg3bp1ePLkCaKioko0sPT09ADgl3WyQG/x8fGF7sXFxYHL5UJbWxtEBC6XW2w8oHDd/VkPBXkVV6d/3PwgLy+PadOmYdq0aUhNTcXt27cxb948dOzYEdHR0RXelfnmzRsEBwfj4MGDGD58OBMeFhZWpnRGjhyJQ4cOlRjPxcWlyNHYpKQkXL16Fd27d0etWrXKlHdFoP9f6ymOXZ3a2tplrhulgdUtS0VgDawqyJo1a3Du3DksXLgQvXv3ho2NDaysrBAcHMwsJi+Ozp0748iRIwgJCWGMrp/p2rUrVq5cCR0dHVhYWJQoz507d5CYmMiM8AgEApw6dQqWlpbMr7uyjK4A/xu637hxI+7fv4+nT58WGmbv2rUrTp48CYFAgJYtW5Yq3fLQtWtXrFq1CrGxsejXr1+ZnnVzc8OaNWtw7NgxTJ48mQk/fvy4uMWsMAWN7c8GY1HTGwoKCnB2doaPjw+io6OxatUqAEDbtm0hLy+P+fPnMwbXr2jdujU0NTWxc+dODBgwoMgG38bGBsbGxjh+/DhmzJjBxMnKysK5c+eYnYXAd8Pv/Pnz+Pfff5lf5kKhEEePHoWJiYnIxpCicHR0hLKyMo4dOyYyffjw4UNERkYW69BRS0sLffv2RWxsLLy9vRERESHyY6A8lOV9/Or7Wrx4MSZOnFhifsX9IDl8+DB4PF6lTGEVR0pKCq5evYpGjRpBWVm5wumpqalVuG4UBatblorAGlhVEG1tbcydOxezZs3C8ePHMWTIEOzatQudO3dGx44d4enpCWNjYyQnJ+P9+/d4/vw5zpw5AwBYunQpbty4AWdnZ8ybNw/29vZITU3FzZs3MW3aNNja2sLb2xvnzp2Ds7Mzpk6dioYNG0IoFCIqKgq3bt3C9OnTRQwaXV1duLu7Y8GCBVBTU8P27dvx4cMHEVcNBU7tdu/eDQ0NDSgrK8PCwuKXI1wjR47E6tWrMWjQIKioqKB///4i9wcMGIBjx46hS5cumDJlClq0aAEFBQXExMTA19cXPXr0KJXTvpJo06YN/vrrL4wYMQJPnz6Fs7Mz1NTUEB8fjwcPHsDe3h7jxo0r8tkOHTrA2dkZs2bNQlZWFpo1a4aAgAAcOXKkwnKJm9atW0NbWxteXl5YtGgRFBQUcOzYMQQHBxcZ38PDA9OnTwcAZqRKRUUFrVu3xq1bt9CwYcMSf5Wrq6tj3bp1GD16NNq1a4cxY8ZAX18fYWFhCA4OxtatW8HlcrFmzRoMHjwYXbt2xdixY5GXl4e1a9ciNTWVMe4A4J9//kH79u3h5uaGGTNmQFFREdu3b8ebN29w4sSJEn+xa2trY8aMGVi+fDlGjx6NP//8E9HR0Vi8eHGhKcJu3boxPur09PQQGRmJjRs3wtzcXGTdmby8PFxcXMq8DsvW1haWlpaYM2cOiAg1a9bElStXmDVuP2Jvbw8A2LRpE4YPHw4FBQXY2NhAQ0MDtWvXrtBJCfv27YOpqSk6duxY5P3IyEhYWlpi+PDh2LdvHxP+7t07vHv3DsD30b/s7GxmZ3H9+vUZA3TQoEEwMzNDs2bNoKuri9DQUKxbtw6JiYmFPLEfPHgQI0aMwIEDB0SWC5SGitaNoqhOumWRAtJbX89S3C43IqKcnBwyMzMjKysr4vP5REQUHBxM/fr1o1q1apGCggIZGBiQu7s77dy5U+TZ6OhoGjlyJBkYGJCCggIZGRlRv379KDExkYmTmZlJ8+fPJxsbG1JUVCRNTU2yt7enqVOniuwYBEATJkyg7du3k6WlJSkoKJCtrS0dO3askMwbN24kCwsLkpOTE9nh8/POux9p3bo1AaDBgwcXeZ/H49G///5LDg4OpKysTOrq6mRra0tjx46l0NDQcum3OHn2799PLVu2JDU1NVJRUSFLS0saNmwYPX369JfPpqam0siRI0lLS4tUVVWpffv29OHDhwrvIvzy5UuR5SluF1oBLi4u1KBBgyLvPXz4kFq1akWqqqqkp6dHo0ePpufPnxeSgeh7fQNAVlZWIuEFOySnTZv2Szl+5Pr16+Ti4kJqamqkqqpK9evXp9WrV4vEuXjxIrVs2ZKUlZVJTU2NPDw8KCAgoFBa9+/fJ3d3d+Y9OTo60pUrV0Ti/OrbEgqF9M8//5CpqSkpKipSw4YN6cqVK+Ti4iKyG2zdunXUunVr0tXVJUVFRTIzM6NRo0ZRRESESHooYRfZzzL9+P7evXtH7du3Jw0NDdLW1qY///yToqKiiqw7c+fOJSMjI+JyucXu2C0rBbsnFy5cWGycgjo6fPhwkfCCelrU9aPs//zzDzVq1Ig0NTVJTk6O9PT0qFevXvT48eNCeW3ZsoUAlLgDrqjvhqhidcPX11dseiWqerplkTwcop+cHrGw/ACHw8GECROwdetWaYvCwsJSzenXrx/Cw8NFnNyysMgq7BQhCwsLC4vUISL4+fnh6NGj0haFhUUssAYWCwsLC4vU4XA4pfLxxsIiK7AGFssvYWeQWVhYWFhYyg7ryZ2FhYWFhYWFRcywBhYLCwsLCwsLi5hhDSwWFhYWFhYWFjHDGlgsLCwsLCwsLGKGNbBYWFhYWFhYWMQMa2BVAH9/f3Tr1g1GRkbgcDi4ePGiyH0iwuLFi2FkZAQVFRW4urri7du3InFCQkLQpk0bmJiYYOnSpUz4gAED0LlzZ5G4N27cAIfDwYIFC0TCly1bxpwYz/Kd7du3w8LCAsrKymjatCnu37/P3EtISEDnzp1hZGSE8ePHQygUSlHSqkll1m3g+xEkHA6n0PXjsTi/A//88w+aN28ODQ0N1KpVCz179kRISIhIHFbXFWfHjh1o2LAhatSogRo1aqBVq1a4ceMGc5/VMUtlwBpYFSArKwsODg7Fejlfs2YN1q9fj61bt+LJkycwMDBA+/btkZGRwcSZMGEChg4dikuXLuHKlSsICAgA8P0Q4QcPHoDP5zNx/fz8YGpqCl9fX5F8/Pz84ObmVgkllE1OnToFb29v/P3333jx4gXatm2Lzp07IyoqCgAwf/58NG/eHDdu3EBERAROnDghZYmrHpVZtwtYunQp4uPjRa5JkyZVarmqGvfu3cOECRMQFBQEHx8f8Pl8dOjQAVlZWUwcVtcVx8TEBKtWrcLTp0/x9OlTuLu7o0ePHowRxeqYpVKQ3ik91QsAdOHCBeZvoVBIBgYGtGrVKiYsNzeXNDU1Rc4ObNq0KQUFBVF+fj51796drl27RkREISEhBIACAwOZuC1atKBt27aRoqIiZWVlERFRXl4eqaio0J49eyq5hLJDixYtyMvLSyTM1taW5syZQ0REffr0oZMnT5JAIKDx48fTtm3bpCGmzCDuuk1EZG5uThs2bJCE+DJFUlISAaB79+4REavrykRbW5v27t3L6pil0mBHsCqJ8PBwJCQkoEOHDkyYkpISXFxc8PDhQyZs6dKlaN++PVRVVcHlcplT162trWFkZMSMVmVkZOD58+f4888/YWlpyfx6CgoKQk5ODjuC9f/k5+fj2bNnInoHgA4dOjB6nzNnDiZPngwlJSW8ePECw4YNk4aoMktF6zZL8aSlpQEAatasCYDVdWUgEAhw8uRJZGVloVWrVqyOWSoN1sCqJBISEgAA+vr6IuH6+vrMPQDo0qULvnz5gri4OFy4cAFycnLMPVdXV/j5+QEA7t+/D2tra+jp6cHFxYUJL5g2tLS0rNwCyQhfv36FQCD4pd6bNWuG2NhYREdH4+HDh1BXV5eGqDKLOOo2AMyePRvq6uoiV0G9/h0hIkybNg1OTk6ws7MDwOpanLx+/Rrq6upQUlKCl5cXLly4gPr167M6Zqk02KNyKhkOhyPyNxEVClNSUoKenl6hZ93c3ODt7Q0ejwc/Pz+4uroCAFxcXLBlyxYA3w0sd3f3yhFehilJ7/Ly8jAwMJC0WNWKitRtAJg5cyY8PT1FwoyNjcUqoywxceJEvHr1Cg8ePCh0j9V1xbGxscHLly+RmpqKc+fOYfjw4bh37x5zn9Uxi7hhDaxKoqDzTkhIgKGhIROelJRU6JdScbi5uSErKwtPnjyBr68vZs6cCeC7gTVs2DAkJycjMDAQw4cPF38BZBRdXV3IycmJ/PIEyqZ3ll8jjroNfH9XdevWFbt8ssikSZNw+fJl+Pv7w8TEhAlndS0+FBUVGR00a9YMT548waZNmzB79mwArI5ZxA87RVhJWFhYwMDAAD4+PkxYfn4+7t27h9atW5cqDUtLS5iamuLy5ct4+fIlXFxcAACGhoaoXbs21q1bh9zcXHb91Q8oKiqiadOmInoHAB8fn1LrneXXiKNus3yHiDBx4kScP38ed+/ehYWFhch9VteVBxEhLy+P1TFLpcGOYFWAzMxMhIWFMX+Hh4fj5cuXqFmzJszMzODt7Y2VK1fCysoKVlZWWLlyJVRVVTFo0KBS5+Hm5obt27ejbt26Ir+mCqYJ69SpAzMzM7GWS9aZNm0ahg4dimbNmqFVq1bYvXs3oqKi4OXlJW3RZAZJ1O2MjIxCI42qqqqoUaOG2MpR1ZkwYQKOHz+OS5cuQUNDg9GHpqYmVFRUwOFwWF2LgXnz5qFz584wNTVFRkYGTp48CT8/P9y8eZPVMUvlIb0NjLKPr68vASh0DR8+nIi+b7FetGgRGRgYkJKSEjk7O9Pr16/LlMeBAwcIQCG3A0eOHCEANGrUKHEVp1qxbds2Mjc3J0VFRWrSpAmz7Z2ldFR23TY3Ny8y/bFjx1ZSiaomRekAAB04cICJw+q64owcOZJpD/T09MjDw4Nu3brF3Gd1zFIZcIiIKt2KY2FhYWFhYWH5jWDXYLGwsLCwsLCwiBnWwGJhYWFhYWFhETOsgcXCwsLCwsLCImZYA4uFhYWFhYWFRcywBhYLCwsLCwsLi5hhDSwWFhYWFhYWFjHDGlgsLCwsLCwsLGKm2nlyz83NRX5+vrTFYGFhYWFhYSkDioqKUFZWlrYYYqNaGVi5ubmwsLAodFwBCwsLCwsLS9XGwMAA4eHh1cbIqlYGVn5+PhISEhAdHS0z5z8REdLS0qCpqQkOhyNtcaotrJ4lB6vr0pOUlITXr18jNjYWkyZNgpycHA4fPoyWLVvi5MmT+PLlCwICAvD06VM0bdoULVq0QK9evaCsrAxPT08QEXJycpCZmQljY2OkpaUhPT0dSkpKEAqFyMvLQ25uLgwMDHDjxg1oaWlh7969uHjxIt6+fcvI8enTJ+jq6pYob1ZWFt69ewdLS0vUrFmzMlXD4OHhAX19fRw/fhyfP3/G5MmTsW7dOtjY2GD//v149uwZtm7dWqiuFejWw8MDGRkZGDZsGJYuXQp7e/ti80pOTsbFixcxdepUtG3bFvfv3weHw0GLFi3w9etXfPv2DcOHD2cO5ebxeKhZsyZ0dHRgYGCAunXrQkFBgUmPiHDixAmcP3+eOUxaT08PX758AQA4OjqiQ4cOsLS0ZC5VVVVxq1AmSE9Ph6mpKfLz86uNgVWtjspJT0+HpqYm0tLSWAOLRQRWz5KD1XXpuHLlCoYOHYq0tDQmbO3atUhNTcW///4LHo8HoVBY6DkVFRWoqanB3NwcmzZtQsuWLeHk5AQej4fnz5/j5s2b6NixI4Dvo/qJiYmoVasWVFRURNKJiorC2rVrkZ6eju3bt0NNTa1yC1xKkpOT8e+//2L06NGoU6cOnj9/DiMjIxgYGJQ7zU+fPmHSpEnYvHkz6tati5UrV+Lhw4e4evUqgO+6MDMzAwDExsaibt26yM3NBQBwuVzY2NggJCQEf/zxB65cucKkKy8vDz6fz/ytrKyMhg0bokmTJtDW1sbjx49x584deHh4IDk5GT179kTz5s2Rnp6Oz58/w8/PD48ePWLqgKKiIjZt2vRbHkwvi/13SbAGlpRhOyPJwOpZcrC6/g4RwdfXF/7+/mjVqhWys7PRoEEDpKSkwNHREQCgrq6OJUuWgMPhQFlZGTt37sSbN2+gq6uL7OxszJo1C46OjjA1NYWpqSkGDRqEy5cvw8DAAK9fv4a8vDyUlJSgqqoKb29vbNy4ES1btsT+/ftRv359KWugfGRkZMDJyQnz5s1D//79KyWPy5cv4+PHj5gxYwb4fD4MDQ1x/vx5tG3bFgDw7t07HDp0CGlpadDV1WVGCR8+fIguXbpg0KBBqFOnDhQVFbFt2zYEBwdj9OjReP78OZ4/f45nz54hMzMT1tbWGDlyJAYMGAAAcHV1xb179xg55OXlYWxsDFVVVSQkJCAlJQXdunXD5cuXK6XcVRlZ7L9LRNKnS1cmaWlpBIDS0tKkLUqpEQqFlJKSQkKhUNqiVGtYPUsOVtdE06ZNIwBFXm3bti32HofDITk5OQJAly9fFkkzMjKSiXfo0CESCoUUHh5OHTp0KDKtrKwsKZW+4kiy7uTm5tLUqVPpy5cvxcqSkJBAz58/pyVLljDh1tbWNGfOnDLlde7cOVJRUSn2/QOgY8eOEY/Ho/fv31NAQABlZ2dXqHyygiz23yVRrdZgsbCwsEiTf//9F4cOHcKbN2+YsLi4OCQkJMDIyAiXL1/GX3/9BUVFReTn50NBQQGKioowMjJCaGgoiAg1atTAtWvX0KpVK5G0k5KSAADu7u4YMmQIXr16hT59+iA8PBwA0LlzZ4wbNw6JiYnQ0NCQubU8X758waBBg7BhwwbY2dlJLN+EhARoamoya8ry8/MREBCAevXqwcDAAPv27cOhQ4dw5coVLFy4EMD30cnVq1ejTp06Zcqrd+/eyM7ORmBgIGbMmMGMXH758gWvXr0CAAwePBhjxoxBdnY2AKB79+64ePEi0tPTIRQKQUTMvwXTxb/zSHFVhjWwWFhYWH5BaGgoJk6cCD8/P+jr6+PEiRNo06ZNoXgfP37EzJkz4ebmhjFjxiA+Ph7Dhg2DoaEhDA0NAQDBwcEAvnfiu3btwoABAzB9+nQcPnyYSSclJQU3b94sZGA1adIEjx49QvPmzcHhcHD9+nUAQM2aNbF//3507dq12I527dq1SEpKwtq1awEAY8eOxfTp02FtbV1xBYkJHo+H3NzcUi22FycxMTHYvn07unXrhiZNmiA/Px/u7u44cuQIhgwZAgcHB4wdO1bEYOVwOOjZs2e582zVqhUCAgJEwpKTk+Hh4QFlZWX06dMH9vb26NSpE6KiomBtbY2wsLAi09LQ0ICVlRWsrKxgbW0NKysr6OnpAQDevn2Lu3fvQl9fn7lvbW2NunXrFlqTxyJ+2DVYUobY9SoSgdWz5Kguuv7y5Qs2btyITZs2QV9fHzweD9HR0Th69CgGDx4sEjcjIwPr1q3DkiVLcPv2bbRp0wZbt27Frl27wOPxYGpqivj4eHz69IkZvbp27Rq6dOkC4Pti9ODgYGRkZAAAXFxcRHajFQWfz0dsbCzMzMxK1PPGjRuRmpqKxYsXg4hgZWWFDRs2oFu3bhXQkPghIonUmbi4OPz999/Yv38/OBwObt26hYEDB+L+/fuoX78+QkNDYW5uDkVFRanU5/v37+Pvv//G/fv3AQAtWrTA1KlToaCgAA6Hw1w5OTmIjo5GaGgoQkND8fHjR8THxzPpcDgceHh4IC0tDR8/fmQW03M4HNjb28PV1RUuLi5wdnaWuGH7M7LYf5eIdGYmKwdZnMNl16tIBlbPkkMWdR0XF0d3796lb9++ERHRnj17SF1dnTQ0NMjBwYHMzc0JAM2cOZMEAkGh54cMGcKsoTE1NaW6deuSgoICDR06lNq1a0fKysrMfX19fXJ3d6fw8PAKySwUCunq1au0bds2IiJKT0+niRMnkq2tLfXo0YOIiLKzs+mvv/6i7du3izybm5vLvJ8lS5bQvXv3KiRLRREIBHTs2DF69eqVRPILCgoiIyMj2rJlCxF97ztWrFhBfD6/UFxJ1+crV66IrMkaNmwY5eTklPr5zMxMio6OpqioKMrIyGDChUIhJSUl0YMHD2jPnj00YsQIsrCwYPKxs7OjCRMm0JkzZ5jvQJLIYv9dEqyBJWVksTOSRVg9Sw5Z0nVqaipt3ryZ6WQMDQ3p/v37zN9JSUnUt29fAkBnzpwhou/GQGxsrEj5/P39ac6cOdS3b1+Sk5MjFxcXevv2LT18+JAAUO/evenly5diXbAsFArJxcWFmjZtSkTf2z87OzuqV68etW3bloiInj59Sp07d6b3798XmUZ2dja1bt2a9uzZIza5SkvB4nEioqSkJNLQ0KhUQ+/Jkye0YsUK4vF4lJ+fTw4ODuTh4UH5+fklyinJ+hwREUHTp0+nM2fOUFRUVKXnFxUVRUeOHKFRo0ZR3bp1CQBxuVxydHSkxYsXU2BgYJGGp7iRxf67JFgDS8rIUmcky7B6lhxVXddfvnyhqVOn0l9//UW2traMMdWpUydycHAQGW26evUqvX79mrS1tWnWrFm0YMEC0tbWJgBkZWVF9+/fLzIPoVBI/v7+ZGVlRba2tkWOelUUoVBIX79+JaFQSE+fPiUej8fcK/j/qFGjqFGjRiWmUyDfsmXL6M6dO2WSIyMjg1auXEn+/v5lem7v3r0EgNLT04mIKDQ0tFLrzLFjx6hu3bp05coV0tHRob1795bqvVT1+ixuoqKiaO/evdS3b1/S0tIiAFSzZk3q378/HThwgGJjYyslX1nsv0uCNbCkzO/28UoLVs+Soyrr+siRIwSAVFVVSVVVlZn2y8rKIqFQSFlZWVSjRg1SUlIiV1dXysnJoezsbDI1NWWMLmdnZzp58iS1adOGtLS0KCkpid69e0d79uyhtWvX0sKFC8nOzo4AUMOGDenjx4+VUpYCPcfGxhKXy6Vjx44VivPx40fy8/MjIqL4+HhycHCgiIiIYtPr1asXzZs3j4iIjh8/Tv/88w9z39/fn5mq+vjxI23YsIExzlxcXGjTpk1ERBQYGEhOTk7MNFNERIRIm5yamkpERMnJyXT+/PkyTX+Jg4SEBHr//j09f/68VPGrcn2ubHg8HgUEBNDChQupRYsWxOFwmHo9a9asYkdGy4Ms9t8lwRpYUuZ3/nglCatnyVGVdf33338X8jtkZGREHTp0IDc3N2aKBAD5+voSn88XiduoUSMKCAigI0eOkKurK7OmqmBaRVNTk/T19alXr15069atX46QFExNCQQCiouLK7O+Hj58yExV3rp1i/Ly8n4Z/9OnT9SuXTumfdyxYwcdP3682PgrVqygQYMGMX9ramrSzp07iYjo0qVLpKqqWqTvqMePH1Pfvn2ZUbRu3bqRm5sbERE9e/aMlJSUyNfXt0xlFQc8Ho9mz55drIFZHFW5PkuaL1++0IkTJ2j48OGkp6dHAKhz585069atCutHFvvvkmB3EUoZqiY7rqo6rJ4lR1XWtVAohJ+fH969ewdzc3NwuVycPn0aiYmJSE5ORkhICDIyMjB+/Hhs2bIFUVFRqF27NkxMTLB27Vrs3r0bvr6+AMAcnwIAf/zxB5ydnaGhoQE5OTkQERITExEbG4uGDRti9OjRUFJSYuRYvXo1Pn/+jF27duHz58+wtLTEf//9hw4dOuD48eO4dOkSTp06BQC4e/cuTExMRFwqvH//HnZ2dti1axfc3NxgaWlZZl0MHjwYJiYmWL16NZKSkrB06VLMnTuXOdNQRUUFioqKTPxXr15BSUkJNjY2EAgE4HA44HK5Jebz8eNH5Ofnw87OjnFPMXbsWJG0JcGjR4+wcOFC/PXXX+jTp0+pn6vK9Vma5OXl4dSpU9iwYQNevnwJe3t7eHt7Y9CgQeU6S1AW++8SkaJxJ3Zk0QJmfx1JBlbPkqMq6zovL4+OHj1K7u7upK+vz3hNx/+PQAGgpk2bUmBgIPn7+9PKlStJSUmJrKysSFFRkerVq0dr166lsWPHkoGBwS89cv94HTx4UESObdu20fLly4no++6/CxcuUHJyMhERnT17lsaMGcPEtbS0pGnTphHRd2/u3bt3p5CQEPL19aWBAweSh4dHufVR8I6ePXtG9evXp7CwMCIimjp1Ktna2jLx4uLiyp1HVaI8a+Gqcn2uCgiFQvL19aVu3boRh8MhU1NT2rdvH/n7+9OlS5fo1atXpdKdLPbfJcGOYEkZYn8dSQRWz5JDmrr+9u0btm7dirdv3yI9PR21atWCjo4ONDQ0YGlpifnz5yMmJgZubm7Q19fHf//9h5SUFACAnJwcBAKBSHoKCgro378/VFVVIRAI4OTkhBEjRkBHRwd//PEH9PX1kZeXh2fPnuHt27fgcrkwMjJCvXr1YGdnhzp16kBTUxOdOnUq0a9VcWRkZCA/Px86Ojp4//49pk6dir1798LY2BhPnjyBvr4+zM3NK6y7H3n9+jViY2PRqVMnfP36FSYmJti3b18h/1+yRlpaGubMmYPly5dDR0enVM+wbUfp+fjxI/766y+R8xYBwNzcHP3798eAAQPQqFGjIvUoi/13SbAGlpRhP17JwOpZckhD176+vli/fj2CgoKQmpoKbW1t5OfnM44VAcDBwYHxpK6goAAejwctLS30798furq6yM/Ph5ubG6ysrPDo0SOEhobi8ePHiI2NxadPn5CVlcWktXz5csycOfOX01yxsbHQ09MrMs7JkyfRuXNnaGpqlrvMktIzj8fD6dOn0aVLF2hoaGD//v0YOHAgNDQ0Ki3PyiIqKgru7u44dOgQ2rRpg7Nnz8LQ0LBIz/wFsG1H2cnKykJYWBhUVVURFRWFs2fP4syZM/j27Rusra0xYMAADBgwAPXq1cPSpUsRGBiIpUuXokWLFjLVf5cEa2BJGfbjlQysniWHpHSdk5ODcePGITAwEB8/fiwyjo2NDfr27YsuXbpATk4O165dg4KCAmrWrAlzc3O0b99eZG3Uhw8fUK9ePeZvR0dHNGnSBLVr14aamhomTJgAbW1tpKSkoEuXLrh27ZpIfnl5eVBUVASHw4GzszO0tbVx6dIlCIVC+Pj4oE2bNsjLy0PdunWxYsUKjB8/vtzll0adTktLg5aWFrNeTBbh8/mQl/9+SpyjoyNatmyJTZs2IT4+HmvXrsXKlStF1hCxbYd44PF4uHv3Lk6ePInz588jPT0dJiYmiImJEYknS/13iUh2RrJykcU5XHZ+XzKwepYcktB1VlYWNWnSpNBap5o1a9Lff/9NDx48oBcvXoj4hiqOuLg48vT0JE1NzULpOTk5MfH4fD7Z2Ngw9y5cuCCSzps3b0hTU5OePXtGREQhISEUFBRERESvX78mAHT37l0i+r6WqqJIq05//vyZiIieP39Of/31FyUmJko0f3EiFAopNzeXiIhevnxJtWrVYsr3Yxy27RAvubm5dPHiRZo7dy4NHz6cvL29ady4cTLXf5cEa2BJGfbjlQysniWHJHQ9b948xtDp2bMnhYeHl8vVwa5du0hdXZ10dXVp8eLFtGbNGnJ2diYApKysTBs3bhSJHxUVxeSbmZlJRN+NPaLvbheWLVtG0dHRhfIRCoUUEhIiVp9P0q7Tt27dogYNGshUe1sSBe80NzeX5s2bxzhyZduOykcW+++SYKcIpQyxw88SgdWz5JCErvfu3YtTp07h77//hqura7nT0dXVxbdv37Bz5068fv0a27ZtAwAEBgbC0dGxyGcyMzPx5csXWFhY4OvXr2jSpAnWrl2L/v37l1uO8iDtOl3QdVTH7+nJkyfo0qUL/P39YWtry7YdEkAW+++SKNmJCQsLC0sVY/To0fDx8amQcfUjXl5ejHEFAEZGRowB8zPq6uowMzNDfn4+tLS0MGbMGDg7O4tFDlkhJiYGPXv2xOvXr6UtSqXQvHlzREVFwczMDNevXy+0u5SFpTSwBhYLC8tvyX///Qdtbe0i7xU4IdXS0sKRI0dE7vH5fOjo6ODo0aOQl5fHggULYGhoKAmRqwzKysrIyclBZGQkMjMzpS1OpaCiogJ/f3/06tULiYmJ0haHRQZhDSwWFpbfiry8PIwZMwadOnWCsbExLly4gPT0dAQHB2PKlCmF4rdu3Vrk75cvX2LGjBlo1aqVpESucujq6uLWrVtYunQpunXrBj6fL22RxEZGRgbOnj0LAOjUqRMCAwNhZGQkZalYZBF5aQvAwsLCIilyc3NRr149REREAACMjY1x/vx5XLlyBfLy8uByuZgyZQrS0tJw8OBBzJs3T+QYGqFQCE9PTzRu3FjEncPvCJ/Px969e1G/fn3G7UF14Pjx45g2bRqcnZ1Rq1YtNGnSpMipYhaWkqg+XwULCwtLEQiFQgQEBODr16+4evUqY1wB3zvT4oiIiCjkIZ3L5eLmzZsSP0evKnL37l0cPnwY27Ztq5DD1KpAbm4uHj58CHd3d4wZMwZdunRBrVq1xJb+2bNn8eeff4LD4cDQ0BCOjo7Q09ODsbExateuzVxGRkaQk5MTW74s0oU1sFhYWKotnz59wsCBA/HkyRMAgJWVFWxtbWFgYIAmTZrA1NQUKioqkJOTE7kMDQ2LPX7G2NgY27ZtQ8OGDdG2bdvfdmeZjY0NkpKSkJ2dLfMG1ubNm7F8+XJERkZCW1sbpqamYk2/YJ0aESEuLg7nz58vMp6Kigqys7PFmjeL9GDdNEgZaW+1/l1g9Sw5pK1roVCIdevW4fTp0wgODoaZmRn27NkDCwsLmJubl1smImKe7d27NwwNDbF161ap1Sdp6/lHXr9+DTk5OdSvX1+qcpQXHo+H0NDQIuUXl56JCBkZGYiPj8fNmzfh7e0NAAgLC0NqaiqaNWsGAPD394eTk5PU36mkkcX+uyTYESwWFpZqRUBAAGbNmsX8PXfuXLi5uVUoza9fv6Jr165YvXo1XFxccPbsWXC57B6hAlatWoV3797h2bNnMqUXIsKBAweQnp5e5AYHccLhcFCjRg3UqFEDNjY2UFZWhpeXF5o0aQJPT0/cuXMHs2fPhrOzMxwcHODh4QFnZ2fUr18fSUlJsLOzk/mRwt8N1sBiYWGRecLCwrBnzx58/Pix0PmAO3fuxKhRo8qVrlAoBJfLRc2aNdGgQQPmjDpZMiIkwY4dO5CTkyOTegkJCUFWVpbER4zGjh2L9u3bY9++fdi5cye2bduGgQMHQlNTE0FBQfj69SvWr18v8kzLli3RvHlzyMvLQ11dHfXq1YOdnV2122hQXWCnCKVMVRrmr86wepYcktb1u3fv4ODggJo1a6J+/fro1q0bhg0bhpycHKiqqkJLS6tcC4c/ffqE7t274+TJk7C3t68EyStGVanT+fn5ePnyJWxtbWWm3f2Zgunfx48fo169etDQ0BC5V9l6zszMxIQJE/Dw4UPEx8cjKysL69evR+/evfH+/Xvo6enh1atXuHLlCsLCwiAQCJCSkoL4+HgAgLW1NTZs2ICAgAB8+vQJHTp0QK9evYr181YVkcX+uyRYA0vKVJVGsrrD6llySFLXHz58YNwlJCcni7VDycvLw7hx4zBv3jzUrVtXbOmKi6pSpy9cuIB+/fohMDCQWUcki+Tl5cHS0hK9e/fG5s2bmXBJ6zkvL48ZKfX09ISNjQ0cHBzQrl07KCgoiMT98uWLyG7HWrVqwdzcHE+fPoW8vDw6dOiAfv36oUePHlV+elEW+++SqJZjioMHD8bLly9hbGyMQ4cOwcbGRtoisbCwVAI3btwA8N1lQFHGlVAoRG5uLlRVVUudplAoxN69e2Fvb4/9+/eLTdbqSs+ePfH27VtYW1tLW5QKoaSkBB8fH1hYWEhdjkePHuHIkSPYunUrE759+3aMGzdOJK6enh54PB7evHkDLS0tZhNHfHw8zp49i1OnTmH48OHgcrlo0KABLC0tYWJiwlzGxsbMvyoqKpIuarWnWhpYV69eBfD9vKzU1FTpCsPCwiIWiIiZ9iugYGQpIiICJ06cQEREBNLS0hAeHo7Tp08z8fbs2YPRo0eXmAefz4e8vDwePHiAFy9e/Nbe2kvDnTt38PnzZ4wZM0baooiFgtHQjx8/wtfXF3/99ZdU5GjRogXevHkjErZkyRL4+PjAzs4O9vb2aN26NYyNjSEvL49GjRqJxDU0NMSkSZMwadIkxMTE4ObNm3jy5AmioqLg5+dXZN+oqakJZWVlKCoqQlFREZqamjA0NISFhQVsbGxga2uLli1bikyfVpT8/Hy8evUKT548wcOHD8WWblWhWk4RrlixAj169EC9evWq/KLLqjLMX91h9Sw5KkPXGRkZ6NixIwIDAzFu3DgsW7YM7969w/Pnz5nt7sXB5XLx/PlzODg4iIS/ffsWp0+fxoIFCyAvL4+hQ4eCz+fjxIkTEAqFCAkJqdLe2qtCnZ4/fz7ev3+Pc+fOSSX/yuKff/7BkSNH8OLFCygqKkpFzzweD/v374empiZycnLw+vVr5io4G9HJyQn9+/fHyJEjyzRKC3xf9xUbG4uYmBjExMQgMTER+fn5zJWSkoK4uDh8/vwZYWFhyM/Ph4KCApycnNC5c2c0bNgQtWvXhrGxMdTU1IrVjVAoxNevXxEXF4f4+HjExMTgxYsXePr0KYKDg5Gfnw95eXnUr18fr169qlZThNXSwOrTpw/U1dXxzz//VPlDWKtCI/k7wOpZcohb19nZ2VBTU2P+dnd3R0BAAPLy8gAAGhoaMDY2Rv369WFhYcEsWO7SpQtatWpV7NTH1atX4eXlxUyvnD9/HlwuFz179qywzJKgKtTp3Nxc5OXlQVNTE1evXoWysjLatWsnFVnETXp6OmrUqAGhUMj0LVWl7UhMTMTNmzdx+vRp3Lp1C0ZGRti0aRN69OhRKTLy+Xx8+vQJPj4+uHHjBu7evYvc3FzmvpycHLS0tKClpQVNTU0QEfh8PlJSUpCQkCByViWHw4GtrS2aN2+O5s2bo1mzZnBwcACPx6t2a7CqpYHVsmVLfPjwAZ06dcLJkyelLdYvqQqN5O8Aq2fJIW5dp6enw83NDS9evEBRzdWxY8cwaNCgMqW5a9cuxMbGYunSpRWWT1pUtTrdvXt3qKur//L4IVkjNjYWXbt2xcqVK9GpU6cqoeefCQsLw+TJk3Hjxg307NkTR48eFflBUhnw+XzExsYiIiICcXFxSE1NZa60tDRwOBwoKChAS0sLhoaGMDQ0hJGREQwNDaGvr1/kUVPsIncZ4a+//sKoUaOQnZ2N+/fvIz8/H66uruwZTywsMkiNGjWwf/9+Zp0Jh8OBgYEBXFxckJCQUK5pvIyMDHZ9ZhFs2LAB//zzD9q1awd5eXlcuHABffv2hbe3Nxo2bIhXr17h3bt3+PLlC/h8PqKjo8HhcNCqVSsMHToUKSkpWLlyJbS0tGBgYIAtW7YgOjoawcHBld7pVwZGRkZwdXWFrq6utEUplrp16+LatWs4f/48hg0bhrFjx+Lo0aOVmqe8vDzMzc2LPU6K5TvVcgSrKP79919Mnz5dwhKVTFX7FVpdYfUsOSqqa39/f9y4cQOOjo7o2rUr5OTkkJOTg4ULF2LTpk2oX78+goKCmK3svyvirtM3b95E586d4ebmhidPnkBHRwe9evXCyZMnkZCQAC0tLcYoVVZWhoKCAvT09EBECA8PZ9JRV1dHXl4eeDweE/by5Uvo6+vDwMCgwnJKmlevXjHHAFXltiM/Px8NGjSAtbV1IWe7skBycjJ0dHSq1QgWqBqRlpZGAOjGjRt0+PBh8vHxoRkzZhAAAkBqampkZmZGTk5OtHDhQvr48SNlZGRIVWahUEgpKSkkFAqlKkd1h9Wz5KiIrmNjY5nvFQC9fPmSPnz4QNbW1qSoqEgLFy6knJycCsmXnJxM/v7+lJubW6F0pI246nROTg4NHjyYAJChoSEJBAISCATM/dzcXPLx8aH58+fT6dOnKT09vVAaCQkJlJCQQFeuXCE1NTV6//49RUVF0fPnz0lXV5d5nzY2NjRlyhS6efNmldd/dHQ0+fr6UuPGjWnWrFlVvu3Yvn07AaCnT59KW5Qy8fXrVxo+fDhpa2sTAEpLS5O2SGKjzAZWTEwMDR48mGrWrEkqKirk4OAg8kKHDx8u0kACoJYtW4qk8eHDB2rdujUZGxvTkiVLRO6Zm5sTAAoMDBQJnzJlCrm4uPxStgID68cX1LZtWwJAHTt2pH///ZfmzZtH/fv3JyUlJQJAurq6FB8fX1Y1iA2245cMrJ4lR0V0nZaWRn369KGGDRvSihUrKDExkUxNTal+/fr0/v17sch39uxZAkBxcXFiSU9aiKNOjxo1SqStXrx4cYXlCgkJEWmDk5OT6e7du3Tq1CkaM2YMmZiYEACqXbs2BQUFVTi/yqJ169ZUv359CgkJobCwsCrddty7d49q1KhBo0ePlrYoZWbKlCmkpKTEDIaUZGBVZRvkZ8pkYCUnJ5O5uTl5enrSo0ePKDw8nG7fvk1hYWEihevUqRPFx8cz17dv30TS8fDwoB07dtDTp0+pWbNm9ODBA5HCKSsrk7Ozc5kLV5SBVRy7d+8mACQvL0+xsbGlKH3lwHb8koHVs+QQp6779OlDurq6FBMTIxLO4/EoODiYsrOzy5xmfn4+vXr1qsKySZvy6PnLly/Uvn17qlOnDhkZGTEd0O7duykhIaESpf0fQqGQnj9/TvLy8jRz5kyJ5FkehEIhhYeHV+m2QyAQUMeOHQkAtW7dmlJSUqQtUplxcHCgXr16lar/ruo2yM+UaZH76tWrYWpqigMHDjBhtWvXLhRPSUnpl3PtqampaNy4MRo2bAgjIyOkpaWJ3B87dix27NiB69evo0uXLmURsdRcuHABwPcFs1XdlQMLy++IUCjEpUuX4ODggNu3b2Pw4MGIj4/HsWPHMHfuXADA3r17y3SQc0pKClRVVavk2YKVTUREhIiX8oULF8LExATdunWT6NooDoeDGjVqgM/nw93dXWL5lpbk5GSsW7cOy5cvR+3atYvcuVpV4HK54HA44HA4mDJlCrS0tKQtUpkZPnw4pk2bhtatW5cYV9ZskDJ54bx8+TKaNWuGP//8E7Vq1ULjxo2xZ8+eQvH8/PxQq1YtWFtbY8yYMUhKShK5v3TpUrRv3x6qqqrgcrno2LGjyP3atWvDy8sLc+fOhVAoLEexSsbLywvAd2dur169qpQ8WFhYykdSUhIOHToEPp+PZ8+ewdPTE4qKijAzM2OMq7Zt22Lo0KFlSnfUqFHo27dvZYhc5TE2NoatrS3z95IlSzBmzBipLDx/9OgRAFTJY8xCQkIYNx6ywMWLF9GvXz/0798f//77b7Hxdu3ahXbt2kFPTw+urq5ISUn5ZbpbtmyBvb09tLS0YGxsjJ49e2L16tXw9/cX2cBQUby9vTF16lTMnDmzxLgyZ4OUZbhLSUmJlJSUaO7cufT8+XPauXMnKSsr06FDh5g4J0+epKtXr9Lr16/p8uXL5ODgQA0aNCi0oDE3N5eSkpIK5WFubk4bNmygpKQk0tDQoMOHD5d6eK4sU4T3799nhsfbtWtXitJXDlV5+Lk6wepZcpRH10KhkN68eUP//PMPtWrVijgcDnE4HGrWrJnIImn8/1TI48ePyyVbQEAA3bt3r1zPVjXKqmc+n0/r168nADR37txKlu47ly9fpiZNmpCpqSnz/j59+kQ7duwgADRx4kSJyFFWDh8+TOrq6hQVFSUTbYdQKKRZs2YRh8MhX1/fIuM0btxY5Du6fft2semFhYWRvLw8de/enVavXk3z5s0jd3d3UldXJwBkZmZGW7duLdcUfXFs27atxP67qtsgP1MmA0tBQYFatWolEjZp0iRydHQs9pm4uDhSUFCgc+fOlSqPgsIRES1ZsoRq165NeXl5ZTKwUlNTSSgUFnu9fv2auFwucblcUlNTo9OnT/8yfmVeAoGAkpOTSSAQSE2G3+Fi9Sx9XQsEAjp27Bj16NGDtLS0yMzMjDw9PenkyZPUqFEj5nvs1asX7d+/nxISEkgoFFJCQgLt3r2bjh07Rs+fPy+zPLGxsbRy5Uri8/lS140k9FzUdf/+fUbH06ZNo7y8PInI2KNHD6atLbjOnDlD3t7exOVyqW3btlLXY1FXRkYGLV++nBITE2Wm7eDxeOTq6kp16tQpsq6/e/eOBg0axLyHe/fuFYqzbds2Gj58OJmYmJCRkRFlZWUVyiMoKIgGDx5M8vLyZGBgQKtXr2YM0IpcqampJRpYVd0G+ZkyrcEyNDRE/fr1RcLq1av3y3OoDA0NYW5ujtDQ0LJkBQCYNm0atm/fju3bt5fpubS0tGLnzYVCIe7evQsLCwusWbMGbdu2hYKCQqE5WElBRMjMzASAKu1jRdZh9Sw5itO1j48PFi5cCADQ0dEBANy/fx/3798HADRo0AAzZsxA9+7dmWfS0tKgpKSEP//8UySsLDx+/BiXL19Gr169ZNIPU3GUtk77+flhxowZaNCgATZv3gx7e3tkZ2dLRMZBgwZBWVkZoaGhzHubM2cOAMDCwgIHDhyQWtv7K/h8PrhcLuLi4qCgoCAzbcf06dPh7e2N4OBg1KlTR+SeoaEhtm3bhmnTpiE1NRUNGzYspPu9e/ciPT0dAwYMwODBg5lzCX/ExsYGW7duxezZs3Ho0CHs378fe/fuhYGBAbhcLvh8Ptq3b49WrVrBzMwM+vr6pdJbenp6iXFkxQYpoEwGVps2bRASEiIS9vHjx196c/327Ruio6PLtZBcXV0dCxYswOLFi9GtW7dSP6epqck4KuPz+WjTpg0UFBRgYWGBJ0+eICwsDBMnTkTPnj2l/sEUGIKsA8zKhdWz5ChO1x06dMCTJ0+QmZkJHR0dZGRk4Pr16/j06RMTZ926dWVeV1WcDPfv34ezszN69OiBdu3ayaQn8V9R2jodFBSE8PBwODo6ok2bNhKr/7du3cKwYcPA4/EwcOBAuLm5wcTEBLm5uXj//j309PQKGQFVhffv3+PkyZNo1KgRGjZsCD8/P2RlZWHw4MHSFu2XWFtbIzw8HM2bN0dYWFiRC8CbNGlS7PMtW7bE3r17kZycDHV19WIddwPf693atWvh7e2Nq1evIiIiAkSE+Ph4rFu3DllZWQAANTU11K9fHw0aNICrqyvat28PfX19kbQuXbqEdevWlVg+WbFBGMoy3PX48WOSl5enFStWUGhoKB07doxUVVXp6NGjRESUkZFB06dPp4cPH1J4eDj5+vpSq1atyNjYuEjndEXx4/Ac0fct1ZaWlqSsrFyuNVgjR45k5pydnZ1pxIgRIlsypY1QWPXn96sDrJ4lR0m6fvr0Kc2ePZusra2Zb1NLS4vWr19PeXl5YpHh2rVrBIBevHghlvSqIqWt00KhkPbu3UsA6OTJkxKR7cSJE8TlcsnDw4NSU1MlkmdlUDB9tWHDBurbt6+0xSkVAMjBwYF4PF6Zn+Xz+bR27VoyMjIiNTU1OnDgQLnazJycHAoNDaWrV6/SmjVryNPTkxwcHJjvvVGjRjRnzhw6deoUrV27lgBQ06ZNS5wirOo2yM+U2dHolStXyM7OjpSUlMjW1pZ2797N3MvOzqYOHTqQnp4eKSgokJmZGQ0fPpyioqJKnf7PhSMiOn78OAEos4GVkZFBGhoaBKDKdqxsxy8ZWD1LjqJ0zefzKTAwkObOncus3Rg4cCA9fPhQrAtlf5QhICCAevbsSWfPnhV7+lWBstbpPn36kJqaGu3cubPSZEpJSaEFCxaQnJwcDRs2jPh8fqXlJSmEQiElJydTRESEtEUpFTY2NmRjY1OhHxcZGRk0YsQIAkD9+vUTm1PehIQEOnLkCA0ZMoT09PQYg2vw4MGUnJxcqk1qVdkG+ZlqeRbhihUr4Ovri4cPH0IoFGL//v0YOHCgtMUrEmLPyJMIrJ4lx8+6vnbtGsaMGYP4+HhoaWlh5MiRWLVqFRQUFCpVjtzcXIwbNw4DBgwotA27OlDWOv3hwwfUq1cP8vLySE9Ph4qKiljl2b17N2bNmoW8vDx4e3tj+fLlkJOTE2se0iA0NBTTp0/HqlWrCq3/qYq8f/8eAwcORHBwMJo2bYpu3brBxsYG6enp+Pz5M8zMzNClS5cipw9/5tSpU5gwYQJyc3PRvXt3GBoaIicnB9++fUNKSgoaNWoET0/PculFKBQiLS0NKioqUFZWZvpv9izCKkrBCJaCggJ17dqVVq9eXSbLVRqwIyuSgdWz5CjQdXZ2Nk2ePJkA0B9//EEPHjwo17SFOLhx4wb5+PhIJe/KorR1Ojg4mHr37k1cLpdUVVVp48aNYpXj69evNH36dAJAI0aMkPkjiH4mKyuLBg4cyHi6P3ToEN29e1fKUv2a3NxcOnbsGPXr1480NTUJAHG5XDIzMyN5eXnicDjUpUsXunHjhsi5k0WRkpJCixcvJkdHR7K1taVGjRqRh4cH9ejRg/T09IjD4Yhl2U1Z3CzJCtXSwPr48aO0RSk1bMcvGVg9S46cnBw6duwYM4y/efNmqevd09OTxowZI1UZxE1JdVooFNK4ceMIANWpU4d27dol9s5r7969VLNmTVJXV6eZM2dK/T1XBj/r+c8//6RBgwbJTFkLXCAU+IFKT0+nffv2UaNGjQgA2dnZUWRkZLnSzsvLo1q1atGoUaMqLCdrYFVxZPEFsR2/ZGD1LBmio6PJzMyMLC0tqX379vTy5csi4wmFQgoODqbVq1fTlClTaM+ePeVar7N69WqR8+z69OlDFy5cICKi2NhYOnz4MGVkZBCfz6e3b9+Wq0xVlZLq9NKlSwkAbdy4kfLz88Wa94sXL2jatGkEgIYOHSqxcwylwc96LvCHJesIhd/9o9WuXZssLCwoMDCwXJtMNm3aRADoyZMnFZJHFvvvkiiTmwYWFhaWoiAivHjxAmPHjoVQKMTp06fRuHHjItcGnT59Gv379y8UbmdnB0dHx1/mExcXBy8vL2zbtg2mpqbQ0tLCly9fGBkUFBQgL/+9WXvx4gWGDRuGhIQEqKury8T6GXFx/vx5LFy4EEuWLMGUKVPElu7nz5+xYsUKHDhwANra2hg2bBgOHjz426xrjI6OxvLly7F+/XqZd/vB4XDg5OQEPz8/dOzYEa1atYKcnBysrKxQv3591K1bF5aWlmjcuDEaNWoksmYyLCwMT58+xdu3b3H79m0A310isfyEtC08cSKLFjA7siIZWD2Xn5CQEDp79myxI0yfP3+m5s2bEwAyMTGhp0+f/lLXzZo1EzmyAwCtWLGiVO/m69ev1KZNG3r+/HmpZM/Ozq627/znOv3t2ze6ePEiTZ48mVRUVKhfv35iKXtOTg5t3LiR7OzsCADp6OjQtm3bxD4qVlURCoXMqQJv374la2vrajcamp+fT/7+/rRjxw6aNGkSeXh4kIWFBXG5XAJAqqqq5O7uTjNnziQXFxfmuzU0NKR27drR1atXKyyDLPbfJcEaWFKG7fglA6vn0hMXF0eDBw8udAbgtm3bCsUVCoXUoEEDAkD9+/en3NzcInWdk5NDFy5coK5duzLpycnJMf/ftWtXsfLk5+fT8uXLKSUlhcmT5X/uA968eUNz584lNTU1AkCmpqY0e/ZsysrKKnfa+fn59P79e9q1axeZmpqSnJwc9e/fn86ePVtqf0LVhdGjR5OLiwtT76qD64nSkpubSw8fPqS1a9dSjx49yNzcnFxcXOjEiROUnJws1rxksf8uCdbAkjJsxy8ZWD2XnuXLlxcaYQJA2tra5OHhQd7e3vTp0ye6fv067dq1SySOl5cX5efnU0pKCsXHx9O5c+do0KBBjD+6H6/WrVvTunXrSvQvlJCQQDo6OnTp0iUJaaBqk5qaSosWLaI2bdqQvb09cblc0tTUpGnTponFV1NMTAxzqC8A6tu3L3348EEMkssmFy9epNu3bxOfzydfX1+p7YSt7shi/10S1dIPliz50SDWP5NEYPX8a6Kjo/HixQtoaWnByckJPXv2xJUrV6CtrQ03NzfY2dkBAA4dOoTIyEiRZw0NDWFtbY179+4BALhcLiwsLBAeHg6hUAgAaN++PXx8fAB8X79haWlZKrnS09OhoaGBtLQ0aGlpiam0ssWdO3dw//59vHnzBi1btsSmTZuQnJyMXr16oXnz5rCxsYGbmxuUlZUrlE9qaio6d+6MqKgoxMXF4fDhw2jfvn21Or+xPBS0Henp6bCwsMDBgwcxdOhQEBHblogRWey/S0Sa1p24kUULmB1ZkQysnounffv2IiNLly9fppYtWzJ/jx07lol79OhRAkC1a9emhw8fiqzDuXLlCuNvx9LSklm/8eOlqqpaarmys7PJxsaGVq9eLdbyyhLbtm0T0R+Hw6HatWtTRESE2Ot0r169mHyK2/35O/Kjnp8/f87UeW9vbxo9erSUpas+yGL/XRLsLkIWlt+cnw/c3bt3L759+8b8fffuXeb/gwcPRpcuXaCpqQkulyvyXNeuXREWFob58+ejS5cucHJygoGBAdLT05GYmIgaNWqUaTRERUUF06ZNg4eHRzlLJns8fvwYp0+fRpMmTXDx4kWcOXMG48aNw/Dhw6GgoIA6depAVVUVioqKzGHPvyIjIwPjxo1jdlTa2tqiS5cuSEhIQEREBHR0dMDhcPD+/XsEBgYCAC5fvgwHB4fKLqpM0rhxY+b/TZo0YQ40zsjIwNKlSzFjxoxCBxmz/L6wU4RShtipK4nA6rkwOTk5jIuDpKQk5ObmYufOnTh27BhGjBgBAwMD6Ovro2fPnr88rf5nxKnrN2/ewNbWlnG9UF25evUqVq9ejQcPHjBhJiYmWLZsGYYOHVrkkTOl0XNKSgpq1qwpElarVi0kJSUVimtlZYV+/fphzpw5UFdXr2CJqg+l0fPDhw/Ru3dvPH36FCYmJhKWsHogi/13SVTvVouFhYWBiBAdHY1Xr17h1KlTOH36NPLz84uMq6ioCC8vL5iZmUlYyv+RmJiI5s2bY/PmzRgzZozU5KhMTp48iZs3b+LEiRMwMjLCrFmz0KxZM3Ts2BGqqqoVNiy1tbURHByMoUOHIi4uDoMHD8amTZsAAI8ePUJaWhoUFRVhbW0NAwMD9sdHOWndujViYmIgLy+P3NxcbN26FV5eXqyh+pvDjmBJGXZkRTL8znq+du0aVq9ejZcvXyIjIwPA92nBsWPHomHDhuBwOFBQUEBSUhJ2794NX19f5tnp06djxYoVUFJSKnV+4tT1zZs34e7uDkVFxQqlU1XIzMyEqqoquFwuYmNjRUY7UlJSyrSQv6x6/vbtG1xdXfHmzRsAwMePH2FlZVXmMvxulFXPPj4+GDBgAO7du8dsDmEpGVnsv0uCHcFiYammEBE2bdqEGTNmoEmTJpg3bx7s7e1hZ2cHMzMzkc6CiJCZmYk+ffrg/Pnz2LNnD+7cuYN169bhzZs3uHnzpsTl5/F4kJOTw5cvX2BsbCzx/MVNdnY2TExMkJaWBmdnZ9SuXZu55+npWWm7JIkI+/fvx+zZs8Hn83Hnzh24u7tXSl4s33fMRkREQENDQ9qisEgZ1sBiYammnDhxAlOnTgUA1KxZE1u2bIFAIIC9vT0sLS1x4cKFQmtxjIyMEBMTg/79+yMpKQm7du0SMQQkTc+ePbF69WpMnDhRajKICxUVFaSlpQEA/P394e/vj1mzZsHDwwNubm6Vlu+SJUuwZMkSDB06FGvXrmUXYVcy6enpaN26NXbs2IG2bdtKWxwWKcIaWCws1YQnT55g3759yMjIQFpaGq5du8bc+++//5j/JyYmMueH/Uy/fv2Y/9eqVQsLFiyoPIFLoGDaMjU1VWoyiBMOhwN9fX0kJiZiy5YtGDx4MLS1tSs1TyLC+vXrMXXqVKxfv75S82L5DofDQZMmTaS6fpGlasAaWCws1YBLly5hyJAhUFFRAYfDQU5ODpSVlfHXX39BKBQiNTUV3759w5cvX/D27Vvk5OQwz967dw/Ozs5SlL541NTUZHbN3Js3b7BixQo4OztDQUEBt2/fRmJiIoDvnXBlG1cFaGtri7xvlsohKysLiYmJqFOnDg4fPixtcViqAKyB9RuTnp6Ojx8/olmzZtIWhaUMJCQk4OTJkwgODsajR4+goqKC58+fA/i+iPpHevXqBVdXV5Gw3Nxc3L9/HxkZGXBwcCi1V3Vp8Pr1a7i7u+P69eto3ry5tMUpE+vXr8fJkydx5swZCAQCODo6Yty4cVi2bBl0dHQkIgOHw0H37t1x8uRJtG3bFgMHDpRZg7WqM378eDx8+BBv376tNpsyWCoGa2D9JkycOBF3795FTEwMHB0d0aVLF0RERGDTpk0YO3YsNm3aVKadYizSYceOHZg0aRLk5ORgb2+Ptm3bMkfU/Ejbtm0xderUQsYVACgrK6N9+/YSkLbi1KtXD+PGjZPqOrDy0rVrVxw4cABNmzbFhAkTMGzYMKnIMX36dHz8+BGDBw8GEWHw4MFSkaM68vLlSxARGjdujCVLlkAgELDGFQsD66ZBylSm+4D8/HycO3cOX758wZYtWxAWFoYJEybg8OHDzHb9AkJDQ1G3bl2x5l+VkGU3DRs2bMCFCxegqqqK//77D56enli/fj0zxSQUCpGUlARVVdUqUe9lWdfiZvr06czaJ3E3tWXRs1AohJ6eHoYPH86uxSojxemZiODo6Ig6dergxIkTUpSweiCL/XdJsCNY1ZjPnz9j0KBBImGHDh0SmUZauHAhRo4cWSZP3SyS4+PHj5g2bRrs7e0RGxuL7du3Y+zYsSLH1HC53Gp9IO/GjRthZ2eHdu3aSVuUMhMSEoK6devi6tWrUpXDx8cHycnJ6N27t1TlkHX4fD62bduGP/74A3Xr1sXZs2er9bfHUjG4JUdhkVVsbW3h4+ODNm3aQEVFBQ0bNoS9vT1zf8iQIViyZAlrXFVRcnJycOXKFQCAvLw8zMzMsHv3bowbNw6bN2/GjRs38PnzZwgEgkLPCoVCfPv2TeyjJpKGiHDx4kU8fvxY2qKUmSdPnuDatWtYsGABbGxspCrLpUuXIC8vz5ydx1I+eDwetm7dihs3bgAATE1NoaCgIGWpWKoslX6ctASRxdO4fzypXRKcOnWKABAAcnR0pOTkZInkK20kreeKIhQKqXHjxsy7Ku81depUqcgubl0LBAKxpSUpJkyYQKampsTn8ysl/bLoOTQ0lNzc3EhOTo7u3r1bKfJUV3g8Hm3dupXi4+OJiCgrK0vKElVPZLH/Lgl2BOs3o3PnzszC56CgIHz48EG6ArEUSV5eHl68eIHx48fj5s2buHPnDgICAhAYGIi9e/di1KhRJXr+trS0lPkFzZmZmXj69Cny8vKkLUqpSUtLg7e3N86cOYPo6GjGNYM0qVu3Lm7dugVXV1cMGjQIycnJ0hZJZkhJScHhw4dx69YtAICqqqqUJWKRGaRt4YkTWbSAJT2yMmHCBOrVqxft3r2bfH19JZJnVUDWRrCIiFxcXEhNTY2GDh1KmZmZRcbJz8+nkJAQCgsLo/j4eMrIyJD6aI84db127VrS09NjRl0yMjKq/DvcunWryCjipk2bKiWf8ug5OjqaANDs2bMrRabqAp/Ppy1btlB6ejoJhUKKjo6u8vVO1pHF/rskWANLyki642/UqBHT8N+7d08ieVYFZNHASk1NpVmzZjHvy8vLi/Lz88WSdmXqQdy6joyMZNLq2rUrDR48WCzpVhYtW7akunXrUmZmJiUlJVWarsuj540bNxIA0tTUrBSZqgtJSUmkrq5O586dk8m2QxaRxf67JNgpwt+MS5cuMQ4bN27cKF1hWH5JVFQUNmzYwPy9c+fOQo5Ey0pOTg6cnJygra2NiIiICkooGX48mNrLywsjR44E8N1hKlXBRfza2trg8XhQU1ODnp5elXJVUTDVunnzZilLUvWIjIzEuHHjkJeXBz09PYSEhLC7LlkqBGtg/WaYmZkhICAAO3bsYDoqlqpJbGwseDwe9u7di3fv3iEvL69Ux6vk5uZi9uzZ2Lt3b6F7S5YsQUBAANLS0qChoVEZYlcqf/zxB9zd3REcHIyhQ4ciPDxc2iIVIjk5GZGRkVXyDEUrKysA39disnynwEhPT0+Hj48P88PDyMhIilKxVAdYP1i/IQoKCvDy8pK2GCy/YNmyZThz5gxUVVWxcuVKjB8/Hn369IGamhqePHmCd+/eISMjA1FRUYiOjoaxsTGsrKxgYmKC69ev48yZMwCAMWPGoFWrVmjatCmSkpJw+vRpJg9dXV2sWbMGM2fOlFYxyw2Xy0VsbGyV9PDep08fPH78uEo6S3z8+DG0tbVRs2ZNaYtSJdi9ezeOHTsGPz8/2NvbIyQkBHJyctIWi6WawBpYLCxVDD6fj4ULFwL4Pt30+fNnzJgxAzNmzChXeoGBgQgMDCwUrq2tjb59+1ZIVkmzatUqtGrVCi4uLvD39xdxuFpVKDD6UlJSJHbmYGnw8fHBunXrMHHixN/aiAgPD4ecnBzMzMxgZWUFV1dX8Hg8KCoq/tZ6YRE/rIHFwlLFkJeXx9q1a/H8+XOcOHECenp6UFZWRnR0NIDv0zzt27eHhYUFLCwsoK2tjdjYWERFRSEpKQlGRkbo0KED6tevj5ycHMyYMQP79u0DAAQHB8PGxkamzp0kIsTExMDU1BRnzpyBhoYGXFxcIC9fNZuvgiOn3r59C2dnZylL8z/27duHBg0aYPXq1dIWRar06dMHNjY2OHHiBNzc3ODm5iZtkViqKVWzhWJhKSOhoaHYt28fLC0tMWbMGGmLU2FmzJiBmJgYnDhxAvv27UO3bt3KlY6SkhI2b94MVVVVNGrUCA0bNhSzpJXPlStX0KNHD7x+/RrPnj2TtjglUrt2baiqquLKlStVysBSVFSEkpLSb+d5PCEhAZMnT8a///4LMzMzHDhwABYWFtIWi+U3oOqNr7OwlIHMzEycO3cOPXr0wOrVqzFx4kTw+XxpiyUWtLS0IC8vz4xcAd9Hc65fv46XL1+WOh1VVVVs3rxZZjc1dO7cGWfOnEGDBg2kLUqpqFmzJpycnJhjjqoKLVu2xLNnz36b43IKFq+rqqoiMjISERER+PTpExo2bFgl18exVD/YESwWmSM3NxebN29GUlIS0tLSRHbLnTt3rspOHZUVdXV1dOrUCQsWLAAR4dOnT4zbBm1t7d/GG7eCggKzViwiIqJKLmz/GV1dXdy6dYtxMTF27FiMGzcOfn5+0NLSkvi01OzZsxEYGAg+n4/z58/Dw8MDN27cQOPGjdGkSROJylJWiAjz589HWloatm7dWqpngoKC4OXlhR07duDLly+ws7NDnz598PXrV9jb2+P8+fPMVC4LS6VRVsdZMTExNHjwYKpZsyapqKiQg4MDPX36lLkvFApp0aJFZGhoSMrKyuTi4kJv3rwRSePDhw/UunVrMjY2piVLlojcMzc3JwAUGBgoEj5lyhRycXH5pWyy6KiMdWJXNp49eybiJbvAcaqxsTHFxcUV+5ws6jk/P59CQ0NJX19fpMy6uroUFhZW7HNpaWn04MED2rFjB7m5uREA6tq1q9iclJZEZek6MDCQ5OTk6NGjR2JNtzLg8Xh06NAhmj9/Pg0bNqzQGZH79u2rsH7KomcDA4Miz6pUVFSkOXPmUEBAQKWdmVgW8vPz6ejRo3Tr1i1Gnk2bNjHyBgUF0fXr12nVqlVkb29PysrKZGdnRwsWLKDFixfTuHHjyMbGhuTl5UXKaWVlRS1atGD+Pnr0aKllksW2QxYpbf9dlW2QnymTgZWcnEzm5ubk6elJjx49ovDwcLp9+7ZIY79q1SrS0NCgc+fO0evXr6l///5kaGhI6enpTBwPDw/asWMHPX36lJo1a0YPHjwQKZyysjI5OzuXuXCsgVX9uXTpUpEdxZgxY375nCzquWfPngSAatSoQQBo27ZtlJKSUmTc8PBwmjdvXrGHPnM4HJk3sAQCAR07dowyMjLEmm5lIxQK6ejRo7R3716KjIykESNGEADq3r073bx5kxITE8uU3s2bN6lHjx60Y8cOunnzZqne66FDh0hBQYEA0ObNm2nXrl1kZWUlUkc0NDSodevW5OnpSTNnzpToSQ8FZfjxB5SJiUkhGX80DAcPHkzr1q2jIUOGkIaGBtWoUYMaNmxII0eOpC1bttCZM2fI39+fPn/+TEKhkCIiIpjnDx48WOp6JItthyxSmv67qtsgP1MmA2v27Nnk5ORU7H2hUEgGBga0atUqJiw3N5c0NTVp586dTFjTpk0pKCiI8vPzqXv37nTt2jXmnrm5OU2ZMoUUFRVFwlkDiyUqKoq6detGqqqqBIC8vb1p2bJlBIBOnjz5y2dlUc/NmzcnAKSurk4tWrSgnJycIuNdvXq1WMPq2LFjlJycLFG5ZVHXkubMmTPML2UFBQWaMGGCSAdQFNHR0SKjOVwulywtLcnExIR8fHzKLMO6deuKrTcAmPa2Ms62jIuLo6NHj9KGDRvIycmJ5OTkqGXLlqSmpsbkP2XKFJo+fTodOHCAVq1aRSdOnKAXL15QdHR0oW8hLy+vVIbmy5cvydLSkjkuaNWqVZSdnf3LZ9j6LBlK039XdRvkZ8pkYNWrV4+8vb2pb9++pKenR40aNaLdu3cz9z99+kQA6Pnz5yLPde/enYYNG8b8fe3aNdLQ0CB5eXnq2bOnyNC0ubk5bdiwgSZPnkwNGzZkPm7WwGIJCgoS6QCaNGlCf/75J2lraxdrfBQgi3qeMmUK82tdRUWFGjRoQH///TfNnTuX1q5dS3w+n7y8vBh9GBoa0s2bN2ncuHEEgBYuXCgVuStL10ePHq1WhxTz+XwKCwujhQsXEgBat25dsXHfv39fyACaOXMmWVpaEpfLJS8vr1LlmZiYSJMmTaK///6b5OXlycDAgI4cOVLkSJGbmxsFBweTlpYWDR06tFzvUyAQ0PPnz+ngwYM0f/588vb2pnbt2pGSkhJTt93d3Wn48OFkZWVFc+fOpaCgIEpISChzXqVFKBTS+/fvacKECSQvL0+1atWiVq1aUYcOHahdu3ZUt25dMjQ0pMaNG9O+ffsoPz9f5toOWaQ0/XdVt0F+pkwGlpKSEikpKdHcuXPp+fPntHPnTlJWVqZDhw4REVFAQAABoNjYWJHnxowZQx06dBAJy83NpaSkpEJ5FBQuKSmJNDQ06PDhw0TEGlgs3/n48SPNmTOHBg0axHQE06ZNK/E5WdTz169fadGiRSJG1I/X4MGDRaYAo6OjiYjo/Pnz1KRJE8rLy5OK3JWl6zNnzlDfvn3FmmZVICEhgbS1tZlpsR9/aRfw+fNnUlRUJEVFRZERrAYNGtDixYspKiqK2rZtSxoaGnTmzJli81q1alWhepSTk0MCgYBmzpxJhoaGTPj8+fPJ0dGR+fvPP/+kkydPFvleBQIBRUVF0f379+nkyZO0fv162rNnD7m6ujLPGxsbk5WVFfXo0YPWrl1LX79+lfr3+PHjR5o+fTr16tWLevfuTX369KHp06fT4sWLqUePHgSAOnXqRG/fvpW6rNWd0vTfVd0G+ZkyGVgKCgrUqlUrkbBJkyaRo6MjEf2vcD8vNh49ejR17NixVHkUFI6IaMmSJVS7dm3Ky8srk4GVmppKQqFQJi6BQEDJyckkEAikLossXb6+vsTlconL5VJAQEC11vOIESOIy+XSoEGDqG/fvqSkpMSUncvlkoqKCh06dEjqclaGriMjI2nDhg3M37L0bZflSk5OpnPnztHQoUOJy+XSrl27CsXJy8ujrKwsWrduHc2ZM4dWrFhBDx8+JIFAQP7+/kx9aNy4cbH5ZGdn0/Hjx+nChQt08+ZNysrKKhSnY8eOTFr29vZ0/fp12r9/PxM2ceJEsre3JyMjI2rSpAk1aNCAVFRUROqkqqoqcblcMjMzo4sXL1JaWprUdVzUFRERQS1atCAul0sKCgpkaGhIDg4O1K5dOxozZgz16tWL5OXlqW7dutS5c2fKzs6WuszV9UpNTS3RwKrqNsjPlGk/u6GhIerXry8SVq9ePZw7dw4AYGBgAOC7YzdDQ0MmTlJSEvT19cuSFQBg2rRp2L59O7Zv316m59LS0hgfKFUdIkJmZiYAgMPhSFka2eHFixewsLDAH3/8gXr16iEtLe2X8WVVz3l5eYiJiYGbmxv+/fdf7N69Gy9evGDuKysrY8CAAfDz80NcXBz++usvqR8fIw5dCwQCyMnJ4dmzZzh8+DC6devGHDtT0ruWRTgcDtzd3eHm5gYdHR1s2rQJ7dq1K/LMwAJ/ZgV6TktLg729PZKSkhATEwNdXd1f6ujHg57z8/ORn58vcv/EiRNMmJKSEvLy8tChQwfGOeeNGzfg6uqKunXrIiUlBfLy8jAxMYGpqSmMjIxQq1YtqKmpIScnB8rKyuByuRAKhVJ5b4mJidDQ0ICqqipevXqFEydOwMbGBrq6usjNzcXRo0ehqKiIAwcOID8/H8nJyUhJSWEO7C5wC2JsbIzPnz8jNTUVKioqEi/H70B6enqJcWTFBimgTAZWmzZtEBISIhL28eNHmJubAwAsLCxgYGAAHx8fNG7cGMD3D/jevXvlOp5BXV0dCxYswOLFi8vkyVpTU1NmHMkVGIKampoy1fFLmwkTJsDW1hZt2rSBhoZGifFlVc9+fn64c+cOPD090bBhQyQnJ8PU1BRDhgzBP//8AwBYtGgRAEBFRQXe3t5SPwbnZ11nZWXB2dkZQ4cOhbe3d4nP3717FxMnToSfnx86d+6Mzp07S71MkoCI8OjRI7x69QofPnzAt2/ffulxvKg6XRmHOCcmJiIkJAQ8Hg99+/bF7Nmzmfb9V2hpaYldlrKwa9cuTJgwAfr6+vD29sbmzZuRkZEBoVCI7OxscDgcNGrUCEePHoWNjU2RaeTn5+PDhw949+4dbGxsmA6cRfyUpl2WFRuEoSzDXY8fPyZ5eXlasWIFhYaG0rFjx0hVVVXEp8iqVatIU1OTzp8/T69fv6aBAwcW2iL5K34cniP6vn3X0tKS8WfxK9g1WCzFIat6vnv3bpEuFwr+b2NjQ97e3nT79m3i8XiUmZlJPB5PqjL/rGsfHx8CQGpqaqV6Pikpifr37y9z76oiFOyQBUB16tShf//9t8Tyy2qd/pGQkBBq1qwZtW3bllq2bElubm7k6elJixYtov3799OdO3coLCyMvn79Wmb3HJMmTSIA1KtXL1JSUiJbW1sKCQkhou+7Dku7O7I66FkWKE3/XdVtkJ8ps6PRK1eukJ2dHVNhf1zBT/Q/J18GBgakpKREzs7O9Pr161Kn/3PhiIiOHz8usm24OFgDi6U4ZFXPAoGA2RU4aNAgCgoKosTERPL396dbt26RUCgkHo9HBw8eLLS9Xlr8qOuLFy+SsrIyI1tpno2IiJCAlNJHKBTS5cuXaeDAgYzRPGTIkFI7/KzKdTo2NpYuXrxI9+/fp4sXL9KsWbPIzc2NWrRoQS1atKCWLVuKLKBv27YtjRo1ivr160ctW7Ys0jEqh8MhDw8P2rt3LwUHB1NoaChzxcbGFnK3ULCgPzU1lXg8Xrn1VJX1XJ0obf9dlW2Qn+EQychipVKQnp4OTU1NpKWlydQUYVpamsxNXYmD3NxcREVFwcrKqtLLLst69vLywvXr1xEaGspMlfF4PHz48AHXr1/HnDlzROLfvXtX4kex/MiPul60aBGWLVsGMzMzJCcn4+vXr7+c7ps3bx6OHj2K8PBwyMnJSVBqycDn87Fz504cP34cgYGBhe7fv38fTk5OpUqrqtXp5ORkHD16FC9fvsTRo0fB4/GYe0ZGRmjVqhW0tbUBQGSNbIcOHdCvX79C6eXm5iI6OhqRkZFIT0/Hly9fcOrUKfj5+RW7xlZJSQna2tpQU1PDp0+f0LVr1wqfCVnV9FxdkcX+uyRYA0vK/M4fr4eHB+7evQsAePDgAfbv348DBw6gbt26uHv3LkxMTMSWlyzruV69enBzc8P27dsRHh4Ob29v3Lt3T2TRMJfLxcWLF9G1a1epl+9HXT99+hQtWrTAmjVrsGDBAri7u+PSpUtQUFAo8tnQ0FDExcXB2dlZ6uWoDPz8/Io1fu3t7fHq1atSpyXtOp2Xlwd/f38EBAQgPj4e+/btg0AggJqaGhYtWoSBAwciPT0d6urqMDU1FZuMycnJCAkJQV5eHoDvesjOzkZKSgpSUlKQmpqK1NRUqKmpYeXKlUhLS4Oamlq585O2nn8XZLH/LgnWwJIyv+PH6+/vj/j4eCQnJ2P8+PFFxklISCjXro/ikFU98/l8KCoqwsbGBk5OTrhw4QI0NDQwcuRIuLi4YMKECeDz+Xj79q3Udg+mpKSAw+Ewi5oLdM3lcuHi4oJv377hw4cPCAgIQJcuXeDo6IimTZuiYcOGsLCwQIMGDVCrVi2pyC5piAjXrl3Dp0+fUKtWLdy6dQsHDx7EiBEjMGrUKLRp06ZMaUmrTt++fRudOnWCQCCAjo4OLCwsoKSkBAsLC2zbtk2q7S8RgcPhICIiAv7+/hg0aFCFDoCX1bZD1pDF/rtEyjShWMVh12BVfc6cOSOyrmLEiBHUu3dvatq0KZ07d46Cg4MrRReyrOfFixeTra0tOTg40KRJkyg0NJQSEhKYs9Xs7OyIiCgzM5Pev38v0TKmpKQw73Ly5MmUmZlJiYmJdPbsWXJzcyMNDQ169eoVE//MmTPUqVMn5riSgsvb25uIiPbv30+rV6+WmPzS4NGjRzRkyBARp56lcZb7M5VVpzMzM2nixIlUr149Wrx4cZFHLc2aNYuA74cvV6VvSiAQUIcOHWjbtm1iS1OW2w5ZQhb775JgDSwp87t9vMOGDSMAhRaxDhs2rFI9j1cXPYeHhzNevwsOgQZA+vr6zP8vX74sEVmEQiE9ffpU5D1qa2uTmpoaWVpaUo0aNYo9Iy8mJobk5OSY53R1dSk1NZU2btxIAwcOlIj8kiIjI4NOnTpFXbt2pXr16hEAsrKyolmzZlHjxo0JAN29e7fM6YqrToeHh1OTJk3I2tqa6tatS7Vq1SJVVVVq0KAB83569uwp8n0W1MHc3NwK5V0ZzJo1q1z6LI7q0nZUdWSx/y4J1sCSMr/TxysUCklLS6vIY1/09PRKdVhrRfKuDnretm0bAaB9+/bR1KlTycTERESPEydOLPFcRnHw8uVLJk9NTU0aOnQonTt3jgYOHEhLly6l58+f09evX3+ZhqenJ2lpadHnz5+pffv2zLuRtpsJcREZGUldu3YlBQUFAkBNmzYlT09Punz5MrNTMDMzs9ztlbjqdIH36x+vc+fOMcfntGrVigDQwYMHmXwLDmX++PFjlXhf+/fvp3PnzlVK2tWl7ajqyGL/XRKsgSVlfrePd8GCBUwjXuB+wMbGhhITEys13+qi58mTJ5OtrS3zt1AopMDAQFq/fn2l67CAqKgoatmyJQEgIyOjQoZxaXV9//59AkCvX7+uVOO6MsjNzS3SnUJSUhKtWrWKnJycSE5OjkxNTWnLli2M/yVxIs46nZ6eTvfv36fTp08TAKpfvz6NGjVK5AfQ5cuX6cuXLyQQCGjdunXMvaVLl4qhNBWjZ8+ezDSzuKkubUdVRxb775Io/8o/lt+WnJwc3L17F0SEli1bQldXF9HR0TAyMoK8vDxSUlLw9etXpKWlITk5GWFhYcxW6/j4eJiamiI3Nxf3799H37594eXl9dsscq4oVlZW2Lp1K+7cuQMPDw9wOBw4OjrC0dGx0vOOiorC9u3bsWPHDsjLy2PGjBmYN29esTsCS8LY2BgAEB0dDTs7O3GKWmnk5eVBWVm52PtycnJQVFREx44dsW3bNgwYMACampoSlLB8aGhowMnJCU+fPkX79u3h4+ODkJAQtG3bFhoaGmjWrBm6d+8OAFBTU8OCBQsAfD89YOzYsdIUHQBw4cIFaYvAwlII1sBiQWJiIo4ePYpatWph6NChv4zL5/PRtm1bPHv2DMB3vzNGRkYIDw+Hjo4OFBQUkJCQIPKMvLw8TE1NoampiVq1aqFv374ICwvDlStXMG7cOHh4eFRa2aobXl5euHTpEjp16oTRo0djwIABcHJyqlSfUQKBAJs3b8bff/8NRUVFjBgxAt7e3qhdu3aF0q1duzZ0dHQQFBQkcj5eVUZeXh59+vRhzj77mREjRmD16tWVcmSNuOHxeJg9ezZev36NJk2awM/PD48fP4aysjKaN2+OrKwsREREwMjICMuWLWOey8rKwocPH2BsbIycnBwEBgaiR48eUizJd2JjY1GrVq1yG/wsLGJH2kNo4kQWhxilNfyck5NDV69epYEDBzJrRABQbGzsL58LCQkhAHTs2DGKjIykSZMm0ciRI2nTpk00ZMgQmj9/Pp08eZLu3r1Lz58/p/Dw8CLXaPz7778EoNTHF1SU6jTMz+PxaMmSJWRmZkYAyNLSki5cuFApa68+fPhArVu3Jg6HQ5MnTy7V+yqLrgvWkH348EEc4kqcb9++Uc2aNZnvR5y710qionU6PT1dZN1Vx44dad68eYWmPnk8Hp06dUok7pkzZyguLo6aNGlCFhYWFBISIiLH6dOnacmSJXTnzp0KlbG0fPjwgTgcTqXkV53ajqqMLPbfJcEaWFJGkh9vfn4+paam0n///Ufy8vIEgKytrWn9+vU0ZswYkpOTK3YdT35+Pv3333+0ZMkSAkBLliwpc/5CoZDu3btH/fv3Jy6XSz179pRYo1UdG0mBQEABAQHk5OREAEhdXZ369+9PGzdupI0bN9KJEyfKVd6C3YGTJ08mZWVlsrKyovv375fp+dLq2tnZmQCQqqoqJSUllVlWacPj8ahOnTrUuHFjSkhIkGjeFa3TiYmJjMH05s0bJs3ExEQKDg6mN2/e0L///ks2NjYEgOzt7Wnfvn1069YtZs1ccHAws5tVR0eHhgwZQgMGDBAxxm7cuCG2MheHQCCg27dv0/v378WednVsO6oisth/lwRrYEkZSX28X758ofr164s0fPv27aPk5GQaP348AaB//vmn2OcL/N4UXL179y5T/v7+/kxnamNjQ5s3b5bo7qPq3ki+e/eOli9fTk2aNBE5+2/MmDG0f//+EheR83g8un79Ou3Zs4fc3NwYVxp///03ZWVllUmWsur62bNnBICePHlSpnyqCgUGxdu3byWab0Xr9I8+zGxtbWnGjBnUokWLQjsK+/btS48fPy42ndTUVLp58ybNnz+f6tevT40aNaJNmzaRt7c3AagUo6c4KmOzRHVvO6oKsth/lwTryV3KkIS8BF++fBk9evSAnJwcBg0aBGVlZTg6OmLUqFEAAE9PT+zbt69Ib+BZWVmwsbGBiooKHj16BADQ1tYuUV4igr+/P1auXIlbt26hUaNGWLp0qVSOc5GUnqsCERERsLCwEAkbO3YsGjdujLS0NBgYGKBWrVpISEhAaGgoQkNDERgYiJiYGACAnZ0dli1bhq5du5bLA3ZZdZ2YmAgDAwMsW7YM8+fPL3N+0sbV1RV5eXm4d+8eFBUVJZavOOo0j8fDrl27MGnSJADfzwxcv349ateuDT6fDz09PVhbW5c5XaFQiBYtWsDExAQXL15kwoOCgnDp0iUsWbIE0dHRSElJQbNmzcol+89cuXIFixYtwqNHj8S6Dut3ajukiSz23yUiPdtO/MiiBSypX0c/rrdYsGABJSYm0t9//82E/eq08czMTKpduzYBoIULFxa5Pf1nPnz4QA4ODgSAGjRoQGfOnCGBQCDOIpWJ3+1X6IkTJ8jT05MmTpxI3bp1IwAkJycn4pwUAJmYmJCbmxtNmjSJnj17Rjwer8I6Ko+u58yZQwDI0NCQjh07VqH8JUlCQgLJycnRyJEjxZZmUFAQPX78mPr378+8p9DQ0ELxxFGn09LSSElJicnn6NGjFRGdYdOmTQSAzp49S0OGDGFGsZYvX059+/YlIqItW7aQhoYGZWZmEtH3UdiK8PLlS5o0aRKTnrj43doOaSGL/XdJsAaWlJHUxysUCqlDhw5MQ8rhcEheXp569OhBL1++LPKZiIgIsrGxYdZrFVw7d+4sMb8hQ4YQAGrTpk2VcET4uzeSycnJzHvIzs6myMjIMk/9lZby6FogENDFixfJxsaG+vXrVylyVQZt2rRhfniUl+joaJo7dy517NiRdHR0inTEGxERUeg5cdTpnJwcat68ORkYGNC6devKnc6P8Hg8qlGjBo0dO5aysrKoZcuW9ODBAyIiysvLY+Tl8/kiP+y0tbXpxIkTFcr78OHDFBAQUKE0fuZ3bzskhSz23yXBumn4DeDxeIiOjsatW7eYsJ49e2L79u0wMDCAUChkhsB/ZPz48cjKysK6devA5XJhaGiIvLw8uLu7l5hnwcG/AQEBiI2NhYGBAV69eoWXL18iOzsbFhYWqFevHlJSUpCSkgIulwsFBQXmkpeXR1ZWFmJjY2FjY4NGjRqxw/MVQFtbm/m/iooKzMzMJJJvbm4ujh49ihkzZmDnzp0YMGBAkfG4XC569OiBS5cu4dy5c3j79i0aNGggERkrQnBwMIYPH47FixeX6/m9e/di8uTJUFFRgZOTE7S0tPDt2zcAgK6uLk6dOlWq7628KCsr4/HjxwC++/h6+fIlXr9+jU+fPmHgwIGwsbEpc5oRERFIT09Hx44doaqqiqCgIObej1OocnJyjP8zIsKOHTvQsGFDAMDatWthaWmJ3r17lynvCxcuQF5eHq1atWLbCxbpI20LT5zIogVcWb+O+Hw+ubu7i/wKdnNzI29vb3r+/DkREX39+pV8fHyoadOmBIB69erFbMOPjY0lALRixYoy5x0UFMTk2aFDB3J1dSVFRUUCQFwuV2QRdmmvLl26VMilA/srVDKkpKTQ2bNnacuWLTR+/HjS1dVl3uGOHTtKfP748eNM/M+fP0tA4orRrFkzGjVqVJmf+/btGw0aNIjZiJCamkpERF27dmW8o5dUVytSp/l8PgUFBdHx48dp7ty55OTkJDJVqKqqSqamphQfH1/mtAUCAVlZWdGgQYPK/CzR93L9+eeftGzZMkbWH+Vev349MyJGRHT37l3asWMHCYVC9qB4GUYW+++SYA0sKVNZH296ejoZGhqKGClNmjRhGqGzZ88y4crKyjRgwABSUVGh5cuXE9H3A2AL7s+bN69MeS9cuJB5Vltbm3r06EEbN26kR48eUU5ODgmFQoqJiaHbt2/T06dPKSoqiiIiIig0NJTevXtHwcHB9PTpU3r79i19+/aNzp07R+rq6jRkyJBy64NtJCufO3fukLGxMXG5XGrQoAHVr1+fBg4cSMD3Y5FKS1RUFGOQSXPdXmkYPHgwmZmZUXZ2dpme69KlC9WsWZM5368Ae3v7UuuqvHU6OzubWZcHfD8ovHfv3rRhwwZ68OABpaam0ufPn0lbW5s0NDRo4cKFjAFYWiZPnkz16tUr0zM/IhQKmXe/ZMkS6tq1KxNuYWFB+/fvJyKiCxcukIGBAdWoUYMOHDhQ7vxKkoVtOyofWey/S4I1sKRMZX68OTk5NHbsWOrcuTPNmjWLvnz5QkRET548YRrXAQMGMGtzbG1tafTo0URE1LlzZwJAVlZWjI+c0sLn8+nz58/09etXsZQrLCyMDAwMyNDQsNxpsI1k5XL8+HGSk5Mjd3d3CgsLo+TkZMaY/+OPP0hNTa2QsfSrd1EwktOxY8fKFr1CFGwUiYmJIaLvxktpRlptbW1pypQphcILRnpL43esPHU6NTWVnJ2dSUVFhc6cOfNLw+nLly80Y8YMUlZWppo1a9LGjRtLtcGFiGj9+vWkoqIilu/t7t27IiPpP9ajwMBA8vLyIk9PTwoODiYiKteo269g2w7JIIv9d0mwBpaUqcyP9927d4whtXjxYiY8IyOD8UkFfPcEHh0dTS1atCA1NTWaP38+08HVqFGjzAaWOAkJCSFdXV2qU6cOPX36tNzpsI1k5bFr1y7icDg0bNgwZhfij7peunQp6erqEtH3Q5KHDh3K1L3idt99+vSJ2rdvTwDo2bNnEitLWTh//jxxuVxmxOnLly9MuR49elTsc0KhkCwtLemPP/4QCb9y5UqZnHOWtU4LhUJydXUlLS2tMi0Ej4mJobFjxxKHw6HBgweX6pmCqd6vX7+WOh9xkJKSQqqqqrR582axpcm2HZJBFvvvkmANLClTmR+vr68v02D/9ddfhfINDQ2ly5cvk5WVFdWsWZM0NTULrX1SVFSk1q1bi1220tKhQweytramb9++VSgdtpEsH0KhkDIzMykjI4Nu375NW7ZsoS1bttDevXtp/fr15OHhQQBo4sSJzMjCj7pOTk6mxo0bk4WFBRERvXnzRqR+3b59u9i8eTwe1a5dm9zc3CrFgWRFcXV1pYYNGzKjOj179mTKlZKSUuxz+fn5ZGBgQDo6OsTn8+nixYvUoEEDZp1kaadFy1qnC35wnT9/vlTxf+bw4cMEgC5cuPBLma5du0a1a9cmU1NTiU/x5ufn0+nTpykjI0NsabJth2SQxf67JFgDS8pU9giWlpYWAfjlL89jx45R69atqVOnTmRqakoASEVFhUxNTcnExIR69uwpdtlKQ1BQEHE4HLGsrWAbybLz+vVrat68ebEbDxQVFcnJyYnOnDkjotcCXQsEAhoyZAhpamqKjEJlZGRQYGBgqc5O9PX1JXl5eRo3blyVe3fTpk2jGjVqEI/Ho4cPHzJ6Wbt2bYnPPnjwQESXnTt3prNnz5bJdUZZ6/TWrVuJw+GU+8eKUCikrl27ko6ODs2fP5+Cg4OZvLOysujYsWPUsGFDxj3Lp0+fypVPRYiMjBT75gi27ZAMsth/lwRrYEmZyvp4X7x4wTTeq1evZtaI/AyPx2PiLViwgLZv307a2trUqVMnsrOzI21tbXrx4oVYZSsN6enpZGlpSS1atBDL6AXbSJaN/fv3k4KCAtWvX58OHDhAR48epd69e4sYBVu3bi3y2QJd79+/nwAwC5LLy549ewgAbdq0qULpiBtPT0/S19enb9++Mbsl//jjj1LVsf/++4/RY+/evct9ZmRp67Svry9pa2vTgAEDypzPjyQkJJCnpyfzw83c3Jz09fWZsnTs2JH8/Pyk9p1t2rSJ1NXVxTpyxrYdkkEW+++SYA0sKVNZH29ERATZ2trSn3/++cvpCj6fT1OmTCF3d3fGfUNMTAzTYJ47d06scpWGrKws6tWrF6mrq1NYWJhY0mQbydKze/duZlo5NzeXiIjOnTtHAGjatGn06NEjAkCXLl0q8vkCXU+fPp2MjIzEItP06dMJ+H4uXlxcnFjSrAhxcXEkLy9Pw4YNE3E7EhUVVarnC87/dHZ2pvDw8HLJUJo6nZmZSYMHDyYA5Orq+su2oCzk5eXR9evXacqUKbR48WI6fPiwxM9iLIr8/HzaunUrtW/fniIjI8WSJtt2SAZZ7L9LgjWwpIy0P97MzEwm7+fPn5OCgoLIKEVB45+VlUV//fUXGRkZUWxsbKXJk5SURI0aNSIVFRW6ePGi2NKVtp5liRYtWpC6ujoFBwfT+fPnafny5Ux9kJOTY/5f3G6tAl1PmzaNLC0txSKTQCCggwcPkoGBAdnZ2YnNUCgvEyZMIHV1ddLQ0KA6deowO3JLi1AopLy8vArJUJo6vWvXLpKTk6O9e/dWeZcX4iInJ4f69OlDt27dEkt6bNshGWSx/y4J1pP7b0pSUhJatGiByMhI7Ny5E/Hx8di1axd4PB4AwMvLC9u2bYNAIMDu3bsxZcoU5ObmAkAhj+/iIiUlBb169UJcXBwCAwPh4OBQKfmwFI+/vz+io6ORmZlZSP+qqqpYuXIlfH198fHjR+jr6/8yrfz8fAiFQvB4vAofvsvlcjF8+HC0bNkSbdq0gampKfr06YNt27ZBTU2tQmmXBSLCokWLsG3bNtSpUwd8Ph/W1tYQCAQ4fPhwqdPhcDgSORj68ePHsLe3Zw51/x1QVlbG2bNnAQCpqanMqRIsLBJH2haeOJFFC1hav4527drFjET86D37x8OANTQ0qGbNmiIjWh8/fhSbDDk5OfTu3Tu6fv06LV++nAwNDUlbW1vsZ4kRsb9CS0vr1q2ZBewF71xeXp6aNm1a6kN0C3R98uRJ4nK5ZGxsTB07dqQOHTpQ+/btafLkyczUY3l4/fo1jRgxggDQ7t27y51Oedi3bx8BYLyw7969mzgcTqm81Iub0tTpjh07Uq9evSQoVdUhPT2d9PX1K3y+Idt2SAZZ7L9Lgitxi46lSjB69GjExsZCKBSib9++mDdvHrhcLgYOHIg1a9ZAUVERGRkZGDVqFFatWgUA2LNnD6ysrCqc96ZNm6CoqAgVFRXUr18fXbp0wfz589GuXTu8ePECrVu3rnAeLOUjMjIS8+fPR1ZWFoKCgjBz5kw4ODhg3bp1ZR4p6tevH54/f46+fftCXV0dGhoaUFNTw+bNm7Fz585yyZeYmAh7e3scOHAAAFC7du1ypVMeUlJSMGPGDHh6esLGxga1atXCw4cPYWhoCE9PT4nJURaysrKgrq5e5D0+nw8fHx9ERkYCAJ4+fYqxY8ciMzMTAHDz5k3cvn2biS8QCJj/JyYmIjExsVQy3Lt3D/7+/uUtQrlRVVXFjBkz0KZNG4nnzcICgB3BkjZV4dfRvXv3REapjIyMCADp6OhQXl4emZiYULt27RgZBQJBuUcgEhISit32X6dOnVJt3S8PVUHPVZ38/HzicDgVHhX6Uddv3ryh3bt3U2ZmJmVnZ9OGDRsIAF2+fLnM6W7cuJFcXFyY+lLcIvvKYvr06aSmpkbx8fG0evVqAr6frblhwwaJylFAaep048aNycvLi/k7IiKCrl69SkTf37eqqiqtX7+eiIhu3rxJTZo0YdaGDRgwgDw8PIiIKDQ0lNTU1Oj9+/dEROTl5UWNGzdm0rW1tWVG8d6+fUuzZ89mjsVq1qwZTZ48mYiIbty4QSEhIeJSgURg2w7JIIv9d0mwa7BYUKdOHTg7O+PTp09o27Yt6tatC0tLS9ja2uL27duIiYnB9evXmfUny5YtAwAEBARASUkJTZs2LXVe+vr6SE5OhpycHHx8fLB161Z8+/YNr1+/RnZ2doXX6rCUn/T0dBARdHR0xJJeYGAgXF1dwePx8PfffyMrKwvZ2dkYOXIkunbtWup0kpOTkZOTg4CAANy7d48JL1gvWF6Sk5Nx9OhRJCUlITs7G3JyctDR0YG6ujo+ffqEyMhIqKiowNnZGTk5Odi8eTMWLFgAAwMDuLi4gMvlwtLSEmPGjKmQHJUJEYHP5yM/Px+KiorYs2cPDh48iMjISCgoKODdu3cwMzMDAHTs2BEdO3Zknj1x4oRIOmvXroWKigoAYOrUqUhOTmbujxw5EnZ2dgCA+Ph4nDlzBlOnToW+vj6uXbsGPT09CAQCzJ07Fy1btsTOnTsREhICPz8/eHp6QklJSexlT0tLw6lTp/DkyROsXbuWXYvFInmka9+JF1m0gKviryM/Pz9m7VX79u1JT0+PXr16RRwOhxk96N69OwEga2vrX6Z16dIlAkB2dna0fPlyunz5Mu3bt4+cnJwIALm7u1Pbtm3J2dmZjh07JnYngQVURT1XNZKTk4nD4VTY31SBrrt370716tWj169f06xZs2jNmjX04cOHUqWRn59Phw8fprZt2zJ1TllZmVRVVYnL5VZonV5iYiLt3buXrKysGF9O9erVY040kJOTIysrK+rYsSO1bt2a5OTkiMvlkpeXl8jIbWRkZJkPeRYnpanTffv2JRUVFcZnWXJysli9nJeVL1++MCNkhw4dIhUVFcYT/v79++n169diyysoKIgZkS8o/61bt6hv377MTujExMQSnbuybYdkkMX+uyQ4RETSMe3ET3p6OjQ1NZGWloYaNWpIW5xSQURIS0uDpqYmOByO1OQQCAR49OgR4uPj0bdvXyZcRUUFnp6eOHToELKzswEA6urqzDqNAp4+fVrkSFZoaCisra2LzFNHRwcGBgZ4+/atSHjdunXRoUMHdOzYEe3atYOqqmpFi1dl9FzVGTx4MAICAhAREVHk/StXrpSYBhEhOTkZo0ePxrhx42BkZISNGzdi3LhxxY52Pn78GC9evECNGjXg4uICLy8vAICDgwNcXV1Ro0YNvH37FufPn4eioiKMjY2xYsWKYtcXFQWPx8P58+dx5swZ5OfnAwAUFBRw6tQpyMv/bzCfiETqSGpqKgQCAXR0dNCtW7dS51fZlKZOL1y4EJs3b8a9e/eq5K5cgUAAOTk58Hg8ODg4YMiQIZg3b16hd1Ba7t+/j1OnTmHLli0AgPDwcNy8eRM1atTAkCFD8Pr1ayxbtgy7d+/G69ev4ezsjLdv36J+/fo4ceIEBAIBhgwZIpIm23ZIBlnsv0uCnSL8zQkJCYGXlxceP36M7OxskQbkzp078PDwQGRkJGNcAYCVlRX69euHuXPnMmG3bt0qsvO0srKCUChESEgIXr16hVevXiE5ORkpKSmIiYmBqakp/v33X9ja2oKI8OrVK/z333//x95ZR0XVfX38O3SKIBiAUoIiYCsmGGChYrdiY4s+diA2disGit3dHSiggiKKdHd3z8x+/+Dl/hxBcmBA57PWXQtunHPunnvP2XefffbG06dPcfToUWhoaODy5cvo2rVr9QpCCABARUUFoqKilb7e0dER9+/fh5aWFkRERNCjRw88ePAA8fHx2LhxI86dO1dsqiYyMhJbtmyBhIQE8vPzmXAgLVu2ZKajASAvLw8AsHTpUhw5cgRr167F8uXLoa6uXma7OBwO1q9fD19fX1haWmLEiBHIzMyEoqIij3IFoNggWpenlhQUFEBEtVK5AsA8a+Li4vj27RvjSL9z504EBgbixIkTxX6PvLw83Lx5E23atIGBgQFiY2Px48cP9O3bl3E3yMjIQL169aCtrY158+Yx1xoZGeHatWsAgC5duuD8+fPQ0tICAHz79g0RERGwtLSEvLw8AMDJyQlxcXGwtrYGAOzbtw/9+/dHq1atqlcwQv4KhArWP86iRYvw5s0bAECPHj3w/v17iIqK4vr16+jRowcA4NGjRwCA7t27Y+DAgVi9ejWOHTsGAMjNzS3Tf4LFYqFly5Zo2bIlxowZU+q5WlpasLS0BAD8/PkTM2fORM+ePbF582asXLkSIiLCha/VyY8fP9CuXbtKXcvhcHD37l2IiIhAVVUV/fv3h4yMDDQ0NAAAzZo1Y6yfly9fRmpqKiQkJPDx40c0a9YMW7duxbRp05jn0czMjKd8AwMDAEB2dja2bNkCe3t7bNy4EcePHy/zuQgJCcHPnz+xevVqRlmvrnhutYkmTZogPT0dP378YHykaivi4uKMD6aamhrzwZeamoqkpCSIiopCU1MTkZGRmDt3Lm7dugUDAwPcuHED//33H/Ly8mBpaQlLS8tyWZrExcV5rFX29vYgIly8eBGDBw9G/fr14e/vj4yMDABARkYGtm/fjiZNmqBVq1aVtrIJ+XcQjlb/OLGxsczf79+/BwAcOXIEw4cPx82bNwGAGbw+fPiAdevWYfPmzczgNGXKFCQkJFRL21q1aoV3795h1apVWLt2LTp16sS0UUj18PPnT2hra1f4utjYWKxZswYAoK6ujhEjRkBMTAx37tyBhoYGhg0bhu7du0NUVBTh4eG4f/8+nJ2dERoaim7dusHe3h4KCgro1q0bUlNTYWJign79+gEoDCfw5s0bnD59GgDg4OCARo0aYcyYMYiLi2MsW6WhoKAACQkJfPnypcL3Vpcpmu7/ddq/LjBp0iRs3LgRAHD79m00b94cxsbG4HK50NHRQVRUFPr27QugcFrb398fQOHHXFWUnqioKMydOxfPnz8HAGzduhUHDx4EAMjLyyM2NhajRo0CEWHKlCnYsGFDVW5TyF+O0IL1j/Pp0yfExsaiV69ekJSUxOzZszFjxgwQEXbs2IHBgwcjMTER3759Q8+ePVGvXj04ODgwsXMWLVqEadOm4cGDB9XSPjExMWzZsgUDBw7E0qVLYWpqCldXV3Tu3Lla6vuXISJISEhg9+7d+PHjB6ysrDB48OAy41+9fPkShw4dgoyMDPT19ZGcnIzDhw8jNDQUIiIijGIEAEpKSjA3N8fw4cNx+/Zt9OvXDwMHDmSOL1u2DAsWLGAsGVwuF+vWrcPPnz/RtGlTAIUR4lNTUxEYGIhGjRoxK9tKQ0VFBRMmTICTkxMGDBgAHR2dyoiozuHh4QGg0BXg+/fvMDIyEnCLKs7w4cNRr149pKamoshl+FffO0VFRSgqKvKlLmVlZfj7+6NJkyYAChW2X92URUREICIiAg6Hg27dupXr2RPy71IhC5adnR3zhVC0NW7cmDk+derUYse7dOnCU4afnx+6d+8OdXV1bNq0ieeYpqYmWCwW3NzcePbb2NigV69eFbw1IUDhkunnz58jNTW1xOOSkpLQ0NBASEgIfH19sXTpUoiJicHT0xPfvn1D69at4ebmhunTp+PZs2e4ceMGYmNjUVBQgCFDhqBRo0blsiBUle7du+PDhw9o2bIldu3aVe31/YuwWCz4+PjA0dERSUlJGDduHFRUVMqU9/PnzyEpKYlRo0bBz88PXbt2xbRp03D+/HmcP38eq1atwu7du9G9e3dcv34dBQUFmDZtGjp37sykNPkVKSkpxjcnKSkJP3/+hJycHBYvXoz169fj1KlTzPL/uLg43L9/Hx4eHggJCYGrqyuuXr2KXbt2YdGiRVi6dCl27dqFkydP4tatW1BRUamQY3xdhoh4puRv374twNZUHnl5eYwcORIzZsyokn9geZCSkmKUq9IQFRXF3LlzMXXqVMyfPx8LFiyo1nYJKaSu6SAVniI0MDBATEwMs33//p3n+IABA3iOF/nvFDF//nxMnjwZd+/exf379/Hhwwee41JSUli5cmWFb0RIIVwuF+/evYObmxvu378PVVVV9OvXD8rKylixYgW+fv3Kc35sbCy+fftWbJqvaOpw27ZtaNeuHQ4ePAgPDw9cvnwZ79+/h7i4OCwtLREbG4vdu3fXyL2JiYlhxowZuHfvHk8MHiH8Q1paGtOmTcPHjx8RFBSEUaNGYcOGDYzjeUkYGxuDw+EwVidLS0sYGRlBVlYWMjIy6NatG/T09DB58mTEx8fj7t27AIDGjRsjPz8fOTk5fyxbRUUFCxcuBFCYAaBTp05o2LAhuFwu+vbti3r16sHJyQkbN27E4sWLsX37dty9exdJSUlo2bIltLS0kJqaCk9PT7Rp0wb79u1jcigmJyfDxcUFLi4uYLPZ/BJhrYCIMGzYMERGRjL7kpOTcf78eXC5XAG2rOJMmzYNffr0QUFBAbKysgTdnGL0798fqqqqgm7GP0Nd0kEqPEUoJibGozH+jqSkZKnHU1NT0a5dO7Ru3RqqqqpIS0vjOW5tbY1jx47h0aNHGDRoUEWb98/x6dMneHh44PPnzwgODuYJxFhE8+bNoaCggF27dmHXrl0wNDRE06ZN8f37d54OWEpKCh07dsTly5cxYMAA3L9/H5GRkRg9ejRERETQvn17tG/fHkSEadOmwdXVFS9fvqzRFUoTJkzAypUrcf78eSxevLjG6v0X0dbWRrdu3XD+/HlERkaiefPmxc5hs9mIi4tDfn4+WrRoATk5OWzevBlLlixB06ZNefxhihSbuLg4BAYGonfv3nj+/DlmzJgBFosFJSUlNG/eHNbW1pCSkkJsbCyOHDkCf39/5OTk8KRpEhcXZ35/LpeLxMREJCYmonHjxlBUVCyXH86ZM2eY90VJSQn9+/fHsGHD6vy0T1ZWFkxNTZnpwUePHmH69Onw9PSEs7Mzxo0bBxEREbx+/Rpdu3aFlJSUgFtcMvn5+fj48SOmT58OFxcXdOjQAW3atMH58+cF3TQehg4dKnR6r0Hqkg5SYQtWQEAAVFVVoaWlhXHjxiE4OJjn+Js3b9CwYUPo6elh1qxZiI+P5zm+adMmmJubQ0ZGBiIiIjyRg4FCE92cOXOwevXqOvelVdM8fvwYxsbGmDdvHj5//owmTZpgypQpGDFiBHPOhg0b0KpVK6azBQqtAhISEpgwYQJu3rwJNzc3XLt2Ddu2bUNISAhmzZoFFouFwYMHY86cOTyRvblcLi5fvoyzZ8/C0dGRWWlYUzRu3BgjR47E4cOHhc9HNfL582d069YNc+fOBYBioQyKWLVqFR49egRjY2PExsaiX79+iI+Px/79+zF16lTY29vj6tWruHHjBmxtbQEUTimeOHECOjo62LhxI/r06QNLS0sYGBjgzZs3ePXqFQDg48eP8PHxQc+ePdGnTx+MGjWqxOjtIiIiaNiwIVq1agUlJaVyD3J+fn5QVVXF0KFD0ahRI1y+fLlccb5qM1++fIGcnBzzvoeFhWHAgAHIyMjAkCFD4OrqCnFxcYSEhKBPnz54/PgxgEI/ul9DYuzfvx8/fvwQyD0U4enpCSsrK4SFhWHNmjVwcnLCokWLBNqmkoiJiUGHDh3w9OlTQTfln6Au6SAVsmAZGxvj3Llz0NPTQ1xcHLZs2YJu3brB29sbDRo0wMCBAzF69GjGp2f9+vXo06cPPDw8mKX8gwYNQkJCAtLT06GiolJiPevWrcOZM2dw8eJFTJ48ucI3RUSoK/FTi9pa0fbGx8djxIgRaN26NT5//syTYub169e4c+cOgMKB0dvbGw0bNoSUlBR27txZYqiEIqfxRo0aYfLkydi3bx9sbGxKPO/r168YOHAgJk6cWO52e3h44OLFi4iMjERSUhJcXV2Rn5+PV69ewcTEpEL3vnDhQpiYmODOnTsYPnx4ua6prJz/RRITExm/hdGjR+PmzZtITk6GkpISj/yICJGRkRAREcHnz5/x+fNnAIUr9gYPHowbN24gLCwM379/B4vFgoKCArMi1dDQEFevXkV2djaMjIzQqVMnsFgsRERE4MOHDxg4cCBSUlIgKSnJJBx+8+YNxMXFceHCBUhISFT5PqdMmYJHjx4xCzRERUXRokWLUp+R2vT8PHjwAB8/fkRCQgLExMQQFRWF+/fvMzK+dOkSsrKycP36deTk5EBfXx/i4uIgImhoaODHjx/Q1NQEEcHb2xsvXrzAunXrABTGf0pLS2NCY9QUubm52Lx5MwYOHIgePXrAzc0NkpKSICImfEhN/wZl9R2NGzfGgwcPwOVya9XzUdcoj+zqig5SRJUiuWdlZUFHRwcrVqzA0qVLix2PiYmBhoYGrly5wmNV+ROampqwsbGBjY0NNm3ahDNnzsDPzw8rVqyAp6cnEx/nTxRFgg0LC6szkWCJCJmZmZCTkyv3lzcR4dKlS9i3bx9WrlyJ0aNH8xyPiIjA1q1bMWLECPTr169CpmsiwpEjR+Dk5IRevXph/fr1PPGCevXqhczMTDx8+BCvXr0Ch8NBnz59oKqqisjISNy9exeSkpIYMWIEuFwuzp07hzdv3iA6OhqNGjVCXFwcT322trYYOnRoudr2K/PmzUNiYiIuX75cLsfXysj5X+XQoUM4e/Zssf3r1q2DkpISwsPD4evrC3NzcxAR7ty5g48fP4LNZjPPmrGxMT5+/Mh0mt26dcPHjx+ZiOiKiooIDAyEoqIiUlJS0LhxYxgaGiIxMRGenp6YP38+3N3d8fHjRwCFyg+Hw4GWlhZmz57N19x1WVlZiI6OhoyMDNTU1Eo9t6IfA8D/ItuHhoYiJiYGKSkpSE9PB4fDgYiICNq1a4fOnTtXKA/nly9fYG1tjbZt2yIvLw9sNhsyMjJo2rQpvn37hvz8fJ4QLAoKCrh161a5Y38VFBRAXFwcBQUFiImJYfIVVjdEhKlTp2LMmDGwsLCokTrLorS+Iy0tDfLy8sL4fHwgPT0dGhoaFYrkXtt0kN+pUpgGWVlZGBkZISAgoMTjTZo0gYaGxh+Pl8bSpUtx9OhRHD16tMLXKigo1CkFC0C50jBwuVysXbsWJ06cQFpaGiwtLTF06FCm04yIiEBGRgYMDQ1hYWGBlStXon///hUOqLhmzRpERkbi5MmT0NTUxNq1a5ljCxYsgLW1NRPJWEREBFwuFyoqKkhISED9+vWRkZHBOAnKyspi6tSpsLGxwfv373HgwAFMnjwZdnZ2aNasWaWVncWLFzP+QeXxxaqInP91XFxcEBISwvzPYrFgZmYGMzMzfPnyBTExMbh69Sr69esHFouF+Ph4NGjQAK6urmCxWDA0NESXLl3Qq1cv7N69GwEBAdDU1ERgYCAAYObMmTh58iSysrLQq1cvyMnJwdPTE9evX0dqaipYLBaWLVsGAOjUqRMGDx4MQ0PDUgcxIkJgYCDExcWhqalZofuVlZXl8e8qjfK8S0FBQczKRj8/P/j7+/OklpKXl4eioiLExcWRnZ2NmJgYAIVK6J49e9CpU6cy63B1dUVcXBwcHBxK9DkjIgQEBCAmJgbq6urQ1NSs1Aq8/v37Iz09Ha6urhW+tiJERkYiMTERbdu2ZazvtYXS+o7//vsPb968QUBAgLBfqSKVkV9t1UGKqJKClZeXx/hIlERSUhIiIiLKtez1d+Tk5LB+/XrY2dlVOP9XVYPN1TS/Liktjbdv32LHjh0ACoM56unpYeXKlbh16xb279+P9+/fIz4+Hvfv30erVq2KWZ/Ky507d3D8+HEAwPr16+Hs7Ixbt25BVlYWM2fORL169TB27Fj07t0bd+/exbNnz/D161cYGBhg2LBhCAkJYfw3TE1N0ahRI3h4eGD06NHYunUrVq1aVeE2/Y6xsTEWLVqEJUuW4ObNm7CwsMCgQYNgZGT0RzmWV87/Ovb29tDV1WXyuc2ZMwcnT57Epk2bYGFhgS5duqBt27aMHOfOnQsiQmhoKD58+IAbN24gKSkJ7dq1Y0I8FFmulJSUYGBgwMROO3v2LDgcDnR1dcFisRifhyIlvlmzZuVSDPbs2YN3794BKFwIYWJiUi0ru0pSZOLi4hAcHIxv377BwcEBXl5ekJSURKdOndCmTRuMGTMGenp60NPTg7a2No/1jYgYxfH9+/cwNjbG9evXSw0M+v37d+zcuROWlpYQFRUt8ZlmsVho0aIFWrRoUaX7vXDhAuLj46v9nXn16hWmTp2K7OzsWrnI4E99x+bNm/H9+3eIiIggNjYW9vb22L9/v2AaWcepzDNWW3WQIio0Rbhs2TIMGTIEzZo1Q3x8PLZs2YK3b9/i+/fvaNCgAezs7DBy5Eg0adIEoaGhWLNmDcLDw+Hj48PkdiqNX81zQKGZWl9fH1FRUTA2Ni73FGFdShZZkUSiXC4Xd+/ehbOzM5ydneHu7s4c27p1K44cOYL169cziXIrS1RUFOzt7RETE8NEc9+6dSsTqRsoTFfC4XDK9bsCwNixY/H161d4e3tXaCqkNIgI169fx8WLF/HixQtkZ2dDXV0dc+bMwfLly3n8dIQJWytOcHAwo/w4OTlh2rRpGDhwIOP4/jscDgf79++Hs7Mz+vbtCysrqz++hw8ePICfnx/k5OSgqqqKnz9/omHDhpCVlYWenh7atm1b4nVJSUlgs9lQUlJiniMXFxfY29tj0qRJiIyMZPqJQ4cOMWl6+EVRR1uUUmXZsmU8095DhgzBtGnTYG5uXu54W69fv0afPn3QtWtXSEpKYt26dUyU8l/Jz8+Hg4MD1q9fD21tbbx+/RpA9Vpla2plXGxsLDIzM6Gjo1Pr3s/y9h0nTpzA/v378fPnzxps3d9Decbv2q6D/E6FLFiRkZEYP348EhMToaKigi5dusDNzQ0aGhrIycnB9+/fce7cOaSmpqJJkybo3bs3rl69Wu5B+HfExcWxefNmTJgwoVLX/22IiIhg+PDhkJeXx7Nnz5j9s2fPxuzZs+Hi4lIsf9uvrFu3DpKSkli/fn2p9aipqeHQoUO4cuUKo2B5e3vznCMjI8Pz/40bN/DkyRMsWrQIrVu3LlZms2bN8PjxY3h5eZWYFLoysFgsjBkzBmPGjEFeXh6cnZ1x8+ZNbNy4ETdv3sTVq1fLPfUjpDja2tqIiYmBtbU1E2smOjr6j+f7+vri7du3EBERQXBwMGbPng0ZGRmoqqqiW7du6Nq1K+Tl5REQEABHR0cmsW/Pnj3LjDuTnZ2NS5cuMc7ELBYLqqqqaNiwIURERKCkpMT4Ivr6+iI2NrbY8mt+kZ2djcmTJ+PWrVsYN24cxo0bB21tbWhpaVUqiGnv3r2xZMkS7N+/H5MnT0ZWVha8vb2RlpaG+Ph4xMfHw9fXFzdv3kRkZCQ6duyIpKQkZjCaPn06DA0N8d9//yEhIQELFizAunXrYGRkhLdv3+LFixfMCsHr169DUVERZmZmyMvLw6NHj9C1a1c0btwYcXFxCA8PZ6YoZ8yYgaCgIHTp0gWrVq2qtqTX3t7eaNmyZalL6+sCs2fPxoQJExAUFPTPZAqoaeqaDlIlJ/faRl20YL18+RJ+fn5gs9n49OkTYmJiGIdVNTU1LFmyBF++fIGnpycaN26MBg0aYMaMGQAK49t06dIFioqKePToEcaPHw8/P78/dlQHDhxAampqufJnZWVl4dy5c0wm+rCwsBIdXdlsNrZt28aUaWFhUWLanPT0dPTr1w/+/v5MeInq4suXLxg/fjxiY2Ph6OjI5A4TWrAqzqZNm5jfVkpKCseOHeMJ2/E7iYmJkJCQQEZGBq5du4b69esjJCQEXl5eICJISkoyQUt1dHSgpqaGjh07/jFKMhHBw8MDx48fR2pqKqPMxMfHIzw8HAEBAfDz84O4uDjGjh2LT58+wc/PD0Bh/Le9e/dWWQaZmZkICwtDYmIi6tevj1OnTiE+Ph4XL14s9yrWsuByudi3bx+OHz9ezF+ExWJBTU0NgwYNwoIFC5CVlYWvX79izpw5SEtLw759+9C8eXNMnjwZ0dHRmDJlCnbt2oV27drh9OnTOHbsGLPCs0+fPtDV1cXx48cRGxuLJk2a4MGDB7CwsMDRo0dhY2OD/Px8AEDHjh2RkpICAPD394eoqCgOHjwIS0tLvlgGORwO9uzZg5UrV+LQoUO1Nhp6RfqOd+/eYcCAAQgNDUXDhg1rqIV/B3Vx/C4LoYIlQFxcXNCzZ09oaWkhJCQE7du3R/PmzSEqKoqcnBx4eHgwOf+0tLSQlJSE9PR0AICqqiqioqKYspKSkuDg4IA1a9YgOTkZ+/btw4oVKyAlJYWtW7eiVatWGDt2LHO+ra0txMXFS7RmJSQkoHXr1swqJEdHR0yfPr3Eexg1ahRu3ryJ8ePH4/Lly+jUqRM+ffpU4rmpqakYPHgw3N3dYWdnBwMDA7i4uICIYGtrW8wqVhXS09Mxffp03Lx5E8OHD2ec6oUKVsX4+vUrVqxYAVFRUTx9+hSrVq1Ct27dSr3m1y6lSNbp6elwc3NDRkYGlJWVcf78eejq6hazXHE4HPj6+iIhIQEZGRlwdXXFjx8/oK+vjyVLlhT7eGCz2bC3t2eeOVFRUZibm8Pf3x96enqYOXNmuUM6EBESExMRGBiIkJAQZvs1jk79+vXRtWtXHDx4sMTAq1WFiBAeHo6IiAgoKipCRUUFDRo0KNEPraofDVwuF6mpqZCVlYWkpCSSk5MRHR0NQ0NDAGCsloaGhmCxWEhLS4O6ujrOnDlT6eTRCQkJTJT9/Px8SEtLY+3atejTpw90dHSYfJO1iYrIOSMjA0ePHsWKFSvAZrORkpIiVLTKSV0bv8uDUMESIA8ePIClpSWjYCUnJ/M4pefn5+PKlStQVlZmIsoWpf1QU1P74/SXj48POnToAF9fXzRu3BjLly+HiooKE+MmLy8P//33H/M16+DggBEjRsDc3Bzz58+Hm5sbAgICcOPGDXTq1OmPjvKurq7MYCshIQFjY2NcvXq1VIfC3NxcrFu3Dvv27QOXy0W9evWQnp6O27dvY9iwYZUR4x8hIly9ehXjx4+HiIgIvn//Dn19faGCVQkyMzMhLy+P//77D6ampqWeW5KCVcS1a9dw4cIFKCoqYu3atdDT02OOubu74/jx44xPk7i4OJSUlDBjxgwYGxuX+rv5+/vj8uXLPAF1ixgyZAgTTPRXcnJy4O/vDz8/PwQEBMDf35+x2CgoKEBLS4tnU1FRwZgxY2rN8yMIq2x2djbjpO/l5cXEpiovR44cwcqVK/Hjxw9oaGgwffbMmTPx/PlzfPv2rdqmIitLZeV89+5djBo1CsHBwbVScaxt1LXxuzwIFSwBMWjQIDx+/BgiIiKMgvXt2zfm67GqpKamlqtDcHV1xahRo3h8azp27IjDhw+XOY3n5uaG0aNHQ1lZGRYWFli7dm25VwAFBAQgKSkJz58/h62tLX78+FEtQQ2Dg4Oho6PDBCatX79+rRkg6xJFCtbIkSMxfPhwyMrK/nF1X2kK1u7du5nVfkBhkEY9PT1kZ2fD3d0dbdu2xcSJE6GpqVmpWFdpaWnMSkQrKytmv6ioKHr16oX27dsjISEBHh4e8PHxYabjdXV1oaenB11dXejq6v4xInxlVxNVB4Kc9raxscGjR4/w9OlTaGlpITIyEvfv38fUqVMhLS2NzMxMpKenQ1VVFXFxcZg4cSJWr16N1q1bIysrq1gojfj4eMjKykJWVrZG76M8VFbOSUlJePz4MSZOnCjsc8pBXRq/y0uVwjQIqTwDBgxg0lQUYWRkBKDQV6qqKSHK+xXYtWtXzJgxA5s3b8aWLVuwbNmycg9sXbp0QURERKXap6uri61bt+Ls2bOwtrautojRWlpa6NChA6Kjo5GSklLrvo5rM1wuFytWrMDr168Zp92bN28yCx8kJCTg6OhYoVAg8+fPR+vWrcHlcpmULb6+vigoKMB///0HExOTKg1Gv7Zl0qRJuHDhAoDCqceXL1/i5cuXzPGpU6eiU6dOUFNTEwaKrCAaGhoIDw/H+fPnYWtri8jISCxcuBDdu3dH69atMXPmTOTm5uLOnTvMR2Tjxo2hoqJSYvTsv3EarUGDBpg0aRLs7Ozw48cPXL9+HbGxsVBSUuJroFwhtRehBUvApKamYunSpTh79izz5T1//nwcPny4xtqQlJSELl26oEWLFiU6qFcXvXv3xps3b/D+/Xt0796dL2VmZmZi0qRJCA8PR9OmTZGQkAATExOcPn0a7du3x5UrV/5pJSsvLw9RUVHIzMxEZmYm8vPzISYmBnFxccjLy/NMoZ49exZTp07F8OHDkZaWhtDQUISHh4PNZvOUuWvXLp54S6VZsGqSuLg4zJo164/Hly9f/sf4OX9CaMH6H8nJyQAKE2UDYFZ3slgsPH36FGpqanyzyAuSqsp57ty5MDc3x/DhwyEpKYl9+/Zh/vz5xeT3r1MXx++yEFqwBIyoqCjjyA4AT548+eOKquqiQYMG+O+//7BgwQKEh4fXWFqM1q1b482bN/Dw8OCbghUfH4+7d+8CKHTQBgqnQUVERBAYGIgGDRow4QH+ZnJzc7Fo0SIkJibi0KFDUFNTw5UrV5iVZ39i7ty52LlzJx4/fox79+7BwMAAt27dYo7/mgz5+vXrOH/+PJYvXw5LS0uMHz+erwsVqkqjRo1w/fp1vH79Gn5+fvD09ERKSgrzIfN72iYhFUNRURGhoaGMgvCrFfD3BLr/MocPH4aoqCgTx1BfXx9AoYKfm5uLixcvCriFQqoLoQVLgBw/fhzz5s1jfLC4XC4+fvzIJF6uSVJSUtCqVSv0798fTk5ONVJngwYNYGpqips3b/L1C7wounZycjKSkpIwefJkREREMHLOz8+vVNqQ2oS3tzfi4uLA4XDQu3dvfPv2DWZmZujTpw+uXr2Ka9euYeLEicy5GRkZ6NatG0aPHs1E45eTk4O4uDg4HA7YbDbevHmDhQsXFqurKGcewKtgFZW9evVq5v9Tp07xTAHVNt+TosjP7u7u6NWrV4VXAgotWP9j9+7d2LBhA8LCwqCsrFzj9dcU1SXnw4cPo1evXjAwMACHw4GY2L9t76hr43d5+Ld/UQFTlJsNAPT19XH06FGBKFdA4ddo+/btmbxoFSE4OBg7d+6Ev78/unTpgpkzZ0JbW7vEc4siwN+5cwfJycm4ffs2EhIS+OqDwWKx0LhxY2ZJf2hoKN6/f4/9+/cjJCQEGzZswObNm2vd4P8nAgICMHjwYPj7+5d4vHfv3ggKCkJqaipu3bqFzp07IykpCYqKiuByudi9ezfYbDaaNWuGixcv/lG5rFevHqNgFYXdAFCqf5KBgQFu3ryJp0+fIiMjA4qKilW82+olKSkJUlJSmDlzpqCbUueZPXs22rZt+1crV9VJUdyvt2/fYvXq1XBxcRFwi4TwG6GCJUCsra3x6dMnREVFwcfHB6amppCRkcHx48dhamrK+MnUq1cPOjo61f6Fk5aWVinLjpOTExwdHTFy5Ehs374dO3fuhLq6OmbOnIno6GgEBQVBRkaGWSlZlCC6iKLl8/Hx8SU6wPKD7t27w8DAAMbGxlixYgVUVFTKlSRakDx69AgWFhbQ1NREaGgos79p06YoKChAbGwsWCwWIiMjoaOjg1atWkFaWhrKyspQUVGBjIwM8vLysH//fmRkZAAAZs2ahdOnT5dYX7NmzfDq1St8+fIFs2bNKnfaEnFxcQwePJj5vzYbxU+dOoWCggImsrmQylOvXj0mc0RWVlatXAFYm4mKimLyZWpqaoLL5QoXW/xlCKcIBQwRISEhAceOHQOLxcKjR4/w8ePHEs999OgRBg4cWG1tWbt2LQ4ePIiIiIgKOYJfunQJEydOxKRJk5Ceno579+4xx5o3bw4jIyPk5OSgSZMm6NGjB3JzczF//nwAwOrVq7F9+3b06NEDDx8+rLbf7Vcz/+zZs3Hv3j2EhobWysSyAPD582d07doVHA4HLVu2hJeXF75+/QozMzOIiIhgyJAhGDZsGPr3719mehZfX1/s2rULp0+fRsOGDavke/T7FGFJ1BYn95JITExEvXr1yh189HeEU4TFWbt2LT59+oTnz58LrA3VSVXkPHnyZLRp0wbLli3j2Z+VlQVDQ0OcPHmy1PRm/xJ1cfwuC6EFqxYgISEBW1tbsFgsrF69Gu/fv8erV6+wZcsWnvP4nbj2dxYuXIidO3fi8uXLf0zoWxLjxo3Dt2/fsGfPHnA4HNSrVw9LlizBlClT/jhVOG/ePLDZbIiJiWHbtm38uoUyyc7OBovFYiJKq6ur11jd5eXhw4eMRcjT0xP6+vq4ePEi1q5di1atWuHJkycVUoBbtmwJR0dHDB8+vMRAnP8KOTk5YLFYlVauhJSMiYkJWrRoUWOJoWszbDYb06dPx9SpU5no9EV9zK1bt7B37168f/8esrKymDx5crX36UIEi1DBqmWIi4sDALZs2QITExOsXLkS+vr60NTUrPbOq3HjxjAwMGBSZJSXsLAwREREgMPhoGvXrjhw4AAaN25cZvTimnbqDAoKwvjx4xEWFoa9e/ciMjISS5YsYfLnqaurQ1paGg0aNEDLli3RrVs3gXSARemLmjZtiuvXr+PMmTOIjo7GkCFDcPTo0UqHmRg8eDDPVN6/xuHDhxEWFoYDBw7U+UUOtQnhisH/kZ+fj/j4eBQUFAAA7OzsmGOKioo88f42bdpU080TUsMIFaxayL59+wAAGzdurNGQDVFRUYiIiCgW56g0nJ2dYWJiwvzv6urKOOoXxcWpLdja2iIoKAjTpk2DlJQUevfuDW1tbbRp0wb5+fnw8vJCXl4e4uPjmWm0Pn36YNOmTXwLI1EWRMQ4ikdERODw4cMYPXo0li5dyizvrgxBQUF49epVqXGh/nbGjBkDcXFxoXJVDbx58wYFBQUwNzcXdFMEioyMDBNA+ubNmxg2bBjzvPXu3Ru9e/cWZPOE1DBCj7paRE5ODjZu3Ihnz56hV69eTKqaa9euYcKECXj16hVyc3OrpW4iwoQJEyArKwtbW9tyX/fkyRMAhR3L0qVLcffuXcyePRtAYSqd2oStrS3GjRuH8+fPY+7cuRgxYgQ8PDxw6dIl3LhxA58/f4aXlxdiY2ORmJiIS5cuITExET169MCwYcOQl5dX7W38/PkzXr16hStXruDr169ISEjAyZMnq6RcAcDTp09ha2tbI/dQW3F1dcXhw4d5FlgI4Q8nT55kPgz/dVgsFjw8PGBtbS2UyT+O0MldwBARoqOjsW/fPuzZs4fZb2FhgcjISHz79o3n/KFDhzKBNPmJp6cn2rVrh7t372Lo0KHlvq6goAARERFQV1dnfFuysrIgJycHOzs7bNiwge9trQy/OqqmpaWhoKCgXCsWuVwurl27BisrK9jZ2fHEfKoOVq5ciTNnziAmJqbKlpa8vDxMnToVQ4cOxfjx45n7rwp12cn9+/fvCAkJYZ7vyqzaEjq5/4+UlBTcvHkTkydPhoSEBNP//m1UVs55eXnClDgVoC6O32UhtGDVAjZu3FjsS+fhw4c8ypWlpSUmTpyIXbt2VUsbnj17BgAVNvGLi4tDW1ubx3G4aIrRwcGh2ixuVaF+/frlDgchIiKCcePGYdCgQTx57KoDIsLt27cxdOhQvkxjSUpKQl1dnbFa/Y2DX0UwMjJilKtLly7hwIEDAm5R3SYiIgLW1tb4+vUrWCzWP/98/c7nz5+xYcMGZGVlCbopQgSEUMGqBXTr1o35e/Lkybhw4QKePHkCT09PZGVlgYhw584dXLhwAXp6enytm8Ph4NKlS1i7di1mzZrFl7AFRUpV/fr1/5ovuIKCAsZxtbpwd3dHQEAAhg8fzrcyJSUlcfbsWb6V97egqamJBg0aCLoZdQ53d3eMHz8eBQUFMDIyQnx8PLp06SLoZtVK3r17hytXrlS6T42KikJOTg6Awo+vf3l6v64iVLAERGBgIA4cOIB9+/bh7du3AIB169bh3LlzmDhxIvr37482bdrwPbdbSkoKz/87d+7ExIkToaamhqNHj1a5fD8/PwwfPhwqKip4//59rZoiqixfv37Fo0ePMGHChGqrIzc3FwsXLkSrVq3Qr18/vpVramqK8ePH1+rgn4KgW7duGDp06D+Rl5KfZGRkICYmBpmZmWCxWEIltRTWrFkDPz+/P05DExEGDRqEp0+fAgCio6Nx7tw55vigQYOwZMkSAICPjw+kpKSYmQYhdQOhgiUA5syZA11dXdjY2GD58uVwdnYGANy+fZuv9RAR4uPj4enpibdv38LBwQFKSkowMjJC8+bN0blzZyYdiri4eKXDJoSHh+PYsWOwtLSEvr4+IiMjcffu3b+m83VwcICGhgamT59eLeVnZmZi1KhR+PbtG06dOsWE6uAH5ubm4HK5GDZsGLKzs/lW7t/AsWPHcP36dUE3o07Ru3dvbN68GTY2NoiOjhZ0c2o92dnZWLFiRYnW76KYbEXuAK9evcKcOXOYj+ATJ05g3rx5AAotrseOHUOPHj0AoNSE7UJqD8IwDTUMl8vF8ePHi+3v0aMHXzv7z58/Y+zYsQgJCSl2LCsrC8OGDUNycjISExPRt2/fCi3f53K58PPzw8uXL3HlyhV8+PABYmJi6Ny5M44cOcKEQfgbePjwIS5fvow5c+bwVfEpIiAgAKNHj0ZQUBBu376Nrl278rX8goICaGlpwcDAoNZGrRcUurq6aN26taCbUeeIj48Hh8NhUlz96xRZh1ksFnx9feHk5AR7e3sAQM+ePeHn54c3b97g6tWr0NLSwvr160FEWLt2Le7cucOUM2zYMAwbNozJzFC0ihwoXKU9Z84cAMCHDx8wZswYeHt7VzomnpCaQahg1TAiIiLw9fXFvHnz8OrVKwCFL+b+/furnPA4MzMTJ0+exOfPn/HkyRNoaGjgxo0bUFdXR/369cFisaCrq1vpabv8/Hxs3LgRDg4OSE5OhpiYGPr164dz587B0tLyr1n5kZiYiLlz5yI0NBTu7u7o378/1q5dy/d6du3ahTVr1kBDQwMuLi4wMjLia/kRERHo2rUrHj58WKPR8usKo0aNEnQT6iQjR47EyJEjkZ2djZMnT8LCwgLNmzcv17VsNhv3799Hq1at0KJFCyQkJODjx4/o27cvpKWlERERAQBlBimuLXA4HIwfPx5mZmaYPXs2Hj16hHfv3iEnJwfS0tKYPn06ZGRkcPHiRUYZatKkCTIzM4v5p5aV8qoILS0tTJgw4a9wv/jbEU4RCoDVq1fj1atXmDZtGgIDA3H79m14enpCVFQULBYLHz58KLOMpKQksFgssFgszJs3D6dOnULXrl2xevVqhIeHY+rUqXj69ClGjhwJY2NjtGjRAnp6elV6KRcsWIBt27ZhxIgReP78OZKSkvDw4UNMnjz5r1CuYmNjERgYiICAANy4cQPu7u64evUqHj9+zPcVUu/fv8eKFSswf/58eHl5VUm5OnbsGLZu3QoA8PLywvjx4xEXFwdZWVlMnDhRGFizBH7+/In169eXaOEVUj4ePXqE48ePF5v+IiJs3boVqampAIDFixfD1NQUACAqKoqZM2fiwYMHAIAvX75gyJAhiI+PBwBs3bqVJxTG0qVLcenSJQCFlvPa5ksoKioKDQ0NKCsrAyhsr4uLC2Mtnj9/PqZNm4YXL14wAYTnzZuHFStWVDqxs6qqKnbt2gUFBQU8f/68WCgfIbUHoQVLABQt2z1z5gwuXboEdXV1hISEMAEQy+PYHhkZyfx98eJFHDt2DL169cKlS5f4bgkpwtLSEidPnkTDhg3Rt29fsFgsJCYm4uTJk/D09IS0tDTGjBkDc3PzSk2nEREOHz6MmJgYbNmypcYyy3t7e6N9+/bIz89n9omKiuLKlSt8t3I4ODjg3LlziImJAQD069evygsZ0tLSGH8YLS0txMfHIyAgAD169MCOHTuq3Oa/kdjYWHTu3BmqqqqCbkqdZcSIERg5cmSxj7aEhARs3boVw4cPR/369TF48GBmpSGLxUJwcDDzzPfu3RvR0dFM2JTVq1czPkhsNhufPn1iFK5r165h7ty5iI6OhrS0NJYsWYJ69erBzs6uxq05SUlJ8PX1Rffu3astdE5pcLlcpKamYseOHVBSUsK1a9dqvA1CykYYaFQApKamwsPDA7dv38axY8egpaXFo2ABhavKfjUhczgceHl5Yf/+/fDx8cHnz58hIiKCLVu2YPHixeByueU2MVcFCwsLPHr0CHp6emjatCnevn0LcXFxdOnSBbGxsfDx8WHOffDgAZo0aYJ27dqV2gGy2Wy4urrypNwpKCjga67C0oIFXrp0CRMnTgQA7NixA9ra2ujRowcaN27Mt/rT09Px9etXDB06FOnp6TzHbty4gZEjR1a6bCLCyZMnmQj61UldDjTKD4SBRgvhcDhwd3eHr68vrKysABQmMx40aBCkpKTg6emJtm3b8rXOnz9/4uHDh1i+fDkAYNu2bWjQoAGsra3x+vVrZGZmFvt9QkND4e3tDQsLCx5fqd9JTk6GkpJSifWWJGdbW1scO3YMoaGhkJWV5edtloslS5bg5cuX+Pz5M3Jycv4KX6y6Mn5XBKGCJUC2bNmCDRs2QEdHB0FBQTwK1qRJk6Cvr4/AwEB8//4dP378QG5uLjQ0NGBiYoJ+/fphxIgRfA/jUBYcDgevXr3ChQsXkJCQAAsLC4wZMwYqKiogIowfPx5Xr17luaZt27bYv38/M00AFKYFOnHiBM6fPw8PDw9mP4vFQlJSEmNO5xe/d5JsNht2dnZ4+vQptLW18enTJ4SGhuLLly9o164dX+uOi4srU1lLTU1lpiFTUlKY+8/MzIS0tHSp03zPnj3DgAEDEBQUBC0tLf41vAT+JgWrKBXSokWLyn2NUMEqpKCgAA0aNEBeXh7y8vIQHByM5s2b48qVKxgzZkyNtgUAZs2aBV9fXzg7O+Po0aMYMGAAtLW1MWbMGMjLy8PR0RGxsbFQVVXFtm3b0K5dO9jZ2eHt27eIi4tDu3btcO3aNfTp06fYfSYmJkJaWppHzhwOBwEBAWjZsmWN3ytQ+B4qKCjwfJTWdera+F0ehFOEAmTdunVYtWoV0tPT0aRJE+Tn50NGRgYdOnSAv78/7ty5gxYtWqB169aYOHEijIyM0K1bN4GuBhMVFYW5uXmJEd9ZLBaOHj2KYcOGQVJSErq6uoiMjMTmzZvRq1cvDBkyBM2bN4esrCycnJwQGxuLNm3aMNdv2rQJa9asqRGfIScnJ8Zvyd3dHQ0bNsSuXbsgIiKCd+/eIS0tDVwuF126dKnSaqmQkBC8efOmzPNmz54NJycnsNlsNG3aFPfv34eKigrat28Pe3t7LF269I/Xmpubw9fXt9qVq78NbW1tYV7CSiIuLo6XL18yU9MaGhoICQmBhoaGQNrj4OAAFouFvLw87Ny5E5KSktDW1saKFSsYJahevXq4cuUKRo8eDX9/f7Ro0QJpaWlQU1PDvHnz0K5dOwQGBmLatGk4ceIE9PX1mZV+nz59AhFh2bJlWLFiBRo1agRtbW2w2Wy+WtrLS5Giz+FwhD6WtRihBUvAFH2FAoV+ITo6OtUSDkBQFDmmOjo64tKlS4iPj0dSUhJ69+6NKVOmYNasWZCVlcXdu3ernNC4NH7/2s/JycGnT5/w7ds3rF27FpmZmSVe17NnT7x7965CdXl7e+Py5cu4efMmfH19ARRGtS9y+i0JFRUVWFlZYePGjdi2bRuWLVuG+vXr49GjRxg4cCASEhLw4cMHDBs2rJi1Ijc3Fz9//kT79u0r1M7K8DdZsIrIysrC7du3YWFhUablVGjB4uXjx4/gcDg82SgECZvNRnJycqVXZCcmJmLWrFk4ePAgmjZtih8/fiA2NhYdO3ZETk4OjI2NcfDgQYSEhGDNmjV49+4dOnXqxOe7KB+HDh3Ctm3b8OXLF9SrV08gU5X8pC6O32UhVLAETG3oJPlJdnY25s2bB09PT8TGxiIhIYGxEjRq1Ag6OjpQVlZGZmYmPnz4AB0dHbx8+ZKv/k4lUZqcuVwuYmJiEBUVBaAwZ5+EhASGDBmCxo0b48WLF2WWn56ejitXrsDR0RGfPn1C/fr1YWlpieHDh+Ps2bP48eMHfHx8kJSUBD09Pdja2mL+/PlwcHCAuLg4evToAU1NzT8+t2fPnsXUqVORkpKC+vXrY9WqVejbty/Mzc2xa9cu3LlzB/fu3av24K5/o4KVkZGBNWvWYOjQoWXm4hQqWLxMnjwZgYGB+PDhQ40tSqlpfpUzUPhM5+bm4uHDhxgxYoTAZJ+RkYHDhw+jTZs2GDx4MLy8vGBoaIjdu3cjPz8fa9asEUi7KktdHL/LQqhgCZja0EnyCw6HgyVLluDEiROYOnUqVFVV0bBhQ4iLi4PNZiM2NhZBQUFISUmBtLQ0OnTogDlz5tRIktjyyvnVq1c4deoU7t27h6ysLBw4cKCYjw6Hw0F4eDgCAwMRGBgIV1dXXL9+Hfn5+RgwYACmT5+OIUOGMAmw8/Ly8PnzZxgbG4OIcOLECfTq1QuGhoblbn9BQQFSUlKgoqICNpuNbt26wcbGBhISEpCSkoKRkRE0NTUrJZuKUJcVrPz8fERFRZU4lcrhcMBiscpUEoQKFi9sNhsZGRl895msTdQGOZdGQkICHjx4gClTpkBUVBRbt25FZmYmtm/fjsjISISEhKBnz56CbmaZ1MXxuyyECpaAqe0vb3nIysrC5MmT8eLFC2RkZGDv3r1MDq3aQmlyTklJwdu3b/Hp0yfY29ujVatWGDduHMaMGcMk105ISMDx48dx7do1+Pr6MrF/xMTEoKysjISEBHz+/JnvDvJ/IicnB+fOncOpU6ewcuXKGguaWZcVrF27diEnJwe2trYACp9bMTExeHh4wMnJCUeOHClzel6oYJXMjx8/sHfvXuzZs+evU7Zqk5wrQkZGBtq1a4du3brx5DisrdTF8bsshE7uQqrM06dPcfv2baxatQqDBg1i8mVVFzk5Oczqyblz50JTUxPdu3dHly5dICoqCg6Hg8jISERHRzOKkKqqKo+lLDg4GLdu3cLbt2/h7OzM+MH17dsXz54947FkPH36FKNHjwaHw8HIkSMxe/Zs6Orqonnz5tDQ0ACHw8H79+9rTLkKCAiAnp4eZs2ahZcvXyIhIaFG6q3LvH//Hjk5OZgzZw6ICIsWLYK8vDxatWqFu3fvok2bNoiLi8PPnz/h7u6OZcuWMRZIIWXDYrHg5uYm6GYI+QV5eXn8/PkTRAQiqlPK4d+CUMESUiViY2Oxd+9eaGhoYPv27eW+Ljs7G56enkzcrJYtW8LY2LjYihwfHx88f/4cMjIyiI+PR1paGk9Yh0uXLiE3Nxd5eXlo0KABFBQUEB4eDjabzVOOiIgItLS0kJ+fD2lpafj7+0NKSgo9e/aEjY0NrKysICEhAWVlZR7lis1mw8rKCt26dcPFixdL9HESExND3759kZSUhDVr1uDIkSMQExODlZUVRo0axXerh66uLgICAqCsrIxRo0bh5cuXcHR0xNSpU/laT10mOTkZ9+/fx9ixYyElJYXPnz+jUaNGjPPziBEj0Lp1aygqKsLMzIzxAczMzISfnx/ExcXB4XCwd+9emJmZ1ZjyXFfR1tbGlClT8OLFC4wePVrQzRHy/0hISMDX1xeWlpbYtWsXhg4dKugm/VMIFSwhleb27duYNWsWxMTEcPny5TLPz8nJwZo1a/D69Wv8+PEDHA4HQOHXLxFBWVkZ1tbWyM3NRWJiItTU1HDgwAEm8n2DBg0gISHBREEH/pdVfv/+/UhNTUVmZia0tLSgra0NNTU1SEpKgsvlIjIyEpGRkQgKCkJWVhbs7OxgaWlZZhyx8PBwxMXF4b///ivTgbwoEOL69euhpqYGJSUl+Pv7lymXytC8eXMQESQkJNCoUSNcuHABkydP/qeXbLu4uEBFRQW6urpITk7G69ev0bt3bzRr1gyLFi3ikU3v3r2Zv39dYNGyZUtmWX96ejozbQEUWg7Pnz+PyZMng8vlMn51QgBpaWlERUXB19cXo0aNElpLahF6enpYs2bNXzPtVpcQ+mAJmLo4vx8bG4vly5fjwoULGDZsGE6cOMGkuiiNyZMn4+bNm5gwYQI6deqETp06MY7enp6eOHfuHM6fP4+8vDy0bdsWMTExCA8PB1CovOjr6yM2Nhbbtm1jlDQWi4WVK1di8+bNpcajqaycPTw80LFjR3h4eJQrDELRikkRERHGLP/t2ze8e/cO1tbW1TLtlJOTAxEREXz69AmNGjVi/Maqg9rmgxUQEID8/HwYGBjAxcUFhw4dwp49e9CkSRO+1p+Xl4c1a9ZgyJAh2LNnD86ePYuZM2ciLS2txoP9FlEX+466yN8iZ0HF7CovdXH8LosKrastyvn06/br1x8Rwc7ODqqqqpCWlkavXr3g7e3NU4afnx+6d+8OdXV1bNq0ieeYpqZmiXP5NjY26NWrVwVvTUh14OPjA1NTUzx58gQbNmzArVu3oKKiAi6Xi+joaHh5eeHEiRMICwvjuS4+Ph5XrlzBtm3bcOrUKVhbW6N9+/aQkJCAhIQEOnfujMOHDyM1NRXp6elwc3NDWFgY2Gw2OBwOEyOrcePGOHjwIL5//47g4GDExMRg+/bt1dZxFMWuKm8qChEREWaKsagz/vjxI7Zt28Y4UP8+fVlVpKWlERERgX79+uHly5d8Lbu2URRTrSi11JkzZ3Dnzh0AQLdu3XDhwgWoqqoy/RO/kJSUxJ49e7Bnzx4AQIsWLXD8+PFiypWLiwt27tzJWGf/Fby9vTF+/Pg/xpMTIljCwsLQvHlzHDx4ELm5uRg0aBAOHDgAoPCj8PeE3b9S9NHo7++PCRMm4P379zXS5pKoazpIhQOXGBgYICYmhtm+f//OHNu5cyf27t2Lw4cP4/Pnz2jcuDHMzc2RkZHBnDN//nxMnjwZd+/exf379/Hhwwee8qWkpLBy5coK34iQ6iUnJ4dJMSEmJgZXV1dMnz4dW7duhZmZGRQUFKCmpoY2bdrA2toazZs3h5mZGU6dOoWMjAwsXrwYMjIymDx5cqn1sFgsHiuPqKjoH5fOa2lpVSnKenkoUrCqkudx9uzZiI6ORn5+Puzt7bFixQoAhdOPa9as4Xk/Kou2tjZev36NOXPmVLms2kSRNawoYjiLxYK7uztCQ0MhIiKCjRs3MvIEUCNTpL6+vujatWuJsdv2798PJycnph3u7u5ITk6u9jYJgpcvX+L69esACkNgREdHCxdc1FIaN26M1atXY9KkSZCSkkLHjh2ZLBqXLl3CwoULmXftVwu0hYUFk6dVVVUVMTExaNasWc3fwC/UJR2kwgqWmJgYGjduzGxFU0NEhP3792Pt2rUYMWIEDA0NcfbsWWRnZ+PSpUvM9ampqWjXrh1at24NVVVVxoemCGtra7i5ueHRo0dVvDUhVaUoiXCnTp2goKAAW1tbLF68GLdv38b27duho6ODnTt3QlZWFuvWrcO9e/fw4cMHREVFYf/+/RAREcHs2bNRr1493LhxAw4ODtUeCJOfEBGcnJwAAF++fKlSWUXR4319fTFixAgAhVGjPT09ce3atWLnh4aGlnuwev/+PWxsbNCzZ0/ExcVVqZ21icDAQCxYsADXrl3D5s2bERgYCAA4duwY40MlLi5e45kP9PT08OLFCwwcOBDA/wYkLy8vXL9+HefPnwdQqEB36dIFz58/x+HDh7Fq1aoabWd1c+3aNTg5OYGI0K5dO7x9+1aYrqmWIikpCWtrayah9aZNmxiLTMOGDREXFwcWi4WoqCioqakhKCgIQOEq7enTpwMo/Mh8/fo1mjVrxqy4FQR1SQepsIIVEBAAVVVVaGlpYdy4cQgODgZQmHMtNjYW/fr1Y86VlJSEqakpXFxcmH2bNm2Cubk5ZGRkICIigv79+/OUr6mpiTlz5mD16tXCPGEC5sWLF5g9ezbc3d1RUFCA7t27w8LCAiYmJnj48CF27NiBmJgY3L17FytXrsSQIUPQrVs3qKqqYv78+Xj27Bm8vLzg5OSEr1+/Yvz48YK+pXKTkZGBpUuX4sGDB9i6dSvPc11Z6tevDycnJyaMRfv27XHnzh3MmDGj2Llnz56FpaVlucpdsGABfv78CRcXl2q36NUkOjo6GDlyJNTV1WFkZFRrBm8RERH07dsXLBYLt27dQseOHcHlctG6dWs8efKE8dVTV1fH9+/fMWDAAERFRUFJSQl13eX1xYsXzMBz4MAB3L9/v077JQkB+vXrh9u3bwMoTLs1c+ZMZspw8ODBJWY3WLhwIebPn19sf1JSEnJzc6u1vXVJB6mQgmVsbIxz587h6dOnOHnyJGJjY9GtWzckJSUhNjYWAIp18I0aNWKOAcCgQYOQkJCA6Oho3L59u0ST/rp16xASEoKLFy9W5p6YuB/CrWqbmpoaVFVVYWZmhlmzZiEgIAC9e/eGmJgYvn79iiVLlkBGRqbUMgwMDDBlyhQYGBgI/H5K24p8yC5evAgrKytoa2vj+PHj2Lt3L1avXs2sdOTnVlBQAHNzc3z9+hVEhB8/fmD69OkoKCiAmZkZbGxs/nhtWloanJ2dQUTYtWsXvn//zrx7gpYlvzagcLVf165dMXToUGzevBmJiYkCb9evm56eHnr16oW4uDgQEdO5ExUucGjZsiXq1auHrVu3IigoCFu2bAERwcPDA9OnT0dsbCyICBwOR+D3Up7t6NGjuHjxIogIkpKS1fJeCDfBbdra2ti4cSNatGhR6nmHDx/G7t27QUQICwvDy5cvQURYvXo1unXrxuSg9fHxqVD9f4sOUkSFPIOLTOIAYGRkhK5du0JHRwdnz55Fly5dABRftUNUPMCZpKRkqavOVFRUsGzZMtja2mLs2LEVaSKAwqX75fmxagNExDiG1rYvQVVVVR4HwQ0bNiAwMBDNmzeHtLR0MdNqbeZ3ORMRfv78iUePHsHb2xuhoaHMcT09PSxcuBBjx45Fo0aNqu0+iQjt27eHr68vtLS0kJSUhKSkJAQGBsLAwAD6+vp/rPvgwYO4e/curl69ig4dOsDLywuSkpL48uULWCwWtLW1q6XNgoLL5aJZs2aQkpISaDt+/z3U1dWxfv36Eo/9jrm5Ofz9/ZGWlobExERkZ2dDREQEaWlpmD17NmbOnInOnTuXuy011XdkZ2cjISEBGhoaOHz4MCQlJevUu19VanMfLSgkJCSgo6ODtLQ0nDlzBq9evUKHDh0wf/58REVFIT09HaGhoRg1ahQOHDiA7t2748OHD/D09MScOXNKVGrS09PLrLeu6CBFVGnplaysLIyMjBAQEIBhw4YBKFzCX7REGihcPVaZaYulS5fi6NGjOHr0aIWvVVBQqDPLPIsUwbqwBFhBQQGqqqoCqTs3NxdsNhsyMjLIz8+Hj48PxMXF0apVq3IlmS2SM5vNxpkzZ3Du3Dn4+PigcePG6Nu3L8aOHYsWLVr80Xm5uti7dy/zt4mJCUxMTAAA7969w7hx4+Dg4IChQ4ciLy8PEhISzDMya9YsrF27tti97927F2FhYXB2dq6xe6gJmjZtinHjxkFaWlqg7ahK3syRI0cyf/fr149nKoOIIC4uXqHya6rvWLlyJd6/fw8vL68ayRta26hLfbQgsLW1xfjx46GgoIDWrVujdevWAIDWrVtj165d6NOnD6SkpPD48WPIyspCSUkJ3759g5eXF8aMGQNJSUkAlVNea6sOUkSVFKy8vDz4+PigZ8+e0NLSQuPGjfH8+XMm6nF+fj7evn2LHTt2VLhsOTk5rF+/HnZ2dhWOhM3vJdrVza9LToUUJyYmBrq6usjKyoK4uDi4XC6zDH7hwoU4ePBgucrhcrmwsLCAl5cXhg8fjt27d8PMzKxWxoYxNDTEtm3bYGxsDBaLhSVLliAtLY1x1mzSpAmSkpJw48YNzJw5k/kiPHXqFCIiIqrtWapoufxqR3BwMNasWYPp06fzxR+uslSXXItW44WHhyM1NZUZpMrTnuruO+zs7BAVFfVPB7EV9tF/hsVioUWLFiXuHz58OPP/gQMHmGfo27dvWLFiBROUNjc3t1KhTWqrDlJEhXywli1bhrdv3yIkJAQfP37EqFGjkJ6eDisrK7BYLNjY2GDbtm24ffs2fvz4galTp0JGRgYTJkyoVONmz54NBQWFckUJF1L3+fnzJxwcHIqFLYiLi0NWVhZGjBiBvXv34ujRo3BxcYGWlhYCAgLKXb67uzs8PDywadMm7NixAx07dqyVyhVQGLV+2rRpjDWtX79+GDRoEADg6tWrGDVqFDZt2oTNmzeDiJCYmIjz58+jf//+yMnJEWTTqwUtLS0sWLAApqamgm5KtfHo0SMsXboU48ePh5eXFwDg2bNn4HK5yMvLw86dO6vdgbgILpeLKVOmIC4uDk2aNEHHjh1rpF4hfy+/KuhWVlYIDAyEjIwM0tLS0KRJEzx58qTMMuqaDlIhBSsyMhLjx49HixYtMGLECEhISMDNzQ0aGhoAgBUrVsDGxgbz5s1Dx44dERUVhWfPnkFeXr5SjRMXF8fmzZtrrFMRIjjy8vJgYGCAuXPn4t27dzzH2rRpg759++LLly+wsrLC7Nmz0bVrVyxduhTPnj2Dra0tDh48iDt37sDHx4dJb/P7CpCi6aWVK1dCQ0MDmpqaNXV7VWb48OGYNGkSgMIvK1lZWcTGxkJFRQViYmIQERHBlClTEBwcDDMzs78u9hKLxUKPHj0gKSmJqKioYsED/wbGjh2LZs2aISsrC2fPnsXPnz8xaNAgeHl5wc/PD9u2bYO7u3uJ10ZGRuLYsWNMgN9ffVC/ffsGMzMzJCYmAii0ci5durRUP1U2m423b9/i8+fPfLxDIUL+R5FekJeXh8OHD0NRUbHMa+qaDiJMlSNgiP6ONAxVhcvlYs+ePYiLi4O9vT3ExMTw/ft3FBQUoE2bNggLC0ObNm1gaWmJ8+fPg8Vigc1mY9KkSbhx4wbExMSQl5fHU6aMjAxatGgBfX19JCYmIiwsDFFRUeByudDQ0MDmzZt5/GLqIvn5+Uxg1ri4OCQlJcHLywvjxo2rlvpqQ6qcPXv2ICoqCnv27AGLxUJBQUGNxcLiZ+LuoKAgLFiwABs3bkTnzp2RmJgIOTk5Hkf+27dvY+jQoRAVFUVqairq16+P6Oho5ObmQktLCxEREWjatCmio6PRtGlTuLu7o3379rCzs0NsbCwcHBzw8eNH7N69G6dOnYKCggJ27NiB1NRUbN++HXl5eVixYgXs7e2L+bdxOJx/elqwCGEfXTOkpqZCUVGxTo3fZVE750eE/HOIiIhg+fLlzP8PHjxgBjNLS0vcuXMHJ06cwIQJE6Cjo4ONGzdCTEwMV65cAVDYCcbGxiIgIAC5ubnIyclBUFAQfHx84OvrC0VFRSxcuBCTJk36qxx1f41636hRIzRq1AitWrUCAOzevRt9+/ZFu3btQFQYFkJCQgJJSUlMNPLyLBCobdjY2CAlJQUsFgseHh64cOECNm/eXKVo+4JAXV0dioqKjBKjrKxc7JxffVjq16+PlJQUGBoaYvPmzRg6dChGjBiBZ8+eQVVVFQUFBczvqaury0x/GxsbMz5eAHiiVAcGBuLGjRsYPXo0evTogaysLMjKygIotBYoKCiUO02UECFVoShrxt+EUMESUiv5NV9fkRIxfvx4PHjwAE+fPsXGjRt5zmexWGjSpAnP6pFfKfoK/Vu+jMqCw+HgzZs3SE1Nhb6+PszMzKClpYXz588jKioKPXr0wJs3b2BqagoPDw80aNCgzkyZioqKMsqIkpISWrRoweQELGlJdm0jODgYISEh6NmzJ0+E6fIgKSmJw4cPY8yYMQgJCUGbNm1Qr149sFgsHmtTUXqTsjAwMEBYWBjExMSQk5ODhg0bwsHBAaqqqpg0aRISExPx7ds3RmkXIqQ6SE9PR/fu3QXdDL5T9z5fhfwTDBs2jAk+92sqGWVlZWFC2XIgKiqK+/fvY8WKFZCSksKqVauwbNkyAIUrFD99+sQ4jM+bN69Y0tO6gpaWFubMmQMRERG4uLhg9+7dlS7LxcWFJy9ZdX1Rv3z5EmPGjClX3J/fKXLYFRMTQ/PmzbFnz54qT+MVWbqICIcOHUKPHj2QkpICGRkZuLq6CpUrIdVKcHAwxMTEsHr1akE3he8IfbAEzL80v5+amorPnz8jIiICbDYbnTp1gpGRUYVW8q1duxaXLl1CSEhIher+l+RcUaKjo8HhcCArKwtjY2Ns2LCBcaivDIKS9atXr7Bv3z7cv38fHA4Hd+7cwYgRI8psQ5HVa8mSJfD29sazZ88QGhoKHR0dPH/+HH369EFQUBBkZGT+aCH9nYiICJw/fx5z586FoqIitm3bhuzsbGzZsgWpqangcDhVzstZHXKOjIxEo0aNIC4uLvTB+n+EfUf1ERYWhlatWmHFihWYMWMGmjZtWqfG77IQThEK4TsZGRn4+fMnWCwWs9rt2bNncHR0RFJSEoBCCwuHw4GamhoePHiAtm3b/rG8goICZGZmQlFREQ0aNEBMTAyCgoKgo6NTQ3f0d1MUPJaIMGLEiDobCqFPnz7o06cPAOD58+cYPXo0Bg0ahO3bt8PIyOiP11lYWEBCQgJ37txh9ikrK8PR0ZGJp7N27Vr4+fnh69evyM3NxapVq2BrawslJSXcu3cP6enpmDRpEuPD5Ofnhz179jCJcuXl5ZGdnQ0iqtU+TVZWVlBQUMCtW7eEypWQakdDQwNfvnyBra0tEyj0b0JowRIwf8PXUWhoKC5fvowvX77A09MTgYGBxc5RUVHB6NGjsXDhQmhpaYHL5cLDwwM2Njbw9/fH7du30blzZzg6OuLp06cACpUwFouFV69egc1mw9LSEkSEGzduAACuXLlS7jQGf4Ocq4sbN26gYcOGTBT5qiJIWbPZbHA4HEhKSkJJSQkSEhJ4/vw5jIyMEB8fD3l5eUhLSyM4OBhRUVHo2bMnLly4AG1tbXTr1u2P5aampiI8PBytW7dGRkYGOnbsiDVr1sDKygo2NjYIDAzEvn370LVrV55Ah9VJdcj558+fSE1NLVUW/xrCvqP6KCgoQFxcHBISEhAcHIxRo0bVqfG7LIQWLCGVhogwc+ZMnDlzBnJycujQoQMGDx6MNm3aoHXr1hATE0NGRgZUVFSgra1dbCqwyNF65MiRMDc3h5ycHHJycmBubg5paWlwOBy4u7sjOzsbPXv2hL+/PyQlJaGvrw8fHx80bNhQQHf+d+Ho6Ag1NTW+KViCZMyYMXBxcUFUVBQ+fPiAzMxMGBkZgcPhoFmzZjhw4ACsra1x7do1nD59Gg4ODuWaDq1fvz5jeZKXl4efnx9zbP/+/cwq1nnz5kFfX7+6bq9UXFxc0Lx5czRs2BAHDx5kFoSwWCxs374dnTp1gpmZGdLT05Gbm8vz/vz48QOSkpJ12t+qLixwEMKLpaUlnJ2dkZGR8XfOSNBfRFpaGgGgtLQ0QTel3HC5XEpJSSEulyvoplQYDw8PAkCTJ0+mN2/ekIeHB2VnZ1e4nIKCAjpy5AitX7+eIiIieI7l5ORQSEhIldtal+Vc3XC5XMrKyuJreYKSdUFBAT18+LDY/ry8PHrw4AGFhoYSUWEbk5KS+NZGPz8/Onv2LHE4HL6UVx5+lXNubi6pq6vTuXPniIjo9u3bZG9vz5xrbGxMhw8fJiKi3bt3k76+PnE4HMrIyCBnZ2cyNzcnXV1devnyZY21vyqkpaXRp0+fKD8/n4iIFi1axNxvYGAgrVixolJ9UUkI+47qIykpidzc3Iiobo7fZSFUsARMXX55Y2NjSU5OjgDwbMeOHRN004pRl+VcncTHx/O9TEHIevXq1XTy5Mkaq+93vn79SlJSUuTp6VljdRbJuUiReP36NUVGRpZ5nZ+fH50/f56IiB4+fEgAyNXVlTp37kynT5+u1jZXloKCApo5cyZt2LCBiIju379PACgmJoaIiGbNmkV3794lIqLnz5+Turo6ZWVlEZfLpczMzCopvsK+o/qZNGkSbdq0qc6N32UhDNMgpNI0atQIPj4+6N27N8/+tLQ0AbVISEXw8/ODuro6E6y1LuHp6Ynx48czKSzYbDbi4+MF1p62bdsiPDwcbdq0qdZ6uFwu1q1bh+joaADAhg0bmJhXvXr1gpqaWpll6OnpMdOiPXv2hJeXFzp06ICPHz9i2rRpyMvLw4gRIwQqTwDIycnBxIkT4erqCjabjY8fP8LJyQlAoXuBp6cnsxLzxIkTGDp0KADAzMwMPj4+kJGRwY8fPyAnJwcvLy/k5+cXS58lpHaQmpoKCwsLQTeD7wgVLCFVQlZWlmdVlL6+Pk+kaCG1Fz09PTg6OmLEiBGCbkqFERUVRWRkJKNo7Ny5E2vWrBFom1RUVMBms3H69OlS8/yVh/PnzzMJnz98+IDRo0cjIiIC0dHROHbsGIKDgwEUJgGfMmVKpeuRl5eHkZERT6qhuLg4fP78mVlF6Ovry3ONs7Nzle+vPKSmpoKIkJqaCikpKTx79ozJU/rlyxecO3fuj5kIiqL6q6io4Ny5c2jWrBl27tzJpJD6+fMntm/fXu33IKRs2Gw2hg0bhqZNmwq6KfxHwBY0viKcIqx5HBwceKYH+eEvVR3UdTnXJWpK1pGRkZSZmVmtdVSUZ8+eEQCSkpJifJ4qg7KyMu3YsYOICqf0Zs2axUw/ZmdnU0FBQbXKOSkpiYiIvn//TtLS0jRq1CjicrmM3+WzZ8+IiGjPnj00e/ZsIir83e/cucP0v35+fnT58uUyp6FTU1PJ1dWVuY+dO3cyU4F/4tKlSzRgwABKT08v9z2dOnWKdu3aRVwul65du0ba2tqUmZlJjx8/pgcPHvzxOmHfUb28efOGxMTE6P3793Vu/C4LoYIlYOr6y1tQUECPHz+mRYsWkYiICC1btoxevnxJ9vb2tHPnTrp48SIFBAQI/P7qupz5DYfDoXHjxjF+K/ykJmTN5XKpffv2NGzYsGqro7I4OjrSxo0bKS4ujoiIHjx4QF++fCnzusjISDp58iSFh4dTQUFBmedXt5yzs7MpNDSUZs2aRQMGDKCMjAzicrnk4uLC+DRduHCBli9fzlyjqKhIp06dIiKiK1euUJMmTSg2Npan3NzcXDp37hx9/vyZiIhu3bpFABh5bd++ndauXVtm+6py3xwOh1JTU4mI6O3btyQnJ0dBQUF/rEfYd1SO3NxcCg4OJqJCf8+DBw8yyvv79+/pwoULREQUFRVVJ8fvshAqWALmb3p5t23bxliy5OXlSUFBgfm/QYMGNHDgQDp8+DC9efOGwsPDBbbiSkihhWLEiBH04cOHMs+9ePFihSwFNSXrgIAA+vz5M7OSTBA4OzvT2rVrmUEjKCiIcnNzec4xMTGhWbNmEVFhm7t27Uo/f/4kIqJDhw5Rnz59iKhwAGrUqBG5urqWq25+yzkhIYGePn1KRESJiYmkpKTE/F9eQkJCKDAwkIgKlZicnBwiIkpPT6fx48dTZmYmZWZmUps2bWjLli1ERJSSkkJeXl6Ul5dX4TY/fPiQ1q9fX+HrfiUvL6/UZ0jYd1SeadOm0bx584ioUKGSkJBgnv0VK1aQkZERc25dHL/LQqhgCZi/7eUNDw+nHz9+MMpTUlISPX78mOzs7MjY2JhnOrFz58509epVcnBwIAcHh3J9tVeWv03O/KIkeXh7e5OVlRUdPnyYHj58SCoqKuTk5ERERHZ2doxCQEQ8SnJRWVWRdU5ODv38+ZMJG/Hy5Us6fvw45eTkkL29PROGgMPhEJfLJUdHR5ozZ06F6+EXkydPJgBMezU1Nalr16485xQUFDDTZGFhYWRlZcV81T9+/Jg2btzInPv169dy183vZ3r06NFkampKRIXyXbVqFbNKr6r8+PGD1NTUmDAZbDabL+VevHiRTE1NK6WcFVE03fonhH1H+cnOzqZz584xoRdevXpF169fL9e1dXH8LguhgiVg/qWXl8vlUnJyMrm4uND58+dJT0+PR+HS1tamhQsX0vv376ul7n9FziURGhpKz58/p8zMTOJyuWRvb09sNpu4XC6FhYWRjIwMvXv3joiIWS49bdo0cnNzo5SUFMYq8eDBAzpy5AgRESUnJ1PTpk3pxYsX9P37d5KRkaHr16+XKOufP39Sjx49yMvLq1jbUlNTmf3fvn0jAOTs7ExERDt27CBjY2Nis9m0atUqmjdvHmVlZdG0adNo/vz5dOrUKVqzZk21yq40TE1NydbWllEY3N3dKTExsUbq5tczXWSdTEtLYxSg6oDNZvPdas3lcpkPs8rGvbKzs6NevXr9UY7/et9REdhsNnXu3JlWrVpV4Wvr4vhdFkIFS8D86y9vYmIi3b17l6SlpalDhw4EgMTExCo0JVUe/nU5X7t2jXr06EHnzp2jlJQUEhUVZZymU1NTad++fYxVJScnh1JSUsosMyEhgZYuXUrR0dFEVOh7FBMTQzk5OfTjxw9KSEggLy8v8vb2pvDwcBozZgwT3HPfvn2Mz83EiROpb9++RFRoOXF2di7z97ezs6MnT55UVhxVhsvl0unTp+nTp08Ce6b48UxzuVzS09Njpm3qKnFxcaSpqUl37typ8LW7d+8mFxeXPx7/1/uO8lIkn8oq0XVx/C4LoYIlYIQv7/+IjY1lrFlHjx4lW1tbMjQ0pCZNmtDRo0er5GvzL8s5MjKSNmzYQL6+vsy+t2/f8qXsxMREateuHZ04cYLZt3//ftLT0yNnZ2cyNTUlS0tLnmu8vLxIQUGB7t+/T0SFK9V+bVtdIC4ujrp3705Lly4VWBv49UxPnTqVXrx4wadWCQYul0vr169nPhIqQ1JSEg0fPryYs/u/3HdUhHnz5vFYrtLS0ujHjx+UlZVFmZmZdP/+fXr06NEfLY11cfwuC6GCJWCELy8vNjY2pKioSKKiosUixAOodAf6L8v51KlTZGRkVCU/lT+RnZ1NK1eu5PlduFwu+fr6Un5+PkVHR1NycjLf660NFBQUCNTBvqrPdNG05t/2TqSkpJRr8cbvBAUFkbm5Obm7u/Psr6qcFy1aREuWLKnUtXWJZcuW0YMHD8jDw4P69OnD9NkGBgY8/rf9+/cvUZZ1cfwuCxZRDUSMqyHS09OhoKBQp7JxkzBTezGICCkpKWjYsCE4HA4uXLiAjx8/wtfXF5cvX2aiN1e0zH9Nzu7u7ujYsSOICJmZmZCXl+d7HS9fvsSsWbPQp08frFmzBtra2nyT9bt378DhcIplCqgtfPr0CYcOHcL58+cFUn9V5BwaGoqePXti3759GDVqVDW1UDAsXLgQL168wM+fPyv1/EVERIDNZkNLSwtA1fuOomvu3buHIUOGVPj62gQR4dq1a3B2dkZSUhLS0tIgJSUFOTk5sFgsvH79GhEREcWuU1NTw6VLl/D69WvY2dnh9evX6NWrF885dXH8LgthJHchtQ4WiwUlJSW4u7ujQYMGOHXqFA4ePIhnz55VSrn6F/nw4QM6d+4Mf39/sFisalGuAODkyZNo1KgR4uLi0L1792KpSNhsNhwcHEq8NisrC4sWLcLz588BAG/evEGXLl2YVEt79uzBgQMHalV6EzabjcTERADA48ePoaysLOAWVY5mzZphypQp6Nu3r6Cbwnd27dqFCxcugMVigYjAZrMrdP2UKVOwe/duvrWnKBL+0KFDK9yW2kJ2djbCwsIwffp0jBs3Dq9fv0ZcXBwkJSWRm5uL0NBQ+Pj4wNLSEi9evEBaWho+ffqEr1+/4tOnT5gxYwamTZsGOzs7AODJHPBXIyDLWbVQF02M//LUVVl4e3sTAL4koP3X5JyXl0dXrlypkfvlcrmUmJjIhBh49+4dbdiwgbhcLrm6uhIAmjhxYjHnVy6XS3369KGbN28SUaEv1tSpU5kAkGlpaeTr60sGBgYVCl9QXbx48YL69etHWlpadPz4cSIS7PRaZZ5pLpfLLKH/22Gz2WRsbEx79uyp0HXXr19nwm7cv3+fUlJSqtx3SEtLE4AaTQZeVQoKCujkyZPUtWtXEhMTIwAkLS1NZ8+eLfW69PR0Onv2LI0ePZqaNWtGAKhevXo0ffp0unfvHoWHh5d4XV0cv8tCaMESUmtRVlaGjIwMrl27hqysLEE3p06wb98+mJiYQFxcHGPHjq2R6VAWi4UGDRqgbdu2AICkpCR8/vwZ2dnZMDY2xu7du+Hl5cXkjRswYADOnz8PFouFly9fMrkQDQ0NcebMGSgoKAAA6tWrB0VFRfTo0QNNmjSp9vsoifj4eHz48AGBgYFYunQpGjduDD09PRQUFIDNZte56eaDBw+ib9++8Pf3F3RTqh1RUVGMHTsWHTt2rNB1o0aNgoyMDNhsNqysrLBu3boK152UlIS+ffviwIEDAArzfgJASkpKhcuqCTgcDm7duoUZM2agX79+sLKyQv/+/TF79mw0aNAABw4cwOPHj/Hz588/5r5MTExEbGwsli9fDisrK4SFhWHs2LG4efMmYmNj4ejoiCFDhvydOQf/gJigGyBEyJ9o2LAh7t69i2HDhmHo0KF4+vQpxMSEj2xpmJiYIDY2VqAD/+DBgyErKwsZGRmwWCz06dMHS5YsYY63atUKioqK5SqrYcOGzBSjj48Pxo4di0ePHkFdXR1fvnxBXl4eunbtWqX2Ojs7IzExEcOHDwcALF++HBYWFujVqxdu376NxYsXIzMzEx4eHhAVFWVkm52dzfN/bYeIYGFhgenTp1fblHFt49fnrqKIiYkhMDAQCgoKSE9P/+N5RISgoCB8/PgRsbGxqFevHk6fPg03Nzd8/vwZ/v7++PbtGwBg+/btUFBQQIsWLcBms/H27Vuoq6ujXbt2lW5nRYmJicHJkyfh6uqK6OhoqKmpISAgAIGBgTAyMoKenh4+fPiAjIwMvH79GqampiWW8+jRIzx+/BgqKip49eoV3r59y3Pc0dERhoaGNXFLtRdBm9D4SV00Mf5rU1eV4c2bNyQqKkqzZ89mpo8qyt8s58TERJoyZQqTrqUmKYpl9Sv29vZkYGBAXC6X4uPjCQD9+PGjynV9+fKF5syZw9znxIkTqUePHszxFi1aMBHnQ0ND6cCBA+WaDps7dy717NmT+b9Tp05MjrSkpCTy8/Mrdk1OTg6pqqrSnDlzKh3gsqpU5Jl++PAhDR06lEld8y9x8OBBevjwYYnHyiO7jx8/kq+vb4nnOjk5kZKSErNCTk5OjgBQ06ZNi62AlpCQKHFldJcuXap8j+UhJyeHtm3bRnJyclSvXj0aNGgQzZkzh4YMGUIzZszgeVeKMiWUxqRJk5h77tOnDzk5OdGNGzdo27ZttGHDBmaatbzUxfG7LIQKloD5mwd+fnLs2DESExMjWVlZsra2LjEieGn8zXJ2c3MjHR0dJh3LjBkzaNmyZVUqc+HChdS7d+9SlYe0tDTq1KkTk8y3KDJ8dnY2OTs7M7K2tbWtljRIubm5TCoXLpdLGzZsIBcXF/rx4wdJSkpS/fr1mcTDDx48IHV1dSZkxJEjR+jw4cNMOeVN3eLp6UkBAQGUkJBAKioqtGLFCpKXlxeIj1hFnundu3fT1q1b/8rnvyzmzZtHVlZWxfa7ubmRhYUFcblc2rRpE3358oW4XC6ZmZnR9+/fiYgoIyOD2rZtS1ZWVsVkV1BQQJqamtSmTRt6/PgxE8G/yNfwyJEjJSpUv25DhgwpV1DfysDlcmnLli20ZMkSunbtGmloaJCYmBgtWbKEL6FTPn36RGJiYjR+/Hi6cOECE3C4stTF8bsshAqWgPmbB35+Ex0dTXZ2dtSkSRMCQC1btiRzc3O6evVqmdf+zXLmcrnEZrMpLy+PUlJS6MSJE3Ty5EnKyMigM2fOUFhYWLnKycvLYzpJFxcXunXr1h/fJTs7O7p+/Tr17NmTvL296evXr1S/fn3y8vJiZF2Tybx/hcPh0N69e3m+oH/8+EFr1qxhFKmhQ4cyClZZ5OfnM4Pg2rVrqXnz5oziGR0dTVu2bGHiYfErx155KM8znZ+fT/7+/jXWptoIl8stMV7ZxYsXady4ccThcEhZWZlxbu/Rowc5OztTWloaGRgY0IoVK0q0YO3du5cAkIeHR7Gyw8LCCADp6+tTt27dGIWqe/fulJOTQ9+/fy8W0JSf5OTk0Nq1a3mUucGDB5doja0KTk5OJCUlRQBIQUGBTpw4Uek+ti6O32UhVLAEzN888FcX+fn5dPPmTZo3bx7JyMhQx44dy7zmb5XzkydPqGXLlhQSEkIiIiJka2vLHEtJSaGGDRuSg4NDucpydHQkXV1dxiJFRBQREVFscMrPz6cuXbowiZeJCq1AdnZ2FBkZSdnZ2WRoaEj79u2r2s1VEBsbG+rVqxdfyyxKJVMk1/T0dPLx8SlRkXr+/Dlpa2v/cZUUv9rz+fNnSktLIy6XS+Hh4ZSSkkJxcXHM7/T69Wv6+PEjERFdvnyZpKWly61k/22Eh4eXy3qanJxMubm5PPtycnLo3r175O/vX6zvcHNzI2lpaVqwYEGJ5bHZ7D9arbp06UIvX77kKa/oIyk/P5++fv1KFy5coMjISOa4vb09c35CQkKp92Jra0vy8vI8dZqYmFRb35eVlUXR0dE0ffp0xiqXkZFR4XLq4vhdFkIFS8D8rQN/TZCUlERLliwhXV3dMs/9W+X85csX2rJlC0VFRdH169eLmem5XC7l5uaWy5oUHx9PFy5coJCQECIqnAJp2bIlT/qLokGooKDgj2UmJCTQ0aNHa9wn7MePH7RgwQI6cOAA38qMiYmhc+fOkbe3d5nnxsfHk7W1NaN88WtaNCYmht68eUNEhQovAHr48CFxuVw6cuQIEwKgKAL5rFmzqGfPnsTlcikwMJBcXV350o66SN++fWncuHElHktMTKRbt26V6Zf2e9/x8eNHatCgAXXv3r3UKfSEhATatGkTj4/Wr5uOjg6NHj2aOnbsSPXq1SMAPBks6tevT/Pnz6d58+aRvLw8HT16lLKzs6lhw4ZM6JqQkBB6/fo1U2dRurEiXzAApKKiUkx55CdFyeCXLFlCLBaLAJCIiEiF/f3q4vhdFkIFS8D8rQN/ddO7d28CQCNHjiQpKaky5fcvy/nVq1dkYmLCMxicPXuWLl26REREwcHBZGdnV6Js3N3dydnZmVxdXenChQukr6/P+D39CUHKesqUKTRgwIBKfUH/Tn5+Punq6tKtW7cqfK2zszNpaWlRYGBgha4rskrt3r2bsRDu2rWL6tWrR1FRUZSbm0seHh6MfH18fGjdunUkISHBKFhRUVECTeFTm/jw4UOJU3hERHfu3CFJSUmKiooqtYxfn+dz586RpKQkdenSpcIfEBwOh6KjoykpKYlevnxJs2fPJhMTE5o+fTrt2LGDTp48SceOHSNnZ2cKCQmh//77jxo0aECNGjUiAHTw4EFis9l09epV+vLlCxEVOvArKSlRSkoKpaenM9OCy5cvJ2NjY7px40a1vofe3t5Uv359RpkbNGgQSUpKkqmpKWVmZlaorLo4fpeFUMESMP/ywF8V5s2bx/M1GBoaWur5/6qck5KSaNKkSdSzZ09q06YNs9/Y2JiOHDlCRIUBNBs3blzqNJKVlRXp6upS7969KSIiotQ6BSlrLpdLCQkJVc67yGazicPh0J49e/44QJdGQkICzZ49mwoKCojNZtPBgwcpICCgzOuWL19O+vr6NHbsWNqxYwcRFeZ7LGkw/1XORdOS2dnZlVII/yV+nQ4sjwLMZrPp/fv3ZG1tTQBo2rRp1WoR+pVv377RyJEjCQCtW7euxLYV+dglJCSQmJgYaWpq0sCBA2ukfZMmTSI1NTUC8EdLYXmpi+N3WQgVLAHzrw78VYXL5dKMGTMYBWv58uVlnv8vyjk9PZ2aNWtG27Zto4ULFzLTVr+a7zkcTpkDRnmWbRdR07K+d+8e9e/fn/777z86e/YsSUtLU5MmTSod0uPmzZvUsGFDvlmBQkJCSFNTk27cuEFERFevXqUBAwYwx8ePH0+7du0iosLpp2HDhtGrV6/KLLckOTs5OZGioqLAQkfUNr5+/Upbtmxh/udyudSpUyeaNWvWH6/hcrl0/PhxsrGxoTVr1pCmpibp6OiQkpISHTp0qFqfay6XS/fu3aNp06ZR+/btmZAP586dK9c0f0REBF2/fp0A0PXr16utnUSFEe/FxMRo3759fAn/URfH77IQKlgC5l8d+PlBcHAwo2CNHDmy1HP/ZTlHR0dTcHBwjdVXE7LmcDj09OlTWrJkCYmJiZGBgQGpq6sTANLW1iYxMTFSU1Oj8PDwPw5MJflIpaenk4eHR6Xi+JRGbm4uo7A9evSIZ4Dfvn07nT9/nogKLRIDBgygM2fOlFlmSXLOz8+n9+/f863ddZ19+/ZRq1atePbduXOn1JWV9+7dYxSbhg0bkpWVFb18+bJap125XC7duXOHUaqMjIxo3LhxdPv27QrXy+VyqVGjRqSoqFgu38HKcOzYMcZqxS9rXl0cv8tCqGAJmH954OcHd+/eZZQsCwuLP/pT/MtyHjBgAHXr1q3G6qsOWbu7u5OOjg7p6urS5s2bSV9fnwBQw4YNac2aNcyUYGRkJNP5AyBNTU06fvw4s/IqNDSUIiIiKDIyklq2bEmPHz8mokIlNC8vj+zt7WnGjBkC92EKCgoqU1H6k5yzs7OpZ8+e9OLFi+psYp2hyPp669atck33Xr16lQAw4V+qu+/w9PSknj17EgAyNTXlcVqvLMnJyWRkZESqqqoV/ri6fv06DR069I/HExISCACNGjWKrzKpi+N3WVRJwdq2bRsBoMWLFzP7rKysiq2WMDY25rnO19eXunXrRmpqarRx40aeYxoaGgSg2MqXxYsXk6mpaantqYs/0L888PODoq/NXyMplxS471+Wc2BgYJWDAFYEfst6x44dPL+xtLQ0jR49mt6/f1+sjrNnzxIAkpKSoitXrtDt27cJAOOjNG3aNGrevDmlpqbSwoULGYV88ODBNHr0aHJ1daXt27cLvA/p378/9e/fv9Rz/iRnLpdL5ubmfI95VBfJz8+nsWPH0t69e8na2pratm37R+X54MGDdODAAWKz2dSvXz9m3KquvoPD4dCiRYuYFYV/ijZfWWJiYkhHR4e0tLTI19eXiAotpM+fP6cjR47QrVu3yNrampo2bUpKSkrUvn17mjdvHu3Zs4f69+9Ps2bNop07dxYLSlq0kpXfEegrM37XNh3kdyqtYH369Ik0NTWpdevWxW5uwIABFBMTw2y/O2j27duXjh07Ru7u7tSxY0eeLzUNDQ2SkpIiExMTnmuECpaQkhg/fjwZGRkxAysAWrt2bbHz/nU5BwcHk62tbY3cP79lra6uTmPHjqXz58/TvXv3SvX38Pb2JgA8fjdFytWHDx9IS0uLWrVqRcuXL+fpl759+0ZPnjypUjsDAwP5FgPr69evFB0dTSkpKfTkyZMSpzNLk3NRqIivX7/y9M//Ivb29qSpqclYOX/+/En5+fmUnJxM8+bNY/ZPmDCBid22f/9+Ziyprr6jyBL066arq0vXr1/nW12hoaGkr69PsrKyNHLkSNLU1GTCKAAgeXl5WrZsGW3bto0mT55MAMjAwICnTcrKymRra0vjx48nAwMDEhMTIwA0d+5cvrSxiIqO37VRB/mdwvT2FSQzMxMTJ07EyZMnS0zaKikpicaNGzObkpISz/HU1FS0a9cOrVu3hqqqKtLS0niOW1tbw83NDY8ePapM84T8Q7x79w6DBg3ClClT4OHhAQDYunWrgFtVO0hOTkZ4eDiICLm5uThw4ABycnIE3awKkZmZicjISCQlJWHSpEkYMmQIpKSk/nh+q1at0Lp1a/j4+DD7mjZtCgBYs2YN8vLy0Lp1a+zfvx+tWrXC58+fAQCtW7dG//79SyzTzc0NZmZm+PLlC89+X19fmJmZ4f379wCADRs2YOTIkQCA8PBw3L17l+nb3NzckJqaCgBgs9ngcDil3nfbtm3h4uKCqVOnYujQoYiPjy/1/N8RFRUFAHh7e+PFixfM/k2bNiEgIKBCZdV1VqxYgcePH0NCQgIpKSlo1aoVrl+/DmdnZ7x+/RrR0dEAgIsXL8LGxgYA8PjxY0hLS0NGRqba2qWsrAxnZ2csXrwYhw4dwunTp9GiRQuMHj0apqamOHDgAHbt2oWYmJhK16GhoQE3NzcsWbIEKSkp6NOnD1xdXVFQUICQkBAEBwdj165dWL16NZo2bQoRERGkpKTwlNG2bVvY29vj06dPMDU1xcGDB/Hu3TscOnSoqiKoNHVGB6mQOvb/TJkyhWxsbIiIyNTUtJj2qKCgQCoqKqSrq0szZ84slhD24cOHJC8vT2JiYjRs2DCeqMgaGhq0b98+WrRoEbVu3ZpxUBVasIT8TlxcHAFgVmcREfPV5ezszHPuvyhnOzs7kpOTY+65uhxef4efsuZyubRx40YCwPhLlcXixYtJVVWVpx94+PAhEwRRVVWVeU5YLBZPINWSyMnJoenTpzOO0UFBQUz6lalTp9K3b9+IqNCP6+fPn0T0P0taUc7MqVOnMl/Et27dIllZWcZysmfPnhKj7e/fv59kZGT+6JBdUTkXFBRQjx49aPXq1eU6/28kLy+P3r17x+Tt/BNmZmZMqIOa7juePn1KnTp1IhEREZKSkiJZWVkmZl1lefbsGRkbG1OLFi1oypQp9P37d+JwOBQXF0eJiYnk6elJ6urqNGLECB7r1X///UdBQUGUk5NT7fdfkfG7tuogv1NhBevy5ctkaGjImOl/v7krV67QgwcP6Pv373Tv3j1q06YNGRgYFFtpkJubW+JDXnRz8fHxJC8vzwTbq4iClZqaSlwut05sHA6HkpOTGUdM4Vb+7ePHjyQiIkLu7u7MvtOnT5OIiAiJiIgwyYf/VTknJSXRu3fvarxefsuaw+GQubk5ycjI0I4dO8o8//v371S/fn0yMTGh3Nxc+vr1K8nKypKJiQnzbPy+lVdOMTExJCcnV+b5HA6HIiIiqKCggLhcLkVERJCnpydxuVwKCAig/fv3M4P2okWLaPXq1cTlciktLY3Cw8MpJyeHUlNTS5VjZeT86tUrJq/ev775+/vTiBEjaMCAARQeHs7sz8nJIVlZWdq5c2e1PM/l3dhsNiUnJ9OQIUOoadOmzLNUkS0tLY2OHj1K0tLS1LNnT1q4cCHp6Ogwytuv74C8vDwzVb5w4UIyMTEhWVlZEhERIVNTU3r16lW13m9qamq5FKzarIP8jlhFrF0RERFYvHgxnj179kcz/dixY5m/DQ0N0bFjR2hoaODhw4cYMWIEc0xSUhIqKip/rEtFRQXLli2Dra0tT5nlIS0tDURUoWsEBREhMzMTAMBisQTcmrpFZGQktLS0oKSkxJh4hw8fDm1tbXh7eyMtLQ0iIoWz4P+inJ88eYIzZ87g8OHDaNSoUY3Vy29ZJyUlYfbs2QgODsaDBw8we/bsUs9XV1fHnTt3YG1tjcWLF8PX1xc9evTAnDlzEBUVBQAwMzPD9+/fERcXBxaLBR8fHxgZGRUr6+PHj7h58ya2bNkCCQkJSEpK4ubNm8jOzi42rfA7cnJyjBzk5OQgJyeHtLQ0KCsrw8rKCkBhX7Vx40bm79GjR2PQoEG4desWlJWV4e3tjZcvX0JeXr5Y+RWVM4fDwcqVKzFo0CBmKuxfZtu2bfj27RsAwMfHBxISEggNDcXTp0/RuHFj55HEWgAAaTpJREFUmJmZMWOJoPoOFouFqVOnYsWKFQgMDETjxo1LPT85ORkJCQkQERFBbGws1q5di5ycHEyfPh3r16+HpKQk1q5di4cPHyIvL48pr169ejA0NASbzUZMTAzWrl0LSUlJ5Obm4vXr17h69Sqsra3h4OCA9u3bV8u9pqenl3lOXdFBGCqijRWtyBEVFWU2/L+ZXVRU9I+Z5Js3b0729vblqqNIeyQiysjIoEaNGtG+ffuEFizhVmzbt28fiYiIkKOjo1DOJWzx8fH033//MXkDa6pefst61KhRzFf2yZMny32dg4MDiYqKUqNGjcjPz4+Sk5NJSUmJREREaNeuXTxf73fu3CmxjPv379PIkSNrTHZPnz4lNzc38vPzo7t375KTkxPf5JyamkqioqJ09OjRUs/Lzs6mmJiYGrtnQWwcDocMDQ15ngExMTHm72XLllVazvzeFi1aRE2aNKH8/PwSjyclJdHOnTupffv2xSyzffr0obCwsCq3IT8/n7p160YtWrSgnz9/8jwr/LrP8liwarsO8jsVUrDS09Pp+/fvPFvHjh1p0qRJ9P379xKvSUxMJElJSTp79my56vj15oiIDh8+TMrKyjRt2jShD5YQHiZMmMD4Cnh6epZ67r8s5yNHjlDnzp3pzp07NVIfv2Wtq6tLPXr0KPM3Lolf06IQEePPZWJiQmPHjmU659IiexMV3pObm1uF668qmzdvJgsLiwqvIiyJvLw8ev78OcXGxhIR0cKFC2ny5MnFzgsMDCQA9Pz586o1vhbj7u5OAGjp0qVkYGBA1tbWdOLECXJxcSmWAUCQfUdKSgopKyvTkiVLSjweExNDBgYGJCUlRaNGjaJLly7Rx48fydXVle7du8eXnJxF+Pn5MasQW7RoQS1btiQANHnyZL4EGy3P+F3bdZDfqXKg0V/nPzMyMui///4jFxcXJst3165dSU1NjdLT08tV3u83l5+fTzo6OiQlJSVUsITwUKRg2dvb//HLpYh/Wc5ZWVnk5ORUY8Ez+S3rIUOGUL9+/fhSVkJCAnXu3Jm2bt3KLJIo2iwtLf8Yvf3p06cEoFJ5CavCs2fP/vjlXVU5nz59mokgf/nyZTI3N6fc3Fxis9kkKSnJ92X4tYkNGzYQADp06FCZ5wqy71i4cCEBoI8fPxY75ubmRnp6eqSqqsrEuapucnNz6cKFC7R48WKaN28ebd68mSQlJal79+5lLhwoi8qO37VJB/mdCvlglYWoqCi+f/+Oc+fOITU1FU2aNEHv3r1x9erVEn0IyoO4uDg2b96MCRMm8LOpQv4CEhMTYWFhgZUrVwq6KbWW/Px8EBHGjh0LcXHxCl+fnZ2N+/fv4927d6hfvz46duyI/v37V+vy9d9p3749jhw5Ai6Xy/jUVRZlZWV8/PiR+T8+Ph7a2trIzMzE3bt3YWBggEePHkFfX5/nOnNzc7x+/bra/E/+hLm5OczNzaul7GnTpjF/q6uro23btsjKyoKSkhLs7e1L9U+py2RlZeHGjRsAgA4dOgi4NaVjZmaGCxcuwNzcHHPmzEGbNm2QmZmJJ0+e4Pbt2zAyMsLDhw/RvHnzGmmPpKQkJk6ciIkTJ/K00dLSEsbGxti2bRvMzMygrKxcI+35nVqng1RIHavlCC1Y/xYNGzak9evXl+vcf1XOHz58IDk5uWJRicvDpUuXqF69esyUQFGuP2lpaTIzM6OlS5dSREREsev4Lev3799XKExDRQkICCAdHR0ea1bDhg1LTBadnJxc7Ul0i1i8eHGp0xrV/UzfuHHjr4wGP2rUKJKVlS135HRB9x2JiYlkY2NDysrKTJDQdu3akaOjY5mW+5oiNDSUSfcDgBo1akRmZma0Z8+ecuf0rIvjd1kIFSwBI+iXt64SExNDAOjmzZvlOv9flXN+fj4dOHCAue8rV64wqS9+/PhR4gDKZrNp+fLlBIAmTJjAE4fJ39+fduzYQcOHDyclJSWSkJCguXPnUlhYGHMOv2XN5XKpY8eO1KVLl1KjuFcGDodDrq6ulJqaSkpKSjxK1v79+4udf/v2bZKTkytR+eI3dnZ2zAdEkSPwr1T3M92pUycyMzMrFkOoNuDu7l4p5Y/D4RAA2rNnT7mvqS19B5fLpYyMDL4mIec3ISEhdPXqVVq/fj0NHjyYJCQkSEdHh16+fFnmtXVx/C4LoYIlYGrLy1vXePz4MQGgoKCgcp0vlHNhImRRUVHGArNp0yZSVFTk8U3Iz8+nkSNHkoiICO3du7dUeaWnp9P27dupQYMGJC4uTuPGjaPTp09TcHAw32X97t07kpaWpi5duvwx8GZl+PLlS7F0JYsWLaKEhIQS25+Tk8P4YdXks7R161YaMmQIj7N7dT3TXC6XMjMz6fv37zRw4EAmnpwguXjxIo0YMYL538DAgBYuXEhEhf1+RRIaS0hIlMv3qghh31F5/Pz8yNTUlADQtGnTiqWs+ZW6OH6XhVDBEjDCl7dybNmyheTl5Zkou2UhlHMhsbGxTATxhIQESkxMZI6x2WwaN24ciYmJ0d27d8tdZkZGBu3cuZM6dOhALBaLREREaOjQofT69Wu+tTsxMZHu3r1LOjo6JC0tTTY2NuTm5lbl35PL5VKLFi2KKVkdO3Ys0yl2+vTptGHDhirVXxZ+fn40ePBgsrGxKWZ1qY5nOj09nQwNDcna2prZ5+bmRvr6+nTw4EG+1VMWsbGx1KFDByY/5N27d2nmzJnMvQYFBTGW2AMHDpC0tDRz7ePHj3lyy/1O/fr1aceOHeVui7DvqBocDodOnDhBCgoK1LBhQ7py5UqJsqyL43dZCBUsASN8eStH9+7dydLSstznC+XMi4ODA8XGxhKXyyVvb2/at28fde7cmURFRXlSD1WU5ORkunnzJllaWpKkpCTfrE329vakoqJCGRkZtGLFCmrUqBEBIFNTU/rx40eVyuZyubR48eJiSpa2tja9efPmj9fs2LGDWYVXXXC5XLKxsSkxZEJ1PdNeXl48yjGXyyUrKyvavn07s8/e3p5RfgoKCig7O5svdRetRONyubRgwYJyrdrMzMxkntn4+HhSU1OjXbt2EVHhCtpf5RMSEkIA6OLFi+Vuk7Dv4A/R0dE0cuRIAkBjxowpNt1fF8fvshAqWAKGXy8vl8ulhIQEcnV1pSVLltC6devo8OHDf4wNUpeJj48nFotFjo6O5b5G2EkWkp2dTYsXLyZJSUlSUlIieXl5AkCSkpJkbm7OF6sTl1uYUkZZWZnWrVtX9UYTUVJSEp05c4b5n81m0/3790lXV5fExMRo2bJlVY758/r1azpy5AgFBQXRihUrqEuXLgSAzM3Ni+W2/B1HR0ceayC/cXR0JB8fH559NflM29nZUfv27Zn/e/XqRbt37yYiok+fPhGLxWJyMjo5OdGcOXOYc+fMmUP3798nIuIJYvo7vr6+JCsrW6kFGSWRlJRELVu2pJUrVxJRoXI1YMAAkpaWpszMzHKXI+w7+Mu1a9dISkqKTExMGCskUd0cv8tCqGAJmKq+vPn5+XTt2jVq164d8+XduHFjUlBQYJLbzp8/n5nu4HA4lJCQQFFRURQaGkppaWmUnJxM3t7e5ObmRl++fKHTp0/TkiVL6MqVKxXqiGoKJycnYrFYTMDE8lAbO8nU1NQai03FZrNp586dVL9+fQJAOjo6NH36dNq5cyc9efKEr46zRbIeOnQomZmZ8a3cksjNzaUtW7aQtLQ0KSsr0/z58+nr1698KZvD4dDly5eZd2vLli0lnhcfH09KSkp08uRJvtT7K2w2m6Kjo6lTp07F4lJVxzPt4uJC7du3pw8fPhSr60/ExsbSqVOnmGfo0KFDTCJeLpdLFhYWdPnyZSL6n+9kSEgIERGtWrWKrKysiKjwXm1tbfn2TrDZbHr69CmTcPvdu3ckJSVFBgYGFSqnNvYddZ0PHz6QkpISNW3alN6+fUtEdXP8LguhgiVgqvLystlspvPv3bs3XblyhVxdXamgoIDYbDbl5ubSwYMHSVJSkkREREhXV5dkZWWLTYX8vrFYLGrWrBnzv4KCAunq6pKpqSmtXLmS7t27RwEBASVGl/6VqKgoevv2LXl6etLx48fp5MmTVV59lZGRQV27dqUuXbpU6Lra1El6eXmRkZERASANDQ0mWXV1ERISQj179iQWi0ULFiwoZgnhN0Wy3rZtG8nLy9fIUvKQkBBaunQpqaqqkoiISJWmOX+Hw+GQpaUlSUlJ0fnz52nTpk1kZWVFc+bMoffv3xOXy6W4uDjmN3z06FG5F1/8ibdv39L27dupb9++NG7cuBKfj+p4pvPy8mj58uUVchqvCPHx8XTr1i3Gd/Lq1auMJawmGDx4MFlYWFTomtrUd/xNhIWFMQnY165dS4mJiXVu/C4LFlEdyYpcDtLT06GgoIC0tDTUq1dP0M0pF0SEtLQ0KCgoVCiRaG5uLp4+fYphw4bB1NQUb968+eO5ISEheP36Nby8vKCurg4dHR1ISkpCTEwMycnJEBUVhaqqKuTk5JCbmwt9fX3Uq1cPQUFBeP/+PeLj4xEfH4/Q0FC8f/8esbGxAAAxMTHo6OhAT0+PKTMvLw/+/v74+fMnQkNDmTaIioqCiFC/fn306dMHxsbGaNOmDU6fPo0vX75AQ0MDLVu2RI8ePTBw4ECeoHA5OTl4+vQpXF1dcf/+fURERODevXvo3bt3tcuZnyQmJmLnzp04dOgQmjdvjsWLF2PPnj3w9fWFrKwsjI2N0a9fP3Tv3h2urq4ICgpCeHg4Ro0ahenTp1e4vuTkZDg4OMDe3h6Kioo4d+4cTE1Nq+HOeCmSdUBAAIyNjbFs2TLs3Lmz2usFADabjXHjxuHly5fw8vJC06ZN+VKuh4cHBg0ahPj4eCgpKUFPTw9hYWGIiYlBo0aNYGJigt69e8PMzAwdO3bE1q1bsWDBgkrXd/z4cezYsQMZGRlYu3ZticmZq/uZfvv2LRo2bFgs6GpdIjw8HDdv3oS/vz+aNGmCPXv2YMaMGdi7d2+5y6gNfcffCofDwY4dO2BrawsVFRXExsbWqfG7TASn2/Gfv9WCxeFw6MiRI9S9e3eysLAgCwsLatCgAQEgTU1Nxr+hptobHh5OL168oKNHj5KNjQ0NGjSI9PX1SUdHh1q0aEGDBw+m5cuX06VLl+jbt2/09u1byszMpMjISFq5ciX17NmTpKWlCQA1adKEFi1aRMOHDyc9PT3GH8jExIQGDhxI7dq1Y6xujRs3prZt21YqJ50gv0KTkpJozZo1JCcnR3JycrRu3TpmOiU7O5sePnxIO3fuJAsLC5KRkWEsh5KSkszf8vLy1LlzZ0pISChXnbm5uUx6h7lz59ZI3KYifpX1gQMHqjVIaEkkJyeTmpoaz7J+fsDhcCgzM5O4XC6FhYWVaP1t1qwZubm5UUZGBmVmZlbIevfrs3n16lWKjo6mDRs2MP3Z72VV9zPdt2/fCi0kqW0kJiaShoYGSUlJkaGhIcnIyFCHDh0q/C4ILVjVz5cvX6h37951bvwuC6GCJWBKe3m5XC6dPn2aWrVqRQBoyJAhNHToULKwsKDVq1eTt7d3nX3pCwoKyMvLq9hvFRwcTPv27aNx48bRsGHDyNramnbs2EG+vr60detW0tXVrVR9gugkuVwu2dvbU7169UhGRoZWrlxZpoKUm5tLX79+pZ8/fxJR4SBx6NAh2r17NykrK5Ouri5ZW1uTo6NjsZVbRc7lz58/JwsLCx7H45rkV1lzuVzq1KkTmZub12gbnJyc/pjDjR+cOnWqRAWrKIzErl27qGfPnrR06dJylVdQUEAmJibk6elJISEhJC8vT5s2bWKOBwQEUMuWLXlW1ZX2TGdlZdHWrVurND2bl5fHBBl1d3fn20rBmiAkJIR0dXWpQYMGTBDc/Pz8Sr3/QgWrZqiL43dZCBUsAVPay/v69WsCQMOGDSs1rsu/RF5eHl27do0MDQ0pJCSkxFQtJSGITtLe3p4JXFkRh/w/4ebmRpMnTyZDQ0MSERGhZs2a0fDhw8nS0pIWLVrEKOIASF1dnW7dusWHu6g4v8t69+7dJC4uXqOyZ7PZ1KJFCxo7dmy1lH/t2rUyfRnl5eXLncopLCyMJk+ezLznv8sqNTWVJk+ezBP76dSpU8We6ejoaLK0tKTdu3eTgoICXyyXnz9/JjU1NYEo65VlyZIlpKioyJdUP0IFq2aoi+N3WQgVLAFT2ss7e/ZsUldXF77Yv7F792568uQJvXz5kgCQt7c3ERUqIH+Km1PTneSnT59IVFSUVq9eXS3l+/v705QpU2jgwIHUr18/UlNTo4kTJ9K1a9fI19e32h3L2Ww29enTh3R1dYspub/Lev369QSALl++XO6M9vzA3t6epKSkqm16NDc3l27fvk2GhoakqanJWK9+V7TMzMxo6tSpFB4eXmI5s2bNqnAbraysyM7OjlJSUiglJYX5DTIzM6l79+7k5eXFKPXx8fE0duzYck8v/w6bzaatW7fWqX6oT58+NHLkSL6UJVSwaoa6OH6XhVDBEjClvby7du0iFotF+/fv53sOtr+BtLQ0unTpErMiaejQodSvXz9GVuVJK8Jms0tN31BZevToQW3btq2xMAw1jbu7O6NAHDt2jOcYl8ul2NhYCgwMJCcnJ1q1ahWJiYkRAOrRo0e5o+9XlYiICGKxWHTq1KlqqyM9Pb1MS1bRNm7cuGLXc7lckpCQKHfi4d+vTUlJoaNHj5KkpCRt2rSJuFxusXhg379/p759+xYLvVAWAwYMoC9fvlS4XbWBdu3a8cTiqgpCBatmqIvjd1kIFSwBU9rLy+FweCJMX7hwQQAtrDukpaUxfiK7du0iDQ0NRq6urq6UnJxMXC6XOBwOMwg5ODjQsmXLiKgwTk6HDh0oMjKSiKqWa05DQ4OWL19elduplXC5XHry5AktWbKEeS7XrFnDc056ejoZGRmRiIgIc05aWho9ffqUAJCJiQl9+vSpRto7YMAAMjAwqFaLXmRkJB04cIDs7Ozo3LlzdPz4cXr16hW1bt26mJJlaGhInTp1ohcvXjDXV1bh5HK5lJSURL169SJNTU0SFxcvNfl5dnY2ffv2jYkLVRaTJk0iBweHSrVNkERFRZG8vDwtXryYL+UJFayaoS6O32UhVLAETHle3u7duzNfwJVZQfcv4u7uTmfPnqXc3FwKDg4mUVFRevPmDXG5XNq2bRtpa2sTEdHXr19p4MCBRFS4kmXWrFnMgGdpaUnz589nUoJUhEGDBjHl/g34+/vTsWPHaMCAAcWUhsOHD/Ocm52dTYMGDeJRsIp4+PAhtWnThiQlJfkaq+pPfPz4kQDwpHmpKY4fP15MVn369CEA1LRpUzp//jxlZGRQXl4eo/iXxZEjR5iI9gUFBbRv3z5KSUmh169f/1975x0W1fH18cPuSlNBQYqICmIjIhbADlhR0GCLQU3Egi32WKJGotFYI4oJKLZYomKPir0DKiqiwYYoClggSFGkSdm93/cPfntflrYL7LK7eD/Pc58HbpmZe3bKuTNnzpFqhH79+nU0aNAAf/zxR7n9zeTJkysUJUGV2LVrFwQCAXg8XrnKZkXgFKzqQR3Hb2lwCpaSkaXxOjg4sB20p6dnNZau5nDlyhVERUWBYRhcunRJQmkqbXaDYRh07twZpqam2LZtG169eiWzQT0ALF26FHp6eoiPj5dL+ZXJr7/+Ch6PBz6fjw4dOuDgwYN49uwZHj16BHNzc3Tt2lXi/qJ1uqCggN2JJiY3NxcjR45U+PKdmJ9//hlEhG3btik8r9JgGAaPHz9mdzRGRERg8ODBrBNfKysr1KlTRyYHsAcPHkSXLl2QkpKCsWPHomXLlhXaKSkSifD582esWbMGdevWLdUua8CAAQgNDZX9BVUAhmGwYsUKEBG8vLzw33//yTVtTsFSPOo4fkuDU7CUjCyNNzY2FhcuXEDr1q1hY2Mj17AmXwqV6SRXrFgBNzc3AMD06dNBRIiPj0d2djb27t3LhmQRz0AAwLVr12BmZoaoqChYWlrCwcFBrTvmy5cvg4iwaNGiUuudn58f+Hy+xDvKIuu8vDz2o8Hb2xs3btxQ2DIewxQGDiYiTJs2TWXsGS9dugQzMzMQEXR1dTFgwIAyQ1MVX1LNyclBw4YN0bdv30ottyYmJpYZ8Fgd6+uhQ4dARGjbtm2VY1IWh1Owqgd1HL+lwSlYSqYijbdFixYgIs5lQyWoTCf5/v17dtBPSUnBiRMnABQaT2tra7MD29q1a9n4Zu/fv8f8+fORkpLC2hwVt1FSF4oqQWUpJUePHgUR4ePHj+w5WWSdkpLCpm1gYAAiQrNmzeS2rFMchmFYY3BbW1vWz5iyKSgowMqVK1lZ9OnTB3fu3JG4R7yh4NKlSxLn8/PzkZaWBoZh8OTJE5mcuSYnJyMxMRG5ubl49+4dpkyZws5WLV++HNbW1mjdurVc3BtUJ6mpqZg6dSq0tbXRtm1buY4BnIJVPajj+C0NTsFSMhVpvGUZFXNIR96dZFGFIjw8HJs3by5xT58+fUBE6N+/v1zyrG6KKlgxMTGl3iP21Vb0uqyyzsnJQXZ2NoRCIW7dugU3NzcQEY4cOSLX9yjKw4cPYW1tDR0dHaxcuVJlZrMYhsGBAwfQunVrEBF++OEHiR2oly9fLiHPonL+888/YWJiUurszcOHD1mFaerUqdDT08OLFy+Qn5+P3r17Izg4GADw8uVL9O/fH0ZGRhVaDlclHj9+DD09Pbi7u0uNlSornIJVPajj+C0NTsFSMrI23tDQUPB4PDg5OeHBgwe4ceMGgMKZgA4dOlRrKBR1RBmdpJWVFYhIIW4gqoP8/HwYGxuDiBAREVHqPadOnQIRsculQOVlzTAMRo4cCR0dHYlddvImKysL8+bNg0AggJWVFU6ePFltriOkIRQKsWXLFtSqVQu9evVCWloa0tLSSt35V9xjflGl6MSJE6zfrV9++QVWVlYQiUQICgoq4VajKHl5eezHQ2RkJKKjo+X7gnIkNTUVK1asKOH77uzZsxAIBPDw8JCLkqWOCtaTJ08QEhKiVt731XH8lganYCkZWRvv6tWrWRugQYMGoW/fvgCAV69ewd7envXwXB5xcXE4c+YM+/+///5bY/00FUcZneS5c+dARApVFhRNYGAgiAjLly8vce39+/do2LAhHB0dJeynqiLrnJwcODs7g4gwYMAACcVN3kRFRaFfv35siJvVq1cjKioK6enpbNxBsT+vyMhI3L9/X2LmUpGEhITAwMAA33zzDWxtbTFhwoQS95Qm5ydPniAwMBCamprYsmULgMJ+sTK7j11cXFRu9jUwMJCdLX779i3q1auHV69eAQD+++8/tu/39vaGhoYGfHx8qpxndfYdDMPg4cOH8Pb2RocOHWBiYoLmzZvDwcEBLi4u8PDwwNSpU7F48WL8/vvv2LRpE/z9/REQEIDt27fD398fPXr0YGeeGzRooDIfD9JQx/FbGpyCpWRkbbx//fUXiAht2rRBQkKCxJeJUChEamoqgEIbCxcXF3aXXFRUFE6ePAkAWLlyJfT19dnnmjdvjm+++UbOb6SaVLeClZeXx/qKCgkJqZY8FYHYD5u5uXmJa4sXL4aenh4SExMlzldV1iKRCEeOHEGrVq2gqamJoKAgvH37FikpKXLdHSYua2hoKDw9PUv1wl784PP5+PHHH+VahrLYv38/2+YnT56MsLCwEmUvLuf27dvDw8ODndWqCtnZ2SqxC/bjx4/Iy8sDACxYsABjxowpcY84wLdYobpw4QK0tbXh5eVV5fwV2XcUFBTg4cOH2LFjByZNmsQGvK9Xrx6+//57LF++HAsWLMDEiRMxfPhw9O7dGx06dICFhQX09fWho6MDTU1N8Pl8to727NmTDSemra3NKVhKhFOwlIysjdff3x9EJDEDJX7e09MTnTt3BgBkZmZi2LBhiI2NBVBouNqoUSNkZWUhLy9PYlv2ixcvZJr5qglUl4JVUFCAY8eOwcbGBgKBABs3blSrpYXifPz4EXXr1gURsQ5YxUycOBGdOnUq8Yy8ZJ2Xl4dhw4ZBIBBg06ZNOHjwoEJtptLT03Ht2jUcOnQI27dvR2BgIIKCgnDt2jWEh4fjxo0bMDIyQu3atavtNw0NDYWrqytMTU1BRNi7dy97rbicX758CYFAIHcbtitXrqBv376Ii4uTa7rlUdS1h4eHB2xsbMoN9VNQUIArV65IhCNq0aKFXGJRyrvvYBgG58+fh6enJ+rVqwciAo/Hg62tLSZNmoSzZ8+yCmVFKapMnTp1ChoaGvD09ERycrLEfZmZmXjx4oXCQ2pVBHUcv6XBKVhKRtbGGxQUxH6hFLcruH//PmuoWpyMjIxyv2Di4+PRq1cvtQrkWhkUrWClpaVh3bp1aNKkCeutvKY4hV23bh07eyOerSooKEDHjh1ZNxZFkaes8/PzWRcZkydPrvTAU1Vu3LgBCwsL8Hg8/Prrr9Wev1AoRIsWLTBt2jT2XHE5Z2ZmYv/+/XJ3UxAZGYk1a9bgyZMnck23LGJjY1m7UpFIhPr162PlypUVTkfs6PXo0aNVKo886/Pr168xcOBAEBG++uor/PLLLwgNDS3TPUdV2bdvH3R1dSEQCDBo0CBMmTIF7dq1Y50Am5ub4/Xr1wrJu6Ko4/gtDU7BUjIV3UVoY2Mj1/yfPHmCESNGVJttibJQlIL19OlTTJkyhZ2qHzt2rNrGbyuPhg0bgojYmdHdu3eDiEp1SKkIWe/YsQOampro3r07G8S4OmnZsiXs7e2V5r5A7Odp06ZN7DlVNL4+cuQIduzYAaDwo+Pbb7+t8Cx5QkICJk6ciGfPniEvLw9r1qxBQkJChcsi3jShra2NAwcOVFpO8pBzZGQkvLy8oK2tDTMzM9blS3WQnJwMPz8/dOnSBW3atIGXlxd27NiBs2fPQl9fH1OmTKm2spSHOo7f0uAULCVTkcb7/fffw97eXu5lCA8Px8iRI5UycFUX8h6MCgoK2JkVU1NTLF++vEbL7/jx46hTpw40NDQwevRoNG/eHF9//XWp9ypq4A8LC0PDhg2hr6+PESNG4NChQ9VmX9K2bVsYGRlhw4YNJTzTKxqGYWBtbY0BAwaUu5ngxx9/xKJFi+Se/82bN9nwPEDhUmRRU4XVq1fj6tWrbBnEQa2FQiGaNGmCyMhIZGVl4dq1azJ/yBWvOwUFBYiJianwppzPnz9jxIgRICLY2trCx8enhM2gLGWpTH0Wmws4OTmxs0WrVq1SqR3fa9euRa1atUp8OIhEompX3NVx/JYGp2ApmYo03u3bt4PH48nt/cRLjU+ePEGfPn1qtIIgr0H/w4cPCA4OhpubG/h8Pv744w+lLVtVN58+fYK/vz/Mzc1Rv379MkO7KHJmJTExEUuXLkXnzp1BROjevTsePHiAU6dO4fTp04iLiwPDMHK3LUlKSsJ3330HTU1NCAQCDB48GCdOnKiWXbgikQh8Ph9+fn4S54vLef/+/Vi2bJlc8z548CCaNm2K2rVrs45Ovb290bx5c/aerl27SsysFUU8exUZGQktLS02jY8fP7K/UWpqKubNm8c6f/X390f37t0l6o/YoW15dljlcfXqVQwfPhyamprg8XhwcXHBvn37ZFqaq0x9PnbsGBo3bgwigqOjI44cOaKSO7YzMzPRokULmJiY4K+//sKJEydgY2MDPp8PCwsLrF69utrczKjj+C0NTsFSMhVpvC9fvgQRSXxNVpYtW7aga9euKtnoFUFlOsns7GxcuHABixcvhpubG8zNzVk7OFNTU5w7d06BJVZdfH192R1at2/fLnG9upaurl27hkaNGpXY6WdoaAgejwdnZ+dKLS2VR2pqKvz8/NCxY0cQEYyMjDBx4kScPn1aoT6H2rVrh7Fjx0qck6ecRSIRXr58KXFOKBTi06dP8PLywtdff80qR2lpaeyuZXE5ZCEuLo6V0cCBA1kD9A8fPqBly5a4fv06gELntWvXrkVubi5evnyJT58+ITU1FadPn67qa+LDhw/Ytm2bhCsDsRLk4OCA/v37Y+rUqVi3bh2OHDmCe/fuISoqChcvXsTevXuxatUq+Pn5ITIysszZ0+joaOjo6MDNzU0tzAXev3+PoUOHsrLo1asXNm/ejHHjxkFbWxs2Nja4evWqwjdEqeP4LQ0NAKAaQkZGBunr69OnT59IT09P2cWRCQD06dMn0tfXJw0NDan3u7u7U0JCAt2/f79K+d67d4/Onj1LS5YsoVq1alUpLXVAVjkHBwdTcHAw3bx5k27evEl5eXnUsGFD6tixI9na2lLbtm2pbdu21KpVqxortzVr1lBwcDBduHBBQlZRUVE0adIkCgsLIx6PR8bGxpSUlES//fYbeXt7s/dVtE5XhYSEBLp69So5OzuTQCCg+/fv0/3796levXq0YcMG4vF4FBERQcbGxnLP+9GjR7Rv3z46efIkvXz5knR1dal///40ZMgQGjFiBOno6Mgtr3bt2lGXLl1o27Zt7LnS5BwdHU0XLlygGTNmkEAgkDn9X3/9lfbu3UtxcXFERNStWzcaMmQI/fTTT3J7h6KEh4dTcnIyDRo0qNz76tevT4sXL65UOUQiEV25coUeP35M9evXp7Zt25KtrS1pa2sTEVFcXBw1a9aMiIg6d+5Mbdu2pZSUFIqLi6O4uDjKzMwkIiIej0eWlpYUFxdH9erVo6ysLMrPz6d69epRjx49yNramrKzsykjI4MyMzPp5s2bZGBgQP/++y/Vrl27wuVWFm/evKHExESyt7dn605UVBT16tWLkpOTiYjIwsKCWrZsSY0aNaJGjRqRi4sLOTo6Sk07OzubXrx4QdHR0RQdHU0vXrwgMzMzGj58OHXp0oV4PJ5ajt9SUaZ2J2/UUQOu6Ffohg0boKurW+n89u/fX+bSTk1Gmpzz8vIwdepUdgZk4MCB2LRpE54+fapSRsSK5unTp+yXbNEZmeDgYNSvXx9t2rTB33//DaFQCKFQCG9vbxAR5syZw96rKsbX7969g7GxMVxdXRVqq8UwDKKiorBmzRp06dIFGhoaaNiwIQICAuSWb+PGjeHt7V0i3+Jy9vPzQ7du3fDixQup8v/777/h6+sLoDCcTtENC7///jsbLaKyvH79Grdv32aX0IVCIQIDA+Hp6YmNGzfizp07Uvvqq1evyuT7LC0tDQsXLoSbmxtat24NR0dHNGvWDESE2rVrQ0NDA0QEgUCA9u3bw8vLCyNHjmTrenEbJIZhkJaWhoiICFy/fh2PHj1ig53n5OQgODgYv/32G/r16wcrKyu0b98ejo6OcHNzw+zZsyts56XKCIVCREVFYf/+/Zg3bx6GDh2Kzp07s65DunXrhlmzZmHr1q0IDQ1FQkICYmJicOzYMUyaNIn9HcSHiYkJHB0dYWJiAiKCmZkZJk+ejMWLF6vd+C0NTsFSMhUdjObNmydh/1BRpk+fjk6dOil98KtuypPz8+fP0a5dO2hqamL79u1fnGyKEhISAh0dHYwePRpBQUHYvHkza6Tr5ORUwkj57du37MAlViZURcEC/t+b/uLFi/Hu3Tt2kFQkMTExGDNmDLvcUtVwMzk5Oahfv75MCpb4PAC4u7vD2dkZx44dA1Bov9akSRP8/fffAIClS5di4sSJcv+dhEIh5s6dyyo1zZo1w8KFC9k4i7a2thAIBCAiaGpqok+fPpgyZQpWr16NI0eOIDs7GwzDlOl6pjS8vLxQu3ZtDBw4ELNmzcLo0aMxfvx43L17FwzD4PPnzwgPD8eWLVvg5eWFDh06oHv37hg2bBg0NTVhbm6OwMBA5ObmlkhbleqzKsEwDI4cOYJhw4ahdevWEs5OxUfr1q0xc+ZM7NmzB3fu3JHoP4RCIUJDQzF79my0adMGDRo0ULvxWxqcgqVkKtp4PT090aNHj0rnl5GR8cXYXRWlPDm3b98eRIQZM2YooWSqxapVq1iFif7nALFv3744fPhwqXHdGKYw0DARsQO5qgxIWVlZOHfuHNq1a8d2+LVq1cK4ceOqpY+4cuWKhF+0vXv3Vsrf0YYNGyAQCEoE3JYm5zNnzuDrr79Gly5d2HO+vr7sDPbnz5+r/BsxDINdu3Zh1apV2LBhA/bu3QtHR0fweDysW7cOv/zyC0xMTKCtrY1+/frh3r17AAo3DYSFhcHX1xeDBw9G+/btUb9+fRARjI2N2ZlRaTZMDMNgzZo1ICL8+eeflXoHcfixoooBj8eDtrY2JkyYgKysLJWoz6pOXl4eHj9+jKCgIFy/fl3C6assqOP4LQ1OwVIyFRmMsrOz0aRJk1LjklUEVfLeW12UJefIyEgsWbIERARdXV25BIdVZ+bPnw9zc3Pk5+fj3bt3MntOd3V1RYcOHdgQLaowIB0+fJjdHu/j44OzZ8/CxsYGRISuXbtiwoQJGDhwYInoCPLk8+fPCAwMRJ8+fUBEqFu3Ln788ccK1bM2bdqwrg+KIouc8/PzS92IUBEKCgrKzEO88UbcfogInTp1wqVLl/D8+XMJpWXVqlVS83r58iUGDBgATU1NeHt74/r16wgNDcWxY8ewZ88e7NixA7GxsWAYBhcvXkT//v1BRFi6dGmF65t4V6yXlxd69epVZnikN2/eqER9rumo4/gtDU7BUjIVGYx+++03aGlpsduZK0vjxo1x/PjxKqWhbpQm5+vXr7PT2t27d/9idwUW5fTp0yAieHh4VMj9xPnz50FEuHXrlsooWEKhEEFBQezuOIZh2EFTQ0MDHTt2ROfOncHj8XDx4kW55BkREYFjx46VGqQ6NjYWS5YsAZ/Px4gRI2TeldWyZUv079+/1KXA8uTMMAx69uxZauw+aTAMg0uXLrEKTFnOKLOystC0aVPo6ekhJiZGwo1CXFwca2dDRNi1a1epz9+9excvXrxgz3348AGGhoZlKjzipSciQvv27Ut4ar979y4OHjyIu3fvlmkDJ66v4nrw7bffYuHChdi2bRsuXryIhw8fIikpiVUuVaE+13TUcfyWRpUUrNWrV4OIMHv2bPYcwzBYtmwZGjZsCG1tbTg7O5cIsRAdHY1u3bqhUaNGWL58ucS1pk2bgohKfHXNnj0bzs7O5ZZHHX+gijTeTp06YcSIEVXOc9myZVX+qlU3isv57du3MDY2Rs+ePavdcaSqc/ToUdSqVatC4UnS0tJARAgICFDpAenp06d4/fo1WzaRSAQnJyfY29tXqbwikQhTpkyRUAI2b95c6r1Hjx6Fvr4+GjZsiKCgoHLTZRgGEyZMABGxAdyLXitLzuJzz549w9OnTyv8PsHBwRLvMmnSpDLv3bRpE4gIXl5euHDhgoRSk5WVhf3797O2UMXp3bs3m0dR9zNpaWl4+/YtQkJCWJ9nRQ9tbW00bNgQNjY26NmzJ2sIX3RGTTw2Xbx4EYGBgTh79izu3r2LZ8+eoW/fvuw9CxcuLFcWqlyfaxKVGb9VTQcpTqUVrPDwcFhYWMDW1lbi5dauXYu6devi+PHjePz4MTw8PNCwYUNkZGSw9/Tp0wcBAQGIiIiAvb09bt68yV5r2rQptLW14eTkJJHfl65gJScnQ0NDo8o+sD58+KA20dXlSVE5Z2dno3PnzmjcuHGJIKgchYwdOxZNmzaVyclgQUEBBgwYgHr16iEhIUHtBqS5c+eCiCR8O1WUBQsWQENDA1u2bEFqairrV8jR0RGLFi2Cr68vAgMDcf/+fQCFOxzd3NxARPDx8SkzXZFIVKbCVpacnz9/DgcHhyrtZDtz5gyICP/++y9at24NgUCAcePGsfE1s7OzIRQKERsby9pOFZ0dvHPnjkz53L59m42Lt3379hLXDAwMUKdOnVJnsSwtLfHDDz9AS0sLhoaGGD16NIYNG1buzFdpR5s2bcrtE9WtPqsrFR2/VVEHKU6lFCyx99fLly/D2dmZfTmGYWBqaoq1a9ey9+bm5kJfXx9bt25lz9nZ2eHOnTvIz8+Hu7s7zp49y15r2rQpZs+eDU1NTYnzX7qCdfDgQRCRTFuWyyIpKQkGBgbsLqIvCbGcc3Jy4OLiAl1dXYSHhyu7WCpLVFQU+Hw+tmzZIvXeEydOgIhw/vx5AOo3ILm7u4OI8M8//1Tq40MciH3jxo3suby8PBw8eBBubm6wsLCAjo4OO6CfPHkSQKGcFi5cCCIq1w5MbMQ9b948iSW4suQcERGBkSNHVinos7e3NwwMDJCbm4vMzExs2LCBdeoqVoi0tbXZd6pTpw5cXFwkFJd3797JlBfDMPjw4QM2bdoEOzs7fP/998jLy8OkSZNK7EwLDg7Ghw8fkJKSwtqSPnv2DNOmTUOPHj3Qr18/eHh44NSpUzh37hxu3bqFuLg4ZGRk4N27d4iMjERISAiePXuGly9fIiYmRupSuLrVZ3WlIuO3quogxamUguXp6cn6vSn6cq9evSp154e7uzs8PT3Z/8+ePYu6detCIBBgyJAhEkbXTZs2ha+vL2bNmgVbW1u2w/vSFaytW7eyX5RVYdu2bTU6JE5ZMAyDhIQEDBo0CNra2mzsNGWQnJyMo0eP4sCBA7hy5YpK1tf8/HwIBAL88ccfUu8NCQkBEeHKlSsA1G9Aevz4MXr27AmiQhcCe/bsQXh4OMLDw6UqKR8/foShoSHc3d3LfV+GYZCZmQk3Nzc0btyYTZdhGHTo0AGjRo0q99kVK1ZAR0cHOjo6+OGHHxATE1NCzvfv35ebHWGvXr0wZMgQiXP5+fnsxgHxzsiiHtEtLCyQkJDA+pdaunSp1HzEZS++i+/mzZsS/+vq6iqt31K3+qyuVGT8VlUdpDg8qiCHDh2iBw8e0Jo1a0pcS0pKIiIiExMTifMmJibsNSIiNzc3SklJocTERDpx4gTx+fwSaXl7e1NcXBwdOHCgokUkFCqONepISkoiLS0tqlevXpXS6dq1K3369Enp71Pdx8ePH2nixIkUGhpKJ06coF69eiksL4Zh6OnTp7R161YKDw8vcX3+/Pnk4eFBY8aMIRcXFzIzM6OwsDCly6josWnTJmIYhrp27Sr13u7du5O5uTmdP39e6eWuzNGmTRu6du0ahYSEkImJCU2YMIG6dOlCXbp0oebNm9OVK1fKfPaPP/6gnJwcCggIKLfvISKqXbs2+fn5UVpaGi1btowAUHp6OsXHx5OJiUm5z3p7e9Pr16/p559/pn/++Yfatm1LDx8+lLjv3LlzNH78eLnIxNDQkB4+fEjv3r1jzwkEAhoxYgRZW1sTj8ejmzdvkoaGBjVp0oR4PB69efOGLl68SIGBgfT48WOaOXNmiXSfPHlCrq6u5OjoSMOHDyeBQEA7duygWbNmkZubG82YMYP8/f2pZcuWxOPxiMfjUe3atSkpKYmMjY2VXle4Q7GHLKiDDiJG9lgKRPT27VuaPXs2Xbp0iQ03UBrFw2MAKHFOS0uLjIyMykzDyMiI5s+fT0uXLiUPD4+KFJNVINQBAJSVlUVEJeUmJjU1lY4ePUqLFi2ievXq0adPnyqd34YNG0gkEpGfn1+l01A3RCIRzZw5k4iIrl69Ss2bN6+SDMsiMzOTDhw4QCdOnKC0tDQiIqpTpw4FBwdL3Ne2bVuytLQkIqJ69epReno6LVq0iIKCguRepsqSmZlJlpaWFBISQi1atCj3XpFIRHXr1iVLS0u27Umr06qIra0tHTlyhD5+/EjJyckkFApp06ZN9Msvv1CbNm1KhL7JzMykEydO0Pz580lXV1emOmVgYECrVq0if39/0tDQoLp161KDBg1o+vTpUp+vVasWzZgxg8aNG0fjxo0jb29v2rx5MxEVytnd3Z0mTZokl7q9bNkymjJlCn3//fe0detWMjU1Za/t3LmTli5dSvHx8ZSYmEhTpkyhhIQEevr0KdnZ2dGnT5/I3NyciKhEWSIjIykmJoaIiP777z+ytLQkCwsLcnBwkBjITp48Sc2aNaPJkyfTyJEjSSQSKaTNyoK61md1IyMjQ+o96qKDFM1YZsS2Fnw+nz3of0aNfD6f3cEhbXquPMTTc0DhOquJiQl8fX0rtESYnp7O+uNR9UMkErGG52XdM3nyZBgaGiItLa3K+X369AnPnj1T+ntX5/Hbb79BU1MTly5dKlfOlT0KCgqwY8cOGBsbo3bt2pg+fTouXLgAHo8HHo+HHj16YP78+eyWb4ZhkJKSgsOHD8PNzQ08Hg+Ojo5Kl1PR4+3bt2z5pdW7169fg8fj4cyZM2AY2eq0uhwxMTHg8/nYtWtXiWunTp0Cj8dj/TLJegiFQvj7+8PAwAA8Hg9jx46V6bmsrCwMHjwYmpqa4PF4EAgEOHnyJEQiEX799VfY2dnJ9d1jY2PRrFkzNG/enHVKWvx3P3fuHPLz82VO8+bNm2y94vF4cHJyKvW+xYsXw8LCQum/P8PUrPqsykd6errUJUJV10GKUyEFKyMjA48fP5Y47O3t8f333+Px48dgmEIDs3Xr1rHP5OXllTAwK4+iLwcA/v7+aNCgAcaPH/9F2mCJO/jydhqVRlJSEjZu3IicnBxkZ2ejWbNmErHGvhTu3r0LPp8Pb29vhdhR3LlzB3Z2diAijBkzBgkJCew1Hx8ffPvtt6w377K8Uqempsrs0LO6SE5OZu1fpBkB37hxA0TEboWWVqfVjT59+pTa94SGhoKIsGLFCpkNuouSn5+PiIgIiZiP5fHu3TsJuySBQICWLVvizZs3uHTpEmsDJ0+ioqKgoaGBgIAAuaX57t07PHjwAHv27CnThcTSpUvRqFEjueVZFWpafVZVZBm/VV0HKU6FFKzSKGpgBhRukdTX18c///yDx48fY9SoUSW2SJZH8ZfLz8+HlZUV68+iPGqagsUwDEaOHAkzMzOZO2Exr1+/ZndG5eXlYeHChbh+/bqcSq0eZGVloXnz5ujUqRPy8vIU0kkaGRmBiNC5c2eMGjWK3YYvJiUlBRYWFrCxsSk1zpmqIg76fPDgQan37t+/H0QkYbhdkwYk8Q7e0mLjzZgxg42517VrV4V/xBQ1Mh80aBCsra1hZ2enUAV9zJgxqFOnDvbu3VttLl6++uor9OvXDxkZGbh+/TrWr1+P6dOnY9CgQXB0dJSbY1hZqGn1WVWp7PitSjpIceSuYDFMoZMvU1NTaGlpwcnJCY8fP5Y5veIvBwCBgYEgoi9KwcrLy8PPP/8MIqq0W4WisylfImKv5I8ePVJYJyneZk9UGCXe0tJSoiGPHj0ahoaGeP36tVzzVTTz58+HgYGBTG1p1apVMDAwYP+vaQOSSCRCt27dYG1tXepsXkpKCg4ePMjOZP70008KVUTECi2Px8OIESNQq1atSsfhk4WsrCx4eHiAiDBhwgSFK1kMw0i4gKD/uYGwsbFhAwKPHz9eoWUoXp6aVJ9VFXkpWMrUQYpTZQVLlahJCtaIESNARPjtt9+qlH5SUhLWrl1bJaeD6orYfcCdO3cU2kk+fPgQ8fHxbPgNPp+PQYMGYciQISAi/PXXX3LPU9HMmTMH1tbWMt3r5eWFDh06sP/XxAHp0aNHEAgE2LRpU5n3iEQi+Pj4sDPHioJhGPz000/g8XiwsrKCu7s7TE1NceXKFYXI/OrVqxg/fjy6du3K+uMqq1xV5b///sPp06dZtxlEhCZNmuDDhw84c+YMeDweunXrhvT09CrnJSs1sT6rIuo4fkuDU7CUTFmNt127dujfv3+V009NTYW5ubnUkBw1EaFQCBMTE8yZM6faOsknT57Az88PDg4OaNu2Lf7++2+17JiXL18OExOTEmX38fHB4MGD8d1332HVqlWIj4+HkZERZs6cyd5TUwckV1dXDBgwQOp9AoFAJgetVSU7Oxt3797Fy5cv0bZtWxARBg8eXKEYktK4cuUKiAi1a9eWmFGKiYnB3bt3sWzZMnz8+BGNGjWCoaFhlfL++PEjzM3NJfIxNjYGEWHatGkYN24c+8FUndTU+qxqqOP4LQ1OwVIypTVe8a4sf39/9lxOTg58fHzw6NGjCuchts8Qz7J8ScyaNQsNGzZEQUFBhTrJ3NxcnDhxAt999x369u3Lhgj5UhDPxBSfsRHH6XJwcJDwTn7t2jX2npo6IK1YsQL6+vooKCgo9z49PT2sXr1a4eUpKmeGYXD8+HFoamrCyckJcXFxEIlEEg4UK0NycjL4fD6GDh3KKnHiGbo//vijRNiZqiwfig3qi6ZnaGiI2bNng4iwYMEC2NnZwdjYGB8/fqzSe1WEmlqfVQ11HL+lwSlYSqa0xnv8+HEQERuEWGywTkQYO3ZspfPavHkzmjVrVtUiqxX37t0DEWHDhg0V6iRdXV1ZuyoiwpQpUxRcUtVCXN94PB5u3LgBkUiE6Oho1KpVC35+fgCA9PR0HD9+HDdu3JB4tqYOSHfv3gURlbDPEJOdnY3Y2Fj07t0b3bp1U3h5SpNzSEgImjRpIqGo1KpVq0Scv4qwdu1aNi0tLS3weDwsXrwYeXl56NKlC4yNjeHv74/s7GyJ5x49eoSAgIAKbdC5desWfvjhBza/Ll26wNLSkv1/1apVrF1ldVFT67OqoY7jtzQ4BUvJlNZ4Fy5ciHr16oFhGOTn57Ody9y5c6v0RSoUCr+4nYRAYSBeHo+H6dOny2Sncv/+fVbmfD4fVlZWiI6OrqbSqgYBAQGws7ODra0tu0RUq1YttGjRQmr7qqkDEsMwmDp1KogIL168YM8HBwfD2dkZtWrVYuvNyJEjq6U8pck5ODi4xMxSRY1zDx06BCIqYWzevXt3/PjjjyAi7Nq1q9w0Bg8eDCJC27ZtK1wXEhMT4e3tjd69e7PLk/v374evry9blkOHDlUozcpSU+uzqqGO47c0OAVLyZTWeNu3b4+hQ4ciJSUFS5YsYTuU/Pz8SuURHByMPXv2yKvIagfDMAgICICTkxN4PB4WLVpU7v2pqakYNGgQjI2N0aJFC8THx1dTSVWPzMxMHDt2DD4+PvD395dpq3NNHZCePHnCtkexwu3n58fOtPj5+eHChQs4cuRItbjkKE3OR48elVCIxo0bBw8PD9y8ebNCac+bN6+EkiY+evbsiTZt2oDP58PNzQ1//vlnqUt2/v7+7DNFzR2qwpMnT1g7rd27d8slTWnU1Pqsaqjj+C0NTsFSMqU13r59+5bo1L799ttKpS8SiTB8+HB899138iqyWvL582f4+vqyW9tlYdSoUaz8i0ZV5yifmjggid1x8Hg82NnZIScnBwzDQFdXFxMnTqw2/1BFKU3OrVq1AhHBwMAArVq1gpmZWaVdhGRlZSEgIADu7u4wNDQEn89Hx44dYWpqCj6fD2dnZ/Ts2RMCgQA6Ojr46quv4OzsLDFLvmbNGnh5eeHt27cy55udnc2+U3p6OgICAnDo0CGIRCKYmpqWu0yrCGpifVZF1HH8lganYCmZ0hpvZmYmjh8/Di0tLRARAgMDcffuXRw/frzStgdfaueQlZUFPz8/WFpaokWLFpg9e3YJW5GyOHXqFBwcHGBtba12fqyUSU0bkMRe7adPn16i7ujo6JTrukGRlCZn8QdB//79kZSUBGNjY0ydOpW9v7K/SV5eHtauXQtnZ2cQEdq1awcigqenJxISEuDj44PZs2ejVatWaNKkCdLS0iqcx6tXr9ioB7a2ttiyZQvWrFkjYSIxbNgwWFhYcEbuNRB1HL+lwSlYSqa8xhsQEAAiQsOGDSVms5YvX16hPC5dulTl3UTqBsMwWL9+PQwMDMDn8zF69GhERERwnWQ1UNMGpOzsbGhoaJRY5srNzYWenh5WrVqllHIVl7NIJIKFhYXE8tlvv/0GbW1tJCcnw8TERGImnGEYPHz4EHv37sW///6LgoICpKenY+7cubh7926ZeYrt0MTHypUrcfLkSVy9ehXHjh0DEeH48eMVfp+oqCiJdOvVq8cuefbq1QtEhF9//bVKfWFlqGn1WVVRx/FbGpyCpWTKa7xPnjyBu7s75s6di2XLlrGdSkV2tL18+RJ8Ph+BgYHyLLZKwzAMxowZw846xMXFcZ1kNVITZB0fH4/Dhw/j5cuXWL16tYTdFVDoH6pVq1YQCARlxphUNEXlHBMTI7HbjoiQmpqK1NRU1K5dW2JXoZubG6ysrEqYIdSuXRt16tRh/3d3d0dgYGCpH2cZGRkIDAws4VZBbOgvzQC+LJYvXw4igpWVFczMzNC9e3cQEYYNG1aqPdjKlSurKkap1IT6rA6o4/gtDU7BUjKyNl6GYdCyZUt2ur8iPHjwAAzD4NWrV9i+fbtcHRGqImIP7tu2bWPPcZ1k9aFoWX/48EHCL1l4eDj8/f2xZ88emZd/gcJyvnjxAjdu3MD9+/cRExODWbNmwcjICHw+H0QETU1N1lhczNKlS0FEcHR0rFZ3AaWVXyzn4gqImZkZUlJSABS2/yVLliAwMFBip6P4EAgE7N9OTk64c+cOtm/fjs6dO4OI0LFjR0yaNAmrVq2S2D0JAGfOnMGoUaPQqFEjEBH09fVBRGjTpg3evHkj1WdYcczMzNiyFFUYjx49ipYtW+Kbb75BUFAQHj16VG39GNd3VA/qOH5Lg1OwlExFGm/r1q0xadKkSud1+PBh1K1bF+Hh4ZVOQ9WJiYlBrVq1YG1tLeF/h+skqw9FyvrixYvsMtihQ4fYXX1iJcHa2hobN26UCH4sFArZwZhhGKSkpCAkJAQDBw4sdRbnxx9/hIuLC3vu9OnT7Lvs3bsXRIUhrJRdl4rK2c3NrcS7FPd4Xnxpb9GiRWAYBjk5Odi6dStatGghYci/bt06/PPPP3BwcGCfqV+/Ptuuir6/UChEhw4d0KNHjxLlWLBggczvtG3bNhARGjVqhMjISOzatQudOnWSSK9bt24ICwurto0FXN9RPajj+C0NTsFSMrI23sePH4OIKhXy5tWrV/D392fzqMkdRUBAAPh8fgl3AlwnWX0oStYXL14EEaFDhw4SXsXHjBkDoVCIq1evwtXVFXw+H+bm5pg+fTocHBzYWZsGDRrAwMCAfa5x48Y4ePAgoqKiEBERgXPnziEhIQHR0dEwMDBgB/ajR4/i2bNniIiIQL169TBmzBiVqEdF5SwSiRAfHw8XFxfWd9np06cBFNpm+fv7g8fjYePGjXjx4kWprkcYhsHz58+xc+dOjBw5EpqamhLyIiJoaGhg5cqVsLOzA5/Px8yZM9lZqhEjRqBv376YPHmyxDNOTk5YvHixhLf/8oiPj0dWVpZEucLCwvD06VNcuHCB9c0l/o3v378vB2mWDdd3VA/qOH5Lg1OwlIysjVdsPFqZOFyzZ8+Gi4tLje8gRCIRrK2t4eLiUuIa10lWH4qSdefOndG1a1dWoTh79izCwsJK5PPixQt4enqiVatW8PDwgJ+fH3bt2oVVq1ZhxYoVOHbsGO7du1fqDEhycjKaNWsGa2trJCUloVu3bhLKgpGREZKSkuT6XpWlNDmnpaWhQ4cOcHV1ZZUo8czVDz/8UCFfeklJSfjmm28kbKvEs1jiv/l8Pvr06YP3799j8uTJaNeuHYDCANHDhw+HmZkZhg8fzt7fvXv3SvvzE5OcnIxr166xHt9liQ9ZFbi+o3pQx/FbGpyCpWRkbbz5+flo0qQJZs2aVeE88vPzkZqaWtkiqg1ip4+3bt0qcY3rJKsPRcg6Li6uhF2dvGEYBt27d4exsTHi4uIAFMYADQ0NxY0bNxAWFobk5GSF5V9RSpPziRMnJBTCyZMnw9PTE0QEDw+PSi2r5eXlYd++fSAi9OnTBwzDYOPGjdi6dSvOnDkDIyMjmJqaYvz48RAIBCXsrp4+fYp69eqxZaqo01Og0LO7k5MTNDU1Ua9ePXzzzTfw9/fH0KFDK+ylvqJwfUf1oI7jtzQ4BUvJVKTxurm5wdXVVea0AwICvigHmWKbmsTExBLXuE6y+lCErAsKCmBtbQ1bW1uF+SQLCwsDEeHChQsKSV/elCZnoVDIhqgRH8HBwdixYweICIsXL0ZmZmal8hs3bhwaNWqElJQUCUUtMTGRXU7V1tZGVlYWhgwZgnHjxrFle/XqFbt0aWFhgS1btpQ5EygUCnHo0CF4e3vD1NQUe/bsgbe3d6m7CIkIP/30U6XeR1a4vqN6UMfxWxqcgqVkKtJ4W7VqhdmzZ8ucbufOnbF+/foqllD1EIlE2L9/P/r164du3brBzs4ONjY2bIf7119/lXiG6ySrD0XJ+uHDhzA3N4e2tjZsbW3RqlUrTJs2DdHR0XLJa9KkSTAyMqrwzjdlUZachUIhNmzYgIULF+Ly5cvIzc0FwzCYNm0atLW10aRJk1JneYvz7t072NjYYMqUKbh27Rru3r3L7q60sbGRcPb54cMHzJs3DydPnmQVVQ0NDYmdfrGxsejYsSPbTnv37l2qslzcqH3fvn3IzMzEqVOnMGHCBFhbW2PWrFnQ09MDEVVaYZQVru+oHtRx/JYGp2ApmYo0XisrKyxcuLAaSqW6hISEwN7enl2uGDduHCZPnoyZM2fC29sbJ06cKFWWXCdZfShS1unp6Vi/fj2mTZuG6dOns0tPVlZWZTrHlIXk5GQIBAL8/vvvciytYqmMnGNjY9GlSxeYmppKNRsovtxoZ2eHkJAQjB49GkSEQYMGlfrcw4cP0aRJE5iamuLw4cPs+bp168LS0hKbNm2SUKKK+7Jq06YNiAjff/99uYrg06dP2d2kioTrO6oHdRy/pcEpWEpG1sb7/v17aGpqVjgsR9Ht6kXzU0f+/PNPEBEcHBwQGhpaoWe5TlL+iEQiREZGwsfHB+7u7hg7dixu3rxZrbL+9OkTzp8/j06dOoHP52PixIkSPrJk5dWrVyAi7Ny5UwGlVAyVlXNCQgJ0dHSkBj0XK53Tpk3D2bNnJZQtLS2tcpfmxH65+vfvz55r2LAhDA0NARQ6KhUby4t3O1aG5s2bQ09PD5MmTcKHDx8qnU55cH1H9aCO47c0OAVLycjaeFeuXAkdHZ0Kxfjavn07NDU18fvvv+Onn37Czz//zO6KevfuXVWLXq3s2bMHRIR58+ZVylCX6yTlQ15eHg4cOIBRo0bB2NiYtbtxcnJiB18ej4du3bpV6/J0Xl4e1q1bxzq87N+/f4WcgIpEIvbZ27dvK7Ck8qOydVo8M/Xrr79KvXfz5s0gIly7dg27d+/GxIkTcfPmTamht4KCgmBmZoaAgAD23szMzBL2kZ8/f8b+/ftLtZuUhefPn2PixInQ0tKCjo4O3rx5U6l0yoPrO6oHdRy/pcEpWEpGlsabnZ0NIyMjGBkZISAgAEOGDIGHhwcWLFiA1atXIyAgALdv32bTuH//Pru9WrzFulmzZmjatCl7rmPHjkoL8VFRcnJyYGpqilGjRlW6k/tSOslXr15h3759ePXqVYlrqamp8PHxQWBgIB4+fFhhWYSHh8Pa2hpEBHt7eyxevBhXr17F58+fkZOTw9atadOm4bvvvoOWllap6WRkZODSpUvsTj15UlBQgMOHD6NFixbg8XhwdXXF2LFjMW7cOOzcubNc79/Hjx8HEWHOnDlyL5ciqGyd7tu3L7p16yaTrRnDMHBwcECXLl0qlE9eXh5bH65fvy5x7dKlS+zMmNgmqyKbd65du8b61IqKimIDUBMRzpw5I3M6svKl9B3KRh3Hb2lwCpaSkaXx7tq1S8LRX48ePeDo6IjmzZvD0NAQPB6PtUMRh7do1qwZtm3bhrdv35aY8QkNDYWNjQ14PB5mz55dwimnqvHHH3+Ax+MhJiam0ml8CZ2keJaPiGBgYIDFixfj3LlzSE9PR05ODjZu3CixzNOsWTNs3Lix1IGWYRhkZWUhPj4eR44cwcSJE1kP32UtwYWFheHq1atgGAZ+fn7Q0tIqsVPs6tWrMDc3B1FhqBlFkZ+fj23btqF3797o1q0b6428TZs2ePz4canPMAwDOzs71K5dW2HlkieVrdPjxo2DiYkJkpOTkZycjAEDBqB169ZlOuy8fPlyhZUXhmGwfPly/PDDD5g7dy4GDBiA3NxcAEDLli0l6mGdOnUk6kJOTk65s9Ri56eXL1/Gjz/+KJFW9+7d0bVrV9jY2MDCwoLtG2WZrSvvXWp636EKqOP4LQ1OwVIysjTe9+/fY8WKFbh16xbbSRVF7MV6ypQp8PDwwIEDB6R+nebn52P9+vWoXbs22znZ2tpW+X2qSmZmJl69esXuDAoPD0e9evXg6elZpXRVoZNMTU3Fpk2b4OLigl69epV7DBkyBNu2bZPwaF2cgoICPHr0CHv37sXXX38NHo+HMWPGID4+HmPGjGGX8IoH5L1+/TouXbqEsWPHQkNDA/b29vj999/h5eWF1q1bw8DAgN0tJj6aN2+O1atXyzzrER0djYYNG6JTp074/Pkzli5dyhov9+zZEx4eHiAivHz5ssx0EhIS5Pp7/fvvv7CxsYG5uXmp/qzmz59fLdv+5UVl63RiYiIaNGiAQYMGwdfXF0QEU1NTmJiYlOqjimEYdOrUqdIOPXv16gUiwtWrVwEAW7ZsQd++fbFjxw5WAdq9ezdEIhE2bNgAIoKhoWGZDkl//vlnEBV69Le1tYWGhgbc3NwwZcoUjBkzBuPHj8fMmTPh6urK1t+ixvYVpTQ5MwyDQ4cOwc/PD3v37sXJkydx+/ZtxMbGKjXWq6x1ISkpCYsWLUL37t1x7tw5ueSdnZ2N3r17Izg4uFLPq+P4LQ1OwVIyyh74xV+nRIQlS5ZUKa2MjAw8evQIwcHB+Oeff7Bz506sX78emzZtwp49e3D9+nW8evUKu3fvxooVK7B27VoEBATgzJkzuHXrFvr06SMxUzd48GDo6emhS5cuSE9Pr1LZqkvOz58/x/z589G7d2/06NEDnTt3RseOHdG2bVtoamqiVq1acHV1xahRo8o9nJ2dwefz0aBBA+zfv58td0FBAY4fP45+/fpBS0tLYsl369atEp27OPTJ7t27sXfvXly9erWEIfDt27fh6OgIbW1t2NjYYNq0aVizZg02bdqEBQsW4OzZsxW21xPLWrwpQeyfbNy4cThy5AiSkpLYWayylqlnzZoFIpK7Hde7d+9gZGSEr776CqtWrcLTp08RHR2N5ORk8Hg8rFixQq75KZKq1OkzZ86wSnTjxo0RFRWFdu3awcDAALGxsQgPD0e/fv3QpUsXhIaGIiAgABoaGuUq/EWJiYnBzp07sWrVKoSHh+Pw4cMSs1KPHj3CgAEDsGvXLkRFRSE9PV1CoS/qQ6s4sbGxJXxhzZ07FytXrkSfPn1Qp04diWvHjx+HmZkZ9PT0YGtri4CAADYoeE5OjlT5lSZnsV+xom1QfAgEAjg5OeHYsWNSbdXkAcMwOH78ODp06ACBQAAHBwecPXu21PdKSkrC4sWLYWBgAD09PTg4OIDH4+HevXsS6dnY2GD//v1S8163bh1GjBgBAPj48SNGjBiBf//9F0DhjHZppgpixPWBYRh4eHiwcSjVafyWBqdgKRllK1iJiYkgInh7e1epDFu3bmUD7hY99PX1oaurK3FOQ0MDJiYmMDAwYL9giQpji+3cuROXLl3C2rVrYWJiguHDh8tlCVMRcv706ROeP3+OuLg4xMTEYMqUKaxS9M0332DMmDGYMGECpkyZghkzZmDjxo14//69zOnHx8dj5MiR7KyPl5cXa4jdtWtX+Pr6IiQkpMrKZ2ls2LABZmZmVdpQcOPGDZiYmEBLSwurV69mrw0cOBDGxsblzl4FBgbKRekvjXv37mHQoEElBmIiwpEjR+Sen6Koap2+cuUKDA0N2eWzDx8+wNLSEs7OzrC2tkbr1q3RpEkTdvZSIBDIrGAV9dxeWvzUrVu3stdTU1ORk5ODnj17omXLlhL14s2bNzh+/LjEzOmyZcvYZ6dOnYqYmBgMGTKkxG9Z9OjYsSPWr1+PYcOGgcfjoW7duujcuTN4PB7rnb4sSpPz+PHj0alTJwBAbm4ukpKS8PDhQ1y8eBGbN29mN31YWFjA19dXYTu3o6Oj0a9fPxARXFxc4Ovry9qktWzZEmvXrmX9xH38+BFfffUV6tati4kTJyIlJQWZmZkgkvQdKBQKMW/ePERERAAATp8+jd27dwMA3r59i379+uHhw4cAgKNHj2LlypUl5McwhVERxowZwz5nbW3NflD5+PigRYsW7P3Tp09nTRzUafyWBqdgKRllK1gMw6B9+/YgIvj7+8v8XEJCAu7fv487d+7Ay8sLRISJEyciLCwMz58/R0pKikSnmJubiydPnuD06dNISUmRyP/Vq1e4e/euQh08VkTOHz58QFBQELZu3Yo1a9bgp59+wqRJkzB8+HD07t0bNjY2rJPDokf9+vWxcePGUpdxq8LJkyfRq1cvtG/fHtOnT2e/EBUFwzDIzc2t9FR/UVkLhUJ2tgAA/vrrLxBVbWu+vMjOzsbFixdx5coV+Pr6YsWKFQrb6q8I5NF3FG9zCxYsYD+CHjx4gOjoaBgaGrJ1vOhMR3l4enqiefPmmDVrVqlKmUgkwvbt2/H333+XWX5x/NXiNlSfP38uEaz65cuX+OWXXzB+/Hh2KVq8RDh8+HAJW8DY2FisXLkSo0ePxqBBg0BECAsLK/NdSpPzwIEDMXjw4HJlEBERge+++w4CgQC1atVC//79cfTo0XKfqQhnz56FtrY2LC0tJZRYhmFw/fp1dqMJUWGgcz6fj7p167K/YWpqKnr06AEtLS1W8YmIiMDbt28l0vr666/ZEG15eXn4+uuvER4eLrV8GRkZ7AzWf//9hzlz5uD58+cAgDt37mDz5s0SMlXH8VsanIKlZJStYAGF9lhWVlb4+uuvy71PJBJh8+bNJTwt6+rqYufOnSptBCpNzllZWdiwYQPs7e1ZmyUejwcDAwNYWVnBwcEBLi4u8PDwwIwZM7Bu3TocPHgQ169fx+XLl3HmzBm1GpzLY8GCBRg5cmSlFd7SZJ2UlISJEyeiVq1aGDdunLyK+kWjiL5j9erVICp0vSEmIiICdevWBRGhR48ecssrOjoaLVq0KFPpuHPnDluWp0+fypzu6dOn0aFDB7x8+RJXr16Ft7d3ma438vLy0Lp1a3h4eJSZXnE5JyYmom7dujI7fU5MTISfnx87szR37twq/2ZHjx5FrVq1MHjwYOTk5JR5X1ZWFs6ePYulS5ciICAACQkJAAp3mjdt2hQNGjSQUC67dOmitPapjuO3NDgFS8mogoIFFBqeamholPsl9+OPP7K2Ufv378eDBw/w6NEjtQgkXZqcRSIRQkNDMX36dBgaGkIgEODbb7/Frl27EB8fX6nlsZpAYGAgDhw4UMJJrawUl3V0dDTMzc1hZGSEdevWlTsgcMiOIvqOvLw8/P777/Dz82PPLV++HK1atcLAgQPh4+Mjt7x8fHxARGjSpEmZ92RlZVX4/fLy8rBhwwaJmbcJEyaUeb+3tze0tbWxd+/eUts8wzBITU3F2bNncebMGfz9998gogot94sR2yVu2LChws8ChSsBGzduBI/Hw+jRo8vcCFAeiYmJMDQ0hJ2dXYlQRWFhYdViN1Ya6jh+S4NTsJSMqihYBQUF6NatG4yMjHDo0KESO2EuXrwIIqqwJ3lVoaicCwoKsGfPHna7uLm5OebPn19i2YGjchSv04MHD4aVlZXaObdVdaqr7ygaP7AsFxeVITY2FkOGDKlSiKPiFBQUYOTIkRAIBBg/fjwbJLq8nXI5OTkYNWoUq+xNnz4dFy5cwKtXr3Dw4EGMGzcOnTp1krAXtbGxqXQZFy5cCA0NjRJLZKUhEokgFAoRFRWFFStWwNTUFESFvtoqqwiJNzZduXJF4nxeXh5GjRqltOV7dRy/pcEpWEpGVRQsAEhJSWGDJltbW+P48eP4/Pkzdu7cyW7VV4VyVgaxnG/duoW2bduCiDB48GCEhIR8sTNVZXHx4kW5bmtv3bo1ZsyYIa/iVZqQkBC5KgjKprr6DrFdltggXZURO4vdunUrXrx4AaLCoNKyyOjOnTuYMWOGhENmIkLbtm2xbNkyREREICIiAj4+Pvjvv/8qXUaRSISZM2eCiNC5c2ds27YN0dHRuHHjBhYvXowZM2bA3d0d1tbW0NTUZE0WdHV1MXXqVERFRVU6b6DQiL1Vq1Zwd3cvcc3Ly0um3YOKQB3Hb2lwCpaSUSUFCyhsfBEREXB0dARRoRd48Xbkisb/UyUYhsH9+/ehpaUFBwcHdocMR0mmTZuGvn37Vvr54nV62LBhsLe3V2odT0tLYwfMw4cPK3RDRXVRXX2HSCTCtWvX5DrTpChu3rwJosJA0eLf+8KFCxVKg2EYPHr0CBcvXmR9sSlCzleuXIGTk5OEzzlTU1PY2tpiwIABmDlzJv78809s3boVV65ckatD6O3bt0NDQwPx8fF49+4d9u3bV6nlRnmijuO3NDgFS8momoJVlEePHmH69OnsjA8R4c6dO8oulkwkJSXhr7/+woEDB/D27Vs8e/YMAwcORKtWrSptW/QlURUFpHidPn/+PIgIe/bskVfxKkx2djZmz57NzgZ07txZrfqJ0lDlvkNZiOMsEhHGjx+PZ8+eVTlNRcs5IyMD58+fx+XLl6tlNp1hGHh6ekJDQwN+fn6Ijo5GkyZNJOzulIE6jt/S4BQsJaOKnaSfnx9at27NflkVdaYnjw5LUQiFQpw7dw7Dhg0r4ZOLx+OhU6dOavEVrgrIU8ECgLFjx4LH48HDw4P1oaMMinr3lpcHa2Whin1HdRIZGQkiwo4dO9hzeXl5WLt2Lfbt2yc3ZaWmyfn+/fvs0qm4LaqCmYQ6jt/S4BEHRxFycnJo0aJFZGFhQX5+fnTu3DlKTk6mLVu2kEAgIKFQqOwiliAnJ4fWr19PzZo1Izc3N4qJiaGNGzfShw8f6P379/TPP//QmTNn6NixY+Tg4KDs4qo8v/32Gzk6OhIAuaW5a9cu+v333+nBgwdkZ2dHixYtIoZh5Ja+rAQFBVFQUBBdvHiRBgwYUO351zQ+ffpEGzZsoKysLCIiQuFHe7XkvWDBAiIi+vz5M3tOU1OTFi5cSN9//z3xeDV/eBOJRGxdvnbtmkzPXLx4kWrXrk3nz58nW1tbIqIvQlZKQckKnlxRRw1Y1b6Otm7dCh6Ph9jYWInznz9/hrW1NVq2bMn6UlEFzpw5AzMzMwgEAkyYMAF3794tVZaqJmdVJjw8HH/++WelY6qVJ+u8vDzMnj0bRFRq3DsO2VF2nQ4KCmJ31vXr1491u1C/fn2FB5BPSEhgZyIvX76s0LyULefSSEtLY3dIio8//vhDpmf79+8PZ2dnxRawEqjj+C0NTsFSMqrUeBmGgbW1NYYOHVrq9ZiYGJibm8PKykouRuIMwyAyMrLS7y72KePq6lpu2BVxXqoi55qONFmnp6eDz+cjICCgmktWs1B2nS4aAsvQ0FDCWPv7778HUOjB+8CBA1i/fj22bNmC/fv3V2kHnpj8/Hw2r3nz5lU5vfKoLjkzDIPExMRSl+cZhkFMTAwCAgLwzTfflIgicf78eZnzWblyJYgI+/btk2fxq4w6jt/S4BQsJaPsTrIoYl9XISEhZd7z6tUrdOzYEQKBACtXrpRpliMzMxOZmZkS57Kzs9kQO6XFKiuP8PBweHh4gIgwf/58mWSnSnJWdQoKCvDPP/8gLi6uUs/LIuu2bdti8uTJlSwhB6D8Oq2lpYV169ZJnLtx4wY7q1W/fn1WAdDT02MVMD09PfTu3RuDBw/G4sWLsWTJEgwdOhTu7u4SMfs+fvyIgIAApKWllZr/d999h7Zt2yrcLrS65BwaGsravFpbW6Nnz55wd3dHv3790LhxYxCRhBJLRPDx8anwTDPDMBg6dCgsLS0V9CaVQx3Hb2loANW0YF4NZGRkkL6+Pn369In09PSUXRyZAECfPn0ifX190tDQUGpZ3NzcKCkpie7fv19uWfLz82nFihW0Zs0aql+/Pn377bfUqVMnatWqFdWpU4fCwsLo5s2bFBkZSQUFBfTmzRsSCAQ0YMAAatCgASUnJ9OtW7coLS2NCgoKqGfPnnT9+nWp5UtJSaHly5fTli1bqHnz5jR37lyaMmWKTHJTJTmrOp8/fyYzMzP69ddfafbs2RV+XhZZz58/n/7880969OgRtW7duqpF/iJRdp1u164dvX//niwtLenTp09kaWlJ1tbW1LBhQ7p27RoZGRlRv379yMXFhYyMjAgApaamkq+vL8XFxdHHjx/pyZMnJBQKSVdXl+Li4mjnzp304cMHevXqFW3bto2IiC5dukT9+vUrkT/+Z++laPshRcpZKBTSgwcPSFdXl/7++2/y8/OjtWvXUkxMDCUlJVFeXh5paWlRs2bNyMnJiZKTk8nLy4u8vLxo1apVZGJiUql8t2/fTtOmTaO0tDTS19eX6ztVFnUcv6XBKVhKRtmdpJjo6GiytramvXv3kqenp0zPREVF0d69e+nYsWMUGxvLnufz+dSxY0eyt7cnXV1dMjU1pbS0NAoPD6fU1FQyMjIiGxsbmjVrFj169IiGDh1K5ubmZGNjQzwej3Jzc8nQ0JCMjIyoUaNGpK2tTSEhIXTu3DnS0tKiVatW0YwZM4jP58v8fqoiZ3UhOTmZjI2NK/WsNFkLhULq378/PX78mB4/flzpQeJLR9l1Ojo6mnx9fSk/P5/09fUpJiaGXrx4Qa9fv6aCggIiIjIyMqIhQ4bQsGHDyt1UEBYWRt27dyciIh0dHWrZsiXFxsZSZmYmpaWlkYGBQbW8U2koQs7BwcFUUFBAc+bMoaioKPb8mDFj6O+//6ajR4/SyJEjKTs7m7S1tdnrkyZNop07d1JMTAw1b9680vkHBATQzJkzKTk5WamyLYo6jt/SECi7AIogIyND2UWQGQCUkZFBGhoaSh34fXx8yMjIiFxdXWWWn7m5OS1ZsoSWLFlCOTk5FBsbS58+faJ27dpRnTp1ZEqjV69etHbtWoqLi6O4uDji8XhUr149ev36NV27do1EIhHl5+eTtbU1rV69mkaMGEEGBgaUnZ1dofdTFTmrA+IBrbLtSJqsV69eTcHBwXT69GnS0dFRq/aqSii7TpuZmdH69etLnBeJRJSYmEixsbF04cIFOnPmDO3YsYNu3rxJurq6lJ6eTunp6fTff//R27dv6e3bt5SQkCCRrkAgoMzMTOrcuTMJBAKl1hF5y1koFFKvXr2IiKhVq1Z09uxZYhiGZsyYQXXq1KGMjAyytram7du3U3JyMrm4uFCfPn3IxsaGdHR0iIjI3t6e4uPjKz17d/HiRerUqZPSZVsUVSmHPKlRM1i5ublkaWlJSUlJyi4KBwcHBwcHRwUwNTWluLg4iVk7daZGKVhEhUpWfn6+sovBwcHBwcHBUQE0NTVrjHJFVAMVLA4ODg4ODg4OZcO5b+Xg4ODg4ODgkDOcgsXBwcHBwcHBIWc4BYuDg4ODg4ODQ85wChYHBwcHBwcHh5zhFCwODg4ODg4ODjnDKVgcHBwcHBwcHHKGU7CqQGhoKH399ddkZmZGGhoadPLkSYnrAOjXX38lMzMz0tHRoZ49e9LTp08l7nn+/Dl1796dzM3NacWKFez5kSNHkqurq8S958+fJw0NDfrll18kzv/2229kZmYm35dTc7Zs2UKWlpakra1NdnZ2dOPGDfZaUlISubq6kpmZGU2bNo0YhlFiSVUTRdZtIiILCwvWM3bRY+3atYp+NZVizZo15ODgQHXr1iVjY2MaMmQIPX/+XOIeTtZVJyAggGxtbUlPT4/09PSoa9eudP78efY6J2MORcApWFUgOzub2rVrR/7+/qVe//3332njxo3k7+9P9+7dI1NTU+rXrx9lZmay90yfPp3GjBlDp06dotOnT9OtW7eIqDCEzM2bN0koFLL3BgcHU+PGjUsERg4ODmZDL3AQHT58mObMmUNLliyhf//9lxwdHcnV1ZXevHlDRETe3t7k4OBA58+fp/j4eDp48KCSS6x6KLJui1mxYgX9999/EsfMmTMV+l6qRkhICE2fPp3u3LlDly9fJqFQSC4uLhKhoDhZVx1zc3Nau3YtRUREUEREBPXu3ZsGDx7MKlGcjDkUAjjkAhHhxIkT7P8Mw8DU1BRr165lz+Xm5kJfXx9bt25lz9nZ2eHOnTvIz8+Hu7s7zp49CwB4/vw5iAi3b99m7+3UqRM2b94MTU1NZGdnAwDy8vKgo6ODHTt2KPgN1YdOnTph6tSpEudat26NRYsWAQCGDx+OQ4cOQSQSYdq0adi8ebMyiqk2yLtuA0DTpk3h6+tbHcVXK5KTk0FECAkJAcDJWpHUr18fO3fu5GTMoTC4GSwFERcXR0lJSeTi4sKe09LSImdnZwoLC2PPrVixgvr160e6urrE4/Gof//+RETUsmVLMjMzY2erMjMz6cGDBzRixAiysrJiv57u3LlDnz9/5maw/kd+fj7dv39fQu5ERC4uLqzcFy1aRLNmzSItLS36999/ydPTUxlFVVuqWrc5yubTp09ERGRgYEBEnKwVgUgkokOHDlF2djZ17dqVkzGHwuAULAUhDjhtYmIicd7ExEQiGLWbmxulpKRQYmIinThxgvh8PnutZ8+eFBwcTEREN27coJYtW5KRkRE5Ozuz58XLhlZWVop9ITUhNTWVRCJRuXK3t7enhIQEevv2LYWFhVGdOnWUUVS1RR51m4ho4cKFVKdOHYlDXK+/RADQ3LlzqUePHmRjY0NEnKzlyePHj6lOnTqkpaVFU6dOpRMnTtBXX33FyZhDYQiUXYCajoaGhsT/AEqc09LSIiMjoxLP9urVi+bMmUMFBQUUHBxMPXv2JCIiZ2dn8vPzI6JCBat3796KKbwaI03uAoGATE1Nq7tYNYqq1G0iogULFtC4ceMkzjVq1EiuZVQnZsyYQY8ePaKbN2+WuMbJuuq0atWKIiMjKT09nY4fP05jx46lkJAQ9jonYw55wylYCkI8eCclJVHDhg3Z88nJySW+lMqiV69elJ2dTffu3aPr16/TggULiKhQwfL09KQPHz7Q7du3aezYsfJ/ATWlQYMGxOfzJb48iSomd47ykUfdJir8rZo3by738qkjM2fOpKCgIAoNDSVzc3P2PCdr+aGpqcnKwN7enu7du0d//PEHLVy4kIg4GXPIH26JUEFYWlqSqakpXb58mT2Xn59PISEh1K1bN5nSsLKyosaNG1NQUBBFRkaSs7MzERE1bNiQLCwsaMOGDZSbm8vZXxVBU1OT7OzsJORORHT58mWZ5c5RPvKo2xyFAKAZM2bQP//8Q9euXSNLS0uJ65ysFQcAysvL42TMoTC4GawqkJWVRS9fvmT/j4uLo8jISDIwMKAmTZrQnDlzaPXq1dSiRQtq0aIFrV69mnR1dWn06NEy59GrVy/asmULNW/eXOJrSrxM2KxZM2rSpIlc30vdmTt3Lo0ZM4bs7e2pa9eutH37dnrz5g1NnTpV2UVTG6qjbmdmZpaYadTV1SU9PT25vYeqM336dAoMDKRTp05R3bp1WXno6+uTjo4OaWhocLKWAz///DO5urpS48aNKTMzkw4dOkTBwcF04cIFTsYcikN5GxjVn+vXr4OIShxjx44FULjFetmyZTA1NYWWlhacnJzw+PHjCuWxe/duEFEJtwP79u0DEcHLy0ter1Oj2Lx5M5o2bQpNTU107NiR3fbOIRuKrttNmzYtNf0pU6Yo6I1Uk9JkQETYvXs3ew8n66ozYcIEtj8wMjJCnz59cOnSJfY6J2MORaABAArX4jg4ODg4ODg4viA4GywODg4ODg4ODjnDKVgcHBwcHBwcHHKGU7A4ODg4ODg4OOQMp2BxcHBwcHBwcMgZTsHi4ODg4ODg4JAznILFwcHBwcHBwSFnOAWLg4ODg4ODg0POcAoWBwcHBwcHB4ec4RQsDg4ODg4ODg45wylYHBwcHBwcHBxyhlOwODg4ODg4ODjkzP8BaJ1kFtCT5YYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cf\n", + "fig = deepsensor.plot.receptive_field(model.model.receptive_field, data_processor, ccrs.PlateCarree(), \"europe\")\n", + "fig.axes[0].add_feature(cf.BORDERS, linestyle=':')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## The likelihood parameter\n", + "\n", + "The `likelihood` parameter specifies the output distribution of the `ConvNP`.\n", + "\n", + "The current options for this kwarg are:\n", + "* `\"cnp\"` (the default): Conditional neural process (CNP) with a Gaussian likelihood. Here, 'conditional' means that the target variables are modelled as conditionally independent given the context set (i.e. the model does not learn correlations between the target variables).\n", + "* `\"cnp-spikes-beta\"`: CNP with two delta functions (spikes) at 0 and 1, and a Beta distribution between 0 and 1. Useful for modelling data that lies in [0, 1] (e.g. fractional cloud cover).\n", + "* `\"bernoulli-gamma\"`: CNP with a delta function at 0, and a Gamma distribution. Useful for modelling data that lies in [0, inf) (e.g. precipitation).\n", + "* `\"gnp\"`: Gaussian neural process (GNP) with a joint Gaussian likelihood. This is a generalisation of the CNP that allows for correlations between the target variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Saving and loading a ConvNP\n", + "\n", + "Similarly to the ``DataProcessor`` and ``TaskLoader`` objects, a ``ConvNP`` object can be saved using the ``save`` method, and then loaded using the ``ConvNP`` constructor." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T16:34:29.387812127Z", + "start_time": "2023-10-27T16:34:29.387313113Z" + } + }, + "outputs": [], + "source": [ + "model.save(\"../deepsensor_config/\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T17:39:58.783765522Z", + "start_time": "2023-10-27T17:39:58.622457530Z" + } + }, + "outputs": [], + "source": [ + "model_loaded = ConvNP(data_processor, task_loader, \"../deepsensor_config/\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T17:40:00.188062019Z", + "start_time": "2023-10-27T17:39:58.789453955Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "mean_bef = model.mean(task)\n", + "mean_loaded = model_loaded.mean(task)\n", + "print(np.allclose(mean_bef, mean_loaded))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/user-guide/data_processor.ipynb b/_sources/user-guide/data_processor.ipynb new file mode 100644 index 00000000..d69dde5d --- /dev/null +++ b/_sources/user-guide/data_processor.ipynb @@ -0,0 +1,480 @@ + +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DataProcessor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The first step in any modelling pipeline is to normalise and standardise the data.\n", + "In DeepSensor, this is achieved with the [`DataProcessor` class](../reference/data/processor.rst).\n", + "Let's load some environmental data from `deepsensor.data.sources` and see how it works!\n", + "\n", + "`````{note}\n", + "Some of the data downloader functions used here require additional dependencies.\n", + "To run this yourself you will need to run:\n", + "```\n", + "pip install rioxarray\n", + "```\n", + "to install the [`rioxarray`](https://corteva.github.io/rioxarray/stable/) package and\n", + "```\n", + "pip install git+https://github.com/scott-hosking/get-station-data.git\n", + "```\n", + "to install the [`get_station_data`](https://github.com/scotthosking/get-station-data) package.\n", + "`````\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "hide-input" + ], + "ExecuteTime": { + "end_time": "2023-11-01T11:14:37.083621355Z", + "start_time": "2023-11-01T11:14:29.068342294Z" + } + }, + "outputs": [], + "source": [ + "import logging\n", + "logging.captureWarnings(True)\n", + "\n", + "import xarray as xr\n", + "import pandas as pd\n", + "\n", + "# Using the same settings allows use to use pre-downloaded cached data\n", + "data_range = (\"2015-06-25\", \"2015-06-30\")\n", + "extent = \"europe\"\n", + "station_var_IDs = [\"TAVG\", \"PRCP\"]\n", + "era5_var_IDs = [\"2m_temperature\", \"10m_u_component_of_wind\", \"10m_v_component_of_wind\"]\n", + "aux_var_IDs = [\"elevation\", \"tpi\"]\n", + "cache_dir = \"../../.datacache\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:14:53.344717607Z", + "start_time": "2023-11-01T11:14:37.092450287Z" + } + }, + "outputs": [], + "source": [ + "from deepsensor.data import DataProcessor\n", + "from deepsensor.data.sources import get_ghcnd_station_data, get_era5_reanalysis_data, get_earthenv_auxiliary_data, get_gldas_land_mask" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:00.282202579Z", + "start_time": "2023-11-01T11:14:53.343417440Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████| 3142/3142 [02:42<00:00, 19.33it/s]\n" + ] + } + ], + "source": [ + "station_raw_df = get_ghcnd_station_data(station_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "aux_raw_ds = get_earthenv_auxiliary_data(aux_var_IDs, extent, \"1KM\", cache=True, cache_dir=cache_dir)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Initialising a DataProcessor\n", + "\n", + "To initialise a `DataProcessor` object, provide it with the names of the spatiotemporal dimensions in your data (defaults to `time`, `x1`, `x2`)." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:00.335969686Z", + "start_time": "2023-11-01T11:20:00.335336410Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DataProcessor with normalisation params:\n", + "{'coords': {'time': {'name': 'time'},\n", + " 'x1': {'map': None, 'name': 'lat'},\n", + " 'x2': {'map': None, 'name': 'lon'}}}\n" + ] + } + ], + "source": [ + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "print(data_processor)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Normalising data with a DataProcessor\n", + "\n", + "Calling a `DataProcessor` on an xarray or pandas object will compute normalisation parameters for each variable in the object (if not already computed) and return the normalised object/s." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:01.924461221Z", + "start_time": "2023-11-01T11:20:00.335833157Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\nDimensions: (time: 6, x1: 141, x2: 221)\nCoordinates:\n * time (time) datetime64[ns] 2015-06-25 ... 2015-06-30\n * x1 (x1) float32 0.6364 0.6318 0.6273 ... 0.004545 0.0\n * x2 (x2) float32 0.0 0.004545 0.009091 ... 0.9955 1.0\nData variables:\n 2m_temperature (time, x1, x2) float32 -2.652 -2.635 ... 2.322\n 10m_u_component_of_wind (time, x1, x2) float32 1.987 1.985 ... 1.572 1.529\n 10m_v_component_of_wind (time, x1, x2) float32 1.054 1.018 ... -0.724", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.Dataset>\nDimensions:                  (time: 6, x1: 141, x2: 221)\nCoordinates:\n  * time                     (time) datetime64[ns] 2015-06-25 ... 2015-06-30\n  * x1                       (x1) float32 0.6364 0.6318 0.6273 ... 0.004545 0.0\n  * x2                       (x2) float32 0.0 0.004545 0.009091 ... 0.9955 1.0\nData variables:\n    2m_temperature           (time, x1, x2) float32 -2.652 -2.635 ... 2.322\n    10m_u_component_of_wind  (time, x1, x2) float32 1.987 1.985 ... 1.572 1.529\n    10m_v_component_of_wind  (time, x1, x2) float32 1.054 1.018 ... -0.724
" + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "era5_ds = data_processor(era5_raw_ds)\n", + "era5_ds" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:01.927630212Z", + "start_time": "2023-11-01T11:20:01.880690559Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": " PRCP TAVG\ntime x1 x2 station \n2015-06-25 0.000309 0.246364 AGM00060531 -0.278121 0.759107\n 0.001818 0.239091 AGE00147716 -0.278121 0.836200\n 0.002127 0.940909 SYM00040030 NaN 1.221668\n 0.003036 0.314855 AGM00060514 -0.278121 1.318035\n 0.003636 0.261509 AGM00060520 -0.278121 1.125301\n... ... ...\n2015-06-30 0.198782 0.412727 ITM00016052 NaN -2.575188\n 0.061218 0.263636 SPM00008359 -0.278121 1.645682\n 0.370600 0.940000 RSM00027611 -0.278121 -0.358749\n 0.437818 0.597455 SWE00138750 -0.278121 NaN\n 0.522909 0.498727 SWE00140158 -0.134323 NaN\n\n[16922 rows x 2 columns]", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
PRCPTAVG
timex1x2station
2015-06-250.0003090.246364AGM00060531-0.2781210.759107
0.0018180.239091AGE00147716-0.2781210.836200
0.0021270.940909SYM00040030NaN1.221668
0.0030360.314855AGM00060514-0.2781211.318035
0.0036360.261509AGM00060520-0.2781211.125301
..................
2015-06-300.1987820.412727ITM00016052NaN-2.575188
0.0612180.263636SPM00008359-0.2781211.645682
0.3706000.940000RSM00027611-0.278121-0.358749
0.4378180.597455SWE00138750-0.278121NaN
0.5229090.498727SWE00140158-0.134323NaN
\n

16922 rows × 2 columns

\n
" + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "station_df = data_processor(station_raw_df)\n", + "station_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also process multiple variables in one `DataProcessor` call, and choose to normalise the data with `\"min_max\"`, which will scale the data to the range [-1, 1]. For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:02.396453228Z", + "start_time": "2023-11-01T11:20:01.891521501Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\nDimensions: (x1: 4200, x2: 6600)\nCoordinates:\n * x1 (x1) float64 0.6363 0.6361 0.636 ... 0.0002273 7.576e-05\n * x2 (x2) float64 7.576e-05 0.0002273 0.0003788 ... 0.9998 0.9999\nData variables:\n elevation (x1, x2) float32 -0.921 -0.921 -0.921 ... -0.8095 -0.8095 -0.8099\n tpi (x1, x2) float32 -0.09401 -0.09401 -0.09401 ... -0.09305 -0.09199", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.Dataset>\nDimensions:    (x1: 4200, x2: 6600)\nCoordinates:\n  * x1         (x1) float64 0.6363 0.6361 0.636 ... 0.0002273 7.576e-05\n  * x2         (x2) float64 7.576e-05 0.0002273 0.0003788 ... 0.9998 0.9999\nData variables:\n    elevation  (x1, x2) float32 -0.921 -0.921 -0.921 ... -0.8095 -0.8095 -0.8099\n    tpi        (x1, x2) float32 -0.09401 -0.09401 -0.09401 ... -0.09305 -0.09199
" + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aux_ds, land_mask_ds = data_processor([aux_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "aux_ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DataProcessor configuration\n", + "The `DataProcessor` keeps track of the normalisation parameters used to transform the data.\n", + "\n", + "When the `DataProcessor` is called on data with a variable ID that matches one in the `config` dictionary, those normalisation parameters are used." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:02.396826598Z", + "start_time": "2023-11-01T11:20:02.274636322Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DataProcessor with normalisation params:\n", + "{'10m_u_component_of_wind': {'method': 'mean_std',\n", + " 'params': {'mean': 0.644899845123291,\n", + " 'std': 2.8509252071380615}},\n", + " '10m_v_component_of_wind': {'method': 'mean_std',\n", + " 'params': {'mean': -0.19969606399536133,\n", + " 'std': 3.2448606491088867}},\n", + " '2m_temperature': {'method': 'mean_std',\n", + " 'params': {'mean': 289.39849853515625,\n", + " 'std': 5.538551330566406}},\n", + " 'GLDAS_mask': {'method': 'min_max', 'params': {'max': 1.0, 'min': 0.0}},\n", + " 'PRCP': {'method': 'mean_std',\n", + " 'params': {'mean': 1.1604694953552597, 'std': 4.172541647864038}},\n", + " 'TAVG': {'method': 'mean_std',\n", + " 'params': {'mean': 19.0613726868119, 'std': 5.188503809362459}},\n", + " 'coords': {'time': {'name': 'time'},\n", + " 'x1': {'map': (35.0, 90.0), 'name': 'lat'},\n", + " 'x2': {'map': (-15.0, 40.0), 'name': 'lon'}},\n", + " 'elevation': {'method': 'min_max',\n", + " 'params': {'max': 4504.4375, 'min': -185.125}},\n", + " 'tpi': {'method': 'min_max', 'params': {'max': 88.9609375, 'min': -73.671875}}}\n" + ] + } + ], + "source": [ + "print(data_processor)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Unnormalising data\n", + "\n", + "Keeping track of the normalisation parameters allows us to easily unnormalise data back to the original coordinates and units:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:02.417875281Z", + "start_time": "2023-11-01T11:20:02.285187475Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\nDimensions: (time: 6, lat: 141, lon: 221)\nCoordinates:\n * time (time) datetime64[ns] 2015-06-25 ... 2015-06-30\n * lat (lat) float32 70.0 69.75 69.5 ... 35.5 35.25 35.0\n * lon (lon) float32 -15.0 -14.75 -14.5 ... 39.75 40.0\nData variables:\n 2m_temperature (time, lat, lon) float32 274.7 274.8 ... 302.3\n 10m_u_component_of_wind (time, lat, lon) float32 6.309 6.305 ... 5.004\n 10m_v_component_of_wind (time, lat, lon) float32 3.221 3.105 ... -2.549", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.Dataset>\nDimensions:                  (time: 6, lat: 141, lon: 221)\nCoordinates:\n  * time                     (time) datetime64[ns] 2015-06-25 ... 2015-06-30\n  * lat                      (lat) float32 70.0 69.75 69.5 ... 35.5 35.25 35.0\n  * lon                      (lon) float32 -15.0 -14.75 -14.5 ... 39.75 40.0\nData variables:\n    2m_temperature           (time, lat, lon) float32 274.7 274.8 ... 302.3\n    10m_u_component_of_wind  (time, lat, lon) float32 6.309 6.305 ... 5.004\n    10m_v_component_of_wind  (time, lat, lon) float32 3.221 3.105 ... -2.549
" + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "era5_raw_ds_unnormalised = data_processor.unnormalise(era5_ds)\n", + "xr.testing.assert_allclose(era5_raw_ds, era5_raw_ds_unnormalised, atol=1e-6)\n", + "era5_raw_ds_unnormalised" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:02.499986673Z", + "start_time": "2023-11-01T11:20:02.329694681Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": " PRCP TAVG\ntime lat lon station \n2015-06-25 35.017 -1.450 AGM00060531 0.0 23.0\n 35.100 -1.850 AGE00147716 0.0 23.4\n 35.117 36.750 SYM00040030 NaN 25.4\n 35.167 2.317 AGM00060514 0.0 25.9\n 35.200 -0.617 AGM00060520 0.0 24.9\n... ... ...\n2015-06-30 45.933 7.700 ITM00016052 NaN 5.7\n 38.367 -0.500 SPM00008359 0.0 27.6\n 55.383 36.700 RSM00027611 0.0 17.2\n 59.080 17.860 SWE00138750 0.0 NaN\n 63.760 12.430 SWE00140158 0.6 NaN\n\n[16922 rows x 2 columns]", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
PRCPTAVG
timelatlonstation
2015-06-2535.017-1.450AGM000605310.023.0
35.100-1.850AGE001477160.023.4
35.11736.750SYM00040030NaN25.4
35.1672.317AGM000605140.025.9
35.200-0.617AGM000605200.024.9
..................
2015-06-3045.9337.700ITM00016052NaN5.7
38.367-0.500SPM000083590.027.6
55.38336.700RSM000276110.017.2
59.08017.860SWE001387500.0NaN
63.76012.430SWE001401580.6NaN
\n

16922 rows × 2 columns

\n
" + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "station_df_unnormalised = data_processor.unnormalise(station_df)\n", + "pd.testing.assert_frame_equal(station_raw_df, station_df_unnormalised)\n", + "station_df_unnormalised" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice how the units of the unnormalised data are the same as the original data.\n", + "\n", + "This functionality will be used under the hood\n", + "later to map model predictions back to the original units!\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Saving and loading a DataProcessor\n", + "The `DataProcessor` configuration can be saved and loaded to avoid re-computing the normalisation parameters in new sessions.\n", + "\n", + "This is done using the `save` method to save the `DataProcessor` configuration to a folder, and then instantiating a new `DataProcessor` with the same folder will recover the same `DataProcessor` object." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:02.500523450Z", + "start_time": "2023-11-01T11:20:02.464060217Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DataProcessor with normalisation params:\n", + "{'10m_u_component_of_wind': {'method': 'mean_std',\n", + " 'params': {'mean': 0.644899845123291,\n", + " 'std': 2.8509252071380615}},\n", + " '10m_v_component_of_wind': {'method': 'mean_std',\n", + " 'params': {'mean': -0.19969606399536133,\n", + " 'std': 3.2448606491088867}},\n", + " '2m_temperature': {'method': 'mean_std',\n", + " 'params': {'mean': 289.39849853515625,\n", + " 'std': 5.538551330566406}},\n", + " 'GLDAS_mask': {'method': 'min_max', 'params': {'max': 1.0, 'min': 0.0}},\n", + " 'PRCP': {'method': 'mean_std',\n", + " 'params': {'mean': 1.1604694953552597, 'std': 4.172541647864038}},\n", + " 'TAVG': {'method': 'mean_std',\n", + " 'params': {'mean': 19.0613726868119, 'std': 5.188503809362459}},\n", + " 'coords': {'time': {'name': 'time'},\n", + " 'x1': {'map': (35.0, 90.0), 'name': 'lat'},\n", + " 'x2': {'map': (-15.0, 40.0), 'name': 'lon'}},\n", + " 'elevation': {'method': 'min_max',\n", + " 'params': {'max': 4504.4375, 'min': -185.125}},\n", + " 'tpi': {'method': 'min_max', 'params': {'max': 88.9609375, 'min': -73.671875}}}\n" + ] + } + ], + "source": [ + "data_processor.save(\"../deepsensor_config/\")\n", + "data_processor2 = DataProcessor(\"../deepsensor_config/\")\n", + "print(data_processor2)" + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### Computing normalisation parameters over a subset of the data\n", + "\n", + "Want to compute normalisation parameters only over a training period?\n", + "No problem: just slice the data before passing it to the `DataProcessor`." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T11:20:02.501038546Z", + "start_time": "2023-11-01T11:20:02.477215334Z" + } + }, + "outputs": [], + "source": [ + "_ = data_processor(era5_raw_ds.sel(time=slice(\"2015-06-25\", \"2015-06-27\")))\n", + "era5_ds = data_processor(era5_raw_ds) # Will use the normalisation parameters computed above when called on the full dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-11-01T11:20:02.593219766Z", + "start_time": "2023-11-01T11:20:02.507040187Z" + } + } + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/user-guide/deepsensor_design.md b/_sources/user-guide/deepsensor_design.md new file mode 100644 index 00000000..04680f64 --- /dev/null +++ b/_sources/user-guide/deepsensor_design.md @@ -0,0 +1,60 @@ +# DeepSensor design + +Some users will find it useful to understand the design of DeepSensor +before they begin. Others would prefer to just see some examples and +get started right away. + +If you fall into the latter category, +feel free to jump straight to the next page ([](data_processor.ipynb)). + +## Design overview + +A schematic overview of the core components of DeepSensor is shown below. +This shows how the package's components process data & interact from end-to-end. + +![DeepSensor design](../../figs/deepsensor_design.png) + +The key classes are: +* `DataProcessor`: Maps `xarray` and `pandas` data from their native units +to a normalised and standardised format (and vice versa). +* `TaskLoader`: Slices and samples normalised `xarray` and `pandas` data to generate `Task` objects for +training and inference. +* `Task`: Container for context and target data. Subclass of `dict` with additional methods +for processing and summarising the data. +* `DeepSensorModel`: Base class for DeepSensor models, implementing a high-level `.predict` +method for predicting straight to `xarray`/`pandas` in original coordinates and units. +* `ConvNP`: Convolutional neural process (ConvNP) model class (subclass of `DeepSensorModel`). +Uses the `neuralprocesses` library. This is currently the only model provided by DeepSensor. +* `Trainer`: Class for training on `Task` objects using backpropagation and the Adam optimiser. +* `AcquisitionFunction`: Base class for active learning acquisition functions. +* `GreedyAlgorithm`: Greedy search algorithm for active learning. + +In addition, a [`deepsensor.plot`](../reference/plot.rst) module provides useful plotting functions for +visualising: +* `Task` context and target sets, +* ``DeepSensorModel`` predictions, +* ``ConvNP`` internals (encoding and feature maps), +* ``GreedyAlgorithm`` active learning outputs. + +You will see examples of these `deepsensor.plot` visualisation functions +throughout the documentation. + + +## Design principles + +A few key design principles have guided the development of DeepSensor: + +* **User-friendly interface**: The interface should be simple and intuitive, with the flexibility to +handle a wide range of use cases. +* **Leverage powerful and ubiquitous data science libraries**: Users can stay within the familiar `xarray`/`pandas` +ecosystem from start to finish in their DeepSensor research workflows. +* **Infer sensible defaults**: DeepSensor should leverage information in the data to infer +sensible defaults for hyperparameters, with the option to override these defaults if desired. +* **Extensible**: Extend DeepSensor with new models by sub-classing `DeepSensorModel` and +implementing the low-level prediction methods of `ProbabilisticModel`. +* **Modular**: The `DataProcessor` and `TaskLoader` classes can be used independently of +the downstream modelling and active learning components, and can thus be used outside of +a DeepSensor workflow. +* **Deep learning library agnostic**: DeepSensor is compatible with both +TensorFlow and PyTorch thanks to the [`backends`](https://github.com/wesselb/lab) library - simply `import deepsensor.tensorflow` or +`import deepsensor.torch`. diff --git a/_sources/user-guide/extending.ipynb b/_sources/user-guide/extending.ipynb new file mode 100644 index 00000000..49941625 --- /dev/null +++ b/_sources/user-guide/extending.ipynb @@ -0,0 +1,608 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adding models to DeepSensor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To extend DeepSensor with a new model, simply create a new class that inherits from `deepsensor.model.DeepSensorModel` and implement the low-level prediction methods defined in `deepsensor.model.ProbabilisticModel`, such as `.mean` and `.stddev`.\n", + "\n", + "To demonstrate this, we'll create a very basic new model called `NewModel`, and show\n", + "that it inherits the convenient `.predict` method from `DeepSensorModel`.\n", + "To build more complex model classes, you may like to check out the [`ConvNP` source code](../reference/model/convnp.rst) as an example." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:24:42.468855459Z", + "start_time": "2023-10-27T18:24:42.468619904Z" + }, + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "logging.captureWarnings(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:25:24.703356813Z", + "start_time": "2023-10-27T18:25:24.691047483Z" + } + }, + "outputs": [], + "source": [ + "from deepsensor.model import DeepSensorModel\n", + "from deepsensor.data import DataProcessor, TaskLoader, Task\n", + "\n", + "import xarray as xr\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:24:45.054148957Z", + "start_time": "2023-10-27T18:24:45.043578761Z" + } + }, + "outputs": [], + "source": [ + "class NewModel(DeepSensorModel):\n", + " \"\"\"A very naive model that predicts the mean of the first context set with a fixed stddev\"\"\"\n", + " \n", + " def __init__(self, data_processor: DataProcessor, task_loader: TaskLoader):\n", + " super().__init__(data_processor, task_loader)\n", + " \n", + " def mean(self, task: Task):\n", + " \"\"\"Compute mean at target locations\"\"\"\n", + " task = task.flatten_gridded_data()\n", + " # Shape of the mean should be (N_dim, N_target). Here we assume the number\n", + " # of dimensions is the same for the first context and the target set.\n", + " shape = (task[\"Y_c\"][0].shape[0], task[\"X_t\"][0].shape[1])\n", + " return np.ones(shape) * task[\"Y_c\"][0].mean()\n", + " \n", + " def stddev(self, task: Task):\n", + " \"\"\"Compute stddev at target locations\"\"\"\n", + " task = task.flatten_gridded_data()\n", + " shape = (task[\"Y_c\"][0].shape[0], task[\"X_t\"][0].shape[1])\n", + " return np.ones(shape) * 0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:24:45.739312805Z", + "start_time": "2023-10-27T18:24:45.053311080Z" + }, + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "# Load raw data\n", + "ds_raw = xr.tutorial.open_dataset(\"air_temperature\")\n", + "\n", + "# Normalise data\n", + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "ds = data_processor(ds_raw)\n", + "\n", + "# Set up task loader\n", + "task_loader = TaskLoader(context=ds, target=ds)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:24:45.754476046Z", + "start_time": "2023-10-27T18:24:45.750703925Z" + } + }, + "outputs": [], + "source": [ + "model = NewModel(data_processor, task_loader)\n", + "task = task_loader(\"2014-01-01\", 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-27T18:25:28.951689006Z", + "start_time": "2023-10-27T18:25:28.693630612Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:  (time: 1, lat: 25, lon: 53)\n",
+       "Coordinates:\n",
+       "  * lat      (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n",
+       "  * lon      (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n",
+       "  * time     (time) datetime64[ns] 2014-01-01\n",
+       "Data variables:\n",
+       "    mean     (time, lat, lon) float32 275.1 275.1 275.1 ... 275.1 275.1 275.1\n",
+       "    std      (time, lat, lon) float32 1.631 1.631 1.631 ... 1.631 1.631 1.631
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 1, lat: 25, lon: 53)\n", + "Coordinates:\n", + " * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n", + " * lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n", + " * time (time) datetime64[ns] 2014-01-01\n", + "Data variables:\n", + " mean (time, lat, lon) float32 275.1 275.1 275.1 ... 275.1 275.1 275.1\n", + " std (time, lat, lon) float32 1.631 1.631 1.631 ... 1.631 1.631 1.631" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred = model.predict(task, X_t=ds_raw)\n", + "pred[\"air\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/user-guide/index.md b/_sources/user-guide/index.md new file mode 100644 index 00000000..5557f6b5 --- /dev/null +++ b/_sources/user-guide/index.md @@ -0,0 +1,10 @@ +# User Guide + +The DeepSensor user guide will walk you through the core components of the package using +code examples and visualisations. + +The pages of this guide are Jupyter notebooks and are fully-reproducible. +Some of the notebooks depend on previous notebooks to be run, e.g. model training. +However, most of the notebooks can be run in a standalone way without any modification. +Click the download button at the top of the pages to download the .ipynb files +if you would like to run them yourself. diff --git a/_sources/user-guide/prediction.ipynb b/_sources/user-guide/prediction.ipynb new file mode 100644 index 00000000..951530f6 --- /dev/null +++ b/_sources/user-guide/prediction.ipynb @@ -0,0 +1,537 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Prediction\n", + "\n", + "DeepSensor provides a convenient high-level interface to predict directly to `xarray` or `pandas` objects\n", + "in the original units and coordinate system of your data. This is achieved using the [`model.predict` method](https://alan-turing-institute.github.io/deepsensor/reference/model/model.html#deepsensor.model.model.DeepSensorModel.predict).\n", + "We'll use our trained model from the [](./training.ipynb) page to demonstrate DeepSensor's prediction functionality.\n", + "\n", + "The two key arguments of `model.predict` are 1) a `Task` (or list of `Task`s) containing context data, and 2) a set of target prediction locations, `X_t`.\n", + "This page will demonstrate how we can predict on-grid or off-grid based on the form of `X_t`.\n", + "We will also see how we can use optional extra arguments in `model.predict` for more advanced usage." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T15:33:18.276057469Z", + "start_time": "2023-11-02T15:33:08.891815872Z" + } + }, + "outputs": [], + "source": [ + "import logging\n", + "logging.captureWarnings(True)\n", + "\n", + "import deepsensor.torch\n", + "from deepsensor.model import ConvNP\n", + "from deepsensor.train import Trainer, set_gpu_default_device\n", + "from deepsensor.data import DataProcessor, TaskLoader, construct_circ_time_ds\n", + "from deepsensor.data.sources import get_era5_reanalysis_data, get_earthenv_auxiliary_data, get_gldas_land_mask\n", + "\n", + "import xarray as xr\n", + "import cartopy.crs as ccrs\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np\n", + "from tqdm import tqdm_notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T15:33:18.285927351Z", + "start_time": "2023-11-02T15:33:18.279260054Z" + } + }, + "outputs": [], + "source": [ + "# Training/data config\n", + "data_range = (\"2010-01-01\", \"2019-12-31\")\n", + "train_range = (\"2010-01-01\", \"2018-12-31\")\n", + "val_range = (\"2019-01-01\", \"2019-12-31\")\n", + "date_subsample_factor = 2\n", + "extent = \"usa\"\n", + "era5_var_IDs = [\"2m_temperature\"]\n", + "lowres_auxiliary_var_IDs = [\"elevation\"]\n", + "cache_dir = \"../../.datacache\"\n", + "deepsensor_folder = \"../deepsensor_config/\"\n", + "verbose_download = True" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T15:33:32.993638497Z", + "start_time": "2023-11-02T15:33:18.289753085Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading ERA5 data from Google Cloud Storage... " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 120/120 [00:04<00:00, 25.63it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.41 GB loaded in 7.09 s\n" + ] + } + ], + "source": [ + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir, verbose=verbose_download, num_processes=8)\n", + "lowres_aux_raw_ds = get_earthenv_auxiliary_data(lowres_auxiliary_var_IDs, extent, \"100KM\", cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "\n", + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "era5_ds = data_processor(era5_raw_ds)\n", + "lowres_aux_ds, land_mask_ds = data_processor([lowres_aux_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "\n", + "dates = pd.date_range(era5_ds.time.values.min(), era5_ds.time.values.max(), freq=\"D\")\n", + "doy_ds = construct_circ_time_ds(dates, freq=\"D\")\n", + "lowres_aux_ds[\"cos_D\"] = doy_ds[\"cos_D\"]\n", + "lowres_aux_ds[\"sin_D\"] = doy_ds[\"sin_D\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:34.857827281Z", + "start_time": "2023-11-02T15:33:32.993476489Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(3 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature',), ('GLDAS_mask',), ('elevation', 'cos_D', 'sin_D'))\n", + "Target variable IDs: (('2m_temperature',),)\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds, land_mask_ds, lowres_aux_ds],\n", + " target=era5_ds,\n", + ")\n", + "task_loader.load_dask()\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:34.929884664Z", + "start_time": "2023-11-02T15:33:34.863166198Z" + } + }, + "outputs": [], + "source": [ + "set_gpu_default_device()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:36.100490680Z", + "start_time": "2023-11-02T15:33:34.897418287Z" + } + }, + "outputs": [], + "source": [ + "# Set up model\n", + "model = ConvNP(data_processor, task_loader, deepsensor_folder)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict on-grid to xarray\n", + "\n", + "If `X_t` is an `xarray` object, `model.predict` will return `xarray` predictions on the same grid as that object\n", + "(with the resolution optionally scaled by `resolution_factor`)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:36.777174616Z", + "start_time": "2023-11-02T15:33:36.100343462Z" + } + }, + "outputs": [], + "source": [ + "date = \"2019-06-25\"\n", + "test_task = task_loader(date, [100, \"all\", \"all\"], seed_override=42)\n", + "pred = model.predict(test_task, X_t=era5_raw_ds, resolution_factor=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is a single dictionary-like [`Prediction`](../reference/model/pred.rst) object\n", + "whose keys are the variable IDs of the target variables, each mapping to `xarray.Dataset` objects containing\n", + "the prediction parameters (in this case the `mean` and `std` of the `ConvNP`'s Gaussian likelihood)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:38.936339171Z", + "start_time": "2023-11-02T15:33:36.780344289Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\nDimensions: (time: 1, lat: 482, lon: 802)\nCoordinates:\n * lat (lat) float64 75.0 74.88 74.75 74.63 ... 15.37 15.25 15.12 15.0\n * lon (lon) float64 -160.0 -159.9 -159.8 -159.6 ... -60.25 -60.12 -60.0\n * time (time) datetime64[ns] 2019-06-25\nData variables:\n mean (time, lat, lon) float32 275.0 275.2 275.1 ... 300.9 300.9 301.1\n std (time, lat, lon) float32 1.811 1.665 1.554 ... 0.6224 0.629 0.6557", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.Dataset>\nDimensions:  (time: 1, lat: 482, lon: 802)\nCoordinates:\n  * lat      (lat) float64 75.0 74.88 74.75 74.63 ... 15.37 15.25 15.12 15.0\n  * lon      (lon) float64 -160.0 -159.9 -159.8 -159.6 ... -60.25 -60.12 -60.0\n  * time     (time) datetime64[ns] 2019-06-25\nData variables:\n    mean     (time, lat, lon) float32 275.0 275.2 275.1 ... 300.9 300.9 301.1\n    std      (time, lat, lon) float32 1.811 1.665 1.554 ... 0.6224 0.629 0.6557
" + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred[\"2m_temperature\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:40.204693496Z", + "start_time": "2023-11-02T15:33:38.947305781Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAD/CAYAAAAg902IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hcV33vj7/W2m36zOlV0lEvVrPcLXcbcAMbYwglgGk3IXAvvwTuzfemgJ0Q8iWkEUIg5RsIJSZAKG5g427j3mTZ6l060ult+m7r98fe046OZMkYG8O8n+c8Z2bPLmuv+nl/2hJKKUUTTTTRRBNNNNFEE0000UQTDZCvdQGaaKKJJppoookmmmiiiSZ+FdEkS0000UQTTTTRRBNNNNFEE3OgSZaaaKKJJppoookmmmiiiSbmQJMsNdFEE0000UQTTTTRRBNNzIEmWWqiiSaaaKKJJppoookmmpgDTbLURBNNNNFEE0000UQTTTQxB5pkqYkmmmiiiSaaaKKJJppoYg40yVITTTTRRBNNNNFEE0000cQcaJKlJppoookmmmiiiSaaaKKJOdAkS68g7r33Xj74wQ+yYsUK4vE4fX19XHPNNTz99NOvelkOHz7MjTfeyHPPPfeqP/tXHYVCgRtvvJH777//tS5KE0000cSvDZpr4OsDr/c18OW07Q033MDAwMAvrUxN/HqjSZZeQXzlK19h3759fOITn+COO+7gi1/8IiMjI5x99tnce++9r2pZDh8+zE033dRcKOZAoVDgpptuet0uFE000UQTv4poroGvD7ze18Bm2zbxakN/rQvw64Qvf/nLdHZ2Nhy7/PLLWbJkCZ/73Oe45JJLXqOS/XrDcRyEEOj6a9udlVKUSiWi0ehrWo4mmmiiidcCzTXwtUFzDWyiiV8umpalVxCzFwmARCLBqlWrOHjwYMPxgYEBrr76am677TZOPfVUotEoK1eu5LbbbgPg61//OitXriQej3PmmWfy1FNPnXA57r//fs444wwAPvCBDyCEQAjBjTfeWD3nqaee4i1veQutra1EIhFOPfVUvvvd7zbc5+tf/zpCCO69914+8pGP0NbWRiqV4n3vex/5fJ6hoSHe8Y53kMlk6Onp4VOf+hSO41Sv37dvH0II/uqv/oq/+Iu/YP78+UQiEU4//XTuueeeo8q9c+dO3v3ud9PZ2YllWaxcuZIvf/nLR72bEIJvfvObfPKTn6Svrw/Lsti1axejo6P83u/9HqtWrSKRSNDZ2ckll1zCQw891FCmjo4OAG666aZq3dxwww3AsU31N954I0KIhmNCCD7+8Y/z1a9+lZUrV2JZFv/xH/9xwu9yLFTu+7WvfY3ly5cTjUY5/fTTeeyxx1BK8YUvfIGFCxeSSCS45JJL2LVr11H3uPvuu7n00ktJpVLEYjE2btx4VJ3v2rWLD3zgAyxdupRYLEZfXx9vfvOb2bx585x1fvPNN/PHf/zH9Pb2kkqluOyyy9i+ffsJvVMTTTTx64/mGthcA1+JNfB73/seZ511Ful0mlgsxqJFi/jgBz9Yff+Xatuvf/3rLF++vPrcb3zjGyf03CaaOCZUE79UTE1NqXQ6rd761rc2HF+wYIHq7+9Xq1evVjfffLO644471FlnnaUMw1Cf/vSn1caNG9UPfvAD9cMf/lAtW7ZMdXV1qUKhcELPnJ6eVl/72tcUoP7kT/5EPfroo+rRRx9VBw8eVEopde+99yrTNNX555+v/uu//kv99Kc/VTfccIMC1Ne+9rXqfSr3WLhwofrkJz+p7rrrLvX5z39eaZqm3vWud6kNGzaoz372s+pnP/uZ+sM//EMFqL/5m7+pXr93714FqHnz5qnzzjtP/fd//7f63ve+p8444wxlGIZ65JFHque++OKLKp1OqzVr1qhvfOMb6q677lKf/OQnlZRS3XjjjdXz7rvvPgWovr4+df3116tbbrlF3XbbbWp8fFxt27ZNffSjH1Xf+c531P33369uu+029aEPfUhJKdV9992nlFKqVCqpn/70pwpQH/rQh6p1s2vXLqWUUu9///vVggULjqrTz3zmM2r2cKmUY+3ateo///M/1b333qteeOGFE36XYwFQCxYsUOeee25DH2htbVW///u/r6655hp12223qW9/+9uqq6tLrV27Vvm+X73+m9/8phJCqGuvvVb94Ac/ULfeequ6+uqrlaZp6u67766e98ADD6hPfvKT6vvf/7564IEH1A9/+EN17bXXqmg0qrZt23ZUnQ8MDKj3vOc96vbbb1c333yzmj9/vlq6dKlyXfcl36mJJpr4zURzDWyugSezBj7yyCNKCKHe+c53qjvuuEPde++96mtf+5p673vfe0JtW/ntmmuuUbfeeqv61re+pZYsWaLmzZs353s10cSJoEmWfsl4z3veo3RdV0899VTD8QULFqhoNKoOHTpUPfbcc88pQPX09Kh8Pl89/qMf/UgB6pZbbjnh5z755JNHTfwVrFixQp166qnKcZyG41dffbXq6elRnucppWqTzv/8n/+z4bxrr71WAepv//ZvG46vX79ebdiwofq9slD09vaqYrFYPT4zM6NaW1vVZZddVj32pje9SfX396vp6emGe3784x9XkUhETUxMKKVqC8UFF1zwknXguq5yHEddeumlDQv16OioAtRnPvOZo6452YUinU5Xy3ay73IsAKq7u1vlcrnqsUofWL9+fQMx+vu//3sFqOeff14ppVQ+n1etra3qzW9+c8M9Pc9T69atU2eeeeYxn+u6rrJtWy1dulT9/u//fvV4pc6vvPLKhvO/+93vKkA9+uijx32fJppo4jcXzTWwuQYe613mwl//9V8rQE1NTR3znGO1red5qre3V23YsKFhndy3b58yDKNJlpp42Wi64f0S8ad/+qd8+9vf5u/+7u847bTTjvp9/fr19PX1Vb+vXLkSgIsuuohYLHbU8f379//CZdq1axfbtm3jPe95DwCu61b/rrzySo4cOXKUa9XVV1/d8L1Snquuuuqo43OV8brrriMSiVS/J5NJ3vzmN/Pggw/ieR6lUol77rmHt771rcRisaPKVCqVeOyxxxru+ba3vW3O9/vqV7/Khg0biEQi6LqOYRjcc889bN269QRr6ORwySWX0NLSUv3+ct5lLlx88cXE4/Hq90qdX3HFFQ2uELP7xiOPPMLExATvf//7G57t+z6XX345Tz75JPl8Hgja/nOf+xyrVq3CNE10Xcc0TXbu3Dlnfb3lLW9p+L527dqGZzfRRBNN1KO5BgZoroEnvgZWXOze8Y538N3vfpfBwcETLsv27ds5fPgw7373uxvWyQULFnDuuee+jLdrookATbL0S8JNN93EZz/7Wf7iL/6Cj3/843Oe09ra2vDdNM3jHi+VSr9wuYaHhwH41Kc+hWEYDX+/93u/B8DY2NjLLudcZezu7p7zmG3b5HI5xsfHcV2XL33pS0eV6corr5yzTD09PUfd82//9m/56Ec/yllnncV///d/89hjj/Hkk09y+eWXUywWj1svLxezy/Fy3mUuvNy+UWnf66+//qjnf/7zn0cpxcTEBAB/8Ad/wJ/+6Z9y7bXXcuutt/L444/z5JNPsm7dujnrq62treG7ZVkAv7S6baKJJl6/aK6BNTTXwBNfAy+44AJ+9KMf4bou73vf++jv72f16tXcfPPNL1mW8fFx4Nj13UQTLxfNbHi/BNx0003ceOON3HjjjfzRH/3Ra12cBrS3twPwf//v/+W6666b85zly5e/os8cGhqa85hpmiQSCQzDQNM03vve9/Kxj31sznssXLiw4fvsQFOAb33rW1x00UV85StfaTiezWZPuKyRSIRyuXzU8WNN7rPL0dLSctLv8kqi0r5f+tKXOPvss+c8p6urCwjq633vex+f+9znGn4fGxsjk8n80srYRBNN/HqjuQY2orkGNuKl1sBrrrmGa665hnK5zGOPPcZf/uVf8u53v5uBgQHOOeecY15XUegdq76baOLlokmWXmH8+Z//OTfeeCN/8id/wmc+85nXrBzH0vovX76cpUuXsmnTpqOE5F8WfvCDH/CFL3yh6oaQzWa59dZbOf/889E0jVgsxsUXX8yzzz7L2rVrq1q7k4UQovreFTz//PM8+uijzJs3r3rseBaRgYEBRkZGGB4erpIK27a58847T6gMr9S7vFxs3LiRTCbDli1bjqnNrWCu+rr99tsZHBxkyZIlv8xiNtFEE7+maK6BR6O5Br48WJbFhRdeSCaT4c477+TZZ5/lnHPOOW7b9vT0cPPNN/MHf/AHVSK3f/9+HnnkEXp7e192WZr4zUaTLL2C+Ju/+Rs+/elPc/nll3PVVVcd5Zd7LE3/LwOLFy8mGo3y7W9/m5UrV5JIJOjt7aW3t5d//ud/5oorruBNb3oTN9xwA319fUxMTLB161aeeeYZvve9772iZdE0jTe84Q38wR/8Ab7v8/nPf56ZmRluuumm6jlf/OIXOe+88zj//PP56Ec/ysDAANlsll27dnHrrbee0IaGV199NX/+53/OZz7zGS688EK2b9/On/3Zn7Fw4UJc162el0wmWbBgAT/+8Y+59NJLaW1tpb29nYGBAX7rt36LT3/607zzne/kf//v/02pVOIf/uEf8DzvhN/3lXiXl4tEIsGXvvQl3v/+9zMxMcH1119PZ2cno6OjbNq0idHR0arW8eqrr+brX/86K1asYO3atTz99NN84QtfoL+//5dWviaaaOLXF801cG4018ATf5dPf/rTHDp0iEsvvZT+/n6mpqb44he/iGEYXHjhhcDx2/bP//zP+fCHP8xb3/pWPvKRjzA1NcWNN97YdMNr4hfDa51h4tcJF154oQKO+VePBQsWqKuuuuqoewDqYx/7WMOxSkadL3zhCydVnptvvlmtWLFCGYZxVOabTZs2qXe84x2qs7NTGYahuru71SWXXKK++tWvVs+pZAJ68sknG+5byYozOjracPz973+/isfjR5X785//vLrppptUf3+/Mk1TnXrqqerOO+88qrx79+5VH/zgB1VfX58yDEN1dHSoc889V332s5+tnlPJBPS9733vqOvL5bL61Kc+pfr6+lQkElEbNmxQP/rRj+bM7nP33XerU089VVmWpQD1/ve/v/rbHXfcodavX6+i0ahatGiR+sd//MdjZgKa3VYn8y7Hwsn0gWPVxwMPPKCuuuoq1draqgzDUH19feqqq65qOG9yclJ96EMfUp2dnSoWi6nzzjtPPfTQQ+rCCy9UF1544Us+o1KmubJNNdFEE795aK6BzTXwZN5lLtx2223qiiuuUH19fco0TdXZ2amuvPJK9dBDDzWcd7y2/bd/+ze1dOlSZZqmWrZsmfr3f//3Y2b5a6KJE4FQSqlfHhVr4jcZ+/btY+HChXzhC1/gU5/61GtdnCaaaKKJJpp41dBcA5to4tcDzWx4TTTRRBNNNNFEE0000UQTc6AZs/Q6g1LqJX2HNU2bM1NOE0008euNUqmEbduv2P1M02zYH6aJJl5rNNfAJpp4/eH1vjY13fBeZ7j//vu5+OKLj3vO1772NW644YZXp0BNNNHErwRKpRILFyQYGjnxQOyXQnd3N3v37m0SpiZ+ZdBcA5to4vWFX4e1qUmWXmfIZrNH7S4+GwsXLjxqA9Emmmji1xszMzOk02n2Pr2AVPIX97CeyfosPG0/09PTpFKpV6CETTTxi6O5BjbRxOsLvw5rU9MN73WGZDLJ6aef/loXo4kmmvgVRTShiCZ+cR2Y09SjNfEriOYa2EQTr0+8ntemJllqookmmvg1go+P/wrdp4kmmmiiiSZeCbye16YTJkuvdHBWE0000cRvEl6tgFRPKbxXQPP2StzjVx3Nda2JJppo4uXjZNa11/PadEJkqVQqkUm0U/byv+zyNNFEE038WuLVCkj1Ufj84ovJK3GPX2WUSiWSrZ24xexrXZQmmmiiidclTmZdez2vTSdElmzbpuzluaj/w+gqvEQpXrK8x8rcWUnpKetO8BVKKSbtIwzmt+D6DgJBZ2wh3dElSKEFz3wpCHFi572a+EWK83Kzn9bXsa8a61oIEJKSn+fA9HO4vo2nHFxcfN/B8+3gmO/iKhvPdwAfEEihETNbiFotxPQMUSONhoZUAoFECg0h9eC/EAhNxzJSRLRY0C6+amwfTYIQKE2AELiezUM7voKvHDRpBecohY+PUm71spjVRjzaQdJoI261ETfaiRlphJDB7mGhlVaouuf5qlYnle9H9ZXKd1Grw7kgZ/1e/wzfq9Zxw2/19a8Fv5XtHDOlIWbKQ5S8fFjvNq5XxvNtupLLGcicgRSy+kzf9yjbWUrODEVnmpI3Q8nNUXSzlNzguOLorDO6jITXuyjlo2sWSikUPiiFp9xaxR3ztQ185cz5m0AjFmkhGmklk1xAb8sadGEgvPo28MEH4Xq1eqzAr6unOcfwMX73T3KAqdo72l6ZspfD0mKYWrTx3sdqf3GcANXKeIOgjTUNAEc6PLD9H7Ft+1UhS97rdEF6NWHbNm4xy4ar/gRDWGglH831Ea5CVNqwvp8dbz5QCuHTsC5W5x4FU9kDHB57DscrgRB0ZJbS1bYaTegN91ZCVMeEeqV2QZxVbjX7NY71XnOMQaHm/l3MnjZmXzv7Vr9AGRAiqBshUDL804JjviEpe3kGDzyCTTGYS5WN79r4jo1fLqMcB98uo8rlYD6SEqTEaG3DzLRjptuw4q1ouhmsJ7oOukRoOhgaQkg0pWFEU5iRFNIF4QXvKMLyKiFABG3o6+Apl+3f/H/xywWEaSGERCkf5fvg1uZTo6WdSEs3kZYuoulOIpluIvFWhNAQftDHhKrVtxJBXTb8r69fFbZZeE3l8zFRV2ZfEyit1ubBsVq/FAqkS/X9ha+qz3PsHPmJQbJTh3AK03huGc8r4ZXK+HaZ5LJTaN14CZrSgvXAB1wfNz+Dk5vCmZnCmZnEm5rEyU5hh3/47lFFllYEpIZyHZTvIc1IOO5UUMeuG6zJx4NuNLRD4wM0zEwrZrqdePdC2hadhm5Eq20glEJ4IMM+gFJBG1X6RF27VX5raBsIZZGw2cI+VG03pWbJM3X3qcw7ddehwPFKlO0shh7DMuLVtq21c90YqhcNZ4/v6rxUuw5A6QJfEzjS5omffe6E17XX89p0UjFLujDQMWoT20uRkvoJsF6IqHyvgxKKHVMPo4CVrRcT0eN4vsPhwjY2T97NuvYr0aVRu+BkBKS5hNVXC68EcXsJoV0pha9cpNAb95aofNbq7yWr1zmlCQ5ln8dXHoYWJZ2aj6kn0DQTXZpIzUTXLaRmoukWSoDjFigUxyjmxxjKb6dcnj6hV0gl+2lvWU5HZgVpox3h+uB5gSANQT15CkNFWN91NTOlYQQiIFxCQyAxtShJq4O41YrUzKME00DQmKO+6iabht+VahTkoZFQzVHvSgiEUo3PEiKYv4RAKhUswACaVjtPyuB5rh/8Hj5bj5jEo2106WvI2mOM5XYzPrOHoj2D4xbYO/EY+yafRAhZ/ZNCw9ITRM1M8BfN0KItIKqliMkkwhfYXp69M08jkaSjPdh+CUeV8YQHCKYLg0ihk472IGRAWDVhoAsDTZjomoWBga5ZaGYETY+gSRMB+J5D2c1TdnPYbh5Ns4hF2rCMVND/QrIqfL+RqKtwdRAgqivNCQhJc5Go+t/lSYwxX4HyKblZtk8+jK9cYnqGopdFKcWy1o3Ejdbj36PyPrPnwfrxVlloQrI0B3f9pcFRPs4rMO046jcjZknXLHQtgoZCOD5SV3Xz0qyT5+qus4UXT1WFHOH67D58H7ZbYHnfZUTMNJ5yGZp4kRd3/YB1i9+Opkerc4kK5x011zz2MnBcYnQitz9Kl1RHkOYgTi9Jmk7weUIFylMfN1C8URtzVSKiy4Ao6TXS5EUkTnGSkV2PoTwHGYlgrViIHo9jxlPIqIkWNdCjBmZcR48aCKFwZkoUDk2RPzhFdu8hJsdObF0z5/UTX76K5JLVxFr70MsiEIx9gjlQBdOBpmDhG99LfmgfQmrh+qIhhUS3YkRae4ikOtE0oypgV6tEzrUOhW0rwTNAhUSmgST5NSIjPcAFfNVAmCptqAT4ugjuo9fu6WmhBK8JfDMkTIZChdOaVhZIG7QSGAWQTvAcIxEl2d1BNL6ewswQ2X3bKOzZjjsygZ/LMzkxxuQTDyE0idA0kMF/LZnCyLRipFsxM63EuxYQNVtJyjZ0R+IX8hze8zCuWyLVsQhbFXGcfKBMRVEYH0T5HonuRdW1Weo60oygGRE0K4I0LaQZQUQjyKiFMEykEviei1vI4uazuIUsQjOIpDvQk2mkkrV2FZX6CupfqeC9lQvCU9Xzgr8acaooU2okqNJWjeSo+tlXjd9VhXSFc4w/izD5CrucZeeBu/C8MrFIGyV7Gt93Wdx/MYlYV+Mco4VEaY7+1djXgjW9Ou7CazRN4Pknp9F5Pa9NJ5/goU7zdVwl9FwNMNex0BI0VtoHCFa0nBd0Es9HEzrzEmuI6ml2TT/KipYLGu91ooTptdycbi7B/Re5Hqr16CuXvdPPMl46gCkjOL5NVE+xuOVsolri2Brw8PqWSC8b532AF0fvYqJ4AE2arFzxNqRuBAMDaoMEQq2TqGk8FSjfw8dDeR44LnguvuejcPHw8YRPITfE+MhW9g8+zJ4D95BM9NLXeRo9qVWYhJqlunrpTCyhM7746PZVfvBO9e+lHWewNtRdTaC1ccjZo3jKw1cevu8igUysH0tEwfUbylO9Q4P2F5SuU/KzHBx/hsHRZ/A8m0S8i0S0i0SsC82wcLwStlfAdYs4dgHXLtCZXs78ttPADUiTq1xeGLyV4YkXkNKgJbOQ/paziOhplPIC7Rg+vvJRYZnLzgzF0iQz2e2UylOocPLoTa5ibfsVWFqMbHmY03vfHmhEhcDFoaTylLw8ETPN3pGfE7HSlO0cZSdL2cmxrPtiutIrakIfBFY/KXG8EvnyOLnSKDl7jJI9Q3frKbRnFiFEQNr3DT3KTPFwQKKEgSYD4q1p4Z+00IVBQm+lJdqPPJbEVm8hfqmxPtcYOc44K3sFnh+7k1Wtl5DQMlViU1R5No/dxer2NxAzMsd+3uxnVsfHHOWolPtkrV+/AEI57RW5z28CRDitKEHQj09w/a8oTipCsfJVINQH6mFQMJHdh+MWWdl3RXCup9DR6M+sJWa0sOPQ3axacDUKUZtfNHGUJvdlKd1m98d6Q/gJroniWGxRqWoZhao9S9UpLgLB8gTHZmV69n1832P/kccYn96JocdwvTKWmWRhzwXEYq0IZq1JoXZcyYAwRDv7Wflb/4f9j/03+T3bEJpGz8euIZ3xMHUPIRSG9EgYNrr0MaWHKV0sLbBaFD2DQlnDcxW+45EvSQolDddWmKqM9F1KJZjeO834Y7uZfuRBJu++C6O/h+SZZ5E+5TRMGUfaIVlxg1qLLVlObMnymu9Cxdrj1T6rijAu69fcynvWVb+s/XkW+CbYskRpdBBfueA4qLKH5ghivQux9CR6AaQrqkSu2kbhczwzuI9nQdGfZur5x5l5/DH8QhGjrwtzfhfmvC60pAXFPH6ugDtTxpku4c8USSxcScf6C9EKgAys6Yfv+j7ZZ55EGDqRVQNkLj8NqyuNVC5CeUjfA8/DcxSlosAey+EMT1HeOYg7PgXh5sOZ+WtYedb70SNxshMHWHXOB8DQ8U2B69uU7RnKpWnMVBtHnr0Ls60DJz+Dk5/GLWTpOOuNpFetaehvFbLpOiVKk8OUJ4Ypjw/jTI6TXLGG9LJVCAS+grGnHqJweB9uMYc0TIRpIqIWwrKQZqBM1jSLaLKDZOdiNF9DOgrpiaB9RYU0iarOUFXHgqj7Hv6mFGiiRqAUFeeeWtuFl1cUvq5T4IWd32PZ/CtIRTur46zs5ti854csX3AliURncK9qfxLHnwtmkaSAaIUygQB1kq5Pr+e16eTIUsjUqROkX/L8ehzHwnMo+yKntF1aO6/qtgPt0QXsm346sJ5UrEtKzS1EHcut5/WKudxAfIWvPDaN/4TuxHIWpa4LNPpCkHUm2Dz6U1a3vYGY2dLocgaNFhMhiMfaWdV/BY/v+Qajk9tYpIpYunW0ibZOA9GordQRMrBoVczwulfTiKAJEu39dCw8HeW5DO19nP3b72TbnlvZLn7Ckp4L6UgsJm61IZVstEhUNPTV/qDV6kEKlJS1PlghXB6B1qtegBUCVDDpbjl8JwfHnzpGZQtSiT6Wdl1Ee3T+USSuCgnZ0gg7xx5idGoHmmbQ2bcBK95CfmaIqZlDHB55BqU8pGZiGDF0M4qhxyiXJtk2dTsRK0NnbDHKc3hi9zfIl8dYufLtdPStQ0MLNFSu36CpVTJcUGU4aUlBqTTFzp23Mzr2IpnEfBZ1bAQp8V0XXYvg4nFk5gUOTW1ipjw8620l4/m9+L5LsTyJZSRJWh2gFCU3x8jMdnLlcfL2GLnSGLaTq14ZjWTQ9Sib9nyPtsxSli+8Cil0dhz+GclYD7FIK57vUvYKFJyp0LXQxvPKeJ6NwsfQonSml9OZWEpbYiFaOB0dVedzuUQdD8d1u/TZN/00S9JnB0QptPIBRI0Eq9ouZs/U46zueNOJPesogbSu371G7sDeK+Tq8Erc4/UAUXHHFQRWCu/E9WsKERAtJaraXggEYCVgcPRplnZfGs5pfoOFuzXWz76RR3DdEpoWrQohFSFmttvML4IGgehElcF+43UirKPwW3jjgDRVteR1/X426awJ5nMTQKEUyvN5Yfd/05FeymlLfztwgwPypTG27ruFlfOvJJboBBUSpKq7W6Ap9w2BZ4KWbKPz6rdx4OtforBpK+74JfiZBJ4v0WRQECkUuvAxpUtUc4jrZSwZECY/IjCEhxSKom8y5UQpegamBENIfATlUzuxr+1lpngRe2/fzu5/e4SJH/yIiVtuJX35ZSSWryaS7kL39SqhDt47JEheSKZkxepQXxl1VRwSeaXV/ny9jixFFGM/uYWZex84ZlOa8/vpPOdyMv2rquSsYn2qNrcBhZlhhh/5CbntLyAMjcwFq4nPy+AeHKK4by+TP38a5fhoER0zZaEnI5jJGMXpPGO3/xjRkaRl0QaU53Hw61+hNHiI1ve/jbY3rWRhbxZTelWCqksPPSxAyTMYKcbJlS3yZZPiSJGRr91J4bFNRHvm03vqGwOrFwKhaziGz9ihJxjZ9Rj58YONLyslMwe3oVA446No8QT6QC9OApx8lty2zdijQ5THRyiPDuFlZ6r9Um9tQUvEOfzjbzOx+DHa33odRizDkft+iNndi9HZgec5+PYM/mTgyumXbVTJxi8Gbp0yGiWx9BQyA2tJ9yzD8E2kE9S1lDRYlyAgrw1Eqf5znWWpQnIr85MkJEpCAIqDQ48z0H0uKau9QeFriTinLHgzOw/fy5ql19NguQ4J41xosCRVZEGtppioeNScDF7Pa9PJkSVNA7Sa8OGdoG+JkKFV4NhaZF95QcxAfRxJ3aQaM1ooeQViMh1aFvyjCdNsy9VsonAsvFoE61jCU51v6IleeyS/nTZrPj3WEvD86j2Segur2y5j59TPWdd5de2CetehMGZGScmRwnZePHArlpVi7WnvxUi1BFUQkqPKRD3btzW4V83S5OsglKguBDIkTI5TYGpoB5NHtjI5vB3XDpKECKmDUuw8fA87uQchdRKxLlqSAyzrvgitzryrQt9jiWjsGyIkTFpg1cBTgRtcWBdj+b0cyW4lVxolXxhB0yyEqPkkpjuW0L/yMuKZXpzCNC8+/K/M5A5RaJ9C6YsQnhc8rrKgaAKlaaAJDo08z+jUdiJmmg3rP4LR2oFvisCVQYByPYSvkFrwnsWJIfZvv4up0m6i0TasaBplaORKw2SLR1i/8r209K3CMyS+r5A+oMvAb7wyqakakfA8h0P7Hmbf/vvQNYs186+hJ70aGVqrlDSYLg9z/75/wvNdOjLLWN1zDhErgxlJY0XTbNr6bVYuuobHN3+FeKSD0xa8k6iZYsod4dnd/4njlohF24glOulpW0Q82kEi0k7cakfTDJSE0Ylt7Nh9O48+9yV6ek4HBLZXoKvjdLrnn4WmGXW+7KG1yvXITg8yOr6FkfEXGZx4Dk2adCSXsKznUqJ6MhAujjdmXmqc1I/jWW58M+URliXPCYRXt84HXggSMkPJzaJ8N+ijALNN/r6suWAeb+xWrPCvstLGC4bCK3Kf3wiELim+CDX9WjiXVXAM40r978JTCC3oD9JTVWWH49tEIqnAijzLNVVJiEfaKTkzxKLxRrey2WRprnK8rHc9gXOqiq66y5SqaZFDDbeo9P2Kln7Wui1mlbfiulVz2ZtFmpRiZGIL6WgPfek14NT00AmZYc28t7B18E7WLX1XzW1RC+Zc3xD4hsSJC5yEYGLwBQ7f9p9oyRhLbvoAyUXJwNPbF2gyJErSx9QCi5IuPXwlKPvBmHd9jRkl8VVAjDwlkCgKroWvBKWszciTBzny6EGGHtuPM1EAQBqBX9b0bXcyfdudCF3Dmt9BZMUAqbdeCcJCuBJcgbBBlhS6qwXWJxUSIS2w8CgZrHvCk2i+CI5HFPlDOyg9+hTu4WHKh0bRTQ0tUhPluk/tZMOH15Fe3k52wuXu/3UnpQOHKK4dIZ5YFbjKVao8dN1TMvg8+dRT5LY+j5ZK0fmH/4P40jTxWJm+5DQLEhOUbEnB1oiG4Z1H9pR4/l+fYWrTQYyuDPrCBOVOD2d0jNL+fbT/3rtou3QF7akcKaMcdh+B7WvYftAhSp5O3jGZzMcoFWD8lieZ+uE9CE2n58p30Lb0TMyCxPGD5AC57BBP3/Jn+I5NYtEK+k5/J1aiFS2ZQralOfDjr9H+rt9i8O/+Fr2jna7f/TCytYPpkUOMfO3f8GZyGF1tmP3tpNafit7bQWR+B/EFLRhRDSEUuWd3M/jVOzn0d39D6tLTQNPwSllS69fQ/eZ1ROIa89NTdEVmMITH4WKGybLF4AtZRh/cycxj25h5/imEaRBfupKes68mlmhHK1N1yWtwx6sjRQGZEjUyW3dOlXD5Al8ohFRI5YMmmMoeYFHneaHSxgdPBWNUE8RkEs+z8TwbqUWqRElpx7AsVYZmnTUJOYsoVZQ6J4FfhbXpL//yL/mjP/ojPvGJT/D3f//3J3zdSVqWZJ2mXtVI0EvhBM5R+MHEMFdgvQgEMF1aHOVadjxB5ESFlFdSmHkp4e54hOkk7j1U2Mn61suDYxXSqmng+cT0NL7ycNwChhmf+15CcHD6ObYM3kFXxxqWrr4eGW0M0Kv4RVcHS/1xKUItl6j6SksXhO2RnzgckKPDL5KbOgSA1Ax8zw0/m6TaBki2LSDRsRCpaUwcfIEjux4imz9CJNZCqTxFsTRBoTRBqTiBUoqO9lX0tq+nLTofGToL551pDgw/zuHhZ7AiaXra19GbOoWokebQxHMMT75IW/cp9A6sxndtitMjiClJKT/O9Ogupkd3kWiZh1vO47k2a1a+i574coTjVesJGQgF+yefJudOoJlR9FiaeLSTfHGER574a/rmn8vCtdcELiFSIIyAJPmhMPH8E/+CU86hG1HmzzsPLZpEaRoVTihEGHOlhfFPOvihMIAUZCcOMj70IoXcMIX8CIXCOELBvO6zWNp+fqC99FQw+SnYMvwzSm6WeZ1nMn/hhUSsdGipUigpmCoMkoh3I6REkwaOV6TozTBdHmPzru8TT/Zw2mnvxzQTYYCqQrgK6YTEPPSX7mhdQUvrUvYfeoD9+x/ENBNEo23s2n4b+/feR2ffeuLxbsqFyeCvOIXvBUlEpNCJmi2goFAeZ2h6C7oW4ZS+KziuZHiiY6gy71QTbVQ0ylqNiFUEvjqNuC4tPN9Fn52goxp/5R9NmOpRP3+9Btbt17Orw2uBwH0rDGb3KkqfxkDsOSFqvwktsCwJFQoxQgWhdAI8odB0GRIOicCvqoZtN4+mR2txN2Hg9FzKqdnk45W2XNasQ/XPCP9VCZCqxiRW3RAr9TBr3a6Wf7YFKXyAkqrmqheeMzSxmdX9b24U9sLnR7QEmjAo21lMI121vig9IEyeJfBMwcTOpxm84z+JrltF1yeuIdVNlSgJLXi2Ln104SPDF/SVoKx0/NAc5iMoegYlzyDnmJRdSW7XGKOP72TisV3kth0GBdLU8cO1Qlo6nWs6WLQhzaJT04iIyY4Hh3n8azso7RmiY6FFbqRE+cgk5SNTFA9PoTyf6PqVxM88ndiSFaBroCvc/Di5ex4ie99TaOkEsbNPJX76aRipVopPPUn2/mdYdH4P66/ownSL7N3pstuMM7Yvz9CzI9zxsZ+RXtaOXfSwp4q0/c5vkVl4FpRqpLWi5Jx69lFKw4cQqQii3cKc14d9cJAjf/zXJC44g46PvgUpUtX2i+guhm8jheLnn7yD3OAMWtyk57ozMHsiuDEHpsK13gTTcJFCMVEOGJbnSxxfo+TqTG4bZ+rnWyjvH8M5NIIzMgZKkT7rXDrPu5yIG0c6gdVLScGhh3+Ek5skteEsMm94A2a6Fa0MWjEoW3H6CHp7G8KSSMvCLxRwJiews2OM/fM3ifS2cMo/vQezLYkQCs+X2J6GRGHqLpq00YRP+3ndLD3nnez77jPs/MZTaIkIZn87Y9/+GZM/fJDU+auZWNEOE5OUhmfIHcnjlV28koM0NGJdCcrCp3RwnNyLzzOk6cy78rdRAjRHVBNiiIqeu0KY/GB8KBH8rrTa8VAjEVjXRKhQJZQ3fIGQGkJKlO8HQyNc3wIrt8LUo+G6Gw0tlbOUMrOXz3oLt6yQo7pxrI4e2y+F13ptevLJJ/mXf/kX1q5de9LXvjw3vApeTpBVg2WgJsS0WfMYye+hK7Y4iEOpsxaVvQIKhanVCfNCBvbIes3t7KxvLxfH6wDHY9Jz+mL/AuToJZ6vSaNR4KtDRE9h+0UM4kdfr0kO57ayZfAO+rvOYunyN6N0HV/VFkwFVZNw1TQsavdQYbYcXw+Ol8aHGHnufiaHt+KUc0EQa/iOZryFVOciki0LSLUOEM0EQrrSQiKmFPs23RY+2GfHnjuIxDJYiXbiPQtpTZyOchzG9z/L8JZNmGaSro41lEvTjIxvwTCi9C7aSLk0zd7BB9h94G4W9l/E0gVvZGxmF7oWoXf1pQHxUCBdhZ2bYnTfUwzvfpTc5EF0I8qZ63+PhEgjbLeWpKFSZ0KwZ+ghbDePaaXwfQfXKVVPGTzwCAOnvxXfqNO+qopFSLD6vN9l4tBmJoe3sX3HLcCPice7WLnoLaRivWzfcxuntw2AEQuqQYAyJJ5yObD1bg7uvg/TiJOIddGaXsL8rnNojS8gobUgKtaRUHjfO/YYg5ObWDr/jYxN7wo01lpob3d9CvYku/beySkr34FppTjz1N9j89bv8NTubwaktGMVyza8Kwg2rh/i4QQb5oioapg0zWDBsjfSMXA6OzZ9j6mJPZx21v/iyOATjB5+nsHyw5hmEstMojyPYnkSz7erN9WlRdRIgxBErZYqQVUI8EUgXJ6MK17obldF/Wc/0NZ6ykVDO2pOU76P7RWCLE1e/T0qcwyACrTuFcJ0LPyCrlMvF64SOEeZgV/efX4T4GsCEc5nQiO0hIbkoM49qj4YfjaErwJX5FCHKFxASNraljM0s5Xe1jUgBML1UX7Q5xy/jO0VsWIZfE1WiVJFQXLUcypdv0rAxdy/nyBmJ2hocKerntR4/ypBmoswHfNBoqFsKvwiENUYp0rck698DC0Cvl/LJugrhBQoJFEzg+3mMEUmVNSFliVT4FowcWgzh35yM8nTTifzu9dhJB1sx8ULrViaDImsUEjhI8MXLvs6rq/hKhmQKKFwfY0juwts+9ZjzDy1C28iC7qkEkNidSRoW9dLenUPiVX9xBe20xkv0WblaDPyRKTDI195ofreu77yAKmeOK39UbpPM8lcM0DeMXj+jkOM/uNm9HSM9AWrcacLTD/8IkbcZNX1S7GnCuy58wGmf3Q37deezYIPbWTHMy+Sjrn86SckA4ZFVmk8U57PpkNJ7v3hFE9+Zx/TO8aQMYuuT38MK9GPnKZGfkMXPiRMPnAv7vg4WksSHAevUK6WOffgk3R//C2UHZ2RfAJNKlqiBSKaQ1wrc82XLmD73YfZ9/PDHPyXu1HezzD722n9wLVYyxcy/s07yJz+u+R1Ey2sa6WgVJYM3vwYk9+/DxmLYXX2EJ+3DGvd+STmLSaS6UZzQIbLhG/CyOYHGX/uIVrfdCWFPdvx4h6+qRCeQOrgzEwyfNePaH3POxCZJN3/zycY+/dvM/LlfwUpSKxbxPqbriCWlNiei6ckHiBRaHWxdhWro2UITrnhVOa9cSlP/OVDzDyzl3mf/whTd29m5vFtTN7xJFo6jtaaBs/HGZlAlezquNETFmZnGh+J7G+n3BIQVb8UJITQ7Bppos6CVJW5RG0IVlzwg/VKVWUw3FBBWplThIOhG7V4KD9QyiigaM+gmfGw3eewXtcpf46HoIx14/Yk8FquTblcjve85z3867/+K5/97GdP+vqTI0uyjlrOZVk6XkrdqpZX1M6tEhuNeZn1PDv8Y6JWCym9kwrltv0Sm8fuZFnLeY3X+HUEof6x9f7QL+VeN5tYVc45bsDbHL/Nvm52nNHJEqMTELKECAIbdWkGFqX6eDIhKLrTWHqi8V66hpKS4cJONh+8he6uU1m85hr8MH13JXNL8AACYlFZ0EItQ9V/urKwTmQ5tPlOhvY9TsRM05FZztj0Luxylq4l59C7+lLMWLqhXvxZlioQLDjzOvxyESvZhplsCd+p9hwloHvDGyiMHWJi51MMHXgWTY+yaP1b6VhwGsQtlCaY55QZ2nwfe1/8GZFUB8sWX8XWHT8gvW816SVrQYBvCPRMCz3r30DPqW9gcs9z7Pz5N5nOHyKRSjcS+qqQ7JOw2plw83humda2ZbT0riTVEZB7Xwu0mvV++pXUoQDRlm76Ml3MW3kZjl1g/MgL7Hr2e+TL46xZ9DYe2/JVdu24jSXr3hYQTSEoTA2xbdN3yOeGWNJ1AQtbzwlSiFfggQjTnapQYzqa283OoXtZOP9i+pZfQia/mp07bkUKg2ikhUJxHIRixaq3Y8YzKB+MSJINp3yAvfvvAQQLF1+GJwxcS4a+0qEG2FNV98pKH1EV07whMGMdJNoGyGeHsJ0s0WQnrZqglBulVBgnmzuMlDqdnWuZ13kGuB7Tk/uYzh5gsngI2yuw88g9HJ7YRGt8Pt3pVbTE5wESUXHgnmsc14+vlxprUtAdW8rB3AsMJNYF/awubmmouJN2a/6xXQDrFRMqtDDV3XvOc1/l2CUPgXeSgbfHus9vAnxTgCFCV2IC97A6be9R7mSzSYUKTEjVbFlKIHWFchUdC8/gxaf/g2iqg3S8vy4Yu8QLu25hYOHF+BENz6xzwdOO1uLWCzFitqBwVOzPMV5UNZ6j6lI9N1x3LMJU6fbhBxEKmMo/Tj+ZLRLUxe6oigaurvyaZlAWZUwzCjKI8xKuX7W6F+wJzGgmIEiaQBnBvOtGBBOj2zh4xzeIrV1N5iPXYaVdpFSUyga+L9A0H8zAylFvUXJ8LXCt8wxyrontacyMe+z75mOM3f4UWjpJZNUKStt24Y1P0nn5OlZ+YAPpnhgx3UYXPq6S+CpQnk07UWxfJ66VuegP1nFxdoaO/ijp3iimIYjJMhktdNsTPrH/Xw+7trRx5w9zPHLrs2iWzvX/dwlXvz3BovQM3XqRyUI7X/43n2984THWrnLo/aMzuOv/eZh/+f4iPvx2B0dFyPsW6U6L8z+4hNNvWMWuB4/w4//1EPbuvVjr+msKrrq2FB5Y7V244+P4hTKR1UuJn76M2KoBhK4hpI+ue+iah+NreEpRdAxKukFSL7FwiU7/4oWUP7KU/LTH9gdHePDTD6KODNLx0bcz+Ef/wOCXf0Lv77+VSMRHCEV2/wyH//6HlHcfovXCy+g6443oroZWopZFbjLom0EcGkwP72Lovh+TvuBCEtdfRGTiFCa/ezvC17Ay7Thj4yjPpf266xH9GYg6aCmTzk98kOnb70V5ZbpuuJCy7iBcB8fTKLs6rifxfImhexjSQ5OyKhXboct+qjdB1/ouci8eQi/lMPvbEdpy7MNjuMOT2HsPg6aR2riKJdevJGr6ZF8cZGLzEKPPD+NOFJi+4y6Km57CXLKE2Np1JPqWYc1oaMXA0iSdoC0q1tZg7hE1Zc1R8YLBnIMeLkNIunrWc2D0CQbmXRhYuR0tcPsFRmZ2kkrNA8uoKmaqSUTqreiVIVmR9+qtSvWnHGuueAm80mvTzMxMw3HLsrAsa85rPvaxj3HVVVdx2WWXvQpkSYQzeFVgUDWCdDxiIkUgVMx2i6kviB5hXfeb2T7+AO60TVxvpezlsP0iS9vOI2V1H/uec/pc1lvA1Nwkp/68451zMveukLiXIkzHEqKOR5TqfuuJLuNg/gUWJjeETqwhZJDkQZeRwG1x1rXDue1sOvBD2luXs2L5dSBlNZtQxfw7u1z1A6e6iLseQ1se5NDWuxEIlgy8kXSsj+e334weTbDm0v9BtLW7mj6zPgNLQ3afELHu+Q2ZearFrizkoVYl3jGPePs85p15bWPG6PD9pGXRc9qbsIvTbNv2A9avvQErkuHA87ezZunaiiW7AS2L1tO+/3l27LqNtg2LiUqjOskEFRDEIJzR/06y9igjxT2MZHey47nvAoJ0ZgFtXato6VmF1dKJ0mXD5FMllwiUUEGq2EQ7AMlEL3HZxvL5V7Bl3y0cvutpQCClhu97RCOtnLXiw6RFe+OeUXVlAwINEjBTGEIKnYH5F6GAeLyTNae8B7s4TdnJYUXTGNFkXX8JrhW6xuIFb0AohadpQaC0FdZpXXCqr4kGq28l2YQfWgkLuSFcp8jmZ76GkDrReBvRWDvtXWtIpfrItCzB0mJoJRdZdmnVuhCx9SjPp+jPMFk+wlRpkNGZXRyceAZLT9CdWkl3ahXpaC9SEzWLT12sQwOkOG6q7r74Kl6Y+Bm7s08xL74aExNXORzKvcCkfZh1rW+amzBXvleeOddYnSPe8tVGkyydHCruSBUXViFr7jHHQqOwEGazkhUhJ9T2SoEUFitO/232br2DvaUHSMS7sMtZbDvLgkUXk2gdwJOgDNkwlmoxAfXPqWmeGwsnGso057Iym9ypYD6injAp5s4Cytwa6AYr0xyYMxai4lYEtaxe4b0Qiu7OUzkw9hSL5l2MkD7C91FacEHBmUBJgRFNBAKfVrPETQ1uY9/d/05sYAnd1/82ni1xiuAZwUMqootoIEoSP/weWBM8yrZgx/df5Mi3H0K5Hpm3vBFr4VLG/u3riIjJsi9+mP7VSWJ6EPjj+hpSCxJFSOkhhY8mFLoIJqCeVRmSWgQPQc6zwIWsiDDtBR4EhvBo12eYt7LMH64WqD9J4KATEQ5xOYaGwlGClpjiLz8h8Udj/Ofnn+Z9/3Q6bQMJvvX5QS6+9hQ0fKa8GGXfwBAeaXOKRW/U2HnNQrbf/FMiq1ciYh1Bqu9wPg8bl753fgh7dJjsjhfI79jC2L/8CABrwXyi61YRPWM50SWtRCIehh6QppxjAkmybgTb0/ER6KaP0R/UbWRxL6I9Q/sHrmX0y99h56PPgwzWGeX6aC1pej/2cdLJhehF0GzQ7Fra7aD/BJYYJaA0MghA5vI3guFjdLfR8Tu/jTpSwB+bQU+k0NIpfFPhWw56xEVqClsZZN58GegKX9nYXmA1dHyJ42q4XtB5Pa/SiYPYNc+X+GEiEF34FPeP4Zdd9n7mZoQuifRmiPW1Is9Zhj7QR3zNItr7NPqS0+jCR1+fIaotw/Uhe7jA+OYhjmwa48Aj2xl54AnG0wnia9eRXraBRPsCjJJEuHXZClUY9x2Ok6qlSYbjJ/TIQYYWJqC9Zx27tv6Y3Qfuob/vHKxIDN92OTL6HGOTOznllHeG84yoKjmD4SxQhITppab8WeecrGXplV6b5s2b13D8M5/5DDfeeONR53/nO9/hmWee4cknn3zZzzwpslR15YGwoepmyQaBYg5iUG9XbDheE0ZMPc6aritxvBJFdwZTixExkscWViSA1kjO5krqcCJtcwLnlL0C+2eeYbocCKSg6EmsoCe2AiFEQNy0yvvMKsexrE6VYy9F+KCBlHXHl7F54mccKLxAf/IUpNJQAibLg+yaeoy1XVc1Zr4LyzIytQ2Fz+jENp5+8stkkvNJpxeQzizASLWiDK3mBlLx5a/E1VQWVU8xtedZ9r9wO/M6zmBx70VMlQ7z7NZvEIu1c8r5v4uMxaFcvxCrGuEKXQCOeuNKdVQ4+SxhoSGbkBBV7j07paqvS/ouup7i7WM8+9z/h5A6i05/Z20firqFAoIJed7Zb2Xqlr9ix6G7WDP/WmTZCfZEqpwqgj2fUkYHKaODJZmzKXkFRnO7GMntZN+Ou9iz/Q6S8R4WLbuCdPdyfEuiBEhfoReDzS6dUpaZyX0MDT+DFDpJ2YrtFpgqBIuBppl4voMfbr5XLI2zY/BnLGg9k474osBPub4PVbJvhXEQHcnF7Bq+n6nJvaSjK8I6EZixNIbIBIHQ9QRAiEA4dAVS+OAEcU3S9tGMUBgJLYFe6AogVE2QqyT4qPjBL9hwDT3T5xGLthE1M1SyWQXxByDrN/2slEELNlyMySSxaJK+2ApUyyVMO0McyW/nyMwW9k88ydLOC1nUvhGhSZTrUXZzlJwZHL9IW3RBsHF1pb9X9jdqSO4QCk6aZHX7Gxkp7ubF6fvxlYtA0B1dxrrWywPr3YlahSrp7CvPOpbC5VUkTb4S+K+Aq8MrcY/XAzxLIKyaZalhnapT6sjqXinhb3UkA+qIhhJ1aaE1ZCzBwnPegV8sUM5NousRotEWlAC3MidWskxVNv2cI2YpeEZdwaChX83W9jbseTR7/vRBhhplt5RjcN/PmZ4+gBQaCkVnx2p6ejaA1BBSVRVq9fVSeddj4VgB4KqicNUq5E9UiVpLzypGtm1j3+ij9PWchSZN8HyyM4fYdeguVqy8Ht/S8HWJb8pqvU3vfwHle+T37GDwi39HtG8hkcULMRcPwLwMJAKJUxK44QHkHJOSp1Nygwy7vhIcvHcfg/98F4lzzqL1DVfgHB5m6B//Bb0lTef/+R+IPoPxgsN4+C6a9IkaDlHdIaK5pMwSSb1ExigSkzZJrYQhXErKQBM+jq9RUGZAnAhcvqa9KDFpM6HnMEKSldEKlFQZH0FJmRjCZUCf5K9uSjO41+Prv/MUuiH44J8PYAoPTwlM4RKTZRJaiTYtR1Ir8kefifHRn4P68fdQH/4QzpSJVhRopZolVPiCaKab2IZuxPrLcPNZsnu3kt3zItN33MPUj3+C2d1N+q1XEj1zKaWUwZQWxXE17LyJsiX+VIHy3v3kHt8BQuC3LoCZEvbuPSBAWgbKdlF2sK5545NM3HE7Yv0FtPSvpipk1IuJFSWjgtT8VQyrH1PeuguzK1jXhCvQUkm0ZBIkeNJHmQppeViWS8y0cSI2haKJU9LxXUm+YFHSgvaWIRlS4XwpVRCrpkL3eSkUpvSIaA7n/681jLxlMXR3YrSnycQCi+KUHWWyHMX1NKKGTcE1gvgnLcj0Z0iPrvkmqxa3EXtbgpK3hN3PF3nujiPsuPN5Zh76OakrLqHj4quCNikr/JksztQkKpsn2bsEHRPpCKSrgrjw0FVYyDCTngiOSV1j8eprmRzZxvbdt+K7DkIIOjpWs2rDb4Ou41XcfEXdnOAeTyt0rMFd+X9y69orvTYdPHiQVKoWTzeXVengwYN84hOf4K677vqFNoQXSr30287MzJBOp7l01afQtbAwStGQWlkF6azHC/sYzu5ESp2YliZutBA1M8SMDLJhEQoF+fqYo9mkYbbFZjYRqtf+z4UTacjZVqJj/FZyZnh+5CcsadtIS3Re1Q3u4NSzFOxJVrVfFhCm6rv4c9+zvvzHg5xVV3NAKZ9DuRcYLuxGIPHxSFvdDLScjqnFatfWx2QoRd4eZ7I8yFRxkMniIAV7AgDLTJFOL2DB0suItPXg66HG0ldID9x8lvz0EXLZw4wNv8hM9hBvOPWPQQie2vktJmZ2A4HAH413EE12EI23IzUDpRR2cZp89gi2nWfZhTcQae0+agGeTZTq99MIXoBqmepjCOqTUFQsV24hx+Gf30LX0nOJ9SwIrCKzrq1qShSMbn6I/c/cwrlnfpK4n0CWHerT/c6ZRjw85vkOY8UD7B1/lKnCITKpAeLpHgwrgSEsClOHmZo5QL48BkDESNHTuo5ovI2dB+5CKZ9Fi99E16KzAwEmP005O0G+MMLhI08xkztEzGxlUcdG+pOnBM+ew4LrC8GDu/6JTGo+/QPn1SoIiCW7ERGzcZPDunqVrkLaQV5SpQvcmIZn1Mz1RwV0ipqAV38v4RHsMeHW1XOowZZeJVGEh7S9IOmE4wUJNbw5xnOoaX/+0K1M5PaSiHZSsqcpOjMoVTMfxcxWVnW8gfb4QO3aOve6ahzT7DacHQs1+7+YYxyGcX/B5znc8OTRqnbXK3P3ni8yPT3dMLm/kqjM0/e+MI9E8kTzQx8buazPJasP/lLL/FqiUl+r/8fnELFIMG9Uukeo0FEa+Hjk9+8it20zCImVbsdMt2Gl2onE29BEJWti7d5VS41Xmz+rQd31/D0kFPXzXmX+ajincs9jPGf277XPqrE8VQFZodkKJzfN1uduZmH/hbQmFyKEwPNdBkeeYiZ/mJUr3hZsrq2LxrLWP6/uObWCzdp2YjbmmEqrVjnlM3z4GUaHNiMQ+L5HItnDvPkbMWLpaopw35DhJqlBUo1SbpSZ0X3kR/eRG9pLeWoEAC2ZIrJwgOS1l5Be10LEClyXS2UDx9axx8rYB4awDxym+OxWyjt2s+TGLyCFxuB3/p381iDuSJgmenc7Rk87Zm8bMmKifA81M417YAh3YoaN/++bWHKKSa81TVIrkdYKJLUivpLkfYuSMij4JgXPwkdUrVya8IlJu6oxT8oSEelgCA8NH0O4dGhZ2rQiIutx05/NcPn1cVaekcBWAQEbcVNBfAw+Ka1ETJSJCIf/+k6ZL//RIZb+08com/PRsjpaQVQ3rK2mMa9YnOraxlMOuYM7GX/yPgoHdhMZGMBY0ItMJdDMGO6hYUp79mCPBttSaKkUsdNPxVzcw9R3b0PZNgs/cC5L33YKScthdNhl7w7I750me+/TlHftw8i00nH6pXQsORvNEw0b8lYSr/gGbP/25zE6OkldeXFAEDyB8ARGdxciZqJ0hR/xMVJlYlGbuGWjSZ+yo5MrWXieRCkR6vkVuh6sH74v0TS/6opnGUGGxJjuENMdIpqDJV2KnsGME8H2tdCyCAXXIO+Y2K5eTUkPYEiPtFUK9vDSXDqtLGm9iCUdNBQl32BbtpMHP/sYww/txljYhzM8HewtVZehVW9tpfOK68j0rUIvgl4M1ulgw+FQAemE84oXzDMVxWT9GlZJ+12xWlfGrPAJlJfHWNsrccrVcVwnLwE4XonH7vj0S64Rr+Xa9KMf/Yi3vvWtaBUFKuB5HkIIpJSUy+WG346FkyNLq/8PmjRxvCI6eqCFUj6T+YMcmdnC8PQ2HK9ILNKGEJJiaQK/KtAIulMrWNF+CRE9gYuDT7DxrBR6MEXMtRdQBXNo019a6zvXjPwSrHYuIUkpNg3dxpLWjcQjbTWCFwpHO0ceJGP10BFfdLRwdryyvBTq47uOh/q04HPdoxrbJRrrGFBSYvt5pgoBcRqZ2U7ZzbN85bUoKUJydIR87ghlOxtcKg0SkQ7aU0tY0n0RaAIPRdGdIl8aI1ce5cjIsxQKY8cs8uKz30XbktMbiZGkkSTNFhhmEyY167c6LXDl92oAJdTcRuqFiTr4pRKbvv/ndHSsZlnfG4jaOnhedXPWOVHf3mFZhgo7OTT5HGUvj+3mcZwCcauNllg/mfh8WqL9RK00Rwo7eH7P9+nqWs+SpVdimoGGrLo7d11c3szkfvYfepiRyS3Ma9nAys5Lg32p5hBSto3dz76Jx48q6kD/hSxcdnmQhCK8b7Xuwr4hK1YfwDMD7a0/ex6pJ99zapupxjnVUqGGx90g7kk6fm0vKS+IS6jkA626G9a921RhkO1Dd2PqSaJGiqiRIqaliehJFIptw/cwWTxId3IFS9rPJ6631OKOKrFOcykw6ueSudz6ZpOlioJnrrE5Oz1/tZIUrm+/amTpns3zib8CC1I+63PpmgO/9mRp+Sc+h4haeKUCmm4iDANP9ykM7mNm67PkNm/Cz+WCLFu6jjs2jqoKNILkstX0XHQtVrwF37HxXAdpGEhphMJfTSCtoD7LW3ibKo41nwXXQSXBAITEJ5zT6n8/ijhVxmRlTvQCa/fO577HvO6zSRsd1XiqynYMe4d+jhVtoat7LX7Ffad+voC68TNHBded95LK5DoBrOFd611+K2tEaO2uZEireAw0ungLbC9PbmwfuZG9zOx+AWd6itZ3vRUiGs7BIzgHhrAPHcabng6ep+uYnd3EFy6j68KrQYAnPMrZcezJUcpjQ2SfeQpnqHG/unqc+n8uZONv9TEvMlG18LRqucCqpDRKygxIk2+EKckljqpNsI7S8RBERECUDOERl2UM4ZKUJeKyTFw4GMLHQ+AoiYck61uMewl8JZHCJyKc0JWvTK4kuf7c/cRPXYT1W28DvxUtK9FsgbQra2QdWfKPWmpRKLL7tjD+3M9xC9O4+RxeIY/Z0kGsfyGx/kVEFyxEdrYyM/giw//676TOXcUZnzyTdHc0tLa45ByL4XySoqNTtg2mN48yc9vPKTz1LJlTzmTeBdejq9q+VBXXMyXh8FM/ZeSJu46q8/TG82l927X4pkJFPaxUGct0iRgOUdNBonCVxHZ1So5OqRxYlnTdC8lTEM9mGS6m5hE3y5iaR0x3qvtw+QgKrknBNXB9iRSqGu9muzolVw+WGT+Ir9U1n5hpY2kuEc0lYxVJ6iXajDwJvYQhPMacJPtfzHH/559Ga0mitWcQ7a0YnRn0jgxlR2foa3dT3Lyb2Oo1dJ53BQmzE90NXPY0J8h0pzkqcOHzwtjiuvW2fnxVvUAENct3mOV2Lg+gyvg9XvzkyZKl12Jtymaz7N+/v+HYBz7wAVasWMEf/uEfsnr16hN65kmRpfaWlczkD2GHQrMmTYSQuF6JSKSFjp51dMxbTzTTg0QgCy5ObopicZxs7gj7D9yP8n3aUosYmdreoBmWQsdXLlEjw8alH0HDqBSwJuTOxrFc2uDYCR2qQmLj7C2OIyjZdo4tw3exvueaRiEovJ/tFthy5E7W97yldo/Z5ZgrXutY2QTnigOb/Z6zj1WEuApma+lnCXlKiGpGo+BZwWdXlXn+0I8Zze4CwDJSJKNdJCOdJCNdJKNdxK1WqqmuIUh3HW4Qq6Rkz+D97DlwDwCxVDexdDfRdPA/lu7GTLUG2nchUL4PZRflOviujW5EkFYk3HhP4BmACD7Xa1zn1G5Smwiqg9+HRu2r4qiFXdT6w/CzdzP49B2AIJ2cR2dqKR3xxSSMNuRczTWXpaKecMtgD6jKpsE1LY1g1/gjHBx9ko3n/3GNxIUaokpcQVWzE7qEDQ4+wfY9t9GSmM/63msxsRqFfKXw8ZksH2HTkVuwvTwRM838nrPp7TkTEYsF7iuVblg/SdZXSbhQKU3UtMrQaMGrao6P7pMNrpFhnEJVG+aDtP3gs6sCslRJIhG+R8VNLwhUDXZ5r1qylQK3zhKlfJRSHC5uZ/v4A9heASl0EmYbcaudhNVe/R+TKaSvGsdlZZ+yY7Vp5R3rlQ5CHK3EqB6fNRfBq0qW7tq84BVbkN64Zv+vPVmKnnYK9p6DeJNBsLAwDYSu4RdKGO1Jui5ezoI3LmZgdRxNwmghxshhj8n9OfJ7Rhn7/sP4JZvoyhUUX9iCcmqaYaHrKNdFT2VY/MH/jWZFGwWPCqqEZg4lUN05NcsQRxGk+s/1pEr4VBOzVMagZgPTBXY8czPrl70bWXQQlS0oZODeZmseL+75AWvWvDdUmohwrj9aKTVbAdUw/mfNE7PdrI71G9TIUdWFWs26dg5CWRUMQ5dGXwPPtzn4s5uZ2bEJAD2ZwurqxersJdLeS7SzF7OlAxkSl0qmuIpVQ0mYePR+xn5yS3B9TyfmvC6sBZ3EFrYTX9RGrDdNa6JEe6RAq5kF28Mv2/i2SzShE0tINHws6dJuZEnKIppQeOELaCKwODhKwxBeaFlyicsyGj4REbqwIXCUhofEICBTjtIpKR2P4BkShSk8YtImIly+9e85/urGaRCQWNGLvmoV0WWriabnBQkGPBqIUy2xQNgUFZKt6uq7ojAO69iNgxeBsafvZeqOuzj31k+wIDmJ7emUPD0gLJ6GM0v7VrQNDtyxg5Gv/Iho73wWXHkDlp5EurPa2/fIjx1g78++gZubRk9mSJ+7keT556BaLJTlIyMeZtRBkz6aVJiGS0R3SVklJIqSpzNZjOF6AanxwwQ9EcPBMlyiukPKLGNKFzPce8tVkpJnhC6bepDoIkw57noS35d4vgj+h7FPmuYTsRxMzcPQPBJmmZju0GHlyBgFYpod3CdsLw9J3rXIeSa+kti+Rs6xKHuS/XfvZfc/3Y83mQVdx+zoxGzvItLaTaSli2iqi1i0Hc3X0Mqq5q7nqVlziWhc9ysW78raO4enyuwxNtu6fbJk6VdlbbroootYv379L2+fpTJ5OgZOJ5HuQzkObjmP7zukO5YQb18QpPeUweZ+SoGSBlq0nQTtxLUVtC0/k/2b72BmYh8LF15G3GrF81085eIrh0MHH6FYmuDuLX9NxEwTMVNYZgpDj+K4BcpOlrKTw9CixCJtxM1W4kYrcauVmNkSZIZr0BrXCVfHIEkV1FKgioZjACUvR9xqC/ZAOMpUKTCsOB7u3ERGEiZ9mIsAHcP0N5frz7G+zyJAJW+GbUfuxjISxI1WuhLLiOiJhvJW94cBGrIkSNB9i1P7ryfrjBKxMhhGvPYeUCVXqnJslhZdKMW87rPIFYYZGXshiNEp58mO7QMhEELi+y6+51T/ZkM3YkSiGaxYCxgGCp+WZaeRWromyOlRT5rqhYQQqu43IWhMyylELeFE9YLwfgK6Tr2M9kWnk92/lekDW9g99BA7vXuIWGnaUotpSyykLbYgcHOsWi3qyHY9Aa02majVfaUNhcBxixh6LFAIhPu01F0UFrquP2qS3vlnE4t3sHnrzTy27z/Y0P92EmZrjTgIUSUKlh7H9vJIqeP6DsOTWzHsFHoshRFLYmoxRKVhjxWfEwpYlfoh3KeJkJSquTRP0JB1KdgHIri3rwsCv3QJUiFE4DiCUNU0woQB88ILjkk33DfCcRvLqIWWNV8iBPQlT6ErvoTJ0mHyzgQ5Z4KcPcZobjeuXwpfUyMd6WEgfRpd8SWIyhisWJ+OhdlEaTbmOt5Qpy+pk3rF4CmJp37xBek3ZVPaSGGEhVcuILq0h3xRozRdRpRLdG/oZuWZCVJmGUN4JLRRYloZJ6Ex3Rojv8LC0lI477+Un31xG/ufOET3O89F9nTjlrwwRsNh+p5nsPcPsf3v/xittQU9k0ZrSaMl4ni5PN70DN5MFmlFMDo7MNs6MNq6MNs6sFrbkWakqkgQs4XaelIEcxKlSnKcwFJNEKOhKzwnSyTWGlwYJnqpKfoEuh5BKb8mLFWIUv2Yrz5LNfbwuazPovHao5Rfc7gjKg08U2DbWQYf+AFaPEEk00l6wSlEoq1ztqeqzk21z5o0mX/leylsvAwtk0aPJWqKtLpEE5VyEtYlPkEaeAmZdWdTPnyY7Kan8GfylLftp7zzIDNasH+Tcj2wbZTt4tvOUUNeT1pEu1LEuxMk4z6Gclj/pg7OubKVmLTRRECOACLSISLswLqEhyk8ZFhQj0DI9pREEz6eClzv6skUgMQPSZbPxz8c5aKrktx+j+DBe8ts/ckDTP333WgtKSIrlxFbvIx4/zKsaCqwMDlUrZANYpEijJsN20uFuYVESCx1AgttMkbSLBPX7GpK9qITxgpRS99uah5xw8Z8y2Jk+0cY+Ztvses7f8/ANR8ilu5Fq2ygq4K5O5LqxIilcHPTSE2DskvhuRcRbQlkexytI45qiSI0A6n7eH5oOZI+WjiITM2r1hv4CAGm7hGtc7uLag668HCVhu8ZAWnygzr3/MCdz3Z0yo6O59a0B0oRbBQbiopuSMZsT0MXPnnPBKhuflyBryRlP9jnqxKPE2ya7LH6yn46z76BoU1jZPdMUDwwTvnAGIWntuPng6yKaBqRrj461lxAe/86NE+i2XXjn8bxFswTldT9R8sa9ePglQxdfT2vTSdlWTrtHX+BiEVC/+uAvVYwl591ZbChQOmNxwLXBFW9VkmBcl2mj2zHzk9iF6YpF6col6ZxnAKGlcCMpDAjCRy7SCk3SjE7iuPkq8+0zBSWmUTTTDRpoWsmmjAwMNBlhLjVRsJqQ6JRdKcp2tOUnGlst0jCaiMV7SEZ6QysWlVhT1AuZdkxfA9r+q9pdJ8IyYLrldl88BY29F0XXFOxLhwr/qFeiKr/rf73CipuDEpR9vLk7Ynwb5yCPUkm2sfC1jMRmgG65MXBn3Jk8nkiVppCaQKBYH77GSxsOxtTjx5Fbhy3yKGJZ0lFe2hLDNT1jDoBfxZRash+FMZnNJBQGcxvI1PbyJVHUShKbpZcfphifgzXzvNycOrv/C2eSXXX8eDBR2s7Gnz6wwWxQVPWEGtX9wBRI83CDzL0KNshO7SbqcNbmR7eSSEXuGAkYl20JRfSmhigPbYQ6QUFarCAhgLEaG4XM6VhWuPzScf6kYaBkpLNB39MrjzKqWd/DKHr1cQKVTN6eI/gxpXd6iXCU5RnRnnm+X/HdYucs/AG4jJ9VH0ppZi0B9k//SzjuT24Xrnhd4HEiqSJRtuIxlqJxNqJxlqJRtuJRVvQNDMI7K4EnFddYKgSpqppv65PzJ6cPbvE8LaHET50zz+zmo2v6qrn+IELwewZMHQLlGUXYbuIol2LUwwtk8F5s9xdKxpyIUGTKF2jrArk7HFypVFGZrYzkd9PzGhhafv59MSXB2TT96rPndMdd7a760u54DVYlsrcvecfXhXL0u3PLyKefGkf7JdCPutx1do9v/aWpb976lwWtuQ5aLdyoNxG0TOre/AktHI16N6QLjEZCLAF38RRGl36DBktj4dk1E1R9g2GnRR518JDENMcPMdj80NTHDnoURjOUxzNUR7N4s0UsVoiWK1xzNY4dtYmd2CK/KFJ3KlCtZxaSwotnURELKRlIfUI0rCQuoVuxrBaO7Dae5BSx5mawJmexJmawCvmsTKdxDr6ibX0okurGk+o2SAncux6+vusXfUuZCmMHwzHkpISV/N5fud/sfbU9wepzcN0w1XDQN061qDBpu53ascrlp7a3BHMUU45RzE7Qml6lNLMKOXpUaId/XStvxiiJk4Mhh66hcmnHkFva8UZHUUALevPpfOMy6rzSVWBp8Avl5jY/BiR1m6SC1cEU78OvlmnJfdqZKlKMCvEsE4BVM1CVuk3u7dQGhvEFz5uYQZ7+AjOyBj+TO5l9cNPP/9mWo0CSVnCDx8aWITskDQFcS4VIuUpiRMqeTQUEeEExAOvzuoU3McQPnHhEBF+VY/nKMHOQpqfPBLlvp/ZHHh8mPyewGXe6OkiungZiflLSSxYge7pDdbM6joqILt/K/nhA4EL3ryF+CkdNwrDP/ku9q5dXP7tt9GXzDFeTjBlRyi7AUHQpB/ucxUkUJBCYfsaI/kE4/tsDn/mP3Cnpln07v9FPNVbi60K+5gvFPnR/Yy++BDZA9vwSsXGChUCPZNB72hD723F6ssQm5fG6slgdrciIxZ+GLukVLDBa9RyiOguEd2hPVIgpgdrpe3rFFyT8VKMvG1iO3qQDEIo8lOKydufQpV8EueciZ5JoXSFMD3MmEMsGsRMGdInojtYukvCsKtWK1mXgaVCKN1wcPkE5KwS85RzLEqeHu7/JSm6BtmSSWm8TG7PBKW94xSe2Epp+w6MdCudZ7+JzoVnBJamMKZpNiqWu6rVOVR6zK7LBjTIJuD4ZR67/U9P2LL0el6bTsqy5CQEMhL4uWoO1LnaHm0Sn4ONNprma/EjFaELTKLta4gClew4ldiVY2UG8op5ypPBJFuaHsEt5fGdMo5Tpuzk8e1y8L2cx3UKR93DNFPoRoRDk8+hlIdAEo91kIz3ELNaiVotREWSsl+iZGeJGokaMfABqTg08Rw9qVV12uewAl4qkcNcHVOTVYJSKs8wOrOL0dweJnP7cf1yWLWCqNlC1Eyza/QhBqc309W6krHsHrL5Iyxa/Cb6l1+C65UZ3PkAB/c9xKGJZxnoOpf5HWeiayYOLgfGHmf/4Z/juiXa0ktobV1StZT4eOwbeYSymwvIp2ai6RbxaCctyflBULNPI3HyAd+nXJ7BUx4d6WV0RFbz9OZ/Z2pyd/U0PZrEjKUx4xmMeBrdiuF7LsqrWJxcpGlhpduxEm1EEq3orW14VmDurz6z0ndma1XriFQlaLvR/BxoVajTutRimWqTgWcChkFi0QqSAyuY74M7M0V2cCfTwzsZGtvK/uHHWDbvTSxsOQN8v2HPkaIzzdahuxjN7UKTBrvGHkKTBi2JBbSnliCRZHOHefSBz9Hes5bOnnWkMwsQyKN8joWngngmpSgVJ9i7/x5K9hQJqyNoi4rgUieoC6DV6KW1ow86BZ7wsf0CJT+P7eUpl7MU7SkK7hTZ8f0MH3mubrPYgExJqaPpJppmoevRQGlhJdGtBIYZRTei6FoEXY+AANcu4toFXLuA4xZwnAITYzvw3BIgOLjtbjrbTyGe7EGLxNAjCVp6ViBNvZEsqWCCV15gdZO6RApRdcdrsI7WW/c8PzjuuuEfCEcQERoRo4+2lgUs6DiTqdwh9oz8PHBV7HkjCzKngeOG18+RCKJ+jB4Lx/vtVYStNAz1iy9I9m+IZanfmKBXLzLotACBZr4yXZR9PcgeCVVBVkPhIdBQjdnKzFHiwsaOaJSUgY8kIwsYwuXatwZuUgAzfhSIEpdBAH4g3NrhvVNIkoxM6+zYBfv2eAztLTI57lHMlSkUShRyk5SmPOyCR26qhDdz9LqmpZPIRIzJ5x8LXFaFwOjsJNLTj5Vsx4oFnhmu4TERzZJMtoQusaqasvjQ4Sdo612NGw22Epid+RJqSrJ699xK3ETwpZJVlTBTqcAuzzB9aAsz+7eSP7SrJuwKgZFuxcy0Mfzc3YzvfpLE2lPJ792BffAg6WsvYu3HT8ew82z7zosc+d7jTL7wBC0bLyRzzkXIeARXlZh55BGm7r8PP58nsnARxulhVlANPOky/fCDOBMTSNMK/nQLq62T2PxFaNIKguTr3CErcTxOdgrfd4gvXkZs9SoG//PfKGzZUq0LsyVKrDNOujtKZ49GqkXDdzzKJYVTVhRLICImyf4U7fOitPRFifWmKCvBtAtlGVheDOFhCQdNKjR8NFTVqlSBEe6NECSGcEgKj4wMMvR6BN4ajvLJqoAclcIFUAsXlaWxaeZdmuMdF0fZbS/nsYMbefheh6EnD5N97gVmHn6IljdeTuc5b6xTbgfPtvNTDP/sR2S3PY8wTdRjdyIMg+iCRcSWr0R4EntwjNvf/E3azl9G5oJVxFa1YhhgaB6a9DGlhx76tftKoAufaHaU7A8fxxkbw2hvx09beBYopxZPJfxA/kl0DRDvHgjELNfBKeVwSjM4xSxOIYudHac8PY69fZD8o5sYL9cpCjWJMHSEaSKjFjIeRUvH0TNx9EwMMxVBxiP4ZgysGMpX+OMzqJkifq6AXyzgFQsUt23Hy+cRUmP6trtJrlqL2duHSEUodMTwzl1ALKVjWDZRw8GUHq4vcX2TUti5KsSrkiWuYlWqJP+QQoGno0ufhAwy8AH4ZokWS6eU0Cn0tmOf3UX+uvVMbZpg+pYHGLzzZsqXZelecwlmNiBG9VYmAF8PZJ0gO25NYXDMdOAqqPsTTjM+B17Pa9NJkSVfJ0j3KYPP1YDVOUhSA8mZraWpQjR+rNfs1P9ef81sU7kVx0rHsRggTc2SgF8LeJNO4Kft5rIUp4ZA+USirViRNFILqsD3PfLZIfKTB8lNDpKbPszY1M4Gy9UDu/6RqJkmFmknZmaImBnKTo5ieYL1864LtBT1AmuddSoou0IpRcGZYqKwn/H8fnLlMQzNwtRimHocQ4+h8BnL7SFbGkYgyCTmM9C9kUSkg3ikjajVijANlCbJlsfYsftWDo49TWv7cvqXXkx7XxCQK2SUeWsvp2fxRg5uv4fdBx/gwOgTdLWtZmjseVyvTM+Cs1GOzfjoViaKhyiWJiiWJxmd3kEuP0ws0Ynn2XhuGc8t4/sOUuqkMwtpa1lCe3IJ8UgHEhid3sbBoWBzWk03yRVHaGlZTG/P6eSyh/GVy/xz3kbLijOCFOt1/eNYWfEqA1xJavt/+rXzZmP2fYQ6htzrB/24mrFU1W0AV0nHXadByY8dZObITny7jCqVEEhSyXmMlqeJRdqqt3VVmeHpHRyZfpGJ/F5MI8G6Re+gvesUZkrDTEztZmJiJ9sH70IISVt6CZFIC2PDWzhy4FESiR6WLLuaTNvimuVGgNBqfeiZZ/6Fcnk6KKPU2DJyNxE9SURL0BVfGiQhQRy1H5GmBFGRIKonwRRghqRABtYXJeHB7f8YJF7RzKDdfQfHKWLbodY0W1+/krni7oSQGFoUQ49hGFE6MytY1H0BmtAYHHmGw5PPMzaxPbR0KSLRNhavejMtvStDZQGhNTDY2DOIPwisnFXtd2WchXFNyNANSJdBNiAhggmqEpMUOt0LIVBAJtLLhv63sW3sPrYeuQuFYiC5IXgBL+wgL6Vla+hPqpHAvYbwEVXB/he9z28CHKVT8E0m3TgTTpyiF6T/tTSXqHRwpIcmFFIpfCXRhBdq+j1spVfjFArSIiscpPDxlQxTRtdIkkShCZ+4LAcuVASuQN6sjYoiwqE/49F+ms7pG3QgiaM0HKUHmc98Cyf8P+KkGB/zGNmVw3UUka4URkcaZZq4vqRUhvFd04xvHWdmxwj5XSPkd2/Dz9bWtecObcVMthBJd2DFWolEW3BLBQrTR1h57gdwNRl4hsyOYahYh0RgcS5lx8kd2Un20C5KE0fQzCh6JI4eTaDFE/jCJ3twO6XhQyAEkXkLSJ13AWZvD0ZnB0ZbO0R0fEPhTAwz8d0fM/Xkw8TWLaH9+uuY94bFLE6NYkmX3t9byp5rVrP9m88ycfu9TD3+MLGzTqXw1Cb8fIH0pRuQumD6/s3MTO3CHZvAHR+ntHUb5T2DWPM7UGUHr2jjF8oo2wFdI7JoEbEly0gOrMBq60XzBPmd2xl/6n6MZBoRiVAeG8IaGCBx+hmUDuxHlUos+tglrL5+Cd3RLB1mjn5zgoxWqLrTAQy5GSbcBCWlVzOi5TyJr8BRGr4fCshasFeTIVyM0P3OR+IrWbUYVQhUYFnyiQhBSXn4gCEELTKKRBLzSzj4OMqnoBR5pZH1Tca9BAXf4oUtPk8+MM7QdI6JiSBexlrcjzs6idHeVvMOKJfJ7XyBmReeJb9rG1o8Tvv730N042rcI0cobtlF6fmdjN15KyiILF+G3t3G+OPbGLnjOYzeTlrfdyWp0xeRjhXxrSCGxw0XYF34PPup71M4OBl0Sktn+L4fY4QK1fTAaqKZrlr2vorHiAcaBlqkhUi0BVqoejooHdwoOFHFvi9/Hq9YQEYt/HLQ3n6hOLc1UJPHyMwq0SKx4C8aIzmwkvazL8MwYky+8ASTLzxOfuc2/HIJUEx8J0PLu68ic+EydM0jaZYxZSA0u34Ql1RJFlEhTLKeqYjgvKqyRgn8ujAOXfpEcHE8DV8TREyX6IoujIF3Mv29DsZuvw3hKfpWXtpAgGpW1ID4VPc+8wEVrI9HEaZQ+VqRv6uurie5RLye16aTcsNb/ZHPoeuRqvmu3uVoLnLU6KtcOW92CRr/N1if5jit9sD6l6BmMagbTLXUioEpUnqqGmBOfdyKaHQvqv7XwHNKHHj2dsYPbaJ74GzGD7+A6xTwPRfPDYQ9ISQtqQE6MsvpjC0lpifD9I3BA5QmKHsFDow/yeHJzZScmVDY7iMZ68F1ijhOHtvJY7sFQNGaXkRb6wraWpagR+JVn24IyuZZEhXugxNYV1Q1bqK+Dn09uE74CmdinINb7mL8yAu0z99Az7rLMJIZJvc8x66Hv1mtTyOSJJLupO+Mq0h0LKjWt1KK0vQQ04M7yA5uZ2Z4N8pz0fQIhhnENnX3bCAZDQIOo2YLw6ObmJrex6LFb2L7ntsYG9pMpmclLQvWUC5MUs5PohkWsbZ+Yh3zsFq7UJYWbhIZNk+FxMxy96q4XVSTOszRRyp9QnqgSjbu9CTkiqhSORDWLQMr04meaQkEbVF3vzqydOiB7zO6/REATCtFxEyhY2DpCVbOvwpD6aAUT+z+BpOFg0FdtK9l2YprEfEYXkRWY3eko/BKRYYPPsn+ffehfJ+lfZcSs1rZdfhepvODdLauYvHSK7HS7dXU3ZW4gezEQQqTg5QLU9jlaUrlGcqlaQqlMXpSp7C25yqUlMw4I4xMb6cneQoJM9CaV5MZ1FtlKokopOTeHX/P/N5zmb/k0iCOKuzDrnKwy1lKTpaym6OYH2NscBP57BEMPU5HyzJ6M2tJRbrRlVbTYGkicJmbI4GCAnLlMbYP/YzxmT20tSxjyfI3E8l0BprscExWx3Kdu17lD1817IdViVGspiMP4wiq761rBCpOPXAxVIodI/eyb/xxVnRcykDq1GNnzjuuVUkeNyvlq+mG971NK4i9Aq4OhazH29dt+7V3w/vP51bTnnJ5MLeCfYU2cq4VbCwZ7rFiSRdLuoFLngwylEkRavzDjl7R2Fe+G8LDDIXdCiR+Q0A/gB/Gnsxe/CskSgs1Q5V4i0qcSuW+Ff9/Q7jVe5VUkCSg7BtkvQhlXw+EcRW4aE3aMXJZeO5fnubwbZtJX72R3CNb8LIFlOuiyqG7q5DE5i0kuWg16YFTiCbaq2srBPOzbecZ2/wQk9uewpmeCEhQ7zys3n78Ugk/l8cr5HCLeZTvEVm2hMiaFUTXLUNri6KZHpru4YexJZGIQypaIhEKlgIfTQZ73sR0m7hmV7XuKSOIQzxwUPH0v27mwN276b14Mes/tI6Vi12OPHqAb/xubRNKsyVGZkGS8z6+hqVnpCn7OkXPIOeYjO/NceDRIxx+7DDTzx9AlR1ExEJLJMH1Sa0/HaurF7OjE729jdyOzeS2vkjrddcycduPyT/+DNHVi2m7dCWMT+CNTmJEddpXtjF/dZK+JVESkaDvxLQyaa1YbZ9KexrCw5IOSVmkz5gkI4vEhYshAktmSUlKSq9mvnMqlsqC5MAgHJmMkM8rvIJNf2yadcsdzl8wQ5dhEpMmZeUw6tlM+AZDXoohJ8P/95dDPPL1cMuPlgRaJoM0ImixBJ1veTu6EQVg8Bv/QmHnNgBiZ6yh+/euorVLsKRljBYzsGyOlxOMTGps//FeRr77EH7JoeVNVxBt72Xinp9S3LeH6JpVtN3wJtqWx0lYgbVHFz6W7lLec4SJbWNMHilTHs1hj2UpjeQoHx4ntvYUut77fmRZ4BwaIvfCc6RXnEoi2oVWBlGxnFTWFhnsm+bEwYvCrn/8LLEz19N+w6W0pgOC5PgaftnBm8phj+ewJ3I4Q5NMPriV0p4jyFiMxNJTaFl2GonW+ejSatj+pkrKKmG/oaugp/mUsqMc/vmt5HduIbJ0Ca0ffAvxJRlakwWihk1Ed7G9IFFEPepdFCsECkLSFJKpYANln4jmIoWqpi/PlS2y+QhOSYeixsz37mby7rvoPvcqelZfGri0h2ExjYlgamvc7JCG+s2LK3HE9dc4fpnHbz1xN7zX89p0UmRp7QcCsnRUbEGdBryBKM1hMYBjEKb6a2adXw1eDT/XCh9+qPOnrWQBqd/XQrOpuhcIR9X2uqizZCkpGgJYA7eBgIgc2HInI7ufYMNb/xSECFzGXAcNEyc3xfThrUwceZGpsd0o5ZGIBdnjTBlYi8pOlkMTzyKEoLfjVNpalpFqX4RmRgO3L9cPym97QUYiIfBNPdhtOdxEzK9kRAvrT9W7RVTTgFPd8bpCmhoGcx0BqGSbUxJwPfKHdmNaScxkKyJi1vZYqs+WQmN9+a5D/vBuCsMHGdn+MGa8hdLMCJ5TCaaXRGJt+L5LMt1PonUetpNn5MBTuOV8oHk0oiilsAuBRklqBrH2efRddB1Gb2+wO3VIemYz5vpUsQ19w1e4U5OURw5THj5CaewwxbHDlKfHGjtQHaRmEEl1EMl0YrV0YSZa0GIJ9HgCI5LEkFHGX3yEg8/cRkf3WtYufQdaNnRZC53BhVJkC0McmniO4ZltlJ0sppUk3bEEx85Tyk+glE+yZR6plgHSmfmYMsqzj30V255h7aK309WykiMTL7Dz0M9wvCJnnvsprHgmbN+gj+KputTcoRXMVTzz9D8T1dOs6LmMncMPcmj86cDCAvS1b2BJx/lYRAPLTCWTUcVVVAv62s9e/DxLF7yJvgUbUVptIq9sZOeH2fF8PUjCkJ8YZHTvkwwfeZaImebcpR8OBK3KHFG/FlTieer2rkJCzp7g5zu+CkBnZiVrV7472HjSlHiWrD4LVdsXQlbqwA3SkDeSMZAVsuR4QWIIN7QyiYC05sQ04/n9TOb2M1E4gOMVSZqdbJz3vkb32WNlrJyN+gQurzFZ+s5zq16xBemd67f82pOlH25aSlvK58H8CnYVOii4wV6CuvQwQ6JkCB9Lc9FDobZCXirWornIU8UyUH/uXKQIaLAu+UrghZYEILx3rR9KEbpn1RGzGnkSOEqvWp6mvSgFz6ySpUoguRQ+z35jC89+7QUuve13mSpFKZfBLvo4MoI9UWDm0d0Unt5GaesucF3Mzi6srj4MK4EeS+Lms4Gbn1Kk1p1ObPlKIksXI+NBNlOlhUKsG4xfpSncmIKYB7qPZnqYpotpuNWMYnHLJhFaHXTpo8sgs1vQFl7VaieFT4eZI60XMYRXtbhMOnEM4dFnTRKnwKOP+szEOon3JYlENSzNrdZT1o1Q9AxKnlEVRnOOSTanMfzsCPmtR5j56aPo6VackRH8iruglOhtraAURm8X1pIFeIUi+Ueewp/JIeMRtHgkCPAfmwrWL0MjtayTsz51FmtONVkRPYwhPBylYQmHiHRIySIxYZPRSnRIn4jQ8FAUlIejYMbT2HrI5MkXDTa9KDm8PcfIjmkm9+dQx3D51y1J30KLRYslixbrtPVZJFpNEu0GsiXFVLyTB34wzn1/+QyxDcto/+iH0XIaWqkmiCkJ9vAQM08/Rm7z83iTU+iZGJ2n96PnZ8gO5vAcn87V7bSv7iR+yjyKyTae+J/fxx2Zouu6d5FadzozOzcxdvsteDNZFv79R2lZnMLUvMCCazikjIA8lTwdU3rEdJuSZ/Cz/3Unjhal5QPXM/X9e8ne+2iw5vuK5Oln0nnOm4iLTOCqF5KmimXJTgRkaecX/oTUGy+k7V3n0ts2jSG9KlHxEXh1ZEQIxeEXcozftpX840+jGRFO+a3/W5WFKnG81Ri8cKqtxFZVEl0UiqPs+te/BCCycjmdn/wgesIhEnGImTZR00ETQRKH+qQOlTmgYmXylcD2tCAxS6go0EKyZGqBa1/J05kqRhjaWiT/7H7sF/ZS2rEbr5DDTHdwytv/H2RFTq7IUxVCVCVIc5AmqMlf6uj4ppMlS6/ntemk3PCkq9BCIW121poKoVH11iWOZqpQp9SeTaQEoStL7ZqGzD71/+t/rxAlLyRGvqppwCoCVp0lqXYfhSIQAoUimHBCK4xE4KNqG3JWCBUErntSQygwM610ZDbSuWIjXqnIzOHtTB7ZSiE/wXTxCLaTRyAY6D+f/u6zMfVYECirB9vRqUqcUujeKEKXDlXZoVzW+4pXKpWaRakuwL7RMhZWkay0k2ggG7VgW0DXiC1aVm1Xf3bbVdqmUm8AvkLTdNJ9y8FXdBkX0b3mIpSv8ApZitMjlKdHKE6PUJg8zOTkbibGd+A7Nd9hzy7i2cECFEl2kG5fjGElmTjyAjt/8CXmXfJbiNYUnlPCL5fx7RK+XcYrl/DLRfxyCa8U/g+PeeUSvl1ChcH6QtPRrBiabhFr6UUIgWsXsYtZlGcTT/aSSHRjWSkcr0hhepSxw7twykeb54XUkZrJgr6N4UZuoRarLk4pGelkZe8bWT7/csbVMCMTLzI9fQAjkiCR6QOgXJhk75EXamUUGvN7N9Leugw0jZ72dUznBxma2Iwlg0xYvh6SeVHfF2t2cGWEO9kXB3lo+1cAn6VLrqS7/wwOH3yc/fvv4/D4JhZ2nsvitnOD+B9oIDN5O9gXTdciNe1RlaSE/UfJSrIslIBEppf0ijdjygj7Dj6I8hvFwWoa9HAQKU1UiWUl3uHg+NPV80emtvLEc/9EPNZBPNZFLN1NvHsReiwekHsN0EWQYDLc4FarZNurCzb3ASGCLFVoIlg5fRiZ2c6LR36C7QXa0Eysn/mZU2mNzidj9oR1UjHLvqQeqYaQiP0qwEfi84uXxT+GYuHXDXFpE5c+lgysSLYMlkVdBJYgX8kgCsTTcYTElVpQwyFpMaSHVBJf+MgwlolKlkdFXXrgGuqtRkDDZ4RE4uHPIkj1qGZDq2RIqzO5By57QZC/4wef866FEwaQu0pWA8UFItgHJlLENSVuXAJ5aAV74TLsd6yklPcYf/IA2cd3Yg9NUhw5hJ/NAoLMeReQOfsCjGiQcVV4QCFM1x0NFgulq8CArQILv+cF49J3JY7QqoKiIND2l1yjakHTpV/dADSI1wiIkhESxUqa7ZgMFFdlLXCh9JXAkSZLzoox5kRxlcLxfWacgCDlXIsZ26ruk+P5Isx0JnCVRvSUxbiuSaIA7eddjiwp/JkczugwpckRijPD2CNHKO/eS2nnblSxtq75+RJ+PlAYGj0tJNcOYLQmyD65k7s/ehvFPzoHsTiLUcrh5Bz8fAm34OBmHeycTykrmMkqxmdcxmdgakaQz/oUsi6eE1owTQ0zaWLGTVqXtqA0iT1jUxwr4JVc0ktaSS1ux+pIoPIlth2Y4PHHpiiMTx/V/6WhIUyd5OUXIdxGkoRUKAFmTxdtb7mGzHVXU57YS/m5TUxv20usLUJsaRwhBeNHsux54Fl8+6lKpyV5wUbiK9cghCCxdh2loUPMPPxzVCJNydYxo0Fq7YjmooepuitEKWMUkKYiojkU9k9y+P/8Dcp2Wfihjax6+3L23Lqd7V9/mj3PPU3L2RfSdfYVGLYk7AqBwluHcm4Cv1RCpixM08WQXkBQpN8YJxRaehxfYszvpuVtizDNNGM/vQXlBmP8mKiXU0N5dPr5mlWztHU7Q5/5B4y+LvR5nUQG2mlZ302y3UIZNpbuhskcKnFNsjrmXYLPXiWuCRGkLA/TmkuhGHtiHy9+/mc4E4F7rbVgAS3rzibZs4RUywCiIsBVmrcis4dLfBCDVPM2aUgVHsr49fvEBT8ex9PiGHg9r00nR5acYC8AFFUXmQaTj4Bqa1TaRtVZJuqE79nphiuWqfrYrwb3Or+O0VJ3vO73SqafqqBXn8ErJBpCV/izLUv1bk51lhOlB6TED601nlX/bFEzafoKJUHGo7QsWk/rgnVVd7+AzKnqdW41A6CgmlnED8mMKWskTtTckCpa/YrFyNeocxucRZAq1qSKW2S961q99U7Wfac2wGsNElZPJVmFqvt9Vp17xTxmNB3cRwpkOk2sJU1MLCWtg+sUGXzwv+m74j14ThG7MIM0THQriq5MCvt2MbHlCUb2PolSPq1dq7CsFPvv/MasHijQDAtpWOhGBM2IohsRTD2BEWtHTwaJBjTdYnpiL+PDWxBCw4xnkLqB1A2EbhBJDGAmW9B0k/z+nYwOvojv2nT3bOCUpW8jLpIo28Z2Cth+AdvNU3byOHaO1tgCUl4HFMOU56pGmqqWE6WQPrRF+igZo0zY28lOH6oOACE14qleIpEg3X1vzxm0mr1IxwPXx3GLHB57hvm9G4PYIU1UyVB9GykZ+BdXx5GmUShN0Nu5gcWL3oieSKGEYN7iC+mefwbbNv8Xu4ceZH7nWZhhMHEFtl/imT3fJR7toL3rlBoxV7XxpARIx0d54e7vrkLYLgcOPsTeQ/eRic0DN0iwUE3ZX59ZDhB1C44gIJorui9joO1MpktHmMgfpOhMkC+OMzK5He9gGfGCpCWzkLbu1bT2r8ZIZPDMoCMLT6EMgXBUndZLBU2hC4QnEaZOJQmEoVpJzHQzmd2PUh4lZ4aSWcDxS/h4aPXp/KUI4pcq7zGXm12DYd4PAutmW9NeZdhKQ3+dBtG+Fqi40EVEkDK43qJTEVi0usXZU6JKaKRQR1mXKvCVrHRyfLSjCE/1+Q0Tby14v+pKfRxr1GzSVH/cbyBQwV4xth/sFeMjyDoWPjBVjgBUNdcVCKEwdQ8ro0hdNh/7ooXB3jCexHY17KKBciV+UcObAb0Iej50eSZco/QgUY4XCcmSI5BlgW9q+IaPq+s4ukLoPtLwkdIPvWU1DOmja0EiACkCq1xUOkQ1m6jmBJkJpYuHIOdFgk1ffQMNnzE3Sck3KHoGRc+k7OvYvsaMHSHvmBQck5Kj43pBKmjfk3iuxHdloC20Jd6Qg2lkMKdBKwukm4RMEr9jCXYa7JjL8Lf+g84/+G1UKY/KThFPKxItOpm0T/HF/Rz6yVYO3vs8vuOROWMxZkeKhz79EA/N6gNWXCea0IglJbGkRI9H8OJxnLYEwkqQiEZpiZkUth9i4pGdCAmJrhhmVEO3NPSITvyUDJ39Fu0phx2PT7Hl4T2Ucy5dl66g539eQ09nG+WioDxZwp4sYk8UcSdzeFMFrIGFWL0DCCfod75R11cry5sn0NCIdCzG7Zim/OQu8jv315RUusRc0IXe2Yq0TKLnnk68YwVaIVinPLdM9uePkrjgTGQ0CjhEwn2NIppTHTOVceIojZh0MA1FeWiarstWsOx3zuPUxTlajBFWfaiLZW9+Jw/92cNMPHQP8TdsJCIz6EUCmUoDWxQZ/Pa/obdnGLh6Af3tY0gR7LdUSevt12nti47O9GQcldXI3/lzJu66nWjXPJB1Y6NerhK1+mlQWuvQfuEVpM7eSP7IPgqH9+CMjeIMj1F4fgvTpRLDQmAtX0j8zJW0nb+UtvlxuuPZBotqxRXPlhq2r1Vd9yobGpddgaW7JNssMkvaGH+ujG+7uDOTlLqm0Y08RsLB1EykJ8LNawn+VzajrRg/Ku1Mbe0/ZohDpWuc5PL2el6bToosKUlVOKtkuGl0uQuEaunXGkHWpQmvmEfrLSK1eweEw69osKEm+FTis+srqO57kNpToKo0mFCLTS3VaZUUVAL5QzJVR5Cgdl69i1eQqlrgWaIu+DwIgwhiKESVbGheTbtdJUp1Lope6FKkQhJScSuq1G/thWjcAFDUPtc23GvMNFRNySqoCmzVwRseU6LxcwXVOp5Vt/5c51SIkwrKYbZ1MrH3OdLWhob3UKFCvzB0CLO1E2UIpBXDSsWq/cOfLuDMTOLlZwKrhNQwtAjL111PLjeENAw03Qr+hIFo2NQ3qCO7nKM4PUwq0Yemm5SK0+zdegfKd8n0LKdnzaVYfQvACPqCb9T6bOb0jfSVXKaffYyhZ+5ieHgTvX1nYIoIjl0IMigqyCTm0Z5cTNxsD54tA0H/qLmi6ioZEKfJ7D4ct8CytdcTa+vHxyM3foDsxH6yEwcoFcbJTh1g7cDb2Df0MEhJycmilKJn0cZqJqqGPlV9Vvg/7F9L1lyLKDukYj0oEbhuVpQChh6jXM7S3rIMw4yBHewLpnSJrzye2/F9HK/EGat+B12zqm4d9f7JDZlwnMD9bcuOH3B47DkG2s9maeeFwbZd9URpNupJR9jHD05vYtfhe3HcWgpYw4jT3b2ervbVFGaGGJncxq7tt6K2/Zhkeh79Sy+iZcHaYFwaIKUA26/NOwSJHpSsuSziK9LpeZyWen+QWnhmH+Mzuxmf2c3g1HOAIGP1kIn0EjNbiBstRGWKqBZoTo9JfI5HiF7ay/kVR7BXxyugvXsNyv5awFYaHjWXNksGWm5NqKoFqR4Va1LF/W02SYKa69xcBGl2HBLUCNBs4lQR0Obam6TeFa9K2MJkAI7S0PBxtEAwKWt6tU+4MtBcq3AxV6GGGkLCpIJjTrifjK8EnidxveB7IPhWfLsBrbJHmgg8OtxwavJAha5JtfUXhBtk1A3ibsE3fIiC0hSeL9H8cNwKhS5CNzxRc8ezwhTuMa1cTZtd9o0gnXtISj1V26/GR2D7WnVj0cqmqFIqdPzgnaSqbm2HL8ARWC2dZDc9jLYw2NtKs4PfpRusucWDg1iZTpgxEGYK0R7n/0/ef4dJclxnvvAvIjPLd7X33eO9wczAe0+AoIPoLUhRJMX1q13p6q55vl3tXq0+UfvdlXRluEuJEr0DvQUBAiBIeI+ZAWYG402PaW/LZWbE/SMyMrNqGhAhQuTyUzxPTfVUZaWJjIw47znveY8o1xC5BtXFBaZO1ZifqKMChXAdZD7L8G/dzsDpCYq5kFzJxSt55AsSz9WUvDp5x0eiWQozjI/DmRcXyQytQmcKBHNLTH/mJ6h6QO9lK9j1we307+yjrozUfbtXjcUl3npHifn6ar57Z4W7/+IQEx/+KwZu24ZqK9OYa9CYq6EDyKxdSXbTRjK9A0nkQOrYljODgij5X8fgoHbwKOHMPN0fejOFDQM40qf24hhLB8aovXgK/8wUlb1Hcf/JbzJ+14+M7VNZQNXr9LzlYtpKNYqZBiXPKLxZiqh9dsDIaYcy4Lp/u4OJD1+Ct3YEV5qivpUww7RfROfzBHMVclvWIPvaCOqKoCDA0YSEjH/iMwRzs6z57x9iZDCgN7fIgp+jFkaiKzYHyEaIhWbRyzPx5e+w8JOH6dx1FcNXvskwflpAUZPTP7LpLAVPZWHqwJNM/uDbqKVETEUW8xQvu4DCpTsJxqaoPLeX6c/fxfRnvseJNUOMvP0iVr92LeVMnfZMFTe6KdUwY8avNCAv0AltMOcEdG0ts+kvrieoBbz4xDxHHzrL1OPHOPv4E5wVguzoKPkVq40SZlsPuVIPuXwHTujg+M02toYk0mRVgn9GNvrf1X6V16ZXBJaCvIiNVd0ClJoocYGZUJyGSWa3dZksSFCOiAeVbbZKtxBJ0cv4u+i/saFvWwTQYoT/EnUdmlpscLYUx7P7S+8+2taIJECQpanmkLARJptcGJjtnBpxzRzpq9T1CbQnm/KhRMTeCRo16pUZXC9PNt/RLOhgPRlRv1n1oRgoxREozgd/Fiyl/057RVLAtJX2aPukiYKXerfA0SmNUtl9FxU9j1csNwFOJRQTzz7A4GvfbmpcOMmxdag48v/8fwmrZjIR0qFz5Xa8jn5OLe4x3VxtEPoNtF9HBQ3CoGHewwZhWKcydw5/cQYAr1BmdMfrGBjYxaW3/AfOHHmE4y/ew8zY8wxf+ga6L78R5RFXZI+vPe/Sdt3VFC+9mOnHHuDcsw8hpMTNFnEzBXQQcO7kXWityGTa6OhaQ0fnWkrFPhqNReq1eRq1eeqNefzGIiAQ0kFIh6XKOGHYoHf1xVFtICh1jTIgrkaEmhO7v8+Z44/y9KEvIIQgW+wkFAGjm1+D6OkgtODUJlZaOmn6OVAaHEGhfQARaFRT9NJsUlkcZ3HhND3D16C1jnOZqo1Z9hz/FnNLp7ho229QyHVBoBHLhLlFlL+jpUB5Eu1KiuUhmHyOhcYEgarjkEtFUlve7eSrMADPEUzXx9h/4gf0DlxA99A28uVetAqZGHuO08ceAUeyZfg2RgYvpy7qTE/s48y5Z9n35GdZN30bwxuuJyjIKP9ORk4ZgQ4T+q0IdPQ8hkYQItS4oaQ/u4r+jhFou4aqP89k9SiT1WOcWzpIdW4+fggEklK2hw1d19JbXJ0AwbQIRBow2etPg8Jf4ORuIws//37+cYClOZXHCVWcMJ91AkpOjaz0yYkgrm+TbjEFr4Wb0hoFksv0YStISv8mtIom0d+GTmfebfNEGAMxew5WPMLQ/cwxQyHJSp9QS0pOHQcd5StpAmWKZBoWuEKphI6ktTC0NCUJQ4kfOPi+g/IlOpRoX5o8pECYPAhf4FYFTg3z/2htQIOq1mlMTkE+R6a9K7YBtGOiTCoDYU4SuqZEgE6dhyMVnmOoSa40LwNOdSyKkJM+XU6UsK9datqjpjxq2mMxzFFTXtSXxhgvuH4T1cmAQgc/dKgHDrWGR9BwCQMPb6ifYH6OxsIMuVxnYucocGqauQfup+fmN+DMSsKsQOUkNdfcu8O/+RkaE/N2sNBz5VrK6zvQTzxNVmoatQaVakBQCwirDXTNR9cbhDWfoBIwf3yGpdNGetTrKDBwx/UUrr2YVX/5b5m750kmv3Qvdz92gm0fvpCdH96FFJpqmOFMvZ2JRomS26DsVHnNuxa47vYOfvSZ0/z4MwfQQpJpz5Et5QlDzeyX96IDhdNeJL91NYXtq8iu6CeYqxDOzONPLxBMLRLOLaG1MLLbjiQ4O4luNBh63QaE5xKEDm0bBhj5tR04UnPss48y/rWHGf+rT0LgkxtsJ6/rrPnATrZsrwKJYyzQkiCqIWSEVXRCN1MOXavLeEGOuUZUcyjMshRkmfdzTJ+uMb/nFOVbrkBJBVkJmRDqk8x+4k5q+46z4fffydDmLBlZoR66VAIvprm5UuFGeUOZqHCoIxULm3pY+KmgNn0WP6jiOl4cgWll5TQxpqSxLxanTjL+za/QftkG1ty8ko5VZRSCsXsPcfTrz+I4Ph3vejdt11yOqleoPL+PymPPcvhj32Hu+A1s/vBFDOXm6M0s4MnAOAPCDPNBjqUgS6AljciALjgN2rwanW6F9kKV9bcK/NcMAoNMnWnw1E8WOfrwOab3P8fs2XnStQozff30Xf06Oke3Ihvg1nQsiGWc5+eHll4u0vR3tV/ltemVgaUsCI8YRafBhYC4HoHhwGhTy0YAPjGd36qUWHBkm3YiylurIavFeQlp8W9SIc8kApN6d5IB/VIgoJUOmG4278lGgZoK60Kcu6GibSVWpVjg+ALCaEEJTEK9VJLQ0bFstu9XqFdmOXPoIYL6IoXyAI36An5tkeHNN1LuXhWdSASMrHyrBUYy1Z8tAMhed9P1LXf9qQhT3Mf21bIv63WI+z/uN0Hfrbdz8q7P03vlzeRXrkMIQWN6gokH76K8dSdOV3tTnpSWoDOSgXfcgX/yFP7sLP78DEvz55g9sz9JpkUgMxmEl0HGr6x5L2RoW7GD7NAomXIXM488wJFHvsSZngdpH9nE5IlHQUDX6A7aNu0gyBmPT/p60spOopij5/pb6b361maKZwAs1qmcOcLC6UMsnDnE+P7dsQEspIOXayOTb8fLlczzoUMIfbxciWK7ifTYXKPYWECAFARBFeFJLrnoX+D0dsf5aAk4TfW6bBmsNoobRSfTxefs31oKssUu+oZ2cWzsp1Sr02wZfT3js/vZf/KHuF6enTs+SLl9FQQGCAilOI9uZgUlHAGeRLmSkTXXUCz08fz+r/D0iTu5YsUdyfatACEl920fnOePf4e2tiE2b3kbOufF1+fJAqcO/wQdRMUygayXZajrAoZKWzh46kccOvID2ksjFFauJ8yY+UNE9NbYgRFG05GKPjedhpASLawcqiIvCozmtzCaN/XSlCOoBvNUwjkqwRznll7kqTNfZahtK5t6byDj5M1AClPGcjzJRR6QV5Lz9Co2BU2Kaz/Pfv4xtDmVJ6eNzLevnUi22eTBdDiVGJzYll7sl/vc9r3zUrQ7VLytjQTF+9AyVsJTWsTKdn7Ks+jJIJYuV0LQEC4ZESCj500haETXYkGWFEYKXUZ0wbpy8aQBS0mCuYyWb+NMkULHeVZaCbQyQElWZbSugQiFoedXTfRFhBDWqzQWZpnc+yD+4hy5nkHC2hL+wiy9F91IccU6dJgYniIQJpqTGrNCJIpg9pXuz+YcLSNYkZM+HWKJJZVlNizioCg50kQAo4hEzsnExT/Tkada4FILXZa8LNWMy3woUKGg+9fexKkvfZGeS2+iPLweqSSNuSnO/uRuiqs2ku3oMQyTQKBDUIFDEDqs/T/ewNKLZ6iNzxNOzlIfm+bkM8dpzEe5TQLcvIeTc3FzHk7exc17uDkPmfMYvHYNvZu7KI+WeeHL+zj5Z9+n+N3H6bxyPfM/2I1WiqFrV7PqlrXkIwrbuVob840soZZknYBypk5/bp6SU+fi3+hk1we3x8qIti9nFiXHnp5j7ImzTD4zxsRfP4+27BhHkO8pkO8p4nXkjdpiAEGgcTqyFEfX01mso52Amu8RakHWC8g6ARlPoWsNlFNh7f/9IdZuluzoGCPQDlONGg1lirs2lBuLawAoEYFlYfLXZATw62Ey/hsRpVIKTVe/x/DrtzL2vUcIJmfo+uDbqO0+xPSnv4mbc7j+j19L18WdBKpOoCWzjTy10Bw744QROFNx/SIpNN25CpvesQHZ82Em/+xLHPv6/2Tju373PBM/dgq0fCZ9GP/mnXh9vfT8i7eT7aoTOOZJKr+uG/WV5whqGlGThukki5R2XUTx4l3M/eAeJr/0I05uHmL4liJ5p0GnDGh3qrQ7VQpOg0U3RyX0WApMcd2iW6fk1Ck4DQqybp4VxzgTRlbCmvfmqLx7PYvBds5USpw76TN9comJYxXO/vQYp776SWZ27GDg5jdT8Mo4dXDq1tkY2Slax5HHJmreK6SZ/yqvTa8ILIUFIBP9p/V6reGpjFEvQ0GYiSZT6+1NGYtYGl+0r3QIsxkspYyeNGgSJj2ACMk3CRaI5r/tfs6j7rW09NoWHzPk/GhNan/p0KyhrFm5Y4EbRRKoGSPT5k4tLp7jxP67QWsWZ06RKbRT6hplaOuNOF6OoFHl0BNfRLs30tazCktbjOl2KQpeE3BySHJY0kBQR2AuiPpLRWuTffrTNL00oEp/R2pyWKbv3OF+Bt7xPuYef4jJJ+4HIXGLJTqvvIHc0EgSHUv/VkBu63pymzecd190rW4M54xnoiAtUS1azxPoX/N+2o9fw8QPvsW5PT+mY/ul9G+7jnyplyAPQRRVsvdXK3MO6f1pgak7IDC852iMic4s+fbN5Ddtpk9AWKviz82QyZdxMwWElkkkw1Iy/ebq2c1AV6BcDVIihGT71veQLXYQkD4fnYzL5cYfGHBgleFa+kSktpWOy6ad76K3exMH9n2TB/b8MUr5DPbvYt3GN+FmcmiFMd0C0MjmZxDTL1qDljIZG1JQ7l5DodCLJ6LJYTmQBAlQEsIAMhTtuQGmKyeZOPEUgQgIwgZLi2cYH99LId/NSNdOo2oHsTGIFqztv4ZT089w+Ng9XDCyDuvMUFE0zcq0m9xCHaspakca54UQCFeCIxCBawrS+r7xdiiF9EOKKkNR9EFmiBWFbYzVDnBg4n4mKkfY3Hczg8VNiIjm1EQvVK3LKr9Q4PTqJdH+/Pv4VWgLKk8+9KmEWWNER4DCEyG5SKnME0EMjBpRBKoZ5AhD/QScn6HfYpAlZDw0LEgyynUyUrTLUFOeKY6rrSNBxfTAnPSbcqbAUF1sVCpR1hNIFNmUNLEbRczcKDdLa5MXpK3h2rpIKrOeGxqdiMpxRLnMdWhMjDP+yF3oMKQ6cQq30EahZ4SBbTfgZgqEfp0TP/4iItAUV60386CPUTwNDWDSEbVIouOcjfjvaHJLn1dDu0wEbQC0OTW6HEunDGiL/zZy3XXXi/OabH9KocnKgEA7VEKPqXqJ6Xqehu9SDSViRRd9H3g/Cw89wtQzDyCQOPkinZdcSX5kZYo6b9ZY6hLfcXHXr6e0YT0lIOsZtbdSpk4uWKLg+uiMx1Jg6GDVwIuieTIWmhBCo6Si4gZs/verWPmWHez/y59y+suPsfq2dWx+3wXkRnqohS5TDQN2zyyWWahmCZXEc0OmMz4T1SJ51zfKaVGNHyk0bV6NNrdGdymgcFUnW67qJOusp7HkMz+2QEdPhlKXh+voeCzVlUtducw0CgZ0BC45N0BFEfaabxbXjBOSzSiQguHffguFkQ4kcwTaIdQmWmSFRhqh03Q/EzqeIkDG9CMrZADEwMkVikIu4Ib/z+XsvWI1e//7fYz9zsfQdZ+u6zZz6e9eyUBvSEP51PBiQBwq07+G1mnGfqAlKgWg865P+wUDzI0OIiqhGavL2BytqSFocBQUekeYP7yHuW8dYFrV0X4D/8xZlp54Drezg/adV+PNSWOPuYKwoNCeoP0NV7P440c5+5n7Gb/mnWRkiELS7S1QkA3anSpZ6VNyPOZkQF25FByfgtOIo67pkgWhNs6CNlmjkGlQcmus2uzibFHUVBtn77iSB76+mSN/eR9HP/4xum97E51bLiWzFDlBfJANjeObZ0Wr2KRMrvkVtF/ltekVgSU/kmFcroNiIBPlKaGIvbtpK68p+pHKbSFt+KeMfWt4WuAiLSNCENfise/a0bFxa3OgmkZzFKVK/p+cu+GMRceJ8pqkD6KFymfPRUbXmgYQWkLgmm2UJwlyGrcmyCyaBHQELC6e5ejz32XdZe9i5sw+Oke30rPuUubGD3Pgsc+y7voPIgoFVl7/Ho4+8Hk23PThGGRYNTDbT7aPlqPWxaAmGtnSxyRvWk97BJyaoj0WWKVFBFL7sKqDaCI59ggkZkwSr+xqo/O1r20CpZBEfe19i/s85CU9EzKbNUZvanw1ASW7r5Zj5VatZuSf/mu0VkjpoBtQr5vzDLNRv1mQZPsqOa34P/ae274QTRuBk83jdueT8RlFXdJ5RcoxeXR2PCX3KKKAOoLeTVfSMbiJYnkFfgSKzXH1suHudG5d+j7F/ZOS7I7iJokSpBD0DO+krXs1xw7eTXffZroHtoEjCC3gchy0kxKtSPeL7XNAa8Xs5GHOnX2G8YnnCcIa20fflNQzMhu17KPl8xDWtV/OQ/MHeOHQN5DCwZEZMm6RjQM3Mty5E1dkzACKCtJqIVhoTLD76FfRWjG06iqCvERlomsNtaH/RsVslQNBVD9LZkRUr0kis465RgtwQ4WshchaA1FtwOw8qlJB1eoIx0HmsoyU19E7vJJ9Mz9m95nvcDT7GFmnhCNdHJnBER5Zp8iazktjw9kMhF9shMl/lZJo/X8kOUtTfgkZhMz6BWb9PK4MTU0lEVKUHlKbJT4tAx5GSnc2cmMFFVopc63NRkQs9a6h3TiCVFfGmK9EggTVMMNSlKuQNiqt0WhpRBZULNekMF7zrBOQkUFsUHkiREQUCRUZ6paOFkRGexA6RgAhkChfgi8RDWHEDnwTSZKBWVuCc+Oc/vHXWHPlO1k8e5Swex2D665iceI4J77/aTZe9QGyuRxrrng3hx74W0pD65CWjh8kKnmG4Ro9y6nrXO76bMRvThWpK4/poMS0U4ol2zucCm1Ola7I2Lfgt6YNTW86KDEXFmLZ8azIMdMooLTAdRSZYgOdF+geQXnT1ZSCa9ENiahLnCVJ4BOzT4ytYxwvatGh6kaOIwFLnka7CpExcumeZ0hEft1F+Q7UZQQWiW0Us+5q47jLhohiP72/t5k1mQrlQoB0fabrGeZrORPVUYLKfA7qDihB3VMsuYoZTyEdFWkPmfvtSEXGC3AdFQNQS8eUQiM6NZ4OycxauXbddA+sMIIUmiU/E4E8GZEJjLT1+jetp2d7P97mQWREuRurtqO0NDS4KOcmPaZdVGrfEokmEIkcf+wMSC3EgZa4QrHl5gFW7Xozuz/xNF27Rlj1mrW4MmTez9AInSiaaI7ppACSjObmhnJY8jMsVDNMPnOO+R8/SeWx3ahKlYFb3pbYslFLj8a0TSKjv4e2v4a5/c8w+aUvm/XDy+IWSgxc+To6t1+Ok88T1ozdZAkJweQ5pv7X59CVGuv+2VX05Ixi67laG8eXumL5fE+mKINossKPcyfryqOOF/eX0jJ2uNh5yURaA3q8BdqcGgPvyTF162v44R/t5cjXvsz8k/cjyh1IJ4t0srg6g5cpMbj1BvIyY0TULNV/2Vnnpduv8tr0ygQePI3K6jgG1oRDUsasDiLjcJm9t0YW0ga/8fxq0kapjiNLIgIhyW+Vi5EldVPgSGrDh5NR0mmLN16nTsAOcq0iT7cSJpciriskojykZD+Jwl3q+tNRkybQEk0EgUQ6xhg9/uzdrLvsXXilMjOnn2f91XegBZQH1tKozDJ59El6tlyByBRwim1UG7N45c6EhhfnLKWOm4qmNUUg0kBHgMWZaSDVlNNlgVLK4I9DsQFx8TdbTwBhKmRrCcID5ViUIOKnSDtm5n+pBMHzxkPqXFq3E/bzlt80eXw0CARCmAfS5klBknsmWyUw0y0Fnmw/yfT5tGK7dD8qEY8VQQKMsAtf9BaLJACZQplstoyyIh9pENQ6Hyxz7AgDxZGUWMXOfp8ahxakZHPtbLjg7cn+ogVjbvY4Swtn6erZSC7f0XwoDVppKgtnOHfmWc6dfY56Y458poMVXRcxWN5Km9dlIjSkjvlyTWmKTgc3r/4XIJxIkt8+aCKWFjc0VAmuZGz6OfYd+y75Qhc7r/tXZLv6TcFfYXIknbrCrSqcWhjnVoV5SRjVJVNu1F+RumB8fQqcukLWXZxaBgeQjoxzk3QYInyfbCbDzp7bGC9t5uziAQLtE6gG9bBCpTFNI6ww2n0hWZE3IO+XMKlbKtersZ9/DK2qMlRUSDXKC3CVYtHN4kljXIdaoqR5Sa2i4q8iAkZuTCuxOU82zyjd0tQ7Ff/WiYvHWoBUVy5LQTYWI6gEHvXQ5IS0giVLVYspay0ThhA6phoVXJ+cY9T+spGCnC15EGgZSWg7JooQODFYUqGR+CY0Br2IFLXidSBaC849djerrnoHebeDU0eeY/2ud+ItKbryo6iRyxl/8RGGNl2Pl8uQbe+jMTOOm+9P1hrrUFISFUVXrLhE2qiO+zMS0LB0SZs0XtMuFZUx3nSnhofJa6ppo5JnDW0HRUVlOdNoZ7pRjClh0/U8FT+D4yjavBp5z6c7Mlorgce5hTYWF3KEYRaUwLHKYhHAkQ0iwR07d0UORddBZTXK1dRc47wSgaHry7qhNKadgem1XHkO2tNUCh6VXIHJXEixWENrQb3h4tdddCARC24s/a1dkx8duprQileAOYDU1BwD5nSYMhLi6VYjXY3jGmDnOiGuo2LqXrr+jwUgljAgQtNPbrGdwtYOlFZx7aBFP9sEWuy+WsFwfK+t7RLJxcdRRqEJMBHZhnKpRRFCt8Plwt+9zqge+i6N0KHqZ5jdd5bKoTN0XLSG4nCZgtdAaUE9dFlUJhI3eXCeqR89w8KDewinZnA7Oum84Aq61l9EoTyI9JP7YU/NdGD0/7TdpCGX7+CC9/1fUfkKp8mhrmVEYHCNA1flFYvPP8XUp75GvrfI6z91G9u3C+BMLGRxulKm4mcIQokQ4DkhBc8IZKwqGgCFSnIgbcmAdNkApWVcYNvXDnVpZPZz0me4F97zse089brV7Pv+MRbnQ6pLFfz5eSpnp1ELC7TvuhRXZHFFInbySle3X+W16RWr4SE1IrLSNJwPRjAPW6sjqDV3ponvmTL0W2lzsTHq6Pj/MSixKjwOIFKRJBE9uGmwFBvTaYRnHnIbMdEqZawqgdKm3pI5TxHv5zzKWCtQ0pH96YLICIIcOA6EixWE4+GVyrFYhXQ8gz01dK7awaEHPkX31ivRLrilMg1VQeY6EzEHGzlryf85j6bVeu+chPaYztWJ6Yk2OmKBkN0uWgycBngVHVEvjNc+9CDMpsBnGE2APvGErzKY6EoKzDS9p7o2jiaGpnMTMKrjfjWgoGUfgub9p8BTOm+tOX78Uh2VTHjx2LM/TdE641w2u0jaXUf5eqTzv8DkLGlootal+r3JcE+NsfPOjdS4s6DMMSegLQi0+0pJ4ttIngw1Gp0CUOazoF7h+ac/g+8bsY1iqZ+OrrWEYYNabZZGbY56bY4wbOC5Bfq7tjLUvo2O7KCR7A5VlLBnz/VnmEYdw/uUolnGPK7HFCkKamnyo/ad/j5jpx+nf/QSVl30ZlM8Ob2AKUsLUkbMAZC+xExzkiBr9isi9cCJ408xP3kUvzqPX12gUZsnm21j7cY30NM/glPMIXNZqDfi6BZBAErR547S170SsllwJErCQ4c+QUdxlEy2ZCTUtUj64WctbvsqtFcvifYfB1iqBFkWQsVSkKEWmETz+cDIaUs0NadOTXvklCkiaQ0Smxdkm4ksifMiS7ZYrYOOv/cjYLQYZqkrl4UgF0eQ0gCpYaM7sXpd8uhaoGQjMGn/hP0u45g6NoGW8ct3JI7QkcFhDF4/NEApiFTvQmUiStqCpUjQIY6k2KLvoRFxUH6DfK4Lp6LRQUg2zCBDBRp6uzaz+7lPM7zhegC8fBtBo0JTL0WASYUmyhWEknroIoSm4TgJdVCGeKjYEIzVAFP9WwkzhFhxC2HAkvKoay+O5HkiZCFMai6low8Aec+n4DXoyVXoyxqhhVk/z0I9x5KTNWtCtF469cRYNjcidU3R/41hbAp6a4dk7o9+n7Bwkt9Y+0p5BvyESw5hxoCu+YIX53tZoQ1ZlbEjUHmgAoF2ddM5GTtFJyySQCxrq4WOJnQ1jZxCuiHSVcbhmwI2TY5noZFSo1QCnLQGR2oybpDkJGlDtUzvZ7mWzidDJ5EmV4a4RDlGkqTeUEoGvBJ4LDWyVBsei9Nw8r9+nXBmnpOAN9xD245V4PvUxhfxJ+cJpubRtToyn6e0dQedt15EqW81Xl2a+1JLCtGm2SjQvI6b98TWcTF5ETrUkf1gFmwlzf0JipqgPWT2299i7nsPMXzzet74ny9gbfcCXc4SvnZYcMw8dMYpM1/LMV81/3ekYsnLUM/V6M4uGQeIMA6YvXeNcfTxKabHAyoTVWpTFdxyntGP3MTwpf10ZGuUvSplt2Zy+YTJefO1w9or+1h7ZR+TjSInFzuYmCty9N/+FdnhIeRgF+oMhjrr0KRy+bO2X+W16RWBpXSEJ7EgE6BgPeg2d6YJDKUMGrCDzFhxywGpVsqcAQfaPPxuJC2ajkLZP9NWp/X0vxyKiC8uesn0+djCtMk526hSfF1poGQnIB3/3BTny5gHrb5UxSu2xZLObiZPrTZHptgBwuSVxGIODtSmz+B23WCkKKOK6LH8d0rUIVGYW2by0SI5p2iSju9DyliP76UFX9HunDChWsRiCCIBbtbD4NRoiiQqF4ICKE8boAtRkn2y71aEEP9XCrQKqezZzcJzz2CJsoWt2yhs2sTCww9TO3EC4bigFKVtOyjvuqRJVrxpEuMlhoAFZymgFQOlFtDUxE1PAWwLKG1drabIV2rBE/FXiQGdXhybwd7599EcUxsAZCds+1xZQBdL1IvmZ8qet0NE90jy54TSUGlw8PlvokKfK3b+SxYr40zOvMjM+AFcN08uU6ZcWkuus0wx001PcTVSGKBDuuhs+rxbqWdpYQpbj6rpAkV0bZFXNv1yBKdnn2Ps9OOsvvgt9G28Kj6GCI1cv4rquYBEC5fQFnR2RSwmE9uwCkLtc/iJL5MtdlEo9NCWHyBbXsvUzEGeffx/Mjh0MWtX30qu0I2s+4hagKjWDVgyVgB4HjrrUg8rvHDq+yzVp9g28DozP7TUl/pFFqxdzhP/993PP4Y25Rdo1AXT9QJLfiaubbLo5pj1C+SdBl5EZbPNFohsBkvWIEzutS2gaqXIAXwlqYYZqqHHbCPPop9hqZE1Cm0RWFHWYx8Zn5AYpwYgEf+9nMEihDHQao6pVdTwXKquR9YJKLhGbruhjOB5PTTRsTRQshElHYokqpSa8+K1Q4OqV01R2miezOTKVKqTFPKmzIJ2XXAlflES5ARLs6dpv+iKJmVS48wR6EAS1B1q0TUHofFE512fgutEhrGDH9EGjWy4i0LiRrQ8C0DrymXGLcYFa40svE+bU6Mg67GanhSac7UylbpHI1Jly0T91FAOx5a6aCiHeuAyV8kRVl3cmlH/85bArRBHhpruQer5V44gzELoaeaO7GF+71Po0EQDOka20Dm8lckDj7I4fhQpXZQO6VyxnZ4Nl4LnGPGrDLE4VphxE1sgGm4WKJkIl1XOFc3jI7VmoJc/b+OcNmu8ymi06xJ4GrIKHI2QiePHOqSNc1ohpcYPnBjAO1JTC1wcaSJTFsQ7VlRBJvL66YhV67vCPG+N0Inuj6Gk2ZpE9rtEAh/qdcHEJ7+HWqww+B//DcHEFNW9+5l/8iiykMNt76Cwaghvawf5tj7ahjbiadeA17mEambsOKvmnBSGNweKbICYjdRiU9jNIsppkDPRpKAIQZuitu8p5r73EDf/zjZe/xt9aOYJEUyHRdN/aAYzc6h2ScYJOSNN3+Vcv0mYohp6VPFQgeKH//kJcl155FA/amCY3Jp26geOcODffYFTV+yi59dvoWuki8HSPCWvQc4x49xG/lyhWPQzTJ3VnPqLb+CfGKP/fR/Fm085wgUmh/kVoqVf5bXplYEl602ygyIdDUobu/EDef5ErhGJJ916KCx9zmxgQvLoxHMhIqDkGKCEa4CSfWgNnUCYBNEU7ze2VFs7Nk2rSx0ziUrYByJFa0oZ1q2RpfRuaX2RABqvVKa2MBlHJHrXX87p5+9j1aVvASCoLiGli1BQPX0cN9+G6+Zjp3bK4jYtJZBhjrMM+Iy9QMl9i5tKRWnspBuByzg3q5Fcb+gJhBs9KSI6nt2viKJIEdhSGQhKijAbsPTo01Sf2G0M4SAkt24NbddehZPLLztRK0KmvvoVMv0D9L333YhCDlX3mX/oIU79j/+bvne9h85bXotAous+848/yrlvfJn+N7+zuQ5Ty71ppfxpzu9XnXTZsvtIAykboYv7ynr1UnW94vuj0+8JYLKtKbxvwY5OvFQWDC1/YqJpH0Ciimf3hblfCh3V74pAeaPG83s+x8zMIdpKwxwau59ctp2hoUvYln+zEY8Iw2ThSAOjn5Vilj5v2XJ/WkCTFoJWp5FWiheP/oCO7rUMrroSpfR5zx5CpHIYJTITXaOTjPs0OF2cOYXWirW73kp3aQ1uNcSpBawbuI5TE09z6MQ9TIw/z/rVtzLUvQvpOEhHGLGJ0DyQWgpOz+5l/+m7EQh2jLyZzsJIQr/7JeX8BNqNKWE/335e2fYf//jH+fjHP86xY8cA2Lp1K//pP/0nbrvtNgC01vyX//Jf+MQnPsHMzAyXXXYZf/EXf8HWrVvjfdTrdX7nd36HL37xi1SrVW666Sb+8i//kpGRkZ/7el6qzTVy+HWX+XqOemCiGdZDnXGyiVEmmusmWSOutaUXciuHbHOHwNDeLM1utpanHrhU656JHilhag1a1sOy/i8RzVv6PJ9D0iL1TZJhGCpB6JroiSsVjdAsIMuBMPv/tDFknTNNjAYFsliivjQTFYqG3s1XcPzAj1lz6TsQUuDrOiojqbcLluZOQ9ZFdJZisJSIOukoumRU1+oysQFCldC3GhEQqsfJ/+Y63KhGFoAnjAFtpcMlmqzrM+DO0iZrOEKxEOYJEThoMjLATRmhOSeI88EakVBGoCW+70DdQdRg8emnWNjzDDIEFQa09axiYOM1OLnCeXdDSg0hjD1yJ16pk5VXvYuMk4N6wNQLj/LCN/876y58O6suuwkhBEoFnDvxJMfv/wJrr3w32nNRjSRv2fFa7kPacWZZBpJmW+A8MEfE4ki2idcKx0zVuiEicKYJQwGeQrl2vBClOmiE1EZh1DpapY0cmWiTUg7aUQYo2WdINgNK4LxoUxAVYLXRz3roUmkkQhLFTIOsG0RCCGa7RuhSryhO//++wtIT+8msXsHcXffgdLZTvGIXPe96B9IXOFVT78upgVszQED6ieOzae2NmCTCOiytGZSyCYyTW6RoJrajI+eya4ozh1nj2NNaM/m33ye/YZjut1zOqcY8edmIhVmsgEvJqTGcmSEsCjIypODWKbs1fO3QUC6ZiFYHMHt4hqAWcs3/cRGTm65kcrqEns4ibtAsPvEkU9/7Did+ax8Lb7+F4C3b6Cg1KHoNaoHLUiPLUj2DUoLZB/cx/tffgyBk6E3vpbN3I84SSU2m1Fh5Je2XtTa9Gu2VgaVAIH0RP1xaJHlCOqLFkY5wRFENIElebDHY40ky9TutMaDHSRm5jjbHccyDef5oFOhIqSf2goUpY95OCHZSealIDOcb1QmtKcYJTZEZLSHRWE3tNgVQtBCIXBav1M7C9HFKPSspDa5h/uwhjj/2NYY33sj44UfpHbqQub1PMHH8KdZe/37kkkZlEkPQNmUjSi4taoApxTUreGHBbPr6LEps6UZz/joO6TtREi/CeENCz3SALTyoHCP64ZcgKIcxedsA24Dpv76TzMphuv/5+5AZDx0qantfZOKTn6bnw+/DyRebOlxoWHziSTIrRyhfe3XUjRpRcPHPnaHjlpuonTpOYcsmUy8o59J+zTXM3n8viy/sobR9hxkzywyRpvtr8XJqkRGt29p7qaE+M87kUw/gz88gpEQIh56tV1Ie2Rj/XtnxmorMpY9px3I8pmU0fiABDZqEtqiTakfmmlpXu/NnqwR0CWRDIaxh74p4Mre5VP7CLPse/huqlSlWrbieo8fvo5zNMDd5grPjz7J549uoLpyjv2MzBa8dlDIS5VFESaSLz6ZrDb2U1LkFdcB07QQN3YiEKHR0bQoNUR5QnSCs4au6MbZ0yOzUYWbPHaRtdL25JnQzsEo5J2whX7DParNaYEbmcTMF9j38Nwyvu56Vo9eQc0ydphWdu+gvrefFsR+x7+A3GTvzJCODl9LXtQXXKSJCRWNxlhdOfJeJhYMMtG9h8+AtJk/pfwNRhBARJ63/vPt5JW1kZIQ//MM/ZN26dQB8+tOf5vbbb+eZZ55h69at/NEf/RH/43/8Dz71qU+xYcMGfv/3f5/XvOY1HDhwgLY2o2j2W7/1W3znO9/hS1/6Et3d3fz2b/82b3jDG3jqqadwHOflDv/3blOVIrNkma/mCHzjFV90s4ZoIBWO1PF72th7KRpRK1gCYk87GMM/1AI/cKj7rhFQCGQkz20RCS9tjVhnn53DI8de7AC0xxIYQ1WaSFXgODTCENdxjSRz4KIxstlhKmnfkSquwwaRH1EBkbR4GKauzwHhumT6BpieOUhpdD10r0BWD3Ng/9fovvpm5vY9Q+7iHZybeIa5Jx9l4J134BetY0ObwrQZZRyhwqxJKhQEvoNWJuLluSFVx6MWeHgyjA3k9D0wIMePk9+tPDVARoZ0ZZZioYe68hird1BXLt3eEgPZOcKSZDHMMh/kmKqXqEVRJik0fugwV8kTTOdwpyVTd95JPt/DxkvfS7bhQaiZnTzEoR9/io0Xvwe3WD5vfp499SxFp4uRFTciZxUyDBG+5uz4GVavvJHK2BGGshvswGFFzyWcqvrM7H+KvlUXR7XkItVPN62OK+JIkKXpq9a0BjBsCBLnnlBQn5ti4rkfU5+bNMqeQtK99XLa1mxpypN2MoLAF8YWyaRSHtzI9rNMH6nRGqSjjK0mkpp+FviaZ8kAdmuBZpwwPtf0PbVRXuuYCJWk3vAIAslCKJmWmkwmoL1Qw5GKRuAwOaY5/Yefxz95lvY3vIa579yNu2UFtRMnWHr4SXo++m4axyYor99BPt9jzE+bg2dpdNYusI+SSq3btjhvuq6nIwgdzfzUIXx/CeVqlNRorUwusdKosEEQVgj9KqpRgUYF3ahTfXGMZ+6eYeLaFZS8Rjzmco5P0WnQ4VVod6tkZcBAbo6SUzeFeZWJTlv6L0Ch5FDsynLPv/sp694xR/ENN7Mg+3GUQ8f2y2hbu43JH32P6c98m8X7n6J00+WUrtyMU8qbZ+10nZkvfIOlZ5+jtGk7Qze8lQJl5EIEIiNV6uUcvj9L+2WtTa9Ge2UQL8pfgWbDHayHAeL8Eqx3OwFM560tIvUeTfbGmIz2Ja0hqWPhhzgPyb5a95n6v1XnE6E4z3CNLeV44wioSesxSfbX5LER1sOQAKF4AC0zdqyctDW8hy5+HUfu/wy9G66ga3QbI9tvYf7o8+z/yV8T+nWW2k7RM7SVLZd8AOlnUVoTBkn4Pb4GWynaM9eonQQwWcVNrVI0QmmqlNv+bhXSSEfV4oK72uzHz5t9+kViqp0Fi6aooCbMK8gZnXUdmv6sPL6bzOgA5VuvxiZmCSko7NyELBeZ/c5ddL/rrdgq0dEWLD3zHH0f+fWm81PVGqpWo+36azj35/8LpRUSGYFXTdvlVzJx55coXbAjxsUq8PGnJxGuh9fVHUuQv2R7ie8qZ44z/shdDF19O7muAYSCsLLI2cd/SG36LH3brjPUSqXjYOZyXry/s8UTtIi8WelBS2w8/Sz70oKIZnf+Z8oFVa+x56cfR4c+l2z/CIdO3UupPMy26/4JtfkJnr7nj9i959MIITl07G66Ozcw1LWD3vwqXBENgjRQeqmWltSO2otTP+Ho9KMv3Q3CwXVzuF4O183jZPJ0DWzGyebJlDqS3K+UI0QGGkfrqJieRnmyqei1iLc1i2Ep38fFN/87Thy6j1MH7+fssUcZHb6CgfatlJx2sk6JC0ZvZ7h7J4fPPMALB7/BfvFtujs30F4c5Njph5DCYdfIW+krbzRzls3Z+iVGlYBXsUq62cf8/HzT59lslmw2e972b3zjG5v+/9/+23/j4x//OI8++ihbtmzhT/7kT/iP//E/8pa3mEj6pz/9afr7+/nCF77ARz/6Uebm5vjkJz/JZz/7WW6++WYAPve5zzE6OsqPfvQjbr311p/7mpZrlUYGRI76UgYCwwkLIkPPrjlCGANQRIDJ2ErnAyFIjMJ0EyKJklh6nVKG6qZCGc+7RmzIUt1T81Wr4yd24BlKuk6tjdqeY+S4MswEgcaIJwRhlCQfHdcPkgiT0iLKORZIxzgwENE5R7UUVEbHJ6Cliah3X38rY9/4NPVwntL2HZRvuYGFY/s5+c2/Jaws4Q0OUNyymf4PfxCRyRKiE4eeo9EZZYztyBkqhD13ganabkCm0gJPhtRDl6wTNPW9oWd5cR/XAxeFwIkELixFy8oq+9qJpcPbnYoBRZFhM+9nWWxkI5VAyVI1S20uR2baofb082Qz7axYez3eksKpGY9XT3kt2U0lju39PhsuemeTeJLQMHX0KTbtejfeYmgcWUqj/Dq1pWk2jb6OZ/Z9GlFtGBXXyHEz3Hche/Z9iYHhi2JHXNgIqFenIOOQLffGlHxh1XIdDOtEkjjPdAKQjNKvpjoxxtgT32H04jdR6BwCAX6jwundP6J+9jT9F99MGDlik8hKdN+tvYG5PbbsiIiof1pItFCEEdNDADpiAintoLWKoyemSLKOFfHSrUkxD43nhGQzPuARAKHv0MCl6rlk3ZB6VTH2e39LOF+h/9/+U+bv/SnuYC/rPnYHzuw0z3zgfzL+x58CRzKrvk9+80baL7iUjr5NZNwcTkOAjZ5EwzwGSnbU275AxzRH5cHZZ3/EuYd/cN6zHzdH4pRyeKUsmZJHoezSefkwopinfbRooma+Ed7wnJDObJVAOVRDjzE6qAQZMjKk3atGIg2SQDuR6IWh+3aNFviX37+Jh//mIA9/eg/i2wco3HQVbZsvIlfqx80XGXjDO2jfcSmT9/+A6U9/nenPSgqbN5FdtZK5+x9AaBh54x10rNmJ2xBJzaWUOR8DpleIWV7ttekX2V5ZZMk6floiL2n6XZr+paWIvM/mS21HXNMTTHOHN9H5IlqATC1cLe9mO2XofZEKjQijxSg6BIHxjAmNWYjsGmBBDvb8EsAhpE4BJmMEKxfSueiWemVD2enkvvgSU6AKAV6mwLobP8jki49z8L6/wVTncFix5bX09G5GxPFwoKESFUAbWbL7d0yUxyaGxpGmaOISEb3BRHkicOSKeGEl6te4xZ2u0SGEWbOYWQEHQ61LI1HTucrTaE8jPEtgBxHRGJcefY6+f/52c9KyGUHk1o0w/+0foYI60ssmYE2YcL7IuGZSik4rnJ/H7e5CCIHT1oZuNCCbi7vKKeTQKjQLrx8yfc8PqY+dIjs0jKrVCKYmab/8akqbtyV9GPWDSF9Ti42rtebcQ99n1et/HSebj2dMN19i+Jq3cPzuz1BfsY1cW3cy3pfZ17I8ZtkMvNMCEgnqSv0/psDR/Hlri36momgSGJBk1OEgVAFHn/kGjfoCl170L3DdHFNTB1i9/U0gBPm2XrZf+ZtkKZDLdnJu7EnOnnma3Ye/jBQu3eU19JY30FNYRd4tI4Jl5AXTc1lK1e74/DMcnX6U9UM3Mdx/CbgOOuOAI9EZF+VI8By0J83i7VeN9GomZZxb6ojdvTIgyakpU0MJ8Esivn7TB4J0dEkGmgxZ1m58HcMrruD4/rs5dux+jqi7KReHGejcQn/HFroLK+le+36q/gJn557n7MzzHJp+gcHO7Wzqu5msyCbg6KUoirJ1kvuHbSGvjufN3tXR0dGmz//zf/7P/N7v/d7L/zYMufPOO1laWuKKK67g6NGjnD17lltuuSXeJpvNct111/Hwww/z0Y9+lKeeegrf95u2GRoaYtu2bTz88MP/YGDJbzgo5UHVAT8auK4265UAJTVCQpiiHJ0XxWlty3W/joBU/J4CSJqoxIAwTkn7mV0vW51xsQPPrJE6AhpagvBUKi/FfK+UQAKhMMJFEEl1QwyW7LXYBHyBZc2q6BwlWmt0qOOagtLBOMcyOQbf80Hmdj/Bqa/8rTHWXUn5jTeSv2grUksIBAQijpDHbBRXG3q31BEgJVr7jWiAPSetNWEoo8C2ya2yOTA6ZVTb7/3A0JmyXkCYNTkfdc/k+jgRSFJaUFEZfL8dXztMNkpM1YtMVoosVrMEDZew4UBN4iw4ePMw/uyTrLnwrTg1jWxoZMN6TaEt34/ya4T1qlkv7O2KbI6MyiB9A5ZQGr+2SN5rwwkUea9MUFsgmylHv5I4rofQAhFqdBhy4sh9zM8ep9gxjAp9Kovj9K+9nM7VhlGhUuMpFiSIxl4iyqGRdc3Y499l4yXvI+MVYMGAYk/mWbP9jRx87Is0zp4h0zcYO0hlw1yjCqLFLdXflqmhI+qNQqG1AedSRgA4tb3WEkdrfClNvZXoGEomdbbMyBNNkSUhNFk3RAioCzd2NAShA2HIqU/8CH98msF//69xyx1Un91L++03EYQuorOb1b//fkQ+R3G0g9kf72bih3s4+6XPcNZxKKxZT3nNNtoHNpIvdMeRJuN5JX4GBU2Xj5Yw+eLjnHv4B3TefAvF267C626wtn+KnBfS0B5SQj6raM/UyDs+XnXR1NvK55kPcoxV2pirK6phUnOr4gQmj1HnWGxkaQQOWS+gkvWivEMjDZ6RgSlMHNGE3UKGG/7lZra8dQP3ffwgh37wE+a+/iMyo0OUtu+kbcsu8itWseKOf0owP8/C888yv/cZZvZ+n/LGHQxd/xZyThuimsrFjqahNBvmpQIEL9de7bXpF9leMXkwBhQRBSyOUFjjMHE6GU+R/V2TCh3xSGsCFylPnjXmRfSSUYG55TjaWmNoRkqAR5QUKxJaQ0TNM7WfBMI3dD2nEQkXpArPKiOchZUZThvTlnOqPVARv1UHEUMwGlSy1ZDTZnKyxrCWIGWWwY3XMLjxmmgS04SNGpPjL4LWlLpXkvGKscElQm0kSnUycFUUGleu4d2mi/3qyNOhHHO+JjFUEOYMYCLy6gGxMW2iX5FF70GYCY3kqJt+IkTzhbX+aQGYl3hg3TaP0I+KmcV5aWZxc/s6UdVFRN4zxoGd5MPAGCoxWBXIUolgZtZce7WCyHox0AAI/UZs2Izf+QVKO3bQ9YbXJQZHLWTiW19F+z5t23Yl90anrmGZB78ydpTC0CpkS36VoYYKenZcw9TBxxm6xOZlpARQ7PVawNw01tMDOSlka8ZcyplA9DsVdbBOTVRRX5ptE7Af35foN8k9hrljL3B097epVabZtOHNFHPdjM8fRGtFx+gWUy8rELT3rcepGe/n8MqrGF55FdXKFJPnnmdy4nleOPk9QFPIddNdXM2KjguNdLhKnVN0XvY11zjLvnP3UC4MMTx6BU42H4swKEeYArFao8MA368RBjWe+fGfosIG3YPb6R65gM6hzchMrgVUJsdUTiSZ64kIIJphJUKNsXWjMR45N5yGoqTKbN30NtSaNzI5sY/x8T0cGrufF0/9iJV9l7Fu4AbyTpE15YtZU76YQAc40kMo1RxNSrflBCx+Qe3V9t6dPHmScrkcf75cVMm2PXv2cMUVV1Cr1SiVSnzjG99gy5YtPPzwwwD09/c3bd/f38/x48cBOHv2LJlMhs7OzvO2OXv27M99PS/V/JqHFC7OgoNsRAZdJCiUKI/qGJyk80BafRrJhJIYU61fNfGhdTL3xAApjFTnUqIKTaUqUvOtzfFTnk5KaYQC7UV5c05k2UhhhmoLHRCg0XCXVdSzdXNisBbN71ZhTWGAkj1fvAzlq66i7dorI3q4QvkN6rsPmVzV0RW4xbbk0i3ga3VY2T9TgDQNSo0xCaFyUv+PJMdDaQCVVfEDatmQuu/ihw61qKBpqwx7LXBZrGdZqOZo1FzUQgbRMMV3vYaIS2d4S0DDJ68LOL5KcjlTLV/ooVGdo+DlE1tIgdYhhJGxEc0Xnpun5i+a+xBUcNw82pVox+T/KBWgdYgMNQde+BqdXetZveOmWMwnJOTwge+ha3V61l+K8oQRI1ApmyAaMzLUsYO3dnaMYrGfgp9D1EIz70YqpMoTDK+5hol9jzHSfjthKpqENNRLrURcqDVOAVAiimZKlBRRxEkTChBSEXoqzosTQhuzTAl8x+TPZZwwFn9Iiz1oLfBDxxAZIiqe1iYPzHEVoS+ZfOgUM5//Dv6ZCbrf8mby5SGqhw+hfZ/8ji1UKxkqoUAPb0Z6IYHTYMXt21j/lk3Uz80y9pPjTPz0MGfv+TpnlcLt6qZt5UZ6tlxJqTSE00hFmzSpvHuoTp/h1L1fIds7QNsN10KHh1OQTOsuHN/QEgMlCGYVwaJPUGlw9N99g3CuQumSTbRduZXyZW1kSl4k0a5wbBQuGkBpmmwtdOMoqURTcJPiykCc89QzKHnbf9nKmd++mH0PTHL0R0cZv/dupn/wA9puuJzuG99Atlymb+u1DGy4FqoNXJFBBBrR0Im9knbipthUfx/2xD+ayFKSCxOBpNQCcn6EiKaF4zxTQRvjvNWuIt5XKhwP6GiwmMXpfK9Gk8fObhjtx4RMzYkYIzcBSHEOksUKcQ4JiTSixtAYpOmxMEp+xL4wE5MIQQc6ofxA4pFo6QBL59NacXLP3VSmT1Ee2ohwHM4++1Uy+TKjF70JR7gJVzSVZC90VO9CaGQkV52O8KkgqilDZM/lDA/cnJxIZKbT0SUV3QSBATyOWclFClGkI3o6FOa+xIu3uWeWEqKVQjUUCKdpwTPi85pgZh7ZlsMKq4kozptdvZLagUPkN66P9+0UCiAl1QMv4rS3I1xzXHv/Fp96iuL27dQOH8br6aG4/YK4L9AgXJe+29/O2Kc+QWnzBUhp0WKT/ZAyZMyrMTdNrnuA1mZ/k+scZGrvI02/scfVRMZ/avyf54jWOlIbjIwVJQyP3+bHvcR81PSdVVCMqJpaa1Tgg18j9BuEQZ2wWuHM/h8zc24/nZ1ruWDzeyhn+9Bas1Q5h+NmccudUfJuNN4y0RiLFoZsuYdebxf9IxcicJibPsTMxEHOjO+hESyxY+TXCMMaLl6S82DBkhTkvHZ6S+uZWDzET5/4IzrKKwhVQBCa/KQwrBMEdWNUpJqULo2FaV584vNI6dHVt5Hu0Z20j2zB8TLm+h0IcxYwiia6qKUzWoELiTB0EYgoFxpCjRe6DLVvZai8BV/7nDr7GEdO3k/Vn2fnyreZPC2ljCSsMp7h5orLvAxI+sWBpSCSVf7592OurVwuN4Gll2sbN27k2WefZXZ2lq997Wt84AMf4IEHHoi/Fy39o7U+77PW9rNs83O1ukQIiVMzxVaBWEksXQRcO9H5p9a28xl36Yfdvqe9JMu3NGASKQBi2Q/pHNkmp401ZKLfqdAynmUMarRKomFN3WidKaEgFnIQyf6tw9E4a8zfNg+46fpS1yCCaF1oaOYeuI/qsaMUNm5EuC7TD30DmS/QffvtyGzGsBIiLoUW5plUyJj2qLQwCmsY5oTEPHJOitKotThPwU8FxkOiI7AUakElkDQaLrNL+dgAT7eg4aDqDiy5yIYgUxGRyikJfc0qxwlBoOpIx4ucj4nhpiXUanN4mVJT/2gBHV1rmZw6QG/XZpQnTX95ebxMgYnKMRw3i8znjcMnotyfO7eb7p5NzM+exJM5BnsuAF/F9op0JOs3vpHdT/0N3St3IaSHjMagclILZDR27FhqLE5RLA1EbJhI+S0CPyKEYtsAJ5emo/sa1aBM5TolNz11gdGCrMGIEdn1UIOWDkFGIVyNdMN4LGolCJXCDzS+4yClKaDrSNUULQQIQ0mjEuIvBQSVBqriE8zVmf/BQ1SffZ7cqtUM/JP3kR8YgQoEY+MgJW5vD8qXaN+MX6WgRoZ5R5HzArzuXnquL9B17VaU6zLz7ClmnzzB3EO7aSzMsPoNHyaoVfFkDmmdodhnVpPJlWlfs425I3s5+Xv/ldyq1Wjlo2q11KtugHJL889VOfOnX+OM65LftpG2q7fSeeVaOrpEVBstaKpnVfKMsmMtdAmiyKptngzJ6sBkFgqJJCRE0lZU7Lqtl1239TI9dwV7vn6E/X/1GP7EFEPv+028BYlQ4IhMbIfYe2vskGROE60qt6+wvdpr0y+yvTKw5BJJQQOONqpfNqnPzheiZVJuBVB2phWRUaZbvou8Dvb970p61dFEHnO8l+lD0eq1izxs2hEmmGFTMFoBX3yQ5LTtfQ4j41R6IN1kEpE2ghVT81LHjhXKIg+4A2OPfI9sTx8rr78t7sN2fRULh1/g8BNfZvWN7zOV0kNi+W4Rphfx1EBOGfrGk27lQ801ytAAvbiulAWHyyWDxhOdXViaF1wdA0Ad32zLkxfRfSxcuImFh/ZSvPLC6LJ1vF1jfAaZ9ZAFS2OKwIXStN14NRN/9VmcUpHM8FDc921XXs7EJz9F72+8P3X/NUt79lDZv4/+97+fia9/nc6bbm4GLXY8ug6FdeupHj9CcfX6ZW40TcaC0OAVylTPnUwiT7p5wfBnp/Dy5cTz22pI6GSBsoZ7OrJkv5Nh1AdRcWSVqscR349lzzdNHxXMnjnAqae/T2X61Hmb5vKdbN/6Hno7NxvwLwTT80c5M/YE+bZ+o2Zk9+kYyo5wjUctqC5y8sX7OH3sYVw3x9Zt76G3bxs9/dsRLziMnX6Me174I7QOKecGWNN5Gf2lDca4jHKWsm6Ri0bfRiVcYGzuOeZr58i4ZZx8DtfJmpfM4sqMeY8+K+X7kMKh0pjl3NwLnJ16ngNPfA75dIbuwa10r9hJR/9GpOsm9NfAgu/kXlkgFQiNdIR5Vh0jhCF9FQlYKAgUGSlZ3X81+VwXe178Mmd79jNQ3ARBYLZZLlfrpSTRf8H5S7/Mwn+ZTCYWeLj44ot54okn+NM//VP+z//z/wRM9GhwcDDefnx8PI42DQwM0Gg0mJmZaYoujY+Pc+WVV/48l/KyTdQkUpoIvfTNM2nnV8susMqKNrHdGhBNd7vFOBbxZy0bphxbMU221THyMkOmaS5SxHOWjtYGMEaoCnWUz6qjdRojHpOi2+lo2yYnIymAlFpfE4M5obLHa5wFddG6N3n/XbiFEivf/puxYa+3XcXS8ReZ+NwXGHjvryOj6ITxPUhDfXRT9oQwOa46Ur7V0gjB2Po9ECn8NQElBx3Y4rnRdQQOWkoaVZdGdDJNOWGhQAYCtwFOTTTVPrKiCPE07EL7+h2cPfM0Q6uuwHE0OtDxBo3qHIoQL19qMlUEMLjycl54+rN4uTba2xJq6+DKy9n9zKfYtPnthHnHOHUETE/s59zEbrZufy9HX/wBw4OXGHATGI+ukAKFQjoO3T2bmT/7Ih0jW1GYfrOKiSwzrrx8G0szY0bRFusYiKL8rqBam8DLlyPRCJGM5/SYU8SMHeMcTa1ZFqBZcC0iZ62nUFninSkpEI4ByKGjYrvP9rlW5sBLe44x9fl7qB86ed7z4LZ3MPTmOyhv3GlsnjosnTvG3KMP4fX3IfHQvkIE0pyzb4RKFskxX6kw++2HmP/Bw4iMR9+/egf9V22k+6r1HM7kmPveT3n+z34XHYbkeoYY2H4D3aM7sEXvAdxskTU3/zqN2hwTLz5GdfwkMltElvM4mSwyk0NmcjjZHDKbw8nkkJks2b5BhOvSWJhh7tBzLLzwLON//hUmPuFRvHgji7euZtVVQzjZSO0xkklvhE6s+meVO01haVOMNu80TJTJSSKonjBiKL3tmqs+sIae1UV+8ts/ZHbf43grLk9sVqtJEIGk1tSAdHDBgsVX0v7RFKVVeYXI6ZiekKjTkVCslmtpg0+mej4y0M/LQ9KgQokOHPAFoiGRdZEAndR+7QQdT9gpKcw4XyG1IBEblpE4gtBJ4VKR7DNeFFT6ApJ9WrEEEQO15sUiXZco2Wdy/lpCozZPrTFL57VvoiaShVMoyLZvQZzdz2xjjGLnsDGoG8IM6BQl4+WiD2AmfC0NbVCEIP0o8oCwKUam/o6IFtT4QkVU3sjek8j7KFT8gAhhvFFWHaYpj0xD6ZoLGf+TLyILJfI71yFdc/H1sWmm/vpbdH/ozdEka8/BXI9sL9D7kfcw+427CBeWcLu7CGfmEK5L74d/naXHn2b+vgeQ+QLhwgK5tWvpff8d4LnoahW3rZwEH0V8OQjAaSsT1irn9Vt6MUgDnLbhdUw+fi/6gutiWXdjUBmDaXLvg/Rtvz7eT5yjJxKAZBeY2GvjgC0MG7NcpGjy2qTHVLqlF+B4PEsIGzVefPDTzJ07SLljJZu2vA1P5HBlBsfJ4EiPYrYbiQMKamqRA4e/w8TE8wC0eSs48sDnGNl4E/mO/niBbNTnGT/8GGOHHgANq0avY3b2KM89+0n6urdSKPXh5tvo6tlIR8cqqPscOXkfz575FkPt27hg6I3E1eyj8Z13yqzrvSY1SO3AX85TQZSjFFIUbazpuIw1nZez5M9wZu4Fzk7vZeLUM7huju2XfJhi/8pYlTC5j6YTlSMYP/U0B5/4IgAbLnkPHYOb8Yo5ZCBxXIlTl8hqgGwEoEL6urbS27OVfce+R8fONeScLIggkhDXzeecjqbF1xY5cJxf3OT+v1MtC6019Xqd1atXMzAwwD333MOuXbsAaDQaPPDAA3zsYx8D4KKLLsLzPO655x7e8Y53AHDmzBn27t3LH/3RH/3c5/JSza1IXClwq8R1Z+waIVNriIqT5ltRUnSt9rPUe5pqZmv4aVckObGWSRFH9XXzQ57adwyS1Pnzg7DrmmPWJN2IqNgZx+RxujrKaYrmeUFcJ1mryIi0c34oDHc1NMVOm9au9HNlo192Tozq8YVLS/hjZ1hxy28gzhpHkKGGCzKdG6i1HSTYf4zc2tWxw89SCJWX6hdHR7m49px1VBzVFEiNi6Mqw3DQ0TmLUKSK6L7EeaeojZaKL1IOyaa6glFk0dRMhOLOXZz65qeRHWW6Brfi+sYzX5+b5Ojur7J6x+2xvLbZgXnJQp5Nl7yPY/t+wPGj95ErdtOozaOFYOMV72d87DlOPv8YbqaAX1+krXsl665+P4QuvqqRybbF+xMRaBTasBcy2RJBvWLyNwOTmywxedtNdmW0XhT6V3HihbupewGOmwFh8pOVa+7F2GMP07XtMsKciMd9rLZnzyHldLUONuVqE22zFrVVx5VRnaIgGqiY71VkPxq6nk5OMjpGWAmY+svPU927j+zQKIOvfxcZp4B0MiYS52TIlXtwpIeeA7+xyNhD32Bu/zMA5AZHmP6LL9Jxww24o0PojEYHAnVuiblHnmD2/vvRQUjHlddTP32Ks3/4GeYv2I433I/IFshv20Ru9WpkTTB9710cu//zzK7czbobfz1au5O8WLfUzuBFtzSt+61ruM37AdAV8+7JTgqbr6d/2/VUa1PMvfgs888/w/P/eS8v5LIM//v30nVhJ6WsiSr5oYOvHBqBY4pjC5dTDx3g0O9/HYDhf307XVeuo7dX0ZGt0ZmpkJc+SkNduUih2HhtP4du2cTZO79N/t9vpNjZGc9tFgw3gf30tViQtIx98ne1/53WplfaXhlYkiAjz4+l34n0hP9SLe2aid32xImZWid1lbQ2Ex6+NB6/iDfsNFJAyO7W3sBU/ScbalZolk4fZmbfkwTVRbzObjp2XU5mKPFqKjcCSq1VrrVZcIhqIyQGrZ0YdKI0E0llxuekMB65yMMizvsu+o+E+X17Ke7cafKgHG0Ksb7wAvXjJ5DSI7NyJfOHdpO7ZthQ/KRh/SzHYW9dY9PATSjiwrLm+oy3R6tokUWDY1bjpjGoIQ6vt9y+1vvbBHQDJ0ZhPf/kfcx9917mf/hTvJ42woUlnLYivR99M25vVwy8dPSACinQSiPb2+j+wNtRlQbh3AJOroRTMAmz+fXr0GGIbviIbCYqkGquyevvo3byBPnVa1LXkJxq7dQJOi+/hr+zabtYSnp3XMfJuz/P6NVvxc2WzOLvB4w//wCeV6DY1t9UgzUG2+ljt+TsCfuZBb3WCCPZXqYoN1buOx6jaY8PMD/2InPnDrJt67vp69xijJzW6IdOai5NTL7AxMQLuG4e1yuAUsyNH6K2MMmWC9/HxOQ+ps8+z+zEIYR0GB6+lFWj15Mjjx64mqOnfsr0wmGmZw/jB2bWn5rYD2ikcOlv38Ro50VxTkU6d0kLK/zSen4p8JHKxYrf7WdKUXTaWddzFat7L+eBPX+MH1QJK0ugNTqKkNloXTzlKE1Xz8b4cC8+8QUAuno30d2/lZ7eLWSzxSiPSiKUQkjBxrVv4NGn/pSjpx5g8/Cty4Oi1vOFxDEkxS80I/WXVSX9P/yH/8Btt93G6OgoCwsLfOlLX+LHP/4xd911F0IIfuu3fos/+IM/YP369axfv54/+IM/oFAo8J73vAeA9vZ2PvShD/Hbv/3bdHd309XVxe/8zu+wffv2WB3vH6KJhpn+mufIZL63z5pIO9VeCiylAVKUYK8lkYOExMkYrZ/nSd9HAkTptSwt9axDTe3EMWb3PE6wuIBX7qRr2+Xk+obRKgFAysN42Vso68KJ5v/IiLWRlSaGRiASJ2BrGY4m0GH+jouWB+D4sHBwH50rLsBb0khfI3zFzNn9zM8cQ2VdCn0jLD6/m+LQ6gTgeUQRIZs3LBKqvyNix6zSETjSCtyXoeJEa7ihz6UK6jYxPqKXH9HtdAT40k5Xu7vImWfOzWH4zXcw9eC9TO55kEy+nbBWwfXyrLj8rWTbegkiMZn4vkXUeSdfZO2FbyNQDRr+Ak6+gCgW0Q4Mb96IJiTQPjKTQSpJWNcEi5p8Rz+zS2P0tq83ayQiLiyupWBh/iQ9K3Ylc13L1BqPTzvePMngths58MwXWH3p23GLbYQZCIVifP9DKEeTHRkldJLfpdccOw60JAleWbspTBR4TRqEXcQiIJ/CRCIai9o6CqITtX829hyjuncfg294N13rLsb1BU4drJiWUEANbLrFzJH9zB14Fiebx8kWEKGgduQwE2fPMPLOjzB/7AUW9++lcvhFEILOHZfRe+UtuG1ltFJMPXY/i0f2sXjoCOGSySWr7n4BEAjHoWP1BfRvvqZ5Hogp8NE1BSZV0DJJmhRpo9wuG2y27B6FGer5XDfZC2+i+9IbOPTn/5Vwfp76GZ96w6OQ8SPBh4h2SpS/JTSFHWviY4z96bcY+1PIbV9P+cqNrL1phOHhPCWvFtUfk/hasv6fX8+5xz7D3F13U7jtnUYl16XpfJtsmPRnf8/2y1qbXo32ygQeXG0SR6393GpY22YswVic4TyuNNFiZJP6Q4H2I09WQyJrxsvnVojzhuxgtFGgNBUBgRGbIJr/teLM97+MU2qj6+ZbcTo7aIyfZeqh+/F6++m84aaXpp5ZUCS1iXZos28EiRpcGnW3DCbrFQtbaJkiOjlhjSYBofaRpSwqo2mcPcvU175OYdtWihddiK7WmHvoYRpjY3Tc8BqcjIv0UhN+ajFN94NtMjR9LqOFwB7TFgI0annRIuoZVhFeAoTT90kgmp4arcSysrmxMncU6kaDcLN0vOU2kAFSLeLkPaTnRvtWcRKxDkWkbINlaJpjFzN4+W4zRqLji0AgcRGOC35ybVpC2xWXM/W1b5BbvQohZBPHvjE7TTA/R6av/zy6ZlM/2kk4em9fsQU3k+fET+4EpXGES1hdomfFLoY33oAOiT1nhufebDinKTdN6ogpI74JWEe3IJ1rEwQNps7upV6fJ1vqonN4K2jwK/P4i3PMje1HCIf+ts3IIErWjcCJaM2rAUYGL2Vo6BKEdMzBlObkqYc5ePh7PHb/HwIa18nR37udDeveSMbNo7VmdnEMpQI6etbS1b0OELgyT+gvslSdRAqXvvJ6PO0RF2ddhp7WBJiWq8+UrmFht22ltGmNVKYeycmpJ9n93N/SfmI1fesuo7xyK26+YLbxhUluVpDxClz32o8xd+YAu/d8FqV8pif2Mz2xn4N8nY72lfT0baWzfTXFQh9SSMOdDwOyIm8iSrY/bdQofY0WIMX3PnXuv6D2y/LenTt3jjvuuIMzZ87Q3t7OBRdcwF133cVrXvMaAH73d3+XarXKP/tn/ywuSnv33XfHNZYA/viP/xjXdXnHO94RF6X91Kc+9Q9WYwnArZrAn2wkc6WO1p3EQZYYiylbr3nut9s5yUt5yT5iAYa4HmH0e8tiCEQEPJKIjYhyZqQPBIoz934dR3gMbX0N2UIHtfkJzj31Y9xSmf4rb4sLvAqZMmTtvGbp4ALzj62X5AtjtNq5z36umkFGUzTLznXpiIw9z7qP55ZwaprG9DiHn/0aXT0bGejfQcMNOHv4MRbOHWboktsQuQwqYnlo10Q3pGP7ysx9JiIWvSsBroqdUzLtrBREJ5c4lWJgFOVeWvXYdP5NOi8pTZ+P762NBNj76YCDR9/Vr0U0FHqpiiuzSOEiNDRs/2L3r5NcNOvvcXNIN0foCYK8ud4gD9p10I6DCA0V0K0Y4NCz7lIOP/IlOrvX4bhOKqIhqPsLLC2eY1Xn6EunxQkzF2kwNpkDpZUb0G15jjz7DZQKENkMQXWRtk076L/8LSagb4NAUd/Egp/288iJK0SypAolmh0G9hlydGynGAwvUFWfyp69hLOzuJ2d5LdvRWqHcG4eNTVL46kDAPQN7MKbNUVRY4ZGGhhGxxscvJCBd+5ECBmP0XNHHuPIU3dy6M//L0AjvRwdK7ax4uq34hbaCEPNwvETKN0gP7yawuBqpBJ4soCuV6nNTCC0oGNkC14k2mHMORH7koUy48Qq3evUEEzPDbZobdqxElPaQpLyn6Gg6+JrmH78J0z8z88yd/cKZm+7iP5rV5Fpc/GVE6tYFjIN8u2Sy+76d5x8dIKz//0LqKUqtT0Hqe05yPgnBNl1K2i7YhMdu0ZoX9dNLqeZr4aoeoCbKeHUElvbzhtNNn3KwZBm3izrPH+Z9o8msoSNJNHSRy0d5o9PMv/9BwinZ6NEfEX52h2Urt4OkZwkkYGsLc2uIRE+uFWBUyUGS0gT+g4zxNW+Y4pTkDLQo0VKuTD90ANkNqyhfOmlaGHyi5zSAD2r383kN7/J0pH9FNZvisLxGvzEqNWOXWhSoCG1CKYf0HgApQxyC5aawq12UYzoanZGy64YpXJgH9nVK5n66tfpe/8duKW2eL+N02dw29uZ/OG36HvjW82DqMz5WcCklxm0dvKIh5NK6Hh2QdTmmTWLkACJNrWCBFExuejcl3sYNGiWGax2Y1ufA7swa4QjcLxCbO9akGSFH7QQMSXPGKH2IiIJenuNSsTRRhkn3NqFTON2dlLYcQHjX/g8na+5hWz3AISKyoF9zD74AH1ve1czMEldUxyFS9E6Le2x1L+a4mtXoxs+7lKIq42IgVVcSwMlp2HHko4XhiaQRDJJLteHadCEgHMnnmT81NP0rLyQtu4VLE6c4Nkn/xt+bbHpxneUVzX7W2KnRsu9iv4vkRDlUE1OvMD8/EnWjt4EwEDPDnLZdk6ee5yjx+5lZPgy9h/8FrNzx8475Y62VVyy6YN0FkaTMRCk3VOt6DsZXDq0oiEpQGWBXrpbLOhoaUII1vVdw5qeKzi3dIiT009z8IkvwZOStq4VlAfW09m7gbbyCCpoGMqKzNPRv4FrOv8Tp479hKMn7kdrTUfbCqT0OHzoLqNAJT3KpSFzHOkw2nsJkSTTy7cUULLvrdfzD9l87SBfhSRa/xUm0X7yk5982e+FEPze7/3ey8qO53I5/uzP/ow/+7M/e0XH/nmaDEA6idEMJPN8yqipL04z/sx91OemkI6DViGday+kc+PFxtsfARSVmmPjZteDaH9AE9VbRMnnseHeYsg7Pkw/8wiFUh9D664xBvgiZLxeipe+gxO7v8/8wT2UNm0nVvBzUgAttsIg0v2O8nGEUYsF0h7984wle97pdc8yJVoAVaFnBdP7H6e7cyOHnvsqmy54F3m3bOjCOUmtawI3k+f0/V9n9KZ3Iay/JmIXKM8cQxGtCfFiZW+NNNsJs04boQBacptT526NO52cJy3zfCtl+qWMwDhXy1L4hETkinF0RVmA7ST9Ze9xWinXgsHQM8Xebb1C5ZkNZN10uPCNU9Mtl+lbfQnP7/0iq9a/hmL7IEooZiZe5NShB1i78y0JsCcxxmPbJc1KEFFNQAGFgRWsHP0AvggIvACRzxqBiIAkL7mlj2J7RiRrmpZAJpoaZTLErSJfzCKy32moPPscC488QnHHTvIDq2icHGPs9/6QcHG+yfAo9IyQq0ikrxO2QOt9abpHZkAIBTNnDjB/ah+rNt6GIqB39EKypS7OnXiCM498j/7tN3D8yW+wMPbiefvM94yw5U3/hnL7yiRPK8F70VogYicokYNaCwhda7ckz1ScwhHNBcqyz2kec0KBFILeS2+i67LrmT+yl9lnHuHcX3yDc38pyKwZIb9tPdlNG8itG6XmNsjnQvLtkq5dwxT++neZ/s7jzHztXrQfkF29CpnJMvmFe5n8TIDwXDKrhhGuA6Gm66JrcWopRwLJuTRFYdPUu1cIkmz7Za1Nr0Z7ZQIP1nOTWgWaIw/QOHmamS9/n6473kB2Ra/xYjTqzH7vISY/ezdd734dKhDoUELdgqTE+I35wxapuxFYypt37eiIZ5wodQFxxCmUiqVD+xj4Z79J6KT4zwBK0PHam5n6ytcort0UHSsxxLUkkkM3E1S8yMQUG5oWjJg2ESTrkHkQIg42Ol4gm9hs0f6yq1Yxc+89zP/kQdouuwwv32YWLg1hdYnF555l8CO/ybnPfw6/toibL5m+idaOpsUrPYjt3+mFmdSgj0CAEuYBUdaQc6K+0kmfvaSYVwR2mjyrkXSokDr1+6TvDM0y2VaHyWKoQ0GzdUEChKPpSYRG9t2piTj51k46SeRRU7r8IjIjg8z99CeEs2biza9Zx8B7P4CTLyaUKN38alo4w2bjyWIOKT1kxoUgqr1ledxpA0Jbvb/o85A4smFAlEgBomVmnRSYm544wPzUUbZc/WGEdJgZe4GzLz6I8hsUC70MD19OV2klObeMKzPn7+vlmqVAasXJ04+wc9uv48T1Xcx3K4auYPfBr/Dok39KvtDD1ot/nUyhnbPHH+PMcVNYtqtzLdqNOKLKgJrQgTPTewhUnY7iKO2lofh+LdWnOT2zm3NTz1NtzFLMdVPM9ZhXtodirpt8phNXZA0g1ZrFxjjjswfwgwr97VvoLIwkC1aokTgMFjYyWN7MklxkvHqM6ZmDnDvwU8aevweQZLNteNk2hJAMr7yC/qELWbHuRvr6d3L48A8Yn9xLe9soF25+PzLQzC2eYq4yxlzlDGsGr8UTWQiDBLTFgi3RuJWtDwkJ7eXvubj8fdqvsvful9HSinOW3mNpwWCMy9rsOU4+/HVGrrydfNeQoXr7DSZeeJCxB77O6FVvAc/8IFZajA9AaoEgBitNeT+BSOrgWMMpZTwRaGYP72bjjR/BqWmcSMXRsgMGt9/AkZ9+kdKW7VGukqmVp7IqmdeJjh3qZmAUtsy7mmQuFsn8Zi8lHR1Ie5jt+lPoHubM4hRnjjxIz8hOMqUOqBsFN1WrMX7kCTbe8CEOP3UnwewsbkdHvKbpkCgHOjLMowMJMM+Z9X4LAUIaQZzIEI9zruJzt04YUn1PM1BSqet4GSPQOmdl3Rw/DWrBzuvEheJjsATnU7JF4vhVHoRFZVgrWWXukxIoHGMnRUwQFUDnmp3k2wcYO/QQ9YOzoDXlntVsuPx9eNli5DS2SfmidTltarHzJrq/0nNxMm7TuLNASfoYSngqoB6JGTc79iJHbtqOteNFR5Q82w+1w0ep7N7LyLt/E0c7VA6+yMSDD6CqFXId/fRsuJT2gQ3kvHY8cjhVzcspsTWxMsJI3S9UjB26nwu2vx9HevH4UUuakb5L2Dd1kr3f+hiZUhejv/ZB5EA3c888yuxjDwJQHlzfBHC1ACUUU0eeIWxUKPStoNi/CuusrS1NMXXgCeZffI7G9CSZ7h6y3f1kuvvIdfWT6e4n09GFyOURjskFq0+dY3HfboKFBcqbLqA4sAbHoigNUjq0b9hB29YdNOZnWDpygMrBAyzc/Shz37oPhMAptyE7ywgpKN98MeUbLqb9DVdTuOwCpr90F5VHniOzYoSBj3wIhwy1kyeonTxO/dRJOq69gZzThqwRi9skgyQZt5ZO2Pr9K22/ymvTK4sspfJSmh6oKJFPSM3sV++i6443EE7PUV2qkFs/gnBytN9+E5Of/DaVZ8+RH1yJU7fcU2KggjB1gYI8+NHDaJI+MZO+wAArX0AdnBpJLpMFVizhlbuQoWOkM4VOivVpjWwvooMApw7ZGRO9cmuR0SghyIk4ihXmDOiRjcgz1IgiW+nusK/0xBlFfmziKlFuVHrhEdGk3vvmtzL2Z/8PXTfdCosNkJKl/c8z9/jDdL/pdsi65LduonLqCKWt2+PFNU3pkulzSE1qWhiAaUFTU+FaUqBAm8En3UidxnpB7QIbzXjpYowW3Oi0lCzR76zkeJqC2ULb0xFVQvmOAc01iWhEn2UiqooTba8Fsm7omTanIMxics4yuklwA23uVXZomOw73p6iXKRyAexlpQBOOooUg/DUdVmPVhx5ihYAy3OPDa2QeKGKvdQv1ZaLlKQmZoDTRx9mw0XvQixUOfz8tzl3+mm6O9axefOb0EHI0dMPsKq8y3hbm/ajzwPnyeeRW1aYc52dPUJXxzojpx5r8RNTPdrLKxkf343jZBg78iCLC6cJgxoDAxeycvRaSvletNYRctQEymf3gS8zNXPQVKNXim0b3sFA1xa0EDx74E5q9Tl6hrYz0DZAdWGSyuI4M1PP0GgsJH0uXTKZNtCaWn0Wx8niujlOTDxOLtfJUO9ORrsvISezoJShyDUURbfA6tx2Vg9u56h8mIXaOfKZTmYqx5ldOIXWiv27T3Dw+W9QKg1SKPRQ6hjBy7cxdvJRnnrhb7li00dZ3XM5TZGwIDCLsO3P5cCRjSLJ5P9N77+Apl+lWhb6l6A49MtoMpoDRagTGlbTFpozj36XVRffjj8zT222Qql7BZ7rMbzxBk48/R2Wxg5RWLU+yW2NxSCIAZIIdFxLDOxnJBEluxYKIoATTeUaUA3cbBEpHGRo6vukDXBRKKAl+EXw2zRhXqGzCpkNYylurTDCSb6hJ+s0hVq1zONATDmM5m+tzHbSThEtgCn2SgtYcdXb2P+tP2Fg07XUZYOMK5k5s5+xEw+xauttuGToGNrC4tghOtsuNmSCaN0UTjJPN51S5GwxKncyzo3RpIy6SJzC5g432Srp82yJhjXlAcfrQ/RHJHQhA9D1FpBABHocUFnwSxAUNCqvzPGs0IS1cSJhD51RhvYeKf3JiLWjFaiG0yRmZRzGZt3P9g2yquet590rhbmGRIAq9VpGkCReHwKBQ7PdAMSRPBnQNDbj9d/eG5nYbnEfp3ajIwAVC5hg+nz+Jw8weMvbyZ71OfvA15g88Cjl3rWsu/KfIKXDsd3fZdXgNYj6Mgi26QDRvUhR2WWgEIFmbuYYHcVRslVAN+K5XLsS7Tp0ta1inMdwnSyzjz1IdeYMQX2JrjW7GNx6I6XykImwReA2ECFHH/gcc4d3I1wPHQSM3vJuOjdeTJiF49/8HPXxMxQu3kbbuosJJ8bxxyaZ23eUqelkXROei9NRQgiBPz6DzGVw2nLMPvEgTncHpUsupv3Sq8i57bFt4VbAo5O2lZcjRi5nsvNBKmOHyXUMsHj2MEsnjqJVyOQnTjL1t98jOziM299DZnAI59Y2Fu59hLMf/1+MfuRf07vzOuQ2EorvUsoxnHawR11vHb1NzuBorKTZMj9L+1Vem15xUdqmlpo1hNTUDx8nmJxh9hv3ktuwElWpMfu1H1G8cielay6hdNO1LH77p5Rft8oAnWqEvaQBSLE3LGPUe7SnTa0fiwaUQCsH6sYL5zTArYFsmCdUuQLleLBUx60IAjCeGUjog0qjgxDpg7eoyc4qvEVj1WpPEmQFYVYQZgRBXphE2QagDX/YctDNDxKQlKZOIIyTXbtmm9BOJjEVQsS/9zp6yK1aCyGc+9qX0FpRWLOO/vd/EFnMmWlCKWIPmaWl2ckqNbjTCawx3z6VlByrOaXOXwZmMpYhhh4ZPQxaN59q830nBkqiBSzF9ZJS3khEyvsH8Xu4UGHxoedRU4tkSj10rLsA6WVNgeHo3JVn7q1siBgUx2OkJWoYP8DpZOS0NyS9EKYWx/RiKS1oSl2TqUORAlYWFNmYfKrvzWKrmxbT2MsXg9Tky2bvXDLhawFh6JucolCz+5H/RbU6zZY1v8Zw5w4TcXEFDX8R0sa53Q/Ei18rfU0LIiAbKd41FslnOkj4kanfhTDQt4MzZ56kVBhAaZ/BgQsZGbqcQraz+RodAMGZs3uYmnmRFatvoFDsYf/eO1FSGUqGIygUenDzJdZe+k4gyvGKJuCwUaWyOE6tNkujtoBfX0CFAZ096+noXIuQkrnpY4yPPcWxsQc5NvYgw30Xsar3cgpuIfYcQ0g9WGK2cpKdo29FSEOsD5TPUn2KRX+aI2d+TNYpsTR/lonx5wnCWnw5Y1PPUB68hVZ64PkWZet9Fk3//6VIhyNepSrpv3jv3S+lWUNbp4zCqAkNS7NnqM2Nc/rpH9LevYbQr3P6uXvoGt5G/+arGNh4DSef+z6F1evj+VW3GJExfSuOiujzDZP4oNFHwqxfCBBZF6UaxomXSe5LmBUEOUFQAEVAUICwoKAQ4mZCvEyAtAUuo8KtgeOYWkSR+qmO3s8DTKnzixnkpGjRrX1o/xTgtXVQHt4InsehZ+5EBCHtHavYdMkdOIWiwTFambxSO+XoltcyTahIWS2I6j6l7lMyF4smYJSmzCeOyuh+pI63LFDSGGAqSI6Xvj8R3THMGfZLo0OhnAX83U8RTC9ARxf5HTuRuVzcjxDNvxIjiR6p+WFV/GoStyKQdRB+ck5aWsyxPDMhHVGK8+siuyEdbEv3jVZRzpddm+09j+ZR64y2/aGlQEa5Ocjm+2bZQMs6/dPj3FdoP8QNXI5+439RnTnD2gvezNDQpUhk5BuoIRupQSaTPKjkghOglDbiRWiiUH5tgbzbTlwSIga/RoCqv3MLJ4v9lEpDhDKkuGIXAxuvJp/vNrsPo0Ef1YyaPb6HucO76bzoKvJr13H6K59GhX58fV53L8pVDP2bX6OjVKW/uBDVSvIJlmpMHlmkcm6R+nSF+lSFsO4zcPGFjFw2SDnvc/rZaZ745mlO3fsT5u/9McUrLqbzqhvIFXsRSya6JxugFqssHdnHhus+hESgN0MYNqgsjlNZmuDs03eT9dponDpHZc9eVK0ad9n8ow9Tfu3KJgaN47fYjbaf0/Nh/Hdi2yybRvB3tF/ltekVgSURCTJYDxOYCQRplNymPvNd8hdupOtdr0s6/vbrmf7CXSz8+ElKl19KOD9vblANMlHKhbaemSh8rT0N+RA3GyId88BoDaHvoFPFRJPzIgJPGpHNIRsKMb6E21uM6gZgQIaA+pFj5PqHTUjdKt9ExinK5Js4DTsxmMkhO2fkONuO6xhAWW9Sk0fFGt3RQLPOFBFGfZTuTE3sUWxbtwWUYvhtH0iSg+Nwtqb6/H763vGuWNUnjsTJaBGLON4iiHBlysOUFsZIn2/TwhEm53xeswuIEEl4PWU76khVKe7DllyvJoe6FnE9jPl7HqP27AHKOy4lu2IV/umznP7C39B50dW0bdweRwqFssBJE2YxINoKbUTeQ0tnafIgpoGSTiUqt3gWmzj35wGnxKMifVM8dm78EOcOP4IKfLQKKXWtYGDtlWRybclEkgaZmnhWsUAr6grSFJFY3cf2I4DWaKV5/tFPUq/NcsnWD9OW7wMVXaojzCLipDo51MTCCdE+WpuIsnG1NPUtiplOxmf2M9CzfZkBAEtL5+jt3sSaVTc378966lrmrf7+HZw59zQnjt4f/7+v74KY/thWHuX4sfuMwIcnE2630gi3QLGwimIac1iAGtUz6eheQ3v/Wlb5r+f00Yc5feQhTp17nIGenWwZeS2OdhFKcXZ+H8Ndu8DzotugcaVHe66fcnEIqQVhUGNkZJdZw8MKS9VJKvUp2gsj5vqkRHsmoVr4UYazWj5/Km6R0ZLq8JYH4R+2Kf3q0BR+zvqDvzrtPK979IfWECqOP/ZV2nvXsmHrW6J5QKGGr+Po0Xs498JP6d1+LYFfbfbmp8SIrAFilVeVZwxllEYio2c/VVYitX1M2fIcKGRZ8ObJ97THUeswa16LS6dxhnsIOgNkm08mG5DL+uQ9H0faNdSoZzVChyCULORMRrko+3E0A/tK9wOYCUcSr/+xWqBsvsY4HVFAec0WGotzrH7N+w2VK4xs5eh3s6dfYOTKNy8LLu0xz4su2bkeEvp7E9gRzdtGTAGZXu/T830LSDLXrZP9pfeV2siqvenICakyEOQ1i88+Su2pZ1nxuo207xxk5tg8Y5/4NG03XEj+sp2mOGogoWEQh8ZJ8tV8DB3TN5EE22fSMlZS7JRkjCb3Kr706JxsvlArIBc6FSnA2BmLpw8zfuBhQr8OWpHvGaFv69U4mbZmm0Ob/OM0/TD2JaXGftyanAfJGkeoOPH1v6Y2e44LrvgoHblhZE0BIcqT8b1L93OTrRWBpMTJEdH0lPlchJpCrpvTM0eik2t+yIXWVOfH6epcz9rNb0B5xvmoBVBXcd+ZtVUjQ0H30DamhtYz89RDzDz1EOXV2+jZcHkMuguDK1jY+wz1OWjkTSdIocjKgN6ugFXdDgUnjycySFEGoK48Qj1Hwamz+gq49PJRFucH+ekXxnjks89y8sHHKF6+g/5b3kFW5HAaMH/4OXpWXYRXMzlcMtCgJAVnkLBziNz2DLXKFH1XX0soNX5YobYwQW1ugnzfCE4tdV8c0EHSh1qKhGqrm8dKk0MhZWu9kvarvDa9ssiS9XxAROOJuMRaUHl6P/kta9AtVYqFlHS95zbOfexvya5djSy3xWDD0tUg/fCblw4EAZLa3sMs/vgJChdvo3jpzjikbRcRX0DoJYmx2oGei2/g9A+/wtCb34vMZiIHmiBYmGfmB3cx9Kb3gDaUO6EkQS5RlpGBxq1pZF3hVUNEqPAWA6SvaTveICw4BFlBUJARXc/Q9tKLRnztqck45sCnqDvWOC9v3smpL/4VxVUbcLs74/0IBYtPP0OmuxfPKxrlNwtCLZ1O6EgwYxnQY6MzKcDUdG8s5cQuSMKelL0XotkT1nRxGOqlPV7MK2/eh81pU0qgfAftC6pPvkBwYoKBD3yIzKI0dMy2UTrXX8jJ738O2dtBZtUoKpMkvGpHGzqjXSjSohr2XKxn1HpFNAmYsg88JBEl+3m8iHB+i7aRAZx+4X7qlRlW77jd1LwINXOThzn42OdYe+HbyRe7iRNgW/ZhO0ME2oyBlAduWb68ebyYnzqC1oqLtv0GpeJA1J/mQmr1ORwnm/xG2YU+er1UiDyuEWZOtpwf5tDJe2k0KmS8QtSnIj71k6ceYsPa15+/H0ur0M3X7EiPC7f/BrMLJ6hUJunv3xEHABGCcnmUMGywtHSObJ8RUGjK12jtf5EUWUzfMy9TZMXmWxhefx3njj7GsX13oQgY7b0EVzss1qcoFPrwdR1Hekgpm6iRuVw7M3NT5r4AGZknUxihMzcSRUa1ieoGwhgIaS9ufO0tn6WB0i8pshS8Skm0wauwj1+FFnvimz40ht3c6YOUOkbRQSMGSiLQSClYtfYWdj/zN7St2or0ck0/T8+psZc/qkOjvJD6viMsPvAYxXWbaN9xWRMNSoAZRyGRIpyhU3fccCNj99zJ0K+9D9fLGUM9YyLD4/d8i64PvBXyIV42IJvxybkBOdfHlSquSaS0IFASXzlMej5CarIFH9/VcS6xjqTDtRWC0CSOKXS8VmonOkcLdKJ1TkR9Wl69jcPf/QTtKzeTK/USph6D2eN7cPIlI9mcAl3nGfep9VOk2QrRPBAr9rXOnyS/lQEx5aiZIZD6jV06moDXMoMljcXSXnigeuAA9QPH6f/dO3CLAQ03pG1UM3rxRZz6k2+jCj1kV60xFLtGlIMbgFMXzaDOJylAn/Lsm/lFL2us6tbzEy0vaNkw2kzBuQMPUpk5zaodbyRTaEehWZg8yrF7P8fKy95Codyf/DS9f5rNjaY+ir5IAyXr3NVhSO3MSbTvs+Wa36RcHIWGivfZ8JcMfTuyl14WKMUS4jpe/+w6Xir0U6lPUw+WyLrF1EkLlITjYw+yavWNESAQEOhYqCXuczseFDjCZeMNH2F+5hi1+Qk61+5EhmZfCMgNr4QwpH7kLPWuPiqBB0CgzDyaj2rteRH6DbWMgYMfzbWOUOTLgjf90xGu/8Ao9945zcN/tpsztc/RecUNZJeyLC2cpdyzFj+s4WkPGRq1VwKN0JK818Hi4jGchpmnXFkk11ZEt68yufiNxC60doZdx6yjYDlBoqYILZCOMv2s7Vd5bXplkSVfGHQSPzDm4dUalh7bS/cHX8/kX9xJuFTFKeajwWZGem7zOma/fhft112fJKBmTAhQOc2Tjq74LD3wNLM/vIdwdg6AypN7cPM9FEZWmZwlbcASGaOJIEJQlRr1idPUlyYpbt7Oya98kvzgKJliF/Xx0/jzs4xc+1YyTjv4ZrD4eQF5ge8v0ViYIScKFL0OQxNc8pG1BnKxhghCskfGIZdFFTIE7TmCokuQFTTapCno5hl1m/M4vAEmXKpIUR6IZxnH8Rh83Ts5+72vkBtZQX7dBpRfZ2HPM8hsjr5bf83k6ligFHsuIypa9IXQREUJ7f1JAaU0mNPEKk8v13QENoCoNoABQXEOkt1HU0HiZPbWEXixvH3tC0TNYfHHj9H//vfjBGbyUK5ZCLXj0PO6NzLxkx/QfcG7TAQpSniNj6dptszjpzXaBpFQsXSykDZF0uxnLV5Gq/qT5q7b96XZM1Tmz7L+wncaGkRgPC5dXWvJ7+rmyO5vseWyXzfeGRvpSYGwOJIUGwUioeC1ejIFhDrghSc+hVI+vV2baSsOESNTIdAq5NCJe1jRd3kz3U6pl6TfxS1MLbyAFIINo7ew9+CXWbfiFsptwwDUG/McPnkfXR1ryWXbzzf6YyQtmiZNLUy+UVd5NV3ta+Jt7RhsaxsGBAszJ/CGDVjSkgiQtJyrTt8vGyHUpFdokcsxsPk63FyJF5/6EucmdsffnZp6CgBHZrh6278iKwuxMbpYHSef6eK8qI+TurZQI3RgEip+FiW85dovOLIUakH4KnjvXo19/Cq0pghJ0xcwdWo3KzbezJFnvkajvkBO2DpcAhxBx/AWTj77fbq3XBb/RqQYP3FUSWpU0GDxyaeZu+tegslpACpPPUc230VxxfqYlaBTXn8CUH6d2vhpGpMTtG3fxamvfYrs0BBuTzf1qbP4U1N0vvf1ZEbLOJkA11HRK0RUlqienSXbnqU02AYQ1WoJ8RxDZinkGtSkIggdwkASNhwz50ZRJLQx7LWdzB3Q2sxzyosCTirxL8TPiOsw+pp3c/K+r5DvGaY8uhEV+MwefhakZPjat5r1KQKStNyHmCoXitTO7b0RTfN33PcWSNipUpEUzI3Akgxbtl12UKTOgWXGBtbIJDas5x56iK6PvJ2wnmW+kUE4GuloVChof8sbmf70tynesd6wFvxE0Eo2aKJxp/Of42PEYylRsmtiMNC8TWwnpJwAy82t9bkJFs8eZv3ld+CEIKKUBK+0iuIl7+HwE19hw40faaL1pYGtXuY48e7TQMluFyrOffkzqHqN8sgm2jpXoAOMpDYSrRVH9t3F4MorIVKabb0nLweUWu/n+hW3sOfo11k7chPtxRGEI6j7Sxw58QBt5WGKxb7lh0AkBWiYIIn9IaVDe+9ayv1rzfWkxkd2cBDhujSOnoSL+wiVpBa6SKGphh6uDE19IGXqBCktULFkcjLfeiJDwWlQKtR40we66Oq/iG/9zqNUn34hPr1JfsIRQDoeF974OxSdDnOuoaY6e5p8oRsREMu1i5gZpFPKkZyPdlNjarn+tO3vQ8GDX+216RWBJacmEa40VCgRGf6W0tPwkbkCHW99DRN//iW6P/hruN1dAGg/oHH0VCRjuBJqGu2KKEkfk4eSM3/XXjzEuc98BlVZio/r9fSSX7uWfOcg7lIkDOGDjS5NPHYv808/jj892TShZkdWoqSGQpaui64h395vVNQimqn0IVyc59Tj30WFDXKd/UzPzRIuLbJm5U301DsQizV0tQ5hQHD8JDKTQRQKZHq6cIs5VN7Da8/QaHNotAlUu0g8TiSeooSKIZooGlqaa3D7uhm+4zdZOnmY6thxhOfRffPryJQ7jVcsCpXGE5RjcrqUq1EZgYyiXFYlLr1o2HyZdK5S+iFPiqrp5qTkaJFMuN026UbHCktxYeLUjJ72SCb5MdH9CmqIfAbaMgRaERYSEGe8T+0E9yxBITT2ZcRRB2J1vHifFhjZztai2bh+Cerd+Tzc5LLSdZIS4QfN+JFHGdp4PUIIHN9MSkT3M1foxMsUqS5OUih0L78IR/dBuSlPWdrgb1mUx489yezUYS7c+kEWFk+ze/8XGO6/mHy2k6Wlc4yNP8lQ1w46C8PE9YzsgmFbCsy0NqGjmiUYQFrOD7Bl5e2cmHiMwyfvRQiJ42QYGbiUzvKqlwQJL5VnqQUIUhS9lGKc4+YolPuZHz9Mh3uFAfgtUaWmqFsa6NpxaS8zZUh0bLmYXas3EtSW0I0Gfm2Jk899n+7eTZw8dB+B8Mk6JloaEnJmZi8XrX4PWsq4T+JIkH2Pc+Kik7PXG30fj/WXaFby/BcpHa5epSTaV2MfvwpNeREWbgiTp5AyUJVfx3VyrNp0G/t2f4n1W95Mvr0X5Qp8R7EwfxK/sUhx1YZmgzp+3kG7muqJY5z7m0+hFpJEb7enh8KKNWQHRrCRp5jOpmHmoQeYfeoRGtMTpCeL3MCoiUjILOXLr8Qb7UflFFopVGiYBv58jVN/ew96qUJ5TTf1qSXqU0usueMSerf346JwhUIIbah6QhFqSRBK6p6LCiVhIGPVUkIJQWK8KkvtjpT8HNesc069+Vn2yh2suv0jVM4eY/HMUYTj0nvFLWQ6TF5IPBW7tq+StRGS/ZiIvfnwvByksHmeSAOhOGJjgdIy4j3LAQ5SS0q6LQeohQLRMFLVmbANMU4k/W2uRQrI+DlmF3zyZ0QTIGoCbq3HSa3dpAzzpppY6bUmfc7LOADSTjsdMUHGDz3G8Lrr8Boap6qQvulw5UncbIlcoYfq9BlyPYOpdTq6TymgFDNXZGoba6ek7I7q48+w9OLzrL31w4TT0+x/+G8ZWHk5+WI31YVxzh5/jJ7B7bQPrk9UeiGmr4swlZ/0MkBJS7P+FNsG2LLhbZw8+yhHzjyAEBLpeAwNXUpnz3qUI1LXIJrvcWS2oLQB7E5if2hpAF6TYJbjkhkZpn7wEG35bWTdAFeYqK4rQ7IyoN2t4KXoDb528JWLrx2UFub/2mHGL1AJM2RlwM7X5Bj60RuZmIRjU0UmxiWn//peilt2MPvDH7JUauDmHGRDo8OQsyefZOPVH0zGcTqPjeT+2GskskvSaQKxHdHyLMR3JE45eGWo6Vd5bXpFYEnWQXgRCSiWTDadlhkdorbvOPmtq+l67+uY/fq9hHMLyIyHqjdQ1TrdH3kfIpoBtEhNjNEkWTl4gLOf+xuyA8PUKkuUtu+k67bX43V3xxOdW0k8MdbbUT18ENWo0//md5IbGMbp7GLp0H4Wn32KmUceACA3MEx+ZDXFodUUhlaTyZcJK1WO//jzjF5yO4UuMxm4ddCzixx69PN4vdfT4XYgHImvfU7IwzgqgxcW6VQZciqDrPu4FWlyozIOfmj6xlDFwEpvxsZwlJsV5JM+VJEQBEKQX7eO3IZ1QHSNITGzrYkyYMGPa2ZMJU0lb2Wrlack0Vsn/iS/KLUvm88UTxS2gjskCbMiPk+tIkpcVKcpPdunJ3MbebI1h7SrwNGoCAzZmiTpkzMBFLOPJntfpCS5WxaB1gU0AVDRRi1AaVkert2fSvZvv6svTVNsHzQ0uogfrVOUymLHENXKFPlSD+lisuYPixqTRbCppYQDhAYVhpw8eB99PdtMdKa8moHGBZyd3M3M7BHy2Q62r3k7GZl9eZCU/v9LACYgMvgVBa/MxpFbm6hkOkaouvm8reGiiMFs/BUti05apjbyevatuIjjL9zFwOLrcbo6TfBlGUCmScZT4m1tvT7ic3FKbbjFNtCQB4ZFyJm99wEY8RAhqVQnePHUPazuvwrpuucDwTRgis59vnqO6cWjrOy+JL4+s1OS38uWfaT78BfYFK+SPOvfFXr+/5OmrREkWwwCoNQxzPzUUbr7NrFux5s5cejH1OrzyIxHENZRKmD4Ne9AZVNjXCZgQjua6tEjnP2rvyYz0Ed9YYHClq10v+5NZLt7Y7oVqeNbw3jp5GHC6hIjN72DUnmYXLGL+dMvMnXkaWYf+ylaK3K9Q+RXria7eg3Z9avQ/WWWMiGTf/4t+j9wE+2b+5BCEypBsFjnhf/xTUbefQXtWwepBR5BxefEV58G18XJZyhsWYHb3Y2ytD1lvN9aJxRo7RKXibDMiUTghZhOlsyrgsLIavIjq5O1yHaw7a/IBrDUoHSz1OZ4Okk971aUJ3YQppkC0TyfLjpr3pvpQ1YxrplSmxxr2UepZf+OAhFosjMm4uVEolCW3icjOyCzYD6XKVCeACPRtB5b+8bSvOxxk+uIjqFazlM0/93Uly1TZ21xkkKnUX2TfgKWbL8U24eoz0+Q7x5s6hv7vDTZDKnjWmq8za0GEDXFzL0/orxyC139m3HLmr7e7UycfIa56SNkCx2sv+TdiQy6vd4YJNrP9HlrdtOtiQCCdUhmC+2sW3NrDBqMvHqUo2RpfnEx8aQvLZVW0LykWhoqqfti70nxkouY/uo3CM5MkFtvKPKuUHhC4YmQnAjwRIAnQhyhaGiXuvCoaRdfmbVIIQmUw3yQQ2mJryWqKMkVBEODOcp+hoy8juOfNqU7wnKGRkbiT04y9vR36dt8NRRzcanKJCpoQJGK5Oi1A7WpcywceZ6+7dchpYOMStect8amx1HaVnplWOlXem16ZTS8CLBYHrWwxqwSFK+5lOlPf43s+lV4QwP0fvRtxhmrFP6pc8x976d4PR1QjYwrYXJ9ALQKmH38cSbu+iaF1esprFpH7dQJum97A25XVxyqdhqpkLUGhaIxO4PX0UX1+GHKG3cgM1m0hPatuyhv20WwtMjSC3uoHj/K4sG9zDz+EwC8rh4cL0eua4CJsWdQRx4mrFdRtRpeto3i6Hr2nbyXndt/nVJ9NZw6wGG9l9APjK75/H0U8330dKxjePAyMrl+ZEMiA7NoKIg9SLGijDKLgYpynFQmocmZjqBp4mkGL4kRn/agQfRgO9pGjo2dl1oczgMO0OSpSgoXJjNT7MG3KnNaxAuROSfRnJ+TNghbbVkZhbOlxsnkULU62q8jcpmIj54Au2ByBlHIx1zhuC+iC42f4fTk1WLgpFuaTtfkbUy/Wj+3k2QEEoQCx8vTqM6R88rNggpRq1fnaOta2XQu8YLbhOxa+qZlcgaYOPUs9dosaza+z+QVATmvxKrBKxMBB6XOF3N4ufYyUab0NjaPyRptIv07nTb8k89jx0X6WK2S2dYYiLYbWnE5p168n/Fn7mfwprfE4D99v2IjIjqciOecZJ/JMZPnwialoqFj1TYaC1MsTh1nz8E7cYVL1m1j3dCNRizD9mFri85bAccnH+Xg6fvQOqQSzLF58Nbm31jApEgAUytA/QU6wkItCV4Fz1v4jySyZMHSeXMu0LvqEl587PN09K4n29HH6ivfiZ+DMKNZqk1y9tEf4A71E2qzNhqHkDFGQidg/sknmfr6N8muXEFp83bqx0/Se9MbyLT3GmdaZOxCNPcIs66Fs7Nk2jpZqj1P1+A28iqPbECh6wL6+i4guLDC1Nhe5iePsLh/HzNPmNowXnsXTqmE09PFzA8PMfmdPahaFV2pIUslvJENHPnLn9D/ux/C71wB7lOMffonaD+Io6eZ4R6Ku9bR/pqLcQf70bbIemR4CXTEQDAPqWEkyFgNUwSYpHFbUiG1TsUt5Tiy7Io0QDA/WM5QXma+tmDpJebzBCzplGJpch72AMsBo5ei39l5xopdOY40uSPnTN6n9HUyRWrwl+ZxRAavYjsjmeNix6djnZ7RGJLJWIr7pcWmsMIVrTU6432L5nOOrzl6ubki9focbqYbq1aaXk8a1VnaOnoS6rgFPykDnNR9jN9TQMk60yrPP09japzVV787FtbyciWG1l+TinglvicbOUqbRS8NkGI3amqtSt/g5NpNIfkUUHLOFykyNoBuZkc0Ha+5b+34bLv4UubuuYdjX3iC4f90Da5svjG+dpBC4RHiidBo/0kIlVkb/WgyChFUwwy10KMWutRCl0bo4CsHrQVdl6xm5mSDyUPHOXXfl3GcLF62jf5dN1HoHkFF4z8dodRSxIIwQUYz/dyDTNzzHaQTmgABAABJREFUHXQQUJsbZ+TGd+LSLLtvWBFmH+eZDq8QKMGv9tr0yorSpj0eqWgBQuN2tNN2/eVM/OlnKL/+OrIbV6EWA5YeeYbq03vp+eB7Eb40N82DQGhENWT+8ceYeeBegvk52rdfzOCtb+PwX3+M8pYdZEtdUI8mhDroSo3pg7upnjlGbfIMtYkzaL8BgHA9wkoFx83GoEMI8PIlOi66go6LrgDAn5+ldvwY1RNHmH/uCRrz0zjZHDKXx8nlkfkci3NjTB1+EpTigZ/8HvmeQcqbd1LoHqHQM4rTVqYydoTFY/s4fXI3J889zor1NzOw5Trcagbpi5hKYL1dYa3C3PHnWTh9kI6NF1FctxHlR4tqLmVsRjZW/PsWzwXKzFOOrUmEjCVgIT15RfLfEVARNkKUvpcyAklR4rGpB5Va2dIPQ2pCsBO2maA4z2iNmyAuIhznP2lou/IKZr/wQzrf/mtIRDzZKBUyc+f3Kb/2BlNLI7XvVjpB/J1oPqbtMzs2VRQhU0SLS3pz29cWgEb9oix4VdEC4Wh61lzM2aOPsWLLLRAVghRRxnL4/7L333GWHOd9L/yt6j75zJkcdnZnc07YhJwzSYAECRIkRTFJpEhJlv3KvvaVr1+/lu7nXr/WtV77WrYkmgqUmEWCBEASIAECBEACJAEsFruLxQZszmlmdvLMCd1V94/qUH3OmcUumF6Yrs9n95zp011dXV31PM/viarG5Ogp5q8zWSBD035koQgAZgJY2paagJGFAG166jzZbBst2W7L6hGAWNvlLvxe3y7DktHU6hEkPEi4mIWukJGLWnhtOC7rmSFifjZIsut9uDpNe+9Khl5/gd6b34lMp2IGFKyvyJWE4FXbfKcZoY4EKSuNvIb2pRs59sq3mTvnSvrb1hqA5PvJuYsy+wUDDO776tGHOHdhN/PnXU8208b+Q4+Sy3WwsOPq5PxHNcnqQGK4r9+o5tbPsb2VXR1+FU25hjT5KcwXNEKY8hRuvsjcFbew56V/oG/NLRTmL6OSqzF8ZDtjr2+n74EPo9JE5SW0A57jMfLqy4w+/QO84WGKGzbSd+8HOPHf/2+KS9eQL/WiAmAlq6CnK0zteZXpU8coD51m5sIZVK0CgJAuqdNjZFOpAAiYdaZFmmJpE5Q2oZdCpTbJ2NgxxkaPcu74VmqDQziHsjiZnOFv6Sy1c2cZe2k7Wvkc//Qfk+2aQ2nROrJzBkgPzEN2tTNz+jBTh/cx/vxuRr63lfZ330jrfTeDyJq4UsK9bTwA1PQ00zv3UX7tAPkr1lNcudZYlmoitprVgZioCaJyFioVfo/5j7DAZMKaFAKh+mQNiqh4qrAsTtLXCVc9O0C9PpunDdaaegHYYC16HjO4OUuu5/yz32bRVe9DahnzFN/n6Nbv0L/kBpyyTgALZJxjL0yaYTLrBbUE0+AVjLs9jjY1n2qC1ITAmTFZhdHEWXDrFUghaAinVcafyoGOpVs4c/QFFq6/F6EchCejc33HZ3zoCH2b7kxk4ku494XH7Cy+jo7/dnTk3l8dOoeTL1DoWYAum/qZdkHkBnKjzA2iGC0BwomLvaMDOBM+UxNUE++XWJ6IrUvQUCsvgcysY1GHYb9EfN1ujpMid8UaRp55ifF/dj3FVgccqGkZudhFSjVlYpeMC16SZistqCqHsu8yWUszVc1Q9lyqNQfXUaRcn46bljP0N4Lips10rrkWp2LcYH1bUR4+s2NyBNRaoJbTnP3215h86SVa7riW9II+hv/uYZzuDuZsvCtOMOKDnfnVBsZvtr2VedPlgaUws5obEzlELPTlNqwmvaCfyR+9yPj3nkNIl/wV6+n7xCeRwkVXg1gn7TP+458y+oOn8SfGKa3eSPc1d5Dt6MP3PWrjo3RceTOyBt7kJDOnTjC+Zzvj+3aifY9Mdx+Znn5aVq4j09NPur0Tt9SGdFPxQgyIREKYF5BuaSO9ZgOlNRuojY4w70OfiIiybVb2/Rpnvvllsn391EaGmTh5hOE9LxhB0nHIL15Bz3V30Ve8n8EfPcHR3d/n/LlXWXrDh8m29UaEY+zcQc7uepqJUwdAKVLFNkYObWfB2z5Kaek648IAiWK3hNqV4Dki9wIvlrOlQ8BQRFSLyBAuHfWR+NSWW15wPy11RNCwfItVpcr0Czso7z0ECPKrVlJYfwXSSTVYTcwfwa3qBNiEST48TwmKa9ahhycZ+svP0bL5KlLtHVTPnmVix8u03Hg92bkDcY0DGzNZaw0tIhdBoYjSryaCfZXFQASRNc3GV5EFK2AeUhuQYPvsagGlOUsZPLyVwZPb6Vi4wQhTCLzqDAe3fY25q241jM/Cms3mpFmRUp0YkKmZ4DgZtJSRZanegnTR1NWzuN01nPYG5yQYjQ1UAsuwCJjVJRFPBUKa2B2F5uihpxg88Qrdq66DtBszcTD9WfEboXWpQRCwvpvxxlNkW77dYolcqZcLo4eZ074u1kCGwkzoMhf5dJu/D5x8inMXdrN2zQfpnrMegEptgv3HnyDrttBXWh0Dpjea719qzNJbt0r6r6IpJ7b4AyAD64hv1mvL/BUs7uzj7NGXOHPweVRGUli7jjkf+yTSSUE1FOI1F3a8wOBLT+GNjVBYv56+3/w4hY65yGlFbWyE9mWbcaZBVaconz3J+N7tjO3fgfJq5Fp7KJT66V62mkJLH/lcJ1mnREo5iBkD7utdVcN948gc+ZZV9LWupjI+xNrNHw8sNiLSpAMo3+Pgtq+TLXRSKY8xdfw4o7u2glYgJcWBZXTcdhfO2+7nwk++z8gjzzL50910/f5vkJ7XH8WNVg4cZfy7zzCz5wB4Pk5HG1Mvbkd/7IMUN26KXOqELxJuchEAgkiIi9zwgoxpoSAcKuyM4iYJmJrGo4Z80rI4xYpCUNUqI0e2M3b2AGho611G58AGHDcdW0UCBZltfWlQ1EW8JekO1t69HG98jNef/jt6F24hW+xmZuI854++TO+iK2ntWEioFDO82o6XieUr5QQp4bNhTUEVFHq3xiisMdI4zth/jNjyYYOmIMFPoXchQwdf5NyxrfTO3YxMmQXlV8oc2vFNelfdBE6dYGqBsMT4Gz61lcVWo2oVZDpjFMSBslUGoRzR3Nav7XDcMhi8hsiGpIjns/76kHc1YU66DiA1kLlmgOkiLXbc0Yw8+zSTP3yB1ls3kCqmUGiqvkNVuVSUS1ml8IXER1ATBiT5CGrKRSGoKJeakhGo8JSM6LlSIgKEKalo7ZRklsxl6tgB2jdcG2d7FIGyIJyyYF35GQPCh55/ksmXXqLr0w/QdfcapNR4o5MMf/NxUsU2Opdf1Vy5gSVTc3lzFLa3Mm+6vNThgUZJSx1bMwJJT/hmFp22Nlrvu9sQVV8gKhJREwlhp3L0JMMPP4xIpVn4sX9KvnehcWHwwZEuub75DP/0Bwz/9Gm8yTEA0u1ddF9/J61rt5BqaWs+viCNaaR9CseMNVRLABOOxCtP4WYK8QYJZVnHRVcqtF9/GzJlpklVKlTPnqF86jgjL/+EI1/4LxSWr6brxrtZvHkzp779RV57/L+w8Kr3UupcyLEdjzJyYhe53gHm3PoeisvXks4UOfnYlzj6vc/Tu/E2ejffgSAdZQUSOiYSOng7kQYtXLzaaBDCgrLaEcRan9CMH0yAIqrhYMdOCR+TZENYlEFA9exZLnzlEYo3XkXnh+9He5rpV17j3F//DZ0f+gDpjo54LsNlEbzcCHhEjMYqHBuORYHwBG1brqe0fANTu3Yyc/IMqc5O5nzkt6GQRoXBmoJ4wPWbQ4H0BLIS16hIumIRMwZL61XviqAIrvFI1olQlkbLMVx98fW/wZndT7P3mb8mW+rCr5ZRXpX+VbdQ7FkUZexOWIwsMNHMjzwKDrWCl31VRboZQ+0cYZJJWFnuLqk1+ByL5PHZEg/YyQ0ahxsDp3rAhCYsGNmspoUOrDYKxev7Hubc8a30b3kHndfcbsV2ESfxqHfzoHHNhRpGe18kgFNwrkoJSv3LuXDsNfyMRLoCWQZhS55WnJIWgpNDL3P07PMsWXEvHfM3BG4NmoXL76ZcHWPX4YfQSwVzSquMhfEyA11/kU0hfi4+3b8uMUtggFK1ZNybvKC+jVBBMiFPIHNt9PXcjR+c5+eMNQQvFvYrQ2c58+SDCMdh7id+n/zCpbhlcCbAqUiK3QsZ3vEcF3b+hOr0KACZQgfzlt1CX98m8qk2k2XTV0YQrwa1Y3QtdtVrss4Se1hCSrmowSEymRLalZHwH5UDmJpi8aL7Ipd1T3tMTZ1lYvwEZ469yPG//2+0zF1B90130/47mzn9rS9y9n//K9rf/y5ya1cw8tB3md66k9RAP+3330t+w1qc1hLDX/w6Q//wVaonT9J67x3IQs4o8xQQZrIMY2otS35kjbBdzTTo0DvCF0GyHxLxpPZ+TygHrd9DC1NldJAjLz5Iz8Bmlq57D0LD8OnXeP1Hf8eSje8lW+omjmnRVgImUVcrMLiN0kmwBqA1vfO30DlnDcMnX+XC6d1k8u2svPajxuMl8c4skJ4SwSeRBcDEleiYj/vCzJ0vkFURF04P+b62x2GOR9YP654JcKUFQgrm3/h+zu16lj3P/03A1yr4tTJ9K2+mZe7S5i5qNm9142eJEk85GAWsqxGuQjgapSqIbAYvZ9aiUwWqOiLssYyjozGaz1i+SQrwzYvzhvJI9D1sSicsSbPFdTW0WX4PZQWVAi+tOPuDRxj76fO0338ziz9xLb6uUq0lgWZKmEQPKWWy5Cktosx4Ne1QUS4zfipyv6sqB1/LoOSfJuX6ZFyPXKpK3q3RuXmAs999lWrRJ+UYF74wXlBZ78hPg8rA6GsvM/r447S9820Ub9iI5/loDe3vuRl/eIyz3/ka+j2CriVXRmEvThMFjYlf101dFC/W3sq8SWj9xlx+fHyc1tZW8stW0v3AB5C9LdQmx/GGRsgsnI83fIHy/gPM7D+A29VG+/vuiV2bajIKGgsFZlmGyZe2Mvi9R5CpNAve+ylynf2RcDS2Zxuje7aR7ekn2zOPbO9c0u1diSC8xKfVLvry6sDSxIHdzJw8Svcd9yQID8DUgb1MHzlI913vtDq3iLxWjO/ezvCz36c2PEhh+Ro6r76ViW0vMrJnKwhJKtdC/zX3Uti0CZU1JnbpAVWf4eefYvClH+DmW+i77h2UVm1EOMYErqVZ2KG1yakQuTRoiKwgDZqvkPEEzDsKrPTN9bJijT8gcmFGQpXW+I7H2b/6a7o/9WGc1gBABq5z3tAIw1/9Bj2//ztGsE9EyIrmAZcCy1WTCLiJIG2qIf7xeFRaBz7aKrAshGrFYBzhO5TaMI+awJmWMeOwBGX7ndUzTxtQRa6NoX+9T1y40COhPYwsVcqnNjOB46RxM3nrXjEQAQhTXNuCQfQM8dRFYw7B8sHnv8SF07sptcwjm24lmyqRc1roaV1OVhYb72dv4Uu1YCQsW0lha9a+7IQFlhUm1nLGrniRdjY4XzsCH4/XXv0So+f3M/+mD9C27kojIGC9M2t/1n8mUVv8ab+faA2EX4V5n5P7dnP4ib+j2D6fYrGPUraXuR0bcHEJE2ToIEvU+dHX2bX/a/TPv4aFG+4zVsSaxgkqyvta8fprD3Lu3E7WLrk/du2rI6X2PHmqytM7/pSxsTFKpdJFX82bbSGdvueJT5IqpN/4gjdotakqj939t7/QMf8qW8TXFi+n993vx+3oQI1NUjs/SH7uQrzREaYP7Gf62AHcTIF5N9yPdqBWICiQTWTVAFBSM7F7O+cffQghJXN/45OUWufjlMGd0UzsfZXzh1+gWJxDsdRPsaWfQqYDqYUppO4bCUcEipFZ3Wwv1oTgwsRRzo/uZeX8d5g16MR7dGTsKOeGX2PlkneiXBHt1VDhpoTm/PBuju1/kpnxc7TMW0HnNbczcmwHY1t/AlLiFAu0vfMdFK/cjCTM6qBRWjH2zDOMffcpZCFP67vvpnjlJgSOVUg2TPkdywRRDZ56BRxEdF0oEWezC7PbWZntmsUxyRpIz9RMfP2pv2bZ5g+Qd0tRcWuASm2c13d8jTXX/w44MuGiZQOmxLjCTGxhJrsog1g8/lnlkKBvPx0AJFeY2OVA6A5LqqiMiYvTVq1BU7DWgCWnbMVxBy5T0qu/V9046miqsGim8EFUPbypCaSTIpUpxM8RnK8dEVlgw3gqP0tUN1OlApAZgjxHQ8pYxaSrGPzsw0z9ZAfZuQtIF9pI59vIZNtom7uaTL6tEXzWzbfNS+tljYbkD9jrovH9XPQd2e8qeH7liMBaKvBTRIkStAueozj+xBeY3LOLrt9+F33vuoJc2qRc9pRECE0pU6aUrtCbnaDgVky8UgCWQpDkKfNp3O9STHspKp5LTTmUPRdfGWaSdT1aMmU6MjMcf/EcL/zzR0gvmke6r59cRz9tq68iJbPRHIWunRNH9nL6y5+juHkznb/5ADofaSUiZH3h848w+fxL9N77AF0rr8GpgDsDwtdBfJxOWG09r8JL3/q3b8gj/kfgTZdlWZo+tJ+Tf/6faL3mekZ//ENUuYzMFxJpvlvvvA2q0sg2KiBytUBI1vGmLsxbwmhbJ9Whs3jV6UTB1LZVm2lbuTl5c01U2NWrlKmODCHTGdLtXYHwbk672PqPNNHBBiguWc3MscOcf/zbdFxzM26pFV2tML5zG5MH9jDn/R9t7CS6j6R13WZKazYyvusVhn/4JMe/+BcUl62h68rbcFWKnitugWKGWuB7HFo4hOvQecvdlFZv4tzT3+LEE18m/dKTdF99B+0rNiK0g6jF7tuxu1AMhhAxoZN+Ag9E2o6QAQlFIq1r+BzaMT7PJuhPMHVoD4W1a3FyLbFaIjjX7W4nvWAelSNHyC5dVCe4BskldKzpSWhtbG2WwGiZEAhhqoGHFqhYI0VM2ZQw7nZ+/IKj+ksIkBolRBxrRTgvwtrUsVAjbIIbjDNcD/VgOswKp3UgTAdWS6EdUm5bQsNmDHQi6hMw4L7Onc98r9NuhacJ87h9a24hnWujNjHC9MwoI+NHqJYnOJl/hWuWfRI5m9XocprlOpawMIVzY7lHJKxS9nkXcxsOHyiaR6hUJxkdPICbLZq91qSuXAhwEkCpTpAiOCc0itrJQEKmGvFLaeY0v2Il/RPvonz+FOMXTnHu5DZOF1/miuUfIpduo1qd5MzwLk6d38bU1Dk6e9ewYNN9aNcxQEgFBYUBR0pWrn8/4jWH1w49hFqimde+Hu1dxPT3Jl7Rm22ekgj1s/t0ez+HPt4KbfroQY7/1X+m/eqbGHnpOfyZKZxcAX8m5mudV9wYKTtkUHpC14gUV9oFlRZkli0i1dlF5fRJ9PgUTtYApdSMprdrDXNKq5C1YD0pjZjyDU/yFH6tzHR5CIcUhXSH4Wt1e/CNMytqOnPzGRk7wt6jj7Go7zqy6VaU9jhz4TXOjexh/dL3IzwfqaWhb05Q7kGAEIK+jrV0X7eG80OvcXz/Uxz9xl/RMn8lXVffgUpD6x23IQoZRBXL9VmgHEn7LXdQ2LSRkUe+zYV/+Drjjz5F6W23U7xqM8IJNryDyfKqEsNu4rKMxTus7KMiptuhW1DClTnoj8DTYuzMflq7l5JLtyLLBpSGNC/rtNDWtZTR8/tp61sZKFkCATLQ1SX71XH/ocKtjv5Esmd9E0HfAV3UlnKzQfGpTNyXTWaFF1iX6hJnzKY8bgBKIR21v4fjV6boquu2I7ROsP/QKplIvlHX7MQPkeeRa/i0dBVuyqfzXVfilHLUzkxQHr7A1KnDeONjnG/9ESs+9Ee4NYkMhHJbGQYiyWebDiAERCIBqhIKtESfja0p2LXlAWs+7N/88hRT+/ciC3nSvUUcR+EpSaXmopRASk3a8Uk7flRvCQkOmpoyMUszfoqqcqmGyRyUw4yXouY7eL5J6a+UREplMlsG7nlzN/ew6PduZ2TfIDNHTzK5dRujL/+UuR/8bTKt3ajpKcZ2vcLYjpeonDlFbtlyet7zPqhKCMrMIALZKyVp//B7QErOfefr4Pl0r7o+rt3ZwIObJ7+4WHsr86bLsiwt/fgfceYH32TqxEFaV2+hZcU6yqeO4ba0cvbpRyisXEPPxz8GKWlp7UVU40D4gKeZev01Tj/6jzjZHHPf8zFy/QPmRqGGP9TYWGPQgF+rcPb5R/EmRsn29OPNTFMdHaLzypspLl55CU8b9FW38KeOHmB054uoShmkpGXVekprNoDrJq67WNPKZ/y17Qz/6Elqw4MgJNneuRTmL8Hp7ICURKckOA5SSxxcE3ybzqPGJxnZ/mMmDu2mZdEaFt/9cXCcKOtgJEBK6zMESSrWLIULWosYmEWWC6vGRORvHRAUPy3ws3By63coXHklqfm9RksUxqQF9y/vP0Tl2Ala77zFImazWJWiMeuY6WlIVlwPB2fX7WpyrhImgJpAg5VVhK4Jsha/nAgchQxcxUG+9W6MEeitO0/aAMsjSvEaubFYTNnOulYfSxCeF861rs+4Y31vOB5cF9V70jBx8gC7n/ssG1Z9hJ78YoQtmL9ZF7AmgtcbWpnqkiDMalkK/jagXETMdrI6yIHXHmZ88DDtSzcx56b7cEotDeA68gMP3SLraWOdYBTFK1hCjHmeoFtbi6qgevI0h5/4HKpWobVjERfO7QWgfc4qWnqX0NK/lHzrHBwPnKrGKSucim+UCEKg0hLf0Rzc9TBnTm5l5bL7GGjbaBJH2IAzmCtPVXh6+y/HsnTndz/9c9PePfmOz/4Pb1la8+4/4sS2bzF+Yh+ty66gddUWpgaP4LS3c/7xhyksWMaid30St2bcXOpjM0yciWbi6D7OPvIVhJti3rs+QrF7EekJSE0rUlOK9LiH8BSy6seum75G+VUOnHmaqcowpWwfnl9hqjLE/I4t9LQsb4ilq7cKN6bSN3+PTB3n5PB2an4ZhKC3dSW97WtxXDfYqzIQbqWJt6zbu1oKlNScG3qNY4d+wMzEORCCXPdc8vOX4HZ0IKQDQiKFBFeisy605JEtWWpqmsnnfsr09l1kVy6j55/+FsIN/M1DlzyLztuJHBoEVE3sTh7KE3U1kxLWJW1+d2pw7oUn6OheQVthAHfaN+mxtQFS2hWMTZ9ieHAfA6vvshIgWDV0bJrYxKrU4D5W34RV50YYi4SXEca6FChRIbDW2C7jIl5fNn2LvB7qElzMZnUxY7Dm1AJLYQw6GMWprOvXdnOMvFZS8bhCy5KfMVYwLUFnlAFKjsJJK6SjcF2fdMqYvmqegwqE3YndZzj97/47vR/6KJ0DG4zbarnu3kBYR2lWsGQ3C8AmP2N+2sxK1cylL3p30X43WZyVaz7D4zNTg5x56ptMH9pPfstaun7rHbgdrWZeXZ9ivkIxU6EzO03erZKWHimhTJyS7zLpZYLYJoea71AJst+FIMnzDTgSgJQqcMczLnRTlXQ0n1NHRjj7Z19CjU+RW7qM6b170EqRX76S/OJlFAaWkuucg1QyUpyHqcRNYhGNchQXHvo2Ez98jp67303fypsC7yZtPoOEKQA1v8zL37x0y9Kvijd95jOf4TOf+QxHjx4FYM2aNfy7f/fvePvb337J97wsy1Im28qi93yayugQmc5ec3DhOi7s+gkg6H3vhxDagVpyswkF/sQkEzu2Mbb9RSpDZykuW0P7phuYOXWEsX3bcfJFcr1zaZm3gsjLy9ac+D4nH/sinVfeQmH+0oiQqlqVU098Da0ULUtXx4NtpqUKlTraElA1FBYuo7BwWXwewe/Kug5mR9EChHRovWILpXWbqQ6dZ+boIWaOHWJs3w78qUm0qsu+ZV/uOMz/6B/Qsf5ajj3yOU798GEWXH0/OiUTZm/72ewsQw2CIwTJD5JjDomdYSQCR+kAaJl4E0enEBNlnLKILEC28KynK0g3HWWqCxld7GNuzbUgOhiBLt0IlBoSUlgAKUoJG54fUDPhm9gYO2g1AkkhIw3Xj62Bq2/1BDU8HIxfBABJkKypFM2lsAq5zaLVC5+lqYaq7txoTkPGFKQoVwLy85dR7FzA4dM/onPVMpxQ66w1UcaaizBrcyPdFCDF47hMNdGlNkVQk0VQyPaw/upPc/bsKxzd9R3Gv7SXxe/+XbJzB+IshNiMK2bsCfOpSJ6nIYp3svdsM8FBS0jP7WfF+/6QEz/4GjPTo8zb8HbKE8NUZ0ap+TMMHt7KzMgZ+hZdQ3ff+sC1VUaC6cTUWc6efQUPj5a2AfYdeARnmUt/xzpELSwIFS6iNwlm32Qzy/5nf5e/3FH/6lo2XWLZbZ9gujxEursXlYL8+jWM7jYZUefe+yGQTiSk2oqrWnWasQPbGN77EuWhUxQXrKDzylspnzjO9L69pHSalvwcuovLYqBUi8GS9j1ePf4QA+2bWNV9uxmQ1ijlsfvcE2jl01daSRiQn2jNgJLV2gvzac8PJPe8EMZDQwbWFSUwKVdksJd0ED8Z19Hrb19L7zXrmK5eYGTsCCOjR5jY9yq1mYmL8jWkpO/3P0XLdddx7rN/y/CXvknHJx4w/Yc00TceBuggNsgSXO29/EZCcoOLFSACd3SRSlFTFWMBlMLsYz9WYHl+xSSHiviXsOoOikb6PMs9m46jni8EtCxKq23RNBm42Wvb+0MGyZzChyIGTAmlkG31qeNrzXhTNMwQ/ISx3gJEUCQ8KuAbPVzcl+3lYj+LDgvVO8E/acCSsCbGdRQy5ZN1PbqubWF8wyIuPP8kxd+9ApUSpGQABhPgVySf642ajgFWOGe2YrceRCViYEOXf3vuQuXfLPfKtnQz/4FPM3p4B4Pfe4QT/8uf0/PPf5vsqvkAeL6k5pvsdkoL0tIl7XhB1juT8a4WpAav+Q6ektQ8JwJJypeoYFxCSGo1l2kwxaMrThSmINvmMOdf/TOGv/gNaueH6Lz1bryRMWoXhmB0hqlz2xg+d4qOFVfSuWxL4BIaKHxqUD1zjrFXt6Kmp8ksWsT5Jx7BIUX3imtBG3d0rWOedrms7VfFm+bNm8ef/umfsnSpqWH6+c9/nvvuu4/t27ezZs2aS+rj8rLhCZCOQ7ajNyEgT50+SqavHyeXhcBXWHjgT04yeXAPE/tfY+rQXrSGwqLlZPvmMXX8ECe+9lmEm0Jms+haDVUp07r2Sube/gCOtIamYezgLooLVlAcWBotagDpppl7929w/OG/pWXRqihQvnHwxKb6UO629gSQELJE/XVYm7Se+FjXCilI9/aS7u2l9errGP3pj5g6uI/i2g3IYoGZk0cpHz9G593vwCm2oMrTnH/wHzn35CMs+tA/Y94t7+PkM18nn25nzppbUSmBpwUEif7CsYcpUu0K4HY2xchFLxy/NKlxQ2uTdAFpFr/0DLHomLuOoVdepNC70ATmumF6TWP5mX55Jx333IOsiYTVkDqCGlm0QmZlgTTsjHUiWFQBsBLKMFGzfkRsZSTUgAWMVca1n+KYIxFb10IiaFuUrJcVgalwngJDVUKLFtIf1xwItYlO1WhVjDZGxKBJxv1HfQgiMBWByQCANdCLSLiPpX9lASydlvRtvJODT/0t5yqH6C0uizXUJgfpGwvmbwCGmiZ8uNTzok3ZeNxmWmGK2/7uTXTfvJJdL32OY4/9A8vf98+huxhpWaPHsBly4l5W//Z6CvZhYqtac2/Gb76LUpFF934CPMWRpz5P17KraZu3KupTez7HX3wI7dXom7PJJF/SmkN7voNC0bv4GlIt7UyOnOTwy19n94Fv4qwv0JtbHKWVj9Lr/xLbWznj0K+kaY0Qkmx7b2wUrEH56FHSnT24+RaoEtAZjT81xdjJvYyeeI2R03vRWlGas4z8si1Mnj3CsW/8d2Qqg3RctFKcqs4w3LuedQPvRCjHgOkg/f/Q+EHaMnPozsyHWhx0IoVkTffdvHzqQXqLyxDCSKOGrup4r1sW36atDig1PDdEgCk+x6zdKJ5UCKSAVtFKS+tG5nVv4VTxJc4Pvkb74isQbSUmR44zdeow3dfdTbqlHa82w5mnvsHIN77NvD/4F/i/+QGGPv8V3J422u6/0wBFYRIM6NDFOvxMCLgQKdls7wD7EevBQfC7Ml6GlJat4/zLP6C1fzkIEcRdhPsTzu/bQf+KW4jq7kRgWDSnO9F9dOyGF/5ULys0exfC4ieQzPpG/F3X0b6LgQQd8ptm51gyjSaglw6x+3JwPzvJVOhqaieFSvRVB9TCJB04WCBJ47gKRypcR+GE5SeEQqJxpKI9M8OGT6zn+X/6LcZObqW4agv+qDR1pLygnpSK12JTsGSvl+SEN64lqw8RZUAQibXV1FIYWpjCSQxlLuL+HU/QsXgjLZ9eyckH/46hv/gSff/m/wVzC/hK4itJ2XPxpKQsXFwvhaclFc9lupam6jv4gcudryS+J9G+cZHVKnAxCkBRmPiEmsApyygO3MT0pWh528dxpjUnv/dlOuavo2vVe8y690AvUhzb+R1Gx6r0rLjWxGBJzcltj1KrzdC54TpkTzvTw6c5N/J1zjzxIE4uT8eCK6K4ONnUTeuN26+KN73zne9M/P3v//2/5zOf+QwvvPDCLwYs1WtVps8c49zLTzFxeDcdN9wRpwWdqnLiG3/P1JH9AOT6F9Bzwz0I1+Xs0w8j3BSlVRtoXbeF/LxFCOkwdewApx75ImOvbaVr/Q3kewcS4GXswE7m3vmBeLNYcyVdl2x3P5Xzp8n2zJ19/OEXnXzHoczeQLDs57bfTZ3wZTe737HtL+FNjjP3Q79jspoJKK5cgzc1wdmvfYm+D36EdHsnXfe8m9N/9xnG9m+nc8M1eCMXOL7jMdxCK51LNxt3sPB+IShrYioXMjmWkCAIDJqPNreM8yXINDiBK1uhbS7npqaZ3ruX/JpVCBX44zuCiZ3bkNm8yURoZTRKVBIPJtOkXyXIJBR6aYsgwQOx5iZB3QKtiW8BJcu1QCiMtUwKtAqFBeJaALYbQrLLxHuzmW6Dn3tIW0M6YFs6fCOjKEcgA0tTyORsohneJzEGETIzy+97FrCk7bgvYtAJUFy0itY5Kziw79t0XPWHpB2JL3wq5XFmZi6QS7WQT3cgtKVxfoPsWZcKkH7mFmA6nJgppWWe1Rs/zPaf/DeOfv/zLPjA74LrJOmv7dMfDTruM1zPswGoxNYN34WKZUItYOLMQbKd/ZQWrkb7cYCwdBwWXvVeXv/BX9M1dwNO2uHUwefItfXSu/S6wI0H2gor2ND3r9nxnT9l12tfJrXut+nIzYvn/pdYYwn+J1i67BZYElTgUjN97iSDL/+A8f2v0r7lhnjdeB4Hn/o8o6f2glYU2wZYsOJO3EyBgztNUoeOhVfQcf0DtPQtRuIwc+wwB37yRQbPvcp46yY6cwNGyA4sS2fG9rCq61ZMtstw4Zl5lwjac3MZnT5Fe2EgAW4aAJMd23QRS3Kz7JdRn9BovVIQpdqX4HgweGYnM5Nn2LD+t/DzDrWiQ8vSNVQ3TnHysS8y7/YPkmubh7jp3Rz+6n9l6oWXaLn9amrjFxh7+HGc9hItt15tPBfAun+IEgKaWu86PRtYsIBSArhgukt1daOlYPD0Lrr71wVKOMMzhk/tQgvItvZE59vuiPXgp/4zSevj99AsxjIx577hI0oLy81ylvObPG9937Zs0yC72L/Z8k1UM5PI1Sz8TXvW9eEzK3Nu5LFiA9hIPtHRdyEVUmhcx4CltOMjhAFJrjAgKu34LL6qk6O3LOTsVx8l/38tp9peQpQV/tAoavgCqVyJbGsPUsko9KDZPNQDIvu4to4JHWwN21qliF39LG+WBiDcjHdb6wQNTjbHnPd/jGN//Z8Z/OwX6Pu3v4MMOvK1jJQDnlTUlEPVcynXXGNJ8hxjRfIF2pfgG0uw8IObRMrgOLukUw7cU6uxK6WsQeXoUbJuif7SWuSwF8TqGbls6dJ72LXtc/TO20QqnebskRfIyiILtrzTWJumBbn25bR88n/j0N/+B05++4s4783R0bHchBUE82J7g1xK+3nzpvHx8cTxTCZDJpNpdknUfN/nwQcfZGpqimuvvfaS73l5qcMBNKhahfMvfJ/Bbc+Qbu+h/+0fpLR+s9G++Yqh559i+vhB+u98H6XFa3HzLQhgZO820JpFH/lnZHv60Z7PxP49jGz/CVNHXyc3Zz697/o4ub6Bho2gfQ8nk02Mw16kbqEFVZ65uPbF+t5ETm4452InJ9wEmt1LKSZe3ca8D38aIeLCc8KHVK6FjutvZfzFF+i45Q7jBrhqLee+/wjO2zN03fx2qtPjHP7pP+IUi5QGVhjiammPIm1LE+YQ/WERD+lr8GLf6bA2mp8xArwMgl4X3PQBTr70LUb2vER+6QqUVEwd3Euqu4fud9wXoSzbDTDy39YkNXEEwCgATLpSY2rHq5QPHQIpya9eQ37lCoQMqbXVX/gYNriwGJemjqDVAaXQYKVl/Juw5idy7QqeJcIUwvq01pckAIEKqpVphva+xOTZwwC0zFtG+8orcTK5aHz2OzDjiH3gm/rjWwwpIuyi7nxHMHD9/ex+6M/Y9spnUH6N8swI2irfnnLztLbMp71lPu35eZSyfchgm4cAygZIDcLTm42bFDQIZuYG8QINmVl8b8jm2lh+9UfY/dxnubDzJ7RffWPUX0Pgc92cRftQJX9LrA/i79H7lrHcoCWMHHqFOVvubhy6AOFKSv3LGBs5QmvXEi6c28fqmz4VWxVD90wnzcpbP8nepz/Lzt1fYNP636GU7SFKP/9LbJ6SdX67P0M/vwZNpQBHoPwq57Y+zfmXvk+qtZM5d72P1nVXGgVOTTO441lGT+1hydr76OpaQ85tQfiawaHdoBVrr/89ir2LUMJn7OA+zh38KSNn91Is9rNu8f10pgeISgBoDUrjqyopkTWFZ6IBySjeLeMU8PwyUdrjEAAFrnQNFqY36fIZ1VSzClEnXPyC+CqtNafObGXT0t+ESQ8nyI7lZRxErkDf5rsY2fET+q98B6X2hbSt2MTgU9+hqzVH6Y5bUeNjXPj8IzitLeQ3rI72uQFOhtEKFSbVMftUWmDoosCpHihYX+be+l7O/vhRLhx8mbb+lQgtGDu1j0y+jYVX3p/gCwkekJij4DN4f6FQrfwaw6dfY3ToIAJBe+8KOnpXmXiuxNgMEbIVe1KHacpFUugOZY4mz9oA1OzriOfKdteLlKzhpZbCNHwmPTnD6M6tTB07gPChpW8JXUuuNKVVrDEJaf5J3yznxBhDoCRM0WIpNVJqHKFwHZ+UNO53rlC4UlF0K5TcMnf+0Xq+cP/3OP9//hW+p6mdHwUv3hMynyO7cBG5gUXk5ywi3zOAI1IJL5GIb1rP2TB/Ot4i9jyZ1OuWDFIfI5WYa+td1QHccP24LS30fvzjnP7Lv2D8iedp++iVSKGp+Q5aCxxp4pVqvkPVdyKg5FUcdGBREjUZeA+JaGwJxUAQdiCDjIhRdsQquBXN2f2vMHfgWlKTHqKmohho5QpkStLZtYqx06/TMWcNF47uYM21n0SOq+gcLytwCg4LPvD7HPnSn3PiW39P+r7fo6VtfjSJl0ttft68aWBgIHH8j//4j/mTP/mTptfs2rWLa6+9lnK5TLFY5OGHH2b16tVNz23WLgssVSZGGNm6lZHXXkRVy/TecC+dV90CEmaOHWP89Z2MH3iV2uQoXVfeRueaawPXK3N964LVnMnmOfrlv6S0eA0TR/fhz0yS6x1g4J6PUlp2BUI0JgwQGlItbVSGzpDpnpMYU3hu+exJ2lZsbhCa64WoiChaf9vCaTNXu8SCEMlzLTqUuKY2eJ5M39wACFjnBuMrLFrO6AvPRX/3vOt9nHvoHznxzb9jdOV65tz0LmqVcQ4983mW3/NPKHTMNXWkrAxmkfY83LSWpiQ6J7HBYonRDwCTlzUueaEbmyTFwA3vo+JPMHH+CDor6XvPh5CFXOwuENxKWARDhhqPOi166AddPXuWoYceorR+M523vR3te0y+toOzzz9H7wMfMoC6buclsveErn1CR25zYVxTvStE4h2HzNgSlpM3oQHg2RbmhJVHwuTISc78+Dt0XXETCzfdDFozdnQ3Rx7/e+befD/Zjr7kHAWxR4mg3WbMuE4gEFYfNhGW/d0M3Hg/44d3k2nporu1i3R7N+liO7XxYaZOHWHy3BEOnXoG5dcQ0qW9bTFzuzfSU1qO4wvsVNkNLdAeztoaMuJFIg6RoCM1QaSXNafWNSLoJ0hZ3Nq9mHx7P+XB09G8JBKUNGFMCctRGJRtCRjhLUJhoSHmKWwS/OoMTr4lWi/UrRk310JNlZnxx8m0daMyxr8nij0Ixpzp6Sfb0c/UucMcPfVD1i1/fyBc/JKsd+Hj6bh44c/az69Dm1JjjGz7ARdeewG/MkPvVXfTu+UOQFI+dJyRAzsYOfoq1akR+hdcx4KuqxCeQpRrCKXoySwknSqy58d/S1f3akYuHKRanaBYnMOape+lv3WNoYu+H2RWDKxIWlNItTM2c4a2TK8lxRGAIxgrn6Erv5DQbc/8bEyjkTVGktyXszVh1VZTNL22aQxUcG+hNeXyCIVUG05FgVdGVhxkJYXQGWo5SSa3kMGzT5GZUChXsGDzfRypVjn35c+Tf2U17Q/chz88ydBffYWef/EpMksXxnxZagjpR6iUC/dwAExmo/fR3sUCCDb5cV36b3o3/tQUU6cOIxQsuP4BUumCcau2Uk7bFqVwDCHYSSZV0JQnhjiw8xt0z7mChUvuQGvN0Lld7D78dyzf+AEyudaYj+jgvSJM2uhI+2duEsao1tO7przL5hdhF7aHRzR3OnFN9FWKaN5V2dQIO/3MQ3Stu4G+2z+OU4aJo3s4+uTnGdj8LvKdc2NlnxSxa71v/xMJGSFsUmgcqck4HlnHo5Quk5Y+OadKW2qGVnealoVlyn+ykq3fHaI4r0T/wn7mL3LonJvjzGmPPVtnOPrKCIM/+j7DMzVwHbLLFlHadDUtS9fh6nTDWklajay/wzmw5LKG5EC2VcleSyKcA4xFLpx8krKKn4HUsgEyi+fjnT5NLuXhSMVkkIzBcRSFdBUpNEJo435XcdBTKURV4NSCEivNElTZa0AR1dCUXgCYaiajoF+dIeMUDFCqKsIC91JLFJBOFVCVMmpqkmyqRLoMslYz/NIVuGmJW3bQ3R1ke/qZOX2Msy9/n8LbPhnxM19dHo/4efOmEydOJBI8XMyqtGLFCnbs2MHo6Cjf/OY3+djHPsYPf/jDSwZMlwWWDn75z3AyOTrWXUPHFdfj5ls498NHGdv3Ct7UOG6hROuS9bQuXU9h3uIGtygnk2P5h/4l57c9zcSx12lbuZmONVeS7epPmEqVVwWtE4XcutZex7mtP2De234zGZekoTx0GoQgXSgl7heBIEgKSsIiQJpGGUokr0sIrjY6svsJTw/PVb4pbBsGTlq/AQZEBQkCjCaiRP9Hf4fJV3cw+N1HOPiFP6PrhrvxylMcePyz9Ky9kc7Fm8m0dCQGawQ2EW1eINr4OhigCM4PiYn0QfmYbHtuoGGygyox1q/Wpevx8sF5lsBuz2M4DiUsATY0FIVEpOYz9NBD9P3GR0nlWqJrOq6/jfyyVZx/5EHm/sZvU98SQCFsKo4BiZim/Q6s8QmI0l5Gxhc7tih8hvq9ay+v8BkdY749/ZNvseDe30rUV2pdtp78wCKOf+9LLH7Pp430LgKfeYL7y+Q6aaYNDH3Io2kNx2fPhYDWjdfQvvYapJ9kqunOborzVzLH12jfpzx4msmzhxk5+iq7Xv8arptjTvcGlvTdRNrJJgSwaG4CZpOYK7g0Ycw+XWBJL5DIoGe34HAqW6Q2Phq5gySscGEf4fqzmJjAOkcnP8N5byJnxNcLyHbOYercUUp9SwNLkRGKwrmdHD5G3+pbIOXgqxrKFfG+tzpXaGpTIyjlM3fhDbFQQZNB/ALbW7nw36+i7f/qnyHTGTpWX03PqhvIZls5/dzjXDi0jer0KKlMkc6+tfSuXEtHcSGy4pvCsUGxaBfJtat/l6Pnf8L5kX30dq5hTvdGWvNzTHxSAJD8WhW0wlFONLMDpSt4fehZNnTf2xBvO1W9gKcq5FNt5kCdBcmsfRErOJqVFLDd80LLsnVKU/e7eitVpGk3iSekdhCWhUwKgTvpIGoSPyuRSuBOG7AkMgWW3/JbnF+3i9PPPMzpP/1PtN15J/7EJIP/9e9pue16CldvJtXVFe9bS7C1EwhFQClyRSKiC+FeN7GbjYAq5EdOvkDrknWE2Ua1b3hDQrmTcFOO75UATRrwFQd3fpNV6z5INl2K6PXAwA10dq3i4M5vsvrq3yKB5OzXoy1aZAMki9Y3azb4spNoJYCRPY/23wTHhDZWISWQWnH0qYdYevNHSKeLyHGNU9Hk2lfTduVCXn/hC6y849MgnIY5id+NiPmJjoXZEAw40liS0o4fAaWcU6PFKdMiy7Q607z9PXmue9dKplWGVmeaDneSrJjEWaF4/62KKdXNYGUhu/ZoXntpht1PnuX8l7/MYD5LcdMmOm69m3SuJapJCUReI/Y8aWvsOpT/LL6i7eeLJt16TxForJNNgrWowpqROR+nrYA/PEouVaWmHLwgLklpQTWwPNY8B99z0DUHWZbI0K3OzkxY50Vkv1P7HPud50tzGBs/TqZlOToooB2WCkAKxkeP0zvP1EFTfo24LqQOyrWYeHZZA29sFFUp07Xp5mgOEEaOvJz28+ZNpVLpkjO1ptPpKMHDli1b2Lp1K3/+53/OZz/72Uu6/rLAUv/176Zj/dWQy4CGc889yoXtz9Gx/jraFl9BoW+hCUS1aDSQoM6pQhtzb74/Pq6JhLPJY68ztPM5pGOyAvjVGTrWXE3bsg1ku+aQ71vI0W9+JshcI5GpNOlSO1NnjrPgno+aTupovi0YXQwwNfxtj69ew2P3FfQXXRYKrl29lE8fRwca9PrNN3PqOOnO7oRgJxCU1m2kuHgFg08+yvmnv03vOz9A5fBhzu18mjMvP05L/zI6ll1J+4K1OKkMOkhFGgqYEeGMUokLsF2BQsCkzEKPUocK4iyETcBdDFx0PBdamBXkEydwsM8PhN2p3bsort+AW2hp6DvbMwe3pZXK2dNk+vob7heBVW1NeROiESOoOuE59LPW8SGEtRSc+L1qrVCVCo6bBtdiDEGf40dfo2X5emQhbzJIW+vEKbRQmL+M8ZMHaFmwIiKcGhB1rncJITtYOAkBvk7ob3hOEcgQFgEVgbVNO6CkgJRLZmA+mYH5dG26hcrgWUZe38rpAz/l3PAuVi56J72llYiED2KTZgMnKz4iEtQu1gTGqha6qmmaaq5Hzu5j7PTr9N7wjgaQFAlHBGs1tCKFlh+bscW3iUBZIiOkPVxFZEXqWH0Np579Bi13LzYvS4goe1N5YohaeZJMWzcIqM1M4KkqrpNMf6oFTJ0/SnV6DCeVYXziFMVMNyk3bYJif4mWpf8Zs3R5rfuOe+lccx0ZL4Nb1px9+UnO7nqavkXX0NOzjvbSQqQvkDUfUdXGqhQUjA0TeWREnhX9d7Ji7l2mU62h7CGU4sLEUY4OvYhEIHCo+TPMbVlDf8tq8qk2unKLeensN3BlChA4MkXebWWkfJor+u5tBDyKyCUvomP1Gt568FTvqmdbkoRIeC0kgJOyrteaXLqNycog2lfGC8TXUPNxZmoI32FmbIhcqoQ7o1DpIMOeEHTMW0/+48s5++J3GXnsMTrfcz/VnlOMP/UcY489RWbJYopXbaG4YT0inSPKiGq5ete7fCctJfHxKCaxWUuAkSCmNrSGJLRXdddZblmhl8bIuX10dK0w7pg1FY1Hu4J8rpN8sZeJkeO0dC4Ifkj2GykTg7HYICmhJKrjFea9xbTRZLON6WT0CCEgQKNqFZCuSZwVgmZf4NQ0Yyf20d6znGI1j5jxo6RPWoBM5+ics4bRE7tpW7Q+EaukE2PAsiyJCIjYNEQKHfxTpIQiIz1SwidluaNIocnIGo5Q1LSL0pKsrJESFdqcadry06y7soa/RTL46V6e37+Cpx4cYc83tjO1cycdD7yb0vJNOGFmXBWPF0gC7Sagz/5sxhW1MPJSvbyFJir+6mc1KqOoHDrA9Mt7mPOBa8i6HrWqyW6nlUAjmaqko0QOftmBGYkzI4I03Zham83SuNevT914jhbQs/hKDrz4FTo2LMNxHIQrA5lMMFMZZWZ6iELHPISv8ZVHza+QkpkE39YCZgZPUZscQ6bSlIdOU+iYh8zmjBzSZI4u1v7/iTdpralUKpd8/mWBpZ7FV4LvMnJoD6N7tzF2YAd9V7+d3s13JAS8eizRVPMfHA8/R/a9zOSpg8y/68M4WRObpLwqZ194gur4Bbo23UL53HEybT2oWgW/UsabnsQvT5Np68LJFhoASUCn41u9EWCabdw2YKobengsPCWMn5COS25gERPbX6a08cq4Swm65jH8w+/T87Z3m+utzYYAWcjTc//7KZ89ydThfcx7z8fom7qfyd2vMrL7JY798CucSGXo3XAbvVvujCuAB/UYorSfvtlsWorkgHWQ7cYCAuGzaoeESVp6gYXEDx9exJMsdLShElqy8DYB8S8fPULb9TfPuukLy1Yxc+yIiWOzAFL0zmgkZJFgXGepCGOVmrn02fe0+9Y1jws/eZrpY4dwiy34M9O4hRa6briTdHtXNGczgydpXbURlSLKwhf1J6EwfwlTJw9TWLoiZsoEvEnE89Hg9tekJYSBOgCltZHpca35sZhAUoNo7isLfXTNfycdm27i5A8f5NXXv0qu0EWpdT5thXm05QdoyXYH2RVDFELSElQXUG7Wu0i64jXZ36GVKdJcBe6gGpiYOsf+rV+htGAVbTffirIwSKgxDi2eyomfJwJB1lopHz/G6E+fQ83MmKFnc3RcdRP5vvlNJjgWSlKlNtpWbObIU19gzqa7yHX04yvF2NFdDO79CQtv+mAU/Nyz5gZOvPgwC657ACFkNNfezCSndjzB4ps/zIX9L3No77c5LB6jpWUuc/uvMvVyfkntf7rhXV7rWXItqZkU04f3ceHAywwf38H8xbewZOFdBiBN+mbNBnGdYdyRna5f2FZaK7nK2dF9nB9/nfV995AiDdoIJodHXuDA8PMsbb+OsepZCqk2lPapqQo1f4Zxv0LWLZIRsQU76QKrsYteN7wpK5Od1UH8tYklKbJs1b/38Dm1RmpJV3EJJ8a2M79tkznuKWTZQ1erHD36BIvn34475eEHFca11MiqIJ3PMvfm+6mcOU35tb30f/R3UHe9h8m9uxh/ZSvD//ggF77xCK033ETn3e9I1FMKv9eXgqhXPCknNpBHyr/6RxHmNwmoADAl+EvigibHMMfGh4/S27sB4WljaQytW0iEFHR0rWD8wtEYLNUDpYAXhJ4hCTftZlvPovUxQNFWMiSd5BOez5nXf8jouf2ksy141RlS6TxzV9xOvtRjaKfSlM+eoLN9iakDFsa2aI12Jb6GtrbFDJ5/jbaF62OQZvPiaCwgHNCeQDsS5etg2ZiHkWiTBS8ATGGraYeKTuEHjNEJNlJZpQCoaoeySCGFIitqJu5JeiyRQ6xbd47fWwfbfnce/+HfjfPq577MRP93ySybj7twAem+xWS7+nFrbhIohe8xPGaDktDlM/SUsUAsQfhC6GkTuTI6JvbRK2pUTuFNnGHoL79C2xXzuPp316GkT6Xm4lVdA+Yl1BSoqgOV2KLkToMMwJITWJdmzp1k8NUf4lWmzfykMnSvvoFC/+IG93IRmMq0A7LUQs+K63ht15eZv/IOim3z0Mrnwtm9nDn0PEs3P2Csv45g7tIbeX3/t1ix7gGkdNCuwE8JqpQ5ufVRBu76ECOHdnDmue9w9rlHyfTOpf2Ka2lZvq7JQp29/ap407/5N/+Gt7/97QwMDDAxMcE//uM/8uyzz/L4449fch+XBZaOvfAQEyf3481MkOnoY86176Rn3Y2RK1mihQtytk1vvWBVqzCy72UW3fepKMYHQDpp5lx/L8ce+wcGt/6AfP8iOtfUZa8QcH7b04zu20bHyi1v/BANSM4CTE3G3WBtsn7W9c+nrR8EdN54J+ce+wblk8do3Xg1TrHIzKljjG39Ke3X3UK6oysmNuFchL6wAopr1nPhh09R82dwSzlKm66kbe2VeMPDnHrmmwy//hLd19wZFbMLfWjD8UoRuNjZxMESwiPCEArEgQlZSIzJlgBw1cx5UchTSNxt4t8MAIST57gor9bwEzoEj1VT3V0n57XeDB5avWy3SIE1DvsabQnYIdgLf7Ljbn2f0498gdK6zcy99U6jLVVQGxzkzHcfpPee95Lu7EFokJkMXnU6cX14Xy3Bq04jM2mrRod1n3qg9Ab7Rdc9R+Q6EBzTddfZGYIS7zgBWED0tjJw/ydoP7iHySN7mTh3nHNndoBWpDMtzOnbzLyuTeRTrZHWvD6FakMTVmHa+nPC9RVoZkNLn4fHsUPPcvLAM2Taupn7zt9EpeJFZPt/Bzwz0Obp4DHje2hg6tWdTO7aSdfb3kWqtc0EnY+MMPjEd/BWb6C0Yn3TuQ4Fp/blG8l39jO868dUxi8AUJq7gsV3/jZOOhutsdKCNfi1Mvu//9e0DawmnW9jevgUU0PHmL/lXWTbexk/+Trt/WuQQjJ6dj97936Dw5m2xnn7BTX/51Ql3f81SfBw9smHGD+zn9rMOLlCNwuX3cWCvutwKj7C85PAqN51FRLgKGoKlPY5eWEbm+c+gEQSZrxzpMOyjuvZee4xjoy8RDHVwcKWDcF1OsqGd3ziVU5M7GR+aUOU8CG6T+AxgKwjGHX7c9Y6TLYlCd1gOa4vxGo/28KOq9h77kleO/c95rVtIJ0uMT55lhMXXmFezxZa0t3gK4QnDZAI3cOCLluXrefss9+BoUlSLUXaVm2mde1mamMjnP/uI0xsfZHu296RdDWz3c3q6X/Yd4gjHeJsl8G7SM4JUUZYkzzQrr8TE9ek9SqM9yKmG46Lr5J8TUsR/a50LSjaa9VqiixIcZrypLXL+mzSEoowa5w2eAnj4w689BU6+laz9rrfMetPa8pTFzi445ssWnsvhdZ+hNK4Io1fnkZkgndVt2a82jTSTUdzXu9mn7RyBbF0vnH3UkomrAlhVjilzfGadijrFL6SpISP0iaey9cSKXwcoXCEJiU8nNDar1PUlEMKn5SYoU1q3jGvzPV/J3jwqV6+9wPB3leOcvr5V9G+xmktULh+C8WrriHT3m3qRNZbLoO029G7sGXC+ncSymvBb6Yor7EoedkKk08/w+gjz5DtLnLj/3krbbkKJ6dyTFfTKM+ABYlCeRKqElkRODPCJGoIkzUE8UcTh3czvP8lFqx/J7m8CcGoVMY4tvMxauMjtC/bFMe6EezpQBGiXGhdtI5sex/n9v+EY/ufBK1p7V3Ksps/hpvKo4Lnb+lfRk2V2bXtc7T3rSRd7GBq4gzjQ0eYc/29pAfmMXn+MMUlqxDpNFOHX+fM419n8MdPNF+os7RfFW86d+4cH/nIRzhz5gytra2sX7+exx9/nDvvvPOS+xBav3H6nLD6bqa9h9LASjqWbyHXMRcREOqGjV2voKoXGuuOjezbhvY9OlZfnRTugvMmju3l1LMPs+Kjf4SgTlIVoGpVjn33H1j07k81gKGE+1Pd+Bq+14/xYs9jH6sjdPV9VM6fYXzXK6jKDOnuPkrrN+PkTOY020QcZqkLhe3q0BDH/9t/BCkprlpH6/otFAeWI33B4LPfY2TXC6z61P9u1Tmwhmz7sIbPFQ41dGeAqLZCKJiGfUTV0a05iMYnzXUhuIo1ZM3ndObwYWb2v07X7W+PCVPgTqElnHroC/Te9W6c0Pe0fj5tRlCnHWrm3mbHVoWuW02tWsD4jpdR1Qpt11yfdBHU4I2OcP7732buAx8DoDp0ngvPP82cd34w6Ucc3PPUI1+k5/Z34ra1JRlhs3E2a/bxOrATHmum+Uz8Zl1nM7NEn5ZrgtCgK1Wmzx5n/PWdjO7bhl+r0Na1hGymDUemkDKFI1ykTOGmMqTSRTJOgawsksu0E0WRhbFzQlhCg4hVvYBKCYbHDnLgtUeoTo/Qvek2Om68HZFPR6AIrLVmAeD6DIZh82sVzn7xc/R/7FPIMANVuFaqPie/9NfM++AncGQ6mqfInceKg4i0izYor1eSBMKUrnlMnNqPV54k29JNsWshEsHx7Y+Sa5tD96LNRtM7XeXUnqc5fuAHgL7kiuNvpoV0etM3/gVO4eLpUy+l+VMVXnnff/6FjvlX2cL5yhW7ae9cxpyeDZTyc5FKB0K+ilJ8N8TvQPK4nYAhOHZu/HXK1TEWlDYaYBM6+AsBQnKhfJJdg49zY/9HkNqhXimhhGLb+W9x5ZwHDCiqr6lkAxo5G1Gxmh3TYp9fnxmzmRxS92xozWRlmNPju6mpMoVsF/3t63DTBXAEWkp02sHPOHgFh+keh0qboFYANTTKob/5U7TWtC5aS9uqLRSWrARXMLj1Bwz95CmW/6//IaKHEa1VMd8wP9SBC4vG1oOJhHeIin8XdTSgQSmng0yxwRikrwPPDc3U8AkGj73CsmX3RvOiQvclV/D6jq8xsOousoWOgEeIyI0rrGFoPEJEkpfaz0Hjc0g/5M86iL2Kv4dueReOv0plcpj5C24OUkYHSiYpqNSm2L/nm6y+6uOASdx1dN93WbP6g/F5jkA5ApWRvL7j6/Svu4NUVzfKBT8tIvd9PxU+j3FBUynwcwqd0pBROPka6bRHLlOjMz9FW7pMa3qGtPTIBP9SASjKy2rgomdc89LCIyNqZGWNtPCRKJyA8DuYWk1p4ZOXVbplBUeAg6AoXDLCZXS6yvd3lPnWoz7ffWiSmXGPjg1zkT1d6FQanUpBKg1OGtwcMteCm20hnWol09ptkizUyaP22lBuDJS8Vp/yiQOMffGbVE5fYMUH17H5U+twshmmvTT7L3QxMZFDld1w+yAqEmdG4pQFzkxgTapYCRumahx48q9Zc80nSdUkQulobfmuZvcLf8eiWz+KLOQbZIpm1tCG9RRYIu11r3zfKI4qE6Rbu8j3L0anBWe2PYFbLNFxxbUoB3zpceGnz3L+x4+DUm/II/5H4E2XZVlafv8f4rrZhIBWbwGYLaanqSY9OOZNTZCz6iPVAyq32GruI5wGv1wNyFQapJMcl3X9RVuTsTUANus5mz5fcE74k31rLSDTM4fu2+9pvG9di54tAC7pji4W/ZN/zfir2xh79WUmdm6jsHwNpeXrGNr2LMWBpQlTeNNnCAcj4rEHirUk0wkBVzjwgHBHgCtkWF4gwAZ+u+GnLdzWz01u/iLGfvgM5aNHyc9bGLtUAGO7t+MWirgtpQbrnj2f0bRZ7yHUaNlzruvODediNuIxuXsnfe//cAPIEIDb3o4QAm9mElkskurpAVcytnsbpbWbE24eI9t/itNSMkApdKewhI4GUN2sCQsc1K/l4Jhmlmexf9N182B9Cd0GEMTZfNw0ucVLyS1eSt/N9zK+Zydj+7czUT6P8msorxZ/1srYqcpXrLyfed2bYheUJpYnX/uMjh9leGgfw0OvU54cpNC/hPn3f4J0b6+JuRNEVqd6rWViipoIQJO7dtKy5UqE60Qa6KilHEpXbGZ8307a11zZCC7tuZfJ3xq2uS1rOi5t81YnxuKVp5kZO8/8jfdGFlhyaeatv5v2vpXsfO4vGubmF9E01CuH33Q/vw5t0zV/QJp07IKkwox1dSfO5qA/Swa5Sm2SnNtqQIpWSUsQkHdb0VohhWusTnXWISkcHJFCa2WUhM0sPrZb3hs1e5y+3ZcZV/TXLBmu6q1UxWwXy7M3G5DlGDCng/sIrdHKWCpkTccB6wrShTZWfOiPGH9tG8OHtnH0wN/QMm8Fras3M/Tjp8j2zUN6Fj+pA0c2b5212dMU/m0pq+yYlch1u94FK6AlClMTCcx3ETCJQucAJw88y4WJI7R1LI49LqRg6Oxr4DhkWjpikmPR/9BC09SiFP5rYH7WGG1wVOd+JzQMndzB8jXvRXoqsu5pATiSjFvAdXNUZkbJ5NrIFttJZVs4de5l5sy7MhLItSM4e/oVSKdIt3fjO0QlMELeEcoG0oOw3p2WIpg6ie841ISptVTzHarKoWYV51FaUBEuTmBNysoaSsgIsEvzAkAaIKSQSBQ+0gAnDag0pyMXPk2HU6FN+mRykvuuzfO+6xxG/22BL35nkm9+a5TBs2OUy1Apa6plhVdRVKZqaC/e4B3vvY/ODTeb57LXn4ZQX6+Ez9TJI0wd2s30vj3UTg/Sta6H+//sbnpWtDJaSzFZSzNUzlOupqJ9pX1hakmWDVCKLEpW6IT0NWPHXqNr7hW42sGpmQL02hH4SIQr6V56DReObKdz/fUNa19j7Q97LySOiWi9xOvKpWXxquDcYD1XqkyfOcbSd3wKpsy78NMufRvuoK1vJfsf/M9cansr86bLr7NktzcAJQnQUQ84rD7SpQ7KF85RnLes6QuuXBhEBJlYEppmexH4cfXzn1drcM97IwA4Sx92a3D3w/Rja/ttT49UWwdd199Jxw13MLn/Nc5+5+tMHdxHcdEK8r0LOfLI34AUpIolOjbcYDIL1t/PIs4awyOVNc+hq1rCbzrYQEJYQYZWtryQmflhcgnX8Osonbj9bAh63/ubDH7nG4xt/Skti1YZzfyB10i1ttFzx32NIKtubhNM0hJqG+a1CfDV0NzXHUBrZCoTC8gi+bvb1o5XniLVWkQD3e96L8NPPc74V/+G/MIlaK2ZPnKQ3MBCuu9+Z8LCFvo4h9/r46YaWjBArWMiFlqbI5CgmhCKOkA1a7MBlaU5tRUQuiVDy5araN14VcISF4EwrfHL09ROn+HAY3+FLBbQrjSCUd3enpg4xZHjzzJy4SC+VyGVK1FasIre5e8iv2I1whFmHdrgTcbzZlsWE48RzmtwvDY6TGHt2sQaCc8TQLq3j6nX9zafk/B9Q5w2HLOew3mygZtWYcpdHe3bkL6NDx2lrX9Fcg05pqhgtq33Ii/m59sUIrb2/Yz9/Do06SkEsQvSrK5rdpvlHDuOKZdqZaJ8jp7souBGyfmcqA4jRZOqjhYg8nXoG/QmWv0Y3yiRS0hrwtMTWeHqtRai4Zz6ewltYnmkJ3BndGA5FggPXLeN1uW3MbD4VkbP7uPg1q8z8eQBinOXUFiwnONf/1sjIBdaaN98PbneeYYUyAZyMHur4wmR7CDiqdDBfwmBEZIxLASxTb42UyQECsPsllz1AY688jBnTr1Ee99qtNBcOP0abqbIos33Rym6be8NROzGHlrgm1qULNqXcHWzvAISIMmi40p5pNwcIszcqDCANrCMZ3Md1MoTZPJtaGDR2ns5vv8H7Nz+OVq7l6IdwfjgIfKd85h/7f34KeMVoB3LGyXkZ8FYojjoinlmpQTKcfCAitRMp9MIYZI8ZJ0aNemQkkZr6gof3zFueVlZw0cYtzwhSAmHmnZxhAqsS9pYloTCCf6WKFQwoHFVISuMNapNVmiVHt2FPP/ig1n+yQdqTKgaZa2Z1pIJlWZU5ThZbefsSJo9Bx2+8pEfILrS+FltniXkg8G7mRk6w4Vnvs/MwddRM2Vka5H2qxaz5A82c9PbCqQdxaQvKPspJr00M7W04RtCGzdyBSiBrJm9YCsSbKtnZXKY1tICYxn0dSxgBS3b3svE0ZcT68T2qknIISL5e+QdFHYXWG1lDVPTMwxb0DB1/hilOUtxqiY+Dgy4Q4DIdXE57a3Mmy4LLDXLuFJPuGbBAg2AKTxHaCgtXM2Rb/81HauvNpnuiM/VSnFh9wtku/upjA6Sae1uGNf0uZNk23suGcA0tIuAvnoBsOnfdc8a9tlM8yVmuZet3QqBSaTtFiARlJatQ9wDpx78e7yZKXKdc+hbfxu4kpnRc5x74QlKC1bTtXSLuX8Q76GktcdC0FTvPlf3PRqvBzrY0E7g1xu6ACAMAbVN8fX1hKLxu1n63/1hvKFhZo4dRkjJnLveh9NSNC4IzA547DmqXz/R8cQkW+9GB/MaAgNtAS8NQjqo6WlkvtGUjYDqyBCirYR2gwsdh4533IMuVyifPIEAWq+/EZlKR1gldGVMEqlwIHXP06QJZSq8a4EhroKomn19so4GMN7sN/uccL06dYzWBk4SfIeGVKQGPAicYoEZaXz1c13zUL5EeioSPMy7FwyNHmTo/G5S+RILH/hdUgvmgxvHB+hgjlWYKty1wFLwW/TCmgCm8B26xVa8oWHoswrUWcKFNzRMqlCK0oFHjD4QjCIFvS2wSDPnMqQp1r6NhJxQeNE6AE0K7cikRTG4SFV/ecT9fyZ4uLwmagrh6KSbbuD7r61SBaYOkHVhXQyTDZRQmq7cAo5ceJH5xQ24IgykAYREa83xie20ZfqZqA7R4nZa9zXnTdZGyKVKDSnFGyxM9b+90ff6Y2FfobWpDjS9YWvmtqeDrIFCIKTCLSuElrgzRqkiqxq3osHX9BSX42z+ILt//Df4lQrZlm663nULOutQGR1k8Pnvkx9YTPvGa0l44dfRt2ZK1PoHqVfkNUxF6JJk11MKtP3CEeiA98nAwiJSWRZf/0EqUyOMnT+EEJL5V72HdLYl4j/RMO1kDpaVJnS/q+cPyfm0/tUda6DjgONkqJbHyYmCAWfR/Yyb4PTUIH25ayILuBYO89bfTY0qE2MnUa6mfdMNyGwGL5ALVCpwG0wTJzfQ1px5IMP5qglUBXzPQWUkFU8yCpQzLmUvRdatkXU90tJHCo0rFHm3GrnmZRwPN3DHSwmflPRwiBNDhN/DZBBhLJRjueqlhE82cONrkTOk8HGEgxMs2Kp2mNZpRv0CQgjmdVYYPFgGoGVlF8o1fUpPREox7cDUiQNM7dqJLBVY8scfpWdDL+25MsVUlbNVgyY8LSn7KZQ2IMl1fYTUeFXwcaAWry07gYmd/S6daaUyeQEKC9HClKFQKYFKC1RKMDNxAbdQSoLsUI4LeVgdXwt5rUqBygSAiVjmdCpExW3D8ZhkTtJ61xoHI59IvwlduUh7K/OmywZLESCxgE80XbYmBIsw6dlBFBiXlu5Nt3H88S8y58b7yLQaxlGbHOPMjx+lfeUW8j0DnHrmm8y/6zdNrZ6gVSdHOfv8t5l314fiG7zZeQwFPd/Hr8wgM1mTxrzu94v+bT1cM3epppaloNWmxjn9yBfJdM/ByeXRSuPPTOK2tdN54x1IBeliOwCOkyLb1otEohXk2npZcOeHOfbY39PWuZhMvt34RQuQbnzfhOm/DiglNFyh5j7w/tCWi5SASMMgfONioVwRgaXQUhVuTCwBON3WSabUGRH6xDTUv7dZ9mEzV7+LNgsg1e+x0vrNjL70Y7ILFjL6wvNo3xTecHJ5CqvXIjIZZDEI8I8yX4HIp8ktXwJaBAG1llwfzW+88LUE7XvMHNiPmp4h1ddLemBu1J89MB2hu7iv6PbadrkQjYKBTn5tiFdqJj/ZTDhYC8Jv/E1DZNmqTF4ABKlCK0xgiHmYiScQuOYvvAWRzXJkz6OcfuZhBn7rD0ztMYupR2tNWHOHRVfCuYj2jYj3qTDjKa6/gvNf/wqFtVcYTa6Kx66VYuzVrcy5/yMRY0i0wHqqtRmHfZvo1lZMAITMSMT7JtAEFXoXcvwn36BnxbUJS6KWoNO/POLuK2GZjn/Gfn4Nmgj2lfkDNOFatlGy1eoSHpg+rL8DlzghJEs7rmPn4KOs7LiZQioI0PanODDyY3oKS+jKLGTX0OOs77ybrFuMuqj40+y98DRruu66+OBt4NQMHFngTWmFp8q4Mm1c/8IWxZoGG0FxaTFQTZpxvxNRwgihFF61zKs/+UdyrT04uSIEfC3jFFi02ARYZ9OtZihCkunqg5SDlpDq6mbOfR/i9ENfILdwCemenrrnDxUWdfTM4hEX4xf19DMCAAEYEH4wvQFNlBAVAw5CzxBKkGrtoKu1I+7XpqnBO7Jr8yhHJL05ZN04LTkqIWfUfwbPIOx7aegb2MLJYz+mq30FJ0/8GOXXjK4vlaG7bz2gSOdajKtVQKuUC8LNUCgtwc8YgOUF1gct7EQGRHHA0gMqPjOHDqCmpki395CdMy9KnhDWb9HCoZpKRcKyl5JUfZeU9HGC+ksKU3uo5kgqysWVPhlpEju4yg+sSfEaN5YmHX8XygJROop/SiuPUZGPsu2FraYdplWGaZWmph0yssapE6cAyPflmRrTaF+gRJL2l266AXIuIw8+wqnPfp/W//xhJtwM014qSo+edbwIBGYcj2zao1JzqWmIahlaazeRUTDw0uiYt5YDz/0Dvf0bEWkzdj8j8DOSWgaGDrzAvFve31wZEMp3ECvGBUapnQr/6ci6ZNZ5XKhYhGRFQG7OfM7v+hE9V9wSCTnKNfzP9y+PTryVedObc8OrI0r1mv4QNNmCR/STbg4YSgtWkiqUOL/1SbzpCRACmcrQdcUNFOYsAmDODe/i5NNfx8kVybR2UhkZxK+WmXvbA6SLbfG97c/LaN7MFIMvfJ/KhfO4hRLe9ASpUjs9196N2xIHkSUEudnaLKCtqStY0KaPHWD6+CG8yXG86UlkOoMqz+DkC3TeeAdokDJFYeEKqsPneP0r/5GejbfRs/k2hJNGSEnPFbcytO9FBta/DbSO/IfrtX+JuhQQx5xYYxPWM2oRWKgcovToUWpyD5yqjgNWU6b2kwg2ZgiY7L5EOIYm1qx4skgI8W+mRW5S4X3rAG1h1VoufO5ZJvfvofdDHyXd1o5CM7VrB+e/9U0677svTnoRArzEWMyLDv2Nm2tZYfKll5l45WVy61bhlFqYePllao99j44H3kWqu4f6goL1mmPbqhYLBfUCGw3zFGlgbMDTBEA1KJ5D0GQzfeva3IJFgGZ0+BDZzBJTS0qJhNAohGDewHWk++ey7/t/xfTB/RTWrI7HoYwmEt+sG+FYx72QgQtj1QsuEtYLCMGoU8yTX72aoW8/ROfb7sFJmbhKVS0z9PijFFavQxZzxovBCma1wXqkBbbenwj3iLJODPuQOgZMwUZx80VShRIjJ3fTumBNoMU119QmJ/lltbey9u5X2XQg+IKOAZMkSsOdSO4AMbCw/65rHbkB0k6eIyNbKfuTCASOcJnfupGO3AAozerOO9gz8gwpmSHvtjPtjVLzZ1jVebspSBsCl0ut1ZVIOqHxVIWDoy8wUTlPxilSUzNknAJL2q4hl2oNYqlI3qPZsfrbzHI8AkxBGYrRsSOMDR+iXB7B9ypIx8WvVZDCZfGCOwBwlUtr91JmZi5w4Mt/Rvu1N9Nxy52mML0SdNxwO6M7fkr32+9LKFTMWIks73ZmXltZYS5o9gx1f4enBjV0pG/ogA4/hTmmCDOp6YhOJOfAXg4BvYqKmQoScb6WsijRR9BtWC8yFF4TMk6dbBXOSVvXMk4ceJaRwf2sWfsh8vlOlIShoT3s3/MQC1bcFT1/PCaj8FSuiMuRpOLxRWCpoAJFlWBi6w7Gf/oChaWrSBdaGX99B4M/+i69t95Hpqcv0COZQfoph5oWaG0KsaZTHinXJyUVFcfHU5Ks41BVLmnp4QrFjPRJCYUr/YRlCSxrUuCGFx4L6zbZFqmw1QJm7mtpUpYrlxk/jRSKkltmwcY2c97uQ+hFPehaqJWzwKwDpWuuIbVwDuf+v/+N0z86TtctK3EchSONW2AlZWpF+VpS8x3jgqdB1aRJFV6TSetlCJwCXqMFOJkMnQs2sX/XQyxecw9uKoefllRllROvPE6xf6kBvHUyTaSspW59BYBYWYBJO0ZuE04M/MONICXggSxkyXT1MnR8Ox1LNgKxx1J1cprLaW9l3nR5YEnXMwssAThGpU3krgSQampxAXKd/cy/7YPxRdZvAPnOfhbd8wmq4xeoTY3TtmIz6Zb2y3qE2ZpfmeHEY1+g59q3UZi7KBrDzPlTnPzul5h3z4dxi6XGC+tBoS3cN3nOeuJmC/Bui9Gu9d39PnIrlqEcOPbf/iO5OfMjzUZl+BytKzfStuwKBl94ivPbfsCFA9tY8pt/iJsrkJ07n8FXf2QEzkAyFiow92uiTyBWnIZah9AVyollgITvdniOMoTUUSArpoBdpHkX4GUkflbgZQRejsi9qiFzXt33ZvMVgetmi+pirV7Ar9e+BP+88jQylyO/YT2D33oQISXK88guWMDcf/kvGPzKVylsugIhQ3t1Yz9aGre50GVLp8zNZdVYnSZ37aR6+Bj9v/Vp/FYNjqZw1Qa80TGG/uGrdH/qwzjZImjLRc2qgyI0kcCU0J6S3Eu67rmTF8TnJgiNtv6FzxeuS0kyZbnVXWrOHNKlDi6c3k3v0qX4wfgSZvng2vaWRWRae5jcs5P8uiApQrCujI90DKyxtWAyIOZO3FdYcFJLHSeo0FC6/jqmXtvNua98ERFYg7Xv03r1dRSXrY5AWELbLK1lF7jkRc8vAwVYmkiLFj1TnSuyCEGWFvRfcx/Hn/s6o2f20b5iMyKfZeL4fsYPvMovq72VGdKvopl9HAPwesAUWU1naReNcRKCYrqTtb1vC25Wd64UFLOdbOp9NzPeOGVvkn5nNblUKfr90h5CN/6tNJ5fZvv5R1lc2sLKUhwIPlEbZtfg46zrutvcS8mkome2RBL2KcHcECgPEr8RAAwUWdd4gixZ8y6KK9ahBex99M/JpdvM3ClNeeQsXd1rKF15LScPPMPQiz9g/LVXmPd7f0g6VyLTP5fqj55oLFptxfDY8YVm7iwaPZsyrskxG4yFqZXD2oW6Bsoz+aTMfUVSAQMWbTZfbCt09M9yOW4K5kKaHHh0REo/+3kCshSBxNDzQWn8ygxCCAYGruPg/u8gMIl2Wkpz2XT1P+X1Pd+gZ2Azws0Qu+nFMoAXWJBUxhpnSkeKK6Fhes8epg7so+93fwchHZyKoFTeCIMTnHjsSwy87Tdx20pmvnyB0A6qLPFyEi+jqLoubtpHSk3K9ZlJpUhJRdr1cISxNqWljysVrlBRQdsQJIVWpfA4hMApPG7OnQ1khanLPeVEWfnmLJL0LG2h8vIeUus2UyONmHGQXiDYyqCIsaPJzptPev48xp/bS+7KK5COwnUVjqOo+gEo86UpRKsFvi+h7CCDDHgR76sLb4lArxB0L7mSdK7E6zu+ZtCLlPh+la5V19C2aL1R5NhgO5JJSCqiw+OhjOfqgLdqSGmz3KoytgYSrwflQtet7+DMk99g/MwB2tZtQbflmT52kPFd25tsotnbW5k3Xb5lqU4I1RAAoIAwIGy5IhI+ROPlDcABLKJmCbj14Cpd6iBd6pg15iMa6mXM5/ArP6Jryy0GKFnX5Xrm0nvzOxl88Snm3H7/RfuYzWrWQATrjoXX5OcvIdM7l5MP/QPdd9xDYfVaqufP0nnDHdG5Ti5H9cIgIpuh+9Z7aFm3kcOf+/8xfmo/ras3okbHcbK5pIZcBQw/ILhBuEZs4g/GELngB0rFCKTUMQH7WQyhNhmPwro8ZlGFju+xX7YIrExh9jPb7cpeI7POa9NFlJzHhpiwBKC3fgvuPb7zZVquu478utW0XHNV8lqgsH4d07v3Uli/LmmVSQwQVNoIFMZdIXCVqwq00oxt/Qn9H/kdtAx8OQQgNW5nidLdNzPx45dou+s2UIFG1n6O6Nl1DPois18jeGrYMxbQjN6nsFz5ENYetqZLBMDEnjd7PlOC4rK1jO7dQWXtO3ECtx7paaONrQUhmFojFXQsvIJz+56ny/cQKXNuBMjDNeEG4AhMWQKhkzWxQgA3y2IprFlDYfUadLVmhJtUOhY4moHtgKnYyzyypAW/KTd5KxFYwsK5qAfzwnFZcPuHmB45w+jRV/FVjfyc+Sy477fZ89n/T+OgfwFNaYH4OTCTn0eV9LdKa7A61zc7hqkOmMwKpuqKOEfHGm6uQQpybomcOwtIulSrUl07MbGLgeJaOjPzEoCqxe1gdfstHBp7gbW2q589Xtsd72JxUva14Vi1jgBTW3YOraX5vL7tqwxUR+hYtoXJkRPMWWOKtQulScks3sw4marL3CvupnXNJg7+7Z8yvW8P6Y3X4E9PIdNWrZ+g3pqx/ImInieGGPIXC1wlWrNXEQmWOlDEiLjYaliGwgWqFlALyxBYvNLQUpHoMwGWmrnAR4MgolvCZtZN/mnrGYWK19ngmVeZ07+Fvo619HdtiDKpaUeiXUFP/waGzu6ia/GVScVl6C4YWh9cIjrsZ5W5T00glGDsR8/T/amPoVMSJQILhS9IFVvovfouLuz4MT03vD3C4NIxg9UCtDJFT5Uvka7C9yU1zyHl+lR9B0coXEeRcnxSDYBJx4DpIsBJJoBT4J4nNK7wo+s85UTJAhyhSAuPK27v5EdfPcq6T48w3dlCpeJSm0gjqhLhC3Bi0Jjfso6xR59CV6qQN3zNkYqUNG6FNc/B9yW+L41VqSYNSArjlJrxJnstSijNW0Fp3gqU8vAdjUynzTuyeb8l40TudxZQsuWnOJlYDIpsmSNam26gMHSBjEPvez5AZegcE3tfxTtdJj1/Hj2/+zFO/G9/0vwBmrS3Mm+6vJilei11KLNYIEEEGjnzPQmY3tAaUN9mAxyzDrDJueEiutg1GqZOH6H72rsaxqoF5OYMcO65x0wK16iC6yzd1YO++pvXCfEJICAF83/j05x/+lHOPfYNMi89D0Cmuy8iZrkFixn86VN0XnMrQkoyff2k2juZOXOU0rqNXNjzIq2rN1PLWbEb4UbwjQJQyyDTq6XR0NJo0VQQ2K8CjUXDmgyukYFvLWDM9xClIxcKnKpC+gJ3JkxUAF5W4GcEtbxlRbDnJJya+vdXP4Zm59cDovq5t5lLREQ0tbER8uvXzNp3qqeH6umziTiY8NNOCqAd8GU4HxqUQKU03vAQqZ4edN6NM+EEOce11GTXLWPimR/D225N3Nv4vMegKCGUi7p9WP/guvn6i8FWE+AUMLGEpcmxvlvzE4KW0lXXMrL9xxw98gPmbXo7aBMY6s4oXCVMwDjG2tQ1dz1ndj7J9OH95NasNvcManPYVqRoyIGLnbDHY+9vex9BYpwylYqKC0fvqv45rOkNtXDhvNffMzzWwNhsYcV+HxqyPXPo7ZtjhA0Nqlzml9WUxQh/1n5+LVqU2Q0EImFdaproIVHfSAcWDTsRRPAZpQe9CNCwfwuzlTW7T5PxJr7bgMzqY2jmKFu67otfZng/ISimOql4U/iqhiMDvxpZN95mhW+t+0ZK0nC92RYmrU1yippm45IPcfDM0xzd8W3OH3oBtKbQYjJECgWt2TkcPvJ95g+VccoZ0oUush191A4dw115DSMvv0jrms1RDFFYE1ADIqCrQolEbcGEVamBhzRKBDaoic/XEU9Dg0yZe6gMcYxJmMksVMzU3S6SgSJAQqJweYP7XdhP8Cqk3VG4pIL3FH63C+YKISiXR2jtXh/EXcXPoAP3h3yplwsjh5LJJqzxJWisEqFKDZ1SoCT+hQncUgmZT6GlCk4TeL7EnRbk5y5mcOsPjDUunD8BvgK0RNe0ya7nSpSr8R2NcBUVRyMD60xocZLSACdHaOPmJlUCCIUZ9iAGT+H38G8baBlrldF4RcVyXc20n6bqutz1/nae+fwJRr/6JFv++TW4QnFwrIvB0SLeVNqk/nY0OIrCdasZfeh7+Ht3k79uTbRFasqh5jlUKi5e2YWyg6hK3ClpkieEibLsJEr21gmAkk2bEKlYhxLyw3q5RsbXNpOFpGeWlqNNshItBbqmY2VRIBOoMBFTgBDCPeEM9NK24A68koKMj65dnhveW5k3vQk3vPh79GkL/RoDmCJiahELHe+/Bpe18Gu9oGfdu/7cRHuD+bdv16xf6bgBo7B+svp0snm05yEC7VZ07Wz8bJZ+Es9hz11w2M0X6b/ng6Tbuxj84XcBOPX1v2fgQ79Lur0T4Ti0b7iG0088SN9d78XBJT93MaPbX6R89hT4mq4ttxseF8bRaMPUDLGMkwKEViEwAadCxjxSEhB0y3Uu8QwhQwr8nXEE2tFBATxif25fRc8paxLPk2gp8LXRWunwfdvE2QY/1qEECGgGipoyResd2Iwz0IS5ra3UhoZwu60UmNZG9AaHcUutDcQssa4l8cIN58XRqLQp3kY2jZax5k0TCCCuRkoz6REustZF3JmIidmsC7nxmetbQAeT99ChkBhPbjQW+91YfYeEOdXfS+f1d3Dux0/SMX89xba5UQFHG6AJT1PI95Fp7WZy16vkV61uJPJNAGDDY+om3+veSfgObEXBG85Zs7Vk9d8MaNnrP7FetXVNeP1Fbv2LaG9lV4dfWQuFEnQCMMX6ihg4RZbFsIXaf7uvwFpUn+43avWWpotZnt7Ms+hQeHQQ0UZv3ARpJ4+vqgYszdbq6kM1G2/kklf/W/A9LdKsGriHXKGbA4ceA2Dv9i+zYd1v0ZLqRCKY33cN+3c+yPK17yPjZSh1LGJwz0tUh4fw/Rod628Az3QrnCCWUcYWIB3ED0V0oGFeAoH/IjJEtJ/r3ArD7Jd+kDVRBRnSooxhKv5sSi8SvGcWUGIJzSIYp1AWTbGujRLThC56UoCjEVqghSaTa2W6PEwp22tAePAMOiVRrmR6Zph0rhSDt3r+m5gzc4LwhTE1CNCeZyz3kZY0HHDwIQVCyKR7WS1YRiIAKQq0EmhPg6PBFShHo12JLzXSUXiuREqN4yiE0DhSI6XCkdqAJHSQQLIRONnfnQAsuVJRFQ5uALiUFlEihkk/w6SfpWtejdv+YCXf/0+76LttOT3rekg5Po6r8BxTdYsA1GUH2sgs6mPip7vpuGkl5UqKmZpr0qZ7Eh3GKJVlnGWu3qpkCTk6UKSGskC0jGxeGb6jujVl/90MgGuIk5TogDTJwNoj471hQJduuHfUjwTSCifrI90al9PeyrzpZ0rw0OCCQvx3ZGGyCYH1fA0ua2/07Jc6N7ZwfKnna9C+bzKhOU78HOHwlMafmUIEac0bBPZ6AbT+Fs2AU901CQuThq5rbqc2Mszoqy9SGxnm8F/+exb+9j8nN2eA0pqNCDfFyW/8Len2bmQmg1tooTp4Dn9mitc/+8e0Lt/AvJsfwFXSVKQPiTo6uemIvyfGZgMiYTaVDgJ2IzcCR+Bb/SgF0hMmhsk37ljS0wgvln6FAu0Yc7afCeKo6twSoiVlz6W1xmj2u31q/fEEUdEJAlPcspmhhx4iu2pFIkWvCNbE1M6d9P72J5rfI2R6IRDScdYcXGOqd+Z2UD17Ci0MtzNaw0AYE1A9cxa3s82MC5GoE5nQbgK2xTbxbiIUNMtk2Gs5npLEGowAUywaRuuyYU6FeWYlBO233s7Enp0c/fHXWXvXPzPVyGu6IXbJqWncVA5vdMSk8LYyNEbvxLLuxINs8jh16zMBkuoElch6ZH0mgFadr3hikuxJSzC05kuvAWT+ilozWe3N9vNr0S72rsL1EvklN3n/gfo/tK4I2zJT74iQCBi1rv95gKQmTWuNr32TLtm2QgWt7E/iysxsF8fnhuNuBppswKSs57Y9UXwN+MzvvpqZmQucPP1TKuUxXtz6X9iy9pO0FwboblsBwmH3K58nl+8glUmTybZRGT6LV5niwF/9CS0r1tP77gcQrpugv9Hed4L3oBuVNlAnbDYBNAmhM/FbfLIGRCrY5CpUSgqUJQA3eCJY/dcroCKaFrbAXT7RR4h1LeAUWpeiZ9JGASkRdM3bwP5t/0h31xqkdDDZaYMkDo7m/MlXWH79R+PkDrJxXDadlD7oisCXEqTG6SxRPX8erQMrrE17BVRHh3GyhUSmQtvdTwJCCZQO3AN9gfbNPiIAwb5jrE4IA0yE1EipESFQEuYzBEui7m8gSiMegqvQRa6ZK58rfXJOgYysce2HF7Htu+fZ8afPsPGvPsKYnzXWZanRKKSryORquI7CLeWoDY4D4HkSr+yiPYmoSfCEkYnCGCUvBtUJRZotU4pg6qX1DhJASETzGO+B+O9ZFcn238H70oGrp9YijgMOwFK4Nu3x6bAvV+GkfDLO5dU3fSvzpjcdsySsT1vIrgcaiWMXEYIuawh1glv991mtDxdpLYtWMbb3FdrWXtlAKCeP7CU/dyHCsso0u++ltITw2QQwAQGDFfS94/1k++dz9vEHATjznX9k8af+FQDFlWsprFhDbWQIXa3Rc9u9yHSa8tBZBp95jJE9W5lz+/04SiJqJludOxNU8pYiyDIGfjp2k7Mzp5hBEpvmAVLW2AmzAcXzbYJdNU5VmOx4NQ2+wFEGMLkzPk5NIT0HPyPxcoJaQeCnrewsTZhJtLHtuSIW6BPNXm/heggsF/W+4VqA01oiu3gxFx75Nu1vuxuZzSI0+JOTDH/rW7Rccy0ylWr+nhNrIBD4Q+1a4FYgMoLUsgEm9m6nsHlDoJnTAdHzGXvkSVrffWcsZYu6jhNrpLkU3sBsE2O0UVVjt/ZzJFKTB89iAxr7fob5alSbQ88DH+DEZ/8r+37yDyzZ+F4KqRIiqCMR9j1y/nWmho4zcMvvRPMT9R2CJFuwtNZg/bHIrUOHa44ksyZel9EYJFHG0tAltUGzZ90nFFTsTEXNKLRtFY5eYSjchPW2Gi/7hba3svbuV9aszdBgXYqAkgpckpTZK2H8UvgvFDAsN5OGGax3tQvPqs+GebGkEdAcXInGvvsKyzg1s4f5hfXxb8G1F6qnaEl1IaVrJKb6+zdzIawfJ8SAUMQJMSIlRKTGVggtcPBY3X83rdk+dh9+GIDX9j/IjVf8CwC6W5bSVVrCTHUUz/FZsvBOdEuOidowx/Y+zshrW+l5+7sh7xollaNNQh1h6ryJMDWxMgDGxBiKaBMm+HcdzbhYi6zfodbdnhIlDD3xA+uLxnKvsoCE3d8sPC4EWlHCCmVZY4JLZPDdKD9NgVxTrUFE4NEpFmmft4bXD36LhavfjpvOoxyoeTMc3fUoHUs2QyEX8dvIQyScl1rgqh88qPBMwiJZE/h5A3Cyq5cz+eJLFG+8Kn5uDUoozv70e/SsuzlyKYzocUgbg0RSwhOR+5gKvFN0lFZdR4K7cuLvwq5ZGAKk0G1bgJAq8DQNgBUgg2OONO59jlSRVQpgyvWYrKWZrGWZyaUouWU+8H+s5r9/4Ecc/JMH6f79+0i19UQWmLTr05qfYWLXcaZ2HmHBv36vSeZQTsGUg1OVAQ8UUXKQqI6SbYEM1mIyq7mRoxLyTSTbBvJFBJySIsFl85ro/esg+YOO+LM9x5EMEqQKtwHr5bS3Mm+6zJilugN1Qn7CVEfAdmx3PJG87mL3uey5aHb+bPdpcrx9w3WcfOyLaO3TunoL0nHRymd8/6uM7t7KwLs+Nvu99SzfLzK+euG/AUgKEELQvulaiktWUL0wRKq9M9mHEKQ7uxOm7kx3HyKdIds3DzIptB8TKemHVh6N0BKl49oPkf91MK6QT2rfGpcIAJU2sSb1LgciZFC2tlEZSdVBmaD/msYF466nJMoxCMZkmCFaT/b7t4E5NK6NxPl1v4XHZ0vPCtB6801MvfYa57/4JYSURiBwHVpvvJHc4iV1Nws7rrt/PcWKKJ2m7T23Mvx336R66gSF66/CLZaoHDnB+LM/ouXGjaQHeiDw7bbBc8K1J3iYy6RNdYNMPnwDyArnKvpTR+c1tHCMEtyV8+n76McZ/OY3ePXR/8jApnsY6LnKZBDCZFY6uu97FPoWkVu9Ej/dmLihninECzH+Ox6viNZoOJaQKYeXRl0EfUbWVGHJtXX0q2HKVPyvmcBjWzu1dSyKA7R4zM+qILqsdokC4CX182vQTK2ZgF7FnCsBmAjV+dLaR/WxTGGzXLh0nX++qAcfQOSyB80tT2+mGemZ/pa1vDpo3Lnn5lfjCBctNOdnDnN84lU29NxrjXuWe84G3OrjmoJnS2SBi0CTOSZ8jVaKue3r6Vi/iKnKcFRjKepWC/KZdpOMwJf4ZUUx14nr5sh09uFkcnjhUCUmfiSqaacj9y48Y7EQiQ1qC+0iSmLT8GjNZJqQB4b3tIVILVAhWAr4oKEZ2oA3G5jNRk9VODh7IMQWJWnRNGm/FvNAKhy3EPhpTfeKa0md3Mvr278GMnD/FoKelTfQOnd5bDiyaGP4rNKLnxUsF8Pg2bQraLvxFoYeeZCR02co3nANqVwblcOnGX/mR7QuWUduzgBUw/khSLke4GcVgCWfSEkrrEK9sfcKZuwyjM8KAKslxBsRIwA+QmNSFdaBqNAqJZKfYat4DhXHZcZLoRB0pqdYsKLGJ/5yA1//473s+d2/YcknrqXz3qup6RSO1GSdKrs/9yOKy3rovnEZZQ90TeBUjcud8GKFcpj1DpuXWO8yfA8xZhLJkhVv0KJ1iiVHhOvqjUhJyH8jS1U4xzohM9ndaGWSc9R8p6G7iw+Utyxvuiyw9KbB3CwvrKmV5XLGcCmL4FKaMDFL8+75CKOvvcSJhz8HUoLyKSxaycB9H0em0rM/fx0xbj7wi4yp2eIOBVcBbnsHbntHopuElSAw14bzKVMpaqMX8KpTyFQBcoEg4Eljjlbmn/QArZFVgRtobkKTvMnFLxA5OyuOIV5KxPcESzhVIfEzJmdTlFYiU6A8iayqKMWpSQKhccvBhpSmxkNoAdB1c2DPdcNvInl8Npe7Bm2e1Qrr11JYtxbt+QgtEI5MWEObum/Y7zwgyoa4BwJWJSDyrqD7995L5dAJJn/4Y/zJMuneXrp+6wGczoIx7TuBcKYNYSdgesn1kUyeYv92KbRDNNlkDddZ4KFpn03WsZaa7JY19K9azNhDj3HsxYcY6n2FBdc9QK02xbldP2J65DTzPvkH1DrM+aEwYa/1eutVAqwF866D9xqFHOs4tiSxh+qEIzuBRChQaEv4iBU8lrxSB5AaaI81fluoioWWn4Fm/gxNK2G03T+Hfn4tWqDZBgLwEwAmQRQU39TCFGT+SFiZgMjSBEGSFGtdIxqUIIlZbmp5YhaLjmj83Y4bEgLpOKzvfgenJ15j+/BjCARKK7py89nY805cJ5vsazb3wGZjsn/3QzAZPpRlZbLPVwohBBpJzi2SS7WYvQgNLovCV0EmVzMtrnbxJsZQw+PIdCnoE0NvXYV0rA2rBcoTaCVRnpGoY7c2Ebwziw5pix5drIngHsG9RGjpCMailTD/tLmn0sSxPj4JglDv9musYoY3ChnHRIU5gSSBY0IQd6KC2CUpg2udYHgqdo1rWbKa4tLVaO2b9ew4aCEawu7sVNMh3wvr3ZmxBeP0wPXNeTLt0PX+91M+c5zJH72AGp8h1dVNz7vfSybThj8TjDUEDEGqbOknwVDiu1XUPnIPDL1eBAFwIgZL8SuNvzuhTGH2rrbBlIxBrgjBLgTACqSjGJvOkUu3ca7YwpzN7fyTR/p47i928fxfPUfXM7tZ97/ejl/2OPDgDkZfO8PG/+vd+DiUKynktBO73FnKZOkBFmiyY2ojsBock9ZDxTRl9rVpAy8RotEwQUj9NcKab3uOnPBTN1hPI5CvhAGAGlTZoeYLqrVZXHhnaW9l3vTmYpbCdgnjtQmmrelt+vKtY2/KusTPJpxIx6XjiuvouOK6BoE8wSp+Se+p2UKftVkErvvGtzOxZyfnnn2UuW/7QER4hAJVBVkThHWRohpJYWA+ZgP5WYmXNbvJz5p+wwJ1uo6pRZ5lYbXzaEwmkUMIvqTrBCAtvpesaZNhKDBT1/fdsOHrAZTla90Akt5ozup/FyBcJ3bB0nXnRaiQ5KC0CFPMGCITCuUh6tMakORWDJBdOh9Vc6Aa+Db6ygLAurHv6H7WOZZ7XEK4j8bT/FEjAJIw29WfNPseEhch2ACyJUvHh99HcdMmhr7+IHse/jMAUt09dH3g/aTWLURfFInV3QtrLKEcZAk9ifcOiZinRC2kJmOOrKcymMNQw2yBHDuAur4Pe31FNE1Y8mOw7psC/l9weyu7OvwqmxZBTIKd/Uswq4UpYVWScbxOci9agCL826ZxCos/1gGe8HyY3eoT3V8kAZWd5MFxmFdaz7zSerPQgcjtzu73YokoZvu7/n6KBitTXIvJOj2Mb7qYYlphhNxgPy9YdjuDJ7dz/qlvMed9H8HJGqFfpYUpIguWtcDQXK18VFhNNqAfWhtBRPgBHfXNeJu6ymF1F/ZhtDRxjExgqTDTYy7SAVgx4Ema9+yLCMREgC3sO1hbQoTrISREsQBsKyh1KBwHOCxyidfQLIYI3FiOafaarfgXW+kkLFQVWYBCvKFAVgTZOfPJvHfAvFdfIGckqgLCA4IkoGEiKRHMQwKcBf9CkCTCGlQhSAoUsJGlKXTJs5SJiSSMXsAQg8LhIuQRde57CRe2EEBJjVdxmE6lmammOJ8t0pNv5ap/2cLyt53mkT9+lac/bsIiivNKrPzDW9FrVjM+kcObSpEqC5PEoS5+LUy0FVnorFdv8xv73Yj6NRkoBsLyPAnPhfB74p2HHYXPHyqwg/kNS3WkiIGSa7L0JpXCwSLzA7DkgxDSvMfqZeaIewvzpp8NLDVrl6KdqWtvFhj9IsYCbzCWZr+9geDXcG4o6L6Z577IM2kB04cPIByHrpvfxvnvP0KqrYPigmXk2+chcy7KFUhfR4kYnAoRgHGnjC+YsQy5yJoEIaipoLisDUzsOBMRE+4gmYsxs+uAAILRJsowW0/ouxsDNhkUrtOBdswmIg0Cpy2o2gKzHZRYRyyi+baPBUQz2azMc5bgnLg/xFaaUL5RECU0ESHTi/sOmakI46cEiJpAS4mQKh5YSDjD91wP2HRyzIlaHvbjvhFgms0cNdt61Na4aDLH4WkpTWrtYuYs+l+Y2voybk8H6VXLzPsP5vRyUocm9ogfEOogQUbotplwewrXH6L5WK21ajORkNGE1gScSFZLWhUTg7P2RPh7wBB1E4D1S2sJKeBn7OfXoNlueAnAFAj8s2bICwQ5AcGCMkCkqWsecFHgZIEmeAPgNFuzs+/VW4Wi32Ty/Pp7zDZuu9mgrF65FTzLJbn02TFW9hiibILx8dGRw/hpwbyN7+DoCw+SerqL7NqVuIvmIVwZJJwJUIVNdyVIVARkTYp3EdOzkB744uJsvP5xLHoduXQFhFcIbYQ5bYQ65WtTyN2TkeAZAja0iMGQT6x5tDTK0ZRZpTYUxHFNwjyn7S4cAScbRNTzz7pj9a7qQhNnfhRE6c7teZI1YYRwiOJdovFb/UTWlGCOYqtGDJxEIMgba64l2Aeu/zpwPYySStnWj5qIwgKExUATckrEn4l5cN071sIACN/RTJRdptIZRqdyjFczdCzq5Pq/XcO+R4/gdrSQu2IZk5UcoyMp9GQKp0mx2WhM9d/D9yCJkiw0bdY7jHhT5B4n4tcZyjb17ztQVEdWu/B7kIDKgCYdAFCNSMVKgGgNezJYCyIGyhrwBLE/7CW2tzBvunywFOzhBsHJ/v2N2psEMRcd08/h+EUtGPXXzUY836g1I1SXMDZb2JutVccvcPyrn4n+ltkcQz98giH9PYTjku0boDB3Ebm5CynMX4YrM6RmwClr0pPG0iGrfmAlMoVm3WkVBNGLiAGG7nJaEBXqA4IsNEGGO2ICpT2j8RO+JcB6xn0ADGFxauDXYnCVAEKhVm0WIl/vbpdos2haEteFxwIgIgSxmVfH59rXGzCXfOlCBwzPEcbKBIYxKpOByHH8iNAZVw4RB8+EhE8YkBXWzkg+hzWm6LhuOBZpnoI9quvHHyTimHUxNVOxhvvemoPEvAQgKGLQOZfiTddY9wwuCzWr9ruaLWio7ufItc2JY57sp0haGDUNjMP6FwEg2/c/ZLy2JtAjYlg2zQv7rLeEGs0pEdgO3U6cy8uw+jM12wvsZ+3n16JZ6yYE2lGNsUDAsTW2gvhvEQhypoBoSNB0PHe2e16TBAxRq09V3UShcFGWaVugZktXbrv4XUpMVHiuDY5Cy1TYfAgQSbKFlqTZrEtax9YlaX8nMUYtBNXqJDte/uv4MTI5Bl/6Abz4JDgOmXnzyCxbSHr5ArKrliCzOUPHE7FMjS2MgRFBvaZkBpj6k4N/srFPk1QgKJYqdSIzm9YCX0mUElFxUu1brnohXVcmvgqloyK7WG5q0jMWEuEk6VMiprI+vtL6TDwHjcBJ1/0eHoymQmAsRRgPk3C/GDe9QC4AhCeQlTjzmxlroBSNinnHA7ItWgYciUigl04MmJQK5I6wORqVVZDzQYM/7SIrElElcIGLH6S5h45ocsyi6SGfcVOUnQxHhvIcSQXKkJVLEAqmjkpkTZiEVhWQ1eCflcCh4X2oeE5tq1rIN203vei7jocYAXwBUusIbApNHMulY9lMpcDPgkprVEqj0xrtqqBOVJwAI7RMSdekbJdOrPipVVwUTpDRMpioANQL//IE+bcyb/qZLUvNBP5LBn0/b9D0M7TLBnz1LRK27U5/piG9iTGYnZRfuIzS6iuYOX2C6RNHqA2dQ/seM6eOMHP6KLykcQpFut/xHtqWbCBVFqiUAB1kcfG18Q0OeUeYzcUjqsWkwWhWRTx3wtr8IvAyUy5B3UaTFS/UhOGC78QuVVHNChXVMgWSQm5Ta0aDYM9F/w4JTn0L+45iV8JAbpspahqYTNN7BJqxSGsZBu5qgZCGEClXoEVAtOrHohUzr+5j5pXdaM8ns2QBxas3IXPZEKXN/oxaJMFFSISDgSvHelZ042SE7iSi4VDjc9fPizbvL/b3CM63J67+cZsJJrMQkHrAE7mozNIubiEOBDgL8GkJ1WMnmdj6Ev7UNGpmGjUzk0BTwqiScXJ53GILTrGEW2rFLZZI5VtwCyXwNf7EON7kOP7EBP74ONNnjl9kMD/nVi8g/Sz9/Jo023ocCg8NbnnhMg5jRASx+2ZgZYK6LWK759Vbe5p9D/+uc9UzY2sCoOrBz8WSRTRLLtEs2YTdwj5skNRgHVJBAA1RTZ8oyny2hBYBcBSEwDCOZUoAqvBTOLS0DdC58irGx04wee4IleGz4PtUjh2jcvw4PKWR+Twd991HcctmSIFOaXRKRRb9yP0tnJooQJakVGrRmIhGBAK0kLNvMAOY4jpAACl8fCWp1hyE1CgpUb6MrEtaCaMcEwZEhcKwDkERAiVMgV8ZJmwKLEmhy7FQwfmWUJ6gj/U0vB402T/bj2d9CiuuJoqT9sPXFVj9feOGJkPQEuoHNWilGDu9jwsndqG9GsWO+XQv3IKTzQXuzgKlgnekgrwhwS2FNMvaDzxPlADtatJZg+BqKkiwYdW/SoC9+tbseDgnEYALZCApUK5lsVSBhSWsl+TFICmKTQr/hXPZDLiGclKgeLZBkgxKr8TXmQuFiJMbGSOTDqxuAT0Kxq+cINY8DX5WUzl3iokXXsSfnkJNT6NmykSVXUM3CwEyn8dpa8FtbcFpKyFbS7iFVtx8CVkT1M5P4I+N409NUJsap3z6xCwTfJF5f4vypssDS7ag2ETOaiZINSPwF22/IAD1S5lbAVprxnZvY3zPdpAS7Xlk++bRueUm3ELLL+T5wveQam2n+/Z3MvjUt3FyBbK9c2hZvoZUR7dJ+DA+SnVshPFdL+NNTXD2wS8ytvindN/yDlo6FiKUxC3TEL8U+gsLFQjDXhyjLFwa10KonQGjGVPxOcIiQhGBiBgXFnOy/oXPaAm20cHgxkGun4aWCJEJx2gL8tZ50ZjC+4UEKuzDlmdkchxNXSoDrY2JiwmJXcDoXFUnIJl//sQUQ3/9VXJrl9P6nruRmRQzu/Zz/q/+gbb33kN24QCNE27NR+Jvw7xk1TAyBJBXjXFhiYkziLGBydjMMwEUrfMjTWndnEXo2rpWJLuAizC2+vuGQkziHslHaHqtJRchMK4HoSufhultr3L+a1/GKbSQbuvEyeZIdbUiAuRfGx2mNnoBkcqgPZ/a6AjezBT+9CQNGvdoLJJUroVUtuUiD/fzbVqLn0sA7K9LzFK8JowAn9CRaAhrKAlr7YT7P7JEQVzYMXTDC0FBXUrxWUHTbH83s9pEY7f6tJ4BIMox3azf2Vp4vdYJoKS15uzU65ye2meGoH1K6W4WtGwi6xYITGvxvYXALmbbYF2yAFcEmGwLE/F5GVlg+ZJ7eP3gt0kdL5HtnkvpqncgBnqolEeoVEbwxkeZfGkb/tgYQ1/9KpM/foGuO+8hs3wxfs6kpDZuuyEAs2iSLcCF2vmGOjNBwVsru1qgN6mbPh3oLDWOiK1MWpoX4fsaT2j8IImP1ibgXavAFVQJU+DdM94c2iH2wgjBgh9nWYuUYZab12xgqYFH1X+3BfuQF9utye+2JUTXDJ9xZmIQEYKWWm2Gw899mZbuRQysvgtXphk/e5D9z/8DA6vvotSzBBXWrhKaoPQrfqB0tN0KQ+tPlFwj2KMm6YaIxmfHDSWAk/VczdwUo3gqSwax+ZjtNRD+C4vMRp4IiiibXQNICuZbKwKQHBwKz7fBVn1GvMgzxcyP7QauhVFO+ylQGWNR8jOayf27Gfrcl5D5HG53JzKfJ9XTaizhGryRUbzzQ4hMGlWdxB8aY2ZqCjU5GQOq+iYkbr6Im788vvZW5k2XbVmy3EEbBSeSwkgElETjb4nPn1ObjRBcFlBqIsTNJojVa9+11px54kHSbV3Me/fHkOk0WmmmTx7m5Le/yNx7P0Sq1HbRezbr+5LnSUD7tTehKjNMHz3I8KG9qEoZp1hi0e/+K9wlKwFo33wdJ778GbypCbzREY5/7r+SX76KnuvfRmHOAE5VRFlwEq5NAdMOCUPkT5yyhihIaErCPmTgkqcCv2UVuO8JHWqg4jpI2voXAa8AKCVcobRl2ieZEa3eTa9p00ZjbAvr2hKEotNCQBYym9ANw86CVA8GAuaPY5iz0VCDHyAVIXTgApYEEhe+9DBtD7yD9Lz+qK/CVVeQW7ucwb/8At1/8Fs46Ux034su7uB6Jwy2lRgLYkrHY7THHPaJNaY6xhJakBoAU9259jUJUBN0r4Sicugwky9uxZ+cwmkt0XLt1WQWzKcBrNnSa8IvJFwb8cna11SOHUfNmIyDqbb2xPoN360OKJ+WgKeYePKHXPjuY5RWbWTu2z6II1LRuEXwbK/9xR+hvaQ/nczkaFm4ktalG8i19uJPTSK1IJVrIZ1pIe0WEEg8v8wrX/1/N07QL6C9lYNofyUtsMiHApEBQBbg0MH+JXApC49pohgLtDbxh1rH1iRR50r7RnWYLhXQyMaNNmufVkzUG7amGe8UWin2XfghaZnjiva7cWUarTWj1bO8OvQ91nbcQT7dZm6iLMtQHSC8JMAUWJgQAnwjQwgUA52b8arTDI0d5Ny5A3g7ZnCzBZZ8/F+RW7UClda0XnM9Zz7z3/FGRlCTk5z8u7+gsGA5Xbe9jfTihaiMRqUJYmfBJvyR+5VUxnoUJumJeIpdy8cCSqHLHUSud1JoJEEBVMe3CqMqar6DpySeL/EDa5wOQJOvZJQtLHLVUxLtGasJNRGX5rABU5D0JgGUsL7bAv7F+IWOQQkk+7H/dirhCyNWwgXXSt9YWcKxhcXJj219mDkb76TUtoDUlEJ6mp7ONXS2LmP3K59nRaEXp1CM94AOAJMfGC0tHqLTGvI+qUIN1/Hx/MBn1glczRwBAWiJstJZpVGaWtuCRagFVua9JjJgPVgKnzNMWuVrps4fY+jAi9RmJkhlW+hZdCXFroVB3DYWrYFEXLM1zybpliVDKZ/JkZN41WmyrT1ki52oVKB0lsK422WgVgQvD15RoVqqTD7zEy584TFyG1fS9anfQKqccZUMamYJBUf+4/+BNzaSmAqZyZJfspyW1RsolOagJicRPqTTJdLpEql0Hikknldmxxcvna+9lXnTZaYOF8GnBZgSvwdffpnP0exevyIeP3loL26hRNc1t8VDkYLC/CW4b3sf5559lHnv+jBQB4aatKaWiks4V0hJ161vN38oTXXoPMf+/s85/N/+PaW1m2i74hpyffOY/+Hf5/hX/ju10Qvklq6gOniOo3//f1NYvpriohXUBodAa/ILl9GyZDVSOMbcbLnLKRdkKgZN8YCIBNmQLyqIBQwr6BBlfJOdaiwQC4sg6eC6UIgXFtUUmlibFtw2Akx1waq2lYqwT+I+Q4yQeIa6kxv6EuFeqNf+BM8ZxmiJOOV3AmxHlhjzWd5/jMrhE4x94wk6PnI/TldrdI0s5CjedBXTL22n5YZr4mFFoKaxBpOW2rg7ZgTSzoAj4vlNjEnH/7RSzOzZy+TL29C1GiKTpmXzFnKrVgbuMhdvCVBrNwFa+wx//SFkLkvb2+/G7Wyndn6I8Wd/xNSOV2l/1z0kQuSbbIYI0FrgeGr7q0w+9xMyixfhFotMvbIdXavR8d5347a2WODbANfaidNMv7yDqVd24I2O0Hn9nfRcfzcCia8VulzGn5lBVcpk2ntZ/rF/zeBLT3Jh90ugFG5LGzKTYfr8CSaO7CHV0k7nmuuYs/ZWZPhu/UAYuhRh9efV3ghEX04/vyYtohs6xObCkhoxQCmRKa95LaYwXjDwPQ6uFwkhMCaIARi4WDKHSz1mWZ+aWrAarFPNNBvWM1vtQuUkQkiWlK4MJXsE0J6Zw7r2O9g3+jwb7XpN9tgUzZM9vIGFKQJYwTEBLO6/iYULbkE5gilvhFde+gwH/vY/UFq9gdJV15BeMJ95n/h9Tn3us1QGz1FYuILa6DDH/v6/Uli8kvzKVVTHh9BakV2yhOKqtQjpBhnWgEBxJmQ4XwFgkvqilqTkI5t04Y51nhtYlXTgpxlam1ytUAFd0xqUkvhKoJREOSKIb9IoAh80pKHhvjD3VUGdqNC9XccgPuGlEfSfAEIJZZQ1/5ZeyqbhIuzDEuDREY6M4m0id32lIx4zPXKaibOH8MpTZDe9hwztyKoyrmYixdz51zF47GXmrLzZgEHHvAMRZtwJniPMhqfSGpn1yOcqpB2fqm+CzmpSo4SLXzWM2QEIgFuYoQ5PMXHidYYPbsX3qkgnRdfizbQOrDKeQJYnzWy1GUNgauYiTFIF+JrjL38LNAwsu51croPy1AXOHHqeC0d2sHDDfQjHaIhDQBa61dnvJAGUtGbk9B5OH3yOUvsC0tkSwydfxavNsGDLu3Hb2tGuAUpeDmotmumx00z9ZBszL+2kdm6E1nuuo/WBe8BzYVKjJyv4YzP4E+X/h73/jpPsOO+70W/VCZ2mJ8/sbA7YnJBzJAiCBAmRYM5JpCzZFCm/kmzZr66Sfe+rK7+WZL2yJVMSCWYwgiQIMIAgCYAg8iKnXaRdLDbv5NThnKr7R1Wd0NO9AQDJS9P1+fRM9zl1Kp+q5/dECr3DrH7vxzl694+ZePgudBzj9/QiCgXqB/cz9/RT+F3d9G0/n5EzrsBvegmYe0l2Q7/CZ9PLdvDQSRXvuFKlY5V/ou3IpE7AIjemHdr6UtICjScBk4/dz6LXvqUtoRgODKNVTHN+Br/c1b4NJ9ieBS+vAyGujAQwCMJFi1j1O3/IxI67mXr4XiZ23En/uZcx/Jo3suJDH2Ps7tuY3HE38ewM/uAgc8/tYnbXE5ROWU/YP8jEU/dz6LYb6d52BqEspxuiMhzWqIjl1qVtybUxw3FKXhTnHEJmNh0nrXIEfcb+KS8Sz7KYyG3YbgxzXBuRfdbmyRKuWeCT7UCGeHL9aM2flSwdV8Jj9dyz7kG1A0oASjD34BPEoxPMj04we9cD9Lz5MpKXTQlKW9Yx/tXv0nXJeelBkiTH+c7Xq31N1BWnYKrlvgMPSdeVQMeKo9d92bj8fstb8boqxNPTTP7sZ8w+9iiDb3sbeK3UV9qvXP9a7mupmfrp3QRLRui59KLkVjA0yMDb38LE925m7qFH6Drt1AyocwXaQjL2A86N7NxDjzH/5BMM/95HEXiIWNB9MTQOHubIF77I0G9/GFkoIBTM3fcwEzfdTPPIYbxSha7N2+las5HG2BGe++xf05ycQNVruQ4E/QMMX3o1i656O/3nv5qx+25j9oWnqR89lORpTo9z8O6bKPcvMYevTo2S48bL2GxOOmUX+8st53/9lOybGffb5lr622wFJw+Ycu7Ec+AlXVsn7cwhl7ENwHESLETqWCXXYd0BwLTfxPZNP8767vMToJRNJb8bT/jUGlMUw+7ODW+VLsFCwKSNXQ7aqqRZ0JRImiKN1BohJVW/l7PO/QT7D93HwWfuZ+KRexjYfAEjV76V1W//NxzdcSvjD99NPDNF0D/I3N5nmX3uKYqrTyFctIjZBx5i/MbvUt1yOl53l2XgaXRBg6cScAQkAU3TrqQe6oS9n0qVsN7xFJ4w0qXQixFArIUBRxpijApU4s1UW6AFKC1RsclrvOlJcz8WyVngYjblVMt05vhy+6azqcvu/Zl8aafscxkbYuOEI/Nca95suToDIjIMTA1MHthJc3aC5uwER6r30rPyNcimCVmChP7+tTz5+NdYYjU5aQOSlG/tbwoaSjGVSp3hrhlCGTPbDPE9RSP0qRd9Gl6BeM7DnxOpymIEXi1mz51fpxBWWbvxjRTCLhrNWQ7uvoc9zzzEKee+CwJp6kriP4kFgMmBBadhI2KN14Ajz99PUXaxYvVlyFgjpiNCuqme8gb27Lmd0efuZ2j12STx2qxaqBVLtjkwYeLgTo6+8CDbzvwwnuVI66XnMdsc4+m7r2PNFR8mLpVpVmBiz2OMfua7NPcfRJaLVM7dQt+7N9A8PMWBP/0fxEfHja1Sph6/p49FF7+eJZdew9AZr2L0wduZ2bOT+uGDSZ5oZoojd/6AUt8i+leeljjuEooE7J94+tU9m07aZsmIxXVCw7XehxMESpnv7ca7nRraCanxZcvtcP2k6z9eskS1ihr4la4Fm4srK+wfIpqeNGDpJQK3k26rgKCvn6FXv57By17L+F23ceRHN9KYOEpl3SZ6zjqf/ldfydTORzjyta/g9ffTd9FljH7vRuaf3YXwfBAwevvNCNkmKMYruWazgOSVSL9Q+vTlV6aVQpZLhKtXMn37XQTLevGH+pDVbryeHnSzjgj9hAgTUqeqdNCeiaGx3gyB2Ijes/kNoMLa7pgJmL7jZxRXr6HnnPPsgavxK1UGrnwdE3fczvR991E971zb79ZxyCz+pA0id2/ukUcZ/jcfbctU6L78Uo5c+wW6Tjt1IfczAdv5g0VrzfSP72T49z5s7IusaogGgsXDdF1wLrP37qD7wguY/tFPGf32t6ms38zwq9+I8AQTD9/Hvus/hwAqW7ZTOf0MvFIZWSohKyWQksnbbmPfNz/L2LJVLHvLh1h8xVsM0TM7zeyLzzP34rNEczPIsEhxeMnCPeoXuRZ/hbl3v5RkgZKRKliA5BglWTsmnTn/3HPJnpX9kblmJUxaZOyYSMsF2qrKtdr65qRESaZMWdlrOWcPJPUft5zWdtnUVHWKfrWj/ULF72M+nqZIN0aE2nJOZGyXkja4PmYBU6bdggyIzAAVEQNKIbSgEnZxyrJXs3LdFex78W6ee/hbRFPjdK/awuApZzN40WuY3P0YB795HbJapf/yKxn7wU3Unn/WnGvA2B23ILxMezu9p9nr7d6LDs+Jjg+0f6htzpN9D1/R9/YkNy698AmtFTIo0L1oLYd330s1GKJc7KPgVymUe4hUAyn9tvRkEoMpsICpYAMQW2ldQ3nMNUPmaiGxMt4GkRp8jQqNeppqmLKOPn0f5a5FrFh6oQEzczGeKLFqxWXsP3Afh3f+jJENF6OFRmprL6ZdUNv0/cl7q7NhTyLN0RceZOv29+HXYmP3bU0LtCdZtux8Hnv4cwyvOjvdny1zOBHbkQGZ0oCw/U/fzpYzP4AfecjI9Fn5kkpxgMUbL+HIM3fTu+Ryxh6+i8M3fp3i5nX0vvVKRBAwc+cODv/3r4LWlLdvoXLGqchqCVkqI4slpPaZuvUO9t34RUZHbmP5Gz/MkkvehAai2ixz+59n9sVnac5NIYMCxZEVxluxO85VR/7KMdfHr+rZ9NK94SWHSf7yydgpdbLLOSGglKuzzbUOze5Uxgml4zwnpEdcr+EVim3rb06N43VVTwgodQJAx1XPazMnrg7he/RfdDkyLDD16A4O3fR1uFHjd/cQjiwlGBikcfAA8cQkq//9n/D8X/0F3edewOBrr2biRz+iq2sJfSOb8Bpmw4hDQa0Poi4jBk7ql9pw1D3TWBFh9GSjNs2y6gIyAq9GYqiacJRCy1EKSaJMtxpfLhiUnA56y+6tSaO2u0vZfK48NwmtL7cw/dICo9eeyZt4WWoj+hM2MraQKmcIbggCk1/NzHP0n75G7ztez+inv8qR//7ltAzfR5aLBCODTP3gNsqnbyXoH8z1i+xQWFGjiAX+rEQ0NKIR48d+2h8NSIiLRkKoA/Ps3OOPM/LR3zJzp0yn3Xh3n3s+Bz/3mRQsdUi56UAn11SzaUCI9PLtsE32wgKJOyiXMvr4CEuPSRKgGB86TLh4BOEFxu2uys9v+bRtHP7nzxKPTjJ5y4+onnE24eAQh27+JtHYKMGiRQxcfTXVU8/CK1eStiSSTgleqUJ934vUDr5Ic26SoNwNCrxKlZ612+k9ZXuyJ8omKWD7ZYAlJfIg+uWU8+uQWqUsGcBklpwFEO7Mcw4fLIGv0Yl6sfGupvPqddmUBSOtwOQEHDkkxbRzBOHKdL+zan+2vAUOIbLtWOB23OTxZEAjnieUxbYAbT6eouBVMu22dWbVD7Ntak1tVPIgw2txqnmZvmukCXMRa4SWrFh0Ht42j0P7H2Dvz66HOxR+pYfi4qX4vX00Dx+ieeQQq/+PP+H5v/5PdG86jaWXvIXRB36K19NN5bRTiYvQ7I7RBYUIVKJ+5wUKzzMEulISpQWxi5kESCuJyroM9z2FlJpAxpTCJoGMkS2cIceVj5VEYWyWYiVpKkmj6RPFpi4VS/tx7sXNf+H2OuXWndsnReoNLmfblB5XObud5LnM/6xr8gyjSqTLIqcGn7ULkrFO8mgJsWry3C2fYdWZ1/Dcz67jqUfTc00IDz8sUyz38eKun9C3fBuFgWHr0c24EVfOYUFJo4uKIIzRWjBdL9KIBbPTPo1miI6lGY+mSOJDOYmU8mFs78NsPvuDyHmNbChErIzkSAoWLzqDRx78DIvXXoSMBMrPrFVJHhW4sbBAScQaYoVEEigPESlEpBFKWWNthe/7SBmgVUwSb0C7d7E9TVefG6dQ6sUjQMQpMhHW+UrPkk3s/9ldNO6LOXLb96icfhrByqWMf+V7RIeP4A8N0vf611I982z8rqqlp1ROotU7WKbx4ovUjhygMTdOoasPoSEMK4Qrt9K7aquxGbN7n3J0FWauO/l/6Jh+hc+mk7RZwh4gdpITIqiVOMzkz/xecD17j5Z77cDTidyjBSidSF2d2t2mzo7Ej4DuTacx+fA99J97Ka2pOTOFbjYIqt0L7rVty8m0WbfPuyC/zdt77oX0nn0h8fwcR275DpMP3kM0NQmALJWNu+PJabrPOJup+++h7/Wvpbx5E7N3P0DfyCazAQbCeFspQ1TWqDBDTAjSQGfCgpNImFgRsduIrRjXN/ljbTZF2Uy96cgmiW1cXCCJr6M9nRKiSbRpnR8Hey8BQpACGQviEmCZU9fLACV06vY7GUOdz5cdXkejt9xLX48MIIMUNGlACWSpTLB8MbXHn2Hk//w3xDOTqMkZ4okZ5h9/mrn7HwMhmPzmzUx89bsEyxZTWLmc5pFRooOHTcyRVSsIVy6nsGo5ha5B1N4xph9+lKlnHyOam6Z39XYGNp5L1+JTkMZNH1EJZAXikiAKIkShiPA9iHVyCLto6zII0ngyHVLrO5Jbg4GHbjba2zS5jHE2bHybLNnyNKj5BrJUQjRTtQuca2epQUqa+w9Qe/xJwqVLmXn0QQDKZ5zKwAXvpLh6NQIjddNW117rNDjxxE9vZ/R73yEcGmbpB3+bwsBidAPj/Mu1xxEjkNjqtR2TX0Bqoy31kss5mfSXf/mXXH/99Tz11FOUSiUuuOAC/uqv/ooNGzYkeQ4dOsQf/dEfcfPNNzMxMcEll1zC3//937Nu3bokT71e5w//8A+57rrrmJ+f59WvfjX/8A//wLJly15+pzqk9GwzSTgAFTvveC2ACY4BiMiv24x055ie8FqTR8dJyKrYmTpPAJx1UP0TOWAl0tgNUoCSLOnaxN65xzilevaC9jZUjXo8Zx08tDYyU66zXcqArQUSppY2Ju2DxNmD4UaAiGNLiWukMsTvir4zWDpyNg1qPP/cLRx49g5mnnHnWgk1O4c+MEb/lvMYffCnLD/1DfQt2cyhx2+je+OpJrZPJFBSWuc72uwHzgueSvc9IfLeV1ttl6LYSLhjaYBQ6MUUvAhPKuMAwn5cUsozwMiq3iWBbhVGLVBoENJ4ko0FLraVtu66tXCULAkh7gKYuhAJC1aaA0HtUmYPd8ekVShKhKjG5sadeSQq5rqlLk8GVBedwtieh9hy6b8mmpuiWZuhWZti4uhzHHnxAYQfsPepH7Ln8e9S7BuhPLKS+swY9YlDaCkprFlGYcNSqpsXUS5WaeyZ5Pk7dzF+5y6ao9OUT99M5aKzKW5cn5xrWmoDsrRhBuL7UAjRNcO1FdaQWgNSeHheiI4ihBckjLJkjNyZrTPgMAMwBQKl4gzAtGtfmAHTQqBUlBTkzCaco6xkSty5KCBSTfygZGkZDEiWwoDIUBIXoTZxmOnbnqIwspS5x5+ARx6la/N2el7/dsorTkEIw6zWU6aeOPQM/SRh6q67GP32t/F7+1j5kd+jPLDMgB+dMZtwa8CZRVj1RGc+EZ8kWPplnU2vRHoJaniZF6cDSIIWouZ44KYDoDkWaOlYVptyjlnuSdbZNtnNo7ppO/u++Xn8ajfVjacmRGVj/CgHvvs1Rq58c/v6j1VuJnVs94m0L/PdzY1XKVMYWQJAae0GpO8b25QddzP14L0Mv+UdqDt/Su3wPiQeeJ4xsEQkBoVRyfjx1wW7e7hGSiNNEZaQ1J5ECYGQAomwImqzMyTeZxzXM8psSE7SBAlQcmCJrCe0LKchA5RapT/gvN+1vG0LxtbsZguCw7p7LrVMygLaJ2sDBYlrWbAvfJb40tD7htcwedMtHP5/Pkv5tI2IMKD2+NOgNEv+4t8iSiXUfJ3ao7uYe/Ax6nv2EgwPUbzwHHQjor57L5PfvRndSL22BZUeelZtJSj3MLbrPsafeYCw2s/g+nMZWHc2vtdrDrsYKHgw30DWRWqEmjkYNKDjFhFhO7Ausu+nO1kNF1iWy0Rj4/j9fXkde6Cxbz/+YF5illVNcHObHf9wYJjJ3T9ENiQuxgXY9dKMOPxPnyIen8DrrtLYt4/KOWfQ94434VXKSVRyNAbga8sCsuoWzfFJRm/8Fl2nn87wm9+FT4BoE2DWEQ5J32ULGPwFgqVflqrDbbfdxsc+9jHOPvtsoijij//4j7nyyit54oknqFQqaK255pprCIKAb3/723R3d/M3f/M3XHHFFUkegH/7b/8t3/nOd/jyl7/MwMAAf/AHf8DVV1/Njh078Lw2qsAvt5utRF66XFvAkVvKTgU2X8YCBytZ1btWwAR50NQpdQJTWYmRu9TOI14WsLRRz0va2SkfMFRazYGZp9g39yRLyhuNqiswH03x2PiP2NBzYdpW0dqoTHmOOy/z9eTsmLLPtQ4FGWBlJVECIFK2PxIpIAyLdHUtBqC6fCO6IInqc0w9eD9TD9zH8te8B9WsM3/wBfxSt3Fe5OxmI2Fj35j9T0iBigxQSWyZXFeF+76wrUpJo2nlxlgLpDAe3jyh8C1oMsOS9j1dGhZMycz4CDPHSkgUCi1kyp90U6ZEum47pZb9oXUP7pgy78Ixr2Vv23uLt7yKgw//iCfv/BR9izfj+QUmDz+Dihpsv/L38UsVmjSZOLSTsX2PMXfkBfzBQbo2nIOSEY0X9zD5rZ8w/uUGL9iyg74K5bM34Q30MX37Ixz520/j9ffSdeHZdF1wNn53nwly6yRTOiIqCvx5mRsjLQwIiVUTIb1cbGKd6UdWtT37310vlHqYnT9KpThgaD9brvYFc7VRwpJx132i22qp3M/s1AGwAEkkQEnQCBXP/OTzNKfH8CpV6gf30b3xVEaueCtBydrEz6VlaY/UA6wniBrzHP3616ls3sbSN74XT4Zm37Pbq4tn1UrHZ4PoSvJA74TSL+lseiXSS4qz1Mo5yKbjSpOOA0w6Sp1OFCSdyHMd8h5L4tU2teQXnsfSN7+P0btv5YXrPolf6SKu1fArXSy+6m0EA0MJF6ajulxLOiGJU5s8xwVkljjoPesCJh64G12v43X3sPQ9HyGu1djzD/83U4/sACmp73uR+MAYA2tPS9yCR2XrprIaQznGC+I0zIbtm3OtqpVA+wolPWgY96hO1J9Vl0s10oR5E2tkDnRSSZHrWwxOJpzDQy6gbMr2caNi8roXvNNGbwdP2786O8CZ8lo1WXINWbBG7XMim0fkgIYQoH1Jz5tfg27MU3viGXQU0/vmK/EH+lMGcbFA+aztVM7Ybtoag2xIpI0kTiOmeeAQamySIKxS6V+C9g0ncvDcVzO/73nGHr+HAw/dwv4HfkDP8k0Mbr6A6soNBL6kUOpFP3cIuWpRPmo6UH9xH+HwovQgWTB+eXfsqQFresJ0X/kqRr/8dYY++D68Uil5Mp6ZYvTbNzD4rre3nE654tM1Y4uVxSJBbz+1x56msmY9CGOsHU1Ocvjaz1DfY47XeGqa3re8ge4rLkVokSd2pe2KsOIha+fl9Xbj9/XhFcp4IkjUU7BrPRf80HEL3frIzP+C2FY/z6RF+7F7KeWcRPr+97+f+33ttdcyPDzMjh07uOSSS3j66ae5++67eeyxx9iyZQsA//AP/8Dw8DDXXXcdH/3oR5mcnORTn/oUn//857niiisA+MIXvsDy5cu55ZZbeO1rX/vy+9WaWs6AHGDKXm+3V7j96iRYnQskUi/F3rGdQXhGEpVzLNEptUiaUqlXZn+SIKTPtuHXs2fyfu4/+i1CWSbSDQJZYFPfpXSFA1lq3QALp4qXVJAFTa7+tC85t+LuXjvA5FQfM17znFMIlDL8M6VZOngaB/ruJp6dJqgsYvnbP4pq1Hn+03/D2ON3I/yA2bF9qMazVFdvtm1MwRJY2xdpAI9WEuUppG/U60Rmn291HZ4dUweE3P/Qiwn9CKl1xhNemk8I8FAIT+RCWChtXIo7u5xISpRjOEqZSNJRJMGRsXtcxzWQ2bey106KEM3zrUxlDgxnmA3CEyw+9QpUo87UgadRcZPFp15BqWvQNFMAYUh143YK52ynWYWoqlDdEbIQExQiAtFEHTpEdGQSv7tMsGYpjSggVpKeN17C/M59zPxkB1M338bkjbdQ2raerovPp7RpE3HBx186zKjeR//gUvyaxKun8SRnZw4TVnrRgUykJzlao11KznOjLrhs/avY+fA32bz9XQTFipkbT9BozrHrqW+zZvubcoyZBHzYMrIONYQy711Xz1KOHn6cgZEtBtCFgpqa4enbP8fMwecAYze76JzXMXLma4wWz4ydD9t+5ZvpiG2f4lBDuUgwMoIsFxGF0Lhaz7Un007X3VamkT0HTyr9ks6mVyL93LzhdQJJJyVF6pTnJEHSgvKPd/9Y9bdrQza/7zN44RUMXPBq4mYd6QepAelxAE7Hth7rmU7tOMYzLp/QgO/Rf8FlHPzmdXg93Uw/9ySVDZvou/r1HPnCF0EIak8+jYigfNYKqJMYXMYFI1Hywhg/NDrZGrP5A8nBoWKJEhKtjFqDbmqQInUvmjF01DbydKIXHGM4IjITD8naHCUqVzp9XkjDvWvraADyILV1bNqxkUT2BikIXDDOLfVlQZJ7TuocR9L8yLoV1wbICY0oFymftTWtWutcvVphdr/IqI9588YmzMSs8gj6lyCrSxDacIlUYMZINgWlVWtYtmwNS2euYWLXAxx98i6e/f4/E1YHGNx8Pv1bLuDgzdez6J3vRQxVUR4IJWiOj3P0phsYfte7279PFhQl+2EClPJZw6Uj9L7hSo585gsEw0MEg4M0Dx0iGp+g/y1vxB/st9Ok84AyO85ZFUYt6HvT1Rz5zBeo73+R7rPPoT56mEOf/jRqzrLXggCiiNpTT6Pm5qnvehZZ7aL/rW/C7+9Pp91tcC6uji8ob9rM7JNPwlW2VVblPKeqAMnBoVzXM8voF7m3i4x07eWWAzA1NZW7XigUKBQKbZ7Ip8nJSQD67fjW63UAisViksfzPMIw5I477uCjH/0oO3bsoNlscuWVVyZ5lixZwtatW7nzzjt/PmCJPMGSBUyJHU8LodCxHEku9gyk5XZ0Gf5SUztpTIu3vQWgqVWClHWU4tqUDWZrn5FCsrr3HFZ1n0msm0jhIcVx2MrOsUOnfmZV8zp5yuvQZuH6liHWjC2HglgiI8HyNZfx5I7P09s/xOyjj9C9bjuLL/4N9tzwaUAwc+BZtNYMXvxaY7juGDBOm8ExVIRE2wZpYb55nrFnciCpbbJrQCmBRhoJltCI2EOSAitlZ8dIkpRRw9MkC00KA6yM1qGkKbyEKZOVMoEBSgLbbmnHyzEPs2vyFUhtJeeOyEbkr1nwLAsFeldtTR5T9jzWApQvjH1y0dgnqZJCFgxt4UmFkBJ/6Qj+0pGkAaVCE08o5hohctNSSuuWM/jBq5i9+2GmfnQfR/7HZ/AGeum6+FwqF53FgW/cQHD5uyn39OHVrPbAzBTPPfYtVp/zduJCJgZSBjgseO/dGeelFwq9Q6za9gaefPyrFCsDlLqGmJ89yvzsUVZsu4pi73B6nMuse3J3/tu1bWkaoWH5pivZdf+XmJk5xPCac5mrTbLr1k8R1abNI9JH65jZvU9zqBExfeAZvLDMsvPfRDgwlDDpcn3yQfua0tZNzN59H/oqt7ZJ88tMH2mh9XXL5yTSK302/SLTS7JZSn63ZjgRoHQs4r7D744Aq91zJwqCTqQNxyF0OoETc13gecVj5z3RdALg6bhj2ZrHbQAKujZtR9z4DYIlI8w88TDTj+ygtH0L/vAQ0ZGj6Lkai9/2YcQ8ZtAd8R2AtECpEERIu9HHGd3u7DmppAAftG8DPyprYxKbNzF5UT2N9k28ChGnhH5iUGqdRWSdRri4Tdo3h9cCNajcQHDiB4clxtsWdkyqiRQs4ICS2QETJmxOF6ClTOvkou074WgiRRopXeXzaM/4OkAaVUlt4/bJpok5IQGvUmJw24UMbrzABNJ78k4O3P99uP/7dK3awIFvfBGvrwd/cIDoyBF0M2Lo7W/H7+vt8O7p9B3PAqU2oLSwagWLPvZbNPYfIJ6corh5PcGi4dxQoNoA0+xcJBu7Bs9n6F99kNrjT7L/2n+msXdvUpDsrqKmZyht20j9+Rdo7N1Pcf0a6s/tYf//9dcs+dN/T1DtSQ4oA4jMD+1Baesmpu78GfXDB2m8uBcRBlQ3bAP8vEamPVwdU1wDow/+FFko0rN6G7+w9Apz75YvX567/Gd/9mf8+Z//+bEf1Zrf//3f56KLLmLrVkMcbdy4kZUrV/If/+N/5JOf/CSVSoW/+Zu/4eDBgxw4cACAgwcPEoYhfX19ufIWLVrEwYMHF9TzSiQHlAw9eQzivp0052XVa4FMC2A52dRWra8NaFqgateaL+u1LwPscL8BgYef9XbXLoBY9lrmLDAbUEv/HGBql1qlTJ0Ak5e5r8z+L5RmsH8DXlCiUOxj7rldTO18mOopWykOLqZ29CBRY55Vb/rNxGtaLsB1LFpscCRaGIcArZqGQMIgdPZGrrsGv0mE0jTJAysvib8kFrhgdip6Th3Pw0iXhMLEzsuoXGrjWQSNTKWiEtAic9ZktuEsXeaWTob4zX4/6SRa6rLtaSepyGWR1hmDc8gQaggVnm/UFZWSRHH6sCcVYRDRVahTCRpMBxHjlGlKDwo+A687nZGrtzP39H6O3rSDqZt+xKS6hfL69ez98VcIil0Ue4ZoTIwS12ssvfQtyJ5BmoqFTAzd4bt17oKz41GC8uAyNl3yW8xNHaI+P0F1yTpKfSO5GFdunJxUKse8Jv/dkz4bz34fY0d38dRdn2Fm9IWkEX6xi6g+R/fSDcyP7ac2dpDqyCnMjr7Ik9/4r2x81x8R9Pfn6O4k/hZQ2byJqVt+Qm3fXhpjR8CXdG3aigzCXDsSEOVoDwUTO+5CxNCz8fT2E9op/dpIltq9CJl7LmUn50QlSycKcnLLWLS5f7KgoVO+Y+Vpne+TrL9jat2cjgP0FtR3jLqO1S5ZKNC1cQvzTzzJkj/4t0Tj48w9s5Pq+edS6F1E95ot+PMkRo+xjRatioqgEFMqNCgFxnhVaUEj9ownHyWJtTl8hdRIX6NQ5nDSEqlFoicudUpsJm2W6QeNOcAw0hHZJPm4viRO0LKHnDs9IENMtBugdKBavdolEodW5W63znVrGWmbkmjvVqqUqHC44qxNVC4idfJVZ5xAiLQ8LFHlGdUMGWpiYeZHBfbQ9oxHQu1rdGApd2WcbMiawJ8HNY8Fm4KgfxUjW1bR33wjkw/fy/i9dyAKIf1vfiNaN/F6z8Hv7jUAIqtm58bHDa2zJ2vzbi7on9CEy0Zg+UjLAJqviZQnUSI3z2iJcR5i60po2FAgFlVpvLAXAK+nG394kPozz9N1wdn0v+etphxpAh829u7nwH/+b8Rj4wYstSYPtK8obF6DrJQ5fMNXqe3dA0DtvEsZvvxqCL2clyk0CZd67KE7OfiTb1Jefgrda3+RYImXRui0KwfYu3cv3d2pY5oTkSr97u/+Lo888gh33HFHci0IAr7xjW/wkY98hP7+fjzP44orruCqq646flOcutXPI2XKdYBJp6svdSf+CnLls+mlAKRjPb+gNCvV6qia54BGFlhBHjC5l8xrAYwODDmAtIDQjNPnk/wtoMlJkVqlS9n7sND5QydHGdq4bfa1z9DibUy88Dhb3/pHzDcnmTywk97NZxH0DFDdtN0GOSXxupaLF2j3NRnbLcgzzhd0Sx+dUwatLFBaIPEzdpBKCZqRZ8swtkumeyZ/qzWL1YIEq97nub1fg+/lQapSJkaTWbVGLU8noInERifhNWXPraSdab+z0o3suSZa8uW+2/PXaUVmnzF2Qem1pI9ObdTaiCUaK4G5HtU94yQjcqojxjshPkTSSOi6/AaDhVkGinNM1ovMNUM8qSgHDZZcCJVLt3J0dCs7rt/Hi998CCLoe9PVECmK1W78nl6iJsxZp1KyIZK4j8a7H4gI425cpf20k2O+t4xlWBwhFCPmPIBUiyZdEilQyoxVazL3JYXKADOj5uwJSlUKPUPMHNpN/6pTWXPRu9OyPMn89FGe+NpfUp85SjDYDxm6ygXQjQMINqzA6+nm0M3fpP6iUVWvnn8+A2+5BuH5KbByNJgNVTJzz/0cufFrFBcvp++UkwVL7ft50unntBcfK71Eb3gmtW66x5IktVOhO1GQ0RYgHev5YwGvDnmO+dxxAN6JSsg6gqFOA9qmnk6mHC8VTLkyC8NLmH36SbTS+L19VM8/FzT4MxJhbYecLm9cBFXQUIgJgoiCH1P0mwlY0loQxSYaeawkLrK49Ky4Vyl7uOjU3a5zPeqamt2ssXmsKp72dBLcz/XLHHYaFZiNVnsmHgMiCzhaxiE5MI4BotwYOoDj1nQOhLnyWl4O+3FOHYRUKVAS2qiaY1yOxiotq1UfPtu2xMBYalRBoH1NbCV0LlAhUi8EE1atJC6AKghUUSJLIt38LbhCVuha+iqCDavZ/z/+nn1//deIwGfJf/zDnA59lgube0+yrtrbjqe9mSV8FmwkWB18ewJb74Xa2az5Gu1bd+x2HozqiSZYMcKi//CvCQYGkV1V9v/Ff6W0ZQP9735rYpjuntEusK60IC/bXnc4+BqkT9eF5zH149vNrWKR8btvY+K+OwiHRpDFIrrZREcxfaefT9/pFzD17GMc/ME3kMUS0ewUccgvLr3CB1J3d3cOLB0vffzjH+eGG27g9ttvX+DB7swzz+Shhx5icnKSRqPB0NAQ5557LmeddRYAIyMjNBoNxsfHc9Klw4cPc8EFF7z8PnVIyVml8/tsRzulttdFSrifoATqhKVKx7MNyDmb6OBEotXJRDspU8ZD3QLA1JoSlb0OfW116JBtqJIGeLVJbQGTe7RFymSmot3BZvJXqos59OIOlFYE1V56h85Ng577KUgymgk6x0FPisoUL+x54lTwzDAYoJRIkTLaA0IAMh1ApQWxEkglUMJDCp2TErlnpNAGsmsQQuSm36lyu3xaajMs0uxhWuvE3ioJsSCsO/s2azcBSBkAlPy2Tc8dd9l87VILzbHAP5LKginzJWGMCgzztC5QsYf2JUpizjdA+8rQFQ1JFHiMyTKRlgyVZil6EWFpFkqzhF5E1a+xtbKPJcE4ca9k08dWcMtZr+Pu37qOff/tb8DzGPnTT6AHK4imRDRNvf68AUtGe8X8lw3QTqMl1jkJTaYbC4cioQfM+mjVRHDPHktJBQGl6iBbrvhdgu4Bwko3j333b6kuWm2AkjXzEMJq7wReUm47GyRtzztRhq5Xnc/kDT8EQFYqTN91F9P33EOwdBhZLqGbMboZ0XXeWXS/+mLmH3uKI1/9CrJszrWTtsX9dQFLOclSO6K9DTBaADhOAOAsGIeTBEgnAyY63TtWGceUAB4LnLT8Vs0G43f/lLnnn0b4ATpqUlqxmr7zLsUrFNv26UQlV22BXps8jvgP+wdQtRp6Zh5ZLieeU5JkJUraSZUKCuErfE/hSfPxLVgCrNjcI246ey3jClVIY7yKr9C+IAkGSQtAyuq2egZIGUIZe9jZA9NuBqqQAUq+snGNdBKJXQjd/gXTbjMX6XfdbqDbpORAtJKh5BBPr6eSJZWMdeJFyR5yCoX0MJzfFrBkyiE5cbLCMeFl9dQExCJlsgp7mDtJmZ0D4WsIzPypssiI40jbHQsK61cy/MEPMH3PPcw/tZPDn/w0hVWrGHzDG80mGmjr6ccCFzturQBN5MoXSTuSvSGjqpjNJyyrUrsDW1jw56dAWGSAmVZmcITnUThlNSIS1J55nujgYfrf/iYDlCz2SogBN4+OsMjNrbVdsWuo6zXnMnXLrYiwgGo0TJ1xTP3gPkQQopsNhO8T9PQxe3A3+6//HJXN26hs2Mjh67/Kvhu/0GkVvfLpl3Qgaa35+Mc/zje/+U1uvfVWVq9e3TFvT08PAE8//TT3338///k//2fAgKkgCPjhD3/IO97xDgAOHDjAY489xn/5L//lpfXjeO3OEBIJUXgcwJMLTrvgZifwkH5tZ6/0stTxWkDNywJMWU9/iXiD9qAp2w/7XcVN9kw/wtHabqTwUTqipzDCqq4zCINSujlk99iMdCk7FickZXKqeG1SsdKPVjGN+hSy2pcAJCfFcOpfLixF4mE1S8EKzBlk7ZRkJqaSzqgVue8m7EDe2UN+yEQCqhQiUcPLDqVnNRBkxvueU81LHP3Y51MGXJu1fKykF36SMzhO34Ws1Dz7v/W6q/NY9JvQ5AhsncnjpB7+PKimtHNl5sXZAWpfJkw75WumGh6zxQJz1ZCe4jyDxTmWlCbo9muUvTqBiKnpEA9F2auzausQe//Dexj7wQPMP/gUR//xcxTWrqTv3VcjKxXj4CEUxtFHU+A1DGDyfAOYPCd5UiCyTIJ2g21Jjtw4HQNgZecsC3AAkJLu/lUoH2aPvsjc6IusfdWHEdLYryU2RlntHJkBRzLVeNAe4Gu8YkTv689g8qYfIYIAVZs3zylFc+9BRCFE1xvgefj9PdRfeJEj//x5SpvXUzn3dI5+6jpeuOmzbTp+jPTrApZykiWR7im5JPJ5F1xryQct/X65wOgEwUQ2HRdctauvXT+P17ZMUs0GB772ObpPP5tlF74KPInWmrlnnmL/1z7Dkrd/EJnxFLagTcdIxwKondoW9Bl3zdGRMfzlFdIdESPVtyAlDiEuayjFeGGMEJpYSeqxT1OZ73ONgHrDpzEfQOS49xplVQe0kuhI2qB65CJiuw27lXMjI0AIFBnCVqQuVXPD5KQCGSJcu0OldTwsMe4AU4p10ucd+EiezUiHckAsAV5YgORidKgU02TaIkiJcSGMKkX2kM5yKJPm6vRQTjZTbQuWGMCkMp105QnXDzegGameC1xonUW4ce/aeipdW0+l9sIejl5/PTP33IusaxZd8y50KFGhNnZlTZGAokTtrxAjfDO2RCJVpbPjbMCuTueqpZPaBvcUniUiBGjnjl5qpK9yoMzEnRFJTC8amqnv/Rh/oJ/SKesQytVJ+sksAe1lKIDsXEXmh9/bx8gffZzpn9zJ7I6HQCm8Shfx/JwBSkFIODDIwR99m2hijMKyFQy/+70QSPpHxxm77Yf8opJQdj5egXJOJn3sYx/jS1/6Et/+9repVquJjVFPTw8lu5d97WtfY2hoiBUrVvDoo4/ye7/3e1xzzTWJQ4eenh4+8pGP8Ad/8AcMDAzQ39/PH/7hH7Jt27bEO94rnhIis0X9zh5yGhDSqF/lbJokSfDLY6YMFZwAmONInnJblLXFSVInbu6xABOkoClrn3QMwJTEckocP9hyXB1t+qDiiIdGv89IaS1nDRomhdaasfqLPDR6E6cNvJ4wKJs6sh7zOoDDTk4wsoFqjRpzpgx7JmhPUOgaAGB+fpRioc/G68uAJS8NoO4IS4ROzw/hmDOGQeMXYgLf2Oi686QZecRKGm2KSObsl0xzMiDYqeRlQJZSIrnunomVjcUkNUoKpNQ5G6d0SjVCW4ajVAhtHCkZBpDIEd25EbYgKAFHTrPDqhRnz+KFc5IppoX2cbRhx9QKuFT6W1rbW9m0RL5n5jDJ7+bH9kv7EBc84mLA2FzAZKnM4VKVA5UqlcAwtGabIVHsJVov882A8pkhhVO3MPf0Aca/eCOzdzyAnq8x9HvvBV+iyrauukc8L5F1QVxMHSj5c1baZM/KdnRwq5qisGq8SRiONsMiwDAghWU+Zmy0EjAE7Hv8RwSlKj3LN2UkciKJg+QYB1qkNmDaSlCjsnGcIUoRhUITf8TnlP/7Nxn97v1M3v4YOm4gq12ouTl0vYEIfPxFw0x86wdEY2MEixcz+OH3I4OQ+KpJxr/33WNM9sL0yzqbXon0kiRLHYESLYR6K0jK0kvkr+XudwAfx7t3whKiTukY5bUFScd4/njqbxP33EH3aWdR3XxqkkcgqKzbhPB9Ru/4EUOvufqEAVLHOo/VpsxEBH3mUIlGj6JXLksODaOaINCh1ScuaiNV8gwAiGLzZkYusnksqdUDorqHbkpEQ2Y2OnsyxtZ2pmk/UaYtwuVN11iiR67sBkW6oTuRvlPlUxivOsLFcMrZu5CCm2zKjZUliISrJH8PyKnCpYAqBUzut/B03s0s5qBzJJl0anmuCiny48DCthqVDzBemWTC3UzsEUTr+2Wla3Y+hR0THUvkvGc4aMnBaL/jQI/5Xli9kpEPfYgD//N/MvXQfdQP7qP3wsvoOu10PGX04506nwqteYeUEChDdHm2O7lAmK3vVAaMajfG9kdmTPMg1YJHBzIj81ETs0x+/0fMP/EUi37rIya2hSBVrbPZZVcFPMnkd3/E4G+/B6+U2uJohXE+UpfJ4VZcspzCB99B/zvfyNx9jzJz973oI6N45TJedzd+tRuv0oXf3UP3meeipmcYu+UHTD9wH361l2h6gl9I+iVx7/7xH/8RgMsuuyx3/dprr+VDH/oQYKREv//7v8+hQ4dYvHgxH/jAB/iTP/mTXP6//du/xfd93vGOdyRBaT/zmc/8XGIsQQqUgBQwvdzxS4hC+8UZjrcDS8cCQu3seDrlP5aHqFZJ2Ymq5GXz5Z7VGYCTlvvizGMMF1ezpLzBcXYQwEBxOZ4IeGbqHjYPvMrWkWmf1gukS7nUApoEGcCkdaq22wKYDFgS1GZHCcO1KKsOq71UaqH9TPByLxOfzzJ0pGeYM56vKIZNAj+m6EcJeGl6Ho3Yoxl51PFRsUyZWm2SxgCkxP7UASUHmjQIYZg7ygJB7xjgOnVdLhLmW3J+ZVFSu+Y4At6BpTbAqfVMSh61RR+P1ml9JifVz9AhWTuhLK2ZVYslAQcGCDh0pkJJpH1mG5L5uTDH4BRC4/nGMkxpgecpCmFEuHWQ4h+8k33/+TPM7XiC/f/x/6H7dRdRueA0ZMGDUKGVCSysQ00cG1pF+QKvBn6NXOiIrOKEhpTh65iX2g54u6m045zQMtqc8em4CpqNOfY/+RPGX3iENZd9AHzP0EfOHsyOjSyWEJ7Pkft+xNKVy6GrZEGTod0IDaOx0fBpAGLJcob+1TIGPvB6Jm7fycytO2geOIyslE3ojGoVr1LFq3bTfeY5MNZg4gc3MvnAPXhd3cQzU8ee9Db9fNnplSjjJNPJS5acnqXrdHa/zLyUOVW8bCHHAkcnAjZOApCccOrw7ImoGXZs03HaM/fcLpa+/1+17Vtp9VrGbv+RJanTDCcM/NqdNe3alTus7EnriURMizBcN2Fdeccl+7IVzMumlKDR8KlrH60FccO6YGtK49I6ce0tkpdExCQAybi5TtuiPPPfeW5LJQo2i93MZdNyoazhJdjDLxDEJUFDgBLaSDYcMa1slHOB4RJKldLireJBt0lJAL0QFNn2tm7IictXW4bnp2DIHYTKBpOS0umQG+mR76kFB2w7yZJSAiVMWVLGyeGqlUTFwhI/2cm1kitPIx3ArXsQCStJSgGolladMbRBhoOMqkx3lcX/6d/TfOhZJm+7jUPf+BLNo0cYfPVVKRj23BwLdNME5DNjrVNpdNx5EZsgxikQgg77DOn60NoAP92URM8f4si1X6B56DAIQd/Vb6C8ZbOZd0cIuTkT4PV1Mfx7H+TIP3yRg3/xd5TO2IqanCEenSSenIZmhI5itIrRJtgK/W+7hsr5Z1B51VlULj8zkcwZCRqo/aPUHn+aI1+9jtmnn0QWSiy64hq6N5zO0//9Tzv2/X+F1Gr43i594hOf4BOf+MQx8xSLRf7+7/+ev//7v3+lmnbslDW01uQkSo7W1JDYe2Q1tI5ZrAMAyXdnr0NnCZNKK9IZpwsiCwIySR+Dw5qTyhxPpfBEAVOqAwZx9rv5erj2PGcMXJ0ApWzqLYzwzPQ9qDhCer45c5RcCPhaAWNbmyhtmUsCGywC7ZhHOLfMAuWZDUQHgqhkbW2xR1KozZkTqAQsCd/sk34YI62Kue+pRLJT9CNCL6LoR4lDhobn0Yw9ajJAa0ETiGPjWcE5c4B0+oUQOUI4u4cn+51NQoLyFLGn8JRoiyPBYiORhqbQOeBICjoy+2jOgYHCOjEgDdCrdU6ylIAXmSnXEekZcHPMpDMAK4vlbHugw7vlys+olAlNIjFBmnNdBsrEt7LnjAyMSr4bY4Ceco2hsglGNNldpOu//xZH7zvI5I0/Y/RT36DxwmH63301IowRXeaMVZE5Y1RToD2JCgTaquY5kLegn61A1L7bC7ziZX/mJFCGbqpNH+GZWz/L/MQhABaffiW9a08zvlKSOSFRKRWFEivf9q944dvX8tyn/ivVracRzc8QTU8QzUyhowgdxxDF6NicbX1vfT1drzqXyjln0XXm2UbbxH5kA6LDY8zv3MnYl7/OzDNPIv2AkQvfQM/mM9n5yT8/zqT/r5FemmQJO8fHAT665d4JS2qOVe4xymyXjnewHReAtNzvBJSOBZLaiWiF55soz+3yCoEsldBR09hDdOr7CbY797ym7fON8VEA/IF+clIVkd0kDcGJMySNBVEkEzBCXUJT5jdYSSJWNvErrPFkM91o3MsuSV/6Vs5BlmuTbD5RKrpHgIoxm2aib09CvNOQiTc/AwQwNj/ZcVEiR5yLzBhIL3uCpQDJHU7g6IP0WlavPTkcXHUZBpPLZ67nwdLCJHHe8wxH0pVv7Je0clKmTButKqCU+cMbmXKslQc60MQVBcU4NzbSN2XFoaSwbR0j69dz+AtfZPaZpwxYys615dTimYM+UQG03GjtFOudCp5jXYq0rQDR5BRT37uL6dsfJJ6eI8eV60T4aY3f18fg299OZcsWZE+XcQrhWaCUA72m7tK2DYz8h3/Nof/6L0z/8A4Ky5fjd/dS7F8MSjP9+EPEs+ZgLW/fSnHtatPcyCwMNTFH7amnmX9qF7WdTxNNjIOUlJauYujSq+g9/QL8oEhcq7Vv888hZTD8yy7n1yHliDx3bjkirkUik5wnCXDKq7rliCZnZ+iAQyfpUjvbIifJicmBplxqVbPr2META01JG05EwtShHGHjCeXui5RKL8gykWoQCs+CIrXQ2UM7cNSuPgesrFRJaJ07NrQvqNXHAPCGBoiLGh2maFcF2jAFA5XsRV6g8IKYYtik4Ed4FiQJofGFIvBifKkIZZzEP3Ip0pLAN6hRQ8bpg7BdcOCuQ9e0y5OeA8YuJk8nCLBaCW54W9ZPa2ZhtEOyNk3Js9qMY+LQIMZ4fYszW7MbMve8tuW5trv3IUsvkCm/pT2OL+toSE2mDteVlvl2bOPcUiYFCDpQ+IWIMIxoNPxE68LzFUEQUQwjmpHx0ut7Zu7KfoOy36Qa1OHsJZQ2v48jn/w2tcd3gnwD0lcEgVG7jGJJfT4gnvdRkVV71IaxLOy4pZ2yXx2dEqcgNJ6Z4cgjP2Vs531E89O2H44YyBAFLb33S1VWXPhWelZuxa9UMyqjmXPXgkjtQWnNWlZ94BO88KV/ZPzO2yguWY7f20u4ZgTtwezDDxNPmfpLWzZRWr0eb8ZLVPLV1By1Xc8w//RO5p7dRXNiDISktGQFQ+e/hoHtF+KHJaL6yZ1rv8pn00lLlnKi1zYvAtnLmUPohKVHx7ufreckAFP64/j5Oz6brau1nccDSW687Oag4giFQrQL2gDEtXkIgs7cmhPsw4lKo5oOLA0NJvYspoB0I0sLxXDBFOYAVdYgsi7Nf21fXk+jisYRhBagnFqTkgglcpIlIS0T1konkqokaKWYeuwBZh592A6epmfddvrWnwl4uUBnIgIXzVxIE3sCjFGmbJhOxNpInrBqCwlQanFIoAHhgxAqZ3fU1lsdIEhdgDvnDomTB2W9+mQOwhS46Nwz5vvCOdLaxJcwBsGmhU66ooRACCt1shxX12YX40kAkbXB0b5ODkAVaKM+V1SIStOAo4wKo/SMMwXpKRplCXgU16xm5tGHiFQdGRZSqVRRGYcPgVHVlL5OVOVSb0zp+LXafwHM3PUwRz/1HdCaykWnJ/GXzAgLc2w64KMx6nexRMRQWrGKcPFi64DCqpEGBuAnkkC3mLWguX+MmR/fj6438Lu6Wfmbn0DN1Ri/7w4m7r6deH6Oytln0P26VxEuGTHrfb7B3I6Hmb7zHuovvABaEw4torphK+XVG6isOAXPL+T2QxUsnM+fW0rYvK9AOb8Oyc1TRt03Z7/kgFNWmoIDDpl1mNxIib1EopQFShnwlE+2EEkKVBwg0sIyNnRKO7s8ST+yh1LL4dxJ7e9EUgtgOlY+jULpGNnBsKqu5vBlxjWkttT6Ao5iBji2tj/7rDb7nnZMlAzw1BLmZixYWjSAKhpnNE4FUIfKSL49hfSMtkEQxDZ+T4Oi38SXJs6PkyJJywQDUmdGGAcNUmg8oYilQAqZeknH2iU5RpbbD5Vi7r7HmL37Yau7rCidsZmuC89EeIY001KgYoMK0yVhAJSU+ckQFsXnnE5kwJG2wWmzdkIiBmkdK5iPzqnkJYDftiWdVjuGVpMhNzudaDhLS2Tfl+TdyuyVZou256hTQc1saQlNJFI6QwQaP4gzDjFM+zxPUSk0qIQNZkXInA6ZqRfQWjBc1iwqTjFSnKQW+xxQguLmFczcdi80pvGrIeVig4Gy8bR3cKbKmOwijgXaE0RCGroiStuVqHOCkczYcfVqMPPko+z74dfQUZO+DWdS7B9Jz0SnEeK0U9xY2VQaXk55aFkyDglTOaOWmNgsAdHoGJP3342q1/EKJda+/RNENBh9/GeM3X0b8cwMldNPo+fyyymOLEVGAj3aYPbhh5nccTfzL+4GNIW+YbpXbqbr4vWUl6/FK6aOx/RCHH/89Ct8Np0cWHKTA+0RcAuQyEmZThQYdQInHfKdKGBKCzh2+R3TcdpxzOttvpfXrGV25xN0bdqaAji7iczveY7C4iXGa1yH1GmttAIbHcfoKEKEYarKkdmwnF5tc3wUWSwZT2eOYLf3RWSyK6telepiYiRF7r9Tu7Mbsw4VXqVJWIgIgwitBfWGTz0ooj0PoY2IV8Zgg0QYzQyfVNxOzIHrv0Rh9QqG3v9eZFhAzDSZuf9+Xvje51j+2vcTSD9R65ONDHDyTAeUFHh1gediRXkCHUgIUraY1qTODqLMbiANmpNeekgCoGJmH9jFzP270EpT2bKSrvO34IUpVZxVo5MyVTnJM3qNK1nfSq687GZPCqyUdioY1ktS5nmAWEkDmGQqOTIGwinIU1aNwwtjqzVjjIniokaVY2TBOO1wEqgsN9txSYVvuLOF9atAKeYO7aa4eZ2R1hVivNAoukunO68hjjwLVszBlwRutAe/s7mKJ2YZ+9wNzN79KJVzt9L3gWvwyl3QkC0OIjBe8dzh37Rg3QFBaewRWl2Mq1qTmVvuYe6Rp9CzNaKJCdTMDLJcYeD8y+k7/UK8Ghy86XqmnniQ6rnnUH3dpQTDA2ZtHp1h8vs/ZnrHfah6ncrajfT/xrsor1pH0N270PDZHeaygybRzytZJsYrUs6vQUo4s4LUW5cGgbEbEdbZCGD3aUFH4j3zXcQZoKTUQtAECxeGFG1U8cxvQ1Rm72f2egewWlNmDk9ICuXqyEqVOuXJScIkaMVgaRUH558xNksun/0/1ThMyes2kifXd+dWPI5NGVIsrDcH9BxQiVFC4cnQnDtIc27ZvFoKlC+ozY8a4LGoiq7ERjMiNhPthTHSV/i+Qlp1u2IQUQya9IQ1il6EL+NM1cYuN9KSWuwndrpNZRw8NGOP2CJuKY2kSylJbAkg1ZQQGxV13dSMfu7rBItHGHrne5ClIko3mL3/QY783RcZ/FfvQxYC63hG2Fg9Ds2D56sEoDnbV8PAlNYm1RjSt5PsZM9+6bQ8muDVNSJSTO3byfjex9EqpjqwisFlp+IFBWND5dvz074nwp5nDjBZwdhCuipD4yQ0gm2DhpxGSDagvCYDlDIgwTnpcIHopR8T+nFeG0NDFElqzYBG7DE3X6BZ8xFCMx0UaUTGdftAOEvoxfieomvrco4Cwb6dDK1eTU9YY03XKCOFSXYVFvGkgKO6Cx0b1bw4Nu0TvjJryZ6fUiqiyKMxH6CONhn/zg3MPHA/XWu3sPSKtxOUutP5cFOjLa3lwFKLho7K9l+YfmsBuhkx8cBdTD33GKpWozk9QTQ/gxcWWbTxYhZtvBB/Enbf8x2OPnU3PdvOpu/SV+EvHjbM6oOzjN7+IyYfvZe4Nkd12XpWXPIOqsvWE1b78mNu6UtlkcOJ+LfJpV/hs+mkwVJ6kNAWaLQFSB2Aw/EAlMsTW1Ff1p12ruxOgCVbvHuHXgIgbQtMThYkZX8L6D3vYg58+TMIz6O8bqM5mLWmtvs5Rn98MyPv+cCJgefWdtj/9QP7GL/tx6hG3XgumZ+jsnkrPede0Fb9rzE+SjAwkIAUhE4M993LK5t2o2wz5sYZBKn+so3AHRQiysUGpaCJEJr5ICBqesSRQDQ9vHlSLoprvDSceOXB+P13Udy0jq6LzrFEp0YS0H3BBchiidGHbmfRaZcnnReWW4bjwvnKxGrwNZ4U6UYuXGbz3RnUOmIp8bYizIHgZZwxRBMz7P+7b1E5bQ3D77gY4XtM3fc0L/6/v8ji3349heVDphst6nVCWA6hlUB1ci0rLCczcQsLCxbhAikXCilELmaHEGm7jRRLWrslgZLSxhox9kkiVMhAJeqGWSmXVsbWSlnPhtpXeCuGkaUS83ufp3D2GmQhwgtUIsVq5b66sWxNxuZIMP/4bo7+zy9CHDP88XdSPncbOvbQTevhLuP9Kn1YJJxKF38JMASGVbFxzjiaR8Y58t8+hwxCGvsOoBsNCouWUFyziWh2hoFzL0f6gSkLRXHVKgbe9VZ0qNFKM/ezHYxdfwMg6D3rQnpOP4+wb2ChTn+mnwm37yXsOS8nuaX9SpTz65DSWCSpNMlpACTniyP03DOi8/hkbZUSoNSqhqc0UVxDa/BlhpEV6wQoIbOqeOQlTllVPehou9TWNqpV7S/3gFj4u0UdT6t2XvbM7+XVbTx05CY8ETBcXJ30a6J+gF2Td3LqwOvy5TvAZDqx0IYpmw+YaYzy3MQ9NFUdTwY01TxDlVNYOXB27kVLwNLsKEFfP7qEsUGxKmkI8AKF7xtJkic1vlQUgyYlv0nRiyh6zdw+poQmUp4hwq0H2BQkmZiCTuUu69ZbWyYgsYSmgKZk7mf3UVy8nN4LLjb72yyooED3WefiFbuY+t5P6H3TlemZ6PY5i0aUMrGXjLZC1lkE6b5oGZDt1mly3iYqeBo1N8ezd3yB7sE1LD/lUjwRMH54J0/e8SnWbH8T5YGlJqBpVk2+3TvggE0LEMBh2QwNmWgqkbmu0mJdntb3UJMFTNYJR0bS5sYpbnrMWaCq6h6iaWgBrRSz9ZCDs1VmmiEzDePcp7SkStBfIX76eRZfOUhfOMdAOMN0XGQmKhApc4biHINoElU/T2rCICL0YgIvphl7HHz+KPv/v19HzdUZeuc76dtwDrIpUHHLvLi5cMxUBy6T9Wx+q6w0SUJzaoq93/gXpPSpjR5ANeuUekboG9lAY3aKFWtehacLqHmNaCpKg0tZetU7iUqgG5qZRx7i8Pe+iY4iBjafx9D68ylVB9P1ptK63TnrYpMhoMO20zH9Kp9NJ2ezJDML9xiNXQAcWgFOm3sLngWmdz7KxAN3IgvG7ayqz9Nz5vlUN21vX+4xJm6BKt7JpOMsiE7A7VhEkiwWGHnPhxj/6U8Y/9mtyEIR1ahTWLKUkfd8AFkuM//8M9T27kF4PpXNWwn6B45ZvyMc5/fsZvwnP2T4mrfj9/aaPHHM5H13c+RbX2Poze9ID2fb7ub4UfyBgdQuqWW8nGtpEZn8Lp4OgoSINZuHsGJxhQyNi9WCH1EOGoQypuBF1MoBs5EkbgqiusSTRlTtuCVxwbgoVwXNzK7HGPq9D6FLTQBDsFtZc+XUUznwqU8yfMblCfFiVAgMga01eJ5G+QpV0EROHzc0xLT0Mk4ePOfG2nZZuWs6sfcBs5Ed+McbWfSbr6WwfCihLXqvOIOus9az76+/weq/eC/C9zJqeGYQHa3vVOcAstKnBWsEZ7rc4X52x5CgW+TiUqokXkfWFirS5sBHarPZhQovjPGDOPHwZNpm6mhGNsidp5HEJk5TIAnXrqC+ezeyGBEUIhMgUac6+cKKObUG3YypPfU80eT8Au6SbijGv/odgmUjDH38nYSDVZR1Ny6cO3AyB+qCgdA4TiVW9U54Go1i6rt3MHfvozR27wUgXLKU/ouvoHvjqRT6hhAaJh9/kPEH7mDgvFcZ27kwJD40TWPvPrQvmPjmjcw/tYvq9jMYet01BKWutO3t2pPZDxyRe9LB+15OyjIeXm45vw7JSkkM4WYAU8LpFm5jsf+dC/EWYiZJrdKljNqd+35k6mlemHgQTwYIJI14nmXdW1lc3ZQvywEnmariQRvglHXQ0KEdC66Red6NQbs87l47SZOTgmkLeJTEkwGnDb6B3VM7eOHow/gyJFINqsEgpw5cRShLjNf3M17fjxCS4eJqKkFfIj0DOophp2oH2Tl+B1sHr6Dkd4OQaK3YN/ckjx64ia1L32jHx6hJqUBQnxnFHxyAUowfxha4GNGF71s34L7Z9wIvToCSb22SZMINMSo1ShuVu2ZsnDo0YmMHo5QJwq5zwMXGT1ISZSVKomGCn87teJjF7/4Q3nzqgVTEAqWgvHELU7ffgY51Gj8qQcX2XyzSGL1ZjZEEBIn0/bXAwZ2PLk+r84Hn7/k6KzdfRXfXEmRDI5SmuOgMBgY28cRDn2fThR9FhqGxo2p1VLCQj5WnhbI/3Q9HkOd/5vrakYaye6sDDTlNDPeeaLM+49iDed/ER4qFiccojdSvEXnMihBPKqrFOkJo+rctZuqx/RS9Jr3BHIGI2Tm3iL1TvczWQrN+sJo2Ucz848+jZ6bNmEqFJzSepxA65sV/+TH+UD+D/+59BF0D6Ek7b4L0DHTzYvuTmD5kuuuEikhQaMZ2/JTJJx9i/sBuAEq9IyzZcClDI9updC1CxJqxg09w8ImfsGLjlchI4IuQeG6Gxgsvoko+h2+7iZlnHqdn7aksv+DNhGG3UcN0tJiX/s/GJnPuyIHEackJp1/S2fSXf/mXXH/99Tz11FOUSiUuuOAC/uqv/ooNGzaccBknL1nyMhPZiatAZ8CUlNUOONnrQsP4fXfQGDvCkrd/CBka/X/VqHPkx9+lOTNJ37kXtz2sTlQa81KQaac2Z3+3A245MJO5JosFBl5jOG06jhGecQXZHB/j4Ge+QHHZCkrrNqAbdcZ+dDP4HkNvfAvCbz9tWhiCeexHP2Dxez6ILBbTuj2P3vMu5Oj3vkNt9/OUVq9JNs54dobaC7vpe/1VxsbDceQTvWESA1DdFCiJAVXSgaZMvBxhjWR9w7Ur+BGBNaj0paIsmvRV5gCYk5q6DPHqVoXKErtx0XpjKypkSVAaatpI55Ko7pmAdbEAXyKLRRQxSM/aHGEAXVOimhLPisejSmz6FQtjm+OAkp0r4WJYSGEPfmE8yPkqUcFTWlB7/iDBUC/B0kXEWUNVQHZ3Uz1/E1P37KT3ok0JEMpKmBy94eyVOkmXOqV2mjFOLU8hEu6akypJbBts0OAaPs2mbzb8ZAM2+t6lggGkrnwHtJyBq9bG7aoUmlrDJxzpZvbBp/FDowIhpUpijiQOKJSgtmsPB/78n47Zr2DpCIv+8L2EvQWEiFGR0zEgCUKYqN5BnnB0XvTcWgRQgvHrbmb6B7dSOfVU9HCDJR/+bcKu3uQ9dPt85bRT2fe5f6L3kleZtvQN0NxxN/v/77811fb0suS9H6W6dnPS3oTbdoyUqEpIFgZ5/nmm/w2WTjolaj7C/XCsbxZwtQ1BZ19EyUJdFAeMnBqeU8mLFS9OPMJEbR+nDr3B2O5oRawinpm8m/nGJGt6z0klLclmkQc0IqOqpx2zqpPqmtuj2gGmnKpfG+DULtm8WlmplrR/lMKJOjwv4JS+8zhFa5SODcNDCGrxDA8cvYGuYJCh4ioUEc9P70BpxZb+y/G8AI6hX/P0xJ2cOvg6Qq8EsbKqvYJl3duoxTOMzjzLQGljQnQ24xoz+56l+4pL8ctNwjCy+5jZz8MgouDHVMK6UcMSKvmfSpQsYWzV7yItaSjPfI/Np94IDIiKM85zwDCKFKimZxwM1UzMHq8hEHiEUZjYtGgBKsZoBoQCr1pF1+oIS/tknQ1pGyZDa6sNYcF8HGecLdn6cypdTlNkwUdTGz+C5xUMUKorvLpCKCOFK8oiI4vPYPSFBxk65RxyG1+W3mn55BjrIm2Hdq9WCx2WSLtcm1v2MS1tddn79jmtRXL2qDi1DUNgVOsbAlm3MX6kJlbWhXgQUQkadAd1uoIagVAcXlJh94MvMtEo0RvMI4Xm4FyV6fkCcSSNLbSS1J45wME/P7bHznDJICP//n0Q9qDrChWaNiishr8bEzdWGQuHzDLK2VMe/dnNHL7rB/Su2obuWcSW83+TiuxFNjUyUjBhzvHhyjr2PfNTvLpCeYJS2EdjZpxnvvQ3AATlbtZc/iEGlm0zDihmUxooDsx/7WO++6lEyX0HTl4P75d0Nt1222187GMf4+yzzyaKIv74j/+YK6+8kieeeIJKpXJCZbw0m6WEY9EhYwtgOBYwavdcND/LzDNPsvQ9HzUSEHtdFgoMXXUN+7/0Kbq3n4FXruTLORbx0sqZEZz8pJ0E8DvutSw7BSCwkZijiCNf/wpDb3snQX9/kr28cRMzjz3C6Pe+w+Ab39yxiY0DBwgXjSBKxfxGY+vuueAixn74fUqr1iT3Jh+6F4Sg65yzDUfVs0DIOnpw875gLKRODeftd+kpI6HwFIEfI4Sxp6lHZqlJoQlkTKVggsbNS03c9EzwT+fVKNBIPzZqXXGTwIuSQyt3GAmIm3WrZmc3HS/loBkXouY54Wu0VgkIWiAddWtMKsOZFGnMiqwEZ+7JvZROXWuDCtqLGfWwrtPXMvG9ey1YSoFSClriRFqUtUdKmpHJa4q2ZbeoGDiQ5QyPE1XCjMTKleNZI+WsuoZrt1ODEKTgyrXPPa9xbtAh8MzuGE3PM3PHI3RfcRa+Z+bbOZ8w9Vs6D4lXMXZc1Yu2seh3fgOEiWDvjJ6F1PhFSRBqICJWMllfLkaTlhinEXbedJzOn4uJIn2jBqhjwcT372X6B7dS2rwJVW+g5uaYeeQhes44G69cyRvzexIR+ImufN/Fl1PdfibxzBTx3CzlZauRYXEB4Zzjnoo2+xnYOGWkQW9/AelXWdXhl5LcfOZUzK1KnrAMFMz7k6juHmtsnLSl5XcU1zkw/SRnLXoLAm2oY8ATHut7L+ShIzdSi2Yo+lZymRompi+UEBmJk21Kq4pqO4DUwf22U/VLyugElBZIlcgDJrf4nW6YdXkmhWdUluKYR0dvZnPfq6j4vUkxg4UVHJnfzZPjt7F18Iq0jy1ptjlB0esiFMWFfdGa5T2n8dTRHzMwtDFp79HdO1BRk8plZyVezRyjyvcMMAr9iLLfTEBSIlHKTLDSwjpxkMleLYXzemqBjIuRFKdMInOgC2Nzae0qpYtrF0XoWCPb6TEJUHNziIKfA0qJg5qWR5wt6gKurLDhKSAPPrIfW9/M0d30Llqf5BPKAnx7v39gA889f7MBSw6ki5SQT+xobDNyqnPJPFmA1O79aQFIwqqsJnZMIgVF0tGh1sOcqzR2EjzMmLng77p1PVkQGceSKPZoSA8Zarr9GsXGDC989ykWvWo9vlQUvAgP4zK+WqoTFwWBVDSVRA+YcitnrmfZH7wVITFnYUbSFYmQhgppzCsD4qzqINryOzIM1yxJkRuXDFiaeOReDt/1A6rLN0AzJq7NMv7sg5SGziDwymbOrHMTPEngF1EqAi9gyaoL6FuxjXo0TbM5R9fgSgK/iKjplC7OSDITT4N+KllKzCzsWXmyKua/rLPp+9//fu73tddey/DwMDt27OCSSy45oTJODix5JP7tzYVjZG4FCO0GtQPomH7iYXpOP8fE/GnJKxBUTz+bqccfpvfcC9BxzNQD9zHzxKOWWFRUNm2l+6xzEo8ynepsN+D1QwdoHDqILBQpr1mHCPJlHA+YLZSodRikDuXMPP4Ile3bCQb6AJ3jvnRt28bMgzuIZ6fxurpol+LpSQLr/rtdzX5vH/HsbCqSjxWT991J19bT8KpdKKNYbyQtvjSBzJpGP9oYq7vd1HxPgAdOZc0Yt/qeMZiNtSBqBszqkEAaI8qCF1EJ65SDBqrLbHKxVWNQiER9AaC8dhHzT+3FX7eaqOGhGx6iYThk9f37CAeGUEVB5IjoDNdDR5K46exWNMK+7AAogUp2hmwgP0N8C6uC51kX2rEyBL72AlQtznERhbIHp9TE9Qjht9e5knbcvJaZUTpVaWiVRLnUKcBhNnnotmVJYdzfBmganofnKWI/NnElIYmDpLUBLoHdwbNlORe6gYyRIuaZf7kZrWIWv/1simGEJ1Qyd65ehUASI+enEYUAMT9L34BRbVHarA1IAV9TeYnKn5AaPGUNwEkCQwqhUbGRGrqXzXnd80Pjlmhuz1HGr7sBr6+X7ksuorRmHQf/6Z/xRwbY/+XPMnjNNYQji+3cCbTSqDiyBKDZY4LeXgKrwoo7SzJ7mnYxwXKASS9gkpgDRqPiV+CEONGU5S6/3HJ+DZIj7hzjQEMCALSnbXiDTJw2q4qXSJkgpQCTszFVuxMWrBya3sWSykaEVobgzwADIQXLurZyYOZJVvecidaK/dM7OTi7yxSHYqiyhmXVbXheSCJxsk5dFlAtWYCkNTP1o0zXj+DLkP7SCjzp54CX8GQedJ2IPVNWwuRJU19GwpSgNq05UtvNYHGlAUot0q2h0ir2zz9FrTFFMezO37epHs0Y1TvXN/NwUkbBqxCpRqb7msNP3Ul13Rb8kSoFa8TvHvc9Regbtbuy30zsk2Sy9x1jD8fsWY5xpHxhyxVETetkIUptLYW1u0zCXGgoLVvF7PO7qK7eYLj1nlE/VwHUxw8ju6sI3yexb9UtbtEzlLWyh1oaNsLMzQKnOAkIyZAlAgOoPA/VjJL4VIltshQoXxI1mgjPN9ctOFI2JmMWLKU2zyT7owNr7SRJbjxyQXFjnZN8pe1kgUc/2QARuThVxrZW+i5MBhY8KcOscs5EFIi6pDYTMqYE5ZJPf3EegeLWv32Y5myDCz+6nmVdRxkIpqmrgP7CHGW/iUTTUB6zTZ+52hheVwGvPsu6ZdPJWeu0UCbqRWbqirieibdoVdoMvZD20fU9xwt2gNaCk8bYEfbf/DX8cjeLTrmQxZX1PHbXP1P1BnnisetYt+JKuruW2vGXaCloxnW07yM8gZBQDHooFntMBRGIRoYJKy395eY08z9rJ+U0s5IAwieTXuGzaWpqKne5UChQKBTaPZFLk5OTAPRnBBLHSyevHOL2ZTuJyeVWlNnpu02dpEoAzdkpCsuWt39OQjDQT+PwAXQccfCrX6C0bgMj7/0QMgzQUcTUww9w4EufZdF7PoAMgtSzSsvLmpUuNcfHOPKd6wl6+ykuX0njyCHG77yN6mln0n3G2W3b2ZZ+bQOSTgZ9z+3aycAb3pB7Jvu9vHkz8889S9f2U9s+7/f1M/vE4yxQqrfNaRw5jN/dk16OmjQnJ+gZWbxAxQlhuOIqSFU1nFoRGXDRKSnLYYtiD6UETenhezGERkLhCUXJi5LNJVKSpvJoRD6xMl6GBt90Pnv+y/UMfKgLObwUIoGaqdE8dJTRm77D4re9FxWSqDlpaW2S3Fy72EmZhmqNcTftumk3+sRznJMGOY9ukNjilE9bz9HPf5/yOVtzC8rZJ03/9FGq52zMjYO2+Zz3oqwDBDPMeYkQ5O2RkoC3xwFQWmmmHtnL3O6jyEqR/vPX4nUVMlImTejFNIMoUdlwAEnYerJAzan2ZfsHsPsL93L4lidY+x9+g8pgCYwTfKJY0ow8lNY0D00yddvDTN36ENHhccLF/fS/4WwiJRfYUMUYcBzHMuH8CoFRr3NEqUyD/EqpiezhCKQBdzHLvP78PtCakX/3uwTVXkQsCJctQXZVWPSB93Po859n8W//NkIaZxvzz+yiuGKlHez8vpBc0xqRcW6S0FIOIOWuZZ5z7sv/t2Tp/3+TSD9u10z+WwIQh2uybPEMh72jp7mMlKkRzdATjqRAqSWV/G5Ga3tRWvHo0e/TW1jMaUOvx5MBCs3B2V08ePAGThv5DXyvkIItpRdK/m0dteYUTxy5hYJXoa+4lNnGGLsn7mdRZT0rek9L82udSpi8TDntbJmyUq5WlbwOEqajtT2s6jo9LadFgjRcOoWj9b0sC7e0HcaSX+VF6wY81y4bemO+OUXgldL7cUx9+ihdW081e4dUhH561kihCb0IX6bSpEDGCeNG2cUfa2G0sm0gwEhLfGGk6G5vdEwfrQ2wiJuZs9cRvGQAuYC+cy5m39c/i1etUFi6DO1BM56jMT7G6Le/xcD732kfMISVVllknpm2bKiLrLgHcvsQZN7nHFAy+1Z1+Xpe+OnXGV55FmbReskcaQmH9z5M37KtRsKQJaTddy+9lti2u+oygClXv/3eqhLoQKVQ2qrtaaaPPsfsxAFkWKRn1Ra8chktReLy3NmLgXEXLqU2TolsHEfXJuHGQYFqeDSlpiY1jdjjvi88w71f2csVf3IWvYtL1GPF/riPsWaZg3NVGrFk7uAM+3/4OKM/fITmgTGC4V6WvuXMxM7NSR8VgljLxFOiio3Nm5YaFVigJAUyNq+IkC37reOlZNZO7eB+UDEbrvwdeuUQ/lREb9cKPCTb172Th3d9mdO3fAjhB2hPMD77ApWexRBKgy2Ec/yRxr3U1pZAeEY9VXt2zZFfQzmmoCaxcztZsPRKn03Lly/PXf+zP/sz/vzP//yYz2qt+f3f/30uuugitm7desJ1vjRveCx88dpJXE5IPa5NCvsHqR8+QGHZ8hSEZcqqHzpAMDDAxL0/o7x5SwJmtAACn+6zz0EWC0zecSt9l7+mI/BwJ6Kam+fwN65j+G3vJuhLkWbPRZdw9DvfZDrwqW4/feHzbcGSPrF8HZPlgLQ+k2xw1ptaKwfCpnDRMNHEONH0NH5Xd74NGibvuI3qOecll2VYoLpxG5M77qHy+kvy6hwCCBRKSSOVEaQumb0USORSouttdHNjJYljo3IVKxJvQaEnreRJJgeU0QM3RrOxA1mVHhZ94m0c+eKPabxwmHhyxrzsUuL19jF3+AUqiwz4Szhb1u4qxTItg+lcqjqujSaRkAmZeoRrlfBoLfD7u5FdFWbufJSuC7YldklCamo791B/8QgjH3hVfkhagE8rYPIwqoqtebKqICkTNd8el2aePcyz//M2urcvo2vjEhpjczz7VzfQd8YKVrztzKTMwDN2ZE3fs1w3jWc9QgVSJQ4elAVnXkYy5QnF5OP7ef7aO1n5/vMZfNVmYgVRpBm9/Ukm73uW+otjNPYfRc3VEYWQ6oVb6Ln8zVQ2L8P3IIp1ru0OhCXG0O66VBnqQidqfon78UCknqes+qeUZq3Wnt1nBsXTzD/zNMXVp9D7mss5fO3n6f+NN1DasJ65Z3ZR3riR+vPPM/GTH7PofR/IGde68Z7Z+TiT995tbmiFLJXoufQyCsuXJfOS0CgOEGUPGOcwJfgFIo8Mgfayy/k1Sa2SpeR/4uAhc1/kMVMuHWOvLwW9TDeP0h8szt+wNkozzVHKfg/7ph+jr7CEFVXLENMaKQRLKhsIZJHnxu9h/cDFedDSRjUtius8cvAmtgxfScXrTW6trJ7OzvHbeXHyEZb1bCeRQklyAKbt96zYuh1gykmfdO5ZcYzBEW4j7jR2fjeRajAfTVPyq2m51tX4non7Wdq7PanWQzKw6nQmH7mXiroYT2hKfhPlGTVfITRFP6JomXVOouTLGA+dMHAk0oIihdQCXygiIfHtPinRKE+kIEunACpZR4pk4WhtJe7VMovf9n6O/vgmat/bTzw7Y9TEpcTv66Wx5wWC4X4bzgK0Q+wto2amxI6rcnWYWyJLN7WkRJpqwY5XqVLoHuTg3ntZtOKcxDMswPTEi0xO7GHR6a82jjO8jFTJfUQGKLURyrWwbpM9KiGetQVKLoCrMhLd+fFDPP/wt6j2r6R7cBWNxhy7b/8yXUMrGDrziiR+onGyoUwICgzhr7JOLmT6DiejpzDON5TgwBMTPPB3D7L5vVvpfd1Z7JvzqTcF+257nsN3PsLsC2PU942iZuuIMKDrvM0s+u030nf6UnordRpq3tizxR4KQSP2mG8ENJpeApQAE+dLgPYxjhRijNQxtsvfvTLue8aEr77/RQCCSDJ99Bn6g6WsWHwBjz51HacsexVDg5s5PLWLoZFtTM7t4/lnbmbj2e9NJJ+uz0LD+KFdHHj+TrQyoj3PL7D0lEuoLFpp1I1b1kp23hzwdQF3Tyq9wmfT3r176e5O6dwTkSr97u/+Lo888gh33HHHSVX5ksHSiXb4mFKV7MmUuVbZup39X/gU1dPOgCQ4m7mn4ojph3Yw8sGPcPDzn2bxh38rdXWdqbO8bSsH//mf6L3iis7V20emHriXnosuwR/oz+/XnmTgjddw4NP/TOXU08h7kMvXt6Bfx/rdJjnCvrRuHbOPP071vHPbIvC5p55g4E3XLHg226SB1/8Gh6/7IgOv/w0KSw1Rp+ZrjN/2Y2S5QmnpclwcQAH0nnMhez/zD9SffZ7CxtUQgZaW1RFolFRGpUCkzh+E223dIS2Na+ycy2m7cbtuqFigYo8o8pgjPWuzyWxwpi5pjVe93h6Kq0cQYUjXRRcQFPtNXIpGg/Ebv0uzPkH1Neen0i63+eYGiYQLJ2JzAAllPWD5pp9CGHUv31u4A2RjAw1+4HWMfvEHzN7zKF3nbEQGHnMP7gKlWf5/XIPM6CybAzedHCdlAhJpj/2R04eX6AS4ZKVM2e8uf31sluc/eSvb/vQNBD2l5PrS125gz7V3cOTmR1hy1RYTed4z3NNsPJBy2KAUNglknHDCsvU4oCSFZvdn7yIcqLD0vRfQrDU49L1HOXj9fTQOT1Jet5iu1UOULllLafkAPaevhEKRSEliZYBMM/IWACUXW0paKY0UOrEZ17aNCKfeGSftVhluYi6ivQeiVOTIJz9H47m9iMBn2V/9Z4Z+871MfP8W6nv2muB7t95GuGgRQx803ieV5bhpAC2YuP1WoskJht9r4qAgoDk5zug3v0X3RRdQ2rg+p7uPtZ3KMYwcU+Gk3Qa9jPQKce9+XcBSOy54Qug6glPa/UJaOwrnFc/eW0jH2lISaYtmuGst9+/7GssqW/Ckl8uu0OydfpTThq/m4cM3cfrg1XlVPQtkBosr2D15P1obJdfOndIcmH6CZdVtVGR3Yh9lmibY0HsR9x+6nqXVLQhppQhYda+EMdfm4Opk0+QEEUgSzzfWQx5a0V9awaHa86zqOjXtk/sAh+efZ23Pee3Ltnk29F/Co6M/ZEPvhfQUF4OQRLrJnrEH0AL6ulaY7NahxsgpF3D02fuYe/A59JWL6A7rhDIiUp5VEdZJHKVIeWCBki9jfHutCaBtrCRIYxs5dSvLSNJaEPhxAsS0BmXjRmlhVBSdeptsmj6J/i7ClStQvqD7oovwBnvxKkXiqMnE935APDZJ95WXmrUVCasCnw5JQlzrDPMPm6WFpsqpxLnf0hDtbmdafO4bOHDvTTx5z2fpW7oFzwuYPLCTOGqw5pL3ogqetWMRC6RJytniONDkqu5AHCfXLSCQsQFKIgbZNPMXz8/x/APXs+m0d1NwdnxdgsUjp7HnmR8z9tBP6Tv3ElQIjTmP2J4nKpLG74BjgkJb1S8tzbmBgKc/cx+yVCB+4zXc/4zP1E8eYOp7dxAdGqOwZjGlVUP0n7+Oysp+ek9fQdAV2rOnSawkh+e6rGMjo40RK0mjaWidxI7KM7EnnSqaUfE175yKRX5MIIlb6SRh2hN4hTLP3PlFZsaMd9dLL/hTtm5+D8+/8GMmp/cSqyb7jtxPoTrIugvfhyhXiSGj7qc48OydzE0eYPO6txJ6xglYvTnNrme+y2DzdHpXbcvNmTsTs2EyEkdaqebriaVX+Gzq7u7OgaXjpY9//OPccMMN3H777Sxbtuykqjxp1+GJt47jIcTWl/VE8mFf6GJI74UXc+CrX2Dwqt8wLrOFiQU0+r0b6bnoImQxMF7hAiNpaS1PeBJRLKKV8TLXLrmn5p/ZRc8HP9y2PcKXhCMjNI8cIly06Niqd8frlz42eNQCyqedyqF/+mdKmzYSZNTlEDD35FPIUhk/uzjazEG4aISht72TyZ/exuj3bzKHoRB0n3k2XVu2L2hjaekqAKIj4xTXrjEAxxMIH6MKJTV4pgNG60GDdc0tnH4yxs7H842tUuqVzahUKaukq2JBHKWB89KB0pYbZv57gYld4HuK5uQ8tcefZeTfvYfmfAEx5Rs6JAzpe+ubOPLJT1G5+FS8asHY32R1t11H7QYlYqtD7rwDSevQwHnpEalzhQVe5+wceaFk+MNXEU/PMP/IM4i4yaJ3X0phpMf2OQ9uWiVL2esOlDgPTe4Qz+aTme9JuWgzpsDuGx/hlPefRamvgNL5d2Hdb57Hjn/3LZa+bpMlDhQERornCeNavBQ0Ek5pa/tdXa7uyobFjO/Yw4MfvZbGxBzxXJ2BSzez5M/fQu/6AQo5tUpBU0Xopo8SXgqi7VgmUrkcMANDOkrDcLdqeJ40DkMCS9z4nkqllpaAUVqgmhFCSspnb2L29gdNfc0IHdfxervof9c1zD70CNGRMbovuwQpPGs4TM55TTw2Rm3vboY+9AFjC2nXhD/Qy+AH38vhT/4L4aa1CN9SIM5leQvjxv0W3i8QLCmO5VTs5Mr5dUmZrSjh36ULFadumQVQwoFkYRyO45wRWXOdxLgeQAqk9lnTdy4PH/0uG/ouNi6zgfloil3jd7CsupVAFhDCwxN+uhgzajEiY58TeMX0fhbE2OeOzD7HaUOvJ2e/JNNyegqLmaofpqfUIumCXHmtBvKJymGbOrWzobLe+pw63nD5FO4/dD2LSmsoedXc82O1F0FAOexZWG4mVYJetg++jt1TD7Br4i6kBZxLerexumezVasl6W+1ZzlISXxgnFgvpug16QnmaSifpkppgqyDHV/GBI5dbuex7jzi4Rw9iNwz7ZLb14x3VetswLdq7a7e+RozTz7Koo9+xMQ+lKCFRoYBfW98A0f+5bPEE2fi9XaZ9WaXgRbpse/OsYTITsC9mw93porkdwJoPCPZwLOKd1qy+ILfIJ6bZWbvTiIVsejUV1PsGTR8UavxkgVJiUQpW27mSE/GYyGJlkiVsiDBqd7JGA7svpdlKy6kJCqIuj2gpalkxZpX8eg9/0z/qRfi1TxkTRKHEgLLYUNYBqntdJwOWmpfZWgWKTSFtUuZunsnz37iH1GzNdTsHOWztzH8u++kunmEwe4ZesIaUmgirVG6wXwU0Ih8mkom3mJd0trYOCd9dmsAnd8/nJ1s5uwRFgA7e0mhBGIuQihNz8qtjO26Nym3qWsUSn2csvmNjI7tYmJmL8u2XIEueCjfeN1LpHYRNGszjB/eybat78dvKGgaJmPRr7J509t56LHP0r1sExDk17MybU3c3Ds7q5O2WeKXcjZprfn4xz/ON7/5TW699VZWr1590lW+JAcPsJBj0BYIHHs/aV+Hfaa8ZSteXy9jP76ZeG4GAK9SoffVl1NYtsy8pFETLXQi8WmtXzVqaF92bEfyAhs3XwZ0LeAQgigWUHEzL17uUOYC9bv0nDshKZsMAwbf8XaOfOlLlDZspLRhA9TrzDz4IGp+nsF3vCMtN1tHSwr6+hn8jTe3aWAmv+PqaM+8rbVGes9GrZdhnHCxsgDEhtxDSOOBTPqKQiGiEESUw0YumJ/WltMSGwP+etM3gElkQI0AP4yNu/EwohQ06QrrlP0mu255nCWv30yhGKFin1j4xv1qJPCEpuuMs5m98zGqV5xtub2pw4YEPMWeiRPVtC5ELSdHe0CAicStSaRhuamxxLrrj0uFgSKVy7fYPGZg23rAywAj998TxpV3FggpLRIReJZ76SRN7UATwNSTB9n04TPRxEQZj00mr6D7lAHm945RWN2LFNroVxcUUWilS3Y2IyWTerIAxpeK0Or1b/jouQycuoSjP91F2FNkxRu3Uhmp2nbOm6j2tqxEh1xqICYWqb2SlDo3TgCxbbuU4GsHtnUSMDLw0gjtjXnN9JMHqI/OUT86R+PIFPPP7Kf+zD50M8qNT9erL8QbKBk1Fw1zDz5M3zvfhCgZ5w6G8aMT7qPQRtpcvexCdEjKjLESL1HwKW7fwPyzOyltX2+lCzoJyJvdG4RlMKjoF4c8EgLkFSjn1yIday/PfJxnPBMTxRJu9rv2RKLKJpzERGqQ9u2yTiIGu9ZQ8Lt4fmIH9XgGtMCXBVb2nElvYTFohdKR3cfEQiAkJA1Vw5NBuybnAJYhz9ozChESX4bEOmpzrw1Qypx92XMgF99JCByjQzjVBfusxGfrwGt4bPQW+ovLGCqtQumYA7M7qcezbB28ckE/8/0y70/R72LjwGW2XIHZLDwz/iLbLksg+iG63sSXisFwhuFwmpoKqCufuvJRWpr/GcmREjKxQwJoaklD+TRi38RV0tJKy60r8cg3joysunnrGWLWjQ13bNVyY18w8+DDlM87HV0UiR1J+oyg6/xzmL3/QXouM966TDBdnWFQYpwVZICAyecKAecRj5a17KRAymF8t8YVSL9Cz6YzkjITetgBtVYHAK0gKTdv6Se3L+n8fTNf6bwJpZk88hyrtpyPbChEMyOtNF/o7ltJ/cA+CuEKCmOCZiMgLim0U3m2/ScSSMcgzYA6x9wtFpqsed9ZVDctYfS2p5DlAj2vOYvCSD+BH1MKa1TDugmZEfvMNcMkxpZj1qkWyZW215RaSE+Y5utUGwH7qigBM4rmc3uJx6fQ49NEYxPU9+9lft8L6KiZK2Jk2dn4fQNEnpFYHtz5MEtPfx3Nbt/OjVkXMk4lWIdffIAly87FizUiii1KFhBrPM9jcPFWJvY/QVfvqen8KFLmkR1SF0qGNtvHsdIv62z62Mc+xpe+9CW+/e1vU61WOXjwIAA9PT2USqXjPG3SSarh6ZRjkWFvtAKllw2a7EgUli1l+F3vSst0C92WF65Ywfxzz1Jauzatx4KH+gt7jQtt2blyN97+QD/1A/spLFmSb7MFOvW9L9B7+eW5fnQEPp363gKcjvVssGiIkd/5beaffIrZRx5GeD7V88+nsHhxPu9JLpjcAstuXgqEJ1GRBYROncjG3xHSELhRw0tco7oCnXG97yuKYZOib+IW+M6rkOXENWIPT/p49npTGM5HYqQvNMVCk0qhQVdYp+hFdAV1fKHQk9NUNy8nsmtPKAzoaYLQgkJXP9MvHEHHqaqcA0rOYYOyh4ps2jgX9gRQ2jo4yKh0JSoO2bFLCPv8me5Sq0OGBW67sxKiDsBHCk2kWoiEDvXknvOMRCZSLLyHxgskQi0Ee4mefYZb2up8olWyVfJjlp63lOXnL8nkU4mDDgfWkrISdUKJ0ArPVu+862VVNmOlE4+IWaAZ+lECLvd//wme+Kub245N+awt9L79dYQrFjP5vdsprF1Jz9WXGa4tBihN//BO/KE+/IGKIShVunkJ+10D0eQE/tJB8DMLwR1wUhMsHSSeHDcqnFig5KXrLasbK6UG/9dJTPOrmbRwwV0zW3Vy7lg1KM0CEIVweYU9nwR4lvFhKVEtSCQu1eIwWxe9zlZq15eT/AhJf3EZR+p7GC6uImuXg5DMNEYp+l3GJfdxUlc4yET9AH0Fe260nIXj9f0s7znN1rtwU9NOMtSa3DWVginh+uLUDzMqdq6P5bCPsxa9haO1PRycewYpPJZ2baG7MJz0PV+PSMem9V6HNi/IIj1U3KRaqNEXzNHl1QhEjCdCpNDUrevUppZE2mM+DqmrVP05Uh4N5VOLAyJlYywpST32iaxtbVN5aJTiQoAAAQAASURBVI2xsdUiifOTdb5gFpTd6+wZG81NUVy3GgKFbsrEI5p7Jujrp/7sbmO3ZMGEdltZxhmTcNKTZNGm0otkb8swV80eRtoW31xXdgoSL3Q60x6RVJc6djjWwGeezUqO2n5o+Z9cNy+biHUizcxKXyQeIorx6ppgxoxDXJcmTmOiFqitRkna/1SkRXLelYKIxecsZuCM5cm5Fqtasg4maiWi2DB8G00/cfiU0EJZsGrBsnJxrzRo5+AhzhCwrg1SM3vfwxz9h+vaDmX3KVtZcvZVlHuWMPrYzyhVhli54UqkkMRWtfPgnnuQpRLeYD+xVZNM2yWQ2kg56/MTDPdtSiTiyFQ9VHuCUtcQM3OHyPpaFlZYl7zaGkTES5Ms/ZLSP/7jPwJw2WWX5a5fe+21fOhDHzqhMk5ODS8zzwidigs7AoeTh5AdgVbmZXXfe151KYc/+zlksWgMru2L0DhwkLEbb2To/e89IaBWvegCxm/6HsMfeH8i2nf1zD76KOGSJYhimN8cjlduu/sL+tZmfNzm5knKWzdT3pIJhJnlPHUa2g6TkeXoiJZNqnH0EDqKCEdGwAWl9RVeGFMsNI0qXOQZsKSsHoHlpPuBkQYVw4hK2KDgRdYzjMpJLPyMwqvCENKxNa4EY4NSDCK6CzV6wxq+jCl5hpPSvazK/AuHKK5YlgSPdaJ6gPrBAwRD/QjfxdqBxgsHaR4dx++rEqxYmhwq7gVPDgPLTdMitYlx8TicGN15YGuVhHRU1xPtpUlOvS4rMYIUPCkEvlR526UWqZK7nv1fXdbD5FOHqG4YSeMy2ftaayZ3HWbDR85NVdW0yMVSklYFspPkSmlBREZ/xF7LAi/VsridWp+PoomXSJTceAYunomtS2lDdLSz2yr7TYgiHv27O9jzrcfolHrf8XqCYaOyW9y0kolv/ogjf3stxY2r0EpTe2o3xc2n0PeuK83kWw93KcFqXUID3kA3jbEjFAfssZED39A8fIRw2TDCUwlAl55K1W8yfTUu9X+xNksny0jpWM6vSUpoHgeY2txPaHNHaCSMGZGoOyX5hEjsPoUQRuXJSVycilq2ngSAaFZ0n8ZDh28k8Ar0FZZkgNIYT4z+iG3DV9l2iPz/lrS8+1SePPIjTh++GmkMKW1+ydHaHkp+N4FfbOlnmzLbla/1AtAkMtdN/DRLgTtmBSDwGCqvYai8ZmGZrYxNN0ZZ0NQpb2vzBNRmx4hrswQrjL1Sl1ejKJooIQlETBOPgoyMExt7rkXaS0NKaBPOoBH7OaDkPLZGNtxFFBuw5OIrZRnJaV/yUy58TbC4n+bBAxTWr0KgUMK6G8csrca+A/j9A8Y2xAKWxpHDRKNHkT1dhCuXmzFXIjnPTOBWC9qtk4a2tIIDPVbClCTnPc4Sxrrl+RyjgPS/0JkutwKlRGJEAvqy7Vrwvtkyu7qXMjG1m/7qKtxic0S9loKp8T0s2nIZRODVbNkRJuirR+KSPeFdWfo16YOC2Gq6zHthWr0DS9qAYdWUNCKPOJI5Zw1uTlsHSCssWJap0w1l2tUKWnUcM/G17zH1/Z+2mSSTRs5+HdXKYrwGDJy3hv1P/Jgn7v403YNrzDiMPkdleCVLL3gTccH0PftuCjuPOoaw3MNsbZRyd79xSKQ1KpBoT6J8ydzcUYKunty8ujl0kscEMDk66mTSL+ls0m3FeyeXTloNT2fU8LRD/5l/HUHECYCWtnVmn2t5Qb1qmeEPvpfx7/6A8e9P4PX2Ek9O4lWrDL3/3Xi9VXTLqOY2DltOOLKIrjNP59CnP03PpZdSWLWSeGaG6bvvIRodZeg9715Qd8d0EgCxFdcI3e75DOfCbmDHrbYdqMpwZFoB0+zuXQjPo7hqNcrXiEARFCPKpTpLuqcIZcxUo0CtHqDqHjQlFBR+GFGt1KiEjSReRTawHzjDWVNPMeu6FeOuU4nU5sSTykRRl1FieNtUHktfdQp3/NEP2HDJFsIwZM7XSbyCWDaZfuwBRv74fZR75lEv7mPfp39CsGSQYOkwszt3U/vSD+m56jWUlp+ycIzsoSF8RViI6C7VKfrNxDNfnEi+UgDUzvFCOx32LBjKgiR3LwuEsqChtax2dkvZZ9e9dTMP/rc7ueD/upIw8HNA6NkbnmTozGX4TuUu06asrY+zZ2rXD9emiHwZrpzsf79lbJK5Vek8+1LlADWQgGqX3L3Qi5Bobv1/3cKLt+9J7gtfUli1mMLaZYRrVlBYt4JguJf67r1M3XwXanoWtKKwYojCigH83i4G3nwh+D5OcVrbk1Nn3hEHcrouO53xr3yf0tblCfGRuJFvNqk9+hT9bzwX6Zt1moAiFoIlKf+36/BfpaStDZJlyuIkR0Ztxq6RxKW9BdjSEHIC8989ipaGUIoNxaGltASMPUBb3YhLCGSZU4ev5pmJO3l28l6Kfjf1eJbQK7Jt+HWUWm17WsGMlfCUgx6W95zKjsPfZlX3mfQVl9KI59k3+zgzjaNsX/SG9FknvbKic5353hYsZSl/z9RpAJJMKGyNUbtty+Vr1VNr9z1bTyfQ5MqyAc2dTYRQmslDT4MQlDavxheH8NDWUY3xwhrb/azLqxFLo443FRWJtGckR1oSKY+5KEg8nTWVRxR71CMvCYmReDLVGQdFSfsxjEWVEsyGKaMon7aZQ3/9aSrnnQVBgNA2lpcS6GbM9D33svh9H0I2BM3Dhzjy3RsI+vsJlyyhtnsP4zd8j95XX0557fo0uKnKACDXDmVBayuhKkiCuRtX1qSSJRvstZWxSkv3LJ/NTKfKTF8WKLmPznzPfHJaLg5ESFi86jx2PfQ1qluX4RVC845JgfIEhw4+RFffMrwgJNYYpxmZ5SUCOxa+BQ82OHjyXxhAEzck8zqk2fRytJ1WGdtqN2dO3dG9Ep5pdKIdkcknlDDhSbSZh6zjYKedIDwYvfYbzN69I70pJYVFSygtXkHX4Eqqg6solYeoH9jP4Sd/SnNuCrSm3DVMsTpIUO1h6LRL0eWQOIA4hMQjoQOoyULU9K89i913f42+MzegrZc85QnwBJFUHD3wKOuv+C1jn+bmzwFo0nkS1mV7Oy3eY6Vf5bPpJB086FR8m3mJ3CJvTce00TmR1Pp8Alh0Ur7srjLwrrehmk3U3ByyVEaGHfS5O7VJaCqnb6dwyipm7rqP6XuMSLPrzDMorFnNAi94Whx3tl5K37PS2QX1tVzKbmApIBL5OYH873bXgMb4EUQQEs/OIIa7jQ2Spyj4Mb3hfBKw74CnaArSzRcIvZiCZ6Kgd/n1PNGfUe/KfoAkgKmLj+Di9DSspyKlJZESNJSPKvgsu+Y0nvr/fJfe974W/Aoq1DQmjnL0e9+hevWFVPti5OgRdn/6h5zy768hLnfTjDwa9YDmZJOj/+MreK8tURpclt9E3JhIE58h9I29VKQk8wB4OQDRKhFyG6VTL2uNfdTJUUOr9MZdb5c6XXepa1kP69++mZ/+wU2c8saN9G0eoTY2x+4bn0IEPpt/79IF5TngcrKpnSph9nrOpW52/u075OyfXFyKXF6ZtskXJgCuL2Ii7VEergCw7EOX0H3RVlR3H/hBYhOnlWD6jgeZvX8nA+9+NYUlfaA19af3cvTLP2H4g6/BLxoOd/IaZFQoWu0M5JIeimsWM/HV79L3lsuRpYKJ7zQ2xZFrb6L/movwC5Y9CQlIck4rHCfLqWLqX6SDB5006+WX879TnkmVZZoJYW1m3Xd7PSv18IRRKhXaSggsaMIQVsKxbOPMhGlNGJTZPHQFSkc04hqBLJhgtLAQJOXU1ZKNCIRguHIKPYUR9k0/xv7ZJ/BkyOKuTaztv9AAm0xZ2gGjNkCprZOHlrpyLsQh/9sFrU0K6HBAtgN+7nordzjz23nxSwIBx5r61FGkFxCP1phoFBmLKhRkk6b2aGqP+TggkApoEog42aPi5OwyasWtQMkY9Kf2KnlnQm2SxXoikokXVpQEL6TnNZdz9H9eR99b3kAwNARKEB0ZY+KG79J93gV4QYl4bILD376exW97L153N0hQgSaOmxz+4hfwvALFFatShqrSifMiV78Zo0yT3LTDQumSu6dwpmI5Gs9JkayJmmE2qvyzQFuglL3mmAY52sTOtZYQVnpYfsplPPzIZ1m87Cy6+1bRiOY4uO9+FIpTznxrEvepdbwdUe4kY1nJUjIQFtyopkczdhwRxwwRiRMrQy/kHd9rqVMJnjB0l1YC4dQprTOpHEBN9gdrvwZ4NvB57+WvpueM8wiDKj4hMgKvbj6Tux5hfNcOVm56HdXiEABTk3vZvfMHLD31tcggIHZSQuuZMLtnac++elrgd3fTvWQ9Tz/5bVZtfC2BX0J5gnpjmucfvIHhjRdBmMICZ+eVvJZ2LuVLjLP0q3w2nZxkCRJdWWEHH7cQWw+Tdul4AKID6EortNna5JFhgHQct3blHq9qAV5PNz2ve/WCKrXQCwDMywaCx2lLWzr2WP04EaDUct+pjAycfzkzzz7JgX/8nyz6D7+DXFJBYIi8otek2ze6u+Vig0bNJ47sJmM9wPg2X28wjxQqMZ5tKD85aBrKo2mNY2NrHOscPziitREbjp7SYsE66L9wHY3eIV78yu00jtaMGl53ld63XU510wDlcJ4Xvnk3a3/nUvzeEvNNG7snFshCkf53vo2Jb9xI5a3vN7ZOzuGRByo24M8wek9sYrPSIjg+oFkgGSL9vUAt7yRAjAM9i85dyeC2Rey5+Vme/uojhNUCG9+znfKKASINrYsnC2qTdKz3zz1H+/am11UCxhIXvVaaBFD0IkIZU/breFkpl63YtxMjhSYQRkI5H0Pf+gGQguGrToNqF1EsUEpZsATNqVlm7niIZf/xPUhf4FkgVtiyhK4/uoY9f3U9q/7T+3DcHtdvpz5jvotkGAAG33YhM/c8yZG//7JRJYpjZLnI4FsupLx+Ca27flb62CpZ4heohverzL37paYMV9xJl3DbqgAhjLzJEGeGeBcCK0nSSUZh7RlMWVYFTQlz2sZZxw1W+qJ1HkxkgIEUAUUZ5EFEK0hqdcLQstQKQRdr+jNuubNgS2bAUFaqRMv3LEGasVXKDpvJlw1Sa9QQDT4UeSlTq3Qo25+knjZ5VOb5LEiUpg6sm36hJMuXX8jRI49z6G8+SdfIB1hW6aXHn6Oec/CgKElJIJvJnuYJbdTGJYZ5p02A0VjJjOezhU1zQ6qFTkysjDc2adpmY+oktFMsKK/fiN/Vw9T3byWenAKMI6ueyy6jtHg5RDBx508ZvOIq/Gq3JcpNX6UfMPS2d3D0619j5P0fbt+gzAQldEUG8GuwqpLkabhWWsF91wuypI4TyNNmxwVKGcmSS06qhGUj9IysZcvACo7se4gX9/4MLygysv5CSr2L0T5WLY98UFyRb0d7BrmbH+voySEuOzcL1OZyHXM2zmk5DhyJpkhdfsf550yAcrtG7LVwZASAvtMvoFDqS2gTNzbx3DxHnvwZW879CEEsEU2F0NBTWcamM9/L4/d/jnWLf4fUSKmlj3YsHGCKQ8HQtouZ2vMkOx/6Cs4RjAwKLNp8MZXFq5O4WU4ymB2vZL6stFy0e0ePkX6Vz6aTjrOUeylynJ1jPPdKAovjvQTHeSZ3uVObM2DipOs6Vp0vd4KzO1SH8nIbmgatNarRQEgf4XkL1BC1BL+3jxXv/Tc8f+3fMv2Dn9H3vtehikbSA1CQEUPhDMu7JxBCM+GViWYD4rrHdK1A0W/SX5ijN5gjEDFzKmQ2KjChPGqxz2wzTFxsJrEIrL63TjzGCJqe0wX3CKWRWBmVPsVcFFBZO8LI776Z+lTBiLoDTbGrTrnYwJOK+f0TFFaN0IistEoLY1hZ9ygUe2GujpyN8WseLuZprM0YRDWPei1kJjBEttaCZuyZ4IJaGMcUCd3QWa3O3X8pIKpVWnOyySsXWfvmTclvE02cnL3YgiTyDh7apQU2VJaYcMAoC5QcAJqPg9yzoYwJZUxXUKPkNSl7qWcfiULZ8I+BiNFRzFO37GftpYuRpZC5iQZPXfcovVuXUBkIiVVkgiJayWSsJZM/fYCRN51FpRLZMjOeCAcCercsRj39POXNK0y7SB16ZIFTNmktKF68lsGL1xpHEJZgNmkhSy2lYXVuzDyh0Cet3P0yUpab+XLL+TVIiUTIJXfGYSgGYa8ZDnrq6MG4mhcIZb3hWaZEoo7nWO/KUiqOKFWOMwNCKCOFdL/dd1gIFlrBUVIHuesnDEqyYMh6k9NSpt+zDh6y9Vi1u6QNTlXZ5csCJNcfYbnpOjMO0NY+zBS64GVs+amJoybS85D4oO2YR276IkqFMtvO/20evOPv2P/5+3h46eV0+8b982xUYDYO8YWi4OV1ieLMvuCcOTjvZ83IyzH4hDCOXbJSailJNCbQVi0rckS0WSfJaGooDC1h6B3vzIF1EQEWWNUP7WfgtVcn7UvAhxD45QogUPUaslAktaNLaRa3fpM1rFvWvF2m6eDmp9vV6aQK6UUSG05ty0jqcs3I2illQIBxppO5nwVMFvQI63iAsMjQ+vMYFA4UCSNJkUaNUHkCFZBImVolTU4Slku2Tq2s6mOW2exAkkrnNB1I+0Xb98xJiC1IknUTYNaBwexYKTTTTz1CacsGRLWAmqsz9cNbKSxeRsnrQ86RaYNRcxvddT8jq88naAhkpJDWK6CWgjAs0je4npkXdtG1ZqN11GBxr8zQrM7M3DenlvYFlXWbWXPKJhOUVgjDCBIi6bKwoDyZQzendr6Mhz1OWg3vV/lsOkkHDzrvhcVd17xs4HK81LH846E00blx7S7nOC+vdMqW+1ImuyO4EwvvxYqJ++5i5vFH8MoVdKOBCEL6L341xcVL820SEPb2U1q+iua+g2irq9tUHnNRgWYwT0FG9BdmqcU+zchjat5HNyXzcyFTQZGeQo2m9ijKJkXZZF4EKAS1yKfWDBId73Zj4g6VhHOnJVIofBHjC2v3ROa8lIZz5xxQFPzIHlqeLcMzblxjgY7MQSWbAumHiFqM1/QSpw7Kt5t4JIibJpBcXZrXIl4g3zdJIfAyA561PwIWuARf8HzLwjsWQGrnbKHTfdlCkJvfss01V1bKTZPCxG3KEvmtdbo++jK2YMkApMACJ5eMkbSgoYxE0dlDhV6UAKWSbCSeEcHYpo29MEPv4iJqco5v/tH9ALz2L87mwa8+R228xtl/fjWBjA340MLEipLGi15z31FGXruZMBNQ2HkilGh6NgxS33+U3u1LE9W9TiAp6bdRoDJSr2TpavtMOg/Z8UnVMnUCsj2piX+BrLBfZe7dLzO1MI9TApP0uyMQDSPXuJ5HGsCUqOZlJTxWSm5oDes630mThEZLaeyZ3O8syPA6nVsJ16b9fWUaKbJOGLIpq1qXUbfTNtbPApullnpzKnhA4iE3C5rs9UTdMAsCE09dqTpSllhPy29ZgEqjVcy+mcc5MLuTQBaJiZDCZ3XfOfSWl5rxVSaIuow0JVmla/Faai8cZHKqzMG+Hopek1oc0FAevlDM+QESs1c473cNa7OUSJasRMnF03FBygUk37X9rhL7Ftt3q7kgrPp6q+ZHMr6Zucq+w8LzEJ6VdmSIaTeXslBENyIouGu0fXl1sg5JAE6Srd1S0xlglpESkXkkAV0Z4JR7vhUsaax3OxLCOcvgxUpvBeRs5LV7txxgSsCSyLswzwLAlr4kAElb0K7deGSAkgNJmfYtSNnxVcKA2kggGwKvgXUykc5RY2IUr1oF1eTQlz4HwPCb38HUg/cTjY6x+p3/Br+emSNNEpy3Pn6E4ZUbkJFGNhUiTg3DRKypdi1hZuIw3dFGIz2KMO+XtUPLMfyluacE1jYt2cgykvB0PhasDW1AbtK+mJOOtf6rfDadHFjKetkgE+lb0xnNHKtXPy9Q0lp3pza0ubygG8cBXC+5acdpx0sq0OFYrTn6nesJhxex9AP/KgnKG01OcOjbX2fg4ldTWrna5HXidw2FwREmH70PahrdbYxVJxpFQtlFbzBPbzCPKhk97dnZIvG0RE0HjCtjT9Id1FhUnKYgjNRAYghGE4PC6HhLG1zUtzYczUjRlOaeO3giJRNCXtkYFzONArVmgFYCrxDjeYpSscGirmnKvrEx8jyNrM+C14NSMomcjdAoFRPPzyG9AKxQI4kV4WEDijp339aRQ4aKdm6upUg9uWUdFLSq0y206VFJf5KYHplVkC0nmxYCoBTkZO+1qvel66L1eW3bIZJ7TrLUmlqdNACJRKkgo5yqnCc0sRbMxwFN5VGLA2o2LknoxRRFRCgjurw6XV6dqldj6kide77+InsenaLZ0Dx95ygX/+Ya3vrvVlPo8qnPRPzgz+4D4LWfeTOlU7qJVNNwfLUk0KlErNgX4k2MUR4O2kr71NgU5cFuQi9KbORc31rtzDqlFFyJlt92qB0N6yRLQqeAzTtZ5e6XkX6FuXe/lCQsEMgSFm4/tUAoS8gmxJb7riyycudjRMZ7nnF4kLxuzhFBRprkVMcSyZK0ziVOxINTW+cLrm22c52ey6rbuThFLUApVcnLjo39kSFwDbgjBUAOINn2JG1xfcz2L/MsYFWjMn1PHGEodo7fTijLnDn8JqQwOk11Nc/jo7ewQp3OYNcay+KIEY0Yf15SLS9iaudTRIc89vT1UQoaSdFFP6LYNB4BAxFTVz5zUUgtNqRREidQmyCjzkOqlCqRXLs4O1oLY8cUSXTTMwb+llknnPvq1il1oDyZlzSPFph5CHyatRm8SlcKLNwUKEU0MY4sly34Ji9VcGWKTNkdgFECKBywifOEf6vKHJkltEA6S6YsK0lqdUeeA0lkyxFkl64rOwFEXgY0WaCksmp4bWyYIAVKQlkzCmUZGdkz1wGlrAoepEICB5Tc8wpkJPBqBih586Cmphl/5B7m9u9GxzEzL+ykf9v5LH7t2wm6+2hOjXP4m18FYP2bP0FXuBRdS8GykSpp/HlN6JVpTk0gi1Vk5JgqNl+sac5PEhYq+DVnKiKMhM2NR3ZedH4chXMCkZ335LteSDZn8ojYBLk1jmtOIv0Kn00deFMdkjAbefrBTISk5Xrmk31RZctHtPnIk/x+sp+kLyf4SfqgX/4nkxZsZi8ntZRde2E3IgzoPf9iA5Rs+X53L0ve/j5Gb/0BOVeK9gXqWreZeGaGsS9dT9SQNCOP2WbIVLPIVFREaUHFr9Mb1iiWGhAqaEr0rM/kVJn9c90cqlWZiQs0LcfCs4BCCo2UCt86jij6xtV4pdCgVGgSBAYAeUIlxHCkPWbjkKlmgblGQL3hE0ceUmoKYUS1WGewOMtAYZbusMaaq9dz4Ct3mzqlMq6cpQZfM3nPHXRt3g5Wx1kF5hMXzH8daLwgphBElIIG5aBBKWhQ9JsU/SaBjBOphgNKvo39k/20AiXZInUx117am54FSa1AybkAT9TkZJx4Jcz/Ns/m7mPU6tzHqcxlfzsvhYGMKciIwAIm9/FFjCe0BbdG/bIe+Tl34J7QFGREUTbZfd8RvvJ/Psq6M6t8/B83se5046L7oRteZGLvDO/+r6cl/bv6X65iaGO/aZdnPzK20iqzlla8bgMHv/tIYhPl/vtC4amIIz97jpHzluNLhSfNOvNs/zx54h/ntdF5RTS/3Ufl7mXzLwCxP8fUzuPUS/38OqR2QTsTqZJYeN8RdOl9ElsL999JmAxhJ0CKJJ5J8t2qvJlr6XctpZXy2E/W8cLJfDo9m7mupTw2UMqem9kyaB2nhQ4iFlxrd92Vm/2fm5z0vZmqHyZWTdZUz0Rqa+OlNQVZ4tTB1/P8+D15lcY4RjZiBvs2oJsNxj/1FQ4dqXBoqsr4fJlaFNCIDWNnNiowH4fJ3jXfDKhZ9+Cd1JOzkmRjHytRTYluSqhLRE0iG9IERM3YorSTWugWmkhn/nefdx5jP/mhAdGezklSpnbcS3nDJqSQ7QELberLEsfZj5UWOJAk7W9pPZ+Z+zqXXziVs5gcwJJN99HmE5H/OJW8DHmUlQolkiNL9Dt1u5yNkkw/OZqwte+Qk2QBiTqkA0bpx/zuNE854KGwdkq2r3Wo79nDizd+ka7eZax99W/SM7IOgMldD9M4fIglr383zqBt/VX/mp7ulXgNO0ZN8BrafsBrwKIlp3Nw7z22/S1niFIcPvAIg4s2WfCSlpP9iIgE9LYFKzo/Pg7YtlsbZn2k9+XJesP7FT6bXpLNUiK+FTrzAr4Eir8T0dgJSHT6fry6Ew7YMeo52Wez9wULF2C75PrrONIiMwQnWsYJpOkd99J32RXtm+D54Hkc+PJn8LqqVNZtorLObLbl5asZeeM7Ofit65A9JeQHXsNcIUxUrkpeg0Aoyn6DarFOrRigpnzEvLHtOVjqTurxZYxCGMLWj4m1RCqBJ02Q0YIXEXoxDelRf/EoR7/7GLV9ExT6y8g3rKNwaj+R8phphkzUSszNF4gaHmjwAk0YmOC3Vb9Gwb6xqy5byejOMV74u5v4/7H33mGWG1X+96dK0k3dt3P35Jyj7XHCOds4g8nZmCWzZHZZYFl2WTawLHFJSzRpiTYY44BtnHBm7MFh7EmenHpmejr3TVK9f0gllXR1e7qNMa8ffud51FddKlWSVHW+dVLbJScjpkyleuAQQzfdjxh16TzvJVAGL5AoeQ54GfAyQVwp22e+C3Y12jEkbs+T5vLbVMHTeZ4pJdXgvEAl0ZS0RfV40T3ClE756b79kHkelzx5CCzhxqLVm2Ql+qFV8CwUWasW2hgBuPhR70PHHl4kQdM2TrZwfa9To2Vu+so23v61VeTzgsM7h7GDnbuWrgw//uRmrvraGpadM5WhfpdpR3VTVf77JJUXuqOXKvLq17mwjd22YOev/sjcy1cihJ/ulms89vnfM/uFi8lkJTXlxb0yqiB4aEBapcYkZTwT7TFLaIlUyrM2HTxooKSeS72B5/Hu3V+aYqp4Ok07Dwh2lEMDbc3vC30t+JWBKlFwj7ZnEhj8TsCsarsAZRFJYwLJkwokMaHazURjhaQ5g6jrZ5BuquGlAaVGZZhpxm63VqsTEFPPi5UgfTATxmYyy0mjwO5q9/B6Zjetjuf18D0OCokjczyy+xdknSKdzfPotpYhpaStMJVFJ76Gjfd/H/HVAq1XXoZTrEHR/z4rnoV0nUB12PZVx2tObENE4m/2SalV8DCAkj+PuFqiVJHIiqC29xBD9z9AtbcXq6mJ4jHHkZ03H2FRBwx8d89+ecILQGXwAeaXLaG0dzf7f/ojWs84k8yUqdT6+xm6517c4RF6rnh5DFxhlN2QMQ7HllDVThqAR9ZJliLVubDfQV11b4fBfEvtgtyUVGieCXMcIgAeSsZC0CQS/8fPzQ2LunIbtE1B7Js2+diGjLiI8qCI1PurgfrdaI39d13PwnOuwpE5KgcOISt+wZaTY89t1zD35W+jbfExVA7tp71jIaISSLlCDaYAlFR98FPIdpDJtLB91++ZM/Uk9BfjeTU2PX0T3T0rsGUWzwWqvp8YoZRvFumJuMMLEY2L+SxiqpImUDKfF/o98dvoA//JO3h4Pq9Nk3YdriztGjdIS/4+mxTbbhgvW4PK04DOkYpL1tdopyZ5XX9w44GesD1RvxrwW/Xpxo6G1j2uKxNffF0bHsJu74jnE1A5eIDeX/0Uu7mFwsIlFOYuZOiJP9L/wN1MveLVOIUWWo86Hrc0yoGbfoVwJd7rzqbc4ksIMtKlPTNCk11mRnEATwn2D2WwByzsAYsR2cTOqm831J7zXY4X7CoSRc6uUg5UG/J21d/5t1x2/XwtB584wPSXnIAzZxrV3gH23LCW3Tc8wdL3n8tgpcDQWJbqmA2uBMsPHJt3qrQ45VAdrBrYx8x6/anIJ4bo/c3DVPYPYuVbaFt9IsWWOdhDQZTvDLg5X6rk5hWeoyCQDNgBWNJurbX72Dr34SFY8sK08VTZIvICAKRi74lZViNKlq+DJ0oNigzAZKVIuNLbU19uWvstIk93TgB69LWqsvzYJIH3Q0+JQNJWQaJoy47R6ozRbo/Sao/y0A27OONlPbQUPKplj3847+Gwvt1PDdNTE/z2q9t48rZ9nPruVb7jCAQZWaPmWUhLIRMBbAGOfd/JbPrpozzwgV9RnN2GW3EZOzDC/CtWMu3UuXjKCwGW6cLeBE6p4xIC18hWTQZcQjIYbxg3Klj8tSTy/wWl/f8xaWYroWdhaKoSk6JIQgP7UD2HYFGUwQIQ2NwoEdgz6XdJlxesFSGACkC6tlkCIuAEEXjS9ExfJ7OPhnQnXaIUXEtz8oBueNB39JgEbRX+oGr1PBVNURGo1LGZxnMPDlr3mLI7TMFuJVRhDPKPVvt5/NCt5Kxm2guz6GlayP6RTTy85UesmH0pGaeHGU3LcI9+CVvu/TlWRdL20ksZmCFwW2To4EE7dHCVZKzqr1UZy9c2yDo1bMujLFXkvAFCj65uzZcqEUiThu68j9LGjbSffBa502dSGxqgf+29DD70AN0vfQVkJDoejrJU8F7pcSB0xKDHv+XCs6js28vgPQ9QO9CH1dxM8fjjyc2eh3ZEEklYVPhOC0UAThPPLnh/YlIiLRFyCW1vrGpCfY4IoKTicBWBL+GpRLwm49kG9kcEbq4VwSaDCYIChwWRtNYARCZAkilpJFi5QK/Wf+38gfGXYBEDA3WUBKAK30bJA6vk2ynJQP1ucP0f6Zy7hlwtiyzVeOhX/xYWUxnuw7Iy9N1+M/0bH2bG0nNwRrywb/rbEYbkRtb83wULLmDP9vt4eP13acp14eEyVh5g+owT6J62Gs9VWmgbzllSCjxLxcFlQtU4el4qDphCAKXi46ICSZJSxvP9f2AplaII9ir6UMJJYxzA0ghAHBkH1b/BacCiUUFJFD0hOkJmlfLC6dtM4JRWnPnBGVKmSFJ35OrrKOUep62d6sFeMj1TwqqU69L7q58x9aWv5fBdt5GbMRunvYOOU8+iacly9l/3M2a8+k0IBR0vOAPluRy85TdU9u1lyt+/Bkt6DGazoSvx9swopYLNwaZmvDGJPSKQwxZlmaUvW0AIRVfOo9kuk7OqVFw7DO6n1dgOrd3J6K7DHPtP5/nuXF1FZlYrrW87kz3XP8qWnz1K8aJTqdUsTDctGcclHwAa7fFNq09UPQtn9nQ6Xj8Xb9ghc8DGGYLMoD8RKQm1XKSGZwbw016OtLtrAClc8IhJSUwvcACHN/ex4WfrGT04ivIUrfPaWfKy5TRNK4bPJJToCNCAKbxmlAnp4MVk7tOuSSVCaR5ILCMAglm2Bj3RvdK3NwrKNR1XuBjgwABKMVsgJagpi1HXCSRKPoDLWTVfdc+q0eGM0mKP0e6M0CTL7H5qiEvfNt1XhcvBOz6/iK+8d1NYb+/mIW79nyEWnT2dY16/nMjCgBBk+s8+AVRsWP7qlSx++UrGekeQjiTf1RTkU+H3F0oNVeTAQT/zJCg2xz52PTi3iLsJ1xSNWzBWz6Fk6dmq7rkUhv0lqdGOtN7TCn9Jmf5F/FwFvz6T6jP52mgd4ce+UfjMlkL5ThyUzyApvW/cSCIDEcNpOpGYCCVBkvFb58zBqDQNKEXrlZkxsusSIWMeATzdrxAcaWAkjX42cuwQUN5uZbjWR6vTE7UdeOLQbazqPI8dQ4/S6vSQl83MbV1DT/NC1u/8DccUXoslBTN7jqN2bI3ta6+j3LuHrr9/K6WsQ7XJoubJMLxB6EBGh8awfI95tuWnV4Wvoq7zuLXATqkmkTVBefN2ytu2M/2lb0B6wgcdTR10n3sJA4+upf/239F+/rkx7BB7B3UQW/2/5Y9TZvYUOmZf5q+FtUAComMBJZ5b9KwbDmekAqfVrLTqXaA+Vz64n94n7qYy2g9KkWvuZuriU8i1dMWkPVEndHnK8HynYkAr6quej0U8zlMIeERcciTr89QBpEZsoN6XNHg0nTYuC6oBrFm2lsBVDaBU8ceutH83U+ac4KvTuYIVa97AEw9fHRY3NrCPsXX7aJuyhHkLz0XWAjCjoodkAk0Cxy9CCGbOPIkZ00+gUhoEKchkW8GSESupAE8hXb+80GOnHsdgzE2JZgwkGu8CRuwrc/829jy1BGqSa8TzeW2apGQJP2pxTGRjoM8/dwcaAJVxgRqJHYZkeUlKLJb111WDfqY1LJFcP2zhSpwmYWokdYpVaSzoGnEVT3gB/b+/g54rXhFmHdmwnqZlK8C2qPQdJDNlavihZbun4HR0Udq7k9z0WQB0nHI27sgwh++5g1o/jNhZDmcKvqtVWWNKZpCiXWK05rDLbqd6MIfTbyGrDoNWE0Io2rIlpmQHycoanhIcrhUYquaoeDZSeGz91ROc8sHjKRSGcZUInAL4jgFmXrychz90LW0Xn4Tj1PDy/kBms1U6CyO0ZUo02T4bXQ0AWEb6IGosU6XmSsoVKzR29Bz8HU4bPG2nZOsXBFRVUqvYDJczDGcy4eKZVK+LPMH5XuC2/m47m27extFvO472uT44Orj+IH/4z7s59m1H07G8J/bItIMHT8QDw0oUwzv72beuFyzJ1BNnkusohPfA+I4Yks4kJKoOJIXXdJpQuMG3kzYRyARwMNXytE1aTVkMVnOMabAUPIuCVaHJLtNil+hyhinIMgVZwRE1Cs2SwcMubVP9fh1z4RS+/MIZ/Mcr/8jOdYfDOs7/xAkIKZBKYeP6zsWF70jCUzL8tupAkyPIzNBj5xFyiioAPAYw0s+gERg1gbP5vJLnjUjbsdWey9n92ZqL/0rA0hFpAptYaSBKge/+WE/Swa/29yUUKM+HSMrymZFQyqQdPSQ9zIUVGqDpSIBpHMvkZLDZWIwlA0Al1aXC/xPeTYQKNqCUVkP0z33phx+EV6sXhm74zdhMSQBlSJtmFley+fB9rO64ILz3UGk7HZkZ2DgMlntZ3HIyvk6SRcFpozU3lf7+rbTLBTjAnGknU1s+wu4nbkHsHaPanMX1ZKgqjPSdPmTtGjU3Q6VqY1sejuWvLY7lMlZzfK+rtSBmYNVCVSWi6tsnDd1zL92nvxCrKsK4OdrOpmXVGnZ972u0uWeBtOJ8gIk9LWNzzVIR0x6kCUC5NHw3Y8yx8sGw0OBCPy6DIRYBSLIqPlAa3rKe3o33M3fJBRSb/FhAQ0O72fbQtcxYdjbFngV1wWy1FEm6cYa6NHyIgUNPgxC0dS8iW2gNJFP+2xDa/4XtJmaPFEqPjOuxcwM0pdkuxSVM1PFl0bttDGSs7OD71TZKFYFVEVhlkJXgqIJlZ3FLI5Dxx71z+gpOm/FpHrv/G/QfiDYDly17GXYJlPRACoT+9jUfVwcu9fOzyDa1x9L8f1QQ7JiY23DhxscyHKMEmZKjpBQxJl3Sz1SfuwpRm+Qi8TxemybtOtyXKvktjanipYn4GtERIX1Kfl1/Mg3qpFzRBeLtTFKD8sIkPdEkbzti20Q8YxpIakRpefTHOk4ZJrDKTp+BVWzh4M2/of2Ms7Gyeca2byU3Zx77fvp9ui+6PBqb4P7C4qWM7thKduYs9CZ865oTOXzfXQzf9HtaX3omI+UMeSdDOWtTsCq02mPU2ixs6bFddlArNWGPCRi1KFV8HfAuZ5gOexiA5lqRw1YT/dWCz5SWK8yc5pGVA7H4TH3VAhXbpmV6E4XSIQqtrYxlfPfgeadKV26U1sCduRQeDtBkVbCFR84KvLRJjwGhGK0JvJxFLS/DXRLPBs9RoSdAEbj+dKuScsVhuJKlYvle3LS9VsZyQ+DkSP/cHR7lqWs2cMHnz0XaPtcihcesVa1M+4+T+c0H7+aSr5yLMIIt1pQVMvuaEa8OjXHPf96HXXCYftIsahWPhz97L7nOAkf/7Qt8ReQUMtUB7aBNvi1R5NLbz+fF7onslzyScSA1ecjQw10yXaspaxslbadUCaRKGemGQKnVHqPVGiUnq6F904kXdvD7a3uZvaw5aIfCwiOTj1zLv/jzJ5NryeAqhYOLh/SdGAZgzDPaZnoIjL3UgJbkBb0P6wvtvAzQmgaAwrxEQCs8bwBck//LxrLvPws9Wwawfy0OHkxKYtok8xJuCpprX/I+Ebk/JiU9lDB5IrB/CgBTIFHQamwC4vY9pkSmkcraM+544zc0CZQa3qeUsUxFKoq+pElFfIJ2aa5S+mD2Swp/dz1gDJsynRSz3Tw1cDcLW0/EsXIcruyl2elg3cEbWdx6UvSdKQ+UpKtpPn0jO2lvm4dwPWTZY9r049jz1O0M3X4XxekvZKzqUMv6c4N2aJN1alQ9i3IlkB4FgCoXqOyNVR2qWL5diBvEUgqcHbgjo2SbO3wmOnCMoJR/rjKCTPcUaocHsLs74oMcAk+iX1MaEBsnFaitKUNtM5mHiNcKy9Ig1OAZTHulGqjRMvueuJOVJ1yFXZOIsodQipbcNJYf/Voef/i7LG9/MwI7xuNEUiUfJLnVEpsfvRaBpLN7KUp5bH38euxMnvkrL0M4dmD7GW92nbpYSv/Dz08DgHFAlDlkEcgX8QGT6WNvSpR8xw8CWRORPZcLMpCwtM87ioN/vIvWNfP8qAEBQJF2Jqxm6cpXkJNN/nsdPCD/LOqz/0wMG68ABIY2jCkUSsq0ZEjgS5iECoFYqPqYHNPY3GaAo+R17dEQwmc8WdDyfF6bJqeGJ7R75WCEjAWj4bydlp768RN92GkfffLGhqAiregjsyqNn3ndlxxX1UjLmgROJmgar59ptSe+aV2p0tXUATI/seOCCxl5/DH2//RHoBSV/fuoDfbT85JX4LR1xMW3gKpVQxfjum2Z7im0n3wG/TffRtMJaxjL5xl2sgxmfVerHfYwhUKZvFXBlh7rD+eQVRtZ8aU0Fc+i2SrRbQ/hiBpZ4TPMHn6gP+G5dNpDFO0yTbJMVVkMuXma7BbGXAe7MkpPaxkvP0IpY/sSC7tKZ3aYrKxhCRXaQWmvbH5bfG9oeafCQctjtDlDpehARYbqC2FwQP3x1wSqJqlWLYbLGTKWRcb2PeA52u2zBVJFAOSpG7ay+qULyGQUOkiphQ9csq0Wc1/Qw76H9jD7BdNiThpMCYnE4/ZP3MUxbz6ajmXdoY3UrPMWsf2WLTzyxQc46r2n1tvGJICSlnbZ2pV3QrKkyQRKZln1L54XAiaTqoHr3KqyqHkWVSXDmCXaVikj/XhKvpvwUgiULDxcJHNWFrnxu/tZe2sfx57bEcZbyjf771/77Gbmnzkz0T7PtxPS7TYkSz6Zs2cCOIl4njqbMRHVk6ZyFzvHVMWrH7bkeJqOQJ4zeh7v3v1FqQFQMnfgQ6YwYCxSGYa0xdCc7wUaHhFxrqoubxIwpdYxEabBEK5OitIcRTRaSpWRR7tKDzKHIBBD1dAEhFCvoqf7nACF89tO5MDIFh7ruwWlPEaqh2l2OljefiZNdpvRTl+U4qkaQlh+Wa4fq6aQb2PG0rPZfd9tNL3geIa7CzRny76tajBnZq0aFcvGtXygVKlZeBlBRrp4lgjiqIEXeFETrhF01vNQrgrSiGy5AkbRK5cRthMCFYLfGCgybI8w+S1z7pEqYhBMHizJNCgjWfMORO+x8Pz6fU91ir4t65gy61hs18KquCHjLiyBcBy6pqygf8+TtM9aiZIi9i0I5QMvVfPY+PBPmDX7VNqLc8JKp/asprfvKbY89ksWHfPS6NMZb66JzeENsiSB0jMhfa9Wg9VDHYyP8AjtuoThIVDPD/k23+yhd9cjdM8+xgcpEmTG55cy2Ram9RwdOUUINwwIJMxEqrt1/WscN81//MGMEtgvIUUEmgT4QWfVeHsiQUVRmVGaCschtFHSz3yyGzbP47Vp8jZL0hhwZQ7cs9uwkMxvvmEdDdBLGnhJlh0sTLGXKAUNKbOs2Dwkklnr605Khep+VX2djUBmEofFFmCNlfzymlauomnlKlC+O/GRJx7D7ugIn5cShL72h5/4I53nXRT1N0jvPOM8Bv+4lsM//TXdH3o1I5kMh0oFeitFWq1R5mQOMsUZoN0ZoXekmYOyFTlqoWqCkWqGqrIoiDKd1ghFUaJJ+tHXDleb6FnUQu9jB1h+QpVOy5c+DXk5Wq0OdvVlcNwKUzpqjLljlFwHW7o0WRWarbKv2qQsxjwHVwkc4bvDdoRH0S75MX2cMs1OheHmDIPlHKOlDJWKjTtmo8qWH3W7IqLxCBajWPBc298kwEjSNLhjgIVnTsMRLlVl+Y4PpIfEBxrTl7VycMcA2VO6wzQZxJDSNkK7HtzH1BWdTFneiYei5mnve5IZ5yxm++3b6e8tU+gqhEy3ZsAzOtaRdEOQpKU3SQmSSZFqXtzpg6cErjEb28IN84WAQTpUPT/2VdmNHDpoNciCoXrXbJUoylIIlMCXRrlK8tp/XcK1n9vG3T/dz8LjW6lWFAP7S7TNKODWPFSgq21KtyyUYV/l+RpIoTv1SOpjevjTUqdQeoRACjf4PwBORP0Px4Lx1e9CeyfjWhppO4jnEiz9KfxCspy/GjI2Tsw51mcAVWQErwiDakauoA3VFJPZSJ3DDeZfovdYQnBhAov6fTqRypxMhGHR6nw+g5Zc8BJpCfukqKKoHXVtqBfnor25Jftl2mbF1O+SdUuJMFGE5Y9dd9MCupsWADBUOcDOwT/SlDWkNNLyP3wh2Dv0FHN7XuAXrZQvXapJZi44k94df6Dv2mvpXPUGxpocKhkL2/ZCDQUv468zpVoUcymjNRcsN1Bl01IlEa69udlzGNm5ieLMxaGjBi9QAXerZdyRIZxiS9BlE/CICCDJQKIkDYdaxtquNFDSYxwCJULwFXuAXvq7Gdoq1Xz1O6sKpf5epvUcg6x5iJoXMshKSISnaC5OZ2BwOx26nOD9D+1Yaorhvh0Ush10FGYjym7I7yhb0tOxlIP7HqM83IfT1hl7t+ooyS+Zr5ggsmUKzuvUzYx7xgVSesw1SA1u0HZhsioRVbAqIgJMej7Q+3dCMOekK9j9yM08edc3KU6ZD0oxNnyQbFMnXrUMrutL0wRgqKmGNmpJhwmGlDq0/zO+d6HiGxD+WIhg/QzyBBJIvS8TGw+zqhhASrlmSJZMcDwZej6vTZPabwrBkvSCw38gQprXnqVDqEiSFejrpl2LbZGQOPSTaXTIxK+5syDih3YcJMx8EMujRcJJsXDMqi35lI0845g+NHwrYxNAbJIw2w/Z2XOoHjzI2Lan6+4fWv8oIpPBbm+Pt0uAzObofuHljD7+GGPrNlGrWYxVHA5WmjlYK+IhaZFjTHf6md/aR1PHKKq5hrAUlZrNQK1ASTlYKNqsEt3WEB3WCAWrwnGvWcD1X9jKyMESbbJMp/SZa1ktc80/PcGJr18Y80anXXmDv3CVXZsx12G0lmWolmUoiAc15maoBZIO7Qo8Z9fIZ6tkMjVkxoWci8p4KFtFQWlthWW7OLYbujx3jNg+tiGpkUKRbc0yvH80bE9MFQwY7C3R1J4J89sBmPJBne+Ce+ddO1l6wcxQjc6kmpJMPX0h+x7YGZNs2NIlI2u+BCuIceQIL3S+4Egv8IbnoSPTm4eFFwIgH1R5ode2JDnCDWMjFawKWVGNAQotpclZVYpOic7MKO3OKK3WKE2yjCN8tRUXiRu2SCAyNi/6u0W87jMrmLaqg1knTOHK757K2e9fyeCeUcYOjYW5rbDtgQE2Zn+86CCKN2WZYNF8bkRgM3l/LC6VUZ5+7uYRxtQa50jmec4oZSp8xsdfAZnLR+gdzPNtL6Srovgxwc5qCJzSgFIKcAKisUwAm1QPVRMlz2CctIe4tAMjX0IS1QhoxaYyo41pQEmnxwLYBkybf80/D22ghO63QMddip1r0vktSQzcSYHWHy5muql6ZQ6WdgRlREDpwOjTeMqlKdcVlq2foaNsZp34Ykae3sDYQ0/iBvHh9DyrY7hl7Bo523fuENk4RjHUwg4ap8WTT+bgvbdRLvXjZXzvq8oBlxr7r/8ZbaecETHlIuVXj1nI+2g+CIM/CX6Dw4+/lGT29bscMP2eiL3fMVWyMPaRwsk0URkbMJ59dCgpKFcGsTPN9bZA4bniUO96pnSv8sGWp6JfV4EH3VNW0df7VOq7lPweklNn+CmZgMjgg0K7p9j1NO7fOBfUPQMNlERNxIFSMGYhUDKLtixmrrmIBWe8nuaeuTRPW8Cy89/BwtUvploZZmysL9EMFZs3zEOP5YQoBoSjOQgNcvQGjxe1OfYuJNPMtrjKl3YFZUdtVZNfI57Ha9OkJEtSKmQAVkIPHsF5nWTGnEjSztNoHImOEMaDEUQeqIxRq7MMmIyIcDz5pCLWh3CnRxjXCfKoaIEQOk9aMxqlH7Gduj2J+43/64ZZ+HsPPS9/FQd+eQ1DD9xP07LlqJrLyJNPYDU10X3Ji2P3mtqDxZVHM7D2fg5962c409+MvbBIX7nAPruFQ5lmuu1BCrLM9Hw/fa15dgaSmaonfacOXh6XfoqihifLtFkjDHk5OqcWueKji/ns3z3OsgWK5ctsNu0a5b4H+zjhykW0HT2d3nKG0VqGimuRsSS28ChbvkpeVUkqrk3JtcMd/rijAxXG+9GBSB3bxc1KXAmu8NUoRA1wFNJxyWZqNGfL2MI36vXVytxQiqOZaIDFF83noW88TtdR0/CUb1MjPYkUAuUpNt6yi4s/cwpAnQRCq5a5NQ8nGzlw0Nc85d8jMjbecLU+zpNQoTRNq/4BIUiK6ojISnJKBK6tUTEQ6rdFIrVqYQAmTDBo2jJptbsmu0y7PUKzVQqdOei8HpH6nmuUk2+2WXh8ByVlU/UkU+b5jhkGdw3R3JWra69uh4UvYYqry5mqjiqIIxWoO4pIF0lLhYAURnUcdb7U/I3JBNbPqWTpeawX/hch5TOJaMlNEjyFTISqA0mxndYkSNIMBhETo+vTNBmGQ5gAyDP+hyOvdUHfQjCSIsmJxiPY6U6RpoeU3GY1dtfDturyY3Wp6De2RhmLadLzHviAyVPg6YpUCJhW9lzA+oO3sXvkSXoCiVPvyBYsO8vyGRdGzL6uyvMN07umLKd33goOffcX5BdeRX5FIQx8rckSfjgJ/f1WPDvacNHGKmZbJVhtzXRf8VL2Xf9z7NZ28lNnUh0aYHT7FlpPPo38kiWhwwYzTlBDCq+pUJqVykcFNioEaiYisLHR72wU84jQoYOsGsx/kN4982i2r/s1nZ2L8WyJCJxNeLa/bu7f/QiLj39V6rujm+V5HlI6EYOdIGnZeOV4RNNJqdAlNohTbXFS7okBKeM3tlmtgsYEQMmPoyTiKnhGgOEQmOj6BchsluZp/rsoXcgVuwEYG+ujKedL07RUSO/rqwYTwZGWDv2t+U5UiNTyFD7A1RldFQHB8Yusm5NiIExfNzdrJkjP57Vpcmp4lhdKduI7Z5H7XP1/MrBjI0reF6UHdSbzhMqp8YUnDCaZBBATbkNiIRNGASYw0X3Xk1ZwXRljodtZb9pgoJAGQCptHqwHP/H7Y8DMaEWyHJnLMeUVr6bad4ixp7cghKTr0hdhF1vi9Rn1ar3aqS97Lbu+82X2/du34aNvoTfb7MfQccYYyuTICd+l+MymAT/mUc0mY9coezajnq+OlxM1pKzRaY0w5OUZdnM489v50LeWUN28l94dZVbOaWbxm5fQW2tnf6mZg6UmyjVf3UvHw8hb1TC+Usaq4SEYDaKxe8p3Ae5hMMT4zHM+UyVju2TtGhXXolK1KdsOXk1iZTyamkp0FEbpzI8aNkCBDrusURsts/nGrRzc0IfT5DD/3Hlk2/M8/P0NrHzlUrAkVWVhVcr8/vPrWHD2THIFK5Tu+O3w0BG8LaGYtaaLHffuYekVLdjCxZW+tMa2/PoPP7iV+S9fHcZ+ykg3VLtzQqmIioEkiAMlq1H6ODOOLstTgiE3F0j1fFuzagBINEgq2iWarTJFq0SHPUxWVMkIN1Tp0wDJQ8SAkjkmOWq+u/E5Poc2sHOImcd0BS9iNGY+GXZLEL73etfXP5cpgEiDSOKgyphf4mp4rlFuvcoeIm7PlDbGYaDg53or7Dmu7vlMkRtcAwApDZJUFCvGM68nwFISGEGMSTSZDBGAnUm1sRFQ0uChUXmm2l1gIxSq5GmvdaRsNKZQLJBtWj2aPAJ7pGgxDRlBw714CIRMdTzzPGijUvhSEXNBM0CiZWVYNeVCxqqD9JV2ArBkyllk820gJcoSKCl9Nb7gHllT2KMeC094Jetv/yq7P341tY+9merqIq25sdBRkB8vzgs3ympe1FEr2DxGKrB8RwWe47fLmt1Jz1vfRHXPPqr7D5Cd3k3rBeeALfGk8iVdWu3LUrG129RmiZEwrycfjj5EZEOlGVoXXzpiSEg1ULKqoEbK9G18hLH9O7BEhq7pq8gVe9i27XZmzTsDIf052ZUu2zbcTNuURVi5QsyZh9+mQN1SCFo75nLo8EaKU7tRQvrP0RIoW6JswaGDG+iefUy9FGgcCoGN4U48qYaHWZ4BpExtn9i463ND3VHUfKAkK5HqXeisQ0uWgrHVoEkYwCH04Ec0P2QLrQhhMVY6hJKLo055ROEExu28fvTGN5DY1wvBF9HrUVeyGn+sU9l20+mDMX89k3lMt+H5SJMDS0SMgDCQeFrU+4mCJVEHtIL09HnRmH7jQCUESiIJwCbWBuOf6P6Y0a1Ow5ioImBUJ21KgKawPyLlbU2ApnARqUtrfG+dJEskAJMhLnI6O3E6O+vxoYqXaZ47TUVmvvHt7Pzm/7D/37+J829vJDO3wM6xdsqeTbNVpuzZONKlNVOi5khyVo2CVQWgEmxTWgJyokoucPbgIih5DrOXNLNgaZZ9biuPj2UYDdyIl4No6pohLbkuZc8OVdm0fZJEUXJ9pxJVzw+MWwkWNkt65Owq2cB+pGZLH9A5NkNSUXMlWadGS75Ee26M9sxoaK+jnSXsfXgvD3z9CZZfsZDj3rKKsYEKG369lZEDIzRPyXPT395C+5wWvJrLyL4RjnrpPBadO7vOXihJS8+dzs/efjcLz55Jtr0Quza8qR93aITpCwtAJWabpKVJSbukiUiTkqRBTBI0aIcMgzXf3XvVs6gZQCkbgKV2e5SiVQrdg+s6LbzwuYftCRW8fdU8rb6obbgO7ati2YKx/gpJiqREKgRGWsoEJBiIxqApkjSFva0flNRNl8Q9Knm9HhSZ0qXnimJqHH9iOX8NVK+KohJp+n8DIAVG2HWSJU2JsUuqwcUkSqYqTlBfVE6CIfFAeF49cCJxn1aBC22VDOBGAHxMOyXPzxNemwCZ+WJMXODOPPLgF9Sq6zN2QiNWTqeJesAUtF95AmHJaKH1jPYD+WwbM/LtPtNuqo9JGarhhfsrrsKqKnJ2nkUXvo2N13+Z/f/2LexPXoVcnCOTHwlUnn3Ju1bD9hAxwCQtz5e8uMoHBJpNEP7+jj17Cs7MqXEmVSg8K3gmkiAorZ8hyfcIczFu9FgCJlbp91ULvJLqd250aInS2M5t7HngN/QsOIGZS8/FK49xYPvDjA0doL17IY+u/Tb5pi7AozR6mJ65x9M1Z00EPiI2JwZaOnqW8uj2e+jpXk0u24JW4VO2YHisl7GxQzR3zMarU89s0Eejq+FYiOj8iABAxT8PhPJdslsBKNX8kY5h5QYAqZqwUTLAUShdCjcvEmMRzBWypqgO9SOEpFodjX93YXMSQafr+tAAJJlpGjAZXjy0lCkqSBx5Xk+1iyQCSkT9nbRk6Xm8Nk0KLFlWIHoOKAQVKS2fKFiKlWP+L4wPI0TVJnBSYd5U4KTvO9K8b+SpU+1LA04C6gsNXiA97cdAi4oAE0Ya0QvdEGmnXTN15BLXGgEmfVtMHbJR+cmeBZO+8sBpamXmlW9n17e+zK5PfB/x3++i4lrsybbQ7FRCt6oZy6UgquSsKrZwGXLz7HNbaZFlcgEIyckqrdYoo14WD0lFWQbD74UMsI4tpBTUXIuxqsOwnQWgyS6HUiZLKDKuE6rsVTybimvhen5QwYJTCdpYpeZZYRDbjF3D9SQFp0Jbxg+22+aMxpwgDB8osfbbT3DpF07Hy+YoezaFDskJ7+1i993b2Ld2H6/4+ukM7xsmaytapmT9GBKqGo6j6TghBqAcyXkfOYbf/P19LH3hLOadNp1a2WXjzTvYve4Q53/yJLJ2KRyXuGRofKA0UTKlPaaDCICqJ0K7sFLgeTBn1SjaJdqcMTrskZg0yZTsmH22hBfzkaHBmc5joTjU5/Hdt6+lbVYTq180Jxov4XMCpjvzqK9Rffqd0ep55nUAzSmZziDq8kS1GvcFvwkwZkqbGjl60OMRB2d/ZgoWtmelnL8CkrXAzMVTvg1HAJhiwEkBod6/wSjEwMoEKkuVNsUNp2O7yOEOrhcBJX0eAqbGYEmHLVAEHnukAikjCVPoMnlyG4x13Uqq3yUBU1BHnZt0nTKeREn3U4LyPHyglM5jmAF2lWX5Ep8QOBnjohSy4oedaLYKLD3/bTx145fZ889X43zxb2mfOUrB9tWfM9IlF6wz2vtnybXJe348v2rG9p3a1QSiJsMHqwSBRz/NQBs8hGbUA3tv/4aAV0gAJr1eh48ooUGjDI98uPi/IUASoVtw04ubVQFvaIS9D97A0tOvwiGLrCmE3Urz8os4fGAjB3c/xorT3kxpbAAhJZl8K0gRByYhG6NdxQuUDULaLF71EtY/9jO6pqyks2c5nvI4uOdxDh/azKLjXoln4cdBDCREdapx4TMlBo7qJEUpr264d66HSonwO/PjgInwW1MArgxDiMhKoHpXjsYrBEteIFny/GuhRMlgrVTwzckAkKvBUZ64/9tkMkVmTj3RADCB9NUlIYkdn9IAihIiBpiAeimTIBUIJcetvnCjXrO/f4rN0p9K/78HS9Lzxc4E9hTjMGeTY9ziqiwmEPKvBunmJosilGgppQygY3w5E5n/Yxtd8ZcsNU3pPwZgMYFR0IY0wBS2yWS+YoyYkY/6PBEYSgCmVFAVv3ZE6RZGExNlxgBTewc9V7yCPd/+GqUtfQwvb8f1JGPVDLkgaF9GuuTsGjUlGallOYgfTycnqrTJUSzhkRMV2qxRCrJMW+AMICdqVBmjwxph1Mn6Knw1B0t4VIMYPh6C4arvNMFTApySb/CvD+Ef+t00PdtlZC2UQnlK+HZJ0sUSHgW7SsGukLcqAfjyEMrjqVv2cOv/bCBbzHLDh37P9BfMYu5lS3HyPpO88IwZbPzlRuTYKDNm2YF9T8UHC0YwWRm8ZFUDMuh3vnN+Cy/9yqlsvHU3939jPdKWLDx9KsdetcJXYTDU+Cbs+pt6b3dhumbgw48pkAQFz993kBCVn5U1atIKwVqTVaHTGaHdGaHNGg083kX6525CUqM9AQKhOp5ul8TlcF+F9Xcf5s7v76A0XOWNPziDfEsGDWJcZCpg0mWYUia/3yqUVCVtmvxxN9TpEDH36G5aXnPzhbinvAhoyVRAFLXvuZvdn8+7d38JCmPDuD6Do6VIKIx4IoaqnhsxC2kqd1HBDRYgEzB5iTQNwtDla0BE+rnr1ZUZIy3JEhO0V5ogjefoIXW3+Ugbc0mJkgG6lOeDHd91shYNqfQumxIlK/oNAZPOg98eUVNYZUU+X2Tu6a9m43VfZOSxQxzubIb8KDmrRi6wxyxYVaqeDIKsy/DbLldtqgo8LAO4GmOiHTIE6na+envgvEEamc311wBJpuAwpv6v0wJwpIFSeL8uWukNgMBuyVUMbnqcvQ/ciCUdNt/1PVq7FzJt1ok4dg4lBW09i9m39T4q7hjZFsPTIMScfwgNBgl4L6F8CZJQZFu7WHni33Bo/+Ps2H4HCEn71KVMW3YGWJYReFZEanVHeicTwGkim+EaI/iqnwZIrwWu3iFQV9QSJRGqKWoHGKZEyXTwIlLcfOsNFm9omEM7N7B/0z1UyoMcd/TbyDgF/7tGq6ZqvvVPm2xDgGR4vUyTMoXDYrLJ4wCkWPnmxpC+7/9JltLJd/Dgz75+MLHGgGkykiVdHhBKlSBQA1dEDiU0OAK9P6XvDvIQjuJkVPHqJFMYZYSXkqCpwYITtCGmXBCkKbR7UepeRmMgqFPdM4s/AmBKBTzjAaZx2xJdU3qtUZCfMQekpP+nv6Vy8kqyU5rITWmmeXYLWdsj51SpeBY125ceDNZyDNbyAEx3DtNhDeMIlw5rGEt4FGWZFlHBCdTLhpwBIJJyjLgZQ2JkUXEtBlWWmu3P2rZ0A2mR7Tt0CN5NLZFSBmPtCA9PyBjzqnXTdawmR/i+2371L4/RPrNA2/Q8L/vyqYxUHZ66bS93ffg2zvi3M8m3+Azy3GM7OLzxEFNObAnjG2nVMv1b9ew6JwqWiFTRZMZh0YXzWPDC+UEeSSVYhfwy3XHtkiBd5U57u6tLNwCRFcsfSfWCjLTYpZBByFsVClaFLnuIgqyEHu804KgoKyZVUkqxf2eV0RFF1+w8thF4dv2dB7n+y9vZ8dgQSsH05S285ksn0DUrD7ih9EmrA/rNGR8w6bFLlzKNY9dEOnBKgibTOUQSNKVKloLV2q278uej57MR7V+CRC0QRrgq5v5YS5GEFzAKwYIUBmccT6KkN78aOFCI/x/cklSn03Vo0BSo38WAUpoKXhopFZcmaYcPngCL2PmzTUkA5S87E3AnrknHvTFBk6nOZ5JWwQulSxooEbMlgYgBtKr+N9pamIGwHQZ/fiubDx5Fbkae1hlZVqywaXNGycsKWSHISn9jSHswHas6eK7Ec6Xft0D1zX9+waIb1B95uKMBo6+viYABimdSMSAUubYOJUmKQBpHqI4XqooFQGnv7dfiWAUyTe0sP/FKLBf69jzBUw9+j2VrXoOVbwIpaJmyiKH+HbTPWB5r3njkS1UM3kLadM45hs45x0TAKARJ8f8nDIASw1WX3wAHIbvj+XUIN7gQOL+I1O8IvAKKSAJnqN7JIOCwCZQqA4fwKiUyLZ1YGV/bRdZgaNdGdq27ieFDOwBFc/M0Vi9/Lc3ZLl/aGtgRRoBpsp1uQMIASGlqebF844ynzpam+he+e88MrTyf16ZJS5YsywsYUTBHNo1RmAhgikCN3gGOdoxMAOWvUxGIURjziN49EVF5aXXX+ocY/N1aylv2IDIOzSetoLBmCcKyYpKp6PU1JvjEDoD2YhJ9mdHpeNKkVLBD+r11anWklKErUI3qiZedCsKOBJh0vYGGgcxmmfKyV3PwxusYe2x9eL2wZgk9rzuH4rQcTe1Zqq7FaM1BCkWfLFBVktFchsU5jzbpS5PaZJmC8GiS/mwpqTHd7qcgynTYw0xxBigph1Evw0CtQF+lib1jLaEaHeRCr3cVzwptnKqexHUlnif9tcSQGEQMsO8MQpN2xZ2TVdbdvI/WGc2ceNUStq57gMGyg7Adlp4/k9buDE984w+c9sHjfBBRqVHIuKG9jiU8XOU7e3CFH1fJkioETeFmQCBx8hBUFSDiNjyNVbvSQVJaXu3tTrcplh6CJfM7joMlR7g4jhue+3ZJfhDhJLDwgZ+W7nisvXOQm767j85ZBQotNjufHGH6ghwvft9c7v7lQX70iU0sPL6Dl39qBYtO7iHXVQgkT/G+1jlQGAcw6T6YUqawjQa4MUFTSMb4JIGTKUGK2hEPXJtGMlixJ2I79qyRyVD9qeX8FZCsKaTywl13qUFT4DI3BEdeAFSCWCgxb3SaQnfZInpVxvW0msKQmGUHDH0IlFwDJAVHpTrCrqHH6S/vQQqbqU2L6CksRFq23m30GW9JBJiEAeRU4txclxpQzLNeI5LxPvllxkGOkjQETCRAlnZIEWl+pNSvXVwbgCkEH2mkQFQ9LE+QdQULT3o12x7+FaPf9N1a7waeXrWQRW8/jblzc8yb6m8c6Q0kiaK/nKdcsalJCyWU3ylXGAxdwBSLpDTJZ2qV59s/ipg7cX1oezaBCsBXCMbcSNVOS49MSVKYVxGq4g1veRLbzjNr1QVs+d3ViHIFS2Xo6VhO3mph65M3sHDNy/AsP6Avjo1nm+Xrdz96fhCAEc1jWMJQf4vG3gRJ/jOKp9W50TcApUp55LGNYRMYBfXGTB8wWDJlgnHDnksRqSvqX50WqNyhYHjnJvb/8XdkmzqwcgXG+vaQLXYy8+iLOLzlMbY89BOKbbNZuuTFdLYuJO+0ELi39VlFT49H5LGOxGbCM6OAR1XBO2Sq95nKHoqG324j26iY6h3RuzBpCc/zeG2aHFhCBTulvscTU7KU5u3pSHOpKQkymRMtFQilRRBEzBYhoNLSJmXu3CQlXcbpyMMb6b/hftovO4WOF52KN1pm8K517Pv0D5jynpcjC/nwloTJqd+XBEgSwpi0TSlTAvTEVPJM0Q+kA6qGwKg+XRcRZTAHdwKASSTak1a2SSKaEItHraF49Bpct0xteICxPTvo+8Uv2fa+rwAw553nM/fFq2LM6UjZpnfAY3q3oK05CDKKCtW/QDuAqNFmjYVqe+Crrw25efZlWslbFQZrOUquE8ZhKrk2YzWHSs23VfI8getFjKyv8uVLlgjUymwZBBsMxs5CkZNVsrLKo9fv5tJPHYenBPNPmcLTt+9iyQWzcYTL/OPa+cO31+PUxsjYHjvXHuLyt0wlI2p1qm0SRRVwAImITVqhZEPggyYlkNLCQ8ZccyfdgScZ70hFL12C5AQ7oUlwoKVgjdJ0PVlZxcKP46QlSVrqB4G3OxNECI+Hbunn3psG+NuvLsPK+OqJh3aN8bPP7uTvz1nLwIEKp7x6Fpf9w1Kk5QPEauJ9MwGeFXgRTAKnJGDyxzUuETL7FpJRzHhqepAETp5xn2wIkkx6TmMswfN6QfpLkHQVUkuUXK2S5/nLSs0LGEUfJIXOFbR6W4zJCSZHCULv7grDxkO/iim4OcakmNIibaek6zRBlFIcGtnO0/0PMLflGOYWj8b1quwZ3cDafddwVM/FZJymWFkhgNBlTFYVT5p9feakpUsN1RelimyeJlKgCVJ1Ow1HD6ETgbRbFeCBrCp6ulfSedkqypkqpdogwwO72XPHNTz2ju/wGDDrTWdxzJXLmZYfCL9r5Xq4A0MorxkoRMACIulFAG5iy3UAgHyw4+dTUkTSp5RBM+2SQrfgLvXruIp+NZgQCg4/+RCzT34JKGifvoIDux9l+vTjUFLQ3DGLyrbfUVFlpJ2nv3cTC1acjGdFY6SdUPh8QARbTdCEbo4GAsLII4i+CfPAuE/UdyfWpbTHqOpYpOh/44IgGC9doIoAUQiatC2SljYZaniDOzdw6Kn7WXDmG3Bk1pcwjfSzc92NPHbtv1MtDTF1xnEsXXg5dk1EICmFtLQr+Q1Ee+CT+8ZCKZUhSQr5Vi9eVur7pSkxPyXVakOgZErXJ97I5+3aNEk1PA9LBkyd0qApuDYJyZIyAYLOa6wPJhhDROp4EMzVghA0+Telc/f6U671DdJ/4/1M//CrEY7fZaulQPvFJ5NfMoeD372BKe98SXhX+K5q0GQAjRAk6fOYKpuqB0wkNg6EGXFZt1nUf+VG3+qGKxVMaRREXf0TonDWSyk7La9+HnYWp7Mbe0o3uZVLqBzay/Dv7mT712/l0J1PsviqE2hbNoXN37ufkS376Zye5a7BftpbXN76niKrFgiqSkVqUyoALcJ3JZ1hFCn8tJItmW4fpihLHKwVGajlOVwrMFDN069y1FxfRc91Ja4XvD94qGoVS7i+5MiqkSVQc/NsBsB3NR4MsiNccqIKSpFvtqkqxfKLZ3PNe+5j7tFtZKcVsPDomJlHDQ7zwA93sOKsLjJZEbf1UX6UIgvfg5I/ZhKEGzHwpnRH+cDACdTPgDpgAI2lR5C+YWEFkqJGDgaSkhfQIMALgZkjfLsuR7gxlTvAB3bI2H3Cc7np+wd4zzeWo2wHS7g8fNMBvvGRrQhLkGu2ecHLZnD5R5eisMK1RBpjF3fAEO+/rwoX2UGZgMnMo8tMBgvW/Tbtmvz214OmunGNNWvi0qLn0sGDUA2+22dQzl8DiapCWCow3vbA811L+1IlLwIsrqECl6L+JrRdjDFnaxU3hBhfFzMNLCXtlDwvWgyVolId5en++1nTfTkWlo/TRJY5TavpyE5n/cHbOHrKpfFd5cR3dSQvXHWUVO9J0IS8YyV30pPSJT1epvodxjimUJ1bcxGp302IAomarCpQkFUOjtNFYUoXxdctYXRoH4f++Ht2fudOeu/awoI3nsC8EzrZ9P217H/0AHR2UD1cApmh9YLzyPZMNSQ+epNMBu6qCT8uYUiIQmAhFdgq7hRCBcFRA09tVBWUawhpI7UGTgMQYR6qVsPJNiPGFF0zV/PUnd+irWM++eZOlBTkWrop1wbp2/wHmqfOR2QzIWsTqhhqkGGokYXsg0VjviMAQSYgikmMGj2rBukRaGvM9pjp5l51OLcpAyQZ4IgkUHIB16P30dtZdNZVSMtBVhX9259g80M/QSkPxynQMeVols9/EbIazB3mowhBjDFnuIwDioL3P8VZa+p4GJv30btgfjtGyV6jOlO+4XCskh4/Dcc0E6Tn89o0aTU823INCY9Ppjtxk5KMXZL5M+2KYjZLBB8CUWBJUxVPqfo0fW+szKD+wdvW0nH5KchM/EtWCHKLZqCud3EHBrHbipifWx1oCv83/dkfATAFX2jKdxL/ss2hieWJvvCYpMjIF4Gp+sLSik/2JUqsX1wavpN6cgsnfXAyzdgzF5J97XSyi9cy+uAjPPyha8nN7mLum89kwVtOpT1bZllxL829O/nPjz7FP/9bkcXzo+eiGdgMHlmhKEqLnLDICgdXeUy3ynRaWznk5jngFtle6Wa/3ULNs3zmXmao1CzKA6Ps/fF9lLYfwGnKsL80zJw1Hbzwb2aSb5LYwg3iBTXjer5kylfT8kEBrovjlfFkjkKTxUs/uZLffOohehY0s+C4NvY/dpAb/nmAhcd1cNbrZpMRkavrUBoSSEa0cwItWPKCvkoDnFjCDaU1Jmgxy0sDEJqRbxQzSasdalA0LtMeeovzfHVCIoBkerrzVe7qjRv0fVseG2Hh0c3YjsRVit0bhvniuzdz3As7edk/L2O4kuFX//4ktWD60cDFdIoxERoPMCXbBdSBJivxztUD0ZSxSsSJagTqXBVX47Oey9ldM0fPRjl/BRRKllwPHbBUeF6ghhf8apshz2AmUlTwtPpXHDhFjP8RKSmxMu2UDKCEp9g99Dhzmo/GUoH3HaMdRbsLS9iMVvooZDoi7y2eimtF6DpNtbxnSHVM1kQYqZgr8QgwgbEUadCESC/T/Kz1M9AFGO7C68jD98KnPeR5CmqBHwZPocoC2xLY2RxN9lza10ynt3M+h7c8wvqPXcOmmVOY9trTmf/y8yhXM4yNZqhsH+HQd39O1yWXkZk6zQdDmpmvAVIYEhb9jDWo8v9V0gdDMSChQLgCb3CU/tt+R2XXLmQujzs2Rn7mbNpPPQcrnxsffAT8iOtWsaSNyDosPOGVbHn4F2SbO2mZupDBvm0Mr9tHYcocph53AV7oPTAYE0nMzX5YocFQNwY9IgaUMM5jz0wXNZHX0dzH0ryRMQYhSyOjtDCvYdMlTJukFKAkXcXYoX3kW6di40BNUT58kKfu/S6dPctYvugKrBqs33QNViWxK2J4YKyzH9Jj1ogEiPE2WWLfbASuIulUcCXGazZwwtKIkqp3oYT7CG1PLYv6/j8T+v87WNIBOj3ii39aEEaAoQ372H/bk9SGyxTmdDD1/JVk2gsRg2HsAGvwo9O0BEnotSFkNOPqeTrNp8gLmgmayk/vofMlp9djkyBvYflsylv3YK9ZEoCHOBoxQZOWMpkgKdWOKQUwRRUnnD2E2zYQqz6kCBXF1e/qLqfbQ+liza0XkWhWmMGsNgGekshLqGjS09cVSDtPy+mn0Hz6iez/r69S2ryTwb1lRqo5FJJ9mRaWTOviff85g6/+126+8OW2WLWOUDgoMkLgILGxkEikkHgo2mQZGAOg5GSQwqOmLIpOiZFahkO9Ln/49C3MfeOp5JeeiSU9phf6qf7hSX7xwYd48xeWQwZGrCyW9AI7IX1ILOGx8tQ2nrptH0svmIEjXFpnZXnr149h1+P9PH3/AbJZwd98bgX5ZvuIUgOtQiZxfYcFoSRIhkDJBEiaidfpUTyhOBDTNFGphQYzDdspfEcKFjrQrRcc0Xuhr4/3f3+/oqXb91j45L19fP+ft9I2NcurPr0aYds0eZLKiOk9b/xVMWm3FJMcJQATaMcM/nn8vrgKXdjvFOmarqeeGts5RTkioPSXCEobOiV4Fsr5ayBZ8xDSi0mTfPU7Ff6G9kLA4Ng+9gw8TsUdo8npYEbLSnJOEVC+q249TxtuurX9wJGoTh3PVL/TaZ6/+TJQ3ses9hUNy+rIzWSw0uuDpXEHgGcElCYbY2U80ky4XzDB2pTizKER8Emq4QnifZpM/zyFRAQbs4BSSCmwLIfpc06me/FJbPzt1xndtonh3aP0CMhlfDfibk8r3a9/FX3/dw3TXvPGCFTg7+YrGXTHUjHw4GfwDy1lMlssPHCHR+n94ffoPON8mk67JGzj8I5N7P3Jd5n2yiuxcrlgHMyb/UMBxfkr6dv6CD3zj0dZAtnVzqLz/oaRw7sZ3LsJD4/557wOq8kPOhuyE4qokLBDhCAvpnanq1Up7dBtC0FSIj0tr/F/kmJ1B20SuswEj2SyM6ZqIl50HvN4Fx6Bd7vSGJlsEVlRDO7fzNZHrsVxCqxY9koyNYkQHp5bqzdvNSSik/5mQt6uwQCkgNO4tEpF4MmwS5wQENXlGUDYZDViseImWtbzeG2aFFhyLBcp3dDbGJAqTfJcjw3/fStWIcOMi1eS7Whi8Kl9bPj0DUy/aCVdpy/B9FAGAeAJmCDTPikGmojU87zgaxBCoT3zISLmyARUImNDpYQo5PGlPAa6ANRYCSvrhDtu9RKaCDSZUqaGdkzm7eF5vf1SCJiC6w3V6MK0aKzj7s2jZipjNhAqdjUmsk62LzbhhNcTYtdGH5ggDro8gaqBlA4iVyB/zHJ6f3EPbSfMY7g0Qqk6ysHaCN0jFTZvqPKPf9+PJeGDf1+ktU0i8TdCtRSmrGrUAh0WN3iojlDkZI2iHMOyPYqyRDVnUVUWV39hG+e+fzn5xXmGa0MAdGTHmHpWB+1eDw/+ZDunXjmfUTtDwa6GQW/Lnk3Jc3CV5LSXTeV/3vUULV0Z5hwXMRvtXRYb7jvMlf++iPYWBUSxlPz2RSpkSSmJBk3au5vExdOe3gKnDkm1sSjgqrZZ8uqvpVAjAHIk+xmJe0RnBEnX4GZ6Vdl0zity80938sd7N7LulkMsPK6VV//jSspWDgeX/esP0z2vKbWMpCOK2DXTK14CMAGpUqY0BxHjUaMxdRH+tURRUrj15cekT/XP7c9Nz2dVh78ECVchQ6mSVydN0ufK9Vjf+1sEMLPlKHJWM4Pl/Tyx/yamFZcyvbgimMNFBJrwIkYp6bo6jZJgSUuyTKlSQJawqXnl0PYyLDsov+ZVcKz8MxiQyd8SoyRDpclguuqqTH4eBmCaaJNSpRMTEVQHn7XebFTgg2ZE4OgjymRVhH+QobjiaPp/fTf5y6aSKw/hHRQM7rKp7itR7euj9+c/AaD7rIuwisXICYL0+R2lVfJksHCHYClyzGAy7Ydv/R3dJ59Hc88CZImgPEFx9mKo1ei/9046z74gHE/d9xCQSGhbfiw7fv0dMs1tFGcujkADRfrXbWDWOa9AtBQItbRU2karP1BKAzsDqEA0b3jm2KeAnwg0ifoHHNQXB2JR+TG2pNE8JaLnGjbB6Jfue2ycDfCEAZRkVVHIdrJv3+/YvG8nB/Y9SkvLLFauupJMVSA8j+HhXnKZlqh+851uJFmeyLIgE99RmgfmBJlLUjQ+Bmgj8W3UlRkvNPw+dTBuvYE0SfD3fF6bJmezJJQBbuoZL/3/th8+QMeamUw7b1l4rfsFc+k8fjaP/fMNNM3pJD+nK7ymVOSOV7/M2hbVBOmh9zAR/R+UELXBaI++3nLSMgbufJSOi07wqzBBh1KMPLqV9ktODqVNSc935hcWpQhDiJQGkvTXHm9iQ/slnSlNwpQ8D+5NVc8z1yaR6IOKfnQRqXUY9aR/dMa1lN0gfwIS/g6dkDSdcjwH/+dq1r/u8yQpk4FNG3wpw5YtLlf+TRNnnJ4hnxNYAqr6DVARUCopRUlZVJUMGeQmWUYKj2pVMLKzn6OOsRmoDZK3ctSURcGq4sgaa87t5Ktv2825V1Vptku0ZEpUPIuM9F1ze/hAPF+QvP0LS7j2Czu59Rtb6ZqZY+hghUwGXv3xBUyfl4sPdkDjAqXEb138IFQImGJlquiaf69fb1q+I1Gah70kOGpkA6VtkurqEoENmPKdUzz+0AgP33KI5naHN35mGSsvnEEZB/C/t999cxvnvWfJuO2UpKu4NQJM45Y1CSlTIwqlfSlSqHrJlyn1027Nj1jFs0eaCXg2yvkrIFHzfIPnQO2uzvtcAFa2HX6QYqab2S1HhUxDV24OndnZPHrgBpqcDlpz0/xCwwVMoF11hzvMR2IwGqn5JWhKYRF7Rjcwv3hsfRECDoxt5ZjipSnXROq5Pxh/4os6QaAkEv+nUmwzT9SXSfxaeA8QU78LpU5MqH8mYAJ84Buca55XetC28iSGnljH3S/5Rn0Ztk1lz24Aynt303H6uTQtXIrI+hJ3JRXKIpAwEfIL/j5qcK4Z+BqImqK8exdTTr0kigEUACLPhaYFS+l78K7EwBingcc5kXGYdfEb6L3vZvb/8XayrV3URodACKadfjnZrmnxz94AQqHNkh7ogAEKwZSKsSXRmBu3xNIaAaXxKAR3RpsavEKpICmlbyEDb/RBGP2WLlhlxcCeLfTv34Bt5Vi++AqmdRyFENJXT/Q8tu29mzlTT05vzDig6EiAo86+aAIqvXFWznwgKryYlEBBHEDF2AvTNtOwqfx/angNSMej0SpLOs0kr1Jj4PHdLLryeANaBEyaJVnwxhew61frWPyec8J0E7yE74EgVPfzJUnpgAk0g1o/evp6y4lL2fGp/6OwbBa5edMMaaTHwR/cRstJyyJ7JuPrSwdNkbpgGmAK1fOCEqI3k7D8mP2SSJEw6RvqsVriPEI0sYlBX8cEUkk0lNidSV5ImVzqRnicSc5fcARISW7uXGRLM5lZPXS/8kw6ehSLZoxx2uw9/OJ9D/If/9nMD64e4+Yby7z9TYcpNAnOOCvLBRflOPvMDMWittnxGdSSshj1HEa8LCNelqqykHhkgPJohfZOSbs9giPcIOq6RdEq+XGBrBoZB7KiSlGW6MoMh6AgL6vhuSNqdLUqrvzH2ZRK0HfQJd9ik2+2Q9siUxVuIrY2JgjxCOIHKYmvopfuiAAiJwVJF9+NKClV8rSOS6BiOJ6760a2T8nyTOlSxbOoKhulFNd8fgc3fG0Xay7sZvBABTsj8VyFZSn2bxvljq9tYvEpnXTPbaqzd09zxmDafYUquxOQMJkqeUeiRmOpwWGj53Jk73oq9vtc0fN59+4vQVH8JC/d+5ynUJ7LwZGnOW7ay0I1uPB+YFH7KWzpv59VU6bGGPIwftFEbZYmQd35Oewc+iP92Rm0ZaJ6lYAtAw/SmZ+DZWUJkboQxFB7EjhM3FwwnRpNHUcASpMRujZUR4ox5fV9nIhwWWuvRAxCUK4RaFa4ync4JBwKxSnYbe3kp+c5933LybfYbPTm0udNYd+nr6HzkhcxfP8DjDz+KHt//F2Ek6GweClNq1aRW7UMmc2hbBXtCteChir//1BQpoCai8zksGrCZ94rfh5lgXRASYmw7RjPEAIXERQr/T7IXJZpZ16GV6tRGx3CyuawspE3YPMkZDGSTK4I2qyZmdCGpX5c0wCTny7S85jPw2DtNKb01RTriqtrX8gqHeHZa2mSgNicF6rlVTx2P34r2zfcTHfncqqVUSzPgqrvYGO00sfW3XfRUphGS35KHYBIvrP1DhTGnxuSzR/POYORK/yew/qM9zoWoNr8XMZ1QmOU9QxVcJ/Pa9PkHDwI7To8nQGQKIb29tO6qBtLRIbsEOVvW9DB5t6hEHQlKZQkqciA2pQyacBkodAOIEwPeTH1uwBo2VnBrA9ewd5v3AgImlbMxh0pM7zuaYovWErHhcfhg6DgvqAN4bcvQCkfCJleV/25NB6XKQo1Zr6MwgAgxtZLbOesHujUS5MaXDsCaIrSEjeb9RvPYNxPMQW41UmYDGo6fg3Ddz1I6/lncPjam5BdneTmWMiWwzz5xE7apzgU8pKONsl3f9jO4LDixpsq3HbjGO99Rz+2Ay84OcsZ5+c49dwC7VOyjKgMI16WIS9PX62JknKwUDiihszW6D+0g4yoUXCHWX/TNtyyS0bUyIoaeC4HdpXY8OAA84+3mZXro90ZZdTNhF7f3CAuUpMsA1ApWBRn+Z7xXFU/m0zOKUFgC6TvEx4orYYKWh2v4f3jMPbQWP0uAkyRjZUbbhAZ0iZVDwIlHi5WoN7m11NVVni9pHyp0a3f2M4NX9vFZR9cyFlXzaY07PLgtXu452//iBJQ7Mpy2hvmMHN5C55qbCsUAiQNKk1HGfjfuZaGhdI5oJEdU9K1uJl3PJqoCl0SyJqPIE0i9WenBkzLMyrnr4E8hRBe5BrcdOQQAKlSdZAmu6POw5Wmgt1CxR3z84d6SBCLbQT1oGk8W4Q0EtGkLaTFUd0Xsr7vDrYNr6MzN4uaqnBwbDvd+XnMaT3WB0eGah6BA4rIja1/rkJQ4ecNA7imtW+iu+RpIMncofbi12P3TIYSQGlciVKjzz62ERms4ml7sApETdEz+zgOP/R7uo8/h723/oL+4jnMWVzBK7msf3QnotmBzhyiKcuUq65CKY+Rxx5l5LHH6P3xD+GnktziBeTXLKewZhlWWzsxLwSBI6uIIbLwyiV/0i57HN6wDq9a9SVLGXClotp3iNHNG2lasDjkW0KJifCBFcLH+cIDLBs72w5E1ZgSlWAowmEL1QgDHkhopkwF/FHAFzWSlKQCXQMQmnvMeuiFZvrcoD+iMbBKr5NUyVIdv6M/W62Cp/xNFFmDA0/dw/YNNzNv9tksmHYGXrnEnkPr+OOmH4MQZOwCs7qPo7V5ZvxdbiQNTaraHokSYOeIqm96nBOsSkxLyABTxEBr/eCmBsvW6ZP9Xp/Ha9MzU8Nr0FApFLYj8MrVunxapUZ5kZ5jmrc8U80vVM8T1AEmXaaWMpFIj8gvz2nJMfsDL6ZyYIDS0/vITmun89ITkY4vUfICiU9d5wxjHNM2SX/OIWAyAVqdhIno6w/KSou/FFOnS0NRsQk9vdzxVPPqQFMMoSVHLF5knWCqwaSVpMKaVfT98OdY7a0Ix6b/+nuZ+s6T2XHXdu6/dhP/9uWZfPM7u/ifzwzxH/8xxMmnZUEI3vN3RRbOl/zu1gq/u6XEf3x8APejAyxdneXYc9pYeU43bQuyDHk5qp6NI2u+XYm06V7YwhMPjeCOVbn6755KbdenXvsUr/noHE5+3bwAaLkBQ+5LLVzlu6f2XWbXKHkejvBtclwl8GMh1YMkk8FPu+YHiTUYfVSqR+FG0ozQnXWKGlkSKB3JA17kwhxQXvjthf0SXtCfADAlHri2z/KUYMM9h/jl57Zy/tvmcuZV8xDCI1+0OeP1szntdXNT25dGSUlOEjD5eSYmZUpz/PDnoIZ2ZkRjL55LmyXNDD0L5fw1kAi2zc0gs8mAs0JYuCqwT0zu1ILvDCBUGa7fego9YZkLWF3eCZIUvkGI8rCtHKu7LqBUG2awsp+8bGV28WgsKxO1UR8yijsU9xqXAFBJEg0Y3fGoAVBKVe15poxPskmTAEoTc7bReI3r6FxMX++TiD6BzOd55Nvr6fjH4xh+eAt7r17PtHe9moM330f/ddfTd/1vKCxajBKCtnPPJTN7OqNPrmf0scc5/JPrOfyjX5GZPZ386hUUVq4kO3U6QkqUpRCBUwgpBfnpcxnesQFLZth2+w9T27Xr+1+j65yLaD/tHMNGDh/8BmApPNLGXdWfaxAUOQoIrnkGb6CitHDQkuVP5BUyyo8BJg3S0sBPcv+h/vOr411CNirRfmEeLgzv2cLWR69j1oyTWTj9TETNQ0qH2d3HM7v7+KA83d9xQFGj9InOsTKlvEb1NqA6CVPodCYCTg3d86cCpWdgs/Q8XpueEViKxzEJwE0AdJpntjC84zC4NWzbCtO16t6BtTtoXzl1XNWU8B5db/ABheuMtgMgAkzodOLBbU2JE0BuSgu5KS3BddBPP+m6PBn8VjuGUIJQypQETOGOS1LClLK4QmStpPTfNMnQxGU+dflD6ZY5IWAsAMJ04JAO7MJ5L5y5Uqo0yotJmYTvkKPjNS9hdO06rLYiAzfcw+NbtzPztNmc8R/nMNC8l9tv38bxp+RYc3oz9985xuiwx9te38fxp+T4j/8q8uY3FTjYr/jtbVVu+W2FX/zvAX74uf1Iy3B8biy8SsGdV+8Im/flB9Ywva3CAzcc4s4bhnj35+bxwy8c5Ief2s6TDw1zxUcWke1pCaUlnhJUlU1VWYEUyKNJlqkom4xwKXkOFeUHytVk2vfE4i0ZpEGSlnakOTMwAUXShXhYjvBwVb3rbq02puMqJaUZZtleIMHylPStiYTv3MFvnwHEgpXWRYbpGiS5hjredZ97moXHt/HCd82fkDODJNiLxz1KSrb09xOzmA3ubSxlSnP8kEYTdQAxvjpdep//kqp4/48mSJ7y5/Ok+h3Br1Lk7GbK7giuV8OS9ctmf3kPLZnu1LI1EIkBJpiw2pvSDiPqXn8rkGRBLtNKLtMaXDNAkD4siTJBUSOAFDDWk7Fdmog0KSZFUsZ9SWYrCSZ1P/TtDQFdfXoaUIrdnzL+DQFSIs3yYMGKyzlw8HH680X6f7uW67f2svjsKbz4v0+k1xnlt194kuz8ObQuPobhp56ASoXeb3+H/Jz5dL72FRTPPgnPG6X0xJOMPPQkg7fdzcD1t4A0GhYDlIqDRhuWXPWPOMVWBrY+Rt8TDzL9pa+n74E7OHjbDYzt3EbPxVfgtHeE7fdsQumJdKnb5U/dBw8ekQkogigYIXjSqnEhn50AH2ZZ9eNtuG5PsDoqeE1JO8xN3DQyQI9ZJpj8j/FYjT5q1+FWRbHrjzdRLM5g8YzzEFU3HZikpZnvWQo4Sg1CPU4Z6ap343R+PDKk22GIg2DHNgRPDUgk5sVnstHxfF2bnhFYSjMS1/9bEuZetoLHv3QPq95zWuy7r/QN8/SP1nL0P70w3DFOgq20XyFUDDBBvVoe+M9OM1baxbjOm6RIkqQ/cgNkhGAt3H+Ibgy+0MhiKQJMdbOsiIDTkSRBSWlSmmTIVLdrKG2KnSfKw7hmdMevPtnH+rz1O3nmefx9iAnVpKTphGPIHbuCvR//DLIpz7SXv4BydoQBt58Fx7Zwx88O8LFv93D6Vc1UPMnjtx/iqx/cwveuHuMTH2umq01w6RV5Tru8ne0jrdx3X5Wd2z2G3RyWVORklYysAb5aWLnkseOBXob3j/C1v9+GrFU59vQm/v6Ls3Adi1d+aCYzlzXzo3/bxqcufYiX/ssKlp0/A0+rlXmRK+2McEPGGwJm3lBDM91nW4E0xlXyiPY/puc8TTEnD0dQyYO404U0oBR6cWtASWCj2x+WjwhUXRPAS8kQXNZKNXY9NcxLPrYEaTVurwmIkm1IAiazPaFEiXqnD5O1ZUofgz8NRJllTOaePxulMaHPtJy/BvJIX8ET7mlntxzNk323s6LzHIQwbPbcMTb338eq7guPWFUsmGsaMGh4o4gWPZPS7q9TuxN1QMmUKqlk2pHanUgPaTygFDBWMWYrjXGEBONGnLnDuNZw865+HY6XZzR5shIzDUQVWJ6ga/pqCstW8tTPPwMiQ9fLT6XYvodWell3dA/bf7KW1le8ne6VpyOqiqGdG9h14w8ZvO1O2l/3YmRzjuaTV9N04lG4I4ry+m3U9h8ET+B74xPIGuD5tkpUXYa3baTaf4hdt/8cPJemeYuYecUbEJkMXWdcQHbKNHpvvJZtX/40Uy59KcWjj4v4CM1HBf+HHuBo8LmrCBCFAMjMKwgdTYQe+LwUXsMEyIyTFg6viAu/ArXQKEZVkK/BEhvb2zWAUCOAFaYF4yFdhSi7DB/eyfy552J5Atxx1vPkd5i2CUDi/U/L14CSb6n53h5RupOUFpnfl1Sx62Y9qXUkgd9k14jn8do0ObCEmtAO6cyzF+COVrj/g9cx9ZR5ZDsKHH6yl8Eth1j1/jPIt+eCDbeI+WkElNIAEzRWywvbagxmGihP85rnk6rLox1IqAZgyARMEYRKU8NT+qaoqqRKngY5qVIm4zpMDjQ1sGcKT/U1s/z62hP9NwDmBNYcmXFof/lFHPzKj9j3wC5aTutmuJZjxRldXPe/+3l6i0v7Qouyclh61hTap+yk/7AKn7GFIiNcCjmP1ae1M/PkJg5XfRfU7c4IOeGr4h2uNjHqZVjxyuU0W2Va7TGmOAMUZBkCdTsPyfEX97D41G6+//FNfP99j3LqlUOc94GVlD2HqrBwkZQ8h5ysUpBlMoH1Y0a4IMELfKOawEEDJ8twqAD1UqW6sREKM3At+DZ/EoFHvSc8vy4RAiPtdELHUnKRIQDRadJ466XwcPCiuiEG+HS/NCXVB03q3TSI58KsFS2xcnReU02tkZ1SWI8BFsN7jPYkpUyTtWUKyWB2kwFkddp4c924zzGRz/x9LqhuR/VPKOevgcLo9gED34j56GleSM2r8If919JdmOe7Dq/0MlDuZWnnWeTsYr2NkKZG6i1HAkwmQGoEmDCum+fSAEGmRCkt/xHKe9aAkjnGR2AYQzUyJeLAyZTSNQJMjdrfCChNBDMFQCmyrVHIKjg1i2mnXc72X36DrbftYvEVOZYU9rPsrB62XV2h3LuXXMscZE3QOnMpvS0deCOjIecupD8+MmOTX7EIli72wZKHD5ZKwveAVwPhQvsJp0bAR7fd2I9tXr6awsLF7L/+Gvb94keM7dxG92UvQcjIIZWJJmKSI3P4jOtAKD3SgEN4AVjRQCkFiIwr/UkjE0AJAqCf6GeoMmb8JsBbsi+pdk6htDNejnYXXurvxfOqtBSmgefF3ve67yHtOzaXm7T3faIMvzAfgojKS9J4aoAxQGoAI62Kl/TYmVbHRKRhR6Dn89o0ecmS3lo4As27dCkzz1tE70O7qA6VmHn2fFreflIwAZqAxHC7m7aWpAGmIK+H4S1PRfGZwuvhjrOqf7aG5Mi8zwx6q1XwZCzdT9PfZ5qEKQaYwv8gUskz+msAJmIjY57FJ/XwRQlBky4rUW6iv6HgivpdBEOoVX9f/WljcCSCayLxngTty69ZTXbJvWz92u30HPcaRpszdM5oBWDXTo+WBREAOe6FXdz87d3s/EgL0zv955gTNZpkmao1GgICgKIsIYXygY6yGKllKXs2I26WYTeLi6DVGgudNmiAU2iBN31uObes3s2vPr2ZOcd3M/PUWdSUxWE8srJGwSrTYY1QkGWaZJmcrOKIGhYeJZUBD4a8vK/W5kWqcFlZJUMt2GTQzL1+z+JAxAq24yoq+iQ9PBzAFdJQsfOCeEZWCCB1unZQAaCUYtvjw6z9bR+H95UZOlTB86BjRo7OGTnsrOTw3jL9+8sM7CvRMyfPGS/rYcmJrTEwpFUKnZibnFpoRyRRdE/1gWL/nlHmrWquAy8aMJlkOkVIiy8FKap644Am3dqQVDow0u1KAqcQCFY9ajWwc1bErDWgRgBIP2PfIY5HI4nWn4uEW9flZ1zOZOjf//3fueaaa3jqqafI5/OcfPLJ/Od//idLlkRu4oeHh/nwhz/ML3/5Sw4dOsTcuXN597vfzdvf/vYwT7lc5oMf/CD/93//x9jYGOeccw5f+cpXmDlz5p/eqTRqtNsphW9QbzAr01uWM7VpMQfHtlN1x+gpLGRR+2n+u5L0D9/g/WkkpWlIklANR4AfhC62w6vidZvOGkwbHlOCNJH3YzzGKcxj5MVYIwygFHob1G7YjwSYklIvqcJvUaFduuklRUT3H2lMgz6PB5JMIOSDsvhaF1Mzx59+7BJ09Czj4Lyl7Prm7Ww641XMyR9iypwsANXBPkTzHGSgxdW66Cj233cjbYcHsFvzWFYgEdcMa7B+KhnwFDY+z6GI7IYMgGDunYasRS7H1Je9mtycuRy47ufk5i+kuProqO0GWEIROjaInh8xkCKCukNJkwZJ+hEKo2ijfRGvkjL2iTEPwUqKepdwQVb962MHdnJ466NUh/upjg2B55EttJNtbkdaDpXRQSqj/ZTH+sk2d9C55ESa5i4GW0Z90LYzRn2hlC04z+SKgKBU7gc77rzBtO2JSYrNNiffb33eSKIaGxPBpDxoNpL86FPl4akalnCCuYpwPhDo+UWNPy8kyhaGdHii9Jdam54NmiRY8kLHDaFEKEXFR19zchYzTpvjp0WzUNyRgylFIlLNM22ikoDJdPzg12fuxge1JOpIUyFtpLKn85vqeTp9QqRnWBEBptguUHJiV8Y9jcqD8HpscgnLTOQzJ0MS5yZ407eJ2KVUGrf7wsgzDuwXCNpfdQn7PvE/bP/VehZdOY2OjjYyOcmj9wyx6Aw/ToklPM553VRu+tZu/u/qEf7u/QUsAS4eBVGhIm0/rk+g9lWQFQC8YFyrSlJyHUZrGcYs31tb2XFotkrkRDWUAEnhezg8740z2HBvH7/510d5y3VTwbEoe3bI6BZkBUe5VJVLE2UfREgPPHCFoCQcXOX40pJAJ0FLmzKiFjpJANOGJi59gqQ0x//1v4sojwZW4TmEQEniewW86+f7+eZHt5Fvtpi5tImWTgeEYN+mYR6/4xDVskfHtCytU7JMX9TElocH+a/rD7DkhBbe+dXl5JttRK3K2psPct91B5m3solzX91DsSsb1ue3zaNrqkPPnBwb7z/MMRf01D3zpKQJ6p0ixPNHIOpI1CgeU1r9jeIzSTx6N/bz4Lc3UB6p4uRtxgYqLDprOse8fAFK1tuHTQYE+XLM59Ai1WCk/uRyJkF33nkn73znOzn++OOp1Wp89KMf5fzzz2f9+vU0NfkS4Pe9733cfvvt/OAHP2Du3Ln89re/5R3veAfTp0/n8ssvB+C9730vv/71r/nxj39MZ2cnH/jAB7jkkktYu3YtllX/LJ4VGs9uwNzVVQpp2fQU5kd5kkAlZhczgTVjIup4gUQpNUirofpaJ0Ex1fGSQGmiwCm2diTSIQ6U9HkjoOQajjRMz4KxPY9ovIXwd9+UIJBgeH67A3fs/jKn17ugoXp9TQFQk5YmpXU7RAXBs3AVVhVmnHIZG3/0GZ740VMc+742mlts7JY8I1s30jnrGN/CVUHnipPofehWBu+4m44rz0dKfxPWNddgJWLrexgnKZDgmEApVJEzgVBwtJ14MqNbNnDw+mtpWroMmc2GfRDGb7h+M+7ynRgIozoVHWkaKzEy2h+2VSd5+KpAIuq3P8Yga4rDmx5myz0/REqb5vZZOJlmhCUoHd5H/+4n8bwq2Vwr2VwrzYUpDPbtZNNv/5em7jksuOBvsJqaUK7H4NOP0rfxD+Tbp9Gz5BQyTa0RuAt+rVwTTcWp9A1sZWZxpd+ZpDdMU8qpk5IAKU3lNAROicGW0fcd86BpbgoE9cb+bwDEhssHefrgvVTdEpbMUHFH6WleyJyO40BaftlS1m88TJAm6+DhL7U2PRv0DGyWgpldxdNjFAOgcdDT6DwNMEG6LZMJmEJwpdsS1mu0zzhP2ir51yOGSwgVU7+rA0zml97Ifsmsgwgwhap55sQeAzNpEibjn4RoJ646Fy8nuML4FAdNqXdE3YpTImO0gJgzqD5U7Fp29iyaTz+WXVffzd6LXkVxepHz37mA6/97E9OWtnDyFVMBaOlwuOi1nXz3K4e44mKHxUsccsKjJZAOmZST1fA8K2s4QTyhwWoWqllqnsWIm6Vol2i1x3CEiyNcCrKMI1xyVpXXf2QWH7noj2z77RZWXDafsrCRwreHEp7LtV/czt4NQ1CrYUvFi17TwpqzW7EsRVXZSOVLtjRZaPU3X8KgVbfq7J+IAJQjXB+8K49tG0o8cc8AB7aO0Le/QltPhqPO7WbJ8S0M9Jbp3T6GUrDqzI7wgTiihiUUy9b4zOmLPziP0185vW68NIUAQrk89fs+/vf9T/G5Kx/n6HM6uOun+zi0p8KCo5q48Tv7uPvag3z4/1bTPiVLTlY53Fvhrl8cZPfTJXJNFo/c1MuLP7KEXEYDusgJgzkmScCUDMZrquztemKAB3+xm4HeMq1Tcxx7xSymL2uNgcojSZlMm6aQjO2t3Y8e4t6vP8kFH19Dy5SCf0/NY90vtnLLp9Zy3seOTZUymc8xLin8C8zkBv2lVB1uuumm2P/f+c536OnpYe3atZx++ukA3HfffbzhDW/gzDPPBOAtb3kLX//61/nDH/7A5ZdfzsDAAN/61rf4/ve/z7nnngvAD37wA2bNmsWtt97KBRdc8Cf3q460ys94eNZkvpU6shTpCFKOSUuXILa4pd5rLnQmSAp+40DhGSIFiK8FSYkS9UDJZ4D9jaUwhlVS5dFkAkObCuLMnBGvyvzfBEyh3cyRyOh+OkPfYHwMoKQlOcLzVeSamqfSdvzJ9P7kLtZf8QqmTpcsuPIFbPji7fT2zGTqwlMQHliZPO0nns6h22+lcPpKCkd1xjdiVTSVxZZ8GV2v29w0gZUwfoGuiy5n+2c+xeDah2g76dR435Wi745bKe3egarVEELQevSJFJeuRmAANgNE6N+YhMszzpNjZeb1PEqH9zO0eyNj/fupjg5g55tpnbuK4rSF1MaGqBw+gKdcWuatQFkSFTx2oaDYMRuAOYvPZ/ac05FB/AsR/MZiN1kC14L+gad5cu0P2Hz9V+iYczQHtjxIefgQze2z6N3/NAc3P8Ty899FttgJQG1siANbHqR0uBdhWRw4tB535kXYoWjSmAeCdyHVYcM47/ng2H52DTxKqTpA1m5mRssq2nLTYkb5IYDxiG0gxOowzxPS2sHSfjYcuIMVPRdQcFqDrB67Bx/jsT3Xs2r6pYTiQZIAjXQywdgzUMX7q1HDE2ibpfhWWJ27XxPoGNKbJAAyz8cDTGmk3ykrACBmTCYgoZJnGIE3UNVLs3EynUfoWWDCgCkcsyOp5EEcWanwvpDSAH+KWp3OG1PTU8aFJOlumGWF3RXx21IXFHOFpP5ckPpWKw/aXnwhI394gtvffQO7rjyOo156KifuGOX7H92IVS5x1mt8CdNL3juTh+8a5G/fNcD113fSlJPkLJeiHKHJq9Aky7jKd8LgIsgIlz63iWE3y+FKgYFSnlLNpk8WyDo1ipkyXdkRik6JFruEdHwVs5yosnwJHH92kZs/u4GObIk1l0xFCP99vP4rO7j+q7s46ow2CgWbgQMV/uHN+zj+lH7e/8kuZsytMOJlKalMKFHSAEkz6VJ4OMY4Jd2QW8JDeC6//spu7vzxfgYOVHBykqnzC7RNzbL5oQHu/fm+uvFccXo7r//UEjp6/M/ZVYJsZx7bEQz21WJqdSZYMdMsqVh9ehsfunolX3jreq77n52ceHEnL7xqOjOWFunfN8anXvk4//3GJ/jQD1Zz/119PHTjAV74hqmc/oqprL9/gK+8ZxP/+45HeevXj6Jo14wFPA5c4nZF9c4dpPBQSnH9f22kMuZx2uvm0DanmYNbR7j3B9vINduc975lMQATU82DhsAp2QalFPd8ZT1XfOYEss0OMpCYebbg+FfM47bPPcGeRw4w69ju8F6/jck5qx44SSJ37M+pN7xnuJCllgMMDg7GkrPZLNlgh3o8GhgYAKCjoyNMO/XUU7nuuuu46qqrmD59OnfccQcbN27kC1/4AgBr166lWq1y/vnnh/dMnz6dlStXcu+99/55wJJBqTulSaDUkJFOAJQkJe59xs4eGjl1GOc8zWanEfmAI/LnGqRGGWLqSFFanX2SliJ5ns/Mel5CsjTOeyoCD4BKoDzP5+mkjDYJpfL/d0FZeikL/noCJcd5TgZNCigl79OARPnMulWC6Ue9kKHHHuG377iFzlecTvfZJ9H+9Bi91/8C74VlutecjahB1ynnMrxlPQe/8hOaP/sWRMYCV0BNIFz/CEFJTfjqSxqQGHUrYaSnACYUZNo6aF55FH233oS0HVqOOd4fO6D/3js59LsbKSxcgsxmcUeG2fPzq8nPms+0C19KtnNqTDWtDjC50bWYW2jdtiCPrLj0PnI7+zbfQ2VsAClt8s09ZAutjO3bwaFND9WNccuUhcw++9U4xTbsssIqK6Sbw7ZzuKMjWGUvAuRRtRHVBNISdDXN4+hj38Jjj3yHXY/eTE/PKmYtfyUtLTMpVYd55KGvseHWr7Pi7Hcy2LeV3qcfZOqiU5k660SGD2znyfu/zdpNP+D4+a/zPx8Pv9MheDXeNRMUmeDFi9I3Hbqbcm2YOa3H0ex0MFrtZ/vgw+wZfIJlXWcH77UCS0bcpyf8+tK+FxOMaScUSrGp906OmnIxGZkD1wVPIaRgZnEVpeoQB4e30F1cGNeAxQBoE6FJS5ae3bXpuSSh1JFrHRwcpLW1lVfe9lpkU+6I6mhJ9Rozv6kyo9Mb/nKE61ot7Qjlx64b5ypRjp8WlWNej74BP931orJj9SidR/8f3YuK59FpERoyBi12LlB4uIeHUDUXu7MtxoAm82oS45Q3bn1p/6dRGkAyz00pE/4CbOYpP72NgWtupPTkNtqPn8srPncsG77xALdfvYuXv3cal7xjNhnhsn9jPx988WY+8KEif/v2ZhwhcJViVCn6AxslF9+Vdb9XYHN5KjvKHewY7WDL4U5KZV/a49gu+UyV7sIwbdkxOpxRpucO02qN0WkNk5NVhg6M8dV/3se9Nw4ybV6W0y7vpL0nw/9+dBuXvWsWl7xrDgVZoVmMsvmuXj73z30opfj29TOxi1lKyglBUJJMiYOrRAxYAYwO1fjq+zfz+N2HOf1VM1h9TicLjm3Fyfp5lFLs3TzKzscG6JiepWdOnt0bR/n+RzegPDjmvE5yBcmuTaOs/30/AHZG8Jk/nIaTqZe0aJIGoLOEh1tTVEouTc0W2kW4JTx6t47yH69+jOZ2h2mLCrz9c4sp2LXw3o+85ElGRxQnvnQGl1w1JehnYIOWIumJpxkOFxCsvW4P/XtLnPPW+XXXf/uVzXTOKbL6orjEzJQ2panmpcXF2rdhkEd/tZ3z/25V6vgM7hvlji8/xcWfPK7uXpMazYkaJJWHq3z+lOsYGBigpaVl3LKeKel5+sRLP4nt5P7k8mrVEg/8+h/r0v/pn/6JT3ziE+Peq5Ti8ssv5/Dhw9x9991heqVS4c1vfjPf+973sG0bKSXf/OY3ed3rXgfAj370I974xjdSLselx+effz7z5s3j61//+p/cL016vM5Z9gFs4YO/uh1Tg8kxOhcvaDypUpoa3hEcJ0zKxG28uhsBpTRpk2Xk1Y4MpFlGohoDJAH1QCmpeue6RtBfY4yVolQbxlM1cnYLUq9rWp0x6aRCyuh/3WYpQxsMFdr8CJSlgZURdFerLIpEnxoAJNNuRzsb8GMWacmSCGMYeZaglhMMDu1gz0M3MPr0RrJL5jPn4y/n8K/u4cBP76b1rLPoOeMSLFdQGuhl+9f+m7bLTqXz5WdTGcwgxywfHNWCarWjBw2WgjYp2wBEGEAlAFMxKRTgDg9z8PpfMvTowzgdnRSPOhano4v91/wf7aecSdcLLw0B0OjGDfTeeC1epcz8qz6InW2K2/OkgSUDTJnjK1xgpMT2O/+Pvl2PMW3WiXT1rKCtdR6W5YTv2OhwLwMDO8hlW8k1dzE2dogNf/wprluhc9ZR2CJDaaiXvt4obuIZJ30MRzae51T4TgS/ysOtlXGsXCSJsgQj1QEefvhrSCdDrtjD0lPegBAW0lXImuLRu79GdWyAqW0rWdRzGtQMJGF+U0lVOK2yp993pdg3vJHB8n4Wd5waV8GTgq39D2HLHLNaV6e//2Z9mpKSngAsjVb6ePrwg6zsPj+oX2eUIAUVb4z1B3/H0TMuj30/2n11I6l3UsWw5lW47Yn/OuK69udamya6nt51113813/9F2vXrmXv3r1ce+21vOhFL5pUnZO2WbKFh3YnnKRo1zVumH0kSVNDStnUSqM0defYfabaX8p98TQf3EhUnYQphsDDNgUmp+NImEzVuglJmBI0+sjjDP3ufuz2VkTGobr3APlViymed5ofvM7MnJQSGRKiOolTuG0h4mNsXhuPYouNSk2PLUjBGOn1MLdgLrm/fxtjjz/JgS/9Hz96a4WLv3AGV7T/np9+fieFos0LXz+FmUuaWXlMjhtvKvPaq5poySocBAUhQFapqhojymYkAB+jXoYx16FUs6lULapVC+UJXFfiKUHOyWJLj7xVxTOY+REvi+zM8rYvtHPW64a44ye9/Op/91Ee9TjmnHbOftsC+t0MI14W1xIce1YrX15k8ZqL9vG5j/Xyr1/spCgtqsqXFOk4TKaLcO1hzzWkDwC7N4/yhXduZuBghXd8fTXLT+vAJG2nNGtRnlmL8mF6x7QcH/vVsVzz6S1se3yI8qhHrmjz0o8tYsfjQyx5QXsMKKWRp0QEvhVgQabJoqoC5xOBLdTUeXne+60V/OtL1rHqtFYKdo2iHCMjalSUzYve1MVn37Odh365h4ve0IO0olhSSS91jSRMfl8Vj1y/l6u+dFRov2QFkkNPSU5743x+9L5HOPriqTEQFXPVnqaLk+LKfeTgGO2zmuo8AOo2tk3LUx4o19ldaQld5MAiev9N6VOaJO/PTc924L+dO3fGFqSJSJXe9a538eijj/L73/8+lv7FL36R+++/n+uuu445c+Zw11138Y53vINp06aFandppFRk5P/nohhQMhmZI4Gj8a4lnS/o8rS9S1B2jDlJW5gmUtd4QOlIlLI7HkpoiNawWH6M9ywBlLTqXQwweZ7PzAX3Hhh5mu39a8laTVgyw0jlEB352cxvPR5hWQEDKsIdduVFi5gAlEtkxxRInIRFKGFC+e32tSx9KV6q+mMMvKaMTdpGoAYlBjARnsIuQ1t+FsXz3sbAgU1s+8132PYP32fuJ19FsUPy9NduRxTz9Bx9DrnWHvJzFzLywEaazz0HGZg3+Gp9IgImHiRZJSVAWYF0I1yvRcNNTrupmamveC1tJ5/GwIP30X/vnXjlMoWFi+l44cWEe3YeFBYvYWbX29j+9f9mz/U/ZvaLrkIokSphinmUCw5ZU8gA3FX6DrDx7u9SHulj5VGvo7tzuS8NcpUv7Qi+jeZMF8WuzrC9TU2ttJ74bjZvvpHhAzvx3AqWdFi84GKGhvfS1jw7DpRS9vx9JQE9b/jvoUUGUXHDd1RIaLaKHH3MVTz0wBdp6ZwPthWojPrHrHmn8/jD32V//5Ms6D7FxxWhJEd/Y8F7mZxDlHEAuwce46iei/2+m+RJ5hSPYe3+a5nVsspIJwIy5v/63KzT2IQoV4cpWK1+PSn8ZcYq4HqV8P5QOymYByZtizRBerbXponSyMgIRx11FG984xt5yUte8ozqnBRYMnfGG8U8gfguq2mHMB5oGs9teNLxQ6NYT355RntCoG+o/QXXlKq3gdIUqqUn+ui/ayrof+Pd5GR+BRDYMZmACYVfd5qeXfBiD9/zMOWN2+h+9+uRGV9CojyP4TsepO9Hv6LzdS+KwFgquIyQ05FtnMLKx+1XVEh99vhu3QQ+OAX5VcuY9tGr2P9fV/Prt/yWv/vFcRzcVeK7n9xJoSg5/cXdXPHOafzL32zjPe8a4AtfbiXjgBMAVUcoLKXwkFSVzZCbY6iWY7Tm4HoS5frSQC8ATK4n655dVVlUlUUlCEbbfUwzr17Tw6s+UWbjA/3MPr6bEjlG3Uxo71RRFtNmZ/j4v7fxd+86zDnnj3DBZQUsJK6QWCqIESQIV9SSsqkGHu+kcnn8gVFuuno/637Xx5Q5eT7802PomtdcN0wmY26ShUdLZ4Y3fXpJGPMpGTA6SZNRCUvGi5q9vJnO6Vl+/4teXveeLjKttfBbPv7CLpb9dJCnHxlkz9YSMxfmA0cs9cF3k04W/LRgrvAUtiPJ5gTggygNlAAyecsPSKxUQ0cRae7PzTlHU8eMPJvu2Js6PlIo+rYP09wd3wkLpXDG73iASNuuPWf0LKs6tLS0TEoa9rd/+7dcd9113HXXXTEPdmNjY3zkIx/h2muv5eKLLwZg9erVrFu3js985jOce+65TJ06lUqlwuHDh2lvbw/v7e3t5eSTT/7T+5RGHr775vB/Y/fUpCNsajUuP7jPBE2JssYFTZAOnJIqgSkqgkeyjYpdV4b9j5+A0BoUCc9cMZDkZ40BJRHYKKHV8ExmTin2DW2gd2QzR3dfgi3soCjFntEnefzgb1nZdQHCCjodBPYVJJZIqLdjUoR90OqEWnsjXHfThvJIIGkCjjqEAlyFFQCFto5FLHjJO3n6uv/l6Q9fzWnffjnl/YPsvvYGMm6OrlWn0n3iuez48dc49Pkf0vOmKxG2HQESEyQF4CSczgKpkt7nDO2ndD6zTUYfs7Pn0DN7Dt2XXsHY05vJzZuPsGR8b0mB09LGtEtfya6ffov+xx6gY8UL6oASibZpoGSNeYzu3ca+jXdzcO/j5HJtHHv8O2jOdiMMqYxWYfTbGf/mhICMyLN88RV++a4XSS+nEMtrtjuVdJkhwFExsAMezfkesvl2Du56hJmVi3FyTciq38bOnmV0dy7n0OFNDI7tpS0zrb7cmGQpDpBianjgv+8pvJ4UFrbI4KkaUkS2z7qORl736lRalSJntzBcebThOlCqDflg01O+hNYDLKO8CaoSP1/U8C688EIuvPDIcfDGo0lveYYe8SAwXFckZBvo4LXJ+8zr9eWq8X9JTx/vXCTaaV4X4kj/EyunEYPpS0uVf+hyRFSevp4EFzqfWXcS5KhKlZF7HqbjDS9CZp0ov5QUz34BeIrKzn3hDKklt+ZBeKjw0LrOKnY9PW/dIYPDyB+WJxP5GpUPRll+XzPzZtPz1ssYfvoQO/ZYvPZfF9MzM8NX/m47m9YNM/+kbj7wpbncccsYb3vzAIdGBKNKhhstOeHiiFrAPAtqnkXVs/BciedKlOd7UFLEQa4jXJ/ZVb7EZ9jNxY5Ktpn5Z0zHzRUY9TKMuhlKgepfFQtPCV54WYHzXpjlvz45QGnExQlceYdSEXz32x6CSrCFt3dbiX948ZP8++ueZN+2Eq/6+EI+cs2aVKDkBaqeVWXFfj0lcPEBUgwUJN5Xzaybh5k+UdIqeYVmi9Ehl9poNdxQ8JB4wuLVH5tHedRl87qhVLU3s76BfWPs2ThMbaQSyyMEuLXG7bJQuFUvlDT4c1JkFxbLm7IFZc5XXfOaGdgzyvDBUpjfPB74/iaOecmc1DmtUb+OlPfPTeN9vpM9JkNKKd71rndxzTXX8Lvf/Y558+bFrlerVarVKlImAL9l4QUqK8ceeyyO43DLLbeE1/fu3cvjjz/+5wNLUQfqgVJiZziW1qiMRpT0fJWSXygVHvF7SbcjeCbtSFDMBbBZtyLsq3BV3C4lHBfqgZK+x5QyGePouS47BtexsvM8bGX54+J6CAUzmpbjiCwD5T1xptNLL0sk0zxidUfqYyoaR9231MEgvk5JEaklpvCPyW9EO3uwqgqromhumcG0y15Jbe8BDm4vcfR7TyY3t4fe31zDyLZNFHvmMfvyqxjbtIner34LebiMrIqYZMNUwYvaqMIAraY6ntmOunhDgRRMSRC5DIXly5H5XJCm/MPof3HRClqXH8v+u3+DWxpNHS7TNkrWFLW+Pp686Us8fseXGenfw6JFF3PCse+i6HTV2RfVF5byjXkqjHuUeq+KDvPbiR2eF3cskqhDuArhethWDs+tUq2N4dkCzxbheC1adCmeV+Xw6K7oXs84XC88L1UHGSr1UnNLiTnFQyk3npYgT9UQk2DLG0mA8laRmipTcoeDjMELErzL2/r/wAxTgqX7NB4lAO0zAT3P9to0ODgYO5Lq288mTTooraXlwokHGouXRL2anS8JqpcyJT/mcUnnncTGXqqKXgKgaylR6GVPmGp7icC5emaI3Wc0zlTHC7d4/HsUwTurIqcPvhaekTfc5BOMPb6RwrHLfUNXTSLqRPNZJzBy/yNkZl8YXUtO3uEmoSF9Msa+Tk3OGJ9UqlsdUuo6EpcVTu5+QD5Vc1FCMPLIZoQlsVqbGVVl/vn/FvP20x7nwZv7mL66k0VnTud9X8/wP3+7iTe98hAXXJJj2RKLU050KBZAihJVNUS7M8J+q8VXGfUEeCLoqw+YLOmRsVwyshaLTeQDDxGzI/LHxfIBkuen67hDDm4AthR//48tXHz2AT7y/n7+80sd4Pi2N15QpqskFWXjKcnGR4b59Fs209zu8P5vr2DRSR2GilGcI0pT8TIZ8yhGWb3EaTwyr4dBdBuQBhdaclWtKabOydI51cESZTLB9YqwaG3z22NZifYYkp6n/3CYm7+xk9buDE3tGfZsGqFzRo5L3zcfuymDEIJih8OhXWO0z2gK2qhCjqF32xitU+pVwRoBplQygNz5H1jONR9+mAs+uJwpS9sA38bonu9sId+SYdbKVggAdSMQlFQr9NvspUrQ/uykGYhno5xJ0Dvf+U5+9KMf8atf/Ypisci+fb4zktbWVvL5PC0tLZxxxhl86EMfIp/PM2fOHO68806+973v8dnPfjbM+6Y3vYkPfOADdHZ20tHRwQc/+EFWrVo1rpren0J1aixJhir1JtF4BzZl1zik8aRMiXtSg2CmSZvMdqSch7vSetlO7oTrPIar4mi33Kg/BdiF9Zh2Gvr/4Nx39uCFY9w3tp2u3GykB5AYbw9mNq1kx/AfactOAy/y1uVrIkcqd3on3JQwCc8P5Y3Ui5u/JpqB3/V4iOT6ZwKkcNzj17X9i9//+PWYNrsCXBflSUY2PwVC4LW0krXHOOWzl3Dby66m/+k/Upy+iI6uJTgXvoWnf/ttdn/1y7QtPxanp4fC3IWIbKaufXUbnbFnQp3aXh2oEnFNGvTGrcF/6Hp6zrqUoU2Ps/OmHzLnkiuxpBN2L8waALrK7p08dce3sKTD6tVvoKt1IdITwTvvv0962k2X5BnvrdmfRiCJxDtotCc+Jon7DQkTAFIhqz5nl8m1kG3twrPBzQoIvMVZBX8TU1pOfTkB9Zf2sOXQfWSsPBmrwEjlEBmriSVtp+BYOVCKvN3CcOUQzZnOqM/B2l2qDWFbWUSDQEQNXZSnkRQs6TiDRw/ezJL2U2nN+fa9Na/C9oGHUSg6CrMbqwhPFDhNlp7ltWnWrFmx5InY0z5TmrTNUvJcKUV1pAqWjZ3zi0uq2fn5VXTNUJ0Zj5mYiFpeVGb8PM1NedLl+GQoqaqn09LU8QTUTUihSl4ApiL5uVF2hMMQQuENj2C1F6nTP8Avy24v4g6PTBA8qqBtIpFSn2dcSgNHEJ+dkwtQYhI266r1D7H7Q/+NKvnShQXvuwAn76vCtU0pct4rOrjr2j5OuHyI6YuLrDytg3d9dj5f+/un+fynyiDgxJMyLJxv8fcfaqG7bYRue4jeTAu9TnMQ8C9YTD2J54nYc9FAxty6i6SQXqj+Zb7HWVklI2oGyBJMm+Xw6S938MF39PG+t/Xxyf/pQWWDWFCIMJDs0OEa/37VJmYtLfCOLy+nqc0xgpjWq6ulxQh6JhTaDk0ASKTFTouVYUsG+qr0HhJM63JoEkGMK1fxs8/soGtmlnW3HODkF9XHXNr80GFuvXoPb/nsYjJNESOw8cF+vv2+J/ib/1mFzNic8zdz+Pm/bOC1n1lFvhgtUCMDLr/61JNc+uGlkx2Cur6AD956FhR50b8cxb3fe5pD255E2v5YH3X5LJadO62u/5Ol51rS9EykQo3KmQx99atfBeDMM8+MpX/nO9/hyiuvBODHP/4x//AP/8BrXvMa+vr6mDNnDp/61Kd429veFub/3Oc+h23bvPzlLw+D0n73u9/988ZYSux6K8/DVRVAYBNXiUGKOFMxnlqeAUhilDDuTr3HuK8hcDoSYEpSEjAZ+UNVQDO+i27GeH3zqANOdVIlI3/VLZGTzfV9DShnNVFxx+rrMdofLolKkXQtroGfVnE31fGECvI1epUaSZHGecTCA3N/TUmoVcdY98tPUysNAdD+6kuZMd2l2S7DlCytF5zI0O2PMLL8RNqdWbR1LWDh6W9gy93fZ9+dvwYUTTMX4nR00nXmhThNLSADtkHiq0d6KqY+JzQm0cOl111z/Q21WDQPkgQS8f46xRZmvuhKdl77Lbb96lvMvfQqLDsTjpGWYKnRMZ68/Rvk8+0ctfL1ZGUhcKLwzCeiCQGlpMSQ+LfSUApi2PsoT4CrkMLCc6u4w4PYLa3hOHjCY9vmG8jnu+gdeIo5rUfH32sCoNR3H6t7LsIR0UZe/9hu1h34DWu6L8WSDvNajuWJvt9xVNdFZOx8CJRqVHni0K0s6jj1CGMS2d4diZqcdlZ3X8i2gbVs7L8XKfyXdFpxOfOLJ/3ZbUDT6Nlem56JPe0zpUmBJQgYKeE7BNl8/Wa23vw0ufY8tbKL5yqWv3oFPcdMj+cnDprSpEyNgtKG5TQATOa1tPyNrtf1KyVPI4AdAz6JNCBMDydrzNhL9XGY6gBTkOZM72bs0Y0Ujl0ZVGI0QkFl2x6caV3EJqTUnU7ik6W5fht9GO8dTv2uxgNIZonjLDyykMVqaaZW6mPKG85h1iUrkGIP1UCa8/J3T2PzY6N8+vXr+Y+bVlMte9zw3f3880+WMaUHrnrBek48q4lTXmDx1rcf5ktfbWNK0wAHMkUOZpvZlWmjVrHwPF8XXHmSqmtRcS0qns2om8XCB0DahTWyhkVkDxNKIIXCEVUc4UbSFmRgLyU447wCn/+G5L1vPshPvj3IS97eYwAl/1P7zXf24XmKN39xBbnWTLi5pZl3E9TEAtQmHAw0ojSJkln2eJQESXX5A0cNx1/cw6+/tI1Pv/1plh3fzPKVNgf31bj/dyOc+tIe5q0u8v1/3srhfWW6pjmxb/XGr+/kbV9cRqHJD+uqafEJbex+usS6m3pZc9l0pi5s5oJ3zuPq9z3K9CVFuucW2L91lL0bh7ng3Yvpmd+M+caOF8A2Gb8p2UdXSdqmF7jowysblBC1v1EAYXOz5jm1T0ojVzGp6O/jlTMJmoBjVaZOncp3vvOdcfPkcjm+9KUv8aUvfWlS9T8rpBR7htaze/BxHJlDKYWnasxpPYau/Fw/j3baMFHAFJQLpOdrEJiy0X2p9gsNAFCddEnfIxNlm7v5umrPnKjTmU3dnlhbjfOYrZJfKE1OG7uHnmR6YUlyJAAYrBygyWkP84OVDpi0cb3QG4GgHSZpMBXtMwaSpGAtnHCcq4SkJRxfkS4dCW2HnAxOvplaaYi288+j+yXHMadpC1lZo+Q6THn5yYyt38n2//sqhVd8GKcE+x69lZWnv51cUwcPXf8vtExdSNPSlez55Q+YednrsJuLfvWBJEdLjFLbm8RAIt5moQjHrVE/hPDraF6whDkveQvbf/ENev9wG1NPujBerYID63+PWyuzYvXryBIApRjfIVJ97kyaVMr7ZgCfWLoh8UySCTY06JrauYqN225k813fo7lnLk2ds6gND9G/5wl6ph1Na3EmTz7xM0Yqh2mWrbG66oBS4H2uLTeNGc3L2T3yJLOLqyk4bSxpP5VHD95IU6bLdx3u9jNY7mVh+0m05AKDLNMb3jhtj19IzBtSkMu0sLT7rHiexHtf9x2MN59NZK4bj57ltWmy9rR/Ck3q9fXVd33PWI98ZS2lQ6Oc//lzOOtfT+O8/zqTMz9xMpt/+RS77tpWt5uatBuKbI+80A5KisgGKvw/ljd+f1qZaYd5PWbHlExLnJttB+psl7StkmnnFLNfCvJgpgud5h9C+t7h/ENF+aQiu3g25S078YaH49eEQimPoVvvpXjaGuI2QVHZocwzTAvyyOAQGDZIui3pB0JFeU27JbMss+5G5Vn+r7Q8pO1h5R1m/OvbycydxoFf3MOmb93P7h1VBmoFhrwchZ4mPvmdObhVj299aBO//MJO3vixGcxd6NDcanPc2UV+fPUwXmszr31HK9/+9ihT7UGW5/awvLiHmW39tLSOIXM1kArPFYyUM/SVCuwfK7Kn3MreSiuHa02UAkBTkBWarRJFWaIgy2RllaysktO/ooolPErKYcjLMqIcKvjuy19wZp4zzs1z+02+jrcGSq4SWEKx9fFRVpzSRrEjE7ONMckEN6nXU2yQkvZHje417QyTR/LeJGn1w7Nf1UNTq02xK8vyM7sZGLWYMjfPx781l7Mua+Wsy9rI5CT3/GxPrN4D20bpnpWj0CSRuGz742Ds+zr+0qms++2BsB9zj2rlrd9Yw5qLp1LszLDmkmm8+RtrmLO6WG+bhIodaRTNNdGRHKtGfU+zzUzLn7SfnIgk79mmlE/xmR3Pecv/QmSo323pu5eRyiHW9LyIo7sv4piei1nd/UL2Dj/JnqH1IRNUB3BUVMa4ZOZLO3TZ5pFSfp1dk2FzFKvL+I3d4yXuSTm0rYdQ2q7DOFRkD+IzpZH6XUyqlEItmR5Gan2U3ZGIedPe+5Ri29DDzCysqB8Ps33B/zqekx/01vC+Z0q1FDGbl5hNVtojChn86H8TKI277yoESgqEY7PkondSmDKHwTvvZt837+CR9Q47RtsZrGZp7skw8+OvAcdi6x3fZ9fjv2Xu8gtpzU4hN2bRNWUFhx6/j/ywzbQTLqLvvttDkCTcwC6qIpBVEbkUDyRPqSBqvCYbbEKUCMqKjsK8hbQuOZrBTY/GPABqW6XRA7toa59HE02+SlsDm5w6msAGizCeY919wfsWew9dhah5gZ2dh3DduqPuffc8ZrQfTTbTgi0zdE5ZhapUyDa1s/Tkq+iZezydM47CtvPsOvxI1AZPUaoM4cg8Dg4oj/6x3f7GUcDYTW1axIGxreF73pKdwnFTr2BG83KyThNTm5dy3PSX0V6YVfc9+AMwgYcpE/nHO3QeafyfRAJpc9k4myITpefz2jQpsKSZkMHthxk7OMaaN67CcaJgkNmWLGd84lQ2/HQ9Xk3bD9SDpvB8AvK4Rg4fYmkNgFgjEhOoN8o7sfQ0EBWrT5jXEnmSEhr9/kroePULOfDlH1PauC34AKG6/yAHv/pjmk49BqutOQaizCMGooAQPIUgij/9SCkvrf4QLAkNvoLv1fKwW3PM+PiVFE9exd5r/8AvrriGb77iDh64bZghN0e+M8/H/2caTz08wn039NGUI5DueLzmg9NRCN76op0oIXhkbZWcqNEhh5nu9DOjMEB7fhQ74/r2Ua6gXLbpH81zYLSZ/aUWDlSaGajlGXWzVJWFhUdG1MjJKgVZoSArOMIlK32pEvhShREvGx4lzw5tnc6+IM+Tj1bYuy1yOW0JhcTDdRWWE/fQFr67z4Iy72SY/YmQGWxVBrZNxRbJKz48j7U3H2JsyOX0F3dz3FktFLIeOVGlpag46dIu7v9lb1hn744x/vuqJ7jnmv2875QHedPy+/nUyx/lUy9dx94to1jCI98k8RLSDCEEM5e3sPLsHmYsb5mw6sB4oCnWvwZgphHIGU9FMSqzfg56TkHTkRjyyRx/DRT0c6w6yFD5IIvaTsESMhwDR2RY2XEuu4efwPVqccCUNkZ/yniOB56SeUgBQEZ/YufJnXRNXuI4UvsbHcH9dXGq0vosBEs7zuCPfTdzqLzL/6KEYNQd5LG+39KTn08+02K0JTHeaYDJbHvAXNelm7+hNKK+ef6F9GQNlMxfU2ISSnAk2Jk8Cy98K23LjmP49vv4w5Xf5qbX/II//rqXodEcVkuBnve+itLBvRza+BAimwvbNH/uOVjS4cnffAE5MEqpd0/MTXcImqoYYEn54Mb0mKdPDVbDB0cidoRp5iVpHBYUl6yi3Lef0sE9YT5dnvI8JFYMrIokwKG+PX5B9e98o+eSVL0T5n0ayJvASZ+7xmGCe91WV2ELmyVzLuLwgY24w/1MmX08ndNWIG0HJQUyk2HqtDXsPvxoyACWakM8sPfH7Bt+it/t+Do3b/si9+/7Mffs+T5DlQMASJlJPAwfRLXkp9DTvIjW3FQ/EG0S0EzAA2P9AIn473h5TGq0PDWau8bZDBmX/kJr0/DwMOvWrWPdunUAbN26lXXr1rFjx44JlzEpsCQCCdDG3zzNipctiu/SBsyYbQtmnTqDfQ/uopEHvHSJUBxcpXmwS0qJJlauSmVehGjMPKaBqTTpUkySJLSUKiojTcIUgYn4/aEkRqcHu0PZudPofttLGHt0A73/fTX7//tqBq6/k7bLTqd4yuoY+EgeaQClTgpVJ30a50jNW19P+v/BHGFIloT0kJbCsj2c1hxT33oJC7/1QdrPXs2hpw7x87+9l8+8Zzvr9naw9LQuvvjjaUgJX3j/ttBmqHtugX/5+QpmLCzwzlf38sRjFbZtKNNmlZjv9LK0aS9zi30UchV/DFxJdSjDSH+e3r4iOwbb2DXSxv5yC/3VAkNujqqykSiKcow2a4Q2a5Q2azQETS7Slyq5efrdAv1egVGVoaIsXCRnnZ+jZ6rF1z7Vi/Rq5EQFJ2ivEALPVWHsouT71cjDZCMQdCRqJDUa74ju9cLf5PlJl3Sw7AUt/OiTWxCVst8/w1FEx9QMlXJU1tX/uIVDu8tUy4rBg1W8IMzEtseG+dhFj3BgZ4m+HSMUO337EA0yzTkkCX4m4sghKW1KA1FJSVPaWKWNadrYprbhOZYuPSs7d/qT/2shpdgz9ASziqt95lwz456e6yVTCgs5MLolyO/F7p1MPc+YMUgDTQGlAqYkQEgBWXXe95LgySPOaCYPAySJtDYnKbDRaM50clT3hfRVdrP24HWsPXAdmwceYE7L0cxsSajDasCkvAgwaUY4cBwRSphMkGT0FYiBjYlSKFESok7i5KdH+ZSMvKd5AWixMjlmn3wFy9/0CdqPPpnKjn3s/cyP2f2JnzG6sUp20UKmfOydICUbHvg+lZzvhS2f7+DY499BsWUWm275JmP7d1LavTP8JmXNB0qyBsINQI4NnqPwMgo34wOcuAMn3VARLeVekG6oXGpwpCR4NniO/1tYtBSnrZO9d12H57lotT4lAekHffXLmtjYNpx3NAgOwA8B6IrH8IoDpRAk6aPm+dKl8HCNI5BAxqSQfr4pxUV0dSzh6ceuQ42MIgK7MO0dL1Now/Nqgfqn4MlDdzBWG8DDpeKNonxf5AxXD3HP7u8xVDtEyRvBlhn/3bcsHwRZEh1gOfy1pFbfiqQ+k1F50+DKBExpUqXxaJIgZLL0l1qb/vCHP3DMMcdwzDHHAPD+97+fY445ho9//OMTLmPSNksWirFDY7QGXqrSbH2K05sp99W7mjT1+oE6RwtHsmMyqWGcpXFsn5L1m1Qfayly3qBVuhvZSZn3ao95SkWgS6nArYKI7JJEOGPrOg3nD4COywRgd7bS8Yrz69ockgJvdJSR+x+jdrAfu71I00lHYRULmHZQImWVUM9AoFkHJkUiPbm5EYJLFUtPulwXQiEKDjPffQnTX3c65fVb2f61W/n0Jft45ccW8NIXtzB9Zi8bHi2x8+ky3fOKeEpS7JD83XeX8ejN+/jse3fwu1vKvG2JQ4ssM93p52C2SFOmwoidxVUgSkGw2KxkOJvFkR7DmcjlZMm2KSJCaZAl/GsyYFTKnkNZSarCl0KVVdX3fCYVGeWSL0g+9PFWPvSOPl5z2tNc+PJWzn5JOx0zCrR2O+zZWn7GUqQ0m6aJSkEm5txhYiudEILXf2I+/3jpH/nZV3t5/ft6/BhPgdphedQlV4jaefRZHex7egzPVSxYU2Th0UVyzTbf/yef+WxqtfnZp7dxyssje8co4Gs8YK2bMmdAuk1SrP8msGlg79SovLS4TeE9CZumIz2XPzsFjNCzUs5fEZVrI+TzxQgoQWx3t2C3MlI9nH6zP+EfuZLJMCNpRrNCxNumr4sUr3dmu8z2GffEih6nbUm7hoYextLaizk2ymcalUfWbmZR20kN6wTfe9fekY2M1QbIWAWmNS8lawfOISwRPStJvH+GYwzfjgmewVJXTyICUDHwZNoyae9zMlh7FdhkmHXyFUw5+mxGe3ew+/ZfsPdfPkPHiy+lcO4a7J5OSrv2MFDeQ3t+OsIDWxZYdeyVHOh/iicf/B5Dmx4jO2eWv5x6EfgTLn4wXhuQyq9XBbbRei7QwMh4DGGXgrEJk4w+mOBHZG2mnv9idv70m2z45idpX3ECHUtPoCnThZMvMtL/NKFq/ng0znsWmzINyVSda/rwuoqrXroGaE/EHvILEj5IEsKPL2U6MwnuXzr7Qu599MvsfPIW5h59mX+7BaoGXq2MZUWOiToLc+gv70ahaM1MoT03g4zdzOMHbgLAsfJsPfwAM1tXx9Xe0mySniuHC4m5QEC6t8w/S938RdamM888k4nY1I5Hk/SG51fWOqOZvs39zDwhZ6RHQOfw5n6mHNMTXEsPGplWdkOnDikg5UhOG9I85h2p7kbe7cYjcz0zQVO0PtUDJiCcwPU9poOI+BnURU9P0NDv1zF89yM0n3UczYtnU93fx4Gv/5zCMUtoOefEsP66Yoz2xZK1K/NxO26OgYqlp4EkEyDFVBKDXykDCaD0sCSI7iKFM1fRfdwstn/1Vq7+0HosdxEvOLeZ3Tv6ue1XQ7zo3R2UlC+JkJbHji2+V7YVa7JUghm7zRphWqaftuwY/Zk8VctB1gTCBc+TVMYcRp0aozXfEYEjXUbdLCVZoqIscsLDETUcYVH1w8OHAWyrysJV0g9Q69hg95MRLjlR44JL8kydNYWf/2iEn33zMN/7Qh9zl+Vo6crw9B+H2fbYEHNXFZ+xh7XJUrpqXjzN8xTrHxzk0J4K7VMyLH9BC9Kqf/csoUB5TJuf56K3TOfar+9h9amtLD2uObTPGu6r0txmh3W/8I1TOe/K6QwfrvL192+gfWo2XCiKHQ7X/Pc2umfnmXdUS6MQFBOi8Zw5NCINnJJOItLmrok8r78YSApIuOrI3+8Ey/lrooLdynD1IAW7JfX6UPUgTXZ74wLSmIyJLtBpTh5MBi8N9GhHE0bdRwRMuryJts0AHXU0UcAkheGmOQB7AWAary37hv+/9s47TpKjPP/f6u7JsznnvZyzpNNJKCEJRSRAJJODMRkDBowxxhhjDAYTbHI0Iv1ARAmEUM7xThd1Oafdvc1xdkJ3/f7oMN09PRtOB+Jgns9ndme6q6uqq0PVU8/7vrWXY2PbaUkspSm2kJQ+wjN9d1EdbaOzYi35KATmaF9IaX0VeZLkPn/MLmmm3bs/LHjBPotUuEN5503YhNd3SIIiBbFIFbG2KpKvms+Jx35D309+RrWRIX7eSkZ7B+g99jRlK1pRsxKRA6TK5PgAAPHmTid/xVKEhDRVH1NdstdJkmAt2i2sZTOmIktmw5iEwLY4kYrFLyVIQ6Do5jGJhUuZ+8Z/YHDz4/RveZjeJ+8mWtVINFbF+HgPgyOHqU52WG3kHXOYUQl9xfrJkfPd2u++p/xmd5AnStYiyJ4w9dZx0jAYnDzBRHaIiJagJt6Joqjm2l6q4gp8Yo4y46EK5rZcyoEj91DZuIiytsXOeWQz44TUmFPN9opVtFesIpubZMup24iEytAUexFzwaHBJ9CUCDXxDmuTa4DkJk/2ac9iAqOgzWay3/28GTjvj4KAJ0UmVJ4tzua+adajNEUYLL2hkx3/bw+KyxTBJiW58Um6n+6maW2j5xhvHi4zuiImecXM8oKCPxQN6lDEPyrIhypov3Dll/eD85rdmelcyojvGHufohgFZnl53x138IfC/IRiFHxsLXJyzyFS2/fR+E+vo+yC5UQ6G0iuX0LjB19L9lgPE1v24JjKCd9HkYHmecXM+oqZ3Jnb7U++vooinY/bPE8RElUxTTpV1UynKgaqaqCpBpq1DlJI1dGqEiz+6PXUr2nk4TtGuOJt8yivVLjt+/0M9OWYNEKMjCv84Ye97NpkqpkPPKRzakxjUmqUiUk6w32srjzO3Op+EpUpjKhhLsynC2ROIZPVSGVDTOoa47kwKSPMsB5nwogwKUNkpWYqR5gL3k4YYQZzCY5PVrF/vI6tI608PdrBnnQTQ0YcMAfgK1aG+OdP13Drk+18+MuttC+IcmyPWcehU/mFWGdi7uWGPwBEEKYyD3Ob1dnYt3GEz75xN/s3jRKLKxx9ZozPvmkXOx8aQBXS8zHzNFW3G97aTOeyBB975V5+/p1BJo0QCgb7No/RNDfmKUMVBsmqEO/88hLGhnUe+VUPta0R6jujnH9DPVe9pc3z/HnqPIU5XlAav2ld0LIHfgQFiJguIES+TYPNeh3z3T+hTFN0ccbT+Px1wDzP5uQSjo5uM2cgXYuRAuhGlt6JQ/mIeDamCvTgbz9/4AZ/EIdiaf0kxJ2vPwgErgFWkB9SUB3P1MdfNzfcnZttbqSqro7DO3Acnuyme2If62pvpDm2kDKtmvroHNbUXM9kbpTusb3etpmunexmCCA9zvpDiiiIGucoSDYxUoSjGPkVpLyPj88cT3UREQlCh4iWoOOKV5Gcu4SJjTsov+oiRFmc/p2PMaoMkY0rZDWdkyefZKB7NwATR/bD6CRqGpQMqFnrf8b8L3J2nUFqEkPL11FYZMn2dRJG/uOe7ZeKdVxYYkQkelRixAzzf8g0yYs0tdB01U0sevvH6bjmDcRrWpkYNP2Y0pkRcz1DN1FyXVd3ud5gHNIidNL8SMuszjKX8/giuQKNuAN7iJwOOT1vimcYDE2cYOPJW+gfP4SGytjkKTaeuIWe0b1WXlYQE8ek1EBkdTprz6OyrIMdj3+bk9vuQk1LRNZgZPAIiUgtzjpk1icUirG26cUYUufY8FZioUoqIg3UJxawoOZ53vvfMsOTiuK0lVTNT+H9Oguy4l8nzkM+izyzrmMc89ViBDbo9yxxNvdNs1KW7IFSWUOc9g1N3PcfT3Lu21cRrzEHRYMHh3jsi09zzttWm+oA0llDJmiW1hPeO1A9yh8z+Ew3e3+2nexYBoRAi4eY97KV1KzIk7JiazIhvGZ7zn7Ave6SZ5tLbfKrRUF1DVKSiu0zE1gL04r8DJg9oPKEFi/a95g7hu94jNo3Xm8pAK7EiqD6lS/g1Fd+RmLtInvyrRD+ek0HXx6zVZHyaaT13igknzbZVJW8X0/d2mYO/XIHIjKX//5RC2++5hgfffEztC5JIqXg3Ktr+MC3F3Prl4/x4693cdtPhnnlG8u46Y2VlCVStEf6mSgLkzFU9o2HMWQYkTNn3QxDkNY1IkaOnKEyoYeIiDBDehxdKkSVLABpizhNGiEm9BD96QRD6SipbJiBUAwFSbU6Tps24FmZJZ5QuOjaJBdcU8XnP3SCbY+OseqSCmewbQbRzptuPRulaTrzviAzu67949z2zZO8/2sLSCTyF/jaN9Tz5fcfJFYeYtFqkwS6w5arQhKOKvzzT5bzrY8c5PffPM65V9fQt2+YkwcneeMnOgvK01EY6s8yZ2WSy17d5NTXQKBLt+nd1MpxMTUo8JynIUym2a/B0KkMm2/rYrhnkvKmGGte2EyyJlKQ11TmeZ53g8sP7U8K1+DnWefzV4SwGqcpsZDt/XeysPJCopa513h2kN2DDzGvcj1KkQUjp0URuXQ43cOR4U1kjBQCgSI0OspXUx1tNRMIxWtmZg/S/DO/vnDmzppJQSrTTDAb9SkonfuxF8Is3//qsUmpv20MyZHRrSyquBAF4clbCMGC8g1s7v8tjcmFOIvWOu1A8TWUnEx8/4umKyRPzn+lcLtDunwfz+vcejbt9PH2efQ+eidKRKXpY2/ixAf+h30//xKJqlaELqltWMbyDW/i+MGHOLr9Tvp3PUHd8ouoXX0JSixmEjFr3s0IWSRNs+8NHPHNA19zC3x1t0gemjTN+nRh8lkdpG4pZhKUcJjKuSupa1jB8Qd/Qf+xrdTVLC1sx2L3kF3NwEmAgH3WYL4gqINFevwkYDw7yP6BR1hddx0hJf8e76hYx/a+OwipUXNhVgNQXQszC4lqKKxb+Dp2nfg9Jw48QGPDajLjg4yOnWRB50VW5bwNmzZSlEXraatcHXy+NlFyH+d/ndi/Z2Kc4J80CdouJencOCfHdjGZGyGqJmkqW+q825yyrHeHeS9M8854NkTlLO6bZr/OkjWIWfGyBRzf2MMj/7WRXDqHNCSJxiTP+8A6ytsrnGuniqkJkyfvIoTp2H2HOHbfIVa9ewPxOtNXKtU7ztavPM5kzygtVyxw8ggiTO78/Ci22KxZH3Cb5wGOP5KCxBDTkyL3cSa8hMks0OrYbNIkpCvZ1G90mc4Sqkp67l/bpE9Nhs3ZMj2H0PzenvnsZ3LvB05wuAiSO81sSZL7t3tgaUjhKFAASkhlVI+yqDPO+z5ezWf+qZ+3/HcL7etqCYscQui8+L3tXP7yan737W6++78DPP5Qhv/6YSt12gjEzLDg49kwPaFysuMhkIJsWmM8HUZVDDRhMJqNkjNMM7ukmiaupgkJnaxUGdOjjOciDGdjDKWjDKbiTEyGUUQMKQUJLU1nuJdq1VSQsjK/xtJQX46Hbx3kJe9rQwvZg+vCt2KQf4x/vbIzAXvy4/ff6eINH22jLOl9k6kRjdd/vJOb//0oi/5nrrnNIjNuKKrg6jc1s/H2Pj54yUYA5i6Ps+S8Mufs7PfAvif6+fTrzJnSd3xtGSsvq/EQRH/eQeV59+frqyMKfJpmAkUYPPSDIxx4YoD1L29n+RUNnDo0xq/+ZTuLL63j3Jd3FKSf6XvsOUGQqnG6+fw1QRG0lK0grlWxe+ghdCODlJKolmRR5YUkwzWBx0wJzyDG+6z3Thzi+NgOFldfQkwtAyCtj7N38BEmskO0li03j7EJmpsoBfjneAgTOKTJGfzMClYez9JC2FlA0yZMWOTIPg9pEUFD8bRP1kiZbeKfHRcCVaiElAhZI503iSo6G0hw56XYBEEEq0p+ouRTmNzbPeTIOW/Xxx+dztomLWIiVJVoWZqqJpX0W15E71d+RvXzn0dt1SK0lERkDNrnX0ZDyxqOH3iQ7q33MXp4F4uuexcyHjKVI8MkOEIK9AgYYYvoaGafoWCSnTxBcRGkgrpJCBkQNhAhA2mYFhi6Fe1VGGZ+UgdFBzk2wakjT9HR8jxUtEKTLqdRXJfET5D85Mi9L4gk2dsMK+iHEwFPYgdoOTK0kUUVzyNE2OPnpyBYWn052/vuoDrWli/Dfl508+RUKZlTdR7dPZt54sHPAJCI1FIX7cwTfcvvYDB1kicOfx+AVS0voqlssffZdwVfcNrmdJ+tgokJH6F07T82tJVTEwdoK19FQ3QO47kRdvbeTXW0lc6qc1zvFOE8o85I1XiW9SxW97O0b5o1WbKhCIPWcxpoO6cWPWsgNA0hBDoif19ag4apCNNUQR8UIclM5Nj/y51c9sWrTdneeqpidQnO++hlPPQPt9O4oR01ESlUjmw1SeIJ+BDoH+W8Rbw+S36FyR3AwSZM5vEUECbpP86lGE1JmqYJyuCBsG1Ai3QUMm82Vywn4UwtTV2O9xj3bJ9r2zQkCUC1TBLN73kbVtUxX/QqTQCZCZ1sWueZHTrNa6Jc8/IKfv2TMW798jHe+l1zITfTRNOgqiXB6/91Dhuur+HfXrOXb36mj9d+JE5cSVMbGqMtOUQ6qzGgJ8lNaJBRSU2G0VSDkKIT1cJkDI2sVBhTIxZhyqBLhbShkTY0cobqIdmGFEzmQgxlYwzpCaIiR0jkTB8eqyU2PjCGnpNcfJPlz3casTcdFTRgQD5dQAe7PFVIsmkDVEFYkwz2ZmnuDOOHikFNnUYmZS44rWkSw1qY1iYwtv9Sx6IY//3AWvY9NYyRNVhzRbVl7KegYDjP/2O39lPVEKa8IcK9PzjBystqChbfLUaYpvNHcke8c2M68rTzvlMMHEvx+v9djRAm4arriLL0khp++W+7OPhYL3M31HnbcgYKk739T+GT5oZtynIm8vnrgPf+qIo2UxlpMmm3VPCEq3dedjO4plMQJUPmODSyiXMaXoRiSyGGJCLiLK+5kk2nfkN9bC5hLW4eayge5WhawuTafromK4Ekaya3su8YD2EqpibNBC7neCmL9nhFjrVJjsibiWETltMnSm5SZJ+rpyt1kxBwkTRzl5HOIA2DkWd6iK6tpuyi5YzcsZHup/5AzTWLzKANWbO9oloFCxa+kIbGNWx5/Kscf/RXtF/8MgzNHFeoGSt/RSA1i/SogN1nSPJhxl11y5scSm/QCkWihqylMhQVGREYhoqSsW5nYWY00rUXQ8/SUr+uiG+b71K4B8xBCpL7v5UmkCj5zMgwJIaRAQmKUJnIDVMWqvFMHtgIqVGEUMgZGTQ1UhgkxDD/JNQKLl78bgbHj6HraRqSi/D4kFsmdF2jOwmpMZLROo4MPkVjxVKE+0Fw7rcZEBD3YTNVdQrIp6Q/dYThTDdr629wahwPVVIbbWP34AP0jO6jITHfWxdbUXJPtJxBnM190+wCPDjhfCUTw1k2fncnvbsHCZeFSI9maVhWw6rXLyOUjAQMJk7PJO/4/YeYc+0CFM3Ufg1XHmgKndcu4vi9B5jzwiWBkeoKzsFNogC/qZ07TSHRKUKYCFaf/OZtzv6AgA7AlKQpnwbPNiUWJTc4glbld0oW6GMphBAomhpYHydLKQrIkB/+Y73jhzzRdFQm1/aZqEme3/aHPGGquXA+Jx88xNdf9iCbb2zgHR+rY9Xzyrjz58Mc2zpIy5Iy1Ihtf5FDR2Xeukpe9+EWvvfJE+TQePkH2k3CFB5nKBFjIhNmbFyDjEJWDTGumn4oipBoisFYNkxUyzGqZigLTTqqRUoPkTFUcyJAMQhpOoYhMKRgLBulO1dBSOQoUyYB28RMYceT47QtipOschvpFUexCGxu8y6bOBU7Nn+MgZSSx2/r4+Ff9xGNq+QyBuGowuSYPmU9tJAZ7nyqt4WCQXl1iHOvqgYo8IqyzQwPbB9HDQmWXFjNHV87QteBCZrmxYPzdD3HbhI106AxNvwme/Z1tLc/cctxXvNfKwgrrhpLBV0Irn7vfG75l50s2FAbGAACZhZM4k8Z9MHxRTgD+fy1IWekOTj0JMPpLjQlQs5IUxauZ275uYS12PQZ2JiCKAGcmjhEY3yBhyjZEBLaypZzcnw3neVrgpURmDlhAm+6GcJdqvQMIl3w3/rT3TMewuTe4a1XWIkzkRsmrpbnj7OQM7LkZAbNZVpF0CB0uoFe0P5ZEiW3olQw5Aj4LRVXVyuhomMZI7u30PWxrzJ87kqqXnUj8cWLGL77fkb7j1AWb0ZVVMvPSCIkVCRaWLDkRex95hcIodB00YtQY5on2IQRAkIgVfu+yEfixXCpB+5zlRaplfmrIQTWZKtONqtg6AIjpOaDNUgY7TlENFZDNFRhKjzCF2DDzsunFBVsc//3E4YgouT6dI/t4fjIdlShYRg6ilDIGel8np4Biz3RF0IGPJveICmSsBKlIbHAS/KsxrFDiA+nTqIoGtUV8zhw8j6GM91UhBs9ZOePRpT8+613ydGRLSyruSJ/FSxCKIAFlRewtfd2GuJzrYkYXx3chMkQZ0xdOpv7ptmHDheS8eEsv//Qo5z7lmVc9N6VpqJkwLEne7jrHx/iBf91MVrCnKl2mw/5CRN4BxoeZcg6bqJrlOYNrQX1sCPwVc6p4NgDR/JliUL/JHtfEJkqIEJu/yUfQTLPAw9hAlCsm9Rjluftarx1t/4HmuZhTdjIfEQ66d/pQtX159P3/TtofM9LQHVdTl2n/we/p/Ka9R5Vx29yCIVEyP9umTK98G57tiTJIUt4iVP58lYuvPl1nPrDDjZ/9RHe+egwC9dXMnQqy3+/8mnmr07w/v9bgRHTnIG5IeHS17aQ0wU/+q/j7Ns2wdu+uJC68lFS8RCTOY3x4ShMqjCqkZYwLIUTmlsICKk6US1LeThCWDFJxaSuMalrGFIQUgyUcMa5Z4YyUfZMNDIRDdMR7iehmC9sXQr2bUuxYJ1pbjMbVWkqdWImRMnGL750HE0TvP9rC4lZAXtG+tP84w27ePz3A5x/jUl03MQkM2mQmTTQwqbTgeKZmiw0m7OVpKDz06XCWz+/iC+/czebfteDUGD/k4MFZMlLjLyEyS7TH6RhRoTFbWJov5d0iRCCaFIjaKSXqAyjZ+3JC0kubYCqEgrlfZ08ZQSEDleFQXba2p1BnMWmDs8lckaGzT23MadiHQsqNiCEGVFsMH2SLX2/Y3Xd9YTVaF5VmsmikUHrMQlBKjdCebgu2FTHkCTVagZTJ7x5uUlQYFk+wuTOVy/yvim033bvdMoLJE6Qf2QU1/+AouxjhKdzKX5/dZatZs/wI6yqvgpFyfdrEtg7/DDtZSvN6+APx2z9twex0vUdYQZnkKrIm8G5v58GUZrKV6mgDcgf48z0N7Sx4DUfYmjvJrrv+w3d//wFEgsXY6RT7Ln1f4jWtbD0yncQVSKInDQ/uqSl4RykobN/922MDxxn/qWvR2usctagkZogp4CMGEhNIqzzNEmXcAI7FJjjScyBjC7AsCaEhURRJUZURweMjILQhemXLmFs4CgVle1e4hOkaLqIUIEvkrXduUf8xwURJesePzj4BNlcijV116MKDQxJJjfBo6d+wvHxnbQmXH5U1j1iSJ20Pm4Sbt+Ax39/B/pU+eq3ov1Gthz+OSf6NqEIlYHxI1REG/OmbDA94ZhqSFCsbH9QB9sMEVO9DhMJVHE1EUIgMKSBkBLDMBCqaj5rUlqVlfnny+3D9GxwFvdNpxU6fNP/7eK8tyyl7Zy8aYoQgvb1jehZ2PrjXZz7dyuBoNC7ecJk5hlMmmzCo4QUdvzfFoQQhCujzLl6PnWrG7Gf7tHjI0RrE0X9kwoImI9M2fATJvOkCpUnOwgEFJIeRXrN8vL52qXMjjQ5mMJELr6wFf3C5Zz45A8pu2gF4ZZast2DjDy4lbKLVxFfNc+TvkBdCihyygk59wSNiyB5frvI2XRESVXyaqXzHempp+OzpAlar19O64WtbPnMfTz92xNc8bomLrw0wqffeYTvfmA37/jyYnSXh68q4Mo3ttC5ooz//fv9/OuLd/C6/wlRuThGdTTFiXiWTFpFTCrIjEJ2UiOlmFH5FMVwkXtJVDXDDWUMlXROI6eb5Wiq4dwfqVyInslyVCvYg4oZelxHYXw4R1lNobmbec6ugAMW4TBcbyc3AZrKrKtYiPCugykGu9K887/muNrVoLwmwps+3sH3PnGUdVdUE/KJXrd+4ySXvKQaRRgFZKVAHfa97e36583/DJrnx3ndf8zns6/ebqaxXuR+QugnTABBKpP7XDxlz1R5EiANWXC8G1JKHv/ZUbb/oYdoRYjspE4krnHxm+fSvKS8qEnecwbJVOPQ2eXzV4TDQ5voqFhLbawjv9gpUB1tYT7rOTT8JIuqLz69zH2duyJUDo88zVG2oCkRmuOLqY61mSZ/imAiN0RETRbPK0hRCvoNPpWryPegY4Vw+Xrkt01rnjOFk7p0D6Ld6pIiLL8lHRRBWbiO1uRyNvbfSlNsIclwDancCCcn9tCQmEd9Yl5+IGe1mVNn4ZoJt0mOy0fImtHLkx/ruNMhSri/U7yrtomS57fVDCoKNQvOpbx5ESfu/zkjWzZScc4G4mtW0XPz/7H3kZtZdMmbUbLCIkMmaWhtWk9ZWTM7tv2IHb/9PHOveAOxOfNMUpQDJQdGBMv0T5rlKcJ83+WsyhreSjqKkRUp1sgpTjRbRTXQVQWpWms5WcfkMinCyWT+mge9ev1EaSYqUzG4iFIqO8xIuodVtdeZLgvWpEBYi7O86gq2D9xFU2whqhryTDQcHt5EY3KR+bz5yPaM62GllYYgEa5mefsNPL7329ahvmNnSZQCfbcKjilCRv0/A8wQzc0GJ0afoXtiL5oSwZA6qqIxp+o8KmLNnvYoCPpwujiL+6ZZn7qQOj07B+g4p9YTTtge0LRf0ET3lt58ASI/ALah+gfsFA52FCHZ++s99G3rIdWf4sJPXMqy16+m6/HjPPbx+yGnIw3Jod/tof3yeQX52XlM992/rcB0zkMAZGBadwhxJ1Swz6TM3u8+rniocW95BSG/hZdMlK1fQss/vQolpJHaeRikpPmDr6Di0lVFj3XyKDYrNsVsmXO8vbkgX1znVEiUVF8aVTGcyHd+RckdBl6zgj2Ea8u48HPXsOZNK7j75i7uv3OSd39hHpvuGeLXXzrqrIFkm79lpca8cyr5xK+WU9Mc5ltvfZrskW6qwhMk42lEPGdGEDIEMquQyWiksxrZnEpOV5jMaaRyIcayYSZyIVK5EJO5EFlDcYi3puoIIcnkNAYmYwxk44waUTJSNRdrlQoTYzqx5HShmqZXnYqFDJ9qkP7wr3q58jUNuENgG1JBR2HtlTW0L4rxydftZffGMUYHc+zbMs5XPngIgOe9sLp4XTAIC90TVtx/Hn7StGBdOfPWlKFqgqY5saKh0NUp2kHFmHI/FL5TgqCpEi2iMNpvhpTykB4kI10T9B+dIDtp8Kavr+NVn1/D6796Dtd/cBF3/+9ejjw9OG0ZM63LmcLZHJ71ucTg5HHqoh2Bg5OqSAsjmVN506KZqEpFcHJsF70Th0jr46yovor55eczkD7Olr7bMWQOqRscG99Bc2LRzDIsNhPv/326H/A6kRMw+x8EhcARxpREKz/LRl2sk3V1N6KpEQbSJzCEwar6a2mzVSXfQNetJjnl+D+e+tnp3HWz86KQKOFP5yZbrvMKOD3h/yF8GyVEwuXMufKNNJ5/LcMbH2N080Zq3/oaxo7t48i236KHFYyQwFDzg9jKRCvnrH83iWQDB+78Npnjx1HTdjhxgZLLEyKpStMsT5VmFD3F5aMkTZUIKfKhxXMCI6uSy6oY1ixwgTm+lOjZSVQtEkzEfcpRQSQ7K5qdExZ8JqqSCydHn6GtfDXCdd/YqI11UBVp5sm+X9A/eZyMnmI43c323j+QMVK0lq/M3xdqPoy3g6lC/ReE3DaoiDZSk5wDCJLh6ulNUotgSqI01XIDbkhJSImQyo0G7s7oE4znhsgaKdbV38Ca+utZ13AjS2qez4HBx+kbP+QhpWeqLzib+6ZZm+EZOUk4HsJACVzvRFUkWtja56g45syrd6V789gglQng1DP99G7t5rLPXcH+2/ax6fOPseZd57Hq7edy5M79bP3mJtKjGdou6SRaEbIsFMzZE38wB3CpSa79nvPy+SYBKDYhx2B4dw+99+4iOzpJvKOWuhesIFyVCFSZVGT+/WCdniryNsPuMszJPHOfk4a82mTuC74WniALUY3KS5f7zOymv6GmSuHe53//u4mc+d/cbhMie990ZnduNcmtMrnDiLu32SZ6EpUlf7eeZFOSB/7jMTo2rOLSVzdx69dOsv5vOimvi6CjEBY5FCS6VEjUxXnft5fyn6/awY/e8QRv+ZHKnMo4mmLQJ5IYGRVpCPSMGTlQCGmGS7XaNCM0FCHRDZOE6YZAUXVUxSCi5sgZCrpUnDq7nw/DkEyOGzMiSzPFdAqGO6DDYE+GhvZooOkYwKU31dJ3Ms22h0e492dpqutDvPRdDTR1Rh0lx2xPHTJpek9k2bc9xfEDaZLVIRJVEdNnTBWUlavMX50ENVghUwV8+EcrAAhpEl16zVY9pmweNSv/LDtpXT2SW21yhwu3zzlIbTKkwsWvbeeX/7mPV31qGWooT5hyGYOffOQZWpeVccnr251SAKoaw7zqs6u4+b2beeM3zy3qvzRb/6ozAkPmFwF9tvn8FUERqnkX2gMh18BJKAqaErFDFnkPnM4fyLV9NNPHqYkDrKu/ke7xPewcvI/FlRezoGIDpyYPsmfwYUBQHWklEiqiLBUrw08Gig1ebRiS4XQPJ8d2ktVTJELVtJQtJxouK8zfVplOhyT6/SGwFCZ7n0FeDTJcdnyqQJUhM7KYUw+X6Z17oKu6VSZAUSwTO9vszv9xK0Mi8HsBUfL5KbnTOesKTdc8PoIlZP70pQRhCBrXXoFWVcXx3/+I6MIFVFx6CX333kfTnOdRFq4CFIQ0IAfCkERFnJXLX8fmLd9i/x++zZLr3o2m1YAEqSoQkxiaRZKEqRLYSylimeMBrjWXhBnEQYIhVHRdYOQUhCKROQXFwFyk1kqv5ybR1Kj/TL1wEyXdNdj1q0xOO7kZbPH30GRujHiy0jrGunfs9YqkpCWxhJFsL4OZE5yY2ElETTCn6hySkTrQVKSiOP45BgaT2RFGUt2MpnoIa3HCSgwFDQWBpoSpjDSj2De0Lp37TeggDYN1ba9EIlGE4lVgp1Jlivkp+Z7VWUEIOsvXsnvoAVbVXI0iNOfZNaTOtr47SYSqmFtxrqesiJpgVe21PH3q19TEOhCKEvxuOV2cxX3T7NZZwkAJKWTGs9ZAzNuAipBIQ6JndM+2YoQJvCqTmzjt+flOVr9lNaoiWXDDQuL1cR79xANmmQJ6t/aw/qMX03pRh/UOzw9K/H5H7npMtd8Nm9AYusGez95JqDJG0wtXEa5OMLyzm/2fu52Gq1ZQc/HiIsEgrPO3bkI7CIRZvrsMu0Rv+W7iZDfXVOvO+MkLzEhFdpG2wryFtT0oMEQQSbK3u/cFESU7Gl6Qb5KbKAFOkAe/MmgPTufcsIS9vzvAzz66k1BUoaYtRqg8hg4o6OagW+TXa4qWhfn7by7jU6/Yxo/e/iQ3fqsSpVySMxRGx6NkJ7WCNtQNBXKgW4vnSinQnZk2s45RNYeimdc+rmWpDk1QpqYoVydRMBiYMK+6myz5TVL98JvmzQTFVKn6ljDdB8apWFfmU0/M9CcPpFh6XpKl68t8io35/b5b+vjV17sZ6MmSmcy3T3W9xuiQTjbjvUcq60JsuL6aC19UR+uSMucc7PqFtOCgFWY6Ma1Z3lTPgh9B6yy522DuuirGBjJ88+82s+qqeuo6YvQcSrHtrh7UkMK175nvCRJhB4iIJDSaF5dzcucILcsqZlTunwJnaubtr0pZEgJD6jhu6b6ZaiklWSONQPEShlkOIo6ObmNexfkICU3xRYSVODsG70ZKAyEUBtMnWFp1GU3JGapKbgSZ2wQNvgyJlAbP9N+Ngkpb2QqiapKRzCme6buTxsRiWsqWOoPIWWMq0lbEpynf3liEyd7uSuP3T1IVj6KEEA5pcvsqOQTHFQDBqZpHGXJt979u/eZ3M0WxR0jkdwsFM+Chlics1QvXMbRrI/23/AI1nkBLVhKKJs11jlSQijAXhJeAIQkpYVatej2bNn6dfXd+i/kvfjeaSGCELSIXBcPdj1ukSeR/moTGIXD5/g2pmOHDFYnIKoiscBa3Rdcx9KwZUa7g3O37zasoFQRssNI4UCgcvASoSgCxUAXj2QFiMZvguwKmCBjTBymP1FMXm4NzQpoGioLUFE4O7+TAqYeYzAxjyJyTbziUJJeb9GwDcy22xvIltFSsoCLc4CheIBGKsBQu4VFgC4KjFDFTfdZEybxYzg1VEWmgtWw5G3t/Q0N8PolQNRO5Ibon9qGgsbB8g8vM1jUmV0JURVsZnDxurkN1BnE2902zIku6xalbVtdw9NEuOi5szg/OhIIuBYceOE7bufXmAEEq6B6VJ5gw2XATp/RwmrKW/AxXy/mttJzfSjZjmmI9/eWNVHVWFuThlOUiROD1Uyq2PyifIz94nOrzOqm/bImzr+a8TirXdrDnk7cS66gl3lHrVaRc+ThK2lRqExRVnMzvojD9TDBNUvc5FyNZU0XB85sjupUk+7dNkgBnzSQ3UbK3+U3uiilL7rLtAfaK1yzj7g/cR2V7NS//n/VkNAUhs+agXyhWj5QnTJVNUd71zRV87jVbePxTD/OSz55DWM1xLFJJ/1iCdDr/WBhWx20YAkWR6EJxiLFb9QurOlE1S0zNUh0apz48QoM2TLkyiY5gzxEzXUXDNDNwBPssme1iTLk/CKqQqBhcelMtP/7scRauTTomC/bzmB7PsvPJMV7yzsaCY3uOpfnkW49wbE+KZJXG+uvrePTXveg5STgiGDiV47yrKnnLf85DzxrouqTvRIZHbuvn4d/08/vv9XDTe1t54VubGerN0H8yQ3VzlKrGiKuc4AAWsw27XUxlmglWXtnA0kvqeOa+Xrr2T1DZFOXvvrGW779vKzVtMStPYZIsF/mpaYsx2pt2fj8nSpIfkpnNlMwkn78GWIPumngHPamDNMbne2dThUL/xGEqI80EhhF3/w5qd9f2SX2UMi1v1loTbaMm3o4hzQnG/UNPkAhXBZfhJmlTzfYG1cFlUoM0ODT8FBWhBtrKlpvbDElNtI3qSCvb+v9AMlRFRbTJ25k56lLAuQfVN2iblE6e0rAG66rI109KikZm9fknOaqA4iVNebXAVod8gR7AIl5WPfzkyU+gbKLkSusN8CC8SpOPUFkGLfnfkPdhstNaJNJZ8NWAulWXMXZ4D5pWw4Kr34ymRpBIM1R4yDxIwbDM5yQRJcGqVW9g06avc+zuHzPnmr81CVEOdF2Qiyt5cxndFeTBwCIjOBVVZH7cYRI0q0/PCdSUqTwpOcgMDwAQiVZY18Z1X7pN59yKkrMmUpFBr870Iaute6C5cgXPdN9BTWIOtr+feY9KdD1Db+owHeVrPc8yikJKTrD54M8ZmehC02I01K+kp3c7hpFFERqZ7DjVVfNZsupvTP8jQyedGuZU91a6e7ZwdHATc+ovZEH9xWQmR0mlB4lq5cRC5QV1FPjO53RIkr+dir17nCAx5g1VF59LTbSd3tQhxrL9RNUk59TfyLa+O4lplUXzjIcqSefGC9v92eIs7ptmRZYOPdJN/fI6znv9Qn7zwcfJ5WDuRU0IRWDoBgfvP8n2Xx7k2s9e6Bxjz8IGESYgkDSZOySKNDCEd30VNaSiCEl2PIMaUX1BG2yTm6lnnv2Eyt6WL9p6SWSzjO7uYu4bzsdepch+gQhVoe11F9J922bmvutK7/Huslx5+tUmyBMnd9rCdsmnn0oJmi3UYnnZz1tAGe7z9KtI9n7hIj1+szshJJpwKUs+87ogUmT/d0JmuwarijCYc0kbb37w5SQTENV0dJkx/XGEgmKZTfkVppZFCV71rwv4zgd2s+7qIzRdXEZG19ANhUEZM9UkXC0vzchY9gJ/umHOImUNlayhkjMUFFUSVnJUaCkq1QkSSpqQyKFIhRMHzHhoDXPjlqle3kTOrS45kfzcJmU+YuSE8J9CefL7D9W3RViwOsH3//0YL31PM8lKDUMqdB2e5OZPHuPl721CsV60NtEQRo7PvvsI3YfTvPgf59G2tIyf/use1JDg6lfV8MBvBsmkdZ78wxBv/rccyeowOTSiNQletrKaF39oHr//xjF+8cVj/Op/j2NYgnM4pvDyD7Rz+WsancGnmxh5zXW9JnkzJUGnQ5y0sMKqqxo826qaYvQcGKdxfrBJ1KkD47StLu7T9ZwgyPb/dPP5K0Bv6ggV4To6KtexpevXADTE5yOEgpSS3okDHBnZzJr6F+YHI1ORBXvQUmRG2JAGii+inh2FKiczpsmMu4yZrOk0FXzX0ZAG/akjnFP/Em8dDVNVW1BxPgdGnmJFtGlm+buCPzgIah8/wVOkEy1M2PkYeAfb7rxcypIUwiRZbj8lVXjMqvIfXz3cv2ejnAnf/6m+zxAeoqaahEUYZr9T1rGQ5W/5T0IyhGIIZM7sqw1NouQEUpcYqkDVTTYmJCSitSxZehPbt/6A4d0bSa491zSpU0HRrPWXBE4IZ3dUPPcAVFiGQ0I3qZ0whJkuJ1Cs4BFCQmq4G4B4sg6pi+AmCFKU/IEe3BD5ICBukpH3CcsHGYmEy6lLzuOZ3jtZWHcJISWBEJKJ9CC7e+5mXtX5KFoof5+rClLAtuO/YTR1ivltV1JR0c7ug78FJK2N6+kd2EU6M8LA4D5kNkMoXgGqglZWwZz6dubo13H84IMc3Pd7Dp96DDvklyJUFtRcRGfVeWa/5lokWvjPgSlIEhT4CAa2aRBhsuFSaBVFoyGxwJNfTCtnPNtPRaSx0LRWEYxl+qlPzg8u+9ngLO6bZkWWfvOhJxGq4N0Pv5gbP7eBjT/az+af7EONqOhpnfb19bzwcxegRDXPO9hPmNzwm9/YqF9Rx8mnumhZ3+wLN66Qm8wx0TdBvD6Rz6dI3sXIkJsw2WTLnRfAxMlByhfUoSpgyLw/kyIBAWVzaznaM1xAYNxq1dSmd6dDnGycuZvFv86UDVvJmq0ZXj7IRSFR8ihLRYhSgapE/rdirYNkpw9ZAQsiCQ1N9UrmhjRpBkLxDJ4VazrtnOvqeOwXXdz/w+O86rJ5VIUnmNQ1MjmVyWyInK7kybGrToYUZqdlmPdRVlfJGCo5qTik3R/Se94yU53Yt3mM1ZdVWT5/U69v5MZ0QR/c+4MCqABc/aZmtjwwxNc/cgQjZ6pA1Q1hXv2PrbQv9JpR7N44xtc+fISuw2k6VyT51WcOANC5NM4//WYxc+epXPvqKj7y6kMM9+V46/lbicQVapoiVLVEef5rW1h5cSU3vqudzmVJBrrS1LREqGvUuO+np/jhvx9m+0NDvPnT8ymvDjnh2qdTmGZDmJzjXX5Ps8X6m1p44OajvOITZvhZN1EfH8zQe3icxoVeH48gs7sz56k2AxRaSJ9+Pn8F2Hr8lwA8f8Hfs7rpRRwZ2sTGnl+iCA1D5qiOtbKm8UY0JTy7wTU4JjE2iaqJttGbOkRDfJ5n8A9gYDCeHSChVRUSpSBfoWI+HkFpXKrSZG6URKi6qIATD1WS0SfIL4Y7Rf6B5zwFkXTXy1YiMFUmhKuvkVYn6ztO2j5JAaZ3uPZJIbymdAqzeyamS+tTj6acu5RWdsJ1yYqQLFuVsquuxCLILBi6Obg2MJvMUEFoJoGRqnDUJaSkrnoJ1Q1L6Nn1MBUrzsXQQGpYi8kKR72yiZlHYXKfm7PPJJxm0AeTKNn74tUtAAwPHyNRtgSJN2S4892w6mcYXqIUNKHgIt8FpMlWJV2N1la7jv6xQ+zovgMpdaQ0CKtxFtReRFmo1nPccLqbbT23M57ppyzayP5jd8ExSMTqWb/8rSTjDXQ0nM/Gnd8jnR3h0Uc+jaKEiEYricSqaOo4n5qW5bQsvoxEeROT4/3EtAriJOg6tZk9p+6nL3WYlQ3XEVETXtM7IYKVtNkSJT/cirb9XbhuItus1fUeak0uY//Q46yMXp03O7b8AbN6muF0NwtqLppZ+bPBWdw3zTrAQ7QsjKpKtLDG2lfMpX5xFbHKME0rahxSM52qY5/pVOYqi29axH0feYDKzgqi9flZXSNn8Ph/PsKSVy4rkr9XXSpGhoIIkx9qSMGYzLrqbdUBS6a2zAb8gSGc44U7YEPhNsBTN7epnrsnc5t++P2Yni0MHxkwy3BVb4ZmeH6C5Gx3KU1BipImvGZ4XgXJqyQprny86pI39LOBICvzw9MQOUwzUZM02YERNEWy8pJKfvH5o0we66eyOUJKDzERDaEqkolMyFGY7HKEkJbKZJKlTE5FCMloJuLUu18rIyR0Erk0cSWNKgya5mk0z4tx7w9OsvySahTFNKFQPfdV4fMgpD6jgYo74pz9HKq+9kPCukvKWXeJGe7aVsfAbbpspv3Pv91Pasz8fnj7GJe+tIYrXlTOynVhsrrk1psH2PzgKDWNGhXVKhdeV0U4qtBzIseB7RP871t2MHdVkuUXV7P84ipaFsTJjqVpm2+GKl91cQXf+vBBPnbDVv7uswtYdH6V5/q5EUSgipnPnmm0LCmjrC7Cb7+wn8veMoewtX5c195Rfvtfu7nuA6fhW/JHhjAMxBnwkxLGXwlbAlQljKJoqGqI9qq1JCN1hNU4lUHqil/5cMMeqASpS0LQklzK5lO/pSxSR1yttLYrSGmws/9e2stWmU7V1nYgmCgFlVsMLqIEpvGWbuS89XWVI6Xp0xQIH8Fzn1vg/+ngpLcnHJ0dxfN3q0u2GZ792zG3A9t8zqtO5P/P9NURmM4aMkirqo6pnet0bLon7YSuW8NWblBcx7nKMVTXqQpM/yDHbcBUd2yLSMMwrR3ISrNcQ1Jdu5j9O39Dqu8k4ZZmZNa0NpU6XhJp10U6lyC/DpQC6Plq2WTJIUwSwuXVJKpaOX78URqXLTYVMB9h8qhKFlGShuEomR7Yioxdvks1dPbb21yorlxATcV8MAxkzuoNrfD/bmzpupVUbhiA0cluGsuX0lq9mspkOxLBiZNPcGpoLxE1gaaEaKxcjqaGSVmBH3Y+fTNle1uorltEdcNiqhqXkMumCMfqmFvfTnX3Yp7Z93MeOfo9VjRdT11iLvnodXLqZ9lvdjed6V3QPo/5sHWzOWaueWepRLiaskgdu4ceYn7lBkJK1FGUdvffx4Kai8z3UJH2Pl2czX3TrMjS22+/EjUeJRwxpybu//w2tv/6MAA3feNS2s7Lm7DYRMh2iLbVpangNs2LVUV53kc28MinHyfRmKRmcQ0TvRN0bepm0UuX0HJ+K1Don+Q2x/Pk7SdIAYTJH0Uv3lrJ+NFB0HOgagWEaWDjISpXthQlW8X9mPzn7d5XmJHiYS+yaLrTQSBdFcGDUL8Jnnl8ocLkVmGmC+RQXGHyEiS/uqQ6aYMfGtvUTUGA1AiR85r3Wdf7eS9r5P6f9vD9923jb37chCIkYVVH17Lohmlm539nKUJazrImacrpCumsxqgw1ZmoahLsqMhSoapElSwIeMUH2/jC2/by5O19XHB9jVVPF4l3mdttvmeAB2/pMd9xuqSsUuPaNzfStmT6CFkGChg63fvHOLhllP1bx9i/PYWhSyIxhVBY0N+To787y1Wvrec1H251kSaz3f779qVsf3SUR387wAXXVnLVyyqIqjqDgwaffs8xrnhZNR/5ahu3/3CAWLnGnq0p6prDvOFf2hHoPPLbYZ64c4i7/+8Et/7vUadur3hPIy9+dyurL6viP29bzlc/cIDPvmEn1721hRe9uxUtBEiliE9jnvSNjxk8fUcvAycnKa+LsPaaeuIVoYJjPMd7gkTM3LfoqnfPZ/vdPfz4Q9sAgZ6V1LTFecm/LqOmLQ5TvNvswBClRWn/fHHx/HeiKpqpHAF7+x/i6OAmANY2v5T6pLU0RcFARxQOcNwzu85sr+IQlZAaY0XdVezqv4+wmqAy2kRan6A/dZTWsuU0JBd6iwgKJjGb6+IjSgBRLUlaH0M3cqj2gq+ucgbTJ0zznJkg6BEKMp2yd/lN64KOLaaY+UmS/7f9XeAdMAbUYyaYKZkS0goLYpEihyA5GeEhVJ5TdJMu8JIm67utBKFgRfKzQn9bKpFUhCUa5DNubF7HyeOPc+ium5n/ug8AmkmKclgE0yrD56vklGvXzR2pTQfFDituHSMVaF99Hbvu+wYne7fQUr8Woct8fr57tXf8AMf7n0ZKAyklmhJmTtW5pn+cnd5//6gCFDPioQTGMv0Mjx9jaPwEI+MnkVJHVUIoQiOdGWUyM0xr1SqW1l2JsOU8q23Wt72K/okjdI3uoS7RSXvlWoRQyGbSbDnxa5oql7Om9cWcGNqOlJKJdD9Sz7Gk8XKkEPSM7qV7ZBcnjj7GkUP3OvVs7byYuUuuo6J1MedVvoddO29h07Gf0VG7noX1l6AaSp40uRafdqAIUAQ5I0P38G5S2UEiaoLG5GLCaowCzEa9dcqwr7n5ZW7lek5NHGR73x2WK5FONFTOktrLSURq7JnvwuP9z+hscBb3TbMiSxVVGkpcc4yHll7X7pClx76+g1+89X4AXvS1S6lZVk84YQ5e/AOJ/KB16gFLeVs5L/jC5fTtH2Ls6DBlrQ2seMMKFFVxzYQX+h+Z212xGiUFRCgQjqpjDc4VQdv1y9j7lQdZ9O5LEa4bJ903xvFbNrL8Y9flTfN8UISrTi4zwUJ1ybvPqU6AiuRWoU4XnvvMQwDzBRUz5XKbl01FkOzv7gVmNcVw/tukyNnmKEx5Mzs7D/N/3sfHTZJsMzz3NbX9k7KGZnWqVmgSmTfJU60AJLGkxkvf18qX37Ofob4ck2XmPRtSdSKhHJphoBuKNSkmrGtioEiBYTWkYShMZMJkDZVUJsR4NsypUBkj8SjV4XEaQiPUaiOcc3klSzZU8OjPu1h/XR1ZNFRhFJjY3f6tE4z0ZXjb5+aRLDMVsv6uNN//xBFe8NoGlmyoLLg+WcM0YxvuSXPfz07x4C/66DuZQVFh3uIIK9ZECEUVUinJ5CTMX5NkbAx+990env/yWlrm5V/IhlSobQ5zxUurWLouxi+/2sM1r6gkIzW+8R/Hec2Hmpm7LI7MGTx57yj/9N0FbHhJiG9/9BB7tkywaHWc9dfXsv76WmQ2x4Ft42QndR74ZT9/+Ek/z3/LHLSwQn1jln+/eQ4/+3o/t3zpBPf8sJtklcaaK2q44CUNtCxMeM5RQaIKg6d+d4oHf97L+S9uZMXldfQdS/H9D+1k9ZW1bHhpS+B9a2O6hXXdcL+3VlzRwIorCieD/ixxFndIzwVCatRynjfRXLHMIUsHBh7h6ZM/B2Bt+8uoSnaYkb9c5kXuWfMCwuQ3hQFioUrWNr6YscwAY1nTjGdOxbn4/ZgcnO6sbpCJk1Xv9rJV7By6j+VVlyPUvAqf1ic4MPwEK2qvxhOm25+N+9xcas905KTYds9WXxrpH/C5yvITJ0dRUoLJjmUYkB/s23KPb7+b9BRsw/XfIgxmlC+LuNh8zTo+306uj71Nt8/J/DhdvpvA+ImMcJEmBdNXy4r+Zh+vqiE6ll/Lrke+Q2ZskFCiziE/wv16cClKzolZPlN2bCS7PnYEPOEiTIYmSHQspKp5GSe7N9LcfA7CMKx2895/R/qeYjzdx4qm6whZE4uT2RF29d5LS/lyc6FhPzQFGVJJKZMc791EV8/TTKYGAEGivJFEXRtKKILMZpC5LEm1HZHOcqz7cVqqVlEZasg/l0BUTdKSXEp1tJU9fffTUb4G0Nnbey/zqy6gKtaCzBj0DO1kbetLUStC7Oq5m4HhQ9QkOmiKzacxuQCjWTIy2U2ODF1Du+g+/hRz51yOkYghaipZuuFNnDj4MIf23sHxwS2E1Cj15YtoKV9BRbguH8wEnPuvZ3QvRwc30Vy+nIbEQlLZIbb3/J7aeCcdlWtd98BMWXzAe8StNAH1yXnmZFCQMmw9+55n/dniLO6bZm2GpwjphElvPbeRN9/xQoaPj5Edy/CbzX0A/Prt9wOw6IZ5XPax9c6stTv8bj6/ABXIR3xq51dSO79yyjDL7voFqiI+5SjoGI9ZnnVM82Xz0VMZnv7Qr6g9fw6R6gTDu7oZOzrIkvc/n1BFDBwXPxPSoxa4Z8nyX/3p/QQuyKzPzO8MwJnY8LXDDG5Avxle0EK9bjVoNv5Jfn8kc3ueJNl5ussPgiGFo9qbfksSw+rpPAEfMAnQ/T/rJVYRwognmMiFyOiq0zaKMNemMBAoUmKa1gsrhLh57WyTvGxOxVBMNWoiGyZjqAyG44xHIyhxg0p1ghWXVPGrLxxlMi1Ro9a0ocAhTP3HUxx5Zox3fGE+dnRtFYOapgjv+sJ8PvuWPSxdX543SyCvTo2OGPzLS55hckLnousqueKGBCvXhAnHVed8s6iMGxEmjRBP3zfMvT85hRLWHMXFv9Br85woVY1hfvqVXi5/WRWT4wZzl8UZHjb47r8d46rX1qNoKhkpuO4tzdz29RMsWt2ZvxZaiPnrKgAoq4/yyO928JX37OGqN7fQ0ihp71C46R0NLH9eBZsfGmWwJ8sjvzrFnd87yYf/30rKqkPUtCeca7V/0xhb7hviHd9cgWo1UNvSMlZdWcctn9hDZWMfyy6qOW3zvOnUbwgmSjNRzv9kOIvtwp8r2A7jQkoqYy1cOv9dTGQG0I0cm47/DICnj94CQGPlcla2v8js14T5HjDNpALeR8VM8oBkuJpktGaKSs3iIk4VXjjApK4+PhddZtnY92tqY3OIqglGMqcYyfSyuPpSoppPwfYPnoLq6CdKM+msbLF4unP1B5EIMA06U6ZCgZdReomMTZRscoGwthk2WbaIlptsuT/WsVZS5xzdBM0x3bMVHheBklbXYZsT+qM0SgE9h55ACUVQy5IYU4z0nPKmaD7HNM/VPnYdDE1Q0bqEw0/9kgwZIoqG3+BjMjfOwPhhVrfdhKJL536NhspZ1Xg9G0/cQm1iDoqwiLt9r2kKWdXgyW3fIJsdp6ZtFZ2dL6Wsph01HEUPmRUTOqhpSShlMHZoN8e6H8/nFYCYUkZZuI69fQ/RUbmOydwoVZEmstkUu/vvo6VsOapUwZDMqTqPPb33U5PoAGmuvagIYZroCkFcq6Krfys7Nt9M27znE05UEimvoXnJpZQ3LWCoaze5sWG6erZytO9Jzpv7eiJEiCsVjho4PNHNyeFnWNf2chTD3FYeqac+sYDdfffRPbaXxrJFs3snuBWs6Y7zk6Vi5rbPFmdx3zRrsgR5cxYFg+rGCNVWGOAPbnkpA8cm+M4Lbwdgz60HuOC9a4hWRFDdJlNFQorPBlORrILIewGmdm5MpTYZUtB27VKarlhE36Zj5EbTNF25mPKF9db+QrUq6DpKFwkDihInG8Uj1bnKkV7yN10UwKAy/P5Tdr5uBLXNTEiSvX8qouQ2u/P/DiZIPvO8KczwEAYq5gBYwbTrNqy3voG5sGz3wQmeeWSY818/n5SWYHQ8wkQ27MnLzyHNcOfWOlyGYgV8MPfldAWZE2SESjqnMhqKMpELEVMzEIFl55fzs7TB1t93c8GLvZHXVCF56Je9XPGaRrSAx0GNqKx4XgU7Hx9h+YUVLpXE7BSeuq2H0aEcX7pnBU3NCmXKJABZKRwyNGmEyEqNvu4sN3/8IG2LYtQ0hQsLIx8Q4VXvb+T+Xw3yn287QmbS4L/eeQjDgGte38jS9WVOuvr2KKMD3iAb7sWnm+YneO/XF/O19+9j231myNmOJTHe8qm5NC+rom5pLToKhrKPB354gk+/chsASy6q5qYPdNK6KMmdN3fzkn9agKqZCw6b19mcAb/hH+Zz84d2suyiKQagPsz23TNVWj9hejbq77PB2byWxXMBz1ooFqJa0iEMVy39CJP6CA/u/SpSGnQP7WBR+1VEtKQZglnXzcGkIgrVJfASpqKVOM0RxHRrsBTzPQKaEotoiM+nf/IoWX2SxsRCFlZdZJFAl6oUVDefwlOUKAUd676vXOZgf44QLvXJJkmQ774djmF/EdZBAqtd8qTJsdSzSZKLODm3i4+UOIqOE71OetUgF6QQTjmpiX4Gu3dTvWw9oiyGHnYRLs9BrvNwkSAUV/3spIr5QXHd4gpIDZKt8+FJg+6eLbTXnVsw0XtycBtt1WutewsPkVaUEA1lC+kdP5A3QxXWYsKqSs/QNtKTw6y+/h/R6urM/Ya5tqn9OrabPZMaYdf+XxOP1BB3hegPwrzK8zk5tovN3b8ma0yyues3GOh0lK+hNjHHOmlJVCsjZ2Q8JnSm35V58eJaOevmvoqth3/O1k3fAiCeqGfeOS8j2TCHWH0rakYitkU4dvB+njz4fQCqEx0sqruMinADRwY3sqjuUhQn+oZ5kwhgYd0lbD75KxrLFxeeRBACotuZbeYiTcXMXX3RPgtUpWdJoM7mvmnWZClvBmaaNPn3VbfFec0tV7Hj10fMWfv/2sSCGxcz99wqoo6tmuEQJhv+QUvQWkz+MMtThQoPIkyA83IIIk1TIRxRaNzQ6RwL05j0+eGroxnMIU9ybBT4avjIkRv2QNRtklXMfC4I0plS8uY/VR5+vyW/T5FbSbLTB5KkKYhSSNGdPP2BHCA/CHUTJ9M8r3iPaytMCMhIzTnfH/zLPhRVEO+sZSxrEqWxyTCGYa6npKkGimIEvluEAEUxI0blDAXDMBWmXFZF6oIJKRjVDIYiMSZ1jYGyBMsXSs5/YS0/+Jf9NLSGWHyeqboYlplgf1eGprnetZgyVrAKVUia5kTp78oUnF9I5BjqSlHbFKK2KUxWWvc4Vruik7VIlcxk+MLf7kYI+NC3F6Fqrmfa1V5OyH6hctlLqlm4Js5vvtnDmz/WhhI1CZaOub6agUJ2Ioui5omZG/Y9tfqSCr7yyGoGT06y++kJvvWRQ3z1w0d41y/brfPQeeE/LuHyN7UzNgpH9kxwz1f28ckbn+ZlH+wgM5Gjsj7sytfIT96Uq6avdzaHEnKtlTXNBIL73ROkfs8GxRSmP+nCtLrBGRl96n+mI9gzjAJFwv2gGxKBQUwkuXD+Wzg2vBVUld0n7qS5YR01yU6UDAj0wiZ3+xjNZJAxHbEIqJt33zTXK8BhXBEadfG5rm0uU0Dh+hQzyRGu7TA1ScK3b1a+V1beLiJqEo98OUGkdyZwlCJc6pHhHYgjJZ7u0irHc4xNjKwd0k7sJkZ2nd3bXN991vnmuNkiS0pOekhTwSvFGmdLIdi/8zdIaRCpa0KPgBHCUj/z9fAQp6BLIfAEgxAC7LhJIpcncIYEpaWe2oXnc2DXrcSj1dSWzbOWXJIgJZOZYZrKFnkzcyERqWE83e+9z1QVGVKYyA0TiiRR6+vQQwLFCmSh6CCy5sVTMxJlIsv2J7+HYWRYP+d1aCjTKq7NiUVUR1rYPfAgK2quQFVCZt2MPCM1jJy3gaRNnq1tOtTE2rhkyXtIyXGGJ7vYceCX7HvqJ6y76p+QqsBQoX3FNTS3bUCmU0yMdHPo4D08dvj/mF/7PLLGJPFIldU2iieohYKGpsXIkiFEOPA59sDtF+VGkM+lH7OZ9DgdnMV902kpS8VgD2abFpRR+4FV/ODV99C/s49DdxyibnUj13x6A9UNwbPYgfkFEKbTq9fUpn5TqUruqFtTBYOw0wTlF7Q9yMyuQH0qOI/C9vCcx2zby0/giqlZ7kNcdXb7FnmIk48QFWybRlGyz8Xti+SepfcTqJkSRN2tLlk454YmDj49TN3iKiaEJKTqqIpEBnTkhqE44cTda0wZhoKuKxi6gp5VkFnFXJ9Cgq4pTOYUTlDJZC5EWMnxwk9oDPc9wZfevoeP/nQ5LfPjThnVjWF6Dk9SXl1WUD5A96FJOpYmCrarQjJyKkNNnWYGlHC2GyjS4KlHUtz56zFGhg0MA47tneRTty6nujFstW/hy8dNmABa5kTp68qRMwRhvKG4FQwevbWfc6+q8rZ5wL0UialksoJf/M8JAJJ1EW779+1MjuaIxQW1zWFicYXRIZ2BniyRmFlOJqUjkKT7xrnvpz2EwoLy6hAtC+K0LIiz+/Fheg6Oc/d3jlJWF2XNC2oJl838fTMT/FksOjsdzmK78D8L+GdGrMFHIlrLovKreHL/zQwNH6KnfzvlZW2snPdSEkoSqZjEyu0j4eQH0w9ypkMxonQaJKkA7onPIkSpIA+/6uRXm6arj7+d7awDtkkh8mMsl4OwAHOG370YarFifWRkOjiEyVZ83MqLdNfBvr7kx5+ikEjZxwpr0i5PkMwcLIvsfL42WbKIkRNcwZAev6GCektJQ/MaBnv3EKtv8chhji+XMAsoarhiMUPpPh8Ds18TeHyXbELXdOVNZCeG2bH1h6xd91bTX8hCNFTOeGaQWKgikNCOZwaIhsrzRElTkJqCEVJIZ8cIxcuwVTglB2pWQlYy1nOAU0c3oafGEQaMjp5g/bw3EFcrCqPhFbnfolrSWptRR6UwSFD32B7q3P5UQfeZAaqqQc7gwLF7AEksXMnhp35BNpdCVcNEwxVoSphsNkVmcsRcWw3IGWZ/nTZSHB3ejKJohMIJEvEGkrF6hkePMJbp5dDQRmJaGY3JhYSIBJ5Lvj4uwjSL90yBf+Asj5++gLO3bzotnyVDFpk9tkOCozJwZIz+nX3UXL2WyOol9H37N/zu/Q/zqv+7FKGpBfkVLc9HANxmPebxAaHC8SpHtsJk52hvyw6nOHrHXsaODxOuitH2goUkWysKyE2x6HlAIDl3o5j65CdYZl7Tm9EFmfa4t83E9MfjUyXy7eWuh79u/nOYjiTZaaaLdqe51CFbUdKsKTBFSI/5pr8OeTM9l8KEYRGowrWOgnDBi+t54AdHuevDD3HVd6vIRFR0QyFrOWSrVr11SzUypKkcASiKTZYERlZBZlWYVFDTlmesKjFUIGsSppOpEFldZbAyzrWfC/ODV93Dzz9/jL//6iLnHC58cT2//OJR5q2tcNYesvelUpJtDw9z3d82FZAbRers3z7O0tVRoiJjmclKshnJZ97fTfuCCG/8QB3ldWH+4SUHKatU2bd1nNbFiVmpkTe9o4Evf+Awb/vMXOI2nxMKzzw5ytP3DPC+ryyYNg9dCu7/RR8D3RmiSZW+g2NMDkwSL9MYGMux/Z406ZRBslKjvCbE3GVxnv+KOi59WS3f+OB+PvWKrfSdMNU1f/+nqHDn/51kYiTHT//jACsvr6GuPca17+pETuFEMRsS5F4kOwjPlfldHmeoQ3rOz+NPD9tvKRBCkMqNMTR8iLrWtdTOPYeDT93C5n0/Zv3itxDSsUfSwQTpTA06piFKWX2Sk+O7GM8MEFJjNCcWkwhVFaQz6+QjSXY9A8zvgtY4CtzuTu8uahqS5EkDPkLiPmV71ls6+6QhzMXMJHhZC9P6TvnNzYQMUJhchMP/upSu50RIcDsiuQmTcx4u4mQf5K+DlbFnLSSbJDkEytpXeELQUL+SYxUPcex3P2BOw/tQqhOOKoQAqZoR9VB8Zdv1LlBJLUsYwzxO5ER+jSb7UE2l7YbXceBHX2L/gTtYu/wNiIy5PEVT9Up2H7udmkQnQvWeqKHn6Bndy7qOV5prZikmUZIhU1kaHTlGpLIWqQgUXaJmJSKts/+pnxKNVNI593LiShlbNn4LTY0yPHacqoqGqd+BijCDrljPz7yK89jW/wdW1lxFSLOCHUnJULqLEyM7WNv8Em8T+xRNO33XwFZSmSFUJUxqop9cZgJNjTKpZ+jP7CSnpwlpccJanLJIHS1ly2mrXMUz3Xfy1NEfMzbZm79Ivsge6dwmsrkUu5S7qC9fSFwtZ0HtxaZpppMs+B0TRFDdz1rB/j8GUTJLOmv7ptNWlvyLQ5q+ILbTvEIoGUGEVIyKGtSOhUTnNtL/5H6ObzzF3AsayBqgS68D3rOdtfX47xRVjsyH4+idBzn8+z3Me8kyWi/tJHVqnD3fe4pYXYJlb12PnOmq6d77+VnVubCuVo1n4EPluXnmAAA3kklEQVQUhGKmiUHTUcKVNsg80EnnV5Z8RAmmJkkAmqI7REazCJI7yp1Nkvz7zbx9JMFRntwmeVOb4yHy6SNheOeXl/Cpl25h87/dyRX/fgFdZc2MZCPkDMWJ1pfRVUtxEhi6aXJnt4eigG4ISCuo4wqhcdPBVo8KhCaRWYEYM427ewfC9FaV0dZUwfmvO8ht/7GTgZMpaptNv7+atjhNC5P8v/86ygvf0UY0oYKAoe5JfvDvh7nhrc2EVGvCwDKBA9j16BDHD2T4h3+vs9rWwEDwf18cYP111ax9QS2GVJAiTW1jiMN70ux6fISOZUkWrIgVnfwwPLYosOy8JELA/77/AJW1ISpqNI7unaSmJcJ7vjSfUGRmz82r/qmdl3+oE1UT2CHT7bWx3CTXvpZ2mite18xX/36vs/81n1pM9fxKNt3WzcM3H+b6f13Fmhd3MHYqxdM/O8ju+07x1G2nmBjViZdrXPiKFsprw4FKGiJPgGa01IF7ba8/J7XpLJ69e87g951x+xm5BiOqEkZVw4QqqojMm0vy6Bz6Dz9N3/gBmiLzzbtGuo5xDzaC2nMqE8Cg7QGhwN37eyb2c3R0G21lK6mvmEs6O8bB4afQRJjF1Zf4AgH4ou/5fZBc24MIkcdUx2+OZ2+3YUxDRCEfVTCoLdzEySXTSAGo1tBSB6Fa5bjM6IJQMCdp8yvHzM8uzEcIAvIs7Ca9G6Z8i7hvj8L5Ske1ERZBcvyVrOh7geVLiZoVLF/xajY9+WVO/uxmOq5+LUZdEj1qmuTpUbNsIyRBk0hV5jmsIRA5YUZ6NIS3bRQwhEAo0lSZAKmY23Mx0KIR6tZdxtF7f8KoPkCFVonIGERDZVQnO9jddRfzGy9xCEk6O8buE3+go249iqaZ91BIRYZU9KjGwMQxxoZPMG/91UhhqmtKFk7suo/q6gU01a9ByRkoKZ2YWs6wfpThiS4GtKNUx1qtBnI3rId2Y4f1r4w2Mw+TMIXVGGE1yVi2n4iWYHXjDaZ53lSX0fJhml9zMfPqnueoRu6ome60nn1Ae805bD76M+f3/BUvIl7fQf+J7ZzYfQ+dy66jdf7FZFOjdB98nP7uZ+geeoYsWcIiSlvZCqJamU99BpQAE9npgqr8Mbuys7hvOqNmeHmiYlBWE6JiYR2DP72L4d89jExnWP6qpbSfY66orAiJKqUn0MOZhltlcmNgVy8nHznMxf99FYpq3hllTQnqV9XzzM3bOHzrTubcuMw51m9u5z5fj/rkeklOZ+I3q/N4Fnn41TG/QhaIKfa5yZH9P4gkuffNNIiDmygVRsEr9F0CL0ny1DNg5sGwgj7gIkw6CnWdCf7u8wv5+nv38K3rbuec1y+m9aa1jKgVjt+PphmEVZ2olmUyErIWdMWKiicYDUeYUCPoRgglp5pkKWYgNav+GQWRBSUt0MdC9I8lOO+auZR/fR/f+MABPvj9pWgh8168/q2tbL6zl2+8bzeKKjCyBvFyjRve3sKc5QlAN9tHQjor+P13uvj1l0+weGWEtedHyAkDQ6pk0gZ7d0zy0ve3knP18vEylZrmMC9+bxu//foJ5v7n3EB1SUcpIBU6CovOLeefzi2n72SGiTGd2uYo0YRaQLimil4phHB8pdzXzEB4zEptdc1ef2rxuiRv+Ggbd/34FDufGOPw5kEm1SiHd4wBkKmo5UiqmkhFjrVvr+L8t2f45Xse5bFfdJEe1zl1OMWFr2pl/ppyb9kiH+XTRpBC9GcT8W4q6Lo5cny2MM5AHmcDFO93aViDejdhsgYWYTVCeUUHJ5+5h1P7n0DPTNDctoGaygXISWsg7/brmcGsrwdTqC6BRMmVdjTTz8mxXayrv9FyFIdYpIzKSBNHRrdyZHQzneVr8aAYUXLVJzB0cDGiVGygpeAlTO7zNIooSlMRR7fPkFvFwTW4L4Ygfw5H5Zn6Gvnn4Tw+PUVUHs/xAafkqFj+dDYhchQmmVd+PPO/0spHmOTOmr1PhCpZuurVPLP5Znb+4D+oX3UJ1esvRamMIlWBrrryE4AiXYvrCp+c5/suvdukAjIkyQHJ5asJP3EHu3b8jHOWvYmQoiB0nY7a8zg1so/tx35jHSpRlTAdDeupjLc52UlFIadJjp54mEMH7yJW0UhZx5J8G+dyDPceoGPdm1HSBkI3EFkDTYkQ0RIsrLmIvX0P5MmSH+7nGhyFqTLazLroi5jUx8kaaWLhcjQ1GpyHuzlckwBCCIRUsZcSKKaU+utTEW9kadt1HOp7nOGx44wMHEEkE4wOHgUgVF1DNqlCooLmiqtoy1zJnsd+QPfATrK5CcYyvXRUnUN1pDX/fLjNZ2caSOUMBnMIxFncN50WWZrWdE5IIiLH/Avr2PhMNy1ra7nkQ+uobo46M/XFjw32LwIv6XGb47nNYvx+QbnxNAdu30/v9lOoYZW2Szo5cu8h1r59HZrmlzphyauWc/97f8/8Fy1CopoDOCkCX74eJcuvENl1ngEJDFSTgpzEbV+pGUqQhutmd5fhJzxOelddZ0yWivgk2fumIknuAA5ukuSoRSIftGE6guRWk+w6qdYaTIFtYxuIW2svLb+khk/ddQ63f/0Y93/jGWI/2cuGD51P4sLljGXDaIpBeShNMj5MuTZJRMkRVzNOWYO5ON2T5ZwYr+DUsGmfVh7NoCkGGV1ldCyKntZMlSkkURWDWFLj7/9nPv/x2l188uXbWXlxJYvOq2D+mjLOuaqG866qwjAkmiJNcoGBIEPf4Ql2PjXO5kfH2fbIKBPDOV75lgre/N5KckJDlwo6CiePZ5mzOEJMzQE5oiJLNiN57K4RrnptA00dEUYGck5wCT9UIfMEKOCWq26KUo2lcFnbZhLePwgK5rUyXG9r+9rnsgY7Hh2lvD5K65wQ519TzepLKvjUm/bx0C09rMpGmHtFJ8ef7kPUVTGQTpAzFOJalprIGK//2jrCuUm+9KqNbLunj42/7eHKv2vnhe/pdNaYMaTwBpjx3TfTBYAoZpr3Jw3sYOMsnr17zuA2m1Pypl6eqywl5AxqyuYyOLCPsmQzixbeSEKrQMkamCt+4vigeAdkz6ItpSwgSjkjw8mxXQxOnkAIhYb4PHonDrOgYoNJlHzmf+3JlTzV+0s6ylYj3OGZ7XP3+xoVCxPuJ0ZBv4udg0WYPNv8adz3rpXWr0aZdZLYfkoCxVGYPAEgbOXJsPbZMKRn6YUp4VKYguA83u7m9hAL6d1WLN0U6YW06hxAlDyvW4HZxrayaUhqE3M4//wPcuTYA5zYfC992x+m9YIXEz9/HVlDkFMUDCkhJ13lCee8hJEvQCp50z8lJ8wgDxKkYq45aFj3gCwL0XHtG9j/i//lqW3fpLZqIdWJDqqiLdRVL6KuepHlP6aYJnlCoAOp9ABDo0foHz3EwOB+splxGhdeSOP51yJUBSUjUXKS7MQIsXgNqi5RMjoiayAm0/QM7qS5fCkxO3pdwcWaQklxrYMW1cqIUuYl1W6lNeiy2eFrPea3U5B+YQZ96Bs/TCSUJB6ppa56MZV1i9iy90ecOvE0hiqpnrOGkZ59aBWV5CLmRVZCYIRVFl3wOpRUjq2PfY2+sUP0jOyho+Y8M6qeMBfxNeut5OshpEPknhOcxX3TaZEl/0A66LciJJe8Ywlrb+ogWhOzFJw/7gn6iVbf9m62fP1pFt20mPP/8QJyqRwH7zjAyceOcc77zg/MQwsJks1lTPaniNXG8wTMeX8XBn3wf7d/m3U6zXOW9jl5Va3pAkC4y58NYQM8HUIxQlyMJLm/+03u7PRBRMkdwMFRlvwqkc/Uzn+uxYhSMegIj2pg++CV14Z55UfnccUbWvjZpw9xz0ce4gX/rRBdu9xcf0kxe9ykmqZCS1GhThASOqowqA1FqNBSlGlpKsJmyO5kKI0iJGPZCF1qOePpMJmMhqIaJCIZokqW5eeF+fdvtfDbn41y3/87xa1fO0k4qvD2Ly5g3fMrGTg+yeZ7Bji+d4JTx9IcPzDJcL+OosCcZTGu+Ztqrrg+zpplkklDY1IqZDHXVYpEBRNjBiF0vvNfp7jrl8MMnDKvx9oX1JDThTNBY6AUmDjqUuQnJabQ5mdCkOz8Rwey/OQzRzmya4JQRKGuPUZ9W4TlF1aw8JwyT39mH/PYbf1868MHAfPdX9UYpqoxQnltBMEY3btG2PorcwYu2V7N+EiKY3ftp2VtHaFEhvvv209lJax8fi01f1fOrgf7ueubR2lbkmTdNfVk0zr/9497OL57DCEEkYRGRX2YuWsrueyNbaZtjw9/Vusq+WH4pn2fVT5/ZXBmnXGUEAdW2Ns59RfQWLeKUCyJqgtERkfoASFx3eqJe6A103YtMiAYTvewZ/BB2pIrWFrzfAyZo2tsDz2p/SwoP7+AKJn/BGWhWiZyIyTCVTgmeEEmSgWhh/EQqqJEaTYoFuWvmNrk2mfXzgnsYEfGk9ZxwhUVT0rnCFc3HrhuktsMz73fzGf6U8oTnGCCZKtFnn0BeTv7/GHCXaZ3gGt9JOH8tq+do0wZkqgSY2Hn1bS2P48DB27n8P0/pjOsEV+zCqkIRMg6zv3aEObHHbHPA4lDnJCgZCwCK80FgaOtbcy7+m8Z3P44J3s2cST9AIrQWLbwJhqql5NKD9E7uJvRiW5Sk4OMT5wimxkDBImKZuo7z6WmbTWR1lZyUWGubZQzP0KE0HNpAA4eu58T3U+Rzo4A0JBYiDQMpK1e+CcBnEZ23R9BSvBUYf79UCArM+zpupuRVBdCqMQj1cTDlVTHO6iOteFoBFZ5UhX0jO1j6+FbnGwi4XKikQrCkXIQCmMDJ+g/vg2AeHULxuQkAwc3U1bZSpgY3Qc3EVZi1FQtpL3pAoaGDnKk50nKonW0VK3CUGDH8dsYnjgBCDTVVN4qY6101q4313P6U+Ms7pvOqLJkzworGM7+ioYoYC0KGgB70OFVaYJ9l2YTTjwzlmHL1zdx+X9fTihu2ZuWaSx/7QqOP3iEpz73KM/7xGWuurtUlayOGvLWZaoAEn8sFFOApkpr5HRAoGlKYKCKKfPwkStFeNvbvyDs1KZ4hQvMziSAQ1DQhmLnCsFEyQ9/qHEbfv8l2+SrtjXK27+4iK/8/R7+8P77aVj5DLUXzidycQfKnDBZqTKqR9ERhIROSOiOv01MzVAdmXC+2/Uai4TzbaUYRFRzjSBdCi64NM45l5QxboTZuUfwiy8e48vv3kvz3CjH9qQIRwTzlkZobg9x/vlJVq6LsGRtDBIxVGGQEAGzaEBNc5Se4xkeu3uUn359wLOvcVE52x4YYMn6sgJTt3x7GjMmQjOBgcLvv9vFw7/qY/kl1cSqIpw6muKZR4e47avHmbMyyVs+t5CGjlj+IAFdh8yOsW1VJaOnJhnommTAHT7dMGhaWU3X9gGM3n7u+9vbSfWn2FcexsiaHtG5jEGsTGN8yJz9n7O6nOWX1BAWOfZuGmbLHadYflUT0coI6dEswycnuO1z+wC47E2dgecTRJj+LKLlncWzd88J3AMqj/ldQFopEbpOTE3ApERIo1ARgWBzMxuzUZs8ZjwGupFlz+CDrKm7npASNfMQYTrL1tA9sY9nBu9lbe31hfkowjQ6DvLFDZpx96tKQWmLDEADnd+LwU2KAvw77O2GtPuDvGpmGgZYjEGIQgXJba4n7UWHfSQoCC7CZJ7P1MlnSpICt4MvYEdhnkGqlJNG4AkwYZIbc/Av7KiMVh5xJcmyRS/nGSk4fOfNxLe0k1y0nOTS5Wj19QhFOGspGSGQqjTbU5iqkhPowkpjG9wIm6Tm8m1mqJCYs5DK+gUoGUmm/xQndtzJ9r23cDD5IOOjJqlIVDQTTdZQ3zSXRH07yca5KLGYWXcBetgsROgSxQpuEYokyGZT9PXv5eCxezxtUhlpYiB1lIpok6uhAiYB3GsO+U1u/ZjKHM2aNDja9xQn+jdTVTWfSLSCVGqAgYFDHOx+iLJYIytbbyAZqQUjP9EwnukDoDzZQjaXIjU5QDozAqNWsUCyqp3R/kNkBwfYfc/XyUwMoWpRkBIpDaSho2lRsjlzzFEea6ShYgkIwfDkSboGtlFbs5hItIJcNk06NcS+7nsxZI75dc+z2qL46Z1xnMV906zIkpip+ZfVy+hSoKMWEJqpTLzchCmf3m2akycrNtxKhG2Wd+j2fSx9+WKiCQ3vW8agZnENoydHGe8aoay5zMnXkIJcKktmaJJ4ZcRF8OwXdb4ujnmeDf9k3AwJSjEU+OBMQ5i6HjzIoVt3oYQUpC4RqmDBy1dSs6bFqcfpBoYoVrcggmRvPx2TOzMvL0maTk3yEyQPeSqiLrnJU35hV69/jtAU3v6FhTx6az+b7xlg17efYMdXHiMcV6lsjnHZ+1YQOWcJYzkzEETOUDzXXBESTYliSMGkrjGajpLOqWRzKooiGM+EOTpZTVxNMxkaIqGkMRAsWKTw/i918sPPhJgYzPDa99RywaURyuNB1y6LKgwmUwa3/GCMiRSWCZ5ACvMsd22e5OmHTrB4XYKcDv1dWd73nWX0n0jzh++d5J3/Yy4CqLueMbsNZ0qC7ONVYTj/i2HlxZU8+Is+9m8c5oJXt7P2RW3se/gUD/3wKIe2jfH9j+7nQz9Y4eSlS4Vr39mBEtW445vHEEJw3vV15CZzjPRnqWqMkMnA7ieGEMDebzyKkc7yru+uYtNt3dS3R7jolS0kKjWEEBzaOsL2+/p4wRtbiMYFGamSrDPt0p+5q6vAGnHOikTRdxE8+3WZ/ihwzWA/63z+WhBEmIol1SVCzxUGLHBUJAr9c/xpwO5Qpq+bK03X+B5aEkvN0MGGd+BRFWlmPDvIWLafZKjGYzpkSJ2J3DBRtWx6Vcm93Rf9zm9uF/jbztJ/DwapRTbsQZSPPPWOHeDo4NPWog/m9vbKteaiobYltQQMA6Eo1iASsE3JrAQmqcJSWwTOQrOYZENYoxtHtXLd/G71pqDO7jQ4VSzwOXK2OeaU/uOmyqsIiQTX9bEOsVUgBct/yzw3pGnCJhRYNv8ldNcsoLdvF32P3smph36HooUJJypp3HAtyWUrSVdarjyKiyip+VYxBEgV06xcusq1vtuL1epRgRESKIlG2ppejfpUJZnxIRpXX0FF62JELIoRypO0nL2Okw4ym6N/+8MYmYxZd10ipGKGCB86yvbe3SSTzYSUKGPjXZzb9krSxjgHBh9nVcP1HjXUY3Jqk6JihCnoOgsrfRHFqTo5l0hoE8PDR2ipuID6tnUM9+7n+NFHGE11s+3Yb7hgwd/iDnvfWbsBIVQOdj2IRNJYtQxD6qSzY0Qi5UgBA0MHAOh66vfkJsdZs/wNdPdsJRaqoK1qLRElhgBGUl30DO+mvepcNGstpohqjm37+vfkbyYLlfHWqSeFpoNtCjtbnMV90xkN8FAMuhRTDsDdM7RBqtV06yR58rLeNH07TrHww8Gmdsv/ZjF3f/A+Tj19krLm/EJpQhps+tITLLxpiVOGucP8517k1q6rs9139c5kgAdPXQKw76dbSfWMseHfr3BUtPTwJFu++CiZoQlaLptfKKNPVVYR5dDe565PnjgVKknFTO5CbmXJ1T6noya5MROiNBV0s4fJI6RwwU2NXHBTI+kJnV2PD9N7eIIdDw7wi/c9wdq/S1Fz4/kMywSpbAhhnY+5VpNFwgyFTE5lbDJCLqei5xTzvWsoHBuvRBM66WiIhtAwEZElLHRESOFV/9xJWOiERA5D6IzKvPrlVnCjIsvWJ0f4yqcGqKxRUVRhjjkMyObMxXRb5kXJZODQjnFWPb+au28+yUh/ljf/53xiFZHCdrD9cwLasL8rza7HhtGlYPF5FdS2RguOm4owLTyvkv+4Yy0//+JxHv/pMe795iGiCZWF51aQndRZdWmlQ5ScyxBReOE72rj8tU2EVIgnhHP+Biah6j46yb9cvYntd3Tx0n+cy6oLy1h1YVm+Tlabta+qZM6qcs+2pvlxXvlvi8jlIJJQzRlWQ9K+JEHzwiRuV9I/C+VoOpzFTrTPKYoNltz7waNsFDUns3/6CZW/jJkSJuv5H0p3Mb98fWC9OpKr2NR3K/2Tx0iGa11VkuwZfIjW5HKTUNjlus/Jve104KgxRQabQb9tYuQhCnmidHRwM6OTp1jV+EI0xVTms/oke/ruI50bo6VihUVMRV5RkhIMcx08x21EWlTI+i6tEb3QrcGvYhEmixR5AsYKV75Fz92uez6tm/A4JMlHpPLn7M3H0w5WO3nbxlU3nTw5sn3lsL8XEgBhgKooNNeuoal+LTmRY3DwABMTvQwM7OPIH26m8dSVlD//MqgMY2jSGRdLi3ya/mFm3oYivfU2QOgCqYGRA6FaY3EDREil5fwXehblNTRThcIiWHYeCJg4dYwTj92KFkkgFNUh1NJSGmPJehAKgyOHqEnO5djQFiazIyyrfwGRULL4BEAAYZrMjdE/fgiJpDraSjxU6bvG3kkPZwFkA1AkVbFmLlz6Dvafeoiu409x7PADKEqIqrIOdD1DbXKOt3xAFSpz6i6grXYdAJqI5PNVBVJTSGXHeGTz5+nt3srctudTF+mgrqUdYRhmJ2+Z/1aEGqiobci3kSGIqUmWt91ATuTQ1Ig5IWAYlEXqKI82mMfPBv5JHwWYbRdxFvdNZ3ZRWmY3I+0eeMyEMEFxlalgPaaISjaVI5wsXJSyvLWc1vObeebHz5AaSFG9sJqxrgmO3HuYuVfPo/3iNuw3gH8RWqwSbfiDSjg4Q8x3OrKV7h+jb8tJnvfpKzED+1lEpDLM+o9ezAPv+z3NF3agRbRZqVxTlesmQ/Zvrw/Ts1OTIFhR8g/Ag0JMu+tl5uM9j2ImeTaCIsABROIqq59fDVRz5Wsb+MXnDnPP17eS+OU+FrzleajnrsYQqqlsGqYJpJSCrKGQzakmUcoqGNYaTYYu6B4tI2copPQwelyhWhtzFpTNSA0Vw/GJMkmSYNIIkZUaOoK4kmHnnSe59X9NE7uv3tZJRWOUrNSYNEIMjGu8Y/XjvPJjnay5soZ3r36EeJnKVW9qoXFOzMrXq9K629RNejKTOj/65GHSKYO1l1chhcKv/+coigKv/tg8InGvX48eQCjs84iWq/zNv8zjbz7SyYldo9S0RElUh1GQJjn0HWc/f/EyDTNCnrVD5Mupb4/xwR+uZNv9A1z+msaC8t0Kovs/gBCCC1/e7NmeX5B39qT7OSdUZ7Gpw3OCYv4M0yFIVbLhCmZgqy0zWWeowHfHB0Vo6EbWG8zAQlQroyE2n6PjO8jJLOXRetK5cbon9lGfmE9TclFgnkHnOys/JAMz7VQqmp8YBREol19HRk/RO7aPtU035UmplISUCMvqrmLjyZ/TkFyARtRFjCS2X5mZva0uSdM3R5d5QmGY2zAs5cVRRmSeIAnh9ONBXafX70h6t01DkmZKkDzbXWTM+W2RImmY4bxNHuglraa5XF4JMF/pBsIQhIRCfdkCKFtAW/MGDh6+m+Nb7qZvzxPUXXotiXPWYMRUpCaRIW87OIqTU1EcQmrXT9GtJjXIrwdkqVKGaqpP0jdHKYDhgzvoeeIPACy++l0kY3UoORwi+sgvP0jL/Otprl3DQ3d/FE0N01F9DkmtGg9cRMnTLtYzaAiD3d13k9FTNCTmI4TCgcHHMaTOsror0JTIzN4HUhISYRY3X8nClisZnegmGiojosYDJwXsYwQQwhqjWuTFTCtAl8SVGOcteiM9g7uYU7Uekck5z4ooRnasfEHQUrkCFCV/7u7PbDDTd+J0OIv7plmTJf+sLxRXIqZa7DLIP8lt0hIYIc4V+S6/TckP1F2PXOel7Ry84wCrXru8oK4AQ4eHuf5bV9O7o4+RY6PEq6O84L8vQ0RCeAdIAdHAPJNxuud88tv9dZ+655lOCSlGXvb9YS+LXrKYiOprFwSEoP3yOXQ/coi2y+dNOXEY6CMWUCdPVD0fQQL+qCZ3/nL9+6YiSVO1bzGS5s7bY6YWVnn1P3dyySsa+X+fOcLT//YHypseYtGLFtB+/VL0ZBUTuRCpXAihmyQiF8oBGkZGReYUZE4wIuOk0mHGM6a6MxENE1cyDilyh3gfyUUZz0UYyUbJGGaUxspIim0PHOPYPjOghKwoIyslGamSkSqpnPl4D5PgaK+pOC7ZUEnjnFjBOfnNW+3fdpr/+9cDnHdNLasvrXCOOefqWvY+Mcj3/nk/b/tCkYGYCwUESlVpWV7paefpJlo8arJFIO26zllTyZw1lcXLDyBKftjh5L33kpdoBZEhvzme/377ky5UexZ3SM8Z/GZ4zyYfnznetOlmgYb4PE5O7GFBxfkeMzsbI9lezqt7KWN6H2O5QcJKjNX1L0RTXQqyPYAsYqZUEAFvCtiDT2eh2ID73OOTFKQquc3vpARD0j28k5ayFXmiZOTbVAAtZUvpHt1La+VKJz+EdP231CXhEocEKDnDiRJmzuLbx+IkFIo9uM6fiwBPv+/AQ3bwmNlN5Xc0LTHyN6WfZLm2m+donjPW96A1reyVM8D+7w1KouQEC9pfQHPzuew78HtO/u7HhO77LdXLzqdq9fmIukqMMOSimORJyf9Hlc4yGVKTGFGBYS2FoU3a3F4U3B5SsUiTAo6lZQ7Gug+S6j8BQCRabq41ZRFPaTeYIsgZaSSSmuQc0yfI/0z5zEP97bKr5y5q4p00JhY47dmYWMjg5Em29fyeNY03Wtde5Al9UCRFy5xDZCWqEFSG6s1tOcObxlevomZ/NuHRoTLUQGVdPeRAGLrPx803QeHxy8I0+zOMYBV8KvjfAf73gHtyYzY4i/um01KWzMGNUrAuydTHeP2W3PAPPopFmppKcfKj48JGdv18N63nNlCzuM5Tzo4f7aBxRS2xsjDtG5phg3sQlj8p2/+pQD0KOu8ifUqQD1YQplOQipnhTfaOU3FZh6cMd30r28oY2D9YNP+p6jfV2kV+dSlovSQgkCgVWzMpaNtUARxmanY3XdvPxJ/L7Y9jr//TNC/OB761iAPbxrnnJz089b3tbPrWNjo3NFC1qJbIvGYq1s4lHYmjIJkQkMtYKygaAmkI9JxCKqsxkQuTNjSiSpasoZKTKhO6SZhyUmU4E2MkG2EwFSdnhTkdz4ZZ9PeXIxSF7bfs41N/d4iPfHMOatg01UuNW2Q0EiKTMs+vvM6rtAaZsvrRfXACLSRYcUkV/jfkwvVVPHXXIId3jdO5JFG8jX0kzN+e7nq4SdVU9bP32f/dquBQT5pju8cJRxU611SihWeu9AQpi36CVUw98r+7bJKUnXHpZwBnccSh5xLTLZp6WvApTIH5z9QUD6iOtnF4ZDODmS6qos2eQczR0W0kQ9VEwnEitFMjzH4hcPHZYv4cQSg2WHId45Amv4rmTusiSkVhtcNkdpTKRJOXKLkQD1XSnzpadLBpq0u2WIQ01RUpMc3vBEjV5bMk8+cibWLi/LFQbLYxyA8pUGkqJEiFEf8Kz8VGkH+Ts13Y5oU4RHBKBJIyM3peIlTFipWvYXReFyeOP0Hv0/fTs/FuylsWEG1sI9zSQmzJYkhG0GMWObKbRpHIiMRQzBtfySpOxDxk3sTO9lFy+zdJ2zhBQMMl1yMk9G6+n733fYelF7wZxTLF1HNW4CQ1jK6bb9ZwKGGSYMOvqhXvP1LZYXJ6hsbkwoJBfFW0mVPhaobSJ6mKthSSEhv+LmAqMjBTdcYmZgETC+nMGCOTXShCoyraYi5+669bsWd1pgggSrMK2jIVzuK+aVZkyT/D759xnf74PGHyB0AIIkx+TK04edc8QlW4/JMX8vBnnkLR9tByXiO5VJYjD52gcWUt69683JmhcKtTwYEjCg2D/PAsSOuJzjf7i1rsGK+/lFmnZFOCsSMDVLfnB6qq0J12Hjk8SFlTAi2AMMyEJBQGmnArL3mCZO+zlST3b29ag2JKTpC5XTEVKbA+HjJ35mf2g8rXpULnijLevKKMV/5jJ4/++hTbHxxk76/2MNq/g2RNmPNet4B5L1zHcKKSnlAZE5NhslkVqQsURaIqkqiapUJL0RQaIqsL0jLEkJIkZYQZy4XRFJ2omiMaypLKhMgaKhPZMINKgiXvez5LLq7llvc8xmfedogPfGcxulSYGDE7kooygyd/uB9FE8xZVRasHom8T5QZGS+v2Gy9f5B119Tl0+J9Ts69to5t9w5MSZY8RNsZVRRe55kSpaDroGIwPpzlZ586gJGTzFtXweRojju+foRzrqnjwpc3O4SqkPx430d+BL3r/O+skMiZa05JNa+Wiz+9bbWUBjJg3azTyeevAq7BgNvvY0bwkYZAUzT7FjF8ZMJ9jNvhXPr+K2CvAyMwWFV3NTv77+Po2DZqY53oMkfvxEHKI/UsqL4oeKbZrZwVIUnOgMiu7wzNj9xpCyLb+dO5SUKxQZeUxELljGcGKA/VBZ7LWHaAWKiioI5CmuEabN8lM7S4cAiSeZ6+8aBin7vEtsjzrl9k/ZhqgFbEvM4fnKGocuTKw4/AIBAFj6brPnPffsKrRjmverey6W4LawZcTRtUag1UzL2RXOdVdHdvoa9/N4M7niS7cQT1jjh1qy6hYsPzoDKGHoVcwkCGJUR1UHQMRUFPC5SsQMkChmEua6gqDkEyo+7lyRPWY6AYCo2X3EBF02IO/P6b7HzkOyy/6K0oQiGXTQGgKWFOHHoQEFQk2q1nxbr+zgkJgkgHhqR3ZD+NyUWFBMc6pim5mK6x3SZZmg5TTTTM5hj/PWDVOZebZFfP3ehGhupYGzkjw8GBx6lLzKOjch1CBDzLs3mOi9VPiPx6TVa7SN26ZU7DZ+ls7pvOiM+SigHCFap6Ct+lwlDf00fAy5eTv5Hcs7dBIbYVIYlVhLnyUxcycnKMUzv6iCRjvODTz3OCIOSj+7lIiJv0WGUUmhNOpxLlfR6mMr/zKkFT5+kmbu76LLh2Lg/+28O0XdjqmA/Y6fWMztH7j3DFl64sohwVNw8sIBtFVCa3uR3klSTPNp/ZnZOnnzjNUEUKrN8UZOiPaQLlNktNVGhc+fpmrnx9M6ow6DmS4vZvneSBL+8k8r29LHxBO9GVc4ktnU+qrJqJyTCqahALZRE9vdz1k6c58GgvfV0ZEuUqK55fx6LLm6k/t5WcpmJG2DMY08KMZ8P0PrCH45sPE1ZyJLQ0UsKuJ0dJyxC6VBgZMkNu3/PlPRzaNMyN/zCXWFLzqDuGVFGFwfhAhn1PDVHfGae+I8qejaM0tEeob4+Ry0lCYZFXcKxFb1UMVGEQiijksoULJrt/+/0KgwKiBE1YzAZ61uC7H9jNi/6+nc4VZc7269/azC2fO8JDP+3iolc0TZHDs4OOgiEVJ4y8d9LgT/hyNwyCFhmeNf5ayJIN2+LamIXC5Den8ZvX+c3ywCFNBT5M0xEmAENBU2OsrL+WVG6EoUwXmoiwqvE607+iWP1mQ5L8xxWDn/BNlW6mUAQY0Jhcwpau39CYXIjwRe8zpE7X6E7WNt/kOq4wK5s4OQTKUl4sL5+8ymH7+4Az0DbVmnz9p3L39fou5cs2K+v77UnrbZcp5y2LESXPdqfC+WAJTHF9ipmCSrNtpDDJU4gwbY3raW09H6kIxvUhjh16kJ6Nd9K75X4qF6wm3jmf8JL5UJ80Lc80CTmB3jvE4L33M75/N5nRAdRQhMq25VTMW0l83iIIq/lzt4JVjO3ewdi+nc7aShIY7T1oqWeQy5hhsk/sf5Dh/gPMabmUSChhvvd8qkhGn6R/7BDxcDXJSA1DY0eIKmUkQ1VIDBTUwufV+q8IDaNIMIIZ+fTNlij5YRElaRhsPXkrc6vW51UuYE7FuRwYeowjQxvprD7Pea5nY0Y7Zb3sSaQgZfl0cRb3Tc+KLBWqQ77f7kAIrjvLWehyinWAig0u/P5NftgLjtpkSkVS3pykqtk96y2dtPnyC4lasQh3U/li2bBnlGcys1wsTZDpnV/pSVRFmHNpO4986lHOfedaIlUxFCQj3eM88fmnWPmapYTD+bCrz6Zss/wAJagYcXKZ3Pn9kmarIk0XBjwozXR+S0HmVjOBnxQUi/xW257gjZ+cx43vaOaO73Wz5YETnPrZAYR6N83rW6i+fDlGVufYUwd57L4DJCtDXHRDJQ0dMU6dyPDUnQM8cksXLUv28rx/3kByURNhJYcmDMYO97PvP39LpKmSUCLEmKrTuLyazmUJRnXTJyk9YS7YcGjTMAAHNg7xyTtOcepIimhCoX1JgtqWCGPDOjseGmR8uPBeqGuLsuSCCsaGdeauqwpsux0PDLDgnPIpIzbaKBbFcqYo/kwaPH1vPysurmLuiiSe+10IXvaBDj73pp1seHEDWlgpqoq7n6+ZBERxT4gYVth29758vf/EZOlMkLO/ErLkCX9tKUG2D85pmZxMRZh85RbkPxVhsgmVhVi4gli4Il9GUD38388EUTJc6YuZJ9n73MfY2c+gTUNqhJbyZWw/dQeLai4xo5sBk/oYu3vvo61iDaoaBiVgPSjbV0MI73fMx0Iq0iFMNnVyZsjtrKwuM68EFq/rtOZ1QcrQDFUlJ73/USyWv33pdKxzniWJldIiXTL/TIBJLnMghCShVbJowQ10dF7KsWMPM3B0F/3PPAa/EyQ7FpJctw6pwMS+PYxu34wailLTuYZkZx2Z1Aj9J7fTt/9JolWNNL/gZUQ75mD7oqWH+jnxq5sJlVWiRsz1lhI1rcTK60FRwJDOgrTD/WZY7ZGJEzy+7ztMTPahKmHKYg1Eo1Xk9DT9w/udNYjciIYqqEvMZTwzQF1iTmBb9E0cpDraGtxGWO+IqQjTdM/GVPtc9ekbP0RltMVDlACEEMyruoBNXb+grXINqlIYzGxWmMnEiH+CZ7Yk6izum2ZFlhTLv8D8rrsGKqC4LqLbh8BB0MkFLZA3bR0KB3RuMzw7R3fOxUpxJuukkidwCE8ZHgI369qeHpxzmaEJ3/KXzOVYW4JHPv04ekZHGpJoRYS1b15Gw5LqorMjMy1vKtLhVYa8CpJpkhdMjtzqhj/fYkR4JoSpWNogYjRdYIeii9yKwvWEggbDdh1qmyO8/qPtvP6j7fR3Zdh87yAP/Kqf7f9+B2CGrn7Tx9q4/KVVKJEwGalioPDyD7azf/MY3//4YX72uju57uNrabhmBamcyo4vPoRWW0njf/w9alShqmyC2sQ4jbER9qWyhIRO2eoEN3xc58hTvWz9XRc7HhygpjXGhle2MdKXYbgvy/YnJ4gkQ6x+SScrb2hjvD/NaHeKxnkxUr0T7L7/FA//vItIXGXpuQlWX1btMcUbOJ5i71PDXPe2wk4l0PTO9b3Yfvt3MRWqGJ7+Qx9/86/zA/cJIVi2oYLDW4ZYtL4yHx7ddd1mYpoXSLBd/YX/HfEnVZRs2E4aZySfvyL4zXXc22Z67FTbihEGz2B7inKDVKwgFJtZnso3KYgABQyMnHrr7hnsaQb6xc7VNSjMKzH5/c1lS4lp5ezqv9eMAAhoSoTOqnOojDZ78pcuBcUZyGKY5klSmIM0e/BvLWQrhEAqvrYU+fND2KsvTYNiJGgGalB+2/TFmPn7Ek51f562GmBfC4s0CZwgB1IBVTeVtoRIsqjtGmTntUxmR+kb3E3P8afp/uWPAYiU19Gx6nqaWs8jrIdQMwYYML/zBQyPnWDfrl9z8KdfpvWil1C17kKMEJy6+zeo8STzX/cPqGoEdRLUjESbBLJmvcqq25m/9uUMnzpA7/FN9A/uIxKtpLl9A5n0KJnMGIMTR1G1KPVt66jvPIdsZoLM2CDxWC16apT+nt0c79mEKkJUJTpoSiz0tOVkdpRT4wc4p/GlhW1tPSv5+8xqs6ABov/6+E10g9L7zAV7RnYxv+qCQAVMCEFdYh79E0epT87L18s9UTATBE3oSOk8P9IycXTqJoRJXmc7Kj6L+6bZ+SwBISUHWATD2q5LxUOe7AZU0J2BhioCBiOu/eCZNJs2KpanXj5zL7NOM39RKEJ3qWGuOrhIFJz5hSfdEbQKQlzPkCjZM9ud59bTeW59QAo5QyXMJsHBgzs/kQoyrQtSj4KUI4eM+MhRUNnTmdAVJ1BTk6Ni6YKIUmE0vuJmVdO1dU1TmKteXcdVr65joGuSeJlKWZlwzFOz0sxDxQwZvmxdnM/8ehHf+Nhxfvuxp7l8wiBd38LIliPUvvVvkONxchMwYChkdBVDCpKhDFE1S0INIxvqOLrzMEpI4Yp/OYcVN3Sa4cylSkoPeUxAU0CoVdK4JkdEydGyYoyVV9Rz0Sub+PZ7dvDFt+6hc3mcd35hAUJT2XjXIFvuHeCNn5qP8mzWaPEhiExNl9ZAkE0bxJIaWSkK7jtVGMTLVNKp4uSlGHHy3zd+H0n/PWSgOM+07R81m/fZs4U0DOQZIGl/NT5LqqfjyWMKn5opEbR/NkTJjyClKijNVNtm8nwWU4yCyBOzUN2KDfB9pmpB7VYVa6Uq1uopt+C7U/d8PfMz/xYZc/0WYKlGLnLjHbrYFZqZasYMlR877eneV274ygvKc9ohkMssNGi7Myi2L5fdXhZ5koq1wK8OcZGgre4cWhrPJaWPooTDaKEYSlaiTEqUnG76Q0mJ1AWV0WbWnvcO9h34Hccf+gVGJk2kcw6j+3fQePVLkWURdB2rbIGSkyYfkQIhQkTLajl54CGEUJiz8kU0zduQP18hnEVypWrWOwyU5UyzQkWHqpbltPSsZ8eOH7H15K85EK5jddONqEKjd3w/3aN7WFb3ApSpJvRl3jvKISfTtfV019hHlJAS3ciZJrb2org+0zhNiaDLjCcbzzpQxeriO5cCuJ55AYX+SadBxs/mvmlWZCkzninqh+NpR9d+6foe6DobkNds1gMyyw522p4VAsv0hwf+42Am+br9wPwqRrGzdqe1v7sXNJ2yPD858pcZYEYnfKRHEYbTT7jPMf+w2GTRTBukf8lZ1tNGLqDObtj19iw4iiQXkMZRyuztU+SbK7rHOwBXMQfvKgYTo/Y+SVZKT61Ui5i99Z9qKYvkuO3TW1j9kkEApExjZFNgCORolkkjx7ihI8I6ajjDUG8/t73zHmoWVvPCr11Bw4IKxkZ0chIyhiBt6IBORMk5So5EgmIweHyAwbFh5i+PIxS48o2t/Orzhzi8Y4JvfGg/zfNjLDm3nPf8z3xUDXLjk1Oc+ekhiGD471t3mpb5UXY92Mui8yqc6+BWp3Y+NsSN7+0kNZYL9E2cCkHrRhWkwTbHsyaUhESKHFIq5Mb/hC/3s3j27rlAOmJgSB2hm+pD3pfIlchDVopkZBTud/LykJAi3+2XpBGQx1QWMkGDliCzuhn+9uQ3VT7OdvfBRfb72886R2GZPToqk/0+n+5xcZmIOY7oQpj2Z8IczXvbRViBH6w62gNq67tNnjzluoiCBwHPxXRmdVOSqZmiGJcuSr6myU8vcu947r/8fqe9EK6Q68JJZpulhUUIUhJSE0hdYhgSQ5oRB808zEG8IRU6516JEBonn/gtlWPnApAuzzHaMAaAOq6ijQoiwgxBrigSfWyUHQ9+nVhlAwuvfCvx2lbG1QyGal13K1CEQ+4kKDkQiiQ93E92YoTy6g5ylSrN8y/m0K7fM5bpZVvv7ZRF6qiMtrK69cUoUiFn98UucmIvqutsJ+B7AWYwpnWec6vSwrxrE9E6eicPU5echyfggnVM3+QROmrOI6vmvM9EQRWmr0Pg/eB5jLz7c2KWcV7P4r5JSDl9qZOTk8yZM4fu7u4/RZ1KKKGEEv7i0NjYyKFDh4hGo3+U/EdGRqioqOD54ZehidCzzi8ns9ybuYXh4WHKy8vPQA3/vFDq10oooYQSnh1m0q/9JfRNM1KWotEohw4dIpPJTJ+4hBJKKKGEAoTD4T8aUXJDGtKzoOZp5/MXriyV+rUSSiihhGeH2fRrz3Xf9NWvfpXPfvazdHV1sWzZMr74xS9y0UUXzejYGZvhRaPRP0lHX0IJJZRQwrOANJjejmmm+fxlo9SvlVBCCSX8ifAc9k0//elPee9738tXv/pVLrzwQr7xjW9wzTXXsHPnTtrb26c9/k/ndVxCCSWUUMIfHVkjQ1Y/Ax+jpLiUUEIJJZRwZiANecY+s8XnP/953vzmN/O3f/u3LFmyhC9+8Yu0tbXxta99bUbHn5FFaUsooYQSSnhuEQ6HaWxs5OHu356xPBsbGwmHn+X6HSWUUEIJJfzVIyfTZ8RiIYcZWGJkZMSzPRKJEIkULs6dyWTYtGkTH/7whz3bX/CCF/Doo4/OqMwSWSqhhBJK+AvAH8MH50/lZ1VCCSWUUMJfJvITebefsTyTySRtbW2ebf/6r//Kxz/+8YK0fX196LpOQ0ODZ3tDQ8OMA/yUyFIJJZRQwl8ISj44JZRQQgkl/DnhjzGRJ+1Fc10IUpXc8KcPyqMYSmSphBJKKKGEEkoooYQSSvij4LmcyKutrUVV1QIV6dSpUwVqUzGUAjyUUEIJJZRQQgkllFBCCX9xCIfDrFu3jrvuusuz/a677uKCCy6YUR4lZamEEkoooYQSSiihhBJK+IvE+9//fl772tdyzjnnsGHDBr75zW9y9OhR3va2t83o+BJZKqGEEkoooYQSSiihhBL+IvGKV7yC/v5+PvGJT9DV1cXy5cu5/fbb6ejomNHxQv6lL9NeQgkllFBCCSWUUEIJJZRwGij5LJVQQgkllFBCCSWUUEIJJQSgRJZKKKGEEkoooYQSSiihhBICUCJLJZRQQgkllFBCCSWUUEIJASiRpRJKKKGEEkoooYQSSiihhACUyFIJJZRQQgkllFBCCSWUUEIASmSphBJKKKGEEkoooYQSSighACWyVEIJJZRQQgkllFBCCSWUEIASWSqhhBJKKKGEEkoooYQSSghAiSyVUEIJJZRQQgkllFBCCSUEoESWSiihhBJKKKGEEkoooYQSAlAiSyWUUEIJJZRQQgkllFBCCQH4/4CFjBDFgmG7AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.prediction(pred, date, data_processor, task_loader, test_task, crs=ccrs.PlateCarree())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict off-grid to pandas\n", + "\n", + "Predicting at off-grid locations with `model.predict` is very similar to the on-grid case above.\n", + "If `X_t` is 1) a shape $(2, N)$ `numpy` array, or 2) a `pandas` object containing spatial indexes, the values of the `Prediction`\n", + "returned by `model.predict` will be `pandas.DataFrame`s whose columns are the prediction parameters.\n", + "\n", + "Let's see an example where we pass a *list* of `Task`s to `model.predict`, with context sets spanning the second half of 2019. Check out the indexes of the resulting `pandas.DataFrame`!" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:47.537707632Z", + "start_time": "2023-11-02T15:33:40.198422828Z" + } + }, + "outputs": [], + "source": [ + "# Predict at two off-grid locations over six months of 2019 with 200 random context points (fixed across time)\n", + "test_tasks = task_loader(pd.date_range(\"2019-06-01\", \"2019-12-31\"), [200, \"all\", \"all\"], seed_override=42)\n", + "X_t = np.array([[50, -80],\n", + " [40, -110]]).T\n", + "pred = model.predict(test_tasks, X_t=X_t)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:47.830336453Z", + "start_time": "2023-11-02T15:33:47.547060798Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "text/plain": "" + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAETCAYAAAD6R0vDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddVhU6dvH70lm6JYOERSVUBQQVCxARbFbEbsLaw1W0LXXAAu7uwtjdc21sLspRRAJ6Zrzff/gnfNzZEBAQN2dz3WdC+bkc86cee7nuZMDAKRAgQIFChRUINwf3QAFChQoUPDvQyFcFChQoEBBhaMQLgoUKFCgoMJRCBcFChQoUFDhKISLAgUKFCiocBTCRYECBQoUVDgK4aJAgQIFCiochXBRoECBAgUVjkK4KFCgQIGCCkchXP5FcDicUi0XL1780U2V4enTpxQUFERRUVGl2n/Lli3E4XBKvX9lERcXR0FBQXT//v0i24KCgojD4VR9o8rAlStXSElJiaKjoyv9WlFRUcThcGjLli3susDAQKpfvz4xDFPp11dQ9SiEy7+I69evyyxt27YlsVhcZH39+vV/dFNlePr0KQUHB/9wYVFW4uLiKDg4WK5wGTx4MF2/fr3qG1VKAND48eNpyJAhZG5u/kPaMGnSJIqMjKStW7f+kOsrqFz4P7oBCioOV1dXmc96enrE5XKLrC8vWVlZpKysXCHn+rdjYmJCJiYmP7oZxXL69Gm6e/cu7dq165v7Zmdnk1gsrvA2aGhoUN++fWnBggXk7+//08/0FJQNxczlP8aqVauoadOmpK+vTyoqKmRnZ0eLFi2i/Px8mf2aNWtGdevWpcuXL5ObmxspKyvTwIEDiYjo3bt31LVrV1JTUyNNTU3q06cPRUREFFF7EBHdvn2bfH19SVtbm0QiEdWrV4/27dvHbt+yZQt169aNiIiaN2/Oqu6+Pk9p2LRpEzk4OJBIJCJtbW3q1KkTPXv2rMh+N2/epPbt25OOjg6JRCKysrKi8ePHs9tfv35NAwYMIGtra1JWViZjY2Nq3749PXr0iN3n4sWL1LBhQyIiGjBgANvuoKAgIpKvFmMYhhYtWkS1atUiJSUl0tfXJz8/P3r37p3MftJnHxERQU2aNCFlZWWqXr06LViwQEaFxDAM/fHHH1SzZk0Si8WkqalJ9vb2FBIS8s1ntWbNGmrYsCHVrFlTZr2FhQW1a9eODh06RPXq1SORSETBwcFERBQfH0/Dhg0jExMTEgqFZGlpScHBwVRQUCBzjri4OOrevTupqamRhoYG9ejRg+Lj4+W2o1+/fvTy5Uu6cOHCN9us4NdCMXP5j/HmzRvq3bs3WVpaklAopAcPHtDcuXPp+fPntGnTJpl9P3z4QH379qUpU6bQvHnziMvlUmZmJjVv3pySk5Np4cKFVKNGDTp9+jT16NGjyLUuXLhArVu3JhcXFwoLCyMNDQ3as2cP9ejRg7Kyssjf3598fHxo3rx5NH36dFq1ahWrsrOysirTfc2fP5+mT59OvXr1ovnz51NSUhIFBQVRo0aNKCIigqytrYmI6MyZM9S+fXuytbWlpUuXkpmZGUVFRdHZs2fZc8XFxZGOjg4tWLCA9PT0KDk5mbZu3UouLi507949qlmzJtWvX582b95MAwYMoJkzZ5KPjw8RUYmzlREjRtC6deto9OjR1K5dO4qKiqLAwEC6ePEi3b17l3R1ddl94+PjqU+fPjRx4kSaNWsWHT58mKZNm0ZGRkbk5+dHRESLFi2ioKAgmjlzJjVt2pTy8/Pp+fPnlJqaWuKzysvLo3PnztGYMWPkbr979y49e/aMZs6cSZaWlqSiokLx8fHk7OxMXC6Xfv/9d7KysqLr16/TH3/8QVFRUbR582YiKpzltGrViuLi4mj+/PlkY2NDJ0+elPt+EBE5OTmRqqoqnTx5klq0aFFiuxX8YkDBv5b+/ftDRUWl2O0SiQT5+fnYtm0beDwekpOT2W0eHh4gIpw/f17mmFWrVoGIcOrUKZn1w4YNAxFh8+bN7LpatWqhXr16yM/Pl9m3Xbt2MDQ0hEQiAQDs378fRIQLFy6U6r42b94MIkJkZCQAICUlBWKxGG3btpXZLyYmBkpKSujduze7zsrKClZWVsjOzi7VtQCgoKAAeXl5sLa2xoQJE9j1ERERRe5ZyqxZs/Dlz+vZs2cgIowcOVJmv5s3b4KIMH36dHad9NnfvHlTZt/atWvD29ub/dyuXTs4OjqW+j6+vuaePXuKbDM3NwePx8OLFy9k1g8bNgyqqqqIjo6WWf/nn3+CiPDkyRMAwJo1a0BEOHr0qMx+Q4YMKfZZubu7w8XFpcz3oeDnRqEW+49x79498vX1JR0dHeLxeCQQCMjPz48kEgm9fPlSZl8tLa0io8lLly6RmpoatW7dWmZ9r169ZD6/fv2anj9/Tn369CEiooKCAnZp27YtffjwgV68eFEh93T9+nXKzs4mf39/mfWmpqbUokULOn/+PBERvXz5kt68eUODBg0ikUhU7PkKCgpo3rx5VLt2bRIKhcTn80koFNKrV6/kqtlKg1Tt83UbnZ2dydbWlm2jFAMDA3J2dpZZZ29vL+PZ5ezsTA8ePKCRI0fSmTNnKC0trVRtiYuLIyIifX19udvt7e3JxsZGZt2JEyeoefPmZGRkJPNdtmnThogK3wvpfaqpqZGvr6/M8b179y62Pfr6+vT+/ftStV3Br4NCuPyHiImJoSZNmtD79+8pJCSErly5QhEREbRq1SoiKlRpfImhoWGRcyQlJVG1atWKrP96XUJCAhEVegQJBAKZZeTIkURE9OnTpwq5r6SkpGLba2RkxG5PTEwkopJVV0REAQEBFBgYSB07dqTjx4/TzZs3KSIighwcHIo8o4puoxQdHZ0i+ykpKclcf9q0afTnn3/SjRs3qE2bNqSjo0MtW7ak27dvl9gW6TmKE7Dy2piQkEDHjx8v8l3WqVOHiP73XRb3fhgYGBTbHpFIVO7nquDnRWFz+Q9x5MgRyszMpEOHDsm4n8pzpSUiud47Ojo6dOvWrSLrvzbYSu0H06ZNo86dO8s9/9fG5PIi7Yg/fPhQZFtcXBzbFj09PSKiIgb0r9mxYwf5+fnRvHnzZNZ/+vSJNDU1v7uNXwu3L9tYFvh8PgUEBFBAQAClpqbSuXPnaPr06eTt7U2xsbHFevZJr5WcnCx3u7zvXVdXl+zt7Wnu3LlyjzEyMiKi0r8fX5KcnFyu+1fwc6OYufyHkHYaSkpK7DoAtH79+lKfw8PDg9LT0+nUqVMy6/fs2SPzuWbNmmRtbU0PHjygBg0ayF3U1NRk2lPe0WujRo1ILBbTjh07ZNa/e/eO/v77b2rZsiUREdnY2JCVlRVt2rSJcnNziz0fh8OReUZERCdPniyiuilLu6Xqxa/bGBERQc+ePWPbWF40NTWpa9euNGrUKEpOTi4xZsjW1paICp07Sku7du3o8ePHZGVlJfe7lAqX5s2bU3p6Oh07dkzm+JJcnt++fUu1a9cudVsU/BooZi7/ITw9PUkoFFKvXr1oypQplJOTQ2vWrKGUlJRSn6N///60bNky6tu3L/3xxx9Uo0YNOnXqFJ05c4aIiLjc/41X1q5dS23atCFvb2/y9/cnY2NjSk5OpmfPntHdu3dp//79RERUt25dIiJat24dqampkUgkIktLS7mqIXloampSYGAgTZ8+nfz8/KhXr16UlJREwcHBJBKJaNasWey+q1atovbt25OrqytNmDCBzMzMKCYmhs6cOUM7d+4kosKOdMuWLVSrVi2yt7enO3fu0OLFi4vMOKysrEgsFtPOnTvJ1taWVFVVycjIiO1ov6RmzZo0dOhQWrFiBXG5XGrTpg3rLWZqakoTJkwo9XcgpX379lS3bl1q0KAB6enpUXR0NC1fvpzMzc1Z7zh5mJiYUPXq1enGjRs0duzYUl1r9uzZ9Ndff5GbmxuNHTuWatasSTk5ORQVFUXh4eEUFhZGJiYm5OfnR8uWLSM/Pz+aO3cuWVtbU3h4OPt+fE1SUhK9evWqWM81Bb8wP9qjQEHlIc9b7Pjx43BwcIBIJIKxsTEmT56MU6dOFfHW8vDwQJ06deSeNyYmBp07d4aqqirU1NTQpUsXhIeHy/USevDgAbp37w59fX0IBAIYGBigRYsWCAsLk9lv+fLlsLS0BI/HK9arSMrX3mJSNmzYAHt7ewiFQmhoaKBDhw6sF9OXXL9+HW3atIGGhgaUlJRgZWUl4wWWkpKCQYMGQV9fH8rKymjcuDGuXLkCDw8PeHh4yJxr9+7dqFWrFgQCAYgIs2bNAlDUWwwo9M5buHAhbGxsIBAIoKuri759+yI2NlZmv+Keff/+/WFubs5+XrJkCdzc3KCrqwuhUAgzMzMMGjQIUVFRxT47KYGBgdDS0kJOTo7MenNzc/j4+Mg9JjExEWPHjoWlpSUEAgG0tbXh5OSEGTNmICMjg93v3bt36NKli8z7ce3aNbnf68aNGyEQCBAfH//NNiv4teAAwA+UbQr+JcybN49mzpxJMTExP3VkuoJC4uLiyNLSkrZt21ZsDEpV0KRJEzIzM2NnjQr+PSiEi4Iys3LlSiIiqlWrFuXn59Pff/9NoaGh1KNHD9q2bdsPbp2C0jJ16lQ6deoU3b9/X0adWVVcvnyZvLy86OnTp1S9evUqv76CykVhc1FQZpSVlWnZsmUUFRVFubm5ZGZmRlOnTqWZM2f+6KYpKAMzZ84kZWVlev/+PZmamlb59ZOSkmjbtm0KwfIvRTFzUaBAgQIFFY7CFVmBAgUKFFQ4CuGiQIECBQoqHIVwUaBAgQIFFU6pDfo5OTmUl5dXmW1RoECBAgW/AEKhsMTkr0SlFC45OTlkaWlZYn4gBQoUKFDw38DAwIAiIyNLFDClEi55eXkUHx9PsbGxpK6uXmENVKBASnJyMu3cuZOOHj1KERERxOVyqXHjxtSuXTvy8fEpVWBmQUEBjRkzhq5du0YPHjyolHYyDEOvXr0iLS0t0tXV/SHxIeVh69atNHbsWDIwMKCCggLKzc2lnJycIhVIRSIReXh4kJeXF7m7u5NQKJR7PpFIRMbGxkXWA6B+/frR3bt3KS4ujr50RtXX16cmTZoUKUpXmdy/f588PDzYz1wul3g8HnvfY8aMoT/++KPCr/vx40dq0KABff78mV2nrq5OpqamRRZtbW1SUlIigUBASkpK7P8Mw5C+vj6bg+9nIS0tjUxNTSkvL69E4VIqV+S0tDTS0NCgz58/K4SLggrl2bNntHz5ctq2bRsBoDZt2lCnTp3Ix8enxNxiubm59OnTJ0pPT6e0tDS6ceMGLV++nCIjI+m3336j+fPns/t9nYSyPMTFxdHmzZtpw4YNbFJIoVBIxsbG1KpVKwoLC6syQZOQkEDXr1+n69evU0xMDCkrK5OysjKpqKjQhw8f6ODBg/T777/T+PHjSSgUUnJyMunp6RGfz6exY8eSp6cnNW7cmJSVlYlhGMrLy6OcnByKjY2lU6dOUXh4OF29epUkEkmJ7XBycqKBAwdSr169SEtLi4iI7RCrV69OgwcPJktLSzI3NyczM7NvqlEqi8OHD9Pjx48pJiaGbt++LZMFvEOHDnTkyJEKvybDMBQaGkqbNm2iR48ekYaGBvXr14/69u1Lzs7OcjNP/yqUVh4ohIuCKgcAnT17lpYvX06nT58mAwMDGjVqFA0bNoxNi/81Hz9+pH/++Ydd7ty5IzPq5vF41KNHDxo3bhzl5+fTiRMn6MSJE/T48WPS0NAgc3NztpP7+v9q1aqVKBgOHTpE3bt3J4FAQD179qSePXuynfGbN28oJCSEFi5cSJMnT66wZ7Rv3z66e/cuKSkpkUgkIh6PR48fP6Zr166x2YyNjY3J2tqacnJyKCsrizIzMykjI4OUlJQoJiaGbG1tae3atdSkSRM6cOAAHTt2jP766y+Kj48ngUBABgYGpKGhIXepVq0a1apVi8RiMdumLzvEjx8/0o4dO+jkyZOkpKRET548IQsLCyIi6tGjB+3bt4+IiB2Ni0QidlSurq5Oenp6MouamhplZGSwg4WS/kpnTSUtIpGIbt++zQrha9eusTVnateuTY0aNSI3Nzfy8fGRW3+mInnw4AFt376ddu3aRR8+fCAbGxvq2LEjeXt7k7u7e4UMfqoShXBR8NOiqqpKmZmZRETUp08fCgoKIktLS0pOTqYPHz5QfHw8ffjwgT58+EDPnz+nf/75h16/fk1EhdUl3d3dyc3NjaysrEhdXZ3U1dXJyMiI4uPjqXfv3vTo0SPS09Ojtm3bUuPGjSkpKYmio6MpJiaGoqOjKTo6mtLT09n2CIVCMjc3J29vb+revTu5u7vLCJsXL15Q+/btKTY2lv744w8aP3488Xg8dvuUKVNo+fLltHv3burcuTPFx8fT/fv3KSkpiZ1RqKiokJOTk0xnXRK2trb07t070tDQoNzcXMrLyyMbGxtyc3Njl5Ki6u/fv09Dhgyhly9fUmpqKisYANDTp0/p4sWLFB8fT58/f2aX1NRU9v/o6GhSV1enIUOG0OjRo8nMzEzuddq3b0+nTp2iQ4cOkbu7O+no6FBcXBydP3+ecnNz5S6pqamUmJhInz59osTEREpMTKT09HRSU1MjNTU1UldXZ/9++b90e1ZWFr1//15mSUhIIHldmaqqKrm6urLCxMXFhZ1lVTUSiYT+/vtv2rlzJ506dYo+fvxIysrK5OHhQTVq1KCcnBxWXfn1/zk5OTIVQItbGIYhJSUlEovFMotIJCKxWEwGBgbk4uJCLi4u5ODgQAKBoMz3oRAuCn5aBg4cSJs3byaRSEQ5OTnF7qelpUWWlpbk5uZG7u7u5O7uLrdDBUCrVq2iSZMmkYWFBY0fP568vb3J0tJS7nkBsB2odHn+/DkdPXqU3r9/T4aGhtSlSxcZQZOVlUUzZ86k5cuXk6urK23evJktdpaXl0f9+/cvUtPma8aMGUOhoaGlekbu7u5Uo0YN2rp1q8x6iURCXC63VGqV3bt3U+/evSkjI4NUVFRK3LegoID4/P+ZYKOiomjlypW0YcMGSk9Ppz179lC3bt2KHDd06FDas2cPK6wtLCzI09OT/P39qVGjRuVS/2RlZdHbt28pPj6enZFlZmbK/J+bm0tisZgV3EpKSuxMVldXl7Kysqh+/fpUp04dmYHAzwLDMPTo0SM6e/YsnT17lhISEkgkErEzPOn/X874pCW3pQuPx5P5zOfzicPhUG5uLmVnZ7NLTk4O+390dDTdv3+f8vPzSSQSkZOTE7m6urJLaWybCuGi4KdHIpFQdHQ0PXv2jN6/f096enpkaGhIhoaGVK1atVLp6D9+/EgDBw6kkydPkrGxsUxBrxYtWtD8+fOL1KIvDoZh6MaNG7Rv3z46cOAAK2hcXFxIVVWVVFRU6MGDB3Tjxg0SiUS0ZMkStmQzwzB0+fJlunjxIjk6OpKjoyNVq1aNsrOzKTMzkxYsWEB79+6lDx8+lGq02KlTJ7p48SKZmppSeno6ZWRkUEZGBuXk5NDEiRPpzz///OY5Jk6cSGvWrKFPnz7JVKVMTEyku3fv0v3799nl5cuXVL9+fRo2bBj17NmTVFVViYgoIyODWrVqRdWqVaOjR48W+9xev35Nd+7coYiICDp48CDFxMSQlpYWW59HOnJWVlZmVW/q6uqkoaFBfD6fIiMj6c2bN/TmzRu5FUWJiD1eKkykzzYzM1MmTEJPT4969OhBvXv3JldX11/avlEZZGZm0sOHD+nBgwfsX+nvRl9fn6ysrGjq1Knk6Ogo93iFcFHwr+f69evUqVMnSkhIIB6PR7Vr16apU6eSnZ0dPXr0iP788096/vw5nTt3jlxcXFi1TF5enoya5uvPGhoa5OLiQjdu3KD9+/fTixcv2E4sIyOD/d/c3Jzu3r37zc7r+fPn1KVLF4qNjaXIyMhSFUE7e/Ys7dmzh1RVVWWWFStWkLOz8zdT1D98+JDq169Pc+bMoWnTphFR4YwtJCSEJk2aRBKJhNTU1FhBaG1tTWfOnKHw8HBSVVWl33//nSZOnEgcDofmzJlDixcvptevX5O+vv43284wDF28eJFu3LghM3LOycmhjIwMSktLo8+fP7N/8/PzydzcnKysrGQWIyMjUlVVZR0WSrKLFRQUUGZmJr169Yr27NlDu3fvpri4OHJzc6NLly7JzMr+qwCg+Ph4Sk1NLbJNIpGw739SUhKlpKRQv3795L7bCuGi4F9PWFgYTZs2TebHoqysTDo6OuwPJT09nRiGKdN5xWIxffz4kR29SwFACQkJ9P79e1bQSIWN9H95ny9fvkwmJiZ06NAhqlWr1nfds5ubG7148YLc3d3JxsaGrK2ticfjUWpqqsxy/fp1UlJSovv377PuxGPGjKGVK1fS4MGDadq0aWRhYVGkw46JiaElS5ZQaGgorVmzhoYPH06JiYlka2tLXl5etGXLlmLdk38mJBIJHTt2jDp37kzr16+nwYMH/+gm/XA+fPhAqamppK+vT8rKynIFBwB68eIFJScn0+vXr8nc3JyaNWsm43RQWnmgEOc/MQDon3/+oWPHjlF2djY5ODjIqCz+6wwfPpwcHBzIzc2N1qxZQ9WqVaOoqChKTk5m9dRv376lsLAw+v3336lWrVokFApp586ddPjwYfY8Ghoa1LBhQ3JxcSFnZ2dydXWl/Px8unr1Kj1+/FhmSUpKktsWkUhEKioqMrMM6echQ4ZQcHBwhXxv8+bNoyNHjtDLly/pyJEjFBkZSQzDkIaGBmlqarKLg4MDBQYGsoKgoKCALTW8YcMGunLlCrm4uJC1tTVrKJcuUjuYVH2np6dHS5YsIX9/f9qzZw8ZGhqyHnfylsp4P/Py8ig9PZ3S09NJXV2dtLS0inSOubm59PbtW3r16hU9efKENm/eTETEetf9l5FIJKxg+dbM2dramt6/f085OTnUuXNn4nK55OvrSyEhIaSrq1vqaypmLj8piYmJ1KVLF7py5QoZGxuTlpYWPX36lNTU1Gj79u3Uvn37H93EYsnJyaEXL14UO5KXN8pXU1MjAwMDsra2Jmtra7KxsSEjI6Nvxo7s3LmT+vbtS5mZmTJ2BSmfP38mTU1N2rt3L3Xv3p2IiEaMGEFhYWGkp6dHTk5OZGVlRQzDUH5+PsXExNCTJ09YHTSPx6OaNWtS3bp12cXMzIy1JSQkJJBQKKSaNWv+kDiO/Px8NjDwWwCgV69e0c2bN9klNjaW0tPTKSsri91PKBSSp6cnNWrUiHx9fcnOzo6IiK5du0ZPnz6VcYSIjo6md+/eycTEaGhokI6ODunq6rJ/NTQ0SE1NjRiGIYlEQgzDsItEIqH8/HxWeKSlpcm4H6elpVFubq7MvQiFQjIwMCADAwNSUVGhyMhIiomJYWepKioq1K5dOxozZgy5ubn95+0uOTk5FBkZSRYWFqXyWMzOzqaoqCjKz8+n48ePU0hICGlqatLp06fZ71OhFvsFYRiG3NzcKDIykjZv3kytW7cmLpdL0dHRNG7cOAoPD6d//vmHGjZs+KObKpfRo0fTqlWriqzn8/lFbAjSEX5qairFx8dTVFQU21FJYySEQiEJBAISCoVUUFBAGRkZlJ+fTzwej1RVVSkhIYG2bNlCffr0KaJbf/DgATk6OtLZs2fJ09OTiIgeP35M3bt3J4ZhZDxueDweGRgYkJ2dHStIbGxsisQhAKDQ0FBatmwZRUdHExGRjo4ODRkyhGbNmvXDggXLi0QioZs3b9KOHTto69atlJWVRSoqKpSfn095eXlkbW1N3bt3J01NTTI1NSULCwuytLQkPT094nA4VFBQQB8+fGCFTVxcHCUlJdGnT5/o06dPlJSURJ8/f6bMzEzicrlFFh6PRzwer4gLsrzPKioqlJaWRvHx8eySnp5OFhYW7MDE2tqaDA0N//MC5UukwsXS0rJU7+fX+79584batGlDnz9/pj179lCLFi0UwuVX5MyZM9S6dWs6f/48tWjRQmZbXl4eOTg4UN26dWn//v0/qIUlEx8fT2PHjqX9+/eTvb09bdy4kezt7Uulq8/Ly6OoqCh6+fIlxcTEsAb3vLw8OnToEN2/f590dXXJ0NCQ0tPTKTo6mo1v0NLSovbt29OgQYOoSZMmxOFwaMCAAXT69GmKjo6uMFvByJEjac2aNeTn50d9+/YlkUhER44codWrV5O7uzuFh4dXql0iMTGRdu3aRVwul+zs7MjOzq6IqiMvL49SUlIoOTmZCgoKqG7dumxn+/z5c9q5cye9ePGCnj17Ru/evWPtViKRiExMTIjH41FBQQF9/vyZkpKSiM/nk5KSEmVkZLDXUFZWZgWNo6MjzZkzp0wdekFBASUkJFBcXBzFxcWRWCwmLy+vUh3LMAzFxsay6sAvyc3NpaioKEpNTS0ykBEKhf9JofO9woWI6NOnT+Tr60v379+n7Ozsb8sDlILPnz+DiPD58+fS7P5TkJ2djQ0bNsDNzQ1mZmZo0KABQkNDkZaW9qOb9k2GDh2KmjVrgmEYudv//PNP8Pl85OfnV3HLysbx48ehqakJZWVlxMXFfde5li9fDg6Hgy1btsg8l8jISOjq6oKI4OzsDAsLCxARqlevDnd3dxAR1qxZ8723wnLt2rViz3nhwgVwOBysX78eGRkZWLlyJUaPHg1fX194eXmhadOmcHFxQbt27bBq1SpERkaW+roMw+DSpUvo1asXBAIBhEIhhEIhiAhEBENDQzg6OsLc3BxqamrseukyZcoU5OfnY+jQoSAiqKqqgsfjgcPhsM/LxMQEGRkZRa599uxZEBHOnj2LlJQU3Lt3D4cOHcKsWbMgEolARKhbty5yc3OLHFtQUIDTp09jzpw5GD58OHx9feHk5ARDQ0NwuVyZNhoaGhZ55/Pz8/HixQscPnwY8+bNQ9++feHk5ARlZWUQEdTV1bF8+XL2t3Dr1i2Z5/L1wufzoampCRMTEzg6OmLq1Km4efNmsb+1fwvZ2dl4+vQpsrOzv2v/rKwstGvXrlTy4F85c0lLSyNvb2+6efMmtWnThhwdHenFixd09OhRsrGxob///rvSUz58D3369KH379/TxYsX5W6X2hlKExz3o8jNzaVJkybRypUrqWfPnrRjx45yB7MxDEM1atSgxo0b07Zt24psv3z5Mnl4eBCfz2dVatLX2sTEhDp37kz29vbk6OhIdevW/a50GwMHDqTLly/Ty5cvZexBAOjdu3fUtWtX+vz5MzVq1Ii2bNlCREQODg5kbW3NBsRFRkbS5cuXqaCggPbv309du3Yt8ZpZWVnUtGlTunPnDllbW9Pw4cPJ39+f1NTU6NWrV/To0SN69OgRJSUlkY6ODmlra7PL48ePaenSpZSUlEQjRoygdevW0e+//07BwcHUtm1bWrduHW3evJlmzJhBnp6edPbs2SLXB0C1a9cmNzc32rhxIzEMQ9u3b6cpU6ZQZmYmBQYG0oQJE2Rma+/fv6dNmzbRhg0bKCYmhnR0dMjExISMjY3JyMiI/fvp0ycKCgoiIyMjOnXqFNna2lJ+fj7NmDGDTp06RS9fvmRjWDQ1NcnW1pZq165Ntra2VKtWLTp58iSFhYWRnZ0drVq1ip48eULDhw+nlStXUpMmTUq090VHR9PJkyfp06dPZGJiQh07dqTOnTtTkyZNKtR1OSMjg3bt2kVXr14lDodDzZs3px49epQ6W0NFUBEzFykpKSmkra3935y5DBgwABoaGrh586bM+mfPnsHQ0BBt2rT5QS0rHXPmzIGKigpSU1Plbh84cCDMzMx+2tFWXFwcGjZsCKFQiNWrV393O9++fQsiwsmTJ9l1DMPgwYMHmD9/Ppo0acKOTAUCAZSUlNgRuYaGBqytrdnPfD4fe/bsYc8jkUgQExODCxcu4MaNGyW29d27d7Czs0Pv3r1l1g8cOFDubEEoFILP54PL5aJjx464ffs2GIbB8uXLIRAI0LBhw1LN6AoKCtCxY0cQEVq2bImnT59+85jXr1/D09MTRARHR0fs3bsXYrEYs2bNwtWrV0FE7Hny8vJARFBTU0NOTo7c83l6eqJ169Y4duwY3NzcQETo0aMHYmNji+y7Zs0a8Hg8KCsrY+DAgcU+V4ZhYGpqCmVlZURFRQEo7Gs8PT0hEAgwdOhQrFixAufPn0dcXFyx301ERAQaNmwIIoKPjw+MjY1BROjUqRNu374t97rZ2dnIz89Hfn4+Lly4gLFjx8LExAREBD09Pdy/f/+bz7g0XLlyBTo6OuByuXB1dWXbaWBgILdtlYV0JpKVlVWq/bOysoqd6ZRWHvzrhEtiYiKEQiEWLVokd/u2bdtARHjx4kUVt6z0vHv3Dnw+H6NHjy7yg7p58yaUlJQwd+7cH9S6kklMTETt2rVhbGxcYT+eN2/egIhw8OBBHDx4EIMHD4ahoSGICDwej1XNEBGsra3h7++PdevW4fHjx5BIJAAKO1t9fX0QETw9PdG2bVvUqlULSkpKMgKhevXq+P333/Hy5Uv2+vfv30e/fv3A5/NZATZ69GjcunULANC9e3cQEdavX48+ffrAyMgIhw4dwty5c9G8eXPweDz2/Hp6eiAiTJgwQa4aScrOnTtRs2ZNNGzYEJ6enujatSsMDAzY87Rt27bEZ7Zx40ZWoDo4OKBDhw4gIsTExODOnTsgImzfvp3dX3ru8+fPs+sSExMxcuRIODo6yjyjOnXq4O+//5Z73RMnToDL5WL48OGl6i+2bNkCoVAIZ2dnXL9+HXZ2dtDQ0Cj2/MUhkUiwbt06aGtrQ11dHf7+/qhRowZ7/0OGDEGbNm1Qu3ZtVqUmXfh8PpSVlaGlpcWuCwgIKNP15REdHQ11dXU0a9aMFZ5A4bvo4uICHR0dJCQkfPd1SkNBQQGePn2KT58+lWr/T58+4enTpygoKCiy7T8rXMLDw0FExeqzs7KyQETYtGlT1TasjKxatQpEBA8PD2zfvh0nT57EmDFjoKysDDc3N2RmZlZJO8oy60hNTYWTkxP09PTw/PnzCmvDpUuXZGYjBgYGUFZWhkAggLu7O/z8/EBE2LlzZ7HnmDlzJogISkpKqFWrFnx8fDB27FiEhITgxIkTePr0Kf7++28MGDCAnYW4urqiZcuWICKYmZlhyZIlmDVrloyQWLNmDT5+/Ah9fX14enpCXV0dU6dOlbl2SkoK1q1bh9q1a4OI4Ofn9817HjduHIgItWvXRufOneHp6QlnZ2eYm5uDiGBra/vNc3z8+BE7duxAnz59oKqqCiKCpqYmjh8/jk6dOkFDQwPR0dEAgClTpoCIEBISAgA4efIkqlWrBm1tbTg5OYGIsHHjRkRFRbEC+2vu3bsHFRUVdOjQQW6nVBy3bt1iZw3m5uZ48uRJqY/9mk+fPsHNzQ0WFha4evUqhg8fjsaNG8Pe3h6+vr7o378/2rZtC21tbdb2JBUo2trasLe3h7e3N3bv3l2me5DH1KlToaGhIbff/PjxI0QiEebNm/dd1ygLcXFxrIDJyspCdnZ2kSUrK4sVLMXNqv+zwuXUqVMgIrx+/Vru9vT0dBARNm/eXLUNKwdfqiCkHdqMGTPkGl0rEolEgi1btqBhw4bg8XgQi8Xo0qULrl27VuwxaWlpcHd3h6amZoWpFN6+fYtu3bqBiGBkZMTOTIgIvXv3RnR0NOLj42Fvbw9ra+sSO4O8vDy8e/eu2I7xS7KysrBnzx74+PigcePG2LVrF/Ly8gAUqhfq1q0LIyMj+Pj4gMfj4dy5c1i8eDHbWb17967YcwcEBEAkEuHVq1cltuHQoUPsTEtXVxd+fn7Yv39/uR1Stm7dKjNa53A4EIvFcHJyQlJSElauXAkigoqKCurXrw8iQoMGDeDj4wMiwqxZs0o8f1ZWFoyMjODk5FSu9zMhIQGzZs36bscPAHB0dCwyO+FyuayhXyQSYeDAgbhz5w4AIDY2Fnv37sW4cePQoEEDdqaprq6Otm3bYvPmzUhJSSlzO2xtbTFkyJBit/fo0QMuLi7lvc0ywzAMK2C+tZSkhvzPCpfk5GSIxWL88ccfcrdv2LABHA4Hb9++reKWlZ/ExETExsayHVxlIpFI0K9fPxARWrdujZUrV2L+/PmwtbUFl8uVUaVIycjIQKNGjSAWi3Hjxo3vbkN6ejqmTJkCoVAIIyMjbN26Fa9fv4a6ujrrmTRt2jT4+flBWVkZBgYGePz48Xdft7TExcWxnmh8Pp+dUQkEAujo6JR4bEZGBiwtLdG8efNvzgolEgmuX7+OadOmoW7duqwdx8vLCytWrJBRtZRERESEjHfYyZMnsWbNGpiamhbrVSVdatasWapZfkpKCng8HlatWlWqNlUWjx8/Zr8P6aCkUaNGcHBwAIfDQbt27b7Zj2VkZODixYuYN28ePDw8wOFwIBQK0bFjR+zZs6fUWgMLC4sis9gvGTFiBBwcHMpyexVCQUGB3FmLdPnWjO0/K1wAYOTIkVBWVsa5c+dk1t++fRs6Ojro1KnTD2pZIQzD4Pr16xg/fjz69++PP/74o8TRblWyZcsWEBF2794ts76goAD+/v4QCARF2vro0SPWHqGrqwtfX18sWLAAV65cKbXr45cEBgZCKBRi1qxZyMjIwKNHj2BsbAxTU1OEhITAy8sLFhYWsLe3x5w5c6pMb/0l0u9w2rRprMFWLBZj37593zz2r7/++ubs+enTpxg8eDC0tLQgEAhgb2+P4OBgLFmyBK1atWKfd5MmTUqcUTIMA3t7e1SvXh22trbg8XgwNzfHnDlzWCcBeYuuri7Gjh2L+Pj4Uj+T5s2bo3Xr1qXevzLo1q0bTE1NcfXqVaSnp8ts+/PPP8s1sHz37h2WLl3KGuOrV69eZKCXmZmJp0+f4tatW+ygoUOHDnB0dJQ7iJBIJLCyskK/fv3KeIc/nl9KuOTn52PVqlXw8PBA165dMWfOHJw9e7bcdoXMzEy0atUKRAR3d3eMGjWK/dygQQMkJSVV8B2UnvT0dLRt2xZEBFNTUzRq1IgdVRbnhFCVNGzYsFhvutTUVCgrKyM4OLjItpSUFJw+fRqBgYFo2bIlVFRU2NG8q6srJk6ciJiYmGKvm5eXh0ePHmHHjh1wcXGBnZ0du61v375sp2doaIhmzZph6NChWLJkCfbt24d9+/Zh9+7d2Lp1K2bMmIERI0aU2nBZEbx8+RIdO3Zk1SyloXPnzqhZs6ZcNd3ff/8NZWVlmJiYYMaMGVixYgU6d+4MHo8HLy8v5OTkIDU1Fbt374aDgwPrGbVw4UJs3rwZJ0+exJYtWzBo0CDWRiO1Z0hH49J1UhXQsWPHkJycjHv37uHIkSMYPnw4lJWVIRQK4e/vjzdv3nzznkJCQiAQCPD+/Xt8/vwZaWlpSE9PL7WH0veSlpYGPp+P5cuXy92emZkJdXV1zJkzp9zXOHfuHIgIffv2RZcuXdCgQQPW/iZdPDw88OTJE5w5cwZEhNWrVxc5z8KFC0FEJQ4MflZ+euEikUiwY8cOVq8v1QN/PYLi8/moW7dumUcb+fn5OHDgANq2bQt7e3u0atUK27ZtK+JqeefOHYwbNw69evXC5MmTv8uYWBq6du0KVVVVHDhwgO1YPn/+zBpU5amdqgqGYcDlcktUbbRp0wa+vr7fPFd+fj7u3r2LFStWoFevXtDT04O+vj6uXbuGT58+4fz581i6dCn69+8PR0dHmcA3c3NzzJ49mz1XdnY2bt26he3btyMwMBDdunWT8eyRt/zI51gapO7AR48elVmflZUFPT09tGrVqsjg6vz58xAKhTKdY0FBAbZs2QJ7e3toamrK2FTs7OzYQZXU7Xjt2rUgIrRq1Yr9LogIu3btKtLG5ORkLFq0CMbGxtDS0pLxJJNHdHS03N8wEcm4f1cWUVFRICKcOXOm2H3s7OwwatSocl9DIpHA1dUVNWrUQMuWLTFw4EDMnj0bW7duxcWLF3H06FHUqFEDfD4fU6dOxYgRI1gV88aNG7F+/Xq0aNECRIQZM2aUux0/kh8uXCQSCc6ePYsBAwbA2toaIpEIYrEY2traMDU1hUAgYH8EderUwYoVK5Cfn4/c3FxcvXoVixYtQp8+fVjjIofDQc+ePVGzZk0IhUKIRCKoqqpCU1MTenp6MDQ0RJMmTUrdvtzcXPTq1QtEBGNjY3h4eLAjkFGjRpXK8FtWnj9/XqI6pEOHDqhdu/YPi19hGAYikQgLFiwodp/GjRuja9euZT73x48f0aRJE5nORyQSoWHDhhg8eDBCQ0Nx6dKlbxpOo6Oj2Yh86VK7dm306tUL8+fPx8mTJ38aFWNJMAzD2m3q16+PwMBA3Lx5E5s3bwYRFWvwHzp0KIyMjIrVi+fm5iI2NhbJyckA/uc9+ezZMwDAoEGDUK9ePfYde/bsGYgIJ06cKLatKSkp8PLyAo/HkzsK/5LLly8jKChIxjttypQpxcZsfS85OTnss8jIyCgxDOHz589QUVHB/PnzK6UtUrKzsxEcHAwlJSVoaGjAxsZG5p2tX78+9u7dW6ltqExKKw8qJEI/Ly+PHjx4QBEREXTmzBmKiIig+Ph4NkpaJBKRhYUFcTgcSk9Pp8zMTNLW1iZ/f38KCAiQm832S+7evUsdO3ak2NhY4nK5VKdOHSIits50Xl4excfHE1FhjXV9fX0yNTWlGjVqUI0aNSgxMZHevHlD7969o6ysLLK2tqbIyEi6du0arV+/nvr27Ut8Pp/y8vIoLCyMxo8fT3PmzKEZM2Z869GUicWLF9Ps2bPp06dPcqPEw8PDycfHh168eEE2NjYVeu3S0qVLF3r+/Dk9fPiQjajPzs6mY8eOEYfDoR49etDmzZvJ39+/zOfOy8ujLVu2kIaGBhu1Xtao/by8PPL396fdu3dTvXr1qFGjRiQQCNgElFwul3JycigrK4uys7OL/OVyuWRqaio3VXxVZ59IS0ujEydO0MmTJ+nUqVOUkpJCYrGYhEIhrV27llq0aEF6enoyx5w8eZLatWtHsbGxpSpJm5OTQ8bGxtSzZ09atWoVde7cmbKzs+nUqVNEVJhkdPfu3fT+/fsSI7cLCgpo4sSJFBoaSiNHjqTly5cXW1Fz6tSptGjRIuLz+bRw4ULq06cP6enpfTPDdWnJz8+n1atX05o1a+jFixfE5XLJx8eHJk+eTOvWraPLly/TvXv3SFtbW+a42bNn0+zZsykqKqpUz+57efPmDe3Zs4eePn1Kz549o2fPnrHlDNTU1Kh27dpUu3Zt8vT0pG7duv0yBc1KnbGlvJLq2rVrcHR0lAkQky4aGhpwd3fHnDlzWD/6iuDSpUvF2mG2b9+O6tWrQ1NTk50Vfb1wOBy57VVRUYGlpSVatGiB/v37w8HBASKRCAEBAWjZsiUcHR3RvHlzbN26tYhaTSKR4OXLlzh+/Pg3R91BQUEwNDQsdvvNmzdBRLh3715ZH813k5KSghs3biA0NBQcDgcDBgxgR5vS2A7p0qRJE/zzzz/fPGd8fHyJgYLfw86dO+Hi4gIHBwfUqVMHtWrVQo0aNWBpaQkDA4Ni34GSFkdHx0ppa2nIz8/HlStX0LBhQ5m2Ozg4ICAgACdPnkR6ejp2794NIvqmE8PHjx/Z2feff/4JIsLMmTPh5uaGPn36IDk5mY39Wbx4canbuXbtWvD5fLRo0aLY2QjDMDh37hw6duzI5g/j8XgwMjJC/fr10aZNGwwYMACzZs3C9u3bce3aNXz8+LFUM/a8vDy0a9cOPB4PPXr0wJYtW7Bs2TLY29uDy+Xizz//hI6ODmxtbbF7924kJCTgwYMHGD58OIgIo0ePLvW9VjQFBQV48+YNjh8/joULF8Lf35+NITI3N0dISEilhxlUBJWmFjty5AiqV6/OdtaOjo7o1asXgoKCcOjQoSIeGj8Kaad/4MABXLt2TaZd69atY180b29vWFtbQ01NrVh98dcCysjICHp6ekWiu4kKXUUNDQ3Rrl07bNiwAR8+fGCve/DgQRARHj58KLfNc+bMgVgsrlSvPIZhcO/ePSxZsgSDBw9GkyZN2HgK6WJtbc1GLdvZ2bGeSdWqVcP8+fNZI3L79u3l3suLFy/Qp08fcDgcLFy4sMj2goICxMXFIS0t7bvVj+np6Zg1axY6deoEW1tbiMVimXvh8XjQ19eHlpZWkW0aGhowNDSEiYkJzM3NceTIke9qS0UgNRjv27cP27ZtQ//+/dkAQz6fD21tbTg4OBTbESckJLAOEDo6OujevTvWrl2LcePGQSAQgMPhgM/ng8fjgc/nY9asWWVSw969exd16tSRay+SR3R0NA4dOoQ1a9Zg1qxZGDZsGDp06AAXFxeZjANEhTFCtra28PLywogRIzB79myEhYVh7969OH36NG7cuIHp06eDy+Xi2LFjMteRejMKhUJcvnxZxmlBem6pk0nLli1x7Nix7w6SrCgePHiAPn36gMfjoUaNGiU6vvwMVIpwkaZO4fF46Nixo0zH+SuxYcMGEJHcrMK5ubnsiK5Vq1bsyGj69Olo0aIF+8OsVq0a7Ozs2EhvNze3IllevxRIKioqMDIygkgkgq2tLU6cOIFXr16xI/sXL15AR0cHgwcPLtc9ZWZm4tKlS/jnn3/w8uVLpKSksJ1Geno6jhw5giFDhrB5l5SVlVG/fn12YLB7927cvXsXf/31F+rUqSNzL3p6eli+fDnr9SORSLBr1y5Ur14dHA4H/fr1w9u3b/H69Wv0798fXC4XxsbGMDc3R5cuXWTa+erVK1Y4fSmQdXR00LVrV2zZsgXv378v9X2/evWKFRoODg5YunQp9u/fj+vXr+Pdu3dFvmOGYZCTk/NDR4gSiQQvXrzAkydPirhqMwwDJycnmJqa4u7duwAKO86rV6+ysS7SKPoviY2NxYIFC6CpqQltbW0sW7YMM2bMgIuLC/td1qxZE66urrC0tGRjXpo3b45du3Z9U8jn5+dj0KBB4HA44HK5mDx5Mt68eVNsLrLSkp6ejvv37+PgwYMYPXp0mWaaAoEAenp6sLGxgbOzMxuTInUekQ6KpL9Bf39/bNmyBS4uLqyw1tXVhbW1dbEDparkxYsXsLCwQPXq1REVFYV//vkHAwYMQNOmTdGxY0fs3buXdYF+8eIFpkyZgo4dO6J///4IDw+vFDuxPCpFuEi/sF8l3qU4IiIiQCSbCFEKwzDsiEpeCpnTp0+DiHDlyhUAhR1F27ZtIRaLMW/ePMTGxuLTp08IDQ2FhoYGNDQ00LRpUzay/OvRM5fLhZqaGng8HnR1dXH+/PlSjSQLCgpY42nTpk3lqoEEAgEMDQ1ZTywbGxtMmDAB586dK1FdlZeXh/Xr12Pjxo34+PFjsfvl5uZi9erVrBqKx+PBwMAAoaGhyM7Oxvjx46Gnp4e+ffvCzc2Nfa7W1tZYtGgROwP+8llI/69bty4CAgJw8OBBPH36tMT2vnnzhvWK6tevHxITE2W+z6r60X0LhmGwcuVKWFpasvepra2NqVOnyrjr7t27l/3Ovh6waGpqyrwfx48fR7NmzcDhcKCkpIRBgwbJ3D9Q6PW1f/9+9O/fHxwOB9ra2lixYgU2bNjAprdxcXHB9evXi217ZmYmXFxc2EDWLxd9ff1yOXl8zdGjR0FU6BZ98uRJ7N69G2FhYZg9ezYGDx4Mb29v9hlItQZaWlpo1KgRunXrhm7dusHAwAA2Njb4448/sHr1auzZswdnz54t4kp98+ZNrF69GnPnzsXkyZNRs2ZNcLlcjB49+oeGKkRFRcHS0pJ1iLCyskLv3r3ZTB1OTk6YPHkyOzNt3bo1O5N0c3OrkrZXinAhIgwfPrxCGvgjYRgGDRo0gJ2dXZEv48aNGyAqjIeRh0QigYGBAetGKE03c/z48SL7vnr1CiKRiPVOcXZ2xpAhQ3Dz5k20adOG7TjEYjGsra3ZH66JiQlGjhyJ06dPFxkZ5ubmYsOGDayw0tTURKdOnbBixQo8ePAAjx8/xoULF7Bv3z6sXLkSs2bNQkhIyDfTjXwPGRkZWLp0KUJDQ2VsYqdPn4a5uTnc3d3Rr18/Vsd+9+5daGlpwcHBASdOnEB2djaio6Mxffp0cDgctGrVCgMGDGBnWdLZso2NDXx9fTFlyhRs2rQJ165dY78/hmGwefNmaGlpQVdXF97e3qhZsyZEIhFUVFTg7u6OsWPHYuvWrXj8+HGlqEQkEgnevHmDw4cPY9GiRZgxYwbGjh0Lf39/9OjRg9Wve3t748CBA7h8+TImTpwIsViMZs2asd/169evYWdnx87q6tSpAx8fH4SFhRUZ8EiTZhIROnTogGPHjiEnJwcMw+Djx4+IiIiQsc98qTZr1qwZ3r9/j0uXLrHJKfv27ftNjcTnz5/x9OlTnD17Fps2bYKvry9EIhG7/enTp/Dx8YGzszOOHz9earXbjh07QETF2lULCgrA4/GwbNkySCQSXLx4EQMGDGA74iZNmsDW1hb9+/cv1fW+JDc3F3/++SfU1NSgo6OD8PDwMp+jIsjPz2e/H21tbRl1/s2bN9k+Ijg4mJ31MgyDv//+Gzo6OvDy8qr0NlaKcDl48GCFNO5n4NGjR9DR0YGhoSF+//137Nq1C1OmTGFjBXbs2FHssZaWlpgyZQoAoGfPnrC3ty/2B9S/f3/UrFkTQGGA4pe5hnJycpCcnMx2dHl5eTh37hzGjh3LBr8JBAIYGxuzhlCp/r1Tp064evXqT6M3Lgt+fn4wMzOT6wARGhoKosKs1QzDICEhAZcuXUJYWBjGjx+P1q1bw8LCQsY+pq6uziYmHDRoEBo0aAAbGxvY29ujfv36aN68Odq0acNmyZUOHsqax4phGKSlpSE2NhaPHz/GpUuXsHr1agwfPpwNhv2yTebm5rCxsUGdOnXY0eWXS7Vq1eDh4QEvLy8QETp27MgGQV6/fh22trYQCoUlqgkZhsHDhw8RGBiIWrVqsfaFL9tCRKhRowb69euHNWvW4OTJk+zsSZrss6CggI2BGT9+fJmeS0hICEQiEVJTUxEQEAA+n4/q1aujadOmICI0bdq0xFmRlLCwMHC53BKFka+vL+zt7WXe+4yMDOzYsYPteA8dOlSm9ksZNmwY+7x69+5druwSZUUikeDu3btYsmQJ2rVrx94Dn8+Hr6+vTC45hmHYHHvyVHj79+8HEbHq1MqitMKlTL5vrVq1KsvuPzV169aliIgIWrhwIS1ZsoQyMzNJU1OT+vfvTzt27KAbN25Qnz59ihz34MEDioyMZOvXf/jwQaaErLzrHDp0iP385X5KSkoyLskCgYBatmxJLVu2pOXLl9Pjx4/p8uXLlJCQQAkJCfTx40dq06YNTZgwgWxtbb/7GaSnp9P27dvp2rVrxOVyqUWLFpVexCgnJ4f27t1LwcHBRcrTEhENGTKEgoKCaPv27TRnzhzS19cnfX19atq0qcx+WVlZ9OrVK3rx4gVFRUVRVFQURUdH0/Xr1yk+Pp6tt66hoUH379+nlJQUcnFxoREjRpCJiQkFBASQq6srzZw5k3JycigtLY3S0tIoPT2d/f/z58/0+fNnSk1Npc+fP1NaWhoxDCPTDj6fTyYmJpSTk0NqamqkqalJDMNQTk4OxcbGyuzP5/Np2LBh1LJlS8rNzaXnz5/T8+fPKS4ujlRVVen48eN05MgRdn8Oh0P79u0jIyOjYp8nh8NhSx3Pnj2bnj59SkePHqXMzEwqKCigrKwsUlJSopSUFHrw4AHt2rWLJBIJ1a1bl86cOcOWFebxeGRoaEhERN26dSvTdwqA8vLyqGbNmpSenk6zZ8+mCRMmkJKSEp0+fZqmTp1KjRo1ou7du9POnTvlutxKJBI6duwYGRgYlFiGePLkyeTh4UGDBg2ipUuXkra2NqmoqJCZmRllZWWRuro6tW/fvkztl5Kbm8v+v2vXLtqzZw9ZWVlRnTp1qHbt2uTi4kKenp4V+vvo3bs37d27l4gKy0Z37dqVtm3bRn/99Rc1a9ZMZt+3b99SXFwciUQiOnPmDNnZ2cls79ixI2lpadGJEyeoXr16FdbGclORkupXRSKRID09ndXNBwYGQklJqUhNic+fP8PNzQ0mJiasYa1Hjx4leu/4+/vDxsYGANCgQQMMHTq0Eu+k9Fy4cAFaWlrg8Xhwc3ODs7MziArTq1TmyCc+Pp7VqxdHgwYNyu3YII+cnBzs378fjRo1AlFh2v1169ahXr16ICoM5tTX14eVlRXq1asHDw8PtGvXDn369MHIkSMxbdo0LFiwAGvWrMGuXbtw8uRJXL16FWfOnGHP2bhxY4wYMQITJ05EYGAg5s2bh3Xr1uGvv/7C8+fPUbduXVSvXh3VqlUDl8vFkCFDZGYkUpVMbm4u3r17h7t375ar5tCtW7dkvP++tPFVr14d3bt3x5QpU2Tq1Ujx8PCAq6trma+5ceNGEBF69eolt3hYQUEBunbtWmIxsoCAAHC53FKpo3bs2AElJSWIRCI0a9aMVRFLy2B/DxkZGbh06RKCg4MxYMAADB8+HJ6enmz9IGVlZXTp0gU7duwoV6bkr7lz5w5GjRrFzqqloRIjRoxARESEjL3wyZMn7My0uEBQacqgyuSHR+j/yuTk5MDT0xNcLhe+vr5YunQpJk6cCD09PWhoaMhk/pVGQMtzDnj9+rVMzYYGDRpg2LBhVXYfxfH27VuoqKigVatWMp3By5cv2VxJlZWbKycnp8Ss1ZmZmdDU1PxmivfSkp6ejh07dqBNmzas+62Pjw8ePXoEhmFKHYeTlZWFf/75R0bwnjt3DmKxmM0eceXKlWIHGR06dIC7uztycnKwbNky6OjoQCwWY+TIkZgwYQJsbW0hEong6emJGTNm4Ny5c+XKyfVlPqt3796BYRhERUVhz549GD9+PFxdXSEUCtGwYUM8ffoUvr6+8PHxYYuJ7d+/v8zXzMnJKTH3WF5eHgwNDTFixAi526XquNDQ0FJfMz4+HvPnz4enpyc4HA5MTU1LVaGzOAoKCtCpUye5TjG+vr64fPkynj17hnnz5rEJLPl8Pry9vdnsB9/LmzdvsGzZMvD5fNahQ0dHB926dUNgYCDWr1/PFsaTV0zt/v37ICIcOHCgQtpTHArh8p3k5uYiLCwM9erVg4qKCgwNDTF27NgiPyKJRILWrVtDWVkZCxcuRFxcHFJSUrB582YYGxvD2tqaTcXh5OT0UwiXCRMmFDEWSvnw4UOJKTQqgoEDB8LIyEiuAFu0aBE4HE6pEiWWhgYNGsi4o7Zr1w6zZs3Cpk2bcOzYMezduxebNm3CihUrsGDBAgQGBiIgIABDhw5Fnz590LFjRzg4OMgE33bo0IGtF5ScnIx58+ax24urELpr1y4QEZvcMjU1FdOnT4eJiQkbV1S9enX4+vqyqUKEQiE8PDwQFBSES5cuISIiAkePHsWaNWsQGBiIQYMGoX379ujQoQO6dOmCHj16wNfX95sdzKhRo2BpaYkaNWrAwsICvr6+8PT0RJ8+fSrFhifNAr1ixQqZ9Xl5eQgMDASXy8XIkSPLlfbo48ePqFevHpSUlLB27dpyp076/fffweVyERISguvXryMpKQkfPnxASEgI65TyJbGxsVixYgVq1qwJbW3tCk1AOXbsWKioqCAsLAwzZsxAkyZN2JmTdFFWVkbr1q3ZonwZGRnw8PCAsbFxpZfm+FcJl7y8PCQnJ8uNS/kZyMrKwtChQ2WSLxIV1vP+0mjs5OT0U3jb1ahRo8TkfZ07d0bjxo1l1jEMg7/++gu9e/dG48aN0alTJxw4cKBc30lkZCT09PRQq1Yt7Nmzh618J62+WBElZqXcvn0bISEhmDhxIrp16yY3eE+qKpPmvatVqxacnJzQtGlTtG3bFk2bNkW1atVkhBSXy8WoUaPwxx9/QE9PD1wuF927dy9WKObm5sLe3h6GhoYyAXy3bt1Cw4YNoa2tzWazkEgkePjwIUJCQtCxY0eZhJRS1YmJiQmcnZ3h4+MDHx8feHt7o2XLlvDw8ICHh0eJWR5GjhzJuvEWV1SvIklNTUWbNm1ARBg2bBgyMjLw9OlTODk5gcfjITg4+Lt+29nZ2WwE/rdyn8nj0aNH4HA4cmfLubm5qF+/frHeoykpKXBzc4OxsXG5C7l9TXp6Otzd3cHj8dClSxcsXrwYI0eOhLq6OrS1tWFmZgYejwc1NTU2W4KJiQlUVFTYEInK5F8hXN68eYNBgwaxemM1NTWMHDlSrl73Z+Djx4/Yv38/du/eLfdH+7MIF2NjY8ycObPY7YMHD5b5MeXl5bEVIWvXro1+/fqxgWhubm7lSkr47NmzIlHU2tramDt3bpXEpeTk5CAuLg6pqakldmzz589nvfPCw8Nx8+ZNzJw5E2KxGFwuF0pKShg+fHipXL0/fPiAJk2asPcqHY1Wr169xHT9BQUFuHfvHu7cuYMPHz589+xixIgR4HA4OH369HedpywwDIM1a9ZALBbDwsICIpEINWvWRERERIWc/9OnT+BwOOWqMJuUlAQ1NTUMHz4cERERuHjxIk6cOIF58+bByMgISkpK2Lp1a7HHS20hJf2mykp2djZWrlwJR0dHqKurw8LCAtOmTcP79++RkZGB+fPny5RT0NLSqpLM00AlCRc9PT34+/tXSdW/R48eQVtbG8bGxpg9ezb279+PmTNnQl9fH4aGhhWmNqlK6tev/1MIFx8fn2JHYgUFBTA1NcWgQYPYddOmTYNAIMDevXtl1A6XL1+GpqbmdwXQPXv2DAcPHsSpU6eqrO5HaYmOjgaXy8W0adOKbHv27BlUVVXL7LbLMAxu3ryJ4OBgBAYG4sSJE1XuTn7//n0cPny4Sq8p5cWLF2jZsiXGjRtX7npNUhiGQUREBMaPH49q1apBKBSWe+D5df48qVpy0KBBJdpyHj16hFq1akFFRUWu3bWyyc/Px+3bt1GvXj02C8Hs2bOxZMkShIWFYfv27Th06FCZir59i0oRLmpqauyD19fXx4MHDyqksV/zZZCj1F4h5cOHD7CysqqSYKGKpn79+sUaNauSEydOgIiwdu3aItuCg4NBROyIMiMjAxoaGsWWa12/fn2F2kh+JoKCgqCmplZsvrwxY8ZAX1//p8kA8KsTHR1dKvXYmzdvMHv2bNSsWZONFxo3bhzu379f7mvn5eXh+vXruHfvHl6+fIm4uLhvDnY2bdoEsViMunXrVphRv7zk5+dj0aJFsLa2RrVq1aCqqioTC+bv719h16o0tdjjx4/h5+cHLpcLLpdbbNW370GanqW4GhNbt24FEVWJvrgiqVev3k8hXBiGYfXubdq0wcaNGxEWFsYGvX1ZqOvChQsgIjx69EjuuTIzM8HhcLBu3bqqan6V0bdv3xJrBO3Zs+c/5+hSWZw/fx5EhRknevToga1bt+Lp06e4ePEiduzYgfnz52PUqFFwdXUFUWEm8379+uHMmTNVbovNzMxE//79QUQYNGjQd8/ApKSkpCAiIgLHjh3D2rVrERQUhBkzZpQ52FcKwzDsc5WXQaS8VEoQZbt27QgA5efnk5mZGUVFRdH48eMpIiKCduzYUZZTlcijR4+IiMjT01Pudm9vbyIievLkCVlZWVXYdauCkgLEqrINK1euJFdXVwoNDaVBgwYREVGTJk3o8OHD1LFjR3ZfiURCRFRsrQ+hUEhcLpcKCgoqvd1VjaamJl25coUYhpFbiyQ6OpoEAkGlBp1+i5iYGDpy5AhlZGSQra0ttWvXrtg6KxWFRCKhR48eUVZWFtnY2JCuru53nS83N5dGjx5Nrq6u5OXlReHh4dS/f3+ZfTQ1NcnU1JSsra1p165d5OvrSyoqKnLPd/v2bTp06BBlZmZS7dq1qXfv3qSmpvZdbfySUaNG0b59+2jr1q3k5+dXIeeUSCRkY2NDiYmJRFT4G9XX16ecnBxasWIF/fHHHzRy5Mgy1T9KSUmh2bNnk42NDbVt27ZC2lkmyiKppPVQpH7YSkpKEIvFaNmyZUUIRBbpiLA4if348WMQEc6ePVuh161sHB0dMXLkyB/djCLk5OQU676YmJgIJSWlYmt+HD58uEpSTvwIrly5AiKSa5/IysqClZUVevXqVfUNQ+F3NmjQINapQEdHhw2CXbt2LZ4+fVrhI3qGYbB+/XqZxJsCgQC9e/cud4b0lJQUtGjRAkKhEHv27GHrunz48AF///03nj9/LqOWvHv3Lvz8/KCvrw9NTU14enriyJEjYBgGnz9/Zr3S9PX1Ubt2bdarqqIqP0rf9/I4DpTEgwcPQEQICwvD8uXLMXv2bGzcuBFv377FsGHDwOFwUK9ePdy8ebNU5zty5AgMDAygoaFR4Y4bv7S3WFJSEkQiEYKDg+VuHzduHLS1tX86A/C3cHR0/K763T8Kf39/aGlpFXFvjYmJgZWVVZEYgH8LDMPA29sbampq2LJlCxtdfv/+fbRo0QJisbjS7I7fok+fPlBSUkJoaCjS09ORk5ODIUOGyGTHNjExweLFiyvMJjRnzhwQEXr27IkLFy7g0aNHWLp0KQwMDGBlZVViBm15REdHo06dOtDU1ETbtm1lYjjkCfS9e/eCz+fD0tISM2fOxPz589kMCWPHjoWXlxc0NDSwf/9+1kkiPDwcDRo0AJfLxe7du8t97wzDICsrC2PHji1RZV9epEk7peEMurq64HK5UFZWxoIFC3D9+nU4OjqCw+Fg+PDhRWzRUhITE9ny7e3atStT+YrS8ksLFwBsArx169axo+rs7GwsXboUHA6n2Ajvn5lfVbikpKTAyckJfD4f3bp1w4IFCzBw4EAoKyvDzMwMb9++/dFNrDTS0tLQpUsXNu2GNEbG2NgYFy5c+CFtkrq+btiwAUChMbp169ZQUlLCmDFjUL16dbi4uLD1VwYOHFju4EIpUs85ee62b9++hZaWVpk85+7fvw9DQ0NYWFggIiICKioqGDVqFA4dOgR3d3dYWVmhbdu2cHR0xMqVK/Hy5UsIhUL06dOnyIxs9erVrGCSJtd98+YNK3i+LFvQvXt3th/bvHkzOnbsiPbt28PHxwetW7eGl5cXWrZsiWbNmqFhw4awtraGnp5ekRg2aTLaimLNmjVsWw0MDLB582bExsYiICAARIRly5YhPz8fISEhUFNTg7KyMnr06IEjR46wg54DBw6whfG2b9/+3d95cfzywiUvLw/+/v7sFNfd3Z2d+o8dO/aX9ND5HuGSnZ2NnTt3Yvr06fjjjz/w5MmTCm5dyWRkZCAkJAT29vbQ1NSEtbU1Zs+eXaR2yL+VZ8+eYeHChQgKCsLBgwcrPQq6JAIDA6Gtrc2mrpE6uEjVxGFhYeBwOGymCComXUhZCA4OLtFzbvLkydDU1CyVKi41NRUmJiaoV68ePnz4wLZfWk7g4sWLEAqFaNasGTp37gwul8vWC9q2bZvcQm8mJiYQCoUoKChAQkICTExMUKNGDRw5cgT5+flYsWIFiAqzVTdt2hRbtmwBEcHd3R3t2rVDhw4d0KlTJ3Tt2hXdu3dHz549MXjwYEyaNAl//PEHVq5ciR07duDEiRO4evVqhRZKzM/Ph7GxMXr37o3Xr1+zZRSsrKwwY8YMdO/eHVpaWqym5sOHD5g/fz7s7e1B9L+y8kRUJUUcK124JCQkYPXq1ejYsSMsLCygrKzMfnkV2fE/fPgQkydPhp+fH6ZPn16uZH4/Cw4ODuUSLuHh4dDT0wMRwczMjE3L3blz55+mrLSCqmP06NGws7NjPzdu3FjGNV9a0C4qKgoMw8DW1ha9e/cu17USEhJw7tw5tGnTBs7OzsXud+DAARDRN3PSJSQkoH379lBTU2MzEnh7e6NZs2Yy+3056o6MjGRLkRMVJhr18fFBaGgonj9/DoZh4ObmBg6HA6AwlYuqqirevXvHnkPqfr9v3z42y0FZZnQxMTFy6ytVBBcvXpRx/wcK60oNGDBAJjtDz549ERUVJXPskydPMHPmTHh4eGD37t2VNlv5kkoRLoaGhvDz82OLHslbtLS0fslZRVXg4OCA0aNHl+mYmzdvQigUwsfHh80jlJubi23btkFNTQ0+Pj5V8kIp+HlYunQplJSU2I68WrVqMvbJoKAgqKiosCPdwYMHlygY5PHx40f06tVLplQwl8tFcHCw3N/34sWLIRAIiu188/LysHTpUqirq0NLS0vGpqKrqyvj/i6P9u3bw9PTE69fv8aSJUvQrFkz1r5kZmYGMzMzEBHi4+NhaWlZJIdfQEAAtLW1kZOTAx6PBy6Xi3379sktg52RkYG4uDg8f/4ct27dwrlz51ibkLq6Ovr27YvDhw/jyJEj+P333zF79mzcunWrlE+2KIcOHQIRydUC5Obmsk4EIpEIYrEYS5Ys+aG/+UoRLioqKuyL1rJlS+zZsweZmZnsC8jlcivMK+PfSHmEi6+vL+rUqSM3e6+0OFBpPUgU/Dv4+PEjhEIhxo4dC4ZhULNmTbZEQWxsLPT19WU6Vy8vL3h6epb6/CkpKbC1tYW+vj6WL1+OV69esQZnDocjU/AOKIz7kHrOZWRkIDY2Fs+ePWNTqezcuRO1atUCl8vFiBEjZGY3Hz9+BNG3M/muWLECPB4Pd+/eZWOuMjIyEB4ezhb54nA46N27N8RiMf7880/22MePH0NNTQ2TJk0CALi7u7OzIAMDA9jZ2cHc3JwtQVHcwNnU1BRBQUEy5blFIpFMJczyqKTu3btXYizK5cuXQUQIDw/H+PHjWa+yH0WlqcVev35dxEPm8+fPCAoKAp/Ph5GRUflb/S+nrMIlMzMTXC632FTkBQUFMDIywsSJEyuqiQp+EUJCQkBUmKG5T58+UFZWxuzZs2FkZARzc3PWjf/p06fgcDjYuHFjqc8dFBQEZWXlIirozp07s7OFy5cvs6lsmjRpArFYjG7dusnMdL5cPDw8ikTQR0dHo2vXriCib6q7o6OjoayszAZvL126FAzDIDMzE0OGDCliuFdXV8e8efMwadIktlJpSkoKK4z9/Pxw9+5dTJw4EWPGjMGMGTOwcOFChIWFYdeuXThx4gQuX76M+/fv4+3bt/j06RMKCgoQHR0NbW1t1KlTB0OGDIGtrS2ICrOXiMViVK9evcxerAzDwMnJCc7OzkWOzc3NRfPmzWFjY8POGAcPHiyjVqxqKt3mcuPGDaxatQrXrl1DdHQ0+vXrx75YP2v24h+Nvb19mYRLQkICiAhHjhwpdp+GDRtWaGEtBb8Ou3btYjs36SKt0SORSBAeHg4zMzPUqlWrTFHkZmZmcovaZWVloV+/fmxHrqGhwarClZSUoKWlhXnz5iE8PByXL1/G3bt38fLlS3z48EFGjZObm4vAwEC2Nkn16tUxYsQIrFy5ssg1k5OTsWTJEujo6LBxdVIhUq1aNYhEInA4HLRt2xZz5szBb7/9Bm1tbfZ5KCkpISAggC3sJS19cPHixbI/cAATJ06EtrY26wrMMAwePHiAadOmwdjYGESFWQZKG/c1fvx4mJqaolu3bhAKhbC3t8eOHTvw8OFD7N27F87OzhAIBDh37hx7TGpqKoyNjdG6desfoh6rNOGSmJjIeiZ8vejr62PhwoUVcgP/Ruzt7TFmzJhS75+fnw9tbe1iZybJyckQiURYsGBBRTXxX4dEIsHZs2cxbNgw9OnTB3PmzKkU3/8fBcMwePLkCXbv3g0bGxv2dyjtYF1dXcuUzJFhGLlqlzdv3mDFihX4888/Ub9+fdSpUweLFi3CkSNHQETw8/MrdWXGs2fPsn2GqqoqzM3NWSF57tw51s7QuXNnCIVC8Hg8DBkyBO/evUNKSgqWL18Oe3t7aGhosI5E0sXY2BgcDgccDgd8Ph8jR47Eq1evWMcgPp+Pnj17lrtTNjExwbhx4+RuS0tLA4/HA4fDKbHkwZc8fPiQrYhKRDJxSlJV2+XLl4scd/LkSRnX66qkUoSLrq4uq5Ns3LgxDhw4wJYDvXr1aoU0/Ht48OABRo0ahVatWqFTp07YsWNHpXh3lJeyChegcKSkrq7OGvOlMAyDsWPHQiAQVLrr4a9KYmIi3NzcQESwtrZGkyZNoKKiAj6fj1WrVv3o5lU4UkEaFBSE2bNn49q1a+XqRHV1dVn7RHp6Onr27AkOhwOBQMDaXdXV1REREYG7d+/KuEGXluTkZBk7IsMwbF0bqT2kXr16WLp0qcz7LZFIUFBQAIlEwt5bUlISrl27hs2bN2PatGnYtGkToqKi4OfnJxOfoqmpienTp5das8IwDHbv3g13d3cIBAKIxWLweLxis2xkZWXB1NQURIWBoIMGDcKtW7e++R0UFBRgxYoVrBfol4K3R48e2Lt3b5GyFtL8i+WpHPq9VIpw0dLSgrGxscwU7WeAYRjMnDmT9Wjr1q0bGjduDKLC+iM/S/2X8giXpKQk1K5dG9ra2ggKCsI///yDw4cPo3Xr1iAqW2lYAPjnn3/g5+eHhg0bonnz5li5cmWFFTn6mWAYBh4eHtDT08O5c+fYH3hqaipGjx4NIsKxY8d+cCt/TsaPHw8dHR0kJCTA29sbqqqqWLt2LTIyMliD8te2ldLUsymOjx8/okePHjI2E2VlZUyZMoWNJyooKEBISAirivt6KU4N9fHjR/z111+4cOFCmVSDDMOwBchatmyJ4OBgNG/enM007ODggPDwcBnBUVBQAHNzc/Tu3RuzZ89mBY2VlRWGDx+OgwcPlji7+/DhA/r06cP2tR07dmRnNRwOB7Vr18aAAQMQFhYGb29vWFtbV3m5BuBfEERZFqQBUfPmzZMJbnvw4AHMzMzQoEGDn8Jd187OrszCBSgshDR8+HAZbz1HR8cyjVoYhsGECRPYl33QoEFo164deDwezMzM8PLlyzK3q7wkJiZi27ZtWLNmDWsYrmj++ecfEMlP08EwDJo1awY3N7cKv+6/AanHmYWFBYgKc6s9f/4cderUYTUY48ePh7q6Ory8vL6rvtPnz59Rp04d6OvrY8WKFYiJicHz588xffp0CAQCdO/eHa9fv2brlQwZMgQhISHo0KGDzO9h06ZNct+jtLQ0JCcny3WfzszMxIEDB+Dn54chQ4Zg6dKlOHXqFCIjI9l4mA0bNuDGjRvQ1NSEmpoaOxOWLsOHD2evu3LlShAR65ZcUFCA8PBwjBo1CtbW1qytytXVFYGBgbhy5YrcYNy///4bdevWBYfDwaBBg3Djxg1s2rQJw4YNQ7169Vjt0aZNm8r93L+H/4xwYRgGdevWRYcOHeRuP3fuHIjoh6Xq+BI7OzuMHTu23Menp6fjyZMniIyMLHOHvHHjRhARQkJCZH5ob9++Rc2aNWFra1vpo6C8vDyMGzcOSkpKMt49derUqbCKhFKmTJkCIyOjYmOupK61Zc2H9TOQnJyMZcuWoVu3bujRowc7q6hInj59Cl1d3SJeWM2aNWOvFRgYCFVV1e8aHMyfPx9KSkpy66Hs3r0bRIQFCxaAiDB69GgsXbpURqjUqFGDFYJS12wp69evZ9+1GjVq4OHDh+y2v//+mz2PnZ0dHB0d2Yq30ntWUVFBhw4dIBaLYWpqikWLFqFr165F3JV9fHzYfF4lDR4jIyOxbt06dOvWjbWJqaqqwtnZGX379kVwcDB2796NO3fuIDk5GStXroSWlhbU1dVlCpFlZmbiwYMHP2zA/J8RLu/evSvRsMUwDIyNjYstdlXcMRkZGcjNzcXbt28REBAAa2trmJmZoX379jh16lS5vtjvFS7lhWEY1KlTB507d5a7/fr168WO8isSf39/CAQCzJ07F4mJiZBIJDh//jwaNmwIdXX1Eiv+lZUxY8agdu3axW4/deoUiAgxMTEVds2q4OzZs1BXV4dAIECzZs3QuHFjcDgc6Ovrf1cgnzw6dOjARoi7ubnJdM4A2NQy8mKwSouNjQ369+8vd5vUbbhr166wsrJiO3MOh4NevXqxdkiGYbBq1SoQ/S9bsVQwDRo0CJs3bwaXy0X37t3Zc0sDFy9dusSuk0gkiIyMRHh4OJSUlODs7Iy6deuCiKCjowMulwsnJyfMmjUL5ubmMkKXy+XCx8cHSUlJpbrvgoIC3Lp1CwsXLsSAAQPg7u7OZuGQLgYGBuxskYh+muD0/4xwiYqKAhHh1KlTxe5To0YNBAQEfPNc0ijiGjVqsF+oNGX3yJEjMX36dFYH+vUoqTT8KOHy4cMHEBUfqMYwDExNTeHt7Y2tW7eyOZ4qEmmZBGlRsQ8fPmDVqlX4448/sHHjRlhYWKBPnz4Vdr0NGzaAw+EUey9jx46Frq7uD80RVlZevXoFsViMNm3ayBi5IyMj4erqCh0dnQrL9ZaXl8cGCxb33owYMeK749qUlZWxbNmyYrd3794dLVq0gEQiYXOQXb9+Xe6+vr6+sLe3B8MwbLqX9u3bo02bNlBWVpYZvLx//77EQamOjg4CAwMxaNAg1KtXD4BsShpvb294e3uzs6qBAwdCSUkJqqqqmDRpUrk9ElNSUnDr1i3s2LEDs2bNQq9evaCuro5atWr9NCEe/xnhkp+fD0NDw2Jr09+6dQtEhD179pR4nry8PPj4+IDP56N3795Yt24dxGIx67kiDUJjGIbNYLpz584ytbVu3bo/RLhIZ3dHjx4tsi0+Ph4+Pj4yIyYOh4POnTuXehRWGn777Tfo6ekhKysLEyZMAJ/Ph0AgYEdrYrEYfD4f2dnZFXK9jIwMaGpqokOHDkVG1rdu3YKysjKmTZtWIdeqKsaNGwc9PT25humEhAQoKSlVSChAfn4+unXrxrrFyqvl8/z5c6ioqCAwMPC7rmVhYVEkVYsUhmHg4OCAnj17AgCGDx+OOnXqFHsuaQyLNAZl8+bNcHJygoqKCrZv315kf2NjY0yZMkXuufr16wdLS0sMHDgQDg4OMttiYmLA4/GwcuVKbNu2DUSEtLQ0xMfH47fffoO6ujpEIlG5Y2l+dv4zwgUozNgqFAplvNgePHggY3yT17F+SWhoKHg8Hs6cOQOg0DjH4/EQExPD1sn4cjTi5eUFFxeXMrWzbt26xfrIVyYSiQSWlpZF1A/p6emoU6cOm21627ZtSE9Px/r166Gjo4MGDRpUmCv3oEGD0LBhQwQEBIDL5WLu3Lms58zLly9Z776yCuySOHbsGAQCAWxtbbFkyRLs2rULgwcPhkgkgqura4XbKSqb6tWrl6jT79q1Kxo3bvxd15BIJOjXrx94PB6OHDmCSZMmgYgwYMAAXLlyBY8ePcLChQuhq6uL2rVrlzq25Uvi4uJw6NAhHD58GBMmTICqqqpcj05pAs7w8HAAwLBhw2QSdn6NtMhgaQdFnTt3hoeHh9xtd+/eBZ/PZ9P2S2c9kZGRcHJyQrVq1djiZE5OTjLHpqamolmzZtDX18f48eMxY8YMzJs3DyEhIdiwYQN2795dKdqBquI/JVxycnLg7e0NLpeL+vXrs53ll4u1tXWR4y5duoTOnTtDV1cXHA4HampqcHV1RfXq1WFkZAQHBwecPXsWM2bMgEAgkJkdrVu3DkRUJrXKjxIuALBkyRLweDwZNcCKFSvA5XLh4OAAY2NjmRG+1I9+69atFXL9oKAgqKmpgcfjYe7cuUW2BwYGgsfjoX79+hVyPSm3bt1Cly5dWCOsiYkJ5syZU2F1z6sSY2NjufVUpEgF+PcwYcIEcLlcdqbPMAxCQkJgYmLC/paUlJTQv3//MqvgUlJS0KdPHxk3ZmnsjIWFBfbt24fc3FykpKQgJCQEqqqqaNmyJWtr2LlzJ4hIrvEfKBQWderUKbW6euHChVBRUSnWkWXfvn0QCoXgcDhQV1eHm5sbW2/lzp07WLZsGYhI7qxI6sZta2sLMzMz6OrqyjgM+Pj4lPKp/Xz8p4QLUKjWktY3+HIxMjLCsGHDiuThWbp0KYgK42CkaSi+fOG//KykpMQa75o3b86WGyAqW6qbHylcCgoK2DoRTZs2RVBQEPT19SEQCKClpSXXW6tVq1YVVsI6MjISHA4HXC63yGj3w4cP0NfXh7e3N4i+L2aiOPLy8pCenv5TuKSXl3bt2qF+/fpy7yE/Px8mJiZy07aUllevXoHH48lVreXn5+P27du4evXqN9PqyyM7OxvOzs7Q1NTE8uXLERcXh/fv32PJkiVQU1MrEkDI4/Hg5+cnM7vMycmBkZERXFxcZNrAMAw2bdokY9MrDdIy1iXVuomLi8PIkSMhFApZg/7QoUNZ1+JJkyaV6Z2SSCRo164d2rVrV+pjfjb+c8LFy8sLRIXBTUSEWrVqFau/v337NogIU6ZMAcMwbFbTgQMHspXfpC6MX7o9cjgc8Hg86OjooG7dumjSpEmZ2li3bl04Ojpi0qRJmDlzJhYvXoybN29WmReIRCLB3r170aJFCxgaGrLT/uI8pkaPHo26detW2PWbNm0KIsLgwYMRERGB6OhobNiwAZaWljAyMmLVIBXt9fRvITw8HERUJLvAl0HEpU07Io+BAwfCwMCgUsqHb9y4ERwOR+4gRhqTNH/+fGzcuBHbtm2TqcXyJREREdDR0YGqqir69++PyZMnw9HREUSEoUOHlqmjl9p0SpMxOjExEQsWLICrqyvs7e3Ru3dvuWlZSoOnpye6detWrmOlSAVqUFBQlQ+YKkW43L59G2vXrsXgwYMxb968n8I17vHjx7CzswNRoQ9+t27dQES4cuVKsccMGDAA5ubmSE5OxoEDB2Bubg4igo2NDXJyclhXTz09PTg7O7NujkZGRjKzGi6XC1NTUzRu3BgODg6wsrKCgYEBNDQ0oK2tDRcXFwQEBODq1auQSCSYNm0a7OzsYGNjAzMzM1Zw6erqok+fPt9dLbCsuLu7o23btsVub9y4MVq3bl1h15PGlnzpcsnhcODj44O3b99i9erV4HK5iI+Pr7Br/ptgGAbjxo0DUWHU+Jo1axAaGgpXV1cQ0XflmIuPjwefz8eSJUsqsMX/o0mTJmjTpk2x21u0aIFWrVqV6lxxcXGYNWsW7O3tUaNGDXTo0KHc4QF79+4FUdWWrfDy8kL79u3LfXxCQgJ8fX3Z39Dvv/9ega37NpUiXL5eNDQ05Oobq4IHDx7IFC3r1KkT8vPzwefzYWZmJveYo0ePonXr1uDz+XLrNkj951VVVVlVkTTdhJqaGgYPHswWJdLW1kaDBg2gqqoKLpcLJSUlqKmpsZHNBgYGMtfgcDjQ1dVF48aN8dtvv+HGjRvIzc3F5cuXMW3aNNafvm/fvkhISCjx3jMzM3Hw4EEMGTJEpuhSWZG668r7Yf39998gKqzcV1FkZWVBW1sb3bt3x8WLF3H69Gm2st6nT59QvXp1dOzYscKu9z3k5uZiz549GDBgAPr164cVK1YUye/0I5Dmu5JWXuRyuWjZsqVMkF15uHHjBoioSCxLRVG9evUSY83GjRsHW1vbSrl2SaSlpUFFRQX9+vWrsmsGBQVBS0urXEHLMTExMDY2hp6eHo4ePYp58+aBqGqj9StFuIwaNQr79+9HQkICW7+FiCrFOJqZmYkNGzbA398fAwYMwLZt25CdnY07d+6wqi+p/eDt27cACvNwERF69OjBnufBgwfo168fq/qSzjg0NTXRq1cvrFq1Cnfu3EFubi727dvHGt0EAgEbwKSvrw8nJyfUr18fAwcOhLe3d7FeJl/z4MEDzJo1Cx4eHtDX12dzE0kFjrW1Nc6fP89Oc7W1taGtrS1XaFy8eBGdO3dm22hkZAQOh4MtW7aU6xlnZ2fD1dUVGhoaWLx4MaKiovD27VvMnTsXKioqaN68eYX71u/evRscDgctWrTAkSNHcP/+faxZswbVq1eHrq5ulaahKY7nz5+zMR6Ojo5o1KgR+Hw+1NXVS4ynqmqkCRwrAmkmC+lv6VswDFOma0tr1ReHp6cnWrRoUerzVQQfP36Ei4sLVFRU8Ndff1XZdaW2nrJmpUhNTUXdunVhYWHBeq4yDIOhQ4eCz+eznq6VTZXYXJSUlGBgYFBk/4SEhO+KV/jnn3+gp6cHDoeDhg0bon79+mxnKlUlWVhYFKknDQAqKioQiUTQ09OTiaDV09NDQEAAPn/+jEmTJkFbW1uuUIyJiWE9xwYPHowjR47IdLBSt96BAweW694kEgkiIiIwffp0uLu7s220trbGhQsX8PHjR3Tq1AlEhakkcnJy8ObNG3Tu3Jm1KS1cuBCvXr2CRCLB0KFDQUSYMWNGuXTlnz9/hr+/v0z2WJFIhOHDh1eaR9WJEyfY71Qq7Dt27FglgiU9PR07duzA4sWLsXPnziLuyBkZGTAzM4Otra3MKP79+/do164dRCLRd+XS+lmRps7/VjocaclfgUAADocDZ2dnbNu27ZsqqbVr14LL5cq1CUlj0SrKM7E0vH79GjVq1IC+vn6Fpx76Frm5uVBRUSmTGjMvLw+enp7Q1NQskskiPz8fPj4+EIlEVSJgqkS48Hg8uLq6AijsNMPCwtgRn6GhIbZu3Qpvb2+kp6ezx3w52klPT0doaChatmzJlkeOiYmBhoaGzIwEAF68eIGGDRtCVVWVtXvIsxf4+vqCy+VCT08P7u7umDRpEu7cuSOzz5s3byASieDr6yuj6khNTUWHDh3YH468MgJhYWEgKj5KuKwkJSWhY8eOMkLm4sWLWLFiBYRCIaytrSEUCmFsbIwdO3YU+REzDMPG+VhaWuLIkSPl0j1//PgRJ06cwMmTJys0eLI4GIbBy5cvcfPmzSqzsXyZ1lz6V0NDA6tXr2b3WbduHTgcDl6/fl3k+OzsbBgbGxcp8/tvYPv27eyAZunSpdi/fz9u3Lgho6KV2h7r16+PpUuXYs2aNWx27iFDhpT43mVlZaF+/frQ1dVFWFgYkpOT8enTJ6xatQpaWlpwdnausvIYt27dgp6eHqytrfHmzZsquebXtG3bFlZWVggODsbBgwdLjHthGAaDBg2CQCAo1i6bnZ2Ntm3bQklJ6btVpN+iSoSLtOa0kZER613F5/NZ+4F0UVVVxdmzZ9nRqoGBQZFYFGkMyW+//QYNDQ25+u2EhASIRCI2LTVR6QOmvubkyZMQi8VQVlZG586d0blzZygrK0MsFuPw4cPw8PBg035fv34df//9NwYMGCDT1ookMTERHTp0YIWMjY0NVq9ejcaNG+P333//ZsDfixcv4OnpCSKCk5MTjh49+ku73VY0a9euZb87qVt6ZGQkO/OTZmDw8fEp0f162rRp0NfXr5I2VyUvXryAl5cXbGxsiiRwPHz4MF6+fAkul4tx48YVea+kWcm/laU7KSkJXbp0KZKTq0ePHuUKxiwv0n6ouJr1VcG5c+fg4eEh0w/Onj1bZvCdlpaGDRs2sIGc27ZtK/GcOTk56NChA4RC4TeDxr+HKhEuAQEB0NPTg56eHiwsLDBv3jxWheTm5gYej4fp06fLGLYdHBwgEomgo6PDeg3Vrl2bfai2trYljgyl1fYEAsF3F8p5//49goOD0aJFC7Ro0QJBQUGsLjMzMxMTJ05kE/cREUxNTbF06dJK9ZJLTEyEr68va5sRiUSws7ODj48PGjZsCH19fdSoUQNTpkwp4kLMMAzOnz8PDw8PEBUWW5KnOvyvkZubi2rVqsHf37/INoZh0KdPHxgZGSEvLw8tWrQo0U30zz//hJqaWmU294fDMAw+ffqEe/fuoVmzZrCzs8OECROgo6NTrLq7adOmaN68eanOHx0djV27dmH37t0/pNbS3bt30aBBA3A4HAwfPpxNF/MjYBgG8fHxmDVrFogIXbp0wfnz5zFgwACoqKiAw+HA29u71LWHcnNz0aVLF/D5/EqrUvlTxLlII76fP38ONze3ItM1aY2EL19YCwuLIl4lEokEoaGhrMuwQCBAbGwsXr58ydYLr0jevHmDqVOnonXr1mjfvj0CAwOxa9cuXLt2rcpGWAkJCRgyZAirZixpkZZ0VVZWho6ODubMmYOLFy/CwsKi3Ck6/k1IMyAX5wl1584dEBH++usvjB8/Hrq6usWqaFq2bAl3d/fKbO5PxeXLl0FUmJb+y6zCX7Nw4UJoaGhUXcO+k4KCAoSGhrIenj+iXPDXHD58mHU8srS0xJw5c4oEf5eG/Px89OzZEzweD4cOHarwdv4UwqUkMjMzQURFPEh8fX3h6OgIiUSChQsXsnUPpJ2oNKL8SwO0VNX26NGj727XqlWrwOVy2Upw0kjcL43dAwcOrLDssyXx+PFjNnGmg4MD6tevDy0tLRARzM3Noa2tDSUlJbRq1QrOzs6oVasWxGIxOBwOoqOj8ezZM2hpaaF58+bflRb9V0caX1OcalH6fu/ZswfPnj0Dh8NhA2y/ZP/+/SCSn+7j30yTJk2goaEBb2/vYveZPn36L6kufP/+PWvz/Bkq7EZGRrJxcd9Dfn4+evToAaFQWOHxcz+1cMnNzWWL66xdu1Zm2/Tp01ldrLRD19LSYkuGSpeaNWti6NChGDt2LNq2bcse8z0C5uzZsyAqTKefmZmJwMBAVgCam5vD2NgYc+bMgY6OTqXPCAoKCmBlZcVW45PCMAy2bt0KDoeDadOmgYhYZwjgfznBGjRoAKAwf5pQKESfPn1+iqDXH8HVq1dBVHzBOOn3fuPGDQCFediICO7u7ggLC8O2bdvQuXNncLlc9O7d+z/3HC9cuMAO7uRlc8jNzYWZmVm5PSh/NAUFBfD09ISOjs4vnVDya3Jzc+Hl5QVVVdUK9Yj7KYWLRCLBsGHDWG8vQ0NDGXfXhQsXyggQLS0tLF68GMOGDZOZoRARHjx4AKAwzbZ0dqOhofHNOgrp6emIjY2V67br5eWFhg0bgmEYvHr1CkSEOXPmAPhfPZLdu3fj2bNnUFVVxYwZM77reZTE0aNH2XuWZ5zr1asXatSogVq1ahVJ49+iRQsQEc6ePQugMAqZw+Fg8uTJldbeslKVzgYMw6BWrVpo1qxZkUSjubm5aNKkCerWrSvTphMnTqB58+bsd1CnTh2sWbPmPydYpPTo0QMcDgd16tTByZMncejQISxcuBD9+vVDjRo1wOPxqjRWpKJJSkqCpaUlHB0df8mkpsWRkZEBV1dX6OrqssXVvpefTriEh4ez1eQMDQ1lVAv5+flYvXo1G+Xu4+MDU1NTNmeQdNHX18eHDx9QrVo12NrassZ2oVCI6dOnl/jDf/z4Mbp3784GfopEIvj7+7Mjlfz8fHA4HKxYsQJAoVeQtra2jBBycnKCn58fAGDUqFEwMDCotE4yICCAzQYgz3FBGpdgbm6OCRMmyGxLSkoCn88Hh8PBsGHDIJFIsHz5chBRiYWZKpu4uDhMnjwZBgYG4HA4MDMzw6xZs6rE9fn8+fMQCARwdXXFwYMH8fz5cxw4cADOzs4QCoXF1t7Iycn5V3U25SU+Pp5V0UoXHo8HDocjExhsaWmJvn37IiwsDI8fP/6lPBbv3bsHoorNSvEzkJSUhDp16sDU1LRC3P5/CuGSn5+POXPmsLW4ORwO2znn5uYiNDQU9vb2rAqMy+Vi165dMDExYWcFGRkZyMzMZHPpfKku09TUxPDhw78ZsHnr1i2oqanBysoKS5cuRXh4OObNmwdjY2Po6+vjxYsXyMnJAdH/0ij06NGjiPdL06ZN2cJF0riAyup4JkyYAEtLS9SpUwedOnUqsl0qXIhIrl/7gwcPWOGkpaWFs2fPYsqUKaxtoap59eoVjIyMoKWlhfHjx2PNmjUYPnw4VFRUYGNjI1NZsbK4dOkS69YpXdzd3eXGMykoyvXr17F27VpMnz4dvr6+6NSpExYtWoTExER8+PABBw4cwPjx49GwYUPWQ9Ta2hpz5879IV5h5UFdXb1CCq79bEhjlP7555/vPtcPFy7Dhw9nje5isRhDhgxhj+/Zs6eMQHFwcMCqVatYN+bq1avLrdh47tw52NnZQVdXt8SKdF/CMAzq1q2Lhg0bssGcMTExuHz5Mi5fvowaNWqwCfPs7OzYjnz48OGoXr06O/JKSEiAQCBgE/vNmTMHIpGo0tQkUuEhtfssX75c5lq+vr5sIaySchTNmTOHna21atUKffv2BZ/PR5cuXXDs2LEqK/Pr5uYmV4i8fv0ahoaG6Ny5c5W0AygsTnbp0qUKywiQlJSExYsXo2XLlmjSpAkCAgJ+ijQ2P5KMjAycOXMG/fr1g1gsBpfLRbt27SqlnEJFkZubC0NDQ4wfP/5HN6VC+fjxI3R0dNCrV68KOd8PEy6ZmZls7i9DQ0OsWrVKplNcv349q84JCwuTm7tq1KhR0NfXlxtImZiYCJFIJLfglDykxty//voLT548YWuGSBdpEaRXr15h7dq14HA42L9/Py5dusTaOy5cuABjY2MQFSas9PX1hb6+vty4iYoiPz8fVlZWsLOzY21O1atXx4ABA9jnq6WlhVOnTiEqKqpE9UNiYiIaNGgAosJArZCQEFblqK+vj4CAANaGVRlI1Q3FJdmUZkP+VUa3X3Lz5k3o6OhAKBTC19cXvXr1go6ODrhcbplqi/ybSU1Nxbp162BpaQmxWIxly5aVK2ljZTNq1CgIBALWsePfgrQUc8OGDbF79+7vHlBWiXA5efIkWyZXJBLJqKy+lJISiQQ7duxAvXr1wOFwoKKiIleVVVBQgDVr1qBGjRrseRo3bswmC3z37h0aN24MLS2tb2YOliIVZg8fPoSmpiZq1aqFTZs24dmzZwgPD2cDDgMCAlBQUMB6sXl5eaFWrVoyAaA9evTAkCFDoKysDCIqtv52RfH48WMYGBhAJBLB09MTderUYa9tYGAgk4yzXr16JQaVSiQS8Pl81KpVi1137949Nq6DqDCtR3G1Xb6HDRs2gKj4qp2xsbEgIpw4caLCr12RJCcnY82aNfjtt9+wZMkSPH36FLq6umjUqJGMLjs7OxsjR44Eh8MpsfTDf4309HSMGTOGHdT4+vpi/vz5uHDhgkyKqB+BNK1TWFjYD21HZZCfn4/g4GA2Zk5PTw/BwcGl7kO/plKFy/nz59mGcrlcGBkZoW7dunBzc4OhoSHU1dVhYGCAunXrwtXVlU0NIy1D/HWuL6Cw85Oqy7p06YKAgAAoKSmxxkIbGxu2UNe1a9dK/SB27doFosL6FzVr1iwyG5IWDlNXV0dWVhYkEgm2bdsGV1dXmVgagUDAeqVZWFigX79+IKr8OhCJiYmYN28e6tevDxsbG7Rt2xYWFhbQ1NREYGAgLl++jEOHDrE5nkJCQoo9l7OzMzgcThHBLk0vT0SVEkwmHTkVFwn99OlTGe+2n5HQ0FCIxWLw+Xx2BC5NeS8v0E0ikaB27dpVqu77Vbh16xZmzpyJli1bsk4CUpf7c+fOfbeq+dq1a+jatStUVFRYJ47t27fLnd3HxMSgY8eOICpMDfQrOSCUhkePHrHZ3dXV1dm+mMfjQV1dHWvXri3z864U4fLbb7/JCJWuXbvi5cuXGDNmDIyMjGS8SHR1ddnZjJmZGYKDg0s0vEs7oAMHDrDrpNXfpF5mv//+e5mdCpKTk9kyxhs2bCiyfciQIWx+n127dslsGzx4MExMTPDs2TMsXboU8+bNQ3h4OJvq3NLSskrrQACFudfU1NTw5MkTmfXSQlJ8Pr9Y47hU0PJ4PDg7O8tE70odGr6Vv6g8xMXFgc/nY+nSpXK3T5kyBRoaGt/Mn/aj2Lp1K4gIo0ePZp/t58+fUatWLRARpk2bJve4uXPn/utTxXwvBQUFePToEZYsWQJbW1tW/fvbb79h0aJFCA0Nxfr167Fjxw4cPHgQZ86cwb179xAXFydXpb5t2zZwuVzUqlULc+fORWhoKJtzb+DAgazwyMvLw59//gkVFRUYGhpi3759/zrBEhsbCz09Pdjb2+PixYtgGAa5ubnYuXMntLS02PRbTZo0wf3790t9/5VWLEwgEKB169YYOXKkjEBRUVGBt7c3Dh06VK6Rh6ura7ERwNnZ2dDW1sakSZPKfF4AbKLLqVOnsq7FaWlpCAoKYt1zdXR0ithx7OzsMGLEiGLPO2HCBFhbW5erTeWhoKAAenp6GDdunNztKSkpEIvFmD9/frHn2LJlC+rUqcPOCE1NTfH06VMMHDgQRITz589XStsHDRoEsVgsk7W5oKAAmzdvBo/Hq9SYodJw+/Zt+Pn5wdTUFMbGxujevTuuXLmCgoICWFpaolu3bkV+fG3atIG1tTVEIpHcWdmSJUsgFour6hZ+eRiGwZUrV+Dn5wcjIyNoamqyI215C4fDQYcOHdjjY2NjIRAI4O/vX8SmIx28Tp8+HRMnToSVlRW4XC7GjBnzU5dv/x4mTZoELS0tudlEpDVlZs+ezZohVFVV0aBBA/j5+WHBggU4evSoXNVZpQiX/v37o3HjxqxtRVlZGW3btq0QvbJYLC52ZAsAXbp0gZeXV7nOLVW7SN2XHRwcoKqqCh6Ph5kzZ+Ljx4/g8/lF9K2Ojo4YMGBAsecdMWJEuarn3bt3D1OmTMGgQYMwZ86cUts5Pn36VGR29zWurq4ltllKeno6hgwZwgoZgUBQqWlNsrKy4OPjA6LC7Aq+vr6wsLAAEaFfv34VXpSsLGzatAlcLheWlpaYOnUqZsyYwc5Kxo4dCyKSWy89ODiYtYHJq0Xi7u5e6mSOCopHIpEgMzMTnz59QmRkJG7evIljx46hXr16aNKkCbvf77//DlVVVZlOLy0tDVu2bEHXrl1Z+6mBgQEGDhyI27dv/4jbqTKMjY2LHYgCQIMGDdCtWzdkZ2fj5MmTWLx4MQYMGABXV1e2JIVIJMLYsWNlgtMrtcxxnTp1ZFKOVATa2tqYOXNmsdubN28OX1/fcp2bYRg4OTnBxcUFgYGBGDFihIzv/axZs6CkpFREwk+ZMgWamppy1TXZ2dnQ1dWV6zJdHDk5OejRoweICNWqVYOzszNbJnn27NnfnJZmZ2eDy+Vi+fLlcrdLJBKYmpqW+EJ9zZ07d8DhcKrE/ZJhGFy4cAEDBgxA27ZtMWzYMNy8efOHqiOePXsGLpeLoUOHyox2GYZhUxERya/QGBcXByUlJbnfSWhoKIioUhIHKijExsYGY8aMYT/7+PgUyVUoTZFUrVo1tGnTBnw+/z+TZUEsFhfbVwBAt27dii0vwTAMYmNjERwcDE1NTairqyMuLg5AJQmXVatWVVrCRn9/f5ibm8vNRvvq1StwOBy25kZ5OHXqFOssILVXJCQkIDAwkM3T9TWRkZEQi8Vo166dTB6xz58/o3PnzlBSUipTPMOgQYOgpKSErVu3sp5TaWlpmDlzJoiK5lmTR8eOHWFrays3EeXhw4dBRKzDw7t373DkyBEkJydDIpEgMTERT58+LeLyq66ujp49e/4nI9HHjh0LfX19ue+dRCJhZ1fF2aLmz5/Pej/99ttvmDNnDho2bMh6IP7b9Pg/C5mZmeBwODJ21E6dOhUpP56YmIg2bdqAqLAkurKychW39NsUFBTg6NGjGDZsGAYMGICVK1fKDcMoK7Vr12aDvuVd08LColSF7z5+/Ag1NTU2W/0PD6IsKw8fPoRQKETHjh1lDNIPHz6Era0tzM3Nv7vz279/P/T19VnPCS6XC5FIhBkzZhQ7mgkPD4eysjJbVEzqhSISicpUkCc2NhY8Hq/YkUSvXr1gYWHxTf//W7duQSgUwsfHBy9evABQaJzctWsXNDQ04OXlxXZogwcPZkfeX5d8/pJly5ZBKBTCwsLihxYZYxgGR44cQcuWLaGiogINDQ1069atTN6BZcXJyanEhItTp06FSCRCzZo1i9hVcnNz4enpCSMjIwwYMACGhobQ0dFB69atceLECYVgqUTy8/Ohra2N6dOns+uKqyIqkUjYQYC0cu6P4P79+xg3bhy6deuG0aNHIyIiApGRkaw3l62tLZydncHj8aCmplZsDReGYUqlRl66dCkEAoFc9Z/U9bq03q6TJ0+Guro6UlNTfz3hAhQmC1RVVQWfz4e7uzsb6GdlZcV2pN9Lbm4uDhw4gEWLFmHDhg349OnTN4+Ji4tDcHAwmjdvjmbNmuH3338vc8Df6tWrwefzi32GFy9eBBHJddP+mvDwcDY2xdLSkk3D3759e5nze3l5oX79+jh69CjCwsJw8OBBNGjQoMjoDiiMWpcGmPr4+FR5+VeGYRAQEACiwpQsixcvxpw5c1CrVq3vnrWWhLOzM/r27Vvs9gkTJsDU1BQ6OjqwtLREaGgo/vnnH2zZsgX169eHUCj8pRM2/sr4+fnJZOrIyMiAsbEx7O3tZQTM58+f4e/vDyL6ITawgoICDBo0CEQEIyMjtGrVis3yrqamBktLS5nAzXfv3qFjx44QCoW4e/cuuz4iIgLdunVjQyRq1qyJ5cuXF1tOIzMzE87OzlBXV0dQUBDu3buHq1evYujQoWzewdLy/v17CIVCGBoaolWrVr+ecAEKPZ5CQkLQt29fDBgwAHv37v1X1CL5888/oaqqWuxoVup0UFrniOzsbOzcuRPTpk3DnDlz5BbCko7kpEkZ8/PzoaGhgdmzZ8s9J8MwOHToEExNTUudXqeiOH78OIiITRwqRZpJm8fjya1r/71Mnz4d6urqSEtLK7ItLy8PxsbGGDp0KF6+fIlu3bqxqXSICtPpVOasSkHJHDx4EEQk8148evQIxsbG4HA48PDwgI+PDxvv0qNHD4jF4ip3eZ8xYwZ4PB7Wrl3LzjgKCgowfPhwEJHcwU1ubi6qV6/Objt8+DAEAgFq1qyJBQsWYOPGjejZsyf4fD68vLyK7SM/f/6MkSNHQkVFhX1vjYyMsGjRojLbnq5cuYJp06axMXW/nHD5tyKthlhcaomQkBDw+fwKyVoqJTMzE66uriAiDB06lHU//FaHuHPnThBRlRREk9K6dWu4uLjI3ZaVlQUtLa1KKRkQHR0NsVhcZNaXlZWFfv36gc/nywjupKQkPH78uEoSbSoomYyMDIjFYkycOLHI+vXr16NTp07w8fHBrFmz8O7dO7x58wZEVOHOSCWRnp4ONTU1udk8unfvDhMTE4hEIrmZwWfPng1VVVWkpqZCVVUVXbt2LZLlQprte8GCBSW24/Pnz7hx4wbu3Lnza6R/UVB6CgoKUL16dTRp0qSI7Sg6OhpGRkYllpH9nuuuXLkSAoGAHb0Ul15eivRHWJWeTtra2iXmi+vZsyeaNWtWKdeW2tVUVVXRs2dP9O3bF1paWhAIBEUCaxX8XMyfPx9cLrfUxbDq16+Pbt26VXKr/sfJkydBRHLV+u3atWNVTPLS/Etz7oWGhoLP57PeWl8jdYaqKi+40soDLimoEng8Hm3bto3u3LlDDg4OtHTpUjpy5AhNnz6d6tevT0KhkJYuXVop1x01ahSFhoZSZmYmERG1bt2aTp06VewxlpaWZGNjQ126dCEPDw9auXIlffjwocLb9iUCgYBtnzwyMzNJIBBUyrXbtGlDL1++pAkTJlBsbCy9efOGBg8eTM+fP6devXpVyjUVVAwTJ04ke3t7GjRoEOXn539z/65du9LJkycpKyurClpHlJubS0REWlpaRbbZ2dnRrVu3iIgoJyenyPazZ8+SnZ0dPXjwgOrVq0eGhoZyr9G2bVuKjo6m1NTUimt4RVCRkkrBt3n48CF69OjB6u7V1dUxZsyYSlezMAyD4OBgmXillStXFrt/cnIyNm3axMYGcDgceHl5VVqwY//+/WFhYSH3/PHx8TLlDhQo+JI7d+6Ax+Phjz/++Oa+U6dOhYqKSpUlynz9+nWxQbZv375lg5jv378vs00aOrFmzRqMHDkSNjY2xdprpcl5q8qWpFCL/eRkZWUhISGhyuqpSDl9+jRbwZOISpX6PCkpCX379oVIJKo054q7d++Cz+ejb9++Mu9ZXFwc3NzcoKOjUyUVKxX8mvz222/g8XiYNm2a3BLmQOG7JBaLMWPGDKSnp2Px4sWoVasWxGIxTE1N8dtvvxWrevoevLy8YGFhgXfv3smsT0hIYEMj3NzcsG7dOuzZswd9+vQBn89H+/btkZ+fj/DwcBCR3KJ2DMOgUaNGVeoFpxAu30FBQQFiYmLw/v37f2WsQmpqKh4+fFjkZS+JLl26yKTaqAz27NkDoVAIVVVVdOzYEd7e3uDz+dDR0fnX1dhQULHk5eVh9uzZEAqFsLa2xoULF4rsM2LECGhpaSEqKgr16tWDUChEnz59sHz5cowePRoaGhowNDSssFrzUqKiomBqagotLS1MnDgR27Ztw9SpU6GrqwsDAwOsW7cOzZs3Zwd8VlZWWLJkCTvwlEgkcHBwgJmZmYxtKS0tDaNHjwYRsWVJKptr1679uq7IP5L8/HwsWLCALQ9M/5/qZuPGjf8qIZOamopdu3Zh1apVOH36dKlmL927d4eZmVmlqxPevXuHWbNmwdvbGz4+PggJCZHJjqBAQUk8ffoUjRs3BhFhsL8/kp8/x7tXrxAYGAg+n4+FCxdi4MCB0NLSKlIgLz4+Hra2tnBycqrw3/uHDx8QEBDAlu3Q0NDAmDFjZOLlMjMzkZKSIvfasbGxqFu3LogIjo6O8PT0ZPMjrlmzpkLb+iUMw+DNmzfYtWsXWrZsyWajUAiXMlBQUIBOnTqBz+dj4MCBOH78OA4ePIhOnTqBiIq4O/6KSCQSBAcHs15j0kR+5ubmOH36dInHvnnzBmKxGAEBAVXUWgUKyofk0iWscXSEOhG0icAngiqfj7Fdu+L9+/dQUlLCwoUL5R4rDRm4fv16pbSNYRhkZ2ezAuTevXuYMGECevfujcmTJ+Px48fFHpufn49Dhw7Bz88PXbt2RVBQUIVXb83OzsZff/2FOXPmoF27dmxafqLCUghCoZDN9qEQLqVkx44dICIcP368yLalS5eWKVXCz8qMGTNAVFhB8927d2AYBjdv3oSXlxcEAoHczL9A4fSbYRgsWLAAXC4XJ0+eLJPtJT8/H0eOHMG4ceMwZswY7Nmz518RGPtfJzIyEmPGjIGenh54PB5q1KiBBQsW/NiqkqtXAxwOwOfjHRHGEiGUCJ95PIDDwcv/zwLx7NkzuYdLJBIoKSmVWHSvIsjLy4Ofnx+ICsvBe3h4sDOC4cOH/5Ay0JcuXYK1tTWbPd7LywuBgYE4ceIEli5dCi6Xi27duuHVq1cK4VIWmjRpglatWsndJk3yVlIOqp+dhIQECIVC/P7770W25eXlwdnZudi0MHw+HyoqKmjZsiUMDQ3ZVNxNmzbFb7/9huPHjxebRufZs2fsC2ttbc2msjcxMSl1bIKCn4979+5BW1sbenp6mDJlClavXg0/Pz8oKSnBycmpQhIvlpkrVwoFC1GxC0MEtxLSLGVlZYHP52P16tWV2tSAgADw+Xxs3LiR9ZDMzc3FypUrweVyMWvWrEq9/pekpaVh5MiRbOqlO3fuyMTMSGvhjBgxAgUFBXj//r1CuHxNVlYWzp49iyNHjuDVq1cy23R1dUt0Zezfvz8aNWpU2U2sNKSBlMV5XEmrVH5dW0Za/tjHxwe+vr6oVq0aO03+smyqVHgcOnSInfKnpqbCxMQEtWvXlhEkjx49gouLC7S1tcvkVPBfRiKRYPv27XBzc4OKigp0dHTg7+9fxG5QVW2pWbMmnJyciiTzvH//PjQ1NcuUt6rC6NQJ4PNLFi58Po4JhcWWyti4caPc5JcVSXJyMsRiMYKDg+VunzhxIjQ1Ndlg69jYWFy/fh3h4eHYuXMnwsLCEBYWhrVr12L9+vXYsGEDNm3ahMOHD+PGjRuIiYn5pmYgPz8f7969w+HDh2FmZgYVFRWEhoYWCcR8//49NDQ00LdvXzAMA4Zh0K1bN4VwkSKRSDB37lzWmCZdWrVqxb5ElpaWGD16dLHn8Pb2Lnexsp+BWbNmwdDQsNjtt2/fZhNnvnz5EnPmzMGECROwbNky2NnZwdbWFo8ePUJeXh6ioqKwdetWDB06FJ6enrCysoKSkhJrw2nTpg1evnyJ5cuXQyAQyK0xn5SUBDU1tRJr+CgoRCKRsNVUW7VqhSVLlmDm/7F3nWFRXG30nS3sLr2DVGmiUhQVFSygKHZFRMUulth778beG/aCGo3GGhNr7Iq9xBp7VxR7oUnZOd8Pvrlh3V1YmpLE8zzzKHNnZ+7Mzt733recM3o0nJ2doaenp5U9t7Bw4MCBbHnwBBG1rzpeJCcDIlG2hkXYlBwHfY5DTEyMymB6+PBhmJqaIjw8vFC7unnzZhCRigBXVty8eRNEhD179mD27NmsFkbYRCKRCsu5ts3S0hI+Pj4IDQ1Fq1atEBoaCl9fX1hZWamcMyQkRKNeEc/zCAsLg42NDZuULl68mH3uu3FBJrMtEaFPnz64du0a4uPjsW7dOri7u8PW1hZPnjzB4MGDYW5urnE5f+fOHYhEIixfvvwb9L5gsGrVKohEIty/fx+nT59GbGysShaWQHIZGRnJslk8PT0hlUohk8kgl8tBlKlY6ePjg169eqnMjj59+oTAwEAoFArY2tpCLBbDxsYGtWvX1tqnrl27omTJkoV52/8KCN/NL7/8orI/NTUVTZs2hYGBwVetAZo6dSpMTU21ZlT9+eefXz9GGR+vk2ERtr7/F+1zdXVFixYt4OfnB6JMPfnCdumtXbsWRISUlBSN7a9evQIRITQ0lMVIr169iqdPnyIxMVHluWc1JiVKlED9+vXRpUsXDBs2DBMmTEDPnj3RtGlTVK9eHU2bNkXPnj0xYcIErFixArt27cKlS5e0fo9btmwBEWHLli0AgFu3bqlc7z9vXITg06xZs9Ta4uPjYWNjg+7du+Px48cwNTVFYGAg9u7di2PHjuHGjRs4ceIE3N3d4erqmm0FbEZGxjcJwumKd+/eQU9PjxkJIoJCoUDXrl3x5MkTeHp6wsnJCXp6eliyZAl78ePj49GjRw8QEcaPH49FixYxluLOnTuruNE+ffqEatWqQV9fH1FRUZBIJEzlUdPqZfTo0XBwcPhqz+CfAJ7n8eLFCzx+/Jj54n19fREWFqbx+JcvX0IqlWYrEZ4TPn78iKdPn+L169fYu3cv9uzZky1p6ezZs6FQKDQKrAGZgWEiwqVLl/Lcp1wjFysXiETgk5Jw8uRJdO7cGbVq1ULLli3x+++/5/o3rFQqsWvXLkRERCAgIABhYWHYvn17tkwWly5dAhFhx44dGs8nJN4IMZnsIKQnE2XKzpctWxYKhQJCvcyMGTPw6tWrXN0TkOlZsLa2RtOmTZnxuXnzJipXrsyKOv/zxmX06NEwMzPTWrU7duxYGBgYIC0tDatXr2ZaCVm34sWLa9U32b59O6pVq8aWmYGBgdi8eXORqovheR4dO3ZkfaxZsybWrFmDIUOGQKFQQC6Xw8jICBzHYe7cuRo/36BBA3h5ebH7mjdvHgwMDCASiVC/fn2WypyUlIT69euDiGBgYAB9fX1YWFhAKpWiZ8+eKqmTAQEBqFOnzld5Bv8EbNiwgc2ghSyiMWPGgIgQExOj9XNBQUFo1apVnq6ZkJDABiPBrUlEkMlk6Ny5s0YpAsFts27dOo3n7NSpExwdHQuNKkgrdIi5QCIBmjUrkMulpKSwd93Pzw8dO3ZExYoVQUQIDg7ONmuucuXKKF26NN68eQOe53Hx4kUMHjwYdnZ2EBJmDhw4gHfv3uHkyZPYtWsX1q1bhwULFmD8+PGM6RkArly5grCwMPa9ValSBcHBwSrx0alTp+bq3jp06AATExONjAW62gMOACgHfPr0iUxMTOjjx49kbGyc0+FFCp06daKbN2/S6dOnNbZv376dmjVrRvv27aOmTZuSh4cHBQcH04cPH+jTp0907949unHjBv3+++/UoEEDlc+OHTuWJk6cSNWrV6fIyEjiOI42b95MR44coaFDh9L06dO/xi3miFOnTlGVKlUoJiaGJBIJjRs3jh4+fMjaOY6jGjVq0IkTJ+jNmzdkZGSkdo49e/ZQgwYN6MaNG1SqVCkiIkpISKBNmzbR8uXL6cKFC7Rt2zZq2rQpAaAzZ87Q+PHjaf/+/SSRSKhdu3b022+/UWJiIllZWZGpqSn99ddf5OfnRzY2Nrm+J47j2P+VSiXdvHmTPD09SSqV0qtXryglJYWcnJxyPI+211/Tfh1+Krk+NjExkeLi4kgqldKDBw/IwsKC7OzsSCwW05s3byguLo4AkKenp8r9ZL3/M2fOkIGBAfn4+KjsF/D27Vv69OkTubq6qrV9/vyZjh49ShzHkZmZGZ09e5bEYjFt2bKFJk2aRD4+PnT48GGSyWQqn2vcuDGdOHGCtm3bRsHBwcRxHGVkZNDixYupX79+NHfuXOrfv7+OT6uAcOIEUfXqmWZEGziOKDaWqEqVfF+ud+/etGrVKtq6dSvVr1+fPfvDhw9TWFgYhYWF0U8//aTxs7du3aLq1asTEZG+vj49fvyYFAoFASBDQ0OKjo6m3bt305YtWxj5JRGRXC4nMzMzSkpKovT0dBo0aBANHTqUjIyM6MaNG3TgwAE6fvw4xcbG0uvXr9nnvLy86Pr16zneU3JyMg0ePJiWLFlCq1atok6dOqkdo6s9+NcblxEjRtCqVavo2bNnpKenp9Y+efJkmjRpEnl7exMR0fHjx0mhULD2jIwMaty4Md24cYPu379PYrGYiP4esKdOnUrDhw9XOefcuXNp4MCBdOTIEQoODi68m9MRnTt3pmPHjtGdO3dIJBIRz/N0/vx5+vDhA7m6utLYsWPp8OHDxPO8yguZFVeuXKGyZcvS2bNnqWLFiiptPM9Ty5Ytadu2bVShQgWqU6cO1alThypXrkw9e/akFStWkJ6eHk2fPp1OnjxJW7duJSIiR0dHqlChgsYBMTeIi4ujs2fPkp+fHxUvXpwOHTpEiYmJFBYWptPntV1f0/7c9FWXY8+ePUuPHz8moswBwMvLi7UBoFevXtGxY8dIX1+fTW6y/mQ/ffpE+/fvp4oVK5Kjo6PGa+zcuZPS0tLI399f7Zhnz57RuXPnaOTIkTRlyhQKCwujatWqkbW1NX369Il69epFMTExFBUVpfK5Dx8+UKNGjejEiRPk6+tLLi4udOHCBYqLi6O+ffvSvHnz8v295glLlxL17EkkFhNlZPy9XyIhUiqJFi8m6t4935d5//492dnZ0ahRo2j06NFq7QsWLKBBgwbR48ePyc7OTuM5zp07R/Xq1aN3794REZGRkRH5+vpSfHw83b9/n9zd3emHH36gevXqkbm5OZmZmbGx6ePHjzR9+nSaO3cumZiY0OnTp8nFxYWdGwDdvn2bLl++TFKplLy8vKhkyZLZ3tPVq1epVatW9ODBA5ozZw51795d43eosz3QZYn0T3aLXb9+HUSEpUuXqrW9f/8eDg4OaNKkCYgIv/76q8ZznD17FkSEP/74g+1r27Yt3N3dNWoo8DyPUqVKISIiosDuIz+oUaMGWrZsqbV9zpw5LBajrUJ43rx5kEgkWv23nz9/xurVq9GyZUuWlSeRSFCuXDkEBASouBmlUik4jiswFtft27eDiFjCRbVq1SAWiwvk3IUNQX7X0tJSawyjSpUqICL0799fxb177949eHl5oXjx4lo/CwDjx48HEeHQoUNqbXXq1EH16tUBAOvWrYO3tzcMDQ1Vvi+xWIxKlSphyJAhOH36NHvnMzIysHPnTkRGRqJevXro1avX142zaMOJE5muLyEGIxJl/q2B+DGvEJRTHz58qLH9zZs3ICKtekB3796Fi4sL7O3tER0djWbNmkFPTw96enpo1aoVjhw5kq1rned5LFy4EHK5HKVLl863sN+bN28gl8uhr6+vIq2sCd+JK7Ogc+fOkEgkGDduHOLi4pCamopdu3ahTJkyMDMzw7Jly0BEWhlRlUoliAjLli1j+7y9vdGnTx+t1xw0aBDc3d0L/F7ygoiICPj7+2tt79WrF5ycnGBra4sGDRqoMTXHxcXBwcFBZzGzjIwMFX8vEUFPTw8+Pj6YNm0aY0MYMWJEvu5LwI4dO1S+H4Gy558AQVu9YcOGWo+Jjo5myRHm5uZo1qwZatasCY7j4OjoqLXaXIAgtaApddjLy0tjzUdSUhJu3LiBpk2bwszMDG3btmVUIHZ2dmjWrBnKlSsHfX19iEQieHt7o1OnTli6dGm2GUhfFcnJmVlkWuKt+YHwzmkbMxISEkBE+Omnn9TaLl26BBsbGxQvXpzxdZUsWRKzZ8/WyUi8ffuWxXp69+6tNZ6cG/A8j0aNGoGI0LVr12yP/S4WlgVLly6l/v3704wZM8je3p5kMhk1bNiQJBIJHT16lHx8fIiI6P79+xo//+jRIyIisrCwYPtkMlm24jwfPnwguVxeYPeQH7Rp04bOnz9PsbGxam2vXr2i9evXU5s2bWjVqlW0f/9+qly5Mq1evZqOHDlCU6dOpQoVKhAR0axZs3S6nlgsJnNzcyIiGjp0KNWrV4/MzMzo+vXrNHz4cPrzzz9JKpVmK1iWGwhLd/zfXSSIKv32228Fcv7ChEiU+ROMj4/Xekx8fDwZGxvT7du3qVOnTvTp0ycyMDCg5cuX082bN3N0dzRs2JCIiAYOHKjWZm1tTbdu3VLbr6+vT6VKlSIAVKJECVq3bh29ePGCjh8/Ti1atKC3b9+Sn58fTZw4kZYuXUrFihWjmJgY6t69O/n5+dG+ffty8xgKBwoFkY1N5r8FjAoVKpBYLKbt27drbBf2V65cWWX/8ePHKSgoiKRSKUmlUoqNjaXVq1fTjRs3aODAgWRpaZnjtbds2UJ79uyhrVu3UnR0tIobP68YNGgQ7dy5k/z8/Khbt275Ph8R/fvdYlnx7t07bNq0CatXr8b58+fZ7EqpVMLFxUUl7S4revbsCTMzMxV54vHjx8PAwECtQhnIfF7GxsYFNjPPL9LT0xEQEABzc3OsXbsWKSkpUCqV2LdvH7y8vGBra8tmYCdOnGD59fT/rJWoqKhcE+TdunULHMfB29tbpR9WVlaQSCSwtbWFsbFxgdyfICW7aNEiAJkU53p6ehCLxV9N+jWv6N69O3vWmtwRSUlJsLe3xw8//JCv6wiU7l9+jzExMeA4TiMdyvXr1yEWi9lz1YQLFy4gODiYvSt16tTBxIkT1SrEeZ7H7du3v34GWSGiRYsWsLS0VHMl3717F/b29qhbt67K/lWrVkFPTw9mZmYwMTGBjY1Nnggy//rrLxARdu/ena/+Z0WzZs2gr6+PyMhItG/fHp06dcIPP/yAnj17om/fvujbty+ioqLQrFkz9i59d4vpiI0bN4KI0L59e0YN8/TpU/Tr1w9EpFZH8Pz5c5iamqJq1aoqNRxPnz5FjRo1YGxsrEalUtDgeR47d+5E/fr14ejoCE9PTwwbNkzjdd+/f89iS1KplKWf+vn5aXSrvH79Gnfu3MkXCWFgYCA4jlMp1hR81UKFcUEM/gcPHgQRqaRRjxgxghWWnTt3Lt/XKCwInE6enp5wdHTEoUOH2ATn9u3bCAkJgYGBQY6ur5zw22+/gYgwb948lf0pKSkoV64cLC0tsXLlSiQmJiI5ORlr1qyBjY0NvL29NcbGXrx4wYgXvby88Msvv2g8Li4uDtOnT0epUqVApJkYNq949OgR5s6diwkTJmDTpk1fnQz1zZs38PX1hVQqRcuWLTFlyhS0bdsWMpkMJUqUYBO2tLQ09OrVC0SZlEkcx8Ha2hpyuRyLFi3CwoUL0aJFC4waNUonFxfP8yhevDh69uxZYPdy9+5dNGrUCMHBwahatSoqV66MChUqoGzZsvD29oaXlxcqV66M0NBQNo58Ny65wKpVq2BmZqbyEhgaGmLGjBkaVzSnTp2CpaUlRCIRqlSpwgLJ5ubmWhmGCwo8z6Nr164gIvj7+2PUqFHo1q0bTExMYGJiggMHDmDRokWIjIxEq1atsHz5ciQmJuL27dtYuHAh5s6di5MnTxaqb1wothowYIDKfh8fH1bHURA4ceKEWi6/UqlE06ZNwXEcRCIRjh07ViDXKmj07dsXRITz58+jQoUKICI4Ojoygk9ra2scPXo039d5/Pgx89F/iTdv3iAsLEyNZqRBgwZ4+fKlyrFKpRKLFy+GiYkJLCwsNK5SMjIysGfPHjRp0gQikYjxzzk5OWmtSs8NPn/+jE6dOoHjOMjlchbfs7a2xq5du/J9/twgISEBc+fOha+vLywsLODl5YXp06ezCVV8fDyqVavGxhRhwkNECAoKYpO9ypUrQyaTwcPDQyf9ot69e8PZ2Rk8z+PChQt49OhRrvr966+/4vbt23m44+8B/TwjOTkZGzduxMyZM7F27doc7zkhIQFLly5FZGQkWrZsiUWLFmksPCtoCLrZq1evVtn/4cMH+Pr6guM4iMViVK1ala0grKysvrqio4GBAezs7FT2PXr0CE2aNMl3houAixcvgiiTQUBTm0QigVQqxYwZM74J0WN2GDlyJIgI165dA8/zOHLkCIYMGYJ+/fph/fr1BTIYCxCJRChfvrzW9vv372P16tWIiYnBnTt31NofPHgAT09PNpALGYYVK1ZEbGwszp49iyFDhsDZ2RlEhDJlymDx4sV4/Pgx9PX1QUSwtbXF5MmTVVzMT58+xY4dO7BkyRL8+OOP6N27d7aTM2F1EB0dzVZLf/31Fxo2bAipVKpRDvhbICUlhT2LrEaE/p/ZyPM8bty4we7h+PHjICKdJhPCan3YsGHs/NqKWr/EmjVrtE40dMF34/IvBs/z8Pb21kgJ8vjxYyYGNnv2bLb/4cOHCAwMhJmZGeLj479aX/38/CCVSgv1Gjdu3AARYfjw4RrbDx06pEJ78+LFi0LtT24wffp0nQeU/MLMzAw2NjZ5/rybmxuIMpkXIiMjMWfOHGzatAnlypVTWfF07doVZ86cUVkVv337Frt27UL37t0hlUphZ2eHDh06wN3dXSXl2dbWFnZ2djA2NoabmxuCg4NV4poCO8CKFSvU+peWloZy5coVGdYHnucxY8YMrFy5EhcvXsS+ffvUsk6z4s6dOzq/CzzPo2TJkrC1tYW+vj6CgoKgr6+P8PBwTJgwAatWrcLixYsxZ84cZsiATDE0IfMwr6US341LFiQmJmL58uWIiopCly5dsGnTJrV0238ShO9j/fr1am3Dhg2DqakpypQpg86dO6u0vXnzBvr6+pg4ceLX6ipLtRSLxUwTRlvuf17x4sULEFG2bLapqals9liUsHz5chARtm/fXujXatasGYgozzN7c3NzmJiYqO0XXJCCkeA4Dubm5qhRowY2bdqkFle7d+8eWrdujTJlyqBXr17YunUr4uLi2HEfP35Ew4YNVQyWEDQfP348zMzMtNb1rFq1CkT0VYk8dUXr1q1RokQJra7o3BgXIJOhmOM4tirUtpmZmSExMRHnz5+HgYEBGjZsiDZt2sDR0TFP8cjvxuX/OHLkCMzNzSESiVChQgX4+vqCiODi4oIbN2586+7lCZ8+fQIRYe3atWptpUuXxg8//ABfX1906dJFrb1169bZ1rwUNIYOHcry+O3t7dkLr4nD7Es8evQIXbt2ha+vL7y8vCCXy6GnpwepVMo2iUQCiUTCammye0cFF05RglDzY2hoCEtLS1haWsLCwoJt5ubmKpuZmZlOm7GxMQwMDNgzE54RUabS4Zd4+/YtXr58qTHB4sqVK3B1dWXuMG2Ii4vDxIkTUbNmTbU6J47jEBQUpBKfycjIwOPHj7F//36MGjUKAQEBMDExQenSpVGvXj106tQJZcqUYc/nxYsX6NevH0qVKqW1D4K7SBOF/LfE69evIZPJMGPGDK3H5Na4JCUlISIiAiKRiGVgCnT8np6e0NPTg6OjI5YsWYLly5fD2toalSpVQmJiIq5evcpin506dcpV7PW7cUFmBoQwW84a8Lpy5Qq8vLzg4ODwj7snARUqVFBLdQQAV1dXdOrUCUSaq4N79eoFHx+fr9FFAH8H9QVjkpSUBKlUCrlcjtatWzOjIZFIYG5uDnt7e7XAsmBISpYsifLly6NChQrw9/eHv78/KlasiEqVKjGXjVQq1Zg2/ejRI3Y+mUyG/v37f7VnkB0ElT9TU1PY2dnBzs4O9vb2sLe3h4ODAxwcHODo6KiyOTk5wcnJCc7OzmwT9jk5OcHR0RGurq7w9PSEj48PypcvzwgVv0xh3bx5M/z9/Vlb8eLFMWPGDJWVvZDk0rhxY43s1tqQkJCAKVOmoHHjxmx2LQSh+/fvD6lUyq5raWmJ5s2bY/LkyWjfvr3KgBkQEIAxY8bg8+fPWLBgAaRSqVqigYAJEyZAX19fJabzraFUKtGwYUOYmZlp7Tfwt3HZuHGjzue+cuUK5syZg8jISPYbyDqRyLqVL1+eMWzcvXsXLVq0ABHBx8cnW4aHL/HduABM31tTiuSjR4+yzeFPT0/Hb7/9hnHjxmHy5Mm4fPlyYXc3V/j5559BRJg5c6bKbLNBgwaQy+VwcHBQy+JRKpVwdXVF+/btv1o/nz9/rjZbHjBgADMggtGoUKECrKysYGxsjGrVqqFJkyZo165drhIQypcvDyLC1q1b1dpev36t9mPL7of+tbBgwQIQEWOVLiy8fPmSuScFkapJkyaBKFM3ZP369di+fTs6dOgAiUSCxo0bs5oUYYabnz6mpqYy1mVByXDQoEHYs2cPbt++zd7hhIQEtGjRAoaGhhg5ciSqV68OmUwGQ0NDjB07Fg8fPoRcLkf37t3VZttPnz6FtbW1xhX7t8Dt27cxatQo1KhRAxzH5ViXkp6ezu538+bNbH9SUhLu3LmDCxcu4PTp0zh27BjWrl0LLy8vlfdZIpGgUaNGmDFjBtatW4c//vgDly9fxvPnz9l3+fDhQ3Tv3h0SiQR2dnZYtmxZrkME31mRicjZ2ZnCw8Np7ty5Gtvr169P6enpdODAAZX9Z86cocjISHr8+DHZ2tpScnIyffr0ierWrUs///wzqz7/lgBAI0eOpGnTppGbmxvVqlWL3rx5Q7/99htlZGRoZGWeMmUKjRo1ik6fPq1WOVxYOHToENWqVYtmzJhBQ4YMKbTrJCcnk7GxMdnY2FBcXJzWvhw+fJhCQkIoJCSEHB0d6cmTJ1rPeeDAAVq6dCkhcxLGNp7nGRuAWCwmkUhEHMeRSCRiFfdZjxf+JiJ2nFgsJo7j6Pr163T9+nW6evUqY4ooLAwcOJDmzp1L48aNo+bNm5O3tzeNGzeOxo8fr3Lcnj17qGHDhrRy5Urq1KkTtWjRgrZs2ZLv37+joyM9e/aM/e3t7U3Xrl0jokyC2CVLllDfvn1JJpPR/PnzWaX427dvadq0abRw4UKytbWlQYMGUZ8+fahevXrUs2dPsrOzoyNHjtCcOXNIKpXSqVOntJJF5hVPnjyhe/fuqb0Hjx8/JmdnZ7Xjr1+/ToMHDyaizHFo5syZ1Lx58xyv8/nzZ+rUqRNt3LiRHBwcKDk5mRFbasPvv/9OAQEBtGbNGhozZgyFhobSjh07iOM4+vTpEx09epQOHDhABw4coNu3b5OZmRmNGDGCevfunafq/u/ElQAsLS0xadIkre3t2rVDlSpVVPbduXMHRkZGqFKlCi5cuAAgMwtl06ZNsLCwQGBgYJGq+j516hTat2+PcuXKoUqVKpg5cyYr2AoJCcHSpUuxePFiVK9eHUSEsWPHftX+TZkyBURU6HUmLf+vLCio5ul6fPPmzTUW3504cQK2trbZBkoLcsuNuymvEJIamjdvjr59+8LGxkZr4WH9+vVZfKpOnTogynvBK8/zmDhxosb77tu3L5KTk9n7SZSpiaQJgrzy1atXsWXLFraiov/H25o2bZprJomccPnyZdSvX1/NVavLJqzUmuVSP4bneZbCPGDAAPz00084dOgQzp49i8GDBzPNqSpVquDAgQMqKzhBQrljx44IDAxkfXBxccEPP/yAzZs353sc/+4WQyblhcD4+iXS0tJgZ2eHbt26qez/4YcfYGdnp7FW5fDhwyDK1LYuyuB5Hr/88osKG3H16tW/SkbSl2jVqhWItEu6FgQEA5YbyeS4uDiWsl28eHE0btwYtra2KFeuHEJDQ1XcdoWJgQMHgohyXQSXV0ilUpQvXx4hISFo3ry51uPmzJkDfX19AH8bYkNDQ7Rr106nIr+sWLhwodrAW7duXcycORMikQiVK1eGVCrF/v37ER4ejqtXr2o8z71790BE2Lt3L4DMxJZ69eqxIk0iQqlSpbB69WqdA9Rv3rzBgwcP1Crj09PTMWnSJEilUpQuXRorV67E3bt3cf/+fTx48ACPHj1C3bp1mbF7+vSpykZE8PDwgEgk0joGfQmlUonZs2czglCxWIzr169DqVRi0aJFcHJyYjHDL1nOHz58iJEjR7JECj09PTRr1gxLly7FvXv3dLq+rijyxkWpVOL27du4evVqoQXfNm3apDVAJjDFfhlLMTExwejRozWej+d5+Pj4fNWYRX6Rnp7+Tfmc/P39IZFICvUaAsV/Xooya9eurTbbFCq/iTKznAoTQjadpqLFwoCpqSmcnJzQuHFjBAUFaT1u2LBhKplhQ4YMYc9ZLpdrlWb4EmlpaShWrBiioqLwxx9/ICgoCAqFgsV9BAntUaNG5Xgugb382bNn+Ouvv1iSgKWlJby8vCCRSNhMPSdev6NHj7I0ecFwdu/eHfHx8bh58yYqVqwIkUiEkSNHag12C3IJWeum9uzZw/oVGhoKuVyuwq+nCSdOnECDBg0YJZNMJkPt2rVRt25dlC9fnkkuhIeH48qVKyD6u1bm0qVLaNCgATiOg7GxMfr06YOqVauiQYMGOT7PvKLIGhee57F8+XJ4eHiwL9bY2Bj9+vUr8Mp2pVKJdu3ageM4NGvWDD///DNiYmLYSzVhwgS1vhH9rQuiCQ0aNEDjxo0LtJ//ZtjZ2cHc3Fxl38uXL/HgwYNcZahkB4F+XFP2XE5ISUlB79698eDBA7XaiPLly0NPT69A+qgNQoW+roN1fmFmZgZnZ2dWpf3XX3+pHZOUlIRixYppTFleu3YtOI4Dx3GoVq1ajtxzx44dA1EmvQ0AVKxYUaUeqV27diAirFmzRus50tLSMHjwYDZe+Pr6stVKVp2m+Ph4hIeHMwOjTVtm+/btEIvFqFChAmJiYnDgwAGMGzcOlpaWcHFxgampKYgox2SSNm3agIhw6tQptk+g8Bk+fDjS09NhZmYGR0dHlc8plUps2bIF9erVY6tnokw6pPHjxzNamMDAQFZWQJSZ7ZWQkAB7e3t07doVI0aMgFgsRqlSpbBixQokJiYiIyMDzs7OGr+7gkKRNS7Cj6lFixbYu3cvTp48iZEjR8LIyAgVK1Ys8FWMUqnEkiVLULp0afYlBgQEaMwoAjKrkDt06KCx7fPnz7C2tsbAgQMLtI//ZigUClaXsHv3bjYLI8pMvx0wYECu3SxfQnBDtG7dugB6/De+hnEZN24ciEgjK3FhwMTEBC4uLkhOToaHhwdcXV1VOObu3buHWrVqQV9fH7du3dJ4jmvXrrEB70u38pfYtWsXiAhxcXF48uQJiAg///wzaxdct9lN6LZs2aKyuhRiLba2tmrHpqamwsXFBfr6+ujRo4da+8OHD2FgYIDSpUtj9erVKpmkDx8+hLW1NRwdHXWqBYuMjAQRsed07tw5cByH0qVLs2McHBxgZmYGINOoubu7M9JW4R569+7NVnJRUVEwNDTE4cOH2TkEBgq5XI7IyEg2YdbT01PjdhMmDWfPns2x/3lFkTQuwkOaMmWKWtvFixchk8kwffr0fF1DG3iex8ePH3NUP5w2bRpkMplG+vOpU6eCiP6xxZdfG6dOnQJRJtO0UDldrVo1rF+/Hvv378ewYcNgbGyMMmXK4MOHD/m+Tlbiytzg1q1b6Nu3L6sHGTFiBB4/fvxVjIsQ6P4anG9nzpxhg5pMJoOenp7WQLVIJIJYLIZYLGaFecI+gauNiFC2bNlsr3n37l1mUGbPng2ZTKYyjgjptNlxid26dQsikQgGBgbYtGkTI9nU19fX6PIdN24cpFIpatSowfYplUoMGzaMDeyC2qaBgQEmTZqEd+/e4e3btyx5wcXFJcfn2bt3bxARu07JkiUhEolUVqGlSpWCTCbDwYMHwXEcJBIJypcvr0JuKSA+Ph5SqRSzZs1S2f/mzRu12hW5XA5ra2ssW7YMz58/x61btzB8+HBIJBK0a9euUAlpi6RxGThwIKytrbW6Q9q1a/fN1RsTExPh7+8PY2NjjBw5EqdOncK+ffvYLKWoaLT8EyCsUq5fvw65XI4uXbqovfTnzp2DXC5H7dq1sXv37jzFh2JjY0FE2VY/a8Pq1ashFothZWWFTp06oV27djA2NoZCoYC7u7uKcVEqldi7dy+6deuGdu3aYfr06fmulREmLAcPHkRKSkqBbNqyuubNmwcigkKhgJ+fH/z8/FC2bFm4ubnB2toa1tbWcHV1ReXKlVG1alVUq1YN1atXR1BQEIKDgxEUFISqVasiICCAFV5yHJdjFllISAg8PT1RuXJlFZdyUlISI8LMKiGuCQkJCSwppE6dOixj6tq1a2rHzp8/HyKRSOVagsckp00wmjt27Mi2P0BmPJOIWOxKT09PjT0ga0abVCrNlol427ZtINKsbvn8+XMmVzFkyBA8ffqUsU5nDS+MGDGi0GOsRdK4NGrUKNtAkxCw+9YSqZ8+fUKfPn1gZGTEvjh3d3csW7bsm/ftn4KEhARwHAcfHx/MmTMHMplMJeDO8zymT5+u8oyJCA4ODjr9sLPiyJEjIFIl6tQFFy9ehEgkQteuXVUmPAkJCWjcuDE4jmPZYvHx8WxA9fT0RNWqVRm1ypfM1LmBoDtTkJtIJELVqlXRqlUrNG3aFA0bNsSCBQvw/v17EJFa+n1eYW9vn+PKLi0tDYcOHYK5uTnkcjlKlCiBgwcPYuHChfD09IS+vj5KliypkYRVG4YNG8aMgCYKJIHiXpAYFvThy5cvD4lEwkT+Xr16hTt37qBy5cpwcHDA8uXLsXLlShDpnr0nrFzOnTsHosyge1JSElJTU/Hx40eEhYWx7yW71VnWdO0aNWqgXbt22L9/v4rhfvv2LYgImzZtYvuePHmC33//Hfv27cuX9lJuoKs9kNBXhKmpKV25coUAMGnarHjy5AmZmJhobPuaMDIyogULFtDUqVPp/v37JJPJyMPDgxXIfUfO2LBhAwGgDh060K1bt8jb21tFwnX69Ok0YsQI6t+/P3l7e1OXLl3o4MGDtGDBAgoPD6c9e/ZQnTp1dLpWeno6EWUWNOYGCxYsICcnJ1qyZInKZw0NDWn9+vVkampKPM8Tz/PUuHFjevbsGR07doyqVatGHMfRu3fvaOjQodSpUydydHSkkJCQXF2f6G/p7Lp165KDg0O2x6amptLnz59JLpeTTCbTelxsbCydPHmSFW4SEe3atYv69u1LRES2tra57qcm1K9fn1asWEEymYy6dOlCvr6+rC0tLY327t1LsbGxlJiYSEREEomE7ty5Q7Vq1SKRSERNmjShTZs20ciRI1X6mhMiIiJYgfCSJUuofPny5OXlRQBo0qRJFBsbS7a2tqxocceOHZSamkrXrl0jOzs7evLkCW3fvp06d+5MVlZW9OOPP1KdOnWoYsWKNGjQIPL399dYGPkl3rx5Q0RER44coYoVKxJRpryxJunjpk2bUrVq1TSeJz09nTp06EAbN24kokyJ9FevXtG6deuobt26tG3bNtLX16etW7eSSCSiSpUqsc86OjqSo6Ojyvk+fvxIr1+/JgsLCzIzM8vxPgoNBWmpcoIQ3OvcuTOaN2+Odu3aYfPmzUhLS0NCQgLs7OzyLef6HUUD79+/B8dx8PPzw8CBA2Fvb89mYR8+fICBgQEGDRoEAFiyZAk4jkNCQgIyMjIQHByMcuXK6bxKFPjLoqOjc9VHJycnDB06VGu7mZkZOI7D/v37QUQqQVYBSqUS/v7+qF27dq6uLUBwVWVHrXL9+nWVLCiRSISwsDCt9SBCv4SCQqVSifHjx7MMK0NDwzz1VdM1Ro4cmesCw5EjR7J4A8/zKF++PFq1aqXTNXmeR0hICIuZCCsYGxsblspramrKiCsvX77MSDejoqLw8eNHtGrVCgqFAmvWrMHjx4+ZYJuQaq2Jzl8Thg8fDiJCmzZt0L9/fzRt2hSdOnVCly5dEBUVhQ4dOjCKnXHjxmV7HolEgvXr1yM8PBxWVla4evUqdu7cCblcjho1aiAmJgZWVlZo2rSp1vPcunULLVq0YPEZkUiEJk2aFLiGUZGkf1m9ejV17tyZAJCPjw9JJBK6dOkSOTs7k5WVFd25c4fOnz9PJUqUyPM1viN3uHjxIq1du5ZevHhBxYoVow4dOlD58uUL5NyVKlWic+fOUUhICB06dIiCgoLIycmJ7t+/T6dOnaKIiAiSy+W0Z88eksvlFBoaSkRET58+pUOHDlFwcDDZ2dmRTCZTmdniC0qVu3fv0unTp8nf359KlChBHMex1a/wf+FvpVJJb968IRsbG9q8eTO5ubmRn5+fGsULANq2bRulpaVRr169aN++fXT37l2Nq+ply5ZR9+7dKTExkQwMDHL1jKKjo6lv3760Z88eqlevnlr7pUuXKDg4mKytralfv37k4+NDf/31F82fP5+eP39OR44coQoVKuh0rbS0NKpYsSJduXKFTp06RQEBAbnqqzbs3r2bGjZsSEREI0eOpLi4OPr5559p8uTJVLJkSVIqlaRUKmnt2rW0a9cu4jiOHj58SM7OzjRjxgwaNmwYbd26lZo1a5bjtRYtWkS9e/em/fv3E8/zNHPmTDp06BAREVlaWlKbNm1o8ODBtGzZMoqNjaVjx46xz9avX59MTU1JqVTS6dOnNVL/iEQiAkCBgYFs9RIUFEQ//PCD2rG2trb08uVLKlu2LEmlUtLT0yOZTEZpaWmkVCrJzMyM5s2bR56enuTg4EAmJib06NEjunnzJlulJiYmkp2dHfXq1YumTp1Kb968oZCQELp+/ToZGxvThw8f2PUkEgnNmjWL+vXrp9aX69evU/Xq1cnU1JT69u1LZcqUoZs3b1J0dDQ9ffqUDh48WGCUT0WO/uXo0aPgOA5t2rRBjRo1QEQwMTFh1agSiaTQpYG/42+kp6ezGgMHBweEhobCwcEBRIS2bdsWiN6NwPj7T986deqUbWrq1q1bQZQ3DZHo6GgQkVZSw4oVK6Js2bJqNWAJCQmoUKFCrlZ4QGYasZDAUJAQCDgnTpyolRxVIA8Vi8Xo0aMHQkND2TMWkgeqVauGKlWqoGLFimjSpAlmzZqFGTNmYPr06ejduzckEgmioqJUzpuamooPHz5g7dq1KsJlTk5OCA4OLpB3oGrVqmr3I5FIwHEcZDIZpFIpy6zL+rkmTZqge/fuKvuypioLq+KbN2+yfUePHoVUKoW+vj6rualXrx5jSli4cKFaX6pVqwZvb2+1rMvExERUrlwZ3t7eBRYvLnIB/QYNGqBMmTLMNXLp0iVMmjQJY8aMwezZs0FE2LZtW57P/x25w5AhQyCRSLB69WpkZGQAyNTXWLNmDSQSCQYPHpzva1y6dAlEmXxmHz58QL169UD0t5a4UFW8efNmKJVKZGRkID09XcUo1axZE2lpaUhPT0dGRgYyMjKgVCpz9UPJeu4+ffqAKDNgKxT4jRgxQiVwmpaWhvbt2zO3y7x58yCVSrUqeHbp0gUODg554t5atGgRiEij9vvly5dBRPjtt980fnb37t0g+rtAUVcIAe/88pkplUqMGTMGwcHBEIvF0NPTQ1xcHIjU5bcFCINl1k1Iec66ZTfQlytXDiNGjMDixYsxadIkREREoFixYiAiNGjQAP379wcRYfHixey6O3bsgFgsRpUqVbBlyxZ07doVMpkMbm5uMDMzUykvSEtLg729PX744Qekp6czjrlVq1ap3IsgI/4lXF1dWTYbUSYtUdb+Z+UaE0IFWTnRatSogbJlyyI5OZnxwa1cuRJAJqOBkZGRSvBeKPHQxqsncLJlLfbMD4qUccnIyIBIJMK8efO0HlOmTBl07NgxT+f/jtxBiHmMGTNGY/vYsWOhr6+fr9oT4O/ixqzaKRcuXMCwYcMgl8tRqVIltRl5UlISypQpgxo1akAkEqFWrVr56sOXEAYeoWhNmNh4eHhg2LBhGDBgAOzt7SGRSODs7AyZTIZ3795BX18fHVq0QEZcHJCFh+rEiROQyWQa1T1TUlJw//79bGWlFy9eDCLC77//rtYmkBBq+x6SkpJApFmRNDsIs+W8MBpkxZAhQ9iAaW1tjSNHjoDnechkMo21bAAYQWVoaGi2xbN2dnYwMjLCkSNHEBsbi9jYWJw4cQI///wzmjVrBgcHB0gkEpiamiIoKAj9+/dnaclCym5W4wJkDrKChr0wuWnUqJHGurWBAweiePHiAP5mGRAmRmvWrGHP3tfXF+3atYObmxsMDQ3V4k9CbYtMJoOnpye6d++uUvT47NkzFekPQXdI+E6FVbEQN3ny5Ak4jlPJktuxYweIiGm1fIm0tDQQEWJiYrQ+79ygSBmXz58/gyh7ioegoCBERkbm6fzfkTsIL6O2dEvhBf/111/zdZ3r16+rGRcBa9euBRGhUaNGOHz4MB4/fowtW7bAz88P+vr6uHDhwlcxLkBmEWbr1q3h7OwMV1dXdO3aFVevXoWfn1/mzFokgoQIUiLIiCAngt7/KVCIMgOn+vr6KtuXRW8ikQgymQz6+vpQKBRsEwLSenp6KvsVCgULwGur3xHEpTQZppxgb28PIyOjPD9HAJg7dy6IMgPaWdGqVSu4ublprGcTlCU1rdSyws7ODpaWltkeo20FKxiXrNQwWXH//n2ULl1ajfwxK0aMGAEHBwcAYOnEpqamKgJnOblSdS22joiIgI2NDe7cucMKgq9du4a4uDi4u7ujWrVqKsdbWFioGO9Dhw6BSJ0nUYDwe9bGSpJbFKlUZJlMRiVLlqQ9e/ZQhw4d1Nrfvn1LZ86coQkTJnyN7hQqrl+/Tlu2bKGEhARyd3en2rVrk42NTZHSwUlNTSWizNRwTRD2f/78OV/XWblyJRERtWnTRq2tffv2pK+vT6NGjaKaNWuy/VWqVKFjx44VWFKBNiBLgkBAQIDG4PakSZNoWt++pLx/nzKISElE/P//jQPoLREV09cnEycnFujneZ4ePXpEPM+TpaUlGRgYUEZGBr1//56Sk5OpWLFiKumhPM/T27dvydLSUi1ZgOd5unXrFsXExGjUwlm4cCGZmZnlKQXayMiI4uLiaNKkSexaWZ8NAFIqlSwVOy0tjdLS0ig1NZXS09MpIiKCli1bRkSkplMydOhQqly5MoWHh9OCBQvIzc2NeJ6nP/74g27cuEFEmanX2QFayhWyQltpwJ07d4goM3lDE1xdXalWrVr0yy+/UGpqqlpaNwD69ddf2Tuxc+dOIiJ6+fIlEWU+u7S0tGz71q9fPypVqlS2xwhYtGgRVa9encqUKcMSIwYPHkynT58mY2NjWrNmDTv2xYsX9P79e5V08qpVq5K1tTUtWrSIli9frvH8RkZGLGHmq6EgLVV2WLBgAcRisVrgMiMjA23btoVMJtO6rPsnQNCzJiKYmZnBwsJCZSZTo0aNHKuQvxZu3boFIu1yqhs3blQLMuYFJUuWzLHIjud5nD9/Hnv37lXjsirMlcuzZ89yPjg2FuA4gEhtG/j/7/UREXDiBPvI0KFDYWRkpEZEyfM88/Pryt4sVIATEcaMGcPcSB8+fGCs3nmlvKlatapOM/CctoYNG2o8/759+2BhYQGO41CyZEnY2dkxt5JIJMqxf8WKFVNhZc4NrK2tc3w2N2/ehEgkQo8ePVRiZTzPY/z48SD6W4NIWKHeuXOHxeyEjeM4mJmZISAgACNGjMhz2u/79+8xadIkuLq6suLdYcOGqblUBwwYoNFlLaS0jxo1Cu/evQOQWQw+depUcByH8ePH56lfmlCk3GJA5g+lcePGEIvFaNasGVatWoVZs2bBy8sLYrFYo977PwktWrSAvr4+li9fjsDAQCgUCrRv355lq5QqVQocx6kFBb8VatasCTc3NzWqiefPn8Pd3R01a9bM9zVsbGwgFotzHXAWUJjGRSdRqaZNAYlEo3EZ9P/B5aFIBPw/QJueng4LCwsMGDBA4+levXoFPT09nZkEBOPi4OCgoikvlUohEokQHh6Obdu2Yfv27di+fTu2bt2q87ZixQqW2TRo0CCcO3cO58+fZ9ulS5dw5coVXL9+HTdu3MCDBw/w4sULfPz4kblZBL0XbUhOTsbq1avRr18/DBs2DCdOnEC1atUgFotzvHdbW1vY2Njo9Jy+hFDvos0tJmDFihXgOA7u7u4YPXo0xo8fz+haJk+ezI5bunQpiDL52IR4lUKhyFPfdEFsbCz09PRQo0YNHDt2DKmpqbh16xbLOtPkJuV5Hj/++COkUikUCgU8PT1hYGAAkUiEQYMGFajAYZEzLkDmj2XhwoWMoVgikaBp06YFlsXwrSBka8TExGDixImQy+WMiFCpVKJatWoICAhA165doaenVyS02x88eAB7e3uYm5tj8ODBWLNmDQYPHgxzc3PY2dnh/v37+b5GbGwsyyLSxAGVEwrDuAwYMEA345KcDIhEGg0LiDD4/8blAVHmccnJiI+PB5H27C4gk2lZ10JhIRD7NbaSJUvmipNKyLTKLapXr66TcbG2ttbIepwTBL0TIkLPnj2xc+dO/P7779i4cSN27tzJtt9++w3bt2/H1KlTUaVKFRgbG8PY2BiVKlXChAkTsH37dnTu3BkuLi6MFt/HxwdJSUngOE5nAbC84uDBgyhRooTKd2Rubo558+Zlmyn54sULzJ49GwMGDMC0adMKXJkTKGIxFwESiYR69epFvXr1ovT0dKY//k/Htm3byMTEhFq1akUeHh7Url07RtEgEomoZ8+e1KpVK1qxYgWtW7eO1qxZQ0OHDv2mfXZxcaFz587R7NmzKSYmht69e0fm5ubUsWNHGjRoUIFokFetWpX2799PtWrVoq5du9Lp06cLoOdfCZ8+EWWJQ2gDiDKP+/SJDAwMiOM4ev78ucZjlUolxcfHk5GRkU5dEChp/Pz8qFevXrr2PFf4+PEjDRo0iG7dukVPnz4lFxcXnT4XFBRE+/fvpxEjRtDUqVMLvF/QIebyJTIyMigiIoL9vXjxYlq8eHGuznH27Fk6e/asyj6RSESzZs2iQYMGUZMmTQgAde3aNVfnzS1CQkLo1q1bFBsbSw8ePCBzc3OqXbt2jpr3tra2NHDgwELtm674qsYlK6RS6be6dIEjISGBLC0tKTU1lZ49e6YWYC1WrBgRZRrX8uXL0/Xr179FN9VgZ2dHs2fPplmzZlFaWhrp6ekVOK9bzZo1ycrKiu7fv1+g580vkBMxhbExkUik1cAITwlEmccZG5OhQkF169alZcuWUZcuXUgiUf15/f777xQXF6cWANcGYeLl4+NDnTt3Vmm7fPkyzZ49m3bs2EHJycnk4+NDPXr0oM6dO6tdNycsW7aM7ty5Qzdv3tTZuOzcuZPc3Nxo2rRptGXLFjpz5owKd5w2JCcn63R+nud1nnhevXqVateuTW/evCGe5yk8PJzat29P8fHxRES0fPly+vPPP7V+3tbWloYPH04KhYIAUFpaGkmlUurRowfrS1paGkVFRdHvv/9O/v7+1LZtW536lh9wHEfVq1en6tWrF/q1CgUFuQwqikhLS8OWLVvQp08f9OnTB1u2bCmQ6vOsWLVqFUQiEW7fvg2RSIQFCxaotI8fPx4GBgZISEiAh4eHRhGjfzMqVaqkkyvkSwjsvgUJwS325MmTnA/OJuYy5P+uintZYi5ApitQIpGgWbNmLNU7PT0dmzZtgomJCerUqZOrAlAi9VTfnTt3Qk9PD66urpgwYQIWL16MsLAwiEQiNGrUKNfv97Vr11j8RVdeLSCzMl6QoihZsqROwWyZTAaZTJbjcUIhpYmJCdatW6f1OCGGRkTw8/PTGGcRmKcbN26MtWvXMhniL7eePXuymMqMGTM0HlO6dOkCjV/8E1EkYy5fG1euXIGzszN7+YVKWWdn5wIlc0tISICxsTFatmyJhg0bwtfXl/mv79+/D0tLS3Tr1o3lox84cKDArv1PwKhRo0BEKvK2ukCojK5Tp45K4Vl+kCvjkk222ND/DzZ3SDVbDMhUHDQxMYFIJIKnpycsLS1BRKhfv36uf0NEpELq+OHDBxgZGSEsLEztmezZswcSiQRz5szJ1TWAzGJQouwJFrVBYFwgImzfvl3jMYJBLV68ODiO03qugQMHsvoi+n/gnIhQvXp1LF26FLt378aCBQtw7NgxRnNP/4+H5ARBPlgsFmPp0qW4cuUKli1bppI5Z29vD6LMIk+xWMzILOn/iRWFrZXyT8B/3ri8evUK1tbW8PPzUykuunz5MsqWLQtra+sCTX3etGkTRCIRSpcuDZFIhODgYPTv3x8WFhZwc3PDpk2bYGNjg0qVKv3nZj5KpZJpi+dG2zspKYnJ4JqamuLcuXNITU3Fzp07sWzZMvz2229ahee0QTAuOlOfLFmSaWC+WMEM/X966m0tKZ4JCQlYuXIlBgwYgNGjR+dZxpiIVIr9Fi5cCLFYjNWrV+PYsWNqg12bNm3g5uaWax4pQaVSE9NAdnjz5g3mzZsHJycnEBHmzp3L2pKTkzFz5kyUKFECHMfByMiIpe5qglDcS5RZ8R8dHY23b9+qCG5l3bKmHGubfDx+/BhExILyEokE9+7dUzlm4MCBIMrMfhMmND4+PpDJZKygVUcnz38C/3njMmnSJMjlco3UG/Hx8ZDL5SrphgWBgwcPqhHlWVpawtHREUSEwMDAf3QtT36gVCrh4eEBIsLo0aNz9dm5c+cyt43g0hBqD6ysrHIl1iUMJLqKQQHIXJk0a/Z39phIhOH/z+TRpjNfUCAiNG/eHEDmxEgYULPOprO6soQapeyoVTRBWLnoWjeTmpqKvn37Qi6Xq/QnICAAt2/fRkJCAgICAqCnp4c2bdpg8eLF7FiFQsEyRF+/fo1mzZqhR48eIMpkKtCUPfrgwQOsWbMG48aNw5QpU9j7ULly5Wz7KXguiAglSpTQOLETJj5fbg4ODiocYd+FAjPxnzcu5cqVQ+vWrbW2t27dGuXLly+Ua7969QqXL1/GnDlz0K1bN/Tv3x9Hjx79z7+cKSkprJguJCQkV7EBoUiMiFC8eHHEx8fjxo0bjNk5O2qhrMiTcRGQnAzExwPJyUzLI7+FpjlBWLlcv34dxsbGMDc3h729PZ4/f46zZ8+iTZs2ICLmClu+fDmICElJSbm6jsCfNX369ByP5XkekZGR0NPTw6RJk/DixQt07dqVfT8GBgbo2rUrDA0Nce7cOQCZKy5hMiCXyyGRSGBiYqIymJubm+vsrhY4wi5duqT1GIF1WRNDc1akpqZi0KBBGg2MsAnEkf8kvHv3DuvWrUN0dDT27dvHCGrzi/+8cfH09NRazAZkDjKenp5fsUffAWT+kAUftzbizC+RkZEBJycnhIWFqbAVb9iwATzPo1WrVrCzs9PJWOXLuGSBECTWlT8qrxCMS+PGjVGiRAm2Mjl79iw7pm/fvlAoFHj37h0CAwMRHByc6+sI8UBdCjzPnj0LIlILtM+bN4+JeIlEIhUhtqzMwMKqQy6XQywWo3bt2qhWrVquajIEXjVjY2MsX75crV0gBC1Xrlyu4iRCwaSbmxvrb16e57eEUqnEqFGjmDtPWH05OzsXCEvIf964NG3aFL6+vhpXCzzPw9fXN1tVt+8oPAhsyboWSB49ehREhNOnTwPIDFwLP5xmzZrh4sWLIMpezVGALsbl+PHjiIyMRKlSpeDn54exY8eqEF0CwMiRI0FE+Ouvv3S6h7yCKFMTRCQSYcmSJcjIyEDp0qXh6urKZvkvXryAWCxGzZo1QaRdGyY7CFlS2TGXC+jVqxecnJw0zoRTUlJYppeQuCJILQjuOqVSCQsLC4wYMSLX/cwKIVNNMIoWFhYIDQ1VcWW9ePEi1+fNSk5pZmb2j4uRDhkyBBzHYdSoUez+z507h9DQUEilUpz4IgEltyiSRZRfE927d6c6depQTEyMWo1ATEwMXb16lWbOnPmNevffhoODA5UtW5YOHjxI58+fJ39//2yPf/XqFRERlSxZkoiI6tWrR/Hx8VS9enXatm0bnTx5UuW47CAQNE6bNo0MDQ1JqVRSRkYGI2k8e/YsXbp0iUxMTMjJyYmSkpJoypQpNG3aNGrUqBHZ2dmRWCxm15wxYwZZWVlpvFZWNUwi7USLWWuL0tLS6NOnT2RlZcWOv3btGvE8T+fPn6e4uDiqWbMmbdiwgcqUKUN2dnakr69PSqWSDh8+TLVr16YTJ05QbGys2j0LgAZVz4cPH6q1acPLly/J09OTFXlmhVwuJysrK4qPj6fatWuTWCxmBJL79+8nU1NTysjIIJ7nSS6X53gtTfj8+TO5u7tTXFwc2zdo0CB2DaLMAt5+/fqpEDzqColEQunp6UREdPz4cbXv7cmTJ/T+/XtydHQkc3PzPN1DYeHFixc0d+5cmjhxIo0aNYrt9/f3p127dlFgYCCNHTuWqXcWKgrSUhUl8DyPH374AUSEiIgIbNmyBVu2bGHkkj/88MN/PgbyLfH48WOIRCI4OjrmeKxAQ65Jw15YQRBppvb/EkKM4vumeRs+fHiOz7Bfv36ws7PT6m4SFBPp/zN/Q0NDLFiwAPfu3YNSqWQaJadOncrVqiAhIQHDhg1jK5P69evj9evXePz4MSZNmoRr164VSIKFQDpbsmRJlf0HDhxAYGAguzepVIrIyEg8ePAg39csKMybNw8ymUyrBtC6detARGor8dxAV3vAATlPVXTWTC5iAEDLly+nefPm0a1bt4goc/bbv39/+uGHHwq8Gv07cofu3bvTsmXLaMaMGRop5QUAoNKlS5OdnR398ccfKhXoSqWSqlatSmfPniUAVLt2bdqzZ4/WKvVhw4bRjBkz6I8//iAPDw+SSCQklUpJKpVS/fr1SSaT0e+//64223/48CFVqFCBpk+fTq1bt6bp06fTwoULac+ePWxF9SWynuPL82nb37FjRzpz5gz5+PgQAFap/vDhQ1IqleTm5qYykw4KCiKe52nZsmV05MgRsra2Zm1Zj8uu2l0kEtHu3bupT58+ZGZmRiYmJiQSiUgsFqutvjiOo8+fP9OjR4/I1taWihUrRkZGRmRkZMTog+rXr89kHaysrMjd3Z0uXLjAVgPawHEc07AXiUQkkUhIIpGQUqmklJQUteMNDQ0pPT2dXUuhUJBYLCaJRML+zfoefHkvAnieZzIDACg1NZXev39PRMSq9bdv307NmzengIAA6tOnDxUvXpxOnz5Nc+fOpdTUVDp9+rTO7AaFidGjR9NPP/1ET5480dh+9uxZqly5Ml25coV8fX3zdA2d7UFBWqqiCp7n8fLlS7x8+fL7aqUIQalUwtjYGHp6eiqyrZrwxx9/QCKRIDg4GPv27UNcXBwOHDiAWrVqQSQSYdu2bSxRwNzcXI3yPj09HSdOnGCU6V8G4gWSyOyYdAMCAlgG4ujRo0FEeSLkzA6VKlUCkbr0b1ZtdpFIxOIaQnxg5MiR+bruyZMnWfDXxMQExsbGMDQ0hKGhIQwMDNQ2QQxNU99Iy6pI2MzNzdGmTRt07NgR7dq1Q6tWrRAeHo7Q0FBUrVoVNWvWREBAAHx9feHh4YHSpUuzdH6JRAIfHx+ULl0aHh4eKvGVUqVKwcPDA87OzrC3t4e1tTUsLCxgYWEBc3NztpmZmbHN3NwcFhYWsLS0hJWVFaytrWFtbc3u79SpU0hJSYGlpSWaNWumFmd6+fIlnJ2dERERka/nX1BYvnw5xGKxGtu5gEWLFkEsFuss+6AJ//mA/nf8M7BlyxYQZaYX51SFf+DAAfj6+qoMVF5eXtizZw87ZsaMGRCJRGo0PMWLF1f53Nu3b1XOLRiXZcuWab1+YGBgoRuXhg0bQtuc78iRI6xWKOs2ceLEfE+alEolOI5DUFCQTsdnZGRg1KhRKtX5WbeePXsCAP766y8MGDAADRs2RJs2bfD777/nOyV2zZo1TCtGMGiaVGx5nkdsbCwmT56MKVOm4OTJkzo/JyHBYdasWfjll19ARLh9+7bGY6OjoyEWiwuV7fzZs2cYNWoUvL294ebmhvDwcBw4cEDtfj58+AB9fX307NlTre39+/dwd3fPNVPGl/huXL7jHwOhar5EiRI5po3yPI+LFy9i586dOH/+vMbB4tKlS6yGIjQ0FOnp6az4sEKFCujTp4/GcwcEBCAkJERj26NHjyASidjK5lsYFyDTCBw5cgQrVqyAvb19jpoquYG5uXmuae4TEhKwZ88eDBgwAFZWVsy4FEZx6ePHj9G4cWOVeE7//v01fgcPHz5kxZGmpqYwNTVl3//Dhw91ui+iTF63iRMnwsrKSuuxly5dAhGxmp6CxqlTp2BiYgIjIyN06tQJgwcPZqwFffv2Bc/zuH37NkaOHImoqChW3xMREYFjx47h4cOHWLduHUqVKgUzM7N8fzffjct3/KPQrVs3EGXSbhRE6mdKSgqqVKkCoszCvZIlS0IqlWb7mU2bNoEoM601q9F6//49qlWrBgsLC+a++1bGJStKlixZoMalQoUKkEgkef58qVKlQKRbOnNuMHToUOYGFCYhX7o9s+LDhw9wcXGBm5sb9u3bB6VSCaVSib1798LFxQWurq45jmVXr14FUaaCbHR0NPT09LQGyX/77bdsVzb5QVJSEqytrVG1alUV1gWe57Fo0SIQEWrXrs3cjZUrV2YJCV+uKmvVqpXtc9MV343LdxQabt++jUGDBqF27dpo3LgxVq1aleuKcE0Qqu11dc3ogokTJzL3SXbv8IcPHxATE4Pq1auDiODh4YEBAwagY8eOMDQ0hImJCU6ePMmO/zcal9q1a2dLKpkdBLeihYUFduzYgR07dmDnzp04ePAgTpw4gXPnzuHKlSu4du2aynbjxg3cu3cPjx49wrNnzxAfH4+PHz8iJSUFCQkJzGCZmpqiXbt22L9/P2JjY9G0aVNYW1urxE0cHBxgbGyM2rVrQyqVasziun//PiQSCebPn6/1Xl6/fs1UHM+cOYNnz55BLBZj5syZasfyPI9atWrBz8+vUOK5K1euBMdxWjPS3N3dQZTJ6ZaSkgIA+Pz5M6Kjo8FxHDp27Ij9+/cXiPifgO/G5TsKBXPmzAHHcbCwsECzZs1Qo0YNcByH4sWL486dO/k+f5kyZcBxXL5WL8nJyThx4gSOHTuGd+/e4cyZMyxA+yXRJc/zmDVrFhtMzM3NwXEcJBIJrK2tUaZMGYwZMwbPnj1T+Zw24/Lp0ycsWbIEzZo1Q1hYGKZPn56r4Om3NC5BQUE66dt/CaVSyZifv+Zmbm4OJycnODo6wt7eXoVOxsTEBM2bN0erVq3QtWtXlXhIeHi4Vk6yY8eOMfLKrAwEvXv3hkQiwezZs/Hp0ycAma5SgTEiO/XR/KBDhw6oWLGixrbExETG16Zpcjd8+HAYGhoW+Lj93bj8i/D582ccOnQIv/32G+7evfvN+rF7924QEQYPHsxmSUAmFUfJkiXh7u6eb62ccePGgSiT4yq350pPT8fYsWNVaNIVCgW6du2KJUuWgIjUtHSio6NBROjXrx8zIE+ePGFEitr0TTQZl3PnzsHa2pqxYoeGhkImk0FfXx87d+7U6R5ya1z09PTw+vXrAvltBgYG5kl3Z9++fSAi2NraYsWKFWxbvHgx5s6di6lTpzJW4jFjxrBt5MiRGD58OIYMGYIBAwawpIvOnTujc+fO6Nq1K1q0aIGuXbuiZ8+e8Pb2Zt/rn3/+qbEvQk3Ul5tCocD58+cBZMb4stawxMTEoFy5ciqZZ19m36Wnp6Nnz54QiURQKBRwdHSESCSCsbEx1q5dm+tnpis6duwIf39/jW27du1i/U1OTlZrf/jwIYgIv/76a4H26btxKQQolUps374ddevWhYuLC3x9fTFhwoRCyxLheR4zZ85UCZQKvtOCWCXkFsHBwQgMDNQaRCcibNmyJV/XePnypYqYk1gshqGhIdq3b5/taobnebRu3RpisRgDBgzAxYsX8ddff2Hy5MkwNjZGxYoVGWmm0EchxbRr164az9m2bVutnGVfGpc3b97AwsIClStXVqHzf/PmDcLCwiCTyXTiIcuNcWndurXKe9GtW7d8FcdVqFAhx7jUl9i+fTskEgk4jsv2d2Bubg47O7tszzVr1qxsVwGvX79mHGXm5uZa34e6desiMDCQ/b1lyxaWMr1+/XpUqlQJ9evXB/C3K1bQ3hkyZAiePn2K9+/fY8eOHdi0aZNKLOXJkyeYPXs2xowZg9WrV+eYQp9frFmzBkSkcVK5efNmEGXyp2lCYmIiiAg///xzgfbpu3EpYGRkZDAuo4CAAAwfPhzt27eHQqGAjY1NgfveATDm3R49euDKlSt48eIF1q9fDw8PD1hbW+uU9VJQSElJAVH2dSC+vr7o3LlzgVxr/PjxiIyMRJUqVZibwtDQEMWLF8fAgQPVPnP48GGtP6QLFy5ALBbDzMwMRIR27doB+Hvmp23QFzjLDh48qNb2pXGZMWMG9PT0NEo8fP78GcWKFdNJgTQ3xgXIJJwMCQlh9yYMlEQER0dHREVF4dq1a0hISFDhU0tKSsLLly/x4sULbNiwASkpKfDx8YFcLtf52qmpqZDL5ZDJZDm6hSQSidYZuIAnT56wlUt2EH4X3bp109i+bds2EBF+//13tu/y5cts9SQkbVSrVg1EmUkkQhp8WloaBg0apKZWWbt27XyTneYFycnJsLW1RaVKlVTcq0qlEkOHDgVRZsaYJmzfvh1EpKJnVRD4blwKGDNmzIBYLFabmcfHx8PX1xfu7u4FRmkNZC5pOY7TqDnz6tUr2NnZFchAnh0yMjKwY8cOdOvWDW3btgURaWSgFRAQEJAjvXleMXDgQNjb20Mmk4GIMGTIEJUfe5s2bVCqVCmtQVUhhTUrw+1PP/0EIlJx8WXFu3fvQETYvHmzWtuYMWNUjEtQUBDCwsKy7b+Tk1OO95lb4yIgNTUV27dvR+fOnREcHIzSpUuruYaEWNmXK2HBIAkuPF0hUCllVxsEZBoyIspWAkOAnp4evLy8VPbxPI/k5GSVFaTgQtMUj8jIyEBYWBikUin69u2LEydO4MSJEyqyAMJWp04dtgISVr9SqRRjx47Fo0eP8O7dO6xfvx4uLi5wdHTUOHkobJw/fx4WFhZQKBRo3bo1+vTpw+qdHB0dUaJECbW43tu3b+Hl5YWAgIAC789341KAECjfo6KiNLYLcqu6+tV1wYQJE2BsbIzExESN7RMnToRCodA6MOYXDx48YANUqVKlWM2ARCLRyLobFxcHsViM6OjoQulPXFwcoqOj0adPH1aVznEcu17VqlXZikQTBE6orLocsbGxICIcOXJE42f27NkDIsKFCxfU2r40LjkZ1vHjx8PGxibH+8yrcfkSSqUSK1aswLlz51CrVi1YWFhAKpXC2toapqamCA4ORs+ePdGtWzfMmDFDzRgNGTIkx2sIsYeccPDgQRZHywnu7u5QKBQAMn93CxcuZBljHMchNDQU+/fvR3p6OkvBLVWqlFp9VFpaGsaOHauSaCAkdZiZmWHw4MHYv3+/ymcENU5NMZRnz57B1NRURUbgayI+Ph6TJk2Cv78/vL290bp1axw/fhy3bt2ClZUVihUrhvHjx2P79u2YMGEC7OzsYGFhUSis3d+NSwFCCIxlrQT/Es7Ozjr9IHVFt27dshUz27lzJ4jyR0CnDZ8/f4aHhwdcXV1VdEMmT57MfqRZRZ0+f/6MRo0awcjISGstQF6Rnp6O3r17QywWQ09Pj826TUxMmJtj4MCBaNKkSbazNLFYDI7jVAYhnudRsmRJBAUFqbEDpKSkICAgAGXLltW4GvrSuPTu3Ru2trZaWQYqVKjA/PzZoaCMS15w+PBh1K9fP9tVRnp6OnuGQnFiTpgxY4ZW9+KX6NChA4gIDx8+REREBEQiEZo3b461a9di4cKFqFixIogIixcvhlKpRPPmzUFEaNq0qcYYzOfPn3H58mVMnz6dxSu1xWp69OgBZ2dnrR6I/v37w9raOsd7+Np4+PAhunbtylx5CoUCnTt3LtD046z4blwKEI8ePQIRYdeuXRrbeZ6Ho6Njgc5qhKwnbSuTmTNnQk9Pr0DqS77E+vXr1TKhgMyZpOAKsbOzw5w5czBq1Cg4OjpCJpPlSUdEwKtXrzB69Gg4OjpCKpXC2dkZ48aNQ6dOnSCRSDBjxgz2/t26dQvh4eHgOI5V3gvZXVlrUQQ8e/aM1bocOnRIpe3w4cPQ09ODv78/Nm3ahGvXrmHDhg3w8/ODXC7Xqn3xpXG5fv06OI7D4MGD1YyRIFyl7f3Jim9pXIC/V+GCq0wkEqnUCWnackob79KlC4h0k14WMs+aNGkCjuOwevVqDB8+HM7OzjAyMkKZMmVYyrQQcxSC/JrSi9++fcukx6VSabZjWFhYGOrVq6e1feXKlSCiAnV/FyTS0tLw+vXrHGmU8ovvxqUAoVQq4erqirZt22psF/THdRGr0hW3b98GEWl0M3369AkuLi46+bDzgoiICJVsm6wQ/NlisRj6+vqwsLBA586d85XQ8PjxYzZ49OjRAwsXLsQPP/zAZmJjx47V2I/AwEAEBgZCJBKhRIkS8PT0hIGBAdq3b49x48ahT58+qF69OhMWI9KsfhkbG8tIL4UtODgYZ86c0drnL40L8LcUc7ly5TBr1ixER0ejRo0aIMpMddalyO5rGRdtffnrr79ARHByckJISAhCQkJYsWzLli3RoUMHtG/fHuHh4exZ5TTBqVWrls7FmUqlkqX7BgUFwdraGiYmJujVqxdmzpyJ8PBwRtw5ePBg9jkvLy8QEYs9KJVKDB8+nLnCKlWqlOMqv3v37tmuXASKm/86vhuXAsb8+fPZTCrrD/PRo0coWbIkSpcuXeCKdd26dYNYLGZKiOnp6di3bx/Kly8PY2PjQpPYrV+/Pho3bqy1PTo6Otcpq9khJCQExYsXx5MnT1T2C1LCdevW1fg5QfJXGFg0BbAFH7uwr3///jh58qTG7+r+/fs4efKkTll4mowLkEmuWb9+fejp6UEsFqNatWrYvHmzztXbhWlcHj9+jH79+sHS0pIVvk6cOFHldy381rWlZ2dF7969QZRJ7pgdSpUqxeIouqBcuXIgIlhaWsLX11ctWH3mzBmIxWIUL16c7RNcb7a2tkhISGABb0tLy2zd2Vlx+vRpEKnLNwOZMT9TU9MCdX3/U/HduBQwlEolOnfuDCKCt7c3evfujaZNm0IikcDR0bFQ6k7S09MxdOhQlZk3EaFMmTIag8wFhWHDhsHMzEzrjLRRo0bw8/MrkGvdvHkTRJpTiEeNGgUzMzOt9BfCYCAwK8+cOROfPn3CrVu3sGjRIsyfPx9nz54Fz/M4duwYunfvDhsbGxARSw0+cOBAngo/tRkXASkpKVi0aBECAwNRpUoVdOzYEXPmzMGCBQuy3QRDWdC4du0aLC0tYWlpicGDB2Pp0qXo1KkTFAoFfHx88ObNG3YsEelEIS+kwmpiJM4Ka2trnZIZBHTv3p2968eOHdN4jIODAyQSiUrCi2CYhVRsS0tLzJo1S+c4IM/ziIyMhFQqxfjx4/HkyRN8/PgRGzZsgKurKxwcHPIkm/xvw3fjUgjgeR779+9HREQEfHx8EBgYiLlz5+rkS84P3r9/j19++QUrV67EmTNnCl2T5t69exCJRBg4cKDatXbt2gWO43JMP9UVQnxHUzHaqlWr2Opj69atau1z5syBVCrF27dv0ahRI3h5eWl8NjzPIyYmBufOnUNGRgZiY2MxYMAAODs7s+SAVq1a4ZdfftH5Hc9qXBITE7Fx40asW7cO69atw48//shYePOy5aVKPjvwPA8fHx/4+vqqGBEg0w1mYWGBDh06sH0ikQgGBgbZZiJeu3aNJVnkxGStUChQunRpnftrb2/PvndN8YMbN26wZyVU3aelpbFgPxGhZs2aiIiIgFQqhYuLi841YWlpaRgwYIDahE4ul6NUqVKYPHlyvrRQ/g34bly+I1+YP38+iAhVqlTBihUr8Msvv7AK+CZNmuQ4oAhQKpU4ePAgZs6cifnz56tVGgtVxppmhAkJCTA0NASRetX2y5cv4ejoiJYtWwLI5IQiUi2cE5A1SF27dm20b98e06ZNQ2JiIv7880+MGzcOZcuWZUHf0NBQLFq0CE+fPtV6X1mNy9q1a7M1Fg4ODli0aBHc3NxgYmKCzZs3Y//+/Vq3gi7WO378OIi0Z2tNnz4dMpmMGZ6BAweCiPDjjz9qPadQgJhdXEqATCaDr6+vzv01MzNjg3t4eLhKbcnly5dRokQJxrZw6dIlAH9/H0SZBZICHjx4AFdXV/j7++dqUvb69WtUrlwZRITy5ctj+PDhaNu2LeRyOezs7HDz5k2dz/Vvw3fj8h35xq5duxAUFMR+tG5ubpgzZ47OhuXPP/9kmTxGRkasADIiIoKR/7169Qp6enqYOnWqxnM0adIERJnU5zt37sTly5excOFCODs7w8bGhrnLeJ5HzZo1UaJECbXZ7vDhw2FmZoaff/4ZAQEBqFixIqRSKezt7bFmzRp23KNHj7BgwQLUrFmTUby7urqiRIkS8PDwgLu7O9zc3ODq6spWJvb29rCwsIBIJEJKSgpGjhwJAwMDxMXFISUlBbt374ZCoUDZsmWxZ88eyOVyrfdaWJg7dy4UCoXWwVVYCQguKKVSCZlMpjXt9uLFi+A4Tk1jXhtyu3KxtbVlJJQymQxSqRRVq1ZFmTJlQJTJWN2iRQvY2dkhPT0dnz9/ZvTymtK9hQw0TZmE2jBx4kRIJBI1Xq64uDiULl0apUqVKvAY6z8F343LdxQYkpKS8P79+1zN/O7fvw8zMzOUL18ex48fZ1XWK1euhLGxMUJCQtj5unfvDrlcju3bt7N9SqUSv/zyC/T09NCoUSM2sAhuo2bNmqnl8V+9ehUikUgtwLxhwwYQkUrc5t69eyzjSZj9ZoVQmT1o0CAMGjQIgwcPxpAhQzB06FAMGzYMAwYMQN26dTF8+HCMGDGCFWf6+PigY8eOKue6cOEC/Pz82IBcoUIFnZ9jQWDRokWQSCRaY2hC8eDp06fZPiG+qCm4LZB9SiQSmJmZwdraGra2tmxr1aqVyvEGBgYoUaIEAGDdunVo0qQJ/P394ePjA29vb3h5ebEBWyiYFIlEqFmzJiwtLdG/f3+0bt0aHTt2xKZNm7BkyRJwHIcZM2YA+JvXjohw7949tf4qlUqYmppiypQpOj2vtLQ0FCtWTCu9jFB8+8cff+h0vn8bvhuXXIDnedy4cQPnzp3Du3fvvnV3/hXo0aMHbG1tNcajBHZlwU2TkpLC6FlKliyJ8PBwlu0TERGB1NRU8DyPW7du4ezZs9kSJPbs2RPGxsYqxyQkJEAsFqvxogmCULGxsQVz0wDc3Nw0ZhSlp6czCWaFQqFCblnYuHfvHjiO00rdIyQ6ZF3xTZw4UaM7Esh8nv7+/nB3d4ejoyNsbGxgbW2tUuCaFcbGxnB1dQUA5u6SSCRQKBRqm76+PksftrOzY8ebmprCzc2NMV43bdoUKSkprOhSMEiaoFQqYWJiorNxuXXrFojUa6IE8DwPW1tbjB49Wqfz/dvw3bjoiHXr1sHT05O9oDKZDO3atfueFZJPmJiYqNGWCxAq4zt16qSy7/Dhw+jQoQPq1KmDqKgotuLJDd68eQNTU1N0795dZb+Li4takWtycjIsLS3Ru3fvXF0jOzRp0kSrcBTP83B2doa+vj4qVKjwVYvxWrRoAWNjY+zdu5f1LT09HYsWLQLHcZg2bZrK8ba2tpBKpbl2/RgYGEAikeDx48fYtGkTJk2aBJlMBiMjIyxbtgy1atUCESEqKgpTpkxBx44d0aFDB7VswMDAQOjr60NPT49lf+W0aaul2bt3L4gIp06d0ukehBqzAwcOaGzneR7W1tYaa6b+C/huXHSAQPHdtGlT7Nu3D3/++SdmzpwJGxsbuLm54dWrV9+6i/9IZGRkgEi7FgoA1KtXD02aNCmU68+ePRsikUglTTgkJEQjseSPP/4IhUJRYBlAAh/ZqlWr1NoWLlwIImID+ty5c3U+76tXrzB9+nQ0a9YMLVu2RExMTK7YGT59+oSaNWuCiFC6dGk0atQIDg4OICL07NlTzYgIwmm5xYIFC/KcJefq6qqm756QkIAZM2bg3r17eP/+PU6dOoWYmBiMHDkS9erVAxGhQoUKLPj+pUv0/v37uQ7op6enw8HBQWXykxWHDh0CEeHw4cO5fj7/BhRZ4/LhwwfcuHHjm7CLZoWQblusWDE4OzujUqVKWLx4MZKSkvDgwQOYm5trpbL+jpzh5OSktRAvNTUVNjY26N+/f6FcOzU1FR4eHqhRowYbUKZPnw6O49TIRd+8eQN9fX306dOnQK7N8zy6devGJi0bN27Ezz//jEaNGoHo70r97t27w9zcXCsxaUZGBm7duoXLly9jxowZjNq+Vq1ajITT3t4eV69e1blvSqUS+/fvR4cOHdCgQQP06tVLo+iWkP3m6OiIdevW5SrVXqiwF4zoqVOn8P79ezx58gRbt27FwIED0bx5c0RHR+PYsWP49OkTtm3bhkqVKoHjOMhkMly6dAn37t1DaGioyqqlatWqakZQSGG/du0aO65y5coYMGAAwsPDIZFI4Orqmmt5CsGFuX79ehWjdP/+fbi7u6NMmTKFXhJQVFHkjMvDhw/Rpk0bFbW3kJCQAvV364q3b9+yVMa6deti5MiRaNy4MUQiEcqWLYu3b99i+PDhMDExybey4n8VP/74I/T19TWyss6ZM4el8RYWsq4geJ6HUqlEWFgYDAwM1NwdAm3L3r17C+TaPM9j+fLlKswBvr6+KuwODx8+hEgkUnNHAZmGRSCQzBpP6NevH/sN3rlzB2XLloWdnR3LvMsPBBblrNmBWTdHR0fUq1cPpUuXhrm5OYyNjbXWOgnGNSe6lV9//RU+Pj4a3VvC/z09PbFs2TJUqVIFRKqSCV/CwsICcrkc9evXR8mSJVG5cmXMnz8/T+NWRkYGkzAuU6YMevfujbCwMEgkEri4uBQaKeQ/AUXKuNy/fx82NjZwdHTErFmzcPz4caxduxYVKlSARCLRmZ6hoNCyZUvIZDKUKlVKZf/ly5dhYWGBiIgI/PbbbyCib77C+qfi48eP8PHxgYWFBaZMmYKrV68iNjYWnTp1AhFhwIABhd6Hli1bgihT3O3QoUNISkpCvXr1oKenh23btrHjeJ5H3bp1YWNjU6CqojzP4+3bt3j37p3GWa4wCDdq1Ah//vknO2bkyJEQiURYs2YNGjZsiGLFimHkyJGQy+WwsbFhhYOPHj2CWCzG4sWL89XPuLg4FCtWjA3sdnZ2qFGjBiZMmMDiJALPm1wuh729Pfs7KCiIFVump6dj9OjRTNxt+PDhWq8pKCzWqVMHe/bswfXr17F8+XLY2dlBLBajYsWKapOPOnXqgCiz9kUThPqcgtKz53kee/fuRXh4OHx8fFClShUsWLDgXxceyC2KlHEJCwuDi4uL2g83LS0N9evX1yolK+D27duYPXs2Jk2ahF27duUrEPr06VOIxWLUrl0bNjY2ajUbixcvhkgkwvjx4yESibS6Lb4jZ7x9+xadOnWCXC5nM1F7e3vMnTv3q7gUeJ7Hrl27EBAQAJFIhJiYGKSmpiIyMpK5PATEx8dDoVDkyJNV0P3bvHkznJycQJTJkdazZ08Q/a19YmlpybKSnjx5ggoVKsDFxYVRmoSGhupE5a8Nhw4dYvVHAwcO1FkfKCUlhbENC+nhXwbetdXBJCYmwsTEBO3bt1d7D968eQMXFxc0bdpU7XNKpRL+/v4g0qw3k5CQAI7jWNrzdxQOioxxef78OUQikVZ53MuXL4OIsGPHDrW2T58+oVmzZiDK1CiwsLAAEcHZ2TlXBVFZIfBQCUG5rAMMkPlyC2mQml7w78g93r17h5MnT+LChQs6F2AWJDIyMtgqYdasWczlIZfLVVYwlStXhpeXlxpFSmEjLS0Nu3btQmRkJORyOSIjI9mga2RkxOo5gMyKc2NjY7Ro0QI8z6N58+YICQnJ9TXT09MxePBgcBwHqVSaZ6G7tWvXIjQ0FFWqVEH58uUxb948nDhxAiNHjtRqqNasWQOO47QyESxcuBBisVhjQo1SqYS1tbXWuh1BEiK/q7nv0I4iY1yEgqPsFNFMTExUfkBA5qwuNDQURkZGiImJYS/quXPnULVqVRgaGuZJZW3r1q0gyqQbadasGRQKBZYsWcJeVEGLXSqVFio55Hd8XfA8j5EjR4KIWKaVMPMWJip//fUXLC0tUb58+W9W75SSkqIStA4KClKLM/zyyy8gImzcuBHm5uYq1PM54enTp4xwlYhgZWWlkRS0MDFu3DgUK1ZMa/v58+dBRLh48aLGduE3/GW6OZCZzGFgYACZTFYoWkffUYSMi1Co9qWkqIB3795BIpGorWwErihN/tPExEQ4OzurkO3pihcvXkAqlWLu3LlITk5Gu3btwHEc5HK5irb4L7/8kutzf0fh4uLFi+jcuTO8vb3h5+eH4cOH57oYsXjx4syl8uDBA+bSEQaiS5cuwdzcHN7e3nj27FmB30NusWnTJhCpS+/Wr18fRkZG4DhOja9NGwYMGMDebycnJ5Yq/uzZM+zatQv79+/XSCBa0Jg/fz5kMplWtmKBb05bhpeQGda5c2eN7VOmTNHqDfmO/KPIGBehYK5x48Ya/ezTpk2DVCpVK1rs0aMHXF1dtfrmJ02aBLlcnqf4S4cOHWBsbMwy1R48eIA5c+aga9euUCgUhSbC9R15h5Bh5uTkhJ49eyIqKgomJibQ19fXOnERwPM8UlNT8eOPP0IkEqF27do4cOAAlEolzp49qzYQ3bhxA46OjnB2dsaMGTNUCg+/NnieZ1QsdevWxZIlSzBnzhxGk+Ln55ej8qBSqUSDBg3Y8xMSAuLj49GsWTPGo0ZEMDY2xvDhwwvVfRkXFweJRKKxYj4jIwNVqlTRKlYHgGVxfVkTI0BIpY6JiSmwPn8tvH37Fjdu3CjSzMtFxrgAfy/ju3fvzoxIYmIi5s2bB4lEorGeJDIyEjVq1NB6ToGqPS9L30+fPjHlwaCgIPTq1Yu5SAIDAwsktfM7Cg5HjhwBEWHo0KEqk4mEhATUq1cPhoaGWrO8BLp5YfAUWG2JCD4+Prh//z5Kly6NgIAAFVfY06dPERISwliZV69eXdi3qRU8z2Pt2rXw9/cHx3GQSCRo0KABJk6cyLjXsgvEDx48mL3bgsvt/fv3KFmyJGxsbBgD9M2bN5l6Y6tWrQrVoA4YMAAikQgTJkzA27dvAWRKRQsqp9oYnAGwmhhtRvXdu3fgOA7+/v4AMl1lhS39m1/cuHED4eHhzNBzHIcGDRporEP61ihSxgUAlixZwniD3NzcYGhoCI7j0KNHD42zpJEjR8LMzAzJyckaz9erVy/Y2Njk+QeQlpaGjRs3ok6dOvDx8UFoaCg2bNhQ5F/C/yKaNGkCHx8fjd/127dvIZfLtfJGvXjxgtVW+fv7IyUlhYmHubu7w8XFBfv27YOZmRkqV66sVqTH8zxCQkKyra/4mlAqlSrPYe/evZDL5Rg1apTG49PT0yGTyWBhYaGyf+LEiVAoFBpF7tatWwciwokTJwq281mQkZGBwYMHM8VOgWXa2toa27dvz/azQhrzl3Q+WSGoWZYvX55NLAIDA7F58+aCvpV848qVKzAxMYG7uzsWLlyI2NhYVielr6+f5+SlwkKRMy5A5mxpyZIlGDp0KKZPn55t1axAtqdJU+LmzZswNDT8zxLH/ddgamqKSZMmaW1v1KgRQkNDNbaNHTsWBgYGqFu3LqP2F2qX7t27x+pEBM2TH3/8Uc2IrV69GkSEs2fPFtxNFSC6dOkCDw8Pjcb3ypUrICK1oL+rq6vWmIVSqYS7u7tW+pOCxMuXL7Fs2TJMnz4dW7du1Wlyp1QqYWFhAYlEotF9xPM8Y7x2cHDAihUrsHz5ckZ/k5Xz7uPHj9+cOr9KlSrw9fVVG1+Tk5MRGBiI0qVLFyk2gCJpXHKLcePGgShTRvXAgQO4ePEiJk2aBAsLC3h5eRW6AuR3FBxu376NvXv34syZM7n+MZuYmGDy5Mla25s0aYLatWtrbCtZsiSqVq2K6tWrw9zcHCKRCGKxGD169MDRo0fRoEEDtioZO3YsiAjt2rVTWTEnJiaiYsWKUCgURTLRY9euXVoZDwShtIkTJ6rs19PTQ3R0tNZzhoeHazXYRQH79+8HUSYlzJc4ePAgK18wNjZm+3meZ4WYwcHBjImbSHdSy4LGX3/9BSLNSqvA3zxmhbmKzC3+FcZFoNFwc3NjL4FCoUCXLl2+ei3Cd+QNly5dYqqFwubq6oqff/5Z53M0bNhQK5fTu3fvoFAo1AZPIJPsUSqVsmB47969WRGesNna2qoIWf3888+Qy+Vo3LixyrmSk5PRunVrEBHCwsK+2WCkCSkpKShWrBiaNWum1nby5EkQkdrKz8HBAb169dJ4Pp7n4eXlhbZt2xZKfwsKwnv1JcNHs2bN4O3tjcDAQBXJaEHXR9umKbW5sPHrr7+CiLTGDNPT04tccsK/wrgIUCqVuHbtGs6fP681ffG/iufPn+PmzZtFMgnhypUrMDIygq+vLzZt2oQnT57g+PHjzGWhjZvqSxw4cABEhDFjxqisepKSktC4cWPo6+trlEioX78+pFIpypcvr7J/3759kEqlCAgIgFQqZRxfQuxv5cqVICI8efJE5XM8z2PNmjUoUaJEtqmy3wI///wziAidOnXCuXPnmCF++fIliAg9evRQOX7EiBEwNjbWyP8lrIRyysLLK3iex6+//opatWrB1NQU1tbW6NChg0bRtuzw9u1bJliW9b1wd3fH4MGDUbZsWchkMrZfiNUIm4uLCzp16gRfX18Q0Tep7Bfq6rQF7h8+fJjtyuZb4F9lXIoa0tPTsW3bNnTq1Alt27bF3Llzv3rR3cGDB1VWBHK5HFFRUTmSBX5N1K1bF6VLl1arneB5Hl26dIGxsbHOdRVTp04FUabU8oABA9CtWzdGVLh7926142/evAkiQq9evTTWS40ePZrRnrRo0QIikQjlypVDfHw8Pn78CLlczihYvsTMmTOhUCiKVPIHz/OYPn06HB0dQZRJtjhp0iRcu3YNIpEIHh4eKsfHx8fDwcEB7u7uLNbx7t07zJ07F/r6+qhTp06hxCJ4nkefPn1YgH3q1KkYNWoUnJ2dIZFIch1wF0TNshpPb29vdO7cmSUOCUhNTcWBAwfQsGFDlCtXju0XqPu1xaAKE6mpqbC1tdUa3xo0aFCufidfA9+NSyHhwYMHTBdeILOTSqXQ19fPMculoLBlyxaIRCIEBARg/fr1OHbsGKZMmQIbGxs4OzsXCQPz7NmzbJfzjx8/BsdxasWB2eH06dNo27YtPDw8UKpUKQwcOFCjrC0ALF26FCKRCElJSYx6vUuXLti3bx927drF6j4aNWoEnudx9uxZKBQKxhTRokULeHt7a3TFNW/eHGXLlmV/JyQkYO7cuShTpgwsLS3h5eWF6dOnf5OYYEZGBnbv3o3mzZuzNGph+5JO5f79+2ouS4lEgqioqEKrbhfol5YsWaKyPy0tDa1atYJMJsPz589zdU7BoIaHhyM9PZ2tyoyNjWFvb69yrCCxMGHCBLZv0qRJIMpkPPgWEHR+hg0bxtz9Hz58YIYza1+LAoqccXn9+jUuXbr0VeVdCxqfP3+Gh4cH3N3dVagp4uPj0bx5869CGZOUlAQzMzM0b95crYD0yZMnsLW1Rfv27Qu1D7pAKE68fPmy1mOsrKw0xkoKAkuWLIFIJEJqairS09MxdepUJo4lFBMSkUo9Rf369RlPl1Bbo8l199NPPzHDtG/fPvj6+kIqlaJly5aYMmUK2rVrB5lMhhIlSnxTQ//582fs3bsX3t7ecHd3xy+//IIlS5Zg3759Ku/OlStXsHLlSvz000+5Hthzi6CgIAQFBWlse//+vdrArwuePn2K0qVLgyhT+Ozp06eMtTkrP+CDBw8QGBgIMzMzNTfqzZs3v2mh7OTJk6GnpweZTAY3NzcoFApIJBIMGzbsm2ezfYkiY1zu3r2rVgVcpUqVf6SKmxAQ1JSVk5aWBg8Pj0Kv7v/pp5/AcZxWPYlp06ZBJpN980w6gVpFm5vj1atXGml/CgoCRUjW7K709HTcv38fDx8+xPjx46FQKFSe06BBg1T87l27doWBgYFa7AXIjHEIK1ipVIpdu3aptN+7dw8ODg6oW7duwd9cLnD9+nXmNhWK84gyyV81uRMLGzKZLFsFzoYNG+aZ5dnY2BhyuRxdu3ZVoXIKDAxE5cqVwXEcrK2tcebMGbx48QIdOnTAwYMH8ebNG4wdOxZOTk6QSqVwcnLCmDFjvnqV/KtXrzB//nwMGTIEs2fPLnRDn1cUCeNy584dWFpawsXFBdHR0Th79ix++eUXBAQEQCwWF5juwtdCy5YtUblyZa3tkyZNgr6+fqH2YdSoUXB0dNTafvr0aRBRrhQKCwvCj1qTnIKgT1KYWX8hISGwt7fH7du3VfbHxsbCwMBALcjdvXt3FV/8hw8fYGNjg5YtW2o8/9OnTyESiWBpaYmSJUuqJFU8fvyYVcYXpihaTqhUqRKLPT169Ag8z+PcuXOoV68exGIxDh069FX7Y2BggKlTp2ptDwkJUcvU0xXz5s1jcTQiQvPmzbFs2TK0adMGbdu2xcqVK5GUlITPnz+zYywsLODi4gJDQ0N069YNCxcuRPfu3WFoaAgXFxeNE4v/OoqEcWnYsCHc3NzUBpD09HQ0btwYNjY2eQqKpqen4/Tp0zh06NBXdTs0btw421nVkiVLwHFcoS6vZ8yYAQMDA60+ccGnrY3O/Gvi6NGjkEgkqFOnDstgevr0KQYNGgQiwrhx4/J1/tTUVJw+fRrHjh3TaKTi4uLg6ekJiUSCZs2aYcSIEahduzaIMml/vtTq6dixI8zNzbF+/XrmNlqyZAmISOMsVhCUO3bsGIyMjNC8eXM8ePAADRs2VFFTNDY2xqxZs7S+F6mpqdi7dy/WrVuHY8eOFZgb5P379+A4TiU+JCA9PR1VqlRBpUqVCuRauiI8PBxeXl4a7/HJkycFIn52586dbEXffv/9dxARtm3bBiKCubm5Wubfo0eP4OzsjDp16uSrL/9GfHPj8uzZM3Ach+XLl2tsF9wWWfU0cgLP84iOjoa9vT374YrFYoSHh+Pp06c6nyevGD16dLaZG02aNEGZMmUKtQ/3798Hx3Eaf4BKpRLBwcGoWLFiofYhN9i7dy+cnZ3Zd0VEMDQ0xKRJk/JshJVKJaZNmwZra2v2HshkMnTo0EHNyHz69Anz58+Hv78/ihcvjurVq2Pt2rUaJzU3b95Ew4YNQUQoV64crl27xmJHs2bNUkuVFVJ2Hzx4wAYqCLT2kAAAJ9hJREFUuVwOR0dHrFq1ijGCC5XhmuhKVq1axZQbhc3d3b1AJJdnzZoFItL6GxT6rIkCprAQGxvLaJ+yFqrGxcWhYsWKsLa2LvS0emHCEBUVxequNEGIrX3N5/NPwDc3LnnVcckOY8aMARGhY8eOOHXqFO7evYvFixfDwcEBTk5OGmsdChKPHz+GWCxG79691QbGXbt2ZSuKVpDo2LEjZDIZli5dyggLnz59ivbt24PjODX//7dGRkYG9u3bh8WLF2Pjxo35Hjx69OjBBqhz587h5s2bmDlzJiwsLODt7a3ze/ry5Us8ffpUjdvu9OnTKF26NPT09DBkyBDGe8VxnEoMSSjgFALQ9evXB8dxKF68OC5fvowFCxZALBbj2bNnmDp1KjiOU8luW758OYgIbdu2xZUrV5CUlITY2FjUrl0bYrEYBw4cyNdz6tixI4hIaxKNEI/52tXfK1asgFgshpmZGVq0aIH69etDIpHAysqKMTYXJniex7x581QMuqaJzocPH0BE2LBhQ6H36Z+Eb25chJWJthnYmzdvIBaLdS6ke/jwoVausadPn8LCwgJ9+vTRuX8CkpOTsXr1ajRp0gShoaEYNGiQmo8+K4RZT8WKFbFo0SKsW7cOLVu2hFgsRlhY2FdRWvz8+TOjHTc2NoabmxvEYjEMDQ1zldr7T8TFixdBpFlp8MaNG1qr9bNi8+bNqFChAhtYihUrhvHjx6swC6ekpGD48OEQiUQICwvDixcvWKps1sG4V69ekMvl+O2332BkZISePXuibNmy0NPTg1wuZ1XuSUlJMDU1xZgxYwBkvnfm5uaIiopSG9jS09NRvXp1lC1bNl8uVkEy+caNGxrbBYLKb+FCvXfvHoYMGYLg4GCEhoZi3rx5Xz0JRSieJCKNbjohnb4oFTAWBXxz4yJQSNSvX1/jD0SgC8/ON5oV48ePh7GxsVZNeyG3PTeD+7179+Dq6sp88OHh4bCwsADHcdlmtOzfvx+hoaHsxfT09MT8+fO/uoTvnTt3MHnyZAwdOhTLly8vklX6BY1evXrBwcFB67Pu1KkTXFxctH5+2rRpICLUqVMHGzduxO7du9GjRw/IZDLUrFkTnz9/Vjn+999/h76+PipVqoSnT5+ievXqsLKyYquBlJQUVoRHlMlZlZViJmvtREBAADp27Ajg79iYNqEvweV29epVpKSkYN26dejfvz+GDh2K48eP62R0hNl5hw4d1I5PSkqCr69vniSS/y0QFC2trKw0Ps/JkydDLpczSYDvyMQ3Ny7A319eVFQU+zF++PABU6dOhUgkwqBBg3Q+V1RUVLaZWoL/WNf0wfT0dJQoUQIlSpTAzZs32f7k5GSW5ZOTeyk1NRWJiYlFirH0344GDRpkm00kFE9q+k7u3r0LjuMwcuRItfZjx45BIpFg/vz5ap87f/48rKys0KJFC7x69Qrm5uaIiIhg7UqlEjt27IBIJIKjoyPCwsKwbds2JqN96tQppKWlwdramsVdoqOjoaenp/U+Hj16BCLC9OnTWVqtp6cn06KpXLlyjm7gadOmwcDAgNV7HD9+HE+fPsXWrVtRrlw5GBgYaJUSLupQKpWIiYlBZGQkWrZsiYULF+Lu3bt4/Pgx4uLidC4C7datG6RSKTZv3szeCZ7nsXXrVshkMq38a/9lFAnjAgAxMTEwMjKCSCSCvb095HI5xGIx+vfvnysVySFDhsDGxkZjWisATJ8+HXp6emozT20QjJGmHxfP86hSpUqR0fD4jr/Rvn37bCnIBw8eDCsrK41tQ4cOhbm5uVZhrebNm6uQWGZFdHQ0OI7DzJkzIZVKNZIctmvXDk5OTux3kpKSgmrVqsHCwoJVgQsp4sLES5uaopDRJJfLUatWLdy+fRvx8fGYMGECvL29oaenBysrK60uLyAz3bt48eLYsGEDW6Fnrf34GvGNgkJGRgb27t2LqKgo+Pn5QSKRqNzPl5tcLkfLli2xa9curWMGkOliFrjuSpQogfDwcHh6eoKI0KRJE53Hk/8SioxxATLpMWJiYjBmzBjMmzcvT9rkly5dApFmRcCEhAS4uLigTZs2Op+va9eu8Pb21tq+bNkyEJFWsbLv+Db4448/tMby3rx5A0tLS/Tv31/jZxs1aoQGDRogOTkZP//8MyZMmIDo6GhWrLZ06VKtqeSfPn2CiYkJiDK5yDQZqFu3bsHExATly5dnMsp3795lK4+s9TIpKSmwsLBAu3bt1K6XlpaGKlWqwMLCAk5OTkhOTsbRo0dhbGwMhUKBiIgI1K1bF0QEkUiklWKnQ4cOTI1RqVTi9OnT2L17d7YGqajh8+fPWLJkCcs49PDwYEzXxYoVw7Bhw/DDDz9g8uTJcHBwgJWVFTZt2oRp06bB29sbRAQbGxvs27dP6zV4nsfRo0cRFRWFOnXqoGPHjjhy5Mg39Ug8ffoUv//+O/bt21ekeMWAImZcCgqtWrWCnp4eZs6ciffv3zNFwcqVK8PIyCjbzLQv0aFDh2xz/AWW2W99z9+hCqVSiZo1a8LIyAjLly9HUlISlEolDhw4AF9fX5V4yJdo1aoVXFxcYG5uDqJM1UM9PT1IJBL069cPY8aMgZGRkdZrX7lyBXv37s22DuXixYtMVlkkEoEos4JfKpWia9euKsfGxMSwYr9z587hw4cPOHjwIIKDgxlf3bhx4/Dy5UsYGxsjJCRExf/v5+cHNzc3iEQinDt3Tq0vPj4+7JqPHz/Ghg0bsGHDhn8UBVNkZCQ4jkOrVq1w9uxZtsqwtLRE8eLF2Upl2rRpePToEaRSKebMmQMg02hcunQJdevWhVQqRfv27REaGgpPT0+4urril19+KXIu7efPn6Np06bs3RGSdkaMGPHVY7raUCSMy8SJE8FxHMzMzPK0WvkSnz9/Rrdu3SCRSMBxHKvG9fT0xJkzZ3J1roULF7I0UU1o0aIFPD09i9zL9x2Zq4iWLVsyPXmFQgEigq+vb7bV8CNHjgQRoXbt2iyQ/uHDB0ybNg1isRhGRkaIiorKd/94nsfJkyexdOlS/PTTT3j16hUWLVoEIvVq/XXr1jHiRWErXbo0Dhw4AI7jsHTpUkyZMkUjm0HDhg1ZobKmVXvlypXRoEEDNG/eXGWwEolEaN68+Vdn8s4NUlNTMWXKFBARRowYgTZt2qBKlSogymTGTkxMREpKCuOLq1u3Lrp37w4vLy+4u7vjzJkz7LeblpaG3r17o1y5cmjatCn69++PsLAwEBFatWpVZCaQb9++hYeHB+zs7LBs2TLExcXh1q1bGD58OCQSCdq2bVskxqMiYVyKFSvGXujVq1dj69atWLduHa5cuZIvK/z8+XOsXLkSCxYswOHDh/P0wD98+ABjY2M0bNhQza/666+/QiQSYcGCBXnu47fC58+fsXr1agQHB8PT0xNBQUGIiYnRGmf4J+PBgwdYvHgx5s6di9jY2Bzfg/Lly8PAwAB2dnY4cOAAO/7u3bvw8PAAERUa511KSgqkUqnGLMT09HQcPnwYmzZtwunTp1m/SpUqhcjISNSsWRNhYWFq57OwsMCQIUMwatQoWFtbq5036+Ru6dKlePfuHd69e4elS5fCwsIC5cuXL5LvRXx8vIqxdXFxgb29PWP1GDJkCDv248ePmDhxIpo0aYKyZcsyDjUiQoMGDXDs2DGtMZcNGzbAyMgIrq6uGld+Xxtjx46FoaGhRt7AtWvXgohw5swZ3L17F0uXLsWiRYu06sAUJoqEcXnx4gVCQkJQrFgxlS9d2LJqWX8L7NmzBzKZDE5OThg9ejTmzp3LfNkRERG5SjgoCvjw4QPjkgoNDcXAgQNRp04dcByHihUrfnMyy/wiNTUVW7ZswdSpU7F48eJcFc3eu3cPRIRVq1ahYsWKICI4OjoyNl0zMzNIpdJCnVBERETAwsJCZzaJefPmQSKRoGzZsmjRooVKm1BQfOfOHUyYMAEWFhZqn585c6ZarEfAxYsXwXEcVq1albeb0RHv379HbGwsTp06hcuXL+PmzZs4fPgwVq1apTX28+rVK/a9WFlZoVGjRmzFV69ePa1ZozzPo2zZsmjQoAG2b9/OVjXGxsZo1qwZhgwZgi5duqiooN67dw/+/v6QSCSYMWPGN2UgdnR01KqGmZGRAUdHR+YKFIvFLKkhMDDwqwrXFQnjAmRWCUskEowbNw5Pnz7Fxo0bVQzM6tWrsXjx4hx92YWFa9euoVOnTjA3N4dCoUDFihURExPzjzMsANCmTRuYmpri7NmzKvvPnz8PMzMzREZG5vsab9++xbFjx3Dy5MmvOuvdsWMHo3sxMzODRCKBRCJB//79dVoFnz9/HkSZin88z+PIkSMYPHgw+vTpg7Vr1yI5ORk2NjaFqp3x5s0bODg4aCXC/BKfP39GjRo1IJFIoKenhx07dmDz5s2oX78+iAiTJ09mA2qjRo3UPl+9enWUKlUKHMdpjEfWrVsX1atXz/d9ZcXHjx8RExODqKgolCpVKtuMrrykQguywJoKGwXW8t27d+PSpUto164dTExMIJPJYGxsDFtbWzg5OcHExESlXi41NRVDhw5lLtODBw/i8uXLX90FlR3DR1paGpsArV69GsnJyUhPT8eOHTvg6uoKZ2fnryb9XiSMy+XLl0FEWLFihcr+kJAQlWCn8LK5urpi1qxZRUrh75+C58+fa63TAHKOMeWEd+/eoVOnTiqss5aWlpgwYUKhG+LDhw9DLBajSZMmbJB89+4dpkyZArFYrBMzw8uXLyEWi7Fw4UKN7cLKZv369QXa9y/RqFEj1KhRQ+fjk5OTmXKjsPn5+WHjxo3geZ7FJTRJEpcoUQL9+/eHQqHArFmz1NoHDhxYYNK+z549Q4cOHaCvrw+RSISyZcuiR48eWLt2La5evYrr16/j3LlzOHbsGG7duoV3796pBN91hVKpZIwYXbp0wf79+/HHH3+gU6dOEIlEaNu2LTZv3gyJRILixYtj9OjRmD59OqpWrQoiQps2bcBxnMYV6v79+1V43tzd3TFz5swCeT66oFixYujXrx+AzInFypUrERgYqLJi0USk+eTJE52YKQoKRcK4DBw4EMWKFdM6sxw9ejSkUimMjY1VWGT19PSKrJZBUYVQtxMfH6+x/fXr1yAibNq0KdfnTkhIgJ+fH8zMzDBt2jTcuHEDFy5cQJ8+fSASiTRSmBQkqlatioCAAI3v0cyZMyEWi3VyNYWHh6N48eJqhbZKpRKRkZEwMzMr1NTzAwcOgIiyZX/Qhp9++glisRj29vYYOnQoxo0bx+hLxo8fr/EzwcHBqF27NmrXrq2Rzbt27dq5MnTawPM8atWqBWtra0yaNEmn7+Lu3bsgojzRFWVkZGDatGkq4m+Ojo6YOXMmnj17BplMhsjISLVYy4oVK0BEqFGjBjiOQ58+fbBs2TLs37+feU0SExNx584d7N+/nzEtzJkzBzExMYXOXSjw2N25cweBgYHgOA4NGjTAqFGjYGZmxu5T09jYsWNHlCxZslD7J6BIGJfWrVtrVZ0DwFxknz59wv79+1UyWgpb0fHfBqEorzCMy8yZM6Gnp4crV66otQnptKdOncr1eXXBkydPQKRdgvbTp09QKBSYPXt2jue6d+8erK2tUbx4cSxcuBB//vknfv31VzbYFKbMbXJyMiIjI0GkvXAyJ1y+fBlRUVFwcHCAra0twsLCVJQ0v8SaNWtAROjduzdkMplK0FrQ/SkILrrnz5+DiLBu3Tqdjo+Pj4erqytKlCiRr4y19PR03LlzB3fv3mWr54kTJ0JfX19rfLFGjRoIDAzEmDFjYGdnx8acKlWqqAXSly9fDoVCwVgODAwMMHbs2EKjWXr+/Dns7e1ZPVNsbCzevHmDWbNmQSQSwdbWFnZ2dqhdu7baZydPnqwx7lYYKBLGZfDgwbC2ttbq5hL4wIRZw5EjRxAVFYXQ0FCYm5ujT58+RTKbpShCcItpC0gvWrRI5xn+lyhZsqTWAlWlUglXV1d07tw51+fVBVeuXGFZMtrg6OiIUaNG6XS+e/fuoWnTpirKqOXLly90VcZz586BiFCtWrWvlgL8+fNnBAQEwNjYGM7OzrCwsMCJEycwZ84cmJiYICAgoEAq0C9cuKDzhFCpVMLf3x/FihUrlCB0o0aNUK9ePa3tCxYsgFQqZX9nZGQwgs+xY8dq/dy7d+9YXKZYsWKFZmDOnz+v4sURQgeurq7w8vLC+vXrQaRORhoeHq4idFeY0NUeSKgQ0bFjR5o1axatXLmSevbsqdIWHx9PK1eupA4dOpBIJCIiouDgYAoODiaFQkGfP3+m6OhoWrp0Ka1evZratGlTaP28e/cuLV26lM6ePUsSiYRCQ0Opc+fOZGNjU2jXLGgUK1aMWrZsSWPHjqXKlSuTv78/a7t48SKNHj2aIiIiyMHBIdfnfvz4MXXv3l1jm0gkovLly9OjR4/y2vVs4eDgQBKJhM6ePUuVKlVSa3/69CnFxcWRi4uLTudzc3Oj7du306tXr+jJkydkampK7u7uBd1tNVSoUIEqVKhAPM+TiYlJoV+PiEgmk9G+ffuoT58+tGHDBsrIyKCqVauSRCKh1q1bU3R0NMlksnxf58WLF0SU+Q7mhMOHD9P58+fp8OHDVLx48Xxf+0tIJBJKSEjQ2p6cnEwSSeawB4BGjx5NixcvJiMjI3r//j117tyZPn78SGZmZuTo6EgmJib07t07evXqFV27do2IMt95uVxORETHjh2jP/74g8zNzalYsWLk4+NDJUuWpGPHjtHJkydJKpWSsbExNWjQgFxdXXPs/7t37wgA7dq1i169ekV6enpUq1YtunLlCtWpU4eNlSdPnqRSpUoRUebv+7fffqP58+fn69kVOArSUmlCt27dIBKJMGTIENy+fRtv3rzB+vXr4e7uDjs7O7UA86ZNm0CUKda0YcMGFiC8fv16rq+tC1atWgWxWAwLCwu0bdsWERERUCgUMDY2xrFjxwrlmoWFDx8+sDTbOnXqYNCgQahbty44joO/v3+eU5EdHBzQu3dvre3lypXTOQMqL2jRogWcnZ3VYiU8zyMqKgpGRkb/CEbogwcPguO4fCtw5gXx8fFYtmwZ9PX10bdv3zyd4/z58xg2bBh69eqF6OhotgIbM2YMDA0Ndcrai4yMLNTiZIG4VNOqSKlUwtvbG02bNgWQuRoRuA4tLS3h4eGBSpUqoXbt2ihfvjysra2hUChgb2+PMmXKIDIyEtOnT2fuM0FWhIg0cp0ZGxvDysoKenp64DgOTZo0wcCBA7N1i+7fvx9EpCb7wfM8IiIiWALUuHHjcOvWLUyZMgUmJiaoWLHiV6OqKhJuMSBz2TlmzBgYGxurPPiQkBAV4SQBhw4dAhGhdevWAID+/fuzXO6CxpkzZyASifDDDz+ouN/evn2LmjVrwsTERGeW5aICoYgyKCgIHh4eqF69er6LKIcNGwYTExON8ZzDhw+DiPD777/np9vZ4v79+7C2toaLiwuWLFmCa9euYffu3awmqbBrNQoSEydOzHPsqyDQu3fvbF3VmvDp0yeW/mxjYwNfX19IJBLo6+sjJiYGxYoV01qf8SXatm0LPT29QtOmT0hIgK2tLcqXL6/iAk5KSmIic8ePH2f709LS8mzojh8/rpJW/ddffyE2NhaLFi3CiRMnmLFNSkrCsmXLUL58eRgaGqJatWrYsGGDRr6zDx8+QF9fX2OSRlpaGho0aKAyjsrlcnTp0uWrsgwUGeMiIDExEbt378bWrVuzFeMCAIVCAUNDQ5Yhoa+vjx07duT52trQqlUruLu7a0ylff36NWQyGaZNm1bg1/2n4fnz57C1tUWpUqVYPVJycjJWrVoFU1NTVK1atdDTke/evYsmTZqoJH14e3vnSia7KECpVCIiIgJEmZQlX7vC+ubNm5BIJBgwYIDOn2nQoAGMjY2xZcsW9j2/ePECjRs3BlEmnYzA9pwTJk2aBAMDA50p8fOCP//8EzY2NhCLxahbty6aN28OMzMziMVirZLPeYVSqWTaPLqwTO/YsUPFOJw6dUot7tW7d28oFAr88ccfKvsvXLgAS0tLxjxw6NChb6I1U+SMS24g0MZIJBIMHjy40AjbrKysmDKgJjRu3JiJKV27dg0DBgxAeHg4unbtiqNHjxYJnp+vhVu3bsHPz4/NlgQ3QHh4OD58+PDV+vH8+XOcOnUKf/311z/2+WdkZGDy5MmsKLRBgwZftcJ6wYIFICIMHDgQR44cyXZVKwTrhZXWs2fPsHbtWrRu3RpSqRQKhQJlypTR+dq+vr5o1apVfm8hR3z48AHR0dGoW7cuatasiSFDhmj0lOQWPM+rvXevX7+GlZUVvLy8dCqh+PDhA6NzIcrkksvq9k9OTkadOnVARAgICEDPnj1Rq1YtlnzytYolteEfbVxSUlIwYMCAPAsZ8TyPxMTEHDNhzM3Nsy08at68OYKCgphrzsbGBnXr1mU8VPXq1dOqjPlvBM/zOHXqFObPn4/FixcXyI/1v4Y7d+6w+gmpVMpWYgqFQufZf37B8zyGDRvGPAMymQxBQUEq7iKlUolr166hWbNmMDAwQLt27ZgmDMdxKFeuHKZMmYKVK1eCiPDq1Sut10tKSkJ0dDRmz56ttbr+a+Phw4dYsWIFfvzxR6xZswaxsbFqhmHv3r2oW7cujIyMYGxsjMaNG8PR0RFmZmaoVKkS2rdvjx9//BErV67E5MmTQZSpAfMlUlJSWLzz7du3ePPmDd6/f4+TJ0/i6NGj8PLygkKhUGFROH78OCIiIuDh4QEbGxuULl0aI0eOLBL0+/9o45JXZGRkYOHChSq0EzVr1sSePXs0Ht+gQQP4+flpnAEnJCQwmnP6f+Gb4KfmeR6//fYbDAwMcqUh8x3/bcTHx8POzg6enp7YvXs3MjIykJycjDlz5kAkEkEul2Pp0qVaa5UKGkqlEpcvX8a8efPg7+8PfX19LFu2DD169FAhnRWMSd++fbF161YVQyLo62S38hKC1ML2rSdkHz9+hL6+Pogyucuypv5Wr14dO3fuxPjx40FEqFChAqZNm4bJkyezSaWNjQ3atWunFsCn/6czZ13JL1++HBYWFrC3t8e0adPUOBbLli2LUqVKwcHBgT1XIdFAIpHAwcEBpqamLJBfo0aNb069/58zLhkZGWjRogWjE//pp5+wZMkSBAQEgIjU6j8SExPRr18/EBEqVqyIzZs3s4re9PR0tGvXDhKJBFZWVmo6HAKWLFkCkUiER48eFfr9fcc/H6NGjYKRkZFG14mgHyQSicBxHAIDAzFq1CgsXbr0q6xokpOT2UTK2dkZAwYMwKFDhzBjxgyIRCKt9VFCskd2XoLExEQ2mH4tipLscOfOHebePXToEJKSknD9+nXMmDGDFUwSZXK3ZUVCQgJKlCjBMsE0GRfhOwwODsbVq1chkUgQEREBExMTpo65ZcsWbN68GVu3bkVoaCiKFSumUrfy/v17EGXq/AwePBj9+/dH79694e7uDrlcjpcvX37tR6aC/5xxWb16NYgI27dvV9nP8zwGDBgAjuOYG+fo0aOwsLAAx3EqXEJmZmbo3LkznJycIJFIWGbP6dOnNV4zMTEREokES5YsKfT7+45/PooXL44ePXpobff390ejRo2wZs0ahIWFwd7eHuL/tXf3MU2dXxzAT4GWNpQyylaKvJW1vKwVZSoOmY2b0+k2CZZEjavKYJOELlv24gusWyJjgYwF9pJsJtsQk2WOgDodYWYzIsiWLIuZbM45BWGUzTkyi7CCBNr7/f3R9P4ktFi0pSjP5z/o5d6HUu659z7POSc4GCKRyO9JnoDzoqqrq2vCnfzg4CCkUik2b948adHGuXPnEBER4bHzp8vIyAhkMhlef/11v4z7Vpw/fx56vR5EzpL+rjmOG1d/uXuiMT4+jqioKKSnp6OlpQUjIyO4ePEiTp8+jYGBAXR1dfEtrTUaDZKSknD9+nUMDw97XPTi7jhZWVlQKBRITk6GVqtFWloaMjIycOLECZ+/F9M154LL0qVLJ2XmXrhwAWazGUajEWKxGAUFBejs7ERYWBgee+wx/lb++PHjeOSRRxAcHIzg4GBs2bIFHR0daGtrAxHh/Pnzbo/JcRwkEskt1Ypi5h6pVOqxTI3D4YBer4dcLodarcaDDz6IiooK/Pnnn1i3bh2InI2tPHWRvHLlCvbs2QOdToeEhASsXr0ajY2NPqk0Xl9fj6CgIGRmZuLTTz9Fc3MzduzYAZlMhvnz59+04oDrTsFdi/JAcjgcaG5uhslkQnZ2Nvbu3YsffvgBMTExUwbMoqKiKbPhx8bG+L/Zl19+6YeRB9acCy5isRjvvfceAOeHxvXISy6XIzs7m6/mq9Vqce+997p97tvd3Y2goCB89NFHAJyrQIRCoccTgivHo7W11X+/GHPX0Ol0btse2O12bNq0iZ8D2LVrF39BFBMTg19//RX79u2DUqmEWCzGzp07J8xx/PLLL1AoFAgLC0NBQQHMZjNfBXjjxo0+eUZ/8uRJfsWS6y7/1Vdf9Sox99KlSyAiNDY23vY4ZoJGo5kyadhoNE7ZIh1wXnj6K5cn0OZccImMjORrA7311lsQCASorq7ml1nq9XosXLiQX87nydq1a/H444/zXxuNRtx3332TcnOsVisWLVoEnU53xy6JZWZWTU0NhEIhzpw5M+H7b7/9Nr9q7MYVW5cvX8b8+fORmpoKh8OBoaEhvPbaa3wV8aeeegpHjx7F/fffj4yMjEnP4g8dOoTg4GCf5mpZrVb09fVNKwmzvb0dRDQpb2O2ciWauluife3aNYSFhQWkysJsMeeCyzPPPAOVSoWBgQFERkbyfREAZ44GEWH//v2QSCQQCoUer7i2bt2K5cuX81/39/fjgQceQFhYGIqLi7Fv3z6YzWYolUrI5fJJJwqG8cRms2Hx4sW45557UFFRgd9++w0//vgjwsPDIRAIsHXr1kkXKq7qxTeueLTZbPjkk0+waNEi/k7ioYcewq5du/D9999P+PnCwkLEx8cHtPnd4cOHQUR3zJX8hQsXEBoaCoPBMOE80d/fj1WrViE8PBzd3d2or69HaWkpysrKAtJuOFDmXHD5+eefERoaiuzsbBARv2a8o6MDqampSEpKwsjICLKyskBEaGhomLSPsbExzJs3b1IpC6vVypfodq0UKS4udtvrmmGmcu3aNRQWFk5akmo0Gt0GAI7jEB8fj5KSErevubot5uTk8J/PlStX4uTJk+A4DseOHQMRobu7e8pxjYyM+KVas8ViQVZWFjQajc/37U9NTU2QSCSQSCTIycnBk08+CZFIBJlMhurqakRHR/Mr6+RyOYic9fxmquJ1IM254AI4PxCuf9rMzEy+mZJGo8HFixcBOJsuERFMJtOkn3/zzTdBROjo6PB4jNupRcQwLlevXkVraytfqPXYsWNut+M4DrGxsSgtLXX7+u7duxEXFweO4+BwOHDo0CFkZGTwS+w3b94MIvc9ZHp6evD8889PyGlZtmwZ3nnnHZ9UDLh69SqioqIQEhIy5bwkx3H4+uuv0dTUhH/++Qd//fUXDh8+PGP5Pp78/fffKC8vx5o1a7B27VpUVVWhra0NYrEYq1ev5i9gx8fH0dDQALlcDr1ef9efH+ZkcAH+X67i4YcfRmFhIRobGyd0pHPV9hEIBNiwYQO++OIL1NXV8ZOVZWVlARw9M9fY7XYkJiYiPz/f7evffffdlPMVriTG9vZ2/nscx6GpqQkGgwEikYifgDeZTGhpacGBAwfw9NNP89XAd+zYgbq6OtTW1iI3N5dP4DObzbdV8LSyspIPWgUFBVi6dCkiIiIQFxeHNWvW4OWXX4bJZMKSJUvc5osIBAKkp6ejtrbWJ6vefMFoNEKtVrt9X1x/i9mwXNif5mxwAYBVq1ZBo9FMuvKxWq1YsGABMjMz8eGHHyItLW3CM+s7ZTULc3eprq5GUFAQPvvsswlXvRaLBWlpadBqtR5Prg6HAzqdDikpKRPuNjiOQ21tLYgIO3fuRElJCWJjY/nPe3JyMt5//323qyb/++8/7NmzByKRCOnp6bfc3vePP/7AE088ASJCeHg4VCoVSkpKsGXLFqxbtw7JyclYuHAh8vLycPToUfT29uLAgQNoaGhAZ2cn9u/fj7y8PBA566/5u83wzdjtdohEIlRWVrp9neM4pKSkoKioaIZHNrPmdHDp6uqCUqmEQqHAG2+8gYMHD6K8vByxsbGQy+V8xjPHcRgYGJgV9XqYucvhcCA/P58vB/Liiy/yvTvi4+NvWkW8s7MTKpUKISEhyM3NhclkglarBRFh+/btfGCy2+04c+aM14UPz549i3nz5kGj0XjMr/EGx3EYHx+/5cdFzc3NiIyMhFAoxEsvvRSwu5jh4WEQTd3OeeXKlX7tbTQbzOngAjiv+oqLiyGVSkHkLAz47LPPsmKLzKzkmnw3GAzQ6XRYtmwZampqvG7wNjg4iA8++AB6vR4ZGRnYtGkTTpw4cdvP/y9duoSkpCQkJCTw85aBYLVa+eKQ7nqdzASO4xAXF+fxzsRms0Emk01Zaf1uMOeDi8vY2Bj+/fffCfMuDMN4r6+vD6mpqYiOjsbZs2cDNg7XecjTY6mZUFZWBolE4jYFobS0dE7UGvQ2HjgbMt/FhEIhRUVFkVAoDPRQGOaOFBcXR6dOnSKlUknLly+nr776KiDjsNvtJBAISKlUBuT4RESvvPIKabVaWrFiBZWWltKpU6foyJEjlJOTQ5WVlVRRUUGJiYkBG99sctcHF4Zhbp9CoaC2tjZ69NFHKTc3l1544QWyWCwzOga73U4SiYS6u7tn9Lg3kkql1NLSQoWFhbR3715asWIFGQwG6u3tpc8//5x2794dsLHNNgIAuNlGQ0NDFBERQYODgySTyWZiXAzDzEIAqKamhsrLy8lms5FSqSSxWExqtZo2bNhAGzdu9Ns5ori4mA4ePEjnzp0jhULhl2NMx/Xr16m3t5fEYjElJiaSQCAI9JBmhLfxgAUXhmGmzWazUX19PfX19dHo6CidPn2aWltbKSEhgcxmM6lUKlq8eDFFRkb65HgASKVSUV5eHr377rs+2Sdza7yNByEzOCaGYe4SUqmUnnvuuQnf6+npoW3bttH27dv5bYqKimj9+vUUHx9P33zzDVVVVZHBYKCqqioKCvL+qfzw8DBZLBZasmSJT38Pxn9YcGEYxieSkpKovb2dRkdHyWKxUF1dHX388cdUU1MzYbvq6mpasGABbdu2zet9Dw4OEhFRRESET8fM+A+b0GcYxqfEYjGlpKRQZWUl9ff3008//UTHjx+n5uZmfpvff/99WvuMjo6m0NDQgE7mM9MzrTuXoaEhf42DYZi7lFqtJrVaTURER44cofXr19O3335L+fn5FBMT49U+AFBISAhdvnyZnYcCzNv336sJ/dHRUUpKSqIrV67c9sAYhmGYO5tSqaSenh4Si8Uet/EquBA5A8zY2JjPBscwDMPcmUQi0ZSBhWgawYVhGIZhvMUm9BmGYRifY8GFYRiG8TkWXBiGYRifY8GFYRiG8TkWXBiGYRifY8GFYRiG8TkWXBiGYRif+x+7chE8baG12gAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the target locations and the context locations on a map\n", + "fig, ax = plt.subplots(figsize=(5, 5), subplot_kw={\"projection\": ccrs.PlateCarree()})\n", + "deepsensor.plot.offgrid_context(ax, test_tasks[0], data_processor, task_loader)\n", + "ax.scatter(X_t[1], X_t[0], c=\"r\", s=50)\n", + "ax.coastlines()\n", + "ax.set_title(\"Target locations (red)\")\n", + "ax.add_feature(ccrs.cartopy.feature.STATES)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:33:47.831616728Z", + "start_time": "2023-11-02T15:33:47.826593851Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": " mean std\ntime lat lon \n2019-06-01 50 -80 280.406281 1.834735\n 40 -110 290.741547 2.129284\n2019-06-02 50 -80 282.370087 1.753442\n 40 -110 292.015839 1.990584\n2019-06-03 50 -80 281.934479 1.701114\n... ... ...\n2019-12-29 40 -110 261.715698 3.435812\n2019-12-30 50 -80 263.644775 2.347633\n 40 -110 261.7883 3.48374\n2019-12-31 50 -80 267.722748 1.995918\n 40 -110 262.06546 3.490994\n\n[428 rows x 2 columns]", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
meanstd
timelatlon
2019-06-0150-80280.4062811.834735
40-110290.7415472.129284
2019-06-0250-80282.3700871.753442
40-110292.0158391.990584
2019-06-0350-80281.9344791.701114
...............
2019-12-2940-110261.7156983.435812
2019-12-3050-80263.6447752.347633
40-110261.78833.48374
2019-12-3150-80267.7227481.995918
40-110262.065463.490994
\n

428 rows × 2 columns

\n
" + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred[\"2m_temperature\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:34:17.373805364Z", + "start_time": "2023-11-02T15:33:47.826916388Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAH5CAYAAACLYg8DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7gU5fn+79m+p+3p/QCH3hFFBRsqCKjYEmMSjULsUUwUjd8fGhV7jUYxQY0GVAxGgyg2FEQQAyggIEiRXk/vZfvO74933inbzu7Z3VOfz3Wda3ZnZ2dm9+zszj3389yvIIqiCIIgCIIgCIIgCCJidJ29AwRBEARBEARBEN0NElIEQRAEQRAEQRBRQkKKIAiCIAiCIAgiSkhIEQRBEARBEARBRAkJKYIgCIIgCIIgiCghIUUQBEEQBEEQBBElJKQIgiAIgiAIgiCihIQUQRAEQRAEQRBElJCQIgiCIAiCIAiCiBISUkTErFq1Ctdffz2GDh2K5ORkFBUV4bLLLsPmzZs7fF9OnDiBuXPnYuvWrR2+7a5Oa2sr5s6di9WrV3f2rhAEQfQY6Dewe9DdfwPb87+dOXMm+vXrl7B9IkJDQoqImPnz5+PQoUP405/+hM8++wwvvvgiKisrMX78eKxatapD9+XEiRN4+OGH6UckCK2trXj44Ye77Y8IQRBEV4R+A7sH3f03kP633QtDZ+8A0X34+9//jtzcXM28adOmYeDAgXjiiSdw/vnnd9Ke9WzcbjcEQYDB0LmHqyiKcDgcsFqtnbofBEEQnQH9BnYO9BtIdGXIkSIixv8HBABSUlIwfPhwHD16VDO/X79+mD59Oj755BOMHTsWVqsVw4YNwyeffAIAWLhwIYYNG4bk5GScdtpp2LRpU8T7sXr1apx66qkAgN///vcQBAGCIGDu3LnyMps2bcKll16KzMxMWCwWjB07Fu+9955mPQsXLoQgCFi1ahVuuukmZGVlIS0tDddddx1aWlpQXl6Oq666Cunp6SgoKMA999wDt9stP//QoUMQBAHPPPMMHn/8cfTp0wcWiwXjxo3DV199FbDfe/fuxdVXX43c3FyYzWYMGzYMf//73wNemyAIePvtt3H33XejqKgIZrMZ+/btQ1VVFW677TYMHz4cKSkpyM3Nxfnnn4+1a9dq9iknJwcA8PDDD8vvzcyZMwGEtv/nzp0LQRA08wRBwKxZs/DKK69g2LBhMJvNePPNNyN+LaHg612wYAGGDBkCq9WKcePGYcOGDRBFEc8++yxKS0uRkpKC888/H/v27QtYx8qVKzFp0iSkpaUhKSkJZ555ZsB7vm/fPvz+97/HoEGDkJSUhKKiIlxyySXYvn170Pd88eLFuP/++1FYWIi0tDRMnjwZe/bsieg1EQTR86HfQPoNjMdv4Pvvv4/TTz8dNpsNSUlJ6N+/P66//nr59bf1v124cCGGDBkib/ett96KaLtEghAJIgbq6+tFm80mXnHFFZr5ffv2FYuLi8WRI0eKixcvFj/77DPx9NNPF41Go/jggw+KZ555pvjBBx+IS5cuFQcPHizm5eWJra2tEW2zoaFBXLBggQhA/Mtf/iKuX79eXL9+vXj06FFRFEVx1apVoslkEs8++2zxP//5j7h8+XJx5syZIgBxwYIF8nr4OkpLS8W7775b/PLLL8Wnn35a1Ov14m9/+1vx5JNPFh977DFxxYoV4v/93/+JAMS//vWv8vMPHjwoAhBLSkrEs846S1yyZIn4/vvvi6eeeqpoNBrFdevWycv+9NNPos1mE0eNGiW+9dZb4pdffinefffdok6nE+fOnSsv9/XXX4sAxKKiIvHKK68Uly1bJn7yySdiTU2NuHv3bvEPf/iD+O6774qrV68WP/nkE/GGG24QdTqd+PXXX4uiKIoOh0Ncvny5CEC84YYb5Pdm3759oiiK4owZM8S+ffsGvKcPPfSQ6P91wPdj9OjR4r///W9x1apV4o4dOyJ+LaEAIPbt21c844wzNJ+BzMxM8a677hIvu+wy8ZNPPhHfeecdMS8vTxw9erTo8/nk57/99tuiIAji5ZdfLn7wwQfixx9/LE6fPl3U6/XiypUr5eXWrFkj3n333eJ///tfcc2aNeLSpUvFyy+/XLRareLu3bsD3vN+/fqJ11xzjfjpp5+KixcvFvv06SMOGjRI9Hg8bb4mgiB6J/QbSL+B0fwGrlu3ThQEQfzNb34jfvbZZ+KqVavEBQsWiNdee21E/1v+2GWXXSZ+/PHH4qJFi8SBAweKJSUlQV8XkXhISBExcc0114gGg0HctGmTZn7fvn1Fq9UqHjt2TJ63detWEYBYUFAgtrS0yPM//PBDEYC4bNmyiLe7cePGgB8FztChQ8WxY8eKbrdbM3/69OliQUGB6PV6RVFUvpDuuOMOzXKXX365CEB8/vnnNfNPOukk8eSTT5bv8x+RwsJC0W63y/MbGxvFzMxMcfLkyfK8qVOnisXFxWJDQ4NmnbNmzRItFotYW1sriqLyI3LOOee0+R54PB7R7XaLkyZN0vyIV1VViQDEhx56KOA50f6I2Gw2ed+ifS2hACDm5+eLzc3N8jz+GTjppJM0oulvf/ubCED88ccfRVEUxZaWFjEzM1O85JJLNOv0er3imDFjxNNOOy3kdj0ej+hyucRBgwaJd911lzyfv+cXXXSRZvn33ntPBCCuX78+7OshCKL3Qr+B9BsY6rUE47nnnhMBiPX19SGXCfW/9Xq9YmFhoXjyySdrficPHTokGo1GElKdBJX2Ee3mgQcewDvvvIMXXngBp5xySsDjJ510EoqKiuT7w4YNAwCce+65SEpKCph/+PDhmPdp37592L17N6655hoAgMfjkf8uuugilJWVBZRrTZ8+XXOf78/FF18cMD/YPv7iF7+AxWKR76empuKSSy7BN998A6/XC4fDga+++gpXXHEFkpKSAvbJ4XBgw4YNmnX+8pe/DPr6XnnlFZx88smwWCwwGAwwGo346quvsGvXrgjfoeg4//zzkZGRId9vz2sJxnnnnYfk5GT5Pn/PL7zwQk15hf9nY926daitrcWMGTM02/b5fJg2bRo2btyIlpYWAOx//8QTT2D48OEwmUwwGAwwmUzYu3dv0Pfr0ksv1dwfPXq0ZtsEQRBq6DeQQb+Bkf8G8rK9q666Cu+99x6OHz8e8b7s2bMHJ06cwNVXX635nezbty/OOOOMdrw6Ih6QkCLaxcMPP4zHHnsMjz/+OGbNmhV0mczMTM19k8kUdr7D4Yh5vyoqKgAA99xzD4xGo+bvtttuAwBUV1e3ez+D7WN+fn7QeS6XC83NzaipqYHH48G8efMC9umiiy4Kuk8FBQUB63z++efxhz/8AaeffjqWLFmCDRs2YOPGjZg2bRrsdnvY96W9+O9He15LMNr72eD/3yuvvDJg+08//TREUURtbS0AYPbs2XjggQdw+eWX4+OPP8Z3332HjRs3YsyYMUHfr6ysLM19s9kMAAl7bwmC6L7Qb6AC/QZG/ht4zjnn4MMPP4TH48F1112H4uJijBw5EosXL25zX2pqagCEfr+JzoFS+4ioefjhhzF37lzMnTsX9913X2fvjobs7GwAwJw5c/CLX/wi6DJDhgyJ6zbLy8uDzjOZTEhJSYHRaIRer8e1116L22+/Peg6SktLNff9m14BYNGiRTj33HMxf/58zfympqaI99ViscDpdAbMD/XF778fGRkZUb+WeML/v/PmzcP48eODLpOXlweAvV/XXXcdnnjiCc3j1dXVSE9PT9g+EgTRs6HfQC30G6ilrd/Ayy67DJdddhmcTic2bNiAJ598EldffTX69euHCRMmhHwev9gX6v0mOgcSUkRUPProo5g7dy7+8pe/4KGHHuq0/QjlFgwZMgSDBg3Ctm3bAk6gE8UHH3yAZ599Vi5taGpqwscff4yzzz4ber0eSUlJOO+887BlyxaMHj1avtoXLYIgyK+b8+OPP2L9+vUoKSmR54VzUvr164fKykpUVFTIgsPlcuGLL76IaB/i9Vray5lnnon09HTs3Lkz5FVgTrD369NPP8Xx48cxcODARO4mQRA9FPoNDIR+A9uH2WzGxIkTkZ6eji+++AJbtmzBhAkTwv5vCwoKsHjxYsyePVsWeYcPH8a6detQWFjY7n0h2g8JKSJi/vrXv+LBBx/EtGnTcPHFFwfUAYdyCBLBgAEDYLVa8c4772DYsGFISUlBYWEhCgsL8eqrr+LCCy/E1KlTMXPmTBQVFaG2tha7du3CDz/8gPfffz+u+6LX63HBBRdg9uzZ8Pl8ePrpp9HY2IiHH35YXubFF1/EWWedhbPPPht/+MMf0K9fPzQ1NWHfvn34+OOPIxrMcfr06Xj00Ufx0EMPYeLEidizZw8eeeQRlJaWwuPxyMulpqaib9+++OijjzBp0iRkZmYiOzsb/fr1w69//Ws8+OCD+M1vfoM///nPcDgceOmll+D1eiN+vfF4Le0lJSUF8+bNw4wZM1BbW4srr7wSubm5qKqqwrZt21BVVSVfrZw+fToWLlyIoUOHYvTo0di8eTOeffZZFBcXJ2z/CILoudBvYHDoNzDy1/Lggw/i2LFjmDRpEoqLi1FfX48XX3wRRqMREydOBBD+f/voo4/ixhtvxBVXXIGbbroJ9fX1mDt3LpX2dSadnXZBdB8mTpwoAgj5p6Zv377ixRdfHLAOAOLtt9+umceTf5599tmo9mfx4sXi0KFDRaPRGJDQs23bNvGqq64Sc3NzRaPRKObn54vnn3+++Morr8jL8MSijRs3atbL03uqqqo082fMmCEmJycH7PfTTz8tPvzww2JxcbFoMpnEsWPHil988UXA/h48eFC8/vrrxaKiItFoNIo5OTniGWecIT722GPyMjyx6P333w94vtPpFO+55x6xqKhItFgs4sknnyx++OGHQVOIVq5cKY4dO1Y0m80iAHHGjBnyY5999pl40kkniVarVezfv7/48ssvh0ws8v9fRfNaQhHNZyDU+7FmzRrx4osvFjMzM0Wj0SgWFRWJF198sWa5uro68YYbbhBzc3PFpKQk8ayzzhLXrl0rTpw4UZw4cWKb2+D7FCwViyCI3gf9BtJvYDSvJRiffPKJeOGFF4pFRUWiyWQSc3NzxYsuukhcu3atZrlw/9vXX39dHDRokGgymcTBgweL//rXv0KmERKJRxBFUUycTCOInsuhQ4dQWlqKZ599Fvfcc09n7w5BEARBdBj0G0gQlNpHEARBEARBEAQRNdQjRXQpRFFss1ZZr9cHTfQhCIIgiO4M/QYSRPeCSvuILsXq1atx3nnnhV1mwYIFmDlzZsfsEEEQBEF0EPQbSBDdCxJSRJeiqakpYNR1f0pLSwMGTyUIgiCI7g79BhJE94KEFEEQBEEQBEEQRJRQ2ARBEARBEARBEESUUNgEAJ/PhxMnTiA1NZUaOAmCIKJEFEU0NTWhsLAQOh1dn+sK0O8aQRBE+4n0d42EFIATJ06gpKSks3eDIAiiW3P06FEUFxd39m4QoN81giCIeNDW7xoJKQCpqakA2JuVlpbWyXtDEATRvWhsbERJSYn8XUp0PvS7RhAE0X4i/V3rVCE1f/58zJ8/H4cOHQIAjBgxAg8++CAuvPBCAMxWe/jhh/Haa6+hrq4Op59+Ov7+979jxIgR8jqcTifuueceLF68GHa7HZMmTcI//vGPqK6K8rKHtLQ0+sEhCIJoJ1RC1nWg3zWCIIjYaet3rVOL2YuLi/HUU09h06ZN2LRpE84//3xcdtll+OmnnwAAzzzzDJ5//nm8/PLL2LhxI/Lz83HBBRegqalJXsedd96JpUuX4t1338W3336L5uZmTJ8+vc0B7QiCIAiCIAiCINpLl4s/z8zMxLPPPovrr78ehYWFuPPOO/F///d/AJj7lJeXh6effhq33HILGhoakJOTg7fffhu//vWvASh14Z999hmmTp0adBtOpxNOp1O+z+27hoYGunJHEAQRJY2NjbDZbPQd2oWg/wlBEET7ifQ7tMvEK3m9Xrz77rtoaWnBhAkTcPDgQZSXl2PKlCnyMmazGRMnTsS6desAAJs3b4bb7dYsU1hYiJEjR8rLBOPJJ5+EzWaT/6ghlyAIgiAIgiCIaOj0sInt27djwoQJcDgcSElJwdKlSzF8+HBZCOXl5WmWz8vLw+HDhwEA5eXlMJlMyMjICFimvLw85DbnzJmD2bNny/e5I0UQRHwQRREej4dKbHsIer0eBoOBeqB6GHSc9izoOCWIjqfThdSQIUOwdetW1NfXY8mSJZgxYwbWrFkjP+7/hSCKYptfEm0tYzabYTabY9txgiCC4nK5UFZWhtbW1s7eFSKOJCUloaCgACaTqbN3hYgDdJz2TOg4JYiOpdOFlMlkwsCBAwEA48aNw8aNG/Hiiy/KfVHl5eUoKCiQl6+srJRdqvz8fLhcLtTV1WlcqcrKSpxxxhkd+CoIggDYIKAHDx6EXq9HYWEhTCYTXR3t5oiiCJfLhaqqKhw8eBCDBg2iQXe7OXSc9jzoOCWIzqHThZQ/oijC6XSitLQU+fn5WLFiBcaOHQuAXUFbs2YNnn76aQDAKaecAqPRiBUrVuCqq64CAJSVlWHHjh145plnOu01EERvxeVywefzoaSkBElJSZ29O0ScsFqtMBqNOHz4MFwuFywWS2fvEhEDdJz2TOg4JYiOp1OF1H333YcLL7wQJSUlaGpqwrvvvovVq1dj+fLlEAQBd955J5544gkMGjQIgwYNwhNPPIGkpCRcffXVAACbzYYbbrgBd999N7KyspCZmYl77rkHo0aNwuTJkzvzpRFEr4auhPY86H/a86D/ac+D/qcE0bF0qpCqqKjAtddei7KyMthsNowePRrLly/HBRdcAAC49957Ybfbcdttt8kD8n755ZeaUYZfeOEFGAwGXHXVVfKAvAsXLoRer++sl0UQBEEQBEEQRA+ny40j1RnQeBsEER8cDgcOHjyI0tJSKivpYYT739J3aNcj3P+EjtOeC/1vCSI+dLtxpAiCIBLFueeeizvvvLNDtiUIAj788MMO2RZB9BToGCUIojtCQoogCMKP1atXQxAE1NfXd/auEAQRBDpGCYLoCpCQIgiCIAiCIAiCiBISUkRkHF4HfHAL8J9rAUdj+9bhaGj/cwkijixatAjjxo1Damoq8vPzcfXVV6OyshIAcOjQIZx33nkAgIyMDAiCgJkzZ7Z7W9u3b8f5558Pq9WKrKws3HzzzWhubpYfnzlzJi6//HI899xzKCgoQFZWFm6//Xa43e6YXiNBdGfoGCWIXkDNfuDtXwCH/tfZe9JuSEgRbXNsM7DgQuDHd4Fdy4A1T4df3usGmiu182oPAi+NBV4cww4cguhEXC4XHn30UWzbtg0ffvghDh48KJ+IlZSUYMmSJQCAPXv2oKysDC+++GK7ttPa2opp06YhIyMDGzduxPvvv4+VK1di1qxZmuW+/vpr7N+/H19//TXefPNNLFy4EAsXLozlJRJEt4aOUYLoBXx4G7D/K2DhRZ29J+2myw3IS3RBKnawaXIu0FIJfPcKcPIMIGdw4LJeN/DWZcDR74CbVwP5owCPC/jv9UBrDVvmP78DblwJmJI77CUQhJrrr79evt2/f3+89NJLOO2009Dc3IyUlBRkZmYCAHJzc5Gent7u7bzzzjuw2+146623kJzMPu8vv/wyLrnkEjz99NPIy8sDwK6qv/zyy9Dr9Rg6dCguvvhifPXVV7jpppva/yIJohtDxyhB9AL4eWE3hhwpom0ajrLpsEuAwRcCPg+w8iGgqQJY/TSbclY9Bhz+H1tm27ts3vevASd+ACzpTIxV7gS+/2cc9us4ULYt9vUQvY4tW7bgsssuQ9++fZGamopzzz0XAHDkyJG4bmfXrl0YM2aMfIIGAGeeeSZ8Ph/27NkjzxsxYoRm7LuCggK5jIkgeiN0jBJELyAps7P3IGZISBFt03CMTW3FwJRHAUEH7PkMWHgxsPoJYMkNgCgC370K/O9vyvN2fczmb17A7k96EDjnz+z2/lXR70fZj8CaZ4GVc4GWauD1ycA/zwdqD8Ty6oheRktLC6ZMmYKUlBQsWrQIGzduxNKlSwGwcqJ4IooiBEEI+ph6vtFoDHjM5/PFdV8IortAxyhB9BKsGZ29BzFDpX1E28hCqgTIHgSM/CWw/X2gZi+bf2gt8K+prJwPAE67GfjhLaD+MHOeavYBxmRg9FXMRQLYsh4nYDAHbs/VCkDUlv5V7wVePYfNB4Dt/wWaTrDbB78BMvvH+1UTPZTdu3ejuroaTz31FEpKSgAAmzZt0ixjMpkAAF6vN6ZtDR8+HG+++SZaWlrkK97/+9//oNPpMHhwkNJYgiDoGCWI3oJV5UiJIhDiokZXhhyp3kBzJfuAthde2mcrZtNz7gUgfdj7nc2mXESddz9w4TPAwMns/ooH2HTkFYA5FcgZwsr7PA7g2MbAbblagdcmsmAKdcLfoW8BiEBqIds23ycAOPJd+18b0evo06cPTCYT5s2bhwMHDmDZsmV49NFHNcv07dsXgiDgk08+QVVVlSbBKxquueYaWCwWzJgxAzt27MDXX3+NO+64A9dee63ce0EQhBY6Rgmil6B2pBwNnbcfMUBCqicjisCndwPPDWJleBU72fy9KyNPzvP5FBcpnV0ZRM5g4JevAxc9B1y7FBh3AzD2WuCWtcDEe9kVhRFXsGU9DjY9eQabCgJQeo60HyuA1lrt9ta9BFT/DDRXMKeJc+IHNh3za2DC7ey2wcqmRzdE9lrawtEAHP8hPuuqPQjUH217OaLDycnJwcKFC/H+++9j+PDheOqpp/Dcc89plikqKsLDDz+M//f//h/y8vLkBK+FCxeGLAMKRlJSEr744gvU1tbi1FNPxZVXXolJkybh5ZdfjutrIoieBB2jBNFL0KsK47pp8IQgirFYFT2DxsZG2Gw2NDQ0IC0trbN3J36sfBj49nnlfkoe8Ms3gDenAznDgNsjECBN5cBfhwCCHvhLpfZDHw6fD9j5IVB/BEjvA4z8hfLY5jeBj//Ibgt64LqPgNKzWQnhvHGAx84eO/VG4OK/stvzzwIqtgNXvQ0MuRDY+m+WCPhPNpYI7tkLpORGtm/B8HqA1ycBZVuBq98HBk9p/7oajgMvnwrojcCsTUBKDnPamiuAzNL2r7cb4HA4cPDgQZSWlsJisXT27sSduXPnYvXq1Vi9enVn70qHE+5/22O/Q7sx4f4nPfk47c3HKNCz/7dED+SL+4H10kWL678A+ozv3P1REenvGjlSPZWfv1RE1OSHWR1qcwXw1cNsXtUu5pq0Be+PSiuMXEQBgE7HxNNZd2pFFAAMnAQYpC940avs53evMhFlSWf3D6xmU1crS/oDgKKTmUA5ZQa7nTOMzT8aY3nfxteZiAKADX+PbV3r5gHuFsBRz8I4AGDZLFaueGxzbOsmOpUvvvgCzzzzTGfvBkEQIaBjlCC6EWovp6W68/YjBkhI9URaa9mJOwCc/gcmZnjPkrovaf9Xgc/d+Dr74/j3R8UDWzHwh3WsLFDQsQS/8h1KXPq0p5hTVbOPlceVb2eCKzkXSCvSrqvP6Wx6JMLyPkcj0OJnH7fWsth2zoHVQNUetIuWamDzQuX+5oUson33pwBE4EA70gqJLsP69etx2mmndfZuEAQRAjpGCaIbIarCYlpJSBFdhfUvM/cpewgw+SE2b1CQUrV9fif1VT+znqpP7wYOr2fz1NHn8SRrADDgfGCINJr1+zPZYL9J2cCoK4GiU9j8A6uBE1vY7aKTAxNdik9lU75MOLxuFpc+72Sl7wsAjqwHXE1A1kA2ThbA3LH2sHkhc9UKxwJDLgZEH7D0D0qvWNmP7VsvQRAEQRBET8KnElItVZ23HzFAQqor4PMBzXH6AHndwA9vs9vn3w8YpUCGAedDTtrjcZMHv2HLc376QLn91SPMcq1PgCOl5sw/sf3iUepjfsNK9/qfy+4f+Fpx0QpPDnw+n3diq/aADMaez9h2HPXa8a7Kd7Bp8alKkMWWt4G6w1G/HLkccezvgNNuZLcrf1IepwGECYIgCIIg2MVmjn+1UDeBhFRXYMvbwHMDgS2LYl/X7k+Zs5OSp7g9AJCcBRSPY7dPvZE5P64m4Jg0NocoAjuWKMsfWcdETKIcKU7JacC1HwBpxYApFTjl92y+LKTWKIP39jsr8Pk5QwBjEutJqt4bflsb31Bub14INErjUFVsZ9O8kSz0onQi4HUBXz+hLL/rE+CZAcCh/4Vev8epiL5+0npSC7TL1B8G7PXh95MgCIIgCKKnI5IjRcQDnmD30e2xr4v355x8HXN21Ex5HDjpd8D4PyjJKMel8IOKHSx2XG8Ghl/G5h1cq+qRKol930Ix4HzgT9uA2T8B2QPZvOJT2SC+rdWAvRaw2ICS0wOfq9MDBWPY7RNhosur9wEH1wAQgNwRTCj97yX2GHek8key6eS5bPrjf5RAji1vs33Z/p52vW4HSzYE2HvpcQDJOUD2YLZvo36lLGu2Sdvb3tY7QhAEQRAE0bPxUY8UEQ94Sh3AYrjbi8+npNeNvDLw8T6nA5f/HUjKBApOYvPKtuH1tQew8qO32P1BFyj9SQ1HE+9IcfQGJpY4BhPQ70zl/oBJoVMD5fI+qU/KbWc9UOoBfbf9m00HXQBMkQZ23PI2e311kljKG8WmRScDfc8CIAL7VjK3jq/bP4TiP78Dnh8O7PhAcav6naX0co29lonTolOY2wUA5dQnRRAEQRBEL4dK+4i4kJSp3C6PoYem4QjgbgX0JhacEI7CkwAArYc347FPd6HxGI8XP0URTVV7mBsEJF5IBYOX9wHA4KmhlyuShNTxH4CmCuCFEcALw4FnSoGj32vLFsf8hjlguSMAVzPw2b1sfmoBK3/kDJDGpzqwGmgqY+EdAFC5S4nrtNcB+1Ywa/q/vwd+eJPN76sSgDmDgVnfA79bAuSPZvMocIIgCIIgiN6ORkhRaR/RXporlduHvm3/eip3s2n24LbHfJLK4SyNB5AMO0oFqTwtawBg68NuV0glb+Y0rVvUUfSXxAwEJb49GIVj2bR8O7D6SWV0bJ+HDf57fDNQd4iVCg6+kLlFZ0jx8Hs+ZdO8kdp1ciF18BttZLyjXvl/HVijfQ4vgyydqJ2f0Q+wZgB5I9j96nZGqxMEQRAEQfQU/Ev71ONKdRNISHU2jkbmjHDChRm0RdUuNs0Z0vayKbloteRBBxHDhMMoFcrY/MwBivvErxR0hhsFAHnD2ZhSl88HkrNDL5fZH8gdDnidwOYFbN7pf2DT3R8DW99ht4deBJiS2O2RVyrljYDSH8UpOImVXDobtSEVgPI+8xCMU28ErngVmPh/wC/+yVyoYPD3kYdcEF2Kmpoa5Obm4tChQ529K3GjsrISOTk5OH78eNsLE0Q3gI5TguhBqMMmfB6l57wbQUKqs/H/0BzZwHqd2gPv38kZFtHih0yDAABn63cgXWhhMzP7s8Q/nSqoorOEFMCCMU76bfhlBAG47GU2iC/AyhqnPMpeh6MB2PQvNl8d/GAwAdd/AZxxBxOPI67QrlOnB0rPYbcPcudJ6nuq2sOumnAhNXgaKxk87z5g9FWh95MPJtxcCXhc4V8T0eE8+eSTuOSSS9CvXz95niAIAX+vvPKK5nnbt2/HxIkTYbVaUVRUhEceeQRiHK6qNTc3Y9asWSguLobVasWwYcMwf/58zTJOpxN33HEHsrOzkZycjEsvvRTHjh2TH8/NzcW1116Lhx56KOb9IYiuAB2nBNGDEP3Od3kAWjeChFRn06RyggxWwNkA1Oxr37oqJackd2hEi//gZiV8l+jWAQAc1jzm2Oh0gK1IWTCRiX3xougUNm4WAJx3P0ss5OmDACvpG3iB9jlGCzDlMeCPPyjJf2pG+QV2cGFVuYv9jxqOsn40dU9UOJKz2fIQlf870SWw2+144403cOONNwY8tmDBApSVlcl/M2bMkB9rbGzEBRdcgMLCQmzcuBHz5s3Dc889h+effz7mfbrrrruwfPlyLFq0CLt27cJdd92FO+64Ax999JG8zJ133omlS5fi3Xffxbfffovm5mZMnz4dXq9yle/3v/893nnnHdTV1cW8TwTRmdBxShA9DP/xP9WtFN0EElKJpHI38Pn/A1prQy/DT6htxUCBFEYQLsY7FD4fiy8HgJy2hZTd5cUXjf0AAP11zBVrSe6rLKAWTwl0pBodbuyrbILb204XTs3ZdwP3lwMjf8Huj/ktIOhYsMQvXmMCMRqGXQr88g1W4pdaqDhaVXsUN6rPBKVcsC0EAUgrZLcbe08JhyiKaHV5OvwvmqvNn3/+OQwGAyZMmBDwWHp6OvLz8+U/q9UqP/bOO+/A4XBg4cKFGDlyJH7xi1/gvvvuw/PPPx/z1e7169djxowZOPfcc9GvXz/cfPPNGDNmDDZtYmO/NTQ04I033sBf//pXTJ48GWPHjsWiRYuwfft2rFy5Ul7PqFGjkJ+fj6VLl8a0P0TPpbOOUTpO6TglejnckeJp0Xxs025EG4kEREz893qg8iegbBtw/efBl+FCKq2QnbAf/Y6lz435TXTbUif2ZZS2ufiOEw1Y7x2KBmMKbGA9Wg1JfSHn1qnFU4IcqVfX7MeTn7OAjEvGFGLeb8fGvlKj8uOJopOBWZtYIl+kYkeNIDBXashF7GCv3c/mV+xgpYEAMHBSdOtMK2bBF72oT8ru9mL4g190+HZ3PjIVSabIvuK++eYbjBs3Luhjs2bNwo033ojS0lLccMMNuPnmm6GTRPn69esxceJEmM1mefmpU6dizpw5OHToEEpL2z4WQ3HWWWdh2bJluP7661FYWIjVq1fj559/xosvvggA2Lx5M9xuN6ZMmSI/p7CwECNHjsS6deswdaqSdHnaaadh7dq1uP7669u9P0TPpbOOUYCOUzpOiV4Nd6RKxrOyvhM/sGGA2gpM60KQI5VIKn9i0yPrAu1LTqMkpFLzlRjvEz8Artbo0kuq97Jp1qCIPoDbjtbDAwN2pChlafXWPsoCKvG0tsoMry/0vny2vQzf7o1+ILU1PytRl9uP1Uf9/IjIGtA+EaXGlASYU5izlVbEAigOrGaPDTg/unVxR6rhWPjliA7l0KFDKCwsDJj/6KOP4v3338fKlSvxm9/8BnfffTeeeOIJ+fHy8nLk5eVpnsPvl5fH1jT70ksvYfjw4SguLobJZMK0adPwj3/8A2eddZa8fpPJhIyMjIDt+2+7qKioRzXndyfmz5+P0aNHIy0tDWlpaZgwYQI+/zzEhTUAq1evDtrzs3v37g7c664JHacE0cPgjlTOEJYQ7W4FKnd27j5FSfeRfN0Rcxo76QaAI+vZQK3+cEcqtUBlbW5kYyANmgL8+u3ItsUjuVPzI1p8y9F6AEBdvwuBHexKZK1Z7UIpt/9vRR0eLqjEBcO1P0QAsK+yGbe9w0oRDz11MQBg+Y4yfPFTBZ64YhSsJn3IfXB5lHK+muZuEL6gN7ABdtc8xe4n5zJxFQ2896wXOVJWox47HwkzDlgCtxspdrsdFoslYP5f/vIX+fZJJ50EAHjkkUc08wU++LIELxXynx+Kd955B7fccot8//PPP8fZZ5+Nl156CRs2bMCyZcvQt29ffPPNN7jttttQUFCAyZNDDwcgimLAtq1WK1pbWyPaHyK+FBcX46mnnsLAgWxsvzfffBOXXXYZtmzZghEjQn9/7NmzB2lpafL9nJychO1jZx2jfNuRQscpQfQweGqf3sjOgQ98zc6BeatLN4CEVKJwNisiCgC2/zeEkJKuSKUWsMQ8jscB7FoG1B8B0vswd0r0sTS5YPCBc9WD+4ZhfyUr50sZPhktu9Jg9TSh3DpAWSCdOVJe6FCBDOwqawwqpDYeUvq/PF4fDHod/v71fmw/3oALR+ZjyojQws6l6otqcnrg9HhhNkT+o9opjP0d8M0z7H8x4Pzo+654cl8v6pESBCHi0p3OIjs7O6Im7/Hjx6OxsREVFRXIy8tDfn5+wFXlykp2UcP/CngoLr30Upx++uny/aKiItjtdtx3331YunQpLr6YXaAYPXo0tm7diueeew6TJ09Gfn4+XC4X6urqNFe7KysrccYZZ2i2UVtbm9ATcSI0l1xyieb+448/jvnz52PDhg1hhVRubi7S09MTvHeM7nCMAnScEkSPg1drCXo2DM2Br9sfuNZJUGlfouCDs3L2fxV8ObUjJQjAAL+em23/YdPFvwFeHAPUHgi+Hh5oYY1MSDXa3QCAzLRULBzwAq5334MqQ4GyQO4IQG/CHvSFF3ocqmkJup59lcoYWA7JYWp0sHVXNDnD7oPakQKA2pZu4EqllwBDp7Pbwy4Jv2wweqGQ6g6MHTsWO3e2XU6wZcsWWCwW+QR3woQJ+Oabb+ByKZ/dL7/8EoWFhZp45nCkpqZi4MCB8p/VaoXb7Ybb7ZZ7PDh6vR4+aXiEU045BUajEStWrJAfLysrw44dOwJO0Hbs2IGxY+PQg0jEhNfrxbvvvouWlpaggQlqxo4di4KCAkyaNAlff/11m+t2Op1obGzU/PU06DgliB4GL+3T6QGb1F5Sf6Tz9qcdkJBKFPyDYJDKEJxNgct4VYOP8ZK8KY+ygV2nSvXd2xYDHifw83ImzhZcxNwuf6J0pBokIZVmMaI2bThW+8bCqRY2qXlw3vodfuO4DwBwqDq4kPq5Qnlddhe7stDs8AAAqhodYffBX0h1i/I+gA0QfMNKYNj06J8rp/ZFUdpXvQ/YvBDYE7qvgoiNqVOn4qefftJc7f7444/xz3/+Ezt27MD+/fvx+uuv4/7778fNN98sN61fffXVMJvNmDlzJnbs2IGlS5fiiSeewOzZsyMuGQpGWloaJk6ciD//+c9YvXo1Dh48iIULF+Ktt97CFVewMc9sNhtuuOEG3H333fjqq6+wZcsW/O53v8OoUaM0JUWtra3YvHmzptmd6Fi2b9+OlJQUmM1m3HrrrVi6dCmGDx8edNmCggK89tprWLJkCT744AMMGTIEkyZNwjfffBN2G08++SRsNpv8V1LSDYatiBI6Tgmih8GFlCDIlVBx6yF3NAAf38nOoRJI1/fyuyt1h9k0ezBQ/iPgtgcuU7ED8LlZLxU/wc4bwf6czcCqx1hS3O5PlOc0lQEb/gFMvFe7rigcKY/XhxZJ9KRZjbAYmZ52uLWBGFWGfDQiGQBwqCawblsURew8oVz15M9vcjIhVdmGI+X0E1LVzeGX7zKYU4CSU9v3XP9BeXn6XygOrgXe5IJNAP60DcjoG/YpRPSMGjUK48aNw3vvvSf3QRiNRvzjH//A7Nmz4fP50L9/fzzyyCO4/fbb5efZbDasWLECt99+O8aNG4eMjAzMnj0bs2fPlpfhqWBff/01zj333Ij36d1338WcOXNwzTXXoLa2Fn379sXjjz+OW2+9VV7mhRdegMFgwFVXXQW73Y5JkyZh4cKF0OuVEtmPPvoIffr0wdlnnx3DO0TEwpAhQ7B161bU19djyZIlmDFjBtasWRNUTA0ZMgRDhgyR70+YMAFHjx7Fc889h3POOSfkNubMmaP53DU2NvY4MUXHKUH0MNSlfbw337+iqz0c+Y4lZzceY2N/Xr+cibUEQEIqUdRLQipnKBNSHgcb60ldAnD0OzYtPjWw98mcApSczupF9yzXPlZ3KHB7dukKXQSOVJPkGAFAmsUg9yX5Cxu1EKptcaHB7obNapTnlTc6UKMqx3O4vXB6vLLTVNVWaZ/UI5WVbEJNi6t7lPbFCh+U1+sCmk4AGf3CL39kg+qOyMQ3CamE8MADD+Cee+7BTTfdBJ1Oh2nTpmHatGltPm/UqFFh3YJDhw4hPT0dY8YEGfQ5DPn5+ViwYEHYZSwWC+bNm4d58+aFXOaFF17Agw8+GNW2ifhiMpnksIlx48Zh48aNePHFF/Hqq69G9Pzx48dj0aJFYZcxm82aeO+eCh2nBNGD0JT2SRd+WmtYcnV7E5dFEVhyAxNRGf2AyQ8lTEQBVNqXOGQhpVxZhMev1I2fJPcZH3wdWeyHV47a5riClNnJjlRG4GN+8LK+ZJMeBr1OdqSc/o6UnxA67Ncntf1Yg+a+3e1Fi1NZR1uOFBdcBems/LHblPbFgiCwiHoAOLyu7eX9my6rKAI5UVx00UW45ZZbcPx4fPvXli9fjvvuuy8g/rgjqKysxJVXXonf/va3Hb5tIjSiKMLpjNyB37JlCwoKCtpesBdAxylB9CB4ap+gAyw2wJTK7sdS3ld/mLlaOiNwy1qg7xltPycGyJFKFLxHyl9IqRU2d6RKlCQgDVlSil6LFG2uM7JSQHeQeNQoeqR4GESa5C5xR8rh0QopfyF0qKYVo4vT5fs7y7TNzA63T+6PAtp2pNySI1Vgs2LH8UZUNzvx47F6DM5LhSWKSNxux8grgFU/sf63k64OvywfBDhvFFCxHaj6OfH714v505/+FPd1PvXUU3FfZ6Tk5ubi3nvvbXtBImHcd999uPDCC1FSUoKmpia8++67WL16NZYvZ5UGc+bMwfHjx/HWW28BAP72t7+hX79+GDFiBFwuFxYtWoQlS5ZgyZIlnfkyuhR0nBJED0Fd2sf7pCp3Ag1HgJzB7Vvn0Y1sWjAasKSFXzYOkCOVKLiQyhzABBAgC6ANB2rw3lfrWXKboAeKg4/ULjtSnJyhbOryE1KiGFWPVKOdiR1epqc4UtrSPv+wCP/AiTq/Ujy724tmpyKkqpud8IUZyJc7UoU25ki9+s0BXPry//DgRzvafA3dmtG/ZtODa4H6NmqBayQhNfQiNiVHiiC6FRUVFbj22mvl0IjvvvsOy5cvxwUXXACAJbgdOaKkVLlcLtxzzz0YPXo0zj77bHz77bf49NNP8Ytf/KKzXgJBEERi4I4Ub2+R+6RicKSOfc+moUyKOEOOVCKw1yk9S+klgNEKON2AmwmT37y2AdN163GVCUD+KMCUHHw96nGlACB3KHMl3H6lfe5WwCu5PxE4UurEPgCy+xPKkUoy6dHq8gYIqVaXdnmHn5Dy+ETUtrqQnRJYt+/zifBIIivfZtU89t6mY3jmyujq1LsV6X2AfmcDh9YC298Dzr47+HKttYrTOHgasOZpoHpvYK8dQRBdljfeeCPs4wsXLtTcv/fee8mdIAiid6BO7QOUPqm2LjKHQ50/0AHQ2Vgi4LZiZn/AnMqEFAB47HK5Wx9BKtfLCz0gI9L7AjqV1uVlgv6OFHejdEbAlNLm7imlfWzdZkMIR0ra15P7sJrxI7Xa7drdwYSUO+g6/FEPxluYHjhSfY9nyIVsWrYt9DJ8zLDUAia4dQYmomkMKoIgCIIgujs+LqQkRyrWCHRXC1AuVTWVnBbbvkUICalEcEQKEegjNbjxsaTcduwuZ31FqYIkSiy20OvRG7SpbjnDpPX4CSl1f1QEySR8MF65R6oNR2pgLhNnarcJCIxLt7u8mkRA9Tr8UScE5qf1QiGVksemXAQHg5f1ZQ4A9Eal1LNqT2L3jSAIgiAIItEElPZxIdVOR+rEVrbO1EKlTDDBkJBKBDyNjSeFGKWACbcdu8vYALZpiEBIAcrJs96klPr5p/aF6I9ye30aseNwe7H1aD3q/Ur7QjlSlU2sFLE4gzlq/gPotlXaBwCVIQblVa8r36YVUoLAxrrqCCqbHFj8/RE5+KLD4OmK9rrQy/CgiSzp/54tNV5Wk5AiCIIgCKKbI/o5UrGW9jWeYFMe1tYBUI9UvHHbgeM/sNt9J7CpUXGkdvk7UuY2EkUypQ+DrZiNLQUEcaQCx5Dy+URc/NJaNDs8+PrP58Js0GP2e1vx2fZymCThlGYN3SPl84moluLI+2QyIRjgQEn3bVYjGuxu2N2+gLGoqkIMsstL+0x6XUAPlSgCda1u5KQmfkyUpz/fgyU/HIPL48OMM/olfHsySVls2loTehm1IwUA2VJsOi/5IwiCIAiC6K7IqX2Sr5OSw6bhzo3CwfMCDB1X6USOVLw5vplFlKfkAxmlbB53pDx27IrWkeInzxn9AKMUSuFxKB8+QCnts2bA7vKistGBn0404ueKZpxocKC8gblCn20vB6C4QTar1pFyqByp2lYXvD4RggAUZ0hCyk8k2SVHKjPZJD0/mCMVXEi5pXWZDDokmQKjzqtDCLB48+OxegDAD0fCOEOJgIve1lqmHIPBBRO/ssJdLGdTYveNIAiCIAgi0fiX9vHzXHdr6HOjcHi4kOq4wclJSMWbQ9+yad8JSr+SpIw9zlbsq2QnwUqPVBuO1MhfAqffCpx3v3YMKnV5X6viSN389iac8dQqzF+jDOTK4879SbMwQ5I7UuoBeV9fexAAkJdqQYqZLRfKkcpIMsqPcyHFxVFbYRMmgw5CkL6ujhic1+nx4oCURLjjeEMbS8cZXobpdQYfYBlQBHJyLpuapYHqSEglhJqaGuTm5uLQoUOdvSsdyvbt21FcXIyWlhCfQ4LoQtBxSscp0YPwD5uQz3NFVuEVLV7p3FFvinnXIoWEVLzZ/QmbDpikzJNS+6rr6uH2MoUdsSNlSQMufJqNNWWwAJBEh7q8z670SK3dWw2PT5TdJ0CJO/cnsLSPfaA/3nYCr6xhZWV/njoEZj7OVBuOlN3tlQfk5eWAtS3BBRF3xUx6tu65lwzH+UNzMbZPOgCgpiXxjtSBqhZ4pQj2A9UtaHEGF5wJwZQM6KUrJvYQgRPOZjblAoonMjqb2JdP7YH2XbEhgvLkk0/ikksuQb9+/QIeq6mpQXFxMQRBQH19veax7du3Y+LEibBarSgqKsIjjzwCMQ7/lw8++ABTp05FdnY2BEHA1q1bA5Z57bXXcO655yItLS3ovgFAXV0drr32WthsNthsNlx77bWa5UaNGoXTTjsNL7zwQsz7TBCJho5TOk6JHoR//LlRZRj4t7FEAjlS3Zzag0D5dqash1ykzJeEVH1Dozwr4h4pNYKgjDmlcaTYibgYYjDeUELKv7TP5fFBFEWs2s2i2WdM6ItfnlIMi4EJLa9P1IQycCGVkRRY2sf7m/yTADlOVWkfAMw8sxT/mnmqXEYYysmKJz9XKM6OKAK7yhrDLB1nBEFb3hcM7jxxIcU/K85GNqbUS2OBnR8ldj97CXa7HW+88QZuvPHGoI/fcMMNGD16dMD8xsZGXHDBBSgsLMTGjRsxb948PPfcc3j++edj3qeWlhaceeaZeOqpp0Iu09raimnTpuG+++4LuczVV1+NrVu3Yvny5Vi+fDm2bt2Ka6+9VrPM73//e8yfPx9eb/DjlSC6AnSc0nFK9DD8S/t0esAgDRkUqlonHJ3gSFHYRDzhblS/M4HkLGW+VNonqtR1xI6UP8YkwNUc1JFyGIOvq97OPlh8YF15H/wG5AWYwOHx6MMK2Ik7d6QAJpaMkovES/sUR8oXIKTsruBf+C4/IcXJTmHrqgnhZPmzt6IJD370E+6YNBBnDMiO6DmcPeXaErkdxxswrl/bAxrHjaQsoKkseFOlx6k0TcpCSlXaV/kTu125ExhxOSqbHLjuje/x61NL8PszSxO/79Egiu27shQrxqSIhgMAgM8//xwGgwETJkwIeGz+/Pmor6/Hgw8+iM8//1zz2DvvvAOHw4GFCxfCbDZj5MiR+Pnnn/H8889j9uzZQctWI4WfRIUrYbrzzjsBAKtXrw76+K5du7B8+XJs2LABp5/ORnn/5z//iQkTJmDPnj0YMoSNTTd16lTU1NRgzZo1OP/889u9z0Q3pbOOUYCOU9BxSvRi5LAJVa+8KQnw2NsnpDwdHzZBQioe+LzAtsXA9/9k94ddqn1cjj9noQ8GeJAkSP/saIWUKQlogXZQXns9AKBFpwzGa9AJ8Ehlaw12N0RRDIgv9x+QF2AR6MqAvcaAxx1uH1ItTAjx9Weowib4OFKyI+UOIaQkZ4uLMg5P8KuO0JF64rNdWH+gBmajLmohxR2p7BQTqptd2HGibUfq420nkJNqxvj+WW0u2ybhItB5WR8QXEhJ/3P+3O8P1mJ3eRM+2nqi6wkpdyvwRGHHb/e+E4qD2wbffPMNxo0bFzB/586deOSRR/Ddd9/hwIHAtMT169dj4sSJMJuVMoKpU6dizpw5OHToEEpLO/d/sX79ethsNvnkDADGjx8Pm82GdevWySdoJpMJY8aMwdq1a+kErTfSWccoQMcp6DglejG8tE+nElLGZAA17Sztk4bcMVCPVPfip6XAR7cD9YdZ38vQ6drHpfhzwcMa51KgaqDjJ8eRIieaqJS6gwUlNIEJqZxUM3Y9Og3XSyfUDXY3nCrhw+GlfUa9DnoduyLn8ChiKFUKoxAEQZXsx4SRXSWQMoOV9kmCyB5KSIVwpLKSI3ek9lU24es9VQCAHw7XweeLrt59t+RIXXZSEYC2AyeO1bXijsVb8JvXNoTs/YqKcBHoTknUGZOVLxhZSDXL/3NeFsidP3+xTETGoUOHUFioPZF0Op347W9/i2effRZ9+vQJ+rzy8nLk5eVp5vH75eXlwZ7SoZSXlyM3Nzdgfm5ubsD+FRUV9boGfqJ7QccpHadED4OX9gmqc0EeOBFTaV/H9UiRIxUPyray6YDzgQufBdIKtI9LjpTgZUo5TeqPcuutMOqN0W1L/oCplLp0Ut0oWgE0w2Y1wqjXyUKp0e4OCFLQCUCySfn3mw06tLq8zJHyG7AXYOV/To8yThQXVHqdIAsuu0sJm4i0tM8cwpGqUcWf7ylvwgdbjuEPEwcgPUm5ysCTBQGg0eHBgepmDMyNTJg2Oz04VscE7aVjCvHGtwdxoLoFPp8InS54mUdZgzK48OLvj+D28wZGtK2Q8B6pH98DNr4OXPKSMvaYf3+U+rbHrogvyZHigtXV0QMLR4IxiV117oztRojdbofFoi0FmDNnDoYNG4bf/e53YZ/rXxbEG9gjLRd65513cMstt8j3P//8c5x99tkRPTcSgu2HKIoB861WK1pbO6m8i+hcOusY5duOEDpO6Tglehj+qX2Aqoqre4RNkJCKB1U/s+nQ6UB2kJNrqVZTkKIcU6X+KJchBVHKKKUEwh0opOp8SQCakS4JKJtUutdgd6PFqRU0qRajRjBYjKx/KpgjxR7XocGuCCjea5Vk1MNiUgb0bfEPm3AHP7F3e0M4UlKPVLUq/nzq374BwAYJvv/i4fL8L3dWAADSk4yob3Vj8+G6iIXUXqmsLzfVjJFFNhj1AlweH0402OXAC3/qVC7UW+sP4eZz+geUJkYFd6SOb2LTZXcAd0i3ZSGllGtqRFVTGZtyISX9P5whwj06FXVIShclOzsbdXXaEstVq1Zh+/bt+O9//wtAOfHKzs7G/fffj4cffhj5+fkBV4wrK1lYi/8V8FBceumlmpKeoqKidr8Of/Lz81FRUREwv6qqKmD/amtrMWBAx40GT3QhusExCtBxCtBxSvQw5NI+tSMVJFQtUij+vJtStZtNc4YGf1xS1zopPIA7Uk59lGV9gFLaxz9gHhdzKADUeJlg406UTRrfqcHuDhgoly/D4aV7rS4vmqRl06xaRwpQTtT5ibvFpIdVeqzV5UWziz03VxJSLq8PniAuSeiwCalHqtkJURQ18bSHaxTx6HB75fK66aOZA7j5cOSD6vL+qCH5qdDrBPTNYu/rwerQB25dqyKkKhqduO6N73Ggqjnk8m3in7LoUfWFBXOk9EYlzYZ/+UhCqpVK+2Ji7Nix2Llzp2bekiVLsG3bNmzduhVbt27F66+/DgBYu3Ytbr/9dgDAhAkT8M0338DlUj4bX375JQoLC4PGMwcjNTUVAwcOlP+sVmt8XpS0fw0NDfj+++/led999x0aGhpwxhlnaJbdsWMHxo4dG7dtE0S8oeOUjlOihxG0tC+IYRApFH/eDXG1APVH2O2QQooJHL0keHhin9OQEnz5cJj8LE+nEpBQ42YfHC6S0q1MkauFVF6aGRP6Z+G6CX01q+VCSV1Sp3GkpAh07jDxUjKrUS8/t7bFJQ9rxAWRelk1Tu5I6YM7Uk4PSwA8oSqnK81RrpiWS/OtRj3OG8Jqy6MRUnvKmQAanMeESr8IhBTv2zIbdDAZdFh/oAZ//u+PEW8zgCS/wIr0EuV2MCEFaB0qILC0j4RUu5g6dSp++uknzdXuAQMGYOTIkfIfb0gfNmyY3M9w9dVXw2w2Y+bMmdixYweWLl2KJ554IuYkMIBded66dat84rhnzx5s3bpVc2W9vLwcW7duxb59bADu7du3Y+vWraitrZX3ddq0abjpppuwYcMGbNiwATfddBOmT58uN7ADrPfk+PHjmDx5ckz7TBCJhI5TOk6JHkaw1D5jkBaWSOGOFAmpbkT1XgAiOylODpHkJjtSvEeKnaw79O0QUv4fMB46YE5DvYOdRHMniU8bVD1SuakWLL55PG48u79mtdyR4uM3mQ06mA3KB1sZlFfrSCWpHKn6VtZbpdcJsFmNcqJtMCEVypFKMhlgkbZV1+LGj0frlQdVWRLljey9zLdZcHIfln63vyryQXX3VDABOkQSUv0lkXagKowjJQmp6yb0xcKZpwIATtS3Y+RtTpKfI+VVrpbCxYWU3zhj/sLK0QD4vBQ2ESOjRo3CuHHj8N5770X1PJvNhhUrVuDYsWMYN24cbrvtNsyePRuzZ8+Wlzl06BAEQQgZfRyKZcuWYezYsbj44osBAL/5zW8wduxYvPLKK/Iyr7zyCsaOHYubbroJAHDOOedg7NixWLZsmbzMO++8g1GjRmHKlCmYMmUKRo8ejbfffluzrcWLF2PKlCno21d7gYUguhJ0nNJxSvQw/MeRAlRZAO2o+OGOFIVNdCOqpf6oUG4UIPdIGSQhlSql9jl07ahJl2tHpQ+Yo55NzWnywLtyaR8XUq2KI5VsVn1YVZglMcSFVKpFW/oXypGyGPWy8OGkmA0QBAFW3nfliry0j2/b4Xai0eHGtmNKkp5akHFHKj/NgoxkE8wGHZweH2pbXEg2t/2x5o7UkHwmTEqz23akalvY+5uZbEZJJjvQ1eV+UeNf2qdO7wvpSPmXg4qAo0Eu7XOSkGo3DzzwAO655x7cdNNN0OkCP5fnnnuuptSUM2rUKHzzzTch13vo0CGkp6djzJgxUe3PzJkzMXPmzLDLzJ07F3Pnzg27TGZmJhYtWhTycafTifnz52Px4sVR7R9BdAZ0nNJxSvQgeJuCurTPGEtpH48/JyHVfZD7o4aEXoaX9vl4jxQ7WbfH4ki5/Rwpiy2kkGpyeuQAiZQQIsPCHSmptI+PMcXhjpQSNsHWZzUqjhSHb4MLqXCOVLCwhjSLAVVNTjQ5PPjxWL08Xz0mldqRAoCMJBPKGx2oa3XJIicUNc1OVEuvc1Ae+x9wIXWoJpyQYs/JTDaqxs7ywe7ywmoKLlDD4u9IRSSk/BwqALDXwe5m/w+PTwybPEiE5qKLLsLevXtx/PhxlJSUtP2ECFm+fDnuu+8+ZGRkxG2d8eTw4cO4//77ceaZZ3b2rhBEm9BxSscp0UMQRZWQCuZIxVDa14FhEySkYqVqD5uGc6Qk8WPw8dQ+NrXrYuiR8i/tCyOkRBEob2DbDOXWtOlISY832N149/sjqGhkyyWZlNQ+Dk/ss5r0QEuI0j4vm2cO4UgBQKPDje0aR0pxW2RHShJS6UlGSUi5g74+NT9XMDeqT2YSkqQI+P6SkDpa2wqXxxfUKauV1p2RZEKySQ+TXgeX14faVheKTO1oPPYXUo4GwOtmoRIRO1IA7PWamHmX1weLrh3CjsCf/vSnuK/zqaeeivs648ngwYMxePDgzt4NgogYOk4JogcgqipoAgbkhXa81Eih+PNuSCSOlFzax/7BNim1r1VoR2mf/wfMIYVNWGxoqNUKKZNBB6tRD7vbi2P14YWUxa9HKs3i50hJj/938zH8dEIJuLCY9HLZH6eP5AhxpyrYWFLhS/vYtvdVNssJgoCfI6Uq7QOATMkhqo+g1I4n9vGgCYCJv2STHi0uL47UtmJgbqDI5T1SWSkmCIKAjGQjKhqdqGtxoSi9HULKnAbkjmACqvEYm2evA1JyoxRSdWh1KZ8lp8fHhO+Jrczm7jM++n0jCIIgCIJIFGohFSy1r5s4UhQ2EStn3w1MmMVOiEMhOVJGkYmUdD0TNa3t6pEK5UgpPVLpSYqbxG/zUITUNhypSllIBXekDvn1ECUZ9TDqBehVpWQlmUxU8HI3RxBHyu1lNez+qX3qbR+p0R5E6vWUBSntA7RjPYXiSC1bb39VCqAgCHIqYKg+Kb5uvi0+rY1gm0ERBODm1cAftyj9Ury8j6cxmvwEXQghpXb9nB4v4HYAb14C/GsqcDB0XwBBEARBEESH41OdG2qEVPcakLdThdSTTz6JU089FampqcjNzcXll1+OPXv2aJapqKjAzJkzUVhYiKSkJEybNg179+7VLON0OnHHHXcgOzsbycnJuPTSS3Hs2LGOeREnXQ1MfRxIyQm9jNQjZZR6pNJjcqQi75FS3z5Rz4RHxI6UX48UD5Ro8XOXrCY9BEGQnw8ojhQXX0HjzyNwpI7WhRZSFX6OFBeMkZT2yc5SsvaKRWk2Ey0HqwOTYpweZXwt7n7xaUyBEwYT++NR6LKQijC1D2BCSl3a5/EBFTsUMfbh7Ypz2UEEa/Ymujf0P+150P+050H/UyKhHFwLvDEVqPgp9nWJqnPDYKV97Unt623x52vWrMHtt9+ODRs2YMWKFfB4PJgyZQpaWpgjIIoiLr/8chw4cAAfffQRtmzZgr59+2Ly5MnyMgBw5513YunSpXj33Xfx7bfform5GdOnT4fXG3gC3ylI4sckOgGISJWEVHN7hBR3KPiAvJKQEs1paAwipNKsWkcqpJDyEz0BjpQheM8NL99Thy2UxKm0L1BIsed4vD5UNjEhVeDnSEVS2lcrLZMRIKRCO1LqaHf+3vDnt9uRUpPk70iFKO3zd6gAqbTPT0gd36w83nCEuVN8vLMEYjSy96a1tR1XkoguDf+f8v8x0X2h47TnQscpkVDenA4c3QC8c1Xs69I4UnEKm+ht8efLly/X3F+wYAFyc3OxefNmnHPOOdi7dy82bNiAHTt2YMQIVjr3j3/8A7m5uVi8eDFuvPFGNDQ04I033sDbb78tD1K3aNEilJSUYOXKlZg6dWqHv64ApB4pADDDLQ/I24zw6XJB8bM8q6srkQ3gX5tr4ZMuRKUFcaQ80oMpoeLP/QRNqn+PlDG45uYCSj3mVEmGn5AKGjYRfEBetm2ti5ZiNqDZ6ZHXU93sgk9koiZLGvg3Ho4UD5wINpZUrVzWZ5QT8TKjKCdsE9mRYgM0RpLa5xCNsAhuwF6reY9dXpWQGjwNOLYRKNsK/PvXwG3rY9/XMOj1eqSnp6OyshIAkJSUFPOAl0TnIooiWltbUVlZifT0dOj1FGTS3aHjtOdBxynRoTTGoeorVI+Uf+VVNPT2sImGBuauZGayq/NOJ3tDLBZFiOj1ephMJnz77be48cYbsXnzZrjdbkyZMkVeprCwECNHjsS6deuCCimn0ymvGwAaGxNc9mRUgggscCFJ5I5UO4SUUWnCO1jdgv37jmCyHtjTwAWNTnaXAK07BbTtSHHSrNE5UrysEFBconA9Ui5pYN9wjpRXEn/5Ngv2VTbL6ymTEgjzUs1yb5bcIxWDI9UvTAR6rV9/lPr5kYi3NglwpCRLO0zYxBExF4OF45rSvsHCUZj3fgYc28QWOvUmYNpTwEsnAZU7AXs9YE2PfX/DkJ+fDwDySRrRM0hPT5f/t0T3h47Tngkdp0S3IVRqnxw20Y7UPi93pHph/Lkoipg9ezbOOussjBw5EgAwdOhQ9O3bF3PmzMGrr76K5ORkPP/88ygvL0dZWRkAoLy8HCaTKWDsh7y8PJSXlwfd1pNPPomHH344sS9Ijd4I6AyAzwMrnLCKTAi0iO1IepMdqRZ8u68aQ6QywSaRzefOE8ffdQk1jpS/qPB3pPyFFoeLpWZVup5BcpkskZT2hQmb4OSnaYVUhRQ0kWdTBHZGMntOfUSOlDSwbpJfaV9WsrR+J1qcHo3olIWU6n3KkFyw2lh6pDgRO1LK/cNiHgbjOMRWJWziRePfUfqVqoSv6GQm0pKygdZqoP5wwoWUIAgoKChAbm4u3O44iEyi0zEajXSFu4dBx2nPg45TolsRKmyivY6UKPZuR2rWrFn48ccf8e2338rzjEYjlixZghtuuAGZmZnQ6/WYPHkyLrzwwjbXJ4piyFKFOXPmYPbs2fL9xsbGuA7sFxRjEuBsRKpghwnsR6sZ7RBSRqV29LsDNThVKhNslMoEvX5CalSxTXM/lJA6rZ92TKPA1L4QpX0hBJb6sdZwpX1hHCkOT+bjPVK1khDKSlYOlPQIHSmnxyuLPn/xaEsyIivZhJoWFw5Wt2BkkfLe8fWqhakcNhHX0r4awOcDXG2HTRwR8wAAPnutPG+YTt0HJShOV2YpE1J1h4CCMbHvbwTo9Xr6USeILg4dpwRBdAryYLw6lmLMaW/8uc8DQDoH7m3x53fccQeWLVuGr7/+GsXFxZrHTjnlFGzduhX19fUoKyvD8uXLUVNTg9LSUgCsPMHlcqGurk7zvMrKSuTl5QXdntlsRlpamuYv4Uh9UtmCMsBsk2gJtXRo+AfMY8fGA1VIE5j1edPksQCAi0ZpLf1xfbUCKVRp3/DCNM3YUf4D8ppDlfb5DcarFlxWE7sdfdiEdtsFspBi66m3M+GijnlXwibCX1nlbhQLjQh8L0IFTtQ0B3Ok4hk2oRJS6qSasI5UrvQc5bPfKqquwoy9Rrmd0Y9N6w7Fvq8EQRAEQRCxwFP7BL/zQH6e625lF5YjxaO07KizCRJNpwopURQxa9YsfPDBB1i1apUsjoJhs9mQk5ODvXv3YtOmTbjssssAMKFlNBqxYsUKedmysjLs2LEDZ5xxRsJfQ8RIEeg5YELKLprg8rXj7bdmyErb2FImB1ecO2YgPv3jWXjyitGaxfNtFhRnKM5XKEdKrxNwev8s+b5//HmosIkkPyE1NF8RpdyRCtojFWYcqVCOlMcnwu31oUESS+lWtZBit5udHlmkBUPd6xTMsQwlpLgjpS4HjEv8OUctpHhZn84YaE+rHKpjohS5zyPwIcICaV8u/itwwaPK80hIEQRBEATRVeClfYLfhXpeeQUR8NgjX59XdS7WW+LPb7/9dixatAj//ve/kZqaivLycpSXl8NuV964999/H6tXr5Yj0C+44AJcfvnlcriEzWbDDTfcgLvvvhtfffUVtmzZgt/97ncYNWqUnOLXJZA+GNyRaoYloAwvInR6ILM/AGCgcAwpAusXgsWGEYU22JICI0/H9lH6x0I5UgAwQSWk/F2hUD1SfP6r156CsX3S8bdfnxTwWNDUvjCOVLAeKY7D7ZVdJ7UjlWYxgo8JzB2rYMiCKDl4NGyoQXm5AMtMDhI20eKOfeyOYELKnKK1uwGNI1UhSm6jh30GzHBDJ0j7MfrXSlkfQEKKIAiCIIiuA3ekdKGEFKIr7+OOlKAPXGcC6dQeqfnz5wMAzj33XM38BQsWYObMmQCYuzR79mxUVFSgoKAA1113HR544AHN8i+88AIMBgOuuuoq2O12TJo0CQsXLuxadd+SzZglCakW0Qp3NJalmqyBQNVunKTbr8zz76VRMawgFR9vY7eTQ8SfA8BppcqJd8RhE9L8qSPyMXWEtqwwycTWEby0r+3UPk5uqgWCwPoI7W6vLJRsKndIpxNgsxpR1+pGfasbuanBbd1g6XtqeOBESEdK3SMlrcPl9aHF5Q3p9kVEUCEVZPDd5GzUpA3HvnofqkX2P9d57ABEWKG2tf3677iQqj3Y/n0kCIIgCKL3ojMCvjiF06h7pDTb0LFzGI8dcLcAyIlsfdJF5Y50o4BOFlKRXMX/4x//iD/+8Y9hl7FYLJg3bx7mzZsXr12LP1LNZy7qAbCgCY+3fS6GN3MA9ABOEiQhZUwCDKEb69RBEqF6nQBgRGEaLh1TCJ0Q6Ar5jzPF4WIpGHKPVJRhEyl+Qio9yQiLQQ+72wun26c4Un4R7RlJJtS1usOGP8ihESnB3y8+mPAxv8GAg/VIWU16WIw6ONw+1LW4YhNSKVK/k6sZaDjKbltsgcvp9Hj3pDfx7Jc/y2WdguiFEV5YpbI+r2CEXu+3L1xINRwFvB7A/3GCIAiCIIhwGMyAK05CipsJ/qV9AEuo9tijc6R4aV8HBk0AXSi1r8djSQcAFAnVAIAWWOD2ts+R2ustwFAA4/Q/sxlJ2WGXH9cvE//vwqEBUej+CIKAl347NuhjakcqPckoixldmDEcw/ZIhYk/N+p1sBr1sgBLTzLCYtTB7vbC7vbKY1al+5Ux+g/K6/H65Ch2TluOFBdS1c0utLo8slAMltoHMFfqRIMDda0u+bntwpwKmFJZWt+JH9i81MKgizY6vAAE2KFcdbHCCavAHCmP3oKAr6XUAvbl4nUBjceBjL7t31eCIAiCIHof8RQpcmlfkAv1pmRWoRNNBHonRJ8DXSS1r1eQxPqUioUqAECTaG1fjxSA1TXMqUiB1EvW78w2n3PrxAH41bj2R7yr0/hKMhTBkG8LnYzS3h4pQAm7MOgEpJgNGlGmOFLaA1pJ7nPhxZV7MWrul9h2tF6zTF2QXic1NqtRHsT4aC17f0VRlNP+/CPTMyVnq7rZiZhJlUojj0tCKi2UkGL74oYeHpG9f1Y4ZUfKowvyP9HpgfQ+7Db1SREEQRBE53HwG2DhdKB6b2fvSXTEVUiFcaSM7RiUlztSJKR6KFYmpAoENuZPC6wBg+dGgs8n4r+H/E6UB10Q8+61hUVVEmizGrHx/slYe+95AaEUaqztHJAXUMIu0pOMEARBFmUOty9o/Dm7L8WRt7rwwsqfYXd78bvXv9MsUyuJsFCOFACUZLL+oqO17EpIs9MjlyL6D+Kbk8IO2OqmOCT3cSF1YiubphUFXazRzgc/Vlwpq+CEReqRcgcTUoCqT2p/8McJgiAIgkg8b14CHFoLLL2ls/ckOsK0kUSNL0T8OcBK+4DohBR3pPQkpHokopX1KRkF9sFpFq3tKu0ra3RgX7MZdWIKmyHogAHnx20/Q6GOP0+zGpCTam6zlI2PMcUH0lXj5vHnIRwpHjjB3SEupOpbXfL6/BMKed9TbbMiapqcHo2Qq21hB1ooRwpQHLcjkpDibpTFqAsYNysnlR2wVfFwpLgD5Za+ONIKgi7GHSkAipCCC1aBvW6XLsSXSO5wNi3fEfu+EgRBEAQRGy1Vnb0H0RFPkRIqtQ9QkvuiKe3zUmlfj8ZrztDcb2/8OXdJjuslt6L4NNntSiRqR8o/iCIU1hClfaIohg2bANSOFBM8vLSwopGlsuh1AlL9wh2yJSFV0+LSJP+t3FUh364NUaKnpo8kEI9KgRO1cn9U4MEpC6mmOJb2cUKV9tlVQkpkr4OV9rF9cAkhHKmCMWxa/mNs+0kQBEEQROzwErbugnqg21iHfQlb2tcOIeXpnLAJElIdhMesTWBjjlT0H8Jjdaxv53jSUDZj6MUx71skqMMm0qyRCSlLiNI+l8qJa8uR4gPt8nWVNTAhZbMaAwbU5UKnrMGOJodHnr9s2wn5ttwjFaa0r5gLKdmR4ol9ga+bl/bFR0j5OVAhwybYa0uzGGRHyiK45B4plxDiakz+KDat+Emx1AmCIAiC6BxMMYRUdQbq0j5PjOc9vhDx5wBgtES/jU6KPych1UF4/Bwp1iMVfWkfP7nf0OcW4MoFwPjb4rJ/baGOP0+zRBb2yMvg7G6vJuqe90cBoXuk0uTSPslxkYRUuSSk/KPPASBbcof2VTZr5h+SxoQSRVF2l4KJIk5JBu+RYqK1JkzSX440XlVChFQbjlSBzQoHFEfKIqX2OUMJqayB7CqPuxWo2Rf7/hIEQRAE0X6M3UxIqd0ejz22dYVL7ePOFxdHkdBJ8eckpDoIp0k7YG5TO8eR4uVm2Tl5wMhfdNh4QDqdILtHkTpSVpWLpe6TikRIZUtOT26a5Lj4O1JJgfvAo8mrm7XBDy1O5uC0urzytsP1SKlL+1hiX/Doc0Ap7atsiuJgD4VaSJlSAUvgIMuiKMo9Uvk2C+yi0iOVpmfzHaFK+3R6IG8Eu11G5X0EQRAE0amYUjp7D6JDXYbnjlFIyWETQUr7uKsUjZCi+POejdOYrrnfIlra5Ugdk1ySYsk16Ui4KxVpj5S6HFDdJ8VL+4x6AboQA1FdO74v7pw8CDPP6KdZF++RCupIpWgPHr207haptJCPIWUx6sIOJFyUYYUgMOFV0+JSuVihhVTce6RCBE3Y3V65JLQw3QI7d6QEJzKMTDBylyoo+aPZlPqkCIIgCKLjcavEQXcr7RNV562xCikxTGmfQTrHdUfjSJGQ6tG4jH49UjE6UjEN/tpOuJjhYzy1hV7lYrW6lJ4l7goZQ7hRAJCbZsGdkwcjL80ibZstW86FVJAyO3+XiTtLLU4Pc5Za2+6PAgCzQY98abtHa1vlFMBgz+NCqsXllZ2vdqMRUsHL+njMusmgQ3aKWRZSFrhgM7DtqwfqDaCAhBRBEARBdBqOBuW2IfRYnF0SUdVfHY1bFG5dwVL72uVI8dI+ElI9EpdglhPWABY24fGJmt6htnB6vLKQUA+K21EoARCR158mS31Sv3plPTYcqAEAOQjCHCJoIhi8TLBVcpdsQRwpk0Gnmc/FpsfHUgJrW0I7S/6oI9DDOVLJJr28bzEPymswA0lZ7HaIMaQqpBLC/DQLks0GOOT4cyfSDKy0j5f7BSVrEJvWH41tXwmCIAiCiB61kPLFeAG2o9E4UjEKqbClfe0ImyBHqmfj8vhQB6UWtgXsQxLNoLxl9Q6IIhMVPOq7I3ng4uH44/kDMaY4PeLn3DpxAFLNBpQ1OPDfzccAAGt+ZuMmjCyyhXuqBnWZIBBazGWp3pcSVflji9OrOFIRCKliaVDeY3X2sD1SgiDEubyvQDv1g4dtcCGlxJ+7YNNzIRXm9ZmkqNVYLXmCIAiCIKLHUa/c9rpDLtYlUQupmMMmpHUFC5uQU/ui2AbFn/ds3F4fGkRFSDWL7EQ9mrGkeFlfcYY1IPq7IzhvaC5mTxkSsq8pGLdMHIB7L2RR7c2SE/X5jjIAwEWjgouFYFiM2o9qepCwCUDbJ5WTapaf1+L0oKY5dPqeP7ws8EhNa5tOVlyFlK2YTdNLgj7Me8TybBYkm/TKgLyCC0XSx6tVDNPD1p6xGdpDzX7g+eHAhvmJ3Q5BEARBdCfUjpTXFXq5rkg8HamwPVIUf0744faKqFMLKVil+T74fCK+O1CDd78/gp0nGkOu42gnBk3EAh84t9npwZGaVuw43gidAEwZnhfxOvwdqdBCShE7WckmpEjbbnF5onKkeGnf0TqltC/U8+SxpGIt7QOAif/HIu1HXBH0YcWRMiPJZJB7pPqkinJqX2tYR6qDhNTBb4DG48CuTxK7HYIgCILoTtjrldvdubQvVkcq3ql9nRR/3jHZ2QRcHh8agpX2eUW8/u0BPPHZbgBAbqoZ398/Oeg6jtdzR6p7pbxwMdPk9GD5T8yNGt8/C1kpkV818BdSPITCHz4oLwBkJpuldD4XWpwe1LYwoRGRI5XF3uP9Vc1okMZtCimk4ulIFZ3M/kLAe+Ty0ixINuthF9n7MCBdB4OPjZfVEk5IcUfK6wK8nsTF57eyfji4mhKzfoIgCILojnTn0j5fPB2pcGET7Ujtk+PPOzbAgxypDkJT2mewwCuwE1i3z4efVC5UZZMzZPobH0Mp39a9Ul5SpJCKZocbu8vZifWZA7OjWod6TCqLUYexfdKDLqcu7ctMNiFZdsO8cq9TZpjBeDnckapodEIUmVgK1iMFxFlItUGFSkjpdYLsSBWnAAYve6zFF05IqdzMRLpS9jo2dZKQIgiCIAgZjZDqzqV9MZ5DhC3ta48jxYUU9Uj1SFxeVdiEORUGqc/I6xPlci1OZYgTcn4SXdDdhJSqtK+xDXcnFGpHanz/LJgNQa5gQBs2kZViQopZSvtzesKm7/mTm2qWo9sBYEL/rJB9aVy8xZzaFwHckcq3WTCyyAa9mQm+ZMENvSSkmrxhhKLBAkB6HYkMnOCOlLM5cdsgCIIgiO5GT0ntizX+PN6pfRR/3rNxe32oE1PZHVMKDFJKiccrBginUM6GOrGtO5EqO1IeNNrZl0akg/pyrCblo3r2oJyQy6kdqaxkkzzwbrPTo3Kk2hZSOp2g6UWbMCAr5LJ8XC0e654oRFFERSP7bOSnWZBmMeL+y05hD7pbYfAyYdQczpEShI4JnGitZVNypAiCIAhCQd0j1d1K++I6IG+Y0j45tS8CsSaKwIqHgB/fZfcpbKJn4vb60AApetqcCoNekOdzgcRLxCqbgn9w+El0Xjd1pFpcSgR5sHGgImXi4NBlgTxsQhDYoL3ytp3RhU0A2rG6zggjpNSOWyKpb3XLgxnnprHPik4Oj7BDJztSbby+jgic4I6Ux856sQiCIAiC6OapffEckFdKrQ6b2hfBNk78APzvb8p9ij/vmbg8PuzxSZHW2YNg1LO3vq7VBbubfTBHSeMqBXOkmp0e+US9uzlSvEcKAE7UsysY3MWJlJwU5TUPyEkJuVyfrCQYdAJKs5Kh1wlIlkr7mp0e1LVKZYURDijMI9ALbRb5djBkxy3OQsrp8aKsQbniw8v6MpNNSmkj73ly26GTEnQaw5X2+T0nAK87PsLHXqvcpsAJgiAIgmCoe6S6c2lfrI6UXNoXo5Dyd/U62JGi1L4OwuUV8aM4AHNLFmDuZRdCv+d/AIDj9exDkmYxyCfrwXqkuGuVajbIAQrdBbNBD5NeB5fXhxYXO3CidaRGFqXhpd+OxaDclLBjaOWmWrD0tjPleHT+XpU1OOQxu9IjFFIji9IAsPGzwm0zxcy21Rzn0r5Z/96Clbsq8NXsieifk6JJ7JNRlekJspAyQBTF0PscqrTP5wXmnwnojcAta4MPkhcp3JECWJ+UNaP96yIIgiCInoLGkerGpX0xO1LhUvui6JHyF6Ni5OOzxoPudUbejXFLJVm1SaWA0QqjFDZxvI6d/OalWZTSvsbQQqq7JfZxUiwGeWBbIPoeKUEQcOmYwoiWHVVsk28nSz1SR2qZaEg1GzQhEuG48pQSZCabw5b1AYrj1hRnR2rniUaIIrC7vAn9c1JQoRpDSkblLgnS1SG7aIbL6wsZyCELKZefkGqtBar3SOtrAcypymPOZmDbYlbbffbd4UWW16P9oaA+KYIgCIJgaMaR6sZCKm6OVBghFUn8ub+QSo4uFTpWSEh1EG4v+/Dxkj6DND1Wx05m820W5PIY7SDpb+q0tu5IilkrpFItHfPR444UF6yRJPZx9DoBF0QwaHCKJNZcHh9cHl/EQq0t+PhVNdLngZdFaj4DXBQ5GyFIX8h2mODyRCCk/B0plyphz21XhFT9EeCf5wMtVez+oAuAwpNC7ziPPg+2XoIgCILozXRrR0rl9sQcNhGn+HPejqA3Axc8DAy8ILb9ihLqkeoguJAyGZgTxcMmjksnx7mpakcq8INTEaysqxuRoipHTDEbZCGZ+O0yMXFUEqzRCKlI4X1YAEKOARYtbq9P7rmqamYCdGcZc3YG5aqcIu5IqcSKA2Y5lCIosovlJ6TU910tyu3jmxUR5f9YMNT9UQA5UgRBEAQBsAFtncrYod1OSPnUYRMJTO3jjpTX2XapHnek8kcC4/8QW1tCOyAh1UHwE1vZkfIr7cu3mZGbyj44wcYj6q7R5xx14EQsiX3RwuPP3V52IGYmxX/bBr1OHjA4XoET9a3Klyt3pH46wa5iqUsXYUrWPM8rCnDBAGc4IaVK+tOgFkjqx/yFUFulCOr+qGDPJwiCIIjeSEuVtjyuW5f2xWscqSBSxKg6123LleJCStc5RXYkpDoIl3QirwgpNuWOlLpHqqbFBY9XeyIsBw1009K+VJUjldaBQso/mKMw3RpiydiQ+6TiFDjRYFfKIGuaXahudqKswQFBAIYVpCkLGrWvxwEzAKENRyrC0j6OvxBqK9XPX0hRaR/Ri5k/fz5Gjx6NtLQ0pKWlYcKECfj888/DPmfNmjU45ZRTYLFY0L9/f7zyyisdtLcEQSSUg9+wqVG6CNrdHKm4hk1EEH8eyXa4GCUh1bPx75EySqV9rVKKXW6qBZnJJuh1AkSRiSk1vLSvuzpS6p6otA7qjwK0JYUA0C8rOcSSsZEa57Gk1I5UdbMTO44zN6o0O1n7mgzaz4NDYGLc5Y2gtM8/bEJ9Xy2yHI3a5doa96KVSvsIglNcXIynnnoKmzZtwqZNm3D++efjsssuw08//RR0+YMHD+Kiiy7C2WefjS1btuC+++7DH//4RyxZsqSD95wgiLizfxWbDp7Kpt1ZSCVyQF6dQRFYbSX3+cKspwMgIdVBKD1S2rAJTr7NAr1OQJbUw+Of3FcmlfYVdFNHqtNK+8zaA6tPVujxoGIhRR5LKj5finXq0r4Wlyyk+FhjMoKgOEwAnGBCyulujyOlLu1TPRZzaR85UkTv5ZJLLsFFF12EwYMHY/DgwXj88ceRkpKCDRs2BF3+lVdeQZ8+ffC3v/0Nw4YNw4033ojrr78ezz33XAfvOUEQcUUUVUJqGpt21dI+twP49m9A5S7t/HgOyBsutU8QAEOYMS816+GlfR13bqmGhFQHIQspyYnS67Rj/ORJkda5aTy5T/mAnqi3o6rJCZ0A9MtOjKOSaPhYS0DHlvZ1lCPFtxOv0r76VsX1YY4Uc4VGFtoCF1aV97n1TGiXNdjx5Oe7cM/72+TPnrJ8qB4pdWmfWkg1aJdr6wpaQNhEY/DlCKKX4fV68e6776KlpQUTJkwIusz69esxZcoUzbypU6di06ZNcLtDH3tOpxONjY2aP4IguhCVO4HmcvYbXHo2myf6tAEOXYV9K4GVDwFfPaKdH1dHSlpXKCdJTu5rw5HyUmlfr8Dl0fZI8dI+TnYK+8DkSNMq1aC83x9kJ6Yji2wBwqC7kNpJjpR/jxQf9DjepMS5tI9HnwNMnP1whEWKjyhKC1xY5UhxUbX5cB1eXXMA/918DK+vPei3fASpfWF7pNpypCQhZQhMFCSI3sj27duRkpICs9mMW2+9FUuXLsXw4cODLlteXo68PO2wC3l5efB4PKiurg65jSeffBI2m03+KykpietrIAgiRvZ/zab9ztIGRXXF8j5+AdT/9z+u8edhwiYA1aC8FDbR62l2euSSL/+wCQBITzLK89OTWGmf+kT6u4OsVOr00swO2d9EoBaA0Q7GGwvJJuVKR3aKCVZTYmpo5dI+hwf7Kpvw5rpDWLc/9ElPW9S1avuQKiVhPaINR6o1bQAA4JMfy+R5L321Vw41AaB8gYcr7VPfjrq0TxJS6X2CP58gehlDhgzB1q1bsWHDBvzhD3/AjBkzsHPnzpDLC4L2Qpsonbz4z1czZ84cNDQ0yH9Hjx6Nz84TBBEfTvzApn3GA3rVUCxdsbyPizv/wW7jGTYRLrUPUJL7IhVS+s4RUt3T3uhGVDU5cd5zq2WnwmgIdKSyVGMb8SCGRrvy4f3uADsxPb00K+H7myjUQspm7biPndqR4q5fIuBhE//+/gie/Hw327ZJj20PTcG+qmZkp5ij2r46bILTNyspuJtX/bN8s+KkPwJHajXCye724j8bj2L2BYPZjJBhEyFS+3jYhKBnV5DaDJuQBGR6H6B6D/VIEb0ek8mEgQMHAgDGjRuHjRs34sUXX8Srr74asGx+fj7Ky8s18yorK2EwGJCVFfo3wGw2w2xO3HccQRAxUvYjmxaM0fbzdEVHiosT/33TRLfHWJLYZmlfpEKKh02QI9Uj2Xy4TlPuZZacJ3WPlPoEm/cPNTrYh7ey0YED1S0QBODU7uxIqVP7OrC0z6gK9UikkOKv73CNIk5aXF7sLm/CRS+uxQ1vbopqffX2wC/Wkf5BE5y0YjbtMwGFA0ZqHjJLwv2E2pEKGTbRRmlfknQSFy7+XBSBmv3sdt4I7fMJggDAHCanM3jd/4QJE7BixQrNvC+//BLjxo2D0dg5zdQEQcSIsxmo2cdu54/RiocuKaQkceLvSKnFk/9j0cKFVMjSvgh7pCj+vGdzuKZFc98gOVGGECf4vOytUTqR/v4Qc6OG5ad1aG9RvEk1d06PlJrsFFPbC7UTdZiGms2H6+ATgf2V0bky9a2Brk/QoAkAuOIV4PRbgav/g75ZSVDnmEwcnANA23MXOmyijdQ+LqR8bri9vuBjVTVXsLAJQQcUnSKtl4QU0Xu57777sHbtWhw6dAjbt2/H/fffj9WrV+Oaa64BwEryrrvuOnn5W2+9FYcPH8bs2bOxa9cu/Otf/8Ibb7yBe+65p7NeAkEQsVKxA4AIpBYCKTkslY6X93XF0j6+T/6uk8aRilFIhUvtA7pNah+V9iWYg9VaIeWUTj6NGkdKVdonlb01SulvvKzvtG7sRgGd50ip6QhHyh/+/292euD0eGE2RNajxUv7spJN8phiI4MFTQAs/UdKADID6JuVLG/3nME5+HJnhdxjBSB02ETI1D6ptE8SUpX1TfjlX1ejrsWN343viz9OGogkk/T6K6SxcTIHAMk50vNJSBG9l4qKClx77bUoKyuDzWbD6NGjsXz5clxwwQUAgLKyMhw5ckRevrS0FJ999hnuuusu/P3vf0dhYSFeeukl/PKXv+ysl0AQRKyUbWPTgtHKPJ2Rlcp3SUfKo51y4imkwo0jBUThSHEh1TnjSJGQSjAHqtgJ7Sl9M+D2+jB1RD4AQK8Km8gK40jxoInx/bu5kOpER+rSMYX44qdy/P6s0oRtI9UvHTA31YzKJicOqIR0XYsb+bbohNSA3BTU8NTGUI6UHwNyUnCwugWpFgNOKkkH4OdIhQqbcAcZkNfnVQRWUgYA4D8bDuCoawwA4JU1+5Fs0uOOSYPYMnzMibzhgDmV3aYeKaIX88Ybb4R9fOHChQHzJk6ciB9++CFBe0QQRIej7o/i6A2AG11cSIXpkRK9rJw/TAhOWOTSvhh7pLydm9pHQirB8BPphy4ZjtHF6fJ8TdiExpFSeqRqW1z4uYKdhJ7WjYMmAD9HqgNT+wDgb78+CQ6PV3FNEoBaKJr0OgzJT2VCqkoREbUtLuRHOKAyT20ckJOC7w/WoijdiozkyEoTB+amYOWuCgzLT0NeGtteTYsTHq+PlZQaQ9jlmtI+6TG1S6Uq7Tu1Xwb6ZiXjv5uPoapZJdIqpSSy3OGAOYXdJkeKIAiC6M1wRypf5Uh15dI+bxBHShQBiNrlfN72p+XJpX0hhFi0qX3UI9XzaHS4US2dZJb6DaRr0AcPm+BuTaPdg+8lN2pwXgoyIzyJ7qrYrEYkmfRIMumRntSxQkqnExIqogCtUCzOtMr/L3V6nn+keShcHp8cUHJaKXOBxvePXEhfNCofaRYDfnFyETKTTdAJ7PuvVioRlHukAlL71PHn0mM8sU9vhsfAnmeEF/dOG4pBuUwoNasHIealfbnDAbNUiuixhw+oIAiCIIieTL1Uvps9SJnHe3q6tCOl6pESg/RFx1LeF7fUPh5/Tj1SPY6DUllfTqoZqX4ujHocKU2PlEVxpL472DP6owDAbNDjnRtPBwBYjJ1Tx5pI1I5USUYSMqTxwNRj1/Fep7bgbpQgAJeOKULfrGQMzkuNeF9GF6fjx7lT5fvZKazMsLLJidw0iza1T23LBwub4G6SORWH6lwYCCDdDJzSJwN7ytljzU4PsHMZsPavQNlWtnzeCMCUoqzP1QRYMyJ+DQRBEATRYwh2ss+dnK4spNT7Fm8h1WbYRPfokSJHKoHwhv/+fm4UABhCxp+zA6vV5VUFTXTvsj7O2D4ZGNunZ55Mq4VUn8zg4z3VRSyk2HJpFiP0OgEn98nQrD9aclLZ50vuk+Klff5jQgUr7VMJqV2V7KrQ4GwzdDoBqZIL1+LyAFveVkQUAGT0AwwmQC99tqlPiiAIguitiEFEQ1cu7fMFGZA3UY5UyPhz6VyFSvt6L7w/pn9OSsBjbq/ygVSHTahPmPdWspPYgUGeT3Qt1KV9RRlWZAQpX+SldaIoBjympk4KmohXCWSuJKQqm6QvI+5IAdqAiaBCSirts6ThRBP7siqxsf1Klsolmx0eoLlSee7gC5UrQ9QnRRAEQfR2fEES6rp0aV+QcaTiLqQiTO1zRyqkOqe0j4RUAjlax05G+2YlBTzWoBpwNdmkfIgMep0sptxedsJdmB5ZQAHReagFcFayKWgwBBdSs/69Bac+vjLoWFEA0MCFVJzSDQMcKYNJuXLDBZPP55faJ4kqLqTMaWhxMxfVqmdfpsnSa252epRQit8sBn69SFkPT+5zkSNFEARB9FKCOlLdoLRPMwCvN/Ry7dpGW6V9kab20YC8PRYeLpAV5KS6XiWkBL/EkjSVu2E16rv1QLy9BbNBOZRy0yxB/2e1rS60ujz4fEcZqpqc2HSoLui6uMiO13hbuansy6gy2KC8PFTCY4cmjcevtM9nSkGLl71GI9iXHxePLU4vYJdeS0Y/bYKPiUegN8bltRAEQRBEt0IUgwcrdOXSPi5OfAnskWqrtE9O7WurR6oNZyvBkJBKIPVyiVYQIdUa+sBRn0AX2CwBQovoegiCgGvH98VZA7NxxoAsOWxCTV2LCzuON8In6ZW9lcFdmkZHfIVUgCMFaAMnAG1Zn3q+lNrnNqTCI2XTGAVJSEmCv9XpUoRUkl8wCo0lRRAEQfRm1AJE6C6lfcHiz1Wvg+97XEr7QvVIcSFlD/44h1L7uj8NdjceXvYTrjq1RBNTzZ2FYL0u6tI+f9TjLBVQWV+34dHLR8q3gwmp2hYXfjxWL9/nPXD+8M9GvJxIpUdKLaT8xpLyF1KSU1VRXY08AK2CFR6wHwCddIUq2Sz9ILiaALP0BeufzEc9UgRBEERvRl0SpxYN/MTfG1kQVYei7pHi6b5qIWUwAy538HK/iLfR1oC80ab2UWlft+Wd7w7jgy3H8ZvXNsDlUT5ovAcm2Anxg9OHAwBuO3dAwGM8uQ8ACmzWeO8u0QGkJwcPm9h6tF6+vz+UI2VnXwrxGrg4qCPFo8lb2VhlspCSrzK5Aa8bP/x8GACwqw5wQVvPzUv70iG9DmOy8sXHoR4pgiAIojcjqsSGpkcqDq5OoghW0qcWUvHY9zbDJiJN7aMeqW5PbbNyNeHDLccBAD6fqDhSQYTUeUNzse2hKbh32tCAx9Qn0IU2cqS6I6lmA/RSxD0X0nWtLmzTOFLNcoKfKIp4e8NhrNhZkQBHin2GKhodSmJg4UlsenANm3IhlZytPNFthyiV9p2wG+ERpS876UvLatRDJ6iEVLBxokzkSBEEQRC9GI0j1c1K+wBl/+Je2tdW/HmkqX1ckJGQ6rbUqtLX5q/ZD69PRLPLI/fChOp1CXWirF4+nxypbokgCLKAHpDDxhFze0UcrWWldHqdgFaXFyca2BfEqt2VeODDHbjprU1xF1L5NgsEAXB6fKjmon+wNGDvz18w256n9Fkz5S810dUCvZuJpGOtBrj9HClBEJBsNiBdCCOk5B4pElIEQRBEL6QtR6pLlvZ5Am+rhQ8XLV0htY9K+7o/FY3KP/lgdQsOVrfIEdZWox4WY3RJIpqwCeqR6rbw3rjCdCusqs9A/+xklEqDNO+Tyvv+u/mY/PiJeia21CWesWAy6FCQxj5HR+ukEIn+57IrSnUHgZp9iiNlSpaDKOobG5Amsv072qKHW+qRUl89SzEbFEcqKTohtf1YA577Yg+cnhhqrAmCIAiiKxPKkerKpX3ecEJKHx8hFek4Um31SFH8efenvEGrlisbHarEvuhdBXX8eSE5Ut0WHjiRmWyCx6dY4pedVIRBuazkbfPhOlQ3O/H1HmVA24PVTNTEM/a+OJOJo6O1kpAypwL9zmS3f/7CT0ixz1x1bT0G644CAPZ68+WwCXXtdMSOlF+PVIPdjUte/hYvf70PX/xUEeOrIwiiU9j4BvC3UUDN/s7eE4LounTn1D5AEYIaR0qvfaw9yOsLkUzN4+HbcuzIker+VDQytZyfpozXU28PHTTRFtrSPnKkuitcRGckmSCqhmi67bwBspB66au9GPfYSjjcyhet3c2+mOIVNgEAxRlMHB2rU8WIDpLK+/atCCqk7GV7kCU0wS3qsUcsUZX2KV9qKWYDMuQeKb/oc0DVI6UVUi+s+Fm+XdvcxtUmgiC6Jp/OBuqPAJ/e3dl7QhBdl7ZS+7riOFLqfeK35VK8eJX2tZHaF7GQkvZLT0KqW9Ls9KDZyT5II4tsAIDKplgdKfacZJNe404R3Ysh+cyNGZqfiocuHYHRxTasnD0RRr0Ol48twkkl6XLyXTDi6UiVZDBH6hgv7QOAgZPY9PB6Jb3PlMzS9wAYT2wAAOwVi+GESSWklC/OlHb0SJU3OPDW+kPyfY9PBEEQ3RjqgSSI0IgheoH0XdmRUom/RPVItVXaF+n708mpfXSWHiO8rC/VbEBpNjtZrWpywmpib217Toa5C1Wak0yD8XZj7po8GFeMLcYA6f947fi+8mP9c1Lw4e1nQhRZumOTw4PHP92F5T+Vy8vEa0BeACiRS/tUjlT2YCC1AGgqA7a/z+ZZ0mVHKrN6MwBgh68fAASk9gFsLCmbwIMqwpX2KSdaW4/WQ62dWl3Sl6mzGdj4T2DYpUBW4LAABEF0UdrqYSCI3owvhGDoNqV9iRJS8XKkqLSvW8ODJvJtFjlmurLJiQYpyS/dGjgwa1uMKbbhuV+NwbNXjonfjhIdjkGvw8DclLBiWBAEpCeZUJKZJI/3xImnG1kilfYdVTtSgsBCJwCgWiq1GzZdDpvIa9kDANgh9gOAEKV9RmRAEklJQUr7gjhSu8oaNYvIQuqnD4CVc4E1z0T+wgiC6Hy8JKSIbkxrLbDsDuDIhsSsvy1HqiuW9qnFHa9C4T0Kujj1SKlLBYPBwyYiFlLxu/gcDSSkYoQ7Uvk2C3LT2D+9stEZU2mfIAi48pRiDCtIi9+OEl2e7BRFSKWYDTDo43d4ckfqRL0dXrUdxIUUwByqfmfLjhRnh68UAFSpferSPj3SwzlSQXqkuJBKMrH12V3S+pql0Al7baQviyCIrkBb8cSRUL0PqNwd+3oIIlp+/gL44S1g3bzErD+UI9WlS/uCOVJx7pGKV2kfPycJtZ4EQ0IqRsolRyovzYIc6US4ssmBej4WUDuEFNE7UTtS8e6Ny0uzwKgX4PaK8mcWgFZIjbueuVQqIeUVBewUWUliyNQ+7kgFC5sI4kjtLme3/5i9Gf8xPQKB92c5GtjUbQdBEN0IT4zj4Ph8wL+mAK9PbnvwTYKINx7pNyceFwSCEaqErUuX9kXYIxXLvrflSFFpX+9AdqTSVI5Uk8qRakdpH9E7yU5RPivx7I8C2ADAhelScl+tqrwvNR8Y9SsgbxRw0tVsnllxQlf7ToLPwJ4XrLSPxZ9H0CPlsQNeD5ocbhypbUUSHLi19hmcrtuN0TWfs2UcUskfCSmC6F7EWtrncbDAG1cTYK+Lzz4RRKTwE/pEjeckO1J+p9xdubRPk9qXqB4pUVlfMLiQ8rmhiT4O2FdpH/SdY1xQ2ESMyI6UzYIcqUeqyeFBZROb357SPqJ3onGk4iykAJbcd7imFUfr7Dhd/cAvX9cueOoNcDmaceePfbDcdxpGFKVi+/GGoKV9qWYdbIigtA8AXE34uZJ9Gc5MXg9Ivy2tXulL1CkJqURdFSQIIjHE7EipTtrcraGXI4hEwE/EY+n3CUebqX0xHj+JIGzYhD5O40hFWNoHMOfLEMKY6M2O1JNPPolTTz0VqampyM3NxeWXX449e/ZolmlubsasWbNQXFwMq9WKYcOGYf78+ZplnE4n7rjjDmRnZyM5ORmXXnopjh071iGvQQ6bSLMgzWKA2cDe0r0VrCckPQEnxETPRN0jFc/oc2X97EuovrWNL+2ik3Hw3JfxmW880pLMKJBSJN1ioCOVLrRCJ0hXioIJKYMJ0Euvy9mMnWVNEODDtcLn8iI6j3TiJJf20YkUQXQrYnWkvCSkiE4k0UKqzdS+BDlhsdARqX2+EAKTo1cJp3Bi09eLe6TWrFmD22+/HRs2bMCKFSvg8XgwZcoUtLS0yMvcddddWL58ORYtWoRdu3bhrrvuwh133IGPPvpIXubOO+/E0qVL8e677+Lbb79Fc3Mzpk+fDq83QQeFCqtRjxSzAflpFgiCILsK8qCqJKSICFE7UokQUvyz2Ghvu4ygwc5LU43ITGZfZh5uYKtsdl7WZxesoa8Wqfqkdpc1YoBwAgUe5UKHwSMd73JpX5wcKVcr8P7vga2L47M+giCCE2tJlPokiUp7iY5GFlIJEjTdMrUviJBS9zTJ+x6H+POQjlS0QqoXjiO1fPlyzf0FCxYgNzcXmzdvxjnnnAMAWL9+PWbMmIFzzz0XAHDzzTfj1VdfxaZNm3DZZZehoaEBb7zxBt5++21MnjwZALBo0SKUlJRg5cqVmDp1akJfw39umQAAEKUTy9xUM47VKT8EVNpHRIrFqEeq2YAmp0celDmepEoBFo2Otr/4mhxu6TmKkDKbVfHsPi+gNyBNZMERDUiFNWAtEuYUoLUacDVjf5UX2YI2/tzglY4XXtoXryvS+1awSPWfPmCJhMWnBF+utRbYthgoPBnoOyE+2yYIInLUJ0multDLEUQiSLSQ8oUQDN2utE/V0xSDI+X1ifhwy3Fc4nbDxNcXDJ2ePSb6wodaUPy5QkMDK+3JzFTSv8466ywsW7YMx48fhyiK+Prrr/Hzzz/LAmnz5s1wu92YMmWK/JzCwkKMHDkS69atC7odp9OJxsZGzV+s8LGC+FhSnPQkCpsgIoe7UglxpCyRO1JNkthKsxpkIWW1qD7b0hd/qiykUhAS2ZFqxL7KFqSjWfOwyevnSMWrR6pBVd679Obgg4bu/gx4phT44j7go9vjs12CIKJDU9pHjhTRwSQ6bEIMkU7XXUr7vP6lfYKqRyqKfd+3EqjZjzfXHcLd72/DwSrpNz9UaR8QWXKftxf3SKkRRRGzZ8/GWWedhZEjR8rzX3rpJQwfPhzFxcUwmUyYNm0a/vGPf+Css84CAJSXl8NkMiEjQ9ufkZeXh/Ly8qDbevLJJ2Gz2eS/kpKSuL2O7FRFOJ3cJx3Jps6p2SS6J7xPKs0a/y8EubTPEYmQkhwpsxFZKUGElFSKkOxjX4R1YnLolZmYkGppakB1sxMZQpP2Ye5I8R4pj0O5ghcLaiFVsw84vjlwmR/eUm7X7o/PdgmCiA5NaR/1SBEdDBdSYoK+/9saR6orlvaFS+3T6VWOVIQtNNX7gEW/BJbciKVbjktPDZFmqCYSIdWbe6TUzJo1Cz/++CMWL9b2M7z00kvYsGEDli1bhs2bN+Ovf/0rbrvtNqxcuTLs+kRRlF0if+bMmYOGhgb57+jRo3F7HeP6Mjdt8rA8LLz+tJD7QBDBGN8/EwadgNHF6XFft+JItX0FiZf/pVoMGFOcDpNeh9F9s5UFpCtAyV4mpKq9yXB5QvwISY5UdU01AKDEwhwnEezYsPha2RVpj+pKdDxcqfoj2vvBYpUb/EJpmk4AXz4AHA7uZhMEkQBISBGdSaf1SEU4TlJnEOk4UpG+Z82SsdFcIadaC2gj/hyIrPyR4s+BO+64A8uWLcM333yD4uJieb7dbsd9992HpUuX4uKLLwYAjB49Glu3bsVzzz2HyZMnIz8/Hy6XC3V1dRpXqrKyEmeccUbQ7ZnNZm2/Rxy5fGwRzhqUjaxkE4koImpmTxmCWyYOQLI5EY4U75GKvLQv1WJE/5wUbHnwAiSZ9MB2PftRkL7UUnzMXaoXk3G83o7S7CDOlJmV/dXW1gAoRl+rA2gGfLY+0DcchhV2eO0N0PzEuO2AKandrxVAoEhyBCnhbfATW9+/Bqx7if3dtgHIHRbbPhBEb0EUWclPe1CX9rlISBEdTMJ7pEKl9vEk3C5e2sfdKXWJYrRCipfWe5yoaGS39QgxULGaiBwpaf96Y2mfKIqYNWsWPvjgA6xatQqlpaWax91uN9xuN3R+tp9er4dPKsE55ZRTYDQasWLFCvnxsrIy7NixI6SQSjTZKWYSUUS7SYSIAhRHqimCsIlGOWzCIO+TIAgBpQiC5PLUIRWHa0I0iUuOVFMjW7bAJLlN6aykNhlO2Jtqtc/xRNkncfwH4KcPgaYKZV6D5DRnDWJTp5+QcjQq5YSZ/dn0wBrl8XeviV+CIEH0RNQnQLFcVSdHiuhMOqxHqhuV9qkvbviXPgq66HukpGNcVB3rOrSR2geoHKkQ75HPpyo57IWpfbfffjv+/e9/46OPPkJqaqrc02Sz2WC1WpGWloaJEyfiz3/+M6xWK/r27Ys1a9bgrbfewvPPPy8ve8MNN+Duu+9GVlYWMjMzcc8992DUqFFyih9BENHFnzepSvs06IwAHMqXmiSk6sVkHKkNcQIkDcrb2lQPAMjWM8Gly+gDHAaSYYer2a/sLpqG89ZaYMFFTHwJeuC3i4F+ZwGtNezxvBFAzV5FNDUcAzbMB0onsvuWdCa2ag8AFTuU9dbuBw6sBoZMi3xfCKI3oTcpFz1cLYChnZUeJKSIzkR2pBLVI8VP9EOFTXQxISWKivgD2ijti7BHSnKkRFXokyykwpb2teFIqfezNwopPrAujzbnLFiwADNnzgQAvPvuu5gzZw6uueYa1NbWom/fvnj88cdx6623ysu/8MILMBgMuOqqq2C32zFp0iQsXLgQej0FPRAEJ00SRU1OD7w+EXpdaNeUh00ExLD7Xx2ShVQqUBPiBMhiAwAYW6QLJWDlgEJ6XwBAkuCAq6Ve+5xohNTeFcrJnOgFDn0LZEjutjkNsEnlwlxIfTIb2PsFsP5ldt9WAqTms9v8B8NiY8vvX0VCiiBCoa68cLcCyAy5aFgotY/oTDp7HKmuJqT8xVGAkNJHX9onCSHB6wIgAhDiU9qnfu96o5DiYy+FIz8/HwsWLAi7jMViwbx58zBv3rx47RpB9DhSVaKo2eGBLcwYZyEdKf9ShFZWklePZDSEElL9zgYAjHd/hyTMlAMqYGOlfSlwoNpfSEUTNrHnUzbVGdl+tVQrvU+2YlnIyaV9ZVu1z7cVA2mF2nnjrge+fYEJKYIggqM+4Yqlt4nGkSI6k87qkeqqpX3++8PFik8df96+HikBIgzwwgMDdIKkAcKm9rVV2qfafm/skSIIouMwGXSwGtkXeVuBE+oBeTXo/BJ0ZEcqBUdqQ5wA9RkPT3p/JAtOTDd8B71DKuOTeqSsggteXobHibS8x+0A9koJnqfMYNOWSiVowlaiCCkeNpEzVLuO9BIgtUA7b+y17CpZzd7A9D+CIBjqkxh3DAJIU9pHjhTRwXRWj1RXLe3zfx+ClvZF2yOllPQZwZ6ji4cjpd5+J6X2kZAiiF4ET+5raKNPSj0grwb56pD05WXnjlQKDte0wucL4jILAqoH/QoAcLXxGzmgAul9lEUay7TPiTTk4eA37AQutRAYeAGb11IF1EtBE7ZiVt4HKI5UcrZ2HbZirZAypbDwieJx7P7+ryPbF4LoTfj3UcTkSKlL+8iRIjoY2ZGKsN8n6vW34Uh1eSEVLGwiWkdKEUImSUjp49Ejpf6fhVtPAiEhRRC9CHksKYcbrS4P5i77CT8cCRxfSR1/rkFdiuDzyn1HTUIqnB4fKpucCMb+wksAACeJu5STr5R8uKXqYl2z3+DZkTpSxzay6cDzgZRcdru5SnGk0ksAiySkuCPlL9JsxUCaSkhl9GOlC6XnSNv4PrJ9IYjehP/gpbGERJAjRXQmsuOSICHV3VL7/OPYww7IG70jZYIbeWlmmCG97nAhNW2W9qmizzspLZuEFEH0IpTkPg/+snQHFq47hF/8Qzv4rNcnotkZqkdKdXWIhzcASLIxlydUBPoJbzoO+fKUGcYkwGiBU7Cyuy1+jlSkPVKNbIR0ZJQCyTnsdksVUH+Y3baVBDpS/tHqthLmaHGkEAykSPvrbIpsXwiiN+F/AhVLbxONI0V0JmKCS/tCpvZFKUY6igBHio8jFR9Hyix4MCI/BamQjnVefi/xzc9V2FUm/V5HWtrXSf1RAAkpguhV8OS+Rocbn24vC7oMF1FAsPhz1QCCUtAEzGkoyWZi5XCICPSaFhd2in2VGVaW7uXUMyFltrfTkeLOU1qRIqR8bqBcijHP6BfEkfIXUsVAUqbyhZ3Rj01N0uDC1PxOEIH4l0HF5EipS/tISBEdTGel9nVZIeXn/vg7dpH0SHlcLEGXx52rhFCmBeiXBuh52IRKSJU3ODBjwfe4YaFUbRKxkOqc/iiAhBRB9Cq4I1Xf6oLTE3zMDD7OlMmgg9kQphSB9zpZ01FgswAAKhuDO0nVTU785OunzEjKAAC4dElsFfYK7RMi7ZHijpStCDBaALP0heySXKSMfoGOlPpEzZzGnCdBUCLQMyTBR0KKIELjfwIVt9I+ElJEB5PosIlQPVKyGEnQ+FXtJaIeKaP2MX++fw1YeDEbsxHQlPb1STMg28h+4z2CETBY5MeO17dCFIETDQ4WitVWaR8vQww3qG+CISFFEL0I3iO1fr82Jc/tVb7I5aAJfzcK0F4dkoImYM1ETiqrcQ7VIxXoSDEh5TYwIWXxSCLHYJV2KII+CVEEGiQhlVbEpuogCWMykJSlXO1yt7IvY77uc/4MXPNf5QuYp/nlj2JTWUg1t70vBNHb8O8niVf8OfVIER2NWjgkQtR0O0eqrXGkIijtq9nHprX72VRV2leUqkOWnh3ndl2KpreptkURTEdrW6m0jyCIrgVP4ft6T5Vmfk2z8iUVMvoc0Jb2yY5UBnJTuSMVXEhVNzux06cSUkYmUjz6ZO2CqVJfkn8fUzDsdcpyXEjxwAlACY0wpyrznE2K2zXkQqDP6cpjl/0duPZDoM8Edt+UwqbkSBFEIIkq7aPjjehoNEIqAaImpCPVRYWUv/vD7/OxXyMRUryHmk9VjlRhioBMPfu+aNFpzwHqWpRzkaO1dpUj1YaQ6qToc4CEFEH0KtKCiSMAVSonKeRgvEDw0r6kTOTKjlTwkryqJicqkKHMkFL6vMYk7YI8hjySq9K8rC8pm5X1AVpHipfo6Y0s3AJgX+r8hI+7X5yUXGDAecrVMSrtI4jQxDVsghwpohNJtJBS9xap6apCKtQ4Ur4oeqQc9Wxql6YqRyo/RY90gR3nTdAKqdpWZbljda2AXkr0iyS1r5MgIUUQvQjeIwUwvZBkYl+G1c0qIeXkjlQbpX08bMKagdw09mVX1Ry6tA9QRZNKJ0s+Y4p2wfzRmsfD0qDqj+Ik+zlSHHWfFF+30U9I+UNCiiBCE1dHSiWkPPau1zNC9GzUn+WEOFKq2HA18sm/2LU+81GNIxWiR4oLqCCOVG6SICf2NYrai6laRyqS0r4Qbl8HQkKKIHoRakfq4lEFOL2UpecFc6SCuldyaZ9bCW+w2JCTopT2iaJ2UF6fT0St9OXYcMHzrKzvwqcBAKJJJaRSCxVRFJEjxRP7ipV56tK+dFUpoTq5j5cD+rth/qhL+7rSjxxBdAUCHKk4lfYBkZX2EkS8UH+WEzGWVMgeKdX9ruRKtSf+vGoPsPMj5TnckeJCyqMSUlYBKWAXKOt92t/hWrWQqouitI9S+wiC6Ai4AwUAd04ehOyUQCcpotI+r1sJYTClyI6U0+NDo0P7JVzX6oLXx8RV0vjfA3OOAv3PlZ6rsvXzR8ripqq+vu0XE9SRUpf29VNuc0eqpUr5MTAqSUFBkfdNpBM7gvDH/4TTHafSPoDGkiI6Fk1pXwKEVFs9Uv770NmEKu0LJaRqDwB/Pw147zqg7Ec2X3ak2NStSuLNsgJJPnb+UOvVVobUqUr7jqgdqYqfgHnjgK3/1u6bl0r7CILoQMb3z8KE/ln489QhGJibKqftqR2pxnBhE/xLzedWSt5MKbAY9bLwqvJL7quRrjClJxlh1Ou0PyZmlSOVPwo+qR56x8FyHKhqIy2v0S+xD/Ar7QviSDWrYtbbcqQMVsjliFTeRxBa/E844+lIUQQ60ZEkurSvrdS+RG23vbQlpHR6Zd9drUxAcWr3s1AKddiEKMLlUISURfDC6mVDlNR4rfKFVkDrSB2ra4XIL97uXwXU7AW2vx983zpRSHXelgmC6HCsJj0W3zxevh9MSIV1pNSlfbKQYs5NbqoZTQ4P9lY0YW9FE1xeH84amI1qad3c/VKjVyfq5Y1ETZMdOQDMcGHZthO4c/Lg0C9GdqQiKO3jjlRTufI62kr50enYa3M1S+5bbvjlCaI3EdAjFYNr6+9IkZAiOpKE90h1M0fK/8KG3CMVJGziyDrtss2V7PdSVPVVuZrhVY8N6XXC5GEXShvFJDQ7PLAlsd/julZl2w63Dy0eHTSd1K3aoVu6Qo8UCSmC6MXIQkpV2ne0lp3E5KUFKX2TGz/VQipJXtf+qhb84Z0f5MXPG5KDy8cyxygr2RSwOqNF5Qrlj0Z5+ffIAWAVXPh42wn8adIgCKoxJjTIjlShMi+zP/txyhwg7xeAQEeqLTeKIwspcqQIQkPAgLxxLO0jIUV0JIku7QuV2qe+n4jtthf/ffH690gJoR2gpnKlrI9jr4egCZRxQu9kjlUjktBgd6uElEvehCgCdU5BK6Ra/IUUxZ8TBNGJ5EguUbXKkdpbwa4UDc5LCXyCOv5c1SMFQB5LSs03e6vxcwWz8LNTAx2pZE+tciezFMekVVrgwv6qFtz01iYs+N/B4DvfUs2mKXnKvJRc4Ja1wHUfaZflg/JyR8rQRn8Uh5L7CCI4AUIq+NAHEeF/BZx6pIj2cHgd8OUD0X8WEz6OVIjUPrUg6UqOVMjSviDjSPnTXKkETXAcDZqwCXhdculfo5gsJwV7vD402NntATnsvKLOqQ2vCnSkqEeKIIhOJNuvtK/B7kZ5I/sRGpibGviENkr7OMMK0jCyKA1en4h/fsOE0KDcQGEmSIPfNopJgE6PI03sB8cMdlVq5a5KPPbpLk0NNQB2xczFBJpctsfJGw6kFWjnmSUh1VzJpm1Fn3NkIdVGvxZB9Db8wya8wYc+iIgAR4rCXYh28NWjwLqXgANfR/e8DnOkgpSfCW2Mx9QZ+PxL+/zDJvRhhFQQR8rRAEG9TrWQQhJcHrbeBrtb1mr9s9lvb4vHT6Z47NoLm12gR4qEFEH0YnhpX5PTA4fbi32VTJzkp1lgs4YJmwgmpNIUIXXekBxcPIqV3Lm8PiSZ9Lh2fF/4Yx44Eb913Y9JzmfhcHtxqIF9i+ZYvJg6gjlNXp+IJoffF7uzSblt8RNSwZBL+yRHKuLSPlUEOkEQCv4nnJ54Cik63oh20FLFpo7G6J7XWT1SQDdxpLzaqaALfC2WdDZtqgjiSPmX9qkdqSQ4JSHFy/psViPSpVK/Vm8QmaJ2peT3loQUQRCdQKrZALOBfQ1UNTnxs1TWNyhYWR/gV9onld9IYiMzWSWkhubi4lGKK/T7M/shK0jYRLLZiA3iCFQhA00ODw40sC9Fq+DGq9eOQ7IU187tfhk+hpXeDBgC1xuANYNN+Rdw1I4UndgRhIZ4CqmAMkFypIh2wE/gox2uorPGkQLaHti2M/Dfl3DjSHEyS9m0uSK4I6UWUl6nLKQakCwLqdoWtp3MZJOcGtzs70gBWiFF8ecEQXQmgiCgwMb6hcoaHHI/0+C8IGV9gDLondel6pFiYkPtYI0tSUefrCT88uRijCxKw81nDwi+Op2AFDP7AixvcOCYZDTpvQ7NOutb/YSUQxkMOCKSMrX3SUgRRGz4D4QZD0dKjlSm442IElFUTuC7XI9UOEdKmpcIAddeAlL7gowj5R/uwMdtbKkK7GOy10Pn04ZN8IuhjWISnG722nn0eUaSUU4NDijtA7SBE12gtI9S+wiil1OYbsWhmlacqLfLQRNDQgkp/uXpVMWbSmLj/KG5uOnsUpzSNwMGPfvy++tVY9rcfprFiCaHB9uO1cMBVjooeByAzwdbkgknGhyoD+VIRVLWBwBJWdr7EQspXtpHPVIEoUE+/pOkZvJYwiakkyxLOtBaTY4UET3uVsU5icWRSkiPlEqA+BNLaZ+zCVjzNDD8cqB4XLt3L4BQpX3hHClbMZsv+th4T2ocDVoh1Vorr6tR5Ujx0j61I9XUliMlp/aRI0UQRCdRmM5ExfF6u+xItVnaZ69T5kn9RnqdgPsvHo5pIwuCPDE0/MrTtqP1sENVpudxIF12pPx6KPhgf/5BE6Fot5AiR4oggsJPYIzSMeJzK+lk0cKvgHOHmeLPiWhRl5NF7Uh10x6pTQuAdfOA1ye1f9+C0eaAvEF6pEwpQLI01mLVz9rHHA3Qq4VUCwt9csMIJ4yq0j62THqSST4vaHYHGf6ktTpw36i0jyCIzoILqV1ljaiU0vsGhXKkeEiDnH6XFPNAeGnSlac9FU2yIwWACSmp4TSgR8oRqyMVxThSAAkpgvCHiyZ+jADtT+7jjhQvwVWHyRBEJKgDDqJ1pMQEC6mIeqTasV1+QRGI7zHD94UPEyKPI6UOm/ATLgYLkCoNRVK9h02Tc9jUXge9qHp90vmDXZ8MQJBT+6ql8Swzk01Ik4RUY1Ah1bVK+0hIEUQvpyidfVmu3Vst3bfKfUsBcEHScJRN1SdR7YRfeTpQ1QIfdPAK0rbdrYqQ8u+R4qV9kTpSxiQWTMGJehwpKu0j2seTTz6JU089FampqcjNzcXll1+OPXv2hH3O6tWrIQhCwN/u3bs7aK8jgJ/AqAe+bm+fFBdSVklI0fFGRIvakYr2c5jo0r5IeqTas10uVADg8Pronx8KfyEVyThSxiQgJZ/d5gJP7puq1C4rjQFp17ELtk6PF60uDz7eVgaA9Wjz0r5GVxAh1UKOFEEQXYgCG3OkuOsTsqwPUF0xloRMpM5OGGQL38m+EL066cvb40QaL+0LcKSkL+pIHSlB0LpSFH9OdBBr1qzB7bffjg0bNmDFihXweDyYMmUKWlra/kzt2bMHZWVl8t+gQYM6YI8jRHOyJZ3stFtISce3/P1CQoqIErUjFW2PXaLDJhLlSKkd4INron9+KOSyXakEPpIeKaMVSMnVzkuXhjxprtLOl2LqHXr2++r0+LBw3SFUNztRkmnFpWMK5fOCoEKqi6X2UdgEQfRyeGkfJ2RiH6BcMeaYwoiuCOFXnjg+gxnwNgNuO9KtbN8CUvtkRyrC1D6ACammE+w29UgRHcTy5cs19xcsWIDc3Fxs3rwZ55xzTtjn5ubmIj09PYF7FwP85FBnZEMQeBxxKO2TLnZQaR8RLRpHKooeKVHsQEcqzmET6gsXh9ZG//xQcHHChxaJJP7caAVS87XzMiQh5e9ISetzGti5RqvLi7fWHwIA3DV5MEwGnVwVU+8S5Os0Ml1sHKl2b9nn82Hfvn2orKyEz6/BtK0fB4Igug6F6doyt0G54Rwpv16jOJb2yRgsgBOAx4n0JOY4NdhDhE1EGn8OaCPQSUgRnURDA/vsZmZmtrEkMHbsWDgcDgwfPhx/+ctfcN5554Vc1ul0wulUTqwaG6MclDRa1CeHXEjF6kjx8d6otI+IlvY6UqJfQEpCHCkuQOLsSKmPt7IfWQgUP4ZigR/bBu5IebTzBX1gmaLRCmSUaufJjlRF0M24jExI1bW45IulF0njT/ILrA0uAP5DRXaxHql2bXnDhg24+uqrcfjwYYi8ZlJCEAR4vV0oD58giLAkmQzISDKiTvoiC+9I+X1Jx0FIpVm1jpTOyEv77KrUvhjDJgC/0r5uFH/eeIKlIXVivCsRH0RRxOzZs3HWWWdh5MiRIZcrKCjAa6+9hlNOOQVOpxNvv/02Jk2ahNWrV4e8UPnkk0/i4YcfTtSuB6K+Esz7D2PtkaKwCaK9qJNko3Gk/AVMIsZzSlSPlOZ1ikDD8TgJKX9HKsg4UsHCJkZdCez+FNjzKZuXHb4U2S0JKV66rxMAs4G5dvwCqzuYTAkaf24MXK6DaNcv86233opx48bh008/RUFBAQQhSA0jQRDdhsJ0qyykBoZzpAwmwJQKuKQTnQQ4UjqTJHI8DthCpfZFGzYBtFNIdYAjdeQ7YNWjwNQngILR2scOrgXenA6Mux6Y/kLi9oHoEGbNmoUff/wR3377bdjlhgwZgiFDhsj3J0yYgKNHj+K5554LKaTmzJmD2bNny/cbGxtRUlISnx0PBj+BEfRKU3rMQopK+4h2ook/j8KRChX1HU8S1iPlV6kRy1huatrVI5XEhNdv3gG2/5cNYZAzNOxmPEZeccJ+361GvawnLEY9THod3F7Vdsw2wNnAxqHyeZkI5aIvxvTgWGhX2MTevXvxxBNPYNiwYUhPT4fNZtP8EQTRveB9UsUZViSHSuzjqEvk4twjZdAJ0PMvb7cDtpBhE7E6Ul0o/vy/17P69rcuDXxst3Rl74e3lcj5aPD5gJr9StoS0WnccccdWLZsGb7++msUFxdH/fzx48dj7969IR83m81IS0vT/CUUUeVIGaRhC9pzIufzKidolNpHtBdN/HkMjlSHp/bFUtrn9zrj9TsVMv6cCykhiJCyKI+N/hVwygxWeh9sEGIJr4k5Ug3SOJFWk/b9SbUYtI5Ueh/phgh8cifQVN4leqTaJaROP/107Nu3L977QhBEJ1EkCamwZX0cjZCKryOVlWKCIJf2OZCexE7QGlrd2jLidjlSqv2OOP68A0r7Go+xqbo0hXPsezb1uYEf3ox+3Rv+Dsw7GfjhrfbvHxEToihi1qxZ+OCDD7Bq1SqUlpa2/aQgbNmyBQUF0Q12nVDk3gSVI9WesAn1VXVypIj20t6wCX/h1J0cKY+fIxVtWmEovKHiz/mAvMF6pIJcnNTpAUt66M1IYVH8QqnFGCikXGohZU0Hik9jt394C1j/sup7qJuV9t1xxx24++67UV5ejlGjRsFo1L6A0aNHh3gmQRBdkfH9s/Dm+kM4b2hu2wtb4yuk0lRCKifVrCoTcsg9Ui6vD3a3F0kmadnOcKREkV1tizcZpUDdQXa7tVYRfG4HayDmbFoAnHlXdL1SB1azadlWADPisLNEtNx+++3497//jY8++gipqakoLy8HANhsNlilVMo5c+bg+PHjeOstJnj/9re/oV+/fhgxYgRcLhcWLVqEJUuWYMmSJZ32OgJQX2U3xNAjpRFS0mff42Anc9QXSESKJmyiqzpSwVL7dO3frr9gdLdGv45gyKV9IYRUqNS+YCRlAfba4Jsxsd/vuhbJkQoQUkZUqmWKKQX43RJg1WPAupewbccOeM02nAx0v7CJX/7ylwCA66+/Xp4nCAJEUaSwCYLohkwbmY8dc6e2XdYHaAVJHEr70lSlfdkpZuXL2+NAkkkPo16A2yuiwe5WCSkpta+9jlS0YRM+D3OlzGEcO5+P/bCZohxbS93cfPQ7YMiF7HbZVuZEJWWzbTceB+oPA1kDIl93+XY2bU9ZIBEX5s+fDwA499xzNfMXLFiAmTNnAgDKyspw5MgR+TGXy4V77rkHx48fh9VqxYgRI/Dpp5/ioosu6qjdbht1glcsYRNeVdmuulHe1RSfxnmid9ClHakEpfb590jFy5GSS/ui6JEyhBFSNcFLkkUpdbfRwbYXrLRP40iZU9hFm+JxAABX/XHs94k42YBO7ZFql5A6ePBgvPeDIIhOJiIRBSSgtE8RUjkpZoAPyOt2QBAE2KwmVDc7Ud/qZoMHez2AW6oFD1M2ELjf7RyQN62IiZgVD4YPfFh4MXOWblkLpOSEXk6NKGoHKzyyQRFSR6Wyvj7j2fxo46WbKpTY2abyyJ9HxBX/ZNtgLFy4UHP/3nvvxb333pugPYoT6tjhmBwp1YCaBjMTZV4nK+8jIUVESnvjzzsibKKjeqTi5ki1cxypYKh+d1tFM5IE1XeE3/Al/qV9KWYDPFDN4xc2U9h4VXmow2FBGruqu6X29e3bN977QRBEd0FT2hel+xIEdY9UdqoZcCqOFADYrAZZSAFQ+qOAGEr7IuyR0umAS+cBi34BbPoXMORiYNDk4MseWcem//sbMPXxyNbvagY8qh/9IxuU27w/qvhU4MRWdjuaK60V25XbIcbxILT8+OOPbS8k0etL2DVhE9IJVyw9UnopsMKcArQ6AScFThARIooxOFIdUNoXUY9Ue0r7+LEjXXyImyMl7Yuc2hdLaZ9yMaQZViRB+Y4QLOkA6pVFAxwpIwABTtEAs+BBrceETEAe+DdPqIdRVKWHdhIxFRXu3LkTR44cgcultRcvvTRI+hRBED2DOKf2JZn00OsEeH0ic6S82ihlFjjRogzKy4WUwRrdVSi1AIzUkQKAgZOAcTcAm94AdiwJLqTUP4Lb3gWmPBa+n4pHt7ZUaeeXq8RPtVQOUTC6fVf8y/2EVKJ6vHoQJ510kqZMPRy9voRddqR08XGk+LFsSmHjxFByHxEp7lbFNQGidKT8juNOG0cqBkfKms6+4+Ne2qfqkRJFbTmv//djqNI61QXMZtGCXNXTdEk2qIVUYI+UMpaUGR6UOQwaIWUW3BgqSCXRKXkRvrj40y4hdeDAAVxxxRXYvn27/KMDQP7h6fU/MATRk4lzaZ8gCEgxG9BgdzNHqlUZkBeAHDjBx7lqV9AEwNyztGImXpKzo3vukIuYkDqyPvjj6hPI1mq2XN8zgi/7/u+Z83TTKqWsz5LOSlPcLWxdBrNyRd6SrgngiBi1kPK6WCqg+n9HBKAuW9+yZQvuuece/PnPf8aECRMAAOvXr8df//pXPPPMM521i10HH0/winFA3gBHSjqu1c4zQYRD7UYBTAx53ZFdaOsy40i147yZO8DWDElIxam0j1/cUKfbqocpCBNp7s9RpxV8NLtmaF0rvTUdwGH5vr+QSvMblFeQ4tJhMMNhTIfFXY8hOin1Npre4TjTLiH1pz/9CaWlpVi5ciX69++P77//HjU1Nbj77rvx3HPPxXsfCYLoSsQ5tQ8AMpKMaLC7kZdqBmq0jlR2CjtJq2yUfjTaEzTB+f2nTKBYohzvruRUAALrgdq5DNj+PtBUxgbKPenqQIGz+9PgQsrnBX76gN1e9RgwZBq7nTWAle+JXpbcl1agXJE3pbTvin+ZX5laUzkJqTZQl63/6le/wksvvaQJeBg9ejRKSkrwwAMP4PLLL++EPexCaAbk5Z/PdowjFay0D6DSPiJyeH+UKUX53nTbu46Qki86BEvti6VHSvo94L3CcXekzNp56nGkIqDB7sbfN9TjKekltogqIaU3wWjWVoZYgpb2KUKqBYqwazRkw+Kul++700vRWV1S7RJS69evx6pVq5CTkwOdTgedToezzjoLTz75JP74xz9iy5Yt8d5PgiC6CnFO7QOAP08diu8P1uCUvhnAMR42wX4UijLYl++JeulHwtlORwoAMvq1bwctNiB/JHN53p+h/KC4WiUh5Sdwgo0JBbDQCs7Pn7OyPYCVJVjTWUmTnQspKVDDnBK9I+XzAjXSWH/WTLbO5nIgb3hkzyewffv2oGM+lZaWYufOnZ2wR10MdY8UP7GKV2kfQGNJEZHjkpwYa6YipCL9LHYZRyoGIcVDWeIWNuHXIwUo5X1AxI5UVZMT1T7lYqvGkbLYYPZzoEKV9vHkPvXz6/SZ4IO1VItpqG7SY2h8rutGTbsG5PV6vUhJYV922dnZOHHiBAB2NW/Pnj3x2zuCILoecS7tA4CLRxfg4ctGwqDXqUQD+5EolAYLPtEgCSkuUqJJ7IsBt9cHl8cH9GHlXbKIAhRR5y9wuGvGObgW+Pz/AZW7lHmtNcDG19nt5BzF6bPXsSZiXvNvSo7ekXI2ApB+9HIl8UQR6FExbNgwPPbYY3A4lP+t0+nEY489hmHDhnXinnUR4j0gr+xISeU71CNFRAr/DBnU4xBG6M4ExJ/7gi8XC/Hokao/ok14BVRCKp1No3Gkfnwf2PBK8Md8wUr7PKFL+0IEPTQ53KgVlSFDmvyFlEG7Hn8h5fKy7blFNr9Z5WhVQQmxOCTmY+eJzisFbpcjNXLkSPz444/o378/Tj/9dDzzzDMwmUx47bXX0L9//3jvI0EQXYkElPZpMGp/CAvT2f3j3JFqKmPT1IL4b9sPn0/E9Je+hcvrw1dTJ0D3/WvsgdNvBb57Rblq7i9w/Ps73pzOplvf0c6v/plNk3OYQK0BK+1Tn0Qak6N3pHgfmcH6/9k77zA3qqv/f0d1e29ee927DbhgY4OxARNqqAmQ0EsooSUxJaGk/fLmJW8SSPJCXkgIoYRACAECCQFjwMaYaoPBNrjXtb3r7U2rVb2/P+7cmTujUduVdqX1+TzPPpJGI+lKK82dc7/nfA9QPIpfJwv0pHjkkUdw1llnoa6uDkcddRQA4PPPP4eiKPj3v/89xKPLAORAyqaqSSmpkaLUPiJJ5O+QI4cfJxNtypsxilSMGilfN/D7BUBBFfCdz/TtIbMilWAgFQoAL9/IP7fp5/AMCBmz2YTYxqIEhOK3a6K7L4h26IFUH3OBKTYoLKwGUiZFypTaN7GKHwvqWRXG4RAa7Po4D4ZLtOt7WA06PKaeWoNIvwKpe++9Fx4PTzv5r//6L3z1q1/F8ccfj/Lycjz33HMpHSBBEBmGKw8YcRQ/4Vf7OaQUkyI1skRP7WOMQREBQWEaXttEd18QWw/xYKmj+hiU5RQDhbXAghv1QIqxyJX4viirYyLAGns8sOddfXtBlT4Zetv0tD5HDmB3AA51okpKkQJf3S9U3YzIAj0p5s+fj927d+Ppp5/Gli1bwBjDRRddhIsvvhj5+UOUQ5JJyGYTpt9sUphT+8hsgkgWceJvd/J0tL6OxBUps0tfJvaR6mrgRkTtu3mwJFLuImqkEkzt66zXg8/ugxaBlDpeu5OrTywcW5GKUovWZVKkGBQedAX71NS+2IrUwvHleOTSufj3Z7/AT7/4Eotstdp9+wN6nfOucA2KwvH79aWLfgVSp556qnZ9/Pjx+PLLL9HW1obS0tK4lrEEQQwDvvUWP9g6rFeiBoTDWCNVU8xv9wXCaPP4UT6IgVRXn26p2+ssRdmtn6mrb+pBm4WsG+XGOwmcdjZXo0Rwk19hTO0TgZRQ/JJNnZKdDUWwS4pUUqxevRrHHnssrrvuOsP2YDCI1atXY/HixUM0sgzB0mwiBYqUqJGi1D4iUcyKFJCFilSM1/VL9YKeFqBE9cGLqJFKMHjs2Kdft0r5lptk2xz88+1HINXdF0QXdEOJPKXPGEiZU/tMipSiKDhtZg12t3jw902dmO3Xg949vkKtOGkPq8GMIQyk+lUjJdixYweWL18Or9eLsjJygyKIwwa7M/GmtsliWt12O+yoLOQnagc7+vTUvqJaq0enlO4+fXLrC4R4+p27gKfbCXzdFjVScQKp8vHARKkfVX6VXnsmp/ZpgVSSrmiaIlXE1S6AFKkkOfHEE9HW1haxvbOzEyeeeOIQjCjDSHVDXpEeSKl9RLLIgZSm1iRaIzUIDXkH6ton/xZE78GQlGqn1UglqEi165bjlvOClrbr0H+XsQIpWxRFyhsAk8KMAsUHRRwr3EWRqX1O61qrfDff7vHxcfUFQtgnKVJ7WA2CoSwLpFpbW7F06VJMnjwZZ5xxBhoa+InNt771Ldx2220pHSBBEIcZphopQDecONDh1ZWVQUnt0xWpvoBUhGyzAaKnha9bXxkUjoZmRUp2OgSAsvG80a+goEqfDL1tRutzIPnUKVmRKiRFqj9Ea8rb2tpKqX2AyWwihQ153dLviiASQf4OJa1IDUJD3piKVAJmE7I629vKL+VFi6QVKTmQslCkxIKdw60HeqGg1JDXrEhFr5GSKVT69J5zOcVwmRSpnCiBVJ5LtT9XFak2jx+NzGg2EUqHSUiC9Cu173vf+x6cTif27dtncC+66KKL8L3vfQ/3339/ygZIEMRhhkXQMLIkB5/XAw3tPVIglX6zCXki8Ab4QXzN9hb8fV09HnDmw+Hv5pOcmHjyq/hEF/LzidxpManbHEDxaKPrYEG1lNrXYZHaNxBFSg2kyLUvIc4//3wAPK3kyiuvhNut91IJhULYsGEDjj02SrPlwwm57iOVDXkptY9IFqvUvn4rUkNVIxXLbMJCkZJ/a8n2kYqnSGkLccX6mEP+GKl91qGEnBoPAAWK1Nsrpxh2mwKHTUFQTcszp/Zpj1MVqV5VkWrz+NGIcjxpOxcjR4xA784c7TmGgn4FUm+88QaWL1+OUaNGGbZPmjQJe/fujfIogiCIBHCoqRlS8CEMJzpaGvjqnmLDNk8uWppacOzEirQNRZ4IvOpq2G/f3IZ1e9txq8uGiTYYFan8CqBZAcB4MOPM4WYU8qReMoZPPHllwOUv89XU3BJTal+UGqmEFSnVfj2nSO+35e/hKSZW6SWERnExTxlhjKGwsBC5ubrlrsvlwoIFC3DttdcO1fAyh7C0yp6ShrxmRYrMJogEkb9DziSPlUNdI6UkokjJNVKmQEqx67+ZRFP7OuIFUmL+KObZFN42vkAYrY9UlNQ+syLlUQoAhzDI4MdZt8OGoDq3RkvtE4pUjxpItfTw5/hb8bdw/MgKYOcuhEyB1PPr6rHxQCd+ctYM2Gzp9W7oVyDl8XiQl5cXsb2lpcWwekcQBJE0FidlIrXP27qfb8ivwjV/WY/6Ni9e+PaxvJFvGrBSpBq7+Lh6RJd1X48+qTlz+aTm6+IBVkEVD5Tk3lOTvqJfH3+Cft3g2mdO7euvIlUsWdSrAV06LOuHEY8//jgAoLKyEj/5yU+0uW7Pnj345z//iWnTpqGiIn3Be9Yg11GkJLXP1EdqoDVS/l5+gi1SZonhi5zaJ3oNJarOZIwilWiNVAu/lNPvnEm+5/YYqX3hsDGjobAGaN3OM0GiKlLWqX1dXv5/udJ/B77t+BceyLsez9nV3lWqiuZ22rWUvbwoipSokeqVUvsAoKLABbsaJJkVqfvf2IbGrj58Y95oTK8tsnzeVNGvpcnFixfjqaee0m4rioJwOIxf/epXVIRLEMTA0IqFIwOpUBevxwzmV6O+jU8af35vd9qGYqyR4gfxwhy++uZRJ2x/b6dxUhMngmJVT1ajvr8HOPW/rV8sEde+/tRIOXIBqCty4nmJuKxfv16b5zo6OrBgwQLcf//9OPfcc/Hwww8P8egyALmnTEoa8qqr2qlK7XvqHOA3MyKbmBLDD4PZRJI99wajIa8WgKSgRkoEUnITYqcqbAS9keNnjGc5aM/VC3ik4MmsSPl7oLnS5hTrKfTdDUmn9omFyFXh2bjI/yO0ukYBpWP5nRWTAMDg3BetRirfzZ+/16+n9gFAWb4LDjWQMitSYu72BtIQGJvoVyD1q1/9Cn/4wx9w+umnw+/3484778TMmTOxevVq/M///E+qx0gQxOGEhfoiUvtED6kup64IvL6pEQc7ElyJSxKDIqWuhomDeY/apX1fwyE9wLG7I/vgaKuECl+Fs1qVBIypfWIFMiKQ6keNlM2mPw/VnSTM+vXrcfzxxwMA/vGPf6C6uhp79+7FU089hf/93/8d4tFlALIiZU+yz5mM+E6LBRTNdKW9/ye1rTuB/R/z7/uBdf17DiJ7kINxRyYrUjFc+1iM77q8ANZrVqRy9N+OvF3w2p3AL8cDBz7lt2Xrc4ArUkwKQsQCoAhKZbOiJBvymmukXHYbcO7DwLffB2pnATAGUtFqpPJNqX3tvfz/XZonK1L658cYQ6+68OkLpN+Eol+B1PTp0/H5559j/vz5+MpXvgKPx4Pzzz8f69evx4QJE1I9RoIgDifERBjyaxNQXRlfcSsI8NXlZuipfKEww18+TE9tZpdFap/HF1KHyZWn+sZDxklN1CT1mQIpZy4Qq8+eSO0LB/RVQrE6r52oJti9XVakACmQIkUqUXp7e1FYyP/Hb7zxBs4//3zYbDYsWLCAaoEBY7rSQBryiroOsapeWMtX7kN+oKefTpNb/6Nfp+/88EdOD01akUpDIBUKAK/eDmz+N7890D5SPqsaKQvLdyAygDzwKQAG7PuQ3xb1UWXquXqg17jAJi/CAYkpUgnWSLkcNt7eoHqGtk22QI9eI8W39wXCCIWZ5qCb67JbKlJ9gbAWG/qCGRpIAUBpaSnOPPNM3HDDDbjhhhswf/58rF27Fq+88koqx0cQxOGGQ6qzVE/MinOdKM51ohrtAIB6tYfE1Bp+ovvsx/s0xSiVyKl9IpASilRFOVfFDjW36CeQDgtFSg6yYuHM093POtVasAj7834oUvLz0EllwkycOBH//Oc/UV9fj+XLl+OUU04BADQ1NaGoKL0591mBpdlEfwIpaaEB4GlCxSP5dfPqeaJskQIpcqsc/lg25E1UkTKn9qUgkKr/CFj7KPD2fxlfo781UobUPtX+XJ5XZOfMra8CO1fq+3v5nInOen7ZpqbCV03TW3jIvxHZsQ8wKVJRAimRzm5C1EhpuzkiQw63U1Kk4qT2AXz+FWn2bocNdlXlk/tIiTkaAHzBNNjZm+iX2cTrr7+Oyy+/HK2trWDMmJeoKApCofQPnCCIYYoccAT7ABdfqR5dlofqJj4pbPfyA/e3jh+P3721DfVtXvzzswP45vzRKR2KsSFvGOEw0wpeR1ZXAQ2Ap7sTfV4Pt56Ip0jFQlF4el93gz7pRdif96NGSn4eanKaMD/60Y9w8cUX43vf+x6WLl2KhQsXAuDq1OzZs4d4dBlAqhryWv0+SsbwIKp9LzB6QXLP52kF6j+UblON1LDHkNo3QEUqVopdoojgRSxcDbSPlNn+nDH9t+ZQsxWcuXzbK7fwz+DO3Xzu7Ovg94tFieYt/LJyCtD0JdDWzTMgylWFSnZ8BYyKVEmd+j7U4OfMB4APfg+c/ouIIYfDDD1+C0XKhMuub7MKtMR2u01BKMzg8YU0lSnHaYddiTSb6JUWVTNWkbr55ptxwQUX4ODBgwiHw4Y/CqIIghgQdoe+SidNhnVluShXeIDwZTefLKfWFOKKhWMBAI+/tztiYWegdJnMJoQqBQDFJbymqQBetHWpE91AFClAT+8Tk14qaqQA6s3TD77+9a9j3759WLduHV5//XVt+9KlS/Gb3/xmCEeWIaSqIa8WSElOwCVj+GVHP1Iod600ngx7SJEa9sipfck6nKZDkRKBjzAaEvU7/e0jJR+3g14eoGlZEOrcIP9+gn1A1wH+uiKoiwikpvH+hYDRcMIXQ5ES70OkqM+7Brj1U91AQqLbF4R5Oo6lSOU4bVFtyhVF0dL7PP6gFhyJAAvIwkCqqakJy5YtQ3V1darHQxAEYVkwXFeWh3zwybGpzwmbAkysKsAFc/kq2bZDPVoxaqowm02IA7Si6DVS+YoXQZ86zoEoUoDu3CfqRiLsz5NVpNTJkGqk+kVNTQ1mz54Nm1QkPn/+fEydOnUIR5UhGMwmBhJIiRop6fdROoBAar9qLiGOIcLljBi+GFL7IvsQxmSgNVLv/Q546/8Zt4maJvF70BSpGGYTiSpSADeckA2OgMj5pWMf7z8lFhU69nElq+lLfrtqKm/PAZhS+1RFSquRUgOpoFcPyqyUNRPdJqMJwFgPZd4mekVFo0A49/lC8GmpfXY47KJGSg+YPIbUvgwNpL7+9a9j1apVKR4KQRCEikXgMLosD3kKnxx74caY8nzkOO0oynVoC2SyYpQKzDVSIvc63+WAouaFF8KLkAiWHC5JkRL250koUmJiE/RHkQqH9AaOblNqHwVSRKoIS/US4vsZDiTvtKf9duTUPjVFt70fgdSBT/jllNP4JdVIDX/kPlKa2USSrn2JNMY1E/QDb/4EePd+o82+2bF1wDVS3cbbHlNdLmBUpABeZysCH4Cn+LVs54GSYgfKJ1krUubUPmeu1vMJXQf4pVVAaKLLy9+P066rTFapfUKlilYfJRCKVI8viD4rRUqqkZLrpX0pPiewol81Ug899BAuuOACvPvuuzjiiCPgdBodO2699daUDI4giMMUrZeUpEiV5iEPfPLohRtHjORqi6IoyHHY4Q2EUm51am7IKxz78lx6N/l8pQ8hv1z4qx5W+6NImVMk+lMjJTs8iSJgSu0jUo2hIa9kfxzyAbYEvuuCaDVSQHRFKhwCdq8GRi/UT5wBfmLb8Dm/Pvl04IuXSJE6HDCk9vVTkXK4uToaK8XOjK9LV3x8XUBBpXpdPQaHA/z5BuzaJ1LHc/himqdFqpGKokh11gPeDuO27W/wy7Lx/HejKVJWqX0l+rbCETwQE/VWCQRSYhGypjhH6/lomdrn0FP7YiH3ktIUKadNsz2XXfs8UmaKP5R+RapfgdQzzzyD5cuXIzc3F6tWrYIiWfoqikKBFEEQAyOKIpUrAimWg7OPqtXuy3Ha4DXVMA2UYChsyLXu80uKlNuhBScF8IKJSdvhBpzC2MFUI9WvQKofrn3idWUrYFKkiFRjMJswGcQk8l0XmO3PAT21r/MAEApGNvx8/QfAx38Ejr8NWPojffuhTfwEM7cUqJvPt3nUPjniPGXjP4C8cmDCiYmPkeg/7z/IU4znXJ6+17BqyJusa19/Aimh3gDGBSz5erAvjiIllLAEaqRKx/IaJ0+zhSJlDqRMihQAbF/OL6vU1GRNkbJw7RPZDABP72verN9ORJFSFyHL8t1o7vahLxCOokjx9x+th5RA9JLy+CWzCYdds0KXa6Tk84CM7SN177334v/9v/+Hzs5O7NmzB7t379b+du3alfDz3HfffZg3bx4KCwtRVVWFc889F1u3bjXsoyiK5d+vfvUrbR+fz4dbbrkFFRUVyM/Px9lnn439+/f3560RBJEJWNRI1RY64Fb4wbkXbiyZUqndJ9IC+lIYSJnrrbyBEDxqYJXrtGsTTYHiBZMLf0VKhJhMA1L9VDzKxhlv90eRspoIKZAiUo1sNmFzAFADlWTrpKwUqYIaflLMQno6keDgeuDjR/n1L03tVkRa38i5+mp7sE8/EW3ZAbxwDfDsN4wnwUR66GkG3rgX+PcyRDgPpBLZtU/UmXrbEnuspkjlGG8ngvwdktV+gzmEb2CKVCioL6CJlFdvu0WNVJzUPoCruAA3mgASS+0DdOc+bcyJ10gV5ThQ4OZZa7JDn0CYTcRL7ct38/t7fZLZhNNm2UdKZI4AGVwj5ff7cdFFFxkKcPvDO++8g5tuugkffvghVqxYgWAwiFNOOQUejz7ZNzQ0GP7+/Oc/Q1EUfO1rX9P2+e53v4uXXnoJf/vb37BmzRr09PTgq1/9KjkIEkS2YhE4uMJ6UDVhZBWc0kE5RwukUnfQFDneAm8ghF6fUKTsvLEguCJlSLMQAUw6UvsSsZfWUjOsAilK7SNShLzKrij9b8pr5dpnswHFqtWyuZfUaz8AoJ40tW4H2vfo98mBlCtfV4eFBXr9R+oY+/RmqUT6EMFMOJC4QtQf5NQ+q3S1WIgARjQ9TyaQEsdawGgIIStSQnEFkquREotecn1Ukdpfra/TQpEyLdR17NNT8cxUiUDKwmzC7NoH6IYTgoRqpEQg5URRDn+Pbov0PRFc5cStkeLP0eMLar2hZLOJoFSbOdh9pPoVCV1xxRV47rnnBvzir7/+Oq688krMmDEDRx11FB5//HHs27cPn3zyibZPTU2N4e/ll1/GiSeeiPHjxwMAOjs78dhjj+H+++/HySefjNmzZ+Ppp5/Gxo0b8eabbw54jARBDAEWNVJiQgowO/7763MMu7vToEh1mVyHZNe+PJee2pePPthkQwlNkeqH/XnRSGgr+0Ck2UTIH7+Y31KRooa8RIoJm1bZRZ1U0oGUhWsfoC8qtGzTt7Xv5T2iFBtQNZ1v2/GmPp6db/PrIq0vnzfN1owADqzTn2vTP5IbJ5E8fVKgkdZASlWkbE5dZelt0wOsWAi1KJWKlBxIycdcS9c+C5OLXauA+0YB7z6gP14OEvs6ImukzL+7roN6814ZRw6vLQSMqX1iXjG79gG8v6GMVM4TDVFfXJjjQIEaSLnsFq59CStSokZKr4V2O6wVqcG2P+9XjVQoFMIvf/lLLF++HEceeWSE2cQDDzzQr8F0dvJ/YFlZmeX9hw4dwquvvoonn3xS2/bJJ58gEAhoXecBoLa2FjNnzsT777+PU089NeJ5fD4ffD79S9fV1RWxD0EQQ4jV5ODnJ1yOnHxMHVFs2D1XPRinskZKNpoA+AFZr5HSzSacSgjukDqJ2geoSNnsvH6jVy2QN9ufA/GL+WMqUh7safGgotCt2ckSRL+Qa6QA9US0M/mmvNF+H6OOBna+Bex9n/erAYAdK/hl3THApK9w2+ntbwLzvgXsfY+rEDklwNjFfL+CKm5YIRSpA/oiLXat4ieQZqfMePh7+VgTOJk87PFJgUagF0B5el5Hdu3LLePBPQtxU4aiEbEfK5tNAMk15JUDRUMgJW+XAqmYNVLSfLN7NR/HzreBKWfwba4CXSXydui/FzFuWVVS7FwFbFFLZSqn6TVO33xW/0zy1fR4FuLqYX5FZOsMQDct0p4/vgaz5RAPJisL3Shsj65I6fbn8Wqk5D5SutmEXc2Mi9ZHyp+pqX0bN27Uemts2rQJ69ev1/4+++yzfg2EMYZly5Zh0aJFmDlzpuU+Tz75JAoLC3H++edr2xobG+FyuVBaWmrYt7q6Go2NjZbPc99996G4uFj7q6ur69eYCYJIEw6LgmF1olJEUCCRkwZFSuR4i9QDr1+vkZIVKQAoCneo43brk07Qa8xvT0SRAvTJDdBX+c3F/LGwWlFUPzOvpwsn/HoVTv/d6sTGQhDRkGukgP415WXM2mwCAMYezy/3vKvX12xXA6lJXwEmnsyv71oJNG0GNr3Ab087S//diN+Sp4kfSw59wW8Xj+YnqsLFLFGatwL/MxZ49bbkHne4MtiKlN3F00Ll/3s8wilSpAypfXK9lKxIJdiQV9j+t+3WAzR3ge6k19fJHSoBvUZKfq9FqhFT40Z+OfN84LRfANeuBCacpO9nd/KFO0BPhbRciNPnOv4+YocOnd4AVnzJn+/UGTUoyuFiS46F2cS0Efx1ptcWRdwnk6cu/Hl8QU2RynHYoyhSg9tHql9LkitXrkz1OHDzzTdjw4YNWLNmTdR9/vznP+OSSy5BTk78ExLGmMFNUOauu+7CsmXLtNtdXV0UTBFEJmFVb6E1qY0eSKXSoUcoUpWFbhzo8BpqpPJcdsBmQ8iZD3vAg2LWrY9bPiEM9CanSAHcQld2SAL4ZKvY+MlfvBNVUZwv0jYAbSLs7eETf32bF6Ew03pwEETSyPbngPXiRzyCPmj1ThGK1Dx+kthziPe/KRkN7HqH3zfpFKB6JjBuMV+9/+sF+gngTL1+Wj+hbgEaNvAx51cBk08B1v4JaN2R+FgBHniFfFzNIuIjKzOBNKYVy4EUwI+hPY1GlabzAPDZX4G5V+k25UCkIpXq1L6Ea6TkQGoPv+zar9v3uwp1laivI3KBLq9CrycsHsXtz5u3qPeVcdXWioJqoLeV/86qZ1gvxLlNQU6chryvbWyAPxjGpKoCzKgtwiXHjIE3EMLSadUR+35lejU+/eFXUJrntHgmaZia2UTIYDZh1Ueqd5D7SA3MLSJF3HLLLXjllVewcuVKjBo1ynKfd999F1u3bsW3vmX8MtTU1MDv96O93ehO0tTUhOrqyH8aALjdbhQVFRn+CILIIKyaKvqjrFxD70GR2tQ+rkhVFrq15zYoUkDkSp3Dzf/Eil3AOzBFSmAo5o+jSDWpQZgoKAY0Y4wcpn+ee1qpXooYAFpDXvWkSjvJS8INT/59mwMpZ45e67TnXZ66F/RyB7Hqmfw3ccGTQOk4ftLY18lPCoWSBei/pZ4mvT5q1NH8MQBf8Y9FTxPw0R/0nkQH1/PLzvrkGw8fjgyaIiWl9gHWtt7PXwms/DnwwtXGxw4kkDKYTUSxP5cDrERd++T+aYc28Ut3AZBbwq/3derBo1Bfz/0/YNwS4KrXdKMWQa4xY8uAbDgRCuiBnyG1LzlF6sX1fDHv/DmjoCgKFk2qwBNXzUddWeTcDQBl+a6owodAzLndvqDWG8odRZHyDnKN1JAGUowx3HzzzXjxxRfx9ttvY9y4cVH3feyxxzB37lwcddRRhu1z586F0+nEihUrtG0NDQ3YtGkTjj322LSNnSCINGKlSIkJaRBS+xhjeG0TTw2eXM0nEX8wjB5VpRL52hG5444cfoIngr2Ax9qVLBZyAGR47gRTp6wCKfUzs0urwlsbu0EQ/cac2idO1hK1nQb034bNqZ8Ey8jpfXJanzjpyivjJ45LfwyceC9w8d+NPafKJ/DLbcuB9U/z66MX6m0GZMc/K17/AfDanbwXEgAc/Ixfhvxc8SBiY1CkeqPvZ+azZ3X1MRHMilS+hXPf/o/55W5TWnOE/XkyNVIWilQoYL0ACCTm2uf36DV9ANC4gV+6pNQ+b0fkAl3VNOCKV4AxxwIjjOfJsQMpyQLd0My9f6l9gVAY6/bwY8BXj4xTn5YEwv683ePXh+jQFamA9H/zSKl9GVsjlSpuuukmPP3003jmmWdQWFiIxsZGNDY2wus1rlx0dXXh+eefj1CjAKC4uBjXXHMNbrvtNrz11ltYv349Lr30UhxxxBE4+eSTB+utEASRSsTqtNwHI1otBVJvf75mRws+2t0Gl92G65dM0La3qgdxka9tKzCpR5oVrQikJEXKbE8bjYU3A9PPAc59xPTcCShSvh5tNfOAcwx2NYvgk0+E9qA+qW+hQIoYCGazCa1/T7v1/lbES3sdfwK/3P4msPVVfn3SKcZ9ikYAxy8DltwB1M4y3jfjPH5S3bkPaPqSp0fNuUxXpNpjKFKhIH9dgDcy9XYAbTv1+8227EQk/VGkOvcD/7wBePG6xF8nIrXPwtY7GiKlrj/25/L7E3VRPtNxNWHXPnUc7XuN9zeogZS7wJTaJ/pIuSKfc8xC420RgFkhq7bCLt2Zb1yQSMJs4lBXH8IMcNoVjCxJojF3HERD3jZTICXsz6O79g3z1L6HH34YnZ2dOOGEEzBixAjtz2yt/re//Q2MMXzzm9+0fJ7f/OY3OPfcc3HhhRfiuOOOQ15eHv71r3/BbmG1SBBEFjBiFr/c/a6+TUxIVoqU6vzTl4KDZl8ghPv+w3PLLz5mNMaV66/X6uGTl1CklAJT+rC5y7y/Vw8AHQlOKs5c4MKngFmm452mSPkjHyNo5i5NLL8Kxz24ASfd/w48vqD2mTmCvRA1KVsbya2UGADRFKneZBSpKNbnglHzuA26v5sHLjYnT19KFGcucNyt+u1jruPjFNbqfZ3Rx7v/Y9117sAnwG6TQkKBVHwM7nUJKlLi/9FrYd0djYjUPjWQkg0YRKBvJtU1UuZefSILQLFZOz2aFakOUyAlgn2XlNoX8uuvbZUyXnOU3kMNSFCRarJ27AMiA6kYDXkPdvCFvpriHNhSWIMr7M/bevn857ApcNgl177Q0JlNDHlqn9XflVdeadjvuuuuQ29vL4qLiy2fJycnBw8++CBaW1vR29uLf/3rX2QeQRDZzIST+MTTvBnoqOfbYgVSokbKP7BAijGGe17ahC8bulCS58RNJ06EzaZoz9/aY1SkEC2QEmMM9Or1FYkqUtEQ7kyxFCnVpMJfNlnb1OkNaONREIYb/KSDUvuIARE2KVJ5aVCkbDZg1qX67TELjW5iiXD01dyoIr8SWHAT3+bKAwrUJqPRVKnterkAWBhY8xvj/eYTXiISgyKVYCAljm/hQGJ9oAALRcqiRkruhSSrRgOqkbJw7YumSEUzaDAHUlq6qSkIcRXwP/E84r3JrTEEdgdQO1u/nWhqn0gLF65/gghFKnqA1NDJf9O1xalTowDdHr2jl38n3KoDYCb0kcoIswmCIAgDeWV8NRrQe8fESO0TzfwGKuN/uKsNL3y6HzYFeOibczSjCfH8rT1ckcoTzQPNPWjE6qA4MQz06vnyiSpS0UikRkqdCDsKJmqbgiFm+MzywU9U9rb1GlbuCCIptIa86mmEViOVTCAV/TetMeub0E4qzWl9ieDKB254D7h5HZAv9TESdVLRDCfEcadINcASRhNudUGXFKn4+PqR2icHXIk+JiwUqQRT++T0OXONFEtiDrFSpCICKfX9RFNxIgIpdWwjjU3nUVLHAxihFsUKpACgerp+3ey6JyN/VsKNctxi4z4ON1eDBYoNjDFYIRSp2hSm9QGI6HvoVudgzbVPDqR8h1FqH0EQRFQmfYVfipVhTZFKX43U7hb+GidMqcKiSRXadhFIaa59bhFImRQpu6lGyu9JnSKVSI2UGkg1uHXjHn8oxCdxdUx5Cn88Y8C2Qz2Rz0EQiWC2P+9XIJVAa4DiUcDsS7miNOO85McJcBVLpEUJYtVJdR3Ue/Cc/GN9u93FxwJQIJUIcqCRqCIlB0/xHEoF5tQ+K7MJOcCRTUa0PlJu4+1EsGrIGxFIqdujKlKmGimhdI4/Ud+nbDxXVgE9kBJqWLTfzthF0mvEONUXc1h3g56+Ot4ifVZSpdq9ISy9/x3c+uz6iN0OdvD/34jiAc53JvLMgVSEIqXP/b2Hk9kEQRBEVCaqgZRwWdL6SBVE7CpS7wbq2tfh5SkiZfnGAt4cU9d1UfiKwhptW0hx6hOWldlEyhSpGCcXLdsAALsUvY2EFlyq6X1CkQKAho40WhITwxvNbMLs2pdiRQoAznkIuGMHD6pSRSznvs3/5pd1xwAzvw6ceA//u/UzYOqZ6uMotS8u/XHtkwOpRB8TzWyirwM49CV34osXSNmTTO0Lh0325yKQMtWeBpJVpNSxjV7AG0c7cnjNrEgXj1gQGItAKByZ1j71LGDR94Dz/hj7fZSO4XNqXwcPphw5QN2CyP0kC/RHVu/CrhYPXvn8YESgoqX2pViRyjfNwVogZVdrpIYwta9fDXkJgiDSjjjR8fdwVUcoUjFc+wbaR6pTzb8uyTVaMQtFSpDvjkztC9pc0PYSqpmhIW+qFKkoqX3hEF9JB7DDVwqoAZM2kbjyAU+zIZBq7oljpU4Q0YimSCVlNpFks+pUIhQp1aDFwOZX+OW0s/niyJI79fuY+nvq3M9/czEK76PStounRArTi+FKf1z7DIFUAo8Jh/Xvogik5JqghxcCx99uDMo6rFL7kgyk/D36d0HcBvSAStsumU1YIQdSjOkBeuk44LqVPEiUa5ZkBz67CygZg8v+9BE+r+/EvV+dhovnj+Y9mWw24OSfxH8frnxg8e3Am+q+dcdYz1VSeuDqHe0AeGBX396LCZV6kKWn9qVYkXKZFSn+uzPXSPmDYUNQ5UuRk28sSJEiCCIzcUkFrr6uBFP7BqhIiUDK1GU9xxRIaQd1KbUvBGkfpxRIJduQNxrxFClPM1cJFBu29uifkbZiqCp5eYoePLV0UyBF9APG9JPIeGYTbbt0wxgzQxlIjZzDT273rwU+fUrf7mnhzX8BYNpXIx9XVMvfczgAdPejl1TnAeB/ZwOPLo3twCkQJ9fZ1AD4w4eBN+5NTpFijP8Fk1SkwpIhhUjtUxSgTG9bgX0fGh9jUKTMfaQSnEPMypO/J1L5AvR5KxFFytOiuvwpvCYqvyLS+EF21CsbD6bY8OGuNngDIdzz0iY8+3GU31osFtyof14TTrTeR8oEkWOTPS3Gxu4H06RIuRw2uOx6yCKyUMw1Uua6X18wFLWeK1VQIEUQRGZis+nBlK87TmpfamqkRGpfcZ4xtc+sSAkHIeTpdVSusHQCoNVI9abuZDGeItXFu8mjoBr1nfoJmlZsa5HaR4oU0S/kk02z2UTQq3/nD30JPHg08KeTjY9hDNi/Tg9EEm1WnUrKJ/B0PQB49Xbg40eBfy8D/rCEB4kjjrJWjGx2oGQMv95ioWbF44OH+GVvS/yGwADw9s+A3x0JfPpE8q81FDDGGxm//6BR3YmlLjEGPHkW8NhXjH2XElGkQlIwKvdU+vqfgSkiDXOP8TGWgZQwbWDxg9buRmDv+/y6bDMe8PTftQ9Mr9crqo1uIiGn9pVPRLfPGDh8tDsJ23iBww1882/A4juA+VH6d0mpfUxyFNwtBVJef0hbjByRYtc+QKpNRnRFqteU4hhmxrS/dECBFEEQmYuwOu7rjJPal5oaqXZ1EihNVJGSmhY6mLQyKoKmvk69liRlgVQURaqrAQDAimpxoF0/ATGk9gHIQ59WA9bcncCKOHH4se0NHlh07re+X3Y2EyeC7iL9ZNHbzk9G/3Ur37enkStTgr3vAX9aCrz7a357KBQpAFi0DJh2FhDyAf+5HVj3GNC1H4ACzPtW9McJR7X6tcm9nqcFWPe4flv+TKyo/xh4935+/ZMn+WXAywO+jf9I7rUHC3MfJW27x3q7eMyed7k62HlA355QIGWhSAG8OfPCG/n1rgOGhxi+12azCSB+et9zlwIvXsuvF1briwm+Hj2QEr+LeDVScspfq9rwWQTqVsiKVPlEtHuMx3AxhyVN5WTgpHst24sAMJhNhGHD1Bp+Ww6khBqV77KjKCf1lUP5Unqf26RIhcK8fZJQpFwO/XNNt+EEBVIEQWQubkmREjayFql9uSlK7dNrpEyKlFTo6rQrhoO0JWIy8kr1IqkymwhFCX66eSAVzKvR3AUBaRJRc+vLlG4tf71FVaTWbG/Bfa9txhtf9CNViRh+rPw5DywaN1nfL59oihNERTEaTmx8np8YCw5JzyUc8QRDoUgBXPW+4EngpB9yNWP0QuCSfwB37ATmXB79caPm88v9H1vfzxgPRs2GFJ8+aUxda9sZ/TUYA/71Hf22aFD76VM84Hvt+3yfTMPbYb09VlAk1xV5mhN7jEAcDxVbZLCSJ+zumfF2oFefT7T6qiQCKfl7nVOsZ0n4Pbx5NMBdJsU2IAFFCkDrDn4Zq3ZOrpEqn4hWUyDV0ZumxTEpEyQMBQvG88/SEEh16Gl9SoxeU/0l36BICdc+fS4OhZmmSMmLoek2nKBAiiCIzEUUuPq69A7xzsgVs1Sn9kXUSEmBU3l+lJQLGbHCLk5+oERN1fhoVyvO/7/3sOlAp+X9GvFqpNRV1y5XpWGzNokUjgAAVCntWrPEZrVG6uM9bfjDO7uwenszCEI74ZQXAmTCFooUoNdJ9bZxhUHm0BfAmt8C29+MVLoGWj84EGx2Xmx/90Hg6td52wW535QVdWqPu/1rjWlgjPHP5vW7gGcuAB490VhHJVo5iICzNUYg1VkPNH1pvN3TzOuPAJ4aGE0xHEr6Oqy3xwykpHS4/gZSdlfkfXmm/2Nhrd4PSXy3I1L7kHwvKS2Q6tbfS76a9q3VSMUxmwD0wLo0QUWqYlKEItXmSVMgJZlNhGDDMeP4b12ukWpQjSZGpLg+SiAbTojUPrtdD9iCYQaP2kOqwO3Q0v7S3UuKAimCIDIXkdpnUKSsAik1tW+AB0yR311scu2bXsvHMXt0Cf7vUmOjRCYFdtoBW6ywCwczR07UbvD/3tCAT/d1YHk8NUhM9IHYqX1ttgrDZm1MRTyQqlbatULglh4fGGPwqHn2+e7Up2MQWYg4AdUWAkzIK/bySrusSIm0tZFz+eXaPwFv/hh45ZbIHkxDldonY3fG30dQPZMrzH2dWssBeDuAh44G/l8Z8JEIdlqBF6/jwZa3g6fqAcD86/llLEVq/zp+OeIo3Qhg9S+Nfa8Ofpr4mAeLqIpUDOMIvxxItST2GIHWQ8oikJLd+wCe4aB9t82BlBTMx1Ok5H29HXr9kK9HT00sHs0vk1KkRCA1NupL7+mU5rjyiVrgNKaczzliDguHGX7yyhd4bm2K+p1JNVKAgqPH8kDqYGefZr3erqph5fkW/4sUIDflFal9IlgCeCDlDehzmVCt0u3cR4EUQRCZi0jt65Nd+yIDKbE6FdFLIwn6AiFNvTErUlceOxYf370UL377WMwZbZqcpeLfxk7RfNcUSMWwPheBjj8U52AvArZoNQiqItUI4/i0SURVpKrRoaX2+YJhdPuCWiBV4KJAioCkLEULpGRFyiqQatNPCqedpW5T3fy6D2qNozWGKrWvv9ideoAo0vvWPKCnZtldvP7KmcebnG59lV+yEFA+CRh/At8vVo3UgU/45cijeTAFAB//UX9+ADgY2RB1yImqSMUIilKR2mcVCNudRgXHXRj53dZqpKST/1jOfYzpWQHuIuCrD0iKVI9uQCL+ZyHV0Ceqa5+0XXwfYtRINbfprph9zhItkBpfweeHHl8Q/mAYXzZ04Yn39+AXr22J/l6SQaqRKsnPQUWBS1tw3NvG5+buPj6PpKM+CpBMniApUlIgFQrpqX05TjvcaqZK3Ll1gFAgRRBE5mKZ2mdRI6UeYH3BcL+tTsVqmsOmGFa+AEBRFFQV5VjmfSvSpKeZPIg6LjFZx6iPEjVMgWCccedIn4UVao1Uq0mR0iYRtXlwldKOohyn9h5bun3oIUWKkImnSInUJ8VmVFpz1ZPUzv3cYALgvZjMtG433s4ERSpZRHrf9hVcYfvwEX7764/z5sEn/1g3rPjsWWDHW/z6xJOBsvH8euf+6C6cIpAaJQVSAF9QWXwHv56JgVR/aqTkxSE5nTQhRSpGah9gTO8zKFLqd1vUrDnzdOOHWIqUbG7x3Q3AjPN0taZ1J1cpFRtQPcP4uGiKlKLo94nPIUZqX8Oo09HMivFM8CRsa+pBW69QpPIhYoqOXr+2qNfhDSCYikBCqpEqL3BDURSMVYM3kd7X1cc/m8KcJNTdJJDnJ6E22RVZkQprC4c5TjspUgRBENoqmKdZ71tjmdqnT1L9LSyVe0glVSh7zkPY45yAW/0340CHNCkDevBnTjGREIFOIN5kJ4LKPotAijEtta/dbkrtMytSSjucdhsqC3mqYEuPX1ekKJAiAGOtkxXmZrwC8T0XQUBuGbcZl/qtWZJtihQAzDgfgMKb9z7zDa48jFvMT6yFCjLrYn65fTmw+V/8+sSlvJG3q4Af06ws0EMB4OBn/PrIucZA6rhbgcmn8usH12ee4cRAFSm5yW0yrn3RUjMjAinTd1ukjDvzjD2doiHXqIoUP9GmQ3zvS8calTAgduNm+XdkdwMFNVF3bQ4XYr7v97g7+C1sbuhCWw8PpCoL3ShR23a09wZwqJuPkzGg09tPJz8ZSZEqK+C/12ppDgEkRSp3EBQpNbXPZlO0ADIUZlp6f47DpgdSVCNFEMRhi5iMVLUFgHUgJZlB9Ne5L1p9VFzKJ+AP057AK+FjIwMpQUEl+gIh3P/GVqzfZ2xYKhSpYLzeJbEUqb5OLWhrsRkLrLVJRD2ZLVD6kMO8qCgQFug+rUCXFCkCgK4sRQ2k1O+UOZDKUwOp/eoJpVBeqqbHfr1sVKRGHAkc9U1+vekLvtBxxv1Gha5qGjBiFj8x97YBlVN5sKUo+mdjld7X9CVXStzFPBVw5BwepJaMBhbezD9Pu5v/7uNZqA820RQpf6xAKorKHs1YRyYpRaog0kglINXeaoFUjDnE0LfKrT8voAdSFVMiv9PRFCnA+DsqGR3dmAJAZ68fTD1139zQrWVSlOa5tJT09l4/DnXpSme/LdFlpECqvIgHkEXqXCkCtS5vehUpQ42UQ/88hXNfMMy0hUO3067tQ659BEEcvggVRjhf2d2WK3sOuw1O1b3H289AqlNz7Eu+UFa44B2MFkjlV+KZj/bhwbd34Lz/e99wlzjI++Ol9sVSpESgmVMCT9g4fs3+3F0Aj8LHVRRolhQpn9bUUbaXJQ5jEjWbMJ8cisf5VAfKctUkYcG3uWX43Cutny8bFSkAWPpDnmqn2HhKX+XkyH1mX8ovC6qBS57XTWPEZ2Pl3CdS9mpn8ZPqnGLg5k+A69/lJ+12Jw/SgMh6s6FGKFJjFgEVk4GvPcZvB73RG91Gq/scqNkEYAqkiqRFglYu14jXduZJbSuMi10GRHBnc+oBj0h761Dt7isnR7q0xgiOjIFUXfT9YFSXtjR2aTVSZflOlAlFyuNHU5cehKbEEl36jZYX8PlOLDqKlD69Rio9gZTs2icMpgDAYdd7SYn51O2waW1KSJEiCOLwRayCdR/ilxY9pAQ5joFZoGupfckqUgBGlvKJRVOkzOPMr8R+qUmuXMel1UjFS+2LpUh1HeSXRbURq2/y7TYbP4nI9zejooBP9FyRotQ+QiKe/blIuXKYTl4nnmxsMCrc5iafCnxrBTD5dP2+6pn69VhpT5lMUS1w7dv8b9LJ1vvMvQo4835urV4yWt+uKVIWgZRI96ucom/LLzcY26B4FL+U1fpMQChSU88Abl4LTD5Nvy+awuSLFkilIrWvTL9urpEK+qSU8Tz9+ypMQ6wQNW2yc9+oo437VEyJrIuNqUhJ9xWNjL4feM2TYHNDtxRImVL7pEAqJYqUlAlSWWgKpIQipdVIpWceMfaR0q8Lw4lgmGkZKTlOPbWPGvISBHH4IoKHbjVQcBVE3dU9wKa87VqNVD8UqRKhSAnXPtMkml+J6iJ9hVKe2ESNVNzUvliKlLCTLhqprb6JSU5ejWtR+ElFnk8PpFp6fGR/ThiRLaKtvpeif5H5pK9kNDDlDP22UF0EFZP06yOlNgLRmkxnA1VTgdrZ0e+3O7jphAicBGUxFCnx+YpgyYqiWn6punVmDELNEY1j5WNhtMBoQIrUAMwm5Od35gPlE/n1WP29tEBKer2ZXzPWNVVOjXRqTbRGKk4gJStSnd4A9rTy91CW79Sa0Eak9qWit5QUSFUUqql9asAkxqTXSA2e2QSgW6CHwmFJkbJrdVSU2kcQxOGLUKREKpG8umhC6yXV3xqpKM14E2Fkia5IhcMssmlwfiXkxL1dzfqJgz/R1D5RLxb0Gp2jAD2lpGycNmmIgl95Na4FaiDV16Sl9jVLrn2kSBEA9N8ZC+lpejKd9fxSVlgE86/Vr5eNM95XMkZviFo8GjjxHmDCUmD8iQMfc7Yhgsy23ZH3JRVIZZgiJVL7hHpms+u1RMJ8x4zckFdmoA15AWMg5Sowmk2Ilhp2Nw94K0QgZXKVNLyehSLlcANzr9BvV0yKbDKdaI2U+L9GIZpxRFm+G2X5Umpft6xIpTa1r1KtkSrOE4pUUL1MryJltD/Xwxe7XCOlLhy6HTa9Ropc+wiCOGyRuqkDiNmoMFdVpPpdIzWA1L6a4hzYFB60tHr8lopUr9TjapfUDT5hswmp2DdClRKpQKVjtUmj0C0UKf15m9QeUzl9TShVlbeWHp+2DylSBAB+YijUXyvDCaGAWgVS45YAk07lJgty+h7AT1ZFcFU8ClhyJ3DZi5EpgocDQpHqrI9ssq0FUjHqZQrVE26h1mcKIrVPKFKAfjyMFhgNKJAagGufZjShBgmaIpVAap85cFt4E/++T/0qz6QwB1KpUqTUeeqoUboroKLwDASRTdHc49Oc9IDUpPaF8nQ32MoSPi8XS2YT4TBDjz+9NVL5Uo2UW3LqFYpUMKTXSBnsz6lGiiCIwxazhWyMQEpYoPd39Um2P08Wp92mTSodvf6orn2CXc1SIJWo/bndqT+vWSUQgVTJGG3SEIqUHEgdYjyQcnubtDQQuXaLzCYIjVgW6CKQsjrRVxTgkr8D178TWXAPAPOu5XbeE05K3VizkfwK1TabGS3QQ0G95jFWIFXE2xlo+2YKZkUK0NPCoqXqRU3tS7Ei5S4ypvZpRhPq+MrV1NPWndFt5a1qpAA+V337PeAbf7W+X4lxum2okUpMkfrGfH0RI89ph92maMf0bYeMn2cqzCa2tPhxgu9+nBH+DcotAqkef1D7yNJXIyWZTRgUKd1sQsyzRrMJUqQIgjhckVUYIE4glZrUvuJ+1EgBuuVrV1+AOzTJE2l+JXr9em+S3S36RBdItCEvEL1OSlakRGqfOh45ta9BDaTymj5F3aG3ADCuoAFw2W2GAl7iMEd2NzOjpfbFdhiz5JjrgOtXA4VxeksNdxQFKLcwnOhu4CmVNmfs/ltCuehq0E/6GQP+cwfw8s08IEsGxqIrQ8k8R78UqRQEUrZEFCnJ/jzoBTzqd1soUmXjACjc0Kenyfr5rGqkrLA7jEpTLEVK7lsVI5BijGmB1JLJldp2j5rtUKqm9m1pNM4PqUjtW7u7DXvYCJSPmaEFLmKO6fQGtLQ+l8Nm6OuYSgxmE7IiZdfNJmTXPjcFUgRBHPYkkdqXM8DUPpF6V9BPVUaswnWpBbcGVcqc2melSMVL7QOsnfv6OvUC79Ix2qQhAjs5rWFLqA4hpsDpaUDt8mtxpKL3oCE1Kj3cd999mDdvHgoLC1FVVYVzzz0XW7dujfu4d955B3PnzkVOTg7Gjx+PRx55ZBBGKxHLAr1DDaRiKSZEfER6n9wLSjPyqI1tma022EbAox8POuuBj/8IrP8LsOY3yY1l1S+A+0YBe9+Pv280/D08CASMipQIpKL1koqa2peM/XmCqX2uAj3oEgsC4ljtcOvpqtHS+6xqpKIh7xOrRqrnkH7dnIUh4fGHEAzzoLk0z4Wx5cbMB5GubRbT2j0DT+1bu5fPMfPH6nXKQpHq7gtoAV5RmtQowGh/7o6iSFEfKYIgCBlnjnGlMYFAqr/250K5cdn7F1CI1blucyDlKgScuQalbG9rL0LqhOhL1P4csFak2lWjibwKwF0IXyB6at+2UA1O9/8CwRJepzJC0dO2qD4qPbzzzju46aab8OGHH2LFihUIBoM45ZRT4PFEKbwHsHv3bpxxxhk4/vjjsX79etx999249dZb8cILLwzewMUJ6P61wJ41+vZAH+BRV+utaqSIxBFOfrJLXCL1UQBXUcRJt0jva/hcv/+dXwCNGxMbRzjM9weA9x9K7DFWCDXK5jQuJInrQ5Hal1PClb2cYn6MVBT9uy0CKdkNVjhLHvzU2rEyWo2UFXIgZXZtlJFdK+WGziZEsOKy25DjtOFPV8zDqNJc/OQs3vC6LN8YTIrFvYEqUowxrN3N54qjpUBKuPOFGdDYyev80lUfBZgb8ka69gVDYW3hULY/T3eNFM2cBEFkNmFpNS3GyUXOAO3PhTIkGvsmi6ZICVclkS6Sz4t0ZUXKHwrjQLsXo8vz9D5SiaT2WSlSUlofoAeEYkITK3SMMfhDYWxjdQgVj4GjYzfKXX5ArXMnx7708PrrrxtuP/7446iqqsInn3yCxYsXWz7mkUcewejRo/Hb3/4WADBt2jSsW7cOv/71r/G1r30t3UPmiJPNTx7nf7d8yp3mxIm+Mx/ILR2csQxXhHPfJ49zhWnhTcmlTRaN5Ip010HeoLdhg35fOAhseA6oOSL+84gGwEDcGp2YyPVRckCgBVLpMJuIE0jZbMB1q/jnISzJ88qBnkZdWZX7/pVPBHa8CbxxL/DlK8A1bxjfS7QaKSvk9zXnsvj7x0HUOhXnOaEoCiZWFWDN9/VaQ3Prjmk1Rfh4T9uAzSbq27xo6vbBaVcwe3SJtl0YOviCYdS38SA5XfVRAJAXtY+U5NonFCnZ/pxc+wiCIFSipW9ALz7tb2qfpkg5+ndYLIxQpNR0lnyeyy4HUgBwsNOrBTdAgql9lorUHn5ZOobfpb5/MaGJ5w+FmZbyobj5CmylU59gSZEaHDo7uVFIWVl0K/8PPvgAp5xyimHbqaeeinXr1iEQsD4p8vl86OrqMvwNCHOrAXGy3Skc++pirp4TCSBc4gBg1X8Df78caFft0GNZnwtEep9oytuoBlLCLTFRRWrrq/r1aOpQPDrqgS/+ya/L9VFAbEWKsQH2kYqT2gfw4FBWT8V3W5imyOrZrEv04HP/x3pwKBBNha2MVCLGpvdywoij4u+fG/2YAOiKVHEUZ9nyfJch0Jkzhi90dPT6DU3gk2XtHq5GHTGyOKL+SahSwrQoXT2kAG6qIRA10YDcR8ra/tyfSLbHAKBAiiCIYUGF2hfpYEcCq5gWBDRFqn+HRZFK1612d9ecoAqqAEQqZc3dPgSl4Cah1D4rRUr0kFIVKb2PlFCkQurz6xOpLYebeJQ79YmeAqn0wxjDsmXLsGjRIsycOTPqfo2NjaiuNhoNVFdXIxgMoqWlxfIx9913H4qLi7W/uroB1i+ZV/hb1N46VB+VOkbOBWZdyu3inXnAzreAT5/i9yUSSGnOfWogJRSpWZfwy8aN0d3nZLb8R79uVROXCP+4Cnj31/y629Q4XSg+fot01qDPaLYAAA51ESociG+aEU+RskIEUkJdlZrNYsSRwA1r9EUrj+n3pilSCQRS4jkW35nYuGKZi0DPdojWokNRFLxww7H4xw0L8Yvzj8C3l3DFMxhmWq/A/rBPVZumjiiKuK/YFEilU5Fy2G2oLHSrDoX6/1vUSMlmEzlOu+7aR4oUQRAEjHnsFkyp5sHBtkP9c57yS24//cHg2gdIipQxta9cdVZq7vYZHPWSc+2T7M9NqX1iIhETnE9r+Ku/lqK6IZY69Nz5/ppsEIlz8803Y8OGDXj22Wfj7quY1B6xomzeLrjrrrvQ2dmp/dXX1w9ssKPmGW83b+GXsZrxEslhswPn/p7bxV/whDEYSCiQEs59B/gJv+gpdeSF3NygtzW+PXpPE9C8Wb/d30Bq/1r9usPUR08EKlaBlFVan6yGBuMsjGmBVBJKiEhbFUqeuV0FoB23I9z7kjGbuOyfwGm/AE74QWLjUhfdoiFadERTpADAZlNw9NgyfGP+aBTnObX+igMxnBBBmFX9kxZIdfRG3SeV/PmKeXj8ynmaQyEgK1Jhg/351JpCfG3OKMwbm94UZAqkCILIDkQ9QRQma4FUT7/SGIRi029FKkcoUurKn1YjxVP7vGogNVp1WmruMQZScRvyAnpxuaxIiRMl9aRKpDZoqX0ikJIUL5saSBXb9UBKbnZIpJ5bbrkFr7zyClauXIlRo2KfJNfU1KCxsdGwrampCQ6HA+Xl5ZaPcbvdKCoqMvwNiLHHAde8yU/wAaBZdRoU6sdAammISCafCtzwHjD5NJ6aZw5krRCpfW07daOJsvE8CKicwm+b0/saNwIPzNCVr64Dxvv7E0jJtUyFI4CjrzLeLxbB/BZBk9jmzNd7Lcm1d/HqpLTUvmQUKfEbUucJWZES5KtBjccUSCVjNjFqLrDg27GtzwFg4c388iv/L+ZuWmpfEr0ORW+pgRhO9KhzmpXaJOa9+rb0K1IAcMSoYiyWrN+BaPbndpwwpQr3X3iUoedWOqBAiiCIzOZrjwEVU4Dz/hhzt/GV+bApfLJp6vbF3NcKEXA4+6lIRbj2lXJnPFRxRyVRuzWmTA2kun2G4MafiEWrVY1Ut35iGwozLSDUzCZMroAuh02rkSq09WlPQ6l96YExhptvvhkvvvgi3n77bYwbNy7uYxYuXIgVK1YYtr3xxhs4+uij4XSmd8XXQN08nn4GcDvoUADwNPPbcVbPiX5QORm4+Dne2DWGDbbG2EX8cve7wLo/8+s1R6qXap2POZDa/G+gaz+w4e/8drcasItji1UD5niI53DkAMs2c0VMRgukrBQptT7KXaDv58yN7/Qn6E9qn7kWySqQKlBP1nuajduTMZtIlFP+C7j7IFA7K+ZuHXFqpKwQBhQDCqRURcrKkEhuygukX5GywqGaTYQMqX2DF95QIEUQRGZzxNeBmz8GqqbG3C3HacfYCj4hbm1MLr1PNn1w9VORinDtO+le7hY1/VwA0BryjpYDKYMilYhrn0mRCvTpPaQKawzPJyY4fyiMcJhJ9u42rdFxgaIHUuTalx5uuukmPP3003jmmWdQWFiIxsZGNDY2wuvVV9rvuusuXH755drtG264AXv37sWyZcuwefNm/PnPf8Zjjz2G22+/ffDfQNEorhaEA0Dbbj2Qyq+M/Tgi/VRMAiZ+BQADtvybbxP1USKgavzc+BiRxtemmlqIIEhd8IGvCwgmedItnqOwxtqARNRMWTXeFUYT7kI9oHHmxm/iKxCurv1J7RNYpvbFUaTiNeRNBkWxDuZMxDObsKIkzxjo9IduNZCyWmwzjyXdipQVWo1UiEmpfYOXqk6BFEEQw4b+1knJQUz/AymTIuVwA7WzAZsN4TDT+luNLucTZnO3z9DjKSmzCaFI9agnMHY3kFNi6Jchrwz6Q2HJTEPRVn7zoJ+kkCKVHh5++GF0dnbihBNOwIgRI7S/5557TtunoaEB+/bt026PGzcO//nPf7Bq1SrMmjULP/vZz/C///u/g2d9LmOzcaUEAFq2Ar1q8X1exeCPhYhk4Y369SlnAJNVt0ehSNV/bFSCtBTN/TxIEc1gKyfrTWOTTe8Tx6GCGuv7NUXKIpASNVIuSZFyJKNIDSS1T4zPIpASiqvHpEglUyOVYvoTSAmXvYE0pfUkoEgJCodEkZJd+0RD3sELb2jmJAhi2DC5uhCvbWpMOpCSlZz+2p9HuPZJ9EkBzhipRkoOngIhBsaYpZnAw6t2Yk+LB7+YWwgF0BWpbvUkSF0JFpOI3aYg16WvyPmCYV1xc9i0FeLcsB5IkdlEekikXu+JJ56I2LZkyRJ8+umnaRhRP6icyu3Pm7foLmb5FEhlBONPBEYv5K6Kp/1C3z5qHlBYyw0oXvs+8NXfAizMUzQF7XskNamWmzx4mnkgJRwBE0E+DlmhKuCWxhJim9gH4GqUCFTiKVIiOHPmxt5PJs9kPuC0qpGKltqnqvjJBG4pollNWa8oSMAxUEVvStv/QCpmjZQpkEqn/Xk0hCLlC4a0Rvf9NY3qDxRIEQQxbJhSwyfjrYeS64UiBzT9b8grXPsibWblHlJ1pTyQau3xRfS8CoaZ5ev/fuUO9PiC+M6MctQCuiIl6qPUonO9GaENTrsCReHux75gSK8Bs9u0NBJ3WF/tLRiClAwiS6iYxC8bPtcVAkrtywwUBbjyVa7MOCWVxJUHnP8H4MmzgfV/4c15p51ttBpv3akrUoXVXKkRgVQyaMehaIpUFNe+hs+BNb/l192FulW7IbWvDzHxdvBLc++qWCSiSInvd0Rqn5r2OASKlAikqgr7EUj1s78iELtGyhw4leUPfoApzCZ6fPp7NPe7SieU2kcQxLBhcjVXWrYf6kY4kZojFRFk2BTeq6I/iNW6Hl9QWxUTCMe+HKcNFQUuKAoQZsChTuNJQrT0PjE+j6KekGiKlFSbABiaESqKok2i/mBYM6Fw2W2AiweczpAeSJFrHxGVEt7sGQfUpryOnIRqOohBwmY3BlGCcYuB0+7jikvID2z6h/H+tl16EFRQo6drJp3aF0eRskrtYwx45iLgkGqGEVEjlWBqn2gFkVuS+HgjAikrswk1tc9sf55MQ94U09TFX7syiUBKZFgMpCmtyLKwWmyTU/tOmFKJ2XUl/X6d/mJXzSZEHTLQ/xT9/kCBFEEQw4Yx5flw2W3o9YdwIInGvP4BNuMFjGkP5uaHQnnKczngsNu0XlLmMUbrJSWs0Xvt6glJoJevjJoUqT5NkeKrcWIyuf35z/Hg27yhqpza5wjoK8RkNkFERQRSXWoD0/xKa1MBIvNY8G3grv26mYRM2y4pLa9a79/UX0UqWo2UldlE02b+OJuT15LOuljfz5knKVLxAqkOfpmMIuUqMKbmxUrtMzfkFS6BgxxIeXxBeNQFuaqixNUwMRf0tyktY3oz30KLOWL+2DIcNaoYVx83Do9efjRstsE/LogaKY+qSLnstkEdBwVSBEEMG5x2G8ZX8kkxXp3Uc2v34d8beA8mzdFuAHnVboddU4C6TA5JIrVPNEesLOQToegGLwhY9JIKhxmEwOVR8gGbOpl5miVFqhqArkgJ61e3+nof7mrDu9v5CQFP7eMnLEpAP7EhswkiKiV1xttqfVRXXwBr97T1q28bMYjYbMCcK/TbVTP4ZesOPXWtoEZXapK1QI9XI6Uq4AZFas8afjl2EXc3HX+Crgw5cmLXVcl4+6FIKYrRAj2W2UTAAzzxVWD1r/htrUZqcAMpkdaX57Integ10BopbyCkzT9WilRpvgsv37wIPzpr+oAWIgeCXQukeMA3mEYTAAVSBEEMM/Q6qegTcLvHj++/sBE3P7MeDZ1eY9rbAIhw7lMRKQfCAEKkZkQEUhbpF7KjYF+QGXP3hVuWqJEKGhUpq4Jbp13RVn6VkB8l6vnAUBQJE1lCfpVxBV9NAbvnpU244JEP8M625igPJDKGIy/U63qmnM4v969Va6YUHjiIQOrD3wPPfIM7/iVCwjVSPXod1J7V/FL0wgJ4q4iq6dx9UDTljRXUhUOATw2kEum7JSOn91nZn7sKuHsgAOx5F3j7v/j14NAoUk39qI8C9MVB2dE1GYQaZVP0hcBMQyhSPeo8O5jW5wAFUgRBDDMmCwv0GL2k5NS7l9YfSIkiBUR37uvTUvvUQEp1XUoktS8oqVR9gbAxdz9ajZS6Imf1flwOvUYKAO49uQ7XHj8OY8stTiYIAuCKRrGkSuVXIhRmWLWVqxkNnXEMAYihJ68MOP2XwFEXA/Ou4duEupJfwfswieCirxPY9hrw2CnAusf15/jin8DK/wZ2vAWI41KgT0+vi+rap6bssTB34QuHgT3v8W3jFuv7TVwK3PgBMGqunmYo+uRZIeqjgORS+wD9+QHrGilFiTRU6escshqppm7+ulWFyZlciKAioYbvFgjHvny3w9JRNhMQilSvUKQG0bEPINc+giCGGSKQiuXcJ6c5vPDJfhwzjk+qA01NiObc16uZTRgVqQPtxvx/q9Q+gyIVCOmNInuaYrr28cvIlTmn3QbYHXx1OtiHr88sBkrHJP4micOTkjqgbSe/nl+BLY1dmvLa35M0YpCZewX/YwwoGgl0HeDbRW2TWaUJ9AJrfgMcfRUPIl64Rnf9O+0XvP7K1MvOErkGyd8DtO8GvG38NWpnWz9GKFLeGIqUCOCceck3yI0XSAF6PZSg88CQ1Ug1dXFFqrIoudcVi2r9Te2LVR+VKWg1Un5javtgQYoUQRDDCtGUd2dzD4JRnIrkNIedzR6s3cNXPQesSOVYK1IikBKKVEUBn/TNAZdlal9IDqTCQAGvh0LHXn1FVlOk4qf2aemLsZpkEoQZgyJVgY926Se4/U0bIoYIRQEWSI18RU8wOT3urN/xesyOvUDbbqBlh9E6fe1jPCCTVfFoioXNpgdT/h6gYQO/PnIuV8KsyE1CkUpWjQLip/YBepAo6NwvKVKDa3/e39S+gdZICUUqk9tjCKddrUaKUvsIgiD6z6jSXOQ67fAHw9jbZu34ZJ5UPtzFXaoGqkgVRamREql9Isc8Wj2SHDRp2ySVyhsIAQVqukmjahvszAPcRQCM9udAjNQ+wNpJiyCiUSKplvmV+Gi37uxGilQWcvRV+nVhXz7iSK4s1c4BjrgAGDWfb9+1Cmjdru4ziwdFrduB+o94uh8AVE2L/Xry8UYoYcV10fdPpEZK9JBKxmhCIAIpRw63j7fi5J8ab3fW6zVSg2w2IVL7krE+ByT7834udnTH6CGVKQhFSixYktkEQRDEALDZFK2fVLQ6KbMVbKfqsjdQRUpYoEd17VMVKRFwmbHq9WFUpKTUvv1r+WVRrbYSrClSwrXP0mxCKFLCSSuOKxZBAAbnvnBuBT7eLStSFEhlHa58XjMFAAtv4pdFtcCyzcBV/+HHlPEn8O27VgItaiBVOxuYcR6//t7vgE+f4tfnXxvn9SQFXKhYRSOi76+l9sVSpDr4ZbJGE4AeSEVTowDg2FuBO3YB86/jtw2K1NC49vW3RmrgilTmmhFFuPYNco0UBVIEQQw7Jml1UlECKdPqnAh8XPaBFdNqgZQptc9rSu0ripImEbCY7ORAyhcI6WYTotdLxRTpfmNqn9XkSYoU0S8k9aDen4f2Xv07TopUlnLM9TxQmHWJvi2/XO/hJAKp3auB5i38esVkYM7l/PrW/3B78OqZwISlsV9LPt6YajstScRsQihS/UntE6mDsRpL22z88ygexW937gdCPKAZqhqpfqf29bOPVDbVSJlrkQcLCqQIghh2iDqp7VEMJ8wnfqJWaaCpfdVqo8SDJhczb6KpfeE4rn1BybVPUDlZu2pO7WtRVzFlnFQjRfSHktHa1XXNxhMVUqSymPzy6LVNI+fytGFvO3fqA4CKScDoY4DTfwW4VSXo+GXxGzTLx5su3r8PRbXR9xeKVF+H7hBoRihS/UntEynSalp0TORAKjhEgZRw7UvWbCJF9uf57sy0PgcAu42/xx5y7SMIgkgNk+P0kjKf+HWlKLVvTDlf3dzb6jFs1/tI8UNuUql9UnDl9Yd0swmBrEip70usyB3qirSl1lQ3UqSIZCiqBYpHA+EAVjXw71eey45ef4gCqeGK3QFMPhXY+DwQVFs1lE/kl8dcBxx5AdBRz2ur4mFI7YvTdwrQAykW5r2ixG2ZgShSYxYBc6+Mr6QBuhrbWa8HUoNYI+UPhjUFONnUPq1GKorxUjx6tBqpzE3tc5gySchsgiAIYoAIRWp3i8dyJc584iduD1SRGqP2Ytrb2gvG5ACIP7+W2pfbv9Q+XiNl6m0iKVLC1EKsyAk7WBktWNRObKhGikgAmx248X2wGz/EB7u7AAALxvM6E3LtG8bMOF+/bncblEnkliYWRAH6wk1fp25uURhDkXK4dae/aIYTA1GkHC7uTDj97Pj7aopUPQCmj2+QaO7hwZvTrqAkycbpWpp3f1P7ssC1T9RICcj+nCAIYoBUF7lRlONAKMywq9kTcX+0E7+BKlKjy3gg1d0XNNSQeAOqIqUqRdEckBJK7cstBWzSZFo+Sbuq25/z9zF7dAkAoFiafLVg0a2aTfh6+MruyzcBPc3x3iJxGHDH85/j5AfewYb9HcY73IXY3eNAS48PLocN89X+a4nUSIXCDHe9uBGX/OlDXP3EWtz010/x0a7WuI8jhpiJS/X0t/IJ0R3u4iFqkdp2c5VJsUemKZvR6qQ6rO/X7M/7YTaRDAXV3ApeZhADqf2q+2xtSS5stuTqeA+nPlICUqQIgiAGiKIoWmPebRbpfdFW51wDVKRynHbUqHVScnqf2bXPYbdZBlOWfaTMDXkVRT8BKawFcvQcf81sQg3YHrp4Dm45aSJe+Pax2j7aswlFytfNg6j1TwN/vyyJd0sMV/a29mJHUw/2tEa2D3hvJw9+ZtWVaOYqiZykbdjfgWc/3of3drTi7S1NeHVjA/77P5tTO3Ai9TjcwNQz+XWR1tcfhEuosFEvqI4flAmlKZrhxEBS+5LBZo+s5xrE1L76dp5WWVcaw2EwCmJO668hTHcWKlLk2kcQBJECRJ2UVSAl8sXNKQADDaQAPb1vn9TDyuzaB1g791lNdhGpfYAeSElpfUCk2cTIklzcdsoUTKjUnak0a3aRarPuMWDLvwG7Czjtvrjvjxj+1KnKar2pD9s/1x/Az/79JQBg0cQKbeVXfG/r23px1oNr8MxH+yKes83D+++MKc/DvWfynkObG7ujNs0mMojFdwATTwYW3tz/5xDHG2GjHsv6XKBZoKchtS9Z5D5qNid39BskxO9wVGlu0o/NcQ7UbILPF9nQR0pAfaQIgiBSgKiT2mrRS0ooN8WmfHOnY2D254AeSO1p0U9CParZhCGQssh1j5vaJwIp0UtKMpoAIlP7BIrkqCUcCjVFSnDKz3mPGOKwp66Mn7DtkxSpHl8Qd76wAf5gGCdNrcLVi8ZFOIIt/6IRGw904u6XNmLN9hbDc4pU1zHl+bj6uHEocDvgD4axqyUy9ZbIMMonAJe+wN36+os43iRifS4QFuVDrUgBQM0R+nVHcoYPA2W/UKTKklekBtpHyuPjv+1MDqTspqA2h1L7CIIgBs6MWp7ytnZPe0TKnDjxMwdSLvvAD8Cac1+bfoIoCnYLJbc+K+c+y9Q+gyKl3j9yLr8cd7xhXz2Qiv4+NEVq7PHcvrhiCnDa/8RvqEkcNohaP1lV3bi/E/5gGLXFOfjT5UejwO3QHcHU750W6AP4zt/Wa26VANDRyxWpklwnbDYF00bwhY4vDnam980QmYG5X1NCgZSqSJnNJlp2AM9fBbTvVvcrGfDw4jJiln59kK3P69v7r0jpix0DdO3L4NQ+UqQIgiDSwOzRpagocKPTG8B7O4yr42JSKcl1GbanUpHaa1jNj1zVs3Lus0zts1KkltwJfO9LYNpZhn211L4YE0lFgXoSUDkZ+MFe4KaPgAU3xO8DQxw2iEBKnMAB0Iwnjqor0QrezSdpop4CAFo9fmzYrwdJnWoAX5rHFxCmj+ALHV8e7ErHWyAyDWFuI0gktS9aU961jwJfvKjfTrfZBADUztKvm40n0owwm+iPIiUWO0Jh1q802m61uXy+K3MDqcgaKVKkCIIgBozdpuD0mbxPyasbGgz3aYpUnlEVcqeiRqpM9JKSA6nIPHNZnRJ57JapfZIiJRr7QlGA4pER+2pmExbFtn/91jE484gR+MHpU/WNikIBFBGBOGE72OHVVFIRFB0xSj9pNStSXVIgBQCbDuiBVLuqSBXn8cWL6api/GUDBVKHBeZU4ljW5wKtRsoUSLXvMd4ejNQ+2WijpzH9r6fiD4bRoPYD7I/ZhBxUJNtLijGGDjUltyQve/pIkf05QRBEijjjCL7q+caXhwxpcyLgMPfkGGgfKUBPv2jp8SEQCiMQCmspeYVSeoRsNiECLMs+UmGL1L4oxErtO25iBX5/yRxUFg5uWgqRfVQWuOF22BBmPJgCgM+FIjWqRNvPXH8hVq+F6vSFpDZpJ2S5QpEq1vaRe64RwxS3FEg5coAxx0bfVxDNbMIjZRhMORNwJp/yljT9tX0fIA2dXjDGg4OKAlf8B5iQW3ok20vK4w9p809pXvKvPVg4TDVSpEgRBEGkiPnjylCe70KnN2BIMxIrcxE1UimwTZWDpe6+IDw+fZU+35Dap792npo2EbA0m9C3+QKxnZcSSe0jiHjYbIrk3OdFa49PK3ifOVJXpNwmRUqk9i2cwBv1yoqUltqXz7/3k6oLYLcp6OgNoKGzL51vh8gESsYAUADFBlz+ClA6Ju5DNLMJc41U1wF+ee3bwDefGTxVfSD27/2kvo3/7kaV5hlMgxLFblO0GqJkFal21WnT7bBprTsyEbI/JwiCSBN2m6IpRGJSAGK49qVAkXLYbchXJ50ub0A7uXQ7bIbnl80mhJuftdmE3JA3XiAV32yCIBKhTv3d7GvrxQY1IBpfkW/4zZhd+4QitXA8D6R2NvdohhPtmtkEX9nOcdoxvoKnwW5v6knreyEygNIxwA3vArdtS9z9r6SOX7buBIRqGQoA3WpqXdGo1I8zFtPPGdzXg16nWNcPowmB9jtNUpHKhrQ+INJsoj+1ZAOBAimCIIY1QvnpVuuUAP3EzzxBpEKRMrxmX1DvDG9yPZLNJhJN7QuEYhcMi35Vg70iRww/ZOe+Lw5E1kcBkTVSYtFgQmUBKgvdCDNgcwNvPyBOyuS6xAmVPN1rBwVShwc1RwAFlYnvXzGF97fzdep1Ud0NABjv5ZSfxHOlgiU/ABZ9D7j6jUF7yf2aY1//gwPRoD3ZXlJi8SOT0/oAwC7VSOW57JhaUxhj79RDsy1BEMMaofx0efUUO6HcmHs5TVNCvQAAXcBJREFUpaIhL6AHTV19Ad0+1tSHQ1akRMpfPLMJAOiLYWPb68/8nh9EdiA35d12iAc6U2uKDPtE1kjpNv8zVTMJYW/e2Svqp/STsolVPJDa2UyBFGGBwwVUquY4jRv5Zaea1ldUO6hNcbXxnPyTgfXTShLRx2kgqlB/LdA7vNmnSB05qhiOFM3jiTKkgdR9992HefPmobCwEFVVVTj33HOxdevWiP02b96Ms88+G8XFxSgsLMSCBQuwb5/eOd3n8+GWW25BRUUF8vPzcfbZZ2P//v2D+VYIgshQtKDGKytSurud7PCTCvtzQA7eAlH7cMhBXL6bn5Ba5bCHwsZtfVHqpBhjeuNfN6X2EQNjnJp2t+1Qt5Z6N6nK6LwmFKlgmCEUZlpqX2GOA1PUoGtnUw8CoTC61d+BbPAyoSpf2yfVeP0hHOqi2qusZ8SR/LJxA78U9VHFg5zWN0SIOWEgaeeu/gZS2aJISYHUnNGlg/76QxpIvfPOO7jpppvw4YcfYsWKFQgGgzjllFPg8eiNLHfu3IlFixZh6tSpWLVqFT7//HP88Ic/RE6O3ln6u9/9Ll566SX87W9/w5o1a9DT04OvfvWrCIWSkzEJghh+iIClq08PpPxSLVGuUw86UtGQV37N7r6g1ow3piLlip7aFzArUlECKW8gpJURZHLPDyI7OEI1ldjR3KMFOpOqjYGUnELqDYTgURXRwhwHyvP5yVenN6AZTSiKcQFBpPbtbNbn/FTw6b52HP/LlVjyq5XU8DfbqTmKXzaogVSnukheFNn+YTgi5oSBpJ2baxkTpd2TLYqU/tkMRSA1pLPt66+/brj9+OOPo6qqCp988gkWL14MALjnnntwxhln4Je//KW23/jx47XrnZ2deOyxx/CXv/wFJ598MgDg6aefRl1dHd58802ceuqpg/BOCILIVITNuNwsVHO3c9iQ67SjHXzCcNpTo0jJqX0hNbopcBsnI7lGKlZqXyhsDqSsVxVFCoiiwBAcEkR/qCrKQU1RDhq7+uAPheF22CLqNOSTu7Ye3cylMMep1UJ1eANafVRRjtOwejxeDaRaenzo7A1E9HXrD3tbPfjGHz/UFkt+tXwrnrhq/oCflxgiNEVKTe3TFKnDI5BKhSJlTsGVYYzh9uc3oKrIje+fNtVwn2YQk+GKVI9U/zx7dMmgv35G1Uh1dvKVo7IybnkZDofx6quvYvLkyTj11FNRVVWFY445Bv/85z+1x3zyyScIBAI45ZRTtG21tbWYOXMm3n//fcvX8fl86OrqMvwRBDE8sVKktNQ+pw05kq1ryswm5NQ+TZEyBjdyQ17NRtoitS+QYGqfcEfLc9phs1GTXWLgyOYSE6sKImyGHTYFYlOLxweAf5ddDpvm7tfpDWgpQuaV7QK3AzVFPLtkZ0tq0vve29EKfzCM8ZX5cNgUrNrajI92tabkuYkhoHoGAAXoPsj7R2k1UodHICWcXF0DWOQzm8LIfLqvAy98uh8Pr9oZcZ/WsiDDFalJVdxcwqYA5QWD3ycxYwIpxhiWLVuGRYsWYebMmQCApqYm9PT04Be/+AVOO+00vPHGGzjvvPNw/vnn45133gEANDY2wuVyobTUKOdVV1ejsdG6+/R9992H4uJi7a+uri69b44giCFDr5GSFKmAntqX45BT+1Ll2icUqaBWG2KukZJd/MSKn6VrX4KpfUKRyiOjCSJFHCn1jDLXRwGAoijaSVpLNw+kxAKBqIXq7A1ENOOV0QwnUlQnJeyiF02swAVH8zqaf3xCNdNZi7sQKJ/Ar+9fB3Sp/8vDpUYqyI//A1OkotdIiYbbACIcYc0tCzKVurI8vPad4/HR3ScPyetnzIx78803Y8OGDVizZo22LayuxJ5zzjn43ve+BwCYNWsW3n//fTzyyCNYsmRJ1OdjjEVtXnbXXXdh2bJl2u2uri4KpghimCLUoe6+SPtzl6nRYMoVqb4AbOpxyJza57Tb8PwNC+EPhnFAbXZq6dqXYGqfUKTyM7hxIpFdHFlXol2fVG1tKex22NEXCKNV7dMmUmlFml6nNyC5f0WekE2ozMeaHS0pq5MSjYPrSvNQkOPAsx/Xo703EOdRREYz9nigdQew822go55vO8wUqZQEUhaLcC09Pu26Lxg2ON61Z0kfKQCYNqIo/k5pIiMUqVtuuQWvvPIKVq5ciVGj9FWGiooKOBwOTJ8+3bD/tGnTNNe+mpoa+P1+tLe3G/ZpampCdXW15eu53W4UFRUZ/giCGJ7oqX26IuWXXPvkeqJUNOQF9FX5Lm9Qy98295ECgHljy3DcxArNLTBeQ14ghiKlFvrnkdEEkSKOGGlM7bMiUpFSA6lcuUbKOrUPACaqAdqWxtSk2Ne3ib47uVrtoccXjPUQItOZcBK/XP8XwNsGuAqA8olDO6ZBwp8Ss4noNVLmQEpGc+3Lz2xFaqgZ0kCKMYabb74ZL774It5++22MGzfOcL/L5cK8efMiLNG3bduGMWPGAADmzp0Lp9OJFStWaPc3NDRg06ZNOPbYY9P/JgiCyGhi25/bkeNMgyKVKwwuoveRkhGuQ1aBlNlswhs1tU9VpMj6nEgRZfkuzBldgnyXHbMldUpGrHYLRUpP7eMnX6Ew01Qiq9S+GVq/qeQCqVCY4Y7nP8d//ftLw3ZNkSrL0+oSRVsAIksZvwRQ7ECAB8mYeT7g6n+D2mwiFYpUrBqphk69RYDZ1S9WSi6hM6RLlzfddBOeeeYZvPzyyygsLNRqmoqLi5GbmwsAuOOOO3DRRRdh8eLFOPHEE/H666/jX//6F1atWqXte8011+C2225DeXk5ysrKcPvtt+OII47QXPwIgjh8kdPsGOP9bkS6XEQfqVTVSOXoKpjoKh8rkBKva7Y6t9oWvUZKBFKkSBGp44mr56PPH0JVUY7l/eIkrbnHqEjlOG1w2W3wh8LY28rT9ootUvum1RTBpgDN3T40dfVFfR0z725vxvNq7dOyUybjZ//+EhMqC7QV9lGluVqD6p4+CqSympxiYNQ8oP5Dfnv2ZUM7nkFEM5sYQI/DRGuk5EArFGaaQVOmu/YNNUM64z788MMAgBNOOMGw/fHHH8eVV14JADjvvPPwyCOP4L777sOtt96KKVOm4IUXXsCiRYu0/X/zm9/A4XDgwgsvhNfrxdKlS/HEE0/AnqKeMARBZC8itS8QYvAFwwgzPTBxO42pfe4UKVKyCparBmpmswkZV4zUvoiGvFGaKoqTRuohRaSSohynoeeZGZE21GoKpBRFQXGeE83dPuxq4YFUmUVqX67LjolVBdh2qAebDnbipAQDqZVbmrTrK748hGc/rtduF7odKM51aupsD6X2ZT8TTuKBVMVkHlQdJojgZ0A1Us7ofaQOSIGUHGh1egNaX8JsqJEaSoZ0xmUscvXViquvvhpXX3111PtzcnLw4IMP4sEHH0zV0AiCGCbku+ywKUCY8cBGnpBcdqPZRMoUqVzd4EKczCWW2mehSJlS+6wKhgE9fSmPzCaIQUSrkeoxpvYBvE6quduHva08JWtESa7lc8ysLeaB1IEunDTVurZZJhxmWP7FIe12c7fPcP+osjwoioJC1eCFAqlhwPxrgbZdwJzLebO8wwTd/nwAqX2qqGBO7QuFGRo6pNQ+ychIOPYVuh0pmxeHK/TpEAQxrFEURTd/6Atoq252mwKH3ahIpdq1r9sX1GzXE0vts1CkTMGV1x+lj5Rqf06pfcRgotVImRQpILK2YmSUQGqGamrx1pYm/H1tPTrjuOytr+9AY5d+AijqogSjSvnriEWMXn8IYQtHTAB49uN9uOrxjzXXSyJDySsDzv8DMPa4oR7JoCIW15wDMZtwWqf2NXf7DK6wsmIl6qNS0SR7uEOBFEEQwx65r5Ps2AfAYDbhHEDTQxlxMskYtBO+/qb2RTTktUjPAPRVd1KkiMFE/I6EVbJZkZIRAY4Z4Q74eX0H7nxhA875/RpsP9Qd9TVXbW0y3N6v9o4S1JVyIwJ5USGa4cSj7+7Cyq3N+Hh3W9TXI4ihIhWKlF4jZZw7DnQYfzdyoKU59lF9VFwokCIIYtijmT94A9pkYhVIpUqRynHaI56rMIHUPnPzXXmbeL64faRIkSIGEXNdoaxIyavZeS57RGAlmF5bBIeNLybYbQr2tPbi5mfWR33NTQc6DbejKVJuh01bHImW3temug32N/3vLx/uxe9X7ujXYwkiHv5U1EgJ+3PT3HFASuuTXwvgNVJA5GIIEQnNuARBDHs084e+ICok63MAmhkEADhtqVtbKspxGnp0xFKkxCTpj2F/Xuh2oDXoj9tHihryEoOJecGgSA6kpJOwkSW5UKLUthS4HfjtN2ah0xvAMePKcPIDq7GjuQeMMcvHfNnArdIrClxo6fFrvaMEs0aXAOBpvfluBzp6A5a9pIKhsJbC1B9nv75ACD955QuEwgwXzatDRYE76ecgiFj4Nfvz/mdLaPbnpvnlgGkBQlasPAm07SA49AkRBDHs0WqW+nRFSkwuwmzCYVNgs6WuiLkox6EFUjYFhlosMzFT+9RtBTkOtHr8UftI9YrUPpr4iEFELEgIoqX21UapjxJ89chaAPoJXCjM4A2EIhpMt/T4cKjLB0UB5o8rw382NmqLCDcsmYCzjhqBGbV6I+F8Fw+kui0CpXapFqs/ilRjZ5+20NHu8VMgRaQc3f48Bal9JkVKXugDjKl9WoN36ksYF0rtIwhi2CNc9Lq8QW0yMaf2pSqtT1AonUQWuB1RV+MB3VXJPNEBuiIlbM2t9gFkRYoCKWLwMNduVBfpwYRsNjEySn2UmTzVZROwVom+VBv3jivPR02R8TlHluQYgihAV6M9vsgFCJHWB8Ay0IqH3INH9NwhiFQizCbSUSMVcVuaW0iRShwKpAiCGPbITXl96gqfcDISgVSqLV6dkrpVURh7pVqs3HsDoQiLWmF/LlIDo6X2iRopWkEkBhO30/i7kZUnuUYqmmOfGUVRtJO3LqtASk3rm1ZbpJnICIos6jlEzaCV4tTq0Vfk+6NIyT14hDsnQaSKUJhpC2kDmZ+ipfaZ622NqX2qIkULc3GhQIogiGGP3CBXV6REjVR6FKlqqbHoPWdMizs+IVh1eP2G+0RDXmFWEc21T0x8pEgRg4m8Ul6a5zSceJXk6o5fiQZSgJ4eaA5u+gIhbNzPjSZm1BZFNAq2KowviBFItXt0FcmqhioeB6VifVGcTxCpQk71HpD9uTrXNXT0GVoLmO3Q5duaeRHV3MaFZlyCIIY9WmpfXzDCtU/USA0kdcKKyxaOgS8Ywk0nTsTs0aUx97XZFBTnOtHRG0BnbwBVhXoQJlI7hCIVrY+Uh+zPiSFAVqTMdVBFSdRIyYiFj24pXW7j/k6c//B72u9h+ogirQmw1esJRCBlFSi1SYpUdxKB1H3/2Yw1O1owpjxP20apfUSqkRWkgcxPYyvyYFOAXS0enPG/7+LftyxCab4rIrtBDqTEwgO5wMaHFCmCIIY9FQV8ZfxQV582WQgFavqIIkwbUYSzjqpN6WsuGF+OP10xL24QJRD1JB2mlW2tRkooUlHtz/mkSDntxGAi6vuASNWpJC/5GilAUpGk1L61e9q0IKowx4FZdSUGh0DAWpESTXmtU/v0QCwZ174/rN6FLw524T8bG7VtXd4AVm9rxuf1HQk/D0HEIiAFNgNx7ZtaU4Tnrl+IEcU5ONDhxetf8O+tmAvF782oSIkG77QwFw8KpAiCGPaMUht0Hmj3apOFUKTy3Q689p3j8YPTpw7Z+ACgWG182NFrDKSCofipfYwxreEo1UgRg0ksRaqy0A2nndc8VcepE5TRFSk9uBELDIsnV2LV7SegJM8VoUBZp/ZZpwkCRrOJ/vaREuxq9uCqJ9bimifXDuh5CEIgW5/HMitKhHljy/DN+aMBACu38IbWQpESvxu5RooUqcShQIogiGFPnboa3tDp1VJ8zLbNQ42mSPUa05W01D53dNe+vkAYTO3lSzVSxGAipxyNMqlORTlOPHbFPDxx1Tw4kkhNKhDtCqTgplP9XRw1qhjlqs24uUbKfBsACtSFBevUvuQVqWhmL182dCEUZmjp8Ue4oRFEfwgEB240IXPS1CoAwJodLfAFQ9qioli4kOcWvUaK5pN40CdEEMSwp7LQDbfDBl8wjL2tvHmnO8XmEgNFpEGZi9ZDJtc+qz5SQo0CYverIohUIytSVoYSiydXJv2cVjVSoueTrDrJrn25TrulYYz43VgFSv1RpKLVQu1q8WjXO70BVBXS75AYGLoilZq5avqIIlQWutHc7cPa3e3wqXNJkaZIyfbnIrWPwoR4ZNaZBEEQRBpQFEWr0djZ1AMg0rZ5qNEVKeOJWkB17dNrpCwCKcloIpVNhQkiHrIilYyhRCwKLWqkRGpfSZ7uBCin9lml9QH67+bjPW244S+fYEdTt3ZfvwKpKO58ctuCaPtYwYSUTBAmUtGMV8ZmU3CCurCxcmuTFjgJJddof07mRYmSWWcSBEEQaULUSW09xE+kcjIstU+rkYqwP1cL7KVAynzyRT0/iKHCJtVuJGMoEQurGimR2ic3+S1w6W0DogVSIiV2fzsvsv/7uv3afa2mQCqRoKYzgX5RiVqh9/qDOOn+d3Db3z9PaH/i8EIE56l0lD2yrgQAsK+tN6JGym9hNkHmRfGhQIogiMMCUb8hTnJmjCwayuFEUJpnrUgFNacyfn+Y6XVTApHPXkBGE8Qg0y7V9JXnu2LsmThWvZ90RUoPmGw2vXmvuTmv+bkEookuYwztUiAVCrOojpgy5tQ+q3TGRAOpHU092N3iwRtfNMbfmTjsCEhmE6lC9IXy+vUaKfHbEbfJvCg5KJAiCOKwwFwIf8y48iEaiTUl0QIpLbVPn9DMzn0ePylSxNBgl1JJB+osJhCLBnLQIn4XciAF6GlJ8VL7BAfVQKqrL4hg2Lgg0e2LHwCJtL1pI4pwzaJxuOuMSLfPRAMpoSR3+4KG5qsEAaS+RgrQU/V6/UEL1z7+et5ASDMvIkUqPvQJEQRxWCBS+wCgriw3ZfUcqaIk1zq1TyhSeWoaE2NAnz9kcCjrpXx2Yoi4aF4d3t/ZilOmV6fsOTWDCPV7HQozLagqzjWqXkW5Thzo8Fo24wUiTwQbOvoA6PVReS477DYF3X1B9PQFUVUYe2wikBpTlocffnU6mrr6Ivbp7E0skPIGJMWtN4DKJCziieGPyDxIVY0UAOSqi229kiKlBVJqYCV+d4qSeSnwmQgFUgRBHBbIilSmqVEAUBxVkeKTqcOuINdpR68/FJGCJBSqXAqkiEEmz+XAo5cfndLnNNdIdfcFtBVys/IkmvJaWZ8DkYFUU3cfgqEw2jw+AEBZvgvhMEN3X1BTiGLRpY5JpENZBXCJ1FEBMLxeR6+fAinCgKhZSoci1d0X1OpvdbMJ/nq9oubWSeZFiUCpfQRBHBYYA6myIRyJNaKI3ryaLRryOmwKclRrc3Nqn9cvmgxTIJWJrF69GmeddRZqa2uhKAr++c9/xtx/1apVUBQl4m/Lli2DM+AhplA00VWDFrG4kO+KtDgXgUyiqX1hBhzq9mFzAzedGVOep+1jTu3zBUP44mCnwYRCKFLi5DPHwnY9GbMJQXuCKhZx+KC59qUwkBLtMeTaRrP9OTXjTQ4KpAiCOCyoLHCjosAFh03BsRMrhno4EQhbZ3O9hK5I2ZCjnrCZLdDFbVKkMhOPx4OjjjoKDz30UFKP27p1KxoaGrS/SZMmpWmEmYW5j5SV9blgfGW+4TLac8kc7PDi033tAIA5o0uj9pq668WNOPN/1+Cl9Qe0bSJIMvSzMqlh0XpNmRHOaIDxxJYgAMlswpE6VUivkdK/e+I34lcX6MR9FEglBn1KBEEcFiiKgqeuPgYef9DSaWuoKZJO+Lq8AZQX8DQfLZCSFCmv3xRIqRNgToY1GSY4p59+Ok4//fSkH1dVVYWSkpLUDyjDEYGNxx9CKMzQIazP8yJVp++dPBmnzajBUaNKLJ/L7bBh/tgydPUFkO924JO97TjY4cX6fR0AeCD1WT2/bu4l9eKnPID64+pdOH/OKAB6kFRkagzc0uPTbieuSBlT+whCJh3252ZDIrfDps0rQpESjn355NiXEDTrEgRx2DC9tgjzxmZeWh/AFSexMihW4BljWh67w6bAraX2mWqk1BMyMSESw4PZs2djxIgRWLp0KVauXBlzX5/Ph66uLsNftiLXNXn8waiOfQD/zs8eXRq1lkNRFPztugV47TvHY3QZN5z58mAXdrd4AACzR5dovzs5kJKDocnVugNFl9dYIwVEphUm7tpnNJsgCJl0uPaZsxbcDhvc6gKcFkhp5kWktSQCBVIEQRAZgtkCXbZndthsyHVGSe1TJ8AcJx3ShwMjRozAH//4R7zwwgt48cUXMWXKFCxduhSrV6+O+pj77rsPxcXF2l9dXd0gjji15Djt2ip8d19QV6Ry+9enymbjNWYjinMAAK9ubADA0wFL8lyWfauESgVAO9EEYqf2Cff3rn4oUlQjRZgJCLOJFGYamJ1dc5x2PZBS5xVhNkHW54lBnxJBEESGUJrnQn2bF52qBXpQarzrsEtmE9FqpEiRGhZMmTIFU6ZM0W4vXLgQ9fX1+PWvf43FixdbPuauu+7CsmXLtNtdXV1ZHUwV5DjQ5vGjpy+oKbTFFopUMoxQU3r3t/NeUnNGl/LXMplbAMAne9u163KApaX2SXVRIqgaXZaHva29/TKboNQ+woxmf55CRcppt8FpV7TndjttmlmK2WyC2mkkBi1fEgRBZAjihKzdIxQpPYXPboseSImaKTcFUsOWBQsWYPv27VHvd7vdKCoqMvxlM7LhhJbaF8WZL1FGluQYbs9X3TsL1FqQrY3d2NzAUyI/2dum7dctBViaa5+pRgoAJlYWAEgitY/MJogY6Kl9qbUglxfcchx2ze3VFwyDMaYF+KRIJQYFUgRBEBlCrsneXFaknHablroX2UdKpPZRIDVcWb9+PUaMGDHUwxg0CjRL8qAWmFjVSCXDiGLdZObEKZU4d9ZI/lpq0PbWliac/dAa7GzuwWeqGQWguwcyxrQ+UnJq3xlHjMDUmkJ8c/5oADxlT3bejEavj+zPiehoZhMpNhGSa5/cThvcUkp4IMTQI/pIUY1UQtCnRBAEkSGICVNMoKJGSlFiK1KU2pfZ9PT0YMeOHdrt3bt347PPPkNZWRlGjx6Nu+66CwcOHMBTTz0FAPjtb3+LsWPHYsaMGfD7/Xj66afxwgsv4IUXXhiqtzDoyE15B1ojJZhcXYhTZ1SjNM+Fn54zQ/u9idQ+gJ9I3vLMeoNa1K0GPMJFEDCm9h07oQKvf3exdh/AVamKgtgNdj3k2kfEIJAGswnAmLLHFSn9+X3BkKZIkWtfYlAgRRAEkSFEBlJ6M14AUiBlUqQCwrWPkgwykXXr1uHEE0/UbotapiuuuAJPPPEEGhoasG/fPu1+v9+P22+/HQcOHEBubi5mzJiBV199FWecccagj32oEEFTu8efshopu03BHy47OmL7kimVmDumFKV5Lry5+RC+VNP7Tp5WjTc3H9JS+0Ran9OuWP7W7DYFhW6HpqLFC6S8ZDZBxCAdDXkBo3Of22kzPL8vGIbHR32kkoE+JYIgiAzBbEMrUvscNr49R81l90ZRpCi1LzM54YQTwBiLev8TTzxhuH3nnXfizjvvTPOoMpsa1WHvYKcXzd28R1N5/sAUqWiMLMnFC98+Fn2BEI7577fQ6Q3AblNww5LxaiDFgxzZaEJRrOtWinKdhnTEWHgks4nO3gAYY1Gflzj8EIYQqVak8qWUvRyHHYqiwO2wwRcMq4GUqkiR2URC0PIlQRBEhiBWBs2pfboiFcX+XFWoKLWPGC6Iptn727xo7OwDAIwqzUvra+Y47ThvNq+bOm1GDSZWcfOIvkAYgVAYnb2R1udmxH2JBFLCZhrgxgK9pkbbBGIuQAx3fGmqkTIrUvJr+AIhqSEvaS2JQIEUQRBEhqCl9oWEIqWm9qmuTSJQ+mh3G77zt/U42MFtnIVC5abUPmKYMEJ12Fu/rx3BMIPTrqCqMHaqXCq4/dQpuPfMafjZuTMNJ5I9fUF8tJs7+cVKMRSB1HMf12NrY3fM15LtzwFy7jPT0uPDov9ZiV++vmWohzIkDFaNFACDcx815E0OmnUJgiAyhGhmE3aR2qcGUpsbuvDyZwfx0399AYBS+4jhh3DYO6iqUbUlubDZ0p/2VuB24FvHj0dZvgtOu01bvHhtUyN+++Y2AMCFR0fvzzWmnKtmr3/RiO8+91nU/bjNNP/dirfVQXVSBj6v78CBDi+Wf9E41EMZEgLpsj+3UKTc0tyzr60XALQG1kRsKJAiCILIEFx2fVUQ0GukxERqLnA/2MFPMim1jxhuiNQ+wajS3Ch7phdhjf7L5VsQZsAFc0fhG/OiB1L3fnU6fvjV6QCAnU09Bic/GX8orC2U1BTxE1ZSpIyIQFNuiHw4oZlNpNz+XAqkhCKlzi0HO7xo6fFDUYBJ1QUpfd3hCgVSBEEQGUI01z67umRtbrhbqaY6kSJFDDcqC91abSAAjCpJb31UNIQNu1CLvjF/dExDiAK3A1ceOxZOuwJ/KIzGrj7L/eT6qJFqkEiKlBHhatjTd3gGUmIeSH1qn7GPFKAHVJ/v7wQAjC7Lo9S+BKFAiiAIIkOIqJEKG12bzIpTmepiRvbnxHDDblNQXaSnFg2VIlWYY6yHqi2Jn+5ktymaMcbeVo/lPr3qb9blsKFYtXpPVnkJR1G7hguihkzu33U44VczElJuf+60qpHir7FhfwcAYEp1YUpfczhDsy5BEESGoCtS/CRLpPbZTX2kBOEwQ0BKERKTIkEMB+QajVFlQxRISYYTdpuCqsLE6kZGl4lAqtfy/l7JYrpAbXyajPLy81e/xNE/f1MznBmOyA2LPf7DT5UKCEUqnal9phqpjaoiNbWGAqlEoUCKIAgiQ3BH2J+bG/IaD9m9/pDBCj2X+n4Qw4haqU4q3dbn0RCpfQCvZbInaHgxtjwykOr1B/HS+v3o6PVrQUKey6HVYSWjSL26oQFtHj/W7W1P+DHZhtyw+HBM79Mb8qbWbMLKtU8s4nWr38EpNUUpfc3hDAVSBEEQGUK81D6zItUbCGlGE4C+qkgQw4ERJUOf2lcgKVKJpPUJRpfnAwD2tempfc98tA/fe+5z/O9bO3RFym3XbNY9CQZSfYGQ5mbYFKUGazgg99Ua7oYT/mAYD729Hev36YGxP03257kxaqQEU0iRShiadQmCIDKECLMJU2qfuUbK6w9qipTbYYtZBE8Q2UataoHOe0gNjRWzXCMlLNkTYYxFap+wld50oFMLEnJdDi19MNFgQX7O5m5fwmPKNuQ+W8M9kPrFa1vw6ze24crH12rb/GlqyGulSJmtzoWiSsSHLDkIgiAyBJcptS8UNvYRiZXaR2l9xHBDpPaNKM5NOKUu1cipfbUliQdSYyv0QIoxBkVRtKBnW1O3VvOT79IVqUSDhd0tusp16HBRpIZxal84zPDn93YDADq9unNjuhryWvWR+sHpU5HjtOHx9/Zg8eRKOFL8msMZCqQIgiAyBLHyKPpIBUyKlDn9wuvXU/vIaIIYbhw3sRwnT6vGV6ZXDdkYjIFU4qrYqNI8KAoPjto8fpQXuLVAqqM3gH2qqpTncmjpg/0JpJqGtSJ1eKT2vb+z1XA7FGaw2xTt+J9y+3ML1758twP3nDkdN584CflumkuSgQIpgiCIDCGyRsq4ImlO8ej1h9AXJOtzYniS53LgT1ccPaRjMARSSaT25TjtqCnKQUNnH3a1eFBe4EZLjx70fFbfAYCnWRUkWSO15zAJpLwBKbVvGCtSf1u7z3C7pceHXJddT+0bhD5SguI8p3l3Ig408xIEQWQI8WqkqgrdOG1GDWbVlQDgNQTUjJcg0oehRioJRQoA5owpBQD8Y91+AMZ6ps/Vfj35brvm2tedYLCwW+pNNZzNJjxS0+LuYaxI7WjqMdx+af0BHPmTN7Rmzk5HatNa5dQ+mjcGDgVSBEEQGYK5RspnWpFUFAWPXDYX/3fJHACANxDSLIJpQiSI1CO79o1MokYKAK4+biwAfmK8r7XX0BeppccPgKsDmmtfgr2SZEWqqy9oaIEwnOiP/Xk4zPDCJ/u11MlsQNS5CdfV3765zXB/6hUpqUaKnF4HDH2CBEEQGYLblNonUn3kkzlAnwgDIabVDlBqH0GkHpHal+u0ozg3ubSnOaNLMauuBP5QGL8xnRwL8l123bUvgWDB4wtq6XxCqR6uzn29cmqfLxBjT513tjXjtuc/xw9f3pSuYaWUvkAI7b38vR01qkTdFjbsk/IaKVKkUgrNvARBEBmCObXPo/WaMQZScmpGm4evbJut0QmCGDhTagoxqaoA588ZmXR7AUVRcNmCMQB4A10AMJsPlhe4pT5S8ZWlPWpaX2meU7Osbuoenul93n6YTexs5mlye6T0x0ymqYsHwS6HDZNrCiz3SbVqlEuKVEohswmCIIgMwRxI9agnVuZAymW3wW5TEAoztPfyQIpWFgki9eS5HFixbEm/Hz9rdAkAXWWeXluEgx196OkL4qpFY/GN+XWaAuEPheELhiLcOWUOtHsBcFdAp13B/navdjI+3DDUSCWY2tegNio+1NWn2c5nMofUILimKAc1RcYavJOnVaM0z4nKQndKX9Nlt6HQ7YDHH0xaZSUioUCKIAgiQxC58MEwQzjMtIaUBSY7WkVRkOe0o9sXRJuHp4VQIEUQmcfY8ny4HTat3nFkSS4ev3I+FAWoKOAnyA6brgp4fLEDKWFAMKI4R0vtG47OfeEwgzeQvCLV0MkDzb5AGF19mR8oNHbqgVSVFEjlOG3442VzYUtD/zRFUfDwpXPR1RdASZ4r5c9/uEGBFEEQRIYg25v7Q2Ht5EG2qxXkukQgxU+iKJAiiMzDblMwpaYQG/Z3AuDBk1lhsNsU5Drt8AZC6OkLoiw/+smtUFxqS3LBGHf1HI5NeUVbB0GiZhMHO/TPoqmrL+MDKfG/qypyGxSpcRUFaQmiBIsmVaTtuQ83KDmSIAgiQ5ADKV8wHNVsAtALhts1RYoO5wSRiUytKdSuR0vTEhbo8ZQXTcEo1hWM4ahImevFklWkAOBQFqQ8ikCqpigH1VIgNb4yf6iGRCQJKVIEQRAZgmxz6w+GtZMJc40UAOSqKhXVSBFEZjO1pki7HjWQcjvQ3O3Do+/uAmMM//P1Iw0pfu/vaEG+24GDHTxQGFGco6ULDsdASjaaABKrkQqEwobPojELlLpGNdirKTbWSE2ooEAqW6BAiiAIIkNQFAUuuw3+UBj+UFjrK5PvjgyShCIlXPtyYtRVEAQxdEwdoStSoi7KjFCdX1p/AABwxhEjcMqMGgDAwQ4vLvvzx9wqXW0QPKI4V7MEb1ePAcMJ2focSEyR4gYTxtuZziFVYawuykFRrkOrpxtfae3gR2QelAtCEASRQcjOfdHszwHd7rxNVaRyXXQ4J4hMJBFFyrxY8um+Du36x7vbEAozdPUFcUBSpEpVowChSmcajDH8fuUO/OXDvUk/tldVpMTxsMcX1GrCoiHqxwRN2RBIdeuBlKIomFjFA6iZI4tiPYzIIEiRIgiCyCBcDhvg44GUZn8exWwCgLYCS6l9BJGZlOW7MG1EEfa0eDA+SspWgdtoivDpvnbt+rq9bRH7VxflIBTmP/5MVaS2NHbjV8u3QlGA82ePtFwQikaveuyrKnRjf7sXoTBDXyBs6IEEAG9tPoT/fWs77r/wKC3tUZDpNVKMMYNrHwA8culc1Lf3YmJVYayHEhkEBVIEQRAZhKiT8idoNiGg1D6CyFz+ccNCePzBqHbT5hYHG/Z3IBAKw2m3Yd2edsN9FQVuuBw2lKrufh5/CH2BUMYtpry7vRkAX+zZ3tSDWXUlCT9WtH4oL3DjQIcXjAHdvkBEIPW3tfX4fH8nXvm8QTsm5rvs8PhDmtqTqXR6A1qdW1URVyrryvJQV5Y3lMMikoRyQQiCIDIIkcrSFwxpfVRi1UgJ3OTaRxAZS77bgarCnKj3C9c+QV8gjKX3v4Nzfv8etjR2G+6rLeHPU5Tj0HpJdfQGtPt9wRA+3t2GcDh2Klyy1Lf1Ym+rJ+H9393eol3fZnoPsQiEwlpqX77Lri0kWVmgC5e+fa0eNKiK1JGjSgAg4xsV727hn2VpnjPjgmAicWjmJQiCyCBEICWfGFnXSBm3xTpJIwgis7H6je9r68Xn9R0AAKdd7ykk0sAURbGsk/rdm9tx4R8+wN/X1adsfL5gCOf933s4+6H30NUXiLt/X4AHc4KthxILpBo6vVj8y5X47nOfAeA99Ard0a3hRWrc3rZeHFSvzxpdAoCbTaQ6mEwl/97QAABYOKF8iEdCDIQhDaTuu+8+zJs3D4WFhaiqqsK5556LrVu3Gva58soroSiK4W/BggWGfXw+H2655RZUVFQgPz8fZ599Nvbv3z+Yb4UgCCIliNQ+UfdgtylwOyIP1WZFalI1uTwRRLZSKAVSR40qjrj/hClVmsFMbUmutr00j9dWyXVS72zjKXUf7GoFwGtxXvn8IHY19yQ9Lo8viENdfahv86Klx49ObwDv72iJ+7i1e9q0tDUA2JZgIHXXixsNphF5LjuK1WCxpceoMPmCIbT08Pe9t7VXU3jmjC4FAATDTDPjyTQCoTBe/ow7NH5tzqghHg0xEIY0kHrnnXdw00034cMPP8SKFSsQDAZxyimnwOMxSsennXYaGhoatL///Oc/hvu/+93v4qWXXsLf/vY3rFmzBj09PfjqV7+KUMjYh4AgCCLTEYqUOAHId9mhKJEd7uVagdI8J8rzrWsvCILIfPIkQ5l7zpyO82ePxDPXHoOnrp6Po8eU4qYTJ2J6LXdyqynW1WdRJyWOF15/SEsF3NzQBYCn2N367Hrc+Y8NSY/r4j99hMW/XIlP9+p1Wqu2Nsd93IdqECdc6BIJpFZubYp47jyXHZPU5zCnODZKAVebx4+daqB4VF2xZjPf0DF4dVJ7Wz0Gy/W/r63H9X9ZF6GkdXoDePL9PWjp8aM834XFkysHbYxE6hlSs4nXX3/dcPvxxx9HVVUVPvnkEyxevFjb7na7UVNTY/kcnZ2deOyxx/CXv/wFJ598MgDg6aefRl1dHd58802ceuqp6XsDBEEQKUYEUmKF2cpoAjAqUhOrCiyDLYIgsgNhrgAAs0eXYP64Mu22ONG+bMEY9PQFcfK0Ku2+MpHapx4vNh3s1Nz8djZ74AuGsE4NgjYd7EQ4zGCzJXasCIbC2Li/A2EGvPL5QW37qq3N6PUH0d4bQL7LbmmgsbOJL4ifc1Qt7l+xDYe6fOjo9Uc12wCA/6ipbjJ5LgfGlOfjlc8P4suDXYb7zHbnjAHVRW5UFeZgfEU+Wnp82NHcjSMsFL5U09Ljwxm/excleS68c8cJcNhtuH/FVhzq8mHphgZcOK8OAP8/n/zAO2hWGwefM2sknHaqsslmMuq/19nZCQAoKyszbF+1ahWqqqowefJkXHvttWhqatLu++STTxAIBHDKKado22prazFz5ky8//77lq/j8/nQ1dVl+CMIgsgERBqfqHmIZhlsDKTIKpcgsplASK/liXZife7skVj+vcWG37tQpNrVmsrPpP5ToTDD9kM9+OIAP7fqC4S1PlSJ0NTtgygxEgoTADR29WH6j5bjuF+8jdk/W4Frn1qHlVua0BfQs4D2qKYUM0cVY6SairjtUOzUwkZVzZHd/fJcdkxTGxoLhU0gjCZkjhjJg6bJNUIJi3zNvkAI2xNMNUyUj3e3weMP4UCHF+v2tuNQV59mv/7+Tj0V8s3NTWju9qEwx4FvzKvDjSdOSOk4iMEnYwIpxhiWLVuGRYsWYebMmdr2008/HX/961/x9ttv4/7778fatWtx0kknwefjX9DGxka4XC6UlpYanq+6uhqNjY2Wr3XfffehuLhY+6urq0vfGyMIgkgCUSPV5uEnRnlRAqlcKRVIpL4QBJGdXLpgDCZXF+Cu06cm9biyfF4j1aYqUp+p5hSCzQ1d2KgGUgCwvSnxAELuyxRUIypZ+HbZbWAMWPHlIVz1xFoc+4u30djJDR5EIDWuPB+T1frNeIYTQmE6baaegZTrsmP6CJ7SuLvFYwjWDlqk7c1UA6kp1Tz4snIL/NHLm/CV36zG8i+szxH7wydS6uPyLxqxYb/+mb+/s1VrJvyKWhd1xcKx+MXXjtRSEInsJWMCqZtvvhkbNmzAs88+a9h+0UUX4cwzz8TMmTNx1lln4bXXXsO2bdvw6quvxnw+xljUVJe77roLnZ2d2l99feqcbQiCIAaCy6RImfvLCPKcxtQ+giCyl8pCN9743hJcvyQ5hcLs2icCqak1PJBYvb0FTd26ScP2OKqQjJV69f3TpuLUGdV48JuzsfW/TsObyxbj8oVjUJrnRJvHj5fWH0BjVx/6AmE4bApGleZick30oEbmkBpInThFT11s6upDZaEb5fkuhBmwVXoOUSPlkhQ8oUhNEoGUKXDs9Qfxr895CuHTH+413PflwS6DepQMciD1xheHsGF/h/4eun3Y2exBR69fMwI5e1Ztv16HyDwyIpC65ZZb8Morr2DlypUYNSq2e8mIESMwZswYbN++HQBQU1MDv9+P9nZjw7qmpiZUV1dbPofb7UZRUZHhjyAIIhMw10jlu6wVKafk5EeOfQRxeCICqTaPH/VtvTjQ4YVNAS5Sa3L+JdU2AbwxbqJYKT6nz6zBHy47GmcdVQtFUTCxqhD/75yZ+P5pXEl75fOD2KO6540uy4PDbtPVoRiKVHdfAN2qKcOoUt2VsCjXCUVRME1VpeT0PpHaJ+zOASm1T33N+jav1tgcAN7Z2qz153tvRwua1HRCfzCMS/70IS577OOkemUBPFXwi4NcgbLbFBzo8OLZj40L9O/vbMFrmxoRCDFMrSnUxkdkP0MaSDHGcPPNN+PFF1/E22+/jXHjxsV9TGtrK+rr6zFixAgAwNy5c+F0OrFixQptn4aGBmzatAnHHnts2sZOEASRDsw1UtHMJuT+KKKvDEEQhxdl+boi9ebmQwCAeWPLcMw4Y2+iQrXhb3KBlFGRstsUg/W6zGkza+CwKdjc0IUV6jjGVuQD0IOabYe6tRQ3M8LtrjDHgXy3A3+/fiG+Ob8O1yzi54WiTurLhi7sau7Brc+ux5ubeb38EtWMY2RJLqrUY2FZvktLm9shvef/bNLT+cIMePkzHmiu29uG9t4AQmFmaCQcC79q775hfycCIYbKQjdOmc4X8IVV+1fU2yu3NGl25+fMGpnQ8xPZwZAGUjfddBOefvppPPPMMygsLERjYyMaGxvh9fIfb09PD26//XZ88MEH2LNnD1atWoWzzjoLFRUVOO+88wAAxcXFuOaaa3Dbbbfhrbfewvr163HppZfiiCOO0Fz8CIIgsgU9tU/USFmn9i2aVIHTZ9bg3jOnkWMfQRymaGYTnoAWSH1lejWmjSjExceM1vY78wi++LwjRjATCjM8unqXlt5mNnOoLcmJaoRRkqfbeD/+3h4AwDg1kJpYVQCbwo9pzVIvqK2N3Vi1lQdDjZ18+wjV2n3+uDLcd/6RmsvfrDpeB7/8i0b8+JUvDC6CJ02twq++fiR+f8kcw5im1Bhrs/oCIbytfkYXHs2zn/6+rh6MMbwj2a5/IBlrRGPN9hZM/eFreGDFNnywk+8/d3Qp7jp9mmG/ZV+ZDABYta0ZH6kNis86akTc5yeyhyG1P3/44YcBACeccIJh++OPP44rr7wSdrsdGzduxFNPPYWOjg6MGDECJ554Ip577jkUFuqy6G9+8xs4HA5ceOGF8Hq9WLp0KZ544gnY7dYnIARBEJmKy3Tciuba57Tb8PClcwdjSARBZCjC/vxAh1dTdZZOq4aiKPj5uTMxpiwPb24+hJtOnIh/fLIfHn8IDZ19mrIUDjPc/o/PUeB24MhRJfj5fzajtjgH79+1FAfU1L6KAjdaenwYU5YfcyznzR6Jt7forspCkcpx2jGmPB+7WzzY1tiDqsIcdPYGcOEfPkCnN4D/3Hq8FrRVR1HXT55ehcpCNw51+TQ3PEFtca6W+iczuboQ7+1oxSd72nHh0XX44mAXPP4QKgrcuOfM6fjPxkZsb+rBqm3NWLlVH/eHO1vj2sQ/u3Yfwgx46O3tyFHrVU+cWonR5Xl45NI5+PZfP8WxE8oxbUQRlkyu1Gqjjh5TilGleTE/RyK7GNJAKtqqiCA3NxfLly+P+zw5OTl48MEH8eCDD6ZqaARBEEOCy2Fc8S2IUiNFEARRorr2AdxZb0JlvqYEKYqC65dM0AwsJlUXYnNDF97b0YILjuY1VLtaevDipzzlrMDNLw929qG526el9p111Ag8/t4ezREvGmceMQJ/+WAvPt7DlZfxFXrgNbm6ALtbPNh6qBuLJlXgD6t3otPLVfeVW5u0VOURxdaBlNthx5XHjsWvlm8FABw/qQJNXT5UFrpRlGt9jDx+UgUef28PnltXj1mjS7T+WjNqi1Cc68Q35tXhT2t24xf/2YJth3pgU/jxt9Xjx7ambkytsa6f9wfDWK0qWGEG9PpDOHpMKb4+l3+mp80cgbeWLUFFIU8tvOq4sVogdQ6ZTAw7MsJsgiAIguCYA6loihRBEESh6fhw/pzohl1nqLbiL60/oG3b1awbK/RIpgwf727TAp3vLp2M565bgO+ePCnmWGw2Bfd97QjtttyWQRhO/OzfX+LU36zGn9bs1u57d3szGlQ1rabYugYLAC45ZjTy1f55d5w6Ba9/93g8/a1joqY2nzS1GjepfZp+9PImLQVPqFdXLxoHh03RUv/mjC7FvLG8j+n7O/i+fYEQLv3TRzjp/lW4/M8f498bDuL9nS3o9gVRlu9Ceb4L+S47fnXBUbBLCtb4ygIU5fAgd/GkShw9phRVhW6ceSQFUsMNmqEJgiAyCHdEIEUpygRBWCMc7TY3dOHWkybi2zHs08+dPRL3r9iGD3a1oqHTixHFuVq/J4HdpiAUZljxJTdlKMxxoDjPiWPGl1s9ZQQTKgvwz5uOQ3dfQDN+AKBZoAN6zdL4inzsavEYrMOjKVIAr8P623UL0eH148hRJQmN5/ZTpmDFl4ew7VAPXlf7RgnjitqSXNxy0iS8/NkBTK4uxE0nTsQHu1rw7vYWvL6pEVcvGoePd7dhzQ5eM7ar2YPV2/Raqq9Mq8btp05BKMxQE2PcNpuCv123AGEWuVBGZD8USBEEQWQQLjspUgRBJM6z1x6Djt6AVpMUjbqyPMwfW4aP97ThhU/24+aTJmF3Sy8A4OyjajGlphCBUBi/fXM7ln/BTRlGRnHpi8WsupKIbUePKUOu046yfBfuPG0Kcpx2zB9bhrN/vwb1bV58uIunA8ZzID1iVOz0QjOKouD4SZXYdqhHS+2T66m+c/IkfEdS2ioL3fjFa1vw8Z427G31aH2rFo4vx/xxZXjqgz2aEdDSabxuKxEcUUw6iOyHZmiCIIgMglL7CIJIhpI8l+ZuF4+vHz0KH+9pw4Nv78AJU6q0nk9LJlfia3NH4X1VfRG9lqbWpKbfUU1xDj68eynyXHaD89/xkyrxzEf7DPulmkWTKvCYmkroctgMtVtW4zxuYgXe3d6CFz49gP3tPNBcOKEcty6dhG8dPw6Pv7cHHl8QJ02tivo8xOEDhcgEQRAZhDmQqitNfkWYIAjCiq/NGYUTplTCFwzj23/9RGuSK9SsGbVGxefGEyem7LWLc50R9ulXHTtW64WlKNyBL9UcM64MTjuvX5pcXRBXHfr6XF5n9sIn+7G5gX8+U9SAsjDHiVuXTsJdZ0wjlYkAQIoUQRBERiGn9tUU5WBCZUGMvQmCIBLHblPwu4tm4yu/eQf1bXqfKOH0V5ynuwAeO6Fca6abLiZVF+LdO0/E8+vqke92GF4/VeS5HJgzuhQf7W7DtChOfDKnzqhBgduBAx1eHFCdCxN5HHF4QuE0QRBEBiErUosnV1CzXYIgUkpxntPg7leU40CpFMD88utH4oQplfjdN2YPynjy3Q5cedw4zZI9HVxx7FgUuh04Z9bIuPvmOO04ZXq1Pj6XHaMoM4CIAgVSBEEQGYQxkKocwpEQBDFcOW+2HlCU5bsMCzYXHl2HJ66an7CRQjZwxhEjsPGnp2LRpIqE9j/rKN2mfHJNYczmvMThDQVSBEEQGYTo3QIAx01IbNInCIJIhimSiUR3XzDGnocniyZVoERV6aI15iUIgAIpgiCIjGLumFIAvMdKaX5iTlwEQRDJ8puLjgIA/Ois6UM8kszDabfhIjXV8PgEVSzi8ERhjLGhHsRQ09XVheLiYnR2dqKoiFYeCIIYWva0eFBR6EZBllif0zE086D/CZEIfYEQcpzU9NuKUJhhd4sHEyrzqVb1MCTRY2h2zNIEQRCHEfEaaxIEQaQCCqKiY7cpmFhFrqlEbCi1jyAIgiAIgiAIIkkokCIIgiAIgiAIgkgSCqQIgiAIgiAIgiCShAIpgiAIgiAIgiCIJKFAiiAIgiAIgiAIIkkokCIIgiAIgiAIgkgSCqQIgiAIIo2sXr0aZ511Fmpra6EoCv75z3/Gfcw777yDuXPnIicnB+PHj8cjjzyS/oESBEEQSUGBFEEQBEGkEY/Hg6OOOgoPPfRQQvvv3r0bZ5xxBo4//nisX78ed999N2699Va88MILaR4pQRAEkQzUkJcgCIIg0sjpp5+O008/PeH9H3nkEYwePRq//e1vAQDTpk3DunXr8Otf/xpf+9rXLB/j8/ng8/m0211dXQMaM0EQBBEfUqQIgiAIIoP44IMPcMoppxi2nXrqqVi3bh0CgYDlY+677z4UFxdrf3V1dYMxVIIgiMMaCqQIgiAIIoNobGxEdXW1YVt1dTWCwSBaWlosH3PXXXehs7NT+6uvrx+MoRIEQRzWUGofQRAEQWQYiqIYbjPGLLcL3G433G532sdFEARB6JAiRRAEQRAZRE1NDRobGw3bmpqa4HA4UF5ePkSjIgiCIMxQIEUQBEEQGcTChQuxYsUKw7Y33ngDRx99NJxO5xCNiiAIgjBDqX3QUybI5YggCCJ5xLFTHEsJIz09PdixY4d2e/fu3fjss89QVlaG0aNH46677sKBAwfw1FNPAQBuuOEGPPTQQ1i2bBmuvfZafPDBB3jsscfw7LPPJvyaNK8RBEH0n4TnNUaw+vp6BoD+6I/+6I/+BvBXX18/1IfzjGTlypWWn9cVV1zBGGPsiiuuYEuWLDE8ZtWqVWz27NnM5XKxsWPHsocffjip16R5jf7oj/7ob+B/8eY1hTFaQgyHwzh48CAKCwujFvJGo6urC3V1daivr0dRUVGaRpgasmmsAhpzesmmsQLZNd5sGqugv2NmjKG7uxu1tbWw2ShjPBOgeS1zoTGnl2waK5Bd482msQrSPa9Rah8Am82GUaNGDeg5ioqKsuZLlU1jFdCY00s2jRXIrvFm01gF/RlzcXFxmkZD9Aea1zIfGnN6yaaxAtk13mwaqyBd8xotHRIEQRAEQRAEQSQJBVIEQRAEQRAEQRBJQoHUAHG73fjxj3+cFY0Qs2msAhpzesmmsQLZNd5sGqsgG8dMpJ5s+h5k01gFNOb0kk1jBbJrvNk0VkG6x0xmEwRBEARBEARBEElCihRBEARBEARBEESSUCBFEARBEARBEASRJBRIEQRBEARBEARBJAkFUgRBEARBEARBEElCgRRBEARBEARBEESSUCAVBZ/PN9RDSJimpqahHsKACIfDQz2EpMgmo8tsGitBEOmF5rXBg+a19JFNYyWGPxRIWbBlyxb8+Mc/xqeffjrUQ4nLli1bcNRRR+F3v/vdUA8lYZqamrBhwwa8//77AACbzZbRB8a+vj709PQgGAwCABRFydhJsre3F52dnfD7/QAye6xmsmGcoVBI+2yzjWz4fIn0QfNaeqF5LX3QvJZeaF4bGBRImdi4cSMWLFgAn8+H0tJSw32ZdlD87LPPcPTRR+PQoUNZMTkC/PP9yle+ggsuuABf+9rXcPXVVwPgB8ZMZNOmTbjgggtw/PHH44ILLsC9994LgE+SmcamTZtw3nnnYcGCBTjnnHNwzz33AMjMsQr27NmDp556CqFQCDabLSMOitHYsmULrr/+epx00kn49re/jRUrVgz1kOKSTZ8vkT5oXksvNK+lD5rX0gvNaymAERotLS1s3rx57LbbbtO2dXR0sP379w/hqKz57LPPWF5eHvvVr37FVq1axWw2G1u+fPlQDysm27ZtYxUVFeyHP/wh+/jjj9mf/vQnNm3aNLZ3715tn3A4PIQjNLJlyxZWVlbGvve977GnnnqK3X333ay8vJydc845rKOjgzGWOePdsWMHKysrY7fccgt75JFH2G233cZGjRrFlixZwjo7OxljmTNWwdatW1lpaSmbMGECe+SRR1gwGGSMMRYKhYZ4ZJFs2rSJVVZWsiuuuILdeeedbM6cOeyMM85ghw4dGuqhRSWbPl8ifdC8ll5oXksfNK+lF5rXUgMFUhLbt29ns2bNYvv372d+v59ddtllbM6cOWzSpEns7LPPzpiDzIYNG5jNZmN33303Y4yxpqYmdtJJJ7EbbriB+f3+jPzBhsNh9pOf/IRdeOGF2raDBw+yJUuWsDVr1rDly5dn1LiDwSBbtmwZu+6667Rtvb297Nxzz2WKorCTTjpJ2z7U3wfGGHv44YfZCSecwHw+H2OMsUAgwD744AM2adIkduyxx2r7Zcpn3NbWxk4//XR2/vnns69//evs2GOPZQ8//HBGHBTNNDY2snnz5rFly5Zp23bt2sUKCgrY888/P4Qji042fb5EeqF5LX3QvJZeaF5LHzSvpY7M1UaHgAMHDqCnpwcjR47EZZddhtbWVtx+++249957sXXrVixduhTA0Mr1gUAADz74IH7yk5/g5z//OQCgsrISJ554Ip599ll0dHRkZG62oijYvXs36uvrtW1PPvkk1q5di+uvvx7XXHMN5s6di+7ubgBDn25it9uxY8cOeDweADwPNzc3F0uWLMF1112Hbdu24aqrrgKQGekbe/fuxf79++FyuQAADocDCxYswN///nccOHAA5513HoDMSYcIBoOYMGECrr32Wjz66KMYO3Ys/vKXv+DRRx/V5Pqh/g4IPv/8c4waNQpXXnklAP4bHDduHBYvXoz29nYAQ/99NZNNny+RXmheSx80r6UXmtfSB81rKWRIwrcMQ6y8dHZ2svHjx7Obb76ZnX766eyzzz7T9tm3bx8bNWoU+/GPfzxEo9RpaWnRrosI3Ov1shkzZrBbbrklo1Y9GGPaasHzzz/Pxo0bx5YuXcquvvpq5na72b///W+2d+9edvDgQTZ58mR2xRVXDO1gGR9vIBBgt99+OzvrrLPYp59+yhhjbPfu3aysrIz98Y9/ZA8++CCbNWsWa2xsHOLRclavXs3Gjh3L/v73vxu2h0Ih9uKLL7KpU6eyVatWDdHorDl06JD222ttbWUXX3wxO/bYY9n//d//ad9hv98/lENkjDG2c+dO9vvf/z5i+xlnnJERxwMz4jPNls+XSA80r6UXmtfSD81r6YPmtdSRGWH8EGEuUHM6nbj44ouxevVqrF+/HnV1dQB4FDxy5EjMmTNHi9QHGzHWcDiM8vJyhEIhAPpKjMPhwJIlS/DRRx+ht7cXwNCvJogxizEuWrQIDzzwABYuXIhwOIzbb78dZ555Jurq6jBixAiccMIJaG1tzYjxOhwOnH/++di9ezeuuuoqnHzyyZg+fTouuOACXHvttTjzzDPxxRdfYPfu3UM2Xvn/O27cOEybNg3PPvssPvzwQ227zWbDsccei7a2NmzdunUohmlAHnNVVRUURUEgEEBZWRkeeughjBkzBk8//TT++Mc/wuv14o477sAdd9wxJGMNh8NgjGH8+PG48cYbI8Zvt9sNTkcPP/wwnn766UEfp8B8PCsvL8/oz5dIDzSvpRea19ILzWvphea11OMYtFfKMLZu3Yo//elPaG9vx+jRo3HdddehpqYGl1xyCdauXYuNGzfi/vvvx89//nM4HPxjysvLQ2FhIQD+xRss6ds81uuvvx7V1dXa/YwxOBwO3H777Zg5cyb++Mc/YtmyZUMqzctjrqurw/XXX4+amhqce+65OPfcc3HhhRfi0KFDAPQUAo/Hg5qaGoRCIdjt9iEd73XXXYeFCxfimWeewYoVK9Da2oorrrgCl112GRhjaGlpwfTp01FbWzuo4wSAhoYGhEIhjBo1CuFwGIqiYNSoUfjRj36Eyy+/HA888ABuvPFGnHDCCQD4gX369OnIyckZ9LFajdn823E6nQiHwygtLcX//d//4aabbsJf//pXPPHEE9iwYQPWrFkzZGMVn69AURRt/GVlZSgpKQEA3H333bj//vvx2WefDepYBbGOEU6nE6FQKGM+XyJ90Lw2eGOmeS210Lw2eGOleS3FDKr+lSF88cUXrLi4mF100UVs6dKlbP78+ay8vJy9+uqrjDHuanPeeeexiooKdumll7I///nP7MYbb2RlZWVs69atGTHW1157zVAMGgqFWDAYZLfeeitbsmTJkErzscYs0iF++9vfspNOOok99dRT7Msvv2Tf//73WUVFBdu8eXNGjLesrEz7Plhxxx13sNmzZxvSUQaDzZs3s7q6OnbGGWewnTt3MsZ4yoaQtFevXs1mz57NFi9ezH70ox+xN998k916662stLRU23+wsRqzVSGzeA+NjY2straWlZaWss8//zwjx8oYYxdeeCH75S9/yX72s5+x3Nxctm7dusEcqobV97eiosLyGMHY0H6+RPqgeW3oxkzz2sCgeS0zxsoYzWv94bALpILBIPvGN77BvvnNbzLG+JepsbGRXX311SwnJ0fLxd21axd75JFH2JFHHsnmz5/PTj75ZENu+VCPNS8vj/3jH//QtguefPJJVlVVxVpbWwd1rMmO+bPPPmPnn38+q6ysZJMnT2ZHHHEEW79+fUaNNzc3Vxuv+LF++umn7IorrmAlJSWDPt79+/ez4447js2aNYudcMIJ7KKLLrKcdD7//HN2xx13sNGjR7MZM2awOXPmDMlnG2/MVgfyvr4+du2117KCggK2cePGjB7rRRddxBwOB8vLyxuyySbZY8RQfr5E+qB5LTPGTPNa8tC8llljpXkteQ67QCoUCrGlS5dqxXTyF+nGG29k+fn5EV8en8/HvF7vYA6TMRZ/rAUFBVrBaCAQ0O5ramoa1HHKJPP5HjhwgK1bt469//77Q9a3IJnPuK+vj23YsIFdd911bMOGDYM+1ldffZUtWbKEffjhh+yxxx5jixcvNhwUA4GANumEw2Hm8XjYoUOHtH4bQ0G8MVsVkJ9xxhnsgw8+GOyhJjXWcDjMvv3tb7Pq6mq2adOmQR+rIJnvrxj/UH2+RPqgeS290LyWPmheSy80r6Wfwy6QYoyxiy++mM2dO1f758ge9Oeeey6bPXs283g8QzlEjXhjnTNnDuvt7R3KIUYQb8yzZs1iPT09QzlEA4l8xvL3YSgdd1auXKldf/TRR7WD4o4dOxhjfMzifWSKy1W8MWdCvxJBImMV412/fv2QpZXIZOMxgkg9NK+lF5rX0gfNa+mF5rX0cli59jHVmeSSSy5BOBzGf/3XfyEQCMButyMYDMJms+Haa69Fe3u7oS9EJo+1ra0N+/btG9KxChIdc0dHB/bv3z/Eo03uM5a/D06nc6iGrBXaAsC3vvUtXH755Th48CDuuece7Nq1CzabDT/96U/R3NycMb014o1ZURT85Cc/QXNz89ANUiXRsR46dAizZs3C+PHjh2ys2XiMIFIPzWvphea19EPzWnqheS29HFaufcKl5KSTTsKiRYvwr3/9C3l5ebjppps055cxY8YAAHw+35CNE8iusQqybczZNl6ZcDgMm82Ga665Boqi4Mknn8Q999wDp9OJp59+GhdccAEqKyuHepgGsmnM8cZ64YUXGhzGhoJs/v4SqSObvgfZNFZBto0528Yrk01zhCCbxkzzWpoYKilsqPD5fIwxxnp6etgNN9zA5s+fz6699lrW0dHBDhw4wO6++242efLkIc3HFmTTWAXZNuZsGq+QtgVy/cAf//hHlp+fPyTFwrHIpjFn01gF2fT9JdJHNn0PsmmsgmwbczaNNxuPu9k05mwaqyCbvr+MDfMaKXOOqvhC7dmzhz3//PPM5/Ox++67j82aNYvZ7XZ2xBFHsBEjRrBPPvmExpoA2TbmbBpvtLHu37+fPfroo9p2kS9+6623sqKioiEtEM2mMWfTWAXZ9P0l0kc2fQ+yaayCbBtzNo13OB13M3HM2TRWQTZ9f6MxLAMpUUApu7qIf9aePXvYyJEj2e23384Y4/+07u5u9tJLL7F3332X7du3j8Yah2wbczaNN5Gx/uAHPzA85q233mKFhYVDdmDJpjFn01gFPT09LBgMZsX3l0gfw+04liljFWTbmLNpvNl43M2mMWfTWAXDaV4bdoHUxo0b2WmnncZOPPFENnv2bPboo49q8l9TUxOrrKxkN9xwQ0Y4qmTTWAXZNuZsGu9AxjpUEnc2jTmbxirYuHEjO+mkk9i8efPYjBkz2B/+8AetKWlzc3NGfX+J9HG4HMeGimwbczaNN1uPu9ky5mwaq2C4zWvDKpDaunUrq6ioYLfddhv785//zH76058yRVHY5Zdfzj755BPW0dHBHnjggYywz8ymsQqybczZNN7+jlXur0FjHh5jFezcuZOVlpayW2+9lT344IPsnnvuYW63m11xxRVs3bp1rLOzkz3wwAMROfDE8OJwOI4NJdk25mwabzYed7NpzNk0VsFwnNeGVSD1ne98h1188cWGbZdccglzuVzs4osvzig5MJvGKsi2MWfTeLNprIJsGnM2jVVw//33s+OOO86wbfny5Wzy5MnswgsvZLt27RqikRGDSTZ9d7NprIJsG3M2jTebxirIpjFn01gFw3FeywxD/hTAGMOOHTtQXl4OAOjt7QUATJkyBaeffjpeffVVPProo9q+Q0k2jVWQbWPOpvFm01gF2TTmbBqrjMfjgd/vRzgcRigUQigUwimnnIKHHnoIa9aswUMPPQQgs8ZMpJZs+u5m01gF2TbmbBpvNo1VkE1jzqaxygzLeW0worXB4vvf/z4bN24cO3jwIGOMO5UUFRWx1atXs8cee4zl5+ezvXv3DvEoOdk0VkG2jTmbxptNYxVk05izaayC559/ntntdrZ27VrGGLetFakYf//735nNZmMffPDBUA6RGASy6bubTWMVZNuYs2m82TRWQTaNOZvGKhiO81rWB1JyjufatWvZqaeeygoKCtjZZ5/N8vLy2PXXX88YY2zHjh1DbpmYTWMVZNuYs2m82TRWQTaNOZvGakUgEGAXXnghmzx5Mtu8eTNjTO+v4ff72fTp09lDDz00lEMk0kQ2fXezaayCbBtzNo03m8YqyKYxZ9NYrRiO85pjqBWx/nLo0CFUV1dDURStW/PRRx+N3//+93j55ZfR3d2NCy64AJdeeikAoKurCyUlJcjLy6OxDsMxZ9N4s2ms2TjmbBqrYM+ePXj55ZfR3t6OiRMn4tJLL4XD4cCNN96I//7v/8all16Kp59+GlOnTgXAu7/n5uYiNzd3yMZMpJ5s+u5m01izdczZNN5sGms2jjmbxio4bOa1oY7k+sOXX37JFEVhZ511lrZN7tZsxW233cbmzJnDWltb0z08A9k0VkG2jTmbxptNYxVk05izaayCDRs2sJEjR7KTTz6ZzZs3j7ndbvbTn/5Uu3/58uXs9NNPZ6Wlpeyxxx5jzz//PPvBD37AysrK2M6dO4dkzETqyabvbjaNVZBtY86m8WbTWAXZNOZsGqvgcJrXsi6QamhoYMcddxxbsmQJq6mpYeeee652n5Xd55tvvsm+/e1vs6KiIrZ+/fpBHGl2jVWQbWPOpvFm01gF2TTmbBqrYM+ePWzChAnszjvvZOFwmHV1dbE//OEPbPr06Wz79u3afjt27GB33nknq62tZdOnT2fz5s1jn3766ZCMmUg92fTdzaaxCrJtzNk03mwaqyCbxpxNYxUcbvNa1qX2ffTRR6irq8ONN96IYDCIb3zjGzjvvPPw0ksvwWazaZKnoLCwED09PXj//fcxY8YMGuswG3M2jTebxpqNY86msQJAOBzGc889h0mTJuGee+6BoigoLCzE3Llz0dzcjEAgoO07YcIE/M///A9uueUWFBQUAABKSkoGfcxEesim7242jTVbx5xN482msWbjmLNprMBhOq/9//buJTSquw/j+HMyScAk1mjUiBISDBoV472UQqOtC+tGxRgMNRDsoivpwhrdCIWKKIqLRhClgaporSu7EW/xEsEuvNumkSh4xUYSapI2jujEmd+78P2f16lWnbeTOfNkns/KORyG75A//Pl5Zs4JepJLVE9Pjx09etR/ffr0aRs9erQtWbLEPxaLxeJ+kPf06dNUJvqYWh22ZqZeplaHqZmp1Tl16pRt3rzZfx2LxSwSidj48ePt559/fuX8dHjIpiQf09planXYmpl6mVodpmamVifT9jW6QervYrGYnTlz5pWFtWvXLv8PFsTTm1+HqdVha2bqZWp1mJoZWiORiP/vl1vKy8vt5MmT/uvm5mb6zUbeHcPadZhaHbZmpl6mVoepmaE10/a1tB+k7t27Z4cPH7ampibr6OiwcDhsZvETbDQa9RfW0qVLbdWqVeZ5Xsp/sMbUytrM1MvUytjM1Pr35u+++846Ojrs8ePHZmb2/PlzM3vxA+LHjx9baWmpvymuX7/ePM+z33//PZBmST6mtcvUytrM1MvUytjM1Pr35kzd19J6kPrll1+suLjYZs6caYWFhVZSUmINDQ12+/ZtM3v1cmBzc7N5nmcjRoywS5cuqfUt2JqZeplaHaZmplbnbc2xWMz6+/stHA5baWmpXb161TZt2mQFBQX+wwuFH9PaZWp12JqZeplaHaZmplZH+1oaD1I9PT02e/ZsW7t2rXV3d5uZ2TfffGNVVVW2ePFi/84f7rJhNBq1L774wvLz862trU2tg6yZqZeplbGZqTXRZmfWrFn2/vvvW25u7qDZbIRr7TK1sjYz9TK1MjYztSba7AzWfS1tB6l79+5ZaWmpHT9+PO743r17be7cubZixQrr6Ojwj7e0tNi0adMC+eMwtTpszUy9TK0OUzNTq/MuzQ8fPjQzs+7ubhs2bJhlZ2fbr7/+GkSuDBCmtcvU6rA1M/UytTpMzUytjva1F7Lefl+/YIRCIQwZMgQdHR0AgOfPnwMA6uvrUVdXh99++w3Nzc3++bNnz8bJkycxZ84ctb4DtmamXqZWh6mZqdV5l+YTJ04AAIYPH44dO3agtbUVlZWVgTVL8jGtXaZWh62ZqZep1WFqZmp1tK/9V9CT3JssWrTIZsyYYT09PWYW/yTnmpoa+/DDD80s+DuUmHG1OmzNTL1MrQ5TM1Or867NZvy3g5V/xrR2mVodtmamXqZWh6mZqdXRvpZGV6TC4TD6+vrw119/+ce+//57/Pnnn1i+fDkikQiys//3/OBPP/0UZoZIJALP89T6FmzNTL1MrQ5TM1Or8/82P3v2DADiHrAovJjWLlOrw9bM1MvU6jA1M7U62tdeLy0+1fXr11FdXY158+Zh8uTJ+OGHHxCLxTBy5EgcOHAA7e3tWLBgAW7cuIGnT58CAC5cuIChQ4fCzNQ6yJqZeplaGZuZWpPRLIMH09plamVtZuplamVsZmpNRvOgl4rLXm/S1tZmRUVFtnr1ajtw4IB99dVXlpOTY1euXPHPaW1ttcrKSisvL7c5c+bYokWLbOjQoXbt2jW1DrJmpl6mVsZmplbmZkk+pnXA1MrazNTL1MrYzNTK3JxKnllA4y2A7u5ufPbZZ5g0aRIaGxv94/Pnz0dlZSUaGxthZv5lzB07duDBgwcYMmQIamtrUVFRodZB1MzUy9TK2MzUytwsyce0DphaWZuZeplaGZuZWpmbUy377acMnP7+fvT29qKmpgYAEIvFkJWVhfHjx+PRo0cAAM/zEI1GEQqFsGrVKrUmgK2ZqZep1WFqZmp1GJsl+ZjWAVOrw9bM1MvU6jA1M7U6jM2pFuhvpIqLi7F//35UVVUBAKLRKABg3LhxcT9KC4VC6Ovr818HcRGNqdVha2bqZWp1mJqZWh3GZkk+pnXA1OqwNTP1MrU6TM1MrQ5jc6oFfrOJCRMmAHgx5ebk5AB48Yfq7Oz0z9m8eTOampr8e9QHdccSplaHrZmpl6nVYWpmanUYmyX5mNYBU6vD1szUy9TqMDUztTqMzakU6Ff7XpaVleV/z9LzPIRCIQDA119/jY0bN+Lq1atxt1UMElOrw9bM1MvU6jA1M7U6jM2SfEzrgKnVYWtm6mVqdZiamVodxuZUCPyK1MvcpcBQKISSkhJs27YNW7duxaVLlzB9+vSA6+IxtTpszUy9TK0OUzNTq8PYLMnHtA6YWh22ZqZeplaHqZmp1WFsHmhpNTq671vm5OSgqakJ7733Hs6dO4dZs2YFXPYqplaHrZmpl6nVYWpmanUYmyX5mNYBU6vD1szUy9TqMDUztTqMzQPu394/fSBcvHjRPM+ztra2oFPeiqnVYWtm6mVqdZiamVodxmZJPqZ1wNTqsDUz9TK1OkzNTK0OY/NACfQ5Um8SDoeRn58fdMY7YWp12JqZeplaHaZmplaHsVmSj2kdMLU6bM1MvUytDlMzU6vD2DwQ0naQEhERERERSVdpdbMJERERERERBhqkREREREREEqRBSkREREREJEEapERERERERBKkQUpERERERCRBGqREREREREQSpEFKJEAtLS3wPA+9vb1Bp4iIiPxr2tckk+g5UiIp9PHHH2PGjBn49ttvAQCRSATd3d0oLi6G53nBxomIiCRI+5pksuygA0QyWW5uLsaMGRN0hoiISFJoX5NMoq/2iaTIypUrcfbsWTQ2NsLzPHiehz179sR9BWLPnj0oLCzE4cOHUVFRgby8PNTU1CAcDmPv3r0oKyvD8OHD8eWXXyIajfrvHYlEsG7dOowbNw75+fn44IMP0NLSEswHFRGRjKB9TTKdrkiJpEhjYyNu3ryJqVOnYsOGDQCAtra2V8578uQJtm/fjoMHD6Kvrw/V1dWorq5GYWEhjhw5gtu3b2PZsmX46KOPUFtbCwD4/PPPcffuXRw8eBBjx47FTz/9hIULF6K1tRUTJkxI6ecUEZHMoH1NMp0GKZEUGTZsGHJzc5GXl+d/7aG9vf2V8/r7+7Fz506Ul5cDAGpqarBv3z50dnaioKAAU6ZMwSeffIIzZ86gtrYWt27dwo8//ogHDx5g7NixAICGhgYcO3YMu3fvxqZNm1L3IUVEJGNoX5NMp0FKJM3k5eX5mw0AFBcXo6ysDAUFBXHHurq6AABXrlyBmWHixIlx7/Ps2TMUFRWlJlpEROQfaF+TwUqDlEiaycnJiXvted5rj8ViMQBALBZDKBTC5cuXEQqF4s57eZMSEREJgvY1Gaw0SImkUG5ubtyPaZNh5syZiEaj6OrqQlVVVVLfW0RE5E20r0km0137RFKorKwM58+fx927d/HHH3/4//v2b0ycOBF1dXWor6/HoUOHcOfOHVy8eBFbtmzBkSNHklAtIiLyetrXJJNpkBJJoYaGBoRCIUyZMgWjRo3C/fv3k/K+u3fvRn19PdasWYOKigosXrwY58+fR0lJSVLeX0RE5HW0r0km88zMgo4QERERERFhoitSIiIiIiIiCdIgJSIiIiIikiANUiIiIiIiIgnSICUiIiIiIpIgDVIiIiIiIiIJ0iAlIiIiIiKSIA1SIiIiIiIiCdIgJSIiIiIikiANUiIiIiIiIgnSICUiIiIiIpIgDVIiIiIiIiIJ+g9Zq3wP4EZ+MgAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.prediction(pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Advanced: Autoregressive sampling\n", + "\n", + "The `model.predict` method supports autoregressive (AR) sampling, which is useful for generating\n", + "spatially correlated samples.\n", + "AR sampling works by passing model samples at target points back into the model as context points.\n", + "In `model.predict`, this is achieved by passing `n_samples > 0` with `ar_sample`.\n", + "\n", + "AR sampling can be computationally expensive because it requires a forward pass of the model for each\n", + "target point. DeepSensor provides functionality to\n", + "draw cheaper AR samples only over a subset of target points, and then interpolate those \n", + "samples with a single forward pass of the model.\n", + "This is achieved using by passing an integer `ar_subsample_factor > 1`.\n", + "`X_t` will be subsampled by a factor of `ar_subsample_factor` in both\n", + "spatial dimensions to obtain the AR sample locations.\n", + "Note, subsampling will result in a loss of spatial granularity in the AR samples.\n", + "\n", + "For more information, check out the [Autoregressive Conditional Neural Processes](https://arxiv.org/abs/2303.14468) paper (ICLR, 2023)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:40:32.644277891Z", + "start_time": "2023-11-02T15:34:17.368787493Z" + } + }, + "outputs": [], + "source": [ + "date = \"2019-06-25\"\n", + "test_task = task_loader(date, [100, \"all\", \"all\"], seed_override=42)\n", + "X_t = era5_raw_ds\n", + "pred = model.predict(test_task, X_t=X_t, n_samples=3, ar_sample=True, ar_subsample_factor=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:40:32.701346679Z", + "start_time": "2023-11-02T15:40:32.690589653Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "\nDimensions: (time: 1, lat: 241, lon: 401)\nCoordinates:\n * lat (lat) float32 75.0 74.75 74.5 74.25 74.0 ... 15.75 15.5 15.25 15.0\n * lon (lon) float32 -160.0 -159.8 -159.5 -159.2 ... -60.5 -60.25 -60.0\n * time (time) datetime64[ns] 2019-06-25\nData variables:\n mean (time, lat, lon) float32 275.0 275.1 274.4 ... 301.0 300.9 301.1\n std (time, lat, lon) float32 1.811 1.553 1.384 ... 0.6224 0.6557\n sample_0 (time, lat, lon) float32 275.8 274.9 273.8 ... 302.4 302.7 303.6\n sample_1 (time, lat, lon) float32 274.5 273.8 272.9 ... 302.5 302.8 303.7\n sample_2 (time, lat, lon) float32 276.8 275.8 274.5 ... 302.5 302.7 303.7", + "text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
<xarray.Dataset>\nDimensions:   (time: 1, lat: 241, lon: 401)\nCoordinates:\n  * lat       (lat) float32 75.0 74.75 74.5 74.25 74.0 ... 15.75 15.5 15.25 15.0\n  * lon       (lon) float32 -160.0 -159.8 -159.5 -159.2 ... -60.5 -60.25 -60.0\n  * time      (time) datetime64[ns] 2019-06-25\nData variables:\n    mean      (time, lat, lon) float32 275.0 275.1 274.4 ... 301.0 300.9 301.1\n    std       (time, lat, lon) float32 1.811 1.553 1.384 ... 0.6224 0.6557\n    sample_0  (time, lat, lon) float32 275.8 274.9 273.8 ... 302.4 302.7 303.6\n    sample_1  (time, lat, lon) float32 274.5 273.8 272.9 ... 302.5 302.8 303.7\n    sample_2  (time, lat, lon) float32 276.8 275.8 274.5 ... 302.5 302.7 303.7
" + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred[\"2m_temperature\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the *difference* between each AR sample and the mean prediction to highlight the spatial correlations we get in the AR samples." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:40:38.393236245Z", + "start_time": "2023-11-02T15:40:32.698338492Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAD1CAYAAAARbz9gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d3hTR/r3j78kHcmyLMty79jGxhSb3nsoIRACIaRnE0hCdtN7sum9btpuekjvPaQQAklISKEFQoDQMQbjAsa9yLa6fn8cjTSSnQ15vpvn8/ntc97XpcvW0SlzZu65y3vumdEFAoEAGjRo0KBBgwYNGjRo0KBBgwYNGjT8h6H/ny6ABg0aNGjQoEGDBg0aNGjQoEGDhv9OaMSTBg0aNGjQoEGDBg0aNGjQoEGDhj8FGvGkQYMGDRo0aNCgQYMGDRo0aNCg4U+BRjxp0KBBgwYNGjRo0KBBgwYNGjRo+FOgEU8aNGjQoEGDBg0aNGjQoEGDBg0a/hRoxJMGDRo0aNCgQYMGDRo0aNCgQYOGPwUa8aRBgwYNGjRo0KBBgwYNGjRo0KDhT4FGPGnQoEGDBg0aNGjQoEGDBg0aNGj4U6ARTxo0aNCgQYMGDRo0aNCgQYMGDRr+FGjE0/9SrF27ljvvvJOWlpZuvx1zzDEcc8wx/9fL9H8De/fu5brrrmP48OHY7XaSkpIYP348H374YY/n19XVce6555KSkoLFYmHs2LF888033c77/PPPWbBgAQMHDsRoNKLT6f5tGU4++WQSExOxWCyMHj2azz777A+9x9GWC6Cjo4Pbb7+d4uJiYmJiSE5OZsqUKZSVlf3uc/5Ifb366qvodLoeP7W1tX/o/TRo0PDfAc3WaLZGszUaNGj4M6HZGc3OaHZGA4DyP10ADT1j7dq13HXXXZx77rnY7faI35555pn/mUL9X8BXX33FsmXLOOeccxg5ciRer5f33nuPU089lbvuuovbb789dK7L5WLatGm0tLTw+OOPk5aWxtNPP83MmTNZuXIlkydPDp378ccfs379eoYOHUpMTAybNm3q8fkVFRWMHTuWzMxMnnvuOaxWK88++yzz5s3jgw8+4OSTT/7dd/gj5XI4HEyZMoVDhw5x4403MmjQIFpbW1m7di2dnZ3/0foSeOWVV+jXr1/EseTk5N99lgYNGv77oNkazdZotkaDBg1/JjQ7o9kZzc5oACCg4X8lHn744QAQOHDgwP90Uf6vor6+PuD3+7sdnz17dsBisQScTmfo2NNPPx0AAmvXrg0d83g8gQEDBgRGjRoVcb3P5wv9f+mllwZ+S/QvvPDCgNlsDlRXV4eOeb3eQP/+/QO5ubkR9/kt/JFyXXnllYG4uLhAeXn57963J/yR+nrllVcCQGDjxo3/R8/SoEHDfx80WxMJzdb0DM3WaNCg4f8Ump2JhGZneoZmZ/77oU21+1+IO++8k+uvvx6AgoKCUOrgd999B3RPS62oqECn0/Hwww/zj3/8g/z8fGJjYznmmGPYu3cvHo+HG2+8kaysLBISEjjppJOoq6vr9tz33nuPsWPHEhcXh9Vq5bjjjmPz5s3/N145hJSUlB5TRkeNGkVnZydNTU2hYx9//DF9+/Zl7NixoWOKonD22WezYcMGampqQsf1+qMT9TVr1jB48GCys7NDxwwGA7NmzaKqqooNGzb87j2OtlydnZ28+OKLnHrqqfTu3fuoyheNP1JfGjRo0CBDszWarTlaaLZGgwYN/yfQ7IxmZ44Wmp3574dGPP0vxAUXXMDll18OwJIlS1i3bh3r1q1j2LBh//a6p59+mjVr1vD000/z4osvsnv3bubMmcOiRYuor6/n5Zdf5qGHHmLlypVccMEFEdfef//9nHnmmQwYMID333+fN954g/b2diZOnMjOnTt/t8xer/eoPoFA4P+oTlatWkVqaippaWmhY9u3b2fQoEHdzhXHduzY8Yef43a7iYmJ6XZcHPv1119/9x5HW65NmzbR0dFBnz59uPjii0lMTMRkMjFixAiWLVv2h8suo6f6EjjhhBMwGAwkJSUxf/58tm/f/v/pWRo0aPj/T2i2pjs0W/PHoNkaDRo0/DtodqY7NDvzx6DZmf8eaGs8/S9ETk4OvXr1AmDo0KHk5+cf1XV2u51PPvkkxIQ3NDRw1VVX0a9fPz799NPQebt37+Zf//oXbW1t2Gw2qqqquOOOO7jssst44oknQucde+yx9OnTh7vuuov33nvvN59bUVFBQUHBUZVx1apVf3gRwRdffJHvvvuOxx9/HIPBEDre2NhIUlJSt/PFscbGxj/0HIABAwbw3Xff4XA4sFqtoeOrV68+6nsebbnEKME//vEPBg4cyOuvv45er+fRRx9lzpw5LF++nOOOO+4Pv8Nv1VdGRga33HILY8aMwWazsW3bNh588EHGjBkTGhXRoEHD/zvQbE0kNFvzx6DZGg0aNPweNDsTCc3O/DFodua/Cxrx9F+E448/PiL9sn///gDMnj074jxxvLKyktLSUr788ku8Xi8LFizA6/WGzjObzUyePJlVq1b92+dmZWWxcePGoypj3759j+o8geXLl3PppZdyyimnhEZMZPy7nRz+3W+/hcsuu4xPP/2UBQsW8MgjjxAXF8dTTz3F2rVrgXB6ayAQwOfzRVyrKOHudDTl8vv9AJhMJpYvX058fDwAU6ZMoU+fPtxzzz0hJS23C6ipsj0949/V18yZM5k5c2bo+6RJk5g9ezYDBw7k9ttvjzDkGjRo0PBb0GzN0f/2W9BsjQYNGjT8NjQ7c/S//RY0O6Phfxs04um/CNGMtMlk+rfHnU4nAEeOHAFg5MiRPd739+YSm0wmhgwZclRllNnq38OXX37J/PnzOfbYY3nrrbe6KaXk5OQe2XoxB7gnhv73MG3aNF555RWuvfZaCgsLAXXE4J577uHmm28OzZN+7bXXOO+88yKuFSm3R1susevCuHHjQgoawGKxMHnyZD755JPQMaPRGHGvV155hXPPPTfi2O/VV0/Iz89nwoQJrF+//nfP1aBBgwbQbI2AZms0W6NBg4Y/B5qdUaHZGc3O/DdBI540kJKSAsCHH35IXl7eH77+z0hL/fLLL5k3bx6TJ0/mo48+ChkWGQMHDmTbtm3djotjpaWlR1WmaCxcuJC//OUvlJWVYTQaKSoq4oEHHkCn0zFx4kQA5syZ85sjIkdbrp7mTAsEAoEI4xj9rOj6Ppr6OtpnadCgQcOfAc3WREKzNRo0aNDwn4VmZyKh2RkN/5ugEU//SyEWfuvq6vrTn3XcccehKArl5eWcfPLJf/j6/3Ra6ldffcW8efOYMGECn3zySY8L4wGcdNJJXHLJJfz000+MHj0aUNM333zzTUaPHk1WVtbRv0QUFEUJpe+2trby/PPPc+KJJ4aMWHJycojd/z8tV2ZmJmPHjmXNmjWhuemg7gzx/fffM2bMmNA9R4wY8ZtlPdr66gkHDhxgzZo1TJ8+/aiv0aBBw38PNFuj2RrN1mjQoOHPhGZnNDuj2RkNoBFP/2sxcOBAAB5//HEWLlyI0Wikb9++EemL/ynk5+dz9913c8stt7B//35mzpxJYmIiR44cYcOGDcTFxXHXXXf95vVi14L/BFavXs28efPIyMjg5ptvZsuWLRG/DxgwIKTMzj//fJ5++mlOPfVUHnzwQdLS0njmmWfYs2cPK1eujLju4MGDIUNSXl4OqKMh4v1F+evq6nj00UcZP3488fHx7N69m4ceegi9Xs/TTz99VO/wR8r1yCOPMGXKFI477jhuuOEGdDodjz76KA0NDdxzzz3/0fqaPn06kyZNYtCgQaGF+B566CF0Ot1RPUuDBg3/fdBsjWZrNFujQYOGPxOandHsjGZnNAAQ0PC/FjfddFMgKysroNfrA0Bg1apVgUAgEJg8eXJg8uTJofMOHDgQAAIPP/xwxPWrVq0KAIEPPvgg4vgrr7wSAAIbN26MOP7JJ58EpkyZErDZbIGYmJhAXl5e4JRTTgmsXLnyT3m/nnDHHXcEgN/8iDoQqK2tDSxYsCCQlJQUMJvNgTFjxgS+/vrrbvcV79zTZ+HChaHzGhsbAzNmzAikpqYGjEZjoFevXoHLL788UF9f/4fe42jLFQgEAj/++GNg8uTJAYvFErBYLIGpU6cG1qxZc1TP+SP1ddVVVwUGDBgQiI+PDyiKEsjKygqcffbZgT179vyhd9OgQcN/FzRbo9ma34NmazRo0PD/BZqd0ezM70GzM//90AUCwdXDNGjQoEGDBg0aNGjQoEGDBg0aNGj4D0JbfUuDBg0aNGjQoEGDBg0aNGjQoEHDnwKNeNKgQYMGDRo0aNCgQYMGDRo0aNDwp0AjnjRo0KBBgwYNGjRo0KBBgwYNGjT8KdCIJw0aNGjQoEGDBg0aNGjQoEGDBg1/CjTiSYMGDRo0aNCgQYMGDRo0aNCgQcOfAo140qBBgwYNGjRo0KBBgwYNGjRo0PCnQDnaE51OJ263+88siwYNGjT8PwWTyYTZbP6fLsb/Gmh2RoMGDRr+s9DsTHdotkaDBg0a/rM4GltzVMST0+mkICeH2sbG/0jBNGjQoEEDZGRkcODAAS0oIGhnCgqora39ny6KBg0aNPzXQLMzkXA6nRT06kVtff3/dFE0aNCg4b8GR2Nrjop4crvd1DY2UnXwIIrJjtcLXi/4fOrvTid0dKjHEhJAke6qKGAwgMulnmMwgNkcPl/A61WPxcTAoUPbWLXqExwOB6WlQzj++JOwWs2h54h7gloG+f+WFvX+yckQFxdZDkWJfI747nJF3qO1Vb2P3a7+7nSGy+pyQWOjeo6iqPfxesP3l5/hcEB6eviYgNMJTU3qX/kacR/xzNZW9XlZWVGNJj0D1HdNSFDLAmq5Rbk6OtR7Wa3h+yiKWjcJCerxrVtrWbNmFYGAA4+ng46OTjzudjqam+no6qK100VLSydOpwO3y4FOp8OekEBhXh6FWVkUZWWR368fFr0epasLk8eDETDqdBhNJkxGI0pMDDqzOVzhXq/aUDEx6vfW1vALBCti1k03sXbHDuKNRgYkJmICvH4/jkCAva2tuIKVmpiQwICiIgb070//gQMZ0Ls32UlJWBMTMabl4PGYUBQd4vGiPkzONrUxAeSyOZ3hhgL15JiY8Dlms1qB4nzAn5yKw6F+lV/DbA73D9EW8mPErZzODsrLt1Je/jM7d/5MZeVB2tvbcTgcdHU56OrqoF+/Ydxyy/Okp/cJyUd1dQuVlVtwuapwOKpwuSqpr6+iurqKmppqfKKTAqBDrzcQH28nIyOHmJgYamoa6OhoJSWlFIPBgF7vR6/3kZ7upaOpifaODto6OnB0duIU9fEbiImJISkpifr6erzBtjEaDBSkpzN70iQWnXEGuYmJ4Q6akIBfMaHHr3Y4ny9cWaJzCOUlOkdCgvrd4YhUNEIhJSSEG1m0a1wcnYot1CdbW8P9QP4r0NgY7h/iN7kvdXSE21nWMQI+X7h4CQmRryCKlJQEir+B3MJC3G63FhAQtDO1taxfX4XRaAPU+haiINpAbj9Zr4L6m2xbHA61PYR+FTLg84HRWM+RI+/S2lqF3Z7FyJFnkJKSAUBdXaRN8HojVUBra7h/C5E0m9VrRLmEjVCUcL8XIi2LudAB4p1keZS7gXinmJjwM8W7Wq1heRVlgO7qVrYzsup1OCLVmvzeoqwJCZHyLOyIohCh+0Q5xO9Wq/q3udnNkiVf0NbWTGdnB+3tDjo7O/B4OunocNDU1IHD0YHb7cDn60SvD6AoCvn5hfTrV8jA/vkU5uSQkJiIsa0No04Xsi2m2FiMMTEY4+PRG43hxhZGUn5ZUCspqBv/9c473PHKKwAMSkrCrtPh9ftxGwyUd3TQ3NWl3kJR6J+TQ7/cXAYUFjKgb196Z2djM5uJS0ggNi4Onc8XsglBxa4ae1FBQqhkOyOXS5RVNGBycoSdwWBQKzQ5OVKoRMOKRrRaw8+y20MdydfZye7KSn7euZOff/mFnTU1tHd14fB4cLhctDudJNpsPH7JJcwZOzYkRL7YWDbV1XHwwAGqDh2i6vBhKmtq1P+bmuiMyhxRFIXYWAvZmRkkWK10ulxUHzpEfn4fLJZ4vF4/4Mdo9NHV2Ehbe7taDqcTh2iz34BeryclMZFOlwuHwxE6npOWxtjRo/nbxRczsrQUndsNcXHsrrSE+qusR5KS1KqRRCEk/7LYRPuzoj+7XOo9ZP0u+k5Peko8X5wr+n96evfrXS44ciTsq1qt4XPkc4UtiotT7xOtD2NiICurjTFjcjU7I8HtdlNbX0/VV19hS04OK/eg8+a32mhsjNTnQiaEq9HYqH6EPIjuLMcVTicYDC727v2UAwd+ISYmlgkT5lJSMhRQ79nSEj5X6FAhJ4cOqXIkur2su0VZRGwlVJw4R8h1TU13OyNcJfEcUX6zOSzjwr9RlLCdSU5WP+I68bu4h1x+OS4SdqSyMmwPRL3J7yFsc3IypKWFbZ+IbxRF7Rc92bvcbL96A6uVZcvXUVZWjs/XQVtbBx0dHTidHbhcDlpbOzh8WP3u9Xbg8TiIi4snOTmdkpJC+hXlU9i7N2nZucQEfBi7ujAFApgUBcVsxmQ0YlQUDCLIam1VX8TniyykzxehUHavW8foJ54AoADIAbyAD6jV6agMBADQAb3j4hiQmEj/zEz6DxtG30GDSLLZiDMaiWtqwtDeHtb/omFl50ZWRKIhHI7wd+FYiNhGGPe6usiAVzSWaFi5IwhhFwIgBMblImAwUNPZyc/79/Pz/v1sOXyYpo4OHIEA7YAjEMAHXDluHDdPm4bRYAi9y16/n72HD1NVU0NlYyNVDQ1UNTRQ2d5Ok7CDoccrGAwKWelppNntePx+qo8cwZaQSHZ2L1wu1c6YTH6cTU20t7aqdsbrpa2tDb/f/2/1hN1uR6dTaG5uCB1LTEyktLSUqVMXMHPmPDIyTLhcaj+rrFT7rJBtoR9Ev5FDKEVRzxf9SPYfZf9O8CbimOi/ot+IJpX1hvC9hK8p+4iyDRF2StxDiKssQsI/dLnU6+X+L5pc8As2WxtDh/6+rdEFAkFp/zdoa2sjISGB1qoqbGlpdHpN3RxpUUhZCYuXlY2mKHBFRWQgZjaD3+/mppv+SkKCjdNPX4DJlMgPP/zAkiVvcO+9DzBy5JgIw+pwRMaX4t7imcI4i+da6Iz0PhQFv9lCQ0PkPeS41eFQDUNPPp74v6UlHGjK5fB6wz6fwxFZR3J9yPeQ60jAao2sU9HXRb3Z7eE2EMZDHBOQ301cm5ICSXY/d9x1P3fffRsAcXFx2GyJJCRYscbEYI2NxWq3Y7ElEBtrxZ4Qh8flormlhbK9eynbt4/W9vbfEyEA0m02Zg0ZwpzRozl20iTik5LCClHOcggW8Pu9e/nnkiXovV4UvV79GAxYzGb6FxdTOmkSpSUlpGVmohPBhkCwIvz2pBCJqHe0RbJBomFF5Tid0NCglkcqB3a72giKopZTFnpxfVERnV4TABazPyxf6EMy5HCE7GJIhqzW8K1aWsKy63b7WbNmM99++yUHDvxCbW0FBoOCTmfE71fQ6cTHSEJCCllZ+WRmFlBamk+/fgUUF2ditUJ19WHKyiqoqTnEgw/exowZJxIIeGlubqCzs4PmZg9tbW0cOlTGkCHjMJn0GI164k1e4g0GbGYztuRk4pOSsCUlYUtOxhYfT3xMDLZAAL3TSV19PbWtrRxubKS+qYnM5GT65ObSJzGRXJsNQ1xcWCCFwbPb1U90vcudTxhG0VZyBxPCLzqLqGS584jKFM8J3rPTqQ/Vv+j7igJ79vzMq68+QVNTE3p9gMzMbM4772oyM/tHBAWi74r+1dAQqctkPST6nHg1r1ftdxkZoNe3kZiYQGtrKzab7aj60H8zhJ2pr2/FYrGFml2QIqLfCD0oRCbaBojfhViJbi6fs3nzYsrKljFt2kUkJfWjtnYfq1c/x4ABkzjxxKtCKkBWExApSuJ+4jwIi6yse+X3EH1etgGiTLIsyuIt9IN4V0VRZUgmgMQzZRsi7iHOgXA55OfI9kyUI9pBgvAz5SDLbIacnPB7ynZGvJvo6lu2bGb06GEAGAwKNlsqMTFWYmPjsFis6PVWdDorRqMVi8WKwQCBgJOGhjLq6sqorz90FFIEFrOZY4YN44QJEzhhwgRys7PVCmppCb+ceCmzmcaODi554gncXV0ogQAKoOh0GBWF3tnZlPbvT2lxMQV9+qjBhoAQSFGh4qVbWsIjYEIQ5UpzOlU7IpEm3RpLXCcETjSQaGizOSzcouHEb3Ik6HCEGy5aKIJ1cbCxka/Kyvhm+3aOtLXR6XajGAwYdToU8YmJIT45mbz0dApyc8nPzKQgLY08RcEENHk8HGxtpdrh4KnPPiOrqIiMjAwa6utpa22lq6sLfyDAxk2bGD1iBLGxsej1evQ+H3GKgs1oxJaYSHxiIraEBGxWq2p3YmOxGQzE+nw01ddTW1fHYYeD2uZmLDYbfYqL6dO7N70zMoi1WiElRR3M8LpDArm3whTyz4QvKgafZFmFSFkWENUozJbsz5pwg6Lg9uoj+oRJ8UfYGVmHtLfX8uabT7Bt2y8YDEZiYozMmbOI4cNnR5RF7kMQ9h/kvhotitEEiNUKeXltlJZqdkZGKKb57DNs2dmRPl5Li3qS+K4o+K02qqsj9bXcrqIrirYTXW7//s08/fQ1zJ59JkOHTqW6uo1vv32TtrbD3HXXyyhKbMg+iHtAdxdT1t/yYISQRQjbGXEPcR/oLkcy7yCTTeL1o38XVSGqSXZ9o9WOuEe0ehNllP+XyyJfL7uGoilSUsLPFmpM7i/5+aBvaSIQCJAzaBCHDqn2IjExBYslHqvVis2m2havNy5kZ6xWK+3tzTQ1HaaurozKyv1RA7Y9w6DXM7S4mBPGj+eE0aMZNmAAuthY9cctWyIrPWgnbvroI3bV1KB4vaqtCQQw+P2kW60MzM6mtLiYfvn5xKamhis7JSUysN69O9zQwmlISYkMeMVn9+5Igy83hiiXcErs9kjBEUImnikLisxoCMUkHJOcnEgHxeGAhgZad+xgVVsbXzoclPt8tAQCKAYDit+P0e9X68NkIsZqJTc5mfyMDArS08lPSaHAZiPBaKTD76fS7abS7ebbykrWlJVxzPTpNDU10VBXh8frxQ/s2LmTtNRUsjMy1AF1nQ6T30+C0ajGL716YbPbscXHY0tOJi4+AbuiJ16vp6OlRY1nWlupbWqiy+0jL6+Qvn37MKBfIYmJibQ59OzbFxm/VVerHxHjiVcX/Uj2XUVoIvcROfQRsi73GRF+RvMmMuT+ZDZ7+OWXl1m9+lMMBgN+v4fJk49n9Oi/YjDEdrM10VyEzGsKiPeVQzIhOvn5EBfXxpAhv29r/hjx1NyM1WaPULByLGhSVPaw06mPcLKtVlRHQLKkdS2mCENtt8NN113BhMGDOWnWLLBa8VttOBxQX9/GokXzeeWVd0lOTonwy2TCR1SK3ikRTGYzfvRqVoVwOuWWs9tp81oi3kVAVuQ9OeLyOQ0N3eNi8Vd2GKLrTNxDNlyyEZDvIRdd9HGrFfR6F99//x4//vgxXq+P1NRenHLKRQwcWNrNqES9OjazG6/TyVPPPcetd9+NzZbAPfc8xaJzZofrS0i42RzJwgGB5mbq9+yhYtcunB4PHsAdCOBxOnE7HHiOHMHtdOLx+ynr6GBZVRU76usxKQrzx47lgtmzmVJSgr6zM9KKyA0KkVG//AIysRDtLQZ7hdtsQ1GCxJOsLIPv4tPpcLrduJqbcba0EK/TES8yc4QACy0gewbyMFFODp6YGD775hteeeMN/H4/A0tKGDR0KAWFg/F6LVRVNdHQ0ERbWxPNzU04HE2MHz+ZKVMmhzo8wLfffsB9911KS0s9MTFW8vOHkJVVgtvtxeXy4HR68fm8gAfw0NlZR3NzBW1tdZKMGikpGcgPP6xBUcysWPEJFRUHuOqqqyOUzeHDAY4caeK++y5h0qSpWCxGDh8+RHP9QQxuN4/feKNKHEVruGAHdDQ2snvPHnbu3097ZycLZs8mPkib+1wulq9Zw66aGtrdbqwWi0pmms1YbTasdjvxiYlYzWYKk5Kw6HSRMiAbONHRo4MsOSqP9sqFbESzA5I81zWo+yssW/YeK1Z8wkMP3k9edjYAv+7ez7XXXs+ZZ17NiBFTuzlHssGJLrLsFIqiCdGz29W+6/G0UVSkBQQCws5UVbWSlGQLNbsw5NGBYm1tpG6WA0shEkKvyoFjdfVKfv75A+655zl0Ol2obTyeAM89dzVDhkxl6NC5IRsjO9FCnOR2FuUUZeip/YUdkUkhWb8LIi2aNJIJN/ldRX3I5wiHvycVKjsLcjlEGWX7UFsbqUrF9cnJATZu/JEPP3yJ5uYmTKY4Zsw4h1NPnYXFog/dR9S/HJgIn/bLL1dx6aUXUlVVwZw5N3LssbcRF2cEIttJVrtC1ScmOmhtLcfb1YSnrQ138ONpbcXd2oqnpQV3WxsNXV18uXcvP+7di9fnY3xJCRfMn8+p48cTJw/lybZNLng0yywqJyMj3FjimDDe8jXiWFTj+9vbcdXV4WpqwtnSggFIjY1V75mf3z0gEA0tvkuC83N5Oc/9/DNlLS2UxMcz0G5nUHY22TYbLZ2dNLa00NTWRpPDQZPZTEpyMhdMnIhOBDRmM3sOHOAvzzzDpspK9Dodo3NyyLVasRkMeD0ePD4fXo8Hr16Px2CgVaejormZqqamiJHinORk3r/2WsYOH06Lx8OChx7isw8+iKxXoKOjg7dee41NW7cyedw4aurqOFRXR+ORI9y+aBFFffvSI5xOPO3tlO/fz87ycioaGphzzDH0KS4OPWPTzp2s//VXapuasMTGhgfN4uKIScvGYLASF2clPz+bpKS0bjGhkPc0uzvc5kG4vfqQk223B/1LOVUjKOT+4F49eq87TDyazfgVU0i2a2vLuf76v3LXXfcwceI4dDodBw408eCD/8Dvj2HhwrsjbIzcL+XBq2g/UwQxsp0Jm8A2xo/X7IyMUEzz1VfY0tMjA2UR3UX5EXUOSwTpAWEXsLY2krDPzweTqZULL5zHkiVLSExMxOEID7ivXbuCH3/8jFtueSak+3/LRgjIMhBtI4R+b2iIHAiLtjUQac+ibYSihAd05NcXsYbMg/dki8Q10URcT/ZOHtSPjpna2g7w7rvPUVGxE9AxatRMTjrpHPLy4iPKKqvdjIzw4HJlfT2XXXstS5ctY9KkOdx007MUF2eH1Gl1dffngvp+yckeKndup66mBo/Hg8frxd3crNqatjbV1rS30+l28+P+/azYupXWzk7y0tM5f+ZMzp81ixw500iuLNmuiMJHN4ZwEGVBk0evhcMpj0aJhm1pIdDcjMfhwNneTuuRI7iAbMAM6OLjw0SWHAjIMY4QHK+XQ11dvFhZyYq2NvKBQcBgg4G+ioLD5aIWOAI0AG2ou5VdMnQoyfn5aoMoCh3t7Vy8ciVvV1fjA4qAYiAZNdvLBbiD/wN4dTqqDAYqAgG6JAIw0WzmhmnTuGHuXLBaOempp3j5/vtJ7N07gjRzd3ZSVlbG366+mmvOP59DTU0cqqvj0OHDzJs6lZOmTQs7VeJdg7Y84PFQc/AgO8vL2V1VRb/iYmbMnRsSkqqaw3z55dfs2VOB220gIcFKfLxqW7xeK06nFZfLSnp6MtnZBeh0ulDTRifkiBlVohiy7hb9TbYFQm6j/bvoMMnphEDAzT//eSZz5hzPWWedTVxcDB6Ph/fe+5DXXnuTG274ALPZEnFvIRKyzyzKGk10y7kiwj/LyACjsY0ZM/7DxNPhw+GR6J78MlkZRMd4evwRF7U5w8STooBO18rCv5zJZy++GL5x8E3dmHj33WXs2rWdiy++IaKyxP/iOSbF351cgrDWjhY2sxm32dbtnjKxJY8iQeTtZQUarcRkJRtdZzKi42YZ8j2i69xsBperhSeeOJ3x409h3LizUJQ4jhzZzpIl9zF69FTmz/9r6HxhNGSDYjH7Qw/++ddfGTdjBkajkcbGZsx6Qo5ViLyrro60jkJSKyrCBZPre9++cOGDD93v8bDk8GGeXbuW/fX19E5L444TT2TBzJmRLyg3bHTjCMhKWkCuTNErZPbO4aC9spKTb7qJ77ZvxxNV6YrBwPjiYmaPGMEVp51GjM3WvWGl5xxubOS5Vat44dNPOVxXx5iRI0lOSWHbjh1UilzKKBiNMZhMsbhcHSxevIoxY8bj9cJTT93FCy/cyfDhp9Cv3+VkZ48lOdkYMWjeU1BoNoPb3cG+fW/zySdX4XZ38Ze/XMSTTz6FxaLnhmsu45JFi8jMy+PN95fwzjvvUFl5gEOHDuF2R6av6vV6/H4/I4YPZ92336KYzbTV1bFtyxZ27trFrrIydu7dy659+6isqQldZzAYyEhJ4bGrruLUiRNZuWYNM264gXiLBbvViqOzk/auLrw9jCbFmkzMGj6ck0aO5IQRI7CLXGx5FEb2XuR+LAeLQg56UkriuORtub16HI4WzjjtFL5YsgRFnKsodGLhwIFOzj13Nk899RWJicaQ+EU7crIuE8ejSZBonehwaAGBDGFnDhxQ60PoTdlBFJB1plz3MmTiSiae/vnP+dx33wvk5CSHBgrFudXVbdx881lcc83nIZGSdXe0DpXVnUBP6ur39Lso728NPIjfozOv5P4veJDockQ7+3KdRttRiDST4nggEGDx4mvR6XScdNJV2Gy5tLTUs2LFYo4c2c3DD7+Koig91o3sPwPU1HQwdeoIKip2c801X9G377ERo2yinTIywhkoQo2LsQab1R8e8WloCEd+km1q8ftZvm8fL6xdy6pdu7BZLJw3bRoPX3ABRlEh8ktGe2DRJJRMDsmOv/AGZTJKsKINDTz6/fdct3MnPWEAMCs2lktHjaJAZADLgiF5rC6Xi7cqK3l23z5+bmkh12RitMnELqeTPV4vPbkXeiDRYKDR5+POIUO4Y9YsSEnh2+pq5j/3HFlWK/eMHcs0qxW7x9PdwIjKT0lR399ux2O3s+HwYc594gn2HTrE2OJiPrjuOrLT0/lm+3a2VVZyxWWXsXLnTl5+7z22bt/Oodpa2traIm6rKAperxebzca6jz5iQHExnvZ2du7cyc79+9kVJJp27d9PWVVVyE4rBgN6vZ6/n302N517LjHx8cSPG4fX5yMjJQWn04mjs5OuqGkZADqdjrEjR3LSnDmcdMIJFBYXg6LgV0x4var/6EffY//Q4+9eP9GRdQ/Or18JzxBYcM6JPPnYY+Tm5oaub3JaqK2Fm2++iDlzLmDgwBE9mjjx6OgxGLmcsj4URfD52pg7V7MzMkLE0zffYEtJiUxlix4BDvoLnVi66W/RrtED1Dk58PHHT9GrVzpnnn5y6IdOLCFdd/HFJ/P3vz9HbGxq6NpoWxYdNwg56Kn9f8vORPsrsojK8i3bEFmsRfeXCabo+0aTW0JOo8MtGbJMi+8Av/yylK+/fp5TTrmV3r1H4fV62Lz5Y776ajH33PMqBQW9uoUGIp4JJTig2qxLr7uOZ597jrPOuoJbbnk89H5iXEAm1UQZQvZFVDSEbUt0VK4oeIDVu3fz5urVvPHDD/j8fmaWlPD0OeeQL2ci/ZajEl1R0dOEZNJJdhKE4AXtzffl5cxqakIHdEY+gSTgGGAhMFenixxxkhmM4DNWORw87XTySSBADDABqAP29nBvgXhUEmmYwcDqkSMx5OZSq9cza8UKytrauCEQYEywLF2ow+Z6VEIMQAGsgD34MY0YQVVWFlf8+iufVlSQERfH63/5C8eWlICicMLixXx+xx3s9np5YdUqvl29mkO1tdSJxhX3DdoZgMX33svfTj0VnE4O7N/Pjv372XnwILsOHFBtzoEDtHd2Rlx34nHH8a977yW/uJj5Cxbw8aefkp6eiU4HDkd7xHRvGVlZvZk48SSmTJnP4MFj8PvDGbBCbqOT0eTfZZ9JnCOLSk/hkPj76adPkJFhZ9GiBRGmqaEBXnxxKfv2/cK5594RcY34X/aZ5WfL/VzuQ7IIud1t/PWvv29rlN/8pQccOhTumDIZIjvncp8RfQhQR4MUU4/39Xph7dpNjBo3nU57ljolTspMMVmtDB06kxdeeJ4pU8KVLo+Khn1FPV6vJayE5IdEa0hxjEjj3lP/llnJ3bu7Z0CJd432VWWnXxYuOWVOHBPf5YAJwryJ/M6i8V9//RrOP/9eRo8eKTGkpYwa9TY33ngWGRnjSEoqweuFoqLIJKGQYDud/LBtG6eedQ7x8Uncd9/b1NWZgvVhkoyDnn79epGUkxNWykL59esHdjt+q00dEayuVl9SED5mMy1+P1/v3s3yrVtZu38/+5uaAKior+eK11/notdeozQvj6H9+jGsXz/OnTSJGHF/6J73K3qoqLDoYRBRiQ0NrN60iV/27mXHgQNU19WRGBfH11u2hOr/xtNPZ1RRETF2OzuPHOHGxx7j+127GDlwIMdMnhyu8Og8ZauVBbfcwsqff2b4gAEsf/llBg8dCnY7+2stuN2t7Nu3naYmNx0dSXR0JNPYaGXTpndZt+5efL42vv++ErN5PLGxbbzwwp1Mm3YtBQUPc+SIDpMJsrMjHQK52sVfl+swhw7dwL59bzBs2Eiee/JfjBwxArxOcDhpr6vjlvvuY9nyL+nq6mDIkBmMHn06LS1ZQDYeTxnJyX56987jkUcWMnXqDD55Ww0mV3z7HaeffiptbW3o9Xry83tTWtKfM086iQF5efRPSaFfYSGNDgdXPfoop990Ey8MH870khIAFk6YwA3jx5MTFGJ3SwuO9nYcPh8Ot5tWl4sfKir4eO9ezlm3DkWvZ2phIScNH855p5xCTGJid69HTg/pqX9Ht5VQGvIHdarEu6+8xN8WLEAxm+n0mrDQBg4HFiukplqYOnUe69d/wbHHnthD5qEPnc4TmnMtlnhxuaChwYjZbOgW3IuiHUU29/+T6OiAoO2P6O4QrnuRrAKRflw0CSjr3jAv4MbpTKahQSU35FEcp9NGIGCgvNyLx6NEOADyiI/sMIsBxOggQI5fxPVCNfU0FeG3ZkqJd5HvI3McMjEnj07JXUMeJZfvFx0gyPeQz1m27EPsdjs33ni79FsqEybcyiuvvMpLL/2L00+/LuQDyDZLfu/m5sPMnXsmlZVlTJ36IBbLNPbtU8cnxOwzcY/8fBgxIlxeoQK8Xqiu1pOfn8SYMUn0HpEfngpgNuPxelmzYwfLN2/mh7IyNh8+DEBbZycvfPklz61YQX56OkMGDmRoURFnjBxJXkJCZAZr9ICH8NpkZ0dUvMTm7du+nR82bmTH9u3sRnWyv5RkexYwG0gBAkYjf/d6ebSrC111NQ8XF0cGKBBOpQaeLSvj6m3bsBkMfFhczIkWC4rLBXY7bpOJ3Tt2UOt0kqQoJPn9JHd2sikQ4HadjjXA/poa1S4rCnd98gnF8fGsnDIFm9sNYrp8T1lg4q/djttu5/GvvuLujz7CYjLx6l/+wjnHHINer4eKCjzl5axYs4Ynli3jQHU1paWlHDdzJqlpOSQlZVOYE8/DDz7Io9ddxwmXXUYA+OLFFxnQ2Un1smWc8OCDbA0O1mQkJTEgJ4cpvXtz6fDh9E9KYkBWFvHJyTy4ciX/eOMN3ly6lHtOPZUup5NJffvywAknMC4rC6xWfHo9HR0dtBsMOAIBHB4P26ur+XjjRm675x6uv+02BhUVcdLxx7PoggvILSykzWmJIG9EYBqauhfNBPTE4nq9IWbYr4Sn3x8oKyM5Pp7c3FzcmFAU0DudJJk78aZYuOCC63j11YcZOXJENx8xOsCQ+7WA0E3RBL1mZ/4NZMJJKJ/oUaSgwjZnhIknoTflma6yrfF6YdWq73jssTeoa9CTlmKGlhYsihdLhpVDtXrGjZvB1q3rKS2dA0QSOuIZW7aE21joP3nwI1pdRJNMEJnAJV5LQM4KFs8VuluQ/9GD57IbJuv3SL8osgplYkwOvIW9cTrVMlRV1bNkyZPceusy+vUzBp9lYuzY05k0aSQPPngZt976Wag+BGlkNkfGe572dm5+5FGefe45Ro8+kfnz7wxlOcljBVZreGaYqA+1bHpaWixUVKj1M316Fvn5WeT0U6fz4XAQMBjYtX8/yz/5hJXffcdPe/bgCXa2b3btovTWW7HFxDAkJ4eheXnMTE1lYny8+qLV1ZHT5OSATMQ0P/8cjn3kAXaHg9ayMj5yOPgZlQwKAI2ohA5Ab2Am6jpSCcB7wBJgOzBXGFO50aXG29veztTgfa4GLgz+bwZMQDmwEzAAcUAs0AG8C3wB1Ph8dG7ZQrzPx+tHjrCntZXPg+e5UbOj3IAfsABpqESEPnh/MxATG8sKn48rVq3igMPBtQMHcvvEidjy8kJOXk1dHZNuuIEf9+0jJTmZE2fN4uT8fLJyc8lOSODeBx7g/YsuYtErr/D1pk28cPnlnBsfj2fxYi7+5BNe2r9flSOTif5paQxISWH+mDEMSE2lf3Y2Bbm5LNmzh6s/+IABEyZwy6JF1Bw4QHZmJvffeitnnngixsxMHJ3Q3NxFXZ2DgwcdVFU5aG6uZt26paxY8SbvvfcoyckZTJlyIscfv4DBg8eFZE2s3BKdcCZ+j7ZFsn8nDyaKBFuhHzZsWManny4L9UG9ow2T00lWip1p005g6dLHiYsL4HLpepzV1RMfIe4l+8Sin0cTVb8H5fdPCUNWPOKhcowf7fALhRNBAAXfymyOHD0wGAy4XB71mDXyrTq9JlwuF+qya/9+oDJisC669mQPXfrNlKJm9ESzjj3dWyhIedRJKOmenANZwcr1GF32aMUtG5RoMlzoqJaWBgKBNqZNGymyGqXn61i48Bbef/855s17sttoitmsjuD50fPuym9ZsOBsBg2awBVXvEPv3pkR9SAH26qA68Ptp5ggRR2xq91NkOCykGa1EggE2HrwIMu3bmXpvn38VFmJPxDAGhODO/hSBp2OwVlZTMjPJzcnh+1NTbzx1Vc8v3QpRpOJ4oIC9tfVUV5TQ/nhw9TU1zN+7FjOOe00+qamRhSwqqGBx5csYWdlFfNPmM0pEydiNxjYvWsXEy+5BKOiMKCwkNxevdhSXR1itHU6HQ++9x5D+/ThinPO4aWPP8asKCyeP59jCgsjBTrY+Cv37aMzKYmEnBzOX7CAfTU1bNq5kzseeoh/3Xor+cOHoygWzOYEBg0aT0WFGlwdPgyLF4+guXkTimJn1KhleDwz+flnKCpSo+2srHF0dOhCMiZSn8X8YZvNR3PzZsrLd9DevovW1p14PN9hNJp48MEXuP7SM8JTF4Gaqio+XbkSp8fD/PnXUlh4PllZvbBaYft29f4//HAOo0bdx7p1t+PzeZk/fy7xRiMvv/02F158MRMnzuC66x6gqKiYnBwzFmdTxKg+7e3Em818cvvtLJs5k8v/+U++27KFCf368daPP7J45UrOHTSIc2fMICshgYONjRw8dIjK5mY8Xi86vZ55xcVMSEvji/Jyvior46uyMg75/dy9aFFkZxCdMdrDkvu9PDQsk1Hiu9TZ9pWXM33iRFAUnA4w223oxdQJB5SUDGLXrs1RaiVAbGwtcXEt6PUg8kZ1OvX/uDixVrodyAB03TJXjMbuRdegNpHPF6lb5d/kZozWudEEkEziiP91uvA0IdluCePp8Xjx+fQRZZKJoWgnvqeUaNlOCkhjKaFzhBMeXXbxu/gr3/+3RsN6Io16eo5s/qK7laJEZlOJ31aufJ2XX36bXjnh9evwevHbTSxYcA6nnTaDs866Fq9XF1EvYvq916tn5859zJkzma6uAGee+S1paZNCi1iKpCXhC4u6ExlP4p7iXMEBlZaqBaw5dIgVn33G52vW8HVZGR0uFzGKgkGnwxUMBvLT0phQUsKQ/v052NzM0tWreW/5crbPnMk18+ZRXl1NeWUl5Y2N7D9yhF5ZWZx93HEcU1ysTqIKemidbW28umEDH2/bxoSBA/nL0KEUxcVBSwsz33+f8o4OeqFOKdhF5AjxcmAj8HdgY0wMVR4Pl8XEcG9JSVjQJQ9uZ0sLu7q6sFssDMrKYubhw6xoaOCmgwexZ2UxLbimhsluZ1BbG4MkYb6zs5O7gu9+m6JwR1wcgm11uN0MDq7bF9F5nM6Iqevlra1sdTjY2dbGzv37WbdnD5V1dVx27LHcdcIJ2PV60Kt9xed28/Tq1XxdVsbCuXN568UXGTNmjLrguqKuk/POqy9z6pw57KmspOrQIU6ZNYuihAR+/eEHjn/oIfQ6HV/ffjvDBwwgUacLN7ZwumpqwOXi7lGjOKd/fy7/9FPOefZZhvXqxaGGBsY/+ihT8vK4bMYMRg0dyqG2Ng7u38/BhgZanU4MRiMjMzMZdtJJrNqyhe/27OHXJ57g5Y8+onLv3gh9EvJf8Ud2JNlRkx2r6KwnRVHlJnju/p07KS0q6t5xFZXgHjCgiKamQ6Gxumg/NDqYl/WDOC7/ld1fDf8GcptGE0+Sctbb7ZjMkbGCbIdkKIoa03g8HhQlNuJkt1fYFjdmsyHCTsjjZSKrQF66soexs25kpCwPQpfKNkQ+T3aVesqkih4QiX5+DyIfUU4Z8v174ra9Xli//hVmzrySlBQjOTnh56vl701WVg7V1TvIyCiJqH+rldBLdukMnLTwXL75ZiUXXPAo06dfTWKirlu8KiBx+yGSTnBDu4MxzZgx6jkOh4Pvli/ni+XLWfrNNxyqrcVgMGCJicER3ITCHhvL+KwsxmZn0+X38111Nfd/+SUvWyx8N2kS5eXllFdXs6+ri/0Aej2nxsczPyUFq0Wd/kRLC1VVVXyHSuhkNjdzTm0tE9PT0be2coPDwWLAhkouxQDVUl3vB14A5gL9gbXAMOAVCJNYkvA0dXXxjddLfEICCZ2dXOrz8TTwVPAZZ6EOoliCn2xU8sgJrAGuBLzACOBxwO90QkUFHR4PNqAXcDh4DqiRvDl4bwsqcbUHldTaazKx1WBgw+bNTMnK4pOTTmJAenrEyN/in35iS20t43r35t1bb2Xe6acTI6Z/m80cqa0lw27HEAjww6+/0istjYlZWbSVl3Pq22/zbUMDT/frx5ziYnJsNnWNYNEJOjuhqgrq6znVbmfWDTdw948/cufixWSlppKbns7CSy/ljgce4PKrr2HChPm0t7dRV3eQgwcPcuTIEdxuPampWcyefTU1NZvYuPELPvxwMR9+uJjPPqsiOzsnQv6jcybksS0puS7kIvTENcj9ymKJwWb20+mV7FewQ8bH60hKSsLvdwHmbjrjtyD37+iwSrZVR4OjPE2FcF7/XcaTbIOjUx/lE0xWsFotoesGDRrFY4/dz3XX/R23V48XC14pIFi+fAkjRszsFnBED0qKZ3dLi5ZrNzoX1WpFr4TTraMrVnyXiSdRyaIeZMJaLoessOVGkn+H8ECjbHRE3CwPQorpBmYz7Nu3hyFDRkasiyheD6BXr1KOHDkYKr8os2g/P3reeeczFi48mxNOOItrrnkZp1PpNuouV51YAFvuFMI3VBRITfWx5ut3Wfb66yzfsIFDLS0YdDp8wcg8wWJhfGEh4/LzGd+vHyP79CHOYFBvZrXy/Nq1vPb11wAsuu++UBOlpGSQmVlIQkIajz+zmPseeoiRI0dyzqmnMqSoiMWvvcZ7y5YRFxdHQcFgLrz8ci5VFE455VReuPsu5owdy0+7d/PV22+TMmQYDgfEGjrYsWoVn375Jc+9+y6by8o47/bbKcrJYdNpp9E3Nla1PvKEW6uVpvZ2jr3jjh77yKc//MCnM2bg8wVw1Ibbo7qaEPnk8VwCvInXu5qffprFzz/3ITl5FpdffjlZWX35/vv7mDnzBKqrTTQ0hAmn2lrwePazefMCamvXABAbm4fVOoC0tKs455yruPjiJPT6zlBqeEODg7kLzyPGEkdRbjGDB8/FZusVkluA6uql6HSxuFy9OPXUxSQmxnLZZZfwzuuvsmbDBk477UKuvPIprFZJNiIYXsICYTYze9w4po4bx0MvvsgDb77JwMxMTs3J4dlff+UFKcsMwG404vb76fT50AH64JxogcPNzT1H0dHsQ3RZZGUEkefJc6+A9IQEDu7fT/GIEVK/04f6S3NzBdnZ6RG3j4urxWptITU1DbPZgk6nC5FPfj/4/QFcrk4aG+twucBozAw9Pjq41hCJmBiwWMLNa1HC664oij6ky4ROFPpSTkSURUYl6cPybrUm0txcjdWaE9JbiqKeU1FRh16vLnxsMkWSX0JvyqInPnJbCtGTdbIobzTxJEO+z29ldkWvsyGuk+1DdMaDeLbsrMj6W9xbnBO9gLLaD3RkZsaDI3K6lN4MMTEm0tIy8PnasVptoeeYcINTffiePVXMnTuNmBgrN930HQ5HZkT3lGcTCJsnjon6kJcXLCqChISfeef1d1nw6ads3bdPLY9Ohz8QwGgwMCwnh3EFBYwfMICxxxxDRlpaqJJ319Tw8qefAvDmihW8uWIFALb4eAqLisjPL+CHLZt55bPPyElL46zJk5lXUsLyTZt4ZtUqmjs7mTR4MI9++il3vvMOY/LzeWnSJK7PzOSiffu4FZiO6lx7gQpgPfAWsBWVeDJ3dPBBcjKnNDWpbHUP6WoXLF3Kumo5pFBR5nIx/cABWvPzsQmnwG4PD9lbrRwXCLDryBG+8ni4x+vl6YMHmdHeziJFYWJuLs///DPXT5xIf9mbdTohJYXOzk5u+Pprngrq6ySrlZKCAmYOH87FEyYwSGw5JXW4699/ny/Kyjhn+HAG9+rF2MxMOHgwJKQ1HeW89OqrfPbSS1gDAd7o6OBv99zD6L17qaipoSg9nc9vvZUssf2umNYvj3yJqNDrpY/VyvILL+TjXbu46v33qW9r47nRo1m8dy+nvfhiyOcAiDMaMeh0ONxu/KgLAyP97na7CRgMODu6m7ZQR5A7hDwAIqfpiTqR2exg3aZbrRw8eBCcTrxBX9MSbGezGfz+IyQlJUSYs+ggXe6/0YR0tDmUdaKG34CsVKIrVm5HCClfvdmMmpvRMykj6nz69Nl8++0HLFq0SB3EsqpTT0Rc8+OPK3j44XcjdoGLDldE8eSxst+KNWSbEE0GyRxa9KsLPSvbqOhYQ7Zz0YRUtDsWnQ0Rzc1G15coi9kMVVVbmTbtogjbrQbOqt0fOXICVVW/UlQUJp6sVjB5VXq/zanntNNOY9WqVTz99HLy86eH2kmURS5btB0UC0TLe90kJR1i27b3+OeDH/P9+vVBMjE8fauod2/GDxzIuOJixhcWUmy3o9+7Vx2Y8fsZsXgxALWdnfQL2hkTUKDTUajT0eb3s7C1lYtbW5kL/AWoBB5DJWL6A78CL3V1kVNRwT3Bc15FnQJ3JpCOmkHUjJqN9C2qvfko2NYXA9egTocD1FQ2Cc8eOsSt0fN0UafD3YWa3XQjYIiPx9LeTicqeWACSlAJrp+An1Gn9I0ATq+vZ5zZzN3A+8B4wms5BVAznAzAp8CtQDtg1unobzTSPymJ60aM4JQhQ9R1CYXA5efz5Y8/cumKFZw2ZAhenY55paXEBLOX8HpxGwxc+cQTXH3iiaQlJLD+zjs56V//YsQdd5AVE0NNeztfZmQwNTERPJ7wFsXRKXsq04jVbuehE07g3OOP59Lnn+e7zZu5+29/Y/vevdx44w14PNeE6stoNBJnseDo6MDr9aLX69Hp9Pj94bTTI0cOkZCQE/EYuY9G+2fCJ5JjhmidHj0ryu3sINDeDrHJ6jI5kv3KyDDR1dWCzRYT2tQdIv3V4Kkhf1VWifL5AqKPH21M84dMkqyMRMGiR0zDzn2wEC2Oni2h04nJqoDZFBz9j2X06Ck89dSTnHfeFRGK7NChaj755AXuuuvTCOUuyhTNFopR1tAzo+k8Od9TfLdaIegMRDvqsnEXtxTPFkZBnv0l14e4riefRLyfTCzJxRP3klPt5M3AbLZ4WlvrQ8Ih7icMSW1tB4GAIfQsWXi8Xvj885Wcd96pjBs3j7//XSWdohlNmaAQZZHLJ0aqi4qgvPxrFp55Odv27KFfSgo5cXHUtbWRbrNx04wZTB0wgL7Z2ejF1stywwUfnB8fz6UzZ9K7Tx8KBw2iYNQYmpsLaGyMC72jXu/k118/58cf3+Cam2/G6/WSk5PPNdc8wtix57N/fzwdHYfYufMdPvroNlwuH89fcw2D/vpX/nbDDXy04iu8Xh1GayxDhg1jyKhR3H7jjfy8fTvnXnEFPqeTfItFVUpyvmOwIfV2e2jRuFGjRjFx4iTGlAzAr9NR3dhIckp2aERevjysSM5CnXThADbg862iru4J1q1L4oYb3ubaa8ewe/ft2O0PhhasNBgCOBwvs337Vdjtqdx99woUZTwxMdaQQurXL9jnnGoDtjb6WLjwLMrKynjqqTVYLDk8/viFJCWlMHHiCbS0uFm6dAkQy6RJT+L1gs8Xw+WXP8ucWUO56pprePDGG7noxvspL9dFTA/qlZHS3cuROmQscMe557J9715q6+q4asQIjs/JYVlLC+UtLbQ2NrLu8GGqOjvpHR/PX0tL6XS7WVNdzU8NDXT4fCg6HdsOHODaZ59l8sSJzJg4EbPB0H2bMrmzis4nKv+3vDXJy/rLrFlcff/9HHv88SiKLYIk9vv9LF36Lu+8s4T2dtHPfMTGqqRTQkJy6LEq4aRm6/j9EBOjjnTW19dhMKRhNhsinEk5k0dDGFYrpCQF155zeiOMimK2hJrRpKjZN1arKdTU0pq+PTrhDgfMnn01Tz55Fbfe+hZeb0zIgfZ4PDz//FUce+xVEfpc6O/obCLZ+ZbPFyIn63f5f3ktalkFyjsGRcdA4l3kQYZo0kj8HsowVtQdHCFI3gVvZHI6MZnNKNbw1Hd5+kRoAWXAZDbT6dTj8bjweAKY5AJCaP2atrZWbDYzJpNkL4KGray8jhNPnI7Ho+POO1diNmdG2Em5DqODI1F3cjp5VtZ+Dhy4kVde+YDUhAQGZGVhj4ujy+XiirFjObF/f4b36oXZaAw3nsUSYcjiYmNZcPzxZKakUJiXR2FhIYX9+5NcUMDh1jjMZkhM8LF+xQreeP11Xlyxgoc++IA4s5lFs2Zx1UUXUTBkCJ3NzSx96inueu89Zn/0ERuysvgUuBnV+c4JPq9X8LMAVevfFhPD+y4XxW43vkAAgzAQMglkNqMElUuf1FQmZWUxMS4Om9tNS2cnFZ2d2KJHAMXHamVsQQFj4+PxNjezoaOD5S4XL7a0UL5mDd/97W+s2LePv3z+OevPPBOTwRCqm5/Lyjjns8+oaG3lX9Onc+Zxx5Gamanu2CQRP6GOYLfz7NKl/PPLL3lq4UIumTWL25csYf4FF3Da6NEkJifzXXk5mw8c4MUHH8RqMIDDwdkzZ1JaUMAp113H5Lw83lm4EKvNFhYE2XBCuFNLzolOp2P+oEG0t7Zy7rvvclpODscnJ7PS72djayvtnZ3srKlhc0MDVpOJS0ePJj8piXVVVaw5cIDDwa3BEywWFp1/Pv0GT2Xs2DkkJ6dFyqKsTHqKDkSnl71/+ZjXS0lWFrt276a9upq4fgPU+7U4wGzGpMDbbz3HeectCC06Gx2ci9v+Vowk+rGsh5xOSExEw2/h0CE1Yy96hECWNXFcKG67HcWaFFItECZIrFZ9yOebPfs0zj//eKZNm0p+fgGgbuZjMSu89NHLDB06nPT0+AhSKZogEcWRA055F2thA6IHJ4T/Ioh7WSTFOeIZclgmZE4kxcibEUfbVfk5AvJz5LoRvmNP95DfNy7ORmdnPU6nLaTvMetD3ay2toHMzMKIe6jr+nrpMsZx5pnnsnLlUu6992OGDJkeEReJOgpy6xFBtXh/Ec8AFBZ2UFn5MCtWPMSK5T5G9u9Pdno6FdXVzD7+eC5YtIixY8eSbDCE03Xl+ZeAzuNhZkEBx2VmUggUer0UtreT7XBgCGaC+urr2YE6KPERaoYTqETNTcA0VJJmI/A8cAFq5tJVwD9QM5lyUQc4EoCxwERUcmcjKqmTgpgvJDWUJONKMP0+WVGYZDAwweUiF2gCNgFniOu86q5x3uDHiDqt717UsGM/sCr4uQqo83q5GLgHNQMrOXgbHWqW00PASmChTset/ftTkJSEwWgMC19sbNgepKSwvauLUx97jJnDhvHW3//OV+vXM+uOO5jXuzf9srIoa29nyfbtXHH88YzLzoaWFkoTE9l4yy0sfPppfj14kNUxMZQajWFBF0LR0yicUKYOBwNSUnj/8stJO/98CtPSuGzyZBaedRbfbt9OY309FWVlbNq5k9a2NqZNm0O/fsdRVraF8vI17NunrvGYlJTKG288QHHxOEpKZtGrV2lE35b7tdwvZd9MRnQ/En173PDhrFy2jGlnL1D9QendKis2UFraj/h4HR0dkeNHst2R+R2BaI5HnCNE/2hjGuXoTlORlgZZWWpHd3v1IUUpeJvoWDA0L15uwCjqXdbrZ555A888cxvnnDOf4447ndTUJDZu/I7t23/mhhtewGKJD50rEzMC4rtIZTXJLIpsRESt9pSDKt1LVrb/Lp2sJ5ZQNvzCkYDwsehz5HqQ79vTKIb43qfPQHbv3kJbmxun0xQqq5iz+eWXb1NSMr+bT+pwwBdffM25586lb99p/OUvb1Fbq0QER9ECKPtYtbWRBqOxcReL/3kJX3z3HROKivj+vPN4bN06Pt+7l1vPOIO/z5yJpblZPbmpKRxlRdO9Viszpkxhxpw5oW053WYb+/apU5jCTpWZMWNOoajoFM4+u4G6uh3k54+nq0sJrUNmMGQxcOC12Gx5PP/8qQxOsPDkxRdzxgMP8O677zNx4umYzXoswRfRKQojJ07kvTffZNi4cdy3axd3DxnSYyPZ4+PZ9PzzfPjTTyxds4ZHHnkYo9HIMWPGMPe445g8rIQ0uxsluJuNnBGmKKDTmQkEbKiJpmcSFzeVjo6XyM8fyJAhwzjvvHt54YUbSEv7Dr8/gSNHEvF4jlBV9R3jx5/PHXf8i7y8eCoqIosW6vRBATl0qIrvvlvKrbc+R1zcIBQF7rzzA1pbd/Drr9/j8RiYNu0+YmJ6hbqFcCTOv+ACzh03Dr3JRJtOF8wGkbuOiSTRj2WaWxaYlhZ+2ruXupYWYp98En9whNliMtHHbmd2797MLSjguMGD0RuN6lBT7954OzvZBqxxu1nb3MxH33/PYx9+iC0ujvkTJnDGmDFM69sXJS6OiILLXlBPwZjcgaXOlZOfz5CBA7nt7ru55pb7UBOXobW1g1tuuZaTTz6dmJi40DIoRqMHvR5iYiz4/erAufhA5Hej0RIsjgev1xDh7PSgdjQApsbDUOeLZGYAvF70Vi8mcSzo4eutVmxmM2azKTTlGHo2PV4v9OkzgqlTz+eGG2YxefJ8iov7UVtbxpdffsisWZfSr98EeXyk2yitQLRuls1LtBj2ZDPkV5PvF20DehJb+b16chDED2azmlWMogQ3iCB0gcmqYLXqI54XYVOD91AUE4MGDWL9+p8YO3YMimLCZFbv5/XC/v2VWCwJ+P3hRZQBsFopP3CEmTOn0t7u4G9/+wGvN1dONgzVlxiAlcltUf/i3OTkVhob72PJksdJS07i9RtvpP7wYa597TXmjh/P45dcQn5FhXqD1tbISo4iDnJ79eKZ224LHxcN29hIVkpwd81GJ2P792fstdfyr/PPZ92GDQzKyyMxJ0fVeQ0NWBwOTk9MZMzYsYxavpyT9+/nWWAUqjP+XPAd9agj0h7UNS1eMRrZ6vWyyOFgNWAQRlu8dDBye2/ePD7Yv5+lu3fz2rZtvOT3M8huZ25CAnMSE/E3N6MXlbR7t/pXLDoWjAKV6mrGtrczHPhCp2OgxYJFp+Ptk09mzAsvMPSll0g3mUiMiUEBltTUMDg5mc3z59OvqEgl7To6VCP8G0L9+PvvM2fkSC6dOhV0Ou6ZNo2G2lqWbt5Mw+HDzB0+nPsvukglr6TdcocUFrJ38WL0Gzao85PFdtxyPUTv3BLdcbxeftq/Hx2Q/cknoZ2QDHo9BXY7I5KTuWDIEM4eN474hARVPkpLCdTXczA2ljVeL2uPHGHtL7/w2rtq2Ddx4jTOOONM5s49CbBFRvayIyXLltS3Ihyo4Dk6nY47Lr6YMy+7jJdeeon07Gw1kPP7eeutt9izcyc333IbnZ2RZLasv2SXVv4uEH2OOmiFht/C/v3hqEuOCyCybYUMBtvepCik2SVyqkU16iarlSSrgqKY8HrNPPPMq1x33YWUlg5ixoxpOOpqef/jj8krLOTuu/+BwRC8vCVcJEHa2O3hqcaiTeVdVSGSH+uJHOrJVvyGSowIQKPH6aIHnOWYRhb5aMJM/C/+Rsdu0THc1KlnsG7dq+Tn39PtmR5PgB9++JwHH/ws4j5+9ARiYznz1PNYvvxtzjvvbXr3PiFip3FRV4JwEupW1LdYbsnrhYQEPx7PG3zyyc20tTVw9V//yrG5uZzxj3+QmJLCxx9/w4wZU7F42yLJJtn4ibjC6+X+E05Qf9+9OxwMiF3vUAmcXOAS1MW/t6N6oL1Qp6HpULOEBgB3A63AZagk1EDgaWAKajDvD37EekkLUbOnHkbNwO0vXljWYcBVcXHkZ2TwWSDA8oYGPgYyUdeJOjZ4Pweg7+qiBZWQsqAST8HJgfiCZT4ONXupDpXwesRs5lunk6tRbV8caubV1uA17wBnZGRAcnJ3x0AgKJyvfvQROuCdiy5C8Xg4vrCQ6aedxhc//MCenTvJzs7mi4ULiTGbw4tGKgp2ReHTOXPwb96MftMmtWPl50eu7yYyi2XFK5y54GDLhr17AfjbI4/QITldmWlpFOfmcvP553PqVdfgchWEiNP8fNC1H2Tdtm18+fV61q9fy5tv3onT+XcKCkqZNesMZsw4g5SUwtD9fsvnk82QfF5UNXH1ZZdxyllnEd+rF2OGDQv9/uv27Vx/88289vq7sosQ4R/L+iHa7sg6Qy6rEKmYGI4Kfyj0SbK6MbXUBRvGEiqUUEJiLWlRKL9iUtNSZUMcZUll+xwbq2PRontpbq5n7dqlNDYeYfjwWSxceC8+ny7iBSE8KCb+F7dtaFC/J1nN3ecMyBpWaGu7XSXSJOddjFoIeyQIBKcTAoFKNmx4A4fjMKmpBRx77AIcjtRuDSIvPCjKJqfOyYN5griT53TLAiHOl3w2FEXH6adfxQ03LOLuu1/C6zWFdOC2bRvZtOlDzj//s4g6U9cwCXDhhWfgcjkxGAx8//0zlJaOp6RkCEpwBFuQS+I6qe9FZBXs2rWaa689hl4pKXxw8cUcU1jI3GeeYWtNDZ/edhuzhw0L7zgULQPRw3liJcMo5zI6o0B+F0ghOXkyXV10k0enE0pKTuHss+/m9pdvpyg7m7jYWHJyskK/W8yRXaC0pISbLr2U+598klMHDmSg3NMlWR7auzdDBw3ivquvpqK2lqVffcXSVau45s47ufzWWxlYWMiCBQu47KqrsNttEVvcqnxWXJAg8+DxLGXPHhg4cDiKAkOGTMBmS6Ou7idAkFYxZGX1Izs7G7/fAcSTkhKWIWFU9fhDdVpYWEBqagbV1WWhRfnV+imhb98SHA51jSe5Pwl5d3v1mGw2UJSIbX5lHg5Rdz2tdhl04C459VQa6+roY7VSnJBAn6IisoxGdB0dkVNexV+7HcVuZ6jVylC7ncuCMrKrrY33fvqJdzZu5NUvvyTVZuPx88/nzFNP7aYZA4EAumivSgix/JLiuVYrt9x3H6+/+z7z559AWlomPp+XlpYWzj33EmbMOCFi298w1Ol1IsMJImZv4PNBIKAGa263uuC4qOeeggYNQRw5EhaylBQitp4TTL5QypKHa8JNrxwlNCgimlvIrXCoW1ogJeV4xo+fztaty6iq2oHdns0DD3yBXh8TIefR4iJUVnRWarRDLRdPPFvof/m7bNxlf9DrBZ+vg02b3qGqaitWq41jjz2DjIyBEXZJPDtyWrYpRDDpvW7MZlM488kc1r1+9BG6MpJsE+4k4IWrrrqaBQvO5oUX1F2FRB3X1TVx++1/5aqrHosw814vNLXoue66v7N//25ycweybdtrdHWNY8CAsdjtCUC4jmTCUK6DhgaRbdbJl18OxO1u5JZbbuGaY6dz91NP8cg773D9uefy4JVXom9qCu/80ROLF3of6ZgcMclGWXbMHQ5MHR1MTk8POwKisA4HrF9PXnU1n5jNHNPezlzUdZ0yUZ11QKyyAKjTDUzBNTomAU8A14v7RjVqptfLFX37csXgwbQ2NvLl7t18duAAT1dVce/Bg2QYDJxksXCzXk9CayvxPe1YFCzrAWBbIMAimw28XrI8HkYnJbG6oQGx554CpMbEUGqz4dDpIjuQQPRKxMD40lLWbN4cjuCcTlK8Xs7r00e9R0KCOu1OHqEMCrFerw+nWMgjWjLjK79PdOcB5vbvDx4PfWJjKY6Pp09eHgUZGRiFYwBqBrNwoJxOdImJ5KekkJ+RwV+Cz25IS2PJ11/zziefcMkli7jyyotYdP75/OvxZ1VVYzWp2YBOJ4G4OHRypB893zZ6ri0w7phjuCstjUuvugo/YE9IoPLQIY6dOpXX3ngDt1sfqh5Z7cm3kQd4ZRGODvQFB6lN6f43EBlPGRmRK0zLsYJwfoWydDjCuzjLjQCh/mADUBSScqx8+c6b/PTTT2z4aR2W+HievOce0tPSoP2Ieo2ikJaSEtpNUej3jAzVV5R1syDohZ6Vw5vgrUJFlPjrCLkR54huHBfnp7V1JQ0NK9Dp/KSlTcdimYXTaQhlKYnzBRQlrAa7+YVEkl+y+ojacEzujni9MGLEJL744il27PiCoqLjQ8fdbj8PPXQD06bNJxAwh8olmuedd5bw6advEB+fTHX1atat8zN48HiKi3uFzpFmIYeaTP6IMu7adR5bt77O6aedxgOXX86OX39lzrXXMnTYMF5/fSmZmUnqGqdi5Pe3OqXcUNHZm9GENeGpZ/1RySg/qq3woBI0zuDnFuBSVPKpFShAXVS8J3fSBVyBuuj3TcDHEDnyGRSWGK+X061WTs/JwZuayprmZj5raWFpRwevAGbULKpzUcmlDiAflXgySWUNBD/bgSGAzmjEGAhwHOp6UaL5daiE1TDAYDLhjYtDiWZZRHAfmpGkML6khEdff50jO3cSHxen2mank3nBWIXExNAGGiFGV6Sre73oY2PVTpSREXYwZFsv2/6oGAGzmVLgouHDyc7MpLiggD7DhlFUUkJ8IBC+JjYGCvzhneC9XvDGcvyMGRwz9QQcDujsdPP111+yfPm7vPrqAzzzzK0MGzaOp5/+BEVRuQTZNzMYAlit4TWuhSkUyQbRJKstpxfvffABd917L3c98ABZGRnUHjlCdnY2b771DvHxGSGeQVrSMYJHkWMeWYfIfIQccyuKauaPBrpAQA6VekZo69HmZmx6PX6rrZvsClLEbIaDB7fT2FhNcXFvSnunYRKprEFnV8iS3FfFi4jdBqIdeeGvyEpYBBLyNAghP+KYmI4hRxJ+MQochPy/qHBBAMlQFHjnnfvZu3crEydeiM3Wm8OHd/D9989SWnoy06efF7H+hnjH6ECzp2BFLmJ0LC7qKPojsGHD56xY8S9yc4cQG5vCwYMbiYtL4JxzHiMmxh66j9gUwWyGsrLVrF+/jM2b17Bt20bcbicmk5kBA0ZRWjqOPn0mU1h4HB0dulB/slrVKXVmM8TFBXC7a3j6qYd56umn6di1i5iYGOb/9a98/NVXZKemMnXoUIqTk+mbnk6x3Y5Np8PvdOJzOPB7vdR5PAwrLsaanBy+eXQmlNXK/lpLRCarkD2ZAJPlUARhor6TkwN89NG5/Prraj766GMGDhwEBGVDTOYWQuBw4KqqovSSSxiSlcUHf/1rZN6xsPzRUWLQOWmrq+PLrVv5ZMsW3l+9mqyMDG665TaMxgE0NqYRCNhxuX5l69bV7NjxIwcOrMft7iQ3t4jFi9fz7LM38/nnL1BYOIxzz32AQCBAa+tBjhw5SHV1OevXf47H42L69NO4+OJrGDJkWEgBmbydEUys32pj0aKLWLVqJV9+WRaaHijXjcwHRg8kh6bLEtbRQp5zclBHfAQRIE4SDSTneDschLauEmSCuGFP6a3RkBo3YDCwub2d6777jsqmJm6aOZODbW0cbGgIfQ61tnLiwIH88/TTyc7NDbedUBgiI0CUN/hcv2KiqyvAvn1NBAIGbDZ7RLFEM7tcTrq6DpCTU4CimPH7w8kAMrxe8Hic1NQcoKGhAJ3OHCHaHR1tzJihbXMtELIzH3yAra1NrUDRXjJDE2yMI21tbDxwgJzevSns04d4eSEmScjdXn3IAdc7O0NtLafZy4SR8FeiAzrZwMpTaMUxAXkARBbvaB0vD5TKcmY2w7593/Puu3cybdr55ORMpLW1gbVrX8Xp7GTRoucpKVF6JK/kBVlD6ysqCm1OU6gc4iMWnex06iMyjeRRdVnud+7cz733XofFEk/v3gOorNxPQ0MNN9xwN/37D+sx0aO6+iCfffYeGzasYePGtbS0NKDT6cjPL6Vfv3H07j2e3r3nsW9ffOj5ogx2uzpamJjYSnn5N1x//cm8++5nnHTSHN54ZTEXXHQRMTExHD95Mn2zsihOT6ev2UymXo+/tRV/Wxt+hwNHIEBiaiq9c3PDBkOOPuQKFDpCCIQwKGJEVAiNaPwg8eRpb6cNeAN1asO1wPGSbIvlhBVUZx3UgOIB4GugBrAMHKi+sJxuEC2kwY+3vZ21ra181trK601NtPt8XK3TMS05mbTcXNKys6mJiWF1UxM/Hj7M6qoqah0OjHo9G2fMYHVFBbfs3o0BuB41mKgDjgD1wDd6PRV+P+NtNq4cMICThwxBn5kZ+e52e2g326VbtjD3jjvYdddd9BMdSHbgopWoMCTy2gGyYyOcfXnETxbe6IhRHBeLtAjdIVLyZSJLtL/sEIm2F7bBbqdGp+Nf77/PI089xdP//CetjY0crKzkYFWV+qmpoU9uLk9ddRUThg+PJJrkTiTkRJQz2BEdXi9dgQBJaWkYAoFIRzTop0YnU8h8SHR1RusQ8XtzcxulpZqdkRGyNfPmYdPpwj6CrKiDlevs6OCH5mbicnMp6tOHtNxcNXNPlkUBcX1tbST5AGE2KZoUlwddhdNlteKXMuZlOxJta4R4Rccx4vZChnrKtG5vr+OddxaQmzuRPn1OxufTU1n5GXv3rmDevFfIy8sN8XHRdlJ03+gBg2h+ReZme9p1Njo3oLPTyTvv3ERdXRn9+o3D7e5g3771zJlzDvPnnxtRBmHunU4nS5a8wU8/rWX9+jVUVJQBkJ6ew7Bh4xg4cDxjxpxAQkLviF385O5vMLjxeHZx7bVzmT59Fv/853NUVlYzYkQ+Pp+PCRMmMmTwIPrm51PcqxcFyckYysvxNzbiczjwdHXR5XQyIjtb3VBBboCGBnWLQjmzQFRcSwsdgQCdhMklLyrZI5rKi0r2uIAW1LWfbkAldxagkjj64PkKKrETA1hRCaF1qMTTW8AcIL5//+6pLT2RL14ve7q6+AQ1M2krakbTKagEWa+YGDyZmaxRFFY7HPzY1sau4JbEjyoKg7zqVLv9qGs/DUUdlOlAXY/qACpJlQ1cDlzUuzcJ2dlhn0+w5zk5kJNDR0oKKaecwr0zZnBt796RC5WJBpUDQUFCRb+r7MQFhdHX3AyoG16FBFQWYOEACja/ujrcp8X2yLIPIdsa2XbJQq8odBiNfL5+PecsXMj55y+iqKgvFRXqQuVVVeoH4Oab7+aSSy6kqyty+Rx5GQKhxkJrXANuv58mRycJCQnExhgjiY1gGTud+pB7I3Ok0SGubIbFa4kqN5tVvXrqqb9va/4Y8bRvHzajMWTQBaPnR8/OneW8+eY7fPLJu+zZsyN0rV6vJy83l8KiIkaMHMX11/8dq9XebZkWCJNX0S8rKjla8QkdHT0wJv8eIp6CN+l06rv5KnLihexnRjP8a9e+y8GD2zjzzPsifMHOTj/PPnsBkyefx4gRE7v1ZcnXCCHaSMjvJo7Jz46W2+j6CAQCHDq0ndbWNnr16ktGRkqoHOK5cl3J/t2BA2727dvM/v1rKCtbw44da2hqOsLYsWdw1lkvYzTq6OzcSWvrVhobt7Jjx69s3bqVpqYmAEr692f7li3g9bJl/XpWfPEFe8rL2XPgAHsrKmhsbf1N2TquuJgV116rylRRUaTzFpTuSkdSiHiS2yeaYIquc9mfzM4OkJAQICtLHeU34Q4bBLkig0L47Ouvc9mSJey//XbysrLCTqycnil6YnRPDWqAvV4vN95/Px8HF7GVYbMl07//BAYOnMDkyRNIT7dz2mmT8HhcXHzxfcyffzEGgyFk3MXtGxpaWbbsZd599wkOHz7I7bc/xNVXX0tCfCBydV6rFb/VxiefrODkk2eRnd0LvV6PXq9Dr9eRlZXJ96tWcaTe2M0AQ/RizOFMEZmEFOvAhDSP6DTCUxJtKeZniv1s5fSP6Mhc7hCy0Mqdwmxm+ZEjHP/MM+h0OjKtVvISEtRPfDy22Fie2LiRDo+Hu+fN4/LTT0fJywtlz7iV8I6aFrMafAtCXOggud9Fxw9tbU58vu7Ek0w+ial2Ho+T6uoDNDUVoNebI161tbWN+fO1gEAgZGduuw2b6MgiGAyipbOTj3/5hXc2buSb8vLQ9E2ANLudosJC+vbpw7WXX05JaakawAXX7jPhjlD8YqqY7KSLtpEJIVnHRGcZiCLKIirENzpejrZrspEX9zaboaPjEM88cx633fYximKJiLHXrHmPQ4e2ctNN90eoSnG9HEvLxJObMPEkIIgnQczJXU5+Z/GbsIeHDlVRWXmQ1NQMCguLIggwgWi97HRCc3OA7dvL+PXXNezZs4bt29dy8OAusrL6cfzxS7Fae+Px7KezcyttbVuprd1KRcVWampUx8tisbBs2UYGDBiA19vAR++8xp5du9hbVsaeffuoPHTo38qX98orMchrCMkvJwotT7mRG0pWDOJYMBU0sG0bDtTspujgwYM6AgzhYMCEGiR4URcdPwV1Idkr4+NV+5KRERkE9+QNSt5fG/BQZSWPVVXR5ZdzqyDGaGRUcTET+vRhYkoKo30+Tl6yhO9aWzkNuAg1OBFBi9jOWg/8gLoux4/AHLudt04+mfhgtlRI8IPEU5fRSMppp2ExmbCaTOg8HvD7iTEYeHvSJIamp3dndIWwpaREBuRyW8jtI47LDoDcdhC5N7w00h1RZ7LnLAcHVqsa4Ij/U1JwxMaSNXgw7e3tJNrt5GVlkderF3m9epGbns5HS5eyfssWzp07l4duvZVU8Z6CwJJlLJrk7Cnwk98/2JnbHPoemz7a7+nJTwQoK9OIp2iEbE1xMTaDIZIAdTrxut18c/gw7xw+zMcOB22SnbEajRSmpFCUlcWZo0Yxf/BgdVAvOqiVfSIIB6nRjrgc3EYFNm5rUo+2SBapnrqBLEpixlH0OXY7PPbYXM488wFSU0siuIeqqgN8+unfuOSSL0lK0ofuKRBNcMrPFPeQYzW5KwjIMbhMoorr/P42amq2YzbHMGjQEBISDBGDQNHVJld3ZWUdW7euY+fONWzbtobt23/GYFC45po3KCmZT0dHHXV1Wzl8eCuVlVvZu3cr5eW7EAuG33LLU5x22qX4fD6+/vo9qqp+paJiD/v27aG8fB8ej+c3ZWvlmWcyLT8//MJOp9oI27d337fe6aTL46ETNWtJ3NVPmEwieNyFal9aUO1LF6pt8QY/eiL1uAlVt/uD1y5CHWB4F0hPTIwc4JAJ05YWfIFAaAc6PWCMjcUfE8O7Tic3O50c7OG9SzIymFhQwARgwuHDvFVRwS2oUwTPRB1wUVBtYFzwuxF1oOML1LWecoClGRmU9OkTFgwx4J+TA0VFnHjPPXyzeTOpFgv4fOh8PnR+P1fn5HBZTk6kfRbbFAoEBTHg8YTWqhJwS//LUxbFxxSshxDxJAatRdlEv47OhpGfHU1cSNfMWbiQz1eswGw2k5edHbIzebm5lFdU8MqbbzJi2DCefnYxpaUjQv1F3oBAqDF13TMpHgUiLoi2s1YrdQ5LhGmVeVP5u9zvowdBGhuPLqb5Q8TT508+yebt2/lp9270MTEkJyWRYLezZsMGNv7yCxZLHNOnn8hxx51Jnz6lNDYeoL1xJ+X79lFWWcXXX39FXFwc/3jgAfbuq2L16h8xmWKwWGIxGmPR62NRlFimTz+VkpJxET6HymqHFVu0zo4e6I4OpGUfMtpQy8dkP0+WV4C77z6Oe+75BI8nNuL+DQ2wcWMty5ZdyWWXvRdxr99K4pBHd+XyyUSR3MhRg/hAz+eLuF72n6MdEfnc6Do2m1USa/XqD3nssYWYzXE4HM34/T50Oh1FhYUM6t+fwYMGMbi0lMFDhpDTpy8+n04Vdkmxrlyzhr9dfz0HDkaqqWSrlcFpaQzOyuK6WbPIEsZYnm8hXt5up85eHEE8RW90I06V/4+uN5FJLQhrvbMzTIhEO34tLXT88gu9HnoIvV7P8aWlzB4+nOOGDiWhV6/uQYHwCkQlRjnTR+pbKSurpaqqjra2Rnr16k9iYl/8fn3o9BUrXuXKK8/jhx+qycvLDsmE0Gt61HXVxON0Oh8PPHA7Tz55P2edtZCXX3yWmPb2sAayWvGbLTQ0eHnyyX+yYcP3fPXVMgASEhK44vLLuevWW6lvjYmoM0UJkjFeL53BqZuKAkn28LpuoaCW8OLCZnOwToWyFymucj3JkXg00yo6hWhgwUALJS876YpCIBCgtraWJJ2OGPk+wfu3KAq3rV/PMz//TH5aGqOGDGFA//4MGDaMfsNGkJFRhE5n7CY3Xm9k2qpcL+GRQydGo0o8GY1mfL5I4kmQTqovqhJPbW0F+P3m0HOczqMfHfh/BcLOrJkyhS0NDaxuaKAlECApIYFkk4mD7e0sr6zE4/czOSWFM3NyODY/nzqzmXK/n33t7ZT7/azesYPK2lquX7SIAf368d4XX+AHYo1GYs1mYq1WYs1mBvXrx6JFiyKVY1B+3Ji6iaisa6OdcHFM6HGZp4BIx1u2M9E6TFFgyZI7GDJkCgMGHAOEEwpFt3jssVn84x8fkpgYF6HrBEEsvocWGRc3lx4kiFYxcCTbRBOR10UTU/L7i2eJbh1dX9G8SXQdlpXt5q67TqSpSSWNXC7VMCYnp1NSMphBgwZRUjKY0tLBZGb2w+czhmJyq1Utf2NjI8fPns2GjRsj5MloMDA4MZFBNhvnFBdzTEFBZFtHF0oeqRTH5XQBcUzWUQ4H7cFdftzSR3yP0nChUWwl+JsTdbegdahTGeYBJ6SmUiAPJ0aTFhDp4AYVVVdsLIdNJo4YDNQpCsm5uYwcM4aY+PhQ1mnDmjWkLlnCv4AxwefLa4KI5eZFwGNEXVz2ctSNPz6bPp18IWRisChIlC1Zt46v16/nlWXLcHk86HU65vXqxXPDhpEqBmtkZ0sIjVjMJppFlR0W2fkRAiVvPSWPdIu6kp17ud3l54u2F1N6g0SanHnS1N6OoijYYmMjnQqvF39bGy+9+io3PPwwfmDiqFH079uXAUOGMKC0lP79+xMfGxvZfj2NuEazAhLxJPqfXOSe/Ep5Sp2ihPt/dZ2T3FzNzsgQtuYF4BegXK/HbjKRZDDg8Xj41OOhIRCgD2qfnIsaxFfYbJRbLOwzGvnV7WbtkSMcn5fHRQMG8H5ZGfVdXcQqimprdDpifT6SvV6uy85WM3JFVr9MMkH36RtCdjMyQgMnQlRlwklWTbLPL4ub3E3kbtTQsJF1697jvPMeieBCHQ51FtmyZfdSUDCKYcNmRIhnNOEku3NCPcldUZwTHbtFd89oiKqJThyRny3/Hz15QS5vc3MHt99+Pt9++z52ezotLeo0R4sljgEDBlJaOph+/QZRUDCYjIyBeL22CFUrxr7uvvtCli59m87OyACuOC2NwWlpTM3P58IRI8IZT8IRaGhQp4HLgV8w1mgPZjt10p1A0qGSS4Ik6UJdP0nYFtnmKNK1ZsLEE8HfPwMeRCWC5qDK9EhRT4BOp8MTCITuLcgXBUgQU7jNZryBALWxsdTl5lJnNhNISWH0kCEkpaer77R6NaxcybDDh4lDXbuqAXVdKAWVULME/xfPFtP17kXN/n07MZETggOHId2ckQEjRrDj8GHeXrGCV1es4FCQ1B0aH88TBQVMiImJZGNaWvB5PN3ssGyb/dJHfPdKvyPVqRWIExmSQoBF+aKTE+RUPmGv5FkXMjmlKDhdLtpaW0mNjVWJbDl+AtZt387F997Lr7t3M3HiRPr2LaGwcAC9eg0gK2sAGRnpxMfrQsUKxeOynZE7iNzprVY6zUkRidzyzKJoIlkenJSL2dh4dLM4/hDxBJAQH8/ooUMxWiw0trTQ1NTEgP79OX72WRQWnoDVaolQTsVF/lAwXF1RwZXXXMOSTz8lNjaWSZOOJRAI4HR20dHRhcPRyZ49mwE49dQrSEzMwW7PJTU1F5tNT0PDYWpqDtHQ0ExiYi/y8/tSVFRMr15JIWJBZDCoAhQ22KLCZIdfQOxiIAcH3dPNOnj++fP5+9/fA8IkrMi4W7kS3nzzBC666POI66IX6RMNJG8ME+0HRwe8ctwt7iPKKQcA4rkZGaDT1XDw4Bays4vJzy8gJkYJXRPtx8r1I/xcsxlqajazZs1bFBb2YdiwwYwcWUovu7+75yNHHJKl2VZWxvEnnEB1dTWTJk1iSHExNqMRg8uF0tCAx+Oh0+tVGX+3m063my6nk06vF6PRSK/0dPLy8sibNInE1EJstjxMpkwOHzaE2kx+f4HoQSSIJJ5C01CEhZUdQmHNq6vZdfgwb+zYwbKyMn6trkYxGJjQty+zR41ixtChlKaloRcjzCJVWqKd/fakUJnkZCQ5rhHlffnlx7j33jvYv79d5lfUrD1vZ9hJN5tDZE9DA3z00VvcdNMihg8bxpJ//Yt0MddGOtfhgNmzj2H16u+x2xNZvPgtjjvuGOLjY0P1KGc72O2oa7mZ1el6Xq8ajPoVNSwJzVtWlNBorFzmJKs7Mj9cNJSs8GTCLtpjqqhQjXRtbeTWKrLQy6y9TM2L+b7BF9nk8/Hinj3sbG5mx4EDNAbTaRVFIS+vDwUFA+jTZyDz5i2gqKgg5HhFxyni0S0tasZTYuIBsrNV4klo0GjySb1WnWrX1BQmnoS4ud0a8SRDtjOKTsdwi4UMk4kmv58mjwebXs+paWmcZreT7fGEvW15KuyIEbji4vjH0qXc99FHuL1eJg0ZQqLNRpfTSZfLRZfbzc+7dgHw15NPJjcvj9y8PHLS0rDr9RypruZwXR21nZ0kZWfTd9gwcvP6kZaWjd1GNysspm4LcRc/ydPXIKx3RfeMHggR3eGxx+Zw002f4XLpMJvVWNhsVrvDvn2wZMl9HHPMVAYNGqvWlRJZDRHEUzQpC2C1hjKgInaAFYWPngoQ/N+NKaKsACaTm2++WUFmZi79+xcTFxcXwc3Itkaum0h128yyZY8QH29n4MDBDBo0mLy89IgdUuTrZLvo9UJXVxenn34C33//LX2Kipg0ZAgZMTEY2tpQ2trwt7fT1dVFp8cTtjVdXXS53XgDAbJNJvLi4shLSiIvNZW81FRy4+Iwy8ZaBA+i0A0NdAWddDfqiLKPsMPuCB6Pqt1QQCEynlxAI7ACleDZgjq6XYy6m9FxqASRDdU5N4gpPhAe3pQbX3aIo0gSamvZu24dfVeu5H3UhV6dUrnMwbKJ7a6F5FhR1xK5UK+nTa/n4+HDmVBcrNo8kaEVfO7Dr7/O3x9/HIB7pk7lsvx8Etzu0DTvkFKVI2aZSYweRRQNHz2CLAygmB8g5FQWEjlilVlZIcS1teGBJ+HQlZZGZsTJdS3fQxbKhgbqjxzh8bffZvOOHezcs4eKyspQm+fm5tK//wBKBvRn7vTpTB4yBJ3IAheKIHqkA9Ts3CABLp8qdEj0QKJFkQhjycFt8/tJSEzU7IwE2db0Afqh9tlG1D45DZVw6hP87icceFpRBzHIyOATnY7LDx+m2uOhj8nEQKORrkCALp+PLr+fn4KZMQOBORYLOZmZ5MbHk2Ey0eJycdjt5rDLhS4lheJ+/eg7cCC9+/TBJPp5DyxNpzkpQq/K/0fbFfm77H4BfP/9IxQWjqCo6JiQ25qTE54Vtm3bFnbt+oC5c++LiFfkmFog+pmKEl7AWy6HCB3kWD16xquATC7Z7bBz5w8oio6hQ/uRlpKETqcLxXhyIod4vnhf8e6BQIClSxfT2HiIUaMGM3DgIIqKCrHZ9KHr5ewwmewTtuj11+/l5ZdvJy4ugbFjZzB8UC7G9naU1lZ0HR04u7ro7Oigy+Wi0+mks7OTrs5OulwuUtxu8nw+8vR69ePxkOP1YgzKl5PwQICATIjoCQ9qeFHthCd4jRt1fSgjYRtjRN3lTixO7gK+Qs1g/QlVpyej7p43EZiAOuVNCX7Euk2g2h8LYBQznjIywo5JdMBaUQHr11Nw+DCjUKectwBtwfuaIWIaYXDpUxKC5XkM+BZ4KCWFa/v1Q5eZGRaYIUPAbmf7gQMMvOACAI4vLubZggJyXC70Pl+4QwghrK3F19UVssfyewk77CUy40nYdAPhwRhB5NkAQ2pqmACQYxRRRplYErZm9eqwMIlrouMiAWHrogJFb0oKL/7wA99t3sz2HbsoK9uDO7hLfHx8Ir17D6C4uD/jxk1g4cIzSBTryEGkkojuaEG9ImReNs/RhK48Pic3vfoqbYwe/fsxjfKbv/SANd99x+hhw3AZ4iOmqkI4eQQi40Q/enXXlZYWchSFj555hi033ECbpxivNzmkrIRft27dP9mz5wt++GElLS1VuFztEWXQ640YjXZcrvrQMZsthaKiYgYPKqZPVhYpdjtWu5349HR0BhtGo5Xk5HjyEwwk22xYrFb8KZZg/Oulvr6GpqYmiov7kpgY3q5bdrL9fj1eryfCCYjO2Pf5/BFsoZB92U+RnXLRiPJvMnoiVcR5gUCAhoZGKiv30NXVRFHRTDweY8iHevLJs9i9+wdA3X1r3rwrOPPMv6PTJXYzQkJh+3wVZGdn4fWaUBQoKRnK6NFDI+we3qbuBexh/QLMZvr2H8yWLb9y3XXXsmb1j1QfPIjX68Xn9eLp6qKtqwvnv0lZZds29e9LL0UcfuON1aSkjO82FVKuH1kPRtep6rgFF76XLxRCHKyg/vHx3D99OveffTaVHg9fbNnC51u3ctvbb3P9q6+SarMxtX9/pg0ezPSTT6ZAdp7t9giyOUzyOcHfQEZWToROaWlpJDFRJapkAx16OamcekXB61XXZRk//i+8/XYRl15yIiPnzuWLN96gdPjwkPLVm81YrTbef/9T3nrrNZ577ilOP11dfSQhIYG0tAySk9NJSsogNzeb0tJCivJ6UZSURF5REUarFUXRgzcqgyJYyaLvynJkt5vIyMgiK6Otu6woCtTWsv/gQWxeLylifa+MDDqtaXi9YBMLie3eHTlEJnsYMnMsKi1IGMoBwvD8fIZPngxjxkBKCjsrOvjhh51s27aTAwd2UlOzk3Xr/sXixfcwffppXHLJ3+nff0iEMhUf0a/b29VF9Pz+AP+Otlczn8InhJWz0Cm/fe3/y1jWty/HmM1YOjvDFSYaoblZ/cjBmuyB795NjNXK7cXFnHfFFThjY+lTXBwesgw2wnc//sijn3/Opi1b+HTVKuqamiLKoNPpSI6Pp6WzE5F+b7FY6JOfT3FuLn2zsshKTlbtTEEBii0Nkykeq9VKRkYC+b0ysFqVkGrs6grQ1lbP/v3VFBTkkpurLiApD3BUVIhurqOz00dXlxKhy8Ky4yYQUOf5y3ZDHoUKkcM9ZVoAJrtdzXrqKWgXdRtEZ3s7ew8e5EBrK+MnTsRqywj9/PTTj3PrrX8PnTt37jzuvfde8vJKupHr4n1bWxuDNiwZpxPs9kQuvPC+bqPpcv/rSZ+L34zGWD7//Guef/5xXlz8HN/99BNej0cd6XS76XA6af93dqarS90FL2qq3h35+dw5dGj4QDCTsyMQCE2r8wKxwZ+Fw98T2SR2tRMf4ei6UZ3w6ag7CImFWdcB7wHPok5NGI66u9Bst5thBoO65bRcKfLQIxBobqayvp4cRcFgsYT6SWPQSU0kHLz4UB1svVQ2pL+O4Pkr/H7+5vcz9aefeNHlYoHoU5IQXrNoEX179+apV1/ltm+/5TbAbDCQERtLusVCRlISmTExFBgMFOn1FCoKhUYjVllQ5CHUaGdcTj8Qu9mI9XRkQQkKXGNXFy319RTK0yCEPcnICO80JRN1EDklUI60JQJWCQ7EmOx2Uq1W7r3vPvzBRflrajr4+ec97Nq1k4qKnRw8uJOPlnzMP//1L0YNHcrfzz6beSNHYjAYIqNb6Tl+xYSjJWwC5b7R00BkBCEu12dwsEVDd2xD3VFMBJoe1PVnRJaJXHOCWO4EzB4PlqoqjkXtq3uB4W43SrB/ib5dhbqVfCXwWmcnteXl+KLKkAD4DhzAsWEDENyNMTGR4uRkipOSKEhOxpaSgjU1lfi8PKyDB2Ox2kiIjSE7PZ2YlJjQ4IfXC9XV7ZSXH8RgiKWwsDcpKbqIQQDxv15vwOVyh7qZ6HqCX+/qUvNo5GtkMggiBxCEKRFdTSa8hP/U0BBeOgLCnLP6bC91dRWUl+8hJSWXgoJBITGuqtrOnDmTQ3VW2r8/995wA3PnzcMcnxDhJopn+/1uamoOERubD6ibV51//kUhriBsJ91gVvuybI97itPPOutWhg6dyHPP/Z2ysl/YV7YBr9uNz+XC6XTS1NFxlJIXhgGV8LSi2g85m0kmRAQhZEGVRSGrgjgRC30LeyN/F1mtx6KSTF5gB7AGlYT6LPiMYlQCahrqgIfYEFPYBWM0s+dwUNvais3pxGIwROivFlTZFoumy5lcBO8nMmsDBPsV6lpUvYHrGxrYvn07L2VkhMohGqa0Tx+2PP88T330EW+tWkXe3r0YdDrSYmJIN5vJsFjIsFrJ6+qi0GSiyO0m1+fDLtWFIv0vyiP+CjLPjLoDH4RJvQgEBcPjdrOzrY1SiwWDsFEZGfhT0nA4wJafH5nxJjqEvG6kLMBy0CH5uorVykULFrDgihuD7oiXLVv2s3btTurqdtLUtJPNm3/mgw9e5MEHb+Kahedw0ezZ2OSBfdHhogYW5cF2UUTpFSP6rKwv5PGho11c/A8RTxiHsqcqPkQkynxDTyOSou5MQuMESzukb18+W53E9u2qsy1IJ3WKy9WYzVdjtUKvXmrqVk1NVTAFPwm/34bLJdR/Fbm5DaSl7UGn28vqNTv46MintLe38FuJXGlpaZSUlODz+aioqKCmpgZfcPtdvd5AXl5/+vYdTp8+w8jPH0ZsbB/0+jRiY2Px+by4XC0YDPaI921pgaamfcTFZUb4+HLQ2hP5FE1KQORAn3xdTU0Z27d/QVXVZmpr93DkyB46O8NmMSWlhIkTn0Kvj+PHH99j9+4fGDv2JSAfh+Nrlix5gs8/f44TT7yRCRMuJxCwhMqxYsUWdu26g9razzjhhMeYMuXqCMK2traCmpp2srOt6I1OrDExmOXRQ/llpZcwmc0kGw288ugj4HDw6eef88Znn7GrvJzypiZcUjCgGAykms34AgGcPh9Onw+314terycxMRFFUTAYDAwZPJiBA0spLw+3aTRpHE3Ay8YR5EQbCxaxNZzcwaOCNIBeublcNHAgF911F06nk7UrV/LN99/zzc8/c9GLL+J//nl6FxTw/gcf0afPUJwN4WeBetvVqz/jllsuo7q6iqLevTl22jSmT5/OxCnH0dbWTkNDHTfeeCXHH38GffqMITZWF3wHEzarEiqfmBojihwXl8nwYcNYtnw5b3/wAfeXlIQfqijo8ZOZHMt1l1zANZf9jXVr1rB/xw5qDx2itqODI01N1B4+zKqvNvLyS1V4gu2o1+tJT0sjKzuHvNwcUuPjSU1JIT05mdSkJBLS0zEnZdHYaEevt6MoCVgsZkBdkF7Updvvp6mxkab6eurr6njhqad465tviFEU/jJ8OBefeCJ9x4zBPyyVI0d0kJGFrV+/sJckgoXohQpkmZP/lyNeIQQ5ORyq1dPSYsFmm0xJyWRKStRb+3ydrFr1MsuWPcq8eUO57rpnOPPMi7ulgAsxaWw0kpEBLlcnJlMsen33bCdBKrlcnfh8KmEudL9w4kwmNPSACX36YGlshLY2aGjA1x4efJBHAGPk7d1F44jFJL1eciG40qK+W37wMUOHckxubmj0zhkfzyGXixank/TERNKNRhRFwWu1sqfdxaZNe9m/fy+HD++hrGwva1asoK6+PkRKRSMuLo4+ffqTkJBEdfVBamoqcTq7Qr+npeXSr99wiouHMWDAcNLS+uNy5QIKJSVT2Lz5c4qK5oUcYFDlpqsrwIEDa+nb99aI50UHBBEMp8wKS160XvYggo5kY2UlX65cydpffmHPgQPs2b+fKomQSUhI4N577mHipNl8/vnn/POfDzFz5gKmTr2E6upNfPTRwwwZMojTT1/AX/96J8nJeaHiVFTU8/LLD/H1108zYMBY7rrrm5CzY7VCe3sLlZUHSE+Px2SyYrVaMRjiAF2EU6QoaqaWGO0GsCherjl3IddMn0bZrl3c/8or7Ny/nz1VVd1Ip1RUR9iJGmyKVrHr9Zj0egyBAHE6HScbjeH0x2BdeoLTItqInBqhEHawDYRHdOW1IuQRVQF5DQl38O9A1EVj/4YasO5CJaMeAe7y+bB3dHBvUhKXymtBSc7EnspKLvn6a749dIgko5GpiYkcm5rKjOxs2oMLvz6GGmCUEjnFwI1KNBmD7yHewYEaHIwAvgMe2buXBSNHhp8dlCFDIMDcCROYW1rK3l9/Zcsvv1BbV0dtWxtHHA5qnU7WVVfzVmsr7VLfSTabyYiPJy8pifT4eFJjYkhTFNIsFhJjY0lIS8Pe1YU9IwN7YiJWvT5y51LA53bT2tpKo8tFk8vFykOH+MfOnbR7vUxJTeWKkSOZNHQoCfn5GHr1UtM75JREEZFCOPoWkJw5p9cUsQ5gSooNszUoIi3q3+bmOBIShjFixDAmTFBvm54eYMOapTz0yCOccu21zJ82jXfuuguT/BypPmVTJ/6acINZ+ChqfzZFk8ay82g2q6Sqhh7RCzUjxIUaxIuA00uYkFUIru8SvEZEH2LdnS5UnXKIsB4Q5xmA64L/m1EJ3CbUDJAU1J0vLYAxEKBDUdiTlcXe2Fj2BALs7erii717qWxrw/kbdsZgMNCnd2/y8/M5cuQIFZWVNEsjslZrAn37DqO4eDj9+w8jO3sQRmMBimJh5Mjj+fjjR+nbd0bofNnN2rXrfYYMOT1CrKJjEzmeETGNUJfQPTGhulrtdiaTi/r6H+ns/Aafbxe1tXuoqSnH61V1tU6n46ST/so559zE+vU/8e67j5GT04snnlhKTc0ePvroOeadey5jhg/nwfvuY+yU40Lv0Nzs4aWXXuO55+6hsbGWNWuOYLfbQ93bRCfb123E7PNhjYkhPiEBa14eihIfMcAoZxYKs2m3w5w5kznnnJ+IMXZx2w03sGnTJnbv2dONdLKZTFgVBZfHgzOYASfWboojrPcvI3K6M4QDc6Gb5daX1whEOl/YHwjboLjg/z7C09k8qPLbG5V0nY+6qcRO1EXLPwdeRpX3GcBLwTKbhIAAeL20NzRw2/79PHnkCAowzmDgWKORY1NTGeZ204GauWRAtTPmqHfsJHItKyV4TIe61lMS8EZLC3fU11OQmBhp55xOBufl8cIVV/CPc87hx6++orahgVqHgyPt7dQ6nexua2NFQwO1Ut+JA9KD752B2h+TADvBTMZgOQKoAz6pqBlOZqnePUBnfT1NnZ00xcay02DgrpYWylwuesfFcXlFBaedfDIpfj+mlBRaWvRgt2ETbKdsM4VvBuEOFZ21Ep09oSihMfaGBgWHoxiLpZjS0nlkZKizeT2e3bz99sPc+s9/8tw777Dq+efJE+szimVQotJm1TVQ1ba129UBFFG0nkxh9EQUgKNNqP1DU+0WLlTTp2bOjAzqo7OmRQa42Rye7igz0WJq2r59KvEkZtZ0dXWgNn0HYTetA9XN24ZqFoyoIiL43MzgJw5hKjIyTAQCXRgM7ej1DszmduLj2/F6a2lt3YnbvROTyYjZnIfFkoei5OP326iv30Z9/S+4XJsIBH4NlcFgsGCz5WO12nC7W5gwYRGlpUWUlBRgNhdQXm7k2WfPYPr0+0hIKA0RcoL8FfUhN9yWLerOcA5HGfv3r0anM2CzpZKZmUpMTCouVyIHD26kqmoZNTWf09q6D70+hsTEwSQn98Vm64vD0Rfoi8fTRVXVlbjd6wFQlGTi48/GYHiMjo7gWh76WpKT76W6ejEWSyqTJt2OxTKaVavuo7HxI9TNMQNkZIzjr399m2HD/DQ31/L556/y8ce3EQhEjuP26lXEpEkzmD59BrNnTyHlUEUoBc6n0/HFxo289+23OLq6GDp4MBecfjpPvvAC/1i8GL1ez3V/+Qtj+vcnJzOTnNxc0pOT1W2Vpbmw/l69CGRns6MsPCUMwiRl9GZqcucQS0ZFp6NDpJEsLVXPsymdYcsYvRqjGCm1WqFfP/x+P46mJhxNTbR3dlLd3Mw7P67mpZde5I03vmDUqFl4vep9nU4na9Ys59WXn+eLFSs49tiZTJmykJ9//pFffvmaiooyFEVh9OiJpCfHs+6nnzh85Aj5ubksmjePa+bNw5Kf351Iychg5z4TH374Ivfffxkul4vhJSXc8re/kd+rFznZ2aT06oUuMbF7lpDXG7kIq4j8vF58jY1UNTZSfuAAKzZu5JFVq7pX4L+ByWTCbrWSEBuLy+mkyeHA4XJFnJNhsXDHiBG0ut08vW0bVUGDbdDpSLNauXriRK4cPRqTGJWWpziIdhGMtVhPStSNmEedn69q4OBuGE1Fo0KXyE6RrOtdLi/vvHMty5c/wd/+9hSnn35p6PHqSKL6uIYGyMk5TFZWC8nJaVitFvT68MriXi/4fAHc7k4aGupoabFjsWSG7Mz69WoZ+vTRFheXEVrw9YUXsHV2qqnJq1fTfvgwEB7xEw5baB68MDZ2u9qhZY9YyHdOTuRcNHlhDKGgxe/yQseKOp1U2Ljdu8NJEoFAAJ3ORXu7g66udpxOBx5POy5XMzU1u2lo2E4g0EpMTB5mcx6xsfnodFnU1x/gyJFNeL2/oNNtIhBoCdaAgdjYXiQk5NLeXkb//gtITx/EmDEF2GwFtLens2rVg8THWznzzMvVOlEikzhKS6N26wx6zfWbN/Pdzp20tLWRmp5OamYmqWlppBYXs7+ihuXLl7Fi+eesW78ev99Pv3796F9cTN++fSksHkB+fl9SU9N55JEHefPNFwC1r48cOZ05c57H58vG6wWXy82vvz7PDz/cQ1dXC/PnX8zUqRfzwQev8d13TxAI6EhMLKG9fSfvvddKbKwOp7OFVat+5MUXF+FwhDOZQU0fHzVqOpMnH8eUKTMYNixX3U0zqLt+LSvjxfff52BFBVmpqZw/dy6t9fUcf911eLxeZg8Zwln5+eQGAuSYzWQFAsTU16uLgm9Wp/WTkoLPbkdJTAyPBgolIXLNa2tx1deHpjqIRcRl518sHh4b/AhH1R08VywgKwJYYVFFZkQH4cVlDajOr5B3S/CeG2Jjucfp5NzERJ4aPjzU+IFAgI11dbyxfz/Pl5eTYzJxe1IS+30+vm5pYYPbjQ8oMZvppyjs6+piq8+HFZgKLESdZuEA9gWfZw3+NaPuSnQj6s53icDtwGiTiZxjjyVz9GiUvn3DEac8cCPm24gp7EHyN+Dx0GAwsM/lovzQIS5YsQLXH0gB1QF2oxG7oqAHmtxuWnw+ZGfWCFwMjIqP55muLtZKAUiCXs+8nBweGDaMTHkqx4gRPS86I9L7MzJwZ/QKmU452IZwFcibugrVElpX0unkk88/5/SrrmLW2LG8f/PNmFpbw+kfwWkY7pSs0OOdTrBZI9fQlIl0v2JSM5LlzVKsVvwZWTi++5aEadM0OyMhZGsuvBDbDz/QvmsXDRCaeipDJpZF4CwCUUFCOQjrBA/hLAln8COTz3rUYDaN8BRaL2H7ZgLVb+vXD666CvLz8cTE0BEI0O500h4bS7PDRVVVGxs27OfXX7fT0HCQ9PRMMjPzSEvLw2rNo6GhnW3bNrFp0y+43ZtwucJrrVos6aSlFdDeXkt+/lgGDJhKSUkBAwcWsGdPLps3/8xPPz3MyScvCcmz3C3ETCEI+0Zq4mAXjY3rqKraS2xsEgZDKoqSSkdHKlVVXg4dWgEsw+3+mkDAQUxMJkVFA+nduy/5+X3Jze1LYWEf1q1byuLFt9LerpKmpaVDufbaBxg06LhQV9yxYyWLF9/I1q2bOG76dG65/X6++24HTz99N0eOHKBv32ns2fMNX331A9OmTcTd0sSe7du55IYbWLt+fUQbG41GhgyZQFHRDPr0mUFBwRCSkvQht9NqreP9919m27afsMTGMP/EEzlm9GiGT5xI1aFD9M7M5KYpU+hlMJAbF0d2aqqaZSJ81S1boLoar8GAwetVd0UEaGgIDYzIawuJtZVcwY+XMCEqCCZBXhGURzH1zi1dH6TRQ2sKNgGHgx8XketHuYNyGwdUo2bbOoDNqOSMLj4ezGYqFYV3Ozt5orWVZlRi1QqsQp3G50Ald8YFn7cm+IzBqCTXEFTitSbYNzKCz4xFjeDvRY329cBfgZOBfJuN/x977x3eVPn//z+SnKRpkqZpm5a2FCi0QNlblkyZggoOQBEXDlBBxY1b3+69F+rbiYAKKqKIE0UUUYbsPQotbelM2zQ5SX5/nNw59zmtn/f7c13f318f7+vKlTY5Oecer/s1nq9xt+7eHdf06UY5A0b0w+xkKy0l0NjIgUCAfYcP88CePWyOmGMO/+fmQovccqEhEVUY5T5oAN2cjAw+slhYevIkahxWSbbZ6JOVxZNjxzKooMCYsi2n2ol3+RRXYcCKsfj9moKXl8fxalcCPxGyRqiuckmZ6qNbGHvWWURUle/ffJP2Pp+eFSJeIspEAGLCQPb5qA1Y2by5eSnkeLmtBFAt/L2FbStIzcz8f1vjafLkGtLSvIwZYwyxEnqFcA7KirBcM1I4paurtQL/wpArLtZAqHBYIMYiADwYX+pGtK0QRPcp2tG2mx9NFfIi/HQWi0aIshdYLIQ8t+acZGG3VldDLBbC4diJxXIAu/0gNttBrNaD1NdvobHxuAGIsVrtZGcPplu3yykoOJ3k5AxDhJOMDMZijWzZsoxffvmG0tLvaGo6hl5CrnlLTs7D759ESsokFGU0SUnuBKAlDOm6ujBaybk1QDaFhUOx23XFSXgbPB7IyjpAVdU9lJW9D8Sw2fKJROYDk4FHsVqXkZramrq6g6iqJoYLCxeSlnYGNluAzMwAFksNFRW/sW/f15SV7UdRFAb378+pvXqRn5PDOytWMGHUKK6aM4e0vDx+XreOxx5/nCumTycajXLtnXfSUF/P4/Pmcfn06TQEgxzatw+1qoquGRmaB1AYkYWF8UgVfW8KrKGlaBSxZ8R+EvMue8tFE/vY5YzqhCmQBZlAZO2xsJAB48ezcfPmZmvldnv4449j2O3ahnvhhbt4883nqampoVev3syZczvDhp3HsWOWBN1VVBzizz9XsXLlK+ze/RdnT5zI+cOGsXrtWt755htapaTw2KxZTB83TlNGBBH7fBwnl8WL/82SJa9z4kQxx48fN0RgFObns3fLFkSIYl1pKY5olCSXSzcIhEYh4p8lD//y77/n7Fde4deHH0ZJSaE2KYm6YJCTdXUcLi7mcHExx8rKKKmu5uDRo9TX19OuTRt6FhTQLi0Nn8VCejRKelMT6fX1pAPpPh/tMzJwxhdDbWjgp5ISTtTXUx0Os7mujkX79lHgdvPsqacy4YwzdGBMdj0J618Y2GJjq6p+/KpUf6TM2daQkSGazL8UBVJTY/z73zfx4YdPMW/es1x77XyNgVfrUbEajcVITy+lVatqkpKan2gXjUI4DOXlPlQ1G5/PkqC9Q4e095yc/64Q3/+VljAGnnkGb309bNwIP/9MVbkGRijSSyhcNgE+CRoWxYHNrlm5cKuMRpuFr5SzL2qpyXWMDx3SWYRciFEOuItvN4O9LWO+AFVVUTSowYJ2ttkutMOFS7DbjwI7CYf3oEMRYLHYcLny6NXrGkaNOosOHToZtoUYvtMJybYmvvv8c1Z+/z3f/fwzW7dujd/D0mI0sNvtZsSIsZx22iQGDz6ddu1yE3JG8FShfBw8+Cfl5QcZMmQsTqeXQ4f0cQrWmZwc4K+/nmXlysdobKzFbnfRvfs82rS5ifLyDaxfP4m2bXtx8uQR6uu1yN3c3NPo0eN+wuEQSUkBHI4ADQ072L9/DYcObSAajVJYWMS400bQvV071v/+O2osxsKbbqJLp04c2L+f5196CZqauOr007nikUdYv2sXc/r149H+/UmOxThy9CgVx49T1NhI6sGDukJnjhwyA08VFZyMn/QTRY+GEIan0AYUNAVauMUUjOlrwvAURoKKZgCUoBuoQrt5L/5qqX3euzeT27cHn48vTpzgunXr2F9TQ47TyZXZ2dzqdpNcW5tYvJpYjDVWK+8Gg6wMhehstXJnejp7q6t5RVWpQjv16Fw0kEmcPOSMvw6iGSJl8ZdsoCdZrfx2wQX06tIFFIVQIEBTZaV+Ap6cuyKUIc2aA6eTUHU1SQ88wKNpaYwHau126iwWqp1OjlosHG5s5Gg4TEk4zJGmJspDIdIcDnqnpNAxORmf3U5GLIbv0CGS0IynLKAdmnaYbNegvq1WK3stFqpjMY7ZbDwfCtEE3N27N/PHjcORkWF0dMiGgfCqCtni0U51Ntd1k4MInc54Ko9cqVXKS1r1/fdM/de/GN+nD8uuuooku127t1w7xKkVF4d4rUf5gfE5jDq104g8HrAGavXnxPtb+/PPpI4Y8Y+ckVpC1lx8Md4NGwzAkxyFKDfxmQ0jsCyAJ3HcvVzo2Vy4WLjTXWgWixuNXp3x39jsdp148vPhwgt1B5qpBloIB8XFul5iDpwQDrUVK7T3cLiCQGAH4fBBIhHNnmlo2E9FxSZUtUEaqQW7PYUOHS6mXbvzyMkZgsulp3aLbSBU0fLyPaxdu4y9e7/l5MlfiEab+HubxkpS0iA8nkn4/ZNo06YnZ5xhIS9P19d18j3Bjh1rGD9+GO3btdHmT7Um/MKg6Ws///wJ99xzB7t37wZg5MipXHTRvbjdXZg5003btm1pagpy7NgxAFq3zuOBB15GUVKpqwvQ0BCguPg4v/zyLVu3fkdTUz2pqZkMHDiGbt36oKpN/Pbbl9xww0LGjh2HqgZYuuRdVq5YwSvXX89jb7zBK599xpB27Vg0cSKdfT5OlJVx5PhxcmMx8mpqsMT7ZkijCgaJNDYmImeFLAjH6SUJYwp0AL2WoC3+vZAvHnQ5I1RRUZ9Ilb6rRiv0LYpgWNEinRZKNCq3q4AXAVtKCkc9Hi6sqWFtQwNOtBpot6LVZRLyLYymyXyNdiJqEprDIh14BdgCjARmxccSQOPVQs5EgWfRrP0KtDpUcntywAAWjBkDQKyxkcqTJ8mQI1UF0QtZLv4GKC5m3OefYwkGuQ5tv9ajWc7laM6fY2iyuBwtCsyOVoy9C1p4S7rVSmo0iiM+tjygPVCQnIwg4hKLhd/r66lSVaoiEd4pKWFTTQ0XFxbyyBlnkC2iceTDQYSeIZRNMB62Ja7v3p2oPytRnlA+wEYu+SiG760+wtFt2xh15ZWEIxG+f+45OoTDxosFT5GdsnHgojZgTeAMsh4rzuEQOqKwx33WYlLbtPl/Czz17FlDq1Zepkwx6vaSLDUY9oJByfQgXvv26YMRkxiLiWBXkcHaiLZFgnESiUgvsa280suJHmwI+rZNJiXFamBsglELYEhOrxd6hphMsS7ilZ3dSEXFB5w8uYNo1EYs5uTYsdVUVGzAYrGSl3cqRUVnkZ09mNTUVrRq1YpoNMIvv7zMunVPUV9fjtvdB4djNLHYaKzWU/F47Hg8FWRlleN0lhMMniQpqSuq2pP6ektL2V+APg65ZlRRkXEdBCKpGTtgsVix2f5CVfegVZaIxud5K3b7a2RktMVu74CqdsBm60pyckHC3i8sNNp5sJ/y8jUcPrya7ds3cvx4ceK5OTm5FBYW0blzEd26dWLxu+/w0PXX06VNG+5+8kneWLkSj8tFoEEXeg5FoUdODv06dqT/8OGcc801BEN+Q0ivDHQKOpPnQayp7KFxu2PU1R3hxIktHDu2lUOH/iIQKKeuooLaQID6hgayMzIoysmhKCuLLu3bU5SZSWFmpnYqkPBEFhay4uOPufq66ygpKWHBvHnMHDWKlPx8PNkdsNlSE+v0wAPzePfd12lqaqJbt/6ceuq59Ogxhrq6ck6cOEAkEqZjx1Po0aMvaWkOfvttKXffNZ+GQIDld9xBfkYGN735Jis2bGBot24sfvhh2rRrpy90fr5+OlWwgUhNDWUVFRQfPcrbH37IS++9R7S4mAaHg8cefZRHn38ev8/H/VdcwUXjxmFrbNRROqfTiMAoCu9++SUXvfIKjcuX43S5jAitrN34fAQ9HlZu2MDb77zDl19/jc1q5Y25c7mwc2cjLC/Ch+S8R2HBxw3AbWVlnP311+ytq+PmoUN57MwzjQxSUTQGIodaik0s0k/kQrseD2VqeoJJy3iEDFbGYjFqaw+wbdv3vPjibdTUnGTx4h8ZPny44aA9ORTb4YiQnR1O0KHNBpEINDXB0aN2rFabgRaFs0azvWoZOvQf4Em0hDFwyy14q6pg40ZimzZRFv9esDTzscEKaB5En88YYismXAaczLHzAnSQPVEeDyFfloHPyDqBjNm2dGKQWGMRkGfO2pG3gCbzxCuE0Z9uB9aRnLyWWKwBhyOLWOw36uvXEI0Gycwsol+/M+nZcyytW7emQ4dWdOuWyjffrOCllx5i8+Y/adOmLUOGnMbIkaMZPHgUubnZVFae5OTJcqqqyqmoKCclJY0+fYYRi2knXMpjkf9u6UAMMBo+ckF1LcvnJJs3ryI7ezxudxbBIBw9Wsv27ZeTmppKamoHkpI6oKoFeL19sVisiTmSscLk5CrKyr5j167VbN78EwcP7k2kyKemplJUpMmZLq1z2bVlC+28XuYNHcrib79l4RdfEI2ncEcldafQZqOf3U4/r5dJWVl0FV5oGSiJb/RIYyPVLdCfMAiED9WGpsj+haaA70JTZgPxVx2a0dkJKIi/OqC5zkStKAU9yugOtKLjA4HnU1LwtGtHWlYW2a1bJ/jh0sOHmf/115wIBMhzuTjX72eqxQLV1RxoaKA0HKYbcApaSsEWYD5abY+7c3O52efjkSNHeCIQwIfmZe6LEegF3TBoRDNgauIUOx9YVVTEhN69+fj4cW787TdONDUxPz2d29q1I10GdbOzdcKJ78PK8nIyXniBjzIyOKeykqZYTDuFUuxpSdbE3G5+bd2ad4qL+fDYMapVlYsyM3k7P5/w778jNAkZ9JMBBCvxAu3Z2VT17MmcLVtYeugQvbKz+f2WW7C73UZHh1nxMh+dLTazpHBFsWKtrjR64GWvtqpSWV7Oj5s28fhnn7F+715uPe00Hpk2TQeeZG+p2Gwywi0BTyGnN1FP0uOJg11SWHftrl2k9uv3j5yRWkLWjBmD948/KK+qohrNGBYRiYJuBA2Z5Y74vxE90kQ+EUy+BxgNe8Hlk9HAJx/xiBIBzIq9MmGCJtPy841VuOPoZkM87bOiQj8nR87mUVXNf9OSHBLbCqCxcRfl5cuory9DVTNpbDxCZeVKwuET2O0Z5OdPpm3byaSmdiQjI4ucnEzKyv7ip58eZseOj7DbU/B6R2C3j8ZuH43X253k5FpisXIslnKgnFgsgtM5gqamDAO2e+qpicB0Q7Bxui/aclSD309ItaIo8ShCVUUNBln+4zoyM/M55ZQ+qKo25ieeuIu6ugO0b9+Btm070Lp1Bzp37gukGLJshV0RDocoLl7P1q1f89tv37Jnz7Z4Jo4W4VtQ0FGzZ7p2JllV+X7VKt4+/3z27trFVZ9/zoHaWmwWC01SVE2motDPYqFfUhLDvF7GORxYmpoS46qXTpITEU5RdItW8DH5pFSRMrcXTdbsR3Nf1aEDoRF0GSPkTC56jSjB2xuAx4EVcXp8B+gMeLxe2jgcmnPP52O/08nZBw6wtb4et8XCxFiMcWjA0wE0OdcKLaKpNZpF+RywFBhqsfBNVhYrKiq4KRKhDM3JMVEao4IeNeyUxiFCTx4BzmjVihdHj2ZbdTXzf/mF72tqmJyUxMPdutG9XTujoS5sGtEqKhjy2WcUNTVxn6omUu1FOi3owB9odbe+BT6Oz3NHm41fW7UivbGRcLxunl3YhrJuCXrKk99PxOvlhR07uGH9ejwOBz/Nnk0vYUgLXi97KIUXQZYzciSPx0NtwGoIagejuLCqIQgGaTpyhN/WruX9r77itc8/p1u7dmy7/35jWprQkfPy9L4DeDw0BK0JnVc+L0ocRCCmWjhbgscPkdq+/f9b4KlDhxpSU71ccklz4Em85Mixv8sDFtGHgqdUVEBjoyiV1oiu3gTR2bqcPyuHygm/gVDUbdJLDoxNxm63GqKvYrEwYCMz02pYNFnhNtMTGA9gEeuk0UsJhw+v5MCBzzh4cA2RiJ5iZLFYsVoV+ve/lEGDbubPPwsMGV3iWYWF+v2F8SIMVflZwtYWRo5s/Pj9xusE3xZ0rUVrhUzzKObXS0qK9jDNMIpit1vlgJ/EfAjhIdDPSKSCZ565jOuuu4fjx3dx4MAudu/exb59uzh0aE+i+j5AVno6aV4vtfX1hFWVxmCQDJeLnrm5JDsc7CovZ3txMfnt2vHSy1+RltbJoHMB1NWFaGqqob6+htLSaoqLa6irq0FVa7BYagiFaqipOcHRo39x+PBWGhs1nN/j8VLQIR+v201UVQmGw7gcDlKTkqgsL2dXcTGV8R1mtVrxe71kZWSQ1aoVaTltyc7Oorz8BEuXLmHJO+8wbehQRBh+bVA/hj07G+rq6vjwwy9YsuQjfvllFU1NWkURm02rWRUKNWG3O+jWrT89e/Zi1aplNNTXs+SJJ5g8ZgwoCq8sWsTchx/m02ef5cz4Z4YdLxZLIoJXFy9m7oMPsuypp1jwxBOUlpdz3bRpHD5yhKVr19K1bVsevvhizhgxQg/7NSGYL3zxBTe88QahL77QjodtoU4MYAR6gLI9e5h8zTW0drtZfsklRiL2eIwnRMlpgHHl6sZ163jqzz8ByE9N5cExY+iWn0/n9u1xilxvYe0KTihHOckhl/FXWcBlyEIQ+y0ajbJy5Yf89NNqNm78nrKyo1itVoqK+jJo0GgWLLiDlBSvIfNSxspA5xky7xB7V+Yh8jXaff4BnuSWMAZmz8Z7/Dhs3Eh9eTlVGOvNgPH4dwWwx5WjBIOSBbZsJMoIoNNpjEuOA5dRXzrFxcaIJbHeIqVA/twMPIG+/mJLhcM66C+2rcaLgxjNFuE4Ec6VZCyWFAOG5nI1kJHxDXV1n3Ls2Oc0NOjpaVarlWg0ytCho5k3byH9+4+mvt5i2K5gpElzUIdZ1ojnis/kJiKhZDDWLO/NhWlFTWjxHBFNKDt5zAFqAlMWyzVv3iTuuecBSkuPsnfvTnbu3MWePdqrRqppk5KURI7bTX1TE6FolCZVxRqL0dfpJNNi4Ziq8mdTE5FYjHcKC5kmgEvR8epqInV11FZXUxEIUIemDNfYbNQAVZFIombLTjQjQFTEsqNF3WSiRzlhtZJltRKMxdgTjXJEUr9S49dmoqUfZKFpNs8AF9psvC3qEkmnyIlXJBrl582b+eivv/h4zx5KJAvTY7EQiD+nCA2A2op2gt6Ctm15cuhQCATYt3UrXQ8fZgJwHXpah/C4gzH1Q0GL1hiPZrh8abfzXTjMeLTaOe/H5+B2YH7nziR36KApCjJhAYeqqmj/4Yd8lZvLuOPHqUbT/DyQqAsiokYUwNali0Z7dXXccfIkLzQ20ujzEa6uNqQsiToocm0tK5BssUB+PmvatWPcDz8kvnt56lS6FxbSrX170lJTjcoVaP8LGSPm36zwgjGkXmIUv/71F0vXr+f73bvZcvgwsViM9pmZjGrfnvmnnEKvjh31tZU3gkAQRJPDq+LAkyzXFCUexR2ngdrKyv/KC/1/qSVkTd++pPz5J6VoBm4UjebACBTJRZFl+gJjRIl4idYS8Am67EpYJwJ0EnQlLLuRI41RcFKqSdTpauYEMdstYLS1ZFI1n1YFRsdaY2OUhobfqav7lLq6zwgEtieuE5GzaWkdGDjwFtLTL6akxJnQsVpy2Au2Cjo/FzVpxP+52VFdz5S9gsKQF4JB/l7sh/x8fe9BIhLQ69FWMhQ/kMfkX01sczk4WqQRPvXUY2RmtqJjx9bs3r2L3bt2smv3bnbt3Mkxqfahw2qldXIysViMxmiUUCRCUzRKV5eL9nY7gaYm/gwGORGJMNfn47nsbBShd8eVilAsRhVatE0VmgYg6glWo6WtVaGBPNvQwKYIGliTjRaR40AP2xBy53D8WgGoOOPf+dFkjB/N8fE5Gu1uAjIF6C+UBEF/isLusjI+PnKEZSUlbJZo241uRfrRUutsaNFPfYCfJ07EFQzSsHMnw0tLOQp8gB4FLEcZKmggmtCCUtCir/rbbKS73bxUW0s7YCraIRzHgIttNu4rKqJtp046KiLCtAECAbqtXs1pdjv31dQk5Ix4Huh714EGBvsAq9PJV4rC6YEAq1u1YpzDoTvKZWNd3lwi+iEvj1qvl9RXX03M04JTTmFMURHdOnakTY8emv0lK0rCeBS2jKx8SUCRKAEhaNalhKC6mmP79vHvJUv4/rff+GXLFhqDQXweDyO6d+f8gQOZ3rdv88gMAYKJ/yUduUF1NHMqyj5b0T0rUU3W/BepdsrffvN3P1D0OWgJUDI5CpsxPPFbwfS0ENAgRq8v6Ol2osmRTmCMbApJvxOBsMI0EYHxQcLhCFo6rfitYPvWZo4kwQjNCrpYezNgqH2XQ1HRFQQCV1BZWU8gcACX6wTBYBl1dbUUFJyJ1ZqbAI3EvcxGi6zDmBmhLBhM+kfifzPgJDN7gEDASiDgjANvIiNYzEmYQMCJ0ymAuSDhsJXy8mRU1QjQyWtaXQ1HjvxFly4jyMvrR/fu/UyOOpW6umIWLLiAuXPncGT/Xo4cPYrdYiHN7SbN6WTbtm189MMPNIZCjOnTh9lTp/LqypXMmDGI/Pzu1NXV0tBQR0NDLQ0NtYTDLZVr1ZrT6cLjSSU11Y/b7cNuT04AT4FALVviqScOh4Pc3HYcqDlKVdVJMnw+rpgwgdkjRlB68iS7i4spra+nLBikrKmJssoT7Ny5lcqTJ3ns/vuZdtppOlhTXa0VkIsXvbWqIVKTk5g1awYTJ87g4MEDLF78BocOFXPkyF6sVsjL64DHk0QgUMG6dd8wadJkHrztVlpnZSU0h1+2b6dtTg6nixxXWYqbFztOVLFwmFgsxrk33MDkYcP49tlnKUxOhkCAmydM4NbFiznrgQd4+MQJbrv44mbW54m6Oh5fvpz+nTpptXRkBVtuQsOQjqY+tmULZSdPkma16oQnE7jshZAJOK4BTGvTht+Ki0myWNgVCDDz448BsFosFObkMKxLF6Z26cKYwkKSZO+wYNZyRAtopwOVNrchNFo4wt13X0I4nmdfWNiTq69+gLFjJ5Ce7jAoJS0NW76X7PgW+9Z8neywbCmC8Z+GYcJFaoOslMgFmxMGgRyG2VJ0kwmINIBPJi1ZRCrJEbqCdgTw1JIiD7ITQt+OGh/VWiym8V8N/BfyzYoebC5GKHibdo0RQ3ORlHQmbveZtGsXISlpP2lpJ/D5TuB0llNY2I8ePU5BUbS6wjLttqRoy1Mue8plx5F5y4qxmuWRHCklrmnpGeI78S5HSZn7K34rHIHa5zZ69+6L09kXOCtxvT3WRPn27cy44gouHzmS48eOcfDYMZoCAdIsFtJiMWrq6viguJjvmpooSk5mYevWbK6vZ/revbxw8iSNNhu1oRC1TU3UhcPUt1QTIv6ZA61ekM9qJQfwRCKIoy7DaPWS9qEZB7kWC0k2GxvCYRwWC5M9Hj7KyUFRFHYFgxQHg5SFQpyIRCiLRtmgqpSFQpzpdvNq585a5U65HpkETNhUlRE9ezKia1eeqKjg+XXr2HvyJAcDAcrq6uhotZISDlMfDrM1GsUL/JyVxdBu3RKT+ofFQhi4CA30CWJME1LRT/YSn4uUjZuBDuEwL6J5y0vQjun+HLgT+Gz3btZZrZq2KjHiqM3GzRs34rJY6FpTk6iTI4qci7Ql0IEk965dANTGYuxCS+ipra5OuB+taCm4sXjklAxWK4KogkF6hcOcl51NlapyNBTi2hUriMTXLictjf7t23NWt26cWVREpqzsyXzDvNnBAA7I4NPc115jc9xYzfB4uP3MM7msf3/Sqqr0TWaSXYlniGbiWVGPl3hFBIOOClZcccETcv4DNv1ts9mwWCw4YjFckCgCHkGjKwu600OATYr0guanVarS53IzG9bilUgXF3tadqIJVEb2dCvayYrVFc3TX+JfJ95l+9hsqylK8xQaIUY1srUSDA4kNXUg1dUPEYsdIzX1GBkZJ1CUMpzONHJyziQaVQyO8Jac9nKwusAxBH4r11wOqVattqfolFkwiUGZDXXQD6IBUFWsgVq8igLV2mAdHg9CN5cdKrLMk/vrUBvYsWkdbz/3HMkWC+O6d9UvrK4msHcvTz/2GI21tbS22ThUU0NFKESqxUKaxYI9FuOzykqWVVaSbrNxfmoqmYrCA2Vl/NTUhMdupzYapTYUos5ioS7Or1pqoi5YqsVCTiyGB71oeAy9bhNoaW1ZaIW9I2gnon4A9LTZ2G2zccBiocxmoywWo8xqZV8kQpmq4gKWJyWR6XLp9CgWRsqt7OzxsDAri4XFxXx85Ag/1tRQrKrsRwO/fGh8+zhautxTwDxA8fu1CK/kZLajFVXPwhgxLEtaYZHape/ej0Rw19ZyI9oJfTVooNYm4N+RCEu2b2efopArFPDi4sTCvnX4MDsaGrgtNdVQzN2sS4qaih601NeoorA1Lhca7HYdGMjLM3rPZIVQ2CROJ27g3lNO4dvDh2mMRnll0yaeip9gmeJy0aOggNP79uXsvn3pImoT5edDXh5RX3qCVh2EdEVMVVEUh4FuqdbkzCuLFvGvt97S5tBm44pzzuGWs8+mUN5XstIav18zNDZu5Ds9Dnk4hksUJR5dFe9EVPnvTkxS/vMlehM1gs1OnpYAJ+HoMQcmmH+veXzFSwae5GYmS7HlRISTrMSH0SOeRBPAlFCThK/BDXhRVV+Lsl12lMt9FwxL9srKCrrG/9woSg/8/h4JoE0YLQK8F8+SGZ7cxH6X+yD6Ke5pbopiXAM5/dH8bkxpFPOiRTk1NsrzpgF3VVVuSkudCUEhg2aqCi5XMoFAbTPvuRZJqKAoWXi92QwffhG+M7XPXUpIt/IqKpgzYQIXPf44a/78kzV//snK++/niwMHqAuHcblTSU724nKlkJrqJS0tBY8nFbs9Fbfbh9ebit+fSvv2XpLsNqJYufnmhTz11MO4XKlcfvmHtG7dBpfLhdWaTHJyCq1aZdPQYCUUilBTs4F9+z7hhXdf5rXVq1l43nlcO3YsMZuNkxYLlUBKdjb5bdpoEUBglNrxyfZ6PHg8Dghon7uckJ3t4IYbFrJ8+VLatu1Ehw79iEYjbNnyM6WlWtHH1q1b47YrtPZ62bdzp3aCUk0Ni1et4tGbbkKRCc5s8ZkYSe8uXRjWowe3nXMOpw8erKP/gQD9MzJ4+cIL6XzrrbTxevUxxJlnYzTKlFdfJRyJsHThQp24ZLRR5jxiHioqeO7rr7n5q6/ompXFc2ed1XI4kCg4JghZZt5Am1iMs3Jz2VNTQ9huJzs1lQGdOpHfvj3Hq6v56rffeOPbb/EkJzNp6FCmTpjApMGD8RQUcLzUSqBUu52sq4l9KUcpAeTl5fPLL0f48cc1/PDDV/z889csWHAWbreHESNGM3bseAYNGovTWUAwaDxNUOwleV/J+6GlaEnBwINB+J9OeP8/3WRwCKNCAM090Yk0O1FdUQaewOgpkmlRZ4QG744pUMEAJolgvZbkt9hCjY1CnsnySsBnNgnwj2CUVbI8EzIuQiwWRVWtzQK5ACIRGw5HJ9LSOiUc48GgVkNRTInkBDYAn2LY/1OT5bv8G9nIbelzMR/yHP0deCWuMV8v90+ElItxRKMhQ/QgxFOMsJOVn0+y18v0GTOw1dVpD961i0QYWzDI9a1bM+evv/isqoo7jx7lppwcnmjfno319XhdLrypqaQA3mgUr6rijURItdtJBVJjsQTY5LRaITubtY2NjNq4kShwj9/PafX1uCwWXElJuBSFbJtNq+FTVMS+hgZWlpTw/PHjDNqzh0vatOG+vn1p5fFQFYlwElCjUbqkpaEI8F5mMmZCEBMf92Yt27OHmzdsINvjoV9WFv3T0vijtJStgYBWD8RqZbCi0MHtpqy2lvIDB3DW1PDk8eOMQvNU16IDPQJoEtJFkf62xK8fjAb/hdFqQDWiuf8uA35HMzDYt08jSLG5gLtra/n45Ek+Anz19YnCCqDvEDn1yQqEYjF+Ay5H0xjfQkvPkA37SAugk/guFg5jqa7Gd+wYEywWtlosKHY79tRUunfoQFH79oTCYX7asYMr3nuPK0FzdgwZwtmnn04b2ZMg10ZsCW0VLRhk3aWX8uOBA6w+eJDV+/dz0wcfcMvixQzMymJ8Tg7jW7emd8+eOIWCKD9HvKQwwAbVQaCiuUzT9442Yln3/qeZWmoq+Hw4qqoS0XJOjM4NRfrcUIMp/rLJAKQZLBFNZozif1kWyZFOMvBkPvo8zhyDQYdB/TMbhjJfldmEbKeVlrbsBJDtHnlY0BqvtzUZGbrj/MAB7VoheoV+JANNYrhmbE0Mz6xKJlpLxrEsjM1zLa6VPSfi+oQH0PG3jzBNMY5AgORIhJodO0jOyNAnMc6/PDU1pNhs9M/NZWJGht4X4aECFjidPFVRwd0nT/JiZSVdk5L4qqCAN6qqcFmteB0OTc4Eg3iDQVKiUVItFnwWC6mhkCZvVBUPWipmMD2d/OJiTkQiTLDZuCkSQUEvzp2BFr2UZLdT5fWyuraWN1SV82IxhgCP+nzM83qpyc6m0mqlxmajk8eDR8yZOaLBrMxKRl1lcjLnbtqE22qlj9PJQIeDvU1NrGxqoh5Ng+mBluanOp3s2LuX5Pp63igtxYJ2aquQJeIVi7+bQSHQTlTtgpYK7kTj/aI+1nigFPgKyNi/XzvJ2ONJhFL/EItx5b59XOl0MrOmhvL4fZMkWrCjR9WKU/zKbTbODwb5VlW5OSuLSQUFkJ5uPIRGpi8zvQWD2FSVIRkZhFWV3XV1hBWF7PR0+nTvjrtNGzZv3szDS5dy59tv07ldO6ZOnMjZl1xC23AaNft0svL5HHTI1uymqOJADTbfIqgq9110EWf16sXqP/5g9datvLViBa9//DGFWVmM79iR8e3acWr//qQVFDRX5kSTNqX8sdmmcTrR7Nz4RVb174NB5Pa/SrVTlBoyM73MmGEEQ2WvpFyfWbzLDEUooHV1euqcxaIXzK6rC6KpPbUYUxC8aFtLKOQtgVRu9HpPol6USNkTmaIedO+yViMqMzMjQUeiyJ0oFQP6RLfkTBdjEu/ic78fHAEtz7/Bl8u2bZruKzAW2XMORoYsewFkkErMrxwq2hL434wY402E42r1tOowZqdL1nGifpZoMg6dRmam1aDr5uVpFe6zsiK8/PI47rprDV6v1TBHwSB88cWbWK0KEydelNiXYs6XvfwiDz7wAH+dOAHAuJ49ufW88xjds6d+gzhTDCsK9U4n9YWF1AOBYJDjx46xcfNmNm7ZgtNm494bb6T7oEGs27SLu+66ix9++JKUFB+TJl3B4MH/YudOu8GoFOvs90NSUinbt9/P11+/pnlNTafttE1PZ3RhIaN69GDU4MG06dJFr10RDNJYXU1JRQUVkQhWux0lI4OgJYUnnniSdeu+49tvDxvSJA8eLGHDht/47rs3WbNmFY/feCMLHnss8byUlFR+//0I7dt7cQRr9Y0lx1bLBCi0AnGNCKOUUtxuWrGCt/74g2PXXKMpuvEFrXc4uHj5clbt3Mnam26if2Fh8w1sFvbxxQzW1ZFx881YLBb+nD+fTjk5xpBOcf2+fbrxISrFx5l1fatWDFizhkM1NXTx++mUm0vE4WDlpk00NjXx6LXXcvPkyexo1Yq33lvJ6tXL2bbtT/Ly2vDKK1+yfXs3tm3THlNYqGV2CFtHdFUOGJDxL1WFUCjK5s2b2LBhNT//vJpNm35BVVXsdgd+fwcyMgpwuwtITi6ksPB02rQpSMhjoTPKnj85FFVck9CRQv/dCRD/V1oi/WHKFLzHjsHGjZTEYtSCIXVGsLZcNE5vycnRU1SEMmD2CLTkWRA5wlJ9sFq8hsMSzXWetm0z3ioY1FIZBA/WDsjQ05a1JnisaCKlTuazEUjUKNRBJ+2VTHKynu4strgss8ShfbKTR87UEU4K8b+YBsG2ZKeyAHhkgFWwE7NOKmhang+xtXftMmYbiQwKs10g7i9kmbi/ME7EM8RY8/PhiSfmMGfOfLp374rcVBVOnCjmnrtv5oO339Y7tHEjFBezfeNGbly5km/Ky4kAHV0ubiksZGZ2Nsl1ddq1+zRtL2qzUe/xUJ+ZSX1GBvVJSVRWVrK5rIzfGxs5HosxLyeHqT17Uu1yccfvv/Pu3r00qipnORw8lZtLu/btmxeuj3c0BLy6YQP3r13LycbGZqV4vTYbw5OTGZ2WxqjCQnp264Y1JSUxWWpDA2WNjZREIkTtdpS8PJTUVP4oLubSF1/krwcfpLsIdUCTkxt37GDNH3/w0ObNPAQ8gO52AvgILWJJaE8qOngjS0G5WG0g/hJpSp74S0GrjXE72vHco9EU+ob4/d9Fq9sxHw2gMtfUEXteHFuvohdUuA7No/802ol8sqGCdC9VuqcwKpR4P+d5PLwcCFBotdLZ4SArNZUvGxo4XlfHiIICfrjsMsocDj6rqmL5L7/wzbp1RGMx3nzkEWbNmkWtM4tt2zR6zPXUGk+Uk5U1WRmWGMqRkydZffIkqxsa+Ka2lppIRDtK3OWiwOulsFUrClq1YnDnzozo31/bAEVFVHraGniS0CFlUS1HpYdCtbRv/09Kt9wSsmbAALybN1MVDidSfpzodC+iH5IsFp3JykCQDB7JqI5YFLMskiN5ZEEi8s7ESy56JIwAOe3S46HBmW4AeUAqZh8MgtOZiHZzxOVPbdCRoBmRgicOeJKBKjDiOkLWCL+OIG+hXgq9RtClXLZEiFoxfeL6RLF8MV9y7p+YNzAKC1nnlJEtVU3MW8iTbpAjctppSHE1y8CR5Z7LGdUHX1rK5x99xO4DB7hp3LhmwipWVcWEZ59lxeTJJAshGAxCRQUN+/dzw+bNLGlooAbwWixc3a4d83JzyY3F9PFWVKDGYoQVhUB6OvVpadTb7QQaG9m+fz8b0dLqxikKC3w+kvPyeK6xkWcOHuRQKERf4C5gSlqabrTKBBEXumtKSri1pIRNTU2G1GnQ+OEAq5VR0SijW7dmSLt2JCclJdYmVldHZXU1x+12Gj0eFJ8PJTMTq8vFgFWruKdDB27LzEzcT3U42N7QwK+lpdxZXMykWIw/0dLQRZuDdnpdAM0yV9Gj20UTta7E33VoRcejaHvShS4jrMAFaKfm3Q2JFO1g/LmzgG5okV/yaYBIv3ehywhL+/aQnc3r5eVcuW8fU7OzWXbqqdhETSehgMlEL/i+fAS708kXgQCT332XnLQ0itq1o7CwkD/37uWPLVtIS0tj808/kZmXx4ef/MQnnyzn558/o7q6gunTL+Xqq19l1y478SBfLrzQiA2IbeANHDfQlKy41TY28t2ff7L6r79YvXs3BysrAchwuynIyqIgO5vCNm3o0rUr54wciSMzM1FyQjxDHqLfHw8YEUClACOcTmoPHSJ14MD/t6l2qhpuFmAhK6Ay0CB7h00O7Pj+DaIp1ZrirRtkzni9J/E9aOSYhl7LCXRwSlyjFxpPTrbS2Cgr7yIKyoOxCLmm+JuVeDl3UXYwis9bcpjLQHFirHGu7ipykpeXLmRBIhJMZvI2W4Ty8q/YvfsznM4w/foNY/Dg6YTDrgQPMUdOgNFAkPlyS84CySlKeblbmltxBo/wMZrTGpHmuZFAwG3oi6II48tG164X8/rrC5g79ylU1ZowVvbt28aXX37AggUrEzQh+l9dDWt3HOJ4o64Cf711K2v++ovcnBw8Hg/19fXU19cTqK9PpEWZW2pqBoWFAygr202vsWO54IIrmDv3PubMeZDq6jo2bfqJVaveRlFuZfNmTWgLw0aeN48nm1NPfYnBg6/nyJE1pKenkp2dTl5eBkmRg3z/+ed8t349/37jDXjjDQrbtyevXQElJSWUlh6npqaqxf5p66zg8aj4/UpiQ+fk5DBixBRCoRK++upzbnriCeZdey39+s/g8OFGcnPzsNu9eqilTGxiEsUiy4JbZoZyuA9QVl9PTTDIY2vXsrB7d5RolN8qK5m1di3FdXV8cMEF9BfhE3IzW4gixtrnw+nz8cNddzHtuecY9NJLfDRzJqP79zf+VvZCyZI/Do5d88cfHK6r4485c+gijhTOy6PO72f4jBlsPnQIS3Iy3Tp04JZb7mT+/Ds5eXIfF198DhdeOIxbb92CorRJ7DEt2q65w7ElZ7K216307duPU07px+WXL6SiopYNG9azadNe/vxzHxUV+9m//2uCwVdYu/Zmeva8h7PPvgmwGxQ1czCCzEcS+svRE39LJ/+nW3yyYrEYQTTlRMGYzmBFL7RpNzM/80JA81Aa2WsgvRSnUecVlwje3TyqwHgbPVrJgd2uXayxK8FTwViHUDT9O4vFGs/WiiCiedX4yVZmJ48AaGQ93CmNwRyVqqqwf/9ffPnlO9TWltGzZ0emT7+UlJTWhuk3Y81m57HZOy3+F88TTgXRR/k+wkYzN/m+4m/Z+y7rFpdcchO33HI17733Ienp6Qk5eOJEgFtumcPChQ9SG3Tg8TiwKkqieOLBkhK2h0IJkGdvQwNXbN3KrXv2kOV00hgOU6+q1FssNAovWXU17N2b6KfTZqN3ZiZJdjvn7NnDsOpqnhoyhHv79cMeDvPcvn18Fg4zOyuLdr1762ATGBbJoSjMy8/n4tGjWfrTT9hiMdLtdtLtdqKhED8dOMD3Bw9ye3ExTUePkv7LL/TNyaEqGOR4IMCJ+npDsXRzO1JWpgFP8Un1+HyM7NmTDsBDmzdzN5oy/iR6WlEvtHoZCroiLgxw4QKUI4mIfxaUPrehaVlWSBRk/zfa6T9paJ7pB9CO2T4DzVtdi/E0Jjn1QUU/qt6JlspxN9ruuCF+vxvRjQlzSq451S7ZYmFZSgov1tbyssfDnEgkgXJGzjyTm7/+mjd++glUlSyPh8tPO43LZ8+mtrSUGx57jItuugm71cqMa65BUbTIk5DfiyNbkrlynRpZCEjGSdtAgCtCIa7w+1ELCtgYDrMD2N/UxL7GRjadOMGy3bup+fprpvXrx3Pz59MqP5+g0jz6Uuwp2eCXSe6f9jctNRU8HqzxYsEt0Y5KPDJCZkpiwuUcYXGNHHZkVjDMnnrZshO0IYAYn88YJirfV1VxOaMoijWuFwZ05itFAzk8Rsbt9fsJehwJtU3WVURrqWyHAJhkv6YAlMTnkv2J0wmhUDk///xvTpzYTk6Oj9mzZ1JYOACPB634vuzZESkh8nzKBxGYjU7xmbyn4v878p0oHlc8AhaDB8XhU/DExy/rZAkQrCJoeObpo0bx0vLlDPP7GZibq+smNhv3//ADEzt10kAnUzRQrcfDr9u3E7RYIBajNhbjkUOHeK64mNYuF5FIhPpwmHqrlfpIhJiqQlmZ9oo3C1DkdtPR7eb+8nJeranhIZ+Pq9q2xdPYyPVHj/JnLMYPwBQBTMtNmp+xPh+n5eXxWWkpJ6JRMhwO0q1W3LEYf1ZV8X11Na8Fgzx07BiO48cZ4HZDNMrxUIjjqkqiWnFVFRw9anjM0epqEA4RQPH76eX308vp5IWSEt5XVZLQnBp+oMlmo08kQmN8bwmQSEG37lW0mlZC3hC/RvQjFJ8fN5q8CKJZ+d+iOTh6xu/xJvAq2mEej6LJjJZqSon0bBvoxn5hIZf17UtpSgr3bNrEhN9+Y/npp+Mxg8ByKLb4bZywjkajzHrwQc4YMYIVjzyCNTcX8vI4XmplxYo1XHPNOA5WVJLdsRunnTaZbt0mAyrbt7zFVddcg6qqXHbZOwm/hXByyuQG4DVFYcp2nxeY0rkzU9q1I3bWWew7cYI/a2rYV1fH/upq9p04wY/ff8/xpUvpVlDAonvvZdDo0fHoJYfBbkrIFRl0Eh0KBuHEf2fTKP/5ErmFDNGE4vmiCVBFBt4aG+vQ8QSBadZCIhhPS7erqHCiKKLIeCNGQAmEom632+PXCeBEfKeBJ3a7Nd6niPS5E43c6qV769/JzNIIjhkjGQTwZCVq9KKrKi6PdoOGoJ5D7BIuaHR6NAJ2DZSWfkhV1QYqKr6hU6ezOOOMO8jNTWLPni956KHTmT79Odq27dlM5skeZNmBYpJNBnwAdHCtosJKaWlKPPpJADlim1sxgnZyIfIwjY02VNVp8IyLo+rT0i4iElG5555x9OgxhqSkDHbv/pnGxiDnnvsBDQ1OolHj6RUVFXDWWY/z8MOPY4tUcbSkhG07jrJnzxEOHz5MbW0j0agbq9WNy+UhO9tNTo6b9HQ3Lpcbu90D+AkE2rJ/v4Xs7BAbN77Iu+/ez9KlbxMKBUlPz+f0018gN/dStmxx8ddfQSBCXp67RSNKU+I60adPJ0Okm8czkHkPzODBbAgEKli9+ke++uo7jhw5Qfv2XSgoyCUYzMVqzaV160xsthjhsEpKikpurkpRUQagGJRFHTjUWOxpo0bx4EPPsHOnjeRk3bA0GM6CGOTPBNouFlsGqGQmEQzyxuTJtM/I4P5vvmHVwYOMSEvjyT176Of38/nMmXTOzdWZqjxBskdXjwFNbJQBQ4fyZ6dOdLziCpb8+SejxZmbMlGK+8hgQFyj+fbwYSZ07kyXnJzEd4dKSnjm7bfZ/NdfjO3VS/tdcTFZeXlE/V7a5nXgxzVf071vXz7/fD6TJi03OB+EkiWvr7zOQnkS3RL8QJtGLx06jKehYTx794LFopV3icUaiMXuZfPmOzl+/EOmTVtEx44DEusplDIxROH0tBIlEIgfciAVQf6nSS03F1JSsOzbh72kxGD8yvn4Ca+VvInEwplpVs45lpvJeHDl+1AUqwGvEsq2kAVyXXwZP9Wbxi91wEmcyCofjhykeTq4lgKubRUBPmG4Tmx7GUuWAU3zASuKAg0NUf766zs2blzNtm3f4fe34oorHiA/P5/a2i3cdNNchg49i2nTZiemzqzTy+yjJaeLLDcF/ffvr8uG4mKjE1ZMuZg/ORBAjFPsG3NKu8abC7nllke55JLz6d69OwUFXdi5cx9//PEHs2ffQ6tWvRI81iU2dF4ek+fOZfJ55xHetYvjO3ZwuLGRI3V1HCkvp/zkSVyKgjs1FbfViqehAXc4jNtux52UhDsWw+vxUFhUhL2gAJxOVn/7LTe+/z4DVqwgyWZDsVi4vqiIG7p2pW1BgV6jRaZPGR0IBvEqCpdPnKhPYHySRwwfzp3FxQQDAX6tquK7kyf5q7yc9q1bc0Z+Prn5+eRmZ5PtcqHU1aGGQqiRCGoggK2ujgGiXoQpT1+AVT60qKO26FEeVejRQ3KzQOLUoSaaN1mBj6Eb7AOAe9COyJ6KdgT38vg1t6EVOo+ig05yC6Ifyh5C00QE2XnRjvm+Ee0Upmvj38mebDk9ECTDxuPh21gMr83GJRkZEAqB00kgEuHNn37i6TVr6J2To8vPQ4fA48ELLJo3j7rKSubffz/jBw3C32pwQofx+Vy4/E6dkIXSJ28W+cQJCX1V7HYGZWYySA5JzM4m5nazePdurluxgi7XXMMTt9/O+ItvR1UtZmdzQs7JGFd1tcZO/2l/0/r2hfp6XOvXGyKcFHSD1wlG9E5GX+S6XLISLiKVBCOWyyPI95MN1pZCjQTTk8Nd488QtobT6dBsDWhmlySaxLQFvchDkFmS6JrssBNpeQJDlzI+DWpoSckefv55MYcPb6Si4gAXXngfs2Zdht1+gs8+W8SiRS/w1ltvaPtQDpuSa+SITsrjMAseWTjJx27Fm1XMpcdjTBEB8GUltmGifm5FtR5xJQGEttRUPnzmGebNm8czTU2M6tSJOquV1Tt2MLlXL+aNGaMphXI/nU6yx4xhy6BBxI4epfzgQQ43NHDE6eRIVRXF5eXYbTbcHo/2CgRwNzXhsVpxKwruaBR3NEqHtm1J6dABFIX9u3Zx6zffcNG+fVx58CDBSIQz/X5uSUtjqMcD3bvrof1ydIhQFoJBrIqiRUaZylwMdDqZGwwSLS9n+8mTfB8IsK6qCicwzOEg1+sl1+cjV1VxNzSgqiqqw4EaDKIGAvRyOIw0Len6UYsFFVgEjANSLBZikQjVaM6EKMZC+6JGXwitflMUje8LmSI0KNDT8hS0kJI3gIeAS9BOzNsK7EGrWXgFWoFyOZLW/HdiDMLYz8vD5vdzV9u2ZBUUMOejj9gfDtNL9ogJuvR4dNoRROX3s3nXLqoCAeZfeSVWrxcUhWg0ynffreKhh+ZrNYazs3AoUfLyrPE9qXBK4TlYQyEuufZazjjjQoqKxiUypmR7Qkx5yJ+u1TAT/EKEMMo8Be1QgI6FhXSUD7GIK1hb9u3j8uuuY8hFF3HtrFk8+NBDpOTk0BAvMSKzKFRajk78L22a/yXwlGzgr4K+ZH4heIn+WSN6ZJKIQtJqMWhkpn0mjqzUU+xEhBLotS9kwFv7rcViN8ytdnqQSK+TPcwOtOoD9eiqlajxpPMa2Q6RGavPJx3vaTa8pRu4/H6UeKhn1JeueVudTpB0TkWBsrIf+f33e+nQ4RJOnDjE0KH3UFn5Mz/++CBXX/0So0dfQpcuZ/DII+cwZ85XpKU5DSinAJ/kSFUhZ2TBIdYhENCBM1HY79Ah4amwx9NEQE8DEcXdgxh9nRlAEFV1JuhNGO5i3oqKLmPYsFkcPfoTqhpg0qT7cLvzE1QkZLEwKITs0EpApJHuT6Nv36506qQLRpH6AsboNLFG1dXa7+vrNUE8ZcoNjB59EZ988gouVwdU9TyiUYWmJjFPkfg43M0cU4LOZIxEfCY7phTFT7du59C69TkcOqR9d+iQjkpbrXodH7cbcnK0Vzz922BABgKQnNyFPn2G8twLS6irsyXACwFgN+DSFAwZ8BGdlL2r5ugOGYiKf2cH7ps8mYldujDr3//myT17uLtTJxYOGoSSnq7/VgaexLvZhSqh/9v37+e91as5WVfHiDZtmjML80vuq6py86BB3PD113R86inqQyECoRB1TU2ke708cfXVzBs92uCGs8bHtmXjRiKRCPv3b8LtjuHzWZrRvqyriDUQwxHTKp/KItZFGMV5ebpxX1HhoqLiMWKxGajq5bz44iD697+O4cMvoFUrN5WVbmw2N6GQm/T0JHw+3bQShrmTf1qLzemEjAwoKiKtpIQq9GN2Ze9XwjiWN5FQ9s1gZ2LS47MuW2uCruPHrWVn5yYEvNiD4ufZ2TpNyHxXVZEKhot0Oxm8t6OliotVl8Eo0UQ0rgZ8NTZqI0xOthr4ZUsAjqpq9Nm9uxGgqaoq48EHL6Zz5yEkJSXRr984fD4vr756O//611v07Dmaxx8fya23XkZGRlf69RtsMFwF/5X3geD14jlyHwSr8fuha5G2WsdLrQm5o6paCp556qWamQnWJgNochqrYBndu/dh1arVbNu2mQMHDtOpUy+uuuphIpEWYAzR4fiN7YpCO4+HdvJgBf2Ijpq9O+LoPbc7ISzGDxzIadnZvLtxIxXBILMHDCDd5dKEgBCQInJU3N+MoslCXdYn4gN3BoOMdDoZKVuHokCK6KccXi+n+shFvuL39qek0Nfn48nqatqiAzRCsZd1S1lBt6MDS6JZ4teba+LIkUZ90LzOT6FFPvVBO6EoK35tEtrOkH+vop/CBNLplfFrKoHvgS1oRcxtUn/NSq0ZjLIFgyzw+Xi9ro7OpaVEYzHqy8up3bcPLBZm9uzJCyNGGJ02cYZQUlJCSUUFlbW1HD50iE69BhuCm5xOK1aZlmSAQRgCcRA0wVjk0At5UxUXY/H5uKB/f8adcQY3vvces++4g6GrvuXKK+8hGEwnFHLj9bqx2Vw0NLgQkZGg9ykR+fFPa946dICqKuyHDuEp0coz2zIzSRb7RV4b2fgBfR3BqCQKBiaukdOwZN1JKICC50gFnBMvyYgNKS4AFF/cYVuqR7sJZ4nP58Arg5cyyKAohFRrgqxlZ4XcRHcFywSNnVVUaLw7GDQeuKUoWomCN9+8nsbGerp1G8PBg+u44IJb+frrl+jQIZXTTx/L8OFPsWjRYu64434ev+82vV+yIJPHLuuIsoEr66RC9hcX68a2nP8ngCex9xStyLiiuBLLaw02GB2qQnGMC61Ui4V3zj2XY8eP80dZGe0zMrhm7FicLpdR/5Z/G3++xeMhKzOTrGCQAWKiBa0IoWZKwU3w8/T0BL8oKCzko7w8fjpyhNUHD3JBjx509Xr1Q31EXrrZADd7j+ToBTEB8UW2ZmfTIxikh6IwX/RTdiyLlGHZKyXLGRmBjM/3wJQULmhoYEYwSAPQJEXoCusfdKeAkD2i/pIcEgEaKCy+BxKlFxS00guvoNX8ewtNvjyLVn9Q3FsUDRdywiZAQzEPonZMfDxNSUl8uWMH723Zgi85me7t2zf37JmNR3Evj4fTR42i6zvvMOPaa/G4XNQ3NBBoaCDY1ES/fgNZsex9OrZpA6qKVVXxKoBTIVxSx9Z4ft2OHZsYMWKcAdsyR7drqqsDvz9Ls4mE7iKvi7zHzCAB0KuoiF9/+YXnnnuOO++/nxXff88Tjz1G2/wuJCW5ycx0EYskY09K0YFj+X6yzfkfmllG/4emLbecvizGI3tfZMZWV+emeY0LkRYnk5p8upr4XCNNEcUkr21yshVFsRrSCbT9ZpUieMThkqAH9MkqkRtwG+hFfobZ22pQ8OTNLP84GMSRB4qoRi+dKCJoNRgsZvv2h5kx4wsqKw9TX7+e4cNnkZ09ix073mX58vuZMeM+mpoy6NBhJr/+uoxRo2YZVqIlg0DWY+XuyXxXOGhEE9iFtmaCDTSiswUxb8TnMoe0NLcMCieEkEhtdTohFrOTnz86IcRkp59sRAhDQgZ8TFiEwdFjtivNOoEc/ejzZXD55XdQWgq//qrTZXY2pKW5qa52G/aKuQ/yM4UsEWOV51hcI8aWn6/zZlkfEemVsuw0RhKM5vrrR3PkiNGzJK+jK9vXnObAaHSbN7+sMMnfBYMMyshgyznnUHbkCPkul4aWyUxVBqAEsxJ/x+93rKqKxT/+yHvr1rHl8GHSXC6uHj6cs3v3Nk6CrEyIJiY5rjBc2aEDJ4YPJ2yx4ElKwq0otMrJYerYsbgFc5P6F7VaeejZZ7nnoYcYMmQEl1/+ASdPWgw6vCjlI6bJbE+asTsBHMrT7PPBmDH6bw4dgs2boaKiL61abeDEiaf588+7+f33pzG3kSOn8P77y7WlcupFolV5U/zT9JaUlJh0t92OJ47eCi4kYlWV+MughMraspnWWvpfZj4ApaVYFQWfLyuhe4pLAgGdZ8l8VdxKB+jDaLEj1RgPBBZy0IZeo1B8n4xIWlJVLao3OVmrOCKeaU7/FltL6IIyZqKqkJQU4+GHZ3P55U+Qm9uFO+8cy8MPf01qqo0JE87l3ntn89JLX1JWZmXs2Ad4//3bKCgYbLCNxNYU45X5nj5uI3sRLCiKFSvRBN8UdrasF8m8V9KBEnq0qCkijt1O94SIKg5KS3U+3Lt3b3r37m1w9oL2vcsZ1dJQZB4kgToGI6clw1KELcoMQQw4/iAlNZVLR4wwAptyJIRgILIAliMhNO+P0TspFtGshMjeJ9Evub9iXIIQxP2kxfJ4vfxx/vmwYgXhkpKEZibq24Cu0IuaFwKACsevsaAbBxGa18yQq0KG0PbrfGA72tHfzvh9PeiantDKRHl9scfFvRuAH4BvgJ/RALCxaBFVnnh/zc3s1VYBwmE6BQIsKipim6riTkrCoyikuFxMGjGCtmlp+pxJQNDXGzdy4euvY1cUvv/Xv+hdUADBSlx+Dw2qQ6M1uf6i7M0UG0MySprxLfl/GajyePB368bb777L+b/8ypVXXsXFF49oNtaUlHS++eYgTqfXoIP/t8bA/8nmdicUWbvYc2LPi30GRuVQlhsC/BXXyvoSGMMEBB8wO/IURTd2ZRqRag+WVTsM+ogZr5ExTnwOFCUeOZtge3oxYnEP0R3Q7QDxmeDRouuHDjXXd2WV8L33Hqdjx26MHXsVL700n6uuepx+/Xoxffo0brrpXHr2LMDp7EC/fjNYvHgCQVXVaouam2yESRH6zZyXgv/JEVNiHx06pAN58rpJynTXoiIdTCmuMN5fgDkysKiqtE5P106b9nggGjX+xtyEHiIDzzIAKYPaQs4IkMxsiIoFAoZlZzNs+HCd1gR9CVoRCyhHeZn5im6INpc1ggbFnAmiEOMRhokc6iZ4pfiNZIi9OXCgNpf79hGqqzOcJmeuwyf+F6N2oAFFwmoX8kI088ERUTSZMB0t0jYZaIcONon7OYkfSGOOYowbpdHUVH6uqOC9Tz5h2Y4dVDc20rttWxbNno1NnDYu6w9g5BWSTmmz2Xjz4Yf58JtvcNntuB0O3HY7A/r3Z/C4cVjsds2OURygOLAS5ciRI0yfMYONf/zBHXc8xdix13PsmP5YoQvJQQnC9g4E0IFnwZ/kCv5CYRTvsuc0Lw9bdjZXzbuVSVOnc+21c5h+/vmYm9VqZeXy5Uzs3t1Ix2Zd+n9o/0vLJ/q3dCbzYrEG2njdVFUlYzyZTotUknm1qtrj90sxMDT5GpmHiO9k4En8X1rqi3ufxfNCaKQn1y5yAFlkZjqb1WST+H0CIHEpISMi3ZLSJzqnKFiDQVx+P6G4X17+eu3aVznvvIVkZ7s4fvwXTjllfELuFBXN4oYbJhCJNBIIJJORMZG9e/9FMDjLwN/kaA6Zd4hmBm9iMS3FZ98+3VCRHaTafMmAXxZ2uz3R51gsisViZcIE3SAQ+rCQ04KvyzQgxm3WteU6WqKvcqSrrOfL+ra89jLNybJf7gPo0VFij4li6HKIsXiXnSny/cU4RJ8FSCHLRNmeEYqBzNuFPipO4TTzfZm2zTQj5FND0IpL3hzmiTBuKv1mLW2gQAAqKnAFgxroJO7pdHIkEGDEs89SkJXFpD59OP2UUygsKKCsoYGjFRUUl5VxuKSElRs38v3u3ThsNs7o04d7Tz+diZ07a8U4hRVoZkp/B4yVluJUVR485RT9yFJZYZeJyuOhLBzmwvPP55tvv2XBgruYPftudu60UV+vG6xiH/fvr6+BSP0RcyrrM5FIhJqaco4eLaG6uoRgsJY+fSbj93vIyzOutx5Eo5CZeTP9+1+K232UlJR6kpMbgAoeeeQi/P42hlINHo9mENempvJPa6GJhYorYd448CQ4uoLGoZLFMdTy5pWbvD/Me0Z+lvlVXY3L58Pn05V9mQ/IUTcgB5sIuSJSyoXscUDirC4wHhAsB5BrEVOxmFa7QwxJrk0tbwUxHLG1zUDq7t2/0bZtVwoLu1FZWUpubnvcbi2SslOnjvTtO4hff/2BlJRRhEJtqK2tNeAlYtwynzKD6WbgSfRJgLNOp6ZOCh5bXa0pTQJ4EnMqZweAzrOFbufxgFdpgNIKrE4nfn9Wog+KokV1CEeUmB+H2gDVQaN1JltMZq+ILIxEE5tcVnpaEhTiPuLzwkLjZMjGp/llBvrFhMhIpxmskPsi+i4ThuC7f6erxDVYezCIvbpaO0QDY6pDE3rtJ3HiT3L8MxH55EQCdOJN7FPxWZP08qNHSXnR0v3mAeXA8PirJxBAOx68Ag3C/RPtxKIGYCBaUfHpbjeZDgcEg8QaGw11pmQjRsFonEQBgkEuzcw0EpmiQFqacW2BSDTKve++y4OrVzOusJB3L7yQzFat9PwjpxOXWDNxcqIgTBnMlJhIzO2mWlEoCYUoqajgRFkZg/x+Osg0YK7oDEwYN4aNG3eye/ce6uoaqKurp7KynieeuINQKIjd7jZgH34//7Ux8H+y1dTo+1PQgVzb0hzdLesjYNy/MiBidtKJJvMSGUTOzzeCVEJJzs6mMuBI6MbikTIIJOvFQm+W2YnMEsxYmtx18ZnQbWR2JtKmxfTIun84HGbr1m948cWvqa+HysqD9OvXK86ynNxyyz28++6L3Hffk9TXW+jevT+7//qLXnZ78wcLHm1O15ABEFk4yZ7EuPMSp1PkvmrXyWCJqCUlIlLFXpUVd7kP4n5mMNJsJPwn2pABH3GtuAaaRz7KR4ebnycEIugROi3pQLLRJc+Z3G85OlZ+rrhGRrDlDAt5XHLkiTwm8XcwCNnZeOrqsMQjjBzSqaMNtNzESEREbrLpe7PMEWl5KppzI4pm9afH318AXgLGOByc7nIx1uXCrqoUWywcVRSKIxG2lZSwZMMGjtTX087nY+5ppzFz5Ei6tW9vnH8ZfBDzIXQHk4NqYEEBAwcONBp9igKRCNGUVG2a48vy6aeruPrqi3C5Uli06CfatBlETY12W59PUyvy8yFLqTSkzjjzOyTITyuKqtNgQzhMycmTlJw8SemRI7SyWBjWrp0xYkViKi5FoVNeFquXf8ze7dupOX6c+oYG6lWVj9as4d/vvUe7Dh10PUUGgNxyCaS/b/8rieTxWLFYjMCeTJsyzQs9SDP8rKiJEE97sz0n63qyDmDWzcy8SVwPOqAg7heM5z9rzxWKfophb4uX8MbKxerFftY8ptVQXK0bQ+JULlnTFh00HfXgKCxMMAkHKl6/QmnJn8ybdz+RCASDDpKSGjj1VH3uBg4cQlnZX3g8p+ByNWC3OxJjlp2vZrBFBjjMYCBYqasLU1cHFos2H1pkWIS0NCft21vRvPIpCR4McuSolexsmDzZqKvJ6yhq2wk+7fdre0Pkpgq+JgckmKdRpinxd3Ex1NTUc+jQFsBOQUFv/H472dlQU3OIAwc24fG46dVrBJBkwDnESzimRNqVAI9EE2OQebX4XMZy9u1rjvfI6yHuIWSWcICK/sjRWeJawb+Ek1qA0eJ6Ma8JGeFLx+lL10LoZW+pzAzNBogYjNxp0QE5pCI+8AWrV9OoqtgdDm7/6CMWLF6MzWolIp3wl2S3M6RbNxbdcw/nTJ5MakqKnhcpXubNDs2NIVk7Esq78LCIOiXyYgAN0SgjzziDioqTvPfe1xQWjuHgQe0yWYeTgQKhnwhaFfqh2LZvvvkSTz89n2hU9tfD99/nceONzxKLTeXYMUtiLbt31xQynVb8gB9VBZstxrp1jxCLRbnkkusA4/MaglZq3Tn801pox49DbW2iwGqGvJFBp3OpiKOsqBs2laxEit+Kd3GdrOBBgomm+/2I4ooy8CzrqX6/njqmKHaqqrwYnSxBjCl14m8R5QSaipWMnFIOuq6Xn2/Ub0QXZT5tNiAAtm//kYEDJ6Oq0KGDA6ezkfx8/fcTJpzBp59+xpgxo+L3VROAubhGxmrklAyZB8pLIhs2MlsSn3fIC9HBr22EKHrah8wjfb44yCQ64nQCiqZRxh/iQDpVJV7bw5WXx9ZD3gQvdXicOugoigrKvFFMhqJ5HAMBqK2NsmnTFkKhBnr06Eph/zSsgVrqKir48bvvUEMhBhcW0ko+DtCMRDqdJFBqMTnypJmAjYQ1J1pL3zudhOJpVGI95KOLo4ojARomdBazgiUrC2A4lccSCGALakc/p1ZXE47FDCfagQZGKfFXAzqQo6IX+ge9LpP4XNzDgwY8edGMgSxgFfATcLbbzfLGRl6LRhOQrWhWoCgtjdu6d+eCwYMpyMjQj+Xat09LSQMtPQqIxWIJAycSHwcYU/kAXT7J4J4QvNJ6Xvfjj7y8cycP9OrF7aeeqoFagvaEASvPtWyUyXQRX+cdJSUMfv55apuM1bKSFIXbxozhtgkTcKalGTfcrl0JHpeVn49vYM8EGLF1658cPryTu+56ltRUWzP2d/SolX/a37QTJxKGcWLS/kbnaKYkin0rM2UzqCTvd5mhyvd1OjWLUvqN2M/Fu5pH18q3k5vsrJUxEDM7AW2oiRRMWScU/NLvJKo4Evfs3r05i/P7tdMct23axKkDutOli7bn0lJV+ncNYI3X/mnr78ZzT20j3ROid28Hn6+oI6mqChwO42l2sidXPMjsTREDledSbmJiRIiWWCMZmJcjkcQ1IoxZXCcbM6LJQlhECphDd0UT3mXRJ0jwGXGy4L59Bzl+vJjCwjz6DjoFlxIiUl/PurVrKa+vp3ObNnTv1UvvtxxpID4TkVvmNCSZzsTnZj5lJh5Z0RFzI+tPgjbEPhFKtWwEyZ/JigRgEWMIBrEANlXFFgjgiReBNkfNip4Ivp0UfwmuKdKuo+j5VAokUumS0A60cKekcDg3l3v37uWU9HTWh8O8efIk1pMnmyUht/L5mDJuHBfOmMGQceOwuly6PSIb3bJOIW9GeRNK401EOcg2ms9nWKLFi7/kkkvOYNCgMzj//H9TU5NOfb2uB4oMI78fqFAN+q9DbcChKBBUE4ZGrKCAvhdfzObduzG3qUOH8uz119OmUyfdGBbyFMDpxOLz0cnphFNOAY+H6upqbn/0USaMHk3XrCwjbSQUvA7NntVSU/7zJdLFCtjthuhjw/yamRsYad+sNMvfy/vfDDSJ3wqBKvN3mX+Ivoi+tcSbxDNkgEEAT+YUMJcS0orOmZmizGxa6qzMyFuamGgUrzeKzWZj2rTx3HTjXObOnZnocywWwm63YbHAwYOL6d59SkKJkGWZ4JXynMpgk8y7tb+1NI9YTER+aUZRVZWNYNCe6J6iwM6delqIxeI0HNUre1XkCDGZBmUwWO5TdfVx9u/fSlqai8GDB5OcrD9XrKUYkwbghPnww7s4eHArbdoMJRRq4tNPb6dHjzGUl/9JSoqLgQOHc/z4Qd588wlOO20KY8ZcbaA7cS8ZbJJpVv5MLKW41iy45TWQP5O/E3QlIpzkOZBPjBX9EnQHenizmD/51BDZftaeYdU8rbIgkgWHmRZbQomFohwXKNFQiNtWreLjrVt5Zs4crjz7bGLhMN999x1HDx0iLz2dvJwc2nTsSEb79lhSUvSjAeWBiWe0BDyZhaHcL7EwYn/J8aTSOG+75x4OHjzIzz//QWZm14S9IBetF3Qq5ly8m7E2MQ0//vgJRUX9uffeheS39pOTmUljIMANd93NzTefQ//+pzNlyvP4fB0SdC/oRKaBY8dKef/9uWzZsoLp0+fRsWNBgqbkJWlqqUrvP007acjlahYlYNh0sndO/C0ks1nZN6PQskAwK2jis/hxnOnZ2Yi0BT3CzQj6iL2r7U8r4bADDUiSU73lk+z+zhDUvrNY9GinlqKc5G6bt7X4DsBqFbX6IDs7nfr6amy2Ouz2FFQVLJZw/Bo4cWIjubldDL0xP1PGL8wv+dkt8UfBFlw+mZHqho1cKsLrjJ/SZO6EPOi/eaD4qq6ukY0b1hGur2dAr15a3SVxP9GcTqLxtQgE4N13l/Duu6/Rvv0AXC4fzz33BJmZWbRqlcbBg9uYdNooHNEo8x54gLTUVJ6+7z5cdrtR0Ml9li0/ua/mRZR/E78+qmiAp4MQKFptFnmtFQUc0u+tHgU1fo2iWHEI4hSDEwqCvIhS6olhbjwe7KqaSD0S0VDmyCbi/zdJ34mUCDnqSYBSVrQIJx8a+PQjWvrd1JQU3mjThpTkZP5oaOD3+nqynE7y8vLI69KFnG7dUDIydKMnnrrRDPWMz3OiwpeqYgsGIRxOAGSij9ZYDLsczmimrbgs+6q8nBd37OD5nj25tkcPECkaslEpMwWZVmXEQNzb4+HrI0cIRSIsPecccjwecnJzSfX5ePrnn3noyy95/6+/ePGGGxhXWNjcqAPIzkbxOAiHwzzzzMO8/vq/KCjoykUXXUxqanOxaraJ/2lSa9WquRIoDBwZvQGjESJ71mUHh2hydKK8/82gU/yZoXhqtyqZDUJfNC+/6Kb53SzmxOcOJWocn7mv4gHiIXG5anU6cXk8OP2OxM9kfMLnAyqqsdXWEq6pwVFdBqrKsE6dWL1oERNPPx0UhVhjI7HGRigtJSU1la1//EHnmTM10E/sE1kxlvmTbNyK78yOVDFgM6Ak7x15XcVkyXMieKT585ZsPCmUPhaLsXHnTiqqqynMy9Pq9cgLI9OUz0eD6mDDhh088MBtuN1ZZGV1YsmSPdTVlTFixDjWrl3OqFEjadMmj9eWLWP/E0/w1DPP0LFzF6yC78j8XPRLTpGTmyAas2A226VmQEsevwi4kGlbGHzC6SLPtYj6FLaFuFYYQ/JzPR7d1SYp0dZYDAckTr1TMB5xJeSMuJMLXTYp6BWc3RYLh5xOTj9yhDSnk0VnnUVBZiaHjx/n2z17cNjttPH7ycvPp/WECbjiYEDUp516rqjS4SQy8OjzEXLq9aEdSjShS1gr9JMJmzWTHuqIv9dWV3PzzZcydOhE7r13BQcO6AW9ZdxUZMc5nVrEdzC+LPn5DlxIWVlOJ/tKSti8ezd3X3opw9u3J9vlIiclhTU7dnDDu+/S5aKLuOfaa7n+qqu0GHyxD4WHXKxvdjYrv/2Wq669lkAgwGuPPGLcL/LY/odTdg3T8F9dFW82W3OdHnSaNgPTLRn0Mj8XTf6dDDzJ2RGCflsywOVnietasrXl72WZIKfUiZcWph8whhHKyokeCtTctWA2cuQNraqMGDSIjRu/Yvz4SXg9ftq1bs2HH/ybKWdfgs0WY+vW35g1616+/34DJ0/+zrRpd2OxNJ9POXBFfC7rYHKXY7EgekCiXIskBNTS2Cj8jMI4aoy/u4Ec8vKgd2+jc1ekMeXlaSBdWbVD2hjGmh4NDdV8/PF1uFwhhg4dxv791bzwwv2cc875zJw5u5kgFe3556+kU6fTmTDhkcSeGDYsyPPPd2P48DO57banE7Qyf/4NPPTQHaxe/QqTJs0xKF5m3mFWxsy2gskOMMyttow1bN78G8GghYKCQShKimFtZJ1FjCkQgKqqKFoCgRZt1thop7HRQ0VFiiFiQIBRMj+XMSaI74+/0yxlWpXp1Qw8iQf6/QTDYS5evJhlO3YwrkcPrn/lFa5/5RVyMjNZduONTO7USd+Yfr+GQgeDetFdVTWGLpvDykS/zMakUNDlSZa/kzwGUZeLuqQkPv/2W3Kzs8nKakU4bFzjlnR+8b+gW8npkJiqffu20K5dAX16FVEoqki73Xy+5EOWrlzDDTfM54EHunHBBXdw9tk3Y7UmJXSWYFCLclq//j3eeus6bDY7Cxd+xKRJ5yQEiBiyed/+00ytVSvtXda8/xPwJOdGi2ZWsuXftySsxP+C3uLE4c3ORvG7mmEJss4nfubxQFWVEz16SahVIsLJColKBYIPCzDKCSQbhiODo7K8FU2IJrkfYiiDB09k5coXGTBgNKoKV155PQsWXMPjj7+Joih88cUyRo68gFisklWrFnL55a8ZxFZL2xRa5odmJ7Rsr8lisCFoxenRFLZAtbFOic8HWb6Q7nWTIjATPCw++AZfrjZupxdftua9rw1YCYdjfPTRo2zZ8gNjh51KUnIyr775Jrl+P0888IBe0F9VDWDOkiUf8NNPa3nssdXs26cBWEOHwptvXsCff67nq6/+JD9fwaE2cMX06Xzz449cvGABS196CYtgImJTy0aTTDRy+zvhpMQLAMdv1RSx8dM3v3DyZC1FRd1p3bpt4lGJiC6QTriKywiPVTvZSVYizZapvEDyosupQaqKRVU16o0zLiUWSySTAgkDQUU/FkaQqACswmge6AwgFVgM3A6cqigsr6tj+Y4deKxW7sjL47aCAj2vwO/XFE/BZIURJEfDmRU+eTyBALbqaqKxmOGIFAeQZl4zVU1o9rHGRhqBT+Jpvr0yM/XNKJRF2eAzgwkyL5GVZaeTzWVlJCkKKTYbQzMzNfrx+Xjw8su5cOZMrnnqKcbfdBPnnXYaT8+bR2vphFex4f74YzOXXHIpu3f/xWWX3cbVV9+F251kIDV5Sv5pf9MyMrRTyURNLtFk2pDzfc0eK7FvzbTUUniojNqYFNHSUp0PmnUWcZnZ3jI38RuzGtXihTJdCoNT1t0kA83qdOLzuRL8RQxbs5Gq6ZySwpYtW4js3o0tHOaKvn0578kn6dW2Lbl+P9+vW8egtm2JHjjAzYsWcfmkSViamnS+J81DM6+OvN/FZMiDNM9xS7xWXhfxfdyxlDBUxHXmlDGR+iKHCsf7t+bXX3nsgQcY0LkzbfLyWPHbb5SWl/PUvHkUdO+uPz9+fYPqYNu2A9x113xuvPE9otHsRG2enTs/4sUXr+W1136gd+8iFAUuvvhSSkpKmDXrQl566X2ysrJRFC++bC9WNKBD3t/B6uY6gtPp0KcHDdjUpkH/3EoUFIUdmzdz8MQJcnJy6NOjh1Z/SAb+IOHgizpdxtPdZXBd/o0gQpMN3Ez2mJxJFsBRV6ddAokC4oJ3qxhPQk2Ofya0KBeag+OP1FQmV1aS7HAQjkTo9MYb2G02RrVrx6ozzsDmcBiVrbiMsQYCeGWQQgKbo06Xhq/tk7+yJoadm+03RhaYcQAwKG4hq5Uff/yR8vITnHlmb6xWa2JahK0i7Ay5RKRMXooi0W98o245dEibv+RkTh02jKSQBkxNHz6ciZMmcffbb3Pbk0/yzvLlvHTTTQxr08aotygKlfX1XH/ttby7bBkTx4/ntZdeIk+uIWbWX+LRa/+ptcC+/r61aqXVfZUHbgagxLusgJodQrK+Jf9e3E8GnmTlXgaexLjNCq6gIRnAl58lOytEPwTN+f3g9USNherM3gCx+rJVKw/OzADN2jpw2fTpTJs7lxGDe+FV0nns0Ue5aeE9fLh0KsnJCvn5eTz//BXU14d45ZX3CIUshkMP5MeKsZv/Ft8LeteAJTCetKQVs9VOEhTNiV5U3Av46d5dA51699ajy1VV48cCdAJj9LuiaLxaC0AIs3jxDObP/xdTp/bH49H4vs12O//6180sXryIWbMuN9BMIAB7924mOTmFgQPPS0xjIACbNy/nlFNu4vjxVYTDNXg8Wq0cu93C3Xc/yFlnjeXss2ejqnYD4C9oRKYzs0wSc2b+TF/WMK+9tpAjR3bTs+cYQqEon3/+LK1b92bkyPsAm+GZZroXQJ9+qpVW/yUchurqlIS8Fc2Mdcp7z6FEIdACwwejoSbfQDA/0cn4hqgKhTjz+efZeOwYSydM4LoNGzh3/HjOmDqVR596iitfeQWPzYbD4WD+eecxdfx4FCFc5HQDeRHNBoFoJg/JvspKFh47Rh0QKSsj6nQSsWqB4BGrlfpwmOqmJqqbmqhpaiImoeovvfQa559/ezP5KK+xeT/I+qPMxx5++EXuv/9Gunbvztwrr+Suyy/H73BgAc47bwrDh4/l4Yfv5+WX72P58qcZMeJcRo06n9zcYZSUlLJkyRw2bVrJkCEXMG3as2Rm+hOCQuZBgnX8l86B/3tNLFJLCr14l4WEHH4mK/jy/WSXsYz8yfeU0UkRGh0nKFdeHqrHkSBpWYaIbaaLBjuxmEidE02c4goamA96LSgNlLJY3Ak8TfBWIZdk/U62GcwOXVn25ud3o76+ml27fiAvbyR9+ozl2LEapk+fQFFRV/76awMul5v169dz552P0r59fuJ+cpOfJf8PzR1IsnEiGz9iyVxKKI5KOAz38HggNzsKm7dpQHZ84CGnV4v6ESkZAD6foUyHVgZHU9aWLLmXtm3TWP36a1pnfD7mXXEFX37xBZdcfTUfvvmmZMRrl9TXR3j33Td48smvqauzJeyw+voyampCnHLKRXzxxSpmzz5TA3sUhTFDh7J67Vp+//13Thk+XKczMSAzL3TqUUyKIqXJSdeI1Bbx0dKli3nvvTfo128EKSl+PvlkCaoa5N57n0NVWxEMWhPzKGhAvmXi1EdZAROLIX8mL1JLCyt/V11NckUF1nAYBd0DLWL7RFUz+QxjcUy2Cy3F7mG0ehvzgIDFwmGrlcdat+aThgYeKC5mXXU1+yMRLj55kqsGDsQnHxtn3sOyVi4rwpLuJSK2gmhg1360VEDHyZNEFYWIxUL08GGCsRjV4TDVaEd5y6fq3b55Mz/37KkrmHKahYz0yM9vCYxSVW4eNYqDFRVMXLqUMe3b8/j48fTu2BGCQbp07Mi3S5fywYoV3PjAA7Q/7zzGjxjB+WecwZmjRuHIzOTefz3K448/REFBF9577zc6depHQ0NzgElWC/5pf9PM+hLop8DIoK0IOzCHOpsVyL9DhcCoiIj9JTFbmb/LapNsC8l6v9nUaOmxikJz1MoMFJgLdJs9cqqKFbToevke8f1obWjg/H79uOfRR3lg7FgyIhFeufJKZj/yCAWZmazdsoXz+/dn4tVXc+6AAZyfl6c7K8GYviWe7fPpUVBCHpeWEotHL1rRjoZvZogKB6Zcv0bWI8R14ng+IWTFeHft0mvnyMfNi1zDuCPs559/5tUPP+Tze+7BabUmri0+doyLFi5k8ZNP0kouPI/WpaeffpTrrnsOhyM7YdOVlsKaNW8xe/ZK3n77aQoLX00MITk5h7lz7+b111/iuuvuTywX8TR1Gd8w6wjy52aWL7/27NnJ7bffQn5+B9q27crqNT9z8/bbueOOuxk0aBgukU6qKEQ9Xo1kA1ofFMWB0+PQnByiyYaqDLSY9TN578h6WJzGbKqKo7ExEe0Eeo1BNf6Si5WLk089QIrdzpepqZxXUUG35GTmFhZy6V9/8dqUKVQoCgs/+ogzPv+cfdXVjOrShQXTp9NZTK4cUSZCjvLyCDm1sQfiZCnsXLl+t6pCZbWV99//kBUrPqKxMUpjYwSbLUpyslbTUw2HqKmqorq6muq6OholsOaNNx5m4MBbiMV8iakSsl1eR9k373TGI6MlxxzA+FGjmHP55dz36qu89cUXPHzzzUwrKsJy8iRet5tnFi7kkjPPZO4DDzB8zhz6dOrE+cOHM6NPH9pkZ7Nixw7mPvQQjaEQb775by644CKamixEPWgn58lAjmBCEWOZkr9rf8MhW24ZGc0BYrMt0FKT7QPZgfl314txyClxZkNRgBPyc8V18qmSsuAVzzengYm+uZQQlFboO9dci6alyCcxGHkSZA1QRnLjg8lo25bnn3iCC2bOZNjgwQwZNYoePfqwbds2PG6F04YMYmiPHhTk54PHSqWqKdny6UWqajxQQwY7ZCVUOGuqq+0Eg1p9Lc2JF0GLahIv0M+LsqFt3zQyM62JewQCGl+OA6kJ5lgb1CKdBM8W9ZyE3N69+1NGjDidiRP7k+5sgKCKx+MFLPzrX49z1lnjmDHjYiwWuwFA+/bbJYwbd0kzWb179yeMHfsmXbq4WbduJVOmzEz8Lhi0MGTIaDZv/oX27UegqnDiRDmrVi2lurqcjIxC+vQ5h+TkZINtYF5SmQ5lwf7443MZMmQ88+c/npjrKVOu57vv/s2qVQuYPPlZA82ZQVdtboNo4FMEzQjVIsxUNcXwTHF/Gbs0KJFyxzF9bgaeZDRNZhRx4r/y1VfZVlrKd6NHU5eUxPHKSm6+/nr6j5uAx+3mymuvpWtRESeDQabdfz+pTz/NtNGjmdq3L6MzMkiKn85gmLiW9oPct+pqTlRVMb64GDUaZUAshtViwZacjDU5GavVitXhwO1y4UtJwefz4WvdGl+HDthaFRKNptKxY5/EsIXBaHZMezywbZsmKMyHhohuej1RrrxyGueffwZPP/0sTz31EIvefJPJp57K9AkTmDh9OhmZrXniiUe5+urZvPHGv1m6dDGffvoamZm51NfXk5SUzJ13rqBLl7MMOLWsLMrLk5TEP+3vmiwoTAK1GdM3a+aytJYBJRlBaUkzE/cWG8+UTuHNzsbjsSb4ruiiiCyXC3NrPFak2wkgX5jnTnReK2JE3IaC+IJuhd4jdGrBC2S9SJb9ognxtWDB6zz//Fy+/fZdRo+eis3mIjc3n507tzBz5iUM6Nqex+68EUtKCiFVL2Eo1xSR5bGZllsCmoSOIOS1WAZrsEFLXfd4QPbEKqJuQYVxXXy+uCxxkC4L77w8in/WDx4S8ikUquTgwS08d+drOioV78DE007j23Xr+P333xnQoweoamKpf/99Pf36jSQcthlE+pYtX9C27bl06zaWL76Yx+zZZxroc9b06by3dCmnxFNKQqEQn6xcxZYtO0hPT2PmeWeR6/UmJkesiTZmR+Ld5Ykm1lSQ58cfL+Onn37k9ddXJ/p19tlzqazcwXXXXcCTT35OIOBK/C4Y1PUyMS6HLEjEQsjvgtjEJMr6TXOPi0EDTqqowBqLEQRDip1Iu7PF/3eiGwcu4BM00OlfwA2KQnY4zA1OJ9MKCxnW1MRPGzZQ29RE36Qk7v75Z+746ScmtW7NlOxsJqenkymUdDMTb6nFF1NFM1yuBlaiFTC3Ad5oFCUS0eINIxHsaDs2GU0q+4EcoFVKCp0GDtTuKTakKLwmzpmXBbUIA2/JsFJVuvn9/HD55Xy2fTu3rllDn1deYVi7dkwfPJhzp0+nlcfDzKlTmTR6NO8tX87izz9n5nXXkex00iori+Ljx5k//w4uuGAhTU0Og5g36+GyPvNPa6E5nVBWZgwvkveBYC5in8iea7Gh5RQv0WSdqwWkKIRDcxw6nRAMGvipnGQh6/Hitubui9sL/ixvc0NfZGNRtmsE6CQeKqKBzOMy2z4S0Dr71FN5culSznz2WaZ37kyrU07h1KIiVqxbx7k9e9LV4+GGCRO0iNNt2/SIZVlgCGEig3KSwIuEwwl+A6DEYjik+kA2acIEQGUTeqnotwCxBbgkJlYILyH7BU+Mg8xRf5Yhheqx117jnSeewHnggD75ikJe69bcddVVvPThh9w3Z45B/w4GHRw5coisrK6GrLOSkjIgg6Sk/hw/fqeBhAIB6NRpOC+++EhiicLhGJs3/8off3wLWOjXbzyDB/c3ABUy7iYPT+gVglb27z/CjTdex+uvf0BaWlailrrHE+Cyy87nllvcdO/eF0VJ15a91Kj7iGWSI6hcsvIiK71CkZEJ3HwzE4JmiwNQ1riXVo2vtZAzoJ8ZrMRfSXY7B1u14rxjxxjlcLCkRw9mFhfTt1UrrjjjDMjL46ft2zlw4gQj2rThs7/+4rV16zilSxem9O/PlK5d6SJS8yUlS55b6ewbw9wCLFr0LrfeOpuiopGAn2DQSnKyjZQUK3a7lSSfQueiVPx+Hzabj2jURyTiIxxOxeHIo67OZ8iCDwR0fap3b+1vK1GOl1oTdGSw7+L0luJ08vKLL3LF3AXcccetzLj2Wu5o04bpvXsz/fTT6dGnD70LC1n38st8umYNH3z/PXe/8w63LFpEl7Zt2XnkCJNPO42X//0OLlduosg5gFcGHcRzzZ/9D035z5forUcPzUsvZK4oniwvgNmQl4F28XI6jbX8ZENdBqllviRH+oiXiIIU4xV8S44KlOnfTCgOtUFf2VJpM5gfZDbkZcEjJl0epGz4iE0oL5DTSdfMTNa89BI//PEHW3//ndTMTJa89ZpWi0JszjinSS/0oOZZE7xadFN430UBa3lTiCbmR8gTDWF3U1rqJhxORlMLa9FPVxItApRRXh6gvDzMTz+5gSzatHEnEF5RNHzlSqNAlOdcUeCXXz7i/vtf1jZmfH6d2XGFHAvDho3mxx9/oX//ESYHTC0+Xya1tfrUa+B7E/n5bpqa/FRXH2kGuoVCXkpKGklLg6VLH2fbtnUUFl5Kfv5g6us38/bbk5gw4Va6dx/fDI8Rglv+XNBgSckuLBYLp512nkGXUFWYNu0SNm9eQzRajKrmGYAHmTZTUuzU1TnRVXKRZhNO0K2ZZIqLdSBP7AtFgQbVoRUZFwJTjtSTQyVkI9oU8lf322/c+9ZbfLR1Kx+OGMHg3r25bO1aOrdvT7+x46muhrOnTePsrl0RZ5hvCwZ5e/lyln/+Oa9/+ikel4sxffsyrl8/xvbrR4HXq4VSyxMo9oXY3KpKoKmJSfv20RCLsT47m/zSUq2GRseOmoepsFB7l5Ckz775kSNHjjOpb19iMX9iTsSw5KLs3buDtfgIBFR699ZOfRD2qKAXiBvEpaVYq6tJDQS4d0hfrhm2nEWrVrHkyy8558Yb8dx9N2eNGMG1F17IoF69eHzu5Tx203X8tm0biz/9lMagleuuu5vk5HRDuqlYT1kRLC7WpqJdO/5pLTVB5FLxY4OCYgadZBBV1sLBGKEqfitHRoj9IUdQCGNDfC8WrKKCoqKeHDpkDICNYyGJ2zudsG+fj8ZGrb8Wi9NwWIw8DBn3EofTyKCNPDwhK+XAj969tXexvYRzUs8IcfPmm+9QWrqXL79cQywW4/bbb6Jr1yKcTrBWV2onO9XX43A68fvTRaCQwW4SYzRj2bJjSMYB/H5wBGshqBrn0uOhQfFSXWFkB7t2gapmgTMLJT9+/8363Hg86aCkU10KFdua2yiqCp9//gUzpp3TXH7HJ/uiWbN4b+lSBgwbBujnHxw7Vktqqj9BLmL8qamNpKa2Ii0tjfr6QFyuWvHGC88m1TXR4EiiLODit99+5sEH72LMmGkUFJyJopRy3c23UtS5I/fe9wD1AYth3cS8amqE1cCTrNYo7733Cs8/vxqbzYZNEstt23Zl2rRL+OKLxZx66myDfiXuIUg4SjzdTihLMtEJg9OMWJhdrLLHUKSfxh9gDwRoVVFBVjicAHeC6KcUOTGekvchcAcwC7gjM5NPHA7qjh3joo4dobCQnOpqjnXpkjgb+omOHVl68iRLy8uZHS8gPjglhXEpKYxLT6e/x4MiDEsz0Yq+x/f9ncBy4BVgWLyfmUBaJIKLePSENAd7YzE+UxS6+Hx0ycmB1q21+1ZXGyMiVFU/JlWOqBCFQ+UmeE8ggKWigrOCQU4fOJAPk5P5YOdOrl+2jPlLlzKye3cuHjOGC6dO5drJk7n2wgs5VF7OkhUr2LJ7Nzd89CmdO/emtFTLEpP3nRnAOHSoeTf+aVLLyiIRLiY2qNgfsrEgyxaxwYSeJTtJzA4N0NKscOkiJyh0cSuK4gJcCfKRzQdZjxBdkMsYimvF4xJlQkRNp0BAO9VTPuRFND10xmiAKYqe9yc7dUy8NPG/EAjBIDcOGcLlBQV8uncvO/bsYWDbttx+++1YQyEjIiKDQPKcmQ05GT3x+bDFIy1FuqyCHgkD2klpznAYm8WCxWLBJntxzAeRTJjQPApBeEAELxFRjR4P1kBtYvyVTU143G58LpcR2YnfZ+TYsTy6eLEOtHg8VAZdVFXFsNuTEsMU09ymTZADB7RDnazWJMrLY9jtlsSUVVRYaGxU2LULKivLefXVy0hP705+/lnY7VG+/vpDPv74IW688Q2Sk9MMQTvy1Moghujuc889xTXXPIbFkpWYdu13Hh5//HUWLryOJ59ckkgJFKQi6E3GjMR2yctrq8md7GwdJBA//p8QVqFEiIeIiPM4+OQG3DJwBfqmEKmQ1dX8UVLC7OPHybDZ+GDECCJt27Jy40aemDZNMwr8flZdf33CWGhq1YrPSkpY8sMP/GvZMhYGg3Rs04bx/foxrl8/RioKKaqKx2eMNRHsQHTH44GvvlrNwoWX0b37bIqKXqemxpIgJyEuhPkVCkEkEmLHjqfp1KktHTsOIxTShL0c5S5PXVbwCOzS5is3P59gUDuEoDLowuN3aZFPcuDMtm30DQb58sF7+fnyi3nro4946YsveOjzzynKzWVG//5cN2oUUzMymDpnDrVXX82nv/zCl1u3svCyy5g5ZQqWLD8N8TVPpFdWB2XlDPLytBpXokzCf2jKf3UV+hrbbM3BTDExorUEPJmdZ+aiyeI6QYPm6CRzepy4j5x+JytfsrwQi+HyKUarU0b5zaCTPBDzoGRPYkuDkxmZXFBKRkgAi93OqJEjGRX//YFDh3j2ww85VlpK23btuGTGDNpmZxNSrYY5kPajYayiC7JQkhmP0D3FXq2o8MU9841onncnRm886D5ATY00g9jCVjOfwimmRFUhGm2kTRvp6PhgEAchooqGkqel+VDVeoMTBaBt215s3vwTp5xygWG6Cwv7UV39A8XFPzNy5GQD3qeqsHnzWubOPY8ffnifQKCSuXOXc+KEJU4vfRk/fibPPTedzMw2JCV1NSydtDwGegb47ruPmTRplmGe5WyyMWPOZ8uW5XTpMi+x783GhjZH3vgci/oubsBjIB95/uSIJ0GmssGqKA48HgcOj2q0WuVQNVGMNb4poqEQ7y1Zwq0vv0x1MMjDAwcybcAA8PvZcuIEp/brh62pEZ/PBYGgIYyhe3Y2j596Ko898gjbN29mxbvv8vW6dcx/4QXUSIQO2dl8fNNN9G7Tpvm+gcSkfVRayh/BIH1cLjY5naR16ULA46HWbqf25Elqk5KoDQapbWzU3iMRHnn2WRoaGrj++qsYPWoUkyZPZ9y4KWRk+A3bUngFEnMRMB40IqbHoUQ141jszzhIkZmfz+2zZ3P7VVexe+9elnz5JR+sWsWQmTOZP2sWTz/0EJbkZAYNGMCgAQNoULwJ+hOgeku4tBg+/Ncnj/7fa0lJumQXhq4ZYGop9UHelNCcX8sMUTQzkiIXAhPKr7gv4Kguo7AwK4FlVVQYayvJcqm01JnYcnIKrSweZHklZKJ4N9ONbFzKepfsvJGnRJ66wsKOzJ3bEUWB2tpa3njjZbZs+ROPx8O0qVMYPGgQMXtSgp/LtpTcZEWzJSzQzDsNgHO8w7K+Itt2sqIl7inzdhkTlLFDsYyBQAMdstP1H8vIoKKQlpJCfX09OJ2J+hgaANydb7/9kDPPnJuYf4Bu3U7ht98Wk5+fSmFhjwQvVhTN1/rll9/QvftADh8+wuOP/4tnAqgmEAABAABJREFUnvmcUMhDMKjpwWeeeTovvvg4Tz/9Ipdddq1hHcXUyCqEGM/OnVvp2bM/TqeSuF7MD8DYsedxzTUzGDlytoGkxd9i6E6nRDQyAcmGpBldFLQvr5vYP2ZCDwbB78eiKNgBeyCAu7QUX10dUcAeT4X5PRRiXiTCb8C5wPOtW0NWFpsrK8l2OCgQR4zKnhVVJTs9nflZWczv2JETTU18dvw4X544wVOlpdxz/DipNhsP5+UxNzdXnwCZKOJjrlIUnlNV0oFKdHdPOVAK1KWnU5uSQq3VSm04TG04zFeBAGvr67mpooLuwSDn+f2c17MnXQTQJEAHQYxikcT8CA+ImHd5ESWFw64ozDr1VGZNnMjJcJjlW7awZP16Ln7qKRZ9/z3LXn+dVj4f+X4/t7ZvD4pCyJNuYFGy7iNHRAp+8E9k7X9oukKs07xgNiKtUq7tZAagwLiuYFA0GlSHQV836+ayM6GlLWkmI5l3mshJu1ZGr8wKqNyJlh5qVu7NhtXfERyA30+q389F8ZPYItEoX27dyqqtW4lEo4zo2pWzu3TRouNbeqb8DKdTB8alNUouLcUqnbgpXuJwA5W4+1zWC8z8T0bpzM8XgCIYQ84kumg4eZLU5GQjSCkpexbA7nAknhXCQbACIhELoVATDkcTPl9S4rb19bkEArtJTw+iqkGamiyJg2cCATh27CgORyqNjTFef/1SJk16GK+3R2JZhgwZQlXV7zz99BXccstHLcoV8Sy5u4oCBw/uomPHvgacVVyblJRNfX2Q2tomSkuTmokEWVcw/9ZlliGiyXJGdEQAU/LN5E7LayeAQWFciTXz+ymrrGThX3/xZnEx3ZKTWd6zJylFRfwWDqNGowzr1cvoYIwjuEl+P+cNGMB5l11GY2Mj3/z4I5+vXMnKX3/lhRUrUO67j6mTJ/Pv95cbgDezvK2ogKefvptIREVRkolEdmK1tiIcriUYrKW0tJZwuBansxa7Xfv75Mk9rF+/iB9+gLS0LIYMOZsBA6aRnDwcm81m0KcUBaJ5bXWdyGQXalPoQBGpj6pqCM06tUcPTh02jJdvvZU133zDkq++4vHVq3l17Vo+uOIKRhYV4QVmjRnDrAkTtLmO179zeTwQwLiWpmhIq1mB+x+a8p8vMTY5hUVmpvIeNQNPMlMUdCc8s2bQqCVGKgNQMk2K/siEb1VDJo1VNXJ2MHZUUI+stAhGJUtx+XdmaSAjYDKzk1Egs6Ina93AQ089xV87d3LNlVfSsWdPNm/dw3V33sOgQUOZO/cGwDhfiqLvV3lehOEhR8yKYchdFY+urvZRV9cOzQfYUh0SsFjsCT5udhzIho68LrKd2LNnH7ZtW8uE4acYwD5rfA5+//1n7rjjzGZTPWrUBTzyyJmMGDEVn09PjZsy5QqefPICXC47N9zwoEEgb9mynqQkD35/Fj/++DYLF66kqclC/HRlFAUikSTOO+9h1qx5lrPOesUwhzJ9mY2pUKiBrCxfYoxmZuvx+IhE6mVHazNa1kgxi3BY1NiKAnYsFmeiNrJcu1QmTZlcZae0INd0n85Mo04X1dUQjTbw/dpVVG7dSqC6moCqEgiFWLtpExt27OC89u15fOhQ2rVvD34/aloau0pKmNmhg7ZGYgDieFmPhwbVgQKcrCjho88+47y+fblz3DjqolF+2LWLWY88wotr1jCmqIi62lqmdO+OX57gOAOYmZyMJSmJV3bs4OyDB/mfmis5mVSvl7zWrblk5kzS7HaWffklCxZchcUyh9GjT2PatPMZMWIKfr9Ps5GkCLB0RSE93wNF2rHkqiodOy5LEFkwxhXRzpEId59+OnfMnMmzS5Zw47PP0qVHD666+urEorh8Tpw+R2I9PB7jIR4yTYnoGOs/p1y33NxuI8IqCwuhaMiF+eTQbpnHywiHEJJmoMmslMuyQhiXsrK+bx/WigrSPR7Ss/1kZ7uaGQRCvskOW7k7Qmkx/04Og5fluywTZR5rBmlk/i7LRfn3P/30I488ch+XX34Vd9/9AEeOVLFk2ds89vSLPPfcO3g8zmZYhewMkP0q5u/lvqmqVGPI1FmP35W4h0OJxr+2GpbALC5lm8RsC4jfde/el1VL32RSt25GuR4Hn77/6Sf69e1rKMqqsba2hMMhDh/eTuvW3RLOBJ+vPytX3sMnn9zNXXe9YViDiooqlix5n7ff/opnn72P+fPvweHwEI3qeKWqwvnn38ill45j+vS5gK0ZcGfWkwAaGxtIT/c1MzhFn202JxA16ALmexo+MOs2QkGQvxeTK3QXWV8Sn4vrQd9r8XvGwmG+27+fg8EgAYuFgKpSb7NxIBplWSRCd2ANMKZLlwRovL2sjK5yeK/Y20I3ijPKpvp6Ptm9m6ykJD7JzkZtbOR34NaTJ3n5xAlyrVZKm5oY7HLRMznZuFmcTrJycvixvp4XGxq4KxjkdkytslJ7AXarlVS7ndSkJKYVFHBBx44sO3yYJ9av557vv6dHXh4zBg1i+imnUCCIUAAWYm7kwudis8sLKTa4DAAGAmQAl/fvz+UTJvDDvn1Mf+ghrrjzTj5duRKLqJ0RX2yzmmrGAOTplCPm/mmmJiN0cg61oujKmKyYyUCGuNZs5EiLE1UcBANG3c2832U5IH8uxJy4xuxnMRv8Hk/c/pH3vPgCmjNWs6dX7ow8N7LsbWnuxHil68pOnGDWs89yWs+e3DR9Onavl5UbNzJh0SJevf56OgmwWVWbK8vyBJgFn8dDUjBIUnU1sbq6RMSTFR2AAoz9MU+UmAvZaDWPT8yPvEfj48xu3Zp9xcXE6uqwiDFIgEbJiRO443xIXn9FgXHjzmPFipc5++zrEzj+oUMKPXuexuLFsxky5FzD9IfDMT7++F6GDr2affvW0a5dbzp16mHg86oKbdoMIDW1Nbt2bcbv791sGQULkruqDdlhuJdQd8TUOBweamubCAaTDPY+NC9zZ5DLHgcOczSEGdQVn4mOyfJH0IO8nvG9uGvXLn4tLydQX0+gqYlAeTlVe/bw3qZN2GIxnuvYkTldu6Lk5kJ+Ptt37MBisVAkUgxU1RiiHtcjY7EYazduZMfevbxw443YVZX9DQ28uHIlz7z0EpOWfUJZWTWpqa045ZSJBAK6Ai/I4LrrlrBs2Uv8+uubbN78An/XrFYryclekpO9dOw4gKuuuosdO9ayevUyvvjiFdLTsxgz5jxGjpxBx45DsFqtCbEs64wyK0rMvQIup6QMynMZCOCorWVS165M6tqVB88/nwuffJJpr77KjpEj8cseLkk2NfNIghFAFFGV/3/UeEpKas5/W0rVNCg+GPmSrPuYvbpmAm5JmRbHFsq8QCuyHDCG7ck3ME+gmeubNVz5M/PnLb3MwJN80oksBMwIUPzvj1aupLa+nsWLF4Oi0BC00qdPDq+8Mpzbb7+eTz9dxfjxpzebEzM/lYcpn34pN/E74cjXupFh2P9iL/6dXBFrJ4Mpcn0T+VqAs8++gvvuu5zTBryHXTD8eAf/2LMHq9VKbm7rRE1HMc6UFA8XXngX9947lUsvvZ1hw4bT1BThl19+paGhCpvNw8aNqxk9ehQNDdUsW/Y2P//8I7feupiGhhPk5rYhLc2RcHrLS9q2bRcqK4820xfEs0WTx9+7dz+2bPmebt16JuZSJpVNm76nsHCwYa7l9ZLvHwza4y/9WnOkgSxv5T7J3n5Jv6Y2YAW8BAPQWB7mww/f5Jln7qO0tASr1Yo7KQmP04knOZnWaWl8v2ABI8PhhKX8dWkpC55+msZQiFMHD04IThUHis+VAHXra2p4+unHePbZZ2hoaOCJ5GTevvFGzhk1ijNGj2bIF1+waPVqFq1eDcB8u53ZQ4Zw54QJtEpPTwzU7nRy8YABXNynD1uqqtjlcODNycGbkYHX78ebmYm3VStS3G6UOAMIxYvpumhgzrXXUlZZySeffcaSjz/myisvw26/ivHjJ3LBmZOZ0q8fzsZGndjjGpvD6dSPIldVVqxaRffWrSls3dpoYAn0Nk6rtuxsFowezc59+7j53nuZOHo0bUX+UTCIVVG0ezudePyuZmsn6MDl1HhY3Nb5p5lbJKLPu9OphY/ITEcIg7w8Y862zAihufAAo6IjmrzRZM3MXDRD/C36VVGBy+8nL6+t4XFCLopIe1nxM+vRskEhv0RXzEaK+I3czMMVvMQ8HSdOnODRR//FsmUrccVrGChKNjfe+AjffvsVd955E4888kKCB8mODjDaAea+mB2T2uctCKdgEGuwQas/FG9RrM3wQPMSyU5l8Z15Hrp1G8ATB+7kYEkJ7cUxsPEf1gFvvf8+X3z2WTMsBuDmm59j4cLzmTBhFlOmTMfjSebAgT+wWqNUVp7g999X07XrdFwuB59+upLXX3+Ze+99CqfTyZ49W1mw4CHq61tQwBUrXbr0Zvfu3XTq1LXZmpiBIqcTevTowgsvPGbAdmS62b79T/LyCgxrYL6v+Nth1jsEcQl01GwQyLpLS2C8WUFQFNaeOMFta9ey/vhxAFxWKx6rFY/Nhtdm4/lWrbjKYkGxWCA/nwNJSdyyZQufHDvGvf37G2siSIQQcTj44MAB7l6/nkPxMdyQl8djeXkMtliYbrdz7cGDTJGcFhOTk7nX7+cUeZzAcJ+P4U4nJ6xWfohGcfn9eFu3xuty4U1Nxet04lUUkuQJjb/OAoK5uazeupWlP/zAQ198wR0ffcSATp2Y0bMnF7RpQ7bQa6A5MhBflC3Hj1N2/DhjunXDIhRpGRyVFnBkYSGv3XsvU+bNY/HixVxwwQWJzegg7lx1WpvpAbJhIugpfjjUP62lVl9vjIAAY1FpOVVLfC7LArMtEX9vEEB60LjEMjgo64Zy8ID8nWy7m/VrQWLWoEgVxChc5D6Z5ZvZtpG/N9EtYDQ45f/NBkn8deWDD/LUDTfQrWPHxEDmDBjAWWedxcwbb2T1009jl4EtM0MXa2IWOIJHKAoWRSHJ7NkxGyxmpE42PFsSpIK3iTHKtlp8vIrPx8ihQ1m8fj0XdOigz2kgQMxm44GnnmLOJZckbilP87nnXsb998/ltdcWcskl88jNzeHYsRJUtYaDB38nOzuXysoD5OTkceDAJt5++3EKCkbTtesQPvvsHgYPnmKgFfn+AwdOZevWNYwb17uZniGmWNZFQANA6uqqSU72NfPVqKpKaWkp4XCKIStb/N6MK8nPDAbRgCfB42TmJGdltOT0lY0aaS2PRCLc8847vPPll0SjURw2G56kJDxJSbiTkriwTx/u69MHv8UCPh8Bv5/H1q/nic8/p3/HjrhatdLpQZ4Qp5PfN23i1vvu4/v16wH4/KuvWPbMMxT26sW1nYp49uWXueSScxLz1qFDEeeeextDhlykpWkj7Mp8rrrqMc4//37Wr19DeblKKOTF4/GSm+slPd1L27ZeWrd2YbFY5PNSGDbsDBYseIydOzfyzTdL+PTTJSxd+iJZWXmMGTOdGTNm0rOws+EQAEdCzuh793hpGSu/XcNZp55KkphrsWgihzcuZ9soCkvmzKHbHXdw3TPP8P6dd+qEJewmgVKqqpFRmfENRfmv0ziU/3yJ3lpC2VsCPszfCQZqVmhb2NPGzpn4h3a6TUCrYu90ojjjBcDkHSPHwpm5dUtashllMEPD5o6I78RAxMBkYWVWOsQGkwWVNElvfvABS5Z9rBnV0hqqqoUbbriPBQsu4rTTTjc82gzUtaSsi79lQ0buhllpMXu2zUxTXhd5zWW6NPdJC1pozdSpVzPp/FksnHsFwzt2pK6hgXdXrOCzr1bz2muLDWVWZMbYo8co8vM7sWrVqyxZ8jhWq4VTThnDW2/9SHJyiE8/fYObblqEx+NmypRpXHPNjZSX2ygtbcBqjRnGYV5+iDWjOXmsZoY6ceKZzJw5lnPPvZD09AwDPVdXl7B584+MHXsHR44YSccMIgvSkD8X5CXAY/n5Mlmpqh5JI+4lbADZSLzqqvH8+uv3XHD++dw3Zw4F4bBed0n8OA6sRB0OZrzzDsviTNdutzP6wgvJb9eOH9b+isvlRVFg2++/8+6SJSx67z0ag0Guv+IKrpk+nQX33ce5//oXGS+8QFF+Pq0yMrh40iRGderEn7t389yqVbzw44/409K4Z+rU5vtAVemVl0eveP51QvhIgG5t0EFFsT6+vDwXTg/4PV4umzOfy+bM5+jR46xYsYwXX3iG8z//lPsuvZS7J0/WI2fE8yQtsLa2lqm36z7wRy++mKn9+9MxK0u/Tq5L4PPxxLnn8uWGDVx13XWsWrTIWM8qzhOsoKUpmvaMVdXSfg2ngPzTjE1mXHLRInOIpSiKJPNbuUB1S4ayYDR/ZzS0pJ3JskNU3xSbVVXx92/bzJttFjd/43MwyMKWonpb4utiasS9zfdrScwAvPnmIq655masVpeBPwGMGDGB9957mZMnq2jVKg1oOYJCfsmfy30Q/XWYB2NK7RCnvIkt1pLzXfxvjhSQt7PQkQIBuP+h15h90yVcfPrpTBs6FLui8NUvv/D0e+/x0MMPo7h8hrUSz0lPz+Lppz/nyy8/5NZbzycWi9C6dUduu+1Z8vLasW7dx9xzz9XEoiFGjhzJZ599itXqRVX1Ojvy+OX5iEZjRCItg2pmWQyQlpZGTk4Omzf/SO/eIwxyJhKJ8OqrD3LVVQ8b/Gxm3FXgN36/F6vZCyX2Q2Gh0TCQFX/5obKXUQaHgCe/+Yabli+nX24uX0+ezGi3G1ttrXESpMl+ta6O+V9/TSjuGX162zae3b6dTy+8kGHxvV5WWcmHBw7w+rffsq2ykikdOvDFhAl8c/QoCzZs4JWSEjp5PBQkJzO1VSuGp6TgiES4/fBhvmxspKK8nA0ySirpYa38fqaL49GLiozEbEYjpebMzuasrl056/LLaQiF+OKrr3jljTe48aOPWJKby2+TJjVXzmSaVxQmP/kkxfG1uGbYMKb378+Q3Fy9sqZJ3zxr+HBmTJnCvOuuY9RpY8lplWm4v1lna0nHUBSQxf4/zdQE4xURtIqiOzrk0FGPJ1GniQBohwJoayw7ws3iQwacZBvbzMP+7jMz2G8WU4l/5HoM4jO5A2blWrZL5E6L+ZDvJTNi0VoyBOOfbT5yhHYdOtBt2LBmezCnQwfOmjSJz7ds4ewRI3Rj1jx5cV3LENovniOntgp+Jd7lPSyvoVhHWeDKE2qefHmcsoBWNGfszQ8/yqUXz2LX3r3MGT+eHLebvw4c4PHFi+nduzcjx4wh6nQlop306bTywAOvsH79tzzxxM00NNTgdKYybtwl3HjjQ+zd+ysrVjxKTU0F+fmdWLDgUTyeAgIBcDjAXFZKblZrjGi05e/M9pp4nXnm5bz99sPMmfNoMx3mo49eo1+/qZw4YUmUtRP3kFUtOTBc0KuqQki14hAfiDUwe1KcTo0Py3JG7mh83jcfPMig6dPxejw8c9ttXD5+PMmCvmUDNj6AzSUlTHr4YY7HjaWdxcU4J07krmuv5Y5bbwWgqbKSL775hrc++4yVP/1E144d+fSll8jMzOSca64hb/Ro2ufn06lzF8aPn0ynTj1p164br776CHv2bOXJJy+nd++xZGTkGuZb2z5O+vU7w1AuTUAEACdOGLEdnXdb6NBhAAsWDODaax9j48Zf+PLLD1i8+Ck+/PBpjv32G9miDrR4mGzTBIN89N47XBcf48iBA7n64ouZ2L8/HptNZ0ZSlGG2ovDsBRcw67XXmD58OGf27Wucf/OatNQEP/n/A3hKSmoZ2JDltlCEW1KGzSDT/8RQ5f1u5gWiGY4kllv8JkdLSnjynXfYeegQjqQkoqEQF44bx4yBAzVjUUd49Jc5KqolxmQOU5E9hR4PUacmoDQQyYGiOHCKiBHT5EUsFmz2JGIxd5wmgnz66WK+/vpTVDVCRkYuNTXVhq7KskQ0mUZkMEjsZZlmzPMq+L7ZYJGn1extMQvMlowR0PvZp88Z9OnTly+/fJ2n33wTZ3Iyp086j5dfXklDgz0RXCLrwPqrNVdddX8CKBf39fmgd+/bE+kaDUFrwoBJTW1FaWkx4XAIceS0vNSHDu0gLa1tM9Ixj9toCCk888yzXHPNeVx55dWcddaZ2GwxPvvsE15++TVuu+0VYjE9/FKe/5aMHfOcinUwh1MKni1krmBmctSaIEFNfwrz228/8PjjT3PT1VcmjqJt0SB3OrHYbGS0asWMiRNJz8ggPSMDb0YG9z7yCHPmXInN5uD339dx8OAB0tPSmDltGrfdcAO5mZkQCPDha68x64cf2Lx9O7v27GH3vn3sOniQt7/4Ak9yMheNHcvMUaM4rXt3Le7frOgIYjULJI9eiFgKPEJRjDXFxLympeUyb951fPDuWxwE9peUsPfkSTpmZBiJUlpob20tv918MwMffxyAW99+m1vffpvurVpxdu/eTO3WjV5eLxbJwk31eLj3rLO4YtEi9mzdSud27VpkZoLfWYkaCSquJAq6/aeZWm4u5OTodOt0GutsCCBKxKp7PAnl3+HHmE5nNqpltBeaIxriJbv+5DpPLTgfwifL+fDD9/n001VEo0kEg0106TKcM8+cj9frTThvRftPOrB8e/G3Wd6bASfzb2UZIEh3w4bfmD37dgIB7Yj5DRt+4OOP36S6uhqbzUl6egZ//LGB008fb5g6WXE24xOy6DTvR3HQsaI4cPgUo4GkKIYpbsmANo9Fll/y+OX58Xja8fIrX7B27RIufPxxIpEIQ089lVcXfYzXm5Fggy3pVYri4uyzL+PKKy9LKNJi6S+99AJuvGFG4sEh1ZrQ4Tp37smGDevp3HmIYY0UBUKhKNu3b+a66zobeLt5nc0OoYceeuL/Y++/o6Oqvv9//JHJzeRmmCSTEJIQQgg99F4EBClK770rAqLYe2+oiFhQbNgQUZoFQVFABaRJEalSpIcAAQIpDMkkmUy+f8w9M/veDK/X67PW7/fX27PWrExm7pyyzz67PM8++3DrraNo124nEybcRpUq8ezZ8wdvvDGLQYNGUaNGvUB0u9QVQkwFxpWoQqeskynRSyvQanXa1LNKARk3lfx2/Dg3Z2SweuJEbAUF/obljUCWomVn079xY+Kjo4mvVIn46GiW7dzJHT/+SJ9Gjdhw5Ah7srIICwujT+3afDRwIDckJ4PbTcO4OLpUq8b6rCwO5+RwuKCAI243yy9cwAZ0i41lTGwsQyR4Jg3LYCIMs5MtF0koW1L9xqCJhp2hkyaz/+hR1m3bRml4OOvcbromJQWveLcaSm43++6+m64ff8zeCxd4b9Mm3tu0iUSHg0GNGzO4cWO61agR3ME2aP3Gk09S7fvvWbzoSx584IGA46vEktVcDWWzhbKd/y1GqVXLH2GblRUEVo0NsBLswVQynoq09TptJnfAKqvUS4LqoWxlif9Y2RbM7zdsWMXXX39EWVkZ5eVeatZM47EH7qF+tWoVhajqgBpbqAotTmuFNWH1eaTBKusSdW7+9Vd6Dx4cSPtw/PhxPnj3XQ4fPgxhYTRr3JgjmZkMGTrULHekcyNzLErDD4I2geyjklHS0FZnFUNdsWqlhRSisggj3qc7Ahc0eTwaTz69iAtZa3nyiy/IzcujZq1aPPbCDGrVasgVD3jdZpESTAcWRrduPbjllh4Bu17xSK1aHejZs0PA1lfD93qhceOb2bhxOWPHtjZ1X9X/xx/L6dTpdqAiWdVnEm90u6Ft234cPLiLmTMnM3z4gzRq1IBLlzL58st3yc/P5/bbP+TiRb+4t7rCam2oPQnp2ygR7NMc/k1WZTzIB1Vn6tTxn2bQY0xfSzbbvHETPp+P40eOEB0dbeYXNTih48qjo2nfrh0x0dHEx8QQ73Jx5Phxnn/nHQrDw9mxcyc7du2i4OpVWjVqxPyZMxk/dCjh5eWgaez55RdWbNjAkdOnOXjoCEeOHGTt2lX4fD7S0zO4/fYZ3HTTGJKSUgJdUS8plyXLKRLIyzOVbShVZVBV2WjatBO6HsGyZR/gdDpZvXMnIwYPxmHkECvRHORkg647cCU4sHkKuef228k6cYLZ8+axYft2NmzfjhYeTp9WrRjSuTP9a9b03xIs5mFsw4a8WbMmb3/zDQMaNjQLK6s+C2Uvq4n3J43+ryWsvNy4p/A/lIKCAmJjY1m4MJ+LF2No3TqYw0LdDKPee71BHV1aepGCgtNUrpxAampNU2iejHyUBqQEsXXdcNqs2wZqkGCW6oJj/7l4kTtnzeK1+++n1Q03gNPJtUOHePvzz7lw8SJzhgwhLCIiKLCkJldEVYJMticJrbx946qJEs0vmNRLGa3WaE+Fftrw4SmBvn3789Zbq7h4MZfHHx9Jr16jGDNmNLoexYkTRxg7thuTJj3BlCl3m/SJBJVE9J1J2cmuK8BC9s8KYll5KZQNJedNfSaBAPU78OsedemAI88fiu9LTmHbtoobMSqcU9f9z6sNWTUlygZW43W5jDw9EMjbo+iTnQ1ffrmIo0f3MW7cTIqL/eGQbjdcuuThyy9H0qfPq1Su3CAwbqljNS3o26oTPYkJPsjJIb+4mC+WLWPdunWElZfTs3dvuvW6jdxcZ+B2ZTXHSqmoNSI3cKyGhvxM6kmVeiAvz39Lzb59p/nrr4+4dGkf4ASGAwlUrXqSzp2z8PlO8PXXn/H996sYePNNQQJaPT3rQMX22smzl+jZ82aOHj1EeLhG7doNsdnCmDhxCvfeOx2H7mPzL7/w448/EhYVhbdc859DDvMy5qabqFe9Otk5Obiio/07EzLOXB3xcLv9Sc9PnQo6MwkJwdvsMjK44kwzgfRKaKtrRTVN3LRgPHj89GneW7CABd9+y5W8PLo1b86Ydu24uVMn0tLSgkzqdvuv09I0yiMj+XrbNqYuXky+sUUcpWkUeb3UjImhT7163JCaSrvoaGrHxjJ03ToOXL7MoZdeIjwxMWjgiAicQo//XLbNXWC2Tg2GK8jKIrZVK/Lz84lR167/Hy5Kz+SfOYPXkeqPcj28z284S/oKI9Cv64rYt+8gYWERtGrViLjYMLM8z8vz85n00tQ6UEiEPFZpDU+SyZfEDjgJCRTHxjJy8WKGDxtG/wnTyMnRKCnxsWPHz3z22dssXPg1kZGxJtWiMDQrhiWNSKnOVLel7yBvMZWb3YpE1gAxrxfGjh3Ms88uxmaLZM6cB7DZIrjvvvtJTa3G5cu53H//GIqLi1mwYA0REREmEaFkkfTdQ21oyKJseKUDA+vA+HGJ12YivTTOpLiQIJh8xgpUOZ1+0aFOzCjbxOpzyT4r3ST1ippe2QeJu0hzw+uFffsyeeedKcya9Q2xsdGBPno88Nlns9B1JwMGTK8A0Mn/lfh1uSDG6bd5yiIiWLLsZ1auXIqnsIDGTZowbvxUqlVL5/Bhf/3yFJBd8wUAMaVHY5y+IOOpAalBWQmkOp6RAXXqcI4Y3nzzK9av/4WiojCSk2+mfv12OJ2HcbmyuPzPPhYuX86IG27gvbFjQwO+ql7FIBkZJueu1ONh0uuv8+UvvwBQq3p1Yp1OmtSowYcTJhBVWkrW4cN8/OuvFBcUYAsLI8zhwFZcTLtKleiXlER+eTmlRUUkFBQEd6+sUSzq5jllZCQkwLBhfj2jjutaF6OcKLnujc+u5uXx6ZIlzFu2jMOnT1M3KYlbW7akV6NGNO/eHZvDEfTKsrICzLX/xAnu+Oor/jDCCJSeidV1ejdtSsdGjWhXpw7Natdm4d9/M3nGDP5ev56G9epBQgInsuwmO1ORWgXqSPsaoLy8gIyM2H/1jChK1/z2Wz4uVwwtm/sCgMaJvPiAfJUOZLVq5WRmHsLjKaR+/XokJ8dUCKRVc6GWlZSfkn3AbGuriBKpYqSsAJg3bxa5uRe4555niIyMw+WCK9n7eODBB3n+nntoV7OmOeREGZ7qpikp/GRnrYqkTh1zJLHVKbPmVbQAOe998DFlZYl06jSY339fyfLlnzB9+jPcfHMbNM3LRx/N5e2357Bq1QYaN64ZEBm6bhwbVMJZrRull9VtHocPm6OepHMlCS6PVUmCe73BYwNyV1cJYjkmQ/9fzLNX2OxXuJYyX6XoCIJMwc8aphcGFZ1qw6C5LyExYNuqqVMyXr2KisqZN68/48e/TO3azUy6cNeu7fz88+tMm/a1aR9BNSHBHBUsLtMs7d69l59++oSiokzi46vQo8et1KzZkbNnwzh82N9tq5ugpkB9roak6lb/2/AF502it4YNtacgnS+/XMuaNYvJzc1H1xtTpcpIKlc+QXR0FhERZ9mzZy25uTmsWnXKND7FgkqEq01eFYQgfdcvv/yC6dOn4fEUERdXmbS0mlSq5GD+/E+pl5pC8dmzfPT555w9f56wqChs0dGU2yKoEu3gvkce4cKlMjIzL+F0VuPatTDTcpL+tLK3pOmoaf5lqMxNxW5KHSUnmzNHSBsxPLyc77//no8+mscvv6wlJiaGUaPG0a3bAJKTb8TtjgrIKFWHrkNRUS7PP3wvH375JeC/ubW8vJxwm40u9erRNSODdomJtNV18gsKqP3FF7zavz8Pde5szqNqzbGqAAY5l8aACrKzie3Y8b/qGu2631ynKEKF8mEDKKcvmxUrHiIsrIyqVRuxd28WeXlZjB37HK1ata0AWqgJVEzswBA+eRbhaN3eATMkrDgxOZlH587lixkzqJaSEmikUlgYTw4ezEMffMCmbdvoXLNmRetecoUUzkp4SetaEcDQJlKGK0aUkXByrP5mbdhsUKmSk+zsbN5550nGjXuZDh3aBKMlbJG0bdudAwd28M8/e2nYsFmgO5KOTicmwSW7KQ1h2W31uRyW4i/rBoc0ZOSOt2rbequdnFNdNwAio2EboOspJmcMTAEMpo0K1Wdd9xvXmmYLgE4qUSwYbbjdxOjgTYihR48xnD17npdfHkTbthOJjU3j2LHd/PXXYjp0eJzKlRsE5sbqyFgjRBMSCFh5sZrGPePHc8/gwYGO/5PtDLCi+l2dOkGbVyojJZik0SidTunoKVqrMe7Zs5Ddu7/F630EeBA4QVjYeMrLj3D+PKxZk0D16tUYMGAwbdu2M0+ItGZkIxIR1TSuXivi1lvHM3fuNxw8eIwWLW4kPj6OoqJy3n33EWbNmsuxY7tZtGg+yclViYiIwust4/z50/7mPB5evvdeqlavbm5fhtapz8WiOX7mDGfPnqV+WRmJSUmEpaaiJ4TEbEx+gQ9b8EaF7Gxql5fz5qRJvDJxIt+sWcPHy5cz9aOP8M2bR/2kJG6uU4fuNWqgl5dT6vPRsEEDatety4jevenVvj3PzZ/P3B07SIyMpH96OiU2G2uPHeO9P/8EoHJkJJeLi/l08GDCL170ZwmX+YA0zX+1qCzSEVPzcPky/5aKpUSP4cQxP0nruVzmBHIGv9i8XnTdwWuvzWD79m20atWea9eKmTlzJ6OGDWPKwIHmrSerIyzqCiAfBvhZXlpKmEpSLNEVhWjreiDr64dbtzKsSxfG9ukDTiWLbIwb15fq1XTefe1pZj3zDIl1EriSZwvIlsC1txhJuI21oBJy+nR7oFkp5yGoS8TPAu9VCfV59+79+O23rwkL03E4KjNy5DOkpvq/dzhc+Hxl9Os3kc8+e53p058wkQrMUyDbl/JT6gX1jKaJpLdqAB6PPx+aUwdDhitZp/SXks2qDtUHJQ8lziGXljrOmpwcE/hOAkqybiXfbe4C7JqG0+mP1rHhQ9dtJhooZ1KKTq8XEhPTGD/+OR58cADdug2jSZO2XLuWzYoVX1CrVkNuu+1Rrl0LspucI4ltulwQo/vTCQCEaxqDBw9g7Oh+AQVY4LYFbAzlVyUngy3nImj+HHPxLkNRu91wSjg60jGTRoT0nI1OHcrOZuK0sbRoMZWOHRdy+XIxu3ZNYv36aUA5lSpVIjUhgWbp6Yzo0qWiMScHqIgonUTj+/vfeYe+Xbsy5d57SU5MpF6dOuD1svqXX5j0+ee0T0vj6YULCQcSdB1feTknjaN8jWJi6FetGrGa5j/vWFhodpBlMfpRXlRENnDg/Hlq//UXNWJiCLcaaJKxrYtA8HC02839PXpwX8+ebNq1i3krVvDKunU89fPPJHz0ET0aN+bmBg2o4XBwraCAxNhY2nXuTJOEBDY3b84Xa9fyyLJlFJWUMLpePWokJPBbVhbf7tpFaVkZkRERRGgaQ7p1o2F8fICJvd74gO0vL/4KJSu8XvgXa7p+ycz0s356uo14l8t/KcspM5iuafDnn8uZNes9MjKaEhPjYsGCF6hVK53XX3yOGIcDzeUwnchXakWxvcRxwBxcJNnL+hz46zl06CgHD+7lww+/IiIiLCAvM1JTWTJnDsOmTGHt448TVqVKcE1bfSPF09KXkv8r4aSOREkv2qoLpdA17B2PB7we6Ny5L4899jh16tzIV1+9yyuvrCI5Wd2SrXH+/CVefPEtHn74btau/gGv1ybobUTIWENopOOrnA0lw+RLTZo1klGNX+p9a91yYiSqoGloWnxgPmSzNk8hycmOALnVOFJTDdDfaLPQYzODe6ptw2mzaRrxTicl2AOb1NJs9ncvjOHDP2fp0tupWrU+rVsPQtd9bN36LdnZmUye/KmJt+V0S15W/poMhK1evRm33z43YA/k5cHZs36wJCsr+Fu5+S/23wI3Rku2UiS1awQJJheGrlMUHs60aUNxONpQvfosEhKqcPbsa+zY0QafrxhNiyAxMYWUlFRGjLgnkAdYqjHztNlMLK2+/+23lWzYsJFVq/7i/PmLdOzYCZvNxpkzWdx66wTuvPNeXnrxEU6cOkWNtDTKfJCTcwm3258gb+jY8eh6KnFxqSE3AuVcqU2r/PxSDh7cTmpqDLVr10XToiqoJqvvJ9WOroPdWwg5eQxt0oihH7zPyfx8Pv7yS75YsoR5897Dbo+kRYtOdO16My1btuLQoSJOnYqkZctOOBxxvPz2QkZPuYcH7ruDv/bsoXvTptyQkMCf587x+urV5BuNxUdGEhMZyR0ZGUFwVK57qVSkISoZS9MgP5//pWj/01ME2zEnpTbLIT/olMvSpWO4++73qFmzQcC4Ky/P49lnx1Kjxos0btzKNC6JYAYGphqzIvPW7UYZSmJYcKcKCoiPjvaDTpJLDTTh/mHDePr99/3Ak3ImZN2SmKG2S61GjdFHzRm84cgKzihayZeq7o47HuKVV6bi89lo2bJNYHEXFBTy6qv3MXbsi7hckSxZ8javvfZBoC7ZLWW8Wj9XAkC+lP2nSCqHo4ScRPclX1llumzbCp6YhSZBw9frRfmTkg/kjp20T1U9MXoJZOdg0zQcAF4drxGe6aeJjRgFAub5P+vb9yFatbqVrVuX8c8/B3A46tC//0/ouh7gTaVPJV0lvVwuYycm1I6uQQCnM8YEwMlAOsl+0tbXtCBAKZ02OX/qM68XMjMPcPLkjzRv/h2nToURFfUFly7dj6ZFkpHxJFFRbr755m1Skn2hJHKwUlUUL0umARYvXMBtt02ibt2GxMU1FDIljJEjX2PChKrk5l7klVfeZ/Dg21mwYClLlswCoF27G5k8darZyXG52H/sGM+9/DLlXi/DevRgbJcuAXp+fOAAH+zcyW61C7V1K3GLF9Ogbl0ymregRo0MYmNrYbMlExeXTEyMxhdf/MyaNcs5efIEAwYMZtKtY2mcmhrc5dM0dF1nXMuWjGvalNz9+1m3bx+/HDrEsp07eXfLFmxAzZgYnBs2oEVE8OygQXRq0YK3Bgzg9ho1uH/DBt49doyeqamsHTGCGLudHWfPsv3MGXIKCxlXvbrZaBM8IUFeh8WIMTl7/5YKRW10ApBq4VuxUB94ZBpdb+zESy8+R4HbAHV8OTz30ku8OWcOD6r8XtYNCymkVIOGF1dWWuq/Z9KKdkr9IwTTT/v2sereewN1uFzxARHR+aZuzHz+eXznzmHzePzhzRqQ7a6o9FQ7hpCwOZ1ozhjTsg1lC4SSGbJIXdO//2huvbUf5eVhPP/896ZoqDlzZtGlS2969BjPo4/ezCOPPAbi9jerXJcixaoipV4I9MljUX4QoKXTGRPQQ9K3kf+rtqRctepVVXyaHZvmxYYPp9NmSi2hdgUd3gIzAmVUoDsN4ConD7umYdc0f99dLtxuWwVaqL41a9aBN95Yy+bNK9i48WdiY+N44IG5JCUlU1ZWEZcJ5VP5o5M8QaXs9eLweiDHE1AQTqcfTFObMgkJIpJMRZIqAlq9Dql8JEHkb3SdsogIpj/8MC+/vISTJ5PYufMv1q27jUuXDjJmzAMcP76TLcuXEn70aDAhYSjgJhRDiEnNPHOGArebUT17+iOPRD23jB7LRwsXcv8nnzClSxde69WLgxcuMHPtWk4ePEhaTAyvtGxp1msJCRTExvL4oUOcycujSXExz1apgm4E9f/h9fKSzcYvPh+lAFu2oG/bRr0qVWiQmEhGcjL16tShauXKJIeHE+/18kdmJssPHWLj6dN0aNSI8f360aNTJzRhN4a5XHSuU4fO991HidvNHwcP8svOnfxw8CBLtm4FICkqitTYWNxLlzKpa1dG9+rFhAEDGNikCS8sXMi7e/aQnpPDe6NH06VJE/ZkZ7P99Gn2nT7NoyNHmo77KidYihCpbuXmodsNiYn8W65TMjP9+0ZeL6AF82apommwZcvX7NmzhqVLf8Lns6Np/qW27vvvGD1mDN+99x6OpCS0hBh03Xyxj1zv0tySbKvsRghunpKTF/iBw+nktR8+Y8qU+4mICDPtE+LViU1Lo13LlmzbtYsbWrcO6ikFPKmdTzD7VVaHRMplVaRBrJ5RMsT4zno5ROXKqVSqFMM77zzI4MH34nRGBOT2li1/cOjQQe6662W2bv2dvX/9RYOmrU14kKbZcFjtUtkP2b50RKwyRn0mFVQoQFrSRtr3YjfEmRCsSlXn8QAuHc0b3FRWc+90Eozm93pxKOdGjsfjCYYtGgLdnp6O1+swtaPacruhUqUEpkz5ntOnd7J376+Eh4fRpMl4Bg5sWcFWALP4l3wjdavqr3pG6Vbpw0l9rthHBvgrn1LTMOWDcrkM4El1QoYF6TpPzJpFt27TgJ6cOpXD8ePjOXp0MS1b9sVmK+OJJ16nfftGaJqfjffsqejjymBV6/r1ev1pBebNe5dly1biduskJGRgt/u/i4hIZdCgB5gwYQB169Zlx47dlJW5ePfdN1i27CN0PYr77nuAypWrBTAVrxcuXSrnyy/ncuTIz1SqlMTgwc9Rp05NNA3OnbvEJ588ycGD31Faqm4QCiMuriYJCQ1ISsqgatUMoqKqAVVJTEzmwoVTbNq0nAMHfiQ6ugojRozn1luHkZ4SZTKIayYn88p99/Hygw9y6MQJ1v7xB6tXr+b12U/hLSvDGRVF3fR0CktKaNOiBXfc9yJpac3ZvPVPvnrndZ6cOZM/Dh/m6R49+HHsWI6eO8f2U6fYcfo0XZKTcZaUBBlHrQErWqb+l2CQOpZjAnKuX7T//kiwyPWsHHLFdGpCduyYxy23TODYsV/4+++V1KvXhtq1uxIV5eKtt+bz8st3MaTXFyYDJSYheMW5aXBgHrxqREK5aqdabC9kRkWRERsb3J2WxHI6qQ5cUWcRpYFmRYSUUSqdFavlL5Byu7MEl8se+Mn1um6V8U2atKVt25tYtOg9vvvudZo1q0tW1mF++20tjz76FMnJzXA64YMPsirYdtKfUsOU54bl8CWQo15WJSnt01BBAlYASvGFei8NISWMXC6CSsLIhaXlBduwGlDSH1DF5QKyc8xbfBkZFfx+p9MWyJcaFJyV6dDhTlOEVSjgTvVf0UpG4QYelEpJTUJeHskZKYF+qqEqvSKPPiiwSQK38q9cS1YwcevW97nxxme5di2X/fsncOHCT7RtO56JE+eg6/HMnduH4mI3eGxmz0z2Xb1XxcqQXi8//fwzi5d9w5kzQTtD6fqSEhvx8X7g6ckn7+KZZ+6hrKyMLl368cor8+jYsaM/GMRTEBjEtn+OcdNNnUlNTSc2No5xDz5I1Jw5DGnSBFwunv/jDxIqVeLrCRPISE/nH5uNQ243h86cYe/ePSxduoRr164hS3h4OK1bd6Flyy7Mn/8Jb731Gs2bt+DB/v0YlZFBhGRGr5e4sjKGVq6MFhFBSaVKPFavHuvLy/mluJht2dmcc7sZ+O67AFSOiqJudDR1o6JoHRfHmqwsun/9NcdvvZVederQKz3dP7bISLOBI+lp5BXzT6rQ8oq5/kcB/X+5KGcgFPKx7+hRwm1h+Hw+Xnl1FomJafTrNxibr4QX77yT/pMmMblpU2KUVyGFmapcOt7G+3D8kSYmPSP+L796lTCRY8BeUoImzlTbNQ2700mJ18a1a2EkxMVxLTub6JKSIA9YgTCrfjGEhw1wOJ3GbZVmWa4MXSVn5PDkX/mKiHDw8ssLGDWqNV988QwdOtzEwYO5/PDDd7Rt24Fp0+7n8uUwUlOrce1aPlFR/iTjct/HaucrUMeqg9Rz/ugjQX/5oNFJm6cQXXeEFK8m8IqgLJLyXZJQOQe67jBd1CEdcbcbHAnOilexqkZkQjnVqMtlmjrVN6lXIYJevYZZxWkFekn7TBruFewPObHGy+b1Eu9yQbr/GK9DM+hr7JbjNSLoVAetylA6buoZqXRdLlbv3k2vnj1JS0tk/vznWLr0ZWrVasJ33+2kfv3mvPfeK/y6cSM9q1c360GxPitsaFg9cGDlhg2MvOkmwAALVVScruN2ww2dOrF8zRo+/v13Ptu0iTKfjwbJySwYPZrRDRoQkZsbVK4eD5ciI+n1888cy8ujc0oKs44eJTsigs9atgRg/rFjbATeiImhW3g4Z9PSOBQZySG3m8M5Oaw/epSLa9diLQ2Tk+nTqBHr//mHRQ89RHLlykzt149727alsjJUDEa1A13S0qh7/jx/HD7M3336cLC4mF8uXuT3c+c4npvLY0uW8NiSJUTZ7dSpXJl6lSrRr04dVhw9Sq/33uPi3Lm0r1mT9k2amBdBgKEqrrPrlX/VzH8uVvPHahqVlZXx448fMmXKw3z44ZtERTnp128wKQlV6NG6Nbvq1WP1ihX0HTIEewLEu5zoui2Q8lWqETWNcjrVcrR7jVMeOW5zTk5jTZ49epBuTz6C02msEacSjH7fqWHLlpzesYMbrKCT2lRR61L6OmqQqiOh7Bj1vEQgQhDLKvMef3wOQ4Y0pbCwAE27SlJSBL9v+JHSkhI+++wLSkrC6NChA/v++otmLVvi1WwmUaI57X7Q39ovSTilK61Ak/VZOSb1v9zhtq6vEC+75sPu9PsXUgdcybMF+6yZTzMkGrnpAvrEupuu5vnUKf/7OnVMXcjKqrg/4O92GHXqtCU9va1JTcihW8WwBJasvockoTUqT+Fl0qdR45fH01V9Uner9h2a0AMQ0KdXNY1jp09z76Ce/PDDT/zww21AKa+9tpBJk8ayceN+li//kPbt5wbqk7rTahrKMcly9uwp6tSpja7rAfdRBT54vVC9emsAjh49SqtW/hvLY2NdTJ/+EJMm3UtSUgL5+cHllJMDb799P5s2vUNy8i2cPLmaQ4fW8O67WTgc4Wzf/gd7935CbOxdaNqthIeXAocIDz9EXt5hsrOXs3nzScCc5cjhqEKdOv0oKDjDiy9OYebMu+nffzjPP3AHjWUUIhDm9dIwMpIGHTuy6fvv+eGee4iKjWXt33/z299/88+5cxw5fpwvv/kGm81Geloa9apXp3ebNizZsIEnf/qJtJgYxtasSUbz5kzMyAjOjWQg65pSf6XdZI2m+B/K//aUUSpVMp/fhCBS73bDtWtetmz5gKKiGxk8eAyVKsXw11/rmD59Jk899QH169chMjKc3Kws4tQ15IY1a3c6g7fguIXBJVedkt4SrVDxxko4ejykJCRw4vhx/4JWHYTA6rlw8SIxkZFm41IKJSshQ3G4RFuURQrEJycDNpPMV4+E8vfVIurUqRenTp2ifv3GXLlyllatWvLk4w8SFh7BsWNQXl5IeLhWYZHJRRgEWszfq7ZkxI16WY97KaFjRZElMGKV9VYwVJLN6TR2cbwEvCUfNsgLOhAnT55m9epPOH/+b+Lj4xgyZAxdu3YjOjosUE8gj4/oSCEOEyvI6KJQBlcowWxdR2rc8lSA/xnhvagHNA2fz8fV0lIcpcU4nZEmVpIXbKmiWFb1UQl0STM5B7oePI5eUHCG2rWr8d573SkoyOTee39g6NB+AR3WsGFrjh49Ss1qjYKNyUlR761OgSrGZ2VlZfh89grLTz1yww0j6NFjGPXqpeDzFdO8eUdatmxqivJBj8Ge4P/xslfnUlxcTP/+d7B37yZiYmJo0a6d/5oOXadFgwaUFhczrEsXcLlonJ5uOoReXBrG0aNXyMrK5syZbC5fvkqrVjcSG1sZTYNnn32Pbdt+ZunSj5gwYwbPVK3KwyNGMKljRxzl5YFxlUdG8m5ODj/ecAORlStTPyGBaenpoGm4L1zgw02b+Ds3l9rx8RzNyuKfnBxOGIDXidxc3DYbTuvWkZooS2i3rtsD8+Z02sy32Ckm+LeELJoWvLCugiNu0P2Zl17iwoULdGzThs6du7B//2HGjRvAnRMnMrRLF4bddBM/7trFmBtu8Fdq3QWQwlg56HKdGAK8vKiIMEO3lJeWUgjoV6/6wSldp7i4GN+JE/6jnmqO3W7jGJmTK5cv47h61X8MSHoiql2rfpFIutcLCQloenwF2SV3WKVukSoylNpKTq5OvXrN6ddvApmZe0hKqsTirxYSExNDgdu/m56fn0dUVFSgLVWPFUCXNocs6vMAkGAFJUI4B3IT2yqapEyUP5Py0gpAWfWursOVK25WrvyK3bt/Izw8jFEjbmbUqFH+6FldDyaolx1wOiE5mQK3LWTXpTj9TwZwKDkqaeU/im6xNyTC5fVyrbAQW1ERUU4nLpeCl/zM4MOGx23QyeqpWDfP1KTJc+GqXZeLnatW0XfYMObMuZ8lS+YyefLz3HffEzSqW06hF7p27c761T/Qs0GD6yvb6+kY4YF7iotxxsaCrvvpLgjlyYE+AweyZ+dObq5bF09ODtVjY+ldsyY2m3GMOTLSZAseKy7mrwsXuLlRIzrUr8+PJ0/StWlTvzDxeGiRk8P87Gwm16xJVGEhjRITuUWue03DHR9PtsdD9rVrXCwtpXFKCvWMxBvlkZH8lZ/P/M2bmb1kCa8vWcLU7t15sFcvqlsc9rlHjzKjc2ca1qxJQ5eLYYaOKL18mT0nT3LvTz8xsm1b/snO5p/Tp/knNzdAog2HDzO8Qwdz7hrBjx6/qWnK0aKCCKy8GTjW+28JWZKSBPbg9WLTNFyuIAjyyy9LuHDhFCdO7Oammzpz+XIuL7/8CNVTEpn9/PNM6t+f+994g74DBgQmwqHrJCfHmE56h8JDQHyekxc0YlXuNfVDt5sUu53ja9fSrGFD8/VY+K+tP378OJ0djuCalpsb0laROtAa0WDd8bWCU9bnjHpUZKn0I6Ki7LRrdzM33zyS3NyTFBUV8/Rjj1G7Rg3/ccY8yM+/RK3qVQNpCaS+ysuDRInSy5BYtSasfVcllIMi5SkEF48VubXqZ2HT4fViA2KcemC8oZJuFxT4WLbsF9atW0xxcQFtmjdgcp8+pFp9WSsQlpxMieYw8wXmR+T0SJGu1r+Vr2QGCOn7yTospitlZcV4PMVUqhSN1xtm6q4kobIJpP+l6pTs5XPZsWHIfbXYXC4O//MPrdu05dixH/ngg8G0aHELs2Z9SqdOydg1H/XrNyUz85RpD136pZJG1n12NY2aBteuebDbnRUOTKn+RUZWpVmzbtx9962UlxVi03QGDRpCXFx0YDlKLPfsWS87d35lsMgkSkunkpjYm4sXw3G5oFKlFgDUrn0zkZFtjHY6BOYoIQHi40soLb1AaWk2RUXniYqKIy2tAzab/47T5OSzHDr0FevXv0eTbxfSr08fnpg6lQ5Vq5qwjy27d5ORmEivNm1A1+nSoQMv6zrlpaWcz8xkxFtvMXzQILLOn+efo0fZcegQKq332uPHGas2N1T4miKedIANgvl0R2DJ2dVcqklQBAql80OUEKLw+iU2Ftq3DzoFmha01z0e+PDDp4iPj+eDD74M9Kdv305kZmYxbdp4vvpqFQmV47nq8RCnOqo4Rg1WcZG0cCVHSe5WEkoN2BAwdTSNrAsXuHzwIJXr1Qt+Z9T7/rJlTKhXL2idSgEl/1otejUpUiDLlWjMitOVGOANiS6HWhjqVbt2AzIzD9G8+WskJem4XFBcCt4i//PffLOIHj0Gm5x7sdlnkslW41aRS0auqN8o0MLqG1idCdVPK4nk97It+XmJ14ZmXJ1tfW7Tpi9Yvfo7Bg58hJSUZykvv8DmzZ/www/zePfdhWhaJF6vP1mcQyQB9bniycs2AzdqXDIPmfpe6igroCL1i+qXNcegied0nSJNY9ann7J52zaSkpK4XOCmSpWq3H33M8TFpQdY00pXKx+E0peh9LuuQ3h4KQsW9OLq1VM8+eR62rZtalIi/qtZHaEZTXpN1h0ei4Zr3LQpmzdvo2bNGwL0kpFiR45sZ8aMBTRo4ApsqEuBrqp1ufxn3++99xl2797HnDkPArBw4TJq1qoViDho16oVby5YQHlSEmFxcebEXppGpK7TsGFlGjasjNfbyHQC1083OwMGDGTEiIGc2ruJWW+9xX1z5/LiggV8+9BD3JiWBi4XRz0eGtSoQWSrVkGhaoSIOoH7b7yRQUuXMr9v3yBq7HZz2eulKDISZ3x8UHnKs6VWA8XjMYAmW+AjuzSWZDKwf0uFEuP0kdLaAJsP51Vwxtdv28aRI0dYvWwZ6fXqga7ToUMHJk8ay4QJE6hWuTKJSUmcPnEiuLVlNfQks0peAP+zWVmgaYR5PJSXl+MrLaUE5P2EAHSPiWHlxo0M6tEjaPAbZWdmJvUqVyb86lXzOpMC1uKwhtJJuis+GDmE30F3Os05RaxrT/0NhQk0bNiK0tJrDBkyifR0f1Mlxu8vXDhDVJQTTdNNMlX+Vd0D/xxpWjCfmRIvKs9SSNBJKkXxO1mknJbFisfIalU91iY9Hjh//iDPPjudIUOm8OKL8ykvL+fEsW/o268fH7//PrUyGgbGa1c71br/1hh5FFot4evtMMuptPproYYeYAWrRa9eCQks/eEHPps/H5fLhdfno6TUy1133UuXLj3wes077iEJGqpRa6fErpSuabz5xhssWbGCN9+cx9ChU9F1KDT0wIUL+TgqVTI7fKEGbSUImJzI9s2asXr7dm7q2dNEDHVs9seffmX44MEMqlcvuLkoxyc9H6+XG5KTebOkhMcXLOCXv//m1m7dGN+rV+A4YLsmTfBu2sTu+Hg6pKSYjyYadTptNur4fNSJioK4uKCBpGmEAa1cLlqNGsXzPXvyzpo1zF27lnfXrGHGsGE83qdPgJ67r17llU6dICrKtFERAbQJDyctPp7bOncm1uEI7FAVlpRwFqhTt65Zz0gDx+lE9wZtE4UfWoEnOa3/qzPwf7G0aGE4gi6fP6espuFy+W3V8vJ8vv76NSZMmMrjjz8W+M3Ysf359ON5zJgzh2dHj8ZdVhY0rA0eTUjwJ9ZS8ifUUpFqyK5+K7PG+ysC4LaOHXn700/5+J57zEav202R18vvv/zCU0OHmvNXwPUBJSnQrUZ/MHeF2eOX/GhZ35pmN9nZmgb9+o1m/foVPPHErKB61Xy43VBaWs6KFSv59tuVFfSL6mZCerwfkpKoihzL9RSBBKek/yZpYHVg5O+ti0jRQhWvH6DUNJvpcYCiokIefXQsDRq0Zvr0mSQkJHD+/BamPf88E8eNY/jw4cEfKHvDuOHCl5pGXo7/a3WMWk2z1T/5T8U6FOnvWANapNm6e/cePvroVYqKCrHbneTkXKRNmwF06XI3XnF5UyiyCNYPmO/qc48H/9FJGXbldBJ1+TIH9uzmh59foXv3AcycuZSEBH+aijyPjdzcEnw+M4sq1Wz156z7ipLFXa5a7N69h9zccjwe/yVT8h6ZEycOU6VKbQYMGG8yAdUzVn+ytFRj0KBVfPvtAE6dGkVkZG3atv0o0IeqVVNxOqsSGbmDxo0HmS6CUcN3OOy4XNVJTq5umg/V79TUajRu/ChTpjzAtm2L+PzzWXQcNIheHTqw/NVX/cfHNY1vdu5kWu/eQV1mECXM4yElNpYp3bphj4jgvgceCAzKe+QImbm5JMfE+Df/lcMro6rkfFkdd9VhCVT9P/o0/0+eT+taV4gpyQaPC/DntVH+V25uPjk5B6lVqzaFhTmkpSXgdPpz48SnObhzaB9+//Qlju3cSfK4cfDnn0FvVg3Cqjk1jR0HD/L2woWs376dBQ89xM2NGpnPLisBLQXMsWO8lJDAmC+/5MMOHahpXOvpPXeO+UeOcDo3l+eaNIGrV4PaWSItEsKVfZSr1e0O9lcJNONZu9dListFSrI/GajVMVdMLJktIiKMKVMe5qWXbmXGjPl4vVEBGX/o0HbWrPmaefOCQlribYonlG6Q8lWQssLGgEpMKheuel4+pz6Tz0g7EkLbhJKHrfLc44Hdu/exYcNPfPDBd8TH2wwMIJXevZ9nxYoVvPbaszzxxKyAUNN1O06nf/ffk2cWMnLqlKCQglWxmJUuMnhFTnFGhlmA+rD7wQSXi+KyMkbecQe3jx/Pc08+SVhUFFfcdg4cOMy9907ioYc+xumsXcHpk4JbgpKyL/JZ9fs6dSAmppC8vGOcP3+eb7/9nRo1mppsgpiYEi5d+psb26WbwyCk5gGzJpPK2fhb4rUxYeI07r33bj78cDlOZ4TJPjly5BcSEtIoK3PJI+wm/lLzYcOHXYOUFDurVq3g4sV8Ll/OplXVaNNB8nbt2pH37rscrV2b5JSMwJhs+LiSZ8OdYwYR5ZBku7oOTZs146sPP2TGHXdw66OPMuz113msXz8qATkeD+fDwljj9RLt8dAmPZ0IZS3pOlpsLGGKiQQoVVlNnJVJrgceGHUkJAQTFSPPR6jJr1aNf0uIsn49ttLSoJGrbtcw6P3OggXcfvvtbD90iPSmTf2GoMeDzePhjQkTeHDmTOomJtKzZUvztavWrUIBGp51u3l//34+P3KESWlpvFilSpAXcnPx4ged7BA0hrOzme5wMGzjRqLy8rilWTP/MTyvl+2nTvHEH3+wpG9ff64HKYzkNqRaqwqQtOoYw8i1CotQoIZkP6W6pGpVz9966308+uhoatf+BJerVuBGNK/3Co8/PpkZM940dUnuFKqhq+J1mhNwB0AnaYlaizGvPs0erMcyHqlXrI6alDHyt6HeaxoUF5fx3HN3M3/+Uho0SDRuTiqmU8sRdO/enQm3TuK779ZSVhbmH7dmRzeizBTgJOu06kGrbrViMOq7wAUbUhkqhQVm58qoYOZbb3G1sJDvv/2WyOhYPB64fDmfRx65jyNHLtGnz+gA3YJB2sE5UdXZ8OFTiXul/JfC3SD4uRMnWLJiBW89/zz33zeZQk9w3E4n/LDiS56dOjWY4VwaoJJQVhBKMivQsXVrXpo/n1NZWaQnJ4PmjzrTNLhy5QKrVv3AA7+uBRk5p/hK/VUWvdG5B0aPZvqoURw9fdp/MYHbHXDwmiQkoEdEsD0xkQ4DBvj7Ijc/dd0cwv8fgLSE6GheHDSIR266iRdWruSJpUvJz82lelwcDoeDS6Wl/JyXR6XSUhrHx1NZ2YoG3WPsdopycoiNjw9cw+jweKgL/kTpQaMn2L7BL7XSfYEbIaVDJB91Oo1IJ6+XgsL/JzP//1RprB0mRkuA7KAQ1XW/XFq2bCG3334Hf/21AzBsEq8/+f+U3r3pNWoUv+s6DVJTg7cWGus7XteJT03wg9cijUhRURFff/0VH7z/DlXi4/nu88+xe2zBK6/k9VhKEHq9NPZ6icvN5ZXXXuOhAQOINPRDdlYWd65Zw+NNmmC7YuSTsQIoikHUWlEhHJK3pT6Ufo0VuJJrxXi+xGvD6zHb0wA9e97AihVz2b79e3r2HITbDfG6h0oRYTz77NMMGDAETdMrBPmqkpUFCQnxOOoYfZJn3KyKQY0DzDJCRg1aZYj6jRUUsQpv4zsVmeXxAKJp6e88++zj9OlzFxMm3BzIDdusbltu7rKSwSPHUKdpB2rUqAvY0VwxOFPT/PpI1026zboPpv4q80FOmdfSFyumJuuzkkG9tm//gw8/fIlnn/2YuLgU3G51zPQTPvtsCt27f0JZWVigTuljapo5l5S0z9U0OJ12EpJTAr+3uQvIOXCA5T/8QM9u3fjiq8WUlPjtGuW//fXX9/Tp0yuQuFyNQ+lf6VdLMEqNOchLkTRo0IHvvltKz56j8HqD2XlKSnx8++3zDBjwBH/+WdGOsi4np9Mvrrt2bUd6ejaXL58kPj6WWrVihPoOIy2tLZmZ2wMbA7ruT2MYAuIwnaxRLzVXuh7BqFETmTBhPJs3f8etE8cy6umn6dakCZV0nf1nzrDt7FnOer2kxcVR14juVRMQGxHB5YsX/YvJAAi0GjWolZRkXjsKPLAykyKE158SwZ9bmaCskBOhaf+zT/P/rpEER6vdTk2DvXs3c+ONvUhLq8knn8xmzpszg5arx8PQFi3oNX06nTMysF++bAZ0jIEp6eO9do3lf/7JC999x98iU9nQGTPI/+ADwvLzK3qimsal4mJ25+Wxu6iIC8XFjEpN5dl9+7i8bx9OXedKXh4D4uP5tGZNbNeumVeGx8Oea9c46naTGBtLp7S04G0nUtgqGng8wXuMVf/VX/UbjwenK97kR1jnCYIL+MYb/Tt/99wzkJo1M0hKqsLhw38RHV2Zd95ZSmRkpKzaJJCsslIVqxCyTqUUYkJvVqhDDU0JBdmeNH6kIS4dBStIpOuwdOn7TJnyPDabP1+F3/nxG1Rdugxk/vwP8HiKcDqDtwEoQELeXmAdu1WnyjFYaSH1qvzrchk3BYEZnXI6+XLpUvoOHMrAkSNNXlidOhk899ynvPXW0zzwwFcmwSwFtVWoyXmy+saaBpGR5UyePJQLF7LJyMggPt5lciTDwsp47LG7ePjBuwi7fDm0wW8dtHC60TRTuHONGulMmHAHkyf3Z8KE+2nQ4EYuXMhh+fLPOXZsD489tqjCvEuBrd77b5srMZL0QlpaLOlp0cHrfY2223bsCMAf23fStWuG6KYtALBa/SOrPaSUQqLT33it6tX59pVX6PPAAzz37bdcKy4OhJh+s8NvSL47eTLTu3YNdPzg2bOkSg1gZRiZ5Ea9t+ziqJcyxgLrKJRHHB7OvyVEUbSRc+B04tMdFBb6KC71MXrsnUycOJiBPXuiQ0AgpkREkJOTw5WcHF7s06fizT7SSvR4+DM3l9knTrAsMzPQ/EtHjjDQ6aS1IQzCIiLQSkuxARFhYRSGh7M/LIzdxcUc8vkYkpTErxcuMHvFCipHR5NbWEjD2FiWtG9PYkmJeSfI6eT8lSv8kZ1NRFQUNzVoQLQydlXyN6nQIRhWLOih8hdJGSxZTMoR9T0o2ZbEzJnzmT37ESIjI2jSpAFns05y4eIlnn/+VTIyGlUw7FQd0u6XNouuq5v6vOYGVZE/djoDx9rko1ZxZdUzoaqyirZQdf766yq6du1HlSqJfhDYGJRPdxAd66Bt2xtZv349nTt3MwNoBnCuSokRXaRsNNnH/6RnwQCfrTaPIqRSqvIaV00j6/Jldu49wOLFy4gMK8UPfdqIjY1l5sxPGTeuF507D0LXo0zAQ6i5V2CUrtuwaZo/p5IAN9W6mPvBB8z9/nvaNGpENYsRqeuw8vtF6OXl1IqJqRidJwkiDRypXMUEh4WFMe/555n0+OOMGD2aYaNGERYewbJlK1i06HPmzHkf0PDp5hQDdgUoSWYRDGmPiKBRerq5f7pOhKbRqnZttmdmBkMKrF6FSpIq0U3JTNJzy8sjWtOY3bs3BYWFfLBpE4UlJZSWlQHQ9/nnAejVpg0/P/104He+wkJO5ORQRRpWVg9WGWRQ4SZAvOYIE/WVBEht3pLg3Jb8e9TuvxbrXAO//fYLn3/+DVu2bODUqcM0TU8JGt9uN10bNODpzz7ji8ceC3qyEPSODX/G7vWSc/o078+fz8sff2xq9q1XX+W5CRPMlyQZ/Fdms/HPkSPszs5mT24ulaOiiAD6f/YZMVFReIqLcQBPtm5Nm9hYc6SSrlPk9bIhK4tCr5eWVapQMzY2dFST+mv1aazAUwiARwKgkp3Bv5k+b94CXnrpGRYs+Ii2bdvhLcpj1+7djL91EiNGTADMqk5Oh3LY9QQHNrVWZY7XULatqlBVYvX0rfLJKpes9RnPlIiIH/mS+jE3N5/z50/Rtu3NgCHzNY0S7LjdMH36M8yb9wGvvPJmoKmAPsJ/fMmrmSNY5WlD6VvJaVDPSzEiv5M+jZp+eTtcaWk577zzPE8++TU1a8YIFRXO0KF3kJV1mszM36lW7SYT6a02uSS3EqMSUJT7Knt37aL/tGk0qlmT5KpViYwMN4mpM2eO8vXXH/LDDyv8l0oBmm6vMH6rqWQ1s5W4vvXWp5kxYxKHDu2mX78p6HoK+/fv4Pvv3+SGG4ZTv36zCktCFevpH6UqqlQJIzq6VsDsV215PJCU1I6jR2dStWoZFy6EB4Akq5pUbSo5rtpSezqq/fh4G6NGDKEs62UefPVV1mzfjqe4GIB1f/3l71d4OFeXLEG32wONrNu7l9t79DAzrVXXKH9GBiKoQSrGMYDXCilvrIT5H32a/2AqhSi67ldigmJOpz+kNCKiHE2z0bt3H/75ZzP33XsvD99xB9VjYym4epWPVq7k5KVL/PrEE8FdPum4GdQu2LOHfgsXskkAThlVq9K3WTNGd+lCWFhY8HdG6GdJRATNf/iBQ8Y5eWdEBLGRkbx14gTVYmIY1aoVw1q1oo3DQfj580HE3wDGDubn81BmJg2cTppXqsTmkyeZ8fvv3Ne+Pf0jI4N9tV5dIBFySSNh+dl03X+rle4PzZSMJvwfg5Zwww09ad36Fk6dOkJJST5jx05H0+IDJLcKOwlEKZ4RuW4rMLPRrUBXwZzAWt7KIHlULiq5yKVzIgE1Ke/VZ3IMycmQk5NF8+YZgWcLPTaT7m3YsCWZmUfp0MEf3WPXgnGXsr1QTpLqn9SroXSKdY1VUAhSQRkNfLt8JR9++LW/EmPBer3+pPKpqTXxeovxePLwel0BFlF9kHQPNReh/OMNG35gzZrV/LhyJbXqtOCRR+4jJiaOtm3bcfnyBTZvXs+0yZMY1L59xUkOBTpJAhnjs4nndN1O3779adasHV988RlLly5A05zcdNMobrvtWcLCwkwyTPZXFunk4fEE25AMoeu4dJ2GGRmsWPEzNWuOB4IpnqxAnGzjek6n+rJKlSrs/OQT8PqTQheXlvLg55/TNiODO+fOxVtcHAAlfIWFvLh6NU+1bRusXA5OJmyTskBZB4Y8UuegJS86dEIzoqE4/i2WEhvr/2txxLxev5EEYdjtMTz2yCMMHTOGZ+69l3aNGuErLmb19u3sOXOGTffeS1hxcXAHWQkZrxdycijPzeWZv//m5TNnAs3q4eGMql6dPsnJtEpODl4Nq2mE5+URDtxts/FBfj4+rxcNqOFw8M4//+CIiGBQ06YMa9OGng0b+nOLHT5sclLdpaXct28fRT4fPVJT8ZSXM+bXX2lZowbP9eqFLSenIqqhjl1Ii8XlAv/ek8m4g4opDZWBKHckASpXrsHs2csoKDhPQUEm1asnUaNGuslQtDoDckdaiUMlO+3ewtCRlrIzFuVl/TpUCeVXyL5ZjWxp0CmduGvXDsaMGeYnm1C26plOnXqwY8fv9OnTLVCPzThUKY0tu+bX4VI32BUBPB7wYh67dVChiCpBBqksPB4WLlrEsGHTjJ3moN7zev2XK/TpM5zff/+RLl2G/1faWbvi74YNh9FeiddGQcEVnpozhzuHDePtV1/liTlzWDhoMF273kJ5eTnr1q2lYd3avPvMM9fP5yAZQzasOm6xl2qkpPDTRx/x3Y4dPPDggxSX+OjUqTuLFq0iMdFh+mlwYHY/+CQHZ/XOJAGE89yhaVMWrF2Lp2pV9EaNgveFq+fU75TBoxaQ+ly9xDyGRUTw0bhxfDRtGjidlAI/HznCd1u2cPHKFUqlkeZ28/nGjfRKTye8pMR/1EFOmByH3FlT31u8IDnHNneBmSaqj//jFdf/J4u0SYziTIgx1pgfPHnjjbeZOnkMU0aNYkiXLthtNvafOMGi9evpk5FBrejo4AaHDFUxdM+vv/7KwJdfplB41n3ataNXu3aM79PHbGMahujyw4cZt2BB4DdpLheXrl2jqLSULo0b061TJ4a0b09yWJg5Uiovj/KiIt7JzOTnc+foXaUKsT4fLx44QJHNxrsdOpCg5I0VPZdrVQlPuRtr9dfcbuwJJXiNyFXpkwR/bufFF2dx+fI1jh8/SEJCJK/MfoPCQlsFUSiXltzgcDqNo1pyp1E6PFaj2TomKZOtckkiGdbPwb+JiD3kBoxSzwrzPnnyEC1atAvg2X5Qzh4wHevWbcnp08/79aVm6JAcd6Bptfkrp0JiY3Kzx2p3S5xc0lLVZxWFRiYBnE7YvfsAqamNCA+PCaTOkNlr+vWbzrx5T1Gt2k2KJKb2QuCRFWS2lb0enzGD6omJ/LFkCSuPHKF//57ccENX4uMT+fPPbbjd+Sxe8CmxYeUBZrDp/sgp6T4oHrG2r0rQb43g6ae/4NChP1i06E1ycq6QlNSASZPep1q1VK5XrCpOsouilVoWUi2kpHSgtPQqly5tJTv7xpD2itXvvF4QhJ///RtXYwcMYOyQIeD1UlZczKUrVxhy//30bdeOp+fNw1ZQEBj40awsTl+6RLPU1IqDsDrkqjHFvGIzvUSTF7XYcOiWiVaE1jQwNl3+Wwlh1v2Hcu1a0FkyVp/D5cXhcjKgXztuu/1THnvsTmbNfIlNGzbw9MyZ5ObkEBERQbW4OJ4aOxY9JsYqmQJoSd7+/fT++GMOFRQwIDmZny5cYM/UqTRq2NAM10ro0O0m3OHgYnExAxo14vVOnahdpQphTifbz53jywMH+HznTt5Yv554p5OO6el0jI+nU2wsrSMiyLl0iXvOnGFxhw4khocHDIRHUlKY+PffRFeuzE1GpETAcArGwZlXqZJGasUqTjQ41eF04khw4XTaTBG1kimdTr+yq1s3I0B2Wa1VIIWKflIkUj5MjNMAbIz7bqzMb6fEzwkJQQUigSM1VPWdTI6tipTv8v9Q7ak+h4WV43R6cTq1wOeynuLiApKSHDgoBLdoTNfRtOCVo9aoGEmzUDZwKD1q3VQMvJE7q8b/4bZykpN1yD7n1zzJyXg8jgA9qlZNpaDgMg6HC5WWyqoDrX1Sc2nVnUVF5cyd+yKdO3Sgb/fuFHgdfPbZt5w8eYysrIO0bF6X5x+9z59HRmaKlw6ArNSqNeQEGZ/ZnE40zUFCQiJTpz5ucmyFX2SaezE1QX4ReZJMUYNqTQgDZ9rkyTzw2GN06PASiYm1TLaAFOryHLm0wQMKQRJYvMLcbnSfjzfHjWPMW29RXFJCycWLlF28yI7sbF7bsIHBtWrRpGrVigxrZVxNI/fqVZ5euZLOrVoxcuzYQD+kj6Hm26F5Qy/i6x1F+r9epPBQ8lXTsLs82HUdLayMyIhcbunWjXq1avHB++/z8ptvUu7z0bJaNTrUrk2DhATzsQV1Bt4AnR79809ez8lhosvFgrw85jRqxD0NGmCLiAjyZpgRWi4c0fziYqp4PKxq0oRGkZHoiYmcrlKFRefOsfCvv1j04YfYNY029erRKSmJTlWr0iE2lriiIiZs28Z9rVvTpWbNgLC7q1YtPjx3jqdXruQV40h4QACrhSSRFOPlrJNoIpFa8tbwfPVT5VvLYBGnE9LSqqLrVU0iQspRE64SwqDUNPw7ktk5wV1/CcxaHQFjPv0yxl5BX9jwYceLnmA3yR3VltW4ld/Jv7KvdnsU5eUFfnBMEUrX0TxqLy2fuDiHOQmzN1iZH3zyVxo4ZillWigFIx0kyc8SnJPRM/K8idHG+XPn6DOsJg5vQfDKbWICc5ueXpO//z4UEKehIuWtQTUKUFOfFXpsgebfeedtvF4vz911FxHR0bz+xhtczCtk48at2GywcOFC4srLzBt3ih5yPNYJCjVREHg+UtMYPWgQo8eNo9BrNzlY1p8Ex2IzbZYE6C3m12TBG++njB7NG998w6dbt3FzpRbUS08PjkHNj9Wrs44jlFMrjIkIYEDHjhw9d463tm2jduXK+E6cINPt5sM//uBCfj6f9OsXmm/U/wYv+Hw+5q5fT5bbzaz77gvyoeYHQU0lzx166//yZf4t1ynWnWBdx+71Yge6tWrO5p+XMqB3b1Z89ZUfCL7nHigvJy05GZfTyZM9epjzj6nj4Xl5cOoUP69axeCvvuKm1FR2X7xI29q1WfrooziMpPqBNSNBT4+HkshICktK+GLcOPpWq0Z8YiJXNY3lBw7w5d693PP++0x/910a1KpFpwYN6JSSQqfwcGoWFTH30CFyIyL4uVcvwq5dg2PHuDUhgb0OB2N++41V1asToXhX7k4rIaJsNtUnaUsKfaz66xDhHEqeWJd8UlIlkpLaoGngM0SQfMaaIsR67C6gO5TsVUC9BKCtRqncOJbrVdDZtHsiZZp6BrAnaHiCd4UGHpdN+H8WRWFhgSlFqRTpYWHFaFoYdk+BWZ8bfGAdolQdUjerPkjVY43KUdMm3VLVlJ0SnE57YBxFReepXbumP9eZVkBJQoype9WqVcPjuRJ4Pjk5yOKCTIEiwRQLKfF6YefOHaxev54lzz1HJbudkaPH0v3mkWzatIWrV/O5774nqVOnNonalQqoku4M+qihdL6cftWXoD0TRsOGHahXr0NAhUkc1QoyKZYJ5WdI917RRdK9Tp0biY1tSE7Oq5SWticnJyKwzBWEYD1ep5ahbCOwFxXClggvLSU5IoI37r6b2557DltYGOUnT3I1Koolhw6xZMcOvrjzzv88GcKp2pCTw8cbN/LGffeRXLt24Flp+/n7ZvNfpiMNRVnf/1C0//6I9RdaME5PzaqmURmomViZn5YuZNDAgdzYvj03Nm4MOTlcKihgxN1384qKdpK7ZV5/NMKa337j0W+/JauwkNUdOjB82zbGVq9Oo5gYs3GmVmFeHmVXrnAsN5e/z56lmsvFqfx86qpElNeu0b5aNdo3a8Zbt9/OxuPH2Xz6NJt37WLG9u1cKy4mMjycKhERNE1IYNqxY+SVlpJXVER+URHJDgdNU1J44NgxFtWvT71KlQhXgq5x44rGpbSQpcMvDR8jvNuRkIDLFfMfSWy1o6z2hNRT8iUZNsBvBs3jk5ODO7iBCoPtKjQZzGlINA0jL4aHhIT4gA8uZYK0PeU4ZB/9bQS/b926G2vWrGLgwIEmvA6guLiYU6eO0LBhbcjPrbDo7C4dr9cfQabSuIQ6vWm179U0yBNSalqloDZJf4uiDQeKL53Fbtx4hmbOuXL+/Ani4pKIijLf1vqfBKWaLzUGRdsTJzazd+8ufpk/H/LyiEnW0TQbdevWoU2bOv55URnwZBiy3BGSGl1JW+vEWLxK3UgMbrWxpVJVP5OyRoGdTif+3RxlJAgAtsL2ETB52DBemPkaq1fPYtKkeSZ6qnmSyjggkDHT1KfZsSkrRnbUYFjd62XZxIk4/vyTZTt2sOXYMRqmpPBWt26kq+SZlmMN1slaf+4cEzZu5Py1a3y0eTNxKSnc0r8/OJ1ounn+Aj+TikN98e9OdOgiDUFl1Aui3tWvH4/ffTfvv/8+6ampzHryScjJwVdYyO2PPspDnTqZr5OGwOL+5/RpntmyhWW5ubyTlMQej4cUTWNatWp+0EnKdLGDfN7rZX9xMTabjQvFxSRWrozu88vRGpGRPNG1K48PG8b+y5f5/fRpNh86xBd//sms9esBSI+OxhkeznvHj/PKyZPkXbtGXmEh9vBwWtWsye7MTLrExdE5IYEoxdypqX4LJTnZPwbhEIgNqcAaVD+RNoFat9ZgJFWkTSLVlZwKq9ySmxouF0FaKzlkBSBkZWoePR7sOqh8AZruj25RctemacS4XCbnWteNI0RaMHrYaizKSF2lN/v0GcLiRW9xU9vWpgE6tBJ8up3vvlvMS88+E7KvVnCjxGsz+i1kgwXdKfTYjPq14GTIsUtFpz6z5vfSNGpWr86pU3/TrGq7wOdeoeNOnPibatVqB8Zt1b9g5HYy8iYFwuQBTbObnKbi4jLmzXuHO0aOJElEHOq6i27d+gAQF+sLKlorg8lIJqkUrB6CpLHcFTL0gzpCpmkiwtmLP7KM4HHHQN3WIo2gEPK7bloaI/r147XXZtGixWRSUx04JGKXnW1WLvIsv7X/ckdOGRHCGHpo+HB+XreOfzIzGfzRRyTGxTGxdWs6pqT4c8FZdbN0kL1esoqLmbh0KesOHiQsLIzy8nJev/fegEyz6X5bIEBiGa4ojcJ/gafrF2XMZmcH16XhUd/apAnDZs7kxho1iKtVizvHjOHOW24Bj4clq1cTXVhItIyEFru1+fv2MXf+fGZs20avlBTGpKez5vRpnu7SBUd4uBkNgACYW+B2c+D8eS5cugTAtfBw4uPjweMhWteZ0L49EyZP5vzVq/x28CCbd+9m85YtfLxqFQBVHQ7KfD561KhBv23b/P7M1asUe700qlwZe1QUz+fn84DLRYLygNPTgzoGYM8es92k5Lr0cxSPqc8MQ9rhcqG5/LLc5IPglz/+i4Yq+glSXktnPxDtoWxJETloki2yyEZDOcNS5lgRHDVmKdcAPSElpMhXJS8P6tdvwrx5u/B6vbjdwehU9eyvv35Hv163hEaXdB3NGRPoroFbVvBnFG1k+9J/USJEdV3q/UCkldtDcnIwcig1NZ0VK74zkr9rFUzVnJyjVK6cEgBMrCf/raCYdV6lD6Zp8N6c2dRPS2NYq1bg9Rq/12jRoovJ3g/MuRiszelE14Myz+YtQU+wB+gm1ZKkj+qfek76ZJJucjyS3pKuqlh9FFX8PpKN7t2f4LvvxhMdfQBoEVgPKrdyaqrZHAiV6ynQniKgFWH0eLihenXubNmSB86eZfhnn6HHxjKgfXt+uusuImvWrBhRYQGMir1ent24kdkbN2Kz2TiSlcWGDz/03+Ct6yAi/lQ3ApchyMmG/9mnCbFq/0OJjISYGH9icK83iE4YvZl9553c8corrF61inG9ehFTWspvv/zCyn37eHfwYJzHjwcHDpRfvcpPe/bw4o8/suPMGdrHxLChQwcOejxkFRfzcN26QcPM7abM5+PX06f55sAB9mRlceDSJTxGaFeUptGtbt2KO4xeLxFeL93r16d79+4wZgzey5fZe/w4W/bt45WVK8kFXJpGcmIiGS4XMQ4HmdnZ/Hb0KEevXKHhH3/g1DRaVq5Mq6pVaWWz0apWLeolJvqRPzmh8qyYZBQBPJGaSkx6OjHJOgkJ9oBMl/MnBXEog1JWqZqWzojEHALgktsd2DEzGSdG5dJgt1OCpgeFk3rA6vBbbTKr7f6fyi233M4zzwyhWrWmpKfXDPTb4/Hy2GN3MXXq3f6jlVZJYKnf6zVfBGIF5aScl86Txc43N2GN3xTQ9ugRI/jws8945I47wOmkEEdAsP/99x4qV04kKsoZOOfs8ZgvBJHsoYrcsVZ2kL9Zf+6ZjuoWRk3Does4XE7T2jABPGpgVjhfMYl8RnVSTqjbjd3lMoW1KoFoDZhS2IAileKPwNEb6fwLo9rEOB4P9rAwWrVqwe+/f8H993+Artuu+xMr+G+x19F1u/8mMGVUer3BiBe3G83joVNKCk6Ph+87dAh665IxVLFM1oqsLIb8+iud09LY+PDD3P399wx79lk2paXRzOkMGA8V/BTpJaszhP8etQtdNM0/X8rJtYQC9qpfn9OnT9Nv4EAmDxxI3ZgYDu/YwSe//86YWrXocvUqiOvJ0XUOHz/OS7//zuIjR0gOD+fL+Hh6Vq3Kw3v3MqNaNSIjI/3PGuvoYFYWC/Py2H7tGvs8Hi4b27ThQN1KlfxxI5JPPB7CiotpmpxM08aNuWfiRMpzczmVnc3m7duZ/c03aECez0dsYiJp9evjio7G7Xbz5+HD/H3+PL1WriTcZqNxYiKt09Np2awZrW64gaYJCURZLB6bp5DkZEeAlRSJEl0lAYBErRMpdwxymAJCrMUK1KuXkk9ykzzGadwGZd39Uh2yKjBphYrfeAwZapfWlsfjB280fw46tfkBBEApK7ZglU26DvXrN6CwyMvSH9bSv/8gNFQ+Kg+Lf/gWp9NJjRo1rr87ripzOv1d1uz+I2pGQz7UsRE7eIP+RHKyA7vuCXZOdtaqnFS7yhBwOhk/dizj772P/n174/VppqVQXl7EmjUref/9tQG5rMDHQHJ3i0Olbpf1593z50lUfS0uvkpeXh4dW7YM9tfjQdOCkbwmy106TZbjc6ZxhJKrksYmA8NwjAzZX8HJNYApEJFbcvKlQpd6ztJW+7p1WbJyJQcO/E7jxj3MoWIKPFKGleJbGd1mdVSlvpXf5eXRu2FDthw5wtJu3dCTkvz6tqzMvCasvOHxkFVQQPvPP4fwcH6dPZu/z57lvjlzSE9O5u6pUwPtehH0UPan6pNS1mqD7N9SsaSkwMWLQWBFhKfHA2+MHs2Qu+9myC23cFN6OlcOH2bhtm2EA++1bes/Ti122/Ly83l75UrmrFhBUUkJ01NTebVTJ25et44bq1ShXVqa6SxzzuXLfLV3L+v/+Yd9Fy5wsiB4XLKK04kLzGvJsM+qRkczrm9fxt1+O3g8XDl1ij9Wr+bL775j54kTnPN6ccXFUbdaNVwOB+E+H/vOnGHnsWOsKizkFSA9KorWCQm0unaNlkCr9HQqg3kNgb+/Ki+n9MLVd3l5plMgdpeLRBVJ6PUG/Q+vf4NB5c6zG36E3Ay36xok2ANNuFyYbVur/LSuf2nYWx0k1X8lG+QJGim/5PPGGO0JJdh1LZCbUNPMOY79S95G//6Tefjh+3n00Xew2WyB5o4c+YcFCz5h1fKvzeiIkJXyhliPp+IJYFWs/pauB8EgSRqrKnM6gz/WhfpJSanHhQtnOX8+G01LrnDfwnffvUmPHpMDd7yoLssb7ZXYkWwqRZD0uzJPn+aGhg0JDw8Hrzegi6zTaALSVXG5sGGc3fH6CWXDg8sVE3IjStJP9TUUq0i2tqpk9b00CSR7WFWcYruuXduyfLmN2NgviI5uYVpWobBRa7+kevRqNnRnjB9vkIQyfJqeVatSDtyZlETv9u39N1KFhZntLdVxNVleL2U+H8O//ZbVR47w6p130qNDB7pMncroZ55h+dtvo+k6Xj2mggiyG+vChKZJvf9fivbfHxElMxNat/bPgrxRzpg1u8fD/LFjObhvH999/TVF167RNiqKXzIy0LZvD0J9msbGzEwe3LKFXTk5dExMZG337vSIiyMsKortp05hCwujRp06XNQ0dp8+zcaTJ/nir7/Iys+nfkoKHerWZWzr1jSNjKRR5cokxscTFhXlH7xchdJQMlaTpmm0qlePVk2bsvaff/hx6tQgd0nY0eNh4lNP0bdmTU5evMifZ8/yfWYmb739NgA14uJ4slMnbq1bF3ulSmZkUQnKY8eCxpncyTYmzeFykeZ0QoI/eW4IDKDCZ5IBpNEJFcEUjwfQHZDgCNxyYlqB+KNE1GLTdWOHITuHsxcu8NHXX7N7335stnB69uzN8OFjcTqdJoEi9Kipj3LBWmSssaBcPP7457z66r2kpCTRtX0TLpw7x29btjDlzukMGTIwkKBPrlqf7gjwvDrKput+QW31f1SbylGybjRJHSAFdWFyIo46TrPTa0j54WPGcOuk23lj4VIGD56Cx+NPAP7XX78xZ85MXnhhMXZ7kD5qp8DuKYDsPOKdTnAaYzEScPt3lfyTEKNppKT7+fDggXx/8vVLl/xrThnGUjK53RVzwYRSwmqQMj+RIqQ8Q2fs+tl1nZRkZ8CJBcPR9HhAN+rTCdze5vWq3akcM+ikmEu2KSaoyOdj3Gef8ev27bz44gckJtpM3fF4gqc75HqQuZgVS6vNN//OTEzwFic1brcbXC66t2vHrB9+wOtwoKnxq7+KPhbG3nnxIqPXrWNQSgrL+vUjPDmZpc89R+eHH6bv9Ols/uYb0hMScLnsAVmfkID5RjX1xfW05L/Fv0OfkRFc3CrxKgSsiDs6d2ZYSgpLNm1i56VLVI+IYEmrVrh27w4cf0XTOOd289ChQyzNyqJaVBTvNGvG7UlJ6OXlnAsPp2TPHmrVqEFhtWrsu3qVHbm5LDp4kO0XL1JZ17kpNZV7K1WiaXg4Te120mJj0WJiKjq5ak4VE2ZnE+Z0UrNKFWoOGsTWEyd4sk8fqisE2rK99e2qVez+/Xeqx8Wx8/hxdp05w4KdO/HOm4cjMpK7evbkkV69SIyN9f8mJ8eftD8vjxiPh0TVh2y/pWLHn4Q5xuUCp05ysqOCvRuQ9V5vQAdI8SCLlJkhASs1FutlGzIiRL1UzgFjcRdevcqi379hxQ8/4fWW0bhxE6ZOvYPateP9stFj5IezNCxFmwIiSizXPqv3s2d/yMyZj7J44Sf0at8eX0EBq3fsIKNhQ+a+8Lx5jVq3HZXjk5Xlp6fL5T/WZGwE2BIS8HptprwYyrexSwWoDDQrPUL9DyTExjJ8+Agm3DqZhx6aSaVKVfF6ITf3GC+99BB33PEkoJlMHa/X2I0U8saDw4T/KfBGytjMTL9Mdsrjnh4PDs2Lw7iwITBmCTrJv1ZrWv6VIJUqUnir9QPB6DfpWBq/t2man6ZSpyi5bW1LehEGQ7z77bc88PHHjBw4kA4dOvvp4nT4T1bq4GjfHgjmWwkk6ba2p/oto/flXBp/u/fqxcPffMMfUVF0VYrJOtdKZhilAOi7eDE2n49tDz1ESsuWdB8wgJOXL3Pf3LlUTUtj6LBhfodY8ahHyJ9QoNa/JWTxueIhPt5vPJ465aehmiOgRVoaa++6ixXbtrFk61YqlZbyaGIi9a5cgZ9+8p9+0HV8RUW8uGIFb/35JyU+H3c0a8ajjRqREhkJus5Vn4+mVapQ5nBw5Nw5dp86xfd797Ji/34AujRowNCWLWnqdNK0cmXqxcURFR1tDv2RBrey+U6dAl0nHujbrx/lERF0OXGCaV27Bn8nEv+VXr1K7/vuY3LTpvx5+jQ7s7N5ZeNGrq5dC8CAjAyeb9CAFpJPvV4/fUIcS+TYsWD4hjKyXa7gLVoSoMUfsWJyCiDoTANo/khXPVkkuZZgrq77I7SsjpB6L3dFlKw21m15aSm/bt3KgtWryb92jSoJCdw+ZgwdGzeuCP7KNS3GoS7L8dvE5pQpXi907DiK4uIS7r77Fm65pQfVqsSydcsW8txuFixYiFMiGEoXGP0s9PhBLHWUTdm8VgDJYgrh9QZNf4kxSLxORVC5E+w4jeNq0j146KHZPProWG677TVSUloZU5HP8uWvERcXT/36rU3sIPup/CspftRml1J50uW8WlyMs2rV4Gawx0O8UyPeJQbqFvLM4IvAjrzcUDe+dyT4I6HUBpv8qZzW64jcQBNyQy6UWrseqCdEBl4vbN26k2ef7UvVqnW45Zb7KC0N0ksNRfqrsl9qyVpVTkIC4sAnpobrd+5MtcWL+c3rpbdqRGY0l+ibwUDl4eHcv3w5Px06xMoxY+hz++2QnMzXH31Ev4kTmT57Nh+89VagbUVDv48n9Iy0f///kuNJCSD5v5w9Qxg2tNtpaNxUZXKyxNbrrO+/Z1dODmPS0ljYuTO2qKjAbHauVg1feTnpCxZwxaC8KyqKke3bM6lnT9pkZAQTx6rQEFWsq0P1QfVPGjpeL9GRkZwrKiKlatXgbw3G9pWUkOV2M7RzZ38iSABN40psLLv27+fTtWuZ9uOPvBIby1M33sitbdoQUalSsB+qTWl4KuEohbjRR5tuJCvVg1dNh0K7VbXS/pOyWT6rFrymYbqhR64ghbQHHA6vlzUbNjDnk0948tFHeX7Gy1y5UsLKld8yfPgAPv54Aamp1U32jAQ6pY6QfZFTor5PTk7jww+/Jzv7CJcv7KN2zZo8+vDDaE4nqFB7sWh8mt0UjKRIqjAFddrsekJHClvVbyms1d+8PNASHNgThETweinRHLgLYNYsf9LtKVOGEBYWjs9XQrt2N/DZZ18TERFfQQfa3AXBY0OCD21yMqUhb3TEvW8fzshIws6eDa4leQxAaRVVt5SSkkihBJCqQypX+bmhueyahj1gaIuJNPqrjF87+AWS9SiGNP4VcY06rhQXM/Czz9iVmcn3H39Ml2GTAsf3FdmtgKbsnrThZXNBpWH301iOzeulR9euPP3tt+wsK+MGBQJIg0UyhKZx6uxZ+v/8M03j41nYrRvh8fGgaTjLylh1//3c+NJLdB4xgvWLF1O7WTNiXP6klHZvoTl0W1kJ0tH9t1QsUisrvg8g6YDHQ2WPh+ktWphB2EqVTNr9+zNnWJKVRa2oKLbdfDNVFHDj9ZIC1HY6mbxjB1e3bsVXXo5ms3FLrVp8c8st9G/SBLvHE5wv1YZcU6GcbSmUDfnVrnZtfjtwgFtvusksII11t2H/fqZ060bT5GTuANA0PNHR7L90iZVr1vD2N9/w/po1TO/Th4eHDSNRWqTSwlRFWkpef24idclFwKk2jmGhVcz9J4EcuQNofZl+KM/9YflOovBiIZ/LyWH8XXcxcdIkFixYQmlpJH/9tZV77rmLO+64k8ED+/jlvtpp1s2JbAN9tSgX2SRAfLydt2e/xpWTJ9myfj1hTicLX3iB2KpVK/ZXKQUpSKQMU8LdGFuhx2aSUxDS5wpdJE2sDpauM2rUrVSrVocZMx6goMAN+KhaNZlnn32JGjWamH4WGK83dDNW1WDzlhCjQ4wOV3L8kRbOiAgqTLhcg9bIAzALaKvtpT5XNA2lo2QdSidKJgulzK0GhbTrVH1i7nw2G08sXcprK1fy0MiRvPbqq2Tb7RVslAK3OYpO1+2gxeNMNkAoo2/qyJ89QTP3S/bd66Vpu3YkxMTwW24uXdu2rQg8SU/S46G0rIwRixZxKj+fLePHk5KU5P/O7eb1KVM4f+YMox59lMXl5Qzr3988sbIPauxu97+Rtf+h2C5fAnXEWnqbQqdE5OUxLD2dYTIfWE6Of3PEuL78VE4OM/74A1tYGGsGDKBbixb+Zw3euDEtjXm7d7PswQcpKi0FoGlqKrNHjWJsr14kOBzmdAlqLqWuUUUa9pY10bJGDb768Uem9e4d5ENxDuu3NWvo3r49ozp3ZpQxTl98PMeuXOH3nTuZvXw5LZcvZ2Dt2jzfvj3NlZOv0AN5S6yilxX4Vc9Zj+JIB1UWWYcxVtV1k2yX45FyWeo669oyflsWEcHkF16gemoqr8+YQXztBpw6dYr333uL5WvXMvullwhTkYiiPqUrg83Y8Qp1YB2ipsGQIRMYP340Bw9uwluSyxOPPUad2rVN/bGehFHHoeVQXa6Kt4hbbWFp98q9zFDiQIlepb4k+1StmsHTT3/O4sVvceLEU0RERKBpYYwZM4kuXQaZgC3VPxnxpL5TYl7pP+luxGiFoGm4r17Fqfxkud6k3WTVMWoSQqFFxnzZvCXEODV03Wbql/VR1U/5ueqGxEWlCrQ2KVWYWh52zW8zffPdaiZOHE7Dhs149dWVHD+eQF6eGXiSQ5fvJVSg2jINUzKDKGFxcfRo2JDfTp2qqGPk+hTr9u1163h361Y+7NePPk2bBujeq0ULPn76aSa98AIAH3z8MTbdTomCveQ8qf+VH2qds+uUsHJ1x/h/KAUFBcTGxlIrJYU5d9xB//R08i5eZNW+ffRq3JgrwG+HD/Pbnj0cPHuWDePGUaVSJfMMSSAmL4+Cc+d4ZPNmPjp+nAHVq/P9wIGERUQAUF5ezmObNhFus9GiWjVaVqtGrdRUbDEx5rM+VqRBLWjrOUg50xbLedPhw3yxaRMf3X23P2JKOKAff/MNBWfP8lCXLmbDXkRU/X3qFC8uW8bXf/1FDZeLp3r2ZGLbtkQUFfn7d+CAOW7R5fIrq8aNzai8HJfqg4Xj5a0HCjG12l9SIMiXrht5mqxKTRqXRrly5Qojxoxh1VdfEVm5cuCmLoDMzBM89ND9LF68MsBroQAwuWCtm6OqaevaUAnXpIFn+gGYom9k3mqls5WPaC1SYKp1aH0p2kLF87ZOp18Jnss272ybwCXjDLuSjS6X2DFVnZS5PBRxrKCTWMivbNzIU7/9Rnp0NNWdTqq7XFSPi6NH/fr0qFPHXK8CpSzKM6DF1ECkUrZOgnzJ9RPKc7FOqvpM/S93iq0ggtdLjtdL5w8/5JLbzY/PP0+7QYMgPT2QI8XrNacUCQW2yuHIbkosyaGVmDWN2403J4cqHTviKyujSVoajatXZ9yNN9KpeXPzmUePhxOZmfR78008Hg/bJk8mUV17rp7Ly+Ps1at0e/ttrpWWsu6DD6jXtKmfoZWzJhWmQY+CK1eIHT+e/Px8YmKun/Pt/0pReqZJejr9W7bkxf79CcvL48c9e0hPSqJatWqsP3qUX/fvZ8vRo8zo3JlBDRpUFDhCN5RfvcpHR47w8O7duOx2tg8bRorKYeP1sujwYbZcvEiLpCRaJCfTOCmJSOs2nWQ865WhVlBXrjuxFotKSugzcybLH34YV7VqQdmv6xw+f57HXnyRFffdZ7YeRQTulfx83lq4kLeXLqWsrIy7R43i4cmTqeJwBHWTBDiVIlBOh7Wvxlr0GbfShjy6BKDr1wWf1E0rFS7XsBomVmdA2ANDxo7l1WeeoU7rtqah+3wljBrVn88/X0hiYmIF3SGnW952GuraaxCGoZxLqZflvEkaWvWl04nPGWMyaqWIk+I2cHORFFqyTYmuq6IqMY7ln8u2mR7XNL9OkTctSXqYxmj0t5BgzhWZXFx6M/sOH6ZZx45UiY8nPTGR6klJVE9JoVHdutw2cCCappl1jdUDCqX4ZRvqGbWurPwgFfP1dhNksU6ylc5Sj3q93PbppyxYv543H3yQ+ydNgoQECvRggn75eCiVZs2hoopa4oG5NggdiGR2uxk9YQLfrllDg+rVaVy9Ot2aNmVSr15+e1PTAvqh4OpV7l+4kIV//MHP06fTo3lz8/X2bjfea9eYOGcOSzdvZuETTzC6T59gJ5SytNiNBefOETtlyr96RhSla25u25YvH32UxLIy/tyzh0v5+XRt04Ztx47x6549/Pb337RLTmZO167mNav4VciTbefOcdvPP3MiP5+lY8cyqFWrADMduHCBOZs30yApiZbVq9O8alXilD+j5k/KJvVSRrF1rVjllFh3E2fO5M7evWlvRGOpyGEPMGDMGBY+9RRJRUXmEyuGAewtLmbxDz/w4sqVHLt8mUEZGTzXvTvNlZ7JzvaHzig9qHIQKmdX6az0dLP8tNJO/VXPqDAPq30KFelipZGcD6uuMXT5O/Pno0dGMnXqVHC5uJIXPCI3a9aL1K+fwbBhIyqsfyuJwdy01dewdkPJjYCOUhWI4hPpGeRBgcOHgydArSrVOu1SPknTQ5oEktVE5gmTzyRPkIiDPwGxIl8xeklgbgvcwWPb1ry2qs/q1s3qDRty5coVaqWkUD0hgeppadRITWXy8OEkKqDd4wnmXftPOsK6HsQkKLtF+siqL1a/VS2DUPuIcm6tqhsMvWpEZi/9/nvGTppEr179+OSTRZSUOMjKCu2TSgxWtamWjwxWUnPnoNB8gZTqjOEoffXNN4x76y1qJiTQOC2NFrVr88CoUbhSU02YSVl+Pgt//ZVJc+fySO/ezBo50t9A48b+Thjrbf5PP3H7a69x6+DBfPz664SrCxEU00gjyKi7ID+f2AED/quu0a77TYiSW1DAgOeeY0r79vx06BBn8/MJt9ko8wWNmXYpKbgkvKooJ4WG241D16kcHQ1AlK4HlbDbTRjwWufOZqby+UwGxckrVziXk0NaVBTVJccoxoTQO69ylr1ebkxPZ9+pU4yYPZuHhg6leYMGZJ48yYc//8xVj4d5kyfDlSsVucWor1FyMkunTuWZEyd4cc0apixZwsu//ML93bvTPS2NhrGx2KQhqF5WD1rBsNaFJv5XO4GaZqsAYqphSYGhPgsm6bRY46pY+rFg8WLuuftuIitXBowEbro/gVtaWi2qVUtj//4DVK/euEJVFpzI9F4izVaDT75XRwH8N0ibggtNXbbeZmcVjFZU+j/ZxlYgXYaNBv1Hm8nPUp8rdlPAYMBBUECf7KwEnkKhKbJDeXlMrVQJV0YGZwoKyCwp4czZs/x+4gRv/PEHx4cNI00YrljXnRy0IpAME5L9kBPwn4An6+RZ+Un+b/UWLYx6LieHk5cvkxAby0WbLQDkKF4L5QxIcipZKociN8MCc+20+xMCi6JpGmu++ILffvmFA8eOse7gQT5Zt463Jkzg7n79KCos5Ls//uCz339n/cGDVImOZuOTT5JYq5aZiYyGqsXFseHhh+n+xht0mTKFdbNn06BtWzMzSeYFf3TOv6VCOX3hAq8uX872/fspKytjw4kT/lxv+DclAGIiI8lQN6RagQPBMGFRUVSNi0Oz2YjQNH8kpdruA8Y0bsyY6+gGgCslJRy+eJHo8HAax8YSJi0Ba7uh/hp1Rfl8vD5iBENmz2Zav3706dgRT04OSzdtYvmmTSx8+WV/Ykbr+jHkRXylSsyYNo0HhgzhzWXLePvrr3nv66+ZNmoUA264gba1a6ODfzdCKgcJBskjtkYbgainUOvY6INd07A7NZzOYKSUv28ec/3W9W4tqg1DcB45fZrKyVWp17o1JV6zCrTZ7Eydej8fffQZ99//eEhVHnwFbzhT+SKkngkOzeaP3JT9kBXKPoZqyJCLUg6FMkTtmi+oJKw0tcplMFv4YpAqd5TJeBfAUSi2DVXUczK5OJpGCXY03Y5N02jUoAGL3nuPfw4f5syJE5y5cIG1W7bw9uLF2K5d4/YhQ8ygqKzcqlwlHa30sx5jlDSwOBQqGs9mfRauv5sVQnGUhYWx7cQJNE3DbbdTXL06EZWiQQzH6tvKKtT31m4I8Y//mIc/T5mKiNA0O7oznjc+/JCOS5ZwYP9+9u/bx+R332XN7t3Mv/deHJGRbNy9m8/Wr+frbdsoLi3l07vuokePHhWP1WsaWng4X9x9N5rNxriZM/Feu8Z4Fd0ilaTkOetG7L8lUP48eJCWU6bQp2lTPtm4kfLy8go+zeSGDc00tdpOhhFSJSGBqMhIwsLC/MfklKwBGicl8cnAgWZBIYRIqaaxJzMTn9dLsypV0NVvrTugoZAQ+d7j4Z2pUxnz2mt0adaM8X37Ehsezrpff+XtRYt4bPJkkipVgqKiisCupqFFRjK+Rw9Gt2nDoi1bmLFmDS3ee4/BTZsyvmFDOickUFnarQrBUONRhrSsV9qVUi5Y7VTrDRhSl8t6pD1ltStlP4z/yytVYuWGDaxesyZwpByC4mzkyAe4557RdOo0wiTiQk25HJp8WUWT6k7QN/fn1wOwOTVTI3JYavNcqgIryaTasqoS9Zz6vRWwUu9DZaOR7Vh9SCmKAqRWt2jquv8IOrYA2CYj1QLRys4YbN4SFn/6KVvXrePM6dNkZmWxc/duFq5cyc5du1g+d655XcliHbD1e1m8Xuyahua0haSBqs5Kg1DF6gqp5+VGkKp0+65dlJWVERamce5cHi6XI7CE5X6XVURLPS/5Ss23QysBt8eslOSEOp0MHzoUX2Qk+44d48DJk7z5ww8s2bSJFY8+SkaNGhzLyuLzdev4fPNmzl6+zOguXZj5yCPgcJg3eoyO3DZgABGRkUx86SVKPR7mz5zpt5+tzG8lyP9Q/p8ink68/DJLt2zhqZ9/pketWrx6881sPHGCOlWq8MiaNRSVlrJt5EiSVKJWXTfnfDCE1elLl5i4aRObz53jlR49eLhDB2w2w/iVGdWsxoius/fyZZ7+9luS4+OplZzM4awsrrrdvDZuHHWsQjAUTCyLEIjHL1/mk02bOHbhAomxsUy8+WbaNGxIWH5+aINL1WcxsPafP8+LP/zAij//pLSsjMpRUXSOj6dJZCQRkZFoMTFocXFoCQlEhIUR63QSl5pKfHo6bZo39yOBCvZU9csdAC2YOFZuNCu5Ln+qumi6JtqK0kBwfAatx98+mbfemkNCvMv0vE93kJcH33yzlMLCUm65ZVzga2uYpzXwxmoPWm1+ySryczltVr1jzeMuv5PAuKxPrhNF2lBFhoqqzRhdDyoGaxCbfD5g6KtkuNaQLKn5JPRuVZw5Of71cOxYcB6cTtwOBzUuXWJM1arMTUszazpJ0BARBqZOOp3B+E/1vSJQKAfhekpeEvQ/OLCmNWkQ7nhREdM/+og1O3YweMAAZr/5LlWqVA/ongMHgqSRZFGXD1lf1hsLZaR4QEFYUSxNw+t289iMGby5ZAmd69dnT2YmBUVF3FS/Pj2bNqVdRgZNmzalcmJiRaYW8dAXLl+mxxtvcPHqVX6bOZPGGRkVZYfBoAVlZcT26fPvTrRRlJ757eGHoaSEUZ9+isNu56Phw7mYn09ZeTlbTpxg/l9/8dOIEdxcvXqQj63bc243165e5YUdO5j9118MbNiQ+cOHE+dw+OdDRqFJHQOgaeSXl/Pwjz9y2e2mdY0aXC4qYu/p09zboQMDmjc3CydVz/XQbWHVFJSWsnDPHjYeOkRERAQDOnRgcPfuRECQj6x1WOQ/msZl4K3Fi3l/4UJy8/OJtNtp16gR7ZOScDocaJUq+V9OJ5rdjtNmI65qVeJSUmjatClxBr1KnPEmOej1EswFqMYn3vs0u9+otALm0nKTlcn+q8+Mne2FX32D213MyJHjA9OnpsbjgWvX3Dz++BTeemtxBbGjmrGKORUtKx0MVQK60CpvVbHo8go774I/5HHFCsCydMCk7DWh4eJz9Zy0Sg2hlZnjMFUjfNmQ4ljuvip9Uei1B+ljAFemJLnekqBSU30w+jv0mWfYd+oUhz75BK20tKKMD8Xzkhdkx+Q5Bjlu5Qm5XKaIZmuxOmAO3WfmP/mSKJLLxTWbjRfff583P/iA2rXr8NJLH9C06U2BKVCqWJpE6jOF2Vqnzap7rPrfasMoWn83fz4THniAtIQESkpLOZ6dTZ2qVRnWqRPtGzSgSePG1Kpf30wry5jKrl3jjrlz+WzDBj6ZPJlJPXqYZYT6DVAQEUHskCH/6hlRlK459Pbb3D53LrtOneLlYcNolZ7O/sxM9LIypi5dysMdOjC7e/egfWyNyMnJwVdSwjcHDzL1hx+oEh3N13fdRfNatfwNyXUFZqAGKI+MZM6GDazat48ODRuiRUSw5e+/6VC3Lk8PHeqPMgDzugrFYGCSO2VhYazes4evt26l0OOhTePG3DZoEAnR0eZLaFTdsogjM96yMr7ato1Xv/+ew+fOAdA4Pp4bIyNJLi5Gi431+zOGntHLyohzOIirW5daycnUUnl31eKQOlf1Xxpt0jZVz1v1jPUWIauekcZ9QgLXqldnwuQ7mTt3iWm4ah8Y4KGH+jNr1g8y77JJzMmIIjkdEiuT38vLhFQJtU8lTREletX0KB9HqlVp6qg2pWiQfbO6wFJGNW5sTmWqgiWt6SdVu7oePEpm6rjiIyMS2GQ/GHPg0+xBXeMprOj3uN189tNP3P722+xftIjGtWuH1sVy4yIUiKmKZZKULSBpYt0XkkvLWqQ/Lc3EAF2EvVQWGcXnny/m8ccfwOMpYvr0lxk69C5/InXMWRuUeJdxKSraSUWeuVxGZJmilbQRrYxkmfBjx48z4LHHOJubS7OUFDadOEGMrjO8fXs6NW9O0xYtaHbDDcFIJsnUwqFfsmwZ42bOZHiXLix8/nl/TtwQegank4LycmKbN/+vuub/CXjKf+EFYnSdS+fOkRAd7T8a5/WSfeECVT/6iCU338xIlThUMozTSWlYGD8eO8Ynf/3F6iNHSKpUibdHjiTHULwej4dqMTGMTE/3CyvlLarV63Jx+PJl7n3vPRbNmUNCfLz/87w8zvzzDxNfeYWFzz1Htbi4oBFnPXMoV6Qk2vV27FQ9VmcAzN6wXPGGwCx0u/lj1y42HjrE73v3cvTcOQqLiyktK8NXXk6YzUaJ14tXJOOaeMstfP7QQ2akAyA11XTMTi4e6c+r5gXZTUfXlAEqu+xyge3wQf+HBtdPe/ARHnjgfupXr2YO305I4CKJzJv3AdHRVenQYZD080LKB7VorWiv1WGQNqu0aRUgpeqwnpSw2vsK1LL6OmoqlR0gp8sKrqs6xUmXwNjS081An8otdepU8BSl3VMQ7Ix6KdApKwt+/dUcQytRMiWJjLxN5bm5BO85AQ2wAa8CrwH7gAQgBgivW9ffAau2Mm5SNMXfqnYzMsyfW68GtlrbVq9A9dc6gdb/5Wdut+mYaXlsLF9v3cp977yD2+Nh2bL11K/fGo/Hf7OvYk1NCyZJVInF1Rxaj0XKlxqmzS3mRfXJWGvq1qwv3n+fdz/5hFvatqVWSgpLfvmFRrVrUyU5mV1HjxIbG8sbL75InOqMwTjFJSV888sv/LZlCyWFhWz+5x+KS0vZfN991FZMJI89adr/HJb6f6UE9MycOcRERVFw9Sp2rxc9Ojog8Fp98AGN4uP5YuBA/48slkB55crsOnOGT37/ncVbtnCtuJgXevakXuPG7D95knOXL1PN5aJL7dp0q17dbG0ZfF5SXs7A117j2enTuaFx44AgKbl0iSkvvMCQG25gYLt2wY5L6xPMvG9VztdDEOTzVtRc/V6uaYOnyoqL2b97N7/v2sXvW7awa/durhUW4ikuxufzYbPZ8Pp8FIs8L9WrVuXQypVUcjigTh1KCF5HrDaxA0amXC8QXGhyXUtLWT1jvEo0/4UZDt0XtPRdLkqc8Xz77c8cPHiEKVPuJy25JBCNWYiDnBz4559M3ntvBk888XGgK+plTcvmdBrrW0R0qss6TMegrGtf6ngJSEkFpeYolKKwOnCKXtbzBmoAIupMgSyaFkzybrJd1G1R6rcJCVzMswdy54cSyYqVJChTqMVUwIlAOAHWTQFh2O/au5fWI0bw1ZNPMkZtKCYnBy3jUPJdKX6rM6DqlZsPyl7CYeqK6qfVGZDjkDLf5ik023tSzwlm+evAEaZPn8a2bVu57bbXGTToISBoV6jTPkYu+Qo3tqr2pP0kzVSh1irYNh5PMOdyTs5+HrhnGjVTUujdvTtfL19OVKVKNGzUiFPnzpF17hzPPPcS7Vs2MXlJ5eXlbN2+nSXffUf+5cscO3OGbf/8w+I772RkjRpB2SD4t6CwkNjhw//VM6IEdM38+VTSNPIKCqgsjNXnvvyS93fs4MKrr2IrKakI+LhcnCsp4fNNm/h0zRpOXLjAkBYtuL1/f7YeP861wkLsNhv1k5KY0Lo1WlGRv2GVvB9A03hu0SKiXS4euvPOwKmP8txcFixdyo6DB3n/2WcDz5pAYVWsfkyoTUj5PZiZV+oitXaUc2tpI/PIETbu28fve/awed8+rly9SlFxMWU+H2E2P6TtKSlBOZS2sDA2Dh9ORwmeqYUkj4HLBSTlrgxfl05PdnZFw0+9V/lOVVKi5GSu1GnJkCEDeeedVcqNCeBXyr15/vme3H33moB/INNpqJODVrWszHqouOlpDVa8nmp3u83pLKUale8leSQpPR7z3SvSxFa+ljRPFLCRnh78G0NBUB8a+vlinj1gpie6SoIDlfJVoiZKtyn9ZnXi1Hs1aMtxlZLSUuqMHcuNjRvz1ZgxfqLUqRPsaChdoookqNRHqi2nkxLjZjbpjkk/VNHJiuOAX9WpZqV4DUQfS0fUsHnOn8/lhReeYP78ebRrdzNPPfUT4eGaKduKwqDV/KllkZAAzZtDYoLP7PRKGlqZxbpeDd1csGMH97z/PudzcxnbujW7z5/n6LVr3NCxI4UREfzx524GDBhHz563mlJD2TUfp48f57NPP+Xkvn0U5Oezats2xnbuzGcTJ/plYnp6heCggqtXiW3c+P+3R+3IzwegSmKi6eNNmcaV7wkJwVT8TidFus66ggJWXrrE9//8w0W3m9bVqzOpaVOOXrrEiE8/RbPZSImNJVbXOXXlCjOB+cOHM7RJE3P4jq4zc8kS5s2aRUJiosnQqZ6YyKzJk3lz0SLemD69onOpFoksoQwmNWnSALTu3MnJlUXCybqOQ9fp3r073bt0Ydvff/Ok4cw2T0riTGYm3+zdy6jGjRlpt5Obm8uS3FweXruWO9u3p12rVmYUye0OHiXQdRAJ75S8CCQGxzxUrzd49aHDSGInfRiPx0g6KwCHUaNGsvDzz3jpzjuDq8JoPzypCr/9tpJZs76tsMavh8ir76RutBplVp9NvleOQ4xTR9dtgYsqTp2qOK2h9K10qmTAkQr4UYJaPqvqCsVGUnfaPQXEO3WyRdLbwHEO6dAohZiV5T+8LY1kFf4lOyrAI82YcfXXB9wFzAFeAp4FPEDVY8cCYKwJXbMe4LYOVDGC6qN0nKRklmCu5H8FYknHyzouOSkW4yhM0xjRsSM9O3bklocfZurUwfz66y40LdFkCKh5knaRIq8V61LVSywvRqGMqiJr0TQmjBnDhLZtWb11Kwt++YWV776LXrlyAP3ceeAAI6bfzQ9ffYlujPXYhQtMff55Rg0cyMxnn8WXl8fn333HjMWL6TZ3LtsmT6ZqlSoVmdOQp/8WS7l2DaKiiImLM01mwbVr7L18mTuaNfN/lpXlT8wZG8tfly6x8tQplh87xoHTp6lWuTKDW7TAnZvLK7/+SuHPPxNXqRK1k5JYtXs3Ly5fzn29evFWv36EWTzF737/nf49e3JD+/Ymg93u8fDx9On0mTGDAW3bBo7/XVdHQEVDyGpAqc8lqCQFoKxHfm48Fw40b9+e5u3bM27cOO64914SK1emT/v2FOfk8O369cTFxTGrXj0K8/M5FhFB17ffZvbbb/P8lCmQmormtJu6ZMpHIfuvDCCrgLf2U62xhAQ8biUGbf5wfON7zQXt2nXl/fffYtq0+4KGqK7jSE5G1+2sXPk53buPNHVFbrBIHyUQ5SMEuQ1DFluteet8yDGqOuT4JIhi7YySfZIO1rBjWa/xucoFGPy5DS923HmgaQ6cyY7gjZxiB9KVnGayc0OZMLpu/kLiZSabXc6frFB4Tq3S0+ndsyfPLVrEkHHj0JXMkg6F1SG20szacAjbK8gn5mpksY4hwKuyTvWA/Cu+a9y4Cb/8soknnniM9957hDp1GpOR0dMUyazrQT0jWUG9lyrOqnesfZRglVzCdeo04fdffuHCiROMnjaNT+fOpWb9+gGgtqDgCqNGjWHmzNnc0Ko+uN0UFxcz8e67qVm3Lvc8+CBVIiLYuHkzd77wAuPmzcM1fjw969at2HCoBCP/Fn8pLibc4QiCTppGeWkpmzIz6VCrFja7Hc6dC4DAmfn5/HDmDCuPH+fXAweIjIigT9Om3FitGr8eO8Z3L75IldhYoqOiADh18SKfNWjAt/feS5I01L1eLrnd7M/M5LtnnzUxUlhEBLf268emPXs4evo0dWvUMMsbKW8lr8vvrWvAuhasPCK/V3LH8l1as2aMa9SIMUOH8szcuRw+fZphDRoQW1zM+pMnOXjpEu+1a0fs/v3ker0MP3mSB375hW3t2mELCzOjLtJelJF9EpxQ/ZaOhPrfutmvaWbQQ4D3mqYRExPHxYuZ1KuXFnhMkeqff3aRnNzQhIfIjBhWEqnyn3wPqzwO5WbavCW4XPZAX66D91X4X5oMMieUoXJNe0PWlEBW4EXToE6dmOAlOMeOgctFYkYGKqVLhd19CeqoxtWcSj0ri677j3Zr+PWa1B+AXdN47M47uffFF3m4SxdaKETQOsfWXRZpi4Ty8Q3ZZ9d1vJr5YhL1M+mmyCGGMnGcTrGpo4q0Ozwe7AkJ1KgeyyeffMjQoUMYNKgvixY9wm23vRWYM1msoKHqgw+b+Zi5XLeqXdUPa8ibUVGMw8GCUaMoz81lzPffM6pNG+ZMmwYZGRRqMVy+XMbTTz/BkSPvc9dddwXU9qefvsvWrRu58877uX/qVE4eOEDeiy+yYMMGKleqxOtduxIm510R6X/0abT//oh8WjMJjNOXLvHaunV8uncvTWJiSFVbOm43s0tLef78eQrLyqjtcjG+aVNGt2rFwAUL+PPMGW5MTOTz3r0Z1Lw5sZpGXmkpT23ezPubN/P2H38wtE0b08yXlZWRk59PzerVgzMjNHmbjAyeWbDAbNTIRWJFD+RLoiGSeeXEqvH/J9qE+P5EXh7Pf/kl33/8MTHJyQGI+/a2bbnr449JCA+nv6Zxf7VqfFGlCvd//jlba9XyO0NWIWv01a7rOJ0O08aAtItl9JE/2agnIKVsBijmFWdfA0i3QY8bb7yRd99+i9W//Uav2rUDAqC8UiVe+fQZbrqpF1FRDhOfK94LcWolJHlCCXOrDaz+92HzCyuCOTxCGXxW/0HWregihbDwKU16XcpV1Q/1G8PXDe445/kflnPgU3kppFOj4llVpjmroS4dO4sA1YyXTY0FcAFPAY8DNwPNAF95OYX79/MPfnCqFVAJ8F26RJzaQZCJ5qTEVQSQN++pyDv1jAKmFIPJyZea7Xq7cnIyPEGeVP/HJifz3ccf06pvX6ZOHc5HH/2KxxNhkqlK18kmVXVyPq3k9/ODPw9H4MidkA02sfbLw8N549tv+eH99/2gk4Gm+jQ7tTM6cMsto/ji+5+ZOmqw/8jD9OksXLKEatWqBWj3REYGnZo04ebHH6fnl1/y+x13EKfaU8jptWv8W0IU4wpqNbnXrl3jo99+4/V167CFhdEtKSmw87n10iVGbNvGWbebOIeD3q1bM2vyZJauW8eC9eupGRvLk+3aMfaWW0ivXJkym42F+/Yx7ZNP+PC333iyb18SLdbFNxs3Mv+998z6wBA29ogIWteuzZ6TJ2mRllZRv6j3VkM/FLOqZ/6bjpFCLpTQA3w2G+MnT+almbNo3Li5P/z71CmGtm3Lt2vX8vjy5bzboAGJqak80LUrry1bxu033kj19PQAQON0+g1DkxCU/VW7yMbGktV4ND1vPKcZjrR/Ddv8iflzcoyh6HTvPpgZMx7j/afvxaZkgtPJxo27OXhwN2PHPmO6odeyvxOctlDzYO2X+itlrKSlLP9tw8mKkFg9DqfTr7dUrguhkOTmj9TXEtDwY//x2PMuBmWlx4Nd8+Fy2QJiVrKO2gyxeUtMSfA9eaFBG59mD+YbsXhKKoG6Ow/uf/At+vVrxqv79vF8s2aUl5dzOTeXYzk55LjdtExJIcVmC26WyLugZYPSMbEobI/HXuFxedwDKm4wVIhkkwOUcyXatLtc2B06r7zyKn/++TevvjqK2bP/xOutjccTPMIt934km0v2sfKhalKpNamjQvn4aBrvfPYZLzz9NDUbNfIfCTHqttniuf/+T5gx4xG+/HIxuh7P0y89xIixt3LTTf0DtBlYvz49evWiVvv2DP7qK9bdeSft1W6aMsgOHeLfcp0SHh6YkPLyclZt387LS5ey7fRpPhg8OLBZmH/+PH1WrGDruXNoNhs3NWrE+3ffTaTNxqS336ZSRARjGjbktq5daduwITa7ne15edz61lts+ftv1p08yWjl0xhl+caNjOnVK8g0yoAxnrm1Vy+WrlrF05Mm+X9g1TGqSD4P5edYHXOJXFzPp7F63KKeVz7/nJRatXh5xgw/ox87Rp9Tpzh58iS3f/01P+o6tXw+5qSl0XnfPr46dozx6li8EnJS6FmBC2msS6fCOl6LrgEqbuIaz95xxxO88MJU5s1bjKbFBfLW5uSc46uvHmXs2M8rkFQ2LfENWay/sb6sPo2ZnPbAlEs5EQq7kcORUyt9FqkblXlvBTmEKgnIqexsSE11+HMRqx9kZxNvTZgqB6COeahIKBXBdj17CEAPEQGjBqNpTJ02jQ8XL2bawoVs7daN8FOnKAwP5/jJk5wqKaFmWhoNq1XDVmBEaKk2JaBr3QAXwtjhcuH12gKq0WpLKPpYgSCli8D4a3UipTJX751ObLpO35tv4oUX3uSpp+6lfv2W1Ko1Hk0zR9Up9pfdV0skxqmbaWlFwXTL97If4vM/zp8nrXJlBt50UyCCzOOGoqJwRoyYxSOP9KJv39twu6M4dOhX/v77MK+++jVRUWFEJkPL9HQ2dOpE/+HDeXPVKhLtdh6rWTNIKDX3/6NPcx2pc51inFMsKylh8c6dTFm5kkqaxtMZGUyPjg6ATnvLynjy7FkmpqfzUIcOZMTFERYWRnlkJDZgXEYGC9u0AZeLY1euMPvQIT7ctYsir5dnR47k4d69oazMROTi0lKiZTJeaaUZ/9vDwysQ3PS8lVlUsVpv1t9Yn7EiKNZ2hJR5Z9kyXn30UWJkHJvXi23PHt7s1o2hX31F/+bNCY+OZk7fvnT7/HPumDeP2ZMmEZuYaF5Iqn+aht3lIjU1Hk1TuYT839t1Hc0VvB67guIx+qaih7xego6wIb3KysL4csECHn3gAT5YsIBOtWtzrbCQzceP02/M7QwZcodpsUgQx2r3ya4r8pSXl7N79+/8/vsKoJTWrTvQp88wdN0e0q73vzffVmTdxZW/CaWbZX9ksUbnSx1uHYt109uGj4vnz/PJ0qVs37uPSHsEgwYOZMCgETgcdj9YJs8FWoElqyUqBb9RwsLCsJWX48MPJpUAXvwg1HhgAXA/foAp2/heFRtQDz8o1bm0lL6HDlFDnaVRE6POrHm95u2enJzgOUR5zs16c46SylaBL8cnhWUo5lAWfno61erWZfHib7jllq589dU8dP1uU5WKRGqTTFZv9QWty1z9b7dqeDmpus7hggIaNW6MnpRkakDtgrdrN5oZM0YzatREfv9zEz379aNKUnV8GLs5Bt1u7NqVCd26sXTjRvp/+SVrH3sMh2Is1cF/S8UieGTP8eOMfPddjufkMK5ePR6rUYM6RUVw9SpXNY1pu3aRHB3NV2PH0rFRI7RKlUDXWbl+PUnR0Ry66y4igXy7nXlbt/Lepk3sz8xkWPfuzLzzThLDwszr0OsP+462GrCChxNiYii4erWiAFLPW2WuFEjSaLEKI6vBFEqgynYE//62aRMdb7iB5s2b+z/W7NhdLsjKYmjDhnyzYgXnIiJIcTp5cuBA5m/fztBXX2W+w0GjevXA6cSekID9v1mrsq9Wi9q6zr1eHE4fHt0WEHsFbn/kk6puyJA7+fnnz7hlwgQ6Nm2KU9fZcuAAlZNqMGvWV5SVhVXQI1YyaBoV5YrRn+PHj7Pwiy+4cOYMtdPSmNCvH4lSOAQqMIrVwbHKNms7MsRXdEjdrudPuGrHJoxyf4i++ei8xOolae3GQ8WFhXzz7bes2LaNkvJymjbvQL9+k3A6EwN1BLohQB+VoFyaD5KOJV4bYEdz2rEpea/rAZXlP3nRgNtue4SZ82ezau9ejl26RF5hoYlFaiYl0alGDTpWrUqnxo1pUKuWvz7Jw5L/pXelaSGdNeUcqgT4lmV4fUfcWuTGDkBCAqWldp5+ehF33NGajz66m5EjfzbZFjKyVgKccnmqOZJ7Laopaf9bTcrgMrKz88BBXpz9BoSZM1643WCzpVJQUMjx4x4iI0vZt+8IDz/8RqAevxp24KxdlyWffcaE22+nz6efsvGZZ2isFKQVGP63VCxeLxcvX+be+fNZunMnHVJSWNWtG70rVYLDhym7dInnjh9nz6VLLB49mt6tWhEbFwfAjwcPUl5eztqRI7khNRVvdDQ///UXH+/Zw4o//qBJRgar58/nliZN/NEAQvYUFBZS36gnlN+S4HRSkJ9fEYmwOpahjObr+TSyyPqsPo3UO6LeayUlbN27l58WLw7KP8OOrBkVxbj0dJZdvMjExERuTE1l+OXLPHD6NFGRkQytVIkwtYgl8GS9cEf1TQoqSRuJBMg+SqBKJIz1eqFu3Ubcc89L3HXXWOrWrUlG/Zrs+uswmZmXuP3294mJqR7Ya1Uks4p3q60pSVZSUsCKFV9y9uwB4uJiGTlyNC1bNr0edhcYYijVqqZLmtlyGkL5WFY3QgLmoUxdNRbp09i9XsqvXmXrwYN8Pns2F/LzqVGtGlOGD6dp69bmCpSPkJ0d/FwSTwlIJai8XvNJEJlgy/A1IoAPH32UTrffTqucHC653ZwrLUUWl8NBx+rV6VStGp2aNaN106boiYnBWxRVUfyjdgCMgTpd8RWyiDidxiaGq2IiciuNZSLx6xZ5asTpZOLEu/nzz128+uodvPfeIHQ92gQryGWo9EgQm7WhO2OCG+OSeWSx2pKqAcPuWHLqFNMHDQpGTBg61+OB/Pww6tUbwPr1a+nRYyBffvkBTz/9YcD28ruINpzOeL799lsyGjfm8eXLiU9NZcqgQWZg0tqv6xTtvz8SLHleL59s3Mi7W7dyMjeXkXXq8Enr1jivXePU8eN8eu0aX+fmsqOggDoxMbzbqxe6sBjDNI1bmzRhxpYtnCsqosxm4/eTJ4mJimJ81648efvtpKgryNUADCJFlZeTk5dHWVgY4TItlcE5165eDd5EYRVS6q9VcFsnSRHO6kCrfqhn5XtVv1UiGa8jJ0/SvGbNYH1CejmqVqVKUhKX6tWjSmIiXZ1O3r90iUd/+YUfDxzgnX79GNqxo19YS0lhtGO6702Mwa77dzPB+KvZQXcEb1kz+mLXdTTNhg8HttRU8Hrx6Q7ceRDvcvLOW2+Rd/Ys+/76C3t5OU+3bIkto6HMpVyBfNcjbdCgy+fFF8fTtGkLRo+eSkxMFH/8sYbbbuvJrFnv0rhxo5B+nBTQ15teRXqrvlLvJd6gPleyL9SOpFX4SP3tdsNPqzcw57UXeWjqVB575BGuFRezaMkSBg3qw6IvvyRR7QJbMxDKHRypcKUwxg/QSbDJCxQBZfjdlkLgMeB9IBroAKQYr3DgKHAI+B1YCkwHap05w5gLF7g1MZHaVar4dy0k8CRDXFVklgSe5DWaikBWI0ARVMb8qjEqHpbHm1R9Lhc+ZwyNGnUiI6MxBw8eoGFDs6+isDvZBWkcWHWClR9BhLDKPot+5peXU0XlxLL82C8SoiguLiMnBzZs+IPhw4cHjBa7Ub9Xc2BPT2d8v35czc9nyfbtrDpwgOHNmv179OG/FG9EBN/t3s07a9fy+8GD1Ktcmb8nT6Z+eDgFZ87w1alTfH3xIquzs/EBWx56iDa1a/t/bMjsCR068NH69TT8+GPaVK/Oir//psTrpfcNN/DR7Nm0b92aQIgDmORqrdRU9h45QrP69SvIczSNnUePMr5r19ACBsxCz8qAkt+txoISTnL7zYoUSNBE8O6Pq1dz99Sp2DyF/qPTltfgm25iTWEht2VkEON08v3jj3Pr22/T4tZbebRXL54eNQq9Vq2KCfJkv0MZ+1BRnlmEs8Qd8vLAo9tNoq5370mMHz+BY8f+oqysiDH3PEZERJzpyEMFHrE49y6XAZwYdCyvVImnn3mW06dPc+cdU6mRkMC+P//ktsceY0SvXkzs3ds8NkV/ieBYX3Iu5Zgl8GTMrRVj0XU7YEfXzDfTWVlEOjcAJCSQnZnJ+CeeYFj37nw6cyZRycn8uHEHDz88lilTnqJVq5tM0xOQvZY2JFuFGpKm2XA6HSY9q6q7666nKLp4EHtxMcOqVqVO3brUqVcPV40a/Ll3L5s3bmTztm0s+vNPylasIG7uXAb06MGkCRO4sVMn/7HUUI6zUaxR27ruf6OifG1AvCuYF8vpxB/JLQknt/5VRYZekUTwaX7+i4hw0b37aH78cX7gcaWqLflVK8yL1caRQJTV77IOWT3ndkNZWQSXL4fhdIaZ6lJOSESEi9OnC8nPP0Ljxh3IywvmHIEgONi2xwAy0tLYuH8/r69ezedTpgSVZagF9G8BYG9mJp9u2MDiP/5As9lYOnw4w2NjKTt/nvXHj/P15ct8d+YMF4uKeLlvX0Z16uT/oWEj3Vy3LtVcLm5eupTBzZrx29GjnM/Lo2n9+nw2Zw4TJkzw+yt+hjPNRbN69di8bx9devb0fyAXnK6z5eBBmtar5/9MCrvrMWEow/d6xrAs13OkQ+iALTt2cHPHjmZfRiTaG9G+Pbf+8AMTmzcHXee9SpWY/OuvDP/7b/plZ/NegwakValidoylcS/1SKj+hTpaZf1f1/2LxIiCyTNM1oyM1rzzzk+cOXMEt/s8jZsMITq6lslElyrOqtKtn6ly4sQaVq9+jUGD7qBnzyfweC6ydOk8vvyymPff/xBN0wJYmxyStGetckYNNdQ+tdXtlGaqVW6rOlRR5rcKEpIn2LT4eKZ9/DGxDgdPjRpFjdq1OZiZyRuffUb6r7/y7LRpZtBJNqp8Byl/Q6H16r08A6guFHM66ej1MqtzZ3YfOcKAyEjqJCVRx+UiLS6OfzSNLR4PmzMzeWXTJq6uW4c9PJzO9epx6/DhDOnblyirLy+OwOHxYMu7QkqyiwJ38AZyu9cfuKE7YwI0lqdjTPrYyhCIz0Vgifq/0GsnPx+GDJnG8uULuHz5BLreLCQWrMioZL95jh3YVR7IUE62VByyj8YE54eFUSUjw3ydoeCpmJgquN35eL1QUlJMVFQVU1WKT10uF21btiQ5JoYnFyxgcvfuhKlOAohcov+p/D9ppAZvv01pWRkjW7ZkadOmtLHb+fLQId7ev58/L19GDw+nd/36LGrRgn7166OXl1dYCc/360fzhg157ddf/z/23js8quJ7/H/t5mZzk2ySJQQIEHpAQDpSpIkUqUpXEQREEZUi9i5iARVEEcWGFZSiKBaKXRRBKSKKUgQEpAQIEEJINslm8/3j7uyeO3sXff+e338f5nn22d1bZs6cOXPanDmD1zRZeMstDOrUiSS1pSXU0/LQsaRqMF1A/+7defvjjxk7eLDdnRsI8PyKFYzo2dMu9SV2pXYgB0x/xslros92WWJdD41onMsVoSQ5KUNRJwkZGZQ2bAjp6eD3c3OXLvSvV49JK1cybNEi+m3axEtjx1KjWrXoeE8nJhzCt9vrpQSPDf0+n+Z8CgQgfPqPpRgHQmCWBNwY3lR8F3jpIk4ZCGJvUn3kRFHdlE4eNZFnzbqFceMe4OKL24XnatOm4xk2bDAjR17JkiWrME0zSp9UPEQPGHDiA9Jek89Iu039l986g5cffXXgxImTPPnkdD7/aBmJZWWQkEBqQgI3jR1L5zZtmDB+PO8/+6xdQMvVGCkNQp0rP3UKRX1uCDubCoFioBQ4G/rtDv2uhOVQygk9p/iZATQDmhBxVB0B/gTmlJTw+MGDXHLwIPfn53OZytmmbxhXHFhtsVHb7HRurM81ZQXpBqn6rUJkJRMMKQuq+vT0yhw6tJ+6dSPjLlcHJB1EjE87GLJIPSxqukpCDgRokJXF05s32w0lv7VtyOuFHTt2UKVKdQA8Hg+nTxeGX/eYRiSiwecjv7yc9Xv20LBqVa5o1QpcrojFHUvh+z9eWkydyj+5uXRs0oSld9/NQK+XbYcPc8WXX/L5339TUlZG+zp1mD56NEM7dKBmSkqU4t2hZUt+nTuXRxctYsfhwzwyahTX9u9PtTp1bM6V8lDiU5XYlUCA8SNGMPXFF1ny4ou4FI8N0e6WY8dISEqiSmamXabofDhWiSVDnL7l71jGYwiuQDCIx+22z10IG92eWrU4nZdnrQwGAlzcvDlbH3+cJ99/nxmrV7NkwwZeuekmunXqZLdspRNDLp3Kvoa2lYVvmVqeKNEVpVxFVvSsezk5Bj5fW0zT0l3k9jqpU+ldl6vDppmEkWE5Tt557U0SEhJ5550FgLVSmVWlCr0vvZQxkybRoF49Lu7Qwc7HpMIslWbVX22sg2G3SKS4vVZd/rxoka+aUc4TSbJCVw034fdbEWITHn+c5x99lEb16oWthb59e3PxxZcwdGh/Xn21BcnJvrCcNU0Ppi8dN8Gw7qk7QlSb6lvnpfKahY4k3lm2zFqoUJ4f04SMDGq1bMmQoUOhoICCs2fZsGUL323cyLvLlvH2hx9Sr25dJowdy6TrrrNOxNEdr4EAHn++FYkKYAqhL71lWNGqHtOEgoA9B4giElVU/XrCW8OwHcbk81Xm1KnDFBeX4vfH2878kPq8AkU/3UriT+pCMuDIabFM1VFW5uLgwXwyM1Ntdfn9UFgY5Nixg4CP0lIPeXmF4WhfiT6/H44fL+VAbi7B8nJuHzQocuO84+mcpctjj1GzUiUeGzqUGy68kLiTJ5nw1Vd88NdfHPf7qZ2ezqhu3RjWuTNtMjMtxiToN8Hn49e5c3lm+XKWrV/P4M6dGXvFFbTs3BlXpUqQnByeL+Xl5ZG8gED3Hj14culSbiwooJJmzxS4XCz8+mtWz54NaqFdt1eclJxYY63bNrFsFp3JarwxUF5u31mingltr/VkZhJYs8Y6Ni3Ur+X9+7N8xw4mbtpE4/XreeyCC5jcoAFxTt4SqSfqDErwHNt1yawMI3yKmT9gLb7rOfESEy8gJeUCW9dkMI6TfaOLZgXymTN/89VXzzNr1kpSUxNC4rIG/fu35r33FvL444/xyCPTYg6Hbpbq3dfZmoJXh13KDX345LqI8BHa1HO/H1577TVaXHght/TqZTG6xEQuvOAC3nj4Ye6aNYsVK1fSr1Uru0dGIU6lElGyQTWsj6NipiLFhu3Ubr+fu8vLITWV0qNHiT97Fk6cAK+XLK+XbhkZULMmZfXr83swyA/FxXxw+DAjH32UtGee4Zru3XnkxhupXKlSpGNgzxZfUGDlewXI9YcHwIr9tWRMaqZJoT+yyKGibm0DqAWS6D4JMjIoCJlOVataNlZ+/gG83ubhKpSIkgvnCj3qGVWdz+fG46QM6df0/4ZBs3r1+PG337i8R4/wfa83KZw25tixH+nTZyw+HwSDgSjflUKh3w85x4/z886dPDVmDK6ysshJHOCcO9eh/E8SaXKfPky+/HKqhhpb++efjFqzht4NGrC4Tx/6de6MV6y0hSGH8IC4TZPBbdsy+OqrI/dDz5T6/cxbuZLP1q3D9Hjwl5TQ9IILuPumm8hs1IhJ06YxctRoVq9dS3HolIgL6tal4MwZDJeLe0eOjGisOjOD6Jw2OtPSB1N3RunfTtqHFjqTUbEiew8epG5WVmQSmCa0b08gEGDv2bNkduoE+aETeTIyqJGdzfILLmD5unVM+OQTBr/yChufesrOheTE13Ed6qfH5yNguG23PTpn0rrr9UKqNxjeKuD3h0LxDQ+GaeV80B0BEiyloEkyUM/l5OwhKSkh7HSSaKtatRKjRo1k9eqlDBw4yjYcsWSmnKxC7tic8RKWWIq+rmBakzxa6Mj2P/nkLYYPn8yZsoqUe62JZBiWg+fC+vVJS0zkr927qZ+VFTn6Tkb7KMQIgFzx8cQL5cEtwkzLsSKfyohsuSsLfVyAF8KM0xDfQDhSqgpQGxgAbAW+AHrt2cOVe/bwMNbpeOo9M/TtEluRSouKKAm1T2lpOOF5IARPUMCQBLhCzDfMWdWgZWfbTzUJOeNOFlgKw4cfruCHH77kiitmsHu3nZepkwNDu4jCsk6NtcqfrsZWreyoaZkkVw2UY01biU/PzSW9rIyfP/iAdqGVO0xrj3idtGSmfvwYD9x3B3VrB7n6yst5ff58eva8mEDAMio9RtAyvHNyeGHRIvbn5tIuO5sf9u6le7NmuHbvtto7n+PJsXRs0YI7x4yhdf36kJdH/t9/M3DOHBITEnhqzBiGdO1Kjbp17V5ksPNf06RZixZ80LOndU+ba6s//5yXFi+mLHTKaKrXy23jxtGuQwca1a5NjyNH6TlqFL6UFIpLSqiWmUlmRgbr1q1jyezZkaXEWKu0Ch4nOaM/I7+dHFk6j5fKXai+LpdcwopvvuGWESPssqFhQwBWvvsud9xyC1StGvaImLVr80jdulzdrx83vvwyvaZP5+9PPyXLyVqWnnyNGRf6I1vpVLFCsz22pNH6wrY6XUg6o5wUb/23HGqlQMvnysvLWbRoEUuWfCby8Xjw+tJxmybTp07lnkcf5eLLLovyIoS3poWVfWv7twEQyldFgHAuHin2LUXebeurGlJFHrqccbKxZH937NhJiq8K9br3ASMYzg8FUKlSIrfeOoFVq95hzJjJDtFhluyXskwWuc08Fo5ldGlOjhuvt66FMiznWt4+Qm2k4vOlYlSEJl3rk93+Sq65/il+/vkHPvrode58+GHe++gj3nzoIZpUrWpHgrS6dEtLKgrymp3Y7BZW6HfQtJyQeTnqssfmiykoOMKCBTOoW7cTBw4Y7N8f0R283oicKSiATZsi+JKHcOlFjrUSLxLPsrumCd27j+all2Zz3XWP2MbA74fNmxfTuHEPgkE3Vaq04Lff7iYYDJKT47Y5oLxe+Pbbjzhw9CgVUlLYcPAg2bVrW9u6Dx6MHvjzJVzeuf9+hnfqhHHmDOTmcu2HH/LxX39xc5cuDOvcmdZNm1qndzuVkC6XYZrMaNWKGep6IGDZIXl5/LVrF0/Pm8eBQ4fweDyUlpRwzZAhXDtiBO7ERGa+8ApXXD+OWlnVOHv2LF6vl0bZ2Xz/44888eCD1nZ/SbQ6Ack25X/phXCaQ4rIdCLW35EGtWHQ9pJLeH3pUiZcd53d3mjRAlq0YMVnn9G5f3+46KIwU3f5/Qxq2ZLubdvywBdfcPu2baTVq8dYtT1KMkWZQwGihYLM56Puq0nntfJwyuwWYOmE0mbRWUwsv5e+aK7bCgDr17/M+PEPk56eYBPbhgGjhw2i9xVXEPTn4/GmRjmsIw6FyH/5jOqqVFENI3IwopKb+lBLuSTtMfmMdD6BJTM/++xjvly21O4JCzGw+/v3Z+yzz9KvWrUI/ah8tbojRHq0JFIVMuVgyFMKVb0i5Uh5ebkVUaPqD7UX5/fTIhCghWEwyedjd//+vHXsGC9/9RXvf/01LwwaxJVNmuA6ezbaEJDOITnwMq+yaeVCTjIM8FvXwnl7vdYpeWEcK/K1QCYjI90KGgh1Kz09yOTJt+H1plGxYnNbAEVmprUWGNpwFD7kQk9ur+g53QjEdjKpwVdKj9Apx7RsydVz59IrMxNPaBeL2+ulms9HSc0CgsHdDBvWHMOAhg1rEwj8SXZ2YxsdVssoIXfPHvbs3UswGCT3xAkOHj1KVnm55TxUk+Y/FOPfH4mU+3r2JDU+nh3bt7Ng0yZe27SJi2vW5NMbbiAuKSmaumN9wq1HiC0AjJw2jT5durDq5ZetlTHDYMPWrVxz2228s3gx7oISjh8/RoN69cg5epSS4mJ++e03Tp8+zeN3322tWusua71tfSlLwiGJUT6j90nXEtXoyGdC9yddeSX3z53Lu9OnEyf77vUy+/nnuXLwYNypqVAisvOE9qUObNuW0rg4rnznHfbm5lJXMmrVFx0+AYNSUiW4HtM+5G6sZN3yP35rG14Qt822kwZCLKerjirph9u27Uc6duwdZb+oYejVqx8PPvgg/fuPsnVHr0/yCn1IFAzS9pL8RL2nGwcRAyiXL798hoMHNxEXZxIIFNOqVX/6978Z04wPy8UdOzZz1VXjwow9DGuooa4dO/LL779bjicnmpdAK0kg/2M5bjxnzuDBcu4YEN5eaYSuxQEJWNFQiGfUx43lFFLPu0PPdwG6Y23DexFYhZULqhXQFugKpAPu8nKM0tKwE0ydqqc2i5QA/tBHOp4AkiVDVJFemZkRp5NwPJVgbX9Yt+4P7rlnBA0aXE7Vqnexc6ddmEqmLYukDzUehYUnWLDgZbZuXUtSkoHP5+WmMaPp2qVL5EUn50AgwDNjxnDlrFkM3b2bET16kOTzsX3vXqa/+SYXd+hAi+xsCARo3rw5uUeP8vVHy+jZp08IWKve5cuXUy0jg1cmTmTuJ5/Q89FHqerz0btWLR7p2BGfk+VyvvDKLbeQmpbGiV27WPLtt7z2zTecPHuW32fOpHatWvbJrC/16XLGwXEyb+FCtu3cyVvPPkuF0Orp4YMHmTJtGiOLiug3eChbtvxKtWrVIBjEX1zM7r//ZueuXbRp2pQK1atbYTk6A9M1S13W6AzLydvgBL+UUzrNhN4ZdMUV9Lr8cgb16EHV6tUjMsDwsG7dJk7ln+WCli2jt3kWFNCwRQs+mTmTygMH8tG6dUxq3ToadzJSReNbajFClwfqW37kPYkqiTLJl+VzuviWixtSpuTlnSQ9vSqFhR7U7vuIMp9EVoMGnC4sDEdqOckxCa9OYnJIdRVCylMponW1pLi4jGXLXufrr5cRH++hsLCY+vWbcMstd3LBBdXC9W3dupmOHbta73vti0gAl156KbfeOpmbbnJWr+R/2SfJR2X/pbNMHwttTS3Mjw0jfAq3jTz9fjd16lzC7bdfwuDBE5k+/TpaDh1K22bNaH/hhVzcqBHtW7Qgq0qViJWoAIo1D/Rr0umbkUGJEdoqWAD+XOcxNE04fbqAe+4ZRlkZdO++lCNHXLZdGapqneacfDhudxnbti3m11+XAOW43eVccskgunS5lvh4e9S5rpfXrDmYX35Zz8yZtzN06O2kpGRx6tQJPv/8Nf7661dGjVoQUgfj6NJlBK++eh8TJjyJ3+8K9ys/fx+vv/4Ky154gZcWLODGWbOYMncuXRo25PYOHWhbq1Y00OcLAAPq1yf4zz98vHEj7/z8Mx/+/jtvjxrFqEsusZBbVmZFKYPzFlx9oV0wq6179nDntGnMffJJGoa2zBWdOcPcN99kygMP8PQzc/njj10kJSWTXqECZwoKOHHiBOtOnqQ8GKRpkybW9jxFjHJuyLb0Cexkb+kMWZeZ+jNSlokJn5GZSWblyqz+4Qd6d+4cuW+anD57lrkLFvD+ggXWQrpUtA2DVL+fucOGse3sWZb89Rdj+/e3y3F9IUm2HfHsi/x5YBhJeHzWeyrSSZc1TsMk+bfujNJFuHxeguP3wz///EHjxk86sqqkxETatW3LH3/+Scu27R1tEFl0B5HsvoyeVemC1X+V31u3Z9Rn9+41/PDDXAKBIqCcxMRUbrjhVnr3vjjcxtmz+VSrlomhG1ShyioEApT5/ZGcsOq3LkiU81DyZdUxSzhHAFVOKNlRUeLVPeUhUx2X3vzQJzs+nsdbt2Zy+/ZM/PJLrl64kEcqVqRDtWq0z8qifXY2jevWJc7jcdYXVZ9UUfDK0NXQYoZyDMmUM5KMpV+0vLycRx+dyueff8Idd3xKXFxNiopii7ZYRT2z/s8NzHv1VU6dPk2gpIS2DRtyy6BBZGpb6PT5XjExkSmXXcaQ557jgZEjade6NYHSUj7+7DPmLV3K62+/He7qHXfczp23T2TJu++SlpYWEvR+ik+c4JbJk3l23DjWbNzIi59/zsxPPqFVtWqMqFWLyc2agZaTK1Y5R1ejy0NLl7J+3z42HjiAzzS5qnlzHurbl7jU1OjZrQbTaZDlM6GyZPVqOrZpw5hhw2yMsW3z5sybNo0HHniA4pISZj/1FM0aNYqMVEEBxadPc/mNN9Kqfn0qJSTYiQmiJ4HyFsiVXVmcmLNeJLXFug+0btSIQV270u/WW7n5mmto2aQJB06c4NUlS6hWpQp33XabZcQojiMnm2nS55JLMBcv5v2NG7mnRYvovDNOHp/Qt1SiFC8pCbgxDE/YwUQggMcwMEyLaVsRG1Yd7kCJFQFjemx8xUkJk8dzSlTLYTeMePz+yB5QWY/Fx4opL4+PacfpxUl2xiI36YSSKxnSOZyff5TXXhtO166P0KPHdMrKXLhcpezc+S5z5lzDgw8uwus1Qn1L4syZPAKBFFs/DMONx+vldFERNVNTo5cxJLCq6Ev8QuN1+f2YpaVRicVlcUN4i51y/qhoJJkjI6hddwGXAS2BlcAO4A3g+dD9bsAIrFPzTK2NgPg+geX4Cobq9mI5n5I1AzXseJKxpSHCLHcVMXPmLObPfwKvtx516rzDnj1uGx2pnYC7d9sXWtS4yipPnPiH2bNHM378PYwffx/p6W5c5Yd4/JFH2LBhA3dPmRJBoANhpyUk8Mn997N0/XpGPPkkgfJysipX5s5hw2jeoYNtzs1/6iluffBB3njnHfr37EkZ8OmXX1IlJYWXHnyQs6dO8c22bdTMzOTEyZO8/dtvLN62jR7nDQLHcv/8+Rw6cYIVmzYRLC+nd6tWzJk4kdr16kUYi5xTOqNRv8HuLDEMjp48yeoffuDjhQtxif3o1TIzWThnDn1Gj+ZQTg4N6tflNpXTQBW/n4efeIJln3zC0O7dI+04yTmwGwz6nJcWrRNvcFIAnUqIXj2GwStz5jBi8mQGXXEF/fr2xR8I8N77H7Jlyy/MnfsOhX43SUoplEpiRgY+oHvnzrz/9dfc8sijFBdHJ/X2+ASfCsFYEnDb9MBzgS3Rohv56ro0BFR9UlQrnu1koyidtKDA4MyZYltUSGj4QkOSRGm5i/wCt+PQSJkgSUxXFPVcc5bodtvakvJNvR8MBnnkkeupX78NU6d+gseTAMCePRuYMmUkzz77JtnZFm9ITEzixImcKJ1SfU6cOI03OcmGY/XxUBJZjjVCW9QMjyPOVdFtAvmc0zhKtU+Su4QTIDOzLfPn/8IPP7zBpk3fs+z775m9wNoG2fzCC7nx0ksZ0bo1acpTqOSFqkQaKSKqUf4uMSJGgW6o+XyQZFiLex+tWMWkSZM4diyXAQO+5syZTNs4qv5L+lH3tSYJBgN88skoLrigHePGLSIuLhmPp4ht2xbyzDNXcccdizGMBNuY2encRY8eMzl06AdeffUBzpw5iWEk0qHDSFq1uoszZ+I4c8aCo0OHsaxf/yJTpvSmW7cBVKyYwa+//khOzl5eeeVNstO9bNy+ncLSUoxgkO+3buWLrVvJrliR88W5THntNT759VdOFBbSompV5g0ZwrVdutgnkq7U6sot2JlViPDunzGDRa+9RkZaWpiAEuPjufvGG7ntiSf4+ONlLFnyDqtWrcTjL4zUVVDAurVruf2BB5j/8MN2j4iTwiv1LCf4dGYm31dF6p5ORdTxzMyZjLnhBr768Ueuvfpq0ipU4Ju1a1mwZAlPT5+Or1oWuA/bo1z8/vA27yFdu3LbO++Qm5JChlokkfCp/si+hJwPQTOJvFw7OgKGZdMYRA+bmsu6aq2nBpFNKv4ofRvKZFTPKHDLy6GkJIi1BGyVSJtuCkuDEJ8Ufj98yilYMBv2esNb1AMB60QzTdtX/XIHSvAYBj5fJFeR0o8lP//pp3fYvv1b+vSZh89XOdTfw7z//h2Ulx9h+PDBGAYkJydw9kx+BHiFGGEslajIA4Uk2aDk0boyLp068lRs3YiUNO31WraC7qlXdUnBLqKYKvt8LB0zhlU7dvDJjh389PffvLVtG8Hycip7vVx30UXckJ1Ntkrjk5ERERB6Lhe1OB5yeCmnk8qpvnu3zSdl2wnqDpSwfc/f3Hjjzaxd+y2DBj1Oenr/sO6iZKby3yn6UM3rW+8MAxYufIW/96zjienTyaqbjevMadZ89BEjHniAl+6/nwbKnpDEL/Dbr0ULGtety8vffcfjS5fiMgwua9+ej555hrQKFSgJ0XWTxtlMu/NOBg8cSKeWLWlSuzZ/HzrE5z/8wO0DBtCveXO8wSC/HThAhYQENu7Zw23r1jF90yZmt2rFfymu8vLy8n97KD8/n7S0NGqkptKialVGN21KvxYtMCtUsLtp5d5bhQDdc+6kMQYCDJgyhfdmzybZ44lgXoxEr5tuolJGBgvnz49IbbXdIS+PlT/8wO9//cU911xjqzfcrvqW15w0Xf2a7gbXBY36L8P4HDSxEwUFLPjiC3YfPEiljAxGDhlCvXr1IlxHxofKfQfANdOns2jNGjq3aMHIwYO5qm9f0hIT7e9BpP3QRMoPJNmIWjmMIcTgpOYcmliqW26Cdu3NtCKgQgcX2mhahaKrYVNzVW2LUjzp+PHjzJhxM88//0F46ORwvP7609Sv34QuXfpKXhKeQzJkXaJZyGvHMEXFQyRPVXWqSPRAAObPH0ebNhOoWLGFTdn0+WDjxnn4fIkMG3YdgQBs3vw5+/dv5u6774/SQRISyhl4eS+WvfQSSfHxFkD79lmcat8+2LbNnnRcWla6BpybS2lREX6gACuPUyGWEyov9NsP4XxQASxRFQckEskVZYQ+LiIiUkUnRVLdWs8eBXYBH2HlhKqCFSFVAev0vITQe/Gh/x6s5Obpoe+KQFWgYqVKkTjS2rWtLXbZ2ZFT9ULE8u1PP3HTpMns3r2Hxo3vwuN5kPLyJFs4cCAQkVkQCTeWMkrkk2TevKFMnPg0rVrVBaxnamaWUH7qFGNvu41bx4yhRWgbki38V1rFalAVEUovlxSuoXE8lJPDmvXrcRsGl3btSpXERIKFhfSfOJHHbr7Z2jqWk8Pe+fO5ZeNGPg8ltj59+jSpqQ5Hzf4fK0rO1K1UiYpeLyM6dGB4+/ZUbtzYplyEJ7/Om51CMrTPM6+9RuMGDejTvbvdmgyN/bxFi3hlwQI2fvcdnmAwSls9k5PD8Dvu4LMXX4zIAF050mWEk3WvvnUrXWdcupxRfVf0JxkiUFpayserV/P9jz8S7/HQ74qBdOx4CadPu8JzxWOEZrySNaGQ0HcXL2bk9ddTp05dBg8eyeDBo8jOrhcGUy2q6Q6YffvseUXVnNWHRYo3BbYcQqk0SxVBLobn5EQcAjJwUqkLqo6HH+7PY48tonr1FBsaTRP+/nsbb701jyeemGcbLvUtdydJ9UYqi8q5Id+TfVWr0LpxYxiwZs1y/vprO0OH3mcjU68XzpzZw8svPxg69huKi89y/fVDWbVqJXGu8vBWQEW6M2c+SocOHbjkkh62A3ySzGAESCHIgr502+Gl0jBTsMhUfzrJSkNJwSy3NktZLEWZGh8VfWyacPLkEbZsWceqVe/yxRef4ImLY2CTJlRPTSUxJYXEjAzMuDgS3W5SDYMqXi9VkpOpkpBApQoVCCeoCDH+fLMyOTl220bpIBkZcHD7H0y+6y4+XrWKzp370Lz5CxQX17U5qnJzrfHPzYXy8iCJiW4b7GrtROF5586X8PniGDDgxjCeVJsrV77PoUN/MWzY/Y47TNRinQoC1lVjmW5RrtukpRWydeuX+P1nuOCCprRp0xyvF559+hGSTZMpY8fCwYOc/flnHn/7bZ7++WeCnJczsoRlTYUKDG7QgGubNKGZOlxBMTqpgEprUF0Hu64vJvuOfft44e23eWHGDPsKWej+/uPHuXz0aF596SXat24dMegVIywoYOiUKbx8zz1kpKRE6naSNVL/1+0bJ8eTmpiyP5LhSZ1UXZP6T6i+jZs388FHH1FYXMxFrVtz5ZAhJKakEDQ8uAvyI3Wq7VShug4fP072gAHEGwbDevfm2iFD6NKqlbWlUTqqdJmfkUG+3xM+D0ff0eXzWXaLys2jO88lj1LySp+XavFCyTQ1xCovs8waUVAAixY9RaNGTendu69EDT4fxMeXcdVVl/Hxx18QFxeH1xs6FU2MV2HAY5NN4VPTQsAUkmTjw9KXo4ZE3ZdnA/n9cPp0Ho8/Ppwrr1xBYqLbRsYXXVTK3Xf3ZvnyT8lItwAfNmwYc2+/nUxlWypayctj88qVLPz5Z57t3DlCR7t3R5itEux5efYFZvWsMviUQSoVe4V43VOoBkPSq+ooRJxGal+0+i8NMr+fgkCATQcPsnzLFt758UdOFRXRzeuleVoaiRUqkJiZSWJ6OoleL8mmSaXUVKqkp1OlShWqVqpEXPXqkJ3NSb/d8bRtW4TfKzGUkQGNLjjLjMcf56nZs6lSpQZDh76I19srjAa52UPtMpSyEyLoU135+++9zJ59FytXfkBxsQu/H9J9Qdi9myM7dnDD9OmsmD492p+g65cKb3LiKOdAVpZtzMvPnGHt2rXs27OHzAoVuLRhQ4zSUjbs3s1TH3/Me3ffTcKJE5Rv3MjiNWu49e+/ORkIUMa/yxoj5h2Hsm3YMKsynw9SUuxuPsmodA99LINAIQQrJC05KcnuBFJ1BAJ43G6aNGxoZ0wCoZe2bMlby5dH3rH1UmjAskg3uGTosfohf2vwR9WreR0rer1MueaafzWMnOB7/YYb6Nu8OQvWr+fmRx7hoTlzePWJJxjQp0+040zApJRINTkkuIYhTvYK9VffdmcTXoDbX4jXmxQFrg6200QCSEmpRNWqNVm58l2uuWZEGO2GATt3/s6PP37N0KF32OSoql91U648aGiyKeTyGXVPt+2k/VpcXEhBQQ716rUI31M8EuCSS65j3rwr6dPHcjw1bdqTjz9+gc2b19K9e6dw3eXl5cyc+Rg9evUmqVKl6P22Oi3pSFMdF8+rKCX5CWDf8qYimFSNcQ731dY7GQUlh8iF5VSqi7Xt7iosx9P7wGaspOYloW/1kSUeeJvQFj2JfNWnkKJTdvo0G/fvZ8Uvv/DpN9+xdesWGjbsRJcuyzh69EKOH4/wRjluipZ1Q0d3dh44sJ/ERC81a9a10QCGgSslhbvvuYe5zz3HvIcecp53SuBJAtf5GNgtK8OgelYW1wwbhiSgr376iY4tW9K6ZcswMdX1+1mVnc3rNWowbuNGzhd72TJlCqnSmyDljLRi9TkVuqe2T3lUkmIIP3vgn38YpLZEquti/GtXq4arvByPxxOx/ISSlGKakQSxsl1Z9Gs6o5R8V3pgdMeTZIBORTN2CASINwyGDhrE0GHDAOtUU913FcRtLSxodHzNgAFUT03lnZWreOWVZ3nuuScYP/5+Ro16iLKyeJuzX6JO6ZwKVbKLEkynqHw1heTCglK4nMSjLnv0dtS07ddvEs89N5knn5yPacaFny8oOMPUqXfz0EPPRQXQ6HxG6q+KJSh06TmpZJ8g4niSurf6XrVqIXff/VrYiFHOO9OEqlXrUVYW5NixXNLTMzCMZLp2vZQnH5vG/bfdhjsxESN0Yu26dT+wefMmbr31QZvubhg4IywEnPqpxsxp/UOufwkSsY2vVJnUf6naSHtbJ+eCAnC7q9K8+RCaNx/CE08cYdWyF/lo2TI2Hz1KUWmp9fH7KSouJhiUyyMw/+qruV7lbws16qRGHTy4l48/XsGaNStYv/5bfL4Mpk17n1q1hrBzpwuVvicQiOTXsJxOZ4E4AgEz3G8pZxQe9u5dzs03fxo1bQMBuOiiIXz2WU+GDr0PS7pGcKuMF4kf6di0aNXOHtS7Pl8SnToNsE1fl+ssP65fz8qPPgq/mFxezozGjelfqxadli7lfIkuW668ktT0dPvgSYLVlU19oOXkF+Wff/7hAhWhqyaDYMK1qlbl2LFjtGvWLMJ0pFwLBOjQrBm/797NpW3aROniUYqsgk3CqcOsv6f3R/2XE0m2q91r07w5bdS27Fg2F0S8tiEcVKtUid/eeIN3Pv+chd98w+vLltG3Z0/mv/ACVTMzI5PQQW8uKLDmjdzOZO+WOyrtkOyKfF7yS6eDhiVKJFlINPTtez1PPnklHTu2wufLDLeZkFDO9OlT6ddvOEVFcZH5LegkaFg5EFWd4Wgo0WeVa1DaU07qgM47DAO++moxHTteT6VK7nCevwivj2fo0BGsWPERo4dbu4zumTCBG++7j0V33kmysIGPHT7MPZ9/zhtdu9r1KTVOIWFRFlogTzp+HJekSYUw/TQ8J7+AYnTqXenYVW2qyALTjCTik2k8VF0hxHgNg67Z2XTt2pUZo0ez7KuvePuTT1h16hRFeXn49++nKBCgqLSUUg25g7p148MZMyAQCMtMJTcVfy4ogGPH8vjll8/5/fcV/PLLKgoKTnPFFffQtu39nDiRSEGB3a+jR+FJHUShRskcgI8/ns/o0XdSXOwKo6nQ7ybJNKmanU12Vha/791L08aN7faKnMNyUuhEDvZINKz8vp3btKFzjRq2sZm1fDnzbriBhJQUOHECV1kZwwMBeqWlcX0wyPJTp6IJVCvGvz4hS0JCtBHgNCOdOqWK06wJBHCVl3O2sJBkt9vRe3Dy1CnKVeJwNdqqjUCA0ydOkJyQYOcwOjN1gkd3OumMNhZTl32V3yJSCbBrbvJd6dySjF56j0N9TPR6GdmxIyMHDOBgWRm3zJjBwJtuYt6jjzKwbVteX7SIX3buxJuczLDLLqPv5ZcT5/WistZLj7neFbxeSoxQqL6uzBsG+HyUBNwQsBKTK0VZKbpq4qioeGkXSmapun3bbU8zZ86dTJjwMX36DCExMYlvvlnFkSM5PPTQQkpL4ygtjR4qJ56kM2MZ0SQntPqoeSX1BeXEKC7OpXLlGuH7SrCp0MjU1EQUaVp9d/PYY+8xb94U3n77ebp06Up+fgHffvsVffv246abJkNiuV1jVMCrynVak6s84l5cfLyVZwnLoWSEPnJLHUS20yGeIXTNI95RxcRKAq6KioRSu3Q9QPvQ5wygsxMDK7k5WM6p57Gio5KI5HmSc+Pn7dt58e23WbVlC7mnTlGhQgXatu1Nq1b3U1Q0mJ9/dttCoMF++IU25ZFNSLv9+PHd1K7dPIoVFPrdQBLV6zTnH6X1a3vFww9L7UJVrjKX66sqkrHLa4bBxz/8wO3XXmtHXEEBrpwcrkxMZBznS1RJSIgO19YnPETzdcP5pDFZalSpwq69e6kbytGl1/X3vn243aE6dIMhRA+lMr+TelcW+by6pxsoTrJSGgBOdcvndTkj74vn3IaBYbht5GpbVRUeFJfXS9dWreh6xRU89tgLPPPM08yd+zi//fYL06d/wIcfLmXNmpWUlZXRqdMlDBt2LQkJaVGgq7mqrkkFTaJATjsVyaTYn77FScGuO3KcUAbQunUvSktPcuONvejXbzBVq9Zmz57f+O67L7jllseoVKlBuD2JZokSOWQy9F06ZZT64CSLdEVStVNWVkJqagWbrJSkXrduNseOHSEpKQPDgFtvvYvXXpxJr4ED6dmtG8np6Xz19Xekpqbx4ovvUVgYSSIetaouEWQYNvxLNUNXy6TY0g03J/XlXNNU8m99zFTdeXlV6dr3cW6Y/DiVM4I2hbm8vJx/jpby++9H+euvXdx2W188+kpaIAChegsLj/HWW0+zbt0K/vlnB4YRT6NGXRg8+CkaNRqLYaSyf78dPWpcDx6E8vIzWEsspg1fEl71jstlZVPU9XzLPnJjmhUoLy/G67UQJuWZdLqqBRWpBsoj3qWaKNOOqHa//fZ7evftawcyVFHT/2AI/J8tycnR+Vlj8Vz1XycI+TtEGFmVKvHJ119HrkvPbSDAgUOHSPB4KMzPJzktza6kh57PO3WKZHWCnIJPL7o8/LcS65lY1/XJL6/FKG75jPwoJmCaZGdl8ej48Uy7/34+/vVXbrr1Vpp17Mifmzbx55YtLFy4kNy8PC6oV49xI0ZQ74ILIBDAND3heab58sK8St9upsBRz0j7RfIsyaul/+JcNk3Fihncc8887r33Wtq2bUebNhdz/PgxPv30fdq378mwYTeE+V7ljGAEGNO0oQbA8Lpt2kv4dD7hfALr8CfrooFhWPjwGFbQgOQNZ87sp3r1TlHyRfGQCy9syMaNa8Iduuiii7hzyBAGPvoorevUoU5GBtv27WPP4cPM6dWLmunp0TtzZLhsaOxd8iR3hSyZ40TSmy48JF2pdyA64kAacsrxlJUV2U0hkSvqTszMZGSDBoxs1iwS7Z2dbb3bpAnbdsEPPxxj//6jvPvuSEirFB50Bb7qfkJCkC1b5vLnnx9y5MiPlJeXUblyM+rVu4Hq1ceQnHwBf/xhl5eSt8vu6jJRrncC/P33LsaObRWlP6nwqZbNm7Pr4EGaquTvquiragqXiggk/nTiFrSqxqGspITCkhKqSBs2VGeFEyd42+sljX8v/4FTiVKrln0/i16kZagbb6oT4ZbtTQ/t3p03lyxh4vDhdm4A7Nyzh1pVq/Ld2rXce+ON1mlZqr7Qs++sWMHQzp2jZ6nOVWy9N+zcR4b4qaJ7DWPVow+qfF7VL7Vop5CgQCDi0VXfgYAV5xmCKSshgY8fe4yLx49n6bJlfPzRR9x5+eXc07cvpwIB3l6zhpfHjGHRjBmk1q5NXZ8PsqzkzR5EAnN/INxXqQSpT5Jh9UcmKA8YYXeCjT4V/coVZOmbtNteBo899hxnz+bw9derKS7OY/LkW6hXr4nthDLd5lQMVTdeFAySZHQFVzqa5PPSsEhOrsiZM4fC76vTBtQ7iYl+EhPL1amxACQkpDBt2uvk5+fw55+bqV3b5I47biUhwcrZwb6/raVsdfyaAl6F5uiCWS49q05nZkJODvE5OaSGEo3HYTF4H5aTJwD4sSKQ1L5ZFb0kczqpHE/qvgHh0+sMIjmbwHIoyYTlCaH2AuIZAyvKKS30fA2sSCkTSK5QwUKgIIRZX33FBxs30qRJS158+VOys9vh9xvk5FhoOn3aQpWUa7m50awkEIiwIHlinZpq1atnsGPHIZsMktt7iotz8SYlRaxdqf1HCDXaqjp4MEKI6sh5lWxRd0SFOlFy+jRJp06BTGrYpIn17N69nC8OpVYtqFzZHmsseaWTtRtWfCyj1QMWoUpGFQgwctAgxj/wAL0uvRSXJmdKSkr4cPVqGtSpwz979lAjOTlKsf9j507qVqtmZ0BOS6FobUsZoZ6RTEnO+1iGjVQGZDiJfE5foff7cRuG5WA2DCjQjAApZzIyoHZtSvBQoQI88shUkpLczJ07i6lT+zJi8GBef3YW8YmJrPj6a0aNGsisWbPJymqJ12vfniUNAzVkUunX9U7VHRlVpESy0o1k2gelN+kolvptjx7D6dNnED/+uJJ//tnPBRe04tpr76KoKC68vqOrABI16iMPJVW8RN2DiM4WS8dTzjLVp7g4g6NH80lISA07HNTWYZ8Pjh37m3r1qpCSYr1z9qyLGyfezdibJvPDDz9SXFzMiy8OJS2tShh/SWYwJGf8zqFGoQ56jCCm6Q7rmpLMlMiR27v0/qhrmr1hI3kZuCFxqvi5nNYKTAWi3w8n86ycLVYUgifURgJNm3opLDwEQMuWLaOiU4wQ+a9bt5IlS57B4/HSq9ciWrfuR8WKKbaprE6AltFHkagH+ylmEkZdNTQMPxUrlgOuqDUmq9/5ZGR4SEqKTDWJb0U/0o8m110VjanFfKkDSYMmP7+EJLnwqgyqvDz47DPOlxilWjWoVCmaP4NdkXTyLOtF1NEoK4s9e/dy4p9/qJiYGKV0znn9da4dOJBF773HDcOHRxnKZS4X67ZuZerVV0cr5xIOOcnALi+dIhzUPfmsLm/0Sa3fl89IxiZhk3iSzoqDB21OApdpMrBnT2ouWkTrbt24dsQIWmVn8+C111I9M5Nfdu/m3hkz6N62LTeNHUt6RgYNG6bahkbyJ7lur8cvSP4tfGDhOSWNfbnALnma3N6n7PHMzIYsXvwFW7f+yM6d26hcOY1lixaQkFIxSt6F8VJQgMdrRS+qvrgRjqlAAHegBJ/PY/NJmia27Wdur5ekUGR3qmlgZnrCOKlfP4tTp3ZjGJa+qbYAG4almq//cgtZqSk2ptTl0kv5on17Nv/2Gzn//EOn6tW5MDXVak8xMMUsVfSSaUJmJnGZmSRKvUwvWVn2HBmSnpSHRTcapY6jPILyt/JHqG12+hY/Pfmwql/ZX14vwaya7NsH+9Za3YqLyyIjoxrHjx8iLW0MNGzI4VxPePul6vqBAzl8/fWdlJcHgPtJTr6JtLQaVK4McXF2HQJgx47IlJFOpYMHI/qNiqqV9GkYloOzpOQgUC88rfx+CPis7WyH8vLoVLmyfcuu1DNVw04OKMXLMjIidqrkDWI8gqWl1snru3db8sUwrDFt0QIXUHrkSPS4OxQH6jhHqVkTVFiqE0NTnXMiOlV0Rhl6Z3i/fgy//35SK1Tgmt69rVPtgE2//srd06bx9jPPsPyrr3j42Wd59OabrVC+0Gf9pk2s+f137hgxwhpx2Y6ES37rXgh1TTcO9IkkBY7ehir6cqmuJTgxd/Xb72fuypXsOnCAFunpJMTFcXzvXvLcbsZefjm1qlfHFbC27n21eTNvT5liHdEeH09l0+SuIUPoUL06tz39NK/Pnh1mUB51DKODYWOanjAqTDPEAPMsbug2wXRILq6BHHPlMxYqq1TJZNSoMbZndGeTXpdEqeRP8hnJv+THCR7FAAB8vmQyMipSXPwnBQW5zJr1GmfPnsblctG16wDc7hJ69x5g8xepeitXzqRu3X7WntuCAigtthCye3eEU+n05vdz8PRpThQXUzMhgQrKutKFupJufr814YuKws4feWqdinSSW+vkxyW+I2kQrRxRRuhTRsRxFSeek1FUqm71HR9q/y+gTgimJIhselaD4vXy5sSJJC5dyoIVK/jiiyW0b9/RxhfVPnrFrBUPlPvq9QAlUX3YIKpSpRm7dv3GqVOFVKgQielS5P/OO68xcswYCz5J1JI3yY8kdCX0lbBWe2qUxJBWV04OHWvWZPXXX3PdZZdFgFBje744l2rVIkuOqpzrt47Lc8inzGrV6NmtG5MeeojH77oLX4hwcnJymHLXXUwaN466tWpx0z33sOjZZ0kVS525R48y5dlnefmBB6LlSSzYnBxHOsyKJiSDlPwilqzV6VNec3pPo+sfN2zg1TfeoEWNGlRPT+d4aSnHy8vpNGAA3XpY9Fq3bhb5+fk0adiQay6/nMSkJDBNhg4cSPeOHRk8YgTzXvqcQCDBBrLepD7FnFCirwrqU1AueurrSk62GEB5uUmXLoPDzxcVRQegytVvCa8qOixO7zvZrfo7Ct6+fYfzzTev0bXrEJYsmcfff/+Jy1VO8+YXMWhQf8rLA9SpU9nB3jTp2bO7ZaTknQQKwTRCXpQ8O3NUAJgmeSdPsv/YMSqkp1OzcWN8vnT8frsOL+GTokj649WzTmqPg1rhWPT39B20schdwXXixC4A6qoTjAVhmaG6rrpqNCdOFPHqq7fx++8z6dGjV7ivctzUGoKkwexs8PtNcnNNG12oQFe5DRQgK6sN27Z9T9Oml0TRzaFDW6lQIZtjx9xRbUscy0gnaSwrJ6tyTOqL+ZI+2rZtw/Rpk7jhyivtNGCakPZf1qD/j5aKFe3bedS39DDqRKszJvWMfN8wmH7PPQyfPJkXH36Y+jVqhBZ5/bzwxhsUl5by+F13MeDGG2nbujXNKlcOy5lgSQlTZs9mTL9+xKnDkmRx0h30xXWpOzrZN7qc0funt3Muu+hc+AkEyDt1islPPEGTzEyqmCYlcXEcDwZJq1aNCTffDEC1ChVwAUdPnmT8sGHUCjkD2zZpwtKpU7l+xgxa/Pwz7fv1C3dXghhSqaO652T2qW7r26V02SGnkLQjnO65XC7at+9E166drEWAQACMIIY3Em1s41eh/x6vgdfrsfIuqvtiFcbj9eLzWfZZ+EAo3esvbAqPCRkZ1vPXXXc1V145mr59u/P11++wdu1qXC4XlSpV4o7J1/Hu0qV89OKL9tWiQABXWRkX1aplRQNK+0UGREjnRIiJl5aXs/PsWdzABcnJxKmcXdKA06MAdEam6z1SMOhCXw6KHBin6Cj17bUS1Ae86WFU5+6wuqnsDQCP5yjFxWeoU6ceJdhPS1RglZdXo1mzH9i27WrKyl7CNPvg89UITzv9ACSZKkSBroZT0qakb2Vm9Ox5LW+88QrTpz9tI6G8PCgvL+XbLVu4d84cOHPGLrj/bRJIZUauwEjFStqgZ87gLyyk8MgRy84LBGw5aXL5b+V/s34qV7YndQ3XYkTPdHnvXP9DGDRMk/fmzGHuO+/Q5+abSUxKoqi4mAsbNGDhc89RrXp1Jo4bx7w33+SyG26g+8UXk5qaynfr15Ps8bBoxgyLSTvBpF/T4RDSPhAIsGDlSj748kvcwSClJSX0uegixvXqRZJc8tKFk+hL1G+dW+lCS74TCPD4559zxu+nLBikJBgkwTAoDgSoU706YypWBMMgu3p18goLGT5rFm+0asXcyZO5oH59CAToWLs2z61ezbG//6Zy/frR/ZTwBwJ4vOAxQtcK1HdoNpgmbtPEY5rhk+8kKnWDQjqAdHnuxH/cwlUiVxPUs+FTHkyPLb+IrEuiTzqv1H3doSWVO/UdCMADDzzGoEGdaNKkHZMmzaJixSxKSs4yb96dfPPNh3z77R9hJVEV6UCXKxG2TmuAbz5yhGnffUdGQgLVk5L4MzeXlIQEZnbqRCWXKzJGinkoDRWIz80lqajIug22U+5kmG4oC004OkrecztcU1vmjNBHRVbJtV91qh7YHVzxQAvgpVC7rkqVIokwlIZtmngNg3fuvpsmbdtyz9SpTJo0hUqV6obRpAKBFC/bsQN++imykAGRbeXqHbkKpd4zDBcDBtzHffeN5LHH3qBCBR+mCXFx5XzxxUf8/vsvPPzw3XDmRCTRhj53dSVBNqgnP5EfmfQ5N5erGjemz5w5DKhXj/SEhMiqX24uW/PzOV8cSpUqkJgYbcnr/Fznv7I48dzQtYk338zKL75g1OTJlANlwSDepCRumzCBi1u1AsPgwfvuY+jEiTS74AKy69Vj++7d7Nq9m1n33ks9yVOd4IrlYJLaKvDD5s3Me+89zhQUUBYI0KhGDSZfdRW1q1a1M6xYVrxTf2U7sUqI3t9Ytowla9eyFPCXlmLExVEWDDL48GF6dO0KhkG9etm0b9+el+fP57OVK5kzaxb9Bg8FoEKlSgwfOpQvv1xG+/bXyK5FTadYQ6juO+mOupqhG+aKteoOC8n/dZRIPUv3AUujXhZ9relc6JWKo846lJwYMGAwI0b05Isv3mbatJdp2fIpAFaufIvBg3vx5uvzcWNFJqn35GlIFGjIcVoNCgQ4deoUd7/1FrlnztAkO5sjJ06Qc+oUDzzwABdfcgleb+RUP6lUSxYWa9uK/o7su7Q19LGWdoLk3cLWilLT5O+2LZsCsG7rVnrUrRsJb4CwkWYYLiZMuJmWLdtz883t+OOPhdSsOcnG0tXqf16eJWdUX9VhKCpJuVKT5LqC1Htatbqd5cuvxON5jurVm4X7eezYLj788DauvfadcNSuxJtOnwpvqp9ycV/iVqkSetRTZmY1kkyTtd9/T6fGjW1bYc6cPcv5EqOkpVmL1XJwJOHGImS96PPPMGhx4YXMfewxnnzhBQ7m5GCaJv6SEq7u3587Hn0UV3w87738MpPuv5+4sjI6tmnDidOn+XbdOkb17cvIyy47N+PUrVQn28YwOHDyJM+/+SZ/7NqF4XaTnJjIzVdeySXt20f347/IkRjtOBq4wDcbN7Lgyy/xmiZFJSUEy8sx4uIwDIObr78et8dDxapVadK4MUdPnKDR0KE8OH48d4wfT0JcHK5AgKmjRvHQO+/Qvnt3TNOetFgX8VL3jyVv1Leu5slNO7Jbav7rPhM980ySGTktHMPKz+pxMvIFIB6vN8LT5SdU3BKfykGg6FR35vj9oWjvAFUNgx49LmHEiEbcd9+jvPvuh5SVxfPHH5sYMfoqOrZsGcmrrOqXSNE9eYoRqrZDdkl5QgKzjx5l1cmTtE5JIVhaypYTJxhWvTo31qqFq6zMbmzpNCYNP4d5BEQPqKxPChJ97koj1AydfJoTSU2lHER6lFxqahUqVKjGtm0/4vcPtckBhRqvF+rWbU9KyhZ++aUbJSWPY5qrw/45FUGnFixkHnawL6bLa6rbchgyMjpw6NBrvPnm2wwdOgrDsA6LOXu2gPvuG8+NN91qJUGX2eV1Qtb9D5KupFIkx12Ns0DUmOxsZvzwA4+1amVdP3gQ9u0jcOQIT/Lfyr9wU/1pB0YjJagT05LPyeLgno43DG6//npuHz2aYDCI2+OxveJyuZgwdizjrr6aH3/8kSK/n+fvv5/MChWimaQTk3YiesGtAsC199xDp1at+GDuXBL9fkr9fpZ98w1DZszg/QcfxJuSYte4/otREAs2J+3cNPEmJtK7YUPmXHopnrg4vjp6lAFvvklnZfAYBnuPH2ftokWs+PJLJs+cSdMbbuCZW29l0hVXANCpQQO2/vYbPStVshOhTnBS65NFMqOQB9nt9QJJUQqmrDpWt8DB6aRyjWA5Ojxe08onhVC2Q7B5jAA+X5KtnbBjCsCMvKdv+ZNb+BV/VrCHc2IY1mpqly49iI9PYsaM60hOTqGgIJ9Onbrz/PPv8dxzjzBjxguOvgh3oCRyQc4LGR+fm8uvf/7Jg999x7ujR5MumP5vx49z9Sef8OGQIaTpS6CyMcMgIScHdyiRnx9rEsch8ioR7Whyif/SGeUUIWUQydOkoqog4njSk5a7gQHA08DauDh6604nefoEMGHwYB558kk+/fQDxo69O4zP7OxIoIs67UGdluhkxIFdTkoZ1aDBpaSkxPPQQ6NJS0uhcuUK7N27k7Zt27Nw4bskxpU5z19VodMcl1JBajnSCpPzpqCAxJIS5vTuzZBXXmFUo0b0rViRol27WPTPP3xTUsL58i9FGgK6UqEXwwjzD/WIW/5R34ZB37596XvZZQRLSnC5XFEJwy/u2JHPP/uMXzdu5PChQ3Rq25YmjRpFW+Fa+7IOWx8knZkmLy9ezMZff+WZ+++nWui47c3btnHj00/z1MSJtLzwwtjGTiyZ6/TcOeBITk6mQkoKO557jnLAk5ZGhaFD6dy2LQQCBA0PGzb8yh13PELdunW4995JXDFsGAMGDOKdd5bi9Xro3r0702e9QqdO10TxVn0K6RE8CiRZzuXMkBEoTt3UDQ/5nJrS8ltutZPrBbphInT6c8Isi3pHDpNiiSUlxcTFlTNw4AheeOFhvN5UiooKqFu3Ll988S333HMbl/fpQ1xcHJ5AwGK6/6ZzqAZCHomzOTlc+cwzTB8/nja9e4efOR0Mcu3Eidzn8XBBo44254ewl2z91RbEo/RViQfZf33RWYEocaFPbd1+1ce65UUXUaNKFT7essVyPGmGkhVB4CYrC/r2bUmHDj3ZsOF9+vSZZNMbsrKsCFu1iCFPwpPwS/bjNASmmcGwYe/x3XcPcvbscSpXrkVe3kE8Hi9jx75JxYpZUTiQ//UhlLiUYkjfpuo0z+ZMn87IceP4ql49RrZtS+qxY3z188+89NtvnC8xSllZZJcERK9UgrPdE8uWkM8BF9SuzeuzZlFeWkp5aWnEpgnJm4yKFVn04ov889df/L5rFxfWrcu9o0ZZhpmcbHqRk8XJ7gr15bft27n98ceZcffdtAnlSTpy5AhTX3qJbXv3MmHsWDsD1euIJW+FveLI1EUd3lDE3apHH6VxxYqkVqjA5TNmUOZ24y4pgdRUDh45wiXdujP98cd4dOpUpr74Im99+imr3nqLemlp1MrK4lR+Pvj9pGYEwylA9Oac1ATJv51UNt1eUd9OvhBVpxoameohKmpJHysZYiUBV//VezIMS0bvSMGlC0QnJmUY7PxjIw888ACrVy9n9erllJUF8XjiefWZZ3jj7bf5/Y8/aFqvnrOwBmenkEyA6/dz19at1KpQgS8vucQ6mbCggGBcHE/8/jvTc3J4oGnTczN2fVDkYMi+xRIYlufdvththPJ9mkk21OUetAdtyY/clef3u2na9Aq+//5jzpyZTSAgLahIsca/AmfOjOO3326loOAkfn96OFIpMzNy4J4cXtllSZfqvtySbcHkYvLk+axePZNrr+3JBRc0pKjoDCdP5jJ+/BQGDeoJeSf/uw4qcS9/K/4nhb7cKltQwFVZWew4dIiRq1YxsUIFso8dY+uJEzwH1I9uwbGcQ2t1elrrlE4AsoNSgutIcPLGaYzNHQxGh4opJ4XbzaUXX+w8uZ0IV8KqFwHrmytWcEmXLtw0enR49OMNg6uvuIL0ihV54v33mXHLLdETVLYj69WYgCPzls+G8HVznz7cu3Ah1dPTefDSS/l6zRpqp6dTt2LFMGF4EhI4m5RE/8GD6d6tG9ffey/T5s9n4uWX4zJN8ouLrQgtyXGdxkd6RxUenXAYumaYSWFFXe+CVJRU07oAiBoC+aLXa60OSLjVPdPEDXi9SeFL4WgoQsmzvR5bN8MOLpH3xWMaNqHl9heG61jwzqs8+OAzpKRUo7y8nEAgQGJiJObn7befxe8vwDS9UYaOjUkqvIpVARWu+tgPP/D2yJGk16xpW6pv1rAhk4uLeW37du7s2TOCcz1vWqhz8bm5eIuKwifcmdi33EG08wnseZ70a8pBlUDE8RQXHx/uU3wgQHloq5+sI4gV8VQH+NDtprfioGD3NIaEQrLHQ9+ePVm+/H3Gjr07SrZIegHnY9bldFc8UaFb1dW0aSc6d+5ESclxkpPPUqdONZKSPNaYF2jzVhG17vHXNXwJhP4to6DEnG5eqRIrBw1i8dat3L9+PZ6jRxlQUsI1QG3OF8ciJ1is5UtBDDIXnSweWZ/8Dv126yGcog1XfDwtW7WiZePGkXecZEgseeak0QIH8vL4/Mcf+fCNN3CdPRvmz61btGDxk09y1X338cXrr1tKnKpf16ydwiX0yeFkUIhnxo8ZwwvvvcfV8+Yxb8oUdv/1FyWlpfRo3x4MK5mm251ETk4+rVo1YMGC1bz//htMmnQDW7Zs5uKL23HijB/DSLRNGyfxKO852UtO9pXOD6ReLRd95bBI1Og6vYJDKp26c0E9K+0DuaCq7muiyeZ0izUsqq4lS5YyfPhoBg4cw6233kN5eSmmaZCY6MI0oXePHny+YgV9ZcSDTgcyVEiGgYWeeee777iuQwfayDx7QJpp8tY7Cxk9aiRLln4W5RxSVTnJdydDTcrbWGMoWay+CKSrkbrRKNsLBKDcFceADh1YvmYNz44caaVk0PVDI4jHC16vm6FDh3Lrrddz6tQR4uOrxlRV1TV1hLpu06nnpSql3vN6Mxk+fD5QQDB4HJ+vIklJqVFt6DiR/XJSD+Wpujqu5Hgpeq1ZtSrL33yT71at4tmPPqLo2DHaxcezJDWV6uejnmIXnbfqyeN0Qoll8zhN/lBxFRdbuWmDQftAh56pUakSNSpUsL8fy16A2PJQwFleXs6dM2aw+I03yEhODvOGqlWr8soTTzDs1lvp27s3derWjd1XB/vrX5/RlOMePXuSXasWo59/npcmTaJrlSp8/9tvTB0zJjzR4hLTyM3Np7QsjYcefY6R193IpV078vaHH/LozTdb+rjqtwM6dNTrdofORvVnnYZSyjCZDFo9K/lZ1MvymDwlIKQQku/oyqyqwylnshQ8kmFLmg3dP5KbS3lJCROuG82E60ZTVlYGhkFcXBzk5VE5IYGXFyzghXvvde482BP4qmTc6lpeHn/v389Rt5tZHTrYcte6AwEeql+fQW++SW5CAhkVKtiNQn2VymlFScef7niSfVYH/5hm+CRf3Uenn0in6wLylFG/H7KzB/D99y+zZs2vZGW1DO+2UPUo0L1eqF9/MFu3TuTQoY8pLb0uPCzyWRVFW1RUSkFBPAUFkfyQUpwrVOvTq7zc4Prr72PChLvIzz+Iz5dItWpVMIyQHStxpehGt1EkseuTRF6T78ikaCHamlqvHrvj4njrwAEO5edTGbg79NqzzqNoKzFGOkZJTra2QEhFW0pl3esaw0iwcQInxOhFnxCxCNRJk3ASErIdUddHX3zBR0uXWisgKpYuVHp268bMxYspc7mIU31UdUttxAkWvV9ODF7cu3XIEAqLi5m+bBlfbt9OXmEhnerUsUIWQ88M7tWL95Yt48ZRo0jMyuLaa65h0apV7D16lLpxcazZvp37br45etlRFt0qkAxQfos6vBmVbfa1TgJqomu+BtuWiIjjSDBKqcU7WS4h+N2BEky15U9jkm4jgGkmOZOJoFm3YeAxRHRE6P2CM2eoUaNayCBxAfE2Hly/fmMOHPiHunUbRbWR5LOQoE7VCp/soUJ4TJNTx49jxMdTWSWz1JKM92/Viv7ffcedl19uD2nVaSrUl5SDBzFDAjmA5XgqwsrTpHI56Q4ilTBcPYN4Rp18ZyCcTjITrGni8vuJ1xyVcYEAicePMxaYVlrKxGPHaAb2PRtqjEN1DR08mOFjxnDgwN8kJdUB7HmOFfPNyIjwPV0JlygR4ESReXp6JbKyKkWckKoowtQriTU31TO65iLni56xONTfxECA65o04brata39gzt2sLu8nPPFoaiThnTvNUQtW+qn2Ols/pzy5FzKjm5o6FairjQ5tRWD/7+xZAlTJk+2HEuqjRBzTPd6adOkCT//9hvt27Wz8wBdSYslR2L1SZMzFzZrxvLXXmPigw/SbOxYLmnZkgqpqTQOGSKBAPTo0Z/775/EZZcN48QJFz16XEtCwgTWrfuJNm3asXDhQjp0uMaWz0BOEyeFX4pm9V/ptro9owcfqKL0ejU0MjGnuiYXjpUOr1Y2leNKj4hVdeuKpSxi8S8Mg65y6I4bqU7s2vUnQ4ZcJ/puT2bdrnVrNmzYQN9u3WKPnxKwMiuuylmXl8eKLVv4cNKkKFovCbjxej1U9Pk4ceIQycnVw1VLWHW1QdpCcirI8VVFiimHdYeo9sCe1NeNFdHgFGEWCMB1l1/Oi8uX89x333Hn6NH2gRNzzm0YDBs2gNtuu5H16z+kbdsJjlFE6nyIzMzopMS6z1sfZ1m8Xm/oY8eNk33lpI7qdC537uvvStVJddvn85BaoQKXXnYZlzZrZuWY3LSJ/F9/jR6k88UqycnWKao641FF8lm9xHrHQW+13dN1bV3fVs/Jb90jq8PhoKtv/v13WjRrRkb16lF5W1yGwe1jxvD6okU8/sAD0faZU5+cbAT50esI/XYDKxYt4qbbb6fXPfcwvHt3CouL6dSsWfiZjIxMcnOPcfp0AQkJXipVakzHDh34aetW8Hr5dsMGLr744sgp2wIkOdck+vRhlIsTEq3yWw6f/Ch5I7fcer3goYRg+NAlw+490HUFfWVG3tOLel4yG31FRdahgIMw0Lt27aJ1o0ZhQRUnOx0I0KRePfYfPmxvQzJuhTg9sa1azDh4kMVr13Jdq1YR5q4cQCHGek3z5ny4dy83duxoz2Gr90X34ul6lxLEKtpK/RaKQkkgtPgozFq180xuf5OOJ+m4V4sOSqzWqNGNjIw6zJhxO3fe+Q0nTrhstoikmfj4TLzezpw48T5lZcOxLK0ytm832bHDDHetqCgY7rbSQVQ3dLpz4vcWOgxq1qxt87vpcz9sh0ghqs9fWSQtSlqVhpc2v7NNk8crVwa3m6JTpziGlev3v5QYGmqM4vVaJ0CA3fiSFqEEUAEpf+ud1n//2zNOkl8ixMmg0Bm2PpKhT5xhkKBWBlS/QhPeBVStXJn8sjIqpKba9446adpOsOmairwv+h7v8/HwqFH0z86m09NPU1Rayt6TJxm0eTODe/WCggKGdupEvylTuPiCC2jarh3t2rQB4OY5c0goLWVQp04YKvRQuXX11X1JWLrWD5F3RHIDd0EBST4fSRkZlISij5QyL/mGPApY7TZTkyzJtBTLkoAbj7QSpFbrpGSHvNnuQAlJBCA3z44708pH5fVGjFHraOmAfVxCfbccX0Z4ggbLyvB4SsLJ+dSQqs/hw0cpLvZx8GCkbwpdBQXWSUGpZomFjIMHYds26yErYyn5RUVUMgxYvTrC0MVWtLiDBzFKS+14kOd2q722gvbilSMoEKC8tJQS7JFPcjsdWA6lYOgZdXJdQLtvAnGJiXZPod8fSbbkoIm78vK4+59/WHzgANfn5rLe5cJQ7yraF4TQr3NnTNNkxYoP6NPnLltUcch2IhCI+O3kaoWSb7LockoHUSV8DBoeAkYSHq8RMdik41MukUglTM5tXVHUlTRpsTgpGDk5HCkv5xDni1MJmkkUkmRNTdOKYAjijmxnhahQe1V0+Rkw3IAH0/TYT41RD+tKfOi/WjUz9Pcc+LWjrJK0o723e+9eptx6q71OReyBAM2bNGH3kSO0d5IZEuZYRoqERZeDEm7T5Iphw7i0TRs6X3UVK378EYCJDz3E3OefJzXVoFGjKjRoUJvPP59P9+43EAx6aNy4FS+/PJft23eQm3uIrl1bs22b1YScdypiI8IjI2jREy1LVCjWqMSXFOnqGTVtpXEeOpQv/L5pWmxYHcSj+IrKnyn5t5ymu3dHYJVOKXVf1aH4lYJF1akUXgWngkX1Nz3dR1HRUTIzG2EYEUeL2lp+9MgRKsiTeZyYmtKkc3OtI0GBktoN8IROpnGVluLZtMnqyNq14ZOkPLVrg2lSBcjfvYsa7SqAN6KgBjNT2bfPTiYSB/qBuzIiX4Ko20yyLslOVTteb0h25lkD6jYMDF9kkUvSUKtevZhy5ZU8tHgxA5s0IbtKlcj8kSvypkmmz0e7dj3YsOF9GjSYYINbwqDGKCPDvu1Od5rJ/imRKNm9+qgT8/RFEjmlVfsSZJnDSZ7yq9cP9oOlwnZYVhJJSs6Gcm8ckvshzxd7SUuzK6jgbEc48VKI5s9OjgRdxkh+/W/2gT6JnOoT/Fy2vfuff2jerJldiVXEYpo0u/BC5i5a5CxTnPrtZKvJ9p36GbrWoHVrvv7sM6ZMnMjzixcDMGnuXFa3akWlvDySTJN7bp/Eg/eP45XX3qaw0EOLVh2YNetxJjz6KBt++onPPv2Uw7meMH9XzSneq+aK5N26eJbzV6nUcvFB1SEXUqSjQvHxrKzQcAUCVtR0yDYJ4LFsGnmgkI4jfcyloR9rm506rUw+L+tW46t+FxTg8/vJ+esvS6BJBISE1OlTp0jweOzCVdkXcswLCiwZs3t3hGFlZcG2beQdPkzmkSOwcWNE8LZoET4ZoUphIX+fPBm9WqNsH+n5U8iV+pCCTTJHgb+gL93ilbujzVvDCLNAdu8Op1a16QxyfTMkRsN0kJHhoWnTV/n2256sWzefjh3HoYZWslT1u2rVYfz11+3AH1jL+qWAm/LyRM6cSQWyiI93Y5qRhPNKTkjZoOcZ04dEkk6ENEI6rhQScnVOASp9FfKePlHUM2pySSGu6lfCp6CAfOAw/Gebxvj3R0SRJyyo0YrFmFRn9E7pjgX9HXnP6bqTY8KpPSeF2+k9AUdJSYmVW8qJiQK5eXkkq6NR5fv6Uq4qUtuU95RQU7/ldeFdbFWzJm9eey1Xv/EGwfJyhsyezWvFxdzQty8Jpsmihx5i0ty5JLz9Np3bt2dY//6s/u47zhQU8PVvv/Ht7t3cNm4cHevUidb0pfbjtN1OwqQnwwj99/gAM8lG35vx+RYAAQAASURBVDq/UsaHNCQ8hqVsG4bb2vKk913HqbA4ohLtOeHTsOcGk/UogxI8BPxYR5GG+tand28+/PBDrr766nD1ig+ePn2K/PxTpKRUjfJLOralJKPymPj9ZFaowO6TJ8HttirNyYl45mrXJvf4cRIkTajGdXqTk1/03RUI4DlzxgZKEMJb49yh3+o/RJKKOxbVloRDtS1/hwbXk5nJ61WrcvH69TyXkMCdighUP4UV461YkTq1avHHH5vo08c+3Iqt6CtOUmDIop6NZaMbhuWocBtGZLrp/ZAv6C/rCqkcIwmEXse5cIrdIXi+REogAB6PRKlb/bDxAcNwn3MYovXkUDTiOeSBcmjZ9e6QU+BcckkHwOl+qOIqlSuz/8ABfI0bO767/8gRWqh7TvQUywARbUQpvU7OsdCkS/H5+Oi11+gwZAg5x44xb8ECThUU8Na8eXhSU3lmxqNMfWI6kyb1p337XrRufQnLl7/Fu+++SjAYZO/ejjRrdh3t299gA1f61JxsI93+0t9VoOvXdaNCFwPqvpODQb2vFk5lGxIWJzRL3qSjXD4neRdE93nw4Kt58slp9OzeJQxQIGDJxfLSUt5dsoQ3Xnop9vjKbyVYc3LwFJwMdzbVNDl04gTVz5yJbJGIhMbwx44d1JIGt+iUE3npbFHvk/wtlWI5Ruciy0CA6MHWYFDjaWZU47Fnn2X5jz8y7p13+GbKFFynT0d0E2lNBgI0b96UN9+cRyBg38Ig61UfSS+xxlZ/T4dTV6li+QykGJfOLaliy7UL+Y6EMYp2TSNSoWGcW8b/Xy+x5LWzAIl+zonf6/fP1YZed6x25POxdBL5DFC5cmV+2rIleiE+RCgHjh6lcsWK0XVr9TjVHf4fal9F/bh1rUZMEldZGc/cdx87Dx3i8x9+4JcdO+h49dV8tWgRNWvVokfr1hSePMnAK3pzcceuJCf7qFWrLq+98QalpaV06NqVXr2Gceut9+PzpYbngY5exf8d/BSO/EmaQ2C3z+UWKMUfVJcyMqByEzu+bCiSDEJO5FhyXSq+TnJcPifxr49ZqJ5mVavy6/vv4z92DFM6mEIM6q2PPuLqXr2ix1S2owSZiqhV3puQV/zCxER+OniQxqdPR2D2+62TggyDDf/8w4Xp6Y5yJmZfnJiqLnRC1yTKpMNGXyBQNoRyPAmzyfaOfNayKXrQvPl1LFhwJ+3b9yUrq7pNlEp6Kixsyl9/lQK7gLpY1lV86BNnQylY3+XlkW13+vq37Idsx0nvidhP7shOIvkCRPCnrxY5CTc5PrH4lECeTNvyX4r73x8Rpbg4mpFKYtEZoD6xnKSl0+SLVf5LG3odsSa3AxPo2qEDK1esiOY6pskfhw6RVa0aHul4Uu/qGoO8JzWLWNqt7IfmXr/qkkv4/qmnqBLSlMe9+CJf//47BAJUqlCBxU8/zbS77qJS9erceMMN5P79N7tXrWLqLbfw7c8/M+O55yKzSGZVU78VxcpYd9mfWEQXmp0eI2jrpnRkS0erGnq/P7Qdze/HXZAfneVNcgr1Uff04zwlYxR1KOEXFakQgl8qmCUBdxjQMaNG8cYbr/PLpg22oczPP81tt41i0qQHHI2UKD4pnDGy7YSUFJrWrMkXLpd972Ho5Wd+/53rmjWLpg2nJVWJbBE15apQgQSXCw+Ev1UUk/ptiI/pcM2QnVHt67QhVyLUCkiTJrTr3ZsprVvz8MGDLAkl1CQ311py+PVX6wihnBxWrVrF9p07ue46a8uJPoy6r0uCoU8nOSb6dFMflcjeYwRtucEctRYn/OtSTLdQZCfUfUkgUkLWrk1lQMvocL6EiuIpMeVhCJdOuoz+nhTmTnpPEHc4+lJu27Mc45F3bPedFHCnojOHEB2NGjqUl197za5NhD6lcXF8vnYt3Tp3jm5DD3nQi07LOu3pz4hJVqduXbasXculnToBsOijj7hv2jQIBHC73Tw27RHmzl1EtWr1uPDCDixe/Bs//niCmTPfpqysiGXLbqJq1UDU/NTH0DCcWXks8CV6ddEteYBSFtWxyEo/1tdalJ9f5SKVOeHUfcVOFWuVfXISk06LgdK40ftTv35dMjIq8uLcuZQXFYHfj8cIUlZczKMzZtC+RQsqqoMnzjVuqmOqE2LpdFy3bjy1Z090aACwdudOalWqhFed5iXoSy4ASBEVQ9+04c9pWuhqjz4f1XN+PxT63bY9k/q6i3pn9244dKYqz77wJt9t28aUr76iqHJliwDUEneIAE4dPsx7771Gjx7XRckX6RxUcOj8wUk8yL45ySGne1KllOdtyCAtHa+ZmZGPWrTT6VSn0TCsagCzs8/LmXMVSQQ685HEKq/L304Eo98/l02jv6vbEXqbse452DOXdOjA12vWUFJYGK3HmSYvvfceo4cMiYZDMjAn2abbLBCSojH0KqEvGV4vny1ezD0TJwLw1/79NLj0UktPBK7o04cvVq6kY8dLqVixJi+//D7Hj5/li9Wrueiitrz00lP88cdaR1AVv9X8K7Y5r0Bz4luSZ8su6qq6NKUKA57wS26CoR0Wfjv96Hhz0gt1m1SNqZOBIeuQiNCUXpfLxZ39+jHm6acpPHrUtm3gm/Xr+XL9ega0bOmscKv21XXleFI2TcjjN6xRIxaUlFCo8g8rxAN58fGsPHaM3lWrOuo6Ni+Kfl8XvHo/Q/f1xWipfuupiWJ1TXQnygG5ezdkZT2D253E449fyeHD+8K8uXZt+2fnzpmkpmYDl2JZViaQiGVhxRMf73bUC1SRsJzLRaBPTR2NNjpzMqpkg+qeVMZ0xMiPE/8zDHzwP9k0DlzlHMVJkdaM+ihMnYvp6kxan1D/RcGXcMhnJEw6bJJZizomjB/PkFGjqODz0bFly3Aftu/Zw6SpU3n7mWccmW7MeiUcOjHEgkNNXEGhnZs04bcXX2TRmjWcKimhedOmNu23dmYmtRs1CsNUr3Fj7mrYkJlvvslFdetG3LMqLES5UxVXlVxYwaHH++nOKEGYppkUXmHWJ4hOHir8PEmXCnLc5UtyJir4ddxJ12/ovaiotdBzbq+B7m9V0TDJhsHShQu4+/77yT3+GE2bNuWfw8c4dCiHW299kNat24XRIpu0gWF6SPKG4FP7xNRYZmQw7ZZbuPK++/i7enWurVWLJJeLw2fPMvvbb4kzDPqqSAdpWKgGpOKgEKwQL58xTVxqXzdib3cggLu0NNx7RaUGlqfaCH3iXC77ICqpK8+T1rmeEgaGweNDh3KgqIir//yTBVWqMK9uXWoqJuf3E6xZk/tffpkubdty2WW92LrVbjepZlV3ZdfUt1zUlnJM/x+eRrpyqXNxJ06u91POIynpJJ1KelMA67SemUlcjRpU+OcfzheHEgiETqt021BqGO5IxCPOOpu8J7/tioe1KhRrux5EcrXpOmCSqTG3CHDWt2k6GzLiuebNmxO/ZAnPz5/PLWPGYISI/HRZGbfcfjuTbropkjRZ52Ox5I/shJNcdeqk9k5mWhpfLl3KwoUL2X3kCAMHDAi3FcSN15tCz559bc6cwYNHsWbNVyQkxFGvnhF29ihWDfa8OXJlUrI0GYEkQZP1xBorKTZV9K06wl4OhRwi6QhQQ6m+lW6t7us6vTzUR9ahsXrbmo7kRR5KeOaxR5k9ezY9+/endZMmlLlcbNm2jauuuIJxw4ZFBKW2OGFDnJSZao9fqJGuXbuy5q+/mPT339zdsCE1UlIoiotj8Y8/smTzZpbKhLKhd4KGh0CBnXykkiznkK4u6L4w+Yy0HaQI18fFwpcbSLIOzQjYx1r9Vmy0Ro0e3H//M8yadR8rN2zglf796Valim1gZi5eTElJCX36PBDeKSLrkv1R9pXst9ManA67kyqoGxeS9iTNO01P+YwTXmX9knbDO1fyCiI6XnY2KRUrwokTnC8ORS6myxLLDtH5vhNPlYMSq65/s3GcbBr1ns4Qndo0DOKSk7ntllsYdfPNvPz00/hCxF0WH8/L77xDmdtNqzZtYhJxELe1dUfXa5zalcq/DrdS7kK/DeDJ++6jd6dOfP3DDzRt1QpXSkrkfY9Jhw6dw6+4XHDJpb04cjSPpUsX07FN06ghkfqjUDVtYKm5DHYnrj5XJWvV35dqnt9v+bd9PjdebySdg40/60xCx7NiiE66hPod6yMBlJ0Q7fXOziausJDBM2dSp2JFKqal8WtODnWzslhyxx3ESyEmPXeyH6YZSYQnFzK8XhKzspjauTNDfv6ZqTVq0M7jAcNgTW4uT+zYwdPt2hGXlOSsW2uwRjEy3fGpCZVCvzvKbyxVbvmtxk+aSxLVTnaHejc/vwLt2y/l55+vYfLkCxk+/HHGjJlMWlpcePg2bfqRHTtW0KPHIr76qjJWFt1SrGinRCDVxu8jOku8zW6RxUnPkb+tBVq3zSSxkZeaCE78DaKdSZLodYeTHWi7TRMIEJ+SQsaZM1SMbsWxOEBzjpKcHJvp6RNNPhOLyaqiY1hqgbEYcyxknksw6PCp50P/UytXZumiRTzyxBM89tRT1KhalZzjx6lUuTJvvfYaNSpVigh0J7j12E4n2PQJF6sO2VegckYGt151lZ1TSmrV6ikuKyP/7FmKS0ujLTPJVFQ9+r5eqfFLDq0zDiL8SMon6RRQqXRsfESPDFFt6JNBHy9p6EvmK3Hm5N52GAqnkp6ezvz588nLyWH/gQNUyMzEl17bpvSqooMQ7pLhJiMjHbdK9iqYblJWFh8++ihLvvySa37+maDfT0pcHNe3a0e3Bg3swOkKi+6F0RUC9a3n9BL4dgWsvFDuoiJKIOqEOk8IzqixjvLk4KxhA0mpqXwwYQLLt21jwsKFXLhpE9MbNeKWihU5XlLCzOXL2bpnD2ufe46yMld4MUXfFq/AlqmYVLMq1ZRT9IHTtbCXLRZPkV4uJ0s3lodDD6eRQlsyZxnnGwLKYUPo+QKU4AknEI1WDDy4Q0pxwB89/fU5GYsV/6/BvlGsWjcG5LVYSqbgA3PmzGHeyy/T68orqVWjBoWFhRSWlDBl4kQr2slJkwj9V45yW3HSUmJ3PlKv5KeBAHHAaCVnhExQRrliO5Jlnz59jPLyUipUKCMQiLPl91PsWLIj5RySaNIXhlWbTixO/ZasSXZHPxFGQ32YLpyieQKBiCxzYntqiuv+IJ1lSiUzKiLFH8AdDHLnTTdx64gR7Ny+nTiPhwb33UdceXm0PNNpQHUE7A4qOZamydRx4/jhp5944NNPySsowOVyMaBtW5ZPmYKptnuLNpwijNRtyfqccqfIMdQXAmKJYjl2Un7K7kldV469er5799tp0KAfc+bcSPfnn2dsly7MHDKEpPR03v/9d+YsWcLll9+K358JROwmqUbp8Ek7UDdUJe2p+/oQ6Ta4pFMnA0N/T9KK0yKzpHdJk+m+YCTvl/T2nnc8xS4qsbgkML1IoaL+O5VYMkHXG5zms/ytX5Pt/lsd6n/oWv8BA/BWqcLoyZMxExLwJiez78ABrhg4iBdeeAFKSuzvhNqIbDmPIWt0BhurSF1Kw1/Xzp3p2rmzfSHVNG3zQDZ1/Pgx4uLiOJufT5XqQdvCkc5HpONJrtVKsHTfhuyKdGDI+g3DbrLIhRRwk6QeUqGMquj0peMvlnCTzMPp3XONTcj46tm4MT0bNGDvoUMUBALce8UVeJVtot7R9Q3d8angz8iwt+Pz0bVVK2pXqcJLGzbw+PHjUFxM68JC3m7blmqpqXYacBLMupB1YpSha0HTyivsz4s2EfWpIulIDYWuqumggV3PUf99vs4MHPgnv/12PwsW3MHPP7/H00/Pp3r1Zmzf/gOvvTaJKlVakJFxJTVquMnLq2rrnkwgrq5Lk0EupEszT/hrHfUdWcJolYSrK8Lqt8yDIxGjG7O600ndkyHrIWAMLDfbfymu8vJ/P1opPz+ftLQ0Tp86RaoKAVfFacLIomNa/+1kOciiS2/9nqzjvzB0ncs4aVlASWEhJ48dI61iRRITE+0Domsg+gTW/+u40fvoNOhOcOtMyClSCcLU+tCTT/LUSy+x9bnnaJSSEmVkhCle7isA6zmVHVVaGHqbIcZTYiQ5polSvEufPF4veHIO2BUk3VCXFTnF/OtjJxmWPO1Ajk+Io6jTDyRq3YESm8ANb8cyjPDzaoVDD9tVckZ6071eSDcLo7PQKSeEQow6Y1P2QRoVOl1LqSrrlkV36qm2JEMJwVFaWooVW2J94hITo/dLqsGUmVRVx3WPj6TRzExOnzjBfS+8wEvffEP9ihXZl5dHfHw8t998M4/NmkWh3x2OAFZ8UJKCPIlCThuxI8NmFEhSlk4od0G+85yXY6LjTQEjw1HVe6rojF3NKUX8qnNqnP3+cE6WE9u3kwGcPn2a1NRU57H8P1SUnPnnHwsf/7YCpIsOiGbPqjixjljs5FxtWpFY2gO6DNAr1CsWQAaDQXJzcvB4PPhUxnzJd9Vz2PNZ2eDQFQvJ41X7TsaSEwIl7GKeBw1PVGCqAu/bb9cxcGBHHn74eQYMmBQVsS1SQoSnhGJ30kHs1LRkN06qgRRNkiXqNKAbHmBfvFXP+v3RSdElHLpOpuqWyqOu6sg+Vs4I2p3VcqFFAqPzVFmkQJWRlOq6Hi6vsqkrK0wB2qSJ5cH3+Sj0u6PEiQ6e7mOH6Oh82WfduSPHVh9ffWx1o1DSnpTBasxLSoIUFMznyRl3keDxUO5ycfz4cdq27cvgwe9RVpYWJbN11CralP1URYk+KR5CIs4mtqXo1lfivd5IUmI53LoDzInv6SJGVxNNE1ILDkf2miqdwu8n/623SNu48bycESVs0/z4I6mx7Ir/ci2WHaHLhXO972TfSB1dr0OvVyckHZ7Q9dMnTuD3+6lUtSq4DdthHbqccaretpVOb8OIPmFWFdv2M4kbVeSEME0bDAp8w4C8vAJatLiQhg0bsmrVauJc5bacjMrnKtVjtWip9HN9TVGKSsOIVps10yH8vM77FY9P9QYjyqwqkhnIsdYrlI2qhX8nRUUP85HGlmpD6a16vUoGyEVWJy+c1HsVYvREqzrcCnkqmbn0pGgn0EXZC/pWBQd7IhjKJ6yTko5mCY4yMXU1XNoTOl9VRf2uXVvfsb6eL78cx5EjO6haNZuDB3dSsWJDOnV6C4+nXZj1qjrltxweSQ4STWoLtrons6mExLXNOSXbchOM2DOxts7p9+SYS2GvPrLzyg7KzYVNmygtL8cAXPHxFJWWshNoyb/bNP+b4+nIEcvxJLdqOWFUV5x1B4CcuapIDqBLVTUysjhxR4lAfUTUCOpFME2dp6q8MOEL8luf5LpgkRPRaRlPx5XubIqFz3O56kP3y+PiOH3sGGYgQLNevaiSksJ7t99OjQoVoiOMVN1q46pUZiXXV/BkZUUzCawcKKq7TkodWFsMwngL5fqxSYodOyIeVKmtO2WC1fGgOcNsJyY4GFG6M1dXfHXFUz0vTyGQQsnpsDe5uqpOLLK9qCqVlpkESDEHiUhJ53rogU6HUnio3zKnlsqJIaWo5H66IJDCw8kw0pUJxbFNk7UbNzJ73jw6d+rEdaNH49OsvkK/29HJ5CRoFJrkMCuUKcVegRh2IOpSRvXDSXDK44QUo5bCXj6v8CqFp6pbetTkUVANG4Jpkv/PP6R99dV5gyBUlJw5cuQ06empYeeK4i36HJXsS8pKVXR9TX8Xop0PEK1bhxVuTU6E78l5qHiMli9KvqQnMJfPqMMPdBGpizf9elhe6SuXqui8x6nTTtq+k5yBsCMqPz+f5ORk7rlnEosWLeCNN74iM/Mi4uLiMAy781g1rU5Nk6xDOqMk25ZbInTxLn28mg1km55ySqp6pXhQ7yn6kdNdwiSVPf2+vvVX6sySRdv4kW5AyAe9XoJE6F4Nq4IlrJtIA0PKUjnO+sRQALdvT34gosyrMZKqlqRT3UemmtblpM5i9bUKnW7lOEvVSFeTpO4by5g4e/YIGzZMJRBIJDv7FmrUuIDsbPvY6LQSS4WV4ledlijpQ9KqXq9eVPvKAFaweCixN6yMLNxRBrCOH3XN6w2dCLhtm/3optDN/B07SJsx47ycESVs03zyCalxVuJfOfeAaCKUz+h2ja6/67sf5CTWJ4Vur+iTRK9Dtq8Tr3zPiCyayipV7tPw8fMBO81KuSqLpHW1UKvXEav7qoT5n2QUuqdVa7TQ76a4uBi3O8j333/DFVf0Z86c57nmmutJT0/C7S+EQIASM9XG5goKrOmgR79Lnq6vMzr5fwIB+wFrupqr+u3zgSdQGL3qoqJSJc3IotORk20s6cXJmaQLSYV86UCQbTvp73Is5HvS6RRLdsk+KOe3olV9RUYKbtO0jCedOXu9BH3pNrVc+kmcmle/1bey16Qarss6pzoUGApkGbGs0Aol/PDDM+zf/zvt2l1HkyY9cLlcUTJRygS5YKDLzFCXbfn8pJ2jYJFmmSq2RUjpc5AIkEApz5iTLeTks1CNKWVO2Y07dlBeXm5tkw2NYf6BA6SdOPGvssaIecfxaSOaKzlxLvWsuq8Qok86+Y6uacsi70nupgsGhTyn+woGHb5QCZ+yht3QiAmPZmjY2pF9i2WYq2d0N2usdvT3Jf6lAAMWf/IJ14waRdVKlahTpQrr//yTmjfcQPVKlejUoAEd69enQ9OmNG/aFCMuLsIkxCpZlAata5iq7dAs8ni9BAx3FOoNA0swKOYliV93guzbFzmTWoV0QvTeDGmZKObmhHv5Toh2SwLWFh0nXizJWOf/iqFII0o+K6OF1TSR0e6m6cbrTbLNYcML3kxwq5dlP1W/JD3rSotEtC7ppZYuV8Klli6FjBQIyvmkxl/Rl4rIEPi00Z6uCAkkd+rcmU6XXmpHtuD6huGJmk4QvcVB0pWTfzEzM3I8ua1IDSH0HTQ8uE1t4AMBu6ai8C9CSm2Drpi0rljoEksqtA0bWt/u/2271/+VEiYN0x2F0nMZd7p40tmAzj5kkafxeAyi5Uzo220Ykft+Tb6IZ91yDksgxM8oOWMYUf1ysktkVTaRqssidcNJkZXFyavnJN9tTigPOTlHaNGiHmVlZbRp0waXy82VV7YnKSmFpk0v5qKLOlC/fkcyMtphGCnh8VGsXU0Hqafr6FTgaiLOcWwlu5IKoC4elALnZHBJ1El1QketrFfeUzDofMsR/xKfWmUqf4WuqKqoWq/XY6cxXTeQiqNCtLwWilTOzbEr4zqIqjqHqRBl96j+66qCDo4cMx13+vNO+rHOC+RYFRVVpU6dV23o1dvQdRQnp6ZqUxrbqsi1GKe5qeCX8EmaCTuKFOErISYG3G2aqO3ATsaRHCfDsBzBbpVYTDbk9cKpU5wvMYphgEyyrwZPJ1jdUowlTKRSqDMK/TlNB4oq+gRz0nFjOXBC9Tnpt+FTYkWR3dTpWd2XdGw4nBytP6Pqs3VNTmb9IYkTMSkDAejfvyfr1v1A82bNyK5Xj1tvncztt99OixYt6dSuDR3btqVpux6kp1fHNK3II5X/RpoSckjcBfkkeb0EtB0QOglIlOpyxu0vtBvm+kKCfFn36KvrunEv39UbVUXRoKQPp7Be6e3Q9XP1jiQQuW1Dynx94ULZi9I7ovaXK/hEWonwR/VPv66HlJmmbb1cOp/UIzLwV++Wk0iMpT9JVEi2GSsgy7rmoUWL+6J4vdQ79LYlbelzRKFeOpkULPoimXon0hexyKnbKDIaWleknISjNIwlMhUtSA+s348LIidggJXR5D9s63bgdud6WgNQYUABq8eZSyw5aQ8KOZJYpWYi39cZrF6HfNZJO3HSKEL3grgjpzKoZ4kknY7qh+iLfWVbK9KtruNBh1OVWM43WZyoOgQPwK+//w5A3x492H/gAElJSZwpKODIiRN8umkT769bR7C8nASPhynDh/NQt24kKxwrIs3KiiTHVnDpoXkSBsPANJN0UKyVEelyVrNShrfI44iU40kWGWEnmaBk1mpi6IxWfNQKsr5gICe1JDWpjKv/qiu6fNH5qXpH+iVkxKnc+VAtM8OeuFoK4IICypKS+PHwYU75/TSqW5cGeqylkwDRjRslHNR/tZUyM9POmBSQsY4rkh429a0zKwmL6o9EkFPkIXb2ougoFktR93RB4T54AAIB3DqOJMx6o/o9qbj7/fzy11/s2b6dUydOcKqoiLN+P67yclwuF67CQlynT5OQmEiVtDSqpaRQ1eejamoqFVNTcSm8h3B7prCQI3l55Bw7xvsbNjji4Xyx209yGquV1kCM1Vpd8VVFGpBOoifsTAI7Y9BpRuflThqOvC/5PBFZY3uW6K10sjj1UReT1n03hpkUcWjpFTrxbclrnO7L/kK4v26C7NnzF0VFRbRu3Yb09EySk/dz5kw+hYVn2Lp1LZs3f0MgEMDlcnHhhb0ZPfoFGjSoa9ueJJVLsO9S1XUiJUp1XiuVQ7V4qtiSAluxV8mC5MpnNC7trE+2JXV+qctJHTqcaBbwmEJP0Acy1EAJHgg53+WwxNreGFUUn4GIoJJCSnr2QsBKnVS1ceDAn5w8+Rfp6RlcdNHFuN12568kiVhkpeNMgaS2vSjbRtar2ztgh0vSvCpOKp38L52Q6r7En/yWv2PVp/dJyn5dtVNrSIoe5Ph5vUBuXoQoQ+N2MCeHTT/9ZMmZM2fI8xdTWlpOWZkLw3BjxgeJc7nIqFSJqpmZVK1cmao+H/FFqbjj421yq7i0lKMnT3Jk3z7Wr1rF+XKOonsQ5a4AJ1tG/nZixLq9IvUxWaeck+dyYCkYzyVn5DPiObmggnaYhhMfcRJbuhl1Lr+bjiJVbKjUJ6Dsg9R/Q/fLy8vZsmUTAK1at2H9+g24XC7KygJs2/Ybf2z7jTnz5gFQq1Y2Tz31AlcN60mSUULNLCNy0oTXS0kootide8y67vORmplJScBt4xUyAlfXQ7xeSKIQcgssPVoyR52Z6QJCIlHd1wUNxBZy0v5xEgo6TqUAlc/GUjZ0mJyUD2UjQPTRsRC9tU4qXKFnjx87xk85OcR7vXTq3h2vqt9m5ydF2WK6miLVMPm6fk1fW5NTRhWlF8gALIk2aRrJtQI9oEhHmWIpUqeV8DjpGMJksNlATsOm7MvwXJeCWm6pC1VWePYsa7Zv58SZM5wKBDgVCBAAXIaBq6gIV14e7rIyUk2Tal4vVZOTqWqaVPV4SFIHT/l8ULs2ZaWl5Ho8HMnL40BuLlN37IgG0KE4qTCxixOha4p1TIKOqTE5tHEuA1H/fa4JFAsODR7JnHVnk1IYbYMqjAj7nPSEoy3K4kr5+NNP+faHtbjdbvr16c1lXbpEnFO6puXEDBTDcKJS+Yx8z+/n9ttu48233uLvI0e4Y8oULmzdmpxjZ9iw+E3+/PNP9h0/zq6cHPYeOcKshQt5b8UKZg0axNAGDXAXFjpHPClClkxPzgafD3egBK9XWwmRXVIamXI2KW6itiLJ+mWESSzm6eQECeHA5qwK3TsX85JdkcxO9wNJUHVjxMkDL5VT9V/61QoKIL/ATarPZw+BDOFo2caNzNu6lUubNyezShVWrljB0fx8nrvrLmpXrhy9EiGlpMSV7KDaXhcIROhQOuqkBSWRFMv6kUhVHZQCVyLVYSyDhge/0PWkAqCPlXxVOvOSjJKIMu/Ub9MU89UTDk8N4oaQMoLpwfCmWhFopklxqYvHn53G449PA8DtduNLSSHZNCkPBgkGg5SWlFAaCBAMBskvLkaWeLebzORkKicnk1dcTE5BAWdDxwZbUJwvTkVXcm26vRGdS0I3WJ1Egpzj8vtfgfgvgP5/eF/KGT2vhoJX8h29yL5u2rSRpUuXcuZMAS1btmTUqGtIVatgsYwV+S2f07U2vVExz7t168xll/Xjl182ct11dzBq1KOcOZPE7t3rOHx4Ezk5B9i9+y/+/ns7O3Z8w333NaZ//3sZM+ZOKlTw2pxPTju7db1bikK5WOqkS7vzTpIkK/Ql2RZ9PUYQw+u24VdHi85rnBRe9Yy+IqozMLfEr6pcXNOVViV7YonbQAA8BOwXFBA+X0TOKpkiOxMqUhnev/8vXn75NqpUqU3Dhi34++8tvPnmVEaMuJ2uXftGvR5LyVZdUnkq1JipLeq6WFBFXyeS5KbXr08t/TkphuS4SVTJMXVSZyEiGqVRIW1Hveh6Ati328tnPJpM/nL1aoYOH05+fj4AKSkppKak4Ha7CQaDBEpLKQnJl7wzZ5AZMlwuF5VSUqhasSKlgQA5p05xUoavnS+xi99vHZoUqzgRd6z///UZdV3XW51sqH+r7z/IGVWcZIze3LnkzZEjh3nrrbfZt28/mZnVuPrq0TRqVCuqrnPO13PJI73BEDCJiUlMnTqLe++dQGZmNg8/fAOmWYucnN/Yv38th/7Zy569e9n2x58cOrSfq6/uzXvvDeHZ6dOoW6mStZMixBc9Ph8+XyrsK7Dpih6v1zrp1rS0MqmvS5U2qkj+qgxyaQCoypyYwLl09X9r2IlhncuOlL+V0NXHAeyrKvKeHFgla1SEkwwmkEq5DkdeHkVnznDbd9+RW15Oj/btKTl7lufvuIN2bdvy0JQpuEtKwoLPyKocZZfJcVHfXi9kZ0f8LPqQSPClXJWySJolciFbdziqzTipRiHk5pJkmqRn+ThZ4ImKxZHdN037Fn6pg8rIKml6yetOJKCbZB5DuyGREKr8UEEB/WfO5Ne//7bg8njweb3EGwbl5eVhOVNeXs7Z0lJKyspsbabGxVEtIYFEwyCnpIRjxcWUCVnUMBpMx/IftGutp/JbL05WovqOxfWc6tYnj9O7TgzMqe1YFoaTJQI2BTGAJ/yqbiioKnS73zDc7Nmzh/HjxzFo4EAmTryT0tJSPvnkA5577jnemTuXypUqOQsZVWK5dc/VX4G/KhkZvP32Aq655mr6DRsGQFpaGjOGD+el668PU/eTH3/MffPmkWAYXPXaazSvVo1pl17KFXXq4JIGvHS/Os0qAbNbvSPxLmeTXOaWnqBYwkdanrpn3WnpVdKc5C4CjTpDOBea5UcGhMlnZVSTZCyxFGS5ChquR0bnhD4rfv2VT7dv5/NJkzDq1QPT5AZg36lTjJ0+nWXTp1PB7bZzUNV36ZRTDSrOrM9H+Yy+PUzhUdfqncbKaSx07V0fBCPiECwuLmP9+m85cuQINWrUpXXrDhiGy7FaKQhME/BrjFYT8jJnhnXLfmoayFWuJE4fLea2267n44/f5a67nuCWWybg86Xg8bhJCuRDbi7FhYWYTZuG36+QlETDypWpnZLChYmJpAYC5ADHS0rwJSSQmZhI1fh4MvPzqRoXR2pxMdW3bo3G5fniqD+p4iaIaUYnQ5bvOv2WRTk3beT8bzxWXf8vsiVGUdFI+klBTnrev1VZXFzM+PFjqVIlkyuvHE1KSjobNnzPgAGXM+2+++jSqVNMOGI2qs9PiSRNQU3wGrz88uv06dOdiROvBiA+3kOfPgNZsmQRx45ZBwesWrWOqVN7YZo+Pv10Bt9++yJjxtzNyJG34PMlhxNmyjRopmlPJyi/FRi60qhYlWmGnLpiVdnrS7J1MRJ5FpHlEi1yaGPp/ZLVOCqIsfDr4L3QyU2KRjkM8lXD9OA2HGhQMUe1tTonx36IiAbisWM5PPfceO69dyFVqlQL89WSkmLuvXc0SUmJdOt2aUx8OMnV2rWtj9cbGVOpeOvOJ5kGRS48yDakXHW6r0ev6TJC6muHDv1OTs5WfL40OnbsgWkmhvEO0UPkZMToqpCCS657SeehKnl5WKfehjr+2htvcPOdd3JZ9+7MnzePylWrEjSSrPxPIT3MVaVK+P0Ej4cLqlenbno62YmJ1I2LIzcQ4DAQbxhUTUujamIimfHxVAVS8vKo99lnnC8OpazMmYB1w03OW1Ukw4lln5zLztGvneu3U9Hlj8PEVCfAOoHwb/4FWeVLL73ImjVfMWbMBC6/fBR79+5h2rR7aN26OXfddd+54cSeysSxH04MN3TdYwaZOPFmNm/+iaeeeoBg0Fo0vPDCJqx4dyG16tQBr5c/tucxZEh3/vlnNz/+uIYLWrRgzNChPDBwILUrVbLmks9nbUmF6NBYw7C2uBoGXm9SVHStDcVykVd34gQC4PNZ21+9XlvEVfgZaSPpjip9QJzsPAVMrPHXZY0q+gqKjm8nQaZfU98ydFUtcqiFDyV/xJaR8tJSRn/6KeMuuoie3bpZ3iLTZPK4cbz08cc8+NRTTJ80KdxHvVk9Qhki0UepBYdJ9XrxZqWGwdGLPiWljJCyQsp06QSSeggFdlsqPSMDfFYD+QXusMzLzT3GTz99S1FROY0aXYLXWzWmbitJQZc1qv/2JOe6vHJbeo8UTEremya/5uTQf+ZM3IbBzwsX0qxZM8wqVSJjlZfHiNtu472VKwFrQaNeejr1ExKoVVJCk7IyCuPiOOLxUGQYZCYnkwlULSqi6smTZJaUkBIIkK45q5zK/5ZcfNs2UitUiLbWJQZ0TVBOMqdJJN+NFX4Yy6hVv50cF7pmqK45PaOYiA5fKEpCgWAYFgNVR33rCohpQmJiGX37Xsbbb79Nzaxq4cS4ADt3buOJxx9g+YIFdrjlR05WiSMnvMTSjkKUW56QwIFTp/h9507efe89Pvz0UyYNHMj1Q4bQqFEjMAxmvfkmd82axWVt25KXn8+GHTtolZ3NtMsvp3vNmmzPzSXONGly4YXEVawYWSWQ+DJN64Sc0BKn2tKmQAxn2leRTrm51skHOTnWaoQKIZLZPGU8o86g9SQaqiiuIDN4So7h80WO4xQkJxmNuqd2Asq0VBCdq029m5UV7bPRGYMCR99ppu65d+8KbzcsP3OGXo8/zicjR2JWrWpp8eJojs+++YbtO3dy13XX2cdeNSjxo4D0+636Dx6MfKRREuaqguCFcM4pLGTVtm2UAB0uvJCm1avb6dPGmYkIIX3+68LQ5+PD5auYPXs2nTr1pFq1OuzatY1ff13PQw/NoGnTNlECRzdG9QTOAKWnTvHGm2+yfOVKDNOkpCzIZZf1YcyYG4mPTwzX4zGCYcfU8ePHWL78A95441V2797Bgw++wyWXXIlhRE6U8PmsLV/H8grp1u1S/vjjVwAqpqWRkZJCQVERh06coEn16tzUuTMjGzYk7fRpe9Ivn498n4+0xx47n/Q1VMJy5vhxvOkZUazPNEVSZdMkvyASsSKdEaro150EOwja0T9OSpgeHuMkq6TMk8+o3w6ySh144GT7SDyo+xkZ8PDDt9GtWzcGDrw8DJrfD8XFZ7n22oEsfPUVMrOy7MiQDcglRHlP74+OA4lMAJ+PI0dPsWXLNjZtWs/UqfdxRa9eXHfTHbRo0Z38fDcbN65nypQ+VKyYRWZmTTZv/oqUlApcddU9DB06nh07DnDyZAHp6RfgcqWSmWk7myAsBpQvRaaok+MqP4p1hRPAh2hG8n4Z1aq6FWstRGeP+ntqNdTrDeX+kEV6WCTQoe/8gogjXLFxGRgs6VhtKQzPB1Vk8k95uplSkDMyLEEVyslQUrsBubnw2GMP06ZNdy666JKo+XHqVD6TJl3D/PmfRfUb7JH8ctFF7dSXY5eXZ+W/lmqK6o8kLZfLzw8/rODw4aNkZtajXbseJCTEhduX61YyTaTaPa7qVn42KdoOHdrP889PpEqVOjRt2hG//zjr1n1Knz6DGDXqpqgoM50G1H3pFPR64Y8/vmHFipfw+4soKQmQnt6Irl2nULlyLdupROrwiySzkNVLl7JgyRI+XL2aCbfcwuxn5wBGmEWoRMyFAQ833ngL7777EmBF3tapWRMjLo6de/aQkZbGdX36ML5zZ+opOhBeuvxq1Ui79trzckaUsKx57jm7TaN7YCR/1wkVnGWEkxNKtzXUu6ro0fuxQv2kXeVgrzjKoxCs+mlxqlrduJWiwjRh8+Yv+fzzj5gz50Xi411h+i8tLWf27Pto3foi+vcfGtUl9T+KT8kGdQGnv6zZb0Xl5WzcvJMdO37n0Wn3k5aczO3jx3PVuHGUBFI5fvwkV1/di717/6J79x6s/WENeadPM3boUB4YPpy4ggIOHj9OtTp1yKpXL9rekow8K4tjuW7bEEre6DGC0SdRqE92dtjWkKadGmo9G4XebU+gMBI2KR1TasAkA1LPyKJwqtOvek7aWkIOBU1rgcYdKLEbQE66gTwyTqdpXXkJBPh5zx4++PVXZvbrZzHC7GzbQUaDhw/n1eeeIyM5GUyTQiPVlt8pNzeyWUN1TcnCJk0iOFWyQJk4ElUycCAhoZzTp9dy8uQ2kpLS6NKlP5Urp9pyKplmRO/3IE5nVMJH9Vn6EHw+SpKSmHL3fRw+nEPXrv0pK3PzzTcrSElJ4/77nwMSbaSnqnCK0pXmVTC4l3kvPstff/2Fy21gmsmMGzeBSy7pYs0zf6HteMfy48fZuGULizZs4LXvv6dRzZp88s47VK1ZM3q8fD7eWrqKG264irKQ86h25cp44+PZffQoZeXlDGrcmJtbt+YSnw/Xnj12fPh85NesSdorr/z/fKrdjh2kpqTYb/4XZV11UJfiuuNJXZMI0RVgWZ+sV1oo8hnd0HWqQze2HeqQW+5KAva90nKOf/PNJ/z991/ceusd4Wql0fzww7dy/agRtGzRwplhSa1GMhkFi1wqdHI8QUSICYZVVFDAQw8/zFurVnEiP5/OLVuy4LHHqFWjBm98/jkPzJpFzrFjNKtfn5LSUnbs20dqUhJ9WrYkKy2NLf/8w7AuXRh/6aW4yspsqwT4fHDRRZYyG4g+jjUQEMq44iA7dlhcYd++iCWh70eTKxL6zNStR6nF6mccg/3YISNyspRTEJVyPDl52CWoso/6aTWKAUrwpOPJCXT3vr1hx9Pfe/fy9LJlvDRokGWByeMODIMyl4srrrySFW+/7UwDEj+KKUqtWTkAc3KcvWFCgw8YBne+8AJHjh9nyGWXkZSayudr13Lo8GFevusuKns8zqs2yvHkpGwJfrH2t994/pVXeGb2QsrLE8KPFhfnMXny1Tz99AtUr55toys9PFUvgcICrrnmGnp36cK1V11FQloaAeCDTz7h7XcX8cYbS0lOTsY0oaysjIUL32XRonf5/vuvcblcdO58GaNG3cfx44f58891FBWdovD0MU7m5nIqL4+0lBQevvtuulxxNVu27ODFF6bx/gcfEAgESE9Lo7ikhLNFRQDUyshg3223RYgqhO/8hATS7rzzvEEQKkrOHD9ux4dky3JbtEzA7KTLy+uSZRiGOAlEZ+S6tanLoVgKsvzW5Zx8TndIie8SPFGiUAdJ/Xa7TzNx4kiWLv007DwtCbjDPoa1a7/gt60/8+A990SYkVNlegSktNxlX/Q5rCmskt+89dprzJw9mz937aJWrdrMmDGXjh37s3HjFh544AZ27vyFSpWySE+vyq5dm4mLM2jY8GKaNWvP/v1/UqVKTe666ylq1rSioZTRUoInzLIU2A62iQ0k9fEErCSwimYUj3dSW5x8dAoFcgx0H79yMHi92ul1siJ9D0cIwEK/3fGkxL7ueFKvZGaG8khJgpG5FGXORCmnVSLQjAyoXZsSI4m+ffvw9tsrQ7mEoufQhAkjefjhZ6lYsVL4moJJykJpEMi5JkXRwYP27stopEAAvvtuEV988QY9egymSpXa7Nr1Oz//vJpbbnmUZs06EQhE7DEdDlm3Ej3ysN5AIJ/bbhvII4+8QcWKtcN6SXJyObNn302TJhcyZMgYx/F3Us+UCrZixXP8888uRo2aSmpqFQIB2Lp1MwsW3Ms11zxD48bNwnTx999rWbbsdVau/IjTp0/TokkTJtx6Gw0aNGLVyo85npPDqRMnOHniBKfy8ykpLWXc+PEMHDSBQ4eKWLToORYtep5Tp06RkJCALy2No8eOheHc9eqr1FfJskOIyK9QgbS+fc/LGVHCNs2sWaQmJkbbKxDN75wW8+R99VsyFVmcbBH5nlMd+vvyOSc54mR/iTZ155PO+sFulhgGTJ48mOeee41q1SranMh+PwSDZ7nppqEsXboqpvlnGOL0RtWA3jfZoOqbU38Mg2Aoj+Gm77/nwUce4Yvvvyc5KYlbb72VaY8+zrFj+UyYMJ5PPvkA0zRp2rgxf+7YQUFBAdk1a9L7oos4lZfHmeJipo8eTaPKle1GnDq3PiuLQiM1ivdK8MKLGlK3DgSgdm2CZlKYP+rRU7r5og+z1xvCmRF9Cm7YKaQXnWFJZiwZMtjzugomHXY8yWABydjl+Cj5Ih1PTrZ2CCd3LVnCtRddRLMLLwzjN+x4AhYtWUJJSQmjr70WiOhDMmZBnYOlAj0kr5eLGPIgaSkilb/o+PHtfPHFrWRnt6Nhww6cPXuMX399n3btLmX8+DtsZJeVJWxXaZfHUtZ8Pm546CH6DxzIZf2G2UTw99+vZtmyhbz44sIok1cOha6mAezZs4nnnr2fp6dPp3mzZgAcOXKEh6ZNo2Xrdky4eVwYUQe2b+eVxYtZvHIle48dIzM1lRFdunDDgAEsX7uW/UePciovj5MFBZwqLOR0URFd27dn2syZmOm1+fjjpTz95DS279wJQPWKFTkkkobPu+oqbvZ4ooIO8n2+/3SCagzSj1ESEiKj5+REcvpWWJXXnLQ7nVHrkyjWLHWCRYdLjxjS63UyJsDRonVaNZC/v//+e0aMuCFMUElm5HQFgMsu68eadetpedFFESrTl7MVrE6/nRrVi6wv9DsRmHXLLTwxciQfr1/P3a+/zuWTJjFn8mRGXn45IwcNYvlHH/HS4sV898sv9GjdmrMlJSz58Uca1a7Nb6+/zhPvvcfTn33GPZdfHqlbGiQCRCnE1H+vNwmPl7B3lIKCyPFCahycOLOkH1mhTH6ua7ixSqgNt2FYYYmhPd26PSiHXqJcX3jQdRPJ79U7TiBJUjTNEKMXnLMoKYnU9HS7oSBWLOICAeJcLjvCYykecg4oHPl8FkeVc0M+J8binpkzadOuHSMGDQq/33/YMLZt3sy1U6ey8plniAutUtjgkUUiTptvz8yZw/xXXyU+OcEmT71eH888M4t5855l9uwXHSNYJJ6lIjX/jTfp368fY4YPDz9kBAJcPXgwSak+5sx5mvvvn0Zurp8bbriG1auX07ZtF5544kUaNGjGZ599yJ13DubEieM0qF+fSmlpVDAM6qalUSEri19276bP8OH07PoKd973PC+8uIhXX3mFnz7/nO+/+47vf/6Zn37/neKSEtJSUiivUsU6AULNGdO0TtM5X6KK3w9JSXaSUUXfNiDZz7nITl80tL2gf5wmrFOkE6IeJ2NBXdPlXwyjxHCoVhb5f8uWX2jb9pKw7ugxlDPNwk+XLj149dW5BEOnD+lb+xz74dQnDUbbt87kQ/fGDBvG6N69+emXX5g2dy5jxw5j3rxX6dChHx9/vIlNmzby/vvzWLHiPdLTK9OuXQ9WrlzI9u0/smTJb5w6lcMDD1zNokUf4c49GeZFVn6OpCiRr68QSl4uYY+VwN3BtolChRw6fbFZKosRZ5TbyuMTSx/SGtFRK+uVMOiwOWqoejsKSTrT9PsxfEnExxskJrqi+qTa8/lSKS8virJlJUyKrUm9XBXdRnLCt98PmzZ9webNXzB37mqSky3e2KtXH2688RYmTbqSe+99lmrVLrDBoOBQO8llGzLllWnC4sXvMHbszTRvXjts0JgmJCa6ePLJJxk48DJGjrwWw4iLmsqx0JyTs5vt29czc+Ziyspcou3W1K69iOnTR/Dkk6sBF4sWvcAzz0ymZs163HjjrfTv35uNGzfx7LPP8uef28isUoWa1apRITmZTJ+PRrVrk19czJ133cXzc19k8uSnuOqqR7jppof455/f+OWX79m06Xt+/PF7cnNziYuLw5+eDikp9oST/6YT/V8uchFVFn0i6swhFi+MVXT9yonvOtlQsRbNY8HmBIsDL48lDpxkaGlpKR5PxShdF8DjSSYhIZGiolJcrvjYbegKts4kdLw6yadQUdGkF7Vqxer33mP/zp3Me+89npg+Hf/p09x0yy0sXryY/fsPsnDBq7w0bx5FRUXcdM01LPrsM55ftoznbruNK7t25dpHH+WVm2+mnpwzivF6vSRlGOC1TsMOLyYYBipRu8cQsEtmbZo2nEoSk2QAzjze+vY44tzr9UROwlZFT36kKo4SGALfukJkGOEcxeHUMrHsiVj2vu4REmNdFB9Pap06kahbsZBOIEBacjL7T560gShBVbxc91Gq5pUPTIHhtAhSUACnT5/giy8mMGHCe2RlZYbrnjRpFK++OpVVq17juuvGhdtw+wsjEWJywBRwGg727N1LWWkpA7t3J2ja5eIVV/Tm++8/5dChbdSr1ySm71qnl/LycmbMuJdPli/FJw4RqZqSwmvPPsugUaO4oncPalSqxKYdO+hzzTUEAgGGtG/PvJYtOVtayuvff8+F48eTaBg08Pmo4PFQISGBWklJmBUr8t6XX/Je06bcdeed3DD+PgYPHs6pwzv4fvlyvl+3ju+3bGFXaHUn4PVCenp0YuP/KGv+N4lUXAzBoHOGLzkAsUIAYxGv/py6L7+dJtC5FC0nI8DpfV2bi/WcYAKxfF1+P7hc8eTlFYcNgiRt7hcW+oF4i5HF0tTUdV3z0bVrBa+6pjsXHHCU4PFwZceONKlald7TptHttttIvu8+Lm3ZkstatuTufv04cvQoP/z+Oz8tWMC6HTuYMHUqXx08yMP33ceAa68lr0sXfDoOQzM9QJKN0cqVQcMAj9eMhP6EjmDENCOhRJLLCAU53I700svlUgmPHmIq6VPDs6ElQ1fVKb+Y7CLYI210AXIOWWlDk3om7HBSD5hmeH9A3ZQUts6fH9mzIE+ZCwTY9ccfVK5QIdpp6jT2usfG5yO/wNpa5ifSH19GKEm34Oy5J06w7/hxnhk3Lvygyo/SpHVrenTqxKpNm+jfr59dgkoHiz63hNVSWFKCy+2mYsWKFAbsfljDgGZNGrNv317bazpeJX7V/48//oxPPvkMEuMseAvyw33q168fs2c/y+nTp7nqqkH88st6nnxyKaWlJXzwwats2nQTPl86o0aN5qZhg60VMb/ftpejPDmZp99/n3vnzOHg0RGsXv0bGRmp9OjVix6tW1vbJU+dsqID1XKNkppqHP492PT/bDGMyBY45Tw5l22gim586jqhqiesMDqFTMWSE3rF8p6uCUmaP5dRIupxGwZqkUL/6P0tL4/nzJlisfrnDuW+sp4vLS0F4sL4SHKSKXqlTnDqstHJMoloyuG57yor4+ILL2T5nDkMmDCBsWNH4Xa7adOmDZdcchkTJlzPX39t5s8/t9G8eQtGjnyAUaOa8f7783j44bns37+FNWs+Y1jzxjYZmZSRQUaG3fmki0Wd3QcCEMA6wEBnlw42mU1RlYvYTpEwsh254OD14jyAOiGG7hmhE2Gd1B7JEx2LTiyS6KWOoTufQsZRSkoqhw8fonLl6rYqAeLiytm7dye1a1ezXVe/Fb0pPOhpTMCOQ7W2Ih1XSs5++OHzPPbYe8SFHPKRNRIv06fP5NVXn+Phh1+ytSnbyMyMVqPUx+uFH3/8gvfeW0Z8vP1d04SEhDjatm7Nrl2/0bRpy6ihk+Mrh3DVqvmMGHE78fGucL2RqOcMGjRoxt69m9mw4TPeemsaQ4feTpcuA1i1aj7PP9+NsrIAffoM4NlnZtKjfXtbcl2lJ02+6y66duvG7bcPY9GiAwQCNcjMbMmVV7Zk7NhbSUgoxzQhufiUfWulE3GfL/YiU0c4CQtV9AnpxDclvp2MMJ1h6Ua9k4w51/g5ORZi2ERywUYXXf/G10pLy5x2ZYXfLS4upbDQTVycXTW3g+SGUM5ct5SJCmf6C/KZWLgI3a9VqxZP3XUXqabJIy+/zDMvvkjdmjXp1bUrvTp0oE+HDnz87bfs2L2bvd9+S+/rr2fOBx8w6cYbeeHuu3nqjTd49Zpr7KFeso2MDMtWC0RgC4PiBKNhhNMAaOZR1LTUbQlpuui2hkSZaXrC98LbGHVZLeHT4XSyy3V+IRVuJyLR25TyRzLe0HNt2rXjmyNHGHvZZeHQ4BI8ELByMn797bdcM3SogNV+yqvkrXoxDHtwlgJfLUjI1Ci//vo6/frdQVZWpm2XSqVKLp566hH69evJlMljcMXFW6D4A9E0oTcu8PXxt99y9cCBgDU2pghuME0YceUwVnyyjPsfauJI5vqwGQasX/8jrVt3INWXbmWmVFFvfj8uw2DKjTfy5htv0LFdOwaOGEGTRo144ckn+ei997hu/nyOnDhBm+xsXrn6aq5OScHrdkch6tFx47j06ad55LHH8KZVY/jwm6hQrSHXXnMN1/btC34/5aWluIqLLb65e7ddAXAamBjlf5NKfn9khcBJsZZEKgfkf1Hk9fv6RJFtOTFyeU/XTuT78jmn8An5LRAqCdupa507X87y5YupX785fj/hfFCqug8/fJ8HHng8BJrb+bQb1abu9pT4kBxJx0cshUNcb1y3Lvtee42tu3fzxU8/8da6dXy2fr3t8Z9++YWbhw3jtUWLmLdgAb27duWqLl34eO1aRrdubYc3hBRdkEm5bvEiNx65tUtKM/Ww7lCSnFnhRtUhNVgdV3r9EsBQUckEpWDWVyBkn2R1TjLKgWTCfZfFJjDsCAq9b9KqWTM+WreOQYMH2xoKBoNMmzWLO6+/3nkOmFaerXA+HPWM10uJkUTOQXsKENUnK8LYQ0ZGyBkXgI++WMmlPQZzrCAp3C/reYt2rxo0iCfmzKH/kCG21Yuo5YYQ8oKGhwAePKHjxgP5+ZjJXgoDnij8GoYV4RIXZ0SxDKmbOA2/2+2hrCyeEkXyYgBdpguv18vll3dl7969XHxxN6ZPH8/p0ydp06YrL730HqNGDSIpUGLPyxRKplienMyrX3zBtFdf5YILLmDmzDcjZCf4iKu42L4vQypYXi8UanlgzhdAsK4wD/fYxl7dV6tziMcl23OyERzrjyWLdOKKZSg4Aaffl4zhHAsDapXTCSxZbePGbZgzZxqlpffj97tC0RsRXHzwwTK6detjE9W29nQ541TOJZd1oBz6gmFgGgafv/UW/xw7xhfff8+yzz5j5szHefrpx8KPbd78LffeewcTJ97N/PnP89hjM7jhhuu45/YbGFb9jkhbofpTMzIwQ44aTfzYdF4Jlj4Nwa6Myo98X8l7PcpJgqTzHpUi5Jw6isSnhjedXKLGMPSMtQDgUI/slJKP+kQI3TOAiRNvZs5zU3n1lVcoLYuzbSNfsmQBXbr0QKqKsiv6dnJ1XdqRum2vlH2/P7KQnJ+fj8eTTHl5Knl50dvWW7S4kCNH9tvEiQ5LtLFrH1eXqzzcD2nYmaYVLZicnExpcZFNtTqnww84dGgPjRo1s6FbqTYFBXDBBRfyzjsP8NNPX9CmTXc2bFjFBx/Mpnr1eowd+wjDho2hefMqVt5AlWtOEarPx+ovNnHTTdcCbh544HVSU2uE6TFSLKeXTT+SCD9fYpfTpyMLQGri6/PWyTL8r3xRV1Tk+046vHxfvy/r0+0iiIo8VR+1UBg+UCEMR/RpqgoNEiSfrxIHDuzDNGuHHVCqHD16DMNIoLQ0LozGc4lIW6DOuWSqft80o7ecqYMVQjh4YNIkJo8axbdr1rBqzRreXLyYl955J1zd5j//xH3mDM9OmECHG27g82++oU+LFuw/coTy48dxnT0brfSrIu2VQOhwEN1TFOqgSi6tikyVpA+pwrWeakoNqy6LFCuXKqlpeiLRSQpG9e2wsBaOZpKrBA6EEMQdto9sW/Wd5oSkcVUkQzQMrrzqKvqMHcuQ4cNJM03LFgiheP+hf9i5Zw+tL744miCxy26nj7on8W4Y9ggptbV+164f6NPnDtuBFsqc9PgLaNu4Mdu++47mrVtHgkP0/sr/0gsLlLhcJFesGBYwZugVFTGXnJBAcXExboIkmdgisWPZNPv3W3IGxPZORTSmSbPsbB55/HGemDWL7Fq1SIiPp02PHqQkJzPysssY17kzLZKSInsQJe8wTY6bJte//TZbd+9m/PibGDhwVKR9JawDAVyqnwUFdntPEWoovci/lf9NKp2LozhpR+p+LAVMZzJOzNvJCDiXwnsuARBrmTRWHTE8eDojkK+0aXMx8+c/zZ9//kSHDu1tE2H16k/weExq1KhlRbtIT7VGvLai7uuzTX9GFicGrmnj7kCAlq1a0TIpiTV//smOI0fI8HrJLyqipKyMKbNn8+OGDYy77DImzp1L/sGDVE5IYLs0xlUJM+Ek21BJHEXo1WM5nxTcqh799Af95cgSaCTjm9M4SuvBSbDJOkO/3SFBDIQZQiDgjtLlpOCNpRdII8hJ11DPeUztZTmOpskjEycyctIkft21ixvGjqVq3bps3LKFp59/nst797a2a+pJqHT6F0yh0O8OO50U/zl40K4UqAhYFYx26FApLpeHn34KpwWJKMlYEXSlwcg2wbByI/oh+6WErGm6MQwPCSkVOXLkGMePl5KSEm8jdYADB44RFxfZgidxqvDsNLVLSvzExZVjGC574nFg3759fPvNl7jdbqpkZrJmzSquv34So0ZN4IILGkQSCQawO85Cvx975RWmTp/OlVeOZ/LkZ0hMTA7fDq+OOGlzqiiGfd7x5FjCbD6kUKkTccICV40L9tNydCVNzrdwTid1M5ZR5iQPwFkO/ZsscvJUOLWh8SidzTtFVSYlJXDppX15662nue22e2z65cGDB1i48DUWLfo0jJdwxdKq0GGRfdFXRGPhS69HGkRiNayGz8f1NWviP3mSVT/8QO0aNcg5dgx/cTFffLGCSzs35/knn+S5557gl02fcuUVV1B4+nREJqg6Q3LGl9HAFvyq8CTXI3TxIRV3cI6cl8Ok9DqVmk3yG/15aVApPd3nS8LxHCeJz1BlDrq2o10mX7dkiOlMIHrHnDywWPOnS4tmbP26Oldffjl33n47DdtdyoED//DGG69w+PAhZs9+Iyx+dTiluJVsUto0ujiX8lG9m5MTIBj0sG+fdS8ry/rIvrvdMU7FwlG9iSLZ7OxGbNiwgdat24VhlDnj1v/8MzdPvP1fp7VqD6BSpSqcOLGfrKyGUbLL7S5h8eJn2LPnT+rXb8Tmzd/SuvWl3HPPCzRr1pVg0B0+UMiq05KJRmiFfNmSnxg5shO1a7fi8cdXkpFRn4MHLRnsuFYqV5+l/JVK6PkSXSSTUP+lDaAb1pKInWwE/Rknfd3pGaeiMy2nZ2PJotA95ZyWW6fUgo3OX3QeZxhw7bW3M3v2rbzwwmIKChLDVRcWlvDYY5O59trbbSxfvu8EVhA3GB7cZqQvkRy6oo8C9/LAoki9SXh8hrxAitfLFZddRnOfj5dDJzkmxMdTXFrK6TNnaDhoEC/feCNNatdm0Ycf0iczkySXi8Dhw8QXFUUEx/9j702joyi+/+FPJp1OZ9KEIQzJEAIECDsiIJusouyrLIIIgrKKgijuKyKKoiyiCCiogIqyKQoqoCKgKKK4giD7EiCEACFMkmbSmTwvum/37Zqe4O855//qS52TM5Pp6qpbt27drW7dEhPwcEbHFVAywM3B02VSJJt03XkETHKC63gubp648TTAadoQaST7VPfbCyWvtckLSbJy8NImldGmwXM8eijCuWd9EUNZxegLPvF8zRCjVRQkSBJmTZmC/nfdhfvuuQc9hwxFfv4VrF27EqtWfYTFi5chBNmyi0SVwm0ZcN8HBw+wp4eKohj/l5YCx497rAjVQMDMqaUbR+riw2EU5+cbkxLFB2DRCRd25lq9sX17bPphB1p26gYJhoyRoRu2AYCNX3+NNm3bWsEBHgASpURwuf1RkoDU1FQcObLXOPZHRhTLOTVn3jxs27kT1VJTcebsWQSDQbwzfToGt2uHxCtXIi8ZYfJBT0hAsyeegBYTg/fe+wzNmvXFpUvMvNYZHfB5JTzQpyQBxcXu+BJKGZqkSyFomAcMgJNRiwCW9b/oaBEpi/9uQSw5KRGIbEPsh7fh1hb/3Q1eyRlxIcoM3m1MTAxmz16GZ5+dgJUrF6Njxz4oLS3G5s2fonz58nj11fkW6DJXDkQ80u+0yMUFzTsW8S+OK9pzxr2m3Horvtq3D30bNkSHlBQ0ysjAV8eP45nPP0c1WUZpaSn+2LYNP+3ejfaVKtnHjvjVYqoKNTPZ4Zzhp4u4oSCb0SMOOsrIsMdNz2hblPri54M53qgd0uS4pcA7Jk5PVgqbe5njNxhEks8HJZAUsWnA550LGZG8xB1gSnaarNKNEZpzHgRBJ4fDWPnAA/ju0CFMfeUVXLx8GfVr1MCcyZNRIyPDuY1PHZhHFi3WRc/q1bPgIt7j89k8jO8KEHoUBcjMbIdly6ahSpXbLeGZkQFIfuPqzg3ffouOLVoYL2RnGzskbhYA4ViSAHiZ3zIGffoMwdKlr2HqE5MBwLrh6/LlUkyb9hyGDZvgGj7LhQzhOEkyhMfNN1yHHzasQrdOnRx0v/vvv9GjXz8UaRq8ioKzZ8/is08/RR/KW6YXWgICioKwaifIs45exibC603E3XfPw/nz8ZYiIEthO5SMJ/blgBPRaBrw+++4ViILsTyDRjy2US8yYUGj5f+6GckRvJBeclu8/Jm4+LnsETvmv5dhDDh+Z8r1f2mWno0d+wAWLZqBO+/six49BqJ8+YrYtWsbDh7ci/nz34WqqkxnNnc5RZ7J+Q+HjSvY1KEY6VzW2CTJ2iUmZVzxA3dMmIDp776LRrVqoW39+pg+ahS+37MHjy5YgAVz56JaWhp+274dmTExqF2+vBHOzRmu6R1P7uxHcrrPJhRFB1RzsLkGc/CqKsL+FIvVc5WD73byoRJ6aAlzUUJJrUkkETjkIHEzEhy4Itkj4lvXIalJloNchm7lFSGxTzBafEbTbCc333knADngPLSLtG8ub3JzMemWW9C9Vi0sXrECB954AxX9Kbj99hFo3LidlbuIwKWIJL8fqBkodCLEp1r9FJrH7knUc1uOcEXzkppaAQsXZkNRQggGZetWWQL70qUsqKqR6JfkVrRlLM4B/T5q1D14+unJ+Gz1x4i7cgXQFCuSYsOGDahbrz4qVChnObhlXYesKCjU7WMtxMaJvB95YBiWrViAbt1ed7Cm3NwLmDRpEA4e3IOkpCQcPLgP48c/htGjX0RxcazDCccT5XPYz59PQDhcgm7dXgBQ27rRiW7GE29AEnU6C3l79+JaiVKuXDESCtLkEWOIZg/wIura9FtZtoSwEWd9F3+PZvMA7rw52gIQ6vBbunnzvHCVHADq1r0ew4ffj1GjeqFt256oUaM+Tp48hG3bPsfIkZPRokUbR5dA5EVxbmBJknHMyvncdrx6JNNRwuARN5QkxYwQhgzJZ0Tly34/qisKBnTsiB1//YVGFStiee/e+O38eczZuRP3vPkmutSrh1/37oX+55+4fP484o4eta+y5vKLdh0oFy2XbwQEXcEqSdZ4iM3yy+MIftGftWePraZTPTGFEzdNCBQ+Vz6ffWkG10dDugch3XBoG4EOBr7oNIQsSVYqA0hsk09nR35p0kQ7kt9+Ie7siAMw/2/eqBE+mTULy7ZuxbBhd0CSJPTu3Qfr138JSXIK0OxcGYoCpPjDSJHybAOF2pMkQwYqCsL+FKT4jfFynwyBzE29669viEuXdsLnu9HagPf7DWSWnjuHn37+GY/17m1cfKXrkbmE+WQSftgpnQ433YQZs2fj9L9/I6NiRfu5quLU8eP4essWPDpliiN3lIddfOWRJPh85rFUs87gRpXR/fWpeLznTYiLibEGFvZ4MO211/Di4sVIiIvDqXPn0LZRI6yZPh2VJAk4ftwJJ78BxYQ5trQUkCT06TkE1ar1xf79RlW60wq5ec6r3IkGyLgnROflAb/8gv9SXDTHMkqEJu/yTGSo9On2LlfIxPpudcX3qF+xjWhKcVmwuPUVpQ3RthBLuXLl8cYbK3DixEHs2LENshyLp556BdWqpQtgs+gQ20K4uuASn7sZO5xB0u/0x8MCTC7VuV079GrWDH+ePo2j587hi5tvxg2tW2P3mTNY+vPPAIDte/Zg+4EDeKZpU8MJSVKAeVXc0n+JjhtdB5Iy1MhoHYKXuAQZ7qRp0g0ItHioM874uBLOFxzhji8UwLmY+AFi87moy9EGPAdZjLTgNgCfBtEnYxW+BU/jNEtMXBxuvvFG3Nyli62pUkfEQACbOdItgbwz87vX50N6erKFWpKnhF5xTJIEBAI1EA7ryMn5CXXq3GiNSdOAS5cv4/3PPsPGjz5yKrtuc1rGmhs2bDSmTXsE48aNw713342M+vXx+94DmDdvHlq1ao8bb7wlAqei7U4wJalGn5MnTcKgu+9GUsWKuLFxY0DTsPzzzzF2yhSETK98ICUFn61bh4bmDREh2vkJ5luwc5ql6WnTphemT38K//zzPRo16uwEglsTJCS5wshxcuVKVJxcK0Yh1Dmi1gjHFPUkOW8dNd6LzGnhKJyHunl1ojmNxDr/l0H8198RuZxE0QAYmxyTJj2FgoI8bN78Jc6ePY0+fQajSZMWUXaePc78Gm4wuMm+q8lx8ZmzU4cYqlC5Mp6bMgX3PfUUerdpgyJdx4j+/RFSFIx9+mlUTknBb3v24PC//2LGbbcB587ZljnbWbb649eq8d8BQFEcurCbiiIOkZrku9DRbEH+XQwocvRhGlAyNcInU5TdDgEqR7QpS2Hn7TpclrnJenGQIt6YEVs7MxOvtG5tedJCkB236nHHkaoCScgHDh1zMkeap0AAkt/rcPCxC4wixLOux6BXr2H47ruZ6NPnGQD2M1kO49lnn8Kdd05y1S84+qIVSQIyMmpi1Khx6NWnDybfeSfatG2L3IICvPfxxzh85AiWv/sudN3M/yY0KNobJHabtboRi5e+j9dem48JEyYgPj4W+/b9jb59++LEiWMAgFAohDfe+ABduw6zNnb4OMgxx6dP04BKlRojOTkd//77JRo16hpVVbJ0ijwtUu8Tb6u9VpxF1JHFwvVlXjfqYodznbm958ZIorUn2gBiH6KiWUbhGxtu4k+UN7zJ1q1vQevWHbF169c4c+YEqlSpiTff3Ihy5eyE4m7shpdobEmEQ3z3v5prsmQevdcBqCrmPP00anTtiqq1a2PVoUN4oFMnNGrUCPWeegrfHjyIM5cuYdHPP6Nf1aq2zkYRTOINhtyTwR0r9N3ns9KqlLHvan1yx3N2tt0N3493IzeRDLgoEW0P6Dp002lOdiYdbXMGM9h5bq2oKR71RTKCyVWrczEAhZ5zg8gI/7UEpS8tDZPvvx+TabCwb7DTdUCXPNB1r20KHTpkO4E43PTn9wP+FIsGkn1Ass+mdy63gkHgttvuwXPP3YuxYz9BQoLioL0V336L1o0bI6F8+cjFwCdJJD7WSExcHN5+6y2MGjECA2++GQO6doUnIQHrvv8eH69di7fnzLGjd0Xitmx0w0FIMxOXkICJI0bgrqlTsWDKFJQHkH/pEoa/+irWmylyioqLMb53b7z+wAOQY2IigytEvCkK4PMhRpLQq3NnbNzyJYYPnxc5tTSHZI9zAuV4IKH+H0rZnEosV644FH7HgPh3cXXwukD0sNGyNMMIyAWm4LZC3fp2ayea0WwWHpYqfgo6tqPUrFkb1arVdoAg1rEMJtJe3RRJN8EXjXtfbbz0TOSAioK7u3fHoBkz8O6IERjwzjt4ZvBgvDJkCBo+9hgA4IMtW7Bm6FDExMQ4BR9plH4/8rJsEuE6LmeMxmV2HiRxNz4xIa7BE8PjUVXc2cKRz5Nw0AJwowtxjrkjijgdw6MHYUMR1TTIMG7mE20GmjqaPp6UXJwKSTIiejxs7CFKusgND77FzeeJj5F/EmM4dChSeNL/MCLNJDOiiPuuREOA0KBpwP33L8DMmXeibt3GGDhwKGTZi7VrN+Lzz1fizTlzoPDdIDc6Y4IoLMnQ8uwhShIQFxeDF16YhdP7dmDpRx/hbG4uatSqhTlzXkUgkOGwadymkP9eCC8knxdeH/DBx5/gpRnPYepLL+HUyZP45+BB651b2rbFqg8+gJqWYeWBona9Lt5BjubKlRsjNTUdv/zyBZo374ycnHxcuZJozxOPNuDWirkw9uXno4bfD6SkRPRzrRg3gSpegZxEGUPfTfzyIzPQdcfRWcuYdJNTQCRPdWPqbhq6W7maluxWrwx5J4ont1K+vA/9+98RAZ4Y9UURZLLbmDgM0UJ33BQNN8CEheqBuabM/28fMgQPTJ2KJg0bYtIbb2D0gAEY1rs35i9fjj8PHIAHwPPDh6NO+fKG44kK8TS6DUfk/4DzEgZFsXbLKUqSR07yzVwuWsn+cIuqpHf5+zZuI/U8WVEceR5d9QyRsZmNSarsGKJENMx5y9V0Jr75wI0pMrTEI+9MLlGL4saRz2fsQuNYbuTmD2uHrr/mKoKcl2M99yoKjONlRttDh47ErFlTsWjRMPTpcw8qVszAoUN/YcWKBejbdwgaNboxal4uEnPRljgNsW/fPrjp+np477338PH69ShfoQJuHzgQbZ98EjGlpfzSd6bE2P+6RSpNmzYfy5YtQM+e3RAO69ix4weUlJQAANLS0vDuu+tQo0YLh14gTpubQVlQEIPGjXti794vMGzYa8jLy0c4nAgg1qI1RaFj4XoEbWWfP48rRSWokJrqThvXijGRsvOCmavq1tGKKEfc1mdZ7bjx5f/Dc/GolePYmlm/LPHkpl8560to166H4zc3m4Y/o3bdzDFuDrq14ZYQPVpfkgQ70t9suHrNmri5ZUscy8+HlJCAqVu2YGKXLnjgllswc9MmxMfG4ocjR/Bhs2ZAfr6TwTObxiFryLghXmrKJIq0EdV1zm5FvPHIHO7L4XjhPh8+P6I6Ipoxbrjk5gNMmwYw8tzySDgLx2IUEyHabTK4wce94cQo+YaRm75l2iS8pKcDctYRw6Yh7xwNgubA3MkwAgKM6HhZM47JeTQNciAAny/JYWZKUgZuu+1BLF7cCz17jkWVKm1w+PA5zF61CFfy87Hoqads44cXrljxBIGqath09I6uo3qVKvjqo4+wbs0aPDl7Nko9HnS+6SZ8tWwZ4uPjnYh2wYs1v0SLqor+d94JX8WKuHP6dBQXFuKnPXtwyUzXIcXG4vWJEzFh8GCnXiYqJOIiN4VzrwED8NaHH+LMmQMoKakCTZNRVCRB12MiI9oEOXOltBSHCwrQIBAAqtgXlJRV/gM3ZSXCpfp/KOJKiUa8vP7V2qDfRA3brY+rRQqJGgpgjZWMGDf9mjMGcV7FwpVe1rzxDidCN+cTfXdbtG6azNUKf8cErHezZqiQmIhDFy9i0cCBWLR1K/4+dQq1fT6ker34+PbbkSIk2bOijwIB5OR6HHooHxIphdzznBTwwbGlSouZ2ubKsBhb7oZgYgrc+KDCtxhFLk/MjHN8dmUlr+f3ex1Rh9w/xPmHaB9wECUJCCteBwhWHV23NVogMmSVzVfEQfLsbEcUWzTDhGCjjQj64z4T+g0AAoEkLFu2Drt3/4BNm95BaWkIN97YBl99tQmKB871EkWzCZtJkzVmOIgGRKOmTTGraVPHgxCu7qem3zl9SRLg9SZj5iuvoU+fbg6n0/0jR2L2jBmQ/H7kC2tSXD6SFBlFU1ISg3btemPLltWQZRnLl7+C+vWb4q9ff4DEJ150PCkK1v35JwbOn48FDz6IobVr41pxKZoG2RuCrEhOo51KWdozKxGskBNdtBdE7TBag1y489/E3/kCdyMu3o9wex8Htyw54yb63CIEqVih9wrc5bnIxNxwI+LBTaHhALGzF77ERPS75Ras++47/Pjhh/hg1SoMueceqB4PaqWm4r2JE9G+Zk1bJnAkmIq+I7E274PLkDLAFvElDrksVUHUvcQ8EpLE9w8id8EdODV5tRXRRx0Fg2ZOFq8TFt6paAREo0c3eQjYO5hcZppKNMcLpz3KA+jIFyHqYn4/CpVkZO03cggSCACQppmIof7MkuILQVVlvPji8zhw4CjWrn0ff/11FtWq1cQbbyyF31/JMWRRJvDhc/SKS1aWwvCnpuKRiROduLhyBZAk+8p08wXRmOdt2vqbB3ffPRHhcDGefHKKVbdVixZYufozJCRUduR4EYMpuO+P8E7ja9q0D7ZufRvbtr2B5cvvBwAsXXoYjRrVNIws2LcbWdlzfT6cOHsWNw4YgGbNW+DDhQtwrUQp3JAtiz+Lyor4nP/mZku4tSs+E41RrmDy55zgWTukp9h5emQ7qbhZx02O8LUj0jc17yYmOOqiDdFNXkUzYcRijMfpEOGoo36tS0Y48zb/RvbpgxFPP42l48fjnz17cP+SJbhYUID0hARMrFsXj9SrB4+59i1ZQw6NjAzD+6GqzvOw1A87rsTxQfgS7XVxz5jtRVrzwv08VJ87sciW4nNJS19s26sYmweiiRMhi4JBeyMcUaLLqXGR+RGg9J0zNP5+bq6dTInXNevIUhiq6nF0JWefsJPQ8lMwVIHw7/Nx1odq6aqdyFZV4VEU0C2AXsXo57bbuuDmm1tj48YPsXLlTFSqVB73TJiA6zIynIh3k6tUSIbRpjpYRLmuQ/Z4MLhvXwzu29d+JzbW2Z4o0Bxr2WPQtWkrehBGp5tvRjlFwS3DhyPfdDpVVFWsfvJJdGrb1l0n4MQiLkzzt05du0NRErB+/VvYtu0zZGcfxqOPLkWLFiOdG+kCMetxcbjt9dex+e+/cXnjRqBmzUg8uZQoGniUwj0mIvBUOMHywYsM2e03Ny1R5FguDDdi+5H3L7YdjetdhTNKLld6u82v2L0bs+Zd2/RGCfcUe3vWTfnnOHPDodipiHOxMK4UD6BD7drYffQoqrdrh5fatjWe8Vw1nGmQRmnmW9KDkeuU6718GMEgUKh54BXzhbnBKfYp1uHPTcXX1VLgcf/ipImcmXJFCf15lTB01RPRNJ8aWuNcVol4EXUJK2KDSy/OkERBwKUReYxofKIXjNpRFMuoIHjoNV6Vqvt8xhnjZNX4sXLl9hg0qL3VZTgMFIYBmCjzcA8jK5QYksYfzcnjpqSJaCAUiMqOm80FAMXFpahSJR33jR2LZg0aoEWDBriuUSNLkInjNvJ76BaC+K1RPl+SNa+33TYOa9cuwvvvv4qkJB/+/fdP9O7TBzfXqoX6cXFAfj60/Hx4APROT0d8aSl+PH0aQ5cvRzgcxomzZ4G2bSPGe63AQfMyX38iU+XrxMUY8Ij05MaUozHqshQOoR+HzLhaG271CF6maEfrTuxSBJ935xYUw9+TJNnOayc2fDW5Iv4fbVwu44SmoXOrVlizaRPiSkow/qabML5JE2cuPx5CRLCwjQcrBwW1CdiZwNmOpKTIbqThmDI3sQqUzXq5X5nbhqLu7eBV1Inby27CQdOsvCWSRLmd2OSKwIsymuoIzjjHQMnyodBXRXGoUjQWwpeqmnDwTSDaqTDnLuxLxqE9hs1ABgGlvAt0rwmPHkIIMoJ5Nn6S9CC8kgSvKsHfpgaaNXvW0hPEpc/FW7ThcNTwuo4bncSBuigvPNmr21rj6JdlCcOH34lmTZugaWYm2rZti9gKFSNy1IrqKoeX2wfBINC0aXf4/dXw6afPw+PxICEhCVOn9sRffw1C6+YN4Y2JwZVLl3AlPx8dqlVDlXLlcDEnBz3uuw+ns7NR6dhRR57Ca0UobrIkml4d7d1ov4k6phuTEYnJrY2r8F3uWOJF141IX6Pp6In5OTgi2GWZSaIO69hIZ+1Gi1WgfkTU8yG6/c7hcEQ6iwPSNHS+7joAwJ9Hj6Jv1arokZBgLKxjxwweQE4nSbINFZ7SgztKOEKEwYpmGlfJubxwc9KJ++3UPDntOe/luOGynL5zP1AYHvNSFeetaYoCIMgmnEVEyAAQ1CInmNsW3E4SGZs4QD7JJNsVxeHQ95jPvZIELyWLJwSSPScOmHZAzJuQtGyecsqDzMw6Rt4kn886xidJgFcxkohnZnoRCJRD3br3OMRYSAFkH7s1DnB69fgf29x3rD9OvCLd8OdiHVZP3PDgz0LFxejapg0apaejaXo62lavjoqVK0fOGc2b6PEUlURNg+r3o2/f4Vi//m0UFgZRvnxFvPHGfQgGd+OGOA8qx8biSjAI7coV1PL50CIpCaXFxbh3/Xqs/+03AEDO5csol5YWCbdL+Y/aolni4+0ZYohwLSLncuM8bpMRjUOVpeSKTFs0BP6LMInG2cxnlHle1E3oVdGh6NYsL7QQyOjfu/d37NjxHRIUD3p06oQ6VatGjk3ECX/uJuTcPkXABWKtlZKC9X/+6b4gyMPMPf3EpCXJwZPoj/tB+O/EJLx+n81gROch56T0ouikonHzCRA1VT4GUQpyrZoA03XLWx7BTDUNqmobA2UFp/EIXRHlvJ4kCfNo9hNB0xwHxBjF8XJBya0gU5BSs7QDTamIeJAV2W32LWJG26o/xdG9qBDIEAZrPoime4k4I6cYz9kTbSrLwin9JklAbGws3n33PSuZoqMxydgRsna5xfUgdCAD8PuNsN0WLZqiRYv2OHLkX5w/nwMA2LRlCzZt2RIB32+DBiGhpAR9vvoKLdPScDkmBt/99htGdu/uPqD/8WLceiPZhAZEClQqIu93EeIR36muGy+MVtxogrfjpom7GRfiuuafiKRxUYxSHTfwxTZE/QIAcnKy8fXX61BYeBlNmzZDr143IyZGuPmRrT+PqCi74Ygv6rIsDAZUrbQ0hMNhHD95ErW9XnvuRJzxI8NcQxTvTaa2yco350AyE1JzxdxNDeD6JD96TCKBmudRoWLXXFcW2zX6N6+nFnkNWSQu9OLRCm3nqybgntOT+D7/XxwgV4aF3ykRvDil3DliJD2XAdN5JEkyoBh4DuYBwSxYibCpG8LZN9/YehQXTUk+W857ACiK1/XoHOC+r8Ln1w1mXk/m0STUuEhLiPzJjYXw75MmTbJvz7R0mTB41JvI1sT2+P6ZQU8S+vW7D8uWPQ0AKCjIQ0FBHubMeTHi/ReGDcND3buj38svIzs3F8O7dcNnO3bgl/+Y8PV/soj6vrgG3YhMfJ//uf3Of4v23I1/lvW+ULihyunULZl4WWKOF7fuylCPrO+SBJSUaNiy5TNkZx9HWloV9O3bHwkJ3qj9uOtvzpv3xOfGM48ZFxKOrKjrCFSsiARZxpFz54zUBvxmAM4kONOmlB6cJjjDEQMvJMnhp3DjO7wpzob5/6KsJ/We21BApNNaJFH+PEk1oiJlRbL4kAUc78xt85/jkttgfACETxdZEgEQNxwk4XiraFAQzrm8pLkhwWEey8gPehzRX3QpiKqmQc+zweHp7jy6EWHrljNbkjzw+bzwqnDqa+KkutgTDtyKBqBbXb4rAmdVXt1ysEoS2rRqhTYNG9pCVTzDzZURLkTddutZwMK9996PVasWo1y58rh06TwAYMGCNyJga12tGn4aNgzTv/gCi3fswOSOHTFv2zZ8vHkzRvXoEVHfrUTnZG6loMB5KNWNuQKRoXfi9pRIwDz2WFTi+QSJz0Vi5/27Kfl85XLNkp6XBYOiWDd2ORaw+ZgTrxtYbkYAAFy6lItHHx2LatWqo2fPPgiHizHz9fkIha7grYULjNwYnHg4Pvj43MYidu7m2OHv6jpq+nw4lpuLkuRkxMqy3Q/tRgcCtqeZ7ZIWavatCmJ+DOJPtMlINwkYw5JRja5p4Tu0BLcIM2n23CAh+Ojz0CFn9n6iMXGrWnTScOC5l5tPaDAITzCIJABJqoqQz+tY35zv+v1OXPC5VxQjesoxF8QZac7JO0dclTMaPhbO3Hg+LKJ368YhH7w+H6qlB+D3eyKWCOdPSWrYuY4VxXG8MFkpdN5sqME5ycEgwv4Ux2kOUZfjoeEePQTkGXMbVrwOWcXflxEC2BEscfhUxOXi4DtMyFnijxMv4YvzOMqRhRD8fhk+H/DanBm44447cP48UF5VEQqFUBQKISEuDnrYUPkmNW+O3Xl5eGHXLlROSsK6MWOw/exZjH73XTS9665IwK8V4yaPkBY5+YA7I43mTRC1ZLc6btmKiafQp+hlENsXo0/E5/RHcJJSKyolug6PooBysHHdTxR/brvIZbF7WQ5j1qwncfLkEfTvPxQ+X338+ON2zJr1El55ZT4aNKgHSZIdItIAz3YSyAoix0ufLmOJ0BG4nKlcGQBwODsbtZs1s3kW3SIEGP/TlXHRLA9CDu1Wk2ABgEDAOoEsskRisaJ4oS4JByQG+O41zYtb+g9+8yeBxPVAVU02onxJ4+XWBTXG6ZZus+BrgOpyecB4VIQxRXPBN1JERdn8zu0LXhQF8KIQ0I32ZEWxchO6GVNcyXfb0affrWGZ64KiY7U843kS8m2asIxGv50XMWjkZpEUr4UCbvgZNzkZ/1jGuQlEvkbc3zaCJM04osKtSI9ZR2Ql9Glt1OghO1qAYJYkeFXV0OOsypITyea8WWM31ev0dKPKQw+Nw8GDX2H79q1QFAXxcXG4dPmy8WpCAoJFRejdqhXSKlXCoPnz8euhQ/h28WJUrlIFeyZORNeunXGtRClnzwIlJc78oaLnGIi09sUoQsFWiEiR4GYYuMk0akNc80K9MDzQdNlKFk3VKULPTTQR6JSEW/Ql8Ha4einySO5TcBN/W7eux8qVr6F378Fo2bI1jh07hLvu6ochQ0ZjwIDbI9pw+CMYHLR2Zcl54ytNjxH16oI3phTGlJSgZmoqDl+6ZC8oqsv5Js0/5400j9yO4IM2+WqhlIRD+yMv+qamdd15oQCxYG7CcJWe5oP29Om0H7F6EnFkYxB4vA3A+C0jw4Mk1cCJx+w8pHuMW8UB+wUebczpk/7nN/6xY9kOpk6fdOO4mz1t9uPhNj/Nh2hAcmRQXe5/MBGYpKpoUC/dohFRReTDKdSMxOXZWc6k4xRARSDm5QGBgBe+9GqG3W/iLqwmWW3KWr5TsIlGB9ODworXCZs5LC/ynQvQfJ+vOYfqI9r5RIsUKMELDYbr0SJNE04VBR2bVsPD99yD1995Bx6PBxWSknDh0iWUlpbC5/Uir7AQdVNSMLJFCzyxYwde/v57vNivHx4bNAgXwmE8vGABlq5ahf9SpKtX4bUloLTUHhQvRAy8LtUTJ8WN8Yr9uH0XuSQ95++LM+b2vuiQEmFw48aMw8r0PxsvT5LJ14qbUUw8LT6+FKNHj8SMGTPQtGF963mfbjfjm2+/xb333IOlCxZEKt0cpggLWyhlWeZcIzbfr+X3o7ikBFmahuq0Q0A4FZ0+qmo5CSiUnivngl5l/UbMEzB4VAiygVPuJCLYidEBkduZ/FOUXvyP6vBkHPS7qNBTWxynokQk2DQNsipBUZxJYOm7LBm7nSJftqfEphlFgX3MksNMAkF0NHEC445WUtCpUU6Q9KlpkMzcISlKvn0THk0WbUMzIVSoeZy8jU8k4YSMRHLemDdN8HnPy7NzNlrGNm9P0+DxS5DYjohDLzPHSYJTN9edWC/C+CAcEYG6KX4invjcs/oePQQZQJvGjXFk1y589/XXeHfVKqzZtAmAcbsElVnmjZANAwF8dffdqCDLSAyHUdXrxR/mGe1rxaVwfsYchREMFnBbWO68n38X2+B1oskIt76iyRGukYtFZAhCGx4zSoIPWyy0tLlvQWySN7to0cuoUaMa5sx52arXtWtHnDo1FmPG3IGPP/4UiYnlLZBdQRTHejXZ7DZus8GqFStCio3FkawsoGVL20svhhOJziv6jY52uQlcpmTlZdvXJUfTk8WlLuJQdJpzNUckA86Gxc0oq6gyvKScc82XOhABFHENOIFw0584AxSVTvadR0q47WNwXHgV5wBlRUGyj/JtGRFzYZ9sbSyJRpDPBzRvbm64uBE1nLqBzwdbqeYRbhkZkAMB22BSFHj8fqiq17FPJkmA3y9bzilPBM5kxzKnnxXFYxz/YIOnI5tuapeimM5ybjDxMGLaBBP1Y06rwvzqOvcj+vDdd9/h4N6/8e6yZVi6bBlgOp6CRUUAgA0//4wNP/+Mij4fVr7yCm5s2BBH8vNRv0YN/LFvnyuurxUYeI+Li/yd5kY0kMXnbvyJE4jb/LrJIr5e3RQaF57rxrfcbnONZos433N2yXmfOGy3NqjuoUO/YPPm5fjii68gy7LZVgeMGTMS9903CrVqpaJt204R7UXjr+J4dZ05k8UGRJvGLLVSU3EkO9upW/ONZfGKebJBuDMKcApbYpR+P3JzDfU5K8t4TKmMuN57NXVBNGVEpxLJe949YJtk5F/gPFfXzbSvPo91SkM3ZZLPZx7PpI4JUK4Dc2WanwzhEyJuYhiNOwfK7I6oOxuEc8A5OFGHIiPTYO72MTyzyHoh5Lw8y6ZJork16+brXuTm2vnKzSm0Pjn9Ef78/hTbrMmyce7zJSEvl4Ysw+835QAX+ib8HkWBrjsdY5IEeCW44oLQRXAYkX2IPL9JRhXZiW5453Pm5lhlu2OvPvEEnhg7Fis2bMC7q1bhvCl380xb5d+cHExYuxayJOGhrl3xRI8eKAiFUKdiRXglCUcvXsR/KWVoiS5F04zjdm5KTzRGHM1YiMbMuSvcrQ8qfCWKz6h9N8XYTVEV4eRCR4RPXAhmH/wYHv3sQdj0sEaCpKrAtk0b0ap5M8PpJMDfuWNHrFixAocPHkQtMQmxKNjEsYo4c9Ou3PABIGDO7ZnCQlQnxsuJnJRWRgO67rx+mjcr7tQTHrhiboHGBQPBLB7rE8cgSizukOK06CbERQcTxyXfehQNAKZ8Q9cNI0IIdVYUAHl5xu62KjvyKIn+MXpHFhUYUTqJhTM3Ps8iPTAF3XZOGTvE2LMf+OEHYP9+o24gYDiQWrd2ePgpVx/l701PTzKOLHBLgYQXCf3MOg5S4QFcqgp4wYQdfwhANgU+RRdKknkkLo8JI0UBP7ZB08dtLI9WaBMbZ9iiMkHfWSOliYm4FA4j68wZZOXk4FJ+PoovX0ZxQQGKr1xBsa7DX7Eihtx9N27p1Qvzc3Oxfu1axGoaUhITkRIfj9TUVPgTE1Fy4QK2//gj7lq5EluOHEHrSpWwoWtX9N682X1u/5eLpgEej3OdCoLcVeHhpSxjwY0hizImGl/l2oDbuuS/ua1HLiREvsLa8EhGaDzlfRK7Eu0UcfeaN1daWoSdO7djw4aN1m43Pa9SJYBx4+7FihXLMXbsJFdnlz1UlpTcDV8ifxVxwurElpYitUIFnMnJcSqdoieNt8HkQVjxGmubF5HXMwc7vcplD3XH9TBJcuYv5RuEHDQ6okx2Cx82FxHRUBCGx3aEcDnkRhOc5kUa5o26Gcluss8cFEUpuzXtRvqubWqand9Cp2NysjV+jmdVBbz7f7MRzDY5Qr4UaKYooZvwFAVIC/jtXS1uXfEzEoEAoCjwaoYc8qanI1e3I3q9bvoOANXvfvTH2qhgGzkeUxZxdZHmXtYLbfhIzmRlOQ0k2hDihGjiLCzJuHy5CCdOnMKJE1nIzT2HkpIQPIUXDTlz5Qo88fEYOmIEps+YhWenvYStm9bj7IkTSE1ORkqFCkhJTUVK9epQNA17du7EfS++iLc//xyVfD7MGTECU5YvjzKZ/+NFkoCEBHeC5wv6v8ga0XYR17KbrBFlEedhVIQF6ZbwXpQTXPem5+SUovfpWCgdVzOKJwJsN0e7G1pUFXjvvbl49dW5SEpyHqVSlFjMnj0HEyaMsRxPbuLCMXw2XscFL0Etcq64Ti54eQJJSdh19GhkqBEP4RedTvxGO77gCQmMNtzMCQpq5fgiEUfmDLEK3i0Ng5s74lEwEffUr+jTobZ4MJOjHTcZzjfn+aCo8Ahd0fbi9cWIJ6rHBQyPSOCDot/4d/rjJxLEvgm+PXuArVuNz4wMoF49409VkRf04tgx4I8/7EjoYNCeboouo8L9XLShQrjUNDv3eSBg1ElWpUgvoAmfpCZb7TrmQMSZbuSUdqxf2tgQ5QwpIjT53K7hODblj56QgGyPB1lZWTjzzz/QSkoMGVNUhOLSUhQD6NyjByY+8AAmPv44fv/1V/yycSP8SUlISUpCakoKUipXRpIk4czWrZi3aRNe+uYb5BUW4t7rrsOkBg1Qa8UKXK1EUy3cS0GBEfEkcgr6dNNURKXbzTAWf3djKpzAovVDdcUFJTKOqym39A4xGG6ouvUlGTtiHoQhS5HXgHLmwEHf+O23GH7HHc52mZAZOHAgNn3/Pe6tXTs6l442FjfciJqwaCRpGk6fPQsAqELRTmLoJR+UJDn4vch/RAZIC5b/KQo7v0pOLnEs5q15YZ+xcK1FKO5akKDYsycSVxxHHGByc4s4ES0T7pRgSjdNrpc9t46OmW1IanIE6SoKJYvV7Cu33RRkcZ74OMRnLjunDljJEtA0yD5TEdm/H/j1V4ODUhSBphmMOjMzIpKN0K5pQIP0gL11QDRBlU2GJ0nm8TgYuwIkM3QdgMLo0u28oq4bjjtaT3wMphSVFQlQnAaUz0e3/WhOZ5MYgsAVFCJIXQeys7H6668xavp0BAsKUFapUqkSBt55JyRVRYVAACOGDAFyc1F6+TL+/vNPfLhlC77+7Tds//tvFIVCaFCpEtbdfDP6yjIui9uJ14pRCgqcjideyvpN5FH8041/RivRZNnV4KAiGg3R3uH/uxorssNJJL7KX+HDFdnFb7/9go4dbwIAx5EFwFgCnTv3w113DcLdd0+y2hP1PhKBEbCIspUaFX/jYwsGoZ8/j7MXL6JKxYrGb3yzQcQDKVRM7lgyQOTJXB4Gg/D5kh2yhsAjP4DoeAJshxI3CPixuWDQvkDUFE1RAyO4s4sPwzE2UVgKhmaELODGFf/k80HfxQlkv3MRJtIMF3nWVFIl4YGVm89sVIxWpeL3A/gjyyljTcRmBVMcLBowNq113YNqAVPOkKItSY7cFJbeYLwABINIr9fADuTm9MHgpshCCFUsxPCNNmFcRBdy8ILTICD5R9vp4rowI93CkgyPVohTOTm4sXlznDx5MpJ4WPF4PGjWrBmad+wETYtDj1sHGJFcmobTx4/j6x078PXs2fhmyxaczc2FT1XxwtixmNSpE/TTp685nsoqblFLovyg79Ge83ripgjTZ1xtJ7GdaDaSWURWYaxhp1NUrMefOy6yEZhWtO7L8g3wepcu5aFKlXRXFlS+fEWEQjoAHZLLeOi7uE/OE4hbuZxc1rOr3pyXh9M5OaiSnOzU89wcJ6JjSoxwEjZHwpIMjx5yvMIeO0wULh/E5xwsYm3EYumuDH7inEQlxxmBzvm5m1lDv0Xcoip+5+Pm30XlQJxkHjAgFj4vYvCKOH+EKBK4IkzUBtPtPYpiIGz/fmDnTkMeEGJMGUGZWEhUALYziUy+JDVs6Uk0t7xrHgDGfzfEmWwlS3fIZk2DrIYM/wA7IWO9KKx/2aeATsR4tEI7gpY+Sc7wDRgiNGqHFBez9Jo/H5v27kVJOEpCfrNMu3IFzzZtirAk4/rWbdDUjC4O5udj+x9/YMG6dfj6hx+w9/BheGJiMKJZMzzXqBGq5+cjPxQqs20q/0ELZ0UwCp0t/XfG6fqbuFrcFKho/YleWbfipgS7jUPs262ei3LMk7PyDPd8WCIzCAOQKGG7S4mVZZTQ0cZosJYV+SV2KH4KCwOahiOnT0OOjUVaaqpz1XGmbH4PQXYEuIhTL9r7xFQlyfYRWeH00Tiq2XdITUZ2lvFvXFwx/vnzN0i5uWh1ww1Q4uMtx1MIMmTt18ixE+xcMaSDvSLgnIHyqAVxHghmGpjZj4fTpKLwr44mOZPVdUDmjJ4XvhUSrYjnGUVYqWiaxWk9imJngaWQVMCa0EJ4sX+/7edRFNuZDwCZmWbUEw2Ie/olllTchIPm2/E74VBkmAR7Xh4U0+GIPOZIorEGg5AlyQolVlXhimlOoKKjhy9KRn/hCxew588/ESwowJQ77sDATp1QpVIlnMjNxaz338fn27YhUKkSHho9GuNvuw2SOTeXTp7EupUr8fWOHfjmjz9wNj8fSlwc2teqhWmdO6NLlSponJoKz/HjdgbEayWyiDTr9n8Unvl/qlNW324Ghdv/bvBRvWj9R4OtDJj/Cxhuz3UdKC4OA4iNKibCYQ/C4dIy2+M6oczXjciT3JR//szkPycPHIBeUoKalSrZAItOfj4Y/hxwONEd65o0ePN3SbJZm0crNOt6HGyGd8tP4iYklGDPnl0oLAyiSpXG8PlSLRZHS5dH8nORSs+SVeNSgyS/YiblZpsthB++EUJ44vTDjSJ+bkOccK7sR5MBgsEnThEZPa5qnmLfimodKWBdUcSulmdPBbVviRcSAHwcqor9v9piiN6jANhqjXxOZxdt47MNCIf2D8Dj8yEpEHCOW9g8zA96LDitJO6SbGxYiDjWNHigQTVviLPQnRWMNAjc1rFIHOZvJw4exMmTJ9G+VSs8N3ky0lOM4+kLP/wQS1atQqi4GKOGD8cj992HmpmZAMJITCjB1x+vxlebNuHrH37AP0eOAACa1quHkd26oXPDhmjXpAkSypcH8vKQ78afrhWjJCa6O4r4+ilLFkSzc8TfojFssT7nf+ydaMnD+f9lTXPUZ7rzRi6KjBJBLkvEcZ8BEONqglAdj8eD0tJSRxu8Ln9XllgDbgDwNUWySOSpeXk4fO4cujRr5tQ1uWOJvos74kCks8WklZDuQTAPgGkDUZAU4NzL5vKFs3MyF4jtX7y4H+fOnUCVKlWRllbf6prncuJmBs/AYZxAMNoWT6uL82ShkvMiETg+oSL+ifFxWSMSgdukiutB7EckBjGCiuqIcNOgs7KMd7KyDK8SOfm5IQo7BTDJGu7bsroNBuEBIKsqVNVjbZwriuwgFZJr/PZyi564bkRKiAmHR1GgmidJHLtgNE7zPVlVDVnENzUo7Irv4LvxEBqMicfzZ8/i0JkzUOLisOqhh5Cemgp/IIC1O3Zg7urVOHrmDDq3bYsnx43DTeZt9h6tEH/v2oXPVqzA1z//jJ/++QfFuo6qlSqhy3XX4amWLXFLZiZSFMX25JlHv69W/m+aOREJ9wRzwixL0ebfy1LeowltV+jZVaJXMzTKaKPM4gaLmyIX5fdoDFvTgPYdbsFn6zegbv2GzusYzZc+X78e940fH12J4Q1yQndb7FTPzTBgUSFHzp9HRvnyiI2Ndb5HXgPzj66odNOBOUgcXO4M539ukS4RYwJQUHAFr776OM6ePYJbbu6A0LlzmPH22+jcpg0enjQJMZIEEFMVASGOwQSSK5MUF6+bgs8NI8Ygw6EQEA7D4/Vaz8KK17pZATAEO531NaJ1FDuqQROYMHnqRdj4nHCBCDgZEh8/Z+QUskTMPz3d6aFXFKBRI/zxh30CLyMjctkHg0BytOMdqsoSixtHdEQB6MAhF0Z8rvLyrKT+roasSVxenw+KP8kwiOg4Hnc8EfPnZ5rNvxPnz+OXHTsQI8s4c+gQ3njzTfx75gxuzMzEvR06oFLFihg2cyY2/PQTalSvjkULFmDkyJFQzHXz299/Y+HSpVixbh2KrlxBs6pVcVezZuhSuzba1qoFJS7OGdbdqJGB84IC45qna8VZrlyJdCiI2nU0RZSXq8kZqsN/c+Ptbu24GRti+9HquBUXHs9lgtvxCqG6a5O6DjRqdAMWLJiFSZMeiagvScDmzRtx443t/itYkCSPq7yKKOImAvHdvDwjtxNgJBnneOdrXTT6RKEi9kM8hEf2mEvOi0JLQ6ScDZw1ehAGgkEkqSoUxYOvv16Ob79djtat2yMpyYe1a5egqCgBvXu/Br/fZ3XJT2SIpKUocMTmy6pq8Hw3ehO3+XXdeRyPyZzS0lKUaBok7jkT6jgGJ0Q6Ub+SJDu655uvXMyRWAhBhmY+9xJ/1nXYVzR4LLkgii/LTlFVO1zMlD05SMGePU7276A7LhPojxuRfFebhxOQRcA2jwo181KKoHO/y9r0YcchHHi0dq11JPMNGvGPXeRh4dqEN1haiq3btuFKfDyKNQ3Lli7Fxu+/R5VKlfDgoEG4uWFDTHv7bcx85x14YmMxatQETJ78IGpV9QOahjMXL+KdefPw9qJFOHn6NKqlpqJLs2Z49o47cHPr1qhUubJTzpBHNCYG10oZhTu0AXd7JZoscNMZoxXRVhDrm3BYNg0ib6UTX42mwv4n8ROFb3Ndjd4VxaWbz8IYghfnzuVAUVIcbcpSGIWFQYTDJUhIiIsQs6KdTmP3uOHMzYYBnGkbzLUYzs/H0fPnUSMtzQko9xSJDicxIor3b8JAvJKf+qLURubJX4epzHFJp/zy8oCsrD+xdOmTqFatJmrXroN9+zbgxIlDmDjxRfj9Ta17nMiHQniiYVIftMGhmJcs8D1NPhRJMk9aBHUnbfNxs/HqJGfoOefFoq0idsb0c8fmsoks42QIwysPbuBzCjg28h1nFokeKHSMPHUZGU4PnN+PkD8Nx76xo8iiicaIYuJJFD9kUhBIjs0tAT8U4WrJkYACSZWBLM1Jw5x+CQ88sok7oQgH5NQy+w3LMnbk5CA7Jwdx4TA2b9uGpbt2obS0FPe3bImedeti08GD6P3iiziZk4Nbe/TAx6tXo2Xt2kAwCA3A6o8+wsL33sNPu3cjyetFp/r1MXfECHRu0gR10tIQU1BgOPmIHurVMwj/0iVg40YXJDrLVTilULjxyjUTImDuXeCEKs6s2zlRqiPuoPLVRnUZh3LNju9mQNAuKD138/iKnI9700VYaSw8Iob3bdalnBqifqlpQJs23TB37hz06zcItWrVMl+Voaoydv/yM3Jzc9GwcWPnESG+yDkcooBkePz76FFs37kTsbqO7k2bIoPS9/N65twdvnwZtVJSHIa/tZBN70NIcl51LE6925/oJHc4solhqCrCZkJqD8IOQ0XOy8GLLzyIfrcOQa9ecy1UTyotxaJFc/Hcm29i2nPPQZJkhG4dbKHBOvJGwPl8NlMCnFvVBBTfwgYijxxy5qjr2PjZZ1jw7rtASQnCuo54WcbkcePQoXdv63V7ijzWpm9IN3OmIAwZggCl4vNFRu1wuiM46TfKJ6Hr9tyRRBQihSBJRi6n7GzjuN2xY0bdJk3wV1ayxVckyemnI1JIVkNG/UaNnKFs6ekIZTbAhg+MdyhtFAlPa3nScuKCh0tWvm6J6RKOKBk63+Xm65OvGRo3He0wJyTv3DlMmD0bZ3JzcUXT8Pv+/bhSXIyGVarghxdeQNsWLQBVxS/HjmHDTz9h1qzZmDDhfngRAnJzcWjvXtzzwgv49scfkR4I4PExYzC6d2+kVahg45/DTWNs1MiA5+hRXCsuhYiEW8FApMbNj8K4yRmerEfUnrkcEIvIG/m6F3mv6OQWHaRu8kz8zuldGC+F85PbSZYkiLk8eHN8WDZKyiEzsxFWr16J224b4hh2KHQJCxbMwTvvrIxANQeJix5+9IHzlXNnz2L9l18ieOkSmtWvj7YtWyImJsZujM4W5OXhSE4OPDExqJ6aarx/7Ji93skR7raeAaeDgQsfF1xSUmjO4z3BIJIDAeTrXmusMuzn+/d/hbNnd+PzzzfD4zGO8Q4ePBnffLMLS5fejokT1yMQiHPsOouKKGCetvKn2Xq0Dni1fEQITxahxRFuKbEm7g4eOICX583DqTNnoAAoLCrCwE6dMHbQIGOzg1s6YGPmSaiYDpQk6VAzvA4Dios6jx5CkqQjKaBYt2A51CBz696rGP3SZhQ9EpdtVhbQgI5CqCrQpAku+Ovgj1+dew10cjs93ZAz5hVDRmZyHuVm0kqhvxry8oC05gE7txKXfyx3oFdVETYdbtxHpapJhlGmGwacw/jkYQTkSKT5o8SHouOJ6WmlxcV4cfVqfPnXX0jwevHHgQO4kJ+PComJeHvyZIwcOhRyhQqAouDNjz9G165dMXvOe6hRIxmevAsoOHECz7z2Gt546y3ExcXhjoEDMX74cDRv0gQxcXFO44sQbuLmgp4ET0oA10qUQkTH5Ug0OSP+Liq+nG5E5ika6W62BsEjydatvaLIInLk7JGa5ylQ+R4iteEh2qYfRPvNfNEj6fBKEiRVjgBTNNA579M0YOjQiZg69XEsWrQE4bAtpxITYzB16tMYO/YeY51Jtgwp1OwIVN6eBa8w0FBhIb748kucOH4cVfx+9G7Xzjj1wJ0Y5lrMzsmBpuuoVauWM7ylXj2DuXB7lTtdAOviJEVlEZ4mQlTV64CZ+5v9fuMIbnKmgvwMr+VnJ/Igf1dR0UEsXvwIZs/+CKmpFa2uz5+/gGefvR1PP/0GMjPrIhg0WCYXh/yAgiQBJ7Jl0G244gY/pxGriHYkCa9gEAX5+Zi1dCm+370b5RQFwWAQTevVw2Njx6IinfkjIGhgNE80ODf5bTpJwqbN40jETVE8fB5Ix6ffSB8kzx4nSh6C3LmzIQe2bjXarFcPaNcOf/xhgEXTzpcB4dI4nWfIAuSSHPI6XAbEDtL8ISSrsNc4OYQ40k04PfSdCCY3Fx6SJ4Qv+k6RTXzSuP7E5QwfBIDNR49i2qZNUBMScCg7G0dychDn8WB08+Z4vl8/VDKNsY9XrQJiY7Hnl1/QsFkzIz3IyZN4/9tv8dArryD3/Hl0btsWa2fPRp/mzRHHfT8EG+ebFHL3H20a6epVWKFjYRwZDmpmhWu33HEjasyceDiXND9LSkqw6ZtvsP/QIfgrVcKtPXogiZIBAtEVe7EvrlUDrn1FFF5fhJe+i5yY1RHzaYjF4/HgzTffxcSJo9G+fUf06NEHuq5jw/pV+GfvXixdsuS/wcbHy5jA+dxcjHv+eVT2+9GrbVsUFxZi6gcfIE6SMP/ee6GIuFcUHCkoQMeaNW1nBa1KFl2jBSOHS5cSiajgaOIk4OBLgkFnTKkHiuKFRzXGs3vPHvh9Pgwc2NehB+p6DIYOnYJx425FVk4QXm+ytdFpNCtD9SXDk5tjA8Q9+6LwFS0uYQckrHgdxyrfWrIEf/z9N5YvWwafqVDknjiBB6dPx5lLlzBk5EjAxfEoTp9jTpkxZyGUCwo3q5ALaE77vG2+W8A5L3e4ZWQAmZk8CM4xp45NdtJ2mje3o6h8PiAzE3v2RB7boGL7nWUjnJTg58xN/I0f4+O8hdflxQ1/pnA4evAgvvr1V0xbtgzBoiIUahquq1EDTw8ahKFNm2LNX39hx/HjaNulC6AoSDTz0DRs2BrBoATJB7z27ruYOnMmAikpWLtiBfq2bQuJnGAEJ99xceN9147auZfY2EiFXaRxKlfTjMW1LfJ01sdf+/dj648/IjY2Ft3bt0etatWc7bk5qdz4sPjJaZPDQs95G4J1b+W0ELpwE13RUAQAjz76Ap58cgK+/34LBg68Ez5fsplwfCWmTXsFqal+B8gcXZH2Fosy1nWUFhfj6Zkzsf/gQQzp2RNVU1Kw8YcfMH3hQix46inUoqgmphUfPn8e1SpVQpwYsi8qw3xg4qCjrXvGrChc3sFDzXYdbFSVjZtnNA0rV7yHr7/5BsFC+3p7TQMyM1uiWbNe2LXrc9SsOdDBgjh7JeOD7xFYw+F8gfNwEdFcv9F1/P3775gybRrenDULdTIzgdxchC5exNsrV2L8Cy/g7WnTEMPlGseFOLGsGDlKZMfmsaOYAzCShtvJuB3RCOYAjRtePY4p4Cj3+wHsyTN+MDcouPOOs3yHnAnCRip5pky9JORPQ3aW2R+XDaL8Nr+HICOYZ4sTrnYaVWX3aD5Og1wwup1rMevn5efj20OH8NKmTTh87hzyCgqQ4vNhSLt2GNK6NeJkGTM+/xyjJ04EvF5AUaCWK4e69RoiLi4ZwSDw886dGHfvvTibk4Mnn3we48dPQJrqscdKjt0oTnIt10iXd61EKRTZH82W4WuGO4ecnn27De7xcdsgBpCTnY3PNm9GsLAQzZo0QYdWrQwHolnHo4fA84mJhZsu1CxnH5S7jPRUWRQIot4n2jRmkaUwoNgOMFHnZ3a11Xfbth2RnX0Ugwb1wogR41C7dj2cPHkYy5e/jW7duqJfv97OHFMw9EAP7EsvIuQXW3tfbNyIOW+9hQFdu6Jh7do4eOgQet13HyYOHoz+HTo4AZUkHDF1rJp16zpvxyZeIqZhYBE2HkmCV5IAXUCArsODMLwK4JV0hFTZwokVB2HSguqzb9qkQqTz3nuvYsaMN1CxYkWHnh0fn4yHH16At9+egccee9dxIIRH3Yi6tRvfTVJYzh1R73AhpMKiItz20EO496678OwzzyDmyhWUFhXh+61bMfjhh7HqjTdQsWpVI7JG8Tr0AEcfbkqE+edgR6K+Jq4rnmbEzTYj/s43pWkedd2yZ0JqskM1F+0aDq59UsOOTuOi1EoRwxN40WSIDjEuWEUFTdedp3047KIBRrjheDP/iq9cwU/nzuGd33/H5/v2Ia+wEPFxcehx3XWY3r49OlSvjlFffomCxERUMsOz1fLlUaFCBdRu3Bz5QeBCXh7GP/ggNn//PYbedhumPfIIalesaN/2weHlCKE1RPN0/jz+S3FRUcsoV64AxcVOjkOFIy8aU+Z13YiIU4Om4efdu/HE7Nno0aEDbmjYEKfOnsXQMWPQo2NHTBw1ytmvGwFzqqJPIgKuNZZVRGHkNi5x4SHyaAQ9Ehl4IFAVn322EVu3fo21az9CbGws+vTujRnPPIOioiIsevNNbNi4ETHhMBK9XowePhxdOnaM5M6CVCgtLsaIp5/GC/fdh6b1jTPDyMtD3xYt8MXOnZj05ptYPGmSQ0AWFhbi8MWLGFW1qu25NueGFE26CUcMyQ8EnBt/IkrIf0XTrOssolIxG9I0wDz7Su+rahI8koTV8+Zh5LBhjqNqtA40DejRYzDWrt2AHj1GRKxjSYIpQHQnXfBdc87gaAA8jF9VEdI90IKAonggSxJys7OxfvNmrF+7FkUxiQgrRoJVf3Iy3ps6FT0eeAB9+vQBvH4H4xIFhqXEi39cEy9jriOeiRNAYxU71nWbsWiavR3j90PLirRbePO5uQD8XkDyQvIBSenpVgzrhaDsOJvOb6rlbEPTAA0yQEc1TLbhVaXICC/qmEsFAkj844UzaE3D4FmzsO6nn+DxeFA9NRX3jxyJAV27on716hbxPtaxI3o89BDuk2Uk+nxQTeX0hRemIjOzMX7/fRv27Pkd998/Gc8/Px3lSkucTiQ33sbnip6XlOBacSklJU6hK9I/YPML/ilazm4ygBeTpi6cP4+x06YhrVIl9O7QAcW6jhfnz0dpTAwWPPMMEtyUChEO3ocYdRKNNuk5/6TvghyxnN3m72J1Do7bM0mSMGfOYhw5sh+ff74awWAQjRs3xRdfbEJcXBy+/noTli17F0VFhUC4BH379sWwO0cCSHC0TYYNl5svv/46AhUq4MU337TG2eX665F16hRGPPccPn/1VageZizrOvacPo2afOeS5tDNwqGBEE3QrqIo87lAYL8n+XyG8SDIbn5UAQCSVBU7d+1Cp/bt4QmFoCiS9ZzYUKtWd2LhwvFIShroIDtRDybHEwfRuJVTt8fAlU7KRyTKAHPMT778MlYsWoRKdOZZ1yHrOiYOGoSnFi7Et99/j84DBkSXFWK7rHAWJW5U8zY8egiQJFu3EWWJZtwiSI+4mPX5gBS10N4tNZFF13tzWLh8yM0F/P5kqwtJhW1I+3yOjW5kZ9u584gWSAD5fMjXjKOCohghkqOxe6kzN1nC17K46cFw/8bOnXhw7VqUhMNIVBSM6dkTfbp0Qcc2bQyl2+ys9Zkz+Pb339GlWzdAVeFNLIe1az/B8eP5uHw5F19+uRLt2nXCmrXfokaNWmYXhZFrhXQYgkFVrQi0a46nMkpBASDLTt4tKo9URLuFf9JzaoP/b34vLS7G0/PnY//Ro7i9Vy/UTEvDlu3b8cK8eXjzxRdRp04dqz+PpTLYDiinIylyU1uSzDUKGBEWvHC7iMvVaPLMXByyud7dxCcfOn8+bNhduO22vli1agV27/4JVaqkYcmSJQik+PHv3r8xf+FCHD16FOGSEjRt3Bj33ncfqlSv7rh5z5IxDLe//Pwz3vvoI3z11luQZRnQNHRu0ABjevbEyGnTkKKqaFunjkNx3ZOTg5iYGNRo2NDgsVwJ5wPhDJDLGe7lITzyv2AQsqoiLeC3otSsSC3Yjn0+DYT+EydOoFatuo4gSapTuXImzp49jYsXS3HlSkxUOcPVen4wwuKj/Go9ziN4Y4yfvfnhhxg9dCh6Dxxo2UQxeXno0LQpXhg/Hi+8+SbmzpoFKIppAxqRVpIiREKLRML74QByPZnTKUcIDZZ4Ov+NI4PGmZtrR77Wqwf4/Q4/Dpfp9Crtf4muApFEVBVI8YcNOUPJokSBL26m0bjEjWYScLwe/S5uUHECYvbEb5cuoduaNcgtNHIU9mnRAv1vuQV9OnRAUny8dcnFK1WrYu7332NeixZAIAA1NRVHTpzAXXeNgSwnYs2ad5CcnIwNn36KXl27Om/LE5HHiZi+k0C9dCmSBlyKCzspo+g6ELajPVwNAhFJRFhco3FTwLniqWk4fvQonp09G+tmzDAUR9NjMfyWW/DI/Pn4aOVKDO3VyxyFQCWigHCrw+u5wUKffFuMw84/RUNTkhzXf7pddUogAYAse9C7Zxf07NnNEi6Xzp7F4BEjcOdtt2Ht/PmIj43F2dxczHrnHXy7fTtenjYtUuixsWzdvRstrrvOdjqx571at8bH332H4+fPo3piojW+lb//Dk3X0a9dO9vxBPNIGEMNl12EGtpMEOmRCl+4PNjIipwxCdy4RjzZoTuqqheXtSsoH0hDSPdY7/F1mZBQAcePH3UcGeDT6eWMic8537LhgNMCN7lSoeYRovw9WPHppxg7ZgxiEhIsBZqUYklRMPTWW7Huyy9x66AREfoqFxgGGB5DnecCwW1XnEseXtjaiaBL3i59pwnbs8dW1nlWRDi75EcwdN2+4ZrA8/s9CARSDPmSS7/ZTidqQ9by4ZV0SzHmFzTYtOSBz5dkh2NzxPFJEAtn7lywKQpKS0sx9o038MUvv2DBpEn4+q+/8PpDDyH9+uudAzPXe+8+ffDdvn3o3a8fKlWqguHDx2PPnn3YsmUDKlRIxqef/oTWrVsiPh5AXo67AcCPCdIAOX1dzen9v1oINyLvjeZVoUJyhoroeOLyx/y99PJljHj8cUwfOxZNGzSw6vRu1Qqbdu3Cvc89h/eee86pBIn9ixst3Gkg9BcxTvF7NG2eteERDA83sSY2SWhs3LgeGjd+xlq38fGlePShByHLMt6cOxspycm4UlCAjz/9FIMG9sfHK1cjIaGc1Y511bxZii5fxraff8bGd991rlNNQ3rFihjTqxc+/PJLjO/e3ZqPUxcvYuPevXhtzJhIRijyLL4ry4WPuLNI73IliCtwouKr65Ckag5chXQPgkVFqFCunGHgodC4HtlnRPJkZQHJyeVRXFxkvUPLXHSuqyqMW8eYAQeNdUbeexoLjzDmNATg8LFjSEtNNXYrTUOQ+xImDhiAR99+23A8cbzRmLmHjBMGw6EoWgy5jMh5Id2GtyHQNrFArmerKoxzDGTMme2JYo1UPVpmbptY6ekpFm5VVbZ1/WxTNmRn2wp9IAC0a4ewJEfcPC36Dqxh8DG7Wdx8Dl30iZW7d+P+1asxvmtXZFSpgqRy5XDvsGF2shb2zvDRo/Hy66+jy8CByA96MHToRKxfvxa7dm1HKFSEqVOXYOjQUShXLgaKAniVMKAhkk5E3qcoCOYZP/F0ndeKUHQdCIUidSo3fu32Lv/khORiJ8xcvBiB8uXx4iuvWH3d0rw5TufkYPjjj2PdggVI4gmRJcm5fU3tKgrIIcXVQ5E3R7wnGo1ApP4LOG0xAGA5n3h/orrJWYzfn4wHHpho/e5BGF+sW4e3Fy/G9CefROO6dVFaXIwdv/yCu0aNwsyXX0azFi0iL11g+Ju7eDHmPfkkZNrEMP/iALx2//24d9YstH3mGXsckoR3d+1Ct+bN4a1cGYVSEiSaYh3GxTiKYjmMAEDmqS3EDSU+vyRXsrOtDNMyl0nk8MnNRUp6OhBIcpyqKi0thSTFMXvCVvmpnizHIxQKQ9djHXKG74NZPCEYtI4LO1gS8Snx+IE5bl0DJEm28s1+s3MnvjQDEqxUIOZ7N7ZogalLl6IkLg4lZlJ1XoxcrjaqFMV0RomyV6RNLveYnIl4zs+SinYQRbDRRjo5nqgN4TXa86JmuX3D66oqkCQVGp4Sn2l0HjKNn/37jX503c4nkpGBcCDNpntak7TbwRcP3wER5TO3EdzoUFVx5PJl9PzkE9RITsa799+Pt779FmteftlOOklGmK6jiaLgwLp1BoyBAG7pORQ//3EIf/zxJy5ePIc+fe7GrFkzUKVyIhxXmYtpAThf4DASvf8/cTwpisGkRQLixOKmBXPu5LYjJw4IwPyPPsL0MWOQxB0+moYYXceMe+5Bz8mTcXvXrogx+y4tLcW+o0dxKS8PtdPT4U9JcVfmOTxRjJEILyOHkxNFWY43SzHzRiQIpK5Fnc3y8msanpw6Fc9OnGjkmTFhS/X78epTT+GRl17C1999hy6dOrmPEcAX27bhbtoBdXGeDWzfHht/+w3jzeNE0HUs+Pln9GjYEDVr1MCFPOeOirFInTdrcPnEPcaivSSSRATTpNvKjh0zckbUqweoSdaUBINAw4Y34KuvtuG22zKgKMaVl4DtDNq1axtuvPFWKwrfUkbN6cyXZDuMnnnNw4pxfheSDFllc8+8LflBj0MW0bwdPnIK7dp3tRKWOpAFoHaDBvjxz78i/AzkgxB3LGRCDjvWGLG2+AuiwsCdLnwCAOcEcQ/9r7+6Mj+up4jdEk75UeSMDJvPUXfp6S6barrOQlSTHTYY9UP48vk88Eoh55xw4hOJSjSyGP5eXLsWy7ZtQ8tatfDNb7/hz2PHMPz559G5Uyc8+uSTxpE/hq/ElAAKPBJCkheX84BnnllkXdxA6HMId26I8TngmgRXWrhAuVacJdpNn9F4t/iMnnMCjvJ9+6+/ollmJprWqeN8LxhEt5Yt8dGmTThy/Dhq1qplPNc0nD5/HseOHEGqz4daNWo4+xThBWyiFuuIMLmMmY4gcKWDR9OKNqcotkQ0cd1FkoCv1n0KRZLw4uOPWw3Fx8Zi5O23o3q1anj2mafw6qzXLeNBHN/Pu3bh5nbtIq0S8/+B7drh9mnTML5zZ+udxdu3Q5EkjGjf3sYPd5LwDQKulF7NISDKeVKaNM15Y6fJJ9NuSnfIOV0HrmvSBMvffx/3UVvmTkZyIACfz4N//vkBNWo0drBjcrCLunCEwcf5BOcFgL1zahbKQyRLEk5lZ6N2zZrWex6OC0VB5erVcamoKNIRYdKKRyt09in0IdKGZTCY/xiOLpfrtyXj6Dlg19cFVk1TkJ4OW6El5hkMQlFSIowVLhdJXJAeTEYDJQOXFTO1eXbQHggJJ/rLzITH7wcl3qUxclTRb9YXUca67TyLuquuY+eJExixbBnqVq6Mo7m52H/uHPILC7E7KwvPPf44qlKOFLN+uZISFGghFGoe5OUBffqMw403jrNsFL/fDoy1SJ7NrUVGQVjjE0EuLfvCyv/toqrGZrob7yZhzwlUfM5tADd7wqxTFAxiy+7d2DR3bgTNpCUl4Z7bb8cHn32Ge0ePtn4Pahr27t2LOI8H1zdr5rjwh6KDiEyN9SmMjcPAlfVoPIiPgY2VjpUBcDhpOEpElYv4gSwB0DTkX7iAOa+9hq+WL7eilWJ0He2aNcOqt97CwDFj8M3mzfCEw1FhzcvPR5UqVVx1gJQKFVB05QrC4bDFH385ehS/HD+O9ffdB6gq8rKdIllVIxO3q2qSdTunYzfUDZ+iUcCZP90+pmlAejpSGjUC/GlW9ZiYGIRCxcjNLYLfn2A5P+h5QYGGUKgIpaWxDnOExQPYwzdlpuFIkyPVYxf5E9KdR6JV1QNZUSDHxyM2Pt4xt5AkS8D5U1NR6PGg2BajEXuExMONVw3nFcy8TlaHpLTQGuI0R79ze4bv6tC65Lp2Robxff9+W+dmslUMjgoEIjeLAGf+tEAASPGFgP2HbFxyhyRFPeXmGo1kZhrBExkZhgOTI4fohc8J108EniA6XcV1mV9Sgp5r1iBcWgolPh4f/fIL9pw8ib7PPIMHJ0xAp65dnZvfkgTJ6wUCARTqMmrWbIFZsz637DefD0hIAMAdZaLdJdqcHE76/v/E8USdi95JQrCbNBcVLj4A/lxA8N7Dh/HKhAlOYjQnXFYUZFavjpPZ2aiWkIDN27Zh1tKlaJCZiZQKFTB7716o5cphztNPI5mvVI4kDguD8XRODt5dswZ/HzyI8uXK4fZbbkGnli3NG9N0ZztA5G4tFUvoeCMecRQ6ijl5wUuXcOLkSbRt2jTSONV1PDxmDCZPn244nqLgtKS0FHEUzeRCMLKioITB//fx4/j15El81qcPIEkRjlZJMo4KJPsMZsKfkWym79Gm22ZyjEeT1+HYMYNpmDs+3owM61yuJAGDBw9B37490aHDQFSsaNw85FXCUFUPcnJOYv/+PzB06Ev4918ngyH+RvxK4ueSTXxZX7kyYeKFkqpyxy9Vq1q1Gg4c2I/MzPoRSiEUBf8ePIgqVao5bClx3fI/mdORSEviHHPNPNoa4x3xtWne8JCXB6QIO2xUjzcnChPAdtabvkLHZgTNMZ0eoe5lhCLwzumI6/tW/8E895BTjhs3HkIA6zryzp/H1NWrUSs1FZ898QQClSvjtU2bUD0jAyFFwfC77sJH77+PmMRy0CFDlsL49ttv8fTTzznQzlFKXVhRWSJz5vCJAoUI6sKFyPFcK4alJSp89MnXqBuuxef8GX0yovvyp58wrGvXSJlkloFdumDjzz/j3lq1cOLECTw8axbkuDg0rFkTx0+dwsmcHEybOBHNmzd378uNLjQNRZqGVevXY/P33wMxMejcpg2GDBhgRGYKcHhMPgS2y82bpD9xiTBW5CjUvEcPYeny5Vg0a1ak8QHgpjZt8Mprr6GkuACylOC6/kpCIcSJgoyNVYqNRVgw7N7dsQN3NGmCJNq55u+RQsa981yoiAuR41xU1mitcUFABgEAZGQgOT0dhbpsNV2lYkV4YmLw+549aNqokW2A5ObC70/GunUzceedC3DqlE1mlOiVy0Brp1d0pJG8ox1CgpXnSdCNxOKyOc6qKSl4/+BB93FKEk6dPQtfuXIRCgU5JmTu+GTFo4esozQRx1wE/Fo3EAnzbLNej6tOShsK6enmTXh5eY7waNXvpFPa1af/qR06Raeqphxxwylg74awiAPaBU9JTwcl4HUjWUsn0cEUBkHvE5VybgxpGh5aswZKXBwW3XcfbmrRAgfy8/HqRx/hwdGjMfKBB7B8yRKk161rJtgFvv7uO7Rs2dqCQWRp4homPsDtMnFp0FxaMip6uqBrJT7eDgkTNrmt7242Df8sSxaZ3385cACdmjVDDM9Py/rp36cPBt1zD+4dPRqhwkI88+qr2LN/P1o3aQKtqAiPTp+OoQMHYvTIkda7HkmCJHkcR7scRTeO923btg0rPvsMly5fRsPMTIy+7TbDgSOOhehZaIM/l82UE1S4eJMl8ygg3dzJ1s2Kjz7CuKFDIZs3P3N4KygKbmnbFt9u3IguHTo4HU+sbw+/nZF3bJZYjwel8fGWI/Hd7dtR1edDD1M2i3t9qmpufMNYVyRyrMhUzoBE2cQdCqLXBTBsmWPHjGdmHpKUW28FzE0jSQIGDrwDH3/8OsaMecwiM3IuffzxfPTocbtjbXNRSPA7EnQHg5AlCbKqWusfx3LhYHgEr5lA24FGHQiFQiiJiUGsSV/WJpc5ttyLFxEXXw6XLzj3THhAP7XHzAl3euLzpyhW0nGrUVHx5t85riUJp/OMAIJqGRnOTSazLRkhqKpssWuqxv2F/J4Iy375Y4992wWXM6pqOJ2ysuxIJoJrzx779IhIK9HsNVFw8mhaQiTzTi764QccunABj3fvjucGDUJstWro8sQTeHfaNNw/Zw4uaxr69u1rCdPc3FzIVo5u57j56cUIHcqNr9AzrqcRvv+f5HjSdSMJIkccpz6qwylOVBR5ciDOgAWm7YmJQUxJCUBJ9zgMuo44jwcloRC+3rED7372GT5/7z0opGDm5eG3vXtx++TJ+GzpUiNHR7TxsAWwZtMmvLtuHabcfTceuvde5Jw8iXfXr8fCDRvw/ssvGzcn0Hv0SeMWlWOzTcqLQEk3xUKKAifKrNOnUa9ePWf4B1toqYqCwsJCuwEOk1luatUKG779FlPuvNNVk1m/axcm3X67BbevtBSemBicuXABUFUrKh6wd3VV1QM5LwdJigI1M8kx5dzW43o+zwnNCdyrXQByg3ZoJHXIlD05PR2+QJqx4wLgpZdmYNKk/pg8eQp6dGyFT5ctw1e7d+OXvXvx+utrcOZMjHkrgd0fhVQ6dUYZiiIbeSd8IXgJPVyRlIzdXLdQf/ocPvwO3H33cNx6az/r9qM8TQaQguLSYny0bh2WL9/gGDfBwh1jREZeaM6FbwkJxRaCVEgK8TwhqmqFIOXrOt7ftAmbf/wR4XAYbVq0wOgRI5Bi3s9KPCNl0CDjvZ07HcZZbm5NK5UKv0GDuqYlRXXoUoNjx4xPvx9IkS7YREDzq6rGuWtddwhQYvRc35e1fLtBUQMnjskVJvqNtsXNEOj8rCyES0sxs3t3BMxrQEfecAMGzZuH9W+/jWOHD+OLTz9F7+EjoGnA3wf/hB7SULdCIpB7GsmShOR0H3w+47hGbGwpDh3ajf37s1E7PQ31+S42h5GOfPDcI1Ryc4FTp3CtuBSaT6JHwdC26tCnGw90Y7Yu/ZSEw7bjRLRGdR1xcXEoCYeRc/48Rj79NN6ZNQs1KTpK13Hx1Cnc8fDDePmJJ3B948bONrghw/o4fOoUxjz2GO4cPBhvzp0LaBrWbd6MXmPG4K1581CnXj0HPGK+QDd7WERNNAPW4VTQdWihECqmpDg96wz3dWrWxOmjR1GrTh1Xpan59ddj3pIleHDECCeAJhBf/for2jVp4lBO/PHxyL540Sk7OX8jDZAb91z54kyTGwVcCHH9hOcq4A4fM0eDl0KWACAvD68/9BCGPvoobu3WDcO6dsW+337DZ9u2YfPevRgz/lFUrlwN58/b3RG+SS9UFOBCngea5oWqepGkhmweQI4QvptOcLLb17iwqJGUhJwzZ5C9Zw8CFKkaCFjX87y+cKER3cxxr+vwKAokxeuUERx3Jm7pSmsPh4fxVYd6JhjNJTHx+Oqrr7B69YcouJyPqtUzMHToeKSmNrZwomkGqtUmbZAU2Gh7khQFSZmZkCRDFvNdaMDeuKApJ1lkWQaAfawiK8uQYXR0nISSz2fn/NA0JPMbXjmvBozI60AAIciQfMnwIGweNwE8lGCVBkXf09NtuZubi8Nnz6Jj9eq4qVIlIDsbdfx+XLxwASVFRZj3yCOY/uKLeGv5chP9Iby1eDE+X7oUXu0CvD4Ffr8Xfj+/EPUY9u/fi9TU8ujQ4UYAsdaa56qhzwd4UQjkGTLGo6pQVWPTUym8tsERtVSs6MwPAziNXioRVjoiGS5NBn/H/CwpKTFuhnJrU9fh8XhQWlqK0tJSjHr4YQzs2xczX3rJeh4uLMTTL72E15cswf0PPGD163oUzyyhUAgj7rsPtWvVwpOPPILUpCTs/OUXjJ86FcMHDMDtfftGOgLcvLJclmqatUEqK4Lc1XRnOwyWf/bvxwPjxzvbYzyuZf362Pfnn+jSrJndphAhEhcTgwvZ2UjmRxlM3OdrGsIxMYhNTASKigw5I0nIKypC0ZUr8GjGUWkSBX6/oYZW8xvywaPrxumaIJz2K/VBoSFuR/AAZ74IXTf4EMkaMqTq1YO/XgOr+XvvvROTJj2I+fMfwBOPTcKVA2ew5tNPsfmXXxBIS8M9D36EvXvtJsx0PYYTXwoBQQOOkJIEKEmGQ55uAecykBsa5phkKWxEo3HaCQbRrVUrrPnwQwwZMMCQDT4f8nUvgvDiz5+3o2HjpsjP9zhSE/E/WkocRZYziTsq6HY702katjYEPPbJDzr2aNLk34cO4a133sHxU6eQmJiIOwYPRq8BAxCbmGjlpD2iJ6Pm8OHG+998Y8zboUNAvXpQ1WrWKbTMTHupyuYt1dUkoFpzP0KQIQcvAN/8at+oShsaJG/270fB999DBhBXoYItj/x+4I8/IiOsOa+gOeF5SLjzBnDqRMRXKKorOxv7z5xBoiThhRtuAM6dAxITMeDGG7Fi/Xosfeop9Jw8Gb06dkSJmoy4+Hg8P3Mm7hk+HDh2DF4AXp8PaZkq8tONI5OXL+fj+y3bgfx8tK5VC+UpzFbU+WhyedJxoq3cXODIEfyX8v8v7aCIRJF58WfRPH2ix5jXAVAtEMDeEyecBofJqEpKSvDPkSOoWqUKZr33Ht6bM8e4oY0xu2YNG2JY//5YsW6dEx5xHObfgaNH8eH69fj8jTfQuU0bJCgKqteogWn334+7Bg7Ek6+/HjlG3oYbPszn/HY7UdcBaBfLbqdC+fLIPnvWGQLCSqiwEGExMTFnlgB6deqEL7ZswYkcdpub2d7uQ4eQm5eHBmlpFoeo6vejT4MGePOHH1Bavryly9EfrTdaYB49BK8UcjibxKmnP1p79JeXh0gBzZV/4rR5efYxAUlCx/at8eGHK7Dm46WompmJZ+fPhwdAj86d8eST43Hs2C8R53Q53gkWHoUfpuSN3HljLnpxOkUmm5ycjNsGDsDEe8cgP/sEktQwVBU4fvwM7rlnBMaMuQ9xcQmOd92m1KHjiJ25dcwbYo4y+juYk4N+jz2GSpUqYfVzz+GzZ55B03r1cMeUKfjp778BSbLwkR/0GIyVDBqzP1JmRTuO/5FsEB1GVkgwr5SZCbRuDXTujFBGHYR8KVH5rxVJxHkFN5xExYgbpdz6M9/NPnMGHgD/HDiAqZ98go9270aFQABTR49Gn/vuQ5W0NCz7+GPknjiGJYtn48nHHsGbzz/vJJbcXCSrIRw+vBV3390VGzeuwemsE5j/9tvodeed2Hf4sJP4iY5djHXLaKRdx2slenEjPiqiPOFyyO1PkDGQJHRq1Qrrf/rJudbYevp82zZ0atsW81etwrOTJqFmtWqOvipUrIh3Zs3CjAULImHlYzD/wuEw7nniCbz/+usYNXgwfOXLw1exIu4aOhQr3nkHE6ZMMSKEzMKPadMQeJNuQxa6dKBLlDXh0lLotGhddu7Pnj0LHz/6Kzwv7/Uis3p1rNu82TleRUG+pmHuypUYxfI7AcCEVq2w4dAhHCssNBRQNQkXgjIK4TUYB3kgJMnpLHIbJIeZMy3ijXybmDMsUmq5I8hEbrLPh/WLFkE7fx51unTBHc8+i3+PHUP/Xr2watVSbN68MCJEn4qiGIo2+bmCQSAE2WnIADZcNDF8krg+ZH6+PG4chj38MPbs3GkdWdOCQcxatAiXCwtxU5s2rnpVxBXqbuuC983rCCA55l/XcaWgAMOGDcGePX9j/uvzsH71akwcPw6LFs3Ge+/Ncsg6y/7iMt7shy6s4yTId2TpuZlCwxbkpJzw8wKZmUC7dsaV2q1bG9Yl0VG0aAXhT5bCjmOlETmtSMBxJ6iJpCu6jnP5+Vj7/fd4es0aFEsSFj7+OB6aNQtbfv4Zh44fR/7p09i4YRVu7dMLLz75JMrFxFiwyXoh/H4gJiYbzzxzGxYufA5nz57E1q1b0L17V3z44cqI9W3plIIuTf69QiUZ10qUIupRgLuexRe6yGRFvinyKADNmzXD1j/+iGzb7HfTDz+gbatW2PX33wgEAuh/662OdjweD1588kl89fXXKCgocPYTRdY8M3Mmbu/dG9MffhgZaWlIUFV0at8en73zDtZ89RX+OXAgul0UrX1eyrLxhHoVy5fHmZwc90hkXcfprCwki0ENgjy9d9AgPDlvHkrpgisT1tL4eDzz1lsY36eP4yj12DZtUBAK4YMffuCBj1ZAZG4uEJK8TgbF+YPoZBLnjWhGFAbEi0jOAJYc8wTzLbYfFxeDuXPnYsiQfujepQta9++Pz779Fq0aNkRI0zBz5njIcpGlyrKhOXBEoBfqcuRuNoeN6zj0XDjKcW///nh/7Vqs+fhjlJw9C+TmIjGxFN988zVeeul5PPDAUw51nPN4Pl3iMojAoWREy4Yl2fpO4wsr3gh95LVly/DK4sWYMGgQ1r/yCt587DHsP3AAt40YAU3XHfZdSEkyhAXPp2fKGZoSsjFkhOx5NolC1vKdSb95zijSlQIBJLZogbgePQxZ06SJIZx4lIO4NsR1I+KEF5IxfDeG6FTTcDA3FyFdx/bff8eo99/HqYICTBgwAAdOnMBDc+fi+nr1sGnLFvy16wcMu/12VKtUCV2aNrX1KXNBePULeP31J/Dgg3dg/7592H/kCIY/8QQeXbgQeklJdB2bj4NvhKWl4b8U6epVhMKpSvxNfM6tVlFLBiK1Z1Ym3XornnzrLax8+WXDA8q846+9/z4GdOmCI9nZqJORYUQ0uTC9Ib17Y8ikSRjtFvUj1F24ciWeHTMGEiGYCaFeN92EBR99hGBJCVTRYUJjo//5uFifLl06ZRNVUBSkpqXhcjCI3GAQfopqoRckIzKrF+XM4EKCdSZJEpbMno27H34YPTt0QO+2bREKh7F682b8/s8/WDZ9ulMRliSMadMGfRYvxoFTp5CdXcuKIOSbsBkZXuvmDOi6ec2ybNkGnG9zW4WYAoXehzK8Rl4d2r2kihSxQmPSdTOHkgzowG+//YHY2Fic+eEHg3hNZ8OJ3BAGDx6CESMWQpJqOvgvJzty1tLQDf1RthJ7hyAjL9c5R1zn5L9pGjBq1ChkpKVh/MSJ0DQNpTExUMtXwMSJD+DGG1s7SIkr0hw3ll6Ta3bEd53ESCdxvqkRE/mlpaW4b9YsfDBjBqqkphpMJiYG3du0QdsOHdBnwgR81bo1EFMegIGLpIwMO/+GiU+en86N5HmwgRiyaoUAMyviQp7H6OIPO8yVOwn5pppHK4wkJr4LScxdBIp4jq47dptCeXloX7kyZuzaBa2kBNi2DXJKCgZ26YLVr76KZV99hZ9278Yjjz2GAX364It334UUDBo33rCJ2rVjB958Yy4+//wzqF6b52QfP45h48Zh2axZSKer490UMr7L7vMBydcMAtfCccV/498Fxb7MOoB79JGuo3ubNpi7YgUG9+yJjOrVbRrz+7F7717k5OWhUf36eGjWLEx7/HEnnZntpKWmIlRcjIKCAiQmJjphE2Tblh9/RMeWLZGelBTxrHIggC5dumDTli3o0b27Y8OCD4/Q4zZMXldEjajbQFHQrXt3fLLhSwy+tW+E0n/2wgWEQiFUTE52eRnWGF9++mmMefhhfLtjB0b06IEKSUnY9vvv+GD9erw8aRIqli/viLq5o3FjTN64EZ/8+iumDBjglBc+2ZALXHfguR5ImebzyRHBnU2cd4hRP/xdjiCTmV2+cAHrf/gBvy1ZgjTyjmdm4uFnKmDChIdx8uT7aNHiTpGcrC+6LjvsljS/zxnlRIwSiMzNx3mfOc76gQCWTJyIV9esweGcHMiKguKYGNw+YAAeev55IzpciExwCGHqx00gcqOEGyLm/4qZb9HB/HUd019+GcOGDUP//v2tJKoNatTAB8vfxd2jJ+Kff7ajTp0OFhh5eeZRCDq6YPLx9HSv46gi6faWDIHHmnK/H8CxvMgji7puPMzIsL1YVIfn0iCjUJKcyV6JtihayoRPliQrskCkeyvClm2U1a9YET+dOoVBH3wAADgVCuG9Z5/FF7NnY/3OnTh67BjuGjsWHdu2xSdLlsAXH+88qiFJKNR1jBs3DC+88CZq165ngRcTU4JJk8ajXLk4DBgwwEHyHq3QaSibc6hpwNmzkeBfK0Lhio6g/0fo9fwdN77oYgeUUxQ0qFkTa777DoP69HEohfkXL2LO4sX4+K238OJrr2Hs6NHGM0HGxZSU4NZevbDp228xoG/fyP7Yui0sLMRf//yDmQ8+GCFLY2NjMXXKFCxYsQLzp0+PhN9NtkaTs/w3sQ6rd0e/fpixYAHazp1rPzfhKi0txapNm/DxrFnO9wVDt0vr1jh89iz6Pfgg7undG3WrVsWhc+ew6NNPcVPLlujTurVD36pWoQK6162L1V9/jZtHvOBgf7x5mcNLsl10JvGoOBor59/EQ4mXU4oXSnpNmx+aBihJFj8EYvDuO4vxxtSp6HrddQ758PGP/+CDD8ZjypTlFliA0YRXtXXhvCw7x3kg4EWSDzbPI6bJnBYR+inRu6JAiY/H6hdfxOtr1qD76NFQFAVaSQmatOyIZcvWICHB5xguRwMnGy5SjGPaIbuy5LwpMSwZth0X95LkgddMGPjjr79i76FDWD5/PmLOnweCQVT0+fDo6NHYsHs3nps6Ffc/+Ko1rOxsoFq9esZpidxcy+BKC4Th8xn9Gg4nzbkZwW0HTix0WoHb++npxsYGRbuaEbUA7Ag3bteKcpfrAoJcjVh3hGB2jLxyQgIqxMej/+bNuBAK4b1Ro6Bv3oz5kybh16NH8dRbb+GH337DTW3bYtrEiahtRuA6HKmKggceeQStW7fGy89Ps/AwefBgfLxqFe6bPx9vDRvmrleL4yHdKTUV/6VE0Saj1XaxEvnvBIT4PRpDEncRmKJePz0do3v1Qo8HHsDYQYNwQ9OmOHX2LJasXo0qqal4eeJE7P77b/gpUkPsS9ehKIpj91h8zn87dOKEkdOB6ggCp1Xz5vjnxAm0rF+/TCXc+hQ8+3yO3FAjS6xfTcMzjz2GEePG4f1Fi1CRwbPz99+xdM0arHv/fSfRinDoOmpUq4bNq1fjiy+/xNurVyNWktC7c2dMe/hhQ1GlBWKWaklJAIC8ixcd3nWaJtokVhTZzm1jFgoMEXkz9xWITJ9ulbA6yMy0GyDmL0k82hJvvPEa1q5eAamkxIFjv9+LqVNnYsWK13Hnna9ZKKH3uP3Bh006n6oakU95ufb65IEzon7Ky82dO+Pmzp2djENVUSjo9Nzm4OtflsKRCRtE41UwdiOsTxNJO/78E60aN7bP8DMFqpyiYMStt2LV8uUYOX48dL+MrCzgtJKMtHbtbI+c34+AMEYOrzjH4twaRooXYDxXnFbjdh7NYP6SBK+iIAQz9FbceRKYpTVmDhB5FNk7haEQfj52DFv27UNeKGQ4ncySaA4qWVXRv00b/LVvH97jzljxjLWuY+acOVg8fz5UWXLgP1CxIl56/HHMW7IErz7yiJOXuTFpYd1dK0LhckbEHRVR6LnJmGiyiNWPjY3FO88+i9HPP48uHTqgb9euKNZ1rNqwAX/u24dl8+YZBmh8vJGfg9oSQl0q+HwoKCxEYvnyzn4E3rzz99/RuUMHJ1Ng4+7StSs+W78B3Xr35bp5xJDF72Xo/BHd8EDnUXffjX79B6JG9apoQbJNknDu4kWMvPdezHz++Ui+IzQoA1j++uv48/ffsfqzz1BQVIRmDRviq3fegRIb6wiXB4BEjwd+rxd55u8i7LL4A2CvSR7VxOtwHsGP3dI7ltKvOB1TXFarxu2lULxYsnYJHn7wQaRRnidTFsXFxeDll2eif/9uGDZsGAoLPRZ4ZHeoqmyBCxivhiUZHuqX2iPdhXgXHwtNIu1S6Dpq+P1YMHGijXsaC0VA0PhFQcuNHs6b+PjFTUIm+DyA4QxkcubKlSvY9dtvmD5jBmKEpPMxJSWYOvVpPP74o3jjjQ4O/wzatbMTA5pzkOwrRLIiwJ9n8l9Vhawo8PkM+SzrhU6iFwUQFR7NRu1S9IHZruMec85zCDZhjVvPOS5zc1ESCmHPsWPYceAALhQVQY6NRciUNUpMDKBpiJMk9G/VCgvT07Hm1VfhkWUjvxDfVDHL+++/j9Gjx6J+/XoCeLF4882FuLVvdwzs0Q1JaoKdPJ7LTFOGqX6DxK4lFy+jUPoMwGnkibttnNaoiJuCvL74HoAXH3oI46dPx7e//oqRw4cjuUIFbPvpJ3z48ceY+cIL8JuXBFSqUsVptDLa8FeujEuXLhn8xFwrVm4cJm8OHD2K5jfcEFXOXNe0KU7Mnu1UcKm4ydQo8szBM9xsK7PUrloV5VUVby5digl9+1oSqLi4GE/Nm4du7dujXPny0W0rs917+vXDgBtvxPvr1mHzzz+jSiCAhY8+ikCVKk6dzVyj1VQVuy5dcrA4AtsyPbiMEXT4CB7A+aapK7viA3BPyiRJnI3i8OE9SCrvQ9c+fez3zX4GD+6OjRs/QWzsPqSn17dEHNlgiipb9gxdriZJgBTwwmuSMXw+XAjKZpYLL/x+r50XistUhpgEnw+PTZyIx/jcpqcjLNk32XERxO0i5sNykIOVZk5RHKkDOKmQKLTI0Rzwoo8/xguPP46YuLgIW7/3Lbdg/pIl8Pk0AIplh6rpNZHcvbtx7I3mIDsbXkGndxyR5LKTAGLzFqHPc1uBpwbghTsk3ZwAPBEu1af2uU1oIvfEhQv44ehRnDdp++dz56yuPKEQUFyM5lWr4obMTPS76Sa0otyjHEYT7mPHjiH/0iUMHzgwQn7e3rUrNn//PQ7n5qKW6IQXDWDCgcgzyij/rRYvXMmj/zlQIkAuzNN6j5995JRsTmrvli3R8YYb8NG2bVj44YeomJyMFx5+GBnmFVqZtWrh90WLnP2zfg4cO4ZAaqo7jC7KSnF8POJiYlwFx+Vg0IisEoUPFZd3+K0jHFXib5IE6JIHiiJbnuEbWrTA9OnTMfr++5GUkIBAIID9hw6hSloaVi1bBm9SkrWIrWTZLgZXLIC+ffqgb48ezg5jYpxcA0CimYWy8MIFB9Pguhal6VEUA16RBPj4qGmet4HsBmuauEAnZs+VX1YKCvJQvnwSyiUYiW7pRh2jU6BVqyZ49dV/LQcZJ1We2oPLWtG4o8Id4G5g0m8W/i047DnwqirC5i0TZKvS0Qevwm4LEnei+TxREQU7Fwqs/HbwINrTOXn+nlmvY9OmeOP99zGyVy8kBwLIlrxGFKkvCT5fkuOosjiX9L/YLIHPc0LxTX2iAZrOJMXcbeBKt67bEXBuRyJo4jhPMQEqLS7Gzn37sH7PHvxz6hR+O3UKSmwsjuXno7ikBImyjCu6jooJCehYrRq6N26MbvXqWe3Oee89jOnWzc6xInoHARRevgyEw6hUrpxTwJhwtKxfH8/OmOH01rotfMA2hq5cwbUSpYgGuLg+qA59cr5OReSL/Hf2vXrVqtj09tvYtGsX3l21CrFxcejdrRumP/ecoezoOmLj4pB36RJ8FStGGB+lpaU4npVlRAa5KR7sNyU+HpeLiyMZiclc8oOFiI9PiOC70VDEh+bGw3jha5bqykoSli1bieeeewIv5JxB3dq1cfpsDoLBIF5++WVc36SJ86i44nVe283Gdv111+H6+vUjgXTpOFGSUJifb+SjCBTC7zdu5PJohc4bacTBuA2CD17c0S0LATyk0+TH9Mr27dvx8Lj3AZorNl8+n4RmzZrg4sX9qFKlgZWakPurefOq6rwlzgEvVSAnCOd54lg43+d/ghwXja+I36gN0r9I2NHvlJiJzyEXkpKErKws1K9Tx9jAomgrVqdGxXIoyr+AFCUf/npJVkBtDlKQ0sRn7+5omtNq4v3R2lEUQzbQGCnnBtUXZQbhUjwqw/FJjkc+J4DTUHSB6djx41i9Ywf+OnIEvx46hFAohNyCAuRrGuJiYxHn8cATE4ObMjLQvm5dPHjbbVY/m37/HS3r1IGnsNB5OzSnCV3HVxs3YsVHa10vW0tIiEPjevXwz65daFi3rq37cZqRJCvPS0ZGCoIXQrhWohRucHIZIhpbfH3x/91sAbf3JAlxkoR358zBnqNHsXr9egQLCtCseXNs+vJLxCWWQxhA46ZN8cPOnejXfyBANy7rgKQam8Lf/7QLw4bdYXVj30xp3EpG9K0kJuIyd7oLMOm6bl/6IPJSUYa54SCaTOY4Ep7NeeYZvPbee+g6fjwa16mDUEkJ9h85grsHDsSwXr2c7/JPgd+lJCfjoREjyobZLImShIJg0MomQcW8VR6eYL5TnxP5Lldc+Xj5OyJ+xSN4BKf5nQ9v+/b1GDpooEMG0dFeD8IYPvx2fP/9eowbV9/B5uh9F7+1wTp9XusyCAKL6npJaS9LweDrwlTuPYoCVU1y9CXEVzimzTEt5o88Mb1oJ0YUk3bzgkFUy8yM1OHMlxrVro2s3b+gzg03QFG81pFK3V8TKY10e6w8Kon0ex4Zxte/eESfHFRUPxi088+KEVIcn3zTh08Q/y7SO4D8vDys+/NP/HTiBP44fRqnLl1CSTiM05cvAwDKx8cjGArhOr8fHapWxej+/RFj2hPnL1zAr3v24MVhw2ybRkS0ruOTDRswrEePSDow6w2/5Ras/eknPNq+vbuuxSeRO8n+Q3Gb7uglL88QmNxLyhdiWdYp/12kOPrjx6zM98spCsZ16GCHC1I9AL7SUqT6fPhxyxa0adkywhidMWMGJg0b5gxrsw7JwhGG0fWmm/DZtm0Y1L27Ez5Ngw7gt7/+wsynngI8nkgHASkywng9MBK4yRIspVbU/ziaADMfhCRDkoCmN7TAunXrkH3sGC6eP4/0tDSUq1DBesFiUhwOIJIbcOIQFV6CHcAV83aP0nPn4Pfb9jGhKivLcCDzfAxE0+KpAepWkmzHE8/raUyzEpkngTMBVUVI8lr1PZ4QyiXEWeGGHmocgFfT4FUUeL2Sa65InhuQUCSSY5JUCK+ehxQ/UJiZZhkUvJ6qwja8dAC6sA64EihJ8Jg7tjIABJ2C2mLBXCqIViThgwbC3+HFpIlysoyL58/bbXHlG8D5kyehxsUZv2dno169mg6nHOGGg8TxRWTDHf18yohn+/2AJzcHyDbg8EoSvARnUI8u9Dit0nYOB4QAMOd9zDvv4J3t2+FWHureHSN69ECjOnWQlZuLu2bOxMTevXFTZiZiYmJw8exZvLp5MxITEtC2ZcvIJCMMd1pBAcrFxdnHRDi85vzLFN0BOBOJ8RwyNCZFibw44Voxyvnzxja9uL0mKrriWiGi5c/5uhTXEdWXJMQqCnreeCN6dupk00BJieEc1HXcNWAAZs2fjxcee8wJq65j1SefoNMNNyCWX2nP4WMM/9bu3THj9dfRpVs3V9pfseJD3HffQxG+aN4sXw5i4azUzVfDwaG2vd5kzJnzFi5fvozc3CykpCSjYsVU6DpQyPwdksQuwqDixkijyXcCSpJwpbgYpRcvGgJF0yDziA1qi2+fcqZEN0hwxxE9423wkFXaWeSIoO9mAtXcY8arPh8QDpuJakmLNet6NA0yAF9cKcolatZJCqafW3oqoSAYBHw+jxHJpWl2ohESKCRQCY/cwrBDcp244PRFYyEhzOcCcMAfda54G6SHcRzT+jGfq/Hxhpzhzh7SARUj0lwPBoFDh+CRJKSpKtL8ZlvZQftoN+eLIu0Qn+d5+wh2U35ZUU2URFbUgTh9SJKV1ByA8/o8t3AIdl3hdz/+iJsffNB1zbW87jrMfOQRtLr+esTpOoY/9hg6pKfj7rZtkaAo0C9dwpqdO7Hshx+wevbsyDPswiIvDYchy/ZNiwDLeajpKB8bi8KsLGfEFBEfh19VjSi7aM6Ra8WOFuRrTOQPol4aTb92U+i5EgoAqopGNWqg0aOPOufFzGU68o47cNvQoejZsyfi4+PBb5o8efQoDuzbgxbXXwcgbEWOWKAw/bFurVrY+++/xma6i9z84quvcEvHjpF65H8VHKLs5f1zRZvhxANgysiRuH/YMBw5dAixpaWomZ5uRxILY3BEhkfDKeGd8yvmtL5SXAwUFUHeuhk3t2uHsOKFJ++CmbhWt3ksn19dN/jEoUPG+qdLCkR6IJ7HdxiibZyb/CSsJiGYZzz2+wGp5DISTp825KCuw8Nv8tE0qCENKL3i0Me5GUeslwfUUNdeANi5E0mahiRKlKf5nHPJZaau24420ZtlJpL2qCq8Ph+8PtXKjyuYbI6pt+B2yVXJ2TMnHRqXEkiCRyuEXlKCkpISxJJg5RslmoYLOTlIvHQJ2L8fyapqXCBBcp/ncORI4oYqzQ9dFMHXt67bR/Yowzu1R+8Jm4sW/dAJEhqkaCMSfH6/pQPkhEJIfeghRCtrFy9Gu2bNkKKqWPjOO/jtzz/xVJ8+qFyhAqBp2H30KJ5YvRqvjB9vrCt+KxQh2lzfhfn58JFMdNENyicmoqC42J4Q+iO7httpNPmJiVFh50W6ehVWVBUoLIzcRaPvYnF77mZEiEyFvvOoA77amMB+9f77MfiRRzCgSxcM690biV4v9h88iBlLlqBF/fq4oVYtJ7xiH+ZvI/v3x63jxqFZgwaoSblXJCMZ7IPPPYcxt99uhLJxxiMKH/GTFEtdBzmTqIh6oBsKSckPBALGbTZCsRwgIu5EQ8xtbkRAFAXbjhyB5PGgRc2ayA7ZPInWjB3tZMNOPIs2bclZRe+4GVA26jyQlCRjN5Pg58JEVa2jb5IEVKxYCSdOn4YeDEKijPq2FwtZJ08iSU10yMaDB3fjl182IBwuRt26HVC9emcUFnrI3nCSJQfYlxbBDAk8ryIsG16JK5NEd6LDSFQ4RaeTyPjEPtzaMev3adUK4+bOxZD+/e25ZQJ8+YYNGDd4sCWkudCw8MBQwXk14LR/uPCj30m+efIuOAUEJ3bR0+U2VrfOqSgKcktKUHfMGFwwdwDcSv8bbkDjjAxAluGrWBELJk/Giq+/xsyNGyHLMqTYWNzdsyf6dO3qzA3D17cJg8/jwcnTp1FSUIBYOrvA+NH53FxIdN2vm4J2NV55rdglPj6SMYp/bgqzGx+k77QeuQLAFUO+Xqmw9vrdfDN++u03PPDUU5gybhyqpabiQnY2lnz6KX796y98MHNmpMLuAkdmzZqIjYnB2s8+w8BbbrHhUBR89vnnKC4uRoMGdfmeSAQqojUvFjf7SVxqvG6FCuVQoUL9CNQSq3EkWRYL1ybF+eDKl6riRFERjubno415zXTEsSiaFxI43AFBvIHkISk8NEC3SBZCJP3GZTiMBLN5ubZumZcHVK6cid/++gvNkpJsuMxIoNLSUuzavRtPTp2KIrOZc+fO4MsvP8bFi+dQrVptNG48GLqeaHWrqkCKqjidn1F2Ox16D9GsyC/ZETxHXXFtiDoAr+Omi9EnN7TMeQvppvNMkpBaqRIuXLyIS1euoDy7EZD63LRpEzo0aeJcf3y3mJQFrtByOUjvURJvHjZNO0mk3IuKimjBiDgmfPEcTzyygeElXFiI/s8/j8+//x7Ryq09euAmcy1r589j9pQp+GLDBty2aBFiYmOhl5Sge9OmWDt1KrwpKZFKFP9UFGRUr459+/5G/frXWY9CusfKRfPLn3/iAUqkzA1HN4tP1yOPA10rdilf3thgAJx0wmnQTTkqq4jr0k3OiGvO1DsqJCTg4QcfxIABA/D000+jdfPmKLlyBes2bsT8hQux5LXXrHc90davJCEmJgbjR43C/Q8/jDefegqecNiiuWNHjmDe4sX45P33/7t+IspPt7qcp4ltsPUoAaiTnm78Juam43JElCe8H1HO8Lli3oytJ06gTWqq4Wg6dsxwxFJOHuqDHAk+n3EZgaI4Hf7i8Uu+207KLxXOT8T5UdWIvdRWHW7BxpUfoEVxsfED3aJgztVXW7agXbfelnPpwgUN33yzBidP/gNVrYAbbhgCTauG3Fxjb4W69vlg669kO1PwBuC+ScH/uEON609sk4Cc2rruvLFdXEZ8j5mTBt8v4uKBs2mvJKFThw748rvv0OvWAfCkpzv0hMt5eTh7/jyqpKU5+R4/hiHmgOFjFuUwHX/nQJDjieqKDkbRLuNRbm50zZHEaObtX37B+KVLEa106NAB/e+8EzElJSg5fx4De/dGzUAAU1atQlDToIfDqJ+ejrenTEFGZqZjg97Bi0w50bxOHXy3cyda1a7tqlN/98cfaF6rlrv+Ea2U9YxX+0+1xIZF5gPY33nHbhPNGTn9LrbJFUnAqVQAjolNAvDZiy9i9bZtGP7ww9B1HVX8fkwZMgRNataMNCY4HEwJTEpIwLKZMzFp2jRUrlgRrRs1wrlQCJu++w7D+vTB0F69nMRKyqzIGEXmbPbhQRi0e0FoEvRfB/qsnWW+WjlOOCxuOBfrioXPl8mEvjlwAK1r1kQ5WYbPa68tQpMQPOOIgjl2LHIDgIPDmQpHvdEO5cmQIUkyVJ+NSkKnqgLlysVgUN++mPfWW3ioY0d77H4/wrKMZ15/HePvnYy8PCA//zLmzBmFlJR03HTTEChKPH7++Ut88smrGDRoCapUqR7pcAnaSjltyPJxWJuHHL9uTk3Oafn8uO2U8Xc4YfB6zEvt+j5DtN/nQ6OMDMx97z08MGYMYtiu9drNmxEsKkLj+vWdO+dCs3zeOH1yvZyDSMuT8GNF4dFEcwNQbFQsblYv79zsZOSrr1pOp0y/H5XLlUOrqlXRKhBAq0AA6cnJiElIwNYffsCc776DkpgIb0ICss6dw4AOHTBh8GDE0LFaFpIXVry2gU3zrGnwBIPo3bYt3lmzBuOIFzC4Xly0COP69bNhFvkhJySay3Ll3HFwrRhF3Arja0vg3wAilG/XyBCR9kTa5PWYcRgDYOaDD+L7n3/GMy+/jAsXLyJBljGsZ088NHgwYsPhyDXs5njVdSx45RU8+txz+GDFCvS8+WbEKAq+2rIFVdLTsXDhIqsJ0V7hRWQp0XxmHJxoy070QVBdLnKt29Hc8MnxJz7jgJoC5dvjxxEDoFPVqrbiv3+/nQiUbqPhiZ5JGNHVNIGAQ5kybuuT4WFI48cWaHdW0wAtCOi6bOUN4jvGhPeRI+/FtGlTsOaFFxBHNGfCsnLzZrRs0QKlceURvAQsXvwi/v33d/TrNwp+f2ccOPAHpk/vi1tueRBt2vS20eLGu2k8BBx/zuUIx68oR7iSzHHOtXrepkgUonwhJAjGicRvgNV1PDZhAkbdey8+WLLESENg1j986hReXb4ca2bMiOyXjAJ+lJqsMTFPBodPjLIXDQpeX6RTrsRw+iTZ7BYRZP721oYNltOpVpUqKKeqaH799WjVogVaNW6MBlWrIra0FCcPHsRzb7yBs2fPIrVCBZw6exb1qlfH1FGjUKFCBRsGkjV8s00wXibcey+efW4aPvhgJXSdH3OVsWX7ZmRUrowkiq7lGzSiU5FwcS2yNnpJTLRPMUTTraJFjIn0Iyq9orJM79D/Is803+/esSPqZWRg0dKleHH6dMQA6NypEz758EPjhlHRCIyySzGoRw9oly+j67Bh6Na2LVKrVcPPf/6Jk1lZePe114zE9m5Oa3EcbsLDbY1xhT2a7cEDCNwMH9HmcRN84skY3ifJCk1D9pUr2HPuHJ5o3NhOhETGCjmayLGQl2dHnlAEKt/woD74+Lkjiv+mGPlKeUodVQWg2/9Ts91ubI45j03BsdRUZNCtfooCBAI4evkydv71F0ZMeBXZ2cD27VuxYsU0dOo0DG3bDkVeXjY++uhxxMVVRcOGL0NVYxz++ySVwWTekBaSvCx6UoukP50BKepQ3JBjMkgxU56IKq8baYhOKRf2FzHfY8eOxcAhQ1Cn4XWoW6O6Pe0ARj35JB65+24nLXB4+Rj5d84zxbOLol0vnp8X++IKmIvcdChU4toy6eyopllOpwqqipSKFXFdw4Zo1bYtWrVtiybNmqNcYgKKL1/GK6+8gu+2bkX1QAAXL16EFBeH6WPHokmDBk44ad4JVkH2dW3ZEq98+CHu7tYNqV6vY/LOBYP4YtcuPPj00wCP5Od0Ido0kuTMmVdGka5ehRWRshwtuVAbfUZj6Py5SKXiQDmzFY6MxQMY3qkThnfq5KRmN21cVJQJibqOqikpWPfmm9j377/Yc+gQGletivsHD4bs8UQqdYATzmjKD1ttHkkCdz5RdUlixrpb4YuJ2ucCR8S1aOxyvIqFMerScBj/Zmfjn6NH4Wth819JsvVCWle0EQkYz3butDc83SLYSVek37nzncCjKHg+vYB9o6SsF2L8kCF4+LHHMGbRItzTvj2qSxL+3L8fr69Zg34DB6JGjTb49Vdg3rx70a/f/Wjfvr2Fkg4dmuL334dh+vRReOqpTVBVyUmODLisPwx0iTe2WbczENAcr27CVhSeboJdLNHeF5VmXhgtTBs+HLM++QTdRozATTfcgLiYGGz780/Ur1YNix9/3PEaB6es4laH81juX7LyXokvRRsv74Qr6HwtccatKJjYvz++3LkTbw8fjrHXXedcb8EgcOkS1u/ZgxWHDmH5vffCd/31RoQXgDfffx+TFy7E648+6jCyCuFFMBeQJA8kSYaiyJBJhug67h8xAuOmTcPhU6dwb69eqJacjL2HDmHWp5+idno6ujdv7i5ZReFOcxe6lnvDtfAdaDc+Drjzs7LkiFs9t7VJ77qtawDtGzZE+4YNnfKguNj44+1EU+I0DXGqirkvvojzOTnYvnMnEBeHt+bNg9/csiRJINqQZRUxMkocrogGLsr4J8kiSfJYR8UBAJqLoirik+OOK+Y0dlNghCUJpQA+P3YMdwUChkGwc6exbs38jdA0O9SVtFa6DjM9HSeyPFAUryGfdBvuQs25+6ooHitCleuc4qk+ZjOYXdTGqDHj0Ov++zGxZ0+0rlEDZy9exLtffIGLRUV4+8OPkJUFvP/+MpSUhLBo0RoDTRrQtOl1uPnmIZgyZQhq1sxARkYj6DrshMBU6BgHRX5xDZ0fARF1pLKMRDfZ4TY33NDjtM71CqEdD303S/tmzRAqKkLf227D9fXqoYrfjz/27UOBpmHZk08imW54FPUh8Y+OzXEHGCdMmjS3jT76n6IUxLxOopOOFy7Y2QYN/+3Wjh1x77x56Nu2LT6bMcN5HauuA7m5yDp9GiNfeAHzH38cDWrWtNr44eefMfiFF7B29mzjqIupa4UU47iNMQ2yuUxkazrrNWiE7t37YtCgAXjggcfQunUrXLp0Hh+8/w52bN+Ojx9/PHItigYUd9p7PK7Dv1Zg4IoMfsCd6Yp6P3+XnpdV3DYNuXMFsJVec+4yqlTBy1OnRl+v1B5fX6KdAGD4gAEY0qULtu7YgbyiItw3YgQa1Kpl1+O8RdQz3cYsOsdFPhENRtFIFYsbPxLhEPHH3+V8wOyn+NQpSB4P1h87hiH5+Yg9dMjAM+ULycgw2snKsiNuJcngyfXqWTdkFuoyvGph5NjEyEUm67WgHUFLrIV0ZZ8PSFLDVsTm4nHjMOr113FrvXrof/31KI2JwafffYfP//gD02csw+HDMThw4BhWrnwFzz33Bfx+r9nVdWjXrgsWLZqLv/9+HVWrTrZYpTUt1HFGBnKCRs4wv9+OnrT4Bqd5vgY4zvk42Rx4FAViUIXb0hFFlvgbV5OseroOn6pi+cKFePDJx6HEx6NpnTo4ffYs/ti3D4+MH4+buD7GG3aTNVzmUD2uGHDHE6ddrsu46UCiIcRpV7TJOR5NQzrd50ONQABHs7Nx+v33odSsaegFTNaUnD+P4WPGoH/37nhy+XIj/6gk4czZsxj94IN4bvJktGzY0LbpVRX5uuFQkhSvbb/SvAF489FHcfv06RjXqxcGXH89YgB8unMnFm3ciPnjx9unO8Sxc7zwSOb/eJNFFIkcrbZk7w6ICruoHYtMTCxiXZEa3eqLjL4sGNzacFtEvJ5JXPWrV0f96tXdw0qvNh7RMy7A4pEkK+eTw9l0NdyJ/boplVTcDC7RIHBZGG+PGoWbX3wRtzz3HD76tD8CgWqO5vPyjLVAurKs5Rvv+gxGyENIid9RV9xRDhjP6Ga8MDyOI7eiU93no7oSYsqVw+w5c7Bvxw4sX7YMOdu2oVbNmnjrxRdR8foW2LMHOH78MDyeOLRo0d5xcZCiALVrZ+DGG3vh33+/QJUq/Zxo5bvrDKUEB3dkW3jm3/li5Mqy+Dya8iwuaFHp4HMpCmpmpMcAeKRXL9zfpw927d+PEk3DPX36oBwpWIJgJzrkt03wrqKRkJuwoKa97KF16wo1IlrJxKz50Qc6u8kLY97ni4oAAL0bN7a97AwPeiiE1377DV9Nngy5YkWLwUuShMkPPogJDz+Mv3Jy0LhOHat/LRiZA8zn88JjrqfYxEQsefFF7Ni5E8+vWIFzubnIqFQJD/Xpg+voRkZxLrmBwMcm0s+1YpfY2OjKsFii/S6uM3ENRZM3nH+XxffLgi3aDrmgjVVMTkb/nj0jlBxy/LgFaXBdqCxbSPxN1P953Yi2dN1OWszHKv6JtO72xzsz19mobt2wa/9+jPrqKyQlJWFAtWpWjgtSkgHYCiJ3wqSnIwwPjh2zbQTyBYThcaQassaoGRkmZEWBxnItilG4HE95ecCNN/ZB+5UtsGzuXHy2fTt8SUkYPmAAbrjlFlwISrh4sRQbNryPpUu/cuQvNJa9jLFjX8Lnn89Fu3ZvWXLRynMn5t7hk80dMNQgd3aIgonqiTvyNCAuUKl9qsPrGwzP+RsnFBf+dsv11+PmxYvx1969yD1zBgNbt0a1jAyn04zaIKTz9mmsIt2Ix+85HKKMpDGKcpWfC+fHRqgOV+x5HikWyRCXlASPx4M+bdpENSJeWL4c86ZMQYM6dRxttevWDZPDYby5fj2emDDBgimY5xRtbD/FanrAgDtx3XXtsWLF25gz5yWUL18Ow4fchodHjkTswYPuxpSLTgdJAi5dwrUSpSQmGsftCIdMj3IyEfZJJdrvgE2XbnaLWM/t082mouduemE0OQggLi4OXdq1i+TXbu+W0U5UONzkpNunm0yhUpYscRNUZcljcw1XrVIFH995J4YsXw513Tos7tnTiG7auRNo0sSOmiXHN2f+Ph+QkYEQjJuf/X4vkn1hx/yE1SSDNemAcTFU0IJD15McPjQiJ1U1nU4sT1D1+vWx8aWX8PnmzZj+7beAoqBbhw74/IuvsWePhNxc4IsvFqBv3+egql5rn4La79lzMqZP74q4uPug65KNCjNyihgLl0+yzngGp3n6n+QJN+ZEw4zNAbFoekWcVjfy4VPK/3fsFZgIrJKUhFULF+LkqVM4sGcPOjVtilcef9y43IJfRkIvcu+bqItzIKhDmiRum1CbZR2dI1lF74mGL008yVW3qDm/H3GBAAKVKuH6mjWheL2u0VFfbN6MZo0b4/aBAy24wooXlQMBrFi+HMPGjsUXH31k9RNWvMjLEvEqI4lkqySh/nXX4fNFi/Dh2rW4ffZsoKQEXRo1wmeTJyPJ63XKZreNRzHa8z9emBSFLMp6Q4o0pt00Y8CdoZXFUEXBHo0hujEwUbsWlTQg0iAQFSpRsRIVNFEREzX2aPVcnjl2Pt2YbrQxR2PsvB++CM33sk6fRtaRI0hLSUG1tLRIgaCq8FeujG8efRTVH30Uu3Z9gtatH3DIYkkCMjOBaoGQvdhVFRK7XY4UKg6WqBcpiulIorPCigJJ8lprTbTVASPHgabJ0HUZqupF/Vat8BIlMpMkoHx5UPzIwYPfoV27vlakrMgzO3a8FZ98Mhc339zPiTsTDyHd48hlz2wmQ+DAY9wYwRkUZ9qcUdFnNCNDVEzchLE4/27v8ffNZ/GKgvaNGxuDp6NAAh0ZVT0REXduS1AkZzewre+qbRTYfQjjpxcohI4LOvpd11GkaXjs1VcxctAg3HDddTh6/jwee/NNdKxfH5UrVnTOofn+1oMH0bVpU8gULicYFPdOmID3PvwQc559NmIdi+Pit8XESBLa3Xgj2l13nTO3hmtGRRfHEhdC+fmRz68VI+LJTamPRoz8uWh0lVWitR1NqeXrzq0OFb5r5gar2+aE0A5Fx4rdUHMiCGI9t+G72VFR0eRmAJSl7Jv/5weD2H/kCBLi4tCoXj3EiPUUBTGVKmHhqFH49/x5LPzlFwxISUHJxYsIA4ijqBXAXl+SZDuf8vLg0UPIyzOOfYn+BL5paU0B2w2RpCRXXZPjgvJ+6zqQmRnAg/fdZxgmwaBjUyIYzEaVKhmoUCEOPp+xm6iqssUSGjSoh/fey7LQo2mAV9z+pvxWbg4frme5bWaJtO7mqSReKm5G0QC5gswVcV6nLDlj8sTr69UzvICisKd+OfxuBCc61kTi5EKYb1BwmDgOCWdctog5L7jjyWx73qefokKFChgxaBBCXi9G3nUXlPh49OnQwZkH0OyzODERJ86fx3VNmjhhNMfbs18/vL58OZ544gkAiLjpmEiAiSZrOipXzsBTT82wmpP1QpsOxd17Pk9U6MVrkbXRC9cLAOfaE3EqWsj0GU1ZcqNjsZ5bcXN6cbnjpgPyUpZt4GZHlGWLXK0O5xtl8QuOE94Od7C72WwcFobLkpgY/H3qFIpDITSsUQNeqsP5jc+HgTffjBmHD+PxH37AvBYt4M3KMiKc6GZMg5Hbi5Byz1G4kj+N5Yj2GEa7rhtH6fLsYdgXDhmwS74kx9SLPg8ADn4Sl52NgTffjIEtW1q8KmTiUZKA7Ox/0KBBC4uFEaiaBni9HmRkNEV+/kFUrFjfQlkYHnjYUatkn5GPKaKIhpeId02LzPkn0HQ0kiP43ZaLuDRc1TfNqXtUrVIFVRMTDZgKCpwwcjnDaYuPhcZL74ib4DQvXIcXo51EHZ/LBLfjQIDzcjQAW3/7DRt378bzY8ZArloV8z75BD/9/Tc+fuwx20YQHF4frluHha++asETVrzmfosHSenVUKV6Tfx77jzq1jYiGrkJQoFJigIkqYpjwsopCu654w7cc/PNkUfgOX7FaGKCjcvVMnLu8nIVzdylcCYgRmXwXS5xMnldN+VCbM8BJZtwQgKHh4iA2hF31WihiGe4OGwiLLwfaoPDw3FBbXCFjSuN/B1RALkxeI4fcbxuQk50kJGyCeDA6dN47OWXUT4xEbWrVcOhEydwMT8fLz3yCOrTzjKLwEhJSUH9QAAHf/4ejz58Py7keYzoJJi3Ge7cCezXHN50rg/SOqP0HDzHGZEH7U57NM360auqUNVqjotZaOhcJhHtBwIp8NSr51hdcvACGjVKRuXKMahQIYz0dBi7FMEgkiUAPhWAB+XKhQHEWAvR0pUlj7X5sX+/0Seh0srPqeuAJBu5gHywHXAcOHqRh0hxusrNdW5zcu88AUN1gMgrK4gJkAIuKp+cUYi0z3eSzSuXad15GJdSFK911NLKt+6LtH8o5QAftiSZyVDNl2WdrTtqgB2lC0vGefi8YLKBEnP5bPhmK266viESCgrwxtKleGPpUgy86Sb8sn8/vJKEj+67z8nk2Vo5m5WF6o0bA40a2UycWZnVa9dGzoUL9kB0HapqH3dQFKZMcKcS51vUHzeEWHsROUtEpes/3gDxP1m495nmTpQffE1w+nJTmN34u9gG75srYiI/duP/0bQorhRRod/dDHzBEOLkxn/jzdCw3Z7T/45dRFYiom7FsYrySaxj4quwuBiPz52LY6dOoUWjRrgUDOKP2bNxz513YhBdlU1ABgLw6DraN2hg3EipKIhNSEBhURHCv/+O+P377Xls0sQOsaXsqZJkGQN0QzLxJy5nLLyRbpKbC6/Ph5oZ6Tid7YnYZ6L6nOdpGgzntaIYnZn8O8UP6LVjUK5cGGmBsGUFeHQdXkVBIJDiICfrkxTQjAxEWBGADTy9QMBwxdqwROw8JdQOc4w5HBOUiJwzapIJNHCqI64R2pnnjjI3WcSJVIxUFfvlzkUuA0mnIPri3kO+9ihSgfBD7RCcXLaqqnFshuOJeyslCbv/+QelBQVoHgjggZdfBgB8sGYNLodC+O2ff7Bh9myk1qnjiB4goikoKEDF1FT7GXdYqIa+Ead4LR7G5aSIbs666DulGEBe0DaIReeeW+F64388/vA/W/gaAJz6NMexyERJeRR/o1KWnODf3XR8UZ65tSEyeg632A+9/1/7EfWcaPKA45AKN1jd7BURr25tiONleF2yZQs+/uEHtKhTB4os49nVq9GsXj08N2EC4oQNRgDo2KgRSn/4Afvz8tDMHFPRTz8h4Y8/bB5GxgrXFwMB7N9vsH1StwMBD/x+W0+09gw4Tw0GkaTraFAvA6ezPY5csZoGFGoeeAV9lBxl1rrWNMjZJ9C8eTWkpxtBeY0aARUqACl+40ZDv5+rnmGUlMRYaiddwAakONgGdZOZmYQkP8O1JBmy6dgx59zzaGPuYOC2RDCIZNXIa6XrZkSX2QadoiDxxFkjT1uSpBo2Az2XpbB1k56DrjhtcDkielnoN64gcDlEdMIdp5ze+VhJzjqMRd3OzUhtUX5K+uMbIQDOX7iALVu34rY2bfDd8uWYuWYNln7zDdo1aYK1W7fikcGDMbhLFyA9HSFfSkTeycsFGtS0DBTS0tLsZZuXB6SkVMfx4zmoXbu2Q3XmIEoSjFzGXOBwBxzZM6IPheOPfiM6oE9F+c/Hul1U0TKKrrs37KYJuz3ngIrPRaVefM4ZJv9dZIQiowScngs3DZwrRaKW7zaGaGMRGadoiPBnooDisIp98efiWEU4GE6Onz2LCU89heWzZqEKKe26jjM5ORg+ZQoWz5iBmjVrOvGgaWhUtSp+3L0bxSdPIpkSwJq3QmDPHltBNBViWS9ERoYXWVk2j+I5oUjX5uveYjpMeU3xF0JVvQ65xUmL65QePWQ7d5i2JiOE/v07Y/r0ZzBq1ABHA2EYt9l9//1adOjQw3KsALbuLPIuUTFEUINHYguxLKOMNyI6VaO9J+4gcZrgSooo1N3eo3fFwQjz7aAd87kHYVDSd6rqtix44cMz7B2PfWSH9+PzGUJKAwAZlHRxx46d+OCD+bh8OQ/BYB5+/30Hhg4YgBWPPYa+LVvi8127sHbrVgDAseXLjWgnHtYKWEZFrbp18flPP+F2skZ5HUnCH7/+hpqZtR24kBVAVk14KdE8N/rEuXPjFW5rV6xDv9EteNeKs+i6cdyuLMOqLGIUFW7erpsscpMhbvMqMiTxeTRYrrZwxDpsHYr2RTTR5CYO3ECUJBdnk5vcFsfr1qBZwh4P7njsMUwcPhyd6UgSgOLiYkx8/nmEwmHcMXSozYdMpa5RvXo4s2EDDuo6amdmotyePSgqLUVRURE8RUWQAcQQj+eKX14egGSHv4P82ClqoZUDQ1EAj1boHKPpFEnz+wF4I6aU9G/qTlVh7LqSIKPKeXmoHB+Ps6eO4cr584jnN11KxrGGY8f+Ro0aNZwBl5JqI07URSKEDSIVZe6sdHP68E83QuA0H4243Hg2/52/K64vt37ET7GeW9+kI4k7HVTHTY8TlWCaM5pQk45OXb6MN955B7/v2QuPJxYbN34JACg9fBgfTJ6M4fPm4etffgEAfDJ/Prp06hR5S5VZygUCyD5/HqXly6O4JBZaEJAkGZJZraDgCkIh3dhoUxRITAXlrEZRjHUpHnf3aIWOaD+HQcDH6rZe6X9ZjsThtXL1IjJct+98Iy8aA46mv4t9uemHVKLJMdGWiPaOCL+bzeT2vhs84niuZq+IAkoc79WEHPtt7vr1OH/lCjbPmgWPLFu/r/zmG4ydORNLWUQIAMDnQ4P6RhTQ9vPn0SwQADIyEN63D5fNdA0ygHjAZvjMKJCkZOi6nf6JAlo8WiGSdA1qRrIhT8Vz26anJy0QQKBesjPvEp8L7jgBnJGfADy5OUjzqWjd+nqcOvUjatRoa/YjW+3FxJTg9Ok/0aBBbdApLUtMwhnE4kC3ItmVaa7cIv3EOeT8l82zpMgRpGBdkgUj0sZKMSPaHQBkSYKkyI7fImDg33kbfIAcp25H7q4ms/jvouEprtMynE5XEhLw9pKl+PzzzxEbK+HHH7fj8uV85O7cift69sTzH36Is3l5WLt1K+4ZOBAzp0xBTEKCmRLE3m8lcJKT/Thw4DhSUqo7uidU7Nu3F8OH3xkBOtWLSCofDZdiEZUkt/VO+BGcbdHK/y3roLjT4jZR0QqfdDflw42Bie9H2/Xmf6J30+1PDFV2+xPbcyN8tzrieN3a4885XstyZLj1UxZMkoRXlizB3McfN5xOhGdJQuW0NMx/7jnMXLw4UhgoCsb26IGDp07hrnvuQfjIEdvptH+/82pJNi8ZGcaGAUUGERiqCnhRCDn3NJK0HKSohUhW7QRn1mLWNCA7G149PyI1Aw1RlsLwSiFjB5BvHfp8CPuSLYHTqEFVKEocvv56E0KQEVKSEJK8Zl7B/dix41u0a9ctQo8H7HyvGRl2UnOSRR49ZHjhDx0y/sRrNt3ohhsRVDgduoUz8nBf2nHmz8U6PKmq2LaYpFakFf6OsN4M5xMzwKIU0ZclBvpYUpBgRSQ5f/zxUqxatQCPPvoSXnttA+rWvREAsPXHH7F7zx68OnQoqpnEdeDTT1G9bl2nhcgFg6KgVfPm+HXvXlwoKgIUBYWaByHICEsyrhTHYO7cuRh9911OfHA4+XXd/AYljteyhFhZ65jo4lrEk3sR11JZBoDb/1Tc5Ek0Ps2/R5MH0eSCm1zi7UWTe1eDnz2mPyP/U9n+Cjd/Bn1at9P9l79osAl1Nv70E1pdf73tdDL/4hISsOCFF/DuypXQRUBUFd1uugmZlSuj54cf4mytWkCjRkhISIAE2K4xUuiIEQNAbq6llEXwmtxceLJPw6vn204n3reuW2ub83bOPuiiuWQ15GyD5wECEHPpEkbfeiuemjoVpaWljjD7nJxCvPzykxg6dJJjXiwY6Igd8RjiKZzWON/hJZo+w8foxuP5Mze6JjyJ8ohkCIevrDXA6cStz6sVEjhuziVddxqIfE7EuvSc1dl39ChGTJqEvr16YcWKr3DXXY9Y1ed98AEGtW+Pni1bAgBWLlyI/kOH2resiBGKmobY0lI0v+EGbPr62wjRq2nABx8sQ69etzrAInqgJMNeFMKTd8E4RhrMt/9yc2z6IDnE9Qpx0XMc8fktS3j/rxc3myaa01Z8fhW+HVH42hDXqrgeo30XvQh87UWTVW5wlCWn3OSZG0xl2WNXs2nc7CoRz0K5HArh6z17MH30aHi8XkdOtiG9eyOpXDn8/u+/EcKvXHo6RrZpg8e2b8c3V64A9eoh0dz0080/B+Mn4zk31wqy5TefArB4oieY704/xN+PHYMn6wSSpELn6SnuxOA8njMHcgplZ2Pi7bdh9qvPQQ/lIV+TrVu38/KA11+fgZYtb4MsxzrMKfK/cBHqsHeofy6LoulGfC7d+M3/x957h0dVfP/jr2xuNpvNkizJEkJYIPQiSFWKFEGRItKboDQVBTRUQUClWCmCCEiTIipNREAEERUVxcZbUVERAWligABJCGGTbDa/P+49u+eenbvw/jy/719vzvPss7v3Tjkzc+a0OTPjD9kLQVDYK8TnrHQsm78wpKOo5Bmnf/5O6u5WdpFk0JzeVLRJdCFlDMeF7FCmTFwrKkLv3r3hdDqxfv02LFu2HVeu6Edr9JswAaXdbswfMAAA0LJxYyx+9VVEVagQ3P6tX+wSQIJL/7hcwPDhD2Hx4nkmVkBNPH78OAoKfEhLK29qksulyxg9ajYbQcLhdoy0Z6x4hqQLmd7h0EPzbgD+O86pafpZMfSbKlMxFJ5GNoQTlQSp9Ko8r/y3SjGR73kaHuJN6UTodVid8jknWN426WDguMgyZFs44yGQzFm1YsDLEvUdPXUKt9aqZc5r5IuOjsbuL75Al0GDEBcdjb7t2qH7bbchBkCr22/HuqeeQt8XXkDpSZOwcORIRBHBUvij1xtUtAPuJDiy9EdZWbqfyrQ9ldrHFSXCiUWiHDl1CovnzsWRv0+jqKgEzZq1Rv/+D8HpTDaip2xwufTbxoLXZBsHk+vF2eBw6KuNs2cvwujRj2Hz5nfRsWM/xMXFYs+eD/Hrr4cwceKbyM+3obDQbHC4XIBTM5xi3gTTtr8gyJVHKytP/rcS7rx/rLZm8WgdThcqJV7lxCXmSc/4fm05NkJZtWlaMPKJJ+PySJKhygYIts+ow+EKrY5cuPAvdu9+Dx9sex9RUVF46511KCm5rNcfHY0Jr7+Oz2bMQJOaNZGcnIzqFKXHkRGMMUrTMGv8ePQbNgyzZs9GrXpN4fcDp0//ixdfnIa7774LlcqWDcUqSwHGBRWfu1KxkivQcqwpDX9G42m1Uvm/Dpqmbw/hfJNHgERSVK1kjUqRIXpXgVRsVLJGKi48slDyY8BaPnA8WXmmW+X8fsCnp6cbI/XbF1kEk9+va9Fa6AILAEFeGbyZTiUzreSqlIVc6TPerd+5E3OffBImMN5duXoVsXY72nTujOSkJLS+/XYM7dQJyaVKwV2hAj5+/XXc8dBD6PDtt/i8TRu4XS7EnDmDmKwsvRy6fYi2phlKr9uty5qwJnB64ePLlgaz8/OxauVK7PnxZxQXR8HrrYihQ0ehUqU6weR6VXbzTW4kJBgN9uvYEeeuXsV9gwdj4OCh8Hgq4JdffsKGDZsxaNAzKFWqZvDMKE0DnH6mIHOlVbXVhXgRl5NcbvIxsYqoBSIbqbwDyaCQq/d8rnDmL+uhPuIyxQonjrukt+sZ9Cq+Hykfm/fjpk/HulmzUDY1FQcPfYnDh/cHk3363XfoXK0aenXsiJ3ff49W7doF+zngcIp5FmrT1DFj0HvoUGRmZuOee3oC0JCX58Pmzavx7bdf4O233w7OQU3TV/SDq/40xipdVbXYoeprq48qeuEmhIPPF24DSH4IWPNEPi8pr1zRlDoKBz43hZ6uTCcVLNV85G2R8/x6MkDaSJFsjRstQ+In+0z1XuheOw8cQO8779SjQoQ95ff7UblCBdw/Zgyqp6ejcrlyeLRbN9xSvjzgdmP5xIk4P20auu/YgU/79EHTunVR6sQJFNGZNOTsqVs3RAsuV9B3TTycpmMSO9MneIszEOLFDgeKCwqw9eOPsf6LL1AYHQ2HMx6DBg1G27ad4PPZoGkJcKa6zMd1SH3H6CdvUhJmTp6Mbj164I47uqJSpdtx8WImdux4G2XLNkaLFsODdhdfi+URLzQsfr/+7fHYQzsS+K0cKhuGyxk+TvTeoLNgJIuVY5Knlzw/knzgiFM6rlvLhRtJhxIn6hSVDSTbJYHrkSoHr8+HV15/HcN69kSPTu2RmXkEO/bsQWJiaeTkXEb5ChWw5NNP0b9TJ4xdtw6D+/fXHanGuAc0u3mBEHqEUOsGt+KDD3Zg9uypGDx4AmJjS6OoqAQ//PAFli+fiaVL14SxBpu/0Nw30uEmdQ3eh1JfVjgKw+TMDS6m/3cSKTFR3wJBe6gkQ5a/CWmOvGog6bmKwauYvBXTVf1X4cHLVgkOAmnwy/JVSjkxDanwqtqqEhjymUrZI1ARiPG7pKgI9piY8DyahjUbN2LHnj1Ir1gR21avRt5ff2HtBx+g25Qp2Dh9Oko5nejdqhWWPf44hi9ciKKcHCzo0wcOCj+iyezx4Lw/CWcO6n+9Xv2bfBwOh85TXekJsHsQLjQ1LehNfn/7dry5fj2mPj0DlSo1QE5OMb78cjcefrgPMjKWITW1elBH1xcxbXC77UGvL+9unQfGYfbsN3Hy5BHs3LkDBQVFaNasB3r3fhkFBVEm/mVykhmTVHMnmEjF5wMCbnEdNmc8PExLMjZpLPP4SOmFl8CZraQNKoP/58YvPef1UoPpf4T0ASOcV5K8roDbTHozZaXigjY2F6SEq89nHCivK+EbN67BmFEjYMvNRV5ODgYPHhis759//gGKi/HIihXY8vXXWGIc0moqmw8UmwMN69TBitmzseCtt/DH0emw2aLhcrkwYsQItG3TKnzPOH1UAszAO/ht5QAhkIJWpVDd3GqnBlo14duIpNdTZQQQSF5uJZMIVHNFtbigmn+8HpmOFDXJn2U6lUPqBoz8oFPEQgaYlGGeViVDuTESSdZI8OsHinvKlNF1AyDYJ78dPownpkxBzerV8UjHjrivXTvs2rYNfceMwZzJk9Gobl1UrlMHHy9ZgtbDhuHur77C5rvvRnp6ur56kZlJB1IATZrgUp7OL9xuIJ3po4D+nZkJuKqlBf8DgMvl1KOWDDlz8u+/MXTiRIx+/HE8MHoGfD4Nf/55CC+/PA2tW/dCq1b9jXwkZ+xIcOn0F3DoW/PsbofJOMgYNQoPDhiA9R/uwS+/fIFKlWrg5Zd34+pVe3CdhhbRkzwGLdMKjaaFrool4NvqpPJHyEk5KtNw40XyOb5oohpnSkuWi0oBZeMs6SGMb8rVcV4Px5On53TqYP0tI48ISDmg5woD4pcjR1CzUiWUNc5S6Tt4MP46eTKYbN/+bzDqyhV8d/AgunTogNTy5ZlhC2iacakIB02Dy+XClvfew6LX38CDD3ZBdHQMSkoCuO++nnjjjbehaRrg1w/4NhkUUoknXKlCuQAi5Ymqr1Xvb4I1kKzhxrDUKaTMoecq+4eA83hZpkqOqPLxZ3IOynJpvqryqfCXcoDbEhIHXoeUKRxUi6aS/kimy3wcTyk3DcjJz0e5smXNPEHTkF9UhPvHjkX9OnXQrFEjrHnhBfzyww94fvlytKpfHyP79oXd5cLmF19E+7Fj0en99/FOs2bo5PUi5ujR0IG0Hg/QsiXOZ9uDpgn8OmumYCBa7PClOuFy6beGaZruxAmel+pwoKioCA8++SQa162LN15/He5KlfDPvxexaNFirFu3FRMnLkUgYIPDYUN6egqc7sKQIu1yhWQNLQQAaNqyJXbv3oPly3fiu+++hMNRGv37L0dubhmcPBkyQ2i3FxByQvHdupoWWvtI4YcvkQOcxpHLID623M41PsFFLn4uqhXPkuNPSKrsfSvnleShVnNKyiouayQeJFtE9JJJP+JyRlUGgJKSEuz9+mtMefhhIC8P2zZvxuMzZgTfr12/Hl9VrIgNn36KcikpuPeuu0zl+f2AnctZ1mezX34BG9/9EFOmDENhoR8+XyFuvbUpFi3aAK83hdlnCMl67njiC068TyPJIat+5v0t+/06oOCYkVJrunIpD/OVioIVEiqliP5zJUpFgHKArZQtnl5lFMjfUrmXdcp6ZB0y/Job2JH6w2oSSubO+1em4/0vnkcBKCwoQEFhIWLtoX2zvx87hl2ff453li3DfYMHIzo+HokuF57o0QONatbEhGXLsGzyZMDvxyN33w1bYSEeXbECx//9F3smTTJHy7hcOHFU33VGW+28Xp3pnTkTQsfng37QNNgqPBuf89m5WPzGarz55g6ULk3Osmh06tQZNWrUx5gxD2PSpF0AQt1L5Ur+xuWapgGVKtXAgw+OM+ncBQVmPktnUOmCRk8oj/YJDlMkOvf7sWPvXizfvh2BQAB+ux3ecuUwfvBg1K5UKXz8VB5kKyWfM1B6p9qGQWkko/D7zVFPVkYDgcMRRrKUnN/Mo0pD8siuBRC8lYIGj42730D96JE/8XC3roDfD1diIo599x0GZmTg2+++Q1JSMv7JzMTKbdvwcJ8+eKx/f3Nf8L7ic9aoK71CBcx/8UUzUfB+5f2pUvJ536jCUVUKoORJkhcRcSUkhI/dTVDz7utFh8nxsjIk6J2Kv8vyOM3QMytZpJJXkib5M6u65DtJ6xwPiVOk8jlOvB7OK67XHzwPe1+vWjV889NPaNmkSfBdIBBAxtNPY+PatZg0cyZurV8f0dHR6NKuHe5o3Bg9R47Exxs2IEbTULduXXwyaxa6PfssGm7ahD8mTkSqx6MLFo8H8Hrx+1E7jh7VyYBkjabpu525756vTBMkuEIy+vGnn8GCxWtRqVJ6UJY0blwXixZtwIMPdkOFCq3gcpUXU90Gh8MJX7bRPQ7j4gRGk6XLlcMDDzwcrJ/ONJW7nWt4DVmemaknImbJDk5X0pGAP86cwdzdu3E2NxfRdjtsdjuGd+yILg0bhutXVnxJvuN1S77IyxKRCGG8TiVjVCv68h3XmwCz4cPx5Wd4yHlAwJ13hvPs6KlTqF+5sp7f5cLBbdsw6bXXsGjVKgBATIwde/btQ43q1fHOmjX6Vd10w6YWirJWCUWnw4ExY8ZgzJgxajbB5Y6UNxz487B9pGJcJF1wI4mXJQ97vwkhIEOS0xiPrlXNSZmfvjktSp2daF7qeTw9/VbpmFSGlCsyUlKFp0xPIBcb+H+ZT8oZVR4uRzgOMo1K95R1KvhUvfR0bD9wAPd16GDKMnX+fIwaOhQ5RUUoe+4coGm4tXZtrJs+HUNffhm3HzuGJrfcAqfbjQ9fegkDn38enT/7DO/26oXeTZroR4gYKw2/HLYHLxaqVk2/l6BWLV3O0HSk6eRwhBw5AJCamhB0vCzYuBH39uiBBwcODAqB8uWS8cwz0/Hcc/OwceNatG8/JNjE1FQ7XJ6UUDdSuQ47NHeSqWtat+6KKlW6BuUdPw0CCAUJc9LOywsdks7vq4Cb8XG6mYPxpJycHLz63nv46uef4YiLQwGATm3aYOTgwYhN0xd5yB4IDqncysZ5n6QPQlJF8/wjF+dJb5F0IiN2+JymPDzqgM9fvqAj9X2eloDy8I/bjcKcHJSOj4fN2FIz/P77Eed0YvCkSQCAhg2b4KefDuD4qVP4dutW/axaCuZxOHQHZp7PPIeN+qKKi9GzZ1d07tzVJEp4t9k1hPC3WkTnfcrHRqX3SecftZ3zBRqXG1xMt5j9FhAfHx6exreNRDK+JEPlg8hjAlXKLQ0woCY2KoMTn4pp8zpUePBJwEGllPF38jk3bFSKhWTcqne8/TwSRoWzrMOY3H3at8fSt97C6MGDg6+WrFmDqZMmYdWWLejRrZteh8Gd7mjRAnM3bcLl/HyUNhxMD91zD345ehQrv/oKBWlpiK1WTc9jvM/O1s8bP3pUR5MMAkLd69WH5lK2LTh0eroEwzHhw9o3V6Nv3wzk5MSgfDn9oD6HJ8GopjyqVKmDP/74D+LiGsPnMwcXORyh25JJKFB30JZtQGe6xKBpmCmykJrkcAAJ6R4AgMsRMmKCBwpmng1Xeol2PR7MWrsW5y9exNpJk+A2BPyR/HyMeeUVPPvEE2hWr5568nMJYTz749gx7PzxRxQXF+POmjVxe7lyZiWAVs3ZKkmwQziTpvqofN5xcs6yORSALWyqcfLktgLXaag7gjfx8AQGYz6enQR/ll6OxwOklCqFUz/9hJQaNQC3G1Vq1cLX+79F69at8PXXXwEA7DExWDB1qhlfwByxxQ0alQIlQaWkqxQ2md5KwePAcZCdQxrA5cvqvP/rEB8PlCoV2ViTwlQlgzjwMaD09K0yEGQaAlkGNxoov3B/vzhcAAEAAElEQVRKBIHLHKv3KpDtVMkIabRzfKScUb1X9QP/ljiwtMP79cPjM2ei+bJlMGKe8PE336B9hw7IKihC7pUrqFKxYpCZlna50LNbN2z/9FP06t4dcDjQqHlzrJ0yBe0mTMCv5cohtVEjnXnXqgV4vTi8FfjqK53leb3AkCFmhw7pfSSHCD1dCbchxZWP3//6C0lJXly7lo7sbKCi4zzsbjcCmh1udzTGjRuPnTvfQKNG04Jl0jC53aHL0Xw+INtng98figilHXi0G/3bb/V8pOQTrnfe6YSTdCayHAC9cBonsiI47bMDqb7JysJzW7diQdeuqJ6kGyXZhYWYeeAAfr90CRMHDjSPFV/AogZoGpCdjYvnz+O9X35B1tWrqJWSgvvq1EEMIc7pjfDlc4zTHU/LV475c0pPRg795gYF1SOdAZIHSGPY7zdvS/R49D5NT9cJJi8PKS4Xfj1wIHgWgLNWLSxcuBDlq1TB5KefxoUL5wAA61avRkJSkomQ7G4NtI01bG6IqSSntslhpdKNJS+z4nGyLwmkk4Mf8Or3A6dO4SZYQGIiUK5c6L+cNypZz/m3pH8+B/gzDlxn4fTLgcsJlQ3B09Bv+Z7jqqI/Xg7Hx0p+8vbIuSh5gkpmSR7A+4Pbb9JpbjxvVr06pq9bh7MXLiCtTBkAwNXCQhz5+2+8/Nxz6Hz//djyxhtB3hPlcODpjAy8tGIFVjZtCrhccLvd+GDePDjat8c+AL27dAndpFmtGg4fBj76SGcRXi9w99367juyFfiZT3T6CP33+3UHUsy1y/hw7xdYvvxj5Puj4SSjJD0dTgATJoxA9+690Lz5EFPgKxCSY3TUFNkgxBapS3w+XdYdOqT7zYJyKZtFZflCx55Q1BM/98ntBg8N1jPQYVB+P7IDAfQZPx7je/TAs+3bIyoqCv6oKGw6cgT9xozBxrfeQqyxQE2iwanBTLcG8kU+H3bs2oU/TpyAJykJvVq1QnJCgplu+JzitMMPM+IRAXLxguweGgySd1LfojK5Mck7WfoOuJ7H5wqFlpGccbn027wvXEDupUu6t9LhQJTbjUH9+6NR27aod/vt+OmnAwCAFydMQNOGDc1b2wknzkv4x68f4s5RCWMHnHdZ2TQqXVrOW6lLS7nD5Qz1PW1dvQ78d4eLc+VdGnf/1/dWTiircjhDlsRE31Zlc5DMjo8iZ4BWZVjVoVLgrQhZMmT+Trozb6QOkWZY9+44dOwYnl24EOcyMwFNw5/HjuH97dvx/Q8/4NGBA81tB3Dbrbfi8OnTprqHd+qEAr8fr6xfH/LmGN4e6sYTJ4CDB82KP/fE87nFux1+Pw79+ivq12+mN8lQIG15+kFsPh9Qp04znDhxKEjbtFhMjJ93Fd96J7uRmPyJE6EVDL6TwOfTr/SEppkOA3S5oOPDvNImpcHhwF/Z2fjl5EnMHTMGbnY4YY2kJGyYNw9Pz5uHkujokNLNDyxln6sABq5ZgwX796N+WhqapqXh3UOH0HX9epyXApszTdU84eGiVvOOe/lZOiIv3p+ST3FyFGRkfkFz2uhQfl66pgGDunXD0o0bzQQCwBUXmt9frFoFZ3FxuACQc0A+U4FKsZL/rd6p5nOkMnhfUz94vQjekXsTwoHTotXBuJKRXE/WRKpLgtV48/dS2lvRBcdTKuj/bR3ynZViz9OoFmqsDBBV/TK/QtZUTEtD/65d0S8jAz//8Qegafjh119RUFCAUSMfw8LZs8Pa26ZtW/z022+hZw4HWjZvjtqVK2PGsmUoSUwM3vJwKTsUYZmdrSvahw6F5EpmpvkeAL7QGhx+vx+/HTyIBg2ahZrEzurz+YDGjZvh779/C8oZOm+V+4EoLdeFVboaySiKfCJZkpeHEP8nayAzUx3hwj1fBq8uiY/HM9u3Y+OoUaielhZUVt35+XhlxAj89NdfOHrhQoj2+a2efE65XJj77bcYtns3SjuduLN8efyTl4d7Nm7Evn//DRsv5fYCiaekbd4xJItUdGqMf9gWQlkO5eWCiG8h4PtMPB6TngIALerUwZeHDqHAuM2K2uSKjQ1WNWzgQDSuXTvcuLHiCaI9HHUbAuYbJGWb5e8bhUh5uFznesZNUEN8vFlPUulR0taQ9opKt1LljySLrOYFp3tVGVZ2gJU+dD27SCXLrOQdx+H/KjOtyqB0DKKiorBw9Gg88PTT2P7FFyguLsbRf/5BcunS6Dl4MCY+/jgSKYrcyFutalWcv3TJVJ/N6cSoHj2wcudOnPH5dDlTq5a+Am1AXp5uy3z1lW7XZGeH+Dk/v1qKXl1k+lC6tAfXrkXrsog8QpqGQs2JmJg42Gya0p4hOUYsjd/JQ894F9IzfiRiamqIXCkfd2aZVCvSp4WcgduN599+G89kZKBjixaIiorSjyC5fBkDbrsNve6+G8tXrw6OGbUloNnD5sJXBw/inrFjcTorC3fWrImk2FgMmz8fszdtQjCzlVEh9RAqW0bhcDkiebaqDPmcyxJOe1zQczy5rPF6ka8lIDdPX6yPKi5GzbQ0/OfPP0P1uVyQpx9NHDTI7LjlHcn9EKKNdMGMNNs0TSxyyMUalf+Bt1Vlz3A8OHA5Y/TBf2PTWHAfC7BCRDJJZU1aeEN5A/hz+f56glbiESmN1XvJDCUOMq2V8cDz837h5Ugt9Xq43ahyItLZAgEsnzEDu7/8EmNffBFXCgvx++HDGDFkCJ6ZMAG2QCCMGC9dvgwXXVNqENYt9ephdPfueP6dd/BA3bqoaFz5FtDscLl0Zy9fZSZPPRkJtN+YJolJD/L54I6JgcNxDn5/Mi7l2ZFkKIvZBnPPyTmH0qUrmBzBRlZlxA0/cygvL6R/0aIvDxKiM9I5n3G5kkyk7nAAyPYj/GEIVr3/PkYPHIioq1fN4aAAEjQNLRo1wv6DB3EHRT2RUcARdTgwYvFiPNyhA9pWqBC87ahNnTo4lJWFIdu348NHHkEUx4Mr8ypFgwuUcAkZkkRiDvP+lPyaJQvTuUJ6kRbKbAx6IeymA9uJFuqkpSHBZsP8lSvxxEMPQQNgczgQb5wZ06BOHTS79VazcFEZ1ISYBMmXbkTxVzFhq/838puAxszhuHnGUyTgYyZ5oJWz5Hpl0DP+bfVble56EEmGyHTyvZVsBKyjlThcD1/eZ1KpkWVY4W5FzwAG9OyJRrfcgtffegt/z5uHE//8g9atW2P7e+/BJXmQz4eLFy7ARQdRGswgJjUVi2bOxF0PPoi3PvkEg9q2BapVQ9ZRPQktTPNFT8B8MRxVxW1JALqcCQRwwpcZLIf4Lyn4J0+eQ2KiG/zYC5UdKfVeWiymqU2BWsTr+K1CPh9CeyFIOKkiEqgyvmKrafj6n39wx623olRUlJkuND0Mf0z//lj1wQd4ceTIUBnkfCGeD2Dtt9/ist+PrY89hqiLF4G8PLSoVg1DmzZF323bUN7rRZUyZcznQXF6tDKMZTtUdM1Xhbj1JGlNNedVODAaUjqdjLy2wkJMaN8eD86fj+WjRsFthGMnMD68ZO5cc5lUt3wW4XnYIeTEv+QclGVIiKT7XY8fcl7EHGs3IQIQDUWKMOJpAXP0HT2XepZKDkmINF9UNMB5qlUaK1xkG+i3ij55GVbvVWX8X2RJJD3NgBoVKuC9l17C6u3b0f3993G1oACXr17F+2vWIL1iRTPOfj+KrlxBIBAIlWv02/TRo7H+008x/s03sXHUqCBPdmXprBkwXwataeaL0mjNgPsUCeV4mw3Xci+G+L1xZmEh7MjKAoqKSlBY6AvKKAqyIZZIHy5rpMOJyxmXy3xMlfRPBs8/dJnLMDkpOO1rGopjYvDLn39i7rhx+iq9GO/+bdvivsmT8cRjj8GOQrjd9iCeTmqI34+///kHL7z5Jj5YsACu8+eDQrFX48Z45r33sGbXLgzp0yfUeB4pKD1uXMBTx1Ba3nH0npQFTv9WZ7PQgAIhm4XKlTKQPl5v0Jvnz2Pdk5eHKffcg4Gvv47Xhg5FXaP+RMZXdq5Zg+joaLP85MasSudlREbnd5ounwEQvEBG5ZiTzyDyWskkK52ZExr9/n+y1Y4iDqy8Z5EQVxnFUklXMXb5W9mKCAJaVZYUArJubohHwudG0kTCRTX41JZIDNjKmFLkjSouRsc77kDHpk0BhwOrPvgAOZcvw2azATabidCLfD78fOQI6mZkhCmS04YMwbq9ezHuvfewed48fbL5Q6GnpB+np+vMj1YMiGfx4ByAeIgNdgAD2rXD2kXzMXDECuNYD2fQQXT5cgm++WY7nn9+O4qKzM5nHnrK9U7iJZwHkbefeA/nN8TI+dyn9243OxCUjwdlNio4mZmJ2lWrAteuhSYhO7ejdtWqOHX2rO544lKF9vz5/fjr4kXYY2PR9rbbQpaPgWBdtxvNqlTB3r//RjtjbzWAkIVlRSMyckQqIhwXIVyo/dIBz/k9paGqXC6jv+iB8R3Q7MjOCtla1HSbLx/Iy8Mrfftiya5d6Pjoo0hPTcW1wkJcyslBswYNcOzUKQTsdti4NJWRXvw3b78EK+WS5+NaBG+oqv/4tyxP8iUxp26uRF8H5OqT5HME/L38LY0/VXm8HCnHrBRulYzgZcvf9F9Fo1Z4yDJUbY5kVFgpELxtVmmt8JD/WXtq1ayJ16ZPBzQN/1y4gAkvvwwXMV2h3L61cSOmjBtn9hT5/WjXujX6de6MJ5csQdd770XA2KJNCxzE34mfE+sjJ4/c6k0sDvDjzqpVMWv5coyZMBGnT0cj15Gi65vZepkbNqxEz54DUaNG+E5l3iVORwCapgeLy0VSCjRp2dIsZ/hO6oArATY6hINvo1fRlvDqn8zORu1q1Uy8lb+vXa0aXtuyxSwAic8YdZVER+Otffuwa+JERF27put1RjkuhwPPdeuGxZ9/jld69DBHExG+ko6Il3Gex4WEnLdyxYgL80g6oWouk9DhCgB9+Nw16uxUsybifT4Mnj8fcQkJKOVy4a9z59ChZUvs/uor/PT772jarJlZBvB5q5qXwXT24F/TTVeqPiDgBg8BG08AZlllpTPyesSi2HX15/914P0odQmVY4nyqPg3p1mpZ0ga4LTMjUKexkoXiSRnJB4qfUXOI4mXLPdGZVUk2SzTq/BX9a9ob+mEBIx74AGMGzIEcDjQ8bHHkMLnO5uvW/fsQcd27cL6I9HhwNzx4/Hg1KkY3rcv7mrSBAFPCjweoEmT0LqApukyxdgwEoxyYoGUwWJpB0V0dDTKxcWh4MpvQKlbcCrLCY+3BvKyYRxN8h3q1KkPrzckw1S+AmJtciEdCMmZunV1/E6c0J9z9ZKrmzxQh/TvII/iGYzPFQApdJA7ELJlDHsixuFADOXNzobT5YLD7dTTZuUFBePiTZvw3IgR5mAGAFExMZjepw86vvQSBnfsiCh+BgohTZHAtDLEPXK8owB11BTNX5qHVA4NrGrekNDm847K4LRIgQOG8UMi1gb9qJhymoa3evXCtC1bkPnOOyhfpgzO5OaiU/Pm2H/oEL45cACdmjdX83hO/1KZkd+cT/F+oPcqvU6lK0ri4fOPt1vF6/g8lbLHAv47ieTz6YeLU0Xcy2hlhHEGJxmJqmFWBCGZmyyb/1cxsv/2W4Z3qEClGF1PIMj8N/JeKkHyvUooSOFhKJb3d+qErqNGoWGDBqh/yy3B5EXR0Xh07lyMGjAAUTExZgL0+VDKZsPchx7CwDlzsPv779HB64Xdn4/UVCdSU3VGTYzNjkKkp9tNYZ5Sb9U0nXnbAdxWrRoWrV+Pr77aiPr1++LMmShjLvmxcOEEtG/fG2XL6n3g9Ya2PtDeaN7E1FQzWfJ5SIvLQLj+TEye+2kcDmOLXWa22RKRjNrhQFqZMjh26hQalCsX4u4MmaOnT6N106Z6ZXy5no3Tnl9+QY82bcyMjTHOXrffjjf37UO7lJTQ2HKGQNKKmCWVQwMgtzJIBsO+aTXErmlwuWxhOgtVxX1aDofhSKKyWAdzciRacLkAZGUDfj+i4uIwsnNnPNalC85fugS7piEpNRUfXbyITsOG4dTZs/ptV9zgknNApWyp0vD8KkWLz32uDfAyFVFiERUq/kyV9iaEQApGTnQqpTkS35PPrepT/Y7EnyU9WKVXyTMrPm6lYEgZI/Hk5ciJyvNLurOiV6s6rke7bA6Wr1wZ5dPSsGzZMjz66KOmNG/v2oXYuDhUq1nTjIvxmTtlCmrdcw+mvfEGps1uBk0LKeiUlHYQkezJyjLLGUMfDjYpzeVHjN+PIa1b44nBD+KFhW8iMzMmqJPu2rUNJ04cwaRJMxEXp+eR2+mCXeTzwQnA63UGt+NJvZF8HzJyitiGnZ9xRMiqjEDKZDDMtPLlsf/oUX2pmyu/Bs86euQI0sqWNfcr540OB05duoTqFStCi48P6XNMXjR2OPDMBx+YvWokyCVdccVeZSTLVWgqSyVQBA2FLarIFWFKQ/3D98ZzWuaHmzgcaF2/Plo3bozLAHwlJUipUgUlZcsivmFD/PDjj2jasqW+5R4I3VTFxwUhoy0Am3o7nUhv6hfJD0Q0mikNtY2/jzT3VXzlZsRTZOD9ppIzPJ2E/0ZG8DpuxDjk35F0fSubSZZllUalA8r3VIZccJG/ab5YRelK+80KrNok57+mYdxDD+GhMWOwZsUKxLI0f1y4gKXvvov333wzvCyfDwO7dcPyLVvw+Lx5+Pnee2FHAF6vLXjBKLEuYq/E6znbIfaSlWUWjVO7d8ejw4fj9dWb4feXC7KuP/88jjlzJmPhwnWmSFgeTcWHgmQcD/7Jzg4t9vI0KtIlBxmVSWk9HsO2kbzYUOhdDgeyLl7Un5OSzyJIi69eRWFhoUk/tmkG8my/++/HjqFJjRohemDIaABqli2LE4cOoTKd6ck7loec8TBnafMQ7lKG0CDSe1rgIFnFeay09+VigIzuEXUEzyyi/nA4UL58ebwxeDCu2Wy4fPUqkipVgqNiRXSbPBk/HDxojvBSyU4Okndwfq/S+6Rc5WWogCsnvN/onRUvo9/0P15uKLSo7oZSEVy9anY88cZZMVKVcs4bofIkUjlWjMeqHismLpmqZGr8v3ynasuNGjqyHCvDhLcpEsNVtckKOK6sb+IArH/5ZYyZMwfFxcW4vX59ZF28iO8OHsTI/v3RvU0bdZgegPvbtMEbu3dj0LPP4ov0dNRq1EhnNj4fEgAjblSvM83lgPvOhCAv8/tDzJP2Izsc+o1DUVFRWDluHJ7cvhdr165CevptKCrKx4kTv6B9+4fQtev9oOJVPIV4Fc1hjydkdMh5LP0NlMflApzIN04NzNMVTsB8oB33uFMfGxUP7dIF81aswMoRI0Jj4PUCmoZrPh+++PZbTB0xAsjPVx9g53CgxKZYJWUMwRYIoCQgDirljEs1r6QnTdbLBQKnG0YDdk2DXdMQcDhN9oXDoa/+h0LQYKZhXoZbg8tlD8oWuxYIPyzQ7YZN05CalBRsW3XjdPijp04hXYYzEKjmmYpRWilvvM84ofCxtsqnUtoiKVS8f26QSf/PwdWrQIxxu6VKqPLfsq8j9b0sg2hU5rP6TXmuB/8tb5b4qeTPjRhDN2LEqNoTqQ9V+Mn8/MPyzJ4xAy+8+io6duyIO9u0gS0qCp9/+SUaNWyIRQsWACUlSny95cphekYGJs6ahfotWqNjx0FhbI1+p6YCDRqEpiqtEJMzKNhdLgB5eXigfn3EJSSgX58OSEm9FU5nKfzxxwFUr14fs2e/hbi4KLm7LdhFQfZp3Dhj8/vhdieYzgHnzi7e5cSG3W66eCHbdMaUSY/i+hSTMXC70SYlBS+sW4dxjRsjzm43NzwvD4vWrcOEIUPC5wrrvBK7HVFyXLlinZ2NqEDAfFArWTGSH0olXTrt5cKkXJKntnJFl0cwSb2My0T6tlpl5XObyxnDOVWaZGdyMuDxoErlyjh6/HiwOtMgijrI2cSdThEdUBxUOrF8fj2+wJ+rnnED5QZXof8nobjY7DQFwmVLJL57IzJflqni6apojUjlcn7LcVPZIyoZoeL5UifkdfH5KstUyRAVvrI+/lu2RaW7Wehw9zRvjqJAAPf26oUm9esjNSUF//nlFxQWFuKdpUuRUKqUUm5FAVg0dSoa9+2LoWPGYO3q1UhLTQw5KNy6ThqALchm+FERfr9+/hO3Z/LygBSXhqpxcVg4ahQmTRqFoqJ4pKRUwcmTRwCUYPr0NUhJKRecmvKyaSpLmsM0nX0+Xb5ReqqXs0Yqo1YtM9sm9uf054b2p3NITQVcLmgAqlesiAP796OJcYEFv8Xp/V270L558/BoVcDEa6OAUBp+HaCRzlZUhJJ//wVyckIN4KtHfH7IM3Y5vUh6VAlhaW9wnHk6udhMCoFMJ9PKeWzI7TiHA3FAUO5Ur1oV2z7+OFQW9RGfW7JNVvxG8hKJj8TXSp+NpCPK9Kqy6d3/k4inlJRwZV3VKD6oVoyKE5BkKNKgUxGDZGQqA0IyLNkpquccZysDQrZVoZiYNE4Vk5WCRhIdtYkToYp5q8pWCRpWhkfT8Pa4cfg3Oxt/nDmDhIoV8dzAgfqZT8TRZPv8fkT5/dg0eDDufOUV3DV4ML5ctAhVK1UKTWqaoEZ6p8+nhyX5/bB7vajYrBmyXElBoyArC3A4EpBUqxZi8vLQ2d8OpUtfw7lzR1C2rB3DhtVC6dJRpu0UVBUXADwSk/6Tnsx5htsNJDnyAZ8PSakuBDR7aBtdXl7o5PHMzNDhT5wuaHXZ78e5c+fw5kcf4ei5c0gpUwaDmjRBSnQ0nlu9Gk/26gWH3w8cOoR/s7IwctYsPNW9O2znz5vpW0zedo0bY8GWLejUtm1oiYUtt2/99VfcXb16uHTh4ZrSG0/veRq+jKPy5kncjPc2nw9OY7UfmqY7mvIQOg2Rnsv5DQB5eXA6HHC6tNCJu1yaylVfY2mmQnoVaJqGo2fP4m4SPir+QCCFitV2Nt4/PB/Rgkr5icTvrAQFz895p6bpTvybEA5paQAZ1YC1YAfCPckqGXEDPFGp6KiUX14ep0GVwFXJQ16mjASR+ax+R2qLVXrZN7xd8rmVPOYg08hoFL8fNpcLz2Rk4NoTT+CH//wHJX4/Rj34IOLj4/XbT6SsZriOGzgQf/7xBx55ZCjWrY3GfT0GhqHgcITOtaQbUgs1Jw4d0g8fz8wM6tFAXU/wsMFe7dujy4Qp2LDhCOz2axg7djLKlHHqq8C+fEBzoNAfivLkLESPrEoK/vflhYJsaOVbXlrBu9fpCABnsnQ5Q8vkIjqW92NBfj42f/cdvvrjD8TY7bivcWNMbN8eAxYtwpKBA5EKAD4ffHY75rz7LlLtdtTxeNT6gtHPFVNS8OepUyguUwbR166FyZmfT55ElYQEs6Iu5wRZTPKMQaIVvj9ERj1J/ikdT1yoywUTkhVc75IeQn7CvCyXl+XzmbbmpVeujqMnThgr2D4zrtfTvcTctlEanp7S8X7gz+TChzQKZT7ev/RbyjDgZsRTBAgklwGcBu/mfEyGKnIdReodkv45qOQId8iqFjOpbAu+GtHW4GXQbysZIfUm1XNZB587qveRFnI0zaxbyXnF6+eeF2mLkHefzZt7GzdG59at8dPhw7h86RJ6t2kDL4Uu8dUA4hdGmbdWrYp106ah/7RpcAwbhhUvvQRbfn7I2HC7YXO5kORwIMmtAW7Wr6mp+OorW/CSYmKJqakpcHq9qJ2ejllNBmDXrrO4cOEc+vYtj4oVU0zRu8Tm+Mka1I3cFKNuo4PDSYUmFZfbPVy1b9GkMLQ1xONBwGFsh/NpobPwNA0lJSX4+vPPsWH5auTnX8MdTRti/AMPYNjYsXixf380M/afl8THY9d332Hlpk3Y/MILOpKSjzNaqerx4OBvv6FBpUrmgxg1DcX5+fj95EmkV68OnD1r5nfcvuGHNVLn0MKwFX+n8aY6eUfLOU50KG8D5XTIt2nwm0IIH+nQkje+Abqi4vGgWt26OLF6NYqKihBz4oSZp8uFFNPqmeK9yibh80suZKl0TiubhgMvg+fhfIP6/wZAoZlEgOLiyIqo6lsqHIQcJyaVossZsIoxUxrJMOUAyrIJpGHM28FxldojgcrosBo0nieSccPT8LZJQlOlVWm5gFmwiXEr53CgXK1a+qTJzQ3HURIwAI+m4dMRI9B60SK0y8jAl889h0pcSeX7Ici7RDRw5gxSU5OCTJMcSO70BNj8fmgaEBUVB7e7PsqU0YMeaJ6TvOEflbznDJj4BA1zkqsQyMwKts/GmQOBXGmWlbhcWLtpEzbt2IHH+/XDgz164NT583h52TIkxcaiUrly6PbSS3DFxqIgEIArLg5Tu3VDk1tuMY+rNKAB1E5PR3ZODr796Sc0q17dxHz/On8ee48exaR779WjpoBwxknMk4+9ajylM8oKeF6SiHwFnBsIvLN5lBUxeE6HKibr8+nGmM9nCus9/uMBREdHIycnJ5wJW+FKZasUQfmfK5OSV/HVeSulTGVI0H8Vr6T+UOFyE3Tgc08KPJkGUCvKct4q5ptJsVDxdyAyHVkpC1byLFIZ/LeUI1YKOv3mDI+eSaOCyxpej5QzqjqlQqKiaa4QCjzjNA2tmzUz8yOpxJAiaeSxBQJYOn48fIEABg4ejPdiYtCtd28A+jYnn0/f0o08H+wMB7vHAU2zBVEMLlJwgyM7G7EFV1ChQk243UCZMmzrQV4e4PHA77cH0ZTdK4eSkys3BmRzfT4g32eDk/Nh2vvAFWmjb347fhyPz5qF+9u2xZSBA1EQCGDDBx/gm4MHMbZtW4zeuBFXr11DrKYhz+/Hg23aYGCHDuH8Wcwfm92OvnffjVlr1mBKv34mHuiz2fDMRx9hTqdO+hmQsgzuaOJ9qpqnfF5JxZynAcItLxpTkgf8Od8/wvU4CqmmAaAyyBLj/IRbig4HfNnZOH/+LJxyoZDjKOcn72c+L1QySvIhSUD0LRd+CGS/qIwEySNo3G5GPFmCzwcUOvWzuTQorvnmk1v1TuqJQGh8ue4u+aa0BSLJCJ5fxXyoPJVBSmm4rJLz1apOFR3KNDJ6XyVjVXKVg7RPKA2fw/RNc0QhZ6IKCtCoenWzY0E1JgL6tG6NggkTMGjOHDgALHrgAf3CBb/ffJgg7yeDdzscCSY5Qx+ngafLBZQpk4aoqDSkpIQumrBrAQMtWzCvZI9SXaZq6bImYo0ul+5b4sMS/E181eVCwOFkQUdOOIzuzc/Px+DBg1CzSmWMGvYgEsqUwWc7dmDoxIl4sndvbNy/H8++/TYSHQ5c9vnQolYtvJuRgXh+JAt36hASLhce79QJ41evxrvjxiE4YsZYzP76a/SpUwc2KkdsiQ7aMjTH/P7QYo3U/fhBWZyupa1lePSKS0oQHRNj7mA6x4rrQ/waQH4braaFFkZoLlEer9esfBC9GosJJw4fht/vx9XsbLivXg3Xd1UflX4n7RLJG6zS8HeSB0j5J8+k4enoN1eS6JyC64CCm0YAn08Pj5crM9QQqaEB5uVCqahz5UEyCCnsaVDkTJSEKRkdL0vFPCTjVjFRq/JUoBp8+ZsLExWjluVbKUL8vZWQkIJOVY7qgFMgfHIbY1zWbsenI0ei9Wuv4Z5p0/D72LGIzs8PrSByfIgojeXgtFqF8Hrtphuk8/L0m9/IyUQH+BGKnNy4w0rTQjKBdHiut9FwejyA3ZerrzRzRdaqn6kwTi8GEt/99hv2fPMNtr/6qh7BlJ+Pcl4vmo4fjznr1uFaYSF2T5qEggsXoMXGIjohIXwlSh6UxwzXZWPHYuhLL6FK2bLo06IFYgIBfHDoEPYfOoTVGRmwOZ1AIKCnJyYsDRmpwBqCxzTvOKNTgTQ4+HhygU6OJ4oG4wNCbeVSlfMDbrDzAU1NBbxeXMjKwr39+6NaejoeGzAgXKpKZY7TLJ+HLG3AOAA2bFsEJzTOS1T9In9zGlEZV9R/BLRKdPNWOzVI400q+Kr3UkuTyrxUVKUBKOlJJUd4Ooknfy8XNWT9VnKGg6qeSHWqlAyOdyQjgoDLbyvjhr5VCo7ET8o+zkPkGEqD2+9HdFERVk+YgILCQvR54AH8JzkZ9Ro2hE3T4HS59PPhxN62gEc//47YNxUdgA02UgaDy8kJQfZm8xeaVkP9frspgsnt1vVJYrESZWJdRIpAeMBQsEuIHigklxRetjJbkJ+PUfPmYdP06UgpKACKigCXC0/37Ysfq1fHrPffx8YBA1Ccmwt/YSFiXS79sCvOU7jsBUx090iXLpi+ZAn6PfsshrZti7SEBPzn5Em8tW8fnrrrLtSsWDEkiLlBwBtK5fHoEOKfHPLy9P6mhSnOo7lBQQo67Q2RBgPVkZ4eHm3l9+u3mfCDYXk9VC8vx7gCuqSkBA8NG4bff/8de3fsQERQ8QQJKv1Oygo+x/h2S8mzVLyK18PnPn/Oje+rVyO36X8c+AUAANQLGlLXkPaK0CcDmj10axjXoVTjy20bXra0a1T6hlzw4L9lHivbiLdF5Ty2ojOrslSREao5IUHKKsJH5TjlskoGJsh2cNwsdLMH2rSBz+fDI6+9hmoAxtIlQD5faGGA26sG8Asu+JmAAIC8PHjSQ9u/qRuCx0xoGjTNGRYpyyOWuAnF2SM/YYOvPyvBKJTvrOP5MzLGYPjwkehwWwPdg1VSggc7dEC3W25BjzFjsHnCBLj//RcFPh9iXS5E0XlMNFZ0foo81NfnQ43kZGTcdRc6TZuGQXXronHZsjibn4/Vv/yCmklJeKp5c8C4VdW0cMDDwriOQDYPt834ex7tSp3DeWFmJi6XlMAPwFlUBK2oCAEAAQDxRohZSVERoqKiQnJIZddIhwynMzq/keiSZLzbjbc3bMCsJUvwwhNPwE3HSVA/8rbwAZW6Fn9vJRci/Zd8iPMwXp5Mx9NK+UT9YbfjRsBCclqAw6GH7cpJzD0DKoVVMhuunPMPoPZ+c2YiGRsBV1C4h5GvRqgcT6beYG3iwkK2hfJKI1PF3KQhIPtBpZxLnPj7SIzbqj5V3SqlX5VGrrQZebxuN1b07o27ly3D4TNncEtaWgg3eYAb9xAfPYpq1eqYzo3z+QCXJyHIbMkrz9En2ua6NA0fMWvSgYl30Xs7CkPRNAynfJ++d9tGfcAZhVAmCqKi8M7OnXhmzlzUqVUTfcaPxwO1a6N7w4b6eRkuF8YOHIgOTz6JR+6+G7G0r5x77uXE5n1q9F2iw4EtkyfjhyNH8OE336C4sBBtb78dz/bpg6iCgvCJz8uQDiUulTgtqZRf/p8runK+cElIg8PnmseD3Dwb/Nl0I6BQIKyMVnJaulw4Z7Pho82bsWDxYly9dg2fbtyIxFKlwnkDx1vFJFWfIInboGn20AqnSkFTKWGyTvncyinPx8zt1om0sBA3QQEuly7AiMcC5r5UCVzVihGnXys+yoWslAd8HDnfl8oBlzFyHlLd8rdcWbLi66q5cj2QclP1XlW+6r18pipXJVdU48SfWRlT4pkG4O3Jk5G8bx927tqFevXqhfpO3lDjcJi2JPBFSL9fv8giCD6fueli/HxZIT2XG6YJLt1hTVvxiBW63bqcSXL4AZeGU5l20xFJBA4HAB9CuojB8wr9NthdeoK9332HqbNm4WpBAYa+9BLap6VhWLNmSKhWDXC50KhePSTs2YM/c3JQMzYW0QHDic4XF6z61eiMqKgozOjbF/+cO4cNn3+OL7OzUbN8eex46ik4r10z6wR8jCWd0ze3fjit8NUluUVGpuP6HT/InMttEvbkBaT8cjGHt523gdrldiM/IQGff/YZ3l67FuvffReb1q1Ds9tuC+cdKqNAVT49k3Qt55vMp/rPy5GLqlxXVtVLeait586F43kTAOg+OVrH8/vFYfJW/F3qICxPAKHbLvXISzvsLs1sv/DxUTm5eJkq/Yy/53JPygpKx59FkjOSd8t6ZT4rWST5vwp/WacKZ2mTWNl9Up6r5KSU4bweA6+HO3TAR19+ifcPHtQdT5SHeBh3hhi81us1s7Zg1UY6uxaA220zbZsLwBa8oTkv0xwtBZh9HCTiuP+EX2rKWSQnJ2KVRCOFsAdNM4Jjx47j9ddnY/fuD3D69FnsqlgWTzRujKrNmgFuNxI8HjzRty/WfPklxt56KxzFxfrCBl+Ul/KchCH1rc+H9pUro+WgQXj322+x4cABJMfHY1779igfH29uGB83OdayHhoDAmkcchqiRmdn42pJCagL7AA0AH7j4ygqAqA7oWI0LRThJJ1Okr7kggZfsPd4EHA68eOFC/hw0ya8uHAhhvbujckPPaSfayXlzI3ogFZyR/VMxRvke94OqZtx34zVnKL2Zmfru+JuABTYRIDY2PDwR2oAEO7Y4e8lk+ZRJ7xxKsYvV75kFJXKAJFOJ8nIVfXIgaLfUgnj7bJSqiVuVkxaRcwqISSfWxET9REHmU8SuKybM3AeScD7DEDTqlWh2WyY+tln6H377fB6vfAmJaFqbCyiuOueysjLA44eRYLLBbe7YlBXJL5AQ0vnclBV5AjPzDQ7tDnaRP/EwKWzPMyZommA31jp5l4tYqoMgfyiIvR7/HHc170nqlevh917diFn14d4ffFi7PrxRyydORM2txuaw4H0ihVxPjYWqSSR5PIEMWaSKtxJysbqtho1cFvFiiEPW0FBuKLp8ZgNc95pfD5JhZTRTcCVEDrnis8NGaFEHS2dxORIMcb7UrbNxPdNZTgcKImNxbkLF1Dk86F8errpLIwt//kPXli6FD/+8guioqJw26234sP165FeubL19jSVoq9S7hFSCsNAprcyLCgd9Tmfl9dTqLgCS9dwcQ/rTQgBp1Mr4ckNMkAtjyR/JpBGnIp38/liVSYQmnf8ncynWuCQ/6+n3Fsp41bv6TfHW5Zp1WaZLhLuVsoSz6+KRlPVLfMZY2P3+9G0dm288e67SCpTBhWqV0f5cuVQ3eGAg/iL0c9+v/6XLsAk9un3A3YSLkaeVKYqBGCDzeD7uXk25c4vgkK/LbjIa9KzmdLr96eY/CDENu2aEQVh8MtCzQmfwS81hxPPP/8csrKyULlmbUyd+iJqnDyE7W+/jR7LlmH9tGlI8XoBnw+dmjfHVxcuoGazZiFFm28LoD7liwXSkPX7UT45GePvvTfkIZNOJ86/eUP4/ORRtioa4B2oimCgjpbA6yJ9ghsDUuEnPA15lBMVheyLF5FSujTiGA85kpuLsS++iM+++w4+nw/pFSpg6fz56NOrV3jb5Xziz1U6mEr3s5ItVvUQqJ5L/VVVBteBrcblJgDQuyYqKtR9dofQH1TGl+j7gGYPW4Pmw1LoNxa5XJr1GRFhCqsAPt8IVHjyyum5ilatbA2eh95b8Xer/LwMWZbEm5djpcOpcFG1hQ+CTMdlkLQDmI7bsmpVTNq6FbMOHEDNsmVRvqQEVTUNSVzPNXhRQLOD7rvhRx3l5QGo5gWgb62Wu6n1oJ1QRC1XJ/maLr2n3SGEKqFiQ0Bf5PWbpz5DMXghUF62mbV9/PEXePvtWWja9B4MG9YAGRmPIXP/ZmTMnIkJ0dFoe999gKahc8eO6D92LMZ27hyiXW7TEO/mx5Yo9Ii4qCgMql4dKFdOz1NUZL61jiMfSafhYyjligz94p0pyqG4YIp2AvQAhKioKETTgKWnh876lbiwji4IBJB58SIS7HaUph0/AK5pGp5cvhzv7t6N81lZSHC58GD37nj9hRcQVVhoPWcjyYVIehNPI2UPn4sqXVnaKzw/bSWSdXHZTPYsHdlzHbDgclapmXJMnSaNMMkM+STn+VRKEk9DHUDfpEGqnECkWPHnvGzGtLPy8/Hmli349c8/kZiYiAE9e+L2hg0RRftMCbjXkuMmmSnH02oQZf/Rb+7plfXI8uQ4ULtUbVcRLK+Ll0sfOUHluPDnxn9XfDzeGjwY47ZswbY33wxW1b5OHcwfMQLesmWRWKuW8lwgTTNH8BM50C3RfMGTquX0TzfXkbOJM+TsbJ1fpKcb/JEykGPJ7Q5GOyEr21wJFUIHE/r9ePGllzDkoZG4774u2Preu7BlnkXpcuUw9emnMWfXLqw+eR4PtWsHZGfDFxWFmJQUoHTp8JVJ3o+kRNN/PrG5Mk3WE3cw8aV86ezlTJcr5Fyxp/bm5em36NGY8tUHKoO/p/LkNRzp6cj32YIomi6BoPrdbmz96CMsWbkS5dPSEKtpOPL33+jZrRtGDhiABW++ibEzZ6Jj+/Z464030KFVK5ThWy6oHNV8Us0Z2VYYkW2aBrtGz4GweaJSpLiwoW8+b63mu/SQcoPN7QYuXQqv6yaEgPcb/y/Hg0BGqfL3UuhaKeN8rnKeRc/om7/nW36M54WFhdi6dy8+/vxzwGbDPW3bonvnzrA7neFOYZUc4O2QbbNSSPi3NFB4Otke6cCTir+cYxxUMlslzzjeqrPpVPKU/V8wciSGzp2LRydPRklJCQCgQtmyWPnSS6jfujU8aWmATYOLDT3JiKwsPeC1WrU6sJNi6HCgBi4ZdTkAhHgkRTv5/boYIJ32zBkgNdUWNmxer3FTHVUMM3unSHuXC6bwqULNadqdsH//N/j777NYvHgJJk0YCXv+OWjJyeg5ahSqDRqEcW+9g1X9B8Huz4fv2291R1qDBuGKPkcQMN+1Lfk7nyskTFXzSOpsXLZROm6MqOYM3//Iy6X3snzqRPpPh+EaN52alu/J2+j34/ClS5i2eDGKS0pQLiUFx9evR5UqVfD8+PE4/PvvuHf4cCQlJeGF559Hp7ZtUatmTUTxsym4XqVS1nkaaq/kJVb55HzgxpEqwpbPJc4P5XyRvItkpculn9V1E5Qg1aNCvw12ru8AwZe0TZ/AD3uYGh+R/XKdjf9XIWXFvwkf41lJSQm+P3QI67ZtQ05eHurVqoXBPXvCk5QUTid8XkvdRGVzSd5slc9Klsq2qGw82VapW8l8PCqS9420vfiAUH7pPFQM1sM9euDHc+fwzMcfo8iI3rBrGuYMGoQe/fqhbMWKugzXNNj8hXC5dOeTy6XLGGNTB1JTk3SWmhW6AIOGgFDnvylClxbYAaBuXTOaVI7DYSyYA3A47KaAHPIJEeukiF2+BbCkpBBLl07H4sU7cPLkV/j338NIc+Ui7dZb8e5nn+Gu+/pgVeshqFQpFn67HTGlSoWQIeBET2NGvFnSCMl8zt/IU8cNQblKQ4sUpC/Iw30pP41rVlZoezi3aRht2a9cgRO6LaAZ304AMVFRuvwgGqS2SEcYm3tX4+Px7PLl+O3oUVSvUAHns7PhB/Ds6NGokJSE+8aOxcE//sATjz6Kznfdhea1a+t96ffrux1UCzBWslzSqkpnstLRrPwmUse18uVwecLL4PLc5QopXDcA2vWTCETlhCWiUzESyWT4SoxcNZMNtVJyVUqyql6+ume82/bZZ1i8cSMyhg3DkH79cO7yZazasAGLVq/GqtdeQwzfc0llSCVM1svbKdNJUA18pPeqdDIP75NIOKiEgpWxo+p/OSEM6N+sGfq3bImrV6/inytXcPCff/DE22+j7hNPAABmjhyJZx591FyGy4Xc8wFcvhyFqKgok55JNM51Mh6ERNtnNS10jSnpox6PHoZKgiDJbeylzoNZ6OTlwcn34UoFm9I5HPBrGr75/gBmPP8iogvyUcPrxcGff0aDxo0Blwv9vLdiyJD+6NFjAOyahsv5+UiuXDlUnpVBxfuTrwJLGqeOUPS9KT3/r5oXcs4RPlwYqFYHuHCxoFd+AxSfwjYEgnWufvNNfP/999i6aROiSyXD5wOOHDmMKVPG4NXFi3H02DFMysjAiy+8oJ9jJZmcamWAKpS/VX1lNbcizWurcuX8kFGBMp+MtiMmHrjB67f/18DnC+0Vt1JA6T8H1Tip0lmVB4TmnpxT9M3HUSq0RroTZ85g2FNPoVfXrpg5ZQqgaXh/xw507NMHq15/Hek1a5rLlTL0eoqGVKqtQKX8y3eqNvJv2Vc8v1X/W9VjNW7SuJbv/H7c4vXi+1dfRZHfj3/Pn8fJ7GxMWrEC9wwbBgBo1qgRvt69G1qSx4RqdHQJ8vNL4DMWGtLTU/Sb60gZVtTl8ThNehiRAynztuxLSHAAaXWNm1Ezz4bwN2ghyRVAtWp6ZBQZBHYtAGSH+o22YZBevXLlckyZMg1OrRBdW7fGhnXr8PSECYDbjXS/E9kLV+LIkSxUrOjB+/v3Y/ELL+gno1OD+bZqOW8i/eYKvJQdkRxDVguPHPhqOI9W5/MHCJ2nwaON5TlOUnbJerxeHP77bzy+dClWz5yJCtWq6Vu/YcPTT09F3bvvxsWLF9Gofn1s37wZrhQvNA2IQkCPeENA3Y5I/IPASs5TOjl3JR+LpCfwNlrpbLwcqVcnJqrxvwmIjQ3vLgDh9oQBVv4Vnk1kAaA4UzJSYquCRcVFRUUY+swzSE1NxaMDBqBsair2HziAARkZeHzwYHRt3z5cj+Jly3eSLlX5VLR6PXuDp5Wdzcvk8jBSWVYy8Xo4UBoZdcnyukqVwtonn8Sa/HxkZWbin8uXsfqbbzB61SqMXrUK7lKl8N3776NGvXqApkHT7MFq8vMDyMqyBRcp+NnYcrqr2BlHi2wZQPeHUGStfnxFYTCjZqRNTw+xT2nG0HNq+scfb0WHDn1RvXo8GtS5Hb37zMH4R4YC6ek4c8KOO++8H9u3b8H999+P7du3o2uvXiH+TIXQt0oHIuEpGy35l3S084Vdla2i0gV5fSrdTCyGxERFwVVSgljaMkj1cCcKX2SRA2X8L7Db0XfaNIx96CG8Mns24HKhJDYWb6xcie7DhyNQXIx8nw97330Xt7dqFcKRcFEynQgQKa3q3Y3MGZlOLvDKeSnnvWou3+Aixw22mlXGv1UzijdIoZSHEYZUQEzYsbI50dJzyax4Wl4GgL9OnsSqLVvw4RtvICYuDtA0JJcpg7nPPot3d+7E9Dlz8MKzz4Yb/CqC589UDM+K0UeSWFbEoAIrooqkkADX93pGMuolrsKJGO9yoUbZsqhRrRraN26Mn//9Fys//xwzly3Dp999hyeHD0fne+/Fuh078NbmzcjJi0NubiESElIwYMBEuN11eXGquR785tsgAN3plJYaCMakVnS5AJ8fOMGYEWdM0mlAS9ryRgWHA+cu5MDr9SK6WA8NzejVCyNnz8bGLVsQA6eBYxRycooxbdoYZIwaZaZ9KyYrGbJU4DmoBLFq7qiUJVWn8jqs6iVJyN/JcHA2D6Q+HCxO05CX78O6Te9i9/p1sBUUIDcGWLp0NaZPfxyxsbHQNA0zp03DMxkZOuNSRfBZQSTlTYKVkiTLspoHKgcff261Em3F224aBGrw+QDpfLwRGrByTlIalaIqDW25oipB0oDgnyUlJRg+dSpWz5qFSjVrBsseNXQounTogEcyMrB71y798Mr/Rnbw+Wil+FvR943KmkjKCn3L8bBKc71xizQP+XsxPjF+PyqmpKBiSgq+fPllHDh5Ej+cOIGMV17BrS1a4P5+/TB+6gwcOPAjXn31FWRl5aCgIBoFBQH06fMwBg7sAY9Hv9HHJvvLwJ1Wsnn1mqbLGVvWedNqrY2Pv1iocruTAOiP7SgEsvPMK7uaBrvLBbc7CZmZwMWLWahZMx3IPo+7GjTA/Ndfx49nz6KWOw3Z2UDVqvVw+PBxfPLJHpRPr4yU2rUB6NsE/X6Ebvezimbg46HSX6TM4vqbVMZllJ9K5pGQ5lFO/Lfod9NSPeWTeh2vS85RtxszVq/G6lmzUKF0aUDT8P3hYxgwoD9Onz6B1NRyaNS4Cfbs/ghxcXEIIOQQCDoGVHoQVzbkc9mHkZ5R+TKdig55GjnvVLJajjP/r+rzmwAgXNfUwVrWWKnJViq3phm0FWl3g4qWVRVx2aRpmLZwIbq3bYve3boF89zXrh06Nm+O3o8/jjqVK6MahWzy+q12jXBdVRqckp6lLJJprBzSKhljpcOq5sT15IxK3lxPl+Tzx3CS21wupDidSPH70fCWWzCiSxf8ffkyBs+fj9Z9+6JTy5aY/fzzuBKfitmzZ+Gnn35GQYETOTlXkZ5+N9LSxsDnc4Sp3Vye0EcG+2iasVCRfR7Iy0OapgEuh27TnPGb+sgGIMHthtutyyu5NkB1cl/RiROH0alTJ/1cwqxraNmwIV5bvhxDhk9AXh5Qo0YT7Nu3DT///Bc2btyIjz/eCUTr+1EDsOkyj4+xHMtIW68l/5JjQ/llA6QMkLKAy2Aqi/sMSL54PIj1+0O3FfLyCB++ysR3lLCdF+u+/BI927fH3Y0bA34/zl0pwEN9H8SHH25B5fR0FBQUYP+HH6J6lSrWslb2w43ourIvrZ5H0rtkWyPpyxK3SDYUjd2NoH5DqQji49UT3Iobq7l6eDqDoAGEboJQDZKVsFYpxpTOeL5k3TpMGzMm6HTi7/v07ImV69fj2rVriONXRKoYtKzfivHJweLtsCqL55dt4BxLpotUhgpXAtmnsh6VIsMFEvcUszpKaxruTE1F09tvx2233or3Pv8cXUeMwF2tW6Nl23Z48+3t+O23OJw4AWRlncCbb46E0/kMvN7m0DTA6dAjlZwOB+CyhzWLqjLxDJXQ8/uBvDz8dPgwFqxfjwuXLwOaBk/58hg+cjyaN28EGzmdZJimsbc3ye3E5UtZQVqo4vVi5qRJ6Nm7N1q3bouqVevh1KmjGDy4Ix5+eCg6tmtn3grH+14qAKpVlxuhGZXCL/Pw1Wu51U4FsnOlIsLmMRk6mmaHTdPg94WaR8mCZ2e5XNi69UP06tUbtkuXgKNH8d21bzBp0jD07z8Ur722EL///jM+/WRXcLzC2qFSRGSUmFU/Rnon5xQH3gec3iUenBBlPZx/qMYoOjq83ptg7me+qkbPpCIAWAvyG5ERPJ9V9FGkFSpWx2f796NVkyaoVKlSGM6VqlRBy1at8NnevbirXTtz+ZFkjYzMlO+lXLwePfP+ULWDv1fxl0gyQoVHJN5yvfnH6+Fjk5cHraQEzWrUQLNGjVCxbFm8/9VXeOaFF7D788/hKlUazz23BHFx5XHmDPDXX1fw6afP4dSpP/HEE0/B5QIqet3hoeFGXb4862PllH3j8+HC+fN4bcMGfP/rr7A7nSiJdaBr1wfQr19fAP7wU2SNUCibywVNsyMmRoPPlwc7AJvNhrfnzsWjs+YgPj4RrVp1wg8/fIEff9yPqlVr4bXX5gQjTemT5HKYb0jjtMUtEMkHrYD3N49corbzpXX+n/Nx0g24w0qFhzzDiQt3SSvcGGEGbk5cHAoDAVQoVQo4cQJ50dHo+MADqFCxMr755lekp1dB//73ITomHkDAfLZhJL2Lvq14POGm0kF4WimDb2TuyzllJWv4uMh3N2rI/I+Cpul2B9kgJlsECPa9zeEI6j48r8wvyw3yb9VCNoEVb5ayCgBcLuTn5eGnP/7Ai+PGhfIYNBcTF4dnH38cr7/1FuY9+aT5CAUZGSLpC1A7DCTvVkXhyzIk/7eSvdezNVRyRNYHRNanKb9Vu6lsClOiuWaMW+30dNSuVQuflS+Ptz/5BKt378YXnTohuVwFjB//CgYMmIujR4G//grg11/fw/PP98MTT2xCqVKxQVvc6zWzLqqeXwoq/SDBRMxz5Pf5sOaDD7Blzx5ER0ejEEC1Wu3Rq9dIeDwJQXVfX+zIht3hgMOdENzlXbp0MrKzz+oRuACmPPYYpq9ejf79u+POO3viyJEj+OmnL3HixEEsWrQWsbGxgC8/sn4lQcXbVDyU80beCfRfpeNZRUJJXcHQE0z0QeNbrZp5rDmtUDqybfnB5X4/4Hbj/S+/xMZnnwUOHQIcDjz2+uv4+rvvsH79FvTv2w2DH3wQ8aVKBcdMqYfSN+/L69G6yuazonVePu9znobrBfw9J0KJn5RX/Pf/k1vtkpP1glUh6pIJaRqKiorwwb59+Pmvv1DK5UKfHj1QqUKFUMOEIas/tgGGQRss20q4qgxSizRHTp5EoyZNzF5UdiPO7Y0a4Y8jR9DollvClTXeTuD6igInJs5AJa4q5s2fcWVD1sN/q4iYv7davVfVqRjHMGLlDkWpfLK+i9M0ZAwejMeHDsWDU6Zg3Qcf4I47O+Lcubig38DrTceYMRvw6qu90KXLx9C0KBPDcrrdOJsZEujkJ+LN1ofRDldqWnDvM/x+IDsb2z/6CGu3b8ecZ55B5cqVAZcLx7NzMWbMk+jffyAG1K1i7mvR/3GaBrfLheNHj6KKsef39jp1sOedd/DFgQPY+vHHaNKkERYuXIUyyTHmA/Pot8qZIseTM105DpwWOf3y8gh3Ph4EMg9/xhm13Haool1DAQNsBhuwhY2JpiF4dlbAlYBTpy7gllvSgTNnsHPdOjz+ySdoWLcu1r2xEFExMaiSXh4bz50L5yvce87HJxKoeBHPfyPzUsWcVaBSjnhdknnLb371+U0IQsDhDBmokYwm1u8HfvwRH335JQLR0WjXogXuaNECUcXFZnpRlSWVVRUflIJezj/2fv+BA+hw551m5Yml7dCxIz7es0d3PEmlSaVQR5I1/L1KgZJpIz1TKTWq9yqQ8k7OLV6GnC8q2WX1nn4Tb2K8ulubNujWoQO6duiAPk88gaZNW6K4uGzw8NaYmFLo0GEW1qy5HwcO/I1q1SrD7bYhgTk2dEeOHX5fyEdELJcibV2eFNjkGXfZ2Thz6BAGTZ6MZ0ePxswZMxBVqhT+uVyMV199DePGZeCN1+fqB5pKHqRpwbNjevbsg7feWotRQ4cAmoYktxvvvvMWfj96HB9++Amysy/gjTc+hsdTNihWLIeYywVZL9VNhyaqFFbpKKLfnBbIWUTp+bhQVBgtTvElfZ8v/NprSitXmbkRQXVyWcUcXP9eDSA1LQ3IysLRTz/F47t2ITc3Fx9sWg9v9RoGCppetEpPou9Icy7SPFP1s3xnlfZ6oJoH8r2Vw+CmnLGEq1f1LrKLLlVujQOQefYM1m3YjIsXL6F69dro0aMn4uNjdbsF5qExRToRqGhHNf9UOj57d/jYMdxer555UZE5QRvXq4fp8+eHFGZVtKx0jkp7hNOmSveSOFrRskzHdVwrWWP1XtPMt5ap0kWSIzyNfM91YZ6H+JWmoV6NGphVowYe7dULjYYORXb+NdhsKUFZERdnQ5UqfZCffxWbN69E27Yjg+yMjqYjHwaxElrv5oE+Ph9QmJoSOpOQ0M7KwqCxY9GqRQtsWbcODpcLfqcL8+Z9iEmTemHVqnfhdrt1mnYwnuBKCJLBnXf2wZIlj2Ho0G6wu92I0jTMmDgRl4uKsGHTbnz//UcYN+5ltG59NzweFgzi84VuAFd5ywikg5WHYKnkEefpfDy4U5/TOZ8jXP+h41M4XRCQHKIxpognwLyFRsobek+2lSHzSmJiEJeZibzPPsPzP/yAbT/9hGUzZ6L/PW0Avx/lU1Nx6dw5pNHZgZzuJR1a0Tu1T9UmVT+q2q2qgz+XIOU/18u4vFa1A7jh40P+u1MHCQE5MHzSGgP3nz//xD2PPIIz//yDbh07on6DBnj6pZcw5plnEEhICCNWKa8L/TZ9BSGSEqyKprJQWEoAFNP1FTyt8cm/dg128tZJJhRpsKRRogLVRImknKgMEEkEMr0Vg70errI/eHulIULvpdOCK6EeT+iEOyOdzW5HssuFAV26YP78l3DlSmHwrHiXC0hJSUDDhk1w6sT3+nXVir7hwVXSngNC8zPfb8elPDvO5zmR7XRjwaZNWPfqq6jMruGu4k3DW2+tw4oVC3E1P9/srJEhyT4fnhk1CsMzMnDm9Omg8m3LzUVpAId+/BFLXpmN5OTYkLWSmalv8j5xQv/NBT+NIW3t4+/4YVa8UZSP9zFffVa956vGciwpHXPsBGAzCwip0IjDATn6kufZ/IXB9H4/kJ5eA198+hHuGzcO977zDionJmLjk08i6uRJIDsbP+7bhxrly4f3E9GpXDGU7ZEGlYp25byTSpfqoypH1ZeM1oPveV/KyE+KesjJwU0IhyD9ANb83fidnZODXo8+ivVbt6Jds2bo0LYtdu3di/sGDsS5q1fDDzSmMiR/l+NLoOJ3qjTGf3tMDPILC8PxNvLk5+frcsaKpgBrg1WlXMvf/L+VcSOfRTIYZD0c10iyJlKEpdWc4u9UDnT+nm/JYuW4bDYM7dkT33zzJQ4c2Bc8XFXTgOLiKNxzz+P4+OM1Ib3WyB8wHOnSd89ZH/0uhB2FmhP5cOJ8th2F7hQ8uXAhls2ejTvvvhtRxkpnuXKlMHnyVCQmuvDJrl0hfkE8y2gP/ezVqzd27fwQn3zxRah9Ph/KJZbCl19+jPnzFyM9vaxJN+RBQqbx4QsHdLIsV9LlqjJ/TwVzWc7z8OgkOoSV/vMPHbzI9QEuyKWsAsJ5udx+x9MQ3gavSEoqiyNHjmDKggW4ZdEi/JGZifeHD0fFqCjYfPkoKMiBPcYWOuNLzmeVfsZpkwjCar5I/FXpIkW/8Pmv0jO5nJHzRL6ncvLybsqZCJCYqHeXjFYy/dc0lMTG4tlnnsGY0aNRp1Y1dO/eHfn5V9C9e0d88skXJtVEt1wUeqwc30h0puLnlMbv1+WMVVQRgOLiYpTQwgv/WAHn8VIWRdKLrmePWM0Vlf6mauuN2DNWsluVxsqekXKe+BQ/QJY5JsqXK4fbataEpkVj27alQT86Za1QYQCOHv3AJDekKguY2bA8os/n02/Fy/XZcT7bjlOZdizfuht33H47RjzyCBxGxI4W8KNLl/swatQ0vPbaNAB63gBswUI5yylTJgWNGjXBiy/OgJ/4ht+PhMJCXMw6hm7duqJr17tDqhMdWnX0qNmmkXJayhHZv6T3yjT8dHQVX+QygPNoPum4vSIPK6f8NI7SdiL86B0pB7wcbuw4HIgvVQpL3nkHNdeswYKDBzGtTRsMq1lT75+8PPzx22+oEB8ftrVeOa8knVL9KllEIGWVitat5EikNNz24/oX1ym4E4/woFtcblDWRJjVVjm0kGdRMkyjgy9cuoSJ8+fj/ZUr4a5aFQGHE34/0L5rV6xYsQLPv/gSnn76mWCRNK7U7jDdngtVaYBSJkrHGR8rqO0dd2DnJ5/gvg4d9Gcsnd/vx0+HDmF2/fp6RBdXalQDL6NDOPAG8DRSwVANvCQg7mGhtkkmaxVRoeoXPtl5PXwFV6W8cpB5Oa5cIxbpz2Rl4ZlHH8W6HTtw6d/tqFatd5AfOBzA6dM1cOaPP3Bb7dohZdnANc3jMiawHwkeN4zTLIJ53W7AqRUG6e9MlhNZWcDnn29Bnwcegr1GDR2Xo0f10EgAiXXrYmj/vti8bx8GDxyov+dL3GzFtnpaGhZPnozxTz+NKLsd3tRUHD16FJ6EBGx4/nmULigAss7r+c+cMa/mcscEZ9DcwSKNXxpzmhTywFUCThtUBmecMo2K6RjpbDINZyiccSq27fHL+VwuAJlZej63GzGXzyHr2Dd4ddEipLndeHfECPTq1i14i5Df58PrK1di3dy54UqEilat6FH+l4qUSsGXdVAavjLD88gVF/5OpYTxOSuVs6ws4MoV3AQF+Hw6H5YeZoXQfmTyZEzMyEDTpk0BhwMBhxNN77wTv/3yC4aOGIEP33tPj3yiseO0K/kzH1/i8RL4WMtnAO7r0gWvrV6NO9u3D1upCsCG9Rs3YcSIscjNswGww+Gw6yHvVB55Pjge8tphPlcl35Z4qbRa1XtJn7xdkZR/SgeYb4CxklXSMJHvKa/KmOF8iNfLyjh94QLubdECe/bvx88/rEX3F9oGr6P2+YCyZWvg559Xh9ioIedtmga32647PbOzkeTxwOezBVElWWVHYZBW8vJsyMoCfvvtPPxaLKq3aoVCv26w2j//GDa/H0m1amHS2JEYO3Ys2rduHYr+IV7ucBhbHmyw2exYv2ETpk2ehHnz5qH2LbfgwpkzyM7JwZQpU9C0TcugWpLkNmgmj+lDqjP4+PK67C8qjG/9444llQJMCicZZVKJp3lE+fliAoswNx3k6vOF3ysunV1cJnLZlJcXTPv3N7vx7bff4svCQjx1772Y9OCDcCYnB9u95PVFeOD++9W0w59FonnVc5XhrJpPkQx/no7XJWmdOxT5c+ob7oygcTt9OnK9/8NAJK4W4bYgS1q6dDGcLhc2vPte0AatUKER+vUbiAED+qBChUr6+WyycGmzSHnGjWVArasR/bNndWrVwk+LF6P46lVE05Z9RoMffvIJ2jZpEqqHN061kMKd0Co8eGcRSDlBeWSEhpzH9JzXIx2mvA7ZF7JuWY9K31Kl4Tiqvnk/cfsTwOXsbKSXL49qXi8+/Hw9Xn55Fv7+Oxo+H91KZ4fdrpn8VZx1ulzQF9l9PuR5ncEq+a10CcgFoCFf0+2ZzExg3br3sGf3RgTi4gEAtqNHgEOHUKdJE3h7tsQ777yA/PxC5ObqR5SkeDwIeFKQnWnu3qlTJ2PjqkXo2K4dalWvjqioKPzxxx/o1707Hh4+BFFaLuDQgMxsvWJu01Cf8EsjVI5NTg9kGwHmiFYqj2w+uqJc9T4vT8eFOpHbSJoWWvTPyws5mgjIWOQ0zucEtYmHOhMepEAYeyUvHjmCIwcPYuNff6FHnTqYN3gw0tPT9ZsK/H78dOAASsfHI5G22kWyWSiiTWU70Den+RuxgSRY6VVWdE95rOYj9SE/y+vMGV2G/z+71U4q7vScMZCVW7diwsiRcJcvDzgcQVztGjDs4eG4554OGD36GuLi4pRt5jJchsAGE3NitMKT4TXs/vvRe9QoNGzSBN5KlYJJS6KjMXHiRAwdOBA2eSK7dBRIhsaJgDNsiYuqYdd7fz0lSBIhZ/hWyv/1jCnKE6kNEh/pzZUCxai3QuXKiClfHrc1bIgFixbhtdd7m4r7/fc/cX/vbiHm4HCExpY7AQF4PCkmeWzCze8PLsDu3HkM7VvpZ6nk+uxIoJsZjIikuunp2LZ7d8iRSu+JATHBU7N2bWycNQsXs7NxMS8P5eLiUCo21ryNgC9jUBm8T7ljQ6U88rHjSosVqBwkKvq0MuRYn5kMXokHH1NjLByOBNNrTTNCctnKgN/lwujJk/H6qlXo16EDLly+jEpt2iCqXDkAwNHMTExdsAAPDRiA5HLlwueyijmowOq9ar7dSBpOu/L99XBS0b+cy3Qn7vnz1nj9L4NB+wHNbo5+Eml++fNPlE1NRdM77giTTbfceiua3HYbvvz+e7Rp2lQ9T+QYyjnB5w9/z9OQoW68q3Prrcj3+bDriy/Q6d57AU0LbiX/cNsuXL3qQ82atUxF6ZG9dtg0//WVZrnKpcJJNdeteAHPy9NY0bFKGZF9xv9b1aMy1mU6Xg/xJ26o8LYZULFKFfz05594aMAAvLx4MSZPmwtNSw5We+LEnyhdukLQB5LiETyWZI2mwe1OCusWuyOEl8tlR2oqcOHCadxSqzrg98Pn0xX+JL9flzMuF8rWqoW8q1fNK6ukuBl1aprTaEo85s2ejWsXLuD0xYtICASQmpRkhDQFoGk2aFqIZuCyh7Y/qEDqCFwWqehCNWZSLsixUfFKFd+MRBNiMSMMT/7hIWgA4HZj4zffYPC4cahfowbsMTGo3bo1YurUAaKikFNYiEWzZ+P0P/9g8oQJQHGx9fy3ou9IcCNpI+lUkcqwmk9Wxgf1M1+5zs29Pn7/o+Dz6btDpMkAhH4XFxfj3c1bsGvXnrD15tjYeIwfPx3Lly/GrFlz9GHgCfhir2qMFTxMydM5gtDPgBvcrRsmzp6NudOnIyomJshPzpw6hVfffBPvvfyyuS5Rhuk51cvnKXdiWs1jFf6q+czriSRH5HsJ0u6RZah0atlGqzT0ntt6si7jd+m0NJzNzcXMUaOwdPt27Nu3FbVq9WJqdAECgeIws5GZREEeRreocrEWrNLvh9NRCK/XDrcbKFUqCnExMcjVVWwkkfPnzBkkeL3wer3IyrqEwsJUaBrgSU8J+gK4qVJcHIVhAwdiSNu2OGFcD57ucsGWkKDvPy0oCNlgfn9IVnGbhusiHHkekUQ6i8phqaIhOa5W+heVzztYOsaobinEeRAAt31UEVuaFrIFvV78CaDLmDHIzstDzxYtULtyZZSqVw+IjUVxVBQ+2L8fizZvxoZXX7We84KWlM+4bWelJ1nJEJXtwfNYLUSp/lN/qeQXlzOapn9fuGDdXp79hlIRyEbLCWm8//rHHzFxwoTg+2BSvx/RmoaWLVvj4MGf0KpVCwBmGlA5xYMv6aNyAlkRpwFJbjeWz5+P4WPGoHbNmmjetCnOX7iAbR9+iJ5du+IBinpRMX3Z3uspCdfBxQTyuSJaKKwOlSIpy7gRRUaFhxxTK4VRjr8VMRuC7qHhwzH/9aUYM+EpDBzYDz/+eBB16jSAwwEUFOTgl19+xOzZL2Hn7t2oW6cWKhrhlwF3UugQUIPp2R0OpLg0BBzOoCPe4bYHo3YStEIk+PNQId6OEz//jNtq1gQcKbqDKT1dnyCpqTjxn/8g1etFwOGEjZQ0uWrs84W85T4fkl0uJPMIMUojz6VQCWduRKnGgBip3IKnUgCkwOdzg/5zBiqX9VSOUhkRJw0Utq/b6XFB02zGFeHZoXQUcglg9PTpWL52LZa/8AIe6d0bJ69cwaI1azBtyRJE22xIKVMGk0ePRoO6dW9c0Y/EeDnOqj5SlWH1TM5dC173XwFX/HTp/9+X8b8AxrjZVOPL0nyybx+633efSdENbnEA0LNHD7y7ebPueGLlBn9L4PxUlc6K3uidkX/5woUYPWUK1mzYiC5d7kMgAOzY8QFcrkQsXLgsctv5HFXRpKTLSPjy/yr+TSDlhZQx/JsrZAqFPGJ/yRVHmU7FM63aIpUso+x299yDl994A6vfeAMvLVqE119fgt69n4bfD8TGlmDXroV4/PHZ+OOPXxATkw+Ppxlc7qQgu03xuIIrnE5HPpxuvZ2Ffpvhj7LBbuCpabpoqBpfgjV//AFkZ8PlSdHFFDmXPR7k5OcjJiYmGPlt5xFtRtt5YITL40RcqVKoUbq0Ui7LbnC4EnTnk+wXK34OqOUMPedOPVW0Bk9jnH1iolsZeSPpQuIlQbWAxqNvOf4OB3YcPIj7n3gCA7p0wRsvvICA04lVmzej25gx0ABEx8Tggfvvx5Qnn9SjHyU+Vvz8ejye9zG1J9J8lGOhSq/Sa+W8uJ48k/MzOTlyO/6HQdWVkuUdOXIM9erdikAgFAHJA2hvu+02zJs3A5qmuBxJRtXyiug7Er1YRRgBeLBzZ1zdvh0dBw5Et06dkFK6NL756Sf8cfgwVjz/PEonJFgvNN9o56j0KRWoaFAlK1Qyw0pv5ums5BCvQ5YvZbOVDhdJrstvI22spqFiejqQnIw7W7XCvHlzMW9er+BwnzmzDvXqdUV+/iX89dc+tGrVGXl5Maa1abtxmGCK1w2PxwYbAsj32YJsLsGlBflvguZHgsMHXLsCf1YWHJ40Xc54PPpB2S4XArDh3LlM2O2JKCwM7z6SV8GmaxpsNhuqpKSEbATOm+lgbXK8EEhnqvTGyggoiiLiZ3NRen7ZhIyOlTyScOH1cttLZU9RZ/OIO44bx536gHClPEZQwr8OB9pOmwa3y4XvFixA5bp18eF33+HR+fNR6PPB7/fj7hYtsGXxYiSUKhXOs614t0qfYbQWcd7JtvJyrb4j6YISL46LSm+ThCWDdyzgBjmQQJAQD3PPGs9sNpRER+ur1mKvNACUlJQEL3SiQ/wcjhBTp+JMB/xxZcRqIKT3UwxgtbQ07Hz3Xfx48CB+/fVXlC9bFlvffhtxFBJnpehy/DmSKuVFMrNIZVwPInkaeR1Uj4qx8v6gMiWo+lQKA5UgkZNdEitr/60NGyIpqQx+/fUQvN6KWLPmZcycuQFHjhzD7NmP4/mnp+K3337Dvfd2gqZp6Nu3P+LjS6FRo3tw//3dkMidPcH9xc5gNWEHOWZno2/z5njg6afRu317OCqnIN9vh7NBA8DvR0l0NFZNmoQ3166FzwfjBj1XqAy53YUzSK558DbzMlRjKWmT9ytvGzE+KTgBNcNk/RxckVDlJxy5h5+Ptxw/6SDjTNvv1w0wCn8VxsHq/fvx+pIlWDZnDh7p2hXQNFSqXh1zXnkltK1CLjHys3g4/anmmUrQcLBS5lTp+G8rpf5GlTUr/sDxp7ISE2+szP81kAJXpawCupBjckYeCFtSUhJ+2KFqzlC5KiGt4qmS/ng6hwMOTcOy5ctx4lQmvvhiLwDg5ZfnoVy5tDA2qyQvlcIfCffrtUeFJz2XfEg+5/+t8vPfKuVE4iHLsporEncOsh6Dp0aXlGDyxInIGDsWvXv1wurVC9G58xgUFhbj7bdnokmT21C3bkW0aVMVZ8+ewO23t0bdug3hdldA374joGlOJEk+7XDA77eHUDb4n03Tx8hrt+PihQs4f+wYUhwOOBwJCNS9NUiPq155BfcPGBBE2c5xZhEInIUmkbzTNJMORWxfBtO6XAmwZV8K7z+pvHNaoq0NcqWYZIPKGOHPrc6voDwqh6bUkTgNcKc8f8/zCaPmyMWLGDhpErp27oy1s2fDZrcDHg8eHzsWjz/xhPkMB3I6XU92cFDJAysZEUne8DbLeWw1v1W6mhV+Vnqiw6HfRn0TlOD3AwkJNz7MKtVD03RRpGmIzKutmL/8rULCwrZ4rG9fDL7/fny8dy+yL1/GwE6d0GjsWHN6q8VsOR/le55GBZy3WOXlurKq41T4qXQ+lSySMoT/BsL1W1XaSPVwnin1Ok3DjMmT0f+RR9CxfXs89eyz+PXXL5CW1hL792/C0aPbMGbMJixfPhZffPE6tm6thLvv7oGSkmj07fsEHI5KSKBo2+xsncNrGhyuhJBIoFPHCafsbHSoXx9bNm1C32HD4HAkIDfPBq3arfD7gSM/HkZSkgcOR+jyJpsvHwkODS6X3SQzgv3Od5aQPi91c+6oof+cH9PCM5VJsoHSk00jFymINmQ/c3nEn0vHE/UNt7vkArvDYT5DigPHmTuvZJvdbhSWKYPey5YhKioKn732GlKjo4G4OHTp0gVdOnZU95uVriTr5zSrSsvLk/Jc5pUgeYgV8DKs7CvVvOQeeECPlLsBuEHpi1DhVkyBfVq1bInde/eic/fu5vx+3eDfv38fpjw13rQ6bdM0aJowHqieSKsG8iPqUwn6RnXrolHduuEDYiUsJKgGXFU3peGTxApXK5BM0oq5q4Qaz6u6wUYhyMK+rRj2jRAqvTMY0eyXn8OmTZvwQWICPv10I/799wRq1aqNl156BY2rezHtlXmIj3dh9Ohp2LBhBQKBEqxYsQQrVtyB115bgDvqVTc50IivOB0B3flBjNpgZqWdTtzbogVGz5iBlxYvRlRsaVzKtiE/34+XXpqIjp07Iy6+TAhX7uHmDI2fryQFnmQAnMHxfpQMSSrZnEGzA1PD+lkVBcWBxpiPtdyvS3VdT7GxMgb44efy5N28PBRER+OJ117D0P79Mbxv33BcrcKwJW2plGnel1ZpVbSpmm9W9Hqjytn1GLpUYgio/TcNAjVIeiUQNHJPhw54felS3N25MwCYnU+ahi3vv4+O99xjHr9I9CAhkkC3wIm+A7AhKSkNPXoMDLM7rPQPuxUf5vhGklWy0BtVbPgzzqNUeaz6hJ5bbdeVaaxkoKpzrMZOJaeys3F3/fpIHj0aM+bPx6VLWRg8uCEqVqyFfv0eQc+eXfHzzwdw9uwJDBr0NA4e/AyffvoR/vnnON56az7Gjn0Rk8f3N8kA/bY7nf3bsi+ZDQIDn+dHjsQDEyZgxfz5qNSgAS5l241It834+rvvsXbU2KBeaqJtox4/zLouYIOm2U00I5su1YokKeOlbiYjl+S2Al4wX8TjZfFxiSRjpK6j2hrJ83g84fXQASmSjqkMlwuT5s9HiseDN199FTbaMyVpTiXbVLQmn8u5HYnPW+mLVpOd/+ZtioTL9UDizXW/m6AEKxWY/65UqSp++eUXREUVQ9Oig+8pz08/fYdbb60bisy/Hm9WgRV9qehWvI/TNHQjOSfrJDrgzp//FgeJB6dXFb1z2pO6mmqrn8yvwtOKF1nVD5hv4bzReqzmr2S8Ph9SXC5sWrYMc5YsQalSCXjqqW6oVq0JGjToiBdf3AibzY6DBzejceM+0DQNe/duw7VrV7BlyyLcf38Gpk+fhsrlPSZd34YA3G6bLmcOHw7xTmPhe3iHDuj14osonZqKu/v0wWVfNPLygGPHfsfUqY9j0aI1wSwOB4J6vk3T9BtcXS4U+vWbqE26vGy3lA+yfyV/V/EvEmj8nFhV3/KgCMnDpGOK2yPUSL7VS/J3OpScv+Nb7Sgd1cN3vRBeXi/Wnj2Lb48exVevvopU4yynMLki5Z/sL0lHMk0k+SJtStmHkXQzmVb1W8o5q/ao6rwRGSlRuaFUVghaIDNs0CD0GzwYzVq3hivBY3q9bNkytGvbBg4FkmFhqqrJIAfcitFLQpcDLxmZzG9VfqQ6JdyosRCJ2d0oMf9fmTnHQY6JlRJ3PQK3EKBRBQXo16sXevbuiwYNbgcQwIwZK1Gxog3Q8lHvljq4ejUP993XDaNHT0BeHvDRR3swd+4TGDx4AI4c+RM2I6TUhgDsCMAOP3DijH6bQFaWjlt6epC5jHzgAWz78kv06d8frkQ3SkqikJOTg0ceGY577+0RjNSEj9EVPSQGpaJ5uSJAjJo7jFQHr/L+pDJ4eKnc/iAFNXcsyfcqWiUceZgrf8eZrKQBaq+8GYyXyVfNDZx+vnABV69dw4ghQ8zKhjRWeD/w/7yv5HMr2oukiHCc+e8bUfwlE46kdKnaIIUyr/em40kJwdtMZcSdGJ+6t9yCi5cuYf/+/WjWoqXp3a8HD+LHAwcw88knI/MsSYtWNMhBpayy/HSmUyQxoZT7Pn94nbwgq4UD/juS8WLVDtV3JFlvlZ9+RzKWVPMmkvyMJDtV+QxFu2Hlyti6ahWeXrAAc195BYsX70GdOulwOIBataohJiYGqakerF//Nfx+4PDhY1i8eAKmTBmMzp2boXbtGjr5MbZpz7ukX1BhbCXmt63dWrs2Fjz9NKbOmoVcnw+uxGT8++9ZtG59J5YufQc+nwafzxAJ2f7w1VnjzDxqFg9KVQUrcz2UyKIQdthdmpnXq5TWSEYFAV/goArlePKIAvlbpqf/dOAIlwvUl3xLBKUhPsCdZsbzkrJl8dUvv2Dk0KFIpG1FVJ5Mr4JI/DsSvVPeSPkjTfwb0f2kbif1v0i48XL9fv3Q25tgCVZdRxAbG40+ffrilVdexrhxU01D4fPlYdbL07F04cLIDN+KXgiBGzHYZLS9VT2y7Eg6k8rOiYQr4UHpVOVHkid8bkeSE7wtVnqinNvXk+FW9gxPG8m2UcgtT2IiZk2fju79+qFFy5bo1GkA7r57GLxePUn16nVRXHwZM2fugcMBXL6ch/feewXvvPMcKlZMw+TJY+Ck3RQGX7bRLXIHD+r40M16Lhecbjc2zZmDF956C7OXL0dq+Qo4d+4CypUrj0WL1sDjqRhkvy4XgKNZIXlgnGVrd7uhuezhAR00PrSIzG0aesd1eZU+z+mBLUabZIIcB257yDp4v3PnkawTMN9yS/iRjJY2Fy10cFqnnRucVv1+wOPBV7//joZVq6L5LbeYaUfKSd4uFe3IOWFld6scTVaymv9XzYlIPMFq/ljJmuvJrxuJ0gX+O8fTv+dsQDm77jmNMEE9Hg9emT0bvfr0wT33dMEdd7TC5ctZ2LDhbaSlpWHOrJdDJ/oR4pyZqYw1aXDTc/lbxUhUzI7+yzp5fTI9x0GGA8pVXPmbExovSzXwvFwqW5WG95MUFvwZr0dFGDx8kdch+ycS8BtrCGfOSIxyAg4ninzACy8sQI8erbBt21oMHToErlQn7r33XmiahoP7tqJZxYFISXXj4Yfb48yZPli5cjmuXCnBuXP6WRterw0pOB/OYFJTcV5Lg6YBSY58ICsL3Xr2ROXWj+PYsVwUFwMpKQnQNP2Cu/R0hG6VcjhCNyGQMLAKEdW0kDNG4XwxtVuuDFPf8v7iTiseNUXMVjJw7gyi/IQDvy6Q8p45E6LRvLzQNdZeb2hVQo6hx4OAOwl+v9FHZHBJnI0rRAnf7377DXa7HfUbNw7Nc05HnD5USoJ0OPD3nEYlH1LNP1Udcp5EUtrlmKvKuB4e/DmnkaIi3IRwOHcOCARscLud+ioyBz6uPh9WLFmChx57DKkbN6F7996Ijo7Gzg+34o8//sCalSsRFRUVmTdHAlW0hRxnIay504mzYM5eeXQyZQ/bVs6jCLlslP1gJUes5AJHgKeVbbRSkGS7OS5WaaSiyvOo2sOVOom77FCJK/WXoWw+9fDDWL1mDV5//UksXfouACAx0Y0WLdri99/2oI53KAKuBHi9VZGcPAl3370V//yTg4ICnSV6vbqMSHAFgCx/iG96PMhFArKzgYqphUBmJmp7PFj77nv47Tcfjh3LR2qqG3a7DadOhVi2DQGz4mvgn4BCJHg15PtsYcNPrJWzdE7SfGeb5rLpZ6Nx+cT7n2QV58GUhgoleSdXlIEQUllZOkLVqpkXULKywhdf6LYPh8P8no8nLRaRXOF0QLjw7eMOB/7OzkbWpUu4vU2bkMzktCj1GQLulDLKisjfgXCjh9OnnA9WZajmw43KkUhpJFAf0ny4EV73PwoXLwJOp1rF1m+b1GHkw0Pw7POzMGhQL/TrNwgeTzkcOvQDtm/fjOdmzECl8uVDmfnYqvidpFHJfykN/y3LBsKjS1UOKZV+w98TcEe4qm7+XuKqwo3q5QxLyhRpZ1A9UnZIyM4OHzA5f612BNB7qevyNqjwUMh63r/NGzbEgAEDsWLFZPTr1xs10nV+NahvR4ybMgXtGpyH5vEg3+dCp07T8OGHr8Fmy4amAcfP2FElXdMXNUiHz8oKnkWLatWCN6ohKwulALy46HUcPOjHX3/lwuFwoVw5e7BZbrcuXmxZxuU1xLv8ftD1eKZbrCWdcluC7AISMHwcZaQRvadb8Og2OCB0Ayq3ibi9Qtf5EQ/3+fT+8PtD/VCrll4GnSOblxeyddLT9U9qaqgMnobwIDuR6ufyiMqi9jI59v3x47izadPwm3u5P4LLERWPl/RDZVjpX5H4A6dX1WK+nL+8DBkZpsIzkt0k209y5r8Ai5mphthYChUXCnmwtFBxDRo3xu7de7Br1y7s3fsxEhJcmDVrNip60/QVbVsgvBH8WzIRK0GuGhz+XirWVoOoEgoqAlENkpWXTyp3VhCJyV6PCauUKz4ZrNLIuum3lbEi0/ByJZ5yArL/JL9atGiJTp36YsGCKRg0qA9svijExsWjQoWKOH7+fHBy2FGIDrc3xksvncf+r3aiavV7g3pvipdZcEZY/vk8Jw4d0rOnpzuRYlxXmXcCKClJgM0W4nWmueVwhDzj1AdyVZjq4UoFtY/nlZOR0xK9J0bO+5oYL6XhCjx3WBEeXm/oCktuOHAwhEhJYiK+OX8eB48fx7lz53A5Lw9ly5VDuteLtFKlcCk3F2cuXMDpCxdwxedDjy5d0L5XL1zM0lHxeGxwut0IGNs/gkqZ3L/tcCBe0+D3+3H16lXY4+LCFXPVqganJ6mg0zveV3wVg79X9bdq7nLajETr/FuloPCxsTIU5HO+J/4mhAFdFgnAPH6SLjQ9fPzdTZtw8OBBfLR7N4oDJejVsyduv/123enEFUlALUMIpOAFwpV7lTJv0LPpPEOBvlXwFjmcAjAcBipajSSLrPCm5yr+Hol/yzI4qPCgcrmirupT2X/yGRAeBSTf8/9SeVK1UdPgcjjw0vTpGDx8OA4e3Ie7724Fnw+oWLEmvv/+UwRcCcHimjeuBU9yMrZufRMPP3xbkKXperENDk8KbB4PCv02nDmj+/J1+8WONJIzeUBRkQNOp8PkcyeWF4ANcCWYm+YHnJq+Tcfp0ADYwnRJLo6kKJFDZKfKeCStHC9NCynZ0jlBvJkMAnKSnTgRGj9Jm4Sg34+/r13D3sOHkXn+PM5fvIj40qWRXqUKKqWlwX/lCk7/+y/OnD+Pfy9exO316+P+3r1R5HPClw243XY4jS3t+X47HA7AlperlInxBpPIzs0zy11OC/zbSn+TtKWSEaq5yfuLgOuqsr/5mNwIH5K6qtXctSqDDNibl1hYAl+7490rWUtUTAyeeeZZnDt3Dlu2bMYff/yCOnVqY9eu3XDYxZjISUnA+aRq/FW0KJGStCxtD0kfVnSmaeZLYXiZvFNUskZG2ctOI94h26Rqh2reyj6Rc8lKDnNexMtQyUmVrin7TcUj6D9fPTJ0vFkvvYj339+CN954CQvHPgL4fKhRpgz8fj9OZ2aisssFJwBkZaP9HXfg7TfX4JnRGfD5kpCbZ0MCHeZNvFnTdB2/WjXk+vXzbBO8uvNeJyMNMTFJwelNawRut362EwCznswXsqjP+VjzyFK+8E1OGuoPajPbWRLsL2kvUV/RogOnF6rb6w1FdQG6w8q4Edbk8OIL8g4HckuVwkeXL+P06dM49/vvKI6JQSWvF+nJyYi32fDP+fM4nZ2N07m5SE1OxpCePZGeno6AJ0Xfysjp1O/XBbqmhRxnpAD4/Yi325ErnSuSJ0tdUYKKnqVA5/afnHeR7BlOl/+NjLDCUVWXVRkkZwAgKiq8TAVYaJhqcLl0gzOoJBtACndwq5ymr/xqmg333XcfOnW6j5USCDsE1tQYK0WTp1FFPVkps/RODhyVo2IqQGgy/TcMUb6TDE4SiGpFl7/nbbkenlaCjDs4JHDmSXXJ/IS37HPeXqvyKZ3DEXRY8OKnTp2Fu+6qhWXLXsbzwx+BP7UiypWrjG++/Qkl0dGIMiZ+6+rVcfutt2LWyy9j1Zv3Bp3w1aolhKKVNP3moezsEP/w+QCtrhNJ7kDQyU08lfMyJaPkE462B8ixVDFFEujErHkfUZ+Ros8ZPDFBHuFEgiA11czUqTy6OYlHZ505E6bw5hcUoOlTT+HQ8ePQNA0pHg9KJybi3IULyLoUOpDWERsLb2oqoqKjsfydd1CpUiUsXPg2GjduCQDIvKTh/fe3488/f0Lfvr3RokFlM66GIGlbuzYCgQC+3LcP3dq1M9MTV1ykIsXve5V0xAnHClS0KBUfq3kkn/n92H/gAJavX4+Lly/DFh2Nnl26oH/37oiVzmSrMqwUUDL2bhoESuByRt9Wi3B+R8+M5w0aNMCtDRoFp0cUO+vJxIs5r5PjI3m4KpqI066K7yqKlrqwOYt+M6RJJqpkCX+uehfJwLCiRT4f+DxU1ROJniVuKlnA06kUJ46H1XteB1fYeH18S7Dx/IEePfDqkuWYMWMM7m37OTRXKZQtWxknThzHhQuXUba0vuXVXliIjMGD8dKSJejVaxqys8uYdq3pO6dtpsXSrCxDBDRwIslVCAdCRwFy/7oMUA1j52570FhwOHSHC19P4IGS1Fxu24Ud40P9Im8H4rJIXpGtaaHt4bwBtBrNx5+Xy3SljJUrsXDLFgBAcnIyUpKTcTU/H2fOnkXAOOjfZrMhrWxZJHs8WL1hA8bNnIknn5yBoUPHG31iw3ffHcGWLZvQsmULdO3aHqVcbO4auJZ1u1G7Rg188dknGNinV7jOQiB1JCv6lnzFSv/jZaqcXVLX5H0uy9U0nDp9GkvffRc///UXAOD2evXwaJ8+SC1XzlyujMzibVHJTTI08/PVbbgJlrvd9e60BRfYyMYpX74sRowYBUAfRrtdf2sCKS+seG94heb3Uj9SlWGVRtKyjM5T8Xluk0i5oLIzeP0cB07/PD+PFuFly7RW9p3V/JZ6pZWDV+rb/L1CpwjDgbdLEVDgTU3FuHFPYu7cWRjbpBaqlCmDyikpAIDv//gLlYlhZ2djYo8eaPzBB3hv7VpUbjEGJ04AtWqlwc6dPEa9AYcTmUcpmsmOKi4NTod+FhQNF8kXtxuw+/PVUUpchvOIL5XMJflAbecLFCQnKLpI2iXUj1zOkECjMeByhhY4vF7zmUy0MAKYn+flYevx4+jxzjsAAJfTibKlSyPaZsPJbdtQwHYSeBITUb5sWfx99ixmrlyJ3l27YtXb6+Ay7KfzvkIsX74GZcokYsCtdVGK6iPe6fEAPh/urFYN6w4cQElRkb6gKdtqJUdU+otKp7Pi6/xSK55ORlrxdxY20NUrV/D2tm348KuvUAIg1ePBiPvvR6M6dcz+DjkfreY3nxdEb/IyHwuwkKpqyMsDnE6b0dbQ6m6oD3WHFDFpFa8Mu30oksIqB0cKdFmGinGpQHaaLFvWr1KOVQqJ1XMVnipCUzF8Wa6KODmoiNwqLT3ne4xVhgyfZKr2qOpRCR+RtHr1dIwcOR5z587BsLvvgsddER06PIxp0+7H3Nmz8WS3boDLhaioKEx59FF0HzUKmzdvRGpqP1aF2QlKvI6iorKzAbfbBo/H3MWUzu7LNdFZwOE0+LUdNq5sS8WVebECmh3Z2frNQnY3azudOcUZkAok45Bj4/WipKQEv377LX4+dAinMzMR43Cga0YGqtesDZvHg2vXriHz6lWkJyaGthcZqx2x5coh+9o1REVFoeDKFfgCDr3tKETezz/j7MmTSE5KQlJyMqJiYlCSnIz9R09i8uQn0b9/B6xatRbZWZmYPe81HD9+BE5nPBYsmI65c+ZgvHGwMzQNRTEx+Oy333ChqAhejwdbd+7UD73k7WF0Uui3hehB0+96srk0637S9Eiq3Z99hmN//42yqano2rOnfiulUW5As4cO+eT1CqPleobJC6+8gjP//IPpEyYgvUIF5BcWYt22bej+0EPY9NZbKEU3YfIyVeOqUtRoZesGb4D4XwOfD8EDMB0Odug2gfgv5U2QL0g5o+JNqnK5Q141fny+CgVeslEr9msulhZuFLhY4WnFe2UbpUIhIVLfSkUpkmyT6SLxO8JPdpYsR6ZX4WaFFyvbBmDRa/NxR6tWWLVyJR7JyMBdd/XE8uXP44EBvfHh4sWwJyUBAEYOGoQ5K1bglVfGo2PHtQDM6wS8S0iGhOSMHXYE4PHYwhb8HQ6d38IPAPag84oPkd3A2wZAM/ghsQu6CJTroDQ/+EKwpiGUSPatdNrSb8psKP9nT57EN7/9hlPnzyPH70fbdu3QsmNHRFerhuKYGJz+6y+kli4NR0lJaF+HpgGpqbCnpQEATpw4hdKlKwSLjyq6ijO//gq7zYayHg80TQPcbhy7kINXX30F06dPwJUrWbjzzlZYsOA1fPLJbsTFxWPp0udw110d8eG76xDL5t6Px4/j9/37Ub1iRezYuRN+v19XZrnOQYYbLZRyPq+iMUFfB3/+GV/v3w97dDQ6d+uG8uXLm8vmNMjLuJEoWgO+/PFHvLh4MZ4ZORIvjB0LaBr2fvstHpgyBbOffRaN6tWz1j15WXJs6Ts7G7hwQY3LTcDVq6HTAFRB2DKK9XpsLQgq3Z5+/zd8WLUozMuRPB8IX/Wgcq63+CDzyPKl8SuZIeEgebJqodHKTrBqr3T6qHDlz/h8kDzPagxUfUBgFbIs5NjkSRPw5purMG7JEmydOBHV6tRBy5Z3YtSox3DbK3NRpXZtQNPQqGZNdGjaFE+98grmVRqKxMRE5OVBv1GV93dWFmyZZ+F2pwWDcOACkJ0Nrzcp2ExyPDmRH9ri5vfrziFJK1z4kICJRAeSZ5KjQXX2ExdIkg7I2WQ4rfJ8Puw/eBDH/v4bZ7/7DnVvvRWdu3ZFqWrVUFK+PC4cOQLbhQvwUJleb3DrYUJcHPDOO5g/ZgzGjBgRpO/ApUs4/+efuJqTg7QKFRCXmAh4PLjqdGLDtm0Y/eyzuLfjPXjp6afx9pYtWPP22wgEAigqKsIMjwf7pk5FVWqP242zcXH48pdfYPf7cTYrCwf++gu31aiht0M6H1UMRMocxftz589jx7ZtuJafj2a33YYmzZpZ63hcZlvpTvy94dDOys3F/RMnYnD37nj3lVcQ63TirzNn8PzSpbitQQM8PmRIeDmSB0l6p/H2+fQxzcy8YZsmqqSkpOR6iXJzc5GYmIi//85BQkJCEBfJI3g/8f5QzfWgUSATqgx96QCSeVQIqIBCxgn4RJKEwSeNDJ/my4+y0bwMvoqhqkeWwYmKL2EqvOtKIlZZPSoGzkEyaN5GWYfEUzI0KQQ1LbS3lzFscjj4/cDVq1fRqFEteFNSMPe15YiLa4w33piKJUtexMsPP4xJTzwBuFwoiY9H38dH46OPPsKsWb8gPb0iOnbUi7QhEMQ332/HwYOhvc7p6UGntWlnXHCrWGZmqC0OBwodCcFtwXYUhsIuCdLT9bS0Nzg1FYWuJJw5E3Lc23z5obOP5AQmpi2FKF9aZ/3/099/49X338fHe/ci87y+ZzvJ7YavoAD5166hWrVquHbNh3/+OQMA6NSyJVY98wxSKXzV2B43fkwGdu3ahcP/+Q/yNX0OO7XC0D5qzsg8HlxypKGo6BoGDuyJTz/9CDabDV279sCoUeNRq1ZjvPDCM1i6dDbemDkTD5WU4L3ff8eSH39Ex7p1USE5GYv378fXhw9j34cfokWLFmEMIKDZlQEnmsYiJwXNfrFvH2a8+CLu7dgR9apWxYlTp/Duzp0YNHgwBj442DRlTc4nmmuq+SDqAIB933yDjdu2YdHcueZ3Dgf2/fADNmzciMWvvhqOvAJnkxFITNMIl8g9dw6J99yDnJwQX/1fBpIzp0/r/UGGdYKjUC1cjGfS8aSUM3IVVTVWlFnyMMlTuYJhpOc4cF6jYvsqfR0weJIMh5dbbiWPl3uyZHusFB9KS04Dnl72hZQ9sv8k7cs+U+HO54XVvCFeKRUIjr80SGgrNFeIjXYOeuwx7Pz0U7y+eDHq1e+DL7/8EhkZHdGuSRO8t3w5nGX0G05f27Abo0cPwkMPrUPr1vejVi1d5+VR+bSwQRFPdLyEDQEU+o1ICb7CS+11u/UV7Eyz4yk11ZA3Rrvyffp2PjoWIzMztLWPZBtvMg2j223wPkKO6xiEOBEn4adpuFRSglkffICd33+PQ0bkTVxsLOJiY3EpNxeepCQkJyfj+IkTKCoqQmWvF2/Nno072rQBUlODZ1N9+ukn6Nu3PY7+/jvKlK8dNIrs/nzT1gXqi3xHEnw+YMGCOZg5cyIAoH79hnj88fFo27YvPv74Y4wd2wtd770X659+Gse/+w4ZK1eidqVKaFq3Lg6cOIG5b76J0RkZeHXOHNNcpLlf6LeFyxVOh0K/OnfuHIaPHIn0SpXQ8a67kJ+Tg80ffohkjwfzX30VMTExoTL4NkVJ9yolmIHv6lV0GjYMO1avRrzTaSrncl4eej76KD7ZtAnR0aGb1MIYCK9Dnt3l9+ty5vffkXj//TflDAOSNYcP5yAmJkFpL6vYHv/N05hoi9swksfx7Uw8jRWojE/65hHyHEFeRyRbQ561xvNYtYXKkPyX+CylkZfR8JBPmV9le/F3vB4hd03tJjykjiejn2QZKgEt5aQ89kLeksbauvG999B/2DA8e//9GDtxIi7Ee9GxY3MU5lzGx/PmoXaDBoDfj78vX0aDnj1x221dMXPmW2jSBLCfOR6ctzh0KLSzoVYt5Lt1p74z+6xelyFLAOO2VcpHfBYIRREBoTBduiCD2kHCI+jZQkh2ZmXpgufEiXA7mM5cougk+p2dHTr3lfeNw4FAQgKWff013v32W3x16BCK/H5E22wok5CAzOxs2GNiULNyZZw4exZX8vLgsNsx5+GHMapvX0SVLq0LWgNiy5TBnIwMZAwdqgtQknlyRcftDu4O+eb779Gpd2/k5OQgpUwZPD5yJEYMH448nw8d2rdHUV4evurVC6X//BOjf/8duTYb7q1aFf7kZIzauRNVvF78uGmTfoSI6hY9VYAGpy8GxcXFmDRzJk6ePo2+3bqhlN2OT/btwx/Hj2PZ0qXw0gn1RMOquSHngMVcenDCBEwYPhz169QxzY+S2FgMGjsWEzMyUK9KFXNbOB+Q9fJoOiB4dljupUs3JGv+K8fTv//mwOlMMNlQHCfaHkEg9U6+FU+p1EsmrFISeIdbCXYrJVuG4UumzEE1qHzJ0YoJ0zM+OLINlEYlDLjCzBkbFzpS8VAxatkW2Wc3UoaqD1SMX7UCQb+5cKQyRMj45zt24OEnnsCxU6fQvXsvvL12NWZNmIDnli/HxIED8fKMGYgqXRrniqLQsGF9VKhQGytW7EatWiE9y5Z9KeR8cqUEqyFDQEZ5Bh0TdIgfgduNfJ9Ow05HIKS8cyamaaHnHg/ytQQcPWo+I8/mLwzdkiD7Tq4UAGYmbRgH6/btw0NPPw1vWhp6dOqEDnfdhdvvvgfR0fEoKrqGjz/eg08//RgJCYmoUaM67LYAJk6ejEBxMaaNHo3UChVQYLNh6YoV2PfVVwCAjYsXoy95t2lrnhxDlwuX3FUMdP3Yu/dLVK6cjkYN0gG/H7k+O/79twQvvzwKa9cuw5TWrXHy4kWs6tMHWmIi4HDgTFQUKj32GKpXq4ZPdu2ClwkMQHcWqKK6w/iEQXuHDx/GhKeewsZ33kF8bGxwLhbHxODRCRPQs1cf3H13R3N+2e8Ecp4IGn/w0Ufx0tSp8FasaHpOmmmX++7Dhrfe0sN1pTLIy+WhCUR8FEWXl4fcM2eQ2LTpTYPAAJIzFy7ocobs4wSXkBv0MfpfrkqHbeWW4y2VaKkUSGVUglAuSPmzElGSFGU0OuUNOp6k80neSMnx57+tVovpmUpx5wd+ElL8Q8+AcG9aJMssEh4ydEfOGSt9IFJ93CDgcobmqMuF8xcv4oEnn8Ser79GzZo1sXHjFmQd/AHdRoxAg5o1sWPtWrjLlsXF6DIYOHAAvvpqF9at+wu1apUJFp3kDi1yFIIiXc1dZIgF/Wwiec6foeTn5tlMt0zTwjS/5yO4jY/p/2QbcH8hBR3RGd42f6H54FTuiOBbMAwEfsvORrcZM5CVnY0eHTqgQ/PmaHvffUipUAElRUU48MMP2LpzJ/J9PlSvVg3e5GTMXrgQ3x44gPGPP44mzZsjKtqJ997bhJ07t+PKlSt4sG9frFm/EYDRD/wgWaIflwsBT0rweIhffvkF+flX0aZNM5QqFUW6LL76ahsyMnrh/nvuwZlTp/DO+PFIo+gjtxuNhwzBxdxcvPzyXPTs2TuMVPjcMy14KnS44uJidLrvPrz6yiuoU7t2KJ2mYeMHH+DbH37A/HnzzIMt5YyVPiaU+bc3b4avoAAPDxwYjqjDgTlLlqBOtWq4t23bcDqX9fF5xfWK7GzkHjt2c4FDAMmao0d1xxOpqmELAca8pUsjOGiaMdesxp2PCX/+3zieZCSb/MhFkEi2EtGGrJfjRfXQc56Wyxlps1A+7niS9owq8kkFEn/e4RwvWYZqXvD0HF+VbKK8MsIDCOcV3NEmbLWSkhI8+fjjWPThh4iNjcXrc+eiXatWuKdDB/ybm4uPFi9Gk1tvBVwuvLNvHx4YMgSLF7+PkY91DZ2Vk5kJfP55yOYgBxKtNLhcCLhCi3O2zLPmQ8EJP3l8B61gcCCbhoQLCTsKtT1xIrRAz3lerVrmA8b59jg6z4lsK58PV2JjMXjNGrz/+efo3KIFOjZpgnuaNUO1Zs0QXVSEk6dOYevevfjj5ElUSU9H9ZQUfLp/PxZv3IhOrVvjwW7dEO/x4KdffsHGbdvwx9GjKFu6NE5u2YLYtLSQ44nGmGhQP/A36IDLzMzEwcOHcWeTJnAQnaSm4tTZs7jj9tuRAKC2pmF4uXK4p1IlXbB6vXj2558xZ9s29L/3XqyePz+c3iTtEP2oaBjA1JkzUbVqVQwbPNjEF46ePYtHn3wSu3btgt3Obh+U85kDn8vCJ3EuMxMZM2Zg48KFoTnK6Pj3EyeweMUKLJ4xw1ym1CclX+MBMkYUXe4//yCxc+f/fx1PR4/moFSpBJPjmoMU9ip9niDsFh/5W9VY/l+ClWJtBRI5lQBQKboqS4KDlUEj8bdifpyxsfDFkpIS7PnmG6x6911cvXYNJYEA7uvcGYN69UIcrcBxgSbbwOtXDZxVf6vKkO2OJEyuJ2j8fiA7G8U5Odjw0Ud4dM4c1K9RAzvmzsWb27Zh7KJFmPbww5g2ZgyiSpXCwnXrMP7ZZ/Hbb+dRUuIGoPPhJC03pGhzw8PjQaE7BYcPh3gQfRJcuhERXDXgDgsDZ3KQcMcVFU0kQ0YBdzwB4qA/womEg0poGqv1xRcvYsqLL2L2G2/gwb59sXT1m9A0B9eBQ84t1s8B2HDq1HmMzngY2z/4IPiqRePG0Ox2nDxzBrvWrUPtOnVCBi2fK/xDDhI+5oZmlu+zISsLCAQCmDRpIDa/uxGHFy9G9UqVTFcv9Zo0CV/95z+4f8BAzJw5XxkkqPovycaGAB4dPhxjR41CrapVw8JIr5SUoP+Agfjggx3BceRbegOw6WOgomOqjNH8fb1744O33w6950xW0/DUM8/gwQcewC233BKsh6+yB3+Tc1M6nowycy9dQmKFCjcNAgN4ZG1SUkIYDQRBMUf5q7D0BJI3W8kRDlZ8iynbdH6dlS4rn3M9VdkuHu3E8eaVSOOFt4unVQlgaRBwz4mm4c8TJ7B47VocO3kSJSUlaFCvHkYOGwZv2bLhePCyVTJapuPzQdUGnl8lh1RKBm+bXGlXyPgDf/+NYQsW4OylS9g1axYCJSXoPGkSaqen45M33oCjUiUcv3QJVWvXxuLFG3HnnX2DziSv17gtSEa6GNE7mZnmy3aCkbO0KKIfL2vqMu5nZEFIpm8SG2y9w6T3ulxA3boh2RZ09nDHF+dBmgZkZWH7rl0YOHMm0r1ebHvrLVQxjIkgD6PoXW5cOhzI99swa9aLeOml51FknKlRvlw5NL/tNuzeuxdLFyzAgIEDw50z0lCWkRJs0l/KtgUX4D/6aC1GjRqMCQ8/jDkjRpiiqFdt3oyHxo9Hw4ZNsGvX9yguDh1wqlob4L/l9P5wy2Yc+fNPjH/iiVBmaoPDgd4PPIAlCxeiTJky4TRLoIqw4GA8f+r55/Fg1664hVaheZ9oGvb9+CP2f/cdJo0da86v0i2lnGG4554+jcQGDW7KGQY84ql06QQlnZAciXR0CL/5zsTLVAsDnHdHsnn4uMoQLP6xsnOs8KCyJd1YyRErOSltF27ISuD40qqv8Tw7Jwcr16/Hp/v3IzoqCkluNx4bMgTNGzYMlw+En1V7BX8ytUclPyMZqxZyQ4mHlQ5x4gT+vXABkzZswFtffYUFI0bggXbtcO+zz+L3U6fwwxtvoEadOoDLhdr3dsEtt9yGefPeDE7dBC0f2LEjtHhN7XK5gJYtAa8Xl7JtQV9+AgS/pz4ggSRtTlrpkAKIG0maFrqdLjPTTA9+f+gwcN6n1AASfgYPOv7XX+g2cyZOZmXh7Rkz0LVzZzNtkMOM041hS+z89FM8PH48/jW2DDvsdnRr2RJ7DhxA73btsPTppxFVUBAukxkv5bhIPku2V77fjlO/H0CLdu3gcblw5Omn9fdG5NHJixdR46GHULNKFWzduBHe2vVN6CrtDqnfGX2Yc/EiHnzoIWzfsCGEB4tGXrpuHdxuN/oPGBDuM1DNSzm+RL8+H/Z9/TW++eEHTHzssVA9ov339e+PDzZsCC8jkl4m+9XnQ+7ly0isW/e6ssZCq1aDSofkbQRCijSdWyF1X54mODCqBgYxFExSIsC1L5lHVYb8lgMmn1uVKXG10mSsGLeqHD4RGZSUlGDiyy/DZrPhteeeQ0pqKgqKi7Hx/ffRY9gwbFq+XN/zGqntRByyfP5e1e+yLKv2qlYJrIQRTwMALheiAQy86y5Ur1ABnSZMQJtRo/Dpm2/ikt+PGUuXonSpUhg9ZAi6NG+OafHxGDSoMxYv3g2Xq5RelNsVap/EASHnN198oYOLwxwEfn9QsY0kd6UxQHOa0oe2RThDjiKuTJACYkzgywXR2L79PSx4dR5+/uUXzHvxRYzJyECUwx5kXzTPgwYB62ebpqFixRRs27oVBTk5uHrpEgqvXEHZ0qURFRMTPu5yNU01zopx0zS7Yd/ZMGXK89j6/nt4bf9+LOzQwaTwvjJ5Mup07IitW9/Hiy/OBxBa9FaRAa/ePIQ2nD5zRnc6KaBUqVJwuVy4dCkXSUkJJkdE8DdXRiIpSH4/SqKiUBgI6KsNgHkPvKbh/PnzSExMDJZtXg0N1W1X9SPv77ATgW8CoJ+5bqVjqhVle/A1KQCm9JxHSR5nRQ8qZfxG5AHCk6hYcti2H/4t8VM945PEip4jlSX5vvF/1969WPL223hu4kTUb9wYJSUl2P/99xiWkYEXJ09Gk7p11VFIVrKVQP7mvPZG8vO8qrZdT+azFYMmlSvji+nTce/s2Wg3bhx2vPoqti1YgDsffhhdMzLw8TvvIN3tRquWLTFlyqNYv74GypdvEETbKUPsGU40rbkhy3mt08EWN/zGDXSwmWwDAu6Tkf4b2SU8ME7TAKeIeuGHtJYkJ+OrAwewYO5cvLdjB3p06IC1CxfClZgYLNBGBXODhDXK6XBgxrSn8cz4Mbiak4Orly+jTHIyYuLiQu0VbTeNSyTdgHUbye3evQdh+vQnsXXvXrz0wgvQ2Cr+4D59sHzdOhw5fhzHj/+B8uXrKNU6VfkSdnz0EaZmZFjSYdcuXbBn714M6NvXbABwepN8RlZo5HO73TiXm4tbZF8Y/Xz+wgW4ExMj07tKfsu5dFPORAQr9kFyJLTAZ4clqOjbyoDjc0IalLwMnp7Xw1c/ZfnXkyFWOr7K3mE6UUTg0U2yPPoIz94///6LBzMyMOaRRzDmiScQHR2NE8eP4/n58/HDwYP69imJq+wfKZtVaWRf8L6ONEcjgaxfhYvbjXKahjcfewypyckYvWQJcqKi8NGKFWjYrx+aDh+OP7dtQ4rLhcGDHsTkKVPQoEFTDBo0En4/4Ep1wkaXB0l5a/DlJLcrZENn5pnfE8+mxXgg/CynoBxiH1o45jRGq+mUj4SNCrjjy+PByXPnsOiNN7B8yxakJCbi21dfRZ2aNc3CissZ2ccOBzrfcQfOfPYZruXk4GpWFhw2GxKIL2qafpOalDO8DM6nrXSOvDw43W7UqlMHLZs3x449e3CodGnUrVkzuH2wksuFKUOG4LlVq7Bs1So8N2eByeTUNLIDbAyF0G86/9qmafjiu+/QqUMHSxrv278/nsjI0B1Psi2qeWClmzoccJcpg3OXL5uj4JiMvnLtGmJjY8PLVckZAhW/0TTr2xoEhN//HAGuXrWOCtU0g0EbGpINgbA+stGNdsbgW26J4BNHguq9ZDxWnSXLkSFsEgfyHEitT6ZVKdFW73j9Mq3KyPH78dEnnyC6pASzJk1CihFjHxsfj0H9+2PquHGY+uKL5jJkP8iBksLASrGRobGSILnHWLZLlU+moXTkyXc4cPvtt2Pfxo049NdfeHffPsx4+WX07NABY+bPx4r33kPlMmWwe8MG/P77b3jssY4oKbkUqt7l0s+b8FQMHe7kcpl0ZxpSE5/jD8gCcDiCZ1GpmmPVLCqCFgqI7/t8rK3EIA2vlT87Gy8tXIhatSphyJBBSPaUxZ49n2P0pMm6wygvDzZfPuxaQL8BixxYnMaMsmx5uYDPh9joaCSVKoXUpCREFRebb6WwUlZVdMg9dcY7/jg+3oH0ylXw0bffmsOBXS6k162Lac8+i5MnTyIn55xJT1JVrSJBal5UNKtUKnUANC0GxcYtcTaE+og7ucMqlILO+HTu1AnvffSRmc4d+iHyl3Ou4Pz588H915yHye4LaxyvN1J4/f84WLH+sP4zEgblCkTUohXvlWUCkSe1lQJsgJR1sji7FoAdher5S+1QyRkVHjcqEyWukfIDeih8djbmLl2Kd197DfVvuQWAfo34HU2bYtPy5Zg4cyYC+fnq7SOSH0nZypkj57ccbz6usi+seJWVwsXTETD+Udrtxp4FC1DF68XsdevQ8p57sGzWLOz59lt0f/RR2AoL8cG6dahevRoeeOBunDr1XdB+DzicKHQl4RKScN6fBHg8CLgSTENIuxby8vTzmoK4ibZTRC1Hj39o8Vm1S0V2q4ncOZMmZPx+fLh3L5q0bo3Wd96JQ3/9hWWLF2Pzhg2604lkkqRFrg/RSouRTgOQGB+PtNRUxERFmZGBwMPkjRM0Khvp94dlK1++Ao4eO4ajl7IRcDgR0Oz6olViIpYvW4bLly/h44+3qsSDkhxUpFJcUgI733MlMtkdjqCcUfKYSDxE6Gb9evTAms2bLXWydzZvRq9u3cLxUPEqOf+5wsPPiLoJJrDSO4LnhrKPinTD5DkvUMUbb1TOUAUq/YEjeiOKlKwnkpzgbZA0qaqHp5H1yPJZe8ZOm4ZlM2eia7t2iI6NBRwOpFepghXz5uH7n37CIdqioCpHpauq6pF4yH7l/SFByq3r6RASDyPiJ6pUKczOyEBG//6YvnQp4mvXxuc7dyInLw/l77kHF65exaSJEzFy5Bg888worFmzINSVHo9ux9Stq39ou5iwbwv9tjDeadpqDYRHN0ubRzp+CCh6KT099KE93YQHs9+ovL+OHUOvjAxUufNOvLFtG4b37Yvvly9HnUqVQlv+mBxR6nb0PjsbtsJCxMfFIaV0aSTEx4cLPt5GK1lDY8PfSR3M70ftW25BVFQUPj55Um8vbWXxePDUk08irVw57Pr0U9PQW00PFXkFYENBUQk0J5N5PKGmQbMzOUMg7JWAZg9XCHg7jU/devXwy+HD8NFzrlQ4HHhr40b06dEjHHkrXmWlG/wXNo1iZKyBtn8SzXGcTMq00QCbpsGuscgmPhpSe5K/OUgmYGqBRRPouYoRSeEg64iEh9Ugy2c8pM8Kz0jMn71fvXUrFk+bZs6jaYDPh1bNm+Pl115DflERnFZ9oRJ4/JtHQqn6VyU0VbjSpLYyCHgZKgFpHIYdGxODkpIS2Eun4UJBIp6btwSftmiIpdu24ZFHH8VtHg/27NyJzt26oWfPVlizYgVuqVEDTqcThbDj8GH9JjuvVz+PjLbCUfV0EygAOB2sfoMpBzR7cEuz1D/5uRv0Xt46ROmpK+l67UK/DZrDCZsbwYl61e9H/xkzsOvrr/Hgg49g+PAM1KxZ29y9qnlDIBUe/p8bdCoa5eMr54uVMgJdKXM49DlduVIKTp8+jR49+uNSnh0ulx2aQ09zKdsGV6lqAICcyxdRtmxZpc6Tm5uDt99eiS+//BSADcnJyXj44cdw223NgmgkJrpxKvM8KnrTdH7C5mhBQQHOncuEx+M2bz9kYDrbw6oPDBjcrx+6DxyIGtWro3G9esHnV6/kYMjgBzFl8mRTmVbswtSfvB9JGbjBq0f/1+DiRYACJzSNnbUhlXwusDUtFKVB9Mx5Jb3jafg7/p6DlfJC6cV7vuhmokWOF5+jKuJRySRet5RT5mW38LJuUM6s//BDPNyvn776JfrRHR+PDm3bYs8336BD06ZmPKWBZFV/pCgn/rGSlXxMVV5sLlvkbw6GnIpJSUFJdDQSPB4EUtPQfUgG3vpgJ7Z98gnOXrmCtMqV8dFHH+O++7qgX792WPXGG7jrrrvgdHiQl2cLnp+q1dWd2vw8b5IzVJ1+4HiIrxb69SinvDMhvYqjyQJhgzqXagqougbQnV2aI0GPqPL7URIbi1e2bMGTCxagXbt2eP/9XejY8R447EZlhYJvXo8uZcVWc4r3ueKZaUFAs4f4tKYBTKUAgKKiIiQnl4HLVY1dymQHNDsSPY0QHR0Nmy06aP9IcgoEAvjoo63YvPkdFBQUIjo6Gn379kXv3n2haRo0DWjV+k7s+PhjPDxsmHkwDCR27tyJmc8+G7l/rPpPpKlcvjw8SUl4/c03MWLQIH2RycBz1pw5aFC3LjzJyWpdk5cVSaf1+QB2vfhNMMPVq2ay1TQRAQ8EiciGAOxSL7sez7OiEzleVvaKKg0HlZxT1XUdWgybv9KRxOvjfNUKT6tFbQCn/vkHcXFxqF69eljbooqL8dQTT2DZ2rVYOH68uV2S78g+k22ReizH1UpmqsYlUr/L8eJlkoHv8SCmdGnEx8fjvC8JflcSnn9+GaZOHY4Nn3+HR2vWw8yZ81BSEoNp08YgN/csnnh4KCoAsNGh3Q5H8ABnuFzBS5CIz1V0W9h+Xq95PLj+KZ/TAgWPeqL2yQVfEkK0pxwInq/09dmz6Praa0h0u7Ho+ecxqEcPxNtsodsxJK1JOlLJGdXY8vyqsZRjJOuT42r0S2KpUggEAmjcvD3yHUlwOkJHpRRrCYh1JMCm2WHXAqAoJ05OAHDw4E9YufJ1/PtvJoqKitGiRSs8+ugj8Hg80DSgadPmGDcuA488NDS484b3yYcfbMOdbdpc3+mpAtGuqKgojH/iCQwdNQqrFi1CHJsP+779Fjt27sTWDRvMeSPJGTmnqAP+P/bOMzyq4nv8n2xuNptkSQdCbwFBehOQIh2lSe9Ik94UkN5FAem9dxBEkCZKFcSOKNgVUUFBOgQIYZNsNv8Xu7M7Ozt34fvi/+rneZ48Se6dO3PmzJnT5syM0/nEixwm3KoH2eEWuHmNax31PUh5r7uXHQYVcbWTMoOYCU+dA6AzMtXvdYa8ahTLwRidwFPxVOsV/6tbAXVMpE4epR+PMjLImSuXf71S+0+VKMGVO3coni9fIHPI/6vKxMQgDxAMMs5mCknti1k70lYsv74YBm9u3MiHJz7mzz//olChZIoUacLFi2CzFWHatJW88kpnvv33XyoVLMgzZcvy2YkTNGzShGdq1gSgUunS9OzTh9jE3uTLF+OV/SLALstP386DSDd/Gob7Zp5U38Iu+J+LLmS27PvIDoPMMqJruuBwpOdFdnY2TadM4dvff+f9Xbuo9GwrL442m7I1z0NHr5BS+UDQWdBVbViXZquCnMEWZAzF1jIrTm5eusSjR2m4XC6/YF1srIW//3axY8cOQkJCOHnqK0omJxMba+XWLR8qN2/+S9++3ejbdxg7dgwDDP7++yJz5szg9OmvGDlyOIYBw4cOZvzY0Wxat869QiYFdmfOm8dLXToTmpWplTHaLBjdnPOUiQoP55316xk1aRIp9+9TtnRprt24wT+XLzN+zBiefeYZbx2CFmZ2oVbWiQMQ/wMtqAtSVqfCy/IK1+OMEzM9I0DHA48rIz/Hl01nGPg7Jw5NXerq+JM4BEp7ft/K/VcJJ38j00NV4p73P1+4wJAePUzrr1KpEj/8+CNNPPI2oH1VJ+oyznQ68nE0V/W7bv6qz8zGDDjyww9M37IFZ3g4v/3xB9PfXOq5tCeMN998lzp1crFm1x6mvDqMhIhwjhw5Ssf2bb1p7/nz5KFdxy7UqDEAhyOZpCQ3ScWZqsIeV+11u929VSc1xT/xS5wJJW+tk8W2eK6eMa92T9UzhgFWz7dz3nuPMcuXM37kSCa/MYf09BBsVldgqpRK58cZnepqi6o/dILR0yH1wGZRTD5TR7C1xZlBtiuTiAgb//yTTWioLyAHsHHjDqKjEzl9+mtGjnQ/F4vpsbEQFpbFgAG9KV68FMuXryM2NpaUlFS2bl1Ply6d2bp1G1bDoGOLZjz/4ou0aNiQ3Hnz+unRz776imynk8JJSYELiwJk+1HHk3LHnE7mjh3L3PXradS+Pc9UrkxWVhbffPcdrZs1Y9CQIYE0142LjiHE2IjDiv8DLUi7S33+jGo7qf6LDKqcFc/UH7nM/6qL1Hkpv1PbFqBGp9WyQj7rvg2mR2Q8ZXtT1w8Tn+b8pUtULFcu0DfztFWmVCkuXb0auOort6nOCTPQ0TyYEBUQzIYIpmOkcbn66BEvTZlCeHQ0Bz/8kJdfHs+FC265VLJkX55+egurV2+mc+eXsFqtTJ36Fvny5WbixFHMm/cWkeHhtKhfn/6vvEKJ0o3IkycvFk8QXMSIvCjIC/4ynvLlIcKB0QWUhEMkLluSs5jUvutScj38dubiRRqsXUv1smXZs3EjcQkJvhRgXSaswPdJx04G2QGTeUIeE902Yx3vCAXudPLo3j1CQ0PJnTuJa9fAZov06pmTJ//iwYNHXL/+L4/u3sUel+DtmujS229v5MiRI0ycOI3k5OJkZLg4cuQwHTt2YOXKtZQqVZSC+XMRH5ODY4cP01BsufPI7Dt377J69Wr279zpk+NS30Qij59fo7OJJBn2fN26WLKzadWlC8lFi5KYMydnz50jf968vLNuHVaLxY8eLs/xFQEXNan0E/iJs8geFx8QVTxRKQ9ERflv583KTGfP7t3s2rOHR48eUal0afp260YeEQBRJ6UqaAKw0QjdJ31nJgx1AlpeEhNldMSVB1QV/qIOMxxFO/Jg6JSHOmHkie0BV1YWmY8e+V/jKzHatZs3iU1ICBSosmOmw083+XVCWQgW9b3s7JgJDzVaqeIm0eLd/fs59913FCr0FJMnH+PevUQePnRnJ1Wo0ILk5HI8V68+nx07Srnixfn3zz95qmhRxvbuzc4PP+SRw0Ge6GgmzGjFyy+vJSmpmPYWV6fT/8Kf2FgrOPXb8NQuiiFTdbOOzDobwWYDLlyDy5fZ+/HHnDp3jqObN9Owfn3ueNqKtLkez1u68ZLfmSlatZzcEZkfpG/UW8O8U8dmJVeePBQuWJBvv/2cN98cQp06AyhUKD8PHpxj2bIFVKrUEqfzIatXr2RA765YnWk4nZHe5saNe5U5c1aQJ89T3qaffrowy5evoV+/7vz0049ULP801SpX5kLDhjRv1YoBffpQLm9eLv75J6t276ZU6dJ0FzcDyXxlSFdrq8I5mLIzDOINg/XLlnH3wQP+vHiR+MREihQp4q3T6XQLT1Xuy6Q1DPd+7gCjQDCZmkr7HwAQHh5oL5w5c4b127Zx+d9/yZ87N33atKFylSrmukDH/0GMxIA6zN4b/jcciaJ+GXUyHjpdpGMWRRY+1kFQ61frkH+rekZ+LxmWCbGx/HvjBslilVRh7qu3bhEfFxeoLwR/m63OqQ6DmREZTG7JekR1CGQ8HneejdPJpz//zGfffQfAypUfUrBgfekW6XjatBnC1KmTSEyIZfBLL5F25w6OtDSmDx/O3du3WfT22zSuVYPZS0ZRqFBXSpZsL25rDiC7MEptNt9RGWL6i/NUhUiQSSWzinxRn9xd0VWdOeV9f/kat65f5/UNGxjesydvTJ6MKyzELXp0B7rqfutsOYmeXjAzOpXxkoP1qj8JlgDzCCDablC3Th22v/MOI0c2pWHDkVSp8gxhYdfYs2ctly7doH37caxbN5J//vmXIkXyyrsn2Lp1PeXKVaV79yHe9pKS7AwZMoycORNZtmwhY14bhQ1Y8dZbdOrVizbNmvFC7dqk3bjB9iNH+PXSJTatXu1PG/G3agzIAynbdop8sDidjB4wgFf79+enCxcItVp5Y+JEjMcs/mif6d6nprrTev4DLURF+bP7v3//y9oVK/j2+++JCA+nfZMmtGzSxD0eOufLzE5TBYEA3VzS+RJyG8H8Jdm3kC8S0OFkJihkPM3kQTA9Iv8vBJrq8wjZ7HQSHxfH1Rs3/PGQ5sXttDSixMCo+lTus1y/TA9ZuATzFeVnajvBaCUHPMz0NvDXzz9z7LPPABg8eCr16k327rxwOKBGjdFs3NiG9u1b8/777xMZmc3Fi78xuE8fKiYn03f8eKolJ3P48GFWrN3DzJnLKZbD7YsZRqQfOdKcVrDFA57z/UQgQF250OEt90mWV/Kquzru8riJbX3XrjHu0CGS8+bl8LJlhIstcWJFRlVyJuOvpat4r8t0VsdI5g+df6prQwrAPVuxIllZWXTp1IyOnQdTvvyLFCrk4oMPdvPOO+8xZMgmJk2qwzt79tCzQwcMI9obeLp69W/27t3LypXvYbW6dVmkDdq1e4EyZcrw2muDOOC5+Gnh7Nn07N+fQ4cO0a1NG3K4XBw9dYodhw+zcN48cuTIEdBn1Rfzvpfo5/V5lLnduF49GjVsyIU//+RBWhojhw3zHQAulQ1oQ50TYn7LNBVGjeXJTm8ysSb0kJXlk0sPHtylX7/ONGvSmOVLlxIdGcnHx4/T+5VXGNKjB82efz7QEFEFsO6ZmZBUJ7dO8cv7n+Q6ZGNANWzlPaUyHiou4rdMcLOVAVkhmRkQAhfde7m/wAt167L72DE6vfBCAE1u3LmDIz2dnElJgQJC96PSVG1fdSDU4JlKD1nYBzHA/FYxHWCzWb0TQ7z7YN8+nmv0PHfv3uenn34gLi4PGRmhVKgADkcUr776GTNmVKNtt+GsXbuH1+fN4+DBg4RGxJCzTBk6du5MMbudpUu3MGXKywwb9iHhWY8wktwRazXRRDgb8k10Am3PBXN+XbbZfLa6WEiQz9h73NAbBlhS7sCFC+Bw8M4331ClTBkaPvcc3LpFfGEPEur2OYlvLTqlqBMIqtKUx9XMSJbGVHUO5M9kg95mszN46EhGj36FMWMm8/HH63n//ZsUL16cadOWYbfnp2jRRF55pRWnvvyRWrUqeZv5++/LWK1WypZ9itRUuH49i5iYUOx2iMmRzeSJY1i8dBVz5izBMKy079ab+i+8yDvvbOX4Rx+RO2dOZs+dS4FixcmUu2KzeiP14kA/P/kg86/iGKjbguMMg8o5c3rfqUOjklgG91S0+I4ktbnPDbMmJ7sNg+vXAyv5DwAff4WHZzP5rXE8Sk3llcGDSS5YkAu//87C1avZcfAgb40fT4hQ0Dr5Bv7MqxqZuvc6w0wC05iwbl7Kf+tW0c10k1yxGvmW56twWtSAsVxOltO6/nv+7tKqFdOXLKFOuXL+7w2D7OxsduzezbaVK/X6TOAi91dn7MnySZcVYjY2unRrdbzlMiotpDqnDBnCxRs32PbBB/z6609ERT2LxRLtlelNmizgxo0MRo4aQ9589dm+fRqL33qLUlWrce/ubZbt3Mk3J05w/MAW6jXrgt1enbxJ+RBp92JHgQDxt8PhvSDHSwL5aAzZJPCcZ+rdySCTQQy3zA6qrom2ZcCFi3DtGofOnyf10SPGDRkC165hsae6D0hXM9JEBcKKlt+pf5vZYAKk7WnivRywVXWLzgx0On062jAstGr7CqvXraNq1YrcufMNK1ZsISEhjubNu1KkyDPcvn2fzZvHs3r1WiZMmOxX3/79u3n33X1kZ8PDh1ncuhVK3iQXkYaTHu1b0rhVK0aNeo3Q2FhKVa7MkfffZ+/evSzdtAmrxUKrVq14s3ZtQsRBtgJBZTuW1iHSzQOFVmFOJxXKlvV3MqRLE/zOQ1W/l+cT+GcjGAb89BP/gR4ePnTveDcMOHr0fdauXsJrQ4YwYdQo7t25w5bt22nesyc75s8ntmBBfz2hKgJ1fqj2sQzq+JkFU8T/cru6elTbz6w9nc6T7XednJXtpmA+jwyKMyyXqVihAqPfeAOHw4FNxsXzzbqtW+nSuXOgYFQFnWrPmfk5uvknr0arNNPpIlVXyb6mbBhL/X/22WfZvGABPUeO5K+/fsNmu4jFUsT7qdXanJo193DyZHNGjlxBsWJhlCxZmoEDh+N0wtb33uO9jz7ixM6dzN1/iI9PrKNYpUpgtxOfHEtqqsV79Af4bkRNSoomPr/hf8CsyDpSfV15scbp9AWJ5C104LtGVZQRtBErK6mp3E1L49hff7Fu1CjC79yBtDTfGIq2ZdrK9QTTQzKY2U7y/zr9pNgF4iZzcMvWDKeFa7fAMKKp0rQbpUq9RbjVSs6c4axcORqr1UL9+s+zYcMhHj4M4+DBJixevoYuL72MM9XX/Lp1axg5chRWq4WHD7NwOEKx2y3ExsLTJfNRuHAhvv32J0qUKA3WRLZu383Zs1+zY9dOHqWmUr1qVQ4fPkxYVA4yBNt6uiIf7YHXn3YnTRiGNYBULs82dLmfIQ4HxZ96ym+Oy2cZo5DTMCzeOry+p5gLIqtD0PvaNfc5GU8AesvaBGJifLw3cuRw3nh9uvuWGwDDoP6zz1KrTBle7N2biqVKkVe9hUplFPm5/F5+rjKVXF6nfNX6dO2bWT06q0g1rtRvdApDbVcGE2cmwNmRlFevdu1oPXAgRfLmpVrlyt4yN2/doseAAbw5dapecOraUhwsccq+H+iUhq5PwdpR2pC7JheXAxwJeQqxb98JOnVqxfz5TYmPL8Bzz80gJqYOBQoUJjHRTp8+a5g7twnt21dl4uhXiMiRgzsp0KDRi5QuVYp6ffuyYdMuqlcvz7mPj1KtVi1v2yJgIm+FEDJR1v06HS3mmywzRSBLtQt0Qymcj3gxUWNjSbdaySUO5FYjWLLxouNj8Vu3RVRG+nGgei+eZ05PuEQ3PVSaNG06iPXr17FkySLefvsLMjND/YJTjRo1I0+e/CxbtpLChd0rxpcvX2Lp0tf5668/GTduBCdPfsz333/L2rXv0q1bWzKcFkqVLsvff1/0QzEmJoFBg4a7rygH71X2MqjnyQXwt44+njLa1FKNzDJjebWM1XC5t1zJ9YnDCnWrnP+Bn57Zu3cb8fHxjJ8wwUv0EsWKsXzaNGbMn8/bu3fTtVs394c6+SlPTJ0xqpPZOt6Q6laTNf34Ta5LzQDS6blgOtFMjz0JBGNQk3fFChUiMT6exW+/zZCePb3nDmRmZjJx7lwa1apFTGSkXv8G0xHByqjvPW0GPFfH0cwBCwaeekINgw2LF5OjQAEWLx5NePgUGjceRP363Sldugw5c4bQrdss/vjjFF27VqNq1aqULluW+6kQHpHAgJ49mbRsGc6oKMaMGcn2zct4/c03/VBVt9zJukanH1SfUYhjYXursUUhquVEZFlHuWKt7vFzOEj3rGrmzJfPd5aTmW2k0z2ysJcb0y0s6uw1T3n5zE/5E7O/1SmSO3dJunUbwapVi9i//2diY4t4F1qvXIH8+WNo2rQLW7eupmfPCYSHh+J0OtmwYSUXLvzGxImvcfnyv+zfv5v+/ccwd+5k7JE2LEBcbCwPH6Zjs9kwDCthEdC+fXv3oauC+CEhgQiazU1Vd8v2YjBZI0FAFqVat9yGmqkiO+diP9l/EABRUe5F+jt3rrB69TLe37mTsKwsMAzi4+IY/tJLPFuqFMOnT2fTypW+D+UjDXSy53/ZTq37XzxTAyDqc3UlTGe7mNWvK6OTx+JvMzyC9UHzPiQkhNcGD6bHK6+wbvZs7FLg4+CRI3zx1VeMHDzYfTaZzml4jL/h156Z4/E4XaQrI/s7ZrJSLhcbS/fevTFy5qT/wEF88MF2ihd/nlq1JpMvXwUSEyOoXLkZKSkDWLVqMPnzF+aHH9xBYocDRg0fzos9evBCv35sWreO3v3707toUbft6AH5WBDRtMMBabZIIhMT8UuxEo6IUEyiIVW3qivn8sVEgq6e/slOVbrnRrNcefL416XaYrIy0/Gt3H4wPaVL2pCVoGH4BxjlsUGu2uLnRjkcoUyatJwuXerSvpOTyZM3euN116+7P+/YcQCvvtqaw4fPUr58RZxO+Pjjg+zbt5MHD26SmbmZTZvWUKxYKbZvP0j58kUwDAuVKlXlxx9/oWjR0t72K1asStWqVb3HFgmfRmdmuXVCYFaRYfgvTqhZS97LEmQ6eSpW7RELLn1mlTyeKmLyIZRPAE9grfkgNNTd1p07V8jOdvquVpYmozUjg1Hdu7N2yxYmT5wYiLjG2QvqBIjnOmNTBVVQq3X/L8ogmNBXJ4k8qdRJpvZD179gYBhEGQbvLF7MuDlzeGPNGp566imuXb9O6qNHvDFlChVF8E+08Tgh7SnjW4H0pbf7pefJ5c3GToDZqk7AJHf/bTVcfsWETMydO4n9+7/giy++ZsmSGezZ04M9e6Bbt0n06DGB2rWfJU+eLxg9uibTZs6kQ7eXsFhy4XRGcOLjL+jRrQPt2r1A3br1iI4wqNawIc5Un5+vi++IoL0c+JfJKGS1rHeEHNbpHHnnCfgH/G02K5Gegq7QULIywWWPxmKz+bJtVPrqDFWzoIUqvNXOynXr5pSGX1TbRf3tcBiMH7+c7t1rsXnzaurVG+ilWVIS2O0GlSrV4fz537h2zS2jhg/vxpkznwJw+vTn3rZefrk9GzY8x9tvv4/LlUFERJRft73BQZvVDweBuhd9nWFhNqcfNy897923l1mCTl9d9fI/bt73MMkTXj36fw3kObRnz1b2b93k77h5aDmiQwfajBtH106dHm8A6xqRjRj1f1GPOqBOtwNtGJZAx1A1omTBoPvbTK6aGVtyGbk9szlsxudqGSmAMHfSJBatXUujHj0o9/TTZDqd/HrhAj06daJ7+/bBdYDOUFfxkNNEVXx0eKoZTGb6TfdOgOok2O2EOp0smzuXcWPHsnDxGubNm8G+fXOoU6c5Eyeu4Omn87NixReMH9+ITz45yf4PP6RWvbY4HPDW4pXkzp2bCa+/zrOffoYzM4OJmSFeHZGY6DtaR2Uvcb6dTBYB8nFLQhfJu+FUH1O13eVFFLsdoj0vs8LDAQiJi9Nvu1IRkn/rtk/q7Cy1PpXH1bYUUFlcN20AevSYxKFD25k+fSjjxh3g9u0QLzu5t+TX47331nLtWhoJCTk4dmw3EycOBWD58iXeelatms2OHSs5cOAo1apV5d79VKxWn06xqjwYbE6Z0UeliZn9qvL9/2LvmoFch9kWyP8Aw4DISFi2bA1jR49yB53kl0DV4sXJcDi4euWK+xgRCNQTTwKqMDDjITM5LX7LmT7q9uUn4UVd3Tr+NJPvOn2lzvVg/XE6aVKvHmEhIXQYMoQ8efIQHxfHDz/9RLkyZdi+bh2h2dn/Ox7B7LlgNq9aRh4j9b3Z2OgEmGecOrdvT/OWrViyZBezZo1gw4ZnyZmzCC+/vIEyZZ6jUKHlfPddUTZsGM3o0SNZunQFTie80LkrR+122vXqRbUGDYix20m1Wt2BOqeTxESr4lv46xm7PZL4pCSfUhCKQez7lvkHfAGt2FjvTa1OJ1htTl8dom8iG0paSRF6xpIjh//+cFlhPY4/VTtJHQ8zJaHbkaOCZEsEi9c6nVC69HO0aNGN118fTd68L5KRkeClcWIiVKxYD4CzZ3+jUKGKXLr0C717Nwfgzz/Pe5v8449feOaZosyevZQBAwbz99//UrFitQAV6+6iO2vJLJatCwaZqeHHqo/H6ZYnrMebuOKxqx571IFo/olKKfDzz9/xXO2apoZ13SpVWLJzp++5X4tKkzpG0ggqL/Opo6Kjik7IBDOIVXyCGbC67x73vxnoDG0dHoZBnM3GyrlzeeBwcPn6deLj4shdsKD2u3v37uF4+JCcSUn+rGrCpfIwGoYFw/BtVcIw/JlLp3TM6KU8k9tRJ5E8JCEhIVSq9AwLFrzH+vXz+fPP79mxYxaffbaLCRPWUaZMDZ5/vhv79q3m7bd30K3bMI9MjeHA3r0sXrGC6a+/ziefnGLYyGk4HBZPACTwfDvVtpa7IvAV0W7dAq9ZUoOujGg/MikJDIP42Fh++u2CZ1XbiuGhv8WMzrKHIVescxhUpOTxk4NSur3bmrE0mepemf/sszXp0KEPS5eOo1SpNkBuP/vo4cM0IiLsOJ1iFT/cW3dERCRFiyZTvHhF9u7dxGeffcytW/fZt28bbdp0DsBDRlvtGvh4yzTTKdjcDkID+bGZKAhsyhKwpdRlWLH8F3gyBUFji8WFzWYlIiREy+ORNhtWq5Xs7GxC5Hf/SyNmzx7DIwG89SQMoSv7JDrFzDh7rHUhffs459NTTwjwSt++DOnblz+vXCE0O5uihQq5b9xS2nI4HNy9d494u919noOoR6fHZVxF+n0QPEyd7yd11lQbwF/Jed/nT0rizTdfp0KFKnz44QccP36ANm2e5rXX5tC0aV+GDZvJ1Km9WLxiNdVrt8XphPT0EMZPnEiVihUZP2MG33z7LQcOHKFSpSbenSolS/rrGYGKOGZDRVMW5ToRLeshUZfKIvI3qakQ7bm+Nd4TBbv94CGJ0fZAR0n3tw4RnT2ljpE8birNvR33pf+rVen6JkN0tJ1x4xYxfHgbTpzYS9Girf0W8B8+TAMgLCwKpxNu3Ljq/dZiCaVgwUI0atSaNWvmce/ePU6fPkd4eBQFChTCYvFdEuD/RxBEdeVkCObQ6+w/E7nktyhl1o7q2Iln/+mZoGAY8P333/L6uFHu7UHCqJHmQe1y5Tj388++82sFPE4Gm42tGuTQOeVqOTMIpnuC6Tmz4Ipcr1xG19dgk1Wn0yQ5UL9hQ+rXrcvl69dJffiQQgUKECG2zUuQlZXFzdu3iQwLIzpHjkD5btaeGc2C+Sxm36t0UesxE16evkZFRTFgQA8qVqzGhg1L+OWXs8ycWZfmzfvTseNbdOw4imPHVrNly0amT5+NYUTjcEC9Ro04c/gwk+bOZdvOnYzfuJHFixeDw0EkDkok27mfavFbyxFiOyUFYgtH+90A7RWU0oHg3nc2G15HKSnJu7hut0djtWv8EdFfT+ZTvCdwf+vePf/61W90dTzOJlKfmWWOyuOhU7RG4DEi6ufik4kT59Ko0fusXj2Gdu3W+lUp9IzVasfhAJcrDBly5sxFlSp1+OKLE6Sk3ObYsSN069afEyeO07//a9puBWNJs6ntTxZFf+k+0FQsFlLVerTfq3v8kYJP/4OueczMC2zXMCAmJoLzv933Q162nB48fIhNXMns682TN6IqdHlE1PObVOSetG4Zd/m97l2w58GMD53A1uH5OMEtlc9ht1MqNlZbxyeffMLcpUux2WzYo6K4+M8/NH/+eYYPHeo2qqSgnS7dXa5S3YLndebFAzOjSRkXbcqepsuynevja4MuXUYD0LPnGN58sw99+9akb983adiwD6dPH2LLlq106zbMS9bQ0FBeGT6chYsWExubQGqq4RGe/uiqdrWYN+LHMPyzRMUzNZCvE1hyn1SS3LoFuZKTITWVpwoV4p3du7lz519y5cqrJ5L6oz4P5onIv9WUWp0ilZFV0j0F6HxHQbNJk2Zz5Mhetm4dwahR27zbx202SEtLIT4+yTt9p03bwL///sHdu1c4cWIfS5euZ9u2Hezdu4m4uAR+++07Tp/+jAEDRpjaLzo/QOCnNdJ181/9UK5QAfUWJl2VwUSdyJjy4vaEqwP/18A3l0PIzEg399CB9IwM97krKjM8zqiWywRz/OQJ/qSGtzrp1b/NmCYYM8l1mPGqTm8+CWi+M3BvafTrkwf+vXyZKfPmcfX6dfLkzs2Vf/+lcMGCTH/1VRLj4wPxCoZLMMdI/j/YGJk5Uo9zHLxGKjRt+iKNG7/I7duzefPNUUyZMoAPP9zFrFn7CAuzceLEMW7cuEZ8fJK7KqeTxg0a8M6+fXzz7bfkzFnUr0qReS6ak4dP6BIhN51O38KxvJ1O1VVmwy/rKVHG7XTEE1kYSnr2Yhz54H26iOxA8YEc1VLpo/KtSju1PPjrGdnwF23Y3FvbDM0W6Sep3jCgWbNW7NrVnM2bh7FgQUMSE3N4F1szM1OIispBZKQ7i7t1636UKlWGmJhI5s8fz4IFqwgPj2HNmnkAFC9elNGjh7JixTpv/epW7aCI6vhN3bMvw5POSaVc0KCTDifZLvgv48kUxJyLCLfy4MEDYkJDAw1Rp5OUBw+ItFr1c0L8beaD6PwEeUzMAvGqHH+crxLsvVo2mI6Q3weTBcHa1+FiIkvyFyqkLet0OJizbBnHTp2iSMGCpNy/jysri3HDh1O1YsUnaycYzjq8zWwE9Zn4VtX18v+y7eCB0qVLMmPGMjIyXOzYsYIFC8by5ZcHmTHjKMnJVbh8+Q927nyPdu16uj9zOClSqBAjhwxhx+7dFC1d2pc17OHRaLsdm80aEEOy2cCSep+Aa9fkoI2qmDxXtGbgs/8dDsAe7+2D+/gIxe8wDCKcTgrmysWhjz7ipcaN9fpX9kfUcVHHQnbO1HFRtxbLoI6LNDa6oJNajU+H52bMmJlMmDCQBg16UqpULe/RV9evpwAQF+e+Pb1AgWQ2bPiEmJhINmyYRatW7WjSpD0NGpQnJeU2lStXZ+TIfrz0Un8MT0M6c1JHBjMSBiujrd+El2Uf/QncID8kLSpS/z8CT/fugdUKNWvWZNbMNxgzYgTeXe8SNbbs3Uu7Bg30xrcseB83gXW/ZQjGQToLRgdC6JsZ8KpQMptMwYwTtaz8jVynbgLJE0yXcuOp49Dhw6zfvJmNixYR57mVKCs9nbVr1jBg8GBWLV5MiEgjNgy/fZxyMEXnuFucGf5jpKOpLhPNZII5nfpz5UR35e3Ivqh7WebM+YKlSwexZcublC8/gqio/Jw7d4ovv/yJChVKk5oKj0LDmDNnBi4X5M9fmAcPsgkJCSElxX32mbjswZNN6r0KW8bBZoO8Se4D54R8F7iIszvkoIs4skf00+Fwl7t40V2/nG116xakpMRTuHA8Lw0awrg33uD9A7sZNHioPwvpCKLyj8ozweaPGrAVHZW9IOmbn376nfnzF3Dp0l+EhRnYbBF06jSImjXreodW8I2oOjo6gUmT5jFyZE9sNgdvvrkalyuB+/ddXLr0OxUqVEHcRG2zFSApqQCGATlz5qFnz/aEh7sP/IuIiOTzzz9i3bodhIaGerunnispd1ewX8AZTWZenMqnMn/L+zEl2skrA1bDN390wyNw9c4dz0urYcC1W+5nT3gDxP81uHfPTRq7PYQ8SUn88fffFBPZndK4Xrh4kXw5c+qdZpn/xeqbWUBDlc3qnNEZSXIdKj8F1diacmY6yqwunV6V+6MTuGq9uvp09FDmzdUrV+g2bBiLpk2jbJky3on49Vdf0XHQIN5dutR3jp08BrI8M9OvMq46J16ux8y5V9+LOlS6SH2W5bvTGctrr62lUqVmjBjRhuPHv6RWrVfYtm0w69dv4pVXxrh1ghHJJ5+c4uNPvyQszEpYWG6/85jOnfPXM+rN1IItExPdf4tzYGV9I28Nl4P48rvLl90/DgdUr+47LvDXX4X+iadS9epUqViRLVu20KV5cx8tZN2i4yeVX9TxEh1RdIf3nezsKONkcWZgGFYePXrA8uXL+fjjE1itYWRlZVG/fmtat+6FzWZ4P5chKyuEqVOX0Lx5aaZPr87ixRspVaoqKSlw5crv5MmT33uIu8MRSY4cDTEMmDNnK2+9NY60tIfkyBFDZmYGmzatYvnyVRQrVtinP3R0URcJ/FfI9KvrOloZygUWOhtR/katQyWGbIwIesvjlJIC8ral/8APBOnatWnDlu3bGdKzZ0A2RXZmJifOnOG1QYMCz1gQoDKq7j0EHhAIvnENdhSIzu9QQadTgvk/Zg67/E41znU6Ri4j86gq8MAXYVdlilyXw4HLYqHHoEG80KABR999F0tkJBgGNy9fps/gwbw2aBC1K1f2b08nw9S/Bcj2gDoesp7R0UOml/xOxUOSERabDYiUxK6Fli0HU6NGc7p1q8bu3aupU+d1Tp8+zJo1a2jQoAc2WwgQzY07j3j5lVFkZWURE1uIG7cs2GzRYIvm1i24/KMbhdhY36VH4mxBUhy+W+fEtg2bzV1QfKTKaIcDqw1iYyO9XfjxR7eeAShc2EJysvtWvVR7QRz5CxJbBiJTb9CrVSumr1nDpokTCVPtCXlVRTXeZV9E0FTeY+52An1yWDfmauaA9H92aCjb3t7Npk1byMrKxunMoHTpKnTvPoykpNx+aMrD26FDP3bv3sTs2c2YPn0ubdr05dYtuHDhdwAqVcqPuNfrmWfc5wnPmbON1atfZ/PmtUREuPE8evQAI0eOp0GD5n5oq2pDDUWoJNGxstfX8PjsAec7CR9EZ28aRuBCi6dS+VgRr16UZYEo73T6tmJK/lowCCKVAkGMo9VqpX2bNowdM4ZZr73mXnH2IPHNL7/w/qef8v6qVf4IykjKHddttpQZVmLADJeL/YcO8dOFC8TGxdG+bVvyRkcHRj8FE5oJCZ2g8aOKEYiHXIeqYKQJ6/e9zjAzc15Ug0EFXaDO87/L5WLusmUc3L6d8PBw77tQoH/PnoyYOJHT33xDterVA/qqynwvOUyYVGe4y3irJ+nrbCedrSvLGNU3Ec8MI5S6dfvxwQerOXfuK7p1O8DMmQXp1q02ffuOJDs7g6+++oy6dVsxZMhkxo7tQ4cOVXnppfFUrtyK1FQLKSl4fxwOn9zVdddquLDbLd734iA/+YIGWW4LthNBpmvX3PWot5IKp+Gjj94nJCSEJo0bew+NC5jgKlKygtfxhzCMFB7xE9RmzoZngn/1zTeMHT+NIUPmUrx4GWJj4f7968yYMYk//viFLl0GeqtWfYq2bV8iRw4ro0YNYOHCN+jdez6ff36C69ev0LRpC5KS3HSRUXjmmfo0blyflJR/uHhxIrlyFSU+PibAPpFtO932SMNAu0riwuIvfNUPBair/4ZBdmgot65dI9RiIT4+3i8LUGw/dUq3QgT4w+rkcjp9p9I/oZD+vwbh4b45M3rECAa/+io7Fi0iVhyS63SScucOQ+bPZ+G4cd5nATpEJ3c1Br96k2F2Zianz57l6MmPcbmgUaMmVKtWxT+IKINubsmgm78qqHJVPNMJJ93cVSdKMPmt6hEzfFWdCcxcuZK3JkygbMmSfmWrli/P+IEDWbhpE9NHjgw0Ls1wUvGQcZQDRipuurn7uP7q2laKiaDOM8+0Ii4uiS+/PELdurMoUeJdFi2awI0blyhUqBBnznxBXFwS8+btoFu3OrRsWYLOnUfQuvUAxPXK8sJJYqL/JUHqEOh0hPAXZD0jH1YufsSiSnJyIMkcDvjn5k3Ofv89C2bO9DUqN6SOtVxGRVi2fdQsDZXesjyV54hnzt27fY9u3drTqdNgFi58jfh4CyEh6ezcuZFx47oxc+ZWxOqwyrb58xdm377PGTGiB0OHdufo0V+4desRH3ywkx49+nmdAfdCj/vvuLj8rFixhczMu1y5chmnMwfJyYX9YzmCJnIamZn+Ff0ysxN1tizK4ohE9/t37pD26BE5ExP9Fly8BJAHV8ZB1t8ynmKl6z8whWi7CwsuWjdrRvM2bXi2dGkqFSniNTyzHz1izMqVdKhbl7CwML2/oip9M79DYztfvnGDd/fv577DQdmnnqJFw4Zuh11NY1R5KZgOUd/rgl0qbjLoFil1eknGU/2RBZWZLlJxlfA8+tFHlEhOplvbtu5VKA//50xK4u3Fi2k7aBCHduwgRJ2fct9MaB6Ak+57nT7VZaXpbA21nKdtdfeZwwEREYWoWrUZP/xwlOrV59O06TTefXcYPXrU54UXmnLhwnmuXbvO5MmreP31QQwY0JlWrXrw8sujKVQo2S+mJBa/xWKG04nvRmWn03cKuVjBiI31BXME7qKMhz6ia2ItKSXF92liov/5txFRURz49FMaVavm5mHdPBAgG/JmmU3i8HL5e1WeCh6Uz6BS2skOD2f4a2MJD49j8uRtREXlIF++bD777BNGjOjMjBkbKViwoFaMWywWNm8+yBtvvMqrr/ajbNm6hIUVZ/fuTZQsWZoqlQqSHeLz9dziIIwJE6YTEZHO+fN/cvduJgUKlCUiwnc5hWziiO/UtQwdPqqZI96LRBJ1mnptVkmepKenc+fuXeLsdmyqA+dBSr4QTOs7yeMnnF1VBwUBzYwzB+EQAPTr2ZNVy5fTuGNHGlavTkxsLJ988QUWl4sdM2YQJt8AIlNKZ+SqQlGmquf3F2fPMv7NN2nXpg3NmjXjxu3bvDJ6DMWLFmHGuHG+4JdgRLVNeQRVwa5rU+cgCE5Ro61yG3IdZu/UNnT917Wh4ukR1J+fOkXtZ591B5085TOcnrOaYmMZOHw48xcsoFqtWn51yHNeB+J0fcOw+p1TY8Hlh0eG04LVhOEUng/otsBDjpfo7F1RT3S0e0vajRv3SUqKZsiQA8yeXYcbN27TunVH+vSZSFZWGHY7FC5ciPnz32Ds2LYUKVKGKVOOYrMleVeNr12DwoV98hd8v++kWPyEg5CBqn4VZ3YIp0Je2RZOQUqK/wJDYiJERWWzdOlCWjRrRvHixcHpxBABO1V6yMTUKXIzB08dCB1fKsZNdnY2EyZNYu7c3aSnx3irKlgwN8uWraJr1zY0bNic+Hh3tpKss9zNh9C2bWe+/fZLNm9ezdWrN/jxxzMUK1aaWrVqY3GkYRiR3uYvXvyDhQsHk5WVxsEDu8hfq6I3LiPb9TIPyLaYyiey8SJvjbOqfRcf6eSSzUZ2Ziabduxg665d5M+bl8zMTO7cu8fggQNp3qKFFwmxuiCTUYgXN+7KrZFCe6emQpj/vvD/wA02G55bCw1KlSrF66NG0WHgQMoVL06JokX57a+/+OHnn3mzb19KFini/7FKaxXMxtzz7vb16/QeNIinSj1Ny5Yvkp6ezdtv72DmzDdYs2Y9uXPG+PGVUPpaHNRsWnXeqoysMrSZI2MmG8z6GcxRMdMzch2en+wHD/jl99+pUq6cfzmPEKjfsiWz1q0LXL2X6SHrZ9U5kp+p+Mt6VwUz/aqrR37uoaXNZvWibBhCpocQF5eHlJT7XLsGHTq8x6pVZfn55+9o3rwTbdv2xTDiMQw4cuQcixbNZtWqSWzaNJPJk3cQH9/ELytJoCicAtEV2XCX9YwA2ZRRF3RFfQJ3oUOFoyB0zdIlS7BHRdGrY0etzPejoxmoekdns+iey7ztZ49Zef316QwfPoGiRZ/z9jMmJpyhQ/sTEuJi796NtGr1snZYAUqXLs/UqXNo164xPXq8QGZmCKmp93j55f5YHGlYDQOxpS89PYtFi8Zx9OgO1q/fTOPGdb22sp8JppuDct/kd2q2sI6/PH/7GfLyBSI2G6e/+opZ8+cTarEQEx3NxUuXaFi3LqNGjcLQ6Xt1XHR/C0hJAfnA7P/AH1JSIDKSsLAwtq9ezbCRI8lOT6d25cqkPHjAsc8/p0Pt2vRt1sx8fqjKH/x5RuNJZmdnM2bWLC5fvUr3Tp3ImTs3n58+TeMuXXhr0iSqlihhPk8FqDyny+qVowZPog/NyojfsmGm1qEz4MV7nd9kJt8dDjbv3Mn8yZP9qnFhwWK3Yy9UiNJlyvDjn39S9qmnAvEIot/9jHpdX1VH3GzMdXMt2DuHA6vNRmysVfzrJVVcXF7S0u5x7RqUKTOUK1e+5LvvDtKv36vUrduWnDmLYhjw9tuHefvtFSxbNp9du9bRu/dY+vZ9w+tnqLswbDbcGU/g4wHRsIggefB1iXN9pXH1LoY7Myhc2OqXlZua6svkjY11B3BPHTjGtz//zIdLlgTSzUzP6OSmXEaVvX46xAh8pmnnxCefEBISRq9ek72L3mFhITRvXof8+dcwbdprLFjwToC/IarOmTOeOXNWcuDAHgYObEXJks/w5Zf7mDVrISH37hFis/n5NEePHmHixE6MHDmSiSNeJcOI9Po0MrqCD4RJJE8fOa6jI4tKWpvNfwuhtw3J9rp57RpTZszg4t9/ky8piX+vXydfUhLTJk0iT/78fpX7tSPT2Sz4KhjwCX2aILMnENLT/WVO/5deolfz5nx2+jRpmZnMHjmS/GpKspkRqJZRmUj6ffn6dabMncve/e+TQzp87vmmzVkwfy6L165l+NCh/vXpvFKVgR+n1HX9kK1GXWQ7mJGrCka1bhmvxxkUHmMGw8r127cpVLSo0k/BhBbiEopw9dpNv3pkh1nVV4bha9NHHs22ICPwZjwzn0gnd1RdpWaxyFlE4ru0tFQAsrMjSUmBwoVrU69eH/bt28Crr04kLi7Mm3Fer14DqlZtwIkTXzB6dFvmzOnI6NHHgDCvEDUM/6C/YF8hKOx2iI91YbWDI9aitTHBh6MQxHa7+4BZEQkXZTznvXL27Ff89NNPLF640Nc5w2rupD5OAZoZDSqhZVCllNPJJydOUPvZZ4mIiCE93f1YODV2ewj9+w9n9+4N9Oo12ftOp8NHjpyM02nw1VenKFiwKCNGzHAHhz1tCRru37+cL744TFiYleUr1zB27AQ/J1DXNfW5PGUcWLDZrKDwm2G454rIxlOvHrUoE2DavHlYLBY+eO89rC532YchIYycOJHrKffp1asX6iG5AuQVLZsNrJIScBlWLCIlTt3S9x8AbrplRLvH0GoYVK1QgcPr1vHdjz9y+dYtnilXjvLDhxPy8KFe4Kgr/+K9NHHFmHsPfMdCSGgoPQcOZPKUGZQuXcE7bWrUqMm3356hX78+bN/+nh+u3mbN9Ihu/up0hJnDK/7XGdFqHbq2xTN5m0QwHMz0M5AeEkJMTIxej9rtZGPBFhXlH1WR+6IqG52+VHWljiZPYsSa9Uujly2A3W71CwC5baxUQkMjPQs0MfTsuYi33mrDw4cPSEqK987zpKSivPXWKvr0mcykSb2ZNq0Ts2d/Q2JiUe9qtBx4Ej6W0+kTAzab/0q1kLlmsg58dXiODPS+F1v48ucHq9XF+k2b6PPSS+7bkNRA6JPqGTVwJI+VDLpnokMS0lnZ2fzyy4+MHTvPm9Ul97lbt1507tyG5s1fDurX16zZgKlTF3H8+Pvcu3eHOXM2UaRIUTAywDC85c6ePcXmzXMAmDBhPHXqfB6QCOJ0SgsU6vkDovATOPC+lWf3LUWmugg49fmXLFiwgHXLlpHoMT5cFgvbdu2i58CBbNm82Z3VoY6B0qY2BVgYNjduaIf0PwBiYz1ON8THxbF1/nwu//Yb3/3xByWLFGFEhw5Y09MfKxtNZZVOVtpszF21igJFijBr4WJvBlyVZ56hR+fOtOvShS3Ll5OUkOBrV80KCSLPtDpPfScLEzXtQvwt12/m6Ks0CUYn3XMJvOfI2mzcT00ld968fnpLzB0HkRQoWowb9+7p6aviaGZAquVUXOVn6q4aXV9U2sq/AVJSiIyNxWm3+sWBHI6HGEakN3GnadMFnDt3kE8+OUTz5i29TdvtORg9ejQdOgxl2bLZLF8+jfz5S1G7djcviwib024HiyPNt8gpHCl5lSIlxSsjAm4zV3YqWW9do0qVgthsviRKmw0iSfOsnsC6rVt5qkgRmtSuHXh7qk4n6J7LoPOvZRx1jmWgEmf9+vWMmzDXj+WFnklOLkZ4uMHNm9eIiEjyVqUOb1hYBKtWvceOHWv55ZfTdO8+gh49+oIty70tzdOsy5XO6NFtSUtLZfr0afTu3YekpEhvsoOZ6SI/M/PJ5SmssqgZeYWuuXM/lU59+zJ7xgyqiLM7DYPvf/2Vrv378/a2bSSJWw1R2/LpK4vdCKSzcJQdDv2tuRoILgkUCA318UKkYeAEDn72GWe++47I8HCSk5L8T9WUexEUC42RKT1fuXkzEyZOJiwsR4D9/Oorr9CoSRMGDx2K3+qQbCiYtSl7uDpjSidg5BFXU1LlMjIewZSEGsnQ4auGYUU5DzMklyjBxk2b4KWXwOnLwhDN/PDDdxQunOzJgtKTQ50QVk05Ucb7TsJBJoNoQxymrPoAKui6JkAIUQGZmTZCQ8M4caIrVapMID5+AI0ajeXEiXV8//3XFC7cxO/2UICyZWswduxOxo2rx+bNQ+jTZxk2m7tREbUXKwQWR5oHp0hv1mlsrDvqHxtrDVjkFPipfYiPdVG9uoVz5/z7IvZhf/bZSaKi7NSqU9dLNO25D2KSm0mpx4HZXPQ8v/L332z/+GNu3r/PU089RUZ2NmXKlvWzR2SBWbRoWbZu3eitQpZB8tiL857k7jgccN9zZaig38mTu3jhhXZERsaycuUKhgwZg2EYftNXtQF0PpCoX3VMZLvDf1prbgnyfHTpjz/47cIFtm/f7vMOgSi7nYWLVtCixfN06tCOqKgoXATOKVU/ChAOiTXJo+Bu31ZH6z9AUXp2d4Do2wsXeP+zz8hMT6eOzb1nPyDN3kyHmIB6WPzXX5/m6dJlKF26QsAYPvNMFQoWLMjZs99StmwlP/7S3kQJ5g66kPtmxrDauM4QVi2OYDpU1TPBdKKKh/R/eFQUd+/fJzs83J/2nnKZmZmkZ2To61Hb0dFFfm+WiaUzPs1At9XSrK/47HKhb3LkiOHMmSVkZaXz7LNTKVu2Ffnzl+DUqcO0bt0M8JeNuXPnY9q0d+jduwpz57Zm+vTD5M+fhNPpXmyQdY3FmQEGGIbV6xvI2+liY90Gvqpn1Jiq3e4OPKmZUYmJ7p8ffviJW7du0bxp00A6yjxkxosq3dUyjzMoPL/THj3i3T17+OXff4lPSKBRkybkzet/oYb/6q6NkJBQ7Tv/IbXQq9cwevUa5qdnDMMduDYMoW93kSNHDFOmrGLUqE589tk3VKtWORBveV5KffZbnAhSRjxSE/500yE7O5sZM17n3Xf3EhcT4dXzFsOge+/e/P73Pxw/coSGzz3n67yZchGejXgnGCUpyX1o3n+gBa9O9gzS1du3efeTT7h55w7FCxSgasmS5tnSur91z5SteBkuF0dOnuTQkWNeHrZ6xjYmJoYxI0eyZts2Jo0Y4f5ONWzkNlRvNBg8zluVcZVTMHR1BJO/Or9JJ2MUA81rjzmd5MuXj/P//EOJAgW8dRmGz6f4/vsfaNWyRWB/VJ2iw9PML9TJRNXYDEYPnbGpCgCHA7vd6nWT3bI6mjt3fuOzz5rw3HOzSEqqSK1affj44z1eXSSvUdpsEfTrN4VLly4yc2Y/cuYsSHJyHZxO92JDbKxHv4hIlJoKaxi+rWmqbyELL8+/Vk+0yZqSQqWSyfx5zZ3dY8Hl3c6bHRXFiS+/pH3Llr4FZpXPHuevyM6ECirv6gSq0+k+j+3zzzn+ww9YwsN5oVkz7t27R548ebl2zVeF8O0AChUqyT///E3RokleFHRrl9WrN6R69YbeZ5mZkAYgran89NNx0tJSWbr0PV57rRtLl65h4sRJXpRV1pC7J56ZTRV12snsKYt8uW5Bzvnz5zF+/EQqVasBqfe9H5arUoWZs95i1uzZLBRb8SHAr/fhYvG7YMzl2VWF51zpJ/Vp/qfTbcXBZYYBP/z4I43atuXvq1fp2Lo1tWvVYt6GDbw8bRqZZoymTsxgDClR+ux331Gn1rMBxAf3HszKlavwyy+/BLal1ie3q044VUDpvtel+sujHmzbglpeblP37HFOhgcsuChfvjy//PobN+7cAcPwY8jQ0GyWL59H794v+1Wn675MV2FE6fSc3wP8hsr7I5SITBp1m4D887h3wuguUKAA27b9RI0ajTl5cihbt9bBYnEQEhLCtGlD6d27G5cv3/Nm/gk6lC9fiyFDVnHixDpmzWpEdPR1Spb0P+PJ4YAMI9KbGimfB5XmdK+Iy+fbgc9JEN+L8zZu3LKIW0m9bYi+WA0Xn39+iqpVa4Ic+1XzLeWzJnQSSVdGx0MaXsoODWXa1q28umgRZYsX56XWrbGGhbFywwY++PBDL75Cb4lmLlz4i4SEJK3c1+lnJYPa77Bcmw2ee64RH364i6ysVK5evcKxY0dN7QKF7Uz9Jh087r03WOt0sm3LFvp1766VUTYrdOrQnv3vvgupqVgcaQGxY3mstbagiED+d821FiKNDC/tHjx4QPu+fdm6dy9N6tWj7Ysv8vX339Okb1/+ltMJBQSTnxJYcAUEHg8fPkKrVq1Nd860atWG48eP+Mkmq+HyP5xRtGc2ZwWIOasLKusmks76UPunMqCZI/I4Y1nUqVhKISEhPFenDvsOH/Znck8/dmzdTPMmTZ7MsFfxCWakmllsOvvC7H8TY9Z9JqHvnRzoefvt4/TvP4VfftnKxo2l+fXX/eTJU5j9+9+mVavn+fjjM35bHABy5Ihlxow93Lt3g1deqcT9+59Rpow7OCQWFB0OyMBKmtPqPaNDLEDL8lHWG/Ih5eA7vkdk5oozpOTgmSX1Pp9+dIywsDCq1ahhLjDN+DSYNayWFQpCs7X02Jdf0nzQILKzs+neti2VK1Rg9rx5fPLJKUJDswO2CjoccO9eFpmZGQHDKdhSh4aqZ+Qkq5o1a+NwpLFz5xLy5MnPjh0btKzoziJXbDHpncuwen+rc9KMhGbT8Oefv6d8ubLExET5d9DzM+jlPmzasMFfAZvpdDNet9n+0zNBwB3IAJxO3pw7l6FTp/JUsWJ0btMGIyyMlq+8wsEvvnAX/l9kmk6WAhgGP/zyCzWqVyc0JFvLH/Xr1uWrb74xda61bQczcFQ7UYAZY4p3Zt6sWi7Y/yquMh4qP0v/9+3ZkzkLF3rxcEnHUFz79yIpd29TpEABfRvy38FkndmPPN/M5JrZj1k70jOLM8NvZ8S0aZNZsmQnLtdlNm2qypdfTiFPnnxcuXKJRo3qsGrVGq9+EDItJCSEyZNXUKZMNYYNq8+pUwsoXTqbwoU9OkKMX1KSOyhQuLDvJ39+949Iv8Ut2zKcPhsYwyDN4T4T906KxV0PwK1b3suSMpwWr26+dOkS/1y+TJ2GDQNpoIuYgD+Pye9lx00uB/7jIYNh8O/Dh7wwaRKf/Pgj7Rs2pFXDhhw4epRvvv2Wy5f/8ss0lmNyly5dIiEhV8CwiabFc6kpr85StziWLFmCfPkKMGVKPypXrsHWretN8wbk+mTQsZn6Poh40foiX3/1JfVrPRt4vqDTSbWqlfnphx/IfvDASxj35R+BNrCfrSu/FAz9/+NWO4szA1s0PLh+leHDh/PuihUkRkd7rZ06Zcuya98+xq1Zw9xx4/wNSrUHELhPWMkOEqsRruwQrt24xd27D8iXLx85ckR4ia2e4B5U0wdTzo+zGMwErGzAgz7lWeUGlVNU3HRcKi/5ed7LB4rNmDGXDp26MmPGm5Qt+wxhYSFcvnyNGTOmUblydfLnL+6XmSI3IQeZZVKovkkA4+GOXLpVgrsCq0eJ+3B0Z8dh842nmrUuDGUxidVsSXF+ktPpLlehQnFeeGEj5869TO/evZg6tSrlyz9D/vxlOHZsNz//fJWJEz8kf36r3z7kYcN6U716MsOGdWTQoIosXfouJUvW9CO7vE1K/L582d8BEMa/YfgCUZcv+91w6je8akZUhtPCP/9c4tlnG3ku+XCn3lrVnPxgxr6syEVDAnSOnPwMWH/oEJawMHauWuWdv6Xr1KFN9+4UKl6c3n3OUaRIBT/+SE2FrVtX0K/fKD/+MPNhdVNDzli02WD+/DVERUWyadMqAC5evOVdjTCze4LZemYiR40Zu8tYAqYhwPWbNykk0ryFIQLeG1kKxcby02+/cfXyZd754ANu3b3LUyWfpm3bttjttgBbw2r4GnA6PStIdjuIw7L/A39wulc/Iw0n3Xv3ZVjPnu4bbDyTqWKFCnT99Vd6jR7N4fXrMdSB1slfiQEypMPgVZ568CCNX375nYSEBOLjfVcICwgNVXlMkzknV6yCYejnrG6eqkab/FtXXqdnZGGkw0vVicEmls3Ga2PH0qFjRx6kp9Oxc2esgCM1lc3bt3Pk5Ene3rBB/72uXrP+q8/Eb7EnDYJngap1qILE5j480ydnfIss8q1ANls0S+ePYsKrHek/dChz57aiSJHi1KnTirNnv6Jfv6aMGfM5jRsnezOMEhMhObks1ap9S58+HRk6tC4TJ85hyJDh3nMoZZEi29BiC4MYwsRE90114NM7ossiWCVIKzsy3q7abFy6fJn8+QthRMZCtCvw8glVaOpo+CTP1feeZ3/88w8Ltm7l4IYNRHgQLG2z0aB5c6rVqMGcOeOZPHmmHx0cDjh0aC81azb2s0tk9pbL61hezQBr374TOXPG0bbt8wDcuHEzYBHE1x33+ZjuLritG2eqrz5fV33WD0HYW5eJC3Dz+lUK5c/vy06QMxOcTpJsNlLu3uXRo0fsPnKEX8+fJzEhgY5t2pBHOIJyxTp72m6HhIRA5P4DNzidWBxpbNqwgfTUVHYtWeLVM2XLlKFj48Z0fPVVChUpQhn5HBTdgKr6Rnon34DryLCQRQgX/rxISEgYhQvnxxUiZdS5XCCyRkQ9Ot9F3f6l/lYNMpP+65x47W8lc8uvDvV79Zls/KnfyP3xGNeVK1akQMGCjJw4kXFjx5KY5D5389RHHzH1rbdYu2KFfz2yjlB1qM6TVwWG+r3aR2Xrmd84q3Xq6CbjlJpKJBAZ63l+6xZDWlajX8PdvLlsGW+sfJOE+Hjq1WvDnTsPmT69H1euRNGmTRecTnfsyN18BF98dojxEybwxhsj+PXXL1m1ai1OZw68WdjSVXf3HW6ZZosFo7A/ihZcvp0sdjsuezTXLvrOjE5KyktsUl637E3xDWW8Z9X90qVLABRNfhpyx/lWUlQeNDPOzcZLlFUdCUXHZ4eH02vBAhaPHctT4rZdm43KzZsTlzc/nTu35IsvfvAbdocDrl27xa1bN8idu7BX9Komo5xtJqMin5YhyhcokMyJE99Ss2YZPv30OJGRUd7FIZ0pJ/AwU78CJ1lXybjI36jqWf47IiLCfat9VlaAniE1leiICDIzM/n8zBlOfv45oaGhNG3alMrPPIN8u50LC9gi3TrLi6vVfWtjbKw7DewJ4H+7z9vpjtZu2byZQd27kxgZGTCZ2zVrxvmLF7n36JF+Avuw9VFHJ7w9xT777Gt+//13unXrxsqVy+jQoQ2vvjqCh569hC6Xi2++OcNTpUr7glAq9XU4iAZUIaJxVPxw1AldtQ45fScILb2/dVFcma66rBa5DqBcudKsX7+JvXvfo127prRt24IRI4bTsmUH+vV7Jei8lrupA9E1XbQ04EeXpSNFUa2GKyADSl6lVQ1o+Z18LbXNBnWqVOL7kyfo3K4d5859RXJyQV5/fS9//fUp69cPJDMz2y8QZLNB/fp1OHnyW4oUKUbXrnU5efID77tou4t4ewbx9gxvVF/VT2J+CSdDlElMdCuEkiWhQgWoUsW9yq3W44tl3CchIcaUrfwaNct8CrYKo6vD83d2Zibbjx5lXNeuASlNkRYLUyZPpkeP9mRn3yUx0d2H6OgM3nlnNrlzJ/DUU6X82F2MlzxuOvtC7ZrD4b4ae8iQsWRkuAVZWJjFbyrKdZgJbh0p1LaD8b14Jla7k5OT+U7OoJQZETj300+cPnuWYePHUzw5mXatWpHhSKNZsxc4fvx4IJ6exi24ed+LgC6D8j/w0uuP8+cxLBZqly8fMHiFCxemWZ06HPzkE3MdojEE5YUKWQ3duHGbc+e+ZcCAvqxYsZzBgwfQuXMHfvrpV2+ZvXvfo2HDxn5NyDj5tSX1I2BOqoaUXIfKnGZ16NJDH0NPVQ4Eld+6OoCIsDDefftt7t+/T6tWrWjRogVtu3cnJCSE7Rs3YrVYAnFV+6hbfX9SXIOtRJvVJcAjWOTbX1TSCls90uby3uaSJy6OfWvWsO6tt7h8+SIpKZeYM2c/OXLEsWxZM+7eTfGb0oYBycl5OHbsOAMHDmPq1FeZOvVVoqKyvbosV6LLK1tFDEFFVeg8WYe4t2ZAmTLuoFStWu6fKlV8QTNB4gys3E9NJS4uxk8OBaW5jiiP0zlqPdK4LNu+ndf79ydCHnfPz7vvvMO6dSv55ZfvvDo1JiabH344zr59q2nfvr+XpoJuwo+Ss+/l5oOZes8915hKlZ4BIDTUEmCmBdMRwVSxjowyyFNULlOkWHG+//FHf30g3Qb224ULhISE0LRbN9LT02n34osUL1aMYa+9xvTZs8nOzAyu5GSj5T/Qg8ce2rJjBxP79/enn2FgjY5m5iuvsGTnTvdzVdbqfA1F78g6JyPDxdGjR1m+fDnz5y9g5szpPP98E/bs2eMt89GJE1R75hlznNVAkNSXx+oZM19CBrMMerWdYPJEJ6Pl/4XXrk4myRadPHIkjerWZcDgwbRs0YIXmjfn6IkTbF+/nqIFCwbiqcoos8lqpkdU3OQfs7bUuoLpIpV+8pV0DgfWjAymdu/O6fXrsYWG8vPPnzNs2JvUrt2DjRt78vPPn/sNqwUXYVlZzJk8mXe3b+fw4Q9o1KA2jvu3fMFskRZ76xbRdvcCmXzbKuC7SVsJuokdVMnJUCLZRS57GvGxLr+s2zSHBWJjuZ/mPqIkZ1SYvr/qs8fZITr9b0Z3p5OPvv6ammXK8FT+/AHjMfLV4aSnO1iyZBbR0S6v75aW9g9vvNGVkSOn+/kzT6JngqnRqKhEevQYBLjjE/KY6djB7L1Ozcp/m8WLdTg50tN9ayOKnnG5XNy4dYsXe/bkxCef0Oz552lQty7btm2jXbt2pN5P8atbXmj1xgUEqGd8m0AQa1VX2l38+KlTvLNsmTsyrwo3p5NG1arx5ZkzNKlXT++BqgLNxHA+fforZs9+nQ0bdjN58kgmTJhOjhw5OHToGJ07d2TXrvdYtmwJTZu2xNCNmrBEgjkDahnZOtD0P8Pl4kFqKjE2m69N2eLR0OOxwkimR7AJq2ZmOd0Ho4o96EUL5+XNN2dr/Qa1ep1+kuNtojsB5w7pVuvl52rlciOe3xbcWR+GzeqHj0p6dXhkX0sI1kiLhXVTp1IsVy4mzp/C6NGTGDBgNUuX9qRGjWfp3LmPX/2GAfnz5+GDDz6iZ8/2dO/enmPHPqZy5Sp+5ziI7XOygBayTvX37HbIFZvh+8CzZyI6NpaCyUncSI306hefLrtPQkK01/j1u7JSBtGoSnPdnFH5UP5fen/l1i2K5c2LIXspomOxsQzp04et295mwIBeQChWawQ3b16jc+fOjBgxOuD8OJvNfTaWE4iKigBCtNlN8njKuiM2Ni+LFm3j7t0bNGvW0i/DTWf7iL9VH0gmieiarg5Rzmr4MgZ9dVjo1q0bnbp2pWXTpoTKHxgGDx8+ZM22bXRt147J48Z5G65QujRd2rShfffuFMmXh+TkZA+S/ghYxPKFmUz4D7yDd+LECVo2dgd6Ajw3oFWDBizYupUXX3jBXOsqIM6IkPnl9u179OnTkfHjZzJv3nTat+9BxYoVuHTpMkOH9mTp0uU8eHCff/75m4oVK3nR8ZONZnpOp2d0gliU8Qg5l8tFSloakWFh2MTV6jIjq7pHnVw62aBLEVHLCBzUSSN9bwMG9+3L4IED3e/ERMzKCjQadbQwU1ByH0QZVSGpMvJxATdFWMtBJ1lGyGA1XP5Gr8NBSFYWvRs0oGhMDK1fe425czuwcuUBunatxty5vVm37j0/+WI1XFiNUBYunEfJp4oyeMgQCufPw9BXx3jljCirO7tJyE4xFKKc3e5eIPFzigASY/k3Npc3i0v4HCn3HhATncP/zI8nsUlk+gajsczPKkGdTs5fukSlsmV9dYiDq+x2CubNS9u27Zgz5w3u3k0lLi4nN29epXz5Crz99i7S0+1+bOi1ly1OT/ZYqJ9PKGxpnQp1QwizZ6/go48O8uKLHfzKm7GUbqqq+l9mVx3ZrIbbMJd5zzCgWLFi3Lx1i8tXrpA/d+6AhifOns3dBw84smsXEZ7bgio8/TTNnnuOGfPns3btWvp27+7fUYGMLhPjP9DCtStXKFygAGFhYf4y1AMlixThsm5bNwTX4xLthXM2evQwnnqqDMOHjyUqKoLhw4eSmupgzJhXuX//Pm1atWT2vHlsWb/eN5ZmRruqO8yMJTOj2qNr7j96BE4n0RER7jJm9qaZYS7310zfCVD9BFm+q/arYfB8rVo8X7duoPyXMzfN8NP9bfZe7YdKb/DHVbSnpjPqUvR19JR1oRwoAyrmy8eXM2fSfPZshg6tzbZtXzJ+/B/MnNmGJk1+wTDi/J19p5N2LVtSvEAB6rzwAu3atuX9d97BarUG0hefzyVkp81mwTAiMTxFLbgXXeLtEG/3FDxzwf19bCzRSUmQGO89hsRhs3Lfs3AcbbHo9YwZr+jsFbms+lt976n/+Lff0qFxY3/nwCMHQ+12li1ZzMLFSzhy5Ci5c+cjJSWFmJgcvPXWfIoUKe1nkovFdIszA6fTid0e6adXZb9PFRdiGHv0GI7T6aJ8+RqmixtyV2R2ksuo64sq6eQ65MQ6tcwLTZux/d136d6+fUDAes+BA1y7eZODS5ZQonBhb6XPVqnC5199Rf++fdm+bZvvA4Gkzeb2Z4Rj63S6twQ8AfxPGsllWHEZVkJCQnBZLGCV9rlLjbuys71p5X691wkrtYxoCwszZkxnxYptREXFMmzYNNq1a0mrVu2oUKEa+fIVol69OtSr14DXX58BaIIkOmaXf3upoLFWFEa/fPs201at4t/bt8kZF8e/169TvmRJJg0bRrSI8ukUg27iiLKqYW5mNZn1Q/Hs1W2HOnmqszl1VVsNTXaTrjJdY7rnsiPh6accNBOGuNqkqr/88PJASHo6E158kftXr7Ji2XzWbzzFihWh/PXXaWJj+wSQ0P07jA0b3qZFiwa0atWMAwe+IDGxKGL7VcH8LpKSLF7hKq8SyCul3jOfxD5BcfiGOMkuKYlcZcpgJEV7Fx/++SebBw8eEB0d7SOpSjMzQ0IdOFlqqfWYGCCWsDC32pJzSYWx6qkvIT6Od97Zy/XrD0lNzSQ+PoYcOUK8Q5idnc27727n5MmjhISk4Xj4gK+//Za7d++SkJCTmJgEQkKshIYaJCXlpU2bzjRo0BybzeZnSwm0WrXqYqrXdV2Vx1T+W01U1PG6bgFYkMqCi7gcOejVvTvd+vZl5sSJFC5aFIAfz55lzPTp2KOimDB+PGRn+83BiKwsZowZw9LFi1n45pv+46kqRIfD/f1/EABePWMYPj7V6ZnMTJ+eMQNVJhmGN61cOIKrV6/k5ZeHU7ZsVWbO3MjYsb0pVeopmjRpRffuA2jb9kVKlCjJypXrvVUGZH+KFzoBpkKQ95mZmcxZv57jX31Fgbx5uZuSQmREBBMHDqR0kSIBffH+r9MvT/K/6pjolIFKT9UCetK+/i/ZSSoOqnzUGfhyXx6TDmMmGwxDg7MQQqmp1E1KYt+oUTw3eTIZ105StGgxfvrpNImJGhI63QdFDxo4kCuXLjFq7FhiEgpRv34nb1mRNZuYGLjAbhi+c55E0MXizPAtbsgr5jYbeWvVwmaL9L6+dQtu3LhPdI4cwcdIVozBxlynT3SC10MrgOyQEPdh9CIQolzjHWUL59VpbxAeXoj791OJjY3GbnffRhcS4v7khx++YceO9dy7d4uIiFDOnj3DH3/8QVxcPHFxOQkPjyQkxCBHjiheeKEF7dt3Jj4+N+BjOYFuuXKVqFSpkrZLclfFMQZ+46mUC5ZIZLNJK8FexrD6kdqCi/mzZ/PSyy8zbdw4atWoQUhICLeuX2fmwoVcvnqVlQsWEJEjh2/bioeOY/v14/nu3enz4otYLBb92Dxuzv0HuGyRhNjScIWE+IJ1YnEoWBaLOlfMZI1HBriw8MMPP5CZ6aRz5wE8epTNnDlj6Ny5M926vUSXLr0YMOAlNmxYz5w5c0kSmRuiPhWeRPY+BvYePszK7duJi4mB7GzupqTQt2tX2jZo4N+OGQ7gH0gyC5LJglGN0AoeVSdZ4P5X328zffck/oqoR74yVK5fprmMt5lslEE1TtXvVVzk/iu0SwoL4+O+fUmePp0Pt8+gfv1nWbLkU5zOv7E4NefoGAblq1Zl75YtPN+hA31feYWN27ZxF/dxAfGx7sWK+FiDOymWgGNNhB9jt0Ok4fRfHBWrGE6nV65HJ9tJlS7GuPh3KqGhoW5ZJS4z0M0RM39cp19Umso6XbFBLIaBKyzMFw0SHfSsLoRkZtK4cWN69RrGlSsphIVFEhtr81Zvs8GNG7dYuXIBV6/+SWSkhd9+/Znzv/+OxRJKXFxOIiNjsFgMQkPDqFSpBp07d6dUqXIBrGOzQWRkDK++OjWgOzJbPo6tzFSr/E62DVSSyz7z4L4v07l7d9IfPqR7+/aEh4eTkZbGO3v2sGzdOrq1b08J+XpcD62fLV2aTRER/Pr115QsXjzQ9pODpk7nE/s0Jh6tHizODCyONJo0bMiew4fp3KyZPyU8v49+9RW9O3YMNGoFwqrxKhsxuB2C3367SK5ceYmKisXphGrVavDuu4c5fnw/J04cpHDhQvz99x9MnPgGj/M9vO2oE17G248q/sz9z7VrvDRxIkunT6d0pUreGXvi669pP3w4u9eswS4TXOlPAB4yPqK8xkHyE2Lqe007YvzV7qpOvNxFGU05jhVAK5VeOnqKWWBWRjSiSUexeOp2B6L8A2jypDJVtk4nw2vWZN4779C+fWWKF3+KKVPGeQ16CPRFrNZIDuzbR42atejU6XlWr/4KiyUOgIKJDqwOB4mJ8QHzS+6ud6ILQ0U+BVBM4JQU7EnRXvl99epdsrOzSUyMxepMAyc+pWy2WiD1M4BH5M7JjpIMEs3zhIZy8d9/yXj0CGtIiL91Dpw7d47kokUxDIiKiiI727c12Gp1sXbtHGbPnsn9+/ewWCzedNKiRYtSv34ToqPjSE93cvt2JmlpWVy8+D2DBrXHbo+hRYtuDB48m7CwKC9KwVJZZQEr01s9qkR1JFSbW7ThzS6T6Cq+8WadpabSqUULkgsVYspbb3H7zh1cWVkUyZePEX36sOfIEUKzs7VGToUiRbhw/rzPwZKDJuBGSmyc18mH/8C74tawXj0mTZtGW5H1BH5MsPujj3hBXg0VoGMKjSy1GAZOp4VTp07Qr98oMjMhLi6BtWv38scfpzlx4iguVwgJCblYvnwrOXJE+Tel1ikrY/m9wFt9pkBWSAhdx4+nzfPPM3bUKLdD6XBw+epV+owfz8zRo6lUqpS/xSjDk+gRlU46PHW6Rn6nk+9qHWIlTLdFQTUyddmywfDQ9UdHZ42hazEM5DMLVJTdN/UEwdvhoHZ8PFXz56d9//5E2Gzs2LyZSNJw2SNxOqWMKU/FLizMeP11Ll+9yuDBPVi+PB8FCtT2Vi8uuRCsIw+vECPebggd43D4X5XtUS6x+QsCviK3b9+mYJ6i+B2cJ1vKuj7qaC7AbA+0AEXWlStWjC+/+YYaVaoEOPFZ6en8+OOPPPVUMW7csGCxxHvRAvj111O8/HJ3rly57NUxAHa7nXbtOhMREYVhRPDwYToPHzq5desq06ePZtq0UdSr14SxY+eSJ08pLzqqKFZ5QKAvgsoWwyDDadGytuAVcV5cQB1Clyg0kevH6aRYvny8vWEDS1et4s358zFCQwk3DPp27syvv/9O+bJl/eeXhziG08lTBQty6fx5iuTP7799QiAkFsH+A1OwODPInTs3l69eJT0ri3CZWTy0/uGvv9w01slwYeNpZI0XDPfB85s2baVr136AOBz6Le7du8yBA7u4f/8ezz5bm8aNm1CxYlWQg5Y6mz+IHgnAU52fwIp33uGXixd57+23iYyMhNRU0h48YMKcOVy5dYthPXqYB77MjDUzfSeXVRegQXE8pG9kj1sNcOl8DZ3zo0sDUd/r8JP7ItehguIrBnxrRjMlo9b7XKov6upVBj71FFN27ADg1f79qRBt9ykFjeyu16gRm5Yto3PfvuQr+hStWk0DoHBhC7kMJ9y6RXxiIikpFu8ihyw2vDulZCWkZmx53tls7vPtUlPh6tXbxMbGEpKeHpgFZkYPHS/Lq88iiGSWTirt2Hi+cmV2Hzvmto+E7JPovXvPHl4ZNQqr1UJcXLxXjRoGPHhwg3792nHmzFdkZGRgsYTicmVhGAa1a9chZ878xMXl5s6dB6SmZnHv3kP27NnIpk1zKVGiHAMGTKJmzXZednqcPyN3QZBA7aKa6WSmq3RiX34vbBGry8WOtWvZuGMHbbp1w2KxkJWZSfO6dalRvjztmjUL5EcPj7WqW5djR49SUtwwqc47caPW/+DT/O+ej8NB1y5daNG2LXWrVCFPvnx+E3PTtm2Uf/ppciQm6g1j1SBUR8LTlxs3bpMrV14vId0TwsoLL7SjdWv3IH/22SfKoEoH9KlGlNyumnIh46caxIbB9LVrWfrmm+6gk5gMqanUq12bu48esXL7dkZ16xZYj46j5DIqbur3wYSdiqsEslyTPzGz32X560VFrlsn5HT0E++CgczcGoWI04nV4xyo+sivIxprMG9cHKs7duSX7GzGjh1LQkIkkIbTFmlK4mhbLIc//IBKVaqwZMmrDB68kdRU9+12VsN9Lk9srM+4FHa+vB3a4YBoIcnk5WohFTzSXJzP8dNP5wAoV7KEf4BCppEZ38hldDyg4xtljoU4nfRp2ZLxixYxZ/hwQoTkstt56HIxYc4cFi1aFDBkISFZtG5di9Onv6ROtWr07dqVT8+eZZXnQOE///yTP//8k1q16rF790dcvAi//ur+uX79Vy5f3sqePQs5d+5batVqxe3bl7hz5x+eeaYGI0aMIiTEvZ1Al+UUzFmQx1ZHNnmKuX9bvavRoh6xHcLbsNNJlXLl2LRype95aip//f032dnZgQ6cpCmyRRBaJ+PAF5h8ooj5/1FwOChUsCBhViuHP/nEvW1bih7+eu4cx7/+mteGDQuc2MEMP4mZRMZTaGgY2dnuFGH3tqcQKlSoRpUq1QD4+++/SE19QFRUlJePvNtyzdqSGQ70SlkWIMD+Tz+lavnydOrY0XejgsNBfqeTtxcvpudrr3Fg7drAiaHKZl2fg+kZM1CNDF0/dPJfh4PZ/2bP/pf3cpnH9MeFRbsA4/1M1ikmeiYkK4uljRuz6Zdf6NWqFVVKl4Zbt7AkJrovDlAEjgUgK4s1S5bwx1+XmDy5O4sW/UBGRg7v7aniPAmBgrCbZXXicEC0Df/Udllv2GxYcGG3W0hKgrCwLH7//Xu6t27ivRghYH+ZzigIZnuohJNpIxPTQ4dB7dvz8uuv8+68ee7McM9BgNnh4UybP58uHTu6A6z4k23NmlnMnTuOfHnyMHfSJEIiI5k8YwYPHjwgNTWVnTvdqf9XrjzAMOykpMCnn0K7drf58893OXBgAW3b1qJ797GkpFzn9u1LJCTEMHXq6xQokEfbfZl1XMp10irbu7+z+H3vV0bnCZjQMSkxkRlTpvg35nCweONGf+SEUeexQbNdLt/V5fIYyOObmgrp6cFx+L8MDgchkZH06dmTCbNnM2fcOHd2noeH027eZNyyZcwbPdp/36v0PRBIe42NfvPmLeLi8nmH0P2TnwEDXsEw4MCBvdy5c9vzuUe/yMchmIEIkul0jYyHp467Dx/y/kcf8f7evWTniMEFWGw2Ig2D+ZMm8eKAAXRt3ZoEcYav6s+Y8XQwn0a8V3FVcRSgGm1y/TIu8nfyFnEdHjo7QfZDzIxLNZCi668MOttcrVP3TOOwDS1WjDsOB5UqVuSlNm3g0iX3oUs6ve/56dSyJRf+/JPJs16nUKEmFCnyLNeuQa6Sdu+tFLGx0X7xBfCpFVui1WfbiLESqbfgleE2h9ufMQy4ePE7ypQu7QtY+WULBKGRGchjJwWBzXiqZoUKzH7nHc7+9BMVn3rKL1X41Bdf8ODhQ0qVKkWaw9+9+vnn03TpUhtLCAzq3p1nnn2WN+bP56effsLpdHLixEcArFu3i7p123Ltmtuf+e23TO7ePcSZMysYMaI9bdqMwmazcfPmJbKz7zNkyGvUqFHT246OhVQVK+skmWxycp7O7VanSQB4CocBfbt3p2+vXn5jO3r6dJ/PIkCaW9liB5s6T1UkU1PBsyX8cfAEFp0PunTvTpUqVRg7YRKrli6l+9ChPFetGvVr1SIlNZW39+4lIS6OBdOmBV7/E4Qg3r8N3xkMhQoV4bfffvJ+Lp8e73TC5cv/EBMTpxkAizd7xvtQbkNnKMnl5Qltt5OelcW/d+9S+plnwG4nw2nBsHkmZmoqL774Ik07d2bUyy/rJ4c8q/8X419WYLqNnrJDYLOR4bQE6Cad/NTFN2RdEICOjmZPYExpjVrxTkXOZFYJXEXau/cQPFXYio4nJtK7VSu3NAwJ8W5DiE5K4r7D6jeBvTo91UHRvHlZMGsWvQcOZOjQl3n++VpY8WTF3LpFpMNBpM1G3mQb/6ZG+91g5yWHwEMIXYfDLaE8xLXGuh2CeFsavxvuGyBCxOGgckUyDUS/hJMhGfQBtAP/AIj8XjZgPMGwTp06cWPzZlqMH0/XTp0oULAg3x47xp4DB5g6bhxFSz7tbT42FjIyMpg7dwqnT3/JS127kispidmr13L+/K+8+eYiOnToRKtWjfjxx+9JTXUwYcLr5MtXiKiogthsySQklCQhYQbFir3I9u0vsm3bGyQmFiIhIYl58yZx8OAu1q/fTuHCJQLmtDytdEMvk0rupiCVmq3mJofFj529gQSdkSWe2e0USk7mtwsXcDocbuGpzIkzP/1EyRIlAoOJnjFwYcFSsqR7heD2bf6DQJg4aRK///47m7fsZv7ilQzr34td+/fToVUrwq1WDh4/zo+//camVauwREfr5biAx8kq3KvPqakPsNtzBPBJdnY2ly//Ta5cCX5iyrvlV25H9WZVi0AVsLI+MAzePnqUNYsW+U60FB6Kw0FCbCy5k5K4eOcOhePj9XpE7q8sR5xOzVkPyneqXpF/ZIfrcTpA7p9qbenkk2pl6Wgk1y3LQbP2xW+1LfRoi+a8W6N0/ZNxS0zkmcqVeaZyZbeuuXbNF9CRTwEX4NELVmDzsiWUq1mTzz9/k4kTZ3qLWlLvE52aSrTdRsFEGxmG+1zAM2d8dp1Xz4g6RRvXrrkDS2XKeNuJT71FZMp1XFlOQswcHJXuMoGC7UfWOYLqj6eOArGxTBs1ihdHjqTFCy9QtUYNrn73Hdt27ODZ6tXp078/GZ7qBOmOH/+QhQsn83SpUjRr1oyPvjnH++/vo127LkyZ8hY7dqzljTemEh4ewfjxb5KUVIgiRQqSmVmI6OiSVKo0gEqVOrJwYRtWrZpIzpwFyJOnEKdPn+L9999jxYp1tGzZWju8woZUySHrF9nf1SV4g/vQXcOwum1F6TwWUT+G1f2D+3zEgPllGJQoVoxvz52jUpkyPt7y6KTM7GzOX75MoRIl3Ma+EoB0GVYsgqAXLgSO5X8AQIPWrZkzZwUt2r3E9Vu3aNG7N93btqVAvnyc+/ln3t2/n0kjR/JUpUp6uWA2T6TnwqdJTi7JDz98Q/36TQPWvu12OHv2Gxo2bOJfj+5v3fx9kjIevnr3vffo0aUL2TlivI9dhhVLYiIhKSn06tGDHQcPMrhzZ33fZFs1mGwxs1PVDDHV91LbUfsk3mvku5/tJusuNXih6s9gfuLjZKFOAASs5KPnHZ2TBm6Bn5REnM3GwmLF3DaBOL4jMdH3vbp7xOMoj+vbl/cPHWLZkn58f/q0p06HcJ6Jt9mIT4oFu537Dqv3GBBBqmgZJ6fT3b5YJTEM9818NhuRjmvkSrkGd//FEuyyA5VndLpepq1uDMz8YcMgxGZj44IF9J08mQIFCvDiiy+SBexasoQHDx+yeu1aPx85NhYuXvyDCRN6ER5uZcjAgdy6+4BegwZRtGhxPvroG0JCXNSrVxWAAwc+4ptv/iFfvoJERRUiMbEk2dktaNu2OQkJ49m3bx7R0TlJTCxEVlYqrVvXZuDAMYwePZ2QkDAtC4iYhkoSs4Ux2aeR2UV8p0tGdmfkevSQOOdR8SUbN2jAng8/pEypUlrb673jxxkzbJg/3Z1OXJ6EDqu4ZvF/8GmMxxfxwcFDhzh46BAVypWjVbNmHHnvPT46doxPvviCqIgIZo0cSYG8ed1X6mVm6lcIBJgITwtgs1nJlSseu93OH398x1NPlfcWFcRftmwOffq8HGDreNOYdaBzDGQc5GcevB+kp5MrZ06v0yheibOJQkNDCQ8PD/xerUuA6oioz2XBaQZa58oadK7Kw6BjZvW5F9R0fBV0lpmZshD/y6mrJka+yFxTz63y1qHSTjb6VRo7HG4jUGrS20fPPz179WLclCkc37+ThgVz+c9yyZGKjY32y3T1rlQ77D4cBD0uXPAdtmG3Y7XbIdVBvUKFiLDZeG//fsYPGODfJx29dGnG8jfqJND9Vo2Y2FiGDRvGS/36sfvgQT47fZoSxYtzZO9ewjxnQInu/PXXn5QpU8z7+e69e4mOjqFw4RIcOnSaQoXKk5rqZPr0lQwb1pVHj9LYtWsJKSk3vd80ajSARo2GUb58FWrWvEKOHCFeVrhy5RtmzOhMvXqVmDZtOV26vKQV1DqdptNfOrtG5yMJh0CcLxZAcx1fulx0bdWK6a+/zrRRo/zOGHqYlsbkt95i6ezZgfNABpvNt7fmPwiAJUuXAjBu3CusXr2GTatXc/6nn3j/0CEynU5aN2rErDFjCJEPg5VBN4dU8MgYm81Kx45d2LZtOYMHj/G+FsmKhw8foXLliuTI4V7J8WvqcXJRZk6zbySB7cjIIDYhIXCuegRX4fz5uX71qjvwJH+r02Nqv1VZq04wVUFoDJBg8jrAyJTx19FJVUpmdNQZ9SpddWXUPnn+N6RMFrUJbZ90hcVp4KosltNgxfxW6ihavDgdW7fm2OH9zBs+wC0/1NVhhwOr3cBut2r0DD75IXCQD3USSt3hwPbgAY3Kl+e9Q4cY+dJLgX3TjW+wsdbNNcUB8AOPYVG9Xj2O1qvHhx99xOdff018XBzrV64kIXdub1G7HbKysmjYsDrffnsGgAepqaxavZoCBYqyfPlmOnbsTkoKNG3ajW+++Y5ff/2JQ4e2cfPmFVyuLABKl65Ov36zKFnyWebOPYHV6sJisXi6cps33+xL585t6N59ELNmzcNu93cqdSwkP1NjqY9Tu7I96rZp/HWN9lxSDwzp1Yuh48fz7sqVREVGet9nZ2fz+vLldGvXjhBxILSZHSBlXP8HgXDmzBnq1atKVlY2w4YMoXvbtuzesYOP//iDEsnJHN6yxX1Is5ksMJsf0nPh0/Ts2ZPevV+iQYMmhHoO4RVDlJZ6gzNnvmTmG1PJDlH8GJ29q7arLnrr5rYHrt28SYXy5f264vZp3H8XzpePs99846tHTtvQQTB7X31upqvEOxPdqK3DRK+b4qPqomC2g1pO/h78F4vVBUZdPbog2eNwFlskVHzljFfh8yjjH2oYjB40iLZ9+/LP8eMUSEjwz1qS/EybzXf2nO/yCgVnEfSW/BmSkrzbeZs//TRDNmzg5r175AwP1+t7tb9yP9W+i+eqsNUlYQDExpIQG8t727dz9tdfOX7qFKGhobwydCilPIH7DKdvvm3atIwRI4YAEB+fwFvz5lG06FP06DGQyZPf5OHDCG7evMX06UtZsuQNvvnmOB98sIGMjEcAxMTkonPnuRQt2pLOnWfStesbREa6A8xxcVm8//4cVq+exKefnmTOnLdJTi4S1JxSWUDWM8IVFV3X7QTS5RvIfwckbUgF6teowdxly/j5++95ukQJP6Q+/uorHBkZFC9RQjtGXrkhspkft1NH4PREpTwwcehQfrt0ifo1aoDTyT9XrjBi+nQK5MnD0jfeoECuXPpJqlJCQV4FcfPQG2/MoWfPTvTqNZhmzdw31924cZ2lS98iNjaWunXreKv1O+VfzCe3/AAAfixJREFU21PJ0DXDTcbdMxlio6O5cvWqX1UOBxh2d4aEIzUVZ0aGXnCYKYwnMbhlMMNV+ttqcxs1MmPq7BmdT2DmpGuFr/pMMJoskNUG1L/Fd+pKgolgFsEnv6wU+RsxXkIQq51yOom0uwCL39ZfLzidhBgGrZo2Zem6dfSuU4fi5cr5HAyprkjDRf78Fm8zSUkQ6bjjb+CJvorzFUR/vXUYdGnenLlLl9K7e3eSEhKC09gwuHv3Lh/98AOZ2dnUrFDBrUhU2qm0UZUikJ2ZyYV//+Xy9etERkQQkSsXZStW5I/ffyc8IoIwYchKVWZn+8Y0LCyMF15oyvz5awgPjyE0NJv585dy5MgeypatSmRkFDExsTRq1JXq1Qfy8OEVzp49xMaNEzh6dCVJSYUpV64J4eFRpKen0bXrBIoVq8yyZd+waNEQXnutB6dOHWXGjOXExubw64rM8iK5zD+LSR//lNlDhoCgZjB5JUGvjh2ZtXgxbfr04aU2bcibOzff/PAD737wAdPGjKFocrJpZppbUBuBGVH/gRe2LF7Mtn37GNCzBxZHGlkhIcxZsYIvTp9m6tixVK9WLZAhBPwPeganE8NmpWvXjgwYMICFC2fw8suDSUyMw+l0sHHjDnbtepd33tnpvQHRT8+YCVmz/yGQMSV8Y6OjufLvv+TzKHmx3Udw6c+//kqf9u0fb9zL7crWjY4+cl+eBP4XfRXMBtDhqsPBjKY60AU/FHzd42fRVpPhtLjnpupgCFAXInTjKPSazvD2jEfrJk1Yv3Ur6zdsoE+bNu53YhVbattud++q8OoZ531f/eLMGVnXyQ6J56dPvXq0fust9nzyCa0bNTKnm6dNZ0gIJ77/nptpaRQvWJAqyckEbAjWjaOmrht37/Lz779jtVqJsNvJU7g4WYaVe3dvExkd7feZzeY+RzAiwi0TLZZQkpKS2LRpN6VLV8Uw4IsvPmH27DdJSipISIgFuz0H5cvXpkOHmTx69Ig7d75n8eJXGT68LlFR0VSt2oikpGRSU1OoX78Nzz3XmDfe2E3ZsitZvPhVTp/+lJUrt/P0008HnVJCfcv+o0x61e/0N/Pc2U0ia9vrBODRP0H4uljhwowZOJBm3bvToUULKpcrx7///sum996jeqVK9OzRI3COSXhbDfRz4j/wQutmzWjcuLE76wzY++GHLNiwgUZ16jC2aVNCxE2dECirgs0DwSye5xZc5MmTky5dejJkSBcmTHid5OQShIZm89lnnzJ79jTmz51LSFYWIWQFtqObZ+o2P50uEn9L3xcrUIAffvmFKg3c8sBXjXu3yI8//kjRvHkD/RcZJ51u0dHCjEY62WnmiT+uDrWPKi0eB2pZs/7o+qvY9n6L6sEypeT/zZ6pl1bJ46xmrmjwfa5qVWJz5GD4W2+xe+JE9xbSxETfwoWnTgPflrmkJODyZXf90nY199EjHjzl82w9tGtbvjxjbDbGzZvH2unT3eV0GWZSX85dusTP//5LXK5cNChXDu+SkM4pFc9VO8HpJO3RI77/5RcynU4iY2MJyxFD6fJVuHz5EhGefsoXRRgGpEqOoNUazqJFy2jTZgCGAbdvX2PMmH48fJhOkSLJhIfbKFiwOEOGbCU6uhD37v3Fe+/NYOXKl7BYQilZsiZFi1YnPf0hOXMWpmPHUTRpMpYCBeoyf35nWreuwIQJa2jXrkMAGeSYrhhWsX4lb5aSWUp29YKxeoAvL4+F9LfFamXTokX0efVVShcvTsvGjcl0Otn5/vvcffCANcuXB/VVvH75/+DThGQHbO4LhPv37xMTE8O9X38lOi7O25vjH39MwzZtAChcoAD7167l3+vXebpkSQrky2eunQUhdAEE3Aa3IOaNG/d5++31nDx5BIsllMjISHr1epkGDRr5EdbPIVAOFvObrLLA1uEhcJGYf9T06TRv3py6jRt702athvuWgJVr1mCEhPByq1aBE0MWWPJvs/ZVIaQKM5WOcqqS52/1evhg8lTXlGjG4kjzDyrp+qIqCN2YmilCsy0dhuEXEFBx9rvVTjaydUJOrtdmw2WLDJDX3jR3p5MHKSlUbtiQ4gUKcHDLFq+QTnP4zpuKNtL8+UvsbRUr0PLku3DB5yh49kXjdMLFi9x68IBSbdrQplkzVi1c6K9MpN9ZDx8yYe1afrl0iRbPPku4zcbhr74iNCSEpa+8Qo7ISJ+SkvlO4rE/Ll9mx8cf8/m5c3z5/ffcEQfNamD+W2/x6siR2hsSb99OZ9Cg7sybt5jExCScTpg7dxouVzidOo0mPT2L4cNfYOXKI2zbtpx//rnIiBFzPWRK48cfT/LZZx/w5ZfHcbmyuXXrH154oQ8DBiz2noN67txWNm4cSHx8bvr1m0aBArmoUeM596qjhIt86QzAd98d4eDBtTidj4As6tRpQO/efYmPdzs4ckayzCbiecAKoxkDSvS9efs2u95/n9v37lGyeHFaNmvmxlMwl6plbO4tsVbHfUhN5f7Nm8RUqMC9e/eIVhyx/4vg1TMXLhCdM6f3+aPMTHLkzk1WltsgP7VvH/fu36dAwYKUF9tQBMiGH+jlk1I+w2khMzObvXv3snPnFjIzM8nOzqZlyxfp2rU7drvNnaas6gldNqg893RyU2e4ep6f+P57PvjkE+bMmeOP561b/HHxIuNef52dy5bp5Z0O1HZUQ06AKjN13rVcVm1DXXxQ6a9uj1bbBmXfsqYd2bhX3wdTZOJHGNGGbzu/jmxeeSCnpYvfQuhojOgAusmryxo92fe119j23nvc/OILovLmJSM2l5+JYrPh3u4tW6ZCbotFDoGscrudt92UFLLv3uXFWbM499tvXDx9GovL5d8fSX++9+mnLHv/fZpUqUKBpCTO/fkn586fZ+7AgZQtVixQvwlbykOPew8esPP4cU6ePs2XZ8/y599/BxLYAw0aNODw4aOEhIQEkDMlxcnWrWuJibHTvn03nE749ttPWbRoLvPmbcHhyMH06S/Tp88Ybt++x6JF45g9ex+xsZG4XC7On/+GTz/9kE8++ZA7d27gcKQRERHFjh3nSUtz3+j055/fs2JFJ65fv8jgwdMpViyZatVqkydPgh9fiO4J0l+/fp6dO5fw779/YrG4L9QYMmQYTz1V3I8VVHaVWVO9Ct3vtwyeccnIyGD/4cP8+vvvJMTH0751axJFZqTaCHhlmrDj7v/zDzElS/6nZyTw6pp//vHRxDBo17kzu/fvB2DOlCmUL1mScKuValWr+u9sUG1xnVyTZJGQOamp8OOP37Fu3VKuX79KVlYWlSpVZsiQgRTIlycwixIC9YwqM0VZGQf5uRIIf5SZSfOePfnwww8xIu3eV1YyyLx7lxfatWPfmjVEiUyvYHaRipvqA8nldf6eaivpfEadP6XzlVS/SgVZV6k6Sfwt3+amyndlTAP0qcaX0X6v6gNxY6XQLzKuujpk3aJmNCp8sPfYMVoPHsyBt96iebNm3mtU7zsjvawRaXMFXlgh2vHomTQiiTQy3Nup5NuaHA7EPr2VH33EwGXLOHvgABVKlAj0zzxt/H71KsM3baJE3rxUK16ca6mpHDx9mpfq1eOl+vV9dUvBMXnsnE4nR777jg+++oovf/iB786fx2liAyUmJnLmzLfkyVPAT884nfDoUTa//36BRYumsWrVVs+zu3Tv3pbJk5eQK1dpPvzwPe7c+Yd69bozeXJXXn55JiVLVgDg7t1LfPrph3z22Qf88cf3hIaGcfXqBRYt+hm7vRQpKfDgQQr79vXn7NmdPP98b2rVakqpUmUoWfIpPxaTF9JTUyEr6x7Hj6/h3LmPCAtzxz06dXqZJk0aBbCSyoICDEM6u/Zx89jpJPvRI776/ntOfP45oWFhNG3SxL39Tt3j52nYZVi9LGp1pvl8mjJlHqtr/rfA04UL7sCTB4Hs7GzGzZjBhh07eDo5mZNffun9Zuzw4bRt0YIqZcsGTlodk2gmtHyjiCpTdZmLXoUuC0OdYNYJFhUXqcF7aWm079ePQQMH0qJVK0JDQ3GkpLBxwwZOnjrF1gUL3Kljar90yKu4qO3qOEgNMJkJPM/f6sGYKpgxa8AV4cF+1H6oKXbqmMvPRZ/UgJq0nVFHJlHUmzYoj7OZ8yXTTAlseeuRiNK6a1euXr3Kl0eOgN2OS7oy1DAgr/2+94A+P0Tl/ojfQqEofeTyZbh2jZHLlrHz00/5+6OP3NuG5Po8/Ru1cCFlihen54sv+tHv07NnmbtxI3umTnV/qzqLTic/nj/P0DlzOPn99+SIjKRWuXJUL1uW6pUqUbRYMRxAWlYWRkYGRePjaTt6NBExMby378NAvsB9bsWJEyfZufNt5s9fRUrKTUaOHMjmzbtJSYFFi+YRFmanZcv+ALz5ZndGjpxBoUKF/KahGLYlSyawY8dSNm/+kdDQAly44G4zPf0Cq1d34cKFrwGIiYmjU6d+TJ48y1uPONYkNRW2bJlEVtYjevQYTZEiuQgLy+Lzz99n3brFbNiwnQIFcnkzVlR+8js/TGa6x8kIM37XlRV1yHzhcHD/wYP/HAIJ/JwBcY4RgGGwd+9eps+ezfUbNyiUPz9fnDkDQJ+ePWnetCktnn/evX1BdQbUsdTJI4+jZuY7eOWi/K1OHuqe69o2kVXZ4eGMmDWL2IQEXn3lFaLj48nOzuaTQ4eY+tZbbJw9m4JiJVoFM6fD7L3OYZVlsxkv69o106u692Z6T6cjzfqifqtzQtR3jwk8qT6G92Y6WWDJkW6dEyTjYXbVjKeRtdu20XfYMG79/jsJefOSYUR6d8yBG934WJdb0Ik65KAX+AdZ1fRP8fzWLU4cO0b911/nu61bKSduSRN1er49+tVXbD5+nPXjxxMm4X7z7l06jxvHxtGjyZ9L2oIuLcc+fPCAYbNmsf3oUdIzM6laujQ1ypenetWqlC9TBldYGI8sFjIdDgqFh/P2oUOMnjmThw8zcbksAcPndMK9ew9p06Y5mzfvISEhlg4dmrF163as1miOHj3LqlWzmDHjHQCOHNlKevpDevXqH2DuOZ1w5szn9OhRk+nT36Zatc7eo0py5Ehj27ZXOXx4tYdsBs8914SVKzeRK1eCn790+TJ8++1x9uxZwNChb1CuXHmPKv+OmTMn8MorI2jUqL5fNpOZ6ggIPMnMaKZnVAaVeVzwhJTu6xIXaKSmcv/OHWKKFPlPz0jg1TVXrxIttjECf/71FwNffZUvz5yhab167PAEoZo//zzNmzShfatWxItzBdVAAujlkPR3miNQz4BbXHhvQpS/09m4qlxR57OZfJfg/RMn2LBnD3PmzqVw0WQsuPjrxx8ZPXEiXZs2pVXjxsH9FrVN3f9mPp/q26gBJrmcrh9mijqYHlL7IP+owR7d98F8L12ZYD8qHvKlRDoaq7SQdYvsV2joci0jgzxly7Jx1ix6dO7sDVT9fc3qrSrenuHzaeT25f6KLX9yppNo3+GAa9dwXrlC/KBBjOvalXG9ewcq2NRUbt+8SfuFC9kyYgT5cuf24u9yuRg8fz4Ny5albeXK/jpbqmPRxo28tXcv/969S/F8+ahZpgzVy5Wjao0aRCUkkBYSwiOHg1yhoaSnplLmxRd5992DNG7cNGDYBLkHDnyJbt0GUa1adVaunEW5cmWpX78Zly8/oEePF5k69T1y5Ijl/v3rLFw4mMWLd2mHMS0tnZYtC1KpUmO6ddvEjRvuRY7Q0GzOn9/Avn1DSU93Z1aWKFGeiROX8NxztQEfC9y6BVeu3GDp0s60bj2MBg2aExUVysOHN9i0aTYxMVFMmDBdG/PWmUEBPr34QOejqDJG2e0TUF7y1y2p7mzs+2lpT6Rr/rfAk3AIVKfb6cSVkcHqXbs4efo0u/bv965Of/rBB9Ss5r4dyG8/qpkBKoPkEOhkgHAaBXiJrAaeRL06o9HpNN8DLynyVKeTFZs2cezECcLDw3FmZNCmaVN6tmiBYeaUiDpkPNTnav91ETXV0NQZ24+rQ+BlGAHZLN7r5XVCVxXS6tiL3ypt5UCMip+guXwQqxBAEm4qiUQxv9VonVMjj70a4JLpqWyW/fiLr6hbtw5z5ixh0KAhXh5Lc1i8B+8VLuyZZPKB37LRL/ddx4dir/Tlyxzcv5/ms2dzfsUK9x5aZZX8xtWrDJo9m12zZvm+l2g6ce5cmlSoQO0KFQIMoezQUCp16MDD1FSmtGpFm1q1iPCcK+BdTRD5tZcvc+fmTSoOH07Dhg1Zsnqrl0xeeoM3wr1s2XJOnjxGgQKFKV++EsWKlWHjxuVERNgZMWIe6enuVeyffz7G+fPfMmTIaK2cu337Kk2bVsfhSKd69WZkZuajcuV2lC9fjshIFxkZt4F/ef31QZw79zm9evUld654enfvTlRcaS5ehI8//oRPP91Fnz6LvDtQRPfOn/+BZcvmsGnTZt9h8er4yx2VeVn+rfKPOifUeSl3Uk2xMwxvQPJ+ZiYxycn/OQQe8HMGROBJ0E6i90effMLb+/Zx+KOPuHzlCgD9+/Vj5ZIlgC9j1u9ae1WJyPXabO4gs3SGH0i8rzPmdYargqepwyA3Iv+228mOiuK9o0fZvGsX2UBGejpVypRhWPfu5FLPAtLVpTqkuraC6Q/x3swZkMdE1778Y0YvlR7B6jLLKlCNYzOdKfqiBJ7UptQtu97MWmXrWsCYq4aa+FvndHn0QlZEBIm5clG5cnV27/6AkJAQ7HZf4lJqqg/lpCRflyyONF9mk5yPr9PN0jlUjhMniB01ilkdOvCKuDFRsYuajR7NjqlTyREdHaC7vzx3jr2HDjHr5Zf99ZAHJixYwPzNm5ncuTM9mjQhb+7cvuwru92tZ2JjITWV7F9+ocuCBZw4e5Y//7ruJxr9tqABJ09+w6RJo3jhhRf5/vszTJo0k3fe2c6nn37E7NnbCAtzB4cslnRGj27Hxo0H/Mws0b3MzGz69WvLoUP7qF+/HVFRhciVqwbNmrUiR44QMjLuEhLygLffns/mzYuoUqUqNatX4/kGDWjSogU3b4dy+rSD8eNf4I03PiAqKsJrviQlQWbmIzp0aMqhQ4eICA3R87SwvbzbZ12B46badrIBJNmifnaVysSynvHU/aTOwP8l8OqamzeJtirnvnnofunyZRZv2sTxTz7hux9+8L52paa6t+AZBi5bpP8Cphl4xsllj9b6M1YyAuWihIufzJHTt3WyN5j9L8mic3//zaI1a7hx8yYhQGJcHMN69aJSwYKBeJjZ2mrbqvzX6Q9ZNwkZEays+jyY7FXxkwW7WoegqTx2ukCfoKlO16h9CeajqWfQih8h03UZWzqbRT2rSdYDSjudx4zlo4+Oc/abb8grjsJxOvk31XdWbWKiONfJo1NEFETGUZxZqNrGQs+kpMCFCzSfPp307GyOTpni319PvbN27qR8sWK8ULOmv38GZGRm0mzwYI688YZ7fikBtc9+/plaAwfSvXp1hj//PJWSkwlJT3fXkz+/+8ejZ7h8mS179vDSwoUcP36GMmUq+6Eiq83bt+/Rq1dXKleuwSefHGXdul2cPHmcLVtWMXz4GxQpUsPLAuPGteeNN9aQK1esll23b1/D2LH9KFOmNgkJFbDZilOlSh8KFozEbn+IzZbGL798zMSJ7QEYMGAwZcqUpkuX3ty9G86FCzB9endatBhD8eJlvEcnCX0zdepQOnXqRN26NQNMvEib/wJpwIVcgsfUGIHOrlGPmdHJGfmGXA+/3M/IeCJdY2J5msDDhyC2koDfJLVkZDCgaVMGdOjAO88/T6f+7qyH73/9lZqlS3snSZoRTWpqJImJSgBBdMpTTnTIahhYceKyBV5vK06/8LthSBGufpNcBZmwutVCMdkMAzvwWv/+vNanjz+usiDVCWRZIKr4ifbkduU6ZTzlsmpfVCFntg3DM9ss6nNdMEkVwDrFI6eGmjG0mnMuZwUJEEaq0wnSNktZj4ruBDiC8mSRQc0+UnER2U+ek/kfPXrEG2+86Wnnac6dcwvkpCSLX6LSl1+CzRZNYmK0L15pg3hbmj89U1Pdt9o5HP6TGHBVf5ZrRkGqvFoW+9KljFy/nvdefRVDsZg/PHWKtkJAy/V6EOrywgus3b2b2rVqBaywX7l5k3Pnz/PegAG0jomBv/7y0Skx0R1Bs9ng4kXSbt+mxaJFpGVkMGbiRC8KXsddfBfrPtS4f/9BNGjQnGHDevHbb79QokQZhg0bxjPPlMGCiwxnCKmpkJaWm+++S/EbP9kmyZ07DydOnGbixNH8+uuPXLlygGPH3mTq1DcZNGg0NltOIo0Y7t8fxfLlCzl79hyX//mTufPm0atXX9q3n8KRI2to2fINLl92t3Hrllv/pKaC1VqW27cf8eeftymZN8zH5zoDQF31EqDOK51hpcoZnSwQ34PvliGdcfgf+MZA0FWhe/2KFalftSp/3L9PzYaNuH79Gt98+x1ZISGEPniAJTaWlBQLDocFuz0Sux2sjjv6IJTY/pqaisUzpt6zDPDJVT8lLkDNQJHrDmaA6w6a8/Q1JCuLtvXr07ZxY71zKbcjQK5fnWTimVxWrkN9pzM0VPktt62jqeoYqfNAp8/UuSBbhmZ1qDpT7Z+sA6TvLYZ/1pOqZ/xA8IfT6UtHEu3IY6vqI/FOxsHjZM2eNZeUlBQSEp7mq69CMAz3hXRyXPraNZ8JItRHYmIk+fMXJJI0X5RKpH6KzCh5MScxEZKTsbVuTcNt25hz8CBtSpWi4NNP+51HeOvePeJz5PBt2xaBLQ/O1UqXZtrixf6LRVL/3z91iq41azKuXDm4eRPu3vVtPxcrAR5cJ2/bxo7Dh9m8caOfmSJvebfY3Nviq1SpzNat77N48Vv88MP3zJ79Oo0bv8iUKSMJCw0hw2vvhhMWFuI3fjILh4WFsHHju8yd+wYnTx7n/Pkz/P33HP7++wV27NhLdHQclpRsiud8icuXz/PgwR3ef/99Fi1dSr1nn2XGnIV89tkFatTowtWrEd76fawRQb16ndi8eQ99+3ZyL0wJhlJ4Q5wlFMDXZjyk8pHOcVVljPg+NdV3E9Z/oAeHA6SMJ5mmhWJjmTdyJI9GjKDtoEF8eOQIADfu3CG3ZxEvxRZJaqoFm82tZ7zbllSZ7WFOizMDq9PpPs9GmUd+42SW0a/aIjLeZg6lPBkk2VuhaFE2zJypdyx1dQiQ5amsy1R9Y4arqEP1A9RvVX5WaWrm98hlzBYuxPeqfyDLeNXGk9tQda5aRtWrqr+j64usN8E/+KPKAJ1NIN+sarNx8tNPOXr0GJGRcVz8Oz+X/4WkJCtJSWDzyM6LF8WnFmJjoz1VRJKYlMu9tU7Q5eJFtyy5ds1/UQHc0ffkZKhQgWZ//MGQKVPYe+AArRo1Crg445NffmF0u3a+fggf0mbDahiULFyYP27fJrlwYV+AzdPHg99+S97oaDZWqYLl4UP46ScfrYVu8uB48quveHnpUjp16szTT1f0Y4dIm9uOs9psgIWYmBi2bt3PsWPH2LZtNZMmjaRChWq8++4+8uTJ4ZfklTt3IqGhD7DZYrVs1blzXxITc7Nu3TIuX/6If/5ZxS+/LGDbtoOUKFGKXIkRZL/Ymp9+6sPPP//M55+cZM2alcyZPZMx496gQIEmOJ3pZGWV8V6KLhagEhOhVavXWLVqMrVq1cRKBlZv8kSkZ3u11buoYRFjp84/nf6Qg9qqHBGdVxI1vN/I9scT6hrNlWFBQG5cbUR0JjWVjs8/zx8//sjx4ycY+tprVGnalPcOHsSVlkakzeW1bQKQVI1IP0RdfsVUOR1Qh+6ZbADqDF35nW7FV53sataNipzWklXa04H8vWroq+V0qx+6unT4y2Xk7836JL9Tywd7r+Kq1un526W5cUgGh8Nz4K4sgNUxU3/UdsDvueCrzMxMPvvsFNWq1aR27eqAez6px2oIkFkgJQUyjEhctkh/JaZuyfMUtlz8E7sdHj7Mwbr17/LBt98yaNMmsh898qNhemYm9qgof2UjpeRGRUSQrhq4nhXmqw8eAFA4Rw5/fpdXmDyG6ZidO/nu0iUObtlCcomS/lND49A5nZCUVJDevV+hdu2GvP76HJ5+uoxX4Imh+OabLylevLTfdyqbREbmZv78TXzwwVfMHPEqWVlZnPvqE+x2CA/PhpQUXnqpNTt2fMzBg6f5+7vv6Nu2LWvWrGDq1O6kpd0ld+4CniCh78ZXMTWLFCnNH39c9O+LjIBufqv8pQobnSOg42/xWxVYIqf2Ca8e/T8H6en+ylJn4DmdFMubl59++pmvv/6FlJQ75M2Xj7cWLuT+nTt+izF+4k6tU5WJqlzz4KG9vCKYktUpKR1PmdWhylGdzJZlnlnbZjwsl5XrMJP9qlGs/q0aK2b4mDkCKq7BdFkwvanqd5UWhqHdVimj43C4t8QE4K3KBXVVUKPTvH9LcOrUCaKioujZc4A3eCF2ZavHN8lVebfiCZtAvs1ONvycTvezCxfcix+JiaxZtowwm40Xli/n7pUrfk5aekYGUerqgGSwhmRlYYSGBvbTg+zVmzcpnJDgr1vksUxJgYsXOXT4MDN27uStyZPp2r1HoJ5RHHCnE8LDo+jbdxQFChRm/vzVPP98M8JCQ/z0zLVrf5MjR6zfGMrgcMCjR6EMHjyZd9/9mD179pIQF8e5b8/gcqURkp1F9qNHFI2NZfv2Dzh27Et+//RTNk2bxonPP+e5557lr7++p0iRSl49A75EBacTSpSoxG+//Waa+OLCEihzzPSI2dw1+99Mngge+U/PmMPDh+7furnrmWcRISHsW7+ezz77jkGDhpKvSBEGjBrF77//7rc24nB4ri/XyQMzG171JWQIpiN0vKJ7r3Mk5bbloI6q++S6zOSq+t7MXtLVYfZeXkTVwZPQJNjih04PqfZgMJo+ybjo7AwznabzPc30TDBdrtgwP/36K7dv32TgwNe8KkPYxyKTRlW3QhfdugVpTquPTuLh5cs+p0g4P7/+Cj/+CNeu0W/IENrUqEHnXbv4/OzZgOw0S0gIFpG8IusaD0RFRJDucvnTxLM742pKCgVjYrBERARuNxR65sIF7v/6K61XrOC5cuVYs2YjFosvzGEYeMdZ3g5tsVh49tnGlC1bhWnTFtCv3yDi4nJgcWZ4hyA0NJtLl/4gLs53G6tMetGV2rVbsnHjYY4d+5waVdyHnKfd/BW7HbIfPCDk9m02blzLzp2f892pU5x55x0cDgeDBr3E8eObKFiwDElJ7jUb8D9WJDGxILdv3/aRzNMBmZzeXUManRogF0Q5naxQ57vZ/JeZ5gl1TZDZrYGYGPfqgIqwQEQ8czgomjMnW7duJSsri58vXKDtoEG0OnCAnfsOeIt5T0P3w+gxgho1CGUJ/E6eSQIeF+SR/35cgEZ9pw6uDGbKxAyCKS3VUVZpr2tPh4+ZQDVTPrqglCrI1XZlmqhBPJXenjKP080gFmKlyC4ED/CptNTQ1jCsREZG07v3QDZuXM2jR9dxuYp427UaLqw4SUy0eoP9iYkQbcsgzWb1bsPzyxASq41ynqSIiJw5Q3RyCtFlyhAb+wIrV66lb99elC5UiOFdu3pRr162LGsOHKBFy5aBfbLZOHLmDDUqV/Z3HD2rxVfu3wcgb4ECEBXlxSk7NJR3vvuOLatWYcnOJu3uXU799Rf92rThmRo1wJmB4dlSp9JQHgeHA2rVeoE1a+bTvn0fEhJivePidLrP6Ni16202bfowaAKRGL5Vq+YxefJ4AE6fPUtSUjwpKSnkyJGDvHkLEBmZg/v373DjxjXue/r24osd2bv3fc6f/5ytWwdhsWSTkZFI4cIlqVKlPD/+eJIvvviQEyfeYVZ0FC8+9xx9unUjTtW2ZgaEirTK89I775kaQsMLL1KeK9IY4XC4Ayz/QSDExEB0tP+tbjK9JRmfYLdzzw4XLvwOwMRZs1ixeTOHDp8iR46CPvLr5Kks855Edst46P7XyW3VExXy0EzHmOFgFoQzA51uUNsLZkAHq0un03Rt6GgVLIimw9GsjBl+Ov0ovTMLOslN+9hBnD8kzW0VPzPjTvxWHCAXFkaMGM3hw4f47bcvqVOnuF8iJrh1i3gmdkQHdEnWMyLwVLKkb6uB/NwwyJOUxOGtW3m2TRs6LF/O0WnTvMZ7Ut68/H71Ki6rFYvNFrD165+7d4mJjg50CG02HoWEcislhbx58vhuTPLoubM3bjBv82Zup6QQmpHBmYsXKVagAKNGjCAEFzabxZccooyh7I/bbDlISsrHF198RsWKNb0ru4L0CxbMonPnft6dIjqfz4MuP/54hrZt65GamkrOhARKlSrJ3bt3CAkJoUCBAiQk5Obhw/vcvnWTa9evA9C8aVNy5szLzZt/sH//FK5e/YOwsAQiI4vy44/lSE+/zdGjO8nIeMSnnx7kmVKlGNqnD09VqeJFwOv6BLOddTyu2DbCWTIMq7/tLMsamedstv8CT8EgJsZtM4mMVlkmijFyOAgLCeGZCsm0abWDrKws9hw+zIbdu9m8+R1q124F+ESBVTfGTwLB9I2ZXAsGwWSqzk+SZbMZb6oZrkKX6erSfW/2TheU0vkZOh2i87/M/EAzXWVm26m+15PqXzOfR4eHOH4jWHBKppk6FoJ+Cm16du/O1DlzOH36KC1b9iE1NcT7idWZRmJipJxw5BXft25J3RM6RmS1XL7sjryL3UByQOriRUKTk9myciVNOnSgxbp1/FC4MHmLFPFWWCB3bn6+do2ny5Tx759hkB0ezrcXLjB12DB/XeOJ/Fy5fZs8CQnuiIzd7l3Yv5WRwdwtW/jm/HlsmZlcuHmTew4HK6dOJTLSisvlRtNLcsMddFLjrQ4HtG3bi2XL5jJqlGf3S6wVPO8PH/6Ap5+ujMtl9eoadYh8U/4RzZrV5OeffyQyIoI+Q4dy+0430tMd5M6dRFJSfjIyMkl9cJvLV66QlZVFYmIidevWZ9my1Xz00XQ+/ngLoaFxhIbmo3jxshQrlotTp7bw118/07BhZYrkSaJ/hw40ev558Gz5teIEp4SUzI9mPC77JdJ4uBdLPDaBAHk+iOdiV09Kii+Q/xj4H6SiB9QrHuVOCIfKg8z+AwcoW7AgZxcu5ODFi7w4YgSvvz6bAQPGmx6rpAXPaGpXnZUyfviYOCvimctiYffevbz97rs4nU6ys7Np3bo13Tp1IlychyPXr/vRCSAzh+Zxjozu7/9Veem+0SkdFVddHTLNzH7MwGwsgkAwPaEGPcAdgALpenq1oFyJLhvF0z9hww8cOIH9+/fSt29rVq36nMRE95ZQIbXsdiuG4Z4C0Tb3gXyRdjtJSdHeWw79rlsTSwsiau90ut+fOeNeIfjyS+IrVODllk358v0XeWvXLgZ17eo93LVc+fL8s2kTP//xB08XK+anYO6kprLtgw84tHWr/15bD+zbv59CefOSMyLCL0tq/JEj2HLnZufkyUQ9fMi7p07x0bJlnP79d7754QcqV6yIYXc7/C4sbqGj8JNv6A3GjJnDgAHtGThwHI0a1cMw4PPPP2PBghmMHDkdw7BpM4/Fb9GlHDmiaes5uDM6ZxLh4fFERMRy/fp9bt36m8zMVPLkSSBPnpyULl2WZ6qUJzQsH3fu2Fi0qD0pKf8CkC9fVS5cOMmnn64iKyuL3LmTaNKwHv9+/z3jFy9m4tKlREVFcfjgQapUruw/h4PxtKzwdR1BCqSrc0Ytn5Tk/vsJhfT/RRDnNAG+bQngz4sea2HTavfhwJd37CAzTx5qdOzISy91YefOTwgLC/GVNRtbM/mnM5RVmWgm+8Vvj9z59ocfWLphAzdu3SLL5aJq+fIM7NiRPNHR/uV1cjuYnJXb1ZV9nNw10zmPKxtMh+jqkcuoRpAMKq3NyphleT3umaYp9Zkc9PDJKEugAaZzisDfGVPA4YDKlevSpk13xo3rz4YN5cibtzyJiZ5zXgwDu92C3e4W2+KIJFGV3U5g+rzQO/Iytsi4vXzZvSJdoQJPVajA2sGDaTNrFmfOn6eKZ7t1KNCsTh1W79/PgE6d/GRddng4k5ctY3Dv3trl8YMf7Cc7O5uqefP6AlapqRz9/XeWf/sti0eNokBoKA8uXiTu1VfJU6gQi1as4JVhwzBs0hYnSZbKZ3CJpkaOnM3QoR1o2rQ9nTt3IUeOCP788yKLFs0ib95CVKxYK2AngDws4ickJIR69RqTEGcnOjaB8PB4oqLiePTIxdWr//Dw4XVy5YohV64EihcvQeWK5SlRtCj7D91j0KDnuHr1NwASEvKTnp7Fxo3v8ejRQ3LmzEWrF1vivHePdw8cYNnmzcTExDBu3HjGvDbKyw9eHaGTH/J7lae0bGfxvla/cWHBIg6h+k/PmILL5t6iAmCVHFMvSH+fPX6c6zdvsrRfP/q0aEGXRYvo0aMTH374G4UKFTJvRGdDm4GZzNfJMY1OvHbjBiu2buX0uXMYhkFifDyDe/akSsmSgQEfNXij8qROFqt4mOlAnT4zjMDtOo/zf+Q2zBxntW0zvfM43aK+D2YX6ISM7v9g/o/8TPaddd/o/M3HLLhHxcYya9ZSXn65E6VK1aBVq1e8+oRbqdhjI4mN9bkpiYnugJS9cCSG4dn+LFJthD+TkuK9Gc9Pz1y44D6HxG7HNmAAe157jYIDB7L6o4+YOniwN7A4uEMHpmzYwI6ZMwnNzvY5ADYbO0+epHqVKtjEoeMS3Llzh08+/5wp9ev7tn6lpnL9zh06nzrFtMGDmdmqFSFXrlBv3TruZWczauVK3qlfH8OIUkiov1zE6YTatZvx1VefMG3aCPr3H0lycj5SUx+wffsmPv74KHPn7gjYbanzZx48yKZkyfKUL1+ehPhYbBHxZGfHExJi48aNf7lz5zJRUVYKFUokf/4CVK1akfJlS3P3XhR///09R4+u9uJWuHAMX3yxmsOHr5M7d15q1qxFkVyJfPnllzTp2RN7ZCRVnqnOsWPHCPUg4g6k429ryXaJTscoPOy1v2XfWsxhuR2xF9Aw4N49c56U2fOJSgl4+FAfxBATVR4Rp5MXatViwaZN/JOSwnHPLUTnzn1jXr/MDYrh7hVYilDxU+JqHbr6PeByuegzeDAlS5Rg49q1xMTE8OjRI7Zt3077Tp14Z/VqIiIi/PtohqvAV21HFeJmAl83+E/ibAQz9tU2ZFDpKI+dqiDFjy4dV8ZfJ+x1NJNxVcCCyysUVLIF+zQgc+5xtAvgEbeTa7fHsXLlHtq2rc6YMS2YNWsRT5d8GsQqgeFepXU4IAOre0I6HHg3CMpnXhmGe9+zOFhVLCmIDon90h5hPrRhQ9bt28fbhw7Ro1Mnb4B31ZQpdBs3jqY1a9LpuecIt1o5ePgw695/n0Xz52MTEx68DsnXX3/NjnfeYVKXLlhu3PA6BGevXeNuRgYru/2/9t47Pqri++N+Z7PZLMmShCRA6L2DIF1AeoevFEVBEUXsAoIgVlBAQbGAHQRFRWyIUuyIIGBBQUBBiiAt9BbCJtlsNrvPH3dnd+7s3ITv83x/fz33vF772t07c6ecmTmfc860kZGZ0C7duuFcsIAOnbvw6IwZfPPJJ2EHr9EOLrlfaoZ+48atefbZ9/jkkzd5660XAGjSpAWzZi2kcuVqpu5otdAoEIAbb7yDe++9A4guDBOT9vL5tDLWnj0L3boN45NP5lG+fC0OH97KlVd2ZPr0uSQnH2Pcfbcw89FHade0KWzZwsn9+/nozz95fe1arrn2WlJSUrl9zG08MOlBQFpZo7Ng5ALLDAg/i9YpfMuDLKDVNIQj0iY9eb040tMjvMRnoSWEf/fr3JkZc+fyxz//cPSffzh58iRebx6hUBFOp+EsVvvuZctXKxmmwxkLGbTk00/5et06Zj74IHXq1iVUVMSGX39l5KRJvPLQQzQWa6qt5KjcH3UCsST5rmJRaUp3SXyw8iCrPFHj6NLWYRDEntOhwxr1t1W6chwlrhXMWhU3JkJJ9ZJJEXaBABQWxjF79gL27t3JxIkDmTLlZVq1Ghx5Rd5dIWBX/Hf48k3nYuDxRM/rS0szPuIlYRRs3x4RqtfUqEH1tDTmrFjBx/36ERcWqBNGjeK+mTMZN2sWdw0cSPWMDLYdOMDcjz9mQJ8+XNWjRwzOnDp4kGdmzaJDkyY0czgMJ5fHQyAvj9nff8+Xc+ZQJjUVsrPxxMfTrlEjcoGNv/7KdYMGUbVBA0wr1i30gkDAmJhYsGAFK1d+xB13DKe4OEhaWgYjR95Fq1ZXlTgUZWrSpBXz5y83LQwTWOPzGZCtnr0OkJ7u5oor+uJyJeH1niYxsQxz5/7C1VcX8szsR8hMTeWRcePg7Fl8t93Gp+vW8fEffzB9+pO8++571KlTmxUrVlJcHHZwWBjZwjCK2Qmg8COmrlad1u02VjzbpCVHwG8Y2QT1MlPi6xV161IpI4N9x4+zafdu9hw6RGFhIdnZ/8Q6nqxwojT93MqOKEmuhmXz3uxs7pkyhakPPMCTjzxCXFwc/x46xLRZs+jRti2jBw60TkPW7WUZZ+X8KAl/dDaNlRyX62wlV0uzI3S2la6s8nPhvAf9eVnyt/yeLm0rA6U0m1FHsvdCxUTV01EST8K/hwy5gW3bfmfOnMkUFhYwdux4HJQBpxMXftLSXCa4cPm8uJySrSdjjTivTxw4JFaP+HyGLXPokPH59VfS09K4qWlTFmzcyIThw0mrUwc8HprUq8d1Xbvyn4kTmThsGG1r1+bk6dMsevttTubmsnj+fLPN7/NRdOECTzz9NMXFxdxWrZqRR3iV2LTff+fF/v1p0ahR5MCqXu3bs/6992jR7mreXbKEG0fdHaNKCVbFdss4Jk58ls2b1zF79kPk518kPt5J//7X88ornxIXl2BitdrtxP+EhCRmz34/giViYZjYUi98NWLbtpzOLbc8zdy5d5KcXJZDh7Zzzz2v0b59fXbv/ojVq5bw2dKluHJzCR08yIZ16/hi1y6e//RTmjZtSlKSmw8++Ih69erFFlA3LkuwcaK8MSY4LG0aiN3dUQr9d7fa7dlDSqVK5gEhDwqx/iw8cN758ENGT54MQGpKCg9OnMh9E6YQDCZFVlY6fPnmNKz25agC0MpRI6dhFScQ4N0PPuBCbi4Txo6NCV/15Zds3bqV6Q88YC6LzFhVWKkrbtS6lCYc5XR0RoKus6ieSLWsarktlPAYp5L6EXHkeCo/5HIIwanuFZXLJLagSWUS25Xkvbeyv1Ed8DKr5BtxIrf06cBT5nsgAG43flymc/x+/PE7HnrobrKzD3HDDSOZ9dQT1KpWDQIBcgNJpluHxDWSppVOchsLh5Mog9cb2Q8dWdOalQVuNze++CKrduzgp/nzad6mTcTyCHi9rF6/ntUbNlBUXEyXdu0YMXgwyfXrmzwx//71Fy/Pm8fL775Ly8aN+e6RR0g/fDhy0OvYL75gbP/+NLziCiPfkyfZGBdH51GjWLNmI19/8Sk333ADV7S7irNnzTv45G4iJj/C7NN2Ud3qTJ0eI5O8elfOS571l9kYPjqEw4fzWbZsGps2LcTtLsNVV11NQkKAxyfcT+srrjBe2LMnsu3kl4sXeWvNGt5asoT0cuXo3b07T82cSZ06dSz7jalfKX1ZLNtV62g6SBYiN6c5so+Az0duTg6p7drZtw2FKYIzBw+SUqGC2dBV5Y5QhpxOzpw8SYXwBRZxcXHcOHw4056cRVZWTSB8VXXO+Wg6OtmlWxEpkyyPVTkux1HSPZ6dzV0PP8zK994zzhqQcOHUmTOMGjuWb159lbiEBLNiKQ8adV23siTaUr7L/Vi35U9XbiuMKMl4UPFMzaMkBV4tq4yrpRkgMhAIEgqQEh4Mr67RQZaalcAceQV6BGNkPqr9Uu6vagbh8HxPhchrhw8f5YEHbmPTpu+58sq2TJ8+mz59ugORi3nw+aIKqisgzUCL08flPFRj4OxZQ0Bu2mTEqVkTPB6W/vYbI5cv56X77mPc6NHElS0bwa4/9uzhvdWrOXPxIvVq1WLM9ddTrVGjqOcrEOBCdjbLli3j4TlzcMTF8dmkSXSOj48I66//+Ydd+flMvuWWCM4UBQJk3X8/t4y+m4F9uvLL5s088vg0kyKutoeQ8Tp1SLBU2cloanaVxPsC11ScgagPT24+ny8K2T/8sJhVq2Zy/nw2HTsOJj7+PKNuGMatI0YYL4gtKTk5nPd4ePydd3hj4UIA+vXsyX3jxzNgwABTBn7MF+eIPmc1xFT/r9ttvsFTXJjiwg85OeRmZ5PaqpWNMxLF3KAK0U6kTsJCpFO069WL3/78E4A2LVowdcYLtGrVPRLF4wnzXZcGlC5X5TiyTJRJ3s4vUb8RI1j80ktkVahgMt6DwSBDRo3i1cceo1qlSrHpCNINIhkPShOeqvxWZaKKM+IjH0CtxlExXy6nzm5Sy2FVZtWeEc81N7bH2DNCiJRkk6nCSQ5X31O32ak4otZBt+tIzSM8CZEfcOHzBZg69UEWLnyNtLQMHnpoKuPG3IjL4QCPh/M5johNU8F53mzLyL9FfmL/t/DenzwZPU9w//6I9/5gdjYtFy+mY/36fDZjBq5atSJpnTx3jre/+IJdBw9SLi2NkYMG0a5TJ+LKlYvwzX/6NBvWruXBOXP4c/9+nr7tNh4uWzZy8UUBMOybb/hi7FhDcIfPObxx5Up2HDrK11//xt13X8v7739pOkNRZ4MIuNSZ8eoOUDVc91yEyWc4yusSBAvl/IRdZdzW/TurVk1m//4NNG3aldTURFq3bsasJx8jyeWKKghnzwIwa/Nm1v7wAz+sX0+Lpk0ZNmQIUx5+OLqySBlzYlVxjE3jjJ59JYaC3KUjOBMIRG7oFDhDTg65Xu9lYc1/73gqX948WAXH1JZyuzl3/jzjpk7lYn4+SxcvJi0z03zVtfqubvBZaRGCStpiFX7/y2+/5e3Fi/EXFlJUVESnq6/mxw0bWbXic8rExcUM4FBREb2GDePbjz8mXmy502kA8reVRa0Tkro4cl1LqEvM3mH19+WWVS2vDnR1DinVqafLF8yCWgUwMSJ1z5EOR6NkVljFiRj+sjNKbNNU6yPK6owebh4IgN/vZ8GCRTz33EzOnz/H66+/ye3XD40M9IiUENJEZ8iph8/KfBWSTni8nE7y8vLoMGcOf2Zn06hqVbo2aUK35s0ZPGgQCbKyEQgQKCzk0MmT/Lx7Nxt37mTdtm0cyM6mTGIiM2+8kfuvugrnhQtRkGzalEHTp/P51Kk4HA6KExLI8XqZuXo1n3zxBUeOZLP4rYWkZ1aiV69rTMd8qHzW6DymqqvNqrJFTi8QMK67Pnr0JLVrlyUz02NijWoEBgKQl3eJ996bRvny5alWrQFZWfVJT6/Ojh2/8+CDg2nWtAk/L12KIz8/WoD9+82rBNxuVq5dy4rPPmP9kSOcLyzkgwULGDBsGPh8hEIhso8cIVhQQFxxMZkVKpBUrZrpAPzSxFZExqnjLmzx5BYUkFq3rm0QhMnkeBLGAOhlEURkSCgUYvbcuXy8ejWL33iDlq1bm2WpqmSKNAXpMMbKyVFCx9+9fz8vvfoqR48dg1CIKpUr4y5ThkH9+tGjU6fYDhMI8ODTT3N9v360Ec5gnbNG/l8aHpYWLmORbkDKdS9Nq1Kfq/Wz2gqgEyBq2+oGla5sKsao4WHhIW/fsiq2TDHjWPeSrLXKL2naORIe9qDLW0nXrFnL1KmPsm3bbwwbNpKlS98hoajQrI0KrJH1CZUvapuIPn/okAlnAO5ftYqXf/qJiqmpdG3cmK7NmjGke3cqhidYRBqhoiJOnTnDlv372fj336z/6y+27NtHMBjkpo4dmdu7N+VFXuEZggXbtlGlShUGduhg6IEXL7Ll8GH6jhvHb79toUqlikx7ciYvvrjAEkt03UFtH6turnsu0jpz5iJxcYXUqVOehIS4CGsVkRKJ/8EHc8nLO0Pt2g2oXLkB5cvXwucLcc89PTh79jhbV6+krjyxJKa2IbJE9589e3hh8WL+2r+fnw8d4qEJE5j1wlzAUPzPnj2L99w5HEVFeFJTKVe1KqGERK3/UlUn5W7vImpERCZKvF5yL1ywcUahCNYcPWrmibC41HEb1me/+/57Hn76ae4cM4a77ruPgsJ403CMsWuslNPSFCircOBCQQHzFy3ix02bSHA6SXA66Xz11Rw+epS506eb0w+X5ceff2bd5s08OW5c6fJdJ1+s4qjP5f8l4Zlc35K2jIk4OrlrJQvVcupsTOn4CVPZ1AUFguRZWN3gK+2ZGqaSDlt1wk/lu1wnub+Kc2XFkhvgwNFjTJv2JB9+uIT69RuwbtVKKsl2hc8XxQqVVJtG6NGyfiWcUOLw8UCAb/75h/5Ll+J2OulYpw5dGzViYKdONG/RIlr28Pu5ubnszM5m4969bNi7lx937ybP56NFlSosGjSIVsnJkVW1VK1Kdnw8T69dyxu33gpZWeQVFVHoclFz6FDun/AgDz44jeuv/w9vvrk6pllLGWImKm1OUiWvF3JzC7l06QwNG1YiOTken88wQeQuK9s0u3Z9z9atX1KvXj0qV65P2bJ18Xgq8cILd/LNN++xaNHbjOnVI6priAkOaT++/8wZpr3xBv8cPsyKvXvp1KwZn3/7Lenh4xzyc3M5ffIkcQUFJJYtS/kaNYhPTY2ce6mzzeThJatajoA/ijME/2ub5jLYqFBpmoL0OyMlhQ8WLDAN2sgBWL4SFE+Rjk4gWQlyi/BHn3iCUHw8by5YQEZGBkG/nzXr1jHvpZe4cOYMZdLTYwRbXHExlTIzyT15knIZGbGCw0rIWvFEp0Dr4l4OEJQkeCB2lKhCtaRyWs02y/VQ1yrqymuVhwogcn2kXu6Q6hJZio+yHNoXMBkUcpUj8UR68gCR6yFrdm53JCVXIIDLAZPG3c7dd97MvWMncNddY3A5YUSvXiTExUX3gWVni+sGzFcSOZ3mpUFye8jgJ5RUp5Nkt5uNjz/Ol3v2sH7XLtb++SdvfPst/9mwgcVTprB2yxY+++knft+7l8OnT1McNAyipjVq0KdpU3oPH063Jk1IcTiinhsJ6Kqkp7P/6FHqV6zIbc88w3vr1gFw++33kpvrYN/+A9zQqo3WppG/rUSAjKuqkFdxWKTxww8bGDVqKBcuGAegVsjIoHaVKvTt04eb734Qn698jF33ww8rmD9/Hp6kJLz5+ZF8kpOTyc/Pw3vxIsWnT+MI8/6fU6d49uOPSU1KYnjfvjy2ZAluj4f8/HzKxMUxecAAxi5ZwjvLljFgxAgIBBg3cSKvvfdetA7x8VStXJkZ06dz8y23EMQRUTKdbpdp6EQUUNnhISONeKaeI2eTmXSaghi70vM4p5NH772XRx94wDwbrFNS5d+qzCzJmaKb4JB+r/nlF1556y2efeopGjVsCMDe3bvpOWgQV191laWi3qppU/YeOEAbZfViTBmsyqqWR1cXNQ0RrtaxNM1MjqfO3JamtejqY4WH6vtqmA5HSkpLIp1c07HGhCM+TduVhIlC9ss4EwhED5F1u3EEoleqD+jXjZ49f2Xx4ve4777bSElJ4rlnZ1GubNmogikMAiFHatY0T5n6fAYWqeUS5ZXlkNPJ3IEDGdihA+v27mX9zp2M27yZWcuX88PTT3P84kU+27SJH3bs4MCpU+SHL0GoXK4cV9etyx033USvevWoEd5GZ7qC3O2malISe//9Fxo35pMtW7jhuecASE1NpX79lvzxxwZqVK8Sw1K1bdRuIDe1ru2s7D+fD86dy+Gaa7qyZ88OADweD7UrV6ZN69bcdt9DZGZeET3oPEy5uWeZNWsSZdxu8sWNs0BCQgLx8fEUFxdTcOJEhLd5gQAvLl/O5r//5oWxY3lm4UKOnT9PQnw83pwcRvTuzYkvv2T+4sU8NuMZEhMT+e7LLxl03XUEw1jucDgol5LCsKFDefHVNyMTn8ruk0gdI6udhD4RrnTkCAqfz8aZ0kjVW1VdWOp8vbt2pXffvgbj4+IibWA5sWmFI/IzVVZaTaYHApw8f56bxo5l0sSJPPTQQziCQS6cOcOYceMoLCwkVFQUXT0rpd+qbl3mL11qliFWGKLT43X4WdJSEDWNUuw0LYmJQjUdq9VMJdk26jNZPlvp5zLplFq1rurBxTpstsJlMait8F2Oo8tHxRnRlyQnUp3yGSxd+AYPT3mAfgMG0nfYMJa/8w51a9SIvr9/vyHP5f3eYgs3RB1MIo7MM1F+qS/3bdSIvyZP5pv9+1m/Zw9zvvqKJ1au5ONx42hWsyaf/forX27bxp7jxzkbLmuyy0WHmjV5vFMnelerRouMDByFhdEVPuE6ZqSmkh0+SuTcwYNk3n13pK69el3LuXOFQDBG7S7JHpGbV4TrFhjKw1TFosmT7+GzzxZSXFyM0+mkZtWqNKxVi2tGjKdhw/8QCMTH2DQLF05j166tBINBAlJGyclGWxdcOBdZwRyKj+fjjRtZvGYNk/r1Y9e5c3y+fTvpKSmcPX2adtWrc33Zsnz0++9s37mT7p07c/LwYVp27cqJ06cBiHc4SHA6adu6Ne9/9AkZGVVMddatJYqxazye6PY7K4etBVloa1axnbGDUydk5WWVgtTloupzdQDKmoYuPUGqAirF2fjbb+Tl5fHSvHkgnA9+P306dqRhgwZMeughPly4MPqeJNDOX7hAckKCWSOyUpytDBYroagKLDlcJ+AVx0yMQFPSPnb0KAePHKFiVhb1xPYhqzLIv1VhqlNiZdIJ55JILauajqYuDl2ZlHCtc0opW4zTSeWz3A8lSnY6eXvRfAoK8rhl9GjGp6bSv3dvrunWjUZly1IjIYE0MG39icw0yBt7RR+WR7YIg4jTKiUzkxGNGjFixAjIyeHr779n8Ny5ZA4dCsCVNWsypG1b6tauTe3q1WlVty4ZiYlGWmfPQjBofMQWP2lm4rarr+blZct4dfBgKsTFRerYq9eNHD2ayx9/bOeZZ56luFi/hU78tvJfinC5yWShpbuN8q23XuXChXPccstYel3VlAPbtrF3927mvPwyz7z8Mi/OXUGrVn1N5UhKcuNwOKhSsSKepCS27toFQF74ENVde/fS/s476dWsGZMHDKDX44/jLSzk3MWLvLh6NfXq1KFeWhrplStz8MABxi5ZQoP69XntzUXhmeIA323YQP0aNRjcti35Fy9y6vx5lm3Zwpi77mLYDTfglhggziYTjyLCWZ45VWeWAgHbILhcKglnZPS3Gts6malbuVmKXNV+A75AgNnz5vHV8uW4pcN5GlSqxOABA3j+pZcY0LkzSWKSQzLUj504QWN5lYlcX7VMuvqoWKSGW/1W6yK/pzNINPzx5uXx119/4SpThhZNmxJ/uUaGzsNQUlxVEKnao1puXT6Y5Y8cX8giEd2EFVY6h2r8WBkK6n/d1KvTSaLTyZ133kIoFGDs2Dt55523uPrqLgzp14d2lStTtbCQykVFxMnGR2YmwUxj614S+YZzSkxkyKQxShxOJ706daJXz56Qk0P2P//Qbd486oWV98ppafRv0YJbe/akduXKNKtTh9plyxJ36pThCCsogKIiI30h28ITLX0yM3nh66+5r2FDqkgOm3vuGUtODrz66mvMfWFOTDewIrXZ1WcSGy2dT999t5I9e3bQqFFzpkx5nLPH93Hgp5/46vvveeuDDxg//kHuumuO6b1QyE+5cukU+QsZ2LkzX2zYAEBRURFF4br/Z9IkujVrxpRBg3jus8/44McfiXc4aHjrrSQlJdG7Vy+CwSApZcpw/6JFJCQksHLlt8THJwKwdu1aQqEQj91yC97z5zmfk8Pa3buZ//bb9PnPIK4J32gr+q7AGfGRtz7ELA8W7S7ayaZY0tk0oB/7GkxwgX4SXU2jBB02Rvbq4oTznTJjBi8//zxNrrgivPo6SLmyZbnn5pt5at481v3yC927dzenHQhw7PhxMuRtyBCr0+tkaEl1Kek3WOv66iDV5SeFBf1+dvz5JwVFRTRp0oRU+Wb1kpRRkYbOmlb1CSu7VrXLrOwvHQbpsEN9rk6A6/pGafqALn1ZxxF8CJevWbVqfPnlt/Ts2YV6LVvSpEkTBl1zDT1bt6a630/1uDgSZEeY02lMdIChu4jJBmHr6NpTElJNsrJo0qkTk3JyKDp2jFEffMB1L70EQFJCAn0aNaJPz57UzsqiQVYWzatXx1lQYFzC5PPBqVPmdMO2Uxmfj4oOB3/t2EHtcuUiVW3UqDEZGY1ZunQxAwZcEymKbuejWmSrb1UFkdOT4xw7dpZly+YD8OKLb5MYf4l/t23jl99+4847h9C0aUtefPEnwG0yC8qU8eD3+xnYowdfrF0bSTcvzwvA4089xXfffsvo5s0JhkKMePFFMlJT6fPsswD06d4df3w81erX5+21a8m5eJGpDz9syAKfj507dnDi9GluHTCAcn4/l/LyOFxQwJqff2bmzBnMm7fAVBe1Sd3u8ConXyAWb2Rbp/QNdEaalxVLkNcLwpsOegVM9aSrg12tlTyoZJekIKuBp/O2KkJr0ZIlPDVjBjhjV7z06tKF9Zs2cercOSrWqGEq675//qFCWhouV3RbjaksOk1IrYtaX/mZSuqgUuuk8kxNJxzn8IkTTJ4xA3d8PE0aNuTw8eMcPnaMJ6dMoW27dnoQUQXp5dZHlFVNQ95ip+ORiF+SQFfDVeeknKfTGd2nqpZTro+63aYksBH9OEzxwMdL3uXRh6ew4vPPWblyJR8uWxZO3sniBx5gpDh4T5Bw/MirnuSBKp6LGSiLbXn9GjZk/fXXs/XECQY0aUKtevWihx6BYQAUFERPShUzFOpZJ14vrTMz+aCwkGeWLaNFeBnkxo3bKChIY9y44Tz22AyKiw2HlDypYoXFMt6q8US4aUY2/FDsIQ4EYObM2Zw/f4Z3332VI/90oHu7dvx74QIFfj+hUIjnn3+AZcv6mrrUgAHDaNu2Pk8++RC5uZeYNet1HA4Hp05lU6taOm63m/Xr1vHsRx+x7q+/OHHhAjt/+IG/Dh3Ck5xMx/btSU5OBqeTi0Vl2LjxN6pXr4XHk2n0pUCARvXqsWrNGuYcPmzqWk8/9ZThdFL6dcRoVYWzHCj+S6vcbNJQXh64XLEb4FV5JEiVlyrfdVNWurYpTSbKY1gaDCvWrGH40KG41RVLPh+3DhnCnr17+fSrrxh1662R5/h8FBcX8/WPPzJ+7lxzuVTnhCp3dXURcUrbeq5bVVUSX9X/Tif+YJDHnn6av/fsoUOLFhQEg0yZMYPhgwdzx+jRZq+1KtNVTLTKvzTcVGWl/J6Shgn71fTC8Z1OdUWtxigT37LiJcoix9P1V1lfUQ2CyGpwuOuuMQwc2JfVq1ezauXnTH788YiTY1SfPiy+/XYcwWg5xeSzx5NEuowtMkarl17IwjQcv2pcHD8OGcLHO3bQoXZt2jRpgiMlJTp5EQgYN9bIJ3LLOCOd0u10OpncpAkj33qL6VddhcvpZPr99zNq3GSmTp1C06atyKpcU62+Fj+kZoxhv0rqggI5vWuvHcauXduYP/9lZs96lMF9+pBTXMylsGPs5ZefY9iwiVSuXCmSX40alfn5533MmzeN9evXMWnSNKpVq8OpU4dJTk6gWqUKbNu6lXeXLmXn0aNs2bWL12fMoHXbthw9f552V15JlcqVI5X8a9cRTpy4ROvWzSKKfKN69QiFQjz97rumuvTt1Ys+vXpEtjSo3cXpDGON16fvq4FAdLWcjTPWdPGigTWCVH1TZ69Y2TRqGqrSpMMa8R/0MlHConO5uRQUFtKkcWPzu4EA3Vq1YnowyMIlS+jeu3c0LDxe31y2jJt79IjVtWWSdV9VNwazDFF1GrUusnxWFUe5rrqySGksXbGCtz/4gLbNmlE2OZlnXnuNGtWqMWfaNMpo8NbS1tDJZV27WNkaVvW1ElJWeKbqKeoyHLkuchxdP1TTkuOIvISDSJH7zZs15N9/D/Hdd9+xetUK5i9YwKzZswFoWK0a6yZOJCs5OfqOmMAO2xIR4AGzrSH6jxxf/A8ESCgqYknHjnRxuaiUkECv+vVJEjc6hCfsOHMmWnaBMyK9Q4eik/YeDzOqVGHkypU807IlXevWJb58ed7+6Ds++GAZ33+/kk8/XRYDeVZsV7usVVPKJq7clQIBSE3N5LXX3uWxxyYwc+YkBvXtS4Vy5ThyztjRsXPnH6xb9wFdu95m6jrz5n3NmjULeeedlxk27FZat+7JuXMnCIUu0aBBbbKzj/Lpso+4a+tWktxuBnTpwsJnnuGHLVto2qABzRs0iNiR5wMOfvxxCx06dAGfYRs2qFmTuLg43vnyS1NdqlSuzH33TYr819XV4xF2jQZ4RVuIMydL2zYbpv/ujKfNm0mRlQ2h5KhGltzZZJIVT3X9m1wRUWO5p6iCXc5HNRLC4f+5+WZWr15tPkgr3EMuXLhA665defKxx7h51KjIQDp04ABjpk5l4fTp1K5WLbaXyXmodbZSAHRxSkpDVdoFP1TNSvp9+sIFht99N4teeona4cOqcbvJ8Xq5cdQoZj3xBC3q1LHW7tSyq3ugde+o5ZOFjjyi5fYW/9XDFJT6mN63mpkpzcElpykr3yp/5RlbXR3DK5iC7qTIuQmnTp/m3wsXefXV1/nwwyXc0q8fT99yC5XFeQ/yqqfsbENgChAQ5ZCWLEZOkJWEdES479kTXd0hlr2K24vk/dg+n/laHjk8LCBCZ86w5JdfeGzLFk75fHTp1oukpArcdtuDtGnTNPKqC7+JP/m+2NsG4+Ly+HjpEnbs+pukpBSGDBlO/fpNTSz0eMxnpIiDuAW73W4om1zM0oUL+XDZMtb98gstW7RgYO/euMqWxV2mJZ06dTM5wpzOKGuFvMvMNNiXQi4EAoRCITr17cvPW7bw0IQJPDN9emw/BsjK4vRZRyQNly8XvF4ueL0cOnuWlIqVgERCoRBJSYlkZWWaDdQwQ0wyRlRQPhRallVbtkAgQG5CAqm9e9tnb4QpgjPbt5NStmxURsg4A3rL1EpOqYqYIDmO6qyxUl7BrNyG489ctIg+vXoZzn0RVyhnTidDb7uNQCDAyuXLiYuLg0OHKPB6GTtrFj3btmVE165mmVia48kKi0QaurLr6malvOomdcL/Q/HxjBw/nmGDBzO4Tx8jPC2NYDDI1BkzqJCRwf133FGy8abO8OrKIQsbdXWaqmPIz5X6x5wpqZIVP9T/gh86fFbbRZ3FlvOSnaDqe2H5Lg6bduHn0pkz7D1xlrVrN/Loo/fTumlT5o0fz1XNmhlCsGpV8jGuv3at/87ACnFKqloeeVJClEVMgMgfFWfc7tgr4ITAdDqjN7QKLAvTb8ePM2n3bjadPk2XNm0ok1GegQNvZ9iwIZF5FpD0Mrdbe96EyxVkw/rv+Pa77wgUQ9u2PejcuS/x8fEmVsoXhcppyFXf/usGXn/9db754QecLhdjRo6kbEYGcY4srr56BFWrRvuD3L0EBIvbiFI8wQgfZr/wAo/OmkXzZs3YunmzcU242gecTsjM5N9DDtLSID3NWKkUCAT4c/+/xMUl43IlEwqFiI8PUb16FcqUiYs5p1JM2phWOulkXiAQ2ZqRW1xMav/+Ns5IZMKaatXMY0V3xpMsW3S6pjyWdSsddVilkioPhEwIx/1j925WrlvHdHky3ZcfyWPZ11/zwKOPsnfHDpKSkiL63nvLl/Pj9u28NWmSsQ1PHnwqiTxljBP1letSGq6UhKs62afyNBDgnRUr+GPnTuZOn058UVHECv7+hx94df58Plu0CIffb+a1Tp6Lj9yusn0jk27FqBAuan1FXrJzRt5qJre3DldlASVjmiCdvqNiiK7ucjo6pxVAzZr4w7d5u90Q9Oay/8ABduw7wQMTb6fY7+fpMWO4tVMnQ55lZZlv/zl0yNiWJ58jJfcR5eIoILpVTjgqRLyqVaM4I44IAbNyL7apr18ftcnC/D7p9zP79GlePniQ+jVrUqlGHZo378mIEROpXz/RtCheFEXs2BPNJ5I8cuhvPvjwQy7kXKR27cYMGXIjLldKjIpl1QQ+n8Eq7/lsXpgzhy+//54DBw8yevRtVKlSk5ycRK68cjhZWRUi5VJ9eidPRk1CUXUHQTb//DNde/WiuLiYXVu2UK9q1diJJbcbsrI4HzDKXMEZvVRn76FDFCcnE5dUEYfDQTAYJD09g4SEMjGmt9x1UjzKbiE5YiAQPVze5zNsmqFD/8eHi+/cadxqJzikriIR3BeFkpfhqQqc/FsWbIJk4aRyRCbdnqDwe9eOGsXbCxeSmpERnfWUXJ2jbr+dwvx8CgoLqVO1Kkezs0lwOpkxbpzRqDplX1cGucxqvXRCV+WDmobMD1VIqw6cMA+mzplDjx496NqxowFKQuHGz8nDh7l/yhQ+Di9vBKwdYHIH0ynhpYGuahzIZVYFkRVwifx0fJfLqTo3VSCT09XNZMiSR62jWl/dHctuNwXF8SxevJAnnphKQUEBkydN4p6bb6ai329oq0KSiLOgwJAoPl90yWrNmtC0qSGARXlEmcR12BD1rgjJJwAgfJsDaWnQvn1UiEMUbAVQhM8BGbt3L8v37yf79FmOHYsTEwiR5CO3TQoeScqKP+BgzZr1zJkzgzFjbqN9+04cO3aG995bTCDg56WX5hMIOE34ozaf7HNLTwtG6hBMTweXW9abIxdoqAvK5K3mmZng8p6P8tjrpaiggK/+/JM+N9yAWxhYoh+I+ng8+J2G4ebw5sbO5ISBNdfriHTlmC07EDl0XHZuxzgyBTPCTshcr5fUHj1sgyBMMbenCtkut5uqsEHs+JVJVvp0sutycUY8V9N3OlnwySdkZmZy7dCh5rKE++Ln337L4iVLyC8ooHH9+uTl5HDs1CnG3nADAzt2jM23JIxQZWxJ4TJvdKTKdzUNDa5u3rmTT1et4rlZsyLP/Lhw4SdUUED/a6/l04ULSU5MNKepGiEq3qjl0D1TlX3xLWNN2Dg0XSgBekeQWmfxTMVvHf5YlU33nioDdPkLLU+9dgcMGRVwsGnTRiZNup/t27dx7bXDmTTpIa5q1Th6oOv69dEJDtl5JJ5lZUHDhrEGtJCN4qbVrKzIDXgRLDp5MuIwj+ChMESEMSHqKG7ccbv5pmxZ+q1axW9ffkmbnj35c48rsmBXKNSmCZJwnsLB8u+/pxg79ha6dOnMoEFDCYUcLFu2gg0b1vDaa4vJyKhqun1Ht+BPOn81ghGh5GSCaekUF8dFjmoEgz3q8HEQ5Ei2If/lyYlIuwUCbNq7l8pNmlGzZk3jBk2x0kj2Xnk85AdcJLmDZsNX4FD4dl1dV4lMdjid+AMO/SHWsk4kWTG5x47ZExwKmW61q1AhykudQ0LWgQSVpq/K78nfql5vlYaaj9PJ0VOneOL553l78WJDxxcHyIfL6/X56HXNNaSWLUvlihUp63Kxa98+ujdvzkMjRxrnhan6ua4u8jMrjFDf02GXyg/dIgE5bSm8KBSi3803892qVZHbYCMOeV8uTz3zDG2bNaN3u3bR91U5LfJSxqrpt2h38Y6YLNTVQ1VA5TrIcVRbSB6bVnyV8yvJKQixV9fr2kV3DpTc9+QbUKV2yPW5OHUqmyeeeJgPP1xK8+YtmPHkEwyoU4f4o0ejkxPZ2cYnLc2Y7BbXgYqbuoUtoy5MEecVCqdSVpbxvuBXdrZhp8g2jZhR8HoNDJJ5EB6vgQ4dSF6+nEfGj2facy9EsqhbNwqpJme9x0O+L7ptOT8/yIQJ4wmFChkzZgyZmVn89NNm3nrrTe6//0E6duwbWTdgtZhPVLVu3TDOhA2cQJKH/HxHxD8js19VY4T5IY5wjDiWw3U9eO4c2d58ru54VRSvjSXP0YrKO2LE1biSfhGsWj3mtljZzJbXPYjkTHaN+MjtEnYq5ublkXrNNf/jw8UvXoTy5aP/1Q4vD2AxmyYr/HKhQS8kVAVRHuBqfjKJPEUaTifDBw5k8cKFTBg71nzYIpBz8SLnzpzhy3ffxZuXx8kTJ8goU4ZyqanmMqlgoCqTcj1KqovuPR0AWSniVv/D+fz+++/MmDo1kl70EHcfWcnJFBUUkJebS7JYVqwq/mpZ5bWIarvpQFN+Lt5Rve4qz3TAa0U6Q0XllcQPE+nykfugri3VNOSZAymdMm439946in79hvPUUzN45tk5PD1rNgMGXMsDwwZydcWKxMkAKFziQovNyYnerZmVZcQTnhSILi8FQ5gLg0C0kXCXg/mOTrkN5dnXsIQ7XlBARmoqhYVxJnaKaibJbafw4/TZs8yb9wzLl39BUlJSGD9q0q5dGz799ANefHE6U6bMjNHfrGw3eRw4gsGIuagaEjrdztQk8jSE202C282gQYOiskgGdUU5CATApSoYkqKg666W/VUeM7owWbrbFEsCZ3RyR/6INlXli+5bJ3vlMBV9daQL9/m4rls3Rj/8MEN79TLO4JG0kFB8PO8tXcqi6dNJT03lyIkTJAaDVKlY0VwnXTlljUbt+Lp6QqzSWpIslN9TVxVZ8O+jjz/mjjFjTO+6nMb7cXl5DOndm2++/ZZrxXYPNX0dvpWEd1bPZD7LQiJcfofuXbnt1HxVj4U6oQYl44gu3Krscnwd7qoGodeLy+2me6d2/Pbb77z22rvMmjWN5cs/okmTqxg9+h7uuWcYSXv2GPHlu6OF1151Rom0BZYIQyAQMDBGaOyCF/I0r5ihSEuLOljUvhlWhI+FDyavUbWq6dbYKOscuIR8lnjgABISE5k4cQyzZ8+lQYNGkeApU6YwfPi1TJgwhqVLv8HpNGOYDiMi3+GHccXFkW3lgi3ywjBzGlEDJfKCXBGnk05duhD0pBgOItnwk2WL0wmCRXKCCsbI3dR0aLWOrGSCHJ6YqH/XplhMsQqDknVWtbNZpaF7V/6v5iHpCdVSUzlz6hTn/v2XjAoVogf7htN/9913GTdyJDf278/xc+couHiR6uXKGZfh6OSsihWqTqwqbDq9uTTMlN9XJ+LUOJIs/HHTJnp37WpsKw4aY0o+RH/04MFMfe45erdqpS9fSU4m2UugvieXVw4raeKqpHqr+F5SPNXGtMpDN8ZV/NaVVcYaOb7U51I8TlI8lXn//fcZMWIs06ZNYtCQIVSqVI177rmTO3r3IuviRfO7YtWTWKLj80VXw8o8F4JWfla3rjHpLpy+wokilH95pZUVfrvdeJOT8QcClM/I0DZfIAC4Jazx+UiKpAWvvPIiV1zRnFtvvSPy7rXX1mTgwMHccst11KhRj7S0OjFDQHzHiAgpY4fDIYpJWpp5k4qumWV4ccm2nNtNrTp1qOFJAXG8jEhUtivc0Uu3HCr+hH0D8rmWogyqODB1H50fQI3sdkNxcWyYhkqQFhZkNZishJSsSKnv6QaJGi4bFZaWa5gUA2RI9+5cP3YsNbOyGDRgAHFhJejUmTOMnjyZJydOBK8Xj9NJ3awsfecW37qVRrLglfmj44faw0oSLHIcK4GulNPldEbqF+GFxO+0lBTyvV6S1atj1bhyna3arjRS207mncwz9bmOdBqkLq+ShLqafkk8LS2OXCaJJ6mpaTz00IsMH/44y5e/y+rVb9Bl5UdUrVqVlo0bc2Xduozs2JG6Ig3dEh7hkPJ48HvS8XohvXXV6LrQrCzD+eTxRLc+BAJRwRPeehHhvXyjnnBmhYV6ztq11KtRQzu5ZzxzkOLRt8+C119n6mMPk56eBER3ECa5g4y6bjB9By3G788HkiKvqsNKxn2Px4Ur7GgLupNiJqiiZdJPGkXScifhSnOa+6rb2L5x/NQpvvnqK4qLi+nSsSNNGzWKjK+A8LF6kgxBrTinxOx7lMIHiTtdEcNAhLvkvm0lI+V+ZJOe5EYX/3VyVh7/JWGEPF5leaEqllZlAXPakpMzo0wZurdpw5Qnn+SpKVNIjI+HQAC/38+Tr77KVc2aUSE5GXw+apcvX3K95DytlFydTCxJDqo4qqahy8OiHLm5uWSG62KaWAi/l5maysVLl6zTEe2q5qW24+WSTgvU1UPOQ81H7Q9q2vJvq/xUfspOcEG6divNcFPqk+B2cuONt9G48c18/fVqvvvuDSZPHsUTT4ylTasWtKhThwHNm9OjalVDHxBbGeR+LoSoUFrFTHVmpjHJISY4hJIuJkfqhtFLdmjJOopszIQdXDn79lEmMZFyYYNAxQCAgNMRneiQ+LX5559p1qwJzZs3iiQv4K5p/Wpc3ekqNm/+gaZNe5iaSYdnYMBlSmZmhN8+r/kdK5yR4xirp1w4PWHZL01S+HxQUJDHN198ztmTJ2lQrx69unUjXnL8GGVx4HYn4ZCMWXkLulyWyKUVYawRWOR0OgysCudtqqhKJa16/P87FRZar3ASv3WyWvR7VZapOKLq1Sqp+rWVzh8Om37ffdx0550sfuEFKlWsaExuhEJ8uX49361fz6cvvgg+H5WTkw2HoxUOqpipWyqo5K3FT/md0mSv+luH1+H/uZcuUT411bx4QeJjZrly5F66ZJ4gVx0r8kCSn8l80OkFMkZYkRq/pLrJvFHfLylcPL8cjCjJVtQ919nepnxdtGrVnrfe+omtW7fy4Ydv8PTTs5gxYzrNml3BlQ0b0LFmTW684grcSUnRFTfCjpbLE/5/3pdEujgLV6yWESuexIpbIZ9FegJnhP4itpfJ5fV4OJlk2Br16tYtsUukpTmizpww+f1+fvh+DV989T1xceYJiIyMRGZOe4zF773G+PEvmrKVHUhyN8rJgbTMChF5Le9Sl7uHbj5R7rKGXeXA7Xbh9rhwhCczAgFwOJz88Msv7N61i4yUFK7p1YsUacZEpJMkO+3AtJpYN/zU+kSbz2HglVx40Y/kvnqZkxz/neVjpaDJ4eog0a0UkUkd+GqY+NYJKBVsFeHpBD586SWeeuUVXnvnHepUrcq5nBxCoRBPTZxIy6ZNzdpGSUJVdcLoyimXtaT6qPXQhcs8U79VcjqJj4/nQk4O5URHE+kFjPNujpw4QXpqavTUeStAFXXVaXC633J5dST4q1N+1Prq0tH1DbU/qWXVhVkJeh34WNXHKg9kHT6de++dyMiR9/PXXz+wZcsa9u/fzksffMjM+fO5cfBgHrvuOhrKXn1NnXw+OH7cz86dR6iWnk6tChXMAlu8k5kZXeWUlkYwswKBALjSguZzpsJ7pEOhEIvXrmXD3r3Mu/HGmOoJX5ZRNIfhSBGSOCz4tu3YwYxHHiEu5zwAHk+6UfRwvA5t27Jnz19Ur95O20SqTmBMxoedVDnR7FQ9WtXh5CaLGgwuwAVhdnq9PiZMuJ04/Fw7aBAJCQnMf/99Tp4+zRvz3yTD4zCVy+k0jAq5uSOOKa34i96o6HSGt/ioBoH6smhreyZaTzok1sVRw0sYn5byXQ6Xf1vJZZ1GA0wYOZKPvv2WgbfeStUKFYgLhTh6+jS3Dh7MTQMHxjr3S5OnpdVFJR3GliQTde9fBl3RpAk//f47Q/r3N/MznOZPf/zBTddcU7ozx6rd/huc0eRfYj3U9Erjq5VWWJLBoCuvjhdWWKOmp8QJhp3eVasmMGzYULp1G8qRI/v47bdlnDy5neXfr2fe4sW0a9WKaXfdRb8GDYhzOmO3VYTLFfSkcPp0kIuXoKhMGRq1aWM4SuTrs8GQZTVrGu8JXBEYJlbryn3c7WbruXO88t57dGnThoSyZcmXqi5wRiSd5HGaNXO3mx83buQ/vXoaW9sAl8djKMDh7UX/6dePZSu+pEULs+NJbirxW0yo+3wOnOGVV/KRL6r/QIc9ctkNFjogfL4WPnj99Tf49ttV3HjjcBq3aMG27duZ8+qrPP30bNq1axdTHmMCwxXBFyuxoMOaCF1O/7NxpmRSDVmZ5PGrjl0d7+WOpHtPzkdnT1jZEmFq2aABz06ezP1PPkmwuJjM1FT+zc6mdbNmfDR3LglyGqKjqU4jEabmZYWP/2+wyCpMhJfi2LmiUSOeffNNRo8YoeXPT1u20FxMHupwVf6vW9lkpVfo6lGSY0f2UFs5c0qyV5xOa9voctJQy2gVroujq284PCzCycyEjh1bUaXKIi5deo5ff/2E/ft/45ft23nn44+ZWrEiU+6+mztuuMGYZpbsBDXvkyfhiD8fXG7qtGhBWYEl6kQIRB1OAmcMr5ERJnt8gNNOJw+tXUuS2037zp1N1ZGdUJGNDx4HDrGPzO3mn/37adWyJYl5FwCBMy6cTmOrW6srruCx/U9pXQM6nImeDGHIa2HLyEcxqWmopDrPjKYxsH/Llq1Mn/4gffv0pPWVV3Li5EmGP/AA/fr2Zdx994EzOpmOx9y35AkOuQxyWVRTRYS5nJj7mxxJfNQtnhZ0edqmzA35wFy1ZDKV9L8kAWclDNTncguWYIQkOp3MnDCBolCI06dO4UlOJrVMmWgapZVTTd+q95XmsNAJAKu8LkexVZ6Pvv56nn/5ZZ6eNi2mTp+sWkW3Dh2MPd5W2o1cF12+Knjpyqgrq5VBZBVXR5fT39T0dXF0yr8cZtX/dEab3BecTtye6F9DTjqoXLknffr0BMDrLWD58kW8+eazLP38c65u04ZurVvTs00bOjRtikPytPz66688s3Qpq7/4gmDQWFHTpEkThg4Zwq233ELt9PToXmshUcPGgFCmDSGVgjsrBUdmZkRYv/XJJ9wxezY9e/Zi9IQpHDhwnsLCBOLjy0aGQ15eMT/++C5+fw5XXdmMglOn2LVjBz169qRZixYQDBLMzye+oAACgegWtTD//H4/8fHxJTabzGpV75M/6pZ5NR21y6hiYcKEcfTvP4TevQdE0urS8xq2bt3GqFG3sGLFauStGlbdQtcVdPFND3UrCUUCbjfY523oSeAMxI59K8TUkcrzy1GadWHKWNfm73QyvE8fbujdm9PnzkFxMRXS04krLjZb2Zdb9tKURF29rLQGXT5WMtgqj3D8UUOHMuyuu+jfoweJSnscOXaM3fv307JZs5JlrG7FkxxuVQ61PlYaklUdSuKp1XtWZbrcvgfWK1Eup38q9XQ4nXg8jsgOhMxMqFmzPh06PIbTCaFQiM2bv2P+/OkMuPNOGtSvT882bejevj192rcn2RF1XhzLy2Pus8/y5uJ3uHTJcO5UqFCBQQMHcuPw4XRt3jyKM0L7lWeh5VlpMWbD5Tx46RId772XpDJleGXBAs76nZw5dpZAIBOIRt22bSPbtv1Ih1YNqFymDD9u2MAVjRrRuWtX4oNB/GL7RSAAXm94Btfgjb+gIIIzajPIrJQXPKgYIndHHc6ozWQlFlas+IR9+/by/vtfkZAQh9sN7a7qw/U33M2YMdfz6qsLqFGjZkya6m+1O5Q0hCMP1YlCdXyJ4yNsiiWvF+KMLZdaowpKt0usZJCqzKh5qHF1pHGKNa9bl0/mziXX6+XSxYtUSE8nISHBeuWWVTlkDFDjWuGInLbcQa10fCucKUVHr1uzJufPnWPf3r3Ub9LElF7A5+P5BQtYNHNm6bp8SRgv11FzvIKpXjr77XJsGyud47IGtxKmE0RyHa3aS9cGVrtNwnGdTlcMS3y+ctSrdxdO510EAvDvv/tYsmQWk2bMYObLL9OrWze6t29Pv06dqCqO5HE6KfD5eGfFCp557U2OHDkAQGJiIr169Wbo0Gu5qV8fXDk55oPFxQ4QsUsjEDAfMh4uc9Dlov8DD7B1926WLF4MSZkcOHCChISKBAKOiLviwoWjfP31u9StW432rRrz+1dfUSYpiX69exPv8+EvKIjFGacxcRyKjwdCluqDqiaUNGkh0pAXHpfUVOq7p09nM336wyxa9BkVK6ZF0rv2xtuZOnUKSz5exk033RQpV2TLXXj1lVoOFQ+tcM90PrYsZ+S+6PGYbwgtgf67w8V/+okU0QnUPS/qMoWSBqZYAWOlaMmzbFYDVK6syE9NR01DHaTioxuEujTkeql5yStX5HRUfuiotDi6csjkdBIqKuLR558nr6iISRMmUKNyZc6dPs3Cd97hj507WfrCCyTIW/Hk+qtLUa2Epdp2Kk9knsk358h8EfmoHgU5zuVogqoWqcaR66IKavHt9Vq3vfytO/BVLqvTGbmRTh7cIlogYMg0rxdycwtZu/Z9Nmz4ko0b13PhwgWqV6nCyD59SAgGWbttG5t27KBhw4aMHHkPtWo1JiHhEqtWfc4XX6ymoKCAqfffz5ShQ0m4eNFc/8xMgg0bR/KKOqGikwX9+rXlzz9/x+12U7NmPfbs+QuAMmU81Kt3BQkJCRw5so8zZ04QHx9PsbJnNzM1la7t2zPyuusY1LmzGRCA0KVL9Lr+elZ9vRav12lqGpX1gnU6ISz7HuRz8+Q4cv3UPJxOOHz4EE8+OY25c9+LLPqSJ/Kff/4JunfvRufOXU3lBPNhruJGP1FG07kb4QBZwEeeC4NN7e+BgLE82O+kUqVU+9DXMJlwRl5eLZ81I8stoVVYyUwZR3TnWVjJMxEu8hRplBRHhzPqR0V5NQ3dTTBqXlYYIOKUhDM6pbckLFMpXLdvf/6Zl5Ys4bHJk+nQti0Br5eVX33F60uW8Nbs2dSqVMlaloq6loQzIg7EnpWjxtVhkS4NXRzZuVlSH7IyJnR9SOKTKQ1R1pJI10/V/hKeIZZvf5ObVcj+oqIQv/32A99//xFbt67jwIEDeJKTua57d5pUr85vu3ezYuNGkpOTueWWu2nRogNpacn89NM3rFjxOfv37+e6AQN4+d57qaQKVuk8j3ySTHDtdhsXmkyd+QxPPfUEAM2bt2L37r/w+41zKerWbUZmZgXOnTvBP//8rWVFgtPJdf364S5ThrdnzzYDWXir+QPTpnHtiNuoVaultjuJYovzbnU4I8SIeF8cTaI2pXwruZpHKBRi0KA+LFy4mlAokUAgelxjIAA7dvzG6tXLeOqp57TdSFYl5G4duQ1Wkh+RSyx0hoA8ESX1mbMpmZQvb+OMTKabuuUVF6r8FvgdxuwY0tkr4rn4Fp0MYu0VEU8O18k5iOYjd1JZAKgKkVw+VQ6rq+1lKsk+k791urkct7RwOQ21rk4nx48fZ+SjjzJm5Eiu+89/SExM5PfNm3lq3jxG/ec/XCv0T7ncKuaqCyVEPnL7ysqdTIK/MjarH52dKPclkZ8OI+Ty6Mqh8uVy+6GVHiHKKwSdWleRTljnEhdUqWaiWMh/6JDx7MiRf1mzZiF//PEDf/65hVAoRI/27enXvj37jx1j+dq1nL1wgf79r6dHj8FUq1aFvXt/46uvPufnn3+icf36vDl5Mh0qVzbXVdz0HbYvgk5XhI1i1evWv/6idadOANSv34gzZ05z4cI5ALKyalCtWl0KC73s3v0HRUVFxMXFobo8ujRvjg/46cMPjRv8BM6Edw+t/f571v++nXvumWa5w0yIX9E8uu4kTkwR3UPtUjIW6d53u2H69Efp3HkAzZp1jOQlNjmFQkUMG9aPr79eQ1xcXNRWUWSR351iGp4xcTCOPBGPIjecy0u35EJKusnJoPuybJr/zvF05gwpLlfkZiwTYiozXqYBqApwwTFV2KtpCOGoniWhKkGy8FL36Mgtq74vt6hOmVTD5R6ikk4xVsuqllOOqxNoIkwuh0hLLWP4+U9//82iFSs4e+ECSS4XI/v1o/9VV0Wv+FXrKfd2uSxqu6hakarFqV5QES7foKMKaV37ynWW01HTUHmm7j/V8V4NU0FazkMmWUrI8SS+m85s0rW9240fV8QwSEszronevPkXPvzwPZYt+wiXy0Xz5m0YOvROeve+hvR0B+kef+TGoPxgkBkvvMDzr7xCr169+eij5aTmXTBuM9q+3cina1eoW5fj7tps2hS9RaFmTUOGFxXtYsGCx9izexee5GSG3XAzCc4ghXl5/P333xAKUTktjWGNG9OqYUP+vHABV0ICdRIS2PT227y/bx/v7t1LZmoqn86bR5cOHaLSz+3mqenTKZeWxj33TzQp66p+IXcrEaZjsQAal1O6CUjmexiQIOoQEjdavbFgIRkZWXTtOginE4OXYSUi1+tg+/ZdrFjxDi8+/2xs+1uNXVU+qONF7meisdWZyPAqgVy/n9RatWyDIEwxOKN6T+XJDcFjtYPJ/JbHt3ygsirPdO2nrlKS5ZmqtKqySJaroJdVlytXVXmkymZduG6w6fqyTuHXaT0aeXnkzBnmf/45f+7bR1wwSO/27RnVr5+xmljOS31fxRkdNsvlEXJVp+jr2k41skR4SfJZ5YvOgLkcGaCLU5ocUesht79Ouw3Hi3F0S+nk+6LnSoAh9w8e/Jdly5ayZMk7nDhxgmbNrqB79+sYPvxOatVKIcXtj2jOocREPlq5kvsfeghXYiJff72WBg0a4FrxiXGrkNMZAZTzna7h11+j91+IYz5q1crh9Vemsfyzz6hcqRItW7emSdMWXDpzgn8PHiQnJ4f05GR6NmnC4JYtOVJUxDmvlyYeD/t++YUvNm3i2d9/Jy4+nofuvptHxo0zDhr2eAhmVuCXDeuZ+/LLfPDRZ9oJCLnr6sKtmiLmBh9B4ZsFRTpys2dnZzNjxgzmzHkzglcVPPn4nUkRJ+BNN/Xnq6++jrxrmqCw6h/yXkC5n8iOeFmGyHeES+XOTU4mtWFDG2ckMmGNwxG1GkUDqbd2gx7jVZtH1YnVNKzsFRUDVDyDaPnk67BKk6sQrZuKZ0LhuhyM0K3aVR3lsqzUpaPTrUuRl3mhEEvXruWLjRsJBYM0qF6du/v1M5/JK9JRMVUnu0U8wRNZh1BtDZnvsr1qhb+qTWPVLipeqfqhWladXWSFz6Icqp4g3hMUnihXndRyHOF4Eo9Nt8QCuV5HRMUV3dLvv8hXX33Ghx++wy+//ESdOvVp16471147kSuvrENWFrgC+RG+7/j7b+4cP56tf/zBggXvMWLEjSR5T8M33xhYU7euca5Tw4acz2rM/PnR5sjKgipVQvz66yIWL5pDcnIy6eUrMHz4TZw9c4Jzp07x74EDlHW5uLJaNW5s25Z4l4s9ly5ROyGB4n37+HbjRp794w8Oer1c3aYNn736Killy0Z09LM5OQwfPpzF735IYmJFU5dS54hUlVKNIzeTYH2S029OxGncWmrl4Bo8uD9LlnxJYWGccSO42+Blvjsdnw8eeeQ+HnxwEnWrV43VU0Uh1D6sTmCouog8roTMU+VBuEFyCwouC2ucliEaCjpd0eUHOqVLx3XRkeUKSEyOEVI6IS+nIWsR4j25dUUcESanrSrCcj6ifEIYyIqeWhdZYKjhcmPIvUyN43ab05DLL/IQaQltRuWTrCSHn3ds2ZKOYiZA7niy518WenJZ1bZT20nlh2qgSPtmLQW5CtI6MFfbzEoZk+sjl9VqRl3mqw5o5f/yagoV3OQ8rdpfbudwnEC4qSNXSft89LiyET3aPMf8+W9w6lQceXnGsu+kJEhPC0L2yYikTXK7eebZZ+nRty+Dhw7lmmv688Ubr1E2fG0yEDmgz1NX3yUbNWrCqhWfRceIuEva64Xu3c1XZANXirM7Tp6kZ9269MzKYnCdOtyxYQNdR4+mR7t2PDh+PGd9Pj75/HPat2vH3eMnxOgXogsYs7gOU7PK3UgGN5cTcDsMj7tXY5iGE3DIAOB0GleQOp2EggESExNwuyHl5D7YcsioX82apKSlkVUhHoolwa8bu3K/VxUndfwIGSKHq45wwfOzZ+Gff2KZZFMUZ0SnUGRcZIwL2aLDGTW+ihFWSimY89DJIVWG6NKQZbeKVSXlo3M86Ty4qmxTZ93lfguxq8NkzBP5qGWV6yHXxe2meqVKzHrggSiOycqJIJ38ldNR20dVsHWOGF1/0IWrOKLDGSvMk7FZNQjUb50eJJMqM1RctTJO1P4svecPOCLBkTPlAoEYQ0HYp0nk06RSGk0euJ+pUx/n0qUQ+fmO8EHZGE6nkycjK4DjPB5GjBxJl9696dGrD927d+aLL9bQzuuN4ILgpzy7K3f5jIw05j7zDHOffDJa37NnYc8e6NzZfF5HIEDt5GRqu91w9iwtypenxdVXM7xJE25as4bHX3yR199/n5emT8edmsqK77+noKCA+W++Y4kzqkogN7P6XO56ptWsykSdOPdDbari4mISExNwOg1jyHXyCGSfxVW3LulpHoI4cLkcuJzByKSIqQByH1INQbUcciVlkh0U6jj45ZdYJtkEQH7AhadCCg6ZzyqW6xQV8Z2TY44jy1VVhuqwSMUzNY74r9PfxW9ZnqmYqLM1dHnI8luXj5yG+C9/qzih2jyCZB1fZ+vIcdLSSC5Thjuvu447R4402zI6G08us87KVwe/DnfliSVRFxFHXXqvw2ad40kuq1oW2V4tqY/odCDBKzVctjtk3uhsF6Wd5Yt0ApI4MZKO7uaQVR8xp+PxgIsy3HvrDdx++2jOnw+Sn++I+PgyM8HlPR/daeJ207xlS9at/5nbb7+DO+4YSV5eHuOvGxCxOSL8zsrCXdPcfbxeyMuLY8SIO3jojmuj/JJtmtGjo20QfvGqcuWMmZLEREa3aMENVasyYcsW3tq8mQodOjB9/HhatG7N5r//ZsNPP/Hsc/NITa0Y43pQcUbGEXXoCJKHqdsN+BT9wOk0Dj9367fFORxxJCTEUb48OPb8bawsSEsjqXVrkjxOyrgchPK9sTqFzDh5jMtOWlnGKNgXIfmkdFVunD0Lu3dzOeQsPUqU9u/PpVw5KB8fNA6pDgSMq69FwYuLjcLIe6a9XuO5CHc4ID4eEhKiBRdbwAIBIxyMNOQ4eXnG8+Ji43rN4mIjXGWeiKMKGZGGKpDkcJFOcbHxiYuLHaSykiDnEx8PRUVGXeRGl8ugxpHTEJ9QKFpXNY1QKJqGaHzB2+Rk47uoKBouwmQpIacr+CFdWYrDYdS7uNicfjBohLlcBt8F70XbCX6JjwyYcp7yQCgqivYjtS/Ex0f5UVBgfl/EKSoyBFNRkZlPMv/AOFxT1FWQKiHEwFO3IwoQEGW9eDFaNqfT4HswSDDfSM/hyzcJ+KDDSSA/YNIfUzxBvKd9Uf6mppKf7zVtCUhKgtx/Thj5ZWSAw4HfD97zPipXvYq5cz9j8uRhdBsxguXjxlGuZk0jz6pVoXp1tmzJZedO+PdfI5vjx6FyZYMNly4ZbIuPh3SxJzchwTgLokIF439qanRMHD9utH/jxlBYSPesLHZ36ULfhQtZu3kzbTZtolaDBrwybx5JqeU5evRS5FbN1FTj1fAuC/KJdonCQqMMDkc0jk/aixxpKm9utE1lo7SoyHg5Pz/KSzEOnE5aXnklCxa+TdOmnQwF4fhxyM01+oPfz7KPP6ZNq1bk5HoNY0Duq6Jwoo8Eg9b9Q4yb3NzouIPYmUahjJw+DefOkbt9OzbF0qFDuZQta/QdVzBojH9VdqtyE6LtIzAiPj6KIzLwCvkuMETglSxbCgtjcQaihoaIU1gYiyN5eUZefn9Ubgq5COa6iHCHI4p3YMYZVabKiqYoh4xFiYlR+a3imeizAkfkcaVijYqZct8XWKS2jayox8dHyyFjvMwLK3wXbVeaIhQKGZ+iIkOwiTRUnMnPj9UaCwuN/0VFEZkQKadcZkECZ8T4lvuUzFORv9yOchxZRxDpeDwGL10uo/6KIzHoD5iSTPEEzfUBcr0+E3s8HiAYJPd0joQzlyLdM4IzB8M443RCYmIEZ/LyUnj11S8YO3YIfft2Yfkjj9Ba4EzlylCzJju35PLXX3DkiMkvSUIC1K4NycnOSDFThO6QlhbFmfR04zsvL4ozKSlQoQIVjhzhu4kTWZ6dzZhnn+XD5cvp1Lkz995zD5Wr1ufiRTh3LjeSfmpqFGdk1otmDEM1YMTLzzc3gdMJgfO5sXobhPXSfK1lkZGRyq5duzh58gLp6fEknT0Lx44ZfSojg70HDlCxQnlyc3OjBVP7oiBRwIsX9U5NgTWiEUUFheyT9ZnCQsjLs3GmBDpwwOg/Kc6wDlxQYPAeYvXm+Piofi7aTMixhISoXijLTWHziDhy28hYJmOEkO/ixj0hE4NBs0yUyyHKGRdnLoeMhzLOqPq7KEcwaIQlJpoXC+hwVcZdMNt5gsS5srKNVlhoPvBe1r1lnoi6CbkqbE1RFsFTMMpy8WI0jWDYRnW5onUWWARRO1SMF5fL+MhCQcSJj4/aPcXF0XEG0fEq6wmBQKyeIDu61NUiqk4pnFEydsj4qPYhiKYtcF7mq+CPbPP6/Ya+KuumzuixEqJYiYnmTSuiuWWITU4GpyOI77wPX9hheP50gLy8aBdNTjZka67AmaQk8nMD+HwBTp+GO++cS2FhAvfffyf5px7l3iuvhFq1oEYNA0jq1+enHw2sEVVNTDSCc3OhqE0UB8unpBgREhKiOCPrfj6fAVgZGUZ4Xh7PV63K+Jo1aXbXXbz3+ec4EhK4snlz7p8wgbPn4zl6NDdiEqSmGslfuhSFc0HGpEvUnhEftZmcQT/e85J8l7xTQX/AWHUbbrcgDgJ+o59lZVVh48af6dixqXEu1okTBgOqVyfocrFt2zYy0tPJ9Yd3d5w7F2171V4JBKJjRi6HGBcul5H2uXPmfi3iC3nj98P583D69GVjzWVttfP5fNSqVYuTYlWFTTbZZJNN/58pKyuLgwcP4lbX7f7/kGycsckmm2z635ONM2ayscYmm2yy6X9Pl4M1l+V4AkNQ+/3+0iPaZJNNNtl0WeRyuWxjQCIbZ2yyySab/rdk40ws2Vhjk0022fS/pcvBmst2PNlkk0022WSTTTbZZJNNNtlkk0022WTTf0OO0qPYZJNNNtlkk0022WSTTTbZZJNNNtlk039PtuPJJptssskmm2yyySabbLLJJptsssmm/xOyHU822WSTTTbZZJNNNtlkk0022WSTTTb9n5DteLLJJptssskmm2yyySabbLLJJptssun/hGzHk0022WSTTTbZZJNNNtlkk0022WSTTf8nZDuebLLJJptssskmm2yyySabbLLJJpts+j8h2/Fkk0022WSTTTbZZJNNNtlkk0022WTT/wn9P5WGHQ0dVcZfAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5), subplot_kw={\"projection\": ccrs.PlateCarree()})\n", + "for sample_i, ax in enumerate(axes):\n", + " (pred[\"2m_temperature\"][f\"sample_{sample_i}\"] - pred[\"2m_temperature\"][\"mean\"]).plot(ax=ax, cmap=\"seismic\", center=0., add_colorbar=False)\n", + " ax.coastlines()\n", + "deepsensor.plot.offgrid_context(axes, test_task, data_processor, task_loader, linewidth=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The checkerboard artefacts in the samples above correspond to the subsampled grid of AR sample target locations.\n", + "This could be alleviated by training the model for longer and with more examples of larger/denser context sets." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T15:40:38.394444478Z", + "start_time": "2023-11-02T15:40:38.393072135Z" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/user-guide/task.ipynb b/_sources/user-guide/task.ipynb new file mode 100644 index 00000000..4c2eaafa --- /dev/null +++ b/_sources/user-guide/task.ipynb @@ -0,0 +1,377 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tasks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is a 'task'?\n", + "\n", + "The concept of a *task* is central to DeepSensor.\n", + "It originates from the meta-learning literature in machine learning and has a specific meaning.\n", + "\n", + "Users unfamiliar with the notation and terminology of meta-learning are recommended to expand the section below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Click to reveal the meta-learning primer\n", + ":class: dropdown\n", + "\n", + "**Sets of observations**\n", + "\n", + "A *set* of observations is a collection of $M$ input-output pairs $\\{(\\mathbf{x}_1, \\mathbf{y}_1), (\\mathbf{x}_2, \\mathbf{y}_2), \\ldots, (\\mathbf{x}_M, \\mathbf{y}_M)\\}$.\n", + "In DeepSensor $\\mathbf{x}_i \\in \\mathbb{R}^2$ is a 2D spatial location (such as latitude-longitude)\n", + " and $\\mathbf{y}_i \\in \\mathbb{R}^N$ is an $N$-dimensional observation at that location (such as a temperature and precipitation).\n", + "Context sets may lie on scattered, off-grid locations (such as weather stations), or on a regular grid (such as a reanalysis or satellite data).\n", + "A *set* can be compactly written as $(\\mathbf{X}, \\mathbf{Y})$, where $\\mathbf{X} \\in \\mathbb{R}^{2\\times M}$ and $\\mathbf{Y} \\in \\mathbb{R}^{N\\times M}$.\n", + "\n", + "**Context sets**\n", + "\n", + "A *context set* is a set of observations that are used to make predictions for another set of observations. Following our notations above, we denote a context set as $C_j=(\\mathbf{X}^{(c)}, \\mathbf{Y}^{(c)})_j$.\n", + "We may have multiple context sets, denoted as $C = \\{ (\\mathbf{X}^{(c)}, \\mathbf{Y}^{(c)})_j \\}_{j=1}^{N_C}$.\n", + "\n", + "**Target sets**\n", + "\n", + "A *target set* is a set of observations that we wish to predict using the context sets.\n", + "Similarly to context sets, we denote the collection of all target sets as $T = \\{ (\\mathbf{X}^{(t)}, \\mathbf{Y}^{(t)})_j \\}_{j=1}^{N_T}$.\n", + "During training, the target observations $\\mathbf{y}_i$ are known, but at inference time will be unknown latent variables.\n", + "\n", + "**Tasks**\n", + "\n", + "A *task* is a collection of context sets and target sets.\n", + "We denote a task as $\\mathcal{D} = (C, T)$.\n", + "The modelling goal is make probabilistic predictions for the target variables $\\mathbf{Y}^{(t)}_j$ given the context sets $C$ and target prediction locations $\\mathbf{X}^{(t)}_j$.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The DeepSensor Task\n", + "\n", + "In DeepSensor, a `Task` is a `dict`-like data structure that contains context sets, target sets, and other metadata.\n", + "Before diving into the [](./task_loader) class which generates `Task` objects from `xarray` and `pandas` objects,\n", + "we will first introduce the `Task` class itself.\n", + "\n", + "First, we will generate a `Task` using DeepSensor. These code cells are kept hidden because they includes\n", + "features that are only covered later in the User Guide. Only expand them if you are curious!" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "ExecuteTime": { + "start_time": "2023-11-01T14:28:15.732009455Z" + }, + "collapsed": false, + "tags": [ + "hide-cell" + ] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████| 3124/3124 [02:38<00:00, 19.75it/s]\n" + ] + } + ], + "source": [ + "import logging\n", + "\n", + "logging.captureWarnings(True)\n", + "\n", + "import deepsensor.torch\n", + "from deepsensor.data import DataProcessor\n", + "from deepsensor.data.sources import get_ghcnd_station_data, get_era5_reanalysis_data, get_earthenv_auxiliary_data, get_gldas_land_mask\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Using the same settings allows use to use pre-downloaded cached data\n", + "data_range = (\"2016-06-25\", \"2016-06-30\")\n", + "extent = \"europe\"\n", + "station_var_IDs = [\"TAVG\", \"PRCP\"]\n", + "era5_var_IDs = [\"2m_temperature\", \"10m_u_component_of_wind\", \"10m_v_component_of_wind\"]\n", + "auxiliary_var_IDs = [\"elevation\", \"tpi\"]\n", + "cache_dir = \"../../.datacache\"\n", + "\n", + "station_raw_df = get_ghcnd_station_data(station_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "auxiliary_raw_ds = get_earthenv_auxiliary_data(auxiliary_var_IDs, extent, \"10KM\", cache=True, cache_dir=cache_dir)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir)\n", + "\n", + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "era5_ds = data_processor(era5_raw_ds)\n", + "aux_ds, land_mask_ds = data_processor([auxiliary_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "station_df = data_processor(station_raw_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T14:32:15.553656830Z", + "start_time": "2023-11-01T14:32:15.548454739Z" + }, + "tags": [ + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "from deepsensor.data import TaskLoader\n", + "task_loader = TaskLoader(context=[era5_ds, land_mask_ds], target=station_df)\n", + "task = task_loader(\"2016-06-25\", context_sampling=[52, 112], target_sampling=245)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the code cell below, `task` is a `Task` object.\n", + "Printing a `Task` will print each of its entries and replace numerical arrays with their shape for convenience." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T14:32:15.566930620Z", + "start_time": "2023-11-01T14:32:15.553282595Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: []\n", + "X_c: [(2, 52), (2, 112)]\n", + "Y_c: [(3, 52), (1, 112)]\n", + "X_t: [(2, 245)]\n", + "Y_t: [(2, 245)]\n" + ] + } + ], + "source": [ + "print(task)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Task structure\n", + "\n", + "A `Task` typically contains at least the following entries:\n", + "- `\"time\"`: timestamp that was used for slicing the spatiotemporal data.\n", + "- `\"ops\"` list of processing operations that have been applied to the data (more on this shortly).\n", + "- `\"X_c\"` and `\"Y_c\"`: length-$N_C$ lists of context set observations $\\mathbf{X}^{(c)}_i \\in \\mathbb{R}^{2\\times M}$ and $\\mathbf{Y}^{(c)}_i \\in \\mathbb{R}^{N\\times M}$.\n", + "- `\"X_t\"` and `\"Y_t\"`: as above, but for the target sets. In the example above, the target observations are known, so this `Task` may be used for training." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "**Exercise:**\n", + "\n", + "For the `task` object above, use the `\"X_c\"`, `\"Y_c\"`, `\"X_t\"`, and `\"Y_t\"` entries to work out the following (answer hidden below):\n", + "- The number of context sets\n", + "- The number of observations in each context set\n", + "- The dimensionality of each context set\n", + "- The number of target sets\n", + "- The number of observations in each target set\n", + "- The dimensionality of each target set\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Click to reveal the answers!\n", + ":class: dropdown\n", + "\n", + "Answers, respectively: 2 context sets, 52 and 112 context observations, 3 and 1 context dimensions, 1 target set, 245 target observations, 2 target dimensions.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### Gridded data in Tasks\n", + "\n", + "For convenience, data that lies on a regular grid is given a compact tuple representation for the `\"X\"` entries:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T14:32:15.620494504Z", + "start_time": "2023-11-01T14:32:15.570462444Z" + }, + "collapsed": false + }, + "outputs": [], + "source": [ + "task_with_gridded_data = task_loader(\"2016-06-25\", context_sampling=[\"all\", \"all\"], target_sampling=245)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T14:32:15.628949091Z", + "start_time": "2023-11-01T14:32:15.611675646Z" + }, + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: []\n", + "X_c: [((1, 141), (1, 221)), ((1, 140), (1, 220))]\n", + "Y_c: [(3, 141, 221), (1, 140, 220)]\n", + "X_t: [(2, 245)]\n", + "Y_t: [(2, 245)]\n" + ] + } + ], + "source": [ + "print(task_with_gridded_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "In the above example, the first context set lies on a 141 x 221 grid, and the second context set lies on a 140 x 220 grid." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Task methods\n", + "The `Task` class also contains methods for applying processing operations the data (like removing NaNs, adding batch dimensions, etc.).\n", + "These operations will be recorded in the order they were applied the `\"ops\"` entry of the `Task`.\n", + "Operations can be chained together, for example:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T14:32:15.906470888Z", + "start_time": "2023-11-01T14:32:15.633776731Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: ['batch_dim', 'tensor']\n", + "X_c: [torch.Size([1, 2, 52]), torch.Size([1, 2, 112])]\n", + "Y_c: [torch.Size([1, 3, 52]), torch.Size([1, 1, 112])]\n", + "X_t: [torch.Size([1, 2, 245])]\n", + "Y_t: [torch.Size([1, 2, 245])]\n" + ] + } + ], + "source": [ + "print(task.add_batch_dim().convert_to_tensor())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "Gridded data in a `Task` can be flattened using the `.flatten_gridded_data` method.\n", + "Notice how the `\"X\"` entries are now 2D arrays of shape `(2, M)` rather than tuples of two 1D arrays of shape `(M,)`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T14:32:15.970618528Z", + "start_time": "2023-11-01T14:32:15.909066194Z" + }, + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: ['gridded_data_flattened']\n", + "X_c: [(2, 31161), (2, 30800)]\n", + "Y_c: [(3, 31161), (1, 30800)]\n", + "X_t: [(2, 245)]\n", + "Y_t: [(2, 245)]\n" + ] + } + ], + "source": [ + "print(task_with_gridded_data.flatten_gridded_data())" + ] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/user-guide/task_loader.ipynb b/_sources/user-guide/task_loader.ipynb new file mode 100644 index 00000000..171a5693 --- /dev/null +++ b/_sources/user-guide/task_loader.ipynb @@ -0,0 +1,1012 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TaskLoader" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[The `TaskLoader`](../reference/data/loader.rst) generates `Task` objects for training, testing, and inference with DeepSensor models.\n", + "The `TaskLoader` can generate `Task`s for different kinds of predictions, such as: spatial interpolation, forecasting, downscaling, or some combination of these.\n", + "It achieves this by temporally slicing spatiotemporal data and then providing a suite of spatial sampling methods for generating context and target sets from the temporal slices.\n", + "\n", + "Mastering DeepSensor requires a good understanding of all the ways you can initialise and call a `TaskLoader` for a wide range of data fusion applications.\n", + "The `TaskLoader` is best understood through examples, which we will see in this page.\n", + "Let's import the `TaskLoader` class and get started." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "logging.captureWarnings(True)\n", + "\n", + "import deepsensor.torch\n", + "from deepsensor.data import DataProcessor\n", + "from deepsensor.data.sources import get_ghcnd_station_data, get_era5_reanalysis_data, get_earthenv_auxiliary_data, get_gldas_land_mask\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Using the same settings allows use to use pre-downloaded cached data\n", + "data_range = (\"2016-06-25\", \"2016-06-30\")\n", + "extent = \"europe\"\n", + "station_var_IDs = [\"TAVG\", \"PRCP\"]\n", + "era5_var_IDs = [\"2m_temperature\", \"10m_u_component_of_wind\", \"10m_v_component_of_wind\"]\n", + "auxiliary_var_IDs = [\"elevation\", \"tpi\"]\n", + "cache_dir = \"../../.datacache\"\n", + "\n", + "station_raw_df = get_ghcnd_station_data(station_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir)\n", + "auxiliary_raw_ds = get_earthenv_auxiliary_data(auxiliary_var_IDs, extent, \"10KM\", cache=True, cache_dir=cache_dir)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir)\n", + "\n", + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "era5_ds = data_processor(era5_raw_ds)\n", + "aux_ds, land_mask_ds = data_processor([auxiliary_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "station_df = data_processor(station_raw_df)" + ], + "metadata": { + "collapsed": false, + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-02T13:41:03.577241738Z", + "start_time": "2023-11-02T13:40:57.642318144Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:03.589542096Z", + "start_time": "2023-11-02T13:41:03.582973194Z" + } + }, + "outputs": [], + "source": [ + "from deepsensor.data import TaskLoader" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialising a TaskLoader\n", + "\n", + "A `TaskLoader` is initialised with list of `context` and `target` variables.\n", + "These variables can either be `xarray` or `pandas` objects, and are assumed to have been standardised by a `DataProcessor`.\n", + "\n", + "We will use the normalised station and reanalysis data from the previous [](data_processor.ipynb) page." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:03.640413839Z", + "start_time": "2023-11-02T13:41:03.591468406Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(2 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind'), ('GLDAS_mask',))\n", + "Target variable IDs: (('PRCP', 'TAVG'),)\n", + "Auxiliary-at-target variable IDs: ('elevation', 'tpi')\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds, land_mask_ds],\n", + " target=station_df,\n", + " aux_at_targets=aux_ds,\n", + ")\n", + "print(task_loader)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calling a TaskLoader\n", + "\n", + "The `TaskLoader` is called with a timestamp and single entries or lists of entries for the `context_sampling` and `target_sampling` arguments.\n", + "These arguments can either be single entries (applying the same sampling strategy to each context/target set)\n", + "or a list of entries equal to the number of context/target sets (applying different sampling strategies to\n", + "each context/target set).\n", + "\n", + "For an up-to-date list of the available sampling strategies and what they do, see the\n", + "[`TaskLoader.task_generation` documentation](https://alan-turing-institute.github.io/deepsensor/reference/data/loader.html#deepsensor.data.loader.TaskLoader.task_generation)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:03.670969668Z", + "start_time": "2023-11-02T13:41:03.639555184Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: []\n", + "X_c: [((1, 141), (1, 221)), ((1, 140), (1, 220))]\n", + "Y_c: [(3, 141, 221), (1, 140, 220)]\n", + "X_t: [(2, 519)]\n", + "Y_t: [(2, 519)]\n", + "Y_t_aux: (2, 519)\n" + ] + } + ], + "source": [ + "task = task_loader(\"2016-06-25\", context_sampling=\"all\", target_sampling=\"all\")\n", + "print(task)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:05.418214008Z", + "start_time": "2023-11-02T13:41:03.661026404Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAN4CAYAAABpnpn4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wT1frGnzOTso3dpS5L7yAgSG8CShUsWEC8KoiiVy4oKla8V0EsiA3wJ6AoxYqIiIiiFBVQqoBI722BpZftm2Tm/f0xJTOTyW6yLQucr58xmZkz57xzkj0kT57zHkZEBA6Hw+FwOBwOh8PhcDgcDqcIESIdAIfD4XA4HA6Hw+FwOBwO58qDi04cDofD4XA4HA6Hw+FwOJwih4tOHA6Hw+FwOBwOh8PhcDicIoeLThwOh8PhcDgcDofD4XA4nCKHi04cDofD4XA4HA6Hw+FwOJwih4tOHA6Hw+FwOBwOh8PhcDicIoeLThwOh8PhcDgcDofD4XA4nCKHi04cDofD4XA4HA6Hw+FwOJwih4tOHA6Hw+FwOBwOh8PhcDicIoeLThwOh8PhcDgcDofD4QRhxYoVYIzh4sWLAIDZs2cjMTFRPz927Fhcd911EYmNwyntcNGpmDh58iQef/xx1KlTB263G9WrV8ett96KX3/9tUjbueGGG/Dkk08WaZ3FWa8R6+CdF9u2bUPXrl0RHR2NqlWrYty4cSCiYo2Pw7nS4ONS/oQ6LuXk5GDIkCG49tpr4XA4cPvttxdrXBzO1QBjLM9tyJAhEYutVq1amDRpUrG2Yf0SmxcrV65Eq1atEBUVhTp16uDDDz8s1tg4nNLOmjVrIIoibrrppmKpv2PHjkhNTUVCQoLt+WeeeabIP08VJYwxfP/993mWOXz4MBhj2LJlS4nEFAqlMSZO+DgiHcCVyOHDh9GpUyckJibirbfeQrNmzeD1erFkyRKMGDECu3fvjnSIlxVpaWno2bMnbrzxRvz111/Yu3cvhgwZgtjYWDz99NORDo/DuSzg41LRIkkSoqOjMXLkSMyfPz/S4XA4VwSpqan687lz5+Lll1/Gnj179GPR0dFh1efxeOByuYosvtLCoUOH0LdvXzzyyCP44osvsHr1agwfPhwVK1bEXXfdFenwOJyIMHPmTDz++OP45JNPcPToUdSoUaNI63e5XKhcuXLQ83FxcYiLiytUG16vF06ns1B1lBaupHvhFAHEKXL69OlDVatWpYyMjIBzFy5c0J8fOXKEbrvtNoqNjaUyZcrQgAED6OTJk/r5MWPGUPPmzemzzz6jmjVrUnx8PA0cOJDS0tKIiOiBBx4gAKbt0KFDRES0Y8cO6tOnD8XGxlKlSpXo/vvvpzNnzhAR0e+//05Op5NWrVqlt/XOO+9Q+fLl6cSJE3nWa2XKlClUr149crvdVKlSJbrrrrv0c7Is04QJE6h27doUFRVFzZo1o3nz5hER0aFDhwLaeOCBB2zbmDp1KiUkJFBOTo5+bPz48VSlShWSZTn4C8HhcHT4uKRQVOOSkQceeID69euXbzkOhxM6s2bNooSEBH3/7NmzdM8991DVqlUpOjqamjZtSl999ZXpmq5du9KIESPoqaeeovLly1OXLl2IiGjhwoVUr149ioqKohtuuIFmz55NAExj3+rVq6lz584UFRVF1apVo8cff1wfL7t27RowNgRjzJgxVL16dXK5XJScnEyPP/64fi43N5eeffZZqlKlCsXExFDbtm3p999/JyJlDLS2MWbMGNs2nnvuOWrUqJHp2KOPPkrt27fPr1s5nCuSjIwMKlOmDO3evZsGDhxIr7zyium8dTwhIlqwYIH+tyzLMnXv3p169+6tf7e4cOECVa9enV588UUi8v+NauOGtU7t85HGhg0bqEePHlS+fHmKj4+nLl260KZNm0wxAKBp06bRbbfdRjExMfTyyy9T3bp16e233zaV27ZtGzHGaP/+/bb3n19bNWvWNI0tNWvWtK3HOgZ17dq1UPdCRPTqq69SxYoVKS4ujoYOHUrPP/+8qZ+IiGbOnEmNGjUit9tNDRs2pClTpuQb0++//05t2rShmJgYSkhIoI4dO9Lhw4dt74sTebjoVMScO3eOGGP0xhtv5FlOlmVq0aIFXX/99bRx40Zat24dtWzZUv9DIlIGr7i4OLrzzjtp27ZttGrVKqpcubI++F28eJE6dOhAjzzyCKWmplJqair5fD46ceIEVahQgUaPHk27du2izZs3U8+ePenGG2/U63722WepZs2adPHiRdqyZQu53W767rvv8qzXyl9//UWiKNJXX31Fhw8fps2bN9PkyZP18y+++CI1atSIfvnlFzpw4ADNmjWL3G43rVixgnw+H82fP58A0J49eyg1NZUuXrxo21eDBg2i2267zXRs8+bNBIAOHjyY9wvC4XD4uFQM45IRLjpxOEWP9QvdsWPH6O2336a///6bDhw4QO+//z6Jokjr1q3Ty3Tt2pXi4uLo2Wefpd27d9OuXbvo0KFD5HQ66ZlnnqHdu3fTnDlzqGrVqqYvj1u3bqW4uDiaOHEi7d27l1avXk0tWrSgIUOGEJEyhlarVo3GjRunjz92zJs3j+Lj42nx4sV05MgRWr9+PU2fPl0/f++991LHjh1p1apVtH//fnr77bfJ7XbT3r17KTc3lyZNmkTx8fF6G+np6bbtdO7cmUaOHGk69t1335HD4SCPx1OQ7uZwLmtmzJhBrVu3JiKiRYsWUa1atUw/TOcnOhEpY0zZsmVp0qRJREQ0cOBAat26tf43Fa7o9Ouvv9Lnn39OO3fupJ07d9LQoUMpKSlJ/5GOSBFUKlWqRDNmzKADBw7Q4cOH6fXXX6fGjRubYn3qqad0Ed2O/No6ffo0AaBZs2ZRamoqnT592raeDRs2EABavnw5paam0rlz5wp1L1988QVFRUXRzJkzac+ePfTKK69QfHy8qZ+mT59OycnJNH/+fDp48CDNnz+fypUrR7Nnzw4ak9frpYSEBHrmmWdo//79tHPnTpo9ezYdOXIkaB9xIgsXnYqY9evXEwD9i1Iwli5dSqIo0tGjR/VjO3bsIAC0YcMGIlIGr5iYGNMf9LPPPkvt2rXT97t27UpPPPGEqe6XXnqJevXqZTqWkpKif5EiUn5ta9GiBd19993UpEkTevjhh03l7eq1Mn/+fIqPjzfFp5GRkUFRUVG0Zs0a0/GhQ4fSv/71LyIKHLyD0bNnT3rkkUdMx44fP04AAurncDiB8HFJoSjHJSNcdOJwih67L4lW+vbtS08//bS+37VrV7ruuutMZZ5//nlq2rSp6dh///tf09/5oEGD6N///repzB9//EGCIFB2djYRKU6BiRMn5hnPu+++Sw0aNLAVfvbv30+MMTp+/LjpePfu3Wn06NFEFNo9ExHVr1+fXn/9ddOx1atXEwA6ceJEvtdzOFcaHTt21MUir9dLFSpUoGXLlunnQxGdiIi++eYbcrvdNHr0aIqJidE/nxCFLzpZ8fl8VKZMGVq0aJF+DAA9+eSTpnInTpwgURRp/fr1RETk8XioYsWKuggTCsHaWrBgQZ7XaY7vv//+u0D1W++lXbt2NGLECNOxTp06mfqpevXqAa7VV199lTp06BA0pnPnzhEAWrFiRZ5xckoPPJF4EUNqcmvGWJ7ldu3aherVq6N69er6scaNGyMxMRG7du3Sj9WqVQtlypTR95OTk3H69Ok86960aRN+//13fW5xXFwcGjVqBAA4cOAAAGVe8hdffIH58+cjOzu7QMkxe/bsiZo1a6JOnToYNGgQvvzyS2RlZQEAdu7ciZycHPTs2dMUx2effabHEA7W/gy1nzkcDh+Ximtc4nA4JYckSXj99dfRrFkzlC9fHnFxcVi6dCmOHj1qKte6dWvT/p49e9CmTRvTsbZt25r2N23ahNmzZ5vGhd69e0OWZRw6dCjkGAcMGIDs7GzUqVMHjzzyCBYsWACfzwcA2Lx5M4gIDRo0MLWzcuVK/rmIwykEe/bswYYNG3DPPfcAABwOBwYOHIiZM2eGXdeAAQNw5513Yvz48Xj33XfRoEGDAsd1+vRpDBs2DA0aNEBCQgISEhKQkZGR75iVnJyMm2++WY//xx9/RE5ODgYMGFDotkr6Xvbs2RMw3hr3z5w5g5SUFAwdOtQ0Lr722mt5jovlypXDkCFD0Lt3b9x6662YPHmyKScgp/TBE4kXMfXr1wdjDLt27cpzNSMisv1gYD1uTcDGGIMsy3nGIMsybr31VkyYMCHgXHJysv58zZo1AIDz58/j/PnziI2NzbNeK2XKlMHmzZuxYsUKLF26FC+//DLGjh2Lv/76S4/xp59+QtWqVU3Xud3usNqpXLkyTp48aTqmfcFNSkoKqy4O52qEj0tFPy5xOJyS5d1338XEiRMxadIkXHvttYiNjcWTTz4Jj8djKmcdM+zGNU2g0ZBlGY8++ihGjhwZ0G44yYirV6+OPXv2YNmyZVi+fDmGDx+Ot99+GytXroQsyxBFEZs2bYIoiqbrwk0+HOxzkcPhQPny5cOqi8O53JkxYwZ8Pp/p33UigtPpxIULF1C2bFkIghDwd+/1egPqysrK0v9G9+3bV6i4hgwZgjNnzmDSpEmoWbMm3G43OnTokO+YBQAPP/wwBg0ahIkTJ2LWrFkYOHAgYmJiCt1WJO4lr/FX+1z28ccfo127dqZy1nHSyqxZszBy5Ej88ssvmDt3Lv73v/9h2bJlaN++fVj3xikZuOhUxJQrVw69e/fGlClTMHLkyIA/vosXLyIxMRGNGzfG0aNHkZKSorsKdu7ciUuXLuGaa64JuT2XywVJkkzHWrZsifnz56NWrVpwOOxf4gMHDuCpp57Cxx9/jG+++QaDBw/Gr7/+CkEQgtZrh8PhQI8ePdCjRw+MGTMGiYmJ+O2339CzZ0+43W4cPXoUXbt2DRo7gHzb6dChA1588UXTKjRLly5FlSpVUKtWrXxj5HCudvi4VPTjEofDKVn++OMP9OvXD/fffz8A5cvKvn378h2bGjVqhMWLF5uObdy40bTfsmVL7NixA/Xq1QtaT6jjT3R0NG677TbcdtttGDFiBBo1aoRt27ahRYsWkCQJp0+fRufOnQvVRocOHbBo0SLTsaVLl6J169Z8tSjOVYXP58Nnn32Gd999F7169TKdu+uuu/Dll1/iscceQ8WKFZGeno7MzEz9M9CWLVsC6nv66achCAJ+/vln9O3bFzfffDO6detWoNj++OMPTJ06FX379gUApKSk4OzZsyFd27dvX8TGxmLatGn4+eefsWrVqkK35XQ68x1fgn0GKui9NGzYEBs2bMCgQYP0Y8bxNykpCVWrVsXBgwdx3333hRUTALRo0QItWrTA6NGj0aFDB3z11VdcdCql8Ol1xcDUqVMhSRLatm2L+fPnY9++fdi1axfef/99dOjQAQDQo0cPNGvWDPfddx82b96MDRs2YPDgwejatWuANTEvatWqhfXr1+Pw4cM4e/YsZFnGiBEjcP78efzrX//Chg0bcPDgQSxduhQPPfQQJEmCJEkYNGgQevXqhQcffBCzZs3C9u3b8e677+ZZr5Uff/wR77//PrZs2YIjR47gs88+gyzLaNiwIcqUKYNnnnkGTz31FD799FMcOHAAf//9N6ZMmYJPP/0UAFCzZk0wxvDjjz/izJkzyMjIsL3He++9F263G0OGDMH27duxYMECvPHGGxg1ahS3kXM4IcLHpaIdlwBFkNuyZQvOnz+PS5cuYcuWLbYfYjkcTuGpV68eli1bhjVr1mDXrl149NFHA9w+djz66KPYvXs3nn/+eezduxfffPMNZs+eDcD/C/zzzz+PtWvXYsSIEdiyZQv27duHH374AY8//rheT61atbBq1SocP3486Jet2bNnY8aMGdi+fTsOHjyIzz//HNHR0ahZsyYaNGiA++67D4MHD8Z3332HQ4cO4a+//sKECRN0UaxWrVrIyMjAr7/+irNnz+pTg60MGzYMR44cwahRo7Br1y7MnDkTM2bMwDPPPBNOl3I4lz0//vgjLly4gKFDh6Jp06amrX///pgxYwYAoF27doiJicGLL76I/fv346uvvtLHAY2ffvoJM2fOxJdffomePXvihRdewAMPPIALFy4UKLZ69erh888/x65du7B+/Xrcd999iI6ODulaURQxZMgQjB49GvXq1dM/pxWmrVq1auHXX3/FyZMng95TpUqVEB0djV9++QWnTp3CpUuXCnUvjz/+OGbMmIFPP/0U+/btw2uvvYatW7eavr+NHTsW48ePx+TJk7F3715s27YNs2bNwnvvvRc0pkOHDmH06NFYu3Ytjhw5gqVLl2Lv3r1h/UDKKWEikUjqauDEiRM0YsQIqlmzJrlcLqpatSrddttt+tK4RKEvTW5k4sSJpmUu9+zZQ+3bt6fo6GjTEuJ79+6lO+64gxITEyk6OpoaNWpETz75JMmyTK+88golJyfT2bNn9Xq+//57crlcepK2YPUa+eOPP6hr165UtmxZio6OpmbNmtHcuXP187Is0+TJk6lhw4bkdDqpYsWK1Lt3b1q5cqVeZty4cVS5cmVijOW5NPnWrVupc+fO5Ha7qXLlyjR27FjTqhQcDid/+LhUtOOSdQlibeNwOIXHmqT33Llz1K9fP4qLi6NKlSrR//73Pxo8eLApiX+wxQYWLlxI9erVI7fbTTfccANNmzaNAOhJwomUFZJ69uxJcXFxFBsbS82aNTMl6167di01a9aM3G530L/zBQsWULt27Sg+Pp5iY2Opffv2tHz5cv28x+Ohl19+mWrVqkVOp5MqV65Md9xxB23dulUvM2zYMCpfvjwBoDFjxgTtnxUrVlCLFi3I5XJRrVq1aNq0aXn0JodzZXLLLbdQ3759bc9t2rSJANCmTZuISPn7rFevHkVFRdEtt9xC06dP1/+WT58+TUlJSaZVfr1eL7Vt25buvvtuIgo/kfjmzZupdevW5Ha7qX79+jRv3ryABQmQR3LvAwcOEAB666238u2HUNr64YcfqF69euRwOEyf2ax8/PHHVL16dRIEQV+9uDD3Mm7cOKpQoQLFxcXRQw89RCNHjqT27dubynz55Zd03XXXkcvlorJly1KXLl1Mi99YYzp58iTdfvvtlJycTC6Xi2rWrEkvv/wySZKUb19xIgMjskxw5XA4HA6Hw+FwrlBef/11fPjhh0hJSYl0KBwOh2PL6tWrccMNN+DYsWNXVA7bnj17onLlyvj8888jHQqnBOE5nTgcDofD4XA4VyxTp05FmzZtUL58eaxevRpvv/02HnvssUiHxeFwOAHk5uYiJSUFL730Eu6+++7LWnDKysrChx9+iN69e0MURcyZMwfLly/HsmXLIh0ap4ThohOHw+FwOBwO54pFyyVy/vx51KhRA08//TRGjx4d6bA4HA4ngDlz5mDo0KG47rrrLns3EGMMixcvxmuvvYbc3Fw0bNgQ8+fPR48ePSIdGqeE4dPrOBwOh8PhcDgcDofD4XA4RQ5fvY7D4XA4HE6pYtWqVbj11ltRpUoVMMbw/fff53vNypUr0apVK0RFRaFOnTr48MMPA8rMnz8fjRs3htvtRuPGjbFgwYJiiJ7D4XA4HA6Ho8FFJw6Hw+FwOKWKzMxMNG/eHB988EFI5Q8dOoS+ffuic+fO+Pvvv/Hiiy9i5MiRmD9/vl5m7dq1GDhwIAYNGoR//vkHgwYNwt13343169cX121wOBwOh8PhXPXw6XUcDofD4XBKLYwxLFiwALfffnvQMs8//zx++OEH7Nq1Sz82bNgw/PPPP1i7di0AYODAgUhLS8PPP/+sl7nppptQtmxZzJkzp9ji53A4HA6Hw7maiUgicVmWceLECZQpUwaMsUiEwOGUaogI6enpqFKlCgQhb0NiTk4OPB6P6ZjL5UJUVFRxhnjFwcclDidvCjsuEVHA35bb7Ybb7S50bGvXrkWvXr1Mx3r37o0ZM2bA6/XC6XRi7dq1eOqppwLKTJo0qdDtFxd8XOJw8oZ/Xip5+LjE4eQNH5cCiYjodOLECVSvXj0STXM4lxUpKSmoVq1a0PM5OTmoXTMOJ09LpuOVK1fGoUOHrrgBqzjh4xKHExoFHZfi4uKQkZFhOjZmzBiMHTu20DGdPHkyYFnppKQk+Hw+nD17FsnJyUHLnDx5stDtFxd8XOJwQoN/Xio5+LjE4YQGH5f8RER0KlOmDADgetwCB3MCDKpSzgBVMWeCqpwbFXRm2GdKWaY+mjcAEJQ6jMcFwXA9Auu3tmF3HgBCnZFIBNgV1arMrxohn18PQvp1gYVYzv7SPK9lTLlHWb0Rkv3nBAEQREAUQHr/G85p10qycr3XCyZJat8ywCECoghyOmDqKO06474BYgwQDa+5fsJ/jSwa3gsMehwsR4Lgk/wvjwDITgfgFACfDOaRwLwSGJESk1anTIAsmV9v7RyZ24Ysq+XIX05/SgCU/vCRByvT5up/K8HweDw4eVrCoU01EV9G6eC0dBm1Wx2Bx+O5ogar4sY/LvWFA84IR8MpDgSBUKdpFl765CDiE5Vjh3a5sW5pPOo0zsH0V6pg4OOn0GvgxUiGidlvVcL+7bFgkKGM4erwSsq/kzfecQGZ6Qx//RoPxgCPV8D+rdGQvMWbptEHL/7E4kKNSykpKYiPj9fLFoXLScP6i7uWPcB43K5Maf6lXutra79xrjy2r9mDz8d9i56DuqDHfZ1LpM0LZy5hWMvnkZOeg2dnDsf1d7YtkXaLkrS0NFSvXp1/XipB+Lh09bBz4wF88e4S9BjQBt3ubFMibV44m4bHer+NnKxcPD3xPnS8qXmJtFuU8HEpkIiITtoHPAdEOCBC+UTNAIEpX/iZYCoXIJwYhCRzGcH/XFD2TeIVE8xiRDBxKT/hqaREJ7tYAs7n92G5GEUnAAABTL0RZhSDBEAUFOFIFwINN05QxBoJgCSBSQIgq+cFBsABCCKIiWp96hcvTXRiAGn3Zg1RFExxE4MqFCnNCqIQKDpBBnP4wJh6P6SITszpADkEMEEGgwTGJDBZu0bdJFK+ERIBMsBkVXzTxSXj+8AiOsmkx0+kCnCGfgz1y1BsnLIBSjic8PGPS05FDOdccfznlWO4/eFzAET9WPO2PjRvex6bVsah1fW56P9wuul8JBj56jkA54KeJ1KGr/sfvwQAeHlwLRzwueEobu1EG+oLMS7Fx8cXy5eUypUrBziWTp8+DYfDgfLly+dZxup+Kk1ofV1c/cYpPbw7+COknUvHgQ1HcMewviUihl48kQ5fhgQHcyLtdOZl/R7jn5dKDj4uXT28N3Iu0i9m4eDWH9DvgW4lMy6dyoIvB3AIbqSf81zW7zE+LvmJiOhkRnM4ad+91f/bCU6aCMIsZYwOJs3dBGbWS4yOJ23feA6w37d7s4TqfrITREznLddbqyhOwSkUQcnqKrKDtP8ZRT8or4NpDquhLZ8M5pMArxfwSYCkWgoFVQyC4BepSK1LE5wEQa1bc0+xQHeRWh6M2et6dq+LwACXw/9tTj1GDqU9khUVijHB7FIy3BNkGczjU6+3uJlkdV8Q/Pdr6VvGBJCgOhvk8BwLMgiyerdySGomh3N10LBFBmo2ygED0LxjetByTpeM6/teLLG4CoN16K53bRZEJ+GvX8vA64msYGakJMelDh06YNGiRaZjS5cuRevWreF0OvUyy5YtM+V1Wrp0KTp27FissXE4oVC+ajmknUuHK9pVLPUvmf07Jg+bji4DOuCFz0cCAGo0qor/ff0kUg+dxh2P9ymWdksb/PMShxM65SsnIP1iFlxRxfNj7NJ5G/B//5uHLjdfh2ffuw8AUKN+Zbw4bQhSj57DbUNKxvUZaa6GcakUiE6a2MIUK7ygGk1IE5XU84zp2oYmDOi2eO3Lu1YGqhNGM40IzOwu0dA+uRuFBuu+9dzlRGHjDtXRZRD09Kl0ogAyOY7I7xCSZXUzvCaa4ORwKNc5BEBkIH2KJBTxR2AgQW3TYGzzPyGDQOXXo5gSgn+HGffVHQEgMjikBAZi6owWgYG5BJDDPwNQvS0wEJiPwCRZeS6p7iaZFIeVJPsbs0770+IgUt7/mvgY5qKSMmTIhuccDgdo2TUd4+ccDKlssw5ZxRxN8TH42dMY2rlhqRKcgMKNSxkZGdi/f7++f+jQIWzZsgXlypVDjRo1MHr0aBw/fhyfffYZAGWlug8++ACjRo3CI488grVr12LGjBmmVemeeOIJdOnSBRMmTEC/fv2wcOFCLF++HH/++Weh75XDKSwfrHsdK+etQ6ue1xaLm2DF3DXwenz4fc6feHb2CIiiMl50HdChyNsqzfDPSxxO6Ez68Rn8+dMWtOzasFjGpZWL/obPI2HFws14+p1/6Um3O9/SosjbKs1cDeNSKRCdzE4mFmxqndGZwxiY5qKxy+ekOZ1g2Le6nArjdLK9jSDlwhJuQisatsMpv9xQdnUHi9vYd0T+/EkC8+dTEgSDKwmq+AKAJMCn5EWCz6c4fmQZEEXA4VA3EXCKfieT5mYyOZ1gcVHBH48mfGluKOM51USk7MMvPgFgRoVK7UJd9BKVggTRb6rS3n6ykhNEyJXAcrzKPQiKeMRkWXFAMfLfi3a/WkxEBucTQptyyeFwAiiX5EXTdhlYv6wMcrOVf9qq1s6GLNsPF6WBfVujcem8iBadM/RhoaD0e/AMsrMEkMxA6hRhRdPWpq0r5c6mOrH827LIzigF//znwcaNG3HjjTfq+6NGjQIAPPDAA5g9ezZSU1Nx9OhR/Xzt2rWxePFiPPXUU5gyZQqqVKmC999/H3fddZdepmPHjvj666/xv//9Dy+99BLq1q2LuXPnol27diV3YxxOEFxuJ3reX3y/6t//Un94c73ofFd7XXCKFKt/3Iy3h81Aixsa4+XPh5fqvGpGatWqhSNHjgQcHz58OKZMmRKBiDic4sUd5UT3u4ovl9O9I3vB55XQuW/zfFd5K27+XLABbw2ZgpY9m2HMvFGXzbh0uVAKPnUabCOk5LVhYCAZaj4m9bzRXQLYu5xM1Rnr1fLnyPYCk9XNJJNfsCi008loqSkBivkPhFQXExiU5Nuy5lxS25YYIKr9LAgmJ4/ubFKdQ2BKknByiCCHQxWfBP8UOu2bErP0oMEJpDma1B0tz65yzNi28VETsNTqAb+rST/ISD3mr5+MXcv81TMCJJcAWXACUaJqziMlBI8EIdsHweMD8/n8Ti/d1USmOnVhKkynk0QESb1GCvNaDudK4NXPD+KlQXV0walx60w89kZqhKMKTtp5ERMeq47pK/YWiSh220PnQyo3tEvDEhOcCjMu3XDDDXoicDtmz54dcKxr167YvHlznvX2798f/fv3DysWDudKoEnHhnjnt7El1l5GRg4uXMxC9WrlAs6t+n4jcrI8WLt4C7LSsxEbH1NicRVmXPrrr78gSf5VprZv346ePXtiwIABRRojh3O10KR1bUyYM7zE2su4mImLp9NQrUFywLmV365FTlYu1iz867Ialy4XIiw6MRjzADHBv68ITiG4nABzUmg9n5ONyylYXierUGN0yOSb9yiPbwv6/L5CuqBM7VlFM0P7zOZ8qPXYnbfER4Kg5D0SmCI4GQU1mfyhSPCLPoDu4GGyQfwRRL8byeVUHE6ai8niRNOj0AQgo6vN4GjylzPHr2mQWo2yccqesW5mfFSPG11WhvtR6lSm5ClJ8AFyiaYYZJ8MB3kheGS/Wq4JTbLBOqmeYwTFoVAAroa5wByOlZgyErrdeR4Hd0ZDdMjoe/9Z7NoUi9gyMraujcEb/6kBh5Nw+9AzqN8sp9TMlD6wPQp7tkRj0LMnC/TPQGF4dOxxZF4S9d9TVi5KxNol8X77ZhHCxyUO5/Jkx5o9SKhQBtUaVCnQ9VlZuRj04Me4eCkLzz/TFzf1utZ0vv/jvXH+1CW06takRL/YAYUblypWrGjaf/PNN1G3bl107dq1yOLjcDj27NxwAPHl41CtbsEW/8hKz8aDjUfh0tl0PPPJMPQa3MV0/u6nb8OFk5fQunfzy2pcAoCpU6fi7bffRmpqKpo0aYJJkyahc+f8nbOrV69G165d0bRpU2zZsiXsdsMh8k4ng7tENxWZpsFZyxtyOYVKsCTfWoN5uZny+kbAGJR1rFnw6wMvsn3qT8hdAEJuuoB9JjBFcFJzHxEY4BCUJNuAP2xS8hqBoCQI9/kUd5NWH9PUHKY7oUgUDHmTFMeRPxm8MR7o7Wv1keEcGcsb+1KrmynTTEi9H2Uannqc4BeztCqYmjtKc1z5q/Nfk0/3ySKDXMYJwS2Ced1gPglCrg9itgfI9Sp9pbmftJxOUOMI860ggyDxL3ecq4zBz5zE7s0xGPLcSdRu5MF/7yuP9xbsxwPtrwHAsHKhC/2GnkGD5jmRDtXEyw/UwszVu+GOwEq4bbtl6M/3bY3G2l8Si60tPi5xOJcfv3+9Gm/cOwmiU8Ss3ZORXDv8L3iZmbm4eEnJk3c0JXAlzvrNa+LtRc8WOtaCYDcupaWlmcq43W643e486/F4PPjiiy8wahSfhsPhFDcrvvsLEx6dAYdTxCfrXkFSjQph15FxMQuXzioLyqTsORFwvn7L2njn15cLHWtBKMznpblz5+LJJ5/E1KlT0alTJ3z00Ufo06cPdu7ciRo1agS97tKlSxg8eDC6d++OU6dOFSr+UIis6CQw/0BtdDgxIdC1o7pbmNEFY8rrBF3UMLmcDNfC6pCyPoaa+8j0j0segpMusgStSHnIzxEVcJl2H9ZYENhn+ZGfeiIYEoJr+ZtEwSwMaVPCPD4lKJLVBNqqxUlvw+hOUut1iorLSVSn1YnGemEWX0jJTqILR4ZV6sx9AItgaTlvnEpndDYZ3V0CU/86FAEooCtlAkiNJkA8VOtzCOqMPgEQCUIug+CRAYnU3GWyoU2m7Oshh/cBhjsKOFcTrigZ9486iXY9L6Fdz0uIilX+dsbOOoSECj68+/1eyLLixYwvK+VdWQQYO/tw2K6rpXMTEZcgoW33dDiKaBGZGg2y8c6CvQAxZGUImP1WZRzcHoPQf8nIGz4ucTiXHxkXFGFa8krIzfKEdI0kyfhz2Q5UrloWDa+thooV4/HKy7fj4MEz6F+M+WAKgt24VL16dVOZMWPGYOzYsXnW8/333+PixYsYMmRIcYTJ4XAMZFzMBAD4vBJyskMfl/5YsAGVa1VEo9Z1Ual6ebz09ZM4tP0o7nqib3GGGzaF+bz03nvvYejQoXj44YcBAJMmTcKSJUswbdo0jB8/Puh1jz76KO69916Ioojvv/++wLGHSuSdTqY5S0oCasaMxxEw3Uo/Zq0ivw/K+TmbQs3fZBJqNJsMLEJHkFiNl+nn9f8ZzuXzhiuqH1Ws0+iszyVJcXM5HH5HkTZLTmCK24kBTBYAUQDzymAer+5wYgb3DmmikiAozwUGErXjAkhgkEXFReV3KDE1CbkiXjFVxzL1tVWcUoJXVqIzdqtBjNJEJz0HlGFTRC1oiyqanU3GNgWAGdowvaTkn60iiUqDvignhDgRQoIbgk8G80oQcrwQMnOBXA/gYYDXG5jrKQSuhrnAHI5Gr4HnMfCxMwHHGzRTHE1N25YuZ5OV+teGF9/xQy78/GUFTPxhf/6Fw8AdBVzbLhsA8NWkSji4PbZI6+fjEodz+dH33z3ginahfJVyqNWkev4XAFg0Zx0+fGsxBIFh9s9Po1JyIrpc3xBdrm9YzNGGj924lJKSgvj4eL1Mfi4nAJgxYwb69OmDKlUKNgWRw+GETp/BneGOdqFc5UTUbBja39zCaUvx0fNfQRAFfLrzXVSqVh6d72yLzne2LeZow8duXArFgenxeLBp0ya88MILpuO9evXCmjVrgrY3a9YsHDhwAF988QVee+21oriFfImo6MSYoAsyusNJcxsZczhZ3Tt5OZwAVRAQgl9j9xjOCm/Geo1Op/ycR6bjlh2r2GMntOUbi81jXgQkYbd8KdAMOMwvFulJvkUB5BSV4zKUFdt80IUhvw7I/NeoopM+VU+tR69bE5xEi1hEAJPhzyEV4GRCcBHO9Noo+2TZNwlJYP6pdsYUJwH1G1aEYgjUEO12RAbIioOKoIhpguQFkwiQCSRLBcvzBeUlkA3POZwrmT8Xx6NH//No2CIbR/ZEYdUPCahaNxeLPq2ATn0u4rYhZxFVstPxi5XKNTx47oPD+loYxTGT4/aHz6DzLRdBAHb/HYsZr1bGxbOuQtXJxyUO5/JDFEX0HnJjeNc4lNXwmMAivgJVftiNS/Hx8SbRKT+OHDmC5cuX47vvvivq8Dgcjg2iQ0TPf3UM6xqHU5E5BIFBFC+/cSkUB+bZs2chSRKSkszToJOSknDy5Enbtvbt24cXXngBf/zxBxyOkpOCIut0EkVoU8WIMVV4yuMTtXbO6lhSH025nozCTX6f0JmhfDgY27cTrUIVoKwUxd+Ffv95FWJmV42+oppNXT5ZFWMU0YdJAgRJ/QYky2CyDPhkMI8PyPEor4V+PwzkdoOcAsjlADlUt5Mm2DCmuKZEpopShsTduotJFSct8TEo53VHle6Egv/etWPajprPScnZZHE7ycotQiKTAY0EQHaYY9JzfpO/jO6mgvW8IsZJbgbZKaoxifCWcULIjoaYI0HIyIGQngVkZgOe8KYESYa5wFJ+LjkO5zKn622XcE0rxaEz+83KuPepU3j1kVrIuChi4sKzRbIaXGlCFIHkGr5ibSMmjhBTT7GsTxxVo9CCE8DHJQ7nauHmu9sgqWoiKlVORIWk0MWbSFAU49KsWbNQqVIl3HzzzUUZGofDKUJueaQbkmpWQFL1CiifXDbS4eSJ3bgUjgPTmlcuWP5rSZJw77334pVXXkGDBg2KIvSQibDTydBJquDE7L4tWHM4GY/ZuZyMYlN+Dic7d1KowWsuJ2sdwdxGwab0Gc8VRPzKq91gdQVz1FgtO6rTTHMnMUBNLK72uZq7iREU0ckrQf85XqvD4VBWvXOJgNOQD8roJhKZP1eUvkKdIQ5dWPIf1wQnPemScQqc8W1kFKGYP4E4RMFwHH4TVcCqfWpMhqTiuiClNi1DFZxE5o/VIHoxWO5HTekEAAIECJIPglcC8/hAvvC/XEqkptCC/5HDuZK4/+mT2L8tCuuXx+OHWeXx23eJYAzw5DD8/WdddLntIhLKSvhhVjn0vf88XPnPjuAE4Y05B5CTpQyi86ZWwsKZFeDzhq/k8XGJw7k6EAQBbTuXvql0dhR2XJJlGbNmzcIDDzxQoi4BDocTHoIgoN1N10U6jJCwG5dCcWBWqFABoigGuJpOnz4d4H4CgPT0dGzcuBF///03HnvsMQDKmEZEcDgcWLp0Kbp161b4G7Ihsr8Ha8mgDVPqSJ/CZdiCuZU0hxIURc/W1ZPn6nOFCZ6ZHgJPW4QfU8Jq41aoIPIOTxc9lOlb+qa5hexyB4mCf1P7n5yisrlExa0EKKvTZXuBXB/glZRHn6TkgJIkJTeRJKl5oNQV6tScTZJThC9KhBStPkaJkN0iZAeDLCqrvpEDkB2A7FQ3FyC5GGRtcxo2h1KvLKrXOABZMGzqPqmbPh2OCMp//nKSE5CcDJJDdVzB0E+yv7+07tOeM9NB8rcrGh5Fy76DQYoS4El0Ijs5Btl1ysFTtzLk2lVBlSuF9XLLlo3DuZIoW9GLjjddwrqliSBZAMkC0i84kXbeiZwsB3KzRQx57iSWflMWtw/lglNhiY4llK0oISZOxvyPKhVIcAL4uMThlDSST8LctxZi3ruLIEmRW0ThxMFTmD56Drav2WN7fvGCTRh274dYtXxHCUdW+HFp+fLlOHr0KB566KGiDYzDuUKRfBLmfbwC82esgiRF7tPAicNn8PHY+di+3j4/5s9frcHwXhPwx09bSjYwFHxccrlcaNWqFZYtW2Y6vmzZMnTsGDgdMT4+Htu2bcOWLVv0bdiwYWjYsCG2bNmCdu3aFeY28iSyEr1FTGKawJRX+YD9EFery8vhZKw3T5HKKiTZHLO5L7/DxRK/0eVk9zwUgrmpTPdkPJ9HGzbinjLtTRP/oLp2yK+0qEKLslqdrLicNLeWIKguJxFwOkAOEeQQlGl0JrHREK/RUWQSzgLdRQDUhOXWgxYsTqeAdrRHvTnyT9uDYaqf1elkCE+21m9xT5n6Tnc9GabwMQZBAgSJwCQCE0X7ewmCDAZJjUYunJrK4ZQ6Lpxx4PE+9WGQeAEA17TKRM+7z2P/tmhExcj4avNOSD5AEItPzy8K5rxfCWUretCj/8UiW4muOHBFERYd/geyBIAYjhwS0bhH6NfzcYnDKVn+/G49PnnhCwBA1XqV0bFfZFaO+78nP8XmX7fjl9kr8F3qRwHnZ0/7DZcuZOGLj1eiS48mJRpbYcelXr16KT90czickPhzyXbMfPtnAEDVWhXQvnvjiMTxwbNf4e9Vu7Hkq9X4du97AednT/gRaecz8eXEX9D55utKNLbCjEujRo3CoEGD0Lp1a3To0AHTp0/H0aNHMWzYMADA6NGjcfz4cXz22WcQBAFNmzY1XV+pUiVERUUFHC9qIju9ThTBYHAy2TmamPW5KjQZ961f9mHcZzbHbMrDUsb6DwozPLEKIqa6GAKSodthzE0UbPU4u/ZD+XdOt90Y4jLmFzK2YY1Rm/qmxscAkEwgB4GcDgAEJglgXsmwMp2gCjNqXi6XS3ETaS6pKBdktwPkZLropOVwIlGJTxN2tJxIZOxfTbjRY2L++xGhJBknZpoWZ0gDZdM5BoFK6w8ZalxQVuGTCUxk/hxSDGASKXEJanwgQFLfCqpzSfMO6u2LlnRSxMBkzSLF4BOUMgAguR3wxokQvG4gQwTsfyC0RTOxac85nCsLBskX+Afd9/5zWLUoEUOeT0VcwuXjpfnuowqYt2NnpMPIF6YO5wqE5Bq5YV3PxyUOp2SpWj8ZolOEwBiS6wZOrSgpajephs2/bkfNxtVsz98+sB2++2odbu1f8qIYH5c4nJKlau0KEB0CGGNIrlEuYnHUuqYq/l61O+jqd/0e7IrvZ6zALYOvL+HICjcuDRw4EOfOncO4ceOQmpqKpk2bYvHixahZsyYAIDU1FUePHi3iiMOHUQTk+rS0NCQkJKB7mfvgYK7A1eiMuXlshBvGjLmdDGWMj0bXlMnpZKkz1JxH+vVq2zar7PnbDkGhNL6jjIm8g2EnhgVzOVnbD/butbtH7Vr1GhKYf3qdU1RcTV4ZTJL9Io+kTDtj2vQ60hxSIsjtgBzlhOwSAYcA2aUKVAIUAUpNvk1acm+jY0jTh/QplPAn54ZyTlAFI9OKeVCtiXnol8aDWrt67iYwPU+VUciStb4V1FhkgiAr9fpcaiJ0VQ/T7oMZ38uyJpBZYhCVe4GPwCTAmeWD7MnBnytewaVLl/Kcz6v9La3fURlxZZT3Zka6jHZNTuZ7LceM1pc3oB8crBTbTzgGCDfcfhFPT0yB00Wl2t1kRJYNv5kUQcxfTa6EuHgvbhl8AYIIpJ0X8cbwGnh2cgrKVfIVWb+kpcso2+AAH5dKEK0veb9xQuXCqYsAYyhbKSFiMRARUvacQHKdJDhdxfv7dqh/I3xcKjr4uMQJl/Nn0iEIDInl4yIWAxEhZd9JJNeqyMelCBBZp5PbDSY4ESAHGNwlYU+3C5b/CTb1hVO39u0gmMgVbLpdXkJSKA6nfOOyHLc7LfidS/7ygO0ST4aYSWCAQxPvmF+UkhSHjx63JhSquaAIqmsoyqXkanKKyr6DqYITg2xYOY4ENX+SYHQ++WPRnU2GjamPpB0zmBz02zS6pYzHZVWo0ooZXGC6Q8nB1G5ggYv5MYBEJV6ZACYpOZokF/MLTWqMplRjqlilCXqaWUrfcSq5rLxOJ3zecFev89syJds3gT3Tpk3DtGnTcPjwYQBAkyZN8PLLL6NPnz5htc/hlDQOpwxRJHTvfw4u9+X1c3VRr6637JtETFu2F4Lqmty1OQrJNXNRPqmoV7wLr58LOi5xOJyCUzYpMdIhgDGGGo2qFvh6WSYIofyAWwD4uMThlDzlKpaJdAjKuNQgucDXy7IMoZiWR74axqVSsLC0TccWRHAKdj6YIFRQ7ASngsQXLqGKUsGKhXE5kZJcW5lGxpSkZuqKdbpoopUx7OvXM6aITwJTkogLDLLAIDN1g8FdpDucmO56khnUsoqWJEFdHc7m0TA7Tt/IUL81MZtsvRYwtW+8H2PbsrEuLUE5U0QnCYBPVI7BUG+wmAPaN748ZHoIGZmYaQuVatWq4c0338TGjRuxceNGdOvWDf369cOOHSWf3JPDCZV612bhu93bsfDAdrS5MTOsNHhXIrNW70VUjH+/bfdMjHzzRMBvDYUnvH/XCjoucTiXI8f3p+LMsXORDuOyZ93qfbil25t48j+ziyXpMB+XOFcTfFwqGtYv24bb6zyFZ25/j49LBSSyicRdTkBw+fe1VcLsVlXLC9tE4UbHEQJFIH3fxhlFBhmACcEdUsZ2g+VxysvtZE0grrcdJnZJy62E8IuR7vIxWA7J6QC5HYA6dQwiA8naNDsJkNUk4owpYpXIAIdDmTrnEiFHC5Cdah4ndVqdFq/iclIFHwf8bifVBWW8Ie0twQggWZn2xiQoapAmFln6jrS+sTGtQfBrm0azkXYdCQzQhCRD3/ljVtxOeoJ1GYBMlpXsDDEbg2JMd1Ux7eZUJYqpbSC8POIFVshvvfVW0/7rr7+OadOmYd26dWjSpGSTe3I4odK0XQbc0Ve50pQHxTfNkDudOBw7tvy+Hc/1eAWi04GPt76Lag3sc4Zc6Xg8PmxavQ/1G1dBhaSCTe9bt3ovvF4JO7Yew4XzmahQxA4JPi5xrhb+/m0bnu85Dg6nA9O3vYdq9Qvu8rmc8eR6sXHJFjRoXRcVqhQsp9S6JdvgzfVhx/oDuHQ2HeUKOL4F42oYl0rJ6nWWn2MLKjgV5LwtVhnCUl9e9Wort0UKzX4UQgzW2Xb6PREpzibG/GKTTIr4orma1HljBDI7lgTV5eQUITsFSA7VISUwfYU3TcDVp9bpx/1uJ1Nclpg1UUeG/+2j5Xc335SN4KTVwxQxSNeqjeU0F5ZdZxm0SrJLGmUzi5EMlxmfB1RrFafCQIIASVXqtIl5aWlppjJutxtud/C15CVJwrx585CZmYkOHTqEFwCHU0LUbJCDof9NVf6ZCP4nzikF2I1LHM6VyOmjZ0EE+Dw+nEu9cNWKTh+/vRiLvl6PshXi8OWvzxdoKkr/e9rj7Jl0NG5arcgFJ4CPS5yrB21c8np8OJ964aoVnT4cNRuLpi1FueSymJPyYYHGpbuGdcf5U5dwTevaRS44AVfHuBR5pxNz+F0qJKuuD22eUh7fvO0Satu6kSzX5eVw0ssIepF8p9EBZheRXTnjMS1uLc8SmP29hEqAsyqEGGAvjGjlyCmCXKKSo8l4XhObBAY4RMXl41DvxaE6mtRH2cmUpOGiP1+TlsNJe000R5HuHhKgiFx6kJbX3+AeMs6d01eY05QifXpmkD4T/E4jvZytG8rgojKGwaA4ukT4HVm6RckcLxnjA/wqF5mvIwGqawxgEgKTjecDGeyYpD5Wr17dVGbMmDEYO3ZswLXbtm1Dhw4dkJOTg7i4OCxYsACNG0dmOVMOJy8SK3jR+dYLcAXXTq8qZBnYsyUanhyGRi2z4I6KdERm7MYlDudK4sA/h7F34wF0GdABGRczEZsQg2Zdrt5/P3NyvAAAr0cq8LTnajXK47W37ynCqMzwcYlzpXNg6xHs23QIne9qh8xLWYhNiMG1na+JdFgRIydLWXnXk+NBQddPq1YvCa98/p+iDMvE1TAuRVZ00rIsG+0q4b4ZQs3tVJTYTcczTo8rhU6nvHqVdOcSAyRZEVIkm3sQYFp9Tdd4VBFGFlVHkwjIopK/SUsIruuKgl9T1Oo0riCnxxpEM9SOEfn1HrIpq85gsxqY/KKURXUjgu7Eslam36M27Y8pfUbE/G4LY+yWOAD/W127V70pdfodk7XpgrCvKB/sbJkpKSmmVQ+CuZwaNmyILVu24OLFi5g/fz4eeOABrFy5kgtPnFJFQjkfZq/Zheg4Pq1O49O3KuPr95Mw7tODpU5wAq4Ouzjn6iU7MwdPdPovcrM8OLw9Bf+ZOCTSIRUZsizj9X9Nws61e/Hil0+E/IX1Py/cgsbX1UDTFrUgiqUgbawNfFziXMnkZObgya5j4cn24MiuY3j0rfsjHVKRIcsyxj/+BXZvOYrnJ92Hpm1qh3TdiMkPoWmna9D0+kYQxTDzl5QQV8O4FNl/EQRBdcwwdTkf9du7ugoaBJtNmwJmt68/N2yA/7i+CpvgVwN0R4vNZl0Nzy53VF7P7QiozxKfKAS2ndcWUH9gPGRX3qCGMCJV9JCVTTYbgBiUN4pgWPENggA4RSDKAYpxgqIdkKMdkGNEyFGi4nJyAnAqbiHGAHICUhQDuRnIxQAXAxxQ8jk5ADiUff/GFOeT7QbDxpTV5rRzxueGt5Vyv6rIY+gvApT8TE7m3xxKG8QA2QHIUQC5/KvrMYGpMaudI8ISu2Gzxm7IWaUJToKk9K8abnCXVhAkEkwbAMTHx5u2YKKTy+VCvXr10Lp1a4wfPx7NmzfH5MmTwwuAwylGyiV50euec1xwUiEC/v4jFg6XhJsHnUFyzVws+yYRC2eVw6JPy+GH2eWwa3N0xBOs241LHM6VgigKcLqdAICo2CvLfnn2+HmsmrcWZ4+dw69frAr5uphYN/rc1QYH9p/CvX3fw6cf/qafy7iUjf/77zx8OekXyHLRJ+INFT4uca5kmCDA6VY8JVExV9i4lHoJf/68FWdTL+L37zeFfF1sfAz6PtwdB/45gn/V/A8+HfuNfi7jYiYmD/8EX7w2n49LxUxknU6yrC8fD8AvCuX1SZkhPBdIfiKQ1Q5T2DqticERPNygtRThFwXbqphNGQbIogjZJYJcDpBLAImCaZ4X05Jdy6Q4d9Rpc5KTgRwMsib26DYepsyYZH6Hk9aW7hzUXnJD/iV9Ch5T29Sq08xwUNqW1Rj0m9ScWIYb13I3Ge89oE+YNnPQ3wDTnmrvN21fUM1IDIBEELzwl4ciXpGWLJ1gWC6P/PsWiAGSpjVKpGy+8AY+GQyyqmTJhXwDERFyc3MLVQeHU1QwRvi/n/egQuUrdZZ7+Pz8VTmcTnFhyAsnAQBP31EX29fH6efrNMnGLYP3RtR0CxTtuMThlDZcUS589PfbOLQ9Ba17NY90OLYc3HoEiz9ejm73dUbj9g1Cvq5itfK49T+9sHPtXtz8aM+w2/3hmw04dyYd8z5fgweGdQMALPlmHRZ/uQYAcN31DdCkdZ2w6y0K+LjEuZJxR7swbf0bOLLrOFr1uDbS4dhycMcx/PLZKtzYvx2uaVM35OsqVknEzfd1wK6/j6DPv9qH3e7CKb/g3IkLmPfuIjww9m4AwM8zf8NPHy8HALTo1hRNOjYMu96i4GoYl0pJInEVAcocJ2Peo8CL/F/gg5Yx1K8/t1ENbVxBedZht2/Xfgh5nZidYyrP+w4fsnNDCTaqC2PKKnWxLsWt5BBADuaPg6DkG9IEEZlUkUrJ3WQWnJghPxR0JxKJqpvIwUyiki4CGcPUzmkVaY+i8lwRlZieZ0oXmSSYvXsEMFKdRfr8NpjvX2tfcyABENTvtiSYRSRlXxXHJMDhBQSfXxiT1BX4mDZ/znBbzCBMMWPeKbU8CQCpjidRAuBDWBTUlvniiy+iT58+qF69OtLT0/H1119jxYoV+OWXX8ILgMMpJipW8UAUr8x/gAtKnSaZqNUwS9/v/a9zaN/zEo7ujcLvCxNx4YyIGa8lgxjpwx8xoGx5CT3vOYfEciXza97VYBfnXN1UqlERlWpUjHQYQXnnoSnYt/kQ1i7aiC8PTwv5OsYYRk55pMDt9h/UEZcuLkevW67Tj13TshYcLhFlEmJQtXalAtddWPi4xLnSSapZEUk1S++49O6ImTiwNQXrfvkHn/0zIeTrGGN47NW7CtzugKdvxSejv8JND96gH2vcrgGcLgfKlItDtQaRS7R+NYxLERWdiEjJIWQSHJgydUvLM1R0jQUKMAVxOVnRVnUL0lawO8jvzvIKK69rQzKC6e4df0mSZZAkQ9amk6mrzjEoya0hAwxMuVR1LOlik0PJ40QizInCmT8PEhma1PM3afmRrDds95z8u3raKuNzw00T/K4sXaC06xSji4lImU4nApLJraVVqiZ9MtyT5FRFJkndfASHF7qqxCRAkAnQEoNrTio9/5WyK2tCIAEEAsuVIWZ4gr16thjtmFIYfzenTp3CoEGDkJqaioSEBDRr1gy//PILevYM/5dNDqc4ePObAyhbMXKW59JIo+vMTsRed1+E18MwoGkTeHNFXDgt4tsPA7/UvTVvf4kJTkDBxyUOh1M01G9VF/s2H0K9FrVLtN2OXRuhY9dGpmONW9XGvC2vQ3SIcLoi9/WDj0scTmSp37wWDmxNQd1ra5Rou536tUGnfm1Mx5p0aohvT38Ch9PBx6ViJqKiE9MUAy3pDmPKlDsgiEhkmLqmW0hCUI3ycznl52YKZeU6xmCdWkfBrs2jvpA1MJu+MQlO2nnrrWvH1elbDIojirlEUIxLyc3k9E+TIzW5tTLzkcBEVY0RAHIKBpeTYVqZFoeWoEgTatRcTCSaz9neuNEZpP7Puq89WKsw5myyq94kcql5lBTRTInPOgVP6Vfmz8Wkx64kEmey4v4SvarYxRQRSpCUfSYpZQBAdhB8AtPdWbKD+cvLgDOL4L6QA1ldASZUFFsm05+HyowZM8Jqh8MpSarUyo14XqLSwJbVsVg2txw69L6I9r3T4bD5l1sQCc9OPgKvR5lzvPzbcvjr1zIw/iPw6VtJKJfkM/06ofWvK4pw179Po27TXNM/Lzs2xODnOeWQkymgSoN0AAdDjrug4xKHwykanpj2CO5+9jZUjqCzyEhR5Zg5sucE/jtgMspWLIP/fvbvsK7l4xKHE1lGTrwfdz9xE5JqVoh0KACA6NiiWYnlyM5jGH3zmyhXOQH/+3ZkWNdeDeNSZJ1ODgcgWLLIax+GjSJOvrA8LD5kFrCK63U0xhpsNbv87Eua2JGflSnIPtkdt3NzGZZSIyLIDgGSywFZUMw8siq86MKPYSqjpIlIqpAkqWKTtgEAk0hJwK3mfNJzIwnwr1CnqUXGezbErIdM0Fd1Y9qsSoOSRIZyeb4N7PrC8BJBgq5qkcGFpFemPVddS/rKfQ6lv5iDQfYCYg7BkSuD+QjMB8UJJ6uiEwGiF4CPVKULgKTcrCATmFeG6FXyZcHH89dwOC9+eATV6oQnwF5pZKYJGH1PXdRrmo1n308PWk4UgU59lPNb18bir18TAsrs+KtM0OsHDD+NeteaHVSeXIbn766rClmAj+LsLi02pk6dirfffhupqalo0qQJJk2ahM6dO9uWHTJkCD799NOA440bN8aOHTsAALNnz8aDDz4YUCY7OxtRUaVw+T8Op5AIgoCq9SI3ZaS42LB0G86euICzJy7gwPaUSIfD4XDCQBAEVKlTOoTwomT94r9x9vh5nD1+Hge3Ho10OKWOyDqdtFXijF/sJV11QoB8YOsaEgxClW0r/qfWaXB5OZpCcTcFQ8trZKovWHyG85qSEaxcXnXkFW+wVe4IIEEAxbhBMQ5l1bkoNaO1THoeIsU55HcBQRWSZCfTV5AjUWmDScp15GLKKnBaW9pUOt0RBb8YpZXRnup5m9ScSRbXExmeML8PyeyE0h+VKYK2/efX3hT3ldGJFZALy0a701ehUwVSIohedSU61eUEYx/KytRFJWcTQfCS/hYXvBIEiUCMQcj2QvaGm0hcgHSFJ6ArKRjjU7lKA9Xq5kB08PdyVKyM9xbugyDIkGV1odd8aHBdJt5duBc5mQI+fSsZe7fEIL9fXJbMKYsdG2L8B7R/IwphNSvMuDR37lw8+eSTmDp1Kjp16oSPPvoIffr0wc6dO1GjRqAlf/LkyXjzzTf1fZ/Ph+bNm2PAgAGmcvHx8dizZ4/pGBecOFcaRISUPSeQXKcSnC5npMMpcrr1b4fNK3aibKV4NGpVO6xr+eclDicyXPHj0r86YdOv21CuciIahpEgHbg6xqWIik7ZVePgJBccmT4IXgnw+JSpSABAeX3x08QM5lcNBJhXwrO7xG7KnpFg522dQiFYpqwr2eUlKGntBLSVRxzhYsxvxBShSIpywhfrgBQlKKvQaW4l9X/avpaHSXM4kQg9j5MsKo4fMICJDIKHAK/SEDlVp5PBhsRkBCQT1+6VyYDgVVaFE3zKo+gj1YkEQABkxiC7oEzt0wQtwV+Hsev0LrPrO8P9ATAn7xZJF4xIdYBpri29foNri4mAyBiIkZJ3nTEIomKJ0vKKM5AqRJHyXvXJECQZzCspm0yAKECKccITpqHgapgLXFIQ2SiMnBJnxOvHUadxTqTDiDiiCFzTMjusa6KigaZtsvHd9ArYuyU2pGvSLjixc2PRfggszLj03nvvYejQoXj44YcBAJMmTcKSJUswbdo0jB8/PqB8QkICEhL87q7vv/8eFy5cCHA2McZQuXLlcG+Fw7ms+HDUp/hu8k+4tvM1eG/luEiHU+SUT07E+PlPAQDS0tLCupZ/XuJwIsO0p2ZjwfuLcW2XxnhvxSuRDqfIqVC1HCb8/CIAPi7ZEeHpdSKEXAZBc3toolFenW3Mz2SXTynodXm4mPI8Z3MsWNk82wzxGiPGFde0a433GWpdxus0wYkxkEOEHO+GHOtQVqtTBSJd+IPqJNK6XIDS56q7SVuVTnsOECARBFkRhOBQjxvEJWYwc+l5nwy3KXqhCE7qynBiriLU+I1gDMwJ/2uvOY0sqrDJ7RT09YO/Twh+l5ODqYKTmodJuz+DccuYCB0MELMBRw5B9AECmdvVkrHr+pqsiE6CTBB8yrQ6JilCJokipFiXIqaFgQzhil9qs6R4c94+zH61FvZviwZXnyJD9Xo5KFO2dE2rmzetIpZ9UxaeXKb/7sC0ocegR9/64Bn0vf883MVonrlwxoF5Uyvi5kFnUaW2N+gQ1/mWi1j+bSIObM/f6VQcFHRc8ng82LRpE1544QXT8V69emHNmjUh1TFjxgz06NEDNWvWNB3PyMhAzZo1IUkSrrvuOrz66qto0aJFyLFxOJcDB7cdAQAc3sGnnlnhn5c4nMjgH5f41DMrV8O4FFmnU3kRPsENV5oDjgwfHGkMYkY2IMt64mVd9GEGhUAQ/PvGT9v62tCWhqwup/ycSqGYmPIvorSTx8p2IRNmMnLbOHThSckxpE9388mQGEFyGsQlY9WCIX+R6nAyupy06XLaIxNVZw8RiLQ2jfYgv2ij34LmgPIShFyCM5sg5sgQc1VRRiL1/aDULTsZpCgBPrcA2cUguUjJw+SAnvtJy0Wl56TSnjO/y0p3ScFSViZ9CiAjgPnUsmr6MVlzSDF/7LoLjAgkK/mctBXrtNlasuaUEhmYrLjAJJcAIUrU65DcArxxInKdllxn+SARg6RaryQK8/3FMbFzYxz2b4vJvyCn2Lhv1CnUt+QXiiSnjjnxyatV8i0XX86HOx4+X+zxLJpdHlVqeVA1n3xXK74viwPbQ3M6FQd245L11z+32w2325xc+OzZs5AkCUlJSabjSUlJOHnyZL7tpqam4ueff8ZXX31lOt6oUSPMnj0b1157LdLS0jB58mR06tQJ//zzD+rXrx/2/XE4pZUnpv0bP364FNff0TbSoZQ6+OclDicyPPnho8q4dGe7SIdS6rgaxqWIik4QGZhPcbeIXhlirg/MJxumpcEsODE135DpWCFcToVdvS6klfNCiMOInZPJZmU82+sDpvNRYFk9fxYDuURIsUouJ01QYZpoo6oppL8G8Dua9DxO6r6+qhtThCMoTioIfiHLLgSTA0oCRB/g8AKihyB61HxOPkVwYgS/s0hkIIegO61IZHpuMKbmd9Kq9+d+MrdH2v2ofasJUhCU+ozuKghaWbVi43Q+pohSjhyCI4cgkN/pxOBvW1/ZjwGQCExzQWkFBQZyMEjRArxlRMhyCIlbDEiGucDSFaqQlxS3Dj6L2wdfwr6tMXj3qeo4f8oJ7ngqWRbNKodmHdJRrpIUtkZf5LF8Wh5fv18J+goCeZB2XsRd1zTG4+OP4/qbL8FRTCkL/vXEKXhVx5XRZWUk/aKIjSvikP+87vwRBMKI14+jTFI2VjwY+nV241L16tVNZcaMGYOxY8faXs8sLz4RBRyzY/bs2UhMTMTtt99uOt6+fXu0b99e3+/UqRNatmyJ//u//8P777+fb70czuVCtfrJGPbuA5EOo1TCPy9xOJGBj0vBuRrGpYiKTkKuIhJIbgbmEyE4BQhZytQj7Qu7Pn1K+8KuCU6a+AQozh0TebxYoeZtyr+m4NeS4bjx834oLierYGQ8Hu4cT7vpeKqoQi4nJKeomIAM4hQJasgSGYw8SoJrZTU6AglqLiXNAQX/dzE5Sk2tpbmLrP1hRXUWiTkERxZBzCaIWTJEjwxBIkWElElxTgmK0CTIBIcMMEm1HDFAUqfckcNv6NJyRIH5xTST6YqgHNSuUe8HDEo9hhCN96Cb6TRdyAFI0QxyjgwxW4bgkSF4ZTVxOIO3jAOyU9AdYYrQqtyT0YVFguLiYtpqd2EgkwBZnQssX6FzgUsKhxOILyPj12/L4fwpV6TDuSrpN/QcyieVjhUcPxpTRV+9LX8Yylf24YbbLxVrTE4X4HTl/Xe+5ucEbPkzvkjaq9s0G7c8cA5p6eG9JnbjUkpKCuLj/XFZXU4AUKFCBYiiGOBqOn36dID7yQoRYebMmRg0aBBcrrz/fgVBQJs2bbBv376Q7qc0cGj7UbzQ61UkJiXgvZXjEBvPXZmcyHFoxzFsW7MX3e5uj7iEwr8XiQirvl0HQRRw/R1tQxKZw4V/Xip6Dm07gud7vYpyyWXx7opX+LjEiSiHdh7H9rX7cGP/tkU3Ls1bC8Eh8nGpEIRnpyhiGJG+ypeYI0HI8YJJsl8XMLqaGPNPqzNNt7OrmNmXszqkrI/5bbb1WDZTHIZj+dWV1/G8jgW7b+MxDVXkIKdTcQe5RMjRopLDyJDs3L9inSYoMX8+J829JBqeG6eaGTpDb9nSR8Yk4gzKSm+iV3U5eQmiT1bcQuq0OkET6/S2BZBDcTvJTgbZoYmQamNqHzC1AX01PGP72gxNgZmu8Yublk27R0BJK2a4Z+X9SxBzlZXpBNnfpuwWQU5BdzJBYMqUQe21MbzHSWSQXYLy2oQ5oGkKuVEp5xSOZyYdxehphxEVIyFE+ZlTBNRvloUmbTJtZ0qXND/MKq8sCBAGKfvdWL88DlKENbOeA8/jo993o2KyB8F60h0t48WPDqFmg+ygZQBg39Zo3FzzWjzavVFYMdiNS/Hx8abNTnRyuVxo1aoVli1bZjq+bNkydOzYMc82V65cif3792Po0KH5xkdE2LJlC5KTL58l5Tcs/hvnT17EwX+OYP/fhyIdDucqRpJkPNN3AqY+9xWmPT+nSOpc/9NmvHbPJIwb8B42L99WJHVa4Z+Xip71i//GhVOXcGDLYRzYcjjS4XCuYiSfhGdueRtTX/gaH/33myKpc92Pm/DaPRMxrv87+PtXPi4VlIg6naJPeuAiGYJHgpDtAbJyAnMA6coE07+kk1Ec0FQFUvP+qEvX54ueCdZy2CgSGUKwPPHvmkJVZRpL+LbXgZmnmVnK2EsOmh3H5v4Y9IllDKpQpO+oT0VRmfsFghTlhDdKgKy6mCCo16t5sQR1ihlUB46Ss0hxORGg2pmYXr/mKNKcQhAMjiO7myKAeaG3wXyAkCNDzJEh5EgQciWz+Kis3Q2CIjLJWl4pNTa7GST6aykEiUPNuaRnNzcY0fS868zfjmnenqE9EgDZxUAiKfnIcn0QfEpljiwfcuNFZFdgkKKUa4RcEc4sNUm62ndMUgRYMVfJYRXuMuUy/HOA81r3kRM6ogP4+YvyyMkKL78Wp3D0GngeFZJ9+RcsAb7+v0rIzQ7v9a9RPxftemQUU0ShIwjAuqUJOJMa3O3TqEUWSBZwZG90PrUx+LwMp1PCmy9YmHFp1KhRGDRoEFq3bo0OHTpg+vTpOHr0KIYNGwYAGD16NI4fP47PPvvMdN2MGTPQrl07NG3aNKDOV155Be3bt0f9+vWRlpaG999/H1u2bMGUKVPCjC5y9BjUBf+s2I5yyWXRpGPDSIfDuYphDIiOi0JmWjbiEkN3E+z86wA+fuU7dLypOQY81st0LiY+2vZ5UcI/LxU9PQZ1wdaVO1AuuSwad2gQ6XA4VzFMYIgpE4Ws9BzEhuFy2r56N6Y/9zk69WuLgc/1M53j41LREFHRiUkSGIlgPhksx6sKGYBpGp3FnURWR4rxu3k4X9RtXEFkaMdfDoHtGM8Z67NvKKBNU1VBrrM2xwz/DyhrzXsRUDeZzmkOIS0vkt7fegE117hhyhkJyvQ6v1OIBcRp0guNfzHWsA3z1hgRmJcg5ipT0rSNEVm6XU0iLgqQRQbZIUByqC4npiYvt+0dc5CmlCwG8U8XyyzntWl0JARcptfHZEDIIWW6qKTcuwwAjMHnFuCLAmSH4SKZwCRNJCRlFqnq6pCZmnA8TJeEedWDK1MhL2nWLY3Hjo2RS8J8tRAVI2Hiwv2o2TDHr2PnkauopPhhVnlcPBveP5Gj3juC7v0v2qbTiwRtu6fhmykVkZlmTEoHAIRXZh9Cm27pEESgyy0XQQD+/iMOYx+sDW+u/RjCBBbWp6HCjEsDBw7EuXPnMG7cOKSmpqJp06ZYvHixvhpdamoqjh41r4Bz6dIlzJ8/H5MnT7at8+LFi/j3v/+NkydPIiEhAS1atMCqVavQtu3lk2y5fHJZvLH4v5EOg8OBIAj4YMVLOLAtBc07hy6AzvtgGXZvPIQ9mw6h3yM3wuX2i9nNujTG1L/GQxAF1G1eqxii5p+XioMKVcrxcYlTKhAEAe8vexEHdxxD8+tDH5e+eWshdq3di93r9uKOJ/qaxqXmXZtg6sYJfFwqJBEVnZwXc+Dw5AAeywo8uqtJSxyuzIUig9tJF0qIVDsKANHyItnNz9C+DRhzQhmFIOu0Of24dr1l3/rcDkOdZNzPq6xdzDZldLEkLxcWAZDVsqLSj5qIpDl49BYEqP3s1z20ldmUlezM3wStq8PpIo3WvjUOtZxyLUHwEBzZBEcuQfQQBI+siJCSIjwBAMkMcIiKWBYlQIpm8EUzSC6mr5pndVGZOkIg275SxDToScW1mI31Ge/dWr3+6FByWUnRDIIsAHAoUwMZIBCDK4tALoIvmsHnAqRYhuxoZVqh4GEQPQQmMQhqh5MASN7wvq1KJEBSlTGJrszBqqTwehiy0hmWz08M+uWbU3TUbJCDyjVyIfkAV1Sko/Gz4vsESL5w/g4JPe++CKEUvWU2r4yDJDEwASCDWBSXKKFZx0x4PUBUDMBUM9eG5fFwiAQxRlL/2VFWIfXkiBAEAhwSEMaigoUdl4YPH47hw4fbnps9e3bAsYSEBGRlZQWtb+LEiZg4cWLYcXA4lzvLd+/HsUtpuLdVM7gcRffRP7FiPFp1axLWNd3uaouta/aiw03NTV/sNOq3rFNU4dlSmHHp+PHjeP755/Hzzz8jOzsbDRo0wIwZM9CqVaviCJXDuaJZvXAjTqecw82PdLMdCwpK2UrxaFWpcVjXdL+vM/5ZuQOd7mh72Y1LlwuRXb3O6wOsq3TpOW60pDsGR40p547hywCZHmwJ+tXBTnDK8wK780EKW51UQcsh3+QlwWapBW1fq1MV3hiRmp9JgCQKkB1MFVSU9d4IFr3LML2MtEfVUWSaXqa9TDIC1Rjrvanil/ZLOTPuS8q0MshK4nB9miRTVmhS3E3KJjkYZFGLhZlefwryEvpDsCmgCWc2AhkARZCy6V+9L2SAfMqXOhn+NFEkqLE6AJkRiGRVIGXabEF/M+QXuEgI/LPIDxkMWjY0Od83Lycv7m97DeTswDwznOJhz5ZY/PvGhpi6fC+cbjni7iCNll0zseOvMiGXf3piCgTBP2O3NHDXsLOo0SAXLz9Q23Q846ID9zRvgmnL9qBKbY8e739ePYH/vHoCgP83nWfvqoMD26Mxddk+uOJyUSlw1lpQ+LjE4USeA2fOYcS8RQAAIsKD7SMrkHS8uTmO7TgCT44HXo8XTlcxLfMZhIKOSxcuXECnTp1w44034ueff0alSpVw4MABJCYmFlOkHM6Vy5FdxzHuHsWVTLKMO0f2iWg819/VDsf3n4TP47usxqXLichOr/P5ACEKcIu2090AmJOJGx1OpgTgNrmOdAeOpkhYLErMIGYZ9o1FAgO2ORewb3+x7hAS7JxMQdqz1mlxPBnzJ9nWqU5XZESKmOES4Yt1Q44WlRxETtUpJBorNOgumrtJhLLinTGBtuZaMl6n7csWF5FaXsldZLiGlHrlKAA5Ahj5wGQZjFSXE2Mghwg5ygEp2gFfnAhvnABJjVu7by1emRnigyICMTslyuIA06a2abmhNBGNqfdhdITp3WtwcREDfGUEwMHg9YoQvYqDS1TdW64MgiMXyI0T4Elg8LkBciqb7ALkKHXFOjUmEgAplzudIoUnS4SjtKgGVzhOl4xK1Txo3ikd8Ymlaxb7oV0uVKmdgxOH3Mj7VwhCUjUP2ve6ACBvwelkihNeD1CllhdiCaQKYww4uNONKrVycfqYE16Pv9GE8l5IEnDsgAvxZZUFep1OGbHx/n9nPLnA+dMONO+UhuSaHqSlh/ca8XGJw4k8ZaLciHI6kOP1IalMXKTDwV8/b8HM/34FAKhSrzJ6Dupaou0XdFyaMGECqlevjlmzZunHatWqVdThcThXBXEJMXBHu5Cb7UH5KuUiHQ42LP4bs/6nLIhQpV5l9Li/S4m2fzV8Xoqo6ERajiZBCD5FzEpeq7fl1VZeJ631hTejIg+Rilmm0xXdF1ljriP9QJCb1HIySaKgmmzI7PgxCB76BZqgoldCgKieMwhnRinPJOtZHUOS4bkmBsoE5iMIuQTBI6nT6hQFSBOBZNX1IzsYJJFBEph/yhsC47C+HnpMAdMsDbevuotMghX8Li+jyKZNHdRFJ38XwicqXaSVFSQt37oSN4gACWBepXISVSHO6hAzuMFCxbjawZW66kHJkZ8KzCkKBIEwddke1KjvAYBSkcfJyEsfp+D1YTVw4lDec/4eeO4k7n3ydL71zf2/Spg5Phmjpx5G9bqXiirMfBn42FlExxKm/q+a6fjpY2480vUaVK+Xg8fGH8P3H1fEmJmHTWXcUcDMP/fq++Gu4svHJQ4n8lQqE4elwx/EhexsNEqqGOlwUK1hFbhjXJB9Mmo3rQEAyMrIQXSsG8WxFLmVgo5LP/zwA3r37o0BAwZg5cqVqFq1KoYPH45HHnmkuELlcK5Yylcpixlb30b6hQzUubZGpMNBdcO4VKtJdQBAVno2ouOiSvW4dDkR2btyu4EoFxDlBNxOwOUAnIbN5QCcorI5BCVnkzXBuC5aqY/6xpQk2fom+MvZJSkHzK6hYM4rKybHlXmjgDgtdRvbNTajCSBBMLmzBOvBwPrIKYKiXaBoJyhKhOwSFKeTQymoCU5M3QT4XUsiAaIMiBIg+hQhhWkCktE0pvYd09xNWiiqw8mk6RAg+AjObEL0BRnRZ31wXvJCyPGpq+AxJYdTtAu+eDe85dzILeeAt4wAckJRdvRploaKrf3ITA/+riH/MXLAUKdhEwE4Abj8DijN1URK2iZlU8vJZQBfWQZPOYbsJAHZFUTklBXhiXfAFy2AiUrOJkcO4PAwMEntS21aIplvJ9w/TJmYaeMUBt5/JUFcghdJ1T36vs1iohFDloEdG2KwdW1+ieQJDa8LbaU6n09G626X0KRdeuEDDAPGAK8HaH3DJbS5Udkat0kHU3PdxcT7sOaXeLijZWxcGYuLZ4OPPuF+7uLjEodTOkiKjysVghMAVKufjK+PTcfXJ6ajXova+PzdxbjrmufxzpNflEj7duNSWlqaacvNDUxed/DgQUybNg3169fHkiVLMGzYMIwcOTJgBU0OhxMaFauVKxWCEwBUa1DFNC7NHvMN+iUOwdsPTi2R9gv7eWnq1KmoXbs2oqKi0KpVK/zxxx9By3733Xfo2bMnKlasiPj4eHTo0AFLliwpTPghEdmcTlaRwHg8D8L1IQRUF9SZZNdY+K4H0xXFpY5q9do5YoyzDEUGySno+ZB8IiCrm36/EukJwfUUSQyKGwcGc5J6zJq7ibRrrV0lK/WYjhPpTh6SFbcTfDIgy2CyweUkCspKdQ4l4bmaBknP42SqMu8uUKbd6f1mKWMQmgJuTXdUGZ4bHWCqoGa6ZU2gEgGmClbMBwjainbalEA1vZMxtPzuKS9kg0J+pa56wLmymPDNQbhLUeJwI7PGJ+ObKZXyLfevJ06j1Q3BE1cbue+pswDOFjKygtF/2Dn0H3YOgDIEP9ylobJAA4A9m+OwZ7My5Sahgg9tbswssnb5uMThcOyIS/QL+n/9uhMAsPH3XSXStt24VL16dVOZMWPGYOzYsebrZBmtW7fGG2+8AQBo0aIFduzYgWnTpmHw4MHFHziHwylWjOPShsWblcef/y6RtgvzeWnu3Ll48sknMXXqVHTq1AkfffQR+vTpg507d6JGjUBRb9WqVejZsyfeeOMNJCYmYtasWbj11luxfv16tGjRokjux47Iik6iwb2kkY9IY3L5kLboPBCwZJAqFjHDc33+Rn5CUqhCkTW3lDU+I4LNcWOuJjsBznhLukISSlzKRqIIKdoByS1CdguQXAIkF4PsVAvJACNSpnjJanvaFDI9fxaUnE4O+BUYq6vIEj4zHDNN+2Oq68lHELwEVxbBmSFBzJHAPOpcNFEAudS4ox3wxgjwxTDIWh4no8MpoFFLVwlQkoBTYM/5XycECEoAAtxTxpXttBxYer9pxw3lZRfgczNIEgCJwZELCD5L2Ma3gqHPwnmpNWQSIKtzgOUrdC4w58ogKkZCh5suIbm2/5fkQ7uikJvD0PC67Ign4ZYk4Og+V55lGrfJQO1rstH6xkslFFXRQQS07X4JLbuk64sZ7Nkcg31bo1GjfnaRtsXHJQ6Hkx/Dxt2F72esQLc729ieTzufgR+mLkHj9vXRskezQrdnNy6lpKQgPj5eL+N2By4mkpycjMaNzStiXXPNNZg/f36hY+JwOKWLEZMfxHeTF6PnIPvcTmnnM/DDtKVo0qEBWnQLY4WVIBTm89J7772HoUOH4uGHHwYATJo0CUuWLMG0adMwfvz4gPKTJk0y7b/xxhtYuHAhFi1adOWKTnpOJ/2bdoiYVoQLVkY9b8zxQ6ZThUcTr1QBjCL9bUkX16DPI5NlxX0jCQw+h8HhpApOMOYUUi+VoSbPZv68SrogBf/1RpFGd/4YrULWxO4AmKTkcWJeArxKdikwgBwCSCKQg0F2CJAcSsJw2WFwG2maoSEUk0BjcCpZBSkCTG8WYzntb5sBZueYKlyZHFFaGe2+Gcw5ntT3MlP7UDVmwUfq7E7JcB3UtrVcNpY8U+EggUFSg5KK7h3O4RQ5z/3fUXTqk6bvpx5xYdKz1TD5x/0RjMrPnElJWLc0Mej5Vl3T8MacQyUXUBEjCMCjY0/q+zv+isGPsyuiz73ncMvgC0XaFh+XOJcLRFQieTsKyu7tx/B/ExajRZvaeHhkz0iHg8xLWXjx9neQmZaF1757GpVr5j91L/1iJn6atRLXtKmL5tc31I83bl0bjVvXDnrd7Je+xqIPl0F0CJh/egZiE2IKFbvduBQfH28Snezo1KkT9uzZYzq2d+9e1KxZs1DxcDjBKO3j0q71+/D+iE/QqkczPPzmfZEOBxmXsvG/Bz5CVkY2Xp31KJKq55+gPP1CJn6a+Tsat6uHZtc30o836dgQTTo2DHrd7Jfn4sfpv0J0CPj25HTExhf9uBQKHo8HmzZtwgsvvGA63qtXL6xZsyakOmRZRnp6OsqVK96E7pH96VF3OhlyMWk5mOxyLwXkQlL3BeZPhKNvzJ/XSfC3wYw5oPKrX2vDDmt5a24nwO+2sXM5BasrlDxSlqTXpqrURyJVyIkWIceIkGIEyFEC4FTqF2SCICvTvvQ61UdyMZBLeZSjGOBmgIP58xhpYgqZ29X2ldxQFPCSiBLg8ALObIIrQ4YzR4IoARAFMFEAohygWBfkMk5IZRzKSnXRgrLKnvpaUsDrrFWuOpBE+HMtWTc1fnJYnovK20PXjVQdFNqqddpKeWoB/Twz1wvNAWV8ndS4yKmWcUHpW9FQd7B4w0BTyI1KOYcTeQgdb7qIB0efQLV62YgpIyGhvFc/e3BnFP5ZG4tbh5yJYIzKeLn653h8ODYZ65aVCVru2vYZ6Ht/ZKbIhQsR8OdP8ZjxelKezq0KVTx4+KXj6NrvfJHHwMclzuXAN28vxE2uezD1yVmRDiUoP3zzF/bvTsW8z9cg7WJoU3qLkx3r9mH3XweQsicV63/eEtI1n772PWa/ugAv3jkRWek5IbdVubYy1TmxUgKcUYVfxryg49JTTz2FdevW4Y033sD+/fvx1VdfYfr06RgxYkShY+JwrMx9SxmXpj01O9KhBGXhB79g/9+HMfftH5B2PrT8lsXJzk0HsWfLEaTsP40Nv+8M6ZrZ4+Zj9ivzMbrfO8hKD93tXbmWMi6VTUqEKypvd3wo2I1LoeSaO3v2LCRJQlJSkul4UlISTp48GVDejnfffReZmZm4++67C30feRHZ6XUlicGZorlZCqUd5zVFT582Z25bmedVRIq10e6jHRLgd1sxBllggEQgicAkgphLIHX1N+aDPx+R4HfdaAYl2RS3ffPWc6S6dYj8OaL8sRKYF2BexekEWZnCJ4sAkwnE1PxNbgGSm8HnBiSH6rgSLfmUjM9hOGaM2XAuoNs0MZD58yoxgrKynOrW0o1a6mbK6RYsjxbzlw/YZMOuFrtxCp/WnsV5FioSYFDIOZzSQesb0jFm5hHMm1oRx/ZH45nJR9G0rfKPem42w9gHa2Hm6t1wRPhfos0r4zBuaPBf2gGgap1cvP3tAbDLRDtZtzQerz5SG/c8fkpfIdCOpKo+DPhP8QhpfFziXA78NudPyJKMX7/8A8MnPQgA2LFmD/ZuPICbHroR0XHREY4Q6N63GTavP4Dr2tRGmYTIx9Ps+kZo1+c6ZKZl4/rb7afFWalYTfkVPaFCHJzu0Af9AU/fipY9miGpZgW43IUXnQo6LrVp0wYLFizA6NGjMW7cONSuXRuTJk3CffdF3uHBufL4bc4f6ri0Cv+ZOAQAsGP9fuz/5yh63dsR0XGRT4rZ/f7O2PzrNrTofi3KlM1v4ZXip1n7emjbvTGy0nPQ6aZrQ7pGG5cSK5SBM4zxZcDTt6BVj2uRVKsinK7Cf4i1G5dCyTWnYXXEheqSmzNnDsaOHYuFCxeiUqX8c5kWhsgnEjc+N+7bfbDXvrXbncurYxn8go+sKCOm0lYByViXdl1eZexcTnb3YHVFBWtfK2M8bu0fKwIAUZ07pwkabhEUJYLcgnK5pAoe2qppUPc1V43AFGeOA6pDzFC3UYAyamea0KIVUQUn4wpxgJLPSPQCYi5ByCUlabhWQBCUaXVRIqRoQcmF5GLKynKilsvJ2DdBNuTxaLxWNAg+gJ7YHAL8gpLWL4K/rH6rLIgwpPWNMYeVlmxcE6UMYpfJsaYJTjYhhwLPncIpjezbGoVNK2PRsc9FJNXIRd0m/l+RHC7C4+OPRXTS1eZVcVj2TVmcPp7/B43ajbKQmwtEFeP3vexMAb/MKYt23dNQpbY3/wssbFsfi1++LIdWN17Cte0y8b+PDyK5ZnDBqbjh4xLncuDhN+/H3Le+R5+h3QEAmZcy8Uy3sfB5fDh1+DSGvTckovEBQKv2dfH1kmciHYZOVKwb4+Y9FdY1dz9xE1p0vQbJYX5JY4yh3nW1wowwOIUZl2655RbccsstRRYLhxOMRyYMMo1LGZey8PztEyH5JJw+dh6PjOsf4QiBNr2vwzcnpkc6DJ2oGDdemfFIWNcMHHUzWt7YpEDjUt1iHpdCyTVXoUIFiKIY4Go6ffp0gPvJyty5czF06FDMmzcPPXr0KOwt5EvknU7BxAH9vEF8yatMXtiIOsZUT7blC1BnQEyWvEcmAauw9WvpmxgAQZl+RupUQmIEEgQlZ5ZMEDykiEEylClqBqGIBIAkRWDSE2RrAouD6QmuZaNAorUL+AUY1Q3EtPuVAPhISZ4tQ8nl5CFAIqUtVb0hByA7lUThkptBckNJdu6Aks9Jm9oGBL5gdg4n9dZkg8CjFyeY3UaCOW6m9YHRoWasl0F5TUl9CbU3kWx5OY0CnWx4rxlEU73P7BxSmggWBhIJkNRBSuJf7jilhMZts9Gqq7IaWlWLiCKKQJtukbNjp18U8eK9dfRV3PKiXCUv/jv9aMB6FUXN3A8qoVJVT4EEJ08OwwsD66BKTQ+efT8FAFCxSnpRhxgWfFziXA607tUcrXs11/cdLgdiykQh7VwGEiomRDCy0sGB/aewd3cqbuzRBFFhTm/7Z+UOfPvuIvQc3BVd+ndAgxa1iifIMODjEudyIGBccirjUvqFTCSUj4tgZKWDgzuOYd8/R9D19jaIiglvetvW1Xswf+oy9LynA66/tRUatMzb6V4S2I1LoeSac7lcaNWqFZYtW4Y77rhDP75s2TL069cv6HVz5szBQw89hDlz5uDmm28ugjvIn8iLTgD0RDpBzxuVg3zOa+Qj2gRtzS6nUyhT6RgDY0x1wqjHBJtyweINF60KB1PzYTHAIfjbdwggpwA4FZeToCWwJrMmYoyJiVBzJwEQmV8LMbpyrGqdcV9WCxPAQBAlNWeUDIhegqBOX9OmkDEA5BIUh5MTkKJUh5PmblLzR+VphbA4nfR4jXmYNCFHLUeGnEm6I0u7R+M9MUMfWUQ2zc1kEpRs4tTO6fdrdEypqcV095ShX8J9hxAYZPUqCvtqDqfo6Xv/WfS57yxkOXBx0Uiyb2s0vnivEi6ccUJglGfCxkYtM/GvkaeQUMEHWSr+++j30Gl4cgWk7Hdj9c/x6H3PeZStGNoEEIeLMHHhPoAIkqQaXyMMH5c4lyPuaDemb30PJ/afRJNOwRPJXknMGb8AW//YiWHvDEbNxv4pHTk5Xoz8z2zk5vpw6OBpDB/ZK6x6P3rmM+zbdBA71uxBl/4diiTWzLQsfDfxJ9RqWh2d72of9vV8XOJcjkTFuPDhqpdx4tBpNGlfL9LhlAhfv/sjtq/ei0feGIiajarqx3MyczHqlneQm+3B4d2peDRM19f0l+Zh/9aj2PXXAVx/a6siiTUzLQvfTV6MWk2qo/Od7cK+vjDj0qhRozBo0CC0bt0aHTp0wPTp03H06FEMGzYMADB69GgcP34cn332GQBFcBo8eDAmT56M9u3b6y6p6OhoJCQU3w8tEZ5ep1ljAjGJNxS8+/OSlphVLNIS9WibbYWaq4qZ94FA94muNtg1bnE6WevNC20da4P4EVi/8qYkUpJrk5Z8XXU0kVcGZHUam8j0qVuQFZcVQRU4GECMIDsYmMzAnIbmtCl2mitHDsxDBPhdO0x1MDGf4mpiXhlCrl9M0e9LFXi0VfIkkeB1C5BdDJIxyba6gp7Wlu4sMnYVzGU0UYmYJVZN0DFOd9M2rS6DgEXBXib1nJbXRZv6x2RLHFp/a9PpBH+7umhlfX0NzqiwVnME/+WOU7qoUT8HT7x1PNJh2PLOE9VxeE9oc+RemHK0RKenla2oqPQv3lsdQ/+bGrLgBCiCWIPmoSfnLQn4uMS5XCmfXBblk8tGOox8ISIc338SlWoUPN/RhdOXMPO/XwEA5lUui2dmDtfPCYzB6XIgN9cHdwGSeF9/Rzvs33wQ16tfwogIskwQxYKPB9+8tRBfvfEdAOCLQ1MRXTZwykle8HGJc7lSrnICylUu/e5LIsKJA6dQsXr5Qo1Ls1+ZDwAol5yIUVMe0s8JoqCMS9keuKMLMC7d2hIHth1Fp1ta6vEWelx6+wfMefN7AMAXBz5AVGJ47qvCjEsDBw7EuXPnMG7cOKSmpqJp06ZYvHixvrJmamoqjh49qpf/6KOP4PP5MGLECNNCCA888ABmz54dVtvhEPmcTvk5nEJJhGXNwRRMpMpnll5AXaY67coarrHL62TndLKr385NZSc4maYaMr+jyaE6nTTBiQEQGJgogATFsaQJNgzM5HbSqxYZmMiUFd2cTBecTOKNcYqdrV0KutjiyAUcHtXppLVH/ufEFLFMdqsr1EUxpV1tJTeLg0l3I9lhnfYnWo4b3UMMpiTnuuuIIdBVpZ00uJT0rodhyiHZCFxaO6ZGDM4nm66z5sHicC4nWnROxwPPpyI+UYIgypB8gCCGprOXFHu2RMMb4sy1xm0yQXKY6m8R8cIHRyCUAqcSh3O5svnXbVj/4ybc/ngfJNfJO6/F5cxnY7/BF69+i/ota2PKXxMKtLx6QoUyuO7GptixZg86WpKCu9wOfDTzYRw+eAat29QJu+57X7wTA565FU6XE5Ik4/k7J2LP5sN44aOh6NT3urDrA4BqDaoAAOLLl0FcYgwkvkwB5zJh86/bsOGnTej3eB8k176Cx6Vx8/HV+AWo37I2/m/1qwUal+LLl0Gzzo2wa8N+dLi5hemcK8qJKb++iMO7T6DVDdeEXfc9T/XFXSN6welyQJJkPNfvHezZdAijP/k3OlnaCpWq9ZP1uGMTYiDBV6B6Csrw4cMxfPhw23NWIWnFihXFH5ANERWdLEYTM4apXHreG9hcINgfJ83lE9Aoqaur2ZyzFX+MiYCs5yxBGa8XmP2UK7t8Tto1+qPlnphhVxDMYh0RmE9WnE4AIBEEIsAHyF4BgkNQBBE1FtkhgKkr2EFgkAVAFhkkUcmhJDkAWQRIVFa6Mzp/9M1hcPWQOnVP7SOBAFlW6hEcDARFCDPpZwanEcnKriQAskjK1DpD8m7TvQdBm6pmus7Yb4ZcTbrrypo3SY0FdknLtTa096PWltYuDGKXrLah3bP23tGSkqsxkOw/Z0xKHtRhlQ8yMcjqxXJBK+FwCsFjbxxHtbqBy7mWJma8lozjB0NzOQ175XiBcisVBfHlwkzqVkrh4xInEhARXu73JnKzPDi+PxWvLRod6ZCKjYNbjwAAjuw8BlmWIRZgXq0gCHj71zFBVztKSkpAUlLB3RVOl+JESL+QiR3rDwAANizbVmDRqefgrmjUrh4SKyUgNiEWaWlpYV3PxyVOJJBlGS/d9iY82R4c338Sr/7wQqRDKjYObVPHpV3HQ15FzYooCnjrp+eDXl+pWjlUUleeKwha0vD08xnYsW4/AGDD0m0FFp16De6Ka9rVR2KleMQmxPBxyYbSOb3OIGio9hzzOWtZwKxKGJxO/mpYcAdUvkm9/XWapv3l5XQyngu1HWN7Wv26g4f5E4oYHVSC4kpijAE+GUyPkyniksB0gY0EZnAqMXUKGwOcykZO5l+5TjS3r7ucjLmSAH0VPD0nkQSIEuDwKi4nxhiYPjtVjUW7P5FBVl1OcDF/Dieroyo/s4HqUtKm5JmOG/vRKOaRRa80Op2ML5PREcUM55mlrOgvp4lNpreA6f0ZtBn/sTDHGwkCJPWOJFMncDjFS8MWmXh6YgoqVIncKmmhsPvvaJw65oT9rwGBzJ1SCU+9k4IyCZevAHQ21YHXH62Jo/ujcF2nDIyckIKEEhS0+LjEiQSMMdRqUh17/jqAetfVjnQ4xcp/Jg5Bcp0ktO3TokCCk5GCfDEMh8QKZTD05Tuwfd1+9B/es1B1VW9YNf9CQeDjEicSaOPS3o0HinTVs9LIsHcGI7luEtr2vg5CIZNhFvu4VDEeQ8fchR3r96P/Y+HlrLNSvWGVAl97NYxLpSeRuB3WPs9LfNC+2GtvTklWLDemMszvXNJcUMFeV6MNSxNtYNi3OpmIFGHIFAvMzqZgLiejmypYDIxATAYcWpIgAiQC86ppcA3CFwnq9DXV1aWsaufP/aS5iST1uay5nETFEaRNGyPD9DrZKDYZ+oyY36DFBEDwEBwZMlguwCS/YqO71Rj0nEbkIwjZMuAWIbtIyU+l3bJ1ypodluNM60qDyMS0vFqqoGVctS7AkG0UpSxCp35KrZuscantaPmkGFTRzfgSam8D1RFFhql7uotKKxPmeHM1KOSc0kn/YWdQs0HpdjgBwHcfVcTJo1Ehl7/nsdOXteAEAL9+Ww47Nyqr3Nwy+FyJCk4AH5c4kWPiH6/i1JGzqFqvcqRDKVYq16qEYe8+EHJ5SZKQnZ6DuMTYYowqOP2H9yy04FRY+LjEiQSMMUz841WcPno1jEsV8eiE+0MuL0kysjNyEJcQU4xRBWfA470x4PHeEWlb42oYl0qHlGbrIGHmLVg5Yx2ALuIYTzMATBD8xY3iTjAF1SIA+R0oBieTXZx252B5rrcRRr4QBkAUoGWwVoQbsu0KMKY7oCCoG2Oq00l5LguGcw5FfIKoPfor1XM6WR1Idp0jA6JHzeVk4+bRknjr+aVUp5PsVmKAVdiyfV8E36yOJX3amnXKHGyutx4LVs5ShlnLabuypVrjecPLHnC97QuaPzIE08bhlAQNr8tCk7aZQdPelQaOHXDhgfYN8efi8KaHLJxZHjlZJfsP/76t0biv1TUYP7w6sjML3/aAEaex6NA/WHTwH6RdEPHxuGTk5ij1Sj7gjeHVsXtzdMDvM8EJLyY+LnEihdPlRLX6ycX+K/nlhCRJeKztaNxZfgh+mfV7pMOJGHxc4kQKl5uPS1YkScbIHm/g7vqjsGzOmkiHEzGuhnEpsndlEhdUYcRug3Ye9iKRZbobI4BkWZlu5pUAjwSSJH9dRrFHIjWpkOoc0jYybPDn79E3PSal0QCXkw1k2KDFIavty0oyJGbZIMsggYGcIkgU/CuzqX1BggASBchqQnFyCso0PDVvkSwwSE4GXxSDFCVAcjLIqhgli4DkVB1OTImBScp1xBTHE6nuJ12AYhYTGFNcULITkN2AL1qpE6T2iUGII4N7CqT0uZCr9LeeM0nNh6TnXDKkuTLllWL+1e/0Y9qqd1psIpTpgsxwvaC6ulxKnLLq7DLFZdn0awEwCWA+9dEw9U6QzeeU95TNvWgCmWZYY37HE9RcT3qOqDCQiJk2Dqck6HH3eZRP8plmFJc2Vv6QiJNHoyD5wvvn7vah5xAVU7JS2vJ5ZXE21YW+951HdGzh2xYEwOUGXFHAT5+XR697zsMdpdSbcsCNi6ddaNQyG6G738OLiY9LHE7pITs9Bwe2HAIRsHXVjhJvn4jwz4odOH30TIm3bYSPSxxO6SErPRsHtx8DEbBtzb4Sb5+I8M+qXTidcrbE2zZyNYxLpURKY2YxxkZYUs5bygG6kKSLFpaf3HX3C2OKqONThBxTInH1OdOmupnaDBKXJpLBKDgZhCdL2YCP6jYuJ90Io5aX1eeyoIpLzJ8dyezWgkGgY4rGwQDJIShuJ4OAJ0NJIi4zZaqdLKj1MyjilkEMAaC/Q0wiCYM/PqPzSQIc2YDgsZh6jNMHDUISBAbZrYhAAe4i41Q37dEoShmmwOmvkd3fqI1rSHuv2BW3/UplnQZnLGQUlLT4VLEpUGT07zBD/AHxWtsIAc2WabRncko3D75wAj8d+Qetu11C6fUJBVK2ohefrt+JxSn/4JbB50q1ywkA2vZIR3Rs+KsbLf2mLKRiXhQpJ0vAsO71MaRDI1w4K2LYuBP4OeUfXNshMywjrB0nU5y4p3ljPHtXHfy+IAE7NsRi6dflIKv3VLNBLiZ8cwCWf/byIUynEx+XLltSD55CdkZ2pMMoVs6dTcejXcbitrIP4Lc5f0Y6nGInLjEWoz4Zjp4PdMWglwaUePsLJi/GM93G4uGmo5BxMbPE29fg49LlS+qh08jJLP3T+QvDmUsZuHPS52j1+gf4cdvuSIdT7JRJjMWTkwahx8D2uPeZm0u8/QUfLMFzfcbj361fROalrBJvX+NqGJcin9PJKMgEsxsajxvyIll0Fz8CFDVEJMBHYJIMJsn+utSf5U3XWD516+4qrT6bhOD2YlM+92eXzFxPiuQvS6IIcgkgpwjJoTiTlKlppChGIL+DyMFALhGSU3U6qeIbI+Z3ADkUcUcTlkjw53KCyAJzFBk61SREaSKT9s5RhRZHFuC6SHDkEASTKkhmgcehxqx+UdVWetP73CCD6toTqSKNT3lODnO5AOnUKmAZDpm0HgosH3AuiDhlFJgEr+EejO4wdbU6bXU/Zv1iZ2zfIkYFlM0HIgGyavOicBNCcSJC51sv4kyqExt/S4h0KCEjCITm16ehcvXIrOpWEDYsj0N2ZvgJdq/vexE5WQJi4uSQ14AIlyN7XTiZ4kKP/hdQtoKiBuXmMvh8LOx2szIYYuL8A8f29bFIvySiRZc0/Lk4AT6vgOtvvojsLIbYMmSe8hsy4Q1MfFy6PFn88XJMfPQjVKxeHrP3vA9XlCvSIRUL336+BgdX7wSIMH/yT+j2r+sjHVKxc9ODN+KmB2+MSNtp59MBALnZHnhzI/dvCB+XLk8Wz1qB95/8DBWrlcOMTePhinJGOqRi4bMlm7DzwlmAAZ+t/Ru3XNso0iEVO73v64Te93WKSNvpFzIAaOOSLyIxAFfHuFR67irMT/VWocrvJiG/fqSKL3l+TLa6m6yuJKtLJpi7yY4gglqweExltdxLxmvV6XhMkpSpd6RsBIBkGSQTSJYhEymOJ0GZOiYJDJLqaJIZIAnQ3VAQtPtR9rWpZvqUNOsUM60cDJsmCPmgu36MZh2ybpozQpvaxrRK/IU0N5WxY0wGMmMDkrpZp7KRzTEYjhuFHmt5yXKNEe3Lmlpe7yd9mqS6kSJG6eFYO8KAfriATicJzLRxSj8PdWqMIe0bRzqMkHG6ZXy8cjde+OBYmO6YyHF4dxS+/r8kFMSL9Vz/+vhtftliE5wAoEHzHCzYswMjXj8BImDdsjK4vcG1+GpiUhhT3oAPXqyKjSvKmI7Vb5YNQSR8OqEK/vwpEQDw5K0N9OclAR+XLk8ObTsKADh77Bwy065ct1PT62pAqFoJjjIxuOe52yMdToFYu2gjRnZ8EUtm/15sbZw+egZfvPotDvxzuFD1dB3YEU2vb4Qh4+5B2aTEgPM+rw/ff/Az/lywvlDt5Acfly5PDu88DgA4e/w8sq5gF+Z19arAmQG4SMDDnVpHOpwCsW7JVjzVZwKWfb222No4nXIOX765EAfUf68Kyg3926Npp0YYMqY/EivFB5z3enxYOG0ZVi/cWKh28uNqGJci63Sym3YG5D3vKcg3AJO5RSsrCsoJiZTV7LTrVUEnwN2kO5uYWeEwTKWzjcH45cBOXLKUD7gDk4sKyupyDgGyS9SdSwwEJhOEXJ+Sc8on664p5pUhOASwaAavywEpSgC5VGWE/O4b2cGUfEua1ciwOh05EDC1TvslXLseov+cnlwcqtNHAEQQBJlAgn8qGhED0wQlTVBxMV2sEbyAK4vgIwZfjDrtz+pk0vpMNSsIBJCk7muOI+XBf512XBOwLFP4TI4mdWPa1DjjKeuLpdavCVVMUJ4LHsCRSxBzlMq9scpGmsHC4OgKuDHBEAPZG+byQ9G5mP6cwylqypT1wuEqPtdPcZCy3wV3tAxPTsGWEq9aJwuSDxDD/JcyO1NAZpqACsl5/2pm7csje92oVjcH1/e9YDqem81wMsWJ2DKybZ3HDzow9L9p5mMHXEiq5sH5005kXvLfQOXqOUjZ70S1ut5ify35uHR5cv/L/eGOcaFhm3ooW+nycWKGS6cbr8F3O9+BO8oJh6NgY0SkmfXSHBzaehTH951E7yHF42B6Z+g0/P3rNiyatgRzT3wMANjy+3ZMHv4x2vVtGfLqeZ+N+Qbb/9yNXev3YcAzt8LhNA+sP360DFNGzgQAfLTlHdRpVrNob0SFj0uXJ/e9cBuiYlxo0KoOEisEigNXCt1b1seaa4YjyuWAU7w8x6VPX1+Iw7uO48TBM+h5T4diaePdYR9jy8pd+PGT3zBn/2QAwN+/bcf7Iz5Bu5tbYtg7g0OL9Y3vsWP9fuzZfAh3jbwpYFxa/MlvmPr05wCAD/96A7WbVi/aG1G5GsalyDqd7H4qL+CHYLKpT5uaZats2ZUF9ClrxkvJej6EeIOWzyMkQHMTKY4kmZHuVpJ1J5KyCp3sUBKIS4J6jDGQ+p/m9tJzlKvXScywr24E6Em0iZnPyVo8RrcTYMjrRJDVjYj0uslwrd09604nBt29pYhEZDIh2bmlAl4U2fBodTRp5Y2uLdlmU6fICblQEptrmwdgHvhdT9YXUUu6ToDEAJ+gJia3i1OyaZ/M96bFWBAXiazaMmWDPZPDKUqy0hxwuS+vfwkrVvWaBJdwSb/oCltwykwT8FS/uoiNl8L+O757+Fl8snIvGrfJ0Y/5vMAjNzTE6HvqBa1z/NdHEG1ZAb3DTen4z7gTyLxk/tD63ID6yEwTS0Q8LOy4NHXqVNSuXRtRUVFo1aoV/vjjj6BlV6xYAcZYwLZ7tzknxvz589G4cWO43W40btwYCxYsCDuuK52ECvF4+M370fmu9pEOpdiJjYu6bAUnAOjzUHe4Y9zo+0j3YmujUo0KAICK6iMA/DBtCY7tOYH5E38MOfdX4/YNAAD1WtSGaNPn5auUAwA43U7EJdovnU5EOLT9aKHyjfHPS5cnCeXL4KFXBuD621pFOpRip0y0+7IVnACg930d4Y5x4aZBxTdlrlL18qZHAFg0bSmO7U3F/Ik/ITszJ9ilJq5pUxcAUK95TdtxqVxyWQCAK8qJ2Pho2zqICId3HUd2Rmht2nE1jEsRdTrlOUXNOKUMCC5GWU7rLid15TlNdICgKg+CvQjkd0AB+rwGw+p0/rhsYrGU0euzrKqnxKKoOMx6DpoApKxUB5cA2S2CnEwVNwgQGWRRUKfcAaJHAvORf4qhKkRBFBS3lKi0pzt9HAzk1JplfiHJkIfIlLfJ4HIiB0wrwUEgfxJxghKnA4q4wlSHkY/0vtccPP6+UAQmgQD4AEkm9d6hOJhU94/mmApQowyvg1a3oAk2lpfHrqxxepwzTUmAzmQlH5Um/JEIeGK0XFiGazRXFNT+cigbiQwkk55IXcvPRAL01e60KvT+1fobBieUwW0VKjKUJPHacw6nqHFFyThz3IWyFbMvG7dTVoaAStU8OHnUXaDrPbkMuTmAOyr0a7IzgVqNcnAqxYVajYInPE27IGL3phjIBCTXyEXNhp6Afs3JYvjrtzI4leJCtXo5+GdNHBgDajbIRuUa+buocrIY2na7pIxpEsOOjbHIzhBx+pgTkiSgUcssFOfn2sKMS3PnzsWTTz6JqVOnolOnTvjoo4/Qp08f7Ny5EzVq1Ah63Z49exAf7/8VvGLFivrztWvXYuDAgXj11Vdxxx13YMGCBbj77rvx559/ol27dmHeHYcTee4Y2Rd3jOxbrG089dGj6Ptwd9Q2OI/6PtwDezbsR7ubWyI6zv6LmJUBz9yGG++9HmUrJdguGd/5znb48O+3UaZsLCrVqGhTA/D1m99j5n+/QnKdJMzaPdn2S2J+8M9LHE7xcvuj3XH7o8UnhAPAE//3IPo8eCPqGJxHfR/pjj0bD6D9LS0RHRvaB7cBT/RBt7vbI7FivP24dEcbTF3/GsokxuoCvJW5k37Bp28sRHKtivh43SsQxfBFo6thXIp8InEAxuTghaoCfj0i4DzsmwhwOAWb8qeXyyeOYNfIoZTzO5Zk1bWk5V1iDIDMwJzGGAQwbZ6avkKddi3TBSXd1ST43U2m3Eha0mtAz6WkuZlMIpvRdmQQYIjU3FFOKKITlOTZ2vQ8ZhWCTD/Vq/2tWqNMopHmstLMZ8x0malSPV+Sdk7wC5AkwzSFzfQmkVVhjRFEH+lT9cCUftG+kMku5p+iZ3QiGWKQGMCcimYpOZk/X5WdEGaMVROnyN9X4fpJjEtshrPU5vjx4/Hdd99h9+7diI6ORseOHTFhwgQ0bNgwzAg4VzqST0C1ujmXjeAEAA4HcPJowZMgl63oC0twAgCni+HwrihUqxNccJJ8wLDuDXDupAs1G+Rg6vI9tuVe/Fcd7PgrDgBwbH80xjxQBy27pmP8nIMhxdKpTzo69VGS9075XxVsXJEAAHhrZC18/tfOYhWcgIKPSwDw3nvvYejQoXj44YcBAJMmTcKSJUswbdo0jB8/Puh1lSpVQmJiou25SZMmoWfPnhg9ejQAYPTo0Vi5ciUmTZqEOXPmhBUfh1MaOLIzBRfPpKFZl8a2X5iKAtEhonEH82eC1r2a48vD08Kuq4LqZgpG3ea18jx/bN8JAMCZY+fg9fgKJDoVZlzicDj5c2TXcaSdS0fTTg2LbVxyOB1o3K6e6VjrXs3x5aEpYddVXnUzBaNuPlN9jx84BQA4c/w8vLk+iDHhf+68Gsal0uHfsrp+CvAG1QQGpioCfl1GcRwxG9cSacdEQekJQQAJgqIaOARAZMpxkfk3ZrNpMRvr067VVr7TnguGslpb2iYyMJGpbSv5nMiprmLnEkFRIqRYB6QYB6QYEbJLVMqq53wxIqQYtbwDIAeD7ATIzQA3A7kAOAG4AXID5FI2LVcTaY4dFwCXUg7qeWPybKZadfyaFFPqEBhIXWmP1H5jguXeBfU1UacJkqC4pGSXIT7RUl5rSNtXzxv1MEaBm/7eYIoLSoDqJjKKTwCYj+DMBRwewOEFHD7A6VOei15A9DJzPibtpdbaVwU9RAG+eAZvHIMvVuljLWZTecASPPyuLsupUCmoLXPlypUYMWIE1q1bh2XLlsHn86FXr17IzIzccsac0oksE7b/FQspcot7hE1UjA+1GhV8GsaB7VHIygjvr5ExQo+7z8ORx2cOWQZu6HcBtz98Gn0HnYHD5uefzHQBZ1IDT2RcErDgk/JY8El5LPq0HM6dDu1LV53GWeg18Bxi43won+RBVIwU6i0VGLtxKS0tzbTl5gaKcx6PB5s2bUKvXr1Mx3v16oU1a9bk2WaLFi2QnJyM7t274/fffzedW7t2bUCdvXv3zrdOztVJVkYuXnv8c7z62OfITC99iYtTD57Co9c9g2duHIvfvvoz5OtWf78BA6s+gg9GzijG6IqHh8ffh/v+exde/3E0omIK5mC9GqaxcK5cMjNy8OrTc/DqqDnILMR0ruLixMFT+E/bF/FMz9fx+9zQE4mv/nEz7m30NKa9cPn9APTQy3fiX6P6YtycxxBVAMEJuDrGpdLhdLKiT6kL8cO+OlWLqbmMTI4nQ94cY21GNw1gEKDyaNLszwl+ztpYwHUssBxpbiX1ORGpCdDJXImmcUnKanWQSRGMRIAEUpxOItNXoZMEpk+d05032iMM4gwzNBPMmSMZ+tSnTDuDoLQruQFfjKFer/86Znk01qncr+rMIlJfB0vbmgvI2s92Ko2xb7XCRsFINpdjpIhtPqdySpAMfUJKricCQRABWWT6X4wpDtkcgywapuMBYKr7y+S2MmJ5jxbE6SSD+RPQhSFZ/fLLL6b9WbNmoVKlSti0aRO6dOkSZhScKxmnC7ju+oywcxxFkkvnXDi82z43SCg0bZeFmLjw/hrjy8no/+i5PMs4XcC/x5zMs8zrj9bE6WOBNqu9W2Kxd4uSwGn4a8dQvlJo4lGfey/iz5/KIjNDxEcr9wTkgCoO7Mal6tXNSTjHjBmDsWPHmo6dPXsWkiQhKSnJdDwpKQknT9r3W3JyMqZPn45WrVohNzcXn3/+Obp3744VK1boY9nJkyfDqpNzdbNhxS6sXrIdANCpZxN069cywhGZ8eR6IfmUDzXh5BJZ/MlynE+9iB+m/IJh7z4QkDi3qDiy6xhEh4hq9ZOLrM6ySYkY8uo9haqjoJ+XOJzSwIZVe7B6+U4AQKfujdHt5uYRjsiMN9enj0s5IeZVAoCfP12F86cu4Yfpv+Lfr91dIBdjKBzddRyiQ0DVohyXKsVj8OjbClXH1TAuRXz1ugCXk/FcOFVpj5peZUnuY6rNskodCaoVRTTGY3FF2bQVGITBzqLlWTLUZXK5aCqKNp1Pjwmq80qJRzA0rokSgkRgPkDMlSFIgBTFIEWJkKIFSFGqg4gBspMBTuiik9ElpAkgZJxOpj2qK9UZBRxm6FstEKaJV06lHtL7kxSHE9PsRcwi/JB/SplTmbomxzDIUYZ2jR1ujNFO/CX/daSVM75IhpxJzHiN5jBiTF0JT5nayGR/m/o1gio4abmmrM4vTUDTBCfR3KbhLWEQOg33RDD9KYQ73JBhLjCFfbWfS5cuAQDKlcvbAs+5+sjJYvjzpwR0veVSni6e0kSVWjlo1DIDuzfHIty/qoTyXsTEFb8bKBg33XsObbql4eg+N36dVw65Nivwrfk5HhmXRPS97xzKhiA+9bn3LFrfmIYyCSVjV7Mbl1JSUkw5l9zu4G4Fqy2fjPkQLTRs2NA0LbhDhw5ISUnBO++8YxLQw6mTc3VzbZs6SK5RDkTAte3qRDqcAGpeUw1vLX8Z51Mv4oZ7OoZ83V1P3oJTR86ga/+OxSY4bftjF0bd8DIExjBl4wTUu652sbRTEIrq8xKHEwmubVUbydXKgUC4tnWtSIcTQM1rqmLCzy/gfOpFdL079JXr7hzeE2eOnUeXO9oUm+C09Y9deKbbKxBEAVPWj0fd5nlPmytJroZxqfT8Zh1gRQrv12VdQ1C1jqDOJg2js0dz/9ict2vImo7HGkdeMQY9R6RMOQMAWQaRoLictDj0RNQEwSNB8MgQPJJSRnQAbkFdrs4vfBFZFkoz5G0yzI3zd7XF7WSy3hgEHdLqkQFykOKiilIcQbKDQcwGHDlKO6IPuoijwwDBp/aloMbnI5CkTssTTEWVmDSBx9qPqkgWcIwM9RD0Ver0goY2JBGQY5SYBK8as7Yynfa+kACSoIpT/veZph9q7TCobanf6TRBSr8H+MsaHvT+ZcxyPERkMijk6mNamnkJdbfbnecXPCLCqFGjcP3116Np06ZhRsC50oktI+OG2y5dVk6nQ7tjsHtzXIGufe7/jqL2NcHzMhU3XW5JgywDA5o0sRWcAGDL6njcNexsSIITAFx/c3pRhpgvduNSfHy8SXSyo0KFChBFMcCBdPr06QCnUl60b98eX3zxhb5fuXLlQtfJuXoonxSPmcufj3QYedKi27Wm/Tfum4x1izbi6U/+g6532wtRLXs0wyfbJuZbtyzL2PPXAVStn4z4cuGNoxdOXQQIkIlwZEcKYspEo0rdymHVUVzYjUsczuVChaR4zPrpqUiHkSfX3dBEf05EmDBsJjYs2YqnJg9G5372qw+2vLEJPlo7Lt+6ZVnG7g37Ua1BlbDHpYunlB/WZUnG4R1HER3n5uNSCVJ6Jg3a9W+ovz4yZnY6UaBGqOd0EgRTTiGIopqDSTTkVvKX0Tfd2mLjRNFWvtPzFWlJfBhMzinjprVlzQMlqqvXOQQwUV322QsIMiDIBNFLcOQSHDkSRK8M5hBB0U5I0SKkKHXVOgEgUXU5OaHkSdJyMzkQmDNJtDlmcDmZHEQGx5Ret6jUz4iBRAZGag4tzTkmMMChbLKbgUE5Tg4G2SGAogTI0cycz8nYx4YuNIplAfFr92aMU00oLkhaH/pdW3r9Duir5jFRyzWlxEva5gIQ5W/b+B4whUOASGoOKW1DYN8yAeZ70N4adu+vELCbC1y9enUkJCToW17JdwHgsccew9atW3lC3cuchi0y0ePu83BFFa1LJ+2CiCVfl4UncjpM2DRpk44Xph1G/WaZCFfK/WVOOZw7GXkz8G0Pns0z/9Jn7yRh5huVcfFc6VteuaA5ClwuF1q1aoVly5aZji9btgwdO4bu6Pj777+RnOy30Hfo0CGgzqVLl4ZVJ+fKIjsjGz7vZZSoLg88OR78PudPZGfk4Lc5/hxPR3Ydw851e8Ou74tXv8MTncfgP61HQ/KF9+/J9Xe2w9Of/AdD37gXbz04BUMajsT2P3cBAA5tO4IpI2cWKKai4GrIncK5vMnO9sAX5t9cacWT48XK7/5CdmYuViz4Sz9+dM8J7PrrQNj1ffbKt3ii00sY1vK5AoxLbfHUR//GQ6/fg7eGTMGQRk9i++rdAIBDO49h6uivsXtTaAu1FDVXw7hUun+zDsPtRExzOinJq5VpY/7rjY4SMPhzOAnw5xHK65u+wWJjMQYBoOA5oezsUNb6tDl0pEYsESAyZaU5kQFuwxQuL4EJUKYPAiBZVrLSygIENY+SLCqr2CkzDJnJucRI6VZ9up1RXNKEGMMNkhqfnqOIke6aYrLq/lHFE18sAdEEXzTgyGRwpQGQFQcRCYDsVFa4E9wMYi4g+tTV+XwElgsIjOlT03Q3lqXvtNXsjGHq96C2xdTPj3p+KVk5JvrU+1fzW0G7L3WaoM8N+FyKy4mp12lT5mSXYiKD6nDSm1b70+hoMuXJMjrK1H7T78PQ75p7SnduhTne2Cnk4Uxjefzxx/HDDz9g1apVqFatWniNc0oRhJc/OYxBbRtDlor2l5KyFX246d4LEC6jfwvLVpRx4bQT+7aGn8DotgfOoXzlyH4ZJQLmf1QRudnBBaV9/8Ti2UkpSCxf+j6gFuaXu1GjRmHQoEFo3bo1OnTogOnTp+Po0aMYNmwYAGXluePHj+Ozzz4DoKxMV6tWLTRp0gQejwdffPEF5s+fj/nz5+t1PvHEE+jSpQsmTJiAfv36YeHChVi+fDn+/DP0JMycK4fNv27Di31fR7nKifh467uITSiBRGfFiCvKhUcm3I81P/yFgc/1AwAc25eKR5s/Dckn4+Vvn0HnO9uFXN+Z4+cBAJfOpkHySWFNeREEATc91A2bl2+FrOZ3OZ2i5Lp7+6Gp2LfpIFYv3ICvjnwYcp1FxdXgKOBcvmzafBjP/28eypePw4wPH0JcbMES5pcW3NEuPPTyHVi/ZCv6P6Ys5HFs/0kM6zQWsiTjpc+Ho9MtoefLO3tMGUcunSnYuNTnoW7YtGwrZDVn8hl1XHr3sdnYv/Uo1i7egs//eTPkOouKq2FcKh2iU55iTx4nDdmlrbmcTC4ZxkxCitHxRJozScs9FKwdo9BgjV1zQllFJ72+IOKZLkT4L2ICg+wUlNXcnIKed0qbJyd6CWKuBEEmkMAgxzjhi3aAnEx1Oanlnao7R8tDpAk4RheQITxjjiKTUMJsBCqTHYeBCaS6q9TrfYDoY3B4CYIqSsluQHIrIh/LIghaDignQC4GOPTqAqZGBnS61fGk3oPgVQQjQfaLkCDlmOj1H5f9lwS4jUBQVvFTp+LJ6n3JbuVR8AU2zYyiExneckaXGBCQr4oZhSZ13/QahIEM/1xg7TGUaSxEhMcffxwLFizAihUrULt27fAa5pQqmrTNhCwD/YedwoJPKsKbW3Tul/OnHPjp87LoPfACXIH5rUstPfqfQ+PWmdCmRu/dEoMv3ktC2nlnnte981Q1Xci5/paLuHXIWUQXICd5+kURM95IxoHtUfq4YPyXQRAI9zx+Gm27pwdMXWQMmPjDPiydWx4/fVYeXk+g4qeszhfuhNySwW5cCpWBAwfi3LlzGDduHFJTU9G0aVMsXrwYNWvWBACkpqbi6NGjenmPx4NnnnkGx48fR3R0NJo0aYKffvoJffv21ct07NgRX3/9Nf73v//hpZdeQt26dTF37ly0axf6F3FO6SMnKxefvPAlnG4nHnr9X3C6Qvtou2P1bkheCWdSziH10OlSlXcoVC6euYQPR32KitXK48HX/4W7n+2Hu5/tp5/PyczRk/qeO3E+rLofefNeVKtfGU2vbwRXVMES+bXofi2e/uQ/yM326Pld6resg32bDqLudbUKVGdhKcy4xOGESk5mLmaMmQdXlAsPjrkz5Pxp23cegyTJOH06DSdPXkK9upWKOdKi5+KZNHz49KeoWL0CHnx1IAY83hsDHu+tn8/J8kCW1HEp9UJYdf/7rftRrWEVXFuIcallj2sxavqj8OR60WWAMi7Va14D+7ceRd1rq+dzdfFwNYxLpUN0ygddHLCif0FnyjwmMEBUlrcn2V/E/ymfqV/ymS6oQE14nVfSLqvIZDRgETOUYNZYyS9EWfP+wO8iMt0LAcwnKdPm1BxJYAzMBziyZTCPBJaZC5adCzAGUZbhcKjKkCQAbsAXpeZJkhXHl+4M0u4ZhniYIQ5NfDIKKIZrFUeXwbHD4Hc+af9jgBQN5DgkSG4BrguAwwMwL0BuguQE4FY6kUmKm0jIJTi9igglOxVHFDlUEcvYR6q4w9R4mGE1OOYDRA8geAAmKcnABS2ZFVPdTqqIJDgUx5XsZJC194pTWY2PHIDsIL8LyvRiwf/+EZTr7BKKA4GCEzG/gKW/lbxqXLK/fv11QngUVCEfMWIEvvrqKyxcuBBlypTR850kJCQgOjo6zCg4keaFKUcQGy/jmylJCFu5zIeKVXy49YHwPhyUBuLLEuLL+pc7n/R09XwFJwA4lRKFUymAO1rCxEVnIRZQv1s4owJ+/qJ80POtuqahQ2/7XEuMKf3+/ScVEOz1HPnmMdRs6ClYcMVMYX+5Gz58OIYPH257bvbs2ab95557Ds8991y+dfbv3x/9+/cPOxZO6WXF3DVYOGUJAODa6xuhY782IV132/DeOHvsHJLrJKFu81oB50+nnIXT5UDZpMQijLZo+fmT3/Drl38AADr0a4PG7RuYzte7rja69G+PVd+uw7fvLcJtw3tDCNGuGl8uDgOfLdyKTIwx3PRQN9OxJz/8NwY8cxuS60Tmy3RBx6WxY8filVdeMR3jq19ygrHyuw1Y9PFvAICmHeujQ98WIV13+60tceZsBqomJ6JunYr/z955x0dRvGH8O7t3l0YSOtJ7kaJSpAgIKiogTbFiwYa9YsWfBXtHbNh7r6godhSVIl167zXUJKTe7c7vj+13lx4IkHv8nNztzs68M7s32X3ueZ+J2J+2ZY8xL9Uq/EflisTkN3/n948MBfEJQ7pwdLeWnv0tjmlEzzOO5Z+Js/nq2UkMuuKk4s9LNZI5/86hRRcsBEIIBlzhnZduevYizrnhdI5qEjnmBwMxpdPBQFRlUJQyUXcJk+cwHtHdihMvUSScfy2PIYHjqaQIbzkLbm8om3wQznubtBKOvCVqrMKJySJx3MfjECkIkH4FLU411UtGYUWT+HJ1fJn5qDn5oOnIhDj0pDjDA0oRSIusCSiOysnlkeRROLnjtDyUXASLhycLP6Yg5ZOrnMgX+HKF4aOkSbQAhBIFStAghjzqNEuJZtVheRyZJBHgSWkLjxXNILaUPEfppJjG6za3ZpqCC2GkyUnTg0tYRJDPeFnvdb8Zj+66pkLCq3DCueYsUst9vdjjppjnxec6WDN40vBLJeJ6KyZKO1m98sorAPTt29ez/Z133uHSSy8tWRAxVDhu7N+KuCQNoRrG/OWJHZv9XNilDaoKCUkaNz25maM75xxW6XYAT36xml8/r85H4+uQs9+HokpG3b+Vdl328+I9DVj1XyLuL2BejsLFxx9NIE7nsjHb6DkgA18BnNUvn1Xjy1drkZttrkAgJLnZlgQ0+vmY93cVLjq+DYoAKSTCnH2P65XFFf/bSkpVjff/Xcp7Tx/FjJ9SuWrsVo7psd9Os65SrWxpdfm5gpf/V58F05Ko0zCfm57aTP0mwZIuIBsVleEmKoaioes6r9z6LptXbOWW166mTuPyvalv07UFCVXi8QV8JVLPpNZM4dbXr4m6b9Hfy7j9pAfwBXy8vvBZ6rcov+W1yxPHntSOuMQA1epUpVGb+lHL+OOMCSt9Zwa6phf74a40WDZnLd+//Sennn8Cx53YJmoZIQQNSrBcua6Xb8xlmZfatWvHb7/9Zn9WS/trRAwVDk3TefXOD9m6Zgc3v3gZtRvWLNf6W3duSkKVOHwBH83aF189k5qayO239I+6b9HM1dx17kv4Ayqv/DaGek3KN+bywnF9nXmpYet6Ucv4fQpoGvvSMpC6PKAu00tnrmTSKz9z2si+EYsvWFAUhfrNi7+oyKE0Lx0uqHjSKQwRqiZRyD5wrVAmzKXnhU0WEO2kmUSARToUdV7dWXnuN7bCyVIPuUgYO043qRC+Op7dgCEn8qRZBSW+7BB60EyzU4SRUpcTQuTmI7NzIBAAVUHJ11BzTBkNKppPIKVEM58YRMhUzvgcMVLEOLrTusL7LQ0CR9cNQsYgwaSnDinMycLKW1NBS5Rk1ddQswUJuwRxe6DKFmm35fGJ0qVB2Gig5hnbdXO/HjDUT+ig5klUM4VOmIbg0n0OrfH2ZkMiAd2K3SLFpNknq9/WanPu4TBNyNEtUslUxJnEm7T4Rou3lKbCyaVYsuMKgap5rzfPdeK+drynolgo7WQlS7hKZAyHNvbt9sPuolU8pYNg11bDW2DAhbtpd3xOEeUPTVStqfPpSwbhBNCh+37OGrWLb96syar/onm6CHZvD9D6uGz6DMmIst+ApsG42xoi9ZLdLEhdYeeWSM+Gs0atJ7W6Manm5ar8/mUNeg/ax4AR5as2+/e3FH76xFBinXPtLho0DZZb3ZXhJiqGorH2vw188+KPAPz45u9c+vD55Vp/k3YN+XLHGwhFKXZqXWEI5of4+6uZ6LokPzfIzk27D1nSqW33Vkzc8y6qTy3wAeiacSNp0q4hx57UvtgpPoVh5o8L2LoujTMu68v6ZVup26SmvYrUC6M/ZN3Szfz393I+XPRUmdt6575P+PTxiZx31zAuf3REmeuDss1LPp+Po446NFa7iqFsWLtwI9+9ahCIP747lZH3DS/X+pu0bcBna15AKKJc5qX8vBD/TP4PKSX5eSF2bdt7yJJObXu0YuLud1B9SsHz0tMX07RdQ47t07ZEvkwFYcakuWxbu50zrurH+sWbqNusDik1kgEYf/VrrFu0kf/+WMLHG8vuI/fuoxP5/PmfOPfm/lz6vzPLXB9UjvulCl6ax/pXRN9e2D6b0JH2e3vlOutpPpqMxFIkeXyYRETddtvR1E7WPkvZZCmnhPCSVMUhtNxjYL23VsxTzdXgNImaK1GzgihZucaxCXHIOD8yoCJ9hvdTKE6gxRkrxGGqaoRFFlneTuBVOxUQpkW+2GbcLtPtCKWT4jpKSGO/eU58eQJ/lmnibab6aRZRpHjH1817CUxS0CSKVNMIXNGMVzSirMB+CCtm4SW83CvfeVbwE6BI55rCq3ByE4rhfk6eQITzcpNZ4fGFD7pHMVVMVIbJKoaKh+qTXP/oZmb9nsKaJXE0PTrvsFM6AXw4eykfj6/DV6/X4r9pVTizVTt0HQpTJK1YkMCwVu1IrRHi6ge28snzddiyziCLhGnIpigSrYSkk4Va9fK559X1NGhuLA8YF6/b+xq2yOOr5QvBJMvdf7bKip4D0vlq2UJ0KfD5pJ0aXB7Vx+alGAAatqlH6+Obs3XNDroPjr5cdllRWm+PaHhl9LtMevVXkqomcfkjF3Csa/nvioaUkn1p6VStnWqoxAF/oPAfGqrWSuX8u8vnwWjr2h2MHfESAHP/WMrcP5ZSrXYK781/nECcn2N7t2bd0s0c06t1ubT3xyf/oOuSKR//c0iQTqtWraJevXrExcXRrVs3HnvsMZo1a1YuccVwcNGwdV1admrK9nVpdBtw3AFpIxBffj8Cvvbg10z+YBpJKQlcetcZdOjeotzqLiuiz0uFUwxVa6WUOX3XwuZV27h/mEFyz/75P+b8/B/Vj6rKB2tfIhDn57iT2rNu0cZym8v/+GoWui7546tZMdKpBCgT6ZSfn8+6deto3rw5Pl/pq4qmYIqqahLe95ZIQyggpUUUKIZMD+wV3jz1uu7W7TainVspibZ6nnGMcBROqohaT4H6kbBnGtsjKKxtoYEI6ghFQfoEwSoqUk1ATQ4ggrqRgpdgEE7SB5pfIH3mw48GImR81nx4FD52DKayyFIN2bBIGdU5xFYTRVt5TWAonKwV+MAw4TY/aX7ITwSR7xBP9kp8ppzS+m5JVxVCN1a0C5jKJ2GSTVIYdbrbt1ViZuyesTaJrmAShBIjx0KCh4SzeSPNKYMwiTtXv4XLrNziz9xeWJ4YrPF2K8lcq+Z5rj9z2xG6WmYMhznadMoitYZGjTpBmrfLq+hwSo1AnOTzl2tjffmy9xfn75cgZ7+PvkPSWb8igZVRVVGlxynD99K2S3T1mBBQJeXAqBIVFaqkhk9cMcRQfohLiOOlfw/+akClRc7+XIQQKD6VQdecaj9EHQp49bb3+Hr8D/Q59wTu/fTWg95+YnIC8Ulx5Gbl2UbAGXuyCOaHCMT5uebR8zj/1oGk1qhiH7No9lrWr9zBacO7EFfCh/Brn7uMiS9MZtgNA8q1H+HIyPCqWOPi4iJW/O3WrRvvv/8+rVq1YseOHTzyyCOccMIJLFmyhBo1Cvbti+HQRHxiHC/9/WBFh1Fs5Ow3vHwVVWHgRT0PrXlp9Ht8/fwP9D3vBP73ycGfl5JSE+15SQsZD6HpuzMJ5gUJxPm59rlLueCes6jq8sFa+Pdy1i/dzOmXnEhcQsl+tLjm0fP49o0pDB11ctGFY7BRKqYoOzubG2+8kffeew+AlStX0qxZM2666Sbq1avH3XffXfzKwlVGBW1zbwebARDgUj3hkBbu8jY7JVwqJ9fnKPVGa97rDYWjlrIKF7XSXrRy0Y6z6lYF0mfsU8w0N0UCqoIeUMGngCqM1DGfQAsINJ8An3C8kdwKHne/3Eodd5gW4WGSKBKXKsj9CiNK7JqtCnVQQsJQOuVKVMsw2ySJHBN3wp51ZEQ8Asf/yCCNTMbRPodOveEnTQjDn0mPx1Z/RRCNItpLeEk6q5xrvGw/JyJR2J8CO85oxJJVXwn/lhj8motMjSGGA4BVCxNIrRHkmge3eKbVww1fvFIbn18SCpY8+B8/ro6iWiRN6TsvhOSeV9bT9dQMQy1mTmvlpTI6MChZZLF5KYbDETc8fzntTmjDMb2PPqD+R6XBor+WArDQ/LcskFKyLzOHainFX5azaq0U3pr9KPt2ZVCnUU0mv/cXrTs1JSnZWXikas1k+/3eXZncPfINdE2yJy2DkbeeHq3aAtFjcBd6DO5SomOKQrR5qWFDr+fOAw88wNixYz3bBgxwiK8OHTrQo0cPmjdvznvvvcfo0aPLNcYYYgjHdQ8Pp33XZrTv1vyQm5cW2vPSsjLXJaUkfVcGVWulFvuYarVTeWf5ePalZXBUk1p8/9qvHN2tJUnm3CaEoFptp769O9K564wn0HXJ3h3pjLy/ZKmVPQYcR49yVsdVhvulUpFOY8aM4b///uPPP/+kf3/H7Kxfv3488MADxSedhEslFL7N9ZnwMtLabnkLGWSHUBQkOgLheNV4lmsTnio8aherOdf/7CPMuqR0zHfcqWcWSeF8LoCGcJd3tyu8cUnTeFoLCGNFNVUY5tdCQVdBCUp01fApCiUIYxU2v1HOUvcIAQQNskbqpjF22GpvwiQ+LIWRTQZZ5IpJgIQk6EiTKLLGAocJssL3mURgENQsBX8G+DMN43BdAeFznQHhatTuvPSeG9dYawHj31A8BJONlefsNL7wb6fVR90wF1c0Y2U6LWCuTOfqn5sAKlRd51IrSd3aLGySSLrKRFU7ubpsp+S5VxYMb6+EqAyyzBgqHi2PyaFDt+yKDqPM+Oyl2oSCpb1pE+jlYNJeu0E+JxbiEXVoomS3QrF5KYbDEUmpiQy6ql9FhxEVN796Nd9N+IlTLjyx0HJSSoJ5QfxxfuPX/ijph/c+9z1/zFzJRUOP57oi6rMQCmlkSo2m7RqiKIJzb4pueGwhEOcnLj5ATlYeqdWT0HWdBy+ewIq56xjz5lUc26s1Uko2r9xGnSa1CMQdKE9CB9HmpU2bNpGS4qggwlVO0ZCUlESHDh1YtWrVgQk0hhhcqJKayMCLelZ0GFFxy6tX8d0rP9PvorLPSw+f+yx/f/Uv5901jCsfv7BY7YeCIXL259HsmEYoisL5dw0rtLw/zkdcUhw5mbmk1kxG03QeHvUWKxZsYMyESzmmewuklGxZk0bthtUrbF460lCqu+5vvvmGl156iV69ennkfW3btmXNmjXFrifiQdtNOLkVQCLyeV66K5HOW3uTEObL2u4ir+y6jTLu3RG31O4UO7ePU9h7GdYH66VbL+F6ebabhJLVthmfbtVjhWeRSZb5tQK6KmyiSAphmm8L71mVLkLEalRz9tnb3INqqZKsY13qJjtGty+UVY9VpyZQ8kHJF47/EmF9xPPGO+RCoCPssKzx01SHONJViS4kOrr5r0RibhM6Eh0pddAlmirRfMa/upBIV1lpvtzvI17mfzbJGXYhyvD+uf719Mu10T5v0c6B9bkEsCYr96QVQwzljXVLE9i4KsDmNQHGXNCUnP0iWhZysSAlPHh5Y5bNTSh1HUVhy7rocZ523h7K87ekc2/YweRN//Hj5gJern0/ma/3ZiwvKIv7EEbJ5pbYvBTDgYYMrUZmf4nUsyo6lIOC1l2ac8fb19PplOgrMIGxKtfNve5jUPIlXN72VgYnX8KUj/+JKDd/6SYA5i7eFLEvLS2DSy97g6uveYf0dCftd/QzEzn/jnd5+l3DgHn6/LVcce9HfPP7wqixJCXH89rk0Tz90TUMvaQnu7ft49+fF7JvVyZ/fj0LgHfu+5Qr2o/mtr5jo9YhpSQUDEXdN++3hXz06JcFjkU0RJuXUlJSPK/ikE55eXksW7aMunUPTZP5GCoOG5Zu4qe3p5Bj+vAe6Wh9fAvuePv6AleGA9A0jZt73sug5Iu5vP1tDKl2OX98Oj2i3MKphmrqvz8WR+xL27iLKzrcznXd7iFjz357+33nvsCobvfx8h0fA/Dvj/O5qdf9TH5rStRYqlRN4o05j/PsL/9j6LWnsnt7Ov/+toR9u/Yz9dt5ALz72LeM6vUgdw57Lmodhc5Lfy7l03GTCxyLaCjr/dKECRNo2rQp8fHxdO7cmb///rvQ8lOnTqVz587Ex8fTrFkzXn217AbrRaFUSqedO3dSu3btiO1ZWVklyzG1yAwTUdUeNtERJnWyCguBUAzJitAlEa62hfgyybD27Z3SOM7tCRUuXLE9d9zqIEV4YvUoodwIT6+Tjg7LakcxQxe6lT4HBDG8lqRJlrmJH6t9n7dJEQIlhElSGcc7K/7hUQoJgU1+SFNJJX0gVWkogRTp8mBymBahmTGFESWKlU6nCjO1LsrTldVpl8pJWmmB0uRfVNADkJ8M0i/REqz+Su+gYdTjTg9UghJ0YZqpS+d6coXjJvuix+Z66c658qAYJJGwPLGsuu0OOyooNzdaElQGhjwGBz6/jlAgmHdwJdYNWuZSrVaIXz6rRpOjc1D9stTpdVmZsHpxAvWb55GbLUhIKph9kRIy0xUE4PPLQsu6sWR2Ih26ZZFQxSmflaHw06fVKI8ktvhEDZ9Pctp5u6kcK2fHlE4xHDqQMh+5+1yQ+yG4CJH6YEWHdEgga18Wy2Ya6pvNK7cBMOeX/zh5RC+7TDA/xK0X9mbmks2cPaBjRB2zZq1l48bdACxatIlevVoBsGbjLgBWbdgJwJtfTmfZ2h1s2LqHYaccEzWeWkelUuuoVABq1qvGsKtPYfmctQy+vC9grCIGsGHZZqSUnueI3Ow8buh6N9vW7uDRH+7huJPa2/tysnK554zHyMsv2YN9aeel22+/ncGDB9OoUSPS0tJ45JFHyMjIYOTIkSVqP4YjG8H8IDf1+B/ZmTmsnLOGmyaMquiQDgns35vFspkrAdiyajsAc35dyEnnn2CXCeaHuO6Fy5nz0wKG3Rjp4zbr5//YtGIrAIv/Wc4JQ4zU2/VLNwOw1iTQP3j4K1bNW8fmlVsZeEV036Va9atTq3514329qgy9/ESWz9/AoEuMeXLtEqPODSu2Rc5LWXnceOpj7Niwi4c/u4ljXQsn5OzP5b7zXyQvv2QrPJflfumzzz7jlltuYcKECfTs2ZPXXnuNAQMGsHTpUho1ahRRft26dQwcOJBRo0bx4YcfMm3aNK677jpq1arF8OHlu4qjG6UinY4//nh++OEHbrzxRgD7RLzxxhv06NGjdJEU4OMkoz7hh5Wx/1dw0QJvlcOkKWHUVkR9jheRMAkni2ByUsHcFUVcN+Hpg9FitJRPEjOfC4PQsUgPAboiDDWU+TJUVBIPq+IiNOwFlTQi4e6oSZ641TsR6WLuPpkyJHu3SUIpQWGYcVtqoLA+Cld5pHRIG5PckoqwVQC6MEgwqTpqJY+vlJDeim1CR6ILAYqLiHKRVNJNWIlw9soLgdVHY3VEKQXSfC9wVrezavFUHdZ3abZtpS9ap9neaZF/JUDs4a7yoHqdIPe+vo4x5zU/6G2vnJ/E2W2Nm/4O3fejKCY5XopL7snrm5C2OY7LT2jDa3+uID5Ri1qPlHDnOc1YOD2ZarXyee2PlQWWDcep5+yz60DA5y/V4u3H6pU82Cjoflo6D7y1HqGUrv+VAbF5KYYDCwGY6RmiaGVKZUFKjWSuf/5SFv29nEZt6rNh2WYuGHOmvV/XdW7odT/rl2zmmqcu5OjmR0XU0atXK/78cxlxcT46dWpsb3/y1iH89u9Khp5kKBoGn9SBDVv3Fkg4hUMIwTWPnufZdv34S2nYuh7dzugU8cP1trU72GA+UM79daGHdArE+alZvzpb1m0tVtsWSjsvbd68mQsuuIBdu3ZRq1YtunfvzsyZM2ncuHHRB8dQaSCEwBfng8zyXb3ucEdqzRSuf/5yFv29lEZtG7Fx+RYuuGuovV/TdG7s9yjrl27hmsfOo1XnyHvcnkO78NeXM4lPiqPjyc5ccN8H1/P3t3MYONJI7+t/WV82r9rGwCtPKVZsQgiuGXuWZ9t1j5/P929PpdtpHSLnpQ072WQS+vOnLvWQTv44HzXqVmXrhoNHOo0bN44rrriCK6+8EoDx48fz888/88orr/D4449HlH/11Vdp1KgR48ePB+Doo49mzpw5PPPMM4ce6fT444/Tv39/li5dSigU4vnnn2fJkiXMmDGDqVOnlrzCaESMWyVU0B29iygwOKAw4sBMoTPYi7C6w4yiDaWJt5yHLBDCTF1zUuncCidXEC7CyUWkWaG42y0IujRUQjoQAqkIhDAMtqVPMeqJE8iAS7mkAKpRt9BcyhlppMqpYK5yB5qbsAkjqDD9ioQPj4G41Y5F1Aj3knNWN806fNnCbheBrVqych09gieTcLL9o/yQV9NQoYkQKEHj0GCyJJQsDbWVW1EQbSwFSCHBLw0fLh2Epjjlw/vsHgj3dWdt1s0Ha6uv1rhoGOfcWunOnRYXzmG54pTWmFiqTJNQdBNx0URhhUFKYazgaL6P4chFrXp5LJxRhbzcipLWCFKqh+g1MB1fCe+npITNawPk5wjm/GmYzVarHSR9tw90qHGU5im7aXWAnCyFhdONlZBq1ssnP1cUm+Sxyu3c6ichKcSsKcmFH1AEklI0atXPY2+anwbNcsnJEiSVYFU5KWHTqgDBfIE/Qadhs+AhR1ht3+SjWs0QcQlFly0KsXkphgMJIfxQcyIEl0Jcb3Zs2Ut+bpCGzSOV+Eci/v5qJvt2ZjDwylNQfc7fg2nfzGbGpLmcddNA6jSpzaMXvsA793/GPR/eiM/vIz83yMblBlGzcu66qHVXrZrIM89cELG9fct6tG/pEPdn9juWM/sdW6Z+1G1Wh6ufvjjqvibtGnLhvcPZtGIrQ6/3mpCrPpXX/3uW1YvXcOwJ3xa7vdLOS59++mmxy8ZQeeHz+3hl7lOsnr+O4/sfx44NO8nLyadRm/oVHdpBwV9fziBj934GXHGyd176djYzJ8/jrJsGUrtRLR4b+TJvj/2Ce967Dp/fRzA3yMYVBpGzcv76qHVXq53KUz//L2J7267NadvVIakGjerHoFFl8+Wr27gmox6MTsA0Obo+F9x2BptXb2eQqdi04PP7ePWvB1i9bB3Hdnuv2O2Vdl7Kz89n7ty5EX7ap512GtOnR6YvAsyYMYPTTjvNs+3000/nrbfeIhgM4vcfGLK0VKTTCSecwPTp03n66adp3rw5v/zyC506dWLGjBl06FBwPmeJYEtsLJYj8gTYfId0lDkQ+bzv3g5hPIOULpWJc5SdAhVWkUQaeVImceVea82j5nH7UbkJp2jdDGtKuAJ0e/7oZrXS9HOy1E6WT5TN6whs0kqRIHRpKJ3MNDs04VEKufsqpJnO5qrT9hmyP7hGVMMxxLZjFYggtsLJOk9hQqOoJIumgNR1NPN6V6RJJQpHreBRNkWB5XkF0nRSF0jhkg5FnAbhmIpbJ8BdRhg6J+liGyXS4TSFyTcK4XCZRTyHWn2RwpvtaI9FSZVOCHvVAz2ygzEcQVgxvwor5lcpuuABQoPmubzy2wr8gZKrnD4aV4cPnvX+qr5xZSKPjGrKq78v99T35iN1+fIV78Nj+q4AyVW1ErU7e0oyf35TlWbtclg8s/SkU9WaQd6etoxNq+O5dXBL9qQFSkQ4AUy4tx7fvVMLRZG89sfyQ45w+unj6mxdH+Dye7aXS32xeSmGAw2h1gW1LpvX7eTagc8SCmo8+u4oOpnpYEcqVsxezUPnPAuAqioMdD1gTbjlHdI27WbH+p30PrsHG5ZuZsPSzaxfvJkWHZsQnxjH/z64ngVTl3HOLQMrqgvFghCCSx86v8D9ickJNGkXmT5SGGLzUgwHGrUb1qR2w5psWrGVq469nVBQ48mf/0enfsVTBB6uWD5rFQ+fOw4ARVU8SqMJt7zLzs272bFhF72Gd2fDsi3Ga+kWmh/bmPikOO556yr++3s559xYslUuDzaEEIwcM7TA/YnJ8TQpIckYbV7KyPAuNhMXFxfhN7dr1y40TaNOnTqe7XXq1GH79uj3ctu3b49aPhQKsWvXrgPmU1diQ5BgMMhll11GYmIi7733HosXL2bp0qV8+OGHJSecLDPuQvcTWSZcLSSE7ZcjhOV3JBxFiiKivIgknEzSSQCoAqkqhkeUohjpXqowPpsEkqFYMfugCBfBJGxFjDTbl6ow1C2qeYxqbQt/jx23QJikizA8kwIqeqLx0uIE0m+qnfzCUD75zOOE4eOkaiA0idDAFwQ1BGpIeBU7wvVexaAhVZB+wI/p6QTSJ21vJ1vxpIMaFPjyFXx5Cr5c4xXIBH+uq06/8a9F0mATM9JDsljkjVZFEKoKWipoyea58AF+Cap04nS/rHj91hgbSicR0I3j/E4ZAng/+5z+RttnjYn1klZ7PuG07T6/7vFUIl/S8soyj5XWdSKc01HS26CYYW/lQa16+TRuXTLZbnkiLkFj2/pAkdN3OFYsSODfKdHJsviEkF2nBVXViU9yTBpTawTpO3Qv8YkG4bt2aTwzfklm786C/4xtWRdg6nepSCGZ+WtKgeWKg0C8ztZ1AdYujUPXBYqqsXtHyf6EJiSF6NI3nbhEjd3bfYSie1BWGDRNkpgS4t9fq5CVWfZ5JDYvxXCwkL5nP6GgoZTctT29gqM58KhSLQmf3/jduHrdap59J13QC0URnDyiFydf0JNGbepxwtAuNGnfwC7Ta+jx3DDuEuo0qmlvy8rI5t4hT3DHqQ+zb+fhtrJm8RGbl2I4WEjfmWHPSzs376ngaA48kqtXwec31E016lb17Dvp/J7GvHRBT045vycNW9fjhMGdadzWIWd6DerE9U+OoHaDGva2rIxs/jf4Se487dFKNy81bNiQ1NRU+xUtVc5CeApguA9VccpH216eKLHSye/3M3HiRO67774DEY8nXcv+bKc+Fax2Kur3Zld2l+fh3j7OUvpgCIGkmUanYCiFAEN9okqnAoRxksL9nNyhu1a2ixajZ5sVkPWvBHRpEjLG6nQWseX4OLn6ZdVpkV+WYMfaqQOaRJgpe+52rfERJgGiC+mYpbvrsP5VjAtUF4aYSA0aqid71TtXXyxhUlRVF44ySReg+QylkzTrEBgr+SlB0IJAnKU2c1UQPnbWJuu8SXBy/cJUTJgqJgEeYyWb+THe2HSkbiqvXEola8xs/k4KJx0vLEz7cjb7pwtQVGMMHTVZyRFLY6kcqFYryNh31nHjgIr7FV/qCg1a5JfomJ8/rca40QX/Gq1HqTNzn4/cLONPVFyCzptTl5NS3ZAAzvo9mfsubsY516XR47TMqHWuWxbPtae2Qurl833QNeM79sJdRj/iE6BGnZJJEi+/J40xFzQjL0elYfN8fKXSGh845OWovPNYfW57biNJyaWcjFyIzUsxHCy07dSEO545n/0ZuZwyrFNFh3PAUb9FXd5ePp6czFyaHdPY3v7lc98z++cFPPTtXXQb2BGANxc+U6w65/++mFk/LgBgxndzGBBmwPvJuB/4Z9I8rnr4XNvDZH96Nn9+O49jerSgUctIb6ii8N+stbz+7E/0Pq0d51/Rp8THlwaxeSmGg4V2PVtz13s3kJWRTb+Leld0OAcc9VvU5e1lz5OzP2xeGjeJOT/P58GJd9BtoDE/vznviWLVOe+3xcz++T8AZnw/lwGXneTZ//FT3zHtu7lc/cQFHNOrDQCZe/fz52fTObZPOxodXfK0xgX/rODNB7+m9+BOnHfTwVFdRZuXNm3aREqK84NptFU1a9asiaqqEaqmtLS0CDWThaOOOipqeZ/PR40aNaIeUx4o1S3vmWeeyTfffMPo0aPLOx4XiSDsfzzparj3S4SLbRAFWZzYbIBZp6Z7PXMUQAqE4iiO9IBicA+5mrEdTOWKqaSyVo9ThDdmsy1L8eSkenn3QxR+wWZgMAgcsJVZut85XoKzwptP2MoZd4qccPEmQjgEiJUGZvcbkLqhvkF16pZxTj+kYiqFBI56xyROFCHwZwvUfGxvJpv8UezTZKurPGfRVU4CeoJASwQZL8AvUbIVlJBRdygABAzFFT7X4EW7LNyVCwq+LlxMmHCdF4RTj9SkYeJu5RuGrGNc51IXLsLLRThJg+sKv6Wxx9o+HkQIWzlSUj8niBn2Hu5o1DKXlOpBFv9bBRAoquSE/unUaZCHzdwCqdVCJKWGOLpzFktmJ1FyTVzZkZMDE9+oiRCSrqdk0rAIAkpK2LCycJPf3GxYPjeRtsdn29+9VsdlE5+0A0WAP16SlOIQPOuXxyGEToNmBSu+Nq32R6yoWVrUaZDP6RfsokpKiGFX7OS/aVXYtsHPN2/VoOfAfdSqG22Fhuho0T6LFQviWTgzkV6DMggEih/HqoUJaJqk9XG55Z6a5z5PS2YnkL5bpVqtED0Hphd7tcBwxOalwx+6rqOErwocBZqmMfasp1k9bx33fjaadie0LvKY8oQQgpOHdS52+Yz9ufwxcyVdOjSifp2qBySm6d/OZs2C9Zx1y0CSUpOKdcyuPfuZPGUx3Ts1pVWz6A8MAPM3b2VTVjoD23vH+e17PiGYH+Kzp761Safi4pgTj6Zlp6bk5wbpcvqxnn2hYIj3HvsWgK8m/GKTTi/f+yV/fjOX5KqJfPrfowVeK7/8tJC5s9dx0cheNGzkPNR88d4/rFm+jbUrtnHOyF4eD5gDhdi8dPijRPPSmU+zev467vt8NG17HPx5qSRkU+be/fz95Uw6ntKBuoV8/8uC6d/PY+3iTZx57akkpSYW65hdW/fwy3tT6TqgIy2Oa1JguaUzVrBtbRp9zzvBs/2tez4mlB/i86e+tUmn4uKYE9vQomMTgnkhupzqTU8M5od4/5GJAHz14s826fTijW/z52fTSalehS+2v1GgeufXT6Yx74+ljLhjMA1dpPmXE35jzeLNrF2yhbOvPxVVPfArRUebl1JSUjykUzQEAgE6d+7Mr7/+yplnnmlv//XXXxk6NHoKYI8ePZg0aZJn2y+//EKXLl0OmJ8TlJJ0atGiBQ8//DDTp0+nc+fOJCV5/5jedNNNxaonXDzjVTgZCqLiKJg8KpJoZUxOQDfT6hQpUDQjRUMKkH4zj1Jip8JJn0CEJLoKivt5wpSqSDDIBuG0UWCMriCLc+tuE1USREiimLIf3Up1EwaxoVsZgZZKBpPksFaN06Wzz4pBM+oUbkLMVFDp1lgpZv8UTMIFpC4dQ3CXWbam6ih+BSVPOKfPNRZ2fO76sPkZ+4MOhFRJKGCGmg9KHqg5oOQb/2rx5op9iu4i8twDR6S8SDcGxUi/FN54BEScEWubMD2bTMmWtBo0+2Dvsl5WWp055IpuMNVCuogk1wXvviZ0YailhHQ86Uv6iBf75e7wRWqNIGNe2cB1p7bCuijOuz6NS++Onou9Zkk8S2ZXnKfTtnUJvPFQfU47fzfDr95dZPmp31Xlq1cLv3lKqSZp1zXbs23AiL1Ry/43PYm3Hq3PkMt20X/Evqhltq4P8Ni1TSkPUs7n13nplxWkVDUmr8599jPxDcNrquOJWSUinAAWzUwmL1uly8n7S0Q4bVwVx6sP1OPZiWtK1F5xMfnD6vz0sZFq89PHtQB465+lpSacIDYvHe54+vKX+e2Dv7j2uUsZdkPk8tVu7Fi/k5mT5gLwxyf/HHTSqaR4/NWfmTprNbVrVOGbV64u9/p3b9vL2LOeQkrIzcpl1FPRjbLD8dSrvzB9zlo+nTSHye/dELXM1vQMLvjgc3Qp2ZWVzeXdHLJtyPWn88t7U4u1atMvK1ezJT2DER2PIc7nI6VGMi//Gz19w+f3MfCS3vzzw3xOG9HT3p5YxSCq45Pi7Ae7RfM2sGDOOgYN70K1GlXIzQ3y9OPfI6UkFNK470FnlajTh3Vi5eIt9D613UEhnCA2Lx3ueObKV/n9k2lc++zFDLnmtELLbl+XxszvrXlp2kEnnUqKZy6fwPRvZ1OrYQ0+3vBqude/e9teHrroJZCQl53PFQ+dU6zjnrv6dWZNns9Xz/3AV2lvRi2TtnEnt/a+D12X7EtLZ/itg+x9Q647nV/fn+rxnisI076dw46Nuxh01SkE4vyk1kxhwr+PRS3rD/gYcGkfpk2ay2kX9bK3JyYbK6HEJ8fb2xb+s5yFfy9n0JUnU7VWCrnZeYy74V2kLtFDOmPedv4OnH5BD1Yt2EDvIZ0OCuEEZZuXRo8ezcUXX0yXLl3o0aMHr7/+Ohs3buSaa64BYMyYMWzZsoX3338fgGuuuYaXXnqJ0aNHM2rUKGbMmMFbb73FJ598Ur6dCkOpSKc333yTqlWrMnfuXObOnevZJ4QoNulkaZTsD96KIlRPUeuw2YvoN8aGQkkxyJqAgtAkSr55hGIomnSf64JSzVXqpHTIAoFtAm4QNYqjnPLIiTD9jtxlXftcJIuH+PD0zyUJktKynjLUR6qrLlPlZPkIKWAQStZLlw4v427LVGvhUttIgbMKnumXJE01kZAYKitL6eSGAkIKfHkCxe4LXgWRfaKs8TXiBBCKQfRJBWQAgjWk4eGkC3xZgri9RlodgGapuVQQAVcbLrWQ4ZruGkYMklGoEkWR6BpmMp3ZfrTLylIbqQbRZ5BURj3opkrMUrmZJKXTpnBW1hPCOA9WOfcYKMYY28o04bw8ZUoA6WLIYzdRhw8atshl0MhdbNvgR6g6MmRcQIv+TWTzmgANmkeqiDavDiCEjpQH5w9hQVg+N5EXxxirGKVU1xh08S7P6nP/TU9i2o+pRaqcAHZs8fHS/+rSd+g+2h2fU6iKp06jPI7pkcFRjXMLNBRPqRak+6n7mPlLapnHSQvBnxNTadg8n39/T2HTGucmZvpPyWzfaEyOdRvn0f+C3VRJLZykOeuqnaTvUdiyNsDCbQG6nlo8tVPVGiHOGpVWpr4Uhjad9nPtw5vI2a/yz+RUup6SSdVawTLVGZuXDm/8+dl0dE3nry9mFEk61W1Wh0HXnMbKOWs446qyrRp0MBAw/ZCsf8sbicnxpNZMYd/ODOq3LL4pa+0axmIHNasV/MOCT1VQFYGuSeLCcnSveeYSrnnmkiLbWb1rN9dNNH7p1qTkyq5Fq8RuGncxN43zkmfXPDic7qd1oEX7BgghyM8PMebGDwjma2zbvJc7HzqTuDgf7drXZ8nizXTs3MRzfO9T29P71PYcTMTmpcMbU7+cacxLX/1bJOlUr/lRDLr6VFbNW8vAw2FeSgh4/i1vJCYnkFo9mfTdmdRrXnwlVe2GhjqxRv1qBZZRfCqKT0XPDxGI96plrh13KdeOu7TIdjYs28JD5z8PGGKH4TcX/ncH4OYXLuXmF7x1Xzf+Uk4Y0oWWnZsZ81JukP+d+SzBvBDb1u3kjtdHEZcQ4OguzVg2ew3H9Tnac3zvwZ3oPfjgpmmXZV4677zz2L17Nw899BDbtm2jffv2TJ48mcaNjRTHbdu2sXHjRrt806ZNmTx5Mrfeeisvv/wy9erV44UXXmD48Oir9ZUXSvXXdt26deXSeKG35lIiI/KxwiCwF5wrqJjBTUhzpTeJ8Bm+Qaq5uhq6WUIIx9BZAaFJpJQGAaWHRWo16mHMDAYkuqrJ7EsB8UXrl536ZiqL1FyJEjQq11XQ/SZho5mkjTkYwkrp0vGkeYGppMk3+ixCEEoQtvG2xPKHkvaY2QSKxEgrE0YamDeFEEIBiQgJTyqZNFfAQzdMzT0CJOES/ViKriD494HINepUTPLMal7JB18mhHQMQ3OLtLFKCLODLtJGIBGKRKgSVdURioKuCdAVz3kq6MRI6dQtTBmStDpgSp2ElB7PGNuHyrSQcs6HsEk8MMcTYx8a3jRMSaHKuQLCjbwsKxn27dtH1apVo+5bvXo1LVq0OLgBFQnJsxNXEQoqXNi5reePTJe++6MSTts2BHjs2iaUh4KnrNi4KoGNq4xfk8a+s85DOG3fGODOs5tT3Dj37Qywb2eA9l2LNkjftDKB2g1CDL+qYJXVnrQAM34u+OaoJPAF4PhT9nP5CUejh/lDLZ2dzNLZxkPiO9OXFkk4AZw4OJ38PMEVvVvzzrTl+IqpZE6prtFzYHT/qvJA83b5NG+3h3GjGzDyzh10PaXsbcXmpcMbN718JX988g8X3nt2kWWFENw8YdRBiKp8MOaa0zi5Rys6tKp3QOpPqJLA28ufZ8/2fTQ+ukHRB5i45cpTOL1PW5o3rlVgmdpVqvDtFRexLSOTXk0blyq+lPg44n0+ckMh6iaXXjkrdZ3Ni9Yjc/PoOqAjqqpQs3YK2zbv5aj6VQHj2hj34iXk5OSTlFT0jxAHGrF56fDGjS9cxh+fzeDCe84ssqwQgptfueogRFU+uO3Na+lzTg/a9WxzQOpPqBLPm3MfY29aOo1aF3/uu+GFy+l30Yk07VCwN2fNetV5dd5TpG3aTZfTji1VfFVSE4lLCJCXk0+tBtVLVQcAUrJl9XaEIjj+9ONQ/So16lZj+/qdHNXEmFuFEDzz413k7M8jKSWh9G2VE8o6L1133XVcd911Ufe9++67Edv69OnDvHnzStFS6VGxNqZuZYdnu3Dtj1LAfjh3FEkO0+M9VUIV6HEK0qcYKpl83UyXM0kmn2Iqf0z1kk8gdIkaskgP4eQ8uWMKVzAp3m3Svd2tcMJVJmwoLEJDWP0QwlY7oeF4LykCXRGOX5L1IOTyVBJugsOqX5qG1RI0a0U4xVQQuVdosz7rVv9N7ywNFE04xJyQKEGBL194+B6JqY4ClCCOCsr6xzpV7m0YdftzvX3QhaXyMsc3TjiqK4frMxRFlloI571QJT7VSIvRbaVSmKooDO7rSQjDK8xQmwmbVbJUWuiueiwCTQhXKqJwFFmuc2EZrnu8tuydOIRfMaFjrHJova+MGDhwIFOmTCE+Pt6zfcWKFZxyyils3ry5giIrGBPfrEXjVrnEJejkZhsnPRCvU6teXoSKZ+GMJL5+oyYRF9QhgPefqcOPH1XHii0/3/XlLCb+m5bEw6Mace71abQ6tmDPotYd95NcvXAFTu36efQZuoe/J1VF171Kp4Ytcjn7mjQ2rYnj+/dq2uNeEIJ5gnGjG5pJ1dGDatA8F60EWXY+n+TWZzeVuy9TeeCsq9NISi4fM6zYvHR44/RLT+L0S0+q6DAOCOLj/PTp2vKAtpFcrQrJhSiWosGnKnQoxlLbLWrWoEXN0hu+1q5Shd+uuox9OTnE+/3M2LCR7o0a2ilyudl5CAFxCV6SKDszB1/ARyDOuMn7ctz3vHPvJyDg/dUvUbdpHV7+4Gq2bdlD81aOR0pI1xj30z/k5AcZM+wkkhMqjnyKzUuHN067pA+nXdKnosM4IIhPjKPXmd0OaBvJ1ZJIrlY8jzkLqk8tVsp047YNady2YWlDo0a9ary18Gky9+4nLiHAf38t45jebcLmJUFcmBIsYl567gfevf8zY15a+QJHNanNy/88yLZ1aTQ/xiHOQkGdd56YRG5OPtc+dDZJyd7nh4OJyjAvlYp0uvzyywvd//bbb5cqGDeipt25PHHcRI5H7STwsjmaRMnVjHQp4VRipJQZpuAiJEHTzBXdBLoqwCdQgzoijMSy2hdmWhjCUes4/j8O0SQtSY3wHO6Fm4CS1jFmX8y0LlutpEkUXeKTAhk0VrBDkXZKnx2fqc4KN2IXmrnanCLR/RBShcmdSE8MaGbb9rgZn7WAbhiL+wAh0VQQQR/+DGGQeQJ0FYJxOloVg5QK7BWo+cZ+K+sNV7U2uxvCTE90XvZngJCEPCAeCOge4kgoFoPjXBhSgtQEIakYiidzrOzl9NynVHqPc+p20c5CdzFoRh1SATSTsDQJKN1KxTMVS0JYJJOpBrPIKk8ARl0WCVVipVPMo4Bq1aoxbNgwvv/+e3xmysGyZcs4+eSTOffccys4uugYPHI3Fx3f1lDgmRh6+S76nZPuKRfMF4y5oBmh/IpNqSsIa5cksnZJ2erI2Oundv0QrY/LLbRcSjVJSrXCy2xdH8/Ub6P/Snb3yxtp2jaHYS07kJ9bnPEULJyeXGiJu1/eSMPmxU9FU1To1Dur2OUPJpq0LtnKhIUhNi/FEMPBw3ev/sp3r/zCJfcN58SzuxdZ/qjkKvgUQZ9X3yJP03jw1JO5sOOxbFi2mRu6jkFRBRPmPEn9FkZ64OJpy7njlAepUjWJNxY9S9VaqVSvWw0wHpYTqhgPbElV4mjR2ptSOGPlRj6fsRCAjk3rcU53ryHwwURsXoohhoOH7yb8zHcTfuLiB86lzzk9iixfq0F1VL/KpR3uID83yI3PXcIZV5zEhmWbuanX/SiqwsszHrXTAxfPWMndg54iuVoSr8x8mKo1U6h+VFUgbF5KSaDFsV5l6Ly/lvPDB9MAaHd8MwaM8BqgH0xUhnmpVE8we/fu9bzS0tKYMmUKX3/9Nfv27St9NLa5DV6VkHvsFdy8gv3BIQmEUw+WMMnwHBLSTNuSgE+g+w22yOAqBMIkmxQJar70WAQ5IVoxCZfCyYlbela1Ey4FlKuPdmBE9g+neuO90z+rL9bLHg5TwaRIw8BaMf2cFKuGcHWPAC0OtDjhqJzcaifFUA4Ji/Syz4dZJoChNvKBGlLxZQsUk0TRVdDjJKGqoCeAmqegasaY2p1zj6vJ1wjFrNMK3PKcMr2cpA9kQCCTJASkEZ/1Ug1Fk+ONJFxqJWGOnWschXOsV14k3JeO5701GMIsY6vdrHrdE4SwrhO3ubrrvFs8pNmsfdnibCvpN9Na9cC9+kFlw1dffUVWVhYjRoxASsnixYvp27cvF1xwAc8//3xFhxcVd5/XzEjdNBGI12nYIsdIz3TB55ecf8MOBo3cyTNfr+SFH1fwwo8reHHyCl6YvII7XthAzbrlRxYcDBx/cgYDLtxFIM6RCP39QworFiSEC1ZLjAbNc+k7bA+K6h3IRi1zUXw6C6dXISk5VOz6eg/ax9NfrWL8pJV07ZeOR0YKfP5yLfbuPDgmuIcTYvNS5cAvH/3D9b3H8tfXsyo6lMMSH/82j/63v85XUxeWqZ73xn7BxmVb+OixicU+Jl/TCZp/cPbnG39DVs9bR25WLtkZOaxd6PiALJu5ilB+iH1p6WxeuQ2A/pedxEuznuCd5c9TtVYqeTl5PHzus9x+ylh2bd1jH9u2QW1qpySRkhBH52bFTzc8EIjNS5UDv3zwF9d1v5e/vvq3okM5LPH1iz8xosVN/PDWlDLV8+59n7Bh6WY+fvSrYh8Tyg8Ryjfu0bIzDduF1fPXk5uVR3ZGDusWO/PS8tlrCAU19qZlsHXNDsCcl2Y8yttLniO1Zgp5Ofk8fNGL3DnwCXZv32cf27JDQ2rUSSW5aiLtuzYvUz/LisowL5VK6TRxYuQfNF3Xue6662jWrFkZwjGexu3beV1GpqdFy3AQYWon13arHikNHyQZUBEh3VSeGJIW3XTrFjqIfEAxyBPDGFqAkEhFsZVN6NLwKbJixDjG7dsk7fS48Di9OTOeFdDMIbC9mCz1jNuMGmmsihaSxgppJsEhFWm8dylldBVT2SOc4TW7reaBFpDoqjDS9qSlLDIYIWmVt16KtU0afTbJKT1BI5QEIqigmF5SaMbKc1qCTrCKQM0RhueT2Yb0mT5PZlldAc0vya8hCVYPgR9ECJRMH2quAF2gqxJdlUhdoioaQrW6ZFwUws7vM5VsujmoEjRNoCiO8svqhmPwLRERvltGndKsw7i+dJOpckE12D6pCifdThNITSB041oW1op35vVrKOOEvdKg5QOFYp5767ooAaQdI2V+YD9cER8fz/fff0/fvn0555xz+Pvvv7nkkkt4+umnKzq0AiBsTyQLp5y1l9PP3xdRMpgv+OmTGnw0d1nUmj4cdxS7th0Y48kDhdHPbmJEJ6+X1UnD0ml9XNG+TkVhw4oE/vwmUul07cNbaHZ0Hud2aE767uKZKcUlaIx5ZQOqCrP/SGbWb6kRZS64OY1qtUq2il1lQGxeqhx496Gv2bN9H+89OpETz+pa0eEcdnjvpznsSs/ig1/mMrxP6RVAw28eyDcv/cTQ608v9jH1UpL56PyzWb93H8PaGWa6vYd3Y/X8wag+he6DHDPdgVeezPZ1O6h+VDXa9mhlb2/dxXlYW/zPcv76ciYAUz+bbq9gVSulCr/eOwqJRC3GUvcHErF5qXLgnfu/MOalh77ixOEHNmXtSMQX439gz/Z0vnrhJ8644uRS1zP81sF889JkhhaxGIUbtRvW4KnJd7N17Q5OPs9QR/U+qyur/1uPz++j28COdtkBI/uwff0uatStSpvjnbmolXtemr6Cf76ZA8DUr/7lLHOOrHFUKu/PGms8Fx+kVeoKQmWYl8pthBVF4dZbb+W5554r/kHuZbvcKidrXzjhFEUV5OyMRjhZ6hWDPJIBg6lQLCJHcR2nGNIeoRhkgGL5/yjCIJx8AulTkKpASOEMnKV0Ul3xW5IVd8z2NqdPzup23r4JjyzJ9TlcCYaZ/2kpZiROtz1xhQ2JAlo86HEiqsrJrcwSFiNibVcEwm+qiwQouSr+/YqtdJIq6PGgVzF8oAKZiuH5ZI65VLHH17LAkj7QkiFYU0cmS2QcSF1FCRodkwJjW4JESdJQA9IeTyHsU2f/65EP2afWUYcZgbrLucbSOkY1ySszbVLYg+A9B55V5wR2HdZ5cT67z7Fz3bkvFfDWVRJYsky3PLMyICMjw/MSQvDZZ58xa9Yshg8fzn333WfvO5RwbM9MLrh5O4nJIUBy0ehtvPrbcrL3Kyyfn4Aexl/4A5IXJq8kVEAG11lX7qRarcND6XRMj/28MHklSSkaZ1+7A3/A6ezXb9TktrOasWmNv9R/dKWEmb8m4w9E+hJ9+UpNdqepXHTbdhKqFK106tYvg3HfrrbPR8dembw6ZRlHd96P+xeFO89uxusP1mV/RuX57hUHlXVeqmwYMupkklITGHxl6R9MKjNGDepGw1qpXD6wbITdiDHD+HzLqwws4QPi8Q0bcM4x7fGrlq9ggKufuYQrn7gIf8Ah55NSk7jxpSu58N7hKAUQR226taT18c2p27wO3Qd7V8RTFFHhhBPE5qXKgsHX9CMpNZHBV51S0aEclhhx9zDqNavNBXcMLlM9F947nC+2v8XAK0t2Htqf0IrTLuqNz1ppND7A1U9exBWPnG9vA0hKTeSGcRdzwR2DC56XujSnVeem1G1am279j/PsUxSlwgknqBzzUrkaia9Zs4ZQqPgpCxZsnx83ChjviOcQeyl7nBXJwtPiJIa3U56G9Am0eAVdNQzD0UHRJEKTEJIoUhrbNYmiSXSfgu5XDANvS+GkS6RlIG1KhKSUpmpJ2P3xeCRZZS31kwjb5+qP+2FLChwfIPcASOeD0Iw6LdWUDkjFWLHP8gkSuvdwJdfwdZIIpCod5U+415Fu6H90RZr+SmYh0xdJj4dgEgRCAqEJw3w9CGQJZIpOfpKOkitQMfeZSh9pqn90FfJSJfnVNURSkEBiEBBo8YJgsg+ZJxDZPiMsVTe8pjBWo3N/MXXT9FyY8QkBiqphZk4aEKavkxT29SI9J8mBrinOfl0442Od9wgyVJrnQDpMlBTGZylsY3epGw2LkFmVuc+6bq3TGvN0Kh6qVq3qJRNNSCl59dVXee2115BSIoRAK4nT8wHGNQ9uZcz5zcjO9FG/WR4X357GP5NTSa6q0aZjpNJHCKhRp+D4v3y1Nnt3Hh5Kp6vGbqVlhxyyMhW+mHCUZ18oX6HXwIwS+SOFY8emAB8+G32J8vNu3EmN2hrvPVmXnP1F//m74bHN1G7gxOLzw4p5VVg212sOnLnPz3k37qBKyhH681QpUdZ5acKECTz99NNs27aNdu3aMX78eHr37h217Ndff80rr7zCggULyMvLo127dowdO5bTT3dUH++++y6XXXZZxLE5OTkRCxDEUHycf/sgzr99kGdbXm6Q9Su20bxtfXz+WOppYTi777Gc3ffYig6j1LD+xgIkpSTy0r9PVHBEhaOy3i9VNoy4aygj7hrq2ZaXk8/6pZtpfkwjD3ERQyQGjzqFwaMOX8LOMy+lJvLi1LEVG1ARqAzzUqm+caNHj/Z8llKybds2fvjhB0aOHFn8ijwP7yL69qjHWVIhd0KUsImdiGdQU/ljrIAm0H0W8SNQLOLGKmoSNEIzyQOrvCJMD2ppK4qkpZayfJsUYaqXhJeUiNI/m2hzx2oSD5GSLVeMnmOFU8TiOcBQN1m+SAqIkHOs9dIDGOqtOGx/Jo/qCkAzSBGpOul0lteSRd4oOY7SSWKuWhcHJEqELvBnKcZKgLa6DETQ+CwVg7QKpQIpOr4EzUhFA/R8Y7VBgqqxAlychACo8TqqKs2ly70DaPk5GXDGTISfCxyyySYrC7roPIyod7yd9Dxc3uSWysk5UU7N5nWhe3VVdqtuwrSE840uhe0rdaTmAkfDH3/8UdEhlAo3DWxh/1HZsjbA0BbtSUjWuOO5jWghw2i6JCubDb1iJ8sXJLB/X/FSxioCLTpkc9dLG6jTIB8pIbGKzrAr0/junZromvMr0+sP1mXOlCrc/vwmqtbUSrzCW+0G+Zw8fDd/TKyGDFu57qvXarJpVZzHR6swfPJCba56YCsJSU75087bQ6vjsnh4VBO2rosDBCcO3mf++FCy83akoyzz0meffcYtt9zChAkT6NmzJ6+99hoDBgxg6dKlNGoUuWzzX3/9xamnnspjjz1G1apVeeeddxg8eDD//vsvHTt2tMulpKSwYsUKz7Exwqn8cd/lb7Jo1lpOHtqJO569oKLDKRIr5qzhj0/+YcAVJ5dp9aXKhmeumMBvH/zFdeMvY8h1xU/rq0hU1vulGODe4eNYNG0lp5zfgzteG1XR4RSJFbNX88en02LzUgnxzDVvMOXT6Vz79EWHDXFWGealUpFO8+fP93xWFIVatWrx7LPPFrmynRu2sMb15B1V9VQQrOd6e/U4N4lgPsNbdenSWD3NNNpGNVap03zCJDokahCQpurHTL0zjpNoqgDdUUFJLFbSYR5slQsQ7ZHGvc3mJFwkk3S9t8kH1eyDSerY5IabQDH7Kc2V3nT3im8Yn22izDxWzTcIMsUnCflxBeOKw/aEcgISEmRQIBWByBUouQYpJfKMgJQ8DDVS0FCHSWFwRoqKo+DxG7ZQEiAkEfkSxRcyeUBDXuSP01EEaHFBtJCKRKKoOgG/pV5S3CEb4y+xvZ2iX0LCHlfdc/G55WPCVjhJHSN49wlyX1Sew8x2hbmSoC5MCyiB1A3fLKQ0JhTF2C00F8npSrmLIjgrEpUhFzga+vTpU9EhlArBfPcv/4LcbJUuJ2XSuW/pVjSb+GatQ5pwAmNVvkYtnRTArAyFb96sHVFO1xROP39vqT2Stm8MMOWr6EuJn33NLsbf0YDMYo7ViFvSPIQTGHPZzF9T2brOISouuWM7qTUOHSXdoYKyzEvjxo3jiiuu4MorrwRg/Pjx/Pzzz7zyyis8/vjjEeXHjx/v+fzYY4/x7bffMmnSJA/pJITgqKOOIoYDix2bDRPp7Zt2V3AkxcND5zxD2oZdLPxrKRNmP1nR4RwSyM7M4aGznyFnfy73f3k7NcyV6tz445N/0EIaUz+fftiQTpX1fikG2L5hl/Hv+l0VHEnx8NA5z5K2cReL/l7Gy7MObQXhwUJWRg6PXPwSuVl53PvhDdQwV6pz488vZqKFdP76etZhQzpVhnmpVKRTuakLrDSk8FTKYv9U7DA0Iuxp3aMWsdpwrzgnjNQzxUxdc3yoBcKypzbL6qow1D0anlXYpFvhZK+052I8PDIb9zYPVxLRHU/sFqMUvt19jMcXSuD2XzKIIhkxHlLFIH8spVP4qoDmeEphpoxZSifMf3WBkq+gBAW+XDNOy1PJZ44XoAax/Z5sRVYII7fMbyidZKqGiDdS5owuG8bfQoCWr2IJh1SfNE25zTNku7BbkG4rrALhUTbZJzrsIBlle3hqpPscmIScm0F1a5zszwJDQWaXFJ5hJ8r74sCYrISrf5UPP/30E1WqVKFXr14AvPzyy7zxxhu0bduWl19+mWrVIm+YDyX880MqI7u35skv1lCnQajY0+CCaUmsXJBI9Iuz4pCQpPH4p2tJqKJxzwXN+O3LapzQP52kFB0h4NMXa6P4dPRQZC79o9c2Zuave7npqc3EJ5Tsgq7dIJ+up6Qz6/cUwsfjzrObQzFVTv3O2UOV1FBU9dIFN6ZxzrVp9ogr1iIAh87wHyCUrIPR5qVwf7W4uDji4uI82/Lz85k7dy533323Z/tpp53G9OnTi9W2rutkZmZSvbrXUH7//v00btwYTdM47rjjePjhhz2kVAzlg7GvX8a0nxdzypmdiy58CKBp+0akbdhF0w6RKrqSYPWCdXzw4Bd0H9SZAVccHg87BWHBH4uZ+6uxot70b2Yx+NpIUunGl65kyif/cPH95xzs8EqN2P1S5cWDn93MtElzOfWCnhUdSrHQpH1D0jaWw7y0eBMfP/cT3U5tz+nn9yin6CoGC/9exvw/lgIw84f5nHHFSRFlbnxuJFM+n8FFY4Yd5OhKj8owL5WKdDr55JP5+uuvqVq1qmd7RkYGw4YNY8qUYi6vaKpzPIxIqW7aTR8lxTCvtlRB7nYAQ6kkDC8nzW+kzVkL5KmGgAlhp8ZJJx1PFQhNR2jSfLAw29ONpwzpkiy5V6OTBfSpoGwuS8Xk4Tqs97ojtLE6Z6m8pLXanhBeLyBTsiRVYXszeeoOgZIrED6JdP+abymSVKchqZufhVNIIhEhU9njIr7UPONlE1fmM6XVtmYakUsBoXjQfRIV3U55EVhfPElcfBCBkVLn/kIKIQ2Sy+qj+4TbiqTIwXdUTKb6yCSChGtgpW7sx/YhdrOEeN/bn80GFYfgk4o0JE0SYyU73fysmn5OukAo5jVp+l1ZscjI5/BCURlygYvCHXfcwZNPGr9QL1q0iNGjR3PbbbcxZcoURo8ezTvvvFPBERaN40/O4KiGJfPF+/nTauxPP/S8CY7unEWbTtl8+WpNdm/3c+ldW6mS6ph7f/lqLU9anQdSMODCPcTFl/wv745Nfmb9nko0vaCUFlldNIZdsTNC5WRBKOA/PCy0yhklOx/R5qWGDb0pAg888ABjx471bNu1axeaplGnTh3P9jp16rB9+/Zitf3ss8+SlZXFueeea29r06YN7777Lh06dCAjI4Pnn3+enj178t9//9GyZcsS9S2GwtG0TT2atqlX0WEUG2O/voMtq7bRoHXZYn7vgc+ZOWkOMyfN4dRL+hzWvjHH9mlLu56tydmfS/fBXaKW6X/5yfS//PAykI/dL1VeNGvfkGbtD580tQcn3lku89IHz0xm1m9L+PfXxfQ7uyuq7/D12evQsw3turckJyuXrv2PjVrm9EtO5PRLTjzIkZUNlWFeKtVfwz///JP8/MiVknJzc/n777+LXY8zpiIaP1AiWIeGs4M20QL2z9Du5w7LF9vNUxjEj3AUUUI6pEB45TaJ4wQvw/2p3Id6jikEbtGCdD5GkGl2X1yEU3hM0v1ROP1XMRRP5lVgp9VFEFe4SCXzs2aonJQgHpLPJQTzkmOuWIVump37QEvQkfGad7U48yiLCHL7Lkn3oESD8H5wZT86R5pEkPvh0/Z4t7a72cNiwcUICuk63ngvzcEV0dQoFnHmHFHi9LoYYN26dbRt2xaAr776isGDB/PYY48xb948Bg4cWMHRFY7EZI0XJ6+kXtN8+3tYnCtv0cwk/vm+Koeayglg1aJEFs5IZPaUFL5evpiEKrqnb6cM38uvn1enoLhvP6s5I27ZwcW376C4Cx5JCW88VI/HPlnNy/+rz5a18QXWXxj6nb2HZm1zK4l6qSQo+2Bs2rSJlJQU+3O4ysnTWtjgu41BC8Mnn3zC2LFj+fbbb6ld20nh7N69O927d7c/9+zZk06dOvHiiy/ywgsvlKQbRzxCwdBhTZiUFD6/r1w8U3oM6sy/P8ylS//jDusHOzBWqxv/9yMVHUYMMdiIzUulQ7d+7Zn9+1K6nNT2sJ+XqlRN5Nlf7qnoMGIoBUr0zV24cKH9funSpZ5fHDVN46effqJ+/frFr1BYpI71uZCysoAynocCN7MgPYe5vZaExPB3Qtom4NJnpshhcg6qSR6ZJIkSTgOEETyGp1KUvlgimXD+Iko/rM0RBJzpWeV5rLQIHVMVI1WnLZtQ87RlkBpSMcgeaa36pxk+TLqKYQBuxasYqh1UU+VkfcY4zjDDNmNQo8QdpsZyyDHAb7zX4iR6FR1fINwLRdqWWuEDJsDJyBTSwwZLXKSVdLyZXPSPsSqd7lZGCfuikKYRlgwnnIrNALkaE9JclU4YiidNMczU3SfH8iLDuS4LvM6LbjmC+KtsCAQCZGdnA/Dbb79xySWXAFC9evWIlJ5DDY1a5FCtdhBFgdxsBUXRCRTD23jGzynk5x2aNxBNW+ewbUOAtl2ySErRI/bPmpJESrUQEkEoX5CTFd4PQdd+6SUifbL3w+rFCWiaYMvahFLH3unEdJcCMgYHJVQ6ETkvpaSkeEinaKhZsyaqqkaomtLS0iLUT+H47LPPuOKKK/jiiy/o169foWUVReH4449n1apVhZarbHh0xHimfjaNa8Zdylk3n1GiY/PzDaVmIFB5HgzdGDiqH6eONBROxSFIYzj4iN0vHZ549ILnmPrFDK4ddyln3lSyHxLz84xVaANxh7b35YHCwIt6cuq53WIriR7CqAzzUomSeI477jg6duyIEIKTTz6Z4447zn517tyZRx55hPvvv7/Y9XkUHWX42yzDXhFw/+GX0lCdaLrxsh2tTVICy4jbIbCkLg1ljqs9g0RxSCqvTEra26P1LzxeT+xFCHkijrEkTJIIlVd4mzY5FkZuyHB+xTS4ksIcKyltAQ8S0ARKSKDkC4TmkHnR4vQou4QzxlKA7gP8OigOyWQpmdwEkmOu5h5k3dWS7no5Z8lRRxmnWddB16Xdf+kipoyUOhwVVNRehQ1+QfvCN0orHiMl0fxkF3a2yAKrLgqWLNMtz6xs6NWrF6NHj+bhhx9m1qxZnHGG8bC0cuVKGjRoUMHRFY5tG+IJ5imsWpTAw6Mao/qifJ/DsHROIhPfqnlwAiwFNq+N54T+GYy8c4c1hXjw+cIVfLFkKW/9tZxAgvu762D5vColIn6euK4JO7fEcd9FzcsU+4r/qqDG7s3KjNLOS4FAgM6dO/Prr796tv/666+ccMIJBR73ySefcOmll/Lxxx/b3//C45MsWLCAunXrFju2yoDp38xCSpj2zawSHbdly17OPvdFzjrnBTaZRuKVEf6A/4gnnF688S1GNLqGWT/Or+hQSozY/dLhiWnfzEbqsuTz0urtnFf/as6rfzVbVm07QNEd+vAHjnwi/OU7P+biDncy57fFFR1KiVEZ5qUS/RS1bt06pJQ0a9aMWbNmUatWLXtfIBCgdu3aqCW5U7fUHvbnaGlHrrIF1RHtoxCRzzBSGouxBTFWWPML2wvJSjXzED8mxyGEQAiTDrH9iVxki2WIbvXHUm9FUTd56i8MnuPMuqONh9WG20w87HibcFKwDcGlzySbpJH0ZaS8mcySguHfpAK6uYRjCAiC0I2UOl+2QMkTYefP3aAXlnoM3eiOrkr0eAlxhl8T4PqSGYFZl4Mx/tjbfKZpr+5a7k+apBLCTVJ5AzMIJeMV+UCvRMYthMvXKXq/wuRk4FY7mYZhAmmQabowJnxhpo2YTRrm6IaizlaQldDTqVJQ5EXgpZde4rrrruPLL7/klVdesVWXP/74I/3796/g6ApH9dr57Nrm558fUqhZN8j+TIXUapHqIDeWzE6IasJ9qKD6UXnk5iikFNCP/DzBhpVxrF8eT/quaL8+Sjr2Ti+0je2b/Ozfp9qrUc6dmlz2wIHa9XPJzYb4xHKprvKiDPPS6NGjufjii+nSpQs9evTg9ddfZ+PGjVxzzTUAjBkzhi1btvD+++8DBuF0ySWX8Pzzz9O9e3dbJZWQkEBqaioADz74IN27d6dly5ZkZGTwwgsvsGDBAl5++eXy6O0Rg9FvXMufn03jgnvOKtFxq1ZvZ39WHgArV26nYYPqRRwRw+GIvJw8vnv5JwAmv/ErXQd0rOCISojY/RJgLLawevVq0tLS0HXv3+kTTzz0/HBGv3ENUz+fzoj/DS/RcavmrSUr3VDBr5y3jvotYz8yHInIzc5j0huGp/Tk96bSpV/7Co6ohKgE81KJSKfGjRsDRExO5QFZAPtaUq6voPNkUwISM61JGibUuoLBB1jEjlORsV8aDuPuDDCPZ5N5kM3sWFG40qiA4pKWHpFNOHEUrbxpai7DyhO2TXcpjazyEoOIchRTOAUs4YFmvIQOaMIQQYWE8dJdXS8AApvnseOxuB+EwXFJKe3Vn6R0cs4sPxWDSzJIP0UJJ6ikSThFDnAksWQNiLXD/d4dsat4tPeFbYPoBuQu9ZuTkils83SbGDPT8ko837iZ8SOUIS8KjRo14vvvv4/Y/txzz1VANCXDuuWJXH96a0DS/bSMIgmnVQsTePvREqQyVwAy9wRIqaYV6It0x/DmLJ+XVODxV963lSatgwXu//v7VB65qkk5RBqJ7Ex/jHAqD5RhXjrvvPPYvXs3Dz30ENu2baN9+/ZMnjzZvg/Ztm0bGzdutMu/9tprhEIhrr/+eq6//np7+8iRI3n33XcB2LdvH1dddRXbt28nNTWVjh078tdff9G1a9ey9fMIwykX9uaUC3uX+LgTerRk+FldkBJ692p1ACKL4VBAXEIc5901jOnfzGLI9QMqOpySI3a/xMyZMxkxYgQbNmwwPUcdCCHQtHDbi4pHv4tOpN9FJSfDThh6PGfeNAAk9Bwa3RA/hsMf8YlxnHNzf2ZMXsCQUYfX4gZApZiXypR0v3TpUjZu3BhhKj5kyJDiVWCPrZegMTZSchlgNDVQeL6Sii1GQSggjFXsUC12xswu0w3zcCVkKKNEtHhsdZFL6QTOe/e1E96VsJS/CJWQqy4Z7RirjDD7ZBMZVjVODFLBq4RSDaWT7gc9DvQ4ifRbyiJDl4MuELqCCIIvx0ijEyYJJUxVjmI+F9v1W/FLZ4ylNU5KWJwq4JeIgMTvk0aWo7Vkm7ACdRhAw9PdOZHWEBvHCSxaykkddAZdCMyV6hTbLFxYZKHFGUqroHtww85JxOBHIawizh/GSbHyB3XjsrP3WSonxRhbg/ATxliVAG5115G61GZJkJOTQzDoJSyK8pGpaBzVKI9AnE7z9tlFls3PhR6npxvfVQFSEyycUYWsjEPHRyUQp7FlbYDm7fKi7k+tEUTx6R61VpM2OWRlKtSqG+SY7pksnJlIyw7ZJIRxUxtWxjH1uwN3PvNyIGNvwSqtGIqHss5L1113Hdddd13UfRaRZOHPP/8ssr7nnnvusCChD1cEAj6uv7ZwH60Yjgxc+fiFXPn4hRUdRqkQu1+Ca665hi5duvDDDz9Qt27dIzrtKhDn59pnR1Z0GDEcBFwx9myuGHt2RYdRKlSGealUTyhr167lzDPPZNGiRQghbJbcmrRKwpBHe8aP2FdGCABdOooe1VLuSERQIhBIkwkw1DsSQhKhSQhKR7kSkf5nvnQzUsVszS0xskiNYs7n4cUKHIMw1RJEb8PFAdllbKWTdO2TGA+wlroJ418Rwkits1K/dIfOsT2ronCGnvjC+mKLwTQgCFqcxfdIbANwl/BMwUidUxSL35NO/LYvk5nC5hoPewykScJZSqdwctITXTi8gxptIijy1FpmWCZTZnNr1qp/NhNm1CaFRIqC4omOyrDUZlHIysrirrvu4vPPP2f37t0R+w/FX+4s1GmYx90vb+T9p+twye1pRZZv1zWHdl032J8n3FfvkCKcwPjONW4dnXAC2Lou3kM4Hdszk4EX7WHJ7ESuf2Qrz93egB6nZUQQTsvmJnLL4BaUXAdbfFSvrccIp3JAbF6KIYYYDjXE5iVYtWoVX375JS1atKjoUGKIIQYqx7xUKkOQm2++maZNm7Jjxw4SExNZsmQJf/31F126dCnWr40WZLhCyA0R9ipsn/ulCOdlkSFS2oIkGVCQqiH7sVaxE+Z7IY1/1RD4QqDmg6pbNk3RVEbC86+wCA0XC2MrfYQ7LhGlHsfvx6OYKqi/1nbF9TLrskzQpcCgFa19qvOSfpBxIAOGykn6JChGPxUpUEIK/lyBP0tBDQnUkGssCKtPcYmTFFcbqtm+zxWH++UD4iQ+1SCDRLgxlRBe8ZhJOFlDKF0DIs1jbdWTxx9KmEMjLHGb8a/lz2WWs/vgHmDXmEtXfdZ+EfWkCJvfssZEqGZ71ni5z5k9ZsJzjkoEO4fROvGVD3feeSdTpkxhwoQJxMXF8eabb/Lggw9Sr1492/flUEV+rmDyx9XYt1tl9aI4tBBM/S6VSe9WJ3130dN06+OyGHjxLpJSQwch2uIhN1uwdHYi4dnYWRkKkz+szvbNjo9Tiw7ZnHreHmrUyaPHaekAND06m1UL4/jls6rk7HeOT0wO0fKYbMrvZ4lILF8Qb4z9nkPXM+uwQGxeiiGGGA41lNO89PjjjyOE4JZbbim/2A4SunXrxurVqys6jBhiiMFCJbhfKtVP4zNmzGDKlCnUqlULRVFQFIVevXrx+OOPc9NNNzF//vzyjrP4cJ8n88FfCsBUlYigjisHzRCghCwTHYkwPZxESDdUPlad1nWguBqQ0jIcMv6nWJIm82FIF6ZMB2yD7kJ+nS/JI5R0v7HCF1HqsFVaznWsY6htbCPxEAZZZRt6GxVLjNQ+S3Rjq5rClUQU/v2Q0d5LEHkC9vnISwQCFqMlI0bIUTUZhJFuKZukRNeF8Vn3li+wdSERinDGzD65MgqzLG05l12ne5Et69oSltIvrEn72sCpw74mDWWTleZnjaFNjpZwvqkMssyiMGnSJN5//3369u3L5ZdfTu/evWnRogWNGzfmo48+4sILD91UgL07A/zySU169E+nRYc8Ph5fm/eeqss9r64ntUbRiptThqfzx9fVyUo/dNROyVV1OnTLdtJJTTxxQyNm/ZZqf67XJI8XJq+KWC1u2Zwq/PltNV7/YxkJVZzte3f6WbWwYC+o8sBf31XnpGHppFaPqZ3Kgti8FEMMMRxqKI95afbs2bz++uscc8wx5RfYQcSNN97Ibbfdxvbt2+nQoQN+v3cxj8O1XzHEcLiiMtwvleoJRdM0qlQxngJq1qzJ1q1bad26NY0bN2bFihUlq0wU8D58wKM9hIdvs5/YrZQ4Y+UwQ4FkaGGkiwiQpmJGkdjkjNBABKWpgDKgS5OkUYTjCWWSFsKl1pKmMkfaLTsEgq3MiRqzq8/R8qrDyYxoSidhKcec/Z6HPWH2wQcyYHg5SZ+pL9JBc5ExAEpIoAQFquZqy91ueGzh/QiPXwkva7BfWtCHroNPCaKoMuIwMNLqFEWiKBJVMVLtJApSKsaYuty5PZZeUeI0Lg+TYLLz/9zB4yLW3ISTm9Ezz7PFyIkohJN9YRXUhqmsskhJU2klwFTEUTJEy2OsZNizZw9NmzYFDP+mPXuMJbt79erFtddeW5GhFRvrl8axcEYi2zYYN4Azf06mfbcsatQpWsE0+NKdNG6Tw48f1TgkUu12bffx4ph6nDhkH8f0yEYxr+kzLtlFt1My7K/DumXxvPpAPbqdkk6nPlkoCmRlKuzZabBQUyZW45zr0ti0KoE/v6nKlvWBgxL/9B9TaNM5i+q1Dt20zEMesXnpsEL2/lz+/Ho27bo2p3GbeiU+Xtd1c7XZI/NX2hiOEJRxXtq/fz8XXnghb7zxBo888kh5RnbQMHy4sQLc5Zdfbm+z7FIONSPxrIxs/vx0Gu16tqFJu4YlPj42L8VwWKAS3C+V6smkffv2LFy4kGbNmtGtWzeeeuopAoEAr7/+Os2aNSvvGIuFcHGLCHveF2CyR1YBEKpw0t8sBYsphNJ8wkuiuBqwVnyzTMfRXDttNZMpabFILoFJQojoiqQoiKK78X42FT62Es8twhLOinW2usYqbw6DVIxxQAclxyLGMHybNBx1mOtL4F59ragAw034rXMhFYlUQarS0PjoEqlLhKojhDRfrvpc/kaabimGwk6KNR5mYxb36Cli1WO2gTRWj9OlNEzMw02qwiVaOpHbrRX8wsfDasoaN08cxkb7ujSvP2mZimNpn4qPypALXBSaNWvG+vXrady4MW3btuXzzz+na9euTJo0iapVq1Z0eMVC6045rFmSyC+f1QSgz7D0YhFOAN1O3c/rD9c/JAgngMy9fnZujeO4nl5j9O79nFy5PWk+XrqnAe27ZnH9I1vt7W8+UpeF0w2j8P4X7AEpuO3M5mihg5fudtJZ+2KEUxkRm5cOL7xx/5f89NE0EpPj+WzZM/j8xc/znv/3csZe/AqNW9flme9uIxDnL/qgIxDfTviZz5/9nhFjhnHGladUdDgxREG0eSkjI8NTJi4ujri4uKjHX3/99Zxxxhn069fvsCWd1q1bV9EhFBuvjn6Pn96eQlJqIl+mvYXPX/x7nPnTVzP2+vdp0vIonvnwKvyBQ+P+6GDj25d/4vNnJ3HhPWcxMDYvHZKoDPdLpfr23XvvvWRlZQHwyCOPMGjQIHr37k2NGjX47LPPil9RNOLCvc+NiId2E+50NwHo0uEozPqFqVoyRSlGdVZ6mepiv839UlWMVcXMXC6hSZuQkaahkHCvOGcpd8L+tRdDs5U+XiVSVNWTK46I7ocrd6x6LT8gi2gzVU22L5DE8VkKgB4PMt7qrKV2cpQ/tu+17h0zO5Yw66VozKyMUDZhq7JswskvIV6ixOv4A9I0CpeoinTURVYSnOnlpFtfSLf/kykncxNODpxl9RRFunybDCJI14QpCYvOpEmbKTPiCT8FSIF0xekoqiSRJ8zTJdevLsI5F+a28JSkYuEIZcaLi8suu4z//vuPPn36MGbMGM444wxefPFFQqEQ48aNq+jwSEjSOP+mNJq2ycF1EWCxlrqEvyal8stn1QCoVitIYnLJSI+hl+3kvafrsn/foXFjtXxeAnOnJtGxVxaKCru2+fjk+TokpYY4++pdJFcN0f+C3fzzYwr/G9GEQILOeTfspO/QvcydmsyOjXE8dWMjEqronhRagPhEjYEX7WbmrylsXRdf7rH/+FF1mrTJLTbpF0MBqOTz0uGE+CTjITsuPhBVdF0YZv+2mPzcIKv+28jOLXup36z2AYjw0MdnT09i15Y9fP7MpBjpdCgjbF5q2NCroHnggQcYO3ZsxGGffvop8+bNY/bs2QcwuAOPxo0bV3QIxUZCFePve1xCwMjIKAFm/bWC/LwQKxdvZue2dOo1rnEgQjzk8elT37J7614+f+a7GOl0KOMIv18q1ZPJ6aefbr9v1qwZS5cuZc+ePVSrVq1k8sUC1CFFIvx53r1d4lI04aiKTNJHhh0vNAyliwKowlQNCYMYMdPllJBAzdeN1cY0ie4HPWAakYdwZCwWWYOlVHGIHKMxY6d0mZzb3XYTOG6VT2FjALYayQjGJaFyqbaM1EA8Hk4iaJA/wlyhTrj9h9z1WwqpcE4mXP1VgPLJ9kRTJHqchEQNX3I+qk9DkwrBkILUJbouURUNRUgUoRukiz2sDmEjzFXqrBQ5bzqdd5ujiDLGx1oBzyiLV1WlCKQunI540u+cDlmxeLoarohyx+y52CKGx8uGKhjXri4OqtLpr7/+4umnn2bu3Lls27aNiRMnMmzYsBLVcSjg1ltvtd+fdNJJLF++nDlz5tC8eXOOPfbYCozMwDnX7eT8GwtemW7W78lM+cq5Ibryvm0c0z27wPLR8OUrtQ8ZwgmgQ/csOvfJsj+/cn99/vmhKm9PW0ZKdY2dW/38+JGh6przZ4DhV6fRpmMOz9zSkB0bjQfgpXOqRK37rKt2kblPPSCEE8DQy3fHCKcyojL8cnck4fL7zqTjiW1o3qEhqq9kq1kMubwvW9fupFn7BtRrWusARXjo44K7h/LFs99z/p1DKzqUww5bVm/jjbs+5OhurTjvAI5ftHlp06ZNpKSk2GWiqZw2bdrEzTffzC+//EJ8/IH5u3MwsWbNGsaPH8+yZcsQQnD00Udz880307x584oOzYNRT11E51OPoXnHpqjh5o9FYMiFPdi2cTfNjq5L3UbVD1CEhz4uuPtMvhw36YB+r45UbF23k7ce/ZajOzfl7GsPHGFXGe6XSvx0EgqFiI+PZ8GCBbRv397eXr16Kb7Mlh+SDUmBz9rh418A2y00R+kkLcURlq8TEYSVtOJQhUNM+bBXvxMhUDSDcALAryADAqkKlKBhtW2TSJ7V5oQtYMEkfIRJaLnJGw9ZIx3hQ0EEUMSY2CuiCW994SvWWeV8BtmEIhAaKC41kwxr1w7LXV+4ugnX9mjxmTFIP+iJOv4aecTF56PpCjJfIEMKgbggfr+Oano3qda4CSNz0TMUQiB1l5+Tq2HvinWuIExiyfDfkvZlJ202UnEaDO9IWJ12MTfZhZtkcqMAwslSTYmwU+tmH0v6M7ObHCshU56VlcWxxx7LZZddZuf5Hwlo1KgRjRo1qugwAEPl1KBZjof4DMexJ2Qy7puVvPloXZbOYl40pAABAABJREFUrsL371enXdf91G0UtMv8/Ek14qtonHB6Bv4o1kaPf7aGKV9X46tXa5OTVdIlEMsfs6Ykc+vQ5oy6bxttOmVz7UNbOP/GHWxcGccLdzUgfY+KUDTOvmYXx5+SwY8f1WDVwngGXLiLhdOT2LE5enoDwLdvVyc+sXyMvn1+nUvu2E7H3pkoijE31KqfXy51V2qUYV6K4eDDH/DR9dQOpTr2qMY1GfvB4eGddyAx+OpTGXz1qRUdxmGJL56ZxLSJs5g2cRanXNSbmvUOEEkQZV5KSUnxkE7RMHfuXNLS0ujcubO9TdM0/vrrL1566SXy8vJKTIpUFH7++WeGDBnCcccdR8+ePZFSMn36dNq1a8ekSZM49dRD5xr2B/x0O6Nz0QWjoG7D6oydcEk5R3T4Yci1pzHk2tMqOozDEl+++jvTf1rI9J8WcvJZXaheJ/XANFQJ7pdKTDr5fD4aN25cbiZzEVlz0UiNcAiQ1lJm4fUZOVh2ihhCOv5GFjkkDXLKznDRJVIzz7cPU+UiDaWQNFRCIA2DcV1HairECdvmx27L8myy5FQSI0Yzvc+90llBpJk7q6xI2sEMwCguDeIMS+Hj1GN7OLk5Pc0MJeSEGqHEscgm15fALmf6Wlll9IBET9SRPjOgkEDJU1DyTfUYxnhqecbYxftDBhmoGGojw5vKaEAnLBtRSM8KdmAqlKQz1AaJI53+m8cjDJ8oO7UOYY+FroNu+knZxuJWJ6VJYtkEkzGgdt2eE+Ya7/BxLIgwdO2yx1oAZpxSkZEHFAo3WVYywmrAgAEMGDCghO0dmpg1axZ//vknaWlp6LqXkKjIFLv+I/bQZ2hGoWXiEmDDqgSWzk4GYNgVuz2E0540H1+/UYvXpqwssI56TYJ89mIdgvkHz/uoMATzVFp0yKFtF0OxVbNuiJp1Qzx4RVN2bjFYs1bHZnPlvdv5+ZPq1KoXpOUxuTx5Q6NCCSeArAw/WYUPabHR4/QMzrthZ/lUFoMLpZ+XYojhSMbCv5by7cs/0f+ykzi+f8dCy+5NS+efr2Zy/ICOHNXkyE1b7DqwIz+/+wfNj2tCtdoH6MEOKO28dMopp7Bo0SLPtssuu4w2bdpw1113HTaEE8Ddd9/NrbfeyhNPPBGx/a677jqkSKcYDh7+m7qE7yb8TP/LT+b4048rtOzeHfv45+tZdB3YkTqNj1x16/Ent+XXz/+lefsGpNaIrrwvHxz590ul9nQaM2YMH374YekUTiYinsfdJFJB6wWGezhJ73sR7ulk1e5SA1nG37bSRBEIRdgKIKuckNJQAoUMwklIDL8nnzCVQtJxDHKzJGCnGdpiGpcCSVhpftEUQtHIpmjXnrXN7emEa1s0pZPPINWkajaruxZYC4/D+iyJ/B4oYe8V0JJ0ZILu9CEkEJpwCCo/EK8TSAwSHwgS0hU0XTFWphOgqpieTg43CK7TLUw1kalwkraXkvGybbnCLhth1u2y7XIIpQhX9PAvu0uK5FY6RcBaqzBcuSYKKO+KxUWyCivgcKVbcRCFIS+JMeaRgMcee4x7772X1q1bU6dOHU+qb0WvWjL1u1ROHr6bFu3zIpROUsJH42rT4thsThq2h2ZH5/DsbQ147vb6vPnwUWYpg/Dct0vl969SOXFwelSlkxDwwaylfPpSbX54vwbB/Iq/Cf57Uir9ztlNyw5O30fcsp03HqpHdqaPlf/Fc0HHo9FDgv2ZKr9/VZXcrLKTZv6Azg2Pbea4npkoPmdumPNHCm8/Vpf96c6fvzl/VGHBtCQ6dM/iMHpuOPRRCX65O5Ix7/dFPHjW0zTv2JSnf7u/xCl3MRSMF65/gw1LNrNk+go+3fRaoWUfHzGe+VMW06B1Pd5Z9vxBivDg44QhxzMp8wNUn3pg/2aXcl5KTk72ZHgAJCUlUaNGjYjthzqWLVvG559/HrH98ssvZ/z48Qc/oBJg3h9LePiil2h5bGMe/+6O2LxUjnjh+jfZuHQzS2es4JONhc9Lj134Agv+WELD1vV4e+lzBynCg48epx/DxJXPoPqUQ3JeOpxQKtLphRdeYPXq1dSrV4/GjRuTlJTk2T9v3rwS1Rc+th7FU0Q51xO5DNspzVQ3S9IjsA2tbdUOGP49PlPpY69aJxGWqECPrFOqAhHSEUHdFKQYCh7reKFhkztSEXZemDDrkToIFZDCULG4ybMwkiFC/RVtgCzFjWaRF646XSvaecx3NUzSC9vnKaRIgxCyFE0aKJpBoyDxmJFbYyiFRAtI9AQJqjQJLYkIhFBUwxxKxkEoXjHInhzjMhOqjqYpZOUG8Pl0fOZqdRZ0XRjKMWEpioz+qIpuq51M6gnFNKHSpIKuu03EDVWTo3YyVshThG4/8Oq6QNMUNF0YCjfrGjDPk31NRDshhG2XrgJugk5QcB0RJ9i1LTzHsbiIMlkV1xjzSMHzzz/P22+/zaWXXlrRoUTg5DP30eqYvKj7tqwNMO/vZC66zfB7mvNHChtXJAKQm+Wdopu1y+GU4emFtuWPk3zz5qHza3jfYem0Ptbb9w+fPYrsTKtvCnt2OAza7m3lQ4x27ptJ/xF7I7ZPfKOWh3AC6Novk+N6ZkWUjaGMqAQ3UUcypk38l+zMHBb9tZS0Tbuo27RORYd0xKDbwE5sWLKZrgMKVzkBxJtGypah8pGMkqxMVmrE5iVq1arFggULaNmypWf7ggULqF370Ll/iIbpk+aRk5nLwn9WsHPLXo5qXLOiQzpi0G1gJzYu3UzXAZ2KLJtQqealg0BsHqR5ae/evdx000189913AAwZMoQXX3yxwFW+g8Eg9957L5MnT2bt2rWkpqbSr18/nnjiCerVq1eitks1u5ebybBHFRL2qF0Imxhtj/XsLyyywlYWud575DAGOSWct4ZayFx1zkm9w1A0hUzHblXYSifDD8mkwmx1kbBJM4+SxYpDwdM3EV4u2lgU0HHhbtdNYoUpq+xV43w4qicLps8TALpBptk1uYkTO3ZTLRUnwe9qx6+j+kzCyQpCEUZeo1QgXkON1xAK+Hw6UgqPqbdDEnnlVsJKjwO0MFWSlIrp7+SwPFYKnTDZOiFMnyiTbNOlSW5Zcdmds1g690C7zlPEyYi2x7s6XlGIvMTLwKDbyi3sf4tjjHkkQVEUevbsWdFhRMXUSan0H7Gb+s3yI5RO9Zvl8+hHa9B145roO2wvv35Zle0b4gi/JtYvj2P6j8l0OzUTtYDZOylF55tV/5Gbo/Lk9Q2Z/0+Kc21UAP7+IZWBF+6iQQun7+9MW04oKHj7saOY/FENdC1S2XT8yRnc+MRmklI0pA6vja3H719WQ9cLV0GNvHMrAy/ejT+g22Pq/q5N+GUFX79Riw/H1SGYp+KP0+k7bC9aCBQ12vcyhlIjyrwUw+GDYTcOYNOKrbTq0rxMaV3rFm8kKSWB2o2O3BSMkmLUkxdz4b1nk5icUGTZMR/dzIIpi2nXs/VBiKwSoBznpT///LPs8VQARo0axVVXXcXatWs54YQTEELwzz//8OSTT3LbbbdVdHiFYui1/di8ejutOzWlTqPSr0a3bvEmc16KkVYWrnrqYi66r5jz0oc3seCPJbTvFZuXygUH6X5pxIgRbN68mZ9++gmAq666iosvvphJkyZFLZ+dnc28efO47777OPbYY9m7dy+33HILQ4YMYc6cOSVqu1Sk0wMPPFCaw4pENGIvXDASXk6YqqZoRInloWSZPBs+UDgKKJ8wjcLNOoLSYD+EcJRCPoFQFUIC1Dxz2e6QNBU/wthvrqhm+CtJJw7hjUkqIFRhqpLMOKRpKO0qL8L6YXc6XARjKq0EhvrITrELZ0vNlemE5oyLDIDuk8aqcn5pXwlCA5EvUILCINykQFONcjIA0qVsIj5kkFZml3RNcZFUOoEqIfz+EPl5AdAF8Qn5HhWSdTp0F9Gj65jpc1YXVaRqqJ0UoZt9VRBCMU+V6YGkG6V1zb2inTGIRoi6WQf4fJrRpm4QV844S4eZspb6K5IIcrNyYWMfrmKyD7EuiELKlBCO35Xzb3GMMY8k3Hrrrbz88suHpDS879B0GraIbkwtBCS4xKJTvq7G9g3Rfzlq1jaXEwZkFtqWVd/qxfHM/zu11DGXF/oM3kejVt6+xyVIQkHB9+8X/BB63g1p1GlgyE937/Dx6+dF31wmVtEYcUvh3kyBePj85doE84xfrtp3zeKE0wsf0xhKh2jzUmWDlJLVq1cTDAZp1aoVPt/BX10yKz2bF254i/jEOK5/4TICcf5iHdewdX2e+vX+MrU9Y9Ic7h/6JP44P28vG39EexKVFMV5sANISIqnx+AuBziayoPYvAT33XcfycnJPPvss4wZMwaAevXqMXbsWG666aaDEoM9LyXFcf3zJZiXWtblie/uKFPbMybN5YHhz+KP8/HWomc5qkmMELdQ7HmpSjw9BpfO4D2GSByMeWnZsmX89NNPzJw5k27dugHwxhtv0KNHD1asWEHr1pEEYmpqKr/++qtn24svvkjXrl3ZuHFjiRZsKvXdz759+/jyyy9Zs2YNd9xxB9WrV2fevHnUqVOH+vXrl7zC8Gf7COVTAfvcD/jhD/tuc6BwtZOlhHEV9/gyCeGknElT8aSDDDhKJycOYbdvkCKuTVZ9Cl7Vlfu4sF/iI2C1Ey7EsbYpeD2dRNjLrXZSDaWSrkiXH5S5XwehCxRdIEzFk02G+cyXVZ9fBxWENUb2+BtvFJ/E75dIqaLrCnGBEKpqEU7mqEXplHROjlnGSItTFIugMgLSXQonR+kUfhJAUY10O8tIXAjQNasT4QPl7kPhfkzewbaDxa4k4uDwDSJKmTIgJhfn9ttv54wzzqB58+a0bdsWv997A/P1118flDguuWMbw69O8yqRhCOwLOi0p+9WufOc5mxaHYf1pTr5rL00bJHLh+PqoIUUVi9KpH+DY6hRN5+nP19D3cZB4zsYBe27ZvHJgsXceXYLs84D98tJYfjqtVosnpXEwx+sJaWabn9NEpN1Jm/8j5xswT0XNGPF/CQatczjsU/WULVmyF5FTgioXjvEt6sXcu+FTVn0bxVPX3r0T+f25zYSZ3rKRVM3heOLJUvQXWthSIuYr5ghOoxQwgGq5PPS+vXrGTp0KIsXLwaMlOevv/6aTp2KTl0oT/z52XSmfPwPAN0HdT6oDwq7Nu8GIJgXJHPP/hjpFEPFo5LPSwBCCG699VZuvfVWMjONH12Sk5MPagx/fDrNnpd6DOpM90EHb17auWUPAMG8EPv3ZkGMdIqhohFlXipvb94ZM2aQmppqE04A3bt3JzU1lenTp0clnaIhPT0dIUSBKXkFoVSk08KFC+nXrx+pqamsX7+eUaNGUb16dSZOnMiGDRt4//33i1WP13Q5bKcI2+QuZz3ASddC9RbxoTjkRdhq99g6JItc0k3yRRpG0EICmuXhJA3CSAWJgkRi56Xppu2T3yEqhAShScN03O6bKQGyuBDTR8kwLjfaFrrw+Fm7OA8jYpcaJurfRpMQQ5OGEboUnovWGgf34mxWVzSfblwBqjV2oMdJ9IA0CChNGAomRSLjNES87rBf1ni6FzF0PbTpIUEeKn6/RmJiPiCRujEebh8ng9kVYX2TTpqdfa4NVZNfkeYYKbbPk/VwKqW5yp0ukJp5HehGOV1IFNWoyOD+jDXyhJCGSgzhpChaY2T5dnm7GPYhGutJGBFH9JNXnjc7ZZBl7t+/n9WrV9uf161bx4IFC6hevXqJGOyKxo033sgff/zBSSedRI0aNSrMPPysq3YSl1ByAmPBtCTWL/f+wjRo5C6euL4RWshhlqQuOLZHFnWbBAttQwhYMiuRTaujOI4fVAh6DtxHanXvaoJCgOqDDcvjWTE/EZD0HrSHWvVCkTUIw/tq0b9u/0Djizrwwp1USdUjjikMqkrMMLxUKOGkVcnT6+666y5yc3P54IMPiI+P5+mnn+aaa65h1qxZBzWOY/q0JaVGFeIS4mjVpRkAe9My2Lp+J0d3aYoSnvNbjhhw5Slomk61OlVp2anZAWsnhhiKjUo+L4XjYJNNFux5KTGOVl2aA+a8tDaNtt2aH9B7uIFXnISu6VQ/qiotOjY5YO3EEEOxEWVeKm9v3u3bt0f1bKtduzbbt28vVh25ubncfffdjBgxosTZNKUinUaPHs2ll17KU0895ZmsBgwYwIgRI0pUV7g4qahyFuznfVcFUoSRF24Bi7WanHDeuzkvuw33ynL2DpO90QFV2D5KHs9nc78EZ/U8t0TJHa+0CJiwMhavFU64eeIL67/7+oz2x9M9BibpJQWmmXlYPy2SREgjFRErzVA6/k3uAzxBetkVQ31hvLfGSXcJgIRJPkmpRBzrZmui0FG2cbi0T0C0q8hSNkn7ZW3TTXLK0S+6TqLFzklMotGpM3x0IyMroED4eSnsua2Uf2OFdK47UVj9UTBnzhxOOukk+/Po0aMBGDlyJO+++27pAqoAvP/++3z11VecccYZFRrHsJbteeCd9fQ4LbPYxNP+dIW3H6sLYdfc6KEtopZf/G8SmXtVkqtphbbR64xM3vhzJTcPbkF2psUuH1w0PTqHwZfsKVDp1fb4HH7asshOty2oXLN2eXy+aCnXn96SpBSN575dQ3ySbnvCxVRKBwMlG+SyzEtHAv7++28++eQT+vTpA0DXrl1p3LgxOTk5JCQUL4WhPNCwdT2+2P4GQgiEEOTnBrm278Ok797PyDFDOP+WAQesbZ/fx7AbDlz9McRQUlTWealTp078/vvvVKtWjY4dOxZK6pR0QajSoFGb+p55KS8nn6tPeICMPfu59L4zOf/WgQesbZ/fx7DrTz9g9ccQQ0kRbV4qrjfv2LFjefDBBwutf/bs2UbdUb73UspikbzBYJDzzz8fXdeZMGFCkeXDUSrSafbs2bz2WuRSivXr1y82UwZEEh4FIJIEMv/nJpwUYa9UZ2wT3uKYhIsPO5XMVk2ZCin7ZOPmBYynH6EIpN8RLgHmym7CYZpsUsn86H4QMvkMgywSdiOeQxVXvK7UPndX7QLuDRYZFC62UZx/pR8jtc56RYynWY+Qhm9TnDTJJwGKRdpEO2EmmaNgf0uEadqNVNA0AB1FMVVOWMbeZqeUcOIIk0xyglOEtFqxz5kQEkU1iCchBZrmGmtTvWbFYrXn/JirIKXixCwwV7AzFGj29eZSjUUlnAT2eRLuHXb4UdjD4tzghLOhxYG73RLeRPXt2zdszA9PVK9enebNm1d0GKh+Sbd+xSecADasjiN9j83suhC9klbHZuGP04tsQwhYNj+RULA0F1VpIEmpHkIICOYrZGeqHNcrg8TkgpVItqixGH3ZsCKO/FyFU87eW2idMRwolFTpRKnnpSMB27dvp02bNvbnBg0akJCQwI4dO2jSpMlBjcWtZgoGQ2Rl5ACwb2fMz8xCWnYWqhDUSEis6FBiOJCopPPS0KFD7YfWoUOHVpga3A33vBQKhsjONOeltIyCDql02LN9H4qqULVW5fForZSIMi8V15v3hhtu4Pzzzy+0TJMmTVi4cCE7duyI2Ldz507q1Cl8ddpgMMi5557LunXrmDJlSqk8g0tFOsXHx0fkGQKsWLGCWrVKlxdb0nlfyjDaoyABjgXr+V9GlouqeLJPvLRFTnZ7IrygY16tC4twMf+1PJ1ccdufjQwvh3nCpcbCJTyy4rQ2uF+W4kp3k3AionMWSaJbyiV3Xe7+uPgfo0+6M0BuMgUrZomR3+c0KGzySToElNVlCUJK03clPAAi3ksJmmZ6OgmDeJK2/ND4n65bsbqDNB7IhaIjzPiE0E2Fk3ANfhQVkjQ7b5Z1zrvr4vGshOglKSPpTjM2PWxzQRxeae4DYnJxxo4dywMPPMA777xDYmLFPTTc+9qGEqdu1W+Sj89fwDUZBRtWJHo8jwpDs7a5po/Zgcf/Xl/PiYMyyMpUuPLE1tSok8+ld+8o0s+quOjQI5vPFi0FKLc6YziAqOTzkhAiInVNUZQKJ/mTkhN44utbWTlvPadfdGiu+HmwsWjnds78+mMUIfjh7ItpWT22olV5IRQM8deXM2nctgHNj21S0eFU2nnJvQhUWVJ0DhSSUhJ54tvbWDlvPf0v7l3R4RwSWDFnDTf3ug9FUXhl7hM0PrpBRYd0xCAU1PjnhwU0anUUzdqWwou6vFGGealmzZrUrFn036wePXqQnp7OrFmz6Nq1KwD//vsv6enpnHDCCQUeZxFOq1at4o8//qBGjdKtGlkq0mno0KE89NBDfP7554BxY7Vx40buvvtuhg8fXvyKRDGeGCKeqLzSEylAqsL2aQrnRTxHWSSQVUS6lEuu8sJVTiJsw23pBzRpGm6b14T1jKgIUARS0UFzpHE2cSlc5cJ+2ZfSKWgpkWziyCSTPHxH2GdFOhyJfZxZxvaLMg3EbUNwxThvETe/rvQy4Qtj9jwDazSgqBKhWivIWWybQSgJRSKQrgdji5ASCEUnYJp7Y5bRdNBRTI8ng3DSdcUQpemmL5MAYabJKYq18p11ElxqJtWIz6fq+FSJTzX2abpAKAJFEbYPlC69141QrL64CCdLzhQ+Hm5Czpokol2yxX3GqDz3P+WOF154gTVr1lCnTh2aNGkSYSR+MOTiAMlVg2ghvEbiRWD3dpXEJI3MvZGrtyiqpEHzXDauirevsVr18sncp1KzbqT/UTh2bPbR9Ohctm/0k7mveKvDFAc16+ZTrVYQg9AVSCHp1Nv4MSJ9l0KNo4J0OjGT+ITye8A+BH6YjSGGYkNKSatWrTyKgv3799OxY0cPGbVnz56DHlu7rs1p17VwZaiu62TsyaJqzYrxfDmYWLtvLyHd+GVoQ0Z6qUgnKSX/TllG1ZpVaHPs4eOHeKDxyeMTeX/s5/gDPj7d+jop1Y/86+lQR7NmzZg9e3bEw+O+ffvo1KkTa9eurZC42ndvSfvuLQsto+s6Gbv3Vwrlz5aV29CCGhoa29bsKBXpJKVk5g/zqFanKm2Or/hsgEMFn734Cx+O+xF/wMdHcx8muVpS0Qcd5jj66KPp378/o0aNsjPWrrrqKgYNGuQxEW/Tpg2PP/44Z555JqFQiLPPPpt58+bx/fffo2mandVWvXp1AoHi+8aWinR65plnGDhwILVr1yYnJ4c+ffqwfft2evTowaOPPlrseqLpXML3FwQPoSIiy0Yca4lbhHRS61yFdKuMebDUTQWLApahtC5cnJFL5eRp0yQqPeopgeE3FSGnwlYruauyd7lUUzbxJL1l7A+WSALpEEc6dl91u9sSHYl0k3cRJ8BoyFaTich9tiG4MBoy3hvBCsX81ySfrHtri1yTikTqGCQSVvqcweBJaRFJTnvWNmEptXTFIIqktZpd5JUipeMLDpqpdgIprV+ZpW1i7j4XUgIajirJgtWMZ0CiX3WW6spFb0YvHn6op40Swn09V+yP6BWGYcOGVXQIJpQSEU4AqdV19u2OTgjd9dIGJr1b0/PLR/oeH9Vqh4qldOrZPxNFETx4WdOSBVUI2nbJ4pmJqwtUdNVrGuKlHw1z+pgiqRKjks9L77zzTkWHUGrkZOVyTY/72bFpDxfeNZiL7x7q2b9pxVbiEuOo3bB0v3geajijeWu2ZGbgVxROblw6w/Nfv57Dc2O+RAjB6z/eRoNmsRWxAFSf8YdCqMohkdJV2eclMFbW1DQtYnteXh6bN2+ugIiKh9ysPK4+fgzb1+7gonvP4uJ7vUIHY14KULvhkaFUPPGc7uzYuBNfwEfXgR1LVccv701l3DVvIBTBm/89TYOWdcs5ysMTis94OBWKMJ9bKxgHaV766KOPuOmmmzjttNMAGDJkCC+99JKnzIoVK0hPTwdg8+bNfPfddwAcd9xxnnJ//PEHffv2LXbbpSKdUlJS+Oeff5gyZQrz5s1D13U6depEv379SlxXkX+AwokaIUwlkqcSzyEyfD8uRZPm2m+pgcD0exKIoEQ1yQddCFCFTVjZi9GZhJMQim1KbrenKmCSKjjNOCorEbndVjyZcWApt0z1jJDSq26yFFZhahvbm8oRHNkciXCrtfw4K9aFD7+QtnDIHmdPOeNbIVRDaaSohtpJEQ6R45yWKN8aYQSvKDqqIolTDaVGvu5Ds9VCnpMLCINcsgeSiP2K4pBP7hhURSc+oKMKSUg3nNQN4slM05OKfU1Ji9XShYcyisK8OR+jjaF0HR+V/ZSRx3i7U/In9NhNlEc6Xhg++eQThgwZQlLSgflVY9OqALu2+0AKjmqcT5uOOUUSQ3m5gq79MtiwPI6Nq7ypgem7VWrVy6fPkD3G91wTtOmcVewUPiEAXVKrXh47t5Z+qVU3mrTJLln7MVROVPJ5aeTIkRUdQqnxy3tT2b5xN0IIZnw/30M6zft9EXcPeBxfwMcb85+kfhkeYhZMXcr0b+cw5NpTy/VhKBTUWLdiG41bHkUgLvqt7u7sbKonJCCEwKcoXNepW9RyxYXnfrYC5r38vCBaMERClYNnUl8cnHfXUJq0a0iD1vVIrlalosOp1POS9fAI8PPPP5Oammp/1jSN33//naZNy+8HqvLGL5/OYPtaw5NmxvfzPKTT3F8Xcnf/R/EHfLyx6Fnqtziq1O0s+GMx0ybOYugN/WnQql6Z47YQCoZYu3ADTTs0wh+I/kPjvp3ppNZMMeYlv48L7j6zbI26M3wq4IYsPy+IFtJISIo/6G0XhnOvP5UmrevSoHkdqqQeAj5+B2leql69Oh9++GHhobgepJs0aVJulgClIp0snHzyyZx88sllCqA03Yg4xs4tM+EmdqKJUkxyJrxSEZIITYJmqnRM8kCqRlkr3VKqGMblrqrD+RBhkkKFnqdoQhkdR9Zj1R3tPkaGHWe/vJIpCUjT80jqxqp00n1hm8SQwfVYTJX5r1UwnG8RGIEqpleSRUTZAerGxCad+q1KrLK6NFLdNCFQFImCZnIt5phb5YV5jOmKbo+5OyUu6lVksHQSSUgTBhFotGyulIFBGqI77UlpK5yctejcLFr0ZmzlnNOsd7+nGun9LML+Le2MU4lvokqKq6++mm7dutGs2YFZvvv5uxoDUL1OkPdmLi0W6VK/aZDzrt/JDf0jZeX1mgQZevmmMsWUm6OWG+HUvH02Nz6xtVzqiuEIRyWfl/bu3cuHH37IyJEjI0w309PTef/996PuOxTQsmNTRH4ealyAKx86x7MvbdNuAEL5IfbtzCgT6fTguePJzshh4/KtPDH57jLF7MYzd3zK1B/+o3Pv1jzy9hUR+5/96x9e+XcWp7dswcvDhpRLm/3O7ExKtSSq1qhCg6YHV+W0b2c6Vx1zO/v37uep3x+gfc82RR9Ujlj09zISUxKiejapqsoJQ48/qPEUiko8L1mKcCFEBCnu9/tp0qQJzz77bAVEVjy0OKYhanISiq5x5WPe1dLTNu4CIJgfYl9aeplIpweGPUV2Zg4bl2/myV/uL1PMbjxx8YtM/Xw6x/c/jscm/y9i/1v3fMSnT3xD7+HduP+L28ulzdMuOZHUWslUq51apjEpDfbtyuS6kx4hMz2HJ7+6mbYHOb1v8cxVJCUn0LRdZFqiqir0OP2YgxpPoagE85JSdJHo+P333xk0aBDNmzenRYsWDBo0iN9++61klYQraaK93OUU93vhvMJ2K9JVVBqTq6da67OlILKO0UE1uRRFM/61CQQz1036FWRAQfoUJ9dOwfFKUjHVUWZsqvlShGe0JeZxiklkWftNryUrWLe6yvPsWuCYCRcxZm5TDRJMqK4YFQzfI8UoiyrtPgjVFiSZ8bhfhoeT6peoKvh8RvqcqmB8ViU+FVRFotrvnZfhxSTtU6cqElVIFEWgCGGop+w2hTmMxnbp6bzzr1XO3qsY6itVMb1mjCQ+8whHxmW1JcMvMqHYffe8ol2bbqpMGq/Cf+KMwiBGvb4LqSIabEZUeFnKGCJwsEx8j2qcVyKVT2KVEG06ZRH+12bGL8n8/Ek1cvaXPpaa9fJo3DqHPkP2cv6N2zn/pu2cdt4e4hIi5fUFoV7TPDr3ySAnS2HpnPjCCfUYYoAyz0sTJkygadOmxMfH07lzZ/7+++9Cy0+dOpXOnTsTHx9Ps2bNePXVVyPKfPXVV7Rt25a4uDjatm3LxIkTSxxXcfHSSy/x119/RSWVUlNT+fvvv3nxxRcPWPtlQdserfhy62t8uXkCnU5u59l36kW9ue65kdz59rW07dGqTO00P8Yg6Vt2alLiY7es3s6tfcfy7KjX0DRvTvyWDcYD6NYNO6MeO2OjQeT/u6n8UomEEHQ76WhaH9Ow3OosLras2s7eHfsI5odYNnPVQW37n4n/MrrP/Vzb+U7WLyn5DySZe/dzzxmPce/gx8lKzzoAEYahEt8v6bqOrus0atSItLQ0+7Ou6+Tl5bFixQoGDRpU0WEWiLbHN+fz1eP5cmPkvHTayD5cN/5S7nrvhrLPS8c1AaBl55KTJFtWb+OWXvfy7JWvRKQwbl29zSwTfaX3BVMWA/Dfn0tL3G5BEELQfWAnWnc5+H5OW9amsXdnJqH8EMvnrj+obU/7YT53DB3HDf0eY8OKbSU+PnNfNvdd/AoPXPqavdrrAUUlmJdKpXR66aWXuPXWWzn77LO5+eabAZg5cyYDBw5k3Lhx3HDDDeUaJBRA+pnKHrdpdwRLKABd2oohi+zxGHNbhwjQTMJFsVZEc60KF/UaiMZKuq4XtwLKc7jFaApX4FIYaXymcssQ9wjjX/fKZ2FxSFcV3jqtPjhqJ0OVY0iwPObYSpjKyV6ZDmewhKkAU3VDG+QwckhT8SSEbmuaLDhG3YamyGzeNA83yDaBjk+RIFWEbrAvUgqXFNQkkOxxNjopcOKTCE9aoy5BmAbkTnaeNP2dHMZHYDhd2WSmW7lE2Htv1+yddv+ENei4Ljh3HQU8qVsnUHjJ7uLCnX4ZLasxhoOLpBSNJz5dg7/4/nrs2+Vn+bzI1IMf3q/FWf8sJaEMWQmbVydwQv8MLr3LudG5rGdr8nKKlyPnj9N59KM1XNmnDa2OyaF919zSBxNDpUFZ5qXPPvuMW265hQkTJtCzZ09ee+01BgwYwNKlS2nUKNKked26dQwcOJBRo0bx4YcfMm3aNK677jpq1aplL3AyY8YMzjvvPB5++GHOPPNMJk6cyLnnnss///xDt25lS62Khq+++qpQ1cDVV1/N7bffzv/+F/mL94FGfl4Q1aegFpInW6Vq9BRk1acy7PrTo+5bvXAjL9/xEcf0as1l951VZBxPTL6LtE27qdu0dvECd+GX96ayZPpKlkxfydDrTqdFxyb2vrvGjeD3iXM5ceCxUY8d2+9k3ps3n8FHH1xF0IHC0d1bMvLB89izfR8DryxbBkJJkZuVBxhq+mBesMTHz/x+LrN/nA/Av5Pnc/IFvYp1XCgYQlFL/tt57H7JmC8PRRRrXiogFUr1qZx544Co+1Yt2MCE2z/k2D5tuPS+ohe8euq3+0nbuIu6zQpfRj4afnr7D5ZMX8GS6SsYekN/WhzX1N435qOb+e2Dv+h7XvSVwm58+Uq+efFHTirmd+BQx9FdmnLxnYPYm5bB6SMKXh3tQCA3Ox8AXZcE84tedCcc//62mDl/LANg9h9L6Tu0c7GOCwU1FLXkpFFlmJdKRTo9/vjjPPfccx5y6aabbqJnz548+uijpSedijpHbhFJGEcSnq2Etc0iEsxjpSowPKWlRz1krYJnrbKGlKYiyFQqISKZAHejYbERNl8Ka7vANv22CU3FUTrZVk4YdAju4ySm95BTpy2sUYxY7fqsVfAsBZYflxILpE/avk42r+NW2mCqo6wV5sxvgKJIQwgksA3CFVO9pCq6S9khkdLwYjLIIgWBpYqS+BSJokikMFa0ExhjoGjCNmL3jLHZjiadGwxhxgim+bjpBi9wYlQVgWqdf5uIU1wyMAwTOV1BmiMe1fDdDsK13XO9Cucc29FFQfjmcLVThJKqmKgEsszDCQ2b5xIKCuLii38yNqyMQwjduD7D8O6TdTmmx35OPXcvCYklP8Htjs+keXvvpDTyzm0smlGFXz6vTn5u4eRTg2a5+ON0bnhsM6v+S2D+30kc2zMLpeT3+zFUJpRhXho3bhxXXHEFV155JQDjx4/n559/5pVXXuHxxx+PKP/qq6/SqFEjxo8fDxirtMyZM4dnnnnGJp3Gjx/PqaeeypgxYwAYM2YMU6dOZfz48XzyySel6WGhWLNmDS1bFrwSU8uWLVmzZk25t1sUls5cyR2nPEjVWim8Ov/pcvXZ+ebV31g2aw3LZq3hzGv6FbnClM/vo14pHuwAep3VlV8/+Iv6LevSKGzJ6wZNazFydP8Cj21/VB2eHljw/uLAsitQDgETWkVRuOi+syuk7ZNH9MLnV0muXoWWnaKnra9btAFfwEfD1pFLk3c8pQONjq6PUATHndQuytEGpn0zi03LtzD0xgGsmruWMf0foXbjWjzx+z0lCzh2vwRAVlYWU6dOZePGjeTn53v23XTTTQc9HmteqlY7lVfmPVWu89K3r/7KstlrWDZ7DcOuPZWqNYsxLzUvXSpa7+Hd+O2DqTRoVY9GYavNNWxdn8seuaDAY1t1bs6d75ZNuGHMS9KzQmpFQVEURoweWCFtnzT8eGNeqpZEiw7R1afrlm7BH+enQfPIHz2O69mKhi3qoCiCY08o+O/4tMkL2LImjSGX92Hlwo3cd+EEajeswaOfXV2ygCvBvFQq0ikjI4P+/SP/WJ922mncddddZQ6qQLgf9KWZJmOTDXjZJ6uYqSCRCEexpmCsUGYROfZh9ppuRpUaBiESNAkcXCvQuYRAdvsOj2EXCX8f9dZEEnGxCQlS8cqxwuyaXOqdKNenNNVN5gsNCLljFEYjboUTxmebOPK4l1vkk26uSKfjU3UXSWYonfyKhk/RkRJCukJQN3P7zFJCuDpryp0UNBRFgqaiGeyTmQYn8ZmqNIlAkwZBpekGK2ObgWOk66FIUx1lnk3peFjpurmCny7MZqV5rDXgOkI1FVm6IFKl5JauhcFkm+yF9NwXkU1shh0ffiFI6WkmhsMXPr/OE5+vISGp+H811i6N5/k7C15ie/qPVblt3KZSEU4AjVsHAe8v0L0GZvDcbY2KJJwAnvx8Dak1dNp2zuHPidXp2Dvm6RTDgUN+fj5z587l7ru9Hj+nnXYa06dPj3rMjBkz7NVYLJx++um89dZbBINB/H4/M2bM4NZbb40oYxFV5Q1VVdm6dWtUZRbA1q1bK+TBYOHUpeTn5JO2cReblm+hbY/WRR9UTPQd3pV/f/yPDj1bkVozudzqjYaWHZvy8fqXy6WuZXt3UC0ugaMSi+evlZmZy7U3v8++fdk899QFtGxROuLsSICiKPQ9r2eB++dPWcSd/R5CUQSvzHuaZmZKpYWa9arz1pLxUY+V0lC5b1u3g7FnPQ0Ynj1aSCM/N8jmFVvZti6t3PpSWTB//nwGDhxIdnY2WVlZVK9enV27dpGYmEjt2rUrhHRa+OcS8nPy2bFhJ5tWbKVt97KlyLnR9+xu/PvTf3To1ZrUGgd2XmrVuTmfbHqtXOpas3ADVWumUKNetWKVz9ybxU297iN9VyZP//K/qB5rlQWKotBnWJcC98//ewX3nP8Siqrw0s930fRor2F8zbpVef3P6Cpke17asItHLn8dMJSXoZBOfl6Izat3sH3j7vLrzBGCUt3tDBkyJKoPwrfffsvgwYOLX1FJlR3C+96TDebabRezV4Iz1ErSL2wpkdsnSYLtwySEcCx8TPWQLS9y+ft4QraIrGh9cCuHXHF5CDDLz0l4D4nol21a5Xq51FjS5T0kFRCWwsmPsWqd6deEIhCq4c3kqVMFxfMylElCkab/kfGvT5X4fRK/qqOadfhUCPg0Evwh/KqOTzUDNs2gFLOMqoBPkbbnU0DVifcb5t4aKhKDcBIIfAr4VcMrSjH9mSyvJ/fI+FRpEmEY8ZikmmrGqigYqitdRdMVNF011SROPUaVwlZ+CeGoqOxVB8PPsTuMcL8xu54oV2a0C9Y+lwVcR0XA/i7IUh0eQzkiFBRMfL0WOfuLfybqNsmj9+C9CEWPul8LwdclrLMoKCqcOWon8YlF+zp99VotsjIVjmqcy6V3b0GPHmYMMXgQbV7KyMjwvPLy8iKO27VrF5qmUaeO90G+Tp06bN8e3Qtj+/btUcuHQiF27dpVaJmC6iwrOnbsyDfffFPg/okTJ9KxY8cD0nZhGHjlKZw6sg8XjDmTNt0K/gW3NOhySnu+WPc89394fYWslFQafLdhMYN+eZN+k19lV27xzPPWrt/Jli17ycrKY+789cU6Jm3TLkYdM5qbTriH/fsOgnfRIYJ9aRmAkeaSuafg8c3JymXfznT785LpKxhWdSTXdLoDn99HkplWdVTT2gy+9nT6nncCF/5vOE3bF/yDTTTE7pfg1ltvZfDgwezZs4eEhARmzpzJhg0b6Ny5M88880yFxDTAPS91bVGudXfp14Ev1r/I/R/ecNjMS1M+nc513e7l8mPuYO+O9KIPANYt2sjWNTvISs9m3pQlxTombdNuru5+H7f0e5T9+7LLEvJhhfTdmQDomk5mIfNxbnY++3Y789aS2WsZfvSd3ND/KXx+laQUY7XQOg1rcMYlvTlxSCcuuKU/jVuXbIGNyjAvlUrpdPTRR/Poo4/y559/0qNHD8DwdJo2bRq33XYbL7zwgl22MLbcSSMrGNEUPIa6yVQ5SWkokqRD4khzQjGEJoYGx2aXrBQr60Hf2qZJ41hLQaUbFdjrqKkGcWHV44nbtAOys2KkNx6LYLCVMOHdcW/3im88g+BO+/IonKINoMQYl3wcAsSqQwCKglR0w0AcafpIucyMzGMchZPxLZBSouuGCssYA1NlhESXAl2CXzEGTxUgFRWEjo6hMLK8oIQwDcSFhkDHL3SCKLadkrGynDH2duy6NJRKujX6Rmyabp4bc5tqOsAL8zLRQgJdN19uBROOqksqIKR0jbGIUNYVmF5pnQO7rIy8RsJleOF1W8cJwjYWE27juSPUgK680LhxY/z+6EvVlgf8AcnZ16URKMFicZtWxfP3pGoF7vf5JeeUsM6ioIUEX7xSm1B+0b89nHdjGknJxjXZtkvMzymGYiLKvNSwoVfm/sADDzB27Nioh4c/HFi/LhaEaOXDt5e0zrLghhtu4Pzzz6dBgwZce+21tk+JpmlMmDCB5557jo8//viAtF0YUmokc+c75e+9ebhiW7bx8JGjBckM5lEzvui0nvZt63PmkE7s2ZtF/1M7FKudf7+fy/rFhtH2wr+WcsKQsq3otjctnc+emEirLs05eUTvMtV1INHn3B7k5eSTkBTHMX3aRi2TsTuTy9veQubuTB75fgzH9+/IrMnzyM7MYc2C9aTvyuCdFS+wLy3dJpn+98mtxrEZGSULKHa/xIIFC3jttddQVRVVVcnLy6NZs2Y89dRTjBw5krPOKtqPrbyRWjMlNi+5sHPzHsDwTMvOzKFandQij2l3QiuGXHsae3fs49SLijcn/PvTf2xYtgWAxTNW0n3AcaWOGYwV6z5/8RdaHdeYvmcWrDSqaJw4pBP5eSHiEwJ06B6d5MzYm8VV/Z8hc182D715OZ17t2b2lKXk7M9jzeLNZO7L5s1pY9m3K5MmplJqzCuXGcfG5qUIlIp0euutt6hWrRpLly5l6VLHYb9q1aq89dZb9mchRJESzWINa1ghj9e1a4U5YRFOFq9grxyHvQqbRRB5lE5udYouERaJZK5EJ1XhrC7nCsmiEYQwSQuzfpsvsFRMFlykgk02hamcrMrdH21iKayMzcaEv+y2cdRNPpA+a0ykkbpnxexSOVniJHD/K13ElUBVdVTF2zUB+FWNgGowZbquoqMizM4YqwhagjKJT9HxKRpxPsPfKSfkRzdXmZPmgCimcbmUoEsFTfqsJD3A9IISoOvWAJpklmqkzimKwezoumKamQvXsc41Y5CEZqqeZYrl7llR/E/4eTFaCN9Q8DHWZ6cbUQoUgf+zd94BUlNrFP/dJDNb2aX33ntRRIqAKCIoghUUwfp8oiIqNuyiYlfA3rCjIk9FUVRAAUWwAUoVpUnvy8KybSa574+bZDKzs5VdFtg97407k9zc+6XMJTlzvvN5SbGiZWAdV8jMzGTq1KkcOnSIM844I8xXZcWKFSU2bpsuaQwfszPfc/DX0jjeebIm+3f7QEgCWc7kEU4ANW6dwZV3badyjexiP69/LEgkMclk/568SacO3dNIP6iTUKHwRozlKOOIMi9t3rw5rJpbTExOJrVq1aroup5DgbRr164cSiUHNWvWjNreMAyqVKmSZ5vc+jxcXHDBBdxxxx2MHj2ae+65h8aNGyOEYN26daSlpXH77bdz4YWl48NzNCE7M5s37/kQw6dzxcMXY/gKd2u6+Z/tLPluJb0v7JKrV8ufG7bx+qxfObNTc87pEk58XNH8JHyaRr3EijSqUKVAY+q6xugbzihUnD3O68L3Hy4gNjGWjn3aFmrbgylp3HrqA6TtP8STs++nbvPafDD+E6Y//zUAHU9rS+Wauf9wUZrQNI3+V/bJs83uLXtJ3a0e0v5ZsoGT+nfi7GvPYP2yf6nbvBaN2zdA0zQqVc//wTtflN8v4fP5XLK9Ro0abNq0iVatWpGcnMymTZtKObqjA1kZ2bw97n/4Ygwuu/f8ws9La7ayeNYy+lzSg+Rc5qWVi/7mwye/4NSLutJ3WLh5+Hmj+uHz69RqXIM6TQvmL6UbOjdMuLxQcXY/5wTmffILcYmxdOhZuMIKB1MOcfs5T3EoNZ3Hp99KnSY1+HDi13wxeT4A7Xs0o3JxfGdLAJqm0W9o1zzb7N6eSuo+pYJau3IrJ/ZswVnDu7Nh9VbqNalBw5a10DSNitWKIWWzDMxLRSKdirPqQaGPq1TqJUfl5HV4l9JW4OhC2fLoIHUZMhKXqGc699lOqF9CHa7BUfdI0ALYVd88khVHJWNFxG6rirw8gdNUIkPsjCQsXlf9lMfxiBTehG3n+ZuDo7DjcQg2W3yEaTlNbY8rQ7pkm3SZGLWRlB7iyVVAKbWRaR8rw2bvVFU6QVAKdGFhaEFMqQzEpU2imFLDlGAI7LYaWUGJ1CU+EcTSVWU5XdOUKgnNrnCnEQwKgiYRJsvC9WyS9kHXNEEwqKnPpmqr1tuV71TDkM2Uvb9CU+mGOASW69Zud25FMp/khHONOdeoTYwp5izKyXXHl57YiogyMFnlhttvv53s7GwmTZoEKD+Ybt26sXLlSuLj47njjjuYPXu2q8osSdz67GbqNM7Ot91zd9Zl3YroFVi8uO7hrbTvVjJpGI/fUJ+01Pz/Cbht0iaq1S4nnMpRBESZl5KSksJIp2jw+/2ceOKJzJ49m/POO89dPnv2bAYPHhx1m27dujFjxoywZbNmzaJz586usrFbt27Mnj07zNdp1qxZdO9eclV1xo8fz+DBg5kyZQpr165FSkmvXr0YNmwYXbp0KbFxvdi7fT9p+w/RoFVOE+ejAfOnLeKTCV8C0Kprc3qcW7jjMnbgk+zdvp8lc1cwburNUds8N+Mnfl+7hV/WbMpBOsXoBle1KP7qhZGoXLMSE354uEjb/vXrWjYsV2TAb9/8Qd3mtV3T7ur1q+ZaafBYQeP2DbjhuavYuXE3g+3KiNXrVeXhL8bms2URUIbvlxx06tSJ33//nebNm9OnTx/uv/9+9uzZw3vvvUe7dgVT7h0u9u7Yz6HUDOoXMg3pSOGHz37l0xe+BaDlSU3pPvCEQm1/22nj2Lc9hSVzlvHQ59H9jt+6fxrLF/zFn/NX5SCd/LF+zh8dvRpfcaJKzYo8881dRdp2zeINbFylVFK/f7eCOk1quKbd1etWJjEp//vcoxmNW9XiuvsHs3NrCgMvVfcJ1etUZtzbhTQJLwjKwLxUJNKp2BCNLMkLnuyjqGolHaQmFHmiC7V3jprIkdmHDW4TAp7qdiIAmuVUUwMMpXRyiCM35S1iP5x+3esk0qtJ4qp+nHZh6XceAiTU3tOXu+MeYiii2lxYSE6BNs1W8+goxZZP2u+lMg33tHG8jFxxjvC8PMomXZPodhU6r9pJ1ywMYaEJyLaUQZGwCSbL9lDSNctWMCk9k66pU2W5CidNVbtDQ6DMyKUUBC0DKfWIA6WIHek5aLquPplWiJwKP/PCrcjnqKhcTtHSwNI9hBNuRTxHuxQuQoq4ID2ThHAvqIiQw4PKeS5zNCwYykKpzdzw9ddf8+ijj7qfp0yZwr///ss///xD/fr1ueqqq3jkkUf46quvSjyWKRNrcN3DW6mQHN30aOOaGCbdXpet6/POk6vdKIubn95M4zYlk1//y5wK+GPyN2bq1POgO3eWoxyFxeHMS2PGjGHEiBF07tyZbt268dprr7Fp0yZGjhwJqMpzW7du5d133wVg5MiRvPDCC4wZM4ZrrrmGRYsWMXny5LCqdDfddBO9evXiiSeeYPDgwXz++efMmTOHBQsWFMv+5oYuXbpEJZi2b9/O+PHjeeGFF0ps7L3b93NV+9vJTM/i3vdH0fO8UBxb/tnOT5/9Sp+Lu1O9frUSiyE/ND+xMbEJseiGlsNkuiBISI5n7/b9eRIvp3doyuJ1W+jbsXg9rI4UOvRuzWnDTuFgyiFOvViZdve7/FQ6nd6OpCqJ+GP9pRzh4UEIwbmjSv4BG8r2/ZKDRx99lIMHVVrpww8/zOWXX851111H06ZNeeutt0p8/L079nNV53vISs/m3rdHcsqgUDn6rWt38NOMxZx6YVeq1yuY8rAk0KxjQ2LjY9S81DZ69bO8kFgxnn3bU0islPu8dMq5nVmxcA09Bh9eqm1pof0pLehzYRfS9qfT+zy1D2cM7UbHni1JqpSAP7bkrCyOBIQQDBqRe5GEYh2rDMxLRSKdpJT873//Y+7cuezatQsrwlX2008/LZbgoo7tfcjXhV2xzFYW6QLLEIo3CPeJDm3jMAwaysIIkI4aBbD8YBkaWlC6IhccAscknAzyKpucz8IufqZFxBC2E4QMv719SY9yKbJfZ9+FvQNe8YxDUslQO+lsbKuwRMAWd0llXyUQSCE94wnbQ0nYqialhHLJKKnaCwFBl4QRaIaFXwsqEkkoDyXVm4WuBW0fLIGuSYKWjmWBpqtUNhNIDxpkCQ2/pmgnXZhIwDAgYOpYGmQFdCxLIsn5LRQoU3KVPoercrJM4aqinGp2Xr7OqdYnEUhLKFLNMF1VlDqB9iB2yqT0MoaRLKPHz8tVOglbKOUlHsOYbBG2TVRyqqAoAwx5bti0aROtW4d+uZ41axYXXnghDRqoh5ebbrqJs846MiVbR9y6M1fCCWDaS9VZ9Xv+fiHnX7ObDiWkcAJ45f467NuV/0PKf+7bRvW65SqnchQRhzEvDR06lL179/LQQw+xfft22rZty8yZM93v9fbt28PSQBo1asTMmTO55ZZbePHFF6lduzbPPfccF1xwgdume/fufPTRR9x7773cd999NGnShKlTp3LyySWnclm1ahVz587F7/dz0UUXUbFiRfbs2cP48eN55ZVXaNSoUYmNDSotKzNdmbXvjKimc9+gx9myZhs/Tf+V5xaOL9E48kKD1vWYtvMNhICYuMIb1z3zzV2sWbyB9nmkhgzr3Ykhp3TA0I98tcDigD/Wz13v35RjebW6pfdQXlrIzgow/+OFNOnQsEgkZVm+X3LQuXPIa6datWrMnDnziI5/MOUQWelKFb5zc8S8dOGzbF27k4VfLmHid/cd0bi8aNi6LlM3Po8Qgpi4wpO6E354mDW/raVDHqm0595wJudc2xfdyL+K8NEIf6yPO1+7JsfyagWstnc8ITsrwI9fLKFxm7o0al0EVXEZmJeKRDrddNNNvPbaa/Tp04caNWocuUoAHsWQa/DtqEk0m3RyPZw88iNbCqU+RkhMvFXjJCAEQkpXlSQN1a/TTa5iFG9Wllfh5HgGeUPRCE+Lc8iJCJVRKEyRczynrRYlHG91O+F5r2NXsROgW261NKeCnat0sg3ThYdqdRRQQuBWidN1iU+zVIU7VHvnfk7aFehU4p2GJZVySXlBWW6FOZc71GxveKm8nExLw0JT1eakhiX1HAddRB4ncJVV4RKykP+TaiTRhAyZj9s5ldJyTowW2tT+HDaM5yKQdn+RJyfsOgkjuwipp0REm8P5HpWBySo3aJrmGgaDKmpw332hG5WKFSuSkpJyRGK5plcLDL/kstu3c84Ve/H54cA+nQevbMiG1bEEAl7mO3e8dG9t3nikpppbheS8q/dw8U07iYk9/Bh/npXEoQP5P3h16nmQStWCYWm25ShHoXCY89L111/P9ddfH3Xd22+/nWNZ7969WbJkSZ59XnjhhUfMR+nLL7/kggsuIBAIAPDEE0/w+uuvM2TIENq2bcu0adMYOHBgicbQsHVd7nlvFDs37WHQtaeHratUPZkta7ZRuWZyicZQEMTGF71KQoXKiXQugJn3sUo4FQYZhzJZu2QDLU9uis9/bKsMcsN7D37MR09Mxx/n5+Ptrxe+gzJ8v+Rg3LhxDB8+nCZNmpTK+A1b1eHuN69l95Z9nHN1n7B1laols3XtTioXwDi7pHE481JSlQqc1L9Tvu2OVcKpMMhMz2Ltss20OKEhPn/pJlmVFN5/8kumvTALf6yPD1c+WfgOysC8VKQz//777/Ppp58etnrAUeQU6nnGJnakY76Eei9t0slJKfOOAWqZRCl2kLbjjtfXx9NW+lUVNtdTWgiE6Up4cmZJeUgk14ua8B1zPMRzCF0cxZIW2Wlof1W8IkROSEKG6Jbdt72NpRNSfjmCHYcMkyCCNgGDhtRM9/gJTZE10vQyZHZbXboP9VJTpt7SAnyKdvEjXY4vYGp2xqJbNxBLKGJJItCEhe4xCJcSskydgKVS50xLs4VgEgtB6DTb48sQAQig6apanZSCoKlhWsJWsMmwB2UpBZblEFCaTRcpKZtlKvWV0CSaYWIJiXRMqxxCyiagcpBJDkkXllvn1WQ5B95zLQoBpk2augu9F2LENVAAlAVZZm5o2bIlM2bMYMyYMaxcuZJNmzbRp0/oJubff/8tMaPgSAQCGkK3OP+/oV/uFs1KYuVv+aubvLAsjcz00KRw0Q27ioVwAvjoheqk7sv/YeSCkbupUqNc5VSOoqMsz0ug/JxGjhzJ+PHjee2117jtttsYOXIkn3zyCb169TpicfQ6P7pH0viZd7Pm17W07ta82Mc0gyYPj3yLDX9t5+4XL6dFB1VxbNfmPbx2+3s0alefYXefX6gfLVN27ufbt+ZywhntaX7ikX9YDgZWYgY34I/tjxBH54PTXf0fYeVPazh1aHe3utvxBsN+aNV1DU0TmPlnioehrM9LAJ988gkPPfQQJ510EsOHD2fo0KFUq3ZkU2x7nRu9stn46bfx1+/raX1y8X/HzaDJuOEvsnHVVu55eyQtTmgEqHnp9Tun0Lh9fS6+89wizUsn9uvg+qwdSaxdtoltG3bR4+xORy2BdffQF1j9+3p6n3siY1++qrTDKRF456Wi/FBbFualIv3sk5ycTOPGxfHF8j7E53GGvOZCEdu7yz2+THgJGkJ/w8cSYQqkMBLB/Wz3K8ObeIcP81VytvEuDw/BbReWJuhuJ3K2dfc/Sn8ivAv3g61gctVX9mcn5U+pt2QOpVPYsXHHCFc7OYdE11Vam+HxR3J8jDQRClmZgasBhFA+UO7uhP5jk1CaTUyp7UAQtJRSSkYcUOUzJdG00N2GY1juvHJeMvZyTboBKHFbqJqdjJSh2X06/wtdc95jFjEEoW3CTpCHXwrzfMpxAkVYlwWCyzJ6L66ygdtvv52xY8dy+umnc/rpp3PWWWeFpazMnDnziBn2AmRnapxZpz0D6rZjQL12TLitHof7s8V5LdrR3+5vQL12DD+pJdv/9RXJbuns4Xvx+fO+S+94ykFanXCo3M6pHBEo5NxShuclgNWrV3PDDTeQmJjI6NGj0TSNiRMnHlHCKS/EJagqaiXhB7Tt3z388t0qdm1NYd4XIfXZZ5NmMv/jhbx930dsXRteSfCn6b9y14BH+O2bpVH7fH7UZCbf/QG3nz4uh61DNGw8kMIPWzZgFcNEZpm7Sd09kLSUkWSmvXbY/ZUU9m5Tql6n3PrxiOH3Xci4z+7g5SVPEpcYV/gOyvi8BLBs2TKWLVvGaaedxrPPPkudOnU466yz+OCDD0hPLxkvyYIiNiGGjr1blci8tHXdTn79dhm7Nu9l3ie/uss/e+5r5k9bxFv3TWXbup1h2yyY/it3n/0ov8/6M2qfz93whjsvyQLMNVvX7WDx7GUFmsPyw76dqdzU7zEevfo1Pn15zmH3V1LYt3M/AHu27y/VOEoSl956Fve/PZIXvrubuIQi/EpcBualIpFODz74IOPGjSMjI+PwRhe2Ysk12xHRX2HbhD/0uxlQzmqJYh8swh+YnPPoEC86WLrA0gRS84wjUd5NJiEpjrD7jZwfnGU2OyksEKZEBNULM7SeyGvJebmyp1CwYWl29jq3fwuEJSEo0bIlepZ6aQGJcEqgOX9kSHElHZ8rTYaUUtkaBDRktkBma8iAUAofSwUhLYEM6lgBgWUKLEu4h8Q5AAFTI2jqSmVk+yqZlkqh0zXl9+TTgi45JO0+TAlBS5Ad1MkO6mRkG2QHdQKmRnrAID3bR0bAwLR0+xTIsPNpSduMXEgMXY2laxYCqcgo3ULTLIRQLymlGtsUWEENM6hhmeoC0jTLrVIohNpeEVNSHS9hKd8v52R5zrv7OXKCiPDLCsnf1DmQuqdPZ/vDmWRkxKsM4YILLmDmzJm0b9+eW265halTp4atj4+P54YbbjiyQUmBZWlYpoa0IhjjIvbnfictRQrVahAo0q8pM6dUIhjIbUNVQbLvhXtJTLaK1H85jmcUcnIpw/MSwIEDB6hYsSIAhmEQFxdH8+bFryo6GlGnUTX6XdSFpm3rcuaQkGfWCWe0x/AbNGxbL4dJ8PM3Tub3b//k5Vvejtpn1TqVAahcq1K+SoT9WRn0//QtRnw7jckrfj+8nQHCfh0SR2+a3iNf3sVV44dx95TRpR1KoTHzje94854PSD+YgZSSJXOW8dev/+Ropxs63QefRJ2mRax6VsR56eWXX6Z9+/ZuBc5u3brx9ddfFy2GowBt2rTh0UcfZf369cydO5dGjRpx8803U7NmzdIOrcRQt1lN+l3ag2YdG3Dm8FC1uBP6tlPzUpt6VKtbOWybF0e/xe+zlvHyre9G7dOZlyrVrJjv+Af2HmRk57u4+5wnmG5XxjsceH8017Sj94Zt3HvXc8Vdg7jjhStKO5RC4+sPFvL2E1+ScShLzUs//s2aPzflaKcbOt0GdKB2o+pFG6gM3C8VSR980UUX8eGHH1K9enUaNmzoliN2kJ+nggPpeYYvMrxkUWRamjsQuT7zOaskuCbPwsImBFAPe5Z0CaccsXq9nKLtSISaKirh5MTrJZ6ckL2klIbXySo8fpeAEzk8o7x8hyTijfe4OeSavdxOjsNVbrmEk0Rghc6flOrwWBJNUy+HnLKkwJSO544ighDKP8myFJFlSaG2sUNR5JZNTpl2P5YIC1KlCKotHHLNkqHtXEJSgnRNxVUflpOaGMZpei4QiWsyHxXei8Z7QMPSNT2sYcQxzoHIa9XbTQFRFmSZeaFv37707ds36roHHniAP/7448gGVMwY/cQmzhqeErbM+f4Vlhh6dvp63nmyBh9OqoH34qtRL4sXvv6HxIqmm/7qiPHKUQ6Fwl0NZX1eAmUkvmOHUvRIKVmzZg2HDoUXCWjfvn1phFai0DSNW568OMfyk87syBcH3kU3dDQtnLw5dUh3Pp34JacOjV4t6NpnLqPXRd1o1LZevqRT0LLItpUE6cFAEfciBE2vSnK1mVjBjfhizyhSH2bQ5InLX2DL39sY+95o6rcsgtlsPmjQqi4NWtUt9n5LGhuW/8uE/74CQFxiHHWa1eThIc+CgFeXPl00w/BcUNR5qW7dujz++OM0bdoUgHfeeYfBgwezdOlS2rRpU2zxlQYSEhKIi4vD7/e7Ve2OR2iaxpgXrsyx/KQzO/J5ytsYPj3H3NJ7SDc+e24mpw7pFrXPkc9cTu8h3Qs0L5lBCzOgbAsyD2UWcS9CqFQ9iRe+v5ftG3bT5cyi/TtiBk2euv5Ntq7byR2v/Id6zYqfdGzQohYNWhSRJC5FbFi9lefuVD9kxyfGUKtRdR4d9R4IeOmrW2nUsvj2qSzcLxWJdLriiitYvHgxw4cPPywjcU8mVxE3tt8SzgNELg/fzvPeQ6QIR+liv9ckygfIPkJCEp4yF85RhC/yXjQeNVak35QbkoffCgvT049DoGB7TEmhiDDNsnkxAyyfwPKFVE3eCnqRx0hDIF0lllCKHitcQeaqdGx1lASCSIKaxIzVifErBZOmgaGZ+I0gmmYigCzTwHKqxyExNBDCQhcWlu2/lBn0Ydk77RdBNJs9M02doKmMwy2XsIm4UOztpNSwANMUyg/KPm/SDLFukWpXaWr2euVXpRuWS0BZJkqZ4mXtopBCDpMnvMfLc+68XFRo8hAeMtN7oqMMUdjvhZfYOk4nq8IiNTWVKVOmMHnyZP744w9M0yztkIoISe9BKcWmOjqwT2fO/yoBiuxNrhoEKTnptIMkVT5Wj1E5jgyKqHQqwqbHC0477bSwz45xuBACKSVCiGN4bioacjO4HvnM5Vzz5HB0Pbovia7rtO2Re4W6Q2mZ/LFwLe27NKZqxQQ+GTiMtfv3MqBhC/dYFxSfPf817zzwMRfdOpBL71EVEA1fS/DlPn5+2LB8E3M/XADA7Hfnc/Wjw4rc1/GGSjUrUqFyImkpaTRsW4/MQ6riIhKswpo25YcizkvnnHNO2Ofx48fz8ssv8/PPPx+TpNOGDRv44IMPmDJlCn///Te9evXiwQcf5KKLLirt0EoFuRlcj3z6Mq55Yjh6LoUIdCOfeelABkvnr6bDKS2oVCOZZ79/gM1rttHjvMLbPkx/9yfef2EOF1zVi0tG9gGUKXvDVkUnsNev3MK8T38D4LuPF3HFPecVua/jDZWqJ5OYHEfagQwatKhFRrr9A4akWNIjw1AG7peKRDp99dVXfPvtt5xyyin5N84DzvE93GepsIf0HFKeKIyLt73d1CV5LBky5capcBYaQ5JTWeDtMpx4kjiV4Nxl3ms0ksCKvNgs72eZ42DZWYQ4HInl9ZfyjuEqlOy/lqddDsUO4SdGeLZz9l2oDqWlUsgspz8pMa1w8ixU+cpRJqnUOkkoEK9YzZLq5bQIP0C4DI5TWS+klsvtagr1YlnCPmChbl0yD+zUPy9hFd6PqmkYeRI8ITrXkQhfFjZ3RJtIcly7ubTLC15y6zidrAqK77//njfffJNPP/2UBg0acMEFF/DGG2+UdlhFxugntpCYXDx9ffFWFV68x/kVXPLM9H9o3TkjfH4oVzeVo7hQxuelDRs2lHYIpYpgIMhPn/1Kgzb1aNimXoG2yY1wisTqxRv4be5qBlzanWq1KgLw2E1TWLzgH1q0r8vEaaPoVL02K3btpN3k5zizUTNe6T+4wLHPeHkWh1LT+fylWS7pVFCk7jnAhuWbaNezVZixb4M2dTmpf0e2/LOdU4d2L1SfxzP+nLeSP+et5PlF4/HHxVCtbhWklMTE+0msmEDTTo2Kd8Ao89KBAwfCmsTExBATk3vlMtM0mTZtGocOHaJbt+gKmKMZ3bp149dff6Vdu3ZceeWVDBs2jDp1il95dzRCzUu/0bBtPRq0LpgqMDfCKRKrfl3H73OWc9YVvalauxIA4698hSVzV9HixEZMmn03Lbs05e+lGzm/9kh6nHMi9025scCxf/XRzxw6mMmXHyxySaeCInV/OhvW7aJdh/roRmh/GraqQ+fT27Jt/U56nXtSofo8nrFs0VqW/byWSTNuxR/ro2qtikgpiY33k5AUS5PWxfx9KQP3S0UinerVq0dSUtLhjx6W3pQHIg9+5DO/Fr4u9AwvXJVQDiLG04Gw87OEJRH2D45SAwyhyq55xxKE0tWE5wIJ8/hxKpPZnJNNRkgrpDyKlmbnpveFkWAhFZbUbVLGQMWl26SJYw5u2O+dY+IhlDQLpAkCgSUklmYbbUsB2SgFjhMbKE8jDTWGs8NBQCq1TsDSsWJ0fDFB/L4gCGX+bRG6wXI9pcCtWKciUJIvny4xJZiWhik1dCSaEOgaIe+oMIMrh3BS59ZZrlLtIoiiSGLQFCF2zmkgJQQllhSuRYM0nY2Fe32GKgtKuw9Px3mIobzrnRUObRUtxqjbFBRlgCHPC1u2bOHtt9/mzTff5NChQwwZMoRAIMAnn3xC69atSzu8IkMISfuuOaXuKbsNdmzyIQTUbpRJhYqSDatiycxQKatCk7ZyEIQmXAp34TeheTsm3qRJmwx7nCOyO+Uoayjj81L16tW57bbbmD59OoFAgL59+/Lcc89RtWrV0g7tiOD9h//HlEc+UaXtt71GQnJCsfQrpeSe4S+TkZbFhtVbeWDyNQBkZapfobOzQlU3Z21chwTm/LsOS6p7jILg8nFD+OiJzxl8w5mFis2yLK7vfCe7Nu3hglsGMvKZy911Pr+PR2feU6j+jndkZ2ZzV/9HCGQH2bFxF3e8PQpQSsDug0roATjKvFSvXjgp+sADD/Dggw/m2HT58uV069aNzMxMEhMT+eyzz47Je4w+ffrwxhtvHJMKrcPF+w9/wpTxn9rz0qskJMUXS79SSu654Fk1L63cwgNT1LWclZENQCAzlOa76KslSEuyaObSQqkwR9x4Bh+/Pp/BIwpHWpumxXVXvsHunQe48JKuXHtjyI7C5zd4ZOqx5wFXksjODHDP5a8QzDbZuWUftz6jVKlCCLr2LaHvTBm4XyoS6fTMM89wxx138Morr9CwYcPDCiAv4UdUeFQxeTZ21EHeL3I0NY+M+EyImwhXqHg+Oeolbx9h6z2xSamMyp3ljiooF9LcNSx3+rRQ6itLMVgCNTlJuw8pRHgYOY6BvTxCfRNGkjnLsePSLJVSp0lFRjnEimEfHKcNEstSqW0Bu5GQAt0WFJl2up7QIDsY2mHT8V3CwhCg6Sa6TfCYlkBzjPFstidUlS50OgXSTr2TSNMeK4fSyVZDmcp8GUsRf95mQsP1b5JhByo60yntsXOjmXJel+H9yPDkO8+lEiIGoo+fD8rAZJUbzjrrLBYsWMDAgQN5/vnn6d+/P7qu88orr5R2aIeN6x7aSr1m4X4k2zb6uaZ3C4IBQZ/zUhj74mbefKwmU5+vkUsv3gkphEfe20BMEQr/lKMcBUYZnpcA7r//ft5++20uvfRSYmNj+fDDD7nuuuuYNm1aaYd2ROA8SIUq1RYNS+eu4LERL1K3eS2e+e4+hBDUrFeFDau3UbthqMz73ZMuZdF3q+hyaijV5fYupxCj6/Rv1KzAhBNA74u60fuigilYfvz0FxZ+/itDbhtE/VZ1ObgvDYDU3Qfy2bIcuk+nWr0qbFu3k1qNc/s3rJgRZV7avHlz2I/puamcWrRowR9//MH+/fv55JNPuPzyy5k/f/4xRzw9+uijAGRnZ7NhwwaaNGmCYRTpkfDYgwh/nigqln6/kscue556LWrz9Jz7AKhRvyobV22lduOQmfS9b1/Hopl/0KVfO3fZFQ9ciD/WxynnnlSotN9eA9rTa0DBvJt+nPcXC39Yw5BLu1GvQRUOHlA/Mu5POZTPluXQfTpVa1Zkx6a91GpwhH4kKgP3S0WaYYYPH056ejpNmjQhPj4+h5H4vn0FLNUa6XGUgzWxEalacZblpl5y14uwVZGKJ6fSnatW0kTId0lTn9WGthLK6c1ROEUT1kRwT6oyHmEKJiva/OJROTmxCQnCRFWms0BqEssSmEKl0pm6CKmRdKV0ygENpJ9wPyqEXekOd7+kTXpYPgkxEgxpK30U+SRcrsSRQqnja1k6QVMghLALvWkEhVJkSSmQCAI2KSSlQAhJjBFE1yzifNkYQmLZgVlSkG0aSCxMS8NC2J5P4efRe8Sl1G1+LiQfE97T5hBJlhaudHJ+WZAiREa5ErPwYQQiXJkW7fyJaNelpz9J+L9wHvJPuAwYoe9DIf8xLAsGdLlh1qxZjB49muuuu45mzZqVdjjFBEn7bmm0655T5bR5rd+uPifIztL4/pNkFs/PS0EQ/WLatc0gK4Ny4qkcJYayPC8BfPrpp0yePJmLL1aG2sOHD6dHjx6YplngNLJjGZfeewGN2tWnQZt6h6UmePX290ndm0bqon9Y9sNqOvRuzbPTb2bL+t00bl3bbVepagXOGnpy2Lbtq9fkjQHnFXns/CCl5LFLJxHICpCyM5XHv7mXZ+aNY9n8VZxxee8SG/d4ga7rvLzkKbat20GTDg2PyJjR5iWnIl1+8Pv9rpF4586d+e2335g0aRKvvvpqSYVbIsjIyGDUqFG88847APz99980btyY0aNHU7t2bcaOHVvKEZYcht97Po3b1adBm7qHNy/d8R6pew6SumcNyxf8RfuerZg46262rNtJ47ahtL1K1ZM464peYdu2OLEx4z6+pchj5wcpJY898BmBgMn+lEM8NmEYz750GcuWbuKMs46/whXFDV3XeHHmbezYtJdGrWrnv0ExoCzcLxWJdJo4cWIxhxGOAh3rgjyUO4ZCkR1GkFthGVfevqOooHK4Unvb5RKT22e0/jyfQyqnkMIJM9TWTVeThFQ+0qN0cskgu71ucy1IRaY597i5kHhKfCRdVRCa7cMkbeLJJp80m0yxpMAynTLuGpZlYOomuu6QLWqnHQIKpF3RDoQFpqkpxZR9bJQCSo0vhCrdrsxWQ8yk4m1CxlihKnkeksmzY9IMqZtk2EGKOG1hAiRvJx4FlU1KyQhuKorOKRdEWS/UPw4q19EZKjf2tRzR8OOPP/Lmm2/SuXNnWrZsyYgRIxg6dGhph3VYuODa3fz3ge05lu/dYfDw1Y1wrsCfZlbkp5kVizRGw+bZ5YRTOcpRgti8eTM9e/Z0P3fp0gXDMNi2bVuOdJ5jAdlZAaRlEROXu9eNF4bPoNeFh+9302dodzbc9zGxCTE079wYgNj4GJq2PTJV2nZu2sNT175BtbqVufWlqzB8oVtnIQTte7di8axldDpNKRmandCYZic0PiKxHQ+IrxBH046NSjuMIkFKSVZWVmmHUWiMHTuWP//8k3nz5tG/f393ed++fXnggQeOKdJJzUuSmDh/gdqreanrYY976pDubFgxldjEGJqfqK7f2IQYmravf9h9FwTbd6by6DNfUaN6EmNvHoDh8Y8TQtCuY32W/LaBTp1VbM1a1KLZMVhBrrQQnxhL4+L2bSrjKBLpdPnllxfP6A5BIiM+F2b7vJaHcrHCPobBm/rmUV2FhSVDyxzkxjO5vJJQKidXOeXtI7IjD+kk7PGEBSJo/5V2fz6BNARSVx5EUoSUTuios6mFurUMkD6ldJI+e52J61sVRlDh9CNUap2weRBDohkWmi7RhMRnqHLqQVMjO9MHloYEglLaAat0OYfWUaXXQzIrxwBcpQgKJMqESiJsZZOu9stVLGluhTjFy0i30hwoc3Dpqp5CO6QIqEiDKyL+yvDzF9nEy0Y6XWsoH6xIRLtIovUZCUcB5eyjff7E8f8jeLGhW7dudOvWjUmTJvHRRx/x5ptvMmbMGCzLYvbs2dSrV48KFSqUdpgFhhCS2g0zycoQzP2sInt2+GyiU5KaYhAIFFIGlwv++CmB2o2yiE8sJzjLUY6SgGma+P3hD0KGYRAMBnPZ4ujF7i17GXnC7WSlZzFxwSMlShK89/D/WP/HRm55YyRJlRIZevsgLrj5LHQjZznzI4Hvpi5ixcK/ATjnP6fR+uSmYesfnXkPB/alkbI9heysAP6Y6NX5CgvTNNE0rcT3+bPnZrL0++VcNX5YgQ3fjyTmT1vEhP++Qo/zunD7mzeUWhx33303AwYMoF69ehw8eJCPPvqIefPm8c0335RaTEXF9OnTmTp1Kl27dg27vlq3bs26detKMbLCYffWfVzf6yGyMwNM+HYsjduW3PX7/vhPWb9sE2Ne+y+JyfFcfMcgLryl9OalWd+vZNnKLbASzj27E20jKtg9NmEYB1LTSdmTRnZ2EH8u1fkKC9O00DRR4vv8+TsL+GPRWq64tT8NmtUs0bGKgh+m/86kMe/RY2Anxjx3RWmHc0ygyFfgunXreOutt1i3bh2TJk2ievXqfPPNN9SrV6/AxnSReo6iXL4FelxyxC3RGks3K8tVEYWLXmQBB/GMEzmUo1QS0YVSYc08JBR2d5Zmq5aclxOWVKlpXgWUsz/OPqkKfDI0rpPC5RAn3lQwR2kVECrlTAeEwLJJESFwTYrVgTJD7I9U64JBga4JdN1WYUmliFLpaw6RpGNJC4mO7lahE1gSgpbAtHdG0yS6LpRfk62Wcuy0HI7HNFUKniB0bKVU6ibpqMRsRViOXFmJaxLuHgaPsCn8whHuMo9YKoQwLaTnCop2UUtPO+FZIMP3oVDwfpnKKIcQHx/PVVddxVVXXcWaNWuYPHkyjz/+OGPHjuWMM87giy++KO0QC4Szhu9l4OUpvHB3HWa8XXK55F37HSgnnMpRsijj85KUkiuuuCLMHyYzM5ORI0eSkBBKif30009LI7xCYePKzRzYo9J9//plbYmRTst+WMW7D0wFID0tgye+VV4pXnXR4WL/3jTefPYbatevwtD/nprvw1P3szvx9dvziUuI4b6Bj9Lp9Hbc8+HN7naapvHOfR/x5auzqdu8Fq8sfarAarDc8POXi3nowqdpekJjJvzwUFgVvOLEodRDvHTzWwDEJcZy1/s3FUu/lmXx6cSvCGQFuei2cw7r/M15bz6HUtOZ/c48bn7lv/j8h0nqFXFe2rlzJyNGjGD79u0kJyfTvn17vvnmG84444zDi6cUsHv3bqpXr55j+aFDh0qFQCkq/l29jYO2R9Ffv28oMdJp2Q+reXfc/wDISMvksa+UEqxY56XdB3hz3CfUblyDobcMyPc8nNKtGV9+u4z4WB/33juNE09oxL13D/LMS4J3X/iOmZ/8Tt0GVXhx6vXExB7ed+fn71Yy/vp3adauLk99dH2JzUtpBzJ45RF1zx6XEMMdz1xSLP1alsVnr3xHMNvkghvOwPAVPf45Hy/i0IEMZn+4kNHPDD/8a6EM3C8VrAZkBObPn0+7du345Zdf+PTTT0lLU6aJy5Yt44EHHih4R14hiaMkiXzlt63zPnIbr8opsq0HXq8e4ShNPNvkJlSJGp7DvwhsxVCU2BzlU0QHbhObh7B9vBVx5BdYfg3LryHtqnUYwn7ZKiZb7SQ1m3RyPJ589svwjivC44CQYgphK3lC8QvN3kyT6r1w1Et6SJljE1mGIdF1Z480JBpSOn8FAmETTBpS6pjSIGgZBKVOUBpK6SQ1NA27rXNANfe0ai4BpmNZGk5JQJWKh12pTg8dcFfxFHHGwkxOQ59D34rQ2Q9ro6s2Qg+dT+E9ts71pNvHzvtyrnWvesp7ATjjFZKCdT3AJMdtLnBh0KJFC5588km2bNnChx9+WNrhFAp//JTA07fUZemC4qn05EVCksmwW3Yw5plNVKxy7KktynFsoazPS5dffjnVq1cnOTnZfQ0fPpzatWuHLTsWcMLp7bh47HkMvqE/p196SomNk1wt5KtTvW7JkO4zPljE7E8X887EWWz8e0e+7Ru2rst7K5+mccsaHNh7kPkfL3TNwh2sX74JgC1/b+ft+6Yedoy/fLWYQHaQ1T//TcrO/YfdX26IT4qnY5+26IZO14Gdi63f375eyqu3vcub93zA/I8XHVZfQ+8YTMsuTbnq0UsPn3Ci6PPS5MmT2bhxI1lZWezatYs5c+Yck4QTwEknncRXX33lfnaIitdff51u3Q4/JfZIodOprRh6ywAGXdOH0y46Of8NioiK1UJq+Wr1qpTIGF+8/j2zpvzE2w9/ysZVW/Nt36RhNaa9PZIWDatz4EAmc+et5uDBzLA2G9buBGDLxj28N2n2Ycf42/erCQZMVi/5l/170/LfoIiIT4yh/cmN0XWNLn1aFVu/v81ZwRsPfMLb46fz4xeLD6uvITf2p8WJjbjqvvOLhXwsC/dLRTpKY8eO5ZFHHmHMmDFhaSt9+vRh0qRJRQokt+Ob26N3gc9HNFWK07HM2TRqDLZCyekmWnaV02dIIRU9lKhslbB5Eyu02sm6ctQ4jsrJrVqHreaRoZezvXRIGZNQel8U8k16ZV32PrqyqaBqJKUy9JaahbQr1anKcRoSK0Sk6GBoJrqmlEBBU5VuVy/NVRopryYdoVsEdcu13BKE/KksSwXrEDSaZtl9KELJsnfActRMIpQo56q6nBTCSDldlPfSwiXPAK9llH2sPBu5x0tGfHbeey84mfP6E56NnG5zUL+i8Eone7iyDCklixcvZuPGjQghaNSoEZ06deLcc8/l3HPPLe3wCoyt6+PYur5kzJauuX8bA4YVsNBDOcpRHCjD89Jbb71V2iEUG3RD5+pHhxVqm5Rdqaxe9Dcn9mtfYOVPg1Z1eeGXx/h39RbOGNG7KKHmi7adG2H4dKrUSKJG3coF3u68G89i81/bOKFvO5KqhKds3/TyNYzqMpZAVpC4xNhCxbN/dyoVKieGmctfMOYc9m3fT6uuzahap2QeckGRDU/OuR/LtIpVtVCrSU18MT4s06Rui8Mz4m17Siue//mxYorMRhmelwAee+wx+vfvz6pVqwgGg0yaNImVK1eyaNEi5s+fX9rhFRi6oXPlfecXapvQvNShwD5Q9VvV5flFD7N59bYSI93bdm+O4dOpWrsSNeoXnHA/79wT2bx5Lyec0JCkpPB7xxvvPoebLn6JQGaQuISC7auD/XvTSKoUj6aFHlLO/09v9u0+SKtODahSo+R+MNE0jcffu7b456WG1fDFGFimpG7Tw6uW2bZbMyZ9e1cxRWbjCMxLKSkpjB492s3+GDRoEM8//zwVK1Ys0PbXXnstr732GhMmTODmm28u1NhFIp2WL1/OBx98kGN5tWrV2Lt3b+E6y4NVEt71kdlLuW1rs/Uyr3YeosD1GY8kBjwEkBsLDumTtwrFFeaIiPC95I833c3+LBzvJyEUqaGrrS0fWIYIKaicvhwFk+Pn5OFBLN1W4hgq3jCVpgbSMZBy/jixOcolIVQbOyanEp1AuMbgmpBouhrUMEw0YeEzTLICBpalKaNx22RcSocUAqGZaFLDtIRNQoUOh2WF0uU0TbE/lp1TJy3N9oRSailpk1Ne0kxawi4P6GVycrsAyKFsc994ySRnTYghC2vmrvdm4znniIhl9nFwr23v2PZxLRLKgCwzL8ydO5err76af//9Vxmzg0s8vfnmm/Tq1SufHo591GuaydAbd7J1fQzTJ1cjIy30D3VMnMmwm3fSoUfOanjlKEeJoYzPS2Udt/S8j63/bOf0S3sy9r3RBd6uxUlNaXFS0/wb5oJvZv7Jzh2pDLmkK3FRHio7dWvKtF/ux+fTC/VA0+Kkpox5fSSPXDyBLX9v596PbnG3b9yuAW+unsSm1Vs5sV+oOtTOf3eTmZ5Fg1bRTc8/fupzXr/zfdr1as2z88a5y+s2q8W46XcUOLbDgRCi2NNk6reswwebXsYyLSrXrFSsfR82yuclunfvzk8//cTTTz9NkyZNmDVrFieccAKLFi2iXbt2pR1eieLmnvezbe0O+g7vyZ3vjCrwdi1ObEKLE5sUedxvv1jKru37ueiyHsRGmZdOOLU1/9v4HD6/UajvY6uWtRkzZgDjHv+CTdv388BdgzB09QDSuEVN3phxM5vW7eaEU0LVnXfsTCUzK0jD+tEJ7WmvzePNp2bSrktjnpwy0l1ep1E1HnjtygLHdjgokXmpeS3e/eMxpCWpVD3/apVHFEdoXho2bBhbtmxxvej++9//MmLECGbMmJHvttOnT+eXX36hdu2i/ZBQJNKpYsWKbN++nUaNGoUtX7p0KXXqFJ/Te+Qxz8E/5aJiyrE+v3bR+vKqljxG4OqakEhNRO0zR1/Cu13Ejng3sXkSIXFTt4RTdc3JELOVTq7ayVY3YRKeKucofQRoAaUGkkaE6kmC1GSon0gFkGkHKjSkbikiK6BhCaVKEprD7UgM3cKnB4kxVLpOttAxTTCDSuWEqdlkkNpRoWmYuiSoSzTdUuSSIOQBZSriSGia8o/SQLN9pCxTuCojIaRDHYWOhfs3dBLCVEMifIHymiKUPuc9Bqj9Ew5B51kXoWeyu3VOtrRPlGc8QURrN5jQW69SqpDayrJQajM3rF27loEDB3LyySczYcIEWrZsiZSSVatW8dxzz3HWWWexbNkyGjc+vqsJ3TZxEy06ZTC4aVuyMsL/oR505V4uvnF3KUVWjrKKsjwvlQOy0lVVr8z0I1fda/26XTz9+JcAxMQYXHxp96jtoj30eXHoYAbvTviWqjWTufCaU930o+/e/4Eta7axZc02Nv21lUZt67NiwWpM06JD7zbUbBjyydnyz3auaTuGYCDIY9/cS+d+HXKMs+yH1QAs/2EVV7e9hecWjj+sMu5HEypWKzklxOGgfF5SaNeuHe+8805ph3HE4c5Lh47gvPTPDp4dNx2AmFgfQy6PrpaKjc9bEZp2IIN3X/qOajWSufCKU9x5afbcVWzemqJeW/bRqEFVli3fjJSSDu3rhyk6N2/ZxxXXv0kwaPH0I0M46YSGOcZZ/tt6AJb9tp6L7n+Ht+++hITYwimljlZUrHp0FhY6EvPS6tWr+eabb/j55585+WSVjuqk1K5Zs4YWLVrkuu3WrVsZNWoU3377LWeffXaRxi8S6TRs2DDuvPNOpk2bhhACy7L46aefuO2227jssssK3pG3DJkXUWrS52gWRhAJb9Pw9bkRQ9HWexUp7iqVThZqL5TBdm5uWF4lTOTYmh1rXvvidOL4LmGn1RkivF/N83L8mrzqKSdGIdxqdF5iSmpStZEgbINut5309iERHmWXV6Gj6RJDl/h9JjE+k1g9SGpWLMGggWVqSMtmpiwNTJuEkUKxaVKlQ6m+QgdTWgJpOiX4FIOkazbpZXlYOSceIVzSTEqb2AqTGEUc50j1UjT1mUcCJjQZRkhJWxbnVNHzXqrCsz7yuhJh2xN+QYe9FdGv9/xQhn+5mzhxIl27duW7774LW96yZUvOO+88+vbty4QJE3j++edLKcIjg49frM6Nj2/hpdl/89V7VZjxdhUCWToxcRaNWqVjWaDlNm+V45jD7m0+Xrm/FlvWx9K+WxrDb91BcuXI3OBSRhmel8oBz8wbx9LvltOzAOXJVyxYzSOXTKR+yzo8Meu+IpsZV6qcQEJiDOmHsmjQsOieUDM//Jkv3v0JgPZdm9KivTIoPuOy3vz27R80bFOP+q3qsGLBam7pdT8AT8y6jxP6hlROB/YcIBhQP8bt2RI9C+CaJ4ezb3sK/yxZz6ZVW9iwfBNte7QsctzlKADK6Lx04MCBArdNSjrKVCDFiGfnPcjS71bQ66ICzEs/r+Xxa9+gfvNajP949GHMS4kkJMZw6FAW9RtVK1IfADP/9xtffPAzAB26NKZ5GyX0OPP0tvy6eAONGlSlft3KLFu+mZvHTAHg6Scu5gQPsZR6IINgUN0r7N4TXf3+nzvPZnd6Jn8cSmX39n2s3bKHDk0PL022HPngCMxLixYtIjk52SWcALp27UpycjILFy7MlXSyLIsRI0Zw++23F7hYXDQUiXQaP348V1xxBXXq1EFKSevWrTFNk2HDhnHvvfcWqq+ox9UjIXFIjjw9bqRE5jIRRK00ll8wHlWTwFYWucuk6x8UpmLyKIg0GRK7eJVFYaSRjHjZy52xpC12kSKkdPJ4ZofUSrayR9rEk/QeOxOlWNJRZuNSvUdI1bcF6FIRUKZABEPyLkcFha7IIYeAk9JS6iNhoesWPl+QGCOATzfRNYvkmEykCabpR5p2ClwQRToFQVg2m+WT4APTBOk30X02iRPUICggKOxDY2BqEqFbYFhohtpxzSXQbNmRTfSo68SWL0UqnLzSJJsAc0kjL2HnvSQs1LiaGlP5aKn0PoR06S3pjGeBtGSO8aWtDsMJz0tkeiEcGVW50qmgmDdvHo89Ft3vQQjBzTffzF13FXPe9VGIS27eRaVqJv4YyaevVsO5wE47L4XTL0gt3eDKUez46PnqLJhZCYAH39p49BFOlO15qRxQu0lNajfJWer6wL6DxMbH4I/1c+hgJunpWbx401vs3bqPvVv38ef8VXQ8Nfcb2z1b9jH5/o/oM6Q7Xfp3DFtXqVIC70+9gfRD2dSomcz23aks+mMDp3ZpTuXkgiuIWrSvj65rVKgYT02PSqBRuwa8vuxZ97MZDH3vTDP8O9i6Wwvuen80B1MOccZlvaOO06BVXR6eMZZJ171G1bpVaHVys6jtylF8KKvzUsWKFfMlTaSUCCEwTTPPdscycp+X0oiN96t56UAG6WmZvHzPVPbuSGXvjlRW/PwP7bo1z7Xf3Vv28dYjn3Hq+V3o0i88RbFSlUTemXEL6YeyqFGrIju2pvD7T/9wyumtqVglscCxt2hbV81LyXHUrFPJXd6kUTXefvkq97N3LjKt8Iu8Tava3Hv7QNLSMul3evR5tn7TGjz04mU89v53VK9UgTaNch6vchQvos1LkURxTExMWDXcwmLHjh1Rq1ZWr16dHTtyL6rxxBNPYBgGo0cXPE0+GopEOvl8PqZMmcLDDz/MkiVLsCyLTp060axZEf6xjDb/2Z4+IZIglwd0yFUxkuv7/GLxZDuFluWiMvK2sdPtRFCGL/OKbrySGDsVzCW1wtQ2nv130uq8yiYviaXZhJKXcPIoaxBg6QJ0W9kkPG11m1iyFNslPH5CUpdgSDu9zBu7QOgSw7AVToZ6aRrE6kF2ZyeQbRq2ykml1mFpCCdlzgJpWIqZ0wFdoBlKgWEGBTJoQNApwWcfDifFTg/tl/e0u4SkakzkyReON5XdxlUrRao+wjZVB1noimxy/D2lfcKcY+KondzUPic455qxFVFojhIqpILKTeSXQylVEJTRX+4ANm3alKcHQdu2bfn333+PYESlg9svaMKZF+/jstt28NGfKzCD6iIyfBLLIldhaTmOTVxz31YuuWkHfyyowF0XN6bXOSlcPHon8QW/fy15lOF5qRzR8ds3S7l34GNUrFGRZ38az82XvcHBgxmc2rkJa5duwB/np/mJjfLs49YzHmLbmq189+48vkqfkqOiWYUKcVSooAx1b37sEzZtT+H7X/7mhXuHFDjO9l2b8NFvD+KPMfDH5F4xrcOpbXhi1n2YpsVJZ3bMsf60YT3d9+89NI3/PTuDy8cN5fybQukJVWpV4qHpd0bt/8C+NP7+41/a92ieZxzlKATK6Lw0d+7c0g7hqMVv3/7J/Rc+S6UaFXl69j3cNOAp0g6k0+e8E1m/Ygv+WB9N2tXPs487Bj3N9o27+X7az8zY8TK+iIpmFZLiqGAbfd9z3Tts/XcvC+as5PFCeCR16NKYqfPvynde6tSxAU8+PhRpSU7qHD6fCiE4o09r9/OUSd/y6RvzuGzMAAZfGfI/rVYxkWdHDY7a//60DFb+u5OTmtfFXwyV28pB1HmpXr16YU0eeOABHnzwwRybPvjgg4wbNy7P7n/77TeAqMSzQzZHw+LFi5k0aRJLliwpstLPQZGulIceeojbbruNxo0bh/mkZGRk8NRTT3H//fcfVlBhIpFIEigS0vb18Zo829t5VT/Rya1cPkcud1RFzkfbR8lhJS2hSBqpe7ZXDIP9XriKpTCRlJeo8I4bIdIJESXh/UsBlhFSRznMqNTD+7YL46l+DE/flgjthCGxEGjZihgSNhElhQDDsg28lWIHLHTdJM6XTVJMJrFGECEkQUsnVg8QMHS7ah1KsSRDB0/a40opwQIN5QcV6w8gYiBNs8jGDxk6BATCEogsHSk0LJ+EGAt8FtJWHwmhyCjsqnmmsFR6nmt+ZQ/qpvLhphXmEBRZ9sHyqJBkUMMMSixdqlQ7jTCSS+ghUknK0OF09tl7HUtQKjH7HAvnGnGvU+fE28quwqCM3kQBpKWlER+f+y/Y8fHxpKenH8GISgcZaTpDR+0kIckiobSDKUeJIzYeYuNNvnizKtv/jeGSm3cRd7RZwZTheakc0fHXL2uxLMm+7SlsWLWFgwcyAGjYtRVfPncFvhifWy1p+U9rWPzdCgb+5zSq1g79qu+3vUWU72PeOcPxdtv4IviRJCYVrIqoN6UuL8x4+VvSD2Tw1Wuzw0invHDroGfYsm4XfYd25daJIwq0TTnyQRmdl3r3Dlfb/fjjj7z66qusW7eO//3vf9SpU4f33nsvh19vWcBfv6/DsiR7t6ewfsUW0lLVPWPDlnWZvnE4vhjDnZeW/biaJd+tYOA1p1O1TkgF6YtRj9RCiHwfzuPi/WF/C4OCzkud8yHvHXz53k+kp2Ux84NFYaRTXrjiqY/YtGs/g7q15sHLzizQNuXIB1Hmpc2bN4eluuamcho1ahQXX3xxnt03bNiQZcuWsXPnzhzrdu/eTY0a0av5/fjjj+zatYv69UOkq2ma3HrrrUycOJGNGzfmOa4XRSKdxo0bx8iRI3M86KWnpzNu3LiCk05eBU0kPP8QCFdOEq0PL4sT0Xe05bk0y7OBQyI56hZnlROSrUAS3riFHZvmaeNVMzkEhbOJNxDvrjpklU64EkfY5JKz3CF1IoVfmiKm0CP6EBHvgwJhKpIHRwVlgPBZIaJEKnWQ4ZPE+k3i/EFiDBNDk5hSYEpBluknKHXbQFy31U22ksoO3tIt0CXCAMMvifGbGDpkBXXMoA4BxwMqtI0bkw5CU8qoMOWGQJFcYTsVcW1EXiouORhxjiIgnLHce1vVyCG9HE8pAYpgdM+ho1iTORQmLnnlqqVUg2hKroLgcOXiL730Ek899RTbt2+nTZs2TJw4kZ49e+a/4VGCVatW5SoN3bNnzxGOpvTw0XM1uPqe7cTElaE76TKOZ6avJZAt8PkU8V6yarbCdV5W01jKGg7sO8iz/3mFZic25tJ7Lsiz7eAb+5O65wC1m9akx4CO3JxlsWNrCoMvOZmYuNANtWla3DX4aYLZQbb8s4N737vBXTdx/jimTfiKHoM7Y+RT3Wji3RewbM02OrfJW6VwJHD1Y5cy/fmvueSu8wq8zSGblEvbf/T8cBIMBNF0LayU+rGE8nkJPvnkE0aMGMGll17K0qVLycpSptoHDx7k0UcfZebMmaUc4eHjwN6DTLh+Ms1PbMQld0RX7DgYfF0/DuxLo06TmvQY2Imbnh7Gzs37OOeqXsR4ig6YQZO7Bj4Zmpem3Oiue/absXzywiy6D+yU77z02KtXsHLpJjp2Kf0CN1feOZAZ7y5g6PWnF3ibtIxsAA4cwSIR+SEYMNF0cVzNS0lJSQXyV6tatSpVq+bvYditWzdSU1P59ddf6dKlCwC//PILqampdO8evejGiBEj6Nu3b9iyM888kxEjRnDllQVX6UERSafcZFh//vknlStXjrJFLv0QXVQU/ian6id8ZEf2E9omz6rzXvUTIC0QTon1iKBC1d5ETqWRpZQ6QoJmqX5Uey/pIG17IeGqaKSttHH8tMOIKm+Mnv3ULHDScx3iQzqqJQEEQctW7U071S5se2GrsTSQmgxVv3OYLw2IkUi/Im5EQCjSJ1sgMZAxpm247SieJJZlp+wg0YXyUNKEhl8PEDSUyklaAtMUiixy1Fo2gaO+URZSWgRNQawvSIXYADFGgIP+WDIPxSDTFQElAkqBJTN1pE9DxlkE44L4Ykw03XTNkYUmsDSJpQssU7MVVY56KJL18TJ+9nrve886aQqkCQTs7WyyyUIZimuaUjxJ6Xw3nHMYYhlD5JhEs1VZ0nTUZKqKn3AJTokwgxQKh/HL3dSpU7n55pt56aWX6NGjB6+++ioDBgxg1apVYcz20YzTTz9dqcsioIzmc5eNHm+45Kad5YRTGYPPDz7/kTrnhRynjCoKyhoevuhZ/pi7gp+m/0qn09vRumvuvidJlSsw6vmr3c/9zzsxartlP64mkBVACOGacTtISIrjigcuzHWMv/7YxPq/tnH6uSeSnBhHz8Moc16cOPOKPpx5RZ9CbfPEJzez5Ie/OPXczgBsWbsDTQhqN4n+q3RJY+0fGxjT634SKyXw0u9PHLUV6vJE+bzEI488wiuvvMJll13GRx995C7v3r07Dz30UClGVnx4ZNjz/PnDahZ+sZhOfdrS8qTc54Gkyonc8EyoEFb/S3tEbbfsx78IZqv5KBgI971KTI7n8nvOzXWM1Uv/ZcOa7fQ970QqJMfT9dSjo2BAv4u60O+iLoXa5vUxF/HL6n858yS1D1s27kHTBLXrVymJEPPF2pVbuePil0hMiuP5GbeQXPkY1PsfgXmpVatW9O/fn2uuuYZXX30VgP/+978MHDgwzES8ZcuWPPbYY5x33nlUqVKFKlXCz6vP56NmzZp5VruLhkKRTpUqVXJlg82bNw97kDNNk7S0NEaOHFnwDr1KpxxkUs7GwmnoLoqU9UT5G7neCxkeQmRT6aiVImP1fHS5BU2Ej+1s6zI/nlfEbuQIIOJYuIbkHvLWVTkJ0OxUP+nxbBLOXKjjekK5iimv0skrDIIwfydpyJDvk70/mmFhGBZ+n0WMYeLTFHMmpSDb1AlKHdPSsEwdy1Y6YdkDOKSKo1gylGrK77MwNJAIAqZBMGggHbWTBUKGFEPSAHwS3ZBott+SozZy/ZAilU6REqccX2aRo2nUk2MTVY7qSWih8S2HFBThcYjIEML+KnYwUrHlKKsKhcOYrJ599lmuvvpq/vOf/wCqGty3337Lyy+/nKtB99GEDRs2lHYIJYrz/7ubK+7chm4QRoZuWRfD5PG1OO38FBbPr8AN47fijz0SapdylF0U8sIqf7grE6haN3RDmly1eKpeHdyXBpaFBHx5iwbCMOHWKcz6/A8Adm1J4YrbBqj3B9JYunEbPVs2It5/dHgjLfziN14Z8zanX9qLy8cNjdqmXrOa1GumTHxX/7aOMWc8ihAwae79NOvY4EiGC8Cy+avISMskIy2TDcs30em03P0Uj1qUz0usWbOGXr1yplIlJSWxf//+Ix9QCaCKJ/UtqUqFYunzYEqa+8+gP6HgqXHPPDidOVN+Agm7tqZwxa1qXtq7Yz+rfl/PSae1ITa+6AbRxYlF3y7jtQc/5fQLuzD81rOitmlUszKNaqrju+rPTdx62etqXvrgOpq1PvJV7pb/so6MQ1lkHMpi45rtdOjW9IjHcNg4QvPSlClTGD16NP369QNg0KBBvPDCC2Ft1qxZQ2pqarGPXSjSaeLEiUgpueqqqxg3bhzJyaFfOPx+Pw0bNqRbt25Fi0REOcYRD08ePVLut77elKmIB/4wnsfmJMLEES7xokgbPaiUQU56mnTICQFSqFQzZygJId8mTYSpraSXFHHiMrxEiS388aZp2XE4YQkzfAc0VGE6N3RbdSUkELC70pQaytl5x4vKicn1bUKCz1JkVaxUqi3LjkKXymDco/qxLA3LEmQFDWL0IDEiiJSCRF82ib5sArE6e9PjOCDiyMKH1HW1L7oy5jb8QeJis6gQk0WcL4AuICgFfs2ickw6B+JiSImN51B6DMF0H1Y6aJkC3X6ZGQIzXsdMCGDEBTEMC0M30TWhbKqEMg+Xlmanral9ck9KGDHkOfjCQxpJ+yJxFGthRJBQFeosDdNdrg6+EDYRFYVFdcaUdtU8aUl1/C0Vt2ZX6VN8YOFmnKLKxbOzs1m8eDFjx44NW96vXz8WLlxYqBhKCw0a5H3jnZKSwowZM7jsssvybHe0YtCVu4mJksL/29xE2vc4yO/zEulz/j7iEsro3XM5jiCOzLxUWKSkpDB69Gi++OILQN1EPf/881SsWDFq+0AgwL333svMmTNZv349ycnJ9O3bl8cff5zatUM3zKeeeirz588P23bo0KFhyoCyhEOp6Tw8dALZmdl07NOGX2cu4fqJV3LH2zfQsU9bGrerT52mBatydGDfQR668Fkq1UzmrvdH50iJOKlfe5IrxrJ/VyqnXlSw+8oNf21l1vsLIDEBhCC+Qqy7bvhLU9macoCzOrbgqUuiP0h5sWtHKr8v/Ifup7akYuWScef/7LmZbF+/iw8e/ZTLHhySryJ33479SKl+WEjZVfwPBAXBGZf1Zu3SDSRVqUD7Xq3z3+AoRHl6HdSqVYu1a9fSsGHDsOULFiwI8+o9FnAo9RAPD32W7IwAnfp15Lc5K7juiWHcMflaOvVpQ6O2dandOGfFrmg4kJLGI1e9TuUaydz58pU5vpOdz2hPxRoV2b/nAKde0LVAfa7/ewezvljiJlgkeOalWwc9y87Ne+lzfmfuePHKfPvatesAv/66nlNOaU7FiiVj4jj9jXns2LSXjyZ9y6VjBuQ/L+0+6M5L+/emlUhM+aHvBZ1Zt3IryVUSaXtSo1KJ4XBxpOalypUr8/777+fZJlrmiBeF8XHyolCk0+WXXw5Ao0aN6NGjB4aR9+aPP/44I0eOzPXGryDITRBU2PPhzZzyGjyLiEYu+eP8cUkIkZNE8LaxX46ox+3cq3TyLI8c38uRAeH+0s724BJRls8muCSKSHL2SWW6qd20lUyRx0q6/7HfaDJ8pdNAeA+IAE2lgWmaZafVmehYmJYgKAU60jYUFwRNZSau+rP70aStDrLQhMSnWeiaZR8ega6ZBKUgENQImgLLtCVEUiClIpBClfwcryn1ktJJQRSeb6uXNg4d7RDhJMNW5TqvOusccimsu5y0tDeVLsfFhEM2etVY0m4i3eNlRZ60/BCFIS9Iqc09e/ZgmmYOA7kaNWrkWT7zWMKmTZu48sorj0nS6bxrdlOzfiCqeunCkXvDPpcrnMpR8jg6lU7Dhg1jy5YtfPPNN4CSi48YMYIZM2ZEbZ+ens6SJUu477776NChAykpKdx8880MGjSI33//PaztNddcE5ZuEhdXMBPX4xFL5ixn8exlACz/YRUA4y58hqlbX+PMK04tVF8Tr32NP+erPjr2acvZ14R7RsQlxvH++hfJOJgRpp6yLItHb/mAbRv3cN+Ll1GrbkjNUK1WJTRDwzqUTucz2nHhNb3ddUFbjuwtJZ4X7h39Pv+u3828b1fQc3BHXnr9ewb278AN1xbc9yQ/nDtqANvX7eT04T0LlALe7exO3Pz8FWi6xklnlI7CqEKlRO54e1SpjF1sKFc6ce2113LTTTfx5ptvIoRg27ZtLFq0iNtuu+3wi0EdYSyevYzFs9S8tOLX9Wg+Hw+PeJEP1kyg34jCeZNOuu0Dli/6B4COPVvkSLOLrxDHe6ufISMti+SqIfWUZVmMv+pVtq/fxf3vX0/N+tXcddVrJqt5qUIsnbs24YL/eOaloFICmMGCzUt3jp3Kv//uZe681fTp1YJXX/qes8/pyMgb+ua/cQEx+Ore7Ni0l9MvOKlA81L301px84PnoukanU8pQhX7YkCF5Hhue+aSUhm72FAG5qUieTpFVkDIDY8++ihDhgzJnXTykjIFQSQzU4jN3PGcvw6p4/xHytBnPdQGYXsiRcbs5WlshZPURaiCnWc4KcK3dfkGp9MoF5cblobqU6r2WlB9dlLuhJ1ap9lkU5jiCvUgqlkgAwJpKSsqTUhFjiGRmrQJLeEyXUJHqXYMy02n8xJVUkLA1Mk2faQHJT7dJGhpaLokzggQpwcxNIvE2Cwygz7Ss30EgoZNjDkpZ4IYwyTeCKIj0exjZEqBGZONpkGaz+KQ30/AD9InMA2p1E5ZGjIosAI6wTgDMzaI7jPRdEV6CSEROlia5R58m+7BtGwyy2GT7XPh9aoXYCujIs+KdLcJ+VLZWzjjilBbQWiZlELZgJnqvaskc7aXSjmFsP2eCP/VNz9EY8gLWmpT7VP4F6ss+SAdzWh78kH2bNepUtPMaUZffnrKccRx9CmdVq9ezTfffMPPP//MySefDMDrr79Ot27dWLNmTVTPgeTkZGbPnh227Pnnn6dLly5s2rQpzMsuPj6emjULpt453tGhTxtanNSUQFY2m//aQiArWGRvoZYnN+XHT38BBE1zSRPzx/hylAVf9P0qfvpiCQAT7p7Gk+9e665LTI7nwxVPsuPf3TTv2DBsu/dGDuHX9Vvo26ZgaRfOuP5YH1/PWk5GRoAZX/9ZKNLp31WbmfX2PHpd3J23jTmsS9vKA22upE2y+iW+x7ld6HFuwb1UNE2j/2UFqy5VjtxRrnSCO+64g9TUVPr06UNmZia9evUiJiaG2267jVGjji1SsWOftrTo0pRAZoCtm1MIBqwCK5si0aJTQxZ+9QcAjdvWjdrGH+t3K2g6WPjVH6F56cZ3eOLz29x1iUlxTJ11Bzu27qN5m/A+n/l8DMsW/k33AR0LFF+MXz22x8QYfDNzGRkZ2Xw1449CkU7/rt3JnOlLOOXMdrz3xAzWr9rKfa9fTSu72l33/h3o3r9DgfvTNI3+53cucPtyREdZmJeKRDoVFPnJsyJ1KJGIfKaKqk7KrWMPaZRXM+9YkSIfhyxyiUeRcztnufuK7D8a4eTpxBuiG7anEy/34cTomII7DZzUO8shThz/pihjhXUaocSKVFpJExASl6ORAk0LqXGktJBYmNLxSbdQ/5fucVQEi/oghERKgRCWemGpY61J26BcEDSVysm0wJIWyq5bIrFUXzY7JEGlp5kSK6iIMomqahdS6UeqkpxlqoFDHEV9eJeAl/ix2whnVgjrL/TeMVpXRJbzWVFQoQPuMfZyUvhsQ3chZEixVhhEYcgLUmqzatWq6LqeQ9W0a9euXMtnluPI4eH/NOamJzdz1vB9pR1KOcpReBRRgVkYLFq0iOTkZJdwAujatSvJycksXLiwwEaXqampCCFy/Eg2ZcoU3n//fWrUqMGAAQN44IEHqFChePxBjjUkVU7khZ/HA5C2P42VP63hpAGdcm0vpWTKI5+wfcNOrnlieJjp9JDbBtPx1LYkVk6gduOCk3pNW9VB6BqWadGha05j4KRKCSRVymkiW6dyMudVTs6xPDc8+vxwli/9l05dGrNi9Vbeem8BA/q1z7X9nM8Ws2/3Qc694hT89oPhE5c9zz9LNjB3wc/sflQ9pM7btdQlncpRSigDioKCYPz48dxzzz2sWrUKy7Jo3bo1iYklk0pakkiqUoEXflb+owf2pbH617WclMd3VUrJlPGfsfPf3Vz96CVUrBa6Tx4yqh8dT2lBUqV4ajaolmsfkWjavh5CU9Yb7Xvk/DcnqWI8SVHS4WrUq8IZQwtuS/PEExezbPkmTjyhISuWb+Hdt36k/1m57+usmX+SknKI8y7q4s5LT935MetWb2f+l3+we526958/Y6lLOpWjlFAG5qUSJZ3yhZf0kDlX5VgnIjikXE6Ka8WT25ie9+44UrgqoRxHxaNOCmVFOdoZFIegk9OU2zumE5NX5RS5P574hbBT9RzDcCvUl/SD9KnB9WBI5YSBWyHPiVM3FXkkddWnqdmm3DpKbROQ4al/oNLtdPuYCIHUTFedYwGmrmNJDcOQxEgLDQtDsz2hNKlCtqu0CQGGocghTYBpSQxdEmNYaEK1021iJtvSyDB9mBjoOsT7LSzTwgxayBgNLIklJUa6QGSpCnWmFEgElibQfBZSKCJM1yRCYqephQy9hRQeKkl9w0Ne8aGDICMqFrq+TS6hRA5lE0Ki2USTroX2H9Q/csGgTtA5MZq0PcG88ioiUu8KgSiTVUFKbfr9fk488URmz57Neeed5y6fPXs2gwcPLlwM5SgR+ONM1iyNpUnbTIyjw/+2HOUoGKLMS4VRYBYEO3bsoHr1nL9qV69evcApwpmZmYwdO5Zhw4aFzZmXXnopjRo1ombNmqxYsYK77rqLP//8M4dKqiwisWIiJ58dvfKcg7VLN/DOA1MBqNmwOiPuvyhsffPOha8qV6NOJT5a/BAHUg5Rt2HBHwoLi6SK8fTo0wqALp0b06Vz7j43fy/fwjN3fgxAbJyfQSNU6ekGberxz5INNKpSh261m7M2bSsDa+csS71/dyr+WD/xFcpu6uYRRRl4uCso4uPj6dz5+FGpJFVO5OT+HfNs88/SDbz70P8AqNGwGsPvOT9sffMiGPTXbFCNqX8/y4F9adQtoK9dUZCcHEfPUxSp1eXkJnQ5Ofc5dM3qbTw1XqWYx8b6GXyBOs8NmtZg3ertNGxZiy49mrJ+5RbOujTKvLTnIP4YX5g3XjlKEGVgXipd0ikanIfvKIsh//NQYBVUbv2JiPMeRjQ5Ly85kVPhRMT2uQUlCN/O+9nxvXb7dogOzeMbJVEpcyhlk+UQTh4SySWkgp4xLJSpuMQly6RzXByHchPQ1eCmZdM0pt2pIZFCYJoaAVNDCIlPUyRWEGGXqcd9IQUaKj1IE2BoQfxaEF2YisSyVFn7gNQIWhpBS2BTSQihPKSkZmFpaiwpRCjOoHrJgMCyT5AQAstJhUPauitl4B3uHC9d8sgxHHfPnlAkVLTrI0Q25bwalcJLApbdTrhEkkTa6j918IU9vorOO5bDShYc3suskHQVY8aMYcSIEXTu3Jlu3brx2muvsWnTpsJVoixFPPfcc3mu37p16xGKpGTw1I0Neeazv8sJp3Icc4g2LxVEgQnw4IMPMm7cuDz7/+2331TfUeSqBU0RDgQCXHzxxViWxUsvvRS27pprrnHft23blmbNmtG5c2eWLFnCCSeckG/fZR21m9SgRsNq7NuWQvvexWc6nZQcT1JyyZjoFgTZgSBvv/8TPp9Oi341eXXjHIxYnWCmSa36IY+p2968niG3DaJeyzoYvui328t+WMXtp48jLjGWN1Y8S9U6pVNyvCzhcO6XynHso06TmlSvX5WUHftp37NVsfWbVDmRpBIqOlAQZGcHefetH/H5dJr2rM+LcxZi+HSCQZPadSq57cY8eiEXXt2Leo2qYeRSGnTZT2sYe/4E4hJieO2ncVSpVfEI7UXZRVmYl44epVPkcgcyjOPJu13obc71kWfSIVg8PIOrdPJ+BzVstidnf9Lbj0flFJVwijACF55+wsJysr+cl6OgUvlrKkZ/iDsTjvJJB2mov85YIhswQZcqFod/wvY1kiau2bhzAL0xS0NiBbXQcbJjlz5JUA+QbVr4LBO/TShJBAHpQ0OSZRkEpY4lBUKT+HWlAjJ0kzgjQJI/UymfpK44LinICPrJMg2lFLK9jXRdoukQdEzR7b96NorBCgA+XXklGdgVFNROGLqlqB0JlsdYy6luB066nK048lS3U1l8nmUupFu1ULhJtzaxZH/y+5TSShPSps7scREITaARUkGF+lBclWUp8sksRIloO6wiM+RDhw5l7969PPTQQ2zfvp22bdsyc+bMfKvCHS2YMGFCvm28Hi3HIv5ZFse2jTE46aj1W2TTvH1Gua9TOfKFlLD853jqNsmkcvXC5u0e7uAUSYEJMGrUKC6++OI82zRs2JBly5axc+fOHOt2796db4pwIBBgyJAhbNiwge+//z7fuE444QR8Ph///PNPOelUACQkJ/DO388TDASJiSvdcuCmyvNHF4XzS4yGuT+sYcq0XwCoVDWWDWI38ffE8Em3UdSuHyKNdF2nUbu8/x1d/+e/WKbFodR0dmzYdcRIp40rN/PCjZNp3a05Vz5ySdnycCwDioJy5I6E5Hje+WsCwYBJTJw//w1KEE5hA10//Hlp3ver+GiKqjodk1qbdan7SeidwIxrhlPbU3BB1zUaNc9bjbV+5RY1Lx3IYMemPUeMdNq4dicvPjGT1h3qceWo4jNHPyZQBualUiWdvMfXQbR/9iLVQHn1l+dKEfqbm8Ioso1DJnjJmEhyy2kX2a/rAeUJ2iNSiuTMQnHY/bjKJVvhhKVIKWHipgVawtMxhJlAOW21bLt/nyKlLF35HjnvXULMIdCc/Qzgpvc5x0A46qssQdAnyNY1sjVdKYqEpYgVoZQ9AokmVNAaqmKdLkwMEVRaHqkqzkkEpqURNJXqSe2/pkgyIdE0E03TsHQLDGUoLnyAJdSxyELlUgtXH4XQhJ1ap0goKb1HPOJKcVdJ9+UcX4dQCp1Aae+XfYBtUtTZStrqM1Q2IFJaWJamivAh0WwDLkct5fCZll2hr6gzzuEa0F1//fVcf/31hd/wKMCGDRtKO4QSxysPhFKSGjTP5OXv1pQTTuUoEL54qwppqQbtu6Uf8bEPZ16qWrUqVatWzbddt27dSE1N5ddff6VLF2XK/Msvv5Camkr37jlTBhw4hNM///zD3LlzqVIl/4f9lStXEggEqFWrVsF3pIxDN3R0o7C/ohQvtqbv5YqFE7FMyasnjaJp5cNLf2nauBp+v46ua/Sv1Y43ts5nYOsTwgingqL/1aexd3sKFasl0aZHy8OKqzD4bNJX/DlvJX/OW8k5151JtbplR2FVFgx7y5E3joZ5adumvdwwaCJSSiZ8fAONWhzevytNmtbA7zfQdY0BbVrw8i+/M/iEtmGEU0HRf/gppOw6QMWqFWjdpfBp0EXFZx/8zLLfN7Ls942cM6QLVavn/wPV8YKyMC+VKOnUs2fPvMsLRzAwYc9Q0tMm59sCI0d6W8R7EclDCM8LQBdKXaMTnQeIonQKG9dD6AjLo2jyeEk7ZJIaz15shNRLSFQamX2sNEf1ZJNRrjrLUXvZF64WAN8h0GxFk2WBZSjCyTIUUaaZTl/CrZInJCp1DYGlg9Qlll+tk7oEP0hNQwpN/Tpmkz3ZdiPNIc2khprTlerHrweJ0YPEGUGkhGxTx0RT7y2DbMvAkjoCyyXTpNSwpKZUTfZxFj7AFIggCEuRS8LSkFhIVAU4TZMYutpn05MfqUX7McG5DuxrUNNC14VlhZNVyq8pdME45JFl2YQZysNKCEVcKbWXhmWbsGv2CQofA5Cax1sqisAqP5QBhjw3ZGZmMmfOHAYOHAjAXXfdRVZWlrveMAweeughYmOPj7z0tFTBlAnKw0bTJL0H7ade00ApR1WOoxUNW6bjjy2lSeEIzEutWrWif//+XHPNNbz66qsA/Pe//2XgwIFhJuItW7bkscce47zzziMYDHLhhReyZMkSvvzyS0zTdP2fKleujN/vZ926dUyZMoWzzjqLqlWrsmrVKm699VY6depEjx49osZSjsLj0IF0rmgxmkP70xn32R2clI8fS1Ewf+MqMsgCHd6aO5/7z72AT9Yvo3nFanSuVi//DiLQpFF1pn8wCiEE8XF+RnboU+TYYuNjuPrRYUXevqjoeWE35n28kFZdm1G5rKXOlOH7pXIUDIcOpHN153s4dCCDB6eM4sTT2xb7GD/NWkFmejYAU17+ntufGMKsWSto1KgabXOpnJcXmjStwbTPb0YTgrh4P9f3y/1Hl/wQGx/DlfeeV+Tti4qefdvww6yVtGpfl8pVjz1T+8NCGZiXDot02rVrF7t27cKywiX77dsrJ/2ZM2cWqr/cOJ281ufWNkfHIvxjXn3KiA/C8qidtCgb2XlrYWqpKM2kZ10Okste5q2EZ+n2OoeUcirVmYTS8LwxWYpoEvbp0AMgsiz0bAkWSENg+cDS7b8+XOZD6jYR5SHXnCJtDvFlOUopYYG0sIIQDAoChkCzg7Bs8kQAmrDQRNDdQSklphRkmTpISVAK5eeEIl6klJiWnZJmaUhLELCUj5PQLIQhkLFgCeXTpGUI9ICGZj9vS6EhpcTSLExdEBTCTreTnip6IaJIxeQ5HzYhJKVE05RDlMug2Yyf0CxXoeTskyYkQgu5MglbKSVtpZNEpfNpQqJrThAyZGhuDxGUGqaluSqwQuM4naTywzvvvMOXX37pkk4vvPACbdq0cQnvv/76i5o1azJmzJjSDLPYsHdnDFOeVb+IXXDtrnLCqRx5okP3jNIN4AjMS1OmTGH06NH069cPgEGDBvHCCy+EtVmzZg2pqakAbNmyhS+++AKAjh07hrWbO3cup556Kn6/n++++45JkyaRlpZGvXr1OPvss3nggQfQ9dL9hfx4wvxpi9i/U52XqU9OLzTpZFkW7894nCzzICPOvo/YmJxeT/3qdmTyD3PJygpy6knteGnlTzy/4id0IZh95rUs+X0TJ7SuR8Moap9Z05ewe0cqF1zeg1hPKk5CfOmmCx4uOvfrwOf73y3tMA4LUkp+mLYIUwsWYePij6ccxw9++Ow39u8+CMDHk74pNOlkWRaPjXqXtAMZ3PfKlcQn5vzRs885HXnvhTlkZwXp0a8tH0xZyPvvL0TXNd54/xrm79lEt9r1aFop57z08erl7DiUxn87dibWY/iZkHCMz0vdm/LZgrtLO4zDgpSSHz79FVOUz0uRKBLptHjxYi6//HJWr15tpy1hGyYr407TNAvXYS5skbs4MhctEpKoqSZhJE/k+tw+u3+F+1GCx/soeqCuOsUhjbzKJ2/fDkHkdmxvL23CR9gqJx+gY6t51EszQ6oll6fypMP5Muz2dp96psSfLtGCuJ5OGmDahJVmy2mkQCmZNA8XZhNdpl3FTiCxYtSLWNB8YPgkPp+t/BGCoKVuxIXEVTZpQmJKkFKgayAQmFKpmwI2q6Y8l3QsqSPRCAR1AkEP4yZtE3BdKiYnKBBSoNsEjZJ8AZpAGBbC9oFSp1FgSc31eRLeinKWOinCDto1OtctV4kkrJDJuEr1w1YrKaLM0O2qfFK6KirdXh+UAil1BAJdt/DpJpoIeWu5l4WEoKniBA2Z7wVfDi+mTJnCLbfcErbsgw8+oHFjVW3o/fff58UXXzxuSCcvfp1TgdR9BsmVApx7zR6q1ynCP3LlKIcHB1J0Pn29Kru2qBvZFp3S6Tc0hbj4o/duqHLlyrz//vt5tpGePOmGDRuGfY6GevXqMX/+/GKJryzjnyXr+fjpGfS6sCs9zz85x/reF3Xlzbs/4FBqOkNuH1To/n9cNIOUFt8D8Nmsl7jknNtytKmaVIEZl48lPSObqpUT+Xe18mOK1X28OmUB8xf8Q1JiLDNfvx5NC/3bu3b1Np594DPVNt7PBZcVTuG2b1cqPr9BhYoJhd6v4kBWRjZv3vsRuqFz5cND8fnzvuX/6rXZzHx9Dpc9OCTfyoRHA36YtohHLp5AUJb/8FKOwsGZl3pf1I1TzuuSY33Pc0/i7Yenc+hgBhfeeGah+5/+1g8s+HoZAC898Am3PXNpjjZVayQzdeG9pKdlUaV6Eh9/rOYlv9/gid9+5Kst/1AxJpalV9wQ5rm2YvdO7pj3LQDxPh//6VC46oP79hxU81JS6VTLzMoKMPnluRiGxpXX9sGXi5m5g6/ens837y9g+B3ncHK/9kcoyqLjh09/5bErXyEos0s7lKMORSKdrrzySpo3b87kyZOpUaNGiRkQRsmwy7dttBUFSVXKT/FkW/GEqtl5ci/dNtgkUC4duv5MeGqTSdW36/9k+yx50/OEPb4WVBuq1DV722zQbDWWlinxZVgICyxDoAUlImCh2UonXRNquQ+0WA3L8z03s4EYlCm5JlyllWXYJBh20MKWW2kmlpQEggJdCDAUY6Ucj2wvJ2mhaYpAsXVDdmU6p5Kb6tKyBKaF+woEBYGApkzMpW6nv0lFGPlMLCSWpRO0dPR0Dc0UyrdKE5i6BppGUEikQcgw3KZyLBN0w1Yj2VX7XA5QShWPVNSPJhT5ZNkkmRAWmsjBSwKKZHOUTpqw7HXqQjEtgS4kumbaJJnmuEaB/U7TTIQpVKodAmkW7jtVFnKBc8Pff/9N8+bN3c+xsbFonjzKLl26cMMNN5RGaCWOzevi2Lwujrtf2VhOOJWjWPDqg7WZM015QPj8FqMf30JsEQuFleV5qRwKr9z2Hsvmr+LnLxdHJZ0SkhL4387JOZan7T/ELb3uY//OVJ787gEatY1eDKJOzSb8fkCg+SV1q7WI2gYgPs5PvK1UurplF9pWrkm9xIpM+eBXAOJifTl+vKxUtQJxCTFkpGdRr1E1d/lfyzbz6K0f0aRVLe6dMCyqCfCKn//hzvMn4o/x8coP91Gj3pH3TPrx01/57PlvAGjdtVnUh2svXrvjPdIPZPDugx8fE6RTXAX10CycH3ELiPJ5qRwv3/ouy39Yzc9fLuaU83Iq/hKT45m6dkKO5Wmp6dw26Bn27z3I49NupmGr2lH7b9Y2lLbbomODXOOIi48hzlZNXnRRF5o3r0mtWhWZ+JcioBJ8OY3Oq8cnkODzkx7IpknFkF+TzP4Tuf8m8LVBVHwOIXKSOcuXbOSOke/gj/Hx2sfXU6MUUmt/+H41n32s5t3W7epySu+8vezeePATMtIymfLUjGOCdIqzVW2FpUbKwrxUJNJpw4YNfPrppzRt2vTwRvfKPSCC5VGf3Wf3ovYf7X1u7bxXiEedFJYRp3kuCk9bN/XO3ifHcDuH2ikSJm66lluBzsBVRAkL9Cw7bc6u0IYPMGzlk6OEMiHmgIUIqjYCMLLUy0nLkz7Vp6WrfC7NVlBJ2xfKEiJ0CnTVXhpqveUHK05CnET3W+g+iWFIfLpE1x0iTe2kLiR+3cKnS1fQJZwUO+clBRaa/Vdg2t5HgYCPQLaBGTCUS7qwQJPoPhWZdE6CqaMFFOGkqvwJLL8FPgmGtD2z1MnThCK2LEspjhy/pRCp6SiZwNCUcsvQFMEUlE4fSsmkC9sgHEUkOT+Khi4XiaFL19NKCIGhg0+z0DUIWpo7ohNHwNKwLB3pSN3yvGByQRnIBc4NqampGEZoKtu9e3fYesuywjyejkd8/UFlWp2QTvW65b/4lqPgkBK+fLcyP32djBlU89K2jeomt3GbDC4etTO6D16BB6DMzkvlUOjcrz3L5q+i02ntCrXd2qUb2LhiMwC/f/NHrqRT0yZtGbHrbbKyMqnXJqfh7YGUQ/hjfWGpcUIIutZQD4K3XHkap3RuQstGOX9ArVKtAu/MHEP6oSxqekqOf//ln+zatp9d2/azffM+6jbMaXi/6e8dWKZFZnoWOzfvLRXSqfkJjYhLjEUzNJp0yP3B18E5I/sx45VZDPjPsVE1qsuATkxaOJ5sM4tOp3xe8A3L56Uyj879OrD8h9WccHoh56Xlm/l3zXYAFs9blSvp1O7kJrw2ZyxZGVk0bZvTNy71QAYxMQaxMaHUOCEEHW2C6sGqp9GvYVPaVc85L1VPSGTB8Gs4FMimboVkd7nM/BysbZC1DczNYDTMMe6/63djWZLMjGx2bd9fKqRT81a1iYvzo+saTZrmXWEW4OwrejHznR/oP7znEYju8NHlzA5MmHMv2VYWHbt9UPANy8C8VCTS6fTTT+fPP/88bNLJe3yjPmILj+dO9NV591/ALCV3CCmRjiGRd4AIYixHSLafEuCaXeeI27OjUvOk7Om2ssbxjdI9qXye+IW0FVC2AbiRIdGyJf40ie+giZ5popkqz9CM0ZVAKCjVy5QIS0I2mEkGQb9OMFa4PlFSKEWT6ZOYMSI0jk/avk82gRYAssAUAqErpVLAFAhNQ2pOVTfFlAUdc2zPA4uUznFRJI+USvmkltsm3XpQsfMBIFNDSA3LkAStILrfROigxwSwsDAxkMJAz1am4nq6wBQq/83SlIeT0EDqduU83SbVvMfVPjnS1WipWJxrUymYLHu/VHtFPAl7G3VyNJchdfZR4tODaELDsoTyrzJF+KUklfl40LK9rbwXTSFp7rLAkOeGunXrsmLFijDTYC+WLVtG3bqFN2U8ljDoir3lhFM5Co01S+N54a7oRsp3vfQv9ZsdHllbluelcihcMvY8Bl13JvGFTOVoe0pLBlx9Gvt2pnJ6Pg8b1avXibp86U9/c+9lr5KYFMerc8ZSsUpOY1qfodO9U+Nc+06qGE9SRSX1W/DZr6Ts2M8ZgzuycslGmraqTe360StD9R3SlX07U0lMjqddt2Z5xl+c+P7DBbx1z4cMHNmPoXcM5uOtryAE+GPzLw3/n8eH85/Hhx+BKIsPrbs258CBA4Xapqjz0mOPPcann37KX3/9RVxcHN27d+eJJ57I9d6jHEcvht11HoOvL/y81KZLE868tDv7dx/ktAvzVg7Wa1I96vLf/9jIbeP+R4XEWN578SoqJuWUEsfoBn0a5D4vVYqNo1Ksin3uzhXsy0pjcI0L0LKXgK8N6NFJ+n7ndCRlbxoVkuNo2yl/Irq48N2clbz5xjwGnXsiQy/uyrSZtyAQ+GPypyH+8+CF/OfBC49AlMWHVl2aHLF56VhCkUinN954g8svv5wVK1bQtm1bfD5f2PpBgwqXly9yvLERjTSSORdFI5Zk5PJcyCfVLodcJeyvFISMxEVOpVNYpbrI994QbMIpTBmFEvO47XX7JUAElMpJz7QVTrYKSgsok3BfOsSkmvgPBl2z82CcFkrHM3H9oERQEkwwCCQZBBIFwrR3yh7PigEr1lZDaeqv5bfjlShSyVDpd3qMxDBA15TaSbfJGOV5pBQ9GiKMcHKPtUPzSIFphYyypK16CgQNzCwDMgyEKZBCgmGh+SS6fbVaCGRQR8vS0e1f56WwY/dLRIy0q+qB0EJeS473l/OrgbOd817TQvukefdJhNRogJsCp9vqJ+G5hBxCLXRJCSSa+877g4WUyt/KNHXXz8ldX1h1XxlgyHPDWWedxf3338/ZZ5+do0JdRkYG48aN4+yzzy6l6I4MPnujCk3bp1O9dnmK3fEIKeGTV6vywxcVGTJqF6sXx3P6BSk0apVVKAn3yt/iefvxmqTuMxTpH1AaVWcerlY7m5EPbaVu4ywqVy8GErMMz0vlCCEhOXp+5s5Nu3nvwWn0HdGLjn3CjXoNn8GY1687rHHXLt+MZVocSDnErq37opJOkdi3M5Xvpy6i8xntaNgqRGat/WMj4y58BoDRL1zNi/8blWc//lgfw28feFjxFwX/e2YGOzbu4oNHP2HoHYOJicufbCpzKOK8NH/+fG644QZOOukkgsEg99xzD/369WPVqlUkJJSOb1c5io7c5qVdW/fy3uMzOOPibrTvEU4o+vwGNz9zeMTsmnU7sSxJ6oEMdu46EJV0ikRqIJWFexbSvmJ76sSF5qU1B7Zx1x9TABDiXM6vNz3PfvwxPkZc2+ew4i8Kpk39mR07Upny3k8MvbgrMTG+/DcqaygD90tFIp0WLlzIggUL+Prrr3OsK4qReK7H1s6BEhHL8vH/DO9YhH+M3k6xEWHKKJFzG2ErdZwML5fYEhF922lxLqHhLe7n2BQ5aic7jc07mJSK7BGG7asUo/oy/aqRHpT4UiUxB4L49maip6YjgiZmxUSIjQUpEKaFCNr7pYHUBcEYjaxEyEoCI0OppZAQNMD0C4J+1BXhveg1GfKpMiUiS2ChE5AW+AVCaEhdkTUq1UyoCnRSVWzTNQvD9jhSKWeqtpvlqVwnpXNSbWLGsLB8FiJbpdBJCyzNxNIlui4xfCASLQLCItsw0NN1tIBAT1eG41LoiISgbTwO0gLDsJDCHtMS3sOtzpEIqa1MU2Ci2fFLNE0ZojvtNB1MS8XrqKKUTxMEghqmVESYZpNeoYMZntYX2u+QYkq1tD2xCoGywJDnhrvvvpuPP/6YFi1aMGrUKJo3b44Qgr/++osXXniBYDDI3Xcf29Uw8sNF1+0pJ5yOY2xZF8PrD9XhlLP3k7LLR2y8pHHrwquQnh9blw2rc/9ld8ioXZxyVuF+ncsLZXleKkf+uKXnfezevJdZ787j28DUYvcHPevSHuzfk0bVWhVp1i66oi8SE254k99mL+eTF77lw78nuMsTK8bj8xsEsoNUrlUpjx5KFxeOGcjkuz/gnOsKb35cVlDUeembb74J+/zWW29RvXp1Fi9eTK9evYoxwnKUJm4d8CS7t6UwZ+oiZu58pdjnpXMHdCQlNZ3qVSvQvEn+6WUAkzdMZnnqcr7d+S0TO050l1cwYvEJnYA0qRpToVjjLE5cOORkJr8xj8HnHv1ecaWFsnC/VCTSafTo0YwYMYL77ruPGjUK9oWJCq98JBLSeRB3Pnu3K2j/uYyZV9toljrOe82jjsmtnUfpJOy4wxRRHgWUk16Hp5101E6aUjjpAcAEM14t17PAfwj86RL/gSBGWjYiLROZnIgZ70fG6AhTotnG52gCEZSYsTpZlXQyq2lKPZWtqtqZcQIZq1RO7tWg2SmABmHV8dCF8kvyWxg+5V2kaSFfI939lihiSfOohNQuquVSKn8l78GQgGlpBE0DK1upmLSAYqqsOAstVqLbCiQpwTJ1COhoAR3NVKmCUoCMBWIthKFi0TQwDKUwMi3hOXne8ybD2knXeV6gCxNDc9hIZ71Dj2FXbbRjksqbKnRCQyymMibH3R47V89Es1VOwg1LQ9lZFQplgCHPDTVq1GDhwoVcd911jB07Nqyi5hlnnMFLL710ePPUMYCH/9uAhAomvQft57Lbd5BQoYxdBMc5fpiRjC/GZMHMZP74MYHESia9zkmhXtPsAnkurVsZy4Rb67l+Tbnh6/cr0+W0A9SoFyi0CWZUlOF5qRz5w7CrFpVUMZqECrFcc+/gQm1TsXqy+ls1/AGuZsPqvLl6AodS02nSoaG7PDsY5MGP55ByKIOHh/ajalLpKl5OG9aT04YdG94npYZimpdSU1MBVT2zHMcP9JKel+JjGHVV4dRGSUZS2F8HteMrM7XnrRwKZNIsqZa7PNsK8tTqj0nNPsTY1hdTuZQJqb5ntKXvGW3zb1iWUQbul4pEOu3du5dbbrmlZB/kHPWQDFtUaBRGFOV94/ACkRxFmG7FkyLnrnfaW+rlpLdh9ydMReRYhlLCRI3PSePSwfQpVZSQIDIkvoMSPUOVeTN9GrJSPFaNBLKTDLIqGgTjFCGiZYOeJdFMiZZloQUkUoCWJTH9oPlVDNmJFlmVJFYFExFnB5qpI7I1RTz5LdCVAgghlcG4hGBAVXQzpED4ghhCYkoBljLLVnyXIM5vogtF1mi2osxCGWybllL1WNJWKElVxc2IA1OXBGN0RJamfKeCqiKfqx4zLER8ABOQuoaeodkV/MA0NCzNRPcr03BpgWZIfLpJEA1LRpxYKXHKAir1lZN+Jwmi4deDaJqF9CTLWUKQFdCxPdltMk3ahIfwKPJUeym8VfFUlT6kqnTnM0BKC8vCPRaFRhmYrPJCo0aN+Oabb9i3bx9r164FoGnTpmXmZjA7Qyc7Q2foqF3lhNNxhtS9Ou8+FbqZTDvg4/xr99CgecHL8f7v5er8syx/Cf/Ay/ZRs34xeoOV8XmpHHnjhV8e46MnPue0YacU2wPe7i17eerKF6lcqyK3vnEdPr+PX79byV9LNjL46t4kV847xW70xMvoe3E3mnZoQCA7gOEz3NhqNszp0bJk/TZmLF4NwFdL/+Ly3sX3S/7e7Sk8cfnzVKqezK2Tr8dfnpJSPIgyL0X6r8TExBATE5N7F1IyZswYTjnlFNq2LX+YPp4w8du7mPb8t5x2YZfim5d2HeCJx2ZQtVoFbr39bHw+nR9XbmD5hu0MO7UTFRPz9pa6ouEV9KjagwbxDcgOmvh0zY2tdlwliNh82f71zN6xBIDvdi7lovrFp8Tbuz2Fp699g4rVkrjlpavK56XiQhm4XypSXZrzzz+fuXPnHv7okYqhMPWQ/cbx38mrba59OOMIzyuPtoXp27EjyqNN2EevsMdREnmPvqsmUi+BXbHOCq0zssGXpf7qAYluStA1zHjl1RSMF0hD8xwzgZACPQhmvE6ggsBMEOiZytNJ+gVmBYFMAOKUZxNSA9Puw5AqRc3ZVzstUGig2SonQ7fQNWkfWrW3Ujk64TcsfMrXO+wAS4mtdBKeZQLTruBmSQ0rqIFpMzcxEs2P/Yu+3d5Svk4ioKEFNIRdZU7GoNr7VHuVDqeIHsshmiKYRKGBU/FYemISAnTNwqeHToKqSigImDqaEHbaYPgF5L3cXD8oyKF0ku6FFNpeSi1PAWBucDhBrzyzLKJy5cp06dKFLl26lBnCyYsRJ7Xmw+eqESg4H1GOoxyfv1UVwx+esv7u0zW57fzGpOzWkRK+nlKZj1+sRlYmPHtLXc5t3oYRXVqyaHYFrundnB+/TKIgdzHP312HQY3b8sSN9UhPizYJFW5iKp+XygGw5Z9tfPHyNwQC4SnASVWS+O+TI2jasVGxjfXd+z+w9LvlfPf+j6z++R/SUtMZd8WrfDjxG9576qt8t/f5DTr0asXKhWsYlHQZIzvdTnZW7kRsm3o1aFG7KtWSEuhQoxqzpv7Mvl0hAuOz52YypNZ/+HRS/mNH4vsPFrB0znK+/2ABKxb8VejtyxEd0ealevXqkZyc7L4ee+yxPPsYNWoUy5Yt48MPPzwCEZejJLD572188fK3BIPh81LFqhW4ZtyFNGkX3Yy7KJg9ewVLl/7L7FkrWL16KwfSM7nplc957ZtfeOmrRflub2gGrZJa8dv6nXR+5AXOf2kK2cHcLRVaVKhH48RaVI1JppVej1nTF5OyN81dP/3N+VzS+X4+f+uHQu/L3Gk/s3TeKuZO+5lVP/9T6O3LER1l4X6pSEqn5s2bc9ddd7FgwQLatWuXw0h89OjRBerHS+oJzzJngXAWiIjKXkRs5F0Q2c779B7RPqylhzeIRjRKEdFORs/UsrOwcrxE0JNJJ0D4wYyx25t2KpvuGVezU96EMgTXMiQiINGzTPR0E+NgNsaBTMxYH1aFeDIqC7IqqX5EEPQsgZEp0bIEepKB1CG7gsD0gVlNjWImBhHJ2SQmZhPjCxDvC2JKwYGMWNLTYrECmh2spZRFukTTpTLnFspfybI0soOqypuhW+jCwq8H3R0JWgJL6IC008hwSSfTPmDSJox8RtD2SNLR4iUyDqyAhrQEVhAClq6Ou0SRTkJCrImpSaxsgZaloaULpGlgItESTTRN+UuZpk3CiVC+ozL2Vql1luMW7zmhptTIChoELN0mjiS6sNA0tb/SSZlDqbxMqXygHGJN1b1zLgjbrleGPgtA10ybcFP+WLpuO8IXdsYpAwx5OfJHMCC46LrdGOU/PB0XME2Y8mwNcv7jJTj9gv1UqqZm0SkTajD5x9Wk7Pbx7VRVmr3XOan8+1ccm/4peHUeaQmyMnUGX7mH+MRoE0n5vFSOwiErM4urW9+CZVp8P2UBExc8UqLjdT2nM5+/9C1ValWk2QmNMPw+KtdIZs/2/dT1+KdYlmTcczNZ9c92Hhh9Fm1bhJc+//3bPwhmB1m/7F/2bt1HrcbRlf0V4mL4360jALj1/Ims+m0DzdrX47mvbgPgkwlfkrIzlU8mfMn5N+UsaHHoQDp39H2IA3sP8tg391K3WUjV2HXgCUx/fibJVSvQ4qQmh31symEjyry0efNmkpJCqUt5qZxuvPFGvvjiC3744YfjvjLu8YqszCz+0/pmLEvy/Qc/MvHHkp2XundvxhfTF1OlSiLNmtZE92lUS05g5/40Gtao5LazLMn4x2ew+q9t3DP2HNq0Dq/M+dM/GwmYFn/t2M2ug4eoWyk56ngVfHG8efKtAIy57DVW/bGJ5m3r8NwHqjjDZ5Pns3/PQT6bPJ/BV+ZUQR06kMFdQ57jQMohxn84ijqNQyrPk/t35PNX5lCxahLNOhXfDwZlHmXgfqnI1esSExOZP38+8+fPD1snhCgw6eRuU5BlBZV+RGuX16Yi4n0U1VMOwsmrdIpkzez3DrfhEGfe1U56XYj8sFVPWugvEoRdfQ4JelApnIwsW+WUGVRkXIxBZlWDYIJA+nGthDQLhCnUXyAYA2YsbmU8iUQmSHyxFj6fhd+w0HRJVsAgEDCwLE0ZCzkqJkfhZAtzNC1UiU2z0+ecNDqBnUrmbCtQ/dlQZuIQKbSzLOVvJC1btWQ6hJRdCU8QfjKcGG2vJmGB1AX4LbSYULU71Vy4Y7tqpNBiu4mIylkqCasMKZfUJ3e/LelRUYVtF9GP9wJxT7yjeAr9FUIWQekkEY6XUYGd9stx/EEw873KnH35PnQ9/9blOLox5dkaCE26xQ+8mHh7XZ67s66aEi0Y1KQ9tz/3L1/9+ycI2LPNx20XNMFmsQs0XofuaTzw5gbiEiynvkYECqt0Kp+XyjoCWUEsU6Xu79+du0n9T0t/4bX1b1IpoxLPDBuProVPYH+uXIIpTE5ofVKe4zVsU48PN73ifv59/mq0WB9nDOvG4Kt7u8t37T3InJ+UemjmvJU5SKcLbhnIvu0pNO7QkJqNopc+j4RuT7q6EYr9knvO5+17P6L74Ohx//XLP/z9+zoAfvlyMXVvCVW8q9eiDlM2vhzWftu6Hfw6cym9h3SjUo2KucaSnRVg0ee/0fSERtRpWivXdmUR0ealpKSkMNIpGqSU3HjjjXz22WfMmzePRo3KH7iPVWRnBrEsde5T85iX5s9ewdMPTqd6zWRe+/gGdD38ueXXn/4mGDTp3rtVnuM1bFSNj6bd6H42M+fxwbUfsjuzHy2adnSX79p1gO/nqXTdb2evyEE6Xd7jRHanHaJVzerUqZj39erAidkb+9Ab+vLeM19z8mmto27z15KN/PPnJrWPc1Zw3n9Pc9fVa16L91Y9E9Z+2/qd/DZnBb3PO4mK1XKPKzs7yMIFf9OseU3q1C172Qh5oSzcLxWJdNqwYUPxjO6QOlFWyYhmRYVXOZVrDLmMm2N7u61TdMxj3+MuB5SkxUtGaSDNEBGl25kSph9X6SSwlU3OprqthJIqzc40FFFEUClhApXisHwaGVUMMqtqZFW2sBIsN5gsafdrEzJSk+CTqnOfhZGQTdWkdBL82W7KV8DSCZgahs/EIpug8GFl6cpPKaghYpW3kWZXpdN1yzbo1ggGBdkBDV2ziDEchZFSNHktiqSH9NGxkPbhCgZ1Rd6YgmCmgQza5f2yNbQsgZQ+pJPqJ0EEFRHlpCi6jv9BEAGBDACxEsMwI/hAYSuu1D4I91wq0sebvy1wVFJKDRVjBEiMycaSkG0argG4LsDQLYJBjYCl45ilm9I7qgpSHTvHnBybdMJjRK76NAOFqwBZFhjychQEkn4X70NahKSVxwGcdEEhKDMqrmAApk+uirS0XFoILE+Ry/gKJn0vTHU/L1uYQMouH4ZPEgyo9vmh96B9JCTlVTmzXOlUjsIhMTmBMa+P5KfPfuX6SVfm2u7TP2dgtTLZyx5WrvuL9s3auOsWLPqRz2KeR+iC/Yuv4rQTQ5XZUvelcW3P+8nOCjDhm3to0LRmWL9fvvcTu7buZ/b/fmfUI0Pwx6jb3hpVKzDwtLas/Hs75/RtlyOeGg2qce/UMe7nlJ37+fbteXTu14Gmnl/3pZSs+3MjNRtW577Xr2bJD3/RqWeozHp6agb7d6Uy/fmvOee6M6nfMvwhsl3PVvS+qBupew7Se2j3/A4nd/Z7mB0bdvHzV4t5/Jt7c2335t0f8MmEL0lIjufj7a/jj827iECZQhHnpRtuuIEPPviAzz//nAoVKrBjxw4AkpOTiYsruKK0HKWPChU989Jzuc9LH0z+geysIFv+3cvypRvp2Lmxu27Ol3/w1AOfATBq7Nmcc1EXd93+fWmMGjSRQFaQpz+6nnpNwonrYPp7xBsbaJD4KjAGUN/PGjWSGNC/PatXb+PsAe1zxFOnYhIThoaI6X079jP7/QV0PqMdTTo0cJdLKVm/fBM16lfl/kmXsmThWjp1Dakl01PS2L9pN1+8PJtzLutB3Yh5s13XpvQ8pxMH9h2i9+D8feruOu9Zdm7ay6/fLmP8J7fk2m7ya3P55ONfSUiIYdrnN+P3F4mGOD5RBu6XjomzfdjHvoCslVdEk5uXc5jqySGhcuvPeWOFsv6kTTxZTgNbEeOQJ9KzsTRB2ttq2aBnSkS2dDc0/YJAvCA7EUy/CZpa5/gbheQ8EgwrFLNuovsC+I0AIBUxhCAQ1AiaGqalHmasICoAFHHkqI00Ycdgc1iWJe2KdF7/pqhHwiVYvMulm3YnsEzl14QEggIC2N5OhBNO0k65lLYaLGgfZ10iDQvNZ6FpTm5jaHxFFNmJfZ5qe+GxCidSt52uWfiNIAILS+qu2bdDPqrWMuJaCPUhbXbVQmJIlXgnbUmcO5rU7CvDvUIKjLJQarMcBYHg3GbteXLaWtp1Sy+eCmSljGfH1OXbjyoTE2fx0qy/qdM4+7jYr7zw+ZtVeOneOhT0H69r7tvKhdftcedWIeCMofs5Y+h+Fs9P5L4RjbDMvPtq2yWNfkNTcvyYEo7CKp3K56VywICrT2fA1afn3aZ5X97e+T4J+xNoNax52Lp9qXsQtdS1t/fg7rB1n07+nr2rNwPw3oSvuPfFq8PWDxzRg03/7KRH//Yu4QRKwXzXdWdSUEy67nV+mv4rU5+czqd73nJ/oJr65OdMvmsK1epW4d11L9B70Alh21WpXQmAmHg/Cck5zfz9sf4wcis/OH0kRunLC2mrOJy/hUFGRjZ+n4FuFMn2FYDtG3bij/VTpValIvdRUijqvPTyy0p1duqpp4Ytf+utt7jiiiuKJ7hyHDEUZF4aPORknn/8SypWTqBNh3CPp907Qz/y7Ny+P2zd528vYO9OpaD64IU53DlhWNh6I34EgeBatNgBCBEihIUQ3DFmQIH34bkb32LRl0v4+Jkv+WR7SOH58bNf8eYD06hWtzJvL3+K3v3DifUqNSsCEBPnJz6Kibk/1sfdr/2nwHEkJKk+os1xXrjzkvufgiPzUCa+GF+YkrSwOB7npWMJhSadMjIyWLx4MZUrV6Z163BZXmZmJh9//DGXXXZZwTqLvH+NfPbPbVm0bQ9nLG/XIvx9rml23pcM0RTuemVjpEgmDaSBqmYXVCSJbir1kkPcaCaKC9FtSsQmeYQGWlCiByRGtkTPNpG6IBCvsb+5j/Q6kmBy0Db6lgjdwvArpZGmhfyHNM2y09cEPiNI5fhD+DSLg1mxmFItz8w2CJo6hmbhiwuSIQTBDB8yqORAQqq+LASWqWNJic8wMXTItgSWpRFAuXfH+QN2apzteyRsYkoKNE24iXVK4aPWO+biWrZA2+9DyxZqzCwQpkoPtGLUcdSC9kFybKekqnhnxkqIk/j8JromlQm4N80NiUPzOARZ0LTTSGSIInLWKcJJUjkunQq+bA4G/OgCgkJiWhpSqnQ4DVxjceeK0lDbWlIQMG11l4B4f4AY3STLdHIslbeUJQVBS8O0dLILe32XAYa8HAVDXKJ5XBBO+3YZZGfBvBnJgKBG/SzqNikbDukrf4tX/24UgHuuXD2bXoP2AeRI6QX4a2kcVWoGSdltEMwWVK0VACExA4KU3aGb3U69D+LL3cbERrnSqRwlg77dT6Uvp0Zdd86Z57L/i71YRpDzB1wStq7fRV2Z9vhnmAGTcy7vnWPbzr1b8eb8ewoUg2mafDZpJpqmce7oAWhaiHSpbJNHlWtWDFNE71i/E4B9O/eTnamq3Xlx2iWnUL9VHZKrJhXLg85T3z3A6p//ocOprclMz+KbN7+nSYeGtOsZnt5z9WPDaHFSE5qd2NhVOS2a8Tuz3pnHeaPPon2v6Gk1SxZv4K7bP6JqlQq89vY1JCTkOynkwJ/zV3L76eMwfAavLXsmzKcqL6QfzGDZ/FW069WKhKT8q20WGUWcl6J6y5bjuMZZ55/IWedHV/oMvbIne3YfJBgwufKGcPKq7/kn8snkH7BMi7MuOTnHtnrsqeix8wsUg2laTH/1O3RdY9A1fcLmpSqeecmL7Rt2AbBvZyqBrGCOeanPBV2o16wmyVUrULlmcoHiyAtPzLidv35bT/tTWpCZns2sz36nccvatD2xYVi7/1x7Gi1a1aZFy1rujwC/7l3G3N2/cE6tPrRObhq1/yXfreDec5+kSq1KvPL7Y0WaH/6ct5Lb+6p56fXlzxQ47Tj9YAbLflhNu54tj8p56VhCoUinv//+m379+rFp0yaEEPTs2ZMPP/yQWrXUiUtNTeXKK68sOOnkRWEekIpIOOV7DiNIJW97GdFGkrONFyE9kv3XJqY0Rxljp+BFPlS47K+FYp9MIABalkQLKCWNFBCI0wjGghVjhfL1NNM2xjZtXyBFnmjCQhdKEiQQ6FoQQ7OwbHWSJXHVTWofLaQFAksF6KFcpfulEKBZ7vZgqTGdQyQdoZW0l1uqMhsW0mOGJZ2DKu2qdkGBzBIQlGC5eiC72p9tHi4kUojQd1OowCxb5SR0E6FJdGHa1eXUQJZ0YrUVYXYKoEB3lUrey8A9u1IikARMgWkTZ5aliDhX6SQFpmUfIKEOpHMOLDO0vwILXZhIaaEJ0z4miqCSUkPDwpT2sS8EygJDXo6C4cE3NxzzhNMXb1XhxXtCBq2Gz+KBN/8FyMVr6PhC/WbZUX2cInH+f3dz7YPb8mxz6c27qVjF5Pmx9bhh/BYGXbkXMwj/7dOCFFs00qLTIS4etavYj235vFSO4oAQgssGR//VvU7D6szc+1axjPPTZ7/y6m3vAlCjYTV6nBtKl7lh4pWcdnEPGkVUtLrq0WFUqVOZNj1aEl8heopVUarzpe0/xBOXPY/QBHe+e6P7sFOhUiJdBnQC4I2x7zP1yc/RDY2p214nuWrIS8Uf6+e0YT3D+nz2mlfYvyuVbet28OrSp6OOu/zPTZhBi507U9mxfT9NmkY3UM8L29fvQlqSQFaAvVv3FZh0GnfB0yyZs4x2vVrz7LxxhR63oCifl8pRHNA0jRvHDoy6rk7Danyx8tFiGeenL5fw+v3TAKhRrwrdzurorrv+mRH0GdKNRm3rhW1z5YMXUbVOZdp0bUZcYmzUfpu2L3x1vrT9h3jymtfQNMHtr1/rKpwqVEzgpDOUmmry01/zv8k/oOsaH/x4N0mVEtzt/TEGp5/RNqzPF9dO4UAwjZ2Ze3i2411Rx12+4C/MgMmuTXvY+e8eGhehsuD29TvdeWnP1n0FJp3GXTSBpd+voH2vVjw9575Cj1tQlIV5qVCk05133km7du34/fff2b9/P2PGjKFHjx7MmzeP+vWLWFoytxvc/FRPImJ5tDaezzLKsmhjRpJLrsLJm07nJaU0z8Xh6TecEAGCIZWTMJUwyZKEzoC0l1tqGykUQWVkQswhSWyapZRSQhBMNEivbZBVy4TKAZtQAsOw0HUTn6EYLb+uvIMM3UTXHPoGDKEIIMcAO9s0bE8jzVb2gGGYIDQkFsEsDYIaEjBNzX0oCQY0pGHh9wXQfRaBgK4IE/uAOCohXVgYmsQUFtLUQ6dKOCScJFsqpZQM6OjZOka2pszWDUdhJrD8EivGJqtMibCE8qzSJJYfrDgTLT6IEWORGBtKwRH2ebAsDSk121PJclVIpi2G0qNcF0JIhAYWGmnBGNKyY/BpFn7dxAIysg2yTSVrizVMdIdwQlXzk1Jgaoqk8utB4v2qSqAuIMsSCEw0+8yYtt9UtqmTnZ17KdSoKAMMeTkKAkWmmkHCjfSPMRxI0YlLDJKRpnbCH2OxZ7tBIEvQsEUWO7f4MHRJlVqF/J4cI0g7IIiJM8nKyFtGHpcY5I8FCYqItwQJFUyatMsMM5EXAg7u12jX9SAn9FbpAPv3amxZH1I5Ne+QXjJeWeXzUjmOIdRqXAPd0BBC5DAP1w2dtqfkNAtOqlKBEfdfVOyx/PzlYn7+cjEAv3y1hNMuOSVHm+RqSqEQmxCLLyb/L3C3c07k68nf031QyNQ8OxBk2d/baNWoBgnxMQw+vzN7dh+kdp3KNI7woZn97nz270rl3NED8PlzH6/v8J4c3JdGQlIc7XtHV1RFQ/rBDPX3QHqBtykSyuelchxDqNWwmjsv1WhQNWydbui07dEixzbJVSsw/K5ziz2Wn7/+g1++/gOA3779k1Mv6ppz7MqKZIqN9+MrgGdTlyrtmbNzIV0qhzyssrMCrPr5H5p1akRCUhyDr+/Hvu0p1G5SI4xgk1Iy+935pO45yLk39s97XhrRi4Mph9S8lIvSMxqceelQ+bx02CjUY8nChQuZM2cOVatWpWrVqnzxxRfccMMN9OzZk7lz55KQkJB/J8WBAv4Sm5svU1ibKH3m6ufkbee5MKJdG44iyelbE6rImiD0S7Iwcb2cHBsfKcG0O9VsBY20VB6ssCSWLjANoQgZzURoQTQBygTbJpektFPdJLoWRLNL4GkodkUI6Wh9cMrjSemkeakvsWmqct1Smui6xJQgTWUM7ng7SVuNY2oCYZsrOUXmLAmmBF0KdNtZXSDQhMByJcqhg6lplkvOYUpMzVEuSSzbdNvygTRUP/9n76zD5CjWLv6r6u6ZWd+4eyAJUSCKJbhbINj98Itc7OJuwd2dcAnu7h4sBEggkBCHhLjL6sx0d9X3R/XIumRjZM/zzO5MT3V1dXXPO91nznvehP2RCNg57SiE4yEsH0v6ZTy0EME8ao1OSMzSDqJJ/St/BEVyfa00MVea1DffGIcrbRycfAWeZ4zDEybhUgRV/sC8rxKRRCFQCG2EXGWmQQTbSsrcGpVOjagPBFm5aosmnACkRZJwAigpsrn59C6MHT+NOVMyePq21tz8/NxNOMINDC1rJJwAXrinDS8Ez6XU/O+76ZVWLTz2vJUce95K07WGK47pnvzy6bpdKf+5cfEGUZA1xqVGNCR83+f0na5n+dJ1nH/nsex51LBar1u0tpj3n/yCHgO7sf3uvStts80OXXk+qBbXvO2mraw0YPfetO/RFiGg/4jKx3vkhQfRc3B32nRtWaXKKh0XPvkfzrr/FCKZqZS5Gx//hM8mzKRX11Y8fcO/yM/P4qLLKqo3pv84mztOegiASFaYg6vxw7Idm1EXHVzjeMrjutcv4vu3f2bYIQPrvG5d0BiXGtGQ8H3FYbeOZemaIq4/dm8OHFh9Jbt0FBaU8sFrP9Ozb3sGDO5aaZtt+nfimV9vRQiR9GLaVBgwvBfturdGSkG/3XpW2uaIk3elZ78OtO7QlIxapOee3f1f/LvLKMJW6oewu84Ywzdv/kSPHbtw/1fXkt8ilwseO63CutN/nM2dJz8MBHHpzH2q3E6949KrFzD+3YkMPahmQ/X1wdYQl+p0a1JaWoptl13l4YcfRkrJ8OHDefHFF+u29TT1UKWoSr1EJctF2f+VkUnV+ThV1U8ZP6fy7UTFdgkFVEIFlXKJDlROIrVMBMQSmBsBBeiwhrCpWGe5AtsFJ6axY9r4GmVZRFtYxJspRBOfjEwPz7WQUhEJufhKUhINIQSEbJ+w7WMFvk6ONNXiPGUGZsghO/AlgoQ3m0biK+PNFA4pPF/guxIdk6YKnm3UFEJKhPYDhZTCsY1yKNEHQZqYLY2KyLI0GoWvJD4yScDZUoMWeDEHEbMBicoCFdEQ8U1qXWJSJWmTlphnhR32sB2TVhhyTDlAPzhoMvBL8n0L21KEbFNFLnloqiCcEv8VFkVuRpoJvMaSgphnURIL43kWluXja0UkecOX8Ggy+2Oq+ikyHQ8XK1CWaewgBVIHR0QKQ2qVq8paM7YChrwRtYFm/pwQHbrFCFWuqN4i0LRFnBGHrebnr3IpXme+c4RQ/Dktg2V/h4jHBJ+9lk/fYUW06fjPUjv5PsybUfdKU1po5s4I07yti1Nudd+HiV9ms2q5g9aw8M9UA6U186ZH6NYnur5Dr2RQNMalRjQYpv/0J4sXrgXglfs/qRPp9MzoN3j3sc+wbMmrCx4hO7/yH0k3NdmUQPN2zXh6+v3VthFCVPByqgnphBPA6uDX+zUFpdWu16RVHqGMEPHSOK271j3lrjZo3q4Zh569H2BUBR88/hk9BnWvknSrNxrjUiMaEL/OXcT8FUZF/NRnP9eJdHrmkS9575WfsCzJa19dRlZO5RduzTcT4+vmbZvyv8m3V9tGCEGfgXVLKU4nnADWrTAm7GtXFFa7XpNWeYQiDvGYW0Gd2lBo3q4ph/zHkFn/hLi0Zs0azjvvPN59910ADjnkEB588EHy8/OrXW/69OlcdtllfP311yil6N27N6+++mqdMt3qRDr17NmTiRMn0qtX2Q/Ugw8+iNaaQw45pC7dNTiqOkZ1OXbl21bbp6IMsZRMpSuvmtLmR2VlgQgMxZMdq9Q6Go2PTqbXKQFKCtyIQGZJ7JJAmRMPqthFQWcaNksp8HyJ5wvji+RLYtg4lk/EdhEW+FpjC4WdMAMHQtLFRQYETYrc0Qg83xh+aw3S9vETHlNxI9lSUoAPcaXxHfNLe0JJJRHGg0kboilsGWNv42lkPJI8LQN1jwjS2DyUZeGHNFigQz7CSqizSJFOwREQwWthmbRCKUxbpQzhpBKkUaAqMgowoyRKGJj75XxTyhNQIqFASsjchEYpcAO7K5RG+SCQ+J4kLiVS6oDQC3yeCNRjShD3JLZU+Frga0O+IUxfGhOsfWXmvq74pzLjjagbevSPbtGEE8B+x61lyo85ScIJwLIEWTmKuy/siNaC9l3j7HP02k03yA2EZ+9sza/f5tV5PYGg146lFQgngOfuas1L91d+oxiO6A1DOCXG1RiXGlENVi5ezYXDr0Urza0fX8WiWUvoNXRbcpvlVGjbc1BXmjXLYs2qIg4/fY86badlx2aASYcLRTZELmntMfHT3xj/zs+MPP/AWvkdvXTrW0z7YSZn3HUC7bdt26Bjue7M/fjsh5nsvH3lKosEWnduybNzHiJaHK21F8r64JlrX+GtBz7EsiWvLXuKnCbZDdp/Y1xqRHVYuWQNFx90J2i4+fXzWThvJb2271TGnyiB/p3b0io/m5UFxfzfiO3rtJ1Wbcx3fW6TTJzwppWoTxo3nQmfTeWwfw+nXS0InJfv/ZDpE//i9BtG0a5bwxLRlzx5OuNen8CQ/QdU265Nl1Y8++fDGy0ujb3mZd5+8CMsW/L68v9V+eNFfbEx4tJxxx3HwoUL+fjjjwE4/fTTOf7443nvvfeqXOfPP/9kl1124dRTT2X06NHk5eUxffp0IpG63WzU6Qw//PDDeemllzj++OMrvPfQQw+hlOKxxx6rZM16oj5S/6qUTdX1la6OqkTpVEbllEiNk0F2gqj4SKictCBFkgQEiZagLRJe08n/2gE/G1Q2aKmRpRLLF2gbtCPQjkRqH98WeDkWKsfHyvaxbfCiFpalcH2LaEkIVeqA1PgZHlLqIN1CEJIaW2pcRWBcDXFl42urzAT5WhoTWx0YeSf2wxeImAW2DkypQAmB6woUEiE10koYh2uUNn5IIRRCKKO+soxRdixISVPaqKo830J7NlgCna0Rjo+0QFgV098SKSDSUkipsG1llEsiQQ7JwFvKTLxOHMBAuWUJcH2ZrNpXUXKXSjVMXy6S6ZECtCTqOsTjDmiJcFzMXouk2stXKbmSDIgzx9LEfRtPSTxtJUk3Q8gFZJySuHUtc5xixiqTbjViK8JPn+ew77GrydhI2c4bAtESwcolZb+eoqWCt55sHnye4a/pEZ6/tyV7jlxNm05bttpJa5jwWQ4zf81k4rj63VwppZnwaQ57jFxLOCPV54xfMpk0ruqTYc0Km6dvMxeMtqPZ84g1tO3s1msMFdAYlxpRA6Z8M50lf5oKcLef8BAzfpxNp97tGTPl3gptbdvm+d9vK7MsWhIjFHHKVHSqDEeefwADhm9Hq84tktXcNgW01lw/8g5iJXGWzlvOLR9cWW37lYtX87+rTBZBs7ZNOf+x0xt0PC2b5vCvA2uXzrY+1ffi0TgX73E9C2cv4eb3r6TXkG2qbd+ivSEJs5tkNzxJ2BiXGlEDpoyfzdK/TUr6nec/x8xpS+m0bWse+/CiCm0d2+LT0WVTv2odl07YmQGDutKqXT6hWvgfbShorbnhtKeIR12WLVzNDc+cUW37lUvWMPbmtwGjwjr3rn816Hiat23CkeftX6u26xWX4h4XXPQiixav4dabR9GrZ/WkfiIu5WyhcWn69Ol8/PHHTJgwgSFDTFXFJ598kmHDhjFz5kx69KjoDwZw1VVXccABB3DHHXckl3XtWv0PFZWhTkk8V1xxBR9++GGV7z/yyCMoVXsvGt3Aj6r6r2mbFRpUfFq2SYLcqGqj5TckQElQtvElUo5RPSUNySV4IY0XUmjHh5DCy1R4YaMgimdDSXNBSXOJb4G9zsdZAWpViJJ1YeJRi1iJTbzERselMS2PCuIFDmtXZ7JyTRarizJYU5pBYSyEp0TyfM6w44RsD60VSmnSD5/xQDJqJcvycLJcyPAAZbyXXBAlEkos/BILr9jCLbBxS2zcqEW01Ka01KGwJERhNERx3KbUM4SLFBopFIlqbrb0kCEfQi7C8XAiLqFwHMv2kNLHsnws2zevreAhzXsJz6ryRzVVWc7sixQKT0Hck3hapCmgRJnPemJdXxnVVOI9pYwyyvUFMV8ipSIU9pC2h5QKyzLpi0Z1VnbbOlBVlXg2rhLJY+Bro34qjVkUxxxK4jYx1yLq1u3LJ5ELnJ4T3IitE7sevG6LJpwAnrq5LZO/yy2zrKTQ5rNXmyVfz/wlC9tmiyecAH78PIfrT+rKS/e3Zs7v9Tt4tm2OfTiwdvnpC9Pnyw+0ZvbvVRNZyxeGefmB1rz8gPFpaDDCica41IiaMeTAHdj1yKHsMnIwmUGFttLC2invxr/zM4fln8AZAy7GjafO23jc5YiWp7CPNYo37nsfMD8WbbNDF3KbNqxipq4QQtB9e5N60mNgt+TyeX8s4Jwhl3PvGY+XuY5u0jKP3jv1wAnZDDlwhwYZQ8GqQp664gW+ef2HBumvNlgwczHTJ8ymcFUR49/5ucb2R150MA9OuIUxU+8hnFGzL0xd0BiXGlEThuzTj10O3oGdD96BzHwTM0qLY7Vad/wHvzKy47mcteto3LSiQDHPY4fX7qPrC7fyvxnmMyCEYJvt2pKbl9nwO1EHCCHo3sdUDN62fypdat6cZZx7/OPcd9O7ZeNSi1x6DeqKE7IZHFStW18UrC7if6Pf4Lt3JzVIf7XB/PmrmD5jMQUFpYwfP7vG9qMuPoQHJ9zCk1PvafAfLzZGXPrhhx/Iy8tLEk4AQ4cOJS8vj/Hjx1e6jlKKDz74gG233ZZ9992Xli1bMmTIEN5+++06b3/Tavlq8nSqb5+k8UHllUvpz3WZp1X6OVWqepKARQXaroxwpvwjrU9BoJYCvAi4TcDP0xDR4AmkJ5BagA1eRCA8s4Ll+rghgZ8FnmWBa4zGlQxUUzGJdIUhxnybaFziSo+I7eJphRZeUnVjTMstfCXQSdlWagK0lgGZYqrQRZUVrGghfIFQgdpLaXCFMUK3NNr2TWU5CZ4vcEI+CgulNUqDJXwS1uZSGjLG1zZaS0QIwmEXx1GmqpyqyIsmFEyJcSVT38qpkxKqJ7NcB+beFj7lUuYqnCBGfZTMmyzznkYI473kYXyvnJAiFPKwhE5TTqXGJCXJh9LBfAeSOM+38JSVJLwkFrG4hRuv4wcjnQRtvIjaqvHhC0054rSVZOZs+hNBa/jkpSZMm5TFoaeuoNt2tbtoG7rvWn78PJtlC6qX7o57K4+1Ky0OP20FrdpvueRTt94l9BlcyNSfsqnvl6LnCu69qANOyMTE1cvr/vX+9bu5zJ8Tonkbl5GnraBZK79eY0miMS41ogZk5mRw7atGPbBuZQFfv/oDA/ftX6t1f/1iCr6nmDd1AWuWrqVlxxYAzPxpDgUrjRfIR2O+4IjzKy9rvqlw91ejWbloNS07pipRffjk58z8+U9m/vwnoy46OJlGZ9kW9313E77vY1VWJaAeePHmN3jjvg8QAl5e9ARNW294v5gufTty6Dn7sWDGIg44bc8a2wsh6Dm4ejVUvdEYlxpRAzJzIlz99JkArF1VxHcf/c4Ou25bq3Unfz0d5SvmTVvE2uUFtGhvfOJ+W7WYNXHjnfbKnMmc0nNQdd1sdNzx2rmsXLqOlu1S8eCjtyYxa9piZk1bzKgTdqZdkKZs2Rb3fHgZSmmsOpvQVo6X7nqftx79HAS8NONumrTMa5B+q0PXri057NAdWbhwFQceUPP3zsaOSwUFBWWahMNhwuH6k/BLly6lZcuKqZMtW7Zk6dKlla6zfPlyioqKuO2227jpppu4/fbb+fjjjxk5ciRfffUVw4cPr/X2t/AaRylUyh/o8g3SkCCnKkutS2tTvovk+ZAgLXTZTVbov5zySQfbVAnTbmmUT77tg+MjHB8RAi184o6NLLFAg2oCQgukK5AlmtBKgZISP1OYqm4hhbZ0kPqmIah6R0zgxxxKC23iEYfiSIhwxCXseGQ6LrmhGGHpsbY0Qmk8FJAtwS4EhI7rSnwJjuMRyY/jxy1i0RA6akFcIlyR9CUSBNX2ZFCHzZKUuBCPWNiWjWUpHMtHCg1CYEsfUFjSSINMH4r8SDGWVMYXSZvKceZhoZQx4baEMQSX0iiGdPBIHaWEp5SZdCmND1Q6SaU0ZRRO5aGTf1JpffiCOBKEJuS4RkWVfk5Qtk+ljBUWSHwlkgbqoLEDpZbWgtK4Q2mRg19io4vqduMpVMWUzUZsnTjslFWbBeEEMOHTXO69uCPHnres1oQTwDfvNqmRcAKYOyOTo8/dsgkngOmTspn6U0UPm7pB8N0H63fz+PfMTP6emcktL/25/oQTjXGpEXVDXvNcDjmr6qpo5THq4oMpXFPENjt0TRJOAL136kH37buwaM5STr7pmDqPQ2vNkr+W0apzizJEz7qVBUz5dgY77t2PjOz6G+dZtkWrTi3KLBtxzM58++aPdOvfiTaVGHXXhXCKlcb4/q2f2HZQ90o9ozr1NiXHm7ZpQlY1Cou5U+cTLY7VmApXG0gpOeeBU9e7n4ZAY1xqRF2Q3yybg/5vp1q3P/LcfSlcW8w2AzolCSeAgS3a07tJS+YVruWi/rW/UU9Aa838wrW0z87DSkvbM3FpehCXaq5iWRUs26JV2ngBRuzXl+++nE63Hq1p3Ta/zHtCCCyr9vcqsdI43783iZ47dqVtJR5QHYPUtmZt8qutxjl36gKixdEGikuC887Ze737aQhUFpc6dOhQps11113H9ddfX2Hd66+/ntGjR1fb/88/p9R15aG1rnQ5kFS4HXrooVxwwQUADBgwgPHjx/PYY49tgaRTQ6mdKlMq6Rrer8SvqbJxlVE4lXsudFr7YLlOb4s5gaSf9gVnuCRUGNw8jc5XyAwfaRsCwhcS6ZugosLglIIdBduFWJ5ERwQpl28VVHUTaXybGZRwLVAC3zbpc1L4OBiz6wzbRQgodkPEvBA6fcCmu6QvkZCKzAwXrQRFvmPMv32J0DLYmkD6gfJJS2OQjgZLoaUx9fa1hdAiUDlpLK2wLU3cs4lFQyjfwom4tMgtJjccQwOuksR9KyAAJUqbeRWAFXhUeQnn9SplbQIhlKkSl8Yu6jKmW1VBVHglAv8oQ2SZeQKSirH0z60QRuGU+DCbSoFmBoQwyyUQjVtES8P4BSFEqUSX1pE0aPzlrhEBXnmoBceet4Ks3E17Na01/PlHBCEVH73YlCk/ZSKATj2iHHf+smpJjWPOXUaPAcU8f3drVi2rXsL80QtN6TWwmNYdGi4tbGOj37BC+g0r4Pcfcmh4+W/d8fDVbWna0qPvkGKOOGMF2Xn1PJc2UlyqTzWWk046iWeeeabMsiFDhjBhwoTk61gsxsUXX8xLL71EaWkpe+65J4888gjt27ffIPvRiMox4YNJvHLHu+x9wm6sXLCKnQ4bRPcBXWjZsQWXP3dehfZSSh6ddEclPdUOj1zwNG8/8BED9x3ArR9dlVx+6d438dfvfzPskIHc8NYl9e6/PGKlMVp3bsFL8xvGE/Xxi5/jvUc/ITs/i1eXPokTKus9sv+pezJg9z7kt8ytMnVt7tT5nDHgYrTS3PTe5Qw5cMOWC9+oaLxeakQDYPzEP3nxjR/ZZ78+/BUpYp+u3dmuRUtadmjGZU+cVqG9lJL3D6g/8Xr9hC8YO/0XRrTrwjP7jkouv2Sv0cz9fT47HTqI0W9dWu/+yyMa92jRsSkvfFTRx6o+ePKqV3j/qa/Izs/k5Tn3YTtlKYj9T9iNAbv1Ir95DuGMyq/75k6Zz5kDLzNx6d3LGLz/9g0yts0ClcSlBQsWkJubspqoSuV0zjnncMwx1f/A0rlzZ37//XeWLVtW4b0VK1bQqlXlZvDNmzfHtm222267Mst79erFd999V+02y2PzIJ1o4LivU8qlSnmFgIxKXtqrcu+l/y//PHFSCJKm4EkD8XIkVvprbZmH8EB6hnwySiDQwhhtW7aPlEG1tiyFL3y8UsekytmAJXEzJdoCL2xUQckybAklVWJ/E68tlcyl064gHrXRSlBa6lDgRIiEPAI6By2MgkgrUIm0NqHRvsCLS3wH8jNKyXKiFIfDFIUieIVhiEpEXCA8Q4RpO0hIVQI8iVI2ypW4gdG4bftYjsISCk9LQwjZHkLaKF9QFAuR6cQJWT6O7ROWPsWeg4UmJD0zb1qiMCSbLTQSk9qmtMD3jTpKKRFUpxMIIdFSIQP1libh41Q+fa4iEqokc9KYM1UpU3EPjPdTwtwYyqqcEl5Qhn0yy3wdEHlCJw+VEArb9vBtCxmXUFZR2YhG1Br/umA5GVmb/kp66o9ZPHeX+ZV97UrJ2pXmxufUq5bWqKJp08nl/kub1Eg4ARxy8qotmnAC+OWbXH7/IbfmhhsJi/7MYNGfcO2YefUnnDYi6lONBWC//fbj6aefTr4Ohcqeb+effz7vvfceL7/8Ms2aNeOiiy7ioIMOYtKkSQ2W6tSImnHDqHtwo3H++H46Wmk+HPM5Ly98ol59Fa4pYuGsJfQY1K1Kk99ZP/8JwOxf/iqzPBaNA/D713/w6TPj2OfEEfUaQzpKi6Oc2ut8VixcxVUvnc+Io3eucx9KKT4a8wXhzDB7/mtXZPBLmJCiyl+vK1NTpSNaHEMHBU2KC0rrPKZGNOKfjmtuewfX9fl9xiIW7CF55Y8p/HBK9QbcVaE2cen3lSb9aeqqsqRBvNTEpd/G/cFnz37N3ifUXUVVHiXROEdc/wzL1hZx278PYJ+BlRtMVwffV3z89FdEMsPscezOiLS4VBXadG5R5Xuw9cWl3NzcMqRTVWjevDnNmzevsd2wYcNYt24dP/30E4MHDwbgxx9/ZN26dey0U+VqvlAoxKBBg5g5c2aZ5bNmzaJTp0612IsUGiYRs75IEDJpz2v9II0qSBe5UK4/WcmDtFSptPS4RHWyKn2cRKodEkPZWWmPdJ+nSraZWB9Mn9oCP0OjchVWto9l6+RFgtYSrSzTn6MRcYnwJdqR+FkCHRYQAu2ADgXbrSjwQRBcdNggbLAche9beL6FCjyJvKCCXWJOEoonIUF7RrZlWYr8rBgRx0NLiatt/LiD9iTCN2l/QoN2NDgatDSUkBRmbInSfQiwAh+mQAXkKws3HgIEobBHfkaUkKWwpcYRCldLlDb+T5ZlKuIluhbpc0pq/FrLwKcq2Bdh1oWgRly15lupEyAxJ0KAJdO2WeZEST/ZKq4vhCjXvmLZw7hv48YcZKGDUySx3bqpHRqNMRsBsOPwQooLNv3NsNbw6/dZWE5FwmL0KZ359/BtGXt7K0oKqz7PL3vobx4fN4NTr1pMZnbV6XP3X9qOuy9oz5oVm36/6wPfg6k/ZyLk5kfunL3Ptrz8YAtKS+q3/saIS4lqLGPGjGHYsGEMGzaMJ598kvfff7/CRVJ5hMNhWrdunXw0bZpKLVi3bh1PPfUUd999N3vttRfbb789zz//PFOmTOHzzz/fMDuzFeDzF7/nsFan88B5T6O15o6THuKIFqfww3sTq1wnp4kx8nXChrhu1bnmct6Vwfd9ztz+Es4bdiXPXv9qle0ueOJMDj17P657/eIyy+/45Gqat2tC8dpiHrvomSrWrhsKVhayYuEqAD4ZO65efYx7ZTz3nfkEt5/wIL+N+4PT7zyeq1++gId/uq2CmqC26DVkG25673KueOG/jDi69qlFWwIar5caUR6fvfgdh7U+gwfOfwatNXeeM5ajt7uUHz+dUuU6OVlGdWKHzbVH+1qQA5XB93zOGHAx5w27kudGv1Zlu9t32Y8Te+3AY3scVmb5HZ9dS/N2TSleV9JgcWltUSnL1hYB8M6P0+rVx9ev/sD9Zz3F7Sc9wu/fTOe0m47myqfP5IEvr6l/XBq6DTe+cylXPHcuI44aVq8+NldsjLjUq1cv9ttvP0477TQmTJjAhAkTOO200zjooIPKVK7r2bMnb731VvL1JZdcwiuvvMKTTz7JnDlzeOihh3jvvfc466yz6rT9Tap0SleSVfBrruX6ZZ6nq5QSb6blSJZBYOKd9M8uT7/pNLJJJxeVSZnDD0REaSRYGeGMTL2XXKZAuOY9L0PjZfrIiEfYiZMZcY36RoAXksQcD8+z0EqgLJtY2AYPtKPQTtrQLNMvftpApBm0ltpMgK2wwx627aG1wI07lBSFiRY7CFvhOD4Rx6gFYq5NXDloBdI2BJHnSRYtz0NayqTaRTyymhRTGg7hldqoYhsZk4Z4igmEb+aHMEaJZRnFlO9aKFcgQz7K8VEabEsRjsRB2sTjFgtX5+FYinDYpUmklJxwDK0h6jsonaq8J4IkQqUErh94PnkS35eopGlWMO1BSp6UqkxVu+pOuoTZugiMoEzOa2JdkfqfIJhSp07yoAfWVWhBUhmVOkipbUuhCWXEiTaFmO0gV9Y1va4KQ6lGbFW48N75NG+9/l4864t5MyK8cHdFLxGANSsc1qxwOPa/swhXY4vSpIVPkxY+Fx3WkpKiqr+qCtY4HHTiKpq02PT7XR9M+jqHD56p/te9TYW1qxxGnbWCeot6NkJcqqkaS1UlgAHGjRtHy5Ytyc/PZ/jw4dx8881Jk81Jkybhui777LNPsn3btm3p06cP48ePZ999a+891IgUPnvhW0qLonw09mv+ffPRfPbs12b5c18z7OCBla4zdtb9fPvGBIYdMohFsxbTpW/HSttVBaUUQgh812ft8nUASaKnPOIxFzfm8p97T8Kyy574LTs2Z9RFB/O/q17kgH/XbIZdG7Tq1IId9+nPpE9/Y+Ink1k+f0UZf6raIFEy3LIleS1yCUVCDD9q/Ymif1RKXToar5caUQ6fv/AdpUVRPh47jlNvPIovX/8JgC9e+5Eh+1Rene3FR0/j6x9msfPQ7vxVuIaetVCapMP3faSU+J7P2uUmvWHFgiriUjSOmFvAdYN2ryQutWDURYfwv6tfZP8Gikttm+cxuF9Hfpgxn6/nzmPJ2kLa5NfNd7Jpm3wgiEvNcwlFHHYbOXi9xzbkgIap4rnZYSPFpRdeeIHzzjsveW1zyCGH8NBDD5VpM3PmTNatW5d8ffjhh/PYY49x6623ct5559GjRw/eeOMNdtlllzpte/OqXlcT6VSZP1NVfQV5S+UXQ4poSnIO5S+oE8RRutop0WeaaimhLkpXLyWJoHJiFqGNp5N0DR/khjRetkZnK0JZHhkRL6jElkgRSyiRAlVUXCK1QIc0Ohz0q4TpTAC+CJLNdECoBRsVgKWxwgo7pLAtiMZMGhu+QIcElgXh4L24Z+H5dnLnU4bpksQtXYbjI6XGcy18ZYEfpIQhDMklQcYFytIQCh5agC+DOTRpdlKCHaiHPCWTfkgaCVIhJTSJRIkriaetQIFl9i2hONMaXGWZdDslUdoyCiedOjCJynWWVGkqp8pOmqD3tEUJVVNC4ZRaL9kaoydLEVLp9JOoYr3y0FrgeRZ4FjIqq21bGdKZ8cZf7jZPtO4Y49IH/qZN5zgC+PKtJjx7V2uixQ2n0Hnhntb8+9rFZGVvmpPgs1eb8MK9rSguTCaOVtn2ubtb868LlpJRQ6XgZyZMJx4VPHd3az5+qSnKqyjQveTIbmRkKg74v1Ucdc6yGvvcnNBnSBEDdilg8vc5ab9SbB6IRwWjevcmFFH854bF9By8tk7rVxaXNodqLAD7778/o0aNolOnTsydO5drrrmGPfbYg0mTJhEOh1m6dCmhUIgmTZqUWa9Vq1bV9vtPw9oV65g+YTY77NW3QUrXH3vpIZQWRRkxaiiZOZkcf+0oJnwwiSPOP4ifPvqVt+7/gIPO3IedD0vdnGRkRdjnhBEAbDuwG8/f+DqRrDBHXXxojdv74InPue/Mxwlnhnlx/qPc/tm1TPlmOgeevlel7a864BYmfzWVvU8YzqVjz6nw/sj/HsjI/x5Yv52vAvuetDuTPv2Nlh2bk9u87mqJ/iN6M+aPe3FCNm27tW7Qsf0T0Xi9tOVj7cpCZkz8i+2H96rS/6cuOPaSQygtjrH7qGFk5WRw3IUH8PPnUzn8jD346fOpvDPmKw46aTeG7dc/uU5mZoj99+wDQL+MVjx3w2tk5WZy5IUH17i995/4jPvPfIJwZpiXFjzKHZ9XH5euPOAWfhv3B/ucOIJLnj67wvsjzz+Qkec3bFw6ZFhvvps3n7ZNcmmSVXeD8gEjejPmtztxwnaN6byN2HhxqWnTpjz//PPVttGVkF6nnHIKp5xyynpte4vydKr2cjxdNiVBuBorGqicREA0BRyMSvgrSWGWe2mpWUGqXLoCK90oXKdvww9ep98DpZ80CaWTFZA3Qf+eDX4WkOkjbEW0xCYey0KjkQIyM2NkhuI4lk/cswxREvZQvkApgfIlvmsZZZMKGDGJ8XgSlD1bgw0rVxDXNvHABFta2lSY0wIvblHoCRzHqIsywi6lMQffs5I7JWTQjycp9kO4IYllKTIyo8gscPMsYqUhiFoQk0YVFAeEMKojG6MM8yRCh/BCCi/iE7MUlqOIROJkZ7gUl4ZxC0K4bpjikKJgXYRwRpyw42HIfY0XqJoSbI5SAtez8H2jcipvxGZ8lQRx10ZIXUYIV+W5BGkkUoJcKtcs2b9RXGkVnCSkiCY/uIksS1qVhVFAaUJhD8v2cUMO3so6qjbSz//Gi6jNEgeftIreg1M56K881LJBCSeA4y9euskIJ4BHrm5HSVHt9unES5bi1OJaMTtXsTpq8+FzVf+KGCuxiJVYHPvfZYTW/754o+L38TlM/m7z8XMqC0FxgU3bziUMP2QdBYV1TAGsJC5tDtVYAI4++ujk8z59+jBw4EA6derEBx98wMiRI6tcr6Z+/2m4YLdrWThzMXv+a9dKTbsnfvobT13xAgeevhcHnbFPJT2UxYDh2/HA19cnX59w/VGccP1RAJzc878snLWYv6ctLEM6peOZa1/hxVveBCArN5MDT9+b4oISfvl8Cv1HbEdu07K/xn869isAYiUxfv1iCsNH7USfnXtWOb7FfxpCcdHsJZW+v3Lxai7d60aEFNzx2TVJlVFNeP2e93j+xtc55rLDOObyw8u8t/sxOzNg995k5WUSitTvBrpTr63T3H75/BXM+v3Puq3UeL20xeOiA+9g0Z/L2HPUEC55tKI598+fTuZ/V77EQWfszYGnVU7kpGPAiO14YNx1ydfHX3oQx196EAD/3ul6Fv21nAWzl5YhndIx9pqXeelWk46UkRPhwNPS41Jvcptml2lfJi59+Qe7HTF0/eLSigIu/e8LCAR3Pvh/NG2WXWm78njjsS946f5POOqcvTnq7LJV3A7YvieDu3cgJxImXM90uI692tVrvS0djXGpcmwZSqeALKpElFJh1cQPxdI3Rd3QhnAqIzaRUMYMKBAFJcmptA4rVKZL7yNlGZRaJUFEiLR2pJROQoMfAT9DQWZALCTGogW27REJ+YDAVzKp6tEYjyWS6VzpD1LKnoS6KZ0cszTCMtsx5FFqnaRnkQTbVlgSYnGJ8hM7ppLbT0BaCss2EyYDEsd1bUOA+RKhBVJJtKWNx1NwlglfIpRAC422E95MAttWOLbC8yy8mIN2raRvlhX2kVJgW2aalBIoLdHIVJajksZEXKUdCJ36L4TZPzPNVd8siLSV072cyqqVUi112vMy75ZTNklR1U1KYjsi2ZfWEhWzqWsd38Zf7jZvtGofZ9Ae61AqOBeBFyZNw/NEMk00AZH2N+00Tv4tLba47+IO/OuCpShfMPrUzqxZ7rD74WsJhXWQErp+4/3j50xu/U8nCtakCCStIBRWXD3mb/oNKy6TcvX9R7k8cFl7oqW13/Bh2/TlrJsWsu8xa7Cd6ts2aeHx1qzfuPmMzkwcl1ulIujwbfti2YqL71/AzvsVYG02P6tUDjcu+PD5Jgip0Wo9D9oGxOzfMzioS1/y25QCf9XYPoHK4tLmUI2lMrRp04ZOnToxe/ZsAFq3bk08HmfNmjVl1E7Lly+v0nBzS8PsX/7i9hMepNewbbnoyf9U2qa00BDlU7+fSWlxlIyssjmxNx1zD8VrS3jw7DEcdMY+zJr0J7nNcmjduSWTPv+dV25/m1adW3Dug6fWSKiMOHonXrj5jWo9hOxQ6kNtOVYwhnuZ+PFkegzqxkM/3lam/b/vOJ7rD7+DFh2asfPhNad2jH77Ur59fQL7nDSi0vcnf/kHC2YuBuC3r/5gj+Nql17w7qOfULyuhHcf+aQC6QTQpFV+rfpJYO7U+Xz10nfsdfxwOvbcOm/sigtKOK3fRRSsq1vllcbrpc0bs375iztPeYzew7bl/Ef/XWmb0uIoAFMnziVaEieSWTa23HzM/RSvK+GBs8Zw4Gl7Mfu3v8ltkk2rjs345aupvHzb27Tu3IJz7j+5xrg0/LAdeenejxl+WOXpv1A2LjnB85uOvo+Jn/5Gj0HdeWjCzWXan3b7/3H9yLto0bE5Ox1adb8J3PDOZXz7+gT2PXn3St//ddI8FvxtUvMm/zKPPfbuU2OfAO8/8y3FBaW8P/bbCqQTQPOcrFr1k8DcmUv4+v3J7HnYjnToVj/vvS0dxQUlnNb3ogqq7pqwNcSlzcfTqbrr7XSFUdnFKVWKApTheJTUxjvJ10gfcE076WosV5uqc8KonITSiMCjVoUEXligHUMCaAdUYIStEwRGgpwiTcWUPs6gbaKKnE74ZwcCHDdT42VpdKaPdgOlkhKoIC0rik20OIQV8tFKoJXADnnk5xYTshXrSiKUeqHU3Wiwr8n5C9LbBGlKHGVkUNoCoQWWrbAtjRDKVHjzJV7Upihm4YR9wuE4tuPhuXaQiqYRInVjrJQkGrVNJTqpsG1Fbm4plqUojdlECyP4a0MIV2AVSqSQaEejncSxEuioRPvmdjvqCpQP2Vkx7LBHPGohiiWUOJSW2JSGPQrCPnbYw7JMlTqtTJqcEIa80gp8VyYPlLQDQkekzhOVpJyq+TQnSCCdovtAoIL/KXWTSKbSVeitHBmqCMaZdtImyKaE55NZR2NZinB+FM+JVz3GytDoUbBZY/iha+m0bdlj6oTACVV1rKo+hlMnZJLbxKfHgChPjG7DmuXmgunoc5Y3WKWxD59vxorFFS/Etulfyva7FFdY/vpjLZPV6WqLUERz4PFratVWCFgyL8LEr/Kqbee5kpbtXHY7aMso/zhnSgY/fp6/qYdRCwjcmGDJ3DqqMCqJS5tDNZbKsGrVKhYsWECbNsaLbMcdd8RxHD777DOOOsoocZYsWcLUqVO54447at3v5oxHLxzL39MW8ve0hex38h703qmi/9VxVx3Bg+c8xbL5Kw0ZU65iWzgjRPHaErKbZPH1q+O56Zh7ccIO17x6Idceenuy3bCDB7LTIYOSr+dMmc87T3zBqHP3peO2bQE4cfTR/N+1R1ZbGfD4a0eRmZNBJCvCfifvAaSqN8VLK1ax7LtLT95Y8b9az0n3AV3oPqBLle8PPWgHhhy4A0LAkANr7y1y8o3H8sodb3PEBQfVep3qcMOou1k4czE/ffQrj/1yZ4P06Xs+D//3fyybv5ILHj+D5m2b1rzSJoTv+sRK63itBI3XS5s5Hr/k+WRc2ufk4Ww3eJsKbY699FAevvYNlhW4fPvpFPY+rKz/WDgjRPG6ErKbZvP12xO57YyncMI2Vzx2CtePuhcdN+fNsIMHMuyg1LqzZyzh3Vd+4qgTdqZDF/P9c/ylB3PcRQdiWVXX3jrhuqPIzMkgMyeDfU40xFCi2mU8WvEc7bvrdg0al4btvC1DduqOEIIhw7rXut8TLzuI1x/5gpFn7FHrdarDzWc/y6J5K5n49QweeveCBunT93wevuAZVi5azX8fOpVmbWunLt1U8OIesdJY3VfcCuLSpv8duLY/7qa306l/Sa1PQAglTb19Q0QlhUrakFCJ51poRGAyLjUm1Swh7vE12AFzJHTKuDrBkiXERBJQKRWLTpIHpFLukkyNIa+UjSFgbGXS44RAaGGIIwTIgOAJiBW0wHJ8Io5P3LdwXRvlWqkd1aZvgVEQGZIlMeDgXzA+Q9BopKUg8DnyfVHmF3Zp+fhKoJQM9jvQWGiRJEbSLIuQ0syPZSs02nhRxSXSM/uUMFZPChNU4mCYORIasDWO4+P6Fl7cggQZZwVtA9JOSONJblIMzZG3AqNzpRL7kVJ8JU3AA2YnVbEwXZqWto+J3Us71xKqkYQPVHpMMDMtyrRNvUhsSqdIpeT5kZrApDF52oBMk7oFnK2BId/SEIoo7nh1Dtv0LzXEaHAOrK+eZeDuhewwvBCt4bRrl3Dq1UZunTK+X7/+Z/ySyfiPc0mdtCn88VM2+7brR9tOMe5+60+atPT44ZNc5kype75/SaHk6/dy2fXAAqqoEFwG7bvH6Ll9ETN+zaowrnQsnhdm37b9EAJadYxzz9tzaNrSW+95aWj4PjxzRysqm+fNFUImvqtq2X4jxKX0aiyPP/44AKeffnql1VhuvfVWDj/8cIqKirj++us54ogjaNOmDfPmzePKK6+kefPmHH64UaHk5eVx6qmnctFFF9GsWTOaNm3KxRdfTN++fdlrr5rTNbYE9BjYjSnfTAcgnBnizlMe5o/xM7l07DlsN3RbAIYeuCPP3fA6nuvTc0jFm797v7mRb16fwIijd2LCe5MAcGMuRWtT5HRei1x6Di57I3T+7qOJryvmuzd/5K1FjwFQWFhCTk7NhmzliZurX7mQH975mYH7DeCW4+5jwczFXPv6RbTp0vA+Itn5Wdz07mV1Xm/3Y3Zm92N2brBxtNumDQtnLqbdNpUXbKgPZvw0h/ce/RSAT57+in9ddUSD9b0hkNssh3vGjWbKhGmMu/CdWq/XeL20eWObgd2Y8u0MkIJwRpjbb3ufaX8s4vIrDqLXdkbVN3jP3jz/2Ff4nqJX/4qFBe79ZjTfvDGBEUftxI+fTQXAjXkUF0RJXHDkt8yl56BuZda78OSniEddvv9yGm9+fQUAhYVRcnKqqXoSoLyX0zWvXMAP70xk4H79ufnYe1k0ewnXvXExrTo1vAIoOyfCTXdWrwyuDCMOG8iIahRcdUXbzs1ZNG8l7To3XHGUGT/N4YMnvwDg0+e+4djLDm2wvjcE8prncve4G/jjp+mMu6AxLqVj80qvqw3Sb97TyI8EySM9DZ5JrdN20EAFTIEA4WlkTGEJUCEjCZJxZZbHJX5IgGVUUL4DfkigbZJV8MoMV2msGAilklyMb4FyBDroQ1uGnFIh8CKAMObdWguUAOIBwRLsh1ASSqQhkAI5VcwLs9SXSEsTj9rGkLvcPBpvKY2wVXJh2WJpAmn5OCEf2/JRAYliSY22NMoF7VrECsPYmR6WrbBsH9+30L6oZGMCrcD1LCypUZYiKxQlNz/G6lAmhXYWrA2ZlEIlEHFzGBIElAgq6iGNUikaDREKeYY4SpiNe0EqnSfRRTZxO4S2NFiYNEECVVvg16W9YJyWRsmAYAv6T54wlX6Q00igCsvKkkllCadyyytL+UmSTymVXBoVWi6xyhAGltR19xNOEKLp3Tdik6J9tyjd+5XWmDpWVwhBmdS2elcWqwLfvpdLSWE1Xw1a0G9YEdl5HvEYfPZaE+LRWrBGgO0oPNcE/kiWYujehXgutfJhWviXw59/ZGDZGt+r6QNilIj9hhaRk+ehVMPP0/pixSKbKROy2VIIJwCt6hhcNlJcqms1FsuymDJlCs8++yxr166lTZs27L777rzyyivk5KQ8ge69915s2+aoo46itLSUPffck7Fjx1arxNmScNodx9N+27a07NScvOa5fDp2HAAfP/VlknRq2bE5Ly94DK11pWWu23ZrzTGXHQbAQWfujeVYNGubz06HDKZJq3zi0ThDD9oRWY5ZlkEFpsT/0896jN/XFdMjEuKZp86t0340aZnHAaftxQ/vTeSrl78H4K6TH+HucaPr1M/GhO/5/PDeRDr0bFcvP6brXr+IeVMX1LmSX3Xo0rcjXfp1ZNWi1VtMhajthvWgfe82cGEdVmq8Xtqscfqtx9KxZ3tadWpGTqt8Pv1kCgAfffh7knRq1a4JL3x9JQC2UzEet+3WmmMuPQyAA08ajh2yadoqj2H79Se/eQ5u3GXIfv0rxCUhgx/pA1XT2f8Zy4wZS+jWrSVPjKnoHVUdTFzak/Hv/sy4V8YDcMdJD3P3V5t3XJrw2VQ6dG9Fx23qXpTgmkdO5O9ZS+nSs+HI8C59O9K5TwdWLV7DoH37N1i/GxK9d+pBhz5toC5ir60gLm16pdN6QqcdoIBXSt7XJ46f0IHqSQPK3OYraR6JGktY4EuBEoFqCKNS0ZAkhZLnQ0B6Sb/s9ssMSOlkuwS5oIVJ11O2NqxYXCbTApNIrJPOOiS4M1eCJ1OG4YmxJTmMRGcibcWEqicgYIQy6p8EGYI2/QX+VyaNTiPQgU+SQiuZ8kIKlBpJoZU2fVjCBxRKazxXgicQyuyz1hqVqPSnReCKr4PKewqBGZvnSUMceSD8gJ3SGnwqmLUnK/dpzPh1MJhAzSWS+5sYp0ifyrLHLO2NdLVT+UNKctrK3SRWSkqV7Tehwit/e5lSppQnuRqVTls6lswLs2KJQ5uO7mansqkKs3/P4J2xzalJffPxS835+KVmdep714PW0m9YEQ9fZS4ao8UWR/TszUMfzaZTz1iNc9S1V5znJk7nP3tuy5oVTrXjS+DTV5qxYE6YO1//E5mqPbBZoGlrn/bdosybkcEWQzwlv9Nq2XwjxaW6VmPJyMjgk08+qbHfSCTCgw8+yIMPPrjeY9wc8cXz33LfmU/QuktLxky9h31OGsEf42ey36llUy3Kl+iuCrZjs3z+Ch48+0mOufxwTrn5uKSZbt9de5apfvfw9zfy/jPfMPJ0s60Zy9ZCxOHPtRXTd2uLrv06mgIxStN7l6pNeWuL1UvXYIfsCubkDYFX73yX/131IqGIw0sLH6/zNpyQwzY7dG3QMWXmZPDE5LsbtM/NEY3XS5s3vnj3Vx6842NatW/C4+9fwD779mXaH4vY/4B+ZdpVRjZVBtuxWORr7nrgE/61dB3/Pmk3iotj/PLL3/Tt255wOPXL4MMvnsEHb0zk8GOHADBnjvELnDt3Rb33p2u/jghh7n367NKr3v0ksHrpGpywQ0Shn8YAAQAASURBVE6T2pmF1wWvPfI5z9z+PqGwzfO/3ExOft1KATshm+59GraoQWZOBo9PvK3mhls4toa4tOlJp+qutSub9HKpSonUJe0YRZGMgwxSKZNKI0egIgJfgReX2HGNkkbFhBRIVyNdnax0l1BOCYLUt2CRDtLjjExKGzVTKDAtjxsVlR0HGdUpTydhJC7KAjdTEFXgZwr8bGnS3lSK5ErudGL/Eo+4jbfGTqqEkrKq5FMBUiFCxstIq4CgSmskpcayFY6dUtkA2JZhbXwNssBCaBvRDLJbFKE1rC3MNGonSVBlLVg3QVopgYegKB4mOxwjy/GIZsaI+zaejalm5wvwBVZMIHyBzgAdVkSyYliWJh638OK26deTSNfMu7a0ya7zgjS2wHtLWxqdocAyaYgmTTFQeUltjNMDpVNSmJUkd6qDOfiiwrKyCqcyqI5wAlJmYFVtP01bJVIkVJ1vjpUOpGSk/jdik6J5mzgCWLdakt+sYbyWNjTmTA1jO+DGanMC1u0kHbhHAdN+yiyjVMpt6hHKUKxdadGkRfUVG4WARX+F8P26SWS79S5l5VInuOhTNG/j1apq3obG6qVyyyKcoO6/vjXGpc0asyaa6jpL5y6neF0Jl/yvYinuumLcy+PRGr56+XtOufk4rtz/Zqb9MIudDxvE9W9emmzXoVsr/nPDqOTrMw8dwkvvT2TkvmUVNkvmLuPC3a7Fsi3u+/6man2GWnVqyatLx7Bm2Vq69F4/BdDU72dw0YjrCEUcnpxyD607N2xKjPLNd4JWuu6fqyoQj3uMGfM10hKcespwnFrelG91aIxLmzVmT10EwLKFaygpjHLZ5evvg/blN9PRGr78Zgb/Pmk3Lrv0ZaZPW8wuu27L6BtSaaQdOjXnzAv3S74++ZTdeOP1nzn40O3L9Ld07nIu3OMG7JDNveOuq7aKZevOrXh12RjWLltH594dqmxXG0z9bjoX7X79BoxL5vOgdT2UzVUgFvd4cuw3WJbk3yfs2hiXqsJWEJc2PekUoKrprelyPCksCjrROmWPlCBpTOqZQARSKE8a8sgPeA4rUEEJPyCaAoUOiqRiSQsRqKNEqiKdBcoy2W5SmDRhIQ0JZRRBIklgqcDjOiHgQSm0tgL/JlIymPICg/TXlU5SWoqW0igFZc2lAtJEaLTS+H6CqFMm/QxTMS0hXTIeRBrta6KebQJQwMal/I3KiLiSyjKhNaVxi5hno1VAUklliD2pwbXQvkQTkENCIYWRMWmhzeQEqquUz1FwkLUwvluWBkeD7af2URCk6angQaDoInUS1IR08ihx7ClPJFXeT6Um9wEbmjAzT5BfCeKuKo+4envHBcRa8vkGws0338wHH3zA5MmTCYVCrF27dsNtbAvHgjkZXHpkd54YN6NBvJY2Btp1cYmV1C5Vri4Ytu869jlqDWtXOPheqv9VS8Ocf/A2PPVt7eaoVXsPN5rQp9ZuQt9/tgXvP9scEJxwyVL+dUHFSmcbG0rBdSd1Y4sinOqDjRSXGlE/HHfVSBDQY1B3mrYue9P07RsT+O6tHzn60sNwwjY3H3sf7bq35ooX/ltpml0CZ91/Mu889BGHnXsAAOtWFQJQsKqo+rGcsDvHnbB7heW/fz2NlYtWAzBt/Ex2O3JYtf3kN88lv3nNRvUJaK158JwxLPlrOVe+eB45TYziaP60hShfES2OsXTu8ga/uTv6skNpt01rOvZqT26zhlFSffPNTF5/42cAtuvVlt12W3+11z8SjXFps8YxZ+yOlIJt+7anSfOyn41x38/kuwmzOfaIIchMi0uf/ZCOzfO57fj9capJez7vzL14871fGHmIIbUL1pmqnAUFpdWP5dhhHHNsxZjz2zfTWbVkDQDTJsxm1xoqY9YrLp3/DMv+XsnlT/+HnCamitzfaXFp2bwVDR6Xjjpnb9p1bUHHbVqT27RuleuqwtffzeS1tycC0LtnW3bbedsG6fcfh60gLm16TyfS5rYc2VJFlfmyEv/g/kUHBJIOTLl1YnlAMGnbEEcySJVTMlhHg+8KpEugeAIr8IQSPuCDZwn8CKiwwA+BHyGpgFIOaBmsHwcrBjKucUoDqZyHqaLngeWC40FcYVRSPqn0P0gaDZfxuhKk5FzJxaLMPZdOtFEyldYnAxIncRYrges6KO0TDntkRjzQEPMsEsyIUAIZF3jFIUoyMrBCPk5E45aKNCNtXS4dTAdjFywvycEKvJYyM128sFEuhBxFvNQhujwTqYFMTSjLo2VuMYXxMHEX8GUiOw6ppSELLczxcAVagJepIccHSyFtZYgoDUJqnJCHY3toUgovrY1Zr0bU/oa/0oZVrZxO7KVHiJS6CZFK8atpDIlqePVBsKlqR9sQiMfjjBo1imHDhvHUU09twC39M5DTxGXmr5m07hSndYeKlZU2N6xbbdFnSBFzZ0YoXN1wZlQ9ti9GSigtEkSyPKLFqa+erFyPP6dmoIF2XeK0bFf1PBWskWzTv5ilC8IsX1gLI6gkzKfCsn1+/SYTJww9ti/ZZIonNw6hjARx/s8lnjZWXGpE3RErjTH22lfQSrFzuRsmrTW3/ut+3LjHupWF9BzUnT8nz+PPyfM46tLD6DGwrPmu75kqYpk5GQw7eCC9d+rBrcc/wIdjPueaVy5k8pdTGX5U9WRRVdjl8MH8/PGv2I7NoP23r3mFOuKb1yckzbPvOuVRRr9l1Fh7nTCcVYvXkJWfSf8RvRt8u7ZjM+LohjMWB9hmm1ZkZISQUtCte8ObqP9T0BiXNl9ES2I8e/NbAOy05z5l3tNac9NdH+B6PusKSuk4pC0zF61g5qIVnLrnILbrUPac93xFzPXIioTYaWh3+vRqy23XvcWnb0ziuusP59df/2bE7vVLd9vlsEFM/Ow3E5c2gM/QN2/8xAdjvgTgnv88yXUvnw/A3icMZ/WStWTlZ9Jv+HYNvl3bsRh+6I41N6wDtu3emowMBykl3bo2nMH4Pw1bQ1zapKRTOqlX2QxXR/RVaJ4Q+wijNkpmgqVlmYnA+0cH7ZQMDrIf2DZJjEm1BhRIpRFaIzVYATHjW0GqlzCElmcpo2QSIC2N7xilkwqBcAXSF0jPkE9KGnWVQhvyBm0UPgm1UtKAqJqdrorn8FOEm3k/YK7SlTUKlC/wXYEnBI7lG4UWEml5YFuGCPNAlwjiSmKHXMIRl+J4COVZFYhBrQIXKRFUwtMghUIKjSU1ttRkOC6ZKk5hFpSKMNg+QihcJXA9C8+TIBWO0IbEsyVKGdWVkiCVRGiB8M2XjmX52I6H0MIoEKXGtnykVHjBGHRASCklyqiHaiSfdEptlKxUV+6+0KS/pc5ekfD+SldLlTuGlVUWq64yZp0VTxup1Obo0aMBGDt27Abbxj8Jf07N4n+3tuHed+ds6qHUCrscUECs1OLO8xrOnHbH4QUce57xQ1BKliGcABbPzeCyo7rTZ3ARd775Z7V9desd4/TrlnLuARWraNUGT99q/KTuenP2Jk2xsx1YW0tfqi0aW0EJ4C0VP7w7kQ+f/ByAlp1a8NVL39NjcDcu+d/ZCCHov3sfJn4ymR336seg/bfn69d/oG23VnTtVzY2xKNxztj+EhbPWcp1r1/MTocO4vu3f2Lix5MB2Pv44RWqzdUFWXlZXP1yXVyi64a23VI3qumG3qGww/HXjapslc0WnTo15803zkUIQSi02SQybH5Yj7j0zTffcOeddzJp0iSWLFnCW2+9xWGHHdbwY9xKMeGj3/j42W8BaNGpBePGzaJnv/ZceMNIhBAM6NuBn3+dx8ABndlh+y58Nnk2HVrks02b5mX6iboeR979HAtXrePeEw9m9z7d+H7cDCZOMNcYe+3fjyNHVa9Oqg5ZeZlc9fx59d/RGtAmjZzp2LNd8nkoEtri4lLnjs1458VzQAjCjXGpamwF10ubXulU/pq7shSzBILl6QZbApKVwXRCWRmYViPLpYAFz1UIVDhQQ3nBeiFQlkBYpj/paixPI32wJHgaVMR4Q6lw0LfU6HBCRQXY2vTpg1UkkZ5RDllxEVS5Ay8LdKZGOKCjhkwhXTmUpmoqMweiHNtTftI0iFLbvOVoiKSV2kuSWcJ4MCnIcWJIoXHQ+I4mHlTZkwisUouoEyYnt4iuzVaxoKAJOp5IwSun6NECtEJraURWWuE4GkcqpFQ0iZTSIlJMsecwS4XxZYhQxCMc9imKZlBUmIGwNBmZLmHHo1BloqJB9yGwiy2cqPF3ciMKJ8slOyuKYylcZeRsljBqq5hrobXAVxLly+S8GKWTqmN6UzoBmFCWpUimhO9SwnA8QU4plXZSax2k+qUJ1qr0iNJJYqryD0YNo9VUMKArKCgo0yYcDhMO10Ud0oiGgOcJ/p4Rpmvv2KYeSo0QAjKzPVq0i7FiUcOcK7FSyYI5Dh26uzRtFSOnqVupiioeF3zyUhP6DSuiXddqVGFCsc/Rq9BKMPn77Doqngym/pRJ4VqLgSMKCdVcCbnBoTwYvMc6Fv4V4bfvc5JK0n8atgZjzC0VoYwU6zr9h1nMn76Q+dMXcvy1o2jTpRW3fHglxetKyM43KRZPT7+/0n5WLVnDwpmLAfj96z/Y6dBB7Lh3P9pt24ZQ2KHvbutvnLshsc0OXXn8t7tYvXgNA/cdsKmHs95IN0VuROVYn7hUXFxM//79OfnkkzniiCNqXqERdUIoO5K8Z5kxfQkL5q5gwdwV/OvMPWjdrgl3jj6SouIYOdnmi/vdK0+qtJ8VBUX8vWItABP/Wsjufbqx45ButOvQFCdk02dAw/2wtiGw7Q5defTHm1m9ZA0D9+5X8wqbORrjUs3YGq6XNi/KsZbX3ZWKfQLVDdL4LEnfkDzaAt8x/4UyB9K3gvS6QNUkLJONhjbraht0BGwEVpwgPU5jlyjskEn98iKgLI0vjaE1jsYO+Vi2j/ZBSRvtSZQn8OMCERNIT+KHNDpIQTMO5Japzpa+c9UpmipdVllql/Fs0r4o20qD7wlKog4SjbQUYctFZkBRiUTFHTM5MYG/OsQKnUtUWISdOJ6wUWVy+oKn2iioREBCua5E2GCjiXkWBXEHjaB5ZiF4EPUtYiUO2hPouMTKcMkIxclwYsgsTUFMGGNxBcpWaCGRUQitFqBsoqURohEfbI3teFiO8cVS2nhWJchi7RuSTUiNgkqr2VU4t9JJZk1Zsjmhkgs8aQyRZPy/hNBYjsKyFH7CwAuSlQYT3GIy4TFd5idS/xJjV3X1nU7vL/jfoUNZw8LrrruO66+/vo4dN2J9kZ2jtgjCKYFVS0MNRjgB5DXz6NDdkEgL/8yoMm1v1uQsOnSLsf+/1lTb3zZ9Y1x49yLef7YZn75Stwp6CTxze1uemzhtkxBOAE4YTr5iGcdtv90/lnACKo1Ljdg8EC+NJ5/3370PC2ctocfg7rTqZH5hF0IkCafq0KZLK/5zz0n8+fs8jrz4EABadmzB2BkPbJiBbwB07duJrn07VdumeF0x5+10FWuWreOOz6+l+4AuVbZdOHsJc3//m6EH74gTatibrXUrC/jof1+x/e696TGoe4P2vTERj8Z54aY3iGRFOPqyQyuUrt+gWI+4tP/++7P//vs39IgaESAe8yAzA4ABQ7qxaNFaevRrT8s2eYCJSwnCqTp0aJbPpYcOZ+biFZw43KSLtWydx9OvnbPhBt/A6NqnA137VG88XrSulAtG3se6VUXc9uJZdN2uXZVtE3Fp2CEDq/Xlqw/Wri7m07cn0X9wV3o0cPW6jYl4NM4LN79JRnaEoy45ZIuJS1sKNj3pVBsLnUoIGFGunRCAg0mLCzyZtA1+hlE1oQDfkEoqZLyYhJumM0lLyTOm4QKlNZankJ5JOZNKYCnwEBDS6AgQ0YiIwsl0ycqIoTTEXRsVkmit8F2JjlmGdHLN9kW2DxZoPyGrSshlEqonXbXYRaT9T8yFRdKhXABkeQhHBRXsEqa7AeGiBVpJSkojhEIezTKLCdsey90QSttIIREC7BKLUhEhnqXJyyklJm18oY3PlZFEBaRMIo0v8FgSEqUN6WVJ8LBwtUPTcAkxL4QrLOLFYYhbCB9ktkfTvBJaZBmT0dJYBp6USXWaFZOEigTCBWybuLSIY4PwiNhxQrZGCoh5NnHXQWuBCqr3ad8O2ESFDNIuU2NOn8xy7E/6ZCfaCrOeVgICMguCPoXGyYwRCXlE43bqcFZHbCUVTQTHJk1ZpYPczTpAaJMKmngOsGDBAnJzU8aFVamcrr/++mTaXFX4+eefGThwYJ3G1AiD5Yss/vg5wnYDo1uEmXinniW07xpl4V8Nw8gsnOsw+/cw2/SL0XtQIeM/zmX1sspz2+bOiDDm5lZEMjR7H7WaVu29Kvvt2ruYky5fDGikMBVAhdDMmxnhm/ea4MWr/gxpDa8/0pxQBHruUMLQvQqwNvIPcbatGLx3AeM/zMP31+/CpmlLl71GrSY7z0MrYdK2deJrQhCPCj57rWmDkom1QWVxqRGbB3Y9Yiin33E8lmNx2Ln7c1RAGNUHI88/sAFHVhbTJszi9XveY8/jdmXnw+qfDlMe7zz8EU9f/TJDDtiBK174b43t//ztb+ZPN1W1Jn36e5WkU7QkxtkDL6OksJRjLjuMU2/9V4ONGeCR88fy5UvfE8kK8/bqp7HsLbMS1JcvfseLt7wJQPcdujBoI6rMGuPS5otdD+jPyqsPxbYtDjl5V444dXi9+zp+tx1qblRPTPv5T9589DP2PHIoww4Y0GD9vvP45zx781sM3qcfl405o8b2f01fxMI/lwPwy7czqySdSoujnLXjpZQWRTnm8sM59ZbjGmzMAI/d/gHjPvqdSEaIN76/aouNS1+88B0v3vIWAN2378LAffpvtG1vDXFp05NOAWozvWUSzBKCnvR1faNqItOYeovAb8i3NCpsXgOG5MHc12vLGI1LL1WhUAN+GLwQxLMCTyY/aK9BloK0Tb+G6NL4HriuJOR4RJw4llR4nkVcWWgp0E7KbknHhVFH2T54VppqKG0WKhEvVap6CvYbDVhGdWNLRTgcI65tXJUiMxKqGwAUuHHJ2sIImREXx3YJZUeJixAiLhFCIuICtdahWGnsTJe8jFIc4YEQRF2HomgI37MD/ySRTCPzhcD1JEIoNBbF2kHrDHwEOZEoXomNWyoRrkSXSgrWhUEpsiIxmmQWI5po1hVm4kVt/JDEzQQrKkCBVQQyJlGFNn6OoDhPEMo27GHIcbGlQqDxPItY3MH1LaOY8iRa+0grMbkVJ7OMl5Mqdzg0aE9AVCJiEukBKmFQrtHhMKURB88BYaskaZgyERfJtLwKqKBs0mknay0RVP1LPgdyc3PLkE5V4ZxzzuGYY46ptk3nzp3rNp5GJNG+m0vvQdGaG24mmPlrdoMRTgDde8fYpp9Rev3yTV6VhBPAX39k8tcfmZx988JqCSeA7XaMst2OZec1HhWM6tO7WsLJQPD2U61o0TbOSZctxdoE34TxmMX4j9afcAK4fuxcegyougrPY9e13eiEE1BpXGrE5gHLthhVT6KptKiUUEYIq4pqUT999CvjXv2ekf89sFpFUG3w2AVjmf7jbH79YkqDkk5jr3mF4nUlfPnSd1z67DlV7ksCvXfqwcH/2YdVS9awz4lV3whrrVHBF7ryzf+a5qsuaNa2KQD5LfNYsbKQ77+bxc67bEvr1vnr3ffGRJd+nbBDNk7Ipv22bTbuxiuJS412BJsHLNviyDP2qNe6JbE4YcfGqkKd8vXsuXz0xyxOGroDPVuvn6H141e9ysxf5jL5mxm8fsB969VXOp69+W2K15Xy1Ws/cskTp9WotOk9sAsH/t9OrF5ewJ4jB1XbVgc3OYm4VFIaJxJ2kHL9fw1t1sJUGcxvlsWqFQV8//l0hu3Ri9btmqx33xsTXft1xHYsnLCzWcSlfxo2om6sEqTb5tTQLnmznriZh1Q5+sC+R4WBIJUOAkVTJviZGO+lMBASxvOJtNxJSHrvIDD+Tpng5QrieZJ4joWXZaFtiSDwfYoAERBhjbA1tq0Jh3xCtsKxTdqaRgTSJpk0KUcG60ggbpdVtFSmbiovyoE0JqNcIwvI9MlvUkLI1ni+E0xO2s4JAlWNRCmLuO9g2RopBb6URoElTSU7oQRKWRBW5GdFaZZVQrPsKJlhD19bKGWnHUTTtwyM0c0QzXz5WMSVSbErjYfwih2sUkO2aSnwhQWWIDvkEXJ84tLC8yxwLay4URtp2/AwTkzglEisuIWnLZQjjEpNQnYkTlbEJRI2KXdYgfILo5ySQaE+QwCVn+S0BTrtpCIQH3lAiY0scrCKbOwiG6fEwi62sEpt/KiD6zoBMSnLzEGqr7RHgqErs/1gvWB/6oIEQ57OlNcWzZs3p2fPntU+IpFNlIf0D8CcKWF+/T6z7imTGxlKwQfPNWXc23kN2u+UHzOZNjFC0TrJmuW1u+n66IWmPH59G1YurhsbNG9mBCdU+4leu8riy7fyceM1t21oRLJ89h61Bsvxa25cCTKzff7voiVc/sg8WravPn1z76NWcfnD87j84Xkc99+lZOVWT+g1FNYnLjVi88TXr/3AIXkncGTLU1m7sqDSNrf86z4+e+ZrHj7vf8ll03+aw9lDr+J/17xSpu2a5et48ZY3mTZhVqV9DTnQpMYMbuDKdUMPMv227d66VmSQZVucdOMx2LbFmCteIB6tPGjYjs1939/MFc+fx4k3HsPXr47nsPwTOWvHy/Dc9f/cnXrrcdz7zWge+flWbhz9No88/AVXX/l6jetprXn1zne47fgHWLFwFQDjXvme0/tfxEdPfbHe46oregzsxiuLn+ClhY/TpsvGrbRXWVzq0KEDeXl5ycett966UcfUiPXDJ5NmsvNFD7P7pY+xtrDyH2AufuND3v5tGjd+9FVy2fRf/+a8Q+5j7J0flmm7dmUhLz/wCTN+mVdpX4P36Wv+7923YXYgwJD9jLKmbbeWtUrtsmyLEy7cH9auY8zlz1cdl8JOKi7dcDRffj2dA0fdz7/PHYvn1e8aJB2nXLAvdz9zGg++fBY3XfQyj9/5IaPPe77G9bTWvPb0t9xx5eusXGa+T8a9NoEzB1/FJ898vd7jqit6DOpu4tKCR2ndueVG3fbWcL20+VSvq0XbBKoS/EgX3BD4WeCHMOl0wlSI045ZyfgzBWlTMlAvCXPDJSxSIpjEZ90CPxJUo/PM+8oJlDAx01ArcIWmVDrosMaytKms5hufISOTwXg5aaDEAlunUulqY2ZVna9T+v9SyboVWeBolEcg3xFJog6C1IvgtRu3WLM2E2n7ZGWWIjPAcy38fAsvbuH5FrHiEKvReFmCZhkl5IVK8DM1rg+xWChIBxNoX+BribYVrp8iUlSg5BFCkxGOEc1x8HQoKDUInispKXUochxynBhtcteRZccoKong5ji4pRa61IKohfCFyeSTGu0J3KiFsGyk1EhsssMxwraPJXwcyyPm2MQ8G9+XqGBMQug0w+6UvE2nzaNROxk/KGkrlBYoW+GHQVkSfGNeri1tziNbm2Pqm3kQlkI4AZkZHAZdvjqhIKiCFywOnipXoqN1/EV0I+UCz58/n9WrVzN//nx832fy5MkAdO/enezs7A234S0Y2w0sZfudSzb1MGrEhE9yeeCy6v0D6oMddytmu4FRHr2mLRPH1Y7Q+mtaJiddvpTmbet2k3bFsV0pWlv7r7VmrTz2HrW2TttoKBQX2Hz8UlNqFf8rwb8uXMaRZ66oVdtuvWN0C3zFThjchuKCjfTVvxV4FGwNmPr9DN556CP2OWl3vnjhG9BQtKaYDx//nOOuGlmhfd9dezHhvUn0H9E7ueztBz9m9i9zmf3LXI666KCkX9Qj5z/NuJeDdLE1z1RIy/jX1Ucw8oIDiWQ2rOrksmfP5ZKxZ9fJs+PrV3/gm9cnALDryKFJ4iqBxX8t57x9bgHggc+uJBR2+PXLqSil+ev3vylcXUSTVvl1Hqsbd3ngrDGsWbaWC588kz479wQgNzejzP/qsOSvZTx5mbkJzG+Zx5l3n8izo19lwYzFPH3Ny+x/6p51Htf6IrdpzkbfJlBpXKqtHUEjNh/8NmMhr388mYN278OHP81AAwXRGG9+M4VTDqyoityxUzvGzZrLkM4pz6F3nv6W2VMXMnvqQo48Y3eyg8/So9e8zjfv/sIrD37K69PvqBiXLj6IkWfuRSSrYc+TS584jYsfO7VucemV8Xz7xo8A7DZyCEMOLJtWuGDZGk684UWEEDxz7XGEwg6//D4fpTR/zl1BYVGUJrXw7yuPuO9z1fhPWVlawh277kfv7Y0vXm5eJgA5+Zk19rFkwWqeuu9TAJo0y+a0i/bjuZvfZOHspYy94XX2rUZVuqGQ23QT3ctsBddLm016XbXX3ek36WkcTZIyCF4n/Zs0JuUsUCTpSMAxeSCUSHkfSYyELaGkSp+NcjY/OsWhoEOmrQjS87A10tbYjsKywNeCaNzG9+zAtTzYgAQRC5RWvgAvsVNVzEVlc1IhDgWTojHb0eBqKyi3Z4KkSExakuRKeX2gwNOSLMclO+IS82yUpfCkxFMCgrRCaWuywy65oThxZVHkRnD9RMlvkRyHkNoQQFIgZZDJKEAjsYRPSTyMGzPl/oSjIaSwQ4qsDJcsx8OxNR4abQmUI/CUxvcFxCRWQtXkC1RIQ5bCCpsDqDVkhOOEbQ9LanxtYUnMAETiwJkxlvVaCoyeBGVUZzqoQmeFPLQC5dmgpFGJWcG5lfgvMN5RjgI36EMKpExL46ssr06nlicq1ynfQvuBwqwu2EilNq+99lqeeeaZ5Ovttze/Pn/11VeMGDFig213S8ZvP2TxyzdZDNilmI3pSVgXfPRCUz54vim1JsHrgG/ez2P+7BArltTNNOnRa9vyykMufYYUM+o/K8jJr1nBdPTZy3nx/laUFtXu87N8scNHL+az15FrcarO+tsgyG3icc/bs3BdyZtPtOSnz3MClWTVkFJz9DnL2X63Alq0rabCXzW47n9z+fb9fN56qgXR4g3su7AVlADeGvDAWU8yd8p8pnw7ndFvX8akT39DKc3gAytXH41+61LWrSykScsUybzX/+3KL19OZce9+pKVl7oZadnBlDpv2jofUUWaR0bWhlHa1tUkdvs9+pDfMo/MnAg9Blc08Z41eR5Fa80PDLN+nUfbLi055vLDiJXG6DVk23oRTgB/fD+Tj//3JQBfPP8tex2/G4tmL+Hqaw9l2h+L6d2navPgBJq3a0rHXu1YNGcp2+/RB4BDztqPZ697hcPO2cqMsSuJS7W1I2jE5oM7x3zBXwtW8vuMRdxy2aH8OO1v8DS79O1SaftHjjmUNSWlNMtKxZ89R+7I5PGz2WHXHmTlpOJMyyAtrGnLPKRVeZzIqIWheX1Q17g0oIa4NG3uMgpLYsnn7Vvm86+jhhKNuvTu1a5ehBPAz8sW8ursKQC8NecPRnbozaIVa7nqrmP4Y/J8tqtFhcBmLXPp0LUFi+evov/grgAccsZePHvzWxx65j71GtcWi63gemnzIZ3qKPhJlKpPXy6jIByMgbhj0rG00mjfeC8py7wvA1JKBH5H2jLcEJh1hB88FMaLyQaC6ndgVE7CNcbi+MY427csYrYVnCfaqGSERoZ8tA1ELbQXuJX7wQ5UZxhe1flWXvKVKKmWfA14AkLKVMdTMnnupm8mvRvflRQVhYh7VqACEgipyMsrQfkCV0nicZul67KJuZL8SJTcUBStBFHXJu7aeK6VUjshCWx9EQiklnhCo5SmWVYRIelTWJhhyCdlKs6VxG1Wiwx8JdAILKlok7MOL1tSkBmhMBzBixpjLB8NFtgRj4yMOFJo4p5FacwhLD0c4ROSrlEbhRVh28P1Jb4vEVIjNHjKBHWtwVcS2/JxPRs3ZhvCKZggLxqQhh7geBDR4EtEsYUoESCkqXgYSjsWCnSJhS8tsBUi5GPZCoRICs/KHgWNUgLlyyCPVyNk3XKxNlapzbFjxzJ27NgNt4F/IAaOKGKH3Yo39TCqxN+zwtx3ScMrnBIoLrD54+e6/6K9ZF6EJfMiXPPk37UinABeuK9VnYiUNh1d9j9ubZ3H1hCwbOg9OMqkcdn8+FntFGBD9ingpMuXrtd2u2wX478Ht8SNbXgGdGsoAbw1YNB+A5g7ZT477tOfHgO78c66Z1FKE6qiDLaUsgzhBDBo3/68tuixCm1PueVYdj58MB17tkvebK1Zvo6LRlxLrCTOXV9eT5uuGzf9qiq037Ytry0dU+X7Ox2wPYf8e3cQgp0OMIRc684tueyZc9dru9vs0IUufTuyZtk6+o3Yjn/3vZCClYWccvNxHHvF4bXqIxQJ8eSUe3BjLuEMo8447Jz9NxvCqbSolGsOuZ2CVYWMfvvSDZpytz5xqaioiDlz5iRfz507l8mTJ9O0aVM6dqz5JrsRDYehAzrz14KVDO7fmd5dWvPdvWejtCZURWU2KUQZwglg0IhevDxxdIW2J11xCDvt35+O27ROFvpZs3wdFw6/lnhpnLu+un6jp4VWhQ492vLakieqfH/4Dt04as8BCGGeA7RplcfVlxy0Xtvt06wVPfKbszpWyrCWHTj2qmdYVxzl7CN34cSDaue/F444PP7GObhxn3DEfJ8c+p99OPQ/mwfhVFoU5brjHqJwTTHXvXA2rTs232Db2hqulzYP0qkyZU8V+XRJwUgl6WZ+xJBEEOhXLIyHk5NIJxPIID1LqEDtlOAXROogy4B00nZAOCW2L1PbSnjyaFtDWGOFfGzbdOD5Fr5vplZIwJNoXyLSFTaaQIVTdv+S71VGRJWfpzJzkSb/CimjwlIJb6E0ciux0+WYKikFGuOUroHMkIslFVFto3yJUpKQo8hwfDSSmHJQQqKQhixJG5SUGssCO7CzQpi5zgq5xJVNaUDuAEhHEw4rwo7CVRausrClIj8UJWz7rIlGiPk2vraMwig4Hpbjk5HpEnF8SmLGuyoz7JJhe0gBcd9CC0N6iUDsZNsaSyjivsl5C9k+0biDYyuEEEaZpmXZ+VTSGIZrgQiZVB8dk8h4oJwCw2LahgjDlQEXGGjJbI2VTKUsK3gSQXqdUjIguswJJi1d1+J1WwVDvqXi5y9ymPxdJv2GlQRG9psek7/L5pk7WrFutY3vEzDsG46EaNLC5eybF6I0PHFdO1Yurb2s6Jz9tiWSaZz9jzlvOSMOrVqV9MSXM4jHjHrR8wRjbmzLpHG5VVaSXDzX5uOX89lz5MZXOiXQb6cinvpuGiiRDClaJUKG4Mu38nnj8Ra4MUmfwUW4cbCdysWTtYEQMOabGcRjAoHGjUueGN2WX7/LScW0hkJjXPpH4LTbj+e4K0eSmWtu2Bqy3LZlWWw3dFvm/DqXW//vfroN6MJuo4ayYMZiAH75/HcOPH3vBtvehsLy+Stwwg5n3XZsg/edlZfFE7/dDUDxumKK1xk11Zpla+vUj5QySThtbvhj/Cx+G/cHAN+/9RNHXnjwhtvYesSliRMnsvvuuydfX3jhhQCceOKJjT/IbWSc83/DOWnkULIyzJe33YAV0yxL0mvHLsz+dS63nfgw22zfhV0OG8jCmSYu/fr5FNqctnmQTtVh2d8rCGWEuOT/6mfOXh3ywhE+HXkKAIXFUYoDP6lVBXWzk5BSEo5snmkAf/w4h9+/mwnA+Pd/ZeRZG/C7aCu4Xto8SKcEaqF2qnAY0tpbMUM0actctAMQN6bd2gGNRlkBqaSNgAUBqEDFpEXy3kuFNV6GRoUwaXGeQLrGNwotEJ5ROwlP4GsLXwlKPInlBFVLlFHEpIgJZQiM9P1LVzmVJ56g4g2ALteuknNSB2IqYSukVGg/YVxVbrJ02hMNnidRiUp3AgpcSSjkYVkKy/ZxXYs1azIpKg4RCbuEQ8Y3KWSDzDSV+nxPBg+THuZ5EA5pIo5HxPbIcuLkiVK0r1kWs4gXhlCuTakn8HyIhD2UBiekyXai5IWi2PhIoSmyXTxlBRUGNZbUZIRcsp04zTN8Ct0wttA40kegEVqitE3cN5X0dMAY+hgCTSmJ8fTUuL5RZlm2h/JttLKC9EfzEJ4wGYylIVN1UGqUpZPnDEojfGOKjtbG00lrRKlAFzu4EePhJXxhiEtHGaJKaISt0L6AmAUxyxzykDKquDpAJM5hqHPhu0ZsWAzdp4ABu2xenk4PXN6ORQ1Yoa4mHHbqSnY9qIBrT+hcJ8IJYOUS075Tj9Ia/ZdadUh5QE34NJeJX1WvIOq4jct+x1Tf54aGE4L2XStPlfN9ePnBVihf0HdoEUeeuXK9tycEtO6Q2t637+fx67cbJq2kMS79c7BuZSHjXhnPrkcOTXrxrF2xjmnjZ7HD3v3W23Ppk7FfMX/6IuZPX8TRlx7KiGN2JlYcY9cjhzbE8BscxeuKCWeGsR2b38b9wSV7jcYJO4yZcs8GVWZl5WVx1xfXMWviX+x3asPdSGqtefeRT1i5aDXHXTVyg6U0VoXeO/dg0H4DKFhVyG5VHHOt1oHIRoj1IxfWJy6NGDEiWQWsEZsea4pL+WTSTPbeYVtyg3N2VVEJkxcsYaduHckI1S2tvzw+ffYbFsxYzIIZiznqwgMZcfROxEri7HLEkIYYfoMjPS5N/moql+59g4lLU+/ZoMqsnKwIj1w2iulzl3HIbn0arF+tNe888gmrFq/huCsP3+hxqc/QbRi4Z28KVhez6yE7VtqmcE0RmbkZ612ddGu4Xtr0pFNlKqfyryuL75W09yMYgigod69twBFJ027hG6WT9IMVLNOx9EWKfAq2pcKYCnUW4AUnQ8ILKm2byjYm4zgqqWJQvggUMtKQC17wOiGnKk88JfYxQSglcgfLq7rKbzz9qcYYhEuNFVZIqfGURZLZEuUal1mmg1/NU32ainZmKJ5roTzL9GQJrKAKnKdMA6UkQoDvWST8sYTU2DaEbI1taXJCcbKdOAVumDUlWcRLQghlgaWRIY3jGG8mKSA/EqVVRhHr3AxiyqLUdYwqTIMV8HYh26iuskMuRa6Dry3yw8WELEWJ5+BpG0/Z+MoKCKfUfvvKpLnZlsb1bZMKKBJ+SjLwxhLgSXPOKLOuTqRD+hLhy5QNVAiQQUXCqDQEU1wglESHVXAOBQSko5ISBWFpZGLe4pY5R5xE+wZWHDRik2HC5zlMm5RBzwGlm1zpNHNyBvde1IEVi9fvQqwuyG/u0ntwEUrBlY/N45v3mvDYdW3rbGb998wIR/fvxcX3LmCH3Yqwalh90J4FvDplCisWO9x2dicWzIlQ/otj/uwQX7yRx/BD1mGvx5SM/ziXJ29sS3GBSWe2bc0F9yxgxyrG+eHzTXnp/pZES2QqNAHtusa47MH5tO7kIgRYFrw2dSquG6gifVKVVhsIO+23jlenTEkrrlD+R7bg+1MLZvzhsHPDCzkasQXgohHXsXLRan7+ZDLXv3EJABfsdi0LZy5mxDE7cdWLF9Sr30VzlvDXb3+z+7E7M/GT3+i+fWc69+nAVS+e34Cjb1h899aP3Djqblp3ackTv9/NojlL0UoTL42zYuGqDZ4O2GeXXvTZpVeD9jlr4p88dO5TAOQ2y2HURUZptHTeci7e/XrssM29X9+Q9KUqLighMycjmXq0vsjIinDLh1dV+b4ueRldcC3YfaHZa4i6lvhtxD8S/77rVVasK+aHaX9z1xnmnP2/Ma8wb9VaDuzXg7tGHVCvfhf9uYy5Uxewx7E7Memz3+k+oDOd+3bkqpfqF+c2Br5980duPOpu2nRtxRO/3cXitLi0cuHqDZ4OOGDbdgzYtmZ/ubpg5s9/8vB5TwOQ1zyHIy8wKYFL5i7j4j1GE4o43PP1Dcl07oaOS5GsMDe9dn6V77//+Gfc/58n6DGoGw/8cEud/bi2Nmx60omq7YvSIdIuzMu+EfShQcbBsyHIEgsIAhBxkdxTjUZJgVTaVKPzMf8xFe+UpVFhjcr2IdMzRIFrFDyqVGLFjOIpSRx4YBULfGXjxxSEjJl2UimTGKBMbD2xqBLyKY14SuODKH+jVB6aIL0r0VRppOMTsoxCSfvSpNpVpZwCtBJoAuJEQzxq40rL7AsgpDIeTutCxFQIGfbJySslIxwnK6QRQhPPsPB8iRTgKklpNIRSIUSGjyM9MqwYrhJkR2JEw2FjEK5BxQSlfggn4pOVESUsXWx88u0Sij2HVtkFhISi1HNYG4ugtCG5Yp5FISEybBdbmnyUwphDoRsh7plUvWjcQSWVXqlzBTRxV6B8jRdzksu1KyEuEa5AxgXSFcbfSxuvKW2DCitUjpuqQCi0ITA9AUi0BzqsDPmmMUQUGismEAU2SpoKihrA0thKYEWN0b2WFsqx8KN1LGG6Fcgyt1TstG8h2+1YeQnfjY1XH27J3Ok1VzpqSOwxci19hxqlVyQT3h7TvJ7V0wRde8UYtEdRrVpbFuQ1U3zwXB4L5lS+z516xNjziHX1GEtZ/O+WNiyem1J69N+5kMHVjPORa9pV6ql03CHLadO5rOopO2/D/uRl2WaeaoPtdqy8HHOVaIxL/xiEghSWcEYI3/dZs3QtRavNOf7dmz8x9fsZtN+2DaFIiMyc2sWYaEmMs3a8jJLCUo657DCennH/Bht/Q2LqdzNQSrP4z2WsXrqWvU/YjYJVhWTnZ9F314YlgzYWWnZsTnaTLErWldC1X8qb6NcvprDsb1Mlc+r3M9l15BBevOVNnr76JXYZOYTrXr+Y4nXFPH7xc+Q2y+bkm46tUOmrIaDjP5sn3lTQpSDqZ35sOmuMS/8UhEPmWiLs2PhKsaK4hIJYFIAvF03j17/70blJU0KOnUzDqwnR4hjn7HY9pUUxjr7wQP439e4NNv6GxB/fTUcrzeI5S1mzbB17nzicglWF5DTNps8uPTf18OqFlh2bk52fSUlBKV37pselqSwP4tIf389gl8OH8OKtbzP2ulfZdeRgrnn5fIpKYtz32tfkZWVw1sidsTYAIfT7NyYleNakv4iVxtdPibUVxKVNSzqlq5yq4lV0zYQTABL8cGqZSFjkSIxyRBCYgxvlSqJLqY2KSTlBWwE6rCGiEBZoVySrwhk/KFFm26bKmk5WNDPkUqCUKb9T5VVdFdRcaUoqkVpWLeckSCq2EKQpncAPUutMRaRKOim3MZH+OlkmMGGKLowvijL5e6GIb1LspE7YW+EqC8cyxJrvWmgtcGyP3HCcJuFSQLAunsHakgz8EpskK2OBtMF2fLLDLi0yisiy48wraUZcWWTaHmiIKRuNMTsXAmypiNgeloSoa5HrRFkay8XXFgqJp+xK911ro8KS0vg4aSVMCqYvAhWTSD2CcyUhBNOWRocxPmGJ+JU4b1yJ9CU6ZFRbIs3zSboS6QqUbc5B4RsFnkYgPaO+SyinhApM6usCTbVpl43YdPjpixzmzQzRcZv4Jq9et/+/VvHrt9n1JH3qhnCGzw3PzqXnDsWpYgYCDj99BQ9c1p54tO43Jr98k82BnfsihKZTjyijx86lWSu/WuXPMecu54gzlvPb+GxuO7sTxQUJBSjMnx3mx8+zGbh7EfVRRv82Potbz+pEwWqLkaevIFYq+OjFpvz2fTYHduqLkJpO20YZPXYezVp7CAHvPdMMy9KUT6hr0ynGoD0KUCpQM9V9OBsBjXFpa8V9397I9Amz2WHvfly+z01M/moqPQZ2Y+2KAry4x8W7X49Siqy8TJ76416atm5SY59aa5QKLAn8jZNPMHfqfKb/MIvdj92ZjOz6EfCjLj6EkoJSug3onFQPHHPZYXXuZ+Xi1Vy+741IKbn902vqXd0OzFxGi6P13qcmrfJ5fu4jxEpiZY7dLiOH8MN7kwhnOAzctz8AEz+ZDMCkT38D4LNnv+Gjp74AYIe9+7PDnn3L9P3hk5/z+zfTOP66UbTr3qZe4xPZ/0ULBxEahpDrQThBY1z6B+HpS45myl9LGbpdJ0586Q1+nL+QwX1zKF21HLtZjH+PfZnwbEl2RoiX7zqZpnm1O3e08fLYsuLSJYdSUhil24DOtO7cEoBjLj+8zv2YuHQzUgpu//TqBohLsXpX+mvaOp/n5z5MvDReZhy7HjGECe+buLTjPkFcCuLRxM9+B+D98X/w9rdTARjauxODepU1+n/j+ylMmrOQ/xwwjA4t8qkPThx9NE7YYYc9+61/6t9WEJc2udIp3VqoUn8jYQi/ctlfqXUTbTVYcfAcbdLq0g+cEgGHEqiYwhorZhRKMi6Mh5Ol8TIVOkNhZbtEMly0Fni2RIUkWgt8W6HXOVhRk1KnEgblcbBi0hiZ53qGkEia8gbpCunypcqu2wPFTIrcFMk1zb8qLvY1RlUVeA0JS4EClSB0glQ3lCE4yiqndKXzKpLbBOUFsjGpQQujGnMlMR2m1HGJZLvJ8bfILCbDjpNpuZT4DsuLc1hdmMlylY2FIi9SiutbOJYiFvKN55VllGFaCWJRh0IrzLJQDq4ylQAjlkeOXUpEePjKqJs8ZTy0PN8xqXcBYq5JxXO1jdYarTUhx0NrUNqQZsnqfEJhSUUkI0ZMOChfIixh0vgsaU4bS6O9gECUQYKdpRGOIpITIxJ2QYDrWkRLTYqflsrMX0ijHQWlJl1PY6bRKhFYMaPKQwi0ZchQyyN1rvugopUf7qogtEYEJ4/4hzLkWyqG7FVI5x51VIhsIHz4fLONQjgB9BlczICdK1bte/PxlvUinAwEXtwErN0OWkfz1jUrAqUF4Qz47NWK+95p2xhD9qqdcqoyfPBsM9YsNzHo6HOXcXTf3iQCquea/7seWEDzNimvqZcfaEm0pOL+Dz9kLe27bR7nSdWoW2xpjEv/HDRplc9Ohw4CYMZPswGjfurarxN//f43Sim00hStKWbpvBW1Ip0ysiI89OOtzPl13kbxbnLjLufvfDUlhaXMmvQX5z92er36adamCRc+eWa91p02YRYr5q9klyOG8OsXU/j7j4UA/PrlVPY4dpd69Qlww6i7+e7NH/n3bf/H0ZceWq8+snIzycotW90rp0k2N7x9aZllZ9x9Iq/f/S7Dj9oJMH5MkawwmTkZdOlTthJq0dpi7j3jcQCkJbl07Dn1GpuwOyLybqvXuhX6aoxL/xg0y81ixABTke23xaayqyzOpkerZsz8cy2qwEIpRWFxjCUrCmpFOkWywtz/1TX8NWUBO1fh49OQiMdc/rvTVZQWRZn9y1/899FNFZdWmbj0+RT+nmbi0uSv/mD3Y3auV58Ao0fdzfdv/cxpt/+Loy4+pF591DYunXnX8bx2z/uMOGoYAP27tyMSssnOCNOtXdmqcwUlUW58+XMALCm58fh96zW2dt3bcMn/zq7XuuWxNcSlTZ98KCp5VAItKrncLZee5juYinUJYiXwOdJCoYKHFsqkkcUx5emV8WXyw8r46YR8bMczJtyalLm21qYymRf0KQ0BoVVgKC0wZuVOwIAFLuVJ4rJM5bva7HO5vRW64rL095KyLbDsxC+HEuWLNCJLl1lHVLXt9Ny+dAWWJ4xJtgQZ9og4borb0xCSHoa30UR9m2jcRmlB2HbJtOPEPZuieJhY3AJXphRCGELHtj0ynDhh6WFLRYEbJixdHKHwtKTQDeMpidLCPJQhkhIP2/KJBVUDdTD7IjjeRsmlkUKjtPFSMpXjEvOjzfngJ/Y7QRJqknUspQJbITI8bNs3VQEBz5f4cSvl22QF++Rj+tRBqp5njOoT550W5ikKVLB5rYP364qELDNdntmIzQK/fpfNyiX2Jj8sk7/PYtK4HDbWTyiTvs7l/wb2ZMUip8y+73vsKqS1/r8e/u+WNlz1ry7ESkWFuY2WSP6zzzactFNPVi8zc3/lY39z/l3zk/ERYOGfYaZNykDVYjjREslZ+3TnxGE9WRX0OeKwtdghs7IhnCri+49yk15PAAf83yqEUFzxyDw++Ps3XvptKgN2KeTgk1eaj2+9ZmNjoa5Kp8a49E/Eta9dxIGn7cV/Hzudw/9rPFO00mQ3yeI/95xEryHbVFjn4+e+5ZKD7uC3b2eUWd5puw7s+a9dCYU3vM+cEIJQUJY7krXxq7gtmbuMC3a5mpuOuZf3Hv2UoQftyMB9+zNo/+0ZvP/269X3zx//CsBPH/3SEEOtFj0GduOqly5gl8ONmfI2O3TljZVP8+L8xyqoIjJyImw7sBtCCrbfo28lvZXF799M48cPf9mwZt2NcekfiYdGHsTRA/py3Z57c2xkOKHxETLn++SHw5x//O5s1611hXVe/2kKJz7+Gj/+uaDM8k4927H7qKEbJS5JKZLpy5GNbJQNsOSvZVyw67XcdOx9vP/4Zww5aEcG7tOfwQc0RFwy6qOfPvq1IYZaLbbdsStXvXAeOwc/jvTq3Iov7z+L9+84jablSKusSIjtOrRECBjSo0Nl3ZXBxDkL+Xba3Ma4tJ7YPNLravOeLrtMl2snADsOrm3UI0kyI6TREZ1UEhkfHo1nW1gFFn6mxo8odL6LjCgikTi2rbAthQxIGYE5/nEEvgZZIlFhbWZPYogKZUZlWcoQZFKnynRXldkWKFvK3GWkREgpQkqnvS5/HmoQrgxS7DTSUvjK3OB4MTtJRiW8mnQwzgpDKr8gjZTSypBvOiCfREzgFzsURzJwnGKirkNp3KHICZERdskPWWTbLiq7mOJomMJoBoslZIbiKC1wQj5exEcXOmb8WRDOLUUKwcrCbAqiGeRlRHFsL6DtRGBcbqG0xNci2MfEzaZ5f3VpFlIqLGkyHZEaSypCtp+WJispidmUxh2k1IQcn8ywS9y38DwblenjKwgFqYPxuIXvW6ljosBy/GSKn1KYSnNxyxCNUps5DpRL+MavyYoTeEOZ1BmVAcoKTOhjpiqitkDbIFygruKLdLLqnxmrtlj036mwjNJlU+Hr9/IqVdhsSPTasYT8Fm6Z9Lev3swzxRbWG4Kh+66t9Lt57vQQ82dFGHHYGjJzPGIlJpKMeycfy9b4nokrrTvF6NoriudCqIZ70HkzQvw9K4MRh64hK+jzyzfyg30r9wWVhkF7FBDJVMk5+Pz1fLLzPEYctg6A2b9l0K5rlOatN/05UjPqGFwa49JmDc/1mDXxT7oN6Ew4o/YkzKD9tmfQfuZm5Kaj70kuH7hPf0aef2Cl6zx62UvESuM8c/Pb3PPx5es38HrCdmwemXQHf/02L5mSsTFhWRJhSVA+tmOT0ySbWz+6ukH6vuyZc/n6tfGMurh+KqeqsG5lAR899SUDdu9Nz8EVycQEqro5tyyLByfcQrQ4VqPX18yJf3LRiOsAuPb1i9l15AaqENYYlzZreK7P7N/+pmvv9oRr6cMEMLxbF4Z36wLAtR++h4yB5cOwvp05ev8dKl3nlnfHEfM8HvpsPEO6Hd0g468rbMfm0U0Yl6QlEVKA0ti2RW7TbG796MoG6fuysWfzzesTOOqS+qmcqsK61UV88sqP9B/WnR4DOlXZLuRUTnNYUvL8xcdRGnfJilR/jk2dv5RTHnkNgHtPOpg9+3Wv/8Crw1YQlzap0il9ThNKpsoe5dcpTziBIW8S3ABB9TqEUSMFJjnBwzBEwtOAj7Z9CPtgKyzLS6pbtAbPT21Ro9GB8biyjNIJNPhG0eJLhXZ8tFQoF7RKk2Yl/ieIr4R6poazqrp5KN9QS9OnDibDGIcHm03cFOm03mpxz2eaJ9gaAb4GpVGWBlsRsl08X+L6EqVACoX2QKJxfUlp3DGpbCgcyyPq2iYtzhVGBZS4T5MKoQ2BY8gchSU9PF/iCB+lBFHPIubb+IHKKUE4aS1QCpQyjJpJn0spmAQ6UDGYuVFaE/PMeNE6qWbTiQp1WmNJH0v6SOkj8BHCRwQSJTM+nezX9yXxuATXzE0ZMZkXmJD7AvxA5ZRUP5EkEbUyfJVvBW/5dY83CVlmujyzEZseTVu6/PuaJZtcwTL1xyw+fbHZRt/unCmZxGOyDDE0aM9iGsqx6KHLO/LE6LYVJrd9tzj5zVw+f7Uph3bvx6Hb9OWhK9pz60tzOezfK5PbXzA7gxOG9KKowKrxh6V2XYM+X0v1GYpoTrpsSbX7M/XHnDI/XD39/SxenzYdMMsG71nEubcu3uTnSO1Qt+PWGJc2b9x1yiP8d+eruWK/m+vdx06HDk4+P+H6o5LPl85bzoPnjGH8u8YAeq9jd8IO2ewxatOWGm/RvhlDDtwRu4qbkQ2Jlh1b8OjE27n5gys58PS9GrTvXY8YytUvX0iPgd0atN9HLxjLU1e8wCV7jsZz60eMSylrZS4vpaj0eUOjMS5t3rj7v89y4cF3c/VxD9e7j+Hbd0NZ4Ntw8jE7JZcvWrOOm979kq+m/wnAoTv0wrEsDhqwaY22N2VcatWpBY/8fBu3fHAFB5y2Z4P2vduRQ7n65fPZdseuDdrv46Pf4unb3+fyYx/Bc+tYeCmAlKJGwglAin9WXFqzZg3HH388eXl55OXlcfzxx7N27dpq1ykqKuKcc86hffv2ZGRk0KtXLx599NE6b3vTK50Cy5zk63SkcyPlVT4VfIgCXxwb49EkNH6mRuR4ONlxpCDpaaQ1+BkKhEZKjSU0lkyQK6Y3KRQZYZ+4Z4gFrSR2po8rBcQCVUtQvlrlaIj4CAdUqWM8lrRR3+i0HRFCJ/e5rLdSZXNT9r0KP6anE1mB6ayQxrMoqcwBo1iSOkgFSzB7tfvQiGDOdECSiDBg+1BiQdSmcG0WGc1MVS6tJYWlWWgNq4pzaJFbiApK2nq+zeriLGQwx46j8cMKP6ohKtGlNn6mS8jxicVtotEQhRKyIjHWuhlIF6KeTdw3Sqd0wslXZhsh26NpRpSYZ7OmOBPXM5X3wo5HVjiOY/m4vqQ4FiIeDaE8SaFr44Q9bFsRcnxyrHhynkK2S8TyiGbYlMRDlMRDxD0L35X4vkXUBUua88YJKVxLIDxp0i19c27gg3RNtUPpmuxHAg4UDSIwnteRgHQN/J2ER8oSrLYoQxDWcd1GbDC07WzMuRqyxH198Ou3WXhezSdVdp6HVlBcmPhq0LRo67JisUN9iKIO3Uvx3LL7P+u3SNLHrSHQtXcJi+aGkFLRqqOHZcGCOWFWLglXaLd4boiv38krs7xNxxglhRaWpclrWnWe3fJFNk4Icpt4FKwxv+p37VPCN+/kVzu+LtsVE4sJspyKH8xNfV7UHfVQOjXGpc0WS+eZ6j/LF6ys1/paa3Y9YgjdBnSmVacWdOiRKpc95vIX+PrV8Xzw5Oe8W/Ac5979f5x79/8l3184ewljLn+e3jv1ZNRFB6/fjqwnfN/nrfs/RErJYeftv0HLXnfp24kufav+ZX5zQ7O2TQHIa5GLtGo/L9MmzOKlW95k92N2Zo/jdq3VOtvs0JX7v7+J0qIoO+zVr17jrRUa49JmjeULVwOwYvGaeq2vtWaPwdvSo1NLWrfMo2NwDgPc/fG3fDxlNq/+NIWJ15/NdSP34rqRKQI4EZf67NyTIy/c9HHpzfs+xLI2fFzq2q8TXfttQXGptbmOy2uejbRqfyE1ed5ixnzxMwds34MDdqgd0bhdh1Y8e+7RRF2XodtuwDnaSHHpuOOOY+HChXz88ccAnH766Rx//PG89957Va5zwQUX8NVXX/H888/TuXNnPv30U8466yzatm3LoYfWXl276T2dakClKp/y55ci9SuxMgFHS23u8oPKbgnfnmS6ZGKdYANGLZNYZtZRyihfjILGRxD8lwqBSuifjIJKkPIECu5bdFLVlD5uwzoI6SGkl2IgqtzzhNIqsbjcz+HJHQIdjFdrhRRGuSVkYv/TDZzKzWo5Iiu9YmNZP6i0CbMUwlFoBb5PoARKzJfGU5LSuJ3ixoRRBgl8LOkiRbDvQflA4YOvBAJNyHEJOzFA4fsCTwn8gCjTOnGcBL4SqOC4ChQSH6VBSIVOMGXB3CgFfuCdhDZzY9teoIwi8FUKngsfpTTKB1cJED5C+imD9cAbyuyTDnyzFBoVeIiZeUionLQWKKnxrNRDyYBYUmmiN41Jy3OrOCWqw1aQC7wlYsXiMJFMtUkPyYxfM3jxvopeBuXRuWcpVz72NyXFKdL6rBsX0XOHEuqrTFq6IExGVtn9b93RbTDCCeDByzty6q69mPVbFpYF0RLBTad1rtDuidHtOXXXXixbUNYzYcav2dxwSucK4yyPbr3j3PryX0RLU1+bT45uz8zJ2dWOb8nfETIzt9LPZGNc2qxx+XPncuLoo7nx3cvxPZ/bTniA83e5miV/LavV+i/e8ib/2eFSnrz0OboP6FzmvYTiptN27bGdimm9r935Dt+/9RNPXPIsa5atrdO450yeyxEtTua0fhdSXFBSp3Urw/dv/cTjFz/LoxeOZcJ7k9a7v7ril89/5/qRdyR9mTYnnHLLsdz33U08OumOOt30jrn8eSa8P4l7Tn+swnszfprN9UfcybhXvq/w3nbDerDDXv1YOGsxpcV1rKhSWzTGpc0alzx0IsdfchCjnz0Tz/W585JXuOjYR1myYFWt1n/u5R/497nP8PiYcWzTpWWZ93q3M9dC3Vs1w6mkZO2rd7yTjAdrlq+r07jn/PY3R3Y8mzMGX0VxQWmd1q0M371p4uOjF45lwvubIC59MYXrj7ybn4NqlZsTTrr0IO5+4zwefP+iOsWle9//jq+n/cX1r31W4b3Jy5dw+mdv896fMyq8N6BLW4Zs05E561ZR4m6ggi8bIS5Nnz6djz/+mDFjxjBs2DCGDRvGk08+yfvvv8/MmTOrXO+HH37gxBNPZMSIEXTu3JnTTz+d/v37M3HixDptf5OTTlWqnNKWifQ2otz7CaWPMDfvOqhQ52dqyPIRtjYbESniRfnSmGFLI5vTWuK6Nm7MwfWMUZMQxnTSkmDbELKNoiWc6SMzPXREQUhDGAhhTIRcifAD+Upg6p0wy05UksPShDJdnOxElTsRDD5t30T5fRUVpyeZqofZiJLG18pWZGR45OeUIp3Al0kLRLCNpHl4+W0mlFc6Md9mnWQzaQzEcYBMDRnKeBJpC9syc5muPlpdlE1xNJI8dr5vY1nQNCtKfmaccIZCZCgEAhG38eIOkZBHy/xi2jctIDvk4SmbuArhKRsdKJwS5uHGUNxCitRxtC3IicQCbs9C+ZapKCfMgXA9GyEEuXkx8vOj2I7GjTnEoyFc3wIhcGyFJQSeDlGiwtgSIo7CsY0ni7QUoZCPbRn3eKUtM88hgU6cC9Kk1smYmTyVpfGagNcU/DxQWQIdMedMUv3kGzWU5aZOmTpBlXs0YrNAVp7HikWhTapomf1bZqogQjXo2quEaLGg/06FDNilgKw8F19rJo+vf3nqnDyPlUvK7r/xT6qfHLo6aA3xKJQWCzr1iNJxm9pf9GXleaxYXPNxWrdGst3AYlq2j9W+71yf1Ss2rpfWZoONFJfqIxc3328VH3feeWeyzYgRIyq8f8wxx2y4HdnIaN25Jf93zZF06dOROb/O5Yvnv+WP8TP59JlxtVp/8Z+mWtTKRatx42VTr0ZdfAgvzHuEh368tdKbgkH7b4/lWPQcsg25zXLqNO6fP5pMwaoi5k1dwNzf/67TupWhTddWWI6F7di06dqy5hUaGA+cM4bv3/6Z+858oszy0uIoS+ZWTwCuXLSK9x77lJWLVzfIWHzPZ+7U+fjGXwLLsui9Uw9ymlRPrpfHzocORoiy6ZcJPHnZ83z/1k/cdeojla77+t3vcUqv8zmj/8XJcZTHwlmL+XffC7hi/5uJR+t4E9h4vbRZo3XH5hx34f506tGWP6cv5st3f2XaL3/zxdu1M8lftGQtACtWFuGVO39O3W0gn196Ki//51hzX1QOg/bfHsu26DV0W3Kb1e2c//nT3ylcXcS8aQuZ98eCmleoAW27tcKypYlLXTZFXHqK8e/8zANnP1VmeWlRKUvnLa923ZWLV/P+mC9ZtXRtg4zF93zmTVuUFpck2+3YhZy8zBrWLIs9+nZDAHv0qejLdMtP4/jk79lc8u3Hla77xB8/sdc7Y9j//afxqqg+M3f1GvZ7+hlOef1NYl4d05EriUsFBQVlHrFY7a89K8MPP/xAXl4eQ4ak0tyHDh1KXl4e48ePr3K9XXbZhXfffZdFixahtearr75i1qxZ7Ltv3ar+bdL0ukp5vPJpdOVeivJPEkql1NOUlZIC5RmVjJQkKbZAHIPvBUQMynQnE+oVkfRzsqSX7NBTFkoJU9nOIjDlJo38SWw4LZBpKpBlOqh2J4VCSd84SldLM+igmwQLp9PfAoxiSEujvrKkwhY+ESdOkZfI3So/i8HAyh+EoGmiRbrSSSfLrQVKMF/juRJ0UBFQKJNvqEVqbgKTb6U0vg9xT5o0R3wsy0OFLJQn0XGBiktEyMeWhnBKeC65Cd+mgPz1VSInUydVa74PUVfia4lG49imAqFtqcCXycyL1mbeLakIWXFUCLQSSSWW72sQGkuk3Nxk8FoKhZaBd1Wg6vI9gecJNCpF4frCpNh5wfxapE5Q1zRRArQdeI75YMcMSSUSKqc6XghtDaU2t0TEo5K2nWPmM7UJiKe/pkV45Op2NbZr2yXGRfcuxA7Bzgf8P3vnHSc3cf7hZ0bSlqvuvWIbG7AN2DTTezC9hN57CST0EEhooYcACYQWeq8/em+mxnRMMRhj3Hu9ukXSzO+P0ba7vfOdfeeC9fBZvKeVRqORbk767vd93xqevqMr33xUwV2XLr+qR3OkUxbd+xY+ECTrLdKpthdhyjr4RGIQiSnOu3kmx229QYu3TSctevRb/oPLsE2SHH3eAs47oOV5U7QSdO7e9iLb2sCqmpdWxC4+d+7cgp9fe+01TjzxRA466KCC5SeffDJXXnll9ud4fPm5adZGBo7ox8gdNmTetAVsd9BWgHF9J+uSxMuKH/NJ1x1Ft75dGLnDhsRKGici79ava6NlWmtm/DSbUbuO5KWah7Edu+jDH5gHjXsuepTapbWc+s9jKetgBPDdj9uRH/43iS69O7HBVuuv6CFnGTJqPR6ZejtCCDr37LjS7bWWbfbbnKf+8SJj9t0suyyVSHHCsD+xaPYSzv3vaYw9sXiulUv3u57JX03ljQfe47bx1650X64+/GY+fPZTtj94DH978twVbuegc/Zm3z/8DifSOMH4VntvxrfvT2TLPYsnd57xoynXvmDGQtLJdNHr7/2n/sf0H2Yx/YdZ/PLNtFb1LbxfWnsYsH4PRmwxkPmzlrLNbsOBYF5KuMRLiufjOe2EHejerYJNhvclWiTBfa8OFY2Waa2ZOWkOo3cbyUu1LZiX/vIYtcvqOO3GYygNhI/dj96OHz/9hS69OzJs85XPrTZk1Ho8Mu2O1Tcv7bsZT9/0MmP2GZ1dlqxPccIGZ7No9hLOu+d09jhh56LbXnrwLUyZMJ23Hv2If7136Ur35ZoT7uLjl75i+wM24+L7Tlvhdo7dYTRHbLMJjt34HnSXfoP4dN4sdu5bPP/UL1XGaTertpq072HLxtffy5MmMXnxYiYvXszEBQtb1bdi81LfvoX34JdddhmXX355q9rNZ968eXTr1ljA7NatG/PmzWtyu3//+9+cfPLJ9OnTB9u2kVJyzz33sO2227Zq/2tETqeCn/P/1YWfN/nMlhGUbFMNTEc12tHgS7RrRArtGAEi8/CnvCDRttA4MbMzk4ta4GtJREiitotjKQSatGejPJBSYzsKrSV+IB5lXU0Zj0rGSZQ5CBFUj8tzGUmhTZW95QlOgfqTcSplxyWDBVgaEfOwo4rSeJoO8QTldpqFNeXGAWVppKWDilF5g1xUzSv+cKyzmd4Du5TUaNfGR+E4PralSaWlcY7lNSayepcZr7p0jFjEJeJo3KjGq5YITyKVIB5P0zmeRAMJJEIIvCA/ldIC35dBDicRdDkjwoGvbarTZuKPOIqSkhResG7MMefQtRRSQsx2iVo+luWghIXnG2eb0hZSKqK2G1Trk0QsL9sOAmxLEXEUSgnqUzZu0jYfOZiQTlci6y2cWiM8qag5z9IH4YrAjYdx41X64IOzTBKtEkg/+MxaAWdlvh0zvIlaY+g1MIm0Vo/gBMaZN2h4PZO/LaG5eUb58PoTnRg2qo5BG6WY9lPblBN3XZg6McbgESZMIp0SzP615dVoWsPEz0tI1Eq23K0a0Ox+yBJ+/jbO5AnNHzsY99Xrj3Vi+JY19F/fbXZdJ+KzxxGLmfBJGXOnLb+8cdUSyUsPdsJ2NFvtWk3HbuuQALUK5qWMXXz8+PHZb+/++9//MmbMGCZNmsTQoUOLbtejR2HI6QsvvMBOO+3EeusV3nCWlJQ0Wve3SCQW4Z/vXZH9WWvN+TtfzncfTORPd5zCXqfs1mibjt0qOfaK1lV8+r9bXuHO8x6kW78uPPDzv5t8sAP45r3veeYmIxwO2nQg+585FoDOPTty1YsrXwEvWZ9i2YIqegzoRpe8vC/thda66PGefP3RHHP5IQUVBOuq6lk027iXpn43o8k2MyXW421Uaj3j0Cjm1EglUjzwtyeJlUY56m+/xyry4JZPMcEJ4ODz9mHfM3Yn0kQS3xOuOYIO3SoZsf2GTQqeOx62NR/+33i69u3cKLRzuYT3S2sN0ZjDDQ+fmv1Za815f3qU776dwdnnjWWvfTZttE3HDqWccFTrHob/79+vcfefH6Vbvy7c9/0/m52Xvn7ve5695RUAhmw6kH3PMG6Pzj06cOUz57Rqv8Uw81I1PQZ0Xc3z0lHBvJT7PW3pvBQPvoSIlbbNveT0H2cH/85p9FnS9fj3258Qd2zO2HkrrOWE2xUTnABOHbkFx264KVGruDRywajt6RIvZYvufShxis9dew8byus/T6Z3RTkbdmv8pUuzFJmXZs6cSUVFTiSNRouP5+WXX84VV1xR9LMMn39uinoUO9dNXQMZ/v3vfzN+/HhefPFF+vfvzwcffMAZZ5xBz5492XXXlhfFWL2iUytp9KdB50w/2XOVsaX5BDpB4IixCPIdmQ2lDNxDwuQDyqwrpEKiIMiLJIUfCFU+EUtjCR+lJCjwPYIqdUEYm1RBop58wSl455NN+G2SUROEvBT7g9fAKdVgrYLLQgNKBw4nHyk0aU+SFpLKaIIl6RLj+Go0gHmKXoNuaN14WcGW2rhzSBtRz5USHc+4f0yDxf6OawVpV4K2EVIRcVxkRT2p+ii+0NRVx1isFZGIi68FaVfgKoklcucq627KebEAhW15lDguEemZbSyNI8HTEq01Rh/UQS4uYXI1Abb0kMLCVP7TuL4JobAFxiGlzbhGLY+0ZRknVWBVk9JH2sJcD5kxkwoVBc+3EK4OXE6mWp/IhOpKTJLxOoFywI9rkh18ZMpcIMrWKLeVVqfwJmqNo2uvNJfeO512zP24XJL1FpO/XX543LwZUcY935G9j1nCi/d35u2n26bSXWm5ygpOAHdd1oufvmqdZb2lPHZLT+7/eCLRGER7+ow9cgmvPNwyF8S0n0r44j2XvY5efojK0E2TzPq1jtcf69Kitr96v5Kv3q/kjKtmrVuCExSdl6qrqwtWiUajTd5ItYTl2cWbEp3ymT9/Pq+88goPPvhgo88effRRHnnkEbp3787YsWO57LLLKC9vXTjY2oibcvn+wx/RGr58+9uiotOKMHOSeWhYNHsJ6US6SWECTHLbzr06Ul+dYPi2bVtdKp1yOWmjc5g/fSFn31lcVGtL/nHCf3j74Q/4w79OyD6k5pMvOAF06tGRvz55Lj9/MaXZcuN/f/HPTBg3kY132qhN+nnJ4+fwziMfsOvROzT67L3HP86KgMO2HNKkU6klNDzefDp278CJ1x7Z7Pa9B/fkzq9MKGzDOWW5hPdLay3ptMd3384089IXU4uKTivCrJ+N8zU3LzX9eDxoZH869exIojbJRtu0w7w08gIWzFjEn24/kb1Oattqcg258JU3eGHij1y6604cuenGjT7PF5zACP5/feIcfv7yVw69cL8m273ymXOY8OFPbLx9yx3nzXHxfafxzlPj2fWwMY0+e2XCTzzwkcl5tXHfnmw/dOAK7ydmN/33qFu8jD+Pajwv5jOwY0deOfZooG3mpYqKigLRqSnOPPPM5Yb+DxgwgG+//Zb58xuHbC9cuJDu3bsX3S6RSHDxxRfz3HPPsddeewEwcuRIvvnmG2688ca1SHRq6GzKf99Q+MhfRzf+3lrboKKgYxptmxxEWU1CCqwgv5FSEstSYJsPpdBYlhEyRFBxLmIrYhGfqO0jBaR9k7fIsRVKK5JpG40EZYMWSFsgpEZlknWLvE5KsuF2JhG1NI4j3zLV7/KURa2bcDPlyuCZj/PXkUBEU1LiEo+5wWoWZZE009wg2VTD8L9MS8X21XBkG26aSX6dtJD1El0iwDbHrQNHUOZ3JpPnKXsIQV4mT0E84lNiuyxyHVRSoH2LRDpKDBcB1KYiJFwH2/ILnFNa5zudNLalcGyfjvEknWN1eNpicaKEDtEkdW4E35MgVNahZUtzYfnaRmtBxNYorUxScsy6tiQIqdM4UuFqidJGELKlxrIw59Ak/srmwEKakDkc0JHcuRU+SN+8V44ZPysNXkRARKFiGt+zUTGBiijj2Gtt/szwJmqNo9eAZF6Y6eqhUzeXEVvV8N34Mpbn9pk/0+a/V/bgp69bFyPfHAtnW3w/Ps6w0QnefqYj3/5vxfNDtYSPX6tgr2OWUFKm6dA1zQkXz+bj1zow6evlu51m/BLh3qu7s+vvl9J/aNOhdloTuLUaWHGLr812+yxjwLAEC+fYLJxj07XXipUdXyspMi+tKXbxfB588EHKy8s58MADC5YfeeSRDBw4kB49evD999/zl7/8hQkTJvDWW42TkP7WiMQinHfvGXz+xjcc9deDlr9BCznu74dS0bmMjbYZRmll8/NBx+4deHT6HWil27yUeKImwYIZJvxhyoTpbdp2McY98THKV7z/1CdFRadi7HDwGHY4uPFDVj6llaVsvd/mbdFFAAZtPIBBGw8o+tngUQOJxBycqMOAjVofev3hs+OZMO4HDv3z/nTt0zZfbKwQ4f3SWks06nD+n/fii89+5ahjW+dmao5jLz+Yis7lbLT1+tlwuabo2L0Dj079D1qpNp+X6qsTLAyqiTbnJGorXv5pEr7WvPrTz0VFp2LscMjW7HDI1s2uU1pZwtZ7r7go3ZD1RvRlvRHF55wNenUjaltEbJtB3Vo/r7z20898PmM2J2+1GT0rVuMXSisxL3Xp0oUuXZb/ReiYMWOoqqris88+Y4stTL69Tz/9lKqqKrbeuvg5dV0X13Ub5Wa0LAvVRG6rpliznE6tCEHJFFHLvvxgYaZ6nJ/XnmfyNwkHpDTJdSyhg8pnprKZWVkhpWnA8wUpLONMUhIFSAGWzKsMZ0u0toyDSpFnZRHZsDvpmGp3yrXM8kyYWvGjamIwcsqbbrieFuAKknUOAkUslibtSxbUlSGFqbantQiSqDfeTVPXdbOnQgNCoaRxeZn8US6+H4g8wdZKBQ6wQIAzEYJmh54n8ISgoiRBCo+62jh+vaSaOIlS24SZBcYxIRSeb6GUNNXpgg7qICRSaUi6FjUygpRgSR+hfTpHa0nZljlnaFxlEosLofGVJOE7pDwbL2Pt0qZSXn3aRkqwpcKXuZG3pPnl0kGFREv6KNskpldKQCZ80dIo2whdwhUIz4TWmYa0cTLFjUAlIh52zMOJGZVJWBpfW6SqViABnch7H7JaKav0uPrRqTht4yxeYebPjPLd+Jb9EV0wO8Yzd7ZNiEaGPoNchm+V4Ok7unLP33u1advF2PnAZZSUmTmma0+fPoPSTPq6ZULXrF/iuDvVNis4AfzvjQoevblni9rc6YBlXPSfGdx3bQ/6DEqtW4ITFJ2X1hS7eD733XcfRx55JLFY4fV/8sknZ98PHz6cIUOGsNlmm/HVV18xalTb3VCvqex+7I7sfuyOza7z85dTWDBjEVvvt3nRhOHVS2oorSzBCipFdehayQlXH9HiPliWZRzDbUxllwr+9tR5/Dj+Zw6+oOlv7NuKs/5zMu89/iFHX3pwu++rvRi8yUCenn8v0pJFc3g1R31NgqsOvQmlNIm6JBfc94d26mULCO+X1mp+N3Ykvxs7stl1fvp1PvMXVbPdZoORsvHfgaraBGUl0WwoVoeuFRx/5SEt7oNlSbDa3sbeoWsFlzz2J376/BcOPnfvNm+/IVfstjMv/ziJs7bZqt331V5s2KsbH118GlII4s04Z4tRk0px9guvorSm3nW5bq/d26mXLWAVzEsbbLABe+yxByeffDJ33XUXYHJg7r333gWu8GHDhnHttddywAEHUFFRwQ477MAFF1xAPB6nf//+vP/++zz00EPcdNNNrdr/6nc6FXM7ZX7O/yK5iB4jgvA6bRlniYqCdgKXE4GgIk2+HdvWyCD5t3EsCQLNBK0lQmgcW2NbRiiRQY4fFQgRAHHH5PrwtI2vbJMvSZgk1FpJ8CyzT0sbwSnq48Q9lCtRrswdb0YAanDMWf9Ovssr+2/DgRDZMdBaooWkvCRFwnMQQJVvobECZ1CDgcu0pIst1zS8T88KfMEBCADPAhuiHdJ0rKhnWX0JvpeXn0oE45gRbTKHL3TBWMfsNHMScVTKAVeQjmtQCq0FlqWI2D6JtJPN5ZQxsIE5R7alsaV5KSRaQUT6dIvX42lJzPaJWyZcL+k7KEy4ZK0bQQWJ5GXg+lKBOOcjzIWCRmmJ0gJXWcggF5evjStKCxlUtNNGbMs43bS5BoUWWK7Eco3bSTnm+iRiBDNd4RGtTBONeMhAXFNKkq6XpjpiKwgTY65ZJGolrz/Rid0PXUK0bXWcVtFv/Xr+/J+pvPRAFyZ+vny3U1vz87dx/n5yP+ZMa588Tg256by+bL5zDXsctoTP3qvgpQda963X/14vp76mNwf/YSF9BxUXn4ZuWsvFd04lUSd55s6uzJzc9Lei33xcypUn92PW5CiWU8aMn6McdNoiOndfN8SnYvPSmmAXz+fDDz9k0qRJPPnkk8tdd9SoUTiOw+TJk3/TotO0H2by+r3vsNMR2zF0s6YT4i6YsZCztroY5Sv+8O8TsjmXMrx4+xvceuY9bLDV+vzr46uWKwLOmTKPtx56n+0PHsPA4f3a5FiaY7uDtsomTW9v9jh+J/Y4fqdVsq/2pKR8xRLpR0si9B3Wm+kTZ7H+6JVPsrwyhPdLayfTJs3lzSfHs+N+o1l/46bnh3mLqjnp4kdRSnPeCTtz0B6FIXjPvPUNNz74LiOG9OTuSw9b7rw0+5d5vPPoR2x30JYMHL5yxVVawvYHbcn2B225/BXbgINHDufgkcNXyb7ak9Loit1jxh2HgZ06MmXxEkb0XP79QnuyqualRx99lD/+8Y/svrsR2Pbdd19uu+22gnUmTZpEVVVV9ucnnniCv/zlLxx55JEsWbKE/v37c/XVV3Paaa1L6r7GOJ2KDm8guDQ1HWS38c1DvfBA2GSrwyEAT6M9cNMCKxCX0m7uazMhdSCGKFONTIEjlalmpo0AlElirXxTuc5XZn0r4qF8GSTZVhCEThHk+FGewEtlwtuCTunlPfQtz+2U+THwPAWTpUpJliwpQ0QUWgXV3pQkq1zpIBdTwwTixXqQ7WOD8JFMG1qY/FW+IJ20qE1ETUU3nbeJzrmyhDGRmc2CplJpC9+TuI6kJJZEV0JqWQxdZZFKRBElPiKm8ZQ0jiNlxl9nkrIHFf0834x1HRESnjmvMdtDKUXnSB2usohbaWwRZHXSoLSkPhJhmRNjQbKMajeOwjLJ3YOcUaZdU10uU71OYa4F1xN4vgzCKYPQTKlzOcU8Ca65JJTQSIURDVUgPmmNjisiJWkq4vVEHQ+NQKKxpCYm09T6rZxwQrv4GkVZpWLPo5ZgtcM39K2hspMRxCd+vnoswzVLHT56peMq299348u57L5pzP41xtWnDGj19vNmxth/g8VNCk4Anbsrdti3mgeu79Gs4ASwdEGEj1/J3QydetncdUZwAtZYu3g+9957L6NHj2bjjZcfWvDDDz/gui49e7bM6bamMvX7GaQTaYZu3rhsNMANx97K5K+m8tFzn/HI1OJl7YG88PLibrNvP/gBgEmfTcZNuU0mjs5wzZH/YtJnv/DOox/w0C//adnBrCa01syePJdu/bsSKVIh67fOjJ9mM/W7GWy932bN5uXKYFkWt395A1ULq1dvaB2E90trKFO/nxnMS8VFyRvPfoQpP8zmkze+44GPm6+Ilp2NisxLXwfVEX+YMo+06xNtJn8TwHXH3MakL37lncc/4sGfblneYaxW1vV56deFS/h5/iJ2HjaIyHIKHQDYUvLC8UeyNJGkR3n75BttMatoXurUqROPPPLIcrpSuP8ePXpw//33r/S+V2OK2zzy3U75L/LmiwbLM58JyFatUxHAErlVJBARJq2RzMu9g8jmT8q4b2yLIDQLIrYOxByJQuB5psKZFgItJL4yOZ2EDG60tDBCk4X5N1PszBIIafIVFVa2K36suWMWuXWbGBfjOBJ5OZ4EygbPs/F8G9+3AwdXU4009cpPhJ63wzynE75AaAkRTaTUBQuSqQi5JOqBC0sG5yg4UULkftZIFDJ4KJe46QgkbYQvwTI5uGxbEbEUKc9GBXFumTZl4KKSwizTCNK+g6dsupXU0aekhohUlDkuFU6acjtNuZ2iwkkTtTxsqfCERb0fQyODsTKjqpFBKKVp39cSXxsXl68krueYHE/BGGkt0X5wTXkSmbaQvqnIZ6cFMsgVpp3AjRfRWB3TVHZI0KEkhWNB1FKURDxsqdFSYjutnHAycYaZV8hqpXqp5Ox9BvHW05W4zUdrtTujdqhhoy1qWK7a/Btgw81rqa+x+PHLOHZkxZJ2P/Wfrlx3Zl/mzWz6RjRRJ6lZJvnT9TM4958z6Nxj+Se5e98UsZL2i+X45qMyXn6oE4m6dttF61kF81K+XXz8+PGMHz+ek08+uahd/LnnnivYtrq6mqeffpqTTjqpUbtTpkzhyiuv5IsvvmDatGm8+uqrHHzwwWy66aZss8027XIsq4Jfv53OqZucz5lb/oXPX/+66DoDR/Y3/45o3m3UrW8XbvvsOq547kL2Ob1xWMJxfz+c3Y/bkT8//MflCk4APQea3FzdBzTO0bWm8eBlT3L8sD9x9jaXNLpB/62TqE3wh83/zFWH3sRDlz/d4u0iUYeufToz/uUvefiKp6ldtmKTldaacU9+zLuPfbhiYx/eL61xTJkwndNGX8hZW1/CF29OKLrOwA1MiP7AYc2H6vfoUsE91x7J9RfuxwG7Nf4y4dSDt2Gv7TbiitPHLldwAugRzEs91oZ56dJgXtr2r+vcvFSXSvP7Ox7lnCdf4fb3xrd4u6ht06O8jLenTuFfn31Cdaq1SXUNWmtemzCJV775KZyXmmCNcDrp/DcNQ7saL8rpIJpcJbAkSMsYTbQNWupclTU3EAVskdteaKSl0JbGsnw8X2Cj0VrgCkHEUmihQAmEMLmb0q6NJRUahTRqFVoaAUbLwMrj+OCbUCvtEoScFfa7RSMiMgffhDNJBM6azOc+eLURsAsfaoxpSTduI/9nXWSURdEVc40KDQpS9RHcTFhhwWrC5D6SJvxQBBqNCt4YV5TAdS2EUMi4i98BdNI2lQFdiWtJhLCIOh6+ZRxNnhIo3zKGLQ0qsFGVRdJGSNISTwlcBWUySUI71HkOaW0TFR6d7Doidpq4TBEXKRztMztRyTKvBF9Lk7sJ47BS2sILQjX9wPFmhtzkiLIsjetapNMW2g+ENVuhbR88iVASJTVCC7Sl8WIaP6Igok1uc1/j+QJfB8KWEjiWT7eSGjyd5tsip71Jwm/u1ii0lqSTFrsdXLX8lduZz96q5IfPfvvVtgAuvWcatVU2/7pwxUNzliyIsM3Yanr0bdqR9PJDnene12XPo5dy8eEDWTxv+Q/UJ/9tLsNGJVa4X8vjuj/05ZEvfqSZ4iurnlU0L62IXRyMZVxrzeGHH96ozUgkwjvvvMO//vUvamtr6du3L3vttReXXXZZNj/R2kiiNokObmhrl9UD8MEz/+P2cx5g1yO346TrjuK8e07nkAv2o8+Q5Tu6Bm8ykMGbDCz6WZ8hPVuVu+fPD53FQefszXqB6LUmM/Vbk+R3+sRZKKXW6msCYNGcJVR2KW+Ra2llWLqgikv3vx6tNHVVdZx203GtbuOLNydw9eG3ABAvj7PRDi2rUpolvF9a40gWzEtGjPzwtW+56+oX2Xm/UZxwwZ6cc+PhHHz6LvQeuPxS9EMHdmfowOLhUv16duRvp7YsmT/Anx84g4PO3pP1liPCrwn8+u10wMxLrclruKayeO4yKjqXNVtNsC1YWF/HKa88jwZq0mn+uu2OrW7jo5+nc/5jrwIm3G9U75ZVOM6yDsxLqz2nUyYNTjOrNB1lJjAP7zLnctK2Nm1amKPLHKHM/g+0RgRVzKSlEEJgSRMGZktNxFbZXbq+jevZaMiuk3P0GIeMVsIsE9oITmScPXlhag2dSk1dTxldLBCUCvQg3WBFkWtaC4GW2jiQsvvTQdW4hoO8nEmoYNDz4xsFIhM+CAhbm4ptjUIGTccyubWCg8l+plTesYhA5vGlqegnARusiMKyTN4n15dYUqOUEf8gcDiZk0Fp1KUimqLGjRCTHn1Kqujs1FPvR9FYpLWF0pJKp4aI9HG1xBKQIkKVX0KdG8PHMoKTADebP0pjzrEJyROApyQCgeMolBKkU47ptwIRUZC2EK6F9AVSCZPPCXBLQcU0RAFHUVKaojzmIqRAeSZhvZQecdsjZnn4TmtDcPImq3XA0bI2MG1SlGO2Gkq8RHHG1XMYsUUdchU+lygF91/Xg3HPd6AJ+f43xWY7VlNfK+nS02XPoxfyxuOdg8IGreeW83tz/zU9GL1jDcecP4/yjopn7uxCz/4ptti1hr2PXUiixpzMP982g49ereD+63pSs7Twga2k3OfIc+bx7SdldO6RNqG47XQabn1tMq0sJLIKWDXz0orYxcEk0DzllFOKrt+3b1/ef//9NunfmsRGWw/liucvJFGTZMdDTfjhi3e8weLZS3j6ny9x4rVHIqWk/wZ92mX/sybP5akbXmCLPTdl2wMK85bYjs2wLYa0y37bmtNvOY6eg7qzxZ6j1nrB6ZW73+KW0+6mz9Be/Pfbfy63Ile8LM5tn13H1G+ns80BW7RqX/GyGB26VrB0fhW9WyBqFqO8Y2lwb2vet57wfmlNY6NthnLF/51PojaZrdj48qOfsHh+Nf937wccf/5YpJT0G9KjXfY/a/Jcnr7pZbYcuylb77tZwWe2YzOsiVDkNY0z/nU8vQb3YIs9RxUt7LA28cr973PruQ/Td/0e3PnxFVjLCZcrjUZ4+rQjmDR/Ebtu0LrzVeZE6BQvYXGinoEdOq5Qfyvj0axfpCK+IlWEfvvz0moVnZpzOAFZN0uDRbk3GacTYKVA+IAPftzk/kFiGhBAOk/AsXU23Mt8bsrd2dInYvk40sWSoJRA2YJkysF1bXxPYdsKKXMXhRAKYQnjpMokC9dB3/Iy0YvM8gb9X/4I5Q2MyF+U21hnlnvBcQthEqg3YZIi75o242uSniMwApoKRKq8jfNLvwulc9sJlfd55qSY9zpbQdBq3JGg2p/yBJajTL9tD6RA2CYflrIEvhbEHI+I5SGEpj7tkPYc3CAvlxBQk4gi0cQjLjXpCNNrOxIRLp0jtdhAGknKl8xJVdLFqSUiPSyhqJT19IotA62ZW1dOXSpmHHACXF+SxlSl0xosy7jbjDjkIzGimONYpOptREJCwjJJ7W0NHlnhUwiNiioo8c3J8gW1tVFcz0JKn7JYipjtE5UeMenSJVKLrVppO18HFPK1Di2ZPyPGLgctYeMxqz7m6ccvS3jqttWbGHFV8qd/zKJLD595Mx1efXj534Q2R22VQ22Vw7VP/Ep5R8X8WQ7vv9CRW1+bDIDjQLzEhO9VdvZ5/t5ujQQngF1/v5S6aostd6tmw83az+UErJmV8cJ5aY1k6303L/j59+fsw+I5S9n1yO3b/ZvxS/a6hjm/zOON+9/llcRjbV5yfFXRY0A3Tvvnsc2uM2fKPKZMmM5We49qdwfRyjDp8ykAzP55DonaJOUdl5/bpP8GfVZImIyVRLnvx3+xeM4S+m+4YkmZh20xhLsm/BOtNOuN7E91dXXrGgjnpTWSMfsUij0HnrA9SxbUsPN+o9p9Xvrrfjcw99cFvPng+7xc/eByBY41lRbNS9MWMfXH2Wyxy0bt7iBaGX7+eioAsybPJ1GXoqyy+RyaAIO6dWZQt9bnjIs7Du8ceTwL6usY0mnFcs6N7NeT5845GqU1Q3t2DeelIqwZV1tTJpwGLp+GBhyCKC+dEZAs43jSUuecThbGhRJsmPlMSBCWEQ5MFTRwLE3UUTiWCafUCBLpCOm0A2iknanGFrQVOJ60L41TJ6sw5Y6lIKVSw+NrOAaNrjFR8K14wTWYL0BlwuyCBUI0GKxibWevbYGwNNLWaCUKXVEib79KICzAC1xdtkJElEnc7gcr68xGDcahIXkClbB8hMRU90MiguqBluMbUcfysaXCsY3jyVc2fjDWpjqeRkroEE9QlYqBlnQvqaXSSRk3k7ZJKwcPm052PZYEK0gSn9BRqv04dV6MhBtFI7ClCsIFTY4nX0mTSFyq7FhYlqmal3Jt3EQEklYggBqhUwR5nKQPUgu8Eg3lRtQTaQFRhbRNyGHmmotIRcz2KY+kqHSSKLeVD5BK507ybzQWeG3l03cq+PGrOEM3TqxSp9OQkfVsscsyPn+3okEVy7WL3Q9bzJHnzOfJW7vx+uOdsvndevRLcdF/ptNzQBqBJlZirvu3n+mIE/VxU60f7O59Uxx65gIevbk7i+c5PHZLd065fDZde7lc9cgv/OOPffjp61IuvHU6Q0YkkZbJpbTpttVsvUcVz/23C6lEbr8vPdiJaFzhpSSfvl3OOTfOomPXFcs1tVYSzktrBVvtPZqt9h69Sva1ePYSAJyYs9Y+2LWEVCLF6aMvpL46wSEX7MfJ1x+1urvUJMdcfjCRmMPwbYe1SHBaWco6lFLWYUUcSjlWqrphOC+tFWy584ZsufOGq2Rfi+csBcy8JK21935peaQSac7a8x/U1yQ5+IxdOOEv+67uLjXJ0RftRyTqMHzMkBYJTitLZSxGZWzlyk0P6dHKkLp81oF5ac0QnfJpJgqkYXRZwQc+yDRYlnH7aAnCM8IRQmcrqSE0Qiosx8exfRzbxZaKiO1TGkljtCtlEl1rgUYjpcJNW/iuxLM0Mut20iZfkQhC2lRexwI3UhFjUuP+NzsYDTYqJtBlHFuZrYLxKNikWIieMgusmEdlaT1CQl3SIZ2KoDJ5ihTgC3AF2tHGJVbime0ifk6Y8gLRLRNqp4Gg+h+BaJXtdvZnjfJAOSZfE/USmbDQEY1bDsRdhLCxoimiMk3HiEuZk2JhbSk19TFA4PsWvi/5dVFnUyBOwxfz+jCrrJJhFfPpGqmhR3wZrrao9yN4SmBLU5lOaJ9yK4EXFdSmHKqScVKu+ZXwfCOe+a7E9QW+D5GIhxQmD5NWxqVkx1zSCQuRkFjVEqHMNePHFH4MhG9CPoWlsSIevrSRls5WQdQWxGSaniU1lNkpSq00EoUtW5l9WqucHU2vcTE26zRjdq9mg3bM5dMUk74p5bN3Oqzy/bY1p142m3TK4tVHCv+Yjz1yCRuMLhzXuhrJw/9Y8cpiex65hJ+/KcnmaDrqvPmUlptJc860OG8/05k9jljM0E1yiSYfvbkbZ103m7P3HVwgOAFoJUnWmRvYsUcsXbcEJwjnpRAAPM/jvB0uY8HMRRx+8YGMf/lLjrjkIIQQ+L7PY1f9H9VLajjh6sOJl8VXd3ebpa6qjnTSpWP3Ds2upzWo4MFB+av22vd9n3TSJV7asgeoLr07c+atJ7Zzr3K89dD7zJw0m0Mv3I/SypUTn1aIcF4KwcxL5+95A4vmLOXwi/bn05e/4oiLD8jOS4/+/Vlql9Vx/FWH/XbmJXLzkWptleyVxPcVbsolVtKy0LMuvTryh38c2c69yvHslO/4tXoJp220FeWRFQmPW0nWgXlpted0anGqoYafGf2oYLGyQTmByynzCpxJIhOKZ2ssRyEtjWUpbAtsCVHbx8rqJQKNIOk5pD0bN21lxRRhGWdNNpJMSZQncyFpecclih1fMfEn//Ni4lTGkZQXbtjIASUabpRZRxcd13yXU6zExXEUybRjqt75ecejQATvdZDDSQiQjsolB1f5glORE5rZV2axwqybcaNJIGWqvoFAR32ko7Bs4zCK2Yq47SOEIOE5JN0Imfxc+a4upc3PMcenUyxBRSRFmZ3GEpqksvCxcISPg0c9MRJESakINW6cejdq8jYJnXVSgUloLh2NZZtqdlqbmoG25eP6Erc+gkhLhC+Qvjnp2gIy1ecEEFVYMQ/fNccnHQ8ZjGNp1KVDNEXc8iixXNN/y8UXrfxjsA7YMtdWPn+3jOk/R+g7OM2qCrH3fXjuns4IaRyMayPb7rmMP14/i1ipprTC4+VpE3L54ITJ66Y1fPZuOf88uy/1tSYvW7PfXCyH+6/rgWWbNnY6YBnxMj+bh2nYqHpemjoBNMyaEuFvRw+k93opdjpwKWfvPZhEffMn94oTB2Dbmn2PX8Rxf55HJLY2/p62clzDeek3x5J5S3no8qcZvOlA9j51N7TWLJy1mM69OjaZ2+jVu99h4v9+BuCnTydz6/+uyX727fsTeeiKpwDos34v9vvDHu1/ECvIotmLOXGjc0jWJrnh7cvYeMeNmlw3VhLltk+v5ZevprLdQVs2uV5rmDt1Ph26VjT7AOymXf6w+UVMnziLvz5xDtsdtNVK73fOlHl06tmxxQ+LzTFr8lxuOM4k+bdsi2OvOHSl22w14bz0m2PJgmoeveV1Bg3vw55HbG3mpYU1dOlSjpTF/269et84fvrChHBNmjCTf310ZfazCeMm8vCVpjJjn/V7se8ZLU88vqpp1bwUj3DLS+cx5YdZbDt24zbZ/9ypC4J5qWmR2017/HHfm5nxy3wuvu0Yttlj5Ervd87spXTqXEYstvKhy79WL+G8j18BwBaSczbZbqXbbDXrwLy0ZnsIG2oYDdCBzhGkF0K6YKcEMikQKWHcPkqDUGhHIaIKK+JjOz4R2yNie8TsNHEnhSUUCc9mSX2cmUs7MGtJBxJpm1jEpaQshRXxkI6P9sFLS7yUhZuy8BIWJCTCM8JDtkPaCBTZZ6Bsp/N+1kVemWPOi9bLWaUyzqpgZRE4t7LLCtvKCEtaZV75XTF90x6kEo5x+AhT8U9YZkWRFghXIDwRaFcKYfvYJSnsmItl+cGO8voe/KxVEHbngfAEwgNc45hCBecmDTphoestdMKCNNj1YC2z0EkbgUZrSXUywtJkFIEfJG0HrTVagfJB+wLlm2P0XMmiZWVMmNuLH6u6s8wrISbSrBedT//IIkpkihSmol3Ks0kpC9BYQqEVeJ7E981YSaGJxD0sy8cSPo7lE7U9pFD4WhB3PDp3ryLWqxa/k4tyFPgKFfOxOyUp6V2N1b2eeKd6OpbX0bvrUgb0XshmfaYzdsAPHDL4S37f50t27PQTI8tm0CuylKj0qPHjLHPb30oasmrYYpda+q+/6gQngDlTo3z8Sse1VnACOODkRVR29rFtI/o4EYjGIBo3/zpRs/yl+7tQtdjBTUnSKSPsrjgiSD4uOOjUhZRVqKzALwREohCJwQcvd2DOtBi7HryMd5/tRF2NnQ37awqtBG5acsDJi9ZSwQmKf1sSsi7x1A0v8Mrdb/Gv0+9mwYyF3H3BQxzZ/3Qu3e/6JrcZtMmA7Pvtf18ogvQd1ttUJ4o6DNtizU7WO3/6IuqrEyils1WimqP/Bn3Y5cjtiMSWX91yebx+/3scM+hMjh/2J5L1qSbXq1pUw9TvZqB8xdfvfr/cdhO1CR696lk+fLZ4ifHnb32NY4ecxckjzsVrbdh/ETp0raCii6mmOqAVIXK3nHYXB/c4iU9e/Hyl+7Cy3H777QwcOJBYLMbo0aP58MMPV3eX1nmevvMdXn3sf9x68dMsmL2U2+96l0OPuoNLLn22yW0Gj+xvKq5ozXb7FYYX9xvWKzsvDd18UHt3f6WYN21hdl6a+t2M5a7ff/0e7HzAZkTaQKx5/b73OGbwWZyw4TmkEk1HaFQtqWXapLkoXzHhk8nLbbe+JsFj/3iJj178sujn//d/n3P00Xdy0on34Hkr7yDvHC2hY9SI+UM7tjwn6NUPvcXu59zJ+99MWek+rAusGeF1xZ4RiuY4aowmCNcClBUUVjMxcjkBR5hqdeblI6URaUyuHh1ExglcT5L2LDxlwr1EkPvH9SR5qgpaB9+n+wLhBq4gIUA2VJgorFaU/wV8U8eWWd5wTBqOR9HxydtBfuW6BvvV2fxLZPMngSadtk3i7CAhu/FhBttZGmyFtFVBOzoQaHJ9z7ibMkJVRnjL7TMnUpnQR5RA+CYcUmHcaiLiYdvGZWAJTdz28HyL2lQke34y/W8oTgqhKY2k6Ripp0wkiJPC8y2Svk1KOSgN9SpCStskPZt61yHlW2h0VmgW0uTG0jrI6RQkEvcVaDSO9BFS4bkWqZQNnkQmBcoB4h5W1DWHKBWO4xK1XZS2iNtpKpwUpXaauEwTlS5WIGKltSStZd6gt4J1IBZ4beXrj8pYPM+mU3ev3SqXNaRHvxQbblbLxC9KWTkRZvXx1tMdGDa6Dsui2XHb+cClfPVB2QpXqmuKM/cYwlHnzeeIs+fT0MCx5S7VPH17V649vfV5RV57tBNHntu4zbWDVl5L4bz0m2ODMUMR/3qFHgO7U9m1Is/B9EuT22y09VDun/RvhIDegwvDX7v06sTjM+/C9/w1PoRlwzHrc8Ytx7NsQRVjT9ql4LMl85byyl1vs+kuwxm+7QZtvu9p3xmRa/GcpdRV1TfpOurSqxN/+NcJ/PT5ZA69cL/ltvvUP17kkb8/A8BDU26jZ4My81OD/S6YvpBkXYqyDiv32FDWoZSHfrmN2qV1dO9f/OHu5bve4q2H3+fYKw5l1C4jSCfTvHL32wC8cf97jRLht5qVmJeefPJJzj77bG6//Xa22WYb7rrrLsaOHcvEiRPp128l8kyFrBQbjh7IC/d/QPe+nansXMrEH+cA8OOkOU1vs9UQ7v3iaoQU9Fqv8Lrv0rvzWjMvbbT1UE6/+TiqFlazx4k7F3y2eFkdz78zgc2G92fjob3bfN9Tvzci1+I5S6irqicaLy6wd+nRgdMu3Z+fv53J70/dueg6+Tzz79d57IaXAHjg2xvo0b8wvcLUXxcCMH9+FcmkS1nZyt1QVUZjfHDAaVSnk/Quqyy6ziPfT+C5SRM5d4ut2aZvf1Kux3MffAfAyx//wA6brKQ4uQ7cL60ZolNDigkuza0rQCjjdNJ5ib49KcBRJg+RbXIx2U7gDAI8LUm4Do7lo5SkPm0cP1ob10x9MkrU8ehQmsT1JbX1MfzAVUNKQjpQuAJhq1WXSJFwwaLrFOhYeUpTkWWmWl0QApdxOhW0KxrtRytBclmMpBPFshVl5Qkc2yflOiSTDlpJI9RZGUEmCLXL5G4SJuQw60BSBOFzjV8iL+eVDv4vVBDCB+hoIPgogaqLUC8hGk/jKZhbU4HnSzzfCgTBBmMnQEgdhEgKalIxfq7uhhaCpaoMpQVpbZHwI1SlYyRUBNeXJJVNrRtDCuhYmgQNS2tLSKVslKWwbB/b9pGBuyxiK2KOEQ+SaZu6+jgq6SAUuL3TRCtSdKuopXtpLSV2mnmJcrQWdIwmqHQSlNtJ+scWMTCykA5WvemTjqK0IGXbdFM11KsYtelWTjjrgC1zbWWjLWop77jqBKdEnWTWFIeJX7R/Qtj2ZNu9qox7SZuCAZlE4Q15+9kObS44GQQ77LeUdFIQL83t23Ph07fLSdavmKtqx/2XrlLXW9sSzkvrIl+/+x1aw6hdRrDDwWPYdOf7iJfHcCIOZ995Ci/85w12PHTrZtvoM6TpXGtt4QRaFQghOOCPexb97I5zH2TcEx/z5D+e59bx1xKJOY0EtpXhiEsOwok6DB61Hp17dmx23f3PGguMbVG7vYPzUt6prGhy7+P+fhhlHUrZaJthK538O0NpRQmlFU27ue84537SSZeHLn+SUbuMIBKLcPSlB/PR859y4J/2WvkOrMS8dNNNN3HiiSdy0kknAXDLLbfwxhtvcMcdd3DttdeufN9CWszX7/0AwKY7bcR2e23CxlsPIV4axYnYnPun3/H8i1+x847NC8C9B/do8rO1aV5q6vfilofe4+3xk3jkpc+578IDiUScZo+5tRx5yYE4UYchowbSqUeHZtfd7/jtW9xur0FGBCzvWFo0ifjxJ2xPWXmMEcP7UtZMWF9rKI9Em83ldOVH75H2fW75/H9s07c/Ucfm5H22YtzXUzhs101XvgPrwP3Smic65acBouW39FrnR7ZptI0Rm4LcOSIIRTMrGsdKZj9agqdM4vBseFggbGitQGnSbibsSpjE2r4wgkm+06ahoynPYaRV3rKG11LeuiIQsAqPvrF7qtFg5TuftDauKyXyDqTBaDbsgwYhfQTG3WUSzGmMBUmTSYmutUBrk9cqK0JpUSg05ccF5rmbGp3TzPqZHE9BO9oGpApUKm3OlRb4+Xmzsp0mG16pgyqFpqqdT8RysfBJB+fW1RYpT5LybVwlcJWF61n4SiKEwhIKTwmkVkih0Gh8H2wh0JbJGRUY4/CVIOUG4ZWpYJxjmng0TYmTJmK5pi1M0nlHmOTrjnCJkSKKCxiHXSAVgtZIrbHxiMhWup00eZNV6zYNaV9++bYEzxM4Ed3uwtMtF/TmtUcz3wjlWxzXPv56ZOZbI83Vj09h9PZ1jcZv3Asd+GpcRbv14eTtN+CSu6ey/d6m9O3COQ7XnNaPo8+fH4Q0t358v/6wnH5DFrdxT9dQwnlpraR6cQ2pRJqufTozYdwPXLiryXVy/VuXMmqXEVR0Ls+uO3BEf86+85TV1dU1hp4DuwFQ0bmcU0aeh7Qk//n8OgZvMrBN2q/oXM6J17Z9Ut1dj9qe9TcbRIeuFUUr13Xs3oGTbzi6zffbHL87fifefHAcux29Q3bZMZcfwjGXH9I2OygyLzUsbx6NRolGCx9A0+k0X375JRdddFHB8t13351PPvmkbfoW0iT589I3437gz7+7GoDr37iETXfaiIqOOVF00HrdOO/sNTc/3KqiVzfj2qksiXLKpn/GkpL/jL+aQRv3b5P2KzqXc9K1R7RJW/nsetjWDB01kMou5ZR1aCw6depUxqktcEy1JYcMG84zk37gwKG5ioqn7rc1p+7X/BcuLWYduF9aIxOJZ8WJloTYNRB8tKVR0UxCcRNSZz4QqCB0TlkKy/IxFeog7Wtsy7hZHNvk8EgmHLx6B9+2cT3HiC2+BF8ikpbJTSQwuZesQNzChJxlFZbAdZMVifL1n3wFJn9BJjF2npOITHSfyriXRINtC4WYSGka21H4viBdFzGCly72cBQsUwJcjaci1CHo0rGWiooUi+tKSKUdpNTYtk8q5aA806GM86/A/ZQvCuUfX+ZbfSWyelp2rDJhfMHxWR6IlDQJzW2NivpIHVSTy4TsBW0WJlUXBc/Ynm8zr7oSpS06RRNIqQBJ2pcsTpRQ50UQaGQg8tlS0698KZ2jdUyOdWPq4k4ka2KQFPgxhRV3sZ1A5FLgpS300gj2MhstNV5nlyG9F9C7YhmOVMRlmq6RGmbanVnilqCEhZQmGbkjNbZUKCQWmrhwiQqPMjtNifCJSk1NaysXrAMK+drK0E3qKCktPCdaw5ypEVwPojFFj74r74TSGsa/mS/ArFmCU6fuLvFSFwJh2PcEc6dHWW4/BXTu5jJjcoSSMkXXXrm8IlN/itJrYJJ5M6P4btvbh4TQbLZj7mFk9jSH4WNqmfRVyQq7q/oMSjDrV4deA9y12PHUQsJ5aa1jwcxFnLjh2aQSaa57429YeeXD33nkA0ZuvwG2k7t1nP7jLJ7+x4tstc9otj2gbRJmr40c9/fD2O6grZj2w0xuOPY2lK9YtqB6+RuuAfQbVhh2k06m+fuhN7F03jL++uS59BjQbZX254//OZk//ufk9ttBkXmpb9++BatcdtllXH755QXLFi1ahO/7dO9eGIrVvXt35s2b127dDYEFMxZx4vBzSSXSXP/GXxF5ycHffeJjRmw7tGBemjZzMU/832dss8VgthszZHV0eY3g1EO2Zect12fG+Mn8454PzLy0cO2Yl/quX+gUTaZd/nLXKyyuquP60/ehZ+f2+8KxGFftuCtX7bhr++1gHbhfWnOcTg20ivz3y3t0KhBxIOe6URSIGlqAsnTWUaS1WUUK4+BROnDyKMwDhdZoZULHjJ6hAo3HhNUV6EX5GkFGe2nkaFr+RZQJiRON1tcgFUILtDIKl5RGhVIqV10PTCio1hqtBbbt43sWSgmycWzQQITKvRdCozxNrRshmbJRPihjFQtyN+Xbt/LGOj/sr6HAlVFvC9xOOReUMaGZbVSwgZLmeLNjUnSwss0WnNPsw7vQeL4k4dkIoYlYPgIfgcKWHr4v8ZXE8yVR2+RWQiviIkmlXY+MQMqNmDxXaWFSd9lmDJVvkqxrpVARDRGfmJPGEZ7RIIWixouR9M3YW9JDah9HuEREGlv72Hm6ZVx4RISPI3RQ1K+VgoHKxDVm3oesCXTvk+aPN8zOVpjMnNVbL+rNKw93QVqa/77/U5s4oG79S2+WLlwz7eDbjF3G3/47PVvxEuDc/QYxd3oLbNFacNouG1Ba4XPfJz8W/I4fd+F8ojHNg9e3XRhLPhfdPp2SvC//N9m6npJSzZ/2XvGExxcfPoTrn55Mn/XcNujhGk44L611LJq1mGSdSVQ986fZ7PeHPTj+qsO5/6+P8+aD4xi920h2PiJX2ee/Fz7Mp698xTuPfcjLdY80WcHut46UkiGj1mPQJgNwUx62YzF6t5Wv0NQUddX13HH2/cTL4pxy49E4kZVPCpzhx/GTGf+SSeA77slPOOzP+7dZ2yvLPRc9whsPjOP0m44tuA5bRZF5aebMmVRU5B5iG7qc8hEN/mBrrRstC2lbFubPS5Nms+/pv+O4Kw/hgSuf5c1HP2bULiPY6ZAx2fXvuG8c47/4lbfGTeStZ89tsoLdbx0pBUMHdmdI/6649WmciM2oXYa32/7qquq5/ZwHKCmPc8o/jsaJtJ3M8P2vc/lwwq8AvPnZJI4du5K53dqQu+58l7fe/J4z/rALO+/SdPXAZlkH7pfWDNGpoeCUF1XW5DyeF6omIPswI5RAKg2eQKUs8CzjThEaHI2O+2jpoYRtRCff7CAWd3FdCz9tmbZ0IAcogdLKJLONaHyh0QkRtJnpR57zSDTodEYxsYLQGm0SVGfdS/mraUDL3Od54okdM04I35VoF6LlaaIRj1S9Q6ImcxqNu0triWO7lMZcdEywZGkZQoKwtemqJ/OqWgXimTauo3RdhAXpjuY4gm/yRcQz13/GUZTf3/xQuuygBD9n3sq8n1UgMOnccOWSlZvNhQ0qpo2zKN8p1mBITceDpOJ5Al2mal99IkYyFcW2FV3LaulVVoUjFZoE8+vKqUrGUcqcj5jj0cWpZXj5HPrEqvgxnmbikh64S+JQb6EqLKxYgqjjkUo5kLSx0gJVqtFdXLp3raZ3aRVxy2OZG6cmHUNrQdK3kVJT5rh0cFJ0tuvpatfRxU4ihMZCEwUcYcTPmLCIC4dSu5V/INcBhXxtpKTC49tPSoM5JXeavvrAKBmWo5j5S5T6GsmQkckVFp98HyZ91bbJLqXUDBtdR2mZj5BQtdRi0leFickHDKunS08jnoi8Oa1qsc2ieQ7rbZBEa9h2r2UFghNAJOYjpaKik09lZ4/pk2IFbTckVuIx6eu4EWol9B2SonsfF8/VxMu9vHmw7aivFUz4pIR+Q1IsmucwaKMktVWSrr1c5s9c8fLhyxZajH+rnI5dXYaMTP52HU/hvLTWscFW6/PH2082ybKDpLTbHbQlj179LMpX9NugT8H6I7ffkE9f+YoNtlq/QHDyfR8p5Wp9GK9eXMN/L3yYLn06c/RlByNb8IuWTqaxHGuFxTMpJXs2SDLeHrz3+Me88cA4ADbbYxO23HNUm7U9dIvBbLLzcJbMW8Z2BxV3r2mt+d+LX4Bg5RN7N8Hzt73G2498wPF/P4zRu20MwLO3vIKX9nj5rrdWXHQqMi9VVFQUiE7F6NKlC5ZlNXI1LViwoJH7KaRt2XDM+vzxthOpWlzDHsfvBMC2B2zB4ze+jFKafsN6Fay/8fA+jP/iV4YP610gOPm+QkqxRsxLXft24ahLf7/q5qUGScbbg3cf/5g3H3wfgM332IQtxm7aZm1vNLAnmw3ry+KqOnYeVfyLP601n7z4BVJKxuwzuug6K8tTb3/Nq//7kdMP3IYtN+oPwLPPfI7vK1566esVF53WgfulNUN0oojglLe8qakha7DJD18LUgEJ3zwEZYUhgbEAuaBl1rOU3dDzTIJwrUFnMshbgTvHF3iuEUq0Z5lwtAwZwaQgjKzBsUgQWVuPAqFNnp+gOlvWdaUlvi/RmVC1QEyRQX4jKbTRWGyNFD629PCkwHI8k+8ok8speLqVQoGEWCSF69tggfIkGhUMTuboC1U/7evccWiN9gSeDBxWvig8Nt3g3wYJrTLnKHf8JieUaUI01IvMboPcW1qbnErZlvMErVyYYbA/XeRaEUYs9jxIpiyWWjFsqUgri5idoiICtekYrm+hfah1I8xLllPjx3C1IG6l6FhRy1IrjrIF2pN4niBmu0RKNa4bwUMiLR9QpHyLtG+TUDZp38ZVFr4SlDkpIiKNI9I4eAgUvtbYgBTmZQuJBVhZUa+VE846MFmtjUydWMLfjm66ooWbtLjxT/146NOJK+V2uufvPfnl+7ZJ8prhxL/O5fenmQohngtHb7EB+b9h2+5l3EsNSdYLzhw7hPs//qnJ5N8ASxZGiJVqbnh6Cmf8bn2aE5wAFs+LcmkwlpvtWM3Vj00FIJ2w20VwAvjXBf3592uTuPD3g7j5xV+QEpwozJ+5co6ya89Yj3ipz8OfT/ztCk4QzktrIUII9jlt9+zPVYuqWTBjEY/8+h+kJansUvhgfsgF+7H7cTtS3ilnCfzps8lcsOuVdOrRgds/v47SypWfm7TWeK6HE3FQSpFOutkKbpm/l+lkmocue4p4eZzDLz6AV+5+m9fvfw+A4dsO46kbX0T7ir8+dS4Vncob7WPCuB/4yx5X0aVPZ+78+h+UlK+ZVasmTJjBfc9/hRV16NC5jMGbDmzT9mMlUf7x9mXNrvPFG99w2QE3AHDdG3/NikLLI51Mc98ljwNwwjVHEIk27dC6+4KHcVMuj171bLb94648jLceHteiynxNsoLzUiQSYfTo0bz11lsccMAB2eVvvfUW++23Ev0JWS5CCPY5PX9eqmHhrMU8NPFGpLSo7FL4+3zEQVuy564jqMj7Hf7pi1+56ICb6NS9klvfvaTZZPYtxcxLPk7ENvNSyiMWVHDLzUsuD13xNCUVcQ778/68fNdbBfPSk/94odl56Zv3vufisVev+fPSuB948PKnsByLDl0r2nxeikcd7jz/4GbX+fyNCVxx8M0AXPfaXxi1y4gWtW3mpScQUnD8VYc1Oy/d8uQHuJ7PfS99mhWdTjhxB9588zsOPXSrFh5NEdaB+6XVLzoJmhScmlgE5IVUyfwFmfeBGKEb5BBSEi2MEwitg0SwoH2JssznaImQCmmbk++7FrrWyQlNWWdOnpMnGw8XuHgyYWhWZr3AuSRNjilpKzqW1yNlzsnjKUEi5aBd2whDyhyYFfGxIx4ROwg1EwrpaCpKUjiWIu06pjJfoO5IWxGNeMQjPqWRNEoLkn4ES7l4nkXal3mDbtS4wog7gcAqvN61hU7L5TwT5rdJgdtLWJlxE1lBLhNeJ/K3scg6vEQUkAKtrawol+1OQ4dVtt/5SlhwbrXE9yyWJQVJ7SAlDO04j5jt8avfmUXVUaTU+FKyxCvDcgW+lkgh6N9hGd8mS/CkhqREIaiIp+lcWs/82jKS2FhCES9N0zGeYl6qkrj0qPMj1LkRlJJ0itXRI15L92gNlVaCrnYt5VaaqAQpNDGgREji0kGjsZBIZPbabDHrQKnN3ypaa958shODhicYvmV9IxGirlry8esV1FdZ2dxxGUel0Wc1X3/UNpXqNhhdy6AR9YBg461zcf9Kwfb7LMX3c2L1xmNqih8Pmh33X9qs4ASwxU5VWI6mpMxjg1F1fDe+jOUJTxlqayQv3N8ZlOarD9tWbGvI52+Xs3iBzQ9flNClh8ebT3RocT+bQ2vNW890RAoT1iwEbLpdDX0HF4bdLZ5nM/6tCtyUCP7eaUZuXcvAYelm25/8bZyJX5YgtEZamlHb1zLp6xKqltp07Oay1W7VRNum6EvThPPSWo3Wmj9scRHzpy1k3zN+x1m3mYpdSikevepZqhfXcPxVh9Oha2XBdl+/8z3J2iRzfpnH9Imz2HDM0JXuy2UH3MD4l7/kD/8+gbceep/JX0zhzw+dxfBth/HHrS8BYP8zx/LUjS8CMGzLIYzYbhhO1KFDtwrmTV/IV299C8Cnr3xVkKQ6w4RxP+CmPeb+Op+5v85n0MYDVqiv0yfO5NYz72XYlkM48Zoj2txV8fa7P7DM07D1CP716Ol0Xk7VqPYgWhIt+n55fPz85zx788sAbLDlEHY4pOkkvHuevAtvPjiO3Y/bKbvs0Av3WznBCVZqXjr33HM5+uij2WyzzRgzZgx33303M2bM4LTTTlu5PoW0GK01Z217KfOnL2Lf03blDzcfC5h56bFrn6dmSS3HXXEIHRpUPfvmgx9J1qWY8+sCZkyaywabr2SJe+Cyg/7Jp69+zR/+dTzvvPYDv3w/iwtuOoINR/Xn3L2MKLv3kVvz9D9fAmDYFoMZuf0GOFGHjt0rmTt1fnZe+uzVr9n1qMYV3vLnpXlTF7DeyP4r1NfpE2dx61n3ssGWQzjh6sPbfF5657GPqAryRf37k6uWW82uPYit4Lz00XOf8+wtrwDmHO1w8Jgm191/hxG88vFE9toml1D8sMO34rDDV0JwgnXifmn1i07LYXnDXiBYBSKG8IOXMNFXGdFH+xrSQd4mWyNtss8OyhUoH/CMo0V7pjHtA0oj/Jw6JrQIdK2c2ITKtZW13AgFjsZyPOyIhwxEJ8tSJsePyMkjtiUpiSrSwidJBO2TrRQHxtkkhMaSFkpJUmkLZZs+SMvPSCzYtsKyTFyo0uZhpiSSJO3ZeF6g3ghd8MxUIOIoGucc9wM3VNbNFYQKNnQ7ieCHrAPJLMy6nTL7FQLdIJO6EAKUDiIMzbirtETbCmHlO6UanfniZPtmxk8pSKctpNQsrCulPJYi7qTpVFZLStmUO0nK7CSuL6jzIqS0RUT4lMeSSKVIOFHSWpJI2NTZNpWRepxyn6SysSxT9c5XNh4CT0t8Zc6dhY8jPCQ+WmvSWpBQDvV42MJUyYsAvtYINGk8hBbUt3LC0Vqhtcq+D1l7qKt2ePGBrtzz/k9FXS9XnDCACZ80/varrRk5ppZ/PDul6GeRKJx+ZcsSpcZL4KhzFi53vZP+Nh+AudMjfP9ZywUngJ++LOOnL9tGaFseD/+zF2WVHj36pDltl2FBfryVJ1lvc9eluVClnQ5Yyr7HLylYR2s4a88hLJ6Xc1aN2aOK/U4oXK8hv3wX58w91s/+fPxf5vL4v7vz5pOdAc0jX0xsf8GJcF5a29FaU1dVD0D1kpzI/N0HP/LQ5U8B0HtwT/Y/a2zBdnucuDO/fjuNrn06M3SLFc9/lsH3fT595Su00nzy/GdM+uwXAL58+1sQgsVzlgJkHQdOzKHv0F5079+V55c+gGVbzJw0m/WCik2jdxuJUorJX02l37BexMuMc2CfM37HvOkL6LVejxV+sAN4/tbXmDDuByaM+4F9T9+dbv26ruQIFLLvPpvy8+R5jNioD926Vy5/g3Zg5PYbcuv4axBCMHTzlp/jIaMGUlJhxntQnhPipTve4L5LHmf/P47l2MsPBeDMf5/Imf8+sW07zsrNS4ceeiiLFy/myiuvZO7cuQwfPpxXX32V/v1X/HoJaR1aa2qXZealuuzybz/4kYf//iwAvQb3YL88ZxTAHkdvx9QfZtO1TyfWH7XyLhzf8/ns1a/NvPTSl/w80dz3fPXRz2jXZfG8KrMe4ERsIvEIfdfvRbd+XXhuyf3Yjs3MyfNYb+MBCAGjdh2B7yumfDeTvkO6Ey81f6T3PeN3zJ+xkN6DejJwRL8V7u9zt77GhHETmTBuIvucvjvd+nZZ/katYJ/TduOXr6ey0TZD6dqnc5u23VJGbr8B//74SjMvbdZyUXHIqIGUlMcRUhQ4tF6+bxwPXvMi+52yE0dduA8AFx61Mxce1fahiuvC/dJqr17XnMspKyRRaKJptFqQSyRbGS6bQyjYOAiBlVqilAZlknALGYRpeZYx4PgC4Qu0lZNE8EzCaJF50MjkWsp/FbiCME8KEY0o8bAjinjMxbE9JGSr5FlCocgpNwIfbYGnbEgL42KQGCdA1MWSGqWFSRqOQFgCT9l42sKydVAZzceyFDHbw5amIpuUGqUVSdcyFeF0wwPA7Iv8scsf//yTZGLYhBTNPB+KwveZcygJhLm8ZRm3k2gwtjZBGJ4wbrVGgXM6e66XK9RnV5D4WqAUpLRDR5mkzPFY5mi6R2sZVLEYKRRzExWklIMjPVwklbEkrraocQUqYUOJS0UsTczyQEqEC1HbI+k7eEoSsXw8LXF9m06xOgaULaVLpI649IhbHlGpcIRp20ZhAVEpsYUgrRUeGg+fxIpUr8svKdgOTJs2jb///e+8++67zJs3j169enHUUUdxySWXEImsmQms1xZqllp8/l45m+9cg2VBOiV447FOzJ4WYcbkFc8d1JBYic/YIxbTtXfGJZP7BerWJ9lm+2kpv06M8eL9nVnT/76mkoIn/9OtzXM7Dt2knvKOHl+OK2PKxBj3XNWd3x26lL5DzPnRGrbdcxmvPdaZdNL8IZv+c4Q7LutJJKLZ44jF9B7YOCH5zCkRhFDBfA9fvFfKkgUOHbq4jD1iMeUdvEbbtAurYF4KaT+klNw07gq+ee8Hdjkqlz+nz9BeVHQpJ1GdKCoqdexWySWPn9Nm/bAsi3PuPo1PXviMo/72e7Y94Be+/fBHjrj4QDr16MCuR22P1pqDztmLA/44Fmlb2Qe2SCzC2498wPXH3ErP9bpzzw83E4k63Hnegzx788sMGN6Xuyf8EyEEHbtVcuH9Z650f7c7aCveffwjhm4+mM69O610ew0ZMrgHd91+fJu321qGbdH6qmB91u/F0/PuAcy5yfDyXW9Ru6yOF257PSs6tRsrOS+dccYZnHHGGW3cqZCWIqXkn2//lQnvT2Tnw7fJLu87tBcVnctI1CaLCg4dulbwl3tPabN+WLbF2XeezP9e+pKj/nogk36Yy/ef/cphZ+xCx65l7PT7LQA48A+7s98pu2A5uXkpGo/yzgtfceNFT9OzbzfufPkcIhGbuy57hufvfo8BG/TijneNg7Nj9w5tMy8duCXvPfGxmZd6tcO8NGo9bv/8ujZvt7UMa4UInqHv0F48Pe9uoHBeeuWBD6mtquele8dlRad2Yx24X1qtolNLh3S5bqeMAyezYsOcTpDTWDwQnkB7Njqi0UKBhwn9ylS68/JElfz8TE1dC/mhX0KDo5Axn3gsTVk8SUUsScz2kCg0kpSy8JVFwrNzKZG0QKKJ2WlUFBIqmq1C5yuBLRUSk9/J8yWJpB2E54EQCltqHNvDtnyMaUjgKyNERaXClg4QyXW2UMMpTMnU8PMGx5oxSxWJZmuSbLOZUMP8ccyMq8A0nGnPF2iEqTAo89THgr4t7+pQCKmxbR9pAQrq0w4LKSNie8Qcl4jl4muNhcIWHiksPCVMKCSa8kgKyhUpJ4LlKGpSDp4tiEgX4RjxMBOo6CthHGZBjqda1yHlSCJC4CpJSljUiShKuGghsEQaR/iBAKvw0fha465ITqcmL9C24aeffkIpxV133cXgwYP5/vvvOfnkk6mrq+PGG29sl32uK3Tq7rLVbjknweP/6s5jt7R9YtJTLp3LXscsbvN2V4RUQnD2PoNJJdb8alduyuKdZ9r2m7uKTh7n3TydU3YaBghmTIqzzR7VWcEpwzvPdsoKTgBzfo3z/K9xjr9oblHBafavEa47oz/5E+V3400enn88+wsjx9Q12qbdWAXzUkj7MnBEfwaOKHRxdO7Zkcdn3Inn+m2aXySVSDFv6gL6bdCHz1//hjvOeYBBmwygvibBQWfvxZXP/xmA9UcPYp/Tf5fd7s8PndWorek/zuLxa/6PzffYNOuMmvvrfC7Z6xrGnrgLc381TssF0xe1Wf8zjNp1JC8se6jN2/2tkP9Ql+Hoyw7mkb8/w75557XdCOeltZ6Bw/sycHjfgmWde3bk0Sm3tsO8lGbezCX0G9Kd/309lVsfHMfggd2o8dIcscdorjhuRwCGbDqQvY/KhYte+J/GwvDUWYt58IVPGbPJQKZ8NwuAuTOXcME1z7L37hszb7q5P1swa0mbV0UcvdtIXlj6QJu191uj2Lx01IV78/g/X2XvExqHY7c568C8tNqdTg2NMQU0EhiKrJcvRAiyicO1DELrJMbtEoSFSd8oVMpRaKVAWwgvcNQokWu+oZCS39dsZbm8jmRcVY7GKvOIxVy6VtRRGU1Q4aSwhEJrqHFjKDS1aQcdqC+Z3GG24+O7xsGEFFjChMtFHR8JJH0bz7fRClRecnLH1sQjLhHLM24oLZBC49iaqAU1XoT6VAzft3IHkrWF5Tue9HLPSTaHVrHzUuCKyh8bcm6nzLmSgcjXsIypzHsFTimRN9aZEL1cnqeGVrNgl5lDkhBxfBxbmbCYwCGmZRpfS8ojaTpEkpRYHlVunKSKAhJL+OZfqUBBiePjKU084uFrG9syD3u+DgQ+bYEwY6+1wJaaTrEEXWP1lFgejtBEpUeJdJFoNMbBFZEQEQIpBGlt9E8XMzStQgUZ9IH2so3sscce7LHHHtmf11tvPSZNmsQdd9wRik4rybwZES4/oT+2rRl7xGLmzXBoegJsPU5UcdApCxi5TfE8TKsDO6LZ66jFvPJwZ1LJNV94amsGbpDgx69LsSMKL22Of9zzlcbZlrnhEIJUsvg18OZTHVgwx+aQPyykR1+Xyd/GefH+zixZ0PSf9fuu6c6oHeo44KSFlHdYBfayVTAvhawa6qrquP3soBT2jUcTiUWItGGIptaas7a6mKnfzeCov/2eH8f/zKyf5zDr5zkALJi+kHu+v7nRdsn6FItmLeav+15HWWUJ173xN8o6lPLAXx/no+c+470nPubBX25DKcXnb3zDN+9+z6TPp3Dfj7cweJOBbLbHJmG5+zWAbQ/Ykm0PKF4pr80J56XfDNl5qSLOqTce0y7z0p/2uYnpk+Zy5Dl78EVdLTPmLGXGnKV4MZi/pIbHrzm20XaJtMvc6hrOePwFyuMx7jvqQMpjUe566iPe/+IX3vrfTzx34wmgNR9NnsVnP8/ih5kLeOLaoxk8og+jd9ownJfWALbZe1O22XvTVbOzdWBeWuNzOhUleBYr0DfynE5Ck61gl12vgQvK8gXKkWipgxAujBQgRM7d1JCMvtFAkNIYdxOWRjg+kYhLRSxBpVNHhZ0kIhSW0GgB5U6ChB+FKCR8GxkkovKVREqT/4m4plbG8JVACI3nSyypsaRPxHFNZbtsZJxZburxaXxl4foSW/q4vqDMdukSS+MpWKjLSCUiedF1RQSbhkJbw6EPclc1NBu1RJTNakQSRJ7NqSA6URBU4AtQwuxT5ga+sNdN7TinFnuewLYUjkUgCkF9KkLE9hBC46sSatIOHhYqyEelyDiWzFhKFB3jtVQ6SardGNWpiNEyhUZpsIQOzkDuWlqWijLHqkDFoZtTjZaQ1hYy+LWzsKnyFWifUulhAY4QWEKQam0i8dWkkFdVVdGpU9vbdNc1UgmL/73egV1/v4Rffyzh3f9r2zHd97hFHP+X+W3a5sripiQv3N8F3/stl28rTiSmOO+mmRyzZWFFwLnTY8yd3rI75tm/xjnynAX06GsE8IsPX4/qpc3/Sf/xy3Iu+s+MVSM4wTrxzd26gimFPQ6Azcdu2qalsAGUr5g9eS4A0ybOZJ/Tf8f0H2fRoVslU76eyg4HN044PXH8z1yw8+XYjk19TcIs+9/PbDF2UzbdZSQfPfcZw7cZRvd+XTjrtpN4+p8v8d8/P8x2B21Jl16dOPqy5ishhfxGCeel3wzvPvZRdl7aYuymbL5H289Lc6eZXE3Tf57LAcdvx7RZS+jQsYSf5ixkly3Wb7TNhGlzOfH2p7FKLKqEcS5/M2su2w0ewGbD+/H+F7+w8dDedO1eyRl/24/Klz/nP49/wI5bDKFLzw4ced5ebXoMIWsJ68C8tGaITi0Rc5taJ5sfKLdOgcspP4WREkgfhBKo4It1kYm/ayCkNIg+yy0oks5IOxocEJbGKfWoLE3SraSWLvF67EA8yLiSfG0hBbhaYkuFI1UgdIAtNSltkVaOybMkwLGVSUAORpgSgEUQeidwbJ+o4xOzPZKuQ9o3wkmpk6bMcSl3XJal49SlY3iuk7WCCZ3pUX78YRGnU8FYi1wy8GInopjLqeGi/HOVcTOhC7uR9xKWzjqwpKRI04VnSojcv1qbMYxEFBFbBw4wcD2BlBopwJLgY1HvWybXltQFOaQy722pKbXTWEJTn4yitSAiPbSWZJOs61zHLaEpi3iUOB7ldppyO0WJZba3hCYiTG6vqFQ4UiOFwBIy2KvGbuU3HFopEyoK2QR01dXVBetEo1Gi0bbLDzRlyhRuvfVW/vnPf7ZZm+s6H79WwQ9frHwZ33ycqKLv4CRKUTRR+eoiElP8/rSFPHdPl4LwsXWBdFJw2XEDjJi+EonJ77umBy/eb5KBNuWIasgTt3XnxL/Mpbxj+wtPxealkLWTwZsOwHYsLMem34Z9lr/Bcqirrufeix6loks5R192MJZtcfUrF/PFG9+w7x/2oFvfLmyzv8mJ4ns+lt14jpj4ySTSSZd00mXQJgPo3r8rI3cwFYX2PeN37HLUdsz9dT73/uVRdjtmBw4+bx8O/NOeRdsKWXcI56XfDoNGrYcdsbEjNn03aIN5qSbJ/de+SEWnMo46dw8s2+KKB0/lqw9+Yp/jtqdrzw7ssKXJZeb5CttqfFP1zbQ5pD0fXeOzwZCu9O5YwWb9ewPw+903Zey2GzJ9aRU3v/kR+266IUfuvTmHjh1dtK2QdYd1YV5aM0SnFtKc7qcLtQfzUoCfF4Clc04aLcyLIM9PNit1pp3MMihMrt3Q4RRRiKjCinlEIh7RqEvU8ohIF1srUr5NSgeOJsCRHqVWijK7noTvgIaI5WHnOZ5qojGWpkpI+RYpzyGRNqE2EdvDlm4QxiXx/ECi0JBybTxfkvaMeOL5AoEibqUoiycosZLMjVSyoLqMRCIaxLoFMWq5WLXCY8xoKHm5l3ReKGOT+k+zCq1oUB0vOFkCyMv3lP1ZA1qglUYpke12U20XuKTQZmxSNp4nA6FJG/eYMkFufsoJvEkgpY8jFZZU2MKsaxKaG5Gwxo1gC0VMunhaBoeZE6g0mRxwGl9DTdphoSghKtOUyARlIoG0TA6otLbQaGqVA7gkhcbGJyYgLiwitPKPTxGFvG/fwnj3yy67jMsvv7zRppdffjlXXHFFs81//vnnbLbZZtmf58yZwx577MHBBx/MSSed1Lq+hjRJos4mUde20/LOBy5l7JFL27TNtiCVkDz1n26mYMA6h2DqjysvLi6aG2XR3NYJyUedO2+VCE7AOvHN3brC1O9m4rk+nuvz64Rp9Oi/YhXZ5kyZR11VPd9/9BMv3fkmAJvuPIKNd9yITXYaziY7DW+0TVMi0e7H7cisn+fQsXsHjr7sYGQDVb20ooSrDr2J2ZPn8fkb33DX1zc2KzhprXFTbtHcHiG/IcJ56TfD9MkL0B064gLTJs1b8Xnp1/nUVSf44ctpvPLwxwBsss36jBwzmE22WZ9NtmnsaGpKJNpvsw2ZvnApnctLOH33McgGaURKS6Kce8fLzFhSxUeTp/N/Zx7VrOAUzkvrCOvAvLT6RafmnjfyPtNNLC+2Xs7lFIgQMogkU8GqErRN9uhFoKDkmZ6yy3UmgXWxvlkaIhor5hOJeUQcn5KIS2U0SedYEo0g4UVNCBdGcIrZPlHhUeNFEQKilk/MMpXtFIIkAlfbQd4iQdJ18JUg6iiiTuZiDMQNIXCkb9IjKUnCddAa4jGPyliaLrEEpbZLwndIqgi1XpRUOhpYwTLOpAYH3fB9w+u+odtJN9ygSDst2U9GyJKFP2feCzI6WW6jhlpZJhY2Ewed/Twv67kQpqKfEMZdBDKbX0kG7jIpAv0xcEspbRKaCyHwtIUW5mIRQqN0TgXT+U4n6RO3fSoiaTo6CTrZ9ZRYLpYwycktobAFRKRCBqdCCogKi4iQrQ+vU4EjzHQEgJkzZ1JRUZFdpSmX05lnnslhhx3WbPMDBgzIvp8zZw477bQTY8aM4e67725dP0OaxIkoTrtyNptsW8uCWQ63/qUPc6ZGaZkVtJC9j1nI3scuIhLTRKIqP0XQGkOsRPHgpz+QTlk8cF0PPnmtEqXCb/rak5FjavHdVXgRFJmXQtZOhm87jPJOZURiDuu3ohR1PnOmzOP4YX9C+YrDLjqASMyhpKKEvsN6tbqtqd9N55ztL6W0soT/fH5dgeBUX5PAcz0qOpXTd1hvZk+eR79hvZfb5pUH/5OPn/uU028+ngP+uGer+xSylhDOS78Zhm85iPIOpUTjDutv3G+F2pg9ZT4njbrIzEt/3p9I1KakPE7fwd1a3daUKQs4+5xHKSuLcsftxxUITrWpNL5WVMZiDOzaiRlLqliv6/JTKfz9sFv45MUvOP2fx7DfGasg0X7I6mEdmJdWv+hUhEY6R7EVmgwBy1sncDtlq9sFn2lLo6V5EfHN/lIWIuMcQhiTjQ7cUI42mZ2VyIbjZVxOsfIkZSVJIo5P1PKI2aYaWkpJbDRS+CgtcaSHLTxsfCyhqLCTpJSNp03uoIj06GjXE4um8GI2i7wyFqdKWWBXMK+mnNq6CImkTSyaJmJnsgcpUp6F50m0lkipiDg+MTtNVKaxhI/UPo6ATpF67EqfcifJnCUdSCedXFjH8oSjQvNQgRGq4IxlkpM33CZ/nWLnquF5E3k7EoAnUJ40hihHgW3EIw0gdbaKX+ac5/aUCbczY6x8gVJgSYGSAk8obMs4miwBnjIXitIYp1NQvU5nG1c4Emzpm3BHLah3HVRwcVlC4WkZ7EtSm45QY0WocaJU2zFiwqVEpkAI0lgoDVJZeAQ/I6gUabpaPkK30v6vM9Y+spNVRUVFgejUFF26dKFLly4t2s3s2bPZaaedGD16NPfff3+jb5ZDVpwtdqlm72OWAPD8f7syZ+qKZcMsrfA567o5bdm1dkEI6N7H58cvo3z0SsfV3Z11gjOumk33vt6q22GReSlk7aTfsN48Pf8ehBArPO/P+Gk2yjfXw0+fTebZRfdj2RIn4rS6rQnjJlJXVU9dVT1TvpnG6N02BmDBjIWcPPI80gmXmz64ksueOZ/pE2cxYCPj/F0ybyk1S2rpv2GhE1hrzfiXv0RrGP/yF2u96DT1u+m8cNvrbH/I1ozaZcTq7s6aRTgv/WboO6QHT/xwvfnCeAXnpZmT5mTnpUmfT+bJ767FsiROpPWPyBMmzKCuLkVdXYopUxYwevQAAGZXVbPXvQ+T9jweO+oQ/n3kPkxZsITB3UxV3EXVdVTVJxnUo7BKrtaaT1/92sxLr3y11otOUyfO5qV7x7H9/qPZZLthq7s7axbrwLy0ep8YW+ByEg2XCRqLFcVeGZHJInuUGcOLtoNljkJGTCk4kXGpCCM4CS2CdQJXjxJZRxSY5XaJR0lJmmjEhGWVOK751/awpcZH4mvLVKGTmphURC3f5BHSEoVECoEtNKWWS6mVIiI1nrBJK4ekjlDrRqmpi6G1xLY1jp1x8hg7l68slLbQCCxLEbEU5dE0FZE05XYaIcDVDq62UFgsqS8lnTa5nUTDAW04tk2MccYFVLBpQwtF0di7Bvtprs3MSwuTOF1LhBRgkRWSEGBJXZCnRuS/D5xTmfVFZlmgJEuZczbJTFsCrEx/gkYEwlwKQVuZXFCustHIwCdFkJvLnBspoMRx6RRL0ilST4WVJCo9bKGMywpwhMYWGl9YuNg4QlEifcqljS1a96uplS54tQdz5sxhxx13pG/fvtx4440sXLiQefPmMW/evHbZ37rGVx+U8d34EnwfTr1iNlc+NIXKLmmaDyxuzG4HL6G+du35mzVoeD1b7LoMIdauGPa+g5Pc9voknv7hO/50wwwOOHkBD3/2A2OPWoS0VtexaE64ZDab7VRVdDz/uNdg7r6yJ4m6VeN2WhXzEsDVV1/N1ltvTUlJCR06dGhZ37Tm8ssvp1evXsTjcXbccUd++OGHgnVSqRRnnXUWXbp0obS0lH333ZdZs2a1wxGsHViWtdwHu1QijW4w+fiez6QvpjB8m6F07dsFYQn2P2tPYiXRAsEpUZfk8Wuf44Nn/tfsPty0i5t2GbnjRux35h5svONG2c9mTZ5HfbVxOk35Zhq2YzNo4wFYtsWSeUs5dshZnDT8XN5/unAfQgjOv/cMttl/C0645siWDskay7//cA+v/Pdtrjr0JgBm/zKXp/7xAvOnL1zNPVv9rKp5KWTVYFlyheeln7+ZzvCtzbwkbYt9T9uNWDxSIDjVp13ufu8z3vxucrP7cF0f1/fZZJN+HLD/aDbeOCdsT1u6lLp0GlcpflqwEMeyGNazK7YlWVRdx15X388B1z/Em9/8XNCmEILz7j6VrffdjOOvPLSlQ7LGctsFj/HaQx9y7Un/BWDO1IU8c8c7LJi9ZDX3bPWzLsxLq9XplBe92Ow6rWmv8Aed20kQUSYUCBejHqQk2vKxStMo20K7FmBy+OAZwSJSmULaimRVFJ0OlCyhESUusZIkUdvFFj6OpZBCE7F86rwINW6ElG+T9m2E0MQslwpHklamEp2nJb6SJjcQEardGImIRWenjhKRontUUW4nqLASRKXLrCUdSCYdPE9g2eZIhTB5jjxPYlkKgSBqm3xSlvBxlQBpYQufiHRJCpvKkgSJZAQ3aTeOWdSFPzY1uPmpjArcTlm3UrEHmubPpNY6M7SNUQJcwBegJDpiLIhOVFFSksS2FGnPIpV2UConbmVFY4GRhYRZppRAWibfk6lQJ4L3Fr5QWNK4lrI5oNA40qfUSjKgZBGd7ToQMCPRmR+ru5NSNsEeAI0UCq019a7DwmScCjtOhaxHa7BlFIHJ62SjicsUtlBoBPVEcFCUSx+bVsZua0VOIW+fB94333yTX375hV9++YU+fQoTNjb8Yx7SekbvWMuIreoBsCx444nOVC1qbQy/5uRL52C33jiw2pg8oYTP3u6wurvRavY6ZjFDRiYBePaubtz84mSUL3ntkZa5BtuD7n1cNt66jvuuLh5KlE5aHHrmfOKlq+j3dRXMSwDpdJqDDz6YMWPGcO+997ZomxtuuIGbbrqJBx54gPXXX5+rrrqK3XbbjUmTJlFeXg7A2WefzUsvvcQTTzxB586dOe+889h777358ssvsawwGXVD3nhwHDed+l9GbDuMf7z11+yXUTeeeDtvP/wBm+w0nIsePjNwJo3g1XvewXc99jp1N6SU/N/Nr/DApU8A8MDP/8Z2bCzHokuvwhCUF257nbsveBiAc+48BdvJ3cpustNGnHjNEdRV1bPbMdsXbFeztI5kXQqA+dMWNOr/Lkduxy5Hbtd2A7Ia2XDM+nz/0U9ssJVJenzp/jcwY+IsPnh2PLeNv3Y19241s4rmpZA1gzce/oBbznqAEdsM5fqXL8zOSzf96SHefeYzNt5uKBc88Uem/DyfUTtvxCuvTcD3FXvvuQlSCh788Etue8uI1K+efzy2FERsi64VZQX7ee6FL7nzv+MAOPfcPbDz8seN6d+P83bYhtpUmv032rBgu6r6JIm0qUI7Z2lhASCAnQ/fhp0P36bNxmN1ssHm6zHxsykMHT0QgMuPv5uZv8zno1e/4ZaXzlvNvVvNrAPz0uoPrwtCsbIRWcVCropt09Q6xdxOeU4nAajMA5mtEY6p6KR8IziZuKnAFxPxiZemqKoqAS8vPs/WODGfeNTDsRSW1FhSEbM8VLBzhcTTJmTKEZqY5WNbmfw9Al/J7LoCiEqPUtslIn18LdFI0sqmzo+xOFGK6zlIqZAWwTZG9fF90y8pNVHHJWa7lNkuMeljB/mofGXhaZuk77CsPo7r2uRXWmtybDM0EqNEtkpcwfqqiQaack/l/5jflTwnExqEMmITlgYn+MjSRKIejq3QgOvZBYJTps1Mu6LBz5m8TVLkRiHjjDLJxnMtSQExS9ExkqCjkyAqPWr8OPNSFaSVbQIdC8YzOB+2T4dIik52PTHpkQnt1tlwPA8rc6xI4iJFhfSolFFSra5eF4SC0n4C0HHHHcdxxx3XLm2v60Riin2OW4TvgQzcfJfcNR3fm54n4uYHjsLc6VH+esR6LJxrfil2O2QJp14+GyHJ1gdYGxg8IsFGW9Tww2dlND3pr3nceWkv7vl7TxAa5QuevbMbR503j5enTcjeL2hg+k8xLj1mPZYuMuJ0W7LZTtVc8K8ZlJSr4JybvowcU823/ysvur9n7ujGMRfMw1mhnKRr3rwEZAshPPDAAy1aX2vNLbfcwiWXXMKBBx4IwIMPPkj37t157LHHOPXUU6mqquLee+/l4YcfZtdddwXgkUceoW/fvrz99tv87ndrd5hDe/DFm9+ilea7D38kWZ9iydylPPC3J/jps18AmDV5LhfueiW+p5j4v58Z9+QnAFR2rWD734+h56DuAJRWljBr0hz+tt/12LbFXRNupO/QnJBa2dWEjUdiDrGywjBkKSWHXXRA0f7136APf3vqXOZPW8h+Z+7R5se/JnHSdUex/1l70rlXRwA6dqtkxsRZdOxeuZp7tvpZVfNSyJrBl+98b+aljyeRSqRZNHsJD176JD//bITn2b8u4PzzHkcpzQ+T5vDuh5MAqKwsYYfthtK3cwcAymIRpi5YzB/vfxHHsnj2vKMZ0LVjdj+VlaY4SCRiE4sVfvMnheC0MVsU7d+gHp258di9mLO0msO33aSNj37N4sTLDmS/U3amcw8zD3XoUs7MX+bTsUv5au7Z6mddmJdWi+iUGUyVTrb+HrzB+rrhcpHTU0zuprzE4so4nZSv0Y4GT4PnIUvSQBKQJvQpqlBKYNkKmU7SvawKt8RGa4GvBGnfwtIav94jJX2U5aOkYr6WgfvIpICyRZqUZ2NLhYgocHyw0gB4WpLyjRCUVhbzdAkLIxZdIw6dI7VUWNX0kwvp68ymX6eZ/BLpxsJkKZ6WJrk4FkoLHF/ga0FEeDipNDYJfJ3As1yS0gcNKQ21rs2iGkF9tQ9uvUnY6wmT/DrfmdT4+bbJc5QJU8vfRhfLD9Xc705GWxJ5KzYUFTUmTFIHB6PNBrV1imTUuJR81+QpEVZOMPKDNkVQFU8EjichwA+q00kZiIYik1xc4WU+E+AHzigdVaT8NMvSoG2PGs+H+gRuXQQ/EJGUMgndfSQCjSc0fm0MUV5GfdxFa0lKOaSUha8lcenSzamhp7OUHvYyOsgklhRUSY9UnfmGpKUTj6dTWWXcw23RNiGFZMbaw21tRNtKs/7wOtYbWU1douXbjHulhLlzBGCu/d2Pmoe2XOrq26eP7cWPX5Yw4dMYmeNYm/DSufe7Hz2XRKrxt1NvPV/GwoXQHse308ELkNE0ybx+/PxtnK8+iTe5v0w/E6nW76+6NlPOd8Xnperqwm9yo9Fok0UO2oupU6cyb948dt9994J+7LDDDnzyySeceuqpfPnll7iuW7BOr169GD58OJ988skqE50yY91w3NZE9vvTbiRSCTbZcUNcP839lz/GO098CICQgrGn78wT1/4fqRqXks5xtOWjlCbWMUp1dTWb7TWSWz77O+WdSvnqre9w/TSuD1MnzaCyZ+6hZMv9NuXaty+msmsFkTK7VWOzye4mFC+ZTpJMJ9t2ANYwohUOtbW1AFzw6Bn8/MUUhm0xeK24llpD5njC+6VVx9o0L+3zh52pT9az6Y4bkvZS3H/FY7z75McgJXaXTux+3NY8+soE0uk0pSUSpcwfx3jcHN/26/Xi0ZMPoGNJnE9+moaXTOIBv86aQ6donptpy35cf/X+dOxQQsTRrRqbrdbrAfQglagn1Yr7wLWRaJmVnZfOv+1wfv52JkM37rdWXEutIZyXiqBXAzNnzswEvYWv8BW+mnnNnDmz2d+lRCKhe/To0Wi7Hj166EQisYp+o38bhPNS+ApfLXut6LxUVlbWaNlll13WZr/D999/v66srFzueh9//LEG9OzZswuWn3zyyXr33XfXWmv96KOP6kgk0mjb3XbbTZ9yyilt0t+WEM5L4St8tewV3i+tOsJ5KXyFr5a9wnkpx2pxOvXq1YuZM2dSXl7eOAF1SEgIWmtqamro1av5UtKxWIypU6eSTqcLlkciEWKxFat+tq4SzkshIc2zsvOS1rrR71ZTLqfLL788GzbXFJ9//jmbbbZZC3penIZ9Kda/hrRknbYknJdCQponvF9a9YTzUkhI84TzUmNWi+gkpWyUiDgkJKSQysrKFq0Xi8V+cxPT6iCcl0JCls+qmpfOPPNMDjvssGbXGTBgwAq13aNHDwDmzZtHz549s8sXLFhA9+7ds+uk02mWLl1Kx44dC9bZeuutV2i/K0I4L4WELJ/wfmnVEs5LISHLJ5yXCln9icRDQkJCQkJCQvLo0qULXbq0TyXAgQMH0qNHD9566y023XRTwFTAe//997n++usBGD16NI7j8NZbb3HIIYcAMHfuXL7//ntuuOGGdulXSEhISEhISMhvkVB0CgkJCQkJCVlrmTFjBkuWLGHGjBn4vs8333wDwODBgykrM2Wthw0bxrXXXssBBxyAEIKzzz6ba665hiFDhjBkyBCuueYaSkpKOOKIIwDzDeWJJ57IeeedR+fOnenUqRPnn38+I0aMyFazCwkJCQkJCQkJWT6h6BQSEhISEhKy1nLppZfy4IMPZn/OuJfee+89dtxxRwAmTZpEVVVVdp0LL7yQRCLBGWecwdKlS9lyyy158803KS/PVUm7+eabsW2bQw45hEQiwS677MIDDzyAZeUqFoWEhISEhISEhDSP0LqFtfxCQkJCQkJCQkJCQkJCQkJCQkJaiFzdHQgJCQkJCQkJCQkJCQkJCQkJ+e0Rik4hISEhISEhISEhISEhISEhIW1OKDqFhISEhISEhISEhISEhISEhLQ5oegUEhISEhISEhISEhISEhISEtLmhKJTSEhISEhISEhISEhISEhISEibE4pOISEhISEhISEhISEhISEhISFtTig6hYSEhISEhISEhISEhISEhIS0OaHoFBISEhISEhISEhISEhISEhLS5oSiU0hISEhISEhISEhISEhISEhImxOKTiEhISEhISEhISEhISEhISEhbU4oOoWEhISEhISEhISEhISEhISEtDmh6BQSEhISEhISEhISEhISEhIS0uaEolNISEhISEhISEhISEhISEhISJsTik4hISEhISEhISEhISEhISEhIW1OKDqFhISEhISEhISEhISEhISEhLQ5oegUEhISEhISEhISEhISEhISEtLm2Ktjp0op5syZQ3l5OUKI1dGFkJA1Gq01NTU19OrVCymb14aTySTpdLpgWSQSIRaLtWcXQ0JCQkLamfB+KSSkecL7pVVPOC+FhDRPOC81ZrWITnPmzKFv376rY9chIWsVM2fOpE+fPk1+nkwmGdi/jHkL/ILlPXr0YOrUqb+5CSskJCRkXSK8XwoJaRnh/dKqI5yXQkJaRjgv5VgtolN5eTkAff/6N6xoDDRkdXIN2Z90bpnI/7khIreZFhotAQna0tllSMDKfKZBaoTUIMxLSkCYZTL4XAbLLekjBAihsaQ2/2L+FQJEsfdk3me6mPtcCvPK/WwOziwvXDfXjkagsKRZN7u8yVHWCDQ6iKBU2V6A0gKlJVoLFKC0DJaZFpUm27LSmPV0bj0d7Fkpga9yyzxl2nA9C6UEypf4nkQrgVYyey61L8g74wihwQrOB6A1oAUogVZmVSGC89YUwoyRJtg2234wdpnzrYXpjwblS/AkKIFQgG+20bYGRyEkIBRCatMnZZn+K8CTCFcgXIH0BDINeALpgfRBeGClQaqgF5kumcNCy6A5O3hZwcvWKBtUOsnMK/+e/V1pinQ6zbwFPlO/7E9FuRnj6hrFwNHTSafTv6nJKiQkJGRdI/M3YObMmVRUVKzm3oS0J/de8wKvPvIxG22+Hlc+eNoq2eeMXxdy9tF3A3DEKTvw+2O3XSX7bUuqq6vp27dveL+0CgnnpXWHG795i0cmfcuYXr24Y7vDV8k+p1Qv5OBx9wJw5gY7cMKQMatkv21JOC81ZrWIThkrpozEkBEjOhUKTznRqVCMKtZY3iYNRCeC91pqsACpC94b0cmshwyEnowglRUqlBGgMsuECgQjhRUsz4pIBSJTQ/I+E5qsGCLMgWW2z2wsgjYlmbYz+zUyUr4oRfBzw/1l3+lsy0Yw0qAQaC3wNSgC4ShPdFJaoJBGbAma8xH4GWHJt0HJQMSRRmRSEl9LlJAoJVFSghQILYJ+iuy51oEwlzuA4N9AANJagAKhRFasyYpOwTnLCZHCnMNgPLTKE52CcUIG4mOwjdAgbQG2MBePBqGNTCcsDbZGWEZ4yopZyqyntRHDBIBvxDUdCFC4AtICkQaREggXhA+WixG2Ml0IxCvtB4KgNv9qoVESvMyhttC2XFpmXgB+M9pcSEhISMjaQ+ZvQEVFRfhw9xvnw+e/wybCpM9ntUvYUjrl8cWnU1h/g1506Rp8+dvfokPHSmqrkwzdaMBafY219/3SHXfcwR133MG0adMA2Gijjbj00ksZO3ZsK3u69hPOS+sOLy6Ygo7HGL9sUbvMS0nP44OZ09ikWw+6Bb+Y/aMWHSo7UOMmGd6z/1p9jYXPcTlWi+iUITAZQU6SaLxOsw3kGaOywoQRYDTmffYVfGYEp0CkyYgXweciWC4avJd5IpGUYAmQQiClcT7JPF0kc23pfMcWOnvRGflHQPZfAhdT5n2+wyn3s8z2JZf9PX9/yx+53BjrzO4BgUQE/yFEXr8DYTBoRmFEGSEESllGqEKitMQPnFN+4HzS2jLOJtVQUcoMlMqOba5TeQ4nyAlBCLQOnGo0HMMGx6cb7q+haJkTM8nbl8j2K3jZIOycCCmCQdN5KpmwcmNoRLSMG8u8Kbgk/cD9lNO8cujc1ZB/QoVqeHzNo9CooGXFb3S2CgkJCQkJ+Y0y9ogxPHfPODbaYlC75Mn5z81v8OqLX9OlazmPPf9HhBBUdizl/pfPoa4mSY/eHdt8n2siK3q/1KdPH6677joGDx4MwIMPPsh+++3H119/zUYbbdQufQ0JWd0cNXQE9/74BVv37NUu89LlH73DEz99R8/SMj456lSEEHSKlvLO786ixk3Rp7RDm+9zTWRdeI5bvaKTT2DvyD2QZ1nOeOeZobLikc7/Xci4UzIrZV6ZcCeZJwIoIzwZwUVn11OSQDiRWFKhtUapQIgIVBKzjco6kzK/jyojluSFtAUdwxhvRNbxJDPheIKssyn/ZQmw0Eh8BAJFziGFbk54Chw12UHIX1EbVxM6CK0jz+EkChxREo3UGo1C+Ta+EqQ9Scq1s6F0Whu3k1YC7VNUADLWJciFMarsuCtfgm+cRvgCvJwrCkSgemXOs2igOeUdm2o4AADSONyC7XNaoBk8nX+xieC8+uSELpHpiHkvg7BMIck5t+KgfYnvCXxXQspCpgVWSmClwEqaEDzpYkLwUjqrk0kLtBRoC1QQaicKQ3uXi0JlD101GoSQkJCQkJCQNZmTLz2Aky89oN3aT6VcwDiedN69Y3lFnPKKeLvttxie6/PVJ5MZuH4PuvbssEr3vaL3S/vss0/Bz1dffTV33HEH48ePD0WnkN8s548Yy/kj2s/Nl/Q886/vFzypVkbiVEZW7bzkKp+P509haGV3epZUrtJ9rwvPcatXdCI/9KpVGzb70hlXUxGHU+aVcTdlHU4Zt5MQQWhd1rSSDYMLosWMCCQJXE/GhZR5QU4CyfmVyPs3I0MZZMbZIsyWWadV3iHJIItSpj+Z1mSuyRYMWCE6CKfLDZIg47HKZYwKlgRimudb+Eg8ZeP6Np5vo7UMQsVM7ibze1LsuHUwvmRDG6UVnC8/OGlBHieUJP+qEPlikcgfvaDd7IkvdqSZLggaC29FhidzLUgCRT/fkRasnlknb1uVcULJ7Ma561uRfUk/eJ/peuYkCiOEZq7X1opOvtb4QSykr/Vy1g4JCQkJCQlZlzjr/LFsPKo/Izbuh2z5DWS78NCtb/H0PR9Q3qGER8ZdRCSy6h5Hit0vVVdXF6wTjUaJRqNNt+H7PP3009TV1TFmzNqXbyYkZE3h79vvyla9+7JFzz7ZZ+LVxS0T3+Oenz+hQyTOh2PPIWKt3nnpt8ZqFZ0yLqdsfpyGZMa8iWtQ5zuc8h/aMxoG5NmZAleSDt5nm833AenA/6OzOXYkRqBRSiKEDxL8oFmtjNIkAqtWxu0ERoSQGjwlc3vS+UJUTiTJuJYEupHTyZIKXwikUFhaYAmNJVRwfPk5n3RWrFLB/nXWtRS4iTIJxINlvhL4mZ81eEGicD8jJOUNvNbg+hZJzybt2sbllLLQXqAcZVfV2XxahScxeG9pLEtlQ9dyv1c5JxEid65EkNspG6qXaTera4mcnhSE6BVcLlnlruEHQT8zTqr8UDlf5E5+xgkViI8Ic96F1tl8T0JqnEjQBeWjYgLtSTxP4KUtRFJiJQV2ncCuN84nmQ7yPHm53FYym1xcgEerWBdsmSEhISEhISErRmlplLH7bLrK9vfRh5P49deFHPT7zSktLRRwkvWmPLibctFq1d6zFLtfaliJ7bLLLuPyyy9vtO13333HmDFjSCaTlJWV8dxzz7Hhhhu2e59DQn6rlEeiHLbByFW2v7dm/8Sk6vkcN3grypzCeSnhBW5Q31vlz1LrwnPc6hWdKNQQlkculK7Iq0Bw0g0SH1GY3ymb00k3cDnl/i185dw+GaeTEJicTiKX18kSGQFLBOJPYSd1tkO5IxJ5LpzAyFPwksGWxuUkclXvgs8yP2eSi2dyMuW1mN23DjxTkKlQJxv1TWlZtK8a8LSFr4KXZ6FVxj6WQeUcZNkTlvdzMGa5Mc2sl+90CqrJZTbSwYFlbUwil48L8sStJhxMGcEp39mWt42m4eZB2KPIO4jstSGy5yyb80vmVhUEw5ERyLQ0ri0VVLgLqtsJ31S1K7wSgvYzfWx8NM2i0Pi/8ckqJCQkJCQkpH2pq03ywH/fp3PXcg49cswK5XFZuLCayy79PwDSaY+TTt6x4PMTzt2D9Yb1ZOiIPkRjTlt0u8UUu19qWIWtKZfT0KFD+eabb1i2bBnPPvssxx57LO+//34oPIWEtDNV6SQ3ff0BPUsrOHWjLVdoXppXX82Znz4FGGHp3OG7FHx+/vBd2KCyOyM69SZmrf556bfGGuF0yjfJFCVPV9Dkwud0xnkSCEmZvD1Z0SkQlsy6DXYQiBk6cDUJdLaiWja3U8ZEo0XWfaN1Jqm2WUULkwspI/jkh8lJQFp+Np9TrkJc0GZwUBlXkcI4aPKr1ikJlhQoX+V+FibPki8UtggSnQuNFUhKFholBOCDlkG7mf3kcjd5yuzTOKAEnso5nczPFr6SpF2TMFwFleuUkkhLg/BQnsxViwvGWoiM8ys4wrwxyf4sQCnjGso60oQ2aoxlxklkxKdioa2i4RuTQ6tA78pcJ5n3+ddApk8NLzUdnJvgGhAZt1Nm2+BEayVNbi9NNiQzc71YtgJLI+IeKHDTFm7Sxk1Y2HUCp0ZgJcBKgp3EhN0pwDUhnNoyDqjWsC4o5CEhISEhISHty8svfMXzz3wOwCaj+jNsw96tbqO0NEplZZyqqgR9+nRq9HmsJMIev998pfu6IhS7X2ppFbZIJJJNJL7ZZpvx+eef869//Yu77rqr/TocEhLCYz9/w4OTvgJgTI/+bNylZ6vbKHOidIzEWZpOMKC8c6PPS+wIBw8ctdJ9XRHWhee41ZzTqeWOjkwIXYMURIW5m0TeesVeDRxN+TmUGjmcstXrckm7c9XsgpfMhMEZl1O2LZ1zO+X/mzvuwkpoudHIq4SXty+R18/8z3P5pArzPWlEXlVAEQhambC64OcGA5XL4ySDzyVaC3yV/1ne+trkcco/i/njR15/Gv6bcSwVXAUFbicjkmV/Jn/9BsNWMIIN1snkgSpwORUZdjNojRrOutDyxKrssckGx5t3WCITKSgwoYoqcDx5AukKhCcCoUnnUlXR4NptpddpXYgFDgkJCQkJCWlfhm3YG8uWlJfH6dmrY4u2mb+wmlvuept+fTpx6jE7UFIS5cGHT2Xp0nr69Wv8cLc6acv7Ja01qVSqLboVEhLSDJt06YklJB2jMfqWVbZom7n1VVw54TXWK+vM+cN3pcyJ8sbuZ7IoVceg8i7t3OPWsS48x6328LoCCgSAxsvz8zRpkZ/DSef0iUzuHqmDz3V2nfywumzYVSN03j8ZV4wAVNbplMmnlHFpiUwOIkHgVMptm3VmkQlxy3ccBc4nUeh8AgrWEZl2AF9JlNBYWqGFhQrcTjrI/yQJHEN5xyN0bnsVCEmZXE6ZqnV+4GISBGGCUmX7oRS4vswOhZR5OZlUkJBcCxDKiF8y5/opOJ3BMeog2bgRrsimc0JohJU7diEE2tdZQSg7rMtzxAWnODOkgsz4msp3InPe8zqoi7YbjHy2cp4wuQcy7crAqSU0QgiUn9egCKL6pMaJefiOQsUE6TILt97CSgR5nmrBqQfhaqygsp1WoN3WOp1yhrDfZs2DkJCQkJCQkPZm40378+wr5+I4NpFoyx4TXnx9Ah9/NoWPP5vC7jtsyKCB3Sgvj1NevmqrT7WEFb1fuvjiixk7dix9+/alpqaGJ554gnHjxvH666+3Qy9DQkLyGdOjP18f+kcilk2shQm+H//1C96d+zPvAvv2G8nQyu6rpSpeS1gXnuPWLNEJigoKWT1AFH/lHCIZMUFnQ++aFJwaOlcaGksybQMiOP1Z5xMZ95Em36piBKY8T1NBviGdy7ckjJBTeCA671+d61fegGTHISuomCWZ/ytllktNYdhcEC5X+CKbXNwPlmVC/zIiVEaUyu0lN246c8CZPmeEQTL5r/JOZKbt4LdI5f02ZUPz8psPXlobtScju+VaFEXeFT9/Be8zemJWIGzYQN4CkRtrkTsteccZhFVmzkf+vyIjdAWbKYxYFWyktQrGQ4MvsoKX1iYdVHO6WlP45GKB/VZvHRISEhISEhJiKC2LtWr9LUcP5JmXvqR3zw70bqE7anWxovdL8+fP5+ijj2bu3LlUVlYycuRIXn/9dXbbbbf26mpISEgeFZHWzUvb9xjCw1M+o39ZJ/qXNQ7zXZNYF57j1izRqYjDKatrZPIy5buaAocPApPPyQo+L0gcnRNw8l1PImiTQEhqaJPJbCJl8BK5XEtCaJNEnML8S5bQ2YTe+QF12Vp5wlhxNQJpBZ9pjQqWZYch0Cfyk4bnO6AQoLQM+mhcWNkk1wSpsjR4gZjka5nN06S0wEdmhSaVJzj5iGxIHYFohRAIIYg4Gh3Y/bQWKK3xfYnva0Bmq9BJaRKrZ0P9NPgKlCdRvsgLycuIfrpAc0Jg3E4S8BoIPvkiUb6hSzT4DBpF5RnnU57SlF/mTuT3qJCcGJk5oGBNX+eFdoqcWypYRxOIa4EAZ1mArfFtH2ULvLiP7wq8MhlUtBPZHE9WWiNaWb3OD7qUeR8SEhISEhISsioYuWEfXn/yTyuU3HdVs6L3S/fee2/7dCgkJKRd2KxLP77a96Lf9Ly0NrF6RafmLB1FzC9AYd6b/IThUCgkBFsWuJuKxmcFP2dcTCJfwwiEFq0D4UgZwUmowmTZQmWD5xruuzAsM7NW0HrGGVNEcMp0LdOqEoWHkS9oKQCV2y7jssl3O/nZsDqRvbAzCcUzopNC5JKFB4nHPWVEo+zwChGE3Am0lkZYyTc15YkvOeEpE0onTD/zxySrQeU7nnKDkH9MBYpTwW4bSEYNHU4ZkTKv3YKmGrmdGlBUjQqOI9+1pYPjCK6L/Os3K5BpAfhBcq7AfpdJgi8FSgrIiG4hISEh/8/eecdZUd3v/33O3LsNWJbeexEEBMWGDWzYexITo1GjKV9bEtOTb776S0yP6dFoijFFY4rGmMQaexcsqIgIohQpIr3t7p1zfn+cMmfuvQu7y8ICO09ek3vvzOkzjDPPPp/nkyFDhgy7AVryYhfHiiXL1jCwXzek3PVfCDNkyLB7oiX3pYKKWbxpNYM7dUeK7EWsrbFrrmh4fchkcwomk61O+xdzLazKKUrKIF3msZCpMfv85sLAQsLJ9i2FySQWSYgiTUVOURFp8pFKq5yEJichJ8wWWVVUJAyvYH6np6dJQtnKE06WYnHj8VItawauJTGSRh3RSI6YHLHOUSBPgTwNOk89eRp0jgado1FHRu1ERIGIgs4FW/BbSepVjvo4T6PK0ahyKJ0jVjkKsflsjHMUVA5FhNLuBFnNlSRlsJ2ar7InTkmIJcSR/R6Z306aJEnc0qVTWuHJGd+dLC6LvwZS333IZXpLm5qbOiIq3dIXZcBgKcdkmc37Wtnj/rc1EUebTUiIqjWyRkEnheqiaOiuqO+h2dIDGnpAYzdBQ7eWPYSpoi1DhgwZMmTI0LGw8r31XPiJ33DRJTexes3GdhvHvU++xomX/JLrbnus7PGvfvdOPnzZb/n+L+/bySPLnpcyZNjZWL5pPdPv+jUn/Ou3rNzcfvelO996hYPu+Ak/eOnhssc/9dyfOeXBn/H1l/61cwdGx7gvtS/ppIu2rR4qIzcRSXgd6LSCJlS0OO+lZrnlOD8io3Iym1PwmP3CEk5O9WT0Rjo1TqdyUk6xo024VWzDzWIFcQyF2HzGsTBhaEr444Vgc7+dQilWUNBQiAWNZbZCLP2xgpI0xJJGu68Qm3pxLOxvYcagBHFBUHBbLCgUnCLKHYe4ACrGGGc7ZZJdf6WSLfQ0Ml8S5ZgVjhm/ozA0LXWqnS7MrW65c1dmvzvnVsGmi8MnS8oXXx/b2oKWVDC/omH5qcZuvcyWlNeQU5BT6JxG5TWNFYrGCk2c29Z1mobChEfGGMVahgwZMmTIkKFjYeYLb7Pg7ZXMf3MFz7/4druN4+8PvMSqdZu49e7nyx5/Y8EK8/nmip05LCB7XsqQYWfjsaVvMXfNSl5bvYKnli9st3H8cd7zrKzfyG9ff7bs8dfXLgNgztqlO3NYQMe4L7VreJ1o4od2v4NU99qpnQRe5aRTipegfErlZJVMll5LG4cXq5y0P2aytEFkPYoiCbnIfM8JRSQVkTSZ6iK8KAcnyglVS+a78VLSNsQu1sIrnsxI0songfF6AuMZpQKD8tgvlFVbaRu4F/aJIYoKSqKcnxOJx5NSiYG4U+oUlKAQR2grIdNJN6hYoOIkljFcv3SgWzoEDkBIo4LScSrWjcSwSQTG48KfA+3UTUr4VUlBlPkejictRvJlhAjL6+R7UxSsG2/IA4mSToN5l7mYQyLNXSsVoPMKHYOu1MQVICsk5CmVx20Djhh03zNkyJAhQ4YMHQtTDhrB/vsNRUrBQQeMaLdxnHfyAVx32+OcfMS4sse//vlTeeDR1zjl2Ak7eWTZ81KGDDsbRw8cyWH9hhIJydT+w9ptHJ8cO4XvvfQQ7xu+T9nj1+7/Ae5e8jJnDZm8k0fWMe5Lu5aROOn3e6ccCr1xQCdEQkB6FJcqarWICwgVK06Z5MgAFexPq5iUNpnhtLB7bZtWxJOIq4oIJ6WxBE+ifopdHY0NtbN+T1o43sUQX24j2YetK4TAZdHzVI8nsSxrqqTNRCdt/4m/k9LWwwmJVoJCQRIridYuX1yyLl7p5UgUWZShzsJlphPSrEMcOw+oRHmUWDCJRPFkf3oeys9C2HMg7AqVI2NKx5G6RsqWc8RUQlAFZ7BMH1vpz7OkAURpMXfZ+eIhZyUURAKVt+ewsWXiSseOu+8ZMmTIkCFDho6F2i7V/OBbZ7f3MDh8vxEcvl/TpNe40f0YN7rfThxRgux5KUOGnYtuldX88ZgPtvcwOHrAKI4eMKrJ4xO7D2Ji90E7cUQJOsJ9qV1JJ/9O7gQwwfeUd49XOlkfJ0Hg3QTFXj+JeXiicgo9fBK1U1rhFGaLk1bdZNRMJjNdJO2n9XFyYhQjekk6SCmErExO20//PTDwThRPCeOmncLJsTKiKQ4lJJyS/h2B5ZRNyXdLOCnhCSalBEpJ4kLiraQx640V+RmPIiMF8usZqMIceebXwBubuxNrKnmD7SJTpfL/vJIyhowSlC1cpGRKriud2l+SxTBQHZWIldx6OvlacZeSxDi8RHJVIokqA0d2uiICl3lRA7qqZTR3R7hZZciQIUOGDBn2bBRixVPPzWfooB4MGtD2ac6z56UMGTK0FAWleGjpXEbW9mJYlx5t3n5HuC+1u5G4LrMppx6yCiNtiQLt9ltCSQuNFsp69rjWyvSgHSET9mh/Bfudb5CjhiDt6eSIIuVC0ZTxOWrUxjupwW7OV6khljQUkn2xMlvBqp6UCvZZz6ZGuxWUbacgaChIGgqSRvvp+nH76xsjGgqR/91QkDQ0umPBp90aG01bjY2SxobIbPWSuEGitkjUZonaHBHbrVAfoRqFCQOLBaqQeBM536twXZ2fU+y8ogrCyLtcEUHRCce2DbqQfKfEK6mJ85tqLj2Wcuc83Vb58jqUrhXXE0W/y7a/FWjQSqCV8Gvl2xAKctoSfs1HeG0qvWferDJkyJAhQ4ZdEY0NBf58/YP88w9P2meiDK3FH/76FF/99j+46DO/Z+Om+jZvP3teytBR0KBirp/zOH+c/1x2X9pOXPfaY1z61F85/YFfsaFx17svXXfddQwbNoyqqiomT57MY4+VT+JQjCeeeIJcLsekSZNa3GdL0b5Kp1ChRPA9VDv5zHV4P6eyCidRrGTZlsqJQOWkfbY6H9JmlUxRoHySKeVMGCcmrM9ScpF4E22S0DmndAJDNKVVTqFmCd+uUSxZYkWkS3klkf2RGJc7TyfhFU4ulC5Wxt8pLhiPJq0EKJtdriAgFkmbUqNzhgcpFvMI65vl1iytdHIqIGmJo2IpklM3BaqqskgcopoMYXOf7rwX76dIyRQonUIPrxDaj7G4P00qg6Ybk78eigdWfk7+utFhewIt8Kk9ddRE9SbQERjyDBkyZMiQYVfEg/98gZt/dC8Ag0f2ZtKUke08ovbBm4tW8rt/PMOh+w7nuMPGtqqNOHZ/wFTsiPfk7HkpQ0fBnW/P4kevPgTAyC69OLj30PYdUDth7toVXP/aExzZbxSnDhnfqjZibWxPlA4tfdoO23Nfuu222/j0pz/Nddddx6GHHsoNN9zACSecwOzZsxk8eHCT9dauXctHPvIRjj76aJYvX75d428OdhlPJ0OuYKOxdBKV5RROQlvHbqNwwobbJSF4AeEQhk9Z8scZX2utExPs0hH44DitrZLKHlVagJIooVHaeSmB81TSjiAJBDLOfT4kiRIfJ0sK2X2xI57c0EWaxEgTTQGtodP7XYgd4H2bdOjfpAzRpAoCHUtDMjmyyUnMcGtq5qxzdr3tnLFjF5H5LqMgVMzNUYFWypBZCQNHQrgYr6dUYrnUv7Fm/IPTwXXSpJIp+B1eG6GBeDmIcGETaZZ2awAIKfAiLzunZsORg3FxXwodSRM+2gLESGIrXIy3UTZDhgwZMmTI0HYYMLQnUgpy+Ry9B3Rr7+G0G274y+M8OmM+/336dY4+eDS5XAv/ggac/4EpDBnYneFDetG5U2WbjzF7XsrQUTC0Sw8kgoooon9N1/YeTrvh2pcf5r/vzOU/i2ZzwqCx5GXL70uX7n0EI2t7Mrprb7rkq9p8jNtzX/rhD3/IRRddxMUXXwzAj3/8Y+69916uv/56vv3tbzdZ7xOf+ATnnHMOURTxj3/8o5Ujbz7aN7zOij60wBJKRVsU7HeEk8RQZXa/iKyayaueEvWK2y+sGsrva0LlFFnljv/uyuFon0SCpVNb5PfFSBQRKpiQRlgFi9mMp5Mk8XZKT1yXLETSV/FvZTdjFJ58xipCaZOJTukIpSKUyqHjCFWI0IUIChIKElGIkHGEVBKhpZmrtj5KEn+S/BrYBXTrmVIxeRQZbRUrnbSwhJNpV+D6dpsoWvMyKqetbKlzX6KIS7y7hGyq+VAalajm3PXhFEmundSYilF8XBfvlKWFW/jHt1DRpltAfn3729/mgAMOoEuXLvTu3ZvTTz+d119/vWWdZ8iQIUOGDB0Qt17/IF/8yI3UdK7k5oe/zM2PfIn+g9ve76M9sGrNRl6du7RFYTkHTBgCwL5jBxJFrXvFyOcjjp26NyOG9mpV/W2htc9LGTLsLvjFE89w3i1/o3NczcMnXsHDJ1zB4M57Bhn+7uYNvLhySYvuS4f2GQbAgb2GkBOtuy9VyIhTBk9gr659WlV/W2jtfamhoYGZM2cyffr01P7p06fz5JNPNlnvpptuYv78+Vx11VWtHnNL0b5KJwEqSv/WgW7FKI0SVZOOdBJeV6xYSQmDEhWL9odCSU15lZNRQemgfKJ/csnXtDPTxhFSyhNT2u8PAt/cMRGom7QLf8OG2aVHCokaCkQqM17ybyxd1nwKHxpmvIKENwrXyqiZ3KdTN4mCMOFzfvCkPbKCZfPDtEWVHZuUReNQ5kfyj8Y27s5LlJQTChvSFyA8n6Jov/vUloAs9lhKXQ9lVE3hcSezcico7MReBz6kUWiETMgn4fp3Sjp3k2jiHugVaG6ddbCQpaXDE90stFaW+cgjj3DppZdywAEHUCgU+OpXv8r06dOZPXs2nTp1atEYMmTIkCFDho6C9Ws28fsf3wfA33/zGJ//fvtnjWsrbN7SwLmX38T6DVu47MJpnH3q/s2q977p+3LC4eOoyEe8PH8pIwf2pKaqwh9Xyv3Rr/3Iniy8LsOejNWbN/PjxwzZ8NtnZ/L9U45v5xG1HTY2NjD9PzeytmEL/7vvMXx0zIHNqveRUQdw5tB9qJQ5Xly1mNFd+9ApF9yXtDJSh13svrRu3bpUmcrKSior0+rPlStXEscxffqkybA+ffqwbNmysn298cYbfOlLX+Kxxx4jl9t5VFC7Kp2KBD4JGRAFm1U1GcLJKpvcZut59ZLEeA2VVTURinR8hrsSlZNIfIqEY42cQikYcBKIV6xOCpQ9Xg1j66eUTsZfqbwaKL1pf7zcYiVjU1oGn0blpLUEJSEOPmOJsJvUibpJhN04NVkxHxQqx2Qyt4CxKj8fTwQJT2QJp3gq+l9ZyVCxWqjssum0eqnI7yu96UQNlTrPxdeLaVPa681fG8Wf4TUn0/vdNbC1cqnJlfOT2gZiLVNbc3HPPfdwwQUXMG7cOCZOnMhNN93EwoULmTlzZov6z5AhQ4YMGToSOnet5oBpY6isznPYca3zCdlVUd9Q8CbeK1dtaFHdTtUVXPunh7j4mj/z8W/d5vfPeWs5R1/yC876wk2s27ilTcfbErT2eSlDht0BXauqmDp8KNX5HMePGdXew2lT1KuCN/Fesbll96XO+UqumXU3H3rkJs595Hd+/6tr3uHgf3+XEx/4GesaNrflcFuEcvelQYMG0bVrV79tLVSumDAzQprSd8k4jjnnnHP4f//v/zF69Oi2ncQ20K5KJ1EAEWPSxFuCwPk3aefZ5BROVuWkpfbEUshnlL6jhwqYou/2U4RlQ2WT9X0KxSaJSsl15ggKS0oIbRVOAmnNqbwCypIXoZ+To5Nip0hy+qoigUvo0eSVT+GxwAtKO/8mp56KzYJ6dZP7jAUoEE5QYzMBErm1xq53sDwi6dNbEMXC1C0e67ZEOpFp1Hl4JafH/n+xPVI5HkoX7XfjEyDCQcqAiDJMlz8v7rvWgIytz5TwfaauDztOTek5wrcVSsLceXKtpJVNvqzr354TYgGNAupb9iBkTOql/W7abg5DXoy1a9cC0L179xb1nyFDhgwZMnQkCCH4+g0XtPcwtoq/PvAiv7z9Cc45bjIXnXZws+vV1dbwo6vfz9w3l3Pq9Ikt7nfZe+b5Y/mq9X7fs68uZOPmBjZubmD+4pXsu9fAFrfbFij3vJQhw54CKQS//sAZ7T2MreLm2c9z7QuP8bFxB3D5pEOaXa97ZQ03T/sQs9cs50Mj9m1xv+9sMvelZZuT96OnVrzJhkI9Gwr1vLF+BZN7DGlxu22BcvelRYsWUVtb68uUe4fr2bMnURSVqJpWrFhRon4CWL9+PTNmzOCFF17gsssuM/0phdaaXC7Hfffdx1FHHdVm8wrR7uF1ulitEno5hVvgz+PVIf4Fvun2/degbFrFoomK1SqBQsWROS4rXLphSy4FTtjC7RPmeFox5aiuMCViE6ZCTU2kpFxAjShHmoRqGeFiFRE2U53zU/IcSbG6yanIkimmuwvUQ1sbT9nfAuOQpqyqSSf6Jj8PX0skVGAx8RT0r4OQOa9ygiJFVrqeIwt9n3a9hHNKLyEpRenU7PGms9/ZmmUI0eIseCY0z6jRRCyMCqwFKCfLHDRoUKrMVVddxdVXX91kG1prrrzySg477DDGj9+z/mqbIUOGDBkydDT87cEXWb+pnr888EKLSCeA/SYMZr8JTWc+2hq+cuGx3PXYqxy6zzC/75TDx/HagmX0rOvMhJH9W9VuWyALr8uQoX3xhznPs66hnptfe75FpBPAIX2Hckjfoa3q9xv7nsztb7/ItH6JAuyMIZN4dc079K7qwsRu7UOEQ/n7Um1tbYp0KoeKigomT57M/fffzxlnJGTj/fffz2mnnVZSvra2lpdffjm177rrruPBBx/kb3/7G8OGDSup01ZoX9JJgyyAUoAEHVnVk1WkaGkVTjmNiBRSJkqVhHQoarLMHy1CAsgRCi77nEylT7M+PiUKp7THktuvkQg0SmDDp7QnLZwJuct0J73CxiiDpOWFYtuZUum2E5KK9D6d/NZWeaW1IZNM1jhhMs451YxTONnfQgOxF+54FZnJUKcT4/YwA2A5TkxbpZNfvpDhK5ZrlZ4PLbUZo2s7UG2VRVhWJqq0JGthMF57/RjCSSOkMr5TwTkovnakNURPlEyOdSx/TWl/vox/VshNmX5iosh+t/u1woY8ptdGI8z1LpStL7EsZ7MRyjHdNdUchjzEZZddxqxZs3j88cdb1HeGDBkyZMiQYdfDx884hJvueob3Hz1pp/bbu1sXLjo1TXJ1q63h25ed0mZ9zHlpIZ27VFPbs2UZ7so9L2XIkGHn4TP7HsYvZj3NBWP326n99q2p5ZKxR6T29ajszI8O/ECb9fHiqsXU5qvoScW2CwfYnvvSlVdeyXnnncf+++/PlClTuPHGG1m4cCGf/OQnAfjyl7/MkiVL+P3vf4+UskRY0Lt3b6qqqna44KB9SSew5JGwBBOlW47EpyltlVSqMNHliahUead0wahdZBmVU0o9BEnIVRH7InB1HGuSJpzSZVx7lqjwSqfiLWy9zGKV+23bMQbeIrXfqYkMd2RNw70USFOcITCVza1o3cJF0daPKT0WR/w0NXbtyZcwG57TOYmwKHZFBWghElKp3BYq39w5Ds6rDI4n5z6YjnbnMP3dm4QHhdNG7qXzTK61NDkaElklv11Yn7JKJ1W+7a3ByDKF/w7NY8gdLr/8cv75z3/y6KOPMnBg+zH9GTJkyJAhQ4a2wdEHjOboA3aub8fOwBP3vcI1l/+RKJJc+5ePtahuueelDBky7DycNGwMJw0b097DaHPcu+Q1PvXMX4mE5C8HnduiuttzXzr77LN57733+PrXv87SpUsZP348//nPfxgyxIQKLl26lIULF7aozR2BdiWdVIVRAPlQK7ThMaynkMgro3DKaWSkDPkEhCFNLpTJWhMlBFFxVJQIdnrPH4EOT60WqKIxhpnhQoTmz0o5MskRGsqH7Wlh9VDaqJvsLImk84jSlnwy4U0l3k4uvM+RRU7hZIkb7+tkP3Xg3SQUXuUklPCZ4hx/o+wclDTr7VQ6wYKY3zLZlSi+7HCcF5ElUURS05cJVi1YWDNsEVk/KSXSai53viyp5MalwzHa76JEmeXGrROlU8p7i8RTyV1LOjmHPsNgcO7DkDmNGZPLCuiUZm59hDTW8ubaM5bzUtrTpAVKSXs9OZUWyByQi9EVMbpKoGWBlkAhiVvhUaC15vLLL+eOO+7g4Ycf3qGyygwZMmTIkCFDhu3F+rWbAIhjxZYtDS2q29rnpQwZMmTYGtZaI/JYK7bEO+c9zuGSSy7hkksuKXvsd7/73VbrXn311Vu1X2krtK+RuFPmBIoVo27S3jjcZKlLwuocbZFSi/j394DUsExC6OXjdidKl0SVtLUsibo8g5IcTx1Tpf5QEITbmbIq1WaobAn7CAmocmVEUbnktwiOGQ5GBFFnNshPkPZxKjOUxHSbIibJMkCpPouQIq/C+sXl023o4qluZUsps8Ixu02SOsfl/JxMPdu3Tu1Kn/sUoxasuRuwvaZS2etIE5Sa0IzerUvRYHTQVzPRWlnmpZdeyi233MKdd95Jly5dvBFd165dqa6ubtkgMmTIkCFDhgztjmUr13HXQy9z+OSRjBleaia7u+PYM/cniiR1PbowbHS/FtXNwusyZGgfLNm0hr+/9SJH9RvN+G7t5+u2o3DW0EnkpKRnZSdG1fRuUd2OcF9qV9IprtaISCOU4y/SPk4yH5PPx+ScnxPpd3GtIXaqFARePJJSkdh6jnTCmYcbBUrxeS3OWpfe5yU4hAyKtARXrEAjUbFRcCmlkVITSYXGZrULyK+kHedR5JRLdqRWVaRiGfg1ObKHEqWTUzJ5dVO439oFYdVXzrdaa3MMew4SA2sbWxYYcycLopOlENo2hDEIt/U9UVWGK3NqJX+apDtNGuWUVTZzocs+R9CEXyNPziRqJ+HG5LLJae3DLp3qSAQ+S8KHBLoJaZNcL1j/xEzeqppsZSlBSY2KJXFBmvMDqBiEEEireEvOt0ZilstI10x5GcXJ2mggp1CqkZZAIVuVjeX6668HYNq0aan9N910ExdccEGLxpAhQ4YMGTJkaH98+8b7ePblt7n9/pe4+8byf/3enRFFkmPP3B8ozdS7LbT2eSlDhgzbh6/NvIsn313An9+cwZMnf669h9PmiITkzCGTgOy+VA7tG16nFTHKhJ8J0JG2xtYKKRUyUkgZI4wkKuWtAy60biup5csQPI4E0JZj8BSLLk84pXvzrFaZY0mHQhTRU7qUCyslsYLWdEB4KGENqB2ZVBpShyOOglC3NOEkkkx1tg9l11S70Loww1sYPqdBK3wIWjhPc9AesOFpIqzfJJKwMvc7EUzp9OYCHt2ieghPKJKqa9pLXSrunNvWpOPTypwnX0UEi9DEHDTuXGm0c8N3dYNrL2xL2cvHnePwWnEKqBIPrWYg1oLYLmKsm19Z76FseoYMGTJkyNBR0b9PV3gZ+vVunq9jR0Jrn5cyZMiwfRjUuRu8u4CBneraeyi7HDrCfal9jcSrgbxGx5Y/qdBQoZCVMRXVBSrzBaNycsoU+6LvQtS0FsRCESuJUu7tvXxokvCOPelQq4RI2jpEESNTzsQ8kgnBlFIqIRFCeVJG+eMiVb9YWePC17TzZtLGQwidVjK53+67S8jnwxcd4SQwSiepIafRObyaqKyiyYfR6ZK9ri1zQsxiphIBEn4Pz4lOwvsg3a+wWQrzCplT5KKYKDIhkJ64U4a4iZW0hJxAa0f2UKJscxPXlrQMVjxlPB+G0Ql/jlONmKDFYDkkZv20FohIoGOMck8aclNatZWpkxjH6+A8ar/MZvGaMsnfFuIgFjjeQxnyDBkyZMiQIcO28bkLj+aUaRMYPrBHew9ll0P2vJQhQ/vg/yadyPuG7MvI2paFnnUEdIT7Ujtnr9MB+aCtl1NMlIvJyRgpCklIFEBCByS1fYyY9m0Wsyf+l0hOolGpbFtQkg6DE0X73P7i34ZcKEdMKfepEnIp+UyMqVVMOvTNEUiOXHOfQRn/24mEfNa69CDc//wClPM4CgedfBQdc8SYUxI5wsYxJ8nXcJl0+MUJ1cLQOOfhL4zYMOEGBUhhTNGTK8dOvnQCxYSSciGElgOT9tIxiqeQjioaryMBvR9TuN8VDq+/hHCSwpCk7nwrlWzairikjU50JJ4QybHmQmmJsuSbytRLGTJkyLDH4pUZC+jStYYho/Y8r54MbYNISvYe0be9h7FLInte2jGYsXIhXSuqGVXbq72HkmEXRSQkE7oPaO9h7JLoCPel9iWdBIhIQF5DdYFchaIiX6CqskDeKpwim3nMqVuETtQqEkyWO2GUPu6lPtVFqLBJqUhEkclzMYqJmFJFlCMVwBALpv8kE1/QVMoLSOkkQ1qsTDYzFRBOWlkmJlQ3BWonr2CynwGXZjkbkXwvnkKEOeuVGnI29MvFm5WaNzX92/EsnhESxlepKUlgIDNzxJQOiRqJNY7X5Cs0+VxMPheT855OCS1UUILGOKKxEFGII1QcDqpYxWbGpH18YcLKGaWTubZKz7VpzxOCRYST6ydh1sz8ZaSJchopFZF0XZrjSklUQRI3RFBIGDklNETKG5B7n6wWoCMw5BkyZMjQ0fHof17i25/6E1EkueGezzJgaPaCl6H98Pt7Z/Dg82/wqbMOZ9/RA7e7vfUbt3DNdfcgpeB/LzmBTtUVbTDKNLLnpbbHvxe9yqefvoNISO49/pMM6dy9vYeUoQPjV68/yf1L5vCFfY5h/56Dt7u9dQ1b+MKMO8kJyXf2P5XO+co2GGUaHeG+1L6kkwKNAmkNt6OYilyBnCyQE87PyRRNEznmuyMCErVJGk0RSqGXTopIsKqXJmq1aL8Ps9MQiTQZFqtE+RIrPOGkLFmkYxKFU6hkUniPJtMQ5UQ2gdKpaJgi4Vy8MipUPKUWo5g4C8L03G43rqCIaS+kp4oWVAW7wy7spxAajfIaOKUTMVSqGWWJPpUQZn5cMjjH9lNYMZTj1ryXkh2HC+ErN+RE6VQ8BuvnZH2tjEJNIKXwAjCncnLKJu3jJ0mIQ0yopM7Z/VETyrKtQJHEALdQJJUhQ4YMGXYTbN5YD5hU8Q31LUvJnCFDW6KxEPPTvz2GBn53z4wWkU7LV6+ne20N+ShK7X98xnwemzEfgKOnvMkxh4xpyyED2fPSjsDGxgbApIqvb2Gq+AwZ2hKNKuYHL/8XjSGfWkI6Ldu0jh5VncjL9H3pgaWv8+DSuQCcuHxvThw4ri2HDHSM+1L7kk45DdXGw6empp4u1fXkpKIyVyAShlSKlfHCadQCKcwJcR45RqlkfkusSXTTrJFHmMI+/ZkwIMUeTqV1E5VT2D84TiFhVZyiRxcrnAKySXuTcBuyFobRxSBc5rpA3eRD6NwwyxBOngcSWDWR2USEKRhpRBTMSweEhyYJ67P9eBJMh7FzJP5OYf9ubCWnxLFNRayTMFnoIrtJkT5X2q6qwp135+ck0+1aEs0Zc5f0rbVfWmEJIEeYOcP0MDQv9HsqnYcwqiQXyuh2aWmzGWLlksl5FUpCQUKjMGQT2pBRQkFuT73VZMiQIUOG7cWxZ+1PviJHXY/ODNurZaniM2RoS+RzEScfsjcPPj+PEw8e2+x6v79vBj++/THGDO7Nn758Tso/c79xgxjQpytSSiaN3X7lVIadg7OGTaQyytGjqhOju2Z+PRnaD3kZccaQidy3ZA6nDp7Q7Hq/fv1JvvfKfxlf14+/H3VR6r40pddQBnfqhhSCA3oO2RHD7hBo5/A6E4ZUWdFIdUUjVblGKmSBSGoUJszMha1p7SgHB1MmlISkj5bt0BxLEQnBUWFNykV5dU1xdjuX9V7aNr1vj073EQf+Ti4ETwVkkyecQp+mUOHklE+WKQmTuvmJhr8d4RQKlSK7hglrhFMleaJJhGtYxFohg7EZIqx0aXWiJvJtWDKmKfeskOCyi6a0tiowYYght3DCGMY3FgRxLCnEgtitjRtGoGZyH1oGUYABEeZMvv19JfguSBNPfmm9Iiu4Lu140QJlw+Z0miRPJik0IufqGTN0YYlFCqYNTWmY6LaQTrXZstC8DBkyZMiwe0BKyVGn7dfew8iQAYCrLzyOqy88rkV1XnlrGQDzlqyksRBTkU9eRfr0rOWvP724TcdYjOx5qe0RCclpQ5r/gp8hw47Edw44le8ccGqL6ry0+h0A5qxdTqNWVIjkRa5fTVceOP6yNh1jMTrCfaldSaeoKqZTbUxdzRZq8g10yjUihaZRRTQoaUkmE+OokT7EyaeWxypewmCucqFRhPVCFKuZUqxLUKbY38kqoYJ9LqOe0oYYSZROSRcaoxxSShAXpCebnFeTD2Fz5JILpYtN+JUJrws8nEKRkPtdrHwC45UkDPFEhYYKrGk7lsnVZYkXMzHQcahyskodgr6ETpRUTrxkxyKUbTRce6GTEDe7jsIpriKIpCVu7Jo6sqdQkMRxRBwLVBysXzAOfw61Tqm3QhGUuSJCElMHBJNOiKvggtHBeFK0mlM5KfuJIZOUcuuYXluZg1jbc5EDGu2VrIFYWn8tRYs9nbQktnXiFtbNkCFDhgwZMuyZKBRirvrZf3hnxVq+fsVJDOrXrV3H86kzD6dblxoO2XtIinDaWcielzJkaH80qJjPP3c7izau4UcHntXuPmCfH380PSo7cXif4VTIssqBHYqOcF9qV9Kpprqe2irolK+nKteIQBMrQayM11FBibQnDgkPoJyiyDMKUF7fpG0YFhgio9QQ2pcMwqpKSMZUHRvSZ9kfhVUv6UTBpCyB5A3ErZRIa4y6KQ7UTcVqphT5VLRpSlVGIQkVqpxsOR3ZQ5EtIJRR3Fjyx48zbCMknnwsn50TCmJLFoX1ipPI6cQqXPj/D4mcZLBe5RRDLI3ptgikWkoZdVPcKFGxDIi6oAMhPKGVEsEVE2lYItLtt59C6hTv6Ai5cvBKNqdyClVjjSLxUxcCIbVtWyMjTS6v0FKiIonOCXQhuNhC0q4FsPn+/PcMGTJkyJAhQ4a5b63goaeNH8m9j83m4g8c2q7jqa7M8+z8RTw+5y1GDepF/+61O7X/7HkpQ4b2x2trlnLPktcA+OfCWVy+97R2HU9NLs+zKxfw+PI3GFPXhwE1dTu1/45wX2oR6XTllVc2u+wPf/jDbZbp1nkj3aoFnfINaC1o1BEFHZlPFaEQxDaFoLaEEbh3cqcksnRG2fOjg5A4pz4iVS/5HbRc0ljxb43wzIzwXk1KSWIXMhd6HjnCyWWjiwXESVidUTLJwNzbqposP0TsMtZZvqhIQeWVTkHUnKtrRDjCKJsqgCoFeUN++KEVhf95ZZINP0sZc0tL9gjjR5QKYwuXS2PL2B1FS689OWQy1pEDGYHxlDSFHOHofK9UQUIcJZn8ivoTaTlV6nyVPZ+WFAvJpXBtjeqp3IUVKL+cvMuf7yJVl2XjhDBZ7aJI2bBBQ/ppZwgWkn2tuNd0BIY8Q4YMGTJkyNAyjBzSi4MmDuWdFWs5aspe7T0cXpi/hAXLVgHwzJyFnHHI+J3af/a8lCFD+2NM174c1nsEizet5oQdYMzdUsx8bxHz168E4KkVC3jf0H13av8d4b7UItLphRdeSP2eOXMmcRyz117mP2Jz584liiImT57crPaqcjFCRNTHEUoJClpSUIKCFsRaE1sSJ3Y+N1aREyqeSlFe7eSThm2lvqeeQsWT/a2LmIAUOeHKWLJJxYk/kxHByKBgQDYVREIoBZnoBAQkU0JAOVLJJZsrHrfrQ9gsd14wE3tZjjkutG/Hq5eC9UiMxEXpaqZCzoK+nUIrUE+ZRXGsX6CIAuMSHmlPQAnrjaRikYS4aWFIp1iiY6sIijEqq3D2Ib/nQvxCQ6swFLIcqaO18X3y5z1g0tIFPSkYmq0DhjhzmeyUMAbs1nBdR9J6ahkiS0qQUiNEjJTKqJ1CsrKFKicoTrW5Z96sMmTIkCFDhgwtQ0U+x4++clZ7D8PjkLFDOWbSKOoLBY6aOJI1Gzbz0IvzOHjvIfTbCaqn7HkpQ4b2R2WU4zeHfbi9h+FxWJ8RTO8/lkYVc0z/Mayq38QD77zOYX2G07+m6w7vvyPcl1pEOj300EP++w9/+EO6dOnCzTffTLdu3QBYvXo1F154IYcffniz2quMYiBHrCJiLSloSezVTZFl/RLViyGMmpaClBOleGJFWJVRqn6icDK8hFNNpYPCdKps8XffhBmn8xoKFUOh+sV6M9EoEbH5LsNQMUcoWZJJeG+nbY4gqBOshwRVCapSQ6VGVipEBMoRN7r8Wpb04EglW0eUOQ8iTUM1MVJhVE7SbCJnJiwjENKGogmnJBKebDJEnUTETfxD1FY15IeQ9Cvs8RJ2DhCWpCqdz9bmUjTv5NQl1VwGQltcSJDSKbnwCjwlML5Zrq5ViLVU7aS0Dem03zNkyJAhQ4YMGXY1VFfm+cHFJ/vfl/7kdp6a/TaDe9fxj29cuMP7z56XMmTIUIxOuQp+dvD7/e8LH/sTT6x4k2Gde3DvcZfs8P47wn2p1Z5O1157Lffdd58nnAC6devGNddcw/Tp0/nsZz+7zTY2F3JUxEZOFluVR0FLo3CyhtzuJBjhTFHYWgqJYXNJ1jGrQNFWeVOavc4QIe5dP2U87ssX9enK6nBLvJq8ysWRNY5QsConURCGdIqx4XWJmkm4skGonFMw2akW8yrJKkhQOVBSoyNQkUbnLcmDURL5MDyRNObDED1hRtGnVe84wZTWyVjDgYiiuugSYktI25YAHWtDjAkQ1ng8ZRhvVU5YlZNWGm+8Hfbp+SCRGJrjlFRFa+UWT4BWno8Eife5StFPxXNMzS9oVgCR9mPUOeEVbUpHJkywIJA55cMbhSXgJC6W113jLZM7qYAh31OzHmTIkCFDhgwZ9ixUWjMjSuTjAAEAAElEQVTxyp1kKp49L2XIkGFbqIrsfSnK7ktthVav5Lp161i+fDnjxqXjMFesWMH69eub14hwMYyRc74xKQN1ZEKr7Iu4yxyWeOgUQ1OShS3sxClPKKd00ikz6bLKnDKkQ0k3Ttnis6kVqWJ8qJwhmkRsSCfj6S08uRQSTimyKVRANQElDemkBZAHXIa0PFCpIa8TWY5fN6PCSeZYOm4oJt28JqxkrcoKhMKyQqc2IbFkT9H6W0WYjqUNQbSeV0UKJu0HWRzwaMlDkRxPHRYuA6FdE6GLZh4QX2XnWgSpPQmZTMZeC8FPpDBzJll34ccp7DxEWdXe1qCs95n7niFDhgwZMmTYc/DO0jV079aJqqp8ew8FgEUr17ClocCo/j23q51rPno8T81+m/1GDyx7fOaCxXzt9vs5aPgg/u/0o5vw2mw+suelDBnaDos2rqZnZWeqc7vGfent9avZUiiwV7de29XODw48g8eXz+eAnkPKHn/u3YV8+bl/cUifofy//U7I7kvNQKtJpzPOOIMLL7yQa6+9loMPPhiAp59+ms9//vOceeaZzWpjU2OeqLHCKJl0EkIXa2HMw516yKmdyilO7B4h7ac/XOwjlLA1xcol4+EknGwnyHRnsqahyvQtApLBjc0ZhSunYJI+5M2RKEIJREx6U0YN5MmlkHQqUj7578FwtCNuIhNKV6hSqJoYKqxJt0jGXAy3SsKSMzrMUheqtAKPokS1lVrW4GQEjZcjyQLfIq2BSIBM941TPMVuLJYcDNrTrsPiPlwWPYE5D8VKJ8yEndoKMB5TloDyJuduzZqah6O9pEZaY3BzTQgT6mdJJn+txfYaVxFCKp8xz6nMjLG466tlSqcYQWwHHZf5N5IhQ4YMGTJkKMWmjfXMfHIeEyYPpa57p/YeTln8/Z8z+ekN/6V/vzr+8MuLyOV2fkrvEAuWr+Ks7/yeWGl++T9nMmVM+RezEC8sWMLVf3mAg0cP5stnHOn311RVcPR+o5qs99dnX+btlWt4e+UaLj/2ELp3rtmusWfPSxl2B2xorOfx5fM5sNcQulfumvelP8x/hm/NuofBnbrz72MuJSfblyyZt2Ylx911E7FW/PGYszms/9Bt1pnx7kK+OuPfHNZ3OF/b9zi/v1OuguMGjG2y3q3zn+etDat4a8MqPj1+Gt0rs/vSttBq0umXv/wln/vc5zj33HNpbGw0jeVyXHTRRXz/+99vVhtaSxu36C5SG0aXxEfh1ElbC6tDCFMqxUrI4LtI/KBKQvSEIQtKVE4iIJSK1D/olK4mIT4Sk3BRPF4tbEY5q26K7feQ3yj+1MGnphxn5BLJmXXLgcprdLWGShC5YBlSUzbrJKzSyCudQrWTJ5ecCqt4dHbtwrGUDq/kjGmvLrJjk4EKyPdtC1sSLxXC50+xCL4GLJdj0IS9mtJMZDBOnfTpyvoWg/aavO6SCZo1dCxa+toy16bw6ip3aQuR9q8CS7KFWfBagI7AkGfIkCFDhgxtje9+5W8888jrDBvVh+v/eml7D6cs5r/1LgDLlq9lS32Bzu1MOq3ZuJlYmeeeles2NqvObU/O4s0Vq3hzxSr+Z/rB1HWqbla99x04gRcXLuWgEYPo1sw6W0P2vJRhd8Bnn72Dh5a9wZiuffjnMR9v7+GUxetrlwOweONqtsSNdJaV7Tqe1fVbiLXxolmxeUOz6twyfybz17/H/PXvcfneR1BX2bx7zNnD9+XF9xYzpc8wulVk96XmoNWkU01NDddddx3f//73mT9/PlprRo4cSadOzWdjG5VExBFeVRT4J4XqJkcYFfsqCauMEdZE2v0OSpgP7dRNyeYzrWHaF6HKyfbvMtJ5Q2iVkAlekeJUUxqjynFZ6ZxCKRaJYsmF04VbgSBTHaVKpzKfji9xfJ2KQOeT38adPEbkFCJKlDQJqaETvysVhJA5YgSsB5RIZcwzBJBOfJ+0LqHfipknT/sFBJrnkPz6pefmxyPMOLQy8xJFjXpBUFjeElrb4opSg9Pgg+vcGgqNkMIdLDMh/Bcda5S2YXN2oo7M82sdzs19qiQ7oA4XSoQdNQ/GGkz47xkyZMiQIUOGbaOxoWA+G81/PbXW3HDjQ7w0ayGf+dTxjB7dtz2HB8BF5x5G55pK9hk3kM6d2vfFDmDf4QP47vknsmFLPSfuP6ZZdc48aDzPL1jCwaMG07Wmqtl97T9sIPd8/qOtHWoJWvu89O1vf5vbb7+dOXPmUF1dzSGHHMJ3v/tdn8E7Q4a2RIOy9yWV3Jd+Oe+fzFr7Jp/Z6/2M7lI+HHVn4oq9j6Q2X8XkHoPpnG//+9L+vQfws8NPZX1jPacN27tZdd4/bBIzVi7i0D7D6VrR/PvSQb2H8OBJl7V2qCXoCO9x2+2O1alTJ/bZZ59W1dUUZ0FLq5vc7/KEkyknnC+RVY/oond1rwLSgcpJJ8oqKK9y8oobHXxvksVIygolIDUr4TkE4dROOiCdys7efgZETbmenQG2lqDyRuWk8lbllAcR4f2DfMY5S0C5sSESUiqlHrLnxpNNxeobLUrG5ImwIuFR6niwvDhiRhavbdhPsZ6KRLlUTACJMluTKD6YqK+EV0cVS8TKVbdqMVtM+GuXJGyOYE0tMZYInETStxa+28zTKUOGDBkyZNjx+NK3389TD89hvykjAFi9ZhN/+duzANxx50y++PmT2nN4APTo3plLLj6yvYeRwvH7NY9s2VTfQHVFngNHDuK+/714B49q22jt89IjjzzCpZdeygEHHEChUOCrX/0q06dPZ/bs2S36g3uGDM3BDw88k/8uncthvYcDsLphPX9b/AgAdy5+nM+P/WB7Dg+A3lVd+MKE6e09DA8hBKcMazokLsTGQgOdchVM6TOMR0++YgePbNvoCO9xrSadNm7cyHe+8x3++9//smLFCpRSqeNvvvnmNtsoxBIZm7d1p8RxaQJTPk46KeNgyAsTnuQELn5/AK8lseoSpVwWtoAYMAUDRZQI1DzOo0kkJIqrECqQbMY6EQurXkpUTVizcP+9SOXkstI5MqpY9RR6Ozk1kwaTnS4PqgriKo2q0uichkYBQqIUEGnvG5Q0YBVcllDxiqGilUMY4kr7apZOsSFyuoh4SnjBQB3kmCi/nI7csRMK/12FYXGpE130O2FxirID2gMBp5jmbhIGyCubwnnbsWqr+BIiaKB4ffz8BDqW9pJQPtTOZcGTAWflFU8inIJOlHLhOFpIOhlDfum/Z8iQIUOGDBm2jdq6Go47fT//u1tdDVOP2IuXZi3i2KPHbaXmnoNYKTbWN1BbXfqX/l/991memvs2Xzh1KmMG9G5Ru7+8+ymuv+dpTjlgLNece3xbDXe70NrnpXvuuSf1+6abbqJ3797MnDmTI444ok3HmCFDt8oa3jd0UvK7ogtH9NqHl9cs4Ji+k9tvYDsRBaXYVGigtowC6brZj/PE8gV8ddKx7N2tZWrUn85+hJ+/9ihnDN6H7x5wWlsNd7vQEd7jWk06XXzxxTzyyCOcd9559OvXr1Wu7dqTSYmiKSSgQglLkr0O0gol/Iu8DskEU8vxHYbEUoZASgiXhAHQzhTbEUjauvz4jHQkvkYui5pO1xHOKNypmkLSyX13Kqc4IZTC8DlfHrdPp83EwZArEuIcxHmIcxplNx8eFqX5Gq0MA0xRO35JVRHP4XyenMbPxsVpt/YuTC+ljtLhKbOqr+QUueNa6kTllGKtlK/r17eY9PHyL7cv8O7yi2Z/NnVJmgsiqFOmSMhkNtWG/yKwF0UylWCIUiThjAjS1214HZa00HxoTKZH9z1DhgwZMmTI0HIIIbjqa2e09zB2Ggqx4n0//xNvLF/Jt99/HKfum4SlrN20hZ/e/QQAv3tkJt8554QWtf3oqwsAeGz2gjYb76tLlnPlX/7NXn178aOzW65Ca6vnpbVr1wLQvXv3VreRIUNzIYTgqvEXtPcwdhoKSnHa/b9m7toVfP+g0zh9yAR/bE39Zn74ysMA/Gbu01x70OktavvhpW+Yz2Xz2mq4vLJ6KZ9++u+MqevDTw4+q8X1O8J7XKtJp7vvvpt///vfHHroodvRvfNOEj4EzvsukShDirPNeTjiw2Yi01qgYsc4aKQEIYVvSyuBdr5L9u1fF5MaXt1ESr0UKp+82ilQOYnYKpdC3yanUArIJxmST3FaxeQJKa9y0qm6YEgmlYNCJyjUQKFaE1dbhVNA4uhGG/MlNdqqb3SQKc1n2HM+TyEZ5YQ3zqMoNCM3adbsiRGJqKk4BjAISPXHI4xXVJQea0gWuSx6org9wrLJdYFSwRx0+bKpfTrVZdmC6YNNt1VSwDF8+DVyXmHlEjqY69osbDh0FzLaEnQEhjxDhgwZMmTIkODdtRu4/YlXmDJ2CPsM69eqNtZvqWfu8pUAzFiwJEU61VZXcsTYYTw3fxHH7tN0hrmm8IWzpvHHh5/n5P1NyMuCFat4Y+lKjhw/gnzUOjP0f770GgtXrWXhqrW8tXI1vapalqq93PPSunXrUmUqKyuprGzao0ZrzZVXXslhhx3G+PHjWziDDBn2bKzYsp6/vvU8h/UewcTurfOeWtuwmdfXrgDguXcXpkinrhVVTOs3kmdWvM3xA5sXThfifycdx+/eeIbTBxt7oDfXr2Tu2hUc3X8v8rJ196U7357Fwo2rWbhxNW+tX0UvKlpUvyO8x7WadOrWrdt2s/vFHMHWypUr60PjHOGksKSTRkZBOJMGpSRaSWPe7EiWItWJUQYZoskRTt4Y3KpSvPglIJxQWAcwQ+SIciRSHJBHTkHkhD0hyRSHbSebI4FUJIgjiCPtP3WkvJdSOD4/TtJrQTgOr+IK6oTiHRFswQlJQuuKTkxI5LjvUnsCS5cjdFLnwg7Yy76C9iDwnyJZlJRSSDRNEBX37cuVuxCbc3EGRJP9TLyd0sNKvuqi+mX6Kl7vZkAFoamqHEGbIUOGDBkydBD88po7eejOF7jk6tOZetKk9h7ODsP3/vIwD7z4Bjc/MIPHf3ApUrb8v//dOlXzjTOP5fm33+ETRx6UOiaE4BcXnd7q8U0a1p9Jw/oDxtvp7B/dwuaGRj529IFccWLr/mh95n7jePrNRezVtydDe3Zj44bmZalyKPe8NGjQoFSZq666iquvvrrJNi677DJmzZrF448/3rLBZ+jQ+MaL9/CvRa/yf5OO56RBe27o7jUv3c3977zGb994kudO/hKyFdFQPao68a39T+L5lYu5dOxhqWNCCH59eOs9rfbrMYj9eph/8xsLDZzxwK/ZHDfyP2MO4zPjj2xVm2cOnchTK95ibF0fhnXpwYb161tUvyO8x7WadPrGN77B//3f/3HzzTdTU1PTlmNKoTjMzu7FqENMcJd2pFJBgLImXLFGSY3MKUNUhKF1SpLyDnKkliWchLYqIGWNwW3YnFc3hWFyLqwuDrYwpC5QMoUG4r4dX0anQu1kUE8DcQUUqgVxNRQ6awo1xjhcVyq0SQBoCStLzrgQQKXRMVZdFKiWvIqLUhUXBMok0JFdp5DfkdoSV8E/DMcRBR5FiYeTUVyZMQiEDImWhLgRApNxTyYG8eky7rpw/lxGcaW1tmGTIQFVHr5Np3pKhG8l8FF4JWSX+eIM2F19kQrJE9ZI3AolA6UZxaOUrrOtkGZbQYwktmZWMXsmQ54hQ4YMGTJsC1pr7vr9Eyiluee2Z/Zo0ql/j1oA+tR1brFCOsRZ+4/nrP13vGJH2wcg1dy/OpfBXn17cedl57W6frnnpUWLFlFbW+vLbE3ldPnll/PPf/6TRx99lIED2z+DWIbdA0pr/jR/BgrNX996YY8mnQbUdAWgb3XtdgWKfWD4vnxg+L5tM6gmoLX2r3Xbc18aW9eXf03/RKvrd4T3uFaTTtdeey3z58+nT58+DB06lHw+LW99/vnnW9Caj90i9ca9lZPvw8S0UTdppwhyCh6nMLFqHeW8meJE5eT4Ake4AIFyyRJPTpXkCKfwMw5UTl7tRDqkjoRk8uV08imU9u2F6qgwUksJUNY0PM5r4rwh1BzZZMadjDFRGBUtsSpSPIVlCQgn/6/PkkZO8STDAiL4/6QN14/nXkTRZgk2J1ISroxr2UmE9NZDzMw8QhYoJcVKj6lkX3DUE0/hgEvYpTLtNbXPLapTZgXKrRIU92k/i43Fm4GOwJBnyJAhQ4YM24IQggs+dwIP//MF3vexae09nB2KT51+ONMnj2Zon+6t8lbdmaiprODPnz6HuUtXcsyEke02jnLPS7W1tSnSqRy01lx++eXccccdPPzwwwwbNmyHjzXDngMpBFeOP5J/LXqVj40+pL2Hs0Px+fHTOXHgeIZ37rnL35c65yu5/eiLmLN2OdMHtDxUr63QEd7jWk06nX766dvdubsOU9npHTQm9ZclY4qS43llknZ+PjZ0zngJCSsRMkbXWmqIrcpJG/WSlrbjlOpI+JA6aT+FJYu8d1OxeqlgfJpwmehcWadqcmWVVS+lyCudLheSTxZxBTTUCAo10NhFU+ikjfIownsjJWSRVS+5PTFohCE+tEjURiT9lfg5eRWOU5JJtHMZt0oen93N9aOCdpy/lT0txtQ8Gad2Sh6hvcIofU2Y/VJS9riDlHgbJ+3WzIVU2nmY74GayXfiF6yMYbhOXZeJKsq1lZTVNrOh9un9NDIyGeySfWklVYpks9e9sOGKSoE/QS3824BCoiwrqPZQhjxDhgwZMmRoDt7/8SN5/8ePbO9h7HBIKRg3pPmZm2YvXcHLS5Zxyj5jqalomRdSW2BE3x6M6Ntjp/cborXPS5deeim33HILd955J126dGHZsmUAdO3alerq6h0y1gx7Fj6+16F8fK/t8ULePSCFYEK3Ac0u/+rqpby8eimnDh5PTa5lXkhtgZG1vRhZ22un9xuiI7zHtZp0uuqqq7a787SQqSkliGMAwiLC1rfG4U7hFKp9wLz822ZcmBwatGvXeymRIpyEUySFW0AeeZLKhtNRFFbnOZqgfRHrUoVRSECR5j4cH1SIjHF4nLcZ6iIFUZqQSZZFJ17fgW9VElLXxDJbQqVEWOYaC9bURYAZ9ZNKSCRbXtjzEpI8nvsJDadC/iYQ+KCNesr7lZdDyXXj5Wplxp9ijYIyuvxu/7VYAWX2GYWdyyuQsFJhpgFnal9uDunfpQug7Xq7RH7NRawFsZ1rvIcy5BkyZMiQIUOG1mFTQyMf+vVt1BcKzFvxHl89cc8n5cqhtc9L119/PQDTpk1L7b/pppu44IIL2mp4GTJ0KGwsNHD2gzdTrwrMW7eS/500vb2H1C7oCO9xrSad2grhS7iPvkIk4XMY3kDEngZIMtx5lZPdLNEirCxHK8eUkIR3SdOgF644hVOM9WcSgSdToHQq9miKQRaC/aFhuCathioilzxpRXqfWwOECacrVAsaO0FDF02hi0ZVKsiHi+IqmE/n6eTmAVh5lV0LGXo22S006S/mbaQV3rh1I1An5YLyws1bmM0dEtr07+snbSVhZ8mZd8oip3QqK/YpIc1EYihPOkucDyUskVMl6qd0mYS8CpVWPqMeVolljymlURqrdkoWzRvfe85UIwPVlKOp/Bhs60Ji/LdaEQHdEWSZGTJkyJAhQ1tiw4YtLJi3grHjB5DLtS5r0e6CSAiq8jnqCwU6Ve58NcG76zfy84efYmzf3nzwgH12ev8OrX1e0iV/mc2QYcdgXf0W5qxcyX79+pMrl/56D0IkBJVRjnpVoFM7qJze3bKBn81+hL3r+vHB4fvt9P4dOsJ7XItIp+7duzN37lx69uxJt27dthqnuWrVqm22V5qVzjkEld7YPbHgSRpLpLgX/qaUPNaPKHX+hLbeTyIgh4QnjYpVTqGCCQ2ikCicist4PyaN92sqJ8Lxa+C2kGQRRt1UqIC4QhNXaHROeYWRQFiD7oAE0jZksEwyN5TdH2ajKy5j2LqSdUoRW+Ggwx/BHDVplZPvk+BTp7t3x9x51MpWc6SPHVuqcGowgcrIkXciPL5tGGVRwvwpG5bo11cEJBU6CQNEogI1lOtXa1A+llF4AtVzbOlRJzOR2prnt+zhRmvp+9N7aKrNDBkyZMiw47Fx3Wbu+sPjjBo/iMlTx7T3cHYYZr70Nl+64o9Q0Bx/yiQ++6WT23tIOxSV+Rx3/s+5vPHuexwyfPBO7//XT8zgthkvA3DEqKH0r9u6h9KOQva8tHtifeMW/vL20+zddQBTeo1q7+HsMDy++C3Ov+PvaA1nj5vAt4/es5U/VVGef03/GPPWreSQPsN2ev+/mvMkf37T+FBP7TuCftYEfWejI9yXWkQ6/ehHP6JLly7++/aag4kiIsFlAkubOpOQGZaUMqFL1tTHMSX2e4ozQeDD6QLyAJvZzZmBC+dD5JRNloDyW2gObkPpZPi7yLvJ+fT40Lqyk7dTc0OXgBTmdwSFamjsYjZVpSDnqliPKgnCkkxCWYWMUxoZNsSulw6+28UsGYcpU0IOue9epROwRsFXEAgl7foZQkxLbPY7O4pw/VNnypJntn8RhKyZs160gJ7VKVrIMkVKf6R3u0MqlSHRtql1sjaB2skpoIzdmEABkf/jqEbaazdWsii7n0itW/rSN6sRSetdpgWihWmPYwSxbTUusyYZMmTIkCFDc/Cnn9zLHb95BCkFt8z4Ol27d27vIe0QPPHcfHRsVMxL31nT3sNpFbTWLF+zgd5dOyOb8dzQt2sX+nbtshNGVop9B/Xj90/DoLqudO+047JebwvZ89LuiRveeJBb3noSieCBY75MXUX7XUM7Eg8snI+y2dkXrl3T3sNpFbTWLNu8jj7VtchmcAX9arq2G9mzb8+B3DzvGQZ16kb3yk7tMgboGPelFpFO559/vv/eFvHLykVfuZf7EhjVh/Ng0tZw2ahhAoUNIvlevplAIeU6p1TVVM7Lqei4KNqSED3Xj266zzJD0tKQTCoy31UEOg+qEmLn4QSePEra0mi0IbsExqxbCzQynSWvuFOHMiomHQ44PFbu2nekjB2TjhQ0yvT6Ftd3Siy3TNI6IYnQw0knSqiQ+yHdVhJiWTo3XfS7uG5YH6zKSQWKKenGob3JvZ+WsuMsyuQX9h5FGiEVUglUbJhr7cmnpi7QRH4mwtSHGTJkyJAhw05En4HdAejSrROV1Ts/3GFn4ayT9mXunKVUavjSl05p7+G0Ct//28Pc+vCLHDlxBD/8+Kk7pI97Zs/lR/99gg9MnsBFh+wPmJfK+e+8R/8etdRUNe8aKShFVS7HPgP7UZUvff1YvGotn//zf+hT25nvffAEKnLt7gCSYRdC/+o6AOoqaqiKdr4J/s7CheP349UVy6kgxw+POaG9h9MqfHPWvfxx/rMc238MPzv4Azukj7sXz+aHrzzEB4fvx0WjpwDmvjR3zUoGdu5Kp3zz70uVIs/E7gOojErvOYs2rubKZ+6gb3Ut1x54OhVlymRoHlq9ch/+8IeZNm0aU6dOZfTo0a1qQ5AoTgzpkOhflPYlcCoobbPVaR+LllY6NaFpSfa7Nj2B5ELqBNJ9d+qkImUTMUiravIqp0DdVByVVhIRVjTxhHASqDzoXEI4xXmIqyDupKECk60ul67viQ+nnFFGeeND+3yqtOIFJyF/igU+JMdSmeNCnkQH5awySSsQBat0ChQ9OkhLKIQOfmMIJ2kWSwTG6ELgPZOAtJquWIFVYhJePJ8yyqwi6BIJlg2bi9y1Gc4BhNBImfhWufFpbVRO+ZxCCIgQxAIa7JqkphEQZ8WTktLsb2kIt9IEscAtq5shQ4YMGTI4nHrB4Yw/cAS9+tdRtQeTTgP6dePnP/hwew9ju/DSm0sBmLVg6Q7r4zdPzODtVWv4xSNPe9Lpt/c8xy/++QQDenblH//vAqJmPLT8++XX2Vwo8O9X5vCt06dTUeSh9e+X5jBrkckI9/KiZUweNrDtJ0P2vLS74kNDpzC5xzD6VnXdo0mnIbXd+Ovp57T3MLYLL7y3CIAXVy3eYX386vUneXvDKn4++1FPOv1i1lP84IXHGNKljgfP+Fiz7kv/XPgKm1WBuxa+yncOOJW8TN+X7lr4Ci+tWsJLLOH81Qeyf88dE5rcEe5LrSadOnfuzLXXXssnPvEJ+vbty9SpU5k6dSrTpk1jzJjmeQC4DF/BHrsfvLKJopdzjTkbllzxfk4aayZum3KsgDPTCbvQCWHkTMK10ibULtjvP4PMdCImyZQXejiVzCI9DPdDgw+h09JlpgOVB1UBqkKj8pq4ApDaeDdFpaokH/rlvksgp0yjAhtuF6xboF7yBt+O+CkZuGPeUp2l+xVWeaUMU6RzCmLpjdRxQh3XvsKE2zkyzCq8iDRCa++LbtRttitB+voI1Uwam+lN+N+pMl7uZM6AiJL9ieoonK/5FFKTyylLPlnyzJKayg5Sa50iw8IwvUIskUKRi2Ly9pw0xjlPmKbGj52DuzDQZcbWPKggFljtobHAGTJkyJBhx0MIwYhxzU93naH98H/nHMNfH5vF8QfsOO+tjxy0L99/4DE+ODkx/164YjUAy1evp6EQU12x7eeOjx12AGs3b+GYsSNLCCeAY8eN4s7nZ9OntjN7D+hTto2V6zfypydfZP9hAzl09JBWzSd7Xto9IYRgr9p+7T2MDM3AN/Y7mT+/OZNTBk/YYX2cP/JAfvDyg3xoxGS/78115r70zsZ1NKq4WaTTJ8ccyrqGLRw3cEwJ4QQwfcAY7nh7Fv2qaxnfrfz19+6WDfxh3rMc1Gsoh/YZ3qr5dIT7UqtJpxtuuAGAZcuW8fDDD/Pwww/zk5/8hEsvvZTevXuzdOm2/+rizJjLKz/CTxGonMLYJulZHJOtrcwLuy5WOtlWNdbPyamWhM805xVPRb5OMshG57PSleu1mCMqEtMQiSSkLge60myGdDIEFDkMSZPXECiBUggUQRozhxTDVVzHqZsc2RP6OOmkLUcKedKnzLIKF1Zn15hYGuWYI008oWVJIRF2ZRdIamSkkbl0H+E1UdQroAMyqnhhy8MpqdJ10v25OeXyyl6Xpp9CLPCGVCJNNrnZODg/JykF+UgbkkrJQBVla3jCqYRFLPO9eVAIlK2nWlE/Q4YMGTJkyLB7Ya9Bvfnfc47ZoX2css9YTtlnbGrfFWccRp9uXZg8agDVFc1Tnew3uD+3XHR2k8eH9+7Ofz574Vbb+NE9j/OPmbP57SMzePrqS5rdd4jseSlDhh2Lvev68fX9dmxihtOG7MNpQ9JZML+8/zQGdOrCwX0HU5Vr3r1hcs9B3HbUBU0eH1nbi/uPv3Srbfzg5f9yx9uz+M3rTzHjtC9Q3cy+Q3SE+9J2ByZ26dKFbt260a1bN+rq6sjlcvTt27dZdTXFSiezV5P4NxVnuPP+O1paXyfhyQ/vsZQ0Zd/wRdG+oq3Yz8mZgwdhdCIoq+1+r6MpQwa5cTiew5XxZFNkVE7KhdPlTZY6VamgQkNeWZKoqQtPm7FYckcI0DllPJ0UZoCqOOTQuTYFSiapPD8VLhF23MKXd/sSQgZh1kIJO5aCBBdmZzPmeb5GWQN0AULYc4dCYTy7ZJRWXWnnp1Q8Z8LrQfsxlFcw2VIFacL7XBnLgKVNys2FprUmihRSaCJpjMO1MgomT3z6UDy7hFL7/VIqChgDwHykiGSBWOSMAs1VSiYJRf8GvM9UC6WVsRbEdv5xK9VSGTJkyJAhQ4YE6zfXo9HUVle191BKoLXmhoefZfm6DXx6+qF0beYYY6V4aeFSRvbp0ep59ajtxCWnHtKqutuDob26AdCvrktZtVRzkD0vZdjdsb5xCwBd8rvefUlpzfWvPcaKLRv47PijqK1o5n1JK15atZiRXXo3u04xelV34rP7HdGqutuDYV16ANC/pisVUXZfagqtJp2++MUv8sgjj/DSSy8xfvx4jjjiCL785S9zxBFHUFdX16w2BImqpdjfJuW14172lVM5BWoVm7ENq3QqPk0i+P/UfksgCSWMmXkQdhcqnsJPqYJxpztIoJN5JZ05dsKGlOVA2dA6VZEonXBbXiNySXtNQloVDwSEihuDKB2b83KKSPyUZHqs2tVFl6qrnAIpUCJpjJqHRomIpVeMaemIHVtOGCLGTEdZB3kQ0vgYpX2c0p/h2MLBpMPvRNGnr5Vk3nOxjWa3SUEXzDPKafI5QzRFkTJroR3zLNNtW9IqyepnLhopjR9TPjLSsVjlijzIwrmE8sntu8F0BFlmhgwZMmTIsLMwf/l7vP9nt4DW/OXycxjZt2d7DymFWYuX8dMHngRgQLdaLj7igGbV+9Hdj3PTozMZ2L0r93zhwu3ORL0zcfHUAzhy7HD61dU2K3SmHLLnpQy7M+ate5czH/wVALcf9TFG1vZq5xGlMWvVEn4y+xEABnaq42N7NY+c/sErD3DTG08zuFM37p1+2W51X/rEXodydL/R9O9URySy+1JTaDXp9P3vf59evXpx1VVXcdpppzF27NhtV2oCibrDhCSVZCbzBfHKJa2093Byvk4iUD4l5SklbsJ9tk/pwurKZbKz5XUQUheGi6Ugk2ECCddhCSevcLKEU1xhFU45bTyZcgpyGhFpS7KRno8N8zJkiUJa8gYFIodROhVAoyAWCQGFnQvaeEXpgOwTpELKPAHo+xXBAJQ10ybhBO3/lMghtxgCUBZEUtVtvo5xy9ZKmXrY0EYfkufIHJ3meVJyLDNwoQ2hpZUjJ4vOtzYZ55zZfNIY5hoKphY3ChqIEEIRRcKsrRuGMOn4lGtHG8LNmYubhTN9aS2oJ0IKjVY6ZQ6XhtPKhSe5dTdZ5cbGnivLzJAhQ4YMGXYW5q9YRX1jAYB5y9/b5UinIT3q6NWlE2s2bWbSoOZ73SxfuwGAVRs2EStNLmr7Z4bGQsxvHniWfBRxwdH7t5ogKoYQgpF9tu88ZM9LGXZnzFv/LvXK3JfeWPfuLkc6De7cnV5VnVlTv4lJ3ZufDGDF5vUArKzfiEIT7YB/mw0q5oY5j1ER5bh49CGtJoiKIYRgVNfe29VGR7gvtZp0euGFF3jkkUd4+OGHufbaa4miyBuJT5s2rVkkVKISSe31nzpQh2jn2aRlqoz3c7LeTUKXttnUqROWkHGRZq5+aqPou2uvKQ4hCL3yn8IqnKKAeLLm4ToP5IEKs4k8iCiMzcMLaVJtC5A57fgbsyMWQTmXSS6AVTkZv6ZEmeOUS66tJCMbCVETlHHKJEMMSlASHUtEgyWcHDEjscFzeLWXAJQ1xxJ2TYQ0iidH4HhPp0BRlVpmN0bL2SQkWZJVrvx1FRI8uqgPYUL8hJ1foGCSElQcnv20QgohrOpJ27pGvaW0JNZRoHQKum/yum8dNEkssG5hW48++ijf//73mTlzJkuXLuWOO+7g9NNP367xZMiQIUOGDLszjtp7BJceczAaOHr8yPYeTgnqaqq5/3MX0RjHdKo0WQbfXb+B15a+y5QRg8k3Eebx5VOnsVf/Xhw0YhC5aMf8Rf3eF+dy/T1PAzCyf0+mjmudue6OwPY8L2XI0N44ut9eXD52Klprjum/V3sPpwTdK2t46MQraFQxnXLmvrRi83peW7ucQ3oPK2vWDfDVicczpmtfDu41tM3IoGLcvfhVfjHnUQD2qu3NtH6jd0g/rUFHuC+1mnSaOHEiEydO5IorrgDgpZde4sc//jFXXHEFSiniOG5GK4ksRVs1iPdy8scttyCsMbMzcNLCK5G01jZcTiRNptRBTXabLh8qncqopHxklmM2Ag4j4Cj8Pu04MonPVKci0BWgc5gsdXmNsuomoth6G1mWSwu0CggL4eZujmsgkiYMTCERkTFS0ipcvUDppDHEFBotrErIqX2kmbeQ2vsfIcx50Mqstalj2jflrHm2zfamhUZtiaBeIhuscsyNPvB4ksqESipjPoVWEpEzJJTQGhmZuab/6QUeT246lrwxBI9ROynrY+X9nSyxqG3GQx1WFk5dZY9pQaHRnTTTj4wUFRWN5HOxv0YLhSghtnTAIWlBrIzZuAmrI1G8pS4YS8a50yqScn6KwldsFpQOGPIWxgJv3LiRiRMncuGFF3LWWWe1qG6GDBkyZMiwJyIXSS45dkp7D2OrqMhF3tsoVoqzfvEnVm7YxEcO2ZcvnTitbJ3unWu4eNq2Q/GWrVrPHx6YwQF7DWbaxBEtGteIvj3IRxGRFLz49jvMXb6SC6ZObpII25nYnuelDBnaG3kZcdnYqe09jK2iQkZUWHKpoBRnPPhr3t2ygQtGHsRXJk4vW6d7ZSc+tteh22x76aa1/OaNp5jSaxhHt5B0G9mlF3khiWTEzJWLmbPmXS7a6+AmibCdiY5wX9ouKvGFF17gRz/6EaeddhpHHnkkf/jDH5g4cSJXXnlls+onKpZiFUnR5rPWpfc5Pye/uf1FLZTtGxJ1FGUUTkUqpzDSyxNMAWkQdpQ67oZriSdyVumU06ic+U0O4+OUd6qfMoSTa9kSRCKCyCmi3BopN/9E6eQJJ7fbeTqJJHtdeWWR2eF9othaOUAJtM1eJ1RyPoQr7PrCkXE67S9l1VOhv5OzwhKidDPjESV+VG5MSd3wxAT7i3ykyl53lpTKRUm/yqqWwnU1bTqFVroNXVw+6CrsO5xral2bCRcLHMYENxcnnHAC11xzDWeeeWaL6mXIkCFDhgy7Kwqx4q7nZjNj/uL2HkqbQGnNFhsOuLG+0exTml8++gzfvPshNtQ3tKi9n9/5OLc+9CKfv/EuNjc0tqju2IG9eeDrH+Mb5x7Hrx56jp/c/QR3v/g6ALc9/hKHffk6brj36Ra12VbYnuelDBl2NAqx4q4Zs5n55p5xX9JoNhXMvWej/VRa8cvXH+Vbs+5mY2N9i9q79tUH+cP8Z7n8mb+yJW7ZfWlct348euKVfHu/07j+tSf5wcsP8e9FswH40/znOOCu73GdVULtbGzvfem6665j2LBhVFVVMXnyZB577LEmy95+++0ce+yx9OrVi9raWqZMmcK99967PcNvFlqtdOrWrRsbNmxg4sSJTJs2jY997GMcccQR1NbWNrsN5yMUZuxKVE4OGikFSmmEVIYEEdITKFpZJYuRt5jXe6dUgpT4qDjCSRD4JlH+NV8XEwSBKiUUEDkhiyEmSHixwMsp3IgM8aKkM9XW1ktIISQoNDoS6IJjrcKJANJ4BUU2hM0ogQQqxg9Qu3EH4/GmVMKoyvz62HWItSV+ML5SQgrigiP+QNswMy0T5ZHWhgST1TEqr4grJHpThNwiEQVh+nSkG4aY0WhEDLqQZG9TCnROGH5KGhWV93gqOi/O88kRfBJtQgcd+UPy3UFZ8lKphE0WYRmdLLEwbujkco1U5hrJRebgxoY8W+IKiq4s/1trjRRhO8n1YjLiKe8V5cahbOiotmfSzGn7lU7r1q1LlamsrKSysrJF7WbIkCFDhgy7OuJY2dD25v/B5rYnXuK7dzyMEPCvr1zIoJ51O26AOxANjQWiSJKPIv708bOZ+fYSTt5nDAAvLHqHHz9ozMYH1nXl/Cn7NbvdMYN6859n5zC0T3cqcy1/XajrVM2ofj2pzEUUlGJYr+6AIZ3Wb67n1sde5BPHHdzidrcXHUFRkGHXQKzsfakFpth/fuJFvvuPRxAC/v2VCxnUo27HDXAHoj4ukBOSvIz487QLeP69xZwyaDwAz7+3iJ++9iAAgzp147wRzb8PjKvry12LXmZ4lx5UyJbfl7pV1rBX1z5UyhwFrRjW2dyXbnnzOdY1buGP85/jkjE7PwPe9tyXbrvtNj796U9z3XXXceihh3LDDTdwwgknMHv2bAYPHlxS/tFHH+XYY4/lW9/6FnV1ddx0002ccsopPPPMM+y7775tMp9yaDXp9Ic//KFZJNPixYvp378/soyJYFOhR6X7ilie0MzHhtSFiqTiVlJV3U8bouc0KalwuqAdl72uqbbCZn07AUHliSnHHdlNBZnkzObC6kgM1Z1HU2rswhMSPghRG/JNh75D2mlrTHntFsgpqUJPIkx9r0Sy5Iv0hElRaJjlW0ozDtovSqBjnYT5OYJQuN+OhQnWSPuT4iLfbJvaeXSbMbr+0YnRtyPlsPs9YZMmxpywL0UVCZUyVEcLhFSGIROafC4mkhopFI1KUoijpIVA5RS2mnwTwfqZUMg00Sr8GLVzpi9a0+ZCkcQCu89Bgwalylx11VVcffXVLW47Q4YMGTJk2FWx8J1VfOIrt5DPRfzmu+fSq0eXZtWrqcwDEEm5S4R9tQYvLXiHj/3873TvUsNfvvBhRvXpyajAaHtIjzq6Vlexfks9sVItavvcYyZz1L6j6Flb0yIyL8Sw3t25/6sXEytFr9rOAPzP8Qfzq/ue5YOHT2xVm9uLcs9LGTK0NeavXsVZd9xCRRTxz7POpW/nZt6XKowP0u58X5q5cjHnPfQnelZ14l/HXcxeXfuwV9c+/viQzt2pzVexobGeWDfHjifBhaOmMH3AWHpVdm4RmRdieG0PHj35cmKt6F1tzstlY6fxy9cf49zhzcsC2tbYnvvSD3/4Qy666CIuvvhiAH784x9z7733cv311/Ptb3+7pPyPf/zj1O9vfetb3Hnnndx11127Jul08sknN6vc3nvvzYsvvsjw4aUmgsXXSqg4CX8rIIpACYUW0qh5nGmSVaAkLAnlOSyHMFyuiGBKhaCF7UjSTAVFvx1JEuzzSc5CxZNT+3heKJR4GRWO1saMWkrQkfG3ovg5QTtVjGFLUhFdbsECUkMLbUgt65WEVym5/m1Zp2RyJt9W9WTKWJWZZ19LF1ha9ZaWBchL1GYQDRKhhckwF1k1klNc+fNt5qhj6c+p0nbMzmvKd2fURLnIGncLiGRMPipQmStQnWukIlIIzLHwdBWUpCGO2FLIsaUxR0yUKiCEpiKKqalooFvFZiqjAg1xRKOOaIgj1tZXEwmFko7uE+4spCVl7pRqvOoqihRV+UYqcwUiGaO0ZHNDnvpCjkIsvFVXa1GOIV+0aFGKFM5UThkyZMiQoT3QUN/Ils2N1NbVtHnbs15bwroNWwB4bf6yZpNOpx84jgHdu9KrthN9u6XrNMYxf3r6RbpUVnLm5HG7bPruGfMWU99YYOmqdby1fDX7DEtnsevZuRMHDhnA/XPm86MHn+Dcg/b1HlDNQf8ezY9ecDB/LEzWq3vn9Dk/dtJojp3Ufga+mdIpg8OWuJH6uJGuFW1/X5qxbAlr6s19ada7y5tNOp1x0DgG9KilV21n+tYV3ZdUzO/nzqBLvpL3D5+4y96Xnl3xNvWqwJJNa3lz/XtM6jEgdbxXVRcO6j2YB5fO4WevP8CHh7fMV2lATV2Lx1R8X+pR1Sl1/ISBe3PCwL1b3G5bobX3pYaGBmbOnMmXvvSl1P7p06fz5JNPNq9vpVi/fj3du3dv/oBbgVaTTs2F3uqbdMjslCtXHL4UvNgXEUdeUBLEvm31lNlwsRSFkghkQuFMablyUygefokEKhmjDgknezzQCxkBl3Jrp/zcdXARCjtIjUYriY6tqkZp0Ibo8WOKkv7NPHVqOb1vUzhJbbmuQKkTzIKtrIitbDb3v5TqC5WuavsWTj1lN6Wsv7kgybKHRkplFUrOzDwmJ2MiUSAnY690Cm8uTr2lULZ/FVwhhhSTNszR0FExsYJGJSgoQUMcUV+Iim4Ejh0NtE0iIZzCfiPLYccKhBY0akGjksQq9CtrPcrdrGpra1sU7pohQ4YMGTK0NTas28wnTvkxa97bwNXXfYQDjmjbjEtHHrIXL722mIp8joMmDWt2PSEEB44aVPbYv16aw/fuNt4eg7p35cDh5cu1N86cMoG3VqymT10Xxg/pW7bMhAF9uX/OfEb26kF+B2Wrc7jxsWf5yYNPcsGU/fj89O0PUVm7cQtPz32bg0cPoWunqjYYYUY6ZTBY37iZDz7+I1Y3bODa/c5nSq+2vS+dOGI0zy5dTHWUY+rgoc2uJ4TgoFGlIVEAd771Ct968b8ADOnSjYN6D2mLobY5zh6xL2+uX0W/mi7s071/2TIT6gby0LI5jOjcm9wOylbn8Ms5j/OT2Y/w0VEH8/kJR293e2vqN/PE8gUc2mcYdZXVbTDC1tukrFy5kjiO6dOnT2p/nz59WLZsWbP6vvbaa9m4cSMf+MAHWjv8ZmGHk05bQ2QVPcpmrBNa+5d0R7AIYSyPlDCyES2M0sX4IAlPZghrVm1IlUAdVKxI0ni1ThCFZT6Caz4lXLFqm7AdMPtCk/FtRUaJpGtrfg4+RDAGLSK01ET5mChS6ApFoSEiro98aBmYsghp5HfaybCE1d3IQOlky1viSGBVTrKIHPFKJ5Ei7YhUyrjbEGKW3PLxaPaIV6dpRA50pFA5AQ0aGiVCCR9G6O3r7XlymQedIsssqAocjrT9pslFiopcbD6jAhVRTD6KyQlFTqogtI7U2JQ1Nq+KIBIxlTkNFNAKClrQEOdwRGUjOTapSgpKsr6hkvrGHA0qQimja0pC6gISUCR9JYRTQmo1FvIoHVn1lbnO24pwguwhKkOGDBky7JpYuXwtq95dD8Dclxe3OenUqbqCr152Qpu198aKlfzrlTkIIB9F9LZhYbsiunWu5hsfPm6rZT5++IGcOH4venfpvN3KiIJSfPGOe3hz5Sq+evyR3PfGPCYP7M9xY0YBcOdLrxErzZ0vvdYmpNOnf/NPnn9zCZOG9efmT5293e1B9ryUwWD5lrW812DuS7PXLm5z0qlLRSXXHtWG96V1y7n7nZfMfUlGPixsV0T3yhq+f9ApWy1z8agjOGHABHpXdWmD+1LMF2feztsbVvHF8cfxwNLXmdxjMNMHjAXgzoUvE2vFPxbOahPS6eOP/ZUZ7y5m/14D+csxH9nu9qD8faklNinFa1is7GoKt956K1dffTV33nknvXv3bsXIm492JZ2wipOEsgnj2BL5kACfqUwXx7r5CLFQgVOskCoW1ST/T0lJvNLJhUfh+K1AARXqrlIoHX4wxmS/dlOP7bSl6TAkLZQSSShhMDchkzEqZc3QlW3TmYgXz9wTTNrPJ6XS0m6iph2NnbPQAfFURr5VpHzSfn4i1b4WgWG3SvZ7EtD6TZk4OG2tuowpvBAgI2vQbQ3UldIULEmktTS8nSMgMYSPG7PSmkIs/aQLSqCQ/vzFSlozbxAS4ljTKAT1hYjGgiBW5lyEBFFKdSaSa8WdP0/OubMgNVpZv/bUPSC8SMKrqpQ82xq25yFqw4YNzJs3z/9esGABL774It27dy9rQJchQ4YMGTI0F0NG9uGTXz6Zdxa+x6nnHtLew9kmrn3gcZ5YsJCoQnD3FRfQr27XUQy/u3oD/31uLodNHM7APnXNrjewW9c26f+NFSv59ysmC9037n2Q11au5ObnnufZT/8PXaur+ML0I/jtEzP44AH7tEl/hTi2ny3zo9oaMtIpA8CIzn34zJiTWbzpPd4/ZNe/L/34tft5bvU8OtdI/nPMZ+hf0zb/ptsCyzev5+7Fszmq3ygGd25+iNaAmm5t0v/cdSu4e8mrAHzr5XuYvWYFN897lmdP/jy1FVV8YcIx/HbuU3xoxOQ26a9g/fEKLfTJ2xpaa5PSs2dPoigqUTWtWLGiRP1UjNtuu42LLrqIv/71rxxzzDHbO4Vton2VTjZsSlilk0rcnEvKKpUwGEqRGGObNGemUGjG7NRJIbFCmojxWc4ChZPjCbzfU8CJmUx5tlzQnihWVYngw7YjY7NDSVM+CQsMyRmBVhKlTKiXxrE9wrCVImxfQkGj/X6rVEKAFCWKLpf/TUqzZInKSZLyaXLkk9ZmsFGaACnO3OcWTAgTDocjZ9zaS6BCm3A/X9XOOSSmkMgYdKO2Bl4KndMglfGJ0hpyisY4R6w0kcwhpVknaQkt80wiAuJOJL+tDky4LIFSe0ItLBvHmoLKsaVgyK2GOPKEk1vDYhNwdy2lCaeQXTIL4cIKLVWGU7k7pZ+/DAKyqrkwl6pITkkLMGPGDI488kj/+8orrwTg/PPP53e/+10LW8uQIUOGDBkSCCE47bxd/6XOYcrwwTz8xgL2HzJwlyKcAP73+v/wwuuL+esDL/L37310p/c/olcPjhg1lAUrV3PEqGG8tnIlg7p2pabCmLJPHT2MqaOH+fJaa66572FmvbOMb550LKN792yq6bL48cWn8tjstzh876FtNofteV7KsOdACMHZQw5t72E0Gwf3HM5jK+ZyQK+huxThBPCZZ29nxsqF3PLmDO477tKd3v/I2l4c3nskb29cxeG9RzF7zQoGdepGdc7cl47sN4oj+43y5bXWfOPFe3l59Tt8a/LJjOraMoXPDYe/j4eXzmdavxFtNody96Xm2KRUVFQwefJk7r//fs444wy///777+e0005rst6tt97KRz/6UW699VZOOumk7R1+s7DDSaetSbuE92p3VFCxAkn7I8a7B7RIyAPzkq6DfnTqPyC+rCUCRNAuiIRr0QlXVcSl+M3yIj4kTwR1tgqncgpJLGWJKgUitjxPZH5rrVEFywU5xVA4Ms+GhYRNuKhW6WTJI4El6KzMSheTslb5lPJ1EgmJgtIpUi5ZmLAJ7et7pZMWhlRyW7AWhGvhSKvixbfqLYRA5xzhZ8kfAVoK6+skSsgj44llyTosGYYAoZBCICONslylN0oXzuPLUENSCGOPlVpfl3UucZr3ariy0GYcAqQyHF4qalkUf9GetGrpk9D2/OVu2rRp2/Bey5AhQ4YMGToGzj94P86YtDedd8HkG107G1+j2jbwN1r07hoef3kBx04eTc+unbZdAaiIIm48J3mxOXvfCfTs1KnJLFuL1qzlD8+9CMCtz8/iquOPYvm6DSxctYb9hwzYZvhHjy6dOP2gcc2bUDORKZ0y7I44b8QhnDZ4Xzrndr37UrcK42vUNb/9/kZvrV/FI0vnceKgvelV3bzQ5gqZ44ZDzvW/PzBsMj2rOjVpTr5o42r+OP85AG5983n+b9/jWbZpHYs2rWb/HoO3eV/qVd2Z9w+f2MwZNQ/bc1+68sorOe+889h///2ZMmUKN954IwsXLuSTn/wkAF/+8pdZsmQJv//97wFDOH3kIx/hJz/5CQcffLBXSVVXV9O1644jNFtEOs2aNYvx48cjpdx2YYutvcwKYX2dtFF7SAQ6IFgc56PQCCWsDw5IqVEIo/KRjlogTWS4bi1xkYpqsvV8iJfrzHsNBZ9uf9i2KipvywpBOU7GdxnOKaGEgv6EABUl+yFRL/k4P53sD0LiUh3poEowNxEYNGkT84bLmkeoRPLqHRMP6o/4Uxn06xRVAVmilYCCgFgglEyPTwNxoHYi4NGs75In6mJtfKGEBqFQjQJiiY5sKJ0fazIWH9amSOYlNMJ6WUVRbNVhylVIFG+AJsJxbYlPlflUqdi4hOxKCK9geTDr4MlOqb3CybRZut6JOip1tTYL2UNUhgwZMmTI0DaorWob0+q2xtc/eQIvvL6ECSP7bbXcm++8x5yFKxg2uAfzVr7H9L1HUZlLP/Jf8tPbWbJyLY/Mms8vP/2+kjZef/dd8lHE8CCj0Wsr3uXeN97grPHjGNS1KwO61rJk/Xr6RZ2JyrwbDOhay9SRQ3l16QpO3Hs0G+sbOOVnN7O+voHPTz+cjx62P8vXbeAvL7zMESOHMnHA1ufVFsielzLsrqhtA1JnR+DaA8/guXcXsm+PgVst98a6FcxZs5yRXXoyb/1Kpg8YS2WUvi9d8OgtLN64hv++8wa/n/bhkjZeX7ucCpljWJceft9ra5Zx/ztzOHPIRAZ26saAmq68s3ktfatricqYlA/oVMfUviN5dfVSThy0Nxsa6znlgetZX6jnCxOO5aOjprB88zr+suB5pvYdxT7dB5S00dbYnvvS2WefzXvvvcfXv/51li5dyvjx4/nPf/7DkCFDAFi6dCkLFy705W+44QYKhQKXXnopl16aKNN2dIRLi0infffdl6VLl9K7d2+GDx/Oc889R48ePbZaZ/bs2fTvX9653ihVDINjeB0XxpRQTwLj5YMQSEtSaSmQkUIXBFrIVCa4FDkpsaRKQtSkTqPjWkIOJZAvCRKRTig0cruUJZqEDZnzXJdIt+9DpiwZIgp4ssITDgVsmKCy83GhYwJVkEYmE7atVEJSlKidTIfaUnaGdHJrUEZE44g0N0GpUlIuTXC8ROWUnptPuKcw5uFxUT+WdPK//TFRUk7EIOKA0MqZ8Skbqigcp1Q6LLtGpXNWUnhjJS3NfikSA3tZph3t6yfUlNt80F3CaPpK2rKSjpRShDylCQtMt5vqtcy+ppE9RGXIkCFDho6Gv/z9WZ559k0+ftFU9hq94wmL9kZVRZ4pE4Zutczm+kbO++YtbG4s0DBQUtCK2cve5YtFxt5dqo1ioktNqXLiqYULOfevf0MKwV3nncuYXr0AuPiOO1i2YQNPLVrEbR88m28+8Qi/eXEmUwcP5XennlXSTiQlv/rgGf736k2b2dTY6L8DXH33f3lw7pv87pnnmfH5S0pUBq8tWcGS1es4cu/hJcTWN2/7Lw+/+NpW16MY2fNShh2N3859mkeWvcHnJxzD+G4d4L4U5Tm879ZDzTYWGjjrwd+yJW6gQpr70mtrl/GFCcemytXmzf2oa0Up8f/UigWc/9gfkQj+cczHGNPVeBZ98slbWb5lPc+++xZ/nHoB3335Pm6e/zRH9BnFDYecU9JOJCS/OuxD/vfq+k1sihv9d4CrXvgPDy2by+/mPcOMU75Qcl+avWYpizeu5Zj+eyGLjl31wr95+M1Xt7oexdje+9Ill1zCJZdcUvZYMZH08MMPt7j9tkCLSKe6ujoWLFhA7969eeutt1DNMNAqdl4PETk7JuE8nZJXeRNCl5TVWD8iJXwZz9pYJZJIcQICCuan1c8E+qmknN8fkEoUExmOiLIcjisnQmVU+N9Bkez2HVizcEeUpNLj+X40SIHMQZQz6py4YBuQvsUy0qwiuI6tObeIgqKOrFEiUTk5BY/Upmwu8H5yvkslCNcxaCsGCsISTjKVIdBlqfPirFBRFjZpQ+lQAi0VGusJZSRDXp1k6iYn3iuOvEpJphoVQehh6M8UUEfW7T+YmrsmA2Nwp66S9vr1fk7Yy0NjCSeBlOY8+2tQmNDQKEUCJuN3pTOlU4YMGTJkyNA0tmxp5PobHwLgltue5v997Yxt1Og4iKT5q5q06vdc0V/UXli2lClHDefCygM4fNzwkvqrNhtCSGnNavsdYFDXrizbsIHBdV0BeHH5UgBmrWheau5uNdXcfOH7mbPsXc7c14TNDbJt9e9aW/Jit2zNes7++S3ESvOlU6Zy3mH7+WPrN9fz18dnETdsaVbfDtnzUoYdiU2FBr7z8v0A3Pj6E/z04FIVYUeEACL/vmbuS8UqpBffW8xxA/fif8YemvJgclhlCSGFZm1Dcl8a2KmO5VvWM6hTNwBmrV4MwMurlzRrbN0qa7j58POYs3Y5Zw3ZF4BBneoAGFDTtfS+tGkdZz34W2Kt+N+Jx/GRkQf6Y+satnDbgpnEm7P7UjFaRDqdddZZTJ06lX79+iGEYP/99ydqIo77zTff3GZ7khgplCcRYiFRlrwIPYkA85KuQEuIpVGsKJf1zSlXIBU2R0RCFmlMuJf73QSKBTcQlLccRhgN57idVBvBdxG2Gaqd4oQ2SgQ5hmhRQlh/dI2UMSoCHQfrrHWg7mqCoPBG68qSScpG3gVKH+1C7OzglG1XabM7DlRMZSdo+y1SOBEHn25/+FlukYQhfIhIzlsMotEstMac+4SxMnNM7ldmvsLuM2SZSky5HcmnEwWXUjYjonBeTWmlXPmQXmXJocSIPCwrhckmqIW5qerwgkF73yghFFJolBbEyoQxulA8Icot+taR/JshlVkvQ4YMGTJk2BNRWZnj8ENH8/Sz85l6eNumO9+dUVWR4/ovnMXyd9czdFB3Hn/rbaaPTV7gthQKfOgff2FLXODsseM5tmJ0SRsnjB7Nd49rpDKX4+Dgj8e/O+tM5r73Hnvb1NrfnHYsf3j5RU4aWdpGU5g8ZACThyThKl889ghOmTCG4T1Ls14Ziwf7PlD0UNalupIPTZ3EIy/M4ZVm9549L2XYsaiO8hzbfy8eWTaP4waMbe/h7DKojvLcfPh5LN28lpFdevLEijc5PlifLXEj5z36B+pVgfcP3ZcTBu1d0sYJA/dmS9xIVZTnwJ5D/P7fHHYub6xdwdg6oyq7etLJ3LLgOU4cML7Z49u/5xD2D9r80j7TOXXwPozo0rLkB7UVVZw74kAeefMV5m27uEdHuC+1iHS68cYbOfPMM5k3bx5XXHEFH/vYx+jSpUurO5cCoiBeLVSVOONw76djTXy0jWfTTjrkFU+20SBUzDQtEFoglSg1/3bqG5J+Ugqn8HsSUZXy8iZK8RgplPBCrg/pwsKsh5UUyfHIKp0iTRRpCoXIE06G5NKWO3HzT8bufYVk0g85kHmjyhECCo2OcBLGGMn6KGnLgInIqp3cwL1cqxxEQCgZlZNwXk4ulFFboi8myWCXWi+jxtJgw+dI1FAKYyIemQ1pHzoknnByxJ+MrG+TW4dUhr7khLh1SMvXyp3wtOopDIU016UuIaiMgTkJx+Uelpz3E0ZBlosUFZEitmtvTMulbcMVbGLJm4Cz5HffM2TIkCFDhj0ZQgi+/n9G3aS15i//eZ4Nm+o597QDqMi3a3LmHY4tDQW+/Pv/sGrDZr53/on06ZY8i3/1wQf48ysvc/7ESWxYE/N/Mx7ke7Me59FzLqZ7dQ05KamrqmLZxg30qilvIC6F4H3jS1/YqvJ59unb1//eq0dPrpm2fam2IymZ0L9v2WN9unbmz5d/iHdWr+PIsaXhO19835H8z/TJdP1W+bCScsielzLsSAgh+MWUDwDmvnTzG8+wvlDPx0cfQkW0h9+X4kY+/9ztrKrfyLUHvo++1Unmtf99/t/89a0X+MiIA2mMY6558T5+8uoj3H/8ZXSvrCESkq4V1azYsp5eVU3fl84aOqlkf1WUZ0LguzS6ax+unnTyds0lEpIJ3crbA/WtqeXvR32UJRvXcnT/0j94/O/E47li2CF05fPN7q8j3JdafPUff/zxAMycOZNPfepT20U65WRMZA2dDS9gXG9MZrr0gkthlC4RipwsEEeGkFA6CRUDEg5Bg1aglUIiQEmTAU2V+jo5UsKracICRYocp6YSEd6LGsz3lOLJejwlJtluIka9IywxYm2nvAhHI1BIGnVEbMknmSskSicn1pEq8QPy2elCFkRBpJGRIpIKGTmFjiC2RJa2pJE3FVegY7PQnsDSGAZFakIBTuLjJIxqy2abEy4cz6qkwix9QiVtet7HkjXakndEZtF04D8ulICCIRzNWEmFCyK1IYi0BqlTvkxuTZ23lxCJkighjUSqfOqE+1U2a+nCPhNFUlJUYIi+WEmkiI1aTIugBaN0UnZfTho5WCwEBZUjjgVCCCQSlbrwto2OIMvMkCFDhgwZyuGF2Yv58e8eAqB7XSdOP2afdh7RjsWLC5bw4Kz5ANzzwlzOP2qyP/bY22+bz4Vv06NLDQAbGhpYU7/Fk07/Ofs85q9exeR+aYPclZs3opSmd6fmZY3aGRjbvzdj+7cspfnWkD0vZdhZeObdt/nmrPsA6FXVmbOH7beNGrs3Zr63kAeWzgHgnsWvcsGoKf7YEyve9J/dK819aX1jPesaNtO9soa8jPjnMR/nzfUr2a9H2prnvS0bibWid3XrOYe2xt51/di7ru38ujrCfanVlOtNN93kvy9evBghBAMGtMzdXQiTiQ6wnk7SKkNCOW1aAaW1RBOhdeQZIlGkdPKhUloiYkFUEEhLqpSE14Xv9ol4yEAFZYP2BWXKhf5OlowqFqs4EYsntqRVbkkTVibclHLYTGu2Xhha59rQEpFiV0KVljYKp5wmlzeKqTADW1yIjN9SnKh8PJnmWDCdnnCaqnONpZVNXgXmVE32t1AiIZyKWgnnT86ukcCajQt0TqOl2QwhZY+7bHw2K53xoNIpdRwUqY+sykk0QTiVKrosXSQ0UaRw/pXlzMZd0kBlVXpmId21nNQTAvKRsoSTIIoUjfUVycTsum8jW2eGDBkyZMiQwaJfr1qqKvM0NBYYNrA0TGtPw4Qh/Zg0rD+rN2ziyAmJAqgxjvnswYfy8MIFnDNhHyb07oMQgmFd6xhel6xL9+oaulfXpNqct/o9Tvz774mV4u+nn8Ok3ukXqvq4wLKN6xncpW6bKcWbC601i1avpW9tZypye7YKJEPHw4BOXamO8jSoQovDtHZHTOo2kH27D2JNwyaO7JcogBpVzKf3nsajy+dxzvD92buuL1IIhnbuztAgC133yhq6Vw5OtTl/3buc/uCNxFrz56kXlmSSa4gLLNuyjkE13dr2vrRxNX1rulIhy9sIZWg5Wn2HV0pxzTXXcO2117JhwwYAunTpwmc/+1m++tWvIsukTi3pXGhyQqGsCiRy8h9M5i9DNIEhlmxIEwopNVHkwqc0WklSZkwRRmkjFUQCFRmVk3RhYMokaHPkj7bVtdQ2jMuSJ8qpmQzTo8P4PG2IFa/kcVsQfueUPiXKqhhkziixAHSjOaDtHHW9RAmNkgqZU+QqC4aUi63vjwQR2RRwlkTTsTCKL0BEiigXE+UUuUh542ptZUVxTlJwhJMKCI6CCDLLCUueGWJHWwVSGGZoQuoEokEgC2kCzIXHeTVYoJwSJOou1xVKm7EEPlw6p9NtxmF5kZKWKacQkubK8d3poAFtPn1Ynt2vNZZQ0imlkwj8o2LrEJ6TypCJARmaUHeQk9qQXFKhdYRS0rXkzcgbChGRVFTlGqjOFciLAhvqK9E6h0650zcfHSEWOEOGDBky7Lp47931LF+2lrHjB7TZw39z0a93V/5x/cdoLCh61JUPzdiT0Kmqgps/c3bJ/o/86W/MXPwOHzt4fw4cYNKXX7rfQc1qc9H6tTTE5kHrrbWrU6ST1prT7/wTs1et4HOTD+PyfY2C4Zlli/je849w0tAxfHTv/bfafqxUSfa56x57hp8+8hR79+3F7Rd/eKdcN9nzUsfCss3rWLppHZO67/z70qBO3XjkxE/RqGJ6Ve066sEdhU75Sm6Z+tGS/ec98nueX7WYj48+hP17GlLpk2MOa1abizetoUGZ+9LbG1elSCetNWc/8iteX7ecT409ik/sZTJ0Pvfu2/zglQc5adC4lMl3OcRalRia/2LOY/x09iOMq+vL7UddnN2X2ggtdI5J8NWvfpWf//znfOc73+GFF17g+eef51vf+hY/+9nP+NrXvta8RuzbunA/vDO3KFKiCEswmWNaR3YT1ttIJG/+/qtAKImIJUIZpZPzGYpiElNwgSGpJImJdcgiIIwiyamgJHZ8yQXhu3bhZFblJHXQTNisJ7nMJly/ERAJRF4j84oo5yQ6CfnmPIlE8Onbd2qfnCKX1+RyhpyLoqRcoRARN+aMn5Ny8xA4bZlbFKECXyY/cCMxcj5ZQglEQRA1BuWdT5EWiKDdcCP4TK27TB8Udu0R6TLeX0m6ObtLRydzKLM5ZV3ozwQEPk9J21JC+GwUyWRLhHXCnGf726uspLlGk8Gn8yfmIkVlFFOdj8lLTaPKE+sIFcR2tvT+5mSZoTwzQ4YMGTJkaC3ee28DDz86h81bGrZZduOGLVz0oev59Mdv4s6/PbcTRleK2s7VzSacZry+iI//4K/84/GWWFA3H0prLrvvLqb+8dc+w1tz8ODr8znxFzdz4+PPNt220nz/rkf4n9/ewTur16WOzVmxEoDZy1e0eMxTBw3j/w45ki8edDgnDU/7lBS0Yt6a9wB49b2k7V+8/CQz313CNTMeROnyfyzTWvPRO29nzC9+wj/mzE4de22ZaWveu6uIm6jf1siel3ZvLN+8nrsXzWZTYdv3pXUNWzjxvl9y9sM38cf5M3bC6EpRV1HdbMLp6XcXcN6jN/O3t17YIWNRWvG55/7KCQ/81Gd4aw4efGcux997HTe+/sRW2tZ8e9Z9fPyJW1iyaU3q2Jx15t/57LXNy3IZ4vA+I/nyPtP57LijOWHAuNSxgla8ucHc8+YEbV8353FeWLWYb8+6b6v3pYseu5Vxf/8Od779curY7DWmrTfWvdtiu5PWoiPcl1qtdLr55pv59a9/zamnnur3TZw4kQEDBnDJJZfwzW9+c5tt5K2nUxySA1IjbUp7CShMRjthnaG11kipyOcKQIRAo5RMWEHv8aRMuBaCOCeIbShYVC8QBRCNAlUJcaVC5UnUTdbDSMeJ5kpokaigIhJVji1D0LdTSIUG1imvJ23JKGXDvuynU0SZMDeBkhKdE1RXNVCZL6C0oLEQmfA4LS3hpslHMVK6+E9DzlXkCiZ8SyRtKi2IEeQrjGKqoHLogjA+V4i0sCYIERQYYklHJBnzNIESyix1VCg6uU7t1NTJdxIhu5ZeyeSyDwbjMNnokv0aYfybVLooCJTLaKdJiEoLk01OIoVKEUrG68majNvWpDX/TrIpGrWT93wXppyyY/E+T4BEk48KCCFR1iQ8Ya+hoTFis8ghhEJFBXKygBCRucYD8qsl6AgMeYYMGTJk2Hm47LN/ZOmytRw9bSxf+9KpWy1bX19gy2bzErh61cadMbztwvV3PsmL897h1beWcfphzc9w1FwsXreWf817HYC/v/4qk/o0z/vjt0/O5M2Vq/jZw0/x8cPK/4V+3vL3uPmx5wG47elZfOaERDFw/ftO5b9vzOfDkydutZ9GFfOZp+5k0YY1/PiQ0xnWpTtSCD46YXLZ8nkZ8atjz+DRJQv46LikzOnDxzFjxRJOHjoGaR9crnnqIe57ax7XHHYsRwwaypZCgUfeXoAG7n9zPqePSbJSfWn6VPrX1XL4iKHkmhEh0RbInpd2b5z94O9Ysmktpwwezw8POn2rZetVwZNT79Vv2Amj2z78+NWHeGHVYl5e/Q7vG7pvm7e/eNMa7n7nVQD+uegl9uk2sFn1fj33Sd7c8B4/mf0IH9/r0LJl5q5bwe/mPQ3AbW/O5MrxR/tj10/5AA8uncu5Iw7Yaj8Nccxnnv4Hizeu4SdTzmCovS9dMPLgsuXzMuLnB32QJ1bM57wRSZnTBk/ghfcWcdKgcf6+9O1Z9/Hfpa/z/yadyKF9RrA5buSxZfPRwH/fmctpQyb4+l/e51gG1tRxRN8RJSqoHYWOcF9qNem0atUqxowZU7J/zJgxrFq1qllt+OxioRoFp2ay+wXW78kQBk49oj3x4nydAG04DE+K6ET6JDAZ7GRBIAug8qDyGp0zqyBcHduOjBMyxngKkVJBCbDqKXwYmXThZMGMCD7dDz88r/IRkDM+TOQ15IzSqaKiQGU+JicVWwo5pITYzksIl+HOrKEUWEJOU5FTKdJCKUdISaN0iiN0QRqlU4kWC082+fMktCXlgrJ27rJgPLOcV5ZOt5SGZ9WCBbJeTkgRGHOLVB2vRoucognH7liVk/DMnlM9aTvGRDkUGoAXDUukMyW63xoXAmkOREUm5aEqSRS1p3QwSHd9Yq7lSCoqc4q8zcbXEOeJlTV2x4WSllvApuH+jbjvGTJkyJAhw/YgNnHlFOIypoxF6N6jM9/56bksmL+CE05t+5eltsbxB47hlQXLOPGgHZPSfGBtV87aaxyzVizjA2OaT2qdc8BE3l61hjMmlqYLdxjcs45xA/vw9rurmTZ2eOrYwUMHcfDQQU3UTDB79XLuXmQMf+986xU+PeGIbdaZNmgY0wYNS+07c8R4zhyRzG9LoZFfz5oJwB9nv8gRg4ZSnc9z1dSjeOTtBVx2QDrUb2BdV74yfdo2+25LZM9Luzdi601SUPE2Shrz7psO/zBvrHuX9+8AEqetccqgCbyy+h1OHbxjEiEMrKnjtEETeWXNO5w5uPnrcc6I/Xl742rOGtI0mT20c3fG1fXj7Q2rmNZvdOrYlN7DmNJ7WBM1E8xes4x7Ftv70tuv8Knx274vHd5nFIf3GZXad/qQfTh9SLKGmwuNnhC7dcFMDu0zgppcBV/b9zgeXTqf/xmbDvUb1KkbX5k4fZt9tyU6wn2p1aTTxIkT+fnPf85Pf/rT1P6f//znTJy49b+wOOSlQkqF0kYxUkAaNYoWSGEIJKGM11EkzW8XgKQjjRCSRqFRSniGUArrnyMV5JT3HtKxQOkI2SBROawnEKhIe7JEaKteKhg1lIxtCJxltLST7ljSUylTxlE0AcdlSA/rT6Sd4if0C4ohCtROxHacWqIUxOTYLDQCTV1NgX6d11IZxSgtKShJo4qItaBzrp7O+QYqZAGNYHNcwaZCngYVEStJrAWNKqKhkAOpqao05El9lCPemIcGaULt3PjsmkNIpIjEwCgkpnSifhIFq0By6xN6OGm7NkWZAbWwpE7BlnH1nGLM1tER0GiHkSNRUDlFmTVZMqSNQsggS11AdDmFpdLCOoaRMqo3pvZO4RT+ozf7tTaeT47Aklbp5AVywfQioZFRjI5ilLJySSXQIqIQR6zaWI2g2hNtiX+UNUNvqadTML+dIwTNkCFDhgx7Mn76gw/z4qyFHHbI6G0XBiZNHsqkyUN37KDaCO+fNpH3T2ves2prIIXg2qNPaHG9E8fvxYnjS1Nwh6jK57jtinNaOzQAxtT15vC+w1i0cS0nDm498TZ/3UqufOouRtX24LsHnUxVLs9FEyZz/9vzOHfvSb7cRybuywfH74PeSSF0W0P2vLR749Yjz+fZd9/m2AFb/3fi0FzCY1fAh0ccwIe3oQbaHkgh+dZ+Z7S43smDxnPyoK2T51VRntuP+lhrhwbA2Lo+HN53OIs2rOHEQa2/L81b9y5fmHEnI7v04tv7n0J1Ls/5Iw7iwWVz+dCwRKl53sgDOHv4ftl9aSeh1aTT9773PU466SQeeOABpkyZghCCJ598kkWLFvGf//ynWW0ki+oIg0Tp4ZROxhbasX/SEAK2XBK2lLzu+8x1vn0rGylIZKP0SqdCFcSVOvEJKjhPIkO6SJU06zOnOfsoG1omlVX7FJmIi/QAvAqrZP6OiImAnM3UZpU/Iq/I5RWV+ZhOFfVURJq81NTHZj4aQUWkqMkXqIhiKmTMpkIFBZX4CCFAaWlUNFqYUEVLRMWNEmJjLpVSOxWpnBKGJ/B8ChzAowLeRNwTb/5skPwIhuXPvcBIiqRVUqWUVkkZIS3ZVKx0EgSm4AJc2JxIOg6X3luGoVNKIkHi6+TKu+uqnPdTaeY74a9gvzdQNrnBaqw6z5d0VJXG+Zi5sbXY04nkPKryOrMMGTJkyJCh2ejbpyvHHzth2wUz7BJojGPeXrOG4d27+5CSplAZ5fjdtA+hteb3bz7NnxY8xRVjj6JHZWe01ty3ZA6RlBzTP3mxj5XiroWz6VnVicP6mpf4v745i5dXLeXlVUu5eOzBjKnrzdcOOZKvHXJkqr931q/j5D//kfq4wN/f9yHG9OzV9gvQTGTPS7s3BnaqY2CnuvYeRoZmolHFLNywimFdejbvvjTV3JdueuMZbp73DJ8ZdyQ9qjqhtebeJXOIhEwRjrFW3LXoFXpVduLQPiaT5+1vv8Qrq5fyyuqlXDx6CqO79uYrE4/jKxOPS/W3dNNaznjwRhriArdO+yh7de3T9gvQTHSE+1KrSaepU6cyd+5cfvGLXzBnzhy01px55plccskl9O/fv1ltVEYFpMyhtKKgJZFWaKxqSZhQMmmzjillFEdKCyIBQsZWcSIpxBFaCatCEaBNNjwpNTLSaAWqIqKgKkFJtBTWxNtKp1wGutgodkSQGE5HJuxNRzbEDlNPRInSSUlhMuM5ZU5IMIXKHZfJzql/wGSyazD9EgtEDLGSKJWjXgniWFBfiKit3kz3qs10yjXQKddgfINkgR75jXTJbQFgU1zJu/WdWVeoYmOhko2FPEpFFJSgUVlvLKHJRTGqQtJQkBBHdlw2RC4OxhmyJ1J7Rsl7QKlAJWRVYUqArjBVhALZCLJgy0YkGQOFI5Wc/IiA8QGUWVNdEKiCQri+ckBkwtL8WjteRwoKBRd2qLx5uhmj7dSF2QnlfZuceklaZRmAjJLyrg2JqRNJI+1VWpjricQATkAQJmhXS2DbNrqoQixtuKjwBJsP/xOmjZaayHWEWOAMGTJkyLDrIY4Vy5atpV+/OqTM/vvTUtQXCrz67grG9+5DRdT69Nwfv/NOHn3rLc4eP55vTW9eaMiCDSv53iv3AtCtooZP730MDy99g8uf/hsAvzv8XA7pYwimvy2YxVeeM39U/s/xF7NXXW9OHrw3/1n4GiNqezCi1qQ+X1u/mXoV07s6MU+es3Ilq7dsBuDF5UvblXTKnpc6BmKtWLJpNQNruiF3ki/PnoT6uMDsNUsZ160/FbL196VPPvlnHl8xnw8M3Y9v7Hdys+rMX7+S77x8PwDdK2u4cvxRPLj0DS578u8A/GHqh5li70t/f+tFvvbCvwC46+hPMrprb04aOI67F89mRJeeDOti7ktr6jfToAr0ru7i+5mzdjlrGsx96eXV77Qr6dQR7kutJp0A+vfvv03D8EsuuYSvf/3r9OzZs+SYDt22Q92T0P6lXGF9mpJa5v8FaKWt545rx95ULHkgpPnUgGoUiAYNsUbHoCqEn70nUTSWsLJERWSURyrShqByohQlELGwmepEYmgdTqdI3aST6iluxQlhXLIzE86nrfpHISNDElXKmLyIyaE8YVVBgQrRCJZU2azyNOiIRi1p1JKGOKIxjijEktiGILpQr0JBGJKriBRDCe9LlYoXs/P0/wwciRabUER/Zuz4vUeWSi1D0q791H4Lzn+4bp5QSl8Czn7L9RsSPYlXGIm/k2V3HMFjPJySEDtDQOnktKViIgVCqICoUsHNQackkcUqKK3d9SuCyyN9FThlU+L7VLxg24aymQPd9wwZMmTIkGFn4BvX3Mmjj77O8cdP4AufP6m9h7Pb4WP//gePLXyb44aP5JcnndbqduautFmc7Gdz0Ke6lgE1dSzbvJb9ephU5jW5Cn+8Jpf33zvnzf5ISCoj8wA9vntfHj31Ul9myca1TP/Xr9gSF7jl6HM4qI9p8/DBQ/jEfgewqbGRU0fvGB+t5iJ7XuoY+MLzt/HfZbM5feB+XD3xjPYezm6HS56+lSdXvMn0/mP5yUEfaHU7b9jMda+vXd7sOn2raxlQ05Vlm9cxuae5h3QK7kvVwffO+UrA3Jeq7H1pXLd+PHTCFb7Mko1rOf6eG6iPC/zpyHM5oJdp87A+I7ho1BS2xAVOHJjOjLez0RHuS9tFOjUHf/zjH/nc5z5XlnSqkCb7WkELclpR0FEqVaAzyI6EJX1Q/oREWqBsOFWhALGQPiZTWQZICqN2yucU+UizSUvinEDX2xd+z/wEREfkFDnGZFxHGp0LGCOV1NEChCN/rVoqDO/zCMkokjL+mnKfCmSDYViUNrqYBiVQBUF9Y461W6roXNFAp4oGOucb0EKgGyWVkfFz2hLniLXJTLe+oZJ19ZVs2lLpw7lSJE0EIqeNnxIBAWXDBD1b49g0t05F8xJgQuO8iksnCiQ7TxnbNS06/y4joM7pUlKpAKLRhDDqAj7bn1JABYaUs5NyZJGJJzQZD4U0nktSaiIREjmWkBSKXJSWpCWBcHg1lMBkS3RKKIkjhzRaxsYzK45Q0tCbjmBySxH+BmtYHoFGNclkt+ZWExJtu0BocoYMGTJk6CCYO3dZ6jNDy/DOuvUALFm/frvaue6UU/j33Ll8YHzzjcs75Sr599GXUx830jlfBcBBvYfyt6MuIhKCcd2SrHsnDd6bPtVdqKuoZmiX7mXbW7JxHZsKjQC8sXalJ53yUcSXDt22KfDOwPY8Lz366KN8//vfZ+bMmSxdupQ77riD008/vc3HmGH78dradwCYbT8ztAxLN60F4B372Vr87OD3c/fi2S0ycu+cr+S+4y6lPi54Uung3kO5/ZiPEgnJuG59fdkTB46jd1UXulVUM7hzU/eltcF96V1POuVlxOcnHNvaqbUpOsJ73A4nnbZuzhUDMQLH3DgdiFXloFHaMT2Qfh3Xtpz55vrRKcWU8gqWOAatQGgNWqFyRlUkYmH3J5RMmPgupVjSppywXk7CxoilBFtFVVJr4T7DaTilU/BpREKGCTPEhVFnibxbUwKCQ9OojL/VlkJEfRyxpZCjvpCjsRAZ82pPySRyHK3MOmgtLeGmjRG7UyiFhJMoWn2BJadEmmwL10ALn9UvbCq1EKn5a39Ma0syhX0WeUKJ4nV3KrSQWSsOdQwOuX/cwhpupTg2250pYMnOQAnl2xGYLIqeiQwlWdrTWOGNJI3ijEBuci2nnTqCLDNDhgwZMux6+Nr/nsZ997/CSSdObO+h7Ja44aRT+fe8uZw6ujQjdEswsV8/Jvbrt+2CRcjLiHxR+Mw+3cvbZOzfa+uZ8Q7oNZCr9j+WNfWbef+IHZOBa3uxPc9LGzduZOLEiVx44YWcddZZO2J4GdoI3933A/xryUucMWjytgtnKMHPDjqbe96ZzSkDt8/Xb2L3gUzsPrDF9Vp0X7JqqKZwQK9BfG3f6axt2MxZw3bN/051hPe4HU46bQ0VUlMRaZQuWIWOpkHlDIkkNDkESExomABhlSlaG2opslnupICCEIEczalZzBZJTVVVjIjqqa/ME2/JQaP0pEkqUxqWALJqp5Q8yGWZC3kwaeoLT8QE5R3KkEypELPgmDOzlgWJ2mIuwFgItqiIWEdsKeTZkK9kfWMVVblGaqIClTljQtWoBPVxjjVbqlm7qYqGxhwqTpy1hdDIyKp2IlCV2oQoNmrvoYSzMQsG5dfHwXIsIrYbZtzKyoCESspoEdAwdm5aBCqnyJxrIlJxhzoyay0aMZnxtAnjc2bgnmtyPE+odtLuH68hfoo5HOlD2UJ6ME1oAggJ+SgmJ1RQR/v5AigZE9lrtBCbdIXK9x8y18kJd4bhzl8KwvG2Lu68I9ysMmTIkCHDroexY/szdmz6ZeC1197hwYdmc9KJkxg6tFTpniHBiO49uOLAKe09jFZhxaYNzFixmGkDhlOTr0AIwQV77d/ew9oqtud56YQTTuCEE1qelTDDzseEboOY0C1Nkr7w3mL+vXA2HxyxHyNrs/vS1jCitheX1k5t72G0Cis2r+f5lUuY2m8E1bm8uS+N3nFZAdsCHeE9rl1JJ+PPHiMBjbR0h0Jos0d57Uni6Z5wOTLIFufKxf6oV6bY8CttpTZSxhAJlFboOLKMiUypmpzZtW8yCH8zfk6emilR+IQod8noMt8dJ+HVVW6n678ASghUThBLiKWgUUhyQlKvBbGKEAIaYkmDktQ3SgqxC0dLRiGEIeu8Ssh14lzQddCvIj3Y4skE5uueiANDwjkCTiX+40F0m/XhKtNHah2N4kwJjZDC+10Vr09TQjhP+ITrrNPTEMKshZQ2bM+VCZRd1ivcZiAszixnQuQEMcJev+azGO5iElaR50jAovkWy+pagI4QC5whQ4YMGXYPXHX17axcuYFXX13Cdb84v72Hs03c/K9nueXemXzizEM588hdU6HTHlixeQONKmZAp65lj5919x9ZtGEtpw3bm58cccpOHl3rkD0vdVxc+sTfWLFlAy++t4S/HXNhew9nm/jlnMe5ed4zfGrvI/ng8P3aezi7DFZsXk+jjhlQU1f2+Pv/ezOLN67ltCHj+eHBp+3cwbUSHeG+1K6kU6VUVMoYjSC2b/vKMhla5VCxk/0YdUrsX9gNG6MlRNIQH0bbJBNyyatINBGaKNLko0biigKbKhUN9XniTRJndp0KxTKcF8ISNi6MDqfsCS4GYVVRrg1HgKTCvHzh5NM1EWZzK1ZASS3QBWmbFDQiKTTmaMgrtuRjNjXGRJEJIXRG4VrDlvo8cSxRBenkR3hSIzI0jJQ2jDAk2FLhcenxi2IORBkFkoytZxOmadlIyP0l85YB9eL6DUPmQjWVwF+ZOuBhjMG62SliaxEvlCcWQ2gt0EqipDENDweTxMwaFkoVqZG0BqQiJw0fKa0yKVE7mYWRwhyPgEZtVFsojdQQ2/VU2hF/LhRUWBVeQG7ZT6dxKvaBag46QixwhgwZMmTYPTB8WG9WrtzAiBG923sozcIt985k9frN3Hb/89tNOm1uaKQqn7Ph+7sv3lz3Hife82tipbj16HPLhtY1qjj1uTug3PPSunXrUmUqKyuprKzcySPLsKMxpq43K5ZtYEzd7nFfuumNZ1jdsIk/zH92u0mnzYVGqqI94L60fiWn/fcGYqX449TzfQKEEHvKfWlPQ7uSTpLY6EKEUTpFQpITMUoLYq2QwknNjKm2TFyJnCYKKWJjNi4FSutA9OLCrXRK9QSSnJQUhERFEh0LQ4AoaeuJwH9IJ+STcuFkAUMQKHh8NjVHJtn/K/tPO5yEDuvoZD8kCp4YaLSd5Wz2OS3QsSSKDPGhVBLSFRdMljqU8avyhJgwbWktrDE7Ro4UCbQ06yAKpKVJofrJwSqZUEa1pJ0aLAx/C0k3R8b5ULKkfjFZ59sPNu3i9EJyTNqGlO0rLqrrhiysikknKiYhBAWEIckikDYMTwWEocCqy4QJb3T9pTLNJReK8Q/DcZhW8eQ4Mjv55IpM1lOI8ObSpOxrmzA3q4A0y5AhQ4YMGdoJ3/zm+1jyzmoGDihv7Lqr4eNnHMJfHniBj5568Ha1c9vTL/GNOx5kyqgh3HjRGbv1C97STev8S9vbG1aXJZ3+evyHeWrZQo4fstfOHl6rUe55adCg9Nyuuuoqrr766p08sgw7Gjce9kEWbljdpBH+roZPj5vGH+Y9y/+MOWy72rll/gz+3wt3c2if4fzmsHN26/vSss3JfWnhhtVlSafbjjqfZ1a8zXEDd+/70p6GVpNOCxcuZNCgQSUXrtaaRYsWMXiwuQjOPfdcamtry7ZREcVURtKGPQkQCiUjYiBCo5RGWLVIrJ0SJGAztDHRjjXkdJg5zPnuGIYikjbzmNA0xMKoo6Sw6iIBkfBEiueDLBEiC9ZLqCC82kdLjOeQHQaQhIqFxEix2ikkm4pUT1rqhBiywzI8i0BqiS6YyjqWaKXQKiLOK6TShvgJwui0BmJDShGG1znJj1aeZDNeSsZnSGrhwxj9Stu5pM6y26chioNycaDgcoSRTBpzp0eQKJ2EL5xeL28s7s5RWMAeE5ZkM+NxUiovi0JrbYzjg4U3YjmVGIBrbbIA2gFrz6g5LyjDMGmMsb1EeeVUGIYnhLlmkdp6j2ukNNcmAmKVzDW5NtPtODjyqiXoCLHAGTJkyJBh90AUSQYP6tHew2g2zjpqImcdNXG723ns9bfQwDPzFlJQinwUbbPOropD+gzlG/sfz6ZCI6cOKZ9OfFCXOgZ1qdu5A9tOlHteWrRoUepdJVM57ZnIScnw2t3nvvSh4ZP50PDtN0J/dNk8NPDUigUUtCIvdt/70pRew7h60olsihs5eVB5k/NBnesY1Llu5w5sO9ER3uNaTToNGzaMpUuX0rt3WqK4atUqhg0bRhwbFvL6669vsg1JTGRf6DXmRTsvkpx2WkDBshNOK1IyAaktaaWIlURpYYUwgacTyvy25avzhncRStMocsY7KramQUoHzIkNwdIiFV5maAyd9mASlgsJCBmwnyox5y65jJzqJyCrPFGDTs/Y+0sJqzKSxJEzIwpUNMr+ViJRADnZnjTKLd+HI3gibfyTAGmz8/mxFSud3Byt0kkEKiOv9nJqJzenoB6RqSvioNmQVyr3b80ri4rgQiNjEhJLuCvFaoxkMH8sWeUGqgXCXkP+uF26gguLQ9gQO8hJgVBJtruEJNRIf77MxaCFkWEJJUFK4tho9TSuL0tAaR0QT8UMZfMQnqI9lCDPkCFDhgw7AcuXr+XlWYs45NBR1NRkL98twRXTD6Uiipg6dvhuTTiBUYWfM3LP85Ep97xUW1vb5B/IM+waeGfjWp5buZCj+4+mcz67L7UEnx53JJVRjmn9RpVkhNvdIITgg8N37WQFrUFHeI9rNemktS4rz9uwYQNVVVXNaqNKKiqEtj7UGiWtiZZV3pisaaaPXBOkn1FCaevvo72xuBTpLGMuy12kFUpropwyGeqwCqCC8CoU1y7aEjCFZL8WoPM6ybYWjEvrpJ52mewc4aQs+VE8fl/Z0hGh11HgeSSsSkcgjOzLScC8EZBlSMMrNk7s10OVkSFbtB8zGGLEqKpEMq1gPsWeTo40iuL0sabIWcv7JGSUPcECQ3CFBA5hOJ3bnwiYgnUXyTEhjKrJxb0Fht3Fn1qrQMUUnhRT13g3uXUQVhUV+DD5z2SykXARgpa4i4RR3lk21ZChwobTCd8X2hqlB7eYtFl589ARGPIMGTJkyLDj8akr/si7K9Yx7cixfO3/Tm9R3aeenY9WmikHjditQzhai9H9evLDc09u72HscKxr2MKb61axT49+yN3sPG/P89KGDRuYN2+e/71gwQJefPFFunfv7iM8MuwYfODB37Fs83pOHjSOH085o0V1H1o6F4Aj+43eEUPb5TGmrg8/Ofh97T2MHY51DVtYsOE9JnTr36HuS7sLWkw6XXnllYB5Kf/a175GTU2NPxbHMc888wyTJk1qZmsKSewfTJSGPFAQAiVAi8hwJ1qiAnYnccexJs+RIickjSoy4UxYzkZYDZUwREJk1SjVUQPVMkdNroE1spotWyooqJxRBVl1kDML1wJ0lChbTGidNqbRnhSyZEegdDJKIIGItfeEkjb7XQmF6crHJOFiEQnR4iYUVnReSggT0gWmsgrGEfokhYoq357w+3WgwHHjdSonUTAkU4qEsgbiTvGEXRtPCDnixPWrzJw8MQeJn5FK1ysh3cqslfGB0mmFmDtu+zZhcyBUMWNmCSFrJlVsQq60UTPFdkDSEmXmkpBEUhH5817UNOa6M7Xt/6RGCAlEFJTxEVNWauaNxu2Yncl4i9ERKPIMGTJkyLDD4R8TWvgfoxkvvMWXr/o7AN+75v0cOHlYG48sw66AWClO/vdvWbRxLZeNP4TPTpra3kNqGbbjeWnGjBkceeSR/rd7Jzr//PP53e9+1ybDy1Ae7s//LX1GfmLFfC55+lYAfn3IuRzaZ0RbDy3DLoBYK069/1cs2bSWS8cexqfHT2vvIbUMHeA9rsWk0wsvvAAYpdPLL79MRUWFP1ZRUcHEiRP53Oc+17zOhSaywh1DrEhDFFg5ibDGRi5DmIEm1KYoIFKGa5FS24T1NpddIJaJhCYvY/IyplFFRLLAhsYqCjqyptsRQgukNeBOkQn5gEvKabNqxeSIYztcOJonUhyJBV6Zkxa2+BuodjF6ZdVOtkLgkYQtLxzhZccurLom6MEqyELSyq6xHauMJTIWSEuOuVBA0WDIpVDxJFRCNAmr6FLenymZk+9NJ99d5joX3uYfbi1jZMRazk9Jl/9359YkooiYcude+HMS6LYSeBGUtiUCQlMkiiYhQnrTLrcwhvbSEY3hKjuyS5ueTeSfCWVUcVJc/X/2zjtObuJ+/+8Zaff6ufduXDDGBTBg00zvvYeEUAwJMaEm5Jv8SICQSgoh1JAEU0ISOiShm2aa6b2429gY9+5ru9LM74+Z0Wr3zvYVnwunh9eyu9I0jbRj6bnn83wsO6ct8ZUbRX5WuyYhxpA32RAqQYIECRIksPjzTWfyyccLGDtuUJPqpVN+7PP2HcKRYMMItGJZbRUAX1Wv3UTpbRAtuF/af//9je1Ggi2O+w86i3eXL+DAJqqVimRsXfK2av6sBK2IQCmWt9F1aXtBk399L774IgDnnHMOf/7zn1sUAy2FwhPGqCil83gThKeRoUJITajFBpVOHiZznSckgZaEWoLWObNny55ISxtpwBchxTKLVx6S8kLW+MWsB0LpoWoNkyFsKJu2M6SFVTelQ/AdI6NzxJAjepxCKsSYe4c2PE8IpDQKIUPY5PtERWon+1lbtZMG8BzhlFPWaNe3dtQJEaGllYiUSXmsjUvLJnDMSE6ppLQ10xImC50lk0QAMgsyq5HZ3HY7ueZwpckCp137biyAsFZZUrk5wZBwPig/p45yEWfCEm7OaDweYhi1HVdsOVVYwVQSCoTQOfVVbMxO4aUs8aOlIZsc5xfvTNoLSWOII5P5z7iESTsR2l0OwpJWtobRUVlVlOe0ZEbCFoaSQHl2WIapUsgo06KKGcA3Bm0h1WaCBAkSJGh9dO1ayYEHNWwcvTGM3Lk3t/7pW2gNw4f1bIWRJdgWUOT53HvwN3hjyXxOHzR6aw+nyUjul7ZP9CxtR8++7Zpcb0znftw3fgIaGN2x9+YfWIJtAkWez93jv8lby77gtIHbnxddW1iXmk353nnnnS3uXEZqGGFDnjyUkC42yjy2i5yopbAuuAgrx7YIPFFfLeLK+sYkiiIvS0oqVmZKCJRHXZBGKQnKAy2NSMYRKJbUMYSTgiLy1EbO40e7UDalrbeSVRIpU0jECRmnrckX0QAxtZMjs5x3VEF2Ozcpwm0PbZ9KRKGBcSWRadt90LlyGkQo8DICGcZUTQqkJZy8Oo2Xje3D8mtxwiimKYrzO47DceSUOy4t88+R0DYczpJ5LjwuJ7mKtWlS7TmTrnxCChERSNGJrweXSk4gpc7zaZIF7/GZNNuF9XuK5FJ2bnVEhka2UsKE5inl9hg7e60FoZIFmr3CmWsq6fT1jwVOkCBBggTbNnbaMSGb2gJ269Kb3bpsnw/wyf1S28OohGxqE9itcx9269xnaw+jWWgL61KzSaeqqip++9vf8vzzz7N06VKUUnn758yZs8k2tOVLEApfa1LWg8epXrQArX1ELC9YLnTOKEiUNv44KQ2hkATai8KbXFlPaPugLwi0oDYopiyVoVvxejoXVbEiXcXiogrWri8hW5MmzEhEIHPqJady8hXCU3ipEM9TjgEBSyygBcpmldMSY+7tCfAkoRTIrAmiklYF5VRNxN6Fyp8foUF74EgJHZFPZqe2BA2elexobGY+QW4yLeJchlNBhUCgDQ8TWJVTiPluVVmWB4riIKPDjtRdRuETiYTcuyWZRCgM0eSB9k27Mms4PkdAaftZhHa7C52TRFn3onZ1watAEaWtEkrEy+dBWJJQE4aWeLLtK20VUlrgY4gtp1wSdkFQWqCkxLPnIDpoLTB6pegMmt4EpESIcSbzEL6HEJpsYBRPjnzSVv0mBBT8nDaNmMru6yrLTJAgQYIECRIkaBGS+6UECRJsa2gD61KzSafzzjuPKVOmcOaZZ9KjR49mZSlxahK0QAkvUjopJQm1R4AX8/eJ8QvCZAszsGoSjFeOIxrcbs/2EWgTEpVVHsVeQIkXmPAoJakKi6kL0oShn3/SrdRFCw2+RqTAS2k8X+N5Ofmb0iAlKBVjR+KpzrTNCqet8qlAxZKnRnIKHanN4F1InSNxYi/hiBoBOhBG7WQVTJHhniOr3HBcj5YvEcqMyQuMsikKq9NG2SQDG1YXaGRMiCOkiJROeUdjSRPDB4mIoIpUW+5EQn7WOju+eGY7JxuK/J1Erj/tst9JUyYKNwS7jXwpVXyAtnMhzXnLeTjZGRMaL6bEck2Za0/YlzOXF3aWzRG7LIk54pPI50lhCCZlySuTFS8uX9M5mVQT0RZkmQkSJEiQIEGCBC1Bcr+UIEGCbQ1tYV1qNun01FNP8cQTT7D33ns3u/NQO7IItNYIQiSQEgIlBCkB4FkySSBQSKmiiDMAT4TWC8rsV9p45ghc8jaBRlPu11HqZay5uCYtA4pkiEdIpVfNwqL2LCqpZE11CTW1acI6HzLSkDjYiyErTCa9AFTaqJ18L8R3iislUNKoZ7QyL6RAS43yBAiJRJpscFYlFBlux7mGApWL6x+wrIz1EpIgnFzM0/ZsykjpE0WAxS9i6z8lNBBglU3aKHy0VVrZrHRuYNrTuIR2OFLKlosHiMUVai4kUDsOzhFd8fFgFE4qZf2dfHL+UE7tZCIe872dsESOwhiAeVbRZQk6N1eR0ikO7So7NZEln2JhjcrJG5FIoVySO1xsoVaSUIEndUQ+YU3HlbI0kqi/YvhCIT2NFJKssRgnG3qEyjPXCjmyqslKpwQJEiRIkCBBggQJEiRIkGAbg9x0kYbRoUMHOnbs2KLOjQLEyGA0Eo2HxsNQQZLQbhfCqE+kNNnuIr+duJgIbFkd228++FJT4gekPY0vNWkZUixD0iLAE7BelRi1U5gmG/po5Zl0bNr49+SbXAukVTr5no6UMvaILOFRODgBoUQqaZVFWDUS+aSIiL2ciklaCq1A7SSsn5OzwIoc2EPn6SSI9E7xuq5LBSK0ZZTAC43ZdyQwUtbDyaUWjGUUdO3GX/knNt6nO2GxzTrXT6Tciryr3CtXL6d4sn3nte322b5jyqX6A3PHYQYg7TUSLx+/rpzCyb1ceWhYIeUOJ/c9Ly9e9KasX5mOxwXGT5SIGmk8CkMOEyRIkCBBgibg888WcunF/+CB+99sct0wVEx9ZTpfzF3WCiPbfpAJAj5auJhMGG7toSTYEJL7pe0KH65cwLdfmcRds15vct1QKZ77cgaz1ixvhZFtP8iEAR+tXEhGJevSNos2sC41W+n0i1/8gquuuoq7776b0tLSZrWhtHkAd8Iak6NO4AmrHrKqpFB71oAZU1IoPJGzYVYIw1tIhUYSKkFd6FMTpqgNfaTQ1KTSdEhXUZmqoULWUebVkRIh64M0pbIOXwakZEBRkUBrTaB9NB4EjhSwnkVKE2YlKhQEvsD3FZ5UNlTLSIyEIxYEaCFR1ntJCSM18oSALCaLWzxLWZxnsKbdGkMwaeefpHTEYzkvJyE1XhEoq0jSGRnFIurCC9jtCkAGAlmnzXsAMmMz1TlPJ6WJRa3lyD2ZI6bMBjNQa2Nltnnm+JXUaClc0jaD2GcRxMgnkWtTKKNk0jLm/VSgdCIW4mgOyp6nGOmVR90IO1aZq2JlcoRWhSWkNkSjspGWWpqT4UzJtUYKgQ6NCsqLyCdzBTsxmXBqtALmS6BJe6FRSKHwhLJqJ2Mu7kbcVGllWzCgS5AgQYIErYd//2sqH3+0gE8+XsDxx+9Guqjxt4iP3PcGf7vpOVIpj3/+91LadyhrxZFuu/j+g/9jyqx5HLrjIG465ZitPZwEDSC5X9q+8PeZr/Luyvm8t3I+ZwzYg7TX+HXpjulv8dsPXiAtPV4//iI6FjXveXV7x4Vv3M/LS2ZzWM9h3Dj2lK09nAQNoC2sS80mnf74xz8ye/ZsunXrRv/+/UmlUnn733vvvSa05h7TneeNJLR+N8pm/IKc2iR6YaKezAO6MzcyJFSAZ0zFEfhSUeQFFHtW4WRVTgpBjS5mTVDK+mwxWeUThh5KeWglIcwRTpHSyaquhATPM+orKR2H4i4Y56Rk2SHDvli1kzAKI+W0SAZxQqVQ8aOFzg8vswooYfuPPIMCaZROMVWNMf427EtkQp4FkRXIUJiINOffpIi+R55PxMbkPhbsi/80hLBeTx7Wk4p8E/CGTr1Pzjjckmm5UL3Y/Dvex2WvE8TmxTJWkSoq3knBYPMUTe7ayqnG8rLW2fA5xzm5fVLkq53cZOfqRmc2Oj/uusiFfdpsdkR576DBWW0kvqbMeIIECRIkaH0ccOBOvPP2HMbtNbhJhBNAEJh/2ZTWaNV2/zFasGpN3nuCpqE6m6HYTyGb4RPbJLTdS3S7wxG9dub1ZXM4sPvQJhFOAFmr7NFo1NfVKKcRWFC1GoD5Vau27kC2U1QHGYq9ZF1qKZpNOh1//PEt7lxpRyg5ykbhoQmFwBOCQMvokdzpSLS2RECBX5EUJmtYVnvUhj5r6oqoDlIEykcIxaq6YhbKSlIypDyVoVO6mq5Fa/AJKfdqqEwXEdiMbxrISk3oaXQoEM6YyKlXlEQrTSYUeJ7GS4VIqSwRoW0mP2HIKBGCkGax0x5aGyNpiYSs8SKKCBxHtkQeQuY98i8it01LDcr4SHlSISX46ZAwUh/ZH4Y0i220zSmMtIBQI2uFUTdlrcrImmyJMEcsRZ5TjvRxJ9Dtt0ST9mwX0kYnyhzn5varFDkSymbHc/Wi4xex/UDE2sTHoATCejlpz5JS7kqpp4pyx20vGpX7qu2FJJQht6RVrcXJJI00Xk3SmoQLba7KUNrsgSZUzzaNdnSSIEcnCaKr2AOkDBApha8kUiqCUJINPJTKkaxNQVtgyBMkSJAgQevhgAN34oADd2pW3VO/uRfde7and59OdOhUvplHtv3gplOO4YlPp3PMzjtu7aFsd3hy9nS+/9zjDOnQmf+d9C1SnrfpSs1Acr+0feHI3iM4sveIZtX97rBx9C1vz8CKTnQubpvqS4Cbx57KE19+wrF9Rm7toWx3eHrhp/zgrYcZUtmVBw44n5RM1qXmotmk09VXX71ZBmBENTmGQNnsXs5kPB4ZFglKoncd22eIgEAJagKfutAzailH6GiNViYET2hNiazDR5FVHlVhEbWhT2j71Qq0iv+1zkl/iHVu6BhtZUFa1/P/xrIaNvzMkh3KkEWmbaeIggbJ0w0xniJXIG5YHQa2y4hgiZWLDMgFBMIYiGdFRC7l9RlTOjU0JhcClzc7lkhSkbBLRGSTUzvlEUs6dogF++PnOM4V5V0MHnljzdsfH5ig3jQKG7eY1zYQhVDafRJy4Ymx0yjsdo055xJLXjlCT8TK5fdcbzI1Gq21NdOPX9FNja8rOO4m4tZbb+X3v/89ixYtYvjw4dxwww3su+++TW8oQYIECRK0OXi+5IBDdt7aw9jqGNSlE5fsv1ejymZV2GoPMNsjXls4H6U101YuY1VtDV3LWom8bOH9UoLtB76UHNNv+NYexlbHoMouXLLTAY0qm6xL+Xhj6VwUmmlrl7A6U0OX4mRdai6aTToBrF69moceeojZs2dzxRVX0LFjR9577z26detGr169Nllf4WFy0eVDCGMY7lsyxxFM+TCeOGlHdmjB+jDNuqCEqmyRCa3TNqOY9siEHhpNRvnUhmnqtE9lqpb2qWq6Fq2jQ7qGVZkSasI0qzMlrK0rYl11MbW1KaMy0s5Tyg4lBEIPFUoCJfBSJpNdTg2kDaUkrdpFY9VOTn4DZCyfEWOrROyiy7v24nxFNBUiL1TMS2kCl3Mx6kdbgsaQXQQgPJGLSHPtxQifKJrPjkXGxpPLTGfJJZtpTvmCMB0jmcwJzuPptG9VTe6U+7FjdQqvAl5GOBLNsTiY+USBFkbb5ChHpxpDuXHGrplISoaRYbn91lhcaxBaorU5YBEdhzA2Wm6c2pKkAkK0yR4oDFMpo/5ENF958+v2Cnf4dnI9jRQhUkAYeoTKemM1CQVsXRNw//33c+mll3Lrrbey9957c/vtt3PEEUfw2Wef0bdv36YOJEGCBAkSfA2glObdd+bSq1cHevbqsLWH87XC9e+/wk0fvs5Zw3bjmj0P3mjZl5dMZ9Lslzm57+4c3Xv0lhngVsAFo/egKpthdNcerUc4AS22MkiwVaG05vWls+lb1pG+5S1LaJUgHzd88hK3fP4qZw3ag5/ucuhGy764aCZ/nfYapw/cleP6fX0VVOcP2YfqMMOoDr1bj3AC2sK61OzsdR999BFDhgzhuuuu4w9/+AOrV68G4NFHH+UnP/lJo9oIFUbRFJEahkLQWtgoL2HVQznyIGfQbAkA+woRZEJBNjBqpThlI4SOtaDRGLWTVhodmn6y1sRZa0AptAJlw+1szBmR9ioWF6x1Tq0SKlDK7c6PRzPN6OillHY6F+L6ljx1Txzx73GlU7RNo8KIocm9RIwCsYPTSqGViW8uKJ1T8MTmtlBuZkVbKBtGp4QglDaBHrn3qJwtG6mcCuEIpw0dd+EpUPn78k6RLqjXQH0d2peK1dUFc2Cny53PqNn4Pp0r78qq2H6t8k55/pwSu94t6eWUTjpvwhuJwuNtAq6//nomTJjAeeedx7Bhw7jhhhvo06cPt912W9MaSpAgQYIEXxs8+MCb/Pj/7uf88+5g3bqarT2crxWenDcdDTw1b/omy940fTIfrJrPHz57qvUHthXRp7IdNxx0FGeP2LV1O2rB/VKCrY9JM1/n/Nf/yfEv/IW1mdqtPZyvFZ7+8nPzvvDzTZb948cv8O6KBfz6w8mtPaytil5l7fndmBP55g57tG5HbWBdarbS6fLLL+fss8/md7/7HRUVFdH2I444gjPOOKNRbWgrbXFEkkDjoQlELmuaJwwxJdE245eRjSgtyGoPqTW+0ChTmkD7OMmMU5642EiBQGuPUGvWB0VktEeAR6kO6JCuonvxWuqUT4lfStrXBMpHIwiynulVx4gKYT6jPHRWoFDgh3iern+tCBBSg++UNvlm3zqoL8rJCzWLXjo/ZstKlYQ0nkJ+2iTFAzu2uNRGAmnQWRC+AF8gPIFKg/AxqqQQPA901pqlZwq4VsehWW8m5QujWnL+TX7uHWHbVJgMdcIqnApD6PIviPpKp3iYWrRf5LL4KWHmVljDdetbJeznOJmXz+y5sjpPmQVY13Blu7KUXYx4Um5c7jowlazaSkf7Q8tkCeGu9Dj1aep6gPBUZGoeKJBKIpqqbI0vUvZ97dq1eUWKioooKirK25bJZHj33Xf58Y9/nLf90EMP5fXXm56eNkGCBAkS5OPTTz8lDHOpqj3PY/jwbT/ko7bW3FFksyFh+DW9C95KuHrPg5j06Tt8Y+joTZY9tveu3DR9Msf3aWUypq2ggfulBNsPasIMYMLAwsjwNsHmwE93OYy7ZrzFN3bY9FpzYv9R/OmTFzm5/+jWH1hbQBtYl5pNOr399tvcfvvt9bb36tWLxYsXN6oNp6jJwT6Wa2FVJPXpvpwKJ2c0HgCBFtQFHoHK0w1FtUw4mTa+PVaJEiDICklWCDKhRKJNm9qETXkE+FISCquAilKbyRz5IYxiSoV2f2R4nctMFxl4RzIXZVQuNsuatCFeeTKgQulR/JAi9V1O6qOFRmtDZmkXO6dFlJ0tatOVR6GkjELIJEQG28oSPdZbOyJItCOXPOPZpGRsyI7UUZjQQy/WpbBKp8Jji3+PE1ERqUZ9uH3ObB3bX725KagfV0E5yNjx2VOqbWieC3kUxNqRBdJAYRVNjhgTRIbiTmHmTm0Y/x4NxWnQhD0t9txE8qsmwDm2u89Anz598opcffXVXHPNNXnbli9fThiGdOvWLW97t27dGv07TpAgQYIEObzyyitcfvnlvP322wCMHTuW6upqu7abPzA888wzHHzwxsOqNidqa7NIKUinG3/b940zxtGtezv69+9M+/bNSzVeW5vl3vvfoGOHMk44Zpf8e5I2jH17DmDfngMaVfbMgXtx5sDG+UQlaAQauF9KsHVQE2TxhGhSVrrvDtmX3qUdGFTZhQ5FzVuXaoIsf5n+Cl2Ky/nmwN2Tdclin24D2afbwEaVPXfIWM4dMraVR9SG0AbWpWaTTsXFxfWUFADTp0+nS5cuTWjJ+C65h3P3kC+FsObXAj8KETNaqFBDnfKpCVLWE0pH/k2B9tGW8RDCKKXiBs3SKkpCPDKBj2V9KPUDpMoigGI/pEJnqCouIsQnUBqJMKF0CpTQqADLfglD2YRWG+MLhM1kBzlVlJCAZ5Q5pMgjVrTAekTFeBJHXkis7w85oyVruuT4L+kZpZNypFiME4tYHzu5wgNSoNPCHIsnEDY0TIRmn8yYORJoCMllpEuJPEVToR1XpNZy/Jnbb48rSgIYVx3pWN0Y+VRoxF3v52dNj4TQaGXHFcnRcjUcrZOb7NicaG3G5C4+aVk2pe0JU0aRJgSR4TcuM50ZbC7AUaFwyjrtuDy01pHSqQENXDRGT+rcsKDJga95YXv2fcGCBVRWVkZlClVOeWMo+AfXjPvrueglSJAgQWvi1ltv5cwzz8zb9uKLL9KvXz+01tx4443cdtttW4x0mj1nKd+/9F5SKY+/3XYO3bpWbroSkE77HH54y7w6Hn/6Q+69byoAQwd3Z/iwni1qL0GClqKh+6UEWx6fr17MaS/eRZH0+M8h36FnabtG1Ut7Pif0G92ivu+f9y5/mf4qACM69GRUx94tai9BgpaiLaxLzSadjjvuOK699loeeOABwDy0zp8/nx//+MecdNJJjWxFR//P+dyYh3OBMkQP1HtU18hIrZTVAqUlgWVGMqrwad1pSkxLInqBFhKlBHWBz3qZQnngyRANSAJK/VrCtFEx1YU+oTIsjxAKIQXaE4aUUaYHtPGHMvucsion3zFm2cqQGF5MEuPYzRghouPDd8KXGAcgrGpJW2MhI8Sy49IyVjamoIo1qqRGeDluS2BNuB2pZC9+IW0THihnBG79mURDJ8dtF0SG4ZEZfKFsMEY46Vj9Db4K+onmBQxp58bjDMkLw+Z07BVvo2AMLvucApw5uZA6UjppLEkn8sVtCMOFSUtSORJOxsjrhngcM9fCvusNXPWbQLyKfa+srMwjnRpC586d8Tyvnqpp6dKl9dRPCRIkSJBg03j77be55JJL8rb17t2bfv36AXDmmWdy1FFHbbHxTJu+iNraLLW1WebMXdZo0mlzYGD/LkgpKC5O0a1rxaYrJEjQ2mjgfinBlsfHqxZRG2apDbPMWLO00aTT5sDQyq5IBGV+mh4lW67fBAk2iDawLjWbdPrDH/7AkUceSdeuXampqWH8+PEsXryYcePG8atf/aqRrTg2IUc+GapJIIVAShty5PQq9uE81JKs8sjoFNVBiqzyCJXMhdAVQFrPI7DCIUcWhFAbpgBBOlSkpOlLCihNhUCGUPusz2iEAk+CFhopTWgeWluzcctuhB7apWxTGuHHSAZLWChJbtYd5+S+CkwcVnxqIsWTzimYXGY1IZBS5MgPN3fSEXkaQtkA0yEQEnTKtW3IM2FD53DeTEJAYAkYH6PUip8yRX0vKsfUKiKvJ8fU5I2i4IcVz5CX12ADiK4IjR2QYYykJheqFjFx5CZZibwmTeI5AUqbY9U6IsxM2zabnVYIRwph5wVHDrkxSXv8xghcYVR2YEJFjTrKKYjyx+AO1ij+jMSrySKjZsoy0+k0u+22G5MnT+aEE06Itk+ePJnjjjuuiYNIkCBBggQLFy6kR48e0fe7776b7t27R987duzIihUrtth4Dtx/GLPnLKOkOMUeYwYA8OLTH/Pph/M5/Zx96dyKJNSuo/vx4D++R1FRivKyDattEyTYYmgDYSzbA47uM5zpa5ZQ4qXYp9sOADy18CPeXzmf8wbvR9fi1luXxnUdyMtHXkax51ORKm61fhIkaDTawLrUbNKpsrKSV199lRdeeIH33nsPpRS77rprk+TiosBoR9htEiNcMVyFzHO3cUFNEoUvAlJCEArXkiEOZB7xJHA58HLBUBopFL4w6qNACWoCH0/4lKBJy5C0F1DiKSrSkAkkq4G6wENZckt62pIWVumkrMzFhvnhWdWLVBF5IgQIz0mWjKeTMwHSQqICbcK5nPF5XJljq2nnZSS0CemTEAqBlCaMS0jl5DZmLM6kKGKLAE8bNZNtRtqJVRqwJJbLOCeC2EwWEE4N+iTZ/cKG5UUnryG1ktsVb6OQ5RWx93h9p2RyYylUMDm1U3xfPPNdbKzxl3aspAuHdMSUI80khlAUMfJJWKWYY6yEJfC08xLLP6b4d9Oty9qY/2oKXNSl+9wUXH755Zx55pmMGTOGcePG8de//pX58+dzwQUXNK2hBAkSJEhARUUFc+fOjZRNJ554Yt7+uXPnblKFujlRUpLm4gtz92Zr11Rz3c8eRmsIgpBLrzy2Vfvv1LE100wnSNA0tOR+KcHmQ6mf5mejD4++r85U85P3H0QDgQ65amTr/uGzS3GyLiXYdtDSdenWW2/l97//PYsWLWL48OHccMMN7LvvvhssP2XKFC6//HI+/fRTevbsyY9+9KNWf+5rNunkcOCBB3LggQc2s3Z9BY5EoIRAamE8kuzzv9YQWiMjiUBIiXThbrkAMby4n5L9v7PtcQSAb8tkAhkF2wXKQwiJFIJiLyQtFVnADyHQnqWrpFE7aRDKKoqkJY+UQCibzc3GmEWe4yJ2rCJnjx4pm9wGz0pcwlyIWhQiJm12NvtdCJO1TYicWXhEcDgyxhEp4QYYH6eoEbY9j4j8QILyMCF4lkSKTWqDUW/Oh8kVk4ooFC+OPEqw4IclCj/ElUeuDxF7x5JCcSJHmHkp7Eco8tnj2HXilFM6Ys3ITYbNgpc/VhH5HmlNTGFngkONI5YlAqOT6erlz4WOTZDWDc1sIxAn3Zq4WJ122mmsWLGCa6+9lkWLFrHzzjvz5JNPRg9MCRIkSJCg8dhzzz2555572H///Rvcf9ddd7Hnnntu2UHFUFpWRK++nfjyixUMHd5rq41jW4JSmofe+Ahfepyw5/DE0/DrjBbcLyVoPZT5RfQt68QXVSvYuX3isQSgtOa+Oe+Skh4n9x+drEtfZ7RgXbr//vu59NJLufXWW9l77725/fbbOeKII/jss8/o27dvvfJz587lyCOP5Pzzz+fee+/ltddeY+LEiXTp0qUJFklNR4tIp+eff57nn3+epUuXolR+tq1JkyZtsr60iiUVC7OTaDxMNjYjNZFW+2RUUEpLAmVuEEL77nxwnNkzwlFEOiKbIlGOJsogk/ZCpNKEWhAiWJdJk1EmbX2FX4cvFcUyQ0W6hqwyKqpAGaMizylZJAhPo7VEBzauLTSMiJIaKU3cl4yxKVrY8DYljOrIEyhPoUOJCASEAhGKfM+kAsWQDoQhKLTxt5KeyhEfwqi6zDwIlNCGeLJ+V9qaiSOwoV9WPBU7hVpawkwKhDUCl6EpGPE7MTIoD05VVDjuQq+lAgVQVD2uQIqXEwUv2DQ/U6jMio8nPt64Ysr5WDklmlU8uXftTNxFLFQuIvDMeXNhdNqq8KSM6Ky8fpXT3jlSrZlKp5bKMidOnMjEiRObXC9BggQJEuTj8ssv5+CDD6ZTp05cccUVdO3aFTBeeddddx333nsvzz777FYbn+973Pbv77FubQ2dOic+SwCTP5rJLx56AYAu7crYd9iArTyirw/mrV7FL157iZFdu3PxmLFb/8G5DYSxbI9ISY+H9vs+a7I1dClO1iWAp7/8jGvefwqAbiUV7Nd90FYe0dcH89av4LcfPcvIDr2YOGy/rT2cFq1L119/PRMmTOC8884D4IYbbuCZZ57htttu4ze/+U298n/5y1/o27cvN9xwAwDDhg3jnXfe4Q9/+EOrkk5NzJGVw89//nMOPfRQnn/+eZYvX86qVavyXo2Be0iXwvgoOa8lYZU3zo8nEu5oSaglgfbJqBR1KkWgfUNKCYEnwZcaT5hsYJ405FAU/oQw26O+XMYwo5UKkQghSUlIWRVRFp+aoMjSYxJpyZhooHG5kLaaK+tj5PkgfTMGacchPZttzgPpa0s6aaNyiryaiI7dMkg5ssbLbYvmKCorEdIosKSMIvdsOVc2dyELFzLm9sXCygzfl5MCOQIsLlyKDzFO4oh4kw0cUnx//gVBPUJKxMfZQHeFYzBvIpfdz9W3SjQZly8iomstrpYzIY6xUeepj+Id5Y7O0J7mc3T9RmXNgenYidQRmVr4amBCG4OCMMEECRIkSLB1cMABB3DTTTdx44030qNHDzp06EDHjh3p0aMHN998MzfccEMLFOKbB+m0v0nCaf6XK3j4v++yek31FhrV1kO39uXmHk0KulY2L+xmeU0VF738X371zguEBX+IbcuY9NF7PD9vDn9663UWrlu3tYeT3C9tw0h7/iYJp9lrl3PPzLdZWff1X5e6l1SaZ1ch6dpMIm5F3Xp+9O4D/PGzZwh1si453DPrTV5aPJMbP3+Jr6rXbO3hNLgurV27Nu9VV1dXr1omk+Hdd9/l0EMPzdt+6KGH8vrrrzfY1dSpU+uVP+yww3jnnXfIZrOb4WAaRrOVTn/5y1+466676qUFbgoEGs8qnVwwlMKEz0kELlItsG7UQmhShPheSJHMUO571IY+NWGKmiBFYNOlOUWTFLnAJYFG2dAmhdnnCw0eZELIhB7ZuhRra4pYJksp9rL4nnHXziijJvKEMsSTBilDGz5mlDAKjZba+Cm5kCqtECikUEbxVKCu0VqglCQIJcpXqFAYtVQg0VmBzkqEJbK0MkSGDhV42oaCmYPRzj8pdrw5XiQX3qWFQIeWjbKeTgjMzAiBUKaccJOoNcrHhDxiFVFWriOsGicWVWa6LVRm5YYT8So6x73k1c3FudEg5yJ0jPyV5Jt+K5wwzpQNyDMxd2FykVLLhR5qonA9BAhlFU4REShMO1qg7AFrabIEmrnN8Xjus8L6O9nvUghCiIXaOSWTiH0214O272FT/11I5OIJEiRIsM1g4sSJHHPMMTz00EPMnDkTgMGDB3PyySfTp0+frTy6TeOL+Ss463uT0Frz5ttz+N0vTon2ZbIB/374LcrLiznxqF22vnJlM2B0/5488ZNzkFLQq2O7ZrXxwKyP+d+8zwE4vO8QduuahAgBHNhvIPd/9jE7de5Kt7KyrT2c5H5pO8bMtcs46pnb0cDLi2fx932/Ee2rCwP+Nv112qVL+NYOY74W69Kunfsw+fCJSCHpXda+WW08Ov89nv7qEwAO7j6MUR3rh1u1RezffTAPz/uAYe27N5vQ26xoYF0qvFe4+uqrueaaa/K2LV++nDAM62Uc79atW73M5A6LFy9usHwQBCxfvjwvEcrmRLNJp0wmw1577dWy3u2DvtOAWBttE6pmn9iVFoS2hFPuAHja0CBCCRQeSrvsdYZgkjbLXLwz5xHt23C3UIPSgkB7ZMMUGRs6F2qFFpKUCNFANvQIlRmPcGFX2suN07ZviBVDTMiUxk9pfE9HKqc4OaGUeWmMYMapcQxpIsiX1llmxWaww6mtpFVO+UTeUfkm1WbOnJrLTZ5N1BZd4JEvlFMfxcifyEQ7UkXlykQqIzfKvHr1z7Uu+F74tTCaLg7H0QjI946KkVAxIZFVbVniR4mYQZtjzVz53HE7jyisyg1hs9oJQ95F04g07FQ0apEbI1jCySmnCu9s4p5O+edY521rptIp3lWCBAkSJNjieOyxxzjmmGPo06cPl1122dYeTrPw1rtz0cr8WxkU/BXk6ec/5Y5/vQbADv27MHrn5pNot/79RZ6c/DHf/86BHH7Qzi0acxxzv1zB4y9/wiHjdmTHAd3q7V+xporn3p7BXiP606dbBwD6dG7foj737tGPso/TdC4pZVD7zi1qqzl4fekcVtRWcVSfnZHb0AP3/v0G8Pl3L9l2xpTcL223eHXxnOiUBQWqnUe/+JAbP5sCwI7turJ7l37N7uc3H03mkXkfcOWowzi+38hmt1OImWuX8si8jzi6z3CGd6j/YL+8dj1PLfyM/boNol95RwD62vfmYs/OAynx0nQpLmdARZcWtdUcvLrErEvH9N221qX9ug/m/eN+su2MqYF1acGCBXlJR4qKNpwBtpBkdb7DTSnf0PbNiWaTTueddx7/+te/+NnPftaC7nXBJ+fFpPCslMazx64QhFpaDxyNJzQdUzV0TMH6sJiVmVLWZYsJrG9RlMFOOzJLo7UgqwSZMGXKoPE8RWWqBp2qJVCS6myaqkyK2qxHbeAhsFndtFW2WELL8zRae1b5IhFSo6Q0iiQJCIXWChUP5xIma54U4HmABN8XKCWsukUSBoIw5RGkfHTG+ESJwLAh2smNtL2YbKI6AhC+bZO4cbV9F+CJEC0FSgq0Mmon7dlXoBGhgEAYZZUz3BYY9ZZV+zjfp0gdFPvH2imfiB1vREy5Exz/7rLxxYjEvEuiAc4tIrSI1XX8jmvTGVTZ+XV13VgLx5OnyArtuVPChDwqkctiZ9vWnlUxKRn5OpH3rlBCRPuUM3mPGXQJN2ENEEvOz6nJyvzEoyBBggQJtgmcfPLJdO7cmbPOOotzzz2XoUOHbu0hNRkHHzCMN9+dg1Kaa688Lm9fvz6dkFKQTvl069KyLHyPPv4emWzI409/2CzSaenKdZSVFFFWks7bfvWtTzLji6W8+NYMHrnh/Hr1rvnb07zx6Rf06FzJf39/XrPHH8eozj348PRL8GIJXrYUZqxZyrmv3gtAbZjllAG7brG+12cyXDf1ZdoXlXDpHuPw8v/iC7DJB7uVNSZUqmNJaauMMQ9t9H6pY8eOzJgxg86dO9OhQ4eNXqMrV67cgiNrPI7tuzOvLJ6NQnPT2HzvmR0qOiMRFHk+PUubp1Z0+Ofst8mokAfmvtcs0mlx9VrKU0WUp/JJgh++9Rifr1nCs199zvOHX1Sv3hXvPMbrS+fQu7Q9zx9+cbPHH8eIDr157fCf4Am5xdel6WuWcs7L/wIgowJOGbDLFut7XbaOP3z8Ah3SJVw0fD880Yx1qa4KgaBD0dZZlyorKzeZ6bZz5854nldP1bR06dJ6aiaH7t27N1je9306derUzAPYNJpNOtXW1vLXv/6V5557jpEjR5JKpfL2X3/99Y1oxTEOOoqCUog49RQpibQlT5xapUQGlHghtconq31qwzQu9bwnjJ8TWE5BGxJAadO2sqokKQN8oUl7mlBDRnlkQh9tAvsiwskQFhrftamdGquew5E13zaklOfFvJykMZP2ClQ60imncOIYgdKxGLS48bX1WoqshJzZtweepy2pZciMnLoJS/YUKGliahthGRwhDOkERB5OkUrI1YzOQa6pPCKHgm3xsy1y3JGObSuso2PtNlQubrEkRC6kLmck5QZccCyRTCu/frwTHdU3BxqpnwQImTt4UciEudm1hBOR2olYOXctO03fhlDIxG0aSQrgBAkSJNg2MH/+fO68807uvvtu/vCHPzBu3DgmTJjAqaeeStm2EF7UCHRoX8Yffnlqg/tGDe/NQ3dcQCrl0a6ypN7+pcvX0b5dCenUpm8xv3vOeJ5+/hO+ddq4Jo9xytsz+cn1/6WyooQHrj+XyvLiaN8OfTox44ulDOjdsOKoosw8DFaUbvgvx82B3wDhsiVQ5Pl4QhJqRVlq8x7TpvDwtE+59+MPARjXuw979W5a+M7nK5Zx7EP3IgQ8fvKZDOnYuiqxtnq/9Kc//YmKChNG5AyEtzd0Ki5j0n5nNLhv9y79mHLUJRR5Pu3T9delxTVr6JguI+1tel364c4H8dgXH3HBjvs0eYyTF07j+28+QId0Kc8ceiHtYmMZXNmVz9csYXBlw4qjdimzhlWkihvc31z40tus7TUWRdLHE4JQa8r8LbsuPTrvI/41+10Axnbtz9iu/ZtUf9rqxZzy0h0I4JEDv8OgDZyzzYXmrkvpdJrddtuNyZMnc8IJJ0TbJ0+ezHHHHddgnXHjxvG///0vb9uzzz7LmDFj6vE5mxPNJp0++ugjRo8eDcAnn3ySt6+xTKrSAqveNoodsMokpy5SRk2EoVFy/5QbkmhNtogalaYqm46UISacTKCUURQJbVJOglGoGE7BfA+1RGqT0iwtNel0FknIurpiQhs6FyqrQNISnTXZ6AyJZCkxIa2CSBFKaXx5NIShJAycwZDG9xTpdID0QqTUSE8hjSuTodkEhEoSKEmVSFMnUkY55XnorMiZKamYwkfliDoQSI/Iw8nc92g7v4ZwMibmIVpZb6tQoHxpMtsF0nhIBSZznjlB5PyMyBE0wjKEedn1IKbCMnWFiv2ACooKe57zeJvc6a2PBsrF1VVIuzsuTVSFdQoa1rGXa1MBIcbzyiOndlICHWrj8yR0RExp16nwENL4ekWkE0QZ7kQej5R/ICK2umirqmu60qng2BMkSJAgwVZBz549ufLKK7nyyiuZMmUKkyZN4uKLL+aSSy7h1FNPZcKECYwb13SSZXNBKc0rb86kQ/syRg7r1aw2Ondq2Gz7v89+yO9vm0zvHh34x41n4/sbf9g5+bgxnHzcmGaNYdb85WhgzboaVq6pyiOdfvrdwznzmD3o271Dg3WvmnAYR+8znJ0Hto53xZZGv/KOPHbQd1iTqWFM535btO9duvWg2PMpS6cY3KHpfyWfvWoFWRUCMGf1qkaRTkprJs+eRc+KSvqV1CcYNoo2er901llnNfh5W4HSmslfTaNLcTm7dmpeyG63koa9eR6Y9w4///Bx+pV15D8HXkhqEyTM2YP35OzBezZrDNPXLgFgVaaa5XVVeaTTdbsfy3d33IsB5Q1f478dcxwn9BvFLh23fd+/xqB/RUf+d8h3WJ2pYfcuW9ZLanSnXhRJn/JUETtUNp3InrM+ty7NW7+iUaST0prnv5pOj9JK+npNTEjRgnXp8ssv58wzz2TMmDGMGzeOv/71r8yfP58LLrgAgJ/85CcsXLiQe+65B4ALLriAm2++mcsvv5zzzz+fqVOncscdd/Dvf/+7aR03Ec0mnV588cUWdx7pP2IklRYi8krKKZ3MyylVJDaznE5Rq9LUhikCPCK1EdZHCQgjN+kcXH8CTVpqUrZsVnnUhSkURoKotCGwQi1zbQpHoDiJTUyJVdB+7jt4viblqZjiKac7ins9BaFHEHrG8NvFtFlizqhwYgSGUzpF2fEcIWbnUsfG6sYdF+C4ubWSPhG9AKdwiimd4iqnSDAUP9SCELiN8Cz5hRrYvLGycfVRpPhy26LMgjpvLPFP2u2Lk2d2prTAGojboExhrjUtdBSuJ0S8VXvQQuX2xcaZy2TXEHRBW5uYmAQJEiRIsF1h/PjxjB8/nltuuYX77ruPO++8k3322Ycdd9yRTz/9dKuM6akXPuG3tzyDAP5x0zn067355PTTZpkHroWLVlFdk6GyoomEQBNw+hG7UpcJ6N29Pf175R+DJyUDN6ByAihOp9hrxIAW9f/pqq9Ylalm7647bBOmxYMru26Vfkd26857503Ek5K0V/9hvjYIuOndqZSmUlwweo964XeHDxzCFXvsgxCCQ/rv0GAfgVJcMvkJZqxcwU2HHsVbCxZyzYsv4AnB/04+pcE6CTaOMAx59NFH+fzzzxFCMGzYMI477jh8v9mPhi3Cw/M+4Mr3HkcATx36PQZWbD7F2yervwJgftVKqoNMHhG0uXHWoD2pDbP0L+/EDgXH4Am50d9psZdifPfBLer/k1WLWF1Xzd7dBm4b61K7Le8jBTCyY0/ePu4HZl1qgGSsCwNunfYyJV6K84fuXS/87tCew7h0pwPwhOSAHkMa7CNQisumPsbMNcv5817H8/aKefziw6fxhOCxcWe3xmE1iNNOO40VK1Zw7bXXsmjRInbeeWeefPJJ+vUzf4BYtGgR8+fPj8oPGDCAJ598kssuu4xbbrmFnj17cuONN3LSSSdtqIvNgs2ysnz55ZcIIejVq6l/MbMKGktkaIQlSlwOO2cwbvYFNu5Ka49AS6qCItZl02SVb8klAwkESlhhUE5j4wmjaPKlitRFoPFElhIvsCQTrKkrItQeoRZkQw+BJgxNpjnIEU9SqoiwkEIRConSVu1kVUhaGZ+nIJAEUuJ7AZ5UeMK8hNDms9QoJfBFSBgKarQgFFZW5El0SMRvaEsGmblwL2k8nbRCW98pZ7yuCXHeVma0hnQJPeMnpZQkzFpVVa2XF/ylwSh/7Hw6E+/IvyleToCw4xSOhylUQ5GrUBhKX5gJzw42t60hLsb2EXGLKkaubUDlHmXBc9edwErrcuN36ik0xqcLkTMnl8J4XTniSoDQEq00oXCZ6+xcx7LYxdVP8YOLvKGInc8mKp1izSd0VYIECRJsYygvL+eAAw5g3rx5TJs2jRkzZmy1sXieu5cRyM0cDnbu6XtRlPYZMaxnqxJOAGWlRUz8xr4tbmd9TR2Tnn2b3l3aceJeIxpVZ8665Zzy0t/RaH4/5kSO7tPYektJez69S1tmDrytoWQjIRn/nfU5t7z/JgA7de7KAX0H5u33peTC3cbWq6e1ZsqCefQsr0BreGKW+c08Mu0z+pS3i8o19cE6uV8yESrHHXccixcvjjznZsyYQZcuXfjvf//LiBGNu543JxwZKRAN+u+0BN8fuj8lXopdOvZpVcIJTGjcD3c+uMXtrM/W8Zfpr9KvrGOjvZBmr13OSc/fgUZz/R4ncHTfxvnkzVq7jLT06VvesDJ0e0WJv+F16fEFH3P79FcBGN6+B/t2H5S335eSC3as/++L1ppXlsymR2klSsGTC6YB8Oi8T+hT4ZR2TV9ZWrouTZw4kYkTJza476677qq3bfz48bz33nvN6Kn5aDbppJTil7/8JX/84x9Zv349ABUVFfzgBz/gyiuvbOSNjGERpNDmQTtSDUkUMubvJAid1xCGSAq0T0b5hNo3Hkh5hIplFCJ5EJGBty9t2J0pgScgLY1xeZ1KURf6JpBPWMJImwx6TkpTmCFOCBGN3aifcqog7fqW4HkK31N4UllCSEVteU6VhaQuSBGEviG4rAJJx3ydor4dAePUTo64sNxIfJwmmjBHJOU4FndcwrA2obQKJxEpnHCm4rG60efCX0Xsx1JP5aQLPscKbTB2VcQ4p8JGxaZeIr/f+DDj5aIxO3mSzldL2T2ROqqBV/ycOF+uSMXkPJ7y3Kxi8ykaUjs1xK4lSJAgQYLtDdXV1Tz44INMmjSJV199lYEDB3L55Zdz9tlnb7UxHbb/TnRoX0qHdqX06bl5HzI6dyznkvMO3Kxttjb+PeUDJk1+G4CRA3owqMemFRah/QMfQGBDMDaFt5fP4fw378QTkvv3ncigioZNXr9uGNapCymrgtqh/YbJthfmzmHhurWcNnwEac/jn59/yE9feY6UlLxw2gSOGDiYGStXcMLQnRjaqTM9yivoUVFBj+LN63/TFnDeeecxfPhw3nnnHTp0MGvAqlWrOPvss/nOd77D1KlTt/iYTug7ks5FZXQuLosyt20udC2p5CcjjtisbbY27p71Jn+d/joAu3Tq3cjwrty6lNWNW5emLp3LWa/ciyck/zu49b2LthUMadeNlJCkPJ/+FRtW+760aAZfVa/h5AG7kpYe/577Lj//4ElSQvLMod/nsN5DmbV2Ocf335kh7brQvaSSnqXt6C63gPn4doZmk05XXnkld9xxB7/97W/Ze++90Vrz2muvcc0111BbW8uvfvWrTbahtDX31jlbZoUjRCIax5A+GPIk1JI12WLWZYupyqZQWuLLuNu2znk3CWNHXuxlKUtlKJYBKRmCAKUl2VBSp33qlE9WeVQHKZzdtkST8gIEHsopnmI8QC6Ez/y8pQRfa5TKHZMjo4SGlBeS8kKKvABfWvIJRdozJBR2LoTQeF6AJ6VVb8XTvJGTGjk5jg2F0xpCPKRWZLVVOjl/J4FRj0lrNG7JOKUVSglCKRBSEaDQwkfXxeLIhPEyciSUC9lzXRfCqLAwhuc6N0zhtkcnP1bH8T3usNwc2zJR9JtTRxZMgbt4oo9O5ZQvKMp9FeQy70VKLG0IN4TNgqfdBZRH8GlnMG5VT9qpnqRAKJ0jpxA5rk7E0lY6kilSPRWwbu5aV038K08bzcaSIEGCBNsiXnvtNSZNmsSDDz5IEASceOKJPPfccxxwwAFbe2gIIdhzlwFbexh52BLpmqtqMpQWp+r1MbhnZwTQrqyYLpWN8+EYXNmVe/c9h5WZKg7usWOj6iyrWwcYwmpVprpJYweYV7WYmqCOYe1MyMRby+dwxbsPsHP73ty4xxmbXR2yuTCiS3fe/vb38KSkIt2wmfDslSuY8PijAGTCkAm77EYmNA/NoTb3TbcdcWxenYN3MKF4a9eubdqAkvslPvzwwzzCCaBDhw786le/Yvfdd98qYxJCsF+B2mRrY0usS+uzdZT56Xp9DG3XDQG0T5fQubiR61K7rvxr/7NYWVfNIT0blzV1Wa0RjoRasbKu6evSjDVLqQmzjOpoop2mLp3LpW88wqiOPfnL3qdvMkPc1sKIDj155agf4AtZL8ugw5x1y7lg6n2AIfHOGjSWjAoAsy4h4NZ98kPSDrLznqxL9dFs0unuu+/m73//O8cem/tHYNSoUfTq1YuJEyc2inQyvk1RFFO0Tee9x3kI46+UVZKMkoRaICzREymd3LO9cISLIuUF+DLEkyFShIRIk9reej1pDYGWhEqSCT2UMkSAtgqrwJI6rn1h2ZS4ksjsjztX5xQtUio8GZKSAVKERuWEC60L0RgyrS70yIZmHEq5hslvL+ZVRDQWIrZFKWemniNWDGkTd50iYsKj8Ss7fAVamfgzrUFoF2wXKx+XIMUgXGhbjASKhhabGacGi/yP4uNscAYbRuHUNFigge06+l9sW4xMi+oVGpG7fbLgu4sR1USTr0VuApyYLDo4a84eiyvN7bQMW2IkniBBggTbJ4YMGcLs2bPZZZdduO666zjjjDNo167d1h7WNouFX63iokvvxfMlt974bbp0btgMeEN4ZPIHPPHyp3znlL3Zc2T/Bsvc89Tb3PTgK4zfZQf+cNFxefv2H7kDT//yfMqL05QVpxvd726dm2aMe1jPEVSHGUq8NGM6NjzODWFe1WLOf+v3KDS/GDGBvToP55mvPmFVpppXls5gac1aepS2b1KbWxLtizce0lSWTlPkedSFIZ1LjULgrOG70LmkjN4VlfSu2Iy/n+R+iaFDh7JkyRKGDx+et33p0qUMGrRtET9bC/OrVnLGlDtIScn948+na8nGU9cX4p+z3+ax+R9yyU4HsE+3hr3K/jr9Nf746fMc3GMot4w7LW/fwT2HMuXISyj3izZIijSEMU1cl47qM5zqIEOZn2b3JtaduXYpxz73VxSa2/c6jQN6DOHJBZ+xKlPNS4tnsaRmLT1Kt91/+xrKchhHmZ+mSPrUqYBORYb4O3OHPehcVE7vsvb02pxrbhtYl5pNOq1cuZIdd6z/150dd9yRlStXNqoNk7/N5HCLP5OblyE7hKFnohJCaNKegowgVB6hknjOmNsqenxC0l5IsRdS4dfSPlVDiZfFFyFSmPC8OuWTIsX6ANaHRVQFaWqClFVVGTILsCqsHDtiiKx8wkkKkxkOQMkcZeYUTWkvJCXNmNIyxJeKlCWh0iKkTvmsCkqoyabJhh5aC6SnUVZpJKQlkHQBi+KIpGiTKahCo7gxpuEaJTSeZ1RftpQrGst0p0AIAqxMKatN7GGA9XQqIGbicCSTJa0E5FRJTh0Ve3ftFdbPO5TCvgrIo3oEVbwPUX+q4n0V8kjxMURCsFAYnyg7ECFMmKOIHauWAuEUUS4No7CEkwvvc59lrkcdujYt91QQCugy2DUJbWCxSpAgQYLtAYcffjgTJkxg1KhR9fYppXjiiSe44447eOyxx7bIeJ549iMWL1nDGafsSUkTSJUthY8/+ZJVq81f2D/7/CvG79u4v9A73PjPKdRlAu54ZOoGSaepH88D4I1Pvmhwf7f2Tcw01Ax4QnJy3+apSGrDDMr+414V1ABwWv89mbF2CSM79KZ7ybb7YNcYdC+v4LlvncvKmmpGdusOGI+fYwc1TkXWJCT3S/z617/m4osv5pprrmHsWOOn9cYbb3Dttddy3XXX5ak0KiubRrY0Fk9+9QZL61ZzWt8DKPEaT6psKbyz/AtWZqoA+HDVlxxSslOT6l/38WTqVMAt017eIOn06pLZ5n3pnAb3d28i0dUceEJy+sDdmlW3OshG69K6bB0A39xhDNPXLGHXTn22yPhbE91KKnnikImsylQzokNPwMzX0X0a55XVJLSBdanZpNOoUaO4+eabufHGG/O233zzzQ3eaDUErbXzb86RODjKxr2cKsfITjSC0BIWUiv70O4YCmVrmLx3vgxJyyBSODkfJa0FGgWEaEz8qyFUtPWiNuSS0gKlNaEybTpvnniKezt6Cq8Qo7QyCidfhPj2XQqFJwIkIR4hAkWgJNnQI1A2Y55TTml33K6Pgi4hFsMW26hzSicjvrGzaL+HrlrsPGit0UpblZO2/SujeMLxKS74MKaaEnlv0TkrnJo4qRgpnciROIWot7mBMvU26dirIWapsFGnZHJElDb0ZzwsMFI2xVXr8UVBxfpzKiaRKx/NS0E5IcB532v7v0j45M5/EyBi9TfokZUgQYIECVodhfdFADNnzmTSpEncfffdrFq1isMOO2yLjGX23KX87oanASgpTnPGKbk04I8/9SEP/+cdzvzGXhw4ftgWGU9D2G+fIbz7/jx8z2PsHgM3XaEAxx04kv+99DFHjx++wTKXnLYf9zz1DgeNaVlmqK2FHSv78qsR57E+qOHAbrsAMKSyG//Y5/ytPLLNh96VlfRuJYIjjuR+CY4++mgATj311Cisy4WSHXPMMdF3IQRh2DhvoKZg9vqF/HH6AwAUyzSn98v5wD224C0emP865ww8kEN6jNzsfTcWh/YcxhvL5pCWPvt2a/q6ceqAXXn4iw84sd/oDZb50YiDuWPmVA7v1TRCa1vBqI69uH2v01mXrY2ImB3bd+OBA8/dyiPbfOhd1p7eZe1bvZ+2sC41m3T63e9+x1FHHcVzzz3HuHHjEELw+uuvs2DBAp588slGteFMwuOBX44YcYojKSCFJkAiBKR0iEzXIYSg2k+zPpsm1NJopgT4MqDIC2mfqqVDupoyv460CEkJ46UkBARKUiQVKTShTpFVCj9dR0YFBNqE2GkkgYJACHwPQmUYC0/qiF/QkCfHcaonITQpGVKWylCZrqPYy+JZVZIQxmOq2AvwUazIlFKrUqwPitAIpATnwa5EjoCIExIOUZifzG03puMSNKjQlAmdeguF8JQdR06tJS1hBxKttcmaJwUiME3lKZMsEaMVeQRS1FCc7Il/dqSLi6cMYm26+Er7ErG+otC8mHopotlicZnx0DiXWa9wLDnOSeTqOfmWI4qC2I8eokyEWMESQqNDqz6TxDLZiWj+BdoSVWa78XzKDSSi5VRs8lz2uqjnROmUIEGCBNszampqeOCBB7jjjjt44403CMOQP/3pT5x77rmUl7e+sgagY4cyysuKqKqqo3/ffLPUO+5+mVWrq7nr3te2KulUWlrElf93TLPrX/btA7js2wdstMyO/brx6wuOanYf2wLGdt4+H0w3N2atWsEv3niRPbr35sJd6me92ySS+yXuvPNO+vTpg+flp5JXSjF//nz69+/fqv13TFdS7pdQFdTQv6x73r7bZz3LqkwVk2Y/v1VJp/JUMb8b0/wU8j8ddTg/HXX4Rsvs3KEnf9qjddPUtzYO6LF9EvmbG7PWLuN3nzzLmE59+c7QZmRVbQPrUrNJp/HjxzNjxgxuueUWpk2bhtaaE088kYkTJ9KzZ89GtaG0xkYaFQhJhFUfxZkDZfcBWpEWAUpC6Bk/JtBIBCkvS5EISYksHiGRMilPEWQC+4SQeCKgWGYJtSAlJIEWpISP1oKMEAilkKSo0V6kGhIFbEaOzIjLh4xvk/GGsiWtyskXAT4BShvVVlZJQmUN1J3Sqd4V5+bC0hIbVDrlaYoK5ttMo4ypbYQjcZzcJsb8RPSaMxQvUCxpXaAKyhttjLmJSKScairO3OWJkuKkWrzZQhWTC3OLH60jtUQD5fMKxtrMexd5X/PaK3xpsJdXw2UcnBd8wSnS8YtemtMYRdS5NpuCNrBYJUiQIMH2gLfeeou///3v3H///QwZMoRvfetbPPjgg/Tu3ZuDDz54ixFOAB3al3Hfnd+lpiZD1y75KpKTjh/DAw+/xQnH7NoqfS9fsY7ly9czdEj3PJPcukxAyveQsol/XEmwSby34gueXPgxp/Qbw9B23TddYTvE3z5+mylfzmXKl3M5ZejONDl3XXK/xLnnnsuiRYvo2rVr3vYVK1Zw8MEHt4q6KY4O6Qr+OfanVIe1dC3ukLfv1L57c98Xr3JS32YQio3A0tq1LK1dx/B2PfPXpTAgJb1t1vh6e8Y7y+fz+IJPOX3gruzY7uuZtfPOWa/zypJZvLJkFif224UmB7K3gXWp2aQTQM+ePRtlGL4hhPgoPOvqlAvMMt8lgSV0pADPhj5JoWmfrqOrqLJeSGVklIfW4MsQKTQpEVDuG3VRSjhHKBElI/OkJkRTQkiRrKImlcFH4UtFVnvUqjRKC6qDFGuyJSytKUcXZAVxiqzIYByjTHLarSJfkfJ05BHkSUWJzFLsZSnxMgTKoyooYl1Qwpq6EkLtobVEu+x0WiBkLmNcvN84hAA3tDBwI2lowbQj056Zbetv5cLbpNSkfJULtbMEEQJESINEjgidQEdEPWgwnkaS3DDs8UTKpIBI0RSt7XafE10J14dTcDV0Abk6umCbiLUbQ574KWpX5BNZVtkVLxfngtAi5+sEoG0Guxg/B8KEKVoVlIiy4Flq0pmIx83Ena9ThKb9o9cWZJkJEiRIsD1gr7324qKLLuKtt95i6NCm+RO1BirKi6kor/9o/q3Tx/Gt08e1Sp/r1tXy7e/cQXV1hssvOpRjjxwNwNQP53LF9f+hT/f23PmLb1KcTkV1tNZUVWcoL2vY32XqR3O54b4pHDp2RyYc2zoPpBuC1pob3pjKtOXLuGr8AfTaAmFgzcEP33mQZXXr+GTVQu4b/92tPZxWwSH9BvHYrM/YpWtPOhWXUrV+fZPqJ/dLRKFzhVi/fj3FxU2m8ZqF8lQJ5an6Rs7n7HAA5+ywceVic7EmU81xL95IVZDhqpHHcnK/MQBMWTyL771+P/3LO/LoQedT5OUej7XWrA/qqEg1PC8vL57Fbz9+lmP6jOB7OzZD4dICaK258fMpzFizlP838lB6bYEwsObgkjcfZlntej5e9RUPHzhhaw+nVXBQjx15fMHH7NKxDx2LylifWdek+m1hXWoR6bRq1SruuOMOPv/8c4QQDBs2jHPOOYeOHTs2qn7c0wmICCbzWSEjGsqRGkZ7E2ojBEmJLB38tcZ4G40vrLJIC3yprTLJZIkT1uoszt0LK1FJiQBfKDwUUoSkZRafgEB6lMsSwkCzRpSQDX3jwqSNuTk6F9+l88aoCZUgGwqk8JAixJORexShEmSUoM5mrAs0KGvU7d7tDBXOWI7AiZWILs7IDMhNomGIhFDEnZaM4smEeTmlkyGkwHhXWRNtLXOqnAKeROtcnJtQOse4QY5ccm3n/pcbvhBRlrs8Vsf+6OICJRHbt8FXdHDRyc3fHifARMH2GJGmG6rbgMKqobr1hGZOsRT3eSosV6hyih9vU9AGUm0mSJAgwfaAAw88kDvuuIOlS5dy5plncthhh7Vqyu1tETW1WWpqMgCsWJkjBd75dD5BqJi7cCVLV66nb/ecyuH3Nz/LE89+xKnHj+HCCfUfOv/5zLvM/Wolf3t0KuccvecmlVL3PfseM+Yv43sn7U2XDi1Tl81dvZqb3noDgH7t2/P/9h3fovZaC8Pb9+SlJdMZ0aHX1h5Kq+HgfoOYds5lzf9NtfB+6dZbb+X3v/89ixYtYvjw4dxwww3su++WJRuai8svvxwAIQQ/+9nPKLWZAgHCMOTNN99k9OjRW2l0rY+aMEt1kAVgWW2OFJi6dC6BVsxat5zFNWvpV557jr3qg//y8Bfvc86gcVyxc30vvkkzpzJ73XJu/OwlLhi6zyavyztnvMm01Uu4fMQBdCtpWqbOQsxdv4JbPn8FgL5lHfm/kQe3qL3WwogOPXhh0UxGdfz6rksH9hjKB8deudXWpe0BzSadpkyZwnHHHUdlZSVjxhim+MYbb+Taa6/lv//9L+PHb/ofZG2fwqNneKHJ3UMIyx+YDZ7MqYtAUOIFtPerKZJZfEuqeCiqwjTVOk2dSqFs/JInlG238CQKUkJTJLNIoUkTkJIh7WQ1pV6GOuUzp7YrK4NyMqSQEjKhR6glQgujCLJkjdJmMp1XUogkUD6+0ngpgS8gLRWegIxOsS4oYnFNO9Zli6jLpgmVQCnPklcyFj4X42QswaFjzIgLlTPbvdwxCo2QGilt5jpJzhcJYckmEbUb3y4kIEzWPu0y6LkMbIrou7AElFA2xFCTR6xEZJU52TnTcFu+HvkTUyjFuZtoHmKkUOFvOuKC3PgL4LLaQYzPEbF6sVA3R1zlKZwKhmunOFJK5SzWXVlhMv7Zg9bSEnUxehIAZYhIPPO5obE3CnHy7WvKkCdIkCDB9oBnn32WBQsWcOedd/K9732PmpoaTjvNpMNuK+RT1y4V/O4XpzBv/gqOOWJUtP20w3Zl2eoqBvXuTJ9u7fPqvP3eXADefHdug6TTCfuPZPaXyzls7LBNEk5fLVvD9f96CYCKsiIu+8b+LTqeXhUVDO/SlVkrVzC+34Bmt7M2W8PabA29Sxv3x9mm4oY9TmdR9ZrNm8p7C6A2yHLW4w+zYO0a/n7kCfSuaMevXn2JyqIi/m+v/fBl/s1Ri35HLbhfuv/++7n00ku59dZb2Xvvvbn99ts54ogj+Oyzz+jbt2np5rcG3n//fcD80f/jjz8mnc4FAaXTaUaNGsUPf/jDrTW8Vkf3knbcuue3mLN+Gaf0y2WSPHvQniyrXc/Qdl3pW9Yhr47LMPfKklkNkk6nD9yNmWuXcmyfkZu8LhesX8WvPpgMQLt0Cf9v9CEtOp5epe0Z1q4bc9atYN/uDWfIawxWZ2pYl62lT8Gxby7cMu5UvqpeQ+/tbV0Ks0x45V98WbWa2/c+nZ5llfzhs6dpnyrh4h0PwZf5nmhba13aXtBs0unCCy/k1FNP5bbbbouM6MIwZOLEiVx44YV88sknm2xDWrMbDYTakBwqenh36iT3D40lWeyWOi1ZH6bQWlHuZSmWWaNUkgFFOkOdSJHVnskRpwVKS0tCaaTQ9tFfRaRRoCU1YTGhlqwQJRR7AUpLVgclhlASCiVDVERI6DzywlEJxivK9JH2AipTtZT7taRQZEJJVZAiE/pUBSlqsj51gUeoBKGSMZVToURH58YtrJZKi7xSrl5ESFn1jdJExtzx34JSljQS2iqsBMr6SunIiduyfDFVU0SvCG0i5iKjcUulxKrlkU8QeRtFyp4Yq+OIKaXzhFINhsTlZYyLbxfmWPPaLvz964J98bE58q5Q6VTYf+E212b8Uo2/e+QUT3G1E7E69nO03jTR06ktyDITJEiQYHtBnz59uOqqq7jqqquYPHkykyZNwvd9jjvuOE4++WROPvlkdt21dbyUthXsvtsAdt8tn6Dp2qmCayce2WD5H118OE9O/pjjj9qlwf0H7T6Eg3Yf0qi+O7Uro1/3DixYuppdh/Zu2sCBmmyW9+Z/xajePSgvSlPk+/z3G99EaY0nm/fXodWZao6f8kfWBbVcN/obHNxj86fd9oSkdys9OLYmpq9YzptffQnA03Nm0rGohAc+N88R4/sNYJ8+/TZbXy25X7r++uuZMGEC5513HgA33HADzzzzDLfddhu/+c1vNtsYWwsvvvgiAOeccw5//vOfqdxGw0RbE3t3HczeXfPNr7uXVvLHPU5osPyvdj2Oh794j28M2KPB/Yf32qnR2ee6FJczoLwj86tWsUeXpl/TNUGWd5Z9ya6de1GWSlPk+Tx20PkoNF4z/2q9qq6aQ5+9mXXZWv685ykc1mvzJ5XwhGw1Qqs1MX3NUt5ePh+AZxdOo1Npmv8seA8w19GenZtP9BWiLTzHNZt0mj17Ng8//HBe5gPP87j88su55557GtWGip7CtVUjGeVOTnUTk7agTQa46ExIhDCKp0qvjmKZRSNIiZC0Vvhak9E+tUoAPqHNT+8Lwy6Erg1Lb60Pi1gXllCnUviEpEJFCNQEaTIqbbKVBTa7XIzEkTJHSwo00h6HLxTt0zV0SlfjSUVVkGZNtpTqIEVN4FMbpKjKpAlCibJeToZIimU3wxlvG8WSUSppQstO5FmY2/o5pZPZa0zU6zMvzg5da4HSmDE4hkhLQyKFEhEKm0bPngenXLJhYSIUCJ2zVo84L4khW+wQhY1rFNZ8PD6sSAElGuBtChVNG1lTBWb4cdVTfJ8bX0M8dN7UuX4awTgLHImWI/ry33U0KEesRc3afXkcVzTAJrLlbYAhT5AgQYLtAeeeey5//vOfqagwoROHHHIIhxxyCKtWreLee+9l0qRJXHfdda1u1ru9Yfdd+rP7Lv2bXf/9z7/koWff55j9RzB2VH/+/auzWL2umnc+XcBXy9bQs0u7Rrd1+UNP8uKMOezWtyf/PCenUvNa8Jfs1Zkq1gW1AMyrWtbsdr6OGN6lGycO2Ykv1q7m5KHDWZ/JUJZKUZ4uYminzpu3swbul9auXZtXpKioiKKifG+xTCbDu+++y49//OO87Yceeiivv/765h1jK+POO+/c2kPYbrBX1x3Yq2vzyYW3l8/jvnlvcWLfXdm76yCeOvwCVtVV8/rSuSysWt0kH6aLXn2M5xfOYveufXjgkG8Bdl1q6jNDDKsy1azLmnVp7rrlzW7n64id2nfnuL4j+LJqNcf3G0lVWEOJl6bcL2JQxWY2RG8Dz3HNJp123XVXPv/883ommZ9//nmj44F9QiQKhVE6aQQuwEzHVTsWCktaoFBo6pTHmqCYUEO5lyElsvhaIQkpEpayERpJiMSonhQuM55AGmcmMtqjJvRZl0lRo9L4QpOWAZ4M0VrjiRCFJi0FHooSL4OHUfqUehlKndJKqIjoEWiKZECRDKgK02RVEaEypJHQZr8vQ3OMCgKVn78v938bkaYEnmcILeFpo0zSMk9V5FRLbs6MWsZkyFM2JE0UkCtg1U1K2DA7gXLKpRAIQARE5t5agPYAqdEpIqNsmRGGgIqHpmlbNq52wrJNjozChr45hZQb24ZURc7UPP6K73cqKEl93qawfBwqty+udNroMh4fYzyDHQ28xxVRhS+ngvKEOfBYiF+jEWPIv66LVYIECRJsD7j77rv57W9/G5FODh06dOCiiy7ioosu4r333ttKo9tyWPDVKm655yVG7NiLbx7fsEqgubj9vld55tXPufSsA9hv90EA/P7O55j75Qo+nvkV/735u/ie5Jb7XuGpVz+nU7syHr/5O40Of1hVXWPfa5s8tmfmzOSl+XP57i67079d7q/7/cu78IuRp/Bl9QrO6L9Xk9v9uuLaV17kubmz+dX+B7Nv3/7R9vfOuxBPiGYryzaIBu6X+vTpk1fk6quv5pprrsnbtnz5csIwpFu3/IfNbt26sXjx4s07xgSthrlrV/DbD19g1869+e6wzZtI4aZpk3ly4Uf8aPiRHNDdKIZ++dHjzFm/jI9WLmDyoT/Al5LrPnqex774mK7F5bx2zCWNXpdW1lUDRp3UVExeOI1XlsxiwpC98jyrBlZ05vdjTuCLqpWcOWjPJrf7dcUv3n+GF76ayS92O5J9ug+0WzvwymE/QQrZbGXZBtEGnuOaTTpdfPHFXHLJJcyaNYuxY00WkTfeeINbbrmF3/72t3z00UdR2ZEjRzbciMgZhZuQNGtujVFBqQae4gUaX9jnc4SVpEiUttnprELFGZRLYQQ3IfY53pqAayQ+ilrtsy4sYWW2gvVhkSGjvMCGsXlGVSRAK4mQUERIiR+ggWKZpUOqmgq/hiIZFhAUJnNeVZhmdaac9WEJWe0T2FdWeZGyySmUhBD5HEqMQJJS4UkdbddCRGFo2oYmRuowN2PWm8nNnwvBE1Z2Y7/my4KUhFBCxoNMPpmkBZDShkiKq5gwaifpytjzqePEinaqoJjSKe/MWi5K5X508bloSKlU+JuMssoJCs5Fft28ejG1VUR4xXdtSBpVMK44SRX3gRMidvCuREFZbecrPlDRVBO5NsCQJ0iQIMH2AF2YZrYBfN1D6wD+/d+3efXt2bz69mwOG78TnVtg5r142RraVZRSUpxCa80//vMWSmkefPq9iHTaa/QA5n65gr1GD4jquXuipgqU/nTyUTz92QwOGto4hYPLBpYJQy589n8ESrGqtoa/HH5cXrkje41u2kC+5qjJZrnzQ0PA/uuTj/JIp7TnbaBWC9HA/dKCBQvyQs0KVU5xFBIEG8oEl2DbxN+mvclzC2fy3MKZnNh/BF1Kmr8uLaxaQ6eiUop9sy5NmvUKCs2/570RkU77dRvMnPXL2KdbLqSv8Pmnsbh5nxN4cv40Du09eNOFia1LKuTStx4i1Io1mRr+PPaUvHLH9B3RxJF8vVEdZLh75tsA/HvOezHSCVKyRTnYNow28BzX7Jn7xje+AcCPfvSjBvcJIaKLfUMScpM9zXoKWd8gJaQJsbLEgdLOf8mKV4RGAYEWgKQ6TIFWBFqQ0R5FIjChehiFkjlvCkgZhZGQVn4DddqjOkxTlU2TDSN9lVX+aEpSdVSmaimSAYESKCERKIptH0JoKrxaSmUWTxjSKdBGTSVsOGCZkNSkPGoDj9CacXu+ocDqhI8INRk8c1yKXKidI4ksIRRoiVLChvPpvJtaKWw4mx9axZJ76Zx5tlMSuRA5ESOwbPic+YyTlNkzZImg0LzrQEAWdBq0b2fX15HJu3RqJ6uOymN6CtQ+0RFYtY8mnr3QjKWeWMlW0la1peMeSfG+4lns4u/xPl25DTBaOs4VbWwB0PmfHZmUN77YcUfElCXZEMRM2K3aKdhIfxsaw9d8sUqQIEGC7QXJQyjstdtAnnzxE4YO7Eb7ytJNV9gAbvnXFO793zt4nuTJv3yPyvJizjphT5555XNOPSJH3n3/jPGcc8I4ykpy5shXnHUQ40b2Z8Tgnk06Jz3aVXDOuN0aVfayp57i8enTufbAAzl9xAh27tyVD5YuZtduPRt/kG0UJakUE0btxnPzZvPNEaO2TKcN3C9VVlZu0t+oc+fOeJ5XT9W0dOnSeuqnBNsuDug5iEfmfcTOHXrQoaj569J1Hz3HHTOn4gvJ60dfTvt0CecN2o8nvvqIM/qPjcr9YPhhXDB0f8r8HJH5892OYHyPQezaqXeT1qWeZZWcN6xxqtGfvPcQT3/1CVeOOJqT+u7GTu278/GqrxjVqeked20NpX6aswfvwQuLZnLGDlvoD0Rt4Dmu2aTT3LlzW9x5XOXjyAYZ+/FpW8ZoaXKeT66cBFJS4dlsapJIx2Of3aWjfyzZkutPIalWRawPi1kTlBLgobTEF4q0VJSlsnRI1dDBryZEWNUVpFAUyywKSIuQCllrs+cpArxI5pISCqVhrS5hZVBBrUqjkUgJoZKGnLIEU5StTkjy5UHk3jUIqS2Zl9sXZaTLFYu220M22+NqJsuAuHC6PEbGKZ2yxs9JBsIQSTHeUHgmG1ueqkpZwsmNwRJseXbn1r8oEvW48dnxO5WTUxjFuaT6o68/VbrgmCNiqwGyJ2pQxjihgnVfFHzZmLFbfGxuDDl/Kadg03njj2bHndf43iYqndqCAV2CBAkSbC8YMmTIJh8mVq5cuYVGs3Wwz+6DeO5fl+JJ0SIS7q2PjZFrGCrmLVzByKG9OP/UvTn/1L3rlY0TTgAlxSkOGbdjs/t2WFKzjlIvRUW6OG+71prHp08n1IonZ87gGyNH8tCJZ7CyppquZc1XULQl/HTf/fnpvvtvsf6ae7+UTqfZbbfdmDx5MieccEK0ffLkyRx33HEbqZlgW8IhvYfwyck/ip4dm4vXl84BINCKOeuWs2unPly448FcuOPB9crGCScwpMbRfYc3u2+HJTXrKPVTVKTqr0tPf/UJoVZMXvQpJ/cbw7/Hn8vKuiq6llRsoLUEcfx0l0P56S6HbrH+2sJzXLNJp379+rW480KlkwDimqi4Ql0jCF14WCQGEdSGPoGQ+MojIz3SMiAtAtLC+EU5pZMUAqldZnqB0h5KC7LKQ6BICUXn4hoq/FpKZBZPKkpFhgpZSypSTxn5jC9CPHtF+Cg8YbLg+ShSZKOjCxG096ronlpNXeizNltEVnt4QpOSofFPUgJPhIRIpFCE2oQK2oO2xBBoJQkCafyiLKkhCq5OIUB6Gq1NGjwhieyTTGa8HGEVza3WRt2krbJKaPAUpEx5hUT7ILKWFFICWQsiYxq2ojG0D6GnjfdT1pQTTr0TnUP7HiOAnJLKlXMiK+fxFPc2yiOGYmUiIikeXhtnq+Io3FaodNpI+TzlU2Efdiz1yLAYAVU/njBHsDlPfe2OIfGXTZAgQYLtFj//+c9p167d1h7GZsWb78yhuibD/vsMbfTDmu+13Pfi/33nUK666QkG9e3CyKG9WtxeUzFl0WwmTHmAilSayUd9l87FOTJJCMEvDjqQJ2bM4NJxxqfJl3K7IpyU1tQEWcpS6U0X3grIqpA3vlrAsE5d6FxStlXHcvnll3PmmWcyZswYxo0bx1//+lfmz5/PBRdcsFXH1Zbx6tKZVAcZDumxU+PXpc3gE/br3Y7hsrceYVi77uzaqc+mK2xmTFk0i++8dh8VqSKePux79dalK0cczbNffcL3hhwA2HVpOyKclNbUhFnK/G13XXp35VyGVHSnY9H2s95vTbQoMHHhwoW89tprLF26FKXynY8vvvjiTdavr3QSBfvzt3kCq2gyiqfIskhYPyehzT6cIsqFqsm8V4BPRqdYky2lVvko7VGZrqFDuoZSmcGXCg9FpVdLicjgCWUy52GIMl/k/Jt8EUZqLLTGs4oV50e1LjRKp5owTWgcuMkqj1AZckkjI1bCZJCLx4sRqZEidVM0HU4e5NRP0decyimm4jHZ7ERENkUKqcJ8cVoYpVMocqyQNlozR2BFY7OftKcNYRKa/mXeWGNlBfWIGREbN+QIp0Lfp/gQXbNRN3Fh0AbInXhDDamkNvbPVL19myocU1Y5tVVc2ZSr7nyvRHSwIirZxL++tAFZZoIECRJsLzj99NPp2rXr1h7GZsNn077iR1c/BMDVPz6WA/dtuXqoIWSyId+6eBIr11Rx7Q+OYa/ddmDogG7cf/25m7WfIFSNVmDNWLMMjWZtto7JX8zioD6D6VqaIz9OHzGScf378MCsD0kVCUZ26tHy8amQFxdPZ4eKLgys6NLi9jYEpTUnPXUvHyz7it/tfSSnDNr2vF1+8+YUJn3yLt1Ly3n9jAvyIiKahRbcL5122mmsWLGCa6+9lkWLFrHzzjvz5JNPbpY/xCdoOj5cuYDvvXEvAH8YcyqH9Wy5eqgh1IUBhz91O8tqq7h57xPZv8cghnfowbOHXbhZ+wmUarQCa+bapXZdquWFRTM4oMcQusSIp5P7jWHPzgP4z5fvkvYkO7VreVhdVoW8sGgGgyo6s0Nl665Lp714Jx+t+orfjDmGE/ttodDbJuDP057m31+8TrfiSh7f/wpkS43F28BzXLNJpzvvvJMLLriAdDpNp06d8kOthGgU6aRiD9aqYIKNR5A7geZRPaMN8SSFRGuFFJIQgdSaAEFGS9IiNEonnSUlFJ6jrrSRtBhVU0CJhO7Fq1kfFqM0FMuATv462nnVRulEaLPRCatwMe1IQ5WRFlkcRaSAEA8PkwnPhe2tDspYr4qoDlOE2hxjRlnFlj10KZQhlYT1M3IEU5yd0OTUSGGOJRFCITwRqZ8Qzv1KIaU2L6GQEpvtziirnGeUCgVaqFhol+3Os47gUoAn0aFGe8Kol0KQGfMSoUBbiyyVApXSqLRR60irjHKypjjJE48cc9n7nHordGRZANK+HAGVpxZyJJU5KbmXpr6P0oawqf3xcnEUZpbT+Z/zlE0NeUbFyztiUBNl/muwj02gLcgyEyRIkGB7wNfRzymd9qN/vkqKUq3Wz+vvzOKrpWsAuOuBqey1W/NTlW8I7879ku/c8Sg9O1Ry/0VnUJre+PF8c9CurM3U8vmy5fzkxcl0LH6NqWd+lyIvdwv9o6lP8NbSBfzt8zf5zxHnMKxDywjHv818mVunv0SR9HnxsCvqhc9sLlRlM3yw7Cs08PqiLzYb6bSytppvTb6fjAr5x8Gn0qNs435JG8OaOpNBcH02g9K6xaRTS++XJk6cyMSJE1s0hgSbB0VebF3yWm9dev6rGcxfb9almz99hf17DNrsfby9/AvOe+1f9C5tx4MHnEfpJhQ+39hhDOuydUxfs5ir3v8fHT8r5aXDLyMdW5d+/vHDvL/qC/4x91X+sdeFDKlsmffYX6a9ws3TXqbYS/HqkZe13roU1PHRqoVoYOrSuZuNdFpZV8W5r95LVoXcsfe36F7a/HVpbdZkEFwf1Nl1qWVjawvPcc0mna666iquuuoqfvKTnyCbLVMskJvEoGPbBToymRaWCzECEePYJMllqTMG4spmt8spelSe0slDCKhTKTSClFSUexkqvTpKpA3NEwoJZLU0huS2fQBfKHyR4w+0VVSlRMgqVUaIZL0uoZoi1oUlVIdFBNon1B6h9XIKlAujs/opLVDK0liWqHHtKyVicVexGXLhc1ZCJKxkyGXxE/a9cK6FEBhhWsH8a5H3Ek6m45RO2B+FEsgwp15SdrJ1SkdKJlc+Iplkrpt6xFFc8WT7kMq84j/CvEvFqaDiBA+mHyGcuqv+IeZxUU0hnArIog1VLQytw16zrimRVzancHKFLO/YdKVTfKwJEiRIkGCroTHZ67Y3DBrYlb/eeBZ1dVlG7NR6RrR7jh5Au4pi1lXVcfJRrWPg+tqM+dRmA+YsXcn85avZsefG/2Jf6qf5wcj9ufrV54F5rM9mCJSiKJZcrZclVbIqZNL0t/j92KNbNEYVu4Z0K/7jXpEu4jfjDmfq4vlcPGqvzdbum0sW8NmqpQC8/NVcThvc/IfGq8YdyMgu3dmje+/NEhYFJPdLXxPs2K4H94+/gNogyy6d+rZaP+N7DKJjUTFrsnWcNXj3Vunj1SWzqQ2zzFq3nPlVq9ix3cYJojI/zWU7H8AvPnwSsdQQNVmtiFNV3YvbA19QFyrumT2VX+5yfIvG6ExrWvvfuIpUMb/Y9WjeXDaPC3fcd7O1+9byL5i2ZgkAry2dzUn9d2l2W1fsdDTD2/dm1w4D8OVmyrT5NV+Xmk06VVdXc/rpp7eAcDJkSqBlnuLJcBO6wM7H9KE0SK1QQuELiclrJ439jfbI4OELnzrtUaKzFImsJZ+0feA3PRUJ47vUNRXgiYAUIcUyiy80KRFQJLIR6ZUSoVVhCQINNWER1TpNSihKZR0lMotAE2hJLSm0FizKtGNRXXtWZUvJKJ+M9qgLJHXKIxt6BMqZiDviRuNLhfbNMYZx4kkYnyblCpNjMJQypJsjnrTWeJ7JqufJEM+zBJw0R6O0IFTCEF5KkgkcTSfNZEtMJjsAz97oCDPHOt6/0GhhPZtCkNqonRDCvoPynPeWsByWpiByMDqOSO2kTb/CFygfPKuoklmi7HluauL1hbtYnNLJqqWiDHKF3Gac/ckxh9FX9yE+3XmEk86vQ6xOFPVY2K8jEXV++ahKAaElkux1CRIkSLBdotBu4OuCITs07a/kL701kxfemM4ZR+/OjgMbV7ekJM0Td32/OcNrNE4fN5J5y1bSr3MHhvbo3Oh6V+yxL/3bdaBjupiabJDngXTd2KOYX7WKaauXckSfxocers1W8+yi99m14w4MLO8ebf/OkPHsUNGVHSq6UJkqaXR7zcHpQ0Zx+pDNG76yT4/+HNhrBzJhwCF9GpfefUNoV1TMWcM3IwGZ3C99rTCsXdPCWZ9d+DlPL/yMCYP3YniHxtUt89O8fcLlzRleo3HGwN2Zt34l/cs7MrSy8UrJy3Y6iP7lnWifLqE2zOR5IF098kS+WLeWz9cs4dCeOzW6zdWZGv77xSeM7dqPIe1yY5m4434MruzK4MouraZycjh1wC6cOqD5pFBD2KfrDozvPohMGHJgj6EtaqsiVcJp/cZtppHRJtalZpNOEyZM4MEHH+THP/5xszvX5LMBAh37BIXshLTbnOJJxMo48sUplHyr+BFW0uLC9TTSklACKbQlmhS+BA9FSoQ4/yOAUIvIsFshyZBCI/FFQEoqpDBlQjx8QtaqYtapUqpUMVnto5AoLSOFk/teKPvRWKWTzhFObr8hggqUL5ZYEdExEoXZSWlennDhiORl7QORp7KK2A8VUzo5KGEIITDqJxtilzcaZ4LtiF6Rr3SKQt8aIn9cFdu/sNuFskRTkKuSl53O1m0w2d+GXnkzXn9K6xUQGy8W3xcJohogmxrqu8Eyup6gqtFoC7LMBAkSJEiw/eDntz5FbV2W5auruPWq07ZIn3WZgB/84VG+Wr6W3192HDv0qU8qda0s5/pvNV2JVJ5O084r5vInnqYinealCRNoX2IIoZTn8dChZ+WV11pz16fvsbqulu+N2pNiv/4t9/XTHuO5JR9QLIu4caeL2Km7ecBLSY/De+3c5DFuK6hIFzHpoJO39jAaRHK/1LZxxTuPURtmWV5bxT37fXuL9FkXZvnBe3exuHYVv9vlLAaW1yfhu5VU8Oc9m/6bKU8VUZEq4sfvPUK5X8Szh1xKu7Rdl6TPP/Y9L6+81po7p73DmrpavjdiHMVe/XXpmvee4okFn1Hmp3jo4G8xqKKXbc/jyN6t45u1JVCeKuL2vc7Y2sNoEG1hXWo26fSb3/yGo48+mqeffpoRI0aQSuXH0l5//fWbbCOrJVrlJGmOODIEkcCRTzq23xMhWnmEKEsq6ehBPtSSUEgCEaCAtPBI2UxzjgCRLtObDbRLi4CUCBHaKISy2iNjs7Y5EizKgqcNbbMiW8nMbDeKvSzlXh0pGRJqQUb7rMmUsDxTzupMCQHSZsoTZJUxEM8GHqGO02v2JTQpL0BKRRBKS0A5zyRlSAodozjs1enC6Iha00gbHuhJhS9VREZpLfCUJFACKT1Ak9W+8YtyxJML93K+Ug5BzMtJ5ULmonMTglcjIj+lfO7KSbpcPR1tdkSTtn1rgMgjCnxfQI0NtVPk5G9x9ZAjtrDeSNK+u+0FJJL7nCc6KviBO5WUuwBlSKSiyuMMYyGCkZm7iNWPz0OcfHLzgVWMxVzTBSBUfLCNQBtgyBMkSJAgwfaDPUb04+V3ZrHnyP6NKr96dTWlpWnS6ebnuJk5fxnvfLYAgBfemtEg6dQYfLJ0CWc++hDdy8t58JRvUJ426oGFa9YAsC6TYV0mQ0kqxW+mTCHUmv83fjwlsXvhNxd/yc+nvgBA19IyvjlsdL1+nIqpqjrgpDv+ydPfO4d+Hds3a8wJGonkfqlNY++uA3l+0XT26TawUeVX1FZRkSrK80pqKmauW8S7q2YD8OKSjxsknRqDz1Z/xYTX/kG3kkr+ue+5lKWKAPiqejVg/IXWB7UUeyl+8+FklNb8ZNQhlPi5demNJfO59u3nAehWWsEZQ0bX68eRVnWqlu+/+0cm7fn/6FnSvLU0QSPRBtalZv+Cfv3rX/PMM88wdKiRpxUaiTcGobL8g3ZkCdZ/KfekbjiG3H6w58U95LtwKm1CuJTWaBl7hnckVoGExBA9IG28k7YSG60NeaVtljwwYh+BGVed9qlVKRAajxC0JlSCrDbhc7WhT1WQNiFsVlEUakGoJKEz846y0dljduMURtWkdXSU+WowEbsaBUhpDcSjeDEdKZ9cdj+Ik1J2fjBMt9YF5ykvbMy2qbQhhpRAhCJH/BQkvbMTlE/GFCqQ8hnEBn9cEd+l7Csw/cci++rVMSepoI94OU1+f/Fxu486f1u8ThS+R/5+UVi+8LjiEAVlCpFXRzTcxkbQFhjyBAkSJEiw/eC3lx9LdU2GstKiTZa94+6X+cd9b+D7kkf/fSEV5c0LKduxf1cOGTeUr5au4Yh9Gh9OUogpX8xjTV0ta+pqmbFiObv26AnAhDFjSHseAzt2pE+7djw5Ywb/+PBDAHbr2ZPjd8r12bu8klI/RV0YMLh9ww9sFw85FrWmlL+98zFo4wmVoHWR3C+1bdwy9lSqggzlqU2vS3/86EVum/YaKenx5jGXUlnUzHWpshcHdx/JoppVHN5jl2a1AfDyklmsydawJlvDrHVLGdWxDwBnD9qLtOczsLwzvUo78OSCz/jn7HcB2K1zH47rl0sQ0Ke8fW5datepwX5+OvpQ2hWHPLnkebTQBDpZl1obbWFdajbpdP311zNp0iTOPvvsZneu8Ai0ywEHQtdXOuWgUVphcseFSETk1+SMcqSWeNKwD1oJAhlSpLN4QuNpFRmQG3JGo5DUksbTIWlCNJoshl/wtElnH48M8wS0lzWs90tYU1fCjKoeJpxPaEItqAtS1CmjZFLaeCdpRzwpSaic8klGpFNEFNk+pNSkBJHRt9KaUIAmrE8SkVNuuWPypGvP+ljFlGAagS8N0Se0QnkKpYwnlnbTKIxSyMwhICQyEPneStoSQta/yREqUoMOyCmd3OQhQIGWOp+IipFDeZtcuJ6EUAqED14tiCz5ZIwbbywsTasY32Q9nuLheA2STQXt5UEbhZXM5tpU0XHl2omqxkjQvCZjhGkcUTnnft5EgVOCBAkSJEiwLUIIUY9wymZDnnn6I3r0bM9uuw3glZens3jxGqa+NQeAIFDMnruc0SP6bLDdR1/6iJvuf5kxO/Xldxcdm7fP9z1+ceFR0ffH3/iMh1/5mHMP3519RzRO2QBw8rDhfLD4K3qUVzCyW85rqTSV4rt77BF9H9mtGx2Ki1FaM6pHvj9M74p2TD3jAurCgK6l5VQHtXyyZj4j2/en2DPKKV96XL7HoexU0Z8uZWUM6tzwQ2CCBAk2D4QQ9QinrAr4z4IP6F3agbFdduDZhZ/xVc1qXlo0y+4Pmb52Kbt36bfBdv81431+8+5L7NOjP7ftf0LePl96/GJkLqzrkbkfcd+c9/nesL05oGfjM+Gd2Hc0H638kh6l7di5Q69oe6mf5rzB+0TfR3TsQft0CUprRnfqlddG7/J2TD3pQupUQNeSctZn63h/+UJ279KHYquISkmPS4cdya6de9Ip3Y6+pS3LepcgAbSAdCoqKmLvvfduUeehUyqRy0JXqHTSsQdxp05SkqisCckyj/1agFBWBeTIK20NyEWc4zCKJrdNYvoUdrvpXqMVhCJGKghNiCDUoJVAoNAaAg3ZUJIJBYEypFVc0RRqQRjKyMhb5XgyiB2LMyyPK53c7BAF+8UVZfHZjB2da187Ai923PXKx9iR+LsLiQs0OrTH61jYQhWRym8qYuriXchYnUiVJCJSJ3dQ+UPSWhMCApELW9P5RE7+uNmw6ilepyFVUyHcOLQVOlkiTceux8Ku85RVcaiCbaKgXHzM7ntTUHheEiRIkCBBgm0Mjz76Drff9gJCwG9+exrXXP0IAMefNIaq6joG9OvMqJ03nh3vLw+/xvqaDC+9O4uaugwlRRtOLf7HB6ewpqqWmx97rUmkU7fycv52zAmbLNe7XTveuOACtNakvPoZjNoV5cx2f/D+JD5eM4+9Ow/jutHnRNulEBy5U8Omts/Nnc3Ts2YyYZfdGNZ541n2EjQSyf1SggL8c+4bXP/Zswjg1j3O5NK3HwDgjP5jWRfUMbRdF8Z03nh2vD+8/zLrsnU8NX86NdlsXqhtIX71wXOsztTwx49fbBLp1LWkklvHbdqTqE9ZB6YecxkaTaqBzGrxdemcKffx3vKFHNxrMLfve0q0XQrJ/l0bNvB//qsZPPPlNCYMGcvQ9o03PU+wEbSBdanZqecuueQSbrrpphZ1HuKj8NFIo3rCJ8An1B4BkgCPLD6B9gjxCPHJ4pPVPhntk8Ejq31CPJR9BfgE2icgRZ1OUaOKqNNp6nSKTNROihCPgBRZUtRSRK1OU62LqSONRhLiU0sRWcvLCaEpFhk6eNX0Tq+mwq8joz2qwzTrgxKqwmJqwjRZnSLUZsyZ0KcuTJENUwQxM3EdmQIJtDbG4ionC4rMwD0P0j6k05p0SlOcVhSnQ4rTIUWpEN/TkWm472tSvvkMwsxZTFXlMtxJAZ4E3wNPaqR9RSSQICbvEggpkEi8UEQZ5KIioXk5MkpYtZNQuc/Oi0mGIAMbnufIM2cWHgpkaML3IiLGMy+dBl0sCMsgLAbtu7HVv54EsbGo2CsmsKoXnreB94jek0AKdAnoYjMeZKz7AkFevB8Rm4t6BdybXWSiOvWbbBx0wStBggQJEiTYxlBZaQ1uUx4dOpZRXGwezEYM782/7/wuv77mpMii4Y+PvszhV/2dKR/PzmvjgDEmG1r3ThUUpzf8YAdw3F7DSac8jhnXeua3vpQNEk6FWJutzntvDC555gkenvYpv3j5xWaPL0EBkvulBAVonyoFjPF2p6JySjyzrozp0oeXjvo+t+9zWrQuXffx0xz0zPW8uGh6XhuH9x0CQK+yygaTBsRx8oBRFEmfk/qP2tyHEsGXskHCqRCr62oBWFVX0+i2L536KI/M+4hffvBss8eXoABtYF1qttLprbfe4oUXXuDxxx9n+PDh9YzEH3nkkU22EVrSwfEMRk3klDoi59vktD7CcBFIYULAtHlKd6olNEgE0j62C2FfkkhLpbTRNLnsatq27nybPSHQ0qqctETgoQSkZIAWHlJ41CifrBb4QlGnPWN7pLV9N42GWqCUUTmhseF2Ts2UQ6TYiiHuweQYC5dxL6d+Mkbnrj2trArHqpukNOotJQRCakN+ROyHmQMpQjwpCIUpp40xFpHKySq/lAAlZJQJME6W5J08B7fGxX84TrymwEqXDOmkRE7p1IA6SQtQNmRQCRERPjrMkTn1CJqGfrgbIH4a3NeQairekVNrUbCd+ucyr7zrVxbsc8cU77uJC86WigX+1a9+xRNPPMEHH3xAOp1m9erVrddZggQJEiTY5vHKO7P42U1P0KVDOf/6w9mk/A0/6Bx22Aj69O5Ih45l9OzZgXvuvYC1a2sYMCBfxbO2upZ/vGA8Sf415QPGj9gh2vfjsw7mR2cehJT1/vWvh0tP2o9LT9qvmUe2efG70efw6rJPOaDbyEbX2aNnL176Yh5je2843HBLQmvNCwtmU1lUzO7dNq5I21bRFrxTEsDzi6ZxxTsP0bW4kscPuhB/IwTMcX12oX95ZzoXV9C7tANPHXwRa7I1DK7MDytbk6nh7tlvAPDPOW9yQI+cQvHX447gl2MPRzbC1/gnow/iJ6MPauaRbV7cMf5Unl84kyP6DGt0nd279OHlxXMY27VfK46s8dBa89LiGbRLl7Brp40r0rZVtIV1qdmkU/v27TnxxBNb1HmoPQQ+xqcJDDNh9lnOI7cdjdAaJawBtlJIIW1muhwxoyw549REIR5KhShpdFVe7EyGGpSVzTgvIF+EFBMQaMn6oBiBpqO/nhIy1IoiPDTrVAlZnSKrjOxGaePXFGrfhtVhjMStl5OOQu3y2QaxwZguHZmBizyCxOwzoYOKbCiith35FioAiVaWDbLO4r5QSKEi/yglNEKY2TKEmUYrnSNNHAviGbWTUz7VU/XEiB0FxufJeT3FyoFRPiktTAikBhGIvPpCG5m5sn5a8ZA8nbLEoAdkjb8WjniK9xVry51T7cUOyX2Ihf81GCZXiAJ1UoOcVcH2fDa1YDIaKNdkdVNhG80krJqCTCbDKaecwrhx47jjjjtar6MECRIkSLBdYNIjU6nLBHy5ZDVvfDiXfXfbcLiIEILhsfC5Tp3K6dSpvF651z6fF/1T1q6suN7+DRFOWmtufPRVPp6ziJ+ccSA79Nx2Mi71Ku3Eaf1yBJjSirlVC+lV0pVir2FT4zuOOZFVtTV0KiklUCH//OIlpJCc0W88nmh2sEKz8d85n3PxlMcBePr4sxnWcTsMrdlC90sJti5umzaF2jBgftVKXl06i/27NxzCCmZdGt0xR1Z0Lamka0llvXJTFs/EurhQ4ZfW278hwklrzW/feJn3ly7il/sezJCO28661Le8A+cMzfnUKa35fPUSBlZ0yst6F8ff9/0Gq+qq6VRcRqBCHlk4GYnkhN4Hb5V16YkvP+GKd4zY5T8HXsCQdtuhB1UbWJeaTTrdeeedLe48tKxepGyy2zWWnCBHOjmlkwSQ0ph8C0MyCVSUrU1gfvROwWTIK2kENjYjnbRMh+vH+S5ltE8QSps9TVCnfDypqA0kKQJj0g1UhUUsy5RSk7VG6LZ+pHayvk1K2bZDLBFmj88RI45oiBMawrKdjn9zC5jOKcGMB5UhmILQsVI6altrs4AKBEoKoyizyiIpNdJqpqRQeNKonTwpjEG2cpn1XJPa/GcNtKUSkXInrlCKPM41RsnkjgWrwKJgv1P/2DbcdYALR3NG5Zi2tTVE18KO07fnOxa+lvcbjU9LHpEGhX5JeWMrLN9QrFvhYlC4vsYVYPHyceIp3kYu2jLOuzYNW2ix+vnPfw7AXXfd1XqdJEiQIEGCbRIrVlURKkXXThXRtpMP34Vf3/4s7cqL2X1E/83ST5d2ZdG/meXFG/ZsiiMbhBx10e0sV3UA3PfiB1z5zYMBeOqD6Tzz0QwmHLA7I/p031gzWwyT5vyHRxe+yICynty8248bLCOFoFOJebidsvRj/jb7GQD6lXZhv647b7GxxscD7nalRX8q23poAw93bQ3LatcTKkX30hxR9K2Be/DTD/5L+1QJYzs33s9tY+hWXIlS5qa/3GtcJrusCtjvietZtNDUu/uT9/nVfocA8Pj8z3hywWdcsONejOzUc7OMsaX47YfPcefMNxnWvhv/PeT8BstIIehUXAbA6yve559fGCK6T2l39uzUeCXn5oKIrUs0Qmm2TaINrEvNJp0cli1bxvTp0xFCMGTIELp0abzRocJD2fA0Z5LtMtdZvQ+YrealyYWACUu9aGVC4rRGCaNtMtSSNobfaBAmrE6h8YRCxrLkKQ1Z6820oq6cddkiQi1ISacK0viWXVFWqZPVkmzooxARAaRs+J5RPMUUTspZpDsUqLqEVf1E5EZ+IB1WvaRjrI7vGaotCD2UkgihIxWVCe+ztS2rJYQwzI8lnNwfCDXgS03oaQLPEEqhC39DIJSEQBq/JW0DEiU5bycbMuZUSY5E03H1UCRzIqfmUSLKgueUQ1gCEkvQKWHC6rSMKaqEMFesBzpL/g8UaPD+pyFiz1WLEVMNShkLtjUoUipUKBWMKS5Si8oWjrvwa0NE1ybQkCxz7dq1eWWKioooKtp0itgECRIkSJCgEPO+XMHZV/yDUCl6dm3HwiVrOOPYMUz81n4ctV/TCJCpH87lit8/RlHK44E/nUun9vlqp9126M2Z43dl1lfLOefg3RvV5owvlrFmXS2iCIQvOXjXIdG+nz34LLXZgNXVtdx1wSkbacXgv7Om8c/PPuCC0XuwV8++TF2wgNHdu9O+pHkp0xvCVzXLAVhcuwKtdfTgtCH0LetKSngIIehTunVMxY8esCMV6SIq08Xs2HH7NDZvC2EsbQmz1i7juOf/htKKvuUVLKxezbmD9+Ly4YdwfL9dmtTWlEWzuOC1ByjyfCYfPpEuJfnr0h5d+nHWwLHMWLOM83Yc16g2P1u9mDVhNTJdjAh8jtohp7j6v7f+R20YsKauln8e+K1NtvXElx9z/9x3OG/IPuzZeQBvLJ3HqE69aJ/efOvSF+tXAjB//apGrUt9SrrjCw+BoGfJ1lE+HtlrOBV+Ee3SJQyp3A7Vl7SNdanZpFNVVRUXXXQR99xzD0oZUsbzPL797W9z0003UVpaX3ZYiCAURllDTnHkCChHOOUIDGFDzjSegEAZ/yVPCDypkEJbtZMmEBoPjRQCKTSh0MbrSWg8q3ayraO0JDCaIEq9OkIFazPFVAe+9YRSON2UUmacofYItGF6JRohdS5jHDp6B6d4ysle4teRxoSAOXmTI22EiGX20yJHOmmR6wtBkBXo0IS/ac9IfrTLCCesp1RoaCwpFVobdZcjPwQKX0IoBSnPHJ/WHgqJVgJtFUXKlyaUzZJRyiqn4iRTlGXQEkeOkIpnstPualO5CYjOr1U9CUt6Sfuu/Gjqcp5H2nBopAz3KEPqqZfyQt2s31WDMXGFP2yd/3J8XZ46qVANFW87Xj9OHglzbDG/+Pz2ZEFbmyF7XZ8++R4QV199Nddcc00TG06QIEGCBAlg8bK1ZAMjZf5y8WoAHn/hYyZ+q+meSQ8+/T5hqKgOFc++No1vHDUmb78Qgh+eNL5evTXraznqx3+jNhNw1VmHcOzeObJr2ICuDBvQlS8WreJnEw5jz2G5cJn9dhzAsx/PZP9hjVM8/Pz1F1hRU82q2lp2Lu/Kf6ZNY3CnTjx91llNPlaAJbWrWFq7ip3bDYge4iYOPpkBi3oypuNOm3ywAxhc0ZNH9/0pAmiXLmvWOFoKIQT79948qpGthjagKGhLWFi9hqwy69IX61cjpebhL97j8uGHNLmte2a9TaAVQZDh8QWfcs6QPfP2CyG4cpdD69VbVVfN/k/eSG2Y5TdjjuXEmEH4iPY9Gd6+B/NSK/jVLkewV8/curR/j0E88+U0Duw1uFHj+81HT7EyU82aT2vYoawH/5v/KUMqu/DEYd9t8rECLKxaw1fVaxnTuXe0Bl2z6+HsOKcb+/cY1Kh1aUB5b+7c41cIBBWprbcu7de9cXO4zaINrEvNJp0uv/xypkyZwv/+9z/23ntvAF599VUuvvhifvCDH3Dbbbdtsg2FNC+rIDI6nJzCSUVyFMxWbUO9EPjCaaOspbbWaBRKeAitLQGjIUYaCRShVUEJILDkjVEzQUoqMipFTZhGa4kQCvBM6J+GUAnrAUUUoiekyoXxIQi1tMomF04Xj50qgM4dq9V5RVnmtJ0TpQRhkGM9PE+htUcYSlTgst0ZFkirfOmOlBrPA18KPM9krZMRsaXxsHyHxGSpswbtQpJrS0mEEiasTtgseLZMRCw5HydtiCkZEIXVOYN2p3hySh/n5RT/LsIciaUUyHiYn47NoiVunJm4ViAKzMvzZjtGCrmwxY0uo5ooS5+Kq5NiKFQ36dy012cWhR1nnswq106cr2suGmLIFyxYQGVlTmq8IZXTNddcE4XNbQhvv/02Y8aM2WiZBAkSJEjw9cUeo/pz2bkHkskGvP7uHD6ZsYjTj9n4vwtKGc9I38uPQ59w0lg+mr6Q0uI0R+/feJXU1E/nUZMJAHjs1U/zSCcpJXf9omG1wB+/dRR1QUhxqnG3vScNGc6dH7/LiUN24p25CwFYV1fX6HECPDjvbW6d8SKnDxjD/xZNpias46LBJ3B8730B6FzUgTP7H9WkNttvJbLp64S2oChoS9i32w78bNThZFTAK0s+54NVCzl70F4breO8bH2Zvy5dtNO+vLt8ARWpIk5uQma5V5bMpibMAvDg3PfzSCcpJQ/u3zApdPNeJ1IXBhRvwDupEMf1HcW9s9/i2D6jmLp4PgDrsk1bl/49+11u+nwKZwwcw18+fZPqIMs1ux3Kt4eYtbxHaTsu23n/JrVZmarvy5egaWgL61KzSaeHH36Yhx56iP333z/aduSRR1JSUsKpp57aKNJJa6NYCrVR1ijMy5ExOQ8kxxgYOkdKZZVOxhzbl8Iqndy7xhMaD0Wg7TZMxjcpwUNFpJHShsrwBEhCylM11IWSmmzaqq/sOLVAWXNwIxWy/di+TYhbdGQ5qkwrQ6bFCLSGiGOtjbjFqbBcv9ErUkSJSCGlbRY4HVqFWKSwMQbdWaw/k28kNFpDKPJ0ZIRaEoQCFWqjyNKWrEMb5++UiuKXZWCJHinAA+lb9VOB8kfnIh8jpkiEMdLFEj80QMIYN/IceSOVrRfjnxwJpAUozyquVGwcOvbj1bZ5Hes3d5oaOBH5xyNUTMXVUDl3WhT5pFJhdjsR216onHJtuHKSnC9WY9EAQ15ZWZlHOm0I3//+9zn99NM3WqZ///5NHFCCBAkSJPg6QUrByUeYcJUzjt10yFtVTYZv//yfLF21jpt/eBKjBveK9g0f1JPnJl3U5DEctNtgJj31FsvXVHHxifs0up4QotGEE8D/Gzue/zfWKK1WDKnm8enT2W8D/w7WBFnOf+lhltas56/jT6J/ZQcA7p07lRV167lv7pv4qQwAa7JVjR5DglZCG1AUtCVIIThzkFmPJgzZdMjbumwdxz09icXV67jnwG8wpksuKmB0p958cMKPmjyGI3rvxO3TXmNZ7Xp+OOLARtcTQjSacAK4YufDuGLnwwA4vs9onljwGft136HBsjVBlgvfuJ9lteu4Zexp9C3vCMBdM99keW0V9856h9rAEPir6moaPYYErYQ2sC41m3Sqrq6mW7f67vBdu3alurq6UW2EljVQ1hTIqYWc2klDRAoZpZPNugbWw0lY03BplU65/HXWNRsd/QegDQkkzHalsb5MNpObkGRUikD7aGHIJY0gqyRhZLAtySOVcKRGjlExmirIxZblmPQ44ZTHOQijQopId5vtToUeOsyRboY5ERCasTiVUz6j4lRYRr3kFE7YeXJFtTYhjlnlE2gPraXxhrLxZELY44p1K+IZY+IhdORInkhp5JqyLzulOULHht0JqwQq1IMJ7dRu5O907edOR142usiMXBS8NoQC8iuvuG6YJMwrp/MVUXIjRuXOS6xe945gtY3Kpi44LVisOnfuTOfO204mjQQJEiRIsP1j/pJVzF+yCoC3Pp2fRzo1Fynf44Frvt3idpqCTqWlnLXLLhvc/8r8uby6aB4AT86fxsSdzYPv+YPHc/uMl/jWwHEMbdeRL6qXcET3PfLqhjrkmUVTaZcqZ+8uo1vrEBLE0QYe7hJsGHPXrmTeOrMuvb54Xh7p1FykpMcTh17Q4naagk7FZXx78IbJ//dXfMrrS+cA8MzCzzl/qIlK+t6wfbj181c4Z/BYBpR3Zuba5Zw6MF/VFSjFg/Pep2NRKYf1GtZ6B5EghzawLjWbdBo3bhxXX30199xzD8XFJp1tTU0NP//5zxk3rnHmaoEyBtVK50gdp3By2eyUzmcbDDkjc4om6+fkofCktsonRVZIPGXKCHRU3vgw5cLjwNBdSpv3slQtvjDMb6A96kKf9ZkiaoMUdVmPrDPZRthQN1BW7UQ0SqdQcsohJ2+pTzjEoTQIa3IeteTYGDcP2qiqkDqPSMlr185fEAi0kihlAgC1JT2iObWkThhIVGjKoSSEIvKGAo3wrGpJQ+jlhqUCG0oXilwmOxvmpgqURw0pf7Q25R1fJ60iSiiroFKGwFGWtFIecf4uairKjucIL2G7c2ont0/EK8VPVv72PJ5LY8zNC0ivvHdXzqmx8k9N1LeAPKLOnY9C8pEQ7CXYaMSHtzF+raWYP38+K1euZP78+YRhyAcffADAoEGDKC9P5LUJEiRIkMBgaN+unHP0Hny5dA0nHLDlMxq1FhasWcNpj9xHSnocUzqIf01+j257ltGleznH9Ms9oB3dexRH9849zI3uMKheW5MXv8ktsx4A4IbiHzK4om+9Mq2F5TVVVKaLSXvepgt/jbCl7pcSbJvYuWN3vrfTXixYv4pvDNowmby9YcG61ZzyzL0UeT5/33clsuZvjOlwGtV6IEf03ikqd3y/kRzfL7cej+3Wr15bD837gKvffxKARw48j5079Gj9A7BYWbeeilQxKdniXGfbFdrCutTsM/rnP/+Zww8/nN69ezNq1CiEEHzwwQcUFxfzzDPPNKqNUHtILa2fk1dP6aRwmqJ6uqIYnArIOjcJIuJKWDLCkTjCSmKc8klE/keujADtUeKHKG2yt63PeiYETUmyoWM9jHm4gYZM9QABAABJREFUYxJEjNHIGYo7j6qGPJ3yjyFuIO7S0eZURyLXj9TmmOxBRWqfQtjjEUIgPVMgVGYcyoXp2XEqJVCBCW808WqxsSoQym5Twsmlcn5MbuCxw3JhbQLQbrrcyysgWWLm2c5DKf7K44JErnxEBhErbMcbTYnNspf3C26M2mlDY2ig7qYWBVe/wTOv84cWbXbnbhNt18MWYsivuuoq7r777uj7Lvavvy+++GJeqG2CBAkSJGjbkFIw8aTGh8C1JqbOno8Ugj0HtlzVMHXhfBatXw/A6/PmIbSg+EPJ4xPOaXJbHdMmBN4XHmX+5stAtSk8MvNTLpvyJP0r2/PsSedQ5LWhB7w2oChIsGFIIbhi9P5bexgAvLZoHkII9upen/hpKl5f/AWLq826tKLqVdIy5IpBjzOqzydNbqtrsfkjckpIKlNbLuv14wvf5+qPHqJPaUce3PeStkU8tYF1qdlnc+edd2bmzJnce++9TJs2Da01p59+Ot/85jcpaWRK2UBJpPIIQ0GIC1/LmWjnPI1k7OHfZK8T0imXjFG4H3338aTCEyFZZcy0ZZ7SSSEAz3kbWQbFE5KUDCiWdXhCkRIKX4R0TKdZWVfC6kwpq2UxtZkUoc6plpQVMRWSFNrJnVBIIW3GuRh0gx8JlWvFHHykGMIop7RTQklNlIbONqItI2P8ngSEApU1JBta5BNLQpvvUSY5u09j9hde+ML0LxAoG/ulsVkBNfljcVC5utE+L/fZdYklp7RnFD4iMBnpnOoJaY5JaKIr1imb4hGHzsw8FDESK+4RBflMT4E6rN5HTaTgytsWU3AJyM9IF5uDhs63I+Ty9hcSZwJoqtIpdoytaUB31113cdddd7VeBwkSJEiQoE1hxsJlLFmznn13GtAq7b8yfS7fvecxAK4+5iBOG9sy1dXhOwzmxXlzKfI8zh2yK4+89BGHjBnSrLb26LQzN+36f5R6xXQv6dSicTUF7y9bBMC8tatZU1dL19K2o1RuC4a9CVqO6auXsKRmHfv1qK9Q3Bx48cvZnPPigwD8euxhnDG4Zaqrw/sN5aWFc0h7HkO7Hsma6rvpUHpMs9o6sOcQ/nPQ+ZSniuhT1qFF42oKPlm9AIAF1StZm62lU1GyLn2d0CIKsaSkhPPPP7/Z9bXNzqbycs7nMsHlvucoHaPuyQtIitQzRmBkWAYZb5L4c71ERk/2bo9GigBfaFJS4QtFkQwQAtYEPoH2qQ5SJgxQe7a8qS2lUfy4zHNKkSPPkNbDR8RIjgJmRug8pZMrr5QkDL1c+jdh/mooHeFj28x5BImYikhEYWamsCWc3AtyBFT+YOz0xbaHILQJg4ymy3kxaYFQIo/gcZF/uGaswil6FwX77IkpFCS5NqNuZUw5FSd+XIVY2F3hfOaVy53ywkOvpz6KE1WioGiE/Es3j1GqRy4VdF1PASVyx7ytKp0SJEiQIEGCzYXpC5dy6u//CcDZB47hsmP33ex9LF6zPvr89pwFjOnXi1/e9xw79e3GD08c36i04HFUFhVz25HHRt9HDmhZ6MnA8pZ7XTUV3x89Fq01o7v0aFOEE5DcLyXYJD5ftZjjXvgbAOcP2YsrRhy02ftYVLM2+vzW0i8Y06U3V775NKM69eDK3Q5q8rrULl3MbfufEH3vUPLHFo1vWPvuLarfHEzYYX8Adm7fp00RTkCbWJeaTTr95je/oVu3bpx77rl52ydNmsSyZcv4v//7v022ESqJVpIglMbDKebpBFZJpAszvxnlEsL6Mtl3YV++9PCEwvdC6/FklU5GjoMvcuonT6ioTBj6BEqSliFFMgANRV5A16K1dEhVUenXsqSmnNWymIwtq7Ubq/NhMmRUaAkfKRQKYcy+7fGY4oZVUFZZpDVoFy4XC3tDW3LI1I7CDaNwQZHzf1JhbnHSSkOQm9PoQrakU4PLmGNDFFEGuag9CdrTRnmkRS6jm1VzGWIoN/64qif67pl2tWcIJDNm0L45hzoF+BD64GWtT5ZTOqn/z955x8lRnFv7qerumdmslbTSKkckAYoogIgiY7JJJhvbBAfsi32dExj783W49/raOOGMAzgbk4NJJokkJJCEJJTjKm7endBd9f1R1T09G6TdZUXSHH7DzHZX6uqeUveZ857XKqDCpu0hRcSUJX5CIisKUQvyBFRctbQ3AkrbcYfXYMEx6cKyiPDc5fsPM/cJKPSx0kTKLSfQec8ma7aupEAlzN/h8fYa79JFqogiiiiiiHcuAqVwOqQmD7F5d2P0eW3d7l63va2+iXO+81tyQcCt157HvImdw+fOnzOVx5avYWt9E9effCR3PPYyL6/dystrtzKrpJy7v3knx104n/P+44yCeumcz9V/vZO65mZ+et7ZTBz85imR+gvK3szIDg+wQ0vL+cZRJxdsC7RiW1sTI0qrev3A+1agIdvGVxf/Ayfd23S/FO+XiiDQCkd0vS5tbN0TfV7TvKvXbW9tbeQ9D/+EnAr4zTGXM69mTKcy75swg0e2rmJrWyM3TD+WX772Ai/u3MyLOzczu3Yof930NCcPm87FY48sqKd1O8Gea0DV4VTfinC7zl73dkZ361JNqpLPH3p2wbZ32rpUn2njS4v+iVtclzqh629bD3DrrbcyZcqUTtsPPfRQfvrTn/aoDaVF5DVUIHuxL63j22IEQp51KSBQpCBSHEkZL2/+J0V+mwAbbmfrInCEIaVcqfCkMuSV0OSUS0uQIK08Au1anyYZKWnCdiEkhUwPIt95zFdK5NVJMXlLvqw5bq2MuXdUX9qXKHwBsXIhyRTGe8Xm06qVhP274L9oTkLmJL8vlE/JqK6dSxWSQkbtJFVe6RTndDp6OoWkUHhMxIcKyHh7kM9EF1dMiTzh1NWlU3gV2b50rHzHNSv2d9yTam+vqE6M8IqOq4sxRGowbc3Xo3bsp/ixic5D3BeiccdDCYsooogiiijiLcQfH32Zwz/6A77y6we63H/i9IO4+JiZHDllDN+47NSCfa9v3cWLqzebpCzd4J8vLqc9m8MPFLc/tbjLMlIKfnzVudz5ySsZW1PNybMmMaAsxfwpo3n4Bw+w/JmV3Pqft6FUYerZZdu3s3DjJtbXN/DgqtXRdq01K19cw+5t9d2Oy1eK3762iH+uXd5tmf2NDc31HHHn9znynz9ga2vTPstf99QfOeH+W/jmkoffhNG9cTy4dSmPb1/JQ9uW9ape8X6piN++/jyH/u2bfPb5f3a5/9SRh3D5+LkcO3QC355TSIKsbKzjxV3r99r+3zYsoT3I4WvF71Y/32UZR0p+edz7uP891zK2YiBnjJ5CdbKEY4eN454tz/NKw0a+t+JelO6QEju3DHILIViPTuc9lLXW5LKLUcGObsflK8VtK1/krnW9+870JzY01zPnzz/giL/+iG09WZeeuYMTH/wB33r1nbEu3b9lGY/VreKBrW/Pdam+vp4rrriCqqoqqqqquOKKK2hoaOi2fC6X43Of+xzTpk2jrKyM4cOHc+WVV7J169Ze991npVNdXR3DhnWWFNfU1LBt27YeteFrifIlgZIdstSRVwCFoWHhPnsmhH2XsSxuUmikdHCdgEzgGFWTVUBFnk5S4VhvJ8eqosxLk1WSnAzIKklGuiRkQEL6JB2fUSX1lDkZ6mQFzZkS0rh2zNjMd0QMrPFeAkN0GXZJCI3j5kPhcMhn7LPKKKOEsrSQUAghovJa64JQO9Bou18r0L6ITMC1xhgbxRH5NWkKwufizEg4EGEz3SGiC187Oq/CyYHwBQTEVFREap4we5sdptkXGJJJufZYbZicVGYbLuCAkhrlYXydciBdYfrTpl+NKRcpiuJrsc2Ep20YnzkneZJIh8qpOFHVUc7YQfUUTXfsg4IC8izsL6Rwdaiqssft5ED4GscHJ6tx0goZhAonCFISv0SQK7XzgDAm6L3BASDLLKKIIooo4p2Fhxe9jtKaf730Ol//wGldlvnC+cd32rZ++x4u+u7vUVrznfefzqmzJndZ96L5M/jT00tI53w+fPLhPRrTnING8vi3PmLGV/kEy59ewYL3HYnsoMaaNqyW90w+iK1NzZx9SP5H1nt++hA/+NgvKKsq5ffrfkz5gLJOffx9zVK++px5SBpZXsnsISN7NLb+xEu7NrM70wbAkj1bGF5Wudfyr9Zvs+9b9vvY+gPzayYwNFWJJxS9ovaK90sHPO7fvByF5oEty/kO53RZ5quzOq9Xa5t3cv5jt6LQ/O/cCzltxKFd1r10/GzuWPsimcDnI1N6FjJ8RO0YFl14AwD3blnEK40bOaV2OrKjGsubhkiehlbbEKm8Z1O67TZaGr+EEBUMHPo8Unb+vv9t7avc9EK4LlVxWM2bvy69sGMzezLtACzetZVh+1iXltYbcuOdsi4dOWQ8Q1MVeKKM13tT8U1aly699FI2b97MAw+YH4KuvfZarrjiCu6+++4uy7e1tbFo0SK+8pWvMGPGDOrr67nhhhs4++yzefHFF3vVd59Jp1GjRvH0008zbty4gu1PP/00w4cP71EbSsX9mrqSoBD5I0HszbIIIpanPnSCkiEZFSqB4qqgmIKkQBVl9ztCm5cNuXOEMu8osni0qSTpIIGvHeJZ9WQszC0fCmi1QwVjjhNT4RGKiEAL62iMp1OebLO+TzKsnyfajF9TLMtdTI1E/JMmTzzlK3cgnURUruBMhOQMWH+n2Lsir3JSdD6DYdsdxVfhPikgJLSicVrFkyWsojZjvlAm1K/7tuOkV9SOjh1K7JjicxQff5dXpOiw074KLtP4tIY+V3Z+ZE4j44SSI9CeQHnmc8dx9RQHggFdEUUUUUQR7yx8/Nyj+OV9z3Pq3K5Jo+6QDYIoBKM92328+cDyEh676bou9+WCgH88v4yhA8o57uDxXZY5+YrjOPmK47rcl3Acbjn3zE7bd281Cqe25nbSbZkuSafa0goAPCkZmCrtdvz9jUApXmvYzkFVNZw6cjILd2zAEYLje2CGfMv8C7hv0zIunTDnTRjpG8foskE8fPKnaWpqoop9W3qEKN4vFfHpaSfyk9ee5MzRU3tVL6sClL1Jb/ez3ZYblCrjmTM/1eW+nAr4y5ol1JZWcsKIrr+XZ4w4jDNGHNblPiGSONU/7LRdBdsB0LoFrduBzmROfF2qTr6569Lyhu1MqqrhtNGTeLZuA55wOH7EvkMDv3/4hdy/eTmXvUPWpbHlg3j8PZ+y69JnelzvzViXXnvtNR544AEWLlzI4YebH2l+/vOfM3/+fFauXMnkyZ3/na6qquLhhwtVZrfccgvz5s1j48aNjB49usf995l0uvrqq7nhhhvI5XKccMIJADzyyCN89rOf5T//8z971IbvOyjHhpHpQjYiDD/Lvxc+/kdhnSHhI0AIReBIhFQmg50MVU5EaichNQ7a7HcCSzQpXGsgnpOSrHJISJ+MdPFEgCcDBJpyJ00uaSU62QRZK3EJVOG4w+x7ccrCkdbcHJs1T2L/tsbnId+jzbxkAhctQxWUjgyxjfrbhh6GmdWUAN+EpRFTJxWgYP50nnkJDaic6BBA6jzvobDtmn3a0SaTnE/eXDyuDoqFpwFG4aSMykhLkA5G0RRTGQmE8aEKySMXAqERjlE6KZvJTubASVPABunwfwqbmM+0IyyJJux2IfPlROzwI9Ioz1/G+bxuTcDD0xsSb8IeK5i5cbIambHKpqzGa1PInEb45qQpVxIkBcoR+B5oadVN9pwWKLh6guIvd0UUUUQRRbzNMHPiCG75xHt7XW/S8Bp+9tHz2dPSzqkz+5YZ7i8LX+Wbdz4GwJ3/eQUTawf3qR2ATODzyYfuY3trK9/56EmUV5cxdupoBg8f2GX5Y0eM41/nfoiU6zGyvKrP/fYWX3npPv68bjFzBo/ijye8n+8c3pk06w7zasZ06T3zrkPxfumAx+zBo/jFMZf2ut6Uqlp+edSV1Gdau1U57Qu3v76Ir71kHuIfPOMaDqqq6VM7AFnf5wu/vZ9dzW1864r3U1U5ANedguMM7bL8ccPH8/BZ15By3tx16Usv3sdf1i1h7uBR/PHEK/mfo3q+Lh1eM5bDa8buv8G9XfAmrEvPPvssVVVVEeEEcMQRR1BVVcUzzzzTJenUFRobGxFCMGDAgF7132fS6bOf/Sx79uzhox/9KNmsYXtTqRSf+9zn+MIXvtCjNpQNndM2zCxO0kSeR5ZkwYaeRXKUkCTQMQJAAkpHAppQTaSIIsOQloSIwtJEPtTLdAwC45StFSA1ShnSJ6clOeUQKGH5hc6URGh+rlT+WELfqEjdVKBmyZugY+sGKsyCFw3IXIuRwbcl5cI+AiO10RAm7+vQT2dyqAAitjPKaheb53i9eOhYSPbofLm8qiredr4u4XF0mPPuXqqD+kjrwuFG7cT60xIb+hdeHLExxscSO9RwqCFpFpmAy8IqBX90bDMcQqAROYX0QQYaJ6sQviGchA/KFcY43BUoT3RSeUGs/x6i+MtdEUUUUUQR7yT86d+L+eE9z3Dc1HF848r3dNp/+KSe/4LaFarLSgDwHIeyZKJHdZ58dS0/+ucznD3/EC49Ma80eLluG/evMcESD21dy0c+te9U5BMH9J3k6ivWtxgD5A0t9W963+8UFO+Xitgb/rDmeb6//HFOGDaJb805t9P++TVdqyZ7ioFWYZSQDmVuskd1nnvwFW775p2cctlRnHttPpPeknXb+Ncrxm/u/kWb+OBJXas+45hY9RauS63Fdak7dLUuNTUVel4lk0mSyZ5dM12hrq6OIUOGdNo+ZMgQ6urqetRGOp3m85//PJdeeimVlXsPjeyIPpNOQgi+/e1v85WvfIXXXnuNkpISDjrooE6TsXnzZoYPH94pVh4g8CU4jsm81oWnUzwkrKPSSUM+LC0KcZIEUiOkQgUmS52QeT8nE6IWKp8U0qqbHKlxnYCk4+Oh8LXEs2biSkg84eOiKHNyiGQrjtQ0ZATtOddm1xPGKilGOOXD73TkTRUPowsVWOGBShvWp6QmUNIogqzHktZGKYQNozPkU0yGE4V1CQoUTR3/Mc0PKS8RkuSv7rgSSFoZjwT8DmFmDsbHKMwO5+QVP9BB6RRTEEUkopP/W2tDBKJFRABqxzbgiIhU0r4tm7Hl44caHX9Yz7YTfoG1ISTDMYY8XFQ/7EOBEzNEV05h+/E5FcTa1mYupA/C1ySaFImWALc9sASdjkIBlSsJUpJcmUQlBIFnGpchkRc2XvR0KqKIIooo4l2MH97zDM3tGe55YQVfv+K0fs9M9J6Zkxk1qIoBZSUMq+7ZzfEv73+eVZt38sM7ny4gnaYPqWXusBHsbGvllPEHFdRpa83gZ30qqzuH2b3Z+Nbcs/jbuiWcPLJ34YwHFIr3S0XsBf+37DGa/Qx3bnyF/5p9Tr+vS2eNPZTRFdUMTJbu02ctxB3fu4+1yzbz62/8o4B0OnR0LYeNH8GuplZOmF4YqpcN2gi0T4nbO2Jgf+A7887ir+uWcOrIzgnIirDoYl0aNaowG+uNN97ITTfd1KnqTTfdxNe+9rW9Nv/CCy8AdHk9a617dJ3ncjkuvvhilFL8+Mc/3mf5jugz6RSivLycuXPndrv/kEMOYfHixYwf35kZNuoTHVPXdNgXmlN3VJQIonCziBBQoWrFKIYiIYzIcx0C83AfQD6DnG3IlaFKyaqiNARaEyiQ2jSkhSDQxtRbaIVEo9FRfK8JFCPsKfoUSnPC0DspbVRbWMsej5YQaIFSJqTMzoR9C8k3+zlUgIUHG71CCU9+rsx7XApE4YXdMZ4srvSJK25iRGB4TnRYRhcWK1AjhfVCuVmcLOpKLRQ79/E2CoYcVwSF063idTUac6502GGHcXa8fqLse0FMASVi9UQX9QM7sADwTSidk1HIbIBQyrarDdkVG6PwQbgSEXl3xRoO++wNijdRRRRRRBFFvINw9CFjuf+llYwc1L+psHe1tJLyXMqTSaaOqu1V3fOPmcaG7fWce1Sh10up5/Hn8y/u3Nf2Rj581v+RbsvyrduuYerssW9k6J2wJ9NCQrqUe6kelR9dXs0npy3o1zG861C8XypiLzi29iDu3byU0WXV/bsupVtIOh4VXpIZg3rmfRzi9Pcfy5Y123nPFYWm5KVJj19/4qJO5ZtzO/nN2uvIqTTvG/NdRpT2LRSwO+xOt5JwHCp6sS59qrgu7R1drEubNm0qUBN1p3K6/vrrufjizv8+xTF27FheeeUVtm/f3mnfzp07GTq065DMELlcjosuuoh169bx6KOP9lrlBP1AOu0Le0t1qwKJ8J0Y6dQhFEpj/IQ0ef+gOOJKJzDsUBg7p7QRBvmaQIbEjlE+he9SKbSj0EKhfImvFJ4TmBcKLSRCCzQSVwdoFCVuQMJpJeX61GdKact5BMo1XVpmRHUwAzJkkyWhbChdXg1lCihhCKzwgKQUUWiZtvMTEXGBobc0RKxantwSnYkRaZm0kKzSYX1bscOiKgKBiNlsCd25XW2JHgGRp1GU6jHsNzxFQT50TQubQC9+CmOKIeGDFkbhpGP94Nj6OZDWJ0piiboYgSiURguNdjE+UYGIzMjjQq+CDZh5dXJGrWS8q4gUUKFJemRGHiOEpG8FYRnj25Ro9nFafUROGeVVeI6kOYeOrxEtCjcDQVaQK9MECYx/l1WQ6T78I1eUixdRRBFFFPFOwn9ddTpfv+I0XKezEr6veHb9Rj5w+98pTyS477orqSkv4wt3P8Tz6zfzrXNOZd6YvWdrOmv+oZw1/1D8QPHY0ysZNbyaieM6hyOEqNu0h9bmNABrV2ztRDplAp9X67cwrXoESad3t9yL9qzjI8//ghInwZ+OvoGhJVW9ql9E1yjeLxWxN/zPvPP49pxzcbuI0Okrntm+jqueuJ1yL8mDp32YwakyvvvBH/HK48v57G3XM/3YQ/Za/5RLjuSUS47EVwEPb3uFMWU1TKrsnEE+REOujoxqBWBHek0n0inj+yzZXseMobUk3d6tS8/vXM9VT/2OEifBfSd/hKElb72S6t2ArtalysrKHpE7gwcPZvDgfYdNzp8/n8bGRp5//nnmzZsHwHPPPUdjYyNHHnlkt/VCwun111/nscceY9CgQfs+oC7Qf9+oPiBUOkX+SqGRsiVW8O17V6+O5Tq9BDoAFdi2FQSBJvDJvwKB7wuCQKACgVIQKAiUwFeCnIJcIMgp+woEuUCSCxyUtrRNJPVRCBRChK+4/CjiwVBaEwTGs8n3Y/3H+jV+TgXyJYgxPpaas7Fi2s6hIa10SF51VBB1UB3p+HaVfwkl8vMaM7bWsf/ibevYn+Fn7PkM64t4ez6dz2FEhMXG02F/pKyShphRoYKtY+ieNR0Pw9Pi4ymYkvi0Kktk2fA4I3MzYxU5jcgqZEbhpgOctDJKppxC5Gy5QBvPppyCrDLeTYFVOoUnPlDg21dgLsiIkI37Y1nFFKp4J1REEUUUUcQ7H9+/6yku+OZveXlt55TX/Uk4AazYvgulNU2ZDNuamtnT1s4/lixnS2MTf1u8tKDs7rY2lm7f3uWPo3fc+QJf/e+7ufazf6C+sa3b/g6dPZYPfeY9XHj1cSSPGMgVj9zBQ5tWRfs/vvDPXPbv27h+4Z+6bWNd826W2bTgcaxurkNpTaufYVt7fU8Ov4giiughvvvqI5z58K0s2r2p077+JJwAXmvYjkLTlEuzta2Rhh2NPHzbE2zfsJMHfv1oQdk9zW28trHrdel3657ki4v/yFXP/JiGbGu3/Y0smcpxQ65m3qCL2N0+gaue+AP/2rIy2v/he//JxX/7Ex+5965u21jbsIelOzurYlY27SDQmhY/w+a2hh4cfRFvFxx88MGcdtppXHPNNSxcuJCFCxdyzTXXcOaZZxaYiE+ZMoV//OMfAPi+zwUXXMCLL77IH/7wB4IgoK6ujrq6usjTu6fY70qnvSKQaGWlKkqY4LRQ1RSSCLqbbGxAodmOLS+1yb4mdRSHFRlXC4kW2sbLgRYBgRamf0z4nEJGrIUUGl8KwtRrPhpPGf8lV2g0EmlVKcJ6CClpCBqlNH4QU29FnyQayPkOoe5GSo0KHAJlPmstEVE6u7zJuoB8hreQ/FFGmaSdkAUKVWHxkC3RITQsNEGKhefZ+ZO+QPoC5WijzhGYOQtrqrxyKAxrC5VOMlQrBTHGNsbchpGUKKskyk9KAUEmbMickLEsdwJwzfyStbZQ0Xm1SjYNUgsTuuhYQtCJ7Y/PSixEU2TBbTeZ5gSghJlrkQWZ07jtIH1tFU4a7YCfEijPkFVOBrwmn0Szj2zPGYVT6G8VTgwCobVVj0m0dAhS+RDM0GtKYIm1YnhdEUUUUUQR73A0trTz64eNl8QXf3M/9998dbdlX1i5kVFDqqmtruhzf++bNY09bW3UlJcxfXgtSilOHzueFU31XDx7elSuNZvl1N/8hvp0mq8efzzvnzWroJ0wAUx0r9ANhBBc8MFjATj+rp+yvrmetU17OGWUybi3Pd0MQF17c5f11zXv5qxHfkygFT8+4mKOH5a/8T975Gx2ZZoZ4JUxo3pMb6eiiO5QvF864FGfaePnq54B4D+f/wePvecT3ZZduGMdY8sHUlvad6XhJRMOY0+mjaElFUwfOBylFUd/6GjWP7OWM689OSrXls5y3tdvo7E1zecuPJ6LF8wsaCcycQnTtncDIQRzB10IwIn3/YiNrfWsa9nNSSPM+rK9pQWAupau16U1DXs45c+/JtCaX572Xk4cMyHad8GYWexKt1CdLOWwgaO6rF9EH/AmrUt/+MMf+MQnPsEpp5wCwNlnn80Pf/jDgjIrV66ksbERMN7cd91lyMmZM2cWlHvsscdYsGBBj/t+a0mnmNIkDKPrqEDpQuhTWD8OS0BExIyDCbkKSaZwuxSWlDJhZDj5WCuhBX7IIOGglUBJCKRCWiZFSmv6owO0NlMYEtJCKENECY0jsUbjZp9S+ZsXHSq8tLDbjYlXENDBNF0XhoHF2aOYUqzQKykk3GLFO8l8bFsqvyk8BzpU2YR1pSWewnA7yziF5I0SIBzANWohpOVZlOXvYnIou1zm58GeEx2G82EJPOwUC23KxPpWSUM+Sd9WcGJjtYolHECJaO5DxVOcYAvLy6xG5DAqLEFkSC6UNm0pjbDeTUZlJaM5D8epHEFgjc9lTtksiYV3q4XHFKqZhDUZM0SVCK/foHcrjtA6CucTXfw6UkQRRRRRRBFvNspSSRKuQ9YPmDyy+zC1m3//EHc+vQwh4MH/upbBVXlT7kzO56O/uZNcoPjJVedSlirMRLelsZF0zmfC4EGUJjz+8/ijo32/+9ZdvPY/9zF8/BBmfOTKaHva92nMZADY2iFDEMDF58xl1IiBjBpWzYDK0h4d6zljD+WWpU9z9th8qMwXp5/Iza/+lUOqPXwV4EqnoE6rnyGwvzLVZwsVVSknwUcnnVKw7c/rXuYv617mowcfw/HDCg3N43i9YRf//fK/OWrYGK6cMrtH4z9QULxfKqLcS5KQDlkVcMiA7n3fvrzon/xtw2IEgn+/51MMTpVH+zKBz3VP34GvFLcedQllXuG6tLm1nqzyGV9RQ6mb4DPTT4j2/WTVo/zzvTsZfflYDj5iUrQ9nfNpbjPrUl1953XpivHHMLa8hlGlgxiQ6Nm6dPaYqfx4+VOcNSrvU/fFBcfx2SfuZfiwUnIqwOuwLrVkMwT2u7En3V6wr8T1+OShJxRs++OaRfxl3WI+fuixLBhWaGgex6rGnXzv1cc5aug4Lj9oTo/Gf6DgzVqXBg4cyO9///u9lomr7MaOHbtXq6TeYL+TTns1YVMS4eeVTnmVDnmFTKis6Xi8XShkovCryCzbshwOMdmN3R6SNfY9UAIpTCr7QGFUTpZVCckhiUagSKAJkPjaNSyBFkhhHJmkJWCU1Ghfo4IY0RRx1KCUE7Eskdm1NEqnAlImzEinQ2MqClVLoUKscNJjBFRsrgr+ziupRDjvYZiZ9Y9S4RxZlVFE0miBEJawC7PR2XIinG8/P92h6kkr0KFXVYwXUxK0GzuucIcD2is8hpA8Uq4w4W/haQ3yhyXsvJnke5bm0nlOMiKgAnAyGjcNrh2vjo1B+oaQcnLm3KqEMP1KjBItNjQjsNM4mSDfh5S205Ack+BKghKXoESCZzzDnLDfkGzT4AR7+d50heIvd0UUUUQRRbzN4LqSx//rOtZur2fqmO4f7l7fshsw//5tr28uIJ1+/K+FLFxtQmD+9/4n+cp789mbFm7cxGV/+Qto+K9TTuai6dMK2q1bvwuAXVvrUYGKMikPKi3lV+99L8t37ODSGTM6jcdxJMcenid1Fu5awY9X38MptYdx+dj8A1d9tok7tzzOoZXjuWH6MXxi2tGRAh7gtZbXycrtLGrczpqWLUyuHF3Qz9Tq4fzw8PfRkG3nnNGdx9ER317yMM1+hh8se3yvpNMPX32GBzet4sFNq3jv+KlUJPqeZvtdh+L90gEPTzo8d+Z/sqZpF9MHjei23KrGHQBoNHXtTQWk0y3LnuD5PWsA+J+lj/DVWe+J9j23cx0fePo20PD1w87h/DGFSsrNbXsA2N7eiK8VnjCkz8CKUn74sfeyYtMOLjq2i3VJSBYMzZPaj297ne+++gjnjJ7GtVOOirbvbG3lV4tfYu7wkfzHocfx8UOOLViXnt+znu1OA9t3NPBaw3amDyw0Np8xZBg/O/VcGtLtnHfQ3v2mAL615F+0+Fn+b+kTeyWdfrz8aR7asoqHtqzi3LHTKPeK61KEA2Bd2u+eTntjx7S1vIlUTUp048+Uf4nwlQWy5l3k7Csbe4V/+6YcWSAnonedEyj7CnKCwBfkcpJcTpD1HTI5h4zvkPYd0r5L2nfJ+A6ZwCEdOOQCgURFGemUfRdCI4VRRTlS4cjAqp+09YAyByxFgNaGlFJKmLnwwc9BLivws3ZcATGlko4UOvHsfpr8ZyDP8sRTzMW8kwqcvsN91kMp9HQvUAbF6mmpUfGXY1Q7WoJyQLnmPbChcErklVgiAOFrHF8jcxoZnjd7TuNjNOIoqwaTsaHYPpWnCBKaIKFRrkZZE26w/eSAHDFPqvwUxr/MGjMmstr4N/n2PfRrspdlyBEqEfORCgBlQub8pCBX6uCXJVCuRDmSwJMECQflSmMUHn4flPXg0jq/LdCIrEZmzdz01tMpfsqLxphFFFFEEUW8XVCaSu6VcAL41odOZ+aE4Vx24iwOHVtYdu64vPn33PGFRuAvb91mPgh4cUtnz6hrv3ERl332LL75txtwvcLfWY8ZO5br5s2jopuMQHHcseFx1rdu55drHyy4r/3t+nv466Z/8fVlv6DNby94sAM4rmYmw1KDmF09mXHlXWesOnH4FM4fOwtH7PuW/H3jD6PU8bhg3Ky9ljt+xAQcIThi6KgCBUY24++1nq8C7tm8hEW7N+xzLN0hpwJuXf4st69e1G+/kPcnivdLRQCUecm9Ek4A/zvvQg4bOIqrJh7B1OrC7++cwWOiZ8C5g8cU7Fu8Z7P5IOClXZ2/S58+5HSunXg8P553VSeV0fyDx/CBU+Z2UnR2hV+uepbXm3byf8seL9j+388+xa0vvcB199xJSzbbaV06Y9QhjC4bwNFDxzG5qmsF6iljJ3LRlGk4PfC3uniCWZcuHDdzr+WOHzbRrEtDxlDm5o9P6717A/kq4O5NS3jpDaxLWRXw85XP8Me1LxXXpbcI+13ptHz5coYP7yY1ZCAQgTDvShSqnFTsXeV9nQq+Nl0wgoq8wbe2nkRCWiWR0laZFBIuNpxMS+u3o9BItFYoZKSUUYYTQGDeXQxZkA08o16yEhubdC0SWEmprc+RiLKrSXsgSls/q3D8oUxHAUqi0ZHnUJ4FEnmaMNpulU4hkdRxf4f5KTA1svMrAhFTCYlQvGVDETXazbcrhFE5RV5KCuuJZcuHyicFQuYjHUX8XGnbT9in7S86t1ZZpT3yCitLeEV/25A8fExYoO07mmd7/USZ7sJjjU2L9MHNQCKTvxxESJCF15sG7Qqj0EoIayYVm+pwLI5EYM430iiadNI1x+Rb9koKdMJBpRx0QhZkHgzHGxJsvV5wDgCGvIgiiiiiiHcnRgyu4leffl+X+46eMpaHP/8hAqUYNWhAwb5r5s7mpa1baM1m+fLxx3eqO3BoFVd8/uwejWFPtokbX/0pUghunvphqhJ5b6mzRx7B+rbtnFJ7WIGCf3SpySA1JFVNQnZ+SBxXPozfHvHlHvXfEQ3ZNgRQFQuj+ez0k/js9JMAY078lZfuZebAkXxp5skF4zp3/KGcPmYKnpTR9h98+a/c/8fnuPwTJ3PZJwrD9kLcsf45vrvsAQSCe0+8gZGl1b0e953rl/LtJY8BML5iEEcMHbOPGgaL69fx903Pcc6IucweNGHfFfqK4v1SET3EyLIB/OG4D3a5b8HwiTxy8g0EaEaVF35PPnTQkby8eyOtfpYvTD+tU93ByQo+POnETtu7ws50C9c8fTuOEPz8qEsZmMyrQC8eP5vVTbs4d8z0gjoHDTTZxUZUVpLqIjvd5AFDeOzMj/Wo/46oz7QhhGBAoiTa9vkZJ/H5GXZdqt/Ol168j1mDRvDlWYXr0jljp/KeUQcXrEuq8cvQ/mco/wSi/Pou+/zDuuf5ztIHEQgeOOkTjCzr/bp014ZX+e6rjwAwvmIw82p6ti49v2Mjd6x5mfeNn9njtaxPOADWpT6TTscff/xeQ+cefdS48Y8atReTMdXhFeg8wRJT50Qp6jsQF+Hf4Sh0GN4VEiL2XYf+TjbzGQ7Gx8mmqUcJlFJoJdHWm0cGAseRxsvJMZkMAqHwpYqIJ7Am5SFxErtIBCZEz5UBSmuUFjhWdiOAhOeTA4JAGoWRlc9ojVXQiMjLqGCa48ce7zBUPMW8l0AXmrHbELoCCKxRuCXgZNRQpPQRvu1KWqWTqw0RqAApkNqSLVqgXEvuxM6V1oZUkdZgXIZjt4SV8jGeUPZcaSfWhr0kQnPx0EcpUmfpPMkXWWGFGewigs16jncI3wvVUQqN9PPznLfUElFkIwKTxc5OjZL5k6IkCA+yFRLlJnDaFcLXaNcQoEILHDtuE0VqlUzSjiXMlmeJMalA9FHpFH4uoogiiiiiiHcLhldXdrnddRx+cd57+6WPl+tXsLbVKBRebljJgiF5z5ETh87kxKEzO9V578jjmTfoUAYlqjr5Nb0RrGraziX/vhUQ/OnY65hY2VmNcPual1iyZytL9mzlg5MPZ3gHo+OEUzieZx9eBsAzDy3tlnQqcQxx5giJ2wPlVVcYU16NQJCQDrWlPTeF/+bSv7OxbRevNmzkH8d+tk999wRv1v3S//t//497772XxYsXk0gkaGho2H+dFfGWYHj5gC63u9Lhp0de1i99PLV9Da811gHwzI51nBnzZjpj1KGcMerQTnU+NGs2J46fwNCy8n7NxLeiYTsXPPpLBIJ/nHQ1EytrOpX5/er8uvShKUcwvLRw7e64LpH5FwA6/XC3pFOJ4wHmWbyjMqynGB1fl0p6vi594YX7WN+8h5d3beHxsz7ap757ggPhOa7PpFNHB/NcLsfixYtZunQp73//+3vUhvAlwpGR2oZwwi05IsIXFJJMHdjAkEuIOAYtImJCx5U/YQltGCJNaBged+EOyxnpjEagbTqxAIkrNAKJjyCn3M6kEPm/hRYFNkxGJaSRAnK+RIXxWqFSyfpXEeQVUCI0P4oPDaJ6Itxos/YVeDhpCjMc6E7uT7Eytpkg36p28gcjQrJE2naEUf2EXkrhsYb9i8iCypBSjiWcdL4rpBKhUMj6PcXGZX2TtCWEIK8yEhERKfLklD21Ufa86Jznv8hC51VVaHB8jZfWuLloKszYrVpKg1HLOYAyx4AA7YiIwFLWiF5rgRIaMjryENOuRFhTcQSoUOWUDCfHZLSTKkqoGPGEMn7Oe4IDgCEvoogiiijiwMa23U2s2babo6eO6/e25w48lGlVByGFYHb1vn1MQowo6d4gva9Y17KLrDK//K1v2dUl6XTmqEN4eMtKZgwcTm1J16RcHJ/4xvk89LcXee9Vx0TbVjTU8Ye1L3LGqEM5omYc54+ezcjSaoamKqktyZNY7X6WT750O3syrXxvzqWM2IsCat6Q0fz77I+SkA41JeXdlutUb/BBbNy4i7kD96PKCd60+6VsNsuFF17I/Pnz+eUvf7n/OiriLceWlkZeb9rBguHd+6z1FQtqD+LwwWOQQnLM0J59N4QQjBvQezXQvrC2Ob8urW3e3SXpdNaYQ3l4y0pmDhrRI3JHVH4d3f53RNkHom3LG+q4fc2LnDlqKkcMGcuFY2YzqrSaoSWVDI2tdW1+lo8++2f2ZNr40fwLGbUXBdS8mjE8dvrHSUinwJtrXzh66FjWN+/hyKFje1ynTzgAnuP6TDp973vf63L7TTfdRItNxdgjhIoV6ylETOEirPIjCrOj8/4CtVMsLExb8kOHYVjWc0i7Au1oo3QK1U+BRDsa7RhvICFNxjvpSBxXIaUicBSOVPhK4EqJIxSBMmFyxr+p8xUiMASTQJl3YcgJISCZyCGkJidcdCAtF2ZZDBsypl1tzlDIoEjjH2SM120PglA6lCedIvbEtmnZFgGRYXs0aRIT22rrBR44GVvFD5sVaA+ClLaki44UUUKIyOtIBoY8FMpml3PsnGO4PSdjlTxYkkmY7HDaCYcs0K4Zg/BBJYwCKiSSClRHQez8xxRKQmN8omLXg44dK7HrSfhAoNFKW1IwJMXsZIQkmBKIwHo9KUM6BQmj6lJSoOx1JBRkyyWuNAblIjT6wpZzBcqJzb/SkeArJAOFNpn0ikqnIooooogiishjd3MrZ9z4S7SGM+YdzDfe3zlspTu8VLeVzz32AEcMH8XXjz2pS6V+pVfGt2Z8vD+H3GecWDuF66ecgESwoHZyl2UOHzKWhWd/ssdtzj95KvNPnlqw7caX72VJ/RYe2bqCZ878NEIIjqjp/GD7SsMmFu4ypskPb1vGVROO7lQmjhFlVXvd3xU+ffDZXDPhRCq9nmXl6iverPulr33tawD85je/2X+dFPGWY1d7CwvuuwUNvHfMNL57+Dk9rrt4z0ZuXPxP5g4ex5emndHlulSdLOW3x/ZMzLG/ccqIg7nh0AUIBCcMm9RlmSOGjOH5c3u+LonUyYjUyQXbvvrSvbxSv5VHtq7i2bM+hRCC+UM6r0sv797MMzvWAfDQlhV8aNL8vfbVUQ3aE3xtzmncMO3YgnDC/YED4Tmu343EL7/8cn71q1/1qKywnk6hn5PUAml1NkY9kyeewndpt4XvBeU6vAjbCeVIVnYU+haFnkj5fXnlUJidzXg2mca0ZS4EAoWDQhp1kMj3lH9R4PUU9iuj8ia0TqtYWS3Atxn9hDAhZ6FxkCXOBAKCkOXIH2NIoMUJp/x+M79Ch8qgWMWQjLFkjgxCby3juuQEJjRPeRq8fDksiRYpjKBAxhSGNkoF0hc4PlFoWsE5wxBsUgtkSCC5sfEogczlxy21MO0FIlIIhe1Ia1YuY+c/PhXx60rmNG5a42XyXF14zPHTKUI1ko9RaxESl8K8uwKdiPUV2HFgSDjH12b+Ii8ngbaeWEKI0DYrf7p0dJn2DrrDq4giiiiiiCLeAVi+eTvLNtXts9yuxtbIVWBt3e5e9XH7siWsrt/D75ctYVd7W1+G+abClQ7XTTqOayYdixCCVj+9X/qZNchYYMwcNHKv5aZXj+LIwROZUjmMk4d1DufpL1QlyhBC8GrDZi749w/5r6V397/pb/F+qYge4LXGLSxv3LzPcjvTLdFltLppV6/6+Mv6F1nbsos/rX+BPdnWPozyzYUrJR89+Bg+cvDRCAEtucx+6eewweG6tHej98MGjeLooeM5pKqWU0ccvF/GAob4E0KwePcWznjwZ9z88gPFdakP6Hcj8WeffZZUKtWjsiIw5IQIjLJDxPycIqLJKqDiiqfoM3QOPYupXiLVk2MUMsIB7Vr1kyMQrt3nW1WRNKFRWmoCR6McgXA0gSNwHIV0NEJoslLiODq6+VFS4wiFtDyQiFGUoXG4BJQMIqWTdEAks2Skg1IOSguUidUyahq0UX+FJI8GIRTC1Sil0Wk3f8yATfeWD9ELyaRoinR+W0wdhIiFzbmawAOVkcgw3BGQOZAZy3V5sTnGzpcw8xipj8JMdQqUl1cDuen8ecV6F+EDWkWkYpAEPyfIlYDIWSooVCWJcLzklW+hb1d4rsMDlvnrpKCOAiercds1XquyqqKQe9R5P6eQebIKNi0FfsKUCxKCIAnKqp1C3tJrB+krRE4hshrhK7QC5RkFlw5JKWtsr1yT9U+4Ah1+B4TxgerLgvNuZcaLKKKIIop4d2Lxuq1c8cM/AXDjBSexaNVmTps9mWOnju9UdvLIIXzglLksWbuVm684tVf9XHTwVJ7buokjho9icMn+VdLsC99adhf3b13M5w45m9NHzNxrWV8FvH/hD1jXsoObp1/CSbXT91q+t/jctJO5auIRDNlHGEyJk+DHh78xtcW65t1sTzdx+OCxe/WEBfjrhhdY3byd1c3buWbiAganeu7B0hN0vF9qamoq+DuZTJLsQVbDIt6dWFK/gasX3grAFw45j4U7N3L6yKksqO2s7jm4upZrp8zn5V1b+M68s3rVz7mjD+OlPRuYO2gcAxNl+66wH3Hjg49w9/IV3HjyCZwzde8ETlYFnPfIz1jTvIv/mXcep4/sXyL6C9NP5oMH9WBdcj1+dfQb885a37KLHekm5g4at8916Y61L7GqaQermnbw0YOP7lWYXk/wbn+O6zPpdN555xX8rbVm27ZtvPjii3zlK1/pURvCmlFLnSc4TGMUKJzioXTxKLY4P6DzVQv2FZAIEqMgEmGYlo4IClMmJtuJyoOIpCiWBLGWPIZA0pF6qSPh1MnryRIgoel4oCL5kgmZy7rIrDUucjR4OpYRTiNdc0A655iMbU5+rMI1IWtRJjnX7vNFROYJy75EYWQxki5SUuViWQQxhBOATpInnOKTrGMHGr6Fc6cEMjBZ4hw/rzIqOKfhMCzBpl0TuoZjm1OmvsBGqonYdZHnKKP9wh5LKPgKSTYZxNRHGaNycrMUKKJCVVReiWQ/a6NW0o4xnldJgUoYMimcOyetTLsZe6zKeDVpR6A9SZCU+YuEMCRPWP8pXeD91QedE1He1vBzEUUUUUQRRbzN0ZbNRZ//8Ngi1m3bw7+XruWp73adWekT5+TDurJBwL0bX+OgqsFMHVhbUG7R1q0s3raNq2bNQkrJ4cNH8dQV1+6fg+gFtNb8fdMLBFpx1+aXCkinzS0NDEiWUO7lyY7GXBtrW7YD8PKetf1OOgkhqO1g9Ls/sCPdzLmP/oSsCvjazDO5aNzsvZY/a+RMFu5azWEDxzIo2b8Pdl3dL3VMenTjjTdy0003dap60003RWFz3eGFF15gzpw5ey1TxNsb7X42+nzbmmdY1VjP43Wv8/yZn+uy/Gen5zPRZYOAezYsZ1JVDVMHFa5LS9Zt5ZWNdVx2zEyklMwdPJYHTvrk/jmIXkBrzZ8Wv0qgNX97dVkB6bQzs4tyt4wSJx9e1pBp4/XmnQC8sGtDv5NOb9661MT5T/yInAr46vSzuWDM3r+3542dwbPb1zO3ZjSDkv1MEh4Az3F9Jp2qqqoK/pZSMnnyZG6++WZOOaXrrBgdESqdiPvzxAmnmMopVKl0VDzFH891x2d1mfcB0o61M7LqJmnfjdcOea8nV0Sm3CZ8SqN9SSA1wlFIR6EUuG4otREEgUZKgesomxRP4UhtzbfD68iwTdIepOdoXCfADyRZ36E9SIDQxoMpptgRTmDYDwVBTuAkAkTKNwfix8ienLThinYeAtBJDU7Yph2Mi81WF50Fy9po8AJ0yo5XCVCCoEwgMzYkLEdeeVVwIrVRjFkDbXN+BMLXKFcQOBAkwM0YEkv4Vj1l1T3Gp0sjsuA44EoIQqPwIKZY0rZceL6tX5eyZJCwf4eZ9ojVQ5t+DeEETjqvJopUcR3eQ4WcFuBbVVOQFORKzfSLAJwsyLRG5oyCSmaCyAtLSROGpxwTsqeVttesQiPxHQFuSAYapZ+wWex82Tvi6UCIBS6iiCKKKOLdhfmTRvN/V52F1ppVm3bys23PMW/y6B7V/cmyZ/i/V5/Ck5Lnzvs41UmjYNra1MSFf/wjAM9s2sQvzj13fw2/1xBCcMPk03hg2yt8cMKCaPud65byyafvZnCqjMfOuS4ingYlK/jMweeyrHEjV4xb0GWbvcVLuzfw6Rf/yvTqEXxv7kXIPmap6w1yKiCnzH1zq7/vkJw5g8bx4Imf2S9j6ep+adOmTVRW5h9yu1M5XX/99Vx88cV7bX/s2LH9Mcwi3kIcPngi3z3scpRWLN2zg1WNT3JEzbge1f3x0mf4frgunZ9fl7bVN3H5LUbV+fzqTdzyoXP22/h7CyEEnzv+WO55bQUfmT8v2v70rmf52dpfUOVV8p3p/0XKMZFMQ0oquHHm6byyZwvXTjqqX8bwws6NfOq5vzNj0Ah+cMQFyH2ojvoDORXg23WprQfr0uE1Y/j3mZ/YL2M5EJ7j+kw6/frXv+5RuTvuuIOzzz6bsrLOjKBROomYwsNu13RSxET+P2EZCv/WHdrQHQtC3rsoCskSRKY6JrKtUOUUlTUDEAKkBMfRkdIJTLiUjBKSmc9RhkoN2mhZ4mKpSCWkEQTKwc+5kLOxatKonISnTD/KyGCkY/7Gd/JZ70IoM59ojALKxYQTKjMZUd66gkmLbXN1/vjj5yJnK1iVWGFMYwfZU3iSEHbKBDIQOEFIMNnzGZEv+WoysCSgJ1Ce9cFSsSY7nHstYuOxcx9NSewVqqukMn24GUM8hcqn/JyIwroy9reUhgj0QKUEJMiHHVoPJzetcdKqsF0JypNoVxhVkwIRKBNu50lwhTUbJyIWo/H0knQ6ELIeFFFEEUUU8e6CEIITp00E4KTpB3HZgsOoLO1ZWFPCMbewjpDI2M1Lu+9Hn5vS+8cL6Y3g0nFHcem4wge1lQ1GNbAr3UpDJl2gdjpv1BGcN+qIfuv/ns2vsCPdzL+2raCuvYnhpQP6re3uMKJ0AL895v1sbq3njFHT9nt/e0UX90uVlZUFpFN3GDx4MIMHD95vQyvi7QEhBAuGmgyWJ9TClRPnU+X1zDom4ZiIFUdInBih25bJqzob295+69IH5h3GB+YdVrBtc7vxtGrMNdHqt0akE8Cl4+dw6fj+U/TdtfFVtqebeWhLuC5V7bvSG8SI0mp+eeQH2NJWzxkj+ldF2mscAM9x/e7p1BHXXXcdhx9+OOPHd47PD71/CtQomiiLHQGRT1CofMq/605hWkAUSgVEihUVqpocG+7khp9tpjTPKFeUa7K04YAOTMYyfI12BLgKFWh0ACoA18vLrJRyAI2UEkdqPDeHpzWu9YByhSWetCGlHKFxpUKgyTkSgSabdcklpPVJMi+BRjhmQnQgUIExNxdJHyUl5CRkpAmJ8y2poQQ6J9A5jc5qhGuy8mlXReRMOGE6sBMkzDiRCulqHEdF41UlApWxqipf5ImqUMIVMjshHHNSlKW5QqVQ4IKTEYao8YXJ7hZY4tEz50H6gDKqofDcS+u5FEeYjVAI44mECtVrwthZCSKfpjBaUmMy6gUJcNK2DZ1XOYVtms8ir3KSpp5yQ38qMzYnrUk1aBKNAU7OeEGFBJIJ7StsQ4ekpifRQqC1OU4tzLH7KROyF4Z6BpleKp1Ufp46zlcRRRRRRBFFvBNQVdazBzuAaw8+nElVgxlXOZCqZD70Y8LAgdx84ok8v3kzXzvhhF6PoW5XEw88tZyjD5vAxNH5lOBPbF/BPVsWc9nYI5k5sGdqrJ7iw4ccgUAweUANI8vf2MPWisY6/m/ZoxxTO5HLxs/rtP+iMXN4tX4LM6pHMayk674CrfjZ64/R6mf42KSTKHETXZbrDeYMHsOcwWPecDtvFG/W/dLGjRvZs2cPGzduJAgCFi9eDMDEiRMpL+/nkMEi9it6k7nsukOOYPKAGsZVDqQykV/PJtQO4svnn8CitVv44nm9X5d2ZvbwxM7nmFc9g9Flw6Ptj25dxT83vsJVBx3BrH0kBOgtzhx2OgLJqNKRDEoOekNtLa+v43+XPs6CYRO5fGJnsuqS8Yfxav1WZg4cwbCSrgngQCt++Nq/ac1lueHQBZT2x7o0aCxzBo19w+28URwIz3H7nXTaq7t7OLl0ULPEQ+zorHTqqHIS3bRZ4OsTKldi2ddCosGYMpFXPMVfiHw6MmHUQzJUOsV6FtZkSMrAhNiFBE80EXH/Jx0ZjAfaIet7RukUiKhfIUC4pgdlfZqkDSEjJIuUtBnpwux0tq+Q4Agz2sXajI49nBxB5MEkpDm2cPKEAB1EhleFM61FTHFkSR5HR2FtwqqrTDY3k2kuno0wrI/QkRIJa/AehgIWKKLy3Xa+COz50/EhduDChDUudzIgczpSWRUqnPLzH/4dGpTjiGhOhQY3a9VNOTPpHZV42l5X2r6ifizRFVdShVnwIqVZqHzqDQ4AhryIIooooogDD5//w/088PJKZgwdAgt3c+Z5s7nwsiNxpOTEkQd1WeeyGTO4bMaMPvX39Z/cz6LXNvOPfy3hnz+8Ltp+4yv/oCHbxvqWXfzpmI/2W1jaC0s3sHbzbj5x/FGkkt4bbu+nK57kie2v8+/tr3Pe6FmUuIVtHjxgGH9d8OG9j2nXWn6++jEAxpYN5oIxncmrdyzepPulr371q9x2223R37NmzQLgscceY8GCBfuv4yLeFPzHE3dzz7oVHDa0lmZ3DxePm8tVE/e+Lr3vqBm876i+rUs/eP02lje9zkN1T/GzOf8v2v75l+6iIdvO2ubd/POka/stLG1p43I2t2/lnOFnknTeuKn+j157ise3reaJbau5YOwMUh3WpUOqh3HnSdfstY1nd6zjR689CcD4ikFcPH7v3nDvKBwAz3H7P5B7Lwiz08VfxNVMlowQAQjfvnIamTMqEZk1oVJOVhuvnjZNokWRrPdJNPh4zQFemyLRqEk0KJJNCq/FlDO+PuC2gdsKThs47QKnVeC0SJw2gUwLyAlE1qiKtC9RWYdcxiWXc/BzksAXKAVKCbQyXkS+EgRK4AdGLeSg8USAJxSuUHgyIOXmKHOzlLsZXNdHOgFIjXAV0gvwSrMkkj6u5yO9AOmG6d7I+4sZF3ZwNapE4Q/w8YdmUTVZ9AAfSgNIKIRVTRWwd6Yl87L9CmEILhVlrtO4KR9Z4iPKclDqg6eMmklqNDp/DkOFmhU/aaHR2iiAlNBGLeQYtVCQsFnqUhCkBLkSQS4ljAeSAJRVYoXkj9LW+8m8F1wrAUhfIwJtP8eup1gGRKFNe0HMAFxrO05p1E0qVCUJG3oZ8kI2453Xpkk2aFK7FCU7A5K7s7jNOdx2H5lTCF8bRZVjfKYCV0Qqu8AzvlC5UkG2TJIpF6QrBG2DJa21gpaR0DocWodA+0DIDOjDdykellpEEUUUUUQRbzPk/ICnV6ynvqUdgN3NbbywehOB6v6n3QdeXkmgNIu2bmfblnr+8Ksn+9z/I2vXcvPjj7G1ubnbMkMGmV/ZawYWZk46qsY8SK5o2MENz/+5z2OIY2d9C5/41l/53u8e47d3P9+nNnalW7jsid9w9dN/oCWX4fhhk3CE5OihE0k5fftteVx5DZVeCQnpcsiAvactf6fhzbpf+s1vfmPugzu8ioTT2w9ZFfDU9tXUZ9oAE+a6cPuGva5L96xbQaA1L9RtY1NbPT9Z+USf+39k6yq+sfghtrU1dltmcKIagEHJAQXbjx1qwpNfa9jB9c/8rc9jiGNPtp5vrfg/frfhT9y97YE+tbEz3cIlj/+GDz11Oy25DCcNn4QjBMfVTiTZx3VpYkUNlV6KpHSZVj183xXeQTgQnuP2u9Jprwg9fjqE10VkgcqXiUykozK6QIqG1ghfm3T1yjz0KyliaiRDgJimhAljCzcUSFTyw9P2f1rraGxhiFxYUER+T2bQUmjj8WRD1mS4L/JUMn87KBCCrJZkcw7aD+VFxrA87MOMwZQVQqMtuUUgwJeghFV0aXDMhAibha9AZBZl4CN2sKLwOGN7wg9GqWZfKmzXSKWEnUfz3mH+wvOm7Dzbv1XsyySJovtA2TC2kPDBcGyB6uBdHqqPRJ4giiRXcZY4Np78NYIxQ8/pKDKwUA8VrxceL3kFHMKG/1nD8JxCKIVCmgOTZh60sNeeNAbsSph3LUEJQ26Z/SbsMPA0SuYVU6brXq44B0DWgyKKKKKIIt7Z+OY/HuOvC19l5KAq/vnZK7nwf3/PzqZWrj5xLv9x+tFd1jl15iQeeHkVM4bWEAwVnHV+33xE0n6OD991F4FW1Le38733nN5luS9dewrnnjidSWOGFGz/xozzWVm/i+WNdSzes7lPY+iIVMIlmXRJp33+uW05H1TzcWXvfg/+19aVvLh7IwALd67jnNEzOHPUtAI/md5iaEkVD5zwWZRWlLpvXOXwtkLxfqmIDvjGkvv4y/pFjCqr5p4TP8qZD/yCnelWPnLIkXx6+oIu65wxdgr3rl/BjCFDaXR3cfHYuX3qu93P8bFn/kqgFQ2ZNv778HO7LPexiVdwau0xjC0rDKH77txzWFG/k9cadrBo15Y+jaEjkjKBKzxyOsvfl6/m3OGqT+vSS7s3AbBw53reO3Y6Z4+eitPLduKoLa3kqTNuINCasn4IrXtb4QBYl95S0klaoU4B8RTPThcnoWIKF+HnCScTNqWRvkZmTRklIUhJgpRJTe+1amTWegZpTCiWK/IkUmCJDd8ocVCgdJ6Q0TjmFwqlQSu0lMiEsqbhGs8NcKSy5uHGs0kKjSMVjlA4Qkce0Z4MKHV9hDCEioOmqiSD6yrSGY9AmdR1rqOiDHmBa4gerSHT7kHWgbREBtKEtCU0sixHsjRLRWnahu4JlBJkAoec75DNumZbIFC+CX0LPY8MuSLzKigHhFAm1E6DloakCVAoR0BWExpfi4BCMis8UCekzCxJ5toyEvBA54w3lvCBBARCGDPxWHib8gTC04isMKomKCScPPJhaMJcSzpmUB6FqsXYNOGAcEREssW4QEswhpFwIYml88eERmQ1XrvCbVNIX0VKqrx3k8lWZ7IhGv8w7Rm1k7LKpyAhUB74JeBXaPwyjU7ZgQcClRPQ2rvv0oGQ9aCIIoooooh3NpraTYag5vYMSmma7d/1re12f5qKVNL+eGbw7ctP59uXd00Q7QuBUvzs1ReYVD2Y40eNZ/zAal7fvZtDaoZ0WX7Jzm3cu34FFx00nZJUYfiHEIKbZ53DH9e9wJkj+8cMu6IsxeGXT+Tvy15le9UutrQ2MqaiuldtHFc7kUmVQyhxPOZaz6Q3QjiFSDlvPNTv7Yji/VIRHdGUNcbeLbkMSmuac3ZdssqnpmyaCq9wXfrBgrP4AWf1qb9AKX6+8lkmD6jhuNqDGF8xiNebdnLwgNouy7+yZwv3b1nOBWNnkeoQ6iaE4Ftzz+QPaxZx7pipfRpPR5S5ZQxPn8pda5fQ0qbYengTo6sG9KqNBbUTOaiyhlInwdzBxgPvjRBOIYrr0jsXbynpFBfRFCid4gRUTOmkO0jPQiIKZRROhizSKGnIJiWMMiU0ig4S4LtGXaJk/hUnOkLzcR0jLbTSBSSGQKOVqScJJbOgjCApUgfFlU7SOle7ZsCRUkgIB0/mKJEax1MEgUQhTDidERQhhTHm1jrPogihUY6yoXEB0vVx3RwJJ4eDRiHxtYODIKfDL7kybUSsjN1uCS00xlfIqqR0nGwR5E9CSCZFciGdJ2kC8vMUUx9prVGhj5MVPwn7kjrGN8bOQeg3pWXkT54/D9L0qvLrfwQR1o822EO2xvAEMUFUgbwrts2q26KCwvwtfdOGCEMAw+slvFxFXuFkbLfyaqf45ayEJaIcY/Sev/CNOk/31kUuPtZ36WJVRBFFFFHEm4vHX17Nv15YxeWnzmbKmKFdlmloaaeqLFXwQNYdvnrBicweP4LDJ44ilfD4zccu5OV1Wzln7qH81/2Pc9vCl7lw9lS+fvbJXdbfkW7ghkW34EmXH83+D8q90r3298nH7+Wfa1cAcM+5V3DXpZexs7WVkVVVXZa/7tE7qWtr5vntm7nzzCs67T9kwDAun3D4Po+zI7Iqw8bW1xhVOpmkU2hKfO1hR7Ah18C0QbWMLh/Q67aHlVZx90l792gqIobi/dI7Hk9sX87D217linHHMLmq6zCr+kwbAxIlPVqXbpx5BnMHj+GImnGkXI87Tricl3Zt5oJx0/l/Sx7kttXP875xh/H1w87osv7WtkYue+I2EtLlL8d/sMBAvCv85/N3cu+m5QDcedKH+MdJH2JnuoWRZQO6LH/9wj+zPd3Mot2b+NOCD3baP3XgMK5U87qL3egW7UGWpQ3rmTpgLCVOoXLog1OPYs2eNqYfVMuoyq7Xy71hWGkV955cXJd6jANgXdrvpNOYMWPwvK5ZyU4qp47kE4UklLSqJuP5ZAgnx7cqp5xGC4Ff4uCXSYKEzR7mCrIpaVQoNgNZ4NlMZC55V6vQ98eW0TYcTVjyRNvQPpQAJQkCjSNsljckGpXPTOdoPGn8m1KOj+soQ0ppiScVKTcwZBSaEaXNlDkZpIBAC5pyJdSlK2jIlKCQaA1+IFFakPEd/IRC6wDlatAS6SkSqRxV5e0MLWtmcLIVjabNT9LmezRkSvC1g68McSSlJvA1gZIIST6DXYAxt1ZmHpEBQmiENIokrYVRCdmYdLQ2pBIgLPMjopi88AQDriXhtDQnNGRdHEtqOaB9Q/6FzG6USc7G3+kckLGZ7GzTWhBlGoz6VHlxU6H7uFEjORnwsvlrq8tyHS/SUGWnyYfW+SHxB8qV6IRDkJBoLzQOx6icHHsNWgNy7YFKCIIUBCXgl2lUqYakglQQmbCTcXqtrDwQGPIiiiiiiCL6FzvqWxhQniLhdX07+NWf309bJkfdnmZ+8fn3ddr/9T88zN+fXsrM8cP59ac772/L5pBCkLLtV5WmuPTomdH+Q0fVcugo8+v+k6s3APC0fe8Kv1p7H9sz9QD8ceNjXD3hDF7es44/b3yWs0fMYX7NpML+fT/6nPEDkq7bLeEEMGnAIOrampk0YHCX+xfv2ciVT/8CgN8dfQ0zqkd121Ycf9zwHV5vWcS4sml8cPzNBfsmVA3ij6dc1qN2iijEn9ct4sVNq3tVp3i/9PbHjnQjAxJlJGTX69JXlvyZ9iDLjnQjPzvi2k77v/TSPfxl/cvMHjSKOxZc1Wl/Wy5r1iVrZl2dLOWyCXmz/OmDhjN9kCGznqxbA8BT29d0O97vLXuMLdaP6RernuFTU0/ghZ0b+P2aFzh/7EyOrZ1YUL7dz0Wfs4FP0nG7JZwAJlbWsD3dzMSKmi73v7h1Cxf+7Y8I4G8XXsKs2p75HX35ld/x3O6VzK6ewPdnX1ewb+LAQfzp3It71E4Rhbh91WJe3Nj99dIVDoR1qV9Ip5aWFlQHs7XKSmPEuHTp0u4rxokmOqucdIGfUwdlVOjnZLcHhCFMEDg2tX2oVLIm1uF2Y2ptzK1D0klYBkJLna8bbg8tmSLlkx1fThIojZaSQBpCR0lLsjjmlRMCIQQChSDAkz5JmcUTioTwGeS2UO6kSUiF0pIK2vFUhlJRRkZ7ZAKPrJSk/YQx7/bMOH3HQSFAQsLLkXSypESWEpnGEQqhFb4CrUtQgQlxC4VS2k6oDqVFgT0fVlkllPGOUkHh+Sk4adLWF5ooLV6YlS6uHrJEXYGHVvw8izzhJFVsHIRjNedNe5EIC6nj/k8xoihUTYn8sRriUqMDjNIpyA+r4EM46PhlHIbWKfM5JDrDuNtAhN5h1jxcYkkmYbPwmesx9HGKq6LMZ+vZZScjIsKkAiegVzgAYoGLKKKIIoroP/zhX4v4n788QWVpkge/cw3JLn4gnD5hOAuXb2Dlim1s2LKHMSMGFuy/5/nXAFiybist6Qy3PvQctQMquHD+NL72h4e4c/0qShMed370CkYM6DoNdoibzz6R259/hQtndx8icmLtYfxr+4sIBAuGzATgO8vvYk3LdpbUb+C+479QUP6HJ5zFzQsf5eCBNcyp3bch9i9PPp91jfVMHNB1evCmXHv+c7a9yzJdoTUwD6RtQVOP6+wNf9n4NLevf4Krxp/IOSN7r7zqDukgRzbwqexFivi3Ctvbm/nqy/cQtKV7V7F4v/S2xu3rnuIHq+6lwi3l3gVfINGF6fT06tE8t2s1K5s3srF1J6PLCsmYuza+AsCi3Zto9dP8fv2DDElVc3rtkXz+2fu567VVlHoJ7r/gSkZW7F3F8/XDzuD2tS9x4bhZ3ZY5e9Q07tr4KgLBe0YeAsBNL9/P6007WbRrM0+eeUNB+f874jy+ueQhDhlQy6zB+yaubz3yEta37GZCN6RTY8Z8BzTQlMnss70QDdkWUz/X1uM6e8OvX3uRny1/jk9MP4pLDprZL22C8ePLBAFVyb0ryN4OqGtr5ovPPYBqL65LHdFn0mndunVcf/31PP7446TT+YnVWiOEIAh68NDckdXL8xlRSFT00iC1zvs7aUMmCAAHlOfgl0qyZQIco4rRlpwIklbZZNVNygOVNKomAHzyJtmenZUgNjZh/qex14GS6LTE14DrIqQZtHQ0biJHTjuIZBYhBVJBwslS4ipcGTA40UKV106pzFDrNVDrNjLIaSVhw6lalcdGfxBbs9XUZatoVQm2t1WQ8hQZ5ZCQCl9L0r5LxveQaMoSGQalWhlZUs/wRAMZ7bEnV8b29ABaskkyvovW0gRuCRBIE2YXSMhKQ3Y45uBMmJyDVgFKuMhYmJcQICTgWdJKWsJKmTkUgYjUT5FxOdjQRWH7psC7SUtz/giM4qmAsJLWY0uCzoLOGT4m+i6Gbag8aaUdSzjJ2PUUgJsFN5MXtnWKqAu5s7D/GLEpQpP6wH4WAlwHlRSohCRISOvTZJVNVu0UhWpKEVM6QVAKQalGlWhImpdwzNwKB3AVhiXrOQ4EhryIIoooooj+w0MvrgKgqS3Dcys2MWvccLbvambCmMFRSMoFR01j0bPrUCiWrtraiXSaO2kUTy9bz9xJo/jzM69w2+MvAaAyAfe8tIJgoKA5k+X1HbsKSKcf3PFv7v73q7zvlMO4+r3zAZgzZiRzxhSa5HbE3IFTePC47yIQSOsPclTNZNa0bOfIwZM7lU+5Lt88+pQez4knHSZVd61yAjhmyCS+fdiFABw9pOu06F3hktGfZVnjsxxSdUSP6+wNv1//OLsyTfxh/RP9RjrVZ1o565Ef05hr5xdHXsHhNeP6pd39hepECWPLB7K2bWuv6hXvl97eeGirESs05dp4duc6Zg4cwfZ0EwdVDM2vS6Pn8HLDCgIByxo3dCKd5tWM5cntazhyyDju3vo0f938uGmzzeHONcvQ2qU5m+H1+t0FpNO3X3mYv214mSsnHs71Bx8HwNyaMcytGbPXMR9TO4Hl7/2Secax69KC2oN4vWlnJ5UTQInr8fXZXYfqdQVPOhxU2bUPHcAJY8fz/VNPRyI4dvTYHrf7/6ZfyWM7XuG4If3jUfeTZQvZ0d7Crcue6zfSaXd7G6f89dc0ZNL8/vQLmT98dL+0u79QnSxhXEU1a9u39aregbAu9Zl0uuwyIwX+1a9+xdChQ3sUM9sJcRVN7F3HJl7HynUluglCkY1VOEUZzRzLG0gRJU+LCafyhKIlKETIZChMhrOY6iZ6D8mIwL6UMEbYQoBUKBd85aCkoN1P4Cd9co4k50syXo4yL0uL9EjJDFUyR0pnKRcZBghNiZBoIShFoJ02Ul5AlWijSSWo0G20BClySJIiQGloDRI0+yl87aCFQGJC+AIlkCKIjM+DAIJQsWQPIQiJonByQ8mQ1nlPJauAUlIipVVuASb7HmgnQEiFFmEGPeM5JXICoQRRwr7QkF1qlABpfZgKvlBWnaQca/YeyzYnpD1f1pNLB/b66HBuRECeUQoPzZ4v47VkvbeC2LmOYBtSurABpSPyKa7K01oTxPzAlBN7uXniK+5PFV6XoVVU3gTKvLRlVkUkzyp6OhVRRBFFFLH/cPXp8/jUT+6iNJXgoOGDuez6X1Hf2MYN15zA+acfBsCRs8dzwXtm4fsBJ8yf1KmNWz56LnX1zdRWV7Bw1UakEFSWJpk7eRQDRZLGdp+zjzyUoyeMLah3xwMvobTm13c9x9Xvnc+6rbv5w/0v8b6TZ3LQ6O4frgAc6RT8ff3k0/jAhOPxA82hd/wvbX6Wb88/nYsmTn9jE9QFhBC8Z0TvH9AGJIZwVM05/TaOq8adwO0b/s2V447vtzY3tzWwJ2uymCxt2PK2J50SjsvdJ32EbXt2MYb/6nnF4v3S2xofmHA8n3rpdpIixcSKGs557Bb2ZFv54tQzuHicIViPrDmEC0YdSU4HLBja+Xv+i6MuYVt7E8NKKllUvwqJoNwrZV7NOAaUPUcrigsmTOeYkWML6v1m9UIUmp+ufIrrDz6O1Y07+fny57lqylwOrt7XulRokv2Z6SfykYOPJtCKw+/9f7QHWW6eeS7nju5eMdVXCCE4e9LBva5XW1LNJWOO67dxfHzakfxs+XN8dGr/kOsAm5ob2Z02SqxXdta97UmnpOPy0NlXs233LsZc97WeVzwA1qU+k06vvPIKL730EpMnd/5lqacIvXUKfJxiCifIf7ZiosgHSgI4prDyJH5S4JeY0KYwBE5ZZYlKYNQ0LpHiRFsFDVjCwnYmsIqdMCOZq61HjykvEBASK4GAHGjHhNihINAOgdAE2kcqFy+hyGkfpCDlBTgCBidaGeY1MS6xh/FulmqZQtpMI2mdo8Kpp8aFnUEJDaqUhKMIcPDwKZUZWlWKnblKGvwSdmfLySqHqkSaMjdLqZOjPihjU/sg6loraU+njKLJQikgkMaHSQnw7Wep0a6RBwlA+w4g0E6ATgZIgTVJtyfEZqdTfj5kjUAgO8W85QkiE2YYI4zsOQ9JwlA1Jfw8vxd+8VTKfNYxBRpW4URAnuQKyZ7QI8oOxfHByel8CF/UdH5MMV/0SHkXKp2wZJXUoB3rEeZJgqQgSAkCTxB4RGF1nS5i6ylmrj1trisXcDWhYboQIB37+S21+C+iiCKKKOLdjtmTRvLx049kytihlHgujU0mXGxrXWNUJuG5fOpDJ3bbhhCCYQONgmn+5DHc+ZkrWbZyK8OqK3n4fz+M0rpLv6hJY2pYsX4HMyaZkLcPfv0OWtuzPPjcCp782Sd6fSxlbpJ7Nr1Gq58F4I+vL94vpFN/oS69m1+uvZuJ5SN53+iTel3/vaPm895R8/t1TFMHDOfTh57M9vYmLho7p1/b3l/wpMOAd0AoYBE9x5xB47h61HuYOqiWEtejPmsIh81t9VGZhHT55JRzu21DCMHwUqNgmj1wMj+b/QVe3LGVYaXVPH/+f6C0JtlF2N7BVUNZ1ljHnEGG2HjvA7+lxc9y94blLL/4M70+lnIvyX2bX6UtMOvSXze8uF9Ip/7C9vRufrn2Lg6qGM2Fo7pf97vDFZMP44rJh/XrmGbU1PKFecdR19bCpQfP6Ne29xc86TAgWVyXOqLPj7Zz585l06ZNb4h0AgrZPEsWxVU5YbRW5IcTKpuEFYvYcDnfsxUsqRCmsPftfpx8XREYYiNM6iZ8a1IdWL7EhlXpMLwraRRVOlL8WPYllOGERIafH7AOHAJXorKKwJHkPEk64dFW4pLOSRpKStClUJHaSYkXkMLQHy6SElyEUDhOjgrRSkUiwAdcjDl5WjtUy1a2y0pQmp3ZchqzJaR9hyY3RZvyqE+nyGRc/HYjsRGewnFNej2tjMcTgbBkiyVVcnaOHXsOAg2+RGmN9jTSDVkihZQ2VM9T4BgDbSUck+kv61jlkbBhePacWVWP0CLyFRdhSJ0itH+KOBttt0vrtxd4hriJCKHwXIr8+Y4TUlHon8pnGNR0VFmFzGceeW8xHVOEmUEFoWLJEebai2VBVNY0PMqGGF7feSGZ6c7OtXAM06S0QHuGyNRKmcyFvaS53wxZ5vr16/n617/Oo48+Sl1dHcOHD+fyyy/nS1/6EolEYt8NFFFEEUUU8bbBr/72LH+450WkFNz7kw/znS+fx4o1dZx3et8fir71wwd5deVWpk8ezk++cQkvLdvIfU8t54KTZ3Lw+Hw68NtuvpxM1ieZMLeh0qrlZReq+Zd2bMERkpk1w/ba96mjJ3FQ1SC2t7Xw6Vlv7Nf7QAc8VPcUZW4Jxwye2zc1/17w982P8++di/n3zsUsGHIYQ1MD912pB9BWyd2X8Qoh+OBBR/XLON7OOBDCWN7J+L+Xn+ZnS1/AEYKXLrmeH867jNcat3LJuL6rZz715IO8tHMLc4cs5S/vuYxn6tZz5/qlXH7QbKYPyq8rfz/xWjLW2Bvy3yPR8UEBeHn3RlzpMK16715xJw0/mAmratiRbuY/Du46K2dP4SvFHWsWUemlOHvMof2+Lv1t82M8uWsxT+5azHE1sxjyNlmXrpsxb98F3+E4ENalPpNOv/jFL/jwhz/Mli1bmDp1aqcMddOn7/sXpk5+TuQVH5FKJYw20rGXla9oD1RS4KeEUcpYZUqY2SwoBVViSRRBAXkQ9eGDkxGGdApPuCWRlGva19KQLqR0NF7hy7wHEGZMChB+uFFYokOSU5qccvGFAx6UBzlyooXBXitD3RwuHo4wcnGtISGlVdX4VEqfSqcdx86N0rBbebTisc13aNMp2lWSTOCScDzaVZK6tgq2N1bS3lhiiCVP4Xoa6YKfFWjfejlZV2upwkx/GuGSJ6RyAu1oy6IEaA1SGq4tfDdhfMYsGx+0ksYDW4i8ZxZEBJfAbjdNGuWRJY1CP69Il+VY/yfXvhKx8xMST8SuFTtH5pjy14OXBi9TaDMVqZvi1yP5OgI6EU5IW9sVqPCVwKidEua4dEeVU1g/9K5ybTsShNBm3oSVQlnPLeloM++9gdL58EDVy7o9xIoVK1BKceuttzJx4kSWLl3KNddcQ2trK//93/+9X/osoogiiihi/2BQdTkAZSUJEgmXww8bx+GH5UOqlNYRCbRxez0VZSmqy/f+662y//4E9iHjxp/cx676Vl7fsJPffvOKgrIh4QTwu69dzu0PvsSFJ84sKPP01g1c9uCfAPj7GZdz2JDuszJ5jsPDZ1+z1/H1FE/sfJ5frDP91iQHcnBlZ1+WN4LDqqdwz9anGVNay8DE3g3We4qNzQ2cd/9vkUJy5+lXMrysf9p91+FNuF8qou8YUmrWpQovSdJxOGboJI4Zmg/tja9L65r3UJVIMTBZutc2A60K3j/17F3sSLfwWsN27j7tQwVl4wqoe9/zAX614kWumDy7oMwzO9Zw9TO/A+COYz/EjIHdm4EnpMudJ1y/1/H1FHeuf5WbXnoIgBFlVcyp6Vn2zJ5idvUU7tv2NGNKh1HdX+tSyx4ueuzXuELylxM+yDCrQCuiAw6AdanPpNPOnTtZs2YNH/jAB6JtQojeGYl3AR1/yI991tIKT5x8ZnltM9IFrgbHhMSF4VOhKiqQ2oTXhaqYABM+Z8tJH5wMOO12nw3Z0sKqnDRoIVAJjRYaXIVMKiixiqHAhKhF5lLxkF4F+MIoboQgk/VQ7ZJMs8euklJ2DyxhffVWppTsYLjXzAAZ4AltOC+tIs4jJQQuAgn4aAbgk5UtNDqNbHfL2Z0upTGdpD1TjtDQnkmSbUkimm2Kt5RGeYJUMkuqTJNxHDIiCe2uIYcs4aOzmIN3MC9l5op2ifYFJAMCTyEdw944WuFIbcgnR+ALRSAUqtlDpKUx//Z0Pu2cPUcE5jxGxJMvotC2ICS9YvMvfZAZogxw8fA3rQwxFWYyFL45j9LXlqAyJuDmy2wusE52SXGCKFQ4WfIp3Ketuk65EuUZ1VWQMj5TgQ3j1B6Rd5MgP6YojNBeEzKXv7a1bVhbFZdS5gLSucLY8H0iRtzur1jg0047jdNOOy36e/z48axcuZKf/OQnRdKpiCKKKOIdhvNOns7kcUMYM2wgpalCteqn/n4fDyxfxVffcwI1ooTP3HoPZakE//z6BxhY2f0D3rc/dy7PvryOgyfV0tiWZubkEfxr4SpmTdm7Qfjwmio+ffkJnbang3xq8Uzg9/II943GbJqT7/8RrX6Wnxx5IccOM+TSoEQ1AK5wqPIq+r3fIwYdyp1HfwdPOP2mVnhhxyZ2We+Tl3duLZJO3eFNuF8qou+4YspMpg0ayviqgZR6hevSxx+7i3vXreQbR55MdVmS65/5O+VukkfP+AiDUmXdtvmLE87n8S1rmTl4GA2ZdubUjOS+TSuYN2Tv/kCjKqq5cW5ndVJ8Lcqqvj3v7g2N2TSnPnQLrX6Wn86/mKOGTgCgttR8pz0p93q8fcXhg6by96O+26/r0ou7NrEnY9alJXu2FEmn7nAArEt9Jp0++MEPMmvWLO64446+G4nTKbIpr0AiLxiJ1CxaRNnqEPaBv0ygPEtM2O+9ci0hUAq6hCgbnbRkk1G0GDLIyYDbCq4lAkIyQzmW5PAgSGl0qUIkA6SjkY5C+Y4J28IQO0LFCCdtRi9CEyRhFEU6kGSR5JSLTmq0J/HcNAnZiiSHEDF7JAxH4gKekLjGKpwAhS+gSaXYGVSyI1vFrnQ5O5sqCZRABRLV7iAbEkgfVFKjU1BSmqU0lSPrO/jKhYxrM/YJoz7CqpxcK7zxRXRcJlzMkEdSgpQCR2pcRxuTccAPBEhN4DtIX+L4Ar9EmwMQhryS9uUnTVsiY1RWEcmlLYEkrA+XC7LNbNfWj0uq/DmSgTnvkQLOt9eBb7yXQoLHzRhPp1C9FL/mRHjRhbF3MbVbGOIXhXW6EpWSRt2UMgq7KBuiJY1CsjSK2guVWVbMFHGp0jBTQmp0lNZP52MLu5Dy7g3RdyRWs6mpMDVzMpkkmUz2qt19obGxkYED+0d+W0QRRRRRxJuDjbsbuOgHtwOaP15/KfU709SUl1FVkkJrzYOvvU5g34+1Kb1b01kaWto7kU7LV2xl46Y9nLjgYKqrShkzcTDvveX3OFLyl09cyievOIGBVXtXInSHE0ZO4GcnvBdPSuYP638D2fs2LaM+a7ysfrFqYUQ6zRgwhe/P/CoJ6TEkNajf+wWjgOhPnDZ6Ms9s24AjJSeMnNCvbb+b0NX9UhFvD6xvqufs+36D1nDXGe/n9fpdDCktpypp1qV7160i0Jr71q3iqDEmrK3Fz1Cfbe9EwizZvYU1zbs4c/RUBpeUMal6MKc/8AtcKbn71A9y4+xTGNxH4mZB7SRuOfxiPOkwd/DYN3rYnXDf5ldpiNalZyLS6ejacTx0+rWkHI8RZfuHvOnvdemUEVNYuHM9rpAsGNbzjJ8HGg6EdanPV9aGDRu46667mDixfyXHlq8xiLFOkcJJkM9m5hiBkZKgkoYYkNYAXEkIHEVgQ7kEoHxjyWRC4CxJkQEno5F+SAbYPgMTcifT4CYFOU+CI6EkRyqRpaQsR9LxUVrSkkmSTifIZR10zjHKJxUbbJhZTWP2AW3tZbzQPJ7Ng6s5ZNAWDqnYzphEPYPcFlIihys0oRjIEQEugRmWJUaSIkulbKPKaSXlVCCVItucQklAC7RUSF8iFQSOJJ1IkPRyVCTTlHkZGr1SWhtL0O0OKmRVcgKkDakLw7usrExkTYa6ICEgqfDcAMcJbMSZRkqF40hklSbrevgtnjFcD0P0BCjHqKKkHyP0lI4IOw2QtKome851iflb5vKeSaGaCd/MbahgkzlzHmUuJl4SmNA3rXEyGifQiFC2GBKlQtuMiTpGOun8l19gQumURmuF70j8JOTKIVeqCUqUIRFD0jEQhjyLiLtwzCIiRoVvCVZEXrXlS7QnCHwbAtmrL47OywTt+6hRhbLbG2+8kZtuuql37e4Fa9as4ZZbbuF//ud/+q3NIooooogi9j+WbqqjOZ0B4OdPPs9fly1nYGkJj3z8Q5QmPG46/UQefG0VHzv2CKYMqSFQmhGDqxg/vJCA2VPfysc/fTtBoNixs4krLz2StTv24AcKP1Bs2tPI+IP7TtoIIThlzP57UDlz9KF8f9kTtOQyXDvlyIJ9I0tru6n19kSZl+B/jj7zrR7G2x9d3C8V8fbAkt1bacqadenHSxbylxXLGFxSyr/fdw2lXoL/d9TJ3L9uFTccdhRTBg4m0JrR5dVMrBxc0M6udAsXP/4bAq2oa2/iowcfw5qmXfjarEsbWxs4vqrvz69CCE4cNuUNHevecOaoadyy/Ala/CzXTCr0WZvQ4Vjf7ij3knxn7jlv9TDe/jgA1qU+k04nnHACS5YseUOkU1dMXmSH02FnZKplFSPaFegU6CRGEZO1KhJpM9aVaFQJkCBSOTk5YZQxAAqcLLhpHamcdGicBOAYkiMogSCpIaERSUWqJKA8laM0kcWRipZskgBJIKRRPQXCekLFmbPYJ0tGaQTtjoNIaipTOUqcLJ7MAoqASPgTiWRC1V0AtGqPXUEFW3PV1GUGsKOlknR9KcqSOyIncNIOUoGf0lCqSJVlKU9lSboBLdkEremkITa0zBM0odeSVWaZjbG5cQXShURCkfAUTixrsQoVYgh04CBshjztmHBLEYDjW6VTiZUBBSC1iMy3hVUuYf2bQqWTUOY861DRpmxZ+xK+KeNYM3gZfmeFORahtMleFwufjMLm4tddXJ2k82dOS8CV6IRElQiCMolfbkgnv0yjS2IeTFoYQ/bQwSqw7YkONoRxjyfHjEBIS1w5GKVZL9CVAd2mTZuorMzL67tTOd1000187Wtf22v7L7zwAnPm5LPZbN26ldNOO40LL7yQq6++uldjLaKIIooo4q2Fit3U1mfS5r2tndZsltKEx4WzpnLhrKlRmatPP7zLdlxX4rqSIFCkUsbb87QZk9ha34TnSI6ePHb/HUQ/oMJLsfDsT/Wo7KqmrTTm2pgzcEK/G/gW8ebhQDDsfcdCKKRjPDAaMkbps7u9jdZcjlIvwSWTZ3DJ5BlR8esPPbrLZhwhcaVZl0ocsy6dMfoQNrc2knRcjhv29lYCVngpnjnz0z0q+3rzVhpzrcyunlhcl97BOBDWpT6TTmeddRaf/OQnefXVV5k2bVonI/Gzzz57n20UhC52jHnSFISr6dDrB+uv42oCKYxixjGhdGBPmsJkUQvsGXRBZyQiC257Xukkc4Z4Ejkdy0imUa4JKdOuUdm4CALfQWWgPSPwBvoMLWliaGkTiYqAxsoUu9or2NlWRmNTKbm2BORk/gADgYhZEejQK2lLCesaa9ndWMb4wUOYUL6LEak91LgtlDtpSkSWlAhIihyeMAxoVktaVQKNJiWzDEi0UlPWTHawQ0tLykxjQhAkA2RW4rQZH6J00qPZTeKVtjIo1UpiiM/u5nJaW5LoVg+RlUaZpKTJ0mfJPVwbduYo0BrlC1RO4CYDypMZAiXJBZJc4CAleG6AqEyTcxPoZhfZLsE34XtKgNQat92cMy2sB1I4LxKCJNFcaaHxy8BJG+8jrYznE2EInmtJp5whnLQw5KP2Na7JTopyIVcqUI7Aa9W4QT48D6UiD7D8IGLfdOv/pJUAqax/lwBfI3IYpZWjkCVZ3JIARyocqfCcAFcqgkDSnvXIpj38dg/aJU5GGlWdDo89r67SvkAEAp2RkIsxej1BF7HAlZWVBaRTd7j++uu5+OKL91pm7Nix0eetW7dy/PHHM3/+fH72s5/1bpxFFFFEEUW85Rg9uBopBVIIPjR/DoeMGMohtTXUlPcu3KSyooRf/vgDbNvWwOxZYwFj6H3diV2TVH1BNghIOL38N7EHeL1+F2Mrq/F60PbG1p18YOEtKDQ3TbuYU4fN7Lbs3zc9xeL6NVw94T2MLhvSjyOGF3ev5vsr72LB0Gl8aMIby4T1VmJjSz1XPvk7Sh2P3x/3/n0aQfcrDgDvlHcqxlQMxEsYo/Drps/j0Opapg4eSk1p79al6mQp95x8HZta6jly6HgAEo7Dx6d2TVL1BfttXWrcxbjyatwerUs7+NBz30ehuXHqJZxcO6vbsr9d/Twv7NzAp6aewLiK/g0ZfmrjBr7+5GOcPnES/3H4kfuu8DbFxtY9fPDp2yhzE9x29AcYkCiuS/2JPpNOH/7whwG4+eabO+3rqZF45G8T93GKNsbUJ2GhkIRyjBJGJ60iJvLBwWRQA3RKoEtC7yCBlxZ4mZjSSYOT1SYkS0PgmbT12rOqHktm4VjCy9HgCbxSn8EVbQwpbaEykSGrXHzt0q492nMJclk3r1KRgC8QOq9y0Viljm/UREG5JlXmU5nKUurlSFnCwuqmkEY7ZFVPgnYStJJiT1DBbr+ChlwZDZlS2tNJo7JKKmhzcdMSGQhypSDKFIkSn7JkllLPRwpNSy5JOueifRMOKLQ9VhvyFfkLaUP+4IBwQLqaVIlPeTKLFJqcligtUUiUkigt0Eh01sHJhmonEFoYJRIitJLKK9pE/vwJZcahrOpK5jCxdqHyyc8rlSJvpyhTnTDzFprBO6A9E77m+IZglEp39nTqDuEC4El0UqJTRumkk4IgBapcQXmAW2pCDR2p8VxFyjJbuYxDgIPSDgQSqUIDexF5ZEUxlHbeNRjFk+6t0kmb8ED7uTcYPHgwgwf3TK67ZcsWjj/+eGbPns2vf/1rpOxlGGARRRRRRBFvOaaPquWBz3wAKSXDBlQwe+ze037vDSOHVzNyeHU/ji6PnyxdyHcWPc4FE6bx3aPO6Ld2r7jnLzy5ZQNVySRLrvr4Psv7WqHszWlOdW9o3pRr4wer7gSgxE3yhUP2/oNOb/GnjU+ytnU7a9du5/3jTsCV/f/Q+2bg6R1r2drWCMDi3Zs5YfikfdToP7yR+6Ui9i9mDhrBI6d/DEcIhpVWMWdI37OzjSkfyJjy/eM5+tPXnuG/X3mMC8bN4Fvz+i+k9fKH/8hT2zZQlUix5OL/2Gf5wnWp++fu+kwb31jyIABlXpJvzdm3MKQ3+NXil1i1ZzevP/8sH51zeI+I/Lcjntmxhm3tdl3as4kFtZPftL4PhHWpz6STUh1TgPUe0ZSKrkk9LTAeQHGf51DZ5Bpiwhg5a1RCo1wTXuWkTYiTaBXoEuPnowACjcwYAihU2aiEILAEReAYlZNfgg15Mioar0ngtUDQLMi1lrAhI/BrBROrdzIi1UhtRSOjSvawKVXN+tRAdjVUkG3zrH9TLMQKQ15pz5BrThpUXYKtmWqaW5NsrKpiRFkTI1L1DPGaqXTaKHOyJEQOVygEipxyaNcJfC3xCKhw0oyp2sPAVBs7W8tpzXr4XkCu3CGXlSA1TspHSmVD4DSlbpbxA3bTkEqxp6yUxqZS/JYkZGWeaFECHG1DDs02rQXKlzQ1lNCedkmlsnhhSB/GVFz7EPhGGaSkxNHm+DXWk0nnQ+KCMLwMCFP1aSecKkO0BSWG6EKLKOtbpISShnRU0hBK2gWdxaRS1cbfyWk35I6SxpfJSWtkJkAEyhh4O9JcZ0Gc6RRWTSfJlTukqyXZCkmQtGSYDQd02gV6j0e23YGUQrgBTtJHlCmGlLcwrmI3jlC05JLsai9jT2sZ6bYEuYwDOUPIGQYuvD7sRIdZ73oDZV/E3vsZW7duZcGCBYwePZr//u//ZufOndG+2tp3lvdFEUUUUcSBjhEDq3pdJ+v73L1kBRNrBjFj9LAuy3z7d49w579f5ZMXH8dFJ+Z/ed/U2EhNaSmpDsr4veHBjSvRwIMbV/Ur6fTqru0ANGYyBErh7OMHlPHlQ/nRnGupa2/guCGHdluu3E0xtWosyxs3cvigKaQDn7vXvcbB1TVMHfTG/508e8Q8VjZtYcHQqTy6/TV+s+ZJLhs7nzNGztxnXa01vlZ4lqhSWlGX3kltqgYp3twfkE4dcTCPbXudUtdj/pBxb2rfb8b9UhF9x8iyAb2ukw187tr4KgdVDmHGoK4J9BsX3cdf17/MF2acwuUT5kbbNzU3UFNSRsrtxbq0eYVZlzav7FfSaeluuy5l0yhtFF97w/jyWm6ZfR3b2hs4rmZqt+UqEylmDRzJK/VbOLZ2AtkgxyPbX2ZixXAOqth7ZtGe4OJDp7F05w5On3gQD25axa1Ln+dDh8zh3PHdr5UhOq9LmvXNexhTXr3Pdbm/cerwQ/j39lWUukmOqBn/pvZ9IKxL/WtR31vEFC7QWXVSsDv8I/S88cxLWyWSslk1Rdb6AkmMOkYaEspNC9yMEZjkU9qbh3xhQ+vw8l5CSENuhMbPWgi0p6FUU1KRY1BZG9WJNGVOlpx2aFMJGv0SGtMl5HwXtERoayQdHoXEGHRb4kQEAspBlipSJTnKEj5lXpZSJ0fC8XGlxrGuTlKA0g45PNI6SXNQQnNQQlolAEGrnyDtu3lTcC3AEQhP4SYUqURAmedT6uVwpKY955BRHhk/gZ/1IMjLxQwpZ5VO1uhIxLKqCUfhugon9H+yb34gUcpBBxIyJotdKGkKFWtR9jnIq3yIbYufY2FIRIEhgZDWuyv0mHIwGepiIXNCC6Syaifbnkbg+Bono5C+Qvj22+wYRlPE1E/5THJG+ZYrl/jlDipFlEEvVMEpm+3PZK0z8+R5mvJUjspkhpTr4yuHrHZp9z1ygUOgpPF9EiKau7zsi/x10suw7DeDIX/ooYdYvXo1q1evZuTIwn+k9LuUlS+iiCKKKIKImPneQ09z2zOLAPjthy5izrjOD3j3PbMcP1Dc/+yKiHT6zaJFfP3xxxk7YAAPXnUVrn2YeKpuLV9b9BDvGTmFT01f0KmtL84+gVuXPcd547t/oOoLvn3cqXxz4ROcOWFyjx9skrKEL7x4O0nnYf5xwnWMKB3Qqcy/t63jgmGnceRhY0lIl+8seoIfv7qQhHR48X0fpzLRtwyy7bkcWRVwzJBDOcaSXmc99j02te3h+ysf3ifplAl8znv416xp3s3Pjr6QY4dN4NY1v+fxnc8wt3oGn57ykT6Nq68YmCzlZ0f1rwqspzgQFAUHCgKtcITku0sf5bbVzwFw+7HvZ05N50yX/9z4CjmtuGvj0oh0+tVrL3LzC48wrrKah8++OlqXnty2lq+99DBnjJ7CJ6cf16mtL848iZ+tWMh7x07r1+P59vzT+OaixzlrzMH7JJxCeLqUTz/zZ1LOY9xzyjUM7yKr3cv1r/GZ6fOYPmAyCcfl52vu5fYNj+IJl78fcxPlbkmfxtuezpELAk6ZcBCnTDAJH479+61sbG7g2y89sU/SKR34nHPvbaxr2sPPjz+f40aM53ML7+Wva1/l1FGT+Omx5/dpXH1FdbKMHx9x2ZvaZ4gDYV3qE+nU2trK7bffzjPPPENdXR1CCIYOHcpRRx3FJZdcQllZz2JvNYYbAWKxdvmd2j6Xh0WUsA/7njUL9zRBQqOTGlIKPIVKOPhC4mQFsl1AznoFpTS5LLhtIjKMVlYlox3j4aRc236c+HDByRiSyFVAIGnxK3i13WNXTRmTBuxgUlkdo5O7SUmflMyx3h1o1ENtnpFpKeszpS0B5WAyt2kgA0F9gp1+Je1pj8byJLtKyxicbKHaa6PSTVMqMyRFDoEm0JI2lSCrHaRQOCLAEZIxlXuYPWgjk0q3MdLbQ0r4tAZJdvqVbMoOpCVI0qqSCMAVinLHEGYVXppdqVIamsrINCXR2dBsCePxZEMLjZ+WyT6nMg5t7aW0uQqvNEci4eO5AamECd3TGvyEg8qZ7HkhiRKGLcp2kFmBE5h5KGAXLXkUkkrKA7I2w51PpAKKMthhQ/J0eI1oJBqNNuF0gdVMCW3JIVtfaYSfM10KwHWiAaikQ5ByyFY6tA+WZAZotGvmJDQ7l76pKAJQWQeVkGhX0d7msrEpSV1ZBRWlaYaWN5N0AkZVNtBe1kpLNkl7zqM945JOJwjaXXsRxhVPGu32kuZ+E2KBr7rqKq666qr903gRRRRRRBFvS/zoyYX84MlnuWLOTNLt1jBRw6sbt3VJOn36shO45+llXH32EdG216wydmNjI2nfpzxhfin89aoXWNu8mx+99jQfn3pM9Gt3iHlDRzFvaN9DbLrDqeMO4tRxvcuKt7xhG1kVkFUBa5t3dSKdnty2jg8+8ScAfnv8JRxdO46UY26zPSlttt/eY0drC6f86Te05LLccfZFzB1mfvS5cMw8frrqUS4cPXcfLcC2tiZWNO4w46xby7HDJrCudSMA69s2921g71QcAN4pBwJuWf5vbln2b66cOI9m3yRD0BoW79nSJen0lZmn8Y8Nr3D9wcdG25bvMcqijc0NZAIfV5p16Vcrzbr0w2VPc/3UozutS3NrRjO3iz7eKE4dM5lTx/QupGtpfX5dWt28qxPptKj+Nb627KcAfGPq9cyonkxCGlWXJx0ceka6d8SuhhYu+fxvaUtn+fEXL2TGJPNvweWTZvL9Jc9w+eTu/aVCbGttYmWD+bfhyW3rOG7EeJbZcxK+HzA4ANalXpNOy5cv5+STT6atrY3jjjuO0aNHo7Vmx44dfOYzn+Gmm27ioYce4pBDDtl3YyHZoGP+PhBNfNzuJ0oI5+Rf2pJC2tPgKfPgnhPWL8mEh+FYoiBrPYV0rBsbShURTE6e7ABra2Qzo5nZEsZHqiQgWZqjMpWhJtlCUgY0BSW0+CnqM6W05xIEvvXxsZ5OBUotyBNRSSChcZNGjVTi+ZS4OVKOT0IGeMLHJbBeV4IAFx+PrE6QVh457SKExhGKQclma0KeRWuJLxxaSeLj4lvpkCsCpICskmS1a9ROuQS5nIcOZF6VZecvMhUP1U7hPmHC3hxH4UiNIw3ZpLRE+TZ8zBedTqIIQOZsH2HoHvn9ITmlw/VdGaWTsNdFeP502GaYkc4Wl1b5FJ43gSEdhcL4d2VV3j8svA6lzHM+jkQ70oTWlQpyZcYXCvJqrUhpJUFLk6Ev9L1CgnA1rqsoS+TwHIUUhizMKYdAG9+rSBGm82owtLkco2PrDQ6AVJtFFFFEEUW8+bhv+Sq0Nu+PfuyDNLamkUgumNf1r/xnHX0oZx1d+Av3p446iqpUirkjRkSEE8ClE2axomE7p42cUvBgt3zPDrKBz8ya4fvnoPqAM0dOY13zLkrdBEcO6Rx6kXDyD2+eVUx8bNp8pg2qZULVIMq9vqmcNjQ10GAzDL66czs7gj0s3rOJayYdw5Xjj9pHbYMx5dV8atpxrGjYwQcmzQPg+okf4NEdT3H04Hl9Gld/Y1tbI+1BjvEV+zklfPF+6V2B+zYtRwP3bV7Oo6d/jMZsGkcI3jeua7Lj/LEzOX/szIJtn5l1LAOSJRw+dBRlXn5dumziLFY27OA9ozuuS9vJqoCZg98+69I5Y6axtnk3ZW6Co7oIVfVE/lHfscdy+diTmFQxkjFlQylx+7YubdreQFOrWZdWrNvOhkwTL2/ZxoePmse1U3uWSGJsRTX/OfMYVtTv5ANTTIbs/znyLP68Zgnnjtt3aN6bgbr2RtqDLOPKa/ZvRwfAuiR0L+Nijj/+eGpra7nttttIxG4cALLZLFdddRXbtm3jscce67aNpqYmqqqqmPwf38RJpToXCEmnGJmghPUEco36JUgaHyedMConWeIjHEXQ5iGaHZy08ScKn+llBtxWgddmiAktrM9PqJxKhuFSljywqha3TeC0Wc8gAX4J+OWaXKXCG9rOiJoGxlTuoczJoLRka1slm5sHUN9QRtDuIdokMiOQvrAkhTke6QO+zZaXUugyhazIUlGeoaqknepkGwOS7VS6GcqcNEmZwxUapQVZ7dISJGnxk7QHHjnlUu5mGF+ygyklWxnuNlAlswx1BGmtWZcrYW2uht1BOa1+ijbl0eYnaFcJmnNJmnNJ6tOl7G4pI9tuzcVzErIhA4Jh4Fzz0mBMy6XGLfEpK8tQUZLGlQGBFrRmkjQ2lqAak8h2GRlko23GwLTAydrzbEU+YXikJjzH5rKUOROGKCwhBSBydru9RmTGnh8JMtC4aY3bpo2aKSAypDcmUcoolXKB8XFShlQKUg5agp+S+GWSXJkgUynIVmpjWh+7jmTWjD9U3YXjVY42hvMuaKkgqfDKciSTPgnXJ+n6uI4il3NoyyZoa0/gt3oFKqcwwFG1p9n0H1+lsbFxrxnowu/ScUd+Bdc13yXfT/PEM1/fZ90iiiiiiCLe3gjX+LdyPX967QZ+9dxLXDRrGqdO6Z06qDdY3bSTQckytrQ0cdbdt6GB3558EceO6Pwg9XbFizs3ATCnpv/UWVprbl38Arvb2/jAjFmc9sj/ooELxszmxhn9awj8VmFjyx7OfOTH5FTAz4+8jKOHTuxx3Z5+R4r3S/2Ht8O69GTdGn696nneN34Wp46cst/6eb1xJ4NTZWxuaeLs+36DBn534vs4Zvg7Z11a1rgGKQQHV/afT5HWmt/d+wL1Te1ccNosjv/xLwG4+LBp3Hz6Sf3Wz1uJja27Oe/xW8jpgJ8c/n6OrCmuS28EvVY6Pffcc7z44oudCCeARCLBF7/4RebN69mvJmEUV9c7C95MVJUMVTDm4V5LbeVIGuEqlA86pxG+Ud3ElVRY82qtYv5cdr+WoKU2UU6hskeDVAJyGq0ESoNwYiocT+G6PiUyC1oRKMgol8ZMkvZsgiDnGGJGYeMCjaG5TUMHObvPw6qsjBG3CZezL5MTDhWYcSoNgRbklCQbOARK4CuJ1pAQOUpkBk/5JvOZcvCFpllBs06R0a6pq0XkVeYj8JFRezqw5KqRLOUnSosok138hAlpTJpcx0eIwBq2C3KBQPsSAktQ2ZMhwmMPzHkIw5V1pKCK/S1MGW2VTIRhelYtFRp/izDULfa3sGF4RpVkY2TtsQhfgW/Og7bXQOBIlCNQjiDwBH74SpA3UsdcU9qOxYR6CkITfB2SYuE8IRBSI0xcJWiNsNdJLhBkfUmQk/bCFnlTq/BL0VsTuQOAIS+iiCKKKOLNx1Hjx3DU+DH7tY+/rl/MF1+6mwGJEr572HnRrUZrLrtf++0P+Crgrq1PUOaUcErtEcazsR8hhODDs8x9dU4FjC4byIbWPUwb0PeMg2837Mm2Rdm3trU37d/OivdL7wocUzuBY2on7Nc+/rx2MV944V6qEyV8d945+XXJf/uvSzkV8NvVz1OVKOH8MTP2y7p05ZlmXcoGAWMHDmD9ngamD3/3JBaqz7aS02ZdqrNZ7fYbDoB1qdekU3V1Na+//nq34XOrV6+murq6Z41J6DKUVMc8lrHP4ZHKSaM8q3DyzEsklA3zEmQTQMIQPCIQeTVNAlTKGlnbB/qIxPI0QQpUQuez1gUYFUxSQGDVUdpknEMKEC7tuoJVvsemsgGkvADXCWhNJ2hvTSBsJjihDdliMrblfYGEvbZE2jAVgYCcSNCoBbnAJRN4tAUpKrw0FW6ahPZJ2IFnrDl1WntklUsmcMmoAWxND2ChM4GhyWYOKtnOqORuXGHK+9pBIHClJhNIpCWBEjKgIpHD12kcqWlqT5HLOviOC9KFjAkP1EH+XEThiAiCrEdTiyCnXAaUtOMKTVVpBrSklRJ0g0RmZF6lhDAZCbHfrzB0L/RlcgBpsubJABxlVE5CA1lTzmvWeG3568PJaoQ2qjXjuaSRoVIuq3GyCidrlE0i0ARJB+0IghKXXJkkKBFkqiTKFQQpCFLgp2KkGMYPKvL98k0WRGmvEROhKQxJpg0hJZSAnEe23SWbUAhXI70AITUqEOic8c4SkcrJvgdmlqKsdj2EiF3XoreEVRFFFFFEEUXsBX95+VX++coKrj/uCI4Ya1Q8j7y6mgdeXslVx8/m0FFv7EFjQ8seABqz7UyuHswvTjyfdj/HaWMmveGx9zcygc+d65cyoXIQc2pG8cj25/nl2jsBGFE6hKlV++9B2JMOf1/wMRpz7dSkKvqt3XY/y0ef/yU7Mo18f85VTKzIn89lDZtwpcPkyv0XUjRz4Ei+M+e9NGTbOXf0jE772/w0D9Ut4pCqMUyqeGNkW/F+6d2DO15fzD/XLeWG6cdwRK0hxv+19TUe2LqUqyYcydTqN3atbGipB6Ah287B1TX8YsH5pAOfU0e9/dalbODzjw2vcFBlDYcNHsU/NrzCt1/9FwBjywcyZ3D/e1CFSDgO91x7BQ3taYZUlPdbu625LJc/+ge2t7fwmwUXM2lAPsRtye4teNLhkOr9R3LNqB7NN2deQEOujbO7SNbQksvwz41LmTVoBIcMeGPjOBDWpV6TTtdccw3vf//7+fKXv8zJJ5/M0KFDEUJQV1fHww8/zDe/+U1uuOGGXg+kO05Pd3yFBJTE+ugYkx0hFEpJm0UrlMUYJjZUjoQkhxL2c9iebUtL480jtA3nUnkiIRAd+wYcs1PnwNcC7UjSWQedFeCbl7CkSaReCewrvKBkPvRLWDUMWqMCTRBoAgf8QCCQSGnC63wt8ZXEDyS+EvjKHGMukDiuxHcFad+hUZaigXTgWbWTQ5vvkdUyUjyBNiIhbZQ8EoXWjj0hCrTMn5sCpZNRhGmt0dqozHwfFJJAS3xfGpUSGiV1lC1Qo41qLFT0BBD3uTJG7mEIn+1OW+IvsCRSRiOzpowINNK3KifHfml9SzgqjfQV0g8QWd8onixrpnUYWikIEsIQTp7Z5jvaEFjheQvHGAqS7Hxr7N+BLRcScip2TGFBpY1iLRDm5YfXRMTG5S/IeNrMnuIAYMiLKKKIIop4a/D1Bx4n4/v84PFnOOKq9wHwpdsfoDWTY932Pfz1M1f0qd0/b3iWRXvW8f7xCyhxPCZVDaG2tJLa0rdvSMHPXnuW/1v6JI4QPH32x6ktGQSAJ10GJfb/uBOOS43Tf4QTwMqmrSxtNKGBT+5YEZFOz+9azcde+BUAtx35UQ6pGklTro0ndrzC7IEHMdweu68CpBBI0dUvyT3DWaOmd7vvp6vv484tz5KSCe4+9iaSTs/T23dC8X7pXYOvvfgwmcDne688yZ8s6fSFRf+gLciyrnk3fzv+w31q97ern+eFnRu5bvJRlDgeUwa8/delW1c+zS3L/40jBE+ecQOjygYggIR0GdKPBHV3SLhuvxJOAMvq61iyexsA/9ryekQ6PV23jiufuB0B/OPkDzJt4DAasm08tHU582vGM6psIAC+UnZd6rvK64yRnUnwEN955RHuWLuIEsfjhXP+k6TTp/xsBgfAutTr2bnpppsoKSnhf//3f/nsZz8byfW01tTW1vL5z3+ez372sz1rzCqdoqkNr4k4uSGIDL6VZ3yclKeNeXjChNW59hUIgXAA15I+IbEhjEpKJy0fECZfcWwGuwTopM2CJ4CcHZwj0CnLDfj5Otq1Q804+PUltCSTxu9IaMhIRLuD0y6isDFjYp3PehaSGSEP5TsCx5EEjkvOAaQEKRCOBClROCTJ0W6JCKUhpxyyyqU98GjNJmnPeoZ0cgK2tA1gc+lAslriCChxs9QkW2zmFDOxmdAJG4EjNCVeQKBz5AIHXzmoQKN9wLEkSTiRCpPGzxJ3aInfnqQlkySdTeAlzEQF2sEpDfADB9mqEb6MzrdwjEooVHsplygcTqPNVelhTOGzAi9tQuactCbZqEk2BjjtAVKFYWugpSBIWEWVjwlXzChk2kdmfKRvpFo64aIRZAcmyJZLchWCXLkgV2HJRFebjHnatCMDo/JSMqa+s+SSUEYBF54T7ZgwTBmG8ymB1g460OA4hWFzXZmFK+NfZa6ZXi6Q8e/Mu3OtKqKIIooo4i3CudMP5u9LlnPWtCmsqtvF02s2MKyygtU797Bm3U5+uPifDCwfyeBUOaeM7Fn2pcZsG//92t0AlDgJbpx+wf48hH5DaAiekC6edJgxYBK/mPtVktJjYLKqV22tbjIZ5SZWDun3cfYGUweM4vThs9iebuQ9w2dG29uCfBhRuw0p+s5rf+KpncuoSVbxl6O/wmsN27jyqV9T4ab4y/HXMihZ+OCptUZpFZkY9wWl1usk5Xhv6AHSDIji/dK7BO8dN5W/r32Vc8YeysrG7Ty9Yy21qSrWtu5k6Z4d3LzoIcaV1jCktIxTR/dMnVSfaeMbix8EoMxN8K257wzftHK3cF2aP2QcD596PSnHZUhJ70in15t2IBBMrNzP5tn7wMxBIzh37FTq2po5d+zUaHuLnwHM17fNrktfXvRPHq1bSW1JJY+e+imW1+3gst/+hcpUkn986FIGlpUWtK21JtAaV/adKA//LShxi+tST9AnSu5zn/scn/vc51i3bh11dXUA1NbWMm5c70zV4gqmjg/g0byLWDkdltWxV5gGzjzRS0ehHGUIHymjtHcCo6BBCJQljZQg7+WE7UDYTkXo8ZQnmQTms3LyRtdobTyCAuPvQ9aqWHxLUggbVhcqnGJ+QwBCWh+iwCh08EEHAj+ArC/JSIknJEI7uFKbUC8t8bUk5wt8W9ZXENjQrEBAa84j5zvmOD2Np0twhAkBlMJ4Q5lseMLOrWkbrA+RUGhhmRUR5rSLqXAi7yL7tzbEnK8M8RMogVaGrNKOueEQSpj5FxotRaQQEn44uYa8IdDohEJ5AjyJq0REOjnpwBBJ7TmjXPIVQpkxyoQEaUyYdNIFZZVo1rdJuwKdcPCTksATBAkIXGEM6qW274UXYOSzH+SvTRHEzqnKl40y8EVKJ9HBG4soQ19B1r6Q04sr4Hq54ETeVfZzEUUUUUQRRfQXbj7jJG4+w5jDHvlfP6G+Lc0hZYNINmiE0Pxz67/Z0DqAQEnuPuVDPQp5KPdSTBswmmWNm5hfs/8MyuO4ddELPLZ+LV846jhmDO1bOMRVk+YyecAQRpUNYECyBIBhJb3PuPbyno1c8aRREd1+7NVMrx7Zp/H8f/beOk6y4zzbvp6qc7p7cJlBC4JdMTNLFlmWZUY5ZseJXlPiL7aTGN6Ak9cO2okhMSTmOCZZBlm2JFuSxQwrllbLTEPd51TV90fVOd2zO7s7szsL0talX6tn+lAdmLPdd9/P/QCsqa/m8S2PcvzYk2hPOka8fKI0nzrmNdu8fs7khXz62DeQqoQTJvgQ4lpoK1/V/vnudYvpzRv05g2e2Lya0yY1RSfrLB++/4s8tOkZPnb4mzl38rG7sHfwznkXc/y4+czrnEqqdsNNQHy/9GLi06deyqdPvRSAU679DBsb/RzSOZlGQ+Oc8PXH78I2/OeCn7/sbRw+fufibnelxnETZvLg+mV7PDOq4D+fuJXfrXyKDx/1Eo4at2tlrG895BQWjJ3CzI6xjKn4+9LszmHG3bRwz9olvOG3X0eA75/3Do4ev+tltc9v2cDvVy3mstkL6K4M0ThsJ1S05h9P31b0u2jGYXzu9FdSVZpTJnuHWy24H9vC813PL6W30aC30eDx1Ws5bW6zvNA6xxt/+j/cvWoZ/3L+S3np/OF9UbI1HzryPE6bPIdDx0we1OVwVzgQ7ku7deeeO3fuNkLTkiVL+MQnPsFXv/rVna9AWj7kt4pOrR/iQ36QTUK3utRB1SGphcShU4fWrjSS+JBvvPgDg0WBRLxTqXDZKIepeneLS51fDr+9QjgouuVJkWmk8PMGjUmsgroqxyt10H2Cqos/ukGI0Hno3BZyiYLmU5aNuRxsrsIzmDwlSxyZtfQbh0WROIdI4XRSZE7TsCmNPCXLU6zx5YT9maavXqVRTxHlaG9v0O/66UgbVF1ORZngegpOI6dwKESEJBxLVcQKFXFMocRNRHAiSFEC54IgZQXbU/GuJfDh7spBGsSsunihxoIov4wKaqItzrn1GU6m3UG3wQ5oKuuFpA61DY7qRkO6sY7uaYSSuQz6B/wBUQpqVZxW5OM7sdZ5F1Lq3WKmLcFUFaaqaHQq6uOFvCq41HcjNG0t12ARQi6+DFAowspbprc+aDohvWbZvPYUQtDeyg58rYJq00opLVqUIIP+IIbBAWDLjEQikci+Z1xHOxv6BjhiwTQuOWMm/7PulzQqgtkipEoP+eHCOsf6vn4mtnzbrEXxn6e8h8wZKrspJAyHvizj737/O8CLT/9+6ct2aT0iwulT5ox4OessP13+LdbWV/KqmW9nY6O/fD+wqdG/S2Mp+IfH/5qN2QYe2fQg75n/vt1aVysiwoXTjhr02p8ufA3nTjmGI8b4D3tXzDqGRzeuYGyljZMmHDRo3t58gPs3PgXA7Wsf3WXRKVGakyfs2gfDbYjvl16UjK+0s7HRz3ETZ3L+1AV84dHfl2+4U6XpqlS3WcY6x/qBPia2NYVaLYrvnvtWMmuo7E651DDpyxt89uHfAPCVJ37PP5+ya45PEeG0ySMzf4A/Bn//4PU837OBTxx/KRsbPjTXQfnzrvLa67/Jqv4efrfiGf79rFfu1rpaEREum7Vw0Gt/ddwVXDrzSI4d78X7K486nEdWrGZcexsnHTRY0N9cH+D2Fb6c+DfPP73LolOi1OgJk3vpvrRhwwbe9773cc011wBwxRVX8LnPfY6xY8cOa/n3vOc9fPnLX+af/umfRhynNOp/TevXr+e//uu/hiU6bX1InWz7YulwKuxO27icXHDpWF+JpwxGiy+ly8WXdRnX/Bjvg4s8Cqx2ZV5PsUGnLCYNA7I+K4iQzVQGaRed1KyUmUxFSVYxXpV7karopoYFZ10ZJI4Ep1MmSIIv68vwGVGJkGlFXfl6PucgFRvEHiEz3u1krT8mSizWCcYU5Y5+d6yDrKHo1QnOOLJEqGpFoi0K/w2lsSHfKRxkJQatFTbx63dGyg58UuwjFKqb3xntj5MrQrNsy99MyMuyyqKUdxaZFBy+zM6FLCdXHNM+BzXQlQw3xmF6ElTdovsyVD1HshwaGXaggesbAONL+qTRgPY2yAyupshrCqt8maOpKUxNsBUhr1HmN9mkNMk1rwvXfHLa+cDwYt9tOJ9bX8O2+RAT9qVw5pmt1lkcu+K52H5r+d1I7ze7s2wkEolEIsPkO+96HYtWrOH4g6bzr09+m/VbEkxdM3dcja+f8U5mdozdZpl3/fDH3PTss/yf007lA2ecXr4uIlRkz3+wA2hLEi6dfwg3Ln6Wlx6y94OAl/Uv5qY1PwNg+rqDuGTqa/i741+BiHDm5OG34h6KVKWDnvckNV3hzEnNUpcxlTY+fcIrhpy3K23nvQe/nPs3PMnrDzp/h+ttGMOnbvsNPVmD/3v6hYypjtwZMSzi+6UXJd879x08umkFJ0yYzZ/fcw0WhyhhencH33vJW5jVOWabZd7+6+9z07Jnef8xZ/DB484sXxeRvSI4gXfmXDR9Ab9b9TSXzBi6Sdee5NGNK/nak3cAsOCZKbzv8HP4zEkvRyGcNWX3BJUi46i2F+5LbUmFC6YtKH8f01bj/738kiHnHVtr4y9OO5fbli/hvceevMP1ZjbjK8/8gH47wLvnvZaOpH2H8+8ye+m+9MY3vpGlS5fyy1/+EoB3v/vdXHXVVfz0pz/d6bI//vGPueOOO5g+fdfcbyP+iyqUse3xzDPPDH9lhXjT4v4oHETlB/OQoeRacpxIHZI6VOJdOWniSBRkVnB4kcFVXFivQ6F8qVuxrXKbYR7tfCB5ITroYgB+VM4CDbyYUghULrhgiqDw3P+uGqBDflMZKh3cTNr413UWrq0UbBDDRASlvUvGhY1Y50O5rdMY5/C+GS8k5U5jnWCd9vvmBIf2Y6VVMPXraOQVlPLjRQnWGhKxiPOldtZqrNMoAa28G6nsUheUkrLErigb1MHxlTiUduQN5R1mhY1LHJIER1ToLFcs6xJBGpTli7bqs7bEAomi1t3vj0Veo2u5o2PZALq3juQG6avj6nXo7cP19fkyOkCUgvbxuI4U055g2rQvo6sGoanq9ylPwaVBcCr2sXBFBudSmduUUwpOYsN5dc1ryLuh/LMLh6Y1G9wLlUI4fd7eNUjklGapZfh9pCYnODBsmZFIJBIZPZ5ctZbv3/UQlx19GMfOHv6byO62GqfM8x3snu1dwZjqAD2NCm+ef8KQghPAXcuWAXDnkqW7Pe5dRUT490v3XT7L5Oo0ptdms66xhoXdxyIivGzWMaOy7g8f9nGe7nmSI8YctfOZR8Cjmx/lW4u/xYnjT+QVM4YWlnbGq2edw6tnnbPT+W5ZvphvPvYAACdOmcFVhx+3S9vbGfH90v7NU1tW8aMld3PRtKM4ZtzwO651V2qcOsk7fZ7YvJokMRijeMthJwwpOAHctcrfj+5Y9fzuD3wXERH+9dTX7rPtz+uawKHdk1nWt5Fzph6MiPDy2dsP9R8J/3vRVdy7dhlnT5s3KusruHXJYj51y41cMu8QPnTKGbu0jncefSLvPPrEnc73wMbHuW7VzQAs7JrPJdPO2qXt7Yy9cV9atGgRv/zlL7n99ts55ZRTAPiP//gPTjvtNB5//HEOO2z7jq9ly5Zx9dVXc9111/HSl750l7Y/YtHpyiuv9CVWOzggRbj4zihdH+WClO6QsgTJ4bdViEDBVuRKa4l3OplQw5Ro60u2xPkP+xK6p+VFvZgLeU9bbdfXiJVlYSJBkAriklMKcuUDyrOiu13Lw3hRRTL/wATBoXC8iHfWuErYZJFnZPzYXI4XtoLjxypN5iU0nPWxUalYtPIijnVgrQ+uFrFUkszHS5mitV4Qy6yQW40zfl5jhIpRVJOcVBm0WETAWC+xCoISi05yEgc5GhsOWOk2s4AJKkziSCs5lSSHKmSNhDxTmFzjjO8mKNr5EkarwXqxrXAEqcyLLs5695EYUL2CWVMl7/D7axIHjQx6ByA3uCzzD2OC6iOQJFBJcUnoRFcRGlXI2/zDVvz6CTldpfATzjHGu7X87zJYIAsnUIIrq7hUXFhXEYguWfg5CJuleFrkOLmtHq1/CDas2/ntOWmdYRgUlsDi50gkEolEdsBf/PB6Hlq6kl89/CQ3feTdu7SOd81/JX/x4BeZ1t7Gq2efWr7+yyWP8dG7ruWCGYfy2VOu4F8uv4xfPP4kbz/x+HKe/jyjqpPdD2B9gVDVNT684P/590WjvM/d6RiOG7fzD1Aj5fqV17N8YDnXLL+Gy6ddPiInVX/eoKbTYe/rUROmML2ji74845Rps3Z1yDsnvl/ar/nUgz/kkU3L+M2KR/jlBcNsTLUVHz3qYt5xy7eZWuvkjQc37zm/Wv4In7z/Gs6btoC/Oe4VfP7cl/Oz5x7jHYefVM5zoN2X2pMK1170nj1yX5rU1snFs0apLLaFrzxwL0+sX8cT69dx9YmnUtHDz1Pqyxq0JcO/Lx3cOZuJlXEM2DpHjNmD2YN74b502223MWbMmFJwAjj11FMZM2YMv//977crOllrueqqq/jwhz/MEUccscvbH7HoNG3aNP7t3/6NK6+8csjp999/PyeccMLwVla4j4qfW5/x01wQalwSXE5JcDmlkGhQyqG0F7pcCCASRYjHLoQXfEhRS0ZUGfoM3pGjixIx79oR5ZolakXAcyZgBGV88riEbmPivFiiG6Dq3h1TaAyFa0YKIUL8OJx48ctpwRXd2hJ8tzgtXjcSCXlLgnMKExQSCUKJCdMq2jJgFMaq0injS+K076CG+K5sVpFbRYp/zTjls9YdWLR3SgU1ptByXKmgiD8+uTTL6SqOtJbTUatTq+S+g17oKOdCsLqkQcArxbBQpocX86ApxokL+VZO0dAK6pr2pUL3M70kKzf4Y2ctLsug3oAs98e3UkF1duAmjiOf2EE2JiXr0r4rXUfoUBgcc6VjK7jrnArHvczfkpDT1FRAVRCcdBAKS3dUIV7lftwIGBVKBot1tzqbCofYUH8KwfHkJIwlH2KmHREzCiKRSCQyAg6fPomHlq5k4XQfrru5Uac3qzOtY3htwdfWN3Pr6qf46MJ3ctrEwwa9if/x4ofYnNX50XMP8TcnXsZ58+Zx3rzmt90/W7yI993yEw4fN5kfXfLWEXUQcs5x26rnGV9tY8G43e/6tmagh3fe8m1EhK+e+UbGV0cexD0ShvqwUzcZVb3nS1BGytmTzubZvmc5YdwJIxKcvv70LfzzY9dx4dTD+ewJb9hmej3PqWg96FhMau/g969/Dw727Af++H5pv2ZB93Qe2bSMw8ZMA2BLNkBP1mBa+/DuS6v7t3Dzqmf4t9New9nBuVNw7ZIH2JIPcM2S+/n40Zdz3sz5nDezWUL286WP8KE7fsThY6fyP+e9fcT3pdvXPMf4ajuHjZky7OW2ux99Pbz1Fz9AK+Hrl7yaCW17qKwrMPR9KS9L5PYnXn/4UTy8ZhWXzD9kRILTF++7k7+743dcNu9Q/v2ibV2vdZNTUYPvS2Mr3Xz5xL/ylVOy653udsoQ96XNmzcPmqVarVKtbptNNlxWrlzJ5Mnb/ps5efLksjHcUPz93/89SZLwvvftXl7giK+kE044gXvvvXe7otPOXFDbY+slml3rXLMMrpxqW9QkgsNHEByVJPflWlaR5wqjHTZRXgQxrXVPlDlFFG4q3+8exKKUDaHdfmabBNEi10jDoXIpw8UhOHTqoOs0nS3B5VRoQbYCri1sPgtCRbFTwenkNakgMllwwV2Tp4pEWdLElIKYH7IfX6ozOtoMeRCfGjbF1cWHnCuwGTSC46dYrqIM1hmUeMeYiEUpV14Uyh8YcnE+5NwKTjkvmijvMEtUTmd1gK60QWei2JJU6a1XGBCHMdr/kWqC48ziGgonGjE+1F0yX2anxJe8GQWqD9qWau+IEqiPTVAbaqiefshzMNYHh6cJaI3UqriOdlw18afTOaxzGHFYpTCJD6IniE5YUKEjHvjzYC1Q5Ds5yhyuMq+L5jRaMrlc0nQ8qRzUQBBKEyBxZRneoMywlp8Hrb8QI/EZWJFIJBKJ7Ck+fsUF/MEZJzBr/BjWDfRx/o//g82NAf7z/FdxwcydZwz9+xO/5OfL7+Pbz93Mry/4BLXQzQzgnYedypr+Hi6YceiQH1puWfEc1jkeXr+KDfV+JrUNX+i55rlHef8tP0WL8Jsr3s2c7nHDXnYobln1NIs2rQLg96uf5fJZR+5kidHlnxddx9efuYU3zDmVPzti18oW9hTHjTuO48aNvMzt5tWPA3DLmie3mfaf997Dp2/+LZcdciifu+zyQdNEhA09fXz3lgc4ft4MTj10++VVT21cR1elStuIRxfZn/nYkVdw1bwzmNE+nnX1Xi76xRfYkg3wpTNfx3nTdu40+cxDN/DjxQ/xFVHc94oPl13NAN528Jmsrfdw/rQFQ4q8t656Fovj4Y0r2NToZ0Jt+Pelny55mD+968doEa676I+Y3Tl+2MsOxe+WPsej61f7cS1fzBXzF+5kidHlMw9dz1eevI23zD+Fjx1z8V7d9s64aN7BXDRv5Dl4Nz7vI4Buev7Zbab9x6I7+PS9N/DSgxbyuTOvHDRNRNjY6OX7i2/n2PFzOHnC9rf91Ka1dFdqjEYi3axZgx2fn/jEJ/jkJz+5zXyf/OQn+dSnPrXDdd11113A0OLijlxu99xzD//yL//Cvffeu9tOuBGLTh/+8Ifp7e3d7vSDDz6YG2+8cXgrK8uXGPzBvPi9xYXiEu9yInHoxFdTKd+YDJ915NA6BG2HUjxRwYWkgmDQojmVIc/ecoME94pOHUlqUeKwhfvECc748jpd1ySNFsEpOKZUA5K+ojyqZd+C88qkQfBJvKChnJQihgsuJ9HiQ8sLd0yRrVQ4joL7qdgRa72zSwkk2pFngtaQ5wrbnyL9iR+PdjgNSgui/Lw6lA/6LnbB3QQIyv8kYFFYp7BWSgdZeY60o609Z3xXPxPa+kmVY2O9inEai4KiQ12Y37t+vGtKZYJuCKohKOuPiQ3usyQD3e+Dv9MBqK0ztK0cQPU3kNzgfF2hH2ulArUq0t6G7W4nH1PDtCfk7Yq8U2E7wLb5vKjSbWS9W0vy4FQTsOKdXY7gtgqCYuHEKsShotte0XGxtUxPZ8HdZn1WlKhCeGrZdnGoW9YprRdl6zXfImgOi0LoLH6ORCKRSGQHiAhzJnrBZk1/L5saAwA8tmHNsESnOR3+2/ypbeO2aWN/4qRZ/OAlb9vusu894lT68gbHT5qxQ8Eptxbr3KBvs/tz/42RcY7MjvQfy205d+ohnDppDkp2Pzh3V7hh1SIAbly5aJDo9NDGh3mubzEXTjmfNj20tPLb1ffzo6W/41WzzuWsSbufw7K4dyU3rb6H86acwOz2qbu8ng8tvISvPX0zF0/fVsD7zTNP44DfPDt0Buy//uxWfnj7wyRKccvf/hHt1W3FgV8tfpJ3Xf9j2nTCNZeMMA8nvl/arxERZndMBGBNfw+bM39femLT6mGJTgd3+2Vndozdpo39cRNm8+2zt19K/J7DzqDfNDhu/KwdCk5D3pdMBvj7UmMU7ksXzJ7PqdNmkSjFOTPn7vb6Rsqvlz8enh8bJDrdvOopFm1cwRvnnUxnOrTr5hdLH+W/n7yTtx16KhfNWDDkPCPhiU1r+OniR3j5QUdy8JiJu7yej512Dl+6/y4uH6Jb3a+XPokLz0Pxb0/8imuW3k3yjOY3F/wlbUllm3l+tfRx/vDmH9CmU3589htHNrgh7ktLliyhu7vp8Nuey+nqq6/m9a9//Q5XP2fOHB588EFWrVq1zbQ1a9YwZcrQ7rybb76Z1atXM3t28wsAYwx/8id/wj//8z/z3HPP7XC7rYxYdDrrrB0HaHV0dHDOOecMe31uq+figHsDkmuWOIbuXuK8w8Zah2px/OC8cFBNDFpbnFY0QoicMYo81xgT3DpWfG5PkZvjvMNEKYco2xSkgsNKKYdLLC5V2MRilZAMCCr3RXwu9QKETUMYtgMyUFlwOCXesYQL11Fw9VjC/I3gegoPlyus8SVyxgrO4LdrhNz4nKNy363QyJr/IFcSQ3utgc2ErC4woHxWlCiM8gpcQ2kES6pBifWVh8G6I1Ks3+c9JSqnrlOyLMEaQcK2TS7096SsGhjDxvY2qmmOKBdKAEEpX5PoQvi5Siw6MbhUMJWERiXBJpqkF1RD0L2+xM4BJvECHtY7hRoTalTzHDbjs51UUIiU4Npq2M4atpZA7kg31NEbQY+r0D81weK75eU1XxKoDJD6a0ZyX0qnLGVnwkJ4KrOrCjHI+XMoFl9al3h3W7mcpuyAV16vIUzeiQtdD10zsDxswotoTYHLQTMnbATEYMxIJBKJ7CoLxk3i70+7hCU9m3jrAh+R8PTmNdy3fimXzjyCjiHeYF8192zOnryQKbWx6GGWHawf6OPrj9/DCZNm8C9nvnyH864d6OFl132F3rzBd8+/isPHeRHktQcfTXuSMqmtg0PG7voHkIJx1Xb+++yrdns9u8rHjnwZ333udl49u5krsznbzD888c84HD15D2+Y/bohl/3y0z9hdX0j65/ePCqi098u+irP963itnUP8sUTP7rL6zli7Aw+e8LQH4I+cuZZfOHuu7bbQXDWhDEATBrTQZoMfV0t3eLLTvpNzsb6wIjGFt8vvXBYMHYKf3PCS1nat5E3H+z/Pp7esoYH1i/lkhlH0D7Efendh53OhdMPY1p797DvSxvqfXzj6Ts5bsJM/vHkV+5w3jX9PVz+i6/RmzX4n4vezOHj/If118w5jo6kwqRaJwd3Txrhnm7LuFob3718x0LCnuTjx17Kt5+5i9fPbWbFrR3o4T2//zYOx6ZGPx8+6qIhl/30A9ezsn8zax7sGRXR6epbf8jTm9fxm2VP8vNL37XL6zlm8rQhy+oAPnLceXzxkdt52UFDO8pmtnnn2qRq1zZiZsHSnk2AFyBH477U3d09SHTaHhMnTmTixJ3/W3jaaaexadMm7rzzTk4+2Xftu+OOO9i0aROnn376kMtcddVVXHjhhYNeu/jii7nqqqt429u2/8XSUOzTQk3X6v4YyukUPtyjfTYQSbNjXeF0woF1CqUcFW2oJP7TurGuMNb4kPEipChspPixcEApDTqxaN00FLlQuuYc3unUUOi68i6d4JRxIZy66FpXCBalcFFk/yTNeQtBQ4zXIZwC0QSXk3hHV9FRLTifXLANCS1iGYKxIcsJqCQ51cRQzzXZQBVpaF+qpx2k/hhq7fx+BvFIqcJ8U6RgScu+U3bQcy64pNJQcmcSnFVY5TAoMqfRzmKsz6Hy2VWq7OymwvHOcoU1GpUrVAbKSHkMnPhjmoTjmNShttmSbslRdePL6pwr7G3QVsN1teE6qriKRjUMKrNQ1eTdCXmHwrWBrTmoEMLbg4vJCCFzPrjtipyp4uIMWlPYlLI+08mFnDGk5RwXP4frrTxvhdOpuAaKLDGa20DhOwpu7+9guMSMgkgkEonsBq875Jjy58waXnfTV9mS13lw/TL+7/GXbzO/iDCnc2SZSv/wwM1864n70CLc99r3013ZfhHCYxtXs3qgB4C71y4pRSclwhVzd7+1+O9XP80jG5fz+rkn0ZWORjHE9lm9qYcHnlnOmYfPpW0r586pE+dz6sTBDquqqtKRdNCT9zCxuv0PE5dMO4XvLP4NF087ZbvzjITptUk837eKGW3bntelfWv44H3/Sk1X+NfjP8C4StcubeOYqdP44uXb7yL49gtO4qzD5zJ9fDfpdvJa3rTwGHJrmdbRxYLxI/yAH98vvaB47bxmeWdmDW/47X/Sk9d5cMNSPnnsy7aZX0SY3z0yMfqfH72R7z17D1oUd1z+4e06eAAWbVzN6v5wX1q9tBSdlMiolObeuuoZHt64gjfOO2GP35dW9W/hvnVLOHvqwdsIeGdMmc8ZWzk/25IKYys1NjT6mb6dTqUAr55zLF9+/FZeNeeY7c4zEuZ0juPpzeuY07VtyeIzm9bzmp9+h7Y05cdXvImJIyjVbuW4iTP40jmv2u70P5h3DmdMPoxpbeNItiM6vemQ47HOMa2ji8PG7n/3pYULF3LJJZfwrne9iy996UsAvPvd7+byyy8fFCK+YMECPv3pT/OKV7yCCRMmMGHChEHrSdOUqVOn7rDb3VDsF+lghfBTlqUBSOFi8ifBBcuTs5ROJ19b6FDKZxGVne1C6ZoW6zvRJRYlloZoDD4U24W2Y0pc092jvQhTnGsJyoPWILUcgyO3gNV+/Q2/HYsv4bICOg/iRh5+dr5cTA+ADVWJUri2CpdMApICGT5QPAepKmzucBk+qyi1NIxgEkFrL7KJ2NBpzmCswjovHHVVB3DjYYvrwPanfhAWXKYwWpFlfvwVZ7BW0OH4KfHOJ8GhFSRKqCQ5bZWMeqbJco1x2ndZSwzOQN6fYOqKfnGo1JGkJpw78TlJFOcIksTS3pHh2hoM1CrkUkVy5cvsGr7s0FbAVP3PDugfr7HSRrWqSDalqN4Bn71VSbDVCqazSt6RkLdrbJoiuUUPQNJjSdqFvApScWVXQBKHDWMyJoiHmReVWrOVCkdSIYxaHYSzIk4sTJfifAfByRbbCW43cd7BRSV0pCumuRZhsYJ3uVkJOWOMvLwuvomKRCKRyCghiP/An0NlFINk53b5cr7JbZ2DslaG4tTJc3jnYaeyudHPKw46atTGALCx0cd7bvsmxjnWDvTw0aMvHdX1b83b/ul7LFu3mUtPXMCn/2Dn26rqKn931F+zvrGB2e3b7+R21ZxLuGrOJaM2zo8d/jae613B3I7p20x7YOOTbMx6IINFmxdz+sQ9k30lIhw6fccf2Ko64d1He+fL1mG7O2UvvF967rnn+Ku/+ituuOEGVq5cyfTp03nzm9/Mn//5n1OpbOvOiQwPgdJlUlWjd186KOQvTa517vR+d/qUObxz4clsbtS5cu6ud/Iaio2Nft5567cxzrFuoJePHTO0k2i0eP1NX2NZ3yaumHUUnz35yp3O35FU+NmFV7OyfzMLdhCW/r4jzuF9Rwy/6mlnfP6MV/H4ptUsGLutGH7b8udZO9AHA3D/6hVceNDIs56Gg4hwSNe0Hc5T1QnvXOi/ANgf70sA3/rWt3jf+97HRRf5a+uKK67g85///KB5Hn/8cTZt2jTq2973olORYyMtj+L1QY4R/4Fdpd6VpFTTjSTiSLWhmprgfAqd7AIO7wZyLanOUmQ5iXdOKeXFJRecOdDidCrWk2lUIzidTJBTilKrfLBwUW4pOGashEyg4HCSYtbCOVM4ncoOdq7F6VWU+bXmWHkRRGsXnE6CVoaOSgNjFf0DNVyWNI9j6lCpRWvr91V5wU0pQPwxFGmeAougxLvEXHE8xduRnBMwQV0pMqEciG74WYowq3Ay/ZgdiTYk2tGXKfKBhEqPJql7cc7hyxAJbicBtBF03ZL0O3TDoTLjdcU0xVZSXEcF055g2xJMmx+8zhVKLPVORd4p2DZwVeePo8WPKzidVAgKL3ejOM/FpVPkahlfKqlcyJ4qxmmay9lQYueScrcRJdjE+deKa7lwUIl3tEkQslpdeL673wjtTlF0ikQikcgokSjFD897F49sXMnZo5hz9I6FJ3HWtLlM7+jeadehRCk+euwFo7btVmo6ZUzazvpGL9Pax+yRbbSS5d6Fn5vhf6PUlXbRle6am2hXSVXCIV1Di1xnTzqWezc8QU1XOHHcyL7hds7xx7/7MbesXMw/nXH5sDLD9hh74f3SY489hrWWL33pSxx88ME8/PDDvOtd76K3t5fPfvaze2SbBwKJ0vzvue/h0U0rOGvK6F1Dbzv4VM6cPJ/p7WOobMfF0hyD4s+P3zP3papKGFNpY329b9jd+naHzLsDyNzw70vjqu2Mq+7ZTnpbU9Gao8YPLfhcPm8BtyxfTHuScuaMOSNar3OOq2/5MbesfI5/PO1yLpi588ywPcZe+hw3fvx4vvnNb+5kKDve/khynFrZ56JTUaEEtHzyd83XCldIcIBY4x1JQdpAQhaTdUIjS3yQON4MU5bS4QUPEYdVgnWCtcoLTOUIwjqlOO+lLOQdQKnFtTcwBjKToKUosfPjMsGho0zT/SJ5ECtyR9obyu+sC2VegPL5RbYh2NSvQxqCVMA2wGSCzRS2KriKGZTvpDQ4pxBxdNUGqCVZOCJQ0TmTx21ic61Gf72CaYQsKxzWCsaC5BqnwWLR4rDWC1GpNmhxVLW/EdUSfywbecJAltCXVXAaatUGudGYTNEYSCDXmJ4KtpZ74cniOwYiPucJR0MnqMSFjCeHrVpsKthM/HEaANMO9e7g/rKQjlE0upQXqPpr6D5DZUsIEa0Fh5OGpM+fK6chq3kRTNUdkoHLKUvbnDjQvgufSXxpX4ifKnUyKcroCkEolOFZoWya2KKplddusUyr8FSIjDYJF3PqBrn5ClHQaXx3xUwQo2KQeCQSiUT2KdPax+xQkHHO8Z9P/4Kl/Wu5+pCXM6k2eN6erM41zz/E8RNnld+KiwiHjdv9vJPdpaZTrr3wj1nWt5HDx+z42+vR4GsffC13P7mU84/Zh2LLbtKVtvOXR7x1l5bdnNX5+fM+mPgnzz66b0WnvfB+6ZJLLuGSS5oOtHnz5vH444/zhS98IYpOu8nO7kvWOf7l0RtY3LOOjx19KZPbBgu3PVmdnzz/ECdsdV86dMzISoX3BG1Jys9f8l5W9G3i8LG7HuQ/XL5z7h9w15rnecmMkYnI+xNjqjW+cMHLd2nZzY0Bfv78YwD8dPGj+1Z0OgA+xw0vYW1P0epu2trtFFwmTReQQzSoomtdiGjyZWaQKBs6kEkhR7U8fDbRoNccIR/JZxWpkDsktDqcCleUFzRMliAN7bubOf8oc3wSBmf8FFtyXmwqSu0khFaLo8xp8qKDeDEk7K9LpHQ6Oe2dOlJkP6nmvldTQy3JSZTDOCFR3iaU24TMJCE0Xfl91KGEUAqxzpuqfOaSoJXzJquy1K55PBxC7pKQn0V5XPM8OJ5yBakXw/ykrU6qNMdtreD6NUmf72SngsDiUl+m6NJwzi2ous92EieIlfI4ukRjahqbqtKx5K8pgUQwbYJpF2wNX74WrnQJmU7KSrMj3VbXorRcfxDGYcI2iuuxxZElheCkW5ZruY79OXVNZ1PYRqu5yV+kgliF2JE7nYoAutYgukgkEolERsr/LL6Tc3/1ab7y1O92ON/TPSv41uIb+O3qB7lm2W3bTP/0g9fzyft/wRtu+vqwujn94OmHOesHX+Rri+7e5bGPhLGVdo4YO32320APhxkTxvDyU4+gq237WTEvZsZUanzg6DM5buJ03rHwpJ0vsAfZV++XNm3axPjx22bSRIbHd565izN+9hn+44lbdjjf45tW8eUnbuG65Yv47rPb3kv+9sFf8alwXxpO98sfPPMgZ//kC3z98b1zXxpfbeeIcdP2yn1pVsc4XjnnmD2eHbW/MqbaxvuPOpPjJs7g7QtO3qdjORA+x+1zp1Oru6n8vxS+o2A1K8rWnPNOH1WUqzmSxJAoi7GKhlHBkeadNc5JKZhAU2gR6xDddDuZ3Is91jVL1wjR0tYCSkh1RqVdaAwoXFBjXCKlyOTE4Sr4fKDM+6eKrmjeLeOQzKFyUMbvq+SCyhy2IajUYVNBV8CkPi8qbwg2A6oakwmuajHGizJSMTgRcuOdW+MqfXRVBnAOMpvQk9RpS+v01qv05wlZnnj3j3Ll3lkj1K1CK4dTFhEhVY5U5VS0RZVuMoNzQl9aZ31/O/25z2FIE4PusAwMpOQ4nFGYelFb5s+Zc/gubnmClZCnFMS5rMPilGCq0sxGsoA4bMW7g2wVGmP98cBpJNfU1lZoW+8vCqeD5y1zmFQwNaHRIdiqd5ENctIBTjlIxDvmrGBccKW1zhQ62jlLmc/kFL6jIP76I8GXe2bh/KdgUn8NlFKuC84q5ZqXuTjQrswLk5BF5qyEeS1OaVw2Qpk7ltdFIpFIZCcYa/n3m++gt9Hg/eeeTlu6ba7St5+9nQ2NPr71zO95x8Fnb3ddM9onMKdjCiv613PS+G07kXWFMN72pBL62O6YLz50O0t6NvG5B37P2xaeuNP59yWr+3v43tP3cebUeRw3cca+Hs5e5zuLb+b+Dc/yx4dcyuyO4TnXPnDMmXzgmDP38MiGwRDvl7bOX6lWq9ttT74rPP3003zuc5/jH/7hH0ZtnS8mjLN8ftHv6M8z3n/4ubQl296XvvH0Haxv9PHfT93Buw7d/nV0UOd45nVNZHnfJk6fPG+b6YXA0p5UhvUF7xcfuZ0lPRv5/EO38tbD9vP70sBmfrTkHk6beDBHj9t+FtyLlf985E7uWrWMPzvhHOaNGZ7A+4Gjz+IDR5+1h0c2DA6Az3H73ulUPG/9UC2P4BQpnD6F00lpR6KCODTIybT1SgdvsHBDFQKViDSdJy3zWuvFJRWCxvN6igz4zmvljUpaHC4QXCpNR5My3uWkbPMhrcMJTidvMQKnBKfFB1In3gHlWvKdvNvLlc6lauKdTt3pQNksz6BpuISGSTBOYa23HynVvIhVKO0qOssp5UiUJVWWVLnSSSbiQva1omETMttswSYCxmhMrn13v8IB1XognYBV4aXCZeafVR5cPcEBhgJXacl2Cl9AKNO0B+lMSAdC17/En/NCNHKpFwJdGh4Vmh0Di9NVdK9zUla3DTofrT83TVr+fArNfCZoZnNpsMGNNugvqvU6DrlcpQDV4nYSCLV7wTJlBo1qeFg3+BGJRCKRyFb8/tnn+fzvbudrt9/LTx/yZQXGWu5dsZyeRgOA9xxyLvM7J/NHh+04t6RNV/naKX/Kz8/9G44et+2Huz858ny+csYb+dH57yRRO3+7+a4jTmZ6Rxd/dNSpu7Bne5dP3nMd//zwzbzlpm9jX6QfELbHhkYP//r4z/jd6kf5xnO/HdGyzjk++Kufc+5/f4V7Vyzfpe33ZAN8+L7/4k/u/Rqbs76Rr2CI90uzZs1izJgx5ePTn/70kIt+8pOfDJ8Ztv+4++7Bjpjly5dzySWX8JrXvIZ3vvOdIx/vAcCtq57h3xbdzFefvJ2fLnkY8ELUfeuW0JPVAfjjBecwv2sS/2fhuTtcV3tS4doL/oi7X/YRTpx40DbT/zTcl358wbuGd186/BSmt3fz3iNOG/mO7WX+7uFr+cITN/CHd3wd616kNVrbYW1/L399141c9/wTfOnhO0a0rHWOD9x6Def+5Ivct3bZLm1/SzbAe279Lu+65TtsbgyMfAUHwOe4fe50KrqD4Zoup+L34uEczWwdQ+lKEhxaLB2VOs4JdZPSn6Xk1gtGzoGxraV1reJh80O9c3jXkwzOifIh3YK1GmMtShmMOMSGjKliTca7m1TDO1/EguSgGw49ALruQney4LIyXshRBlzmsA0vLtlUUBWHqop3QeWQ50AuGAPWKFwNcleISJYsdK3LnWZyZTOCo2oaaHIqKmNzo8ZAJfWd56zCBPeXsYILAeQZjkQLNikCxR1VZ1ACSQgcT8WvT6sqjTwJgeuOWqWBiKMuKXl/0nQVJSDKoive/eNy7TOejC+TQ4S825A7wIDuF3TdK2AqDxpM6p1JjaobdK0MjBeq6zSVLV7Ea3T5TKysKpg2yDvwApY4TNXhtPNOJuWznCDoOq4pNspWf99SXI+umdPkKAQmv34B7+JSfnpeM76Uz3kXG+DVsbSo4/Nyp+/E6J1NqlSgHCTWr0s5rI1Op0gkEomMLvMnjqe7VqWe5xwxzWeY/PXNN/H1B+/jkPET+NWb3sqlM47m0hlHD2t9IoLezpckqdKcNXX4IeSvPeRoXnvI8La7r5nVORaAae3dI/2KaL8jsz08s+knjK8dyaS2Y3Y6f3fazlFjDuLRzUs4feLIsmCW92zhx48vAuB/Fz3C8dO27ZK3M25b+zi3rPHruGXNIs7sHGEOyxDvl5YsWUJ3dzO4eXsup6uvvprXv/71O1z9nDlzyp+XL1/Oeeedx2mnncaXv/zlkY3zAGJ+10S60xp1k3NEyDL62weu45vP3MUh3ZO49sL38tJZR/HSWcPrYjmq96X5x/Da+Tv/u9gfmNE+DoApbWNGHNOxv7GlXuf7DzzMMdOncsLMnbtJx1XbOH7SDB5cu4LzZm77JciOWN67mZ889wgA//v0Q7vkXv3tiqe4ccWTANyw4gnOHzdnZCs4AD7H7XPRqShPA4Z2PJUzDX5NQoCSFoPgvDBoCcpua+c6GeI8SilmFaacwW4Xn71jQllfUeaXNxJUJs1yv4IgMmHwIgSUQeJFaLiERyGe+Y0HB5MrHFgOJ8qLHOL8y04Gb6s8Bi6IboaKyqmpBuIMFsGg/MOpIKiVaw/77wAVyg+L7CaHCjsmzpUiqzG+JDFHMZCn5EZjLTgnpInFOh9MbnIJfzCqGZQUdthZBc4VRY8Msvo4IPfPVsSLMsXRkObPpbvKFsdVvIlKvAhklZCnvlOcDdu3OpTT4Si27icIzjmUo7wpt2qRzjaH2LyOgmmrCCQPKqkFUOK3qfBOprxlfeF1Ka+9wdeOK4RVG1xO5Ysj/YbCDb2BSCQSiUQC08d087sPvAtjHZ1V37p92RZfWrSypwfn3B7NEvnWE/fxf++5npfMPJTPn3XlHtvOnubPjjmfl84+nHld4/dK9sqe5KF1X+TJTd9DkXDlvOtJVecO59ei+NLJf4hxlmQnnb62ZnpnF69ZeCT3rVzOaw8/cpfGe/z4eczpmIx1lhPHHwyNka5h2/dL3d3dg0Sn7TFx4kQmTpw4rK0sW7aM8847jxNOOIGvfe1rqGG4ag5UZnSM5ebLPoBxls5Qlru8fxMAq/q37PH70refupu/eeB6XjLjMP751Ffuse3saT648GIunn4UczsnveDvS//029/zjXvuJ9WaO9//h+W/V9tDK8UPLnsTubOkI7wvzejo5tXzjuL+tct57cG79sXHKZPncHDXRCyO0ybPhWykn8Ve/J/j9r3oFAQUt9UH/PID/9ZVc8WMrijxEqraUqkYBoxBBtoYMOKzrQ1gvLOHIt+pXLkry8datgq4MtdJCRgkCFA6lKe1OJzCYroBSS/oessE50L4dHDZWO+QEudQxpXOGpf70jaXgMoFZZwvwzPejSQ27Gs4BsYnfWOVwyQa6zQNk9BvK3SrASoY2sjItcY6QYkvwaubhIbR5FaTWwW5w+TeJWWcUG8k9IrPaaqkOdXEkCa5L78LQlBvo0LvQIU816RpXgp2zoWE8ELsc4A4dGpJU0vakZUOqjzX5EZhrQrLQt6TYpQm6XVIXZAEbM3nNQVLm3/OBFeFxgSH6QLdK770TkIXwBRsxZe5+dPsStGn2QFRIASVW0DqlKIgeCdT6bIr9w9crVn95sL5InSc8y4qfAloLfcCUtZ010khKiVFd8SgliEtbSlbrqvEP0bEAaCQRyKRSGT32TrH6a/Pu5Cjp0zl7Nlz9vgHlU/fcyMNa/jZ84v4J/uyEX842F9QIhy9nRbeBd96+m7uWPMcHzjiXOZ1DU+o2BfUtM8+SXUXim2zdIZCREhk5OdORPh/F1484uVamVDt4jtnfKj8fXNj8w7mHoK98H5p+fLlnHvuucyePZvPfvazrFmzppw2deqe70r2QmTrHKdPHftSjh43g7OmzN/j96XPPHSDvy8teZTPnPzyF/B9SXHk2Jk7nOfbz9zJXeue4/0Lz2dO5/57X5rQ0Q5Ad7VKqocn2IoI6S7elz5z2uUjXq6VSbVOfn7xe8vfN2f7331pX7NvRafWD/eD9ZzB84RnF1rXuyBqCA4Ri8PiAGOCO8nHVQO6RVQK59NKc1tBJ5EQKlTkG4k475qyhUsqiAVBRCrUltI0FFxOzjYDowtBquhoV3a2y0tLVpgxDKQMS/fbwQAZvltdEpxTLS4p793xL4gyCNYLOEgZwq7FoXFoLAqLT6IqvD0CYnFWY63DWhXEJcEqISN0vROHCltqNLxgVLhzcI7MKLLMl82VfySKMAp/EJzzeVEOS6otyimM+FhRYxRO+d+L1VrlgiPK+WBtCWV54o9TsX8ugVz5HpM2aRqFCtHLlfYyfKfBYjyt14M0pwVt0ru/Wi694nA5wIqfWPzsr8HQdbDYtm25cFXxe9Nd57cdrqOQFVVurPXnkWCLowcv1lrgSCQSiYw+kzs6ufqkPZujtLnRz/pGL12qjZ6sztzOCeUHu+LLlxf6N/OtbGr086n7fwFATaf8v5Nevo9HtH0Wjnsrk9pOoCudhVYHQHe9vfB+6Ve/+hVPPfUUTz31FDNnDhYB3Iv0A+VoM7mti/cu2LMBz5sbA6yr99JVqdKT15nbNf5Ff1/6m4d+DkCbTvnb41+xj0e0fd57+smcetBM5owbRzXZ9x6ZPc4B8Dlu357FVgfTUH/TrWV2yv/hSxmyEwrCnMKhEXIQhSghbSnl8oKKz2YqAqyLlYsyiHJoZVHKNfOvgxvKOe/ISbT1bp5QCueK8XhNBJ2HsHBDcGZ55UJcc5PifNc6bZ0XkEJIthPn3TOFBuVAhZI1CbqEE/Eh4wmoVOEyIAVrLc5pnPPB4QM2paZyUnF06IyaMvTrCv0mJc0dA8bRH0rTcgM4hbWCaWhoaExDkWvoTy2qYtFpjlJgTBBlHNi6BidkgEPIGwmuHqxFujhpwZ3kFCKGWsXQnjborDRo0xkDJiEP+VL9ecpq103eoKy4QwvULFK1vjQwE6Sh0P1C3uWgzWA6wLgg2uQ+fFvy4CpyDld1ZZmfFO62lr9nEJ871QhDFe9ychpka8UpnEdbCYKTApcEt1MepisH2ot2kuCDw0uXWqvQKThLqZAJLdN2Bxfa7RU/RyKRSCSyH7Cifz2X/fpz1I3j6iPPY4wawyVzfLe79QN9vOLn32BTY4D/ufiNHDpueJ3Q9hU/f+Zx1vb38oaFx+zQDdGV1jh+wkzuX7eMs6aMLF9kd1nW9wwr689zzJgzSNTOnUsialhZTqNBZnM+ePd/81zvGj5z/JtZOGYfdP7bC++X3vrWt/LWt751j6w7Mjos6dnIJb/6PAbL+xaex/hqOxfNWADA+nofr73xq2zOBvj2OX/Awd37933pF0sfZX29j9fNPX6H4ehdaZXjxs/igfVLOWPywXtxhPDw6lU8vm4tlx96GFW9c/lBiQwry2k0aBjDO278Pk9tWseXz30VR03YB27EA+Bz3L53OhURTEN98HYtj8LhEhxBNrhGrHMYC5l4A5FrccKEHnUMsksVGwriRIttpzSZWCcht8jhbMgIcsHJJA4nIQQ65EVhmy6ZrWnmOFkwzq/D+J/LUCkd/EcqhP/k3r0jSlAiqCCIqARUBWzFu6GcdRjnMAZyIz5AXRyJOGpisErQGLTLkcTgXA2rBGMEJQqlDKoQvRQ4FRxXmYRjqzAS8pBaz494QSVrKGxDeQdYue+ufLIWrIE8V2RKyG0I8MaixTuvjAi1tIFLle9cZxJ/nDK8iCUO0Tmk4CraH7dcQFsvKuniOCp/bQSBzNfO+WvLBefRoFA9cb7aTgk2THMy6Aopz6cUl4zzIiEKbGhD6LR3oJUuq+I+UQqc4QJQgLLeVackRHoVjjlp6nRFjpjZ9lraIQeALTMSiUQi+5Y71z7Fh+/9Jod2T+MLJ7+TDY0erl91L6dPOJw5nVOGXOaOtQ9SN/7fpaf6FvOPJ72lnPbwulUs3rIRgFtXLt6vRaeH1qzkj35zDeDzQ9608NjtzqtE+M45b6VhzbA+YO2MnqzON566i8PHTuWcadv/sNiX9/DvT38M43LW1Vdw0dQ37NZ2c7OB9T3/TXv1BDpr229TP1wW967ljnVPAfDrFQ8NW3TKzQbq+RO0V05EdqF8ZhDx/dKLjtvXPM0H7/42C8ZM48unvo2NWQ+/XnkPp088goM6hr4vXff845jwpv2hdcv5wpmvK6c9smEFz/duAOD3q5/dr0Wnh9Yv5/23/wDweWuvn3f8dudVovjGmW+nYXOqeniltDuiJ6vzzafv5Iix0zhr6vbvSxsH+nnl979DZg2LN23kQ6eesVvb3TjQzzcevZ/jp0znjBkH7da6AJ7evI6bVzwHwM8WPzZs0Wljo49ntqzmmPGz0bKbmW0HwH1p3/vVWt1Mra+1TkOaLhgp5KGibknjUDinyVwSisgcWoUwbOUQ1czs8SHS4jurJd7lpJXvVuf1p5DFU2YUeanCWAV54p1OaSh3y7zTqRgiSbNMrqjsEkvIaRKUdWjjkDwIT2E5F0wxOgha4ncX7Xw1HoJ3NhnxDimjcNhSlBIliCgS5agqQ2cyQJsYEGg4xea8nSRzODS50yibeHeWbg40N4BVSO4zilyisM6EmCbXzEYKaozJktCNTiHKTx+kuTmFM448T8hSRxWNcwqloD2Ev0vIz0orhv52i+0T0l5BMt+pD7GkbQYRyHDQI+iGYBMHVYukFlFgcwt18TlKKhw8ZYNoFc5HIUa1XGviW8eFKyac7iSUMTr/u5hwjrTDFXlR2j/7TKewv8q/JkXtHVAGxeOPtdL+WjR5cE6GQHZcIdqFgRlB8hG+qToAbJmRSCQS2bf8bvUi+kyD+zcsZuXAJv7hse9zz4an+MGSW/nBmX8x5DLnTjmeEybfwpaG40+OuGzQtFOnzuYNhx7Dxno/V849Ym/swi4zplojVZrMGqa07zhsGwiZo6PzNvvfF93Mfz5xG4Jw6+UfYGJt6O0rUWhJMC4nkR0H7wIs7XuOrz/3L0yrzeKtc9+P3krQWbXpM6zv/W9Ac/iMh9Gqa7f2Y27nZF424wSe7VnNy2aeMOQ81hl68k10pz5ryjnDU6suITPLmNT1R0wd+7HdGkN8v/Ti48ZV/r507/rFrBrYzD8+/l3u2/AUP156K9874y+HXOblc4/km0/eQ0bGR4+5aNC0UybP4bVzjmNzNsDLZu1a4P3eYkylrXlf2s59oRV/X9p9wQng3x/7HV990t+XbrnsQ0yodQw5nxJFohTZMEX4JzYv4+MPfZt5nVP5q6PftI2g85m7b+Zbix5Ai+L+t1xNV2X3yoIPHTORV88/iqc2reM184fukGidoTffRFe4Lxlned3v/p2VA5t4+/yzeP/Ci4ZcbtgcAPelfe90KpxArcJTaTWhmXVkgzBgBWe9Eym3jsxAwxSygUWJ8UHVTpXd50o7kkjLw5V5TYW4aKxgirI3ByKGRFtEOcRZn4GkXOhIJ1gX8o4UiPbZ0NJ6nQT3k1V4R5HY0l0lxiK2CPQRL4pY7ac5hVgFiS8cLLvbicKqUAZWAZMqslSoZ4qBRNOfJ7SLoLFoclIxtGFJkhznLCY4uHAOZ3xukjGKqs5AKwaSnIG+FNdI/P7n4pWvwi3UmodVnKeQ2VRIga3n1hkwTlF3CWIcLnfkuVBJDEosSqBhNTWdYWuKnjaF6RfvZMoEGoKrhfUpi6tayAVnrRd7gqgk4nCJwaUOZxRixU8vdMNwnqXIVirOjXLYtHmNFQ3kRLa6JqVFfG7JiSpDvZTzLiYVjpEJ16oObrtwDSlt0NqhFVilMEZhjfbiXdNK5ddtRnjDOQAU8kgkEonsW1570Gk817OGhWNmMKNtHOMrXoQYX9n+h52xlW6+cfrQglRFaz592iV7ZKyjzezusdz42nfQkzVYMH6w8+Gm55/l4zf/msvmHcpHTjtn1Lc9o2MsAGMrNdqS7YtJNd3O+w75DGvryzm069idrvfuDbewpr6SNfWVrB5YzrS2WYOmVxKfR5SoicgwRKydoUXx8aNftcN5/uvZv+apngc4b/JruHDqGwBLbtcDkJk1O1x2WMT3Sy863jDnVBb3rOWIsTOY0TaW8RXfiXBcZfsi6aS2Dm56+R8NOa2iNH99wu4FS+8tZneO41cX/xE9eZ3Dxgx2dd2z4RH+45n/4YwJx3HVnCtHfdsz2scCMLbStk0QfCvd1So/f8NVPLNhA+ccNGen671uxX0s6VvLkr61PN+7hrlbuWhndo4BYGJb+6gI+1opPnv6S3c4z3cXf4Jne+/nzElv4JzJb8I6y8asD4C19Z7dHsOBcF/a55lOIfpnW3dT8VCUDptS6AyVaFoplGototNkJsE479axzucyQZjPBmEo5PZo5UjDEcjy4JgCcKC1DW4ph3NCo55Af4LKfAC2OCldTlKIFba5T4U4I4X5xvlOa8o4VG6RrAg7L0LBFTZ0VFMtYpzkYZ5Ehe2F0GoloAStBa1BK6hqw/hqLx3SoEM1aFd1ErG4XNOrDRVjqWpDv/GOm0Q72isNqjpnwCQ0JMFlgsvFC07Ol7A5vKOJMF5JijBuCe6gljyssO/OhIOCF5oGNP5qM4oGOUocShyp8plPAzk47RUfQSHaIG3Wh3Q7vMNMeXeSaMEpaeqHSdBoEsryNl8u58rrSFovrkI0CgKe7zwHVMJrhjLXSUJOl604XOqg6lrWB6TO779y/hhlqhScVAoq9Q6nVBuqlQylfClkIxj1XF2FazRsr+h8Vx7vYVKKqzSdVpFIJBKJ7Ab9ecbfPvhLnIOPHXMxszsm8vmT315O/8jhr+XyGadwWNc+yObZB8zsGjPk6//98H08v3kTX7z/LsaMz6klKW+Zd+bul1wE3jjvBI6fMJMpbd107EB0AphYncbE6o476xWcNP4sFm1+gOm12UypbXsOJ3a9l87aWVSSWSjZOyHjS/qeAGBx7yIARFLmTfo+vfXbGdfxuh0tOjzi+6UXPP15xt/cfx0Ox18cewlzOifyxVPfWk7//xa+jsunn8KhXTvu5PZioRClt+bnK37LqoG1/HDZ9WzqG0tVp7z90NNG8b50IsdPmMXUtm7ad3JfmjN2HHPGjhvWei+dfgJ3rnuCeV1Tmd2xbWnjHx5zMmfNnMOsrjFU9N7pNLis/3EAlvY9CkCqEr5y2tu5Z91irpx13O5v4AC4L+0/TicY3DKscJoU4dwUMTmCNYJRwRCjfD6R4F1CWgzWaZ/LFAK5wWcx+b+xFqcLPiRbxAtLRVM5caEEL/Fld8aB4HDaemGkgXdcCZjUj0sp72gSE0ruTKhcIwhdyhuZpHDS4CC3vhtecLl4ScQrT5KGHnziHUd6wJL0KGxSbFNh0fS7FHFVlLPUVDttqsEWybFAgqEzafh9d5Y2qTOgEjqSOtZBb+ZvEBWV05EO0KUH2JS2saGnk/7eKi4PB1lcOFgtBy7kLTXb8hXns5lz5Tvw+Z3PB1IG+hV5VZNUDCqxCI5EW5Q4jHWoSk7eoZDeBGe8o6y9Ugdx1FVKw4Id0F6VC+FHovzyUvFjcpXgHrISXEc0HVquHGQpZtpKy9DDa6VoaIOLrcxparlWCftfBIbb4NAqbxQ+v8thEYzPz8JSUYaKclSUxlhFQxnqjYQ8944nF0r8nIpOp0gkEonsfX70xKOsG+jjLUccx40rn+D7z90HwCmT5vCy2YNLD1KVcNy4+ftimPsVVx1xLE+sX8uCyeP40lM3ATCvczLnTFkwKusXERaOHf1w2xltB/HRhZ/Z5vUt2SYats6E6mTaKkOXm+wpXn/Qn/DIpts5fWLTadJePZb26rGjs4H4fukFyU+ef5D19T7ePP8kfrPicf4n3JdOnbztfamiEo4dt3eDsvdHLpt6Nkv7VjI5ncnnH/sdAAd3T+K8aYeOyvr31H3p4K5pfOP0D23z+tr+XvqzjFndYzly4tBZXXuKV878CI9tvpWTJ7y8fO3IsTM5cuwoCZsHwH1pP8l0CsJG4XhqximFrnW0RC35HCClvMNHFblGArn1ZXXWKZwTjPEqgogrG4ippqkECoeUE4zxSqnvfiY+60l75SvPNbaeIAPaC0DWO6kKMazoaFaUwju86KRtyLtu5kijcrzLqWFazF1BnVLinT3BxYT2vyvAKsGlgk1DyVuw+VjlrVTVxFJNcnKXsCzrBIRO3SBJtlCVDIum4VIIweQSBK2OJGNspZ9aktOrK2zM2smV8u4mK178EC+oiG2W24l2LecPyo6CRZi3DfNb795xypErwST+vEgIZa9gSLQhtwnWeYePOMHVHGPH91GtZAzkCWbAn1O0QOJQFdAV57OSlEXEB5fnueAaDtcI596FQboW91NCc+wOn8UVrj+B5jKFEy8Bl+JdTSrsn3iHExovOGXK7z/4sroEVMWRppY0sVS0oa2SU9EGY8U7nqwjc0kQ9qQstfQq5gj/jqylVMTsi7PrQSQSiUT2LPevXsEHb/QttWtJwrkHzWFcpZ1NWT//9MiNnDhxNtPam26fny27m79/9EecP/UoPnnU6/fVsPc55x00j1sOejePbVrOm299BC3CQR0T9ug263mOEiEd5W/6NzTW8neP/QkNW+c98z7Kgu5jRnX9O+PQruM5tGvoMGRneyBfBOlxiOziR5j4fukFxwPrl/Hhu34CQJtOOXPKfMZV2ticDfBPj97ASRMPYmp7dzn//zz1IH9xx3W89KAF/NOZL9tXw97nnDD+SL40/kge2bCCHz/zFZQoDuocv0e3WTfhvrSD7p67wvKezVzw3a8xkGf810tfzdmz5ozq+nfG/K4TmN81dA7dlqzOog2rOH7izB12D9whB8B9ab9wOhVmGdeao1M4Uwq3kxTFaAqjTBCgfCmWQqhqy9hqg6TqQ5mMU/TnKQ2rcQ60slinGMhSBvKERp5grSrNOyYXXEPhjLdbmUSRJQminJ9mBVKHNT4bSBxeHEpCiVYCyvhyOJWDTcCmoDLQDUEPgEWRuAStBakGcUX8emyqcFp8gHdFMDWNDeu2WjBVyDohq/rjJBm4PoUxKT11YXlD0VNP6ag0/GET72Ba1d9OJXSpy50mcxrrFEpZajpHgMwJVesYk/Yzu9NRJWOt7qJ3Sw0zkHiRJfHOHYpixqK2MLibym6AhbvI4G1j4XdlBRoaO6DIqj6vCuXIE02S5ujUUm2rI0nGQE8FyRO2rGmnryMnqWXUag0a4jCZ+NLI1FBJDZUkJw1uKee88FjPUvrrCXkj9WV+VryLyKggggXXXAhSNzifqRX0HleUTSowFUpznCuU56TonBeu49ZOc8Em5SzYDHIEcf46bRhFqnISZbEWBEVFZbjUIeKvR6sFqxXOtK50OH9LL36FPBKJRCJ7lgm1NqpaUzeGGZ3dzOwYy18ecykfuPMHLO3bxK2rn+XVc44t5//1ygfJnOH6FQ/wl0e+dtTKNkaL3NrQBVh2PvMosGDMdK6/8MMohDGV9j22ncfWruHV3/subUnCT9/0ZqZ27l7Adyubs400bB2ANfUVLGDvik4F1uX05WvpSKYgxWeA9a+D/Eloez0y5v/u2orj+6UXHOOr7VSUpmEN09vHMLNjLB8/7lI+eOcPWNa3iVtXP8OrWu5L1z63iIY1/OS5R/mHMy7fa3//w2Vv35eOGDeN3132IUSEsZW2PbadRetX88prv0VbkvKLK/+AKe2jd19a1dtLf54B8NymDXtddCrIrWV1fw/T2rvK+9Krr/8vnty0ljcefBx/fdKlu7biA+C+tM8zncqc7BaXU+lsKh66Od0HMuOzjBQkiaOaWrrSjM60TiLGh1fblIwEcYZEvCjRl1ewucJYjbXNDVoruEaCD9ohBGdbHx6f4V0zoVxLWUE5KbOApBDGimZ6xdgpysy8K0ZZhzIhr0kJVFKfXx2EJpf40ipTEUxVYVMpRSeTCFkH5B3BcZP4bCMvcAhWCUb5wG6Xe2dXRRmceAdX6iyJ8kHizgmJsjgrKHHegaMN7WnuyxHRZKTUTYJt+G59JMEXJhKyjyxKF38fxUnEi1MmhKI77zKS0HFPnHdr4azPMDJewLIORAuJBiWWutUYNGSKTGuUzqgmhobROBF01aG1pZrm/qG9iOMAa33ppcsFJ2qwY8558Ut8oaQXnIJopJzyHem0P4deJJJwsvCCWuIgpRleHp7La4NiW8ExFfKnVMjcSrWjLc1JtSO3Qm6ToGUpnCifVVUcY9TI/zIPgJtVJBKJRPYss7rH8ts3vJPeLGP+WP+N+NlTD+bCaQto2JwLpx82aP63zb+Ahs05b8pRpeDknOOG555hUnsHR08Z/dKL4XL/+qW89eZvMKnWyQ/OexcDeQ7A5O10njPO8rvV9zOlNp7Dx8zZ5e2OqwzdwWm0cM7x48cW0Zdl9GUZj61ZO6qi0+z2+bx+1h+yJd/IaRMuGHKeuunlNyv/ERAunPohKnr4Apt1/lt8tROB8vplH2Bl/70cNe4POH7ie/yLRZC4XTXs7W1DfL/0gmNWxzh+fcnV9OcZc7u8g/CcqQdz4fRDyazlgq3uS+87+gwya7jsoAWlsOOc44blTzGprZOjxw8v82xPcP+6pfzBzd9kUq2TH13wTgZMjnOOyW1D/w0ba/n584uY2TmW4ybuenbeuOqeE8Eh3JeefYS+PKMvz1i0fs2oik7HTp7K/zv3Ytb09fG6hUOX/PZkdf7yvmsQhL86/oqd5t+1YsO9YGdC4Jt//V1uX/U8/+eo0/mTY88GYE2/DxJf1bcbgeIHwH1p/3A6WUp3Thkq3up0KkSNBJwBmwm5A186p0iUpl8ndKYDdCX9tKkcBHqyKr2mSu68ktWmGwiWRq5oZBobWta7oh7OhVwejRdQMu0HEdwyCJiKxWlpjq0YaygjK7OoCK8573zS/YqkX1ADPhAcgqtG+9ygspxKBJt6p1Qhuvn5wISsn0LnkRywCpcn9BvI2r1rKEksiTYoHNZ5ESrRXnhKlaGSGN9VTRyZtdSNJhFNVeV0p33kbb5d3Xpl6O+rYp3PvfLj88HYSjtsGIizQSkswrERxDqc9c+F4KMMSKZwdfGd5pTDaaGRg+twjOusM7VjMzIWGnnC5nqNTQM1BrKEWiUj0QZnhUQbqklOe5JRSYx3cuHHkztNb1JnS1KjN61gjaCVC+4iRZ5rsoYmryc46w+6VTbkNjmoOP+6UaWg6EVEFxx3DkmNPy/FNWpL9co/xDvBlPZqm7FCZhSNXKPFosVR0V7kU2JRypBbhRIvnOVG0VD5yP6W9lKrzSuuuIL777+f1atXM27cOC688EL+/u//nunTp++xbUYikUhk7zG1o/lB4VeLn+T6xU/zoaMv4OCxzXKxwvl79NiD+LeT3j1o+f9d9Aj/3w3XoUT49ZvextxhhsfuiCU9G7l37VJeMvNQ1tTX8FzvEk6beAIVlXL3qmU455jY0c4bfv1NOtIK33/JW7h99bP0m4znezdw47In+dPfXYdz8OOXXcWRE7bNA/npslv4t6d+hEL4r1P+gqltu16Gsnagl660OiqdlbbmPx68my8+fCfVSsKbDj+GM2bPHtX1iwinTDh3h/M823MbT275LQDzu07nsO7zh7XutfW1/NWjfwXAXx7+l0ysTtz+vAOLwvMjzbGN/y+o3wxtVw5re0NyALQmfzEyta1ZPnf9sse5YfkT/MkRFzK/u3kNFfelEyfP5DsXvXHQ8v/77IN85M6foRCuf+l7mNO1+2VmS3o3cN+6ZVw4/VCe37iJR1ev4aWHHko1Sbh32XIAxnVVeeMN36IzrfC9C9/CbWua96UbVjzJx+6+Bgf87/nv4PAh8pG+8eQ9/N97rkch3HTFe5nZOXaXx7tuoJeuSo3KKJe+AXz1ydv4+nM301ar8YZ5J3DG9INGdf0iwmsX7Dhf7jcrHuOXy3zQ9wXTF/DSmUcOa91Lejbw6t98HRH4wQVv224wO8CD61YAcN/a5eVr3zz/TfxuxTO8au5u5N8dAPelfe90guAQCc6SQsgJGUk+36j5YV60INqhE+9yqiSWWpLTWWkwrtJPt/Yd2xou8RlJTkjxxprMJfTUq9TrFZxTXiwJm3O59kKDIgRVS1k6JkbK8YqIdyoVYdQQhCYJJVthvkKsDMIWGlwi2Db/mm3tnFbsM17gsClNsaMYhg7jLLrAKe/IwQWBKvHj9iKTT1/PnWCtCsIGOHwwugsikgIq2vqHsiBCw1YYsCn9pkIjT72ApFzZOVAEVBKqHY20DD4Ic1YhLnT4s8G9E7ruFThpOb5aUFVLRy1jfFs/HWmD3Cpyrdi8qYYTqFZyKollIEt9SV1wZtW0oapztFgcPjQ+tw6DJg8HN0kt1cQg4mjkXmDMc+8I8930QNngdKpYyBRiVMi8CgKfck3HXeLzmgBcpsDopnsqOJxIQKcOlRDyx6CaGKqJIVHe3eV33XmXkwiJ9ucjx2dh6WT/vOGcd955fOxjH2PatGksW7aMP/3TP+XVr341v//97/f10CKRSCQyiljn+OPf/JSGNazt7+VrF/tW9xsH+nnF97/NxvoA333F6zhswmDhoOhv65xrlqXv5jhe9euvsa7exytXHcFydyMN22Bx3zIOq57Ma3/2XQDeccyxrB7ogQG4f+1yXjPneJ7YvJpp7WOoSpUs5GQ8v2XjkKJTqvw/7rKbZS8/ee5hPnT7NczqGMt1l7171IWntX29IJAnlv9z6qmjnuk0HGa0H01XMgURmNF29LCXe7LnSTbnmwF4uufpUnTKbIMne55kbsc82rQv/zlv2qdZ3PtbDh/7mnJ5SRdCunAU9yTyQsM4y/tv/wGZtayv9/GlM31Hww0D/bzi5//NxsYA/3PxGzl03OCuZ8W9qOWj/W5hnePVv/ka6+t9vHzWUfz8rsUM5DmPr13D+XPm86bvfh+APzjnKFYP9LB6AB5Yt5zXzjmeJzatYXr7GGoqIQvOvyW9G4YUnQqBSImgdzUvCLjm+Yf48N0/YnbHOH524XupjPZ9qd6DCOi2Bu8//vRRz3QaDidNnMO0tjEoEU6cMHwx/t51S1lX7wXg/nXLStGpnuXc+9wyjp49jY6qd0198ZxXct2SJ3jbghPL5Q8fN4XDx+3dYPMXIvtWdCqykUKLeufCcxBtXDCNOKAIG3fBAGKCMqXQDKiEzbpCm2qnUsvpTvpplzpJklORBv22Sm4VnQlMaldYK2wZqCGi0MpnA0kHpfPJd71TvktelmBz8SKFFVwaHE1QCkKF20kkiGM6uGKMAiOYqn+oPDihCgeNbnF2iRdnyg5p4TgUWo0U3eAskOPPnADOIQ0BrcmcgLaYPIgWYVzWakQSlHJU04RKYki1paJzwPkA7kSCY8jQkdQZU9PgoL+RkuU6lNHhHVJFFaIyPvzbhXI2DeBwyvpcJA2Siy8FDE4nLOi6YLU3CDmryCVhCzVSZWjvrjOvYw1aLHPa1rG8fwwNlyDi6EwHEHxJYFUb2nWDqs7Q4jv/NZymbhIqylBVOVsa/rxXgjNKqo6GSajX+tnU00a9t4JzGquC1c7g85qSEIheYMKxNr4W1FkFKuRANaTcR2ccLrXgHKYQ9rRBKYdWhprOGFvt9y4no2g4TcMm5FbhHP74K0dmNQNJzqIR/Ck5Z3Fh0G7Q4EeXD37wg+XPBx10EB/5yEe48sorybKMNE332HYjkUgksndRIhw3eRp3rFzKKVObHXoeWbOa5zZtBODWJYu3EZ1es/BIxrW1Mam9g3njRiu0tngPImUZXyIJmW3mH544cRbL+jfRmVY4Y+ocqjrhH09+FXUzwG3rbuC9xxzO+MpkLp59CCv61/GTZbdw6oTDOXbcIQBcNu00JlfHMbE6lsm1XXdnPbDefwO+pHcjmxoDTG4bupxvV3n/iaczpaOLIydOZlxtz+Wz7IiudDJvP/hbI17u+LHHc8aEMxARjh17bPn6V5/9MvdsuIu5HfP56MKPAzC942Smd5w8WkMu2VvvlyJ7BoVwzPiZ3L32eU6c1BQWHlm/iue2bATglhWLtxGdXjPvGMZV25nc1sncUXA5QfMLdSVSBkhX9OD70knjZ7O0sZHutMrpU/x96Z9OeSV9WYPvPPYgb5xzErO6xnDh9MN4fstG/uvRe7lg9nxOn+adQm84+DhmdIxhansX01rC0kfKgxuWAfB87wY2ZQNM0qN7X7p64blMbevm8LHT9mhu1I6Y3j6GGy75wIiXe8mMw3jVnKMRhPOnNzv7feR7v+BXDz3FMbOn8u0/fgMAZ0+fy9nT547WkEsOhPvS/uF0Ks0yQW0qsni0NF0mRVaO9g8VnE5pYqkkho4kpzut05kMkIgLGkJC7lIcCocis5qerEp/VvEOHvHLp4nBOI1SRXi8H5g1quxuB96tJEZaSuFanh1edCm6urmiJM8vK2H5olzQKdfMrSqWBy8qbe2ACmKNwndfc0XpnQvPRWe1UDKndDiWFGWhfkVa5z4PS3mBzJfbOVLlSJQLHQAT+k2Fep6SW40J2VfFl34i3rnjQnljUxmT0r1Ufj9YZCM5CbnjfrorHETaj11qjmotZ0xbnWntm+lIMhzCRtOBE39wUmXJrKaqDRVlaUtyajonEYcWF1xdgkWFwPTEB7drRzWIbJlRaOWom4R6I8UZ7d1iiHc6Jb78D+f31wk+sD2l6WIqnHco74rK/T5asX4d4RpVqSNJHTq4nDoqGV2VOu1J5gUyhXfWBeOcVpaq9nlkWnkH34hwrmnHDN/mbN68edAs1WqVarU6svXugPXr1/Otb32L008/PQpOkUgk8iLkO5e9jg31fia2NXOKTp4+kzcecTQbBvq58rBtXSciwkvm7l67cuccGxrP0JVMJ8fxo5e8jXvXLeXC6YeyOT+d5/uWc9zYI0mU5usXvwoHnD9rHpfNXVCuwziLFsWvVv2QG1Zfg1KKtx38LygR/u3JH3LH+ke5dvmt/PSsv/eNaUQ4acLuu2jeu/B0jLUcNX76qAtOAB1phXccPXQXpf2dqq7yznnv3Ob1LZl/v9KTb9nzgxji/VLkhYOI8M1z38zGej8Tai33pSmzeOOhx7Kh3seV8w4fcrmXzDx0m9dHgnOOp3pWMbNtPMY5/veCt3H/umVcMP1Qrj6slyfWrePcuXNJlOIrr74SgHPmzeWSQ5rbLe5L/3LvbXzpgTvRorjpte9AIXz8tl9z49Jn+NbjD7Doqg+U96Vzps/frXEDvPvQMzDOctS46Uyq7YH7UlLhDw4+ddTXuzdoTyr8/clXbPP6up5+ADb09u/5QRwA96V9KjpJyHMCmu6fwu3UeryLFnMSSrMQrAg5QkM0SqVsVlUS1YHDMS7tIxXv2mnTDZxxZFRwQC1pMKZN0ZtV6KzUmdS+hfGVfhJlcE7oyWtsatTY0qjSW6/Qn6U06ikmV7hM+RDsMmuKpiimHCr1TpUi0Dq0uAMtmIoEgaPYWZqlW9LcTzESHE+FjYqmF9R525dk4Ip8JxUsYQ2FE+/IauSCSrwjyeEwDV8G1pCUeltGvepDuG24vnMLDadIxSvziTK0pw1vuBJLw2gaDa+EtQwDURbRgvPJ617NatkfZ8GEcHFrvCMI44+DUw6bWO8sso4sE9b1tbFYj6PSlTOpsoXjxyymx9TYnNXodynW+gykmsqphC5wCT4kPnOaiqrQk1l/yCuWikrJrKZufDC64NDKMqGjl45KnY19bTSyFJt795sPTbeQeJcbIQuMwm3ngFyQgfBnk4Nq+OkqFWwoKnAIBoXRQpoYqklGLcnoSBpMTHtoUxkGwTjljz+a3CkSLFosFWVoSMbPRvLHVAZMUf7xzJo1a9Asn/jEJ/jkJz85krUOyZ/92Z/x+c9/nr6+Pk499VSuvfba3V5nJBKJRPY/tFKl4FS2wtaavznvJaO+reV9D7Kk9x6OGPsyFm36AQ+s/yYiY7lnSzcvmXw5r5jtv2luSyYxpdZ0MZw3ax6Pb1rJ4p51HNTpc6d+/Pz9/OV9P+HsKYfy6nneHSCScNXtf82Zk45nXud07lj/KAd1TC07EI0Wk9o6+dSJl4zqOl/svGPeH3L3+js5usX9tMcY4v1S5IWFFlUKTg2TIyJUtOZvT7t41Ld1/4ZnuXPdk7xy1ql857nb+Pozv6NTt7Gyx/CuQ87gT4+6EIDZY8cye+zYcrlz5s1l0cZVPLdlfZkfdc3Se/nrh3/ImZMWsKDmhahEKc7+r//k8kMO4/BJk7lx6TMcOnbCqN+XJrd18YljLxvVdb7Y+cwbLuMXDzzOeYfP2/MbOwDuS/vW6QTbdzu1dq9reUjI1lHaoRPfyaySGGpJTnvSoD1pUFFePLHOZ/vkLiGzCXWTls8gjK3105VmtCc5FqFhFVmxjPXP1mgvQNgWR0/hxpIwHgHRFlW4nErXT/MhQTQrdtVCi4uLZtc015p+FHCgWl53rRlDxbMQxuW8G6zIgzJecMIJklp0Ystg7VQ7EgWJ18UQEUwI427YBGM0uQ2CTLB3SaHDOO8Ac7bpdhLK2Shnpul2IuyfkyCWhXwqXXGkFUtHtcGEWj9j034S5cicMGC9Uw28AygVnz+VKocSRyIW45TvumcVxks3mOBuM06HDCvQyhdlpsqywVQwNtQohlPjhLJLYSE2FaWO5fWXhX0BVO7zl1wSXGst50OnzudJpZa2NKcjadCdDtCuG9685nxwOPjznogjCV0HE7G+5G8kWNtUcIv68CVL6O5uWnG353L65Cc/yac+9akdrv6uu+7ixBN9/fKHP/xh3vGOd7B48WI+9alP8Za3vIVrr7121P+BjEQikcj+waINq3n1df9Nm0752UvfPqpdiQCsM1yz5M/IXZ31jedJqANg7Cagm4c3P8AreMOgZZyzLNp8M4s2DvCX992GFsWPz38v87sm8Zvlj2Gc46aVT/CPJ36Mg9oP4V+f+CmWZdy9/jH+4sy/5SVTT2JKbbTK/yK7w7jKeF4ydS8JdUO8X4q8MFm0cSVvuOnr1JKUn1zwbqZspwPcrpJbwwfu+Sp1m/F87xr6fBcrevJ+oMJvVz1Vik4F1jl+sfQRlvZs4jMP3YgWxc8vfjfzuydy06pHMc7xu9WP8XcXvY7jp0zn/950Ew/3ruJ3i5/j/kuu5lWHHMHMzjGjuh+RXWPKmE7eevZecpUeAPelfet0CmVjhYghoWTMOSlVvqKKP3xSL0UpI17xEdH0S4KihgoB1Y2KpqbysjOdYFFiEfHP1TQjtd6xNKGyhWnVTVgn9JoaKTmZ0fSqFCGIOMphG+I725lmDa8T333Ni0e+vMsHdQfxqch4SgZfP2VHRN0SRh46pDnxQobYsC3bIogQNNAi+6l45EE4UQrnLFYUzoTt5AINXwbmBoR6Jtj2rHTxmdR3AqxYRSK2PBdaGdJEcEC/SzFiQ/i6D0H3ZXQOUda7uYLbS8ShElueSwBn/bFxVrCmCO0yKO1IKjnVSk5bmpOIZXOjylI1lqmVzXQnA0xNN2FTL1SlYkjxeU0ah0HIbcKAS+k1VZw4jCgksdScoqpyGlbTm1WwTtDKkoqlI20wrtpHPsaLag2r6ckqNExKXyOlXk9o1BMfLl/15X0iDpU6HwzfmyB9OgTINwXIUqQyYDIhSzQm9QHnxinqJiHXiprK0WIYl/RQwdDnKtRdisbSphq0qYy82hjZH9MQCnl3d/cg0Wl7XH311bz+9a/f4Txz5swpf544cSITJ07k0EMPZeHChcyaNYvbb7+d0047bWRjjkQikcgLgvvWLCtbYT+2cfWoiE7WufBdoyAoutIpbGg8z9jKTI4aezljNx1E7iai0mWcO/mibZZ/aNNv+Nnyf+KZzROA+Rhn2dzwZRDvXXA2mTOcO/VQqknKvM7D+MODa/zvkps4b/LxiAiz2ifv9j5EXoAcAI6CA4X71y+jz2T0mYwnNq0eFdHJOuu/LhefHze1bSyLe9cwq30iL595CvM6J9Oh23lg3UrePP+kbZb/0eIH+PN7r/FxLSiMs2xqDADwroPPI3eGsycvoKJTTpw6k7869wL+8767ueLQhYgI88dM2GadkQOAA+C+tO+dTq2laq0/w6CooDIsSFpnc0FQcqQ6D2VXGdr7iLBFmZPzwkLDeAeTMQolju5KP+OSfhIsPbbKgEnoyar05QmN3AsSxgg2b3HzFGVvyg0es3hhwhalcUjzmilqs4IoVhpCivI6B2L9tPKaCyHrxXqkLN1im453xTaKjjGDBJA8BF1bwaYOSSwqsShlfZaQuCL/uyydy6zChEduJXRbK8SXlk06QgfA5kkR5Tvk+XG4UIrnlTU/r2txZDl0yNRKk5xq0qCaZLSrhi+fI6eHKjUxZAiJWBIMOpQBilPkKAxCw2kyNMbvTdDlQtZTEI20WEQcNV2nbqtIyJYyLmhFtngUDq7i5Dmf1SXWh8PneMXOglOC1cG5VRjClD8OWhsSbcpg8w5dpyI+CV9jqYkhxwtS4EhUTio5iRjMCHtrOGtxsmsBdIWItCsUAmu9Xt+l5SORSCSy/3P4hEmkiS9rmds9brfX9+i61bzumu8xtlrjmle+mXG1Nl4z5wtsaixjYnUeIoqTJr4HgNMmDb2OVLx7d27XBs6ceBZT2qZyXOhYdPjY6XzxtDdx7fIbeOddH+U1sy7l4qln8xdH/MFujz3ywmZ33i9F9i+OGj+B7lpGqhTzu8fu9vqe2rKc99/773Qn7Xzx5PczJu3gq6dczdK+dRzSNQ0R4erDggC+ndi6tsRnnCZK+OPDz2Fe10SOn+gbMSwcM4N/PfEP+PmK6/mjez7MK2dezoVTz+Fzl75st8ceeWFzINyX9n2mk/MuINnqM74E0cSJD/x2Rc6TDxoK7hmNcY7cOAaylE3KL2hQ1HRGUogv3pNDFoKxLb473eKe8TRsQndap2E1faYSwsZrNEwSBKIgNhkgK9ZHKJkLYzTgnMYYTUjMDuKRlA6gUpxyrmlbUt4JJdpPdzbsX+5wuYTudzQ7+BWbbvm/OAnHyYXSNSCX0uUkDfHh54LPVBpIyLRDiRfrRBKME1Jlwu9NgVWJQwto5TDigvBUnLyWUjscogWlDEpbtLYk4SEh6FsHIUrElQ40rQypNnQkGe1JRrtu+KBtgT5bRQmkklOVBhP0AN26jnXQ7ypIOB2ZWAasD4kfsAmFMNauGnQm3i2ksd4d5VU8EsmpqYyqMuC8k2tto5ONWTsbGzV6GlU2D7TRV68Afj/SxFBJDJnR9NRqZFuquH7lz40uRKkWHdAqskZCf1Khlhh685x1jQ4ypxmT9NOhDUoMHViUAoOiXRpUVRbWkY3sj2kvKOR33nknd955J2eeeSbjxo3jmWee4eMf/zjz58+PLqdIJBJ5EfPEpjVYZbAYntq8jtmdIy9Lc87xHw/czeq+Hsa3tbOlUWdLo86idWs4fcZsKqqNSbXhBZA755iQwBXT3sWktmOZXJs75Hw/WX49G7JNXLP8N1w89ewdrnNjYyVL+h7h0K7TqOr2Ee9f5AXCAeAoOFBY3LeSMe09ADzft4rp7SN3CTnn+M9Fd7Cqv5c544XefIDefIBntqzguPEH055UObR7+rDX1a6q/OUxl3LixNkcNmbKkPNdu/xXbMg28bMV13PhlHN2uM4lvRu4Z+3zXDh9AZ3p6DUDiuxnHAD3pX0qOpUiS1GKVYpEW884+CGuOUFwoXTOoTGIszjbFKkMQu6EhtFYJ5jCuRPKoLTzQdl9JiGzmv4soZF7h5NxgjXgcu9qEVu4nMLmZfD4nGkdczP7p5w37J8jWGvKyS07XYhSrmnx9ItvlZczhNvJtapTtgglD7lDhftIudIzZVuOaREO7oKryTr/MM6XC5YjLIQmG+YtlUJbqogq5C1JELaUst4EFKY7/Dq0tr5kThkSlZMoQ6oytBgqqoEEx5pYCwpyGxxNTuHweU/9NqHPpPTkRVh4MUZXusMSZdCFyIYlkRwtOUpCiZ4J++stXWHf/QlVyqKUDyAHyHKFzQt7lPOlhkUNZGuZXeGuUt6ZpcWEpCmLcoaUnARLHvZS44+Bj2U3g6+J4WBb/jD20M2qra2NH/7wh3ziE5+gt7eXadOmcckll/Dd7353VLviRSKRSGT/4vLZR/DoxlW06ZSzpu5aqOodK5bwt7f/FoBXHLqQl80/jPG1dk6aOmPE61rVdx0PrP4QALPafzho2vXLH6Enr/PyWcfympmX8ZPlv+ZVM3ecF+Sc4xvP/Sk9+XoO7z6Xl8/8/0Y8psgLhL3wfimydzh/ynE81bOMmqpw4vjDdmkdd6x+nr+970YAXn3w4Zw/5VjGpB0cNXZoIXtH/HzpIt5/m78fXXvRuwZNu3HVQ/TkA7x0+gm8Yubl/Gz5r7hyxo6DvZ1zvOGmr7Gm3sPLVj3NZ09+5YjHFHmBcADcl/ap6KSK4xvEi1JMKsq5yjZp4EvbaIpPISPIGE1DOVQOfcoHiysL1mgqQSjInW4KKQj1Rkq9kbLJtrNq05iQIeU3LeLQqfUiQ9G9TBTkOohIrhnaPYgieFqVhqatJxfPEjqjOWfL3CeV+JuLM/hpRkEmoZRrKwnCbVNZB9rnIpR5T0aQPORmtc6bK8gS8tSitSN3zueWCSTBJeQPsVdQVGjXqYrsIp901Twnqul4UsqhtfPOIGVIlKOS5LQlGW2JdxZVdF4GaAd5i5ryzqNOXacSBCKtLBqHdYpl+UTI/bjWZx30moq/fnDUbUJfXqFhNanKqShLZ1InFUe7blANJWtVlVMJbi5wXvzB50R16QHGpgOsr3SwOe9nU9bG5lobG+o1BjJvk1XiyI0iN9oHhtcsjiDopQw+IQjkCqM09SylLzW05Tn1JKeGwYpClKPfpWhxtEtGTTI61QCJWHpsjTojFHFKGyB77GZ11FFHccMNN+yRdUcikUhk/6U9qfDJ43cv6LmaeDcywAAZX7jwyl1f2aB/55o/P7D+ef7knu8BkIjiZbPO4qKpZ5XTr1l6D8v71vOWeWfTngz+d1bCN4pKFC90vvPM3fy/h67ntXNP4KNHb5uHdUCzF94vRfYObbrK+w991W6to6qbIbQDec5njnzzrq+s5XpqvbIe3LiYjz3wLQBSSbhk+jm8pMXh9D9PPsjSnk2858hT6Egrg1aplRr0/ELmGw/fx9/e9lvedMQx/MXp5+3r4exfHAD3pX2b6VQ4naDpECn+prZyN5XOINU8F9Iyo3X+YYyQi5Ag5GGO3CgyU5TV+YB4a50Pty7WbULWkvYikAWs9U4nMsA6LzAAITZoMK1jBS9QWaHsxNfiQCrdQWHbzoTmeI6msOVr5rx7qbDvFMIblPlNrtVhE1Yr4biK9Z3jyku3ON7OZy3Z4PqyhdOpRefzY7S+8xsWEcG5FktakT81yH5WhKgH2UrZUMZngyMtD2KPDdlQvvtcIt7lVMzbOp9zioaD3CT05ymbshr9Jg3ThAGTMGBSv2vaQQJWeYHRH7XCcWUgOIikdMgVp0WCwGxRzqKdd0J595EiN/4Y5iZkXRnBGQkB7sG1VmQ6FUdb+WmCQ1xxjVrvxHNgjCJD4bAopbChc6B1iswKLd6yYeGs89cKNIPsI5FIJBLZS/TnGT9//jGOnTB9UBjuU5vW8r2nHuCy2Qt4/6mn8ei6Vfz5ydt+4Hi6ZwUff/BbzO6YxF8d9WYSNdSbLajnz9HT80VmtR3H1DEfoLu6sJzWlbahxLuVx1U7Bi331JaV/NVDPwCgqlPeNv/ccpqI8Ja5/8iyvkeZ33Xy7hyG/YIfLr6ffpPxv8/dy0ePvogfPHc///3UHbz7sDN46awj9/Xw9inx/dKBRX+e8fPFj3HsxMH3pac3r+F/F9/HpdMP54PHnsGijav46HEXbrP84xtX877bfsD87on862mvItmO+LN4ywa+9thdnDZpLv/niDNZOLZZWteV1FD4jNmxlcH3pcc2rOH/u/UXANR0yh8dfWo5TUT43jlv5771Szl36iG7dRz2B77/2MP05znfffQh/uL087hu5e38ZNlvee2sl3Du5OP39fD2KQfCfWmfB4mXn9OLUq1CNCmFFi9yuOK5UESsdwNZ5TBKY5SjYVPq1judRAl5cPnUraJhE6xTaOWFGGsSXBZyk/q07+6mHa5qydpzdMWX7GE0kmlUFkKnElqEoEF7EbQXadVgcCrsQ6HXOAmlciEjyQarUB4WShwqbMq2np2sdZOu0H2aIh34/CeDF9BMEL3KEXrByhrAKKxR2MQLSc55R5FxoUtbyCYSEbQC4wTtwNhmHpMDVBg64jUWpQqXkyXVjqoy1JKcmja0Fc+qQVX7cjOFd5YpLBUxVCSnqjMqYkjE4BBW5+083zeRJVvGsbm/Sn9/BZtpL+gIOKsQZUmrOWM6+xmj+slcVgo+WixVZamIIxFfiql9tHh55gRHm8rQqaOm/TgrmUMQ1g4o6nmNgUZClmkavSlkCmkoJFO+bDFx3mnWGi7vQKwKx1XTsCl+y5p+V0U7P3YlltRaDN6NV1U5OSkNN8JvNFyLgvsiDaCLRCKRyP7Lp++7gW88cS+daYW7X/V+qjqhYQx/+vtreWDdCq5dvIiPndJBtfMpMjmSzz727xiX896D30932s2vVtzH4r7VLO5bzdM9y+nNfk9FtXHE2JeFfE3Pxt7v05/dA0BNDy6Dm9c1iR+f+3+om5zDxkwdNG1CpZOupI2evJ95ndtmrXSnE+kes+PcpxcK71t4Lp9f9FteNec4AP7l0RtYPdDD5xbddMCLTvH90oHF395zI9944l660ir3vOZ9VLSmYQwfufsnPLRxOb9Y+igXTj2ctQN9rOzbzCcf/B7WOXcmOS4AAQAASURBVD5z/JsYV+3kJ4sf4ukt63h6yzoe37iKp/sfpqarvGTKWYPuSz949kHuXbccgP/vmPMHjWFu5xS+c8aHqNuMQ7oG50NNauugu1JlS6POoeO2beoztb2bS9sP3wNHZu/zwZPO4F/vuY3XLTgKgP9+7mesb2zmW4t/ccCLTgfCfWn/cDoV4knhOmr9WfAGFWg6elrm8R3UfMcxY4RMC9ooElGkyucW5UUXNuO7k4HPGTKiQCxOK5z1Qo44cJl3nSBg8zDUwmK09dhajEkw2E4pLoy9UNZCWZ5rbV/XIrhJOCYmB4z4ZYvrbutjIIQsoVaHjYRSQeXzp2gJ/y7cTw6cEe+usoI1gpOWTnste+CLEUEHgcuJwpazFCeitHaFdKLC7WRBbNi69U40C0aE3AIiSLBkSUiNF2lRHoNDKZWM8UkP1CwDOqU/rdCbtdFrE/qyCnmmUdpQSTLakgZtukGqTPg+oakYW2zTjNaagwXeNYVDoUgwVKRBRSVUVEaqckQM1iaYfKsFW51eZbtBF1xh+JB4LKIMCp/X5JwjN8KAS3weFI4US54IufIB6DkJZoQ3nANBIY9EIpHI/ksanEmJKATh2mce4303Xkt3u3+rOberi1vX/RSAX674AU/0PA7AQ5vu54yJZ3PxtOP5/dpFHNQxmcw+zO/XfAmAMZWZzOpofiDpbruMDb3fp5LMppZum+Myp3Pobqzjqp385Nw/pTevM7Vt7Kjt9/7IWVMP5qypzVD2N88/ma888XveOG/bFu8HGvH90oFF4UzSohCBnz6ziPffdC3jx/rXZ7aP5etP3gnAF5+4kfs2PQfALWse52UzT+DKOUdx44onObh7Eisaz/CNxT6zaVrbZI4as6DcziWzFvCDZx/ioM6xHDpm25abszuGbsM5odbOza/6Q3qyBjM6u0dtv/dHzjtoHucd1MwEvGL62fxg6Q1cPv2sHSx1YHAg3Jf2iehUHEzbGPBuFQUuD8/hgQI0OOVwCd6FpBxo57uFpQ5JHa5hITW4xKIrObqRo5IMpS31UC6WWcNArsltjnMGUwdbt9hc+TKpTEMWStFC53e/jVCL18iDiMNgsanIdirDo0Ngt/OOI5d74cqlYbw6ZDYZ8Z3mCgeUcr57X7EOh+88l4XMoOIiJGxTB3dN4kBbRHlpyRiBhkYGFLYIEQ8LigWcYCsWpwxKNXAYTG7IE4OIRZIi8yhoVEWJoNVgFc4ojFG+LBHfVbCZ52QRZdHK+LK6PEe0wWqL0Tm5MjRUBirHhYeI354VgxFLrnxHNyTHikEJdLlNHKJ7oNOPZ3l9LM/3j2fJlrH0Ze1oBx1JxsRKD2Oln2qeUbEGsgZONch0jlY+3MqIRZdCmD8wRalfEZqOM4gx3sWUJWQ9FTZtaicbsDiXgTEwoHGZQuHD3sn98cM6lPali84IKne01frpyPupSgNNH1nD0OcUUMG5ChYhFUt3kjA+hU4tJGIZ6BnZjSd39VIZz0fa+S4SiUQi+yXFvwGbN2/exyPZOX8473gOr43j8HGTGOjt5brHHiHr62ddn6N9XB+njj8azUKW9z/L8eNOZ5XrxTrLQTKXzZs3M5F2/u0IH767su9RBnosSjS2v8Zm07r/s5je+WsAerY0gMaIxtmOYnO2/x/P0eT1047m9dOOBl4Y19JIKPYnvl/ae7yQ7kt/dPDxHNk+joXjJtHf08t1j/v70qo+h1Qsx06bAV2GRRtX8bKJR9DXtw7jLEdVp7J582amSo3vnf5GAB7f/DR5b0YimupAymZp7v9M3cYvznsLAPXePuojGKMAXbwwjudocunYU7h07CnAi2/f431pW8TtAzlt6dKlzJo1a29vNhJ5wbFkyRJmzpy53ekDAwPMnTuXlStXDnp96tSpPPvss9RqtT09xEgkEonsIeL7pUhkeMT3S3uPeF+KRIZHvC812Seik7WW5cuX09XVNageNhKJeJxzbNmyhenTp6N20rFiYGCARmPwN72VSuVFdaOKRCKRA5H4fikS2THx/dLeJ96XIpEdE+9L27JPRKdIJBKJRCKRSCQSiUQikciLmxG2yIpEIpFIJBKJRCKRSCQSiUR2ThSdIpFIJBKJRCKRSCQSiUQio04UnSKRSCQSiUQikUgkEolEIqNOFJ0ikUgkEolEIpFIJBKJRCKjThSdIpFIJBKJRCKRSCQSiUQio04UnSKRSCQSiUQikUgkEolEIqNOFJ0ikUgkEolEIpFIJBKJRCKjThSdIpFIJBKJRCKRSCQSiUQio04UnSKRSCQSiUQikUgkEolEIqNOFJ0ikUgkEolEIpFIJBKJRCKjThSdIpFIJBKJRCKRSCQSiUQio04UnSKRSCQSiUQikUgkEolEIqNOFJ0ikUgkEolEIpFIJBKJRCKjThSdIpFIJBKJRCKRSCQSiUQio04UnSKRSCQSiUQikUgkEolEIqNOFJ0ikUgkEolEIpFIJBKJRCKjThSdIpFIJBKJRCKRSCQSiUQio04UnSKRSCQSiUQikUgkEolEIqNOFJ0ikUgkEolEIpFIJBKJRCKjThSdIpFIJBKJRCKRSCQSiUQio06yLzZqrWX58uV0dXUhIvtiCJHIfo1zji1btjB9+nSU2rE2PDAwQKPRGPRapVKhVqvtySFGIpFIJBKJRCKRSCSyQ/aJ6LR8+XJmzZq1LzYdibygWLJkCTNnztzu9IGBAeYe1MnK1WbQ61OnTuXZZ5+NwlMkEolEIpFIJBKJRPYZ+0R06urqAuCU77wT3VYldxoQnAPrvPNJBASHiEOJQ4kNz45UWVJlSZSlonISZahKTqosFZWRiqGiDKkypJKTiEOLRQGCRaTYjuAA4wSHwgLWgXEai2Ccwjohd4rcaXKryZzGOCFzmtwprFMYp/w8VmFsc7lBD/yzsQoXXnPhNecEY6V83Vp/LFw4Js74ac4JhGnF8cIJhN+x/vg61+Iec0OcgGJ+XFlgKeL8S8Wzcv74K9ecVpyXlt+dDdsrx+3HSBibswIGpBiTBYyfLk4QRzm/WJrP5QbC79YPjfCQrXbDr6dcavBrLcuhwGqwqT90KECHcVm/LTHhMLQeu2KaC9tVYJOwngSsdrjU4RJw4nCJg9Qh2jWPaTi+Q3n7inNajNP211n2ob8r/1a2R6PRYOVqw7P3HER3lz+Zm7dY5p6wmEajEUWnSCQSiUQikUgkEonsM/aJ6FSU1OWVDkylDeOKT+Qt8+BQAuBwyuGUQcSilUUpi1aGijZUlFBVQk1DReWkSlMRR6ocqThS0VTEoEVIxJbbKTQI4wSLKp8tTfHH4AUl4xSZUxiryJxgnX/OS7FJl88N40WpvEV4Mk4FgUVQYXk/zQsvLkyztpheiExeHHNWYQtxxzaniQ3HrRCf8CKQFK8VO0pzeutRdsX/C7FJFYKSQxReeCqEkkIDcl6YK7enCKKRIEogB0TC/AIaXNrcsBQbzgEjiBXE+HVIi1AE0lwmbxGkWkSnch9kq+ktJ3iQcOTCvApE+7G7QnQqrrtWgWqrdWH82FSxHkApcDoIUMp5DVA7nHZ+xiQ8tPUCntrqJLSeo3B8cXixCoZdftrR6R8AZiihMRKJRCKRSCQSiUQikb3MPhGdCqwVxDZdR0284GQd/tn6ZymFC+948s/WP7yXCCG4msSiw0OCU0qkqSS4wq4StufX2nx25bPDOYtDgs2leJUwzWFxWAe2nNIqbEn5HLxb5fYHv9ZchpZRbR/Z9uehhBIYLDi5rRYbStMQWvaC5nhd4WryzwJeIApOJ1eKRy3jaR3qNmPbduOuHJ8bvAwyhGDGoF0Xtj1m2xxDKQ/HNvu/jRYkzfHIVq+X03W5+0MfSwjXDE0hTFpPTuvAZesXho3FX4fFz5FIJBKJRCKRSCQSiexr9qnoVDcJyiQY27R/SFBGBIdWDqUciTKleKPEocMjEUsqtiy3q2pTltYl4n/WOBL8s2qReZxA7oo6LVfWTTkcSgSD80qCQKGAZcFBhXUIwTWlvLvIPws2iGVA6UhqPlO6qIryuNYHDJYbpEWkKmgVL2j9uRCEBk2XbZ0+LQqQUCwTJJvieOCFESmFlKLMD++0sqGEzoTn4txt5zxvrbFs4yRSLZvXLfMA2BYBzA618pZ1tLL1NouXi21t7bxq1Xu2fpaW1bXM61qml8aswgVmWk6RU/4gaIcU4meLiOrn8QtL4WIbYV9Jiy0Pjx3yQEUikUgkEolEIpFIJLJ32aeikzFeyDBWQlZQU/cQ5UL5mSuFBxcEIi+IWET5hxaLUjn4JCb/EIsUDqjwQV+CDNAUdrxw1JRM/BT/n2r6mQqnCrS4ScKYXIgDKh1QpQcKaNU+QoZT2JdCFtixM2frqVt7fZq/u2IwRcaTk8GlZq2D2drpsx21qCj1cmGHnQlqTSE4FaLTMN1TLapImbW0tVxVCm7FWMsD3SyhG7TOQi9j+0erPA5bG4iG2P+hPEKDXhO/wq2dVjtaZ7kS67Ahd0qEZjnjNjO2HqzhYZzDBOXSuKH2IhKJRCKRSCQSiUQikb3LPhWdcpugbNri0ikcIA5nBa2CgCOCKFDKobWjoixVZWjTGW06o6ZyKmWYeEZN8rK0LiWU14UA8UINaDXUGBzKGUSaweLeeeML9kCw6DBOFZbzr4v46B4J/xWKQzEfW+czBUtO0wE1WKEYrItIOSYRKQU5N2imVnVjKMFpq1K34meRci9ajz1CmTtUiIDkYZxBaJJcIBNULigjZWmZLbKMdMuwCsGoJUi8/HlrimG0ikwh80lCnpK0zOscpUtqKKHHhVDwct2Fa0laltvqsACDXFOD3EzQFJyEbd1VtDionHihLpcgnDpIoQyuUq50k20d2+ScQ0b4lxnL6yKRSCQSiUQikUgksr+xbzOdgtOppZ4MpfzvThGylLzTqKhB8yVyLZlNIf5b+9hvVBkHbtAUbidQpU2mafMpRCIJCoIvqlNBGGq6oKT8SfnSvJayN2t9cLN1g91OzfnCvhbd3Sh3BdvcrXJMbpDCsbVFp/X1IeZxrjlv6XjaarahGCR6OF8uWBiYtrIQibhStLEKmjlYNC1FQ2hKLpSOtTqXhqTV4dQ671CuLTXEerY2gw2x6KCftzJqbTt2t+20rQ/91mw93Qx+3RaioPbHsyilk63Ow0iwOF8SShSdIpFIJBKJRCKRSCSyf7BPRSdnNWJbbDHOYZ1FBxuSKEEJpNpSSQy1xNCW5LTpnHad0aZyatpQk5yazrzTSbLQrc76/CdccDoVH8gBBONAixdDClFKHORO0OL1E5/P5BUWF6wxLriYSqeSFC3QvIvJOUUhjTknzedyHu8vau1Q13RHwWDVY5DFpsXl5B1WpSjUqoYUrqLgeBraEbW1kFJYqLaer9hgKEEMHd98VzZ8bpFp2Uarg6hYXxCQCsFJCsHFbLXJrYYnRVC5aZqDWjvXFXFbg3Zv611UbOtGEpqh37LV9rdjwBry9e3Nu/U+WECFUPoymdz/bq1DEocUJaPaLyg7Gst2iE6nSCQSiUQikUgkEonsb+xzp1MRuCxBJBAV3D9YCE4n8B/MlQvPeIeTJkeTkUgWfs5JyENwuPXh4VLIPP7Dfqt3yRtpvC9KUIVUFKZ4G025fSxlaVx4tcjR8R3sCNlPIQMq2JccwdFUrKkUmlppqjaudCsNfn1IS8+gFTXdUGUeeOkQ2oGCsfXmbPN3B838pUGb8b85ZX3ZX2v8kPj/lfOHzKdmRrkrO98NGv7Wbqat3FCtwd92q0OxI4llp9NKgcftcN7dojiurQqZDQIe/rnIdiqu/5EOJmY6RSKRSCQSiUQikUhkf2Ofik44hbNNIce7WxQiFi2C1lDRjmpwOHUkPsOpXWd0pA3aVUZNZdR0Rk0apdMpCd3tpBCRSiOV9zUZfEO6vCiJE0EF4ajIaLKlGlFIUQqH9mVyKKzzslbTBeVfM06Vj2Zmkxokdg0uoQMG/T7E66W1R4LLqShnK+w6xQ6G6S0uJxm0PprLhRTvpusnOG1Kd5QEq1dzHaUsM6gczDW33xIQXjqtwn4091C2qsJrVbgG7/mg56EO2VDPBVuX3m21bKvbqSXRfGQOo6G0wZblpWXX/LUtOOvABFEycTgTssbEB9fLNisfHkU1Ii3PkUgkEolEIpFIJBKJ7Ev2cXkdzY5kQUixYhHjfF6QBef/By5IP2LRqshvMmgyUjJS8U6nVJouJwmldUWykqUQgCjL5WxpqVHB71SYf4IAFnxQUs5XOJasDxp30sxzcs15xHu1SruQC9tt1SX8bkvpihpMq7spiESu5eVtHrLtazTdRNuVMFpK4JoOGylDvAcpGCItJXSuqCrcZgOlecoGQap4LsbUujuFC2h7w9uqjM7R8ssI2OEibueGsB2uczvLDbnNwklmoegE6Cw4DWIFtEWUG8INt2MMzUwnsysHKBKJRCKRSCQSiUQikVFmnzudyhojHCLW5zhpSLSlklraUkNbmtOe5LQlGR1Jgw6d0aEz2rV3O7UpLzpVJA/iky+rK/w5PkFHYcWXHiX4yPBSjgouIoUgrflM4bnVvWSdxjqFkwTnmo4n40KEufOPYlnvTlJBtpKmcQkvbDlH2SVOxIte1rUqOS0uplaFRyidT6V1p9XlFObbRg+RwY+io1/psXEgRsCAGpQJFZZRTbfTNqJLIVi1/Fy6nFpUnTKbqXRjbR9pPRQ7Yqjp23FDDTq8uGbu03BFpyFOz07HUkwKrjURwRn3/7P3tsG2ZVV5/zPmXPucey/dt5E/ghJaUDG8KKiRSgmioEYJWmJFK4UUgtiAEXlRsDCaKCAWNlpE1A+CGkogifGlQBPUYCjDi11KFEPnpcRIkBQdSkMQm26b7nv2mnP8P4wx5hxz7bXPPec0cK/J+HWtu/dee6655pxr94fz1DOeKQ6nyrquKtfR6UWjIgaq9j4IgiAIgiAIgiAIrjRX1ulU0POAqBmeUJPsCseVm/umy0B1kd8kxyG22GDGAWb0KG8A6lSqeqT2Ta+/stIkK/ditaKQXpmIkFhFKR2gOZ3EIkQioDh3Vbfk1CbsEKyd0yWa4ISW57Ss2hoXTZxRXM1BBA2oXlywLxdorY23EtXxINvJLrt2zh0F73ZavY/udke2PgAnvaCyOp68ULXSjVuQU5qRdqa7txEd02Dh4mrnyJ297MAWN7C3trMdi+OpTgSqSXZ1PAVRXhcEQRAEQRAEQRBcbVxZp1NTLDR3KRPyVLHZMA43FYfqcrrHZosL0xYXpiNck49wzbTFPZrLacY52uKQtjiguWU5JfQsp9p2DJOd6Yq6gZoXikQMqq0wz7KacncvwZxM2bVzTif9vu9al9r8msvJ3tNSo+g717W8JriwbcuGYhPLgKZ6aInWMssJvOJyAvqudzsjAFClrI4qgKIldhAzGmkSOFselM6liWteKRuUIh2HzdncTdzdT34kC9PUoNXQ2oQ8S9FozZG0RyxaCn3ttstr/bm1ga+OidbbEYBkvw9bFF1fXm67dzwVhOJk1iAIgiAIgiAIgiC40lxZ0WkmYAZguUaJwQWotbad4Gzbr0QVExVs0oyJjrChLQ7oCIfY4pCOtLSuYkLR0rquQFQiFM4gVFQVgpgYwIQZQFYBSjKi5I93BgFcQZw0F0qFlxaAlFQoknPmrmICMjEq25/+pk54EUHFLrXYaGSVnFHnkuyA575joFYNotasJbbMJV459uHDkUxzMbGqAlQAqgQq/XvO4k6qG+7ldcu+/CvQ7TZuNz7WOjtK5nlCy3s61t1FK9+tNVzRWnxQ+o6ItLj0OFfU7u1cf8exz8Jl15nFTjtjBrgkcDml6MR9V7/l7n5BEARBEARBEARBcCU43V+2n2CGnJ8JkuV0UHF4UHF4UHBhM+PCVHBh2uKafIQL+QjXTJdwTZ5xj7TFhTTjfN7iXCo4oIoDKiI8ESMTkMl5jch5aojAyGCGilDmZMoo6m6ymPIZGbPflU7bVSQwpRZZbhJTZZO7zMWV3Htr151NPAQM9XatzE9dTmyp3S0HK8HnOVELpm4epP3rrmtv5X7ECcSEVHcPqHzHiUWiHKfje+wHd1dXX3P30lxZfV+/tW72nls7v3aklc+Lse9oUCv9MFb6+oQc1N5T6uco7VHGjqGoWGrHSXn1q1+NRzziEbh48SIuXryIRz3qUfh3/+7fnereQRAEQRAEQRAEQbDGlXU6FT0mFgcPs+4CpzIQVSQqyHpsSPOb6BIO6QiHdAkHmHGAgolmTKhIi7+3Zac0RkIFUdJwIkYFgSmhcMXMIkIlriAWFxPpbnn2yswomrvD9p1KVhUZSXeoy2T+Jblf4oqCNLiWmFWcWvncnU+yMx5XK62D5PzobmfL7KW9mU4rlh3bMVB2jqN2rpfWAUkzhXiStoUgrrS1X8zyvtVcYbTbZtHWVmufTLJj2lFXEC3bDB1YKaC7xtxS9l4r2XhtXO5eq26m5XxPqBGNffGumFZlQGzP+hR4sek0otP9739/vOIVr8CDHvQgAMDrX/96fOM3fiPe85734PM///NPN4ggCIIgCIIgCIIgcFzhTCd1emRxOuUN4+Cg4tzB3HasuzDNuludOp3ytmc5pYIDVGyoYCJJUfK5Pz0nCWDu8eJF3UlFd5orms9UKKG0jCY7xOE0u/Mt0py900n7NmdSK+Ozzz3XyXKf2hrsWHswuJzQhKc0tjPHkKkjvJaPtFTh9ExFy4AiJzqhiuBEDNTsjFUTQFpmt+dJjiV7xwgfbfe6Y8SmoQt7tb7XLlpzQa29X2m+eq/lORWq+mdNYjqJ4LTTp3a0iOei9ogvuzI7VBUp7f1J+YZv+Ibh88tf/nK8+tWvxrve9a4QnYIgCIIgCIIgCIK7xZUVncyhU6HZPqwuHAsDr9jQjMO8xYV8hAvpkuY3SZ7TOUiW00QW+S3x39I1QUw7UsBl0lIFIOlOhEwVhWtzMllpXFXnUTG3kUoA1TmTfJ4TWR4TCES6sxykv1q9mwko1TucaHQ8OZcTWzt7tZ3+1O00rJ29GqUNrX1PzYHUxSVqGU79PRiAik2N1PvqQeQr6D3ZO52c44qWFxL3bCf9bnAwLcxSrpnrQ896V5K5nJZC0lKQtP6dc4rX2pNzJS3bHENvt7Bm7YyH9V9ug+P9q7zKmtPptttuG9ocHh7i8PBwfx+l4Fd/9Vdxxx134FGPetSp7h8EQRAEQRAEQRAES65oppOESjMoA2kCpg1jsyk4nArOTTPOT7O6m45wIR3hfJqbw+mw5TcBSTOcvAlHHDHOWQTLY5JXczqVluO063CqmuE0a55TRRbnknM6iXMqtffe5SRHai6nlsuk7WpPuR6PltUkuU1cvctJDstjMrWleWPae2unVwwZTnIkXn6PnnuklYicWSoS7fz6iId137n37sjdt2Of4+9jtfPjj5NkL+27xWp7vnyf+zjtOF0M2GV36ltQWg6ZHABw/fXX47rrrmvHjTfeuHrtf/2v/xXXXHMNDg8P8Z3f+Z34tV/7NTzsYQ873QCCIAiCIAiCIAiCYMGVdTqxOWHMMVSRU8UmFRymGefzkQaFH+F8OsK16eO4hu7CedriAm1xSNteVgeTl4AZpI4ms7MkVNjf9EmdJAQQmhNJXEzqeAI0OLw7nWbdUa7UJI4lLWEylxKBW4gQM1C47yhWK6FUQtF7lZr0nqm1BzuXkzmcqvvOspuKXqD5P5bJJB3p97rDXXMxaXYTsTqb9Hzayvs0S0mdldKVc8B8ASjnWDKdsnRP3k21zIvyelnmNi9zWLXsqBaiNCqEQ1fqQDIRjf0X3tHk7wu4crWVdh5zN1nfvhyNeMcltexnx7GlrDqbdlxNK53YPdidP6XotMYtt9yCixcvts/7XE4PfvCDcfPNN+PWW2/FG9/4Rnzbt30b3vGOd4TwFARBEARBEARBENwtrqzolPSP8wlIE2OzqTicZpybZpybtiI45S3Opy3OpyPJcEoVB1SxodrcTaY1JIjmApigIJlKla1Yr+9S551OLY9Ji/AqJymNM+dINbdSz4UC5PvmcIKU7JlIZRJXdznpNepY4q6k7L4ydSGkve8+od4OY44T91ZwrZuOwe6o3cjj9Q/OQN3IAXM4AdhXV6f6zXIAY7aT3XOY5+Jif41rsiYw7SzbPjfUoq/lMNuXJ7l+z/h22Cc2Ddfwbh/2k0kApVEHOwndOYeWF2Y70l2Og4ODFiT+yEc+En/4h3+In/qpn8LP/uzPnm4QQRAEQRAEQRAEQeC44k4nJnE4gSooVUyp4vwkoeEXp7vwafkOXEx34mL+OK5Nd+KadIRDzNhQxQGxmXCkO0heUwGjgFGRWmh1tftpu8KEmXNzNB1xxpYztjVjy1JSJ5/ldeaEuSbM+se9HJLD47OZSjWHlOQ3mcupMjCX5NqqewldKGhZUZYDpXlMbBlOBYNrqGU0cV9P2xGQCg070lEBaFZnUxGXU5oBmhlplsvLOQAH3ZHElv/kF3jxvmkjCRIyzoMEJQ4woqaR0aAyrfS9ELYIAJv7yMSYdoyOJnbndjvx93LWooVbS/pa9GFOseVwfeldYjcQm17vh/2Y/fSXy7F0kJ2Qs+5etwYz49KlS3erjyAIgiAIgiAIgiC4oqITgyW7JgM5V2xywWHe4iDNOExbnKNL2NCMgyTB4QdUMJEmMBEj0agNSAY5N3eRnBMHkjiZ5A/yqn+gV/ZZONSOyup64h5IzvpeCwFbn+Zsqu0892wnJ1CVSjuCU63OUmOCkxekzOVkjqbhM/Qz2vdoAeErgtPiQOGhDU9ATYSSgDrpznXOCLTUQXZkDYaU9TnxxHbH62O072ilg97N8FlFGi/aeOGJ18rZ1vr2k2AX070mUPk+VEhaHa4fT/vFObfX6rgWdil7bx+XYtQJKZo7Ju9Pft0/+Sf/BE94whNw/fXX4/bbb8cv/dIv4e1vfzve8pa3nG4AQRAEQRAEQRAEQbDgCjud5CURY5Mrzk8zrtkc4V6bO3Gfg7/GvTd34N75dnzadAeuSZLldJ4qDgBk0qgh/Su9qMOmkAlEdgvbkU5Dw9XdNPOELW/aH+uluZ4yjnjTP9cMhpzvmUvO6eSEJMl7srymLjjJdanvWFe03M6FB9luat3hpN9XOzCKNy0jCS2vCbW7mfzOdC27yT7PQLoETEd6TwKqZjmVa4ByyGArr6tO/3C72AFr2o6IXUvXTndj0a6YsihfG0vduAtLCUBaCE7WJrk+9olO3kl1kvK4pfPKiVYMGQsyS757XghNO3NTQcocVKw/Ul6ux8q1J0TE0aTvT646/e///b/x1Kc+FX/+53+O6667Do94xCPwlre8BV/zNV9zugEEQRAEQRAEQRAEwYIrKzoZxCAqyFkCxA/StjmdDtMRNthiQsEElt3qAHU59b/MnYlFSt6a+6i7lSQgHFoiZ9Vq3NxNlV1pHJN7j+5gQheyWMv1emg4axg5DcJTK52DOZzQSugGnNtpCA83oWdwPXXBScLF0crvdlxO+ooKYAYwM2jWiTHAm4SaCJxEfJLbj4Mj785ZrPlwYiHqmA4jp3loemxf7ptePsejqLQog9vXx7p+s3J2r9DDi767O609GwI46a8jLcSj5NS3XgfoGqyITb6s8QSctbzuta997eluFARBEARBEARBEAQn5IqKTqShySkxzm0KPu3gLtzn3O24/+Gt+IzNx/Dp0+24mO/EPWiLe1DBIQEHRCCipm1U3W0ukwg/AESwgXMkWUkdZ1SVr8TlNOGIN5LdxFM7LOupclZ3VA8L944lE6CICLXmFixeatIcpy4+cTtSK6FraooN25fKOYEJhRaldGhuJ1JRqmU4FedqsmPuO9RZllPeMtIRUA4IdSPldbwBeONcThZsXcdxjm4kG7w7vaL+UHMyUW9s2s2aQ2nxHfv8JC1ra5+xe93OOAbn0orjat/Y077vxH1m0+FUgSyCExGDMiNPdXA4cRWXW9nuufcZS+uAZXndGToIgiAIgiAIgiAIgk8wV768jsWXlKgi04yJCg5pi3PpkjidsMUhKpoOouV0/u/zChanEbwmIw6m7nQiDQ8HSu3upcp6rR2Q7wb3Eiws3JmOnKhVqnc5cc+VsnI5vbYWcTlxRQsJ310P6t/1m7nJmcuJerB4Cxjvx2qe0ywTJHM4+TXMDM7qRWIrA8PYyI3X62VW2reDF5bclYMWtHAvsQ/a9uV1MJGJQWlXuNKLVwYhzwpD0+XCn7KWzV9v8ya0rRM5A2QJ9sMY3bm2gH6+K0M7IfYbt/dBEARBEARBEARBcKW5sqJTZmBiXDi/xb0u3InPOH8H7n94K64//Cjuk2/HvfNduDYBh5SQnHCQQFoWZ4VuXZOZmTBDdpyrTJiRMXMWZxMmyXKCvD/iCUd8gK3mOG05NzcUQzKgGLLjnDifbPe5pAKVOKAqd5eTHNRezRkl4T9Js5hWSqy8g8k+m5PJdqvjnt2EGUguMNzynHYcTkVdTnZsgWTOJRKHU7kAlAuEOjGwYWCz1EkWziA3dK+teClwaQoaqslsigu3Uvs8nEMvo0saPE8rysw+4UvXsjutVr7fc9lO/0sXVQsOUycaMZAZyRxPScpAVVvtC2EhVUvR7HJjOoaqgfjyPpxOQRAEQRAEQRAEwZXnCmc6sYRDQ/4oT1ywwRYH2OIcbXEIYAPCBAK1Oid2phD545rNgcTd5WROp8LmcgLm2h1M9srM6npSt0jx34trqe9a53Kd9Hspo/MOJ3M59WynojlOtaK5n0aRyUQJjHatnUwn9FI62Ypvx+E0uJ0YkuFUWNoWyXIizYCydeNFnpM5dga301J06k/QGXR4Vy7hpQGJnebmnEDEIjplEWvQcpFMcDL3kN3flR/aSXL2rUWtGmPPDnR+gGc1CLWFRL8/i5vN4rYsIL672GzlnL1Jr29h8qcgyuuCIAiCIAiCIAiCq40rKzqdY2zOzbh47gj3Pf/XeOCFj+Kzz/0l7j/djk9PBfdIEzaUMangVFC1JK6q2EFgcKswK+gup5kTtjzhCOJymrHBjAlbTDjCBkeQPKdLzuFUeMIMdS2py6nAOZbgsqKQ9XMCIzeXE2uelLyXc83l1LKa7D0ALcMDMAgm5IPDdXc6qpB8p6IuJ16U0M0Yd607ArLuZpcKkI+AfEm0mZqAeg44ui5hvoYwn2fwOXRrjo1ncDKNZXXtvHc9LRlymOCMPgvBaRKXE2UAuTZHU1oRghjoQewmPJHMmXX9RjWMhnEu6vtsyfsrYzy35nLyc0sQh9gkWU4gRkrWgXexkbrWlmFUy0nutUDtRX6z4XQKgiAIgiAIgiAIrh6ubJD4JAVyd20zbrt0iNvOH2BbCWDGRAkbZGSX5CzSgfxJXVBRuGcyqZFHHU+sAhShVMlxmjXPqWcwoTmTbLe6WbOZxp3oeHQ5mamFGbWSupfEntLasvqwmFGre609r2nIbdrnclpzO1VxOh2X5zRc41xOrCqNiVKYAdrK9xU6pn25Ql6I2RHJ9ONCpGHNYOph4NhxN/l2Eg5eQalKiRr1m3K7n4g4nEzAGX5ROr5d1cjEqFUpxz+Dpbh0We1Hfhk9wEtFPXvO7ZDxst9tcN997FmfAttt0d4HQRAEQRAEQRAEwZXmiopOaaqYJsaFgy0+/fwdeMC5v8L9N7fjMybCPdMhMiVU/eu7C0SS5dTdTcAWwBYJBST5TJh0R7qMLTbYYoMjbDBDspvM8XSJN5r3JDvWVWQwaS6TdzKZy8llO0mekziYGP2z5TlZ9hOQdac66QdQsaQJJjQ6hNwudbZjHVVSsUkEp6Slc6th4XpOMpwY2T6b22mr5WYbQrmQUC4Q5nsQcMCS1I4VnWWltG5os6gSawJTdt/5o4lM3fVEE4BJdnzLU0XS8rqqAh64B7Ob+6sNjdDdTlZhRzSKOewEJ+7n9pUNri/E4pzNR8eeNpLllJIJj87pVHSy9rpkR+A6nXBUXKZTCadTEARBEARBEARBcBVwRUWnPFUkYty53eD/3HkN/ve5e+CzpgPclbcoLHtwza2oToSnAsbMBTNYHUzq0mFWN5Nk2xQkFM44qglbJsxM2HKS3euYnCuKxBjkXFPdtSSCB5nLCYA5mOyw6+QzhqM25xSBdXs8VgGpCRHA6HhaOKBInUwWFj44m4q4k1qQuCu369+Ls8nuX1UHKQeEMkmWE4PHXdhsTP7VvltzQ3X9rIlJ1d4P5XU8VpY115NMIuWClCtyqiLcgGTNWHchbO4hXc+dwa7VwHm300LgWyo9lyur85O2R9ccaOpiIm7CGDNrjpM63ArkmVdT7ni8p7/XKZ1OVt4p70N0CoIgCIIgCIIgCK48V1Z0yoycKw7zjPtfcys+9/xH8bc2d+JeacKUEmYuKM7pVMDYoqJA8rH7kTAjaU7ThC0yjjjjLudq2mqO0xZZPqu7yfKc2OU4mWvJIsuL7mAn7qXugLLsp7ZrHfa4nKq6nLzTpZAUe3nByblxSN08tlsdFcl5Sox2LqnYlMzhpG4ncTWxOKK0Xdbd6wiEo3skbO9BmK8lzNcwcKD3XJhrViWcNadP+8wtuqo7mtwxRBmZ4MSgDZAPKqYNY8ricqrqQmo5WsCiQyxeuwVLKuzsTR/srnfomAkvu1+es93q5DGDbNc66iYrVfQkQEvFJqpurIPjaRSKTlsgF06nIAiCIAiCIAiC4GrjygaJM7DJBSlV3HZ0iL/ansP/yRtMuIR78QxAhCZyaU5bZtmQDeIymZmkxE7dTLZjnezmJe6mrXM7zZxwVLO01bI5y8Mxp5PtQWe7z5HzPIkFJXU7E6qOjrWMzlxO0p85XgaXU3vF6ChiFjHKXE7mYnKiUs91wuiAaiV5AGnIlbmPGJKrVKZeklYzUCZ3qUZnDTKICVz+C3P/+Mo0n9uUeCyfs8Bwd65hLietF0xpRtLyNNKdAYmSRjSRcw6hb7W31FfYvXGlivZ8VsPOd65dQO7LoX80dxoXQiVCyu12qJVVcBxvQebS8m4mIgyDKzgVFT3L6ZQmqSAIgiAIgiAIgiD4pHBFRaeDgxnnNgnXHd6Fz7vm/+CBhx/FNXmLCypUbNn8LRIEvQW36jIA6nhK2CKpw8mynMTJtNUd6yzPqWDCljfYYkKFCFAz6+5zILDmOFXuTidWl1NRBxO8E4oSuIrTqWU9cd+5DpoDBdvBrqbudtHd6UajkHwyjUNEJ9mtznK27ZD2rkJNHU5UpJxOI5GQuGk6Er5NwHwPwvZaQjkH8CHAGxWvDNc/sHAutQEqznzEzvmz5nCiFWcUZUaagIODis1ku76hC01VnWG69v39sjM4QWjXskSLzyc2A626nNBFojZHBmWAUhf2+m6F/aCuBLZxce90z40vz7h7XbpM6yAIgiAIgiAIgiD45HNlg8TBuMfmEj7zwscwYcaddcK2Ej4KYEMupttVStlmbFUdSkcMXOIkpXJImJExc8alOmHLhCNOLc9pq1lOlaFikwoEzG3HOVKbCsFcSn28YljqWU5czRHV85xEdCLUKk4dLgS2xHNTzMTE1crk/Htyh89pWuY5DW28YwrNfIPE2r1lNxFQN6J9iQilbqaCQeNo+k5aEZ5aZVgXXJrYpOLLsEtdWrzC+hA1jDKDUgVzBVFFJt1pjkTos3UvM6FaHhJ3l1ALFveT3+d+Om3VmW9vP8DlvWxOc5IS0OQfhBO33E59xNA8L8t/GkUxJshv5BQUFT7tfRAEQRAEQRAEQRBcaa6o6HRus8VnnL8D15+/Ffc7+BjuPd2Bc6n0TBygZQhxO6yESErpZkx6ZBQVnI54kvfY6CHfFZ5QIN+xOp0kSLzbdSr13epsBzvJahLXE8z95PKcCmuuU01SVledalNJHU5JnEwuy6m5XuD0GHXDDG4my26yc3Z495NlOtVF8hERkuYn8QTUDaGcJ2wvAPWA5Rewx2BD+g8DizwmjM6nhLF8bpHlRHl5rTzJlICUGXkCNhvGZNcxodSM4taz7fy3mumE/iNZrOcutCsm7fSx+I7WGqK5t2wHvt12fSzc3tsF7dPwrlcvntbpJL9Tex8EQRAEQRAEQRAEV5pTiU633XbbidtevHjxsm0+88Lt+PTDv8b/N92Gc+kSbquHuMQZE1VkVJyjGRuSHe48luW05YwjSHZT351OAr236nAqDMxVzm+ZsK2W+yRC0cyEqo6gyup6gjmcuIkFgG9jribboQ4olTAXEUnKnFDnpLuWidBk6efLDCaUdZcT+TbLbKfFDnetP3Me+e8AbA91t7pDoJwDyiFQDwDOg/6xQ/tO++Lm1hmdTYMDCu5zy3BiHd+yLcAVqAXYqg2ISFxnc0myntuEMidgTv0ijOMazvOyTG05P+e4Yuy2Hb5beY/F+Xbf1B1ew3XU+yWAMwNZ16OqAKbZYYNbLe276TrhdAqCIAiCIAiCIAiuNk4lOt3znvcELbc420Mpl09CvufBx3Hfg9vx/00fx/lUMFFtpXSZGJm6P8QjOou4l0SeSoPTaeYkzqblwbntUFeYNMepqSc9wwnksp2olcwBBCbdxQ6puZzEkaO71i1dOVrXRtUyfdyuddVrMDS6l9xkh+wmtxrLnCda9EnQ228IfECoB0DVDKc6cc9eOk6jcGLW4GJaGo/IaSzmcFoxJvlcJyKAEpASkLN+p+teagKXJCV1vLRZeWhYq7Edjx+XgtLab5kXbY+FAJKgez7uwqWwp+MkdXXttDvx/Tvj7nUhOgVBEARBEARBEARXnlOJTm9729va+//5P/8nvv/7vx9Pf/rT8ahHPQoA8Pu///t4/etfjxtvvPFE/d338HZkmnFH2QDMuEQJh1RwSFtUIsyUMEGcTplEIioa1G3h4TNSE5q2nLGFlNfNnLCtGZc446jqdyZIsQhHIhN0qwypg4lcxpO0E9GpsOwQVkrCXBNKJTlKwjwnFBVJ6pbANanDiUCzvrYcJhYBqjmXaHQ6eXeTK59rjib/6l1P6H0wgDpJhlM5B8zngXJggpOWhZmg5NxCg6nM6Shq/Or5Td7R5D6aqUmqyEgCtpl0EtTcQGT31Y5rBcCypvM2o8wZPCdwIWBekR69wMRLNcmwSfaPfcK0e8npzEXD2hFkdz2wPk/fn9Mfu3rIrWzR1m2Y4HS6wXRhFO01CIIgCIIgCIIgCK4kpxKdHvvYx7b3L3vZy/ATP/ETePKTn9zOPfGJT8TDH/5w/NzP/Ry+7du+7bL9nU9H2FDFuVSasylTxUSMROo5otENZI4ky1uyfKWe22TfJ+eEym13r6ouJju8NYdJXEm2O13VexUVERi9b3NCWZYTm5BleU6WzNN2LdOdyyw0ujmSfK5PFyC826nlOwFj24ULCpXbd1LKBXAm1I3kOSHLORGExg4vK1Ms3U1DcBScYENucAu3k28PcTlRkjbJdBpdU66keVh+hdYGddxnd44u127x9eU0n52H5j1XtNvWlyG2/t3MFmtzWqdTdU6n2L0uCIIgCIIgCIIguBo4c5D47//+7+M1r3nNzvlHPvKReOYzn3miPracURi4rZzD+XSEc0SoRCiUsKEZEzEmLpiogDihmJjEJOVETNhq2Vzhfn7LGdua5XPV83ZUE460TI41hJmBuerndojgVCHZT3O1/oC5JByVhO2s2UNzP5rDSV+hTibvdiJ9bzvU+bym5nQy55Ee9r61WTiRzEjTNnjLwPYCMN9DHE+ctTlLlhIIw853u06ixVsVzUTcolFI8YYiRt8Br0LdPE1VauV8LLYycenMGVyB+WhC3SZglvUz0W53gCdgxfi0K5KttDvuO3+9lcet9euvq1DxDGglfYvFHnb8I0ju0ykwAdTeB0EQBEEQBEEQBMGV5sx/nV5//fWrotPP/uzP4vrrrz9RHxOK8yp5/1EFAA31lm3lC/cSIttNzsKTZyYtm0siDLE5najt6tV3oAMk7npMbvZagc9xqkyYqwWG6321tK4WyXCqhTQ0HF1g8E6dhcjUgsVVaFqGiPvzcN+3dn4R3cC5uksSUCaSErskZXFMMu+qtXBM/XJf7bY8WoMl1qCV+9GuSLM6Vl3lxK3Mr2qZYh2EOhr7PG35m8eLQscdx158TJvh+hN0vhAN++Hsa0EQBEEQBEEQBEHwN5gzO51e9apX4Zu/+Zvx27/92/jSL/1SAMC73vUuvP/978cb3/jGk3WitXOzupMmqihgzAAYFRUVjISim8CbiGRi01aDw7c8tcwmyW2STCcJAocIMuqWSSpyZBAKiepW2WsSGmTNSQQn3eVuq5+3NcvOajVhrhm1+F3qcnM5mbDkBSfJcNIsJ3MzebHJ3E3VaQ4LpxMtz6F/h0xSUjdJblM5B9TzAB+yuJwSmtCh1V27n724ZN/pebtX32nNuXbaeO2DLnR7hQwyMVIG0lRBSZ7LfJRcflPqgp0fJAOrwtfwexrHvbf9cU6mnXa+ZG6l8c49uJce+n58zhKP7eU28hBJrzVX2kkpkF0Z7X0QBEEQBEEQBEEQXGnO7HT6uq/7Orzvfe/DE5/4RHz0ox/FX/7lX+Ibv/Eb8ad/+qf4uq/7upN1whXMrGKKU1KYpfQKLA4nqDGIoUHivbyuldVZ0DcIBWbA4eZy6sYS22fMJ3CzeycldgxgrkCp8lrVjVMrWpmefFaXU0ELkjb3D+mudeZeQiVgRp/QUnBy532bJjAtvqe+XN1AlVT70oNT1zwua+g5Dd7l5Er0dhiyj1ptoXTBQC1Qh5gJTbToj8d+LjugU8xy2WTphrrcfHb6kDI57yrr/1Usz/hQ8X25Vyel5Yu5MrsgCIIgCIIgCIIguJKc2ekEAPe///3xoz/6o2e+PicGKIOpAOpgOsIGlRIO1NeUqWJGlhI7cyGBdMc62Y1uxoQZsnPdlicUCwznDGaCjwxnEBJJqVxSgSqBRedo5XtJc6Jyc1WVmrAtWRxORXaqaw4nC1Cq1HarM0dTK6MrhOScTEOG06J0bidP2pWweaeTVWFxAoruUmdOJ056TAw+wOi+WTql9rHnS2pliuiWrGVbb8vSjKKUgZQZpC6eWiRXC7UHh1N1ne30ued1+f1JSuD2CU57T+zplPr34+50WDjAxq76UPcIT6dEfmbU3gdBEARBEARBEATBleZuiU633nor/uAP/gAf/vCHUWsdvnva05522euZgaqlV5VE8EkkGU4zzP3U24rJR7OZzNXESR1QzgTE3PKbCAxWQxe3f70aQE7TYVQGShGHkx21ZTrJa3H5TlWFJi8MdQeQBYerAOVzmvxnRi+5AwZRyH/2MT+ka8JQk1CG5jex7lqn7qYJl88z0lBxkL4HRuHDlsvK85zQcjxSTkdZJkjJJiHXEano1G5AzYdGO4OwsXSR6/JeJt/XGnvELXftWvP2dRu2jdoJcOQ+r6hhQ+9tp7+FMnUKIkg8CIIgCIIgCIIguNo4s+j05je/GU95ylNwxx134NprrwVR/4uciE4kOhEBE0mYdEUCSKPEKbeyOBOepGSOWkmd7Vo3I6vLSRxOlsFUkWAeJxMwuudJPpsYwJrXVKF5UJgwN7dTwlGZUJgky6lkcTmVBJ7V3cRJBKZCfde1otlN+mp6C7WcJwxiU9uZbulAWnMlqdhB6nCaD4FyHpjPMbDplyGhF1AOYhGGHfLgc5fgPpPTVtZcOMtzKrSwZjdhw6CpImdG0sNfXhiydjZOHYsY3xaqkrmBxkd3vCtozcllItvahbbWa46p41xXKw6nJiDR7n14+Eo/LHOgTok58uz9Sbnxxhvxpje9CX/yJ3+C8+fP49GPfjR+7Md+DA9+8IPPPpggCIIgCIIgCIIgwN3IdPre7/1e3HDDDbj99ttx66234q/+6q/a8dGPfvTE/TCLs0l2qNPd4lhylWYmbCthNicTk5qDRHyaW5YToVTCXOU63fsOIlNJ55UlH2rWo8UGsTicmCF9FOhhfabudNJMp6rtauWe57TIXxpCwq3MbpHntMxvImtTVg5tx6zRUBnYboB5A5SJUSYGJ0bVg5OKP3D3mN2xdo+VOeyPSVqzZXFvkhgpVeRUkPKMnGckKiAqIKr9SFUEGmJI/WGVsacq49ej/efykvZbt/x4Fv/Z9VQXB/f7ncplxKNet/L98QcWrqjVxT7BKPoujXwK9eod73gHnvOc5+Bd73oX3vrWt2KeZ3zt134t7rjjjlPdPwiCIAiCIAiCIAiWnNnp9KEPfQjPf/7zceHChbtxc8ZE4vgQ1weJfQdVXU8ZVXeusz+mCxOObIc6JMzIOOIJlzCBNctJepJQZwKjUkLhCRWp/UGeRG1quVBb3uCobrDlSc7VjKOSZbe6Ss3hVCuhlATUpKndBJQ0uptmAs3oOU4LAWpwOrlA8BaDZCw+M6RcjiegHmg5nWU5bbSUzhxDVbxdTdfQe7Vd1CqGXfI4UbuHXtHuyurmYdtZzVw5BCD3pmw3ygw6qMiHBdNUMaWKlHrPVcsTQSTP3R673VHL/Cz7qZWu3Y3MowEvtTqtp+lNe3eaW9BcThicSuQdWUvYmZ/s1Y/H/n84pRx8VqfTW97yluHzL/zCL+A+97kP/uiP/ghf8RVfcbpBBEEQBEEQBEEQBIHjzKLT4x//eLz73e/G53zO55z55rK7XBJhiAmVSHerI4Al8Jv0ewZ1NxRIXUuErTmequxoV7VEK1OVfG+GOJ0q46gSCjISscpPmuFkuVDqaJorRGiqhKKOp+5yAuos7qZ9bqTdbCfsupzq+D2t7QDnPjOJyCTldIxyKDlOPAGYuIsea+4kxq6LaXEvc+vwUvlaql7W2Ik/3ErStKwuV1BipFSQqOqhQhNUVAGQUhWnWZZ1ZSIgtfo0rFqI1gSjtbHuw5fPLb+yjKa+GMd2y8QLEcwNaN9FO6V7fhKnczd5LGPM3gPAbbfdNrQ5PDzE4eHhsf187GMfAwDc6173OvNYgiAIgiAIgiAIggC4G6LT13/91+NFL3oR/viP/xgPf/jDsdlshu+f+MQnXv7mxEikO8tpthM0ewmURGoiajpAYUh2k+5Yt8XUdqzbYtISI8ZEFUykQdsTjniDu/gARzypX0pKqQoDW844qhmXiricjuqEuU7icLLd6uakohOhzqnvVGc5TkV3q1OHUzLHU9WKMcttst3rzHXkPy8Xh7uOw1BH03lxNdXz4nTihO40ooVTx/dpYea+3/FWPVfJXDv2nfbNSYQtcz0N7e1IkuFEU8XmsOBwIw6nnET8a3qL12qaw83sbiQunzX9Zk0A8+cvJzqtCU7cL2walxPmaJ8OROMxuJsu58aycSyT4dGW4NQUJBR9cPZ6/fXXD21e8pKX4KUvfen+YTHjhS98IR7zmMfgC77gC04/iCAIgiAIgiAIgiBwnFl0etazngUAeNnLXrbzHRGhlMtv3G7uDFJHUtv/jgAwaV52K65CVSeTZDlJBtOWE45qwpZJy+dk965MEoBUWP6YrpVx15wBIkzqvgGALSdsa8a2JGwLYS6Eo0LYzt3pVPWVS5IMJ3MtWTaSL5tbuIvYfb90OpFzOJkQY1vSNYEmqcPpgDAfSlh4PeC+K526hvrioTuQLCvKO5zQdZYmKEF2vEP213dlyOkybYI7WoxtpUfANBVs8habPCMn65K09FFEpcpmKmJUqlpOlsBVOyF2N19DJ27f71WHdtdlF7un++jndLn+mlDEPTHeB7jzcSrS+B3rczqt52nN6XTLLbfg4sWLrc3lXE7Pfe5z8V/+y3/BTTfddMq7B0EQBEEQBEEQBMEuZxadaq2Xb3QZUnM6MbJWVol5hrQEq1tTqu5aV5BRkVEwYQvNYUJGaX/5i98JIDARtjzhLj7AHeU8Zs6YqKjXSQSso7LBpZKxrRsclQmX6oRtmVBqGjKcuIlOYvehok6n6napq+61qv5g732Gkjvfsqsd7bOW1M3nSFxOFxj1PLrg1K51woUTYqRv2rkHe8GJWMQmv9OdE1PY9csmpvjDGiQAEyMfzDh3OOPwoGCTJWS7qoBo3VYV2ZgJzL4zESxBXXzZFYqov/jvz+AO6te5Mjrf52q5oy384pYtDJ2Rcm8/PB4eXlYG3RuedjoVsmOjvQeAixcvDqLTcTzvec/Dv/23/xbvfOc7cf/73/+Udw+CIAiCIAiCIAiCXc4sOn0iqExgJhBVsOY6AVJm54UXwFU8qcNpZnEizUzYmoNGm1eQlNAxxO6jKsedZQKVCRMVCbZmwlFNuHM74VLN2M4ZR3NSl1NCVZeTCE6k28ahOZhobdc3G2xVp5GV0uk5cx7JwfJd2dVOKklJ3XwAzOeAcp4xH9aF4ETqkFpRZ6oJHq4sTgUog22Xu6zfZ1/35mjlYNIfL0vD3BMiAIkKcpoxUQUSUGoS0bBKkhYloGiadq3arVzYxKYW6eTX9ESs1Soq3hk1XOLWb/nDO2n/iUFJnU7u8mEeTSij/mPecx8+paZruzja+5PCzHje856HX/u1X8Pb3/52fPZnf/bpbhwEQRAEQRAEQRAEeziV6PTTP/3T+I7v+A6cO3cOP/3TP31s2+c///mX7S8RI1NFVrdJ0j/4kwlP6CKS7TxXkMXhhAlH2GAL2bKtF29x66ci4YgPcGc9h7+ez6FwkrwnJDAz5kq4VCZseYO5ZmzrhLlmlJqljI5FaOKS5LUSwAnE1HOSqjqbmJyY1KusVHfp2U3tPPf2GKUHhriZymF3OJULDD4AkOS+wDEuJ6eL0M6/8kYEJ4jLyXKhfEaTH4x9XtmpDVYKNwFpU3FwMOP8obicMpmQ2DuV52kuJ9Kn3W9sxqNWbmiizTAjE3b8e7T35Mfv12ZB6/ekItVqOxVKkx3WuQxkZx5EizrSfX2ezuu0Vl53Ep7znOfgF3/xF/Fv/s2/wbXXXou/+Iu/AABcd911OH/+/KnGEARBEARBEARBEASeU4lOr3rVq/CUpzwF586dw6te9aq97YjoRKKT7BpHYFSNE2InPXArs7M/3FmdPZVZMpjU6VQBTNTFKut35oRSAULBQd5ing/EGVUTSk2YK2FbJxyVhO2cMZeE7ZxQCsCVUL3YVOxgeW070Fn2EMMCvKGnW17TMuvJl9iZ80nXhAHwxsrqGNtrgPk8Dw4n2zWNk11BvdSutZF+mQjUApT0HnZtBqopYsnu4RQrc0b5sjL0F3nYrC6fimkqyLmCUFpmFiC72BETiKRcESAgVbAagyhByuw46W1MCOLuDFoNOlrYoE5bk7acDKlwpGNom9h5EWfNeUUMIpa5q9Op2u+H3fW8cG99AmFOqPKD0JLFk/HqV78aAPC4xz1uOP8Lv/ALePrTn/6JGl4QBEEQBEEQBEHw/yCnEp0+8IEPrL4/K5kqiNKQ5ZSIxfti9hCI04mZUEDYYsIRDrDFBjMmVCRk4tYHQFrpllE444g3uMSS/WT9iSiVVJRKKCxtS81N/GALPmIVmyqJw4ntFT0vyVxP3t1klWr+1X3vHVF9pgBn26mOUO4hZXW8gU7OiTFNA6LubKL+lbX1m6r1EjloyR33OKUJo4NJc5jk4tFNZbsMmviFDORNweag4Nw049ymNheRCTjWMeuzZD3XM52cu0fHzfZh6ehaQuMQjxWfvLq3mB4lNKcSuxI/8tfsOK8ASow0VVCW36EIS0u30tr7paXs7BSQ5pqhvZ4E5k+CAhYEQRAEQRAEQRAEuBuZTu973/vweZ/3eXfr5jNnzJzAXMSRg4qkZXTUJAfWOCSSEjh1L5VqVUqMylJgJ44TESwqM+YK2YGuEsAVc0040pDwtmPdnDHPGaUFhssOdahJcnXM5VQJPEsJHRYHt3H2P/ZbNpEMsblmTHpp7dD1I63mQ9kAZcOoGeCJgQ03FUuMVdxDv22MVTuAOqvsvkkFHL0BWz8J0qeV2VmfJiQxq/CGdnQhyA3eJssQ8S9VVGYsdBoXCyXCjJRPFnCWzmdkFJa5dNHGO4O6o2sNO+0r7nZarGkxTGBmUObB6SQ/meT6GoU3OLGGK1CLZJMhM1LS51ZY3U60up5tTicVzI6hMlx53dn6CIIgCIIgCIIgCIJPJGcWnR784AfjMz/zM/HYxz4Wj33sY/G4xz0OD37wg0/Vh+1c10UIaiVyUOHJ5KfKhCN1N20xoTRrju2CV5szhVnynGZMmLkfhTMqZ1ToTng1oXLumULsXptAQG2XOiv8Mw9Qdy71MjRi53Lybex8XRzDggD1EKiHhKLh4XxgF6MrN2YMMjeRjEb64H6mn6XWfzcVOZeTHi2PCOgCmhfPvFPKjYUyYzooONxssZkko8uynAhoaVuVRVBkkxQlPby5n0Z3kLv/qjMIzsYlAyLfbCm8ODdU14v0fkndSiYY7dyzO7DstuxO+DynZDqVzof9nHjR33CbvWrZiaiuvK6eorwuCIIgCIIgCIIgCD5ZnFl0+vM//3P8h//wH/COd7wDr3rVq/DsZz8b973vfZsA9Z3f+Z2X7WOuWUqBGMioSCJBoUsTQIGUwc2csWXCUck4qhnbSthqElRl2VFtUhXnUsm4VDe4VCZcKhlHhdTlpO6mIjvVbUtCmRNqkQNFhYLmbhJBSexH6C4n1YFMkGFVYJqU4BxBXmdo710Jl7WpCSiHIjrN54FyjsUFlBi8WViMvPaSuOk/Yv1Sb5jXObzNSh1OrC6nIfza3YBsEnmcEEH7qL61uIJKzSh1RjWbleuLARUGrbwOABNSIkwMcCJwAso2QzvoizYspr8pDQIT07JRX6PmvLJnZjlLVEHq0Eq5IpE4krjmbkbqK7zQv9TjVgl1m6XfCpD1oYNn/V01EdPDrr+hju90SNg+tfdBEARBEARBEARBcKU5syXivve9L5785CfjNa95Df7kT/4Ef/qnf4rHP/7xeOMb34jnPOc5J+qDqLa/tdurvddyNdaiO8l0ylKGhazR4yL02C54pA6biiRileY6Fc6Ya2puEHE49d3TxkwhEwh6hhOq3Kn/p+NXEaFlOwHNFdRcTnAuJ39UvxCQEO+JUDeEeiC5TrxhKa3DOLwhv4gh47RxL9rqQo/nrJ+VqS/zm4b3C5MOgOZ02mxmHEwzcoLL4yIdoj3RZQd6Xp+FlLOtDHSvOwhYP+kn2X9Xq22JkDJAGc1x1zKn2LdbmfswJhHvzKUnE9c57T6Q8fPaV6ekMA1HEARBEARBEARBEFxpzux0+uu//mvcdNNNePvb3453vOMduPnmm/HQhz4Uz3ve8/DYxz72RH2IICTCj5hqzO0kjqcCKcnasrib7iwHuLNucFfdYGZxOU1U1C0lItQRJ1wqE+4qG9xZJtxVJtw5q+NplmNbMsqcMM8JPCfJb9LcpsHdVFXQ0V3mmsPJdqOrTmwCmuBUqTuCql0Dp/CpCKTGJHACahanUzkHlAMGH6rDSfv12UKMfp6ag6Z97YQLVi3KlC6ouwmgJJOgrGah1ocKRb5yjVxaFS3bSt/bOePSNgNgpElK3RjOUdRG7nYkbGWRUm7H1c3V7fiGRT/eCOQ1nmH+kHGDCVz0XOrXkq0PuM2nVgnAEgFMcpp2nEnD/bjfnxPKNqG4wbFlftm8MM6pDYS1NFCX8yyiU5TXBUEQBEEQBEEQBFcbZxadPu3TPg33ute98NSnPhU/+IM/iMc85jG47rrrTtUHg1GZRAtQIcI0lApxLRWWIPDChK3tOMeEWiV4XP6+lvK6AsJc5di6sPC5JpSSWlh4rXK9CU3sRSZXWtcGU9AEpl5aR0OJXZ/TQjNookkXoFpWN9AMSjVLiV3Nop+xde7Lu2w8re/FOK2phYWv2q6APhERfjSdHG5Uu5A/bzPsVi5xrdUu4DB6dtPgeILLVNJnbSWNvOx/ZSGX39PYX4tG8lNxQpmNZOyKLQtdxj4TalGxavlAafzI/rNfShUl2wHanYIZnfaJZqeggnqQ+Fk6CIIgCIIgCIIgCIJPMGcWnb7+678eN910E/7Fv/gXuOWWW/DBD34Qj3vc4/DQhz70xH2w1nhVVBASahMpRIiwLKcjZNylDqejOuFSlVDwBJad71CQAMzqcrqzbPDxeYO7ygZ3lQnbknFUJmznLKV1c0adE1AWDif/njU8fBCauuC0eh7OeWOumuyECTtfbf7icmITmjZSZmd55mT5S84BRE2psnMmZhB8ijm33egA29XPnE7QHdpkpzZpR6rcmKOoGYHgrrePWAg9WiK3rRNQC6iQlrRpQV0ThmhwUCXwQrBxzqKF62dfzjYvz3nRZ5EsTqzr45B+TcSUMXABUJITjFw3xEBmrAlGbdc9l9/E/nk1Z1if18qM+r1OgZShjuJeEARBEARBEARBEFxJzlyH8+u//uv4yEc+gre+9a14zGMeg9/5nd/B4x73OHzGZ3wGvuVbvuVEfdTmiHGvVY7CaK6lUgkzy7nCQKm2LbxYSyoDcwW2xbcnzBUolVBrdzeVQihFSp7Y7C17SupQ3OEFJ9t5zjudFo4now0TzsFFLbO8H0kPoHVsO/H53tjfRMcrbiduN2z6xiA4OYXMXryRqo22uqNPysbClRZlcLKOzFAnGWEuhFLlOTHrM3XPrTKDW+2ZqES9fO4Ei7raZtHO601ggIocbm5+NzuukN9IAepW51iw+xvwt4f9jrqTarix/V6GcY9zIK9WejFqbdrHUJmGIwiCIAiCIAiCIAiuNGd2OhmPeMQjUErBdrvFpUuX8Ja3vAVvetObTnh1z29iMGYGLDy8MGFGxhFnHLG4lo6quJiKamVbFnfHRIxSCUdVM5zKBnfNEy6VSXerS9hWCRBnTlrHprvVFdpxOJkI5arQ4Ov+vH6zrIwaUKcRE5pQZZqPmXEY4nKqG3mVuCcJJ3f70rnOqStXrONFdzaJS8rcNE5wSv1yUseV3ctsWpY3DjixyxxI+n79MRKYs4pMCZUrUqrIicFUkXqYFQAgpwKCCCWk5ZGkY2WrtWyL661Ei/vywsw0jMk3YqQJLei7ll7uxjY/rwJWAmb7XWg3CaKYTe7z8XrSKBgOPxTnPBu+5/X2QRAEQRAEQRAEQfA3kDOLTq961avw9re/Hb/7u7+L22+/HV/0RV+Exz72sfhH/+gf4Su+4itO1EeF7LrFDGSrQGIpsdvWJG4lJmwZKMwo6moyV1TSv9y5AKVK1pO4m7StuVc0t6mok8XcKYP1yNxOjC42rJhpvOA0GGwWgsigN5iW4UrrBkyBMtdM5e60OU588H0xnHUJxwga66+0eh924hONjp6FFlZVvGEtV0tZBaYs/dTmrOo7DurTk8IwEuFJ7re2SMNkdsbZH5BrouOU0PTqBCpTAkflpzm4/Kv/HWT5bDndtHjmx4/xBFPaJ2KdgAgSD4IgCIIgCIIgCK42ziw6/at/9a/wuMc9Ds961rPwFV/xFbh48eKp+2BkPViql9gCkRNmyHGJJxzxhDvrBpfqhJlzczoxM2SXO6Ag4VLJ4nIqE47mCUclo5SEuSSUkjU0XEOWCgFzEoGpQDOcgBYQDgz5SWOm07rTCdocgAgUXpgywWlFD/AxRmJM8oFBVsclLXx5F2G8kDUDCup2EkeTDJacM8ccP97h1IbvjUVt/l5wMkcQuqNKB8E1oRKDUZFRsckzcmLkxKhF9ia0RZuyCFGpAilB8qUmRirURcGd8O3Fai+ENcorTYhBiZGzrEdtc9GSvjanPldonpccpudxE0T7bn7dJdYXjfozX4xxJzB859U971PqVr6sLsrrgiAIgiAIgiAIgquBM4tO7373u0/U7ru+67vwspe9DPe+9713vrPsJa2wAoFlZzpYfhO5DCcGM6Nyd81UoqbLzExaQqeOJsuG0qNWRq0JqOzEBh5FB9kCb9XhtHQ7NQcMsF7axV1Mas2Su36JluBhVvFkC3DW7yyUvB1unHYDu97pFj3PyI59T6nToqGGMTpr0zAjfe+u4abDELaFkJMMKFEBO8dTraRutYqcKqZJJlQ4gzmPws3l6thUWEpJSvl8VlMPQed+jlWwrOZ4cvfQteJE4ElL7Gz6zdbVNSraN7TjTx7/Ne05fwzVBYnH7nVBEARBEARBEATB1cAnvQ7nX/7Lf4nbbrtt9TvJcsooyGAk9cfI5xkTtizHEW+w5Q22dYOZJxROKBDnDCNjyxPuKhvcWTa4cz7ApXmDozJhLhmlytZwXDO4auiRZjhZeDhxd7X0oiv3L4/HsoprgCCr6o98+YPIHTA3EsnBdqAJZOT+a4Mxl1PitvMdEpDyeJDlPmFfWZ2fTH8la68H+df2UM1yRUgEpESYEmOT5X5TAhJJmV3Sa5O6oVIiUCLt09/bDh5PJYAmIG2AzWHFwWHB4WHBwUHBtCmYNhXTJCV+UuYnY2PO4JJciZ0oVZR0bTJEjrVXe2/r634b3WZGi7HqDn7aJ2X3e1gTKdeX/MREkHgQBEEQBEEQBEFwtXG3g8QvB+/sad+ZIU4nAEiQ4Gx2DqeWA6QuJ1aXU2FNAlIBqDJJCZ1zOFmWU9uRrEJcTn7Ht+XhXU5w75fHMnLIuZoaSyHBXc91oSm4+1EB0lb7q4R6ACDz6Haq0gdaQtLuGJs3iWXuBJZA72P0CHZz90HiO5O1Oa0pb/q5FsLRkSg4+aDgwsERps0WIAmJlwwiOOeTzkeDxyunFceP1uORq0aj7mAqRZ4/mHrGlP2+iHu+V5EDtmOhG/fwmlgC2s1Btpgr+zW3pWnXc+9ux9q27Aj9YflzpyDK64IgCIIgCIIgCIKrjU+66HQ8Caxqiu3UVpFQ9Jg548icTnXCljNmTuKSAbQ9cKlOOKoTjuaMSyWLw6kkye+xnepMYNBd60h3J6OiDicLEV+M0FeoHVsa50WJZSfLa9LueXJCEVtukhd4nOBErA4nX/bVnFUiUFHqdixSt9PxrqblZPZ8BWo7zbVmNsw2L2onNnnGPQ63OD8VVABbfTbMhFIT5powV8n2arapHZeT3iRxd2r5Yem4mDNq1fXzc1BBiivAdSE42VhTf/ikS9tyubK/2c6CDGtgz8Q7wsbqwMXarrmcdu5zeUJ0CoIgCIIgCIIgCK42rqjoNDMhN4FA7EJVHUwW+CxiT7eTVCbMNfUwaIjzaS7UdsKrVdqVWYUG3bGuuZmWu5IxwJW7kLPmYFk77772hiPYZ9/ONCIvIC36sKwo4lGXagIIbJm6QMLN7cPjBdxHw1VyfijxoOl4N9NgSPNuJ/vOp53b60J0aiKXnqyVsS2EO7cZmzQjJSChgpCGZyy79akTqTBq4Vb+xtXdG4Tix+BFueVC+zGBpXzOj9u5pIY1IywfzeVZe57OHTUIUEtl07uj7gYhOgVBEARBEARBEARXG1fc6eRjpeRvdy2dQ8KMrO4m2bVuVmdMVbeTaDSEuWbMnLEtGds5o9SEWghogdTqdFJnE8oix4l7Qg+wYjjZ53JaulnWBBn7vHRR8e55E6TYnEuWKeQVKNJsJ+9wsmwoXU5qO9h1wcN2rNsVnI5xNsFcVzoJXQzaa5niVk5GGdhsGIebggsHM6akOemcsS0TSk1SRlktz0ufa5VD1B/SUsZBzdotb/RrCmvPo/DnnExdJOoLstQIVzveP22Q/h77AxVHWHtGfmg4xecTYv8vuNEGQRAEQRAEQRAEwRXlyjqdKpBq/yubWXfh4qS5P2bY4a43VHFImbNDyrRId6hT54y6oGrhVk6HmVqAuNij0MUHcz95YWjhbKLazxMw7kxHo96xo+MshB5i0cPM1cRV+3dClLmxqGh/rcSL9d5OQbH2Jloxgaq4e8wVRcRAXrqbSF8Xdpulu4ndBIlGUaMpZs41lDQWPhXkVFAqcARxom2bSw2o1eVwFcmBqkWeBzdXmhefsBD3eHccgHOxUX9eicBNjFvauugYoWblm6UwlHQNvTMOOock46Hlb+IUtzsJ4XQKgiAIgiAIgiAIrjZOtXvdN33TN7Wd6N7whjfg0qVLl73mW7/1W3Hx4sXV73jFKsRagFWRUHhC4SyOp5owc0LBBG5ZUAmVMwpnFN2trtaEWpIEhnNqLifyu9WZ06kAVAmJaWUk7rBd7bqJZXQauc+8/G7xPdl5r5csXFKcAd4A3HZNGxUsAvVr/C55/h5tGzy03dNGp9NysHsO324nqGhUUswtljJwcFBx/nDG+U3BJrM413jCXCbMNckOhJXAnPTIIhBy1mcm5XX23Np/3PbsA639155lap/R1ssvsn8oO1MZWUzX7zQ4tnMnh7bLtbsMZ9CMYve6IAiCIAiCIAiC4GrjVE6n3/iN38Add9yBixcv4tu//dvx9//+38d97nOfY6959atfvfe7yglbVucLyDmdCEV3N/M7qtVKqMyYS9JcJ9ISLcJcbSc0krDoWQOj1TmDIq4hEZrk1RxCLTsK7r25h/x7B6mmBahrCV3H6HoGD3lPvoaLNKRawsy1id6bCkBHdo5AG5Z7WCPITn/e7ATLPmrOJbTSOwn+ljynFrRtjrBWvuYn5/ptbbDbhnStXMaUzJFRCrCdCXchq7gkIeKzik2lZpSiLrWSUGeAC4AZwJa6I807f/Q+o5NsUbfY1ljrFJNrwouSuyFQ6TIWo/aA9n3nOnZd8Z5LxmsXLOd9AsLpFARBEARBEARBEFxtnEp0eshDHoIf+IEfwFd+5VeCmfErv/Ire11MT3va0y7bXx1rpfTV8pp0FzvdsU6OjMq5uZwYALNkAZWawTsuJ3klLbVa5jih0uoIgC5CkQx01AZM+LA8Jed4aoJI6m1XRREbk2vSmlm/iYDMKhytCEODi4rQLFmqBpnDKU+MlKy0TgY5ZDU54WVwQoHWRSnXzsZBKsqQ7jB3MFUcTIwpi7AjLjV5VrWSlkKKy8mek5RCqsNpTQhbztl/B7gSwH5yJ/+qaUMrwswerWbYLc+3YXkurTrR3/9Yc5Opdcub7ykXPAEhOgVBEARBEARBEARXG6cSnV7zmtfghS98IX7zN38TRIQf/MEfXA2VJqITiU6lasaPczkxA7MKSduaMZubSZ1PtQKlSK6T5AFpmVaVTCDZpU6cThIeLg4aahlBrNlOztHkXU5uZztavnLXR1pGOZzDSfOCBseTCR3AICQwAygsYyN1PFG/fz4Sx1OdARwQeMOjwydjhAECgSuLUJX6wJm5hVrTkOWEQecA90wsWNaWb9PmofdJAMmDA2cTomQC25KQtgnbIgJXZcJcxJ1mn8ssn+tMslvdTOooc6JWQt+tbyk0Ld1H7ZV7H2RD0gfiRb+TQAD78exg7inXt543E9i+y4a5LO55WqeTrau9D4IgCIIgCIIgCIIrzalEp0c/+tF417veBQBIKeFP//RPL1tedxxjphMAUHM5Ve47mhVO2JbUspxY3VAA6R/bCVXL7bjKYf2S/gFO1eU4mcNoxVjidYumaZhI4R0zy2MpNMG1X3buxK6eT9Tv2Yw6CUAm8MQAUXchud3plmIMAc19RVmdTrmXlXFNTqBYUzsW780V1L5S8cqLaW1nPHE5Jb1nzlBBMan7Rhamsj2jpOuguwtW73CicUF8DpZ3EvlhL17Ju7vg1s/PZymoLVdkKXgtxSIT+xbLtszp2hWRaHjpF51SbVIkB43a+yAIgiAIgiAIgiC40pwqSNzzgQ98AJ/+6Z9+t24+M2FbCUeFcFQlLHxbE7Yl46hmHJWESyXjqGQVnkhcTjVhnhOOthlzSSiFxOVku9PNctAWwAzQlkAzQFu0PCea9XAuKJrRs58sJ8ntIud3vPMmqeZ2QheqPAwGJwaTHplFSJoYdXlkNRlVIG2BdAlIR2hzgR/X0qlFIkgxGJSrSiGsO/npGjWHE7V+uAC8JfAW4CMCHSVZsy31zCm3wx8q1FGmilySg7IsTC2S0/Txuza4484DfPzOA1y6tMF2m3F0lDFvM+ajjLo1l5M+M5Y1ZjB4KuCDChxU0Eb6bkcy55aJbwykCuQq805V21akqYI2BdgUIFcdZ205V0Me1eKprX63JiRSH1Prd4kTrbi6Q514/ZmuKIkn4O4Eib/zne/EN3zDN+B+97sfiAi//uu/fqrrgyAIgiAIgiAIgmCNUzmdPA94wANw66234rWvfS3e+973gojw0Ic+FM94xjNw3XXXnaiPqo4bhpZZMWRXM04o1b1W0rbifmJYJhChFM0GqiJecCHVC/S1qHAy6/uKnum0zOLBwtBiusNOednK0S5atHWwV6TUgWMemVYSVRlUSaq1vKtq7f7tvQWWS1/DznaQkkRYCaMJc1UdP7YOGtxNFuC9XI09Jqi2SZ45qZwDqWc39UVm1udku+KZAGb3JlIRy7mM2s3aIi5sYfKQyI2tmYbsGnO/tfPc+9qxO6mbqwV7Ub/P0NwrSfp54cZax6+xXD90eZryP+vhbpTX3XHHHfjCL/xCfPu3fzu++Zu/+XQ3DoIgCIIgCIIgCII9nFl0eve7343HP/7xOH/+PP7u3/27YGa86lWvwo/+6I/i3//7f4+/83f+zmX7KMgAZy3B6i6NwoSZCXOV3e22NWM7a6B4kaPUJLueNbFJA8RLAs0kDqdZBKe0FUHDdINkTqeilV0Hi4ElV1Wm7qcmBCz+nidWp9SidEuyldDEhyYKJXcPdQ6xBn6jAMjyGTN6vtQW4APth7jtmmcT8uHllFSAUbGFK4noxG4guptcczsxafzTUgxBv5FlRZE7p+sJsIh8JIJHOQJmRheWPLy4lmkQABnc55HEQcQ2zraQJgZB58o97HsQEamtcReNxvHsVrRZ3wtRa7Ecu+13m+3OW11mzaXm7HFJG9lv6ZSi090JEn/CE56AJzzhCae7YRAEQRAEQRAEQRBchjOLTi94wQvwxCc+ET//8z+PaZJu5nnGM5/5THzP93wP3vnOd162D6vOErcTuuC0dDlVOW+uGfbvK4FrzwSClirJLnVWGkbdraQlXC1YPI1/37dm1NvsbHtPiwuWjinC7so2VxS3AG+SQrixn0pgFhdO9feoK/0NY9FSOjcUEzjYQrShZqiCwWVkO/kNC2EZSnZfH1xO/kXuWWofBbETtRZuInOgmQOptbM2Vq6na9VFJt/P0uXkX83ts7ZYGOe4gxezgF2L2572O59p/yWt3ZoY16fLy+d9GdacTrfddtvQ5vDwEIeHh6frOAiCIAiCIAiCIAjOyN1yOnnBCQCmacL3fd/34ZGPfOSJ+qicQJwlBNl2OFN301yzvJZJdrHTAGxxOYno1HKcSt/9jIpmEc3icEqzE5wg7qa8lVdAo4Q22NE0mq5BQKKFiKHuJmIMqVhDNrf2UaHOpCROIVbxpmVGMcTdVFmEny2DM4GSuqwYSFWcRrW5p3gURcxB1ZxOaPlWrKV00CD1JjSZytEcTm7gqb8VAYXbWwsNb5Qk6qE5t4qFhMOJN/pxEOt4FJwmHkvqqO8YRyBZw9rFJlKhaSgl1DXvz2qp/Hh31jHCkAlfcOM7CTaWNWFLz0sFHo2nW/mhV/NO51Yyp6C9B4Drr79+aPOSl7wEL33pS0/VbxAEQRAEQRAEQRCclTOLThcvXsQHP/hBPOQhDxnO33LLLbj22mtP1Ic5nczh1F6rlM2VIjlPlRnMrO4maAizCSpWVgcRUKwUzgLATYgwQaCgl1xB9Ra1lzR9wQSC5sByg3aiVBMYzJViO7rt7LQmE+VWR9bvbeIHkclAmr2kOUFtNzcrtSvYFTfaGLgLLiboqOCEQmP4uI2t7fTn5+AbjGP28No6FMi9nBA2uHjWytVsGXxJW126lfSy1MWo9fK35djXOOa7vcLR5VxP2P/93r5sTWjP8zw5zdnmurnllltw8eLF1iZcTkEQBEEQBEEQBMGnkjOLTk960pPwjGc8A6985Svx6Ec/GkSEm266CS960Yvw5Cc/+UR9VM5gzuJw4tREJ8l0yqhIKJxRakLVUrtSs4hP1RxOADQs3F7TVnOcCgEzxF1kYkLuDqY6icuJN9wFIxOcZhFpeO6uJqZentacSs6kUgHwJPfgDNmlLqvDaRKXEqnTacj2ablDrFqROJ1kkHL/pMKaaURM3MQK04jYwp5sl7tZSgx9uWEX29yc4c+Z06kLIc2p5dt2BamJWjTLGAnU+7f+Whkjw1mYrLcuODWRSgRFaafqVpLsJlq6rXxfpPd3Wpk8Hupj3nftcK6vVbO9WWc7Fy8EqaWAtLxHAnbys0zxbIan0zmdKqgJlFVfL168OIhOQRAEQRAEQRAEQfCp5Myi0ytf+UoQEZ72tKdhnmcAwGazwbOf/Wy84hWvOFEf3emkh+5SNxdCqVCRSQSOuuN0AtquZOYCsmBuPUjFIS79nlT63/sWdTRUY6nLhrT8i4l2NzlbCg+EHu4NvT8wltu1ndh4uK5dr6eJSF1RMr5EToyYR7GFK7qbiNyh7Ul38gMTsLV5oQsbE1q5n107eHDIvwJW1jaGYeuxdJqZ0Gcz9mu3MFfZmhH0ejiXkwpRpDci8mtAo7PLzpK3CdHirV8AP4BFc1p80YQgxo4lbsmaiepY55TKYjzqXKfh7uxeFwRBEARBEARBEASfDM4sOh0cHOCnfuqncOONN+L9738/mBkPetCDcOHChaHd//pf/wv3u9/9kFLa6WPmjMxJdqWrqWU6zcgo6nKqLO6mUuR7riSOHk6tvI40v4iKZDilLcTtpDvUkRNXSEWaOgHlEKgHDPhMJ3M6QQQgUkHHB5H7HeuYgGoCS1KH04blmNTltGFgQusL6OLPIK6YAqYuJ0rqUtJrciXwEcCJwJXFqZW7gOIjnlqnDNmpT9fFviuTjpvFicTmMsoYcqra2HYEJ+puL3VhpSNxUzF0LWynvTSOiZeKimVK1YVYQgBSASUGZUaauLcfRKOutJljivqpXqI43lR319vtZs1FJWInS05WG4O/d7/f5egmKhMF3bNb7/WyVNbMLpx+97q//uu/xv/4H/+jff7ABz6Am2++Gfe6173wWZ/1WaccSRAEQRAEQRAEQRAIZxadjAsXLuDhD3/43u8f9rCH4eabb8bnfM7n7Hy3dDqJs6kftUIPyXRidmVTVTswh407zOnEtbudULsbiZNzOFlfJrRoORtru5pUtHIuIfKuKnMIZfRcHVfaJTe0AWFUhghqZ9JXSuDEqCkhZZk7JSDpYAn9vsRAKiqmWemaE7SaLqMuJBGeZD3AQFLRrG7QSgLbWjRNZ1RQWhaWdzktHGa0ch5VxrPqC3LrxWDnavJj4PYQJfvKiU/LarkhNX53DrtyDA1ZU2Zo8sYmEZ3IlEinFC7mMVrFjhegFmPrbjC67KWfaN797nfjK7/yK9vnF77whQCAb/u2b8PrXve6T+FIgiAIgiAIgiAIgv+buNui0+XgtT/QlcoJzLIzXanqeOKMwkkPQqkJzLJznYSHe4dTUoeTHepwKiLIkL6C1UTjS9EmAJrl5ON7mrBk8oRlMFkwub42jcpK67Ic5nKCZjjxhO5yMtfU0qSjooxoKzSUy5E2No0iNYFGxYkqYkgT1CAOI8uOAsT9lbdAvuQEtdwloJbZ5NfHbuocQ1iujQaVE8vak+2QB+5rsnSKkTtan/oh6zoBblc6RtpU5FzlO9ObVn9W3K/1LD8PffDQoIeU69poSSeZE81+R+ZSW7jKxnus3NieK1wftS847bv0Mpiu2ed1ch73uMcd+/9pEARBEARBEARBEJyFT7rodBz2h7I4ncTdNBfbwQ7d7cTuj2oTXdrFaGHZ4O42aq6b2sUnVmdQzSoi2U5wlvlk7c2pY6cXQglVtJwoZqhTSd1QljfVXD7sbCxddLD3xM1KI64lLTOrOSHV7gZLpYsazWll4sUyBJ1E7Gp5TW1XOXU7VWBSUa7ohmb1AF00MR3G78KH/l13NImlatzFjp2gxM1Fxq3jBQSn9Kmq1vKv3HdgJDKPE43ZVjsqTd/hbj3fyL6nPePi3hu5qY23WGFN3TpB+d2yto73NdxPZDoFQRAEQRAEQRAEVxtXVHSaOQHVOZvqhArJbKo1SXA4xN1kO9bJkcXhVFNz11DVPCfncEoFyCZSVaCYBjBBcpwmc7CoW8dXcpnuYSVrJGJNKkAuKi5l7cvK01TosQMTg+y7RKDMOzuvWdUdKmmIuBzkbEaW1UNOjxn0DxurCl68oWbKoQpxOR3JK83SB2ft13KhVGQyrw37ybcbDZ6gZsmhKteZAMap79bX3FPusmW3Lesqs+Q3OacVpYqUGTkxUtrv4mFu0tBwsx3Xkxs60c5QutZFTrwEifgH+T1205PbEc8LPcdZlbyLrP3GFgMxIfMUhOgUBEEQBEEQBEEQXG1cUdHJwo9lx7qEUmWHurllOcl31Xaqa6aXbmkSwUbdTnraZy9ZrlPSdrU4kYbQd1nzDh6l/e2e0XOfVMBqrwU9QHwQrQi1sFxTvMtJGjSdodVZkYg1WQKnZB5JTFQMpFkHNGPchQ4qkFhgtwpigISlc0VbI3N9UWFMVoLIIlLM57Uz725aOp10zs581NxOOgUgaWkdcS9fMz2ozd/1SQBTFbEpMZKV0dnXxEhUdb3YTGHue/+L6l/sK7/bac/mdur1fn7DwO4eIxG2WmCWGwC7Oe1sdWidrJw+/uSpuDtB4kEQBEEQBEEQBEHwyeCTLjrRqtVEKFV2oSs1oXJChTieWoYTxNlkO9WJ2JNANWmYEiEV2TFNXkWcSbM6nbhpPGhZSpazlAFkGhwnw0i900QFlrQVl1MynUVdTvZq7zmL28ccUJRJXDyaWWSGptY3EZAIzZ4EdW8BaLvEmZvLxlm7aMWkzqUtgALwod4XMvfpkricbF2oSEA6iMATgw8BmkT0kotIw6PcmugYhmdrAec6VhHNxrkPGU7a9ZgZJfekCciZkbL7DuiCE/WSuGN+Us15tK+NX/fWdvF9zwon5yCSZ0NM4BYC5ifi1qcZrvb5qHj3FPpXRMfPcY27k+kUBEEQBEEQBEEQBJ8MrnCQuIgrpSbMtmNdIRS/A507wCY8cRdjALQMHCsvAsTVxLJLG6k7JxVx6mQAM4kAxLprW+sq8ZjhBHUHEZAmQt3282N2E8CW32SdaWYUDzVxFvK9cN0QgxOBOIFz1TkTEicNmwaYqL1P6loCdA4mgpGOd4vmVKrJnF4suU5VQsVRGRXyI9he28UqJIijyoQ3m09lFfswHmBJQWoaDKPtMOfmveN0avWCjJRqS0kfRDmHaIfSrzO7NVGIxh/EsfTMJ9uur183/OZgIpTdnfd0T7suKHATr/ZcsfuBYD/2y87B09chRKcgCIIgCIIgCILg6uCUyTGdG264AbfffvvO+TvuuAM33HBD+/zHf/zHeMADHrDaR1GXU+EEhjqcQGANAmLuLidzNoGT7FzHfde6VM3thJ7nxP1of9wnEWbqASTTKXVjD9lquJ3ofOldmqk5nVpbdU3ZgQ3AWQPBXT+U+pHywunkLEDiHLI5ypyoAjA3l82Hu5AGuLHacNXRRRB3Uz7Sw7m/zKnFB4R6TtfD7zZn2VMmmtjYNL2ppU6ZQiemtdHl5Hbrs/k3q5Y+GEpAmmRdUuqHi7dqR6K1tdvxqO1psy5krX/v+mVaCEe0fpBvs9v38nzzVy27Gq49OebI8tlOQRAEQRAEQRAEQXAlObPo9PrXvx533nnnzvk777wTb3jDG9rn66+/HjnnnXYAUDn1neoKUCqay6llOlVXNlTRtrITg4o4alhrpbzDgxltxzZzI5EKMNOdQLpLyuWgGU+cGJUYNTPqxKib8eCJUSfd+S6r/uKNNQyXd+SsMlXG6nOgmvurlY0xiNTpkyqQKzBVFbDk3jwxaupGGjN3pQLku4B0Sfs3AUpdWJyAMgHzobzaWPMsbqf8ccZ0O0B3ANii79rHi/mZq6tyf+/WtjmZUv/YXVBOKUsVlCvSVJE2BSlXJKrugh0b1fBM2zMmHNvWXXXMd+P3rALTsFOiu7ef03jt8rNdY78B7Bxsbr7l1IdxnZyTrEQQBEEQBEEQBEEQfCo5dXndbbfdBmYGM+P222/HuXPn2nelFPzWb/0W7nOf+5yor6rumaop2NxUC3Vr+EOznQA0R5BoGJrnVHrJGTmnkzeQsJbT1Q3Am+4Iao2WDieguZxoJuTZGVrMKaRup6q74Q0uJ32lDNDE3e3kdrATgcA+dJcTiuzMh6qOrkoyP14cUCFscvMwKZHU6aQ77uVtv85yoPiQwIcAnwOw4T5uuAE2jYz6aC3PSd/KYzN7GdpBNh59FQeVhIYDzsmU1pxMaG38q/tGz4sC6NvtDxvXae24l1ivk0W057Luchrvv37uuPfq8mpbJ7qvea395Ynd64IgCIIgCIIgCIKrjVOLTve85z016Jjwt//23975nojwwz/8wyfqi0HNzTQX/cN5Jc9pyBQqpI4i1lI8aKJQF0FAGPKWmEXOQhF306RtcQiUBFcSx2Cy3dfQdqyrE0AboGyobVTG6BoRq+tmx6iiDiEmgAtJKLZ3xZjAwizikmY5ISegVnBNoII2Hk7U86YS2u55aSs9lgMVn5xbiUnOt53rZjEcUZJr6RKDJkLaMGoT4HiheZBzOVF3PkGFK+JWVscmOlkfWs9HWYUmYmR9n/xWgXuynDRO3gWJC7kJRJ1qOxwue1ix/hx3znmV+q517am7Ndn5rFebUOV29kPrwzVzAqEXM+XEKf1KS8NVEARBEARBEARBEFxhTi06ve1tbwMz46u+6qvwxje+Efe6173adwcHB3jAAx6A+93vfifqq1hOU7PGqMtk6XKC7mJnWTgaQC7uH3EANReQBmUvXU4AxEqjIhLU8WSZS+zznDSAGxA3FRUSt5PXYjQfash0yq6fpbsnM1Li7nIi78gx69TC6VS6y4nU2TW4nHQHO3NwebeT6mAtQD2p0ylpJlXJAKbucuJD6k4nW7imrLWVbytq923OKhWf7HpKbiyJ+659ST8TD44kn93kIayfB8Yd3nzZnfqWVn9zJ3Mi9XOncjo1xXMYiIzVXSWh60503PmhngGf5RROpyAIgiAIgiAIguAq4NSi02Mf+1gAwAc+8AFcf/31SOnMsVCiadSEojvN7XU52TFkCEkPYrjpAgSTCFBwzYho6CYVgO6S/mdmCdLWXevYXD3WAQFQJ1TddDcVQ8UeKyvTCwjqQIKIVGZyYSTVHypyrurgUeEJjJoIyUQOTvJkagJnEb0YsrvdoFGlviZWVsgut8nWjLZAOmLQLOtTJznmiVFZnTyVQbPuDmiimTqaqLmbSPqzMbBzORG7sj5nuWFxgBExKMvcpySv7Sn6oCqv3zTrGnrY+/Dr6etLquOY+62jPfHyHLfn1Xvr7e25DE4ne6BDH3be96TXNJfTcIP+G0l97DtDPqVu5POuYve6IAiCIAiCIAiC4Grg1KKT8YAHPAC33nor/uAP/gAf/vCHUWsdvn/a05522T5q9e6Z/S6n9sd7U1vQRJDB9aPiC4Dhj/x2aROJ0DKN/M5vrTW5viuAmZoA1vQD11cTgJwOsRyDyV5kgkxzOrliLi0vHEKntZxQ1CLXrwlCOqZqLis335ZvtYWU1ZW+nBKITuADgHUnv4GF4ER6f/Lzs8fWnF1dJGrNzMFkJXJgpOSVQy/eQNen34T0hiLMjL+xwVW0hyFcfuE4IrOD+UUbxuVnsiYwYdH2+LHsHeOZrlr0EZlOQRAEQRAEQRAEwVXGmUWnN7/5zXjKU56CO+64A9dee62GIgtEdCLRiTlpphPtOJy8y6mJLiqEDO4R0zm4l2L1gaA5dkxkqhuoewjIdwK0JaAw5nsAfMitvYlZAAEbMfmANOy6uv69NsEkIgmLI4i9OyclyXfi7rDxJWbEfbLFBCYVxGj2i+am18Yo7q2KLjyZQEQFSIWRTHDKwHwemA8J9UBLDHW8lPtaApBzMzmppudWSSUgO5eXH5+KNN75pGuRCEiJMaUKIo3pqsmV2blA8HY/y3XqQpa0lzSvCucY4rbBoROclu6n7odq629iGTuJyf1+UHF5B5ETJr27qZXQrV3vXVDHtbscTaTFiigWBEEQBEEQBEEQBJ96zlwb973f+7244YYbcPvtt+PWW2/FX/3VX7Xjox/96In6KFZOp/abdZcTdkUmy3RyDhwTp4YyI3fAOZwGx5Ctgv2dru4iFPfa+uPep7mb2GkEJorZNV48aKISSx43866IwepSMZGjAly57RbYFR8Vvpw4V21+dlvnhrLxMCQ4vXpHlNvpbmcOs60DFmWN8Oa0hfAGwIQj3c1ucBSRPCQJd/cKol+DLs7Z0XKdCMM1PFy/XHQszo9K5W5O1Eq7nf7Xul+7b+98+N1Yy8WatS5WluQk7Ai2QRAEQRAEQRAEQXCFObPT6UMf+hCe//zn48KFC2e+ea0JidOxLicvQtGaDgA04WMI6NbgatVAmlCTCsTppOfTEcAfl13hiKllIpG7BwEizhzoTnbFuZ0w6iBspWCVgUTg2caXJGybGQlVdwAcd2RLSfKROEv5GxJAWXYKTK5ubWdskByr5nSyNgTwATAnAm+BdIlFqCOd50avL00Lkj4ryRy31KrJWkC6vufkdvnzhyW42651tjtbcxIlMBg5FUyJIZvdVRwV6YBBSJDAdT+/Drf+xJXU1aOl2OLXdqcgblV08v2iCaLeXUVQ4VLX19r132l/Nrs39VOg1kdXCVcnfDJOoI0FQRAEQRAEQRAEwaeSMzudHv/4x+Pd73733bq5d+WMf7irAFEtzwjYEZr8OXXiNNEK3bBkm8FVpwkMmUkmSPHivPVHWFT0mW8FXTDw7iDvDBocVXqlOp24MmoTerRnDd1mRqsRM5dTbc6ePl4b804OFLt2zhHVzFJiternfVlXczm59ebeJwMtdL0PopfddQGl6i51FaSldNC5lSp5Xt3pZt9R+8xDh5aFxW3Z7bvRQ7T8YSw/n/TY14/dXUUuW/sTsXIfK0209WU0t97pnU40HEEQBEEQBEEQBEFwpTmz0+nrv/7r8aIXvQh//Md/jIc//OHYbDbD90984hMv24cIIf6PZfcHd3ONeJfT6CYhyy1SxwmRqmgZYD1qhuzeVvSw3dk0cJwhppzCBKo8hG23gHGvOlnV39yiipyaJdlMTJDwoqptC8ApiQqWGMgVUKeTCCpybc4y/0oydiRxOREISYUE03qMVPX2GhpO+hgI6KHqSecyEdIlFqEkkziWJjR3lOV7U6F+D3M2ZXU2uVeoG2twOWXZpY4yI+WKlJyjiACGONsKV8kfJxO/eiNya5Jo3fzTHEcQ/QzoOxgm7EaOt+vcb2XoDCaAedeUua/QSj9HQcjVFupvoF1HY9+NQUyi3fPmnjqL5emUQlUQBEEQBEEQBEEQfDI5s+j0rGc9CwDwspe9bOc7IkIpZef8Ds7hMZhA9jmczALjd7NzriRU15Q05ygBaeqOGhMqiNB3vJv18DvbJXUXqYBE1UsE1OvXFnOxr9urHRVAYRHBCqEmEVdSsqIy6tlNblEY3OaSiNocrKSPdRjknVZJh5NUeCoAbRm01TI6HctQDqYC2Zhh5SbnTTlOaxksTsvnNSyMuZS6M6panxrALoHe3GoX6VjpxaLAl0oL7Tm3O5b1/tb6WSny8xlXZxZ7lj9KNMHz5A4q7Sl2rwuCIAiCIAiCIAiuMs4sOtV6yr+K11iUBLUg8fbXNwDL1FGBpIWIV3HmWDaPGW0AdTgdOLfTDOSkIodWNVEFsupileVaVhGLNwzeQFbHhBjbxayQDb05rbz81DKAWpq5OWG0fxabFRGaCyglDRVPBErQQybW/mvB6d3dJZNGz3jyYpA5eiowHUl2VTZ3VgJ4o7lOydrRKJ5o30zc1tHypjSIqbfTtuJy0iOx7FI39U6JbPe6ikSyHlUH6jOccmpa307ukncjJXWFdWdTb5xpbNuG6tZ9GbqdsLzGFCAa2onQR/3Zwq+du9+K9uM1OhOczMO2LqKdkKU4GwRBEARBEARBEARXmDOLTp677roL586dO9O1Oy4nBrg6F85yNy9zOxGhgpHQS57M3cN5dONwAkpGyzciAMgAZXECpUsiUqAAddO67yV2xCKIEZriQwmo4CHcnBaOlaaGmOmL5J+aCTQTCgg5c7sfqu7oRqYmVXAiVBWiJMBbyuJq6UIbs87jCFIup0+VVVipYCRmoOicZhLn00RSigg/PnSn1NIg5Knu5skpecQtw0mEnaqB6awikpTOVRMQmzAjD5uItbyOm5joW/jSM1klUpOWV+JMTFq40RaqzP5voD0uVTj3e63aesdVxGPbJfuMVlicP7VwtFAcgyAIgiAIgiAIguAKc+Yg8VIKfuRHfgR/62/9LVxzzTX4sz/7MwDAD/3QD+G1r33tifrYdTmpsuJUDwI0CRzN7QN1OyXI51TV5ZQBPpADGxGfYG6ZDJHYpnHiqYgDKM3ifBI3jF5keUWWF8T6ne3klvUgqB/JXaLuF2rfaT5T1nNJHE452U5tDKKkGU5mxZFRNk3Hu52oO4HIbpdVcHKaQ67ANAPTVjObiIADgA96X0ldY266bY7WJ0/c5jpMVNeUDhjpgJEPKvIGyJM4nXIGpgxsJmCa5L09AdvpLyVxN+UETKSv+jn5g8QBlt133T3lJBeyfnvbvOjHrkkJzpJE7pDPDCtb66/NRja0hevjBFhW2c6VyzGckKV4GwRBEARBEARBEARXmDOLTi9/+cvxute9Dj/+4z+Og4ODdv7hD384/vk//+cn6mMIZVYHE7dt1nh0OmmbHnnU9y2r6G4fmtEznuwy1bKqZjbVDJQJqHowxCWU7gTyHXKkjwPpLpJd3GwMJOVmIO59tgqsPp7hj3+/o90M8JZQ9SiFUKsv3arqdNJD1bQ6MWpmcJZMqGo78rk5gYG0lXlYijaTzLNMwLyRtgBAR0C6i1vek7X1pV9sjrIdJ5q8YVQwVbAqVpQq8lSRc0FOdsxIqcoOdjY3sEk57TfAum1bgralotcUJBQ5j/39DIdzSo0DNxfVMixs/ehOKbhzDFT7jfofMnY/LHcUXNkx0XXthznufHhSQnQKgiAIgiAIgiAIrjLOLDq94Q1vwM/93M/hKU95CnJu9hU84hGPwJ/8yZ+cqI+W4dSynNxWaJx0BzV1DLlMp7RwOeWiLiVGLy+zndXcQXCvUJePlakt3D5EBGRCQvJVW1r5RruGFOo+lZan1MKm7BCXFGWAJkbO4gYyx45Gi6sy1teFCiHp58TAzhB0TryRuS9zrgh6vd5f1sgm5JY9Ld5rlpNlOLVyQ3ONHQC0YaSDiumwYrMpmCbGlPWYdl1FMjYZXHNqOXfTlLm5nJqbKXGfk16fzHDUjEfLPmlwSS3dTmPeEu051HHXXE5+gXbdSOx+r8f1S+pwar/vxcsZfE5BEARBEARBEARBcNVxZtHpQx/6EB70oAftnK+1YrvdnqwTDWhu7qXK6vJgdT0BO8YUiM/GAq7rBJQDoGzEwWRGocEhBe2f0F1ASa/dSH8oDNoy0p2M/HFgul0OukvdU9yGjOZpIgYSi4ijTiROPNyzZTqp0wlbAh8RyjZjnhPmklAKNWcNURV30FTBetQDRtmI26mY00nHUjLaOuW7JJ/K5s5JXU6HwPY8UA4120rzn8ibcrJ8VyZdR/QpNtLobjKHU8qlu4+ou4yYu6MJ8O6z0Y1E7UHXtnufv05EmIpE5nKqutPfaIpr7WnPDwe+bznq0tHkdhBkZ5cTkaqCm43O3Zjd3I4zUK3ueMe7DqczOZ2WAu7p+Jmf+Rl89md/Ns6dO4cv+ZIvwe/+7u+euo8gCIIgCIIgCIIg8JxZdPr8z//81T9Mf/VXfxVf/MVffKI+WpZTdXYbdZTYLnVQp45lOqWKlpFkThf/JzYfoMVCLQNzSF1CYLSd59LMze1ERKAkeUCU1Q1k2U3NUdPdNYMFarhRbw/bjc47hCYgZZajZTrJBcwJlRO41QJK6DhVzbHivnmcObRsXnWSXfvsy+a6au4ilW821Hf3S+O42nXtcXDbuc63ow2QN4x8oLlNk+ZTkYg+QxZTm5+uUBsTI1N3IrXXxRIStF9ILha0mG581TnqMyDnF/K74CWy3x6ce6lft3Nnnzk2WOeWz94En97PPv/U5ZxQZ/E6DQLcKcvrfvmXfxnf8z3fg3/6T/8p3vOe9+DLv/zL8YQnPAEf/OAHT9dREARBEARBEARBEDjOvHvdS17yEjz1qU/Fhz70IdRa8aY3vQn//b//d7zhDW/Ab/zGb5ysE+cCEZeT/tFeZbc4YsYQNsQAV4CYYTuYlUkuo0kdToD8vb78w9u5YWwXO1QpNSsQ8YaZgUKgrcgKmwLM54B6nlAOedzpDRC1R8v4WDedMzGruU1MBDDH0wwgEWoizCTb7HGtoMRNLCCqSJlQCoAJ4AN1hBVxIVHqgptljhMD+QjgI3E0Nf0uy22ZxLHV1kiXtiYRlFpG9qTjNc0jqfA0MTBVIIvqRaZ2qeOoVgJTMvmnqSuJtIzQysealsL9MbXrdUdCdYuR2qyy9kMkzz3p5AqSCEJYCi3se1c3kwpzoOaiEkMdu6Bw/Tm63xcl1owwW5Q1ndbuZZOT9+33tnDcDa9r5+z3chqWhq5T8BM/8RN4xjOegWc+85kAgJ/8yZ/Eb//2b+PVr341brzxxlMOJAiCIAiCIAiCIAiEMzudvuEbvgG//Mu/jN/6rd8CEeHFL34x3vve9+LNb34zvuZrvuZEfbRMp0VOTnc5UXc5FZJsbW4+px1H0WrkjjOMEADS/KekB0zEsPAhzTEikldkQt1wdzvZy+IeZN+Y02U5Jst0MqdQczkxKC065IRaNCW8JAlILzL3VKm5mxJ3pxMgLqdy0NdjmL7TROoGLf8Jln81ubVzzi7OJjgxaAPJo9IjZbjx2226+4hASImG7CZzOA1uJuouJWqLC+3DSvbss7wyEpgTurgzPhBanJP7UB/jyu+O23vnfmIrfdz34+rtvMtpfLeA935zdlbK62677bbhuHTp0s5lR0dH+KM/+iN87dd+7XD+a7/2a/F7v/d7n9gxBkEQBEEQBEEQBP9PcWanEwA8/vGPx+Mf//izd6BiSXM5aZ4TVxpzmcy5oY4Tqv2PetMI7G9t27SMsLgW2mZCCxBnzYAqG9dGnUNcdSc4AEyEch7gDXddCYu+M/qN3X2b4UntODTbWBMKCGBG0sBt3RxNfDq5ggsBWcvbMlCpgohQDgiUgTqr8LOVORHL+3qga2Xrk7WCUfOubOc9qd7jnpdtjqdkY1dla8Ni+8rcKwoZqBWQUsguCnmXGTVLGTDl2iQb7wmytSk62KrCUFIlLSWTlWxnOkB2srM2MpF+J+rr6Cxb5gYz4as5mlr+kbVVR5UJQ00Qq7DEdibuDxY2b73eWa5Yfyx7nU4rbrzV9yeA3H3s9frrrx/avOQlL8FLX/rS4dxHPvIRlFJw3/vedzh/3/veF3/xF39xukEEQRAEQRAEQRAEgeNuiU6AOCU+/OEPo9axHuizPuuzTnC1uTKcI8VK0/wOXypCESTTaLg8DR+74NROSB92WapAmkeHkDPWdO+XiVmak8RZxBmvK43Kid2f1vvM/ZUmaIkaI2W4kjPLD0rgkoFCwCy718kOdql3q/eTdZH71KyCU0YTOxbSyLArHedxXDtRRQnqcKo9m8p9N+4CZ+paH2BKQM5o5XU0tlyOrPVFTgDKVLtTClaU1x1Jy2ynZZ+9X2qOqZ7ntHArDdfp+cGVtPjOX7cUoXbm6dvuLMCe+5+ClfK6W265BRcvXmxNDg8P99913M5PxF065RiCIAiCIAiCIAiCwHFm0el973sfbrjhhp0SHPtjtZRy+U5YHEV9xy7LcoIqA9QynAACFXVBrYlFUAFKTSnNYeIEJ+iOdQzVWAqcSKJal1VRmWtkC+RLWsLF3O8B7IoHCeIWMuFMG3FyeoDl9VSZWykkWo8qWWQDZpbiMjJXEqFmFWMIqIfa3u/WBxWSnJ2oub90SOR0FNZ7MXGvyrKU8iS78VmGU8oLBUufnfXZ5gYsdrCrbfIM4Dgdg9m7kMT9VZmQnAglj4o1rFz6lt+M5DuZY6pDbVwVgKROsTMksWspi8V+qgkaCkVgsuCuvr4Y2tm9WXt24lPbYs8muJz84v1Zd6+z9wAuXrw4iE5r3Pve90bOecfV9OEPf3jH/RQEQRAEQRAEQRAEp+HMotPTn/50TNOE3/iN38BnfuZnns0VsXQ52TlzOVX5TCauuD/im7bgDSe+xKj/7Y92kbZJBWPouL2a4OSu4QmS6ZQAZBqa95u6a0x4WBpfrO/M4nZK3NxAg9OpyiF5Tt7l1O+9Kno10Wgc0jAME5v8rnXmcGrb4S0PcWT53Cbfl89jkvPcSthSYt2NjgexaSlS+XM2atLw8OT6M8FmdDX19zx8Hleg5UiRhJavtWH3vk2uLvtcv3a0vl3G6bTn3K5X6hSsOJ1OwsHBAb7kS74Eb33rW/EP/sE/aOff+ta34hu/8RtPO4ogCIIgCIIgCIIgaJxZdLr55pvxR3/0R3jIQx5y9rs31w/ETWK5TrxyVHHWkO4Cl8zJY+4lL54U7ZNW/nh3eUbwfWQTmCCr4srvUpHGLSKoOYXQd7SzG1m2k76IrqYqUOrnwQmEIk4vEz1Ys4hsPZjU8gPUgyoiVBsXtds0t5OJbjqnQYTwbiu3Bn6JLRioO55YS+pUjiETiqQMkGCGNPX0tO+hG9sRSpXQ76SijymGVhDXfgpLoYSAUglARm0lduYgQstjklI57DiXxJDklUduDiobP6uAtTYOxnJMTpIi9FwnvZgSSTaZW4Sxb/sxLJ4LMGY+wdbnlJxRdAKAF77whXjqU5+KRz7ykXjUox6Fn/u5n8MHP/hBfOd3fudpRxEEQRAEQRAEQRAEjTOLTg972MPwkY985G7dXMqYqLmZTAUxnaa5nFQoGHwm7P7O3vMHt5XXDdVZDLCJUnDn7b0TTkxT2MmatvdpvE6u6WVUg3tnacyh2qutTDRhAtekpXcEFLRd/LAQR2ShzPnjpuLns7y3XWmi1D4Dj7mYEtBCo5zg1MQ6fSW/Foshsq05mg44DtDWuC+bdMVyf1Zxyp6zX9P+yEXCsqymvjudu037SE5YWo6mi3+7i3ecDES7aw4af39ecHLr2Hpd/n5PKRzdHdHpSU96Ev7yL/8SL3vZy/Dnf/7n+IIv+AL81m/9Fh7wgAecchBBEARBEARBEARB0Dmz6PRjP/Zj+L7v+z786I/+KB7+8Idjs9kM318uSwaA/CG+z9nE6IKT7Wbnv69SJpcs7HsDKRsjjH1a0LYJRgRgo3+Xl36PvIVkFKnjyYtU8pZA3LOARLThIT+afcq5uVgwilggkUhMYKsljeVmToAiO1xm06r2sciy8sIYLy5peoflOFlAuk60O7NkMM0xtCaKkKxJWyu1AYmAxKiqbhFzfwbWJ1VxP+m8aytJ43HMrHla6CV6pMKUXVdZsp+qinM7rim3dJWxcEY5L5I7zyr2LUsAvUNuKVYOa7MUnNz7NWcT4BxPvCuaXZaVTKfT8F3f9V34ru/6rlNfFwRBEARBEARBEAT7OLPo9Pf+3t8DAHz1V3/1cP5UQeJD4Lc5P0bXE2Ol/AhwYtD49/bS5UGLa0ycGcQEJwp5p9A+8WK9c9e/fvC6BhP3kG5VYJi7Y8sG0ELItZzQOqWx852bm2C1/GZtCnVNk1h2bWO0Tgaxae26Xi5nuU5+bKN4w0MmlIhHaBndg/3HCU29LxrdTcBOuZ2/xvK9eOXH4MfVSvVOUtzGiwkurukuJ2ri5+rD4JX2wKmDxLsjcM//L0EQBEEQBEEQBEHwKebMotPb3va2u393dfLsczkBAGmA9vCHtIk1WibGrrRrR1dYIwGUVYwo/bo0i3uqTOih3K5ftpqyJnBRG9iQib4oNePEQGaQ7QYHAIk0o6iXXXXhSF0/pE4nG4EXf5YT1vuuCU7s1rPtzmdB4vvEutYf7X6vSqCVPaaW/YThQVn4d3UCTaI+CXEo9c6TPlgCIyUecpyklYlEPZNJ3qdWUsdu/WQ3PFMul0LSfsGJBxWz97e/fI36s1tzOFXI73zJPsGJcRLZa7evveMLgiAIgiAIgiAIgk89ZxadHvvYx34ix6H08iBmaEkdt1KjVqLFvfmgD9Sdnpbmo+Y4YdeHLw/reT/+L/dlnhJ2VYFmr1k2VMUnMUB73F/eWeVEOB4GaY4n7BUVjtMaTIsZnEv+WAplJuy5EezciYCebN4PE5bajnNAe4YVaGHnrRvSMkl7LqTOJTCIukVILpGBWkkdDxNaBkvp7yj1ee8LCu9i1VKFo+aiktNrctAoHu46nC4jOLXZ+etXbhMEQRAEQRAEQRAEf4M4s+gEALfeeite+9rX4r3vfS+ICA972MNwww034LrrrjvR9TslSAunk0lNVjpk7QmQXeMI4A2a1rBXGPLXAeI88c4kV/pkDh/kPrZexsdt97vWsXc30eIAyzUTA1PVYG53HwczpO7NBIpEoESg2lbhePcLtVu2qTfdIo3tVser7iVb+C4YLYvN+vdkDqcEJAJSqsiJW/mciUh14Rripn6h9d/EJi0lTAnIiZGp379wdzCxs6JlHSvbq3M7+RI7n9fEzpq2zHeiJs71cHKwXbdYdHt1v+Ole29NhwSc4MR+PRbP7oR4k9mpXVJBEARBEARBEARB8Elgbc+xE/Hud78bn/u5n4tXvepV+OhHP4qPfOQj+Imf+Al87ud+Lv7Tf/pPJ++IVz40p09/v/y6ElBNODFHSYWUy9nudE6oQgEw61Hdwd0tVdURw0P+jnmedmUAvyHZjjtl0ZyOqZnyeUxcSScnC8DQwG/ixTLwsa6Y5Zh2mtkJP1f32nfU6+95p4Oe2M5gdQSJO4moIFEVAQoMWg01UgcTrfRaof25weoALDTcu5ZErtKQ9sWMmYFa3eEdT0unEZbzlL54ZwF3x9UDpvpB3vG0utZOoKqL4zTYj3inNDAIgiAIgiAIgiAIrgxndjq94AUvwBOf+ET8/M//PKZJupnnGc985jPxPd/zPXjnO995+U7aH8lQR4hmGJk7xVxOWLicLHMpu3PAmPsEtH5T0co2/72ZS7QfTgBnSI6RcyRZsrhlITWDTHYup6VzSAfDxJLlNLFkSKWFwDIIOzSsB5mdiC3TilogNum4jpMWWmncMKZx/jbuIY/K+WwIi8/u+uZwSlYex5gyYzMVJG1XNSGciFUk8gMQB5NlNvlnDshcM0kGVA8bz+o28g9IRkdEzaG0uy6+bR9HH8/aSi5cVTwuZHdO6Xl1OpF/hr4s1LMiOC1/u6eWjVbE2SAIgiAIgiAIgiC4kpxZdHr3u989CE4AME0Tvu/7vg+PfOQjT9YJr3xUt4j88S5ZOlZ+ReYGgYhE/i9z6qab1i+ZqLPt1zUJpWs6Qz9srqjlX/3Wl2kMTdThoU2/ce+DVV2iHTXAiR/M4GIOJ3KuGAaIRMAaxA79vFzTxVCkbI8XnraFu8YvTIW01fmSu8T3zlx1PnKQuZqYkZMMnjTZXEaaUJtrjPrcsHQ6iauosJQWTomQ9Bwzy/IM3qYu3vnVlbK+cWptPVZWS/rpZW5eEFxzOPWMp0U7d/gA9xUD1s7vde+5kxCiUxAEQRAEQRAEQXCVcebyuosXL+KDH/zgzvlbbrkF11577ck6Gf5IJ8nabv+J8GQDJHUspaq6T4Y4nZIz6bCIT6nqTnQzkLdALpLjnVUESCxtVM8RDSRD8qEmW5WuRrF+b/eTDjAe7RJRatqOdRMjZSBP3R3kg63N3cTVwqLULdN8Rs751G7T12jALvMmLHOEtZ3qaGxLztlFNDi2iAhjxlNvnyYgZXE6TRNjMzEOcsHhpmDKjCkDiQjZ3FD6mpO4l1KS3CZzSrVDhTULF08kYtDMGZUlbMvcUOwmwoPdzFxM2Z1Lw/cm4MljWNrB+nvm/lx2w8a7qwlV87ecU80/xZ2jtdvVN8l+F6fA557tOP6CIAiCIAiCIAiC4ApwZqfTk570JDzjGc/AK1/5Sjz60Y8GEeGmm27Ci170Ijz5yU8+WSdLp1OzrXTHSSs9MieLlsqlClQTiJYukwrQLO0sH2etkCotxSQVrbDR805E6mPl7njyc/Cf3XuuonJVtl3d1uYMl+NEg8NIdnATpxNBw7KtnyaCdExXYne9M0a5hRzXC+ReTYxxId6jZac2KxClCkJFpoJMFYlqn2eqqJzFtcSMWi3daQz7HtYDsgzEQKkapt7kJe7zcevXy+S4z5+1vM+Gv7fGbeyHqyzUMsNpyN1qvzXu7qg9LicGQP43vc+RdJz76SSE0ykIgiAIgiAIgiC4yjiz6PTKV74SRISnPe1pmOcZALDZbPDsZz8br3jFK07e0eD4ICcOuTyn2p1OpMIIu/I4n/dEFUhbEZxoKTYt/hivds4JR6TGlgQNKjejSwYkpwkLZ9PuIVlO6iDKAKkjyFw9tcrFrOnl9tr9TKOrqTmdzMnSBuvX0RmZ/PnRACSnTJSytrm3ayWHlj+VILlL5kTyrqUsOU4HU8EmV2yyCE+k7iQkgKsuF+s62nPaVYH6cMnynHSddK0YfY26HCbfm1GLIevL3dqF5YP3O9ntOJeWizfsWLf73Y7LqS6f4ooo6Ia059sVOe4yhOgUBEEQBEEQBEEQXGWcWXQ6ODjAT/3UT+HGG2/E+9//fjAzHvSgB+HChQsn72Th9OC2+5c4Y+Q8NZOOGVrSFsizuJHK1GfhLhFxpqDnOi3LjlhzyDVAnJM6p7YADoC6kfbmpuKmgKG7hvwf+Qlo4eGqcDEYVLvbCeQyjeRbubbo4CtUQGFVeHRNEgFFA7WbDYm7qEF9GHaKVd1p4pIrpNxx8bQcJ7dLW7V15C5AkfqMdE1rBQoBc5EyOgK66EQAKiHrg6uUkbibqfa7lWwKutiJtdxOPFKspYdEjGS/Dfdge1D4aNuy38ZS67IMKXBXotp4al+rYc3s3HJHOlt7/QmYc6+Vyy0dUUvuhnDky+qivC4IgiAIgiAIgiC4Gjiz6GRcuHAB97znPUFEpxOc0N1MzaVjUgNDdmvTP55TVQGpSD6Tna8QFxEn+UCs7qai+U/OTTL8IV6d8FHRnD7m5OnZTfKeJ95xCwHoItAy44lktzoTe/IE5KnbqRgAlwSUBK6EluXURrtYJRMUeJkT5Jp7McwLZEtnlnN1iX2sz3P5Sglu1732kHYymjbqdjrIs9u5jjQTipzryLKXllasjuU42WGuJFb7VcthauJT76Gw3Ncm1dv25+WR835x3KvlanG/1zBmJyT5Hev8roLklNLhal6e2V2NU+tGbYe9fs8gCIIgCIIgCIIguJKcOUh8nmf80A/9EK677jo88IEPxAMe8ABcd911+MEf/EFst9uTdeJcHbY7Wd81rLtuFgYlcZJsgXwnMN0OTH8N5EuQHCcVXmqWirW2G11h0KxH6UcqDDrSYyv9pqN+0BFAW1I3Uh9Pj52yf83lJEKOOI0qKBekVMSpo06hWtWNwyRZTjrp3t84YzZdytanAqjchLjmtlGHk2VfW5g5EoOTjI+Tuq4SO4XD3d/cZkWfh80j1bZDnY2hVMJcgG1J2JaMuSYQGJkqJirYUEEmnT+47yZHgwdpmG+thFIJ20qY9X1bCa5dQAJLflSSg0gysxLJTno5FeRUkd33w++r/ZbMucXDb7D/Jt2PTh1g3QHFbvi2nj1Dy/qza9phN/fnwp0UBEEQBEEQBEEQ/F/GmZ1Oz33uc/Frv/Zr+PEf/3E86lGPAgD8/u//Pl760pfiIx/5CF7zmtecvDNyziYGkntvu9GRHlql1sQlb5whoOc/Lb7e569hQIK6J4jLx8LJmwOIgFx3nU7eGGMOoYyWgwQCSB1OeWLNciLUkrrLqZg7Zdybbrk4bVcy54ay+dgyiIYlwgf7DduW7iz3vhl9CKO7Sz9TBlKWnea6S0juKrvLMXICJs1zOsgFmXSuAConVCRUTiicBpcTuQcwnmdQ6plOluu0fIpEPDiZROghdTpRy4xa3XFuOL/y6p1NvHttO8/uyS0/kzmguvGsfTG4+xYPZeVWJ+JulOYFQRAEQRAEQRAEwSeDM4tO//pf/2v80i/9Ep7whCe0c494xCPwWZ/1WfiWb/mWk4lO5vZgSO5RJclA0t2+lpu0EbrzxDKbplnbZDSHD6BuIMMrNCZYDeNgySdKhDIBvOnCDRUgHVFzDslud2a3UVdTcw3ZwCooM1Iu2GwKpiwOnVImcNWxDWPoWU8ty8omTKwuJ2pKG5kriXQ3u9QDzptG0vKj9A5WLcZW9uXu3NbGXWGOHwCJGHkyt5DurkeMKVekJOe2c8ZRysh5RkIFgcSJBCARYUrAXESEMkWlVjT3U3OMsYhzM0nmVeXcdsNr4hJWNBkNUiLNymLdYtDcSv2zvqL/zphtXgyuqbmUuqLX3uit9L1eQ0xdo7Lfrv6O2957tf9kduDdj6fVjSLTKQiCIAiCIAiCILjaOLPodO7cOTzwgQ/cOf/ABz4QBwcHJ+rD+VbkX3PzODcTuawm03aWziV2J0z7AZZt1aEzuE6g7h4CDgA+BLABXATRKOQk6vlNhGHXN2jOEdSpQxnYbGR3NyJgLhm1ZHE5sWU5dVvLfqeTOmbQnU7eTeMtXezGvFjg9toEJ3JOpyGPStcxAZQZOVekXJETq4tI+pgyt/ylnESAOpdnZKqae07qdMpgTs315J1GvBycOahInE7UJJulFcjCxTH0Vd0Od2O/C5fTPmvRvuymtX68q2lwL/VnBcBllh33hNeHcyrC6RQEQRAEQRAEQRBcZZw50+k5z3kOfuRHfgSXLl1q5y5duoSXv/zleO5zn3uyTtZybbydBegGE/u7vv9937KFxI0EpEt6bCH5TjNcBo/ZdtAzl5NEKs0To0xA2WgOVNdAJDepkjiUWsYR1F2kGUmqkPmd68CMuRCOthl3Xpqw3WbJctKOydQIBlC574RWIflRK1k/TIyagDqxHJbVZA4vHdd4EQZBYvzYVYo2Z7v/lsBHCfPRhHnOKBUgqphywbmDIxxutjicttjkAkDyne6aJxSdkohPFQmSr2Tvq63LnLBdHHNJmOeE7UzYloS5Ema2bCf7OTDaKnI/2k+FJbupMlAGJ5U9P3VTFaAWEreVZTQtFwv+ebrn5HOgNF9r97fM7TLRs7j52byhrD0G9+xbVtdpcEJtiE5BEARBEARBEATB1cCZnU7vec978Du/8zu4//3vjy/8wi8EAPzn//yfcXR0hK/+6q/GN33TN7W2b3rTm9Y7cc4Sc/AMLqeF02lwLjnHktOlhvKrfX6XVgpFEEvNBuAD9Fwj35cKBj63qZlp3Cs1l5A6nXR3N+kogTn18HAmtyPa/l3r2r+820q7XV+UPUYeZyiS670ziuDGguboInU6tV3ldMe6nLS8DLKDXE6Mg1wwJemqQpxOrK/mdGKmHqTu3T92f1IHVepOJtLv/e5zS5cT0POcRrvXck29e2nfQrlzO237j8d2FGyf27cLV9M+p5P7wQ5P/7QuJ71HOJ2CIAiCIAiCIAiCq4kzi073vOc98c3f/M3Dueuvv/70Hamo1N0hWgJlgoP9Je8NUCSOJAkYly9MYui6A7k/wse/7E0rKBOhbsThZEYX4u6mMs2BANRsO78BLTSnQj5XuYZ0wJbrU+akbiwCTGhpji4356o3Kk604D4ezCTOLZu/d2PZuKHiS8t7GpeZzBFkOVReoKiaJeW1lSITqkcTZgbKnJs7azNlHB7OODfNIEgeUqkJd80bFCYkAHMlHNUJpYqDqXBCqQmlJJRKrcTNB3oTmRMpgbkiESElURwTCNXkJaK+A92OwMK6glWznWgQpvx1lu/UM5yoZzn5BVR7VHt+GmqPas9TJSX/bJeuo0VOGVz73Ywx9F3uTkqITkEQBEEQBEEQBMFVxplFp1/4hV+4+3f3VUymBJk+xF0o2Ru+zCufm/rEY//AaFZJJOJLhoaD7+mHVhxFcP3oaz/dFKBe/mWikwoU0M9ggCzbqaLtdjasibWz74j7GNfMOfZ5zS2zE2i1px26eEeptvEwSBxIiZGoSlA2AQzu5XSie2FmEZdKEUGqVEKphLmY4NRDvod8Jv2XWXSXJoa5h72swBwsXCsT8uLTXufSyoPtwhw1UUoEJ9oVnHi8dre39YVePbv8bZ+ACBIPgiAIgiAIgiAIrjbOLDp9IrCyOfvjfc0lMkQU+fdONxj+4K4LFxBcFROj5R9xAupGDkx6r1mvzTocn5VkeF1D3w/lUoQ2AGYVmmoCF2pzpKpXeLeMvtLS5aSZVT1eSPokVTq8Iwu0O/c+7IWT6ZgSLiYGMoMSa/B4ArcsJW6XT4kxpaqCnrxnBo7KhKN5wlZdTnPJKDW19ai1l761bCunClZOSGAkFbwYS1Fq3wTGcz7zqYlGTuyyDk2M6qKUa2/nLW/JCU4W8A77HS9+w8tjGJ3/bnF+n2YYBEEQBEEQBEEQBH+TOLPo9Jd/+Zd48YtfjLe97W348Ic/jFrHeqCPfvSjl+9EA7PNxdMiidwf5Gzld0t8Gyc4yRt0QcpfQ/461nK0RX+pC1RD/8e4T9r3tWtObPeqJIKTldANoem9DZmDBsvv+oQZBAksd3NsIhL3Ia4tmHdr+a+9COXEK6ekANDgcxIhKKeCnCqI5PDOIGbbuU6cTbUmPVRwKrRz75TGoVhftQKUNKfbHFFt+MfZeVbsXNzH2G/ixajednje7SD9nVL73IaxGMo+lxOvfD9wdxxKS3E2CIIgCIIgCIIgCK4wZxadvvVbvxXvf//78YxnPAP3ve99QbT3T+m9iI5BTd+gxR/6g66y+KO6GWNSd0y1ERzz132PeqIeUj73/pmkL3NAcfaDgBMcGATNbyL9TDogE4sYUlpX5PDOGABdcKsAFWrzp8G+hBbq7Z1NQ+SQhZyTtl0KUm3ya08BTaRivRdlBiZGytCAdEbKjMPNjClXHE4zplywSbLorOvBIMycMZeMo5JRiuY5VQJXAldvG5PJrgtOpNOXh5u1bM8Hi3uqLoqU6dEgLLErWWQvPLF9tzwHJ0KZU426WGiZTjqF/pvb43Lya99/Krtwb3YWorwuCIIgCIIgCIIguNo4s+h000034aabbmo7150JE1mc4NT+eHaOIOaVP8adAOWdKTslTMCuaATAQoOo0KgBrDidmoikmtJwwSAwwWVKAS2/yQSnsjv2JjK5frxgwSYILRxJDbWGySVuYEvlwZWvDWNYnJavKggs/bG6nJjBLFlOmSomdTmVmpoTKRNJ6HjtTiVzkzH7mw6WM4hg1+9f7XeAbhBjVXlGbdMFgw8TsxK6vlhD8Hhbf8JYUkfDb84701r2FmMogdxZyzaCdZbf+c93u6TuUyA2vfzlL8dv/uZv4uabb8bBwQFuvfXWT/5NgyAIgiAIgiAIgr+RrO0rfyIe8pCH4M4777x7d2dadTh5lxPQS+52SuXsOxrNPb69qz5r2AZ0uRLSDOQCJHfkojvjOUFM7uPdLCJCEBMIBKpJttQretQkYpMJTlVG29rbteqkoWr30u9tchZ0PgHYuGNyR9LDAtEzj5+TW6Ql3nxFrE4nAiW9JDHyxJiminMHBdccHuHaw0u4sNmCKKEgi7uJNziqGxzNGxTOYCZUNgVv+XS0X82NSnYv8oNKkBQpAlMCES/auHFb2hRTOyrrtRjFJ+tfdshrE3eOKHVjmQuq0hD23oWnNhMsF/Y48WjVfPaJEIv2Oaw+wRwdHeEf/sN/iGc/+9mfvJsEQRAEQRAEQRAE/1dwZqfTz/zMz+D7v//78eIXvxhf8AVfgM1mM3x/8eLFy3ey+CP5WMePXmJijGkZvPZH9tof3cuypgpg5lbyxs7FxOZasnHY+xl9l7uEXspWsXtPGt0xPZsJuwKBHqxdShNe6AeutG6FwZ1F43BE2GDslIDZl8uw9OpyozSHKWkXlVmcSAC4Mti5mvoQVAoiVsfR5R4Q22172LhzKhEICYSUGMmbtdj9VHjPUft7u5V3xg2/n0o9NHz57FVo3C1dG36Zu+xxQ32i+VSV1/3wD/8wAOB1r3vdJ+8mQRAEQRAEQRAEwf8VnFl0uuc974mPfexj+Kqv+qrhPLNkG5VS9lzZaS4nLMrrsFtyNPhJVFhJvOJycn9wNznAiVTeIZW0vKpWCbNm7deimZC6yOVLqhjc3UR9Nj2LCegik4kVy7kzWu1Y36nPtTKnktqy2i56+2w06ooa2vpFWPXYyJciuMl8JJfK2Z8ogahgmhhTYmwyIyfZYa4goyKhsrmSTADyu9MRKIljiGGOJnU4ETcHU580mguJtaRP9LKq1+uYnZPJxltZHEz2OiauuzVgt4OdteH+XXtmPs/JCU6DIaupn7urTIszw+/XiURrT+fUePFMX2+77bahyeHhIQ4PD+/unYIgCIIgCIIgCILgRJxZdHrKU56Cg4MD/OIv/uKZg8SHP5Kdy4kZfeM0/d7+ticVhqAul6TnvZNpKU61PKaFa8q+IzMkmTNm4bSiilZ5ZcISE/fSNn+z5R//3nWyNl9nlGFTveDdOTxurrboEstaRN/A5rzcMW/ZWXN5cdslDgUS/p0AcMJMCUc5IW8nFM3BqiAQJOepSkOovgTSkrhSu3A0CF3shkki/FVmcCVUuzcBXBLqJIHtU67gXJvbSZxX3emkq9WnZsKVljaOYeHj82jOtqXDya+bubmWiihUOGMCu9PynjE8wIUoSivvz8Ka0+n6668f2rzkJS/BS1/60rtxlyAIgiAIgiAIgiA4OWcWnf7bf/tveM973oMHP/jBd2sAPs9pn8vJ3pMTCYjGqKKlpwXYdTg1ycNf6CJ8YNlJE9xucNKB3V9MMAwkErcT4G4CJ2RQ04OG+WLxvc0d3Q3FltFkotbCfLSTxOVtXn4h2v37io7alKp45uqyOVsHDFFjbLFBmKttaWdOJZmLOcVKtbwkdRshqTRF7ZnYq99tjvUhtF3uWKLMKxOIC0rNcg+3yNz69UKd3ntcGAxPgtF2smvZTe4zueym5nCqsnps67V8puZas3P+NzHefTy38hs5EytOp1tuuWUoc93ncnrpS1/ayub28Yd/+Id45CMf+QkYaBAEQRAEQRAEQfD/CmcWnR75yEfilltuuduiE4DB9WMulJ1w8ZVLzOnEEA1ox+20dBmRu6DZnmi4zTJOqpmPau83Vd2ZjRfC0/JYy3rC4rvWpvli0EKT6pqrRgc1qGuLz3bPNdfOEoJkVZkTyHKqnHhWQZgp4xIYdQK2VQSnTBVTkl3suqkqgauIT6VAXFFVgrrJXFvUg9KJuK2luJwIXEQEag60klESoW5kaTbO7QRYblQvmTOtrFbuGU1ACwvnxXMSl5M6kuyVXf/QsQyS13IdJR+MuYuT1AZzvKxk/d0t8WlFdLp48eKJstWe+9zn4lu+5VuObfPABz7w7owuCIIgCIIgCIIg+H+QM4tOz3ve8/Dd3/3deNGLXoSHP/zhO0Hij3jEIy7bx4lcTnbeiUlkBh1VLhJxd0ERxqwc1Q+I0LKO1JwDTgS23eE2EHfTBuCF26kJWOZeMSdSq/VzMCScnJe+Iv89mhhkQeZDS8tyaplO7dJdUSi5NjuC2+jWGe/U3UKkF5ggtDNgu4eoROoSqrLrXAIyiRwzl4SZM7Ylo9bc3E5tZ7j2MGobi4WFm+gkO/85OxQYrCIcJcuAkkwon8nUdqxj69NbxAaFrgtBTVzS0bR8JwztaaULEwXJHGXOubb0N+11Oa28Pyt3J0j83ve+N+5973t/AkYRBEEQBEEQBEEQBJ0zi05PetKTAAA33HBDOyelUicPEt/J1VlxC5mAYvKOMwVJVJN7HfSShTbTHD+mR1Rx2bCqSq2iyruUABF+Fs4rKuKO4ULgjQZ38+I+DKBwc7l4EW0Q2pYCgY6BzWa1tMEs3CxtTkuqXl/VvQPLG1oRynw5mYlaXunTrkoFMBNyYlBmgComKphSVUdYxtyynHSNKotzqZoYxEDK4MSg3Le8azsGtjWUXex6qWDC0Z2MMgNlw5gmRtKt/obd6uBcTpU008kJTIMYN7qcuKo7ydaHZD2GzffMtbS0xHm9Sr8j3TFwMKb5vryY6IVS//s7KStOp08GH/zgB/HRj34UH/zgB1FKwc033wwAeNCDHoRrrrnmk3fjIAiCIAiCIAiC4G8cZxadPvCBD3xCBtAzjfTzvldtl5aOJywO+37NSkLdbIMkTqeanbPJMpTsyF308rvrcSJQAli3zxskHHUvUR1vvZj14Iph39BEMe9y8opFxigq+DZeUHH3Go06ZD319VDrmM2EbSEzQJmRpoqUGCkREhFyrjiYGIe54iBXEDG2JWPmjKOSsZ0ngJOIPdVZzNr9q35cCadq+UqqvpEbOyXZ9S4RUuKeB7XX5ZS6q8k/iaHMTr4bMpjWHhr3ksDFiIc1J39uMesdFkKif8yndj99ikSnF7/4xXj961/fPn/xF38xAOBtb3sbHve4x33ybhwEQRAEQRAEQRD8jePMotMDHvCAT8wIzHEixplFJk7/3JrX0XXUtAJzmySMf4Bj5X3TFkTAKOY4SUCdVCOBihImQLl7mTOFttTyl8zE03QEnc/eXKfl0Ni0EO5f+NAqm2dZXFghdYbNoeSvF+GGW1mbu9Be2mRsEHoPtZAxEupWHgQzUBOJky31a20XOTAwJcaUC2bGUFrHRccKAigDtYKzf4ipzzGz25YOPfR7BmbOqDMhbwpyrsi5oseUA2BqLqda0Ev1FqJMy3piWQSR3PxCL95W1iV0jinvzLLP7TfM3RW18vyXp7wrz7KsTsPdKa87Da973evwute97pN3gyAIgiAIgiAIguD/Gs4sOgHA+9//fvzkT/4k3vve94KI8NCHPhTf/d3fjc/93M890fU+p2nnlVdeTVdxB5afrb0TgZqrB/LHvOU7cSIRmCzTyXKdfE7SPuuV7fi2KFjzuo56aI5ZgJXP3mmlLiq2ibTsJrfTnQlNFnS1GCxhccrGt3RWOXGtOZ6SWMsoM0jdRTkDm4lxOFUcTgU5AUdzxrZsUJgw2+51NXWHk98dDiRq3DCwXS8WD84jub+JaqQb6OUkepvsVufyo459gN7htFijwValWKnc4oud3ekW7Y5zOHlByX+/sySn4VPkdAqCIAiCIAiCIAiCk3Jm0em3f/u38cQnPhFf9EVfhC/7si8DM+P3fu/38Pmf//l485vfjK/5mq+5fCfLXdXM2VLXXU7eUcL+j2ygi0zeieTeD31AdQ9i0AwkJqAAtAVwCJRzriJr+Qe8CTZVhQanbQzulFa+xV0kWo7XvfeOp+bAMc1F+6al/cXG511Rptio9YqtznCvC8YWus+juYxmAmpCnQk1V5SckA9mMGcwV1TeYJMqtjXhaE4oNel4K0hDxpmTLFQ28cnbwRYPBdyFL4IrzwPYdtibM+qWUDaEuimYJiBrGWTL6NJFkXXj1ofcwq2huZyaiOcWnTGsLYNbWPjwjKpbUwZQXLs1bHj6Ojj3Fo/lNHyqnE5BEARBEARBEARBcFLOLDp9//d/P17wghfgFa94xc75f/yP//GJRCf7Q3nN7TG4loAdl9OyzU4/Q73SyquJRInEsZQg+U7e7eQuGYw3+i+3z+zlCjcX2rm10XQBH2vk3Ew+k4ohGVLj9eyMOSTiynIl3eCXa9zmQxjzo7i3IuI+R3U6TROwmSTTKSegImGuE+aa5VbWMavTyTKTvIJGtT+whZBG1PsQF9lSaFPXVWY95JrKQGW9b5uln6RfUGoLsOpyWoiUi1b9X+/UY2pRVasmpZUf+drP0ro6tdMpCIIgCIIgCIIgCK4yziw6vfe978Wv/Mqv7Jy/4YYb8JM/+ZMn68TcQur08FlNa+VCfne77oTi/j262LTUm3bKy6qWZhXd5WwGaJbxbIEeKu4VgUWnNgagu5GGTCnNUzLzUXNjjdMCTNzxY/S7l5H7rO0ooe/uBhn30MeQUu7cX+jJReyUOqc16Rx0kROAiUHTjLSRB1Zqwl3bjLkSEjFKpSYUWc4T5SpZ5ElK3lh3sxtL7fyd1WvEy/ur28nmry63Qhmkqo/tYifr3F1ew/r5D8TjutiqsI0P7uj3Xv4+Wc+ZW4nKwmVka7tHRGr5ZazPD04iu0p3rwuCIAiCIAiCIAiCk7LcPuzEfPqnf3rbLt1z88034z73uc+J+lh6Ufz7vY6mPYfvr/WzYnLxN+HWSD9noB5gdP6sDZTGrsS9Q4vd9Pq/q2Nam+yesZK/du917mITjnx/TMNomhCyEn/UtKgkHyhXpAwkzVBKiZETi2gH0rK6xYB4bUKmmLmHiXHcbQ3dWJaTFqdTFadT4ta21uN+Ie4+zubVV2V98ftQxz7I1kmFvNWYqnHY4zLsH92qQHVZ1sTaIAiCIAiCIAiCILiCnNnp9KxnPQvf8R3fgT/7sz/Dox/9aBARbrrpJvzYj/0Yvvd7v/dEfVCRA8DgIjGRCVg/11w75nJauDyWf7MPuoX7LC4rBhEBBUgzxAF1pLvYTUDdyCvSWGI3vF3eYHkve+9yd6wNezXNz9cudC6orpW4Thga+I3FxN1CWJ53dTLYYvA+V6iHkzMoMShVUKpIaktjJhzNGYlEeOr9iPCWicGpasaSWLC4QhxRNbVd7NrOeW2BvFOKQZM841qhuUwmZgF1m7GthLKpTXiqFeJaaxlhblGpf24usbZrnT4cc1T5DC6/++DSkae745E69uy3bJWFyP05D6/m8PNPixY/gVMKT0udKwiCIAiCIAiCIAiuNGcWnX7oh34I1157Lf7ZP/tn+IEf+AEAwP3udz+89KUvxfOf//yTdaJ/1HtBaRkcvmIQ2WcI2u172cDXLw1tpXHbbA0QAQRo2de79XrrWtNquNPeYfHqeMj9O/S3NBL5c773pQLhgq15WXZG46UAgKTjst3r1A9npYRW1tc0GQaYCSnZnKxGbjFvVuWr1SD6xaR+g4SWN76bluXCwolFK1oKjUyyi51/QE7F4eVvw5fRMQ3B4MQQMco+W/sKkBeclmV1g0gILJcdWFyDxXBxSqK8LgiCIAiCIAiCILjKOLPoRER4wQtegBe84AW4/fbbAQDXXnvt6fowzWXlj+XdP/yxW0I0uIKw65KyvoCeqeTEmKU2lAuQPg5kczhtgXmWkrt6ABFDvIjATk9YE5oWYkPTWmy4O+IQRvEALEKYvy/xQkvRQWR1O61lARG6BrQUR5aCjuY4UWIgM9LEABPK0YSaWHKUdJFzZuRctbpQBk4QkWpDFcyEUgmVE5JJSEnzncpw29HeY9pTLs2hVQs0z4mAGW1RKjNSrkBiFb+8SLiwtnkW7iX7fZH/Danzacd5p4JTsgwn7s6lQWhayQRrAtXyN+/asn0+BbF7XRAEQRAEQRAEQXC1cWbR6QMf+ADmecbnfd7nDWLT+973Pmw2GzzwgQ+8fCcqJAws/xj35U1wogDWTUuDwLAjsKycY/eq78WVI2VkKGrOKe567h213dVcqPfOPXfGs6KK7ZzgpQaz4nRyTikTTpbde8ePXrPjdvIkVS/UtcTMMn/nbgKL6Mhcm8iTXPnh2lL3qTPYJ6DvtYWxcyS5CXjRjgHS8fWQeYIvwxuuGwQpdMFS14i86mNzXgqBDBBTF5m88OiHkHhPiRy5+y5O22/xLITTKQiCIAiCIAiCILjKOHOQ+NOf/nT83u/93s75//gf/yOe/vSnn6iPpdHHO5/8K+D+SG8H74oBvnPu/bbr993Y9UMM5G0/NkfA5k4gH/kyKh6cKUMuNhb97kyaV8O7h7n4NhZqbiKQNSMe+xjKuJwy5Z00CSIzHgA41NeNPxg0SZYSCKAM6aMkcEmod06oHz9A/fgG5dKE+WiDuWRp6w5AXpOdgzikUgIoASm5hsawVj3cOyVIiHmGlPq1NTNhyaxgGeCsZXWLRRmcT25ddnaq8yIUdRde+z0SqJXh9fMgWVe2IzPYnlvuz5Co97n8zbRd+/wzPy1LISsIgiAIgiAIgiAIriBnFp3e85734Mu+7Mt2zn/pl37p6q52q6ibhNZK5wou4zZxIs/S4bEQnODbrR0rsLldNOycZoC28trHtXDG+DH7cbsBXOa24zBpT7umWiwsM2trpe2ZKhhytEW3JHeSwRNJmZpZgmoB6hZSCqeh2Sh9vqxuJK4S4l1KP2olVO7zkTW1EjizHK3NTW9fJaupmotpsAfpkaQfLmhHey4V3QEFtHEOgpEXm3xI1fK314LM+xCNCqAQUIhRiFEToyZ0w5XNn/v8h/ss3H5n1Y12fhJBEARBEARBEARBcIW5W5lOluXk+djHPoZSysoVuwwbrjmn0apoNGgs7MSCRduVa5dVdIMhaA+kgdJcRWyyjsoEUKJWCnVckdjO3/5LV5IfHFbOm/PFiTesWUuDG0Z3g9vnrGJrT+I0koX3jeW9mY+YAZTUd3NzZWdUtXUCoDvRcZIyPAv2JuLBeJUIqExgN3keyuBoZQETqJoIJuMmlnuNJqnk1qBPh3lpNXMXWVj4wu1Etrudv6ouz2B8Nvq+7TDoz7s1A4DEBNJdEqm6R5/dUiR3j9OwEGWDIAiCIAiCIAiC4EpzZqfTl3/5l+PGG28cBKZSCm688UY85jGPOVknzUWC0Xli57zjxF9jb5d/aC//2N7nbDrO6dSEHx6cLlSAtFW309aNa+kuWp5vY+Z1LUDbrQ5r0E3c1WslefqBoa4mO3IFsjmbap+XPzS3qhaAZz0W38Pv0Gbrwwyu7FxOJEcllGouJVKNkIdrhme05gqr3Z3kHUtDzZv25Z1Og+OptmY7v7XxGRF2np3P8WrrKq8l6ZEZ5f9v741iJcuuu+7/Wvucqnu7PTOJMx+ZsWzHxpENVoJAHogCSsA8BD+AZVBAhkBwEqJY2EgExXawhGxHEUbIAkRAAYQSGZEEHoggQl9QHmKkoCjEAeIA0QQcYmN5GMcfNp6Znr63ztlrfQ9rrb33qXu7p297Ot026zeqqbpVp/bZe5/TD/XXf/1XEVQWdzgphPqzUndioQIIp9za9zSu/YX9uCwQ/jak0ylJkiRJkiRJkiR50Lhrp9Pf/Jt/E9/8zd+M173udfimb/omAMDP/dzP4ZlnnsHP/uzP3vE4F3KYLnMv+WctX8efLzOFXCi5Gz+gW7idLgQyWbmVDgYcdvGD3enDGAY6Os2F3/x8tKhRNIqnI1fTNqNJWzg1Jj2yiPXXWtDrDl0YotERFc4e+HOUsoXQMW6QAhACyTBZdicPAWOIk+rmBE1IIfbhNhlLvHU5jWnbF9Zk3yG2ASnK1tSFJSV3Y/k4F9SW0d1kfxOwLZdz19PG5aQACflW6LBmH8v/viw6qh3TutQRWICyUBcthy2OHCgUXIi5uhLpdEqSJEmSJEmSJEkeMO7a6fT6178ev/Irv4I/9af+FH7zN38Tzz77LL79278dTz75JL7u677uzga5LAPp2OU05t4c/ZhuP9yPjDOXcuykeSHHk+rW5bOa04lvAnwG0ME+a5V+Q4bPhRPrdo6Xnu948kcOIG3hRLh8X8aNCLtLKGPhGBqdTLW7iFABHAg4AFjQc5tirPhjPO/gKpJKlv9UCSIEFbJyOsXW5eQP2mRR3ebiKaBCqGt/iO/5LXOtjvdu3KfLnGnj3vnxmwwv/64SIO5uEpb+oO6AGs9NFcABoHOAD3a/0MHG1erjFRfxcIu5XoF0OiVJkiRJkiRJkiQPGnftdAKAl73sZfjrf/2v3/aYv/gX/yJ+4Ad+AI8++uiFz6JSKswu8WN5ExI+Hj+IA8fxR+OYl7qc2gkv+dKlf1M/1OfIi7mJJBxOl3WgG4xEm2PG8182v1H+OxbXWO1Ksc3rUsGqdbwbOrzxIISMriACWjhTtfeoOaCGzKRmC+ubMzrEiGGT8oArJQEPjrL+nRfIcxr3ZnMdouytbxwVNceTAArqY4/XQGn4026Wtr4YM9xNo8tJzclGq2UvwWOtdIblYl3WdXDc3xB8KsALgVcCH6zzIS9o2U7rDhB3N21ynIZhr2x6SqdTkiRJkiRJkiRJ8oBx106nO+Wf/tN/imeeeebyD4/cJhdyhKp6C7OwE+mF77RMnNv90B6PvdMf5McHKgBR8Llifk4xPQvw8+54GnOZjrSUdk7dTv8Cseb16CH9+5c6s+Touweyx0LQA0EX6hlHbSHDGK7SaUxwnEM9Ole8jhyolc155E4nbU4nG0qkXzqCgthypYgvcSg1W1TfKBXY/M8JOCfowpAVEFET1yKvqnXcO5rruDeXCDLtvpFL1r3JFLvERXXJtaKDueCKu+H4DOBzc0xh6HrI59vP6Cjj6a5Eo8vujSRJkiRJkiRJkiS5j3xRTqc7QW+j8mxcHeFe0v66l3hREyKOXVAv6HI6PtGx2+mCu2Y45/inmldHK6CFWvO26Ap3y7HG9/mSedLlWT7Wqc2cVXBXDOJ7x8e7G6m7edQEjOayGr4QJxvdS3SrTRjWMOwrEVqXNqIhiIqsdI4YILbxeNjrGo6lY3Vus3eDk0sALLYuBYBJQIXAxc4j/n33QG0cTiCYg+vYdhX7dZzlJABXAle0znJSYJlLuz4/aoO3Jds6VngJJrlbyrvUxfN4vSU6+gGbrb9rmxM2ZXVZXpckSZIkSZIkSZI8CNxz0em2REO10CHCTeTOlCahHP2K1sEko7j9j+zmZhm0DAVu+cO+DXUcFDXMh84VpYaLhyD7LsLgaOxN17VbOVEuc+jAn6Nsrgkzl6huSp4jRH2tMR8vubtceLFzaAVIFL3OEZcIIdrnpXDnDm3Po2x7IopKAJGC2R4h2DALUBgCC0cfs7w01jzOMd5jAN6pTkBNh+yCV+w3dVFPhs3vFXpxoO+bmji1WPYSL3YMuThUyES5OJVttx2gpP1cK1A894tCbIp8KBeyYiqF/bQhWm72+Wied8rxPZQkSZIkSZIkSZIk95n7KjodayctCHl4b2PseSGX061Ocpmz6XauElc02m//wXkVGg8mgu4BnS8Z93hMF43oWEw4Om7wz9h5Jh2ynLAVn0I5C82lEqiSFcoVcteRHbjJPAoig8i7uHWX1DjF0X52PMMwKrmgFCoNwsHkjicKO0983TKdWsngODc5mqS6kMYAlb4XzLiYC6WD06kJfLTZ/4bYesmPp5VQFhONNsJNAZRtf3gUdTgEJ/IMJ+tMx4u7mrzLIcVjvG8VqOFg2/W5jdO7G82IVEGucNId15AmSZIkSZIkSZIkyb3jgXA6Nb1DtOXetFIhDJ9jcDm1N/rTpcJTfE6bPy+8vkBz0vTXcV6uAG4qymRuFd31oqvWjQzoXzgWmkbX0zgfd/3Q8NxcWQxcDKTSNpaiCxwhuCi74MN6sQywOZ3M6WPSlD1v5jqcA9AuDKlvCsNEGFaz8Kg5mIisnE4YYB4FKICLAESQlT34ibZLCzFrUmCmpkZGiHibGnfXEZhMJBICFgJWK3Nr+xrC03ieqsBKoFVBK7XOdQELzNEVmhYDOvVtGfexmcSinC7K9Nqj39BEZP/yBvdTex7HvQrpdEqSJEmSJEmSJEkeMO6v6OSEA6hpIoMz5DIx6bZ/X+pcusWjnfzSWWFUtMgPJRd4ZAfUEzKnE7s56jLr1WXnPBac2vrDdWRvyQRgRheMjh07MVa1TmkkXgYWndZ8wuTfOw44N3GLt0NuSvmO5h1/eMkf+Tk0/g7hJexG7rai1lHPnEEyupDCAja4nijKATkWaOdiL0XTYaMJZCJXDKkACXfnFmFbXuiuLnK3E1eysrghy6ltLQ8NAAmoBYMzaVRC7fu8AGUopWv3cgiWBCgRZOheN25t24Ij59OdkJlOSZIkSZIkSZIkyYPGPRed/uyf/bN4+OGHL/2MREGivdQquo2pO4swiAmjYDM+D1z2W7tVoQ1jtOPo4nHxR+gmLSOpOYjskHIAypmaeIBeLtbEp0EgUhc+dHDbUIVlCQ2Tjowgc9sMYeXxvdEZc+SWGjUWdbdOiEAqZEJUiFdBdGbzTChbGKCz2vEAUIeMpLAjHe1FfFeb+gNX5wgi5qEyt5OJT1xgXecI0KpQIctN0q2riYvYfkofV3W4KG1ifb0q5ljC0u8dKtRzwca5x/oreSYWNvABTQyqO3M5jett48HK5WQHiJfpkfjx7lCLMHGZ1LrV7QibG3Z0OF1VcRrXtd2SJEmSJEmSJEmSJLlv8AsfcjmvfvWr8df+2l/Dk08+edvjfviHfxiPPvrobY/xHmO3NiNd8h4u+fto0Bd4DJaSYaD4qP3lLpz2FX+77gA5IehMF3N5js81CkfxdCQ4AW4g8o5rBBMtdHQ6Rauz0Z2lluVEPp5SP57ibK3T3DCH5nKKvbdwbow5UnLxyrRucKMjKlxVwxTbNJnA7orq0U4huGxtVUR+XAG4KDhK6dp3x8HH+8PnLgSqBSQEHo4LZ5JlMNleQez5uGPdpfda5C8N+3rh1lGAXHBi7Usj7e8R7HrWPfUssOGeaUu8i3+Vo6PqXjmdPvGJT+C7vuu78OpXvxqnp6d4zWteg/e97304HA735oRJkiRJkiRJkiTJlzR3LTr9pb/0l/Bv/s2/wetf/3q84Q1vwN/5O38H/+t//a8rjdE6e1Vtr5vbKbKd5OJ7LfPp6HEsQDWX0/D3mD89/j1+57j6LQSE9r4C5RzgcwUvup1nlK1VzxLy4zfN8AjQSS+6byqgQ64VHwi0uHPn2MkSi4vub24N06gHG9cl/bsbUUJtYpYlpVC12kFiAUVntop+fvj4RZuKorEggWUzVYKuBKwErea6kkqIYHYTbKyj3TRXTLsV035F2a8ouxU8VRAUWgnrecF6Ntnj5oR6s0DOCuS8QA4MWRi6MHQh6DkDBwYtvt64p7yTXMtY8gtIsebYIx3MXEcPdWcarwCfA3QwgWlzXchEwjrBHG3t+3aPlJsKrAoJMW68nsc3ruDqHM/7HvDkk09CRPAP/+E/xH/9r/8Vf/tv/238g3/wD/De97733pwwSZIkSZIkSZIk+ZLmrkWnv/JX/go++tGP4sknn8Qf/aN/FD/8wz+MV77ylfiWb/kW/JN/8k/uaIwXMiPFQXTJ8ZcOdvz6ThxOx5O57ByDOBDv1x0gO4JOW8vLpW6n0ekUDxkmSiEGkTud7D2ZvUTruCwu1hFd2PxZx/ONx5aj91xtG/8DCCgEzOolYWRlZ8e7fpwrRccvaOt24u5aiq3f7NXGfuXn9QNUj89/2QXzh9h8e1e6mO/R9VY0B5dlOrkgdckZENMpaPlLNJy6Gc58XK6e6RROJ5hQVRZ7T/YE2RHqjO39gKPXD6jT6U1vehN+9Ed/FN/yLd+C3/7bfzve/OY34/u+7/vwkz/5k/fmhEmSJEmSJEmSJMmXNHctOgWvfe1r8YEPfAC/9mu/hp/7uZ/DZz/7WXzHd3zHHX23dfYKl1NzPWnLeyIxqwk155NeeFzm8LjM3WSh1+MELpvUeLy/ZtqMR2qZTrx4Ps/R+SncTuHAEoBWskeUwpVBoVr989iDg4dSHwA+A+hAw4m36oLCRCLZKWSv0L2ai2qOh/R8Jmzn6sYmy5sq6t3uhn0pCkwCzAIUsWOK2Ljt+PhO/64qWbaSmvOproRaCXGpbJsVTIJ5qpjnFfO8okxmHZKVUJ+dgC9MoC9MwLMFeJ6BMwbOij8Pr28W4JxBC/dMsBD6FM2FZZ33qDnRIsOpxURddjsoQCtQbgLleWB+1h7TDRtXvIMhL36tFoAWRTlTTDcU8w1FeV7ABwGv/V6O+2Pjuju+/75Innnmmc3j/Pz8ix/0iC984Qt46Utf+qKPmyRJkiRJkiRJknzp80WLTgDwi7/4i/jLf/kv44//8T+OX/u1X8O3fuu33tkXL5TMaSubu1hW5wLT+N5QwtQUlGPxoIlHg+B0S7vUljaUXlQkZAKkuLgxjnmZeNGED1w6f1Jq5V+RL9SWxmhikEKhUSOm2sYQWKmekvjndgKF+Pv+GLbqWKCL8HMlC3ZXAVT9fFHvRcMXNi9G1c0mtW0KaOKYKiACqIfHy7C1CoKIPXRxl5VQ3/pRiYnXghYCfqzSjCLO5nrHvg+C5y3L2cZ9cqGq7Tn7tYHavXkwwZRXaWIorwJeBCwKKYo6wVxO263anGcjkl6FS8rrXvGKV+CRRx5pjw9+8INXHPT2/Pqv/zp+6Id+CG9/+9tf1HGTJEmSJEmSJEmSLw/uunvdf/tv/w0/9mM/hh//8R/HJz7xCbzxjW/E3/gbfwN/4k/8CTz00EN3NEYYZAATnLoI489+EAEX9Y1BfyAfTY/EpNFFckF8eKEf9aOARLQVnsjFoThuCBJvv/tp+7XI8WlzibWIuWTCUUOrjQ0AKICsZFlPRYGd2hVTt8i0gHFAi3gZmJ1QW44T9XWM+ynDdwFzTbFvrKqNNVsXOQiAZdh0vyDEsYgYa+MHa4NrZSjI1kAKYoL1tBtEJwVUGLoUYCngA4ErQ9izr4bOf608cRDtGsflf0eQejbT4oKT4tJyNBqWhXCzVSuVkwLI3jrRgYHpJmE+U+yeUcw34/5VF6F8Wkooi2I+I9S9iW+t7DHuZQAaQma59Rput7aRT33qU5vOkfv9/tLvvf/978cHPvCB24790Y9+FE888UT7+6mnnsKb3vQm/Mk/+SfxF/7CX7j6ZJMkSZIkSZIkSZIve+5adPodv+N34IknnsA73vEOvPWtb8Vjjz129UHEXSLAVnDyTmJKMHfJKADFMw9/H5V3gego12jI9MFWgxk5LrNq2sUgOLVYoHIkam0GGh7je3T0WYV1UhvXP5ZdHZ/Uj2tCltr/TJQZ0sJB6K3sdDuIKsZwJQ1hitXDwY/UPRlVIeqCT1T8bRTB403AsOcK8Uuk2oUxZrgDysrwRieYObuOhj3+Wy/+ScdvDvuuYgHnzekkx9/dDtsC68NgBhediglEWACsCj5T0GJCE0B2X4cwqUD1+0XIjm8TK/1k6v8ahRTCl+3pbWgWNrTnhx9+eCM63Yp3vvOdeOtb33rbY171qle110899RTe+MY34hu/8Rvxj/7RP7raPJMkSZIkSZIkSZL/a7hr0enJJ5/Ea1/72hc87id+4ifw5je/GdevX7/wWZiEcPTDPj67INQMf45OnSaAAOaoGXJxjt1PF5xOoxB1IWw7XlMTX0J3oUE3OP5eO50MYpeLYs1lJCawRK5QfEbV9COtLYLIxI7jMHCfr5ICk4I2n3unOC+V6+Vjg21shQkm1XZNi3pXusHBVczNpB4oTh5+bjlSBGJ9QWdR3z92lxMG/Yuwrpb/JNXyn1DZMq/Yjo85bVxqG2GQxj/63HF0LNmelxUoC4HXLnBuxh10unYPDt0SdQJkB8jeSkGnc8Lp5xUnX1BMZ4MaONw/OkWGF2N30wQomQlyAui5Hzr7sQXQky5A3SljgPhVg8QfffRRPProo3d07Kc//Wm88Y1vxBve8Ab86I/+KJhflArdJEmSJEmSJEmS5MuQu/7FeCeCEwB8z/d8Dz7zmc9c/mHdPiicT/7cHnV4jof6exEO1HKS/L1jt9HgStLh8MiXjoigzfsxxPjd4RmCno90/EN/zG0CmrPpwiOcTaNIoUPekV72XfIhtTmPdFw/1AUn34empLS0dqvhY+mPSQC277WJuPjV9xWbR89+wtGbF/dEfb6qellEVj8I5twSEsionozC0LCn2jbt8ilsxvZ90vG6ARfmeavXca+Eyw0VwEFB5wo62P2ow1bF9yoBlajdEv0DfwyXqe/RFZWjo2tzL3jqqafwh/7QH8IrXvEKfOhDH8JnP/tZPP3003j66afvzQmTJEmSJEmSJEmSL2nu2ul0p9zux3NzDPkv9U2WE7DNRDrSHzQcKlF/NbiayFOsIxz7gtNpdM4MTqn2OdBFAfUyLPIStPGHPfscMYw1zH8jhPicyMel2tekBT2rW3x6kevDNjgLQc/ZOs3N0jN/FIAySK1WjErsu70fJw2HEReboKzo1Xek5lpqalqsgAflrW9kBJ2DYC6r2NM6bkQ8qV8TgMnK6Yg8UFxpE2xO7Hsx4fJMo2NBhbDJc2ompePr7W9aFSKhjGV14/WirYOtvV8GwXECdG8Oq3ITuPZ5xennBWVRKPcvRXWjTgSdCbIn6A4AU9tKlr614t322nW/Vbj5LRhLBemK371TfuZnfgYf//jH8fGPfxwvf/nLN59dWSRLkiRJkiRJkiRJvuy5v7Ux3pVuIzgdO5xu9bjsmNVydFDVOqR5VVedrKSpFqCyPYS7m2njaMKR6wj92Fau564Z1O5KEgKqZ/GId4prqoU7hRT+2dAhDmsXoHQ8fJzYUee0jYPKZ2muJwVzRSkruAiIzdKjFZAKfx46woVS0RSLQQEKF1M8IjtqVGlcQNPBERWvtfbvjq6ougJ1/EyGjTpycUU3Pnv0NTZr0K32Y3QujfsXTqphmXF4a4x3NMxG5/I10ALQOcBnds/Ztd0eHI6o4/ut+j0p7A6o4vfnpFgnRb3bf5G/BU6nt73tbc2FdfxIkiRJkiRJkiRJkmPuudPpdpAehYiLbrOSgAumlTic3D0U37eSJuq5156ZIzP1WCi+ZKBx8EFTIWATVt6yyOPzAuiOgBm2i+H2WQFITxpqZqzBwULV3TarHSBs7xfpmUQUbh8yV41Cu6tqdG/52GUvmPYr5klQhbAuhHX1RUcmVTHbFnnulbmibNHEIbiFsuaDNxGDPHvc7EDkE20upfZ62Fz1c7jTyUKo0Mv+RqXHlRhyp5UW6fvvohJxn0ucs19Oz5oajVraPyP1isKVWufBdvlpu53HjE4oVrvG0zkw3wB2z1tnutE9p+5mai6nGZAd2fWc/JJwd06t1xX1FM0BRXT5PG7HF5PplCRJkiRJkiRJkiT3gvsqOm1tRtqDnYEjYUgvlhs1AaK/DlGoOYYKYd31YG4TBLDtfKf+vpdWjSVKzdgzOpz8tQiAVc2xA7SqNJ1cPIu1eVldC6weHERxDnIRQshfq49f0YWqYbnNtRNB26QgrphYwCyoLbRboSJ9DgroClSm7T77pplhRdAUlOhYtwkjOrp+BJ+4H6sxpp/SN0cjeHwUheIahJomCqz+uvi84nq17Kgu6Gm72Jvd2cxP1Zxk8bppasN66BZf30wxXnjwO4dbaxANQ1xUBrQQxIW8lg9G/W/1UkLZA3US1En9XyO5XndF5eiS7nVJkiRJkiRJkiRJcj+5v04nhLCjW6cG/HdzuJ2ORI+Ny8a1kXAIKcxVsjxMWE/JuoCdmXNICiyfJ0SqUbMATFBwASHGjS5nzeGkdoyeEuQaoHsXC8Lp4qKEaSnUc5vclUWrCRbFy+pCBCPP8yYyMaI5nbyJm4bqVdAyq8AAJsV0umK/WzFPFWtlqLLnJdmk2vHwydcQh1ywCiGHACUeHEhWDzbmJkXGVLsWMS+l9lpJB7FtEKJaTduRjyeUmKWAKkHZ1rnJrfI7o0lOflo6tgVtHGvhiPL9rYSy2D4fHz+6mbbnHFxQroGh2n0xLXYtW04T23XWYqITCszlNFPLqdIJ/jlQT4B6qpBTmGOO4KWi1PfvDkmnU5IkSZIkSZIkSfKgcc9Fp6/5mq/BPM+Xfxjd59zhpGN5XdA+98/IfthjONacQi5WgMxBtAA0U6vcaiHQITrBhIiWQx6OJt2KDMoWgI3VnUnwbJ4JECgE6q6V7soht7XQWEbWnE0+p+KlWkATuerUHVUarhrWzVVSsk5zNAmoKHgS7OYFp7sFE1dULiAI6rqDrgosYaFCdw+F9sPUdKhe8haTCuuXu7Jio5ozDV2YCTfSOO6xq6laxlaIW7aYfolNixK0Oj93pm3q3jwLi9r8BrfTkcNqO09f54rWue5YZAoN7lLG6+RjKtRymWZ3OvlY6i4mKQotXmY3TEVcVJQZkEkhxTKrULRXJoL9Xr4C4/VI0SlJkiRJkiRJkiR5AHhRRKfnnnsOItv6q4cffhgA8F/+y3+55feac0gAHvvMo5czxec0CBSR7dO0i0F0kD1hPWXUnTlOWme1qYtOrcxtDG0eys2aF2ftH1v5nDmnZA/Ua3Cnk40b+UuoaKV6o+DELtw011S4qUIMcvGn7UF0cZv9fVLorMCJgmZFmRVcBPvdiusn5zgpFasSVgGWWrAeJmCZQJ5MrewnjET0yHIi13la17oj25AQSIb3R5HOXUljjBM2SUvqe+cOrTGLamMxg5+HPW9KQUQXKucIR/MYy+LiOsf9QtR8USQAL4TpAPDBj+f+/dt5ii5zD5Fa/hYLTGAb5qouKlmGF3XHlgtN2Nlz3SnkRKEnAPawa11tYkS0vTfvgHQ6JUmSJEmSJEmSJA8ady06/cZv/Abe+c534t/+23+Ls7Oz9r6qCQa11hcexMvmSBVatecptcEAqIKqmmsIMBVp9SAlqGsPBJkJdVeshA5W/tRcPO5gihwddRdOOJJCb+EQMUJ4mnwK4V6KXKDi4tcBYCKIai8HlMFMxD5/WJcyVoAKwCAzH1Uf1+fahCrABAgPGtcdoJNCWUEkoFLBpYJZUXjFTBWP7G9iphU3dzOgD+FwNqNWgG8AVNnKvnbmxtKiTRgxR5WrZIMzqwl5rK1zXnM7NduOdwsUgk6D0jHmWbngBHbHlDuoWle5CDyKrnWsfQOrOdo299Z4gzTr1EV0dGwB1mVu7U6z0RXURMZjsUYvviQ/bWW7LuFgGzW7cDOB1Rx4xZxtMtmj7hT1RKE7c62h+I3PBLCYAHhV5SgznZIkSZIkSZIkSZIHjLsWnb7t274NAPAjP/Ij+Oqv/uohN+jOMXeG9tBuXNQQTHBCd7uMBwzlXfW0YD1lrCeMujcxgjwPqU5oriGN/CUXRZrgdFSeNVZ1edM1796Gls+DycUW9g8Ht0k4aUIkYaUmkI3rj8ymzbqj010BUAg6C2RWYK/gE0GZBNMEzFPF6X7FS09v4pHdGRZhfO58h2dunkDOZpSbBWWxycsME5OgttgoBWxrDkFp2AQFaHW3k4ZvyCcrVsZoWUa6zVpql0b7WqLTINREFRecSAf3VYQmxWnowoBd9blwkdC73KHnUJEC5QBM54RpHa7jHdBOf3R92nWMrSrtzW2nQv9MXaDSGZAdXHCy64nZxc0Q3tQyuPQO59jmlE6nJEmSJEmSJEmS5AHjrkWnX/mVX8F/+A//Aa973evu/uyqLj6o5wbp5jMStWBlgb1uVWHufFoFJAqdCmjPkJewl325grTY8ay9jI3cjaTAtmwvBCIvfdu4lYDmYoICfO7HnQG8t5I+mdDdPiFgDVlH2pLIfTghczotaFlRo8sqyq3CSYQThnCFTCZKVAKgBTIRWAUvKWdAAc52E/7P7hRrmaFcgFVRnjdDTT0F6ilZd7v51kqfDo6nNmdxp1FzOfkeuAuqiS4Rfh5jjeLUuDYx55HWCPb2Mj3VLuSp7RMI23IzGvY5/hy67OngwIqucuqmKW5CGTZjXHh99LfE9YzzTeGU24o8rTseD+f11zIp6s7KJHUvwFzBTbSEKU+1mAB1VeFodMml6JQkSZIkSZIkSZI8AFwxOabze3/v78WnPvWpL+rk5ELTaHBpj0H8GTvHtc9FwdUcNvXahOWRCbJnE38KNeGDyNxNsoO5SvxNUurjU3f8tLwl/27vhNY/5xCJ3IkEivN1RxARmdMqdBuNcxK4ErgCtHo20LDGlu00PHTyPKcdwDsFez7Sbqp45OQc/8/pDVyfDrix7vG5s+t49vlrqDdnlDPGdEYoK7ljykq9UACaFFQwLDw2wRcaWU51WNPmv2FP4h3q620bGPsdNqDIr/IMJw41Ko4NF5nvGbAtXRsf3TnmgpPPk5V9zjZGOVjXuhLdCS9xEV12is2HR861zZfiOh1dN3g5J5rDCZYBdmJldezXwKoQyWowZbO7d0z7d3IkgiVJkiRJkiRJkiTJ/eKunU7/+B//Y7z97W/Hpz/9aXzd133dhQ51v+t3/a47G8izgTbPgLugFORupvFYqhW0VtAqgCimWrGbgDrvIDO3jJ1wKokLAs2tEsLR2I2MzLXDq4lBAHroeBwnfsw5wAtQJhMS1lOA9kDdYxNU3jqwRY4S3GlDAIQw3VTsnvXzF3+Q5//syDqczQCtBFqAujDqMqPuK3gnwE7x3G7Gs/s9Hplu4vp0jpkqmCqI1LqjMVBWKy+jFaDrFoklYHM0lUGhGOv8CFCMgd7a90Co7Ru524kUkCg3tC9AJwUVGvKV4MKTWilZ9escFiju54AAWH0ypYJmAYh6aZ7CEr2a28itTNXXGe/79eTF5qmKltU1rqHdXyPh3kJbknWqG0oA2x4cuZ7iO83pVBRaFDK54OQuJ6I+tq2boStv9+xOEO35V3LF7yZJkiRJkiRJkiTJPeCuRafPfvaz+PVf/3V8x3d8R3uPiK4WJO4up9HX0fwdXia3yTuK0rRwQQmgTJDTGcsjM+qeTfgYBtTJsnR0Rgu0biVtoY9ErtLgONLR+DOICRzC1Dj2NAgucWpyUYR7/R5XuNMJKAfFfMPGUy+/8k3cumUKIIVs/js1t1YBuCj2e3M6PXpyAzuu+OTNl+Azzz2Ew809sDDKOWE6J5TVhCzdATITMJsAYo4iV0/CFhYIrPOdO4a6oym21v8fVXourJiLzNffSu3cscTqnQfNQcWDm8fKH6nnQ9VwRgko3E8+lxDt4N0AQ2EkIcvOGgKRuALl3IQ3DSdVXNvLqws3tMZ9g9tpc8MeC1bjjcx+j0xA3bnbbq+gScATmhMOCkh1ddQ7+NFtZ3UJWV6XJEmSJEmSJEmSPGDctej0nd/5nfg9v+f34Cd+4ifuOkgcgLtTFC3fyfOEKJwbVQYHh4CqgA4rsNiDmFGYcfIZhtIJzl9KWE9NVVCY2FJnoM5eosb2Yx8gUPWf9pHVtAB8QHdKDWV56q6ZyB2iBWC2bmS0M+VAWVvXsiYCEMzZQ4AIQIt12iMhyCQ4+VwFnwM6E+rOPhN/XfdAXeFd3ACsDBwIsiesJ4wbCvwmvQSFKn7b6XMQAditQrojrNfIOuCtQDkQ5mdMcFuEAGWIqGdN9dK4lj3lIpI1tSMXkbQLc+EUcysQrbZMdccOu1NJ9truMqqEo9guzz8alMfIiPI8K3MzKYgU4OrZX+ydAW1uVLvbCiuAqu58QusQGN342K+hDlrbcS5Tm5+XaEYmU9wTOmGbCxUOuMUFybj8gwBly7P7nAggrlYm6ftAs2CFQqmYw+sgV/pnROhruMt/iUmSJEmSJEmSJEnyonLXotMnP/lJ/NRP/RS+9mu/9q5PTmKunQtOpxABBidUqBUUoeLVf2HPEzBPqA/NqKeEdU/oWUJoXcO0uWVg5WrSHTwANsJFuGl0wuYXPKk5ZtizgWQmyM5K4GQXxw8DQJu7CkBz55QDoZwB83PAdB4ldWS5S/HwbKoou0MhYHIBZwJoVsw7wbWTAx7aHTBzxWfPXoLnbp5AazHXz+JOp+riSbF5ys5CrcO91BSLcDuxuuhDXTmhOIRceHLXU4hPDKjvO6uLMpO2fKZ2cV2UomHc5iKKN9y1RCDoJM3dpRL7Sk0Fouisp2h5SM2MJEAZhaAofTy+345et3K3WP7gOmtd6Y5L7GQr/HThLsRL71g3u9OpAEyDOakytCWOj/8i7hDV9m8EVy3NS5IkSZIkSZIkSZJ7wF2LTn/4D/9hfOxjH/viRCdV6zTnriYTDrxrnYiV11Xx98VcT8sKHBZ3Oi3AWsHrij0EMr0E5w/NWK7rxunUW64ZWhS6orlhEF3kPNybqwkCKyyzSWb/ugDrBNBsuU7TuUJnwnrNXE4oCuxqFyZCkRjCs0UIhz0DVLD/PKCfE8zPVkyFIHtGPSlYTwi8uhNLCOpd2CBkTqCVoRU4kx1+Ux7CzWXG6bzgubO9HUsKnYD1uqljSoT5OQIfgOkGbHLK5kJiQKvaggnmKAo3T/E2f5U8D4na2pTCFWaB7KhdbFJ3FFEl1Gr7p8VdZiuBDwSFdiFmFKI8z6mV7S0EPSfUWuyzEMniXqkEOgBlMbGG6nbr6wRzFLnjqbmb4hgMQlH8feSEUqBlg8kEyF4hE7rwFC6nhVDO7Vzw71jppLb7R3VwPLHd8wICsYALQaAAsQVvXenf0uB0Ss0pSZIkSZIkSZIkeQC4a9Hpj/2xP4bv/d7vxX/+z/8ZX//1X38hSPzNb37zC46hw4/kJjhFgLgoSLy0Tk2EMpHBxCetdcjRYch+wuEaYTlRKLiXQxV33YSrRAFe/cMQIVxsaiVa6OVRUS4WJWRcYcIPTISok1peEvtCWHuOE3SjkcATy2ll0M2K6VkCH7Q5a8zkolCiMEVtSrQ2mUIMgBWlVBSuECU8dzZDDux5SC6yLAparUStunNKip2nLZSOHvA1x+fQUbKDKln53CASAe5EckfUprysbajtnSqsFHFyoU7QM4xGcUbRy/1ctGt7EZlTlbz8sHcjHAO+Ocr1vGRyoz8O5XXbG7I75SBoTicN5xL7/H0PyXVTKPulp+aQirwuJXimlW732demSq0EsL+4AkfrSpIkSZIkSZIkSZL7zV2LTm9/+9sBAD/wAz9w4bM7DRIncYEmhKZRcKruglK1UjpR0GruJl0W4Pzg7qcKkorp/xTsntthqhPOdwCK6xRTd5wAISpR614Xnc146HgWsAC6woSUxQUM2Fik3sHu3Eq4RAApVjpVdqbCqIsJLYy7AJgVlSuWdcbzjxOmdcL+84uNfxBMTOY2Iiu3k0JWgrias0g9aFyYoTzhpp7i7ObezrUU4IzNMcTmWKqPKA6TQnbuwnEXUlkItYTwg40Qoq7OkAtpqrDyPlXPULKueLzaPrK7iKjafsNLGVkBOiPwEiV9fg4vN4O7nDZCkJf8sXipnjDwPIMPAJSsA1xkc0kEu1Mr86PhWsY11x2A1d4fFMCtI6gJTi54UV8T4G4tn7fstTm34nisgCwm7PGCXmHpuVDsmVy6CnR2UfCogo5CqCJsyxLvAFL/9+OvkyRJkiRJkiRJkuR+c9eik8jVyn8uZXSl+N8UYeLhcIog8XA9hdNJJFSd5hRa9oSV1UujyDN8hnoqhYU018FMcjyH+JOtlE64D8HuwhmdPOYacueQAqoKUQ++vtDirKk60EUBF6sqAYUBZSuFUyIr5bpguxqGGjZQBdBKwAHuOupWH1IrZetOKjIRbtx/4MjiheY42r7n2UmVwNXL6gQe7o3ueqpWITYab2K/FbpxL1GNtXVLmKpCgE33wHYODxBHtXnQgZrzbNzxzRY1t9Nwkf3F0ZXxQdS+E1tOka2lTcja7NFwDtX+0Wje8ivlf2sz7wFHLicMm5UkSZIkSZIkSZIkX8Lctej0YhDuDAqBKR6b0jp3RK0VOCzQdTWn07ra5+sKqIKunaIsCopAbi9n0uJ6hpeCsVBrltbcTtI1F7B3vDsB5MRdTYu5mai6Y8UdKQwLFi8LQRZGrSZ7FFaUKYQDcu2MIB7MzbMCDykOv41xfigoINDzrkC4+sZibh+tACs10YUF0Ojsds7mSmJzQmF14WYWYFZgJ1CJkPOC6aa5cFoouJecbQQnF5Q0sqiK2pSqjR85U+Th3JE7HqIcLa7FDJ3dLHydUE8V9QQWDD6hC2kySEVsn/dgcfTrthKwEHDu71dzOkUZZbuO4TDSfgyLgjVORd3wRGgup3ivaWIK6I5QT4H1uqKe2iIJsDB6pT5GZEZN1PSz0I14dXda1EyKKWfq9YfNERf/LoguuKBekKHMsT0nSZIkSZIkSZIkyX3krkSnGzdu4Md//Mfx8z//83j66adBRPjqr/5q/IE/8Afwp//0n8b169evNF64buyHuglRqp7fFJaQJkgJIAIN9xMTSM35pFKBVaEVFzrPRSYTaj/fUSM0D3nGEFWkvTSvADyRVaKFI4cBYROE4LlQulpYOHmHu7ZABSCD0ACFsqBOwDoDNLuDiggSmU7qkxRXS47dNcdOm2ap0aFmrX9PSSFevhbfodXXx75wdEdOGzuyjWI5Xn9m+6Qgoq0xZzg1Yj8JqLZq+/AoMwo+hsbciwVsm+hIm3yrEBBNaDNXVdsLn/PGwOV7o/Ga1MezAUNsGpcQ2y0TILPldvUP7YB2fHNoASbXhRilfguQLVf6cSLdydVcYF+EWJTldUmSJEmSJEmSJMmDBr/wIVt+9Vd/Fa997Wvx7ne/G5///Ofxyle+Ei9/+cvx+c9/Hu9617vwute9Dr/6q796R2ORC0k0PHq+E7ztvb/nDiddVui6utOp+nfI3CGlmNNkD2AHL69DyzEiz1YieGZPCF3kwot3bZMdoHtATs3tJCeAXiPoKVCvAfUaYb1GkL05WIp497RqIT8q7IKGKSWq3oGubTcBs0J2DD1h1FNGPS2o+wLdMzCbWwtMnhtEm1IzUncbwZ8rgYRtLZMCewUm8bwhV2sK/OHOKCWwj+O1fLYZke/UPiMPJrfzwQU4TIDOMGfZKO552HaEb7fzTjAH0wxbV6g6cZyvDQXAqQIvUeBE+/dbLhcBq2VpTWfA7Jlalu00ONaA1gXPG/OBxXLLwYBOZHNiQAtZztLk+z4RdEdYHyacv1RxeATQaz4PV9DakoesMJuejzurPXsoOVFfB5G5mcIlRTwOdrSfd4oePZIkSZIkSZIkSZLkPnNlp9M73vEOfPM3fzM+/OEPY7fbbT47HA5429vehne84x34yEc+8oJjafuf/926j5kVRI+EKDuof2aOGTWn07qCn1tQnp9BDxFqiCGj6Wf4QR4morFrWzhytADCvWNb6yo3EYi9tA1eTuWuKHUnlS5k7if4sYA5a9C/EI4WYcG6I0x7tEDzfr5huu7ioQq7Yu6sitwhkLmmLDzcF6ywUrQDg86t7A0runsJ9n1y0aM5w3QY88L18ndcsdMC1NmuG1d3d4WjjNDdQYSWY3Sh9Cv+dvdRzF0jmyquS7ESu5i8hjNKbF3kY7VKwSivi9snhEWYxjaGy8cc270CL7HcWWi5lWj2tVv2PW3nrxtzV7uO1WsPhfv92pxOIBAUIoRaTUwLO5e8cA7/lvh3Eq+TJEmSJEmSJEmS5D5zZdHp3//7f49f+qVfuiA4AcBut8N73/te/L7f9/vuaKzmZnKhqTmeAHP3xA/pWq18bjWXk1aJX+1WXjdNoHmGXpshJ+zZO/DSrEjwGZxN6OcloLltmttpNqcTJnQhwh1CUUoHRivbouJOFo46PYauBGUFF7XcI+7lXaoMLAxSs70oqzltQthg6u6gQq0bXHNuDQ8lmHtopx5SBXcnWde3cl7ABxOEuA6iCoDIVLJyLM9x4ticOKgLPc0B5eqKuoCmSi3EPDoASricQv8YutoNd8BgEUJzRlEJ0Wl0WJEJYwvAhaxLnXSxSUNQ82WFM6wtxx1IWrwTXbinhhuCPAxcCrBeA9brQD0FlLXdT4xhDwLXk5r/Ka6Lr19D1JttD4hdAVOFKEHWAqxsmVyx3+vV2tfRIJhRak5JkiRJkiRJkiTJA8CVRaev/MqvxH//7/8dr3/96y/9/OMf/zi+8iu/8o7GGiuBmkMlnE6mZnTh6bJvK6C1QmsFzg+Y/88Z5mdmlIcZ9dpwkjEDKd52R1Nzp2ivMpPogBffJxcehJpAUt1YFA4XFXMT0Rmbq8cFBnP4KMpkQojEySaBzIS6Z6yn6KHe/hyPcFGFS4hkEL6WcW6miJhkodbZrQJ0UNDBwqxpcBm1cq9h/RqiEGvLsYKqf4/6/rl4hlW99M63xoU4qgAfgKo2hnKfPwQ9eTyGpWFginvAHwxztRV7vxBBq9peH6hlcMU1DhFRXbsxJ5Sa+8rnwGollEIEmYBa/Huz729RrHs1F1dTRuNa95uIjjsKxrPnNWnMLT5bbcEqbM6nUO9W7s612JQVVyOdTkmSJEmSJEmSJMkDxpUznb77u78bf/7P/3l86EMfwsc+9jE8/fTT+MxnPoOPfexj+NCHPoTv/M7vxPd8z/fc0VhjllM4NdprcadTdLFbV2BZTe2p/uucCDTNoN0MOtljeek1HB5hyDV3AglQhFps0Fj6RIPogWKCSzicwuW0cUMRYRyIjjOLijldTIfwg9xyUyYyQQboatLK4JWts1nk+BSyPKcZwOw5Q55NpZ4/FA8ri6Pe7W3yORHM5XSzYHq+YDpnTAfquUfSHUK23+4kQn9uLqsoUWuCE7WSNa6EUgkcLjJYphJHFzf4fMKl1QSt7Z41FxEDNJnLCYCrc9ScXWATi1iA3RlhvkkoLiRRbEtTMNFMVNNiD67+ffX9ZDLhKfK/TuxRrwPrQ0B9ib0f+9DD0T0/bAgh7/vYHUcU13SMaSJTOnUtwFKAZQIOBbQWUC2WyyXsOV1X+6fZujAKNuLii82b3/xmvPKVr8TJyQkef/xx/Lk/9+fw1FNP3bsTJkmSJEmSJEmSJF+yXNnp9P73vx+np6f4W3/rb+Hd7353+/Gtqnjsscfw/d///Xj3u999Z4NFGVI8huAlOq4Riho1HqQj1VZ2h8OK+X/fxO63MZaHCuoJ3AmFnumEOI9/PQSnOCt7dtORy6m5cULM8EwnjhIzd9ZYxz07J4qpHrLa3LUM6yMFikB2hPUaNwdQWd1p4yVZzfUzfFX9WPXOc6wEAZsxbPKDqi1AigAzm0MoMpfgooiglX8RmZij1bq1qZIFYYeIpc0P1jv8Qc1cVU1wUUTuks2PluGrk1qCt3clbErR4AyKsTeZU0OmEylMiDoo+BwoZ77+YudVD+zWqY9JVc3ltNg1I69qK1Hd5teuZzwptKgJkKH51D6V0TGnLijFftCwR+EEI4W53cSObWJQJJtTH+/43sQDmun0xje+Ee9973vx+OOP49Of/jS+7/u+D9/6rd+Kn//5n79n50ySJEmSJEmSJEm+NLmy6AQA73nPe/Ce97wHv/Ebv4Gnn34aAPDYY4/h1a9+9dUGaj/Yt4/IYmo/pEW6w6kOv8bLBN7NoJMT4Noe549dw/lXFciJjcP1KHsniB/7o/0pys126LlDLsi0fJ5wvAhMbItOb9w/1xmtRM2cSARmBTMgkWYt5nSilUw4qdTcPG0ukTPl5WmbbnAMUCETwpjsXOQB5dWdMqtZhEhp424KgafpaoRNFhF5aV1zTYXTKRxNFG4aczq1HCG4sBO6R7ExiD1DaYetc2i8DlELF53eQtQhmHizMqgSpnPG/llg96yieOh65e4ykqFzHgswHYDp3MQ8DKfS4t0HT/x6Ad15Nbtw1SoAqV9z7fsUcycXCsMnthWlLCjcvkJNDAwRaiMy9RMicsGuxGVlfveA7/3e722vv+Zrvgbf//3fj7e85S1YlgXzPN/mm0mSJEmSJEmSJMn/bdyV6BS8+tWvviA0fepTn8L73vc+/MiP/MgdjEBNaNCNjaT/AA8nladBuy3HhQBVaK2gtUKXit3/PsPu0WtYrzHqCSCiLoZQK71q7ibqv+2laBN0WrlXoASd1FxEk9p5J0BmE3TUxSuNnCJG1Fd5RztCjcBtuI4GG0t2ao4sAYStBI5kK7psXFfuoGnlWmIlbbRwm2OISDILsFfIjiAz2/gHWKi4iyUQm67EGlpZI9q6zJUVDipAo+ytKOo0OJ0I0FNA1sFZprDOcgwLB5+8vm0sV4vFCazbXqiQ4bSqBHhGFN9Ue5x7pz8185sUhTJZmRwBlcg7x9l5w5mmLkqJB4rXeTuXTe4UhvnFvvtrJd0KjhHgFPepHxfnBfprCiHzgqZE0KJtLrQcf357okw1XgPAM888szlmv99jv99fbeDb8LnPfQ4/9mM/ht//+39/Ck5JkiRJkiRJkiTJBa6c6fRCfO5zn8OHP/zhOzqWpAeFR65yiC6kChJtDidd3eUUpUPEoGkC73ag0xPg+gluPn6K86/y7nWw0jN7uBYQjqUQdArsh350Fgs3U6t+ipItF0Eii4gIFF3lPE+pd5gzQYlCGApRIixTQpZcvZobiVfLRWIXI0Y3U3PDjE6naVwDdYcN+YzFHVB79VwqctGNzFGFwWATHfv8HBRd80ofb5wLCaOf0cYkapvl12VYRwh5O3c6xV5dKCmj7dgzLN8JAJ0xeCFMzzN2zwK7G57RNGiDHKLZBOhk1yXynEqIRYWAiVD3hOU6YXnI94eoZ2NFNheFbmjCIoldI9IuoEXeFVU/ZhCb4pLbBIfMLCUPH6eWpdXWTOh/+TmvRLgChzK7V7ziFXjkkUfa44Mf/ODVxrwF73nPe3D9+nV81Vd9Ff7n//yf+Ff/6l+9KOMmSZIkSZIkSZIkX15c2en0Uz/1U7f9/H/8j/9xx2MpExQEUoEArZkXwV03TJ7jxKDC0GkCRJqTA9FLrAqwrNj/fwvmr2IrndoBlRVcTHxSHdxNk5rbZfb8piK9pE6om63IXC06KzALMIkJBHsvlbMp9Kehm1mbYnR3q/55dJ6DCVR138u+eKEmutmGHO2Xu2daaaCXs6maECJ7amuiFcCJQGfBWgqUGUKEcu6d7Ny9Q0Bbu2+/CSOzO6fcldUmdWht5JpLK75M1RxIosPeKECHMAP5+pujpzublOHd+Qg4+LFqTrVyIEzPK8pNBS+9Ex2JorigWBigla3EbiboBJxfB6bZShjVRal1D9QT9HB20Z511a6L7a94rSCFay3m7A6uuJabEs7BMdXu5+Fa6qA/brKXCJsOfHrVMPC4Z+I1zHX48MMPt0Nu5XJ6//vfjw984AO3Hf6jH/0onnjiCQDAu971LnzXd30XPvnJT+IDH/gAvv3bvx3/+l//6+5KTJIkSZIkSZIkSRLchej0lre8xfKDbhNWfKc/PkkUxNoqqtC62PnYoj3HqYp3srNf8MQEzDNovwOd7FFfcoKbj+9x9lKyjmRqYlPkf+vgFFJ3KGnxE0dlkITiFe4h36HJBafWgc4/G7dAhvfH9ZP6nxS1XyasrJG3RH2e47YNHrQotaPRmUSDKwyEOpmI1fKndjB31rllR3El6+QnRyLJ6GSKTKRwUxW0EHASAoRbflIrKYt5ios24XxykSbEnnCDUUEXbtq2kG+Vb8Dka1wY5SZjukGYbyh2N3vYum9tz5BiwnpCkBN3ZwlaZz1zoMG61Z0A63U15xVszuQTtnuE0KxxcY1pmFs4s7SXFvYLhX4v++Vu3Q+1a2wSB8UfhJb9FLO5qnxzWXndww8/vBGdbsU73/lOvPWtb73tMa961ava60cffRSPPvooXvva1+J3/s7fiVe84hX4hV/4BXzjN37jFWedJEmSJEmSJEmSfDlzZdHp8ccfx9//+38fb3nLWy79/Jd/+Zfxhje84Y7GUqYmOHSxRttzczqVYnVSlUBcTPCK74lCVUAimJ9Zsf/CjAMDdYZ3IzPtqmUkFXfwzO5gGsqiQAoINacVigkumBQ8KagMao0AKmQZR5FzdKzD+XLU3VOoBBxcdHJxqM7aTD/iHeYikHvsute0jQgEd8dTC++uPgYDugK4SV5yJtBTwiomaxSYo4qlfx86TJ3C1OSuJLDlbU0KdecUDtzLv9yhQ6s5jFDb13rm1GpSCouFimPMUgqLWwF0pzbWOYEXBh+sS105V5SbgnKmlu0k6g4lBVcFCVAnwm6asJ4wMNn+1gnd9YUeNE7iTiJyxxNrE9DUVaz2f45j/d7wvWn71vbLRcA6iGJxO0fOFVmnPZosV2p0P4W7ClB35d1a1L0UF22Hyd8xISLdDSE+n5+f39X3kyRJkiRJkiRJki9frpzp9IY3vAH/8T/+x1t+/kIuqM2xnunUjB+D04nUXU4i3ekUTg4ioDBonkD7GTjdY33oBGf/z4TlOkEmr2EaXEFjZk9z3oyfE4a8IgwZSgoqAiraopnC6aPxxchqitrAoTMZUXQ16y6ndh53KUXWT+vg17/eopW2WVMY9sx1n509wJ6ztFPPT2LQwuDVus1xCCe4ZG+a02fcLwVNOjiYqLt7OK4j3AnlA7a5+jpbVhT187QJ9L22zngEqjZfXgnljDDdBGZ3OTUTkvrrKDHcMQ4PsTmdYl7D/ujU90jmo2sU/xtztGj8/Og/xZDJNO7B9tq193V7juaoou36t/O5otfpkkynF5tf/MVfxN/7e38Pv/zLv4xPfvKT+MhHPoI/82f+DF7zmtekyylJkiRJkiRJkiS5wJWdTu9617tw48aNW37+tV/7tfjIRz5yR2MpE6Dq+TXafpgruXDCDLC408nFp8LtR7W6CqSqULLMn/mm2U/qXlGvWRlV6xSmAFgt7Jsv/jAPd0krhxMAKwHEUBYvjzLLyqbTmTt9LKuJoZERxW6gIg+aDkePD28leQqZTcBiAoipCRgYBYuY/+iqiZI+AOXgJWSz76Ha3tGswOmKKhMghKJ+nsh1GsYEo+UadT2NoaSgfUXZCbAH6nkBVgYKwFOFnjNwYzIX0uKurEJ+jW1fFbZWcocYvGOdNkHN3FQAAecEPhDKTVgG1cFcTVjEXUMWMk+rdrdR9cynHaA72jiQWtYR/FgBNJxiGNarLp75vag6CHRDmVx7Q/yLoTfWcHVhIxQq9X2+NLMruutFGL24++oqjONdNQ/qDjk9PcVP/uRP4n3vex9u3LiBxx9/HG9605vwz/7ZP3tRu+IlSZIkSZIkSZIkXx5cWXT6pm/6ptt+fv36dfzBP/gH72gsEu2/2d3hhPas7nKS7nZqnevC6TSD5hlybY/l4RnLw4w6U89uGh0tbtZRBlr69DE6elcwOID6PNsXoyYuXE7ir6OtWrh9RiEgjh/8ZQR3P3lW0lhWR77UJlIN026OGnUXzwzr3Bbt03ZqWVUEYC0t14kqbdw3TfSJjnhDp7xWeuYd27hYCSDEbEk8VagSUAv4YN34Nnas0E2Oxuwn7uduWU+VwYdwOgG8KKZzoCymPzYTkmjbC2VC3VuAPGba3lMupulsLqcoY9tcfjp66OZKX7hVutOpL6OVRB6PebTXWoY9v2R/hkt9JS7LdHqx+fqv/3r87M/+7D0ZO0mSJEmSJEmSJPny48qi071CXWGhC04nr7uKsjEapAAiKHML1+ZVwSsgxZ1Iuv3xrhjf9Iwm3hwAKJnzSgnEXS3QxaOem4LgWT8LgRYTXKgSqpekgXWYqvZw79b9jICDj+nCi0ekx3JbpdQFR1LkPnmGkK5mABM2p5RW2wPsYflJuxUqBVW9TR1RM3q1KKDRHRNiSQUYbNlVUAgpeBbovELPJ+izE7CaK4nPCeVgaxNfSwh2LU8LaI6qgM8JdMbmqPIAcC0K2ZnLqRyAciagalevLGJipZhrSibCeso4f4QhO4AWRTkAdQdgZ13sFJ7nNDiOhLUHlrc9tnW2+SlcSBv2v7pLLASw+O7gegMG4cgFJkWIeOOHjtj9EVlQ3XF1BcayunskOiVJkiRJkiRJkiTJVbhyptOLySb7KdSP9qy9W52ayLCBGVQKwIR6MmHdk4WHw0u6xuygcKAMJU/dJjMOOvzQb+FKg+KzqXODO3NgAeHhdopzACagNOFrqItT8XTzOCd1UcO/IBjeOtq3NqUYjhQSIechXERmFQCICVFarZRRRW/tpInpxHMs1QUTbcKciXMkXXDTodxv3KlWYkch6AwrU/QsqCEbSlcFDgCfK2jx7R/HV58fu/C0d7NZvF/INCDt90MIPuO2b+bZ5ndrWnbTMBcFWrB7G8/3sF//pnVuBSrtOmR71hBIr8BvQaZTkiRJkiRJkiRJklyF++p02no5FC2suiV208bpZHYgV1WmqR0TpVZUzQ2lrCYwhAuFXFAo2oSHltvkpx6fKYQH1uZ20tpnS2zCjeUuRQaTB0yHXOCiDNhdLKUrFKqxHtqIJy0bKAQNdzVt5je8JrHyM15gGUrchQ5avLNeiC07tbFEQSu3zmrtQsQjHEEReF3USuwqQVeyDnWuetHK4HNYKVwF2POgYs9rse6BOlnHQIyljU13ItDi8/WgcZ3VNJlzgu4UVGCZWaMgFKLOxKh7huwIckqWqXQOyB7dsRX7yzYXjA63o1LAja6ohA3q3fgi98rvMY4Oguj71ssIAazDvkj/XhOZJlgpJPp8Lxb1vQDpdEqSJEmSJEmSJEkeMO57ed2oe1xwOt3KuTG0kVNmyMxYC0FYIT18aRuu3JwtLiLJ8fvDZADP/RFzY5ELYpFOTWGfwda0E64WHQZjE6JifI0mfNW+QC5TRTc7czlp7xA3LnvctBDUXLyAuD2KrKRsdFuZi4jc5WTjA2SH0PYE2p7tv7Y+6stSdyNROLlUIYLWgW+zp0eOoiamhcNpKCnblhCS7VG1p2hGKNyznZSsnLFOQJ3Uv9O3PqYSgpPdH8NFJox/bave/D6kfvV6+dvRfMfbMzK4wikGGca95F5p4tTIJY6xF+S3IEg8SZIkSZIkSZIkSa7CfRedNuHLwNbpxN5OjdntR/4aaE4hC1AGqBBQ2AUXex9C7nBCdxOFoyiCv8eJtPMriMxhU2YBkeWYm4qh4KJQFtTVBiOyZGqKAViAKRwr7qpRaqVpdm42YSlcV6ULFRQCwrEgg/7s07TlrADOANkT1lMXMhQmwkRodoSFFwIVMrdOCB/cH9bdD637HkZRRMi64vkEtAC08yUeCOzzjTwtE4a0hZE3lasJT9RcP2UhYAVkUsie7HLvCfUaIOeM1Wvlds8S6GYFCkF2DLnO0B2jrCaq8err8rmrv5YyOIp42MrB6aRH92IT/nw/dbwe7gZrzqVwVAE9wD4OVzO8tZLFwQ2lkXnVzomN0HWn/FYEiSdJkiRJkiRJkiTJVbjvohPQtJz+x5jpFH+HEBWvpX9BRaCreAncIGpUdHGgjY3uhjm2uTR3jn2oQ5I3s5erkTmXJCZdBFLhZX3+/QrrxsbhikLLO2qh3a5wmPBh64qyKnVbjHqw+lj+RoNAoTgSQqqCqpWokQJa0cUsL/9z/xI0FJLBkWQC0eBygraMpJY/VOGp3H09Np5CmDZh2JvxLxHObI2uw7GJPKoAVhPS7FxAddGIqj2zZ0vVKaK0FMK2jxEPFeNSaHykw7q2697eBMP+tpsSTVRUou296peyCVfH7qnYJ6CVPsKvgxB6qV/kg7X7H1cjy+uSJEmSJEmSJEmSB4z7m+nkwk24lexNc3qMJXRgBlGFMrvKYq6m+KFPBNDEwEytXImVIK4GqNtumhMJGGwu9oe2wdRcNgyUSVEmBbOiSjdGEdlnulMTRtSOx3rkdhpbxI32GvVOfCBvU4eNsGMGKep/D1sRw6vPA2EGU1gItx9vndrIhLgwJxHBuuP5SJEBVQAtap3eJrgjCnZ3lH5SAnsuFEDC5igT8hwj6o6qyIKaYs9agVlndALN7gZaABaCruZYmhab8/qwLb7cVOAZgU4MnQiyJ9RTRr1mWVNUbS2yB+p1bFxjuoN1D5w3l33zPAp64W5qeOkiCVoJYXTDoyGgXGnYMz+uZYSR7Wl058OsfeyxGx7oqolOSZIkSZIkSZLjvxD4AAAhrElEQVQkSfLAcV9FJzf0NP2HgObyoeMsJ6L+ax8AiZrbqQpwXlFurCjXZ6x7AJMLNgXbTmFeodc0kI2TRfuzJz6rO32qkJmuKnWxBzABjMXcRJ6bBPg5Dp6tRNrfH9dOXQjrs7ByQG6OLri4QRu307h/zUBUAV4VvJjwRoutt+ldCqhqPz6cTsNgOrpswhFGwzyqvUdCJrD535EnJJO91zq3Rcc6ivX6CdlXzdqUM1F3dsEcP+qupxZvxABmYN0TaDWHVGWyxoEYyucEkL1CZnM/Rdi7UjjXhut95HJSs6/dRvCxOcZ9G+WPIT41AS8Cxo8dTiFMNbfbcE213ycChYz35p0gw/4ed3pMkiRJkiRJkiRJkvvA/e9eF5rG4DbZOJ2GmjKKuiqFO50IYAaXAkwFugNkpp5HBPRcojE1exScmiAC6zDnx3JxN5Oy6QFrhEFp80WBeCtssc1dhaEi/l5YYvrp/ctWgjd2qitbyYPEnD4bwYnasv215VfpuL6Yh3LP91FY0Hf8dyRiKQNUTDShcEkBppy4iIIDe5c+d1RVAlfqGVSeVSSzQvZq7qIxG6qVObpAwvZaSc01tQI4WL4TL70rXD3xa+LuJ8xsLqdrjHodqA8R1ms2R2VFPVXIibo45oHn4dxi9HPHvdBC5WmjQx6XBtJKYCG75MNlBUzwUt8/wES/cKK1sciPY5jLqYW9k3/swmqBiXlXIcvrkiRJkiRJkiRJkgeM++90ai4R2jidABdcQrQpxTKe4psi9lhX0PMHTM/OmK7PKHvrZNeEkubYQS+D8yyh5moKPakF8KgLTeTOFIKuPg/PNFdVz2kKRcLGUM+SIi+P0zY2NiIPaAiQFoDYnDbKPq1WWqhA6WKZ+vE9GBwtC6gsCi3mdJLi8xzO0bKifONjuVHap7FPER4eezdcMVoJfEAvCRs+lygza5FPOqxTXUUbx7M10iRQIogSaCJAGLSYe0y9RE4KIDNwuEbgxfbJHEHWwU6KQmbbV5kVmMQMWDw40GIe7f/o13+4tTZepxClKnq3viixU/RQ8HB3tfpIu29oMI61PVUA6/acgAlm6oKosuJqDKLTlQOhkiRJkiRJkiRJkuTF5z5nOumgwYR7KBJtbvHDORxQpdhjnoDTGXpSUK+ZA0Zn+wHf3DWXCT/eqQ2Mjesn8nmsgxibGLOypVmzKQb22ThQq4MDVZ+9ELRaF7woq2priq/pcM7IDKJBcIqDQxgKF03rBOdnHoQ764pG3aHEfRxWmDNJqWlsCh+XCRSd62JJ4/cVoIVRbhYTmjxLikZhzbuxyU6he+2d4gjAZN0AQ+CC9jVGeRqKu4kqUM4J08GOl719zivAIGAmyAzU64z1YWC9DtTrvsOswIlAZwVWP0cIY+HGatdb2wRImteoHyvm5jKXE1BW69AX2lUr+ytonejifEWH63Z0m5g7zUVJqP0rDDGKYX+n0ylJkiRJkiRJkiT5Euf+Op2YLK9ItAdqA02MoBCYuCVhm7spQpVUgLUCNxdMX5iwOyXUXYEUE56aQyV+jxcvpYuucqPbKXQjd7YoCKoU7dG6MsKA1H56SKgP1MQfqtQCfVSpdyg7FsBg5w8XTASAh9vJ1m6ihAq8tM26tnllWoMidHy1QG6dvCMc7HWIJMJA8QAiijymbs5pIlQEsqP6J+FqWgS8cCul6zaeYYCxc2B08XNxito+q409mHNULcuIJqDOABdCWQA+t/nUAhyu298QgBbfY1Zoy9ayPSXyv8lPGucZRLgeiqUtQkvJXWptWmoinQJa1YLZ6+B0mhSyKR10IW4Up+K+Gjd5qOOLbPz2eVyXqyDDhchMpyRJkiRJkiRJkuQB4AHpXgf3DoVqQ9tOYoSusHDPcsJUgN0M7GfI6YT1oYLlmgtO7twBzAFEbALBmDFEg/gU2d3t13+ITS3w2YSjUtxUUnkjSJEQaCHwOth3CC0sm1g9EDzUjb62nmEFd3oB4ffq+xDjxb6ZTkdxEKN1n9PZnmky11OIH1xNxCEhsAeBE7wsrrmbaOsCiy56Qig3CfPBxJoQtBDP8K0KwarEWsk74Wnr4mbCXgh5vjQX+FhsD6cDoazdlWRaIbUt1QlYHyIsD6m5nPaw8sBJgVlARaERUNXyrrqzadxT0vF1d2CZgGSZULwAxV9TlDfu3IVV4lgbu9ThbKPYGIQjKqYVmmors4sLewXUla54nSRJkiRJkiRJkiT3mfvrdPLMJotFsg5jxK7+uMuJSgFqteBw1a2LQxVYK+h8wfRswf5/E9bdhAMRZDe4S2p3wESJXHtQHwqAO5eoO3E8KFtdOJCwM0lYWGz81s1NukZmQhaZEOJOKwDbcGm464dCbFMTHZowgxZ+rTBhQ1yU02KB5+Rd4wAXfWIZQkDVLoiIDekaiZWKrT7/2eank+UnMfu1YW1d2QBz+7CXmdUIClc7fzM+hWBSYB3h3EakU3f/WNu5vj51F5kSQYpiPbG946W7uEDmdiJSc3SdmeuJTgBpgqKCipi7DApai5VCjiV2ra6QWpYVeee6ZkiK+6F4fpTnZ7GHfisDtSjqpO1fES1WAlin7qxSjnWhb1CUMRJaNhZX2pYrLrgaWV6XJEmSJEmSJEmSPGDc90wndLMR4GlJ9uoSouSMyESo4k6n3Yx6bcbhKyas4XTy0QBAoyvdjNbBrOULxVwuczpVAq0mhllotwkIqJGYbcdRNXeO5TmZKEVefkZlEBx4OOfG7US9nA7mtiEXN1rZlbtumimKjvaIzX0ksz1irbEH5MJTcXGDq7l3Yu2mh1AzdZF0aS5ErenM3EcgP0dkTHm5mRR36YSTJ9Y82bEUZW6r760vzMr0bM1czYUVwlZUP8ZWlAUoAqwnhPUhQj31Lnmz3yCzosz2hbpGad1glwqhB0OQuoa3bEvb/xXgymBxzZLN4STXAOyGY9Z+Ycg1yeasGwZvuVmhrba1D+eW49m8AFlelyRJkiRJkiRJkjxg3PdMJ3M69UwdAK6CUHMSEbwV22h5CTdNrcD5gvkLhNNZIdOMgxLqjjYt7M11A/TwHnM9hdiklcwZFGVfBHO5eJaSVnM3KdDdTZEZ5d3jgOG5woUUBSbycdBDt8cSK3jpnbt94OVjFDlKXlYmxb9T7H0tAM3UtkUJ0Em7A0nMfRMOGlK0ecQ8+RwoZzYv2QGHEFIiKBwEUYXuFOdfIZhuMMrBHVztOnbhCeGeCjFHYGpYVStvJPV9I3eFMbBqE2fqTiCwrnUyeRmgfwUMrBMw3wzxCijnNm9hsgD1g0CYMO0raC+oawGYbd2xt36NdcyrkrizhnWFE20GVhUUIssLIzXRyXO7yDvRyU4hc7V/VSEqxnBRqhllkmG0q36vVHPWxR5ivexfzG1Ip1OSJEmSJEmSJEnygHH/M520VzwBGx2mZ+1EO/iwnhCbKFU812kqkP2Ew1dOWK4RZKbusnGHk+7MBYPJ9aoItW5nHR6DUEDiTqfovsaALiZaUD16SPM5ITKgEI6qoSuelcqNNqtxP6iJTLF+wuCaif06/j6Zo6u5nGCCE3v4eDuselldNbGkjJVmM5rgFF/QotDZBKNyYLC7rcIxBndNgUx8MlfXsP7Yg+b2IWBhc/aEGyiOczcX+yOyq+IYEusgR7DSPjkB6omJTmB3yc2KslOUoljXsJkRqOi27NHDuyNL6sJ+himK3XVVqbmcdIa5q6YQ2wgKF9WGksMmQIZribfuJdbIiKKWbd9uw6uiGESnu/h+kiRJkiRJkiRJkrzI3GenU3eTAHDhgTycmu23sygowsOl2VEMse51REB5Djj9TYJMOxwEWHdkjh9Wy0wKN4s7nBAh4xVe7sX9x7rn8GCvwN41iMhUqmgKmXppXQsb9xAp66bm5/bv2nx9jZHz7MHTAHrpVzisFoAXAq32Vp21u6RCjAk3k9prcXEoxmbY9/ncxCcZyuE4uvpVBQsgq2lyMhHWa4q6N9eUTn2uMlvWUjmHT8A/KoMrKxxg3jGPBNCVfF/6/Gk1sYVCrCpxPkVlE+V2B9vfGiWDbkSbzv3+IVgWVHTLKzBHlSj28wHXdoqbhxnn5zNUuYmNoTypumNO2e6DUazpAVUmKMVylWw/fQ+UATlRyKlCTwW0X6ykUtxJVRk455YNZhP3R1XQam44BV0Uq65COp2SJEmSJEmSJEmSB4z7KjpB0Ju2Ac1dAtX2w7s7n4Yf0hFqFG4nZuhuwvlXzFhOrQSqOZxavtHWrdTcLpEQrtTEpU3mk9fTEQ2ziU5rlVt3s+ZyGp07Y47T5kHbkrzm4PL3wtFTyVw0rLaOEJkGKwwBvXNdZE6puW9KOHTc1QNG71rnjieOfSbCuresonDxtDIx2Hhj1tQoFvZMLp/LZu39+HZMlPu1/aKel0W2l+VAKOcE8Y584SqKznAyAXU/dI8j2GJmYLev2E2KZWWs1SxZ4Woj9MgjChvV2M0uFjS4zJrzCsP3HJmsrE5nBWYBz/7VKKXzLoekF91UVmE5jovu7Lqq20kETc2U7F6XJEmSJEmSJEmS3H/ur9Op2C/rpr2Ql7IRgdjdKAhjEXc3RygIqqAqgCrKc4rrnwZ4PcHNryhYXgKsE5ngtALEBIkx5kjJJu9QB+tiFg6ocLmMyhcNopeLKQodSuK0ixdRKuUuFgs98u8O4djSxCKBzArsxPKaVkCkgD20uwlKg+Zl8wj30LYbGlVzOCksB4rYStV61pILT4v2jmlQ7J5Fc/QIu5BC8HwqG1/25kqKbngmRtkxUR5G8CV7+R1qF7eaKAfbP8DHOhBo6q6n9SGF7BTl3BxJ6m6u5dTEMmWF7NVD4uNZQKo4P5tAEEyTYrdbcK7AejZ15Sucaqpe+qYWch5ik4s+CvtbFjfakYtEK8AHd2ftFbIX4KSi7BeUSb3xIKFGnlV06RvvEYow9riHhj1U6llkd0o6nZIkSZIkSZIkSZIHDH7hQ+4d5JaTrbFj8INId0C1H9LNskLbRyHU6zsspwzdAbqnnq8zeSmad6CjpoD42UMIcHdOMzW1h/ZTE1pnO67h/nHxBeiiVdMW4r9wBLl7KdQZhjl9osMbAFQGLXYcQJBZmpsnHEeb9nXhLqLhGHfXcIRT+3FUze3EFcOcXFSZAdkRdCbLSdoYc5oS49fEx9cuoo172PZAMbh8aNjEows/NASMa8OendX2qV8KE+LC/dXC2QEqQJkUxUUbEYasUcc52odiPbHPw9vj3DRysfw6yuDSmoB6qsBOgUlQpu6IU2FzOVXerv/oPDS+juOOut3dESE6jeJTkiRJkiRJkiRJktxH7m95naNeDdT0BgoBB94lTUDhUtp8Ea0Uj1bF7vNnUNrjeZ0gzBAi0ErgA0GLop4oZCXoiTupVgJW8pBud7lE/k5UWBUF9hW0q+BwsXgwtA6KDYWZhcKto9YxDwBYoLOYKLKQj2/uHRNTfF3VnV2skOti54ngbhdAlBQSV41gogvQhC+s3YWk7IHbXlZXFnPo8ArwonZcHYa6CcxFocXC2Ov1LqBJteNtnR7a3brThVvK1x4bIf0y0SAgajGnUrizyEUwHBjE2rKk1pcoaFFwdJlTDw1XE8iasYzM7URk3QbrSripM9ivKU8KqdJK3cKORYC53iYACwGLKVs6WymmXRNrLKdk9xGR5zjtgfVUoScC2lVMu4rdvHrZJuEAxmFhy/Wa3FXlAlzbFKCJaVCyPC5/X64qHEnYpeJ1kiRJkiRJkiRJktxf7q/oNFSv3e7zeHnhuLDo+BFSCGvxHKDRAaO9bEzZfpzrUB7mio2V64VqEuMWAaa12YK0sgVjr/5dDxHXCKeGekB6L4fbiEabbKrhEYsMwaatXwdhYtit4++FgOSCWNurcCFF+ZYfF3nq4XYKwUiKP0J0OdYvIsOqDq4fOTpuFINia4d5hwCz+U7sZbid4rMhO769P7qixn0epqwaYiZ5SDgNZW7dGUbtC+gnaratOJgsGHw4iRS1PZpsgcQVRLYAhUKkmKjZ1qjtsxFtzr7tP4bj414IVYG6ehvPSZIkSZIkSZIkSXI/uc9OpxcoBYpOb0Sg1k9+YPxTAVoE802BPMfW1p6snEzmLpKsxKbLsIKqZ0hNCuwE0772U3sJHhdBYcW6Wje9utIgVqF3HHORSmd3ymxKpAZBYbLSN+jRRzLWW/l4Q+e4jShytIUkZIJSfHU8zp1XEVlEAhTR9noTVVWBcgCmm1Zmt0xqmVjjuSq845qX6NWu+0hxF5M7mcayuNaxj+BuId0IPnzwuZwT9ECQvWU6NbEOPpa7x3Qyd1N0CaQQIBXQyhBVEEmv5lvZ3Ezwaw7tAeQFwBrXAXbjTBVUFLrYBJQU4h33QJZ3pScC7BQ8CaaimIugRJA7Ac/d2PkejGrY8EBf23gdoADxFevrVLvD6begvO78/Bzf8A3fgI997GP4T//pP+F3/+7ffc/PmSRJkiRJkiRJknxpcV8znYI7+Yl8bIwBgAgab5aVUDHIfoBbiDd6mVdoPW7tUbjywpHz1H+0a7iMFKgCiLg7qvbxQjNTdzBpBB5dtqCYx4oWrr15jGKE3OoY2mpO47Hj9OPl4ChSceePbjWsNlV3DrXHOP4wrxCqooQvHnosqByJKL47/qybzyj2M1xjMdeKzfnbsM3lNIwv2zWOW6RDWHzbL+/iF6/DBWVrV7ue4vcSBAqBkkJJICyQIlZ62QbVvmkkds5RWJThemwYd0X7ua/odPqtznR697vfjZe97GX3/DxJkiRJkiRJkiTJly731ekUhpPbejoYnmtEvZLOMfcL+YNbyDYfCGUBZAWwuAuHAJ0IRYBVyUK7JxcOJgEXRSlqTiZ3VpE7hEQJIhNUCBC2Ejx3ELECVADyrGotg8spBCi1bKkuSNFm/U2UiHDwWwlX6O83l5BQdzbF947L3RigCZ5dZC4ajzLvWVRxTcS6w5WVICtBira58gqQizXxGLvStbD2CFOPiRY/IP7e7E2fM612bhbb86pkmUgA1IPWQSEW6jBOH5vauCYc2p/+gdqkKDK1FjWXG/d5kl9jVbF8KbX7Bgzo6lLQpKBJgSLgCeBiGWHMimu7A6CEs8PO996VrLgJh2ty6bUVeCe9W1z/WyFR5wjgHpfX/fRP/zR+5md+Bv/iX/wL/PRP//Q9PVeSJEmSJEmSJEnypct9FZ1GIwgNzy90fCM61yG0C3GHk5hAsrCJLcVK4tQdSxA0MSOcNkpAXRjiDhUpNjR71JCscEdNyBgu9oRDJubXBKSjCW9KAX0OpqDY+RXbkrzj714muAk8JejiyUKUUt9V8bXokKUNGsq63D0ksCqt5jSqwwmjLDAcT/XotKPxZxCdbAa6ud7He2IuIgvp3uxjfObPgIsyvn4Tc9BK+ZrwBXc+EVkGFxTKMlilhu/F2PHar09zu3G1PS3soeUAyIPLVVtGVbiUAAWjgotAVvbx4n65/HqOItRd+JzQrWbx+t7wmc98Bt/93d+Nf/kv/yWuXbt2z86TJEmSJEmSJEmSfOlzf51Ot3umpgD4D/JLrCGMLjwxAWxWGGttT2A1AwhLH4bYv+cPAgFSrOuZoHWQAwNUFDLk8WgLDg+xqHfZ6znZ1IOy6egR7wkG0QqAEBiwwOvIiNqIQYO9adATbIvI3UXYlODFR5hizuYWavlOR8KHumjDhcD+OSmBwzSzkHW9EwJX12HccKThZvI8J7iTqi1hPNfoAoPPmWHCoMJK3eKSqjWc0z0sw6lNtu8zDd3oNFroeZ2cSnGRkO1OJwVWBit5npdXoxXrLGgld77JPmma1R1pdrEI2t13bNlfzMA0KfZzxX4SVFf4hMn2A+SZYiGQ6lasi+sX1/3Y0ncHqIitH2hB4s8888zmmP1+j/1+f+Wx2zlU8ba3vQ1vf/vb8cQTT+ATn/jEXY+VJEmSJEmSJEmSfPnzQGQ6HXMVn8aoz0AVVAW0CnhV8EHBC4BVgRXQKLdb0fOVVgDnBDxPwE0CDoNIExlBw/NYDqaR/aSDuWQsl2tWqrGOTFuJWJu7O3luafMav37h7cgBGswuOnxOJpwpK4SBGt3pCiBREujnVviaI/Mo9qcOaxz3Y9BOdFzzWN6n26l3Q07shUK9E1ydFHVWm1vMp7m1tLXbU1HoCtChP3CAXbt1e/165JJfBxbrPMc6uJv8M5IuCLnLS1VBLKBS7cECrQqttk8iNp/I/Kou0s1cMU0riL1VoA7upeN7ZDPPi9f5jrgk0+kVr3gFHnnkkfb44Ac/eOlX3//+94OIbvv4pV/6JfzQD/0QnnnmGfzVv/pX72KCSZIkSZIkSZIkyf9t3N/udarmHFHd6C0b7YVocDsdvR/Phc3pVBi6Y3uOrCdYORaxGaFohmX3wAWKSuBzz/gpCpnDVWS2JIKLF0NJFsn4g3yYdHPxeN1a0VbqBWCb2xS5TnH8uPhNKd4w9jE8OI1iXjoYokpfihabKw8bTMO45lYiYIJlVBU7INxY5C4nz11vZXnhkAKbk6q5yEZn09GcQzxq6xpKzpSpj10A3Suw1+4EWgCu7IHmZMKQi2dC4q6lVjOHlvcUexXOqMnPOSloFzoNm4Mq5lWAaba8rxCx1qWY/cota0TAPCtO5opdEcysWMQSswQMKINc3eu3CjVhqZXwtetNHtJ+RbeTjBfFnj/1qU/h4YcfbofcyuX0zne+E29961tvO/yrXvUq/OAP/iB+4Rd+4cI4TzzxBL7t274NH/7wh6825yRJkiRJkiRJkuTLmvsrOqFXE4URBdRdQy/0s1uPn1VBq4AWAh8ALmyh2RHuvZA5YnaAchcylABaYOHYYhPQSkcTMDHEnDpeJsVq39XtPNof4WLZKGouuBR3FY2iwygw6XassW9d+yjUpSOXTHMuhaCkAKmizgD2MEHDHTkU34tSs3A6LSbSjYat5uoacqo31yCynLSPGft7LKRtnF0EaFEvffSSObWxFLrdwwpgVdBKbe5ELlCp5zcVbdndMUON/KnWRY6GPfODVz+fqjudFFIBYhNFpRL0QMC5q1xFoaeWE1aFsAphEdv0mVfM04Jz4hZ0Pxq8WoI77LztOkdW1oIvmocffngjOt2KRx99FI8++ugLHvd3/+7fxQ/+4A+2v5966in8kT/yR/DP//k/xzd8wzd8UXNNkiRJkiRJkiRJvvy476JTq26KP1wAaBqF6uUZN2OWU2F36TC0MLSQ/V3IHDuFQDOgO0D3AGbYyj3Dp5wzSMiFDzV3Sh1OpdvTtomH6KNH70Fbp7VLLVzcRZVeOueD8TAu0PKfLmzacAwJmWAWYg674DTmQymaw4vgLqHRQeXCTWQzhROIIiPKc5z4qGNdOILaI1xPgwNqs3b43Ajb/Wn7SNi4o2btd+mBUBZGOYQbyNfsZYM6ix3P5m7biDsuMlE19xOFcOiuIhqvTbFz0gSUWS1MvjLq+Q44Y9DCJlruCdNesd8L5kkwsR+rhEVmLMtsNYyRuxWiF3wu8Hsr1MHqHQKVLND+KrT6xnj94vPKV75y8/dLXvISAMBrXvMavPzlL78n50ySJEmSJEmSJEm+dLm/ohNZGZI5nbYldqOOc8zG6QOYM0lhJUaioKqgVYHFxJ8oF6OJQDuY6ORagO4E60sU8B/5OnlZHANUGXD3U+tGP5aO0dF84gUDoDEz6Ah2p407W0yEcMUoxK4myuiFEG0MVWNKAIdK4wJLOIs0RCyfd3SGU5grqCzurJHhfe9aR4etHjRmM23WG++PH2qfn81L+9+D0DRKI6E3oujG6UZC0AVevidYr1fU67FnBFrNaqazQvcC2ln9H4E8d2o8IbWB7X7zvyuGa2rOKl0IyoS6MKb9ApoUK1crz6vmhtLVFq6iUCGszM1JxbyilBWVuQlOdp+T3WuLC08LgRYFV2oiWriuroKKtsB5vYfd65IkSZIkSZIkSZLkTrn/mU5iP+Cb0wnozifgBVxO6G4n9iyn2R8TATMBO4LOZC6nE3tgjjFMMVHPMYqyt9adTMNFFGKF9qZ6Ry4dT3+CkAKs3Wm0UW6wcTdRq4Oz+dBQRqew8O+WPXSswvl7JMMb1OelUVIYeJ4UC1DWoStdzAnYOpYmbDKhSIDiokhbUqyR7Xj17nVt3seOptHt1Ke8Wc/xfql/sNmL4sLKSsDsa90JeBKQXyMrFewnJgt96mJf2+m+392VZW4nKsC8q5gmwc2bO8jZjHIwBUl3iul6xf5kxW4WTEXAZLOtWnB22GNddrYJTKCwy3lAOam5rnhl8GIdFmP9cjfx/i01PV7fe171qlelwJUkSZIkSZIkSZLckvvvdCKXa0J4CidPlEYBXZTC6I6xA0fnTct0YgsOpyJeYse20oVA57DSu90gMkxq363kDhMXJipAqzuBomTNP25z8TIyhbSQbOXulupTPRLPSM3lpepiiLllqHqmEcGEMlYrGStHwlwMPQE6MWjtriwA3WUVj2LizAGAKmMiQjm3crlNKDjQOvsRwcQk6m9HSZhds/6AAMRDZZfbn0ZHVjvRIDBdkCx8U2N8ErtuWBS6B+iaYDpZQaSo1UKn5l3Fyf4AZsUqBWtlrJWgWqBa+gSiAu3IlQXAyvHY95vd7XRgHDBjnQvqSgAJZCLb2yJQEhAUzBWFBAwFkd9L5IFdYotqeloFePXw+oXAq9rz4lMcxborkE6nJEmSJEmSJEmS5EHjvohO8aN4Xc9AJJ5r06wtWyXiWHCKjB53IymbiAIhCBMqCkQIVRmVGBWEFYSFgFWBqgJZrAxPycvoGMBK5oyJcGohK59aCRLunbET3bFg4h3ZlMUEoilKzo7tPf7sOUwq1IQiWqMkDJBJIVCo179RRYt92uxlJWBhKzOrg1PK17YRvgTgmwzcIOgNQNbteEqwtWIwBQ0B3GWFiXLix06D8CT2EM9D0oru+IptuFW5YbvutA1lVys/AwDdKWS3YtYFtFZIZchaUKYVJ3TAXCsOh4JaGbUW1IUhS4FWBlY2V9TqJXlRAjhcG23XT02ErCb0qVTIOaALAzcVWhfoTkFYMesBu/Uc5WyFkLmsVgDPH05w4xnFemMFdLVyPwZ0IeCMgTMvr6t2j/HB9q7Ovu8rIOuZzesOBaRVz5vDaX0xUsiTJEmSJEmSJEmS5IvkvohOzz77LADg3/3y37ofp0+SLxmeffZZPPLII7f8fLfb4bHHHsO/e/r/3bz/2GOPYbfb3evpJUmSJEmSJEmSJMktIb0PtTgigqeeegoPPfSQlTUlSbJBVfHss8/iZS97GZhvH/J0dnaGw+GweW+32+Hk5OReTjFJkiRJkiRJkiRJbst9EZ2SJEmSJEmSJEmSJEmSL2/upk9WkiRJkiRJkiRJkiRJktyWFJ2SJEmSJEmSJEmSJEmSF50UnZIkSZIkSZIkSZIkSZIXnRSdkiRJkiRJkiRJkiRJkhedFJ2SJEmSJEmSJEmSJEmSF50UnZIkSZIkSZIkSZIkSZIXnRSdkiRJkiRJkiRJkiRJkhed/x+8+ajjk42SRQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.task(task, task_loader)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## TaskLoader tour\n", + "\n", + "Now that we've got the basics of the `TaskLoader` init and call signatures,\n", + "let's see some concrete examples of to generate `Task` objects for\n", + "spatial interpolation, forecasting, downscaling, and gap-filling." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Spatial interpolation\n", + "\n", + "Spatial interpolation tasks can be generated either from:\n", + "- gridded `xarray` data, by randomly sampling points from the grid, or\n", + "- pointwise `pandas` data, by randomly splitting the data into context and target sets." + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Interpolating gridded `xarray` data" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "##### Randomly sampling a `float` fraction of points" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:05.418324630Z", + "start_time": "2023-11-02T13:41:05.417913158Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-28 00:00:00\n", + "ops: []\n", + "X_c: [(2, 934)]\n", + "Y_c: [(1, 934)]\n", + "X_t: [((1, 141), (1, 221))]\n", + "Y_t: [(1, 141, 221)]\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(context=era5_ds[\"2m_temperature\"], target=era5_ds[\"2m_temperature\"])\n", + "task = task_loader(\"2016-06-28\", context_sampling=0.03, target_sampling=\"all\")\n", + "print(task)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:05.626191039Z", + "start_time": "2023-11-02T13:41:05.418106930Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAEhCAYAAABiJJTkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wcxfnGv7NXJFnFvffeK9jYprhg0zG9hd47oSWEEiAkvxBCCCUhJKGXQOi9mW5jG9yNe++9ybYsS6fbnd8fu7M3u7d3upNlbMg9n8/p7nan72rnued95x0hpZTkkEMOOeSQQw455JAWxv5uQA455JBDDjnkkMNPATnSlEMOOeSQQw455JABcqQphxxyyCGHHHLIIQPkSFMOOeSQQw455JBDBsiRphxyyCGHHHLIIYcMkCNNOeSQQw455JBDDhkgR5pyyCGHHHLIIYccMkCONOWQQw455JBDDjlkgBxpyiGHHHLIIYcccsgAOdKUQw455JBDDjnkkAFypOlHwIYNG7j++uvp0KEDeXl5tG7dmhNPPJEvvviiVusZPnw4N954Y62WuS/L1fH1118jhKC0tLTatLNnz2bYsGEUFBTQsmVL7rvvPnK7AeWQQ80ghEj7uuiii/Zb29q1a8cjjzyyT+t47rnnqFevXkZpv/nmGw466CDy8/Pp0KED//znP/dp23I48BDe3w34uWPFihUceuih1KtXjz//+c/06dOHqqoqPv30U6699loWLFiwv5v4k8LOnTsZPXo0I0aMYMqUKSxatIiLLrqIwsJCbrnllv3dvBxy+Mlh/fr17udXX32Vu+++m4ULF7rHCgoKsiovFosRjUZrrX0HCpYvX85xxx3H5ZdfzksvvcSECRO45ppraNy4Maeddtr+bl4OPxZkDvsUxx57rGzZsqUsKytLOrd9+3b388qVK+WYMWNkYWGhLC4ulmeccYbcsGGDe/6ee+6Rffv2lS+88IJs27atLCkpkWeddZbcuXOnlFLKCy+8UAKe1/Lly6WUUs6dO1cee+yxsrCwUDZp0kSed955cvPmzVJKKb/66isZiUTkuHHj3Lr+8pe/yIYNG8p169alLdePxx9/XHbq1Enm5eXJJk2ayNNOO809Z1mWfOCBB2T79u1lfn6+7NOnj3z99dellFIuX748qY4LL7wwsI5//OMfsm7durKiosI9dv/998sWLVpIy7JSX4gccsihWjz77LOybt267vctW7bIs88+W7Zs2VIWFBTIXr16yZdfftmTZ9iwYfLaa6+VN910k2zYsKE84ogjpJRSvvvuu7JTp04yPz9fDh8+XD733HMS8Dz3JkyYIA8//HCZn58vW7VqJa+//nr3WTls2LCk50Iq3HPPPbJ169YyGo3K5s2by+uvv949V1lZKX/1q1/JFi1ayDp16shBgwbJr776SkppP//8ddxzzz2Bdfz617+W3bp18xy78sor5eDBg6sb1hx+RsiRpn2IrVu3SiGE/OMf/5g2nWVZsn///vKwww6TU6dOld99950cMGCAHDZsmJvmnnvukUVFRfLUU0+Vs2fPluPGjZPNmjWTd9xxh5RSytLSUjlkyBB5+eWXy/Xr18v169fLeDwu161bJxs1aiRvv/12OX/+fDl9+nQ5evRoOWLECLfsX/3qV7Jt27aytLRUzpw5U+bl5cm33norbbl+TJkyRYZCIfnyyy/LFStWyOnTp8tHH33UPX/HHXfIbt26yU8++UQuXbpUPvvsszIvL09+/fXXMh6PyzfffFMCcuHChXL9+vWytLQ0cKzOP/98OWbMGM+x6dOnS0AuW7Ys/QXJIYcc0sJPmtasWSMffPBBOWPGDLl06VL52GOPyVAoJL/77js3zbBhw2RRUZH81a9+JRcsWCDnz58vly9fLiORiLz11lvlggUL5CuvvCJbtmzpIU0//PCDLCoqkg8//LBctGiRnDBhguzfv7+86KKLpJT287NVq1byvvvuc589QXj99ddlSUmJ/Oijj+TKlSvl999/L//973+753/xi1/IoUOHynHjxsklS5bIBx98UObl5clFixbJyspK+cgjj8iSkhK3jl27dgXWc/jhh8sbbrjBc+ytt96S4XBYxmKxmgx3Dj9B5EjTPsT3338vAZeApMLYsWNlKBSSq1atco/NnTtXAnLy5MlSSps01alTx1WWpLTJziGHHOJ+HzZsmPzlL3/pKfu3v/2tPOqoozzHVq9e7RIUKe1fYv3795dnnnmm7Nmzp7zssss86YPK9ePNN9+UJSUlnvYplJWVyfz8fDlx4kTP8UsvvVSec845UsrELz79V2gQRo8eLS+//HLPsbVr10ogqfwccsghO/hJUxCOO+44ecstt7jfhw0bJvv16+dJc9ttt8levXp5jt15552e//Hzzz9fXnHFFZ4048ePl4ZhyD179kgppWzbtq18+OGH07bnoYcekl26dAkkLkuWLJFCCLl27VrP8SOPPFLefvvtUsrM+iyllJ07d5b/93//5zk2YcIECch169ZVmz+HnwdyPk37ENJxThZCpE03f/58WrduTevWrd1jPXr0oF69esyfP5+BAwcCtlNkcXGxm6Z58+Zs2rQpbdnTpk3jq6++oqioKOnc0qVL6dKlC9FolJdeeok+ffrQtm3bGjlejh49mrZt29KhQweOOeYYjjnmGE455RTq1KnDvHnzqKioYPTo0Z48sViM/v37Z12XfzwzHecccsghO5imyZ/+9CdeffVV1q5dS2VlJZWVlRQWFnrSHXzwwZ7vCxcudJ9bCoMGDfJ8nzZtGkuWLOE///mPe0xKiWVZLF++nO7du2fUxjPOOINHHnnEffYcd9xxnHjiiYTDYaZPn46Uki5dunjyVFZW0rBhw4zK15F79uSQI037EJ07d0YIwfz58zn55JNTppNSBv7T+Y9HIhHPeSEElmWlbYNlWZx44ok88MADSeeaN2/ufp44cSIA27ZtY9u2bUkPxepQXFzM9OnT+frrrxk7dix333039957L1OmTHHb+OGHH9KyZUtPvry8vKzqadasGRs2bPAcU8SxadOmWZWVQw45pMdDDz3Eww8/zCOPPELv3r0pLCzkxhtvJBaLedL5nxdBzzTpW+FqWRZXXnklN9xwQ1K9bdq0ybiNrVu3ZuHChXz22Wd8/vnnXHPNNTz44IN88803WJZFKBRi2rRphEIhT76gH5LpkOrZEw6Ha0TAcvhpIkea9iEaNGjA0UcfzeOPP84NN9yQ9GApLS2lXr169OjRg1WrVrF69WpXbZo3bx47duzI+NcWQDQaxTRNz7EBAwbw5ptv0q5dO8Lh4Mu9dOlSbrrpJp588klee+01LrjgAr744gsMw0hZbhDC4TCjRo1i1KhR3HPPPdSrV48vv/yS0aNHk5eXx6pVqxg2bFjKtgPV1jNkyBDuuOMOzwqdsWPH0qJFC9q1a1dtG3PIIYfMMX78eE466STOO+88wCY6ixcvrva51K1bNz766CPPsalTp3q+DxgwgLlz59KpU6eU5WT67CkoKGDMmDGMGTOGa6+9lm7dujF79mz69++PaZps2rSJww8/fK/qGDJkCO+//77n2NixYzn44IOTftDm8PNFLk7TPsY//vEPTNNk0KBBvPnmmyxevJj58+fz2GOPMWTIEABGjRpFnz59OPfcc5k+fTqTJ0/mggsuYNiwYUmydzq0a9eO77//nhUrVrBlyxYsy+Laa69l27ZtnHPOOUyePJlly5YxduxYLrnkEkzTxDRNzj//fI466iguvvhinn32WebMmcNDDz2Utlw/PvjgAx577DFmzpzJypUreeGFF7Asi65du1JcXMytt97KTTfdxPPPP8/SpUuZMWMGjz/+OM8//zwAbdu2RQjBBx98wObNmykrKwvs4y9+8Qvy8vK46KKLmDNnDm+//TZ//OMfufnmm3MSeQ451DI6derEZ599xsSJE5k/fz5XXnllktoShCuvvJIFCxZw2223sWjRIl577TWee+45IGHKuu2225g0aRLXXnstM2fOZPHixbz33ntcf/31bjnt2rVj3LhxrF27li1btgTW9dxzz/H0008zZ84cli1bxosvvkhBQQFt27alS5cunHvuuVxwwQW89dZbLF++nClTpvDAAw+4pK5du3aUlZXxxRdfsGXLFsrLywPrueqqq1i5ciU333wz8+fP55lnnuHpp5/m1ltvzWZIc/ipY795U/0PYd26dfLaa6+Vbdu2ldFoVLZs2VKOGTPGXfYqZeYhB3Q8/PDDsm3btu73hQsXysGDB8uCggJPaIBFixbJU045RdarV08WFBTIbt26yRtvvFFaliV/97vfyebNm8stW7a45bzzzjsyGo3KGTNmpC1Xx/jx4+WwYcNk/fr1ZUFBgezTp4989dVX3fOWZclHH31Udu3aVUYiEdm4cWN59NFHy2+++cZNc99998lmzZpJIUTKkANS2qtuDj/8cJmXlyebNWsm77333ly4gRxyqAX4naK3bt0qTzrpJFlUVCSbNGki77rrLnnBBRfIk046yU2TaqGICjmQl5cnhw8fLp944gkJuE7eUko5efJkOXr0aFlUVCQLCwtlnz59PM7WkyZNkn369JF5eXkpQw68/fbb8pBDDpElJSWysLBQDh48WH7++efu+VgsJu+++27Zrl07GYlEZLNmzeQpp5wif/jhBzfNVVddJRs2bJg25ICUUn799deyf//+MhqNynbt2sknnngizWjm8HOEkDIXSjmHHHLIIYd9i//7v//jn//8J6tXr97fTckhhxoj59OUQw455JBDreMf//gHAwcOpGHDhkyYMIEHH3yQ6667bn83K4cc9go50pRDDjnkkEOtY/HixfzhD39g27ZttGnThltuuYXbb799fzcrhxz2CjnzXA455JBDDjnkkEMGyK2eyyGHHHLIIYcccsgAOdKUQw455JBDDjnkkAFypCmHHHLIIYcccsghA+wXR3DLsli3bh3FxcW5gIQ55JAFpJTs2rWLFi1auBHbU6GioiJpu4sgRKNR8vPza6uJPznknkc55FAz7IvnERzYz6T9QprWrVvn2Zw2hxxyyA6rV6+mVatWKc9XVFTQvm0RGzZVvz1Es2bNWL58+QH7kNrXyD2Pcshh71CbzyM4sJ9J+4U0FRcXA/ZAl5SU/Ch1PnH3G3z++mT6DO3MPU9f7jlXuq2MGeMX0v+wLtRrWLxP6p/67WL+dMsr1G9UxCOvXkNhUfDN8Ne73+Tbz+YB8MKnt1JUUlCr7Xj1mXH895lvAfjn61ezYM5aHvnD+yDg0Wcvo037xntVfqyyitkzVtG5e3Mq9sR499XJdOvVkmeeHc+2bWXcftdJDB7aOW0ZU+et4v1xczlpeC8GdDvwJ7MJPyxj6dqtnDq8D0UF2W1AnC127txJ69at3f+hVIjFYmzYZLJ8WltKilP/Aty5y6L9QSuJxWIH5APqx4Aay2F1zyZs2NdPCGfMBBCkPvmPCeF9ARjCfvnPCcM9LlVaIZy6UtQjBNJTT5q2+SAzFc/culL3VaY4Hpgvg/o85Rm+49WVp+pXC8D968CFc0xKhOWMgwApBGaBQVVhiHiBgTRAhoT9LkCGcMdXmOolMUytSMN+WWHhHhRuEwRCJsqQInENpLDzqb56ro1I1G+F7HcZ9qYP7YJombdsMwKxEokMQd52yN8uCcecxljaMEoQcQsjLjHiIKS0xyYuEab2siyEJe2XaadBSju9KcE5j7SIWzG+XvmvWnsewYH/TNovpElJ4CUlJTUiTfGqOA9c8k/WLdvI7c9dQ6vOzavNs3HFDsJGHhuWlSbVee/FzzJ/2gq69mvLI+/cmHV7MsHI4w5i4KE9yCuIEI2mHvaLrz8erAj9BnWgRaumtd6Oth1aEg7lUacwj6bNGrNqaSnhUB4IKCoqrhUSO+KoxI7ft/y2DWvWbGPHI18RCuWzZvWuausYObgXIwf32ut2/BjYUlrGPc986TxII1x/xhE/Sr2ZmpEKi+xXKpi5gCPuWIZFlLCIOJOxSIxxJsQpFWkKIEoYQaRJlRHYQPdduoRJS5uK7AAyUybjaUfQeftP0u3iGYPMqlJpJXofEqekU1fSOelPq51Idx9Lp8yQcOoFmRciFDEQhiJL9rs6jwmGCUZcIkwwTIlwyrFCwiY3EqSl5RP6u1OXQ67c43jTqi5I7bg0wHDIklTkySmDPIg10uoCMEAIiRBgRaAqD8Ru3PYi7M82aQIZtxB7wIg5xMghTYapPlv2u2U5JMomSpiWfblNE4R93r0StfQ8ggP/mfSTDG65bPYqxr01GYAvXpnAhXefXm2emx/6BR+/PIkjTuifdM4whOd9X6G4bvWqUduOTbj3sfP2WRuOGtOfTt2aU79hESV16zDy2D4UlRRQUreAdh2b7JM6W7VqwI23HMPKFVs47cxB+6SO/YU6+VHqFhVQWraHlo3r7VVZe8orWblkE517tiQUqp01GhYSK82Mku7c/zYkUjqTgaNWuFCTojoW9FnlU+mlNrGrzxJ7NjMM7RwkERenvERIPSVt+EgbKbhDNn5a6UhboubM8qWATEe00hBVvyoDDhlwWiX9abAb6ypJIQMcNSmeJzCVSiSEreSoS+gQCcOUDmkSCMtOZjnp/GRUV7F0FUi1wfMuSKhqMuC7eve/fP3yNMFwxsIhcWYeWEIiVXMsO48I2fOcqJQQcs6FwJAk1DFnYBOj6hxy+iR0wpYlqnseqTQHMvYraSrftadGyka7nq0ZeFQf1i3bxLDTBmeUp1XHplz+25MDz93970uZPm4hA47omnVbfkqIxeJYlqRDl2buMSEEhxzWZZ/XfcKYAfu8jtrA90tXM2vVes46pA9161QvDdfJj/LGHy9iy47ddGzZaK/qvumCJ1mxeCNjzj6Ea24/Ya/KUrCwsKo5n4MGnSDU1Ck8iBT4VShngrL5lJ8ABZcn/OY8H6T/eG3w7nRjkO346GY34T2ukDjvK1sfRykTh9RwCmETI4e0CAApbVNcVGBGDWREOGYv4avfqVICcUkobisyhvMC6ZQNGAIZFhBOqFNBhEl/6YKZ4t9CWRR1cqW6o8xqEiydUPkhteGwbOJn5UNVPsScwqSyMlt2mlAFRHeAVSUgbJsthSkRlRLTlAhDEgoZiCoLlyma0rkcAoFlM0dpZm2NheqfRyrNgYz9Spou6fFLnpv9N5q0yc6PJpoX4Q9v31pr7SipX8jwk34ak3pNsXXzLq7+xT/ZsyfGX5+6hM7dqjdp/lwwffEaZi1dx2mH96GkMEGEtu0sJxI2KHbIUVlFJVc8/RZxy2LDjl3cffKRGZVft6iAukV773u2ecMOADauL93rshRMKTHTBP1Pd+5/DlKCJd1JW0r18BZeAuXOfPiUJceMoa8iUiqBYdkTmzAcVcNRmBLMScvjm9T9bXTLFYmydKQhM0FXu1b09SB/omrqBZ/qlCJ9KnVLDYEU9tBaEQMZsf2MDAtCMcdHJy4JWSbEBFZEYEZsguUW7rIZECZg2WQCHJXKebeUr5FI1O0lgMoehlcx1FlTUAfNhMpjGYn+KNMcEojbaVz/Jl3FEhp58jM05dPkcCCAeD7IBvYxwyFc4QoIl9svWQkhIZCGgagCQzoOYcK5zw2BCAlbbcuS31T3PFJpDmTs1zhNe3ZWsGbxhpTnLcti0bRl7N5RnnXZ8ao4P/UdYqqq4iyau5aqqvhel7Vi2SZ2lJYTq4zz/uuTa6F1NnburmDtptJaK6+2saeyiqsfeYu/vT2Bv73zrXt85pK1HPWbf3Ps7U+xbutOAKLhEPULbfLTvN6+WRCQDvf/6yLOv2YkN9w1ptbKVHJ4ulcODgJVHBGsOAlfevVShMlVlXQCpMsOzgdDOIqJVkaQCpNkigsoS8/vf7K7/lBOG53PIslJ3ffyQWrlBSJIRXImWvQJP8mfS38lFBuhl+frp630CGTYgLwQVh2DeHEIs44BjulNYPPVcJXtl6TUGUM6L8t+CUf9UcfcaxIykBFbpZKOWiXDDukyvG0WCK+Pvmp60pgkXkJCyLTrRIAIYatYEZB5uGY3QxGr5CLcl6HVZx8TGFJgWM5LAiGwCgRVJYJ4XYNYPYOqugZmvgEhw74fXFOm99537lSE40MmavDoyOR5dKA/k/ar0nT+PWfQb0RPwJaoV85bQ4uOTYnmRwF48b43+c8f36ZZu8Y8O//hjP08xr48gUeuf44BI3vy+9d+WXOZfT/j/l+/xsQv5zN4eDfuffTcvSqr38HtqVuvDjtKy/lu3KJaad/O3RWcdusz7Nxdwf9dezyjDtl35k0pJa99OoPVG7fTsmk9jhjQkZZN6lWbLxw2qFeUz+bS3TTViNCSdVuxLEl5ZRVrt+ygRcMSouEw79x0AWu37aBHy/T+XUu3bOOF72cwulsnDuvYtkZ9Mi2LZz+fSiwe5/KjDqFLz5Z06dmyRmWlgoXEzPk0ZQYpE8qN8M90GvyH9R9nlhVMKJTaZILHMVwmfr27BMPEmQFT1O9fLaYUAPUOTnmJMpKusiD4+D64HaT/c5DyQvAxT3N8fmVWSGBFDOL5Aitsv2QYMKAyJDDyDHvlm7RVFqGkGNP+LOLSOefVtQS4DtmWsP2XlLrkkgUZ0DZHfHRPKBZj4DUbOreWpTt6C+y2K6dvpxwpbAIlfINoK2KOsOXk0/2fhJ7WwjX3qfOGCaLKbocUUFUAZkRg1A0hLEl4D0TLLCI7LUIRAyNu2SvvqkyISVthktj3ahao7nmk0hzI2K+kKZIXcQNiPXnbf3j9offpcnAHHv/+fgA2rtwMwLYNpZhxM2PS9P3Hs7AsybQv51JVGSeaHwlMN+PbhcwYv5AxFx1Bo+b19r5DtYx1q7Y571v3uqxQyOC084bw/BNfMer4vntdHkDprj3s3F0BwIp122qlzFSYt2wDD7/0tfvQfX3sTN7666XV5ouEQrx29wWs3lRKz3aJ1YgnDunB5tIyiuvkc3CXRHyRenXyqZeBL9PvP/6KSctX8d4P85lx+3UZ9WHrrnIueew1KqviPHX9GSxdv5W/fTgBgNaN63HiwB4ZlZMNco7gWcCjrmSgMBHwOVCl8alH+EiSpvhISCI8fkdsBY8Pk8Btr6soBSk0Qe12C/NVkAkCiY9ITuPpT0CaoPI8JlHlmOx8NQSEDWS+gcyz1RFC2C9VjlotJ7HNrsqhWzpO3so52jWhqvHDUcWE+y5DuERWXwXnv7Tqs7KwqpWA7nEnjQRvex2FyVXj/GY4vQAnDAIkiJa/frdNyjVJkSlFoOK2qiZVGULYJCwKokpgWBahmOMgrsp0x9GySWcNLDk5R/C9xIwvf+D8288EYOW8NQCsXrAOKSVCCC5/4FxadGpG32E9iOYFEx8/zLjJyLMGU1UV55Cj+wYSplhFFQ/+8gUmfDwbKSUbV2/j9n9cVGv9qi3c8eCZfPnRDww6vAtbN++iYePMTEaWJQNXAp514WGcecGhtaa8tWlWn/uuOpaVG7ZzzjEH7XV5U2auYNOWXRw9oidhH0Fu1qiEksJ8dpTbJK0gBREOQt3CfOq2b+Y5lhcJc/WYoWnzWZbkozkLKc7PY1iX9uyqqOQ3b36ClNC9aSMmLV9FrxaZh4WYuWwdKzZtB2DyolUc1LEVBdEwcVPSqfneOZGnQs6nKQu4MkDQ8RTwr5pzfZV8aXS7DY7ipBMnqREpi2DHCR+J0J2i7dlZV7ycdy32kacdKnVQPTLxLoKOQ9oxkf7zQsuqSyApCnHT+hzkpXbSXt1m2uvT47baZEQE0hlXibPSLUyCGFkQqrIVFptDOPGbUMMjbXOfEybAv+Tfjc2kwggoUiMTdUjp66IFwpGJpBDupUY4So9jMsMC4nZdqq3ufaCTJ+z02iVK1G95P3uIkh+Gc+tIMGK496YUYEZhT0NBrCiEYYbAgnCFJG+7SWRXiPAeA6Pcjuwtzezmkp+DT9N+JU0X3HuW+/n6v1/C+//8jMHHD3An9fpN6mIYBvee/lcuvPcMxlw1utoy/3DBP5j0wXSOPHsIx188LDDN7O+X8O2Hs+wvQtCmc+3HQ6oNtOnQhGNOOYirTv87sco4f37qYnoNaJc2z1svT+LJRz/j6DH9ufHOE5PO17ap8uih3WulnJVrtnLzva8DUBmr4tTjvI75DesW8s6jl7GjbA9LV2+ld6d978j+0ZyF/OqNj8GCcwf2pX2TBny5YBkAf+p1NF/98lKaFFcTdETDkG5tOap/F2JVcY7s05m6hfmM/d3lSGkTu30B9exNdz4HhQB1KZ0qQsA5P3nyk5sk1SmwGbhyRqq0aVQjlz45BElfcSf9/QkqX2uqPSlLT1qhykrXfp3fCV9f/H5bAVV7xtFlCImF/m6ZBkh3KZpz0pSJ66b+AZxgjcSlG3tJaA7ftp+XPeyWS5yEG6JAOv31kj9vJyQJNUydFu4Y2gqXu2TfIXa6SQ39e6rr7hAql/9KkMony0qcVz5aHrNcAIRTpk5IESAcMmSpdsQl0pRYwub7UkCoBiF6qnsekcH5/Y39Spo69G7rfm7WrgmX/ynZb+edv3/Crm1lvPfE2IxI04q5qwFYPmdNyjRd+7WlY69W7Nq2m+v+dCYHj6h9s0htYdP6Uir2VAGwatmWaknT12PnYlmSr8fOCSRNByryomHCYYN43KI4BYGokx/l7W9m8/yHk7lszGDOHNV/n7apMM/2rTPi8MqkWRzcviXtG9VHSsmQDm1oUpI5YQKokxfhwYuO9xwrycAUuDeISUkszS+3dOf+1yBCIddEk1mGgLT+8AFJeTIoV02aOsFJZ1oLyJ7wDNbyO5N1ktnOD2Xu8cSFwhNd2q0jXVOCyFmatvsJU9qinQwiLm3LnIlLepQ/kozY5McmSPa7UemLhu0oTVaeREYFVkSpSyJBbNRYaoEqPR0X+geZdNzfD+mwUZfMOE7gyj8oKR6Vemm2PcPpj+6nlCDLiQF1yZNev16+c87QiJV7Wq3ey4PKfIOqkijR3RaRXWHytocxdlRCLLu1ZNU9j1SaAxkHfHDLi+47k3cf/5Rz7zglo/R3PHcNX742iaPOOyxlmqK6dfj7J7+urSZmBcuSvPLseHaXVXDBlSPIr8bM1Pugdlx923GU7dzDqDH9qi3/0utH8d9nxzO6lvyW0mH23DXc+8f36NKpKX+4+xSPz9mkSUuYNm05Z5wxiKZN67JhXSnLF29k4KGdCIdDSWU1a1KXFx67hNKd5fTultoZ+uVPp7F91x5e+WyGhzS9/dUP/OfjqVx04iGccHjPWunfiK4deOXys/nt62NZtmkbLevX5fkzz6yVsmuCRfPXMf6b2VnlySlN+xge52ThPaYiJuvmOjVBhiRpQwvo5eumNf2YDnXK9adKVoJcNUFXn6pB8oSf5mSqdJlA52f+QKDVlSu9Yo1LRKoshIEjjeBsAZJ4JVQmpwzLJjSW0LZUcdrkhhdw61DXxXtc4zVJcJMph3RdZUqlLvlVIkdNUrGepCSx1Ys6pvs4KUKlxDjha7Zv3YLHlKfq1cx+ZgjIF1BsYMkIUkQDGp0aOaXpR8Bxl47kuEtHBp776OkvmTr2By64+zTa9bT3KOvcvx2d+7fbJ22pKI9x71XPsWPbbu554kKatW6QdRkzpy7n+X99DUCLVg044bSDU6Yt3VYGwEnnZBbAE6DvQe3oe1C7rNtVE3z5zQK2bitj0uQyNmzcQcsW9QE7iObd97yFaVpsLy3ntl8dzzXn/Yvduyroc1A7uvVsybmXD0sijK1b1Ke1U0YqXHHyEF76ZBoXHe+NLP7Uu9+xeXsZT7/3XcakqSpu8tcPxhOLm9xy4hHUCfCb69e6Oc9efjp/+XAcnZs0dP3tgvDZtEU88d5EzhzWl7NH1q4KZlmSX1/3Ijt37MguH4J0YeisrD1/f8ZQS/H9CPrl6zG5kVpB8S2Tt+txZmDhS6e/jID8Wlq35iCncZVfr1NTmZLMZUGQeO9ztbIwVf+C4O9f0HGnruqKchNofVUO2zLshB1wCJdwwghIRZ6UuSpub4tiVCXMaPaqNcMOWBlxQhVEhGf/OY/qJ32NdRU09RZAhKV0k0tIXDM9ZIE+NsL3WT+mq0fS8dGK22THUP3BKVvFZtJUKKnXq5sEte9BRAsJwgCrjoEVFRgIDEIImV04nOqeRyrNgYwDnjSlQkV5JY9d97T9vxw2uOs/N+zzOufPWMms75YCMGHsHE67NPt9xlq3bURRcT6VFVV0ShNgcvmSjVx3/r8B+NsLl9Ohc7OUafcXTjy2L/MXrqNL52a00FYfhsMh2rRpyPLlm+ncqSmWlJhVtvb8w7QV/DBtBU2a1+XE0wdmXedJR/TmpCN6Jx0/79iDeeHDKZybhUP6uPnLeWn8DAB6t2nGyYOCydbYHxbzwfQFfMAC+rZtzoD2wUrY0x9NZsWG7Tzx/qRaJ01CQMNGRdmTJueHdbrzOTgwDDBCJHxptAmyJiaDVHksmVi6pJevO4BLvCwildKkySsJ9Uh512jZfe8ZNV/7nEoEqVVUU2DCfKcdkyBMiRWSrnO2EAnFROh5DTvwpSRBCCwjEa7ACkksITANe3zdzXXVOwFlKrKkxKNk65znuM3rEtfPNSeqFwGqmUnwBXDOK9OjIkcuIVPEx1HVhBoDAzsWk5+sqfqcl1KzhP9GkNhhHkLO/0sWqO55pNIcyDjgSVOssoolM1bQqX87zwq6vIIofYf35Idv5jHo6L03RUkpmTt1OQ2alNCibfBKpu4D2nLwEV0p3VrGYcckT9zVlf/sP7/is49mMfrEvlxw2XAKi/JSpl+7aitxh2isXbXtgCJNeypi3POX9ynbXckf7jmVRg28vj2GIXjiHxeybVsZzZrVA+CRZy9l2ndLeenJb4jF4rXen3OOHsA5R2cX1b1HqybULyygyjTp0zY1ge3SvBEhIciLhLnvhbHULcjn79ed4kYSVzh7ZD8ef2cCZ43oV5MupIUQgseeuYw5s5Yy+ND7M85nVvPLrmabIfxMoas11ZnD9PTVlen3R9I37vWoS/o7yfkceLZSSVKUfMdUNkNzAhfJZbr9dOtTx9RELDxppF5Our77ywtMRzJD0wmlflypZc45YdhKEWGRiHvlNDxQwFGrFJ0qZMRRlqIGMux8VyqTgXYtVLsSeZO65RCnpK668QekQ8QSK/RwQxmQCEGgjgeWlSAyhukNzpnUKGW603zRTG1MdVLnhwg6pZUrDYEVhlCW8bGrex6pNAcyhNwPYbN37txJ3bp12bFjR7V7z91zxsN898F0Bh3Tj9+/fYvnnJSSqlg843AE6fDpa9/zyG2vEs0L8+y4u2jQJPs98dLh8Yc+5t3Xp7jfX/ngJho2Sh1CwDQt3nxpIgCnnTe01jZw3VvMnbuGhx76mKXrt2HlGfzysiM5/YTMyUr57kriVSYl9erUettKy/bw7Hvf06lVI048oldGeapMEyREAvysdGwrK+fD7+bz8JvjAHj4qjEM69txr9q7uyLGmk2ldGndOONVjZn+76h0E+c2p6g49b1TtstiaM/1Gf0v/lyhxmpUy6sIG1FnNlW2CSVJWN7vmUInReq7+oXui9VkExv1GW+eINKkOXVLld/w1uWaY8iANLnLqLyHgg+kIU3abCw939Mk1epJ2nRXJXRlFMfNxiE1ljLRRQwkduRvd8m9U7RwzHYJ0gdmyM5jOVuvWGGcMbSrUQRHraDTzWT6Zrz+VWpJkbIV8dRIk91m3HAGlkaYXLOjymv5y7HrM0x7kYqI4zHZuZ12j+mrDnH7mQ66g7lHsdLKNkyJVVnB9FfvqrXnERz4z6QDXmnatHILkAh0qUMIkUSYdm4tw7Is6jVOP9gfvDCeRTNXcf6tx9G4RX3KduwBbH+cyoqqpPSb15dSt0FhjQha2a4KD2EyDEGdOukd6EIhgzMvTO3Mvr/wyiuTWLliC2GgeYdGHDowO+JQp9Crrj37/ve8/sVMrjn9ME44rGYO3BWVVVSZJi99NJVXPp0OwIDurWnZuC4AW3bspl5RQVLsJ7CDX2aCBkV1OGZgV76auYTC/CgHd21do7YqmJbFL+57iTWbd3DliYO5YsyQvSovFSwpsAJnocT5HBy4k7L0qk2pfJf8/i2BZfoIU7rvSe0g6bz05Ce5LE+92rv/mKcuErYmAcE2poADAf0OJElpFK0gk1tSHm2cVWwhN+ikIpjOXnKJFWkyofxIiXCdfUiQybDtu2T7RAlP7CW3XF1yEQmyZAkfKVO3DQlhKWk1mjv+iXrcMo3kzy4JU2VpxEiooJXaOKphSRpSIWxfTHB8tUTaMASJcfeSJ5czqvr9uw1ngOqeRyrNgYwDnjTd+Z/r+Pq1SQw7o/pJZdXCdVx76N1YpsWjX99Dp75tA9Nt3bCDx++wYwLlF0S58r7T2LO7goOHdWPMRYfTvE1DT/qPX5vMY799i+ZtGvCvD28mEs1u2OoU5tGjdyvmz1nLsSf157xLjqCgjk0epJT8/S8fM3vGSm6640S692pVTWl7j1hlnNLS3TRpWpcp3y/li09nc/LpA+nWw+urI6VkyvdLadS4hA4d7W1FRo7syYzpKznssC7cfkfN9kj7+Nt5LFyxiQvHDOLFj6dSVl7Jf8dOrxFp2rpjN2f99nl274lxyfGHANC4XiH1i+095F75fDoP/fdrurVpwgt3nRsY9DNTNK5bxDO3nuU59sn381m4ahMXHjOIesWZb9obNy02bbcd/dds3lHjNlWHnHkuC4TC2Jt/aSqTdJww1Kyoq1A6edFXfHnOpSBI6e5DZ7JPgm4i0/JXq335y0uz+i7gi6+ggPKE56yX9GVSbNJ5Rd7wOLhISFry75rUEkdQzuDCc60SJEoKTeEJO5vwGjIRQTyFiqYIoaUIjqpTYgfVVMRJrTbzDEpyOS7ncExxUidpflKjESW0lXKAFiLCbofyr9Ivl0sUHZOdZ7jVF8894n25p3yhDrJ9evwczHMHPGlq1bk55915akZp1y3dSMxRiVYvXJeSNJU0KKRNl2asXryR3kM6MW3cAv7z6FgAjjihX1L6JXPXArBh9Tb27K7MmjQZhuDhf19MrDJOnm/F2PZtu3n/zakAfPj2tH1Omsy4xZUX/Js1q7dx/S3H8MIz49hRWs6qFVv5xzPebUk+eG86jz70CaGQwUuvXkvjJiWMHNmDkSNrHtdq8/YyfvfPT9zvV5w8hDe+mMWFJwxCSklFLM7HUxfQrXUTerSpPujo2s072FFmRwmvUxDlo0evoKggj/y8CCvWb+PFj6eAhEVrNhOLx8mP7r0pV2HT9l3c9eTHgP1svvHMYRnnzYuE+duNpzBt4RpOH97Hc27n7gpu+cs7xKri/OWWk2lcP7t4UDpMDMw0fgdZbh3184dfWfJNXG6aQKRQpFIl9RAP4Xtpx8AbIsDvT+TPk7JOJb3YDUgXCSnojJtepElUXb8V4QkiE/6s2qSsTFXueKi6pIS4KykBeDa3TThYC4SQbpRvKyywIgIzJLBcE5zw9M0lNaq5erM1/ho0FFJLFvTZb0bz16urVCrKuBoDP7fRVSlluksiRM5xWz3yE3xcx3EXenRxvZ2edkuyNVdX9zyy0xzYOOBJUzYYeHRfLv39mcSrTA4/JfXKrEg0zD8++w0V5ZUUFhewftVWCgrziFeZtO/WIin9udeNIpoXpnu/tpTUL6xx+z56dzprVm3jwiuGUVLX9ump36CQI4/pzQ8zVnLUjxBbqaIixto12wFYvGgD/Q9qx9dfzGPAwe2S0sarbGO6lBLL+cU3d/YaNm/eyRHDu9dItSkuzKNpw2I2bt1F13ZNOPawHpx91ABKy/Zw0m+fZdOOMipNk0g4xBcPXElxQWpneYDeHZtz/RmHs6V0Nycf0ZvCgoTZ87mPJrN5+24EcOcFo2uVMIEdmLJJvSI2lZbRuXXjrPMf3LV1oJlv2rzVzF68DoAJM5dx8og+SWkyhaxGDpcHuBT+oyJkOFG8nTGxnJ/3Sm3y+zkp+J3G9bhMHgdtRW6M5FnWnZiFz5E7gCyJxPfA8AF+05zbBKHNeSlIlrY83knoLT9Iocr2FgrIkyAjiXEUBomQ1O6YkPDNkpJQlcovXd8tl2AYOCsiQYYFVsjZ5NcJXmmpzXE1P6aktqnj/vMeBoR31aPz7jdtefquyJjaosWpQ48H5Q654S0npUjo3K6GFVyOm94fpBRs9Uo/5iirnttKvTuESe1jlw2qex6pNAcyfnKkae53i/nDeX+nQ+823Pf6jYQ0B95QyODMm45PkzuBUMig0DGnNG/TkJe+u4d3n/+WW3/xBKddcgTn33i0m7ZB42KuvKNm0bU3rCtl7eqtNGhUzBOP2GpWSd0CTjtnMK/+ZyLtOzThtntPSRv/J1uYcQtLSiKRZH+dwqJ87vr9qcyetYqzzhtKw0ZFXH/LMS6J0zHmlIOoV7+Qps3q0rRZXdau2caN172AlJIbbt7DmJOz328uPxrh1QcvYtfuSldB2Vlewexl61mzeYf78IiGQ4QyGA8hBBccG0yQD+/bgU8mLaBPp+acOLR2Al7qyM+L8Ob/XcyO3RVYpsUjr3zD0D7tGdSzTY3Kq4xV8coH06hbXMDBPVpTWWVy+IC9czbPmef2AsL9k0J6CfiVnVbpUeVo0oJDjGRyIqeKAFNamuK9Ubw1uUU4xEIodqbZcHw+ToHigZZE6t9r8/bRiae/DVKCKRFIzeHa2RrFtE1rMqQ5wocEFrZJyhICSyiFyTbHWY7ipHyh9GX/ytzlceiWmtDi67sbbkA1X/iIDN7uSLxqkntQBT51E/mO4TiMq+qVyU5iyzNOv4RjgjPiMnELS5EYV818qG4HvSypd14/74TFsOtz4mHFslWacua5vcbGVVtZvmAtB4/oSThgkvfjmzcns33TTqZ9MYeNK7fQomPt7BtXpyifr96fSeWeKj5+dbKHNNUUu8squeqcJ9hTHuO8K4bRqEkJ27bsonvvVrz6n4n89wV7ddy0ycv4/JPZXHr1SM48N9h365l/fcXrL0/i/EuO4BdpHMS3bN7J1Rc/Tayyikf+dRHtOzRJSnPEyO4cMTKxZ1wQYQKbWI44sofnu2EITDOYkGWK/GjEVX2+X7iKax5/i7qFBRw/uDt7KmOMHtiV3u2aUSc/u2izfhx5cBeG/asTISPFjvW1gIK8CAV5EW595F3GzVjKm1/M4ut/X0fIv2lrBnjz01n8+9UJADz/wPl0bpd87bKFKQ1MmcY8l90z738DfnXHks7Pd+eYbqZIlc9/TFeZQilCDfhVJrTPPoUJlDlJeANh+pQngUioDn4HcvWu3x7+X/k+9SVJEdpb6MXo1k3F6Zy2uX40pkSY0pnA7c92VgNLOCpTiMRqwrCwt1OJKHMciX3lQr76nRVsUpDsKK3GQM/jU5E8bmwaKfEQToesSVflwo0t5VpOVdlKEVKkzOfz5JoG4w4vCjvn4/aqOiPJlohnVaF7DBL+Unr7HZ6l/KfcvHGZSJ+l0lTd88hOk12ZPzb2K2mq3BPj2lH3s3vnHs765dFcdPtJ1eY5/tLhLJ65gs5929I8gBDsDS665Rhe+9dXjDn/0Kzzbli3nVlTVnDoyG4UOQqWaVrEKquQQLzK5LnXr6WyoorikgLKdtl+OPXqFzLp20VYluTLsXNSkqaxH/1APG7x2Sc/pCVNSxdvonT7bgDmzV4TSJpqimbN6/HEU5ewZUsZAwd1qJUy56zYgGlJtu0q5xej+tO9de1unhy0Ym5foHObRoybsZT2LRpg1HBCaeNEQ69TEKV+CiKbLSwEVhofAitw9v9fhZ8wKMKDM9sB0vIm1wSbwOI85MfwOoALEvubgVZY4lsqePJocYA8hQtfGX4zomq4f3PgVKoSyef3FlLvshK+SCgxrm9SyA4RAGF3813DHwXRUeykIZBIe2l/CMyIvaecGca7Ik6pR44KpZvHlDDjdldVpZQf7aUOKUXGJXsyQTrUOHpX6OFVk3yqkkcs1NUsNTZx+7QZ1dIDImQrUoZDnkIxiVGFrcopIiZImHY9jvNewqjrlq4/FHZZoZgFe7KPCJ7ueWSnObCfSfuVNElLugEcYwHL/IPQtltLHv7szn3SnqGjezF0dGbxffy49ZJn2LxxJ5PHd+e3fzkbgC2bdoJhEDYEw0b3IhoNE3WcyEce1YsevVtRXFLA5IlL+Pj9GZx13tCU5V99w2jeeXMKZ5yTfhXhQYPac9pZh1BREWPEqNo3SXXo2JQOtaTuAZxxeB+27NxN8wYldGtVuyT4x8QVpwzl2KE9aNawuMaq1mEHdeT1xy6lsCBKvZLaIU0589xeQHcKFyIRq0n/Ka6TFk9elU59N3yKkvZdlRnky5TKj0kndOBNr9fvy+t+9tTta3fQOPj7VpvQyJJ7yMf/pCEgbNgyhBB2k0IpGuIqTPaWH9IhTXpcK6ETEE3x8Y4XCVXRf9xIHBd+tUl6k+oEy93TTqtXeBKnGSPVRnBX0LkBMhU0oicQdiynKomhbScjnUb5L7vbDK3PgXxZSgxTYsRl1l7bOfPcXiK/MI+HP7yVxbNWM6wG/jG7d5bz8oMf0rx9Y064ZHjS+ecfeJ93/v0lF9x2IqdcMbIWWpwayrcqEkkM6cplm4nH7Qft+rXb6dDZSzaaOVuPjBjdkxGj0xOcYUf2YNiR1a9aC4dDXHXD6Gyavl9RUief284Ysb+bsdcQQtCmWf29Lqdl03p73xgN1ZvnDuxfdT8mPGTEH5tJLfPXoxq6PkIpxlA5fLsER9mahFuCfdzXjlQN1MmL2x7syThgY9/EMRJKlNs/548BSJFklUvUmXwo3R2TqpikPEHlSvuPTkl1tUwikVGBMME0hRuwUijJCI2QCIllSNuPyTHHuSYxNMKkD6n27prCNLXL459keTN5xk9z3JZafl2UdP2QrEQf3TsroCyhVKiwE5wyAmaERHgDPSq4Q4ysEMg8h9PHIRQXtp+T6ahOqHxSM91Jr8KnEz7n/jJMEFUSo8LE2FGRfCHTIDPz3IH9TNrvPk3te7SifY+aLbN/999f8ubjtnN1z8Gdksr5+MVvqSiP8enLE/c5afrrs5cyb9ZqBh7ayT122MjunLfyCIyQweDDuuzT+nPIDpt3lPHXd8fTvmkDLj9qUKA6NG/NRv78wTgO7dKWy0cOCijlwIcth6f+5Xagb475Y0JIK0EsdOXGE5fJmaB1h+pAZVEpRnjPB/kxCd85v2+SU4bU06hzaGYWv8qkp9HP+9op9fp9SBmd25Mo8GP6fEHkFB+PcQiQhb3qTYbUWekErFSTvHTHRwo7hIC9Ok5gGs537XLpfUv0XTPN6SY8NQY6YZKJ7x4/rBTd9tSh8ghveZ6h0U1xWl2S4D4opcstQyNP9uDZ97C0cOM4KeLm5vN/VmmQYMmEmOo43hsxSajSxIpn59RU3fNIpTmQsd9JU6aY8NFMPnpuHKdcdSQHj7RVmY592iCEIK8on2d+/w6X3Xsabbsm9hC79O5T+OC5cZx1/d47dVeHho2LOXyUVwmKREJccMXwfV53DtnjlXEz+WjqAgCO7NOJjs0bJqV59ptpTF22hqnL1nD2kL7Vhj84EGFVExflQPcf+FGhAuIEqUe6iuOZ1SVJQyjwhh1Q+cElS1JPq533FBVkevOZ3JIIk+pKYH6S0iba4Uvj7086ZDrHpXKU1/aLc6EUoZDAyjM8fXZVFScMhLBAGtLZEsVeQWc5zt/CicHkmj+VMhMm4TiNRpgESX5P7ruu6IDXhOgfDw/LCTif/NGLoHtK+Jql16G/nARCOs7ghqMihUBYwl355gb/dPNKTxmGlKBW4amVeHELo8rUAodm9/yo7nlkpzmwn0kHxoZmGeAfv/kv07+Zz5P3vOEeO+SoPjw1+fdUVlQx9cu5vPbYJ548o88czKMf/Zqhx/b9sZubgw9SSl74fBq/+89nbN1pO6qv3lrKeX/7L79+6SN7D7gfEYO6tCYSCtG2cT2aNwjecufovl0oiEYY2bMjRdWs5LMsyQufTuXfH3xHVfzACc+m5PB0rxxs2EqFYZu1LCvxyiaIn19Z8p9zPwepOj6Vydc2/YtSVfxl2epJYnatdlrTYk+lmn9rE0F1uPVoK7Kk5Ygahi2UWJpKY/c9UaZlOPGXBFiGozCFPCJLoi6nHGHaL331V5DJTm+4VKvFLBBVIGIgKhMvo8I5VgUybrffEok6kwYB33vAwPt4jF2/areuJmnHdJOddNqdeJee2zmNaOj010mPRFoWmBbEnXdLYlWzZ6cfmTyPDvRn0k9GaRp2ysG8868vOeLkgz3Hm7dvTJ9DuzD3+yUMHFUzJ+79iS2bd/H7371NSXE+d95zCvn5tRuA8UDBio3befjtcQCUx2KIiEFeJMysleuZtXI95x7en75tm1dTSvYYN2cZf3j1C0b26cRvNN+pwV3bMvHP1xAOhVIG6RzVqxOj/nBdRvVMmruCR98cD0CLhiWM6NuR/PxIjUIPpMLqNduYO29FVnksjFpdPXf//ffz1ltvsWDBAgoKChg6dCgPPPAAXbt2zaqcAxLhMBjCXcaehFRKSdCxIOdpPVQAJByTDc0bWHfwTjK7Cc2MpNXhJ2OpFKagY0kmwuTupOxrxkQyYCzAnaEFtplN+NLIqIGVJ2yHb6nUJctWPqRdrhSO6S1iO38TVu/2MUKA8x3hkCU0gqQcs53Vc55GOGYyVbdadm/ESNr7DadMtTrOjQPllOPpm39PuyBVKSitzp7U/nRxEgE+Q7imPXVJ3dicSkSVdvQMPze0L5FAIBPO7NqtIqTjUB6zXNOdDBtYWQYMru55ZKc5sJWmnwxpuuJ3p3Pp3acS8i0hNwyDP715I5ZpeQJd/lTwzdfzmTt7DQA/zFrFoEP2LpjhgYqm9Ypo2bCEDdt3MWHJSnbuqaRt4/q0bFBC83oldG2RfUTtTPDWxNlsKi3jv+NmctPJh5OnOepHnc9L1m/hw6nzOePQvrRwVKcd5RXc9d9PCYcM/nDW0RRWozS1blKP/GiYuGmxefNORl3xdzq0asTzfziPcC3cl7t3V3LFtc9RVrYrq3ymFJhpIuymOxeEb775hmuvvZaBAwcSj8e58847Oeqoo5g3bx6FhTWPln9AwFmhJQVgCoRlQdzEDTPgEhWRCB2gEyDlHyT0KUm6E5n9zYFntpWaz5E2W+GbT3XC5CvHNdf460mDhE+7s6WKmsCzuyUyRqo22cftMAEePmVaCNOwV85J20Tk33fN3UfOUXOUKmUZCY7hWp4MkGFHYdKVOB+Jc5rj+azv2yZMewm/oTtUq3SO6kUYW+mJKKKcxaBI32f3upMgj2aClElh1yXieLZD8WwDo98XKpq3v0qnfCX02Le7sPfaMwwsQ2CERaJNIUHcyM6nqbrnkUpzIOMnQ5qAJMKkIITImDCtXLyBD1/+jsOP60PvgbUTa2hvMPSwLnz4/gyKi/Pp+SNs1ru/UCc/ytv3XESsyuSPb33J+1Pn07C4DnedPpJOzRoF5tmwdSd18qOUFObXuN5zhvVn5aZSRvbt6CFMOi54+FV2V8R4ffxsvv3zNQB8NXcpX89bBsAx/bpydN9kR/5123by9uQ5DO/ZkZ6tm/LxA5djWhb/fm0CUsLS1VvYsbuChnX3nkzYP7KzjCRHJnvPZfer7pNPvCbwZ599liZNmjBt2jSOOOKIrNt3QEELOmk7wFpgmh6VCMdHxENcgsIHgD05aY4oCcIkUocXSOPHlKQw+RXSDHyYQJvAjUTZ6dKnRLqVg6nK8ZERV4URGucTiuAYyLDdKcNMEBal8NjRu4XzwlGUnGCWKlBlWLhBKwnhRs6W4AkumRi7gLY6RMUwIVQl7dhHVY7PjwZF/oTAIeC+soSPNKf71xMBL5l8zFWQSBAkIRIqmKuIOdurhOLSVZoSbda67azIFPo+hSLxEWeelcLev08aWZrnMtp7Lqc01QiLZ67g/Se/5PhLRtD1oPa1Vu5jv32LedNXMu7jH/jvd3fXWrk1RfPm9XjmhSszSvvt+IU8+vCnDBvejetuOGoft6xmKK+I8fBb46iTF+W6kw8lEkr8U0VCISKhEH8452jW7dzJlGVrueKpt/nyrsuTyhk/cxm3PvIOhXXyeONPF9OghnGLDunahrfvujBtGvXA2F0Zc7ezGdy5Da0b1iVkGBzUvmVgvnte+4zvFq3itYk/8M19V7nk7oIxh1BZFadXpxa1QpgAigrz+OffLmT2nOV8++W9GeezpIGVxkfAch78O3fu9BzPy8sjL696x/cdO3YA0KBBg4zbdMDCtOwJNWQgDQNhmmCZCNNKmNDU3nSWdMmSJzK3xxwrbP8o3VlcU4MgWUnS4Zlg/cqHShG0Si4NXBeaIJUpRVo/stUBMm0TIWeo1JYoIUd/cnxrbMLkRAGXOKRRgrDVKHuXD5lw0xIChN0/V3GKkOTs7VfpghoowNmaxCFMuglXqT8GWEIm/KNNbBLnJz7+QUmhNrmLNaU9Np7gm077zSgQdoiRScKfyemLZWDvXee8S0M4ztze6qUBZp5G2qVAxO1+CkMgQmCGtQESjv9Ylu6b1T2P7DQHNmk6YD2u7jj5Ica+9C2/Pv6BWi23c29bzenUM3gi3F+Ix022O5G8/aisrCIWi/PhBzPZtq2Md96eipnlUs99jRXrtvHU25P4zxfTeXP8bF78fBqT56/ypNlWVk4sbiKEoFk92wzWqDiYDC1buwUJlJVXsqU0eFx0bNm5mymLV7sbC1eHXeUV9oQGPHnd6Qzr1YG/XnqCG3qgWb1iPrr9Et6/7SIalQQTn9YN6wLQskFdz/HmjUu4+6pjOXVU34zakinat2vM8CO6ZZVH/bJL9wJo3bo1devWdV/3339/tWVLKbn55ps57LDD6NXrp+dPmIyEh6wwLaiK2++gKSpec4wnrIDrY+O8VGplrgtI4w0zgOd8IjQBnrT+c3o+z+o6n0rl2U5FNy96CJnw9lKf8JNHwNd+3yuoHMBPThKn7HapbU6kY/J0YxpJnBVzWh+ESu+Y6QyRILLu+Cdeyu/IDfAOnvFJejmJlO+QUUWCvFmJVWhuuQ7hs5z223vfJRzCk+AQLl0R0uMt+dN6xlQ5pYNrrnT9w2Wi7R5ncVMiqiTCsmzzs7PQQZEwicASws2bKEL1x3lpgUKzQSbPo+qUKB33338/AwcOpLi4mCZNmnDyySezcOHC7BuWBQ5YpclwZFkVMTwT7Nqxh6KSfNJFZL7yjhM56fxDadKy/l63sbZgmhZXXPYMK1du4ZZbj+O44xOT7bJlm7ju6uewLMmZZw9m48YdDB/RnVC4+hvrzTen8OIL33LWWYM55xfpI4lni/KKGFVxk7pF9pYxtz32HivWbaNNywbUyYuQFw3TuVXCT+mDGfO57b+f0LZRPd656XzuO300pw7sRY+WwVHAzxzVn4rKKpo1LKFLm/T+TrGqOGfc/yLby/Zw5bGDufq49H19duwUHnvnWw7r1Z6/XXMyPdo05bErTspyBODO00Zy2uBedGiaHK7gQIFFeh8BRb1Xr15NSUliFWEmKtN1113HDz/8wLfffruXrTwwIEx79hKGwJY3dDXBMdcJRzl1SIe9h5lDTFw1CuwD0p7kIbGE3mPWc9JpZMIlWRoh08mQfV6TEoT9x0NOPJ3SiZuWRgakVV1NU1Y2lpPAcoLUFtVfKR0fJWGHA8A+JixnqEICiWGrLjpRUa8wSZvtCj2NUmiU07feDH8bwV3NJ0zbNGfE7a1bjHjCJ0gKaUcfd0mT3Q4Zsd+tkLc8/wC5W5f4B06Nk8rjtN8Nc6Dv5uOoXC7xiQNx7TI75QjT4ZmWBMdMJ8F1grekwMy3yxFxW+kLVeFG/RbO9VDXTfctyxTVPY98XasW+8PH8oAlTfe/cyv//csHHHVe6n3WdPz7gQ95+/kJHHXqQdz0h9NSphNC0LzNgTXJ7d5dyapVWwCYN2+thzQtmL+Oykp7f5/3353G2+/d7Mm7bt12tm/bTY+eLZPI4rvvTGPXrgreeWdqIGkyTYutW8to3Di7rT82bdvFub96norKKv7+2zPp27UlzRqWsGLdNto3q89/rjkPYQiPaW7myvUArNxSyo49lTQuLmRgx9Q+XAV5Ea48NbM9AOOWxe6KGAA7dlcfofb7BbYCNmXhqmpSpkfIMOjZutlelbGvUf3qOftcSUmJhzRVh+uvv5733nuPcePG0arVz8gXT0rbTFcVR/hDRyStAksQHl390R2LhcDLM4T2wafwJAhTwCa7njYK1ycqpXlPJ1lJ+fHaGPzfg9JXcygln8rgseLvgwSPZCJMbyKJTpgc5UOpO67jsleY8igumuqV1jSnQgw4EbCJS6SJJ8q3XYh9oS2hlCXhOqO7Eb0DlCOht0v6T/iUKdV2I/FV+totBN7I4FpWJaJKRUyV8uWodiqNsGxVSQUP1fmbHyLV/ZkGma2ey1xp2h8+lgcsaerQqzV3PHd1xuk/f3c6AN9/tSDruiorqsjbj0v9S0oK+M3tJzJ79hrO9e0/N2JkD95+cwrLlm2mT9+2nnNbtuzikouepKrK5Fe3Hc8xx/TxnL/o4iN45eVJnHb6wMB6f/2rV5g5cxXnnX8oF1+c+Q22duMOysorAVi0YhN9u7bkz78cw6KVm+jarom7Kk3HFSMHYUlJ71bNaFxcu78A6uRFefqXZzBn5QbGHFL9fns3nXI4z38+jSP7dao27b7Ezl17GD91KQP7tKVJw+J9Ukf126hkZ6GXUnL99dfz9ttv8/XXX9O+ffu9beKBAyHsX+GxKscBXIBG/AkZYIScdwMZMmz1IxSy1SY9dAAggn6Gp5hkXMKkO3P71CE3/pIzWQUrOSL1MbecxHGPyhKwKk//mqTIyDTn/NCIpOfdX78AA20SNzXVCFyTlwzjkCWwIk4wy7BwlR13k1zHjOT6zktHyXCUqqQwA3qbDAhZEKqEcKX9WalM7h5u6loodSkqkFEggju7qj5ogqKHLLkmOTU0qk36yxkeS1PO0FUsaYujAhKO7ap8gb2jj0O0Rcg+KZ3fBLbvmLP4AcNxLhdg2P5MKDsdoJYpZkeVEshsGxX7fE38LH8MH8v9Tposy+K7sXNo3KI+nfu0rlEZlRVV7CrdA0CLdtmpSE/99RPeeH4CY845hGt+c0KN6q8NjBrdi1EBmwUXFET599OXsWXzLho28k6slZVVxJ1fw7t2JissI0f2YOTI1PvVLVhgqz/z563Nqq39urXk2nMOp3TXHk4YZrc5Lxqmd+cWKfM0KSni7lOODDw3c+U6Zq3awKkDe1KcX7Oo273bNad3u8ziPHVt3YQ/XnxsjeoBKKuoZPKyNQxs32qvooT/7m8f8d2MFbRp0YBXHr24xuWkQ21vo3Lttdfy8ssv8+6771JcXMyGDRsAqFu3LgUFBXvV1v0OKe3JJhK2Vwn5g1qGDKTaeFeRJkMk3vUVdNi/2D0TDnhJlX/1VZpL4adfKU1o+t5zqQoSAWldlpKG1KU4IFMlCiBYqcp2laNwQoFzyYXjCO6BKSAsbWXJUXVc3yGHTCiTnL8yEcclRdJnqnP9hhz+a0ZwCZascEhUHHvJv1OHZWBv1xKCeAjMMG44AOWY7fpG6UMhEu3A1IZLqWG6KU4jWMo8qZrrUZak56M9DiE3eDoWAjOcWI1oWIk2ijiEKiw3bIIK5eDxt7K0srHHOxtks41K69ZePnDPPfdw7733psz3Y/lY7nfS9NGLE3j8rjcwQgbPfPtbmrbKniHm5Uc45cJD+e6r+Zx7TfDE7EfZzj3MnraCiV/NB2D82Ln8MHUFfQ5ux9W3HZ+VuWpfQwhB4ya26aSsrIKbb/wPpaXl/Pkv5/DAg2ezYf0Ojj6md9bl3vu7U5nw7SJOPS1YiUrXnvPG1M5ebOWxKi5+8g1icZOVW7dz98mZXb+aoMo0+XjKAto0rke/jjVfCHDDC+/z/dLVHNy+Jc9fdWbW+XftquDFlyeydUsZAKEUwTVrA7WtND3xxBMADB8+3HP82Wef5aKLLsq2eQcW1Oq4kMDjjwSa0iNsdUmpSmHDPZakDkGCdOnHXbIkvKQsQF1KHE98T0QCD2i//7i/PP85TS1JOZcFEI+kc9Lz0SurpCFMbv1OUEoZctQ+JQcJe4yEpyjhrHIUyIhhqzthh3Ap05xSYTTVxm2STAg9qR7zbuRwpywhhO3XpEiQ8l8KKXVJYEXBysdWmsAT/NI/9LpfmbCc4XfVMdy1A1K7RFImvgOuKc4dF0Ory9dnKURidSICy5D2QtAq6W58jLT7Z4UERLybOLtxnfyPiyxZUzZKU7Z+lj+Wj+V+J03Z2kRT4YrbjueK247POP3d173IvFmr6dSjBUNHdmdPeYwZ3y9jxZJNnH3ZMBo0Sm0u2bljD0/9/XMaNi7i/MuGp4woXRuQUrJnT4w6dewbZvGiDSxdugmAyZOXcuaZh9S47IEDOzBwH8WqWrBmE098MolhvTpy6uDUrD9sGBTn57G1rJxGRXVYtHozjeoWJoUYeP/r2fzrtQmcflR/Ljq5Zn1++csZPPL2eAwh+PD3l9KsQWYmsbhpEYvHqZNnPw33xOz1ursrq9JlA+ztVR5/ZwJrNpdy61nDaVyviNffnMzrb05BAr+8fhSjDq9+RdyGTTtYtnIzDepmZ0auPk5T9ua5nyvMgiiGEbbVJJ2ACI3kuG8iYS5Dm9lSEZmAY0rcqc65Wqb4nEn6dD/qPelUXJ5q8qQrRPqPq9lcqvJJjJeWTBEU6TgZK7OZBEKWU4AKOeAwHWlh77EiLaS7RE3asYNCdh22CY/g64JDBOIk+QZBghyFYhCukIT2SDsSuMR1urZCYEYFZhTi+ZJ4gbDNcvpgKN7njIXQjzvvujIknHa5K9+Uc7dOghyVSHdwR5BQpCARksDA2XPOflnKR8uySaCIC9vB3dSd2+1r4a5GlHZfjbht3tT9prJ9GmQWpyl7P8sf08dyv5Om484bSsOmdWncol61KpNlWZimRSRFkMJsULHHnvCikRB3P/wLfpi6nDUrttDroHbUb1iUNu8n703nk/dnADBwSCd69K6ZWTET/PbO15k0cQlXXn0kZ551CL16t2b0Ub0o3b6bI4+s3n9nf+GJTybx9ZxljJu7nBMP7k4kRfDRaDjE2zeez4rN21i9eju/uPdFigqivPfAZZ6glq99Mp2tpbt5+cMpNSZNBXn2Ey0cMginCJTqx+6KGKf95UU2lu7i8ctPYWjXtjx6wYl8OXcpI3pUH7194epNPPfJFAA6NG/IlWOG0LlTM4SABvULOW5kL4oK0/+CWrJ8E5fd9AKWJbGsyozarWBJgZVu9dwBHn33x4QQ2D5MuuKTYsJNnPcRjUx/BOpqk0f9CaqDhNKVKk3Q8YC2u5OcoZedBVnSuY9WXqDKpDfHPS/c725aPUClaot0gjA6sYcMzbfJNosZWj7nZTj9CmHPbEptSnkN7VeqSyZMmzSFKlVsJqd+FVogAjIisPLAKgCiuOTF3XbFW5X92e8TJPA6liuFzEj+7PJQ4TvvqytVXz0E35DaQk2R8INSql1CpnLarNkE/Z3KENU9j1SaTLE/fCz3O2kyDIMhR1dvWqrYE+P6c//F+jXbue+xcxkweO+2G/nd38/j+28WMmREdwD6HNyeFz+9NaO8Pfu2IRoNU1K3gFb7eCXe1CnLAZg0cREjRnSncZMSfnP7ifu0ztrAsJ4dGDd3OYd2b1ctQWlYVIeGRXWYOstezbZ7T4zyipiHNF140iE8+cZEThvdr8ZtOuPwPrRtUp9m9YtplGHQyfWlO1m3zXZInL5sLUO7tqVJSRFnD+nrppFS8ubkOWwo3cWlIwZSoO3H1KZpfdo1q8+Gbbs4pEcbAA4/rAtvvHItderkuXsN/vOtCXw2eSE3/2IEh/bx/uNv2Vbmxp+yUu2LlgLV7SqezUqVnztk2LBNEyHDM5MmbWERlBeSTRd+wqLzG8+Os9pkFHQ5RPW/6JPOixTHVXmaEiRdZxuR8SQYVK7UPwjtgEedtOuycJy4Q45ZzgArbL8AwhU425VY9n5naowcHybpBOV0t00Rtn+Tqst1GPeTJl3pcVQTV8mBBHFwtiURVc7qPRKqjhW2/ZasqB1c0sxzfJ8MrQw1DA4pU0NiqI11lR+RSug3b6r2qXF0Vs6pdgpbZHNDLCTdIyqf0zfhKF4YzmdnFaAVBvJFwhldObmrfhj2MVtpslUpYSSUpgzD4rmo7nmk0mSK/eFjud9JU6bYtH4Hq5bby/JnfL9sr0lT46Z1OeHMmvnl9OzTmjfH/opwOJRRvKS9we13juHTT2YzbdpyfnH24zz08Ln06dtmn9ZZGzh1SG9OHNiDcMjI2D/sgmMHUpAfISIMnnhlPKOHduOwAfZ1HjWkG6OGZBfY0Q8hBId0y27sOjZtyE0nHM6Kzds557B+gWnmr93EvW98DkBRfh4XDTvIPVeYH+WN312IJaVn894GDRJqpmlZPPP+90jgv59NTyJNhwxoz81Xj+aHeas5qHcLTvgk80j21UcEz5EmBQv7R1ygb5EiGOlu5SSSlDqxba5JEAHXv0XL4s5H1SlMbhsT6WR1aVPkS5lOVxdkcPLAfL7segKJTW4skQhQCcI2FcUlxC1ElU2YXK4jnEjUIYEVdt5DdpgBW4ESbuBKt940ypdukVR7uKn4TIYTzBLT4VbC2dPOcOoOa0RPF9J9Jlc3RIHEa6VMNVy+k24f/HZajfR57lFVhC+PHv8o5HRYj/1k53O++INXOvsjWkIkto+pkdKUSUTwzJ9J+8PHcr+Tpnjc5I7rXmTF0k3c+9A59Eixgq51+0ZccPUIVi7bzEnnZGaeeeHfXzPui3lcffPRHFTLG+H+WCEKhg3vTt26dfj+uyUArF69LSvS9NKLE3j/velcdvlwRh+VvbN4prAsSZVpevZ3S2WSS4WCvAgXHDOQK+55hdmL1zFx5nI+e+q6rNqwcMNm2jaqT50sd99OBSEEF488OG2aJiVFFOVF2V0Zo1NAoEshBKE0E2jIMDj3mIP4bPIiTh/ZLzD/ycf24+Rj+yUtw60OJgIzzZMt3bn/OURCEEnxwBbCceioBrq/UhIJCWAlUpuxNCTlT2lD0smV9j3T9KkQRKA0MlDtXeMx4QSkNsCK2qYtnewIU2LEJOGYJBST9pCHDEemEZhhgZlv2HkjAjNqkxeXLDnO2W6wx7Cv7UpREck8REUed7dKidkmQjsYpk0nbIXJ9mOy8myVKWn1nXDyKAImkl/+8fQMtaYQueY3Em2GYCIWqKgJW5UCbH8rhxjKGI5vk1OXox5JSyRULo9y5rCrEMi4lsbM7vlR3fNIpckU+8PHcr+TpnWrtzFr6goAxn8xz0OaKiuqePzPH1JZUcUNt5/IuVcMB6B8dyVfj51DnwFtUzpsx+MmLz01DoC3Xvm+1knTj4m+/dpww41HU1ZWwVEZmDJ1/Pe/37GnPMZbb03dZ6QpVhXnF395heWbtvHQJScwvPfejfWg3m2ZvXgdA3tlpwo98tkEnho3hU5NGvLuDef/aCsgG5UU8ukdl1Ieq6J5vZrFW/rlWcP45VnD0qZ58a3vGf/d3KzKrZIGIZmavFbJA2s7nv0J21fEJjJJd04GD+d0ypJehwc+5SabKcCvJmWU15Uh9GPSa0MKypN0LGi2D+6/dNpqhezzCVopNDOhxKi0MOIOWaq0EnvMuWmd71I6K8mEbVpMIW1J6ZiwNNKRRCr0RjokQsSlbZrTlEUJTkyohEnOipKIqaQPg2q2qP7lERxVU0RCRNLDJoigtvuJl8oYdF5TpSyHJBnOcQGJOE96er0odYsYjhInQWZ1x1b/PLLTHNjPpP1Omlq1bciYMwexbPFGjj/1IM+5aZOW8Om7MwDoN7ADx55in//Lve8w4av5tGrbkKffvN5Nv2F9KWbcpGXrhkyfspy8OhGw4LiTB/x4HdoHEEJw0skHVZtu46adLFy8gcEDOxCN2pf2wgsP5913p1GvaTFfjpvPyCO613r7tuwqZ/F623T6/aJVe02aLjt9KGceM4Diahyk/Vi5dTsAa7fvsM1h+5g0VVTF+d2bn1NeGeO+M45yCdO0ZWv46/vjGdWnMxePSK9SKZiWxZLVW2jXooFHrVMo3xPjX/8ZT7yq+ojnOnLmuSzgmdQdaH4y+I8HIZU65FF4tOPK1yTd3JPO3OVGbaymXSqfOu1vZ1p7ka85/vFIG9YAR1Vy4ltJtaGus8rNGfNQlSQUs81hoUpbbUqUJxJqT9SwwwxEHIUppCKCkxSoUjgKijs2vhAAni5YTsyiuLNKzGf2kmEw8wVVebbCZEVJ6qu+uw2O31AStKET2gfvPUeyM7uW3+OnpYiXpl75L4GnXOWzZSRUJkTis0h1P6rrILFXMoL94yJbn6ZaNs/tD+x30mQYBtf++rjAc117taJJs7pUVsbpc1A797hp2nej7hS7Ytkmrr7wSSzT4sHHL+CT92e4248MOGTfLKtXWLl8M3Nnr2H4qB5uaIAfG6ZpceUNL1C6o5yTT+zPjdeMBuCMMwexdusO3v5gBpOmLqN/nzbUr1e7EblbNCjh5pMOZ/6aTVwwonpyp2PczKUsWrWZs0f1p0gbu5Ki/DS5gnHH8SPo2Lghh3Zu6/EfSoVnP57Msx9N4bITDuGCozMjNzq+W7yS96fbcb6GdlnIWY5z+DNfTuWHVRuYvWoD5x3R391OZsWm7ZTHYvRo1TSprD8+/znvjZ/DgK6t+NdtybGfCvIjHHFIZyZNzS7ifW3HafpfQJIPif9zKqQiN9WQEL2+TIUeffbfGwOF1D+IFJ9TNkKdk1o/EyRO4jh6OwEgZdgmEsIJ5ChMHEUJjCqLUMzCqLKdv4Up3clZCuHESzIIWRbIEFKE3HKFwDYTKZOSz4wo9VlOU46EQ5KUqUnESQSj1NK76lIUZNT+rkxa/rH0KDU6udHIitu+JMVPezd9eX3X2Q3LEMCQlDjnxlZSY6GUNzUGqi3CDk1gWHidxpUJLqCN7pqBLG++bOI0HajY76QpHRo2LuaFD24C8JhafvW7U5j0zUL6HtzePbZ9627MuH2XbNm0k5NOH8jqFVsZfFhnCgqi+6yNZtzil1c9z+7dlcyfu5Zbbt8/UcUlNnECqPJtcty5oz1JN21aQmGW6k0Q4nGTf707iYqqONeeeij50QgXHpk96dhSWsatj76LBPZUxLj+zL3bK6hp3SJuGD20+oQO3vj6B3ZXxHjj6x9qRJr6tGlO20b12BOrYkjntu7xEw/qzvTlaxnVu5NLmJZv2sapf34B05L87dKTGNbTS+RXbtgGwJI1W9i2szwpTpUQgj/++iR27hxB3dd/k3EbJekj8AYYonLwhxuQwv2RnZ40+e00KY6rcxJXydL5RkZlJ63US5NZIwqB7cpQZVLqQsr2uZO8XYhU6lDI9gNyo0qrLIZ9zIhbtg9RFYi4tFeYmYkxEVIiMRyiYCDDhhPM0tBCDWhtN7wvXdHRJ3k3jIFMKE0qmcpjhcHMswNXSs2HyV3yr6AIr8/UpoceEPp3mWL4FSnR+6CpSAitbv2cXgaJOnWo281DKp38hlKc1CtIaZJa2VZwHdWhuueRSnMg44AmTeAlSwpFxQWMPqGf51i/g9tx611jqKioYtionoRCBk++fNWP0EDIyw+ze3cl+fuQnFWHcMjgHw+fx9z56xh2eBfPueOP6sPA/u2oW1IQuC9ctpg4ZwXPfjQZgM6tGjHmsJqFrK+TH6VucQGlu/bQqmm9lOlMy0JiB8IE2LGngk/mL2Jwuza0bZA6X3W49pRDefnz6Zx/VPaECeDjHxbRolFdbjz6UNo0SrTjmP5dOaZ/V0/a3RUxTGd9bunuPUll3XvpMdz6t3dZsnYrl97/X96+/5IatcmPnNKUBVKpSSI1VwhKn0SuhP8kCaVBeg+nEh/0k9mG1krV9LQqk99PBgh0WncVEDuj7buUOC7DthoUqpSEKi3budrxVVK3nojbKpO9Oa+jMJkmIq6iMQqIRjCiIaQQGGGBYYSwhEQYKtSApzFu2/RglDrBEHEQMdvhO2lcFDkB16fIVKvkFGnRSIx/mNzh04mV7qZjasf0cXeUIBUSwLCwNwhWDu4iQbQsNPKkl6H9OydtLOy0XTrbsAjTDhmgVgWqIJxC4AlBAAlyibPhr1Bjk+XjI6c0HUAQQnDU8X1/9HpDIYPHn76UJQs3cNCgfWsGrA6tWzWgdYoAoU0aZ76DfXXo1KoRxXXyqIqb9GiXbGrKFHXyo7zxx4vYsmM3HVs2CkyzuWw3pzz5H/ZUVfHyhWfRtWkj7vzgMz5bsIQmxYWMv/GKGtd/3ODuHDc42cdr1vJ1bCvbw/BeHVI6k1dWxbn//a+QQH4kzN/OH5O2rl5tmvHoJWPYUV7BCQcn19mqST1aN6vPknVbqYhVH2k8U+SCW2YBVw7wsyDtJ7W+Ok7Pl1SWT62CJMda97xPnQgsS03WetkZwO/DJP35M1SZEpmDy5PuhCywDOGqRJawnaqNKmnHW4pbdsRrnB/ElsSIWwjLssmSJRPv9mZpEDGcCVpgRgyssOFso5Loi8BxKg9SXzRlRX1WpMQDTU1RBMRy9pSTijDpZfqIU5LSpNWrTGae+Ey+olRG1zne76OlinTvU98Jf5nKzKilU6EZgmiJK3z6hsTfXcPtk8haFart4Jb7Az8b0pQp5s9dy/atZQw5vEutra5q1KiYRmm2XUkHKSWTv19KXn6Efv3aVp9hH0JKyYyJi2nYpIS2nZulTNeiUV0++euVSEuS70TZnrp4DRu27+SYg7plHG0boG5RAXWLUgchm79hM5vLdgMwbfVaujZtREHErjM/nFlYASkl//rkO+at2cSvTxlGK00V8mPphq1c+MirSOD35x7FmEHBUdej4RAje3TkmwXLGd2zk3t8++49/OOzSXRs0pCzh3pJ/Ihe6R3kf3vRUQzp1Y5B3ZNXDe7eE2PRik20aZqdP1ptb6Pys0eqbU8CFIWUNrUAk0lNoKsVSWQnRdVJ+d32pCBKQccCpKkk52+tffZ2Gw6piTpjFQdhSSLl0l4RV2kSKo9jxOIueZTK8T6u5AyRiA+kAoyGQUZCWHlhrLwQVtSw6wPX/wiHX3lWyZEwHynCom9l4nZX+fXovdK+C7CX7DvX1OPDrzMJ3eSl/qj2qDpVCIQ47qo+zw49qgydDDnleMzDQUTXz270jYiVcmZo5C+OF04b3YWUKgCnwDXHqTFV11xIqGYhXBKy2UblQMX/FGlas2orv7ziOaSU3HLHCRzjM/HtD0yYsJh77n4TgL8/fgHdu9d8I9m9xdg3pvDInW8SChs88/mvadKivuf87vJKPhg/l96dWtCjY4JUrdpcyuWPvo4EdpVXcs7w/lnXvXl7GR+On8vQvu3p0raJe3xI+9ZcMKg/ZZWVnNjLDm75++NHcUz3zvRr1Tyjstdu3cETn3wHQKuGdfn1qcNTpjXUBClJS6qFEDx2/hiklJ50z4+bxisTZ9lt79yGto3rpyoiCSWF+Zw6rE/guWt//yoLV2xi5MB2GZcHOaUpawRtsEsAjwggMO4kmmpI1WojVYeKfyOTsyQUghShBERAm/DOnfqBVCY6T6ak9ibaHaRkoP2vuGY5aZMgIy4RVRahKml/rzQRFXEwE5EihbIFqZlaU9Qk2P5QrnqVUEk8sKS7Ks+e4f0DoPEZpZA4+68pspXEQTRVSiLt/xFF0HSTWgoequrSg0YmKUMioQQFCEVuGncsggian2Rp9etlKmXKJ7bZoQNCif3kQGuTrpL5paegHxAZIqc0/YTxY8XwqQ76Zr/7u02VFfbPD8uUxOPJtoTHX/2Wt76YRV40zKdPXO2qTNFwiFDIIG5aFORl5tdVUVnFjIVr6N25BUUFefzx6bFM/GEFr3w6nU8fv9pNFwmFuPPo4e73PVVVrNm+g5FdUpvO/Ghar5ierZuyZP0WDuvRPm3a9k0b8NJN51C6ew+Hdm9Xbdn+NvRp0xwhoGndYhqX1N4qxa07bLVta+nurPJZGGm3JchtoxKAlBGyteMBExX+jbs9Eb+l4wCcmGbcbTBSsR89KrOvTX5SFES8UuVN+pwG/iwJ85BGcEJgRQTSEIRiduiAUIVFqDKOiJmIKhNRZfsnqe1Q7G1ODFtR0oJXSkOpTc7LwA4xEA0hIwIZtdPIkPCOkaFFFde5k1J8HD8r4ewlJzQzmdtH6R1H6ZQrQlp+Lal/H2e3MEWY1HeNaKlDKq/nMigyhY9o6WY6EfDS86tQAkHt0lfb5Tl1OEEuMez70fXn18M0GFqfLIHHUSrLx0d1zyOV5kDGT4o0zZq+kldenMCoY3ozKkWQx3femMJTT3zJmFMP5oprj/Sca9WmIX976mJKt+1m0NBOgfl/bAwd2pkH/3IOeXlhunVrsV/bcvwvBlNSvw6Nm9ejhW9Pva2lu90Hfp38KCHNBNesfjFPXX8670yYQ5uGdTOq684nPmT8zGX06ticZ357Dk0a2ObNJvVTb5ZsSclpT77M0i3buO6IwVw/fEhGdUXCIf5zyzmerUw+n7mYWcvWceGog2nkIze92npNk9OXr+WlcdMZc3APhvdMb2Ib2bMj4357Jfd/8DVjHn6BP555NIM67P2Gzo/efjoTpi/j0L6t+Nd9meczpcBM88st3bn/OeiShBbs0c9psv11rTIlFAiZ2EssIlxTkzbnJvIEkbM0zc/meIbNDhJvHA9iHNOcrcQYccfRe08cY08cURm3TW+m5VOtnP47CpYVCdnEyfnftCOEO8QqhBOLyTnujIm7r5xzzaR7wttwRfJc5+4QiLCzPYo22B6lSO9wHJtUOMTC7ruW2O9DpUitIk/OsUDfZjORxiVJQTdbGnVLgjfAplOXTgq9Dkm+zqr8ThgIqbVfCF9anSTW8Kaq7nmk0hzI2K+k6YM3ptK1Z9uMo3U/9c8vWTBvHfPmrk1Jmj79aBaVlXE+fn9mEmkC6Np9/xKTIHTv3oJPP50NQM+erWqlzC0bd/Lxm1M4+NAudO+b2aQdChkMDzBZbtyyk7NvepbKWJyrzzmME0b0Stoi5a3xs/lw0nw+/X4h3zx6TbWr9HaVVzrvdrDGX114JMcd1oNOrRunzGNaFqu37wBg6ZZtGfVJQd/KZGd5Bb965gOkhD2xKu46e1TavH965yvmr93M1GVrGfe76u9VC/hw1kIA3pk2lz6tm5O/l6sWO7RqRIdWjbLeRiVnnssC7q/3IGUmoay43/15Awt04JAlIaWrBFjREFZY2E7SfkeaAJUpZWBKv40pXfv8yoTfScdn2xEk53PNTsJRgUICw5KEqiC0xyRc7hCmKjOx0a6Ccvh21CQZDkE0bJMmpcKpTZPDajNfAWpj37C9fYoiUyropfCtkPNsOqsCRQpnPzkn2rcbEdvTR63zhoAISOelynUvla7c+MdXJl8CdVxXtIQvX1IWdRtoJNCtQs+r+09ph9PelhI3srebXmuH8KVFnde2hslaafoZmOf2qw729N8/487r/8OmDTsySj/8yB4YhmDEkcHOuQAXXz6cHr1actUN6SfCbLBlyy5ef+17Vq/eWmtl6nj+ufH87bGx3HzTfygryy7icxBWLd3EL3/xBP/551fccdVze70/z/ade6iM2aa7OnkRGtZNNju1aGivzmtUr9CjQqXC/119PLecO5xHbj4VsEMm9O3SksI0YRsioRD//sXJnD+oH4XRMJ/OW1ST7lAQjdCyga2IdWmZmqQpDOthr4o8onv7jMpvUFjAL4b0o1PThsxZt5GD7/s7H8yqPijlyk3bWbsls/+FTCGdCLypXvIAX977o8Kd0KT78vzr6BOm/39KJifzpDAcxSRskwyJJLQnTmRXFaEK01FjJGpbisSnpOITdehKitDqFSnaoODMiHqaJHOfnkYrXyW2DLDCAiHtYJRGhYmoMJ33GKKiCqpMpCWxwgZmfgSzMA+zXh2s4gJkfhQZMuxnkyWxDDCjBvGCEPGCMPE8g3iegRk1MPMM4lF7Y16llOg+TlJILGFbjpSJzorgOinbQTTB2GMTJrePhpMH39hpZMgOvIkdBFM773GyVk7TJqDS+hQxO1YVmPnOK88OY2A6Tu1qk2D/RRGqbPVdu1i6IqmrQKo+qfVPlaXKU/zYCoMZsd9dJU96x8FzDwjslYtGmvsrDap7Hv0Unkn73TwXiYbIy8usGaeddQinnDHI4wfkx6AhnRg0pHZNb3/64/vMmL6Ct9+aysv/vbZWywYoqWuvHsvPjxLOcpPbIPznia/YunEnGILGTfc+1EC3Dk25+7pj2bp9NyeNCnZUvuKEIQzr25FWjetlFI27cf0izho9IOu2DGnfhr9+/i2z123kzRnzmPSr1tSvk3r1XRAi4RBv3HEB28rKadGg+vG59uihDOvenkbFqU2HOoQQ3DlmBDv2VDDk/+xduCcuWckJfbulzDNz6Vouefg1DCF4+TfnZkTmMkFuw94s4FEM9J/cvp/fqXye/MX5f6U7hEx4tp8Qmo+Q8KpM/nqC2gYgE0v8pX48Vf98EkhCTXI+6YRQK1g4NkYpgLDhEgdh2QEpQ1UWRiyOqLISalTYgHDIfoUEVJleZSzsbJLsBqpUL1x1Sfk26X5LMqylU2qSHvBRSTJKEdFIg24KDRwItSZfONHA8xJKk30+kT5QTVIKjK8dbl5pqzupRCod0rksuvji+m7pL18dnjK1drjERyOFAjwBOEnx7p7XGHS2T4/a3rB3f2C/kqa8/AixyjhffTqHk88+JKM86QjTvkJdh9SUlGQ3OWeKs88eQo8eLWnZsgH5+Zkto0+Hgw7txDefzKZjl2b85fnLa8XB/JjDe6Q9bxiC7m1rHrMJwLIk67buoEXDummv8/byPe6zqDBas/HKj4YzIkwAX81Zyg3PvkckZPDBby7OOF/dgnzuPnEkU1as4YphgwDYUrabsfOXMKxze1rWS5SzqbQMKcGUkq07y6GWFlHaYW9Sj6XfevI/DfXTWaARB2fG8dyPupEk4Ne2k0VXbwS20oQEC4EwZGLwtYlMNzEFESDp/hUBx5PTe9okAtrqa787yaJNrmoSjoMwLducEzMRpnTiLknbHFcZR8SqIFYF8bhtihMCEY0i8qOYRfnIggiyKM8mj45fkxW2Yy9ZeQIrYqBMmWrMLUc5ckmatJ25pSFtBSes+ic8l03q42kmFisq53upqzna0Olbk4g4hPeAVWUrRDLsJR2eQQwgR27B6rMTpNIUIAxH+ZLeJG5+yyE1MnFdVLgFlVht6uthNcrSqfLHE+WEcEij6VQRAbMOCEc9EiYYMa3ZigA697OKZC7MhFqVDap7Hqk0BzL2K2mqisUxRIjS7dmtCPqxcdtvTuS44/vRtVtzPvxgJkuXbuT8Cw6jfv3qV0fFYnGWr9hCp45NUpqtDEPUaoymo045iCOO6U1efmS/r8jLBvc+8wkffTefYw7pxh8uD96PEODOY0fwyzc+IBwKsW7HLto1rL9P27Vso+0/VWVajJ21iIsy3IQX4OxD+nL2IX3d7ze/8RGTV66hQ6MGfHTthe7xUf27cMfZFUTDYQZ3S47TVFPkNuzNEinVHDRn3oD/Kf8hnyrh7KLmmRw9Co+uNDnBIlUiqadLV1e6NgnsyNlB6X2mxaRwC0JxAukPhWRP+GZirzikdCJwCwQC4SzDkko5goQJUgCGbXZTQTGVA7U0EuNh16+CVwb0QfiOa4qKR6HRP2tFCN95l6yqa66Pj6bY+K+xrup4SKx20f1hCFzTl066lBKmm+mUwqcIlkMEVXoVy0tPI8Bj2tPb6hIvzcyoSJGfCXm4oQBpeYW0bJDbsHcvce9D57BlQzlHn5TeTLNm9TYevP99WrdpyE2/Oi4jn5naRDQvzEEHt2fDhlL++tePAYibFjfffGy1ee+8502mTlvBkSN6cNftJ+7rprrYn1u61BTzVmzwvKeCKSWVpkmlaTJl1ZpaI01SSnbtqaSkjnez4MO6t+WRj74FIG4FhXXOHIVOSAa/QmYYgjMO7xuUZa9gkX6vp+r2gfqfhJ9cZLL0Pyi/L4VQmULSlhqcx5irMvkVnqC2eOqpvitJYRD8ZCNZtAouW83UlrDJkbMViLDlUbuesIBQHhj5iIoYVFUl5BzFEoRAhhxTnHBIlFpFGLGdvEE4ARVlog+Ow7fbZh8JgASp9fgdOaECMIAqLY+jxChzo/AXp4Zdvas8IZ+yo2dSXVX1QSJ4puUb0lDiXfkHueEn4vb2Lg5/dk2KhkOOFFdSW65I4fhG+QNaOmW6SpV6V3vuqfaFtPFyr6uWRjU8TEKZM7ynMkV1zyOV5kDGfiVNvfu3paQk2dQxe+YqQmGDHr3slWSffDSLuXPWMHfOGk45fSAdO+2dGaimqFevkEaNitiypYwPP5rFUUf1plev9Kvd1q7dDsCatdmt9tKxe3clC+avo3fv1kRT+H9t2VCKYRg0aJK5D1NFZRV50fABo0bdd9mxvD9hLicMTTj6r9xWSp1ohMZFCVXv8I5tOb1fLyriVRzTvUtQUTXC7c99zCfTFnLFMYdwzQmJjX+7tmjCn849lrXbdnDu4f33qo6HTjuO75av4qA2P04Q01zIgZpDah+ShslPNlKRD395fnkDXPIAmhqk119T+JSVbCADPtu+TCLhBwMQNjAsiTQtMMJIIeyNeIW0+VqVafvkGLbzu+VGD9deIYHp+C9ZTvwloRGNIGdkl5gYJPaeU9cgQBlC2ME3dRLimk1VFp1IaH2XqhwLN5K3f3A81TrN8aQT3rRqPKW2aNBjClXjLWwy5K5WUyY3sAmRk89QQxACDOmOkeFsA+PfqFdFI7dCIDX5SwrHb8xMNMk/GFLrS7aPj1zIgb3E5o07uP7i54lEQjz4+AXUb1jE9CnLuO3GlwF45J8X0rN3a44Y3o3PP51N6zYNae2LH/RjIj8/wi23HsdvfvMaSFizZlsSadq2rYxvxi1k8CEdad68Hr+/91S+/mYBR42u2aa2AL+66WUWLVzP8JE9uOuek5POL5y5kltOeRQREvz9o1/RtkvqLVAU3v50Jg899QUD+7bjr3eeekAQpx7tmtGjXaLt45au4LJX3iY/HOaTqy+kRd0SVmzdzjeLl3PjiKEeIqVj464yPlu0hJGdOtCibuYk8rsFKwGYMH+FhzQBHD8gtRN3NqgTjTCya2YhNmoDOfNcFlA/7dVnCFaZ9PNJn/3KjkjMig4DEGBPqJaWxoCEec7XjlT/mnq6TBBUlj7bB51T7dNVFWXKAYgLRMhw1CPbOdySEDIlCBMRcWb0/DysImfFXNg2x0l3XzcDnACZyu5jqyjCE1/JNbuFE/1WK8VQL72fGrHS2540FmoMBMljpMoIAxHn5VOYhJ7WvW+85bhVaYROOKTJDYTpJFREyC1D+VwpEqmpQK5rnDN0lkFi1aDlFBbS6tHGwZJg5dl+YUaV8HQ/8LZTpE690t6cwciZ5/YSs2asZL2jxMyetYojRvagqiph/lBRqbt0bc5/37ohfVkzV/L1l/M58aQBdOjYJG3aH2au4p9/+4zDh3fjnPMPTZv2009n88WX87jg/EPp1asVAwd24PobjmLPnhijRnlDH0yZsozH/jaWtWtLefvtqbzw/JV07NCEjh3St6c67NhRDpDS92v9yi2YpgUmTPp4Jm27HFNtmd/NXIEEps5eiWlatbJqr7axanspABXxODPWrOfc519jS1k5sSqTrxct59kLTgvMd/3bHzBj7Xr+O2M2H1x2fsb13Xf+0Xw0ZQHnjqheTdpdGeOreUs5qH0rmter2b6D1WHFhm3UL65D3cL86hOngEU1cZoOcCn8R4ezpYfUJrJqVRqZ8ksyhJbC0Gdf73YpUm0tEpA/XU3C750rEupVypaluAWk/5xQYQYcU5FpgWkiTelwQwvDlPbWQrEqiMXAMJDhiBMBHMw8W02yIgIrbMdb0tUnz0owRQ505UgkiJKlp9c6qPIoM5rac00YDj91lBTDJWckswSnfk84B2XS0+u0tHpVM5RJTmNKHl8tmeibcqgW2jEpHFXM0MbAsvurbzKsNj4mDqISV6WyHMIlw9LusxN3QGht1ccLCyTSJqnOeFl6m5RpUVeXhL+QzFDd80ilOZCxX0nTIUM7M3PyGkJhg4GD7TABg4Z05A8PnkUoZNC3f9uMy/r9vW9Tur2cJUs28rd/XJg27esvf8fihRtYsmgDp589mEgkNWF4+JFPiMVMqqpMbr75GJ586it27NjD6NG9PERj/fpSfnP7a+6PysK9mOj8eOAvZ/PdxCUMPzJ4Bdvhx/fjkRuep2J3Jd+8NpGzf1k9abr87EOJRkIMPaiDpx8VsTjvTZhDp5aNGNCl5oE2/Xuy+TFz+Tp2V8QY2q1tynRn9utFRVWchoV1WL29lHWlu9xz9eqkHt+iqO03VJThli4KR/TqwBG9OjB5yWr+8sE4zhna143n5Me9b33ORz8spFndYr74zWVZ1QN2oM4bX/yABWs38dB5x9OnjXcfvQ++m8fdz39K3cJ83vv9JRQX5GVdB4Csxocg+0XDP2PoztiQkcrkCjV+tckfx8nDj5R3k5ptNQeRdCpTkLKkyEVgfwLKCkoovc0LVJiU/GHZxMiQEsOUtqIksQNMWs5WMXELUV5p+yRFw8i8CGZhBLNO2CZKhsCKYqtO2hYlCcUt0Ri1tYfbVIcwefJpzdUndhm200g1yymCpBOCoDHRlSdHuZERkFE8HtAe1UgfOz+Z0xuo53Hq8PgcyeDL7FGgnL4okikcguVuyKvqt7SMfmKovoeEG+BSbcyrJwscHldtkm5gzExR3fNIpTmQsV9JU3FJAff95WzPMSEEhwztnHVZXbo2Z/J3S+mWQcTvYUd2Z9aMlRw2vGtawgQwbFh3vvhiLkcc0ZXnX/iWbycsBmD2nDUMHdyJBg3s2D35+RHy8iJUVFRx2mkHc+EFh2Xdh1Ro1bohp5+V2iwZCocYdfpAPnzqS4adMiijMju1bczvb052TH/mo8k8/eH3GIbgkwcvp2FJIUvWb+GRt8dzcJfWXDQq/coxKSVXvvQO3y1bxQOnHcOxvbompZm/ZhMXPvoqAA9dfAKj+gZf72g4zGVD7PremDHHPX7ZoQdzQ5otVP526gl8v3INA1tn7zdkWZJrnn2Hiqo4K7Zs5+8XnZQ2fU2tmmu27uCruUtBwt8/ncQTl57siW+1cqOtwO7YXcGu8soak6ZcRPAs4DgtS9cz2PnZL3AVKE/ytOWkgK5eaYQnpcokSfKxCWqEdBQm/9VUZaWd20TqvnhIlAEYBpZlISrtveSoMhEx2wFGxE2ojNmvPRXu6jhZGEkoLNgqimUIzDwnqKJyYA6a2J2XoX2WwlGZUhEe9dEJ4ohpkwnphC0QcTy+Ta6Koo+DSKg+/lV4qm26mcwzYGYiL0K65EYK7QKptikfJVMkrIjKlKbGwyEzViTRLxHXVCk0NQzpmjJR9avbSSlO+rjuwRP0ElVWyG6Xf0xdB3DHx9/K8vHxc4gIvt+DW2aKrVvL2Li+lO49WwYqE7//4xls3rSTps2ClQEdn382h/LKGBs27qg27e2/OYFfOyv28vLCfPnVPABat25AcXEiblP9+oU89+zlbN1WRvf9sIfcdQ+dz9V/PnevVxbWK7IVnIJohGjYvj2e+2wq385bwbfzVnDy4J7UK0odr2p3ZYzxi1cA8Pn8pYGkKWhSMS2L1yfNJj8S5qSBPZKucd+WzYiEQkgpOb5nV/LCYb5ZvJzV23dw5oBeblvLKmNsKitjZOcONek+QkD7Jg2Yv3YTXZo1Spnu3lNHMbx7Bwa0q5lDd+uG9RjdqzOfz1rMpAUrefO72Zw5tK97/qKjBxIJh+jYvKEbbb0myPk0ZQElO2g/9ZO2TdFJj/bdX05akuLc/8KpSy9LBqlM/vICJnChffakUeEL1MRfEx8o1UYhkJYTp8kE4tJeOSexZ2LTRMRNZFWVTajy8yEawYpGMKPCjqvkON8kzHIiaV8KzxJ8ZXLSx8inMHm6LrR3H7FySZR0i/LmU3nVeKoylIpDoiFpR1H4Prtj7xzzKF5CcRu3Lf7IFp57zXFGN9Q4Gc44hsAMS5uEGlJTwhKNkQ750k1+esBPt11OpdrHJJXL07kskPNp2gdYsmgDv7n5FZo0KeGhv59PQZ0o5eWVXHrBvygrq+Sa60dx6unJakooZNCseb2M6ti1q8LzXh0UETnu2L4MH9aNeNyisDAviaA0aVJCkzSr1+bMW8vK1VsZPbJHtXuzZYtdpeW89JcPaNa6ESdfMaLGjt3nHNmf7m2b0qJhCcV1bHVjRJ+OfDp9Ef06tEhaju9HUX4etx19BBOWruTywwcGpuneuinP3nAm5RUxDu3eDoBPZizi/978EoBm9YoZ3MUbq6hzk0Z8c+NlWFLSuKiQFVu3c+XL7wBQWRXn0kMPpjIe5+inn2djWRn3jh7Jef37ki2EELx0zVms3b6T9o3rp0xXmBfl+H41dw43DMHNxx/GV7OXYFqSb+Yt4+h+XanrjG9hfpQrjh9c4/IVckpTdpD+zwH/RxkTppRDKwLPBeYzRLL5LzCT7zOJSTWlua0a00qCTGj5wgJLgmEaSCtsp1F7zFWZYFk2GcyLQjSMlRdBhg2MOMiws0ccjsnLMZ/pbU9qs6aKqO96pHWd8HjIiU6WVF81HyfiIKtIKH3CaY+TVmrhCNQc7lGVfNfDf+0k2KvYdF8t8BImPYaS03ZD76vTLo+pL2yXFxeJMiVghaVjQpRukEovwdMcvR3Sa5g+sqSNhQov4BItK/EDQpFP4VNBM0FOadoH+H7iEnaUlrOjtJzlyzbRo1crYrE45eV2mNJt22oWCHPihMW8+OK3nHBCf+657zTGf7OAw44IUEGqQZ06NTOTbN1WxvW/fhnLkmzeuouLfpHeAT1bfPDsN7z39DcA9D2sCx1quPGvEIL+nb3qyZH9OvP9XztVG4195Zbt/Pe7HxjVqxMXHXpQ2rQDOnjraFqvyDaxGwaNSuoE5mlYmDhemBclPxKmoipOoyL7eHlVFZvKygBYutUO8TBp8Uren7GAc4b0pXfr6lcVAuRFwnRo0iCjtHuD1g3r8cRlp3DFk28xbsEKnv5yMjefcESt1pGL05Ql/CqBzyznUYWS8mqZMxjWQM6ikZps5g5XDVDfBa5vSJAFKaO2BdXvEBVTxWWKGISkRFbGCcVNZFXcjgYuBEQl0jQRVXFESCBMAWHDIRIiwYVUPYbXuVs3UaXkK/7OaGlds5oV0BdFhqT3vHR8gVxOKRJpRJWWz/AUFTymqmztXehExRKuH5EiUa6ZTJEiI1G4rvyodxmSiRVzOjEzHZqkiI/UVDafic495oyZpYgeeDc2Vm0zk9uUKf7n4zTFYjGWL19Ox44dCYdrh38ddVwf5sxeTZOmdenqmLnq1Svkzw+dw7Jlmzj2+H4p827ZuovpM1bSvFldJkxYzOhRvejorKR7/vnxLFmykX//+yuOP6Efp52Zme9PbSESCRGNhKmorKLQR7wsS7JyzVZat6hf41VsXfq3wwgZ1G1YROOWyRO+aVk88+kUYvE4lx9zCNFIGNOy2LqrnCZ1q99TLZPta+59+wsmL1vNu9PnMfHuq7Nq/8EdW/H+7RcRDhkpna91NC4q5ONrL2Lr7nJ6tbDjdtUvKOCJU8bww4YNXHzwAAB+8+onbCkrZ/GGLbx+w7mBZb0xaTafz1rMNccOoU9br0O2dDZt3VRWxn2ffkX7hvW5ZcRhGLUUoqFvuxY0Lilk887ddG5eO/vN6fhfUpr2+nmkKzKG9tk5l0SYdAUmsBwtP+DuO1HdkOv/a8L3nmKW8phPVH7XPCUSZiI9Q7p2JDmBOx8te2xkFKQIIS2QMYtQRQzK90Blpd3PSARhhBxTnrQnQsPAzDcw8wVW1A5mqbdDOoEWXZggdCXKpzq5Q6IrJKrfykmagCEXTj1W4qTEVpqsEBhVuHGMVN0hJ6Kk6Xc+xzemamgltm+cOmzaW6YYMYccKSLmIzKqPLVZrtDah5FQnqQAMyoTjt8C2ywnwDCFp7/qm2qXCpQp/PUKm3zJKAnn+bid1qjSyV6iXTmlKUOUl5dz/fXX8/zzzwOwaNEiOnTowA033ECLFi34zW9+U+MGNW5Swv0PnZN0vN+AdvQb0C5t3pt/9V9Wr9lGnWiYPXuqmDRpCc8/dwUAxx/fjyef/IoxY/rXuG17g5LiAp79x8Vs2LiD/n29pqcH//EpH342m0ED2vGXe86oUfkHDe/Of+c8QF5+hGjA/nUT563gHx9MBKBNk/qceEgPLv/3W0xeupqrRw/mmtGD+WzWYmJxk+MP6lYj817X5o2YvGw1nZvVLJZW2zTmsCA0r1tM87re5f6jOndkVGc7DtL7U+exY/seBDCoY+vAMixL8n9vfIFp2cumn7jyVPfc7soYZ/zzZdaV7mRg59Z8s3wFACf07Eb3prVDcOrkRfjgtovYUV5B8/o1911Khf8F0lRbzyP3l7jQncG9PMW73DoAAXn85zJFKrVHeBIkp3VNVuqYnywlZw9so9/05QkIaQgsQ2IICZYJsRjWngqoqADDQETCCNOEikqEEBghAzMvwWR0txVLjak+ATumMY+Plqb6uA3UOuEuwQ/oi6fDTllqWb+7P1ull7N5pTv7ZZggnf3idDVIOW+LeIJUJBFUXVXS26N1TfrqlNJup1uXRuSMuOPbbWpNDbw/fbTRN/7u/aFIUYyE2iXttGbI4WbKJOcb+0zxcyBNNfK4uv3225k1axZff/01+fkJH5dRo0bx6quv1qghSxdv5J7bX+ej92cknSstLWfK1OVUVZkBORNQ83yBo+S0b5+Y2MacNID3P7iFSy8b7h6zLMlnX8xl8pRl7rHvpy7jiuue4613p1FZWcVjj3/Go3//jMrKKvYWLZrXY0C/5CX2y1ZsAWD5yi17VX5xvTqBhAmgXdMGjnN3iM4tbAfn2avXAzBzxTqmLFnDrc9/yB3/+YTPf1hSo/pvO34YH9x8IU9dGhw/6cfGpzMWYUlJCLjxmGBzqGEIRvXpTMgQSav4lm7exvIt26k0TcYvXEFeOETXJo1o16BerbazTl40I8IUNy2mLFiVVdnqIZXu9VNHrT2PBE6YAaWAaEqISx5E4qU7Ggstv/7ynBfJ5wNfeJetaxOhTpi8E6XQylf5RVIfVDqZqi163/QX3vqFs+FuuNIivHMPYsduKC9HSomRn48RjULIQITDEAph5UeIF4WJ1xHEC4QbyNKz3YkyMel91QmVTqI0k5KhpRVGohy3rd4hTFxLlU7avkSGo8AYUqvb8F1eR3UKWZpPkOEMWRxC6lUF4Zj9ClU5L9Oph4S642mX/5qrEALqpSd2iI8QYEiBkAIDA0MabvsTyYUWJgDP9ihCN4cKrV16Wl95bhMCCVp6ZPI8OtCfSTVSmt555x1effVVBg8e7CEAPXr0YOnSpTVqyAvPjGPi+EVM+nYxo47uTTRqN01KyTXXPs+GDTsYM6Y/N/7y6JRlPPzgOcyYtYqDD2rPtq1ltEkRPdw07Z8qYz+fw5+dveSe/MdFdOrYlBdfnsiiJRtZsWor9UoKePvd6QD07tmSkSOC4yQFYd6i9ezaVcGgAe0QQlC6s5wVq7fSu1vLJAfy2395LB9+/gMjDq2dqNNBaN24HmP/eDlSSoodZ+OHzz+Rz+cs5vzDBxBT2x1IXGfkbCGEoH3jfe8LlA7LN25j7KxFHDegG5ePHkR5rIoje3ciEkpt9nzwwuOxLJlkguzVoilHduvIl3OXIoCHTjiW0T067bfo6X9/+1ue+2BCVnn+F5SmWnseSUA6gQidGdrjF+SbtIImjEx+fKdSkDIpQNcMJP4Pfr+XRPtTFZ3UL+e7p406aVRKjxRYEYgVhpENCgkLgVGQZ+83F40iC/KQkTAyEsYqiNqmOCltYuFY8KyocFd+KfVC6OafoLYqs5qu5jhtSxI/ZPJnl3epPjmrzzz+RvogCz0THhOhAWBCKJZQalwRxvCWkaSA+a6/a5JTEcd1FSqeSONplglUgh3WwCbHrn+TetwZOJEqnVw6IZUkgnsqc6GVqM9dNWiAlWcLioapNcTE3asuU/wclKYakabNmzfTpElylOvdu3fXeEI5ZGgnvpuwmAED23tiJ0kJZWWVAJRVs9qtQYMijnSITd0Se1n8txMX8dgTX9C3d2vu+NXxrFtfyjU3vIAwBBc7sZQMQ5CXZys0xx/TlxUrt3Ds0X3o2rU5xcX5IKFr1+bBlQZg+aotXH3rS0jgnltPYNihXbnkpufZvLWMc087hKvO9zr7tmvdkGsvHpFx+TVFkS/Wz2Hd2nFYt3bu97d+fQFVpkm3lnsXwXx/4pfPvseKTdv5as5S/nvzuTxzbWbmziCfLcMQHNGpHV/NsSfesDBqjTBVxU0Wrd9Cl+aNiGTox7arvDLreuxnYeo210BhP+BQa88jgaYOCd8MJbyTXTofP+F71+BO2NKXRvMr8RIY54sbpiCRNqlMt62+9urSQFDb/PYGfxo9WKdjQxLYgSxDVZJQpYlRZdqTczgCeXnISATCIWReBJkXwiwIYRaoKODCdiLXFSZ8Koe/b+qAQ2o8wpM6r8iXrlb5roGlyJ8bFMmrqrjXwBeuQB9s//BIX5uTAlsmjSfJENizsdq0V+A6pKMd8tw6jglZauWqIJd6HUI5navP0tvewN8B+jgpUqkqNrQ3LUJ5JqjueaTSHMioEWkaOHAgH374Iddffz2A+2B68sknGTIkddDBdDjuxP6MOro3kUjI86AzDMGjj5zLzFmrOHJk5kqPwl8e/ZTSHeV89uVczjtnCIsWb2CnQ76Kiwr421/Ppagon9atbIXk2KN6c+xRvVmxcguLl2zktf9cTTgcyspB27Kke+FNS2JZFjvL7DpLS8uz7sOPhY419EX6MVBlmixYs5kuLRqRlyZcQ/N6xazYtB0M6H/f3zi6Z2f+dFoiQvp7M+fz+dzFXDn8EHq2rH7j58Gd2tC0pIiCaJh+bTInzukQi8e58O+vMWf1Rob37MDfLjkpo3w3nn4ErRsUcPHzmdf1v6A01ebzSLrTU8KvSScle+XTFJBO/56UJyhNonn+hrvHpVA9EYm2KGVF+5zUXr8y4idWjn8L0r5vRERibxqXb6tIpmWvnJMSGTGIF+dh5ocx8w2sPIGU9vY0Ig6G0z61/xoqDpJmElJNkFoawiDjdhgooZE9N+Cl4btGev80R2q1CsxdTq/OKzIRNL5+supjNMp524qAqaKHq9V4Kr/GPd3r6IuP5ELYSpDnuz+No865bVffQwnypIJsIpz/DXUfOeldR3o1PhJvKAITD8lE60O2IZX+Z5Wm+++/n2OOOYZ58+YRj8d59NFHmTt3LpMmTeKbb76pcWOUSc6P9u0be/yTskGf3q0Z9+1CCgvzaNakhKaNSzjh2L4YhuDQIZ1chUlH2e5KrrrueSpjcS4871AuOj+76N4d2zXm8T+dw45dFRw6qCNCCP72h7OZNW8Nxx/Zu0b9+F/HHf/5hE9nLmJwlzb8+6pkn6mlW7Zx8UtvUjc/jyeuPIVnJ02nYmuc92bN5/9OOYqQYSCl5K43xxK3LMpjVTx1cfW+V20a1uPL2y+v1b48+uEE5qzaCAJWbt6ecb7iOnmcekQfLs6irv8F0lRrzyPNX0k3+3gCW0qVLriIJNUnKI32o9D9pAd8VcqOf4ZMx8TUhGrY+ZMCWupEyEc2ksoIWjGoTDsShGMXk9IOdmnb2mwJSAiBNAwsw0AikE5EbAvs4JaG4Uy22hjqpiFNCUFqfdLS6QqMO4h+8hdA/NxrqnUnCEnE0n8uYNzc8QolHLcDCYXwlSHw+Bh5xkS6Q+4e92/d4mmL1BNLDyFT4Q30vaOD2ga4JDJxb2ITJ33sBcmO9xngf5Y0DR06lIkTJ/Lggw/SsWNHxo4dy4ABA5g0aRK9e//4pGDi90tYuGgDp598sG1O03DfXSezZesuGtQvxHC2qbjlxur3Zttb9O7hjZPUvXNzuncOVipe/3g6381cwZXnHEaXdj9d09i+xNqtOwB7+5EgjFuynI27yti4qwwREVwz4hAq4nGO6tnJ3Z5ECMGwru35cv5Shnfr8KO13Q/1oIkYBg+ce1xGeZat38rEuSsoCGX3mPpfIE219TxKIkga4fATEDeNnj/gWLqtV0SqdOm2YSExaSW13Sk/YV7y9wVP291aVN50e945hQt1wLCnVSsvhIxYyJDt8G2b6AxEyMAQyhQjkFFHbYqADAk3qreQjp+MImS6WkJCLXFJg3+lmNNfjynJ10/3s6akJF2IpOumvesMQil5WugBVb/yJXLP+8bOJYGqX0q9U35aKrkiNj7jhgpT4C/W7YIkES0cO5CoO64qXQibAPnvB73fYRLhGKRmhtOUsiTzcob4nyRNVVVVXHHFFfz2t791l/juT5SWlnPnvW/avk+7K7j+qlFJaRo1zG4X+qLCPP759wtZsXILh9VgH7xssKeiikee/QoJFORF+EPAfnCZYvqUZaxcvoXjTuofqKD9lPGn847j/WnzOKpvl8DzJ/TqxoRlq6hfp4CD27QkGg7z0mVnJqV77NwTicVN8iJhpJS8PHUW63fs4qrDD8l4g98NO3YRDYdoUBgchLM63HDsUNZt28HuylhGTvdSSi576DVKd1dgxjKLYq/wcydNtf48ktIlDx7q4pskqqOumVDbVGmquyJ6U/zqiVQqU5p6PN8DCFO6tnuGwZl0zZBBKCwwwiFHYTGwhLDnWQt7q5W4dMQzkayMKGdiLX6RSzA09cNN71dm1DHHTOW2M6gv+qTvN4Wpj0EDoAt+DkGSmilQgodI+feOCypPYsdZko5qoxzRfds5e+FnS/oxva0WgQWoWK1uYE+hNVFqfXFWFar0elynmhIm+HmQpqxDDkQiEd5+++190ZYaoaAgQv16hQC0DgjqWFO0a9uI4Ud0q3GwyUyRnxdmyID2hEMGhw/sVONytmzeyW9ufIV/PDKWV1+cWIstPDDQpnE9rj1mKJ2bB+8H17iokKd+cQoPnnyMuw9dEIQQrk/UvA2buO/jr3hy4lTufG9sRu2YunwNox58mlEPPs3qbaVZ9wNgXekuvpi7lO+WrOaVCTMzylMnPzNC54ftR5L+9VNGrT6Pkpboa6qSu4TfZ75JeonEKynkQMAL79xjk5EU18SXxyUGhoCQ0MINaHX7whfIgPqlyKCd2kuofmJP9OEqi1BcYgjDWTkXReaFIWRA2A5iaUUFMiqQYWETBScoo8BZhi8dzqGUJrzt1tO51XuuDV6VyR8ywdCGUHrrEVq/hEjU6ScFiiha+WBFsVe6RbClB/U5hFfgk8mX0/bRklgRkFE9n3B9jpLaro8/3u/4vgsjMFqFnSxVHv17iIRTekQbp4BXtsjkeXSgP5NqZJ475ZRTeOedd7j55ptruz2AHRLg9394l5Urt3D3b09O8meKxeJM/G4JXTo3o0Xzejz/5GVs3VpGu7apN1jdW5TuKOf2e97EsiT3/+40GtQvrJVyhRD85TenBi55T4eVSzfxxYezGHFsH9p3bko0L0J+foQ9e2LUb1B9hO+fKlZs285HCxZxXPeutKtfb6/KalZSjCEElpR8t2J1ZvVv2Y4lJRVVcdaX7qJ1DWI2taxfQrcWjVm+ebtn9WIqCCF44dfnMGneCtZt2sIVz2ReV9zd/CrN+Z84au95JL0/zmWKn+L6r32h565prb7P+ko5NJKGUjcEhpnIJdXMLPAIKUnkqLp69ck0IE3QLCkNiRkVGIURZNRAmhIrGrKJUkRbLQdOwETbvqXMbx74Qg0I0yfW6GqP3iyLhK9OKHG7+1eRuRl9KlDgHK3K8x8SIOJgRWzSk+zoLdy2pjNlCQBLIqXNFmUEsBzS5JST1B6lpPnLVQUG9VWvV7s/1B6AYJfr7iXnECRLJNQ0K2SHVcC0Y1D596vLBtU9j9w0BzBqRJo6derE73//eyZOnMhBBx1EYaGXQNxwww171agVK7YwbtxCAD77bA5XXDHCc/5fz3zNm+9Mo7g4n7devo7ionyKi2oWWyhTTJuxkvkL7WCQk6cu55jRvWq1/GwIE8D9t73GiiWbmPjlfJ565wZKSgp4+pWr2LxpJ917tqy+gJ8gymNVXP32+yzespWPFy7m/YvP26vyGhbW4aYRh/KvCZO5ZEj6vfIUxvTvwdbdeyjJz2Ng+5rt75cXCfPaTefagTeNzB4QDUrqcPzgHuzcuZMrsqirul9uB/qvukxQa88jv8oEeH9a+xQZf14Cjldbp++7DCjCqVtir8wyYlpbPG3U2uCLE5RUn7+9fgWimjaCxLAgFBeEqqSzrYYBUSAvjIwYNnHKMzDzHAIVBQyRLKS5rMhXlVKPVPOcNEErGN2l9ikUJhe+zWlV3W5x6ruHsSbOSQFWVNp90bZ40UmOUMf0InxtlgI3aKU0wIgJ1Ja6brtIFOC/bPjTBH3316uPsU89Qrh8NqE2OeNnxJz3Km+xKetMg0yUpAP9mVQj0vTUU09Rr149pk2bxrRp0zznhBB7TZratm3I4Yd3YdWqrYwa1TPpvGVJz/uPgUEHtadf79aYlmTwwP3nRKzQun1jVizZROt2CXWtcZMSGjfJfisOKSXfzFpGOGRwWO/2tdnMWsMbs+dw+ydjKY7YsaaaFdeOmnbFYQO54rCBGaePhkNcOXzv9y3cuqucjTt20aNV030aLPPn7tMEtfc8kp5f8NrP9FS/4J3T/kOZQqKpIZIk9cUzbzq//M2wvX1JKI4nuGOq5qV2z0nIZOkUKM8xfz0GxPMEVihMuCKEMKWtnhi2Gc6KCswomBHbnAV4tucI6qinbhVoMaRdGx3Cl5bkS5f0WWh+PU5a97P+3dc+gXMNwkolIqH6WEA8oUJ6whpo5epL+hFA3PkSdcx1RoLQBA64torQMrzfhUliPzifAiS1vEJg+5mp+1bgbiWjxlGtZJRhO7OZ53QtagcmNSqddQA1wM/Bp6lGpGn58uW13Q4PwuEQv7v31JTnr7p0OD26taBbl+aeQJj7EsXF+Tzy5+Q98fYXfnP/6Zx96RG07bj3q+3Gz17OLf94D4B/3XI6B3cN3qftx8RfPxzP1/OWcecpIzikUxu+XbESCeyMVfLsGacyqE3NVJ4DATv3VHDin5+jrCLGb087kjOH9Nlnde0LpWncuHE8+OCDTJs2jfXr1/P2229z8skn70Ur9w619jzyKy2ampNkptLSSPz5EklTzi2eSc0OFunLiqWpQZbA9l0ioZTIVOpWoLKkVav3SzsfuIweAh3L7RY7rM2yP9uTs22Os8L2y3TMc9IQCcXET5h08ucnVJAIR6BOhbR8QQqZJqG4JjVVr1/J0wiS/7ifeEhh78HmtsEhTMIU3tV+JPqkd0n6Dgqcayq9NkI1vjokCTKnwjioLImgnIn7w93oV5Igd4ow4cRmTXFzumTc2yx7c2YzxXhliH2hNP3Yz6MakaZ9DdO0+NVt/2XJko3c97tT6de3red8Xl6E0SOTFaiPP5vN+O8Wc9E5Q+nSqdmP1dz9glA4RMdu6YMtVsSqyIuEUyoZ67bu4MZ/vOe5+dMFjoybFi+Nm040FOLsw/plbVLMFHtiVTzz9VQAXp4wi0M6teH6oXaQwqFt23B4h3Yp805cupLPFyzlvEP60aFR8sIAKSVPz5jGul27uHHwUEry8gJKqR6mZTF3/SaalRQRDoVoUKcg47wVsTi7K2MAbNxRVqP6M4Ws5pddTUjT7t276du3LxdffDGnnXZg7DNY2/D80Bfg9xnypNPTBpxz5yef8qGUJuksA0/E6xEedcDSlugbavbUiEFK+NvvO663PbAfImAcFGGTQMRul4wKzDrCDlppJvpkhUFGbNXJLSYhcCVUoSCy5jMleT5bJMIM6Hl1kqOdD+SC/oPSJgUiFZlw+iSjIEMisTGveidRn640eWIwKaLlDqy00zgO/G4YhnjwmLt9MxwVSI2jBTJGso+RIkyqPUoM09ukwh4oQqkirscThMtywiiICC6B9bcpU1T3PFJpssGP/TyqEWm65JJL0p5/5pksPFV92L59Nx99NIuZM1eCEIz/dlESaQqCaVr8+bFPsCxJPG5x/92nsnnrLpo2Ltlve4XtT7w7fg5/eH4sB3VtzRO3nh44Bl/NXMqSdfYmwTefeQT9O7WkZ7vUZPOj6Qv46zvjQdh72R3evb17buvucv7y5be0rV+XAa1a0LJeXVrWy95UCFAQjXD20L58PXcppx9i+451bNiAR0483pNu2oq1XPXiO7RrWI+XLj+LvEiY61/9gN2xGCu2bueZC5L/geZs2sQfx48DoHGdQq4eWL2pbd6GTTQuKqRxUSGV8TiXvPo2s9dvoGJPnJDzlL3nmJGc2q9n2pV7Ck3qFvHEZaewZMPWQJVpd2WMbxeu4KD2LWlUvHcLDiQEmza089ni2GOP5dhjj61pk2odtfo80hQkd0LXZ/cMHyX+uct/LFGf8ExAnjSuKUs6PumJyi014YHXedrfCK39MovnYCrnaA8R1EiLBAzDjh6gAjzKkC+8AL7PugyToj43HIE2iB6zpJ5XOYDrpEwjHSqfh8RqUIQpsDlOW0TcaZNMKDqeEAXKJCdIdnZXASI1witMnWzZkpEQmornbSGKaOmxloRTplShvYWd1hMiQC9OI4ae6yi83BoJOGZgwnY9SmlKe0+nQXXPo5qU+WM/j2pEmrZv3+75XlVVxZw5cygtLWXkyJF71aD7fvc2P/ywmnr16tC2QyMwBE8+8w0XnndoyojhAKGQwZCBHZk4eSlDB3XkrvvfYcLkpZx2wgB+ecWRe9WmAw1zlqznk2/nMWZ475TBMCfOXo6UMG3haipjcfID4jYd2b8zn05dSN3CfE47vA8F1cR2+nTKQkJxwICWDbyE6KUpM3lz1lzAfhDUiYT58sbLqJ+FAqPjrlNGctcp6e+lbxYuY3dljLnrNrFqWymdmzaiR/PGTFm5ll4tgrdIaVVSQsOCOpRW7KFvs+rVyNdmzuaujz6nKC/KV9dcytqdO5m8ao190nD86ky494Mv+WLBMp4875SM+ndo13Yc2rVd4Lk7XvuUz+csoUOTBrx/y4UZlZcKFsrBNPV5gJ07d3qO5+XlkVdDFe7HRq09j3TC5PluH/Ms14dg81iqz2650lUA1FJ/bZ5LZFMTIU7asP3FUDN6hMSE6BTrmbx1FUZXmvyEQvjSp22/9q4rZhJ71ZhjMrJXXXnrSyEI2d8VAdRJlB4Z3J+ehE+NtHA3lXXDEwjnuzLjmb6m633V6nPHUU8Mif3upO3P4422Xv1wgd2PkCkS/Nglk/YAWmFpt78KTZFK1C802U+4rJHEPaAFy3RXJ/rHzk9SfYTWba9GCkPOCkbL8XsyHEXUvV+zXOhW3fNIpYED95lUI9IUFBfFsiyuueYaOnTYOyfpiEOMmjWty9lnDeY3d70BQKuW9Tn26PS+H//321OoiptEI2Gee20SAHMXrtur9hyI+O3fPmD9lp3MWriWF++/IDDNFSfZ5qwhvdoFEiaAZg2KeeG2zP20yvfYJqXGxYV0aOrdp+7gNi2JGAYFkQi7yiupjJvEzCy3wM4SZw3qy6KNW+jYuCEdG9vtefaC09mwc1dKlat+QQHfXnIZFfE4dfOrX3G5YadtPttdGaO8qoqujRtxRt9eLNy0mQHNm4MUfDh7Adt272Ft6c5qSssMcWfc4maWu2EGIFOfptatvX5s99xzD/fee+9e1/9joNaeR+5EJD1KUza/fIPSeiZJbaISZnDJEomwJIYJllptFrZXoElLuluNgKa6+BvgkIlEfd4+BbbZr0ZU10+NEEmR5PecTML8dWsNT7enniIA7hBauKYsz+p0h8go3xvd5KXIkK5ySCe/8Kk/SSQi1Vj461fQHK19XfGk0VfoCSlcJugZWzWoUhs8nTDpBM4pVxrSMfcKd0Wc/ZLuqjipyJVM9N8yEoTIs8JQglDmP4cUW8K5DtXcJ0ljkIVP04H6TKo1nybDMLjpppsYPnw4v/71r2tczt13n8y0aSvo168N5XtiFBREiVeZdOxQvcOzEIL/Z++84+Oorrf/vTO7apZlyb3LvTeMAYNtOqb33nsCJIE00hsJhPxSSScQEiCEHgi9l1BMtY0NGIx775Zlq+/O3PePe+/MndldSSuvwYnfw2fR7szts5559jnnPqdIx+Rc940TeP4/Czjp6EkdHkuhbPmaLfz2jpcYO7wvl51+QOTcxi07qOpS1u5M9wCjBvdi3ebtjBqcO+Hs0H7d+b+rOq4uns1+cuGRPP7WRxw6KVOEc9qQat699iqklDw6/2OG9uhKrwLtcDPmS6l/NKt/VP2qKrj5giizk3Ad+ld1abWd4kSC4na40QAu338K5cVFDO3elT4VSln+p8ccESlzzpSJPP7+xxwzLrtaeb720zOO4sUFS5g6bOBOt+VLkan5EjsPsGrVKioqQqC5O/yi2xnr0P0oeCpbaMDRnyPshIgCoVbfx6gWvX3KxMHYFsTgaD0ck47DK3LwSkTIOADofwuGqVLHQgYgzopl5JPLOG/9bYUyCTCFCPvKOd+Mc7F2bXYpvhuMkGnKwJvC+mvXdVE6TVqcUSasNmzgRMiIGSBgX+KMoVofzNwN4IqPWZolaAVohVhJ2IfDSqaMjJ4L8ZwOww++n0TAnuOLkAAyZXSKlxDZiigQFeG47bUyTUSmY0BbNh2sNqyt+5EpA7vvPamggeBLliwhnU63u/z9973FqJEDmX7gyOBYeXkJBx00CoAuXcp48O6r8H1JeZ46TBPH9mfi2I7vsFq3aTudSpNUlLfPvSSlpLEpRVlppnLz/U/O4a15K3hr3gpOOHQ8PXVal3uems1v//kfhg3ozh+/czrrt+xgRHWPNmOwbrj6eNZuqqVfz9bBQaGtf/dKrjg2d9b40qRitM6aUvjdYO+vXc8Fdz5I59JiHrzkbHoWGJDlstJkkkv2a13DaXD3Kr50yP489+Ei5q5Yy8mTx7ZbfymbdSkr4eQpmRsdOmJS0npMkz5XUVERuUH9L1i+9yNj0mZlfCyfmD5vP31DDJPxAMm57PqBazwr0gXhSdyU+YUvFaMkUerOKUmiIWRFInpFjo5v0kNy0oQNQ6gELq2nYGSumeOOxBzlmocBXzLLMbu9WPsBSZIN2NnMiRMCECdb4HHcPSUJXHVhnjQZpgvxMy+OSThrJ7LNyYRpkGWAUmTsJhA8C0sWbzIwe87me2Yds8UmTahSxnWw19BihqSQigkSWvnJs4YTyB5IPW8LjJnvEwSsnMBaT9vlJ9R65xuA1Nb9yJSB3fee1CHQFFfelVKybt06nnjiCS688MJ2t3PX7a+SSJRw5z1X0rdvVeTcS698xG/+8ByHHDiKr3xxZuTcvx6dzXMvL+Cy82cwZa9BHZlCq/b6nKV842cPU1ZaxL2/vYRula0H40opufr79zHvw9V8/cojOGHmxMj5A/cZxlOvLGD00N50s5TEP1q6HoClazZz7vf+waaaOq46fToXHt96cLLjCPr3quzY5Hah+VKyaPMWBlVVtpvJaa+9vnQl9akU9ekUl9/7bx65fOeELQtt81ev55p7HgfAEQ6n7F0Y0PPaR8t5YNY8zpw+iQNGVuddf08QtyzU/QjIYIakZpqicTDRMpH3WZidaPsEbJP5LKQCBgG+0MDIqDGb3CHCiicJL5sIH5gmaNdmQSJUgjWGOK0irOefdTw8luN7kqNetnWxAVNGGTOG6NKo8ua9iD7cI/Ow5iuNC8o1D3ZBvEs7rQpAPB4sAAxmDLG4KZvd0WFJNlEUABjznrB4dJ0sliwrMgrYw+iJqOvVKmdoNGsuGdfbGlOsKxt/RXYSOvY1yYrg2md7rLjl3LlzI58dx6FHjx786le/anMnS9xKy4qyskhPPfs+27c38ugT73H1lYfjuuEv9z/d9hLptM8/7ntjl4CmFau3IIH6xha2bKtvEzS1tKSZt2A1EnjnvRUZoGnqpMG8eOfVGQzSlWfOoKK8hAnD+3HdrU8DsHZzbSGn0iGb+8lq5i5awykHTaCynUwbwA+ffYF75r3PvgP6c9eZp/HSwqX0rihndJ+eOy1PcNqksdz25rvUNjUXJNan0FZRUkzCcUj7Pt3KO5bIF6CuqZlbX3yb/l27cPrUCVz/4AusrdnO4vVbeOK7+f3bgl0Dmurq6li8eHHwedmyZbz33nt07dqVgQN33qWYrxXyfiQtasQ8mDIYkbBwzmMy68lMC9gEs+08rZS2EeqXfaJZItMgPGmJR4JMOKSLhdoCTzTwN3ie2YyURlORnWX2sLMxZe2YQgazlON9RjmrjE0aBcvmRp/9xq1kB2EHLjJTL84MgQ6qlirGSVghyBIrcJoQCIhoGwa8GiBm6gaxQi4ZYCRgiXwF2uxddMKxxm70luyceRZqCQhP0541LnscZh1DdlFVDNZTs0R2LFgQ1ySkUmkPvofWd9KKJZOWO9lcy45sSt8VoOnTvh91CDS99NJLBRvAtd86loqKzAfzWaftR01NAwfPGBkBTADHHzWRZ178kKMPH1+wcdh2ypGTaGpJ07Nb55y702wrLk7y7S8exdvvLefC07O7r7K53Pp0r+DrF6qdfV0ry5j3yVpOO2xiRrlP05qaU3zh1/+iJe2xZlMt379oZtuVtC3eshWApVu2ctdbc7nxqf8A0KdLZx6+6jy6lHY81U338k48evn5PP3xIg4fMbTN8n986U1e+WQZ3z7mYCYNaF3PKh9rTKX46XMvI4HvHnFw4JIc1L2Kx665kIaWFkb36bjg6J2vzuG2l5RG1cTqvhw6fih3vTKXw8Z3LJlze2Oa8rF3332XQw45JPhsmJ4LL7yQ22+/Pe/2dtYKdT+SQVCHeTjnuWPOZnWylWnt17lhJvSDKnTPSERKgicRnq/AgxaLFOahjECYfeC6b/NgC+aRbZy2ZczBPicyysrY56xthVMLMY1ZGhus5AKldmXrc1agZl8ju4qnX8T2bAkCIGYzQ1h1BRb4sk/Y741bLQvzY4Mdm8ExlyrStgG28cnZvw/j625PVpg56Otv962BlykfdBGsmQzcdFjN2e3H1ybbkrTH8olpaq992vejDoGmQw89lIceeojKysrI8e3bt3PSSSfx4osvtqudc8+fxvQZo7Kemzypmlv/eFHWc1++8gi+fOURWc8Z27BpO088N58D9hnGqOH5CV2WFCe55LTcsTvZ7OhDx3H0oR3PRzdlzECmjGkfKl63eTtX/eIBipIJbv7G6VRVdJzZiJvjOFR1LmVDTR29dexVe+3Go2dy/7z3OXLkcOYuC3ctrqvdwdJNW9lrYN+s9V5btJy//OdtTpsyjhMnjcnZfp8unTl90liuuu9R6lpa+NMZJ9C7InOM9c0t/OFFtXvyjllzmHRmVN+pprGRzsWKGcrXXvhkKfe99wEAU6sHcNzY8Ptb3a0y7/bi9sm6zcFNbc3WWr5x0sFcc+z0VkVHW7P2xjTlYwcffLCKkdlNrFD3IyBkExwRe6BnUf7WFgUQbQSJm88GiBhgBAQ+ISt2yWlRDJNIqx11EnSiWKmEI40vSYYPZiJupNg84mNqDUBhjdM6nmsdcoJEAyo0s2MHwRsBxchz0v5n6eqhm7gcE1NkucniuCoIatZ9O0JkuN/ioMAcD1iU2PEI5tVzwAlxTrx/w8TYXlFEyFpJV4bslUFtsTUMgtRjDJiNwBSLlQlqhUClR7GvAUKxULakgWnLxJDZCFfrQQXHvFhP+f/eyiumqb32ad+POhSt+vLLL9PS0pJxvKmpiVdffbXd7Zx5zv453TY7djRy8jl/4MgTf82Cj3PLBixcvJ5TLv4z13z3XlpSYdDnL/74DLff9wZfv+4B0p7PC699zKKlG9o9tt3Z3lqwgtWbalm6dgtzF60pWLs7Gps55Wd3stlv4vuXzOSy46bmVX9QVSXfOHgGE/v05vypk7jhpJnMGD6Iy2fsw8T+2dmetOfz62df490Va/jpEy8D8P6a9Vz2j4e49535GeXfWbGGt1as5sN1G3lh4ZKsbZYVJTl2wki6lBZz/IQoKL9n3nym/PHPnHzX3fjt+If20pKlnHP3/fzi5VfxpWRiv950LSula1kpE/sVjsEyNqxP9+BhcPcb7wGtq7S3ZeomJVp5FWbcn6UV6n4EIQNg3re7UvBeZhyLMC25mtCskK8DuxULIZE6KFyiz7lKIdxPEIn/UW2IgMkIGIV2zKPV8zI2kVxm3cYlWebsaeBjP5B9670NXCwmxnf1vO35xhuPs0x+tI+MB3WOC2KD3SgQjpW3WaZYX/G2g3kY1i/bAmXMSb0x19IckvExZ5tTK10EbfhSI3KJdKX+Tkmd/069DAtmxm9coW19j9uytu9Hu/89Ka+78fz54UNswYIFrF+/PvjseR5PP/00/fr1K8jAHnnyPWpqGgC4719vc913T8pa7uVZn7B5ax2bt9axcvVWhg1WrpG+vSsB6NOrC/c8/Da33PUqiYTDQ7ddSVWXjjEzf7nzFf71+Bw+f8GBnHrc5A61UQg7ePIwXp6zmOJkgqljqwvW7rINW1m1eRsA85av49FXPuDwKSM4+/D85+o6DqdMHsspk3MHRL+2aDlfuPtRqspKSTgOJ+2lWKY/vPwmry1ewawlKzl18liSbijHsE91P/YbNID65hYOH5ndZSWE4JenH5P13LtrFMj8aONGGlIpyosydzsaW7R5C5c/+AgAb69awxEjhjGpbx9ev/pzwRwLbVceth9vfLKCeavWcfi4jrnkbPtfDgQv+P1IEGWYzLEsbIuxSFBzvJzdhiQzRUecVXAUFaOYGKXT5HgEsShSOPhJR+k1uQK/SNEUhkQIWKYgRiYLy5ThEoqNJYM9is4pK8uUra7IPGUzGea4b8f0xCsIFOhxUUrc9nHzEBeEjI0DwsgOOOo+YHa2tfotz1JAQMZ8gutnjT9OAsWmj4jrSDlolUzCRMHBtZIWQBPW0MxiRjsWNsqLrV/GlAL2UaqnvunHt9oK2CsRYcriDUaIsTxvgXtcIPikSZPUNkYhsirtlpaW8vvf/74gA5ux/3D+/o/XkVJy4rF75Sx37BHjmb9gNQP7d2XwwO7B8WsuP4xjDhvPoIHd+NcTcwD02Ds+pseemUdTU4onnpvPqcdNpqk5xb+emEPP7hUcPmPULkvXsqmmjr8/8Rbjh/bl6P1HU1leyk1fPrng/Ywb2JuLDpvC+podrF5bw7zFa3l/yTrOPHSvXZJn7pVFy2nxPDbsqOPZL1/MgK6VAMwcPYzXFi/nsJFDI4AJoLy4mDvPPy2jLSklSzdvpVdFOeWt6Hlcc8D+JB2HqQMHtAqYIPq86FZWytBuXYFdA5aMuY7DXVedSdr3M+beEWuT4djpHj47K/T9KAj8NgfawzjZbIeMpioJkqUSa1fXs11AClAoWkExLAIS6oMQBElwvWIFmvwEWd1dwYPQCVoN+8zyTzgiKqn/yhxl27MMETNzNg/mdGYF48oK3G7xvnXAsu/GpmSYEIvBCTCAzV518AuewTRlPUFUtsC42qxlN+srIeJSBAKBy+Aa2LpPGiCFCX1j49HzFtaFi8gP6DUVMhb8LoViL62xCJ2mRxi2LAIWY8BbSzrYoDEfa88l2d3vSXmBpmXLliGlZMiQIbz99tv06NEjOFdUVETPnj1xC3CjB6ge2J3HH7wagNKS3A+3fr0rGVzdndnzV/L+x2uYNFapiLquE8QynXXiPgzs15X+fauo3In4n6suPphHn57H+Wcot9V3bvw3b89fAagLPfPA0R1uuzX762Nv8tDL83nwxXnsP24QlZ07lpokl937+jzueXUun585la+cMAOAJ95YwEfLNnDElBG7LDHvhfvvxfraHYzq0yMiSHnq5HGcPGlsXv3e9c57XP/0y/TqXM5zX7o4q+TBki1b+f1rbzBtUDUnjckdO2VsWLdu/OuCs9lUV88hQwcjgVvfepci1+X8vSfh7CKQLITIAExLN2zh9pdms087NibY9r/MNBX8fpSxLb91wNFqWfsVtxjrJBAB6AoUmf2QZcIRyKSDX6RUwf2kAFczEXacif1gC9iL6FgymKL4GIPj2aiXtupkOWbmGDAj1mGbFYsAhiz1rXaDXXOCQOE6eO9ax2SUnGnTrGuSdS56PBkMjgEfub4jkWuiGhCELKX9PhvTFGknOE/mj3T9UR0W0a+luf6ujMgVRC+dCIco7fdkvA8q/n+mqXWrrlauIN//dLZ8twaWjG3f0cQjz8wD4NFn5wWgyTbXdZix3/CdHs8xh4/nGGvHXnNzCrMvdFcBC4Cxg3vz0MvzGdCrivIs4pk7a396+g221Tdy6/Nvc8xkFQN07P5jOHb/KLBIeR7bGprosZNJZI31q+rC787Orlqez3pua2zieR3ftKmunsZUOito+v1rb/LER5/w5MefcOzokZQVtZ5rD2Bin3ATwaMLPub/XlYxMtVVlUzu14ez77ufmsYm7jrjNIZ07druMedrv3z0FV79aDmPzHovv4r/w1RToe9H9lLJ4P/Zv4fxZYuLR2YwOMbMw0tGKofZ49GgIKGetCKhCvoJxTTJhMB3hcpyj8ZFVp62aDyWxFadblXIEmtcGsDFUUCcKctgz7KViwAgGQUBEoQngjq2qzMYhwYcAXkmdHyQDgaXRgHcAl2B/EK+dEiWchHmy7qmwTwMW2SuddwdZ/5agClrfzL20ghTuiL6xYwAVhk9DuGOPEdmCqEKBYaQKlYuFLpE7cI0EgyWq1A6Qrk89TyD4HIvijHbbf8DVNNOKRAuWLCAlStXZgRhnnDCCTs1qHysonMJJx45kXfnZeoj7Wq7/lsncc+/36a6fzcOmzayzfJvf7CCvz78BsdMH8NJh7RfNfuEGeM4YMJgunQqIZFHupX22oUHT+auV+Zy7oy9cpbxfcmZv7+Hhes28Z0TD+HcAyYVdAwt6TTXPfki25ua+fFxh+eV6Pfah5/izeWr6FJaws9PPJLKHNIG0wdX8+THC9m7X19KOxBcXV1ZiesIHOHQv0sF89dv4ONNmwH4z7LluxQ0TR7Sj1c/Ws64gb3IDI9vxdr6Zbeb/6rLx3b6fmQ/kCLbnqIWLFnwoBKxz7G2sB6+1kMuFqISnhbmwabe+xpE+UKEfZlf/bZrLtan/UFmOy9y/RWRMlldVSK6DhluNXtiWR+UImgjEI6MrL9VVNcPAKENmmx17mjT+T984yggG8C0gtaFvQZ2sfixbN+DeHkRc6+hmaQ482WdN/jGHA+/Y1LjKaFdeOEaSaECzKO/DiykbekgBNhNRosLXcWR2effqrWDadrd70kdAk1Lly7l5JNP5v3330cIEWz3M3Sht4sTtTY2tfCDXzxG7fZGfvKNE/j6le3XEiqkVXUp46oLD253+VsfeoP5i9Yy/xO1GzAf4NS9S2HYnWx26WH7culhrauQN6XTLFqvAML8lesKDpreWr6af839EID9Bg3gvH3b335S63j16NyJg0cMyVnutAljOWbUCEqTiTbjz2avXcu6HTs4evjwIIapT0U5D19wDj06daJHeScGVHbhpDGjqWlo5PhRmaD5paVLqWtp4biRI3cq3q2+uYU+3St44Ovn0assyd3Xtr/urpAc2N2s0PcjGQdM8YeedaxVwJTt4WkeerarSgiVK82TIVtU7OAVy6iekavim1wTe4L1zMv29YqPJQ724vPOUj/bQz4DMGUDOlbZcOu9BoNYwMcljM/Ktl7GNaRZEEnILskEUdHJ9lhb/wyzARwbyMTIIoNRzIf49wOyfCfifTgyKnBpGJ9c47URtgVwVF0ZPSej8zDXQiJUkL0NFE27GogGOfS0REGQzsVsTgg0sNpvu0Jy4NO2DkW0XnPNNQwePJgNGzZQVlbGhx9+yCuvvMKUKVN4+eWXCzzETJv/0RrenL2Ujxat4+U3Ptnl/dXXNzN77nJaWvLPY2Xb0dOVu0sCt/37zQKMbNdabX0TNz3+Kk/O+ZiyoiS/POcYzpw6gatnqqTDC9Zu5ON1mwrS17i+vRjYtZKqslIOGBLVq2pOpZm3ah2pHA+/n590NDedemzWAPG4lRUl2wQwK7dt48x77+WaJ57gn/PmAfDBhg3M+OtfOeXee9ja1IiUkuJEgl8dczR/O+0UuneKgtq5a9dy2b//zZeffJLHFy5sc1yt2ff+9SzX3vcUV9/9WN5B6G1v7929f9W1xwp1P1JBxZnrkY0sUQ/+EDBF3EtxJiFnhyiAJyVSo4Pw+aVlBgwbIwHPR6R8RIv1SktIS7WdP54LLNi7nzmBTPBnPotwLXKNO9vcsjEu9kvkWsNYWcPmWC+zZd+39ZxyBXrH59vOB3Cuava4ZMbBzAmpOUnN6GhWB/t9tE8g/P5Y/0VrRV8S1T5BPwTfu+iaW+VirWGvsyRMv2MxXmrdpX6F1yGQxnDB62BM03/zPalDTNMbb7zBiy++SI8ePXAcB8dxmD59OjfeeCNXX311RlqDXFa7vbFDCfnGj+rHpLH9qd3RxIz9dn5bdlv2lWvvYdHiDRx+6Bi++63sMTi2pT2fdz5YwdAB3enZNRRfPOXQCfi+z98eeYtzj5myK4dcELvtxbe5/aXZgHIPHTlhBEdOGAHAu8tXc/5tDwBwz+fO2mnV7aqyUp790sVZz131j0d4Y/FKjho/gl+ffWzG+fLiIo4eM2Kn+rct4Ti4OiWKiY1asW0baV9tlfnCI4+xvq6OW04+kQNyyPSXJZPBD762dum1ZUZPSvod+Almby/Kdf6/3Ap1P8pwyeVim7KxS072sjmP6SexkIY1EdASxvyYtCrmwSakxEmF7jjDuPiawcnKZmQJBM/GhkhTNtecY8cC7JCDPck6d2tMAVuUJEyCq9kMO+g4kBMwdW1QaFx69rrHWKAMlizHGLOydbG5m3W3VQHidaUdhA7m4mRl+kKQqgOzXWmldQnRj4h0kunCU/RR2FZcmTwyZYuBiot9mnrCJDY2rJOIjsdmuRSQj69mG9bW/ciU2Y2tQ6DJ8zzKy1WW+e7du7N27VpGjhxJdXU1C/P4VX3pF27n/ju/RGWeukllpUX8/oaz86qzM1Zbq/Sitm1raFf5m+9/jbsef4eqilIe/f3nSVpxSKcdPonTDp+0K4ZZcBveR0k49KjoREUsTmhHcxg3Ut+cKSxYSFuztRaA1TW1u7QfY30rKrj7jDP49azXWbBpIynP48jhw/nmjBnUNjVz81tvA/DikqU5QdPIHj14/PzzaUyl2KtvdiX09toNp87ksDFD2WfwANr901nbnuCeK9T9yFiuh23keCv3/taWNGjDPCA9EGlwPBl1udlPJ1+lUnFSPk5al3N0MLjnKMDlGsVyEbbvmDZyzy0Yqw78jgRgtzYvkeVYNhMhMDL5z4JhxreuO9H2pJ8JnOwce0KqMjnH2o5nbwB+YvOWGq0YF6JwwEmBk4Uyi/NA6LkYuXBhF4ytjQKhMnpeWKxUEJQko9MJwKuMrqE0aymjANnu0wCzODNpxi+swi5IA+6tyQqdCFnmzTS1fc/Z3e9JHQJN48aNY/78+QwZMoT99tuPn//85xQVFXHLLbcwZEjumJK4NTQ0s2NHU96g6dO0xsYWhvSspMx1+cIVmVow2WzT1h2ASvjrt8IOLF69mYTrMKjPrgsgbq9JKdla10jX8tLAfXX8lDHsPaQ/lZ1KKCuO7jQ7eMRgfnXGMbhCcMDQwidFfH3JCq598CmmDOrH7887gWc+WMTxe+0aSYds9uGmjbyxehVvrF7FYUOGcuCgQXxun33UDQRYsHEj5+81qdU2Rllb4HfGOhUX0atbBdtTzXQqzpO1irsQsp3/L7dC3Y/ibEB4XETLkIVditeJH7PTsOiHkCMF5qgT3zln7QRz0+CkJE6ztHZDSSSuiuFyhEq6apo3wokxpinDfWiNLfo5Pv/M93mzTBZYsuuaBLYB02E1Z9ioYJ0Nq+GEr5zb/HOMu9UxxuOqHMJdimn0zrNYe45VL7aLD6JLa4BcOH9r+7+t8aQLCquiiM/FAMfghCRyPSILaVUKBhGSSJFExPbkBJG+grF5sYnlY23dj2jH+c/YOgSavve971FfXw/A9ddfz3HHHceMGTPo1q0b9913X7vb+eZXjmZA/88eMLRmc95eyuw3VAblBe+tYtCg3A/C1etrmLtgNZtq6vQRQVEy+2632R+v4or/ewBHCO784bmMrM6uv+P7kmv++G/mL13H/11+LFPHVO/UfHLZd+9+hsdmf8Q50yfx7VMOCY737ZrdfSqE4Jjxbe8Y7Kg9Pv9jtjY08uyCxfzg2EP54uH55QLcWduvX38qiovplCxiTM/w2ggh+PqM6Z/qWJ5c+AnXPPokrhA8cPrJedX9X9ZpMlao+1HwTMzGxFjH4yKCWctmNB6yDkGaE18GrpKIu8f81PbBSSuWSaSlYpeQSEcDJVQsk5A6D13C/PLXE/F1h0blPMuQjP9HZikQZ9Yix2wWI5PQiq4TBHpMpk/fuOMg2MIeBHhbjJsRjzSaTobZCAKYs7E3cct2LIofMpgzKaRmyPRfXc7RgpGRwkSvm/39yMp4acom8k8vlpg32E1nqsTADsHH6AIETFFcaNPEt2kGTOpAbhGjo6Sjy4pIo4rwMuX0NRI++In8EM4ep9Nk7MgjjwzeDxkyhAULFrB161aqqqry2iV00PRd99CNW9rz+fdjcygvL+HIw8a2e5xjJwxg4ODutDSnmbxv+Ku1JZUmmXCDdqSUXPH9e9la20C1BoIjqnvk7GfbjkZAxatsq2vM2f+W7fW8/sFyAJ6b/ckuA03vLFkV+ftZ27n7TWLxpi3sO6g/3ct33c7BXDaye3dmf/5KhBC7TMSyvdaocyp6UtLSkZ2pu/kvt521Qt2PQkZGZB6H8CFmMQkZD8V4d6YtP2SJBOqB4xhXh+2dMfV9gfCkztkWPowlAhwlPxDq6thjDLeZR2Kaso3Pfvra5YQ11/jcc5zPyTiIACMEyxG4dITCdYbtkLExRFgcq43ALAYmG3aSsbKR9/G+hMFgOrjaKJS7qoLwhAZBImM8Rr8om/RB+Dfc6i9sUBNZpNhA4+DcgDJ7DBkLQgCMogthrrEGT/oCRt1xGhAG11dGAXEAVBVD2uHbyn/5/Shv0JROpykpKeG9995j3LhxwfGuu1CjphD27Asf8vtbVLbzvn0qmTC2f7vqVVZ14q/3XBU59swLH/Kz3zzJxHH9+c2NZwU35qRmlcYO7c3Pv3ESvbvnDnI/ZO/h/ODSIylKuOw7Jrd7q3uXTlx81D68t3gtZx26V7vG3BH73Mz9+PtL73LK1PFtF47Zxu11pH2fvpX5B/XnsnF9e/HA584JPqd9XzHgbeweW7ltG8tqapgxaNBOg51dmS4lHztl3BiKXZduncoYUVWZV93/daap0PejCGCyf+ln+SpkY2Kymi/DZLW6okmZEn9GKoYIjajUQ9svdhBSqtQq9gPb00yTFjH0jTtLP9yDIdkPviyskIwdzIJNInPM+pXJxrqJWF3HmrJ5b1LX2EAitta27IK0mss1H7KVyTY3w7ygiRhXIhNSueQCQCrVWJNS52STSGm5zkzdXOtis0ZWeRG/7vYnKXN/twLwFO/M0HZ6zDaAs1GrMSOyZA4HTJdmHbNIqYc/GqQG9QZUtt/2SKYpkUhQXV29y7WYCm29elYggETCpWvlzsVQvfnuEnxf8t78VTQ2pSgrLUIIwa03nMOHi9YxddIgiouSbK1toKklRd8eXTLacBzB8dNzJ7M1JoTgSyfvenfQw7MXsGJbLX968U3Oa0XkMm6LN27hlD/dhedL7rrsDPYaGA16llJy+6w5LNu8lS8fPo2unfJf+yWbtnDW7fdRnHD512Xn0qtzedZyO5qbOfYf/6AhleLa6dO5Yt/Wtaf+W8wRguPHKKX27du351c5mwsjfv6/2Ap5P4pLCJj3WO/bZJZsM4nFfPXHsYBSPK1I0JYBEEZnQOht3q52vQn1sDJtBeDLF+EWchswZQNLAXNhjuUAinH2iejnnHUMwIkxFBmAxWaJYixNxnMzyzpnvRb2ZyuOKldbAdixxTUDRkW/0iDSIvBaRZLbmnHk+n1lAyZB4HqMXOuMoQmi9GO28Wc5YVS8beBkLZK51DKgvKw2HIHwRcgwtYFblJSBUH/zsbbuR7Tj/GdsHY5p+va3v81dd9212zNMxvaeVM1dt15GUXGSnt07t12hFbvgrANIpzz23msQZVZak+5V5Ry0r0rXsn7zds76xt9pbk5z07dOZb/xg3aqz11tew/uy7yV69irOvtOr+Wba6hvbmFsv16R4+trd5Dy1J1gdU1tBmhavGkLP3/mFQC6lXfimsMOyHtss1etZXtTMwAL1m3MAE2LtmxhxbZtTOrdO9Byakil8u7nf9PiT5Js5/+7rWD3ozjLYedCIxeQanv9gisgwwduxpbvSJNC7xgTSE/glxCAFuFJ3LTE8STCYppwJNIDmXSCZ248WDt4hrZ3wDHQlDn3aLUM8JOlTiAlAMHOtIyvaLxv3biNAbIBrXaZdS2DFCxCgYAIy+Sj8q/5IgJyTTB4xvWzKLAIkIrPxWJmZLb6WQ/G+so2Zxsw2QKXWlU8grPMecOmBYl6zcWJfyFjIMpIYbh0AEG056Lt3vekDoGm3/3udyxevJi+fftSXV1Np5iw35w5cwoyuEJb/36FAXiDq7vzk++dnHHc91VOH9d12FxTR1OzikVZtX4b+2XxeqU9n8bmFv708OtUdS7jsuOm7tIcdq3Z1445kAumT6Zblvih5ZtrOOF3d5L2fX5/7gkcNnpocG7asGp+ePyhNKU9jh6XGaPWp6Izfbp0ZuOOOiYP7NjW+2PGjmDu6rWUFRUxbWh15NzWxkZOuOsuWjyPb86Ywf1nncUnmzdz/KhR7Wp7zY7tvLZyBTOHDKOqdOcSIb+zYTWrdtRywpDRJNrp2ttYX89DCz/k4OrBjOrWA8/3WVyzlaFVXdvdRqv2P840QeHuR5GlEm0vTTYhTF010mjkAS+D51jkYZZV5FEQpgkxbiSzDd+AL1+/SQuE6yBSfsauORUbZFBXbJCO6TVj5JEJtRtsGYLEZpxi54KJGrmAVr7mNovT5hjM8M0ietbxOJjTD37phgHfuHpMxpXqW+351l8/el5ozSiTVkXtgIwBDdOWXu9cW/Vl+6FtrJ60ZCasueovmfStyUcAmgzHJISenwx3CkpBBs7ZmXvGnso0nXTSSQUexn+Xvf3WEt5+ewmnnLoPfftWAVBTW89l37iLuoYW/nT9WYwd1ofvXD6TmtoGTjh4XEYb8xat4Yu//BelxUm21jeCgCmjBjB5RDTW6o0FK3j0jQ858+CJTBrab5fOq0dFdrdXfXOLEnYEttVHg9aFEJy178ScbZaXFPPMly+mOZWmvKS41f7/POttZq9ew7cPO4ih3UKAW15czI0nHJm1jm+ST6ICpSf07s2E3r2zls1m5//7QZZtq+HJxZ9wx4mntrte3FZu38bpT9yNlLC1qYHLxu3TrnrfevlZXly+lFvfe5fZl1zFV599isc++ZiZQ4Zy83EndXg8ge0BoKlg9yP7AZ6NWQnKWfIBWdiQLMX1ORO8LcOycVFMIYKdYiaQ28SNCF+SSKkddYZpcn2pU5I4ysUiRMgq6OedL0RkOtI6L4VmtuLsUgfZppyMkQaL8bIZ+dtE7Hj8euTqK37KSlYLMTBsxuRKFQNmARzhC1XPrq/BQ6AzJcP2zT8vA5xUuwS7BU19AaHrK3YuYITsOVnr1tZ8A8BnJBhslglpaVlZwFkAQloAXh0U5jto5qzPKeAbgusO/7TfU0HTD3/4w0KP47/GPM/nB997kFTKY+OG7fz4epW6Y9GyTWzYrPSZ3vtwFUOre3DCwbmDqt/6cAVNLWmaWtIkkw6dO5VQ3asqo9yP/vEMm7bVs2TtFu7//vm7ZlIxa0ql+e1zr1OSTPCFQ/dnbL9e/OHcE6hpaOSkvcbkrPfw2x/y+LsL+PwRU9l3+IDgeNJ1Sbrqzv/+xg2s2FbDUcNGRJiUTXX1/PqV1wHoWV7OT485ol1j7V5Wxr/OOYelW7dy9Ij8VcGL9LiK3Y4lQn565Sfc8dFslm3fqn7leVCaSLZdUVvPMsWKdC9VfxdtUfn9Ptm6pUPjybA9QBG8YPejdjAakXNZQIAMaKLoczHiDsl4YIY/6hXzISJlnDQBM+EVC6TrKN2mlESmfBWQ60mlJeTIUHYAXc+PIhbz/AxcVY4MQUo2lsqUl+Hf9gp7Bs9IJ/wQbOwybJBPVN3bbsQWr4z1GWGwpAVobKZJhvM1eerMZ1VchnP1UTpsHipGzDahxyjB8dBSD0SYtOD62d8js8Y2AJKxV3BQF3KsY3FQHVvYMH5Jv2ypAV1IuJppCnLyhG0EY3Ql+EZ6Qo1FQMBoxi+4jfPysj1VERxg27ZtPPjggyxZsoRrr72Wrl27MmfOHHr16kW/fruWEfkszXEEg4f05JOF6xg+QjEaazdsY8zw3px69F7sqGviiANzAwtjpxw8gWVrt9KvRxcuPm4/kgmHomT0csxasBxPi2MesAukBhqaU6R9L0Pt+8n5C7njdeXSmNC/N4eMHsqhlksul9340Is0tqRpSb/OP4aflXF+Y30dp9z3Tzwp+ea07Xx+7zBQu2tZKfsM6Me8tes5bHimIOGLC5bww4ee45DRQ/nxqVFANbZnT8b2zK5z1Zb98+TTeXvNamYMHJRXvfpUC0nH5YdvPceGBq3LJeC0EeM4Z2Ru5s2251YsokunIm495kSm9lMg8zdHHctDH33IiSMLI+QpfcLg0xzn/xesIPejrKxKeAOX2cplnIydslmW4LmotmwH7IOp4OhYJuOijzAUujmtxIxQweBCCoSQkBBaFFNEWRqHDNmF4EEZeYVgKVI/65rkWIP45G3gZXuNTB9ZxxFtJ3j+xwGTBQ6yDS+D9bPkC6QGQIplio1PaqbJrm36kRosWYAJgQIlJr7HJfu6SbOuNnrKZGyyrrs90QBoiUhskojLM8T7Jvb9BRD6uxMAO6GvTXTw5l0gdZCDUW2PtXU/MmV2Z+sQaJo/fz6HH344Xbp0Yfny5Vx++eV07dqVhx9+mBUrVnDnnXcWepxt2uatdfzx9pfp17uSS8+etlNZ5VszIQS/+8MFbNm8g169u/DQ03P51V9foG+vLtx90yWB7EDcVq+rYeW6GvabOAjXdeheWc6NVx2XtWzNjgYu/dX9rN5cS8rzqehUzJdPPbCg89hYW8fJv7yThpYUf7/ydCYNCuONxvbrSXEiQVHCYUTv7u1u89jJo/n32x9yzOTs8URK88jBkx4JJ7pOruNw97ln4EuZVSrgkTkL2FrfyL/e/YDvnHAIad+nJJkg4Thsb27ilrnvMqpbD44bnp/2V7fSMo4elpuhSvs+H2/dxIiq7gEr9c6G1Zz77L10KS7hqIHD+cfC95jUvQ89Ssv5xt4Htuu7t625kcuffxgJnDeqhSMGqxyKI7t159vTD8prDq3aHsA0Fep+lM1zkME6iSzH9PEIcIo3ZrMSBLgnPC0U4yOFCLeDg4ov8QEHfFeQLlVlRBq8hEOiycdpCd2FvpAKPJm+NCCIb3GXHqHOk8zONgmIaCohCfSUMlxqsfc2+2Ie7GajX3w85nN8Z1kAnGQEbwaskJmbEVqMxxplM+nqxL+OduvLeD0lHmonOw6AqnWtQpbOFNP/6bYjoMdat2DsOnYoaNecM+NwQ5QpA8Rmr7W1mI65fqaMDEG6ZtaMkKo0QXLZvsRGXsG890U4Rru8ua6SDuyea+N+ZMrsxtYh0PTVr36Viy66iJ///Od07hzuRDv66KM555xzWqm56+zfT7/H869+DMDBB4xkWCvK3TtryaRL7z6VACxesQmAdRtraWxOBaDptTlL2LhlByccMp7G5hQXfP1OmlvSXHnuDM47qfWt8O8tWcvyDTUAOK7g+KltM1f52orN29jeqHekrd4YAU0je/fg9e9egSMEJcn2f0V+eMbh/PCMwwHY1tDImprt1DY3saJmGxP79+HZRYu5+ZgT8JEcMjiTTQIyAFNLOs2X/vkYi9ZvZnCPKo6eMJI3V6ziyvsfoV+XCh69/Hz+PPttbp7zDgAfb9nIJRP3pmtpYVLzfPU/T/LIko84uP9g7jhKuWJnb1pDi++xqbGek4eO47r9ZuatCVWaSNKnUwVr67czvKr9wDRfy7q1PXb+v90Kdj+yH4bZUqfEykWWznqmZV1zi5kIG5HBKekIfBOwbdexnqvqOR4Oxs7jhhumUzEClzYwy9p9zkWInreBXgQMWcfj1YP3dlkDGHJ1KWPPZo1dDIALAIVhVcw667WIuOfs/vUYfet9JF7KFI8/rK2JR0BZbH4Bm2bHKkXWwfpyRPx00e9YNsHQUAIgC71j1s0CaRGSyEEBKRn2J+I6DDG3rQzQUHQZwmLxfwz5WVv3I1Nmd7YOgaZ33nmHv/zlLxnH+/Xrx/r163d6UB2xvSdUc8+/36F3zwr69e7yqfV76RnTKCspYtzIvlSUKzfXstVbuPYX/wYUw7Tv+Go8HUjd3JJus82po6s5YvIImlMprrvwKLp0KmmzTlu2cO0mXnh/MSdMGUP/bl3Ye3A/rjlmGtvqmzhpn0y9qLKi9sflxK0pleb4397J5voGfB37Xdm5hC2pRsb07MmjF57X/nGv38yri5YDcOXB+/GFw/fn5y+8iudLVtbUsn7HDoZ17RaU/8Pst1ixfRu/n3l8h8dv29LarfpvTXDs7BETWV1XS++ycvbq3jcvVrPZS/O9N5+lprmR+489i5TvM6TLLpTtyEafxM//l1vB7kdCPXUy3EHZmBT7ARc8XLHolJg5sbKa0ZFo9sO45eznqHkQosBSEGwMyAR6y7wIQ06EPpYgujvLZlPyud5xUGCDIFuU0i5r+svWBrEy9nhi4CijXRt3yGh9W+AzPj8pUGk/dHC2TKB2thnNqywioxHQoQPDI2ruVsxSsFsueMkQPJnrbQOOCG0WnosCchmurWZ/RLZ1lHZN668BT0iEI3EMy6f1wtT77AyS0CyntEBikCQ5G6jMNxS0Pd/B3fye1CHQVFJSklVkb+HChfQoUJLSfG2vcQN45u6rcRznU922362qE1+88ODIsbLSJMmkS6rF477H5nDfY3O49vLDKS5OcPgBbW+FLy1O8n+XHwuA5/v4vtzpOX3ptkdYt20Hby5ayZ1fPBPHEVx26K4Rf2xOp9nWoHbZuULgSUm3TmVs2dbIgC75qYaP6tODI8cOZ1VNLcdPGs0/336P21+bTXVVF87adyKDu1YxpFtX9u7dl/Mee4DVO7bToyz7LsCO2G8PPo5/LfqA44aE161LUQnXT53Zofbe2rCKB5a8D8ABfaq5ZPSUgowzp+0B7rlC3o9kjvdZj8WXTuYoFy8af3AYRklKAl0dq0xQNNDT0ccdDbZ0DxL1YFRPRRFhWRQAIHTb6EFFXE1moOazRVJI6xkbALRsYCjbnLMQKxkYxT6XDXzFPxogaDUSSZlmxqq9Ub4GnAHOyHahzSTtMjLMy2eTNsGYLaYLDwUiJJl0Sfx6aoAi42sjVBqXEKTK8G+8QRt42UDJRnjoPoREOPYFRIOjOBDKvJDZBTjtieVhe6p77sQTT+THP/4x999/PwBCCFauXMm3vvUtTj2149u2d9YSiY7tgCq09epWwX2/upg35i7jV7e+gAS21jdy2rRJOWOestnCNZu4+I/3U1Fawj1fOYeq8o7rCPXtWsG6bTvo33XXs3BdSkv48wUn8ej7H3HoqKH07FzOmN49WLh5M6OtgO1HPvyIuWvXceXUfXOqfCddl9+cHcZ+/fDx5/GlZENtHZdO3Ts4PqiyisdPP5+FWzezd+/CbUQYWtmVb+xTuHiyCd16M6xLN7Y1N3Fgn0EFazen7QFMU0HvR3EQkO1hnuWcCQwWkqjbx36Q2+yI3adxyxlpARk+K203oc0eBTnCEhotmGero+tkkTKQvlRb6a3hIDSYsFkum12yX5rJisTnZHu+WcxMpL3YmkXcblnORRguCwdEyBuLtRHx+lo8U1oB2tKVOgYIFTsW7NgT4fWLDEdkDD/ejWHGhEkoHBe1lGFrhvmKsE3EGozLB2Sss80m2XUlwgSFa3PsdpBIXyClxEeo74L+zkkNpoJLoX+kywApB90GQ7AWqf22pzJNv/zlLznmmGPo2bMnjY2NHHTQQaxfv57999+fG264odBj3Gm75R+v8MCjs7n8/BmccULrv+zfmrec+5+Yw+A+VUweO4AD9h3WoT779OjCKTMn0atbZ25/6h1ufmQWL85dxF0/br9swDtLVlHX1EJdUwsL125i6ojcOeqMvbJgKfe9MZ9zpk9i2shBwfGbP3cKi9ZtZlS/T4cJXLhtCw8t+YjHli3klc9fTkkyycQ+fYLzWxsa+doTTwOKTfvJkYe3q91rDp3Gn195k6PHZgZ8V5aUsl/fAVlq7T5WWVzK8ydexuq6bfxs7ouM69aHK8bsv+s63ANAU6HuR9k8EOa4/dSMfDbH9MPJNw9w6yEjsz1sUCeEBNGCUvRO6N1zWa6ZSEuSLfqHukmposfrCXB8qdJ9CAO2iDxVJTJwUdlb/jPmElkM9bJzq0V2d0FmnE9k0LH2sjBI0iobYa7CJYoAh4AUsgCJEbKOsHMGNAVMkwwVwB01eXsHXoBSXRGZkxAy2FUWzMlcT5s58lACo8IwO0IFc0e+J1ZFB6RnNSms8/oCSRPQnS2eyV7BGCCVenemWRAhJEL4KlzOEfgSfF/g+wLpO6q8nlfAVAoRCqLGmDibrZOOJC/bU0FTRUUFr732Gi+++CJz5szB930mT57M4Ye378H3advjz86nuSXNE8+93yZouulvL7Fy7VbenL2UBx58hz//6jzGjMpPyXrD1h1c+tN78X2fr5xzMEVFCs5v29HIjoYmOpe1L0ZpzIBeDOjRhRF9ejBlaPsSDF//0Ius27aD5ZtqeOJbFwfHS5IJxg9sXfRx0YbNzFu5jqMnjKRTcVGrZdsykwPbRzJn3Vom9+1LD0upuby4iEFVlSyv2caEPu0Xo5w8sC+3nnfKTo0tl9U2N3Lvknns06M/k3u0vt6e7/Ov5fOpKi7liH757dgDuO3jt3ly1cc8uepjjq8eQ79Ou4gB3ANAU8HuR9mYk/gDKRtjYrMcQljxLzJaNPZrPXjuS5TApGN4DauuEIiUVFpNEAmCRoDwNWGigUMoPUCUDXCtYzKsn3Xe9nET4KxZm2BLvZk3WSwHqxSsQfxjFmZGZDtn1xFWO9b6BwDEYshkgpgcgMwIBBcyumZhl+bCh3gmGIpuQ9hro4VEpbAX2C4vrTk6FlCKvkQsqDwiWmmtRMAqmfmHSqo4jnlJXA3qPRPLJDSLZMarv9iBLIJ1LtJvfAz5ho3sqaDJ2KGHHsqhhx5aqLHsMrvq4oP599Pvcd6pU9sse8jU4dzx0FsIT8URlZTkHxA9b/FaNmxVQpff+ssTTB1bzXEzxvLorA856mu30KuqnG+ffzj7jG6dObrp6ddZvq2WmuYmEq7TalljR0wYzp2vzOGICcPzGnNLOs3ZN99LQ0uKD9du5IcnHpZX/bhdvPdk+lVUMGv1Sq588jG6lpby+iWXU5xQX7ki1+WJi89ne1MzPbKkbvks7Ma5L3HfknkUuwnuPewcrn3rCUZX9uI3BxyPG0tp8tDy+Xz7nScAePiIi5nQNT9gPaP3YO5aNIeB5ZX0KClcDFaG7QExTcYKfT+K37ttViRiNgNixBOlFkG0A2o1ZeME6TmUnIAAREqCJ5BF4SUx7I5wwUlJEs1SCTAmwEsKZFIE+ds8Vw1C6nbxRSQFix3/lJH/LgZ+pCQS/2NStwTn4wAo/iCMs0ZZwJO065j+sjBKkT6tdQnkBjRgkno+vunfsV7GJadRj5F3sMGY1CxKgHXSRBP+GtYlxgSaAGuTfsVOkYMkEpsU6VOAdKygLJtlMn8dGXG1RRfElM1eRuiLoiKyQqQshMBxAF8gEhIpPR27ppgnfBHOIYKsCdKtYP0hnaeo0v9ATFP7nsRZ7IUXXuC4445j6NChDBs2jOOOO47nn39+pwbj+5J0euezlcftqEPHcfPPz2P6fm272j539nT+c8+XueVn53Lb7y9iSAekC2ZMHMJRU0dRVlaEFFBT30TvHhUgoDmVZuWGbdzz3BzmL17LjoamnO1MrFYMzPgB7Wdirj3hIOb87Gq+fMz0vMYshAgATelO7Jwz5joOR48cEYC9upYwFYux4kRitwFMAD20KndVUSmPrFjA4totPLZiAct2bM0o27U4lDS45o1/s7W5Ia++6r0WPHyW121lRV1m+4UyWyw41+t/wQpxP7IDnSMxOzk+By+iP6DN8yzi5tHHRBCoHT6WJIQ74QSYXXyBXlIanBRhPJIZh6PeSKGkMn1XaDVxEQUsdtoX63rbIFDGPod1TV9Z1iFmIl7XaqPV9TLtWhpQfuxl1zdaQvZ6m3ZswGTHYgXzFCgWKJiT1ZIJwvZNuzZSDMFwhHUx7ZhXsBjCWj8DmGLoNAA9oQvN/FWAyRzXL7tzgYpfyoEvzNfH0S4+ExwefvX0l1HYV8N+2Vvn/PDLKyQCPzrWPKw996Pd/Z7UIabpD3/4A1/5ylc47bTTuOaaawB48803OeaYY/j1r3/NF7/4xbzbrGto5sLv/oMt2+r5/XdOZ/zwjiV3LYQlEm67XXKvz11KS9rj4CnDgq3npcVJfvK5Y1ixoYbnZy9i5j4j6Nq5DN/3mb9kHcvWbsV1HS658V4G9KzkoZ9enHXb+lePnsE5B+xFz4r8gEWyAwHxSdflX188l4/XbWLa8Oq86+eyrx0wnerKSib26k2noqjL79UVK/jqM08xtX9/fnf0sbtMkLS99pUJB3JQn6EM7dKVtfXbeWXtUkZV9WRw50xJgMP6jeCKUQdw88ezWFlXw9zNqzmsX/vTuKR9P7jh+TLzLiGlpNFLUZbYOTfpnuCeK9j9KP7gg5D1ELHP1vlQUCg8FAQyCfSzR7NKFlgybjMVp0QgFWBijQw7JEvBkQK3SYJn+lcBvUamIAIqcgAa4cfmI8i4/vG5GfARaTcGGiRZHt4WSREwQ1k6kdZ52Q5gFr8eMgCiVntmzI5mlExAuCODzwFgMmtgC1zaY9VrFrjHLNdksAbmo7luAVOEilVzJLgy/JoEoMW0qw86Gtzovxlrar4bWRFuuKKGZRIWYDIgCsDzrUuvY7Z8qcfnhO0HweHStBuOO+grlecNpK37Ee04/xlbh0DTjTfeyG9+85vIzejqq69m2rRp3HDDDR0CTSvWbWXNxloA3v1wJeOH92XuwtXUNTQzfdKQz/yBms1mL1jF1375MAA//+qJHLh3lMmq7lXFpceE2/qvOGkaAL+5/xUefmU+EthSW48vJW6W+Qkh6FPZOeP4rrLeXTrTu0th+ysvKuKiSZOznntk4UdsaWzgiUWf8KODD6VbWXZByrrmFlbX1DKyV/fge9CQSrFi2zZGde9esO+GIwRTeqpYpqriMl444fOtlr9s1H58sn0TnRJFTOs1OK++Tho0jk7JIqqKShlZmZkC5qrX/8WzaxbyzYmH8rlRuzBQ/H/AdsX9KAKU4sch9098iVJRNj/OZayeKWaS5EIY3G1RNcFvfhE+KANcJsG44AJ/ktn9ZgMh+4GeZQzxY2ZGvs362PVjDdnB7pF+rPoBCLItNq5sMT3B+tsAy47/MR1lAVeGTYqCLxm4LiNb+nVHAhm0J3X0udDOLWH6tgZvX/6gH5P3z5HKJRgwWmahwj4CECJEsJCBLpew1L2DDvTYJYAPjhVvFF9ewywFF8gPZQhw1LyEk2WRzXv9ncoalxWCPQH4TuE9Q7u7dcg9t337do466qiM4zNnzsyql9IeGz24NxeesC9HTRvNSYdO4JMVG7nihvv5+m8e4bm3FnaozXystq6R+56aw6IVG9tdp6Q4xJylxe1zaTU0tXDXc7Opb04xtH93/nzt6RnxMkHZlhSPz/2IVVu2qTE2NDF76epAKLM1S3kebyxeGegl7Y52/oRJjOvZk8sn703noiLOvOdeDrvtb6zati0o4/k+J998FyfdfBd/fuUtQN3UTrr7nxx71z/41azXP6PRK2B164wzuGn/kyjJI0kvKEA8s/9IpvQYwIfb1rG5qS5y/pX1SwD4z9olOzVG80M252unWt89rGD3oywPb/uhHAaBi2gdu7r1nLTlcoJmhFLuVoHDKmhbFgv8pPps2hMCa6u8CAKOBdFriozGLmVuuxfRfGjx+caCsCNB1EYQ0goAt/s3wDCjPSf2PssryNVm8r/ZgpBCHQv6NS+7rCsy64iQZcK0bweAuyCLJBQR5pyzxxrvz42vXVR+wLBaMiGRSakDziUkZUbfIiERCRBJqV6mfyERrsRJoGLXXO2WCx4J0S+Y40rcBLiuxHHDYO/AHWdceo669AlXknDRgeBClxO6rAjr2W3rVyIBbiI85pjjSZ9k0ieR9HGTebrnaON+9F9wT+oQ03TCCSfw8MMPc+2110aOP/LIIxx/fPuVmFtSoTq24wiuPHNG8HnztvoA9+YCFYW0m+54iadf+4hOpUU8fesX2hV4PXZoH26//jzSaY9x7XQnlpUUcfrBE3h1/jK+fPqBjB2cO17p/x57mQff/oDKshJe/u7nOOPX/2RtzXYuOnhvvnZ869pBP33sZe57ez4Du1Xy1Fcv2i2Zuom9e/Po2Uod/O5583h3zVoAfvLSy9xy8kkApD2f9dsVoFi5tRYAT0pW64fh8pqaT3nUyt7ZtJIlOzZzSvUEitzoP6NtLQ3Mr1nFvt2HUOK2DqbuXz6bH733BJ2TJbxw5DV0TqqdlT/f93ieXv0xl49qe/NCq7YHBIIX6n7UHs9B9kqKWZIGSMRyoJmHa/CwdQ27pP8mCNGO+XEvsFxGMnoZfZS7L3AHiZCdiQ3L/M1gYyD+PM6UFjB1c7RhDzej/3jZON2VBZRGisUZOiEt1xfKzWmjF3sA5kLaQqCm0djxyHiFzvMnRJTVMrSKI8NcLJGpmbGpjqVNyQUIM7YYbuh+C1glawdA5nrL8CXC65XLpI6MN/n1gph2IXEcidTSASqxirA4Jp1I2mLUzM46FXQvcYWP40oVL+XmyTT9DwSCdwg0jR49mhtuuIGXX36Z/fdXroM333yT119/na997Wv87ne/C8peffXVOdvZWLOD7t0y40UAhg/swV9/eDZ1Dc3sN666I8PMy7p0VsKR5Z2Kc+YRW79pO90qO0UEKkcN7pV3X9869zC+dW7b5cwo6ptb+PHDz7OtXrFGm7fXt1nXMEy1rQSad8Se+HAhD89fwOcO2Id9q9sng9Ae26//gOAf7sFDBiOl5NmFiylyXW4972T+Pms2ry9dwZ1vzeWC/fbi9pNP4bWVKzh3wsSCjaEt29i4g5X1NfQvq+T8/9yJj2RLUx1fGBMFsJe+cRtL6jZyVN/x/GyvM1ptc12jAn91qWYa06kANB07cAzHDixAzsG2kEDeKGH3s0Ldj7K5eoLjwXsRPWazSfqXsiP1Djn94JN6t5I0bIfQO9lMPJNjWKPw+ax3fKtntQ+uCQaHQIxSOgKZcLLnPHOIsjH6T/B1cMMDEc+TY51zYp9FvBGyp/ewGSx7DWVYXVjHJbE2LPYrwBKC6DwDpkuEce+mLZs9ssfjgHCEcdSFAwjWX1jj0KDBmoRARPCPBOWGMwyYzVYF/aGCus189JfEcWP/8GxUHXYfee+Y9nTnEcIzdv1dR7FRrqNOGuwXYEYRYkgHDbzt62MDWQvBKfkCn4Qev4zPoy1rzy+T3fye1CHQdNttt1FVVcWCBQtYsGBBcLyyspLbbrst+CyEaPUm1a9HZav9jBvap9XzhbQvnnsQ0yYPYdjAHllTltz18Fv8+Z+vMmJwT/728/M/FebmWyccQl1TC0/N+4SH31nAdacczo7GZk7aN5orrrElxaqttQzr2ZXaxmY6lxTxpcMPYK/qvkwdOhAhBO8uXY0vJfsOVeKPUko2bq+nR+dOeaVo+eFTL7C9qZmahkb+dWk0Geq2pkZ+/+ZbDOvalbMnTMio+96GdVzy1EMM7lLFP48/g5JE+PUb2q0r737hShpSafpWdOaFT5bwpYceB+Af557Gsq1b2VRXz19ff4cL9tuLffv3Z9/+hQNtbVlDuoVjnr2Z7akmvjj6QIrdBI1eis5FmZpbdWmVCLle/41b2vd4aOVsKovK+NyI6VQkSxhe0ZOepbsgfm0PAE2Fuh+ZGJ5cJElrJjEPXhkwBeYB5DuGTSLY2eXH9Y5k9r+GwfJdEEmBk5ZBol61yyw2Ymn9UJdSiS7GgsVx1JhsICOsuhG2ySZwcjBDNmsl7M/2QpqCXgSTBHPxLZddnDEDGYwrOO6Y8zLcBKZ7j8odyAhDp5RAUcjWBkA+iBhpErBPjgjWWkCQj05q9iuS3sYGoBKkr5kbJzyMMKyNPck4iNKMUrCGagEFyv3mR9BmWMacN19CKWWGlJIjDAulWCSbSQIRGYnAME0yYKkSjo/r+Kq8m6/kQOZUs5bZja1DoGnZsmUF6Xx3chklXId9YozWi698xKy3lnDuGVP5eOkGAJau2kw67UfYJt+XbN1eT/fKwurtlCQTXHbIvry1eBU9Kjpx1KSRdCqJ7qaSUnL2zffyyYbNjOrTg4/Xb6JHeRmbdjTwtSOnM6J3d2YvW82FtzwAwF8vPYX9h1dz07Ovc+sr7zBjxCD+cuHJ7R7TUaOH88B7H3D0mMydYn+dPZu/z50DwNQBAxhcVRU5/+zyxWxtamRrUyNLt21lTPdoAHRlaSmbGrbwzWeeoX95mKOuJJnk89P34zcvvsYBQ6vxpYywgVJKfvLWS7yxbiU3Tj+SST0KD7ZbfI/6dAsAjV6KJ2ZewdqGWvbpnqm1devUi5m1aTFH9h2Xta1HVs3lhg8eA+Cf0z/PJcMPKPh4jbW1hXd3397bHivY/YjoL+zoyRjDFD9tsUxGewmIiB4GLjkHSIjgAaIfWVGySBDEDDk+OGlwPA3IXJBJB5kU0YSpNlPjEMZC2YDJAk6RORvsZdgSO94nztrkWoP4hwgoiK5LBvNkQJPZRefE2nLI6NuskzCUlDE7fsoesxDg6F2rBkkFY4w2bkBkKDaqP/v6iFlXOwYKfT10QmARjFuDDjNewzxlRZpBx5Edb2Bil6RObSLM5CNm6rg6Ua8RtQzPRyGRRIQ6V8KaqxmJBe5Uewo0qVE6ub4KOa09kgK7+z1pp8Qtd0d7f/FamprT7DO27ZQjcavZ3sCO+mYG9qki7flc/8sn8Dyf+oZmvnTFYXSt7MR+Ewdl5I/7ym8e5o35y7n4+H258rT89JHaslF9e/DqD6/Ied6XkpVbtwGwYksNAJvqlGbQu8vXcOmB++BLu7z6O3elih96b+W6vMZz/bFH8KOjDyORJc5sfK9eCKBnp050z7IT7qzR45m7YS1DK7syqluof/XXObP59azXuXTy3nywfgOvLF9Okety/wVnknBdxvXphZSSDS0N/GvBAqYOGcBJ40PX1ZamBm778F0A7lwwh0kHHZvXnNpjlUWl3Hng+Xy0bT2nDZ5EWaKI/p0qs5Yd2KkbAzt1y3ruH0tf5eUNHwGQEC5dktl3DBbM9gCmqVDWofAvfcykPzGuDaG3rvsu+MkQLIXP5pASymCXzHtHteM74LsCP+EEwMkX0mKLzCD0HDTTZQJj4gyTEcQExa4Is5VdhEyYnUMtq/4RWYgOfTBjmTwsjSpdxyNknvRfxwevSK2fb+eFs1kmmx1yzJqH7FukmEUmSbPQpn/7hJEi8jN5RonZii/0OKQSs4QgJs3MMZiXEJDQO+l8EBEXlgDfwVcXMTroQJtJ9WwCugMwLRQQ8n0ZnYM12mDnHQYgZf4DF2j2ycSJSRuyEzBPYMVdoWKYEq6Hq1OnSOmRdtPkZXsq0ySl5MEHH+Sll15i48aN+LHdXA899FBBBpevfbx8A5dddy8AP//yCRwUkwBozbbWNnDq1/9GQ1MLP/3ScRy6z3AmjuvPnHkr2XtSNX17VfLVSw/j5bcX8cM/PMG5x+3DiEGKKXl/kQYgn6wp/KTaMNdxuOXCk3l10XLG9O3Jix8tYWiPbqzaWsvFM1RC232G9Oe2y07F8yXTRig27XvHH8pdb8zlqPHt1xYylg0wARw5bDhvff4KyouSwW6yeRvW87d5szlxxGgOHTSEe044M6Pe/R+8T1M6ze1z53DuuAm8snw5k/v2ZVL/MLi+vLgIVwg8KelSGnWJdSsp48Qho3lz/SpOHZ6d3cllf/34Lf61bD7fmHgIh/Rt/fuyT4+B7NMjfzBubENjLb9b+BQAx/QbzxdHHkW/sqo2au2k7QGgqVD3IyUD0MZv56ynhQrWVo2op5ADniOUzlLANmQCDRE82LXkQPA8lEHTQm9LF1I/vKVSAJeOyDkcBXYsLWiR+bIBTnDcAka+sNuKvbfmYgMaEZsb2u0lPKIK21nGnLVdEXvZ39dwiYK/QfhN/K9dx4dIY1pNM7gWBihYpw0CC9KNRG6BInBqyUhFu+9wsUP9IxGWEREpTSsGyg+nIewgcyeoY44IXcbRbjTzOTJSER6XUtcXWoZATz6sI4PyaNDkCJ/wW5UVubVueypouuaaa7jllls45JBD6NWr12fmZmtqTvHCO4sYO6Q3g/p2VQhcW3u25dtWW9dIQ5Nyv6zZuA0hBL+6/kzqG5rpXB4+pH/0pydpbklTs72B333ndABu+MJxvPD2J5w1c68CzCp/mzK4P1MGq/ieI8dlB0FTh0Uf9iN6d+fHJx9R8LHEGaYfvvoi721Yx8srlzPvsi9krXPttOl87ZmnqWtu4ZmlS3j7iitYu307H27cyNieCpgO696NJy6/gIaWFsbHctUJIfjdIe3fJWXbr+a/TIvv8ecFs9oETbms0Wvh1kUvUZEs44Ih03By5D7oVlzOyIq+LNmxnqP6TswKmKSUpKVH0ikMCbwnuOcKdj8KWKAc51ozk0Q3ofcfGR0ma8t6KFmg/2pGKNK0OWa5jyTgpxV7ETymrDYyxqaeilldbUZAE0HG7rIAMBmgl+HeslinLGBKxfCgWCPdqOOBSBMKa8bWwI5/1tghJM/sMVjrE1+v6DkFYI1qeAboigssGWBnGL7IGuoyOv5JGIV2oYPJI0DOLAAIX2gFcBGIVxr17lA40kKF0pq0psiEE7rYTD1HM01pL9eXUe9oE2H8kfka2N5lYcCPbteX5ougBFMDWGbaEWHbrgZloLwcfp4Je3eVe+5Pf/oTv/jFL1i3bh1jx47lpptuYsaMGW1X7IB16M5811138dBDD3HMMccUejx52e/ve4UHXphHp9Iinv3DlYwZ0ps/fed0GptSTJs0OKP8jsZm/vrkWwzo0YXTDpwYOTe4Xzeu/8KxrNlYyxlHKPDjOCICmAD2HjOAWe8ti8Q/7T9+EPuPH1T4CX6KZn7BFBoAHzigmvc2rGP6AAXaGlIpBFCaDLfiHzF0GNMGDOSZxYvpXFTEspoazrzvPgDuP+ss9u6rGKehOXZa7oxdPHJfHlw6j3OHTe5wG4+vnsvtS18FYFxlP6Z0G5K1XMJx+ccBXyDlexkyBcZ+8P7feGPLAq4ZcSrH9ytArNMeIDlQqPvRThFyQuMQCwFkqHPnYD8ibRswYh4uBlwYACYJN3kFOe2s+gFe1wXt346CINjZiGaa97YEQgbrEzeb2ogfNwDEBFanFGgKyjuxuiIEbGY3vxQoN1e87fhaWi8RLFKWMkblOy41EDBVmksJ2onNM6M/GRUttX8j+dbY48BN90G23/PBd0MGCyiEyRoQqnsHMUY2vUdU8TtMu+JrzGkHiIdgSAEo1ZjUF0JtolMdOSIEYWYaqqy08HS+TFMb9yNTJg+77777+PKXv8yf/vQnpk2bxl/+8heOPvpoFixYwMCBHfcM5LIOgaYuXbowZEj2B8OuNM/3I5pNrqsc87am0t6jB+Ssf+9Lc/nH87MB2GtYP4b27R45f8TUtrPV//Lak6lraKZzpxBMpT2fvz32Jis31vDFU2fQu1tFKy3sfrZ+Rx1n3HkvnvS597wzGVDZJTgnpaQple5wPrqv7jeNSyfuTUVxMZ9s2cxJ99+NIwSPn3Ue1V0qWVZTQ6/ycn591NG8uXoVk/v0Zc7atUH9+paWnZ5fa/aNiYfwjYmH7FQbIyr6kBAOxW6S/mWtAzshRE7A5EmfN7d8hETyxuYPCwSa2Ek0sPtboe5HIh6AnFEgx/EI+yFi1EmW+tnOZwMEdvuCQKIAAE9miAFGd42JoH0DBKTF2gRAS8dZGYbJHMvGMgXDEWG9+DlHt+2kFWhyUiH48+PMkQFoFsOFq08Hk4qtiwEMBiwFbE2WdRAKEMnAjZWJVMN4skzAFeBbzQAJrcFlQJYvo8xf8INTCvBMyhYNaEzfgWswaoaJEq5QIpOukgywLycohsoJ1jwETI5DoNskhFKbSFhB4G4wDtvlpuGSDKFP0IapQzSdi8BizITI2JnXprV1P6Id52P261//mksvvZTLLrsMgJtuuolnnnmGP//5z9x44415DrBta+0WkdN+9KMfcd1119HYuHNq07+87yX++dwcy0+b22557E32u+K3/Oq+/wTHvnjGdP7vS8dzx4/ObVe+tVEDeiIEVJWX0r1LdKeblJK5i9ewetO2nPX/7y/PcsJlf+a9Basjx5+ctYBbH32TZ95cyDU3PdzmOHY3m7tmLet27GBjXT1vr4zO7Yv3PsbkG/7AnW/MyVlfSknay+0O7VJSghCCDzdtpDGdoj7VwsItm7l99lxm3nY7x95+JwnH4ZDBQ+hSUsLBgwfzh+OO44/HHceM6uqc7e4uNrFqIM8e9i2ePvQb9C6t7HA7rnD46qjTOaDbWC4acnRBxpZTddd6dcT+9Kc/MXjwYEpKSth777159dVXCzLejlih7kfxxLCR+J/WHg6xcgFbYlley2yBEilBpCVOi8Rt8Enu8Ek0+LjNEpHSbI5HKExp+oofkASxRfZL+joprh0kDuE2ep9YwxaTZIQ8fcU+SFfim5cTroPEatu87PXFat8EZWtdKpFW8yONmm8TOObVHHvfCG49uA3gNKhjokXXM2slY3151suPvqRxLZpx2KDN08BQg0ORtsq2gNMsEE0OotFBNjv4LQ4yJcATyLR+pfRfX10HiY8QHkpu0s9gk2zmxyTMdRwf1/FwhEdCePq9rq/ZKuWK83GEp19+8DIslKMvtNAX1xEeAg9XqJcjfFzhkXA8XOGTcHwSwicR12lo66vdjvuRuSdt37498mpuzpRwaWlpYfbs2cycOTNyfObMmcyaNSuvsbXXOsQ0nX766dxzzz307NmTQYMGkUxGWYg5c3I/YG179PUFuO8sZf+x1Qzpm323kbFn31mIlOrv1848CICiZIJDpgwHlFZRc0uayvLS4PPnfv0AazbX8ocvncyY6t7MGD+EZ3/2OcqKizLSnjwy60N+/I/nKEq6PH79pXTvEk2S29yS5tHn5gPwxIsfMGOfMP6lR5UCYBLo1mUX74baBbb/wAGcMGYUvpTMHKnmdddrc5m7bA3/WboMCby8aBkX7J/pwmpsSXHGLfewemstfzn/ZPYdnFs76ZjhI/h4yyYSwmHGgGq+OOdxkLBu+w6a0mmSmjkUQnD0iPwD1D9LqywqzHU/us9+HNl7H+bUfMTaxiL6lmbmpcvLdgHT9GnT4W1Zoe5Hoi1wlI9lY5CyHYufs81XMUFuSgEIpwWkS6BabSyIPzIsjpYaCLbF68OGaYowMvaWeREF0UZgMzgUYxwiTJMTnnF8LZNgdsbpZMSRhMjxdYmwQ+pgZFe9AX020LcZPkuJXSIspkxljzM54cLJmY9ZWCpp9RmTJgiAIqigfEexN6ZlodtT8gkyDCjSdJsJAg+mLiQ4AqFTmDgOimUyzFPAFGH1EU7ClHOCZtUEXGGd07FIAfmowbjahCf0EphAeKHKOxJXqK+S+f6YNgweNwxXXpYH0zRgQNRr9MMf/pAf/ehHkWObN2/G8zx69YqKTPfq1Yv169fnObj2WYdA00UXXcTs2bM577zzdirw0nEEvao606tr26J+Xz3jIO5+fg6nHDiBeUvWUpR0GT1QLVRNXSOn/egOahua+OOXTma/0dUsW7eFD1cobaX/zF/KmGoVPNytolPW9mvrlXJ2KuXRnMrcRlmUdDlo/xF8vHgdpx8bBQ/7jxvEnT84l5UbtnLw5OHtX4DdwJZtruGMm+9GAA9ceS6di4vZUtfAzx55GYApI/tT0bmEz8/YN2v9VTW1LN64BYBZS1a0CpqK3QTfnqYA740vvsIrS1dQmkzy6+OPpnNxcaTsu6vW8JWHn2RC3978/tTjcqq0/y/av9e8yN+XPUKRk+T2fX9C52T272y7rC02qQOg6dOmw9uyQt2PIuEWudYl1/m456cDQ5CxD0KzTCIlFauhHzhp25Vmxm1LCeR4kJkHfjBPHSMVMDCmTXuOxk1lQEMMOJlB+wYYJSSeUOyV4wocfSuVlgJ58J203gcuPEGYc09jDaGZp0DE0pqvPVanWYFLfPAT4BeDVwx+EchiA2BChCSlQHgykxY0ri4BaIkH4Yug39AnRxCfZPBKsE4+OJ5Aeg64OoFvQhL//siIcrxBcibBbviNsGVjQjPxRTYDheWm8xU7pdmk+FdSudb8oC3hyCDvs5qObtd8DpguMzKJ2wHJgTbZbX1+1apVVFSEoS7FsWeEbfF/81LKXbZBrUOg6YknnuCZZ55h+vSd0yR67KeX0rN7V2p2NHLGdXfi+ZITp41lW30T+48eyI33vMikoX352eXHcsC4QRwwbhCzPlzOxT9XQcJ3feccxlT3Yt2W7dTUKWr+o5Ub2W90NSMH9OT0AyewelMtJ01rexv6OYfuRefSYvr36EK/7l0yzr8+bxkvvLcYUEKHcRs9qBejB+WfUuWzsu2NTXyydjNrd2ynrlnFDS1Yu4HqbpV0KS1hTP+eLFy7ibP3mciRExXr8+qS5fzm5dc5ecJYzt9nEgDDe3bj8wfuy7LNWzlrn0wV8FxmYpUcBAcOHpRx/rEPPmbDjjqeW7iYddt30K9L+I/nuY8X89byVVy6/xT6dMkE3D955SX+teBDvn/QIZw6emzGeWPrGrZz5+K3KUskuWj4fkEKk8/amj2VL8OTHs1+C/cufYDGdAOXDLkg/8bayTTFE9sWFxdnvUkZOvxb3/pW5PiupMPbskLdj2zV6Wz3W3sZ4+czYlfbwyZlK2MDCe1SMm40iQYnZqeeubZOyHq0ymZZp2ztpkjfVn0DiiQhWIm4qMx5YXKXSR0ALgIXnh1YbqoKa47xuQcPZHPekiwQPhmuPTMfod1pUmOgADwKoQCLBdjQDIvQrE+AT2JgUU0nzPGHNXb1QUcqWTFBIWMVpeyEkAoRGiZL6PUKGMEQUIXb/60mpLACvYkEdTuWu06YcRnAJAjikkxQOcgs328ZlDfm4Ec+u8JXOwdl2LeMC2S1ZXkwTRUVFRHQlM26d++O67oZrNLGjRsz2KdCWYdA04ABA9qcTHusc1kxyYTLe0vWsG7rDgBufeItEDB/yVo21dbz3JxFfL22nh6V5Sxas5lbHn8zqG8S/o4e2JOvnX4Qr8xfyj9fnktpSZIzD5rEt88+rN1jSSZcTpkxPnJs+ZotrN+0g/0mVtO5LHyAlJflRrz/DSal5Nyb7mX5phpOnzqeC/bfCyEEh40eCqjA+nu/dA4tnkdJMvyK/OnVt/hg3UYWbdoSgCYhBF8+fFrWfrY3NlHfksoKbL51yIGM7d2Tvfr2oTiR+TU8c6/xzF+7nol9e9O3Iqzf0JLimgcfx5OS7U3N/PykzOz2/3x/Hi2ex/0fvt8qaPr8a/fx0fb1CAGbmur48eT2i2L+cdEjvLB+DlePPIWDe05sd7322GkDjqBXSTcGlvVmdeMqXtn0GgBjtoxm39K982usnaCpPVQ4fDZ0eFtWqPtR4CLK04Lltevmaqc1MGM/1D1wfJ0ixOSQQzEoMkmE/pGQOzo1xgwZ71DANJkiUrMedmioYSwkEQAVjDWt4nqMO8ovEkrI08gbJAmTChuQlybqYrMGFgRae4QA0A+Dyv0EeEnwSqLjNOvmlWo3Zipsx0mDaBJ4vhIZJWEvhH4ZYCaVVIBMKLZLChnuutPlcNU6iZCgIeLesxcadBC5VIyTI63ccTJybUw6EykFnu8qBsnsWhPalSYJ4pkcPemEULngko4XVVPQwMwGTMF73abU6NSwURmgSfgkAxl3oS+ViY1SZVKfsbhlUVERe++9N8899xwnn3xycPy5557jxBNPzG9s7bQOgaZf/epXfOMb3+Dmm29m0KBBHe7cINYZ44dw1D4jaU6leX/5erbuaOCEA8by6KwP2WtYvyC+6M+PzGL+0nUIAb++8gQmDesHqAf3uYdN5u6X5rK5tp47nnuXMw+a1OFxAWzZVs+F3/wHqZTHVy8+lNOO2ot/XH8+Qqhkwv/ttlWrhm+tb+CmM07IOO84gpKYVtBpk8axcNNmTp2YG4gE7dc3cPRvb2dHUzN/PPdEDhkZ3d1UXlzE2ZNyM1Njevfk4UszsxoXJ1wGd6ti8eatjO2TPd7nm9MO5OGPPuSqKfu1OsZOyTAlTVVx+2OSpJQ8tOpVfCSPrXmj4KAp6SQ4tJdyh25PVdGzuAdNXhNjK0ZDKr+22gr2NufyocLh06XD27JC3Y9sy/u+3h7AlKO+sA8aGQETnyO0O84UCWJbYmgoV5/G9UP4QLcf7FllEcxf+5WlXWGCtiWB+rWdgy0C0kzfjlWXsP+ACZHhZ7MeAXtksUtmUNJuAwXePAmuL3QQvW5ShOOVLgq8GNAZsDDW+ljdKGyhdplF5QJk6PQS9jLKzDXNRsjYbKHpS6pWpQyXMgCegIMSpZRS6TCZYG+MfpK011W75oLJhUKVAXBCazFhNJjCQTsWOJPBl0wzVUhc4eOL/EDTrtBp+upXv8r555/PlClT2H///bnllltYuXIlV1yRO5PGzliHQNN5551HQ0MDQ4cOpaysLCPwcuvWre1q50+PzuLb5x9NaXGSn16mNFb+8tgbvDRvCWMH9ebsQ/eKlD9g3CD+M28J+44ayIETMrcYX3rUvvz92Xe4eOY+HZlWxDzPx9M7wppb1BdjRHV+YElKyduLV1FeUsTYAb3brvApmRCCv111OrMWruCEfca0XUHbqZPGcuqktgETwKYd9WxvUrsd/jl7HiThkAJsC3cdh4cvP5ctMb54YAAA4IJJREFU9Y1ZGSyAiydN5uJJbesu3TL9LJ5fs5Cq4lJm9B7a7jEIIbhkyNG8sGEOZw48uN31OmIVyc78atKNNHtNPLP+3ySadg3L2R4qHD4bOrwtK9T9COgQ05RRt402cgImaeEfgZIYSFiFzIYq16qTbQy5AJxrgQ87/ikbWwKZbjRhsWGeYcP0KQ2eHN9KBmz6N31hxWK7FgOlWQ/hWxIF9nSMS65IsVe4MpQ8gEhaFy8JIi0QzeA26zYl+J5iwdIC9dSTYd1gA5jl/grYO6Hnqt14wXJaoEvE19ux/gLGealUwE0jpjMZjl8KpEbFKiA9emGM0nfCVQAn6Xq4jh/sZjNMkS/DCCZXAyMzikCfSa9YkB5F13dtpgl1XG+QxJcCV0gSwqfYSevde/ntntsVduaZZ7JlyxZ+/OMfs27dOsaNG8eTTz5J9S7aed0h0HTTTTcVpPP5y9ZGPjc0t3Dzk2+CgBvueZ5bvnw637/jaYoSLj++4EhOO3ACx04dTUkykfVX7SnTx3PK9PEZxztiPbt15ubrzmL1hm0cfsCoDrXxwvuL+codjyOAB752HiP7froMVU1DI2nfp0d5ZiDxyH49GNlv141nZO8e/OTEI/jX+x/y0tplvPzwMl773OX07pwJdHwpWbhxM9VVlZS1Qw+qKJHICZjysc7JYk4e1P44LNvOHXQY5w4K3b/L69fyYe0SDuk5hbJE6U6PLW6vbX6B5zY8RktdnlRTW3R4nr/qPgs6vC0r1P1op0zfjvJcziiAshghIVT8kg2CbCYmTmaYB22u/s25QMQyrrRtxm8BJIlmOWzgFGOfjChlAL68kPGJxh+pAfuu+tERBHQb9gkFXiQaiPlhn76JZbLLSTJdksHYJL4jEG4IaAzActLgpwhyBSI1aPIsAGSYIc8CZrZopd1hwH5ZXwBbTNOcMsfMZ3PMEwoECpC+0pTyEQgZ5p0LPHqGgZIilAjQjI+rhTBF0LzNCBG44lR70ZxyrpAknbTaHYe9q05a3ycjS+AjkXhS4KIYqrysrfsR7Tifxa666iquuuqq/Ct2wDoEmi688MKCdH7t6YdEB+M4wY2jKOHy4nuLefWDZQActc8oDt9rOK4QPDfnE0YN6MXAnpUFGUcuGzeiL+NG9G27YA5LaaZKkn9al521lTXbOO7Wf5DyPO4+/wz26t/xeWQzKSV/f2cOCzdu5msHT6NneXlGmdP2Hkcq6fP2c2voXFxMp6KiLC3Br19+nVtmvcPwHt14/PLzEUKwqa6e9bU7GNf3s0vT015L+x5ff+83NHrNLNqxii+PPKfV8gu2f8S/1zzK9O4HcGCP9kn99yutRiAocfOTNmivey4f+7Tp8LasUPcjoONMUy52py2Lgx9TPS4uKUMQQ/yaxlidrGMxACZJ6JKLgw6bubHGFWFY7P4N4BFERCkDCQRLygAX7W8SEWYo1646211GUreXMEVFMC4y0niIoAthz9G11tW89y0GSYb1DfAy7Iwd8xQWkSHbJML6UWFNa80cnVolmKx+mwDhqsGqtCeqMXPPC5ZBqBQqjoNOnKtkAZKOT1FCBmWVZEDYvGsGJkKmybG+PAJJkeOTdHyN40z9qEPO1cDXJZQwsNXC22u7wj33aVuHE1wtWbKEv//97yxZsoTf/va39OzZk6effpoBAwYwdmz7XDjD+kUVuYuSCW685BheX7Cci2fuQ3EyQb/uXShKuEzW8Uu/f/R17npxDuWlRTx/4+cpTnZ4Crvcjpo0gqKES+fSYsb0/3RdF6u21dKUVm7FpVtqCg6aVtbUcuMLrwBQVVbKtw49MGu5gwYN5vrDD+eQIYMpzwGalm+pAWD1tlokUN/czLF/vIPtTc187+hDOG/fSTnH4UvJB+s2MKRbFeVtxOHsKhNCUOoW0+g10ynR9g68f61+mMV1S1hWv7zdoGlUxTiuH/9Hmuqa+B135DfAAt+EPm06vD1WiPuRbRJyg58sQCfYop6v2eyQzVbJ6LHIE8wSnAzwhg1WLFAS9CFC5icAEtbvuEj6FOu9cCymybeYGA3ipNVfMNZIGhEZMES2KXZKRrbwm3kYJsrIDSAJUrwEWlOGsTByCXrCgUSBp+ULtAtSuiBdqT4bMUoPHE8qd54XPqwD+YYEgVvRlqIILoVAywRYSu2E5SJMUzagqscvNXiSJs4L5cZzXENQySC2yLjXTO46R/gkRDoASiomSlgSBWGAt81Khf0IBGmE3imnmKaQqwqAox6HKzwSVqxTh6iA3RwUtWUdQhz/+c9/OProo5k2bRqvvPIKN9xwAz179mT+/Pn89a9/5cEHH+zwgI6cMpIjp4TpTB7/8SWR88G/j/+ChRdCcNj4jiWB3Vnbf9BAvnP4QdQ1t1BRUsyyLTUM7lZVsPZ7dS5nUNdKVm2rZd8B2bWZ6ltaOOaOO9jR3EIiLdi7d1/+ccHpkVQ4AN+beQjDundj+tBqHCFoSqUDGYQN2+taHcdv/vM6f5n1DgMru/DslRdz37z3eXPFKr484wAGdy3cfFszVzj8dq9rWVq/hkmVbafiOaDbVJbVL2d69/zSpFQkuxAJOmiPtUWHd/Df0adJh7dlBbsfmQeb/dm28Ed77vrZ6rVmcXCkjwVxNfbD2mJjIl2Yh7EtcBk/b4Mqi+yI1I8xW1b8cO7xZutPsznSDUGLEp8UkfQtkT7RYMkcssfoxMYeGbqIfQ7XJ0jNYsVvSUeJhDqGYdIxTwFg0n1LjSDMMOJfC2lO2usZ0kLRy2niluz5Wmyc0GMTBhAKgkS9jn7v6OS9ht1JuD4JR1Ls+iSCmCjVt9RfHBOj5Og2FfMUJuoFB0dIko4SzwwWQA8y/nV2hU/C0moCkfftaFe55z5N6xBo+ta3vsX111/PV7/6VTpbMSqHHHIIv/3tbws2uGz2pROmMba6FyP79+DNj1fw43uep3NZMXd85Sy6dNo9dHZ2B3OE4KJ9J/OX19/mCw88RkkiwRNXXMDXHnuKhpYUt55+En0qOh4XVJJM8NTlF9KcTud0u6V9n0YtC+FJyexVa6lpaKR7LMaqd0U5Xz44BBDdyztx67kns3DDZs6c0nqM2tpaJVWxsa6emoZGvv/MCwA0ptLcfOoJn5ooZtfiLnQt7tKusof1OpTDeh0KwI7UDu5a8XfKE505e+D5JJzCMqe7wj23u1mh7kfB/bw1UCTbd0/fqWUVmdgEAk9QsIMu2CylWSHfgJU4SIrPIctYrWdlmFvOHDOD8a3vU9wdFTseuLQM4BGmJxGpE5ijwIU0bjhDOxlBTgOAIIibAoJYaSN9YDNT6LXyiyR+UiqA0qJZpeZQaT0QzyQck5/U8g4J/deIbdqaUajjfhL8pJIqyLbG0jRsg2EzcCmDJL4+4JhxS4kIrowalGNAi+MjpcRH4kkowgvca8VuCl8KPN8hJV18HBxpdsf5uI5KnyKlwEf99aTA950g8FsID9836X7N5TH1PVzCXXjpPLmmPdY99/7773P33XdnHO/RowdbtmzZ6UG1ZsXJBEdPGcW1tz3Oc3MXgYAtOxpYsGoD+4/67NwDu8Jmr1zDfxYtY+boYfznk+VMG1pNWXGSN5au5IQJo6kqazvguMVTXLnn+7y7ajVz16wD4KUlSzlnr4k7Nb6E45DIAZhA5Zy796wzeGXpcj5YuYF9B/XPAEy5bNrQaqYNbft6fufwgxjarStTBw2gqqyUSX17897a9bywdAk/fP4FfnLE4e2ej21SSjzpkzB3sV1kb22dxdxtKon03l33ZUxF/q6k1sxO+5Dr/H+7Fex+ZLEeWcGTzb4EhaxyInq43X3mOhVvKPZZ2v2aXWgW6PGNO05Y7FQcrJhjNmDKtg6aSYlv/grceHEQ5RB95Jv6mnWxAUoAEg340u0EG/r1PJRkgAhEM6VWsFa+PmspdXnPUXnwpGtchBJ8s0NNAzjCtTEuSFs4VAZj0fOTgWh3MHazc1D6RNYlmJe10y8IrbbW2SKoQLvgDNMkRJhrztGDklaQuBq3YpdMLjnH6kdodXGTc86Anci1x6yftNzM0iqi0KijkxwKxwC6Nm4uWayt+5Epsztbh0BTZWUl69atY/DgwZHjc+fOpV+/fgUZWFu2aO1mAMqKkhyx13D2Htqxfm965FUefXsB155yMEfv3bZrZWdsQ20dnYqTlJe0HXsjpeTyfz5MQ0uKh+cuYNOOev762jsUFyXY1tjE7JVr+N0Zx7fZzuen7cuAyi4M79GNgV0rmf7hQhpSKY4Y/um4Dffq25e9+vblmXmfMHvJGjbU1tGrS2bQeEetW6cyrpoe6jE9cN5Z7Punm9na2MiiNh6YTV6KRbWbGF3Zm4TlMnxwxTv88ZNnafCa+eXkc5jRs2O7J9tjYyrG0sktp1OiE9VluwD07yL33O5kBbsfWWAh6+k4YMrB2rTZRzaLVcxWLBIcHasaxODYbFOgik2YkNauHwM6GQrhMQCV7btkg4n4QSE002RLG5hdcZ7pQEYBqnE1GeCld605KQKlcQl4SQW+pKfXxcxN79rzEyCLgCSRvHciJdRbjYRs5sykajGMXiSdin5SOh64JkmvBFIgW8DzBOkSxThFXHDx9wbcOmjpBGsQQgMSYVKaKPDkOiro2wSCu04YzJ2WDmnpkMCn1E3TOdGEj0Ozn8BLu0gJSZ1kN9wxp/bAIUUQHqcum0CgEvGmhYsvsWKhtBtPKCAWyBNkiVdr1dq6H9GO85+xdQg0nXPOOXzzm9/kgQceQAiB7/u8/vrrfP3rX+eCCzqQ6qED9rOLj+Hxtz7i+P3GMLJ/x7fO/+PlOaTTPjc/+QYTBvWmX7cuBRxlaP9ZuIyr7vg3FaUlPPGVC+la3vouKCEE1V0r+Wj9Jnp1LmfTjnp6dS7HdyTbGpvaxTIBFLkuJ44fzZLNWylyXf5+1imFmE5etqOxmWv/8QRSqgS/PzkrmpH6hruf59l3P+HbZx/KUfvsHEARQnDrKSfx9CeLOHNC6669S169m3c3r+Tk6gn83z4nAlCfbub69x/BddW/3Nc3fZIBmjY0bcWTHn1Ld16yoW9pf3496Q/B2AtuewBoKtT9qKNLZX6sF3IpI9v8c43DYoOk/SaNAgiSkOWw2REsRsiM3X7Ay7DdwB2ZbXu/3Y60xiUVFJIO+I4M+9FoJGSNTFAzkcULxyaDsflC4420QPjg+iqnHEL1IZMa8EiVNkUmQpbJ6DqBKuslgCQ41kVzpJZD0GPw9Skp1csXEj+hkuAiBaJFBJpSwlNxUq5+7xcp0BawawGDY9CkvcDWtdSUlQr29lUcU+DzVODSl6jYMEfq8QlS2i8rKSLlCYQQeNLBkyqdii+N4rceS8As+ThC4EtHdR9mPNZAydPyBIrlcvBxtaiVYaxEpg5D67angqYbbriBiy66iH79+iGlZMyYMXiexznnnMP3vve9ggzszhdn87vHXuesAyfy9ZMPyjg/qn9PRvXfyQzwwBeOOYDbnnmbFRtquOjX9/HcDZ8LzrWk0uxobM6Z5Dcf+2T9JiRQ29jExh31bYImgHsuOYsVW2sY2r0bd749h5KiJEeOGs7CDZuYUp07MW7cfvnSa9z6xrtUV1XyxOfOpyhL2pJdaaVFSQb1qGLZxhrGDYzuIvR9ycOvfYAvJY+9uWCnQRPApD59mNSnT5vlVtfXALBK/wUodZNMqBrI+9tWMqpLb84dFE0Rs7x+LV+c8wt8Kfn5xC8xrkv7RTFz2a6UVNgTYpp2+f0oxszYx9p15doqFGewrEPxqgErY7t/IGAwgnoyZH8s/BG4m+yg6ozYJ7vTePC4nWDWZlFCukL9CRL4mvGIsA+TfBilS2TEKzOYPtO2rwBOokUgtEyZ5yotI99EBwgRSmgHLJNUSXLN+DyhJQaEyt/n67FYcxBSu+N0HJNMgl+iXrggGwXSEQFBZLQdHaHLIwgS59rsUvCSev2lirFyFKhzXLVbznFVW66rGCUVFC41w6ObcxTz42rglNbbIqXn4LkujgyT7LoCEo4kqX2Qnl5opQIOHiaYW/WR0P2oVIYKKAmhIFmxmw4CwNVMfYpFfqBpj41pSiaT/POf/+QnP/kJc+bMwfd99tprL4YPH55XO7977DW+cOIhVJVnsiaPvfMRKc/jsbcXZAVNnq9QshCCTbV1dO1clrErqz12yRH7sGTdFp54+6NI/ZZUmtN/8g9WbdrGjy88kuOmtq2c/dailSxav5lT9xtPaUyk8az9JrJ6ay2j+vRgVJ/2MRQlyQQje/Vg/tr1/OyFVwFoTqe5eL/88o8t2qTcVCu2buPHT7zI9SfObKNGYS3hOjz4tfOoqW/KcM05juDqk6fz3OxPuKgASu752M3TzuK5NR9zcvXEcDzC4fYDLqPJS1GWKOatLZ/wYe0KjugzCVc41LTswNN7gzc3b/tUx9sh2wOYpkLdjzpi7Vo+4+JpbyMa8Ii4Oy1WxQCoOAgyJ+1ULBEwZoElw6YEJ602gvaRYR+GwTLoy3arGTAlDcujm03pQG3dZwC+zBZ7KaOSCQbhmTFp16OflIrhaVEgTKRRQpgB46bYIOnol73NUNNmMiHxSpUrTjFemnWxAs0lhPnnErqeVO35ZRKvSOCWCJwmcJsU4+R4kKgHp0nlxkuXqr8yaaKLzEUh9jKLGTrKpA4Ol1IGmkghsyP1NRU6mFsBobSv7l2u55B0fOXCQyqvrATPMVIDMrhcQkiSePqyqSDxUDbL0+yUj0CQwqHFdyl20hQ7KRztovOdZvKyPZVp+vGPf8zXv/51hgwZwhArNUZjYyO/+MUv+MEPftCudu59dR4lZZ2ygqJrjp/Gbc+9w6kHZLpYPlixnsv/8CDdOpdxzN6j+Mszb7HXkL7c/uUzOzIdvnfmYRw4bjCTBodaRjsam1m1aRsA7y9b3yZo2ryjns/d8hC+lGyta+Tqo6MMxa+feY0H3vmAacOrOXvqpLzGV15cpGlUya9fmsWpE8dSUdL+nYLfn3kwby5dRXNLmrrmPBWlC2T3zv+AV5ct52szpjGqZxQ0XnDEFC44YsqnPqYxlb0ZU5mZ3sYRDmWJYpbsWMdX59wGQIuf5oT++zKpcgRfGXE2LX6KGT32+rSHnL/tAaCpUPejtmKastM+7Wy3Pces9jJkBexi8XgZ+2WBI0uLMaPviDvOZkTMOOw2bWVykxtPiOzskFTsDElVz2kBN6XYHd8BIaXa/eYrEUrPsFFubAw2aPLDMTseCMx2+OjMpAsUgSy22rRYMGF8bkIBSsfXjJFQL2mNQer6fpIgNgo3bAsZ1nd8Dd4kiATIpEAWyegYjOSBAUqORLg6oNswTIHMgFAAxlUskSPQgd5GeiAMFpeBppJOliJEJCmvY/9FM2HIICbJXGrXyBMEyx7qO7X4Cs0mnRQlTpqEDuhKCh/p5hm1/T8AmvKnZoDrrruOurpM/ZyGhgauu+66vNrK5WKbPmYwf7/mDI7bZ3TGubc+WUlDc4pVm2uZ9fFyAOYvX4fvd2y1S4uTHDl5JL2qOtOSStPUkqZbRSd+fNGRnH7gRC47Zt9W66c8jwffep9kQv1U6ZbF9fbx2k0ALFy3Ke/xDenWlbMmK/CY8j2a0/lRogOqKvn3Zefyo2MO5brjD2u7Qit2z5vzuP7RF6mpb2x3nfqWFn7y/Eu8tGQZf3rj7Z3qv5D20rpFHPjkb7lh3jNZzxe7Rbg6LXmnhAreF0Iws/dUjus7Izi3s7Zoxwc8suYONjevb7twnmbFmOZ8/bdbIe9HrZkhV+wEtJFXaxWzHAujVWJti1g/OhhatKh8am4TiGYgTZDM1ndVHI3a/q4DoW32SYOOIIUKlktMv/cF+K7anu8l1V8/KfHdsF6QGiXww0ns//AlTjqccLBRTUsQBIHgQsciQSyIXH8wTJS+1cmExC+WpLpIUhU+qU5qjBKpXHbpsH3Sup6n29NfdFnkIys8ZJc0XoVHqpNPS5kkVSZp6QTNFZLGrpLGHj5NPTwae6Vp6ZkiXZXGL/NU/RIfv8IjVeXR3N2jqbtPUzdJS2eJl1TXpmgbFG+B5A5wGxUjFohwGs0mw15pVlGa74NUIQtpT5BOC9Keg++jQZJidwz4SfkOnnSC+miXmZEqMK67Fi9Bg5ek0UuS8l086Woc6lHsNFPuNlHmpihy0nqXnRd8bT2NvD1fUJcuYlu6lDqvmBbfJS1F9Nq1w9pzP9rd70kdYppyZTSfN28eXbt2bXc7//72BQyrzn/X20lTx7Fw9SZ6VXXG933eX7EBz5cs27CVoX265d2esfVbd3D2T++iOZXm9mvP4rj9xnDcfm275R6b8xF/ePYNkPDdkw/lrAMy85ldf+oRPPDO+xw1fkSHxvatww9iaPdujOjZLWsuubZsSI+uDOnR/muTzZZvruEnj70IQHlJMV+eOa2NGsrKkkmmD6pm1sqVHDpsSNsVPiW7d+ls1jdu547Fb3PtuMMocqP/HPqXdePOqV9me7qRCZWDdskYpJT8ffnPafGb2dS8lsuGfLvAHfA/zzQV6n6Ute1cYEhYS2e7t7IxRK0xTTGWJvLX+hjRQIozTZbcQIBl0OyJ1X5E7duuE4A0y30UKx/MzbwCh5E1JV8FafsJGWgTiZQI3YwydIcFmkx2vFRsnYRmUKJuR6nZFTNRzbLoHXNZAazZAuearfKAZ9BcCFD9pHLvBQyRvbvNHp/UKXj1YYUuBMJTQdZqJ6OIBsKbIRtkZMsu2AyjUe82L7XPLUBWKjcdyj0pZDAGxRLJsM2AnVLjD37eab+vcc85EKRNkcEwTdsKFKX1qimSzNcvVOxUvqjpf4Bpygs0VVVVafpPMGLEiMiNyvM86urq8so/1bMqU1xx8brNXPO3R+nXtQvfPPlgZi1cwcyJI+hVGcbCdOtcxs8vPhaAF+Yt5q6X51JeUkRlltiofGzx2s3U1jcB8OHy9Yxo5668/l27IAQkEy7TRlZnvYEP7dmNbx17cIfHVpJMcP4+kzpcvxDWo3MneleUs2FHHRMGZLq1cpkQgr+fcQpp349s7f+s7YJh+7Kibisz+43KAEzGBpXv2vQ3Qgj6lAxkRcMiStyd33CQ0X4bv9x29191rVmh70fxB27AJmUrJ2OfTYX4uRyWUcTuR7uUDFgSHlHXVbwhaQEcy8Vmxh9xxVl9B9v6BTodSFgumLvtsosNPMBwegxO2vQhwPG12rYIcrYFCYkdGbrCQOsMabokAJ4iVNK2OhOOUC44UIHcUuKnRSgb4AuctAFSejdaAsVAuRInoZQxvQTIUge/xQl25Ekhw7gmR0JCIpK+CtaWOnDc0H8JCcUSPyXwOwnS5Q6JekGyHhJNmg30wEkJvFLwitWuuiBA3AIPUoL0HURCwRPjGlPTNhHqGkVZ/kYphfWVU4AtLRV0KpIeCcdX8VDBd0sFpDnCU3BUGgHLNAmhwJmHgyfB01IGJgOdSdPi49IsUWyVL1Q25TxsjwsEv+mmm5BScskll3DdddfRpUuX4FxRURGDBg1i//3336kBPTtvEas217Jqcy1X3vIw67ft4IX5i7j9S9njlQ6bOIzHv38xncuKqey0c6Bp6uhqLj5yHxqbU3nt4tp36ACe/uYlFCVcelTkp0FU29TEl596ElcIfnP0MXT+jPKnGbvjvbnc8/58vrr/NGYOi2o5dSou4qmvXkxjKkVlOyUPbNuVgGl7fRPb6hoZ2Kuq3XWm9RrC00fu2lQgaxvX8MS6hxlbMYEDumfPz3dk77P44+LreWfrLKZUHcyoikymssP2P8w0Ffp+1NGlyiA22jjfZuMWsSEJwU2AewxIshuXsWYstihb7FHALNm6QQ7hEyvroO0ca1F9pXC3ulTsig/SE8pVJkOsEbBb9rytXHWKzdKF7V15vvUy/WqQJLQrzhBlvqvn5ml2RhJxWQkkwvGRQhDkvzP9BVPVT3fHDxc9kPO2BhAATYlMCOXa9JRLTqSBFAgXFbtkmCfjchRhV0iJ9IXWLdD4UXfna2kGByVY6uiFM3nowiS8OtZJ+Aj9CiULzBKbxVbHHeGrHXL4mqnSTJd0FRsoTQJkVT6hyzu6z3ROKjaH7WlMk8kmPnjwYKZNm0aija3rP/vZz7jiiiuorKxsdx/H7T2a1xYso1+3Lqzbtp3123a0CYYG9Gh/+61ZwnX40knTO1S3X9cubRfKYs8vWcJ/li8H4D/Ll3PcyF0rsPnLl17lrtnzuPaQGZy798TgeG1jE64j+OXrr1OfauFP77yVAZqAIEHy756fRafiIi6etjeOk98/nHs/nM/v3nmTy/eawsUTJ+/chIC6hmZO+e7f2FbXxHWXHsWx+7ftUv207PG1/2LOtneYU/M2+3SdStLJVFB3RPizWxb6jvE/DJoKfj/KAi6ylsn1MQZgbM9ShKGJA574eydWz9pxZrwhdnxSIGjpktmmedrGGDSbWQp3xsnscw/QjsYSToyF8/SkBCoI3AWEIJEWOJ4I2RUDZqx0KI5mlKRQrKsBQpE181DClhZ+sccmUnoHmxGmLAKSDr6r+hJ6HYSL0l8TiqWSrgYwJljbalskQCQlTkKzOsat6JnGZGT+MqH1mdICt0UJYJprmU4IfE8AfuhyNJdIz1lm+fIJHfwlhaNQqQiDuB0LMAlU+hOzYy7hSBIOJLQsgQhaVyBJCVX6JIVHsZMmKTySjqfZJA9POjQLwxBKioRiouy8dZ5Urfrk+UN4TwNNxg466KB2lfvpT3/KGWeckRdoGtijkru/eg4AdU3NvL9iPXsN/nRUxgtly7fWsKO5mfF92nZhTaseyNCqKhzHYb/+7dde6qjdO/d9GlpSPPDeBwFo+nDdBs78+30kHYdTpozm8cWfcO6EiTnbePS9j7j55bcAGNO3J/sPHZjXGG6Z+y7r6nbw59lvFwQ07WhsZludcquuWF+z0+21Zik/xeK6VQwrH0DSSbZZfnTFeOZse4fh5aNIiOzlh5WP5gvDvosvfUZVTKA+vY2tLavoXzoWsZPB5nligP9KK9T9qM37eZbFylreUETtXNyMNuKEhilkbfcPgrKDwOywnLQwh7SYkKBds4sr0AxqzyClcqPF2KrwWS/xTAoSlGvKF1JpJqEBXkIiE36gveQ2OaC36zspXUZYczRASjNMJgWH42kWx6yxp495ai5es2ZnjDurWKthShR4CSg8hQKFEEj0uHS8EQkfx1XR2ya2R/r6R40vAgCj2Cg1aOmoYHBRosbkNgucZkUeqXVXed5IEqaeS0hVwBf4GnxKl0DryXE0S2YqWL4rIXQ+OOEF0gSukCSFp4/7uIF6t0qh4kklfNmQTpIULm7SIyGUO86XhuVSCF2Rj5KkSOMKj4QGTQLwBEgcpMhvN3Zb9yPacf6ztl2qcijzDRKLWXlJMfuPrC7QaEKrrW/i90/Pon/XCi48eO+CiguuqNnG0bfeSdr3+eMpxzNzZOvpSnqXd+a5iy4uWP9t2TcOncH9c9/nC9OnBscWbtxMyvNIeR6HVg/husNb32E3vFc3Eo5DUcJlYAcYtisn78vv3n2DyyfllhloSqd4bNnHjO/Wm1FdW48t69Otgp9dcRxL1mzm3Jn5aVjlazd+dBvvbP2QKVVj+eG4tuNlZvQ4hH277k+RU9zq92xE53EAeDLFHUs/T4O3jQO6n88BPc7buQH/DzNN+Vqb96NAJyiH5WKGIp1Y5y3GKWf5OOuUi+mxgJhEAxYrPUiELTHt2IHWhlEKmCWZyUzlMh+EYZpMG6YPe56CcGu+r91spo8EyBIZjFHUOzgpxUThaaZFYRFLn8r4pwhSrzhpcJp1GUP6+JYOFMo9R1IgEjqJriuVi0wAOAr8aKFLleUYS1ZBIBI+bpGPk5AqbsdsLbTKCwNedII/4TsqOBvFlDmeZr7MtTE7EF0IAoSEGhdCaBkBpfStPotAgsB1JAlXBulTHM0uJR1Ps0sqENx1lPss4fgBM+QISUIoFiktHXwtztXsF9GleDtFjpEeEEFAuErJ65AQkiLHs0CY3rmnr7lE9ZWX7alM03+73fP6e9z3+jwApo4YyKh+O68sbqy+pYW0Do6raWz/tvxPy86YNJ4zJkW1r44bO5IVW7ZRkkwwvR1JcicN7Mt/vvk5Eq5D53bk0Yvb6WPGccqoMTitgIhfzHmV2z58l2I3wdyzv0hZMndiYIDDp4zg8Ckd25mYj21qUkzWpuat7a5T7LZfU8uTHs1+PQAN3ra8xpbN/pcDwT8Vy/f3VAxYSRvwtGbZgJVhjCxwEuAwYbnmrB1oEZYJzYzYcUt615odzxR1J9pUEtFYIhO3lCB071mASUiBaAEclcrET0oNbnSbLWitIxWH5DZCok65sqSjY5E0UAgYLWvdhJYtSDRLXK2p6AuUancSpKO3wBsmKi2QLSIAXzJYONQOPIkWWDJrqJmnhA+OxNfuUOmJMNWLUKyQTDvKnWk0H7T2kp8UpEvVPNwmoUBei4obV+vp4BcbBk6tE47Al+D7jsptl1SsmCMECdfXMgQEu+qAMCccns4tJwOQlHTSJMzOOGTANBU7KVLCpcV38XBo9BI4QuI5al1SvhvQfEnh6z7URTe7Du1cdY7OU5eP7XGB4P8rNnFQH1xH0K28jD5VFYFeRr6xOdlsTK+e/OW0E9nS0MAp43dNbE2uLdYdtaTrklib4sNla1g9dDjVfdvepl21E0H3f18wm5+8/QITu/XlwWPPyarkXtus3G3NXpoPt25gn14DOtxfIe3bYy7llU1zmNF9592K2azIKeHM6l+wrvEjxnU5cucb/P9MU/stm+9gZ/6ZxRiivMYR7zs+NgN4bNBkl7UZKMuFFgFZ1j87IbMMUBIEZQt7PjoFSDBEszsOa8ebEYJ0tD/HRz1tfMXwuM0OiUYFmBwfPNeaog2UzGfjCUvJQIFb6pQjnivCXW8J8IvVS6VxkUGMFX44VpVDRATrIsyauOAklHCk76vUJBFqzTBODsFxk5pFAMITSvRSx185niaoikAmBX7SDxTLSaCYJt2UEKHIpetCwtVJegVBol7jHnMdP4xdMmWEimNKCJNYFxwNaoocD18q96BinARlibROlwIp5cjDQeWcU+lXPM1YychlBCVJ4OolzMv+P9P06dvLC5awfNM2zjpgIiXJjg1//xHVvPqTKylOumxvbOaI6/9KY0uKO79wJkN7d1znydihw4e0q9yq2lru/mAeRwwZxuQ+fduuADz98SK+9thT7DewP7edcXJBwNPqDdu4+4nZADz03Ht85cJDd7pN2z7avIkuxcX07VxBfaqF6995ER/JnM1r2NrcSI/SzK32hw8YyoOLPwBga5MCUB9t2sQVjz1KdWUlt55wIsWfcg49gL6lPTlr4FG7uI/R9C3NFHXtsO3mN6HdyQK3UyHMBj8yR7PZro3FGIXutMxqWXfG2S5BEzejgVLATInMwYTBySIEKj6ItEQYcEGYyDZoW7vGnBRKp8gwP1LonWCqXScFRTUOTkq167ZIirdJkjt8nDRq51lCBC4sKQTCl0FuN1+DP+FpD5m+UFKoH5GeC6lygV+s8tFJVwZaQ3gO0tfz8DVn4kgV5+TGlsIHL+VoL5zUMgN6rro+nlD6UzIYRvi3RIlwposhWadOOGmB26TKuAjSnWQQ1yXTQutHqfbVNn+C5LmuBj2+1Ml6UdfP1xIJCZEm4fh6DlZSXwwRqABO2ncodjySiRaKfA9PtqjSEpr8BC1+gjQuAkmREDhuGsd38B2Bg0AIj2KRRiKo84pJk0AgSft5Juw1353/YtttQFNjS4rn3l/E+AG9GdwzO9Oxass2vvj3RwFoTqX5/OH7dbi/zqXKrbRg9So21Co14dlLVxcENNm2pGYr333xOcb26Mn3ZhwcATnfefFZXl+1kns/eJ+5n/9Cu9p7btFiWjyPV5etYEdzc17pVHJZn+4V7DW6P4tXbuKgfQqbr+vpJZ9wxTOPUuy6vHTOpVSWlFDkujSmfQ7oPTArYAKYWT2Cnx4wEynhiIEqLuyJTxayanstq7bXsmjrFsb17LiG0vIdW7n85QfpUVLOXw85jbJE6+6/z8JSfiPrGz+kd+lYkk7HmL3/755rv2VNC1KQhgkfrPYxiIAdYX/W4wiAkTkmo+eD5nQfwmov8te8yeYujH825XxAu6Yiu76EVUe7zMzuNlwdAA6ahtDb5RtUULRIqe+c2wxOs0SkfB3D5OD4KgbJ9wU4EpGW6pgEJyFUvjVQyXYRgQK6lxTKPWdU0V1p7Q4MkY1RzQYRzEFkLHw4f2nHMgXuNf1Xp4JBqn6FucYO4EsdL0UA0gIwLqJ9CJ+QtXKMppKRE/C1V8HkgLNcjHrsZkec/UUy73w9dZNDzpcSoyduliAyLanLOkb1ydc593yUQ88LdJx8/YXz/Ni6tWH/3z3Xhs2YMYPS0vbd7H/95KvcM2se5SVFvPqDK4KUJLaVlxTTqbiI+uYWeldmCmN2xPYfPpAz9p9AfXMLR+1V+O3+/3x/Hm+tXc1ba1dz3oRJDK6sAtSvo6U1NQCUF7X/gX35flPYWt/AAYOrCwKYABIJlz/9oGN5+9qy9fUKkDZ7HrXNzfTtXMGTJ1zEwppNHDYgDJL/3fzXeXXdMn445XDGdeuNIwTnjJwUaeuUMWN5beUKBldWMap7+4RHc9nTKxeyuHYLi2u3MG/zOvbvXb1T7e0Ke3rND1nV8A79y/bmhAG/7Fgj/989F1ib96MsjE7knLG21ixeNttzReYuE3nAWoHc8XaCx6QkvJMbV5Z+H7jjdDsqvCeOrLKMUaACk7X7KZAMSMjIGiWaBU5K6RKpwHLlDnM8cFqEFpuE5HZI1stgTIkmSUmtp4BRSiI8D1yBnxR4JS7SEcoV16JG6xVBukyQKhb4RQKvRIEmqfPD+UXglUj8EolMWuDOpvkc67MjVdC1cSMGwWciBiythdcgymlycJqViCZCrYl0JF6xnr8R00wK0EHrAbBCA1tHxNCKjSaUYCsmB50BU0KDUAGODg4vdj09VAOIjBSAFr6UKmec1GpMrhXrlDDT8h2kZrhA4AdyAq6ehkeJDghv8l3SMkEKJb/e/P91mvKzjRs3snHjRvyYKuiECUqc78knn2z/QHRcS7b4FmNVnUp5/BsXsqWukVF9d+6haSyZcPn+qTuXj601O2rocP69cAGju/ekf+eK4LgvJRt0vqyhVVXtbm9Uzx78/axTCz7OXWXnjJ0IQO9O5YzWQGdwRVcGV4RsYm1zE79+71UArnvneR44KvuOsSFVVfz77HMLMq7jqkfz1MqF9CjpxF7d2+ca/bStyasFoHEnAsL3JKZpp+9HWe7/hVyenI8X/YCO46h4/5GxiNh7k9Q22mQkf1tORXG7IRu8CbXDzsQ6I2QYsyRRGkw651ugGyXBadTBz40St0mSbPRxG7WsgE4v4jRLSGumKS0RaR9fOqRLE6RKhZJXcAVOQmEFPyFIlQi8YgWg/CLwksoVaPomDaSl3sZvTdCAIj2HyNyzxTFLQrecPh8EgqPXQGrWzFcuRb8IFT8VBN1LvCIJReAa+k+qNfBbhEp0q6+H1O5P4XiabVLut7TnKPgjpI41UoMQqM+OlPhSkFDbGzGqSUb0Ul1SqdkqJUqJVNpYnhS0mHQw2oXn+w4pUIvpycCdK/wkSgs8Qb1XTLNMBMAq/f+ZpvbZ7NmzufDCC/noo4+CbbxCiCBA2fPy93N+5ZjpTB7cjzH9emZlmYz1qCjPW3X7s7R9+/VnzuWZrjfXcfjVkUdz25zZjOvRG1/KVneT/bdakety0YTWg6YriopxhYMnJZsaGz6VcfUvr+SRoy/KeX57qoFSt4ik0/o/kS3Nm/Dx6VGc6Spc27iUu1fcSLeiPpw/6Psk2qHrZMyXPp2K9ma715lDeu+EavkewDQV7H6UyzWXhYWxPVUyW5lY2YzTcbInWx+5XlZ5iQY05pZpe5sMs2RYCjuWSaiKwfidzHEqUUod42SCu5O6botKRuu0CLUTTLM+TovAbYZkPRRt9yna4eO2gPAkXpHaJYaUJBp8kk1qe5qT8sH3SVcWkapKkC4WuCn18PeL1fjTxYpd8vROOa9E/cWaluOAnxQKvIhgiqHApb3bDxkwN2HB2EXIYJpAeA5uiyDRLEg0qpgqX7NeIqFlHCCIxBZCA0DTpKOAHnrTsZR6fAmJmyTUZtJMk5IeUGKUQg+iJJGmxE2TNAl8HYlABIKXoIgsH3CFYqOKdH0jTJkmEcHQaekitVaEDJx6Un8SpGSSGq+INAmdfsUsyf8Xt2yXXXzxxYwYMYLbbruNXr16FSQYuSiR4IjxbcfT1De3cMdrcxjco4qjJ+xa9exdbaVukg/XbeTDdRuZ0Kt3VgXu3cE27ajnjjfmsHd1Pw4Z2b4g93xMCMHVE6bxz0/e48sT25cEeFfaqxvf5wfv30nPkkpun/p1St3ssgqrG1bys4+/h0TytRE/YEh59Pv7Ye0salObqU1tZmPzKvqWDmFL81YavUb6l0UFW1v8FjY2raFvaTWOcFjV8DFvbHkKgEU73qdnScfWfU9gmgp5P8q1HNmAkYWdWjeRpVw2sJTDRRePtZJZymsSQQd8R9GP8DDBLYo5cKIsVACKYmORDpCUmm0xMU2KTRGOQDpSywQItVMNEC2Q2CEprvUprvFIbk/hNnn4SQdRmlB/PR+30UekdZAzEq8sQVOlS31v9bQv2i5JNGrSo1iQKlP523AtoGivhw+kQTRrsFckQ2FPHxWfFF9rDaREjgspbSZKhi+THNh3VWyWSOs5aE0oHJCuJF2iLp7bpFyY+JBoBhxB2hX4Jb4qbxxqwteASbFDngcpBYfAVarfxa5S8S51WyhylZq3o5mvlExooOSTxMPRuecSOtecr2UFUtKlwSsi7bvKrSe1uCUuAp+k4+C7kJaCbaliHFFGsUhrl5/eJajZL1+mMxeuFdtjmaZly5bx0EMPMewzeMjf8doc/vj8G4BSo67u3rZr691lq/njC29y3KRRnDplXIf6bUmneXbhEkb16s6w7oUJFu/buXNA3fbtXJgYrV1hv3txFg/O/oDbX5/Nm9++kvIOaDO1ZddMnMY1uwFgAliwfQUSyYamGmpa6igtzT7f2lQNvr6r1qS2AFHQNLnqUJbVvU+34n70KqlmU/Nmvj7v+6Rlmq+N+CKTqyYGZf+46Ccsb1jM9O5HcPqAS+he3J/Oia40ejsY2GkndtLtAUxTwe9H2Vgf89eOS+mI5WKWcvUbewWXy8lSLdgdFz0jkBnAy8QqZcML0makJMFk1RZ+dcxpcnBTKkVKukj17TZCUT0U10mKt/sU7UiTqGtBqv3yyISD40mcZh+32VN75aVEJhxauhbR0NvFK4HibZBoUTIA6WJBulQlvZUJlBBmIBKpxmKCsP2EZnGCVC72muvFE/qA1EKSjshcgCCzsLW6EkRaJ/fVL1enbvGKwS8TUCwDHSoESnrAE0HAeMD0mLgrAzRdcJJabkB3p5cslB1wIOn6lCbSlCZSFLtpihyTAw7SvhKuTAifIp0mxQhbukLB3ZR0VYoUP0Gjl7SS8KIFLSEhhJYykDR7SVIyQbFIBTFMakV8HKmuT9LJ8waypzJNhx12GPPmzftUQFNLOk1L2gse1IM0SKooLaZLO5PG/u65Wby7fA1zV67tMGj63StvcsusdyhNJpj1lc/TKY/gbWMvfLKEX734GqdOGselU/dmXK9evHzppQD0rahoo/ZnZ8N6KJDYt7IiyD33v2xnDDyIhnQzQ8r70Lc0N0AeUzGBcwdeiic99qrcN+N8t+K+fG7Y/wWf69L1pPUvs60tNZGym5o3ALCxeR0AnRIVfG3UX/ClR9LZCZC6B4CmQt2PMsAD5ARQMluF9pjtEWql/QAgZWGfMjxJtqvOpAHRu7iC669TdAgpw5QknlXdiTFaOqWJHVwl0iEo810T+KxOO41QtF3lgPNcQUsnB98tQlQVkS4RtHQWpMs0mGgBt0nipiDR6OM2SSUXoNv0kopd8l1o6QypcgM01JjdZgU+TCC4WhOphCKDvHbab2fApaEvJIG4kPRAFMUuYvx6mIAuX1WWjgJvXhk0u+C2qDallEiTx06nePEdSapYq3W36PgvlPyAnwRR5CMTEuH6OE4a11XaS0a4XghfpXDxlYtPBW/7FDtpXCFp8R0kDknhk3A8KhItOEJSJLyAgWryk2xPF5PyXdIaNKmAcF/pNvkOKeliHHtpHafU4rkkHBUHpQCZoMVPIIRxFUrwJKIlz1CcPRU0/fWvf+XCCy/kgw8+YNy4cSST0ViNE044oSCD29bQyPG/u5PahiZuu/hU9hncn2MmjmRsv550KSulsqx9u8eOmTCSuSvXcuzEjrvzwnuZQGT8y2qf3TLrHZZs2Movn3qF3mWdOHbCqDbB0iOLPmLF9m1cNmHvNlWxd5VdeMBkDho5mF6dy0m6uePN/lesqqgzXxnVdrC9EIJp3Q9pd7uDO1Vz9bDPsy1Vy8E9oomhPz/0m3xQ+y5Tu4UaWa5I4IqdA6l7gnuuYPcj2x1mH4u/b40tas2selldbBCVF7D+ZowpaxsyBD/mlD1WiRaXDJkmTbpoxsa4tETYbIA1LHeXVKDLuMmclFK/Fi1qJ5ybkrjNSjJAuijQVAZesY/wdSJfYdx9gnQxtHRySJWhctGlFEZJlUK6TOIVS/wipalECnzhKhUAkwDYKJy7GjjZa2dfM+1uC8QTXAv8mkUwIEvLBQQpZMxnjyCm3Kydr3fwmfQxZo3xFNuEhwos1+voa2FLE1zvuD6Oq9xdYISLjZClxHE8HOGRdNIknVQAeHyNcoXwFRhGASuBCiZPS4cW31H55kzfxhWo+CJ9ee0vicBIGfgSHQonlY6TL0gKH0+q1CsIND/Vfttj3XOzZs3itdde46mnnso419FA8Gy2cmstW+pUYPC8VevYZ7BKaNsel5xtZ02dyJn7TdipWIcvHbQ/Y/v0ZGTPHpQVtT+g17Zz957I+8vWISX88aU3OXbCqODc32bP5vGFC7l2+nT2H6gS4C6u2cI1Lz4BKEn9L06emrXdfO3ZtxdS19jMiTPGtbpb0bZB3fJb80/LpJT88Y23WLR5C988+ED6VuTn5tzcVMfn37wTX0r+sv/59CzZtYzfft2y59ur7jSU6k5DC9/hHsA0Fex+ZAOm+N9YubwtcA3laCMbCLJZrRigs4+psrq2LS9gysjoe6O/ZBgnxzSok8V6xQrsCE+VlUmi6uJYxyS4dZBskBTXShItkmS9T3JHGimgvl+SHYMcmrv5kACnCdwGSO4QuM2Clhb1UE5VCPxSBczqS1TbXmcfWeYhkj7C9RBCkG50kTschKehTwCc9K45s4PNACEzZ4lS/U4QxioZDSfbFecRrWNTfq5m6NButnLwNGPneAK/BUUreSgXnlnzpB5HWgldJppB1jt4RT5uicRNajeblhaQFgBKJnyKEz4lrqddc55ypUkRfF9SKvgMD0mLVKlNijD54gTFjsSVPs2eQ1KzVGmp1lAlyBOBeKZE4EmXtISEUClcGrwiUr6r1NdlAkc785IijS/zhBB7KtN09dVXc/755/P973+fXr06LjDYlo3v14uvzpzO+u11nLHP+LYrtGI7G6xe5LocNXrncpudMH40G2p28PdZczh36qTguJSSn73yCp6U/PnttwPQ1LWklIqiYra3NDOksjCg5b1Fa/jOXxQQK0omOO6AMbR4HkJA0mmdRdpYV8fn//UoxQmXv5x6IuVFRfx78QJ6d+rMtH7VrKvfzsUvPEhZIsnfDzudLsWF0ZFqzZZtreGm11SMW9+Kznzz4APzqv/OlmV8sl25xt7ctJQTBkwq9BA/UxNSBr9Cc53/b7dC3Y9ysT+7yrL2l8UtFy8fAiYZLWvXlVGcJuONWJ+lZo5MHTwCxWokSE9vs0eGckbajSRMjJEBcJ6OyS5SmkvN5Q7pEglFHsJVPIcnFLLzipU7TwLpThK/SLEwIgEi6UOph1PsIRxwXXWPEkU+fqnEb0lAWoSuR4OPHLTmEVGXnBQqSa+tAxmsse3fjC+yvVAiYKaclK7po2KWfInTovuXIdMUNKFz90kNuoRHEItlxCtNIl5pmCZHIvAQeLiaabLC8YPGfSlI6/G6jsobV+I04wpJs58A6SOFQ9IJFcYlrk7UmwjaEtp15wipXYNqp11z2sGTjk4Y7IebEKXirPKxtu5HpszubB0CTVu2bOErX/nKTgOmlnSaR+cuYETvHozqk6m7JITgsgP32ak+dje7/MB9ufzAaPyLEIIzxo/nsY8/5pQxYb66rqVlvHL2ZdQ2N1PdpbIg/VeWl+I6As+XdK8oY0ntFk566k5c4fDYsRcyoDx3Py8tWcb76xXAeGPFKjal6/j+688D8PwZl/DmhpV8XLMJgLc2rGLmwMKqi2ez+2bNx/FAJATTBlXnXX9az2FM7zkMT0oO6rVrE/7Wpet4c8ssRnUeTf+yTymX3h7ANBXqfhQwN/mwS+1dv2zAyD6ehXnKeC8scCJiwd12OxrwCGl9Bh3XRJhnToMeR5eVUpUNnDU+oZyBCQI3LIw5jmJVEs2QaPZVDttih3SJQ1MXh4b+4Pdowe2UVkROykGWgV8sIKXHIiSySM/JlciET6IkTVFxWieplSRcHyGg2ZU0SlfV9YVSIvcAV+IlJbg+wpXhWki0srej+tKpUyILa1glo/xtQ00zX31MeIL/x957x9lxlff/71Nm5pbdVbeKZUuWe6/ghiu2MZhiwIBppnfIN78kkJAKCSXffEkhBAhJCBBCr6ElVGO6C7bBNi5YtizLsrq23jJzyu+Pc+beu0XS7mpliaDHr/Xq3pk5M3Nm9s7nfp7P83l0WQ1XZvTaoNoCZPCRQhIaBvuguyIK2IWlK2RPgMyjE0uqbTSrDBDExcPX0pMoTz0xzEvbVJQJbNAEVb9HBX8lgp5pYdqkX7VouyRUxAlPgsVIH9N6IVWXSI9zniRAJZws3cMDw2YRNG1CyyWh6S+hJ13oRRfb1Mz0G8ZvK9P0rGc9i+uvv54jj9y7dMK//eAW/uOWu8i04gd/9Br690FV1m9KvOOyy3jHZZdNen9+pcr8yuyb406M1csX8oV3voxWbjhq5WK+sPYORorQMvyuHZunBE25s1jnuPTINZy6fBkVrTlv1WF89+G1QDAmzZTmisOP5ssP3EVNp5y3/PA5O+bdxVdvuxvdgGOXLeIJswBNA0mVD57z4n1wZJPjkw99nJt23khN1fiH0/4JKWbocTKL+G3QNM3V59G+joms0KT3emOK5V0BuJ96G8LDkAh+Jg3QKcHvbu9cqIDzkfkQFkRON63nQRTx4ewJFgQQ2JzYPiUcmw/C4CgWbyyWNJd5zCILmUUqh1YWkXgkAleLAmcX2Awfc1legFKOLC064CfoesLvSiIQNWg5cEpBQ4VjMCBaYY58JqLjN13GSXp8CdI8HWuATrqyfJiXmdxeXFK+37OebHdF4MISXM1dmDtXCWkuaaOhZ2liGcez0VldCoeSNvwW0bM7AhaiLskBhRMUVpBIAb7LNHVIsUh/STw11aZfNhE4tIBUBINM5yVCuJK3QmBIlSGVhpbVCJfgCPuTomzNQmgurIKmyfuYOoz3oPcC42b2GfZbq2k65phjeOtb38qPfvQjTj755EnCy9/5nd+Z1jifuvF2UAlKyv+Vxo4Haqw8ZH7n309ZdRy3b3sULSWXHDr5obO9NcbTv/MvDOct/vOi6/i3514NwEClwtVHncCKvgEWVWsc1j8PgM8/eWo3730Vf/TUi/jcTXfw6ksmV68daFHXdQSOikyZbTHBjOO3gGmaq8+jSYzNdLeZSUw1/u7em7g82gFM6pMXf4vSHbtDF/UMVD7vSkCE6JSdd4aSgO6yKIFRilob3XNYLpTSq5YkHfNkI54kD4uaCySNlYJ8mUH0F+jEkSYlm2JxXiC9wMfqLeU9PuS1kMKRpQYlXYfFKLXpIfvnKZzCWQlOIq0M6TF8sBrQETCVZp4QJsuKDqsl8F1GzdP9Wyz7zI2bKCJYCqk91Q5arGSsO7zwAUB5FSoHEbGNjA3DCR/E4tJBUfWYPo/rt9T62yTak+oAhFSn0i/8Kk0tK9pS0YF1M7HSrTc9V240L2mwIhsik4bcJ0FvJAJQLJ0VvJcgPElkiawLdgPRSxNFYJKUiPMsQtsUKQipP+k7Ngdlq5UZxW8r0/Rv//Zv9PX1ccMNN3DDDTeMWyaEmPaHVMtYlEr45GuupZ7tfWVYbizpbtzE5zLu2ryFjcPDPPGoI3+jAV9VJ/zV2VfscvkDI9vY2grtXv5n/T382y9uB+CrT7+O4xYu4ezlj1GaaRfx9DNO4OlnnLDnFWcQ3nu25ztZmM6fxAbdPvhLPvzAxzht/qm8Ys11Mxr3wsVP4PbB/8azifWN+1lV3/fpy98GpmmuPo96Yy6mpZPZ6X1jF+91UnZTfJRM+b6feh3fk1LzAoTzHXKqI4IGcAKrfEjJFATn6XZgSlT0HvIRewatTrArCGm0wDCpMYEe9ahmYE9MGhQ3eRXMgEX15ejMoLWjkhRUEhMqvwgpIkkAY9bL0KQ3Hmggw0KZu4gPcCk9zoUGItW0QPR5bFViKxrGNLKhQlsTBFgZtU0uphQ9VCzeyi5b1KNt8vgIAulOUKlH6mGaZB6ZuHKOHZhKaKEi6yElF3rglXMU1hU+sE028diqx/VZRGpIpKGa2A54K1NvobbNkyBwMrA5LZtQoWsk6f34W0DgaVjNzqJKKlPGbIYSnj7VJFMFDZsyYqoUXiGAVIb9Cu9IRUGOpnARDniBkAKJI5MFMgm2A0p4EhnNNOO0yNK3YprxW8s0Pfjgg3Oy82OXLuaK00/imKWL93qs93/vp/zT9T/jBY8/lT972qV73mAvYuPwCM/6z09gnedtl13Ki04/bZ/ub3/GmYsP5ymHncC3N97NTzavI3fhj2Tt0HaOWzg3/f8mxk/Xr+euLVu49pRTZtTMeK7iY+s+x39v+h5nLTiFNx83voXJD7b8mMFiiO9v/QEvXPU8KrtwC58qRu1QJMBhsNjGKvY9aPptYJrm6vPIw67tBmYyyMR/ToNdmlS11zuGmPz+LkPQk4YLvzvi7XJ5eFpGjBLTa6XoW9Dt5VZKeiJr43WXOREm2AyU/eV0LsB5ij5Jawm4BYa0YlDaoVQATUoGEbDzMrAVEHUxDqSIpJiP3kR0AFPJOnnAOciNDKk3C1gRRdm+067E+3jSZfsSQUgFRupMCI8v+4yUk9JzscaB3TIdF1ORpd+SNLFRcAWccCEtqWNfPO0JpyQ6185pcJkPLuBVQ5I5apXwWepi/zbvPTamD5UM550qQ6osmermDQNgGn9DCDx1mZMKR9OkFF5RTZokwmKRjJosiMIBHc0GjA8GBaV/k/fBbFTIKAJHRpG5jExTEKuX95To6KtmEL+tTNNcxX+++nkMzJGp4zfv+jUA3/rVr/c5aKLUDdDzze03LKy3fPKh/6ZpW1y3+mm7fPhLIVBSYLzj7rFHeNNpF5PJhCet2jei6Z3NJi/5/BdCH7qxMd560UX7ZD+7i1+PPhB/r5u07IplT+TR1iZOn3/qtADTmBnjvzZ+g0OrK7hw8Xk8e+Ursd5y8ryz5/qwp4zfBqZpn8RsyeOJ9NJEcDTF2Lu6BLtinvB0TKvLFNpUD/reFNSUTJUChMeJUDHlXRBVy1IfpOOmAkzZniXxiFZwxpbGI3OPjgxM0Sco5gl8xZFWDQv6mpFBEdS0wTjJzlaFttFk2jC/2gzO17jg+0MAUk0bvA0E9AiOA3jTylPLiiBdrnhMvc1orQLbKqhRiRcClxIE5UZA6iABoXxML3p80QuYYpTVgiWwGicainNuAnOEhbwvVPwVAw5SOmxUYJUCsBAujOWFx6ceUTHINOi7ksRgrQzL4rmWZpMCSJQhlZZMOlJhQ0WZ6BJl3QhX3iMYsjXa7RQP5E7RcgmHpMMIYEdRZ7iogoBEFiTGdxgjfLAtaDuNwEdPUI8lGFpC17vJI3AuXKlQXTdVx+Ndx28l09RsNvn5z3/OwoULOeGE8WmRVqvFZz/7Wa67bmZpi7mIP77qYj72k9u45szZOX7PJFYMDPCFF72AjcPDXHb03ruif+LHt3H93Q/wf550PicftmzS8lZhKJylP5s7ofztO+/lsw9/E4DDa8u5cvmuW5i8/Khz2dQc5vxD1vD642ZW0j/TyLSmP8sYbLVY2jf3jZlza/j3tTdQUQnXrXnClGLsV615Ed/efAPnL5pcuXncwDG8+5S3T3rfe4/DocT49PDXNn6Tzzz0fYyXjB5luGrF5XN3MtOJ/+VM05x+Hk2H0dkFiNndOpO+jIsplk0FrqbaR9kobSpgNu61H/+6dx0/7ldnoZchTdVZZsPuXBQDo0PlmXcuoCgbjsdJ30kHOgU+cWhhEDhyq0mUw3nPWJ7QyjWmUKRYcqM6jIqQgVUKRFkQRRO1M92ydh8BY/e3d8FA0guHKz3nXPesSsdwyp57sfSfTqVcXDdeCNF7ATqpTIImyoQ58YBLPC4LlX4oH+wPSqG28mXuKqT+ZJw7GYyxRLwetoepkaKbnpOxWaCSBi2DvsuJ3pScGOfTVG6PD4aUxsuOONx7GDYZYyahbWRs8CuDnUFpcUAATc4LVGzR6zxYr7AugLlOjlEQQVM4idwebNi727jvvvu44oorWL9+PUIILrjgAj71qU+xfPlyAIaGhnjZy162X0DTOWsO55w1j03FFsBJy5Zy0rK996jKjeHdX/0+HqimCe+7brx78ZbRUZ7y7x9nLM/5xPOfwxmHrtjrfQIcXl9On66Ru4Kj+3c/bycuWM4nLnzpnOx3T1FLEr750pewYXiYU5dNBpB7G9989Jf8y/3XA3B0/zLOP2QyY7a6vpJXrXnhtMc0zvDOu9/JhuYG3njUGzl1/qmdZcsryzGx9fltO3/NVSu6zJn3pfsvfGfzDXxvyw959sqncWZPT7q7BjdQ0ylH9B0ysxPt7iR+49318t/UmPPPo5mkwSZuN911JmqYpti+wzB5euFCz3o9704FmHrbh8CESrru2B3sJTw2KsIVXS0OhOekq4GrW2Td4nOFtCoUz9UExoW2Jrrtu5YFiUClHiWDBim3kh3NPkZGK+QjKXiBrWu8EtSzHOskCY56GgrnLRKtuj5B0sdMowClAthAeLTwOO3R1YJmI0GPeXRD4JMAYJwK6S6f+m61XDltdlcT3zOtJbCKeEdGgOPqnqLfY/tsqCYUhN+ebiuVkhISgPLI1KESj9QR7PlgIlkCF6IYPjB7gnpa0J+EHnPhI0L2AKYuaOkm6oJFQB7ZKoek5WDQenYWVXbm9dCbTlqMC6BVRa8t57uNeL2QlN5NoU9dElqoiNIKIexTEua2MDNNz+3h8yius6/ine98J1//+te5/fbbSdOUwcHBGY8xI5j4h3/4h5x88sls2bKFe++9l4GBAc4//3zWr18/4x3vTQw3Wzzzn/+Ti//uX3lg647HbL93bdrC7Y88OuvtR/M8MBI9N0WiFJedeBSJklxx8mSNy4M7BhlstSic487okTQXsSRbwMfOfgefOOfdHNm3f8XcE2Nxvc5py5fvtSHpVHFk31K0UFRkwmH1uWm8vLm1mXWNdRhvuGPojnHLLjzkXJ53+OWcOHAkzzu8K7i/d+RBXnjjH/D6n7+NRxqb+OT6L/Lg2Hq+sOGrnXV+uOUeXvrTD3Dtj97Lg6NbZnVs3ZYZu/75TY0D5fNodzHV9I77si26r8eRH71l8OXPVO/17sDT0SaFJ39kOSZdcN9dXrYekT7obpTvmFU6EfQ5LnWIzJBmBWm1DbUitDZJPEWfo7XY05rn8XiSEdDbId+ZsnOwymgjpTGW0mgkFHlkp4zAj2maOysMDdYYHKoxNJaxo1llNE+xruslFAwfXQQVETZEI8iASUJFXlLLEX0GWwvriTzYAugRUCMi/AyHH9kQkAtEDiKK38mDZqljLRDTcL1WAz2YavIFEz4Kz12Yc+mDoj6aYHkPzgqcCXot5wXWdtmjAApLk0sbGR4onKSwoR9c17U7Hkd8XXovWR/sCYwXWA9tqxgpEnInSaQlEYaKLKiqnESazs3Te14OyK0gtwEQC+/w3tM2krZRNAvFWJ4wmqc0i4RGPrPuGNP5PNqXn0l5nvOc5zyH173udbMeY0ZM009+8hO+853vsHjxYhYvXsxXvvIV3vCGN3DBBRdw/fXXU6/XZ30gM4k7N27m7k3BRPGGXz/ImiUL9/k+f7lxE8/+2KcA+Oi1z+L8I1ZNe9t/uf1m/vpnP8DhWZr1sW2swR+ffxGvOP1MhBD8w4ufNo516I3HHXYov3fBeexoNHn2ySdOa3+jRZuhvMWh9Xm7XS+Vs2sH85scJ8w/lG8+8S0oIRlI9t7/alNrK398x9/gSTlx3pFcsXRyJeJ1q5826b2f77iLpm3RtC1+/xfv5knLzuWH237KpYdc0FlnuAgthJz3NEw+uwPcEx3+GwyaDpTPoz1GD4M1Lh0nJqwzBXHUuxgmsFMx7dQ7llDg9eT3gfE6nl6ySgpQMf1UipejGNz0e5hnqM9vo7RjzKb4QgcTyyQ02NVtiXKepO0wNbAVSYEmzyXeCaTyOCugrRC5DAoZI8gR5F4hE4dIPIW3JB1AJKLmxuNQuHhCviyfj2BBiHD8QoMRCu0EykRNkhF4JZA98+6lx1bpVrV5oLRSiExZOVdlyxRcaJOiitgkOAVXjeyVCGm/LotVXoieX+X/BIiodwptU8I6Mi73XqClp5JYqomNFgSRferYtMf0qS+xnEB3dhLmKzo+BQDkUwqXIATU0oKqKhAQ9EteBOE5YvxxdH4C89S2CdbJ+COiFWZguFoz7Zi2p88jprF8L+Ltbw/Sio9+9KOzHmNGoKnZbKL1+E3e//73I6Xkoosu4pOf/OSsD2QmcdaqQ3naycexo9HkqScft+cN5iCaplvu2SzMbtacHF+871eBXRKwZXQMgK/ffy+vOP3Mzjq7YlWkELz+3OmLhkeLNk/8xgfZ1hrj7895Bk9fdRLrhnfy/Uce4KrVx7GkeoA8SPZjLEjnbg42NDbScm1AsKp2LMOmyXQSaVcsO5+fbr+VDc1N5K7gycsv42VHXDtunSevOA2Afl3lxPkrZ3V8wnVTLbta/psac/15NJ3P806Uz6gZjj9pZ7vIEI0bf8qPhrjQMT5fYAPlUIqRp0w5lmmWEiTYmFoSAi+DMNwT25pULDozpImhnuX0pS1GdMHYzhpuTIEUtBc4sMGsUhhIt4eCeZeBzyyubtFVQ1JrI+ZDYRQmV7hCQlPhhjVjQwmNagVdsejUkGhLPcvpT1tkyuGMxnjV06SWzoO7muRk/QV51qbRXyEfShENiW4IVDOeaw9oVe0ACEvhtot99XwJFuNPx1pABCjiEahWXFYAmcMrj0gcSltkKD4LAm8rYxUfIHww6oxpubLqzDpidwaiC3fgepyHtpEIZMczyXUucu/FDPeA8aIDrTpY2EMeT8S4YB8Q2LowhMJhkJRFiCA66bdeXJ9IS38SDKccgtwqxoqEsVZGu5WSD8/sy9yePo/KdQCGh4fHvZ9lGdkc6npnGzMCTccddxy33HILxx9//Lj33/e+9+G9n3438Sni77/7Iz5+0+38f5eez4vPPn2366Za8/+e/eRZ72s2cfbhK/nna55Obi1PPHrNjLb9w7Mv4O9u+jGJUpywcAkPDu7k+Seesk+Ocyhvsa0VgNm9Q4GNe+G3P80jY8N8d8P9fPzy5+2T/f42hXWWD6z9CL8cuotXHfFinr3yKjY0HuVzG/6Hz234Jv/vlD9iTd/udWKLswX83Wlv5dubf8zyyhKWVSbbbkghuerQM/buYP8XM01z/nk0U03TdNfd1bjx/UmPwZJ1Ej2vdzVmz48gskyabnNdEccZ13OtRBCExrJeIF34XZIWXgc2RfZZKvWcviwn04bRPKVRJLhWYC9QDtWWJI2g+SkqAluN+xAOn4DKHElqSRNLO1ch7eeDOaUoFNKCTRxCSKxwSCFRylBLClLtaBQptodt6kyBEL2ngkHhjAYrAzPUFsjyvEuMqYLruDCxVy2RKYqDlPMdK+vxyiMNqEKQNIMvk62Cr4WqPJl4VOJRka2ytnuxS8G3UHE6JF0BtvAoScdUsiT4EuXJtCVRQQQvRc9APXdJ3EMPORZOUojxmicTwY4Sniz27wssVe/NIceP3bMrQclAeYwLOqdmkdJsp5hWgjMz/NY1A6bpsMPGy0b+4i/+gre97W0z298+iBmBpmc+85l86lOf4sUvntx24p/+6Z9wzvHP//zPszqQT//8Dhp5wedvu3OPoGl/xROPnl2bhktWreGSVQFo5dZy+Wc+whu/+zWGizYvOOHUGY/nvOfR4RFWDPRPYqgOrc/j7895BvcObeVFR52B9Y6BtMIjY8PMS/d9A93pxrqtO7lj/SYuP+VoKsnMijhzZ7lp60OcMH8ZC7ParPZ///AW3nDjJ1hWHeCfz3kxVT09P6jcFbzlF+/kkeYmpHD8ePtN/H/HvJafbr+NH2+/HYDCT4+JTGTCU5ZfPKvjn278b7Yc2JefR3MaEx8Uvbm2CYBoIj7qrDruueknV92V+ygicBI+2ANI13kgd7Z2IuqfQvrKJwKXgWhLZC7ABfG0r1rSak4ty9HKooWjL2lT9EuG8FgTUmt5lmCzhGRIhFJ/JRCRvZLKkySmI+xOdHAH99UcYyR5rrFtHarnEouSjvaopmUr7NR10kpBtVKQJYZE2mApEBmcUOUVgJQUnuXzhij6R9k2XKc5mmG3p6Q7JLoBKo8INAlaLQHByDO2ffE6sE8uCT+oyEABNgFvPbISU2OlLky5ML/SBVNRAihS2uKkwDtJaPIbQJKUDhmrBaWMflQRpdmei5gqgXUBzNjINBGZKFninJ7r2YUtJVvUvU+CH1YAVy2bdGwGAsTqqpmmxv8+7jM0+q0rx4K0QV23WW8WMDqSIIZmZiY9E8uBhx9+eJwl0a5Ypre97W2dtNuu4uabb+ass86a0bHuKmb0tHrrW9/KW9/61l0u/8AHPsAHPvCBWR3IWy6/kM/8/Be89oLHxr9mtmGd4903/ICNw8O8/bInsmSGuolGkbN+eBCAO7fNTtz7B1/9b776q3t59skn8tdXTdbQPH3VSXx74108+bt/xxH9S/j4ZS/lzh1bOGfpgSH4zo3h+e/9JKOtnDsf3sRbr75kRtu/47Zv8qkHbuWw+nw+euELeeH3/4NUaj596UtYUpmeTcH3Nt3NxuYgG5uD3DO0idMXTa/ycnt7J480NwOCeXoeVy0PFgLnLDyNtxz7ajKVcmz/zJjIfRq+FG7sZvlvaMz551EvMNltamyKmME0llhJTARTvUMJJgOjuHQ8gJowhCSKvyMPMeXlj6kc0X1sCidCusoJnPD4UvydFqSyQAkTBMpeY2zUFikX9lEEUbVXHpcE3VAoyXeoaoFUNhTARB+k8nueC6IZkB6pLFrbTiuTIPqOD3Pn8c6HfsMeEOHYJcSiGoESoVS+ZTTWSjACZcIGpcM2UoS0nAxeVLK3QjCm6CaC0NL5OzTb9ZhabMIbbQX8pCsw4SYSJbNEPP8wZ94z6QuvlB4tLFqGdTosWryGpR9naAcz8ZpODh8F4kR7AuF9MCqN4KtMuXWOXIw/l5LkKlOh5bE3jMIYgTSz+PjY0+dRuQ4wMDAwLR/HN77xjVx77bW7XWf16tXTPcI9xn41t+yNZ59+Is8+fbzQ2XvPl3/5K9rG8twzTj4g2pXcsXkzH7n1VgBOWHoIbzznnBltP79S5Z8ufxo/37SR154+u35pv9i4Kf7edSXfzdsfxOFZO7IFi+PiQw+cB3noeRWu5Wyu6WDeBGC4aPGzLevY1BwB4NZtG3jSyulp3K5aeQo/2nI/y6oDnLRg+jYOyypLeOHhV/NQ4xFetOqZLMoWAOED8OxFp83sRB6D2J9M01yU9z6mIXbx7929B+MZo6kYpfJ92WWMRE5HjNzZrMw+lQ9x2TNe3G5ius576LT/KjUpJvQXwwnQMc8UVeZCuc7KPrYpwQA+pLS88vi6Qw7kVOs59cxQTw2ZcsHRG4up5aTakzuFtZLRSooZ8BgJ9BuEDo/iNLEkqcE7SWFl51kpost3ljrSpI2UnlRatHa0c0XeTqCQ0FK02gl5VVOt5VTSgkS5WKYfQsbKtMIpTF7Fexjoa9PODGNplaKWokdE+GmHOVUFQZPkxjNLuFBxV7ZDEZWwH58EsGKiAl0agRtO8FWHr1t0xUQsEMGJIIi8pe+kw6yNrJOXOOc7YKS8tgJPKkNOVvYs88jY0cVPgxnqRllV56OdQM8NAvhg29C5scaP2/1ILpkq3zmnijKs7h8kVZ5HtGekNbvquT2tM5MoC0EeqzhgQNNU8ZMH1/NHX/kWAAOVjKeceOx+PiI4atEijlq4kE2jo1ywatWsxrjqyGO56sjZn8tbLj+fP/3+N6kuN4yZnPoUqaWXH3UBYybnpPmHsrQ6N67rcxWJVnz6d1/A3Ru2cPGJAczd+uAjrN28nWecdQKp3v1t+fYznsyZiw/j3ENWs6w6wA2b1pJJxYXLQvrUe8+H776Ze3Zu5S2nX8Qhtcns06G1BfzHE14x42MXQnD1yifNeLv9FvtR01SW95577rl8+MMf3nc7msOYImM2afmuYgIh1P0pF5Smi56uF9IEUAQRCPX0SBMEK4BxvVHLdSaaxqjuMi+768TEUvAREj1H67vrO+kR2kPFkKSBRmi1FZgMpTxaOqS0kQUJ1Vzee3RioO6DyWUaUmwQUnPBYqV8MHdnyDmwkfVQERAUVmKsRCiH0C6yIuAKgWkr2t7jEkOiXbQiCOfReeT78lVwGK9kOabmcEJilcY1VWi7YoIhpuo590gKRUYp4lUPIu3OsVW+AzFkmwCChKBQOtoMBN1SSaaEVjDx2Fx5XaPTuYr6JhnPIxp1BiG4pzSYLKesi3t9762yy3Ble5wJ/x/fs2686Fv4Ur8UgG3vTewjrWZd4JsqsmBRZQz6Z9jmak+fR0xj+V7E+vXr2bFjB+vXr8day+233w7AUUcdRd80zZQPaNC0uF5HSYFznkP6594dejbRl6b8z0tfEv5w9hPztdHtYHjBIHe1Brl9+8Ocv/RI/vuRO7l52zpeefQTWFGbz7LqPN55+rMA+ONbvsJ3Hr2X3zvxUq5dc+YeRp+7KJzFekdFTf42ctii+Ry2aD4A24bHeOkHP4fznm0jDV53+e7ZuwVZjZcc3WXp3n/eNeOWrxvZyTtu+R4Aiyo13nrmzNJ//5tifzJNc1He+1jH7v6kx30573mzs82Euez5wo5X4YEsY8XWJJapB8N0UncxLdQRd5fMU5kuQnSfgmU6r/PTZRAEvTuI73eAnIBCIryEzMOAodbfRghPu53ScjAqqwjpGai2mF9t4ByYIJxCKdBVg8uCTDtJbOfB22m3EQ+qO7fB9NJ7R6IDg2W9jqk3iVTgk1CthhVgFbkBtCcRZhxYKhmeMt2oIsDRyiJVQTPx2GoSzDsT0GPhnKXvzpeMD3JhAwsFYbdeCmQe0nGm6sM1yCEZEwgjcBVPoQWmEirotLYR4ZZ6JjrMU/B+CgfnZbiAQnYZJyFAa4dW4bnikbu9F/cU4SqL7rXwPXPWuUnK+6PUXRHTiWEbJWK2N+qqQnpQoYVncbWJkILt9ZlBiP3dRuXP//zP+djHPtZ5ffrppwNw/fXXc/HFF09rjAMaNB27dDHffP3LMM5xxKIFu13Xe8/vf+br/Pj+9bz72U/i0uNnJ9qeTggh2Iv7ea/jSYeewDc23MWCtMYZiw5nrGjz5lu+gMfTtAXvPuOZnXU3N0f4/EO/AOBv7/reYwaadrYbPPl//oVtoy1ec8I5vPn0i3e5bqIVWaJo5ob+6t6XlC6r9bO6fwEPjw7y+DnWcf1s+y/47Pr/4crlF3DFsvM6768d3cAPtt7KZUvP5rDa3jvFz1lMU9N0oJb3PtYxm8/riduUgKf8Vl1+aS8ZpHEMU+kFZAFDp1DKE4GVjYArD7/DDug24+2lHQSx2a4MoEPJwDZFFgTtg4i5x8NJ+LDcZwZVNdT7WvRVWwyNVbGFwBeyg+KG8iqtlkIoTxG1Q4k21CptlPA02imFCT5MMrpN9yaS/DiWIehprJWRhQmsjXegdTBeFErgrAQj8U1FnkucEVSrOZXEdHyOwjWI5fQutmORnkznJLKg0AUNabGFxA4o7JjGDilUIzTgla0AZp2K7JwH8tgVRYdlUoIjaLVsKtE2AjAjsG2Nq3qKigq97jo+BnTmrrzWQYUeU27CoBMbW5t4tLRoEc69NKwshduSwMyVVX3lPIp47uPTbGHeJ8795Ca/3XsNRJch6wCk7j3iRTnLweJAAHXdZvW8Nncxg5iBpmlfxEc/+tG9/hJ3QIMmgMMWzJvy/YlmkKPtnP+5MzTt/fov79mnoGl/x4raPD53ySs7r613HNW/hF+PbOHUBeP9fAaSCn06Y9S0eeKyfdNkd6pYN7qDLaMNnFG8/5c38vLjH8+iytSVbvNqFb78+9fxyM5hHrdmdn5EvVHVCd95xqtoW0M9mSF9vIf41EPfYF3jET627stcsew8rHcYZ3jXrz7MptZ2bt95L+89481zus+9iekyTQdqee9jGr0ApDdttqdt4vq9zFJnqJ4UWmka3bkePQ/AiS3lpC3ZpPD8FYRmup1nYwmsekqpPMSUUXjKCR+ZKCfw2nV5J1/yEGF9hEDWC+p9bRbUmzRaKc1WhssDihDxSW2sQHqNL8AUCglU+wx9WUGzSDFOh/FinX8vzzV+wspqMh+9jSIb5YnidBnK9D2B8imCyMtri9SeLLE9gEl09hVYEYFSruN7ZCW0rQhtTqTHGoFwEmkEkmBYqfMSbMbpsCAUEI/BKUAJXM0hx8I2qh2Pt0pg6UoUi4hi9h5BWnnNvAjgOA0gKUksOgLhRDuqqSGNejAf+Z+SB5qadurcLRNuRibN/fjXpXZpPGVaEpRC0LE7kJQCdd8xHS3XT6Sjns7M3XJ/M01zEQc8aJoY3nte8akvceO6h3nP1U/myScEINBfyXjjpefyw1+v4yXnzy2b8v1fPcC3fnkfL7nwTI5dsWROx56LUELyuYtfw2DeYEmlf9yyqk748VX/H4N5g+W1qQHoXMUdg2u5ded9PG3F+Zy68FAuP+wYvvngWtYMLGQg3T1rcejCeRy6cOrjG2q0eNU/f4GxVs6HXvMsVi7a83loKdFybgETwJOWn8/H132Fpyy7kJbNecPP38OjrW0c07eCTWxnZfUAYplgzxqCuOxALe99LKPjRQgTv7hPb/v4u/NYEYRPWAuyoDO4m6hN6knXeREZJQXCdFkpmceHeUlilGaMcYdehPeQEXDFsYUPlIFXCp/EZ7mgY37pBPgkNLs1mSARhhX9DZptxWhew8eSfCQIK8kbSQB3RuLwDPoq7ZrGC0/RDg7gQgemqawaGzcpXQUS3guMJa7nSJVBxfXaeTA+EsrhUwFNAWOKdlFlsJD09TXJki5lV3oVWRczAdIhhSMR0J+1qac5zgtMXTJar9CsVJE7dawHE0GjVIDQ3WvvAVuhkxYVzVB953T4kQZUI7CAMpehYXAaqhs7ppgSvPYxBxhArLcS7wyFkpAGCwYlLCKK3nw5Pz3T1b0Vu8lJP0HQNhWbNDHKpaWrd+/7sWFNqFzsHdoJhBSoTn44nFz4/8yMnve3pmku4jcONI22c370wEMAfOfetR3QBPD6S8/h9ZfuWg9z4/oNrB8c5OoTjydR0/eXePMnvkEzL3h0cISPvPY5sz/4vYhP3fsLPvfrO/nd08/jwkOPmLQ8kWoSYCqjqhOqet8ApgdGN/OP936d0xccwWc3/De5K9jQ3MqfnHAdH7rwGgbPbtKXZGgp9zzYLuIX6zZy94Zgz/Cje9Zx7fmnztXhzziesvxCnrL8QgA2NLawoRmO64R5R/E7xzyfVfW5bzK8NzFdpulALe99zCOSMx3gtIt1xoWf8O/yR4QHkHTjv/GXsqIy5dHVNoUms0gfWKUyPyJF53UJYDptQcpxBcEqQPqO4zQAFhQCW6b0IDzAo1mRkKHXnMos9Wqb/qTNjmaVZisFI2Mqr2Q9AC+jYDkch9Dh4V7kGmdUOPYyVVY+4HvzSfHxLGX5fkgLaRlK7a2XHUuDDootQtpOOAGJQyWWLLE9443fl+h5MntCissRS/YNNNsa35ahgtEQHNSF6KQ/hQvVczYN4ninPUKKYNTZEMgitlShZKgi6+R98MCKx9FJjUKY7/KolEcmDqVBCoeWjkRatAypOufH32BlM93OFfclwBHj7r3dgaZyXnx8UbZM6XBQPUMp0WVKS4+vzj0qSsDkZ4VtDjJN+yH6Kxl/eNmF/OSBh3jVedP/NvvI0DAv+vTn8MBgs8Wrzp7+tmetOZQf3rOOs4/cPz5HjSLnbT/7Li1r+NtbfzQlaNpf8Yl1N3Dj9vu4cft9HN0/wKPt7Rxa7ZZ/zs/2vr/bWUcexiUnHcloq83Zx8z+GhhnebQ5xMragjlpBnxodQkvP+KpPNTYxLNXXsKibN8yebOKssvn7pbPIB7r8t79Eru6NXY1Vb3rl1/GfWx+m4IvPKolutqQ+EB1OiwH4hPYBy1SrJsQFkThkUUwZ5SxY0Wn3UfJZChCy5PEh090DziPLASiRRAvj3bTfcgylRcGc5miGK0wiKeWFqE6TQXMVK7YYeDKTJEMJ24bKY3m+EIP70QPUxGekt0pcpGF6i5XwofUlLIY52irBBP1XTp1WCy+LVEjAtfWGK3xdaKAvJsu6qTqfLQ3iH3swJMKTz1poyuOTFm2pv3ktQw3rLFjAlF4klGBCh2RsFnou+cqEcAaH66BA9mOxpQJwRTURfCFwOceGcX7JgsgxscUrdMeEhCJRagALIPZpSdRjkR1k2i+56w600jp5B3fiiCp7MM31Y0bsJGP24tYdVj6RPVel969lgAvAjQhMYCKr8s0nZgNbNrT51G5zgEc+xU0bR4Z5dpPf5lUSf79+c9mYW38A/aRoWH+9vofceKypbzinG7K7RXnnDnu9XQiVYpUKdrWcs/OrTzhk//Cq045i5ectOc2Fe9/2dUMNVssqO89AJhpeO952lf/g7YrkELw7KOm17T3sYoLlpzAtx/9BacuWM27T30hm1o7OLLv0DndRy1L+IeXPY3nffTTPOlDH+PtT76U5585c7bptTd+jJu3P8h1R5zH75848zY8uTM0TIv5aajkFELwvMMvm/E4j2lMMz23L2Iuynsf0+h55kw5LXvA2R1CpUzDlWkdHx9Ana/tPYBHBHG2kEGL5FMfnKYptUwS7yRee6SNjWjjOCGV5/E6ACafBtAkvOtoqZwLjo1WEkBUBEplRVe3styhnccUkqbXuE7WpZsfKnc9+aRFD6IaPwedURy4yCCFPm0hfed90Pc4D8YJCqsQwqOV7YAC52RMU3bHt4XsWAAgGP8lKJ6UjwdSls8rHNaHhJKWFq8NVoOrSKQSOBOq4hACmzicdqB8x9k7pNZErwV3l5Xs4A2BTTwucdg0pOa8DADFa49ILTI1KO3QKv4IRxINLX2HwxGTwJPzHV6os+8SNIXfovdydcCq6AE4Dh+cK3qYyl7w04WgXaaunFIXr7/1474bzCyms9GBjZn2L2j66br13L9tOwA3PfQwVx4/Xqj84Z/9nK/ddS9fu+tennLCMSwfmDr9NJ1Y0lfn6y+/jk0jI/zRj7/JhpFh3n/bjdMCTVIK7ti4ibVbd3DtWadQTWdm6LU3Yb3noZHB8CGJ57D+A4vNuHjpSdxw2Ts6H1pHJbNra7KnaBvDHRs3A3DTQ4/MCjTdOxzMQO8a2jjz/ducl9/0N2xu7eBPT7yOiw85bcZj7I/opdZ3tXxfxVyU9z7msbsJmTiPYvL7ZUoDCJ49mo4/T1kU5EV8mKYel4V0nNMOtEekDlm6TRuJzz0kHt8S0Z1adCrqvPLYShjDVx2iYlDKI1Rgc2xbYccExPYoMgfdjA9WE+4LaUE2wSeSVjtjtKiQahMerRNylEJOONFx89H7okxR+dBvDUGRK7yVIB1ZJXgtdQwhPbRNgpUBRPRXcvJE0SpChZ5SoWecIACWopkwWk+pCEtf1ia3unMMgVkKVFjZAkQKUMJjvEbg6UsMqr/JDiRGC6y0uFzgN6SoRrASMPOB/tIkK4Ay6UrD9QhaEwJT2ApMk0/AVj22HlCFL/VR0uMTR1IzZGkehNXKoYQj1ZaqLkhVEKI575GdZniMS3NOBkx0DDVDtV0nqUY3UecRHWjkUdFNvXOPEluzTLp/I5Qq052iFLt3r7aYcH9MJ/b0eTTzER/72K+g6cIjj+C8hx5BK8kT1qyatPz8Iw7nU7f+gqMWL2JRfe8fxqsXzGf1gvm8duzx/OOtP+VVpzxuWtttHBzmNf/5ZTww1s55w8Xn8H9u+gw3blvH35z5LC6aUJX22XU38bmHbuJ1x17KpctO2Ktj1lLyV+dczp/+7JtkSnPUvEV7Nd6+iLlIde0pqknC3zz9Sfz4wfW87gmzc1L/uzNfwHc23cW1q2feqmeoGGNTawcAvxp66DcGNO3PNipzUd77mxSdkvrIPgjTyYBhEx/ZEtFJz+EJ1VTRuEloh1IWqUPjDyslTki8kFgtcYlA5hJRRI2Tj2mhxCOkRWlDom14ICuP1A6TJFgj8VYgrMC2FaZQ+EIicoHMo+eQ9lCAKQSZdmhtcEVIdXWit+lvb/Q+cT2d5sClxUIgsjy0BDhF4RNEX4FSQchdumab2OxWKEdV50gsbakR3pP3gTUpvhDIpqTYUYG+gprOqeicttE9qaxA73nAOhHkRLJbYZcoQyIsou5pJClaOjJvGPN1xlQdX0S2xwA2zBN4TOoRicd7iWoLvI4O6gJUThDNZx6vLKJqUUmg8rwAoQJ7VnozWQcWhXXdUv9E2Zj1dB0GafKET+SGwrbWEfvwdbFuGCtcECk9UrhYEedLLBjmyJcwM8yb877MvkYLgs5uO8ckSx5vph8f+9lyYC5iv4KmhweH+OgLnr3L5U885khuf/MbSZSaUyPJa48/hWuPP2Xa69fSlHqWMtrOWTbQz1DR5DuP3gPANzbcOQk0/eM932bEtPjQfd+fNWhqW8P3Hn6AkxYt5fnHnspTVh+LkoK+ZN955zjv+MjaGxgsGrzu6Muo6cfOp2eslSOl2C2L9/STj+fpJx+/y+V7isctPoLHLT5i2usPFWP84S8+ROEMf33Kq/m9Y5/L/aOPcO2qS2d9DLuLwXwYj2dBOnds4v40t/yNi6llIdPeNKSJusMIRBACq/BADU/XmDgqPYEUkAhkxaOy0EpExnSVK6uYkpDGwwTfpVD4Fh/sGqh6dM0GBkc5EuXItMFYgUgE0gXhb7tQtEcV3jrIBUIJkAE4+cyjBgz1WoExmqJIABkIhs7D208+6SnSdSI6Y5dvOCugkSCaCp85RMWhtesZpNwwgL1aYhACcqfRQCEFxiukDVYBHo+1mmqlycJak53taueLm4oO2zI+9T30sE9BeF1RwX5h1Gb06zb9aRtvBY/uWAhaBXuCigenkE2J8GArDp85aEqkC02ObayUS0eDy3g+4HHzPGKeRVeKkm8D4WMqznYAovcS50WwVhACJT261Jr1pNymmuAOYxlZOuvLpnllPpgOm6QEaBnd3GMeUVJqwbqslCr9oET3p2SduuxTCcpcZKAEk/O1u4+DQvC9jJd/+ovc8Se/TyXZ9YMy20NLjcci5tcq/PebXsqWkVFOXBFKyl9/7EX8dOsDvOSoydV6z199Np956Caeu2p2jAjAX998A//+q58zP6twy/PfwLysMuuxphu37XiID/z6OwAcWl3ItavP3ef7BLj7kS28+H2fJtGKz//ei7h/ZAf/dtstvOCkU3nyUdPzlrpz22Ze/d0vsWbeQv798meTxurI9aM7eGBkOxcsOxLVQ3tPJ36x835+PbIBgJt23MNVK2bWZ3Am8dDYI7zll3+NB/7vKW/hiPph3DeylvWNDVy45DxSOcuU8J40BAf4B9RjG3uYrA5umPyg8MQv9b67nohWA0Z7SMO/Q2WWx9cMlJdUeqS2ZGlBJS0QAoyVFFJhlcVYFbQ0WYF3gqKtEQ2JKOL3/bbANBRSaCr1FrWkTV3nVKqGTBVo4XBe0DApO+o1WiawT61c0y4STEvjTEg/FUYGtiopKFxCV7neI5YRE068nLP4tCvTkYFRc0jl8FXZmTpvJc7FhsFxvDKFlBvFsMs6Pc/qSZuabiO9Y8zVcKM6VK8NShqtPu4fTsjmtahkQeVeGIFxGiEcibJoGSrnvHAoGQBG4RRKOPqSdgQdoKTjsOXb2JIO0NxeQ+2U6KZAFmBrHlvz6HqB7HfYqsYNp4Hxc2BST9aAbAuopsT0pbhagqk7fL8lqeUIbXE+9KBzsSmxdYKWEzQaCUNpxvxqk76s3QPyfEfkPckklLJhTJh/13MdnAugzHqBdQlSehJpA5hWhoWVBpk05E5hnKTwKjKKsU2M7/4lhG6DgVkqLQokIh4TFHaGVdF7+jxiGsv3c+xXROK8Z1ujycp5j51GaLaxpL/Okv46AL/YvhHtK/zj469lUaU+ad03HHcZbzhu7wTCRWiJjXVuWmzl9RvvZ1NjhGvWnEIip2+n0BuH1xcxL6nRMG1OnDe3Yu7dxd0bttA2lraxPLB5B+/4+Q3cv3M7923fPm3Q9PUH7+GR0WEeGR3m14PbOHHRUobyJld88wM4PNcecQZ/ecZV0z6mwXwUJRRnLTgW4y3nLz5ptqc3rdjU2orx4YN/U3Mri9L5vP2u/4fDsT3fyfMOu3pW4wrvEbu5gXa37Lcu9sQ07QIwTdy0dw2XEcTZJvy4xOMrDqp0sUbiSauGambQ0mNdt/VI6cUjIjMVUmYCWRouaSD1yNSTZYZaVlBLCqraUNNtqqoABG2nMYUi94pEW4yXOBXSdk6Ecar1nEpqGW2lGBMFOUJ0rQ/KvOPEk+wliyLhUTqbK+WxRgUxtZEwkKPToGkqjMJDh+UQJXsRebRUWzJtGG5XaDYzfK4QNqQTpQGTCFwFstQFx24PxikcglTSsTUIppfdA/WEdivCewyyw6q0TEKzVUG2FElToJtgEyj6PHLAoDMbeuY1E5QJtJC0kIx5dBHWDTsSOBHE+Tq1JGkAbMZKnJMdhsi7MP8kkOqCamLQkh4WqFQk9bzu/Ln2XoiSZSIyWcGOwMR9KYIZqEfQl7aZp1u0nI6NgUOuuKNxGve75Mq6ff66YnXG7Xe6safPo3KdAzn2K2i6+KgjOHQvxN37I4xzvPB7n6BhCu4Z3Mw/nHf1PtnPnzz+Yk5fspxTlywnVYpNYyNkSrOgMrmC79dDW3nFDZ8FQr+3646ZnbHgksoA37jkLRhn6Uv2PbNVxlPOOI4Ht+ygmiacd+wqnj56HP9w4094+rHHTbm+954v/PAOtg6O8tIrH0c1Tbjm6JP48caHOHL+Io5bEAxI14/upPRBvmvw0Wkfj/OO19z892xpD/LslRfw+qOfPk6cuS/irIWn8JJVz8Lhefyi02jbFqlMaLk2dbUXej7HuGqfKZcfDGAaX4JjekNMenD1bNcDJoQHYTyu7qDmcZUIQBKLygpUEh4/iQ4CbutCqbwSIZ0i8CTKUhiJ85JUGypJQSIduVG0TEJhJMYqrFG0mgkma5NlhoG0SZ9qk8mg33EI5iVNDqkOM1pk7GjV2e7D3xL4wDy1NVInkf0JOqvg8B0BU0911riTLNcnyomin5QAvBVI6aBS4BNLVsmpV9rRRyoAP+vK1FlMRzqJE4K8rRjNswCgsoJWn8ClCteW6FGJHJXktsL2QjIwr0E1zUkSS2EV1odKPKTDiQAgtHSxmbCgGf0UPAKDR0tPvdKib/4YY80+/IhGGNCFoLJFUOQp+WLBwJJR/KqcsR112JIimgJbgVwGZlE1QI+GUyvqivbiKo0limwgHFtfpUmqLM4LCiNp5Cl5oRltpmhpGai0yJTBeNkBz1NhCE+3ej+0WwmVgY12wthYBdtS0FaBjSzJQuV5JFtIpa/N4oER6mlOqoKxZikkL1ukhMseLBtUvOhB/ySwPojslXAoMUNzyz19HjGN5fs59ito+vtnPOUxERGXMZg3MM6wuLJnE79dhRSCRVmNhhmiL0n4wdbbePzCE6mouXWfruqEZx8d2I2fPrqeF37zM2RK8+1nvpwV9QG2NkdZWguAs6ZTEqkonOWdt36HobzJm066YFb7ragEpmiwuy+jkmh+/2kXdl6/6XHn8Iazzt6lju3uhzbzrk98F4D+WoUXXXYGR85fxFeecd249U5csJzLlh/DrwY38bbTnrLH42iYFiOmxeK0n1HTAuCWHWu5+Ltv5aoVj+MPT7hmDyPMPpSQPP3QLjtZ0zX+5tS3sbm1lRMGZt/+5iDTNMPYI9M0Yd1dTV983yQelOs6QksPqQtibxEePFK6TvuKEpiVHj7OlVodR6ry0A8Nj+0wPwF4SemoJAXVJCeTBYm3yJ4GeMYrciswTpA7TdMo8sh8lEpfGXVGhdETEGRPzhExmeTomTfR+145RKkY9h6lLMKHtI5zgcPouob7ntRQ5DacJbeKvBB0XIqiMMbpoMWS2gZhsi95EIcU0ZNIdB/43vvgGF4eZ8lqibCsbTVFS0NLIovI8ihwOtgIkDgSZRhppvgCVNScOR0PSQqEDXPklMAmYFOL0MGZ1HmPii6lokeD1DG4VDaAHycCExjTci4yfSWY6Z5PYB2dC8DUOUlRKGwRWT1b2hdEIZHyiKRA6YJUG6wT2NK+osMnxWo60U3T2Z5rUloihPY3u/9zmSoOMk17Gd/59Vre//Pbee4pJ3HBEav4yUMP86yTTpjk1zQX8UhjB9f+6L3kzvChx7+K0xauntU4Ugi+cuXLuW9wK393/7/w7rtHeNKyc/jdY54/twfcE2uHtuO8p2kKHh0b4U9+9j/csPFB3nDSubz5jIs4tD6Pb1/1ap73nY+zpTXKZx/4xW5B0yceuJHPrfs5bzzuEi5bMXth9b6M3Qn/lyzoo15JabRzjlyx62pCKQQfOO9509rfSNHkhT/9vwwWY/zlyS/mvWe8ge9svpX/XPcDAL696bZ9CpqmiiXZIpZke1kteVDTNP2YKuU0YX6mvC3LB1kvnhCBcVE+pORkzeCymNLRlmpWkCrXGc/FgbR01JPQ8sPGvm+9xoXGSqxXJMqT6qJbtg9kypJpi0VhUDhUB2AZpzA+oWErDOcVmiak4JwLYm8lwFlJO0+jq3VonQF0HcAnPSInTk53lRIEChmIKovAO0E7T3DRett3yrK6aaVyLkptjfUpDqjVDNY5jA0pp7yeQFuCERSNjBEFC/UY/ZUWqbS0raZtddDkRHBhvA6pqs5pdKGC9RLjVGx7EtzAO4xicErAGUmjnVGtGtJlDcb6M4p22AcFqGFNMiI6LW+Ca4MEL7FO420AffW0QAK5tlRSQ6tIKJykbTUUkMgoGI/aIdcBd13xfFmEVliFIGzTLiRFoWOvvpi6VR7SUJGpE0u1kjOQtRhq1bBekAjHQLVJJksQ3wVM1iucFz2d7TxKOlQEt22XUBRT/D3sLg5qmvYuPvbz23ho5xD/+OOf8c8/u4mRds4dj27ivc+YvvZkurGpOUjLhiv84NjWWYMmgHlplTOXrMSvjcK7fYyMn3P0yexsNZlfqXLWIYdy69bgM3TL1g2ddQ7vW8BfnHkFH773Jl52zO6tFN77q+8xatp86L4fPGagqW0L/u2Bb6CE5BVrnkwiZ3/rLZnXx9ff9QpaueGQBXNjkjhYjDJYjAHwwOgmLj7kFB5pbu8sf9qhsxf179fYj5YDv7Gxm6/PvbMlJrzqXamjmzYCX4C3IGXwCSh9mEofoZLBcU7gvcNEkbQWBiUdzkuMk7QLTasIpfVKOjIdNHAyNq7TKoiNcydpWI0SBi08WoROY8ZByyraNjAcqTYUUQfkfQA4ndult4RJ0DnGSEtMOOVS4eK778eyf2L6qEwDhlUCWHSuzOHFRZ3WKlPPuIisjBcCrQsQwfgT5fEWmq2EVBpEFvYvowAeL3sAWThK1TOu8wHUWUdg/TKDqyRYR/DXksEU0kfzT2eSgEmkI6m3QqqskKF5NxrRkhAF/y51SGURImhTcyMpjCRTgQmUCDJVIEXQFSlp0dKgZWk7EBizwkkEoTowtyqKt8M945zA2JRmnmDyUBwgVEytWqApA1tmwShJoQNr55yiQDLSzGhFEF7VYd/lZewVJXjvMWU7mHFO7DOIg5YDexcvPO1U/vGWW3nuKSfxpbvuZqSds7A2e/3GaJ5zzec/xaOjI3z8GddwytJuH7AzFh7BHxz/VEZMi6tWnD5uu0ebW3m0tZXT5h83be2KFJK/P+3/4+7hBzlv8fTtC2YTmdK86bTzOq/ff9HVfGPdPbzs+PHapSsPO44rD5taB9QbLz7ybD794C1ce8T0fKrmIn6w9Zd8/uHA2pwwsIoLDwlzdtfQOuq6wuoZ9mwbqFcYmKzBn3UcVlvCW094HuvHtvDcwwNL94QlJ/Kmo58KwDWHP2HudtYTdw7dx9c2fp8nLj2Xxy08edwy7z0Pjm5nRW1eSJvOIg5aDswgJqSWOu/1hp/wdk/OpCzP7giiAdLwoxOHUGEAKRxZEqqZym/1+DL5pJDCkqrQj0wAuRM0C81ws0phFEJ65tebUegcvv1rEfQ6DonxGo8hkT4yCNDyKTvzOjtbdXKr0BJQjmY7fN7JDmAKQKZ8XZ6XdxN1Wz1oJzJK5boQX/ewFkFsLMiyoN8qTKjHKvVQvWk9MeGmlNGQsRR2O+9IaoF1MlFkbooEkzmEDGydQQZ2yIvoXxTGQJSNauPDn9Ck1jiFRwXBvRIBLajA1rgEfAVIoD2WIVJHklmWLBjpsEGNdkruNc6CSONcJR5ZN6RV10mlKQWZtmjhaTlJTRvaTqF8SC9m2lJTXdCkpaVtNFpCTbcZK1IaPgWCZqtZJBE4SYp2gjcSUTYybklEOxYVmGCmKiQoCc1CY6zCGEVTZNSyNpXE9FgOBIBkfbjWUjgKr8BD4QQVFb4ApHJmAqSDlgN7GVcedzTPfXxoh3Ldmadzz9atnLVy5lVb28ca3LjuYeb1V7h3+zYAbli/bhxoEkLwvNXnTdp2pBjj/9z2Ltqu4OVHPJNnHPrEae93eXUxy3v6rD1WceGKI7hwxRGz3v5Nx1/Km46fmdfQnYMb+MnW+3nmYWfusjHw7uKY/pVUVYYSkqP6wzX+9qM/5113fxIBfOycP+Kw2pIZjzuX8eTl40GoEpLnrbpwF2vPTfzrA59lfeNR7ht5kMc9/t3jln3wnh/xD3d9n6P6F/O1K147O6+yg0zT3EdJtpSajl7dTKmRiQBK5uDagiJR0ewQhA5pNi1NV4vjypRV+J/AkVuJFoF5ym1gELSyVLKCii5Q0kXtCxTxt8CTm4SWkRRWYiqSqiri9tHjyMnAZkFkpwITE1JCXXRUpv4CxhAdbVJI35Urlet2TSo7v5l8+xWFoqv0DeCl1M64HvPM3t50nXkhACoZfyc6NLg1RmKNpjmSsiXvY7iaUknDsu4T2CN8YO28KCXoULYaUcLQlxpSUeAKQbtdhUKE1jUmuKa7REIaCgEyXTA/bZJIS9MkpKIglQVjukKR69AmRVuSzJAm4Tobpzo+Uko4MmlDOb9wgY0TktxK8AmSwKgpIZFC0DaSwlU6F6ZVaJqtlFY7wZWC70IgfJkT9RCr9EqM6AtBYRSNPO2woUJ6ilYA5O1WQpoWnZtXa4sSDiGJ7JOnbTTNdoLwIizPx2b2t3OQaZq7mF+tcM7hs2vG+vL//AL3bN7GhUeu5iWnnMaGkWGee/z0SsStd51S75bNZ7X/iTFmGrz9rn9gzDT50xPexPLqIXMy7lThfZD67e6B+khjkIVpnaqeHVvhvOM1P/soo6bN3UMb+fuzXjDjMVbVl/KlJ7wdAaSRNfn6oz8Dwt/0aNGY1bH9psfjF57K+sajPH7hZLby10NbAHhobCfGO1IxcysJ4cLP7pYfjAkx1Z9Sb0qqA5Z6l3XZplIrLQShpUYWU3IEcbeWnlQ7Eh0ebMYqXHyMZ9pQSSzWSZR0WC8ZzTOaeYZzgno1p5YEW4G21XQTKKGFamCaAtiqaEMmDW2bMGKqDLYr5CYhN6pjfuijP4AQk8+xA4B6T9X1sEeIADomsEwdpq2cJC86bJxOSisVSVcIXWqgRPztx+8DxhUM9S4PaT4FJuiRrFQgJT7WzYo4M4m0FE6NT6mK7uwpGVKeo60KeStFNlUATOUpZEAWhOUqsxwyMMqy2gjb2n2BAZMiOLdLiao60rToWCakylBYhReeetqmqgyFl1gkSnisL+dCxlRrMPMUHhLpaFsd1zW0jaJtEhrtNOjD2gm0FN6CsOHG8xEwhd6CIb2IBlUzqGh+OtiukCgXhOMtjUwdVjhaJsVaSZKYyH4qtLd4PG2TMNKoYAqJVI6K8vgZQog9fR6V6xzIccCApr2JwsY/RO9520XTZ4oA5qf9/PUpv8eGxiYuWDK7Uv2Jcd/Igzw49jAAtw3eyfLqvnGQHinaPPtbH2Vza5SPX/x8Tlm0YtI6n193K39221dZXp3Hf1/+RjI180suEBxSGWB0dCvLq/NnfbzZhBRTRYVvThWZcnT/ylmP+5scL1z1NK5Z+SSyKaov//CUy1lem8f5S9eQztJ76yDTNLuYOCvjMlI9TFN3oe8sLlt2CA+yLTC18I1fya4ztKP0X/ORWQqUgHGCsTyhWWisU9TTnKou8JmgUi9YWhulrkO/tYZNaDvNULNC4TTOCdLEYJ2iZTTNPGFrFnLYhVXBw6jUwXgVPIykj3qjEnYF5gsBUkUGKTIWgtB81jsRhMb47u3TAUy+Mx/lTAoVatpwgryt0dqhpCcIbroT7okclOv2R+um6rqorvf7oZSh5Qu1YJvQHknIhxJ01bBwwSj1rAgVisJTIWhaUxlK7JsmgJFy7gWOLClIa23aVYXIuxVrohD4pkT0GepZmwXZKAuSUfCeEVthXtrEVAXbsjotk0QmMJxDKg1pGsv3Zaj0c05QVUXUKomgq/IBLDW97mqZVGABR/OUwtbAC1ptTdFIoKkQbYlqyY47RDlXXoFLHczL0TVDkliqWc5ApY1xAq0SjBVUKy2EsFijKXKJlB7T0uStjEZHFyUQOjBf5ALRDmnVEQ2uPcOq8YNM04ERH3nRs/nxAw9xyTFrZrX9Mf2rOaZ/9ZwdzwkDR3POojMYMw3OXXTmnIz55XV38s5bv8Nz1pzKW067BAj+TGtHglj5R5senBI03TO0CYBNzSFGTXt2oEkIPn7+q3lgdCsnzp8708tf7FyPcZIl1cXo2YKC35Cw3vGGn36aXw09yj88/jmcsejwzrKpABPAstoAbzll70xS91itcmB/Pj22EdmRcdqdMv0kYqZnCkamjF6lTMk+2YpDJBalgy2AkgalLIkMDVuDGWPYJrBQliKyCcHF2dAowpeNgazJvLSBB4xNcITS/eDpE4CGczKaI4KWFhdTcYULfc5yU2p8pop4BqJ70mU5fnDv7kn3xAmYaJUgSsDUA2wCyArrSxX7sXm660ZqbiJZ3mWbyvVKEOU7+w62BZFxtwJMoI+yrCBVBiVsx9rBeEUigi+R9QrbI3MWeIxVNPKEvJFCI9wIToBXHqd9sDdILPPqTZZWR9HCMWozBEFP1igyCqdCb7vYqkUShPgqth7ROAofUq3lmXSti8pUZOTHRKhoC+xSSNMVVpK3NRQKWajQe9D1/pn7DrHnM4fMYk/CxFBL22SqYKhVJ881aWpCY+dYGCCkC9cqD4I2byXChGvjvAQDsq0CgBQ+tAByBx3BfyNj6UAfzzrtxP19GJ3IVMrvH/uqOR3zk7++le3tBv9+700d0HTqwhW89JjH8WhjmOesORWAO3ds4tU3fJ7V/Qv5yCXP5fXHXUQmNScvPJRF2eyV031JhVMWzC59uqu4cvkZfGnDT3nKisdOkF64gg3NjRxeW4makO7y3vPZh7/N+sYmXn7EM1iUzZuz/T4yNsgNm38NhH6FvaBpX8ZBn6aZxaTZEFMsmAicpnpfhQe+jA9xpSxZaqgkptPSAh+YkpoMwm/jJEOtCq08iHRlGgZd0TfCQNpmaTpMVeWMmgwJ9GtJnrTJbcLm0RrWSqrVnEQHg8dHxypYo0gSw8L+MSqJITca6/y4A++k5koQ0yNsBwK7xDgs1b1vequoJgCmjheSh24zut4J8x3fqYk50fKYeh2qBb6HeYpeVtoHY1AtGSs0WAGFIG+l0N9gIM3RotyDQUtDVeYYrxgpLNvbNTySwklyq2i00mDDUIvPd+3xiQ9952Rg3XOjGDMp83STgaRJ4TVp1CgpAU0bxdleYJC0rMApS4rFicAsJcKR4THK0e8L2i5UxDkXLBKMUxQuuJVXE0vhHM08CLcpJKJdIkqBT+JlUx5097h1n2HRwlGW1Eepq8CyDRUZWkKSWFJt6cty6mnOzrEa3kucBStBtBUYULmI+whgTOYC4UT4tyGA1BnEQZ+mg/GYxXnLVnHHzke5aPmRnfeUlPzZGZePW++/19/Lo40RHm2McP/QNk5cuIw3n3zFY32404r/c+wz+D/HPuMx3ef/u/efuGPobp6w+BzecNTLxy3b0NzCf6z7GgCLs/m87Iinz9l+D6sv4PlHnMVdg4/y3CPmJg08rTiYnpt2dB7du3gOjMNJU4Ep6HaEj9jBCY/0jlLc7eIDJxUGGTVLSjoy6SgQtKSmkEGdVEvb9Kct6rpFTbWpqhyJjQxEZC+8RBKtCWxIvRWxrN0UIrAvOvoR+TIVNwXiG8eaTTipUtg0FQUwyZqguwmE28vZ3nU91nYBVUjdET2Iupqm8eP5KX93AFUUp0s8BkA4hLCl1wFClr3ZglGkFQGYCOFIhCX3CghsXUkpeuFxKvA/Dg/CI5VFaou30GgnDMoa3gt02CvGp7HvW1m1R9werAtifaTr3ECSaIEgwvmnwnfcy40NtgUGQeEk1gXmMPcq2BeoSO9JouibWPYWbjyvPCorSFQRrA2ExThFqwisFbhg3+DBOoESofDA5CpkTcMpB3tU7fDah7GdDMuVD02N/QyNmg6m5w6ceP8Pf8atGzbyx5dfzJGLF+7z/W1rjbCpOcyJ81c8Jq7mP9r8AAUFP9mydrfrXbPmZH62+SGO6F/IsfP3nQD9NzUebW4GYFNr86RlS7IFrKwuZVNrG6fOO3pO9yuE4M9Pm3v/sT1GRyiym+UHI0QnzdTzegK+2OVfeu+6kZHAER9kEqUIoms8Cyot5qUtBGB8qG6rqZxhU2HEVKlLS6oMK+pDLEpHGdBtUmnJhAmsjJXUlAk+PRiUCsJqaxSF8igV/u2KQDtIBbXERAyh4ufV5PYcvaxO99nWFUOXz+je7fb0fHNWxAnx0QcqtIpxDpQOKaxS+9MLhjppv3LXnWPz4y6TCFIpjBVET04EEiclifZUtI3O2oFVtmgK76lKAwh2RDuCuOfgnJR6vAEKEFaCtqR9BUnF0G4rtg4NgJIsrjWpSkvuJS2bRLZIh+ssCBQdAaA5pyhE0HIVToYGuCL8JFj60xwIgGnUZDSMpGlSlAwWFdXE0jYCIUFkwTPKJw5dMQjpsYUK10d6vAtuCdVaQS2xVLRFSdjarDHcrgKSNPEkUWsW+uIp8lYCeRDVl5YLXhOsCqoG7wROBqAragUqddjRGbZR2dPnUfc2OGDjNxY03bLhET588y1cfeIJnLpsOe/9wU8B+OhNt/JXT9lLHQiwvb2eH2z5dw6rncJZi541btkDI1u5+vp/wgNvOPYSXnvsxXu9vz3Fc9ecxtqRbVy75ozdrnfEwEK+8KTrdrvO/8bIbcFQMcaSyvzdrnfOwkv54dZf8tyVkxmuikr54FlvxXhLKg/8JtLTCeF8j5Pw1MsPxvRjV7MlJrzwJdVUeHxbUCQSIR06MfTpNoekI2SywETX74rMWaCHmS9HaboUIaCu27FPGbSdwkdmpCJzhNM0XEZuNamwDFSbNFSKjaJij0dqQ5KE9iotq8iNwrrdPZN87M0G1sqe9SaKjfwkMDnl5Ijo9+S6OiZbiA4A8y48gHd9RBOXTVyv+1orS7WaUwhHkStModgxVKeqcmppEXq0RQBoXRKq3KSjqnPGTApIlAhi6VwqDC74XbU0woJtKXRSkCUFuU8YHc14KFnA4voYWhpsZGxKVOB9AMiOCECdQAqJkZCqgtG8QttoEJApQ81KMh0uTrNQjLTCPoQFoTwycR3dU5IavLQI5cnSgnpaIPAUTtE2mrxQWCfJC8lYnqCFoS/x1JI2Y0UQfDsrKKTsuKV7Iq1kROybIrrTX9DxrCIN+1WpRUmPnWGjuD19HpXrHMixb7uQ7iHW7djJw0NDs9r2ndd/n2/fv5Y//ua3WNJX4/GHr6SiNU885sg9bzyNuGn7Z1k7+lO+v+VDNM3wuGW3bF8X/jQcvPeuH3Lal/+a27ZvGLfONzbcwXvu/BaD+dyU0j93zenc9sw385ZTLuV3f/ZFTvni/+XrD981J2NPN7z3NM3c2DLMZRTO8PKb3sNzf/JXfO2RaGPgPcbZceuNFA3+Ze23+dXwZr7x6O1TjiWF3GeA6YbN9/CEb/4lv3Pzf3QqlvZ5lJTB7n4ORjdEz8/E1xOZKHoYkSm2E0JABiL1SO3JtOHQvhEOr+1gZWUn85Mm/UnOvKTFkrTBwrTFkmqDpdVRllZGGUjaMYWjcNFGQBCMB3OfMGozxmwlCJqVQKiSJVKAoFI1DPS1yFJLs8ho5Bk2Lpt4/MGNOuiDYOJJ9fyrXF8G1kNKuoaIcsJPTwpORtGwj+X1guDzo5VHqfIYxLjjCedKx9RSiq6/khC+x4gxrKO0D+JkEdqIVCoFWWKjDYMKmh2vaDtNooJbeO4SoLsDIUEqj5eBIQu+RwJdM9QqBucVpqXxUpCklkwVWBTWawqXROuIkr0K/3Y+GGcq6VmQNRkrKuxo1RgzKW2bYFEE51PBqMnY1uhnaKiP9lhGK0/JnaawGu8VOmq4dGapVgsW1Fss7mtQzQxaR/sHIZASsiTYC2jlyZSlZROaRYoxqnOdrZPkRlPkaWCYjETE61MWQgoFJLGaMQHdV5ClkcHbZVHBLmI6n0cH+GfSfmWarv7EJ9DVKl998Ys4dsnMjA0vP+oo7ti0mcuOOgolJf/54ufEKo+5SZWt6Tubu4e+x/Lq8VTU+FYdT115Kt/aeBc/37aBMetp2IJvPnI3py8KZfNbmsP8wS1fAOBTD97Mh859EWctXjUnx5U7yzce/hUe+Nr6u7jqsMdOAP97t36EG7ffx+8d9wyuOfxcvvTwzXxs7fe5bs1FPOvw/ddmpGHbbGwGU9P7RjbQtgUv/9n7WT+2jfeccR1nLw4Nb6sqY3V9GQ+ObeLkeasf8+P8zqY7adicH229j8GiwYJ0Di3NdxU9hoG7XH4wZh3jPt4npvacR+QCn0t03bGw0mBpNsTCZCw0afWljtrjvCfBUBFtrBA0bcKYqbCzqNG0KVVVsDjT9Ok2zksKG9gEvCdThvlZg6rWNIuEdqExSqJl0D4ZK2kXoQGsiCmhrsanK86S0jMva6CkYyzPGGlmnUq7sjdcF0J1z3x8R43uCw+xaZuIom0bKgR10NhIGfY51Q1aVuyVY3WxaDeV15u+S5VBC0siDWPKYoxiJE/Y2aoyL2tGh+vuA34wr+BdaEEjIsBJpSGpGASeZpoxrCq0dYpva/KGxlfgiEXbYSEUXmG8ZDCvxVY4oKXBuFJeJDAOjNPRvFPQcpotzX4SZanqgqFmhbaH3AioOayDsTyhnQdPJ5kZEOByiWuElJnKDDqzJElwGR9uphRW0pfm9KdNpLDgMwqrSGSoHrQu3E/9SRtRh+G8EtKiwtEqNHmRBA1TpUBW83h1Bc5InIl97ErmCbC5pABsIXvun2nGnj6PynUO4NivoMkTvJW2NRocO8NtX3/u2Tz+sJWkulsBNZfaomMHLuDo/vMC6p4wbk2n/Nt5L+XrG+7gj2/5KvPSKs87ops2608qLM7qbGuP0bQFX93wyzkDTZnSvOWUJ/LdjffxmuPOn5MxpxPGWW7ecT8e+Nm2e7nm8HP5yNrrebQ5yEfWfn/OQJP3nlu3bGT1wAIWVafXUmdeUudPT3wRdw09xAtWXcrm1hBrR4Nm6cbt93dAk5aKDz/+dxmzLeYljwFgmRAvPuJ8NjUHedyiNY8NYIKD1XMziel+fOxuvSigFQ68Ap95dN0wr6/Fsvooq2vbSYSjNJX0XpKJAi08FklBQuE1uU8YsVWGTRUB1PQYFVUgPDSdpuVT2i4huP4ENsR5iXXBKDMwDUHLMtbWEfz4zgO+TDJ0wJCA/kpOPTU0TULbJPjOZ19Pom6qz9gICibNS8fUUiCibknK4GoOIoAmQQRz4wmGruHlBAJPMMG7qcs6eUH0olJI7alXCuppjpIEp+1eQOdl7ENXMkK97UMkudUYE0r7UaAqjhXzh4NZqAuANVWuc4AesE7h4/VwXmK9JsK8eL5QiW1TRtqV6JXlqSQFVW0pnGa0XaHVTsFLhPK4QoZj8AISg0wcSgXPJ+8FUgtS7UhVcCYvbIJxmiwx1GNT6EQG/ssLGC1CJ2IVndVbJsUUoemwVN1WNdYSfJkQsfFw1MApj0rCvp1RPc2PpxcHq+f2Mv7k4ouYP28+5x0+8/Lrmx7ewPM/81kAPvP853HWoXPnH1SG3IUDc9vm5M5w1cqTuWrlyZOWV3XKpy54Bf94z/U8MLqNa1fPbbXUK489l1cee+6cjrmn0FLxpyc+hx9u/RUvWxPMOq874kI++sANXLdm+q1GCmd226z3A7+4kf938w9ZVKnx4+e/hoqe3i166dLTuXTp6QAsTD2vPupy1o5s4rmHj2+do6VinnzsARPAMQPL+ddzXvnY7vRg9dxjHl4QBLTaQxK8l2oqZ0A3cV5gEYzZlIZLmacbSGGjriQUfDkPWliWV4bo021GTUbTpTzaSqionEQ4ElFQlQLng44pUTYwLcowlmfkVkUdetQ0FQllk9WOiSUxhRb9gJpGk+YaIT2pMrQLzXjA5Ke8XUo7gG4T185MxDRQAEuVtAiO2EnBSDujWaRYR0dHFc4/HmNsy9Lpx9I7qmeccJye7dLE4AW0WinbB/sYGa1wyPwRFlYbsfGt6jA/CI/yjkQacqcDweEDa7W4PkqqDYOyRt5IMC3FtuE+TjzkEQ7JRhguqgyZKhYZmwILugalQeyuhI3mmaH6zRrFtmaNVFkW1MYCiMSjpSOTBomkkhSMpQnOqnB8ymKkwxsJXlC0EpwDUXEk2iIIDJUg3GepLoDQzLkvbZFIx0iesbnI0NLSl7ZJZPB+2t6o0RxNsS0N2pMkJkiY2gpvI6hOLLVqzoKBBoWRDO7oI99RCT5NEcDNKA5Wz+1dPPfkkxkYGJjVto2iW+rYKqZW8N++82usHfkZ5y95Ccuqe1cNNWpGKFyBFCmvu+VdjJoGf3Xy6zl1/jGT1r1+07286cZPs6TSx1cvfQN9SWWv9n2gxJUrTufKnmbH16w6h2tWnTPt7f/67o/wo6238aojn8UzDr14ynW2jI0CMJS3KJylMotbVAjBy4/cNy7scxWlpmmfV14eBE3Tj3GapQnz4oE9XSs//reXDrQhS3P60xZ9qkWKofAKSwBGFWlIhMVHfYnzEuE9FVFgAO9DKgsc0geTRgiiZkvJlpRtZ0Usdw/719LG9Fz4G+qCngBEAiYRnX9raQNbYyWtoqvr67UPmNhMt3wfxKRlXZNGj1KuazaJjwJkN47JKpNw46Z5AoHl43XwPvI3E66X9yJU7PlgdaATh4o19IUrjyfQWiU75srj7BnK+GDbIHwszVdQT5soZ8iNouESyhbLEkGODoC4Bzj6eD3CT0gDlmnEsoWKiKDJe2hbHZzgrexgRWtkt9dfr4A6jiulJ4nNc0OVXgDKmSrCfeUEhQsWFloalAi2ExawVgRhtnRIbcNcGBEAU+nm6oNw3TlP4UAZi1Am6NRSR3LQcuCxjed+5jN88aUvpZbMXHh70RGr+eAzno4QcP6qyUyV9QXf2fRPBEpa88zD3jbr49zW3spf/uqtFC7nmpUvY6gID/Zfj6yfEjTdufMRPJ4trRG2tEZmDJoeGNnKrdvX8+RDT6KeZLM+7gMtbtx+R0zv3bFL0PQHj7uAlf3zOHXJcvrT/z3n3hubGsNc871/x3jLZy95GYf37UOLjIOgaRbRMyflM73jVTRFiAmbxNQcGSR1S181p6oNiXQ4KREeqsowXw7TJ9s0fULDpyTSMV+MobTHC0HuNTVpabg0GCaiKOKD2fmyuk2QKk8qTHAI9wqtQoVSNbHUkgJrFSYPqaJOKsuHaq9Sp+SBVpGQ28BkWKc66bHyFpmYQuucb4f1KVmicFwh1eOppIZKUsQGuoJMlV7csgN+StbL9/y7bM47aa7H/SNsISPgFcLhE0urUcGPJjQLyVgtp14pouHD5Chdu11MJRqvkMKzsN4kSyw7hwV5O+GhnYsxUrKyf5B+nZNKi/GKltWxOs6jhScYQ8gonA9+TEpDX9JiIG2iBDSMJo1i9IZJGLEJY3lKO0+xeUjHlcydVB4RH5HOCryTGKtIEoeWnkR4UukovCfTNlReJgUVHcB4nze0ZDfdqYWnJgyu3gQpaOZp2J8TwbrAiY7fE7liZKROmllWzx9ia2IZbmek2jK/0sI2Wtw75R/FLuIgaNq7uHfrVn69bRunLl8+422FEFxx9FG7XC7RHNl3Ng+M3sSavr3T2+zMd5C7NgCJcLxizdVsaw/ylOVTa4pefOQ5jJo2q/sWsaZ/ZgJ36x0v+MGHGS5a3LbjYd55xtV73Gbd6HZ+/6YvsqpvEf/3rGeQHKAtSX7n6Ofzw6238dzDd2222Z9mvOqUqR3CH2ms418eeBcjZpgLFz+Fq1f+Zlor3L5jA1taIwDcsu3haYGmjY07uXfkh6yWF8xsZweF4DOI8pE9/p3yX5EHGb+JmLCyK387PEF7InHh270H40SsCnNxTE8milDt7SQGTUFgF4wXBPWPRwtL4QGvsF6SO0nbqZCG8+BkSI8Fg0YXWQwb0kKemMJxSOk7bUVSFXrS2QjAukaUs2U/JzJNgcXJjUQKSTWmf1pWY2OKkA4zJjqsay/j46dimphM+sUpJ4jbQUqD0BISS0Xn1FU7AE+vKK9l96f7OuBj0RlTCcP8WoNRmdEuFKOjFXbIOlShooNxZCYLnBeMmQRbsoz4wEOVzB4e6yB3Ct3TcFgLS0VBIg3COYo0AElrJc7JnjEAETRHyMCoWSMxMriZt63CWoBw7RMRWL3CSpS0JD4AS4ULoJsAShNlsFoGmwKjoBABNGmP0A6RhlYsqTL06yb1egtqkMjQjHjQzvBeOSgE37t43kkncdLSpftkbCEEzzzs7Xx743v4/ua/o2V3cPbiF81qrKP6juHaw15Cw45y7uILSfZQkj4/rfHWk588rbEfaexkMG9y4vzQN04AadT8ZLvR/vTGlx/6JXcOPsqdg4/ysqPP4eQFYawx0+ZL63/OifMP5fSFcyNEn2lY7/j2pp/Qn9S4ZOnjuGTp7Fum/NfGjzFmhxDAT7d/7zcWNF28/GiuWX0aubNccehxe1x/R/vXfOuR1+C9597GT2a0r4NC8BnEuPTc+PfFntJzJdMR/+kqoPsM/fUW86o589MWVWXQAiyCTBT0yTZVmdP0WWjjJSSFT0L6CknbaxyB9ZASvJFYr2jZhIZNaZqEhkmoaoNDx1YgCULIkAaS0DIJrTzDe4nWBh1FxPUkPOh3NNIpT7r3VMen56Y3lR3dEALnPLUkVIJ5LxlpB31V6YYuRJdPmrjfKY6sa3DZwzqV7FYJerxXkHkWLxhl9bydNG2C8UGjpUR5fF0SUcT/evcoBSystRhpVxhq1TDNjEbm8FKExsvCk0pL4RQjJtgOOEpLh/AjZff2kDII/12sYKyqIqZFXRSgJ+jEo71HWI91Dm9UyMyJaIXgunPje47YIfFCohD0Jy3605A2K4QMRpc67KNpdBSqhzGU8vgCTK5xLQ2FBOkRCnQW3Mvn11ocObCDo+rbqMjQADnFsMPWaTXGV5bvKQ4Kwfcy/vjii1FyEgE7p/HAWHjIrB358axBkxCCi5Y8kf/7q6/xr/e9nz87+WrOWLh6xuM47/jz27/CPUObeNcZz6Q/qfDU7/4TubO856xrOH7eMu4f3sqnLnwF9w5v5gmH7JpJ640nrzyBr224k8PrCzh2oOsC/v57v8snHvwpWii+f8Uf0T/DNKH1ju3tEZZkA7PW3ly/+UY+uPbTAPzNKQs4duCIWY0DcMLAmTww9isALlxy5Yy2dd7hvB/XGHhLawvvX/t+5ifzeeNRb5wSDP/X+tv56P0/5RVHn8/h/f18/uEf8eTlZ3Hu4uN3u78trW3UdY26nlwBWFEJ7zrradM+9h3t+yhLrfuSmX1IHUzPTT8m80zjl4ldLo0h6BaM5eBzEcra47f7tlNURPiWroXDIsi9wvsg5jU+OFu36YIK4yVF/J1Ig0EgnA7AykFuFK1CBwbJg/UislihYqywCilDg2DnBE5IvPC0jI5JJBe9hfZwYjOOUsgd0oA7GxUSHXzTnAu91bwPlgcmptd6XcAhMFCyA5zGWwxALzCLLKBwoXJRCGQShNXNQrOzXUNLG+wAvMRHkNI5u6gtEiW1FUGYcYIRm5GqgsX9I+zwnvZYwvpiEcPzMg6pjzIvbVJTOfN0M4xhUlo+VCuWc9uxHDAqMo2eVAU9W0210dJSlQU10aY/qTFWBCF/22raRkUbiSSA8liFGDy1HAgX7AlEsJ7ABwdx4R25C/dNeT0Cc+aCXYKTtApNo51gChnAWGz+iwNvBM5CJStYXB1haTbIIXqocy2U8CwQcEh6UAj+Gx/OOx5pPsgh2aFkqsITl/0edw99izMWXjPjsX45eDvfePSrXLjkYk4YOJPPPnQjAF9Yf/Mk0PSlh3/Mj7beySuOvJIT5k3N6jw0uoMvrb89jPHQrTxn1Znk0YBx49ggf3bbf9G0Ba879iLeeNwl0z7OY+ct5TtPetOk92sqw1pJX5rOKmX3u7f8OzfvWMvL1lzCa46eXf+6BWkQ+ish6UumZyGwq7j4kKdyzsInoqVGz8CAsmGavPmXf83OfIi/OPF3OLZ/DQA37biJ9Y31rGc9a0fXctzAZNbnvXd/j03NYd539/UcOs9y/+ij/HLwQb58wZ/vcn8/2XYL7/31v9Gn6/zj6X81JXCaKnJnUEKixPiH2BF9l7Gz/QC5a3F89lLgn6d97uEr5W4+hA5w9939FhPSbhMq73e5HvHbv685Kv05i+oNFmRN+nROvwrtUJRwVKQhjR5FuU8wJOQ+oU0axcQCg8IiaLng01Q4SdMmFE6RO03LBnNEJXznOgsBWgWGwFhFy2iUgrxQ8SHbPVzrSmakq3PqJiF9RzPVOdU9YKfeZ11ge+LmPjAuzofKNRPL/4XolrhP9d25C5i6FgS9+/Ljji3wLhZB2yQ4p9BJ1CUpy6hJA7MlXMd0s/en8/+4E+cFhVfUdY5WnpZNaLVTXFtia8FpvZYYEuVIlafhNDamTl1sn9LVwYnOOZTWDxWVU09yEmGpqwIpHGMulPAnymEJrVa8lRROd4YKRqDBtiFRjooObVK0DA2fU+Xo0zlOCHKfBm2V6KYeCx/AastqRvOMwiRYq/C5DuaWAtBB5K0Tx5L+MY4e2MZxtc2hkIAABj0E001mqEfe0+dRuc4BHPsVNL3ha19lbWOMD1z1NE6bha5pqvjaxv/kB9u+ztJsJX9w7Hs4qv8JHNX/hFmN9eVHPs+G5sNsbj3K3532BJ552FnctG0tzzzszHHrGWf5x/u+jMeTPKj569NeMeV4h9UXcOmyY7lnaDNPXXkKRw0cwvvPfj6bmsM8acWJvP/e7wNg3dwkdR8aGcZYRbtQswJNdw0Fl/NfDj4062M4c+GJvPf0t1JRGcsqi2c9ThkVXWWo2MlQa5DDqqu5bec9CCE5fcGunb4eaW5mU2srAHcM3tsBTY9b+Dh+tuNnzE/ms6ZvzZTbvnDN2fzrfT/kBWseT84g948+yjmLdp9Se6T5KACjZoyRYnRaoOnOwfW84eZ/ZX5a5z/O/R3mpd1tlMx43JIAioeHh3c1xNRxkGmak+jMUnz6TImhRGSjBIi2oDWcsSXpo6baLElG8ISmshpL0yU0bIL1MvzbZXgvaPvQv0ziMV4GH6b4kKvJnIVJgxGR4ZygJRVjPqFlwvqVtCDRAZRZH/qflc7XmS4onMK50LalYWWnagx6tEIRLE19V3RF25PPfyKiGr9uu9CdNXqr7JzrejSVIvWwTmSa4tC9WqayDYdAdKwGOlYFLrJ7Mtg4DLaq5F6RKRP2K0o2bvz5luX/nq7hp8AzVqRk3lBPc9z8EUabFZwT7ByrkAjDogroNLS2SRJLolKG2lWaRo+bpZASbZOp4KRd020qMmiirIOmTxnJE8ZMQl/Spq5boZpOp6SqYKwd2Cd8EJwrGeomnY9aLhFsIlSsoktiBV0qwpfy4aLCjnYV4xSZCn0MExlcwo2J1YhxHFUrSGs5lZjiazrNxnw+SjpaLtyzQjiqMmdpMjjlnbLLOMg07V38cP1DyEqFr9537yTQVFiLlpONJfcU2/NgajhYbN/r4zt/8YV86ZHP8YTFFyGE4M9OvnrK9bRUXHTIKfxo651cvPSUXY6npeJ9Zz9/3HsXL+s+7D9z0au4d3gzV6w4gbYteHB0G0cPLJ3EPEw3+mPlXV+SISZ9qO053nXaC/j+5rt43qrzdrveSNHiQ/f9gFX1RTxn9ZmTlq+uz52H1pgZ5a/u+gParsX5i5/Kx9eFnoPvOuWNU1YyAhzZdzjPPPQKtrZ3cPnSLoBeWlnKO056x27394qjz+cVR3cF/y9cfSk1vfuqvquWX4b3nhXVZSyrTq9p8u0719F2JhpzbuKn229kc2sbbzr6hSyp7E113Z4+pA7sD6jHPHahaeopDqNXmztumygC90LgtUdXCipJzqJsjKrMqYh2cMIWjtwHp+iSMTLRbNF4HQGD6IilHZDJHIWlEQ0tWzbomXKrcU6gtYvamB7PIxcE4FK40Ei244EkJhz4ZBan59WUU1N6KPkeYDC+uk50t+8Iq+O6Pdqojk66d/u4WmlYWa4phB93DqW3VVme74HCSYwTWCtJE4tWFi1tR29Wnl8PAdQ5Wt/Zk8f5ACq1sEHQjqdZ6GABoTzV1FBNDBVpUMJFgBtTok6M0zI7L8hkWDd4Z3mqKicRJhh7Sk8jT2jaFCVcB/h4ILeC3KrQDq7jkh6rCj3ouH45mUq6UAkIaGFQ0lE4yXCRYlzwi9LKMGYzWoXGGBn6zRUCHIiaRWWGNDFo6RlImizQDcDTtAltn6C8Q0oZAJkY36pqzzEN0HSAfybtV9D0rOOPZ22jwfNOOmnc+5+645f82fe+yxOPWMOHnv6MmY258hUcun01x/afttceOE9cegVPXDq9tNTbTn4xe9vG5eiBpRw9EITx1/3ow9y2Yz3PWXUWf37q9PUvvfFHpzyJi5cdzQnzlyNncVznLD6GcxZPDUR64+Nrf8ZH7g/asTMWHc6RM6wYnEnkrk3btQBompHO+3I3oFAKyYtWXT0n+98TYArrVHnu4U+f0bhPO/QsHhzdwuJKPzUt+NbmHwPw3S0/49rDnzKrYwUOMk1zFT0YYJchwUvCN3YrKEYr7JSwtd7P8uowQkgUBhmpnM3FPHYWNXKvY7rOdowiBT5oXmRBVeVkMnzrTwuLNLBd1GkWKc1WAoigcZFB5IwPVb5KhYd/bvWUQKnzVWzCn86eXJ57NUaiF2qUnk+Czmdhx6doF2jUd/yAfA9g8uOEzokM4MdaifGhM1oJfJwXGCspjCLRQbdljUZKR5Ya+rIcJUPLkTBmySf5KO4P81CK3Mv3rKBjkaClQ3roqxS0VUIlydEqpMOaLqGfFlVlyWRIk0kEoyYI9Yl+TE6Ea9SnCtpOkURDy7pq07ApJqZcPZB5SyotWhdxQkIz35bRtPIE5yXGheMLVhQCV0iqumBhpRHSd8KTiAAYvU/xTrFzrI6xipGkQiJjU2EvwEuECw7kul4wUGsBgtwotjT7abmUTBvmp036kzYKQ02EdiuL1ejub5aJcZBp2rt42yVPnNLc8jtr1+K857sPPoBxDj0Dsfi8ZCFXLHvOXB5mJwpn+fz9d3BY33yesGL1pOVzaVT40GhgytaNbpvxtt573nzLF/nJlgd495lXs7iye/HwTdse4K23f44zFqzib8543ozP47h5yxDAgrTO4myGQuVpRMuGB0ZFJSxIF/G6I9/CptZGnrDkUs5auB6B4KT50xPNH6gxL63xZycH3V3b5hzdt4ot7R08buFkx/kZhdudvJkDXj9wQMV0NE3xoeuFj6Jaj8bgfWkqKHBI2k5jIsiQPrBPSgS7ykTYIO7FU5U5fbKFFC40241943KryI2MRo4hJWWsQMluitDakGry3o/rEdb5896TtmTWE9NFmD0JQCais4nPxnF+UHET7z0qGkJ6EcBf4STOBkG7s8GzyNngh2R9YFKkcgHcSBP3LscdQbnr8a/D9XAuVKkFYOYBGwTkDqz15F6FhUmYa+MFIhqPKjypKFDoeM1jOjLKzpomWkYYSUtoUlGA99R1K7BJSFJVoCK0E7h4bxg0AkFoPGydwAuQVlCgIismMVbgZTCsdHE+CiewLhQOWOsRXuKcIs918GUq4oRHOwprZejTF20xjANvFEaHMTJpSTEoHGamGYw9fR511jlw44AUgv/uuechhODyI4+cEWDa1/Gxu3/OO26+HgF8/1mvZtXAgn22r/ef/UK+u+lunnX4GVMu3zC2k7/4xX9xRN8i3nryVeNSeCNFm69vuBOArzz8Sy5atns39K8/8gu2t0f59qa72N4eZXGlf0bHeuny47j+Sb9PTaesHX2QX295iCuXXdDR8twxuJbt+RAXLDltxqnGB0a28ezvfRiAL176So7oX8QJ807lhHmnAnDy/Nk7vY8Wm9jRvp+V9XOQYv/8KXzjkV/yjl9+lSetOIm/ODWwqplKec9pb56bHXhHp055V8sPxvRiT88HASI6NIpoFlirGOqpIZOhT5khoe00DZdiCbqXTDqq0lBVBZksyKTBeElFFCzRw0Fng2BnUUcg2Glq7GzVaDYzXDtByGBRgJBIYVCyTO9EYbJTHdZmooP23n/Pm6hs6oiFgKhLmkQuTIYu3cVdaOMJvdr60gIhoLCCwiTBrTyO6aIhowBkUpAlwVYhVYaBSptEWgqres61rJTrSRFOSEdKGQwkvZdI4UlkEHC3TUJzrEJRKeir5Wjp0dJjvaYmWlRUgRZQOM1OI/GoUMkXz6lpU3SkGUdtjZo29OnA2CxImmxL+juaIUWocms5T+I8SloKm1AK150XOO9BhJRh2yiU8CgJFe1ielciYsq3aTKMCZVyeVMHKs0JgtdFuF/RPtheOI2xkkRbPJbRoko1yVFCMD9pUpEFVZljkSQzNVXa0+dRuc4BHAckaDp56VL+7RlXz3r7u4Z+ync2/SdnLbyC85fMLL23u5iXVgFIlZp2T7TZxkkLDuWkBbvWAn1x/c+5aduD3LTtQa5ZdRbHzetqwgbSCq899gJ+tHktly8/jm89cjeXLD9ml2Lw561+PPeNbOLMhatYNEumaEmln1HT4C9/9X6sd+zMh3nlmufwcGMzf/CL9wEwapo8dcXMmgz/anATYyYH4O6hTRzRv2hWxzcxrMv58kMvI3cjnLzgBTxuyevnZNyZxlcevp1R0+aL62/lT0952qz1a7uMg+m5xy58ZJjKL9MWWqMp28bqzE/qgKNPtdHCINCkwqBU4J5qqqCmcjJRUJEFCVEr4j1NnzJoamzJ+xk2FYxV1JKcvlqbhgjaJe+gXQikUKjobt0qFIWRHZF0GV0h9tTXvvQ8Cuvuer0pJ2ACozQRHk0eu5sacy6w9R1BuAgaobZRJMoSWg85BA5jFM4EkTwOvPIIH1qFVJOcijZkMvggWRF9iXqPg6lufd85HoXFCXDeU1gZWpPogqZMMU3NiKpQVzm1Sk4qDMMmY8wmaFzQNLnAkpUz4kVgB413SDzWabaJPrSwLEhG6VNtlic7Kbym4ULT5qZNGCUF7yisBlxodixKvVoERsrH/n0+2KpgkMLR9gnOQ0XlHNo3SCYLdjTrjBVVbCNBWIHLPCiPj8jWGjAWlLT0ZU2W1kaZlzSpyYJF2SgDqoUSFoNi1Ga08hkSB/sxPbdu3Tr+6q/+iu9973ts2rSJFStW8KIXvYg/+ZM/IU3TaY9zQIKmvY0fbv0i2/KNfG/Lp/cKNH3u4S9x/ZYf8PzDr+GCJedzzVEnsWbeApZU+1hamxkbM9dx6bLj+cJDt3J4fSFH9E2uSvs/J1zKq4+5gCd8428ZMzmvPuZ8fu+kJ0451gnzDuVTT3jdXh9TKhP6dJ2hYoQlWfhjSoRGCYn1jmw3NgG/HtnAHUMPcMXSx9GXVDvvX7HiOF5x9LkIAZct33WF3EwjiD0DdW99PmfjzjRecdQFDBdNrlhx4twDJjiYnptJzEF2XZQiGRFaodQG2syrhbL3TBmqomCnq1F4TSYt1ktSaehTeRSLF9RlK1YoeRo2Y4fp4+H2QobyKoWXgYGwSUihyGBQqBOP1nRK+5smoW001sXGqyKApRIwdX93j70X0ExcNsmB20/9PohJy3ycl6kAU69BJZ1j7C5IlCPRDmMVTZNinMYYhc111OMAypNmllrF0JcV1JPA1kkZAI9HomT3OCacSQRT48/bi6D3kUKQKEfTJjTyDNNMQDuyimFl3xCLsjG25P20raauc3IUg0WNli3L/X3HOiH0ogvmlsT2NRVlqCtDv8qRwjNqBQUaa6FpM8ZMRtsmGC8xLhhTCuGxrmTPgm2DFJ4F1RZLKg3quqBhU7xXSBF0VolyWKFoW4UfzJBtcFUfnL/j+YrUkKQeraCv0mZl/zCHVQepqZw+1aIm26TC0vKanUVoVqz8DFtd7cf03D333INzjg996EMcddRR3HnnnbzqVa9ibGyM97znPdMe538laDpn0VV8c9N/8PiFT2Jbay2/HPwCR/VfwuH1mblRf3PTd2i7Nt/d/H0uWHI+QgjOPGTljMZYO7KFJZV+BnqAwFzESQsO5YYr37LbdXz85gHBqHJfRyoT/vH0P2Vrewdr6ocBsKy6iA+c+WZ25iOcNiGV9uDoIxjvWF1fzu/e9k+0bM7a0Y28+bhru2MqzR+ectmcH6uWGU87/ENsbd3Nmv6pweRjEY9bfASfvOA1jJkxNre2sLQyvWq7acdBpmmfxTiM4UstTgQjHkQhGNlWY2NlPokIpeYtnVKVOfNUk9DoRKCxaAo0BbmXFLYWStGRbCv62ZTPY3u7xkhRoW01uVVIPPUsD5oap9Ai6H5yI2kXmtzo6AnEuFL+zrGXx+snAh8/CSztqt9cSI/1TkJ3bN9TYijKCYnHIgjPxbICrgRw3oMXotN3DqDZTmlH806tHLWkgah72kWCdYJEWWpJTiUx0SNJhHY1XpB4QksRaWM6q1vV1suATaW50sIgZCgvyWMD3b5KCxZAXmhauWZbq8qybIjl6U62tvsZbNdo2oSW1UGfptw4oGii3UMiLVJ62k6xo6ihhKVpNWM2ZchUabsE41RgmkxC02iMU8FKQIWWJoVWjDQrtAuFsYIsKWgbxZjRVKQIxQMqp3CawbzC9maNoUaVopXgBgxCOtKsoFLNSZVjrJVSWIXWhkqSkyqDxFFTLVZl26nJNmW3w8ylWC3ZaWq03Ax9mvYj03TllVdy5ZVdU+Q1a9Zw77338sEPfvAgaDptwcWctuBiAL64/nfY1LyDB0d+yCuO/uqMxrlm5dV8f+sPedqK2VUvferBG3nXHd9gcdbHf1/2u1TUzBsTT4zNzSFatmDVFOzSxKjplM9d8kruHtrEk1bs3sF6rmIg6WNggmv16vpyVtfHW0r8euRhfue2cKO+86TXUVcVWjZnYJpGkHMRC7I1LMjG+zN9at2P+dLDN/Paoy/j0mUn7WLLuY0x0+D3fvEnjJox3nDkKzlv8dlzN/jUeYjxyw9GNybmk3a3Tu/LmPsZl5iSnmx+m4X1Bv1JTiJtSL3JIBAukCg8mXBUpEUKEYGOQwjBqKmwo+hjqAiAKXehOayL7UesUVivSJSnlobKu8JoCtcLmCYaQ0bOQ0wES7vWN01khSYxSb47Zm/7lLA33wO8RNeJOxp4jh9bdJimsE23LQoIMt1GCxczn5IssVQSQ18SNE/WBMCVRK2REESj0HGnPl7b1Tne8RFYouCuHqrVFMZpChPa2vRXc1bUR5ivm2zOBxhzFZouJfcKF7cV0DEqLUMJGxr7SkdFWfp1m1Q6cp8y7Oo0fbCfMF4FWwCTBtNMJ/EEvy2JZ9QmGKtBhKrJWmqYn7UYSApS6Tvz13YJw0WNbY0+Gq0UV6gg+E4dac1STQOgNCi0Ds2Vs8TSn+YsrYyyIh2iX7WCgSqhWrHtgybPEFKGM4o9fR6V6zDZky7LMrJsbpu4Dw0NsXDhzCxd/leCpt5YXj2ZTc07WFad+QPwyuWXc+Xyy3e5/P6RzTwwuoVLlp4wpV5o/dgOALa3x2iafK9B0/qxbTznB+/DeMsHHv9Szl6854qxTMOKevUxa+K7obGJTz/8ddaPbeKaw57EhUvOmnK9hm11/t10bT70uN9n3dgmTpk3tcnkYxX/fN93aNg2H117w2MImsYYNWMAbGxtmtvBDzJN047JipzdrCjGvwRi1VxJqnhwUIykjM1P0DVLTbXJvaYd5UrCw4irIICabFOTOVWVY7xm2FYZKmqM2RQpHIdURsmdYsPIPHaM1bBOxuo4idMu+vjI0IzViR6LgSAKL8GIFK4DGILuRnRE4kETMz5NFQBGaPRbAp5eICIleG9DOxQrO/vtBUq9s5QlBZWkwDpJIw/eQd7Tc7zjzSd9LH2XwtHwCQurDVb3byeRjtEiY6SoYOPEt01wUDdOUNWQRAPIEr6V/x/fDkd0XpfvSsALNyFxF8wj61VoNFO2DtW43a1g50CVijKBRcIH3yTZHa8gVqL1CLiJlZRNq9ncGkBWHPP1GPOUIBGG3Gl25FWG2xkNkyLjdTFOIrTnsP6drKwP8cDQQraN1BkdrjA6WGVnf40tA30sqjaCB5hV7GjW2L69H7OjgigEZI7+pSOsXLyTBZUGFWmYnzRZP7aAjY15ofGvE4wVKdvzOpv1QGgaTDD/rMsW81WTBXqURFjazkz869h9zIBpOuyww8a9/Rd/8Re87W1vm9n+dhNr167lfe97H3/7t387o+0OWNC0dsd2vrfuQZ5x7HEcUp99Gfu5S17FKQueRU3NULC2hxgumrzoxx8kd4bXHn0prz760knrvPaYi+nXFU6cv4IFWX2v97m9PUrhwyfuo82haaw/wnU/+3sKZ/iD457F1SvPYWtrhD+77SssqfTz56deNedg6t33fJBNra14Dx9f95VdgqZT5x/Nn57wcgpnOW/RKQghWJCO14l96qHv8ql13ye3NU5feATvOPW5c6L7ads2t+y8iWVZnbWD/0Cm5nP+sr9BywovWH0+X3j4Rp6z6pzZj28ML/qvz/Hg4CAffuozOXXpst2uf0hlCW886tVsbD7KU5bPrl3NLsPFZlK7XX4wJsVExmkqkNT7agJzURIqMjGkWEwhGPKh96Nzwa3bA02fUZE5qZY4GcwZ207TsCljRULDaQqnSIRhzKS0XWjDoWXorYZyVLKcRBnahcZaiXPd8vpu+k0ArtPFIibL4mG76KnUPQnRA1rwQWhuPJ12KyHl52JRvOhopvAeKUNvMu89hSs9ouKDV1p8/E8JCxIK200jht8lIVFu5zsEhRYWZ6FhE8ZsQtsphA+FYMFxPaTkZM+FC/Lx8rzGI96uKD6eJ70pu3C+bRcE4d16NItOHLUkJ5MmphtFZ0vRw8r4CKC75gu+ux/nkcoCnqZLabrg7J6KAu1SUmnIhcJaSW4UzkNaK6iIgqZL0ATm0kuFQ6CcQ1hoG9lpq9JoJRQNHXohCg+JpV5vMy9tUVU5aTS/DF5RwVNKS0tV59RVi5pqIX0QnytcOLZoiaFEMNKcUezp86izDjz88MPjLIl2xTK97W1v4+1vf/tuh7z55ps566zus2jjxo1ceeWVPOc5z+GVr3zl9I49xgEHmr774Fq+/9CDfHPt/WxtjPHD9ev4j6tn3jeuN+p6biqudhW7ctuel1Z5fewh94WHfs7f/epbPG/14/id42en0TltwSr+8pRnM2JaPPXQ0/a4fuEMJva2a9g2wP/f3plHWXKW5/33LVV17+19umffR5rRBsxIQhISi6SRABnHCAMHkBMOAgcLEyzH5NhJbMfyBrETvOSY4BzwQU5sK2ALO8bGGDlYBgswEhIIIYGkQTOavad7pqeXu1XV933546u69/bePdOzENdzzsy9Xfuture+p973eZ+Xvzz4JF8efh6AOze/jJcPbTujY8kx0hjj/gN/xSXdm3jLpr2sCvs43hhBCskd61+94LqvHNq94Pw/O/QPjDabNI3loWNP8d5L9rKjZ3man7kMR//8yIN88cTfsaN0mktKRwAYbTzJusoN3LPrdu7Z1b4+1lmGG8dZW1qHXCJh+/7YKb5x7CgAD72wb1HSBHDj4PL0dktGEWk6O8zUAk2b7mYvIzomW0GtWuZ7I2t5sTqAlnZGJMc3bt3aewpVOQ3GD/BVU2Kk2c1UGmGcoJb6CHV3EFPWBlFpEumEskpbqZ6pOOR0UiFJVUe6qZ3q8j8B2fEZfOTIu2znx+MJR97CxDkfPcndsQG0TgmVQcmcWPnIinVe64OAVeU6ZZ0wVi8zWm2XyUtpMVbRFSaUohhRgmNTPYiMCOYmlP74O39r/m/jYKTeTc2ElHRKIw0wThBKQ0mnfmAXmTO6bH8OEOiO9zOv58xfgBBkHfn88hKZ2UYY6qlGB46SThks1ekLG0ykEVJaAiHRzrYIn8wIk02923tOZZ0UOKdIhWQ8rdCoRZRUwqqgyku7DiGF41jYj5WKqfESk42SJ4TSb2VDeZyKSugKE54PVnPsVEB8rIvqRIixmi1RQpdKGauH1GtlZDXAKYfrMQysnuKyVcOsiyaJnSa2ilNJN9UkQgpHRSd0BTHdQZOBsE6/btAlm1gEFRHTq+o0XWbCSUKPqrEsLCPS1NvbO6eP40x84AMf4B3veMeCy2zbtq31/ujRo9x6663ceOONfPzjH190+zNxUZGmxBh+8m8+S2ItPVkJ4Kry2WtcnHMcqZ1mQ6V/Sc7Yn3z+KzzwwqPce+Ve3rh57oG9NyjzwCvfz/6pEW5eu3AvMoA/PfANJpIGD+x/9IxJk8PRF6Vs6upDLyFCtK48wEevfR9H6id53bqrAXjN2p384b6vMVTq5vK+xQfzxfCZIw/z8InHefjE47xqaDe/eMUH+H71IDu7txIso6nuXHjX9jt44MA/MN6UvKx/65J0XDlim/LBb/4eB6rHuH7VZbx9y+1c1rsVoHVcY+kgvWGJklrFUGnu9jefeOFjPD72GNcNvIL3XuIrDBsm4YmTh3jZwEa6g9lPP5cNDvFjV72M/afHePuV5yfFNy8K0rRsnP0ZcV6yIwEjMHVFjCYNbDuykVdVOUk1jqiFCi18M9WJJOR001dOCSxNq0hSRZxkg68wdPaIa6aaeqKxZm7JyGyxdwaRa4r8tpT0DtIDUd27k+NTc9YK6jaimgRZBZgjtYJIG0o68b3urPcWsk4QypiKjom1ZCoISIz/XHnPNCUMoUwJhGFVWTHZjDCAs1475AXiGcHIPosFsMI3ok0lzmpS53U+RliaJjOcxGGcL8fPWEvHVRUdr7OvWWcKL3cNd3hdE84TQ5X1dNOZ8aPAUVExxiqs8+J9Mg8l6wTW5tSrTc+cExhyKunTiU0UNaE5FA9QljFTNmR1MEG97CvpJuplrBFMxQFHan30hQ1w0BvUSbsk44OOySTEWJiohTjnmwL3lGpMdguSRKGihHIYo/Lzlfl5NY13SQ9kSjloUtFNyjpGYkicIHYKgSVBkNhM55V9oqZbZqbiHAjBh4aGGBpa2thw5MgRbr31Vq699lruv/9+5Bn4QF5UpElLyeVDq3nqxDDv2X0N123cxMs3nH3fsv/0xF/z4Ivf5I6NV/C7N0x3C09sghJqWhTh48/9IxNJg/uf/+q8pAlgR8+aJUc+7tl1Mx979mHeunV2b7al4h9Gvs5Hn/8jHHDz6hv4t7veteg6uwe2s3tge+vvXX1reeQNK2ScCOzp38lfH/1HNpXXMBD2EUrNlb0r485958ZXcufG5fk65TjROMWzkwcBeGT0KV6oHuYPb7gPgDdteDOXdu9kc3kzg9HCP7ZDNb+Nw/WDrWk/8+hn+Ptjz3Ht4GYeuPnds9ZRUvKhW+fXwgH80YHP8cz4C9xz6VvY1rVhWZ9tWSgsB5aO6ZrdOVNzs2Z2rtOZ0sszENazp9RqlDWeNAnfOyyLSVAOE8rakrqA8aTM8XoPo7UuVNZWZbJR8tYBpQaVIMkiVD6lZpykmoRUk4jUzXhIEe2Dc861CFJ+sK5FFLywvBKmrC5Psb4yicCihAUBE3GZ4/WAEEszURgUJWnoixqEymQu3d5iIVKGNeUaDkhRIARK+f0GytAdNemNYnp0E+tgInVEocVYQT2RrVYms8XZWZWdEKRW0+lm7pDeRFOQCbBzMjgzBDjfxWzrsPK5KotMiewSKumnuUxkXtEJg2GdPt3geNyDRQISKfAOW85bHVh8KjZPG7YqBcmjWd4h3gIxITVXpmlCumUTGYKpKZpJiDEKpSxOSGKhiZ03yoy0pasSM1xVWdpPYqSiEqRevK4UqVTInpSBVTUuGRhFSdDS0XSaybTE6bgCSAbKNQbCOmWVUJExvTomFBlxRKCF8+k8VNbvTrQKDpaMC2g5cPToUW655Ra2bNnCRz7yEUZGRlrz1q1begDhoiJNQgg+89a7GKlV2dCzeFhuqXhq7Ej2enTa9KfHn+NDz/weg9EA/2X3z1NWXnNwz67X8MD+R3nPzjMbsOfC3vWXs3f94hGphVCWUStk/MTY0ytxWGeNVwy+lAdv+k1CqVvEc7gxSreutBzBVxLOORq2QVktbOGwsbyad2y5nf87/Chj8Wku6W5bRWip2dN/9ZL29xOX/Bu+NvoINw21U41jzdq01+XiZHOcTx38AgCfPfIl7t111yJrnDmcs7gF7CYWmvfPD/kNfS7mtMhqM8mTIIuWODBgjUAogVSulQITwkdsDk/00kwV/WE9a+CrSYxkshYhla/eMkYyVY9IU0moDYlSvuTfCW8xkEjmZ3l+sFbSmyOWdEpJJ5S117TkFV4VHdMdNOjTNQLhI0FKOnplnYpqMtLsZkyWaJgACZngOiVSltQKBBENozkdR0Qq9cLpIG7pn0JlKemYQHgdTyAsQ+EUVRkykZRIU0EilBfTZ+JuREe0yeGryISPBLUr8STWh+1QwiKFj4joaR5JnUnLHDMl4NPPWy4AV8JHjeLMITzM0qLjaeTtDZBIfKsTL2xv0yEtPb/rTMu6LIJm8OLqFAFWMpmGmHoPJZUyKSIqqsn68jgMOEbq3Sjh6C/XAMF4GiEALVN6A8f2wVFGa11MNUNOj3fRaAT0VeoMVKooaZAC+qIaOG99MOFKmd+TIFQpFd2kP2hkhqCOxEkm0hIC31Mvby4scQQiJXVeRzVllm4KCYvfj/JlzgUeeugh9u3bx759+9i0abp1kFtGdOuiIk0AgVIrSpgA/vPL7+TBA9/kjVump2C+M/4siUs53hhhuDHKti5/It+98ybevfOmFT2GlcCNQ9dwd/PNfGX0Cd64YX5vob899iifOfQl7tp6G3vXzt2GZSVRUu0fzldGH+cjz36Sbl3hY9f8Mj3B2QvgO/GJF/4Hj459nR9Zfyd3bvzReZcTQvDjO36Yd2//IY41RllXWnpqrxNbKlvZsmXrtGm/c/1b+PyRZ87YbLM/7OHqgcv53sR+eoIm3534Jlf0Lo3ELRt+ZF14foEMM0JNs4MdC6/SOSrnmSAFaJDaIZXNdES+6gxASoGWECpLimYiLTHZjKg1otZmjPHP9VJ6kbXLnvCtEyRGERuFdap1AK0y/o7D1MoihKUUpN5NPEjoCpo4BIlVRDKlWzfp1XW6dOJFvzIhsRopoekCmjYgsRolfBVeJUgpa4PEEduQptW+Ea2yxDagnoZo5TVPWvrBt6ITpHBE0sfZsL7NR2x0FpXJT6hoKcLzzyOzSFk7ItSOPvlojo8C5Y2LO60WfIpSdHzdO1Nxc0s2plsqiNa108IRKU9EhBRYq7NqQR9d6mjU0tp2p0+WyEiszEhd7n4uM/GZw0fsDJrEaaomQmtHT9hkdalKwwZZ6tR7PiVWk6J8P8MkwDmB0o5SkFJLQrR2lIOY9d2TngBmn6XpAuo2QgkYiJqUVdIimVr4hsK5nEXhsibDid8PXuAfLzeZvdj9KF/mHODuu+/m7rvvPuvtXHSk6Vzgyv71/NKe9bOmv37dzQw3R1kXrWZr5ezTgOcDd268nTs3LqyJun//5xltjnP/C5+nYU8xmU7xoxvfQCiX91RwJjhc8yXzU2mNybS64qTp6QnfU++p8W8vSJpyPHn6eZRQbCyvnGnk+kof79l54xmvr4Tk11/6fh46/iAPDf8ZT098np+/4qNoIaioPvRZasGmIY92LDh/5bFSLQvOL5aQOphvvQ7i1Cr6UoBwiEz/4rIGvc5ljVOF1+5MNkOq8QCR9n3S6nFA0pRYo0ikQyhPuOLE9wRT0mal/rTK/GcO/HkFmhSWKEjojmI2dI2zoTTOqmCKPlWnNxPx1l0pcxrXCBxTpkQgPXFyIiWSgq3lkwyFkxxv9DEWl/1nzrRNgfDVfKFMmYojUiu9+7lOcDi6dUxJpShpia32ZM8JulRMFCSkVlBL/WcD8FZV/iTm5e7Z7vw5w2c/hfNmCXmUwAmBtMJvQIETdppR5vR4U/uKzyEFJ6dSDjKPItEWeIOPBjqZGVn6bXhjzZyMuSwlZ+lk1vm18qk/17E3EM5kujAYT0t4CwPD6vIUidWUVIISjlAaUifJtWgVFROUU5QwTJVCqs2IQKdMJSHdQcyqUpXesEEg89Y8Imsy7CNIDatJLQjpI3WeNBmM84Q61+cF1lATEVoYyJpPL/vXstj9qLXMxYsfONL02LHD/OpXHua12y/l3mvPfOAC6A97uXfnbE3KhcJo/XEOTPwF23vfymB5zxlv500bX8WnD/49Nw1dzh+9+KcADAR9vG7drSt0pPPjjRtuw+LYUFrDhrMgKl84/k/8/r4H2bvmOu7d9fbW9Pdsfy//dPKrvHbt6xfdxuOnvscvfuf3Afivu+/lJX2XnPHxLBeHawcJZcSa0tp5l+kPfFVnJMs8N/EVvjj8B6wKN/ITl/531Eo1ELYWFioLPkeh8JVqWXBeMVPTNNf8+dbJx/ZcN5S/KjJBci4szgb/jg3keiNjfWl5Eits1mQ2H2O8+3ZeEeYFN87lvj/5AbhWgCaHlMbrlXTMUDhJn67Sr2t0ySZlGVN3YevYFCmxDVDC+BRaq12HH7wTK6il/u+8Sk1nOp3ESO9ULn3/NykciYWyTglV4l2srSIxAi0toTC+P5rVNExAktkktEmMoD24ti0NvKP4dNfyNslx7eE4O8mejOTXZ2ZIsIOw0DmUTx+0W2L5DksGly2WR23ypsqd0T7r8iUFuag833bLA6u1fx/JkVmKEXxrlLpVpE548TwJqYEYmUWaRGv92CrSLI0bKIMWvm2PliklnRLmhClbQwtHzfl1tMiuhxdFZd8ZXxTgfb28vi0QKRrfA3D2OVsiFrsfwTm7J60ULirSZJ2jmsT0hPO7fn7iyW/w1OgwT40O8xO7X05Jr+BTeQe+MXIILSV7Bs9fBOobJ+6jlh7hVPM7vG7L/znj7dy19Tbu2nobJ5tjPHb6SzRNzOYFImnVtMlvP/MFunXET11+O98eO0ykAq7qX75AuaxL3LXlX5zxsef4m6NfoWkTvnD8a9NI0+7+Pezu37PErbR/0n955Mtoobi8d9u0JU7Hp/j+1DNc1XcNJbUyGqynxp/k957/bZRQ/PJVH2ZtaW6R4fbuy3nrpn/NFT3X8sjIHwNwKj5CbBuU1Zl7k03DBYo0rVTLgguG+cjTrOkdQ20nYZIZgVEOIcHL/fJRPI9a+EHKGEXe/dBagUmUj7R0kjgnQCis9f5H3pfIdRCm2VDSUAkNg+Ual/UOc3X3QbaHJ+gRTRKnGDHdCOfTSwEGJwSDqsaELdEtY7QwpMrreLRw9KlunFOcTso0rfbpKhyRMAjt01a1NMxSPF7g3hs06dJNmkZTtQENE9AjmwTSsiEab53UptGeoFmXuQ24LKrTHp5n96ubeSWyKA4y0wtlsZAFKqZnnr2Zv4ZcKear6NprOcA4X3Um8kgXbTLkHN6WwQqM8OvnvM21yFR+BD4CpYQllGkmsvZaqUA6ysoQW03dRdl2bBb9cpkQ29GlEwI1SVrSRDKlopqcjP09JJRm2jlwCL9t4XVldRswlZZxQtKva5RlSlmkaCyBMITSEApPhBGCQBjK1DF409FloYg0rQz2jZ3kdx/9Kk+dGObgxDgfuuW1/NhVc5eAv+Wyq3js+GFu33rpOSNMjxx/gXd96X8D8OBtd3P10PkhTqvL1/Hi5BFWl69fdNlvnX6c+/f/Prt6ruD9l3xwlhcRwGA0wEev/g0Sl9IXzK8T+9zhJ3nw4GMAVHTER7/3MACffs09XHkGxGklkIe8QWCcndfU8ptj3+HThz7LLatv5I710yNp1666gg+/9P18bN+DPDL6LZ6dPMD/uuFXpi3z0X2/wsl4mJf2Xcd7tv87AIwzTCYT9IcDZ3TsE8l4azvVzOl79jJj/NazP0vqEt6yCV6z5l+iZcjmypUrR5gAZy1ugRtbLrq8WFsWXBAsFG2atpxrLT+NMIk84uMHiDwq0TkWtLiQ8wOmEBalPAkSqI7tudZy3kk6G5gzEjaXR5yPXPmUWaASKqpBj6rTLWto5wflqhNUbcCkKVF1IdZKKqqJkI5+WUULgxKWrjwKIcBIWKUrCGepmYgYH6lIMmNHJSwlGWcDtCNSSZbmMxgbkFofb9HCUBIxkUiQWHpUjb6gTGp9JaCxqpX4yTrVdX66lrnmzEvVSQvy8+5clsqjkzc4FrvI0/hqx//TznO2fdNqaCey/WSRIvCNcJ0/glmpwYxD5+Ewk6X3fOTKkz6bvWohpvlMzfoEwiGdRYuUUMakThLIBPCtW/LvXuuc2IzIZSJ9gzcZTZSkgkWK1KfqhAVnEeS2Cz4tJ/HWA5FYXrPzxe5H0L4nXay4KEjT7zz6VT6377nW3187cnBe0vT67Tt5/fadc85bKcTWtN4nHe/PNa5Z/Uu8ZPCnCOXig/UTY4/StE2eGv8WNVOlS08faGtpnfv3/wVdusI7t/3IgtvavWozZRVSVgFDYXs78Xn87DNx85preXbyRa7u37mgC/ifH/4b9lcPcqR+fBZpArh64DKu6tvB4fqJVmn/aPMUtbTOlq6NswL2zjl+83u/zoHqC7x549u4Y/0PL3icw41jfOrQ/Wwqb+PNG+9CCMGNg6/COEOX6mZH99wpwdQlGOdbEDRNg55gkNevf9/CJ+VMsMRI08XasuC8Yr6gzZwjcwdhghZRaqXH8s4ZMhN9i9mbcJljtBAQRdZrfmJNko3uQjlEboMz86FogQCKFBAFht5SzOrKFDu6TrGrPMyAqtOnElIELzbWcCLt9WXnpkSvbLBWTTCoJ7GZqWW/qtMtYu/ujRcDnzZdKAnjxvJibZBAGAKVokWKUZZUyVbKp0v7tjANoz3JsgFdQcxgqcb6cJxt4UkmXcSkrTCaJJxOwCH9+XJZ0GnGV1fJLE1Hmz7IDvLqIz0dOdMs6jU7nTcb813+ue8++d4FecOVXODtReg+HSecA+ubCLfSWa1j7Dg2ITK9li+3U2SVf9bhlMUZC0K2tFDt9J4nPVKAVN4DS2Vku5yRpTylm9M2i2fdeZ9A6ySJFZSkIZA+ahVlLWg0PhoVSJ8+dEK19t8nazRVEWm6INiUVcuVlOL1O3by09efnVbpbHHr+kv5xKvfhhaS69dsOW/7FUIQqaU9ib927Rs4HY9xee9VswgTwMMnHuWh4a8CsKf/MvYMzN+w97Le9Xz5df8RIQRaSPqjLkoqYM+qzfOuc65x58ZbeO3aG1o2EPNh79pXcrh+jL1r5reHuHfn23nrpr2sLw8x0jzFTz/xyyQu4Wcvu4cP7LyPfVPPcFWvrzI0znCo9iIA+6vfX/Q4vzTydzw7+QzPTj7Dq4f2siZzDn/N6tkErhOrwjX85CX3cTIe5pqBVwGesJ1sPk9vsJFQrZCAPu+bMR+yG9TF2rLg4oOb/Ve7LwngcFnaqvW3w6fbZHv91pN/Fn1JU0FXJUaLlDSFpBn4iBG0Rltr2+k9qSxz+/I5wiCht1RnsFRjIJyiR9VxwGlT9pEsYRAYFIZAQJdsEMoYRYomzSqsJKkTGARdwtEtNf1Byno5zLFUcCTtJRIJL1YHOVbtQUjr7QdknhKzpA6qqaZpNFJYeoMaXTqmV9bolnUEhhIJFdFgMJxCOoukj9PNMg6JyD2AspRWHrmbI7bm9+k6CrMcCNdWOS01eDg3Oq95p01ldmms15blqbPuIEbLFIREWIGQwvsdOUliJcYpLO1j1RnZahrfKiWVgkB4Et3SOwmDxGLIdUxtd/fccDRvY2Px5p65GafCeyvlKUIpXMuDSguDQ2OsILaSutHU0gClU4LsQSBFoJwkdgrpHDWr0cIilCN0c0fS58Vi9yMoSNNS0DTet6NhUn7mhpvY1ndmaZGVghCCvRvObTTrbLG5spXb1r6BTx36E2JreNPGN0+bf0XvJZRkRFlFbO1aPL0YqvZX4bb18xOspSKxCQI5zbl8LJ7gP3z7v5HalA+/7F7WlhZub1PR3ovJOUfqDIGc/XW9dc0ruXUBwgQghWRTxQuyq2mNxPmw9cl4jL5gD9dmpAW8h9M9Oz7Adya+zevW/tCin3NP/3V8/dQjbCpvWdQocyZ2dF/BDtrn+omT/5NvnLyfnmA979j+J0ixTLfdueBH7EXmX7wtC84r5pcHZdNdx/sZrzOjTB3V86JzWdpl73lDWymhp9SkEqScjLuwVntyox15kNVZ8hwgIque86Pn9BBWKUzprzRYXa6xKqqyNpxkczSWlbc7Giikk4zaPpC+1UckDUNBlUFdpSwNxnmhcSQs3cowJEMqIkQoiDnFiOvBGMmEqXCs0UdiFT1hEyVSlPSDciB8gqlhfdl8qLy4fH00zppgkkFdJRCWU6ZE3ZUQQpCiqJsI5/yHy9u/tI0raZXEA62y/db07ER3LidhTunCctCKEE0jTNM1Ql7fBF3a2zAoAal1CCEJpf/9xdZHdfIUmXMCrbIoUa55Q/jkl7AtYgTC6+KcryvIPZ/ylGOutZIZL7d4A1CdtelJrPIktIP8SQHGQWwDYhtQUillnVLRCSWVEkiXRawECrxnF9BwISmCflGnLL0J5rKw2P2otczFiwtKmt7915/hN+74Ef7VS3bz3ZMnuGpoLVt7++dd/nSjztv+6lNMxg3+5Iffzo7+HwB9RAdONY/yqYP3UZY93LXt1ygtEk1wzkH6DMi1CDV7QP7i8N8x0hzhc8f+ijdueNM0V/Md3Zv441f8BlJI1EoMvsvAgepRfu7J3yaUAb979c8xFHkS/N2JFzhaPwHAk6ef43XrFo8optbwwW/9Fi9Wj/ELV/441w+eXVuSbV2b+OCu9zKWnOb2tdN7443FJxmLT7G7/2r2DCzN32pXzxX81u6VIQMTyTEAauko1qUt0jSVnEAIdUY9FJ0xuAXSm84tLwV7vlsWXDyYI8LU+S5Pz+X5JEcWcZq+WOdWnAObCIyRnEy6SXpqOCxKpzincRZM04+WQuaZDR+5kFnqxTrZmi6Vo6RjhkpV1pdOU1FezD1pIiKpGE27cc6nz+o2wGZVWFJYRpNunHN0yyYGQc2UMAg0jlW6xqXhOBuUY0iFRKLGKnmYAVmlTJMnTm1mpFphUgeUgpRIpr4vnnQkVqGEQYuUnqyPWVnGGCdouABNSq+qEltBt9b0hjWMrYDVGblwmX2CmDboizy6NC1y1462GCu8ZkgIlHTTyNbZXfn2VK+X6mjK6wQTzRIKQ0/YpKIStHR0qSZaWCZNibFmV1bi76+D1727rLWKwFkfbUqsQEuDzsl6lmbMv1Ht5KAvDJDC65RSfNPdVWGVbtWgrBKqJuREs5fE6fb3Dr/fkoyZQlNPFZHUNJViglLLtDJ/HijLmIqKW5YEEkfFNihRX965XOR+5I/vwslCloILSpoeO3aE+7/9TT58y2v59JsWfnoF+NbIcZ4bGwXgy4cP/MCRpn1TjzEWH2OMYxytP8uO7kUG5vqncBP3geiF1Q8jZM+02XvX3s5wc5gbVr1izmayi/V+S63h66eeZnNlLWujVURqZYT1z07sp26a1E2TA9WjLdJ0zcAVvHroGmKbcNPg7iVtayye4PtThwF4fOy7Z02awJuEzkQtrfJrz/x7GrbB2ze/i5tXL9wGZT4cbxznk/s/ycbyRt659Z1LbvIL8IrV76M3WM/6yh609Omx4/Xv8NmDP4UQirdu/QMUy/vOO+vTRfPOP0dPdSvVsuC8YqFIEx3zZr7mUSU5e1or2jRr21mqzfrvRximCAUm0ZndgMBl80TWfNZZ4fUu2qIDr3/KNyqyKNNAucHqUpVKliorqYRuFTNuyqTO93VruAAv7RWtTvVllRAKP6A1bEhMkAmFU/pUlQGZUhYRdRuTYqmiGDG9HGoMMp5UfIWd8qdAZzquJCM+uU6mL6j76iwRZ01+JU0iGi6ibkuMpxVqaYSZYdSZi55b/zJTyHz+zPeeCNKK4JwNYZp+oeea1n41TlHSKZUgJVKe8JSVb6ycOkUtjYit8j3psr55Sjhk/l1BtA0vs7YtefSslYZDTIucdRp/WiTC+X1WVEKXihECJtJKRphEq3JPZ02WvWFpQFkn9AQxJWUybZV/YDMIQpF6OwS/J8DQLZusUg36VLKsM7nY/QjO3T1ppXBBSFN+UkrG8po162ZV7syHK7v6uGP9VibiBjevXr/k9S4WbGQ3q80uSqqbvnTzosdvJ/dDzQCnEeEwQk3/Mu2Ql/AL234JmF39tBQ8cOAh/uzwFwFBYgLue8k7uW5w17K3MxN7Sru4pfsaIhmyQ26Ydmzv2/gWAGw9ZaK++DFHKN42tJfvTx3m9p7rztk1H0/GmJyYxAHDp44zEZ3Zfv728N/y9PDTPM3TXF+6no3LMk1V7AzfDGn7eh6b2EdtyofAj516gV6TPy0u7caSuiYL+Z6kLO+mt1SsVMuC84H8eGyjMdfc9lvRFvLmT/9A214gjzIJr2BukaaW2DdbL9uIdeBSCRYaiUXZGC2bBAqchARFox6AAaEswviokjWGNHFIGkjpCLSvbApTi2vUqboUFRhiaUmkZFJ0EVtNzYY4ICQltopG1qsuEgmiVEMHjhIpDSRjaUTNhjRthUOyzMHwBNuCU2zQlh4ZcDmOHeIAl/cc5PFgA6NpD9U0YiTpxjb9gKvxBCeSMYGpQ1JnSlkaQnvjRKdoOsWkEZxsCsYaApvWUSbGWZlF0WSLMLSJk/N9+7L0nM3OqycObS8n73nUTuHN5ZQ+x1XuvNzkGqq2VCqb6nIfJtFaLhDe46ieptSRVGRCf3kCKQ2Hq0Mcb0SIzFbAb1+QOjBZFEkLRyoccUvcnbmG5w5QYnbmqtVP0AnfisZJurQlDQUy9KnWOE5oZL5fvhueo5oRMGsa2IZgOI5olCKqJW9qWU0jmsZfg1BahkpTbCqNsSUaZZ0+zaq0RpAkTFbzSN/K3I/g3N2TVgrCXYA72OHDh2dV6xQoUGDpOHTo0Cwy0olGo8H27ds5fvz4ottat24d+/fvp1RaWHT//yuK+1GBAmeHlbwfwcV9T7ogpMlay9GjR+np6TlrkV6BAv+c4JxjcnKSDRs2LKoRajQaxPHiQs0wDC/Km9P5QnE/KlDgzHAu7kdwcd+TLghpKlCgQIECBQoU+EHDD3I5S4ECBQoUKFCgwHlDQZoKFChQoECBAgWWgII0FShQoECBAgUKLAEFaSpQoECBAgUKFFgCCtJUoECBAgUKFCiwBBSkqUCBAgUKFChQYAkoSFOBAgUKFChQoMASUJCmAgUKFChQoECBJaAgTQUKFChQoECBAkvA/wOO/VMFHzO/kQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deepsensor.plot.task(task, task_loader)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "##### Randomly sampling a `int` number of points" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:05.626592535Z", + "start_time": "2023-11-02T13:41:05.625934008Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: []\n", + "X_c: [(2, 100)]\n", + "Y_c: [(1, 100)]\n", + "X_t: [(2, 1000)]\n", + "Y_t: [(1, 1000)]\n" + ] + } + ], + "source": [ + "task = task_loader(\"2016-06-25\", context_sampling=100, target_sampling=1000)\n", + "print(task)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:05.769048732Z", + "start_time": "2023-11-02T13:41:05.626077352Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAEhCAYAAABiJJTkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgU1/eH35W4K3GFEAIEDRDcrThFi7ZQgUJb6kq935b2Vy9taZFCafFStLi7E4gRYkSJezbZnd8fSwIhspINBJj3efIkO3Pvnbub5MyZe8/5HIkgCAIiIiIiIiIiIiJ1Ir3fExAREREREREReRAQnSYRERERERERES0QnSYRERERERERES0QnSYRERERERERES0QnSYRERERERERES0QnSYRERERERERES0QnSYRERERERERES0QnSYRERERERERES0QnSYRERERERERES0QnSYRERERERERES0QnaZ7QGpqKvPmzcPPzw8TExM8PT0ZPnw4e/fuNeh1evfuzYsvvmjQMRty3Ds5cOAAEomEnJwcjW0vX75Mr169MDMzw93dnQ8//BCxGpCIiH5IJJI6v2bMmHHf5ubj48M333zToNdYvnw5tra2WrU9ePAgHTp0wNTUFD8/P37++ecGnZtI40N+vyfwsBMXF0e3bt2wtbXliy++IDg4mLKyMv777z/mzp1LRETE/Z7iA0VeXh4DBgygT58+nD59mqioKGbMmIGFhQUvv/zy/Z6eiMgDR0pKSuXPa9as4b333iMyMrLymJmZmU7jKRQKjI2NDTa/xkJsbCxDhw5l9uzZrFq1iqNHjzJnzhycnJwYO3bs/Z6eyL1CEGlQhgwZIri7uwsFBQXVzmVnZ1f+HB8fL4wYMUKwsLAQrKyshHHjxgmpqamV5xcuXCi0adNG+OOPPwRvb2/B2tpamDBhgpCXlycIgiBMnz5dAKp8xcbGCoIgCFeuXBGGDBkiWFhYCM7OzsKUKVOEmzdvCoIgCPv37xeMjIyEQ4cOVV7ryy+/FBwcHITk5OQ6x72bH3/8UWjatKlgYmIiODs7C2PHjq08p1KphM8//1zw9fUVTE1NheDgYGHdunWCIAhCbGxstWtMnz69xmv89NNPgo2NjVBSUlJ57LPPPhPc3NwElUpV+y9CREREI8uWLRNsbGwqX2dkZAgTJ04U3N3dBTMzM6FVq1bC6tWrq/Tp1auXMHfuXOGll14SHBwchJ49ewqCIAibN28WmjZtKpiamgq9e/cWli9fLgBV7N7Ro0eFHj16CKampoKHh4cwb968SlvZq1evanahNhYuXCh4enoKxsbGgqurqzBv3rzKc6WlpcKrr74quLm5Cebm5kKnTp2E/fv3C4Kgtn93X2PhwoU1XuO1114TAgMDqxx75plnhC5dumj6WEUeIkSnqQHJzMwUJBKJ8Omnn9bZTqVSCe3atRO6d+8unDlzRjhx4oTQvn17oVevXpVtFi5cKFhaWgpjxowRLl++LBw6dEhwcXER3nrrLUEQBCEnJ0cIDQ0VZs+eLaSkpAgpKSlCeXm5kJycLDg6OgpvvvmmEB4eLpw7d04YMGCA0KdPn8qxX331VcHb21vIyckRLly4IJiYmAgbN26sc9y7OX36tCCTyYTVq1cLcXFxwrlz54Rvv/228vxbb70lBAYGCjt37hRiYmKEZcuWCSYmJsKBAweE8vJyYcOGDQIgREZGCikpKUJOTk6Nn9XUqVOFESNGVDl27tw5ARCuX79e9y9ERESkTu52mm7cuCEsWrRIOH/+vBATEyN89913gkwmE06cOFHZplevXoKlpaXw6quvChEREUJ4eLgQGxsrGBkZCa+88ooQEREh/PXXX4K7u3sVp+nSpUuCpaWl8PXXXwtRUVHC0aNHhXbt2gkzZswQBEFtPz08PIQPP/yw0vbUxLp16wRra2th+/btQnx8vHDy5Enh119/rTw/efJkoWvXrsKhQ4eEa9euCYsWLRJMTEyEqKgoobS0VPjmm28Ea2vrymvk5+fXeJ0ePXoI8+fPr3Js48aNglwuFxQKhT4ft8gDiOg0NSAnT54UgEoHpDZ27dolyGQyISEhofLYlStXBEA4deqUIAhqp8nc3LxyZUkQ1M5O586dK1/36tVLeOGFF6qM/e677woDBw6sciwxMbHSQREE9ZNYu3bthPHjxwstW7YUZs2aVaV9TePezYYNGwRra+sq86ugoKBAMDU1FY4dO1bl+FNPPSVMmjRJEITbT3x3PoXWxIABA4TZs2dXOZaUlCQA1cYXERHRjbudppoYOnSo8PLLL1e+7tWrl9C2bdsqbV5//XWhVatWVY69/fbbVf7Hp06dKjz99NNV2hw+fFiQSqVCcXGxIAiC4O3tLXz99dd1zuerr74SAgICanRcrl27JkgkEiEpKanK8X79+glvvvmmIAjavWdBEIRmzZoJn3zySZVjR48eFQAhOTlZY3+RhwMxpqkBEW4FJ0skkjrbhYeH4+npiaenZ+WxoKAgbG1tCQ8PJyQkBFAHRVpZWVW2cXV1JT09vc6xz549y/79+7G0tKx2LiYmhoCAAIyNjVm1ahXBwcF4e3vrFXg5YMAAvL298fPzY/DgwQwePJjRo0djbm7O1atXKSkpYcCAAVX6KBQK2rVrp/O17v48tf2cRUREdEOpVPK///2PNWvWkJSURGlpKaWlpVhYWFRp17FjxyqvIyMjK+1WBZ06dary+uzZs1y7do0///yz8pggCKhUKmJjY2nRooVWcxw3bhzffPNNpe0ZOnQow4cPRy6Xc+7cOQRBICAgoEqf0tJSHBwctBr/TkTbIyI6TQ1Is2bNkEgkhIeHM2rUqFrbCYJQ4z/d3ceNjIyqnJdIJKhUqjrnoFKpGD58OJ9//nm1c66urpU/Hzt2DICsrCyysrKqGUVNWFlZce7cOQ4cOMCuXbt47733eP/99zl9+nTlHLdt24a7u3uVfiYmJjpdx8XFhdTU1CrHKhzHJk2a6DSWiIhI3Xz11Vd8/fXXfPPNN7Ru3RoLCwtefPFFFApFlXZ324uabJpwV4arSqXimWeeYf78+dWu6+XlpfUcPT09iYyMZPfu3ezZs4c5c+awaNEiDh48iEqlQiaTcfbsWWQyWZV+NT1I1kVttkcul+vlgIk8mIhOUwNib2/PoEGD+PHHH5k/f341w5KTk4OtrS1BQUEkJCSQmJhYudp09epVcnNztX7aAjA2NkapVFY51r59ezZs2ICPjw9yec2/7piYGF566SWWLFnC2rVrmTZtGnv37kUqldY6bk3I5XL69+9P//79WbhwIba2tuzbt48BAwZgYmJCQkICvXr1qnXugMbrhIaG8tZbb1XJ0Nm1axdubm74+PhonKOIiIj2HD58mJEjRzJlyhRA7ehER0drtEuBgYFs3769yrEzZ85Ued2+fXuuXLlC06ZNax1HW9tjZmbGiBEjGDFiBHPnziUwMJDLly/Trl07lEol6enp9OjRo17XCA0NZcuWLVWO7dq1i44dO1Z7oBV5eBF1mhqYn376CaVSSadOndiwYQPR0dGEh4fz3XffERoaCkD//v0JDg7miSee4Ny5c5w6dYpp06bRq1evasvedeHj48PJkyeJi4sjIyMDlUrF3LlzycrKYtKkSZw6dYrr16+za9cunnzySZRKJUqlkqlTpzJw4EBmzpzJsmXLCAsL46uvvqpz3LvZunUr3333HRcuXCA+Pp4//vgDlUpF8+bNsbKy4pVXXuGll15ixYoVxMTEcP78eX788UdWrFgBgLe3NxKJhK1bt3Lz5k0KCgpqfI+TJ0/GxMSEGTNmEBYWxqZNm/j0009ZsGCBuEQuImJgmjZtyu7duzl27Bjh4eE888wz1VZbauKZZ54hIiKC119/naioKNauXcvy5cuB21tZr7/+OsePH2fu3LlcuHCB6Oho/v33X+bNm1c5jo+PD4cOHSIpKYmMjIwar7V8+XJ+//13wsLCuH79OitXrsTMzAxvb28CAgJ44oknmDZtGhs3biQ2NpbTp0/z+eefVzp1Pj4+FBQUsHfvXjIyMigqKqrxOs8++yzx8fEsWLCA8PBwli5dyu+//84rr7yiy0cq8qBz36KpHiGSk5OFuXPnCt7e3oKxsbHg7u4ujBgxojLtVRC0lxy4k6+//lrw9vaufB0ZGSl06dJFMDMzqyINEBUVJYwePVqwtbUVzMzMhMDAQOHFF18UVCqV8MEHHwiurq5CRkZG5Tj//POPYGxsLJw/f77Oce/k8OHDQq9evQQ7OzvBzMxMCA4OFtasWVN5XqVSCd9++63QvHlzwcjISHBychIGDRokHDx4sLLNhx9+KLi4uAgSiaRWyQFBUGfd9OjRQzAxMRFcXFyE999/X5QbEBExAHcHRWdmZgojR44ULC0tBWdnZ+Gdd94Rpk2bJowcObKyTW2JIhWSAyYmJkLv3r2FxYsXC0BlkLcgCMKpU6eEAQMGCJaWloKFhYUQHBxcJdj6+PHjQnBwsGBiYlKr5MCmTZuEzp07C9bW1oKFhYXQpUsXYc+ePZXnFQqF8N577wk+Pj6CkZGR4OLiIowePVq4dOlSZZtnn31WcHBwqFNyQBAE4cCBA0K7du0EY2NjwcfHR1i8eHEdn6bIw4hEEEQpZRERERGRhuWTTz7h559/JjEx8X5PRUREb8SYJhERERERg/PTTz8REhKCg4MDR48eZdGiRTz//PP3e1oiIvVCdJpERERERAxOdHQ0H3/8MVlZWXh5efHyyy/z5ptv3u9piYjUC3F7TkREREREREREC8TsORERERERERERLRCdJhERERERERERLRCdJhERERERERERLbgvgeAqlYrk5GSsrKxEQUIRER0QBIH8/Hzc3NwqFdtro6SkpFq5i5owNjbG1NTUUFN84BDtkYiIfjSEPYLGbZPui9OUnJxcpTitiIiIbiQmJuLh4VHr+ZKSEny9LUlN11wewsXFhdjY2EZrpBoa0R6JiNQPQ9ojaNw26b44TVZWVoD6g7a2tr4fUxDRwMalh9i14TRT5g+g+6Dg+z2dB4LfvtvNtg1nCO7gzQf/N7lBrpGXl4enp2fl/1BtKBQKUtOVXDvjibVV7U+AefkqmnZMRKFQNEoDdS+4F/aoMK+YY9vPU1JQyvJPNiM3kfPD3rdwcrevbBN9MZ4rZ2LpN7YTVrbm9b7mv8sPcWjLeZ54aTDtujev93h3UqYo5/DWC7j7OlJWpsTFywFHF1uDXqMufvn4H3atOQnAkr1vYO9sU2f7s4ci+XTOMgBadvLjw6VPVzmvVKqYO+Z7bibn8PhTPZj0bF+d5/T3L/tZ+/th7Bwt+WXzC8iNZBr7fPvJvxz4LwxbewuWbppvsJXO3KxCFj69DEWpgvd/mYmzm121NoX5JSz/fAumFiZMf+WxyvnGRSbz9oTvMTE15rUfp7N//WnadA/gj8//JT0hk1ahzfjwL3WpG0PbI2j8Num+OE0VfxjW1tZ1GqlrF2IpKSihVXfti9aKGIbNy05QUqTgv7/OMXRc9/s9nQeCpPg85DITbsTlNvjDgLbG1dJKgqVV7W1ViNtR2tojfYiPSGLXyiP0GtuJsU8PBqBTv7aUFiuwtrGpcr0OPVrToUdrg117zbf7KS9Tsm35CXoNDTHYuBWMmqG7Y2Eops0fhkohJbCNFz5NNa8SxoalIpeaANBveBfmDfmGliF+vPr1E5W//183v0JSfCbNWmreaqqJ4kIBucyE0iIBc3MLTM2MNfYxM7NALjPB2MgMa2trgzlN1tbWLN31Vp1tjvx7mUP/XFbPPaecN36chlQq5UbEJcqLobxYwbpv9hJ2LJpDG87zw763OHcgnN6jQ6r9nxjKHkHjt0mNVtwy9nI8czq+jqAS+GDTa3Qdafh/epHamfhcX7b/dYLRM2uuDC5SnRfeHsa29Wfo3i/ofk+lEhUqqpdXrnpepOH48tnfiT4fx+HNZ/gjbBEA5WVKXh/5f0ikUn7Y9xY+LdwBOLP/Kr9/vJk+Yzoyfu6Ael972LTu7Fl/Gg+/Jnz8zDImzR+Af8vat1DqIiE6lUNbztN7VAc8/JzrPbf60sTDnte/maJ1+1FP9iInswCvZi5EhyWSnpRNetJZZr01vHKVytLajOat9ft8AJ5aMAgPH0eC2nlp5TABPP/6Y3Ts2oyg1h73PJ4uKMQPI2MZZQolh7ddYOK8AfgFudN7dEeuXUrAzNIUhyY2hB2Lxr+VB96BbvgG6f/5gGZ7VNGmMdNonSZFaTmCSq27WVJYcp9n8+gx4dm+TNBjifpRxsvHiedeGXK/p1EFpSCgrEO/tq5zIvXHJ8id6PNxeLdwqzyWlpiJSiWASklGck6l07Tupz3ERSTzxxdbGTenf7WbaHFhKSZmRiReSycvu5BWnfxqvNGu/HoH21Yd48nXh/H3+Y8Y0exVVEoVZYoyPlj2dLX22vDBk0tIjstg97qTrDj+vl5j1IYgCKz5aR9JcTd58rXHsHOqe6tHH+ydrVmwaBIAEefjibqYQKvO/tg5aV5ZTEvK5syhSLoNbIWtg2Wt7SytzRg7Q7dV+eKSMlJv5uGeV4yzq22189lZBaxeeYzAFm70G9hKp7E14dPclY9WPMN7M3/F1csRNx9HAMwtTZm/6HZ4QZ8xIVjbW+i1+nY3muxRRZvGTKN1mpp39Oezne9QmFNIz3Gh93s6IiIPJCoEVNRuhOo6J1J/Xvx+Jo/PH4y7f5PKYz1GdCD3Zj5GJnJyswqY3vEdhj/ZiyFTuhEfmULfsSFVnCFBEFgw6msizsVj42BJfk4RKpXA699PpffIDtWu+c/vBykqKGXryqMMHN+Z9j2bc/ZAOCF99F8BVSjKAUi/kU1+diFWdhZ6j3U38VGprPhqBwBOrrZMWzDYYGPfSZminMy0XJq39eLnXa9r3e+dp37nRmwGR3Ze5rMVsw06p+/+byeHD0bw16pjbNr2MlJpVSd41R9H2bzxDAC+/k6cPxdP5y7+eHg6GOT6bboFsDH8C6RSSa0rXXbOhtuy1mSPKto0Zhqt0wTQcWCb+z0FEZEHGhUCStFpum/IZFK8A92rHRv5tHoVd26/T0i/kcWab3eyLvKrGp2gMoWSiHPxAORmFqgPSiQUF9acvj3t5aFsX32MCXP7A/Dh8qdRlJZhYqrdllFediGmZsYYmxpVHhs/tz8/vb0eVx9HzCzrDs5d+r8tnNh7hbkfjqVNaDON12viYY+rlwM3U3Jo3clPqzkC5OcWcXj7RYK7NMXD1wmAsLNxKJUq2tw1jiAIvDzuB6Iv32DqS4OYPE/77U+TW1ttphbafX664OCoXrmys7egJp+leXNXAFxcbVn8w17On4tjw7pTrF5ruMLHMtm9k2vUZI8q2jRmGrXTJCIiUj/ElSbtUZYrefuxT7l+KZ53171MUJcAjX0EQeDqyWs08XLA0c1eY/u7Gftcf/74fAvDn+xdaxtjEzkz3hjGv8sO0XVwMKGDgsnJyKfXiPY1th85sycjZ/asfC2RSLR2mE7tv8oHT/2GraMVv+55AwtrMwCGT+tB6IDWWNtbVskKKy1RsG3VMVy9HOjQM5BXJ3xP1KUbAGz544hWTpOZhQlL9r5OeZkSkzsctbtRlivZtf40NvaWdB3Yih/e3cih7RexcbDgrxMLCb+QwCvTlgDw8S8z6Nj99rXTU3K4Hp4MQPTlG1p9FhV8tmwWV87G0aaLv079tOG5uQPo0TOQXbvCmDf3D1557TF8bm2TAQwcEkz7EF+srcxY9PlWAKyszGocS6US2PrfRWQyKUMHtG6UmmPiSpOI3uzacIZTB8J5Ym5/fANd7/d0RB5SxJgm7bl2IZZTO84DcHDNMa2cps2Ld7P41VWYW5uxKuJrLGx0kwro+3hn+j7eWWO7CXMHMMEAweG1EXY6lvee/A0zC2NUKoGs9DwyUnMqnSYAxxpibjYvPcSyL7YB8PS7I4m6mFh5ztTMROvry2TSWlc8KmrK795whu/eWg/Ad5tfxMhEffsqyC3mxvV0dZzYLVSqqsHEHy74m3JjI+yczHj6nRFazwvAytacLnomd5w4fo2//zrOsOHt6D+gekySTC7F3tGSnTsvAbBt63nmPl/19+zoqI7xevX1YQwe0obmtdwvDh2L4qsfdqn72FvSuWPtq3YZmQX8uGw/Xu72zJjY9Z45WGJMk4helCnK+fadDahUAiqlwHs/TbvfUxJ5SFHd+qrrvIiat4d9RqfH2pOTlsOQWf206pOdngtASUEJipIyLOqWCzIIp/Zd4fO5f9Cqsz/vL5ttkBveqX1XKS4spbiwlN6jOhDY1guvZi4a+zne0v8xszChbddmGBnLKbsV/5STmV/veUVeTOCtGUtwcrNj0nPqLU2ZXIqFlSn9RrZn7/pTKJVKju68zMS5/fns9ydRlinp2KOqw2tqZgRyGT6tPHD1Mkw8kDYsWbKfuNgMEhKzanSaANzc7AgJ8SPmejq9+9Qur2NsIqdDiG+t5x0dLJFI1CuL9hpizjZuO8feQxEA9O7WHF8vxzrbGwpN9ggtzt9vRKfpPiA3ktGua1POHb1Gx16GFZ0TEbkTpYYYAk3xBY8SZQqB0/9dZs7X0/FpqZ1C+KTXRmDnbINPSw/smtwDjwk4vOUCRQUlnNp7hdyswjozujRxMyWHjUsP4RPgQkjvQLyaNeGpN4Zp7Yj1HdUB3+au2DhYYO9swz8Rn3N8dxhn9oczelZvvedVwZlDkRQVlBIflYqLlwPfb3kJc0sT3LwdcXS1ocuAlmSk5NJreDsA2tWyhfbhd1O4dDaO4I4+9Z6TLgwaFMzS3w8yaFDt+lsymZT/fTGh3tdq1cKdVb/MQiqV4lbDquCddGjjzZrNZ3BtYoOrhr/b5NQcduwNo2doM5r5NamzrSY02aOKNo2ZB85pykjO4vd31+IV6M7EV7T/525MSCQSPvrtScoU5Rib1L6HLyJSX5SC+quu8yJqKlKqb0Qla93H1NyEUXMGNtSUamT07N6kJmbSpmuzejlMAEsXbefAlgvI5FI2nP+ozpii2vC9Q05BKpXSbVAw3QxURWDw+E7EXE2miYcdTVu6V9nCMzYxYuGvT2k1joWVKaG9Aw0ypwrCo1M4diqGYQODaVKLdMH4CZ0ZP0Hz9quh8HDXLq6uQxtvdv79AjKZtFrG3t189u0OLl69wba9l9m49Ll6zU+TPapo05h54JymfxbvZt+a4wB0H9kRz4AHMx5IIpGIDpNIgyNuz2nP26vnkRiWyuh5uqe8Z6fnUpBTdE/skV+QO4vWzzfMWIFuHNhyAQ9fJ4yMNZf9uNc4NLHhvcXT6z2OIAjs2XCa3MwCRs7siZFx1Vvf7/+3k+N7w5nzznDahzat1v9qeBKLvt5Bm9ZevPD8ACQSCa8sXE9+QQkR0aksev/xes/xXmOkRZkXADdXWy5evYFbE9t6X1PcnrsPtOsdxKYf/sPV1xknD92zVUQ0c3J/OP97aTUtO/jw4ZKZBhE1E7k/qJCgrKMsQWMvWXAv6TiwDX0f110BPystlyfbvUFJYSnv/DGH7iM7NsDsDI9SqWLMUz3pMSQYe2fr+/Z/XlKs0FpBWxPZmQW8+8KfSCTw0XdTsL0V2xN5IYH/e+UvQL06OGxqt8o+itIy1v1+GIAtq0/U6DRt2XaBuPhM4uIzmfZEV+ztLXFrYkNkQQnuGrbC7qagsJRVa47j6W5P22BPPly0FRdna955eZjWjkxtxCVkMP+dvzGSy1j8+RM4ayHeqYlX5w5i9JB2+HpXjXvKyyvmi1sZfdqiyR5VtGnMPHB3ww79WrMp5Wd+PfMppubaZ2eIaM/R/y5TUqTg7OEo8rKL7vd0ROqBStD8JVI/8rIKKCksBSA1PuM+z0Y7UhIzeaLbJzzR/RMkEnWQcU0kXEtj65/HKcgrbpB5LP1yB6PbvMsPCzcZZLyzJ2KIDk8m6moy507EVB63c7JS605JqBYIbmxixMgpoTi52jB0fM3lugYPCsaliTUD+7fEzs4CQRDw9nfC0c2a3j102/Zb989p/tpwii++28n6f88SEZ3KgaNRRMak6v6Gb5GVU8jVyGRWrj9JTm4xNzMLWL3plFZ9b2YVMO2NP3jynVXk5lf/PctlUgKbuWBy1+rcnj1hHD4cqdM8tbFHjd0mPXBOE4CxqbG4+tGAjJ7ZgzZd/Jkyf0C9YyZE7i/KW092dX3pwmeffUZISAhWVlY4OzszatQoIiN1M5wPGoc2n2GU1zw+e3pJjed9Wrjz1rJneeqDcQyf/WCUHoq4kEhudiG5WYWE3yETcCcqlYqXJ/zIjws3MqP3pyRcS9PrWoX5xaQlZdd47uS+q+rv+8P1GvtuOnVrRuv23rTp6EPHrrdXjJp42LPs0Dv8fuBtOvSq7uQ89+YwVu55jZAeNSfmtGntyV9/PMebr6rjaDOyC9lx4AppGfls3x+m0xyb+jVBAtjamNO/ZxAebnZ0aOOtd5B1SWkZ055fyrOv/YmFubE6TkkmpVWQO4XFNQug3smJi7FEx98kPCaNs1dr/luoiXbtfLCwqFvo9G60sUe62qTFixcTHBxcWXA7NDSUHTt26DSGLjxw23MiDY9vc1f+94d+NapEGheajJCuBurgwYPMnTuXkJAQysvLefvttxk4cCBXr17FwsJwpTUaEwc2nqakqJSDG0+z4NvplQrRd9J9VEdO7Q4j6Xo6fnoWxb2T47su8+WC1bTv2Zy3fpxu8ISX0H5BDBoXggTo0rfmNHeJRILcSH2LKMwrYd/mc8x4Wbfaivk5RTw14Avyc4p4+/updB9cNYtsznuj+HflUQaN66TX+7gba1tzvlzyZI3n7A1YDsTRzoLH+rTiYsQNhvWrPTOuJnqENmP9H89hbm6CuZkxf/4yS6f+/+65RERMKjPHdcXJ3hKFopzCIrVzZGwsZ//Gl1m95QzvfbcdFydr1n77JHJ57dt+3Tv40y7QA7lcSqfW3lXOXU/M4M+tZ+jZ0Z9eIVWFSn19nVj91xzs7N7Seu7aOEW62iQPDw/+97//0bSp2klesWIFI0eO5Pz587Rs2VKnsbRBdJpERB5iVIIElVBHTNOtc3l5eVWOm5iYYGJSfft7586dVV4vW7YMZ2dnzp49S8+ePau1fxgYP38QuRn5dBncpkaHCWD7isP8+MbfyORSlp36CCcts5hq48C/5ykqKOHI9osUFZRiYaXbE70mTM2NefHjsXW2kUgkfLdpPp88/wcFeSX0vpXWrwu5WQXk56i3+OOjU6s5TW26+OuktC0IQqPImN53JppSucCnr4/C30N3jSNHB/2KEmdkF/D5z2oBS7lcxoKn+mFtZcb/fTCOyJg0RtwqPZaYol7Zu5mZT6mivE6nyc7anJ8W1ix58N2qA5y8FM+e4xEcWPFCtc9eU+bd3WiyRxVtdGH48OFVXn/yyScsXryYEydOiE7To0R6cg6mZkZYG7Awpsijh7YrTZ6eVXWJFi5cyPvvv69x/Nxctbijvf3Dm5QR2MGPr7a9VmcbpVKd8yMIVFGm1hWlUsWpvVcIHdSKjNQcOvYKNLjDVBMlxQr++mkf1nbmjJnZo/Lm6ORqyzcbas7UEwSB7X+dIDM9j/HP9KkxmNvDz5kRU7ty+VQsITVsiwEU5pegUqqwsq1bTX3Ln8f55bOtDBjdnhc+Ujt82VkFhIcl0b6TH6Z6yCXog0ol8O7i7ZQrVeQVlvD1gtENch1BEFj45RaOno7hjecHM6BnC6wtTfF0teNGSjatm9+WemjX2ot2rb0qXz89sRt21uYEB7phUY/Y3w4tvTh5KZ42zd0N4qzqstKk7YNclb5KJevWraOwsJDQ0ND6TbYWRKepEXL2aBTvzF6GmZkxv2xbgJPLvRHNE3n4UCJFWUfoovLW98TERKytb29faDJOoDbqCxYsoHv37rRqVbPa8aPCsJm9cHCxwdnDgSb1qEC/6feD/P7pv8iNZaw8thBbR/1WJLTh7OEo/l11jKETO5OenMPaXw8AENDag9YhmgvnRofdqAzgtrQ2Y8yT1VcalUoV2/8+SXmZktU/7uH9X2ZWOZ8cn8Gckd+iLFfx9Zo5NG3pXm2MCg7uuIRSqWL/1ouVTtNLzywn+UY2/Qa35vWFo6r1ycspoqigFBcPO43vp4J1/53nr21nmDmmC8N7V996k0oltGvuzumriXRscftho6C4lPeW7KBcpeLj2UOxriXe55/dF1m74xwzxnZhYLfaFcDLypUcOBaFAOw/GsmAni0wNpKz6usZFBUrsK6lBh2oV4+entit1vPaMnVEJ4b3boW1Ze3X0gVN9kjdRo0uD3KXL18mNDSUkpISLC0t2bRpE0FB+pW+0YToNDUCrp6PZ+3vh+jzWBt6DQnmRmwGCFBcpCArPU90mkT0RtCwHC7cOlcRRKkLzz//PJcuXeLIkSP1muPDgEwmpfuwmgvo6oJKqb5lCCr1qlVDcO1qEnnZRSz++F+S4jKIuJDA/I/HIpNJMTU3xqUOp+/fP46y/KsdjJjWjRFTu2FuaUJxoQLvZk0QBIF//zhKcZGCsU+ptZCkUgmBbb0IOx1Lq47VS4DciMugtLgMgNio1DqdpmnzB7B68T76Dm9beay0RF2ypaSkrFr7rIx8Zo34lqLCUhZ+O5nQ3rU7KHeyYvNJMnMKWfnv6RqdJoDvX32cguLSKo7R8bA4Dl28DsDB8zEM717z1tCStcfIziti+YYTdTpNxkZynn+yD0dOXWPK2NsCmXK5rE6HydDYWutWT7EuNNmjijag24Nc8+bNuXDhAjk5OWzYsIHp06dz8ODBBnGcRKepEfDblzu5eiGBiyev02tIMEPGhVCUX4KdoxUBresfVPogUVBSyp7L1+jo54GHg+gs1hdDB4JXMG/ePP79918OHTqEh8ej9TeqL9evJhETdoOew9vVGhtVIbpoYW2GhbXht+VuxN7khbE/oFIJdO7bgqS4DPJyilj25Q7+PPI2RsZyzC1rvzntXHuS4sJStv91ghkvD2HFwbcoKVLg6GLD+aPR/PzxvwDYO1kx8PEQJBIJ/1v5DPk5RTVm4nboHsD0lwahKCmj12Nt6px7cCc/gjtVXQH7avE0LpyNo0cNNdtysgopuiUFcSMus8YxL0clY2dthofL7ZWoaSM6sXrbGaYMr1l+ANSrTXevJLUP8MDPzQGlUkWnIK9aesLEYR34e+tZxg3R7GSPH96B8cM7aGxXE3GpWbz43T/Y21jw44tjMGsEYsq6bM/p8iBnbGxcGQjesWNHTp8+zbfffssvv/xSvwnXgOg06Ul5mZJFr68lLSmb1xZNwK0eRSBD+wURfjGB0L4tyEjLZdXifQS0dGfwuNr/aRuauPgM/lxzgtDO/vTtpd0TmjZcuJZEflEp3Vv71rhH/uH6vey4EImTtQX73hMz+OqLUpCiFOrYntNxNUMQBObNm8emTZs4cOAAvr61FxAVuU1xYSkvjfwaRUkZ8VGpzHpnZI3tUhKyQCKhILeI0mKFxqoBh3dcYsX/7WTopC41bo/djVKpqoy56tq/JRLgxL5wBJWAjb3m+MlpLw7irx/3MHSyOl7E0toMS2v1qkcTD3uMTY0oLyvHw8+pso9MJq1VukQmkzLx2T4ar1sbbh72uNUicuwX4MLLH40hPSWH4ROqZueVlpbx+hebOXUpHrmRlLXfPYWLo/oGPX5we8YP1m7V8L9zkfy45RjjugczoWcbenTwVxfMtal9dWbqyE5MHWmYbMG6OHA+hsSbuSTezOVqXBodmt//hxtN9kjdpv7XEQSB0tLS+g9UA6LTpCfRV5M4tPMyAPu3XuCJOdpVRa+JcU/2YOSUUIyN5fz06RZ2bjjDzg1n6NSzOY73qAjo3fy67CDHTlxj38FwenZvjlxWf12sqMSbPPXFWgA+mz2UgSHVNVEqakvJRR0ug6BCgqqOGAKVjsUx586dy+rVq9m8eTNWVlakpqoF+WxsbDAzu3dbBg8aEqkEuZEMRUkZxiZycjLysbKzqFJLDWDqS4OwsbcgoI0XVraanZh1vx4gKS6DVd/t1spp8m7ahEV/PkNOZgFdB7Sk28BWnNwXTnCX2mOYstLzOLzzMiG9A+nSvyVd+te87eTm7cAfB99CWa6sV3q/IAioVEK1z0YfBoyoOePvwKlrnL4UjwQoL1fVuL13Nzcyc7mZW0BbX7fKB77lu8+QcDOHn3ecwMnagmX/nQaghacz/do3q2u4BmdQp+YcunQdJxsLWvu53Ne5VKDJHqnb6GaT3nrrLYYMGYKnpyf5+fn8/fffHDhwoFqmr6EQnSY98Q90pU0Xf9KTs+k+oP5BsMa3luVbtvdmy98ncfd2uK+Zc+3benPsxDVat3RHpmNaaW3cubBUWybGe2P70SfIjzY+bjWeBzgQeZ1fDp1iQsfWjGpn+JTShwmFIMNIqD3dWKHjU93ixYsB6N27d5Xjy5YtY8aMGTrO7tHB1MyYH3e+RnxUCvHX0pjU8T2COvjw5fr5Vf4XrGwteOKFQVqPO2pGd5Yu2s5jk7TPFLoztsjCypS+I+uWEvj8lb+5dPI6m1ceY+nuV+tsq81qVV2UFCmYP3ExaUnZfPLrDFp18KnXeLXRwr8JFubGKJUqFszqj49H3TsFmfmFjPnfH5SWlfPehP6MDVXHOj3Rpx3fbT7CuB5taObuiKmxHIlEQlN33WUItCUyPp2oxJsM7NwcE6Pab+Gpufm0b+nBuG7BGNfR7l6iyR6p2+g2ZlpaGlOnTiUlJQUbGxuCg4PZuXMnAwYMqMdMa6dxfJIPIMYmRvxvqXYVtnWh1+Bg2oc2w8zcGHk96xDVh8dHdWRQ/1ZYmJsYTBelmYcTy9+YSH5RKaEtvWtsY2ZsxMA2AXWO882eo0SmZRCbkc2odi2JSL7JmhMXGdo2kBC/+78E3ZhQP9kZrvac0FDRyY8ALl4OuHg5sHPNSQAiLyagUqqQ1aGho4m+I9vTd2T9A9DromL7zbIBYqzuJik+g4SYdADOHbvWYE6Tl5s9236bA2hXuLa0TImiXB10nltYUnl8WKcghnW6HWy8+/NnkADmpoappXc3BUWlPPnxXyjKlZwOTyAhLZue7fx58rHOVdqpVAJzftxEsaKMaymZfDN7hMHnkp9XzGevrdGpjyZ7VNFGF37//Xed2tcX0WlqhFjZNI5tDivL6kYyMSWbvSej6B/aHA89ql639qt/Ffgx7Vvy9Z6jjOugXuF7f+MeLiemsvdKDIfefabe4z9MqDSk+Oq6FP6ooVSqWL5oO5EX45n+8lBa1pABpitPvTEcG3sLQvoEae0wCYKAIAj3pXzUa19O5PKp6wS2rT242VD4Nndh/KyeJMVn0nNQK/738l9Y25rz9BvD9HqIvBBxg/+OhjO6XxsCfJyrnNOlOK6bvTW/PDeWxIwcRnaqfXXbog5nqaxciVE9HGS4pdIul6IoVxIel0ZsahZhsalMHtAeU2OjO9qBu6MN15Iz8HHWXm6hLgoKSkhIyCQw0A2pVMLxfeGcPnpNpzE02SN1m8Ztk0SnSUQnXv+/zcTeyGT/yShWfDb1vsxhWmh7poXefrpu4+XK5cRUgr0ax759Y0JzIHjjNlD3m93rT7N+yQEoK+eNUz/wzeYX8W/lqbFfXXj4O/Pi5xO1bl9cWMqLj39PenIOny6fTYt2Na/SGoIbcRlcj0ghtG+Lykw+E1MjOvasuSaboSkuUvDkS+rtyU0rjnBw+yUAug5oRVsdlMMrePf7rWRkFxJxPY1ln0zRa06CIHApPpWmro50DqjuOJaVK3n+201cT87k/+aOqPHB8KNlu/j3cBhzxnZn5mP6B4FbmBnz5wdTiU/JolhRzscrdtOzrR+mxkbkFZVw6NJ1LM1NOHA5hqcGhODrYk+Am5PmgTWgUgk88/RSUlNymTQ5lFmze9O2sx/OrragQ+k97QLBG7dNEp0mEZ1wsrMk9kYmzvaNp5DvG8N7Mb1He1xsGk4I8EFFhdSggeCPGmaWJlR8ROVlSt56YjF/X/ikQUt5KJUqBJVQubKSeD2dhGu3tqyORDWY01RSrGDeuB8pLlIw/qmePLlA+9gqQ/DtexvZuf4MY2d2Z9arQ2nbxR8LK1Msbczwa67fA1FLf1cOnrlGq2b6r3D/cfAcX/17CBtzU3a9Nwsz46oZjQlp2ZyJUBe63Xs2uprTVFauZOepCAQJ7DsTVS+nCcDD2RYPZ1sA+oeoQxmKFWUMe+d38kvVNegECWw9Hc7xr57XudRJTahUKrKzCgG4ma5W6nZ2teXn9XP5y0b72nOa7JG6TeO2SaLTJKITn78ykojrabRoJNkYoF6ydrMzXDHOhwmlIEFZh5hcXedEQC6X0n1oK84fjKQwt5jiQkW945DqIjerkHkjv6Egr5gv/nyWpq08aNrSncdn9SIlMZMhEzprHsQAGCp2rbxMyRdvrkMQBF755HFM6ih1cuZwFACnD0Ux69Wh+DZ3Ze2Jd5FIJHo7qZ++OIL0rHya6FnrDeBmbgGg1pBTlCmrOU2+rg483iuYmORMRveoLoa581QEJUolyCQM6mI4+ZY7KSxWUFCs4E5/pKWXi8GykOVyGV/+32QunI9n6GNtAUhNz2X52oM6jaPJHlW0acw8FE5T9JUkln/9H537BDLiia73ezoPNabGRrQNvHfB1mmZ+YTHpdE12KfRZIA8SGguo9K4n+ruJ/m5RXzy3AoEQaDPyPa4eNjTrkfzBnOYAOIiU7iZkgPA5dOxNG3lgVQq5anXH9NrvJJiBREXEwls41ljbbjThyP56q0NtO/WjFc/e5zv1s7hekQKXfsZRkl59c/7OPSfWprFw8eR6fNqz2h68eOx7Np4hmGTugBQWFjKgUMRtAn2xKOGAsgqlcDXv+8lJuEmbzw3CC+36m2kUkml/pK+PDcoFCcbS4I8nLGpoTSKVCrhzSm1S854N7FDKpUgl0np2VZzeRpdyC0sQSUIONpY8MXTw9h5OoJhnYMI9nPFxsIURbkSmVRqEMmYoCB3goJuK7YvXnWY/w5c0mkM7cqoNG6b9FDchf7+eR/njkZz/lg0gx8P0SgIJ/JgUK5UMXXhKnLyi5kwoB0vT9FfBO9RRSVIUdURQ6Bq5PED95I9JyLp1SkIh1v6SGbmJjTxtCc1IZMW7X0YPq17g8+hVYgvY57qSV5WIf3H6KcEfScfPr+K88ev0bFHAB/9MqPa+T2bL5CTVci+LReY89YwPH2d8PTVLQZm+/rTrF92mAmzejFodNU5O7vfDkLWNG6Hbs3o0O22ttG3P+xm994r2FibsXHtvGrbTPFJmWz87wIA/+6+xPPTe1c5LwgC209FIJdJGdghQO/VKgtTY6b31v93Eezvxvb/zUIuk2JnZbiSJLGpWUz67E+UKhUrX5tE/3bN6N/u9ud3IS6ZWT+tx9bCjPWvTMHWQvcEo+TUHK5EJtOjSzNM77qvNvdvwn8HdBtPkz1St2ncNumhcJq69m/JyQMRhPQMrAxeFHkIEATKy9W1uBTlSg2NRWpCXGnSns9+3cX63VdYvWgGAHIjGYt3vkr4meuY1qNSvC7I5DJmvzncYOPlZBZU+X43I6eEkhSfQYeuTSulBSo4cySKv387yOCxHek/vHYtp9W/7CcjLY+/lhyo5jQNHtMROwcLZHIZHbtVlxKJvpqElY05Lu7VM7zib6hLnxSVKKjJ3/FwsaN9K09iEzPp3aX62PsvxPDuMrXAoa2FKZ1b1B4LdjkuhZiUTIZ2DGyQFW0nW8PHgCakZ1NappZBiE3NItCzanbguetJlJYrScstIC49m7a+ujlNSqWKZ15ZRW5+MSMGteGVOQOrnJ88MoSQVi4EbHlX+zHFlabGQb+R7ekzvO19SccVaTjkchlL35vM5WvJ9O98b7J3HjZU1B0joLp3U3kwuMteZ6bk8O4Ti1EqVbyz5Cm6DW17X6alL+9+P4Wju8LoMbjmwrMt2njywgej1FlQd7Hsu93ERKQQH5Nep9M0bmYP1i49xOPTa16J61xLGaZD/13m09fWYmQs4/d/X6ycg0olsPGfM2QXl6A0liA3l9W4SmRkJOP79yfUOi+bW5IpEgnV6sTdSVZ+ETO/Xku5SkVyVh5zHjN8iIdSpS5fU1/JgTvp3sqX+aO6U1aupH8N6uNjO7cmLj0bJxtLgr31C4QXECg3lrDnwjUSPstjRJ/W9O9y2xY3cdKtYoUme1TRpjHzUDhNgOgwPaT4uNnjU0Osgoh2aM6eE/9vKnhj1gB6da4ay1NSpECpVJvx8HNxD5zT5Oppz+NP1V5e5Z9Vx/jli+3Y2FuwYucrVeKe+g1vq3aYailFUsHIyaGMnKy9InkF2ZnqbKwyhZKigtt1wk6duc6PP+9DkEDrtp5MGqtftlmHZh78/c4U5FIpfm61K37LZVLkMgnlqrp1lvQlt7CEJz7+k+z8In55eRytfGtOoilXqnjpm01ExqfzxfMjaBvgXmO7CmRSKTMH1l6f1MbClA8nDqz1vCZkMikfvjWSOZ+uJ6ewmFNh8VyKTqriNOmKdtlzjdsmPTROk4iISHU06zQ1bgN1LxnQNRBr66rbKL5BbkikUgRBIObKjXpfo7SkjMhL6sBsQ8ReKkrLeO+5P0hNzGLhj1PxDdAtqzU9JReA/JwiyhTlVZymMVO7MWZqt3rPsTYeGxeCTC7F0dkan2ZNKo+7uthgZCRDqVQhM5Xx29aTbDoSxsdzHsOsjuy7mgjwqB5H9b+1+9h/MYZ3JvWjRys/tpy6SqlKRdcgb6b2qX8c2d3EpmSSkqlO0z8bmVir05SSkcuJsHgA9pyO1Og03QuCm3vQPtCDsGvJKMqUdKtnILt2Ok2N2yaJTpOIzmw4E8bhyFjm9AslwKXhaiyJ1B9Dl1F51JBKpQyc2IWD/56jn54rHnfy4XMrOHc0mpDegXz468x6jxcbmcrFEzEAHPkvTGenacpzfbG1t6BZS3esbAwXpKwNciMZw8ZX/0y9vRxZuWw2Y5//jVNRNxDk6r/RcxGJ9b5pl5aVs+bgRQA2Hr1Mj1Z+/HchCpUgcO56cp2aRuvXneLkiWvMfqYvATp8zq39XJkxOISbuQWM7F57nVIPZ1sm9G9HRHwaY3q3qXrtAxc5F53EcyO74nlLo+leIJdJ+emd8QCUKMrqrHWnDQ1RRuVeIzpNOnDxTCwmpkYEtnp065uVlpXz3qbdCIJ67/m7JwwXtCpieMSVpvrz4qJJvLhokkHGyrqZr/5+SyCwvvi3cKNL3xZEXEzEwVk3LaLo8GRMzYyYMKuXQeZiSJydrAlq7sblqGTsbcxxcbQmuFntRby1xcRIzpMDQ9h/KYZJvdXbjvOHdee3XSd5LKR2DaXiYgWLf9wDwF9/HmPhB2O0vqZMKmXeGM2ZlxKJhFeeuJ0hfCI8nsVbj9O/XTO+WXOocv4LZ+i/5VYfTI3rvzIqrjQ9Qpw4GMnCF1cD8MPqZ2jWov7/wA8ixnIZof5eHI9JoGeAz/2ejogGNGfPNW4D1RhRqVTkZhVh56h7RtS7P07lyM7L9BgSbJC5yI1kmJoZk5NZwE8fb6HfyPZ1CkhWcPpIFO/OXYlUKuHnDc/j5eessY++lJaUcXjPFZq1cMPbX7vrSCQSfv5gIoXFpVjVEcStD/NGdmfeyNtOTMemHnRs6sHBizEMe+t3Boc05/nRVZ0cU1MjunZrxulT1+lxj0rKLN56nEuxKUQl3STIuwnhCWl0anG7jMvVxDSW7DpJ3+CmDA+pXVertKycswlJBLu7YGlaexaoSiXw/R8HCL+eyquz+uPvVf/yK3ejXfZc47ZJotOkJWVlt1PeKwJDH0UkEglLZo6htFyJqSg2eU+JSLvJskPHdOqjEiSo6sqea+Tqu42RD+f/yYn9EUyY1ZOZL+lWasTN25Hxz9SuN5Z4PZ2kuExCejVHpqUgYdMgNw5su4invxNGxtplZ+VmFwHqG2XhHUHYdZEYl8HVi4n0HBCEmQ4SDMu/38OmP49jambMmv2va+XUgVo00tAO090Ul5ZRUFyKk60law5cIDkzj2X/nWbOyG5VtuokEgkffTIOQRAatIQOQH5xKX/sPYufqwNRN27SqbkXKpWKL4YNp2/bppXtvt96lGMR8RwKi+WxDi1q3Vp8fcNO/rsSTWt3F9Y+W/uK6bWEm6zZfg6AZ9/9mx1L5xpEFPNONNmjijaNGfGupyXd+7Xg/a8nYWpm/Ehvz4HagIgO071n4ba9nI2J1amPpqrijT1TpTFy5Zw6WPfSmTiDjpufU8TzY39AUVrOzJcGMX62dttmY2f2oPvAVtg7WWmdRdz3sWBUShUWVqa0CL5dgLi8TMm5kzH4Bbjg6HxbSVtZruSFaUsozC8h/FIiL747Quv3VaHiIJNLa9RbAtixN4xLV28wfUIoLs7V09iz84q4FJFEp2CfWoPBlSoVMh2yqItKFIx5bzk3cwr5bPZQJvRuS2J6LoNDmtfqgDS0wwSwYs8ZfvvvFADb3n+Sp79dT3JWHvE3s6s4TT1b+nE8Ip7uQb51xmJlFxVX+V4b7k1skFrIUBUqKSovJy41i6buho1Z1WSPKto0ZsQ7n5ZIJBJCewfe72k0asKSUpEgoaV7E82NRXSmrYer7k6TRkXwxm2gGiNvLJrAwR2XGPmE7mn2d6JSqTh1KApnVxv8mruiEgRUKrWLUa6jmGuTGsQh60IqlTJwVPtqx3//fjcb/zyOrb0Fq3e8XKVkjNGtAsIV37Uh8vINtq09hbmFCR//OLXGjMG8/GI++25H5etX5w5iyYZjZGQX8PzknthYmjH3/bXE3cikb5cAPl5QPY7ylZ+3cOBCDG890Y8xNdR/q4mcgmJu5qhlDyIS05k/pge92vhr/d4aCj8XtTyCnaUZ1hamDGjfjBV7ztK/XVUBz0k92zImtBXGt35HecUlfPDPXsyNjXlnRJ/KoO1Fjw9h++VIegfWHUSfkJlLnrUKuUwCcpjw8UqWvDye9k0Nl8WnnSJ447ZJotMkYhBOx91g2u/rAFg9ewLtvB7NmK+G5I0BPRnboinNP9W+qrgSCco6slHqOieiJi05h/9buIkmbra88O6IauU+7ibuWjoH/7tM36HBdZYO2br2ND99thWZXMry7QtwamLDN38/R+L1m3QfWHOWVfSVJLatO0W/YW1p3dG33u/tbkqKFQCUlpahEgQq3COZXMb3fz7DtfBkOtbx3itQqVScOx7DlQvxlJUpKStToigtq7GtubkJvl6OxCZkEBzkweXoZJb9cwIAbzd78vNKSErLUc9PUV6tv1Kl4uDFGFSCwP4L17R2mtwcbXh/xkCuJWUyfVDtekeGpERRzq4LkQS6OxPgXvPfxtCQQIJ9XbCxMMPKzIQXR/dk7ohuGMmqO6sVjtHNvAIWbtrDgUj1Q9Xuq9F4O9qx7KnHcba2ZEY3zVIKfk3sadfUnWuJGRTnKRAEWLrntEGdJk32qKJNY+ahdJqSb2Tx2gt/Ym5uwpc/TsXKypS//zhKWkouTz7XB+t7nFr7KFCkKKvxZxHDIZFIcLHRLUNKXGnSndSkbA7+d5nu/Vri7u3A7n/Pc/G0+mY09PGOBLb2rLP/J6/+TWJsBicPRvDT2rm1tlPdio0UVALCrRUm/xZu+NeRZPL1wk1cj0zhzJEoVu15Xde3ppGpz/TBwcmKbn1aYHTXFryziw3OLtopQG9efYJfFu3AyFjOgBHtcHaxoVV7nxrbymVSfv9mOkVFpVhbmZGbX4yzvSU5+cX4uNnz2sp/QIDg5m68O3dwtf4yqZS3nujHvvPXeHa4bqt/l6OS2X0qkiBPZwZ1afidhB+3H+OP/WcxMZJz4JNnMDepWUzTw9G2yuuaHKY7+XTLAQ5ExIIELE2NySsu5fKNVKJSb9JWywdYEyM5K+ZNoFRRTt+3f6GgREELb8MmCIgrTY2U0yevk3ZLtC388g3sHS1Z9vN+AJyaWPPEzB73c3oPJT2b+fDtxGFIJRK6+ntp7iByT1BS95ObWNGvOp+8uoboq8ns3XqRXzfOI7R3IDs2nMHJ1Qafppq3nl097UmMzcDV87aSvSAIlJaWYXqH4vTwiZ1xbGKNs6ttjWVMaiKonRfXI1No0dbw/2NKpYpXZi8lKSELlQBhFxJo09EXLx0L+IJ6pQqgvKwcmUzCxNk96wxsl8ukWFupa6PZWJmx8ZvZKJUqBEEgtK0PYdEpPDkuFBurmuunje7emtHdtVthqkCpUvHPocsIAmw9euWeOE0VK0NGMqlB46O8HGyRAD4Otvw6cwzv/rMbVxtrWrnrptsFYGIsZ8vCmep6dT6G3THQZI8q2jRmHkqnqWefFpw4EoWFhQltO/qgKC3H0cmK7OxCWgbX/ZQooh8SiYSBLTUv24vcW8SVJt1xcLIiGrB3VK/q+Qe68ufuV7Xu/+5XE4mNSsPvlgCiIAi8PW8V507G8PzrjzHscfVWkEwmpXv/ljrNbe5bw5k4qxcOdwRpG4oyRTmpyTkA7Nl6gbTkHKxszFi393Wdb/CPT+tOckIWu/45x86NZwnt3YLOvbRP1ZfLpIRHp/Diu2uws7Vg/XezsLLULpNuyc6TnIhM4NWxvQj0qH2lRCaVMm9cT/acjmTGY/UXLtWGZwd3obW3C/6uDpgZQPeoghcGdmNQ62Z4O9phYWLM0icfr9d49pbm2FsafkdGXGlqpNjZW/DZ15MrX5uYGLFiwzzKy5SYmRu+tpCISGNFFLfUnbe+GE/4pRs0b3U7lqOkWEFWZgFuHprrIBoZyQloebuvUqni/KnrCAKcOXat0mnSxJE9V9i75Txjp3ev3NqSSCQ4NtGtSKq2mJoZ88HXk7l0Jo6M9DzSknP0tpdyIxljpnblyJ4rGBnL8QvUfcXjQlgiijIlaTfzSEjOomWA5lWP3MISftymluVYte8cH0+rvp13J1OHdGTqkI46z01f5DIpvVrVT9W8JqRSCUEGSMApKi3jq62HMJJJWTCsB8Zyw7oIorjlA4SRkUynrA8REYDDiXFsigxnWuu2tG2iX6Xw+0m5IKNMqP3vvlx4dDXHasPYxIg2IbeDrBWKcmaP/5H0lFyef30ow8fptiohl8tY8N5ITh6OYvKs2ovn3s03CzdRkFdMRloe3/89R6dr6ktI12aEdG2GQlFOn8GtCQhy03sbyadpE9YceAOpRFIlC09bhg8MJjE5G2cHK1o01e5/z9rchJ4tfTkdfYP+7e7NyvffRy+y7sQl5gwKpV+rppo7NGJ2XYpi7fFLAIQ09TT4+9Fkj9RtGrdNemScJhERfXhp9w4yiouIzspky/gp93s6OiOKW9afkmIFN1PVZU/iYtL1GmPAsLYMGNZWpz6hfVqwe/M5uvatvbxHBWePRhEbmcpjEzpjZqG98GRtGBvL6dQ9QHNDDdwdTK4LttbmvDV/iE59JBIJ3z07Su9raiIjrxBTY3kVZe1vdxyhoETBL7tPPvBOU7C3K5amxhjJZAS5G14lXhS3FBF5yOni7snWa5GEuj+YsXBiGZX6Y21jznuLxnP10g0en1I/bSZd6D+8HdFhN8jOKKCkWIGpWc1bZVk383l39nIEQaAgt5gZOqqU60pyQibffLgZn6bOPPvaUI2Cmrt3XiYtNYfHJ3bBVEs18MbI8Yh4nvt5I5amJvzz1nQcrS0AmNi1DX8fu8j4LoYpjXOvWXv6EhGpGczt0wU/Z3sOffAsEiQGVwMHsYyKSCOguEjBur9O4Opux4DBumWPiGjm+4GP8WHPvtibPZgyFeJKk2Ho2rsFXXvXvOKjVKrIySrEwem2HERhQQlrVhzFy9eR/kPb1NhPExv/OEJcdDpx0emcPRrNki0v1uigmJgZYWFlSkFeMY5NDB8gfjfb1p/h0pk4Lp2J47FxneqsJxcbk84XH/8LqFevxk++d06noYlOyUAQ1GVOUrPzK52m0wlJ5CkVhKfdvM8z1J2k7FwW/rsXADMjOa8O7qlR3qA+iCtNDUh6eh6XLiTQtXszzHWoc/SosXHdKVYuOwxAQKAr3j6Glb1/1JFIJA+swwTqkgR1lSVo7CULHgTefH4lF8/EMfXpXkyZ3RuA9auOs2b5EQCCgj21CiC/m4GjO3Du2DXKFErSknIoL1NibFL992Vhacqv214iIy2PpkENLyrbrV8Ldv97Hm8/J5ITMklNyqZzLUVsbe3MMbcwoaiwFA9P3T6DddvPceBENM9M7k5woOEEFvXl8a7B5BaW4GRjQUuv20HXcRnZAFy/mXW/pqY39hbmuNlak5KTRxtPV0rLyjGSyeosy1IfNNmjijaNmUbrNL04dwVpN/Nxd7djydJZmNQgvy8CXrecJEsrU2xtH9ybu0jDoBQkKOt4cqvrnIh2RIYlAXDlQmLlMd+m6tUXGztzbPT8v7R3tOKjxdM5d+wabTr71ViCpAI7RyvsHKsLn65bfpjE2AxmzOtfKaFQX4LaeLH2wBucO36Nt55dAcAni6fToWv1eB47e0tWrp1DYUEprjqUelEqVXy7fD+CACs2nuSrt8YYZO71wdzEiHnDulU7/tO0key9GsPjnWpWcW/MmBkbseOF6RSWlhGRcpNOH/6Em60VG+ZNwdyAkggVaLJHFW0aM43WaSpRKEEiISk5hyOHo+ino57Jo0KPXoGsXDcXCwsTrKxrFn4TeXQRt+cannf+N46jByIYM7lL5bGe/VsS2MoDSytTzPUIzD6xL5wPnl8JEnjxwzF1lm2pjV3/nOP3//sPUKuPv/LxWJ3HqAsj49u3D2MTOSUlZWRlFeDmVtU5KihUsO9AOD17NsfL00GrsWUyKYN6tGD/iWgGdKsuOhmdksEH6/cQ5NGEcaGt8HGyb9BtpboI9nIl2KtxZtaeSbjBDwdP8FirQMa1q9mpM5bLMZbLOXk9kTKlkvjMHJKyc2nWxPC7FuL2XAPy4cdjef21NchkUpoHNs4/yMaCi5ZqwiKPHoIGMTmhkWuiNFaUShWZN/NxamJNSLdmhNTg1GhbcqQmigpK1D8I8NPHmxk4poPOqf+5t4rRArjpuDWmDa07+PB/f8wGIKClOzOn/UJycg7Pzx/A6DG3tag++ugfIqNS2b07jBXLn9Z6/HfnDeXdeTWfW3PsIhfjU7gYn8KfJy/Qvbk3v8y8/6tRjY1vDxznVPwNziYm1+o0VfBElzak5OTh62hPU2ftnFtd0WSPKto0Zhqt09SqtSf//PsSoFtVbRERkduIBXsbhrdeWs3507GMmdiZoSPb4+ntYNCyGL2HteHwf5c5sS8cv+auVcbOySxg58YztO3sT2AdFQ5GTg5FpVRhaWXGY+Nva0uVlCg4f/I6Ldt4YV3PLf2gNupyLgUFJaSmqktXXY+pGhDt5GRFZFQqTk6G2R4EcLWzQrjj9bW0TIONfSfbD1zh8yW76d25GR/Mf6xBrtGQDG0ZwNnEJB5rpY45O3jlOlkFRYwICUJ2V1KBk7Uln4/XLPFQrCjDRC7XK+5JLNjbwIjOksiDTJlSiUwqRWrAm6muqIS6l7tVQq2nROogKjwZgC0bz7Dx75M8PX8Aj0/qoqGX9kilUt77YSopCZk43bWSvPjzrRzccRlTs4NsOPZOrcKRxsZyJjzVq9rxL9//h8N7ruLj78wvawwjmmlpacr7H44l7HIi48Z3rnLunXdGEhmZQkCAC6WlZcjlsjrr0NVFXlEJpWXl9Gjhx/e7jqMUVDzWNpCp3dsZ4m1UY+/xSMrKlOw5GsG7c4c0SBp+QzKpQxsmtg9GIpEQkZTOvN83A6ASBMZ20T3b+t9zV3lr7X+08XRl5XMTdO6vyR5VtGnMNGqnSUTkQeXYjQRmbN2Il7UNW8ZNwczo/iQyiLXnGob3Ph3Hvl1h7Np2EYDE+AyDX0MikeDmXT2uxMnFFgB7J0ukWtzEt647TWLsTZ54ujfWtuaUFCkAtWhnBYIgEB+TjouHXZWiwtqQn19CQmImoV2b0a0GQUxjYzmtW3ty4ux13vxkE24uNiz9errOyT0p2XmM/vwPShTl/DbncXa+8SSCIOBq13AyCzPGdqFUUU6vTk0bzGFSqlS8vmEn0WmZLBo3hAADxxJVrFKaGxsjl0opV6mwNdcv/vVYVDyCABcTUigsVWjucBdi7TkREZEaOZIYj0Kp5Fp2Fol5uQQ43B8pCBUSVHUsd9d1TqR22oX4Ymltyn9bLwDQ5lZtuHvBzBcG0q1fEF5+zhq3BG/EZ/D9p1sBMLMwYcbcfrz64WgO77lKx9Db2W4vPfk74Zdv4OBkxZ/bF2i91ahUqpg1Zxnp6Xk8MTGUWTNrLxNz7lICSqWKxKRs0jML8HTTPpsOIDkrj6LSMgBi0jLp2NRDp/760DrAjR8Wjm/Qa1y/mcW2S5EA/HP+Kq8N1r7Uji54Odmy6fVp/HP6Cn8dv4CdlRntfXWTcni2XxfKlSr8mzhwOvYG7dx0i33SZI8q2jRmRKfpAee/ExFcS8pg6uCOWFtoVwVcpOGZ1rotCXm5+NvZ08y+YYIqtUGUHGg4FKXllT83RCiBorSMdcsOY2tvydBxIZWOjEwmpcWtWCJN2DlY4uBkRVZGPgFB6hukja1FtaLBkVfVsglZGQWoVAIymfZOU25OEQAZmfl1th03ogPZOYX4ejvioUfySns/d94Y3ZucohJGdTJ8NnVBYSlmpkY6bx2m5RUw/68tWJuZ8M2EYViY6LZS5+toT78W/kSnZTAsWJ0pWFBSSplKhZ0eK0KrT17kako68/uGEp2WycGI60zt1g5Pe1u8nexYfugcZUolKkFg6bPjdBrbx8mO98f2p/fHv1JcVs6sbroJt4qSAyL3ldTMPN75dTsAKpXAvHE97vOMRCpwsbTih0HD7vc0xO25eqJSCSQmZOLuYYf8rtihlsGefPJ/kygpKaN776pp8YIgVFut2bH+NCcORjB1Tj88vB15beov3EzJ5ePfn8S/RXVRyp0bz7LyR7Vas2+AC0FttXOU7sTC0pRl/75AcZECW3uLWttNf7Yv//x9glGTuujkNBgby/nq84lcupzI0CF130CdHKx4+yX9g6klEgmTe9Ydu1SuUiGTSHQOyt99OJwPv9mGr6cjS7+cWu13XWffq9FcupEKwJn4JHoF+GroURW5TMoPk0dUvk7KzmXkj6soLStn5azxtPWsmj1+KSYZcxMjmno4VRsrOSePj7buA8DcSM66k5cpLVeSlJ3Hj9NGAjC0XXO2nYtgcJuaBUk1oRIElII68KisXKljX8Nuz3322Wds3LiRiIgIzMzM6Nq1K59//jnNm+v33rRBdJoeYKzMTbG3Nicrrwh/j/u3miHSeFGhQaepkS+F32++W7SdbZvP07GzH599Pbna+ZDQ6oKOF8/F8e7Lf+Pl48j//TIDY2M5ZWXlfPfh5lvOFEx4shfRt0QxT+4Lr9Fp8vR1QiKRYGJqhJOL/nE7JqZGmGio+TZxZg8mztTvoatlkDstgxpOsTs5J4+f952kg487I9sHVR5Pzy8gs7CIFi5qIdFd4dG8tGE7we4urJo+rlp2WF2cD0tEEOB6Qgb5BSXY2VZ3MOMzclhx5Cy9A/3oGXjbMeob6M+6M2FYm5rQwav+iuzxWTmV8UJRqTerOE2HL17npe//QSKBv96fRlP3qtv+DhbmeDvYkpCVQwdvdy7EpxB2I61K8d1PJgzi4/ED9c72tDYz5a+5k4hOzSDUx4XXdeiryR5VtNGWgwcPMnfuXEJCQigvL+ftt99m4MCBXL16FQuL2h8S6oPoND3AWJgZs+GzmeQWlODupL8mjMjDi6AhhkAQnaY6uX4tHVDXUNOGzRvOsG3TWYpLyoiKSCE1OQcvH0fkchmdegZw+nAUXXq3IKCVO4PHdyI9OZsBYzrUOFa7Lv78sesVTEyN6y0N8CCzeN9JNpwJY/2ZMHoF+mFrbkpWUTGDflxOkaKMz0cOYlSbIA5Ex1KuUnEuMZnc4hLsLbT/zKaN7UxZuZJWzd1qdJgAFm0/yL7w66w/G8buV5+kibVaQsHN1prNz081yHsF6OLrxcsDu1NQomBk26Aq5/KK1PpdggAlt+K77sTESM7WedMpLivDytSEPoH+pOcV4H5XsHx95TEC3ZwIdHMiLy9Pp36a7FFFG6Da2CYmJpiYVBWK3blzZ5XXy5Ytw9nZmbNnz9KzZ8PEholO0wOOpZkJlmZibT6RmhEVwevHy28PZ8e/5+nVL6jaueJiBccORRLU2gNXNztSU3L44Su1EXdxs6V3vyA8vdUrwBKJhA9+mEZ5mRL5rfinFz7SLMZYkSn3KNPO240NZ8Jo1sQBy1vxQoWlpRQp1E5DSp46lmpW147kFJfQ0ctdJ4cJwMXZhrfn1a1R1NrThb1R11HIVIxf8jf7XnpKp9UsbZFKJczqcTvmTFFejlIlYGZsxPH4RMrMoamrA638ahZ9lsukWMnU9wRjuQwP+8bzQK2LIrinZ1UNsoULF/L+++/X2Tc3V60VZm9veDHXCh4ap0mlEjhyKBJHJyuCWt7/4o4iIo0BMaapfnj7OPLs/AE1nvvhq53s2n4JS0tTgtt50WdAS9w97UlJyuaZ+QPo3iuQ0pIyiosV2NqpVy8qHKYbsTf54YPNNG3pxlOvDNHpyV+lEjh2MBI7e3MCgtzJSMvDxd3WoOKa94KyciVXktJo4eaMiVHtt6IxHVrSt4UfliYmlWn/nna2/DxxJHGZ2UzqqI6l8nO05/NRg/jh2An+PH+RJ9qpj19OS+P9A/vo7uXFS6HVa8fdyfnrSVxJSCM2MZO+7ZrSrdXtbbhn+nTmavpN/guPpqBUgUoQ0CX8f+3Zy6w8eZ45PTszpJV2MTfpeQWM/mYlxYpyVj47nsTMHFTGEnLKdU/3bwzoEtOUmJiItfXtFbK7V5nuRhAEFixYQPfu3WnVquHqAD40TtP2Lef55qsdSCQSVqx+DjcdikOKiDysiCtNhiPjZj67tl8kpIs/ze5Q6S4uVnDscBSXLySwbtsCSkoUWFiaUpBfzKyxP5CTVcgHX0+mc4/bGkZbVp/g4qnrXDx1naHjO+PmrX1M4p7tF/nyw38BAV9/Z+KupTNldi+mPt3bwO+4fixdfogtWy/wzOzeDB4UXO38q6u3syfsGl2befHr7Lrr4lXoCgmCwO6Ia9iamdEnwK9auxVnz/P7mbMAhHi4E+DkyLIL5zifmsL51BRmtmuPrWnNGWmx6VnM+H4tAiAthR2nIjj2fdU6Lh+N6E+Ijwcdvd11rnX3zb6jZBUW88PBE1o7TTFpmeTc2pK7lJjKxxMH8c/pq/RvXT2W7l5xIysXM2MjHCx13zLWZaXJ2tq6itOkieeff55Lly5x5MgRneelC/V6zFQoFERGRlJeXq65cS2UlSn54outvP3WOrKyCjV3qIWKjA+JpP77tSIiDwsVuih1fT0s1NceVah818a3X2xn2S8HeP2FPwF4/uXBvP3haEaPV2+ldO3ZnPArSSQnZQOQkZ5PdmYBgiAQdfVGlbG6DWiJpbUpwZ18cXaz1WmeFQrgEomEpHh1+ZDoiBSdxrgXbNh4mtzcIjZvOQdAWEwK/x2PoFypAiA5Wx2zkpxTt1TBnWy5HMH8tVuZtmIdkWk3q51v2cQZCeBgbkYTK0uAW86NgJmRnA8P76dAUfMqjUwirXLvaOXjUq2NtZkpUzq3JdCleuaaJqZ1bo+tmSlTOrXVuk8nf0+e7tOJSaFtGNG+BZ4Otswb3JUWdwR214fCEgWJmTlatz8cFcegL5cy8MulpOZq/3urQBt7pI9NmjdvHv/++y/79+/Hw6Nh9bv0WmkqKipi3rx5rFixAoCoqCj8/PyYP38+bm5uvPHGG1qPdflyIv/tvAzA3r1XGDeuk4YeNTP4sTY4OFpi72CJq45GqLGwY9dl1m08zeQJXejfp3oMhYiIrjwKK02Gskfffr6VlRsDaz3v5Kx+6nVwVAcAm5oa0bt/S3r3b8nMp/tw/mwsL839A4DFy57Cv2kT+g4JZt+OS5w4HMUTs3sjvRUDE9zJj3Un3tPr/fYd1AobW3NsbM3Jyyni5JEoRk3srLnjPeapmb3Ytv0CT0zqSmpmHrM+/huVSiAzt5DJgzvw5ROPse18BAODqxc7ro2ErJzKn1VC9Xobffz9OD7nGcyNjDE3VmcMXs/JQpBCobKMjVHhdPP0ZmxgdZ0nLydb/lowmayCIpo6O+BYS0C4vjzbsxPP9tTt/iaTSnlhUN1bivpSVFrGsM+XkZFfxEcTBjIqRLP2VVxGNgLq+nMZ+YV4Weu22qTLSpM2CILAvHnz2LRpEwcOHMDXVze5B33Qy2l68803uXjxIgcOHGDw4MGVx/v378/ChQt1cpqaNWuCt48jebnFhIRUX27VFolEQqcu92/J0hAs/eMwNzPyWbbysOg0iRiER8FpMpQ9at6i7ljIXv2CcHS2YsTYjgDcSMxCoSjDz78JxiZySu8Qu1SUKqusWsREpFBcpN62qw/HD0eSGJ/JiMdDML0lI9Chi3+1dsVFCszMdRNZ1ET41SRKSstp185bq/ZjRndkzGj1Z3UzuwCpRIIKAeNbcV1ejrY8N0C3en35JaWVP5vIa759Od6Vav5mt558ffIYl26mIpdJ6eha+++5hYdhVnAeBPJLSsnIVwuTxqRqV/B4fEhrihVlOFpZ0MrDRefsOUM7TXPnzmX16tVs3rwZKysrUlPVelk2NjaYmelXKkYTejlN//zzD2vWrKFLly5VDENQUBAxMTE6jWVlZcbSpbP1mYbBUCjKWb/hNLY25gwZEnzftvfGjOzA6jUnGDW8/X25vsjDx6PgNBnKHs17bWit5+LjMnjlhVUggL2jFYFBbjw9cwkqlcDnX02iQ4gfPXoH8t4nYzEzMyaolfrGPOXp3kgk0Kajb70dptTkHBa+ugZQq4VPqaEYL8CSH/ey9s/jDBvVnhfqeE+6EBWVyvO3VtE++uRxunbVvDp0MzOfDVvPEdLWhw5tvFn54RTSMvMJDfbRex4TQ9qw40oU5UoVCi23Ydu7urFy1OMIt1amGkv4hiAIKMqVdQbBNyRNbCxZNGUokck3mdG7o1Z9TIzkPN1bv90gMLzTtHjxYgB69+5d5fiyZcuYMWOGrtPTCr1+Wzdv3sTZubpHXlhY2Gj+IHVhx45L/PbbQQB8fZ1oUYPQ3L1g0rjOTBrX+JbZRR5clIIESR3ZKvqULDh06BCLFi3i7NmzpKSksGnTJkaNGlWPWdYPQ9mjutrKpBL1SokgIJdLyc8rRnWrHHtOdlFl/x69AlGpBLKzC7Gzs8Ddy4HXPqo7yFlbzC1MMLcwoaiwFOc6pAhOHI0G4OSxawa5LoDqVhwSQHlZ7SrQxcUKdmy7gH/TJmzafYl9hyNY9+9Zdv79Av4ejvh7aF+DsaCklBlL1pOSnce7o/oyOLg5CJCer459XX/uCu8M1X5lqLHdm15cvJkjYbG8ObEvj/fUrRyJruy6Gs2KE+eY1qU9g4JuO7yD2zZncFvNQemJWTnsvnqNQa0CcLfVX2hVkz2qaKMtQg1btA2NXk5TSEgI27ZtY948dWZBxR/jkiVLCA0NNdzs7hFu7nZIJGBiYoR9HaUGRAzPkfA4Pt24j4FtA3jxse73ezoPHQ2x0lRYWEibNm2YOXMmY8caxiGoD/fCHnl4OfDjb0+Sk1NEhxBfJBIJ77w/muIiBX36V40FefuVvzlz6jrTZ/VkygzDlTaytjFj2dq5ZGcV4tesSa3t5r86hM3rzzBkeFuDXTuwhRtffjWJ4pIyQmtQQa9g1R9HWbP6OFKphLHTuwLg7mKrcz03UGeLhSepRUVf/WsHnfw88bK3oX+gP+EpNxkR3EK/N3OPuJaRyey//sHJ0pxlT4zFwvj2dmm5UsWxK3EIAhy6HNvgTtPnuw6RlJNHam5BFadJW+b++S/R6ZlsvxzJqOAg0vMLeKaP7g/4hl5puh/o5TR99tlnDB48mKtXr1JeXs63337LlStXOH78OAcPHjT0HBuckI6+/LnqWUxMjLCzE50mQ/Fr9F5+jznAk/69eaZZvxrbrD5ynsTMXJbuPc3cwaE6p/GK1E1DOE1DhgxhyJC6hQDvJffKHjUNqJpN1btvzXGHYZcSAbh0PgFmGOzygLoAr52DZZ1t2rTzpk0dcUfp6Xm89OIqJBIJX38zBScnK62u3a69j+b53bKf5ubGTBnXmUH9WuHibI1UqvvfWQcfd5q7OhKZkoGxXIZcJkUmlfLDRHWdNkEQuJKShquNNfZ6FLatQBAEVu86x82cAp4eGYq5qX6xYIqycr5ad5Di0jJendiHfVHXScrNIyk3jysp6XTyvp3VJZdJeW/KAA5cjGH2Y7rFdemKIAiMbhvEL4dPM7qdfrGyarHQTIxlMj7beqDy2Jg2ujlgj6zT1LVrV44dO8aiRYvw9/dn165dtG/fnuPHj9O6dWtDz/Ge4CIq7xqcrUnnKRdUbEk6V6vTNLFbG2JSsxjYppnoMDUA2jpN2pQsaKw0Nnv09gejOXwwgscnNM6t9osX4klNVSsnX76UQN9+mrOmtGXsuBBaBLnh4mqLhYUpFhb6x3GZGMlZP28Kp64n4mlvg7VZ1bFWnb7Ax/8dwM7MlH3zZ1Vmy+lK2PUUvlmjdq6dbC15YlDNZW00cSI8gXUHLwHQxt+N4W0COXgtFmdLS9q6V5cvGB7akuGh6s/+8/2H2B0dwwcD+9LNR7tAe21QCQJTVq7jwo0Uvh43lEGBuq8yAfTw9yEhLZuhLQOITc2ioERBoKvusguPpNNUVlbG008/zbvvvluZ4isiUhMvBg5hddwxJvt0rbVNzyA/egbpnzV5L9iZdIVFYbsY7dWW51v0ud/T0QltnSZ9ShY0Bgxpj/730WYmTOpBGy1WVGojO6uAvXuv0KSJDd6+ut9U7gWhXZvRo0dzJBLoUsdWmz5IJBJatjKcTo5UKqFLU68azyXfKp+SW1JKSVmZVk7TzcJCrt5Mp6unV+VDmpujDTYWpuQXlxLorX/2XAtvZ5xsLShVlNOumTuuNlb8OW28xn4lZeUsOaUW5Fx17qJBnaac4hLOJKgLQx+IjtXbafpt/ynySkr535aDdPT1YNHkoThZWdz37Ln7gc5Ok5GREZs2beLdd99tiPmIPET0dWlJXxfDPcXeL1bFnCClOJcl0UceOKdJECQIdRihinO6lixoLBjSHh0/FEnqjQKW/vWc3mNs23Ke/XuuANC9Z3MCa0kqiQxPZuOak/Tu35LQ7gFkZxXw7qtrkMlkfLRoPNY2DVeg19LSlPc/0Fz3rrEzt0dn7MzMCHJx1qrWnEoQGPnXn6QWFDC9bVsW9u4LgIONBVu+nE1pWTm2lvpv8znZWLLjs9kICDrVpDM1kjOtQ1v2RMcwsW115fT6YG9uxuv9e3I64QazQrXLkKuJmb068vPek5SWlXP6+g1kegbVa7JHFW0aM3opgo8ePZp//vnHwFMREWmcTG8aiqe5Hc81b5iq2Q2Jtuq7FSULKr4eFKcJDGuPOnfT70m8gnbtfTExkePmboenV+2lURZ/s4t9u67w+QebATh1PIbI8BSuht3g3OnYes3hYaCwVMGOS5Gk5RbU2sbSxISnu4XQ3V+7lRmVIFB4Sw08v7SqKrhEIuH9FbuY9tlfpGTptnoiCAJRqRkUliq4npNFdkmJTv0B3uvfh0PPzaKXn49O/UrKyziTloRCWXtG41NdOvDz+JH4O+pfxPbpPp1Y8/wkujbz4oVB3bDXo4QKNJwi+L1Er5impk2b8tFHH3Hs2DE6dOiAxV1iYvPnzzfI5B4WEpKzsLMxx6oe+/si948BbkEMcHswxUYfBZ0mQ9mjvze/SBOXqinxyUnZyORSmjSpXim+uFiBkZEMufx2LF7L1h5s3vEKUqkUiQRWLTtMfOxNnn6+f6WiOECHTn5cuXyDdh3VCsadQpsS1NoDmUxKh06G3a6+GpFMeZmS4Naemhs3Ej7YvJetFyNwtbFi72uzDDKmXCpl7fiJnEq6wcjmVZXfL8Ykc+jSdQB2n4li2kDtV2V+PXiab3cfxcbClBTrImRSCYemzMJdh7pp+vLU7o0cSY5nsHcAv/Qf1aDXaubiyJJZY4lJyyQpKxd3++r/E5p4JLfnAH777TdsbW05e/YsZ8+erXJOIpE8ME5TTk4RKkHAvgEz5rbuD+PTn//DztqMdd/P0jszo7FwJSuVT87vobuLH3Na1h6r9LBSrCzBTPbgOL/abs/pQkFBAdeu3dYAio2N5cKFC9jb2+PlVXP8SUNiKHt0t4L25UuJLJi3EqlUwi9LZ+FzR4zSpUuJvPbqX9jYmLPkt6ewtr69rVPhRCXEZ7Dilv6bs4sNs+fcToaY+lRPRo/vhIWlekXPzt6Cb3+ZofV7DruUyP7dVxg2qj2+/rXH4VyNSGbuCysB+PyTcXTq2HDxg3tPR7HzWDhThnSkTUDd6up3cuDcNbYevcLjfdrQpZUPAEqVWhfK0Do8zR0dae5YXSuqta8LHQI8yM4vok873eK84jPUtQbzikrACpSCwJnUJJ2cpti8LDJLiujg5K6TnlRyYV6V7w3N8eh4Zi/ZiFwqZdOCqTiY6uZCPAzbc3o5TbGxD/7ycVx8Bk/PWY5KJfDTd1MJaFY9u8EQJKRkAZCdV0xhUekD7zT9GnGCE+kJnEhPYEqz9lgbPzgORH35/fp6tqbsZ4hLL5721xzg2RhoiJWmM2fO0KfP7diuBQsWADB9+nSWL1+u83j1paHs0c30PARBQKkUyMzIr+I0hYUlUlamJCMjn+Sk7CpOUwVNXGzw9nEkOSmbDiHVa2JZWun/v/PR2xvIyiwg4soNvlvyZK06SMryO0Qpb/18NTKZ0+fjGDYoGAe7uuULdOGT33dRUKwgI6eQZQsna9UnKj6dV7//F4DzkUns/WEOAB+M6k+v5r508GnY4qsVmJsas+TlcXr1XTC4Oy42Vrg4WvLlhWM0sbBksL/227zJhXkM3LyUMpWSr7o/xlj/Vlr3XdJ/DNtiIxnlf280q9JvbZeWq1RkFxXjYKqdXEUFj+xK08NAcnIOZbeUbW/cyGowp2naqM4YG8lp6uWEk71uf2CNkaGeLdhzI5ruLj5YGT04cS+G4Gx22B3fHwynqSFWmnr37n1flHjvNb36tCAvtwgTEyPad6zq9Awb1o7UlFycnK1oHuhaY38TEyN+XfkMSqUKIyPDymk0C3Tl5NFoYmMzGDv0//jf15MJDKoedN66lQdffDqesjIloZ39UakEFry7luLiMmJib/LhmyMr2xYVK/jwm22UKspZ+NJj2OpYjLVne3+2Hw2nV/vaV2oKSxT8uessvq72DAhpTlp2AQiABPzcbseAWZqaMEJPTaF7jaOlBfMHqFfdx7fTPZC7pLycMpX6XpSn0C0eqqmtAy+0u3cr/sPat6C4rBwrUxPa+7jrnD33yK40Pfnkk3WeX7p0qV6TuZd07uTHs7N7U16uolfP2iub1xdLcxNmjdP/jzoztxCZVIqtVcMUH9SVQZ7NueL56v2exn3hWf9J7Ew9zCCXB0e5XNDwZNfYDZQ2GNoe5eUVs2HtSQKauzJqbEiNbaytzVjwsmaBT6lUglSqdpgEQSA7qxA7ewskEgmHj0Xz0ef/0jbYi88/fFynbZkP/jeOf9ad5ucf9lBWpuSNl1ezYcsCZPLqK04hHe50+AQc7S1JTMrGxbnq9tGZS/EcOa2u1XfwRDQjB+qmUv3+00N4c8YATIxv31b2n4smv6iUx7oGIZNKWfXfGZZsOQFAC58mdAv25c3p/SksLmWynvpI+nIw7DqvLdtGG183fp4zRi8BTkPgZ2PPqgETSC7MY4wOq0z3A5lUysRQ/dXLNdmjijaNGb2cpuzs7Cqvy8rKCAsLIycnh759+xpkYg2NTCZlQiOv83Y1LpUnP/0bqVTC6oVT8XHVP/tBpP4E2zYn2FZznabGhADUtSj0MKwXGdoerVpxhI3rTiGRwNp/XjRYlYAfvt3F5k1n6TegFW++M4JDRyNRKJScOhNLfkEJ1jo8GMlkUh4b1Z6tW86TmJBJmVKFUqVCpiEhWiKR8Mv/TSXhRhYB/lVLsQS3cKepjxOlpeV0butTY//ktBw27bpIoF8TBKVA985NMTUxIup6Gjm5RYTc0S/segqv/rQFAKlEwrBuLfF2sQPAxsIUa3NTpFIJY/oYNs1eW/ZdukZJWTknoxLILijCwfr+VYPo7uZz3659L9FkjyraNGb0cpo2bdpU7ZhKpWLOnDn4+TVuocIHifjUbMqVKlDCjfQc0WkS0RkVEiR1pPA29vRebTC0PfL0Uv+f2dlbYm5uuBjEixfiAbh8MQGAiY93IiurkPbtvCsdpvJyJTKZVKtVJ1NTI77/ZQZ7doXRspUHJSVlKJUqzMyMEQSBdz7YyIXLibz7+nC6dPKv7GdhbkKLgOpbirbW5iz/v+l1XvPLJXs4eSEOAGm5wLD+rZk8pjOzX16JShB458WhDOqt1mazNDNBJpWgVAmVK+WDO7cgyMcFW0szrBs4m/hESiK5pSUM9G5a4+c5tU97UrPz6dDUo4rDdCw8nqyCIoZ2CLxvq08PK5rsUUWbxozBYpqkUikvvfQSvXv35rXXXjPUsI80AzoGkJKZh7FcRtfW1QNJRUQ00RAxTQ8C9bFHw0d2oGVLD4xN5JiY6FeaoyZefu0xtm4+z8Ah6tIu/r7OfPXZhMrzW7dd4Jtv/qNTiB+ffKLddp2lpSmjxnTk8uVEHh/zHWZmxvy+bBZyIxlHT6gzHH/8dR/bdl9mwdwB2NnWbzXFz9ORkxfikEklCAgIgFKpqoxxK78j8NzH1Z61H86guFRBoPftVS2vJnb1moM2XMlMY8K2vwH4rs8wRtYQKN3U1ZFf5lYtOB2ZdJPnFm8EoKxcyejQxr1d9qDxyMY01UZMTAzl5eWGHPKRRi6X8eRjjXsLUaRxoxIkSB5ynaba0NUexcXeJLiNNSUlZbzz1jrS0/J4e+Eo+txVmLeoqJT8/BKaNLHh8KFIrsWkMW5cJywt6145aRHkToug2lPxjx2NRqUSOH4yhrc/2Min74+tte3dXItOQ6lUUVBQQnJyDsHBnkx/oiuHjkZxPSGDhJRsWga6MXFsJ63HrIm503rxWN9WSCUSoq+nV27P/fDpJLJyCunZJaBK+4rtOEMRlZnB6suXGNosgE7utWfWySVSJKi3euR3qHMXlipQCQJWpjUnsZgayZFKJahUApYPeKZzY0STPapo05jRy2mqSDGuQBAEUlJS2LZtG9On1728eye5ecVVSjeIiIgYFkHQENPU2AMItMBQ9ui3X/bx3U/+5OYWkZ6mzgqKikip4jQVFJQwbfqv5OQU8dJLg/j2650IAihKy3nm2brjp3Jzi3jjtTWUlZXTq3cgRYUKpkzrjoWF+gY+Y0YPrkYkk1NQwulzcVrPG2DwkGDS0/OwsTGndWu1MzFzag8eHxXCswtWkpNbRMd2PjqNWRMSiQRfT7XOkbfH7Wy34KC6pQHKlSpW/nMSpUpgxujOVQRBdeGtvbs5l5LCtqgoTj/9bK3tmts78e/IqeQpSunmptYOu5GVy5hvV1GmVLL6uYm0cK+ub+XtbMf616eSV1xCOz/ttaZEtEOTPapo05jRy2k6f/58lddSqRQnJye++uorjZksd7Ji9VHeee3Br4EkItJYeRS25wxlj1oHq2+uTZrY8MrrjxFzLY0Jk7tUaZObW0xOThEAqck52NpakJ1diJd37SVTKjhz+jpRkSkAxF6/CYC1jTmTJocCEBDgwhdfTOCvdSfp2U23hAMzM2OmTO3G66/9zfZtF/jf5xNwc7fDysqUVb+qFbXr2u5TqQQ27bqASiUwZlDbWnWf9OXo2RiWrD0GgJebHQO76acr1Nq5CedSUmjprLmwbrBTVRmZ6+lZFN4qnxKRcrNGpwnA39UBlUrg9x0n2XAsjCKlgm9nj6SNb811BPXhQmYSqcV5DHQPRKpnHbf6Uq5Ssf16FF7WNrR1rlk2w9A8sttz+/fvN8jFmzjpLsP+MHEmMpG0rHwGdQpEbmAjJSICj4bTZCh7NOGW8wIweGjNadXu7na88fpjxCdkMmliFyZNDiU7uxBPT81O0+Z/zoFEAoKAubkxJSVlNGtWNYMtoKkLC+/QTtKF8KtJhF9NBmDrtvPEJGbSoa0347XYkjt27jr/9/s+ABzsLOgbatgsUW93e0yM5agEAT+P6orcNRGXno29pRnW5re3Pd/r1YcZbdvrVaKkW4A3zw8IpaSsnKFtan5/m06G8dH6fYT4uHP6sjpgXyWHPRevGcxpSizMZsK+5agQeL/9EJ7wvy21UFxexo2ibJpaOekkQaEPyy6f5ZMTB5FJJBx94mlcLBpeR/CRdZr69u3Lxo0bsbW1rXI8Ly+PUaNGsW/fPq3GGT9G/6rL95v/9l9h8bKDjBgczJOTddftSUjL5tkv1yMABcUKJvRta/A5iog8CjFNhrJH2jJwYOsqrzXFMlWgUNyKr5JI+OqbJ3B2tsZWQ2B2UVEpUqkUU1Mj4uMyOHIggr4DW+HqZlutbetgT7p1DyAvr5jEtFxOnr7OydPXGTIwGCsN6uMuTtbIpBJUgoCrs+EfZn3cHfj352cQBLDW4vPacvoqb6/+D1sLU7a9/SRWZuotTIlEgvddv2dQF65defUCXta2DPKpWY1bJpXyXL8uNZ6rYPv5SMqUSk7GJGBhYkSJopzmHo6M7dq6zn66cCItDhUqkEBETmrlcUEQGLf/d6LybjInsDsvtuxTxyi1IwgCNwpyaWJuhbGs9m1Qo1vnpBIJ0jsy1k4n3+DYjQQmt2qDk7lhZRge2ZimAwcOoFAoqh0vKSnh8OHDWo/T0J50Q7Jx6zmycgr5+58zejlNRnIZMpmUcqUKMwNm6IiI3MmjENNkKHvU0Hz48eOsW3uSjh39CKgh5f9uIqNTef7lPzExlvP7TzN57/W1JCdlc/L4Nb6roU6diYkRH36kDh4/cCiC4yev0SLQjdOX4gjt4IdZHYHNpYpyZDIpthamuDWA0wRoVbA87HoKz3+9AZmF+taUU1hCfnFppdNUG0vDzvHFqUMA7J8wC18b/QLQnxvYhXKlisFtAxjaPhClUoWtpWGFhdfFXQCJetHxQtaNyuMqBOIK1GW3rt7hTOnKDxeP89X5I7RyaMKW4dNqvc9Oa9kOb2tb3C2tcbZQl9MpUyqZtnkDJcpyrmdn8+2gx/SeR008cjFNly5dqvz56tWrpKbe/sUqlUp27tyJu/ujETz3xOOdWbLyMMMH6aeO6upgzd8Lp5CRW0TH5vemvpLIo4faSNW1PXcPJ2NgHjR75OxszdznB9R4rrxcycZt57GyNGVw35ZIJBKiolMpK1NSVqYkITETRycrkpOycXLWvI3Su2cgPbs3Z8Kzv7Jw0RYG9GzBewuG1dr+wtUbKMqUZOYUEp+URXDg/fncjl6OpaBYgVCs4PH+rekS6I2bveatOHdL9WdiYWSElbH+WW/t/dxZNle/GnTaMtGvPRG5qSCBKU2rKs5XxDdJ66FVFJaZBkBUdgZKQUBei9MklUjo41VVx0wmleJiaUlcbg4e1oZ3njXZo4o2jRmdnKa2bdsikUiQSCQ1Ku2amZnx/fffG2xyjZmeoQH0DA3Q3LAOfF0d8HXVHAshIqIvD3NM08Nkj/7bf5UfflfHZrm72hIc5MGAvi1JTMrG3NyY9m29af2lB9eiUmneQrvYGqlUglKp1k26Uz8J4MSFOL5dsZ9+oc2ZNb4rw/u2Ij4pEwdbS1oFuFFertQ7w60+jOrRmvD4NDycbHlpfC9kUu1iPUc2DaK5vRP2pmY4mt0/ZW9tKFGV4WVpy9wWvRjicTszU4qEJqZWxBdm422l/33hnU59cLWwppeHbxW5BW2QSiT8O2EKcTk5tHTSHGyvK49cTFNsbCyCIODn58epU6dwcrpd9dvY2BhnZ2dkdeyhioiI3Fse5pimh8keuThbIwHkRjLsb8U5mZoaMWf27bgWmUxKq2BPncb94dNJnA9LpNdd+klrtp8lPimLZeuPM2NsF6ytzHhrzmAA/th0kl/+PsKwvq1585mB9XtjOtLE3opv5o8GQFGu5Ke9x5BJJDzdp7PGZJlAe6c6zzcWvrmyn9yyYn6KOFTFaZJIJGzoO4vovJu0ddB/pc/Typb3u/TTu7+VsQmtnZtobqgHj1xMk7e3N6AuUSAiIvIAIFB3MadGvhReFw+TPerQxptVP8/CxFiOs6Phspjcmtji1sS22vGR/YOJib9Jv67VM3cPnIpGAHYfjaBjay/6hza/L/Gnu8Oi+XnfSQACXJ3o37LpPZ9DQzCjWWdWXjvFFP/qxaCtjU3p4KibY3wnuaUlzNq7EYVSyZJ+o3E2t6zPVA2PJnuEFufvM/VSBL969SoJCQnVgjBHjBhRr0mJiIgYCE3L4Y38qU4XDGWP3vtwE2fPx/HC8wMY2O/eldHwdGv48iIAWTmFfLN8HyWKcob1qf7+5k3txXcrDxIRl8Z7P2zD2tKUzsE+92Rud9LMxRETuQwBeOO/XfifP8sfE8diIq9629p5PZo/r1zgqTYd6e3V+MtNzQnsyZzAng0y9tGUeE6nqYPL99+4zoSA+1MMuVa02J5r7DZJL6fp+vXrjB49msuXLyORSCrrDlU8jSiVSsPNUERERG8ehew5Q9qj4hIFh49GAfDLbwfuqdOkCzdv5vHtj3twd7PlmVl9dCosGxWXTnpmAQAXwm/g71VVN8nZ0QqFqhzhVoaXjYGzx7QlwMWRA289zfdHT7Ds7HnOJiUTm5VNoHPVbbiFh/eSVlhASkF+o3OaNiWcJyI3lacDeuBg0vCrPt1cvencxINSlZI+HroXq25oHobsOb0UFV944QV8fX1JS0vD3NycK1eucOjQITp27MiBAwd0Hk8QBD5b/B9jn/uVs2EJ+kxJRESkBioCL+v6etAxpD0yMzXGxkbtJAQFGk4B2tBs2X6Ro8eiWbv+NDHX03Xq26GVF2MHtWVwjyAGdg+sdn774avE3MgECXz0/GME+mkf31JeruR8xA0Kikp1mlNtWJuZMrVjW7p4efJEuzYEOFUXxhzRNBAJMKxp9fdyL4gvyGT8wV9ZcHotZarbDnpqcS7vnN/Mqusn+S36yD2Zi42JKWuGTuafYVMb39Yc2tmjxm6T9FppOn78OPv27cPJyQmpVIpUKqV79+589tlnzJ8/v1pZA03kFZSwde9lALbuvUyHVl76TOuhJyu/iGJFGe4Oj7aSuogOCJK6l7sbuYHSBkPbo79WPEtcfAYBzW6X4YiMTuXHX/fRqYMvUyaG1tH73tCpoy/rN57B1cUGD3fdtvWM5DJefrL2QOHeIc3YejAMNycbenTQLY7oqz/2s2nfJXzd7fnr8xk69a0NL1tbVk16vNbzb3frzRuhPbXOtAMoUpTx5c5DGMtlLBjYA+N6ZApuuXGJKznJXMlJZkbTrgTbqSVkbI3NcTOzIbk4l5a2jdcBv6doskcVbRoxejlNSqUSS0u1F+vo6EhycjLNmzfH29ubyMhInceztjRl7OC2nL6UwKiB+ukePeykZecz6qMVlCjK+GHOaLoF+dzvKYk8ADwK23OGtkdmZsa0uGuVac2GU1wKu8GlsBuMGt4eS4u6xRYbmlYtPdi66UUkEsOLBDfzcmLzd0/r1TcjpxCArNwiQ06Jm0WFvLpnJ7YmZnzefyAmsqq3Ll0cJoD/wqL4+5Ra56ujjwf9g/QPMh/s1pJtNy7jaW5HoPVtR9tUZsTWfs+TV1aCk2nDlShRqlR8eGofCfk5fNp1EA6m5qgEAVN5vUKWG4SHYXtOr0+1VatWXLp0CT8/Pzp37swXX3yBsbExv/76K35+uu+jSiQSFszqr89UHhky8gopVpQBEJ+eLTpNItrxEGfPVWAoe7R05WGmTuqFg331bY0+PVtw/FQMHdv5YGGuv3iiIdEljule8caT/QkOcKNLax+Djrs1KpKD8XEAjGkRRE+v+o0f7OGCpYkxcpmUFq710yNqau3Mjv7zazxnIjPCSdawFR/CMtNYEX4OgN/CTrMx5gol5eVsGjal8ckwPKrZc++88w6Fheonio8//phhw4bRo0cPHBwcWLNmjUEnKKImyKsJ7z8xgIy8IsZ2M1wdJJEHB0GPR7CHWdyyAkPZo/WbzqAolfDagqHVzvXo2ox//p6HibHhn94FQWDtXye4Fp3GrGf70KTJg7v97mBrwdRh1VPp60tPbx9czltia2JK2yYumjtowN/ZgSNvPotEcrsGmzbkl5Ugl0gxk9ffcRYEgW/CDnIpK5mF7QfjY2Wv1zjNbB0IsncmqSAPVwsrskqKATh/M7nROU2PnLhlBYMGDar82c/Pj6tXr5KVlYWdnd0DXU+uMSORSBgV2jgzeUQanvfPb2V9/DnmeXfTvXMjf3KrL4a0R66uNccH/bX+JD8vPUj/3kG8+1rt5UgAzl2Mp6CwlB6hzbS6fmpqLkt+UauB29lbMGdezaVWHnZSc/Mxkcuxs6ieredvZ8/xmc8Y9HraxjFFZKczbd/fWBmbkCGkYy43YlOf53Axq59ze6Mwhx/D1QHiK6JPsbD9YL3GMTcyZvvIGQCUqZSkFxdSWKZghF+Les2vwXjA7ZHO2XPl5eXI5XLCwsKqHLe3txcdJhGRBmLrjcsoBYH/kq/q1O9Bz1TRhKHtkbNTzbEnR05cA+Doyeg6+0dGp/LSW2t495N/2H84QqtrOjhY4uvnhEwupX1H7VLm0zLy2LTzAhlZBVq1bwwUl5ZVWy1Nzc4nNTufUzGJDPjf7wz4328kZeXel/kdS05gzp7NHL4RV+X4/uQYbpYUcj0vi9JyFXllJcQVZNb7ei7m1nRw8MBMZkR/9/qV5KrASCrjrZDefNJ1IH9evUDAb//HpycOGGRsQ/BIZs/J5XK8vb1FLSYRkXvEjuTztHKwobRMzmzPLmzSpfNDHtNkSHvUxNkaczNjSkvLMDGpGofy3FO9+Wv9Sfr1Cqqld8V81KVWBcDISDvzamws55ffZ1FepsTYRLs+r3+8kZj4DHYdvMrizyZr1ac+lCtV7DwejruTDe30KDD+z9EwPlq5m7ZN3fnt5XFIJBKuJqbxxDd/ATBjQAgqQaC4rJzU3Hzc7e/9FuXbR3YRm5vNpZupHJl0e1VrtG8rjqfF42hqgbOVEbbGZnRy9NF5fEEQyFEUY2diDqgdnDX9Zug1V6VKxYWMFAJsHbEyrjkpYX3UFRQqJeujwnirS2+9rmNwGiCm6dChQyxatIizZ8+SkpLCpk2bGDVqlJ4T1IzeMU1vvvkmq1atwt5ev31YERERzSgFFR+HrUcpqOjq2JyOOhtrya2vus4/2BjKHvn7N+GdT/+hY1tvvvpkQpVzrVq488m7YzSP4evML99Mo6hYQbtg7aVTpFKJ1g4TqDP8AMxNDROUHhWXzqe/7aJVU1dent632irdmt3n+fbvg0gksOmLp3Bz0s2pOXTpOoIAF64lUaIox8zEiJTsfJQq9R2yhYsT8wd2xdrMlPY++tddi0i9ib2FGc5WumsUdXP1IjYnmz5eVZMHXMyt+KPvRL3nVMGzR9ewPzWaF4J6MTeoforgn5zZx9Lws/hZ27Nn5FMsOnuE06lJfNS1Hy0c1IHtb3TuyeILJ3miRdt6z91waLJHaHG+KoWFhbRp04aZM2cyduxYvWemLXo5Td999x3Xrl3Dzc0Nb29vLCyqVpU+d+6cQSYnIvKoI5NI6ezQjOMZkXR1aq77AA/5ShMYzh6lZ+QDkHYzr17zad6s/oHKd1KuVLHo510kp+by1rzBuDrb8MU7Yzhy8hqtm6ulEXJz1cG/FcKcurJp70UiYtOIiE1jyrAQXBytq5w3N1WvvMllMozuiAWKTrjJxr0XGdClOe1b1FwzLaegmFPhatHikd1aYXZrFa9PK3/eHKMuSNw/uJlO2YB7I2J4bcNOuvl78e2EYUgkEv69GM5rG3cik0po4enM948Px9Vau1T/lZcv8OfFy7R1duPDrg2TyX0yIx6A4+lx9XaakgvVf6vpxQWkFRXy00V1jb7lV8/zeQ91jF9fL3/6evnX6zp3U1JeRp6iVH/hTB1WmvLyqv4fmpiYYGJSfVVtyJAhDBkyRL/56IFeTlNDLn2JiDxqnMuKxUJmQnObmgXwvmo/nVJVGaYy42qGRCOPgNNkKHv0xkuDOXk2id7d9XBOG5Do62ls26uO2dq+L4ynJnYjNTWXL7/agUQC77w2nM8+3QLAzz/PwNdH94ypgV1bcPh8DC39XXG2VzsaSzYdZ+uRK7wwsSejerXG3dmWJnaWONndvmF+tnQ3V2JSOXD2Gjt+eLbGsfOLSykqVculuNjddmKkUgmTerTVea4A2y5HUqhQsCv8GgWlCqxMTUjJVTsSSpXApeQ0tl6JYHZo1Uy+2Pwsrudl0tvVv4q208mkRAAu30yjVFmOqdzwMgH/12k0O25cZWZAF4rLy1AJAhZG+q0UftRlIK0dXOju5kMTC0v6ePpxLi2JYb4N97dbVKag39qlpBTm813fYYxoqkeguQ5Ok6dnVSd84cKFvP/++7pf08Do5TQtXLjQ0PN4pEjNzMPKwhQLAy2tizx4KFTlKFUqTmVe45Vzq5AAq7vPp6lV9VUKiUSCqUzPv5VHQBHcUPbIzcWO6ZO8DTJWTYRdTeL/vv+PkA6+PDerT5VzCUlZXE/IoHuIP/K7srr8vBxp1dyNlPRcenRSizAmJWejVKoACI9IpqxMHdN140aWzk7TP7susnzjCXxd7XnvmcGVKz7Lt56irFzJ37vO0zckgE5Bt7cbc/KL+Xn9UYxkascjyLf2UiueTrYsemYY8WnZTOrbTqe51cbMru1Jzcunu783Vqbq1Yfpoe1BApsvh6NASf+AqoKV+YoShu/8nWJlGS+17snzLbtXnnu5S3fM5Eb08PJuEIcJoK9bAH3dArhRkEPo5u8oUynZMGAGgba660Q5mVkwN/i2Mv3yQZq3pc6mJnMpPZXxLVrp5axdyUgnpUDtmIZlpOnpNGmvCJ6YmIi19e0Vz5pWme4HeouO5OTksH79emJiYnj11Vext7fn3LlzNGnSBHd3/fekH3Z2n47kzV+2YWdlxqZPnsTSvHH8IYjcO9JLcnni6PeUKBU85ae+eQqoHSlD8ygogsODYY82bTnH9bgMrsdlsOtQOD99MRlXF1uKihXMemUlxSVlTB/XhVmTu1fpZ2JixM93BXv36BrAs7N6I5FIGD28PVYWpkglErqGNtNpTqk38/hiyR6QQHpWAWfCEujVST3GzOGd2Hr4CpMGta/Wb+2u82zap1bU/vbVMYRoKH3Vr71u81KqVGSXlOBobl7j+dbuLqx+qmrcmamRHMECsi1KeaVzN3wdqspHqBBQCmpH884acQC+tnYs6q9fyr+uROXeJL9MXZsvLCtFL6dJV/JKS5m4+W/KVCoS83N5r1sfzZ3u4uszRwEJpjI5z7btpNc8dFEEt7a2ruI0NRb0cpouXbpE//79sbGxIS4ujtmzZ2Nvb8+mTZuIj4/njz/+MPQ8HxquJWUAkJ1fTE5Bseg0PYLEFqSTW6YuM2FlbMbn7SZjITclyEb3rCSNPALbcw1pj4pLFFy4nEjrII86S6dkZhVw7lICXTr6YWVpWu18wo1MYuMzkMullClVZGUVcO5yIo+52AKgunWnqAiM1oRMJmXi450rX095oqsO7+o2Vpam2FqZkpNfgruLDe2Cbm+JzBoVyqxRNdfZC27mhkwqwdHWklbNXHUuY6KJJzau41TyDV7v1oNnOmh/g1587hS5paUsuXCGsYEtq5yzMTZjw4AZROXeZKjn/dMw6unqz9ygbpQoyxnmVXc2Zm0kF+Tx5dkjBDu6MKNldaf2boxlUiyMjMkpLcHBVL+4Nx8bO44lJ9LCwQl705qdWY08qorgCxYsYMaMGXzxxRdYWd3eox4yZAiTJzd8+mtNnAlL4FrCTUb2DcbMtGFl6+vD1IEdUSpV+Lo54OFs22DXKS0rZ8PpMPyc7enSVCyA3Jjo6ODPk/59KCgrYYhbO4ykMtbHn6GwXEFfF/2MaK08AttzDWmP3v30H06fj8fERM7zs/qQkJTFpDGdcLCrGgj70jtriU/MpEtHPz5fWH2rZPW6k8TE3QQJeHjY09TPiR5d1NtH5mbGLPliCjHxN+nVxTB6PdpiYWbMuh9mkZtfgpsOSuRdgn3Y9fMcTIzkGMllCILA0s0nSUrP4ZmxXbmZXUiAtxPGWsou3IlSpeJ8ajIAp5KSeKaD9n3ndQzlj8vnea59zY5WkF0Tguxq30qsD0pBRXReCj6WzpjWUTpFLpWyILhXva61+NIpNkRfYUP0FQb5NMPVou6Ad1O5EbsmzCA2N5sQV/0ezj7q3p9JLYJpZuegV3/g0S3Ye/r0aX755Zdqx93d3UlNTa33pHQlK7eIFz5dj0oQyMotYs6kHvd8DtpiaW7C82Mbfn7LDp3l+13HkEhgzxuzcLFtuIKRIrohk0h5ttlt1ec/Y4+z6Op2ANb3fJ6mVoYz6hJB/VXX+QedhrRH6Rlq8ciS0nK+/Gk3AKWl5bw8Z2CVdpp0NLuE+LFjjzqYu0tHX26k5TB6xmLefmkofbsH4uvliK+Xo97z3HconH93XGTS2E507ng7Zf7wqWscOX2NySND8Pao+WZnYW6ChYYV7+y8Ijbsv0i7AA863MqSszS73Sc64Sa/bjwGwOVrySSk5NC9rS9fvTxa5/cik0r5fsgwtkRFUqRS8OKebbzQsSu+tjWrtd/JrLYdmNVWBy9LA0pBhUoQMJJqVg//6upW1iWcIMjGgxVd5xhsDjUR6urJqvAL+FjbYmtcfWWzJpwtLHG20DPrDfXvpbVT/TJDNdmjija6UFBQwLVr1ypfx8bGcuHCBezt7fHyMvyCgV5Ok6mpaY1ZPJGRkTg53ftaNybGcszNjP+fvbMOj+Lq4vA7q0k2snF3gSSE4O4uLVahAkXq1N3d9au7UqO00FJoC8XdJQGCRkiIEvfV+f5YLER2N9kIsO/zpDQ7d+6cTTZ3zpx7zu9QWa3By11l/oTLAI/TrQgc5HIcmvG0Z6ft8DndAV0pkeEis2wBtJjLYHuuNdejV56awhMvLcbBQU5ZRS35p8qJiqifg/LuS9ee3Z5riGGDOvP9J14cSy+gV/cwJt/0MQAbth5jxKDOLbIR4P3PVlNaVk1ZefVZp8loFHn27aXo9AaKS6p46+nma9h89NtGlm48iFwmZfUn83BQ1I2kBPqoCfB25VRJFXq9KW8op7DhSs+dR7JYvz+V6UO7EeytPvt6dlk5FRoNxbU1DA0NZ3NOJkv3m1TV12Wms3fOXW3adaJIU8mNmz+iWq/l6363Ee3atMOQVW1SCc+uLm512yaEd+LubgV8sHcrc/77nQUTr2/1a9qEVtie27VrF8OHn8vRevDBBwGYNWsW3333nXWTWUCz7qaTJ0/mxRdfZOHChYCpuiczM5PHH3+8TcSlLkTlqOCXt2eTV1hOfJR/m1+/I3JN3wRi/L3wdXNB3UAvJzsdh9H+XVg42AtXuSO+LexnVY/LYHuuNdej4EAPfvzsFgA0Gh2l5TX4etdPTvX0cGb0sLpbq2XlNbz92X+4qBy4/7aRhIV6ERZqiibdNXcY2/ekc+NVzUuovZAxw+NYtHQPo4eZ8njSs4r4fvE2AvzcOHGymMS4luXLnRGz9HJTIZNKqarVsutwFj1iAnFxckDlqOD3t+ai0xvIL6rgv62HGdO/vjMoiiL3fbaEGo2OjLwSPrrbFIk6lH+Kad/+hFZqBAlMiIlhfFw03+/fC4CDFU11LWVp5n7eS1nPjRG9mBvTr97xo+W5nNKYqsX2lmSYdZqe7DKFP7N2McSnbfKl9p3KBQH2nMpBFMU2dSgNRmPz8thaYXtu2LBhzWpm3lya5TS9/fbbTJgwAR8fH2pqahg6dCh5eXn079+fV155xdY2WoSXuzNe7s0PPV5qCIJAt9CGdX8udQyigQWZCyjXlzMjZAYu8o6/NRljZkFuNpdBpKmt1iOlUo6vt+X5kqs2HmLdlqMADO0fQ98e5/rKTZ/cm+mTezd2qtXcdesI5t0y/OyN88sFm1i/4ziCAIu+uA1fr5ZVIc29si+DEiMI9HZDJpVw/wdL2XbwBF0jA/jmCZNatlQiQaqQEOrvwa3TGk5MFwSBKH9P9mfk0Sn4XBSwoLLSlAR/2jcqrK5mQmQnds0OYmdeNj18A2zuFHxxdAtZVSV8cnhjg05TL88IbgwbSLmuhvEB3czO5+/ozp0xLWu2XGvQYRANqCyIOD/bbyRf7t/B2FDLGkPbiiXHDvHg6n8ZEBjMR0PGmD/hfC7XRHBXV1c2bdrEmjVr2LNnD0ajkR49ejBqVOsoqdqxYw3HKo6xqmAVAOGqcMb5tU0pcYfkMnCaOup61LNrKG4ujjirlHSKap3k4/M5/8bZq2so63ccJzE2CB/Plj80CIJAp1DTtuSG5DS2Hs1ClEBVrcbqub5+8FpyissJOW9rbkhEGC+NH0VeZSWOShlXxpqiVF5OKsZHtCw5fmP+cT4+tIF+3mEcr8hnTGAck4ITmRPdj/cOrmNmZMPOq1wi5cHYCS26tjUUasq5cfP7VOs1fNLnVhLUTWuGRas9eXNw2ylhn2FVRioG0cjGkyeo0umsO/lydZrOMGLECEaMGGErW9qcWq2Orfsz6BLhX0fl1s7FTZBTEN5Kbyr1lcS6tF9pcYfAKJi+mjp+idDR1qOwYE+Wzr8LoE0jAQDTxnZj7OBYHB0UNr/2Nyt2YEQEicALN1t/0zaKIseyC5FLpQR4miJggiAwvXtCvbH3rFnKfxnHeH3wWKZGx9c73hhao4EHty/mZFUpRgwcLS9gf0k2omBgY/5xrgzqyrTQRKaFJlptf1PkVJcxY8O3SAWBn4bMxcfRcoc1q6rorBTJobJss05Te3FXj75UarUMCQ7DWWGlSKa59ejMmA5Ms8U1Vq9ezRVXXEFkZCRRUVFcccUVrFq1ypa2tTpv/biWRz9ayuyXfm7TPVE7rYuzzJk3Et7go+4fEarqmAtPW3GmWqWpr0uBjroeCYLQpg5TrUbHO1+t4t2vVyOTSa3q52YJlTUaktJNuTTRQV50DmlcmLFWq+O/7YfJPlVW5/X/Ld7AI18uY8YbP6M/rWreEDqjgWWph9EYDCxLO2KVnYdK8/gv5zApZXn4ObrhKJXTyzMEARjmF2P2d3KqtpwPjyxnbf5Bq667ozCD3JoyTlaXsqvohFXnJrqHclvUaKaHDGBioO0qABujUqu1+L6XW1nBlN9/YvayRYS4uvHtxGnM6WpeH+pCLFmPOvqa1KxI00cffcQDDzzA1VdfzX333QfAtm3bmDBhAu+++y533323TY1sLbQ6kwKzTm8wM9LOxYYgCAhWdsu+JLkMtuculfXIGnR6A1v2pBET5oO/z7nigfU7jrN4RRIA3eKCGNHftr3InJQKukb4sz89lxmjmr5pvrdgPYvWJuPm7MDy9+5AdrrlyhlHyWBs3GEq09Qy/9BebozrRmpJEXd1q59z1BSxbr4M8Y3kZFUpjyaMIsrVlD+lNeiblA8QRZE7t89nW2EqUokBmQRWjHgKtcIk5qgx6DhQlkm8W3CDrY1G+XdmXUAcEkFgqJ9124oSQcLcyLaJlH67fw8vbFnDkKAw5k+82uz4f1OPsq8gF4AdudkMCwk3c0YjXK7bc6+99hr/+9//6ixG9957LwMHDuSVV165aBapx24aSe/YELp3Cmz206DeYCTpeDaRgV6one1VanbstDWXynpkDZ/9vJFflu3G1dmBpV/cgfx0v7q4KD+cVUokgkCnCNvnUUkkAt8+OB2NTo+j0sKk+Atugg9dNZTEiACig7x4f9VmPFROzB7Yo84a/O6eTXyXsgepILD3xntwU1onxaGQyvhqUH1hU4W06VtelV7D1kKT5o9RBD8HN5xk55yjJ5N+YFvREXp7RPNez1vOvUVR5PWDf7KrOI1nEq6im3uYVfa2NRtOZgCwOTvTokq40eFR/HpoP2oHB3r5dYy2RO1Fs5ym8vJyxo2rn1w7ZswYHnvssRYb1VY4OyqZNKRLi+b48PeN/LRyN/6erix57Wabh8Pt2GkJAmbELdvMktajPdaj7xZuZWdSBvfOHUGnyNZP8r6QM9FxvcFYZ4sl2N+dZV/eiSBQr/GvtdRqdazefpTOYb5EBp8T3pRIBIscpvunD6V7TBDxEX5no0wAjko5V/aL44ete/l64y4AEoP96BF67mYc5GyKnnk4OKE04+jYimq9lvTKQh6OG8f2wjSuC+tLT48wFJJz1y/WVtT59wyluir+OLkTgD+ydpKgDuF4eQHhzl5mHbX24NE+g3GWKxgVFmmRdECwqxsrrpvd4uuaW4/OjOnINOu3OWnSJP744w8eeeSROq8vWbKEK6+80iaGXSwUl1cBUF5Vi1EUkXT4X7mdy4rLQKepLdYjrU7Pms1HiAz1xtfbla8WbAZgwV+7eO6BiTa5hjXMu3EInSP8iIvyq9eqRC63jabR579v4ed/d+OgkLH84zutbk/loJQztl/jwp2x/t5IJQJOCgXBHnX1yW7p0ov+/iEEubjiILON01GkqaBcV024c8NO7uwtX3KkPI/poX34qM/MBse8kjiTtfnJDPOpm7SulquYEtSbXcWpTAnqxUtJf7MwYze9PEOZP3jO2XE1ei3P7VtKrUHHS90n46Zon92JWE9vPhx1Rdtf+HJtoxIbG8srr7zCunXr6N/f1NBx27ZtbN68mYceeogPPvjg7Nh7773XNpZ2UB66fjidQnzo1Tm4ztOUHTsdgssgp6kt1qPvftvG/N+3IZdLWfL1HQzuE8nu/VmMHGjbnCFLcVDKmTDM8mqy5nBmy08mlSC0wtLWKyyIjY/fjlwqRaWsmx8kCAJdvGwXwdtZeJz7dn+DiIFXu93IcN+u9cbk1pgS1rOrSxudJ8DRgxvDhtV7XRAEnuxyrmXM/w6uAyC9srDOuM0FqSw7uR+Awb7RXBNmPuE7t7oMV4UjKpmVlWodkcs1p+nrr7/G3d2dlJQUUlJSzr6uVqv5+uuvz34vCMIl7zSpnR2ZMbZXe5thx07DXAZOU1usR4rzHAipRMJrj1vfU629EEWRvSkncXdzIryR/nMNcdu0/sRH+hEd7F2vbUpjFJdX8+7C9QR4uXHHpP5m0xXUTi2LtGgMen5M3Ym/kysTghp3It9M+QudEUDCiepTDY75rO8sNhYcZWqwdVVhRtHIxoIj+Dm40cnNJCj8UvdJLDqxh1EBdSVPunsGE6ryQGPQ08/bfDL1vycP8sCORXgqVawYczfO8qZ7BDbGzryT/JNxhBs7dyNK3YKGuy3lcnWa0tPTbW2HHTsXLQdLs9hTnMGkoJ64na6y6ShcDg17W2M9MhpFSsqq8Tzdy3LmVX2JCvchLMjDbHPb5lJVoyU9q5DOkX42jVov35DCSx8vRyaV8Ov7c+tU2zWE0SiyI+UE/l5uDO0ZZdW1Fm1I5t/tpn5xw7pFEBfWSkr3p/kpdRdv7DdJS0S5eBPj1rAEgofSmYwqU9Snu7rh/oDx6kDi1dYnOS/O3MEbKX8hEQSWDH0EP0c1oc6ePBhvUgev0mlYdnI/PTyDiXb15d/Rljvuh8vyASjSVFGsqWq203T76j8pqq1mf2E+v19RP0G+rWiNhr1tTcfLULNj5yJCa9Bzx/avqDXqSKvM57mu5st325RWijR98sknvPXWW+Tm5hIfH897773H4MGDmzdZByIzu5jkw9ms2XyYHUknuOmqftx2wyCkUgmDeke26rXvePYXUjMLmTYmkYdvtp2aeY3GpNpsMBip0ej4Y20yAV6u9OkS2mDV8MLVe3nn53Uo5FKWvn0rHq6WPwj06hSMUr4TLzcVIb7udY7tT8/FYDDSLcp21VeBKpMD6CiVN5gfdCZJ/uXE63j1wCJCVV42F40U6/x//T+oNw6s4PcTe1DJFGyZ8FiTkgcXMje6PwbRSKSLNyHOHs22MdbDm005J4j3bFxXq024XCNNoijy+++/s3btWgoKCjBeoLexePFimxh3ubFo+37WHkjlzrH9iQ9q+4ocO9YjlUhwUzhRW1uGl7ID9rhrBafp119/5f777+eTTz5h4MCBfP7554wfP56UlBRCQkKaa2mzsdV6pDcYuf2Jn6io0iA9HelJSsmyub2Ncaq4EoD8wgozI61j8qiuODko8PF0Ycv+DD5YsAEEcHd15LvnbsT/gr50tVqTfp3eYMTQhPjkhexPz6WiRsO69+9EJq0rrJmUlsOcN38F4NP7ptE31rzjUlRTzVu7NxDu5sFtXXo36OCpFU4IogSFIEN2QeJVakUec7d9ikIi5ZeB9/O/XnPqnW8Lrgrpg5fSBT9HNf6O7vWOn5EscJTKrS4TclM48nCXljvQ3429mqyKMsJd69vXplyuTtN9993HF198wfDhw/H19W3zFgGXInqDkRd/X41RND2rfHzzlPY2yY4FSAUJPw68h4zKAhLc295hMEdrbM+9++673Hzzzdxyi0mn5r333mPFihV8+umnvPbaa820tPnYaj0SOFd51q97GGpXJ66ZaErUzThZxBc/baRnQghXTbBeCdkS3nvqarbuTeeK4S2TQbkQqUTCuCFxAGQXnVbnFqCkoobk4zn1nKYZY3virXYmxE9tcXuptNwiZr++ABF4cc5YrugXV+e4TndOQFijs0xM+LuU3fxyJBmA4UERxLh71RuzvzgHoyhSqq0ls6oETwfV2WOLMrdTY9BRY9Dxc8Ym7u3cOn3kJIKE4X6N51M9FD+a/t4RxLr5IbMiytQSNAY9Con07N+CXCIlwq35kSpbcdluz/34448sXryYCRParpnhpY5MKmFoXATrU9IYHt+62wB2bIta4UQ3j7D2NqNhLJQcKC8vr/OyUqlEqayfP6HVatm9ezePP/54ndfHjBnDli1bWm5vM7DVeiSVSvjqzZkcSc2nb/ewOqX8PyzazoYdx9mw4zhjhsbhorJObNESOkf40rkVBCnP54rB8fh5uvL7miScHOQM6V53rdHrDRzMyGdkr2gcLBWvPINAvSjB4jXJvPvDGhJiAnhp1licnZQMTrBMTbqXbxBSQYKfypkAVcNR3OkRPcirqcDHwZluHnW3/SYGdmdx1g5ERAb7tF8PSrlEarU6eEtYeHg/j6//j34Bwfx0xTVWP0QcKylizn+L8HNyZv64q3GS163a+yFlL+/u2sQtCb2ZGRnXyCyNcLlKDri5uRER0XAynZ3m88GcSegNRrt0gR3bYeH2XHBwcJ2Xn3vuOZ5//vl6wwsLCzEYDPj61r25+/r6kpeX1zJbm4kt1yMfTxd8POvfoPv1CGflpkN07RyIyrF1EsHbAkEQ6B0fQu/4hqOiz3+9ghXbD9M9JpAvHp9u8bwR/p5899h1lFTU1HGKlm85hEY0suvoSYoqq1n4ymyL5xwaFE7yjHtQymSN5gG5yJU83W1Mg8fi1SH8O+IJ9EYj3g6uDY6xBINo5Pnk30itzOelrtcS6dK6ye0tZX1mOkZRZGt2JrV6PY7yxp3fgupKVp44zsiQSPxOO6b/nThGVkUZWRVlHCgqoI9fUJ1z5h/cS4mmlm8O7G6G08RFvz3XrLvz888/zwsvvEBNTY2t7bnssTtMdmyJpc0xs7KyKCsrO/v1xBNPND3vBU+voii22zZ9W6xHowfHsvrn+/nwxemXtOp/XrEp4phXZH1eVUK4P0O6RtT5HNw2rT+up6NylihPX4izQmk2cTq5MJc/U1PQN9DLzl3h3CKHCSCjsoAVuUkcr8hjWfaeescPl+Xz6M4lrM6xrqlwa3Fvr/6MC4/m1SFjmnSYAG7770+e2rSS8Yu+p0xTC8DkyFh6+QYyITyGBUeSufGfheRWnfs83NdjAJ3cvXi49yCrbbtsG/Zec801/PLLL/j4+BAWFob8gl/Mnj31P1h27NhpByyMNLm6uuLqav7m4uXlhVQqrRdVKigoqBd9aivaaj2yldI2wKmSSp7+5G/cnB148c4JFusgtTYv3jqef7ceYlgP66QGGqNXXAhL3rqZLfsz6BVrimYezy/ihcWriA/05bErh7bI2S6ormTq0p/Qi0ZyKsuZl2hdY19LCFV5M8QnlrTKfMYFdKt3/LWk/9h6KoPl2YdInvJ4/QnamE4e3nw2drJFY/VGU35ZiaaGhUf2c2vX3gS5uLHoyhvYlZ/NVUt/BuD3owe4p7tJOPaKyM5cEWlSer9wW98sl0CkqVlO0+zZs9m9ezczZsy4qBLBUzLzSc0rYlyPTmfVbu3YuaQx9+Rm5QKlUCjo2bMnK1euZOrUcwKPK1euZPJkyxZqW3Mxrkerdxxl35FsAPYdzqZf17D2Neg0AV5u3HylbR0PZyclY/qeU05fsDWJPRk57MnI4caB3Qj2VDd77p15JzGelhWQS1tnTZdJpLzdo+G2KgD9fMLYeiqDPl6WFYJoDXpWZB8iVu1HlKt3i+0TRZH/7dtERnkJT/cegY+TZcn7AG8NHc/0ZQuo1evo6Vs3JyzWw5tELz9yqyoYFWKjPFtLIkmXotP0999/s2LFCgYNsj48116UVNYw838L0BuMZBeVccf4/u1tUpMUlFXyyLd/4+Ko5M3ZE3GyNinTjh1oFcmBBx98kJkzZ9KrVy/69+/PF198QWZmJnfccUdzrWwRF+N6NKhbBL+v2oerswNdov3NjtcbjHzyywbKKmq5b+YwXJ1blohuNIqcKqnEx8O5SSfTaBT5Z2sKbipHBnezTd7Y2K4x/Jt0hLhAH/zV9aOboiiSXlKCt0qFSwPFCOfz2vb1GA0ifk7O3BzfNp0ZNp06xM6iY1wXOhh/R3fu7DyY6eE9UVvYR+5/B9fx9dGtOEnlbL3yIRxlLVvbD5Wc4oNkUxFGmKs7D3a3TC/teEkRU//6CdEosmjSjSR4183VUskV/DWlcWexWVyukabg4GCLQvkdCalEQCaRoDcYL4oo08p9x9iXngPA7uMnGRxvWcWJHTt1aAWnafr06RQVFfHiiy+Sm5tLly5d+OeffwgNta1ooKVcjOtRkK+a39+aa/H4vYey+OXv3QDEhPkwfXzzZA8Op+fzzIfL0OgMFJRUMnVEVx6b27gO0N9bUnjxmxUAzH/2RmLDrN+CTc0r4o4vFuPlouKrO6+md0QQm5+7s9Hxb67fyJc7dwHwwaQrmNCp8cqzESGRzE/ZyxURndEZDTy9fTlVei2v9R2Pm9L2zXA1Bh1P7PsBvWikRFvFi12vB8BDabkA6JnMrpZERPcV5vDMtv8Y6B/KPV0HEuHqQXZVOQP9wyye42hJIbV6kybXifLSek5Tq3C5Ok3vvPMOjz76KJ999hlhYWE2Nql1cHVy4NfHZpB5qoSBsWHtbY5ZhnWJYNGW/Tg7KugeGdDe5ti5SGmtNirz5s1j3rx5zTvZxlyM65G1RIV44+3hTFW1hm6dm6+ovXxTCln5paZvBIH9x3KaHO+qMkV6JBIBx2ZGu9cdTCOvtJK80kpSThbQOyqoyfH78/PP/v+mjIwGnabCmirmH9nDuIgoHuszBJVcwcqsY/yeZmqGO8g/nBuiuzfL3qaQS6SEqXw4XplHjEvz1uX7ugwnwSOAzm6+zY4yfX94N/uL89hfnMft8f1YNeUWDKLRKrXx0WFR3NujP4gwNjy6WXZYy2Wr0zRjxgyqq6uJjIzEycmpXuJlcXGxTYyzNWE+7oT5tLMiqoUEerqx+Imb2tsMO3Y6PG29HlXXanFUylstdyq3sJxajY7wwHONVd1dnfjjw1sRjSKyFkTKJw6JZ8eBE3ipnfHzdmXayMQmxw/tHsV3T1+PylFJmH/T4ogarZ6XvlpBen4xvj6uzJ3Qly7hflzRM5YtR07g46aiW5j5rchXxozmiRX/IUHg9j59Ghzz+p51/J66n08lEpKvewCAbl4BhDirqdbr6O/bOlFPiSDh6353U6SpaFD92xIUEinjgqws1b+AqRFd2JCTTn+/UNRKBwRBQCJY97mQS6Q82PPi2dLuKDTLaXrvvfdsbIYdO3ZahVbqPdeRaMv16K/VybzxxUoSOwfy8fPTbe44ZeWVcP1j36M3GHnv0Wl1EsSlEkkzRWLOER3qw89vzLbqnPgI844OwN7DJ1m57Qh6JRzOLaSovJrvn7geX7UzX8+zvCdjqLuan6+7tukxLmoA/JxczkZXvB1VrJ9Sd9vvz4wD7C3MZl7cAHydbNPmSCGRNdthshVDAsLZfa3ljX87DJfr9tysWbNsbYcdO3ZagdbanutI2HI9WrfzGPsOn+SGib3w8ah/k92RfAIRSDqSjVanR9kCqYC07CI27E5l3IDO+J1uZVJWWYP+dL+3gmLb9qBrDpXVGnYezqRnp+CzekuNER/pR0yoD+mFJdQY9AyID2s1u+5OGMDIoCiCndXIGtF/KtZU8+DWvwCTQOXLvce3mj0dgWqdFkdZ60VAbcFluz0HkJqayrfffktqairvv/8+Pj4+LF++nODgYOLjG+/DY8eOnTZEBJrqudrBFyhLscV6VFWj5an3lmIURSqrNDx9x7h6Y9Rujri5ODJtTGKLHCaAB9/+g9zCcrYmp/P50yb17S5RAbw4bwLlVbVMGNy43VqdnrU7jhET6kN4kGej41rKY58uZXtKJuH+Hjx24wh6xTZeVu+icuCHl2YgiiKVNVpcnBqvfCuoqMRT5WSR4KUoiryxZSOHC0/x4rCRhLipEQSBOI+mk9KdZUrCXNzJqCgh0bP180L3FmWxvySHaaHdcJa3rWr8Vyk7eHnXGkYHR/Pl8Kva9NpWYW49OjOmA9OsYO/69etJSEhg+/btLF68mMpKU3fu5ORknnvuOZsaaMeOJZRoS9Eate1tRofjYlfftQRbrUdKhYwgPzVgqlC7kPLKWhatTKK0qobsgrIW232mGa7PBU1xxwzozNWjuzXZHeDL37bw/Ef/MPfpn6iubb3Pfa3WVF2VnlPMnW/+zu7DWWbPEQShSYfpi407GPL2l8z89jeLbEgrLeHzPTtZn5nB/OR9Fp0DoJBK+Xf8rWybci/XRDSdu9Uc3k/exPhl37A17wSVOg0zN87nleQVvJ+yzubXMsfa7DQA1p/+11JWZB7ljnWL2VVwsjXMqseloAjeLKfp8ccf5+WXX2blypUoFOea+Q0fPpytW7fazDg7dixha9FO7t77CA/ue4paQ217m9MooiiSVZ2Pzqhvw4ta8HWRY6v1SCaV8MLdE7l2XHf6dasv8eGiUjKsdzTOTko81U5Muutzvl28rdl2f/DoVXz29LU8e3v9iJY5zrRykQggIHAoPZ/HP1zKiq2Hm21PQ7w570quH9X97OfEFls/ezNzAdifnY+hgdYnFxLk6ko3X39UcjmjwhsWWazR6/gj7QAnKkrqvK6UyvBxtFzs8c/jKXy0bxs1el2T47QGA/9L2sShkgK+StmJTCLBWWb67Lm3gtSBOZ7oMYyJoZ15Z+AVZ187VVPJotRkimurGzznzT3ruHPdHyzPPMpLO1e3jaGWrEcdfE1q1vbc/v37+fnnn+u97u3tTVFRUYuNsmPHGtKrTgBQoiulQl+Jg9T2Hehtweepi1mSs4EEtyjeTLynTa55OeQ02XI9euajv8nKKyHpaA7fvTyjzjFBEHjtwUkAzH3qR04VV/LD0h3MmdY8BW1HBzndOzVdfn8hf65N5qNfNjJ5WBdee2ASkcFeODrI+XjhRnYezGTT3jTG9Otks7wWTzcVD10/nCGJkUgkAj2stLchHh07BG8XFcNiwi3anlNKZfxx7Q1Njnlx5yp+OZ6EWuHIrmvuaTTPqSmOlhRy37q/AZAJAnck9m10rEIq5cbobizPOsq1UV1xkMr5a+QdnKgqpqenZcrgltp0rLSIMaFRTcoJdPH04+OhU+q8NmfNQg6W5NPPN4RfRt9Y55jGoOeTA+cc/lHBtmmbY47LNqdJrVaTm5tLeHjdp7G9e/cSGNh8DRE7dprDlf5jMYgGQpyC8FZ6tbc5jZJeZdLEyahqWhvHplwG1XO2XI8CvN3IyishwNut3jG9wcjrX68kO7+U8UPiqajSMHlk1xbZbi1L1u6nslrDH2v2c88NQ8++PjAxgl0HM+nfNcysw7Ru73GqarWM7xtrcfPh3nGWOwKiKLJ6/3HcVY6cqqhCqzdwZc/Ys3aFe7nz4qTGBTWbg+S0k2SKvDUPd6UjznIFlTotYW7mq+Ne6TeOV/qdixL6OLrg42ibCj2Acq2GK/+aT61Bz/3dBvBAD+vkASSnf95Sob4DqZTKmN25Jysyj/Js71GMD+1Ub0yrcLlWz91www089thj/PbbbwiCgNFoZPPmzTz88MPcdJPl2kKiKLJk20F0egPTBiRc0t3D7bQeLnIXZoZOb28zzHJP9HT+yd3MAK82vNFeBk6TrdYjgLcemszRE6fo1EBO09GMApatPwBAj9ggfnvvZpvYbw1zp/Tjy0VbmTSsS53Xrx/Xg6nDE1Aqml7Sk47n8PDHpooyqUTCuL6dm23Lpv3pLFyfxPRhiQzscs5h/WtnCs/88h8AogQQQBBgQKcwPJ0tV862hmd6jqC/bwiJXv4WRa8awttJxcbpt1Ku0VjkNLUltQbrt/S/HTGdLXkZDA1ouP3N831G83yf0S01zTouV6fplVdeYfbs2QQGBiKKInFxcRgMBm644Qaefvppi+fZeSyL535aCYCLk5KxPdrI27Vjpx0IcvLhtsip5gfakMthe85W6xGAQi6jS1TDukQRwZ4kdgokp6CMob0aV1Auq6jh5S9X4KiQ8+StY3CwYd/IwT0iGdyj4bweS66jclQgEQSMooibGQkBc7y+YA05ReVk5BXz18vnnCbZ6ca5wun/iMDzS1ajNRr49uar6RXe8i2+C3GQybkiLLbF83g4OOHh0DqOnbW4KpRcHR3Pj0f28XfGIR7tOcQqh9DTwYkrw1omomlrLtvtOblczk8//cRLL73Enj17MBqNdO/eneho66TYPZydkEgERKOIj5vlyXp27HQ0xNOd1jucRsplEGmy1XpkDgeFnM+fvc7suLU7j7FxdyoAo/p1Ykiv5ueLJB/N5vWvVtIrPoQHZ41o1hy/rtzDp4u2cMPYHtw2dQALXrgJjVbfrD5y5zO6ZzTz/9vNqJ51f84TenTCXeWIWuWAg0JGUlYeT/1hijwdzS9sFafpUqXGoEcQ4FRtFXrRiPS82q1TNVVcu/wnNAYDv469nuDTgp8dmss10vTiiy/y8MMPExERQUTEudBfTU0Nb731Fs8++6xF80QFePHXM7MxGEVCL5L2JnbsXEhmdQ5P7f8fTlJH3kp8FFd5B3oAuAycJlutR2/NX82WAzk8MWcUo/paHvWurtXi5HCuaq93lxB8PV1QKmQkxLRMH+iPVUmknywi/WQRc6f2Q+1qfRTkj3X7qa7VsmhNErdNHUBEgG10ne6bNoR5kwcil9ZNUBYEgQGdz7UxCffxoEKjobiqhmk9u1w4zVk0ej2/HEgm0MWV0ZH1Hc01WWk8vP5fhgWH886Q8R3iAaW0toZXtq/Dx8mZh3oNOptHZCue7DWMMFc1/fxCUErr3q53F2STXm6qFtyce4LrLmOn6ZNPPuGtt94iNzeX+Ph43nvvPQYPHtwcC83SrM3fF1544awWyvlUV1fzwgsvWDVXkJfa7jDZuajZX3qUSn01BZoi0irN69i0JRe7Jool2Go9+nfTISqrNfyzKcXic97+bjUjbv6Q//2w9uxrgT5qlnxwGwvfnot7M5yc87liaBd8PFyYMDgON5fmlbLfPnUAsWG+3H2t7W8iFzpMDSEIAjcN7MH9YwbiIG/8Of2H5CReXL+O25f9xfHi+lWPPx9Ooqi2mkXHDlKps5021ZkocXNYcCSZ344e4ON929hbYPsCDy9HFfcmDqSPb3C9Y0MCwrgyLJYxwdE2SeQWRZGTVaXojIYWz9UYraHT9Ouvv3L//ffz1FNPsXfvXgYPHsz48ePJzMxslffQrEiTKIoNevlJSUl4eDTd1NGOnUuNId69OVyRhkrqRLxb23QLt5jLINJkq/Xo1mn92JaSy8yJvS0+Z/M+k5jglr1p3D9jGAXFlXi5q6xORhZFkZ9X7CE9p4g7rxqIp5sKgJ7xISz56Dar5rqQ4b2iGd5EDpatEEWRw1kFBHurcXa0ThF74Z797DieBSI4yGW4KOqfn1tdCoioHRwaPN4cex/dN59thUd5tsu1jPa3XgCzj18wDlIZ7g6ORLq17b3PSa7gw6GTbDbfBynr+fjwRnp6BvPLsNk2m7cOrRBpevfdd7n55pu55ZZbAFMvyhUrVvDpp5/y2muvNcvMprDKaXJ3d0cQBARBICYmps5CZTAYqKys5I477rC5kXbsdGRc5Coe6jS3vc1okEs5EdzW69H143px+7WuVtnw+M2j+XN1MtNGJfLpwk3MX7qTPl1C+OBxyxvUAmTml/L+gvUApKTlcdc1gxiY2HDVE0BNrY6nP1xKRbWGV+698qy6+Bn0BiOL1ibhqnJgfP+WJ0ibo0aj4/5PlrDzaBaBXm78+cJsix3HtMJinvl7FQA39Exg3uB++DrX3+L2d3bhYGkBYe5qm9hca9Cx6dQhANYVHKjjNP2XnUJ2dSk3RPSpty1WrqtCJXVgV3Eqbo4qkmbdg0yQNLtqr6OQXGKKlB0szTv7IPJ3Zgprso9zR1x/ot28WZS2n6d2LGdccCfeG2i9w2ZNInh5eXmd15VKJUplXWdZq9Wye/duHn/88Tqvjxkzhi1btlhtnyVY5TS99957iKLI3LlzeeGFF3BzO6dlolAoCAsLo3///jY30s7lhd5QSrU2GWeHfkgEhfkT7DTOJRxpsvV6ZDRa/8PomxBG34QwAL75czsAKal5AJzIKaa6VktshJ/ZeXzcnQn0diP7VBnHMwt58qNlrP+y8S72ew+fZPO+dADWbD/K9HE96hz/e/NB3v7JtGUY6O1G1yjrcqsMRiM7jmYR6e9pUZHOz6v2sPNwFkigoLQSg8FosRPh7azCS+VEUVU1MokEvaHh7aEPhkxiW34WPX1argX4d84G/sxey4SABAo1tUwL6sfLycsIdnJnoHc09+0wtXgRgbnRA86e93vWGr5OX4KvIoDDZaVIEPhl0AOEqrxbbJMtEUWRzw9v4WBJHo8ljiRIpTZ7zjOJY5mfupOR/qYHEL3RyANb/kIvGinX1vLl0GtZduIQGoOepSdSeLv/FWbnrG8YFkeagoPrbkk+99xzPP/883VeKywsxGAw4Otbt6jB19eXvLw86+2zAKucpjPdxMPDwxk4cCAyWdOnv/7669xxxx2o1epmG3ix8vPOJD5av5WbB/Ti5gG92tuci4oj+VPQ6NPwVE0n1POt9jbn4uYSdppsvR6t3nWUq0ZZvjV3IY/MHsHCFXsZ3ieGEznFXP/49xiNIm8/NIVB3RuPGgE4KuX89tpsvli8le+X7SDBjJOTGBNAQnQAldUaBvesL0Hg62ESWZTLpLg3Ixfqk3+28tXKHXg4O/LfC7cilzWduxTsowbRpJT9xq1XoGgid+lCXByUrLpnLnf/sYwfk5JZcOAAr40fzdT4uuXyTnIFI4IalluwlgWZyynVVSAVJHzW6xk+PbKOXzN2AtCpvz9OUjnVBh0BTnVFTveXHQcgu+YUIEdExCiabwXT1mRXl/H2fpPT7OPozDPdx5o9J8zFk2e7nRPrlAoCvb2D2VpwAieFlDJtDfd0GUCtQce44E7NUl23xmnKysrC1fVc5PfCKNP5XLg939iWvS1oVk7T0KFDzQ8CXn31Va699trL0mmav20PxVU1fL9tj91pshKD0dQMVW8sbV9DLgEEmlZIbv/6o5Zjq/XowqTtgpIKdqVkMbhbBC4WaBpFBHnx+M0mscCU1LyzkauyihqL7JPJpMy7dhDTx3Q3m0CuclLy5fPXN3q8X5cwfnt1Ng4KOX6e1qtUl1ebejhWa3QYjCLmFKDG9O5EpxAfXJ0cmuWkOcrluJ7Og9Ibjby/aWs9p8mWXB08mj9OrmFq0EgAEt2DkAoCnkpn4tT+/DvmHsq0NUS71hU5nRs+CVe5ij7ucRhEBWqFinDnlkk3tAY+Di7Eqn05Xn6KwX5NO5qiKFKhr8VVXvf3JggCP4y4gYH/vMHK/P3o92j5uN/1/DLqxkZmMo+59Yjzjru6utZxmhrCy8sLqVRaL6pUUFBQL/pkK5rlNFlKS6oSLnbuGtqPTzfuYHa/HuYH26lDtO+vVNRsxF01pb1Nufi5hCNN1mJuPerVue52wLzXfyMzv5TB3SJ45/4pVl0rNsKXcQM7k1tYTr+uYVad66lWWTW+McL8m5+YfP+kwUT5e9E1zA8HMyrjZwj1bVkV9KvjRqOQSll1PJWbenQHoEqj5ZuNuwj1cmdSN9vlZk0OHM7kwOFnvx/gE8XGcY+jlMhQSGU4SvW4K+o7yqEqPx7qVN9pKKqt4s2ktQQ7q7krbmC7yyEopFL+Gn0LetHYZM86gBf3L2JZ9h5mhA/mvs7j6xw7UpZHmc7kQJ+qrWi5YTZOBFcoFPTs2ZOVK1cydeo54eCVK1cyefLkZplojlZ1mi5nruway5VdWz8B81LEUR6Dozymvc24JLiUE8FbmzM3vua0dzqWeYp/tx4GYPGaJG6dNsDMGR0LlYOC6YOtryZrLgajkSVbDtLb1Z/X7xlz9mf/3ebdfLrOlCvWNciPMC93Kms1zN+6l2hfL0bHNS4cKooi81O3Uaqt5vZOQ3CQNh0vc5GbnKS82kIeTXodEZHXuz5KoKP5iMVPx/fwe3oyoghqiYqhgeEEu6rNnmcUjTywcyFJJdm80+tqenqGmj3HUgRBQC6Yl4TYXmjactx26mg9p8lZrkQmSNCLRmZFtjxfuTUUwR988EFmzpxJr1696N+/P1988QWZmZmtVpRmd5rs2LExJdpsfst8AgeJC9eGvoGDtB3FLu2Rpmbz6ePXsPvwSQYmhpsffAEBPm74eblSWFJJ9852BWxzrN53nNd/M+Xg+Lq7MDje9DOP9DEJcaodHXBXmbaPvtq4i8837ABgzcO34O/W8Pbj7qJM3jiwAgBvBxduiOhjkS3plZlUGaoBOF6ZYZHT1Ns7GLlEgoPegafXr8ZJJmfrzNtxUza9rZtfW8GqXJNzvTQr2aZOk6U81/Uqlp7czTWh9Z2iYJUHf4+6mwqdhjh1w+2FrKIVJAemT59OUVERL774Irm5uXTp0oV//vmH0NDW+VnanSY7dmxMWuUOynX5lJNPbs1hwp3bOafN7hg1Cy+1M2P7Na+hrbOjkkVvzUWnN+Bow95zlyr+Hq5IBAFBAF/1uYeMcV1i6PKgL66OSlwdTQ5IqKcaMDlSLsrGq2uDVGqcZUpqDFpiXC3Pb+nlkcAV/iMwikb6eXS36Jz+vmHsnfYQn+zZzod7tqExGNAbzSeI+zm4ckN4H/YVZzE9zPp1IrOqkBJtFV3VIc3eEuzrFU1fr8Z1vIJVpm3e/3KT2VxwhNmRQwl3rt/Q2mJaYT2aN28e8+bNs/3EDWB3muzYsTGdXYeSWrEdR5krwU5d29UW+/Zc+yGTSpBJraswOlVSydYDGQzpHonauXkK4OVVtVRrdPh5WJ8A3hZ8tnATf67dzz3XD2HikHgAEsL8WPr8HKQSCSXFVRxOy6dzhMnRCfKoW8E2tUc8icH+eKiccHZovKLKz9GN1WMfQGvU46k0OWKFmnIUEnm9pOfzkUvkzAm3TmcLwFEm5+6e/QhycSPawxNPR/Nq8IIg8FTXCVZd548T+0gqOcnVod24bfvn6EQDz3e9momBrZc/qzcaeDZpIQbRSKW+lnd6zmzWPJdtw15LGTx4MI6OzfvDt2PnYkUl8+Da0Nfb2wwT9u25s7TWeiSKIsnHc/H3csHHvWWOyj3vLiI1u4je24L55JFrrD6/qLyKqc9/R1WNlvfvmsKgLtZvLbY2C1bsoVajZ/HqpLNOE0Cgpxt7D51k3ou/AvDOY9MY0K1h+yO86ya51+h07MjJpoe/fx218DN5SgB7itO4e+dXOEjl/DzwAfwc1TZ8VyaUUhnTYxNsPu8ZCmsreXLPEgCq9Bp0oknTquJ0snZrIRUkJLqHsqc4nV6eTctnNMnl2rD3DAUFBRQUFGC8IAzZtavp6fqff/5pyfR27NhpIZdTpKm91qOFq/fx9k9rUTkqWPb2rTg7Nb/Fh+x0LzeplRGqM+xPy6WyxtSXLTWnqF2cptV7jpFbXM41QxNRNqDXdMc1g/hr3X5mTepb71itRnf2/+/78E/ee2AqA7uEmb3mPSuWsTo9jV7+Afx2dcNSDGmV+RgRqTZoyastbRWnyRxpRcV4q1S4NBEhawpXhSOhKg9OVBUz2Ceaq8MSya8pZUKgZduIzUUQBD7tczOVek2TUTqz81yukabdu3cza9YsDh06dLaMVxCEs4JShkYUXe3YsdPGXAaRpvZej4rLTUnDNbU6anV6nGm+0/Thg9PYdTiL/hY4CheycEMSr/26BleVkmsHd+Xaoeeq3wxGyxW6z0cURZbuP4xSJmNMbJTZvJm03CIe+XLZ2e9njOpZb8x143pw3biGt5L6JYZx76xhvLNwPUapyMGMPIucptLa2jr/NsSVgb0o0VbhJnciUd32CdcLdifz7L+r8VY5seruuTjKrc91U0ik/DVqHpW6WjyUtpGmsBSJIGmRwwRcvpGmOXPmEBMTw9dff42vr2+7a1LYsWOnYQSj6aup4xc77b0ezZnYBw9XJyIDPfFya9mNzN3VidF9rO9YfySrgNX7jgFQUavhxpE9zyag/7H9AC8uXEW38AB81C5M6RNH/xjLnIYVh47x6B/LAfh+1tX0DQtucryLkxIHhYxarb5ZOVWCIHDd2B6gkJBVUMp1w7tZdN5H467gn+NHGRXeuJCjUirn1qhRVttkK9KKigEorK6mWqtrltMEJsfpjMMkiiI5NaX4OLia1WPqCJhbj86M6cg0y2lKT09n8eLFREU1rpFxqSKKIh+u3UrqqWKeGDcUv0bKXS81DpVlszIvmSsDe7ascqIdqNbX8kXqCtRyZ24KH45EuLgba1rFZRBpau/1yEEpZ/qo1t0eaYrKGg03vb0Ard5A13B/5ozpXSeJfHXycQxGkd2p2YgC7Eo7yepnb7VobvXpijVBAFcLtpS83ZxZ8sIcyqtriQzwanLsgaM5vPHJf/ToEsz9N4846+wKgsD1I6z7efo5uzC3W/2oVkfirsH9UCkUxPv74qkynyRuCZ8cXcMXx9bRzT2E7wda9jttVy7XSNPIkSNJSkq6LJ2m1FPFfLLeJLYW4uHGQ6MHt7NFbcNje38ir7aUPcXpfNe/bUo7RVHkSMUBHKSOhKma/1n7J2c3v2dtBiDRPYzu7rbpX3UxcDnkNHXU9WjN7mO8+dMaBnUN5+nZY6w+v0ajY+fhTLpGBjRZSScRBOQyKVq9gQGxoQzrWvfzfefYfhiNIjqjgW3Hs+gXHWKxDf3CQ/jj9huRS6VEeXtadI632hlvtXltsiUrkkjPKiQ9q5DZ1/TDvYVROmsRRRGNUYdUkPBP7na8lWoGeMXXG2cQjazIScbHwbVFSdBujg7cN6x5IqfFmmq+PrqFLu4BjA86114mpTQbgMPlua3ab81WXLY5TV999RWzZs3iwIEDdOnSBfkFYcZJkybZxLiOSJC7G9E+nmQWlzEwKqy9zWkzwp29yastJVzVdlGmfaU7+Cb9AwAe6/wqQU7Ny0Po7BaEXJDiJFMS7NSxupG3OpdBpKmjrkc/LN9FYVkVf248wJBukQzpZp2z/uw3y1mz5zjRQV4seK7xEm8nBwULnriRtNxiBsSF1TseH+LHJ7ebWkyUVdee7fFmKbF+rfM3P354PHsOZNItPhi1mV57tkYURe7e9RV7itMZ4x/PpqLdAHzd51HCVH51xi7K3MEbKUsRgEVDHiBUdS6CZjAaSSrKJdrNq07VXnPRGw3IJFLyaypQSmWoFSZn+dPDG/n++A4EoLdXCF4OJqf00fiJBGVsZZhv5w7vMAGXb6Rpy5YtbNq0iX///bfesUs9EdxBLuOveTMxGEWrNVguZt7pcRMnqk4R1oZbc+d3Dxdb8JfUxS2UZUOfQyZIUZpppXCpIYgiQhM915o6drHQUdejUb1j2J+WC0BhWZXV59ecriSrOa+irDGCvNQEeanNjnNzMt94uDXRG42UamrwclTRo0sIiz6/3Sbzagx69hZm09XTHydZ44KXZ8cb9ewpTkfElBMEoJDIUEnr/3ycZCZnSCpIUJyXN7Tn1Elmrf6VCq2OKDdPVk66pUWOyyvJ//BL+g4mBXfnj4xkHKQy/h49jwAnN2JONw72cXDBWX7OOQt19uSJLlc0+5ptjbn16MyYjkyznKZ7772XmTNn8swzz7RaJ2FrMBpFPl21jZySch6aOBgP59Z9ahEEAZn0IvDqbYhMIiXSxc/8wBZSoy/HQeqCIAj0cO+HQqLEUeZEsFNYi+ZVydr3ZtFuXAaRptZcj/7cdICTp0qZM74PKgfzN+PzuXFMT3w9XCipqGbSoC5WX/ulm8exavcxBsSHWX1uY7zz1waW7j7E41OGMa679QnnLcEoikxa/CMpRQW8NGgUM+O7NTjup9SdbC1I4/74EUS5WhYZfmDLEpZnHaG3dzC/jjYvvOgglfNE/FS2Fx7j5qiR6EUdbnInvB3U9cZODOiGn4Mbnkpn/B3PNSVelJ5MhVYLCORWtbyZ7X85KYjApvzjp6URdORUlxHg5MY14d3p5xOGh1Jltodeh+ZyjTQVFRXxwAMPdAiHCSAlO59PV20DIMRLze0j6+t/2On4bCr4jm1FvxDtMojJQc8gCAIJ6tZTub0cuBxymlprPUrNKeSl+SsBcFTIuXmi9evKqF6WN56uqNHw7m/rcVU5cM+UQbi7OHHNMNs2zf1hwx4MRpGFW5Lb3Gmq0es4XFKA1EXDD2nbuD62K7ILZBAqdRpeSjJFDB1kct7uPc2iefOrTU7LqdpKi+2ZFNSbSUG9zY4TBKHBXKbpkd3Zlp+Jk0TJy33H1osyiaLILzuTOVVZxW2DeuOoaNrZeabrRH4/sZvrw/uwvyQXd4UTPT3PVSsGq9ybOPvi4LLNaZo2bRpr164lMrJjJNSGerkT4O5KYUUVvSIC29ucDklG1VHkEiWBjm2vT2IpJ6r3AZBVldS+hlxKXAaRptZajzxdVbipHCivqiUqsOlKMFvw97YUlmw5CMCAuFD6xjb9t7rhYBp5xRWE+bqzYFMSk/rEMaxL0z+Du8cPYOmuQ8we3nCfs6paLUu2HiAuxJdukc1bS39Zt5ffNyZz5xUDGNX9XE8zlVzB5Pho/s5NJkN7ig8PreP2ToPqbKc5yRT08Qpld1EmQ30b74d2hk+Tt/P6rvWMDI7k0W7DGRNkuZPaUrp6+rP6yjsaPZ6cnceL/6wBwN3JgZv6Nf0AOCogllEBsQAM9Wu799GmXK6RppiYGJ544gk2bdpEQkJCvcTLe++91ybGWYqLo5J/H5uD3mBsUIH2cielfC9fpr0BwMOd3uiwjtNI37vYU/wHnd2Gt7cplwyXQ6SptdYjtbMjf706l6paLb4taI9SUFKJIDGV4zdF96hAHJVyVA4Ks05aen4x93xuaqfho1ZRUF7FnrRs1r3ctNN0y8g+3DKyT6PHP/17Kz+t2YNMKmHN67fj0owcqE+WbqGyVsvXK3bUcZoAbontw/pTR6g2aPn8yEYKayt4pedkAE5UFbCv5Dgf97sGpUxZJ3+oMVZnHQdgW24m34y+ympbWxM/VxeclQqqtTqLKw8vdS7bSNNXX32Fs7Mz69evZ/369XWOCYLQ5k4TgFQiaZbi7eWAxnBOJVdn1LSjJU3j5xjNhMBH29uMS4vLINLUmuuRs6MSZyurzc7nYEYes95YgFQi8PNTNzapXdQp2Id179x5Omey6bXMSalAcVpmICHUn9X7jzM0vgU9wU7j4WKq1lI5KJDLLL89GI2mD5JEIjBjZE8WbtjH9CH1txbj3f3ZceXDDP33HYq11UhOb2kZRSP37P6Icl01yaXpPNPlRouu+1Tv4Xx+YAdXhsdabGtb8d/x46jcldzVsz/9IkIwiiJpFYV4KFV4KK3Lu/37ZBL7S09yS9QQvBzaThvwcHka6VUnGeHTD6XUupy+BrlcI03p6em2tsNOK9JN3Q8ApdSBMNUlGva10yCXQ6SpI69HR7JOYTSKGI0iuUUVZgUf5TLLVJ191c78+dQsSqtqiA/xo0arM5szYwlzRveme0Qgwd5qHBSW3R4KCsqZd8d3GI1GPvp4FrdP6MftE/rVGaM3Gnjz4D8U1JbzVMIkFg6/leTibIad3oYSEHCUKijXVeNkxc25u08An42YYvH4llKp1SIRwElu3sZPtm3nVFUV8/ft5fPMzVQaatFKanGVO7B6/N24KSxrSVKkqeSJvYsAU2Pe26KHEerc+pGrSn01Tx94D4No4JSmmJvCprR4zss20mTn4kIQBLq7929vMy4aDpZtRGOoppv7KCRCx29N0CSXQaSpI3M4qwAEk6J2Qrhtq08DPd0I9HQDsNphmr9tL2uPpPHgqIEkBJ6zSxAEukeZcpmKKqp558/1BHi4MW98fySShiuGDx3KoaTEJKlw4MBJAgLrJyxvOXWcBRk7EAQo1lQxf9BtBDqp61z30173caQii54e7fdgJ4oi5bpKXOXO9RK7U4oKmPbnT8gkEv69ahbBruom57q9b2++3rmLIdGhzD+5E4nMgFQC5bpaKnQai50mF5kDQU7unKwu4Z/sZJadTOLL/rPp49XyyGJTSAUJCkFBiU5LtV5vm0kvx0hTTU0Nu3fvxsPDg7i4uDrHamtrWbhwITfddJPNDLRjpy3JrEphUdZbAEgFOYnuI9rZopbT0Z/cWkJHX49CfU0OhLeb89lecO2NVq/ntX/XIQKfbZDz8fUNi3/+viWZv3cdBmB4QgTxIQ07ff36RTJhYiIGg5HBQ+pX5H16ZB2fHFmLVCIgIpJaearBeTyULvRXxjV4rCl+SN3B54c3clunQdwU1bLK6U+O/8Y/uZsY49eP+2JuqHPsQGE+tQY9GOBYaZFZp2l2zx7M7tkDjUGPfpeeSl0t4Wo1ce5+BKmaPvd8FFIZfwy7m00Fx3hg1wIAcmvKrH1rVuModSDBrScrcnfzR9Zu5oRPtonO3cW+HlnlNB09epQxY8aQmZmJIAgMHjyYX375BX9/fwDKysqYM2eO3Wmyc9HiKHVBghQjBpzlF3+JL6Jo+mrq+EVKW69H65NTWbHzCDNG9SAutOmo0R+b9vPmr2sZ0zOGhc/MxNfDBYUNilTS84s5nH2KkV0jUTSSc6QzGFhx4BjhXu7EB9aXYZBLpYyOi2LtkXTGxjVeodY7KhilfCferipCfRr/W1Aq5Tz08IRGj+8qzABAhoxEj0CuCm24cq9YU86S7E0kqiPp4WG5HMJ3x7ZSqKniu2PbWuw0JZceBSCp5Gi9Y5MiO3O8pAgHmYwhQeEWz6mUynil77gW2aWUyhnhF8tL3aZSpdcwMbCrVeeLosiOwhP4O7oR4nzud3msPI8j5XmM8e+CQlr/8+SlMEUyHaSKs/lnLcLcenRmTAfGqr/ixx57jISEBHbt2kVpaSkPPvggAwcOZN26dYSEWN7PyI6djoq3QzDzoj9BL2rxceiYVYbWcCnnNLX1evTsdyuoqNGQU1zOd49c1+TYL/7ehkZvYOn2Qzwzc4zF3QMOZeXj7KAkyMutXteBGq2OG975mWqNjtkjevLA5CENzvHNxt28v2ozMomEtY/eiucFYr+CIPDB9CvN9irrERnI5tfnIZVIGt2as4RHu4xjftpWRvvHMcyvcWfoq7RlrMzfycKsNfw56FWLE4/ndR7CV0e3cEtM8/q6nc99MTfwT+4mxvrVT2dwkMl5st+wFl+juQiCwOTg5jWG/iVtN8/v+xelVMb68ffioVRRqavlxk2fozHqSas8xb2dR9c7b07EWLq5RxLu7Idc0nKn/7LLadqyZQurVq3Cy8sLLy8v/vrrL+666y4GDx7M2rVrUanatuGiHTutgYfSv71NsB2XcE5TW61HNVodu4+dpEdMIOuT0ujfgH7S7mMn2XQwnWuHJOLv4UpUoBf5pZXIpRKMRiNY4DStSTrOg18tRSoRcFTI0egMfDJvKr1jguuNbcrZkctM15JKhCajA5a0/DiTmF6qqeH9g+sJdfZgVnRvq9qFdHLz45XuU82OCzrdF9JHqUZmxQ36qrDuXBXWPGfiQuLcIohza91cofagXGeqoNYZDGhPtxWSCAJSwfRZkQkNfz5lEim9PW0ognq55TTV1NQguyAk/PHHHyORSBg6dCg///yzTY2zY8dOyxCMpq+mjl+stNV69MQ3/7A+OY2EcD/Wv3NnPe0io1Hkno//oEarJyOvhP/dMYlXb57A39tSSIwMsHhbrqSyBgCDUaSyRgvA1kMnzjpNjgo5vzx8I0ezTzE8oXE9ptkDehLh5UGIpxp3lWXJxub4/tgOfji+C4ABvuHEuNm+8fX1IaMY4NUFX6XH2Zt5e1Chq+HXE9uJdwukv7d5gc2Lgbkx/fFQqgh39sDPyRUw9dT7dcg8UisKGOzTNsn35tajM2M6MlY5TZ07d2bXrl3ExtbVxPjwww8RRbHZ3cRrtDrmfreIkyVlfD5zKnEBbdcUtik2p52gSqtjdKfIi6ODtB07F3IJR5paaz26kIpqzdl/GxJ7FAQI9nbnaPYpIvw9AJPg7nXDrYt+TO4XD8DGlDTWJqehdnKop3UU5uNO2On8omqNjnlf/8Gp8io+mjuZcB/TtSUSgWGdWx4t0Rj0zFz7E8fLi5gXPwAJAt4OKvwdG9YJ2nz8BPctWEaXAF++mjXt7NbiycoyKrQaYj2aXtcLaipRSVxwlDVfF8sWfHZsDb9kbEUiCKwe+QRuitbtZdoWKCRS4t192FmUTrSbN+rT7ylE5UmIqg2FNy+3SNPUqVP55ZdfmDmzfkPEjz76CKPRyGeffWa1EccKitiXZeoGvuZwaodwmpKyc5nz82IAPrhqIuNi7fpGdi4+LuWcptZajy7ktbkTWLX3GEMTGnZEBEHg+0eu42RhKZH+phtQaWUNXy7fToSfB1cNqp+0+9nybSRn5PLo1KGE+XpQVlXL3rRsxvfqxLQBXThxqpRAD9cmdZsOnsxnd1o2AKsPHOeWEY0rfTeG1mBgU1oGcb4++LnWdYZOVJawu9A0f2FNNTsmP4ijTI6ygYRhgJUpx6nSaNmenkVBRSUBaldOVpYx/Pev0BoNfDFyKmNDG47c7C/KZery+UgEWDphLp3UtotkiaLI9tyThLi6EeDsanZ8wOmmvO5ylU2qxToCOqOBuVu+ocag41h5Pq90bx/19Eshp8mqGOgTTzzBP//80+jxTz75xLR/byVx/j5c1SOePuFBTO0Rb/X5rYFcem6xUlqhjGvHTofiTLVKU1+txCuvvMKAAQNwcnJCrVbbfP7WWo8uxEftzA3DuxPo5dboGAeFjKgAr7MR6R/X7OHntXt5+ZfVfLNyB3rDOTvySyv5dPlWNh/O4If1ewC449NF3PfVXzz+/b8IgkCYjztZRWUs2XmQGq2uwWsmhvoxKiGKxFB/JnTr3Kz39vaajdzx219M+eYn9Bf8rKJcvZgd05sBvmFcH9kdtdKxUYcJYGa/bvQND+bWwb3xdzM5YOUaDVqjKYcmv7rxZronKksxiEZ0RiNZlaUNjjGKRj47soG3DvxHjV5r8Xv8Mnkn1y1bwJjfvqVCa74jwg1h/fll0F38PuReHC5yp2lXUQa7izKQCMLZ6JKXsu0UxethyXp0KVXPtRYyqYSXp45pbzPqEOfnw6K511Or19M7JKi9zbFjp1m0Z6RJq9VyzTXX0L9/f77++uvWu1AHJC7EVOovAu//tRm5TMbM4aaGrV6uTvSICORgZh7DTzfYrdboQITM/BKyTpXi5+7CjR/8QmWtlv2ZeTx91ch611DIZPxv1pV1XhNFkWeXrmJz6glemTyG/hFNVxHW6EyihVqDAeMFNyuJIPBMj/oVVQCbC46zJvcQsWp/DpflcV1YH2pker6cPRX5eT3j4jx9+GzEFAqqKxkdHElOZXmD0Z7xwZ14sscIpILAiMCoBq+5vTCDDw6ZGuAGq9y5Lrx3k+/tDKUaUxJ0jV6P7rQD1xSCIOAud2byyq/RGQ38MnxWnTL9i4XthWncuvU7AL4ZMJeFQ+7kWHk+WwrSeXrPEh7uMvqsI9VWXAqRpg7hNHVUEgJsq+DbGuiNeqSC1J5zZadh2jGn6YUXXgDgu+++a72LtBN7jp9EqzfQr3PDshQjukWx4IkZ3PD2z+iNRlQO58rnpRIJ3957bZ2S/0/vnMYjXyzl0IkC5r79K3+/cvPZnCBLW6sAVNRq+G3PAQB+23PArNP0+KghdA3wo3ugPwqp5de5f+cCag06hBOmj9A/mYcprK1hXGAsH/S/us7Y8WExpJeVMPS3r9AZjSyceB0SQeCVHWsZExrNHV37IpVIuDWuaY2lcGdPXOQO1Bp0xKktq3A9VJZLrL8rLziNIN7LFw+Hxp0Eg9HIrtwcojw82FN0kuxqk4DkjlMnCHF2Z2PBYX7P3Ma1If34N+UkBwoLeGvEWKI9TFuyBtHIity9eCld6ePZ/gnkhvMihwbRiJvCCblEzmdHNwAQ4uzBbTGD29aoyy2nyU7HYsOpTXyV9j0JbvE83Ok+u+PUxuiMWr5MfZG82ix6uA9lYsAM5BIbNLW0IZZGmsrLy+u8rlQqUSrbNyG3o7IvLYe57/0GwEd3TmFQfMNCh52CvFn05E2cKqukV1T9aPX5f68BHq5E+Xtx6EQBcpkUuVTKr/ffyKHsAgbHhllsm6ujA7P6dmdj6gmu72VeAFGlUHBNty4Wz3+GeHUAu4tO4OPgQn5tBWd2HzOrShocn11ZjuZ0qfu2vCx+P7afjPJSdhfkMDuuJw4WpED4ObqxduyDGEQjLvL6CfkXUqSp5MaNn6MXjdwfO5pefk3vGLy7fQuf7N6Or8qZlTfOZnJoAlqDnrFBpq3Pt1L+IremlNTyAg4cMjmYPx9M5rnBwwFYmr2TN1L+AODH/vcT6VL3oVsURTKrSgl0ckPWBs3lB/hE8WnfmUgEgb6nW66EOXvi5+hKsaaKnp5tr61ojzTZaVf2lCQhIrK/7CB6UY9cuLj33y82Cmqzyag+AsDmon9xVXgywmdyO1tVF8EoIhgbX4XOHAsOrqsF9Nxzz/H888+3pmkXLeJ521jm1vfzq93M8cT1IxmaGElCuB+CIBDg4UqAh/nE5XrzjB/GExe8ZjAa0WoNODrYZo34vO9M9hXm0NXTnxJdNZU6Lf9kHWRSaEKD4wcGhPDSgFFU6bT8lZ5CRkUpAjAlMq5Jh+lY2Sm+O7aDsUGdGeIXiZPMuocSQRBAxCI168IaU/+8stpaFBIpb/ep+7c8yi+BH9M3MjagK15VVaQUnuKK6HMaRs4ykyMnFSQNJpC/sOc/fji+iyF+EXw79Hqr3kdzGehzLuJlFEVUMiX/jb4PvWi0Ol9LY9CRUVlEtKsPkmZKQphbj86M6chctE6TwWjk9z0HUDs5NtkK4FJmauAkRNFIontX5BK7w9TW+DuG0EM9hL2lmzAi4qFo/6rPeli4PZeVlYWr67kbdGNRpueff/7stltj7Ny5k169Gm6V0ZF5b8lGVh3M5LGrhjGxd2yj47pHBvLlvVejMxgZ0IDQ5RkOZxZw/ydLCPJ24+N7p6E0o9fkoJAxolvD+TwtoVajY9aj88kpKOeNRyczoHvL5QgeXfsfS44dYkJkDJ+MNUk7xLj5UFhTxbDFX6DR6/l1/A2EuKgBk/NyU5xJguFQSQGHSk4xMjiS94Zd0eg1yrQ1vLBnOdtOnWBZ5kGSpj1qlY2eSmcWDL6DrKpihjahRH6GJwcMJdrdk14BgQ0W/9zbeTzzYsYgk0ihgbz7UX6JeCvdcJM7EeRUv4z/QImpQjylNJ8qnZa9p3Lo6ROIo6z11+5iTTXT1nxBua6WH4fMsnh783zmbP6O/aUnuSG8D08kTGyeIfbtufbjz30pPLdsNQALb7merkEdP//I1oSqgnmg0z3tbcZli0SQcl3oPUwMmEm1oRJfh45XMGDp9pyrq2sdp6kx7r77bq67rukWImFhYVZY2HFYvOUAolzB4q0HmnSagAZVui9kzb7jFJRWUlBaSWpOEXGh9fvANcaOnWn8828SUyf3JDGxZdsoBUUVZOWWgAh7DmTaxGlKKSyo8+8Zdhdkk1Fu2qLbnJtBiEu3eue+O2Qid3TtS7S6cX2g745v5p2U/wg8Xf6f6BFY53h+bQkbT+1nsHcCvg6NR/KOlp3io0Prya6uYGZk05IMbg4O3NK9aWdfJmk67yvRPazRY6/2nsgvqXuYGBzHzWsWsS0/kxGBkXwz8upGz7EVR8vzya0xbcHvKDxhtdOkNejJrCoCIL2yiG2n0pBLpERb2Z/Tvj3XjpzppySTSHB1bF7uxZp9x/lz835uHNmTvp3tvfPsNA8XuRoXubq9zWgYo2j6auq4FZxpWXIpcueEfqw5lMXNo63XO2qIK/vHsetIFsE+amKCrNMdevudfygsqiQzs4hvvrqlRXYE+7sTG+zDseP55GaXtmiuM7w3eiK/Hz7AVZ3qSsQMCQxnUngstQY940PPRXcOFOdRqdPQzzcUmURCnBmhy+2FaQAUaMrZMPE+fC8Q1Hx2/3ccrTjJf7m7+KLPg43O8/mRTaRXFvFRynpUynL2lx5nbsQUgp1s/5B9sKCA97dtZWREBNO71N+mjHHz5rkeYwEoqjVtBeZWVzBr43yCVe680H1iqymh9/IMZU5UP4o11UwNSTR/wnkszNjFC/v+pptHIH28wwhVeXLzlvkAfJ54rXWGmFuPzozpwLS701Sp0fD7voMkBvrRPSjA4vOGxUSw5I4ZOCnkBHuom3XtV39eTXFFNXnFlSx8pr5Anh07Fz3tWD2XmZlJcXExmZmZGAwG9u3bB0BUVBTOzs6td+Fmcv3Q7tx+5VCbzRfsreabR6Y369y+fSP5+58k+vVrvF2KNVRVmfSJ0k8U2mS+eC8f4geNqPe6o0zOB0PrKrEfKS1g8opvEIFPBk1jXLB5TakH4sbgJndihH9nAlT19bFcZKb2MC7yptvEzIrqy/spa7kmPJFv0/8EwO2kM/fHzDBrA5jyeD46+h+iCPd0GtOk2OV727awOi2NNelpTIuNq6P1dyFfj7iaFZlHydMW82P6DradymB6eE8S3C2/B1qDTCLh8a7Nk/VZn3cUEZGk4my+HzSHLadSzx4zWruA2LfnWs67azbz064k5FIp2x++A5XC8kS/Tn4tU40d1SOa39YnMbrn5ZkTZefSR8DM9lwrXvvZZ5/l+++/P/t99+6mnJa1a9cybNiwVrzyxc9DD4xn3h0jcXRseTXms7+t5JC8gphId565s34uym//7uHg0Vxuu24QAb6NC3g2F53x3K31TAWdOWJcfXm9Z13V6qySUgqrqukW6M9LCXNILkujq5nmumea+RpFI7n7D3KoPI2+Hg0nqzfE+oJD/JyxBYAEdTBjAxqvSBwZHsGatDSGhoaZrY4LcVFza3wfDpbksjwnhWCVmmjXc/czndHAwzv+4GRVGe/2nUqos4dF9h4pLeDDlI0M9YvkmohuFp1jjrs6D0eChGH+McgkUob4xvB5/xnIBSmdFJbZdQZz69GZMR2ZdneaPFSmbTYXpQJ5G5Rhns/j143goWuGNvlE0JEQRZF/c5LQGvVMCurR7AoGO5cR5hR2W1F997vvvrskNZraipY4TKIocvuPf7I94yTeEgcMDgIVHhJio+vmshSVVPHeN2sBcHJU8OhtDYtZNkRWeRnPblpFpNqDJ/sPa7RCrYuHHz8Ov4EyXS3jgswnZDdEfkUlEz6dj9Zg4I1JY5mSGEdfz6bzzs5HIkh4teu9GEWjVetmrGvg2aq4WLemo0DXJXRlWlw8conEYvmXeHd/Nk+sv72YUpLHvycPAbDkxH7ujbcsAvr+wfX8l32E/04eZlJolyYV3C0lTu3Ph/3q5jEO8olCY9Azadn71k1mieJ3K3cp+Pvvv9m3bx8KhYLS0lKr52h3p2ne4L70CwsizMMdRTu0K7lYHCaAnUVpPJNs0odxkikZ42/5E5Ody5NLufdce6DTG5BJG78pllbWsDrpOP06hxDoaYra5BSXM3/9bgZ0CmNIXMOaTramrEbDhuMZAERGejG4czhTetVvUeXm6khMuA/HT5yid0LjlYAN8VNKEmsz01mbmc41nbvQyaPxyP8AvzCr5r6QWp0e3ekoVWlNbbPnsfZBM1jlycoRJgEHhQUOiDUCoU3RWe3LAJ9wTlaVMj7IcudwiF8kK7OP0s8nDIWZpPWWUlBbQXqlddu97Z0IbosuBe3uNEkEgV72NiUWoVY4IREEjKKIl7Lj5YTY6YC0Y07Tpcbfuw/x9M8r6BERyJd3Xo1EUt9xeuaHFWw8mE6gpxt/vzAXgHeWbuC/pGMs3JLM9tfutkrhu7monRx4YORAtqZl8uCYQY2mMsikEr5+fQZanR4HpfnS91q9HoVUikQQGBUayY8H9xGhdifUtXXbjIR6qPn6xmlkl5YzNTHu7Os7Tp2goLaCCUHxFmkxNQdLnKXmIIoiG3LScZDK6etXtxpTKZXx3RDL8q7O57rIHkwJTUAplbW62HGQk5p7YodzL69bflI75zTZoktBuztNdiwnxtWfRYPvR280EuHSATWB7HQ4BFFEaCLc3dSxy425H/7KT4/OaVRPaWNKBgajyM7jJ8krK2fR1gN0CvBmTLeYs2POnKuUn3OMYgN9+C/pGBG+nmdbo7QFtw/pw+1DzFcCSiRCPYdJFEUOFhbgq3LG20kFwIq0Y8xbvoxOnp4sufpGevkHcuDme1vF9vNJqyzg4yMr6e0ZwXU9+p99PbW8kJkb5iMClToN10X0bHVbbMXJ6iKWnUjm9R3bAYE/Jsyku7dtksAdztN9yi4tJ7WwmIERIUhtnP4iCAKzovphzSfA3Hp0Zgx03C4FdqfpIiNEdWmWe9tpJYynv5o6bgeAwycLySwsJdq/4b+xW0f3QaPT0zcmhAUbk/hu7W4AVoYF4Ks2RX5fmjmWCb07E+jlxroDqQzoHMrNI3szrnsnfN2c26XVUU51CWW6amLdAs0PPs3PB5N5av0qXBVKNt10K65KJZuyTmAQjaQUnqKopho/ZxfzE9mAb46vZ23+IdbmH2JiYLezFXNyiRSJIMFgRt1aFEWe2P4v+4pyeKf/FcR72E5uIK+8kk83bycx0I9pXc9tf57fV/BCynXVzNr6P2qNOpxVjlRWNV0BaI6t+Rk4SuV086r7+63R6Zj85Y9U1Gq4a3Bf7h02oN65pZoavj26nQSPAEYFxtQ7bnPMrUecO95RuxTYnSY7di5h7JEmy7lxaDei/BoXXIz08+R/c6+kqKKap35eDoCnixMu5yVsOyrlDE2IYPRzX1JUUc30QYk8efUIgjzrV6UdLjrFzpxsJsfE4mrBE/TaI2n8uS+Fm/p1p2eoZQ5QXk0p12z8H1qjnle6XccYf/P96ADyqioBqNBqqNZpcVUqua17b0o1tST6+LWZwwQw2KcTK3KTSXQPRSU793MKcXZnychbKdJU0c87rNHzT1aV8WtqEgALju/jpT7jWmSPKIpsPJVEVlUpf6YcI/lgGb/skTIsMhwPlRMP/7CM1ftTef6aUUzuXT+PzCAa0Yum/KxpUXFc4d/fqihTYW0lr+xbSZBKTVf3QG7f8DsAS8bNIcHjXKK/wSii1esBqNHpG5zrw5QNfH9sJwIC2ybdj6eDymI7moM1kaaO2qXA7jTZsXMpY89pspi7Jgy0KBL0+X/b2HLkBADz752Ok7JulZsoglZvuilqGrlZ6QwGrl60gEqdlv0Febw50vyN/Okl/1FUVcO2tExemjSaMfHmpVKq9Bq0RpMNxZpKs+PPcGePPrgoFMR4eJ11kIJd3fhwTONtT1qLsQFdGeEXh0yQ1vv9xLiZT1MIVLkxIaQzyUW5TItoefHMlsIDvJTyPYVVKkQEFMFyAspCcHZQojMY+C/5GKIIK5OPNeg0uSuc+az3PNKq8hnt1w2FxLrb8M+pe1iaeRCARxNGnn3dYKwbwnFWKlgw+zoO5uVzRZdz2lj51RVsy89keGAkkS6mqKqPgwqVlX39moUVOU0dtUuB3WmyY+dSph0lBy5VYgJMNxp/D5ez23LnI5NK+OH+69ibnsPYbg1veUgEASe5nEqdFmcL8zSGxUSwaO9Bymo0PLTwH/Y+e4/ZHKlIF1/e7XkT+TWlTArqxUPb/iK5KJd3+k+iq0fjrTSc5HJu697bIrvaArmVjkWFrpoagwYfB3ckgsDHg6eaPedUbTkSQcBT2XQUzfF0tEsqMaI3Sonyd6Z/ogt6UY+TTMkTU4az5kAqt4/u1+gcsW7BxLqZb8XTEAN8wvji8BZ8HV24LrI7kS5eOMrqb88BxPn7EOdf17G8fuUvpJUXMzoomi+HX0U/nzC8HZ3r5EI1hCiK/JV5AAepnLFB5gVKG5nE5pIDbd2lwO40nYfBaOS13evIqSznhX6j8XZs3VDl5YypU7yIYNeaalXskgO25+r+XenfKRQPZ6dGZVLCfT0I921c+E8qkbDs2pmkFBYwMMiyFk6vTBlDiLua91ZtpluIP9IGqvcaYrCP6QaXVVnKnxkHAPg9LalJp8kcoihSqqnF3aFl+Tj7C/NYlXmca2ISCHK2jbBmsaacm7a9QbWhltcSb7FIz+lgaRY3b/scqSDhx4F3E+7ceASrh3sMt4RP482D/yIRDBTo8vgrJ4/ObkFMCuzL9QO7cf3AbjZ5Lw3RyzuEvVMfQSpIkAgCI4OsE2cWTzsl4umQToRr41vS5/PvyUM8tH0JAD8Nm0lfH+skKqD9JQds0aXA7jSdx77CXL46uBOAeE9f7ura38wZdpqD1lDIvpxpGMQqEv1+xUlh+87udk5jjzRZzDt/bSAqOIAZQ7o3uk2XfCKX/Zl5TO0Tj6OiZd3pfVQqfFTW6TbdPrQP1/ZKwM3Rweqk8kCVG5NDu5BUnMPV4ZblNjXGbcv/ZOWJVO7vNYD7e9VPMLaU2f/9TmFtNbsKsvlpXPNazlzIv7l7Kaw1IBFkZFTmWeQ0ZVYVYRCNGEQjOTUlTTpNANOC+5NeUUaRppyUyqNojXri3dquf6m8BRpMC8bcwNa8TEYEWdeiR60wOcgCAi7yZlaxtbO4pS26FNidpvOIVnsR7upOQXUVgwLC2tucS5ZKzQE0hhwASmu3252mVkQwmr6aOm7HxO9b9yPdc4y+0cHEBNTXNaqq1TL749/QGQxkFZXy+JThLb6mKIpsyMjA08mJLr6+Fp3jrmpedEciCLzbf5L5gRawNScLgM3ZJ+o4TXmVFby5YyOxnt7cmmh+ey/I2Y3C2mqCndU2sQvgcFkOIGAUBUb69cQgGtEZ9ThIG8/ZGe2fwClNOQqJjP5e5iM3comMx7uY8rv0RgNGRKtzk9oLXycXpkScy7XSGPQWKYcP8A3nz9E3o5DIiHFrXgszc+vRmTGthS26FFwcv+U2wlWhZM3UWzGKos01LeycQ+04AD/n6zGIlfiormxvcy5t7JEmi5FIBLxdVfi5N5zTIpNKUDnIKa0yoG6m43Ihi1NSeHTFCiSCwH+zZxPu3roikbbi/VETWXb8CDcn1tVG+ip5F4uPpgAwNjyaEFd1k/MsmHAdR0sK6eJZ32F8Y886fjq2l6d7juDaqESLbZsZPpRibSV9PWNwkiqZsfVN8mtLeD1xLn08G27jIpNIuSliiMXXOB+9aKDaUIuHwnzSckfjg31beGfPJqbHdOXNQeaLEbq4N39LF2j3SJMtsDtNFyAIAtJ20FK5nJAICqK9XmpvMy4P7NVzFvPvU3Px9vRoVNxSKZex+OGZZBSU0DOi4S4GtTo9v2zaR4iXmpEJ5iOoZyqeRFE8m2tia2r1Or7bv5cQVzcmRDav99uFjAyNZGRo/e2d/oEhfLt/L2FuanyczOeIOMrk+Kqc+fnYXkYFReOvOud4fH9kN9V6HT8f3WeV0xTjGsDHvW8FIKMyn+yaIgD2laQ16jQ1l2p9LbftepUibRlPxs5hsHe3JscbRCPSDpTHueLEMQD+O3HMIqepxbSzIrgtsDtNduxcwth1mizH1cmhUYfpDN6uzni7Nu4M/LBhDx/8uxmAZY/NJtS76cjR1V264ObggLdKRYSHdR3jLeWb/Xt4c/tGAFZ7ehOpbp3rgMmZOjD3HhRSqcXR+tvXLyK5KJeFqcksnTDn7OuP9xjGgmNJ3NN1YLPtCVX5cFvkeDKrC7gquPnzNEaprpIibRkAqZVZjTpNRtHI3Tu/ZW9xOi8lTmdUO/QNLaytZMXJwwzzjyJQpQbg2b4j+GL/Tq6O7tImNlij09RRsTtNdi55sqqPopQ44uPQvBLfixr79lyz2XYskzUHU7l+QCLhPpY5GgHupkiJSqnAxdF8sqxEEBgbbV31k7UEu5iq0lRyBW5t0IbCUW5dgvwZfaALdYJu6tSTmzq1rDWKIAjMCBvRojmaIsDRi/tjrudEVS5XBTV+nUq9hu2n0jCIAr+d2GGV05RfU05SSSaDfGJwskBLKbk4h9zqckYHdqrTj+/+bX+w/dQJIo57smLcnQD09Quu1/euVbFvz9mx07E5VL6dn0+8joCEe6Lfx9vhMmsOLdJ024KOvT61K/fNX0qVRktaQTFf3XaVRedM7NGZGH8v3J0d8XB2svha1XotAgKOZrRymsOVUZ2J9fTGTemAVyMyKgajkRJNTaPHW5PPh17FtvxM+vpeXA81WwoPsOlUMtcED2OsX+OaTACuckdcZC4Ua6s5Vl5k8TVEUWTmpi/Jqy3jiqBEXu3e9OfwZFUpV6/6DoMo8kKPscyIPqeC3ZhzeuY6P+xNQqPTM6d3D37cupcvNuzkjmF9uKl/D4vtNf+GMN9GpYOvSXanyc4lTa2hCgARI1pR0+rXM4gGdhWvxVXuTqxr+zcQtW/PNZ/YAG92pWcTH2Rdc+zGetc1xrHyAq5d+zUSQWDxiNsIdT4X1arWazlaXkAXdQCyFhSnRLk3rsUjiiLXL1/AjvyTPNFrKLcn9G1yLo1Bj0yQ2KxYxkWhZHSwZdG2Mm0NL+1ehbvSkce6jWjRz6SlvJoyH41RR6GmlDe7zTM7fnJwD75N3cRo/4ZbqxyryCZM5Vuvys8gmryMCxW/G0LgXGRJckFu7v/6TWVbwQl6ep17cCyrreXdnZup1er5ffdBBAS8nVXM37qXkuoa5m/da1Onyb49Z8dOBydRPQwBCU5SFwIdrdMlaQ47ilbxR/ZXADwQ8zb+jtYLwNkUETPbc21myUXHV7ddTV5ZBYHurVsVdag0jxqDDoCjZQV1nKabNn7HwdJcrg3ryQvdLW9hUlpbg6NcblEpuVEU2XvKJAGyI/9kk07TnoIcrv/7Vzwdnfh36izclA4W22QLFqfvZ3HGfgCGB0QxwC+sTa5bpdcy/9gOot28GRVgSiZPUEeyq/gwie6WOXwPxI3hzk7DG2wu/MHRJfxxcgudXAL5ss/9Z18XBIH5g25hd9EJRvg1rcJ9vLyAhRm7eK33BNQKJ4YHRLOn6ARao55+3pE4yRSMCKhr648H9/H9/r0AOMhkiAYIdVdzz4j+fLN5NzcPsk2/trOYW4/OjOnA2J0mO5c0EkFCN/dhbXY9lcx0g5UKMpRS25SltwiDmXIVQwdfodoRmVRCkIdtVKqbYlxgHEfK8pEKEob5172p5VaXYTTCH2kpVGoMvNV3Ur0IwoWsPpHKrf/9ga+TM/9dMwcXRdN5TFKJhA+HTWJNViq3denT5NhtuVnUGvRkV5aTWlZMD5+GG82Komi1+GZjaA0GFFKTmGMf7xBUMgWuCiWd1JZrBRVrqnlmz1JcFQ680G0iCgucyfP58vBmPjm8CYB1E+4lwMmNVxJupUJXjZvCMiVpoEGHCSC72rRll1tbUu9YoJM7gU7mpSie3fcXSSUn8VSq2DDuEZKKM5m95WsAPu4zg8G+9Vv6dPcNQCpI8HB0ZMF11+IkV+Dv4kL3AH+m9qgfEWsx5tajs2M6LnanyY4dG9JV3Z97FK/jJFXhobBuW6c1sG/PdXwUUhmPJIxu8NiXA2fw3O7l7CnM4c8TB5gXN5BI16a3//YW5GAURXKrKsivrqRco+GXQ8mMCI2gh2/DTs640BjGhTbcJ+98ruuUQGppEb5OLnTzrq/Zozcaue6vXzlwKp/Px01maLB1iucX8uT2f/nl+D4e6DqYexMGEe/hx56rHkCCUG970CiKLE0/hJvCgR4+AazIPEo/vxCCndUsy9rPqtwjAEwM6sIgX+uiziGno3+ucoezatgSQWKVw3QhoiiyszgVF5kDj8Rezd85OxjgFUuZtppCTQWRLo2LndYatKzN30cn12AinE2/h3h1AEklJ4l1M31//l+22IijMiAohL1z70Ipk1oUlWwp9u05O3bs1CPYqfW3AS3GXj1nMWkFxYRK5c1W3LYVxbXVOMuVKKRS4tT+PNt9HPduWUxntW+drbvGmJvQk3KNhki1B1FqT+b8s4i1WenMP7iX5Dn3tMg2Dwcn3hk6odHj+VWV7MrLBmBVRqrFTlOVTsu9W/6kWq/lgwFT8HY0OSMrso6e/vcI9yYMYvXJYxwqLWBWp164SOpG0P5IPchDm/4GYGBACJvzTuDv5MLWq+9ioE8EnkoVrnIH4tXWCzROC0skwd0fTwdnXOTWb0keKs1l3vafCVa582X/mSilctbkH+CppJ8RgB8H3MfciDFU6zVcue5tSnXVPNVlCtOCG1ZV/yr1Hxad3IiDRMEfg1/AQargyYTxzIjoS5DKFJXq5hHC1/3noDXqGejT+BaiaxtUVJ7FXj1nx46dDo3dabKY6z/4BXe1G8ufmIurY9vm6pzhr/QU7tv0FyHOalZMugUHqYwED3/WXnGXxXN4ODjx4qBRZ78Pd3NnbVY6oWbUuW1BgLML9/caQFJBLnMTLC+E2JKfwdqc4wD8d/IoN0abko9f7TuO31KTuSW2DwU1ldy6/ndEoFKn5fHuddvYOMtNCdQSQUBxujfbmUTxSFdvtkx8qEXvLdqt+ZHjlbmHKKitoKC2guMVp4hXB1BQa9qSEzFFyQCq9BrKdNUAnKxqvMpOeXqbTyaRIjmd/C0IAqHOdRP+e3u1LNJnc+xOkx07djo0dqfJKsprNFTWatvNadpTmI0InKgspUxTg4NTwy1drOHpAcO5qlMXItXWtWg5XHwKbycVng6WSycIgtCsBr59fILp6uFPtV7HsIBzkdqxwZ0YG2xKvK7SaVErHSnR1BDSQK+6saExLJpwI85yJcHObqzNTqOXT6DVtpxhUdZmvkpdzjXBg5gbObbZ8wBMDenGrqITBDm5IlKO1ujN3rJteDhU4a5wJtrVFP3ydnDl3R4zOFKRy/Whjf8c54SPI94tjAiVP4rz8qTeOfQnO4qO8njc1XT3iLDYvuLqGp5ZuQq1owPPjRxxNofM5tidJjt27HRojEBT+bj2hr1nuX1UX7qEhyCTSnh+8Sq6BPlydZ+mRQgP55yisKKKgTGhNkl8nhffH73RSIKHH77NcJi+OLSNNdnHeKL7SBI9TflLEkEg3su6KMmvR5N5bPNy3BQObLzmdlzNJJPnVJZzrLSIQQGhzZIicFM48ufYOU2OUckVrL7yNgpqqhpNAu/pc66cfmJY09Vm5vgrextVhlr+yN7aYqcpWOXB/EFzePXQ/3jl8Ap6uHclVBVIalUmsW5188yG+MYyxDe2yflkEikDvOomapfrqll8cisAS7K3W+U0LTl0iOXHTC1VJnSKYWBoK1X9mluPzozpwNidJjt2LmHsieCWM3dYL1xdXXn1r7X8tmM/v+3Yz5DO4fg00jYlu7iM6R/8hMEo8sLVo7mqT8tbUfg4OfNy3/o3aFEUERGRNNG3rEav4/V9awD4/NBWPhlkmSBnQ5ysNLUGKdfWUqnVoDXouWfdUpxkcj4YdiWq01thxbXVzFr+OweKCjCKInd27cORkkLKNLV8MnISKcWnyK0s59pOCcglLY9euCudcFc2HfkSRZGTFWUEOLu2SEtqbsQY5mesZmqQ9ZGzxijRlgJQrCnlwYR5XBkwkgCHxhO+rcFV7sSUoH7sLDrKpMCmqyDPZ2fOSQ4W5uOqVOLu6Ei8T+sVsNgTwe3YsdOxsW/PWU230AB+3rKPEE81aqeGt+kqajTklVWczUXRGwytZk+hppy52z5Ca9TzRZ87CVE1HGVxkMqYENyZtTmpOMnkPLp9Kc90H2NWcqAh7kjoi6NMTozaiwBnV346vI8tuZkAbM45wZhQU2Lx5uxMkgvzz56XVlbMmqw0AL4/uJdPkrcDUKqp5a5uTatm24oXN6/l2+Q9DA0O4/srr27WHBW6WqKcg/j6PM2khnh892KW5xzkua5XMDW0u9l5H4yZx/biPfT37IVUkBDi1HA1Y3N5JHaq1efctnQJZZpa+gcG8eO0a20mFdEg9u05O3bsdGiMIghNLELGjr1AtQcTEjsxICoElYMCeQO5HSVVNUx461vKazSMS4xmRGwU4xM7tZo9KWVZnNKUA7CvJKNRp0kQBD4aNI2t+enMXP8TAPk1FXw/7Aarr6mSK5jX9ZyTMywogkg3D5xkcvr4ndsCGxIUxgD/EMq0tUyNimNKZCxFtTWUaWoZFRrJF/t3oheN/G/PZnaWZIAA7/afhMcF0aKM8hLmbfgDfycX7k4YwFt71zPIP5x5Cf2ttj25IA+A/afyzYxsmHJdDeNXfUiptpp3el3NuMCGI4hG0cjfJ/djROTf7AMWOU3+jr5MCRxvdpxRNPBV2sucqD7GzNCH6Oxqfu7mEu3pya6cbGK9fVrXYQLz69GZMR0Yu9Nkx86ljD3S1CzUTcgOFFZUUV5jasmzPPkYkT6eSCStd7Pp6xnD5MDe1Br1jPRLoFRbxbqCZHp7xBDoVL89iqv8nO2uCtsktAc6u7Lmqlvqve6mdOCXidPrvLboynNO2v09BvD27k3oBT0b800RqBVZR7g+qq4TsOzEIVJKCkgpKUBjMLAlL5MteZnc2Kk7bla+h9eGjeHHA/uYGNU8R7ZEU02p1lTBllpxqtFxEkHCk13H819OCnd2HtrgGL3RyKnaCvydrBNJrdSXc7zyAAAHyra3qtP049RryCorJcLdsqbULcIeabJjx07Hxtwi1bEXqLbkyYUr8HBX8/Tk4ShkjS+N0X5ePDlpGG/+vQG90djkWFuglMp5PP5cftIje79ha9Fh/BzU/D7oyXrj4z38+GHoDI6Vn+KGyPbrf5hRVsINnRP5LHkHlToNcqT4qVxYln6E9VkZvDNo4tncqImhnfkrIwV/Jxeuikhgd8FJBviH4iq3fmsxUu2Bt6MzG05k0M3HH6WVv59QZ09e7zGV9MoiZkU2Hem6PrwP14c3nD8kiiI3bviOpOKT3B83nDs6D7bYBle5O6N9ryWj6jCDvSdaZb+1KKRSIj0a701oWyxwmjr4mmR3muzYuZSxR5osZlXKcaRKB0bGRzK0c9OVRzcO7M6gTmGcKCxlUExY2xh4GieZyZFwlDbuUPT3DaO/b1izr/HyzjXMP7yHx3sOY26c9f3HfkjZy9NbVhGgcuWa6C58l7KH26MHEujqwqNb/gVgUnYsE05XuIW7evDfleciWZPC45pt+8asE7y7fTMAYW7uXBPX8Pba67vX8s2hXTzUbQi3d6nbb+/K4MRmX/+zo2vZU5zBw3HjOVSaC8B/OYf4OWMLU0O680DcGIvmGe13TbNt6LBcApGm9msRbceOndbHKJr/sgOA2smBQHdXugT5mR37wh+ruOrDnyiqqm7VrbmGeCLuGl5PnM2HPe9otWv8dnw/WqOBRakHmnX+kZJCAHKryrmvxwBS5z7EAz0HMtA/jBBnNyJdPejtG2zxfGXaGu7dvpBHdy6m9nRz48aIdPdAJZejkEqJ9Wq8P91vqaffY9p+i+0wR2FtBZ8eXcP2wjR+Tt/Gh/2u5frwXsgkIiXaan5M22bxXKIoklqxg7yaY42O0RuN3LD+e7r++Tqb8lMtmndbRhb3LlrGprQT9Y4ZRZHFGUksyzqA2BrOiyXrUQdfkzp8pGl1Wip7cnOZ270Hnk6Wi6zZsWMHEI2mr6aO2wFgxSNzcXV1tSgZdvGug+iNRv7ak8LUnq3Q2LQJHKQKBnlbH4mp1evIKC8lxt2rTtPfwpoqNuZkMDwoArXSlA/1bJ+RLDiaxF1drU/EBnigx0BcFEq6efvj7nAuxyrQ2ZUNV1nv7K3ITmFlziEAxgbGMTKgcQ2mYFc3ts25A6NoxFXZeD7Us71G8tPRfdxxQZSpJXgoVfTziiSpJJORfnEM9o1mqF80G/KP8l7KSiYHd7N4rv2l/7E89z0EJNwS9SXuivqVdgW1FewqNFU1rso5alFPvef+XU16cQnJOXmsu8cU3dMa9Gw7lUFBTQVP7ll29r309gqkQJOFn0MYUsEGgpfm1qMzYzowHdppKqut5fZlf2EURco0tbw8YpT5k+zYsXMO+/acxQiCYHH10KMTh/J30mHuGNE2ZfS2YNqynzhYVMDtCX14ss8wTpSXcP2KBRTVVqExGOjnH8KCsdcDEOaiZm5sL4YENK8Nh6ejE4/1HmIz2/t5h+Pj4IJSKiPRI8jseGeFwuyYyRHxTI6wrcMrESR83m92vdeH+MYwxNd8Q+TzOdNkV0RsNOrj7+jKXbGDSS7OZlaUZdpMw6MjSN++m2FR5363z+79mz8yk/B3NCWsSxBQKxyZn/EiGVUH6a4ewbTglvUtNL2Zi397rkM7TY5yOX7OzuRUVBDdZolqduy0D6I+C7H8JZB3QnB+0Dblv0aRJhMrO3govKNy44Bu3Digm8Xjf0s6wIojx7h7YD+6BVrfMLaliKJIRlkJAKllpp5mG3MyyKkqPzvmzKctrayYq//5CRF4fcA4rotpOr/HKIrkVVXgr3KxyWd2dVYq7+/dwvWdunJ9J9O1Q5w9WD/+QbPnlmtr2VqQQX+fMJtVDrYXXdVjcJK6opJ54KFsuB2MIAjcFzfMqnkfHzWEe4b0Q3WeY1muqwFAbzSwbNTtyCQSIly8+DvPJN9QpM1t3pu4EHPr0dkxHZcO7TQppFJWzJhFflUVEe7W9U2yY6etEEWRQ2V/UaHLp7vnDBSS5m0ji9U/gnad6ctxKsgsb4PQhHH2SFM7I4oizyxfjcFoRG80/Zxr/AAAFdJJREFU8t11zVfqtpQtJzORSyT0DjBFZQRB4Pux17D2ZBo3du4GmNqMrD2ZilQiYVRwFGNCTIKVUkFAIggYRBFpEwrkZ7hj9R+syDzOnLiePN9vZIttf3fPJg4U5ZNeXnzWabKUaau+IaOymAR3f/4YfXOLbWkIURR5dNUKNp/M5K1RYxkYbFnLkWNlBZRoa+jtFWKRcykIEqJdG1YjN4hGi343Z+ytNmhRyc4VDqguiMS93GMS/U8eYIBPBJEuXmdfnxH6FAfLttLDY4RF17LAGHukqbVRKRREWBBqbS+q9FqcpPLWFwWz02Ep0hxnY/67ACglznTztF5MEEBQjkCs+RVkUSA1vwVhESJmnCbbXMZO4wiCwNhOUSw/fIwxMVGtfr2Zf/3OxixTku+iq66np58pF6a3XxC9zxOmdHdw5OtR9RWzQ13d+euKWRTWVjW5PWcUReau+o312ekA7C7Iton918V05bWd67jBSoepWq8lo7IYgKwqU1RNazAwY9UCjpae4qvhV9PLp3l/V0+vXcWfh1N4fugIRoZH8vvhgwD8duigRU7TicpiJq36AoMo8k6fKVwZ0nRPw6Z47eAvrMzbw10xk7gq2LyMwSO7FvFP9gFGu3fhxT4T+TN/OUWaUm6OuBo3uam/oYfSiZmR9bf3/BxCQbeBmpqliPI5CEILXQZz69GZMR2YDu80dWQWn9jL03uW0t0jiB+GzKmTXGnn8kEl80YpcUFjrMTDwXwiZmMIyr7gs9e2Drg90mQxQ1/7nA/mXMPgVpAQeH/KRAxGo9W90ERRtOrzYDAazzpMpyew6npniPc03w+tsKaKdacdpki1B68PbFlT2zPMjO3OzNiGxRyzqorRGvVEutTvj+YolZPoEUhScTZ3xQ0CILOyhB0FWQCsyDraLKdJFEUWHtyP3mhk8eEUro7rwtzEHmzKOsHMBMscO61Bj+H076Ja33T1nznWFSRjRGR9QbJFTtOGfFP13X8nD6EpqSHf21TBF6oK5KqgpuUPSmvXk17yAgAKmS/eqkktst0eabrM2VyQhojI3uIsagw6VLKOGxGz03o4ytTcELkQnbEGlaxluXc2j1gajTTZNtzYsStV2pJqrZ5VB4+1itMkiiLz/vyLzScyeXvCOMZ1Mp8UvLngOPfu+BVvpQvzOg1nkgXRCalEwlMDhrIgJZkb4hPp6d9wLowt8HFy5q6E/uwsOMmL/UbT2b3x8n5bkFpRwLUbP8YgGvmi7xz6eNXdvhYEgd9HzqbWoMdRJgcgwtWT2Z17cqTkFDdEd2vWdQVB4OnBw1hy5BD39DYl/j8zZLhVc0S7+fD9kBkU1lYyMbhljZ0f6nw1q/L2MjPcsq3QV3tM4dG1f1GdI0ERoSLYUYORWgIdzauUK6VBCMgRMeIgM0XURGMVZYVTMBpyQP6FdcabW4/Ojum42J2mFnD3aen8Ad4RZh2m9QX7yawu5OrggThK7c7VpYZC4tTsXKZWxR5pspje4UHMHNCj0eMfrtrCioPHeHLiMAZEWZbHcoZKrZbVqaY2IksOHea7g3tRSKR8NP5KXJUNi1SuyT1CrUFHVnUxD23/k0AnNT29zGsb3dq9F7d2t1yQskqn5f71y6jSa/lg6JV4OaosPveRnrarkDNHqbYaw+ly9FOaijrHqnVaKvVafBydzzpMABJB4PneowHTduKiYwdwd3BkRLB1EeGbErtzU6Ip+lVQWYlSJsPNwbpE8/4+pq3OCp2GnKoyIlw8mb3hFw6W5PHxwKsY6GtZpeIY/56M8W9a6T25OJvNBalcFdadUQGx/DspmN0nsokJkfJx2kKkwClNKtC03IKTIpqeQZsQRQNKmUm/TK8/ikFvkn/QVX1vkc1nsUeaWsaiQweZ3adfh80HWpj1BwfKDjEn/EbCVfUXyXAXL97pbT6pM7u6iKeSfwDAYDQwO8IunWCnjbA7TRbzyU2TcXV1bfCYzmDg03XbAfhhy16rnSYXpZJHhgxiXVo6OgxszzoJElhy9BA9fP2J96m/HTYzsi/JJdnsLzZVLm3LzbTIabKWLbknWJl1HIDlJ44yo7Plfc6Si7NRSKR0VpsXBG0pPTxCebXb1VQbtIwLOBd1K9PUMmLJlxTXVvPF8GmMDo5u8PxFxw7w8EaTGvmyyTcR4qLm1yP76eUXSA+f+hpIDbE1M5ObFi3CUSZj+ezZBLi4WPUetAYDE/79kpzqcu6MG8C2AtNW6n8nj1jsNJnDKIrM3TyfKr2WQ2V5fND3WnxdnJnQpRMGUU+8a08KNDn0dB9o0XwKad0IokzeFaXTbIzabQiVq6wz7hJwmtpVEfyF9WvYkX2yPU1olApdJUty/iG1Kp3leVZ+MC7AWeaASmZ6KglwbIOmiHbsnOEiV9/tKMilUmb064aPi4prejcviff2vn0YER3JmvR0BKNApNqdVzes48oFP7L06OF648Ocvfht2G0ESPzR1cj58sCulr6NBuntG0QXT18iXN0ZFmR5xeaWgjSuWfc1U9Z8wcESG5WkN4EgCEwITOTqkN51KscKaiopqq1GBFKKCxo9/4wEgVQQcJLJeX3nel7ZsY7r/l5AbRN5RlVaLX8eSiGrrIzjxcUYRZEqnY6c8vJGz2kMjVFPfk0lAMW1VdzeuT/9fEK5Kdr6VjV1bNTXkFRyBJ1RhwD4OKpwUmhwU9SNi0gFGbdEPMKTsf8jwNE6x9+gS0FT9T2I1TirX8bFea71ebx2RfAWXlyQ4uPs3J4mNIqzTEVv9x4cqjjCAM+WKca6KVQsGPAopdoqwp3NJ1jasWMrRKMBUTQ0fryJY3bq8vC4waidHMksLsVoFBttn2IwGhEQGjzuojRtzSulUl4ZPprrFy8EIL+ystHrzurUkzf3rOeGmG4tfxMNoFY6smzSLKvPq9RpAFOxU5VeY2OrLOOf9CM8t2U1A73Diff2Zk5s487H2LBo/rxyBi4KJZFqz7PbkG5KhyYT9J9fu4ZFKSl4Ojmxfu7NFFVX4+HoSM8Ay6JT5+MiV/LVkGvZXZjFrJjeeChts6X/RPL7pFdlM8y7Nw91volu3k5sL67lcHUyMK3F84uihorCqSBWY9Adwkn9Ojheh+CmAqZYPo+Z9ch0rY69JrWr0/TvjTMJV3dM/SVBELg/5k6bzeeucMZd0TEdxNamTFfN75lbiHMLpr9Xp/Y2px7V+kocpE5ILNQ9uagQzYjJdfBQeEdiadJhPlqzFYAYX68Gt+jSC0u44YsFyKQSfrvjBvzc6m7fTO+SQLi7O77OzoSp3fnyiilkV5RzXZeujV53VmxPZsU2ncPSHowO6Mz/+lyFUiKjj3dYu9jw0+EkCmqqKMyp5odx15iNfHQ/bxvugR4DGRwYRqSbB3JJ4y1CzqSPSBBwlMm4f0DD2kmWMsQ/giH+NtBgO49yXRUAZTpTrper3NS6xqmJps7WIUEQVIhiNYIhl5q8HkidrkdwuN26acytR2fHdFza1WnydbZuP9jOxclXx1fye9ZWJAj8M/wZ3OQdJ2F6c+E/LM35hjBVLLdHvNhh8+uajdEIgr33nC2I8vFEKhGQS6UEuTdcebQ3M4fSmloA9mfn13OaBEGgb9C5vKSREZYnJK9IPca727dwY5eu3NTV8ryj1kIQBCYE2bYNSY1ehyiKOMktK5a5tUtv8qsqmRQZa/VWkUQQ6ONnXoLgheEjGBIaRnd//w67PryUcBe7i1MY6mOKtD3Y6VqG+XQn1jWk2XOKopGcyj+RSZzxVY3BxftfDLrDGCr/hyiWYKj+DpysdJrMrUfQ4dcke/WcnVYn0MlUhu+hdMZBIjczum1JqzSJ1J2oOoJB1CMTOpZ9LcYeabIaURTJKColyN0VufRcBCIx2J91j96GVCJB7dRw5dTY+Gh2n8hGLpUwJDrMpnZ9tGsbR4sLeXvbpg7hNNmaExUlTPz7WwyiyJLxNxGjNi9hMCw4nGHBtkmgbgxHuZwrOtWPkG/OOcEfqQeZ2bk7id5t3xrnfIKd/Ah2OpeMr5DK6efVeFPnIk0FyaXp9PXshJOs4WhUXtXfpBQ+BUBv/59wU3YDaSUy1Z3oK99D5nQtOmt30tox0pSRkcFLL73EmjVryMvLIyAggBkzZvDUU0+hsEJA2+402Wl1pocMpJdHFL4ObiilHcspGet3AwqJks6uPZB1MIfOFohGI2ITT3ZiB3+qaw/eWL6B77fsoXdYEPNvvqbOMU/n+lHS80UrVUoFr0xtWjCwucxI6MYbWzZaLKh4PkbRyON7f+ZAWRYvJ06nh4dtt4dswaGSAip1WgAOFudb5DS1Jw9s+Jv86kpSigr4Z8rsdrEhvTKb5w9+jo/Sg5cT5qFsQM5mW+FBjlVmMTVwKM6nt+3u2vUZWdWFDPdJ4OXEGQ3OrZCcKVqSIpO4UFT6JJVV3+OgHIaft6kKESuT4c2tR9B6a9Lhw4cxGo18/vnnREVFceDAAW699Vaqqqp4++23LZ7H7jTZaXUEQSDKpfVLkpuDj0Mg00PubW8zWo92ijTZ6qmuPTicewqAo/mnzI79afs+Xv1nHVcmdub1aeNa1a7pcQlMj2te5d6p2nLWFaQAsCInqUM6TSODorgzvh960cj40M5tdl1RFFmecQy5RMKoUPNtbqp0WhYcTSLSzYP86kr6+dteBsJSthYlU6gppVBTSnpVDp1dw+ocL9FW8OyBrxERqdLXckfUFAB0RlOISN9E0rWn00D6BSxGInFAJQ+novSA6VxdSvMNbsdI07hx4xg37tzfaEREBEeOHOHTTz+1O0127Ng5jVEEoe2dJls91bUHz00ayS87khgdZ/4GuvzAUYyiyPIDR1vdaWoJPg5uTA/pT3JpJleFnKsGXlewiWOVaUwLvAJPpQcnqzM4UnGQvp5DcJbVzzkt1OSQVX2UeLf+KCS2SjI2IZdIeazHMJvOaQmrM1O5Y/USAH6ZMJ0BAU3nAX2QtJnPD+xAgsCqqXOJUtfvAqA3GhERm0wwtwUjffuwr+Qofo6eRLvUd94cpUrUcmdKdBUEOJ5rxPtxr9vZVXycIT5N56S5KGPP/r+n+ztUVv2Ek2MLWqmYW4/g7JpUfkEUS6lUomxECLa5lJWV4eFhnQyQ3WmyYzMqdTXIJbIOtwV3WSOKNNm2oIM/1bUH4V7uPDlhWL3XX1q2huUHjvLclSMZE28SUHxg1EA+Xb+d8V1i2JuZQ5SPJy4OzV/Ya/Q63tq9EZVczn3dBiKzslddYwiCwENxV9Z5rVxXwZfpJkVniSAwJ+xG3j/6MrXGGjKr0pgTcU+d8QZRz2fHH6PGUEVm9REmB1qZBNxMtuZm8tzWVYwNjeahnuZ7rVnL+UnnjjLzt0QvB5NUgYtCSYCza73k8MyKEib/+z0g8sf4WYS5tJ42n6+DJ292u6/R4w5SBV/3eZwibRlhqnN5V36O7lwR2NuqaynknfBQv9hsWwHz69HZMRAcXNcJfO6553j++edbdv3zSE1N5cMPP+Sdd96x6jy702THJiSVpPLQvs9wljnybd9HcFfYKyM7AqJRRGziyU7s4E91HQW9wcgvO5IQgd/3HDjrNPUIDeThsUP4bN12nvpzJWGeav65d3azq6z+TE3h64M7QSLi46RiZufG27pYS4m2jGJtKRGqEARBwEnqSKCjP9k1uXRyiUZAQCVzoVZbg4u8vjK63qhDig4BEUkb6iJ/fWAXR0oKOVJSyF2J/XGwwLGxhgEBISyZNAOpRCDBy3wawS3xvenhE0CwsxpVA1V+yUW5lGprAEgqzG0Vp+lYRQ5LTm5jjH8PuqrDmhzrInfCpYNULJtbj+DcmpSVlVVHob+x9ej555/nhRdeaHLOnTt30qvXOQ2vnJwcxo0bxzXXXMMtt9xiqfmA3WmyYyOOVGRhEI2U6arIrSm2O00dBdFMg8zTSZcd9amuoyCTSrh35ACWHzzKnAHnNJOOFRQy9dMfMZ5e6E9VViOK0NzK9AQvP2RyAaPEyKv7VnN1VEKdXmrN4f/t3V1oW2Ucx/FvkiZNbZO1NrYx2LSbpLOzBW031iKzjdpucxd6Z1ARijimFO+GiIKIFwOpYBVvCtLQG0EvhN2JolcbUgVpN182J+rSHkurnV225qVpjheh3cS2OUnTN/l94IFCDieB9vz7O0/O839uZhK8OvE2fySnATi572l6/Ucos5dxpu0NEktJqspysyen73sLI3GVfVX/XS325fQQbvscPlcdx+4uvBlmsZ5qbuO7WYO+YKiowBSLz5Mxl9jrXTu8PFBnffWbzWajoy7XqmApm2Vo4hzX0ylOP/gwlU4XvQ3NPNvcDpgcbci/MXMxzvzwCZfjU5z780c+PfLaprzHpshXj1aOAa/Xu+a2RrcbGBggEomse0xTU9PKz4ZhEA6H6erqYni4wA2HUWiSEjkR6GQm+Te15d4N9QaR0rI607RT7+p2klPdhznV/e/dAZKLmZXAdLw1xPMPHVyzU7gVrbX19B/o4MOfxnDaHSyf6cZiitErY7TsqSccsP6P2DRNXhkf5vv5eaqcDtyOJa6l51ded9gcK4EJoLKsipDnADcyC3z91zhte5qpd+ee2UktLXctz+K0b93D/L2NIXobV99PLp9L12Z5/GyUrJnl4+PPcKg+f1+mQpyf/p33Js4DsNdbw8LiIk67gzcP9RW+xQhwM5Pm7NUJWmsCtNWs3XG8xdvA5fgULd7tewi9GIXMNFnl8/nw+Xz5DwSmpqYIh8N0dHQwMjKCvYivv7clNK31lYDsbs/5HwEgHo/nOVKKtXzNWC0sGTO1brO4DLk9t3bqXd1W2Eg9avTcwbtPPsb1ZIq+lhB2u23Dde3Fe9u5v6KG/dU+0gsJ0iQYuvgV0Stj2IDPjr7EXRXWZnITmRTjxs8A2FzlnLjnMGFPZ97P+M6lKN/MXaTWWc0HB18HoLPqBWqzLQQr23dN7f5tZprFhQUAfpk22F+R/2+8EH67C89S7lm0mbk53h/PBah6m5PuAvbxWzZ44Qs++vVbyu1lfH7sZSrLVg+nJwOP8sSd7dS5q7f1d1HqegS3alKpGYZBT08PwWCQwcFBZmdvrY71+wtY3W1ug1gstrzuUENDo4gRi8XWvcYSiYTp9/stncvv95uJRKLk1/nk5KQZCoXMSCRiZjKZkp+/VFSPNDQ2NkpZj2BzatLIyMia71cIm2lufUvgbDaLYRh4PJ4d25ZeZCcyTZN4PE4gEMg7tZxMJkmn03nP6XK5cLtX73BdLMMw6O7uJhgMMjo6iuO2ztoF3dVtAdUjkeJsRj2CzalJpbItoUlE/t+i0Sj9/f2rvqaSIyK7lUKTiIiIiAVb12xDREREZBdTaBIRERGxQKFJRERExAKFJhERERELFJpERERELFBoEhEREbFAoUlERETEAoUmEREREQsUmkREREQsUGgSERERsUChSURERMSCfwAOXw6d/fUwdwAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deepsensor.plot.task(task, task_loader)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Interpolating pointwise `pandas` data" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:05.769151646Z", + "start_time": "2023-11-02T13:41:05.768786379Z" + } + }, + "outputs": [], + "source": [ + "task_loader = TaskLoader(context=station_df[\"TAVG\"], target=station_df[\"TAVG\"], links=[(0, 0)])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:06.006422265Z", + "start_time": "2023-11-02T13:41:05.768911677Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: []\n", + "X_c: [(2, 72)]\n", + "Y_c: [(1, 72)]\n", + "X_t: [(2, 592)]\n", + "Y_t: [(1, 592)]\n" + ] + } + ], + "source": [ + "task = task_loader(\"2016-06-25\", context_sampling=\"split\", target_sampling=\"split\", split_frac=0.1)\n", + "print(task)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:06.160036539Z", + "start_time": "2023-11-02T13:41:06.012320988Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAEiCAYAAADksOZKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADA5klEQVR4nOydd3yT5fbAvxlNuvcetJTSllUoexeQrchSURDFPcCtF9d13Z97exUnAl4XoiDiAmTLLBtaKFAK3XTvkSZ5f38EiqUjSZs0oTxfPvmUvM86SZuT857nPOfIJEmSEAgEAoFAIBC0iNzWAggEAoFAIBBcDgijSSAQCAQCgcAEhNEkEAgEAoFAYALCaBIIBAKBQCAwAWE0CQQCgUAgEJiAMJoEAoFAIBAITEAYTQKBQCAQCAQmIIwmgUAgEAgEAhMQRpNAIBAIBAKBCQijSSAQCAQCgcAEhNHUDuTm5vLAAw8QGRmJWq0mLCyMKVOmsGHDBouuM2rUKB5++GGLzmnNef/J5s2bkclklJSUGO175MgREhIScHJyIiQkhJdeeglRDUggaB0ymazFx7x582wmW0REBO+9955V11i6dCmenp4m9d2yZQv9+vXD0dGRyMhIPvnkE6vKJrA/lLYWoKNz5swZhg0bhqenJ2+88QZxcXHU1dWxdu1a5s+fz/Hjx20t4mVFWVkZ48aNY/To0SQmJnLixAnmzZuHi4sLjz32mK3FEwguO3Jycur/v3z5cp577jlSUlLqrzk5OZk1n0ajQaVSWUw+eyEtLY3Jkydz11138fXXX7N9+3buv/9+/Pz8mDlzpq3FE7QXksCqTJo0SQoJCZEqKioatRUXF9f//+zZs9K1114rubi4SG5ubtL1118v5ebm1rc///zzUu/evaWvvvpKCg8Pl9zd3aVZs2ZJZWVlkiRJ0q233ioBDR5paWmSJElSUlKSNGnSJMnFxUXy9/eXbr75Zik/P1+SJEnatGmT5ODgIG3durV+rbfeekvy8fGRsrOzW5z3Uj766CMpKipKUqvVkr+/vzRz5sz6Nr1eL73++utS586dJUdHRykuLk5asWKFJEmSlJaW1miNW2+9tck1Fi1aJHl4eEg1NTX111599VUpODhY0uv1zf8iBAKBUZYsWSJ5eHjUPy8oKJBuvPFGKSQkRHJycpJ69uwpffvttw3GJCQkSPPnz5ceeeQRycfHRxo5cqQkSZK0evVqKSoqSnJ0dJRGjRolLV26VAIa6L3t27dLI0aMkBwdHaXQ0FDpgQceqNeVCQkJjfRCczz//PNSWFiYpFKppKCgIOmBBx6ob6utrZWeeOIJKTg4WHJ2dpYGDhwobdq0SZIkg/67dI3nn3++yTX+9a9/SbGxsQ2u3XPPPdLgwYONva2CDoQwmqxIYWGhJJPJpFdeeaXFfnq9XoqPj5eGDx8u7d27V9q1a5fUt29fKSEhob7P888/L7m6ukozZsyQjhw5Im3dulUKDAyUnn76aUmSJKmkpEQaMmSIdNddd0k5OTlSTk6OpNVqpezsbMnX11d66qmnpGPHjkn79++Xxo0bJ40ePbp+7ieeeEIKDw+XSkpKpIMHD0pqtVpauXJli/NeSmJioqRQKKRvv/1WOnPmjLR//37p/fffr29/+umnpdjYWOnPP/+UUlNTpSVLlkhqtVravHmzpNVqpZ9++kkCpJSUFCknJ0cqKSlp8r2aO3eudO211za4tn//fgmQTp8+3fIvRCAQtMilRlNmZqb05ptvSgcOHJBSU1OlDz74QFIoFNKuXbvq+yQkJEiurq7SE088IR0/flw6duyYlJaWJjk4OEiPP/64dPz4cem7776TQkJCGhhNhw8fllxdXaV3331XOnHihLR9+3YpPj5emjdvniRJBv0ZGhoqvfTSS/W6pylWrFghubu7S7///rt09uxZaffu3dJnn31W3z579mxp6NCh0tatW6VTp05Jb775pqRWq6UTJ05ItbW10nvvvSe5u7vXr1FeXt7kOiNGjJAefPDBBtdWrlwpKZVKSaPRtObtFlyGCKPJiuzevVsC6g2Q5li3bp2kUCik9PT0+mtJSUkSIO3Zs0eSJIPR5OzsXO9ZkiSDsTNo0KD65wkJCdJDDz3UYO5///vf0vjx4xtcy8jIqDdQJMlwJxYfHy/dcMMNUo8ePaQ777yzQf+m5r2Un376SXJ3d28g3wUqKiokR0dHaceOHQ2u33HHHdJNN90kSdLFO75/3oU2xbhx46S77rqrwbWsrCwJaDS/QCAwj0uNpqaYPHmy9Nhjj9U/T0hIkPr06dOgz8KFC6WePXs2uPbMM880+IzPnTtXuvvuuxv02bZtmySXy6Xq6mpJkiQpPDxcevfdd1uU5+2335aio6ObNFxOnTolyWQyKSsrq8H1q666SnrqqackSTLtNUuSJHXt2lV6+eWXG1zbvn27BEjZ2dlGxws6BiKmyYpI54OTZTJZi/2OHTtGWFgYYWFh9de6d++Op6cnx44dY8CAAYAhKNLNza2+T1BQEHl5eS3OvW/fPjZt2oSrq2ujttTUVKKjo1GpVHz99dfExcURHh7eqsDLcePGER4eTmRkJBMnTmTixIlMnz4dZ2dnkpOTqampYdy4cQ3GaDQa4uPjzV7r0vfT1PdZIBCYh06n47XXXmP58uVkZWVRW1tLbW0tLi4uDfr179+/wfOUlJR6vXWBgQMHNni+b98+Tp06xTfffFN/TZIk9Ho9aWlpdOvWzSQZr7/+et5777163TN58mSmTJmCUqlk//79SJJEdHR0gzG1tbX4+PiYNP8/EbpHIIwmK9K1a1dkMhnHjh1j2rRpzfaTJKnJD92l1x0cHBq0y2Qy9Hp9izLo9XqmTJnC66+/3qgtKCio/v87duwAoKioiKKiokZK0Rhubm7s37+fzZs3s27dOp577jleeOEFEhMT62X87bffCAkJaTBOrVabtU5gYCC5ubkNrl0wHAMCAsyaSyAQtMzbb7/Nu+++y3vvvUevXr1wcXHh4YcfRqPRNOh3qb5oSqdJl5xw1ev13HPPPTz44ION1u3UqZPJMoaFhZGSksL69ev566+/uP/++3nzzTfZsmULer0ehULBvn37UCgUDcY1dSPZEs3pHqVS2SoDTHB5IowmK+Lt7c2ECRP46KOPePDBBxsplpKSEjw9PenevTvp6elkZGTUe5uSk5MpLS01+W4LQKVSodPpGlzr27cvP/30ExERESiVTf+6U1NTeeSRR/j888/54YcfuOWWW9iwYQNyubzZeZtCqVQyduxYxo4dy/PPP4+npycbN25k3LhxqNVq0tPTSUhIaFZ2wOg6Q4YM4emnn25wQmfdunUEBwcTERFhVEaBQGA627ZtY+rUqdx8882AwdA5efKkUb0UGxvL77//3uDa3r17Gzzv27cvSUlJREVFNTuPqbrHycmJa6+9lmuvvZb58+cTGxvLkSNHiI+PR6fTkZeXx4gRI9q0xpAhQ1izZk2Da+vWraN///6NbmgFHReRp8nKLFq0CJ1Ox8CBA/npp584efIkx44d44MPPmDIkCEAjB07lri4OObMmcP+/fvZs2cPt9xyCwkJCY3c3i0RERHB7t27OXPmDAUFBej1eubPn09RURE33XQTe/bs4fTp06xbt47bb78dnU6HTqdj7ty5jB8/nttuu40lS5Zw9OhR3n777RbnvZRff/2VDz74gIMHD3L27Fm++uor9Ho9MTExuLm58fjjj/PII4+wbNkyUlNTOXDgAB999BHLli0DIDw8HJlMxq+//kp+fj4VFRVNvsbZs2ejVquZN28eR48eZdWqVbzyyis8+uijwkUuEFiYqKgo1q9fz44dOzh27Bj33HNPI29LU9xzzz0cP36chQsXcuLECX744QeWLl0KXNzKWrhwITt37mT+/PkcPHiQkydP8ssvv/DAAw/UzxMREcHWrVvJysqioKCgybWWLl3K4sWLOXr0KKdPn+Z///sfTk5OhIeHEx0dzZw5c7jllltYuXIlaWlpJCYm8vrrr9cbdREREVRUVLBhwwYKCgqoqqpqcp17772Xs2fP8uijj3Ls2DG+/PJLFi9ezOOPP27OWyq43LFZNNUVRHZ2tjR//nwpPDxcUqlUUkhIiHTttdfWH3uVJNNTDvyTd999VwoPD69/npKSIg0ePFhycnJqkBrgxIkT0vTp0yVPT0/JyclJio2NlR5++GFJr9dLL774ohQUFCQVFBTUz/Pzzz9LKpVKOnDgQIvz/pNt27ZJCQkJkpeXl+Tk5CTFxcVJy5cvr2/X6/XS+++/L8XExEgODg6Sn5+fNGHCBGnLli31fV566SUpMDBQkslkzaYckCTDqZsRI0ZIarVaCgwMlF544QWRbkAgsACXBkUXFhZKU6dOlVxdXSV/f3/p2WeflW655RZp6tSp9X2aOyhyIeWAWq2WRo0aJX388ccSUB/kLUmStGfPHmncuHGSq6ur5OLiIsXFxTUItt65c6cUFxcnqdXqZlMOrFq1Sho0aJDk7u4uubi4SIMHD5b++uuv+naNRiM999xzUkREhOTg4CAFBgZK06dPlw4fPlzf595775V8fHxaTDkgSZK0efNmKT4+XlKpVFJERIT08ccft/BuCjoiMkkSqZQFAoFAYF1efvllPvnkEzIyMmwtikDQakRMk0AgEAgszqJFixgwYAA+Pj5s376dN998kwULFthaLIGgTQijSSAQCAQW5+TJk/zf//0fRUVFdOrUiccee4ynnnrK1mIJBG1CbM8JBAKBQCAQmIA4PScQCAQCgUBgAsJoEggEAoFAIDABYTQJBAKBQCAQmIBNAsH1ej3Z2dm4ubmJhIQCgRlIkkR5eTnBwcH1Gdubo6amplG5i6ZQqVQ4OjqatP7HH3/Mxx9/zJkzZwDo0aMHzz33HJMmTTJpvD0i9JFA0DqsoY/APJ3U3tgkEDwzM7NBcVqBQGAeGRkZhIaGNtteU1ND53BXcvOMl4cIDAwkLS3NJCW1Zs0aFApFfemLZcuW8eabb3LgwAF69Ohh+guwI4Q+EgjahiX1EZink9obmxhNpaWleHp6kpGRgbu7e3svL7AB9457jfysYnoP68pzn99pa3EuW8rKyggLC6OkpAQPD48W+3l4eJC2Lxx3t+bvAMvK9XTud5bS0tJWfxa9vb158803ueOOO1o13tYIfdTxefOVX/h703EAvln5IPv3n+HN13/FwUHBJ5/fjr9/85+ltvDxt9tYv/0Y980ZybihsfXXf1izl5Op57h99jCC/D2tsnZ7YGl9BObrpPb2fttke+6CC9zd3V0oqSuEt5Y/yt7Nxxh5TR/c3d1sLc5lj6nbSC6uhkdz6Npwy6TT6VixYgWVlZX1dRQvR4Q+6vjcdPMo8nOr6T+oC8Eh/gSH+BPVNRR3dyeCg72stu5v206g1crYuCuNmRMH1l+/c84Yq61pClqtDqVSYbH5LKWPwHydFBoaymuvvdbA+z116lSreb9FcktBuxAc4cu185quMi6wHnok9DSvhS60lZWVNbiuVqtRq9VNjjly5AhDhgyhpqYGV1dXVq1aRffu3S0ntEBgYbr3DOWTpXc1uBYbG2z1de+7aQR/bktm7rSBxju3E//7fidf/G8bUyb25vEHJrTr2sb00YU+5jBlypQGz19++WU+/vhjdu3aZRWjSZyeEwg6MHoT/gGEhYXh4eFR/3j11VebnTMmJoaDBw+ya9cu7rvvPm699VaSk5Pb6yUJBFalqqqW++5byqxZH5F2Jr9Nc910TX+WvX4Lg/t0tpB0xqmprWNj4gnyiyuabN+8PQWArTtOtJtMFzBFH13QSa1Bp9Px/fffW9X7LTxNAkEHRidJ6FoIW7zQdmk8T3NeJjCcbLngCu/fvz+JiYm8//77fPrppxaSWiCwHSdPnSPlRC4AO3eeonOEX7usu+fIWU6ezWPaVb1xcVK1ep5Xl/zFnzuOEejjzup3G8ePLrhrDMtXJjJ5XK+2iNsqjOmjC33Afr3fwmgSCDowpm7PtSWeR5IkamtrWzVWILA3uncLYdy4nhQWlDNubM92WbO4rIpHXv0JvSRRXFrFgjkJrZ5LpzOcUNPqmj6pFh/Xifi4Tq2evy2Ysz136YnW559/nhdeeKHJMRe83yUlJfz000/ceuutbNmyxSqGkzCaBIIOjB4JnQlGk6k8/fTTTJo0ibCwMMrLy/n+++/ZvHkzf/75Z1tFFQjsAgcHBU89eU27rqlWKXF1VlNWWYOft+kHZapr63h7xRZUSgUPzxyBykHJk7eNY1CvCPp1s780Gsb00YU+YL/eb2E0CQQdGFM9TaZy7tw55s6dS05ODh4eHsTFxfHnn38ybty4tooqEFyxODuq+O7t28gtKKNbZIDJ49bvO8HKbUcAGBAbxug+Ubg6q5kysn08ZOZijqfJXr3fwmgSCDowpsY0mcrixYvbKpJAIGgCbw9nvD2czRoTFxmEm5MapUJObCd/K0lmOcyJaTKV9vZ+C6NJIOjA6M8/WmoXCASXJxGB3vz19j3IkKFU2P9heGP6CBPaL6W9vd/CaBIIOjA6IzEExuILBAJBy2i1OgrKqgg0IxbJkjgoGiapLK2qQS6T4ebUdAxQel4xx9LzGN27CyqH9jUBjOmjC33Mob2938JoEgg6MDqp5Qy7bckILhBc6UiSxLz/+46U9DwevH4EcycNsKk8x7PymPP+9yjkMlY8djPhfg2zndfWaZnz6rdU1mi4+aq+PHpd60/ptQZj+uhCH3vG/v15AoGg1ehNeAgEgtZRp9WRmlUAQPKZczaWBk7mFKLR6qjWaEnLK2qxry1sE1P0kb3rJOFpEgg6MHpk6Gi+LpS+hTaBQNAyKgclr8+fwq6jZ5gzob+txWFin2jO5hejUioY0a1xFnK1g5Kvn5zN8QzD9lx7Y0wfXehjzwijSSDowOglw6OldoFA0HpG9unCyD7tb4A0hYNSwYJJQ1vsEx7gRXiA9YoUt4QxfXShjz0jtucEAhvy19Zj3PrAEn5dd9gq8+vO39m19BAILie0Oj2VlZdnBvoTWfnMfes7Xl+xCcnMo/UdAVP0kb3rJGE0CQQ2ZOn3O0hLL+CLb/62yvyXu4ISCP6JRqPljnu/ZMr177N523Fbi2M2K7Yd5siZXL7bcpCc4nKLzn06t5BcC89paYTRJBAI2sSMq+Nxd3Pkuin9rDK/XpIZfQgElwslpVWczShEr5c4dCTD1uKYzYR+Mfi4OTOyZ2cCPF0tNu/fyWlMf+0rrvm/JWQWlFhsXktjij6yd50kYpoEAhsy4+q+zLi6r9XmN3bnZu93dQIBQFZ2MXv2pTF6RCwPzx/H8RM53HT9IFuLZTb9u4ay4dV7LD5vbonBw1Sn01FcWUOor8WXsAimeJLsXScJo0kg6MDokKNrwaHcdB10gcC+eOzp5eSeK2PnnlTe+M/1thbHamw6eIoXvlrHsJ4RvHzbJGQy0wyIqYN6oNHq8HJxold4oJWlbD3G9JGhj30jtucEgg6MZMQNLtm5K1wgAHB2UgHg4tx8pfuOwB+JxymvruXPxBSqa+tMHuegUDB7ZDw9IwIZ9dKnjH/lC/JKK+rbt6ecYe6H37Nqz1FriG0yxvTR5aCThKdJIOjAiO05QUfgvTduIulYNn17d7K1KC1Sp9Pxys+bKCyv4vnrxuLjal4B3puv6se54nJG9IzE2VFl9vp7T2dRUF4FwKH0HMb16grAB39sJzkzj5M5hUwf2NPseS2F2J4TCAR2jU6So5Na2J678k49Cy5D3N2cGDLQPnIhtcSBM9ms2HUEgPiIYG4bZV7Cy7jIIJb966ZWrz+2ZxTbU86gUioYHhNRf31q/x6knitihg0NJjCujwx92kmYViKMJoGgA6NHhr6FXXi9KNgrEFiM2GA/Ovt5UVRZzbB/GC3thZuTmrduvrrR9dnD+zB7eB+LrSNJEknHsnFzNS/Cx5g+MvSxb50kjCaBoAMjtucEgvbD3cmRNf+aZ2sxrM43y3fxxbJtuLqYpz/E9pxAILBrjG/P2fddnUBwJZKccY7Hv/yVqCBf3rljCkqFfZ3ZKiyqBKCiwrzM7KZtz9m3ThJGk0DQgTG4w0XBXoHAmmh1ej5duwuNVsf9k4agdmjbV+vve4+TVVRGVlEZZ/OL6RLoYyFJLcOdt44gMMCdsBA3hq39t8njjOmjC33sGWE0CQQdGL2RvCj2Hj8gEFwO/H0sjc/W7gagS6A31w7s0ab5pg3uQeLJDLoG+xLhb5viui3h4qJm1syBlJWVmTXOmD4y9LFvnSSMJoGgAyO25wQC6xMV6IOLWoVWpyMmxL/t8wX5svxfN1tAMushSRLFldVmjRHbcwKBwK7RIxen5wQCKxPq68lf/7kbSZJwaUV+pcuRl1Zu4PutiWaNMaaPDH3sWyfZV3SZQCCwKDpJZvQhMFBdo7G1CILLGGe1Q7sZTLV1Ws4WlCBZ2CtTVashu8i0Lbddp9LNnt8UfWTvOkkYTQJBB+ZCraeWHgIDW7Yet7UIAoFRJEnixkXfMfntJXy2eY/F5q2qrePa/1vKpBcXsyYx2Wj//1w/nom9o81awxR9ZO86yb6lEwgEbUIvyY0+BAa6RtlvoVPB5cnpc0WUVtZYdM46nZ60/GIAUnLyzRq7/2wWL/2ygeNNjCuvriG/zJBK4FR2gdG5+keG8uJ148xa3xR9ZO86ScQ0CQQdGGN3bjo7jx9oT7pEtj2AVyC4wOrEJJ79bh0ezo788cztuDlZptiwSqngw1uuZcfJs9w8LN6ssY8t/51zZRUczszlx/vnNGgL8HTjtVsnk5KZx21XDbCIrJdiiifJ3nWSMJoEgg6MHlqMEdC3nygCwRVDnVbHuoMnASitqqG8utZiRhPA8OgIhkdHmD2uV2gg55JP0SskoMn2SX1jmNQ3po3SNY8xfXShjz0jjCaBoANj/PScfbvCBYLLkaUb97LtaBpyGTx341iCvd1tLRIA/zd9HN5uTsQE+tlkfdNOz9m3ThJGk0DQgTGep8m+FZRAcDni4qhCBjgqlYzpGWVrcer5ds8hvt97BID4TiHEBPi26/qm5Wmyb50kjCaBoAMjyqgIBO3PTSP6EBXkS7CXG16uTs32q6rV8L+/D9DZz4vxceadRGsNMYF+yAAPJ0f83VzQ6yVS8wsJ9/FEpbS+OSDKqAgEArtGIylRSM1/zDX2HXMpEFyWyGQyBnYNM9pv6dZ9LFq/C4A/FvoT5uNpVblGx0Sy+bG7cFGrcFWr+L81m/h210H6hgfz9d2zrLo2GNdHhj6mz/fqq6+ycuVKjh8/jpOTE0OHDuX1118nJsZ6cVn27QcTCARtQi/JjD4EAoFt6HTeSHJ3UuPu5Nguawa4u+KqNiThPJVXCMDp/KJ2WdsUfWSOTtqyZQvz589n165drF+/Hq1Wy/jx46msrLTaaxCeJoGgA2O8YK+4bxIILkWvlygorcTP0wWZzHo3Ftf07UaP0AC8XJzwcDbNaMoqKUMukxHk4dbm9V+aNpYfEg8ztnvTcVeSJPHGlm0cyMnhpbFXEe3Xthgo0wr2mq6T/vzzzwbPlyxZgr+/P/v27WPkyJGtktEYQmMKBB2Yyz2RnKBjoNdL7NibSlqG8aSJ9sDCT39l0sLPeXv5Fquv1dnfG0+X5uOe/snhrFzG/fdLxv73S46fMz2x5eJde7n686/YdOp0g+udfDx5fOJI+nQKbnJcTnkFnyfuZW9mFv87cNDk9ZrD2sktS0tLAfD29m6zrM0hNKZA0IHRITP6MIdXX32VAQMG4Obmhr+/P9OmTSMlJcVK0gs6Cj/9tp+F/7eSOx75iqIS622dWIpDqdkNftoLWaVl6CQJrV5Pbmm5yePe2bKDk/mFfL5zr1nrBbi6MCIiHHe1mkkxbQ9UN0UfXdBJZWVlDR61tbUtzi1JEo8++ijDhw+nZ8+ebZa1OcT2nEDQgTF252buXd2FGIIBAwag1Wp55plnGD9+PMnJybi4uLRVXEEHpU6rA0AvSej1hkjf5LRcnv7oV6LC/HhtwRSUCvu5h3/lrsn8sfs414/qbWtRGjA+NopnJ45CIZczsmtnk8fNGxDPT4eTuKlvnFnrKeRyllw/01wxm8UUT9KF9rCwhoH0zz//PC+88EKz4xYsWMDhw4f5+++/2yxnSwijSSDowOigRW+Szsz5bBFDILj8ueHa/vj7uBES5ImvtysAf+48TnZBGdkFZWSeKyEi2HpbKubSPyaM/jHGT7+1Nwq5nLkDTSudklFcSp1OR6SvN0+MGcETY0ZYWTrjGNNHF/oAZGRk4O5+MSmoWt18RvUHHniAX375ha1btxIaGmoBSZtHGE0CQQfG0p6mS2mPGALB5Y9SIWfsyG4Nrl07ogf7jmXQNcyXToFeJs+VW1LO4o2J9IsMYWIf6x0ttzaFVVUcyM5hWHgnnBwcGrQl5Z7j9uWrCPFw55s51zdqN8bJvAKmfvY1er3EsluuY1CE5QxASZLILi8nyM38QHRzPE3u7u4NjKbmZHnggQdYtWoVmzdvpnNn071vrUUYTQJBB8bUjOBlZWUNrqvV6hbv7KD9YggEHZOoMD+++c9cs8d9tHYnPycmsXznIYbFRFi0pltT1NZp+XzjHtydHJk7It5ip+lu+v4HUouKuCY2hvevubpB24aTpymqqqaoqpqT+YXEBQeaNXdhZTW689ug58orLCLvBf6zeTPLDhzgqshI3hozxqyxls4IPn/+fL799ltWr16Nm5sbubm5AHh4eODkZFpwvbkIo0kg6MBIRjLwSufbzI0fgPaLIRDYJ6dS81A5KOjUyadd1+0VFsDPiUl09vPGSWWeB6Y1rN6bzCd/7QZAqZSz/OARBncO46lJo9o0b3VdHQBVmrpGbdfF9WB/ZjZhnh70CPQ3e+5BEaG8Pm0CVZo6ru4RQ5Wmjjc2bEWpkPOvMSPalP37YE4OAIfOGyjmYEwfXehjKh9//DEAo0aNanB9yZIlzJs3z1zxTEIYTQJBB8ZUT5M58QPQvjEEAvtj34EzPL5wOXK5jM8WzaNLpPlf7K3lhqG9Gd2zC57OTu0SPB4V6INCJkPloGTn2QxSzhWQcq6Ae0YOxNvFudXzfjPrev4+m86k6K6N2oI93Fl6U+sDsGUyGdPiutc///P4Mb7dfxiAgZ3CGB/b+np4r4wbxzeHDjElNtbssZb2NElS+5c0EEaTQNCBMZZh90KbKfEDYJsYAoH9UVpaDRjyL1VUtHwU3Br4ubu221p9O4ew8bm7cVDISc7J43BWLgM7h+Ll3Lbtn06ensz29Gyxz5vbt7ExLY0XR49hYEjrb056BwfhplahlMvpEdQ2AzfWz4//jB0LNN7WN4YpGb/tvUqBMJoEFmVnylleWbmRMT2jeGSK7U9rXOnojGTgNZad91JsEUMgsD9GjYxFo9Hi5OhA7zj7O2VmaXxcDR6lwZGd2PL4Xe2yZqVGw8d7EwFYdvBAm4ymLr7e7HzkXmSAg0JhIQnNx5g+utDHnrFv6QSXHd//fZCz+SUs2bSX2jqtrcW54rF07bmPP/6Y0tJSRo0aRVBQUP1j+fLlVnoFAntELpcxcXwvEkaav0VzJVFcXc3YZUsY9NmnnC4yr76bi0rFrB498Xdx4bruPdosi0qhsKnBBJavPWcLhKdJYFGuGxrH8ex8xvSMQu0g/rxsjR55i7WczK09Z4sYAoHgcuVQbi6ni4sB+Dv9LJFmpuZ4dex4i8hRodFwMDeH/sHBOCqtHzzfHMb00YU+9oz4VhNYlBHdOrP233faWgzBeXSSDF0Ld24ttQksS01NHWfPFhAVFYDCjrJfW5PKGg2Pv7+aY8nZ3Di5H/fOGm5rkdqVIWFhzOzendKaWq6JsZ1X7rZVK9mXk82ELlF8POVam8lhTB9d6GPPCKNJIOjAmBoILrA+jz3+HceOZXPNNX149JGJthanXfhjzzH2H0lHroPvf993xRlNaqWSN8fb/nddVG0I3C+orrKpHB0hEPzKuN0RCOyMo5m5PPPTOnanZlh1HclINXGpjRnBBaaTk1Ni+JldYlM52pNenYOQuyiRKWXcMnWgrcVpM38mnWD4m5/y2p9brLqOJEks3r+Pf2/cQPF5g+cCGq25xY9gcnRXIjw9ube/bX8HxvTR5aCThKdJILABz6/6i2M5+Ww/cYbNT91ttXX+WTW8uXZB+/DaqzewY8dJJk4yr2jq5UxMmD+bP5yPXCbDQWnbIGRL8MPeIxRUVPHVrgP8a/xI5HLrfH5OFBby8jaDYebj7MTDg4cC8MW2RN5Z9zdT+3Tn1ZkTTJqrVqtlUeIeJGBF8lGuioy0isymYEwfXehjz9i3SScQdFD6dzYcH+4bEWLVdfSSsRMrVl1e8A+iowOZN28EgQEethalXVE7KDuEwQRw29B+RPn58ODoIVYzmACC3NwIdHVFIZMRHxhUf/2v5FNIwF/HTpk8l0qhYEJUV1QKBZOiGifSNIcT+QV8sWcfhZWt2+Yzro/sXycJT5NAYAOevDqBOxMG4Ova+ozCpmDtgr0CwZXEiK4RjOgaYfV13NVqNt16O7U6Le5qx/rrT0wcyRfb9nJtb9ODymUyGYuunmIRuW7+/keKqqvZm5nFJzPMDyg3p2CvvSKMJoHABshkMvzcXKy+jt5IrSdjdaAEAmsjSRKni4oJcXfH0Y7TlEiSxCd7EkktKmLhyBH4uZj++a3S1JGYkUnf0GDcjJQouoBaqUR9SY24fuEh9Au3rne6JbycnCiqrsanldnQjemjC33sGfv9CxUIBG1GpBwQ2Dvv/72TD3fsJtbPlzW33YxMZp9/k6eKinjrfHHqQDdXHh9u+knABT+vYWvaWQaEhvDdnBsatUuSRFpRMcF2bjiuuHkWSefy6R8a3KrxHSHlgH37wQQCQZswdlLF3l3hgo7PyYJCANKKi9HZcfLUEHd3wj09cZDLGRxqXumY0hpDfb6y2qbr9H20bTcTP17GdUu+a3MC2eX7D3PHNys5lJXTpnmawt3RkSHhYa3OLG6KPrJ3nWS/Jq1AIGgzeozkabJzV7ig4/PMVQl08vRgZGQESrn9fmE6Oziw/rZ51Ol0ODoYsmqfq6hg+ZEjjAgPJz64ee/LR9OnsDblJGO7dmmy/WR+AQBnCovR6vWtNkp0ej0v/L4RvSQhl8n4fPb0Vs1jLYzpowt97BlhNAkEFqBKU8eT3/1BZa2GN2ZPri/waWskIzEEkp0rKEHHJ9jdnYWjR9paDJNQyOUo/mHYvbhxI2tPneKLvXs5uGAB8ma2FgPdXLm1f3yz8z45NoFgD3eGRITx5E9rSS8s4Y3rJ9HZ18ts+SZ068q64ycZ363xSbmKWg0ZxSXEBvjZZBvUmD660MeeEUaTQGAB9pxKZ2NSKgDrj5zkxiG9bSyRAZERXGBLqjR1vPTHRmQy+PfEMTirbFf3rK1IksTW02fwdHKid3AgAKEehvQRQW5u9V/1G06n8vi6tSRERPDuhEkmGSdBHm4sHDuSpKxz/H4kBYDVB5N5eOwws+V8b+bV9Z6mf6KXJGZ88Q1ni0pYMHIwDyQMMXvuttIRMoILo8kOqavTsWFHCuGh3nTrEmhrcQQmEB8RQrcQf6pqNYyIibC1OPWIlAMCW7IhJZVVh5MBGBYZzjU9bVd/ra2sOZbCo2v+AOC5MaO5ZUAfnhw5kmtiYoj09q43jn4+fozS2hp+STnO/40Zi6tKZfIaXQN8GN41nLOFJUzuGdNqWZvyeGn1enJKywE4W1TS6rnbgkg5ILAKX6/ewxfLd6BUyPn503vw8rCPrR5B83g4O7LioTm2FqMRwtMksCXxYUH4uhj0V3wzJ64kSbLbE3P/RH8hQFuC//tzE9G+PgzuHEZcYMMb29v69GXL2TNU1dWx9ewZJneNNnkNlVLJ57fMsKTYF+dWKFg8ZwY709KZ3d82nnDhaRJYBdX5I6cKhRyFFbPOCjo+Ik9Tx0avl/jux93U1NYx98Yh9brDXgj19ODvRwxlgpoyjN7fsYMPd+/m7v79eWLEiPYWzyymdo8lq6SU9zfuRCbR7Fajj5MzFRoNAN8fPmyW0dRaqurq+PbIYWJ9fRneKbzZfgPDQxkYHmp1eZpD5GkSWIWbpvSnc5gPoYGeuLu1LomYoG2cK6tg66k0rorpgkqppLy2liB3N1uLZTbC09Sx2bM/jc+WbQUgONCTSeN62ViixjTnRTpXUcGPSUnoJYlfjh+3e6NJJpMxf9hgRkQYTvl1D/Jvsl9xZTXyapCUEOPu2y6yLdqzm0WJe5DLZOy8826zEm82R25ZOfct/wVnlQOfzJqKm6NpSTlbQniaBFZBLpcxtK/tiioK4K5vV5GSV8BPh5JIKy2hqLqa/06/homxbavd1N4Io6ljExbihaPaAa1OR+eI9vmCtgR5lRWMWfYl1XVaYnx9eXhI+wclm4IkSZRV1+LhfLGUSVxIy3GmvUMCeWzYMM6VV/DAiMHWFhEA//NGkqtKhaPSMl/rG0+cJjk3D4A9ZzO5KqbpdAnmIIwmgaCDoqovMCqjqLoagJS8fGE0CeyKkCAvfvrf/eh0ejzcLx+vdGlNLdVaLchgRo/uTOhqn5+r+Yt/ZtvxMzw0aRh3XjXQpDEymYz7RgyysmQNmdu7D70DAwl2c68v01Kp0bA8+Qg9/AIYFGL+ltxVMV34+XAyzioVgyIss6UnjCaBoIPy+ezp7DmbydDOnVh34hRpRcXcPrCfrcUyG2E0dXxcXdq+bdLedPXx4aPJ15BVXsbcuD62FqdZElMzAdh1Mt1ko6klNFotZwpLiPLzQW7BeFWZTEbvwKAG197bs4MvDu5DIZOz94578XR0QqvXA5iURDTAzZUfbr/JYjKCMJoEgg6JVq/n0LlceocG4uaoZmZcD1uL1GokWg6stN+iFYKOzqR2CJBuK6/NmcRfh08yb1T/FvtJkkRqXhFBnm7kV1fi6eiIp2Njz9/tS39i39ls5gzqw7PXjG5ynvI6De6qthvCvs6GLTs3tQq1QklGaSnTvv0WCYlVN80m3NMTjU7H9oyz9PQLsEgclDGM6aMLfewZYTQJBJfw9t9/89nevXg7ObH97rtRtbKkgaU5nVvIWyvWmzVGeJoEbeFEej4/bz3MxMHdiItqXZHWtrLnbCYLflxD90B/vrhperuWWrmqZxRX9Ywy2m/x1r28++ffePg6ketQiYdazcZb7sDLqaHhdDq/GIBTeYVNznP7upVszDjNUwNGcm/v5rf4vjlxgFf2bmR2dDzP9B/TZJ+74/szICiEMHcPnBwcOJSbS3GNIdTgQE4O4Z6evLxtM18dOUiAiys7bru7yYSYR3PP0dnbq37bry10BE+TfWeREghsQFVdHQA1Wm2bi2daki/W7WFrUppZYy4oqZYeAkFzvPTlWlZsPMTTn/xmMxn+PHaSkuoadqSlk11aZjM5WuLMeWOoqNZglJTW1tYbKBdIKjrHTWPiuG1YP16aNrbJebZnnwVgW9bZFtf74eRhKrV1fHviYLN9ZDIZfYOC6z1IY7tEMjsujpt6xTEhymAIVp7XddXauiZ13dtbtzPjq++YtvTbi3mq2oAp+sjedZLwNAkuOyRJorKuzqxMu+bwrxEjiPXzIz4oCLWFTqJYghE9Ivlt5yGzxghPU8dAp9dTWFKJv3f7pr3oFhFASnoe3SKaPl7fHszuH8fxc/n0Cg4gzNPDZnK0xMMThuHr5kzPsEAOl53DRe1AhOfFunGFNVVM+2MZdXo9j/cZSSdvzybneX/UNfx+5gT3xg1oeb0+w3nv4N/c0DXOZBkdlQ7831UNjbXnRo6mb1AQA4JDG9TUu8AFI/VcRQU6vR55G73uHcHTZD/fCAKBicxbvZJt6Wf498jR3Nanr8Xnd1GpuCnOdGXUXkzqF8PAzvfg+8lTJo8RRlPHYP7rP7L/eCZ3Tx/CndPa73j+07eO5dbJAwjydefg6Wx+33ec64b2IjrEr91kiPL14dtbb2i39Zqipk7LYyt/p7i6mndnXE2Au2uDdl83Fx6eMByAT9ftZG9+JjnaEv4VPwrd+TpwF7a+FLLmN3gmdY5mUmfjsV6jQ7owOqTtKQDc1Wpm92w+O/gzVyUQ5evDkPAwHCwQpmANo2nr1q28+eab7Nu3j5ycHFatWsW0adPaIGXLiO05wWWFXpLYmZkOwLazZ2wrjA1wUJqnuCRJZvQhsG8kSSIpNReAwyez23VtmUxGqL8nCrmcfy39jeXbDvHcN+vaVQZ7YG96Fn+lpLIvPZs/kk+02De1zBCvdLQolyGr/suAn94js7KEXyffxmejZnB394an8AprKtmbn2GR7S9L4+viwvyhg+gbYpl4NlP0kbk6qbKykt69e/Phhx9aREZjCE+T4LJCLpPx9vhJrD99ivv6t28ulMsRUUbl8kcmk/HaA9ewdX8qN02wXdqLbmEBnCupoEenAJvJYCv6hAYRHxpEcVU1Y6IvJh7W6vXsyEwnxseXABeD9+mLhOtYl3mSLu4+LNz9KwBJRbncGBVPV8+GCUhrdVom/f4FBTWVPNJrJA/0Gt5o7WMl59DqdfTytmwgfq1Oy86MDOICAvB2ap/6ptYoozJp0iQmTZrUFrHMQhhNArPR6vWUa2rxauJIbXswJTqWKdGXb7X09kRsz13+VFTVkpVdwvSEOCKCvW0mxzt3XENOURkhPvYZV9QaNDodMjC69eSqVvH97Tc2uv7Onu0s2r8bb0cndt16LyqFgr5+ofT1C0Wn15NTVUqlVsO0iJ5NzqvV6ynV1ACQX1PRqP1IUTYz/voSCfhfwhyGBHQG4LeMJJ4/8DsTQ7rxf/2uaVH2tLIinBQOBLo0jId7bvMGfkg+SicPDzbPvaNdiiZ3hJgmsT3XQait03LLK98x6qFFHE61ngtfp9dzzY//I37pR/xw/IjV1hFYBrE9Z3+s3HyY/67YRkV1rUn9P/x6C+8t3cR9z39PrUZrZemaRyGXE+rr2S5fru1BalER/T/7mEFffEpWWfOn8sprarl68f8Y9P4nHM/Lb9imMfwOq7V16CV9gzaFXM6Y0C78XXiclw79hiRJVOs0lGkunqpzcVDx7VVzeDr+Kh7vParR2pVaTX3eogqtpv76qrOHKKurYcWZg/UJKyVJIquytP45wJas04xe9TkjV35KRnlJQ9lrDbJX1GpoL8zZnisrK2vwqK017fNibYSnqYOQfq6YpDOGuIcth04T18U6OVUq6jSkFBkUR2JOFjfE2l+BUMFFhKfJvjiVWcCrX/0FgIujitunGN9i9jxftNvVWY3Cglmkr3QO5uZQoTEYDEfzzhHi7t5kv2N5+ZzILwBg6+kzxPpfDIJ/cshIYrx96RMQhKPSodHYH8/u53R5AafLC7ipc3/mJ35FpbaWzwffRl+fCAD6+YXSz6/pMiWD/SP4eNj1aPQ6xgZfDBC/O2YYxZoqJoV0r89b9d6Rrfz36HYG+nfi+7E3A5BVaTAGNXod+TWVhLl51s/xyphxDA4NY1hop3YzhM3xNIWFhTW4/vzzz/PCCy9YSzSTEUZTB6FLsC83jYknLbeImSOtZ8h4qB15a/Qkdudk8EBf+yyyKbiIMW+S8DS1L76eLni4OlJWUUPXMNNOoN01axgDeoXTOdQHpZkHAQTNM7lrNIfO5eIgVzC6c/MF0uNDgrihd0/yKyqZ3rN7gzYXBxU39+zDuzu3c/PKFTwxdARzel08jTa9Ux925p0mzisUjaSltM7gZUouza43mowxLiSm0bWBfuG8NXAa7g4XCwkfLDDsMBwpzKm/dn1UL6rq6vB2dKKvX0iDOTwdnbglLt4kGSyFKd7tC+0ZGRm4/8OQVVsguaYlEEZTB0Eul/H4jaPaZa2ZMT2YGXN5lRYp1VThrFTjIL+yvnQkI3d2wmhqXzxdnVj9+p1U12rw9XQ1PgDDNk+/np2sLNmVh5ODAy+NvspoPweFghcnXMXHu/fwzaFD3D94UKMqAV8dPkhZbS1LD+5jaEQond180El6UspyebjHGCaF9ESSJB6OHU+hpoIZndoW0L82+yhP7PsBF6Wa38Y8jLfahef7j2dJSiLjQy96pBzkCmZ26cnyU4fZl59Fv0sMp/bGmD660AfA3d29gdFkLwijSWDXVNRq+PP4CfqFhtDZx8v4AAzxBe8lb8ZZ6cCCbiNZn53Ewv0r6OTiw08J81Eprpw/ewlo6SSz/R1y7vi4OKlwcbJOYtaOzu6cDPKrKpkcGdOo5Ic12Zh6mve27wAg0tuLa7t1I72shA8O7WRoUCf+NWwEXxxIJE06x/g/PuGnsbeRWnGOFw8ZTs8FOrkT792J26JGNLvGu8d+Z33uURZ2n0JCQLf66+uyj/Jm8h9cG9qHB2LHAZBRWQRApbaW0rpqvNUuRLr78J8BExvN+8q+TaxIPYJaoeTQjQ/haEP9Z0wfXehjDhUVFZw6dar+eVpaGgcPHsTb25tOnSx/s3HlfHuYwLr1R9m9J5Wb5wylc0T7JW/rqOj0ev6zbTPpZSX836ixBLuZf9fwn3WbWHUkGU8nR3Y+dE+TWWsv5ZeMIyw5uQuAeO9QDhSlIwFnKwspqavCX2F/dy/WQifJQWr+PdO10CYQ2BMniwuYteZ7AF6v0zArtv0S0Eb5eOOoVKKXJKJ9DWkD3jnwN6tSk/nx5BGOzn0IXy81921fgYQh95K/o+G0mlImx9Oh5SP9Wr2Ob85sRwJ+ytjTwGj67swu8mrKWJq6vd5omtN5MDIg1MWbzq4GeX7NOMzG3OPcHT2SWI/A+vEBzgaPprfaCWULiTXbA2P6qL6PGezdu5fRoy8WP3700UcBuPXWW1m6dKnZMhpDGE3nqavT8cZbv6HXS9TV6XjphRm2FumyJ7kgn2WHDwCwPOkIjwweZvYc6vMxHCqFwuRgxV5eQajlStQKJVHufsR6+qPRa+nhGYK/45VjMIEhqFJm4UDw9s7AKxAAKOUKFDIZOklC3c7ekkhvb3bddw+SJOHuaIgjGhQYxqrUZHr4BOCsVDE2OJrXBlyDXCZjVFAUMpmM1aPvR61QEubSMFWEVq+jRFOF7wXDSq7g9i6j+Cv3KDeGN4wVvTVyGIW1FVwbejH+yEmp4o6uI+uf6yQ9Tx/4GZ2kp0pbxydD5tS3PdpnBKNDu9DF3btdix03hTF9dKGPOYwaNapda4QKo+k8SqWcPr07ceDgWfr1i7C1OB2CLl7e9PDzJ6OslNERzQdatsQz40YxIjKCXsGBJrvju3sGsWvKYyhkMhwVhhMtz/ee2qr1L3ckycj2XCt0zYUMvLfddhszZ85svXACgRl09vBizYxbKK6pZmhw+8d4uV0SiOyuVvNI36Hc1X1AvW4aHhhOXm1pfZ8o98Y1+/SSnjl/f8rxshz+1WMyczobjKT7o8dxf/S4Rv1HBXZjVGC3Rtf/iUImZ6hfF/7OO8mIgKgGbXKZzOaxTBcwpo8u9LFnhNF0HplMxpuv30hNTR1OIt7AIjg7OPDrjXPbNIdaqWRcTJTxjpfgohS/Q7DO6bn2zsAraMjZnCLKKmvoFWWdtCL2THcf2xUO/ienSgqYv/VnAByVSu7tOZhiTQWzd7xNrb6Of3WbwdTQptNJ1Oq1nCw3pIc5UpwBnc0/hSxJEuV1tbirLp6e+3jwbKp1dTjbse4z5/ScvSICGv6BTCYTBpOgQyGSW3YsMs4Vc+PTy7jjP9+zIbHlGmj2Rm5JOc98v5Zvtx+0tShtxkPthMv5vExhrp4A1Orq0OgNyUdL66qaHFdeV8Mtf3+Oi9KR8UE9WRDb2LMEGN1uumfH9/Rf8yafpmyvvyaTyezaYALr1J5rb4SnSSDowJga01R2SUZktVptN3lRBBepqdWi0xu+UMsra2wsjXl8uXkvq/cls3pfMqN7dCHI0834IBsiSRKZlaUEOLk1SjHg5+TC5un3UlpbTdT5enKBTl683+9O0isLuDqkf5NzJpdmceK8l6mXVyihzo1PBH95aisfpvzFTRGDeaLH5Cbn2ZV/BoAd505zT4z5saK2whoxTe2N8DQJTOLHPUcY/p9P+HjDLluLIjCDCzEELT3AkH3Xw8Oj/vHqq6/aVnBBk3Tt5Mf7j03nubsmMGVk0/XM7JUBkaHIZTIi/b3xcbVN3Upz+Dh5Jwm/LGLG2qVNen78nFzqDaYL9POOYnrYYFTypv0R8V7hXBPSm6F+UUwObvr0329Zh9FJEr9lHW5WtjcHTGNKWE8WxjXtqbJXTNFHIqZJ0CH4dsdBiiur+erv/dx31WBbiyMwEYMSaimmyfDTXrPvChozJK6zrUVoFePiurLzpftxVClNSh1ia5KLDB6hk2X5aCU9DjIFmVVF/Pf4H/T0DGNu5EjOVuRTVlfN/uKzjA7oRicXgxGll/T8mnkItULJ+KCe9Sd/VQolL8df1+K6j3abwNLUv5kZ3rS3CmBCSDcmhLQcHG6PGNNHF/rYM8JoEpjEPVcNYtH6Xcwa0n65UQRtx9RAcHvNvtuR2JucjlarZ3BchK1FsRkujvYdc/NP5sT0QaWUM6VTz/pKAl+nbWPjuSQ2nkvCz9Gd5w7/gE4vRwJ+ztjHqoSHAVifk8S/D60EwGuwM+lVRciRMT2sn9HUKcP8uzLMv6s1X5rN6AiB4MJoEpjEhF7RTOgVbbyjwK6QaDnDbmtu6to7A29H4GBKFvNf/RGAdx6bxrA+5qXgyCksY31iCmP6diXU39MKEgr+SVJJFvftWQpIzI25mB9piG80qzMSiXILokZXB4CEBMiQI+eJvT9ya5cheKlcAJAj40TZOd469gcAPmpXEgJiWy1XemUROVWlDPSNaLciu5bEmD7ChHZbI4wmgaADY42UA+2dgbcj8M8cY3K5+e/5k5/8SlJaLmu2J7HiP/MsKJmgKUo0VeeNISjWVNZfTwjoxtbxL6CUKdBJemr1dTgpVAQ4evHA7uUcLzlKTnUpT8WN55th9+DioKZSW4scGcjAz7H1we9FtZVM3bCIWr2WZ+ImMSey6ZQG9ozwNAkEAvvGCq6m9s7A2xGIiw7mk2dvQKfV07+H+d44b3dDGQ4fDxdLiyZogqF+Ubwafx06Sc/ogIaxQw7ng7yVMgWzwof+Y0wX1ucco1ZfxZ27P6K/dxT/7X8nAKtHPYxMBqHODTODm0OdXkedXgdARV1tq+exKR3A1SSMJoGgI2Pszs7O7+o6EvExoa0e++o9V3MkNYeekUEWlEjQHDKZjCBnV/YWnaRQU4av2sPomHcH3ECFtpaH930BtZBdXVTfdmkZldYQ4OTOshHzOFNeyJROl2lsqSl5mOxcJwmjSSDowFijjIqg/XFUOTCgm4gXay+0eh1PHPwCjV5LZlU+L/YyXtlAJpPh5uDIC3E38mf2AUYH9GrU52BRBv859BvD/LvwaI9x59fSsyr9IIFO7o1KoFxKP59w+vmEt+5F2QEdoYyK/Z/7FFwR7Cs8w9RNH/Da0d9sLUqH4nLPvisQ2AK5TEago8E71Mn5YukWnaQ3ujUd5uzLXVHjiHILbNT2zendHCvN5YuT2ynTVAOwPG0vzx1Yw907vuFUWb4FX4X9ITKCCwQW4oeziaRVFJBWUcB90aPxUDnbWqSOgSRr2d1t5wpKILAFcpmczwc+RHZ1IZEuBuPnr+xknti3gt7eYXw5dB5ymXGfg0an5c/sI0S5+dPdM4Rrw3qzKz+NYf5dcHMw1I3zVBkSfTrIFXZfBqXNGNNHF/rYMcJoEtgFMzr141BRBoP9InF3sP9swZcLYnvO9hSWVJJfXEFMhP9leUz8SsVJoaKL68UYss3nUtBKevYVnqVUU42X2nhQ/hentvDpyc0oZQo2jPsXIwK6sm3SE/XtWVUlxPt04vuEO/BSOeOoUDJz84do9Do+G3wrQc6e1nhpNqMjbM8Jo0lgFwzyjeTPsY/aWoyOhzUSNQlMpqyyhhueWEJltYYnbx/LtDHmBfBKksRrn6wj+WQOz8yfRGyXACtJenlRUFXF81s2EOTqxlPDRrZLhvHbo4ZToqligE+ESQYTgFph+Ip1kMsbpJ0ASCrOZtaWLwAZy0fdSSdXb9ZnJ3GyPA+AnQWpzOjUz6KvweaI03MCQcdDJ+l559hqsquLebLHDAIcPW0tUquxRp4mgenU1NRRVa0BIL+4wuzx5wrK+XXjUQB+2XCY2C6XV60xa/FD8hF+Tz0BwKSorvQLCrH6mpFufnw4aI5ZY+Z1GUG0WxDhrj6NPOjZ1aXoJIMVkVtVSg/PIIb6RzEqIAaNXseYwMuvTIoxRJ4mgaADklKWxcrM3QCsyUzkzqjL/IvKzu/cOjL+Pm6888R0TmcVMvOq3q0af9XQGJJP5TA5oYcVJLw8cXVRgExCrZQT4ella3GaRSGTMyLAUEnhu9OJvJ+8iVujBnNf7EiuCorl370nAzA6KAYAF6WaDwaaZ5hZgjJNDa8e2Iin2onH4xKs67m7zPWRMJoEgkvo7BJArFsI2TXFDPO7vO/2hKfJ9gzp3ZkhvVtXZFcul/HSI9dYWKLLn0xNEcqAanRApa4GH2x3cKRUU83Lh/7AXeXEwl7j6+vUXcq3pxMpravm69Td3Bc7ErlMxuzIAe0sbdOsTDvC8tSDAIwM6syQgAirrCM8TQJBB8RJqWLJkAdsLYZlEDFNdklxWRWebk4iMLyV3BI1kKyqErp5BhLm0rKnaWP2CRaf3MnsyP5cHWbcW7ejIIm0ilymhw7DWelotP+vGUdYk3kEgNGB0QwL6NJkv/ndEvjk+Da7MZT+ST+/UBwVStxVjnT18LPeQiKmSSAQ2Dey84+W2gXtyX+/38rXv+1l7KBoXl4gvEitIdTFk4+G3GBS3zeO/MXpikLOVhQZNZrya0p49vCXSEC1rpY7u0w2Ov8A33DclGpcHRzp5mlIT3CiLIunDn1FmLMfb8bPw0GuZGJIDyaG2OcWay/vIA5c9ygKmRylVYPqjekjTGi3La02mpKSktDpdPXPFQoFPXrY5x+EQHDFcoV4mi4nfbQ3KR2A/ccybSzJlcG08Dj+m7yFGeHGY8qclGpclc6Ua6sIcvIxaf5ojwB2XvMvZMjqT8htOHeY3JoScmtKSKvMI9otuE2vAeDVw+tZfnofC+PGcVOk5U/VXTjpZ1WuJE/Ttm3bePTRR0lMTARg8ODBVFVV1WdHlclkrF27lrFjx1pHUqCuToeDQ9P7xQKBoAk6qNFkD/qotSy8bSwr1h9k4tC2xcuVVFTz46ZD9OkaQv/YMAtJ1/G4N3Y498YON6mvq9KJ/w1eSKGmnEhX0+v8KS5JdHl1cH/2F6XSycWPLq6NM4M3R2r5OQC6uDVOLfFD2n6qdHV8nZpIflUlMzv3JsTFeE08u6IDGE0m++EWLVrE3LkN6+9s2rSJtLQ0Tp8+zUMPPcTHH39scQEv8PJra5hwzVv88OMeq60hEHQ4LmTgbelxGWJrfdQWukcG8vw9ExnUq201xD78cRuf/LyDBe/8RHVtnYWku7Ko1dWx7PRGfstKrL/moXI1y2Bqik4ufnw+aAH/7jmrkUHVHIeL05m9/X1mb3+fIyXpjdoX9hpHb68QcioqeD9pGwv3rGmTjDbBFH1k5zrJZKMpMTGRgQMHNrgWGhpKeHg4ERERzJ07l507d1pcwAv8veMkkmT4KRAITONCBt6WHpcjttZH9kCQr8HL4O3ujINClBFtDauzdvNZ6lpeSf6R42W23S4tq6uqd8SU1VU3ar8xsi8rxtxOZ1fDtqGxAHh7xBR9ZO86yeTtuaysLIKCLlrfy5YtIzDwotvR29ubwsJCy0r3Dx5/ZCIbNiYz+8bBVltDcGVSp9eRV1NOsJNHxzvN1EG352ytj5pi577T/LL+MDMnx9M/zvqV6G+/eiBDe0YQ6u+BUinCFlpDmLMvMsBRocJH5WbRuXWSnkPFZ4l0DcCzmVqaJ8ozOV2Rw5iAeIb5xfBSnCG4fahvdLPzfj36Zk6U5tHDq23eMJvQAbbnTDaa3NzcSEtLIzzcoAxmzJjRoD0tLQ13d3fLSvcPrhrdnatGd7fa/IIrl7lbl3GwKJMF3RJY0C3B1uJYlg5asNfW+qgp3vx0PXmF5ZzNLuLbD263+noymYxuEaKsSlsY4hvLiuELcVKo8VSZVhrFVBalrOOrtK0EOHqwetQTjbbpyuuqWLD3A+okHdnVBdweOYmJwX2MzuukdKC3j/UzoFuFDlCw12Sf7qBBg/jqq6+abV+6dCmDBg2yiFACQXuhlySOleQCcLQ428bSWB6ZZPxxOWKP+mjEwKgGPwWN+XbfIe77YTUpeQW2FqWeICdvixtMAIW15QCU1lWhl/SN2uUyOYrziTBVcgeLr2+PmKKPWqOTFi1aROfOnXF0dKRfv35s27bN8sKfx2RP06OPPsrYsWPx8fHhiSeewN/fH4C8vDxef/11vv76a9atW2c1QQUCayCXyfhwyA2sOnOY3KoKPju+g7tjh7Zqrn252dz2209EeHjxw7RZOCrtQBF20O05e9RHj9x5FfffkoBaJdLfNUWVpo4X/9iIBKgUCt6f2focVZIkoZMkK+cUahuPdLuaKPdA4r064yBv/DfhonTkiwGPkV6VRzf3cH7LOsAAn0j8HVs+EafR61iffYxod3+6uvtbS3zrYIXtueXLl/Pwww+zaNEihg0bxqeffsqkSZNITk6mU6dOrZW0WUz+ixs9ejT//e9/+eCDDwgKCsLLywtvb2+CgoL48MMPee+99xgzZozFBRQIrM2IgCiUMiWJBem8eWQjxbVVrZrnrzOnKNPUcjg/l7TSEssK2Vou85MqzWGv+siYwVSjqeORD1dz79s/kltU3k5S2QdODkqGdu6EQiZjVNfIVs9Tp9dxw+bF9PnlVTbnnLCghJbFQ+XMzZ1H0MMztNk+Ic6+DPHtzotHVvLc4R+5e/dio/MuOr6FxxN/4vpNn1NRV0tBTQVPJ/7Klym761Nu2C1WOD33zjvvcMcdd3DnnXfSrVs33nvvPcLCwqx2etasW6L777+fKVOm8OOPP3LypOEUW9euXbnuuusICxN5QgSXL2NDovk1I4kBvp3wUDkZH9AEs7v3Jrkgjy6e3sR4+1pYwlbSQT1NcHnqo+cX/8nWQ6cBWLX1CPdNu+jVLK+q4e53fqS8qpZFD8+kk79nm9bS1GnZmXSWbuEB+Hu5tmkuSyCTyfhy9gy0ej0OitYHrhfUVHD4/Fb6lnOnGBXUfND05YL8fBbsC8kxj5Vm8/nJLYwOjGVKaHyzfWXAkhN7+CHtIACjg6Po7GZaUk6bYGFPk0ajYd++fTz55JMNro8fP54dO3aYLZ4pmGw0/fzzz0yZMoWwsDAeeeQRqwgjENiK8SGxJM14sk2n58LcPVh2zXUWlMoCdFCj6XLVRwq53HCmWiZjWK+IBm2HT+eSkpEPwPajaXQaE9/EDKbzzoqtrNh8CB8PZ/54/S6LVq6vrNFw64fLySut4LN7ZxIb0nibaOuxNF5dvYmJvaN5aJIhuaRMJmuTwQQQ5OzBI91Hc7g4m9uibHea+pMTa9lw7iiPdZvC4BZOu0mSxDOHv2ZXQQrP9ryBMQFxDdpLNJUs7HEt44Pi6OsdAcCHx//i7/yTbD53nMkhvRsEkd8XO5JYjwC6uvujlSS6eQSgkMkIcvYgwMmyJwAtjhlGU1lZWYPLarUatVrd4FpBQQE6nY6AgIYHIgICAsjNzW2jsE1j8qfouuuuIyQkhIULF5KSkmIVYQQCW9Lh0g3ARSXV0uMy5HLVR0/NvYqnbr6KFS/eQlyXhqU1+kWHMrZfVwbFdmJcv7Z7T2rrtABo6nRGejZNnU7HB2v+5p3VW+vnusCJnHxOZBdQUlnD38fONDn+m+0HyCgq5YtNiej0jQOh28K9sSNYNGQWnVy9LTqvqWj1OpambSajqoAfzrbs0ajR17El7yi1+jo25h5u0Lav8DQTNr7CrG3v0dc7Aj9Hw4nPkQExyIBhfl2RI2Nj7lF2Fxi8qQ5yBeNDuqPVwcAfP+Sx7X+wfPQ81k+6D2elyszXoeetg1v4v30bqNG2Q4JUU/TReZ0UFhaGh4dH/ePVV19tdtpLdbckSVbT5yZ7mtLT01myZAnLli3jrbfeYsiQIdxxxx3ccMMNuLhY/uSBQCCwAB005cDlqo/cnB25blTTNdAcVUreuLv54Ogftx4i8UQm908ZSniA8cSGj88aRe8uwfTuEtwqL9PWo2ks/suQKbtrsC9TBlxM+dKrUxDXDenFuZIKrh3QdCqYm4b24Ux+MRN7R1vUy2UPKOUKbgofzsZzR5gR1vIpTSeFivu7TmZnwXHmRIxq0HayPBe9JFGhrSG7urjeaJoVMYhpYX1RyZWszz3CMwe/B2DpkPvo4WnYej5ZWkCtzmDMZlWW08fX/DQEW7JT+SjJYPTFePpxfZc4IyPaiBkpBzIyMhqkDbnUywTg6+uLQqFo5FXKy8tr5H2yFCb/JQcHB/PMM89w4sQJNm7cSJcuXXjwwQcJCgrizjvv7PDZdwWCy5GOmnLA3vRRcUU1055fwriFn3Imt8ji85dX1fDKdxtZv+8EX/yx26QxLo4qpg3vSeeg1nljokN8cXFU4aRS0i204fabUiHnuevH8tFd0/D3aDpealT3SNY+dQePTB7RqvX/iT0GOD8UezWrE55kuL/xGoJzIhL4sP89dPNoGBQ+NbQ/t0SO5OHYycR5NjzppVY4IJPJUJ9PRyCDBqfwxoV15ZHew3k4bjjjw7o2uW6tTktiXkazXqQYTz/cHNQ4KpT09G6+Rl61to7FxxLZlp0GwC+njxH71bv8a9ufRl/7PzEn5YC7u3uDR1NGk0qlol+/fqxfv77B9fXr1zN0aOtOQRujVWdjExISSEhI4KOPPuL7779nyZIlDB8+nNjYWJKSkiwto0AgaC0dNKbpn9iDPko+k0t6XgkAu4+nExFo2W0jF0c1cZFBHE3LZXA362cbBwjz9WTDf+5GksBZ3fb0GWcLSyirqaFXiOkFbGt0ddyz52Myqgp4t+/t9PaKaLMc9oSTUsUDMRNb7JMQ0I1PB92Fs0JFtPvFLOAOcgUPxbVciPih7T+zLvMEwwIj+N+Y2Y3aQ1092TPjAfRIjbb2JElCo9ehVihZdHQn/z2yAxmwa+Z8Vqceo1pbx+9njpv+YsEqKQceffRR5s6dS//+/RkyZAifffYZ6enp3HvvveZNZCJtSiji6urK6NGjOXPmDMePH+fECfs9/ikQtIbS2hoe/vsXFDI57w6fgpuq8d2OwD6wpT4aEBPGtUO6U1GtYUL/GIvPL5fLWPL4LGrrdDi2Yx4oJ5Vlco1lFpdyzUfLqNPpeX/WNUzo3rRnpNG4qkJOlBtOyv33xG8sGnAPqiZyHl3K4ZLT/PvIUqJcg3i9990o5Zd3mZm+3p1bNS67yhBMnVvVfHoLR6UDJbXVnC49Rw9vf2QyGXV6HTPWLiWlJJ+PRszA38ngTXRxUOGodOD+3oMo1VQzwjuIh1slmeWYNWsWhYWFvPTSS+Tk5NCzZ09+//33+moBlqZVG81VVVUsW7aMhIQEoqOjWb58OY8++ihnzpyxsHgCgW1Zn3mSTVmn+SvzFJuzTttaHLORYcQVbmsBLYA96COVg5IXbpnAW/dMwdO1+ZQVX63dy7AF/+WzNeZvH8pksnY1mCxJRa2GOp0hGLy40vQ8aJGu/gz3jQUkkkvT2ZZnmudwS95hyuoq2V98itya1m2XltdVoNFf3NbKrS7m2cPLWHp6vUW3C3OrS1iauoUzFXmN2vSSxLtJG3h4zwryqs3P6/XfYdN5NG4kn45s/lRvjU7LuNWLuebXpXyRbIhhK6ipJKn4HFpJz9ac09wcHc/Pk25hw7V34aFypJ9/CD9ePYfbevQ3Sx6j+qiVOun+++/nzJkz1NbWsm/fPkaOHNmKWUzDrE/g9u3b+fLLL1mxYgVarZYZM2bw119/MXr0aGvJJxDYlGGB4US6eyOXyRgcaPnsslangwaCw+Wpj1ZtO0KNRsvKbUe4e8qQBm3nisp54oPVOKtVvPXwVFydLOPV/GTldjbvP8Xjc0bTv5v5f8OZBSUs3pDI4OhOTIhv3ov2xeZEvt5+gIfGD2P6gB4N2mID/fh49lQKKiqZ3qdHMzM0Ri6TsyDmag6WGG5YuroFGxlhYGrIEE6VZ9HVLYQQJ/Nzpu0rOsLrxz/GU+XOe32ex1npxI8Z29iaf5St+UcZGxhPqLNh3t9zNrKn8BCzw6cS7dZ00s4zFfm8mbyGnp6h3Nt1XIOTXc8eXM6hkrOszkhk1ajHG4xLKT3HZyf+BiDS1ZcHu5v3tx3u5sWCni1v4dXqtBTVGAzZzIpSAIKc3Xk6/ioOFmZzd7fByGQy+via9t63SAeoPWey0RQdHU1qairx8fG8/vrrzJ49Gw+PltO9CwSXO0Eu7mycdretxWg9HTSmyZb6SJIk1iWeoEZTx5ShPZDLTVfyD8wYzrK1e7mxiRxM2w6kcvyMwdtw4HgmI+K7tFnW2joti9cYAse/W3+gVUbTf//YwR/7U1i1O4mRPSKb3bL7csteSqtq+Orv/Y2MJoDRMa3LAh7u4sevCf8GDMHRptDJJYD3+81v1XoAJyvOICFRrCmlSFOCs9KJgT4xrMraSbizP/6OnoAh9cCStBUArMz8kye73d/kfMvP7mBP4Sn2FJ5iWtgAgpwunn70dXRr8BMgo7KQVZl7GOITTaSbL9lVpQz1b30W9ZbwUDmybOwNHCzIZm5M3/rrd3azQu1GK8Q0tTcmG00TJ07kjjvuoHfvxsdl9Xo9v/32G4sXL+bnn3+2pHwCgaAtdFCjyZb6aG9KJk9//jsATmoHxg+46H05lVnAW99spE90CPdOH9Zo7Ji+XRnTt+l4npF9u/Dr30m4OKnoG2uZjOZqByUzR8exZX8qU0f2bNUcfSKC+WN/CjEhfqiVzX9l3D92MN/uOMidowe0VtxmMdVYshRXB42mSltFsFMAoc6G4OuBPjGsTfg/FDJ5vadIKVcwzLc/ewoPMdS3X7PzjQrozu9ZB4j1CMFP7d6g7aW4G7ghfAjd3C+mDHj56Er2F6fxW9Z+/rzqafRIDRJcWprhwREMD46w2vz1XElG0wcffNDo2smTJ/nyyy9ZtmwZxcXFTJgwwaLCCQSCtmEsrcDlmnLAlvrI09URuUyGXpLwcnNu0Pb9+v3sS8lkX0om143uja+n6eVL/L3cWPr8HEuLy5O3jOXJW8a2evxNI/owvk80Hs6OLXrVbh4Wz83D2pbF3F5wc3Dl9shZja43FVD+cPQdRucb5NuVLeNfaLJNpVA2CvSOdAtgf3EaES5+yGQyFHYUfbg2M4VlJxKZFz2Awf84zWcKpqQ5sXedZHZUYXV1NT/88AOLFy9m165d6HQ63n33XW6//XZcXW1f30ggEPyDDuppuoAt9FHXUD9+fOlW6nQ6okIaxsuM6d+V9XtS6BUVjLe7dZJsSpLEnmPpuDs70i2iYQK//LIKnFUqXBzNywxtDJ9LjEOBgdyaYr5IXUc391BmhjX2LLaWx7tdw8ywQXRysb86cq8c+IvMylKyK8v4JeFm8wZ3AE+Tyf6+PXv2cPfddxMYGMiHH37IzJkzycjIQC6XM3bsWGEwCQT2iJXKqCxatIjOnTvj6OhIv3792LZtm2XkNRFb66PwQK9GBhPA0F6d2fLxA3z42EyzYp3M4a+9J5j/9k/c8n/fkJpVUH99c1IqV73wORNfXkxpZU2jcWdyi8gtav4E1vKdhxj07Ie8+3v7/i7/SZmmlpvXLuf637+hoLrSZnKYyrdntvBnzj7eTVlNfk2pxeaVy+R0cQtokMzSXpge0QuFTM70iFZs95pRRsVeMdloGjp0KC4uLuzZs4fExEQeeughq6UpFzTNJ6u2c/3TS9mddNbWogguE6yREXz58uU8/PDDPPPMMxw4cIARI0YwadIk0tPTLf8CmuFK1kfa80f3JQl0+ou/wJTsAiSgpLKG/PKKBmN2JZ9l5nPLmPbsEjLOJ+G8lJ92H6Wyto7lOw832d4ebM8+w985Z0jMy+SvjFM2k8NU4r0ikSOjs0sAnir7Kd+TVJzL7xnJaE2s+Ver05JdWWa8I/Bwr5GcmPUkD/Uy/1i/ORnB7RWTzdgxY8awePFi8vLymDt3LhMmTOiYBU7tFK1Wx+Jfzp+CWbefQT3aJyuw4DJHLzM8Wmo3k3feeYc77riDO++8E4D33nuPtWvX8vHHH7dYVNOSXMn6aOKgWBxVStxdHIkO86u/PmdEH6pqNYT5eBIV2NALdsHDVKfVUVhWSZi/Z6N57x8/hI/X7+L6wb2sKn9LDAnqRB/fIDR6HaNCLp4Wq6rT8MbBLbgoVTzSewRKI7XsJEni74Ij6CUdI/36WO1vY3RAHIN8YlArHKwaqG0O+dUVzPzrS7SSnn/FjeHu2JbLidTpdUxY8zlnK0p4eeBEburahwXbVrPrXDrvD7+W4UERlhPOmD660MeOMdloWrduHRkZGSxZsoT77ruP6upqZs0yBMpdKcrKliiVCm4cF8+GxJNMH2XlooqCDoOlA8E1Gg379u3jySefbHB9/Pjx7NjRcrV3S3Il6yOZTMboJk7guTqqeeSapuu8XT24G1W1GjycHendpel8O6O6RzKqe8vH2nV6PTJkFtl6lCSJpQcPUFJTw/0DBqJWKvFUO/HzNbc06vtzWjJLj+8DYIB/WAODqikOlJzkpaQlALzY04Ghvq07OWgKzkr7qhIgk53/DEiGbT5jVNZpSK8oAeBoUS6FNVX8dtZQHmXV6aMWNZo6QiC4WaZxWFgYzz33HGlpafzvf/8jLy8PpVLJ1KlTefrpp9m/f7+15BQAj80eze/v3k2CBfK3CK4QTIwfKCsra/Cora1tcrqCggJ0Ol2jrbCAgIBGlcatzZWsjyRJIq+kwuTM1A5KBbOv6svVQ7qbZFRWa+rYeyqT2jpt/bXU3EISnv2ECf/5goKyi/FGP+w4zL2freRounm//8TsLP6zdTP/3bOLH5NbzvTd2zcIJ4UST5UjMZ4XvWhavb7J98BZcdGQcVE6miVXa6nWafjq9Ha2551sl/Waw9fRldXj7uDjYddzW9eB9dcr6mp5ef8Gvji2p/49K6mt5mRJAe8Nu5bbYvvzcNwIfJ1cuLv7QOJ8Ark1tvk0Cq3iSoppuv322ykvvxhEOG7cOL777juys7N54IEH+OOPPxgwwPL5OQQCQRswFjtwXkGFhYXh4eFR/zC2zXbpF68kSe3q4bnS9dFzX69j/LOf89J3f1ll/gc+W80d/13Bk8t+r7+2LzWTsupazpVUcCzTkIRTq9Pz8k8b2X78LJ+s22XWGiFu7rg4OKCQyejq0/IpsR7eAey/4SF2X7eAIBdDnqMt2an0+P4trv1jCRqdrkH/WPdwPun/OIv6PUpvzyiz5GotS1K38c6xP1mQ+BXnqi0XFN4aoj38GRcSg+If25jfnjzIF8f28PL+DRwqzEGn13P1r0u4fu03JBfl81z/cfg7Gw5QPN1vDL9Mnkecj3kpBYxiSjxTRzGali1bRnV1daPrXl5ePPDAAxw4cIDExESLCicQCNqIiXd1GRkZlJaW1j+eeuqpJqfz9fVFoVA08irl5eW1ayD2la6PDqRmNfjZFnafSOfGN7/hmy0XPXP5pYZA8rzSix6liX1juKZfN2YNi2NwtCGzuFIh56peXVDIZVzVyzzjJMTdne133MWOO+5mYEio0f6ltTUsPrqXlOJ8ALZkn0aj13G06BznmqjL1sU1hK5ulkkSagoBjoaM9M5KNU7KhikfCmvLefHIcr5M3WDRunXm0NM7AIVMhqfKiVBXD3SSRFGt4TOUV11hZLSF6ACeJpNjmkz5Rfft29doH4FA0I6YmKfJ3d0dd3f3FjoaUKlU9OvXj/Xr1zN9+vT66+vXr2fq1Kltk9UMrnR99J+5E/h5ZxIzh7U9aPuJJb9RWlXDscw8Zo+MRyaT8f5dU9lw6CQT+17Mdu7u5MgrN09sNP6deVPQ66VWxTm5qx3BxJCgx7b9zt/ZZ1l6bD97bryf22IHkF1ZRnevAEJdPMxe29LMCOtHN48g/NXuuDs0LNr8Y8ZO/sw5AMBI/x5EuQWaPb8kSWzKPYGfoyu9vEKMD7iEoYERJM58ELVCifN5o+678TexKzedWVG9zZ6vVXSAPE1mJYHoKAGWNTV1ODq2b1p+gcAWWCMj+KOPPsrcuXPp378/Q4YM4bPPPiM9PZ1777239YK2go6ij1pDfJcQ4ruY/8XZFKE+HpRW1eCsdqh/TyP8vbhj3EAjIy9iicDwA0VnWZSyiQnBPbkuvH+j9oDzW0cBToafYa6efJIws83rWgqZTEZ3j6Z/J/28IvlGtoVAJ0+C/1F3rinyaspwVDg0Mrx+OnuAfx9Ygwxww4PbYwZxT/chTU/SDF7qhklK+/gGW6YQr4l0hEBws4ym6Ohoo4qqqKioTQJZm8//t42vf9jFlIm9eXz+eFuLIxA0YN3Zkyzc9ifjwrvyxojGd/X2wKxZsygsLOSll14iJyeHnj178vvvvxMe3r5pMDqCPmpvcorKeHn5BoZ2i2D2KEPJk/89ciM7Us7SN9IyRlhrWZSyid0Fp9lXeIaZnfo1+t2+PnwiN0bH4axSUFhbgY/acglM9ZKeOr3OajXu+vtEsX7MCyjlChQyOT+fPcyfWce4L3Y4vb0vvu97ClK5b89SnBQO/DTyIQKcLnrQZOdLqUhAQU0lnybvNNtoErQds4ymF198sd0qiVuLHbtPXfwpjCaBnfHjyaMU1Vaz/MRhXhpyFY7KNipxE7fnzOX+++/n/vubrujeXnQEfdTePPjJak5mF/B30hlGx3UhyNsdhULOiO6djQ82g4LKSl76azPB7m48kTC8QUByc0wI7sm+wjNEuwXT44c3ubFLH57rf1FHO8gVFOvKmLd1BQ5yBZ8PvZmBvm2XW6vXcXfih5wqz+E/cXNI8LdOnqp/GmTP7P+VOr2Oaq2GZSPn1l8/XZGPhESVTkNuTWkDo2lGeB+81c4kFeXxU+pRbo1p7I0D2H4uld8zk7i5y0C6eRrfBtTodRwpyqa7ZyBObdU3xrjStuduvPFG/P39rSVLu/DQPWP5ac0+Jo+zXQI3gaA57uzZn6yKMsaHR7XdYKLjFuyFjqGP2htfdxdOZhcgk4GLo/XyC/1w6Ci/Hz8BwMSYrvQJNn4K67rw/szs1I8Z65ZRo9Pyw+nDDYwmgMyqYsCQkPHxvcvZOvHJpqYyi5K6Sk6UGwLqEwtPtspoqtNrya4qpZOLt0nbxuOCY/gj8xhXBcc0uD4trB+ldVV4q1yI82wYxC6TyRgdFMPooBgW9Gg6HxfAY4krKdFUc7q8gO9G3W5UlicTf2FNehL9fEL5fsw8o/3bwhW1PddR4gf69AqjT6/2O1EhEJjDwMAwfpt2q2UntXMl1Bo6ij5qLesOnCC/tIIbhvfGQakwedyH901j9e4k+kQG4+5sPaNpaEQnPt2diL+LC118vE0eJ5PJeDRuJO8f+Ztrwruh0+sbeKnmRA5ibdZRkkuzCXI2z8uol/QklZ4i0MkPP/XFuCJftTsPRk8hqTSd2RGjzJrzAvO2f8mRkkzujBrJg93GGu3/3qCZvDFAh0re8HfnqHDgnq5jjI4v09Tg6qBG3sTnoK9PGBtzTtDft5NJsudUGcqn5DRxAtEqXOb6yKKn5wSCS6nT6Tiac44Yfz+cVSL4vt2x0vacrbmS9dHxzDyeWPobAHK5nJtG9jF5rEIhZ8bQtnnZ953O5N01fzOud1duHdV08sM+wUHsf+h+5DKZ2QbuiKBIiqpqeGjLr3ybdITfpt2Kw3njwlHhwDcj7+JwcQaxHhe9V6WaalacPkx/v1D6+DQdm7U6ayNLz/yMs8KRxQP+g7PyYqD1DZ2a99wYQ5IkTpWfAyClLKdRe0WdIVGsq0NDI/VSg8lUvjm1j+f3/0G8Tyg/jLm10fv74eBZFNRU4O/k1uD64aIsVqUf5LrweHp4XQz+fmvgVFanH2XcJV4vq3Albc/pTSz8JxD8k3///hcrDyfTOziQFbfdZGtxrjg66vbclayPPJwdUSkVaLQ6Ar3cjA8AdDo9tXVanB1VxjsbYfGGRA6dzeFweg5zRsSjVDQdr2RKHNOHh3ew9Ng+Ho8fyY3RF4+9787NQAJSSgoora3B18mFZcn7OVFSwCPxw+jnE9FgntcObuSH04dwVCjZP+NR1IrGX20V2ioAavUatJKuUXtrkclkfDBwDltyU7ip86AGbWcripi+4VN0ksQPo+8gxsOQy2xvfgYFNZWMD41p0lvUErvzDQXbDxVmUavTNtrGl8tkjQwmgCf2riS9sojEgjP8OnZ+/fUQF0/u7zbcLBlayxW1PScQtIbsUoPLN7usnVy/goZ0UE/TlUyQtzu//vs2yqpq6Rrsa7R/SUU1kx77jDqtjgUzhzNvsumpBJrimn7d2H86i7FxXZs1mEzli6RESjQ1LD2+r4HRNL/3EDR6HX39gvF1cuFsWTHP7TJkP3d1UPHUgFEN5vFxdAHAQ+XYbOHcG8Im4qv2IsIlBHcHy528AxjkG8kg38b18E6V5VOlqwMgpfQcMR4BnC4r5MYN/0MCXh0wmRu69DFrrYd7JKCSKxgRGGlW3GMvr2DSK4talePJYlxJniaBoDW8NmU8qw4nMyZa1MuzBR3V03SlE+DpRoBnQ29CnVbHivUH8fF0YcKQWA4cz2Tr/lQiQr2p0xo8K5v2nzJqNK3cc5RXft5EbLAfXy+4sVH75L6xTO4bCxjKqDy7ah0ZRaW8OnMCnXw8zXodj8aP4Kvj+1kQ1/DofIirO2+NmFz/3M/JhVBXd7Iqyujn3/hL/5GeI0kIjKSLhy9KuZzs6jzSKrMY6N0LB7nha06tUDEpqPXbcK0hIbAr82NHopX0TAzpDhg8QTJkSEgoL9mi+8/B31mdcYhn4yYxLbxPk3NGuvvw1iDzE8m+0X8GD3cfQ4izZ4v9JEliWeouyutquDt6RJNeu9YiPE0CgRGCPdyZP2KwrcW4chGepiuGnzcd5v3vtgAQHuTF4+/+TEW1hv7dQxnQLYz03GL+NXt0fX+dXo8EKC/ZRvtk/S5q6rQcPJtDZmEJoS0YQim5+fxy8Jhh/QPJPDh2qFky3xLbl1tijWdud3ZQsWnmXVRr6/BQNy7Aq5DLGeBvCHyu1Wl45MDr1OhrmRk6jlsiTDMwyjW1PLNrLQqZnJcHj8fZoe1bmUq5nAe6j2pwLcLNm58n3EZhTRUjAhumTPjhzD60kp5V6QebNZpai1wmI9Sl5cSaAIkFZ3n9yDoA/B3dmNW56dQGrUJ4mjoeVTUaHFUOFslwKxDYHGE0XdZIkoQkmZZxO9DXUAZH7aDEy82ZyFBfDp/MJiY8gAdvSmjQN6e0nJmff4NWp2f5nTfR2efil+n0gT1ZtG4nAZ6uBHu1XFonyt+HgZ1DySgqZVwP6xbGVSkUqBTGg6el8/8A9GYcGFiXcZJf0gwG4NiwKK6OiG2doCbQw6vp/EkLe41nTcYR7o0ZabW1jRHi4omzwoFavZYoNwun9BBGU8fity1HefmztfSICuLT52+ymOFUW6fl9v+u4ExeER/ePY14G2feFVw5iO25y5cajZab3/uOjPwSFt07nX5dWi5qOyK+C8tfm4eLkwo/L1cWPXU92fmldAps7F04kp1LUaWhWOuBjOwGRtN94wZz37iWvcO1dVocFArUDkqW3nF9i32/P3yYU0VFLBg0CE8npxb7WgJHhZq3+/yL0xUZDPXtY/K4gQFh+Du5opDJ6OdnGx19c5dB3NxlUKPr2VWlfHZ8B4P9I5gY2s2qMoQ4e7Jx4iPU6XX4Olo29ktsz3UwEo+mI0mQdDKH6hoNLhbKY5JRUMLRdENV+C1Jp4XRJGg/hKfpsiWjsIST2QUA/J18xqjRBBARfDEnkoNSQXhQ0zmS6rQ6kEAhk9E3zPTaYzqdnv/7eSM/HjhKdKAv3993Ew7nvT+SJKGXpAan5s4UF/PMX4YAbkelkseHt88prTDnQMKcL3pzyuvK2ZS3lRi3rsS4Rzc9xtWD3dcbstzLZDJOV2TwTsoyOruG8kj0LVTralme/ht+jj5cEzSqXXOFvXt0Mz+fPcJ3qfvZP/0JXJSt3zrcU3CaWp2W4f5dm30NHiorGbfC03T5k5FTTJ1WR2SYL7fPGIwkSfTr0cliBhNAZIAPt4zqS+q5Iq4fGmexeQUCowijye6RJIlVO49SXl3LjCE9OXL2HH0ig4gK9OHOcQM5nVvIrOHmVaHfmnSa0qoapgzo3mR7XnklSKCTJOp0ph+/v/OTH9mTnoWkhGM5+RRXVuPv7opGp2PW/77nRH4hn8y8lhGREQD4urgQ4OJCXmUlvQICGs1XpqkBwF3VOE7Jknyf8SNb87ejlCn5tP8HqORNGx3/NCI2nNtNRnUuGdW53NhpErsKD7ImZxMAPdyjiHS1TJLk7KpiMquLGOAd2awRE+cdzM9njxDl7otjE4HZn6VsZ2NOCgt7jSPep3m5DhWlc+fOpQB8MGA2owKttwXZJMJourw5dTafeQv/h14v8eHzN9C3RxgvLrja4uvI5TIem5ZgvKNAYGHE9pz9sz81i5e+M3hj1uxO5lROIf27hvLFg9fzwNXDzJ5v0+FUHl78CwDZhaXcM7FxUdfZA3ojSRDs6UZX/4ZpC345cIzkrHM8MmE4aoeGXxGF5VXItIb/L5gwBH93w/ZNbnk5R3PzANhy+ky90eSqUrHx9tupqKvD19m5wVynSgu49s8vkST4eeI89p/LYXPmaR6JH06st5/Zr7slfFQGj5uHgzsKmWlJJccEDOJASTKdXUIJdPSji2snZMhwd3DFV208oPoC5XU1vJX0J24OjjzUbRwOcgXHSnJZlX6AsUGxPHrgK6p1Gh6JncTNnZv2xM2NGsC4kBi81S6NUirU6Op4O2kDAItP7uTDFoymfxpl5uaHsgRie+4yp7S8Gr3e8BsqKq20sTQCgRUQnia7x8/DFZVSQZ1Oh1ZnSNpZUlnT6vmKKi7qsvyyqib7qB2U3D6scTbvY9l5PLniTwDSC0tYdOu0Bu0f3TWdV3/aSELPSGYNvej9CvPw4KERQ0jKzePW/vENxjg6OODo0Dif0MnSAmp0BgssufgcT21fi4Thi/2TMdMa9W+JpNKzlGgq6e0ZzuK05Tgq1Nze+QYc5IZ1p4VMoY9nHAGOASYbTV1cw1jU77n65308u7F04Guo5SrUCtO3x37LPMSqjP0ADPWLYqh/FP/au5JT5flsyU1Boz//HpTksPjEDm6M7N/k9lugU9NB+Y4KB6aE9WJTzgmuCevZoixxXmEsG3YHtTotg/1skAbGxp6ml19+md9++42DBw+iUqkoKSkxe44r2mjq2yOMFx6cTK1Gy5jB7ZBCXiBoZ4Snyf7p5OfJby/cjqZOh1wu46+DpxgT1/IXmkar5att+/F0dmLmwJ4NPAgzhvQis7CMkopqnpwxuoVZGvPPsy/yJjJ6h/l4sOju6Y2uy2QyFgwzL7XIuNBoHu41Ar0kcXWnbvwYnMz27HRGhzZOEnmBtPJCEgvOMCm0B24Ohi29M5XnuH/vh0jAjNDebC9MBKC/Vxz9vHudf11yIl07NzdtA3SSjhUZv1Krr+XGsGkNDKTWJMXs6xOOs0KFi1JNjIchzirWI5BT5fl09wxhXtfpHCxO59WDm5A4xrHSXB7tMYZgI/mU/slbAxr/Tpoj3jvc3JdgMWztadJoNFx//fUMGTKExYsXt2qOK9pokslkjB9u3ZMIVzpldRW4KV2u+AKrNkN4mi4L/DwufhnPHWM8b9HPe5N574/tAEQGeNM34uLhEplMxkNTWhdwHRPkzwdzruFoVh4LxjTe1rMkSrmcB3tdTDb59YQbqNXpcFQ2/bWklyRmb11MiaaavYVneaP/jEZ9gh2DcFW64ChX08W1dcbB4ZJkVmX9AUCoUzBXBbQteD3aPZBtE59CLpPVb6293n8698cm0MnVC4VMThfXQD5M2klZXQ2/Zh5my7njbJzwaL1h2Br2F6ajlMuJ8zJ+gKDdsLGn6cUXXwRg6dKlrZ7jijaaBNZlyelV/Jy9gZF+/XksZp6txbkyEUZTh6STjycyGaiVSgLcLXssfGyProzt0dWic5qCTCZrYDBpdDo+PLIDlVzBxIAY3v5zK1oPwx+so+Lidl+ESwAf93+A0rpKBvvEcl2n0cgwv1DwBcKcQ3BWOKGVtK02vC7F4ZLM33KZjM5uPgDU6bWsyTzIs73HsSf/LCvTD1Kj01Knvxigf6Q4k/t2fU2YixdLht3e4PU3xY68VO7c8T8Avht5B729LRO03mbMMJrKysoaXFar1ajVljug1VqE0SSwGodKUwA4UnKi3dfWSxLP7lhHSnEBb46YRKRH00evOzqy84+W2gWXH4O7dmLtk3egdlDi4+psfEA7UFZTg5ODQ30Kgrby29njfHB4BwAHZTnsPJ6O5KDklVunMjmiYexOd49O9f+XtfGv2lftzaf9XkePhKPC+l/Sy88k8kaSwbP13Yh76eUdQrR7AN5ql/o+m3JTKK2rprSkmtPl+XT3bDlNRO35WDEAjd5yxYnbijF9xD/aw8IaGnrPP/88L7zwghWkMg9hNAmsxn1RN/J79lZGB7StQGhrOFVSyDcphwD4LuUQzww0L7ajwyA8TR0WY9m6L1Cr1aJuZsvLUvx6PIWHfvsNN5WKLXfdiYdj21MIRHv6opIrUMjljI2JYm9KFr1Cgrm2c1yDXFDWQPWPOKbcmgJOlp9loHcvswLATcXf0VBDUCVX4qN24cbOAxr1uS68H0klWYS7+tTHRbXEqMBoPhx0I0q5ggG+EZYWufWY4WnKyMjA3f3i33hzXqYXXnihftutORITE+nf3zLlYITRJLAaMW4RxMRE2GTtCHcvhgZ14mRJIZMjGgf5nyjNw81BTZCzhw2kaz9EIPiVzdTP/sfxcwWM7BLB57NNDxY2l1VJyQCUazSsTjrGtd278cnW3XT192FmfMsnupqjh3cAidcvQCaT4a5Sc0N8nEXLW2VX5/D68bdwVbrwdLeFuChdGvXRSToeO/AWZdpKJgUN5/6oWRZb/wLjg3vyg4sPHg5OBDo1rY+CnT35dMgtJs8pk8kYE9TOOZhMwJxAcHd39wZGU3MsWLCAG29sXFj6n0RERJgooXGE0XQF8tGO3exMz+DZMQnE+ls2H4q9oFIo+G5S4w+SXpJYm5nMQ3tWopYrWTvhfoI7suEkPE1XNCnnDBnFd5/NaPUc9/ywmsT0TBZeNZJZ8b2a7DN/0EB2nElHIZORENmZxdv3snSX4Zh9d29fNnydSHAnb6bfPNSsWKN/Fue1dD3QI6VHKakroaSuhLTKM/T06NFkvwsfEcmMOnbmEusRZLW5rUVpXSUfnfjFvEFWCAT39fXF19fXeEcLIYymdqKwvJL0/BL6dA626Umyoqpq3v3bECewOHEfb149sb6tsqyKgsxCOnUL7ZCn3crrapi+8XNyqkoBiVq9lhJNdcc2mkAYRh2Ut//cxsp9SSy8OoFr+zR9CnjOgD78cuQYdw5p3dZEZW0tm06dBuD9LTuaNZr6hoZw6OEFgOGGpUewodCrv5sL29cc5tfluw39BkcR0bVxZvDmyEjNw8vPDVf35st6ZFaWsDHnBBNDuuHv5Gby3EN8BpFUmoyr0oUYt6ZLqyhkCt7u8xgp5WcZ7GO8msPXp3fw+cnN3B6VwK1dzE9Mak9szTvMifJMbug0CneHxnFzP2Vs59fsPeZPbEN9lJ6eTlFREenp6eh0Og4ePAhAVFQUrq6mHagQRlM7UKPRMv31ryiprOGhq4dxx9j2j/G5gKeTIyM7R5CYmcnEmIsnZOo0ddzV61HyMwq59+1bmfnINTaT0VqklReSUVkMwKjArswI7013T+PxAZczYnuu4/L1zgPUanX8sOdws0bTvyeO5t8TWx/P56JWE+LhTlZpGZO6NW1YXED1jwDwid2j2fpoMG6OapL2nGGlYhtePm74BZp+g7J2xR7ee+YnPLxdWLJhIU4uTce03LX9O1LLC/gz6xjfJtxq8vzuDu48GvOQ0X5BTn4EOZnmkf/2zC5K6qr5Nm1nq42md4+vYVXGLuZHT2JWePvU6ruUIk05LxxdhgTU6uuY33Vqoz49PDohNzPo3tZ5mp577jmWLVtW/zw+3pCIddOmTYwaNcqkOYTR1A7U6XRUVGsAKChvOkNveyGXyfjy+saxDZpqDYXZBoMiIyW7vcVqF3p6BXNvzHCyq0p5std4fBwbxzB0OMT2XIfloXHD+PlAMneNbBw4bEk2zb+j2bazxSX8fDSZiTHRxFxSjsXfzXDn3n9YV37Y8jQqRwdUqn+kFNBqUbUQoJ55xrC1WFpcSVVFbbNGk6vScN3dwTbH0ZNLs3BTOhLm4sN90WNYmrqNWyNbb+z8nr2POknHnzkHbGY0OSvUeKvcKdSUEe7ctGdwkE8sy4c9TSgfmD6xjfM0LV26tE05mkAYTe2Cm5Oaz++fSXJGHjMGty4o0tq4eLjwf2ueJGl7CtMfmmxrcayCXCbjkR5jbC1GuyI8TR2XecP7MW9441Io7clja/7gUHYuPx89xqb7mjeuLt1ee/a7taxJTOaha4Zz+5iLRl9mRSnzNvyAi4OKT26filrtQGS3YHwCLgYEp5blU6ipZIBPODKZjMXDZ7O/MIOBfu2f6XpjbjKP7/8WpUzByoSHmBLahymhfdo05yOxU1iTuZd5keZ7CLOqc/Fy8MBZ2fx2pik4KlR8NXghxZoKQpybjxdyczBvHVt7miyBMJosxJsrt7A16TTP3nAVg2I6NWrv1yWUfl3sKDNrEwyYGM+AifHGOwouH4Sn6Yok5VwBC77/hU5eHnw8e2qLHp22EObhwaHsXEI9TN92K6ioZM3eZCTgzwMpDYymjVmnOFVWCEBydQE3PziuwdisyhKmbfwEraTntX7TmNqpN+4qR0YFtX8yToBijaHOn1bSUamtbdNctbo6avVaJgf3Y3Jw08awTtJRo9Pg0oRRtDZ3C1+c/h5vlSf/7fsSKnnLCTCN4ax0xFnZ9tQRDbCxp8kSCKPJAlTV1vH1ZsNJkeV/H2rSaBIIbIHwNF2Z/Jl0goziUjKKSzmRV0jPYNODr83hjWsmMG9AX2L9TT+9tP9sNloHkGlhSPeIBm0TO8Xw25njuDqoGBLQUI9mZhWx/WQqWslQ1LhSq2lxnfeP/86m3GQW9riWIX4tx2O1lqmhfZEBPmpXYtxbfwKuvK6am7a/S5Gmgnf6zmOwb2N56/RaHtz/BhlV53gi9hYS/BsaVllVuQAUa0qp0dW22WiyBsLTJADAWe3A7JF92HL0NNcPM37CQiBoN4Sn6Ypkau9u/H3qDOHensQGWDatSGpxETuzMpgSFYOHoyO9gwPJr6xEV1NNoKvx02vDosIZ17srGq2W2xIanurzd3Jl+YQ5jcbU1NRx14NfUVWt4bqbetM/oTPXhDV9kg9Ao9PyddrfAPyYvsskoymvppjdhUkM84vDW2Va4lClXMGMTm2PKcutKaGgthyAV5J+5IHoyYwL6tOgT3ldJennDaOjpamNjKbrw67GWelEF9fwVhUWbheEp0lwgYXXjWbhdVdo1mmB/SKMpiuSCB8vVtw92+LzSpLEDau+p7C6mp2Z6Xw0cQonCgu4ZvnX6CU9P103m94BLZ9IdVGreO8mw+ncX3YmsflwKndPHkxsmH/z6yLV50kK1ngyJigGnV6PQiGvl+vnzERyq0u4NTIBZ6WaORHD2XwuiZmdBpv02v595FPOVOWyOW8/b8c/aNIYSxHlGsjDMVfzRep6CmpLWXTy90ZGk7fagwVRs0gpP8MNYeMazeHm4MqNna5tJ4lbiTCaBAKBPSO25zouxZVVjH5vMbV1Wl6dNp5pfZpOzmhpnB1UFFZX4+JgKCmSWV5WX1z2SGo6cf4B9Xne1qefZGPGae7uOYDOl9R/1On1vPTNenR6iTqtjv/Obz5juZOjik/eu4WTqedQRysZ9scb+Kpd+HnM/bg7OHGyPIdXk34GwEXpyC2RI3m422Qe7tbwUMtP6Ts5VpbJXVHjCHD0bNB2oc6cUzvUm7sUmUzGjRHD0aFlyekNTA0d1GS/ScHDmMTlm/9JbM8JBAL7RniaOixbT52hps5QmPXH/UktGk2P/vAbqXlFvHfjNXT29WrUnldegYvKARcjVeRlMhmrZs7mUF4Ow0INp9WUaTUMrfCh/Ew2Sx9+k5L7J7LggzvQ6vXct3E1dXo9BdWVfD52RoO5FHI5w3p0ZtvR04zoFWn09UZ08iGikw+LUjajk/Scqyknu6oUdw8nfNXuuCodqdDWEObc+PUB5NWU8tbx1YDhdNjj3RrmHno57h6OlJymj9fFoPLi2koyq4vo6WE84W+pppqKulpCXDyNvpbmmBMxijkRo1o93u4RniaBQGDPyCQJWQvlH1pqE9g3k3pE88Xfe8mvqOTxcc3n89l+8gx/HDkBwDMr1/Lt3Q3LC32ZuJ9XNm5BLpOx/s55hHt7Nmh/bvtfbMlM4/+Gj2NESAS+zs5cFdGlvv2NF1aj0WhRHElBpofju08CoJDJ6OUbyP68bPr6hzQp23v3XkudVofKwfBVVKwpJbkslb6e3XG65ORWtbYapVzJ7M4DKaipIMzFixh3Q4C7t9qVEYGuHC3NYVvhX4wObBzv5KVyobOLP2cr8+nr1dhIc1U6M8T3YkqYGl0d1/39HiWaKh6KmcgtkSOafA0ARbWVTFz/IeV1NXw4aBZXBdtf3Td7wJg+utDHnhFGk0DQkRGepg6LSqlkzXzjRVy7Bvgil8nQSxIDOjdOe7LldBpgqMu4Pzu7gdFUVFPFsuQDIIN/bfmTnbPvbTS+d79wEnemMvHha5EVlXL1PYZ4G5lMxo+TZ1NQU0WAc9OByTKZrN5gAvj30ffJqj7HYO/eLOx2d/31Y2UpvH78HVyVLrza60We6924YoFGX4tSLlGpbTqBsINcyf+GPnz+yL7xo/QavZbyuhoA8mrKWuxbWFtZ3ze1PJ+rMM9okiQJPRIKmdyscZdSq6ujRFNNgJNpgeztjvA0CQQCe0bENAn83V3Z+dR9FFVWEuHr3aj9pfFXcc9Pqwl0c+Pa7g2/7N0d1DgrHajS1dHXP7jJ+f/v7ZuoKK/BrYn6cAq5vJHBlFpxmoMlhxnlN5JavQ5vlQeOCkN8lE7Snf+pbzRGJ+korSsjrzYfN4fGp/Qei7mHxKKDDPDu0+x7oZDJTTKYANwdnFg04DaSS7OYETYAjU7Lb9kH6eziRx/vhok0u7r782rfqWRWlXBzF0M8kiRJ/LRqL2fOFnLHvBF4eTVdgaBKW8NdiR9QUFvKu/H30N2jdSlr6vRaZm75iPTKIp6Pm8rMcNMTn2r1Og6XniTSJQRPlen1+8xFxDQJBAL7xoaeppdffpnffvuNgwcPolKpKCkpsd5ighZxd1Lj7tR0vFK4lyd/3tl0zTalQsHhWx4gq6KMCI+mY4VkMlmTBlNzvHn8PSp1Vewq3M/xsmICHX35pP+zKGQK/tPzYQ6XHGegT+8GY8b4J1CkKcZL5UmkS+cm5/VVezMpqHUZ/9fm7Oe7s1uYHZ7A+KC+9df7+0TS38ewlff5yU18fHIDcpmMP0b/Cz/HhsbFtPA+DZ5nZBbx0ScbAfDwcOKu2xOaXPtMZR4ZVfkAJBadaLXRVKnVkFFZBBhKu8zEdKPpi7TVrM7agp/ak6UDn0feRo9Xs3QAT5OV3hmB4PJkbfZh3kheQ15Nqa1FsQgX7uxaelgLjUbD9ddfz3333We9RQQWR7okpsRBoWjWYGoNfmpDIky93hBYnVdTRK3OkKjSV+3FmIAhuCqdG4xxVjpzS8RspgRPNhqQ3Ro+T13LqYocPktd22wfl/M17lQyJQ5yRbP9LuDn60ZggAdyuYyePS5ui1Zqa1mbfbBex8S6h3JjpwRG+cdxTXDri7l7qpx5te91zO48iHujzUt/U1FXeV62GiQrWi2m6CPhaRIILhNKNVU8c2g5EoZ4hmd7Nn8E+rLBhp6mF198EaDNBTIF7UOVRsPItz6nolbDs5NHc/OgPmaNP1qYy5KURK6N6E5CcJdm+z3bfSHZNTm4Kz35JXszPdy7tLlWWluZETaUr9I2MiNsaLN9booYQpRbAMHOXniqnJvtdwEnJxX/W3IXtbVaXP5RbPi1pJWszz1MgKMnqxMWIpfJub9r4xit1jA5JI7JIeYnWL6ny0y6uoUT59EFhcy4QdhqOoCnSRhNAsF5nJVqwpx9SK8qpLuHfdcJNBVTY5rKyhoGuqrVatRGjp8L7J8qTR05ZeVE+ngZ9dDsPZtFRa3B47PywFGzjabnEtdyoCCbjZmnOHDDI832UyvUdHaJAOC2ztPMWsNazA5PYHZ409tnF5DJZAz0bd4YbAqlUoFS2dAIkZr4n61xc3BmashIAHR6HV+c/oMKbTX3Rk0xOQbMFERMk0DQgXCQK1g+/EFK66rwc7TT0yfmYqKnKSwsrMHl559/nhdeeMFaUgnaAZ1ez9QvvuZscQmPjx6Oo1xBTZ2W24b2w0HR2JswLDKcboF+ZJWU8djY5o/XN8eQgHAOFGQzKMB+am9+duoX9hQd46Ho6+jladzgOVOZzb+PfIiXyp3X4h6yigfsqR4zGO4XS7xX07FZ1iClLAtftTs+auNB3gdLUvk+fRMAka5BTA9tPp2F2QhPk0DQsVAplPgpOojBBCBJyPQtaKHz8SsZGRm4u1983c15mV544YX6bbfmSExMpH///i32EVgfjU5HVqnBg7gjLZ1dJ9MBCHR349re3Rr1VyjkrLrv5vrnkiTxd94p1AolA30bfsHr9Xq+PXGI7l7+9A0w5GB6In4Ut3cbiLfatlttF6jU1rAi0/Dlvzrr7wZGU4mmCq1ej69jw5N9e4uSKKkrp6SunNOVWfT0iLK4XC5KNROD4y0+b3P8mrWXl5N+xFmhZuXIhXg4tLy12NklEC+VG9XaWnp6RFhWGGP66Hwfe0YYTQJBB8bU7Tl3d/cGRlNzLFiwgBtvvLHFPhEREWZIKLAWTg4OfHLDVPakZzIqsjP7T2ehk/RE+JgW1L353AkW7P4OgG9H3EFv74veyIe2/MovaccN/WbeWV8ixcfReKxPe+GidGRS4GASi44xMehiWZIzFYVM3/gxWknPNyNvJ87r4lb8aP+BHCk9ibfKg1g3y3mCNp47zNvHfmZsYG8eiZ1qfIAFOVdTAkC1rpYqbY1Ro8lb7c4PQ/+NHgmV3LImgtieEwgE9o2FA8F9fX3x9fVti0SCdmRklwhGdokAYNMjd6LV6wlwbzrR5KXIuRgDJaNhPFRBzcUEkqW1NW0X1Eo8Gjur0bXMymJq9YbyM6fLCxoYTT5qD17seb/F5ViTuYeSukp+ytjJQzFTrHekvwnmRIzESaEi3MWfIKfGebqaQmnC6cBWIbbnBG1BpzMkcLtQqduaHE87x4/rDzB+aDcG9gw3PsCO+TPrKB8c28iszgO4tcsQW4tj18j0hkdL7dYiPT2doqIi0tPT0el0HDx4EICoqChcXU374hZYDh/Xpj0Mer2eSo0GN8eGAb8JgdEsHnoLKrmSOO+GByM+GTONp7evo7dfEH2aSXrZWr5I/Z29RSd4KGYG3dwtHx811D+Sf/UcT42ujsmhPY0PsAA3RYykUFPO2MA+LRpMW/IOsiJjC9eFJTDKv49F1nZUqJgdMdIic7UVY/roQh97RhhNNiInu5gHb1+MJEn898s7CQqxXB6UpnhjyV8kp+ay/cBp/vjY8ndSTVFaXs1Hy7cR4OPG7dMGWyy/yhcnt3O2sohFxzcLo8kYNkw58Nxzz7Fs2bL65/HxhjiOTZs2MWrUKOstLDAZvV7PwHc+oaymluv69OSVa8Y1aB/s13QhXQ+1Ix+Nudbi8pTXVfHN2Q0AfHxyDa/2vsOip7cA5DI586KaTy1gClq9Dq2kx1HhYFL/gT7RfDUk2mi/z1J/JbemiM9S11jMaLIrOoCnSSS3tBHHk7IoLamirLSaY0czWz3P0bxzXPPt1zy/aUOjpHT/pG83w51i75j2O0r/86Yj/LL5KJ//tJPk07kWm3du5CD8Hd24o+swi83ZUbFlIrmlS5ciSVKjhzCYrENuWTlvbtzGjjRDwHd6cQnvbNrO0ZxzzY4prq6hrKYWgO2nz7SHmC3iqnRitH8f5MjZX3SGZw9/Y/E1zlQU1mfObg0lmiqmbnmDsRv+w+HisxaUDCYHDUItd+DqoMEWnddeEMktBa1m6IgYrp7eD0mSGJrQ+orY3x45THJ+Hsn5edzbfyBBbk0fKV1wUwI3TeqPt0f7BWr2jg7GQanAy92JsEDLedKmdurD1E59LDZfh0aSWj6NYucnVQSm89pfW/n92AmW7TnAgSfm8+SatezNyGbl4ST+fujuJsf4uDgzpWcMu89k8ux487JIWwOZTMZzPedyy853Sa3IRaOrs+j8+wvTmbvtS+QyGStG3UOsR6DZc6RX5pNfWw7AweKzxHlZLtxhTsQ45kSMM97xcsWYPrrQx44RRpONUDs68NDCq9s8z7TYbmw+k0Z8YBABRuJEfDybLhhpLfrEhrL+0/tRKuSNErwJ2gdRsNc+0en11Gp1OKtM294xhS7ni/GGe3milMuJ8PZib0Y2Ed5eSJLELynHUSkUTIzq2mCr/O1pkxvMk1uTjxwF/o6mBQ1/fWovi5L/ZkZEHI/HGa/9dqosn3u3LyfQyZ3Ph9+Ek7Lxe/B2/O3sLDjOCP8eJslgKnk15UiATpIoqKkAD/Pn6OkZxp1dxlBQW860sAEWla+jI07PCWzOwJBQdtzR9F2kOfyVk8SazIPcEjmMfj4RbRfsPI5qy30pCFqBDWOaBE2j0Wq57oNvOJNfzHs3T2FMj8ZJF+t0OpZs34evqwvT47ubFA+4YMRgJnWPJtTDA5lMxn8mj+Xm/n2I8vVmbeopHvnzDwC+nnkdQ8OaDrDeXrCX904sBuDpbguI9zIYLcWacpwUahwVqkZjXjv0FzU6LZ8e32GS0bQ+6zjplcWkVxaTXJJLP9+wRn38HD24NnRQE6ONs69oFVlVRxnhfzteqpAGbeODu/F872twkCsY5m9edu8LyGVy7u46tlVjOxqa86cQTaYDxDQJo6kZiiuqUTsocb5CvvT/c/gXSuqqOFddyvcj2ydQXGB9hKepfdHq9Hzw13bKazQ8dfUoVE14WAvKq0jNM8TULN9xqEmj6bU/tvDtnkMAhHi5M6jzRcNCkiQS0zP54/RJhnUKZ2wXw3iZTEaUr099P4VcTvdAfwA8zicrlQHuLZTHSS49Wf//Y2WniPfqwc6Co7yY9AWeDm4sHvg0Lpdkye7lFUxiQTphrqZtwV/TqSebck4S6OROL2/Lnryr0paw6dwnAKjkLkwMfrRBu1wmZ1Zn8xOvFtaWcqgkhYHePXE1kufoSqFUU8Wc7e+ZNUZ4mjoou0+mc/enK3FzVLN64a34uHX8D8nowFhWZexnTFB3W4sisCQipqldWXv0BF9s3QuAhMQLUxt7JIK93BkX24W/jqSy6/BZjmWco1tYQIM+BRWV9f+/1Mf0zY6DvLhlEzpn+Pr/2zvv+Kiq9P+/7/SSmWTSO0lIQgKEDgrSUYggggV1FRW7rrquu3b3Zy+ri7u6ruvq+l11V7GtuhYEsSJKF5BeAum9z2SSTL2/PwaCMWVmkkkyCffNa14zc0+5Z4bJuZ/7nOc8z+6f2HnTzYSoTlqALK02Vm3YyfyxmaRGe5bYpiYl88mly1HIZIzoJs7W8mHnUdxchkImZ1mSZ9nuSFMxIlDvsFBrN3cQTW/NvYKaFqvPgS2T9CbenXu1T3X9RSM3EKfJoqL1MKkhgYtK/4c9z1PSUskk00geHH1TwPoF2FC1j2+r9nLpsJkMN8QFtO++pKK1gVpbk3+NJJ+mocn+4ircbpHG5lbK682nhGh6aOx53Dd6MSq59JMYSkiWpv4lynjSb9DhcnO4pJrH3vySsWnx/O7CmW3LbOdPGs2324+iUSowdRI/6f6FcxBFkcyYKKaktl++OlZdh8wJLiDBYESjaP83+6tnV1FY3cCL67aw8+nfIAgCdoeLrIhIrzHhtAoNj+T8vt2x8xJm0eKykaiNosrayh1b/sm5yWNYPvzk8lmktn/9JbtCJsi5NOVZXKIDhazjUmJPObk8GpiwKT/nwT1vYXM7qLGZeW7idQHvv6/INMRxQ/pZXM9ffG4jWZqCALdbpKSynvjoMBQBChJ50bQx1DY1ExMawqhf3AEOZSTBNASRfJr6lSmpSTxx4QLyKmu4YfZpPPv+d+wtqGBvQQXLz5xAjMmzu3Xm6DQ+emAFeo2KSGNHwRFtDOGvv2ofB8npciOKIreeNY0wnZa4SAOLx2ShkLWf95ptnh1nbrcnSuBnOw9y16o1yGUCH91xJSlR/u1kNSh13DB8KQDTVv+JenszexrKuDRtCrIAxV4LJIIgoBBOCiaX6GJ73S7itDEk63oWcuXxnFvZ3XCYSeGBdUwHGGtKZWvtYSaE98zHaqAQBIGLU87AL4/aAfRpKigo4NFHH+Xrr7+moqKC+Ph4li9fzv33349K5bvAHvRXyT+9+iX/+3I3p49N4S/3XBCQPvUaFXecGxwRVCUkeoNkaep/lo4/ucR99uQs1v90lJzUOKJC2+9uHRbtu3iprLdwydNvYne6+PfvLuE386dxrLKWDfsKmDN6eLsbxn/dtIy/rvmBcyd7HMjX/HQIAJdbZP3+Y6TMmtiu7yaHDa1CidyH1B6JujDq7c1o5cqA2FwcbgeF1nyG6VNQBtAy9HM+Lfucd0s+RCEoeH780xiVHuFa2FSLiEhKiPe0QCaVkVnRfZOE+pnxV2FxtBCqCg5rXV8ykJamgwcP4na7eemll0hPT2fv3r1cd911WK1WVq5c6XM/g140HSmoBiCvqHqARyIhEYS4Rc+ju3KJPmNSZhJfPn1jl+Vut4hM5l1+HCypor6pBYDdBeVEhem5+M+rsDmc/HrBVG5ccDIYYkq0iT9feU7b+zsXzeRQWTVGrYaLp41p1+9nxfu4fcuHZBgj+eDM61B5yTn29qxrWF95hEmRwwIS4f+lo39jd+MuRhvH8JvM33tv0AN+Ps4Tr/Y3lHHx+n8iAm/OuLpdMmJ/+NuBb9laU8B9Y3J7FPMJPM7pp4JgArzPRyfq9AG5ubnk5ua2vU9LS+PQoUO8+OKLp5Zouv+GBfzvq92cNW3EQA9FQiL4kJbngoZmh4Pffr6aRpuN53MXsb+4ittWfUpOYgyvXbOsW/eCadkpLJ8zgVa7g3nj0kGkLQOA24vjbHKUiXX3Xdtp2dbqQkREDpurabA1E63tPDjuCWQyGXPi/J9rH9n9IRuqDnF79tksTBjbdrzOXgtAvaPzCN31zS2oFHL0fiyf/JJz4hYQp4khVhOD4biVqcbWhPv4j7+61U9n5uPU2ay8cHA9AK/nbebJiUt7PMZTBj+W58xmc7vDarUadTc7P3tCY2Mj4eG+xSM7waAXTamJEdx+5cBHspWQCEYEvCzP9dtIhj5uUeSW/33K9pJSnl28kAmJcVgdDiK0HkfvLaXFfJF/FIDP8g6Tn1+Hw+ViR2EZddZmoo3tl++aW+1s3V/EuMwEwkK03HH+LF7btoNJf32Rc0dm89btl3K0opZ5Y9J7PObrs86gxeVgbHiCV8HUU+xuJ/8r+RGAZ/avbieabhh+C9vrtjApvGNMpm1FJVzxxn/RK1V8esMVxBp7luRZJsiYHD6h3bEZ0Rk8Nm4JeebPsNjupaL5PmJ1U/zqN0ylY1ZMBttrC8lNCLyv01DE23x0og5AUlJ769+DDz7IQw89FLCxHD16lOeff55nnnnGr3aDWjQ1tdr477a9jE6MYVJq/+VUk5AYNEghB/qNWmsz6w7nAfD+3n38/ps1VFqb+MfCc5mflsHEuATGxcRhsduYlzIcV0IqVeYmxiXHdxBMAA+8soZvdx4lIymKtx66HIDPD+UhivD5oSOsXJxLRpx3f5zuiNeF8tTkJb3qwxsqmYJwVQh19iYmR7R3do7RxLIovvPzH6isxuUWMdtsFDc09Fg0dYYgCJyTlMF7xz6mxQV55o/8Fk0yQeAf0y4N2JhOCfwIOVBcXIzRaGw73JWV6aGHHuLhhx/utstt27YxadJJn7SysjJyc3NZtmwZ117buRW2Kwa1aHr+i428sXEXCpmM7//fjRg0gTXdSUgEClEUA+ID4i+SI3j/EanXcc3kiWwrKWHBiAw+KNgPwE+VlcxPy8CoVvPhRe0vsi9esbTL/lrtnmjLrbaT+dfumH0GL27cyuKRPc9XORCsm3cXFkcroaruw7eIosiuhsNo5SouHDuaSnMT4Totk5ISum3XE6zOJgyqibjc5WQYzw94/xId8ccR3Gg0thNNXXHLLbdwySWXdFsnJSWl7XVZWRlz5sxh6tSpvPzyy177/yWDWjRFGjzOc0atGpVcym3W0NpCVbOVzPDe3X0OFA32Ju756VUA/jj2KsJUgbuzHChEUeSmTe/wfeVR/jhpCeckje7nASD5NPUTgiBw79yTu24ft53Jkbparh03sZtWXfPodWfzzY48po5KaTs2MTGBVy46r7dDbcPpdlNntxKtCfzSnCiKFFjqidMZ0CiUXgUTwObaPTy2/xUAnht/J3fOm9Fl3QJrCa/lv09O2AguSMztsl5XfFD8R8pbi4hUJxOj69n/kYSf9EHIgcjISCK7Cdj6c0pLS5kzZw4TJ07k1VdfRSbzP0zRoBZN186azOTURJIiwlArB/VH6TVNdjtz3v0/6ltb+OPMBVySNcZ7oyBja91h9puLPK9rDzE/bvBPZC0uB99UHAbgi7KD/S6aBFFE6MYc3l2ZRO+4dPTYdu+bHXY2lhYzKTaeMI22i1YnMRl0nD+r/d+xuaUVUYRQnabX4xNFkUvWv8K+hnLuzpnPivSpve7z5/xj/yb+9NO3pBsjWLvoep9iOrlFd9vritZKhockdmmh/bjsS/aYD7HHfIj5MTMwKP3bgRaiCD/+7F/cKome420+OlGnLygrK2P27NkkJyezcuVKqqtP7riPjfV95+OgVhqCIDBuWGBzFw1WrA47Da2eLckFjfUDPJqecVrECMaEpYIoMiVicC0/dIVOoeLeMfP5riKPG0ac0f8DcB9/dFcu0S/c9uVnfFGQR05UDJ9ceHm7MovNxsrvv8ek0fLbM6Z12v5oZS3Lnl+FKIq8c8ulZB73Z2pxOviq6CgTYxKI07e3GNldTgRBQNlJKAGH28XBxkoAfqorCcRHbMehBs9FqcBSj8PtQu1D8NxpkWN5YOR1vJL/Bi8cfZnSlrO5OLlzy9rpEePZVLuL0cYMQhQ6NlXls670IJenTybN4N3ycH7SPZS2HCRem+nT53m3aD2v5q/loqRZXJXmm2WroKkatVxJnDYM8CwJ7jfvIds4mhBF3zjeBzXe5iN8KO8h69atIy8vj7y8PBIT2/tAi34ItUEtmiROEqMP4eX553GgroqrRg9OC02oUs/fJg69ZMEr0k9nRfrp3iv2AZKlKXiwOuyAxyoMYLHb2FNVycS4eP6xdStv/ORJ0KuRK7jx9I5OyfnV9dgcHj+nvMraNtF0/w/reD9vH3F6A5suvrHNMnPIXM6Kja+glSt5Z8bNRP1iCU4lV/DnyReyseoo12QGXtDfPX4O0doQpsWm+CSYwHMjXNrShNlZj0yAfGtxp/W+qTjAtxX5PDHqflINUQD8etO7WJ128ptqeW3Gcq/nUshUDNN3tMi73G6+KDlCisFElim67fjqss20uux8WrbZJ9G0ueYoN255DYUg5/2ZtzAsJJJ/HH2OI00HSdWnc3fWg177GGoMpKVpxYoVrFixotf9SKJpCHFWSjpnpfR8+7HEEETyaQoanjtzEWuPHWF2cioAl/7vPfZUV7I0M5vTYxLb/i9a7I5O28/OTuPW+dNwu92clXPy79x1/CLjdLe/Rf+pvpgWl50Wl50jlsoOoglgfkI28xOyA/HxOhCnM3LfhHl+t2t22qlsNqBTODk3fnGHcrfo5o4f38XhdlFra+Jvp3kE0qiwOLbWFDI6zL+kt27RzabazwGYGrGAfx7YwlO7vkUpk7PpvFvaEhFfO3whqwq/5rwE3wRmRUsjAE7RRZ3dyjAi25Yff74M2RvyzNU8sHM1OaZ47sk5q8NSptPtotBaRUpIjE8R3/ucAUyjEigk0SQRVKwp3c3jez7hrLhRPDh26UAPZ/AjhRwIGqJ0ei4fPa7tfU1Ls+e52colY8agRE5lUxNXT+7cUqyQy7hxXsd4Ro9PO4uZCSlMjm3v/7MoYSyHzRXoFWqmRKS2HT9iruKlQxuZF5fJ2YkjO/Q30Fw87AyMSi2JukhGhqZ2KJcJMsaEJfJjXSETIoa1HX9txnLKWxpJ1IX5db795u18VPovAEKVEV3WmxGVw4yoHJ/7PSdhLK0uOwaFhnGmZABuHH4be80/McoYGJ/TVce282NtET/WFrF8+GSS9O39s+7a9Rpbag9zdtxE/jD6oi77WVO2g6NNFVyROhujsg8T1PsRciBYkUSTRFDxSckuLM5WPizewf05i1F4Sesg0T1SyIHg5T+LL+DrwmMsyfRYei4Y07MAiSEqNRdkdNxgoFeo+UOOJ+nvB0VbONZUxbXpc1m552u+qTjCZ8X7mJ+QFRwWiJ+hlCk4N7H7mEmvTLuKBnszEeqTO2wVMlkH0eALYcpIZMjaXl+bnUKywUSqIbzNytQTFDI5l6S0X5Y3KI1Mjeh6R6C/5CZk81nJXkaGxRGnDe1QXmitAqDAWtllH+UtdTyy913AI0h/neH/TkRfGcjcc4FCEk0SQcXV6TNodDQzP260JJgCgWRpClrSwyOI1us5UldLlE7ftrtMFEUK6xuINxpQKXo/RRdba3ly30cAaOQqTotK4ZuKI0yKTA46wdQdNpeNx/Y/TaWtirtG/JZ0w3DvjXwgUZfGPdkvABCm8viJLUzun40oBdZy9psLmBM9Aa3c/ziDU6JS2HzOnV2WPz72cr6q2M05CV0nGzYq9USoDNTaLaSH9Cx/ns9IliYJicAyKSKVN6d3neBUwj8Et+fRXbnEwOAWRc555w2KzY3cOGEyd0/zxHj624bNPP/dZkbGRPHhtZf1OCiq3e3ksKWIBE0U0ZpQqlsbGRWayJzYUVyQMhaDsvdhC/qS7bUF/H77O4wMjeNvpy2norWSguZCAHY27A6YaIKTYqk/cbid/Hbns7S4bByxFHNb5snls68rt/NO0VdckDSb+bEdl2R9JcuYSJax+2wZeoWad6ffgcXZQowmrEO5KIo8dfCf7DPn8bvMFYw39XxJ19t8dKJOMCOJJgmJTii0VvL7nS8QotTx1wm3YvQzBkzQIFmaghaX201Ns8evqaLJkzS2oaWFPWWepZT9FdV8dmQruRmTsThaCfMhOOTP+eOBf/NDzW7GhmXwwczf0ey0YTq+nBWq8h4naqBZV7aXeruVH6rzKG9uIEmXyIKYM6lorWRO9EzvHQQ5AgIqmZIWlw2NvH1C4v8UrKWstYbX8z/rUjQ53S5ez/8aEZEVqfN6ZZnXKdToFJ1buhodTWyp8+zs3FCzvVeiSbI0SUgMUbbXHaLe0US9o4nDlhImhfuf2T0okHbPBS1KuZw3ly5jc2kRF4/M4YGvvuLNn35iekwSMjsITnh2y4e8XbOePfUW7hy5kMtSfQ9AWWNraHtWy5Wo5co++iTt2Vtbwf66Ss5NG4XGx1ADnXFxyhQONpYzKiyBBJ0JQRBYntJ9uoyusDpbuWPnqzQ5Wnh6/AritP5ltu+MFpcVjUzXY0ugQibnhYl3cKyplImm9suB5ybMYFXhOpYmzuqy/Ybqffzr2JcApIXEMjemvXN5g93M20Ufk6iLY1Hc3LZxHmgsQy7IyDT6thQXpjJwfsJ89pqPsChuth+fsBOk3XMSEkOTeTET2NWQh0GhY0xY4JYBekKzw85j279BJZdzc8YE7w1+hhSnKbgZHxvH+FjPFvkfCj1LT4UtjZw1IoltlfsxJTVSYHUBGnbUFfglmu7LvpJvqnZwRlT/ZQcw21s5f81/sLtdHDPXc8/E2T3ua7ghmn9Pv65HbUVR5ID5B0RERhqns6ehkN0NBQBsqN7PRcnTezwugC8r3+XLyncZZTyNy1O69inyRpQ6jCh1WIfj5yXO4rxuBBNAij4GtcwjhFP1MR3KV5d/zVdVPwAw3jSKBG0s22rzuW7zvxCA/5xxA6PDfEt0f3lKYJI6D2ScpkAhiSYJiU4IU4XwaM7VAz0MAD4tOMiqw7sAGKP38w5ZWp4bNDw5fz5v7d7NxTk5JEbI+O3ObzA7VbhFmBWTya0jzuy03WObv+Hb4mM8Nn0+p8cltR2P1Ubwq2Fn9dfwAZALMlRyOXa3C52yfyxbnXG0aSf/LX4aAGWyhrGmsUyNHIHZ0cKcaN/DBnTFEctPx8+zp9d99ZTUkBg+nnk/ACHKjsut2cZ0Pi79gki1iXBVGABNjlbAY8yxOm3t6m+szGd/fQW/Gj4RvVJFnyAtz0lIBC8WRzN7G/MYG5aJThHcTq/dMSE6AYNSjVImY+TPIhT7hEj3aQmCe34adLjcblYfOkSCMZSJCf6leJqSmMiU4+kdVpd9jkxwYnOpCVPLeXzchYQoOl4YLXYbr+zZDsB/9u9sJ5oGAr1SxZpzribPXMvMuI4xlvoLjVz3s9d6tHIVK8cH7iZocfzVfF/zCWPCemex6orvqtdQ0VrC2bEXYVB2DCVwgs7E0gkmmEbz6pSVqGSqNn+n2TFZPDX+IhSCjCkRaW11a1utrFi/CjcitbZm7h7rf1BSn/A2H52oE8RIoskLRU313L3tY5L1Jh6fdA6KHmRFlhgYHtz7IocshUw0ZfNIzk0DPZwekx4awY5LbkVAoPm4w7CvSMtz/cu/d+3isW++RSYIfHPN1SSGdn3B646pEVN4t/hD4rRmLk+5tFPBBGBQqbk0ayzfFh/jkhHBkaQ7yRBGkiGsX85ld7n477HdpBnDOT3mZKDLRF0WN6Q/hyhCrDbw4i1RN5xLkn8b8H4Bqm3lfFj6OgA6eQjnxP+qx33pfvG7EQSBBfEdLW0auRKDSk2jvZUYbd/lxJOW504BPij4ie01xWyvKWZ5+iRywqUEwYOFVpf9+LPNS83gp7OEqz4h4mV5rmfdSnSO5nhcJbkgID9+g1XVYiFcrff5hsslutlcd4BliZeSbUwiLSSl2/pPzJjf7n2euYqrf/g3JrWON2Zc3aPQAgcbK1AKcoYbo/xu2xV/ObCaHXX53DNqKaN89KXxxisHtvCnn9YjAN8vvZl4vbGtLEbTuVhyi25kQRyfyqgwEa6Kot5eQ4ret2TCJ6hoqeO2HS+glCn464SbCVcbO9Rxi2JbTLAT6JUqPs+9kVJrI2P68hrnbT46USeIkUSTF+YnZvF+wU8k6k1khvq5NCIxoDw8+ka21e1jamRw3IEPCJJPU79ySU4OiUYjsQYDcQYD/zz8Ayv3fsW48ETennWVTzutvqvewfNH3gHgqTG3+L07a0NlHjW2JmpsTexrKOP0qDTvjX7GpqpjXP3Df5Ah8P7c68kK7X3AwzpbE6sKPE7J7xVtZlTYhb3uEyBU5RGEarnCp6TAX1Xs4MkDbzEpfARPjrmmxzvf+hK1XMO9WX/B4bahVfgX6mRH/RGqju+a3NNYwKzo9nPf7zes5sNj+3hwyjyuzG6fridSE4JJpWPV9p9QyGVcND6ny+9HFEX21Jdjcvt5Myf5NA19RobFsuGc2wZ6GKckNpedPx1cRbOrhTuzlmNS+Wc2jtKYWBjfNz4HgwY30N11IcgDyQ02BEFgRkpK2/udtSUA7KsvxyWKKHy4SIerPEt6ckFGqDLES+2OLE4aw5aafCLUeiZEJHdbt85mRa9QtQtHUG/3xI5yI2I+7jjcW0wqPWfFjmFnfT4L48cFpE+ASzPGkxEWRZzO4FPKk+9r9uIS3WypPUCry472eGwiq9PCt9WrSdKmMSas+xQugcbiaOLT8rWk6JOZGuE5t0KmQCHz//I8M2oMm2r2o5QpmBLRMUzKpwUHcIsiqwsOdhBNAOsO5vHI2m8AiDUYmJXRubXuhf3f8+y+9USKfjr7e5uPTtQJYiTRJBG0/NSQx4aaXQB8V72LJQmBy9l0qiD5NA0sd+WcSaRaz6zYDBQyGaIosqZsF2ZHMxcmn95pQMKxYRm8NOlelIKCOK3vkaqrWiy8cPBbRpsS+MfUy7zW/7J8H3fueJsYTSgfzvoNWoVnx1RuwijsbhdauZIpkSk+n787BEHgifE9i7Hkrd8p0b47v1827EyanTYmR4xoE0wA6yo+4LuaNQA8Muqlbp2vA81HZZ+xpuILALIMmZiO73T7OQ32RgzKEORC95adEKWWR8dc1WX5Y6cv4JP8/dw69oxOy+NDDcgEAUGAGGPXgr2suRGAOltzt+P5JZJPk4REH5JtTGG4PgGrq4XJ4dkDPZzBibQ8N6CkhETwyIRz2t7vaSjioT3vAaBVqFmS2HlOsGSd/0tiLx/ewLsFO3i3YAezYjKI9uLQu7ehBBGoaG2k1t5EosITzkImCCxNHuv3+Tvjm8rdrK/ax/KU2aQb4gLSpzfW7jtMWaOFy6aMRf2L3H3phnieGtcx9lOMJgHw+BOp5f0bLT1Z5/HvMinD0HVy7s/Kv+L1gvdI1SfzRM49vfLHWpaRw7KMrkMujE2IY93NVyETBBLCOvpDneDOMXNJ1IeRpQljHo/4PgBpeU5Cou8wKHX8fVLPA8dJMGCiqaCggEcffZSvv/6aiooK4uPjWb58Offffz8qVR/FgBkEmFQhKAU5DtFFXCd5vnrD+PAkVh3bRrI+nDAf0qRcOXw6rS4H6cYYEnW9j5D9S0RR5KE9b+EU3Rw0F/H2GXcH/By/5EhVDb/972oABAGumtpxCaozpkWeSYZhNAZFKCpZ//4+Z0ZNI9uYiUERgrqTpL2HLfkAFFpLcLqdqOT+j6+suRGlTE6Uxvtyb5LJu5XNpNbx65HTMZvN/g1EEk0SEhJBzQCJpoMHD+J2u3nppZdIT09n7969XHfddVitVlauXNkn5xwMJOkj+GDWHbS6HAzTd7/05nA7UMp89xlZlJTDGTHp6BUqn3ZbmlR67hl9jtd6PUUQBEJVGmptzVTaqrC57Kh7cMH3B6NWg1apoMXhJD60a0tJZ0Spe+/w3lOi1F3/Fn6VvAS9QsuY0OweCaYfa4q4YsNrKGQyPpp3EykhEb0Zau+QRJNEV9hdLg7UV5FtikYl73kiRQmJXjFAjuC5ubnk5ua2vU9LS+PQoUO8+OKLp6xoqmptoMbWSLYx2euurZeOvsW6yg1cnHQOFyUt7FD+cfF2Pi3dwTXpczktMr3tuC8Wpv7kzqwlPHPobaZFju9zwQQQYwjh81uvwtxqIz1qAMVBAInRRHFdmncfta4ottbhRsTudlHRYh5Y0SQ5gkt0xU3rP+SrkqMsSM7kpdnnDfRwJE5RfHUE/6WZXa1Wo1Z3nvW8pzQ2NhIeHvhloGDA5XZjc3WdOqTB3sQVm56m1W3nzuxlLIrvPHP9CTbX7mx77kw0rTzwKS0uO/84/EU70RRszIgex4zocf16zmhDCNEG/3cdDgZaXDbsLjuhfuwkXpSUQ529GZ1CxWkBcuzvKUPBETx4I3wNcgotDQAUHX+WkBgQTpjDu3sASUlJhIaGtj2efPLJgA7j6NGjPP/889x4440B7TcYaHE4OPPNVxnz0t/4tiC/0zqtLjs2tyfYar3de1T3G4dfyiRTDlenLuu0/JyECahkChYmjO/5wAcBX5XvZ/raJ7h3x38Heij9zpbab3jq4B38WPc9AI12C9dufZArttzPjvoDPvejlMm5OmMal6ROYntVKVsri3s1LlEU2d94jBpbfU8a+zwnBStDxtL0bWE+/9y5nUtHj2FResf4FP3Ni7OW8knBAZakjhzooUicyrhFELqZhNyesuLiYozGkz4gXVmZHnroIR5++OFuT7lt2zYmTTq5K6ysrIzc3FyWLVvGtdde68fgBwflTRYKGhoA2FxazOyUjrFtYrXhPD3uOkqaa1gY7z0O0GkR4zgtYlyX5XeNOpe7Rp3b0yEPGj4t2Y3Z0crq0t08MObctrAIQwFRdAGyLpdq11S8R6OjjrUV7zExfDrV9gbMTisAx5pKmGDyb0fxlopiLv58FQCr5l/CtLhhXlp0zury73jp6H/RytU8m3WHf429zUcn6gQxQ0Y0Pf79evLqazlSVxMUoikjLJLfjZPiCkkMMD46ghuNxnaiqStuueUWLrmk+3g7KT8L7lhWVsacOXOYOnUqL7/8sk9DHmykhpm494yZHK6t5epxE7qsNzliBJM7CTgYKGpam3gzfwuTI1KYFj28z87Tn6wYPo2qVjOzYkYMKcFU2/IjWypuQquIZ0bCKhSyjoE5Z0adzdeVHzEjyuMbOFyfyPVpF1Jjr2dhnP/XFpd40lnI6e6541Cjw2MptbnsONxO/xpLjuDBw5IRWfxly0aWZErxfCQkTuJtkvJvgoqMjCQy0reAi6WlpcyZM4eJEyfy6quvIhuiya4FQeD6CZMHehjcsPFNDlrKeYXv2bro3iEhMsaGJ/PmjOu7rSOKIptrjhClMZJuGLgdcP5Q3bIJl9hKk+MYVkcxoeqOYnpu9GLmRi9uey8IAosTZvX4nNPihvH6mcsQgZkJPU9ifGHiWYQpDSTr4jDJ/Nuh6H0+Ol4niBkyoumWSadz88TTgjKXkITEgDFAIQfKysqYPXs2ycnJrFy5kurq6ray2NjBcWHrLaIo4hbFtsS9fc0xSx0AAjJUPuRhGyr8r2Q7T+z9EIUg48NZdxCrDRvoIXklxXgRTY589MphGFX+JeXtDbMS/MtD2BlquYpF8TOBjhtIvCJZmoILSTBJSPwClwtEV9fl7m7KesG6devIy8sjLy+PxMT2Ge3FIJ8UA0Gzw865n/yHEksj/16wjCmxvqf68Id6WyPXb3sOm8vN9Rlz+F/hPm7MPgP58ajR7xfs4rOS/dySPZPxEYleegsejpprEBBIM3rfHn9iicglijjF/t+vLooidfYSwlSxyAXf4mppFNFMinkmoOPIs1Ty5wNrmRSeytXpMzuUt7psvJq/Gq1czeUpuV5TsvQJ3uYj6LM5KVAMKdEkISHxCwbI0rRixQpWrFjRJ30PBgrMDRxpqAXgu9ICr6Kp2tbAs4feJkYTzs0ZFyAX5Byy5BOi0JGgjemy3TvFn1DW4nEOdivq+PzsX7eViaLIAztW4xDdON0uXp95eQA+Wd+zs6aUZV++Dgh8MH8FY8K7T79yQfJphCl1xGjDAhbZ3OJoYVvtMSZHpGFQdh/76pvKV9he9wEJ2pFclhoYIWR3FmJ3HEGvmYPwM3HT4rIhF2SoOgl6+vqxH9hYncfG6jzOS56ISaVvV/515Y/8r/Q7AEaFpvmVmsrtbgJBiUzoZRiSIWBpGppOBhISEh7coveHRMDJCo/i5jGnc/awTJZnjfNa//PyzWyvP8jq8o0csRTzQ82P3LN7JbftfJyK1pou250eMQqjsoUQhZPcuPZ57ARBYEHiSGQIzE8YPL6eNa1WREBEpLbV6rW+XJAxP34sY0092w3WGb/78Q3u3LmK3/34hte61TZPmIkaW6FPfVsc9bxT9BSfl/8LdydWF7fbSkHFmZTWXEGt+bm240csxVy08X4u3fQg1baGDu3mxmSjkik4LSKN0E6EXqYhGZVMiUGhY1g3uQ3FX1jrmm1bOFI6imNlk3G6an36jF3iy3zUh3PSueeeS3JyMhqNhri4OC6//HLKysr86kOyNElIDGWkhL0DgkwQuGtSxyWSrjgtYhQfl20gSm0iRR9HYbMnlo5LdGFz2bpsN840nrfPSEUlU6PtJNnrn6ecx58mL2lbrhsMnJmQwVNTFiEIArPj2u8CrLc1c/fmzwhRqHny9LNR95HvVqvb0e65O+bH3cKuutWkG6b61PeO+i84YN4IwKjQM0jUtXcCF3GB6DmvKLa2HT9sKcLudmJ3OymyVhClDmvXbk5sNltyH+jSTSXdkMh70x5D1oWlCmBPwzrWlj1HhmEqS5P+AECr7UfAgctdg8OZj0Lei4jiA2xpmjNnDvfddx9xcXGUlpZyxx13cOGFF7Jx40af+5BEk4TEUEbEi2jqt5FI/IwGu5W/HlpDrCaM69LnkWFI4t1pj7eVnxlzBgpBgUllZJg+odu+QpVh3ZYPJsEEHgvZhWljOy37tPAAX5QcAWBUZBg2WT1LEqaRoPNtR6ev/HnCcjZUHWRGdJbXuiZVPHNir/O57+Eh4/ih5n0Miggi1R2XbeUyI8kxn2Bz7MegW9J2fF7MJIqbq9ApNIwzde487s2vV9NJQuCfc9j8AyJujlg24RKdyAUFoSHLcbhKUMhj0ah8S4DcJd7moxN1+ojbb7+97fWwYcO45557WLp0KQ6HA2UX0fx/iSSaJCSGMpKlKSioabXy2qFtTIxMZE5COu8Xb+HT0h0ATI8awciw9hdPuSBjZtRkZNLmlnZMj00lRhuCXqnivdK12Gglv6mcP42/IaDnidIYOT/ZexDSnpCoy+Se7LcQENqJHIfbRnnLUeK1GWhUOWhUOe3aaeRqbkzv25Rc06Iuwy26STecjlzwyAO5zEiM6YnAnMAPS1Nfp3aqq6vjzTffZNq0aT4LJpB8miQkhjZut/eHRJ/zl93r+fu+jVz/3XtYHDYmmFJRCnIEBO7a8Sa1Nku7+kXWcpZvvpcrt/yhZ+kqhiipxnA2n38rXy2+gXSjx0E+NaR7R/FAUdlsob61JSB9yYSOkcDfKXyc1/Lv4f3ipwNyjp4Qp81k2bBHGR++qNNy0b4L0fZDz3fA+jIfHZ+T+iq10913341eryciIoKioiI++ugjv9oPGdH07JaNLPvv2+yrrhzooUhI+E2zs5KK5m0dnDB7zSDP8zRUSDN6lo/idEY0cgXjw1O5NTMXtyhSaTNzoLG0Xf0DlnyaXa00Opo41lTaWZdBgUt0c9hc7n9k6ADwlwm/5vXT7uKm9MXeK/eSrRXFTH33H0x77x8U91E+UbOjpt1zsCE69iPWXYRYfxXYvuhhJ77nnisuLqaxsbHtce+993ba5UMPPYQgCN0+tm/f3lb/zjvvZOfOnaxbtw65XM4VV1zhlwgcEstz9S0tPLd1EwD/t3MHf55/9gCPSEICLA4LdfYaknUp3foaON2tfFZ0GXa3hZzw68gJD2B+Nml5Lii4esRkZselEaszopR5tpAvTJzA7oYi9Ao1UyLS29WfGTWRI5Yi1DIl400n/Wr21VXy/tE9XDA8h1HhXYci6CtaXQ6KrLWkG6KRCTIe3fM+n5Xt5PSIDJ6dtIJ1pQeI1hiYENl1iIUN1Zs4Zi1iacLZhCr9jSh9EqVMQbK+77+Delszrx7cjlsUaXE6KGkyk2QIC/h5Lhp2H/sbf2B0aNcbCBpsBawtvR2NPIyFic+jkocEfBxd4+7itR/4sTzXV6mdTmQ1yMzMJDs7m6SkJDZv3szUqb458g8J0RSm0XBm6nA2lxZzTobvuZ1EUWR7eSnDQsOI1vfnj29wYnM5WVt8kKywaEaERQ/0cIIam8vGg/vupclp4eKky5gXM7/LuiJOnG7PLhm7qymwA3F7Nm93Xy7R1wiCwPBQj7XJ4Xbxm00fcNRcw1+nnk9WWMcLv1au5paMjheC2zZ8TJ65lvVlx/hqSffpRfzhv4XbOGQu58bMuRxp2sUB814Wxi0lRhPLp0X72Flbwg1Z07hl6xscNJdzZdo0fj8qlwKrJ9J7gbWa9/J38v92rEYA1i74NamGjrus6uwN/P3oq23vr0y5OGCfoa949McvWVt6AJVSwT3j53J6HwUqjVQnMjO6+++j2LqJZmc1zc5qamyHiNf10jHbDwTlaAh/E9xNoJ7ds068zUdtdXzHn9ROv+SEhclm63qH6i8ZEqJJEAT+ec5Sv9u9tHMbf9y0gTC1ho1XXo/OD2ewU5Hn9n7HSwc3oZEr2LrkdvTKwZ/bqq9wiA6aj2ckr7N3H9tEKQvhzMSXqLcdJNWwMKDjEEV3t0t+AV8OlPDKUXMNX5QeAuDjwr2diqauyDZFk2euJdsUuJuWsuYGHtv7MQAqmcCx1vcQEXGJLi5IuIrbN3+ICNhdToqsnt9ygdWzhPRwzjI+Kf2Rs+LGsK/OI6BkgoC8C8tqiEJHpCqCGnstafrAxVXqS6K0egQBovU6VoycOKCZJ4Ybz6KseRsauYkYTY73Bj5Qa6vg+5pPyTJOZIRhfLd1BVXvcix6m49O1OkLtm7dytatW5k+fTomk4ljx47xwAMPMHz4cJ+tTDBERFNPqWvxOPU1Oew4XC6QRFO3KI7n0JILMqRNPd0TogjhN5l3UGQtYFb0XK/1IzWjiNSMCvxARC/B4qTluX4n3RjF2YnZHDXXsDRljF9tn52+mNvGTifVYArYeExqHQlaE2UtDYwzpeJuTCO/+SiZhmz0CjVJehNF1npGh8dzftpoNlQeYdkwTyDNYSFR3DIilz0N31Fqe4e7x8xgavRskkPC2VW/hxePvkZOaDY3p1+DIAioZCqeGfcwTc5mwlVhAfsMfcldY+cwLyGDjNDIAd/NqFNEsiDxzwHt85OyVzlo+ZFtdV/xyOg3kfVliApv89GJOn2AVqvlgw8+4MEHH8RqtRIXF0dubi5vv/22X7vyTmnR9Nsp04gLMTA6KppQjWaghxP03DpqBqNNcWSGRqEbAhnUu0J01SCaHwRZFILxDwhCz/5MRhpHMdLYB0LIH0Qv5nBJNPU7CpmM56dd0KO2cpmM9NCeBRcURbHNSlJg+Yzqll1olFOod1h4Z8b1uEQZoSod8+JG0upqQafwpOFYk3sD9bZmYnUe/5Lx4R4L0d6GQg5ZSlkYP4nvqt+j1lGCVfYJ+y0GwtWT2VCzBbPTwg+1W7kq9VL0Ch0AKpmKcNXgmT/kMhlTopMHehh9RpIunYOWH4nTpvStYALv81FbncCTk5PD119/3et+TjnRtKO6hHUlh/lV+niGGUxcNXbCQA9p0KCUyZmf6LvP2KCl5YOTu0O0i6CXJukBxe0GoRtzt7Q8d0pQ1ryNr8vuwqQaztz4p9hS+RAgUudcR4k9HJu7hbNiLwU82+FPCCYAtVzBZ+Vb2dtYyG0jFjNMH02To4Wbt7+EU3RR2lzLtKhz+KZyFbV2Le+VfML2+l1ck/orylsrGRM6sk0wSQQf82KWMcE0G6MycNbLLvE2H0HQz0mnnGi67rv3qLe1sKeunDfnXTbQw5EIRtTTwfoyyCJB4T0icFAjWZokgBLrD7hEGzW2/dhcTRiVKZgd+dhFAwChyo6OtDZXEx8V/45aWxNvFHmcn98p3MBdIy9AIZOjk6swO1sIVeqZFD6XSeELeGL/X4H9RKojyDCk8UTO/f35MSV6iEkV1T8nGkBLU6A45URTmiGCH20lZIQGNuy+xNBBUI6E6G2e14PceUt0uxG7ubOTHMEHFqvTxl8PrsOg1HBT5rxepzwRRZFiawOfFh7AbG/ltpwZaBVKskIvxGIvIVwzglBVMguSV2F3mXEiw+yoJ16b2qGvqtZD1NiO4BYhPSSb4mYb06M8y80auYp/T/0dxc3VCIKZzyvWMDtqLndk3USBtZg0fd8tZ9ndTr6r2kOGIYFhemkX72DC23wEwT8nnTKiafWBQzy1fgMX5IzisSm5ZIT2k7KWGJQMdrHUhmRpCmpWl+7ivaItAEyOSOW0yHQvLbrmaGMNf9v/PR8V7gO35/eboA/l8syJGFWJzEtY2VZXQIFGEQ5AiCKs0/5iNVmkG+Zgc1m4Kv3X6OTh7f4uojRGZIKdu/c8CoDdbWdx/BIyDWndjtPmakIp0yIT5D36nK8cXcvbRevRylV8NONBNPLB4x91yiNZmgYP/9q+gzKzhX9u2c5tZ/i+vVBCYlDjFkGQRFOwMjo0EYUgRymTM0zfc+t3gbmO+atfRpSd/P9UCDJGmXoW/NHmrODHsqVoxVamxb2NXnHS+dzpdpHXVEaqPha1XINGpqXV3YJJFe6138PmL/my/AnCVaksS3mpLb+ZP5wQbsLxfxI9x+l24hJdqL0k8g0Y3uYjCPo56ZQRTddMnsif1n/PRWNHD/RQJALA+orD/PvoZn6VOpkz47MHejjBiyjSbfTeIJ+ghjq1tmZaHCItONlVV0JuQliP+im01nnu390QGxLCYxMXMjEqkVCVtkf9NdkP4nDXAWC27SJEddK375mDH7C6fCs5oSm8MOlmHs95kkZHI8k6z666/Y35WF2tTDJldbDYljX/BIjU2Y9hc1nQKfx3Pr42bQHZhiSGG+JQy6UwMT2l2dnMI/v/QKOjgdsy7iTL2A/zqLf5qK1O8HLKiKaFWZkszMoc6GF0SlPLV1iaP8JkuBaNyr+4LacqT+39nIKmWo5ZaiTR1A2iW0Ts5s6ux4k3JQJCjNaIQpDjFkXidWFd1qtqMVNta2JUWHy748XWOjZX5zM3dgRZEeEUWup4aspCZsRmdOhjddl6djceZvmwxSTpYrsdl0l7BonGa3GLzcTo2+d2K23xBLYsa/EEugxVhhGq9Iz9aFMpt+96DoD7R65gZtS4dm0nRlyGW3QSqx3VI8EEnvQps2OCe54URZE3Cr6jrLmOGzPmE6rSe2/Uz9TYq9sC7+Y1HeoX0eRtPoLgn5NOGdEUzJTX3oxbNONwFpIc41/G5VOVRYk5/P3gehYmDnAcpGBHdNO9pSm4nS6HOpnGGNac+dtuRVO9zcqir/5Gs8vOo+PO5fxhJ8OkXLnhNSpazWyIO8LDk2Ioa64nx2RgbfmblLcWsiThGsJVMVidLbx87D0A1DIVNw1fTL7lC+L1pxGmSulwTpmgZHj4XZ2O556RF7OmbBszojuz2p+84HV28TMoY5kbd3fXX8gQ4YilnBcOrwUgUm3kmvR5AzyijiRpk1macCE1tmpmRXnG53JbATlyWR/FLfQ2H7XVCV4k0RQE6DTTaGpZi04zfaCHMmi4OWs2N42Y2ffB2AY5kqUp+InVhnZb3uyy0+KyA1DVagHgmd1f86/DW9FrPP9/csHNN5UvAyCiYHO9x7l8U00Ci+KvRCtXM9qYwX7zUSaaRrKx8klKmn9AUx/OxWmf+jXeeG041wxf0GnZ8JBE/jzuN1idrUwOP3UtwHFaE1FqI3X2JnJMwZkuRhAEFsadtCJa7fvZU3EhgqBmXNynqBUJAT+nZGnqISe+FLPZPBCnDzpClH9BJ38AuRAufScS3XLi9+HrxOIUbd3euTlxBGRcg5lgn48MyFk5agmFTbWcFz0as9nMW/u20GKzYm9xEaprZX54KvlNidTZi0gwjCLCVUaNrYwERrR9rruGrcApulDKFGxqVNPS5ESp0Ab8cycJkaAEi8US0H4HG6+NuwG724leoQna39bPqbJswWJuBpqpUO3CpDV4bRPo+QiCf04SxAGQdSUlJSQl9U2maAmJU4Hi4mISExO7LG9tbSU1NZWKigqvfcXGxpKfn4/mFE0lJM1HEhK9I5DzEQT3nDQgosntdlNWVobBYBg68XAkJPoBURSxWCzEx8cjk3W/NNna2ordbvfap0qlCsrJqb+Q5iMJiZ7RF/MRBPecNCCiSUJCQkJCQkJisCF50UpISEhISEhI+IAkmiQkJCQkJCQkfEASTRISEhISEhISPiCJJgkJCQkJCQkJH5BEk4SEhISEhISED0iiSUJCQkJCQkLCByTRJCEhISEhISHhA/8fnCP9NCcM0AAAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deepsensor.plot.task(task, task_loader)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Forecasting\n", + "\n", + "Using the `context_delta_t` and/or `target_delta_t` arguments, we can generate `Task`s for forecasting.\n", + "The values of `context_delta_t` and `target_delta_t` are time differences relative to the time slice passed to the `TaskLoader` (which may be considered as an 'initialisation time').\n", + "The units of these time detlas are determined by the `time_freq` argument, which defaults to `\"D\"` (days)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:06.163354278Z", + "start_time": "2023-11-02T13:41:06.159737133Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(3 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature',), ('2m_temperature',), ('2m_temperature',))\n", + "Target variable IDs: (('2m_temperature',),)\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds[\"2m_temperature\"],] * 3,\n", + " context_delta_t=[-1, -2, 0],\n", + " target=era5_ds[\"2m_temperature\"],\n", + " target_delta_t=1,\n", + " time_freq=\"D\", # daily frequency (the default)\n", + ")\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:06.174695325Z", + "start_time": "2023-11-02T13:41:06.166221189Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-27 00:00:00\n", + "ops: []\n", + "X_c: [((1, 141), (1, 221)), ((1, 141), (1, 221)), ((1, 141), (1, 221))]\n", + "Y_c: [(1, 141, 221), (1, 141, 221), (1, 141, 221)]\n", + "X_t: [((1, 141), (1, 221))]\n", + "Y_t: [(1, 141, 221)]\n" + ] + } + ], + "source": [ + "task = task_loader(\"2016-06-27\", context_sampling=\"all\", target_sampling=\"all\")\n", + "print(task)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:07.668226693Z", + "start_time": "2023-11-02T13:41:06.177176312Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAEhCAYAAACupBMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e9BuSVUfjn9W7+d53nOZOaBE5DYOUggEcBSDyngbrDgo5AfEWCbxwsUkiuUIUdRQYsIQ64uCxHCp0tFYBDDGaCggWmoR0DiDgggCU4AOFxGQcFGRwDCX877P3r1+f/Raq1f37v1czpw5l2GvU+959qXvu/vTa61evZqYmTHTTDPNNNNMM80000wzzTTTTDPNNNNM55DC+S7ATDPNNNNMM80000wzzTTTTDPNNNNMn380K6VmmmmmmWaaaaaZZppppplmmmmmmWY65zQrpWaaaaaZZppppplmmmmmmWaaaaaZZjrnNCulZppppplmmmmmmWaaaaaZZppppplmOuc0K6VmmmmmmWaaaaaZZppppplmmmmmmWY65zQrpWaaaaaZZppppplmmmmmmWaaaaaZZjrnNCulZppppplmmmmmmWaaaaaZZppppplmOuc0K6VmmmmmmWaaaaaZZppppplmmmmmmWY65zQrpWaaaaaZZppppplmmmmmmWaaaaaZZjrnNCulZppppplmmmmmmWaaaaaZZppppplmOuc0K6XOA33yk5/E05/+dDzgAQ/AwcEBLrvsMjz+8Y/HH/zBH5zVfB796EfjR37kR85qmndmup6uv/56EBE+85nPbA377ne/G1dddRWOHz+O+973vvjpn/5pMPOdWr6ZZrqr0oxP22lXfDp9+jSe+tSn4su//MuxWCzwT//pP71TyzXTTJ8PNGPUdtoVo66//no88YlPxL3vfW+cPHkSX/mVX4n//t//+51atplm+nwhItr499SnPvW8le3+978/XvziF9+pebziFa/A3e9+953C3nDDDfhH/+gf4dixY3jAAx6AX/qlX7pTyzbThUeL812Azzf68Ic/jK//+q/H3e9+d/zcz/0crrjiCqzXa/zv//2/cc011+C9733v+S7iRUU333wzrr76anzzN38z3va2t+H9738/nvrUp+LkyZP4sR/7sfNdvJlmuqhoxqezS8Mw4Pjx43jGM56BV7/61ee7ODPNdNHTjFFnl9785jfjiiuuwLOe9Sx88Rd/MX73d38XT37yk3Hq1Ck8/vGPP9/Fm2mmi5o+8YlP2PVv/uZv4jnPeQ7e97732bPjx4/vld7R0RFWq9VZK9+FQh/60IfwuMc9Dt///d+PX/u1X8Ob3vQm/NAP/RC+6Iu+CN/xHd9xvos307kinumc0mMf+1i+733vy7fccsvo3f/7f//Prj/ykY/wE57wBD558iRfeuml/J3f+Z38yU9+0t5fe+21/BVf8RX8q7/6q3z55ZfzqVOn+F/8i3/BN998MzMzP+UpT2EAxd+HPvQhZmb+8z//c37sYx/LJ0+e5Hve8578vd/7vfx3f/d3zMz8h3/4h7xcLvmNb3yj5fWf/tN/4nvc4x788Y9/fGO6Nf3CL/wCP/CBD+SDgwO+5z3vyd/xHd9h72KM/IIXvIC/9Eu/lI8dO8ZXXHEFv+pVr2Jm5g996EOjPJ7ylKc08/jFX/xFvtvd7sanT5+2Zz/7sz/L97nPfTjGOP0hZpppphHN+JTobOGTp6c85Sn8xCc+cWu4mWaaaZpmjEp0Z2CU0uMe9zj+vu/7vp3DzzTTTNvp5S9/Od/tbnez+0996lP8L//lv+T73ve+fPz4cX74wx/Ov/7rv17Eueqqq/iaa67hH/3RH+V73OMe/E3f9E3MzPxbv/Vb/MAHPpCPHTvGj370o/kVr3gFAygw8E1vehN/4zd+Ix87dozvd7/78dOf/nTDzauuumqEEVN07bXX8mWXXcar1Yrvfe9789Of/nR7d3h4yD/xEz/B97nPffjEiRP8NV/zNfyHf/iHzJywsM7j2muvbebx7/7dv+OHPOQhxbOnPe1p/KhHPWpbs850F6JZKXUO6e///u+ZiPhnfuZnNoaLMfIjHvEI/oZv+Ab+sz/7M37LW97CX/VVX8VXXXWVhbn22mv5kksu4X/2z/4Zv/vd7+Y3vvGNfK973Yuf/exnMzPzZz7zGb7yyiv5+7//+/kTn/gEf+ITn+C+7/njH/84/4N/8A/4J3/yJ/mmm27id7zjHXz11VfzN3/zN1vaP/ETP8GXX345f+Yzn+Ebb7yRDw4O+DWvec3GdGt629vexl3X8a//+q/zhz/8YX7HO97BL3nJS+z9s5/9bH7IQx7Cr3vd6/iDH/wgv/zlL+eDgwO+/vrrue97fvWrX80A+H3vex9/4hOf4M985jPNtnrSk57ET3jCE4pn73jHOxgA/9Vf/dXmDzLTTDMZzfh09vHJ06yUmmmmO0YzRt25GKX09V//9fxjP/ZjO4efaaaZtlOtlPq///f/8gtf+EJ+5zvfyR/84Af5pS99KXddx295y1sszFVXXcWXXHIJ/8RP/AS/973v5Ztuuok/9KEP8XK55B//8R/n9773vfw//sf/4Pve976FUupd73oXX3LJJfyiF72I3//+9/Ob3vQmfsQjHsFPfepTmTlh6f3udz/+6Z/+acOhFr3qVa/iU6dO8e/93u/xRz7yEf7TP/1T/i//5b/Y++/+7u/mr/u6r+M3vvGN/Jd/+Zf8whe+kA8ODvj9738/Hx4e8otf/GI+deqU5fG5z32umc83fuM38jOe8Yzi2Wte8xpeLBZ8dHR0Js0900VIs1LqHNKf/umfMgBjTqbo9a9/PXddx3/9139tz/78z/+cAfBb3/pWZk4M1YkTJ2xVjzkxQl/7tV9r91dddRX/23/7b4u0/8N/+A/8mMc8pnj20Y9+1JgX5qT5fsQjHsH//J//c37Ywx7G/+bf/JsifCvdml796lfzqVOnivIp3XLLLXzs2DF+85vfXDz/1//6X/N3fdd3MXPWsHutf4uuvvpq/v7v//7i2cc+9jEGMEp/pplmmqYZnxKdTXzyNCulZprpjtGMUYnuLIxiTkLoarXi97znPXvFm2mmmTZTrZRq0eMe97hCIXzVVVfxV37lVxZhnvWsZ/HDH/7w4tlP/dRPFeP9SU96Ev/AD/xAEeaP/uiPOITAt99+OzMzX3755fyiF71oY3l+/ud/nh/0oAc1FUN/+Zd/yUTEH/vYx4rn//gf/2P+yZ/8SWberc7MzF/2ZV/Gz3ve84pnb3rTmxgAf/zjH98af6a7Bs0+pc4hsTjfJqKN4W666SZcdtlluOyyy+zZQx/6UNz97nfHTTfdhK/+6q8GkJzUXXrppRbm3ve+N/72b/92Y9pvf/vb8Yd/+Ie45JJLRu8++MEP4kEPehBWqxV+7dd+DVdccQUuv/zyM3KEd/XVV+Pyyy/HAx7wAHzbt30bvu3bvg3f/u3fjhMnTuAv/uIvcPr0aVx99dVFnKOjIzziEY/YO6+6PXdt55lmminTjE93Dj7NNNNMZ4dmjLpzMer666/HU5/6VPzKr/wKHvawh51xOjPNNNN2GoYBz3/+8/Gbv/mb+NjHPobDw0McHh7i5MmTRbhHPvKRxf373vc+wzClr/marynu3/72t+Mv//Ivi0MLmBkxRnzoQx/CP/yH/3CnMn7nd34nXvziFxsOPe5xj8PjH/94LBYLvOMd7wAz40EPelAR5/DwEPe4xz12St/TLMvNNCulziF92Zd9GYgIN91008ZTmJi5OQjr58vlsnhPRIgxbixDjBGPf/zj8YIXvGD07t73vrddv/nNbwYAfPrTn8anP/3pEUhuo0svvRTveMc7cP311+P1r389nvOc5+C5z30u3va2t1kZf/d3fxf3ve99i3gHBwd75XOve90Ln/zkJ4tnylR+8Rd/8V5pzTTT5zPN+HT28WmmmWY6ezRj1J2HUTfccAMe//jH4z//5/+MJz/5yWeUxkwzzbQ7/fzP/zxe9KIX4cUvfjG+/Mu/HCdPnsSP/MiP4OjoqAhXY0cL37g6cTzGiKc97Wl4xjOeMcr3S77kS3Yu42WXXYb3ve99eMMb3oDf//3fxw/90A/hhS98IW644QbEGNF1Hd7+9rej67oiXktpv4mmZLnFYnFGCq6ZLk4K57sAn0/0hV/4hfjWb/1W/MIv/AJuvfXW0Xs9uvehD30o/vqv/xof/ehH7d1f/MVf4LOf/ezO2m0AWK1WGIahePZVX/VV+PM//3Pc//73xwMf+MDiT4Hvgx/8IH70R38Uv/Irv4JHPepRePKTn1wwaq10W7RYLPAt3/It+Lmf+zm8613vwoc//GH8n//zf/DQhz4UBwcH+Ou//utRGXRlU0+X2JbPlVdeiTe+8Y0FiL/+9a/Hfe5zH9z//vffqZ1mmmmmGZ/uDHyaaaaZzh7NGHXnYNT111+Pf/JP/gme//zn4wd+4Ad2bp+ZZprpzOmP/uiP8MQnPhHf+73fi6/4iq/AAx7wAHzgAx/YGu8hD3kI3va2txXP/uzP/qy4V5yq8eGBD3ygYcOuOHT8+HE84QlPwEtf+lJcf/31+JM/+RO8+93vxiMe8QgMw4C//du/HeVxr3vda688rrzySrzhDW8onr3+9a/HIx/5yNHiwUx3XZqVUueYfvEXfxHDMOBrvuZr8OpXvxof+MAHcNNNN+GlL30prrzySgDAt3zLt+CKK67A93zP9+Ad73gH3vrWt+LJT34yrrrqqpEZ5ya6//3vjz/90z/Fhz/8YXzqU59CjBHXXHMNPv3pT+O7vuu78Na3vhV/9Vd/hde//vX4V//qX2EYBgzDgCc96Ul4zGMeg+/7vu/Dy1/+crznPe/Bz//8z29Mt6bf+Z3fwUtf+lLceOON+MhHPoJf/dVfRYwRD37wg3HppZfix3/8x/GjP/qjeOUrX4kPfvCDeOc734lf+IVfwCtf+UoAwOWXXw4iwu/8zu/g7/7u73DLLbc06/jd3/3dODg4wFOf+lS85z3vwWtf+1r8zM/8DJ75zGfOJp8zzbQnzfh0dvEJSMLwjTfeiE9/+tP47Gc/ixtvvBE33njjzu0000wzZZox6uxilCqknvGMZ+A7vuM78MlPfhKf/OQn8elPf3qfzzLTTDPtSQ984APxhje8AW9+85tx00034WlPe9rIWqhFT3va0/De974Xz3rWs/D+978f//N//k+84hWvAJC3uj3rWc/Cn/zJn+Caa67BjTfeiA984AP47d/+bTz96U+3dO5///vjjW98Iz72sY/hU5/6VDOvV7ziFXjZy16G97znPfirv/or/Lf/9t9w/PhxXH755XjQgx6E7/me78GTn/xkvOY1r8GHPvQhvO1tb8MLXvAC/N7v/Z7lccstt+AP/uAP8KlPfQq33XZbM58f/MEfxEc+8hE885nPxE033YT/+l//K172spfhx3/8x/dp0pkudjoPfqw+7+njH/84X3PNNXz55ZfzarXi+973vvyEJzzBjtFk3v04Y08vetGL+PLLL7f7973vffyoRz2Kjx8/Xhw7/P73v5+//du/ne9+97vz8ePH+SEPeQj/yI/8CMcY+T/+x//I9773vflTn/qUpfO//tf/4tVqxe985zs3puvpj/7oj/iqq67iL/iCL+Djx4/zFVdcwb/5m79p72OM/JKXvIQf/OAH83K55C/6oi/ib/3Wb+UbbrjBwvz0T/803+te92Ii2nic8bve9S7+xm/8Rj44OOB73ete/NznPpdjjNMfYKaZZpqkGZ/OLj5dfvnlo2OR56l3ppnOnGaMOnsY9ZSnPKWJT/6kwplmmumOU+30++///u/5iU98Il9yySV8z3vek//9v//3/OQnP7k4EGXqUITf+q3f4gc+8IF8cHDAj370o/m6665jAObEnJn5rW99K1999dV8ySWX8MmTJ/mKK64onIn/yZ/8CV9xxRV8cHAwyZO89rWv5a/92q/lU6dO8cmTJ/lRj3oU//7v/769Pzo64uc85zl8//vfn5fLJd/rXvfib//2b+d3vetdFuYHf/AH+R73uAcD4GuvvXayfa6//np+xCMewavViu9///vzddddt6E1Z7orEjFXG1FnmmmmmWaaaaaZZppppplmmmmmC5qe97zn4Zd+6ZeKLcszzXSx0ezofKaZZppppplmmmmmmWaaaaaZLnD6xV/8RXz1V3817nGPe+BNb3oTXvjCF+KHf/iHz3exZprpDtGslJpppplmmmmmmWaaaaaZZppppgucPvCBD+D/+//+P3z605/Gl3zJl+DHfuzH8JM/+ZPnu1gzzXSHaN6+N9NMM80000wzzTTTTDPNNNNMM8000zmn+fS9mWaaaaaZZppppplmmmmmmWaaaaaZzjnNSqmZZppppplmmmmmmWaaaaaZZpppppnOOc1KqZlmmmmmmWaaaaaZZppppplmmmmmmc45nRdH5zFGfPzjH8ell14KIjofRZhpprssMTM+97nP4T73uQ9C2Kx3Pn36NI6Ojopnq9UKx44duzOLeEHTjE8zzXTn0YxPd4xmfJpppjuP7ig+AZ/fGDXj00wz3bl0V+ahzotS6uMf/zguu+yy85H1TDN93tBHP/pR3O9+95t8f/r0aXzp5Zfgk387FM/vda974UMf+tAFC1p3Ns34NNNMdz7N+HRmNOPTTDPd+XSm+AR8fmPUjE8zzXRu6K7IQ50XpdSll14KAPgG+v9hGVbpIQX5Uc06AQT5k2dO606qHfTv9M+eU9LUU/W+DivZjcjSapfh3BKdWd4cdwjTOIAxThzKqGHrtquDUxUmco4bUl14uQIvOmDZjcuh31eVwMzAwKBhSL8SlomALoAXIccBAUGKxLls7MpKzOlaymJ5R3kXq3ajHI6YgT4C/Rp0uM51izGVIRCw6IAhpndDxbRoXv6X/WtOBWEXnnkUjxvPwIw+rvHGo9faOJuio6MjfPJvB3zo7Zfj1KWp7W7+XMSX/qOP4Ojo6IIErHNBhk94HBZYGpaASLq04gfcSiBlDPF4gwqrir8UmEIo8ai+98O+xoB6nLUwYp8DVqfGveYz9X5TmZphdsAyOgu7y8MO+QAOn1z9KABdsO/Bfi7RtPVacAl9D1qvJS1KcRcdeLFIaQGWRsKnnB9XbUIAOASgK7GfAcM/AOBAqSwh5L4SE0bRYQ8aYpEoLzvwqgNHgNYD6KhH8PU3LOQ0fzADkXM3NKwpy2845+NbFMG0yOj5CDfc/JszPp0habtddfI7saDlBD/T6Pdk/9mDwpKhxee0+KoR5kzk1yrHtjHdGq+jtCfqGXIZuX5HZbTN6W8hCc+NZ8X7UL4vw8szknHv2pVDDs8BQAj5WQBiR0BH6A8Ih3cPOPxCwrBy1WOXh3tGAxCOgG7NoCHdE1KarPwSAeTjs9xzVV92yVN5TzLUqS4Hu7/ICEeM1c0DlrdF4atgmBFXqUCLW47Q3XwadJQwlUpGCRQjEDGe42LMPFNUfsk/S9ccM76le0bPa/zR8FtnhE/AjFGGT3f7l1iEFXTwGdZM4cUIKxqymufZiRKeBBqFtbnUxlWjoC6M4QVRljm24ILJE7tQi5er32EDpuyTV5WGpenbweq8WxrFnF+XSfkAxQnBKhDQHw/oT3boDwK4S7wKd0i4F5DbOgJhUFxiBCkcA+AOiB3AHRVYw1IA4lw3lj9AfoP8+meu3hwk/QWkfGW5us8Bq1tzGlruo1OMeBxYfgY4+CxwcAsLDrk2knYJffqjQfi2yFJX9ydYRoPwWsqPsVzLHwmG9fEI13/kl++SPNR5UUopOC3DKjFVIyGvnKQlkv2aYFg9L4S9vZVSG0CyVY4zURLtoiCapDPJTzmKPeMAbW9jXnni26RSqjTbK7AAfha4edmBlwtg4TJz4IYYQeuYfgcdmFK4zgmKoZNrSTtQEtR0gikmHRhYZNaSjFECBDjYI4vUQYFhiECIoNABq2VicBREJP80WXJSTHUNJZTV1edVv/OMVCNeFceUVCEAR3mcbaOTl6Q/IMnVn++k7bbAMgt9cPik2OIFKBW2PNakxPJ30L4POIWGpOPHy0gptQGnagZvV4yYUlRt0wPV71tKqrpMLdpazi14t0seu5LipHI3Hve7LmMNkL6bVjnGpCRf90DfA/3glFFdihsCQB2YFsgMtAiiIWR88nMXUOKpMnn6WK6JucQ13x7MQMegBTusE6Zq0QmDR6A+go4G0BCzosv3jZgwjNZ9VlL5MI55QhBhTwW9qq+whZEFqBmfzogMn2iJBa324Gfq5xNKKeWvPG5pmk1MmsivCOfT3RC+GXfDswaPtlEgnYq/DzXGYlvgIxsDXLRdDpMEoNxGXvnEwsfwQu47Qn8iK55pQaBTQHeMELpUIFJlkCiGQg9TQIUBJhwBcFgkf10pwJmgh/xMhTrNw/Jy96aU8m1Wj1tm0BKIx4CjgaXc7Moqi38Hx0EHx9Hd1htfRoJJYOHFOMoiYe/4V4dlTkHFimHkMKtSTlEkYDgzfAJmjMr4tMr4dNaUUoRCCQV3rQvCtINSqsKxUjE8fl9TVvTsgR+tcjTSmEx7H6gqMKqKS04htY3H8oXatLipImDnMA8EPgjgZQB1HtNcmSJAfaWQkvV4xTwTkyKZwigriXKfMoWSYpazUeCqDSy+xAmdU0p1OR0cA47+gQuv6RInVrADhhWhXwGBOefDJHgFcA9wH7G8VeoZGdQnZVQY9DqmX5F1syIqNq6zHuGuyEOdF6XUJJn87xQFdZszY+NqmwoFok5NegKq3iMNRlUiWLo0TqvJiNHmwXxn0UipdY7LUSukamWUFWvcZkyUVv1DSAJRIBGO0kRC8slsMPfRLJYoxrQKH5XzIQNAJrEkqBRRfpJR4Mr9gN3/lB8Vl1Igzu1LCszyy0BhseCTs4aZ6lN1vEnAz305t7+WbSLKnhTBiJJYPFuJ3pXIQYp1E0pCNtX4YWHdd/ZhgBzOY5TG83Gm0jgf2HOu6Q4rtfYg+6iq6JbnIRg+eYHScCDGJBwNgwlJhSAfglg6pTQMk0zwdPgUlMH2hYI9MystJEgilmeMzEzDwwSBwGBZlFAMNEFX8kagJNyGgAJQtKtGBvUE4pgEQFUoKaeofd1TC/M00VqhvgPN+LSBWtji73047bcmjPCYPwIyNmm8GLeMt2o+88KOjQmGSQlnWyHlrzcKWeP4Z7M3FWkpjigPAhlzEJYiZJxRCwAiIIrVo4UR3IgLoD9O6E8QWLj2YQmsj6d3qpBSZZQJe30S9PQ6DDAhjYWHYVcWX49NbVN/7lE7EMxywPCyCuQVW+kvYZZaW/AAoGPEFQFYIFlTMTAweIgIQ0QYQlKa8xqIIfGKvoAt/oypnKPle9n7PecWj096PxOcfKB8jnLWDf431Bji7kc8EKa/X41dysMbf+XKNkme2cbZw4lWt9q1r+3RJQuLa19nfb8pbivrii2w5ixkEnm+TEp0ILEKw4owLCiPKx9HlNGhZ1NKmTKbcj3UmrSwgrLK5bxHFRhc/d2f4ZNipa/cwiVB1Tt/T0hyJhNiB/Qn0kO2xkqWnyQ4vDxNGNYMrCEWqvKn0yJTWkQU7BPhEkQiZyouugXGfehi4qHOr1KKAryFwW5WUhOMyEgz3vh0tUA3de2fhboMTiG27wQWvUVQy2qKHBhz474RdhNpe+5CmkdLgadUm9b719oWIW93ySsYlASzRZesorqkoEpb71JkVpPFGIF1UkTRegD1A7CWLXJdALoO3HVpS8yys60t7PIyZtAEQQesnNHF8FEFRV9vb7ElppUmMwqIUERurwBLtzQpVuZobE4+2c5aJoJM4GQ8fbKGigB3o/LaSmKxb2A7RUTD5ohWv/w8J6+QcMrOcuteA7M8XvnxUIQVJq2Fd3X+rXd3tE4t2kdpsOv2uG155kBVfXeNV+UxVQeq0mdOGAKYRZThlccvQmKigCQt9QNoPaTV+UGsg9QyarGQLXuCdxU+ZSUT5a13U4ocDevj6XvFJ2FiSGUAY2r8lmZpS81PtwQuAMbCGDWzhJAtMWGdtgACqf6GM70o4mjI7aRtYOVj29LH0WHqnjTj0440NU424Mmk9UJ9vXParXQqzNs1rV3f1zyavyZseDeBt9vIs1UmOHmcz4onHft5Kwm5BTQRtsSCIC4hC22aptYPOLxbwOHdCetL4NKHbZOzYSiCUFjnv07+NE2zJgjIlg3eesH/+TZUUtZU9JsjYY2RLI1UwGQuLac0DCMpvdW6K8rLJcBI2BSXAetjopCKsO0uYc3AOgJHA8Jp2drHSDy237oXQlaqKnbpomQgs/TUcjJio8KbKVaoNGOU0EgWq+Q3T9sW26bksxaeSFK14mL0WSu50mQBP7anMOUssWGTVPNA+8Spy9dsu8bzGit1XOgtUbJcUowDkrU2A9wRhgPCsEpGB+y327n0CTLWezbLTf1DTHHMepREAa/pKEYpP+bxiXL6viosOkm799iminHk67ipG2q/MmYJwBLol0B/KgUwCyvBYQyE5a1S7DWBu2QJFnpGd8SIgUFBtvcpsAsYqj7EVKIcQWwF2IsuJh7q/FtKUePmrA54Bqv1jTIvusrd8lrfEg60J/rflDRGipxNRDobA9apJ8psv5MdUBj8syakolGe5sPytV4EEoWRKGS0bVUQiQxaD+AYQYu0vxiLAETKdVEKalXFSXtMy5RUCMm6ain5mODYKE8hnHpzVThlkwTRaG4lrll1UkYGoBASYOp2HmWKjGPTcjjh0TNLzGJdMQEQzLDteFmP5uqXw7U5w91pYMYg/Ww4A8D7vCEGGLpSQenaxvSZjkOJq0n4/tESJuvnNQZdzJZU56DcSWmj+JTGoO3f72VfSwhpO4j5apJyRUlBzak1LXRJERWSbzteyNa9TuNm5ncE+4Id+j6bmac4WcEuzyQ8i0Cn5WLFJiUSBg8uPXLhvJm7RjFMSQIrgTAgYOgWwEEQ6yyB0X5AOIwIh+u0/a/vrT2LPlwkru24H8bM+LSB/HhXK5GW4nXinjkJ4Wa9oP3Nt3NtAdiiKZ7Iz093BCZ3wYaWRanpGPIYs+CjPLbnyXU4z38gCz31NhN9Zn8k7wMQFwFxmbaADMcIwwEwHCTLpu52YHE7sLg1bfNYfRboV8lqKh4jXVBPApD+9e46pi0lsZMhqT5UdItKl8s3yZK671bXv8APBqjnpAzr4fAm5RMFckOv1hE57YTLdYKCQyrkKfZAvqskzrRI1p79SvA8gvoIrNdp2zE79wo1GTZ6jD5z/knvZ0LmXQ1XINZSAGoFVRHO8TlTspqO6xCTDBECTAk5KcsAk/hjlnXIk1xrNGzoG62vvrEnTeGLlqfA1M2JbpASJ8nG8oS4o2EYGbN4AcQlIa4Sr9Ktk284RCAciYzXUQqzTEosuHy8woYGBgYRjZQfEZzghWAUOQz1bVODkMOwURv5ivVODFRcRPqNHRIeMkCqxPcKe5eXTZF1fkPuOjQkYIsL4PBSoD8Gsx4NTFjcRljcxljeGtEdASEEhEAI/QBiQmDfYDBF65lMoRcTD3WeLaWArdYG8ruThRQwWrkntWxq+W2p06rTH72vJiyqwtZxR1TN7q2gO3eYLZPnPhYMpk6u42xZNdI2UWfAnfsDZHuL5xMZRLKlZRHyN9UJyVaskPwLAKAuCXgMiA8qsZCqmMGp8hnYql8WG+cVB8ay11cc+iY8oFwm1zZEmp5Y+rmVtrL5/MSqv8Ic6ZafVh9i5/uAYd+SnFUhe8u2usvsiTkXk2nnuSVCbRk5tpSawC3a0UpqA+aN8K013gtFxA5jfpujYd62VQd7YJTPt05zByzdOa2JMHU5iZKyaCmcRwQcQth4pZpB5RxEV/fTdUztuZS6qH+8rnOreWU9rURZwrIwrBZMPqxvFylXzQd5S6pRfQllXkBZNpeQ6Q+8FdYijwE1ZGAA3e09qF+rOiORKqT8IRGSB8niEM5glW7GpwlqYcK2hbbRONvg62WKt5n6baYRqn64Q/ot2sbPTJYVbsDQuMx+3OxanlF902W2cCKgw8iFgDn6pTTO1aIgrgL6Y4T+AOgvIaxPJKFs+VlgeTtjEdMWjnBavBgsgglKISIJeLplb0jPgviQUmsmEyo72e5XW0cV9aue1YADFM6FU6WBsGZ0h8DiKAt8mo9aQHSHjK5ndP1YwUXVvTRmhgyS9CJnfq6jJMkigINsMR4iwKIob1lnqoWUfkunANnVR4unefveBE3gCk3xIDUvY2M0lM+qecsuav4L2seo0adb2CWBmmOC2unIu2Jer+bpvWlTH2yVS5+36jdVECc/0WQ8wTOx5OQADMdCUpyvCN0Rp+1okZ2lo4g6lHyl1i6NVWwJauEpBSTZ4cIdEjbqgn+tFJK+NNVCIwWW3jtrctKNJh2SpfgC4GW61m3PugDXbELOz0y21HpIHpoXIHl0abFBE+U10PUMuh0Jc7SeQeuXCk5U8Xxn2KkuJh7q/G/f0+b2JtibmJcp4UwtoUzDLB9fJ5ra+mAXwcqnZ2a/Lm9VXBiQUZnHtrRb5dD02L/bQVVeP97HYkIBiuu8ZCS3JvVA4C6AO1ESLUXZhJyWmkqzClweTEgYgz47byO/xYPZzN2ZxCTUrBBCPtlmxMTIo1r2GdVNFTuOugAOXFkyyDfVlTlyZUT+HfUmcdypDuowAMSqltcVbZTfmaRMkYE4ZMZpSO3FFN3E6Le+ci6jtu0eFMEYLhLAOudUTHBZKQiv7B7Foc33m2jKqqG2OqFG+G2YRpQUKU1uxAJtL6PF4+a42hI5/2zK6kxnXyXfFiEI/ogwBxbFOIFXZbEwyKEKqmA5WmcLx6J8KhVSwg1RxrOzFuVa+WNlc3mKJijxKpyb1L5pDqN/dkQDlw6VUxpk00ehkBImiwnZHF7Sr6eNjXojSWd9okN/vEM4dZC21KwHdKfXCLcdAYfrtO16GDLW6fxpc+buNOPTFO0xxxfRuBjD6ZbyWN6EJxq3lW+zLOw644Zv5zGuhak78jOWQ21poGNN8mqVpBh3Hp8svHtn5XYXOr4Ixu+YQOev9QSqAPTHCIenCEd3S9ZRWLAomYHDLwDWlwLUU14zZAifRAinkVbY1xCnuUh+WVT4gisPkC20tLJTbKVjO+2RbQluxBMaVskqoOcyGb9FZlgmv1mDKtGi+pXJ5cwnLiMJkAHiKiEXU+sTmUCdfi6C8ayrANAK6DpRVKUt1+h72c6HhOEMsbZB3uo3ZQ04QR6f9H5Xuu6663Ddddfhwx/+MADgYQ97GJ7znOfgsY997F5luCCJuRwrtUxWPp7mZWqfdoUVpHT2CJjbjEjZCIFIrKhQzodT5QXK+Rlw/ZFzfJfO6GtPPb+Tpi6urw23JiJMsCPphotwaVuxKKLEX5SeVNeLciqcJMEcEmySz7KWk+VUae7kHB2takmpiixG3jyjxhIkluBmSSnyl7JMANzWPhT+N02c5lRmXuQ8WZTz7PCGA8ArlMo0RlJURRfPY2XvmpQTBqt/P3/ohC4YMFJZjk4C/QGB+g4UGYvbgdXnIlY3E8IyIvTJ4jP04spGjUe8on5Huph4qPOqlCI/uGst95RSqp4wJsKNVjyq9Kc15Y3fVl7pAZQZmYyzKf4Uo+WYp7bJ8UQe++TdylOFmqIcFYgTSquoRQesFuUkoHEVIdUCgKu0RRGVHJkzRqc/ed9UmlcXsjVBXSVtTqmLuXPSsNWEV86XNP4ehcCdkJI0rAJn3WZAniy1TRWcTEE1jL+rKkA1zxHDWPbZpF3XOCqcnpnQt+aINefrmYSCxyGy70716r9SjV0trLE4E1ZSykSheu5/6+tttI+SbG8FGjDN/YwSd3XB5vrsWo5dFHG6Xc+ce+sW4+rbRJF8FB+GatuH4bJTSKoPPbMSpayQqhyk18oogjJQ+t3LelsUP08WdfN1dNcWBw7XpLwd3JbjRjPHBGpUa6vgyh+Q6rpmMc8X31M9A+vBHQiR/9gsEzDGti0049MU0X7jph5z8nCvU7Gm+KcpPNQyTll0buK/mnXYARdaiqVW2UcWg+Tq0UrPpdvIU8cqC8aoZZKlqSv/4seJl4ThRMBwKWE4gbyVTvMIKQ4v0zWLwKP8hFpDmVWUWEaV5XJ/Ov6p+qvrVDXfpMWAu1eFuEKjQZ03mmSASA61IZbmJrOKB1wbMRI/SBIPEk7rroJvXR0Jk/DNLYIyI23jy1tcSZ63mmwf8vik97vS/e53Pzz/+c/HAx/4QADAK1/5SjzxiU/EO9/5TjzsYQ/bsyQXGFXjftIKbROG1WOzdQ2g9OOacUfzZIuHcVzNyl2bhFAN+SIduPm7SKSqT63k2ocmsGYUpqjXRLhWmoW8w6N6cpe26g0HiaeJasXk03IuTACy0z1J5KXgpn4vnxS8jWAdzLrS4bBiYV10LSt5nKLRdySg3Ian25Y7d19bjfqGqJRJcO58p+Czfm5OzxlOESYFXwC0JnSR0a0F31zRSE5891ZY+9LFxEOdX0upWihQoU7f1wN+ikZBKGvjp6LXFgheKWGaeMeY+7A+X9v6ps94j3I3wnhtPJBH7hSwVYLOvgqJZlk2rVgWQbScjLjoEJdhBNBRhTRXn9Bz0gATAR2D+wjqhDmQOiQQCVb1ZJWVt7iYbxTtPpzTR9STD8ajl1TRxhJfgbjeqeg+fVq5TEcFaxlt7mkpjwIDMTsspUWQeB1sjdb7l9K+pWYKg/se+nwYcvpRrKYKB8mUwT3u1wfU/QSwtwL+Lk3kpxebHF0fbzBJI+zyAhAA5dqVb2oyZDUO1b/7jvXayspj3i5MzyQ5p9aAU9LuQGdLMVbjcn2tiuBFh3RueraSSMetJz9QynHQEJP15tEgn4fSEeHMpsxiVWp1IW+dU8tRUVQl5s1hn41nuNVE/13GVSughcZQw06J5c3WJ49190e+O3gpyATC3DeMedTySx58LFgi/SUr0N1X6I5OpqON+wHdbUcInzsNnD5MFmdHa4dzu9OMTxM0tUA3OXzaL7I1OZyi2aU39b02YZTG02f7+I82nobybQsTaoOWHTDFalLFzQKSv/fYn0/Eszg+u2IcOv5ErZNUEPFxImNxa0SkkIwyTxGwzAViAvoDV1axOAhHQHcaaYVejlGn9Yh9aRyfjmwl4J7ru2KMO0gfN5S7dcqh4rUXoMzhea4XpBwkbRp1C5C1jUxPIszZ4oD0Jfs+AWDINpdOtgz1ARRi+ltQ8i+16ID1ArQYMu81DAAGYJCMQGJVc+b8E7AfRj3+8Y8v7p/3vOfhuuuuw1ve8pa7gFLK/is757bmnZLJ6jBEyf9rIGS+2Smn1LzQ7qfKSeN0/XVi3vNzv320sv6xZIAxPtkLFPJF8dzKNF1Wrt9vqNo4fju7ohj6cmCEyFhEgIaA/riEYSS+BmkMDyvY2NZDF0KfLDhTcslaiqFNxrYdsPjrMH7mcZPKfApDPMUJO204Zaa8CgFpYDqFEqT81iwMt7jnGiRk1wX2TPNz1+Sfj5s8KbTkhMFwlOvElNrw9i8ADk926IbOfHQdfCbi4LM9utMdwu096GgtdTlzjLrQeajzvH2P3MRfWRjU71txW9cAJq2smhr2id+JtLfSHYnfMl8lNxIYjfSmnm/Jf0ohtkuZq+9i7pmi42aApETS7W/6OHKaSIaYTk9RwZEVTMgBFjmBSk+xocwgVmWgauKyO3J+Yir2iapwebIohVsfjnxskvcmbBHSilyO57M1uZ0klfrbmTIj511WyperLpQybfvBzoBs2unN0D/vqcALIFtIjTFjhDl1OJnIgeRXDUDuDC2824RLd1TxXAlbk+F2oY2YtUeZWuXbJW8NXyujfDfWdtX2ZhuFKdgQZbttBPq0FY2O1unXtp9BGEL1fRCycorICYBkgh/InbwFy9JgIz9yD1Bcjmnqe1GWpfzpOClpxSlJPLJdq8l8Vu5Lu7gmY+S0/XSUs5eHMWKQY4xJBEReEhAXyYIhis+Xfj+MmfFpgqb4o73wQeZddt/RBCeexogcqUzKByUqH9bvW2WufnkTJtSPtiilTJHh51fKi0c6DotwyAJO8a4qgz63prOT96rnmrcfsyoYOcff9ivCGii9JxH2kjNxUUat2Y4ZN+WT8FBRlGjeUqBwHlxda0Ezdmwgblwr/+R4EwLGvmWgPn/ywSHpBWchT5whk0vTBL6WcG95yoWkxUA+dc/XU+eJ4p7Bd4B/0nsAuPnmm4twBwcHODg4mE5nGPCqV70Kt956K6688sq9ynBh0sRpe7vIF568pbI6NC8UVkD6tqGBCdW9TWS75u3CFvyGG8eSYC2TTOahc2+RZhXFYca4jFXaVEWu76usywdcvvAyC9I4ZY4p2KA7NDRtEmsjys3EsmVPleX6pwqcEExRHpVXkjQ9zhZ/jYoobrAP4niT5BOKjf8pxCgu/1RhZlQrEwVK6pP6PBYVvqRa8OH5JU3TPyeABrKdqCAgRAYTo18hKbPWhDAEYL3/BryLiYc6v9v3ug5E3hbOMVm7MlajYBOgcCZC3SbnmiMhFOOyNwUud11b8tTC1SjPiXLsCrDbaJOiyr8nqra/BARG4a7G/JvIVrugwDSkrR7hqM+DfEhWUrwM4GWyuOIF5f5Ajt8IKE3irZzC6DAnSyJhMgwA5ARG9uChnBdzaTLuAQgum84hn7aLbjsUJ+mGYL7NHLNvllpxSJyidX9JwwRoBg9iDaVHztffZeAqfc5/e9AgSen1TIloUeGT+kXb5Ey4FhQLbGhsldH7KQus4hfYe0yPC5rrUpe9vm7dK9UKKObCSff+xWph5rb8qezv1v99uikNXVlLq/ZyAaDTwwiG7CSXjnrg8Kj0ZUEEO2XvYJGcpRsOVYyUbONTPzJNrGK23bZWVMGszOChYFo801XozPVWFflmnZVfJr99KHyzmCWH+pjy6fqCmUBLgp/upYMlPkjLmkypHvHEAt3hMXS39Qi3HYI+eytwy237K81nfGoShQ7J8vKON0pbeEQbiyavG+Hhw/jn24lHaSPfo3E9Kn9+x/7eb3W1Z1SmXymPyrpV15qHLqJ5hZMqprryOct4CzGdYLW4ndC51fNUf2A4hmShEJP/KOqBxWmgO83Jn1TkZJUwAFGsFniRlMHmaBxluqMtfPV7KZthEMrnhYDFjbD1sxEew6CbmMCDHGqjwixD/LI4Abng2yQ83PsFCRapYoIs31QOCTto40Y5MTWChiGlxkPbtcIW8vik9wBw2WWXFeGuvfZaPPe5zx3Ff/e7340rr7wSp0+fxiWXXILXvva1eOhDH7pXGS5EIj3wY69IW8K3LDI1nn53cn+orzGBU428W7ijsg+V+GRWlC2MKtJ09fAPGnP6SPk0SovKsD7fHeLVCqhWOEIao0Gte9YwIwQOafs+L1MhqE+yEPXpRL500EJivFTxEw+SlZT6pWLdyqx1ofJv/A30J4GRlX+y2vmE0loZZQp4j4W1NStgOG3box2+FW3vMaqM3ngg2xo9RgFpnhDcXh8EDJcELG5bYHnLEqube6w+cyQ42TLDm6aLiYe6MLbv1ZPWHSLnuHOKtgl/e5EDlTtc9rNId1h4HZNXNGWGK13HQIiyXcWfXkVDTGG84iYmHyM0OCuEQAAx7J8IdNyVgFX4XXFgoLcMZD69Euq8QsrrjrwGnNVZX5EGucCapGTeAUxB0hCh1stctqFa69A4OUKdMPutnyoQRzexcq3Shwni7JwxcxzqHDbSxWTaeU6pxRTUSqddqNAyTMStmaxmee7AmN4X42zGPY9UKFv9c2wuW8UIp5OvSJRITogfhiykxGgHL5iD7mHI37sLAgVyxDohOy12zKgyp36LigmoViCphsMdq5Lgj1WvYsbK9kFmiCmzaB62QEgWB2qNUTBBnC1ZXdyRXxrD0RROIUnTMWgMJa9NCwJHQrykw7BcISwJ4fgCfGsAbmnUZ4JmfNpAZ2mccuFnQpTnLbjahFNNeHMPWeNjnMY2/GsJe7XS6QyI6wsnNPIO6XN9Q43n7oFZL9mWlaToZUpOwqO3igJAR0An40+to8IhoztidIdJIaU+XLCgdMR6J6yC22LTVD4hD/2t7VfjUC2U1cIVymcjPPNJU8ar5D8FhXWFZR0ZYUi+62hwc4IlADD0edXPnILC/HHG/D7FU350v940tX3vox/9KE6dOmXPp6ykHvzgB+PGG2/EZz7zGbz61a/GU57yFNxwww0Xv2LqTPmVuv1VCeXfh1A+izAZYjOvQHnSqpVbcr11rHM1n/sAu4ylqnjNPFovp8LtQiOgcs9aO0zqvCMXu1fSM4gFdOKJCoWyLJqrqwIAWabS6OQwUPLMMh4cc1HJe3V1GpRhvJqUvFzot5STe+bx0suKisM95OAqCSZWXmRt4gpI1Z9imsdRLvMibQtJb+gYfAJgCoi0xGIF8C13XRnvPCulRCVYTJh3QPCSRGzSgUuPCJMOhP31Lpp9r4Gvy91cWUS7Xj6vbVZTZ1PJtKvw6wG75Sy4E8umgwXiQbD6sJldsyhhCEFOWaGeEdZD2hojeTEAXnTpbxnAy4C4EJ8sHZVKKQEPHbg2kNXCyTEoBTgo18NcMCMF6DHE+kjbAfkoiFafMW5SLZpQKqT0u+u3tG1+0fWL1I6pjTmZaUo+qtyz/4fRDJuYZ28hdQbb9yII8jUQLyjN6nmmEAB/fDFRWv3bR3lkY3/Csbnl4/GixpA6Td93dygDgOZpgZOYhdTNvALYU+RxGWq82oVaK5Oa/5RCKrh8aqtAj/H2DMmfyKIzH3XQwxUiYIkPeuBCTKc06Yq5prlcAgfpj1eLhFOLUFhtGjOneKWm7Z4p0Sxtr50rK6fxz41dCAUVDI9rswCHz1RYSaguQP3tWVxvyVVBX86jykvzUAZOy9Twy4djHSJ34IMFAjoQujMQ+mZ8alIQq816jAixcdL70BniVCu855Fy8tP8l6YTxAej9s9Wfs2ib8NluA7eKn9Vl5H1VONa7rPfpoZ1pAhzHNTHpoTrkiJqOBYwnACi+JPSrWvqkwUdQD3QrYHuMFlMLeTkPVXcqD8WCmnbLDpK3L0/Kcr/TglNigMapo6rcO9lRblO+IJC0CI4Ab7VFUSICxCrMfFHU2yP0TLpu4rPyr71uGC5iOTABgC6hZk0QfKNAOGb9hb1kaqc8UnvAeDUqVOFUmqKVquVOTp/5CMfibe97W14yUtegl/+5V8+o/JcMOTHmKcW/rd4ml34rIJnkAua+GtZMk0ouSfDeh+RXi4ZWU9tKLfKKXbPJTbtXP+JsBuibRUjR1iOhFdLx+sgyVBB53zA5n+zlJI/HWUcAF52yYpzITthVmRbk0d8hucrK2wy3MkDOhNzWUfjh6o84K7DxLWTI/WvW8NO4qOcZZ6nnLJqpGjbMB2Xu3dyNQkAViHNEyB0fVroY+yrlLp4eKjzrJQKopjCNKPqJ8Z95owpM89N4cMe4ZW2DvLdkzpnVG+9ab13TrSNQVTQtS0iAtCcpJNhlY4NJUYCJl3tik6h1CVQAi1sux8HSoqolSijxElwcmwueh/RX5oDO6eIUiHPO8U0ILE6yU+U01/EdJW9k3og+UKJqkCCAa2u8o6sCMTKiUGgRQD1sg2oWNmR9lva2cX5hCoRelmVBSGAOrV1HYCuy1YbasGhPrii7C02p+kYC+o7UHT82BnyZXdN8kqpkTDmBMGW4KUX5B60htsUUzRKa08yHJvIu6WQKpiciTRrJUrr+mxSnewm5b1nQK08bB2cA4MXXVpM1dV4HS9yWhYg+KDjLhC465Ii6mCBqIxVJyfRqC+pQM4qSrGyvNfiEGBtWR49LKdXxQq7tBk29QXPbCkORFcuqZc55HSrpTSw84GV42rXjUsqVg8Ny3WxWruQbg+UQHr8suJd7JYIly4QL4nA+zbUpaIZnyZIT36sMd/mFjiNgL7YkbSP7MNDtRLRua/5epwuF8898+fenyXiyfxz+bIPqEZ8/W2+d5oa90dIa0ss2zQiAbRmhNPAsAT6Eyl26IHukBAOAToSCykRiNTRdyRx8A2TCZP1gS68sTxwzoKtO3irhbr81Gjnun7q7sC3AwDq4HiyalpQmG6806klEpIiScOqpYX0afMdqn1cE5aPkL9XEC2XaPgDZ6V9CLJlT+si46jrxPn5fn3d45Pe3xFiZhweHt6xRC4EUvnO41NtmaS0j5xW/xLBTrz2fBnQuK74nKo8plTyY6NKZkS7hKmr0U5i8v1Zoy0J22tfJ074M/idKwFiJeWCK9slyneWeZ8B2bKX/oYuyXMxpLa3QxdMvsvlIR3arlyqBLcpCuX7EnNk142HEar+fL29IrwiU7RzyesQYA7TlZ8yH1PIWF8c+OXzqPDSx80ZAHFBOLo0oD8g4ObKY/sWuph4qPPrUyqEvNJXA5L2om2CUoumrKSmVtq2rcDV4Uwb34g7tXrYSr8W5PYR8mpN+z60qZ5T5VYfUv449S4AC7GWWgX0x6SNBy58xdlRvnCDjYKdBsUdIaovKaKsTSdkk1Fd8XOaeptgGGLuzvnTMMrVCA3nnN/Z8wIc/CSlBVZuskJADdeRWDhJ5YIkGjW93A4YOGv4Vemnvoq8ZQZzqjwNqR4hiBLKIX0hfJ85DU6LPuw8yO76lI6v1g4l7aLH3xYCR6vNaufnLlyt4Krz8HnlwrQKmH5b5u719T44NUX7drVNGLVphbIIt0O+1UpmzlOeKU6tFim9mMagGeorYHAW8kCUrasWnVlIYamYJ1gXIEe8l/3Bn3hlbVxIvFToKxN0sWRNU11qQxsUSeeyBZe3bg92EythXEZ/1Pog1qqjeZiqa4/HcslAsYKIjsBgBG99uAPN+DRBrTFUzDfld+Otc0XD552mrfzTNvygqqPsioFAXgiz+4lwZ6IgK/psjb+NspEvD8b1UAr5vQo8Fp5QHNpivEyHNBbU59MCiMcIw3EGrwDqxZeLWhGpBZEcTR7k2opFSXHMKzILKV6SO15d27Iqfz2mN7VdTdrN6neeRXJdSafM4HRBVgzFnJjqZ01YJ8+5TQw2KeGlnXRcx6O6ug73AVOYJJ+DIhXu7ei8tJTaB6Oe/exn47GPfSwuu+wyfO5zn8Nv/MZv4Prrr8frXve6vcpwQVI9Xr2hgH/eirMt3XoM6wKix5DmX5XHFK9UjOOMT4WVlM5xOt/XcqenwgJMn+kYojKMx+Bt7VCnORkWJR/l7+t0vJWYvOcu/3klShHM3ROcxS0Ej5YEXgWx4KTSt51adus9V/yRv/RNOcIfyVPnQU23Q8ZDQomLDh9rvDF+SPFJsVeV/polVWHdO7+wUWOjpxYs+74CpPmDmMHdXZeHOr+WUosFEKQI9ZaMKYuPMxHCayCslWBnYiW1zRJrWzJTJqy71u+MVy83kANVBdu8vYPMMa4KW9whWTcts1VTXAKhT9ZGnSpl4HykBAByBDsTEJcBg2zZ4wUhGjCxWWJxSGcteI16YWUQAeoAipS01KI4MIsABUtOdSTZtuNN0HOzUrkvWH1MRUYAiWNzVAIgRMsvWxrrb6i+tDoClovyE1MOwzEmXwmpIKAFkE7yE0YproC+L6ymKMZ0Clh0ztDjuQOs6667Dtdddx0+/OEPAwAe9rCH4TnPeQ4e+9jH7pXOBUmrFRBW5TMdo6rA3Lbdd2qM1oqo4p381quKe433XRmbPZJU2lV5XlswTVrDcmYEd61nzVwCZVvJJ0InjKps2eNFJ0fz5rjecTeLMoogguSiAx8sEVeiNFcrThM6ka0QgvvrUFofWV65/xQm24o1DFGaOcbG6ruhPRjZugkoLAxYjZG1TKxuQl2a7N6HhM80JMuE4SC9q8tb4GDXCOOLtwCGAGBBGO62H9sx49MEdSFNfECbb9LxBKTvVDj92kCtJi6EqjMAlZHw4Ma5jGXLoTUxA9myqY47CjhdDM2bG7jqLafYBoiWxVlNuTrpGCq2qCl/FAAE4WOQ/LexYpOMk35JiCuk7Xm3IQs2h0A4BBaHLL6k0ngMA0ADCp91w1KsNs0CAeIfL1lessjrdgKfaxuGe9aiug0Jeduujn8VyNzUWOJaikMDxMUBj7HErOaBKIsDJPxaep8wMVnSB4tr5dd09BMQQDEkTwldSJg6BDvQgnoC+lAIzomPCwCtgD0Mle6IUupv/uZv8KQnPQmf+MQncLe73Q1XXHEFXve61+Hqq6/evQAXKgXKllJA+btJxtuFRjy2TH4xlP3ZbzFXv1PaWeskp7ICVwop5DHvfvNYaKRveLIhz127jRddd4g3CZGtse34gYIniAmHoshhNHBSIHsehTmNNwgPhNQ2g8p2S2S/eV3ZfqO2DFaEcnzr1MaunK36OnbTw5DicnEIRBXILKBcHuq3L/lPhq1jWv5Dju/5PTYwRPViXO76FTHEiMGVLwLDihCbTs2maVZK7Uo6yGtmo6VJ36RdH6VL5XVrta0OO/W8VehNq32t9PZRdO1CO5d1z7S8MgooVwGdEM1EybH5skPs0tazfimOzonSkd890u8QxXlldnKuAqOlI4JeVOAXsLCjQv2KvyCOAozxr9Z2ejwpC2NJuWulVA0g2H024z81LiiHh2innR9MBT4AcuoeinoZScLZAGPM2OppMq4I9q7g+FAd1+pWB+3+DJSVkTPI7Qt297vf/fD85z/ffCK88pWvxBOf+ES8853vxMMe9rC90rrQyCylxi9gCqltbT0Vv4VLe2PRljy2/RJQj38AZ84oTpEpnTaUc+M9YzSJT7RJGgNIcdw249iFJMyEhE/kGWKGbYklSZsBsWrobKueYZV9LxSKJ65/gYynnMZ5yjErhfwvIb9PdfH1TX/NL8OKemV427rHPihZOsaYMgxnzT8Lp1LFZTLFL3DHFcm/KJyaEop8NQXSb7QHzfi0gbYtZLkxTf5+MnwVZhec2ndct9KrcamVdzPdRh3ygJou17b84MaujOm6bfwBAzqW7AS+YuVf80LCowDBEtihMbGTbbIAaJ18l4Sek/8SO1od5gBcnQpH3SJbbCGm6fr7rkLYHK71zglq7F+7bkguqMe3Oh1zt8CuTqZYV2V+VmBluCaT8fz2YN32V4aT00xZ8pFfVjxmNv5tsqxbyOOT3u9KL3vZy/bM7SKiXZqhHs+7ynlNTHJj1M3Rk+UpxnKNCzA+wNJ2CXlsqOOM8lNwIFe/VnnqB402aCuTGm3lF9qm8qv5Pc7jyU5SlzGmRgF5rEm8qM90bJHDDu/eAGK4kNMpcHWinsqn1Jji9TxkEXxSHtczVmgRjZdy3aZQfFXXul3Pl0PYJp+jXUVRqpvsGpvVbFa8PuEPgHMlA1nY3A+l7ggPda7pPFtKdaUmXX3leEaL3TOlnVb7JpiYZtiJuK2AXmGjYeu8tm270edTW1rOpL77UA2cqmzy7ym/S8qhtALBiy5ZDcgWu+FYwPqS5A8qlRUg2fUSWFb2es6+TGS1Qk/D4kUArwKGpTg292bmcOBE5bUprmQQs6yo8ULuq8EN8zVFWalUy7rkwtsfJSumLgCd+shiU67p/mFtNzPjDVpYRaZE0fJhWb3j5Fw5MIiDcxwoDJONgyjKvi45Yo5D8l2lFlIqdERGiB1w225dAbhjWvTHP/7xxf3znvc8XHfddXjLW95y8Qt9q+XYUupMV/lqpUwLn2qmZpzIBBPH5fsRc9TCqoky6H3TklOy8u93UWTtqYRoxt8hCSvBKu+3ZyLEg2XabmdOLzvoaUthHQUX8rzDlHAOiw686hCPLTAcdGJyXmJjKh+yRamZiTss0ybKFxm31GddBDCI6iYgjf1W/VptoemFUhDUomlctW4dnaKj+Br0l8ptf2bx6hNzf0qBpD6eeeTs3wYldu9KMz5N0GIBs34SYTu1t7OaVdqzzScVR1uV2jXOVWFG6aefScEJ1XtLc0PZC0lhU96EYgGsxka3KKcKpSavKH2aZfwXfqi84CsWlL1YHkKUvfEY0J9MlewOgXAEhEPG4nakU/aOxJ8UsymlNL/Qp3SHBcpT9pDHYdCpynilLKSNjkBvtSuXv6TxpiC/1uy0phIV9NT6q0denNO2U4ZP8WoJUzCxJsxI1gQDi79QSscVMpzvTbkeQuKd1lI8Uqfw4kuqH0AxgtbnbvveXZo62Qmjnc/wyfFO2yytawvNSXkK5Xgj92JKaQVghF8+nRbWtXBvqjyt6337hgteyGdTpNhnAtPEeyXvF8nX0R+Q0FHafhcoz+nM+bQ9XWwjFN8rK6Igi1uKeymf2rq0qKfjSfTa5LkBxlP4bXQjf78uvm7Rs/z9lmbHMFmRVAkUcx6W/gLG+7C0wfg7qX/O9Bda36Kexyq+iqrnpOkw9u1Fs6XUztTSThv3ehbSbeWxKf+pcFq4EeAJ1ZZekTNw7WPhtQudDQFPKAs5W4CZxPxcBtpAadtdf0CIB7Ktb3DfrWdg4CyzSHoRSEJdR+bQfFgmhiqasIQGQJEBk5p11o42i18BMBP83CAePaulN2o8cnPaQEjOiCn7gPJmnBycYgoo3uX6AGY5wOmaAGM2ARggmnINQRxKUNL46XqhFs5znXtKIAMCBomjLh9uvvnmIszBwcHkkcaWzjDgVa96FW699VZceeWVe5XhgiQVzoExHnnF8T4Kmk1UM/M+zfq6RZvwbEoptm/57kxi+W/HstXj1I+FGOS0GLWOAvJ3GYQxJlGOS1pMIY3/Tk7WWwTEVYdBTj9BhVGFNbYpdNJvNAzNBaSqwAyYToGgWABjtkbNvY0h93FqhgdwllwoGDFwYtaYHS/bYBgbPF9RL/ZFZBTY74uzbzea8WkLTS1wna3FrCnr2xZetR9uSFuCGw8lz4sJm6bLsIlqXmdDEZr3XHEWnHggzyPU8TXKeOxCxkQaZByAYZWcm8eQFFEkyplOLKXMckhPtZIpfghIgmLIFlZDR8nJuSja6u0w9aJeUT7/yTz7XTV3EcTxXrWQVCenvJP/MwsnV66CH9M8RalkAjNK/FI3eSx8WVRhUjG3sFCQxHVej7A5g/Q5AkYnuG4hj0/pfqaCyP5z90CeJHZNp+6QVP55cp1wn7HffFd06Fra8CG1UwL1AUo1tV41MWP0bMdEGxWbMpDR2uhYtnZTLIsMWrN9RwbKhSYo75NSUj/BycIc4CVhWCQr88RDjdvGK8m9MmrEf+zYX3wXMwWSlpdzWpNGQzXvVmVddGE9iZCqAF4kG83P8uva0ZeXUMZXJT47a899qMVDXah04Zy+FzkJ3Swziy7vtAS9XawURppuKt9ZGRrPNzli3fVI9V0EQF+3QnCqGMpNirVtFgotpVigcZoB5X3dZiEAyw580CGe7LC+pEvm5qKcUYYp9LBT95KzO5bVq5QGywkMvJAtf0t3kpV3fFdXE9IsXmmmXUS21pk2WiaFQqlDnJzEyWmA0IFdM8GWgISJHm0EVDVPSZv9d3Crr/pYAcYzehzF6J9Yjpyp+ndkEZ6jKwesXBRIVsRDQkWNE2Qc7UHsTDtZfi+77LIizLXXXovnPve5zfjvfve7ceWVV+L06dO45JJL8NrXvhYPfehD9yrDBUnLJRCWru1dO7dwqSUItsZfU2lUPS/CNZiuIoyO4QmcGI3lPbDJ10Hjaf1bGLUPjcq5Y3kwHrasYcSaE0v5c+FYcJWAdMiGDkg1sV4ERFVGLQLiihCX6UTQ8Ql7LnPAlNGmtFLLKaCN0Y5RIiYnaKnZNxWMyRQu5vQco1dbP3jyFlwqWGraauHl/S0YD14laKd7ubp5bsfqI+XSrX3OD8WuNOPTBKlPKeOdIJbIaj3l/lrjuUWjBarqz56jvE8X43ettKt0bOzWC2L+eRGvUdZN1FTWN/LR57WF1ORvTl+tEEe+Z+CEtgWSP7oVYX0poT8JUC+WUaqUGoBwxFgcAd2aEdbpFOMgw4fFWjMt6iWFVFwgO1CvLQBa1z6Mb8+izcrntUKdCIZNVMWzd0pc3fs0BV8oADQ4DBMrcfXvYtshPSkmaXsrxnQk/BWBOEIPt0nzg4B3CKAwAGZd1Wkh9vbJ6fFJ72eCLAiFUhvgsYopM+0tvqmQj9w3qbHBnJuHEqtCfY3yvU+vGs9ZLmpgXYUBaZpz3x9VnKJObrx4eQWN8MD+Fq7b4lXzQDrtV+uKJgZ3AwODlLHWvhCSAorUp12Q0+ZEIaW/wmNN+bXzCqkCswwPJEpotJ8pflDiEVV/mrdZa5XlaE0r5LrhCC69JVUjnaxUyjgGrWuFm/n7lxbyRZ6U86P9RLwmD3Wh0vlVShVCjf03niRrgDoTAWjfcrUEpqlw/lcD2/I3FfVs+dMoJ3Wd0Rv1rSf7MyFySdRAjPLaK4KSs86kTMGQNOepqGlPvip7iDlt1+tTAgpWqklXpZT+FdZRjLz3V3wltJzO1UIhI4WLXuus84o/rcV9EkvTK5aoBDdtIt/k2k3V6ovhPpll7CJ44IST7RigjlJbRgZ1bCuiKQNOCj1VomkDLKRLDbbPz2nOHXLvQS3Tzo9+9KM4deqUhdlkhfDgBz8YN954Iz7zmc/g1a9+NZ7ylKfghhtuuPgFPx17Cxk0AwDEvHXBBHYXpxb+JhVNer+tEFvC74oHU5ZdZ2SB0Mh3kwJmV2L5b0IB1YxSCN9StoFzOZwCrkhVsEl9ujAlBZQqpFh85GWGCgbrHNRhpyiOzDIWpphSJqjoGrWgptWVcgfBK0b1zguEDssszVrok7Wd0YqjawQGiroZLHG2iLXgVH0DljjRdSFGVtirdYJir8wPZmq/ZxeZ8WmCIjvlwhbe6WxZTbXy8A/3gpKKzykSmCi3TqLCe0xh10jI82PAZVOkTsWwLNOa+iWUafvBi0pRDYAGoDtkLAlpy1okdKej+JCSag+c/EnJaXu6oBWDxx4kIVAFOWGeiGUdyw5aqCriK7YHm2B4oPyX377nsQiZ9S3yZDhFtjVP3k7MqU7qW0rLxwskpVFD+Cvqpc91bpKDi5irj6pmrF5ZEd22JGDv+XDevrcDmZIH+YMngSI9t37SwKmdvof7poWCqE1cy1X1+03h2YXwTo2I3DvKz6hOa1z0It+z3X1a6Vn7u/cs7kSg/n/TexL3BgwAi+Sf0xYAg56WLteqKPeHLuhiF5D9OnnFuJTDihEr7GoJYQEwJ/axfGXDnfJwL0Qk5eVrBVe9YEYJa+1WyymLBxTSVmwgYVOybuUs59XYp+lQLotaQbFl4OrAMIWWHYCjO2jW+83n8/a9XalWhNiXQNUJHXOyjyDV0ogrTVkLtAR6Qju/5gqcA7opgdQJcFTd5/ecJ9dNAt+2dvAa/7oMAdvroNvFupCE85WclLckEBOoF58AbsAWiqAgnEIAIBZS3BF4mUHMzDmVgVuk1T/tA2YBJcLQmNnK8T3AFtWixLBRQAZkn0jV58hprOukQRDfMmSMLG0a6NI2I8GusJADvB8qYpbumwpGAsTEykgFWQFU7k7ik6ye70EDBwzCNesuzFOnThVC3yZarVbmSPiRj3wk3va2t+ElL3kJfvmXf3mvclxwFNSUnzOnbQyw9Dl1CFnTFEaNBKUJHNIAU5jl02imvSHdjXk2aJsyS+sRJ+q8K/n2KBTjLXxExk8LKIkEAnddsibcROZjKvm2gyilDKf02GINF5EULwsgrtK34cg5HwMKyqt++sIzf1peY8Q46xYcHjjocnIXG69rwmDdhppYR/m6IlX86+lWpljzR9XXZfZkjlBd3dVSQdqqUEgNZX32oRmfttAuvFPNQwFjfqLmBbyQZ3/AGD8m3m1KG8jWD55Pa1ls+zD+/a68TzF5V+8sLf/beDaynsrXI+fi8i4rpKg8/pzShv0wAIvTjO5QBBrFBO/0W2Vf5Z+EdyrGqZSNSDBHfbdUrCwBzW1zoz7jH2kzKR65e3/rcZj0PcN8oARb4efMG2obqtAWMn4QZ/xlBkJ0h8EoT8Rlkxffe3Bzg4bh8g/2jMXiUxnO/QDK41O63yv6XZ9a/AYDI2c82+LWz1SpSCS8WgOnLIy7B6pwjXSBHA91XB0fFRbAXWsfKsYglXOq/tYi5x3hoVrkk/MyjpZFi65ynOKPjAvqk0aFu2RtEyLL6XriuFy36i2DWW5GletUKeVJnnFAiQX+vbeokvcWtgpeVLNKp/Ahtchpjpq4VowVwIIsAgw5HKvfrQjbIaSJk0QqsAaej4NtybPyOFHOvy++ifrs3NNSqsVDXah0fpVSg3osawGP/LdNEbNpBbC1taY14bBqK1pl2IFqYc0iTwhpTqCrS2+hFTCLl9WzXVc/qT5VD2U6rfeAWDklQa0/vsD60i45NV8IExSBMFBywjmkQUmB0sDtE4ORTDqdhZQX8qweyKv6vmyigFIDlVoH4xkq1jnGKbBY0ihPLkjvRs8kjmm0g34mAgcGRbdN0afvPkWtZbcyhnxdWDYoQ8b5qOhctiACnZ68w8mxufxSF8GD+LWCSwsM7vdDnQhClI8eJ9eWdidmxuHhHmcqX6jU634KXRmSX+9IeAojvKCo9zvRRDjCtKJrH6rTmdiCN9ULLMQ2Bdne5Sojc11Gz/Q5zk5xixcBfGyB/vgSvEwHMUBPA5WAaSxBTolLf9wl31O6pTht1aM8fmVMqhInilLKzM29GTicIorcvRbdj28VNuV+kBU/Y7ycc816Z6/5xFPss5cuXwDJD6AUJrpdE2pFoXULyEckx2TJ4f3ZqHWGroYad2V/nMtr3xOFxVjsABo4bUk63I+jmvFpgjjKXyVMtfiG6MzadqEtfMsdppayDEDLCir3by7eFzxLM4+q+HX41nufn+YJO8Mth9Hx7wWXKh5JwEiMIRD6E4T1yTSOaGCEtfBDKwITJ8FmLdYKstin4zVS8hkVg/i1Yk7b3SJAgbNPlg4gpqTf0XHu6yqCjjV9LfzVjeHaqngkfJXHSM1Gnf/aQQ5q/ekEPXNc7LCEpCvz0rWxCH28UtcLjG4d07ZHseYgznU3uSEk3CBC4kkjgyimbdsylaMHTNEZCLROB8gUW5J3II9P6f6OY9Rdg6qBUSikddzXZi4TuODj+fQojOUJQpZpABQTI6Z5m+LdxJg2vm703j90k3JhclzG4+p+Mt87SI2hbM8LXqQDBvXBqbKHHgJTxVZ3BTEkf1HDKiCukn/g7CRd2kTHNcGU5XYqX82/aC6CUX4rH9dNrxd+3VjTCy5PTdrJdhiwua3ZlVMwiHqpzgrZZ6ikG7vkIzD0SNuvD5FPSoXDMr+gGnP7k8exqhz5sCvZzn0UQYf9hsKP6WzzUHcmnV+llOf8dTKZDFpzEDsKe60VujpOM8xE2ttWAnfJs/VeAG+rMKhhN5VFg03l50F7tHrgMpPVB14ExIOA4bickier64EBjpy055yZJc8oRHN4l7fraX4RDjgCzHknV0BkmmmgLJ9vHB23em1KARQJJFAjFy2/s6gAiuOE3ZUPW+Td+nANIMqm7WRsrgmOVmxnAuqIKZUkDZvkC6FktNX5eaMsG+iOmHY++9nPxmMf+1hcdtll+NznPoff+I3fwPXXX4/Xve51+xXiAiTWlXzdHmYv/Oy5ob3Y9ZmNwtMGbJp6vgs27ZpW9WyEG8BmfKotPjfQNnwr+nOrPm6sa74MJOxYdeBlcH6gXPyoUMdZly3O0LPCXByfe2FYMSjAOeoE1HcMV5jpGU1/XRy8oFUzDquaB7XbaD0dxpAw7fUBChaOxs813whUPq+qtoWTE9SyAVp/QULt+wVDxQVzlfEx2ZsmPYKsGg6MMOynlJrxaRtVH9z3gVq48/eb+KBdrjUzGwMbcKxlhdB6Tq1ntP19TTWfMMXjCY1OzCMXz541wsjviNWQZ+ZfagHEA4BXkrBaJUic+k/xIvuyEzzz1u1SlNHOx1o77cDVZGovALWEbMphRwK1jm9X1mL8S/rZpQMKKweN4ykJp2SLiz4/0koKJtoJn0U6XH4Escqyk/d6tu0v0DQi0uKHhLXTjvfc6jpv39uRCuyRZ8bgExxz7CbJRhr+urCOyn/mJqWykuIRdri0puSgRhyPF8a/tzDQDcNmtxjh5HYeaYo29lrXzKg+geVLlPgodg/rOmleRHaaaOKh0i/UJUuRrmTm+Q5tF4dHvixUF7DuNrlK5a/h88RfnVeDlG13uiBbdDPFvxaCfdJSGcEdXzYrvyWKim/i/H18QxjWykJhL+5xziEPda7pPCulHGddn1bgmariAaYBa4o2BW0CxdTzPT/mtpVFBxDjcFz87FsODwp5NOqfgHPNTDoQZggzJI5/1ZogHqQ4FJMFUQyE0AEsi0yhR2Kk+hQ/qm+WJUpn5jrAA2yiMHN3B1imBYdjSFqV1bCNNmPxtaDHr7PzaUAsx5g7TRMbc6VILm0igDPyDSNApeAzCXq6VcZPzDop61CQfFlWPFk5OvE5xctgpunM1ZiIDLrtEDhcTxSgTaVp534M2d/8zd/gSU96Ej7xiU/gbne7G6644gq87nWvw9VXX71XOhcmsWxr4pJp6WRPgTf5L6LJs10cihfkp9fqsVeKNt/T9P0elHGjzuMsTmQtnC/ylv+oEV6bqGGDzKFDPLZIDsrllM/ETDjfbD3ER5hYFyxF0d45h8GUM1Mmx/+qw3Nlygomq1VfG9fteo+e193KCX9eIdVsRsmr8P2i1l3aflo7xWCNSgCWwLBIW4u4z9Yby9slcUbyd6NbcVToQ2qLYZVM+JP1FcNOuZLyL26PCH93eqLybZrxaYrqMen6buVrA17B7n9HSfpxt23MT/EQLXxS8pKRW+wpOPKMgUUpd4XQRrOMalv3e2qEo/IkXcMAUQ55wdQgGiiURDbmTLBhUy5xB7DwUcm/CWdrbM3Lnfg5clvgqyz8DTPySZosFo6bWFDFgMa0Y2WfwGtrRm78eYWU59nk3lttKv8UOxTKpiJtjR4IWCLxRTG5j4A4gs8H2CDjpFp6KN+mLhLUwiYS0MU0VywCcAjg9J4C32j73n4YdZclzzP5ZwBMNuoIZi5TmwA3KVR44zAIKMdwZUE14m0qnGNLr3zHdZwWxozUI7BJuORrUIZrjbkiLKabYlu8VjiG212R4zDS2IpiHEADpRPUPT8hOaVteyhcrWQ/d1zwUKNtcPoMmqfkPzHefeWK5gOyiwH5q3Wa/kZxyMrDVVpaFsCslsxfX4eEOUtkv5iOpyl85C2SVdIA2V2zTjxUsYgocqhioV37MlFqaciJhhgg1rWM5a1rxFv3s/S+IzzUuabzrJRyxDpL8cQg3HOUWrRNMzJtv943nSliHjs531iNYnjtU+PpcgmYZ4XUGJxtjAe1cAoYVgFHxygJb5qu7HHVlai88iTxKTNSMTh+QSsiGaVjjDMg1AKgLzv7KikA+ZX5iUbSOlXJjZ4bL8jlfZ1sdkxX5tHKt7huBSJYRT2L7vP3AF8KkmSCKoYI6oe0tW9P0EmmnWTX+9DLXvayvcJfVGQrcQBUAHMrHWc4Kjfnt+n5Lri0DYs2vB8xbXvQfi0xxvJm3nUxGgsUSbAJiKsF4iqf/MKBLAlbqRdZIyoOKsaF9Jcdg6ftHsIWJGZNMUmZKOS/URtU1SMfwFkY1YolH2zT8yYuVcwWIWOutVOrPVvTKsNOS9eFgdSOsrVITuMxq1hZ5VPLDmtzFaI5KbLCmtHdPoD3dGow49OutIv0skvb64TDm7HHOPEcpd15qzRaaRZCwhRf1ipqg8ep3k/hmvEyJgSgGBM2HNyAY33gNTktJoH9Jdv2YC/QJKEkO6+1LbMSn03xReN6FfNPexxbkFoAqwHE62DI/XrMc+9ImsD4IPd6G3YVRazazWddt2eBodp2rm5cKKFSAc1q04Q+ZU45KdIH2YY/xHw/DDuOkUwen/R+JqRV6myivEOEjSAiQRoY4qyiCtmGcpymzKN8gE/P0VQvYAWL2l9UXXQvJ4zSp4w5ozpO5buFpvilhpW/jTGFJIIdpAAkeAvF/C58GiUpJYZg+MS+Hbj6VV7JDe56oa+OarCgF4wRJkz1piYPVsVtXivDJM8K7PTNRxn3iiz0meKSf0kolG5W7fra8FTaHTBs0sMvusMB1N8xjLrQ8ek8OzpvbGbfiWfa0KhnogXUctR+UrYJiZve1UDUMhvdNLJssJxhB6rTN2skkm157rlfKQiUV406wnBygcO7dRgOyI40VoGDKFtjmlX5ImXMkc2kk8Xhrh6ZTAOj64H1CuBVPma9CViecZGJgJ1CzJuO13VnIG9VMWaQzLxy9NxQxX2D6Boxcto+E9y2If+dLR67tnVlUjLb/qqvMmosy/5tomwiJEo+JIYoTFdipsJhDxqGzFjtQREBw0Wy3/hcEi0WQLdAXslD+jWHhtIZRxFbDAiNmPDpjBtpbFNIbcKJbY5bJ5XzmMYoT3Fb+pvS2SGDQniVBgwpXw6EePIAw/EO8SAgHog/Kduz75xNKrYR8riSo9XTMcEJpyim3WqRkByad258q1Kqy9eT9auYDl0xK3xE+SbwK8S1IFm015TE5m61yynTLVsOR2lTLp/BVwCwEOZ7AOIhsOiTQ+bQI50aJrhplhDCRHWnEwNLa7UoFYZqnX2w8en9LDlnfJqgLiQM8habmyygmFEc0e7D10Jb/ayY57TjVM9RXaOKM0qjCrcJCqp3hSDZ8om0CT/1snZk7N9peWoH56HxTuP5ptdwATi6NGA4QXm7GQNhQPKvtk6/3aGsqCMzVXoKFRdpC//FojDvqGFBRaMm46r6XP3mgOWDmg9TiFKMASDHyufnxVY9zVP4HW8NoLhTFKrm5WqeSLuo+iQSy6d0UiGXSn/fGh53GeYvR08/hizo7a5AyeTxKd3PGGWk8kaNS15hUox9yvyWp9D4Lh5L/HZgE0yqZ04BPYq/6Z0vWhWOW7gB967AvLL4kwqUmnbtjpvkVaeMslDSZdVBeeZlxAcbYFijviWTQ3Oyhb/hGPLhVercXCun8toCrr0Ak+88bnkZTxVR+uvft6rssWMUoPzbqSmp5MsMfl0+hdzpn7ltfkSpPTjKQVWGTezScNeQe7WK6mNWtK9jdnug8fagi4mHOq9KqXh8iYgVaN1n7V90Qt42QWwX2raF7kzDbk0LFVfAGRyIGtzAWaZqJjcmzptWNsKaLgbAsAg4Ok44OgEMS2QQYdhiYZQ5Rw9vMu27mqeLpRTriTCa/ZAYM14zeJUBvOXorbhVIUiZuqMsfOYToWBbbAbZOgg9slTKGSVttTxK/k5yfMsvuHppPWnM+EwNc4+1RbtLGoWpOnJZXFPm3wKASRRQEaEfZMUvReTlcqI0bbqYTDvPJZ2+x3EsFwfoTkeEdVL40bqX/jA1CzaIqutt0XbBhl0VUvuSx8BdMaoV5mx1o1oh5WRv7gjxYInhRIf+WIe47GzrSq2k9iuAqqhWXPLHq6ND0jUaznCy5hQm15JVkKyYHl9/isnpZYhIp5SukQ6D0HjQbW6wwyOMmWlNfSgxoRmgjjtkuEgRUxsmgVbq5Bg233T+8AgG5+bX9L35vAfVKH96KMN6SCf4EIAuoD+5apV+kmZ8atNw/AAUVtK+fcKnQT3EbqBNfE4rrm4583gg/XcvPmbXsAUGOb6JSfqc56WAkesHl93W8gB5XLT4Mm8mZdKKlEXfUSNNGTNxQYgLxtDlQDQgWRr6rSBWDpdEl/gic2Ju5XGfSZ1ye6VZzBWzLWuq3HI4RRB3C3WbGA8FO+QgriQNjNOwZ959gmIDULaPxwy/3U4Ssi3BcHE9ExUrnkrwhnrO2yNRBJA8/MSR/gofUlZWApZnfnpxup8xSikrKWqH2VtoV0ypZJdmGeqbqTjcnnen0t+OL75jT/jjPMsy4FSZvDLEeCjI+BY3LFZUGRvFNmSHB3odu5JfsDIoP6GWn0PmuQqsmOAb1b1KYT3qzb6VQq6DKuZVViOXntZhM/PkgnvWWvFGjRuAvEuong8n0lVeUt97Wc8ydcyXtb9hW0z8U0wBORCG4/upbi4mHur8WkodrEBHulUCScj2K3c1TVkhAeXEUodXGjnXDON3rbi7CH0jC4OJ9FoaeV9nZbTuCFi1Vjz1t7WCEKq4i2RxsL77Akf3COiPU67WkPwBUPGZRHIxywEq/K54KwQQgKN0rKidZOUEslG9/cBFGtzdoH5OZHXRMTLmOH2RBD2GCHwOUEYWTIVCq0I2zzQNZEyV+rZSntgAHUjWCcU3rvI0JonyEclaP9eHczFyvuSAKwgTFwYBLyA5595TKRURLpqTGc4lxUsPwHEJ9H2eHKx5NrWTG38eC0y42hC3xo5drBA8bbKK2gfHaozaGKe695v7Nf7USuku5fGCgwlZAXywxHC3AwwnurRaJ042qcAnKscoIZn5iyLKVvj0VNAAoHfHlutx7mYxAfu8niepMQARWNyenFMG8c3UqQIdykwl/wvmSwUQP1icP0PFyJC2Sav5/DPFCUrTHItQrPVK2FvNRZqGswALR8DyKB1ZHxTfTNCg5EBYEk5+XQSLhoiwFoXUepBvQIgHAesTB5u++IhmfJqgY2m1JW3ZJml7tUjTTuonFLnXU0Rbyik9pW+EO9pXpEPVVgDAOK0Rz0PFc/bhbGxVvIlPZxPvsslKoLhv5FmU1b2ry07V+9GcnvPgkKwsj04F9JdIuIh0apwsqHV9wobO81St8hkGaTnrgw4adVTca9VdxnF35PiNVvlF6IxqSUpluBriawU1VQUgJGtvVXTrn8fOoM+Agi8ld2FWBQCICWEQxT/GRK6+vu7KSyWsdgd13EH+Kd3PGAUA3HWpPadcSuw6ZvXZJn7HMMKPzQpDWhjTeuexoM7Lpr5GmPqZw4nJUzo31XlX5cEUxgFF36+ttBGQrMtXZIsOOh7C4JsqyK4XmJVUXOiJxTBrc+WlgIRnALJFVOeua4VUpSwK8iyIj2JTSvkounBIeXGxrq8lZg0w1X6N8Cr+cfmc1okXAiRPhyeKXfYrxhIBmXcaZ0sg4iafR0x2YjGpwYEc6BNbOzQ20MXEQ51XpdRw0CGslghdAJ1epw9ytE7bj0KAOedsMj4epKSR/Qqav1caDXIdBdRm0PalDdF37gZ+hfCMypDbhe0+l837KLCTYfx76EIbA30E90GcbZOtbDFgZof+KF5dzPROgItf+SNZfVNGgmK6b7YfI5uGM5JZ4xFjcRujOx2xuG1IR2SalZNaHxDiMmA4CAinCcOJIKsCWVlmjB3l7xMolc8f11kwa46JC65cLO+9IxdmFKb1Iyd7tm2Qs8LJ17vRBeyROJEndOBAoGVIJ8iACmPDXWhgwiBq+2HTUtHnGd3+BR3WiyUWt3dYfW6B7tY1Fp8D6LZDc54KoGA+jEYMjnunq/37DvEWnm3bmqdB98nnbHWBfZjOKSowXdpMV944gmNEH7pkDRmcVOeyMH9Qik1qwWmKqRKf1Koy9LJFRrf6ArkhlWlxY5pk5Y6GZCHVHTEWpxnhdExH+fZJgZy23qQ+EztCd0AYDoI4CWdh/GAYUJxu5TCpmP1c/awJXJMhcnHIhDp996b15tjT1SlZSLFdpy0vmna2+opOUZW2TBLiqgMNXWKoCIhdwPp4wOnj+x7EMONTi/rjC6BbIaw6hNvWCIdr4DYGHR2lAKp8qskUOqHsRJ5vUuWU3ju+IY0znDG/tBGL3Hg3/sVbMcH75hSGg5D66C7lMQGoxIoivhufubCeUVBGx6UBd6nTQUyK6HCUhLl0aIBgg2zdC2tk6x+fn45nQuK/oJYW8r9rAh1fCkjJoW96lnHNLRIy7CSnThTmtV8p26rTAeEQ6I+TWUtFl47xP/6jalre8ly7lvJXQN76a3HYYJ6ixA9lXb1zUoazvom+ABqeq37tvmQg8LITU3/K1p3M4H4/9wcen/R+JqR2XQSgC2BxLUG9cy9hPBOV2/O8QomQx2IlGxXz3wTZO5p4Lu/Yp1+FZ6BQkO7CS3EdXy+musZZkD+nymXY4nkVfT6khTMmMovDZJ1ULvSbYQEwku/S/A/zSoIADCHLRbam2PpgVF1T5qFozaYEUr+VPmyy4qSkxVglBZmVV7vKzg1UPXL8HinPKQsD3KV76nM+1p5+ilC8Uh+crWy1nKrgkoUWCukADBIFoO2e6YC4CFjzmWPUhY5P59nReZpAaT2kyaUfEmC1tOLGSClY1SjhRto2YWjqd9frdlXaZR7VAY55aZRjk6XYLtRa5QzVO//MVhqQBlJH4FWylOpPdhhOJgEpiLY6xKTB9qtVlgAha8LVuqBzz+SPxHeCmoJOKqQA+6z6OsS0wtetgcURsDji7HA9uK5ABAoE6ghYar9J3Uat/W1l0jkadw1XXhYWbJQAqQ5q304Lq23uwul1JBHq2DTqhbBJKJVUVVZptVG07JTaszgedw8a3H7j4QLXop9TWqa13a5PONWtI+ioB8XoFFL65z5yfUwxUI7tKZo6rW8TDm273/WdhUHFKOyIgbVFhv+tGa46nRbm1c8qbKRlSNu/TyzAByHhDGBCjtkJ6LfReglzZafSeStO+Qu9WO9qPPVDVRcR5ZTjtwF3opTqVCElq11Bj/5VBVYgUJcYdwqSl9/qw1zAR6Fwcvcj536KJ/KMO/LwldvCWUUVvmko1WNxmHBWsV+V9QRAnXFmhp5RzL/E6TssQsL5g4B4ssNwbD+t+YxPE9QFEFGakyOLT0Fxg1ArpEY8QTVPFNuenBKqJo1Xx9/ES9kYnHAqXFs71cKppeee1XxNK90WFRNo475458LIdervGnacH0MVSYS4ChiOEeJBWvFX3ilE91dNIybUaJ6ed9J8GfCnBcOVyfAITjhz9SCkcU3iPiGss1WDr4P9BiRLiKVL0yukXCSq/6p6kVQs3XMtJ+d2UFZe+UWU+Wn61oZDTqv1QernZP+7XH29uoB9yONTup8xCgCw6Gxe0G9vGoopJZRSjTGOl6BJRTvGGAEUFk7jPKs4cPeWNiz+Jh9SeexSm/evw2+jbTxjsx0a9zYGUnoGXcJv8CL13WJ+d5aHptSm7DcqncgOs5AyXkJ+C1colfw3KqdlJLe6G2ZAaUXqiAE7BRWav09vQ/pNcmBUH7Dl6xHWuY0UHzPPOcbAoDhVlb1oAqIC04kpXwMgM84R+XxJ4mtid7qYeKjzqpQKh0nVyLqHm8jt8RbGKLjGr4HCnpEJ+eDYXjUh5DRZpQLezUqqBpYd6Iw/+y7C61SeBRBreilND5aFhZSEYYgWdhWwvnSB/hihP572GxMjOdqOSKt6rCedwJiFlD+yBUJAMu0M5R8C0J9A2ZaqjYZLT4FUrjkCoU8WUqtbBixuHbC4TXyVuDIQCVg5Lf+CAqiPGA4oLd516UUBDpSFMtYdDAo+2j1chLgCjNHS8oqVgDq047rfeMATBogJyWl5D9hx0Kqf6lzhNL4o3JKOTJRuqmaXdoxD7ShiM0UOiLI0EC/w/cbnkrrTEaFL20yHg4Cw7FI/iDFP7kaOETKhyV3Xq+oARijhg1Qr903s25zaNG0pxmQ5NqZZ4dZUnF2ZsiYOEpgYfGwJXgTERcCwILEkSHHYrJXc92HOgmJA3jan4x0FhCQfKksULwqmyFWB/UUEusOEUYvbGYvTEd3tQ1Lir4dUJqkTdwEIaRszR6CLDMRgVl1YAAi5PvURxDXf5cvBgZPCjXP9FHu4Zt58ZEapmOqAYZXaY3E7ozuMoHWU7WLA+uQibZ0UzEcAwlHCabNg4MzADUtCvyQzRd+VZnxqUzjqgcUCsQvgEysEjqDbD9OKNw/Z2qnFQxGhOOBFLA+Td38a81BmkSIctp2fPTGeKwV7kdo2CKgt3jU9BgqwYkm74Ot2xBdV2gYVNCt8trz8IJFr8e1hGiWVHuSyPyAMK8KwAoaOEQ7JVv7DUfaFGfqkUCnIBraUSfiKxJOw8Q+lf0m4LWjIvJ0qjQNn/gu6qMeJ5xD3Aeld5h2TwMVAJDk1M1kiDEuYAh6+yd2zplDI1TXJYqRiGiNbzIuVhef/crh8QrEXFYLygZ4CEobGlGnhqzOk9kk47Ip3BpZSHp/S/YxRAJI7FvWLdrAEHa6BoQete8cjhSS1R8GjLgAhJB7elLJeAJfxDpQLg/4Xm3khnQ9NCeFf+n7sngFtfr6Vn/f/ZlZerTJM0I4ItlNaPgzJ/J/cm+jpw9LnFUMGsebW7WKBZHzrgQqJb4okVuTKk4Hy+U0EsFhVjtqobttW/XsgHDK6I2QfnC4RYiQllLeAHAAsqMQgx9fs2mCkxg0iq3LVH4YVgCVMsV/4ulJcCzJdkXu85oKHZCDh6cr1DybZ3s3JRQKn7+TTTjI2Ie4n4p0xD/WzP/uzeM1rXoP3vve9OH78OL7u674OL3jBC/DgBz94vwLsQedVKUXrPm9NWPfAeg0Wj9leoEiBK5SomQ/fCZuZUftXr7eu+tVlGBOPytQIT4132+Jt60Re6VRp8gtFFemg1SNSy/gc0pa3uACGA0J/QEkLLd+oPm3At3cE8kkxkra9pjE++OgNljA/U+YqIvtlORLLg8huG1WKnbTnlCbDkMsUfdk0jxE/6DqR/yGgcKbqgVaipINS80sDM2Wu9Hv4eVQFzJjrYiBHSP6hHLi17F+1fCSZJefz+01rF5MW/VwSrdMJGF2fjrLvbjsCHa7zKT0WkDI+OEVUPfZqs/OdFTdT+IQtmDNldVln6wdiMQgbONjKU/MiKpPeVVB0QitJHMOzushdsJW6YRXMGbCNL5TjmrS8ymgIBuYTPynXu5hD6jr78jbqoIqiNZIJ/FFMf+soJ6kMTkj03w92kk1iEqkU6J1COsmopTK0YJT991O8mpCr9Tb6+CXvnwThNUCijErbL0S5BhKfM8mJ87AkgGSL4gKgSIWwWawc77u9eManNg0M4qQgpL5P2NQLt9rkPTI2GQ+lY8Az+K0mrhXuNqm78d345ebzRtr1df2sZhBaCXmeZheqeUqfR6v52G0dZAZF4acCgzk7JI+e51BfLd4yqnINYMoSG79Vudy4thV6Dea/nZXNha2W6EMvW3R6wSnZfksswiWJoCnKuhiAIaS6KY+naY+U9RM0+nSkleXqPVWxXBR2n8blbafoRacIl6RYlHk1uGdY1P6pWSr/tL1OnmZLqQlSjaHSMCQrc/9ONZytNlc5osHTkL63GxeuwCqUaTRkodG9n0dR5W+dkORdVd46TON9k8WoFBb2apvM2UrL8zFcvSZK9hvIfJHN0eK829zrSv0YhEgs6xX+tE9XX83AGUOM3JX4ZzUJJgZV9rgthOZzWjA6O1snk3dipUDSdYYiqynMItcVtbiU+J+CL9L4rgq6+7do50pG1lPStR4MJGW59Qdp0z755cy1pQyThDLjPelMeagbbrgB11xzDb76q78afd/jp37qp/CYxzwGf/EXf4GTJ0+eWWG20Pm1lLr1EEFOAEoKqQRYVDNABcCINt0LamZuzmlgdVON7uJMUQFsaIf3jEAr3kTWNaBtDN9Ke+K5lcSbqUKFNbLnyiAykfiBSu8ZsL2qw7GAo1Mdjk7ReFsdQcwk3QTPyCbdakrphdzg4ung9qacwqRZRbz1lTxPvhiSIqo7ZCxvT36kMESgjxk8O9dPpD3YnPEhH+NeNBoyePlPWAHRKI4LL42d3286vMV8CSUmqouMbmA5nSs6mZIwEKdV8GXqPHpcKDMSE2mm7VxWZ9jv9Ji07ZnseqZExz+1xhKEsB5Ah2uEW25PynM/1tUJma3suWt9b+NBGGdVau27olrh0YjRsjDIM+sovr+XMoTqGar7KQxsFG9juFZ9nULKgjUUeYbvBPAqoL9kgeF4yKbjlCdwlhV+wxBlVoJgQMMCUWU/oBb6kAfFFAz3MKX9ogdWp5Mvqe70gHB7XzkXdd8vAPGgQ1wlnzPpdzqfQmAOVTlbYduyquXNYpVQxHGrmxSkOwMIzOiOYsJdwVgCcHj3NFeoVWd3O2NxmzpRFofxfXac2h3x3hgz41ObFrccYqFQHxk46jHpZ87zUOqvs8AppE4ROG0BrB0TKvaok/PiWc2jCV8y4qWq8pxPcnUgcsoJzz9oP3e8kwZT1XB6l/01sfAc60sI6Ci7OhAfUsZrsBsfWiaV0+HgO+/cKEh9L7V41OLOCZxM6Xohvqy8s3QGxJ+ebNGRU4vjioAljIfyDs9r6/biHjCMMusDvS6+gZPCigpsmB9992NGiDFti47qrw8iIyDxgMaTJkWiJaFjZzTn7ScWeXzS+5mQhPA+JnkupO+DoWodU1yR4RYHsi3zrNuQ7XQ4tlOmi2Q8n9LiZ+r3NTYB7W1+lk6VJrlu21JaTdDknD1iPrZTi8Vr5Z+Gk2s/3QKm44LdQQHqqsDPIerEXGQpLDLWe6ziLuOIWhqNfHHV84C8ULcHNED83IlvKzutmPLuG4I5WY/qS0rlOy1QnG6ajZ9I2OHow9WivnRX9cfJPYDeBe2QFFrS1clOB2XbKq2ydVwShoPU50l50zWMX0qJss0bWT+13/x5pjzU6173uuL+5S9/Oe55z3vi7W9/O77pm75przLsSufXp1TfizaEk4Nz78ugFoa800ILpy9dOC8E+rhAmxHy+Uz97kB7iZdnw6ldU3h0ZQky+lVY0zhhbC1lJoGypYUjgwdk0HIDTIFFt7RG90wtEGRqAQnz0y8APnDfy5s8WvkdaHkmRz47sTgNXcukNKQJzrToiiSCKrpSOXSEfkFpm48CrjS/8TyU84Avg163i1tcWxu4dIr6+HtthpC0/ESUzT1jtoSgIYIGEusvHsXXNAvwbAj526g8mSFsCf35Q3T6KPlqOepBp4+AQz12gx0DQ81vAnlV/EL5L12jrSO2lTat66ZCqsprnNZEunUZqne79qepcFNFaoUfMXoyfnJYKhai8kwt7al8luKQbtETjMvWnC5t5UCiy5KAjUOhKjyzWG8eMbBOzDjkVMy03VMCiiVnYty6NP11SRkV1ZGoK9+UJcIUc2uWDsj1LpRY5MJ5BtEJlD7cEBIDOHQEWgiostQjMsJhRHcY0ja/QAnrj6VtPiEimaMHkq2Lgst7AtSMTxN01ANdl/rXuk9WUk1FdT1bYTNOqKLdfyfDsjHe1bTv/NNOxOGQX8amKkyNv9W8vXHilvcMLtqo2Gld8ASNFzE5pNVFqQRFSQGV2FXK/JOClvBJUQSs4iQ9x5OBqDRbQE7D+BcBCCI3J9jCF4QvSoEJclrxms0qwuomS/QpqmCslEN3dHqBz5eluHbtba3lebsgn9NJRqabUt6sKlrNL6aTj/UABs7NGmNWHrJYr7mILfauRXeEf9L7mWBuDhAZWA8lPinV8p6ugqh8IorzrPMjgSb/lUIeH1t4sSkfz6z/TfD7O9MIo9x9gWn++UR5hLb118nIXN56SociQUFqPMbI7X6p/+DwABD/UWwKLT+2vVzUVEgB2TWBnKpO62whRYPWX/FJDrJSXMIYnwo89QVhlDis30B5RA3qMTe46Lpg54DEeEwxsNC4ip3q2oAW6ZRQbXMmQoRsy5ZhUsifCv1b+smu1OKhbr755iLMwcEBDg42n4z82c9+FgDwhV/4hWdemC10fpVSzMDhkVgOANR1JUAB+bcLQOhsz3HTUWdEuf94F0uEVl5TDofreFPPpgbfKNwW7m4iHlf3lp8pmigPpmKFgMptFAr6sjLGy4B4QOAViTYcpWNbzVKc3RWm5IANTo5AJw5y+yWAY2QrbAYYaiVF7lrzYJev8yW1vJWxECupsO7TvmdmIAQpnxxXuuwwHFtgOBYQjwXE48lRp7WVgpM3KDJmSxi4mq/g6lqZQ9/++m7qs2rgmDiw5ARPtl+wbuFz8XWVT63a4NpQgbwuGylHuzsNHDCIXf7AdcU/f2lxW4+uHxJGeUna8KeyNiDKVpz+aGJAuH0ZUwEoOokKETWeWX4lRo3Gf+uT1RPZlDVUoZ1FiYc+bEv5Vfe7mmq/W17w2xSvHk9OYONVBz5YgA868DKt3qGrtmGoZaib5E0JY98FNlaLIlSSS6HA8mHc2E8K8+QUfHk7Y3EY0Z0eQEcDQp+Pw1ZBDyGADxYYjnfojwX0xwOGVT5WudAbVO1MkmFhveHDKIPkmC0VgkulpHsvvHLBOOo0ItuOSAQGXkh7EQGLLvm0I3m/TBUcFgAPAB8ROiSz/zA4Qbef8elsEMUIin15YnGX/XOWgfWDhsxDtRbhCmeIuxaEShws0kTFPGxJp772z4R3yd3dYewu1gp1OayvV1g9us7xHGyAQdBDBMxKagnzh0Pih5P0iHWnjDGrbiDhZIFVJQaw45cKB8RqgUS5bCOSb2kKYt0a43i66Noh8YFitbmS+qxgkoLl4THQ80NOKPTNmArhwsKFl4SJq2bn/Lly+xAoMGgg4ZfIpZGsyc2FQyDp65S2ugKg3HMyfvqKERUHTexCHp/0fiZkvvxoLQYIXMpnQPo+3SL7kupCms+7TpQc5dimlm/ObbhSW0DVWGHjH+N3rXwIbf6FHHQSlfNpIywAGycF/4Ly3WR59nlnwEWmwNaxq3igQQ1/FlKPLi1MxWU6CU79R5rSKyT5seajvO56cveI8CGhl8OrDrNzc7Pe0k9OJCe3E3gFsOKTWEoBY2wrmqWBTwZHVP6ldsiKJT0Yp+BLK0WeyW7abe2WZHoMGa+79CwK+AUJR8QwP9c20VQYdQbU4qEuu+yyIsy1116L5z73uZNpMDOe+cxn4hu+4Rvw8Ic//MwLs4XOr1IqCkh1i9KkUt8B+esW5ubpVTGpAGLZw9LhHHgxdlRQ7V+FUap3oOPsnE894pSRgROiUIyKrLFmAM4xXRSmajgIWJ8kHF2SHHSadZUujAMFyhAyM2N7fAlmQtkfA9YxD+qiHAxAF030vQtTt2FcAv0JQuwCYuiwQsQiBgSOliAjbeWJi5Ac6h4Qjk4kZ+127LkBc0NIA8yfkyrERoDj2wDIgpz7SLWMb9/EMWL2vEuO7liEvbhMjo8hJqtp60tMdVPzeVU6yZ5rNQc1rOR0VPI+FJG09no9k9DtpwFaiTIcjqGhsu+IUGYK4CaDQ3k1BRgDRzW2cryczuRX3aoIrcMztjJyPr/GmNyV6jKP67YhohzRDQiOrBZJ2bwkc7QZTYamnL4bu4XzTT3CuF7xghvvTrjSBEdxosMIyS8GUcAfEOiIIO7g0lhU5VwI4EWH4WCB4SBtle6PpW3S/ghi/Z4RKE3gXZ4ja8yKWSKI0KoMZHTxFAMVU5xRTOHUcwHwyTS3dMc7dOuQtlEPyWEzDYzlZyO600B/LKS54yAxscNSLMBWSFilbUpAfzTxzSdoxqcJOlonYW7RAcuFm5DY8TzaYbyyPP9lvyrKiW+ZO0yBwrnTaFo+XFMq2EK1dVSRngyIUD0fAYyblCexpQ5g3H+ZrsWv28bF053YXeKb1ifTGNAgejhMJCRLACBbPzXWT9N4HuNzXojiSoAEbFtys75pQhnklFHzzSnWCAzY0epxIWM2wCy5hiXyceUVTzQiaULvzs6/8vUsSkgOS+skfTfTY+FjKoiWm9ElJV8MeWFPq95zsmSjFBYg0BCTg3nZ8mcF1Ll7T1NOj096P5Oj5QJY6t4uP+kCrAt7IfHBSR6U3QFdKBfVgczb1uPThch9KfMOU4tfNn8WMc4COevOOo9R0A0PavliRLThnYvnx7m5YPGLhoOU2acTCdwlP3ojayl1mK78SaVrTFuW3btYyVyOP0MQXuN4wp/FacLiNs68MOd80+4X+VV88gcmIE97BQYp3tZymGJaRD4ROeZnI1czdVurDKttobxbB/AyWY8PC2DokRTpsjCgW/m6IwYNMYUXDEYHRFW6O96p+DR76r1bPNRHP/pRnDp1ysJss5L64R/+YbzrXe/CH//xH++X+Z50fpVSQFrZU+sCAGbuqdZKCigKWMoAtY481kHmhJSdraX8b329c3xsBJ8zzSsPLAkXqnv/G5BXI6gO5+716PEFIR4E9CcD1qcIwzHK9ZBRXfOX1rw60P3KvDJHRFl/Uw1mz6CwBzQFE3V6J/dBtDoByWdLt9bVewCs1kQBWHXggw7xREB/ScBwIiQLKVeXohK+2aMPU32Pgmflkb5Bw1CdR+udF3q9mStR3nEp5UsrfgEkFlPckQkEFNxKgieqK7adZkuENpEyFn7FrjVWax9SxuBOdATfRxgFV26iXQsnWvebPlerGzSZswYWGdbQdHfaBq0+XccAFXjWSlsEjyL8sgMfWyAeX4APkp81XlK26HQJWzwdCiKQmYKmaPsq7kjIHTNTyiT4oqd7wmKdTt0LRwNoGBJjgTS+eRGSD6mDDsPxBfoTAXEl6cvqvI19j6+Kw/pp6kMXPL75OoRcdiKYMg0QQbPlU8rDxyDYSwReyHYY8elBMSb3jhFgllXUFRnDas3LxfERiXnb05PwjE8byJ1YlTUbwkN5PsjxTi3l1OTc58nzV36Lg8c6r5TX+53qMYFz/rnne4oFgApri4G5IT+dbyuFmtocsQtH7t5P83pAQVwQ1icD+ktoNL8TkgVPMOwwF9vZatY0L67MNTaNX1tdTBdHOZ7dF99EFrK0AiH7kEpWB+l3OCDEgyRYGU/Waseap+EiqxGeElXYSaltyL1r1bW4dhgMiHWB7wsihev6ndYTHcnhAFXbUtme+6HTbCk1STouF4JNtdLDY1BHGaOU36qtL1OiMMdrIz49HcCROr/7sFP4MIVVrQ7g3o3kMY3TSsePv2YbTT9m/56Ly3JgbOXDkHgBsYIE9JR7h2SVfzu1AoXIHUlpLYebdFlJ5U+qK3ASzjBS8m9OBcGNUUrYGAbxcSW8Qyq7wyiz5ITtgBlZaO7QJKRlQ4kVdZOaSFUru1TMdnkq1BAlqy519cFdikUVb2tlkTmEA8QHX/J/Rz7/ot32Q6kWD3Xq1KlCKbWJnv70p+O3f/u38cY3vhH3u9/99sp7Xzq/SqkTx4BwkEHDn9ZQOLjNIMXFgHecujz0i4MFk8XiZJhd2jnaiHZQZW1NY1faOS+PStVE6s24dUb2A0eBjElARpzd9cc6rE8myyImJI15pSiyPFi0vJ7f5RQnMxmwVba4xHiLXP1XNwDBtPAYkHz6rBnLz0UcfGbA4tYe4Sgd2cudWhh1GA469Cc7HF0acHRJwHAMpUC3raGrcOwtITwFV3QHhFUy8IKlabm1S5sXPTkJIxBowcm3LMP8r9hpDbI1lWJOU81JbQjosNF3e9CaOyxEklzv63z7Lkx8cADuVplB0sFQMFby21IQ1zSxWpcyk59Y3jdKBZs5z4S2+NfjqXctGs3eroitrOu4+rBOg92rjsCLDnHVYVgGxI4whOTriAGZ4KlgGIpsQmpTHtLL6BgpLg6AkAghp2NjXJ0EV8KXjtXQMxa3M5a3DljcNqC7vU+n1TFBj7eOy6SIWp9cYH0iWUjxQhgWZaLJlafRaLXFpWEalcHVGWjNnfkVTgDZr4xbAS2UdgFYL4H1JTBnyTQQFqcJy9tCWuWTY+WXt6ZVveEAaS5Z+AI5HppROjvegWZ8ahOfOA7uDgBQYSWeXiZeajSSZWzbOPffe+uwd/yVX0Sshbsqr8n74ltWHbkOM1LmO5Co85hIapx2feFASdOJOR8CykU0mb+HY4T+eGpLsw5wSbFY+Kj/kJFwriVwPIMWh7mqiq+eNs2QjnQnxRJXFc0v+NOsOOUTO/FrJb/DSsbvsYp3cyz5xmb1fJ333VIHEx6lOE7dxTd+SXkZdkIfA2rlT0SgjhGHYC4QrM56Kp/IFao8RJcs6kMvJ6OyhpMyBMZIPthCHp/S/YxRADCcWCGEVWmNCYwXQuy6Pq2zEca/r0nj6wDZ8hnqrrcLWbgG3rG7KpC3UJDtlsEImuoy+joyyj5rwpkE1XGk4dU/bVBeRuaKQf6AJCcOAJaJaSJOLjJpIdbpHTBQ3pI/qQkS/glcYZsWVQ0Q1sDidkZ3mrE4StacAMyKvMCn48jynccYHe5imUWOl/byqZXFx43uvbaVstmDyF4iY1s9HMalLXkwn5nUSd2KP9nO3VM6pbiH6STSjiQWa/4E8kOX5O0wZKwsLOT3oDPloZgZT3/60/Ha174W119/Pb70S790z5z3p/NsKeWc2RlfoDMxSQgUDu8mrYVqYcsGrYeKHKec6IVR28ZETVdjBK7TYScEv8qqoJlODeCj1Umya66BXeOErJSKi4D+gNCvREsrlgQjy4CYgMUPjpFzuKqaxlSgSsuHdc9VeTOaKQYgHDG62xndYURwzs1ZzHujHA/fH0t/w4Hse9ZmqXnAulldJWrTT19Ea2t7kFM1jHOfxBSHPjEJlBWkubFYC2rASdbWHNy3BRKjZQBFuaABiHv6BInIx4XOTjodFVYFQCkRoBz3DaWU73PW7+utc8pI+zx935pkwKpyVultrFMjXZ56V9fP5+EHs2+LZsUbZZgqqvZ/IJ0+uQiI9qcrdpRXi2K1+g1k/1GugqOjjDdk7+MBGK3EWb5DUpovTic/UuF0nxzju4MhYhcQlx36VYdhFTAcBHcaqM49sDY0zPQY0ihnEU6xIJRx8yEX7lfzqFc63aql4bx9i7SKF9ZIzOrAiEQI4gNhEIft7Pp9a7vPfsiUaManCSoW6wBA/YRk7Bj1Gz+Oa793FY3iCnaZ7wxTSFHRV4t8CiwpebURv1WHH8Wvnk+F3dTJJuqaqqNSDQAVK71QSHBKkdTmwyLxT8OC7Lh0DafxiSE+UnhkceSm/yy86zTj5oEsjGQrK31u073mSdW34/KPgXzoQ0i8Uuyy7xjDkEoQauGivW+Eq399WWq/L/VXIfvfi/fqlIOraU5ASr6dqgQ8f2x+pnQ7pfisgTh8Vgsb9nz1juTxSe9nSpQUIpWZTMjdp2jpEQ9V8SVTefi0VHPqrIn1dpwP7JuPC5PDcf3OZKxGYbxVFDWe7UE1e9UsS2Nseh2YOdsWpWxSfqTykPphHpAOVdLTv61+Il+RHHgieMHaZoQsM7YGsS+jw8NRhdTf3Topo4x3orTtmbu0BS4uCMPSbSmW+J7PMNx0ohQ5bLL8XBwK5bdU2NXycv2tJ+qp38awWvCcdYqkhF1qQJVcS0gfUwzW9MXnsB7kUOe9p7H5GfNQ11xzDX79138dv/Vbv4VLL70Un/zkJwEAd7vb3XD8+PH9CrEjnV+llPpDUKXUSLHkPkjN+GyzTKhX0rjKo6IiH0+aZ4PBbpanlUYRp8WsubQJ06Z5Lo4Bqa72eyD3beUYUyaAl8l/VH9AOLo0oD9B5ih4tFouGt5ujbS3VcHCa4x1lV22jIe+fF6stqlmW+9rsND6E9zxoMDyNsZKLKRonQrBi+QUsT+RjoZfnww4PBVwdCnlfBnJGsABRZGXXmt5kQCqucrXiqN9ymu9vNDq6uPjWtLj2c4xlGzlCE7ANcZVJpq00sAFgO47A0YOiGJeFfc1s7or00K2xgB57AVgG5MEVMxU4bS8al//rrASpUmsms50S/gJzNyIfc3nrl6t7lI/40YaG8uZxvdwbJG2uq0C4kHyFRfFfBtyPExa6Ua2PtTxUzdzJ4wME4qx7JmjaszrmGphFA3J+iD0wOKQsbg9ojsdEdYxHcBACVfjaoHh+ALDsQ7r4wlvo/pB8EpmY5CrcsG9F1yzabJi8PJ3LNOqFVGFAsxjuHZ1v82PyjhxBaxPAn2fV/26Q9gRxoSEV8UJNq5we/ZoADM+TZLgk/ldGTkz5PK3RbVypxDExjwVAc6aZDufstEic+r9KDzG42EX2jVtC17h4SgoFWMnHksuAuJKeCh/LHlE8psZWYStsULKC906zgA3bhkgpmRppVEGuahxSsabnS6qLyycfjuBQC2vHq2u2NpJ9QZMfl4jrv62kef57I8xwmP3jvxz4enS8em6lRjpT5RNCbOdxYw1UE6DuwAsA3gZAcVrn8++SimHT3o/E4BF8qFYH0pl8olTHLTIz4sF+bSq8OT5JqecmEpnxIJX6cPikrvewDM1yjSiOkqr/zeCjtIyPoDLR1pG2bIXOzVGkB0si2Sp092erLy7oyHxLU6Zwh3Z9j0s5ACELiusbZt+xU+MyyZVqvkzracYPHRHyXIoOBlT/SwNSyCuCMMBEI8hHbygn6O2uvN47nx/mqWRlo1zEQwmpDMW4pwEIp3y/KKflL/4UJzbQxcMKEjciOQuZwnEY2RlA2f/fnYYGQMxMrgnsZZitzDhCr0jnSkPdd111wEAHv3oRxfPX/7yl+OpT33qfoXYkc6rUmqkXS0Gay3d+3BU/p5J3pvS9eWpmOrmuzuS567UUkg1hEovmHARB3nbHomllIBV9EKJmlULWOQJn20AJg025a0wKvBF5O0hqoAasrBTVEcKPpIPOccLfTLnDIcM6tkYEmOqVoRhRVgfI6yPi5Pdwrwe8ElOdTUd5MbXUw7PowKOu+kmMtAjFNYHTGnlodAfmp8sjZASH4Lrhn4lVScInQCQWM99j1wfQBgkh2HfTn0XJoZilM6mZz6Ct8UsmKMJpqRJZwsDN2HfuSDPSAp+MBjqoFxX86M46dTtGl6BYsoZQsY1ygwOqPK9ApS+5DT/4roW9CX8kDCJjhh0FIE+plV3gm0z5wUhLoMJfHGJkbWWlqVQHFGZ3ehbuHrWRdO0DEc85xXysyLdut9x7vsFw6mMnGO2yFlYecfJXNXFF3VfJ50zPrWpxKf8zNPG1nIKqZ2QjapwDZzaCyF3xa6i7zdw6o6Q30paOFEf58OOOWBmRDAisawdUTEebZujE/S8wGMOg7X9/faaugRuDPr1ACoCNUiFL/mNVOWt1g/+u3oLSU17y1zgYcYXmavfVvjJZLm0VGulrTwQsWP5hhxG02lFVhmRgvhtMSZw/2ne45Pez5T6W5D5sDWeAIxkgBHVc1xTyY1mP/HxtxlnT1Edfmv8qU/vOztvCbv51aggJR+HAtMH5Z8oj3lEBnr5G2Lal8fZ+kZxIXZpC5laSRlWVPOAlzn9A2q902tzVSI+gsVCyi+CDXr4grOQ0h0wmo8ZxrXap8JgfT6aqxQMhD8yvsXHq5VPNY+G8TdjIBs7aCDNR5T+9k7BvNFHlIdlxmghclc6Ux6Kz8NW5PNrKbXo0h+3Wnqi4TaZd0+Ft57rOPK6rWtG2ac7ZRGwrSybzNMnBI3JePKcfRgTGhK3YltWyIE3IW/ZWwZxEkeIxwLiseTM0o74dLO9+o6Sg0uSnMgCTMt0JGehkFJAcxpx3Yfr/bQAbhCGnJ8xIDGZcS5vZSxvYyxvGbC8ZUjl6ZJ1FAdgONahPxFwdGnyibU+mQS/vK0zAV7tRF2VT0b6vKvK4fuI757+mVphqaRb+/CwhvPoI4xpR8AiM6+0drOqNRSV7QoUvsNscmCqtPv7IdZsiTBBneCTTUhUjttdfeNMjXl7KKQfVCwRqGX9sC2fqfBTlqV1X9mEg1NpetpolYFSoqji2CtGGucHCwwnurQldyVOOnW8RKeQcmXW1cFBjmYvrD+r4hXWQCg/z6aZiOSwhe40kg+E0zFZQqhVXSdbDQ+6hFPHA/rjeYs0i6XjyJJJC+DvfQE2fIqC+XNwU/tvsjw6FHkVyQf3661mdRp1mK4KPzoqobG2ki380ai1x44049MELbuEUUpeWvD4sYGfGN03MUrDKr5Qxr4NfqvS9UR6Z0Ies2QMFfeaX12GqeTctVcokYvLPqA//XkZEg91EMArZ/0IJB5GF9V6lTfStjsVMIaV49MqXEw8CGe/lhZGPu4gzr3rtqnwo+C5OuEPZcuwWTqo42LhnYIbxIWivGqwQs9D+SG5sM1tf+6eGg9sscFlYoucxaJdisBEwABE8e2nCxWNIrt6ad8JYnnK2QE65PkeNFtKTdCiSxg1Rbtgw9RYrN/XjLdb5NrEck1jo7uuD3vZEGc0Vprlq8uAYvLc2CStdCYUdbxIC/e8IBvzxIJLR4zFUXKJQgw5bAyAONwejiUL0LhMC//Jt5M7hU98PTGQD5ABSmCQqYKqx3oIRLeWLXtr8a8EkS0hfMUqnWgaV8mfVCHfubR9uxgMUvmn7dpqdtL28vwOyvQtHLfxsIBjwVlVSgFJfrOREJF38ii+67XnvTgXPEbKB1RonD3oYuKhzq9SyjMZja17zbBC3Hi2MZ+CSasSOltM0wYqanMG+TVFvbrsVGECQfbjEobjITkKXormWRQiLOmEIyewiBARlP8MotylzPea4AHko8eVefDFUjNwKhk/c0TnJRlRSC1uZyxOM7rbI6iXOiwJISaHlf2xDutL0pa9o5OUnAbrPmMHWrqKVjee0w+N+kJhZaDzmghfBnwi7JHUY3L5pEI0L2Tavmdt00UqbxgyaHvGzKfHgDG32rZmChqrdt6BkkEc2fVMQk0GYMN7pVbf2ic/maQYgB0DvmdS4zJtUhZV0kYxJjYItbtSHb0uCgnD44Ro9o6bOW2BQZ+OJyYA1FfxkZkkMfSEW4Jq4rxnNOyZjE1W4aZmsmQ7Dq05+WAY2CxP1bEuh4AovqP6Y8mCc5CtPcmRZVmW5nY6326uCq06FNulK4zKgp41pVNeV+lVCizDTp2endCsfVOtake+q7yZuxSUgWymvgfN+DRBrYZ0nLa3oN0peivg1EJbQB6r5oupgRVni7eqLbqY09J+a5LclOckDlIbEOSOl4l/YlHuxEXKRP1b0kC25Y0BO8o7qiQSYZim1p+21c6NEd0mosr2KHwAd1l2IUJxVLiVsUrLnutpmMIzFFZSah2vFvE+Db1Wi2zH3/n3Nt2FxAsaPogiyQIovwjBgaH06EBIRhx66nKxbVr5UlQ8Hbl2lDqGgZKvv6ighzSHajoOa83dgeBkGPgO4ZPez+TbFzZv7J3GmYah/DOZxkSBWuF36hMtWdL7qWvlV/MXEN6jlf5EOsr7RN1yB8GR4OZ75qT8WSflbTjk5A4l+lQInAsBlm2wbIKKK4pbJMcgVlY1P1HXD8g8w4C0+6VH9q/UZbwalsmpuSqlWE8KdumbPz3KaacXE3+uTF7loBARFRNqGdbfCDYXeh3FbB+0xi7IzhgJZ7ylDweMFxGR8iqxkTfMY226mHio86+UqpmZSeYm33PjWTNtANMCnePYipW9Ruj62RaF2caVydbAreO1FHD1czX9NvNvyv5utE4hMVPxuPg+UHNI9SdwkAZ76JMyJC51Us+Dx05oIMoacfOJImXxyiB9rIXWcDUo1EyHrC4ub2UsDhnLWyO608JYBCAgCarDsQ5HpzqsL00n3vTHXR6q6Y6Nz4rqumLeCoalHu9egy5lbSZcf1i99RZhnpEk947UgSzbBF40mYTNlg40AmkMSCuoe87+F5MW/ZxS3Wnqdp1qZ9+XRmlu+ziO21aBp7banErP4+amcLXFgT1vlHnKoqqVh4Yb5e3jNJKRU5FUOOBA4IMOvOoQD9JqdhDltAlkyBN2Xl1KGMULAIvMoBk26LWORbn3q+/GWNRMhpCu7nVHjHDE7iRNqXsgxIOA/niHYZUU5mYhJc6EC4WUK58KchstpFrdR/F3CqM8sxZceMqPvWBoZZOpRBkus5TSa8Uy6e+FxVdDKaWn/e0JTzM+TZFa7rS0T7LKStvwpmXFuY0fShm0ebd9FNibcG1jWeU3NJ7VE/+O5SBgrKSVW14EDMc7UUhln5VxRRiOpTEfhhw/KTcktnVXFffEZcJynJeOW+W3iNkM1LI2SuZ48SdZYEStMPLtQS6MWDoYD+HHNfyFwwCfZn3t4hWPtWv4P4cXQdve8egezptTke/qBOeUPSWYjlHnjE8aWaystGp+V4GlOXBOew+aLaUmSLftFb7BGvyBPp+iot/R9ufAbvPMpgDbcLFBLX+QNvZ2yXPq9SYeTXmHZUjjGTC+MS12J3yigdEdqWUS0J2O2T+dYoRaUS6D/KmfueyTyiuozUCh4j1aBx4Yf8GQAwZQ+JCyQB0QD2QHzwHAqpDyianFpD6rffUpeSUaqs/olXuGhyj4Iq/YLzCsxj7f17yiyYd3lp6FGkDmi9IC1JHbZWNdcj99FICLi4c6vz6lMKFw2bTa1up9rWdcX2YGijYJb7vQDnEn37S4/12pKLf8p89inukZSWGVHJqH5Aj8ONlR4VEEtwiY3yg6FMFvkZIldwpCsRonwoWNFSBpu+00KfdcGR5G1iyrwOSAqTtMJqU0JKfmi9NR8k4ZR8Ccma9PBPQnCetLgLhip4xDxVkhHzvs2r2eE5VB8eXzx28aH6XAUn9Yzp/CVjn1mQc3D1wegFSgk33fNCBZeJkTvDJ4/g4MMBWCoFmG7dm3Bg4YpAGGCxywzgtta5K6U02F30dYqvBrMuaulkw74dwEw3fW85GgHSUHwUTp4AJhjhJGpVNfwlFM2KSOfLtcBlPihBRWt8PahL+AWValLYEocKJe7SLAVvotgyGbl4PTdbfOx4hbbZeEYZG2GQ7LZB0V3ammerTxprmMG+90jiwYP2HMNICtSNdCqQqgvj6KFy5c4f/GM4naFi1mm8d/ivNmBVqvbDrLqn1oxqc9yX2v5mjcgQdJ89eGAN76fAttTcu/32AVmvsxww6DKay0ANvyUJVznEgrZSp+OJBYl8vpTyty1kbJvx31SItm4si8OH1P+aYWlg5IAmONAbIqrpZS9dgltZ5KLuwKJ77e0t2nawJkEN7PW2v68UtlWUkwoFCktxRfWkfdkqI+SbM8VeCNhResUMWX5h+7zEsBMEWdpuV5LsOZAESQ+PpKi5ghQCymXNkop5kA3c0nNTbuSB6f9H4mR0WbOka46KcTXE7jEU88nwo3JcRPfuewQ5gdaDTvtq7rTFr8E7Orsw4WGWoLsjETF6mu3tKwWzNwyKA+olszwlE6jCX0LFtW3fcIhNiF5GMqAunE3aSEj4TsdIry+OQu4ZH3HVwosgFAjB5MpurzePa4EBdAf5CMI+JBspSC91Gs1Dk+zfE0xvP4dm1Zf2oc5UNiKhNX4diF9ZbfNryVj5S8RrKmpM2uTFHlNE1Occ3VZ9Rfq7ayeu9BFxMPdf4tpfR3F4FnF2FvtGpIudf48PV2wYa10+R3V8Zpm1VV870v245xqrw1TMl+pTbUo4qTc93kR2o4kO0wOiGoalYGZidbYVjugzA9JLaflo+3xHJYViuFFDs94PiBZqtYEcmM9DCtbHV98iNlJxJoHLE+GE52iMcI/YkEWAYU/njQumEqHrWeqFjr7cpu8wbl8FMTSc0Do47ny+UZKsr5FqfRKCcHzrfs2h8AEZUA6ohBiHtqpXycs7BR7K5DO4xL62a7CGeNMFQITH6QoBxj23xF6XUtgPlo1s/T+Leuu8vq474KtW0wFpB8xAVC1OO6Nf9AydJJFFBhSAprXpBtl7F0CEBM/pzY41pahs9m7J7ZqMvH46bTAJ35KgEwJCbPWwjZEKeEUbEj8YEgCikRXgsfS1NEuW0KPlXqY/XQamo9qtW92vm7YZQLp9ji24SqruN/6+ceP/1Uq91rdK3Wq8CkkDBFMz5toZGVgJ8IG+QZ+SqdAg82jfkdlNR5/t/hmzl+bGP38BYMcJhaPW/m20rYxgBZm2iwYanW5YS4CnnQufEIQlJ8qKUUhK+xed7xMZY2jdu/5i983ayILOOJXHiuPvVE2gHiQ4oKNwfFwheX0QoeBm4818p1fRnHaRR1k0RH49+Br7aP5c2p3gUf6tKNivPGWJXYpLHs5EQl5WWdbNBy9bAL1TzXjFE11Z3IXW9rKvLt6sLvouQejY3N6QNo89VbrLi8nDMK3xrjwKifEZAxkBvhPT6RPy1dDnRZpDEQBiR/m1IXYgINSQnVrSNIFFIUGRhiKTqrMCKWQyx+pGKj/qbodjxEc0HcyZPKm4RKeQOpS5STQHmZtuzBK89rDGk0a+FD04/lShb0MpsmPdLTeMzWQKGqc5X/iFy5s5wAkwGLtRSXjpc/C5Hd8Z370sXEQ51npRRKE+yGcD+OswMYASiUU9x6nifCcZ4VY9SYZVn/byTR7DNU/dbl3UCjydhGVpmu+pDiRT75qT8uGvSYmaMAgDtGXFLWLIe8bQ8MUK8Ah+zfIGg8mG8FaBIM8IDCWqo56Wj6A7C4jXHss4zFbVHM3augXQLc4SBZeh1dChzdTcqtq3dT0lPdaFVZzKKJMHbIG5D8ZKm1ElAqjgQ1dFXTpzkqijc11S7ngU6fSZuYP6la8HXlqJlFq5+uBm4Tfiu6mLTo55xawo4QuxeGB+1ATYVUDlPFY6RlcOZp/wJF4ArbzBfTxohlHJ0Fi9mR8/OWpmmkBOO8MtViUDQLPZ1OTMWT2aUX7Dj5bOIIEpNMYiT/TZF8UkAvvgBWkqEbT+BkSembofAP18ADUxxH2aK3Zixuz/6lEoPgcD+kbxsXhH4J9CfESsrM3jH2HQM0FTMMjFYFVZmlTGjxqVXRo1hWWbaiSq/GDc8Q2bZBh20WyZddGD+ziNKw3rKTkU9tNa4vPTsDfmrGp12p4HUamKLU3B/VUEh5LnmUVxpoU8PcokzxPXVgX2SPH8XzEou39yU3TqcCax9O2o/Ecyzc6ZnHkmKKYsIfQuKDoliUR9laouMQYlFJkdENKY46to0hCV1RuG5mTn5g/HxtPHGjKkGcpavyJwKhT9ZBeRutb8SMKdmXFJfWQUAhHBWWkg4fzFqCGt924t788+mrKR5KgIldhlaNCLAmFFEK0YTMbzKBgljuEbK1eYe0pS/mxc4Cx337EoE6FHPMLjRbSk3QBh6gSQ05qznW6y1xG3j/rfjk8rX5sYU5O6YxelfwU1XaPmBTePCPhMMMDj+gbgHEgvuIEQ6jHQJj4ysi+Y8aOC3gRQYNMSml5BchAKsFAnfJUnHNCF1I/oQ78YeE5GdqVE5G5t0qA4UwAN0RSh+g2iSGvTDn6XEFDMeQT3GfaH6FBEvG8SyF30pnDSUQX34LxdJBFhLU2lWtzLWMVNXPt4HI0AX8wsUTWZX9/KDfxn0jdvJ3+cdl3+woOXjegy4mHur8KqUATGqV/Xv7KLQRJABgk/n3TmXwouVkXgoTlEMTuTcY12uqbpvu3aRZYpnO3JInJW22OtxNq/NkDi5VyLXteJAt+ANMuDFlkQxU8ysV3dggYaz8IK3rxnkgF4PXM4e6ZfCIgaM48rzGWkqXTwxyRKhboQTKLKjxW6ZpyRqI1KdGeOZJ69zivRQkmpOPe2Ym7IRiMvXadxO6Y+p9KQ6N50dG9jfYaPsoWezr6DwyIUqkuG/kuzClvrelPYpV3kZYqsJa4mmgZIGCm32INGydp6Vj/7l0YZNZM067ItPlnYrrlWC+GFU9RsxbkRxDnbnbfhROOJ+wxwlcICdQK/Yhb+ETJXbULYEeo0L5q0KWjncTnggJmyKAHkkRJlmTr26Wn6yOsZM/guCxG69ad01j6nO48av4Uwj2+q7FdBPMIsljhF37X//JNILiSyjjsU67UmdtC98uLMOgnElzuncEVWZ82kLF+LTZogrUxoIRv7LJuqixiNf6GpM80CaqJ9pWfx1NxLQ5Dz84JzBUx2fsUlppu61TSoHEFxonoY6RFB1EoEClsY3yEH4+l8WtpHwRoW7EII2L3ermacyRwyIuZBcElBa7MYOUCpMj66tGcxFgCu8Rdulf8bKdHtpBJvtMBU0WeGTVLs+jbC3yYcpiyQuHgyQ8u1mcVfJCgZU7kscnvZ8JbgzXmLIFi3zc4tnEWG91sg3k8Wmk+NiwCDlKo8KoEa/YwrOdCubSdOVUo4MY1P9sQoDQI1lAnY7J3UHMW4mJCIgRdDTIgnc2TkhW58K7hiCyVVZ0MbHN6waUdbtrmettcly9r9rFeAWGLewV/FqrTVy7eIshz2fo5bYtm02s0Wc1HztVjyrdgu+SXy8rhzpzH88PiaqcVh+Pg5uLM6KLiYc6v0opddTpqWkqOMEwWRz5ldOPNvoQ0PcT22EUBMZlLQqUBvdUWA9s28B1Ko0NDGDBa4W0TY+7dOITL4WhWiZQCozkkHedtukRJ6CJumIXHHPm/AzoQCepuznGXGLsEE7qaeUTLXOr7DSkcoQ1sDwCFr0UwQtrDpB5mY6CH04ShhMAH7i0dTVAMtDVw6KRCOPtfVw+K57D1a8GVudjxZjRqY8Dd1+hiBf2LJ9e8h0SE1z4VGgJ/VW+hT+EfS2lEDBIow71h/t8pk1KcO2nqgnUZ1NcuGGUe64KqVh3Dn03jVNNmlJI+XIAZb38daXwGV1vzd/lU+flzM99eVS4gpyWlIYDgzmCXV9kwBxe6nyQGKdklTSIL4JBnXPqdpWaQZDntnoFZD9H0txqbm4nQXeUfZBIYsXWZkoWX8lBZ8Ir9d838gW1A3MDLWfLdF3H+EJ+vUVny+GnYsyGbqwCrVmfegzWFUPvD0osZ72Syriryh9fUWVy4fegGZ8miLAbL7Hpeeudx7ZGlruVbQMPVPNoU3ySfx/KAKNhNBVfsLCYnl3ZkmV5ABbiP2rlCkMCieL7knoWPoMEF5CdBfsCcXpOMVmbKxznI9VzYW2er8ZdUS/BdPbHiLstMQoKBQ/DPilRnhGNu4Hn4RiFMGfpSRlt7Na8j6uLkfI1aPz6a3LhiRLOMJfbiX2bOX7H2pIAjowwpEWJ0MMWV8FISkUtj8P6oo0MrGjU17aRxye9n0lom3wkxPW7URyMx0YRsQor7ya/pE3ujTy3fH4/n2n80bOp9Ka0II3nLOVMPEv6HVapIyefv4yFnqi3jljc1iMcDcnyiaWOgZJFVEynBBf1XoQkb3QArxbgg0VyQXAQkr+7LqlwlXdjz8MJX1HM8YplUpdiu5nHA61djVVebqTysyjMeYwqxq7uWhFrSqotvZ08N+JZPP6GFLdY/Pd8WN0PN2B3ks8BXsr9Gknj0ruyKLYqXjl88kYk5Mvh5dcd6WLioc6/pZTQJK++bX6g8XWxI8U4Ai6YkzLzFGHSKqJ+LB2x5quK9MxEZkv5J8oy6RuGAPMJBSRAlFU9FdKUoewOk2M7xLQ1JqgJZQBoEUByip4JTkzjVXIRjqJc1zofBgrTxsKBpi+7/g0AekY4zQinxVunJNpsf3kfemEAKy2v7zcKNtb86hBvkyDomCwV7ExIg2P8BFitb02l2QAm5XVG5XbPogiEQUw69YQK7cO21bDqU76p9fme1ucXlRb9gqM72FzslU+1nxZTMrnOFirgsbAYh92W95kXuirfRFkA40y4C7luUs5kOg6MpBzFTmbZ+pY4lCTUOeeb6q9pkVYPhyBba4iK/f+GTYJhhfKF3XOk8R6D+JI6LeXTo8WrquYtJpwYvz4k829fHxXq4PLcRgWnJ8n4Z8rkKXY5hm/f4343yY2+/ADM11UIKCwpPHPo4cMw1b8HRli4jWZ8mqDWeJ/gYfYa6378emzSw1QImwV3VTqdKQ/USK9Z/k1WDXX59ZGzaPf4MHTpgAKNEyJnqwLhn6hSxpKMA64meG/5WpY7gY0poqLYQ+u4cb+j6ng5IgKBOW+RbeIvl9cDpRXKiFIwraOq4OeTFQFJtwenSuY/s+wkN97dNGWClyseCS/lBS/rMi7/+tfnVSg1KPFQ5ApOcrqXbhH0zuOV17MCoSzfPjRbSk1QjU+VpdOonSvsKppxqklZt9a7j9jaYuaK5Of9qWK3aLIIE883RnIRW+JlekEGxSp/JZ4pnfwb1slpOfUR3dEAOhyAfsg4HSgpnjz/oemrWwMSpdci8VIxZPg3i/AobhOIy7bVP4cFxpuIpbmeuDuyoq74RjY8o7zo1cIb10gFPvk6Kj/k4/ju4Ru7IZdZl/X8luIFVfGc7OjTNTwPWj/YIWIKv0EwNfg8fb4b+v8dwagLHZ8uDKXUlCXULkx8sepGZi1FgDEkWy0ONlkNtCgg7/1oKbqaVgGNikyZtU4ppHzQjsAhpN9VQDzWifCV2qNzpx0gwvwVmTmmDPpswUm2TcMD2MhBpreSUgDwfw6c6hqrldTqNuDgM0nDTwOEsaHmij53Yil1jBCP0djqqc5DyqztRr48rcFet7OvR+0Thauwu9DUxOjvtR0h4K2M04gTKxMpquFv9lzpiwiIUoB4gWvRzwtN4ZCOc6V65m2Rn2xZ9vdHN/t6zlwElxx3AxfleT/3uGkFdTatpHYZB4sAdMrtiJPNKG4X1dpRhUVVOomCnTsCQjDTdV0xjPILc46ZcAL10b5q6aMK89pqyXMp0o6hBw5u4XQqqO7zRw5LQF4F1GlgETAcJEtVddBpCn6f7yYaAWYuO4C8FUhx2DO1DkOMfLlbedVMj3tmzaPzgSuDnRTj8yYkptIPiSnGak+ImfFpgrbxF6PwE2H0+9VCgCkV2Ck/OI3lbXls44H2scCcilOnPcHjkQ+j5QqULCA7wnAsoD+eGIswIB2s0Gtfz24PADcdBzcGqvnZfM5J/1e/IgnLKO9UZCrS83yAT6/FV3VHSD6rNvFBeuF5q3rOqttxfGtyPrmXRZn9hFPMhxhb2zleioayiyi/Q5Qxl3wAwCyqRngnQjb1IvVFOULdErNGl/cAOc/MZXthL/L4pPczoT32/VDx43mqyaZkJBnvo8/Fbr5swYGO/aLT1YlU926McfWeW/F36T+apre41riVRRIvhLehtOulOwK60xHhcEBYDyD5U4soLQMHElnPmTSR4J63YO8AXnTgVQCvJC/Fx6C4hWy1JVhStAk5vgRpbHdrsTqvMcrzLXJBgdIunAUKbNXgoybV/uJ2r9gc5tKv//S58TTKbvsIoQpcP/fvfAF933Z4briuvP8gxacK8zzG+26VJ4xx/Xeki4mHOu9KqRFu7Du467jyURP/lBRSHKMxFqyDzYEBmDO4+BW+TWVwq9MMjCvimJJUJtfTNlFrC44HYgKYAtS5blx2SUCLqa40qCM7hvqRMie9BFsZpGUAVsm0YFgl0KEBsqKWyhwlrDIXAWI0IOCjJo6meK2VNvUqHqeqRLFoCB5AiOHVe14xRgMjnAboEAKYOVDl13O8+uGEN9P8199WlU9urBpoUVkF08p7C6yJyU/r4B0AN9lmr1QISBp1t8JgZfUAL+/M34IHxT0xZ2DCIA03XOBa9HNKEwzqiKGqouyXAdvYVYU6L7uC6TJyPkI2UcE4FXhK4zAsTLopaLgdTpMyywlkjKoYRYsbQrKQEkWTX20iZZgohctlpYzhag21hKQj6QoumQ8n0Xcli6VUDiZ57hkDz3x4Ijd+AoBjwPo4QGuY0rywANBwDgPCOqI7IgzHZCXKjXdzvBlcGr4cXN7rZ6i3QTPBrLz8lh/DYGVouPwdKbDrMnirzNrBaCyKaZakNJRp+V9rKko4mefZPGfsQzM+TdCuOLBLOvWc6Me2YhMni0fd8pZOneMxTgGug/o0Bd92LVcrzX2UWc5Citw9kPglXhCGg4C4JLNuop5B62h186cQAwDWiWnmQIgrQlx1dkIfkHiV2joQILH05mQRvUg8lG5Hpj4p4Uksu2sJWMe3jX9niRAY5qtkdMCB58PkXp2V+wNVLLzDJ98nCCjcInDneJlNvIZir8Ohgkd0mNWM2+C9IH43FbcMq5wFXFRrWOkuZpVVHdwD5DZwvXVv8vik97vSz/7sz+I1r3kN3vve9+L48eP4uq/7OrzgBS/Agx/84DMszQVE+r09XyFzQHrP2WKnRa1m9M+U9bDFPckyIOETsSk+tThoXLfuW1XZWK4WVWWdSnOkT3en58WlKLHlxLzudER3e4/udA867EG9U0Rpqrp9LxJosUj807JLiwkmI+gCn/jOUwUUUMhoZv0oL8wK3GGEyZVaZ0LCuB6IsYQIchdq4c0AMDCwJkBO3fPyI6HihTy/ofkqjxGqpq4wx3grn0bdMdR6k9ppFK4VJM8iHmALdGb15XEQDp9dfdQoRMNSdFOeK6O29z50MfFQ519l5jW2NsHoH23/0zR8enUy9g6mJZbdso0yOEaqCYpVGA1Yx6/TGK3yNRJvKKRIGT7bwhKS5nsRgFUHXnXpOsBW70Os/lg+NGuzUmoHOaUPCwKC7h921QrSXuLQ0+qjg0w14+6dfUYpi31GpEEWBmB5GljeFpMWXfLK+5XJ9j4bYC4DhhMB8QQljpAw/q6N72VN7Ms3EX70vKprU0veClP/uTwKwdd3s1a7+bCda9tdyrwn5qhpZ22GPhPkG+yGQ9TCEUuneuYthuREFHBiphBCGvexWgl0y8ZTn70IqyuCRSer/lphLK+yGQri8t2oDEQJl6Q+yg2QWq5C8YwSs6S4pnVchLR6p2ksqjILfqm1g67k2bUKb/rbGJNWVveOACyOgOXtYokAIPtVyK1AXkFMQFwF9CeSoDo57iWsFwBtDFerj62yFljTwin/+apvUxCVv0U7VGlURbcjnUfpUnltjBRbVcsVwz1oxqcN1MKa1vtdlDmN+UOtpIwPWXaIBzIJeyZc8yryRdUv3Al/Uxhap7eNN6sxq4Fb4/QAdIR40CXrxi6kITQAQU4dDoNb5eecjvJUSXhIfFe2ZOQirG8HxREKSPNE8H8Yjb2iXSvsIha/nFXZyoiU5yPBQbXiBJB5QRUwJ/ibgu9z4diVt+g2jT6kzQAftopX/m3vG/U3HadHlk+yMJY02PH9oLF/Givs7lTj0z4YdcMNN+Caa67BW97yFrzhDW9A3/d4zGMeg1tvvXWvMlyQVHzsCg9GMt8EJtSdo+pc2odtLu7yop636LXAm6ykirwaeFO9G1lJ+aKNeEaUYeuauBt9xsrjiGPzbg10hxGLwwHhaEDoI4LjEQkoZccQEm+16NKfulAwK9EALEPisYSP0pPbk08p5BOEyctoUk5VsHhZUN2QCH7WrEquoG9byfMAyf9SqOK4TzHuD+5TNtrY3nOjrckVxcX1t1zl17K4993AWJtGeeu+6rtTK61G0Uo83oMuJh7qvFtKAcCmFbCtGupa3SwflkEi5LAcnzgkZ7pHbolXmALLQ60G9iHVkrYK7DWh21b5JkzPlYnT1clh1SEedIhLARIgnbwQOYHUUdpzrMfdciDEhaxuqqZctLrhUC6YMKz01Bk4h5wAB87OJHVg6gqFrp5NCBkMmC+rsAYWpxnLWxmL01GEbtUYi+PgSIjEWWMPMuuHcAjQEcArZMYISKbzCjic/0gsjUxpJt+hOOpcr4N1ndH3G+1rl2f6SadotGqpPlg0vdhIQx0wM+wEMBV+fTkLK4xtSzw7EHNAlIbhC/y40PNC3pJyU7DGM2o890wHoUvv10NSUJ2OANYSkDJzU5WnuPXvA8rwTmBjoI1BtvKVMaouc+prlSbKrdDZQlIXwKukTOJFQFwEUbgxAhiIQ3K4CzZsiqsUDgs1hWLr3ywrdlFPhBHlk1lKyXa9whKKyyZiuPfKOVBVxwjQIXBwM2N5G7IvOdIxV1pAJCuHdBw7ANDA6A45OVuvFFNUlUe3U6vVgZ+Fp1bwWJ/VH8Wl6eO0+A5/zLploXEEc7TONCBvYVIc7Nx3AGw7YXa4PC63QrgyZCzm6/vQjE93gGqfLr5fVN+p9ZzNgVgQfFpjcXqdcaKwcnT5eIvzeqxN2aX4cHvOa02M1bHrMI/BiKsOw7EOcSm8w5AspMKa0R0OCOtY9GdeZKsCMBCGpKgLpwdQH4BVQFwhCy5uDJZb8hjUEwJzYWyQsHR8Epi3QNex1h0lXooGmLWiYl7Tf5vey1ZEAEn4pDQWidrx6obVPJRvCYCtoRZSU5Gpi+94FiO1xJAuplYXZs3km8Nhu05VqX3Z5gPNn2TO6IjMRYQt+mgYwXQrpipdGeWW+R3I45Pe70qve93rivuXv/zluOc974m3v/3t+KZv+qa9ynHBkfUFzyc45pl8Z5OLbXKgfj+5ZiKb/ykyqI9Y3JJXuz2/gMR1wA+y1pcunrn8tsryfuxW8p6W12c/Gmc6RgxzZCwMSa4Lh4zu9jXotkPQOvleYSLwQQdedEDXpbTXA2iIdqhVkmthB2LZ6aKhxDY9OECVUEPBc8HJhCgskpQXCGsARzB/uNDxHnL9igapcIPUB1XncMVhYN1W/rsUQy4If6Zua3og9klR5k9EbX1O7zbLf7KiK+uf5zmVp4w5HUK+tzABGJbSXwdpM28RVreLYqO0YRNHd6CLiYc6r0qpzIAr957vS2Co3gMlEwyMmS9nul1HtTCkv9TOw+fdim/bVhrl0ufFO26nV2s3qrokAAm2HUa3xACQLXrJaTD1MTnCk+1AaSCEzD0ooyJgngBHNP7SHgpWtXCb42GshIrVMwewuoeWBgYdMsJhTHufh4qhgf/mlNtOnRqvYAobKiNaveyJVtcxKhouMYDjT6DMZIGBo+9XM7tlEsX8KlWA6yIWxZiiCmAqYY1dxLrX2IRQAejeaAVgAGGQHIZRTp/n1FLwbAsH2Fhn/77QlLBtifHKHvLh3R9pHJ9FU/lUlmV0cmm9FD/C4KrMjXzTs3E5EqaEpGwiyicmMSfz7F78HjDyZFskmczDicjMwaMcgRwdswRlqDrYooJiU2GN4z+JYp8yDw3MXvSwLXvUj+cPP+TZgwAlZc2gzFRMgpIJQf6PK16rxqep8evfFUy5vK6YvmLrntt6U6dZYIa2mWMqM8PEllY6uZDKaYqxEX8Uy8wX1x4049MEtViJZjiPDY3Ak88dH1V9tzweyomwxDuUfETLDKjgl2iaYaMqHBp1dWMklYqqeqVOmhz2s/VvU0qJBYKOfUAX5ByoKGxrugFJMSIglLZg1FgP463KtvZMmSRafRMdNyrE1CczWSoNvpPrewUNp0RW7PT4VLQj5TRInzPSgQ6KFX6hr/4e+uN5QteXLCvCSNgqoXH0cV0D5Oe2kBeljN59hcvf6uGSsnbcUynl8UnvAeDmm28uwh0cHODg4GBjWp/97GcBAF/4hV+4VxkuWKKJm4bMVweZ/AqEEa+ufSx/T1FEmXwDW1zPC3RlsbhVDlmBLsbSVB1rubUI40rrujFIrfX0oatYTM+pZ9BRTNZRh+vkQ2pgIMZk5cR5tdoOIwjpJEsWZ+dDEL5MXSmYnCcKKVCCBaLMBzAZj8YEsC7OUvltFLYMH6pmqse0b1v7DsJDmQKr7gf1HOXybsp4Or4dXxQh1qWNcgEVDyVdxfhMXwFy+bpC6nRniesDvfbYrfjk28Un1+Cn2FBwTwYKFxcPdf4tpVpmnaiuW204OoWq6iGBdCSl3haQemTlA6WeuEd5byu7ZSkpbVJCtpizURiYQAPIoAghHTm+Ss7osBTT5CPZDnM0IBxFUFTFVKpjAMCHQwKjE8t05PFSjvtUwS+4QaoaZirBQjXPXsFKyIyRNvNIQQJnoR6BRS9HmLpTANmc7uWIPh3d0xzWwOqzhOEIWF+CLHh6JkMzFnDTT0898vHwBZrm+nlGyVtTWDiuuqEBd+OZxDG/U8K41X4cwInR7I7SH5C06P0JmCksi++Iwn9Vi3NjjASHXSkdNER2PZOQF35aAlVNxXdpByL33pRRIci2VEr+AFr5TCmkmuboVGFbVZYprNtgTdWsTWG3LAN9EcDLDrwMNmbS+B2Sr5Y+bZTXbkv9gLDuMBxfYr1aYDgQR5vC+TClsRvldBizJARspZ09Pnn8qBgVXuQ4Kpya4NTLbhxGWlVXDNB0IsFaVAu/Iht7IRKWp9Or/gSZv6tihvUMmzA6gQHukS06FS/gnrnnJv8uxh/Fbh0mkq4W+iK4NrB8tGz6K3gVeqA7BLrTCcP7FbC+lMpFgn6qf6CJ0fuyRDM+7UaT4x1oM/VTvErB5BMQkn8WDGmiJ8c/jRb37HnOb+Mnq8u0rXMUmDwR3yt3lHQb4gB0azldTwMNnB0GDxHUJ6t6AElo6wJ4tcBwPG35Y4+5SGM4RrHaDOLfU56r8kYtOjVeJ9tbYswWn3pqbmH1Se7e6suGX7UVdTHOfToBICaEQXCpdaR4zc9oQt6qgDKLFZWVVivN+ntXPEtTIeXxTa0B1JpSBThXJhKeSf1oGa8m2yo5AMNBsgrphMEjTlsyHYspekZy/njyfHxH8EnvAeCyyy4rwl177bV47nOfO5kOM+OZz3wmvuEbvgEPf/jD9yzFRUj1MPV8f+NZ8ZLkpcxBLMpv9c2Z+rx3BQLDJa7T3cTbTXUGqq5rWXJUEZdXA57ASIqngVPfPxK/diLP0ek16KgHrXvQ0ZGcshdBRKDlEnxshXjJcfDxZVJUEcy/HQcAIvsNq5BlEcrliQuIXCjtiIRRas8wuMUFX0+/EKh+kKxKXR7z9btWG4QeoNuAeAAMsiOmsBxXnKjlNqDAO88fehmWVNaNLk2PUSJnBeWxNH1nhZ4Udy5dcnkxwGKZpRbkQa3PBbdACZ+GY+mee8l37crk+U5CVmY5HvCuzEOdf6WUW23W+zPZKjOFA4pdTCQLcTJRAc5CqGQy6vz37QB3mBrAyMgAoNehS4MgiO8ljiGdYiCOzs15sjzDwKAOdmJoSkcsscSpWtL4cgZqARR75wY+6YDxwMHln6arZY4okh4TA+ZQz4FG6AEmBi8J4QiIsvc4sxTIptm+GQWUWwqzgvmTck2ZRlr6WkZhKi2w7HAAJdNxFRq9JYMJh/rMhxV/FhRTXaMfE1KvegKvJ0ECSiDfkaIz7YwXuGnnOSU+kzWJLUkCsNNA3XfNClFhrFoKb5cGgBK3vEJpm3VXgyHbVk8/zuo0MiYlLNHtdsboi1NNomBbjsOgbaBgEM0EgXXMqpLJWUnF4EBBy+5Ny3XMVb86VO2IXgJAbGMlyFgcFglXaXC8S7U1Dv7WzVu6VVmV4Nzp6TeNeJWgVuCoPgNKqy9KzaTpFemgjEt9UnRTX50eFgjoUj1VSTfK15mcDx3SqTgRwJE+ZNkSj4xDWhdfUSrbiIBiTWhXmvFpgvZpx33mhEa6+h2L/tuax6mKc0fLUsSrLeg3B7dhpP1PBQcgMyVgU3zoaVW0TNIUxSg8TlJUUZ98QkG2wJiAqcLCwFmRZHxBGpwUKfEv3oefvCd5b/HdoqS1scK6CC3eAkDHVcHX5Ne5HWS7j8UPGH+kipFmabdmu3ucqsmFKRbLFJ90C43rR14YMyfIhKyY0vBc8Wlue54Jhvk2QavwleSwzdrK50HTVZoij096DwAf/ehHcerUKXu+zUrqh3/4h/Gud70Lf/zHf7xnCS5g8t+3eF7xOK2wO4xvC6bfzj1k/4vxdz2bvN2u/FOLnHFTVoRIfwVzwh5tr0Dg1TItFPSq8UCymhoGgBdQi3PltZj89jzkxaSqgGZYUGOALmx1DNZT55XnQ74233WAZ29LnrGeNyoZR/ODKJgtTNUXCgjy6boXBR4GkXsd+6BKfZXNcoIwjCL5QCwLBxSRtCaLxOP69jLZLmSe0W+mYjh+T/urZ9crTAfcN0FWxCMH25kuJh7q/CulqlWn0Wobxu9yRyUZwFzcQ0Ilc8IkkZgFdgwgqBmifu0qX/3VfeY1tbjqTVtd6nRb72qQ1kG/SGaXvOoQV8liiuWkFx4YgSg5q1NFmyiidM8x9YMkLa4fA9LJV/9/9v7217YlqwuAf6PmWnufc2/fC7Q2JiB0aEhMjAlGNIrR2HRIpAkqhD8AMNEPkm5if6ITDcSXkIjGqCRGJYqGkPCp0YTEGMW2NZAoDS1CJyjYClHax+dBbPree87ea9Z4PoyXGmPMmmvvde7u5p7rqZN59ppz1qwa9TJ+NWrUqFGL1q/WP9lzq8eiZU5/UZoMgTkDGBhTE6AOQkkwoW3r3cDF9jWLcoU8Dq1AWwh91U+s53LIN0we4woiAhg5cNhfCnH65Jk1S2yaW7Hciqbill5fgP4Y2fKBIIJTyJ+8/JJv09W8rltjqEMmjbEsRvNE8ZQmtxdiTgeJEkx/vwgazm07ic9n23hrKFHiiSbxdCeKHWSCFWyRgik6iDKexTDrC3sYFC2ftF/6O2bZluLxy7eLWHAOnCJZ8esEagzGwQUXuu3ATfdvGVDrKnIFlm8RU0zoC9QnAuCuarXO2E6zikJCvMwywKwVjP6IcSz5EbScZkq+hox0spgwRMceIhEaVhJ6+hUJ/waLBLKkwsSqTj4jv5svqjRxApLCjurEDgCdgONvAoen4z0DLpiuj0SpX0/3i4KYWyAc9PetWoo1qQcKyvTo9D0KkWmrd7F4uCS8wKedMKuKyKPnxoEzSu/UZiEu+TgZ5QMK16Bps214RvNdi4+cQHFMfPbKMcsDgFvVm/VT5BWbeJDKP4ejyFV8ArUFWGWrDC/qxLzDLc2t/MbXbNaiHYIjZRKxUUjBMIAG/zRbPJV48h2yHKN5+JJ+H+SkOthcmnbFvlndBfmJLe0wu9/4Ptlryji5swlgF4wyi/mE3V5GDOsKk58IvukBViUBK0mtzshkWqXLixon4vreTxPTk29pT+Y/EyI+2T0AvPrqq0kpdS584AMfwD/7Z/8MH/vYx/A7f+fvvJCCt3DwPkL53v08bd8lZQVKnBEjfKKN3HXsjtiU5KQz9MxovqtcE8uh9L6My7M8vKwdQ75w5+UkjsxNNiEAV0f5/eRmJKALf3RYxkFYekAVAFUWEfpRD2JRzJKtrcoUCw1rfaM5zId8kS0stkdfU26xpkolMutrm5MYHSjltnsqTVMP0QofOhYZVkSMi3M2C8Giyneg2CnG5rKBQzI2r2MtW5cFy6aWTsxiOcYmIxo9Wl/DCk3pYIjRgabHqtTyk4xL/rF/eB2Y5WgYei4Jz5MM9VuvlCqWUmfl1rSyrs9sAOfaoLaqxiJs7O19j4xR86Msr30+mtInnWnAH8Dq1lKNgKsGPiloHYZ3B1o72gK0Gxac62IR0O13Z7UqEMfibH5ZmMFMybm5TXx8US1aI8RKYYg5ogJsOn5XTdhPVwCdCMvtENgqOEVzTzMzpc5oK4FXFoXQU8JaJnyelidUfhu4hkkh4s8giG98LJSOYWDkTkfNvBIANXm2XqtJ/tWYRHIL9RInpw24WeR0DduuBAw6+pKtsjYCIXQgANwx9CXhzRwX+rY+0tjCni+4Z00KYRCOinEd0IGBXulbYAhZdkCDCV7y0eX0WBp18J+kN1Yhy4s2fEAxyzpdJ9mG5348jm1YDXZCf9rQboQB3OH5Qr76ZHywqqNNO0K9F0HFV6Sgsg+F+IRsZRQEJOIgVFDAp5ekUtoNYTnpNhyri4IdtR5Z6SFbqS846UMdl49SY4y/aetKUJKbgpuppKH3TEBfGMzA8pST0pybCkG3wHpNWK8gJ97U8TfQtS5AfwU4PZbn6xVcYW4Ca6KjlsnSVoHq7Bg/CS/waSfYhAQIcpENRA+AV5X/Q+MN6Wob977tu5l8etqTtAh3Jjwb/z0P28pT68dkoqXB/GwChHbbsDxZxRHtwu6iAIBbP4mMZDMFeHuIhSQFmVQVWisrLpErlbvhFeCKl6R1aZmt1gXmt9idnSedYJSrjKRyuXylNKdmDvxaJ43nKt5lqF6aKmBvfi4fJf9PK9THac6Xl1FGZrgllFtLaZ1F6yh7xmoVapNCyzrWkZfP8OxC1on4ZPf3DcyMD3zgA/jIRz6Cj370o/iKr/iKyzJ/HsPeGBD7XhzTgF0ZLGGIWVEHZt0bklLaOzR+rsKUlgb0A7ll4Ojvixge9AZcHwTDFgJdL2ivNdlyzNADKVjdBtjCHjn/8ELoB8J6IJd5ZDvY8NbGCLKXKU+Mj5rFh8+7xkFVGJaXB9XNxAV7k9f6HKNh+Vp96PZdd7lSKw253TfzoWhQYPF1YdOVRIRUNrNQcxkpzmFPQ6HkZTU6TSZtYYw40NhqZ8TaXJCBfmCvZ4K0O9ahpC9V42Xf4NUF4c3IUJ/v8Ftvx5UUMLR9VuMivHLrFyrRRzyytFqQRdJRvDai10tTqHk6feWq7yZ0nxUUo7WDnQrY1MH5oifoHchPtTLSyI5UPzY93lO2yTRWqyQi0EF8IuDQJK5p0eNx6vF4dT9iPVTnjPHDc9L2IBaNsh9XrPtqqcse5eVkbTIcECalUT0FwuphgZT/itCv4erUSJbRkSybTItfejrNyjIr2yRO66JAOtzCj49eVNHU4sQzHpOaMseoXxM8F5LB5Ehj9UH7rJttTr7zyTmV9xcEM+2sZuj3CW/rI40tzFbVnnHSN6xgZHTzrXzAmJR5Jx55idVgU2xo5aKkrErXHlbF+/i9X+UeO2kZlhwEh/gwTt8bONPQj3JCDB+EZttfz3ok8fqI0B8ZxsnVD5quXm55ZH9b+bt3GS8ZVplQ0sJR4p0En1YZTZo2eBhJQnuE21CHfCCs14T+SDDKhaqZVULhV69SmzNHwal2NctS41U/cu0EHG7kMt81TbFpCLw06i3kUZscJPXNR8Go9RHJCajAGFOrn4OC6S4g6nWp0PECn86EmfxR/cydk1dqnPQ8XG3cOD5F/Ei4UbEmXJpfcqhbom3osnhtJ/0pzQXbTDgwecksxSHP+LgAVwv4uIAWQusA9T6+PR7AV8uQm0x+pK28kuRLpYWBcMqVpMGeFvI3tSrDWJ+qUfFpyrOp7TDSLrLD5vtZ21N4NmkoV/5ziWLpcyaFMDBpYFdINPaLODHVvhfF81EeqT++0jpVsHd5tI/6mmFqLuqkX50JFZ8uwajv/M7vxA//8A/jR37kR/DKK6/g05/+ND796U/jjTfeuIiGt2RIGGTKg4gXE4yI36bvw8sJ31PqebN8kPOc8Um66O4LW+XrlF9m750hjE5SeWSk7/xNJHO3qwNwvYCXNpQ+rQHHBbi+Qn/5WmUvGjLTFYGvzCcxpXlexSEO8z6x5hnvDd8iP/KETzdVHPk1xq9YZNeissYRm3lb6iI1nfByr/o3IATkww/K3GljvdTGb1aZTeqEPYMGGx8xcDtaZx0BvjIln8bvOa/UuwudA5/eHEa9lcNvraVUqVeuN7Xeq7a870dN6dk30Tl6MNOdam9ntPE22qXhjsW+wfCATziZaPji6B100nXKoFk1nybUGbjtoKcnMflrAFNTPy/kq3Jyz6KdD0d/cmPx22KKlLDUQCc4s42TsPTS9wxZ9WrROTck/ulauHi50RMD41x8w5Gy4sG6tYk7AatacgW67HdtS0IGTV/Js0hNfsQtJr6f2xPQ+gtOGtxE/Ah0nfSZmYYXYdX9xyfg9mWAr+F1HE1D3XExA7SIk/MUbF/1IdflBpOsbxh9F3bODhpO8C7s2W/nI403vJpW8qIG6b4Jqkc7tlPmgHQU9Swbe6j91JVTJtDs0MDx+WRLwjkcqrhJtjRfiMt5GD6pc06oYBWriQFaGW2V00JbB9aFcLomrEexfuy6XUwcb7Ku+oXVrGUobKOyw2micSXtR+APAO6cWJQtktfNK5Lv+lnC4Q21hNRtJm3NPOvBeJgAsRGLwjdyQ47mkLafdR3F1enYhFBus850yzqMHw24NaumW3I/dV72G2knqGXr+mjQ6iuGWjZrO3Mg7JjaxnuOfaPilP2NQ++k2OfCC3w6E6oPThu3Ik7dB6Pu4+jLWZ02zzyZu7I5I0/XruNywT3T3kuPwUO5pPgEqN9NVY63LhabCyA8fSOOz0GyENgPdkiMMIgdvhAXzox/3EpTJxwADx8xXUom1ow0eAkMYsoy3QrgMOqCD7o9WIcAbiKLkS6MUcQmCvVleQPq9288d/lpVrkRv2rdxnYMf2V8y+knNwQmPypJJj/JaWL6rpNbNjAwJrxa5n7aljWVJ/7f7Ah20nGHkuxpNDmGmfXHBSHik93fN/zdv/t3AQDvfe970/N/9I/+Eb7927/9MkLewsEt8yAyvHTqgE11EreZDN6Rvn27wAbjLKfcldIdOEZWiI0crny/1+ST8d/TpxyPSaz6lqf6rNuhC9r3V3WE3hn09AZ48gS8HIBHR1E6HQinR2JxzgdgPQ5XCO5vM47fRkjhf7eUinJXEUh8nmOyD8MXDW1rLhHSISsbjCn1wW3s8o9zPHsQfdM5OVYO+0s8LJoCCEaLTPdLp5ZbZjHvcyjdWtcPosyWthjxaQXaU5EfySBdraXWo+VFU1xNO3W0TO6iQumM3/nOISu0AeyFjjnfjAz1+Q6/xUqpIH3HFfxz8e3nfdK24AMysFFg1HwLUIwP/Qv/5VHP+Ziq+ezQFvOXCVUbpsymJFosnu59N5BUgKdVlD3LzYp2Eg7iNqwP6oqZreqNSRxthcYKRhwYKxYwvE8OwL2IpKdJjHsu+TjjFasNW1XtB7FA6GZWeoYv2b8dZWAKjqt1gPTJmPULCtsgQWM/dAwdgB4dz3rvRbH8mvpt0a0x3Nj3Bdug6QophLIH0uyFfeLvTImWCmz079fJXpDjYMl/A892nDHwNjvSeLNCN4lz4eDgcKdHF1EVdBD7Q8CmpJAK9zHeuXJEkuNz5xHafhMmMvKDhyAW4onwT25BwIuu8TFEAacDqUwCGU2PX+erRQUomfQlP3cmREXBqGEqJE3Nt2fVYGW3byw9hmipbiHXCUAXhTh3OU1LrNAlkxbyNsbrasnZrwmnq+GYPTVBxU0KycTA2GBjCmZNYebxtYAM0ImGubyeRmSQ0rVe/UTDshrJlIWiaQ9X/IqTQ8MwwkizjrnPEl7g006IvDiTX+Lzh8ovakydBvm5waP6HMi8GTAmJgdEjCrf31Ucs2CgcK/15P42of1W5SVWh8B2EhvddrQnN/LuuIgsdhwW6oApoeRQB7atgQRXUgkRrLw06oyinJPKQtviGTbXSWGUwZgGxmI0T3Kv0LT8VSaaia3hNxe+TXRbWkBaIPC6L+2U5C6XgXgcfMP2I8QL+DiGIKtLDnVKmVjDQMUnw/LOhDa0IyBVDkpSksblHqUyPtn9vb+9UH547kKd41X+B/Z5+k5eD7+1k7COyZSw0a5yH9MxOaamb91qopBynp/090RXpDXWBSIvkspI+r4z6JbFD55qLqgLXuG0gl5/KhqhI4EPC/r1AetVUznJFFEii63mP4mQ3bKkuivlblBsQ2mzUqaIT4ENa10mTLJsg5zh9ahuGmobGctXEkZiI77hFAdiBmQFnDUsrUkpdqAPlxCxXqJij8si6TiwSBYZuNSzkENje2BYLEzF4P1nuzLZmTCTod6q4bfepxQwAOEhBKg4MIX0QYVjZqrtAhiSDo9B13v9RuMyScs6QEkvMpuNyHEADmBlIGJ+CKLlg1tGAbBT9tpNR7tZ0Z6eQLerCFQENcscHOuMYxM+O8p4BtZeiPBIGZaqJYJFMCsrY7YjwB04qQZ/uZHV+hbOphzVS0NmMaBTK6OulhTJWTGXv4HmjUIqmoO2IcQMELO6JJmcmn+EWg8L0F8GTrqq0Q66ehcVQ2adsMJPCjTrAl6RnOI5CHLJx+oybP/T+f2gOdJm/rvqdsE7QuegRde/lx5nDMgg8P/UkcaXBpe+9XefaDyjcGSClAlA5sDSV7spxUnBJy28eez5O48FbNnQe+5+CDnDxFutAxYAevIbQQbe5aajPVFsYogfF3PAeVAepXFKVTcH5npKnK/0TVbu6iC+kVwoPNcVeBcuDrq6dgXcXkEsG98AltcJiyqq2u1Ib8VwfNnUD1xfCOtR/lK0Ip3xdG2PKPTM2nES6AbuuwpAFgwB9JeAm0dCX7ulYe0VVwet2SNehAUFJ4slr2iZbM8BuJPTqnRL+Nuwcch+3/ACn/ZD6h6fS1nTrc3PyzsVizjep780sMmUCBi3sS9Pv53SEL5XWjg+ayTbYG67TPBuO+h2FdGoEXjtoFNHuzkBN7fy7KVH4KO4UUiTV1JfIstY8BNMoTCJkwL4CryWlzDGfJ1DD2WV8giH+7S6frSyjMvz7FAr3NwmyfIhYow12WZWlqs8ylab1p9hV+Fzl+OszHY0+oEEnxSXnNaQj09Uo3zXtS2jUl7lewKG3Gnf6NZjrAxeycclkzVBEFAniMVWC8TfI0R8svsXYYQNDz9r3LMGCxh4Ug0CJr/9mzRP20m7ly9NHqtpzrDpDMlpp4l+yyRzJfFVK/M5OunKz+0KevIU/PQGePJU5EF1idCv9AAsnS/2RXwYiXUz5YW8wI9SPuRtbBD5proIqWWq80UGBq82yOKe8WvPyUT+NjEpWmdVS66NTBLSGPMh9nJu5rKGO3rRGvJAFpOJpQ34Sr6Tkwfhjs+zFRmrg/hBkCnbmDD8gvoYAJAdQBPxS8ePJM9ZucICp1j2muB2/zCTod6q4a2hlPL9DJwruwqx1VR9J9wVY2d+kMBm82omi4WtgDmyrspd2HG43ph23pZzrPxB0LeOS0aHS0Dk5eFmMxUpCCOefFHyisA6KXN61LFb2ZuJYQAKXoDlIHPyFhiTQYPpCcMaJIw1xPBtiU7/jD4He3bG3qCipmVkkn4oGmxCM8ftxeFewHJfUaDDAHZWgXU9yBbJZC7PAFFox+14tylHrEvCVmgjA/44WFwQZseFXnqcMfA2PdLYwgPhuPUzW5Pdnacny0nygYjTuxHnYjqcPy4f4IAtNMghCcJrPazKNx1sxZ/RsAyTfsxZeLA+zFI/GywOwslMwKTw2/9ymOgopgAj36TUVYFwXRg4MviRMFq7HfAI0q3PB9URBp4XvmRRaqv5eipfneztYZeVxzA7CC6G47ZlJ203iXlpvfcG8Qllv03oVKH1dIWxFS/Sp4KZC6qzLhLy3eDVtFAZu+4bXuDTHeEe/HufOn8WiDuX7nbCtpPTLBEf9wJj75RzOqFMlkEUeJ39HwGiVPKEOrB24LSqcGIefXXgXrvTw7o9w+Wz1aKWLbyRzjjeM2X5yb1wU8IrrnJLUN5ERVGEUMs74kzCiFBxNqHbbfs9vOWCbTGBKtcQXKnEgPtcAeDuJFx5qGW2iV/XhUQ/FdTSNCwredVyxLQbCTQ3GljIgGyBZLi/vZlx/LlQ/bS81X22fN5DaCfn1QkvJ9m9hpkl006o3S/xYux7d+Em7/zWB/F79sQvCIF/o9FElIvc7xyzqFAZgkMAsIh/qb6oixfdntaVtr7o1jLDkMDLlXfjbSpK5WN7XPmew2V/ggVlNIp1WQxDvnBl0kQZRSjpFhpZ//fsq8zVy1/7Y5AbEnVxJ1RGbxgGGE0tzQ8AL3ZwBQtGrdbVJ+MbD3kuKaTiNmSrB9smqBhLta641MM9wkyGequGt4ZSam8bSm1bmnGPvxwduH7rSiMq3BFHs31rLfepEphuF37SiuGE3mTKztPvGBhb9aL5uQEUSXllAqQD6omHeSd0L/FxQT9KB6TOiA71/LeRoVrtte2Af5jQzMq/EQxjfB7PuBF6J+CWZe/0E7jQxIuc7DSWDcdzP0mChF6uFkEBMAfYchLe7DkBwInQTrSxHAALuCxqidD1dAU3NdXqxwL3FTW2yWgSKlT1K6A/wlCg2ek6TKMbWHo8SEwCZ6F9M07aWNakTohwMVfPtOiXHGcMvI2PNAbuljXuFG549C37REc+ubcXFEZFvTULKfdbYrx7Jt+dLTEezBHszMIqWmOeC6182xpwaOJY89jUKoFldQoAvXHCsjLarQhUfGjoj49YHzXxtcY6mLPy+5FkhTuaRmtVuUl1EDyclAD1EVemZugGpUyqKAbwGFgfA/0WwGeBw4mAp7IdwPwqrdckaT1RpbrSLH4FRKndWASXaQtVXq58bkKMWUNVpRSLouxwO7Cr88AdV6Kr09AV4bs11MkB7rScVHCk0ked/uqvxspgESIWh3EyjZsNQswDWHK+wKeJYLrHy3v3npAepX6fcJdFpfeLiewz+77IUz6mWVwq380+n9Hki1aBDiJxcq5KXRwhTpoAoIuPOzqt8CNQF8E0kGydaZ10EUrlMMVl91EC3fJCGPgYZaAio5pCiE2xbHhFAa8IadICEr61MhIwJls2hpgFFRfsCNaUsSo3tbdps3GZaObJ6MQparaSjGJlMWvKPtJkXdCr/dgwzRRTIIg/04gpIR1L17bgyfPQd1R+Z20/bgSsnIZcK4s04j15QcMLS6mdEKwKo5L4IoXUfSyZRuR9USx29kjDHWnOXtsOFpcxjM6Yxx3iU5oaRWt4ALw0HbsX2b53ImAlUD/J1j0AuDoC19fgx9fA1QFE5JDXaRwWg2PAIcMP2zFiz8vc1uK5KKhlSgt58bdii/OQ8rrpPtwXk2GbWRYBIh/ykEkcmyJ/hzr1qq3tGQ608XdBZiH9yHFrNjzZg1AXVr6o3GOoscEB6FfsvoJhMmxtYIYbU7jvv+g7yvrQYdSbnVpodUahnQjIsuw9wgtLqWcNZ6yL7uBxCTSJFwbLCBYJN+4BIFTixWRz5H1rrnuVoWbAgDjnZLTWsVLz/cJEUAUKg2462hsnMT1nOeIYvckxxDq7MN8onVTbCwCg7GyNtmRspJcyWfF3nOPN+r6dWmA09EVOskOgYb2S39E5L+lWmcPrAD9VRdH1WEnbaGuCEBUFDwOEdiNb73wLDGXyScGyH2WCuh4xthFhxGebaBFg5qMmUPa49S71Q81JTdBHpgHLCvBXvy/uhDgmr/XZLwUsjP3GlzrB+3/ySONJOMvbG4EIMpnpw4cFJQU5hpBi2+OiMBUEmC0hZcc4IemXKk/uCnszXkfu+zVfrB3cm6z0qQUCEdBODJzk8AV6/QboK3Bc0I4NyxWBbLmcgLWFsiXJbcsHkSZfeUsPJ2WiyYqaWVMywFpgXoDTSzIedQKOTbbAYZU4cjKg4IMp3tCB9oTRbkUA71ei1Hbz63gF+lzICM/breAi3UJ835gAY9+YssombqqA6os0DtsWxQOGmbnWn62+seYrfixmUprk5ybooakTDlKYjJsAFYWv2gYXhhf4dEcwucksbyg/v4/ccZFsclc6z9DGu/IUAh5UOeQe+adymY+8hbBeNZUpGLSuoNsOPL2VbTGn08in2QlujM6LnCJq1j0wf3mkdI5M03azSJfhafybJjDsE9UEYYysfFK+Ww/juS+wBSWQW5ejxJvV4blOUIanaZiOc6M+4mTYcfww6AaFbUOWlslXQdnuCnQaGOPW4hX3TX6ikVfrgqvLCW65YH73fKy9IER8svsXAUXw0I5LQJrnVZn3PuFM372PHHYJ1m1wifKLmtZ90/b+XxcGlU/WKwJjAYPRngLt9gQ+nYDbW+DmRuTCZQGe3qC93tQ32VG26kEw0yDD09fFdVf+GDZE60seZKVCRTxTvo6Y5pmF70yucSU6O8S5QUHMHwxxkq7pRKV0JCVXpP41f722DVfTsvldskrSK7k/MExatknH/tkPeY4HIFlgxW8N38GQLZlm9a4WbbHquIksGWlvN1mJZXJYlHfvG96MDPX5Dm9KKXVzc4NPfepT+Mqv/EocDs+YVFplKwyqIa267U3GNsJ0lPgHGuVodSZTfjuDEu60PvAXOlrWY5lxx++YZfQhpfQTyQqdO9JUIbR1xuGNFYfP3qC9cSNCzVFX+FoDkZ7ytTTgSLL32I8GxWCsRtIbWrh26oQCeO1WWxKOx3eOb12dEqpPFgPM0yM5DWp5ymGyJuUmiCDRWeKfCGJWyVsajIiAOb5CujwV5ZYpvSZNLqcq2GSPJR+3zIrAvI530wloSNTqjaxN4c0LWka8WH/T0y+UntQmBsZWZxeEN6NF/87v/E78yI/8CP7pP/2nfqQxAHzBF3wBHj9+fBkhDxweBp/q/Rn8OSetWz8jhrgBt2HLVmwzFnHAEeGPZfDCjI6JMkoTynQ1AME/ij/bo3lTfqRvDQqIIM6ArxfwUUzHgYa2Mg5PO64+c4vlN14HnU7ShV9+hP74OCw0zLrwSOjmKDzgkwtTZbU/0k+BIN+WEvgoTXTq5KcIXM7Hr5NYSBBAnbE+Bk4vkwsMTNKWJoAcVjGjX4+DjqhUA+B9IZqNe7wuAsnhqSimTPlkp/9xid8dUyiZenMDSH1yucLK8D0IZmZhUIdWrw7OVWRpe901+AmG3nfVUsybKQqCMaF7hhf4dCYky+ud5/F+Vn1VCXyvfHfSiLx5X+srDBzxLfvWIWdp3TW+7SixCDpZcwsjEjy+7WhvPAW9/oYopgiAtkdDkzmHWkbxwY5YJz/YwSeoi12UscVC4rlxxWpnIj9lLuJUbCJbPUcb/Gk4RxQmN2vOIOa31zIbWah2G86/a/EQaGN96Oks5RurD8N48xcaK8V2TNKIB1PGI2PoEKbKs+DnizvAJ20e5nRQg+Sj7XpBeDtbSr0pjIr8W+dDEXImz7dphd/V51ea6535fmLRORX+Z9maHBEsvnxboN2XuHth6mcP1g/JeYUWAlFDO53QntwCrz8RhRQz0A6g40G28KlvKTo28HVDf0zoj0jmeVGpQ3mc3swlgqySxmsMzEg8vgxer1UZwYZWJEg2eaGdts0CiLxT/d9FOlKdab2ZmxciiEXSSeUn4++4QBbkMiuTW2QyhouBNsrHBKxHdsMEqQP2b9o6iCLlf8dm/d1CN/XyWD1ewbUxrAYYLSiyXDEFZIXYPcPb3lLq9ddfxwc+8AH843/8jwEA//k//2e85z3vwQc/+EF8yZd8Cb77u7/7/olVy6IwYtZ9rwkz7qpXXwqOkr89UiO7ru83yqqYB40TMmgMYD4xLKbvM7nuIv9SSWpgBz1ioN0w0HV1foHkfbuCnq6gz3wW/P/7DeD6GviiV4EDA6voRKnLqN6vFvQm1gi9SdrJbDwWgrf0OCBp0asyKL7flKmkbwJIvwLoJNvllhvg+BpweDIS7iI9gJjk5L5V5cAb4PCaKo5ILYSOkma7AZYnAkzJQUAgNB0pHN4TkFf+O0A3igErkuVBXJEUh/E8wMKBj3JdNhtDpdOJ3xYaOs8AdnnApPQzrsq6kKpluthS6k0A1lvxSOOHxSdswKEOjHe+14HfV9UbYMoi6pAThWqIgs/ShpB/hrCNfB5+sGJZHGingmHEwk2e23wiRrebjgMD/UYsEUAszs1fP4HMCoEZePkxQITlyQnEC2htADWcjmKVtNpETLcUd3N2DiQ+2VRFEKgSlqmix7etKbZG2s0vADp8ZZ4PwM07O27fARx/k/D4/0s4/iZw9dmRQTpqGRCrVgYOJ+DwBK5U7guJYugoeSw3YkHW7EAFnZwZXKStc1zqHIpP4VQdK6djg5XD6upW8yhOyd0KymDKLC+sbtYRNy18hx9mdVDHa2svCs+4Y9qnzoUX+HQmWAUnueFCWemSEAT2vfeb/OvrjQ/OKjtIQThhnMord9Bmgcuzisl+f+qgN56CP/Ma+m/+JvjmBu3RI9AjgHoHegfdHtFur4BXH6MfjyIf6KEtHPs2YbOyn/IzfNG/6XS7HmJ6mtqugR8JGJbZKnecHkGsvk664PZGrpPEMmURLr03rIxy3WxQqWnO+lfAYvcDCsXyOOG0cgDuo8UOVqBOQ942C88mGGLKKgaGTyij3/I3fLMJaRgj+lHSa2FLjXXL2fkj58LbUSn1YBhlY4uxcpkfpDFjT10av5tVbZWV98IOFpTXiUDnWysH5b+pPBX7ah4hA1Zm9nSs/+q9+IIUBfVyugW//gb4tdfAT56Crq/QjkfwaQWe3Ni0AuuxgdHQm5y4Z/MABsaiXKwrDrKDlRPIcybjI/sdMSDyuCUTG9eVOZB52UlkhfZG0StaAaJcsg5RxURX84+JReQ5O7kuWXIHbErVPxk40jzK6qOF3Tfl+3YKdcmAb9WLMg976w5hjofMRhg4FsvangJ8Gmlz0905yHVVT0S9b3ielFIXTl8lfPjDH8Z//I//ER/96Efx6NEjf/71X//1+NEf/dHLEnMVam7g6NxXOhoNbXuL73YuS2vznIYSiaRj0bk0EJLyjj/eT7+t/lZKWc5f4XhhIrg/GUvXVueaDKaHJ4zDZ5+C/u9rst/45cfA9ZVOZDXPg1owXOsK38HSiDQjrX4n8JrRGZvvkiulp+3hQkioZwMMp9Paq3QfE6CU0UknfIue6rL0cbUu2mq7puRZ+aNVRrTaaPP3BpbuB8ILuqkyCQbAFtmsM2L6lL/2NEKCM8O7CxaoAQCn3tJ1SXAH1+X6rZrwAQ+IT6nPVlyJ1zkcCnhjfY4BMIeVsR0Mac35f55+pHXS1yqN53BTkHAfC2d517LbirRaChADyxPG4fUT2mfekJNjrq/Aj67AxwV8WPwEvvVRQ39kVpyA+ygwXggm5wmfJlVhRY914Cvt1UoqpmkfFDwkJhzeILGutFW4Xr4t9U/a3nKJ+GKC4XICllvGosqcZYUf+GArapU8GtRJVuq/yscEq6NwccQps97w9EgU/UO0ypXo+FQqdVb/8TWPa9MOpSz3DS/waSdMMSk+m/Br/TYNIPe59nBkvOdJnoMntgqpXSyZyVQ13llsquWk9KqdGMuTW9BrT4DXXwc/eQJaFtCVWnAq/lJrwPUR/dEB/XrBeq0nXQXa7EAZt4II3dS3tWJCXqkHMr900doqYFiN7+9YlSsIPHiPZk3vw3f3/qa2ZZVjWn4+xWDDKcN9wyXe5mk/9uiaETaNp5NK8hms9rFnQKiKT5di1FsxPARGufxu4+ld/Lk3P9rgTY1zFx6cSduav9Ce+hNyGhzy9AW+KV6VqzJylDEyOSI73TIOr9+iffYJ6LU3gKeyba9dXQlGLQvosACHA/jREetLB6wvNayPSOZ5lffinKUU71y3n/GX8TcFjEqQX+qYSMrk0Xkbb9r0MT0tg1mO+9XHdU5+2sWKkD5HWTOGMAcUZbnJTsPKfKQf/y/51q5QaPG0WMsU6wrh2wvD84RPz2Qp9WM/9mP40R/9UfyhP/SHEK2Efvfv/t345V/+5YvSmq3oxa0WvsJ/aWNQTXw85/I77enfECYnRrmGMghVVKNPaLzvqvDG54j18uhqv0McmmskXoDbdyzg9jKWl6/16FCIgzzbW7wQ+qHJ8eoMcYZ+GtVjJucgGqtMcYU9glC951EdcWvJAO5JQSn/Ne06HeDmnK6pX+Qle6JwwsmO9Yz5fRau4PLnppH2itY/rdR5qI9+BG5eYawvB3pt1Y2333nbBG19DFUxXU3Ox8rNzDH7qFhfbSplsQTc18uFXC0LjJSSfJ7DQ+KThdnq2nTFbXJfTyqW7SNND8rk7E/K0nbhJvPVlKc4MOKUbho8YqdNXYJVtd9RSLfEoxODGsOOJr59xwJerrG8/NvQbr4I3AinR4tsgWnAeiT0I+F0ALoyBq3y7XpAMpc2sjn4RqHThJ9UgEischBynWUi7xCGBYMBWfBPwhAH57ePS57xMr99hT8Jgrl4Kspyhk4e17EalqowYmxto6AoOr0E3L6M4TSUcrSE1VY1xeeDWW2Goc79zfgQtGIIRbG85T5hXxgvKvb5tswLwgt8uiPYYE44a5XNwFCWhIqkPVmpfj/DjHNjfM27bjGucQLt/ptZ3BXspH0Og6MVk/0dJ0DJNjy8fIUDvwN0WLC88g5J8XiU7XtkB8YcwIfF6Wq3ksh6JLHusSPXI1HruKXCBy57BL4ya8tOAJOstbu/lYoFhleAb73xk+p04c0d6e7JYkFuS89KP9jISLEuK8boM7EkgziSD/jj1gbm8sAUWKQYczPiJV8vZo1uWNM9mmyJ0Xdxq7TLTITt8esQ3FyPwLpCt96w89GlGBPxKWT9XIcHwSiVb4Q3pHJZB5epDLIzV75PfU5x4IJEXMSp8WI/LLK58QLnFNJ8YlMmKrQGmdD4AJD+dHvdgFeugP4KlragvfySdNhHV+BH17KodzzIgTGPF9mpwYzlRtJdj+oOwbbxS8KDHyZ14kq2YHEY2ypZhdf6qthRytfNz535w7Qq0/w2HwdebrqlDU/0s+iTKSraqJBRxwBLUudJXi9Rljlt68V8Gvu3SrdbrFs6DTLOnWysIcczw6h0qrG1heUZ5Nd+JVab0X8oWOjg2y2N58LzJEM9k1Lqf//v/40v/uIv3jx/7bXXcO9TXICxbS98Y3tDXRsNKDPQedBJCetHs0/iDNEGLh+hw586aM8YuD6wyV8pU1rNRCh3+jYKLhNpKka01Uiwz0eZ1MrBhBRATmFohL7Ixb6iv5XiAqQKs5csvcwRmHkbf6tUySHVmQkKK1yI8/cJzEP9VYHFfoaEHQuUuZlSc3v8zcCoAtB6VEBo4iSeADn9AvA23pSPBoEjH859sEsFOThBa36vb1PorpVWDn8ISbFxKeg8T6ad9wkPhU8AhNf893i8cb4b4qewaRfxQeQKqZhWOjmIQl/Lv0efv0dL128j3XTHdpjY+WyyGMsccRsmsMgWPPN91zqjs7DzSpBJng7qPWLTQimfOrlwgAr8X/3BwWmID4z+gk1txJeRvsTX3/QUWN4gHF4jLE8YftJmTM+/ix2kApK8J8hhE0Rqjr5Q2K5L80mfhbANpes2YjkVZkyogJjeSGc7CRj0WRVYEhTMzp2WUJzp8GV4ZGO3J1zibR/dGV7g0x2hyhV78sZk/JCfO+PPLJ+aZsgnxy2dJmS7m1XCu8kzS2ODuSNt/6bSTCNCWmBcGbz2YHFNjovcGvrSwMsCvlqwHowuDkprUus7Svjk/BCq3reLcKkDCu8MAypeVZ6KZdKJVAuTHYejiiEI32AeIuRyoSPhf4yvw8x2cTXkZzJXG8+SPDehKG4vim+Zg0IqZBOiyzec78cL0veGx9p+XeTmS8Lbcfveg2AUhR+JpxH4Wh5t5kw7aZ2t2tj4FecqH1SZC5uhf9OXhoJmyE0cy4IJf2ywqZRjipOSMzFDHFSKdS+BxWqTFrXMbOjHhvUg7hL6ocmcz/ALtKHfHG3HRfQkz8RnkxDxYCtToNQLRiUWpTAm30asOIdPkW6uBztRoX1PBmnIfSnmXb+tjRcURKZsmneYeQlqsXfHxKi8CmPLRoF3j/A8yVDPpJT6A3/gD+DHf/zH8YEPfAAAHKT+wT/4B/jar/3a+ycUJ0x+j41gwhPB5Hy6mApEnoe/CpPAcGtSC4WJBiXPuZNgjDFRtG3AcA8gQ1zfwheOf0/a3QYRiA5Af7yg9eyBoR/ExFw05TS+s+TiYB7ooZhIZdq67cXi13q4q5l08G9dTg5cnipgLVZ2jMllmughg1WRRkSQhDjSa3K0++3L2GjDSVcTN4HhFgx8JZdNyKgB4cjCeR3ZfQDjTCsNQOlWtBkyjk9cgKt5BPDefHqhJcLzBFj3CQ+KTxYqfwMZk2bV5nghzEaqlECTpSHCtm/n/LePNt229qEd5WRS1hDckvI8ptJ89TKWOfa/BvSrhn4lzsrdWvNx06rQo4qPDadHDf1asKkfbB+/Yq0OvE0VQH4ik9WRrS4ZJoXybrBMaZMVLdZVLR5CWOPcdraF5AQsrzccflP8SB3e0C17xXGo42LVese6Ss1MwJVAyekRcPsOaF2NQmwwNeLWU7E26I/0Wjh/Cx64YVZ2M4wK6fq1Qs3Sx9CclHVGW+pYWygk5Dhn5pz3Ci/waSeE9jmrkKrYxTzn6zvzK3W/J8Nsng3ZaU+Rfm4SNL0veW/6mP0tVlYMyFbWziIYXAF4dCW+pU66MtaabjM+AMdFDnA4NvChydY6JjSdjHRLL1gXmFIq6KkGNtnpmAyxwA/l54XGwQRBzirsNjDOcFK3sIzDNMKwsCOn7HIRlUtlzT3L9/h8MyHVh9HXEwHgNQxTJsOVoXAjI5c6WEKc6IsnVmhy4Lxibo1hbccAmOWbNyE/2f3zHh4Ko3z+gtQ0OY4POHektSdzW5imwfn99DuMcSz+ju8BH+ez0jiUL/JN+LZi0/Y00VFBDACm5F4a1vWA5WUG3VyBbm6BLier9+sj1ndcY320YH3cRO46kDvpb2pt7pbQAZ+a8mQk02mP40JQvgDw+advzy34kvjf3jMAO0U9KFj8sIkYgiwyrf94r2ms5qcz5OdWoiVpEBwHCOEbjxBurYl25okDw4HWZSGQY5lrSANBiGNymsm0QPbpyWNMSf3wwvH7eZKhnkkp9X3f9334hm/4Bnzyk5/E6XTC3/pbfwu/8Au/gJ/6qZ/Cv/k3/+aZiWH7L3aUN1l/e8IO9pI2Lu7sA5U/2/hDGOByLp9ztJx7tuk7DGBlkAparryBrO5Ih5ZeTL2DleuYZBLUA5j4YrgJdIRkGOH5EcZgrr+j+aKZgaZvUiLj+Qac7WqhqWub13uraxX64kkEItiJFcHpEWN9xFivMZ1YrbHiw+yVumwjcqflCgxJiIo0bYQpQxF7mAtDOpDxpsLmtz4gGKjVfE0ATqTcpzeO8DwB1n3CQ+GTjx21jXfi7oVNV2BsF8ho+tMxJtFhfbIKUDOFlPY1sYYg5f2CW3vlqwJWpKPIVc5BnUW5sQ7MIbXoaUa31ayt2nEoY5QhVYBoKhxFM23HijjAGzG2PQQDq5jMqpRDOYy5jI5Qtg50pdTpayFOLPeGZ0ceLhAGPvatI4+B9YrRrzQLCg4yt7UuWHsEaCX0I7AeWEZw6wc8Pq3t5PWzO6bSkFjzvoRp554KfFyix/aJH7wJR8Iv8Gkb7rSQsnjlu0tq8s4Rpe5Rjs8eIky2JXLNr/T3c13Ft18sAC0QmaoRaF1lz0Tv4FXkAGYGQ6ymu+PpEA3jJCIV2fp+kj8GM+SV+smzSnMsZ3hgydb5UL2fphWDy4T6cRtF2EuDw3dJQTTJZI/+RGjFrCCzGUZTx9gCM6GJsKWbbBIcx5eSt393IcS8HZVSD4ZRtT9cWDWbPrPz/Y4oVSKdx6O9rltF/7vy92ezeUvF6Ml3YR0TfQHWA6EdG3BYgNsTwB3cu8z1VN7iziJvUbBUN7lgHb9tLrNZXDKaTA7qk/fh+92yB/71/Ck8p4JVd7RnlWNcNFF5MB32EmnAqEN/b1XfCk6V7zZ0cXo9nvXyXEUnEeXyuMQIQ1UYJ6ytfQHRCh6MF9L8u8pY9wzPkwz1LOtl+MN/+A/jJ3/yJ/H666/jK7/yK/Ev/sW/wO/4Hb8DP/VTP4Wv+ZqvuSwxbygTipEYdziOpKEhjBY7MZ1W05tcIauZ5nyGfRQe+PNIrzvza/rXemahx8pAlT54Gc2hObtDczXHDHEADEdz6meqrYxFT9sT57dN9xzLKh+uGnBsxSkuDed3SFXkhbWyR4Zyp3mUi+jv9/q8fatBnNNpORfZamiO3NnKHjXycfXQAElPdjBfUP0aOL3COH0R0F8G+BFkNdSua4CvATySd/wY6I8lbn+J0V8C+CWJB/dnQ7nc5tQ8Oj+vjoYJuW2tLu1HdZxey1jrjEpcIDslLcB/STDAqsLV8xoeDJ8qzkSBgsq9vS98HfHCLOOkrRqGI/OBGzY5ch6AYqA7th75+zYR9UuV+dDwCM5f/ttod0wdPIiF5CAEW3VTLMmXYdygNd0v4y8BerqRSAFmKcUH9ddy0BW9g5xOhxaqV60Allsk30ZeTh514OzJcqiBnWaHgBFUeTbgEXVCY3VgqVr85ZZweEJYfL+/lbGkMbF+ZUDa7zjoMD8B6yPg5ouA00vit46vAFyzY1O+WPDJL8L6kvzGtZbtoJf9tnLG31bueCCDKgw3oB9+Rlwh2j5L79oYl0yA8jaLWHWhRPUCn3ZCHLD3Vt9bjQfFoopV97mQrxk9FibbV89aSXn6JusEzDKZKOVfaHJ+Lng06ateJ02wWHy8ddDaBTMPi1xXC3CUq1/JFj4cmmOkOBOmrCyPfR4lz6YPHKwGre7b0/62QjOQy2l8x0FkDrxIrXxX/0Y+rnL1TMYpcW1S6PQexndOfwyzsgT8td8za5NU/FK/qY6xU6YF23IF+kY60jZUab8jVHx6gVES2OUVKsqBwZfsvIr9K/Y/2PeTK0TxUN6fCxR/bHBF0/L+P/DFLYPi/KT083T4QzAMiN85mZ4PgVpDY/ITIkENOB7V0bkeiHAQ/3hykBWAo+JJG8X2A5564CGTH2M5Ad9JEuvD51smQ8QyhLqyMvkCXpHRrHjTdg715XkXbMEBshPmGjKfs3cTbJzimf5NB1dZnnEeR7n8RrOV15po+BY1C1qTIUeZLS0vO0qXnGB9i22G0mZAIO5+4XnCp4stpW5vb/Fn/+yfxV/8i3/Rjwt9iDDTTMuNco3+nWlEqXwzxZ8qI+lHRJN3pmI1ny8jq7AKzANoYgi3SeMaOtxGszyLPwnE0CO6xQaKCbrvWDijq+DGjUTRzazH5xLYVv6Lood1G0xdHE+rfEE77o7ayHnRgacWbq/89pKbODNe1vEdI6RV60afWb6nl8XhLwh+tDo3xumasT7qAj6eQE6MwQoyLDPZxqCDec8j3aqnzsM7DZP/PmnEWEZw6izsKw6GTOz1tfEtVlcvvM7y8fUgKytAnVA76aWYw0xiLqy/n+fwucInYLI6oav3Gwf05RsbRDZ+eVI/p5AH53cWN4FkOHyhJJVY0XnbD6pNQlPtV1uepfwM4R2XOmGAToyF4b6XzMElHQnNhBsTWhL2ak2FffRD6QY09R3QjyKUeF8PcQAEXy8YwpSurG8OZ1B/dqzfRUEKKwA9otetvJaRvuNUrGzdz+POSq8YN68AvNBwZsmiOO/XjH7F6AfO9T1aLtW14xTg24jJluXiV7WfpHSRO0wCcAxcIakbWlW4iqt1Mdj4GatB6xzQd9F/RWyjC8ILfJqHWVPHd4NHQkPF9/cNl1T53jL6WYUUBvb4c4YvOyP7bBIsLWWiu8u0wbYmMlM/EOi4yGSPBSdZ5SrucqFLba/mE099VYoMFopHNcPwvMpAkW7DUuMNm+BZeWsdKcbaX7c+UP6L1uux3OQP9NM28spKP2wqNLWP0UPwSeiqCinDDD9wBoX/aznifa0/Hhjvjs4xiV+f12SWQYfFaSQ0NsMpDZceThXxye6f5/C5lKFikH4vHWCzE2Av/h1Vew4D7mqVOBRm2Wn83shLhadr/tP7WTkLTxgvrwfgdN3QHh1AN1fAaRW3LKSbeU4Muu2gI4BVTlfvQJKvzOLc52km34RyGo5Q/ItQPh7vXFaybyf14INTL9hY06uB8+frgiHvmcxpslhMZ5JWHHoYjG7KNCjfn3T+VOI7rRyuTYQQNdYpjU+sDS09JowFA8MbK68tEhrOkcxpm8bhXtK7MDxPMtSF8Ascj0d85CMfeZjcvcEodFjaeRedwJJHcYUKhc/3rvptymg8rCsx0bGf/0qrcZToHCvq4arvYnnL98mPlNEUV/7aiNNWO1Jce/LSZDXPraJorOpF6wf93lbUYjf1urEfpiUvdUmhrkql5vsC5AB8368frV5X9qrWvWiT+Ro4vSJ+VZy2BeBHQH8Hg69ZmNwKEvOoGvQD0K4Z7QoC7nFVpJapprF3Jb6nUZ+adLL8K+XepDN5Jv6JaMjllc4LQgel63kOD4pPFqqlQXxuz3ZW4gj5XcKTiAHB94I2sPaRlt7PWAr1vuJPvI95ncOidsc1i2PzxKaChB7fu+jgz43c5xQvagGqVlL9IPyQjvXlcW8s49vVrJpSRWsxbDXvALeOorJKLkXW/zsNYQWS3+EpYTkRDk8FYzOfhRZI1iFIY8fTLwD6I/XnZ7i1AKeXGetLjH7ksep47jLagyWUH2oxwcbRluXdBs9GpTlOorwrdxscs/tiPREVipvxFJeFF/i0E87JEyj3seI3feWui/K1R0cNKnBPrThpWIUnjKvYsinfpEy7z2Ke2+e0AstNx/J0Bd2c5PFhAa4OwPVhWIUexNp8jTKVW4vCccj7u/0GhgLLymKhyghNcWuXnyf0I/NWer4TP1aH8arLd9F6YFZn5Yqn5/UDxOLT8DZsady1yDpX3kLCHjmzsm0+rrLUMtrHv/M4O335TKj49AKjNDTjc8Cti6JV1OYe98OfO/FKsq/9/Wy71m9i3o5JSDRUJa5bPsXyRXkr9sFz/V3/IxYr8cOTVTCKARwP4u/u+uDzPJGpVK46ULYesjTjGBz8u0VLSIvnVlKRFQi+yJgWNHfmZ4n1OMBdeDfF6VgHR4g1VMSmKMeFT2NzbRJrEF9YJj+R4lOsoN2526xPlKtt+1qly+rSui/C3w1GLUX25Zzes4TnCZ+eyafUt3zLt+DHfuzH8KEPfehBiEgKSD8KGNoCrnOEr5xFvyB76UyCWyfQ0Eb6RCpoQwfYkD5i9KsD2s2qlknwbTPWvtmhaKHpHn3A402Y1MusQIWVRQnVAFrFima9ErMg1q1/vJBYFjTC2oRmjmWzTLTjR404Ay5gMcH9NPEBgDnVNK0wYVgYFJJHwcp7Y7SocY/xg7a81gVDaWGgM+P2C0/C4E8aaCW0J5Ajh4mBI4M7map81K3l0UaGnYEDdRyOJ6xtwelmGartAwetvxW6FlQqzS0HGOpUh3RJgzxft+6w7Gn83nQVDlUXysCK9KZBH0s7kzq9IzxP+43vEx4an1JI7RU7gQFJiW6vNBrbKgkVviONbPgCa1KNtIaOYNaRjk9APzbd4sZJgIgCEwMJoxJrBtyJfudmo6HF91VnK+NixMjhBRKXsF4RcBTsXnWbXlcT6nUB+mEc+94b0G6gvurYTcn5VstwAtbHouhxGkO5rL4F+zAsGhjuG8brB9IW7Zaw3JBaHsqL5QY4fBZiSRUsLu14Xm8fa1trt2DpcHgdeOMLOtbHkNOxbgntDQzriyNPhaD5+CFSCi0d3Al8CtJh/N4KZg3ewouIf2pBG08EhZV/0XLq5JJWGkeqB99b0VLPg9Y7HRXj7ejiuFL7/7hPqc8tPpkFN0YHBeAt9bmqvuh7s4YOrMe2VU4pPRyxk2ISwbrTn8y+vwd58UeUIRdCPy5oLz0SP1KAuD1Y2pClDsO6vBvu1DQHOWPSxuNvKiPG+B+G7YFlTuPA4CQLFV6MeOyYWOStSCaFOmMMLHasYLiVU7VmsDEkKqRMGd2po19DtxSSyImgs9t1U7n2+iaHsbJp9RCGX6ko0/GEbiu/jQkNwBFyYIRZTPDIpwcLr/uEt6NPqYfBKM68aZMuby9rrMLEdfx75tzL74I/se+JxSCBTpz8DUX5zHkmymzxmSXqceVmr4+nsoU8KAgWfZG5Hb1yBXosE59+vbiS3A+z0rmM09Fpzk7FFxutCW4SVqQmsRub95mMGOXhkIcn0AMepblSyKDIEV5fXXrQaoopo98dmdOQwZIwu0NTZ/BRD7sBgdQBe7SWSkRUv1q1M1a8rr9j/dhfw6/oM0rL3wmyNZFkR0Br0j7tBsP6tJbznuF5kqGeSSn1VV/1VfjLf/kv4yd/8ifxNV/zNXj55ZfT+w9+8IP3S8hWy4AAAlV4Ci1M47t7h+C9ewgRgyPI/+fxKgjNDKAf5BgDDqAmwETw7S2qDecZfbM+v2N5Ea3B4qQwbfUKk41qNt5NkGqEvkCPW5e/8s15xKd6Q0PwcOYvAwiH38ns09KopqORwex7ex6/rekYY5Oaij9m2dKyait2SDssfSicTJqx9nKphTwtWZlgUOvovWE9BeFxz8Z0M8iwxM0dxCNw0AwkmZEsOcp1Gdu1DoAAfBsgwc0xaYP89wvPk2nnfcJD4tOdWJP4Mk88tHHkFbSNQ8POhBt7bqziKyul38QxkBuBzSaYzGdVKYP3f4xJKyKOwXk9Yc8OpkVBS+CUhc+XUAYCcJJVGku7H+DY5JZScZVNWXZT64zk2HKGQd77dZLFy9j2mlbzYuhCIxNc+YIOLG+IQGCTPoOO6KSTLO8wEWKW/DsBty8xTo91nFEFdTuJTyk/AVAXDFKjVhojTnnlRwwKkqSPaOE0GJT4GkNO6qNyDxD7GX5g/l5J7wABAABJREFUluekz0M38kpIfdHqm8cwZZi+sU64Z3iBTzuhYkfCnvKs3l8SUr9Tvo2vmfO2j0CXwQIfCDhFZtrSyfW+8MP21Kr8LH1/rhxWlpWBUwfW7njFrYk/zkboC2Fdmi7sEU6HgKU1WN2ECRIRAo5SGOvHJ5ttcxN6qyxFMY9CgqcdMDLjxogX+TXl3wu+xTQDzf68QbYXmyXDDSmGDN7fm0ONNisVAxsvJ2UMmFtDKj8mTWXl1IM4GstfI6GdoXUvvN227wEPhVGU+1Xl+ykOxM/3GvHuYH2uDpGVPJdVbGt+oNn7ZqA1yUVU07K8tziVMGtDQx7S7XfrAN1CDA+04/PS0JcFfWmiUD80rAfBKtmeRi5Dbcp6rmPP5K5JvU+79gy7ZmkV/Inv6gIXoyjLHbCECD/N70y5uNa/tdkKP+mKXTAZuVNURtGQZSKBVO6rDFdFOqMzYXQss8/l4Dhv/WCT1ubm7vA8yVDPpJT6wR/8QXzhF34hPv7xj+PjH/94ekdE9xeqgDlozUDsrjRmoQpA1gsa5D/mZIHAgJpshwG7CbPzQsDrDfRkHQ473TG5fh8FlqmZe70P5S1gnBQzk++ljxP4mpIgZAqkrltixMqJfE997eE0eVZ/J2uEsLe1ThJnCisLZoqYADNa9Oi7xLQowVbmFuD0Dp3sLZAEn0r85RbovYHbCjQeNPVzqEzA2rDeHECLUBAXb8gtqhA6hp2kZ3FWtEWadF0JfIJYaak/G/mO5VvV2iftQwyzASW+stGDgxBsl/fv+4fnSYt+n/Cg+FTDRGjyvrK3tQWMoZCi/SOnLZ2mWGL4pMHe2axAeEFW8tfrhvaUsNz0lF4Snux3Erooxwvm9kDAtBke2W8boY9wfABkYrI+QlLYR9yIzn09sZ3uR5BtdG0VfoqYxH0IL5ZHv2KxpoLhOG/N5xmOaYfPEA6vI+OYmbUHQYECBsZKIMBN5rkBt6+QOmpexfLoKY3TBG902Fl43hemwg+rhZ06w0/AXYhxJTUC2Er5XfDpA5/stEQfL82ar4ffK2XBsGM6P3cLCq2LvgD0BOJP6xnDC3y6IwTcqcLzvSbY961SG3PsMANAHYTr6zip0r/cCP3Y0K8b6EBoNzvWUkVuup9Cav57S3d5yIoFh4b+0hE4LminDnSxzOwHAh/EEqFfEdarhvWaxP0B5WSTvEIQ2bGusFf5zuqGsKss9yE9bqeL43ypi6xpyllvZD4OsptZwJf8E8lULvu2jTGJIPhmB1KYbymuiZYyStupAv0wXpD6CDV8Mro9HV0kNWspDvKlp6G/x/is+S0QR8kA+FasYnELO0Po4lnR29FS6iEw6iz23FVFRfF9b4wysVplGai1dUoi4qUu2K9q2bvc2CSk4I2FaEU+eb81sshlmM3lNgvvgMwtF8b6UgOORyxPFzksRneX8IEUm4B+BfRrkQWrXBLT5fC7kJV+pzGkvIy+3Wbl38xn9tptNtGjccvmSyoSZXLHCp+DgrYymeGm+dYzmwS2eVuDjF8r6dyOMs0NqRyOw4Z/DOAUimY4Y3EZWaaN813dJWG01Xmz+z09QrZDdwBPgeUpwGrZ9SzheZKhnkkp9alPfepBMr9rLr556b2Ot4LGXd/Hz0G+cmtCOsFMe8lnIV1Pp+NGaKuNfLtTgYtouTTe/ENd6SY1P3Vhw3y2WHkm384Em0KTgzsECLg4r6wFOFeWgo8b+amu5nkIQK1F1iNP1UnwLYlA8QZheSqm4u2WsT4lYeqmO2iriXBEEgPDLn0DpnBySil/N3EeQcQg6lgag3tDb023xOi3PVS0CXNWwXcCTZSEOZPE1gtsZbKOCneH50mLfp/w0Pi0W5vm6Pyeae118ZSf8iyr4rx18RRJGMIIA2qVpBaRhzBaqpImaDMk7egcwPOiIairEOeWLpWuPXrjfRy0O4spPKlPpQZnchdqgqABLZMrRzoP9rL35qto5bGkHSZLHC/bptEtGx7Ktk3hGJ2Mi0qZ4iTH6y3gVgE22zJ4umacdOKDG6A9BdoT+YsDsN7KVkY5DgdTKTG0lIS4Fa/Z4DVpiM2sVAilFoglhh8zpXW2Mbiy+tKHzNCti8Maj1G+M6E1COW9iSl6wvELwgt8OhOqQgoIdZ860lRmmo37dwXdBCvbXVYzSmbNE4MXEfhQ0+9Nuu6Uho21VMCpvedBRomTmpH2fn/pNmlZGJ3IFSq9mXX52Aa8SZjy/e7k075b2dnOv/cFhlIPFzDIGZKm9+CxK6XH/KIMsifgMvIiQH2vlh1giKLJRE9VpoN40kc1zcZiNbpAXERwGwsyRiwJ/iQrqWEgPNJW/InYBGAo49lohMvOtvWc+OLdxW9LS6kHxSgX+Hnwow0W8b7iAMKzktxd2TmOBIVUHSqjvGBtfyfrzRis4s7kPmNSpmGWPNm7BqwN4KuxqAWCbNlbzJpTbZkrH9+nGPGbWjZbYIo0x/gU3ms97PX8Wb1uZC37S0juF/ywlA7QSbcDt+13mUxpTLanPNLx50EBECW/jVyrsmN0Hu/yjC0AMnJ/KLIOpfTCPWEYFpgCXr+3fmnZUP32gvBmZKiPfexj+P7v/358/OMfx6/92q/hIx/5CL75m7/5Gai4X3gmpdSDhSiMTwQoZ4aqWJmYfU5BLCARhTTZVrxu2XGRG/lxv6bY6XokMa0sAgs12RrGVPzBBNpnvyM9s/5Qt8bsCF/2bPR5tYDSVUvrvOYDQcqAUc80mXRFumrdaV6tIzOqAVakJRSbS1rJsV4o7gbstlWR6VQBd32Zsb6q5XljwfIa4eo3tQ4WoK8NMsVc0Y5APyGDdS0nlGiWZc52kAlcX1saNaiF1bRYZgIOhxXHw4remxhBsZ421rWDBe27CUcOtrOJsl+xInnbTg2+J9p3J164RYODFv3tIFA9VKDdG3tG2069lxZZInOxxyZ5TOqD6QC0JyxbY0h5+aqhH8JorM8BDEUNIBhm7+MWxHT0cvht30UcqBZSkfQZtjUefbXLCXx9lb3xppByIfAI9dcifd+2zPlKe1FIpVozHFMhwdPUbYCiuGN3Lu7WGwcap9fFsEh6y0poqXyYW0ZFXjW6F8ikSa2Dbl8Bnv52BhrQbhoOrwPX/4d8leuGpV2IWRx5Arlu7T5tBx4vaeloi5j08zoEeLfcrMXU561JmtzF2SUB40Qra9MobHn7h7ZulIXSKumbxUOgw5OgEOeC8AKfdkJVSLXJuz182qvG3QE4NOah+SSJFCcIqlBQDDM5i5s639Vvqe2332ZSN7Mkb1lxlWSN2XagVLbwo5GMzQsBxwZeGW1lVaSpUupIw3kwBevpIgNE69MZTzgbb+Bnbwt3eFYU1qrb2ZYp4gSXODEJs/QIzpBT1lzuKVcbE8ahC5VkJqAzup2WxRArzEVuuJTHx6jGgtnqY49uaUzKSNO1yenEut4LGC3UwuSZIGk1qCIu+s/SiTdReXZBiPhk9y8CUt+s8xi3ZIo8VfrFJh3k5p7NHyCs6phDcewuMg2raxPQaHKqcs+sTAlzJN2pQoowLV+qk/ouyP5M5IuPa2c5cMV8XOoBMXyAWHC2gDGT+trQrhjhiuMYJfDedlyB41JyvbAt3vwha5t4A5Zg+HQFlY104cNlQy2X0TcZImA8zoD7nRIgESxxGY5UtguVYDji7cgqU4YM3Hqz9DGr+4glUf9gZERLLF0IMbxuHebmU+LGwydiG18Y3owM9dprr+Grv/qr8R3f8R341m/91sszvzA8k1LqT//pP332/T/8h//w4jTvqufd9/dUHfr4RUBc1bOVOwZkS5UyIqsGmBd12Nj7sDyy+PqjZh/BZgMK5+7vG6KQsmp5SEFsga5SaaQ4gai1mACWvNxTUI71HJUmtkoVwA4cJog68WSSrXUxLSZZjQQJY7egyd5UjQHaCTh+Fmi3BDYrpVWAyxYd2xvAgQn9pQZuXa0KIprFQll5ZfJPjdGWFW0RH1F9bercXOp5gLjmrcmta1Nfr6KRJvVMRw3imLhLh+JuCk0DRx51FmnzOtaVAUdf3ryvvMGbJ+eDFi3WyHMdHgqf6nx7Gucc/lCJhzODMYRvZautKpWPAJ3UStO/Y9lSbFjUCNQ7SJ1n91Ycy9o3KV9jpuy3JWFkxa5QnjonSsKhWUUoNixPGO1W8MgU5SurvwBbFQLBzeyDz5S488zga3kC8U1zDaxQKyzdbm0WlKKoYl/FIx38BWd0xdH0zXqtB0YjSkIskzhiJ2hZTrkZTDFmeGer9ssbwKP/D9yaoAWzayag3QLHzxJOa5MT+K5CplZQ89ES65oEk2hhLEtHZ/El1vtEOovSOwZO2cEPMgmzUayBqcn41w1vWP0t6Hc2cbOtk6pMJA7+HayP3wYaomNUrcdLD2J4gU/zsIdPl9TRNG7tP3HIaYoZ3eSM8ZksXun2PLOoOYiSirr2tQUSIxzoUAFF8GQy04lRbeJUf++VcSZ7hVV+Uj93YKivFqiCDVn2qfTu5WUQazg2/YZVl08Dc21Co3x2jlcS9mqVboppslZ9rpiUlXp7BZp8C4wJJOBGl6wV2o9ScLptaOFQHCTcCc8NKxRL+tJlbCPtU0QyMe1hfAtt4+cjxTGjwa07ra+Z42DDM7dGsHq/oy/NQsSnnSp77sLnYo4HYPCS9hPb6RFfp3jhYRWPU3wLyjM27leRB9ofuAFYVeGgMhMhWEVSlj8sibnww9hV5k/KXq0q7R3XZ4Bvg/VyqZLCTivmUK6UT01nkqfJaBv/U4Fn4pazdAVc6wjxMOqdLN+Yt21fC1hFQG5rVovy2yDWRN4GRJnTofPdbfnpZqRpchqdoPgO8TfaxEKqreM7VyjxqDQKFkzW3GxzN40mVrYawcoY6ivoubzQZiGVxogutLcT3Dfq7FCLN4NRl+LT+9//frz//e+/8KtnD8+klPo//+f/pPvb21v8/M//PH7jN34D73vf+y5LbLa6VaykmCZxwzdToSNHkTgNyeqKWCYiY0IljE6HJpOdK0G35bbLgMhKAwHmHyjtiomCVLTu2gOsyeMITC6cpTyGEGPM7PckAhXiyqR+U7MyHiCbmNqkyn5HGiuwlDStWjw0jGM8F4BuVeFUvu96bHzatmNpxUFe6SG12KJOcrpXXHmx8jaABGrAj1a0A4agwVohwQIhth81oC2Mw1G4f1VUcdBsuZzRCAUgcLBppza6ia8IhYHWy6hXAlwfPCNxoe4A8fESJo3JT9eFgNW1xuz38x4eDJ9qv0/vAq/vbYtxBpHGJu+DKA0uoR/kaF9RNsnKfetwDGS35NQ0FlHMLidCM+uiihdGq1orDX6m8lfjxng1jUkR4x1ZudwkGi7cdJ0gnI5SHn9n0kYZnKtCKgqrpMp3LACZXypb+bdLRzaywWORVbK2kvOb8DWj3cjpe9XRJx/gk+vllN95dRRBhiBzrkW3FSd/AQRXzAGsq4Fh+55KPGRWqAVzTWm+LIzWWKykSOsjxJkpSnPzhe13TDIG2BsTyKLVQcNYGSQMq4UibXkWUdgNAj1ZWhcqpV7g006Y1eU5C6m7sMziWF+MvwHBG3P23WRcNyVuUysWgirMSfwy8bGJpbkP0JbeWMPepTXJFDvvIv5WzEplPFPuIQypP05kq9IoM2J8kmQjKhOwgGE1a5dF1XLdJnFDaSN/HdvaSG8zJLXxfiQe8k2AVuiJ2EqbaNvyhgXLNITZAq4uRPYrBq4YuCU0tUxICqmCa55mEa4GXtCwyCt1nP7Gd2VLUpLztC57wzh2PdLzJvDJ7p/38KAyFLCVKZLVdogTv6lpTN/JA2KzxKMhp8d+oWJJ0g4coBZVQ2mefAFh/E79o+DPxo/UTrzz5Zj8jGUwdwWOCSFP2iYX55HTq47L9XtLPsouwLBOb+NyqyST3WIacT5ibWA8WPE6fG9W8tFiK5JOGO+q3KYt6nKQT5N0rODGIh/anL6FRAGVXQpgROwM5QAA6pQNOONcGkjWrdGa3eaP1frV/HZ1gvtR3WDUhRAzk6E+85nPpDjX19e4vr7efPv5Ds+klPrIRz6yedZ7x5/7c38O73nPey5Obzs903CPit8cuThJgzViOwHoechw6ycioMuqfj8yCA04sGyleSwr0nQrE8U4eRJtp3Xa2PN2jjN+iPGqzjpYzc5BwMqgW87Kpk5bzaq+8/2ylVb7NkwsUkECSjjPBlD2bTUErOoAud1gnGhFAq6nl4XblteB5alqrePAEdI2iwgHxUMAxiCYMQC6ZeBJAx6po+GlSIkR8O27Dqy9oXeg6WoeUU9CStTYDx9UWg/EAWi3oxot42PuDJwUuRaGn4TlNBHYji6y53GQte1S9ryPyueN047z4e3ms+Wh8WkvpIF/8zAEa5o4sNE27vK0q1WU9oaVHZ/6UT6gG3ZBnUHAgdQ3imz1qyd6ePdcMY7xjUoQ5y/yZ7MusClW6KrOP+b7ynEHQ8jogpvHN4B+qxM/AHBrC1LBpuREQ+gjQPyNPGWZsF3JAMsE8QkVBQFbDV048U0/ikccPrBuX2HBp9NBlOfq0LsvwPqIcfuKbCs5/kbD8TcJ7TZY1k4wlYGxNde2FFIQrnS1k5ll+/gJwHV3SwNpiuH/aWACje16HWgHmQm2xmA1w6rWeBwEK3fn4RKftk0DmFWj4Biqp/2spMpv/U6dOJPhTed0r8ahGauicsvoutRS6gU+3SvMoOdeMseM36PQbe9XxnJbnJYof/NBxja6XWWH51FPLG7AemhoJ0ZTR73O7jXfeGS8EW/WTAHMysi6+26vbLOyGp9GfKxKpr2Zn0O54XzAP+owV6SZJIbXz6gQ5MtW6M0KqZaLVdlvB0yo1br5/XSSeWQBDJyIie6xlfN3VHxVYgzjbfL0WkO/AWB+ogyQaNI+NU3FGYDdN6KeCSrWbFYWpmFVG63rte5IFxPQFK+r/IRRT0lptjP+nQtvR59SD45RgbeNZ7fzI41TeO0+uOang58mByloXGZGO4krln4kafcrQj+Kq4HWc18yCxzvS3G+kJQt2scZGTNCseM8xtPY47lSNvvdw2+PM5M9qdzbbYwf53aVhzDkp3TQQpxjMdz/mheR4s0gIRkVNGT/S4XkOo/zNBRTq8xpO2RqSEVXHDGL+XbSg6gM5yMNNvdMjjFDolofnmeHyLBKpPg8Vat9PcjGy6z78mwhh9VwgUixuyjSm/nnU1JWTcfr+oIwk6G+7Mu+LMX5nu/5Hnzv937vZQl/DsKF4uGZhFrDn//zfx5/82/+zXt/k44Wdm6gcH+3lVS6LF68ZvnC+kfgXpZJoBQG6kQOYq2wDlAyBukgdKLhO83nDjR6WqCbK613XhTSGuXjnecG+N5jk4DDutUCWfPdcnrO+AEAbEJVDSo8+9mI0cJFEMFKTSfjx+sVo1/JO7rNx3ymfhEyZQJ6Y/Slo7dwEft2AlmtA/Cog3UbHgXElbJ4L8BY0pe4I8g73zaTmzQHHyU4NZ2Dp02so80rQ0dC0dQRutNqV5a0WE3f9bc1KiDblabD993BTmaop8i8ncKz4NM0bPhvwotVWCCMBxTuA0aRpi2rJENByYBY1kzNZrQLqClznMt0AJ1k64xjXcSKVJZyX6JlqzA4HzrMBH4dv8c3HBKU+BxZTrsyu+LKWLATaRlKfdpE7EDDP0hS/vCgEyUQhjWVnshHN4TlDbhlotQ5sF4D60sdOAHLE9nG3SJGGW9bJipUdDMPJ3GgLgozFsfJevGB0B8x+KqDWg8YowoprSCCPQ/7sA3jtZCpa0xgIDdxwENgmPBbFbvUAxdSefMP4S/GvSpFvS/kCKM/XAgxL/BpHlj5266KS2NbGO1fwWIh8nSaWBHAgZm2LaAcr/7gLB1xxoth8dm3+CQylI52kdednkgvJtf+O/v+rivVRYvpRcaZNEDMJ7SJT1BtQjGrrUi/8XTMx963zD4xa3s/aYpN5Lp9J2F3wM50WXqVppI2pTQjXocPJuWTfGwAAOAyXAejD5nG5W7WBQigBzTqUKxFEXs1K39ey7ZXpgtDxacXGKXB2zrwlD8vdRT5oPQR/0Z/TzGhDPaZZ4QR2wm6lVT6m5xQjjoFyFtejU/G9GE+Z43YE+mtF7a/OZNe6iXKNSi4XunI1eBKdsOJYOk4Y5TUIrG+MeGfqMitJtEYzZmqqjQ5199Ke6dyNZWbKm7VMs4S51iU2GfUcijK30mei8QHq80ZhtTam7C/0zqpo9ReNakgD0ecvTTM8OlXf/VX8X//7//168Mf/vDlCX8OwoM6Ov/lX/5lnE4Xnv0cK3imwKlxQpj7c5k81Na0VRtWSwOcePj7iBthIU5ol1uofxcCPyI9nQ/uuJfUsmp5o2N5qpYKE9oysG6gbVuu2YOoJa7pAo6kopHlYd6pq0WizQ3Ohhe48zYDmQrEqRpn5FoZy6QjmqMzQZy1HTBMqvV564QVenT7wsCJRlZtDASWRVfT8KdfxFi/8AQcVVH02QOW1yCTys5eNibCEiwObMFuKJogSiKj1wYl4s04Ku9Ho5LVUVgBksmlxq5SIJRWYrHEXRjgDl/XMR8uXf+ytWccIUOdA6oo1Uqy491ru90jROF5JkS/XcLF+LSn2K4DUoScc2r+aGZXn2sSzAAf5ChyXkn8McXVdNvaARGwWJeB+WBLhdLvxZeLxr1lLKdtvpuJyg7Z9XlSEiUGCVKMYVAy31G6TxA8cizOmbAKIdGU3vunDejOsDTw6wDfHuITqoJN/pPY06droF8DeALlf4w6JgAvsWxJeaLb5SBYRICvbrUuK1n9Cnj6RYyb33ELPBIcoN9ccPiMWIswE/qRsT5i4KrjeGWTLyucKKVGt2P3VWfEy6rXpGs6aLPSHzsmO+6J4ohcYBv+EUaCpJjsiqUOWVhYtU1Jto6SOT5v1k7sWGS+u+w9W7u9wKdpuByfsK1Lk3VoEudMvWfZYhLRMKgDXS03aWUsT9YgP/EQ9ptYFZILA0N2skNkRP4QjDP5yYiRrmzMHuiMv/fK4PHo3n1tPqkZY/tMrLRgWbGN/T5uqA/KYGXBMa7FRyinXnHCda8y1Lgz2W2WNrL85/EY6sg+JGc4MEsrBsOMu/pb3I9olq62vc/w3RZM1TKc1G2GjwlWt2vogu7mAW7RMbWUsn7JASUJFy/VV+XjC4zKgXcHKwp32w4zq8aMUyHoYM22E0Gxpt3wcL3SGejmRoFlS/4T+Cm90QrF+kEn4YPWQz+x9y7m649C03x+ulOeVKYZ88pzrq930kvKmmldhd+K68Yr/r2+j2X2uoFhBo98MDu/OGBH5UHKzwxLou+sWgan8Rz4hzynCpxaveGKa3+jS/K2Pst3TLnsFGSelB8VoghJNnIZKWKb9buw++DSMJOhXn31Vbz66quXJ/Y5Ds+klPrQhz6U7pkZv/Zrv4Yf//Efx7d927fdP6HUWHLD4eVg6m3PmmkVQVunzzN+ZJCDUJzkKG8KsKlA3Wz1D1BfIOQghg7QbUe77UXo0IHU/lrG1drhrlABJXyfwDlJDjvpGmi6AEL+GPWqydxVqSkfjNVyq5MO8DrDEXaBghlbIAxZG1itV4z+iGXLm3nqpA6+JvCJQF2VhwcGLV22FLk2StOmTEUEGSJGaxaHUzSjKusWtEfZM4abR9ozGSil04wmYo0TJTibTNRGMERGJt5GULV8YG/Ty1Dr7bY95sHwKaZhPyo/zgZ9bPt6/DSJGVQemDCuA2RvA3cSutnWzs5+OigbFrhrMwJ6H9Y9kYjA/7t4EOKdrQd9kYpBiqkzpV4tb9jSM8ZhGt09TBqGAGTEY94Gdm9mrMRjItTYeYQIovw7jXxsB7Ecvsmgp00wCnnMsKbycUPx6fSODjxa0ZYu/NQY/djQlwaczDm7YNiwN9LEYXwYqz73nLRNOAnztbJqvTN6Vx7XSxThIY9NJx2NlSwgiDeNM3CPx7gUBH0TEi+FmBf4dI8QZZ/Ku3siwSSN/fThExfDHlpZdM8mD2k02frZ4UpREwgaAYvOhsxHSufBW9b3rT/tiUsEbPy40P67abkj7ppcFHDEsTSkMZ1kMgYH83g26FDLscgHFNIP+U8xzCAuph3f2884SdoJPgxsMH4k7QsZ8XfM27bUmb+XmGeBIfmEc53avV88L78S4O4xRMLxcSVEgcm2DHZ8JowFhMoXCTojuZQe3zu8HbfvPShGxXmL9vs877ijvu6JZ5leDMfWhOws2hp8BUDdz0GSvkNqiU0jPxUIUndPWEBZLqHCZ8jvUpxYrp3Cb3E9vYaRk56VJHkWr6RFk3gJVgL/m4wZMSNiRZkezbJL8ex5UpBTiYQxlKT8DFs54GDBFJlfmquabajP4s6aNF6EdqfyxSadSkvB8Fh2q8eomEoWUtjW1SXheZKhnkkp9bM/+7PpvrWGd73rXfgbf+Nv3HlqwybMgCaBVuEabAcZ/yY+n44sAh7mcofNKV7Yh0wQp7YNEJ8frANdE99I60I+0To+ZSw30nkalDnN/NsSszLMBI7aK2fl0vsoaEWmdMCY9DOTAXxxSRnejxRdLO1IKzY+P2jvJlRaGthbvloLVvE04tg+cNlFI4nN9HYMofX2C8XHC15eQUf1w0IMXk4iE79+AG4U0RaIU+CDDKgDjUYGzS2bNJjlRNuOg13r0YNN7kJz+ybhGJjkxL2m6RKSJZZvv2PxocBNa5Jt1Wf4looWVF4SPzEIwGrCPy4KzxNg3Sc8GD7Vwb1i0V1VZfFZnVf3mMa+7wNiXZk7EPpRllFsPzxUAUW69EGrbns7sVggHJv4SyDoc/i2OLcQbeSnzmwcoAPbzh+fxRX1+K72uTWAmgkNqe7I8Slh2QI/qpnNGWV4b1gDlgUDUdrxdqXf8o2Kq0WA2hyjk62+kx2NoJ83gPTUUECdEUMtLS2S7u83g1Q+AE9/O/D0nR3tC2/x6KVbVVoRbhthfZWB3yTQE5Kjz6866Mg4XHXB544pD46dCpzq2JXmDvK5UbhKxVGSTJWEUagoPNEoY0yeCEMwtbg2+JngvxrhKL43QvwLwgt82glE3gGnE5z71HOdEG3Gr0iocgMzllXHpkcL+NT9oAWQWGsvK8t49AQuaPcjYX1EWK+ajM/uxNW+DdlWXg70ZhzJw3rapnyuq9S6id/sTX5nmK/86dtZFFN94tvVonAJc5LCGzYhqRNLn6CZJWmZpPjEDPAxwnQ8CMVIYQkJGC4bLQ3JOpWAweshywQtVga3gmNPh3V79GgjLt+FApGlHfDaIYtGe+nEeCjhyGXcoXggn6BuLCvsb/TfUuS6O8f1Et6OSqmHwqg0b1FZY7Pwdd+0EL6JY0oI9ngx0WOR/kFmIUVqjLdqnCdwGYoJ4GPD6YoGn6yFzKAwiYrrixRSkewdS/xpmSfv07Nap4VHp+LAeuY7/TYpidp4Zn59x0EMZ3Cz8lnND8rKwULKviGM/NJ3EQvMp17g89Qmhm32l3IeLmNPsqhFcXyyb3UhmNdSlVxk3qZymdcXgvwULlvgKb4IXSarz+8R3owM9dnPfha/9Eu/5Pef+tSn8IlPfALvfOc78eVf/uUXUnJ3eCal1L/+1//6QYnYDMZ3xbnj+9k7xzDvTOx/7ZF3uLUPJ4g2ODegYZEjx51O8aMR/bnEfHdpnglNO/2kplHzmCq8AgEm7IhfkzC42+AbhLNhgZDpSXVYCJpq4BkD7JTJrN492Q45mpcAOmFYGdn7OugwQOooncUhhaMI2WlUj0/ia4YANEa7XhPmi2WWTcC07cj8SJ2DIiWIU02EipLnm2023s7sgtIskG7p6yS/OX5sdUa6F1gVUz7pZA5tSLpV5hy3bENn8gHl7eAP4aHwKfHwTKC4MC0UHpj1JgA6sedhTt5EuOMF0HMlwevwb2QDncAZyxbQJlsdqLM41efYP3Ur74zGu55VooHUryn8MKVz/G6ahwkQ1r1j2nHAju9PpL7oWHg+pB7ZlNUrufsnMRAzHDkR2lNy82YTcNoNcHhdE1mHB7pm6UKxS9uUAdANg7gDbUXvYnEJAMvhBALQX+no14tgzpHRrk5o6gvFx70ghfJ4kPWDcfzQ+MMicwbI8PKlLS8pkTDwbsAcLsRKOzFAely7mf37NvGQLDBO7bNkdsb3c+EFPs3Ddp3l7u0d9047/E4jY+yHzLKlsw+ZyGWrW+UFc9tIhAZxhdAPBByaHt1OzpaxS07LsbG4OEP8nA22BZrE2cNBDjdp4mEYZVgQsCopU7jUZfwbysPxZVWecCieKYDt5OKytWPahgW/N9vaTC4M48rUSoRHHNtubUooVtkYUNy1snkZeZAST+OLBPPoEWyHVUTFjy3whC2fRBBXEWERMm6FsTqjsJgYt/hZHVwKMRGf7P55Dw+BUVPZYcLT95GxIu/lCduZPC1O59ymDODU5cS9VQ6vQpet6L0zFm5gNJErIpPGwes+8mCldUZz3dr4DONjYEfp1/GBpbfM0+WiECElydLa1KfFW+EL7WOqIhlumiVY0cak7EHK0/CuKmrsI8PUGVYG+do/dejgMmZs0ZGB6sVnG0K9xnwZ8IXnNE50dUUR8yYeVsegYe3FAYtMfl4DhbV9LghvRob66Z/+aXzd132d35sV5bd927fhh37ohy6k5O5w4ZqlhPe97334jd/4jc3zz3zmMxceF0phsCJfxbfTpZIWenpNHHx62pYFjQ4WNL4Es9BBXl2y5yyTvqWzrgKSC+JE+u5WV/r8w0BLsEpINMfnd1wc762TahrJDNatHqTu0mJhA7BQcAoshCRdVqmb7cAx4c9Wvmnl2aL1pADWVu1sbaRHjXC4JbQu22dswhdBh0J+/THAj7sfBS9NwjgcO9qhA0egvcRoLzGWxx3HK7NIMmfAoy2I1ILLLx6/w7tMRa4cCv3B04/Ljsr8pPmGL/UPo+lFBDS1zmhNfi8NWBalQ59TvCjWg1hjeRtcEOKE9e3gD+Fh8anikl2h4feumg4hnbIGDOwYShkSKx2brJH8FqtG8u8X84HAxjdCIy0NOEgnbn1gmVj5NF0pIjkJ0rHICMHA4plV2Bl8MJ5KeBDrIuKZph0tN+EWUhRWxWjsEtNTTOz71qTv8xHAVWgXo81wxlbG3Lm51i0IWBcsry84vN5weKpKPsUsmwQtTxcstw2HW63n4FjdF/sPAB+A0ytA+223aAfhW6kbxvGq43Cl+PTyivbSiuXxCdfX4yhSTgOddRt2LIh8P9pgxPf/N4NlCAz1Florq4JtaduAN6mtYzIRd9xCMKd91y6NvfACn3bCLj4FPkvvZziFfb6uj0JaRAR0RlNL8mRVyIx26nLinp66R8zgpQGL+rs7ipDcOg+5wIbNRiKzbGQi5D6XrtDBalka7vi2pLMpeP42VZfil2GTrfRvtydJnblLB03LVvA50Gd4F+/JZNJImlXJ7F1ptlQvYQxKMBK6RHoc6y7gqFmz9iPkNNODPlvsN0/qnsex9no6VZbL7Z8Gt24glymlDDTKYnEOYyyBjynhXR3vKORdn10QKj69wCgNYS7k/JHaLyjRY8fd4+0Yb3esGjgnWDRPejkxllvG4Ub+LnZyJPT7g/ZDlbEo8q3zd92GWGib/U3xzmDWLM298kc+oEn0yGMxfhv3KfvC5yZWRLGBA28RADmknDLrRKwMiheXHULxnf8LiG2MK0s92X2B2lG+Q7gK1ngCBfINEzfKUlUykSp4ClK50mjUI2ULLevGoZ8mbN0ZmyKpiZ4LwpvBp/e+972yk6dcnwuFFPCMllIf/ehHcXNzs3n+5MkT/Nt/+2/vnU5SglamDO/2vr0z0E68qLFWCwSo4CQrKeOr3vSUloXQmzqh1m006EMFzCX5lG/L8vk5ejcE00gzph/z5FAoX90CxkqqnqMrXmnYV7jzsucOPTH/CPCugYaDloOXlYO38aJ2uT3dKWuMq1ZW60EtPk4ADmIpYqbmvQNtYRyvbnQiZ84Mgd4JXdX5rTgRG/6cUs3Kr/B4n6GHb5fhT6qUKTQSewvYM/Obk08ITJYeTKpAk7btDHAPFW3laSzbBBcWjcUFwS1oMKH/OQwPhU8I1RufPXOwtm3wATrVd+IRVVZ0Fqfni/pKW6FHq6uidQmCnR7K0BtAawd3zul3kQjslDR4b6QpzsRwFr/0o1RXBN9aunHOaGyowioHYSqnO3wAkKVP6iC9A3QLtDcgyqnHXD+VuEYDK+YtAcRYT8bTwwXMiJIhwsfyOsbiqFl72n0D1sMo83oFYOnop4bj1W2qCLHIBI5Xt6KEdq2XFU63L1m/0H5C/prL2DAqK2FTl3qx9hRs4hEvHoYQ2mL6e3ZvVg1N69Kc2Qd/HSD46p47SehlgLyQh17g0zz4RMFClo/3x/QLwsbCWdNgQPCGWZTgTLpduA/XaAzgQOBlQT82rNcN/bqJpZQ6wo/pO82kp4+eo7WWdUP44NMk7+UoZ+9TMGuhNtJ29goyV5Yt4Qp2P/Kbx3eGbb6OFeUfxc2IPylfyytY9O8FrlG4vGO4g9/Yb9y9Q4y/jDKh4nYYSrjUQ2ovs+aOM06T9SpOuCykOGaKLTYLA420YIxpfRBAIU2yMUD7nrRJOADHIDnucr5HiPhk9897eHAZqspSPHygVv70vuN/42A4PrH0N/gU8wUEp3Q8JJLDqdisyAE/FKZfCTb1JWYw8nuWZt18E8vqHXOMj3u7VaZpBv6gVfHUcKiHOOtog00agZ/NeCDO3RIPt/GTDDP6oNmLs1t4bOTpzY6/Ko+E8tkcK/kKD3GSfGbTIyNsb1tuwCBzx2J5ZMImtNX3SIamwyp9ZVeKcRvlSNuQbfshkY9ZPUKkjR07+d4VnicZ6iKl1M/93M/5709+8pP49Kc/7ffruuKf//N/ji/90i+9f4IEbKylNMz24foKe30+u/eI+SUBMgnw7Wsy6kae9f5uWveFwMcmAtZBfSbcyjHHZMSYGjeWxYWNynlnwqRcSVCYLmWFfIHte9XIjr3BGuGchjZ+X8EmpV2+L5ph9AB0SPi7Tc+i2eQs0MiPxFIKVyN9sxSqFk5LMxzSkahYLFl+1agljhHjXif9vieXQpzh4Hy8Sx02/YxafmkyQZlhkRXqKHVyCnVGqtySBE2ohEuDtLHGuSu8XXy2fG7wCQmXLh0MUvBBL5zUEdPzlatwBO2hgQ9Ntu7plr7G6vTcrK8A8Z0QhK/WFZ80PSYE64Pw+z5lnHXt8nq6nWZnguEKKVK6W34+LNH008iYAWP4ADng4JrDSKYZOfZqwsTAgdPkkdaGw9OG41PCsobPbfWv4l7ByGhmfXoZOH1hx/GlE5ZlSIQOzwQQMZZmJ+BFPGkjNg0ZvK4KVjzZjm/jvQ85hiWuwJ4NFDuBEAqqFFobBhosmjuVZwRFVDBPj3V4QXiBTzvhPnz7ZgPnLDxhxrB+IhLBGxDFlF4AwIdFFOXHhn69oB8JfCUnUYqOM3Tk+1hDOAnl5X0xa+++ymj2N2CAwXdKxuWqQbtPjmwSF3Qvia66Sh5pCs/NV8pFzRtf2uQyymkF27i+D2VPhTZ5TLfyinKKU5nYtvIt4RtPT/HEyhbesVmUAYgO0muZKE4OUn+hPPm0clt5NxP9bQ0+C8u8nXxKPShGkc6hKk/fJU/VNp091/ukAI/pxf6tpoakcxG7qMMt0PnQxLm5+uW0gxjSQS3BamjPSqqI7fO/Tv9OPdz3d8Fmk/18qyowTjGe4Wqtq8gj4XI+D7g2LNzJFVQb1qrKj0lbbzyn0LxaLP+im8zFqQ8LvmaSaIBqaDSzlnP8CXUk1lHzNt7gc8w/niQNjPloLCeN3UtuncfhPiZd+eAe4XmSoS5SSv3e3/t7tfJoasL5+PFj/J2/83fun6CbQY5Hm9V2e37fNGffR22qg5cCFbMLVL4grR2fFxLt+dGOMJbV9HaSFfzehrk6tllBZbdpmCrWzoSkmKq/cX5lkTpLoVyBFJiRoSuemO47TnSGl9UPTAKryP0R5PS7RDuX5EtfYEiaa9OTqlb4hJXNugh2zDkETjTvRnq8OsdJYHAyHsuZNMnRAooHExO7JYIv3qQKKyNjqUxTblFSdzM6Mw6tJ+WUHfvOoPBbFG1Nt2D2buBGPu8GGNQutJRCbq7nNTw0PnH9/QBYTvrfJr1JX2GG+Dy46SJcqDnwepDta2DjORpCAwOkDu8THwLeWaVPcWhzi0i5616i3Iz5VDzfWXnsTScfIMeRsQIWgIJGH3WMAWR18KkooU8M8DWER4Exqi8QK0KjK2hVpA7YaSHnfyRrNi9HxDsAOKiR0BWwvtTRjnLcT3QTMXhdQmcxcxcSdNuuSpEzoYHDj2ipGRXnfSV/7+PcavUW3qVUzwxOm8xLfYYVRa8b9TEBhi7kaAfsPOqWt8neJ7zAp/Nhik3PgFUxneRjZxoRrgQHZBsfCOpYWPdZEWG9WnB6pFZSV+qnBeOUNJcPat+YyDrPUo490s89SzQQdBW7HExBgClBmsoiNlkFAkZodbilhmYQDZ1TXMAt64kB1hPEwBvpYj9M+kKaWAYMifiSFDqEIZ9b25jCaRlpuWWGJRTTCAuTJnNK+RRLFJd9O08Ezr1G1LrOmY70HSxMKR6U5GZBRTpeuvWaWkw1hh42s1uz0xDxqVD13IWHxCjvI/ZgLhZPPgzxo0UVwths97MuYg2i8jmp8MwN6Aex6Oy6eMtLQ78irFck87zDkIEoLKan9BHklkBztXLaWnydwabJ97MqqYSwvWQMP8iRxx2rMbYe1nT0WTfYNvoNm+w7bc8ecSFYViWy78kEKVqVh3tI06xGFSISlpV+lZVo+tQ2NZUypQxJ5eho8pXwLzZg8VGleVLq8PKtzd08v8ZutUlWhxF34+KMyVTBt5TB2iXheZKhLlJKfepTnwIz4z3veQ/+/b//93jXu97l766urvDFX/zFWJblTAo5uNWPWXzEhoG1f6j9+whellbOSfrc5LFv20McgGUbDC9Ntu/Z/mcdxblz2pLClNb7dsp6T/oLebFcaTJL+Xnu1JUWGr2S8+PdUOiNVgNx95gnXwUcBQs5/etMnhtatzSK7wISS4eQ7w62G76EJ9I6tl2vKqXqShcwAJBjTiGOfF+dl+9UaBpseAC4edXb0BtkszOobRYXSol/VCfCd4XnSYt+Ljw0PjnPF1zaDedmDTbQA7BJPQFlAEydcnzn565zSI6C8UvAAGY39d3wullWEXxVOpbVSBvxc7H2GQ55glPjV4Erpm+4tiFn3Ph0kMJlyikTluIqpoF9w5jAGJ+oMIBTQ7tpWG5ITwosZS/kOq5aHi6oAH1hrNcr2tWQYrsBkQlRnJtXxBdTiZmkbbxvCsMI+NYlVCCy/LvyrgmGkX85l323I9eGo53f4YPcnEYT6ZZUBnHYGuoxzwD3mfACn+aBbbUe2PbZrXnTRWFazWEwchbQbTC2jUPWvnTbbdPFPLXKZMUd4kmHi7ytuHAWd2bhXL+N+BTraoZ7dq+FjLv84zDNenonK6awyQwtpBWwAvYz4MhU2R1YJsLZ2WpIZdq+3mWbiPFGa8XyUCfzyU0o5AxiUvm0QnUcAuVU/LfFLcSmbYGBChvOOGgCiLJ8Rp5GcKRA+obGgRP9woNi3k6WUg+KUQWfonJprzNn+WN70ubut5XHICMswGObFDC2iDLQydwihMtkqcBz1kWMtjQnqNnPMGjztxTg3DfYkUvisMqjfDQmLUlJ7s9CPps09Dcj4FP5vVHmDHZ+tnAGt85h3t4UZyikMmhSSL9A8gZm9rh/pJGxLoq0HOZhHCxCa+oy/1M3FBFwJyC72dKMbV3dFZ4nGeoipdS73/1uAEDvl1li7Abf12D34TnKs/Td5N46wjQO6QovB98Xwcyc4Vv13K+IbQ85wB3wjuNySTXEnEwlPd+6LSah26QOJmEqQHlZjYy7v92M37oSRMqZHD+w8Twyc5Q3KNBgZokt3Ns3ASin40gQfjLBNaK+bixOMxHojYyrTM0AmBvMWQ+pA/El2fhyqHKzQFI/NTrbzNvphoRpiqhtGM9sMr0VnjQNBIEMFreBmdFa9yPmO4tQRczoHUof5CSRZdBOxLpP2Rr08u17O5LmcxceGp98RcXCjN+2Uu887MkhM20Os5tEN10pXMEiMCmW8RJ40b+TB6KoCVuUof0HQ8jIZSRjoe02knuUbcPbsWz2rDgc8ImzCUcRHyeYZ8KG/20jKrH4DukRdBrLpJEg/rc6ifKJgbYS2i3h8Dqh3WCs1N9VZovX4BYBvAD9EUCPOhY9nCBPhsKkCSqA6HMidcfDwu8DD+wSASdaSEXCmMVnnjXq1lfAZFnU+tsmruLHLmBDxkyC+oSROiA9ChlEIPUv5X4RQKOuOlQAw2UWeMALfNoLVaZ4FkXOfeK61E3aRbRPM3zRic058MpOBx8I/XoRC3O9oGMVmx+1yuv194wfN326fDf5Zvt8shBa+374W6vaJnwmwooVEeUzBEqaHLaQpCPOJxhIsZwzft1pMy8Tl3hGV5yAztIjbGm3YDKf4uCwhOGw64En/L21XqXgUyovwBVhsMwe89lepVKI0Q6Km6yWUbpOYBZR2ekLhkxsFlMMX6S4d6jt8wKjAGzEc/+9G7/wXf1mw8PxfVWUmFWcdjMAIuccIB1X+3HXQxfk8AXhYRDE6og4+2B0vshb9+q8bLd8s4e1rPWbCRbVehnbvspikRpL2FwrYQxt0wBhaATi1rdyEIPn+YB9Pi1KTtIylo3QVnE+tUPDpj3821oPjFCJJf96XxJ0iDZ5yIvAo86jLGj91OQhw+SA02lKYWUxvUX0FXZJeI5kqGdydG7hk5/8JH7lV35l4xDvT/7JP3nvNDbzsWchpFpHxQ6618GtI6hPKQ4nQzDBnQb7MvcKV2C1VQCAJ504jqs+odoh+830DQ4TvrOAf0ZxxVUq3COMy+NaXksiWGjMLKzvFaowpeBHJmAEx8VgiKWAmoE3iNNzIqSDhjjsa9nTKwyBqIfn2rhc7j0EFN0dMXPh9pzMnVYCo2FRp+e8SUu2KpJZ6+mkllwhpUd9MoHoQoEirvS9xbXol4SHwCcL57rxs9TYRekxy1a1Rfp6N6yKfAYMfy4nznv8U6ffYQCbeZkA86xliQNsfbf3cfwmTlBCl6yTtjix89WxmCFjTEhOJJPnFaqgAtotQDcjzq5gyRniHUmawp1tQezQFXgOeDISM0spmROpD0MamGRGkxZ35qNuYJQ8c6fmiM8jgFYwjQUIf+PNHYPVBgKtgqyN2ohu46x8ogp5IGy/uWd4gU/zECc097BCuPf7c/FjPyXBJNLfwhc0BO9lMDN1gE4A1uHbhSzxwvv2TSwTT4p3dpKqf2c97a651Ez8qf3elMbMNIzmg1wypWkiJqStJhZ1T2aNN+XdXlmcrEibijkpmQg3pnQG0qQ4ws8QqXgCLxzS4/FX0/HlEVIMDONOLhTnQpkpWsytfmNisVmRNwXqptvAiIdM32lgKkEXAS+3lEr4lCrt+Q8PJkPNBO/QqbeWimV+M8GIKf8HmchcjDSd1Nv41A/kh4f44h6gPMEbuSp2zToGV5rOPpvE4XKfntchb0eM28Mwd/lBAcNiBKt/3qbh9huEqfx1NvO7QpUhZmkqRk3f67PZwj+HH7P+oRJIrgsVVKZ+Xu0+4B8BuY3C7pc0R6x1FqdlNmCGHVdSJp3j6bjQDSpp/E2O3u8bniMZ6pmUUv/1v/5XfMu3fAv+03/6T7oqbMK1FHZd13Ofj1Abjc50ium38qIO1tkEFA4yyeFqCy+Zto5/l5GpHQ3qHvKNVqc9cJg9byVOLeO5sk3exzJuADsINQM8RsKDecJjglqHje8ppjGhzdmtaNH9fa3jClgbINgpbwABBtxiLTkq1sikVlAGFIAIJE2twWJ1t4bphNGczDEDrRGWxq7cku4hqGwWVNH/lH1XEbs2c8xTLLisArQPcwNzlxVkXeGwb1K+fZTLd+eocEz2+5lOj4l0Pt/hQfFJPsz3FnikeVEYjRvukWXs0J0Mr5iArg7NAfiARsziBH2VI9hJjzfeTFT9OGxybJKsC07t8P+0U9ujMLBu4kbm1J8MzK0FCj1x0saEcfrTEehHoF8D/RGDj2YBObaN0drkRJkbwvKUgv+QcFm/n5iluzAQ26MeK7wAfA3QY8b1dQeDwT2ajYbG1doWhflof59/s56uqSAuvr8QAFmW1QbvtwCjlGk1nk6WeLO+GoG4NmaJF6PFNM0yysphfY2gWrgwXnV9d0F4gU87gcr2YuBueQK4uP499CGRE2QhD4D0hQPGSpDSYTxustayKjbB5JRB+0b5EWQnlzlMvojkz6zuNrgVfxcs38O78Kw+dnoWGtb0jq2Ty/psUNi6o3DDkyo77ZUpvpzFjVARQ7DwbDt5sI0H0drL0iSk8kkcTr6l3KLdMZIVt1Vua+Lj0wgg4nQE/KyZnN8ZbgEVyxrlIMMe0u/cIXqFYLsPlmN+umEHcJxUzplQLVkvxaiPfexj+P7v/358/OMfx6/92q/hIx/5CL75m7/5skQeODwIRvkYPmvg8TeJ4zMLRmBuyVzjsXc5CeqEG6v2Sdk2obsuyPuDHbbSgHGaJcZcKmUZcYuwVdYESEz3oXzTcqf0d37PQqCRIjMoHvEBagFW0qj1BgyrHeh8awFwCBiVxv07wl1DTHi/mT4Rpo7TN9nHb+qz2i4WorWnvYty/BQYMTC60mxgupG1xnty2il9KyRQkJkCAXrvi3oMtd6DYNXbeI53qSE9AOC7vuu78BVf8RX4X//rf+Gll17CL/zCL+BjH/sYfv/v//346Ec/eu90uPw+W1eTjjb7Zi8NV3BgrGT3psd/EsQKau26ZUK/YAbddLQ3Viyvr2hPO0iPE+1NJoi+Ul/zZsBV1eFluo3loDvKn9IuE9padh3Aaz7jHdzp4zgefhBmx+WmY74NgIFhBm3WS/HvzJ/NtAzlvgBIAvUO0InErNocWqn5Yz8R1hPQV3H42zuw6l+AQdTR2vAn5b2ARz8QPBlx3HCE5Pj2Fs9zNvqYizBSGrrklYrOY0uOKbiYCevacFobTqemSjHJu1EHUVd69B7d3y2t47CsOCwnHA8rDn761/2C5T/zrfU8hofCJ+DurszPetHkAlTwlt/rgbAexc8BnRj0tKPddNCJRdDqDFo76Faet6ddraQmVBse9cnlS2pwfMCMzlkZLH2aZHefyt3+HM9ivoSBtfpMVgDDP5K/tAJ0Q6AboL1BWN4A6EaudovkwJSbOu6sO91MKAjve8v14QLdLYDXG063Jp3opTjbla/8r6/QA00xxktiY1PCB8No+citFHQVgHTCFyVyjqBesC+VMeRZr2nHreNCY6B1cWy+iHKQD/p7kS2U3OQZLww+iA+uS8ILfJqHaS3OhPLIw+0ZsSnwHUy2aMB6LQ6CTW5AVz60hS4G6KZjeWPF4XXFrzV0sEm3hOYRscj5tfLfpE72kqx1Vn/XbxLuFDkv1tOGjq51oZfVVVTCuwIq8BMDPlmNtJzD0mlcyjRusNnbMV9xi5uLrhF3Qz40q7Aom5PyuyupeGCUU2rdwAgIl64eUJMLrcuhNemC4p8qu0xu1+/a4YR2PIEOK3Do/hfHDj7otejfI4OPHXzV0Q9vTn66FKNee+01fPVXfzV+4Ad+4KLvPpfhc4lRMx7d7cdn+HyTgfVZlWuYGX2RcdvkH2ZWP5DarxmgU0d70rG83nF4vWN50tGeMtotq3VnJdoGyQnhkzLP7s+NgPfhe38fcX0mq81+s5SJ9AIgbggOepnCw7a1nmusc2C7U+46xqDIdZt8AiZt0iKVL/ygifDbQhozeHxnVwu/JwXzOHZN5qrSBry97L2V4xTm1wTwwuiqzO+L3h/00mfWV/sRWMN1SXieZKhnspT6qZ/6KfzET/wE3vWud6G1htYa/sgf+SP4vu/7Pnzwgx/Ez/7sz94vIReagnYwvkvxckXyJE56luJzHu8A8W9AAK3u8lBO5TBLBIZYIEQneQw9fYQAonAiCw0laRIGaXufaCzVsdNXnBcJaWXUGHqTZsynpknQUycAND2BIqyAWfSY5+YhbePH6BeHyuSxLGYVccViKbUw5Chh0pU3sW6ipr6gSCydWhPLKN2dCTNFkMUEKplqK9JY7BXrBZs8WmGpVMyImztAiLLpqID75HArCi23vm1NFGnLzDJLK/3cNsTLfUrRqPS3OGDdJzwcPtHg4en7cs+7TX7+YxVwiNmFfT428BXQbsbZeI0I6yKdWvQPjKYTIDvieNCN2LUGLgQLTiI7tU9p2az0Z0DYlI2DdU60mroDz8cgDhcYzHrDWJMJYzXIcC76ODgCuAL4Wn/b4gKbHwVCO4mVVFsz9uc6mZI4p9/ooHzPVwBeOeF4tcoWWi9AaAQyvh++7lqTthUlVQvCQnWIMP9tWOBVbywc8ChbcjohGjGSmPPYdl9G+jDWG0Em34S8LchxN/++2LjwBT7thzrGn6vc+1bdLJ7iku+2akC/aoJPffQYVgsiaSe14Iy+Ngjuf8rSTHKMlSGW69x4NqO1PtuzTp+LATvpKKNY/IXCSXSD3ooxDgPRKidgH1ogL3x7FovuejaDi1CHMywkhHaI1gQzKFL6/TQvs5IyPF/YD6WRcYZTWm7RVP6mOqBRL4JvhLNjcQFywz3WyZ/BHMWtXMDGHUTcunjvEPHJ7i8I73//+/H+97//wkw/t+EhMCqO6wDODGmUn834/lz/DxZC3rcJwJHcMtCiu0Vjt2fsSgIKfc/8tjpfWAJ+UbnX70o5eFa+WVlnv89h095nZmmm8ya3eAqWTtGazHne8or62Fa+BaI4M273yrBH7LkyG2xUGiudEaMsUm2Pmp9+x9FSisO3Ki8lBWMoKFkint7API9D/jM/DwWsSi1zyULpGxpZMcb4QRhtckl4jmSoZ1JKreuKd7zjHQCA3/7bfzv+5//8n/hdv+t34d3vfjd+8Rd/8eL0zipZ6UwcxqaBR1zOL3QgJYaA0C37JJAZvuWJVh5OzJnRVvHRYmn0RbaFdD1CdL1qaKcuDnPZMw9bUfbLedd9rQcvF1NiltrH3EFu+DbmwfajmxpE48aj25URYt1UbTmt27zvFWbfxHqj8BcAPQUOTFhvm2zVuepiYk0QE3IwmqJtC3sIx57jaA0wrBYqAY3ChFEJ7SCxZNBTrjqCpQPnOiZo3Y/GGsAHjMmhgqNYP8X6IKwdYG5ojbDqEaTRvxR5ZW1PEQTg1lWXhOfJtPM+4aHw6Vmq4l7fxDa3D9R0l7tgUrvtaCfjLx20OmN52sEnHeI6yyqf+pAaNHBwuhv6IvM4NjhkrbtTda+6KqpJ+hIHAYzjR4Osy4OW32UgEpo3nTlOZhXnepPVvPWgeH4CWif0IxwTZD7M4E66tVG5ZlbvoRzpvQssob6CwOOPGWivE/qnH+GzLx/RXj7hcL2Cmq26YcO90ZHAsIxi9K7WVLEtNxUcpUJWfg/YNioUwMz5OXthq4XstqwsOFWyTsXR7zytBrA5MLYJYA/fM/zQivuGF/h0RxjNfTbOfcNeFZNZE2o7Lm/0MbYBepw2xHKQ5V27XdFUfmICaBEr4N5FfuJDEU7sB4/JVRXl7kPruTixru71fVz4Uxxim8SskMMoDG8nk5q0NdjEk0jMhIg3O/bMVvPduTPg1qK+SBvkLrdYqNajITEK7Q5g4GK0iGrseECKJxudKTsSFllo8Lp9O2vJtACnOJG28RGjE4KZq/iWokXw0juDW+YR+PTs8lOk+zOf+UyKd319jevr64vS/q0KD4JRswn69DmP+crOZPscP3g6KleLrAS0J5x9QyUFq7o7uGGRtW7ZlVn9QKBDQz+S+p8CuKnaXZWwBPVRNqPRpgCGWzYfs/sJlqXyRZHN62gnENylgbsmYKWxA+0kfnbtcJwhHw3S2BQ1Wj6XEQ3L+hmaLU6Uq86UL7WV3+thTQfJi29M/xQctevfbK3KIy316zSTVUaeKpGlBVTIHNJxYJQpFYMGrQkzQxk2eBnSYu2TXp+hn5u8JPmorLqE8tg3hrt9HMh23/A8yVDPpJT6Pb/n9+Dnfu7n8J73vAd/8A/+Qfy1v/bXcHV1hb//9/8+3vOe99w7HTafCEDuJAi/6x7jGupAVtPrnPmG86fjh9uvjP+1MzhPNAKWhniSFTEP885NwmfoqnHuEBqn30dhqXTqXCeBviB8ZLUugoAA10pzqjy4JtmE012ftZNBaBCEXF8IeYWBw8GniYNnLHAtMROGGbduYdmv4vqE0zMicyKu4hGL0Jz7hJpi+gRrK0zH/gObEM4EToYfiz22SskoZgZXtsrHbG6RJZa5Qjs7Tl3oSJg7gTv57+c9PBQ+Abi7H+/F3Xk+Bkjyo9SjUDwiam9ihAmGNDxpB3EBpJLkXv7lGw4D6Wbf+4zQHcECwGayM+IH3JwkV/EnpuXWn+H5ZuE5rsrbyai2ZSPSZH6jTnLCHlVsDiRvYMHSiXwbq6sFmpUuIlbTd9miRsdVtpsQl+R5bAdWK05CXJjcVrht83Vc026S6jKXKNCfJKZQiNKhh4QHgEJ/Yk9r083dDEHfp0rBGBcMyAruXioTvcCnnVDH8bODgv5l5L5/V3zAlcPmrN5cwlLoHAmjzOJzla163hWIVHlDw4KCNN08JI+/pRuXokzLLXHLw8oCszwmdWLyDwPiwY2GB4HR7UefdoF/Is8kUguOVsfKu/JwihT+0s7F47fjcIQKe26Ks0j3hE6rE9si48pr+1ssSX3Ysq3GsaBBC7XXHcm+tbx5PE/JcBqGRvmM4IA6bgnvGBdzbynufULEJ7sHgC/7si9L8b7ne74H3/u933tR2r9V4SEwSuZ3ekP5uYfKe7Uj0KQ1PK42pPq6I8DHvjyb28oUWCELWidGOw05yhfydGuod2Cj0fEoE7qRiyKNtXwTTEtlrXHPYHW15PEyGEZVS0cbs+2+Fdp6oMF4eCZzzGiaPTuDTw5hSicTu3f16ELCv9lY8ud0iLKh1yYusK3P1Lk4zHcp40nE5037cE53Kp9hjJzx+1C3Ve4aABYLZHS+fed4z6SU+gt/4S/gtddeAwD8lb/yV/BN3/RN+KN/9I/it/2234Yf/dEfvSyxGdMRBjOf+XRjIVSFM/ZmDvkQ0kyOHMfyd/qRbfPzuCQC1HKCnMB3IOAg4Cu+EiwuOSPtOSOd9HdshKn4PgI4lXeztIAN2Ds4L+ExhyJXISoCUsiAAtOkclCJWkEsyiSBxigIGbC6U+Pok4TY/ZeQXq147hQwGY6PAeSJnfqb6rbFAFEhNXy/2NdEjMMif9cFOJ0InXQFooeGCGXkWhklcCd0y5fgtIq/MhZfNNGeWIfB7ndZWLOiPrMW/Fm/ewuGB8OnOwSCs4NwfB/wzO8rXykPuMIpjE1YGGYdKfzKvnLCrQHmNwHQ1bKgxlwAUANzsKbick1Im5V1t0tPgayEIOsb3m6sCDCepZWg8IwXoF8BfDUqiFbC4UTJz0n1eeJkc8CaWftO2qTi7vAPo34ADgy+YtBBlMaueFI/cIMCFZT1mTk15yCEeb7FhwIAt86MD0QZbxYDYh3WidHB6g+iNJwJpbUPgOIBWdLfOm0FLiMkjVP6O2yLSBYu5j/BtkhcanpudL9NwkPhkyt3zvFk/aaOx7MQ900Zm8UtLyyyT5rTNwyZRwfHxgAvTRRR6hYhKtGI1Vi7bWBo02W3Av6kHDvW4XHikmS5+n4jTyqtC9yC3mQkc3+AwAo94Epk1ZQsIeet9VCjnO3uXP4i0E/IcnHE2bglz/Clxq3KqQmbwybuig0+oSxWS144tZqi6PTXZaSY8Hg/8uQRg5C6Zgp1DOIRvy3jIBjDvqQEVDNcWyyk4zOAzeSTX/3VX8Wrr77q98+LlRTwQBgV+0+dz1U+nI3FM771e0r4FNvdsKnKG5YHrYzlJD6j2srqwsROW5ffxHBLdT5g8I3130DKVJk9e09nnk3Kukl3hoGhXLYTCAgyVO3rhgPrwAWzlAdhLPyX/LzMATPui1PeNAUf5RnrIiO7Q3W3mo+0x4yCwtDoNkxJ/SiKXskXlAH0SGc7+CBruHbSdWutusWx0qu08cSB+zl5yEgEYxjYq2+qi8NzIkM9k1Lqj//xP+6/3/Oe9+CTn/wkfv3Xfx1f9EVfhGc6jWonnK3DjQBRJAD30xKYOzAUU0y/joQqYFBgJCAwCqsJHvm2EhygiqnSdyMnz5hlU1jO5QkkJsFpBub3tcaicVO16VzjB7PzvZBkm6l0Of+eZ3FsrGmM9WhOCVnq1wQma9ck2CBUs21t07pEce5GKojAm1RBzbbPmXWSHt0OxhLRHupQGWrCy7lReFbm2cBlGiZNYnRdtd4K7UkYcWxiZySZo+Tp6HiPEJ3fvdWd4N0nfL7w6ZkDIzgZ12eRN8OYKc/0oSpT5R0N3myQSR8El5YTwHZSBwcBhYBm/jTcOmkm6WDD1N4vZjgRSN+FifoiDrStgsbI3wTKqrgeChVCPYfABvHoO8XliyDEVbrOdf2RnTqwvGLQoxOWg2wP4SOkcpUQOyjerDDTFtwy3CgSTepOKmG7NUSxqcVY4RueNRL7oCdONyMFOwWv2Bp/3sFGjqmAN4JbgV4oHb3ApzNhFv0Mj+5+Y/HjrD/6WYlbSqPsUSYp0sDKE00tym3sXkSuoZh+H7JWb0GxHEhxfi2TnFSOmfXFJs722dnuxNZXpRwtPLdyMihZYdT5SMSavfbYiAmx3BP5Zhpi/hHz7V08rekOWY5rnICVrLJTMuzl/SsrgAyYNVHNaCwYTrb3YfZs0JXehcYNboYKkZT/mkWrynHMBFzs/iDLl/b71VdfTUqp5yk8CEZZn9zx6VaVpxZmfJu/1wfmmN/iMETJZFudkN8BGIcPKG+vZrE8fHaIbG2+yJj90JHugngkNPyNtDqvKtPU8t1RDzOlVQyedYQ9HnVnPMzQBctg5e3pxfudLXqbcsXMCyvt4kqlnYMcZf6RTNEEDAEpTmks7WZyWEnTy8Sb/kMpUgkRU5NcyOWTnQT9mx2JuFqG0lb6cX+M3l8KiYaPDX465GUS1PMlQ128Znk6nXA4HPDzP//z6fk73/nOZxOo3FwyXHXFawNKmbG3R46yjTfy2AAqOjI/EHBswKHJarMlQBDrp6sGvmrgRw38aJHrqsl3RHoSpFhSrS81rC819GMLZQi0zxw0zvp4BXH73gCljStq/iVuntTMBCOGCiu2aqH7eDMwxHYpxZjQWn6mSLNvpz0kvGAC+Ipx+wpjfQewvsLglyCTvmM5dYVsfBodojXGsnQs6t2wCgz2zaJbaLYmE7USCK3R2HKjq31LA9qCcaTxpu/vVVB8ECqac+OK42N1fhwan7mB0bxcNukdOyJ2a3k/VGHygvCxj30Mf+JP/Al8yZd8CYgIP/ZjP3ZZAg8cHhSfKi7d5yj12tnjMekx2jqsofJ3BBxavsI2W/HxRsCRwEdCv25YHzes1w3rVfNDGFzPvBD6FWE1/FqsLJLXgI/BtAlW4sO6pSNgBtVyxyLPnttvO6qZkIUmKBaos067HFs66RY9YLkVRVxbVS/EAfMjreb0sx6PXOkJ24Tr9/0RsH5BR/uSJ3j8O1/H1e94gsM7b0EHYDkyDgfG8dCxLPL3amEcF+C4MBY9vMB3Vxomcws4ta19e8ZBQjMcAkZaRFDLKZIrlbM2SCx0qKtNrFnD6gBU90Q4fujBH7Yqu0BoqU5T7xveBD4Bby2MenD5aYfv+I73Iw0ql8QJLoFGVoZnC4nsdGzAtXToiB8iPy3ojxb0l/R6vKBfN+FhsB8+AAhfr49JLCC1z1jf3UzYpvhCucznyl668RSXYn6KlcYfhnPkWA13JmyOzzcYgjPdNuRvaScdzqS40zRiWCD+9a4AXOtf48MGPa2z0Bl5M/4tFquGg8OBMo+0rAyBaMEkwatlYSwHuKuFtgwZyq2oaNBIjSVOy5e/r103PIuhNWBZyrfax5YDcLgS7G4H1pOaz1X2JMwUcs9xeDCMItrOZayPRx4MIMO0jVvTBCBuWQyjWMb91uefGqvaISg+1h0acL1gfbyAX9I53vXicp7/rzIUjtK5qM7vgC2tjsOU3tUhPimfzIpoD5NqHhN5jCLvLhCZJ8o99vyoz1tOYlaM6dTGmpW239IsrpWXIcqoI4MNmw4Yp3QaAzca9JYxYW8bX4wb8S5uFceGXgLxpBAtXlTuMXBv8zvSwIUe3rQFqTKULZ2Ix4dy+XeUFxnuE54jfLrYUupwOODd73431nW9O/JdgZ6tfs5940pcQl6lCR/5VhfA/SWkxRGd/G2shPSYUdKVIpw66KZJXkdC14EPs4WWqF2e3Scaw0tC1kZXgNhIMOTx0quYb7djMYfzvVqn924X+3ZXIxYeR8AFNlt0PA4gqxnWO5smGvNiiMO3VewQuDGW1mGquW4Cr7Ulxr2FRgzGCrNikKqQTmM4ZltrOovT5HVV6ziO1iNhiSJVgjXarDLCn9KutsWQ9UYGBdbJJgNEsrIDgNFUAXePBtgNsxHwfsGOM/6O7/gOfOu3fuuF+T58eFB8Qq5JF2ZmL2ug81FEWAvb9IwPWfEpdC3p6yHPLi+4ib8oXb42DYdsC127bwUEGkhPu/KFxdrxojMUhPyM92r/Lng0g7NzgSxZtf6Kq2O5opC6pxv46KmD5jMqfRZpmrBkNPMWHIQKBoz+uMvR4CQv2okE47vgFWtm/URAB66OJxA6+hWkTXRskPHHtugOsojYq3oclsi2iJZW5mLc8Xj4porCouEUd3Gazl3xycc/6SfZz91owOj7c1ReipL/xnTu0ehuZl+3+dwrPDs+AW8tjHpIfHqz8uXut7EfRpOYBgBiGZQw6kBoZvUZx3GCbyGxdMmsG7ocurAoPjFBFepwxnD+vavJ2VbHJ7LPufLeMUQbnlqZU1x956vPhc4N9sxosfdaRwykhXWU+019hLpOeXOQewL2uFyrv90FQ8XLWMZCc9r2C/MrxSmOpKkZ2NFnLH46WwV0l1uDM3R9vqf/kHGYSiWqZy+SiZ5Yu2PTEFQnBGFlyCxPqV1mKbXtpJdh1Gc/+1n80i/9kt9/6lOfwic+8Qm8853vxJd/+ZdfSMubDw+FUbOhfAbjG165B79bX05b9QogpvwZsjuikSpUZVcEDKOIZFvfLYuvT2bQLQTXtNfyET5XiGzi8ttuLUQmHEWIdXEfHK/bbaf1m8qLPOcqLLfZnrtD/Z0R9uSAcG9bm8UXXdhKZ6xmW8PtYBTb6dRL5VTZI73LVkhWdvffW8sbZZ4dzLN0UeM5xlm6VYASugdM8fjG0llpNFJN336nV5rGAvGnelF4czLU5zM8s0+pD3/4w/jhH/5hvPOd73z23OPq3L3ihzbzAXkw/NARkHfEmrRoJNvo9KTOx+IKrmtG89cEYRrTyPdGILO6gvmZKuOlWiNMhRTKP1M3C/Uy05xv0pxt3VMg2AC+aVqj1cDetUNvCnzmXfw20lNpMxC1Fccj5FjhBYP5dVmEVAMtq2MEEKM1cusncSIcHYQbAaOGd82+G4kvGKiz89BFV7ODLRW0zUvTsyahMmgVYSremUA1UtkRr6fLF3ujwx1hD+TvEd6Kxxk/GD6F4DWaNQH7ket2Es6/7eRPIHYHPVXjAO80vLLI9U2wzqwVeoNYLGjntPQaE9rKaGZ+3nRlr4nQlfTscZkL8FVQoyfimLsOnY1tVqYKYnvdUNMdq6UjYrIIDdYHZjVlq3s23/E6rHhl9zzByog7Ib/1JQa/3Iey/ASgqzWZWW4cATzquHp8wuPrE1YmdF6wHISQg63s0zjJs0I0yPxJDQspsYCUQYwA8XOhREfnvkQD4wCdilVpf7PcjMnf/HveVMNhLGodgnab1+PG+NY/9nwgnQsTfLrkZKu3GkY9nPyEy+pyNsvf+d5l6KCctlV/Nnwy/uqcedguPVbdh8I+TjO2ef+6EPjQgIPIbPb8PhOmTbn2uvq8y8chOmNbmngM+u024ZadfNXGc9b62st3KgvGR3V+Y+9tRX2WrtFN2FhpzdKtc6hE86zuvcyWh/qCIR7Y2Dj5+8QyDqChBjQ9pSUOm27ZNIayZAHq9AUMNMWYyf5eJs2r+9arnIgvVNuCUB37tP7SiX73CRGfUH7fI/z0T/80vu7rvs7vP/ShDwEAvu3bvg0/9EM/dCExDxMeBKNCX+Jyb2HDCxdYYtm8fMbm0/4bLMSxAnwFHy5pBZYVYsFpC16AW7LYDpmNvGF9F9iOeXG8i88uG5rzs7u+4xIvTlnOpaXfejkqvfXbmN+MTv0riw0Ylj0m3xo+dYjVu5uNw3ch1awSPQHbdq3rztXrRl5NN9v8NmULCqm2rbhNX4wXQ+RKCjE3W+p4u3hn/Ynx7JZSwMX49PkOz6SU+tt/+2/jl37pl/AlX/IlePe7342XX345vf+Zn/mZe6Vzad2cjR8ECZvwWIfdKjp5rE6RHIFuyyppISUeARAatZMopnBiUOtoraEfgL4AUKXVIHaTufbDffCVfjtRMJxR/rgWlSkrXiffELP4nLEX2sHr/t2pqWlkdJsUhrqpK32J9nhLI72ugp0D/gI0dSYux9tjMD5BjnrXJNdbgFpD710mdkv3iZuvnAG+L/y0CkLLUeodizow793OFrJ6ZploWpvrKWllioZofbD1YXCPwOnPtp4CaLL2G3FszOg66T3p6Gy+tNbThVLVm5z0vdXC5wKfprqWXV68IyHmYUEQccsUDT7oEtAIqzkpt7g94JT5Y2KorztdvYZYItCNOhy+0v4T/S00OcpcJlrkL0jpFCMG5TXKE88UDB9qtdSKiAIB4P5k5BS9kbZBr/g+0ocLhp8sTaurdZP4c9IPTbD0FQqHdknbTOQbY71i9Ec8zK8XBo4rlqtx5Gq/JqynRer7ySJK8UPHujZ89ukRx6WjUZdtKCaoMLByAxHLwaxBeG6NRWHlJTX/cWKK1TvArhUzq6iQRjCdW7QsvQO9N7lWEitL6y+sv9OYtNM+qQHK/URmuvN3lPPKOHFRmODT83yy1UPh07OEs9gUH1t7H0YcV7pwlg3WowrihkGabrQucv9uYRUcDNAtiQxFTZQcEFzwyUYcyma0UnwxuMr7Xvxbo9Z+PeMPs5SqeK3vaB2yCLWSt5bBFUmzCU5Izy374+8By+7jy9vB/gLjSHdA6kxxkGv5ZhfgyqEeJ4/2WaTf0llp4GacmHkUwbm2dD8xOBfcEoKJW0m2GsOB4mWgp3f171M0lxEjCWpJbOl6w4R8jeTYDs8CUDO8vCC8973vBfMz5Ps5DA8mQ4V+n5pgFtf/n0eqcsWea5yZdaH1Ab9XP3fcgrwD3Qmj/j6pMxrLgvMCoF+10Vd9yxXEQXoWYVyeo25WQTQvFmHM0faLXgqkZWfM69XKv+eouyZpOMuTrkvlb+3nqsSLebBiCRNkbtkZ/QDgwANLOkAnSWNzAE/HONHe3lu+TbCOMNqAwXmciPQ0zr71Aq/61koXSEsZz/VVx77wbehkvlDIyB2Vxncij5MKwTyswmL7pbTzkHZRmMhQb9XwTEqpb/7mb36Y3PcYZfIsMV7VphfGURFpqBBqegEgghgz9pZay9OwuJL3epnQZCfKHOTbpn5irI/Hts8kzO1fXBCz38o0brEw2e6W6iQ+s2u2sqaKuHjSykZomglS8b4WLg7wFmohaz4KXLyMuG4Z0TifeuE+C0JmWje2Cre04TvA588MmHPV3kdhCKq4skEBMvjY+NECkIlgI5O+aWVsHF+c8UuwGUEIbroeXzHyA/ujIEhWFy65on54/xB9w+jf53nS9znDpyx3b3Fo8nkNNm5FpQkA37rCgFhAAS5lk/URE0IYMB9XcbWHoGNeF+sqJsgK30Hj9oE8IohYRxq8693TcMK6RrT4RMCk2G9r/YzH6YXhnJymR6js4Dzfyu/oY8Aq0/bbAzppoykOZQsHFUqvWXwr2PMrRrvqvoIu2+Ea6NiB1xWMHq1Yrk+gBhyXrn7dRlfIVpHFKqDptjsWpZVlPDxdbAGbtNHHFl7BJrMKHdZUsYChIn0LXwWY2d3szQCk870dCXpo8/zOr8+ku8Wn5/lkqwfFJ/99Qf3uYJo3kw2vxqh1yIsWB+GbsW81T3QaQ04E7awYJHIVNxr4pJZSFJIrQ98mjAlvsUavbLBX9opJs3oyuaoXgIvvAqtFNvZuOznNyjMs+F1J25SdCvYGyLDm8u9op/jmd6+8S1aqFY5inYLASx8TszhBs1P21F9UlbESLYabATvjc6tel8Wg6SQwD/gUcDjtRvdvkB6Sd/JNDV0WIj7Z/XMeHgKjklJ5t0Mjt8GmU+7wgPIO9TDe85CRNswUfRRpx3JFLkNP4huWUk1PMO6L+A22U9ipowyzWd7YYFDBiOm1Vz/Tuiq/A2AGksZ80fhv8p0/r220l1+8t3lwOQAj4ZNbVWJYRxmPm5y2aV9K2BR/O63F11TyEWpzb6NjZiVmlVTLFTF5VnbLIviQovSd/GCCKO2xHZeibGkP0jhr9eL1OYDsrq5xNkxkqLdqeCal1Pd8z/c8NB0jTOqrCguzaXccb0yL7CshfEdcy9SFJo3UB0f49hEWcGu695hWgE5APwLrEaCF0FzLq+ltCOY8rgbpwVfCgtbVwW2FM3rUrrMRXKykTDuafDcBsirDQFtJVuareSVBBJdAY7TicMfougJPFpdnZUXWm0SNrabVD+zA6MBjAwCQy211ZtZSet8hx7ODZZVs0S14J/1o7Q1dK4eZsDJhVRNKAmPl5oJMU58tjcRPlQhWq1g+rA2dyOVv87nDrvBiL+aU9UPfHA1Co+IMvOp3prRTMFtXUkxj/2s+p9Y+zXk3RL9b9vd5nvR9zvCJSruNxxliDDPiZKOPGyofsa2c6Es24IpCAxNoBdoqvEsnZSQapz9xI+AI9INsBWs33f232KDZF50QQiQHWosmIUo2ejpKEvRUqNvMDTDps5jXl5e9A1jjDBgZH+JfBsiOMV6AfmTfW9+PPCw6OtBuCO2GfALMkBM8+cDgK8CPLz904PGalFzio27QeXjphKurW+AV4OmTIw5Lx6PHt5uyGR70wHvGh44rXepzad23CDPJ4QW9m5kFJymmr5SUXABjOcoSGpEo0MynnH/ObdSdaeR6HFjOb70blR5i+aCaH28HZ9q+mPWBC8IMn57nk60eHJ/uaMwZNm3eq0LIfdtRbuqoAHIeVWDoOjmgVbYIp5VvUuubpg5lDyIztVvl586gE8AH9hOMsYxvXcaIuGBFaUH2STg0fGVu6onL7xpnI6so/8wsCRRvPAkKpzbbI4ZYKqoCmYOz3sSioYzmV8UtBMI4wioLESEd625WZgBG/a/b4nlC0Dw4P3PfebZoGWQ/6ReCnaSFNFnSTqNGD1bAap7Z/NAZkb2sD5lldw3dxUFGK/6drCmosVq9h8BkKOhK/Koo9T5uf+015zwuCRGfPN3nPDwIRplMfybKRllSg7VNccfiQ2QLUKQ+NqullBzopEpw43sG2mngWr8CbltDu2K0W8bylNBOXbJdAZykv1rn8Cw6pw7jsp0Nly3O9SjLTNWCJ/yd1ll8XsUlxZe408ctUw1/qoLGcGUNNJX2SO0TMMnxWOe63i5xLml1G3DD8jXcn3UAww+bWyeMIqGhm+FC7GOGvbHy4qmCxu+IMh4HRTyPeDsyjsjjWgFh9468lOcESY87jXmhJW1biwmyBZr1BHdSSymLwwCxnQZayNrrH2fCTIZ6q4Z2d5R5+I3f+A384A/+ID784Q/j13/91wGISef/+B//4/LEAkNYX48XoIMvzU9zqCai4zuxfrHv/PsS906hjgjcCB3DwTQAeWYrYoDkBcJKurUECE49w2XmoU6s9phS8AiuEWwSA5qgSLSphw3IeGLjhRenMvJeQyDE583PsTCf6i882xST0/Pd/c/naAFUKWM+XKwCxfG5m3AX4q3sXX279B78t0C31ERpmBVERmkh6rAtYWlw2oRcGIoKqRqT60V+mcyF8v5iTfikbm3SZ9fzpJQCHgafZn054o7Hq+9qOsXacpZWPaXFsCstGVc6UlqqnDJQcDNhxQaocADZ+uBlY7hjT1Oi+4sts47tN7EIMSqhcEIhfTbYOwZiW+GxToowx8TocQsJhD47+ICbvO+LXkcGLx04dmDpopQiDMEt8JGDqM7wTicCoeN4dSoEDh62bztTUICPQkeol/IY74f6pJyuvWMWAceViSWeOTqfSitpxkTTZp2H0EAzZ58J9CvuxGcX4tGMjLuJfa7Cg8hPwdRkNlyn6nrGZmCfVJj8NJqUTbhXLBIWppyv8QRk8birbNTjJKmN9LriXjd5JqRjWBNdBlDWWQwmi/epznJ3ndZT+V3hSTl+k6XzX1Em+bO6jXZnHJl18QqbDMxlpRDJYbN0iOpyAdivE6bxEWNsDTeHxU7d+GBTnlrLZDIPQf9GDZxWC+m2vR35qXs+A38No6bfpIF3hrd2H+Sx+4Zdpnu+w5vFqAT/fpW5WJB7uF7IVRl2rst9zQv5g5GW4grRwKwgVDt7EnBaaINRcmI5o7PoYJyNtTy+g+YsAN8zRHyd1EfEjI1yK1RPGo5n4DEDm44tToU6j0pzv2LyES+N5mh5GfKhIBekKprUncNKtD71elEcmlV+MrOCGDJ0mluKhjEjYVzAOo4NbSI5lQqqVwXdMWQHAjgUPaLmNp3x78LwHOHTM1lK/dzP/Ry+/uu/Hl/wBV+A//bf/hv+zJ/5M3jnO9+Jj3zkI/jv//2/45/8k39yv4T2BKXyTJiRpnEj46V4KkSMds8t4YN67LUtOEhnYwZSYCJfLeutycDazTqFfDuNGDmQ+JvqYnWzEZyUzkSfgSW2880E3MGceuPk3YXFUTfJGmsWuPBGqTff669mqz4BDdtoTFh0/rO0apaEYWpZTC99BVE/toHAnGUCpjCKGQjDytHB5qtF/h6arbI1nPpA6GrizWox1Vczz2KgrSAitEY4mBWCrbYpuEUfDrTqCqkdVlLySFVgZTwDDN4jN3Hy6MIsW3/U7mVA26Wg8xyZdt4nPBg+oQittV5n/TvG1UbZKqIoRdusUik2+BG57tfE2nwotJlNaNL4i1g/Um/iz8AmfIviEwZNtLKfmiV+EgLGKmGkPBIVQ7bNNVVHwXLXs1KJU74hKJa4EmjEcyuA8FcwUI4UNmupZCbeAL4CVpUgm66e85HBj0+gA48+PsNFxvBfQgB6w7oyro4d7TowOMKpetZEsAMPjCuBeIS2TbLEP73yLAG3xZSV1E9YUkavNHIO2lLHE7UKA8JqLDDGOOVxyzO284bjafMjlTs//jzgxQt8OhucD++qmvo+YlSMU2WtwttjXxUGDwNpJZwiNi0ULLxJVsmJwU90nIfG0x2y3WjrMrbWgjopQSZhhDE34lPsNgHDzmJ3ek4hPuW4+jxuEzH+iviYkrZ6iXQY9DHEeumcfBDq3TExvo4yGLZ/YxoJm+Pk0X4fyoc+xiD4VAkvmce2lsZ6IMPYVsesuKwfmQKokeEc+/OhkKqDqjxrRuesimb9XBvHMXlPLrO6uCRUhfwLjJIwwY09rJoqUIBtO/HkXWovH4wlLKRbxwZT+jxfsY4J4CsxMKAV6GhoUJPBBpnb2TbjuPgfZLvUSznwsPJ7Zekg1k2Lu1nLKfVjXXqjmLJ5WK27AOkbOmJWHNK1/Kycpoiy35U2wC2yWP0E2+JgqoDYbry9DMN8em4Y6Vv22C1rzzpxt7xUS+fNRjnds65qNoEd31w55RouHmOAAbq3C23aA0D2Q6g46buQapmsPExbjLsrPEcy1DNZSn3oQx/Ct3/7t+O//Jf/gkePHvnz97///fjYxz5273Qm/XEa516J9PHAJnq2yue+xGhEFW24KBfiu7roa0d8+yqRpdGCQNX1CG6N45r2RS81rUwFVWupoZGOM5BaMflZelVpv0c9JwYM4OkO5maa8vj+pJdmxgaws/hmgRCLEmgGq+A5W12sVxgBXF4xUADE2gliqbAysK7NTX9NcSOWU/GodUk8OhBmJarRCkIXAYnNFL1jWVYsbdUtOF220bQ+gMrysG1TszADwTvDlkuipZQLvHcyTSGF83VJ+OxnP4tPfOIT+MQnPgFgHGf8K7/yK5cl9IDhofAJOI9Ne/HSN9bXQvs4/kShIqQDFOyKCpmIT7YNwqyXAlYwAf0AXSXE4MGSRg986JgU0+rIWNW38dwseJK+wUBa+dzBCE8k3gNjAmb1cA4jwGDq4GUFrjvW6xP69Qq+WreSYWpYvaH6W7bknVY5Qroz1Bm5lZt1G10Pv8UxhT0nrPpeq9SqD/H7sdo/sEhiyMEGPT+nPnCvh35mZuWtVIymHS1TZ53avyD4SmF+O6vzM+2xF/eC8GbwCXjrYdRDy08A7hw/zuGTd8bSTt4PJt9Fa4IeBOuIAR6MX+xdA/qB0A/BWkItHKuVQvfJTWb784WclMfw90xdTPEpmFnHuqgy5b37vira6IQN9jFjnPzFiMZDI0+tjzgmpLIX7DzHLrGtePMCjikRE4A8nnnh49aXgI/xgpOrVu0YV6MeTiwd1MzkGTn8octFPaUzL3FthFm8ZweqqYHEcx4eUoYC9rFq9CsM/EDuWqxyyLReC+5FNvA52CyO8y07LoDluc3Z+jLiGR8kzAu/+y4PxYJPGDPgkslJ3eSdgrEp75Bfwugqf83wac8ayuKtmM8Dz3zH2hbJOEKVU0D+JkKWV4e2M4Xt2ul9JIEhh7lEUHEsNAYMBdJ5Wd3jMppl9IFknRQvk6lapTwHIgZaBy3hal2PdoxavXA1SNrqp4+b+eubgAlBynIhyDxP+PRMllL/4T/8B/y9v/f3Ns+/9Eu/FJ/+9Kfvn1CZkOV3E616jcuj87pFgG86L/EMmex59ItEgGgfGXWZilRxBVvts4YN+dBC7kzY8hNlCYVi5p5A4X8Oz2bbE12bryApZow0mF/jJ/nEJ3KBbsur1g9tbhPTevVXoFBaKPgucFyI8cIKnPujcu005VU3GrRHp3Zs2mh1pAli0CIWUstBFELLIhZS1ABCA7UuFgbUQMEyTXxOSCmlGtXJOYmj9OPScbWwOhOWkWolAjVSnMh+m6gBtEob+WptDzUX61fjEBC28cD7TAxRGx63AcWPSOuQFKwomoLdN9RB6YLwVjzO+MHxyfrzXdVa268Mwr7qFnGvWE0BcF7HQd+tBZMoWwIMSwTrb+xx0ASf7FCGJCBZ39GHpEIZBa2vG0lx+I0RL606zZY4Kg5zfsdmDRbjG04Yhh30skMQjhi+C+Iql33vFpgsEh6J491MUCUMabXcjhcHaFjD+ndSiNYYi1oCnFZKDnkBuNJqZCXxbWwQfYD4lIorlsbrxsp2QAM1oC2Mw5FxWASrRBFFYK2wSCb7uBa2QoUxatqdY11ybpqBExfiS0z7WT5/E/gEvPUw6vMjP93xzNqfRzKu6I48HeURC8aHiifmUxJ92Akm2pwf9YEqUWlRNcIi/N3VmhOQMdZXhBtvtop4N9SL0jOaPMPAqFiuGLg487d49o2Wc3ManaVbLccIGxqNv6tlSDNllB1JH/o5R7qrRVNORvLh8jwPH6FsZ8pRsdWupcRTPBO5ksWyfWG0g8hm1TLdu5cqn5YwybOJf4uFMRnHnmh6YpTFLrcBUBewlOJ6HQZMNcysweWyN4NPwLaun8PwIBgVXAfIfXxXhpJ6P8ST7VarmF4EBOtryrOOUc54g6wxH6LAUzQwLPK9Wkn1Y5B3LE/GMIgo5dvwVwSBYO2Ycanc13KGsm7yie8jfZNqAwoGhToBUnXJ84hLVYYDsoWUXQdWHKGhaFYtmeOSJWPbIC0/e91GPmKhhHG4zcTJ+cBE2hSEogXwdEyw3zavwqRCLDGT4zhYnYqAa3IZE9SnlLziUP5Yf/ap+R6MY/OIEEIq5z3Dm5ShPp/hmZRSjx492hwZDwC/+Iu/iHe9611vmqhUZxPwmsX31bmJwgXAcNg7y4sgQlAPE4PRl4a1jc7KxKkkoekWPbph0W8d4SMqN3F83hdCu4Ge6rCzla9qf2olmLJMyxetJvw7hpuJ+uOO4QwugAcwHIHGcta83dF4YQBb5TOnmLGzs008MwYNRZPdl2c1mPm/bJVTHzCuqUbIRJ0RslgzcG9YOtCXjsbNNerqgxO9ixWVhUZAa2bVoA7OdQVuaXIJoCxYu2zj67ptoKONOm8dpM7SOS2bWGV6yaz0abuBV1YJ2U9MHI1C6vZY+0if9bFz4U2Ydr73ve/FW+0444fCpyhMnS3irMrsG2tuq+LAoElYK+nLVg52Ccr6gUeNA/E6tm8aBq4HVcKuLFuJofQo/4jia5zCafjn6bARERQaJoCRYaQS3chX+ARLtzgQ/0YcbifhzyEYFSfqRg9sBXE49KZO8q0JlR5ZKl8U4D3XVQpCDOmqFDWrJxpCh+aeVuytbVkwcGmMqyUynWCMnNZp2YrPuttTc5wxcb0RS7UyIMdSt7CVBVgWc+g5sInMQkD5fm2rb0funQFq2+ISxnKs1wCPMdM6lldwwBetRIoVGTtdbefKE5M+fu/wJk3P32oY9bmWnyycLXHEJ43s+JHwyTBoPPMxSfGJCW5ttd2qXOghAAuwXstiH50Ud25lMYl1S4Yp5rsu+MjhI5iu9CY8BEbBTC4KMghq3JpQYGMC3EJUVvxp29UpdM8qk41KLImKDOXyE0KdFj6KC3TZdUP4Pcsv1JO/35MvY1gNh+DyZkoj0mfx4ul7y8BRKeh5H02muG+Kb+ZOwYIcEMspvii3dNsfBX96oYAZbnQL97ajVGp2nt8RqmngM2DUWy08uAwVf1dMmDy/651FIItovGsfmbEBsSvPnScCbwGQPq+yBSAWUqtu57NDqwyfZOsqwRyssylwOWCTwk+2akfqlG6AWfDJeb3Iiin4uBvKX+oodnWH74D3HL+zuFSSinhotPXyHnAFoO0Msm17I71tL2CtfKsvroUI7eTFsrxvCqZtHI6Pb10ncORRlkhO3F6o/SX9jXTHe8d5xpAV4Tgj1u2QeSvbnDGekjyS5a4fmyJU+4QPtlZXsR4uNXd6kzLU5zNcqm8DAPypP/Wn8Jf+0l/C7a2cQkRE+JVf+RV893d/N771W7/12SixJRC/sBl8veGA0Ues0zVyaybXcraQNGo6lm/oh/Y40CGgQ8XCwbS6ui6jx4Yi+GQhyH0WoiRNimVMdIXOEoUOtdbiRgqIlFfLNF4qVvie4sPNSuj88gXSQqPVYzDKyGTH8nrbIK+8BSErKs1SAUyBtaigs0COGVZtuVgNyGVWDQSp26aXWUDFhDlUWjMLI4iVw7IAh4Vx1OuwdCxNwMTMRMSiIXcgiiYWdTRpgT6yFYMZiHrHye/2Hob+kq2lUD++O3C5nvPwUPiUrM7O8kvFrlH/fppnspKyAxe2GDBOPqJhNYDBRtEgyl6SxQ35V/Lcp4LTF6x/DNMiTZaR/R2fFUygYAG5LX/qstUEf1aHthq2hOtQrrqKn0Yxo58cJ/KieOAjQji+3CZGlJsyHGs+ikbelK0BhyYr/naZ9Bf50RRGHNqPVEhhLQyNjuL3Zn1FJFh30EusOCV9UY4P7b6cjGUdSts6VHZCkrQiW/ElP6f4nGJEDXvYUfr4xeEFPs3DOUyaxfFnAZ+SHEWTtMqzaKkT8Quq/w1jv0/KbAwNacbkiAAcm2DUEoBG6SGto105boYjKYNAdyvvY7XwPDk05aCYXkhzWOmXPFHiD9jZsMS0CRPdte4LHSHtmsfmu72M7fnMCjUOPhqX1TLKrQsWBi3draTMkrRpYbwNN9fIPOEUQf1SwXHXMt/KOuE7ez+tkdzwmylH6RP3ChWfXmDUCDM+PPcsXLHlpjwU22roBiQkfg/fON6FxII/W9l9pX0smoabstzmXtjOTSPPcuJZGnREXpzx9l28Pit/xbIY7z5g0/L3m6RMOVSVRAS3jupqHZXktlqWQMSWLPuX2ym2vePvnhxYed6wzNrmjnp3ebHs3HGlU4xDEo8iPkW8CnNSaQcpgI0jCZ8iPk5aIIjspWUuCM8RPj2TpdRf/+t/Hd/4jd+IL/7iL8Ybb7yBP/bH/hg+/elP42u/9mvxV//qX704vU0daX3XVadqbpjWNUIbcfxB5Z4hRxKn/MM+eQRA6UBbAV7ZNeK23aSr6U0DxGHwyVbyCbaCRFBmvYas9pm11F7HcA95uSzmEUl8Vmknjpr/GL8Cte7v95UsxthkbQBq9WkMGysxrjzkSts+U5CK3zkfGICFC5X5zQqCECw1bEmhy2Q10NW7KIgaK0CQnVC14LYcFzwmheSJuL8whh/lfmiMw7JiWU6itGaAucle5j5O1WqNgc5galhXObq9bzaWS1a+9dkRNlQQyW+O7VKizRb5SzOPDkfz+GdD7I9vccC6T3gofIrVsjcEnKsuagBfUdr7nuIbz1lC2jXFnwiL3zby7i99HiYIyPHrbRX8AUOsDHRFv+vqXeuQVflTBx3idjtdXbaVP8eTwCFObwBSo7MpttgWuUV/N7PQgvsmcEV1LG+sYLXolGfkR5m7ILFCty7LKXq88NYJb000+PJKwlsAThNAqHUsC6vFpKaieEH6TXwOAF3fdZLTeq7aikNb0VUSWlf1cpJ4X9K8PW0kjIFPDOz6VGEZC1o74erQHZusoMysGEROs5iQQ48+C21Z2wDxceilNO7NInUW7SwjxHcXylIbGl/gk4c3LV+qskjGD962TRhY6mo/nYDGYUEp+j9qYiVOgCui2Q9doCEntJEeTuwWB2nGRRDfeE1kKT/1yfhqrwK4yB5GXlNAUOckTbelpBDZ02SoNg47SXnYmNsmZRrVl2VUGt8lkk3+YrgFelLsxUlYSDvSHeUva1KOaVuZSudJ9ahjBjqGzGuhWiXEcrFZfw5LTkCMzbZhWIoyA2tvaYudvRdMG9/4L9Y1m0A4MdTKKstYXMqaqKjY9CwMVdN/gVEAQr+bPE+8EO8Rni/CqmvDduvYEKnGkO+dndFugXYLPXWXxo6O0ufbLePwBtxy3B10k+BNO4ks1m5krEcbDE1avq587wYsPKZaG14JtDtGUUjHeNziVf+apY42aU76cKRjs/0wRm/5Psa1eaTvYLHyhflcX9jdLJj7hA3O6XY3GJb6QRas9NFQREWMZ/icXLY5a6JrxN0whnnePMpir70eDMs4f1+tpDj8SLKkPu3m+mf4xBOfd/Ze5MXeCaseqMVMybUU2wEQ0QUQgOHvKow9DbJ76JLwHMlQz6SUevXVV/Hv/t2/w0/8xE/gZ37mZ9B7x+/7fb8PX//1X39ROuNYUGzk5DyA1zjjFCl/HkAnTqpqAwi4cQKNKG95sh1yMlVX4T5xNosWXRmUF7FgqgA8LB9FcdIh58KQElnHdY4KKWOcaBVVViadZgOXykjTCYACKk365s4zq19Pv666TcImbiHNzDUFkDnHs0KZZZHlH5OiPRIIyQZ/U8sFkTEmgnbqS0N3/zqsYCIKrVo7YpZpjo+n4GUxtUzuZ8Zi6qjE4YTARJ5HpSSAuf6SpJPbbzvV66LwHAHWfcJD4ZMHm7jtvi/3HL6pimYVmoAx6A+YsoEqvs9WT5YE1CkkdXN6aIOZpuaDHURgMitLpWUIjKRdy06DKz4gJpiTu0re0uLFZD3JtArsMYFabzQUHj6Jmq0ctvg9I/0fvhvKqG3rRYVUa+ZIXHBgKJLiCXuZ6OSYHIIZgBxVbk47OTgJMB92k0JPf29X7BWbGmMhlm3JECW55RnjGq5lwXa0/dbxTKg/C9HcXTtM9Nlyb8yIuD7bf3VXeIFPd4c90A8diWfPg9aUrItWHykc+Mr4Om3jhctDURlsvqMkeZX1Ah56sxLU0hwDb0w+wzjJclbIaMywqY/NFfo/RGEfZUZLzyIlZRa2NCNUoZcjLpwVOuqi6ozkWjav9woTHN77B6MsOgTtsovLvlV2DGmSY4g3Rhi+lI8Vg8W3CmdLgrR1jxNGRWytoBMXAjImG/Zqiqy7Rm3C1xtsSWX8b+02q6xCT8jzolDHuBcYJWHSz88aGqSI4z1xPJmc8zY5QOZoYXwQ63ROvExuMTzwjk8MrJwwMBJDnfQQEegcT9+p+w6Tz0yJZXNKw0RPcjbk1+cRT4KMZEOm10mMF+vtXJ+N4qHFjaJIxacYj7B1bG5wUIwMsr/goZBKTrl1MY/B7i4iEb/HO4HWjaLT6DLAc9wMYKiYNRZXOP2lIpekLEj/s3hhwIhdZlg0CY40xS0/uT0UcJyZXnIkyPga+oD8js8Ib2cZ6pmUUhbe97734X3ve9+zJzBjzPJ7o5AiZIaxEMdIexUawtuyD6eZKYSGauaI88TiN4qF6fqV7DXmJWzbM7BqAfLipKnRsAToJJphJrGEAAJj5vLpHGAcia6/NzTHgb4KGCUk7X0p90bYijgSVwE3iU5uq0nl7N7MYd38O5bfhOAsLRJ4HNceabUC2ARRn1kVm7VBEUO8oK3JhG9RS62VFxCABYyuS8Fmgcs68exaWRRs+qmFyojoH8HE8g6KLJ6NzFPgoMnLB0CY52i/8SXhwfHprrjxtw8o4UXPovHUoo3DUJUGktGBm51QsipGsQz8dCUWCnyQXHgB8IgcS3xSZs0dVvW509zfXcUC+64hKcwJGFacmlVk+ZTMmTplBCEnCkAQ5RsHU3sD/LzqBRcKfFAAykRD/J60pcs2E1J/NTSwo0gEYWFihGG2LdLI0kSgYGYcWI0x+hA+mr+ndDR61N2Z/GPPAagVKOvkjHC7LuClKyYNZRWDxZc9yzBDJhDFBrGynevXAauy7HMXM5TOEj+xNrpPMht6XuDTNNyFTzOFVBV2zVk5INgzkSfse1YtjclPDkkLJXKWDixPIHjnfuoY61F9SZny6QA5gQ/DGsrzi79tIhN53Gke8noMrlAyGUoxy9L1jf2cDRPSUO1KcEJSiBd5hsxSIsYpbFAVSJ5PnShoPJ59F35vlEiWoP2tFhaUv7d23LBsiefR6+LAQvDTocwnX3Q6DPghEDMFe6oDyGKtnb7XWsRB9t+yo8Ewk1whtfqi4SA+SUgboVfLVtojbuW7KER8svu3SXhTGEX5dx3/N2LvTrWxjrOsVjLWv20Bj+zeP2CRkaBxbEEOgC0WcpPxeOlAu5F4fWGsR0K/gm4lhg3w7p6ACOPky0ZJGRMtidK4WXHUZZZRL9Hi0rvxOr7zuV2c41VsiPVrNITpR7LkrIEm7yrGlLl0xFbZymv0F4VUtB5lPZzAsMpOcTfZ07BzgqNRpE5YHYlTUK+HZ8W562bbo75Prh5KfXuFnsE0U2yZTBYkOhANlwvc4w4dAJ28TJIPxU8HzXFsDn3jXuE5kqFmaoZ7hX/1r/4Vvumbvglf+ZVfia/6qq/CN33TN+Ff/st/+aaIiXMwlN+b93sABu/74/zIeEHaxI9ab7mNGNt3LuDE9AqNvqKkE8akEKNx+TGlelSp0VJlk22BJhU0iz97WOuqgOLs8z6pow0ZhDShQqirnJj+jceMrvBJpwmWk+J5W+ZLYm4caN5ZGQxC98u373ks+WXPT92aW56tqem1YImWUZhEbw9/+7i3ct/VxrkySslmHeZCLbotEjyLEcNbNXwu8OmusNeUgkU88ACh3RNejF7YAfSF/Lj1DTYalhyMRycgEnAnKSV22pgDHsXjzmv+gyfD6ncH6MSylTDgrKc5qaM7K3NWqVZXpEoqPzoXQ2hojLjPh/woXjneipYV1FbdYtIz76KDaNWr+1/Dhc6skyG5NyaXLShmddmxtBUNdmS5XTGPaauGQo48HVa8XijIeDSqS9/F7X4OzPnBPfBGsRDRPvSu78+0avn0kvACn54hVGskYFdm8ng8adIeL+3rJLtBV5VlXNYNVwc2x6XLgiA7FkbFkScAzn0lYJJN2ux0p962efs34VsvfGStOAZvKkKfM9I47XlwhqKE5yFur1ha5MzaJhW+k4zmDI80MU3yKQdaYh4hg9RGsZ4mdVBlMsc81wjM6sviGHIM/KtgY04pAMAOmon+U2zSNuqYxjOGK6TMrYK9r9eG0E3NpFIq3t8/VHx6gVESvLZj/6rz4vC3tlBuFcGP0iGdlyk1uq7/k2y505F0k25vwCngk1sAxnmBp7Pl88Ho2CiBI92pLHsKoVmXDH83eBFxY6fuIv4kXo/PC0ZHOmPbZavRwkWlTAO/OMwxjTnkNxsYVbF1pw5NccQlPnOOyejg1nWbZQQ8DjT0zUVpf2i4kkleaI8pxsRohmvsVpjeWTRNf2cyrNFtdGFL55Bj3xxGvZXDMymlfuAHfgDf8A3fgFdeeQXf9V3fhQ9+8IN49dVX8Y3f+I34gR/4gcsTjMoRG5B82cLusd3GEa+GsR/X+1JYOyEaDoHNMfnBRkCMlRnSdA70/2fv/2JtW7K6cPwzquZca+9zb997G5pufyG3+aOQIGhi4KVpW0NMiJgIIVFIDNgqPJCOQYJGSTSBbkVMiNj60AgRffFPiKaNDxJNP6gxoD40BDXtEyGBhyb9pZG+f87Ze81ZNX4P40+NqjnXPnvvu7u9pzl17zp7rTlr1qy/nxpj1Pjjjjedp0vRHVvIa+rKdmeomyjTaHmzvtvaF07X3GGmMpls0no9WTyHZ5vr4d19xBbaSo/P9WsGMOtnz2ld6sugvXJDfYgbsUHeb9zaPWhLibQ79KGil2g4AJTZyzKptTiZa4SNOdiEjn8icWYeHWfaDDFn5S38u00oGVUL3W5LRiyhJN/2hG1nQkdmUSd0i8SwO4r7iYav9l5SAFRp/J3STfTaM5geHJ8sjZizN3RxDQQtongiPxbVXdR1z5PiBOThqAXKhJYnJ5AGeGALyOC40TDs7MsNY2267zmrHMOA+3dSDVH9yVY8bd5F41R3nLP1T/3Jm50+qp8s95elznV5YmAGaIIGQWD9zl530kAIKQNpkk+egTzpJ8vHsCInRs4swQ4mCXowBbxg7QCCnrImYLLTL8cPYFbnvqP/+YhXDZsoDr3jU+tCvZ+0PMU4kOJHhzMyyFY+maPovT0zlL25PswP6u7fgFN75fg9Nti7NdR5eo5Pt0vnVD3OYdQwXkHp93wRgY7BgVx7AMZ/mJneTOr5v9FPjk+JHFua/xF9N6gxRQFzyGiymcAzoU6trl2dx+Wg2LLR3AxdtcFgCs8blkYaaKCHOryyazFAQ6ARd9fh5p2hX+IJ/1jHHbrN2tb1R8w/PpeHvLH8GGjCvitN6JoIqmFgUfdSZuRJcDSnhp8bPDONqGQBZgL2ITJ7G9DyyvOmIwKebjprGPNQXJwPWYNW3Cmdk6Q8w+lBMOoMr3ZOICXfKWxgbV52AdLCmt2MPFGjeWYSn56zXPftK0MipWfZI33uZ6B5qUZbH84Loq3H1CpitI9Pm711voPBnclbHvJY21Prls2+Oq7tcV3vBYuJ9yM+7QSiGvGFNJ8dCkD9R0UtqfadQ7m8cUpObP3e+r9zAk6GK+j6fYNpZ9pJNj6WbFhD+ykDpHRhyugdlHffqQtWNQ5o8yPFqu3ZtKJMLgCSYFpJ7+UM59VSguBmbr9J97wUPnkOn+mOIPMM4dO9zPd+4id+Av/gH/wD/OW//Jf92g/+4A/i/e9/P378x3+8u36bdN8+2jwXGTdEl9YmuaRO0BFdD3WnT/Y3Q+0gIILJNTi8JTSVUKtMML3xe2lHkkpywpgIopIaJkq3D9uF8L2znY4VByCMytA3HPuJRRgS2onU7lMNhOAoHNbNxJiKjQA59H1fgfDdwg3TmftRsp6G3zBACgMFyMkcQYVRFTkXISoY4oyY4erdgJyy5SRO0zlVl9hXTigVyJk9n/lqqUxYi0XJEqJFTH0qpmkF1oTC2eeTC+99MAORtXdcujM/ziZueXrTY50cZyT3v5fSQ+PTnVJcr/o7arsQtvPfrvk6S3DnmWDIUZ2ObTfeuhCr/SwDPtEw1xwzEArq0GHTFKuftalb9uMGxxAHucTj5V0CdKMJEKrrpsYc1o6qOqNwwwfHc61M4kDAmdYUXKuy+Y6ryObgXHXJWU+vplQxpwIiRq0JS81Ya5JInFopMzWxThCzYXmuMCErc84weophMkbzA5WI0XxCtQh9ROI3qjrwaX9ZJ7DhE9SXigVaGCYfVVA2Jp/ggRTO4c4uDnGbr3G8XVliB8/O4NeY/fdq+oLj07lx6WgL7vbw+IhvW5E2ongT7j/OaQoiZ7QqW1AGBtZGW3EK9NhQp/jOrqq2oPSvH3yHSnf1s6d16bgFqT5n+GIY123bbP2ia9PXYfg+9oPSUGRYEe7HNsX62l+ifu9ma+u4n1SIkD76TLHRiu/bGc9xDuwuYaf1OGhIcMNjxVmJvBcwd1OyBvmggOEhEVVkNZmOQSGk2wkFRrO1v9XL0THx58Jkpu27vD/93bGm5k+qfX6vp88HRu31andtx26yaSpyW19xjfizOm90vdgBV1UM8rnF7ZmSCTQzqBDywqKAAva1aa5Zoianm51ViOsRXXO7bdvBW+Ov9qxPDKMinnQ8hbWT9v/e+P6dPNZfHf8ZXabYg4ZBO9pgHj09CK9kD+DmmsUbQIIVhoVKuJoyh8OlV6H9a9hZE/s7TUveg2aNdCAA8+VpSggINCGgdCHttFkrLYLB6mVFWhgIczGUR6p5RX4NsIjInp1krpkUTuZcwMBOvZCDCwd92bTiizXd9UwAAPDaa6/hT/7JP7m5/q3f+q147bXXbl9QXCjd94EYp23ecZMNmoFbPsePwtFOv8L+7fOZoBJXmSiJyTXqoGDSHqLud3sXbMZtTrmitJu6f+R9ph0WNZrM/0J30sfGk3FrX3xnlHh39R3yxM84JpEYMvAzyfWYN2TdgKOdENq9oPWw5x/Gjh3aSVxTb0yTLcpQOW36NAHzVHGYmrS6fdpsEG0InRJJpNam5jVlxpwbkSSwIQKnyhnM1IWHj3niMPQdFFKcyJsdZezIvc5sWUftC5e4p7EOT0/e/SM2P6PpwfEpYs9tnrmhGOz8NQLKtIVq1NBkIDE3/oPg+NRhAaCaMXFSoJ1yxap1p3itwt0a3lvXHTb0+OdZeFNEd7rl017rxopLHMr2MMMT5JTTtDX1dAmZVDsKPdbFk6V44hTWCOmplGhDMeZcFQPk/pwYF5NEt5sU+JVl8TLs9D+TnayLEOliWpEzo3BG4eTMFaGdjjVNJ+ssE0hJBxBJeQAhpXa6Jr+hUQKNGUuonFBrBnfATz4F/DtGfAqTYpyzm7EefvsjNDyE/TLNx0TauXeL9ByfzqRzqh+bfNjvODrzM659Gzdb834qrfMV8MhYlp+VvgKgjKSAAqtvF1ahlflp8Y/NyYHJ6fY7wzNtb6ftNOJ1xCoeLg304u6cT1a/oT7dfa3PQC/5fMf2WkcPjVWO94Y+8L4Yw6EjhFPf64OxXU8bZ6PzRo1Zuz7BNaNIfUk5xmYWYX9i1ZAyfGuEZqS95MNNg0DxjkND/KBlF5B2OnMfhPz3uFTau+/n6LzDp+cY1VIYhg3+j5M+8nyhA4nQXJcZztDOCJuGVLSGmamzhgGkDqadlCqQCtxHp8/vbt23lxGacMSsWZCwLxQK1/zruMbimtLvI59HY3njWr5prcd1vLOP8/SU/NYHQGO4Kba/RaXv1MUyg2duWlg6xrqaWyMT4JYpHY8b8Cy0n02zK0b4G/EpATSx04ZOJzp2hmAMgTbs6CJrMEG0Pw3bwjOWUuLhIxr2hmNAGrSlKEx1sd6KPGX8bnV0TSnXJuU7W8N0GHW3R7/g6Y5Nk/Tt3/7t+Lf/9t9urv+7f/fv8Kf/9J++dTlBQLu5fudCLAR5tQWjfpsSNIx4AI9wqteBDKD+jlgc0oK76+YPge1eOEnq6lO598XAw8feR+hCkALY7rO0VzY3HzV2LdhTe4U6U1T151DE7wsVaKh4/UQHggXigC74gOLYDlPhDG0/O2ahD0h9SdEq5VNpdfT2Rsm7rSDz2+L+mJrfJzslq1VCB4uPAWBZE9aVsKzJT9qgp31rSSg1oVaAiHExLTjOC3IuqJVwvSZcrxnXa8JplfDu5kdGtOEYCYxM4jMmJfP/gmZzbtWuQC0AFwrjhX6cxvmz/6NdYvR+qnQ+UjfJ7pA65xRvd8h6enpofHpab+7mUUyywAqoLJqWIeKLrx0j3IxgIjS/a1ABhA1NwBdmxSNbpyX6bOFNdSx1ZumFpZ6Gn13GgFP2sfaOuDeWb+se26m1EUwFnGsaUYpLJ/2sAFZynOeVwIU0Cp31Um+HT+pXgCLHAIOT5uVENJPE55O9PlFFpoopF0ypYE4Fx2nFnIue8OvaV/9Rc16RiDGpttSUqju8pDBL7LRLNJtEO9NGyE7o12KMnDyTc8E8rcipghlYVsJpyTgtGeuaJAw6tzKcWQwCfZ8Fuv9svVhj+3scYBoy0/jQ9ut+oc/x6SHw6WmJN192MjAa3VCbTzgRjg+f6Iw80iDo8cBpCRuu1IRXrLjHGlSEibsZsTtDBtLGabsJKEbjDTiFiE+KhWz/RN+Ww3v9ffFG7THNsbO5qetoKM9bsNsgN1Gm9oq9OjgYjb8D3YYVrvHVaWAM2G3dsLf6upUZ+nJDq5BGemUAUJ0SY9xyRZ6LCNyhmueF/FMDnhlWO73i9Byj3740KEQhrCU5fWcfjzp6EyTs9f/QAVF7xjD9TmnEp+cYBWCn63f6vf8SH2SngZxHsLVldFGW9V+yBHgpM7AegPUCWI/yuw7rwctY5UXC3+n7jR6qUusRS/am2u5aGtZhHabGnr/OvU4TfITzgRtsG3lDW6/GZwWeOL7IcTBoYUn/KO4nxfqsWklZP4FW84OAWC7DeSQP6lXaC+V5xRA9mOPEQfuJFcu57Q9hOsD4bgCmESVBsfTT0TrWbxU0VeRDQToUUK7qYzQCwhi9WB8faKnoc6pFXw79qbgWI7Z7xORcxM8oFWSN+CzCe+Ef5W+R77limoo8k+X+pDTgcV5wPCw4zHfUlHqG8Ole5ntf93Vfhx//8R/Hf/7P/xnve9/7AAD//b//d/ziL/4i/upf/av4R//oH3neH/zBHzxf0Ch0oSEcOfpF6dcHhOhu+YInNxUzLQTPqzNwXNNNakwAc09YGIjYyZutSh6AilqJNAy+vaO9PZj72b2OYaOh8OEVXeNpk6eT4Mc+81VO/YbA1PpgfG+8fpc928aIhz4m+Ps9ZCip42TLrHVl0riGm4a3aC0esYWBUpVRg5gO+GvJgFOeNQ0HM3MilvyFe+0Fc26eskrZFYyq5q+VwDW5mv9mwsaBj9+7uR86i8frexd7FKVuzO4IOnFn3AHnZy09GD6F9NRu2aFWCGgnE7WbEahEjTAZonieG742tSQvWeQS6NyOa8vwyZinvQbwznWS9WaXPTxtbGfUbAr3DO46XI1ElF1TXOvr257tru9pKAzv9aVzQ981mNQIe0FgZNE+EyCCKBJ17QL2YAeJKkzsS9S0EhIxMgRHJqpYOWGpSWlbbmUnwTZzyls4q8Nea4z0kOBTckJnmoIaOlnkPsUcYwwdCwMOcCPkOi+n3dvQr/09zI/fNW/zGbYz4JsXYGfMnuPTQ+DTua7ort/U1ZbRNBB8HshDjgPJ6J5tsbbnykmwFhuEGkkZvcasNW2pkb6xd3VzJdIBY3tY6YehUh0NRRrpCdy7HAidVOP8DLjjdIFl54BPCDRNuI+KTpucduuNLrU+DLftpeNaii/kpi3L8eGRVNp5vlueljmOsb07DnS3hhUNlenyFwefAo1MNHyyT1UNUDF5JgFbx1dvotJgZqbcUe2RkaShvXvphn3B67JrhniLFCsNbMb3WUwPgVG7GkRATw8MVjF7ydZtlBXKJTX7Uq2YmqB+62RN07h2gKbZyBBh8qJ/rb6muZ0VpyisD9tGFRtG3t5J+xSWD/f3jJ5pfGmrU7eGY7k763Bj9qxttb4aabFOeBtpq/h7oKEMwzuTSS9j1H7m7nmyMWaAmPr6RK/qgZqIkroNSZJaf5lwccQnCh3uzSU4vxbfQwgZesbYAbk5Kceu6Z71Q8xrUZy9PrD22KGjBsOB8p3c3AxRmLDM7TdRFFxBlSnuKjhH69S3OT7dSyj1cz/3c3jnO9+JT33qU/jUpz7l11955RX83M/9nP8moqcIpeLI7Wzee6Bm8ybOWp1TBhjVnE7uIB07Uc0NDOLCCHUTzQV2v08y6clBcGTouo3ewGggdpx4MQCs3IgYa8c5MD+XqCecOtC3ooxW4LBgweLjAQqkE1DnYNa8N3lHtNjLc44AUICjAjU1YlGzDdQegYFCYo9sqKgEGFdxci7vVYIoEICFE+oqmlAcUFAAkpWQaWjGChZc9RkjnvxfAwfxQ5VINKSs3VOC2kX3kvZwIOj3ux0sgsPTxvlsHgE0n8OswPlWiaq3OWDdJj0cPuFu69CS72s6d0tzVB6JEferkgOBos8D+ruS2vm3+cxQ4gsAq/Dchy8SO4yzAikhDoZpGU/WjTDhHht1KTYCZMQ57ssb+49VWNbdG/KQ8TYVSEusMaPE93ZYxI2o0UI4dJvV3rL6mqTm6wlo/qUIVXylZiEmTHOJIUIlkOABCKhIWCqDKGNOFRdTQSrAmhJqrShKpZaawAxcLxlrGZWUQ+SoWEcAtSYXrsuYSEsMZ0j3sjgETBDVdaALLb1JcdN1rNmZMDx8D4cym+zDRnjn/Wzv3c/x6VbJu+dcfw/7tvmCItvAjE6ZzB+LPhCxiREmaiuTSTANgNA0ij+OVXrfTS/GeseT+LEtVt5AS5kwjCP35xhGZ+tq7eloTsuuNGHswyi0c43oUEkm0S6ohuX6TFeGvrBjZnfWjy9B3df9ou0rRqAFvoQYW1wcku0/G9pt6JvWzgHQ9R5bZoJrRgFyMFeVOatKVZv2Z1afKDlVJVnYtUnXmjZw7tqsDBfAA4226mjTm+iop+LOA/iSGvv8OUbpTez2/wajbhgj0vUbBcqs+OTWGmYSbJrmmokV15gh5rVxvtewZnJbaEwkUY/tkNAeC7hh64iGIl1T0Z7TeemCotR/HO8Q1uW5/gpr03/v4YgefnrbolKFakBt6C8tOGpCIbZ5hljOeGX6IFRIcY9vmBspR19apuiBkNdSan95HehWYr8v/U56AMChHQau/V7Wp3Fzac+6OEL7K6VG+7XG95tC9EWXVTg/6pKIJr6WoNqgQu/pnDsjjWRu5eZUMSUB/EqElO8IMs8QDXUvodSv//qvP8jLb9g//T5scZ1LA0MmBEkvxY5zNl4zesU0aDbMkUldycAvqZC3EfG7wid9gysj7bVzZ2H0couBKIr5vH7yT1fMuAjHlw/EpRFOpnppDta6jWPv5U7UhnJuM9m5fcT8TMHGCC1D8Ug8GvNcwwmIV6sRE7UaQSOVlkXdCJjGoFYFIA3lXqhzht75qACBudk2UhxPVm0IZi/Lm8kBbEKbd5NToZuLtyCq+nfGv7dNkeC+L132dkoPhU9vJW3WZGR4yNTKzSzPxrpNVoeH8Kzl6YRGekIIQDWYzDcdOu2sLg2EELPhG1yLKTJBHb3tGHtDe8/9HiSmI7F1toCwfkxgFdfTCN0urBlonq5PEVS/YcIoMcuzUyhhiISBAplTcsnfVNUVGZiwIgHMWJnALNpWREACu3CvcnLNS97WLPylNjaAmyD7GtcWU3w2MOaO43Uol6Cm2ErUMfX98tQN2fqb26XdMaT+uW7Tult6jk/n0253nOniURgie2X7a2uUSQjfqjhydsQCAW/zwDDOUoFoooAh2geuIUq+1QdyqmELtXd0tEis/7D+G17SZvrRmK/Lf76PGqEYfg/3mNELhe1L1ESIKWCZN3OkD+y952jfES4CA+pt7Ji48KjVXQe+tZlaXUI9R5rNbyrDz0aDK+aKn5jm90RoI6PTuGmrBvyNVKzRTW0njH/H7wYpvO3nM4DWIKhv1F3pJi8vzEX7/aynh+TxdpNrY55/Ng5Thy/ZhL/UNKQI6vogzOEdDIjTxPdWE8a42R0Pc6/VwWiljv4INFF3qMdoApjhfuQXx+fHTggUwT5fpuZ5nVUaoeGB1V3pCee9Bi34jWzE2udYx/v7wdDXXRmxvvYSOzyk7ZjY+wiAaYY7bWp1jBi0STpyAd/AQsd1jxACHtmNRiNZZt48NLyTwvvs0kZjBh1/SKFkgLARhrMUSHrwmcxHH7moH3Qnc6Vni4a6l1DqwdJAEMTrewTD2Ynv/qLIpehR+BIBCbqJugpfQr8buY0XwEjgOZygZICm5NJ4c/A5mt1QZBwjgaJz1FVHCW5WuNt2uxTnuBFzQxf4uzEsVW5t74rRvkhqn03mdBTN5nk0l6HdF2yHiMOXrp5BtZOsXc2LZdeejvn0+qqEigCC2Pmac0pmOU0zjQIeOxFQNUg260yA4KY0xXcmKEHlsa+QEqn9r25iJYnaeZKxTqlNId7sMONOEzrQ+zZ0aKz3DRv2NinU3Qdwxn5+nt5aCjhAxCBVKQegDiYJdaKgGRAW9Hi6z+HaSPDMhDolP5lhoDmDxDC1hrnUrW+gObW062HtErDFM1vfsU7oN+dd1fy4NOw9cfqHU0QvkwVrk5q7Sf4+wl+jVgKAbnZfjbCn3wmEBFnbUy5ISqCYY0tiQk5AhQikxGxPnu6CChBh1UAIBHGaW5mQIFpYa2UslMCQSH6l5i3RC8M0IRaN5Kgs2lU1an8C8Egs1H4nI+J0gMTXC3VMY5tPmieMcV8Te2BMgzZm1Aph6OHCdk8bBQV3Ss/xaT+do5/GPDFFIUdFm0MujFbNzZk6Gqorz8bYxyQQWfGYmAAclN4CwIlQj4J/Dli2/SsecHw20kKxHYo7VnciwI+id7tAXhbNKXb7yOrjBMo2i81Fsu/KEDpc5x28HAoxywtfM2HtUMxLEP850cTHboU1MSo0ne2JEb+7tkvhFslwozFhH7MSSIBE3aNApyUwGMxF977q2gNTbppRxgTmJJrnrAyXCOwJhZSeU+yzQDKRpqO9frW5tEP72f3NctC2yL0H0DQHtvPr92ryAAb7aeRdEH+z7NVcIfSTasowkWgkTmguDwYaBIygNagX3a9SwypWa5hKQuMThH7imRqecL8e3Ow4ajwRei0o1eqkgk4jc9SSivVm6q932GfN4p1ZrZ2YNLI5cc9uGK8JUvrJHkloTsjtPfZh/wOnB7UP4/Wx79mAKQrj4749upLo1gl1+CL3zXycvb5u4qbjZwW1fQwDXRQ6c9MxQ0Ase1bLtKl7Bk48j9FewltugcBMAJNXpQk9m+VOeyYKyTIYWYNHCN8qmlb0XFOqT8yMf/Nv/g3+03/6T/jMZz6DWnup3cc//vF7V+im/hrnsP2x+dapFPKZZ22RKSHhyglxwdtkzLqW7HeMRhCbPBII2JkDkQALz43r9my79wBpNzM3YnNg+BrRR/7iqnjPDFENWEPH6jNeibHN4999HqYtaiujhGHaIS5cc8qSqe4z1GG4sJbEQKGkjsatn7hj3jzsKKkzcA0FD5A7Ra91GC2dE05osrCvFqSdGSggZLbQ8kKY1Rp2oDGNxxC2gziA2vW9Ths7KPwMRK1NMe6X49PTMwRYt0kPhU/WLfehU4GASc5JoHckGwkpDBg1lLMnXLIpUuZAKFhkvsgoBuzwfLT93W2+ho84Pz3GfX4zVRVguyllWBtwF7Ftqc8a6+pBGEwrIGhYcoKY/db2NqqkRAr3BEeylwkOCu0snZwA8SlH1n5lnDR/slN/BbNI0zED1yULUrD5syNfm4Cpe1ewblbjeYgTOKyugDed3NrRpjWJf0+DH/MBobhCqQJIfbAKwwwX8gFdY3b2UBsV7jJry2Lf+r4TN8OAb3fFmOf4dP93nbuha8ZPznXtRWHx2YcpzK8RIHdA0zUZUsAYmxqa1/Eo4GKHR0OjmIVX2d0eA2jFKsa/Q3HddO786Nk2zegZX8MQK8zMZla48MMPRwN+dX00CKc6IZWVkfprm/4Yrw3rsLu2M6at7dxk1Xsa3l5n6Xi2PqmtrvZMreSaAdXGgAELxkL6LgKQqGImFhNn9StF2mjBSdEK2HPFYS8k+0th6JWhHVBqvwS24EV4LpTS9BAYdROEeLqpvwnizDzwA44jIaIcn1sDCPsSDetL98pUVSBVZJPmaH4b2tE1yFXL4dhp2/RGU6qGPEanjAKtiHl7f2PTglBHlbs94MFeZ3d4y2hCbhVUnfNjypsvaLi/04/SmcMz5rrECCDXzh7axPKQ1zXSdOZLbqAVDXdQuINhc9XSCahrqHeokkdc1EqTaXOSZVO+keRwcO/E3/BsBACfdmSUozpMtxzcnvQn2EwBJT9IxPyJqvyF+KEiAOWOmlLPEg11L6HUX/krfwU/+7M/i2/5lm/Be97zHtC9kHxII0E83OMxH8IGZGYno+R37x2B3miCVkLvN8x2t0CJxJP7+AoaP9S+p7376IQyT207P+VWBEBuvmvsoqu4ax9RAENUIeyYtNoarpIMqEL9n7J33Pg7tt36LAoRSU9dGaopYA+Z1D1J3QDAnMXJd2gkBRuu2EttSyHVapgyY9aQ6pXFEb0IkpKe7MVKN7Qlc8aplB5zwpSKmKJTaNzYWIz3rGijdHUOBhVQN2l042a0nWlnEJq6vGWwZ2+fniXVztukB8Mn0nC10f7znCra5h1GjbexY6IWhjehYQX29gny4Txn0uf5tCxjKD1Euy6hzZLocIm2WDVkPzul7XlIHbd4Rv27ebhdQzeh+WNxwlCjfbn/iEn9a3koeW7YsHk5tz+6NsycV7IxEhEyxZC8rbKM6uYn1TYZkJ92TVl8TtkTlYBSVSBFwFobUyT+n0h83nFC1RCLUU5DJD4MplxhAROqR+GTl1p9ek0A1caLfsd0cEiJ+d6M0UFH8vQjjbCB9BjUZRtM/rwT9N7I3dlJJ7Clsm+RnuPTHdNYXDpzn6BqAgjrn3xMN0tqLCOsLSN6Y1Y2zKOwrqMGlj2q+BO1Nzf03sAcWaAl25Y3tJA9yn1z/Utnb2F9AWFMEOZZVZwK89wP9oZya2TuqK27bhUxOsYyCqNMSwlopOfY9V3/2rWA8WZKuPtAxG1LxoBr+7uBT8MnhF9vzFvwHENqmpeb0/CIbXNumgQESCRTwCPuIQFchP0CEkRzqeGfb78GYWjl26cT8qNdi/m6/iTRbM2dlsTd1uMXo/neg2DUONfGe7cpIEEG0NWX0bRpYvm7C2O4ZoKRcI9XPcgyv3d2qGLPjGtF+SiPmm4fCnSLY4mufbtnvo4jDzZ+7D1714NgxuqXLPpnPfOMlRfq7324148I5Y/96fO8IZr/3NQ5lOBamEob2CnruFk4T0TtPWkoH3LdhEVE5pOYnJeKB5BOK0WayQRFZAFrGDljCHRgPqIk4mca+0jzJMM8t9phJ+29+/W7lWeRn20baabzCJpXUr74o5IPkfCtFclpwdumt0pDfexjH8NP/uRP4tOf/jS+/uu/Hh/96EfxgQ984O4F3SLdSyj1z//5P8fHP/5x/Kk/9afe0sv9dB7YBSk+c70jDqyzqyCICVg6NfDhbzdP9UVRtbtTL9QFEZ0Hc905pXOpa0NEV9PGAEShbcQ3tHPsj8j4AXCqh6VECU+sfzWurpkXcibwrJSOCfFITzGtflAto6JNNSFf7Lvx5C/2w7A5d86bKeRbG844zlreGoAmUL5sG5MDFYsDzFMSM5VkAi12/yuW/NAwVRBKk11ae8AdUWP+paoemUiI9qzqmaZpxVhKUrMeNe3jJMSaMY/WR94B1p9CUTfzg0ZFE0OYSchYiYRfx8VU3xmuQWEOmE0IAeAemlJhwdyDaXy7pQfDJ+zTN3dKNl5oeOWFY+A8hn18fD6abDjRZGvQhDWWV1WlO7qKt38pFhjMoLt6UPvbbljd2sQbabjGIQTQY25MmRFYpE6VrZPYs/ol8eXHbU2tAIHAVYMiRKIompWAwEXXW4KcVpE6z1XhtARGQCAqzHJfzE8IUHPeCWtVwVIliahnmMEJRcsxWLbInKZPZRqciZqzS+kWBqEiUQipXgmJGVxyw4g4l6q0vfVV8lM2QPCQ1dwRJrSC7CHCJQoCc7FaxA0R/q7udxj8bieKw6zEoo+tj+k9KCEv/zk+3TU9jabw+/nczZ3LAybtaeP4MBusqKAHpJp9pM520aIjx7m2Y82w4SkMj2J9xvueApFh2j27TY3YpPST01MQeqmqcDwxgXU9uuDNDs+g2/uKJiAyiB/oVsduE0ZZHa1Lxv5G+I1QZugLAnpNAwofY16NFoW0teszCvVzpztiYofKrR6G00Gy7iHUAadLGHod7FpTmQrmXFWpXzFRvxFIDvuS4CfXhJSMzoGDq2tbUWMMhX4T5+hm+gd02xngjGTD46jRBQB1mCNPTd1kxHOM0mTCmr3eeBo+dZgQn9ujQ8bnMKydmHXAAOdxuD2TCtpaGepDti4Cj+E8VtElo0o1LoyXrbbXjIptidhJ4e/YJ4FmQgGSRg5MayuPTXhsyQRm2tbNus/YTlf7zcMH6Crlj7G03RUe6lCG5fFO4Z7H1i8+5N7GoFmUAIpCPwaIxTUBLQSeWPhbq5lqc7Zx6ieCv4dMO8oE6XKz4QncJ6LX0+ksLdnwB3ZQqeWZwArynngulxDo01CnTNHEuVGIVgGZLhXpzppS96ehfv7nfx4/9EM/hI997GN4//vfj5/5mZ/Bt33bt+FTn/oU3vve996tHrdId5S3SXr55Zfx1V/91Q9SAdIF222e1n+7H+p3mXgt5LPLLQ96oiX8pvgd8XvwO2WSehDS6EA4VIm0wFid7t2An4h190awBRwE5RM1EYYX2lfNayeIya4RiVlPpv7EwT4JEgUvU38aNnSXt9NAwcrfa8ZYfijLT0NzO0WVMZN6OYHnWhFo0m/rW+8CGqZE35l2L+eKeWJMoRzRYEiuSUWh4hwouji9UpJIfIwYEUt8WXG3E46T2G4xeltmY5b1d9TaCG3q2jxMqs40iYb33SbtbT7PcHoofPIl1q032v/sPTwe5wacI78RCLSzH0Mi9WsU3mdFR4xyzMDOTLD3j/hkxzsp1OxcfRD/hrpELAovdJwIAqmIUyY0h+FPPJ2f0DDJvvuJ39CIsH42tdB75kNkyqKVlFOA9tCfhHayJUFSMyqaoHryTUB92WmEPD0nU6fooh3F/hFcqWz+oRpGpQTkDK9PGJS+XYaTUa3EMbGVB0J4R6BM0eaSYPiIT/1Pn6zx2rnNLeaJxL+PFW2y3So9x6fbpc04hd9763cHZ+ze3jQ4+3cHF4jamgdDtQsIPKmjVsb2/fEk/0x9/bIJEXby7sGUz/s92kl/JtWKSsOHEOq2wUfqmM8+KtWwVELfnh2CWPedMvbydWXtvLvrE7vn14YS4wPW5oC/lO0d3GdXps60pEzrYMS1RBK1eEpN+kiACPbcSIW8IT0+6dwJw5jC97430OUb84/3z/fsLdKIT88xCsAwH+/66Z7VgYt0wblFtHft3GIBgkaOfEitZiKPFqdH1P60Mhjo/UVZFa2etobse/x7y77oql7hPqTclxSGcse2Rs2oSEM9/ZVavvSNIQZCm522TVraMOh7/4337TnTkvJ3WnnD3mD8EYE6jHJ8ssHaa1XEgwTXckquQRWFTqZNFTAu8IsRVyItGX+ngH1Gp0mZQU5AIoyPeWNZzb8VYWvVc4u0g0+vvfZa97m+vt599Kd+6qfwfd/3ffj+7/9+fN3XfR0++tGP4tVXX8VP//RP37ESt0v30pT6sR/7MXz4wx/GP/2n/xSXl5f3f3tYxJb2JNztXj+xNt+H06TO78G5ROG2PmOne1QAWoWR4sTCOJnkm9G+DwA1SpXJvutzblI3IsAgkd50gd8LBQfirk76TGUBK3dsxw1M9QHi0D8wKbYU6loWuvBcur6GOtm7Q3uIAVrgqqR1Rq/mmkOZJIDKLOqzpt7aDSWR2EobvmQG1PF8DPFa1zNyYwVphmgeWBh20VSQ36VCzWnGZ9nL50pYVeJOJWHOoiXhgigeHYyHAW4i+VYpTnrC2KTxZO+0eptk3DbASMRDANI0XtGqKt/vKES3Tdi+P+vpofCpOwC9L6EZF3Fnww4QLPJRBI/hGf1tc0DwiZvpm+ITJdVAsHXBAVuH8samEEM1ZnQiKc56+yNODfjEThGF6ocXUOXgS4FEElWkL2x51AzUiVGnoBZPw/JhNEeZ1meqMQU16yPnhIMfK2tLklP8qseIp1yxHDMOhxUpWQAExiEXHKYVh1SxVnFM7lE5wWpy0sxQlppwvU44rVJuTgWzMn21EpY1o1rIc0aYUMOYsGKUfl9LEg3NahjZBmFUOuIKrKsJqMSHVJ4MWyxSIMA1Tj4WbOwwnLpoQf7X+nW34uF7N9+a/4Nxwt11KT3Hp/3U9WNcg3tTLGBL3CvGtbtb9s7v3efsvcFviJsNFJlvtDRGxpk526cN40a6KKYK5Ov2bjeHVnwgbMkj0EAGMvp5qf1g9BMZ/bSy00mUWB1wovm4rHANRDB1fU8MYEGjQViF8IOWqK89/UurvNtMfsoB6iewQUf0A+P1g1dDIM9MhaiNgZUJ+8sQGnegLVw7NlTT2uu+XGigIVm0RWtl5FxVGCUPEVj8d3LGioo6MRIVxTsh0CoTSjVNUxbNqWSa4gIsHa2kA9dcKzQayrx/xkNCQtCECM9HLG1afndDqIhP9vtZTw+BUTU1ZvrOKeIU9nHtziSZzWud92lh5BOQTsrjuSYRNfrGeJdQH19rcS7avhnGnhNcu9IxwypumkWBvnIy39a01ZfYyyhJcASVRBvTqptD/QNv1PUVh3cHWooD9qY1bPUBw70L9T5D2lZnwWBKzbWCj9WAc3v+pBpNG94RaE2u2pwOe9DT0YlQVwIWgGfRmjITPY4DpwIsAouAPVWNbFc7XBBBEPtcscowN2fmCQGPAbjvJ91YcqrICuydw3QWNKqKSRXkdFqmutGUAgezP1h9CJRswt0u7dFQr776apfnR3/0R/FjP/Zj3bXT6YRPfvKT+JEf+ZHu+rd+67fil37pl+5Uh9umewml/uyf/bP4V//qX+Hd7343vvIrvxLzPHf3f/mXf/lW5Yxar558c9y5Sf0X7vKjTdqbwDDei0gTFiOZrW7YsM1Rp12r3ftCoU6YhBVoJ27GVJEumFjX+H5TcRwBwtvcCKY+/Jb+UZ6NE1BNCyoenQVioheoKfUS5DSkQOYE1AAKDexYQEsBvjOcHUHKnqsNEDf3tVt9jF1bYMjUcVDtq+WVLm75WYkgYdZ2ng2pOpDKfYkSw+AiZn4ENdPhpCY1VmacULHfte6Ve1VXzU6dkJbav131ZBDMGd5m/tw12bi+lTLeRumh8KlL9yWuIk6FKy4DhszNDgvCmuy5KbRTMYYIp/ReZCQMA/aWRaxLN0uVkLGyfVnUdm/TB7asjaAIz/trjXJjUmqq4ZPVuybqGK0Nho+ETRJH7pH4aTTFQD0GypFNsAz2NlXF41oJKQsDZaYmBYYRWpzijp2arZVQKlAqYM547ZUVcIHQtvN8g+h+SnfdfqKxEm1u3wj4aaWZ1ZiZH4foot5HI4yGyjjOQ/uZyYex9e3wXMfMkf+Jc+Je8PIcn3bTWaXYO17jwNXfhBuWbhQahTllzAvpO1zQHITe3dzffAnl6XxLSl8YPRbn8c4KGwRA3ObiSE/Zvqv7vU1lE6jXRFLvgIWk60/apAcMBU6PkQl9zYeoaWDszGHicF8DrzARqJipIDUmdnw29Fm3RkMfRsVKhyRtZzePnBbk/XGOOBzu+wFZVyk4Waz+0VVLQPa7tTbfKrX2ps5Av0fK74abprVg5bupNwOMseLVtR+M+XTmjoCezdgFxZsTD21/jlGeHtKScZdUfwpWRXJAClH8WBm0MLAAtMJ5O3M+TaRQYJhl799TW9RyncczbBrfO7Zlb54YtsTb4YcdRsb9dBPVT6vZ7fE0fM8QbLH8tqaNzwt18fsxHwf/w2S0WKx1oPsA0bIK62TDInlTCZslGPYMYsWlqnm9L7nhUkEQaIcJkKRe0qwKip2ptt3U0TxD3Sh+V4wGmW4nzIwP4PA9POd4pg7UoQGJIAF0EglOJWKvZSdI14kZD0VvnXZoqN/8zd/ESy+95FmOx+Pmsd/+7d9GKQXvec97uuvvec978Fu/9Vt3q8Mt072EUn/hL/wFfPKTn8T3fM/3vEVHwjhDLFGf50waaeyxvHPrflMHoF9L1cxMzJ8ARAIbhD/RX8CmnDAB/HYdX9UYmG7zt/fGcqK5IPf3AaBmDqZ3pAQgi4PgBNRZ1ObHDcKAh1Yh9jgDdSLUg963dxfRajLixqISRv9SqUoZeYFrXhQGyoFavoHptOpIpCldrgSRuBvYEeBeTdVBOKkKJaz/BhvvOBANi4WaZJaFDiVeRErdnvX8DPXZ0pfLnF0YBbS4C1ybQ05rGSU0DQcOL2iU33ZA4kaAvc1L267q704834OWCkV28/9ZTw+JT7d+dG8sx98DMdXwIDiOPvesTzRuGBW0WtopGblAOWIih3Kc4IinU8H/E7fHmuAj7WBswDjHq1C2MVp2YlgSEL2DM9S5+aSfPRxXDEwemUkciZsWDhWSqE3EHdPlPpisX4oSRfqXM+NUE0pNmA8r5rlATrASCrsOuPYHwZxPNvMPqSSBMGdGSep7Ts/pxf1d6vCkA/qRYIHgEJ0jNoY5wVUwtj/ZIRF2Q7Q4U9bxK9ROUOz1gcGVU9OAUcMYULw2/o3jBOrm8D1X3TY9x6dbJV87t0k+hmGQx/Hd5MU2b7xuGJACvaPCqDoDPAM8ycRwIQmEvmBdq34YGAQ4HTHtNI8+O/p9Qcvb0VAjTcWtfKag0TChaZQXavTfRJ25i1WHIArcvAoNxJUkGqpS1oaB5v8lvm9zsFcZ+ZoxXbMc1s2MOgPrBaEcgiP1EYOVNOpIAOtj7Ve7ZkKYc1q0AHozKafxenwgbxx8rZOawohfKaXnmNTvJlDAcqC3zKg5q7lz8xe1chK0VaxFYiRlFlfX8mRn3MzM2Q4XB4+rrRy0dps5zJ7fKHe3NwoUnpZG2us5RkmK/NF900gq75V3Dq/GazZdK5BX/ajAuOgad01CO4xzDe/z7XFYNGE5Gr65EGfAVy/G5k6Yp+NcYiLlzVh9QFHz1zWh58UiDRZfqe1kUprL6qfa5h3uhvpzpBMYSCf5gJWuOwLlSKgHRpnCy2M7Aj246ThTXgA2mlRM8MBXrV+o91kFiGUQEbiYZLF2Qc8cKo121nJJtTlz7nHCntib8onE6XjzY8fdPfsYGvWCLPen7w0WAVODWKMgTThG4OAgHWAVSE3T3TSl9miol156qRNK3ZTG9S9Bgx6MwuvSvYRS//7f/3v8x//4H/FH/+gffej6ALgdpm9A6j79w9tPFPYYuHAK/JsSDwB6J9YdkcC7jRj3LpcoDBpFjFCXisHBJISBrIxU1MF1EmESsgrO0IgOzurQNzIPjf9syQCtMGiBMHFaRzcFZCG2ykxCZBqRlpqqbjEgph7QPHSpgamWBwqEp0nqJwKYg6N1BnJFmhgpV6RckbPYJlaGmsek5khvs1ik500rggsFTSm7L89UFkyr5kg4Di9JHZsvKTRNLn9PHNpxhxnqxa0PvNr+4fbOjtIUYDLQ6sslJzzvlL7ImL4Hw6f9ZQzgdnBzq670xU7nH4jYFCtATdbAo558EDL59I741tktxK/cNCfi+wbTw7FuXdADVRUSwZnO1ZUAww13WEleVZ+C1Jfrpn803CvYDkKCCLQnBmZtbOZ+PZkafZIABWBGKQRSqZsJubP1bxWsABGK11c6k4mUVq2YcsVRaaIM1hN/kQotJYPVNIVDI21pm2DcsEfqsTfD2sbEldSchloh9ke1NUvtH9tOMG1H+NV36h6y3XQlgFXcx7RMRhuLO6Xn+LSbrFtovIjx4va2/3ZVmVDYUOhul8c8A2FjU9y1DIJ5CK3huajpVIN/FP0dNUGtYIJinqmCW9rZ8rkarYQen+zQsQgNBZAwd35w13zGmLa5L9tgfrcR7uj7ElTDOski8OAzykfwDHBWx+mAm1+bMI+T5iWl5yrErA8kwrgcupvRm77YNQaK5Q2aFFUP/DqzId8XzNw2bHy9CpLTqn5YlgiUTLMgmApDsBOKa8agkX4Req0fNNFeaFuhaeDaFBVGqDF78UCun6MyQCbgin1jmrBuUsN2CMNutlPpLTB8wFiZZzI9BEaN3bK7ow0kMo33Ytor4LaEWFz/Kzt2VNumlUfqAjnZPI8497R3huWyeT+h1zof9zQa7unapgoxNzPaSe+LlrlmjQJzM80bOt9oC6cBqb2LTDDFAE9QlwoB3zR/AkBZBPDWh+LmRoRVVesqvFsw32dRCHC3E9bXSegCztBDfC1zs99Tf20clyj4UwWKjl4NeU3hgCuhkhwsctLgNkGTUnw3yW8PqOD4oWZ/aEFfTAjegjC0BkRLHccmIAjX7T3q7BzqnsWapfWwOiy04k7pnjTUu971LuScN1pRn/nMZzbaUw+V7iWUevXVV28tYbsxbXVnw73zj41qnBu1zshTxXKe8qr4l4BeQm4q2RzyBGYg+jE49zqGlmUqoKWV487zuBEJFAizyEwSi+ppWgUBxbkbyUkak/tZYKjmkzm240b4uVZCtM3VSlJtYGICKVQ97TwS6iP5DigRVaScmgl0CESlAoO5JDHiIaxBqSeLthRXIziFyBE7agYOFXluwqicqxMVpdppG5Sa0wVMDRgcXCiQJYEqiyf8zBQEUpFYH5Hc8nNQf2+RFMZ8UfOinxhhBwrIGVU+u3yDlhhpW9yPxDCmt0nxNPqu/OLbMT0YPgV1aE8Vm3UN4DzB9DTCyijs9mcz5I2QiBqS1EIME/ojGMsXsJXi9DpTXd0lvd5OQADuTmVTNy3bZ7dh1woPV2wOy20ZVcVTJiGAWLWlNptl0uudhkDQJgrz1rQbeAJwZBVKwfEg+n7xPtLyxPm4Crghp/lA0ihOetLP4r6qqF86IsZxWkGJcTGtOOSCYiZuAE4li/Ynmd+5iDkOFxtNKSiWVaeQ4SdSrhFQjRql0B4jXPQd3pdhcOLYgXzfAcj7YpM2m+LOPZ9rYRO0PUAzue+xvXKekp7j034au9JH4DaY49+pH+O9v0+7F98f57MyNSaAdprJhCgqWGagNxNmNG1wwKeVm/4FrYUUBBd+oq//kGKYY5LNSdfqZqRVBDXEJAdquQmmOufE5oPJ6DJrq77XxkIVe5BVaIzKzeSwAuUI1COhXLS2cTWcVPO1xJ1vFwKQ1DUA7IBUl3pcDymUxyrkcl8zISR9h6dustMcGO9qSqXWpxw62mmtrE7Os/n2k86pnKS/iH2LKpz9gBBgZe4aH2kCp5pIDkdt7mg/C/1zflJbXnMazOGaayboO+xsIxFa2PV0N5DptPnwHKM8BYDag/xIS4z3b8u7PfVevM2y7j2AARGgfEydAJ7RJozRfYOQ6ib8AwLeTX27OJZ5hnbicM0O8c11UIXUrYa12PmpMuysfZnxfbrc5GfQNnKBlPJ4ov0E7Glf1QTRwFbNT3+FCpyMz7P8jZ8l4SvN4kYPCznyLLY32F+nIxo/GunYjs0iHU8wzCqmHyJ2PItaky4eci11akJuHRBzhE7EmEjwak4lkEttwUehOdAETuOZsYgWosandUPF5HjYCCzR0Ar+83LFXdJ9aajD4YBv/MZvxCc+8Ql853d+p1//xCc+ge/4ju+4Ux1um+4llPr7f//v46//9b+Of/yP/zG+8iu/8i1V4K3i97nnI03eEc9jpjC2TlDloPGjyRbb5lhGtaaMjtm8g9ol40k8SzwpHJ4TBq5Fq3KzHUZTtVShlICGnlNPspo5y6ZeiV39E5rd/Bb5KaYRHE60sRNbtvA5Bam8AUd41oix2A4zCzQH6aTvrkWFWjb7kvWt1YGcUOPMevKvdWYVRAWpdKKiBF3zzeNhOskc0DXHd9GnlKtx6/i62R76ttg0sqEAsOHhOhO6uAN4WXsTxO6ryYB3+F52bu/p3tfQhoSC3X/H75H0kPi0SXR2BO+f/CgY2zEf5pSfLIa16fmsLJ8OfU0dCuNl6u/763TNu1YAt3kHwIkHCg+52bOZFuriYoR6K34xWARp3N4d/dhxAsoE1CwmLM4gDkJB8yvDikEocCE5srwwpSpOLbMSFkpgSLCDjLIk1DVjPWWccsY0FeSpYM6tgbLuW+czi7keAJzWLHBI3CkWAHLqNWVSxdMkJ4lGRGnL7WQNkJNG1+KsbUKwCu3FbI8UE+NeRK51acxjnzjMLaM0FfRzw3Tqn9ji2F4aJ5XlTVbHgTP5YuDa3kJ6KHzqLDeflvcW15722y/uYJSd2jujY7TVOXw6N6V26Ce7zD7PGm5UhOnUMTJQ/wFwQRSMniosTsz1ftI8YLiWQOeMHY1WotQYONeiN40CW1ZGuwQ6y5lIGuqqbWQ1ta0E0ASPsJVOQD4BVGVP56Sa6gdhHF3SE+lMBCw0bYQI7lFrg6yebVxco5ObFmWnaeKHNaQCOT1ggDrwpYZndmCXrG+0T5Liak4stB41xo8AEfBzcvrNTf2sbVa2YudGEyHSf+jzmxNjqTm6uSmO039v00/AA9NQBAykyN3u3zLtkjU2320r17VW0IxBNs+fw9RI20eaDGjmbraugE7LiOJ6DLSQ859GDzgtJRjiDtR1ylKF7NfBRYNrpGa4CaEdKLLWw8uuTdBl17zumretMW7ts7Zk4d3oqPzdQm6anBbBzjKRaIMeIJrrXkdbq6HtBb27CXBzJ+DjEX1WjWPBm750WjVq90eaRGmoAvHTh5w0CI7iFHlNoCFqQFBH5OoYXRyeizNz07YUMr53bE6AY5DTe9SETOY03fdNMCYqYmKMZtGT1An6pO9MtOALlX74h38Y3/u934tv+qZvwvve9z787M/+LH7jN34DP/ADP/B5ed+9hFLf8z3fg8ePH+P3//7fj0ePHm2c4P3O7/zO7Qs7BwBnrkfg6FQr954593uHfu4kwtHPQjgV6zQCzlT77PsJTQvB3yc/Ij9qRFsqHE752IHNTWIqNz8CKQlxEmNJJogZnJ3yJRJH5BQwNaGFYddF7H60yLZsbkSTEkOY0S/2kUgFRAuMVVsC6NW+tU6der99CBrpkCWKwsRqtqeOLfX0K0q6RUIulFJzaAk/LcsJwU9AHID4kcSd/m7LutUkiDvUOOjRRxCFAnZ23oi9+hTZceEmn/jDiiZAcVI39fjta25MBurAbhWftfRg+BT78txw37acm65HvAk/u3Gx+dfo6a6YsXrjK32D3Hm/TyfDp0g42Wv7Km6b4PgEVwN3InBSn3ZqSiwf6iJyxp3I/B5A/dDAhFJWJqOviDVMfcJY5CmDBcpAmgQHcpaTLgAStXM1yTpE9KQAmVPDF4vWGXswnsTn7ArcWo4EPig1oXByQbhrNCpEN+ZJ280Ab4A1pr17cSKYRujO7W6jG55rj2/TTRve09aCTSyDQGV++2AOt0jP8Wk/PQ3rzy1W/03n58m5cY/0QyMPmj87QjvpCRpSAJy2idiwh2djfZ1WiVpSOodsujP6+UsMc0HZ6DZWLYnStDhNm7vTHkpw7USPYpeBJvlu+VnN/hy719Yew6rExjQK/VSNftrDcsNhAFQYuQA5mMpUMq1o2qfB9LtrRg3aUaTNMJrTXx87UaNouRCNABE8sWOM0HHseNPoozawFrbdokmRtsuYNguvbjF4mgaTmvf5xmM3eoFX12dD6sKwh3xWlyjPt2WQc9R6v0OK+ITh+zOaHhSj4t+n5Tt37Q5j0mU1GiZgAECuyQSgCYZsvu9Kt7DFWwpD77wLnK4RO9625qLWldVlt1lGR7HChO6dvm5TeE7LNSFVdz28k60PeMgX+kZ4PKW5MjaYGOtnVhqGp3KwRc6flSwYYg7OkVQ7TUHIfYDGd7Dk3yzBQPd2e0/U4nR8E5xyvIplZHkneX71LxxAWN2PAyq8Ni2pRIxJBVKTfkzRoWqPNvM95UvRBFSx+0QrU/lSNDyUfIxJBYPW0JxEQ+uQKiYqYJBG9rtDegs01Hd/93fjs5/9LD7ykY/g05/+NL7hG74Bv/ALv4Cv+IqvuFtBt0z3Ekp99KMffeBq9Ok2fcbxC7XvN54cjgVzeFzvRVPAbtNmQKKGwIWzm1fx/s/OL0pMtufy5nJL5k+KWU/+WE7JISdmTMrwufqj2OeWLHayNQdH41lPM62tUbKvfUdACx2p/1SCq+JTBegEVw3v2hAPmLSDag6EX7wXpNiuoaW3SiHQatFfxO4XSHKiltidaZqzOQnpWVFqQlXzGnfXpUBXC1DNHAZCDJEOZC3N/M98ysSJ5EPkTHq/m8STO/YjH/K87dmBYbScBjDhD53J68VbHd0xF8Lpxt1Q576qnW/X9FD41NGatmm+hbJulWkHD+yebcY+NXmYm/wUfLqpTCihMABfnGK3qXIkiuos5sOsJsR2ai8mElBtTvTaToGwEy1P7rCTDU8MrPzF2hkVoFMCryxao7OcODUuTBaVYUeaKmqBa0fWImHKJeqJHDeu6g/KQpbb88yEhRhLTZhU0OX+VNhOuShEiapi/sfKt5NCLwPMhFJIheJojBNDNKO4jybTgjsErGIIIxcZxZjiRmfJvP7mgC1hfnVcv0sm97HJn2FtgDXObtnBxB0VEZ7j0/3STV0V6ac9muncs2egSWkGE1ZErV803GS06FFjYfF7pOeAdnqfGGb263gQ6I/YDFa6JZHRF3oCX9hpKtFyIqeBiAEuIkypE8u91GgfJqV/7BDP6DrDMAp5uNXJfEfVLA+lE3z9uPa8znE3mVbt8KpMVGxbWtTkMEEEYtZ/tkagAjnVGq1Z6uz0mtU30m/ORBvhFMZCP1SlMzmRmEfrwSKpFmccP/MvR/qupLRRSgBDaDircGXlEVNV6yn176INM0gDMbpw6TCMY5eHMcQMzzUabG9z7G+QRJoXrHuSmV/fEWMiPtnvZz19QTCqW7Dns921O7v8RiYkXWMZfdR0oLka0Ye78bN1HtZqV3e9ZvRMF0UY7Vmgp6Mi/sZ322+7VqawPhnilBxoJrn2XhXyqLWrC3ec9zQBWQaSalQ5FpMqkxlGqHlztKIZ+WyClFnjYaL1h2p4Wpwof49qflk3crH6E6B+6VxDLIwfwI6xgjPk42ZfKexjRFA6kZrwq0I7hxuNBNXsZEhwBjMThjhOt0aL4oPwmJkK5iCQAkzrU/In9I7J7fCxvyZaUoe0qkYUuk3YkFHM+8TekcDqXoKQqWK+o9+7t0pDfehDH8KHPvShuz94j3QvodQHP/jBB3l5pHM36dz18b5t6k97NhLa8doeMYSdvECzlR2yOqbQzmsI2JxIMrqyzV+LX7cJFNSn96rGHqa4EVbxeEi0EchVL1PoKAfZeNpWsR0Q82di4LbTP6aa2j1ZIQ7TqwrCrH9Io3C5EA1WuaY27n3G/fiyhoLX/nEoIKjflqF6lo/RfMMYocRqJqNR89xhsDe29YsRNHs2xLhhhJr/hUaV75/EaUscVC0fny8+7qqEngG9D1H0RUBIWXoofGq7Z/u9101nQf5WuET79/awaSdPJKD3aCZgf7bGTKxYce49u8TYXmK4GZgQOYI/1XwhWJ1NS2rQeujmOu3cYzirIsSePOBCb7KHDZji2guFgFErYV2bEBvuZJeRc0FWHfdSpDLFcMKKTkApciLPxGJuouNRAdQqz1g1aqVurNj6y95eRSDFJmgyPLSono5PBtzjYPQThvau8/iMkFxOXll/kmpjmubV+Kj202YuaHvbE0P/+/g8bXPfSc/xaZNuZb43rmVgizlhSHicUvr3RhyzelDI7Op/+ocZe7PWssRHunLtAaNj7D2jYDPW0eknuOm/H3zZNTT6qTswNNrJikpA9PcpK6a1udOA0HfyXmcNWhJdHq1fE0qx+71K6s+2qlDdtEjrTI2GCp1IGOi0uD9UKENmv7kxvEN/Sh2Dc2GlR9ikfKph0Fa8ghmrY3OK94eyqWmIOtaECrP+G32qeBUMe+waGYbJjwQ7cKx+8CBmNYQomLJnzeSmswz6PU4/AQ9MQ2nadNG4Ve/c55j3Lmnca2M5Ea/i/OZ2yWce+bTucTKWZVpSuc8TBbsumBq2xJHE6+psGNPh015bOBzwN/9rgnFwgY/VyQUx8b3Whh0sJ2N8HeOoRUctDb8B6wv2Q8gm/GrPyEttcBtuEENNoyNQavuiMGpov3WYn+3nYWD3GHffl+xZavSPdhSRuH5oUfVUoJSEyCX9N1I9ZmQs+1kzLTY6y7SpzHRPRV7hjLVZ2VgXiXCqtmeCQOxO6RnBqHsJpQDg137t1/DP/tk/w6/92q/hH/7Df4h3v/vd+A//4T/g1Vdfxdd//dffrpA97aGY9lbuTnoqcI2EVgSi1IPQXh19To+IZUWl0aJ9550DCFLMZ3ScU2doKuFGwXg0PPI68wSJuKe7fwQV93VgoYnDCWUnPR/72KTKsTFx8avKIQfARVXVzIHwI6gAypwVJxVQqdTfzA9hvlJUak5gxSB13p6SLPNcwRqiwX1DQcIGp9RO35hJmU0phzkQPopRrN3aBFIKLY6wYfcJREtUV28EVRhsvedlKNaZBpUJpUYBF7s0ziZbL8AaidjYnlaWteGOkNXtKnd79O2aHgSfLJ3rzogL4drmmV2CK25lZ/Lu7MEbrHNC4WwVXVX57P1YJvWQsGG6hryOFVXewWarAsEe0zZwZi/gU0cA7RBqQsBpxJbUv5fBjSnTV8qS03VWCbxqnZBE6JMTaq0oqzzPag6S1PyOUsU0SSQ9gLCs2aPv1UIaQU9quWj+lBiLB17omRsTZBE07HBq72UVdlXDI4ZfA9R/FCvO1tBRNtZBO2ozoJuhpu11xxb1q+DzNhJmrfDuNDfuB3FeaDk0PqR57u035Dk+7ac4DmfztAx7dNJGM3wHf7rr4/uo/7HBqD18CpmY4EEOxinacIAavaI3OqwY6Rivq/jUTASwBXhhjbTHjd7YMCoEj47nwp/a9nUzocFIQxGauR/0fUoPdUwto7l9tL4ws2fV6LKANEDTtJKAEE17i4p2SXw+NCU6OK/2dwbqQdeiRWou8HDzGyZv2AzYzF2CtoHdj9pxzlwxezaPYEXmU4V93E0LdEpVishVIraSRDLNrp2mvqfsLRS7X7ErVUypaSckDgYH9i59atS8AvSg9y5pnN/PMUpSpF/jtVumXVrnrmkHUDo840Cvm4VIBDGjf0aBkz1u9Ew0dxvmg2/dAQMY8H3XMcL+xmIi7vXVlr9qJgegRZ2zeplAyt5rdJj53IS22TSYYzvtj3aWK+Zo26JGk5kjC56ya2+lE9y5eQx8Q61YObRUlwvdWVtHOoRDzM1c6P3CcaQ5Yt7w29yckP0IPWrQJi5fQsQ9/XvIBYcQmAHg5gMUUH9PwcE5GJM6RY/uGcw3lAwLKz41U/fkf9l9STXtrHsshGeIhhp1X26V/st/+S/4Q3/oD+F//I//gY9//ON44403AAD/83/+T/zoj/7ovSvDZz63ejD+jSmA4k1lPvXdI9DYh3Rdk3wKte/+uaHsbi/jBnIWYMk+fVhf+AleVYLNJfpuRB8m7k3Ea6jQqIYc2+h1NhCzC/rbnPCaimbnnNyyJRFSOSM25IeCl4GYfUeRjrUwnlwJpQBlJZQ1oSyEdSGUktwMh9mcEwM1CNlMqMQspjq1CIPo9VfC1bW2up1Mv2wmEIf82kmK2imtoFRAyRxojp/Q+fo71rHVIc6aNpjx1NDn+h1Bx09ph/F/VtPnC5/20k248rSuvEtXd4qAN+xJEVd84ydybBo/hlEdhsTP3rXw6XAutTVu6zzKVPxdNFZySGbCYtH7IkaEJcBQ876gUbkhQsM7uAK8EsoKFTKRCoNZGJlcMKUVU1rAlVEKC84shHUlwZtFPvVEKKeEVT+L5hk/ZSWsS8KiecxU2M4uawViVD5puK5h01yNWGuDem7kx1vjZmN4Eo86zXOz4dP4fcCnfiPsZsPOoO5tMHcDmef4dLu0Xbs0LoGeHrLvtB2RPTrlpk987sb6jXiiv2tuuFESULJ9qBNg3ySL9Q83vDFmi9OAT+F9dQerYmFOl+m7IgxZvq49+ikBEzvMQ1g23ZLjtiQri1a4PmN++GpSkx6ryApgZSSNxkynCjpV+X3NSCcGnbjRVRFPV/nQAnHJcNJr45I2Gs9pKr0ZaDzvhxrathmhM2PGMk8ri4NzU1owJ+dTElzOqSBTQaICoiIBbGDf5S9RcefEEj1V8X1DuG52Mr9/V5ZvxKfnGCXpHPY8Le/uM2f4uPt89t69Vw+fLSRzs6OhAnZsLEhuekfczgPt5ULjiFWqbWSYtIvJewA9trO7zqjEqIkb9oV3jO+y5w2H3Dl5GcsFamIJTDOJniMYjadb2gf6Ny1owbAWCPbU9g5aNa9ik+URHNL/SN/lv4FNJ3hHyQU/BDR8YH3ayuX2AWt4hfAMmJEgpnwTCo5pwSGtmGnVCHmsmpqm3VSRUZHCB2TmeFLB7U4tnW3YlhTviOR5uiPIPEv4dC+h1I/8yI/g7/ydv4NPfOITOBwOfv1bvuVb8N/+23+7fUG08xlOn2gn38Z6YfyL/ncDBGp/4vv26jEWSxBHjSFkOsw8boJoA42f6GQyvIf23kfhHTl8ZgJPSUxhcgLPem0WXy3ikFKdCE+k/g9oo1nQqWEnuJ+CnWb3fZPRJMuhf+PEJkZzIGpaU1aGOh/mo3xw3Hkvy2mWOSYFE6gE6s6j4VlUqgReM+qaUZeMdZmwrjPKmtFE2ILuHHaNpNoKpGX14vctV+taTdZf8Xc31/pnUgbyBMxzxTQzpgMjTwxS3w5p+FASMyB7j5VHBPdHQzYJ2e4105r9wbtDetqu/Yylh8MnOv8B9vFi7H7aL68jus7hl17r8O7c0JKUTxFDjZHJuBmj4ilf2vvQ+Y9iDyziiuKTY9RRv5u/gglNzd1O5sakdSFT6Y7YRXBipGGsmS9z6x9/JgRC4AQO3tWJCJQIKTMOc8HlccU7LhZMiVBqRq0TyjqhlgysE7Bk+Zwy+DQBpwm8ap6awdw+q2JTuZ5Qlox1ySglt/q51pU1ijzAgQmk2E48uJ8EPPTHZh6eBfXW70mdv9uHco9PlOR7/LvRDNHyHLd839D9J3F7xsoiw7g7pOf4tJ8intDO2hznwd5Wd47+2csTI4zEz977duq6obuMAZsJ1fAifHAg8Qln4dqpYWyc1jzUlyKmKV1UJy33QOBDAuwzK34phklwGEKHfdnhtWFW6Dce2oSAdZ2GRcCmzgl7Baiwm+vlVf1faZ9ZkJlyAdQLwXKjs1IB8tI+0wLMJ/lMC5BXIFUSLQXVxEhVFJFykch+eQHySkimjT+Mn+9r1p65tbfX0paP5JfGuf/PEFY9m489MsMWCQzBEOIskdBqc2Y8Oqy4PBQcZ4mGOmVgSsCcgSkDObfv9klKQ9mUzaT0FdFmCu9taXdOt5F8PCV97GMfw1d91Vfh4uIC3/iN34j/+l//6z0q8nDpQTBqbx+66Tfd/OyduvUcjtlnyAoM93P7sM15+z0DOAA46nWjpXb2tc7E14TTOTxjjsXNqkV/d9e07HEP9r3U16KtPTSMQrsf2yQ0mr5L37FxcG7PGk6ptpNhCYyUykCdGfWChcebgLQS0kqCLydgMpzR7/M1MF3B76e1kW/ODxbBL/+oZiiFPrB+2IzduXF3Po46vssDYhGQk2i2H3LFnNXRueLXnBhzqpiz+JZ68XCNR9OCR9OCQ7bADYwMxkQVcyqYiNU5OrQsQHSoEgjk+JR88HQ6EjCTvHNKbXvKqm16p/QM0VD3Mt/7X//rf+Ff/st/ubn+ZV/2ZfjsZz9763I2/TOCEoIk+FwBtPN3yLL32O5rz4nMh4qOKu881N1/2x4fn1eQcvvXCMap5SPAnfPJe0gi7oU4pu5Yz+phRBiaYJjV21qZ0B12b/yk7UjaTSWVgBY6meVaNfmPqavzUBRJnjopUWlO+RKAWSMZ2ylhqEY7KQT4JMShnCaQEzqUWLSbCgFLlhNF0pOHzBplIfhlQgWZqJvCdQeutB1EcAM865g4xlEoRyaBlwxcGZTFHjmrOnqlhLXk5tfKN9oQnSgQrV0KNsTNWeLTFsbtU2T83+5S9Nukh8In4IaetM06/L6NhtrDjdr+Q2MZe3tQ7zdA1xzaut0QjQjXwlJo/t/COxQLDD92TfXiPK9KDNm77XXxYDvWK3Y6sxJ6rMeYcFV0r3NlV+l2dXltRKKKnCvmvAqRkVckqriYViyz+ISSAAlZtTpJP1CnvwRMFZiSaDzlijxXcZqZgLpOYoJSlfkioObqwpqUDY+CCYmbtGh7jFCJ5r0I7YuXFMPc3HxnPwRan1iwCNgYmfM/wyfSjud+i21YGV4cx3WccR3AB7C5ZXqOT+cTD39vnWj7zB4ttptnb07d8d3d1yo0iuMF0Bg5xlYwjYHeGNcB2rKp4TCpkAhkzIm4zXsg0Gix3XqtAsAU4MfyGu2S5D17/dI5SC9AKuyRiU0oZw+y1iP2gdFPNTeNBiSpD5tgyvogdrEGxAFBhcFCS6EI3jJpfVZ48BokIM1AndFM/yh8rJbGNRoNFTs9XDO6qNE7LfJdV1e9XirhtGQPMpFVC0GinyZcY1LffWoew+1wx13UjP2v/ybVXijIW68h1D9xXy2E+Psu6ed//ufxQz/0Q/jYxz6G97///fiZn/kZfNu3fRs+9alP4b3vfe/dCnug9JAYZelct9wIJ7yd228l2RrbXAuVibdHlyi+VxrvpQV05rjxr33foX843gOE1xoINva1NFYUrlHkh3yTmM55+4zHM/YmHgaaFqYKoow3TKs1WvLWiUXIpIdkKfBrpuFVJwbPrIEopIPrgZDW5DQEA10QB/NBbKa1HT8c/FHlYPKHkxyYlYN87KDC+rH7C6XzKHw3HlA/zM00z8Dev7P4gGJWGglAZcJ1kVPUA6845IKZCqZUpG+o4roKMZupiJYUpD8IAFEFsbrb0TdWBcNMzSSQ/VsFQzRmxXxQ/Vxp/rukZ4mGuuuZJQDglVdewac//enN9V/5lV/Bl3/5l9++ILrhM+YJPzc/xuc2ZSgDMXwfs50rqnsvhTJsgY+njX7C1kqneO/cc4HhkzzUTiATQCC/ZmHWYVpUE4n028pSDSo5+Wvv8tPqQFNYk7o+iRJnKB1SBEQAtEhaQ//5icAE8EE+MGm8lpnCouhOT7UCxHKjRZhgAc5ZNY4Ior2wTKpRlUQfP2gfxGFKenqW9WRNrlN4eTfCfgKx0ZAK08ieiSeF9j1nkYgf5oKsp3tV47haGGTEMsN7uukVGVathEn1n/a5U+Lh84ynB8Mn4AZ8ojaH9jSn9jBor0z9vdGGuqks9L9DleCaQXYMPGpr+kfwqVsGKtSWo5v4QbdT0PjiCCL2XjnSaULrQSPLhVVzuK/44OtA+63zfxex08uTAlNNSEhInETjVE/2mwaijRuQJ8GSw6HgOFdc6En8xbSicsZSMkpJqJ1dEYFWApUkuGPjqoxlmti1MesqGlVYk9sK8ZrARTCKzFEwodOSNI1I0rXeHYuG+neYYYOvp389RsW+kxum/ZQSOzZ6uVp2ChqyCH+9zfF6inXQP2mnjluovV16jk/7Ka6F23xuwpYbP9SN+VM/MRlNM/hUbBjQNLxdizJqGUVN7diOnbb1uDHWJ+zVqZW9OWG38pV+qvOQ194d3jPiU4enkXFdWbQFzHeMqu0YHebZiZrm6cE0x+B9RMp4JqhsKLSV0Mojw3PbB4wm0wNK08xKxvxViMNf6DOKQ914HBh0kEM3GuZUdF5OybBQtA5E+0CxxrVXZUCMXjGtKUC0By7mgoupYs7WRkJKoimViZ2WSooxG0VBnQ/ivwqoSDK0I7208+yd0ohPd8Son/qpn8L3fd/34fu///vxdV/3dfjoRz+KV199FT/90z99x4o8XHoQjBrW+ogN3b5AwzPj91u+50YsOlPcBi/iJ2KF8SM50Cu6FjfPWLuN/hn4qQ0tc+Z9Z/HJ8u5pYzo+aQenPo9rFkVsI6iAWgRPiRVvTGAFan6DKQikZhVIqfDKD9yWJNpSlZrmk93W8iliV9QeU74yl8ZzugUO4LTrZi+I/UXDX9tLbMwymuWMYYD/VR+gjjHmJ4oVZxhTYlykFS9OJ8xJMGXlCYD4xTPtpogvDVHtG0BEyCRaVUACgzz/RMBBNazE2bmS5+kBMOptnO6lKfXn/tyfw9/4G38D//pf/2sQEWqt+MVf/EX8tb/21/Dn//yfv3N5LjGOifoMrlly/jhke9nK4FDA+FiUHtZ4A90A7tXRgVYXaxReusO3OAnC87tVppa/e1WC+65yQa4BHbFHzrLTRYbKaPLQblIBOEmfJD+Jt74i72DTpOIsxAIBQFUVcwBpBtYLUb1nDVvqdSNhNusMlBkCWIE4q5MyT9ZfFf0JgYGJS7MBpoo0rTjMK3KuOOWCE83gJxNoScIsKgJxZvBcwTMDszSSiMGqMWUmfARGAUuEreDE2CvanfrtDdj+fCyFUErGuqbggB0tnGkQNrXnJZ9I56mV7e8XZDdCS54IZbgEPh7b3DLFvn+bA9Zt0kPj026iHj/00vnEfHcHqv7sDdcY+yd93P76yZRO6UoNn2zKeKqsJnXUnQ7C/owYGdPQJ16PNLxGiTXdw32pRTx1XEbAfiMGbb4WEq1IYmCS1Z1O4hidV8MXAg6ivdS6TtbfPK14NJ/w4vEKl3lFSoxSE+accJgKqmJCsRPJznkEtVPKClCWqCwX8wnzVHGaMh6nI8rjCTglYCVx+nktVBDPDD5UYK7gqYqzdRICKRN7+ONKohXaVM24/fUOQrg+jI2v7YZlXAl8ssiIwmACPZY5PsUWk+Ioi7P2bqIRWh9TGDM/FySfO/Qcnx4EnzY+lj4P8LL5/bR3nH1Qf0Y6jgAm0f7moOFYjUlRuofH58/QilyV6bATeXsmNYy0pUKxrDRUUzGrTIHOCrSJk5NGImjdbQzClt7qZ99XRj7p7cyokzj6ZfJzNa9znYR+KgeIQCm19/NBfidzeK54V9UxlkXxk/4zv1jqk+rAYgJ4AvI1IV2rcOokn0nbXo+qkQAInZkZZluc5oqU1SNKpUA7ka5/Vlqrqi+UnnapYUKJJoBdJ9RKWGrC9ZrxZp5xSEW0parqvBMwJfHXYvQSozkYFl9SHtcKRhkdsoQKM3qs6uQi1cRiyHP5juHWN4yefn/ttde6bMfjEcfjsbt2Op3wyU9+Ej/yIz/SXf/Wb/1W/NIv/dLd6vGA6SEw6mn870336BZ5bpWGgtRY4nx9Ar74b+MNOdyOlh+RTwyY4r936CzHP0YTpHBfv866P7RBtlxWjUb2Z8EAUtCUNkdYlrQeUcMLJPQeA+AZoCs4DUUnoB70MzGqYg1VC7bAYrZ3KM18UemyemCsRfAsZcGYrHRBTXCrG/fbpWREyQw+SgPKgZCfAPmKkBaoaTNA10A6Cj7VI7qAXuZhqkn6g6N3B2wOPJgJn8SqxQ8Jbdg56QGAqGsVTrgqE5aa8LhMeH29EHxTSkfYVsVI07ACue+oTEVQSScOwZ4FciogVh5V8TOj4kCr1l9qlVBxoNP+JD6XniEaKj09yzb9+I//ON773vfiy7/8y/HGG2/gD/7BP4g/9sf+GL75m78Zf+tv/a1bl7Mx6Rg/lqj16cYEBG2+3fyyIUNgEMN22mz8a5vXDhKhzrEe/hyLql18wNXmwt9NiqAzvgvxi94j+FGQOTaPrpE8qkzWTbcyKIQf8fYFExlrq1chWR8ZtYAWOUEJJg/TPNbdVM4VLNx0Dy1vbB/H38mc73Hv+2ZmTDMjZyFwimkuGPEVyvbxDapgDXzaDuOO7vRBisSTnr5tPz4TffAozCWP6BfUNAERVMl1DXZMVk0FxsRhSnJ3r/8tA2eEZmy4qHd+cTvBu016aHzaW/MdaACyFolwtvuiNlV3fUsMnS3C1y5vPkLlh7efwSeoA12AG0MVKx3X/EAUdXta7Begh6id/onMJANNwEQDLuryNPzd2xcc64xpNUFJlb8VLMKqTEKUKPawqqCLJlDFPBVczCsup4I5N/Xp6zVjLQlrbYEQBGtsEgjxI6dv8pcmxuGwYs5CjFwvGWUhMd8rEEYRAKDCb61/p0HUreEoqR8+nYqr9mHEptihhs9xbnkbWrdXxSdw1P60OvEG+1ztPVxvmp0xnxUT7kdV2Vuk5/i0n/ZwaQ+zbsKwPfqryReUxtjJs/usPaZ0kDnrNi0pwRHdF021pZNUoB1QAR2t0kUExk597Fqkk6yP/HJ7NwetTqbhk0gcrJvm1jDvGp6G99iN8Du+m7R9Kco7YkHD/O40yMxUKDK3SjNJ0BhZuxUa+EbfW7P4E6yZ1G+XMJg8QfYB9WVFIWqXD2MK74yfCcDEKpDi5kjcMUid8aoJc0c7OY2l7hSsG8LcYYhQygNAaFvXmlCqBLIxpo1DZ3g0v1guooaD5kvGLEo+Kydi2H1NY0aMevXVV/Hyyy/75yd+4ic2z/72b/82Sil4z3ve011/z3veg9/6rd+6Uz0eMj0URu2mc7TOiGP3LSfe37t0035yDjOH1zn1bxo8PUvQPXAOg12JIAnNolS9/h2eRf9XXKKIcJkZzQcv0Hi1GugMU2A496ksLloWAEXBJQNmVm3lghVfsgikXENqsKoxR+hmLacQ131qCqbJik2YococLPUogHkEt7b7QCj/yZHG6fCKu2sU/kZ8MvwwGkeE6PYa+R0j8ckT0t+VoXiVRMiNRp6BoZH55NNoqIaT5gidPMhV1WAOci8r0x3rNlFRrLt9epZoqHtpSs3zjH/xL/4F/vbf/tv45V/+ZdRa8Uf+yB/B13zN19ytoLuASiA4XBK8f3vzuF8/ozHVr5Sh7Fho0BrYPsuNoKoQv0ceCa9lJc0KSFUcfAlN/XAAONaHzc6WdGl04BYIIgmxySAmicCywiXbIAKt7CdrTnwQBArNd5NyswJAAA56slTY1bzTImX4CR7BnSq7MMok+dZ/BWL7bMuboXbMAXizSeAV9FJVTSclGjLw4ovXuJorrg+iLYUrBi0kzviWBL5i1AsCX1ZUWoFJwgRPuYAA9U1AIEpgrgosYScMhJ+dihra+G8dURtP11hieBTAop6cjYFLiWGRYDolNgNFZtQaj2ZtylYHJgJwWoXTZhINDVOBJzDSccWdUpxv9wSsj33sY/jJn/xJfPrTn8bXf/3X46Mf/Sg+8IEP3K+wt5geDJ+Afr3bfNi7Fx6QqXKmI2MBNxFeI3hFnLHbYdwYUHxir0P3zohP6jCSTZOSEFwWxUmvjxvxRLLWEzcMG+scsTlistXX8MlOGNO1EFDi8FjbEDCYciBoyLS7WOvDjfCYABxYbPRPGiihALwI5cG+3qo73vWNHqzheRkrJUy54jAXIShqwlIT2Igj65AEwVjVLU+pojIhJcZxWvGudxS8eTjizcMBy5sH4IpFW0odD/Mpg68S+KKCL1aki4KcK5ISgMxAqZByM6GWBHd+HlUoxzkzboQ+rtQ60tpQCFyAsqJRKzoukZm0CDUAZI+q1AqmJngygRMzpL4MIG0F7lTegibCc3zyxAM9wjtT4sbnb3EtKsB4GrbJXogkc8Xhi9v0q5NkIi0g0i1GNwFwgXQXgwQBc8L021R6D3wSgCxaRDQIvpyGCs+aWTEngFZx0EsMj4YVD/VYGRvvgjM0YjEG7EjI18B0zX76L8+JJi1nExyxuGWIwiErN0EcClcILmVIFD3HZWm84DU1Hzi5PV8vgPJItLbylWojXJv2FDA9ES2t5RGwvij1x4EBqsiJMU3CqFXVRrXIfLHRfuJvY0xiRsfcIGQ8xhGoUSEbA0vNeAIzoQESKpiFZvOyDcNTdfK5MolASiejWRlkfWapCVfq629KEnLdtLswvwUtBLTvv/mbv4mXXnrJL49aUjHRwJcw8+baFzI9KA0V0xme7l7pzDZ49h26PmgPL/S7LZ893srKICjNMtTdaRxuZY2aU7HqUj53mMGsuGIAac8HzGNi8IFdYG6OwhsNCBfmEMxXH3c+iDuQVt6zHBj1AkjXhHxiMeVTPlGEY6LT4yZ7B+75O24fnhk1S1ki9CLHYVv/DPS84sQqaJMy1wOjXAo25SsWrc6TCM7yCahXwPqIsD5ilKNhKIBAF/rvICnywzGdGE3gIw7JI16ZlqfRxJUJRcf9BEaiCce8ijkxTE9rAjNhClHyCObaHEh6EiwCKQ6xfjSiqNLwJ84oSDhgxQUtLiw/0IqSr3Gn9AA01Bcq3UtT6iMf+QgeP36Mr/7qr8af+TN/Bt/1Xd+Fr/mar8GTJ0/wkY985K3VyAQh8YN93B+vbTp990FunyH72cQW4lIJbvZDvV79sKs3na2C4xz3H6uWamB3IdQ5GF97WZFIC+U5gOx1mp6MkTnb7BIZVSDlxAbWQDBAQ8ynUD+rewp1N7M1tHGsxCiJUVJFSRWVqvzO9qkoU0WdK3CowFyQDgXTYcVhKhK5BVUIjFQxU0XKBZRrc7Tn3G9rLxdpT43Dz1a/SFDpg0oZO10w9HGX98Zww0YJ2xOqzVGF6awVw5RkEIYwoMMMNYk8mwBMx0pkrptV8fQ0VvmOyRx1/s2/+TfxK7/yK/jABz6Ab/u2b8Nv/MZv3L2wB0gPhk9naMK9UT6XR8rZL+icYAe0X35c7vG677dqZtYES/u4KUSSSBxYCXZzyBuv77Ztg0vt4y/YWxJWt0Hroa1FeKhhig7L95i8rhOHjlCNHE5G3MjH+weCoEJwrC4grpB1VSpAqMhYMaeCZEES7GPeN3MB5gI6rJgOC47Ha1wernExnZCogFCQacGU5EO5qMmkYg0rBq8Qdfc1aghIhqbxyB1R1XCF22dvtIh7Dvps50nZFCYWKzaZxgJbeWhlUiquudlU29rAivYaxFl8Qde2O6Xn+HQ2bdbfHv0U6ChgxCY0hsjLaBjgeWLZe3UYypW9Xu65gqFWpHIfVr2MeBLfGdPIbO71BwL8WLmxvRzaOt7TaVzRwr3bWnCMitgWLnnREesC3pkpsR9JEZrzctMiDwQbDxpqRkPZsx5GPrV+8/DuGVgnwjoT1lmYu+WCsR4Y66GiZqG7mIqGhle6K2tId6uPLeuVgraaBdJR7YqIi37YFj/aN4rzprAP4GZtUO/R5uqAfNy5lVehbhH6ARJHw0pDKYbbwWBliGkRA7UySlWlDC3nBn3n/XSm+i+99FL32RNKvetd70LOeaMV9ZnPfGajPfWFTA+CUbTzGdJGg/Mu6QxG3DSjNsSQrdMVPX3i/I7xMluaB0NRmzaE74aDFYxK7XMOn2VDbqWbRhO4x/pGZwWgKID5LYrv6Go70mtsdRRNLefHErs2pgWgMtpypwe0rQxkFTApntTELVKf+qIqB0Y9VNRDRTnK3zpVeY5qO3RMrSwRXNl+omO2GB3Vjy873RRppNbDPjd4+/FOIWuT4gWj8V1o3Lj7R7MnGW6KXDkgigq6cvg0rAxmzDD+XZ5dmLAyCe9LQ0Nvk94iDfWFTPcSSn34wx/GG2+8sbn++PFjfPjDH75bYedAq9f7lTUazDb8Gg1F9fPuxld0quMIdL8lhqifw1Q01bQho8VndAfe1ByLmxO2WN/h1G/sApFWUyiXto7trM3hp6uWFvQO6kxVUemFVOEhOfMi+bwQNdUTVXttJ4tDTgsdbMpTopEAOalTXwdWfwtlyhYZITotVSk5jgBfAPxI/x4BvrQPo77I4JcYeLkA71hxePmEF9/5BC+94wqXx1UchyfGixfXeMejK1y+4wrTCwtwWQGT3BfCdJ0wv5mQH0/g6xllnbCq10FKwJQYlM0puX4ykCf5iKNf8mmymUk6H5M+4w43kzzXhVzPaGHVQXrS1x1bABBV8pwY8yyfaVJzxaBpYIDoxHVNKDWjqDOKpsZ++/RWVTvfbo46HxSfYjpDZHUmWH4vOBwfyxi/D3+7IaChfLvvAADRfFKfIF1kKctn+KTBEHiixswkBMyirl0j1kbnw6Pz37EpXbOoYStB8ME0onJp6u+5qs8AI5JyT6yN85OYQB6SigXvDgBfMHDBwJHFMW+GE23iQJx0vTZ9buE/Ew6Z8fLxhC99dIUXjgvmWfw9YWbBu0sGXqhILxUcXz7hpXc+we/70tfx5a+8ji974QmOU8XlXPCuR1f40hee4KUXT5jeUcCPpC6GydM1YXqSQI8z8HhGPU1YS1Y1bw1DTOIsOE8Qx5uZBU9mgCY0Zi3MuQ7TFeMowoxvNjpuhk3xuuOTYVTbinMGpgmY5oaV5sCYqKmqs02umsA1w/xxmVPRu6Tn+HQmpe3HBcsbr8/oQ4qPNElcrAA2C3oX40IZMQtB/J1YMBbDFkbTQjpA1pOZbARH3pjDuxDeuVPdzcXoMNc+o8PggFfeBoT5NSldonTLXqjyZP0fyvflF/NHWS1Z2YRymbBeEupBNBlSmNvu7iA21PB6BsolsL4ArJdoflUuTPtJNJvWl4H1FWD9EmD5UmB9J1BeBnCptNmRgReA+iKjvsQoLwHlHUC9FJNBUiyeriWEe1oSyLQfIXgkZjDkznydjkqMw8SYp552qpyUQWsR9DKZ4/LoxFcdoyfGnNnvG0ZVJKw8YeEJBRkxvPqUgMup4oW54HKquJi0DAKSAiWDwCTPrBC6cOUMIkJOwJTfGv10F4w6HA74xm/8RnziE5/orn/iE5/AN3/zN9+pHg+ZPm80FOBrNQpd+31ruHaujJuuDeU27ZeeJCMW2ikXme/u7tDW9oyn4ok7MTdhiV2zdtpazuxYB/04n7TDI8qfpkllQQwStB6kj9UU6KvmSrsLULDXr9zyO392APgFoD4CqmEFCClEDHVz4ijp8/Fj4JHQSHihoF6Ij6h6BMpRMGt5mXH9CnD6Usb1uxjXX1axvKugvLOCX1A66QjgklFfYKwvMdaXgeVlYH2RUA8KpSdgvgLma0JeCImpkTfUt5vCPNhzzxIB3OivOYt1TQq4w0Fkkokxp+pa9tIThMoZJ55xqhMWzk4LEYCZCi7TghenBZe5+PMtwILoVFUWvDzxhCf1gIVnVMW6hITpC0xDfSHTvcz3zqmW/uqv/iq+5Eu+5G5lvYW8tHctVuumwgkmEm3Z7VkXrHI7BiPA9PbEfK5JsLqwv9yYwVFy3jFUuw3j1oAdNQovj8NveywcQVEh1MxIdkzoh9m8lXQnMSkBNTtm6Gm+qX7X4HQUaCd19nFiytarnhQSW94g7VMtBkzszeTYZJJ7RPKisibUWQAgK4UnkQhE/XHKFYfDCqqEBQymLMNkzvoWgB4rUNQDyjEhz0VULVU1QALNVBQfNDU5seZwdIJuJ27t9E6ILLnHSGc20up5opCBw/j3Qx7KT6JxUKq8q3fIjnaiUwkrKfF4lxSl5/r3Nk46gbeno86HxKdbvW/4TWeu7z5I/d89ExznaWLBtqQoEAhGzDDU10fjvjaaEtSEUmxCicA8ORaMWBPayMN313JGP6WirxhWUxM+tPcQw/2amMZ6s8OAB13oT8EgOBVPEjhkUaygLB/xJcdOdDAzlpVwSglXa5bTOxX4HnLFIS148SD5DmnBaZlwWmeUKhoMKQFMFaVIKPNEFXMqep6gzigzcDktKEdR5b5OM9aUUVWKQ4ucPqYrAnMGr4TlIqEcxJSPdYBJ8aj6QHAjEAERcvtpaRj2uF/Yfsdh5HxMx40pzlxug9T1vhJirhFMrlEy4hMYHuShAuicr94mPcen3VSNqN4Bms2lPWLppjruXYt0w075HX0StSHHZ3Q8vTxj3jBMv4hDsYy98m6YUo5NQXOzm/p6tE1F6yoqDe39zE3YD7ln2uFdW8d6YtuP1uaqPljM6W+1AA6J4I7KCxoTyIrVEM0FEzivRKAZTRmSyRljaB25qoZBgjDGKXwmEdKURKj2UefraZHG0AnIb0r9ViRUnnBiRjoUEMGx1VwLmI/MGOa8sjF8xna1/OO4JtvQfPtqeGNmN402U63X6JGHg29NJhTtDNNeKIrzSQfZaKeTGPshrRl3St1mtzPoT0k//MM/jO/93u/FN33TN+F973sffvZnfxa/8Ru/gR/4gR+4W0EPmD5fNNRNuHS22zTPU3eNM/STlx33wli2HpABaJpHes0P7gJGxXJ8rcV3Wd4gtHIeaCwnYqZiIilT4LPcNLzNzUlRLcUEmJ9aMjVKMvqOt/5+K9DCp9ufoWNZryXlcRNAE6OWnoCkhbyu0pbqbSFAXBtMVaxCUgJPGrG4IriSkXoCDKQKyk2LvHWu0BiiAUrymYQnTNciLEsLkB/D+U42/1SRRgrdXImAwhpcRt7PZgWlZoZUm7DOtaG820T45VhSE6YkTskTWmArMesmNSUugk6ssM6CjxmEYojIwmuqvqm+idWMWaSkVTfIWr7wLlq+UOlOQql3vvOdINUA+Nqv/doOtEopeOONN+4GpPb4OdvpeN87sg342Lk0/PXcAwj5o+IwoxF2A/htaAyl9BugNCYAChJd3pincit/bO6YN/qNidmsbnpg1YRAEkmPE1BmQj0KUZMXFk0EDs9zeDZRMwfm1s0MuWf2vl0oU3v/DHdUzDUwkirASlBCyz76/hpPH4yapkAwKrElHSXA8egopnsd0QMGI4sgXFVC7XCf9FhNHP0pQVkTSmWgJvWlJTtA1iNKgvihYSWyskrISxGTmjgV46eqA2NKwpwSy/eNvTnB1cfHobeQxvZJLp3XfYbZpfSm0tmeZjkBpFYij7vkU1KUntvfV199tcvzoz/6o/ixH/uxzbNvJ0ednxd8eioltH3kaUxSn7n93ZjLWFndJfMo1/J6M514okZsRcIklp/QaXRyxKUxXySecB4r/a8+59H1KtyvXZ0AvpC8+appEkRZSSfwtgKr4Y1WlHg4AaS2vkLb88TIU3VfR+BwSp9IrRXt9D3hkAqOuWBKjMKMw1RRUVBTwkIVmZMSCnKqPk+Ml4/XuJybXwHdVnBVREA9TQxelRBTrREmOdkDCFgZPItgiVVHPCkGmpPeWpOHggf6raIU9Fqd1N/3PS8yz+i/j8+1ycUdNlne9luiHtoWyEzqTy8unjb5xDfg3RbVc3w6k1wb89z98J1vyAc0WmpnbuwSRGM+wwJqjvKjcMRewYTet0lqzweqvz0/lt9n2a/n0Ka4d6chm8/p1egTQr0AMAHpSrXKlZFKJtm3Nij9E2mo+MIN7ckNvsyJMBjgFPoMrU8SSUS+qG1u/j0tYpZhDVeACnWBd8n6MGpk6IeUKXQ1MAyuABYCLVJOUv85RVvKUDNkJiT19xkdBRMxDrk4DVNq6Gg0LajYZ0n3oMpJNcr75Ep/KbQNhAQNqe7aVqSaUVKf1U5QIRhfIA7hQRZ4gnzaMSfJdcczva0G792e/+7v/m589rOfxUc+8hF8+tOfxjd8wzfgF37hF/AVX/EVdyvoAdKDYtRAP3G8HlMaM4Q8W5L55vft/bWfQUgR/cp1dYjWKWn4PdSxwzfqb7vGFKG5FTFBMfpnHKfILlO7bHvtKmtb1jOJ0KcCeSVRPojFWb3DNkwgNYeD9qm+IyoMeD2o49tYo7Sb/IicoIBEeBd5SaN9c0WaBIhqVIJYoUIp7vt7BmgWf5QULUHsucTeOZWUdVsIdNJ3qoVQVQsfI6vI+j7sSXY9Z3a+KzudCcUF89/berWnZFoABdORIogvqDn1k5ggmqNN25OQify3uAKSehckiLqE0UpArIHG5RNa9Y76RHs01Ns13allH/3oR8HM+Et/6S/hwx/+MF5++WW/dzgc8JVf+ZV43/ved+vyNpv23n1LRpjQzr3dB0LRPOTZueEEkDFo3AgE1wSycs2fgDlWEw+M/Uni2K5Q/zrcHzWgRvwb6JpmUxtUKINSFGiVi7QyaNV6RSbPwGXlTrW8+ScgWczqh0mEX9SdAJCd7oU6GGhmZT7p2OqLJPbKIMAitrjPpgDQXXQmXfjm58VpBQZOJbl/golWXB4YV6hYeAYTY80J+UlCviJM14R6nVFOQLkklGNBPkpIY07iXFi0EYqYmSh1RqlimgAUNY8zLQVSwoUbMSXgps5KmfqpyEasQZ/vp4YIoWpQWw/hRJlQyEKxi/omgq+G7jUsQrSyvHVNqbs46QSwOVX7f+Go8/OBT0/D77GFe2v2xheEde8P7uBIB2GaJ2KAYxQBINUCpIAtsX621hM65pBjnSiWN5RBOzTaUGfzd2K/o2aW+4sC/BTQmVW058y3FGl5CZC1ZdhToNhrPuGcqlPCh7HOQC1AyuaHhEBIWJeEZUkoF1L5i0n8I1UmrDUh0YpjXjXqE2FJCYeJsJbs9CqUfLgqGYe8ipNM5QqXmlF0U5lywTsurpGp4gqMhWZwyig5IT1JYna5Eup1QjkxygWhXhSkSUwHkzpSTwRYhLxAF4Koqu634VPAmHB0TPq8aTI1mothuEQ6f7qlS+aDSwNNpP4dgjsJyFl8vJDg9WYvtDkaGOdbpef4tJ9SWGN7QDU0b5OFt3l204hTNNA6WpfG3YdHDWdsXQY8qRSe0/f4dNypQ/fKiIsDPm3ovVAuI+BQIPo5i+AcxOJDSWkcWtk1JkwQFLHLiX3qscveGbEslaCpHhujtFgyZ+Uk9FM5qHYP6QGhtac2/yxI3DT0M9rhnmpONWF/0CodNZQSA4cCJEKlhBVJfH1NwHRFmJ4A9AZEcFcIKycUmsGXRatvwSOqCo8MJ6oqZ8omxSx0lkWaGiefHBDsBUFo+CPDJt9tUEUjSukyVGXfhF6cSOi4hAyuGZUFv8VspknpXducCafljgYkI6FwD6bvQx/6ED70oQ/d/cEHTg+JUV237NGr4/URB/Sa5xv6eEN7RZzaoaM6k7NggubCFg50CqGtNwTcCmU6jgzktguiDO8SmvD3HN6yURNQ+i3cU19nIgCxSHnkmkGytigEnAqdo36gGBBlgK5M2Rc5seIF7bifFLCnKhpJRpNxBngmlJpQLouYJSe45pHRE2kqqOZfEkk0ukK/SlbVbMy2CPVgq4aOzY0wLQzURCgTYX5MSE9Uk3MB6ASURwSsYtaMGerfSvqGSARBKxKyBmsQnpiQE+vBmqg8AKqgYDSVTjqCKS1UD6Zg4iITTpE2ToRXgndyryDTioyCGUW1qkTjalVzvcKEBMZMxS2CTPTFIBSWA9Q7pR0a6u2a7oS+H/zgBwEAX/VVX4X3v//9mKabH/97f+/v4Qd+4Afwyiuv7GeIx69D6sCMW/aGUnYvbLCa9wzOdTf2XtvR0DpRabzhIGPflcAn2jCAsTE0vjP+CIBHdi9oSzUJNdzcJp48mSZ2ORL4KATMdMXuO4qT1C0KoADufGjZ2zpexjQQxuZofTsCsrRmVCXg6kRg9aPS9Z1FBwz9aouYzJ6fgTQx5sOKy0PBFNagSJczTJE7EUSTyHyXsJwepCIfAE1LIRMoU7MpTn5g6RSk+JdiZNV+itSrCI5sPsmDNo3jSWnXZ2Tjr73cTfsWcjQnM0mUfKxdV8gU1smfH0/z7N28G/7nKWkHsMw559PS28lR58PjE/aZnW6thnt2fbNgzhQfoMzf1YFQe5bCM6OJxi5GAWHd7WDN6K/uXD3itYjD3N/2bEZL2MdOJFlUqque8tNJ/Ns5MzWhr7cJoaS5eupFrvZJBDe/jbglP3UwkuCy+1QyD74EUCJME+MwFcxZhLyJhFmZc0Um4LpkLDVjqRMqZ9SaPYp9qaIBdZxXPJpXHFJF1sgtlQlPyoylZqzqS8CEXWtp3o1pTcirmPDVifV0MgG5uG86EdKHcdcBD/Av7Q9j3PCIuqFnBe6o8RQHcdSGives3TkhRC6EC/oYGr0Uoc5xgii9KXV6jk8Pik9b/r7dx5n7jcY///xYzohPe9gYfnYCqShAI3T4ZQ/QubrEe3vvjr8jDsfbynQSAiNpZbJqA01AndVnSRF/SnnRfBP170joTp85XPN6ht9JmcPI8LkWI8uBXo4C+kRiWneAmDobXke/NvqsYYM3lhUREyTS8cydP0By+pG7Z8DkJjYSVJSEhlyBcqH9c1QMP1aQ+bsEkHNVjQOhYeYcBD5IvjcY7ZIUJ+2gLoXq7yXDZye7g8ZUTqKhMCfWSHoa5U8zMIt2QeXk9OKsAjRATABB4ki4cjrHkpxPccwxfH/G0oNi1B4tsZfH0khTob+3obtiP9Pwd7zW8ZChvKF8jrRL/AxtMcHVqHrZaUZZ/j06K77X9vQa2mafKmvZFSEmwQMi1ZIqqulnmk32vtSeBcMj2pFqRbimlFqJdEKprm7SKNLIwV4PSDvrzM1vp9Y9qa9eAKhr66i9fZ8mBs3iK1OqaoRF6DBXzSel4QjEyt+t4gvMBE7uL3UWeopSG1Pz6UtJNNHNDzBAIUqoadIHU2E/lJOWW5Q+w6NE4ofOfOIBTU5pGp6izck4UMWs0T5zYqVxWR2by0TJBMykQbwo4pR4ECLr6LukL1ahlKU//sf/+K3y/d2/+3fxXd/1XWeJKpdG3zKNgipbwNH0Y5t5Z5HtpVAOo5XvjxjxMRBAVDW6ARrRssnDjWYwDPKKDSDJEXTdj4Fm0QVWE0RyrFxtnQhFGbtKDFK/J2UmCd+pz3q/VWC6Amhh5KWZ/nGoi5zEkQi0lI+yEMXWNzUpSGaV46oGRM1KxGhf1AugunCKVcKvgrIgGaOpIs9C6My54DCveHQ4YaIqYdlZQ3LWhKIVSapufZhW0IV4FSiY3KwFNUnI48cArQllBXghrJcEmovYH6eqGkrFIyWU4Pckm5YCmn+XKIQyTanJfD9oPZvAqg1ip8WAWAZDTgwYvSoJVGGT1M9VkO53z5vPBInqcZcUp+Fd6bHoqPM7v/M7/fonPvEJfMd3fMcdS3uY9FD4tElD5/Bwj8Iavum5UXC+X2D/fMQm0+KMKuL2+BhGPb6fQ1ljmPF4z5+J2BQuRwwjNOYKhOZvLrd3UAZoan5U7JSuTmgaUnbyr75VaJWPu0BIUoadyFn4dDYtVa+zLDpvz5RQp0n1uyGncATUqaK8kFxQ9OhwwuW0YEFCXWZMqaJwUm0n2dGnyU6uRJB8MS94YT7hmAtWJixFjiKXknC1Tljq5EzaIa+4OCRwJVyzqLXXIhpGeQXSFUALyQnfmlFXwcw0A3kGOIv/vAQxGRbfctLIGKUvajoRB1M5lrJg48XDDLRnACfCrHyjZxIxci4aVl1OZ6tPFDG1hog43hcAAQAASURBVAvZQ32sziwYWlLFXdJzfHpl974zRjv40qW9TotrO2gQnOvfDTTtMIRGGwReZoMjnQPvYWB3fVbtYWJ8Zqy00Th2b6inaWOO2Fez0C+cFHv0Gi4a3RX8/iOd5ODPtAcotFeiVLHTWubL078XRlrlfk0AZjmZT2ouVzOQD+KrRPw8Kd4dtI+KBKXZaGhohCv5ob47Mzcqn6Ha7wSPdJMg2p1JMIZnIJUkJneX0iiGCKbyE3FKzpRQ8oRySQAXYKpYS0JOKyY9YLPDPNZBSM7YiUZVJqHUTKBNsBDpYf4o9pqpTDNnaUIsy7sU0WidZ3HzwACK0mExjDuBMZEwhTb+poEqzGDBaTdS6fl0Zrt9ptNDYJTj07k03iPsLnfPyy2PyyluIHU3lit75YdyXFNKD8ViZMuRt+u0zKn542Xlccy096ltZ62oFZD69whtI2uYVHBuz5XEYpZr9ZkZfKgukEpvJtG+XAmZIXyaWtk0JUEy8sYDaKYi+JbMbZHxfCqUYkg9lhfQdBIvK3Ao7rqkrOJqhM0XlTK2LrBjdr9T+SgAWqv6pVRzYffzlZQKSQByBZeEOonTdLDkna4I+YnUby0AMaFcCp1FE6RcVYYAA2WVTuMMscwh49XggijBKlMHYInomZpP40lxbEqrCsKrYphgDADXajrVjDeXA955eIxMBRMRlpphWp+GkxOtmCD+SWeNvu6QThD/Uwwk2yxumd4KDfWFTvcSSt028Y6z7i6dYXz2wKoV2q7JODbuiPR9I22zqcXeDhLKjeDXAaC9txvhZpN+LjEgmlT2e2d2UPhixNRIt3lIUtV8kuxKoMSMGuZUeI+hM1nBpgBUGLRWuCNiIyqFM9HyjIMmYVyMoVEVRVZNJO9GdY5uCgEO3tYRtT0vJo9aVlIV8CyqjjkXTLlgyrUJeiy8pn+EgaqQ+6UiqK8bEyqmTFWJSmmHSPt63zyiutkGoTFlPoaIZnNNMGWCJ3KbT3WSR8YwNtO9cSyka2V3S2EMpb3WLhVyua2zz8xWX3mLvuuO9jFW3E4Vb5Pejo46b5Oehk8boorRrdN43fIbQ3S+UGyJo4FwGq9HPAivO4OT1NWbhnyRIXQCKzwfscnL4O2rfM6Ehth7zdKVE/qTNdL1GYiiTjhGrUwzSaHS6DVZ11rhjZZFxBPNnljyFxZ1dwix0nw8sIfkNRVrsDI0lXBVMtZKWCuhMiOhuPPeKa+Y04pDkgqWSj5OS004laQmYtJBRaOweNAExUIJq07NZHoAfY4YA9tL2LWebJCiFmacD7YnIjVBEymWd8lPBvuyLD+DQFScYKtKDJaqfiOklX6/MZAAIw2apHcEmef4tH9/B58APJXq7LYisjnVF3H+Qf26g2HdOh3rcRNNd9s00k07ZXSXDENMWzOuqbDGCJDgMIH2MpqouKRW7ylM0MpAYTG7WxpTA8CFVFEoZYFfREAlzzEzaBJzZNvSWY/WS6YWwTBqbFj9gEaL6Q9jiEUgBWH6sppy2+DYnKptoJyOriSCcbWgEwaRwVX6pk5Ge7LTUFy1HUATHDGUXjGaxFIQfOtvnyokdIs9L3hjtFPDppa374sKwqRMHFiQyLVT7QNShrLRRwSoGwjFYeCt0U8Yvn+RpxsxaqRn9u7f6iUhP/eXzpZxA0Z4sdzf7wROhhGBNolbEEPbHu+5Oxf0JnTQPXevXQx3Uu5alwREEz5b5x3WKz6xqUraO7Vc02zCqr6XovApztdIczGULwToxL2wXU34zIdhJbRDRO0vsj5F9AulmaFrzOqYBJvSVEEJzus0JjdsSBzuWRCICqfrSGkvVt/CFpDZ54gT5q1/uBI4VXEFXUnVVJXn08ANZjBpOGTC8aQmekmDKWTFLvtt+apuJgRGUXyaSLwDmxwyAVgZrsVJZGaB1XEuDBHAcAH/ndJbpKG+kOnzKpR6aroLaJ0juCIR1P+4e12G73EMe8Cgzasikea3DFTiidYIlrZWCP3sGzY6Y/LqTG4fC0CcxyUFEovOkACY9hLggAJWu+DKyCfG4fWC/GQVbS8L22zkQgI4J5Wui0lgNQIJuqIIqDNQDsB6hJYBdTYOUZ8EFDRaBxIAFLXbdXBiTHPBPBXkVHExrzhO4uOpVMJaswuiigqgAAsFLGXnzMiTUJSiDslYs5gJoZL4bikkYYSZJAoDFdAsbUqJw4l+BnH1SApZJ4CFbLcTPSJSO2ElSjNQVKBlvu2bBL4RY1kdL5dKWI3IVEqrmh+b0OaUbMijk1BR+zSm0PwsuCrtLVM0Q7gr1gFvL0edD5oiPnFjOjyNmLSX55bp3IliB200XuyfZ6AJgVXjiHcei0zZnpCqYzDVp5O3zQor7SsC8eZaT7azKCYRS9hlF04k1UQIZnvGC5gwan4TTXtgUqLDtKs0CEMjApVoC0EVUKhpOEwsQRZYnqspgZcJy1IxTRVLlVP6VQU+TV07eZhzABJlLxccU8HFtIJITukX9VWy1oTrklHqBFYmKI6tCN5ZzPUO7JFWxGcDga6AldQ8mQqYsgqmqmPIWsl5y94UuE9tvOzUT8efTajlsyfcZ322Cd1LFYzJiTofDBLiXcIXp8SYzDl7anVilpNLr+vQH7dJz/HpTIqCir009hUPa3Yny9lnwzO718a/VsxA4wW+4E7vM6ZnzLep0oZzHMhIO5waD8qy4BOrELwmiNmcvsSig5o8Jq/AxeuM+Y0qAqYEB7emGSVEAFU9zKssQuJSQYsIT/iYUQ8Z5SKjXKp3kgkaSEZoPa8/A4kJrIeK1g7XkMoc/KewBHcAVCDWD5Aw5LrAa24YomaDAAETUF8glEm0J7CqxtRCqFczMC3gLJGBK1fXMq+uQWnbidJQqvGQYEye3VOzu1QRurETWOVA91hniAkgsNaMAoApgZGxQLQ0TmUSn4CqjTUps5gTXNPKJ5fWd0pVNT5vnyI+2e/nCef5u7vSSHt84H36eA+j9vhJo2eis/Bw36PpWaAnggikjAbSA7INPxeT4g5ppE83kFBhcrRssesiZALABM4sAQ80WpwJt1jXOp2A+XHC/LryP2g0lGO/0V1WH53HaQHytTxnS2OdgXrRhD+mNcp2EFgB5uQ4aYV7sy14VQI8evlckSY4j4NC7cAOoZxKXmdiMf+nDGAm1EvCmqS+aVFz6wRgIqyqnc+mAmeCblXp5ZpBqYgJMplrAiARaSAcwyhIdD1izFRxSMWFUokYh2RBbuBCJQLjxbxiZcJ1nXBVJ+E7ASwsam8rZyxVTJsTVcwkOSbFO+Fu7RxEOsCC6dzZGuYt0lBfyPT/Vij1wGkjFAq/d9NIQN2ibP9u3N440HY9gFlkDLtCzhGGO2Du2EZoRL1ONFbNKFJfAFU3VTLOkgFa1VRvAWipyNcV6WpBerKCSpETOjWIZTX6p0RNODUnYErNZjepaV9hPVEToCwzYT0CZZZ6sIG0gau1z/tJJNKsf8GNETqtInAyczjvA46f5EKZzh1crgLaJMZv6Vo7Tx32FWWIOWm4ZIZIz61cMLgIEZgoRmNgeZ+OkZ2qMQyMBEDcBxQ3wkyk7jp0qkWREiFXA50mRYhtlLGsbupo6p4E6MlF08DoNBJum+KmeU/Aers46vx8pnNds0cz3ZTuSpOdLdummBNb1MbSTFEwzIfI6A1ln6u7wcgGVAPgGi6xCZuAntgy8xXACT7HUf1rjn7BwgTSwsjXrOF7TTAuzFqdIRHtdEGZIKyW1mZSgRpnYV7AEHPmzOAklap62l8qUFIC1YpihA9EaJTU4aRreKo21aqRN5eaJMoT5PDOtYhYT+yrBGVYihBDlCook6jeI6EUIJ1IpFEQ4pMWtOiIVbCp1L7TJdIdOs0Bx4uY0zQObMOA4USjmo0wQ3jGossgBU0IcMBgfdZPBwuM8ItTMifGWsz8OgXNqlum5/i0m25as3cpw/YbUKBjxvV+m4Livn7T45EBi9fO4cvwil0Gb6d8EyDZfd3+3cG6n7gb3qztvWSUsW3LzGLSsogGQT4x8uOK9OYCOmk0GZIHSBcIMQMrg4pIZckcramQirPaukBpoArUI2O9TFguSBydk5r42YKKNJTSVk4/WSSs2ClaF9eQHPvJiMr4iNIZZQJqEtzjE8R/DUs/pRNQrxOYGCWxmPwViV5n5nMWDYuMadc+qhDmUo4lKexRIapVwCcXSkX6iqG/pQ4EwkTVMamwmCAaddZMa+KE0SjOJIeAVTey6LrhVmmcu291UX6Rpa477kv8nEl3La4bph0+y/LYHrfLI3L7BBar3d8tU/fd8SVVsMce6/qqGkaRBxkwgG4BY7iVUxn5ifqFWgj5CWN6wshXLDTERC04lR3iMTvNJeUSkgXIUs0oIzu4svvcWw+Mqu4AyLWctJUGtLH/UlV+CQ27uGlZszk3Zy2rqDDKymH4b9PCYlJ/eZZP8Ymr0E+kEUtdslOVhNM6Vd8M5CCNjRaCRFeuVQ7bQMKPZusv4/W0LGZSHNa26Bfz/zRTAROhUJEuIcGnUxHTPvFAYX7w2n+CT4J5hQmLBrrKYKx3Pdl7ABrqC5X+3wulBkJmcw833N8tzxCCuyJuXx/q3733/gHMXAI5ZOedonbL2DwI08iUy6ZOOgsjw6REFCsQLapRILggYYEDl5JWxvwmiyBqkWvTk4Lp9RPS1SILfEpAqkIoBUfq8l4R+CBBIl+Z11vAQ5zTBCyPCOsjiDNMC2GsDjY9JKkRQQlS0YmRDxXTXDBl0VYSgCBUdZBQAtKLBhKh1IxaCcsion8i0UCQaBJAmqv6tzEHfRKCnStQV4CqkkQ5qWCJ7H83jZGNqYJUQyCa85lwiEi6YMotYh4qNa9Qmj12WWW4M3OP7IPmJ0G0p9RpOxhTrqoiKvkM2JW+BUNtuLXW99LWeZsD1f/zdKZPOyLjaf3O2B0b7/oBDzbXd3675iZC2cbIJOyPa5iLUTuqM4mLf62cHTwmxSZb677el8YUpiICp8hUMvr3zY8bpoEAOjGOrxteAZyFIOJJBN5kGMJQDVKl0TJgiy8VOCOKRKhHBo4AHwEcgDSJH7ic5XRMaLssHtzY1nbBnIVqLBoNRmT3JCZ5kEh7JoapilurComvTpOuY2u4ngZmBg4iNeOT4JNpMySLemphThOCtq04xBSBlLJopplkBF2bHbKPEKkjYvldzWRQqSdzPGxzolQ5kcsJqJBAGsikDKPgseEzAZgm8YEAJari1sYs1kAimDNdz3sA1HN82iZbmzelQIjeuC+co0Vuys/Db/tLjfaJk2F8ZKxnN3MZnTaT4YZ9H8uJ1fbXGlNnGoKmwTm1jETthD1VO1nHpu3zFTA90eAMFZgeVxw+e438+Br0+ATSuOKCa0KIUanAYtxdAo6z15Efibdizgk8yaFfuUw4vZRQLgjl0HCN9bt3aRW6xs30JmiUqdZWD+6gNAvFQUDozzWJtgYEY71TZimTV6H56FqFRwntoEExmBKEPtKNhSGCHcOiKakvFhsHd+8L15aaM+OQGLO5a/DKq3YTqmtKmZuFTIzCjKTgZ7RPUfwtqjY7JcGnTL41yNJRuq96nUTk/px+eqA04sADlQlggxeexnGIgGB/9z5j3hgIZny/0TsEOdhWzSgzu9svdyuQSkUciDu9R9z74lR/TEI/ka/7mrnRP9oRaSVMb2okXxZMO7zGOLwmVjGcyDWlOGCcR/yE8myABl5RrUyCa27WA2F5EagHRj1CtMUskEIGoEFdsEh7BQsZUBO9xhCx8i+k9BDUDUwgSlnpIe0japdVyK19r7QSnSQPkbzSRYAmqFeetvkwbhMiZeHf5twoE4uEbtrpFkzhYioSZVkB1N0V6Lu9DhDtqkTimxRUwXoNIFzXjBMLrZlZnZ4TIRMpSy2ancdUwAwsfMSKWd9XvqhpqP/3QqmdFHl/xO/ngGi4+NS+vymDOvDYOMkbn7X7pASUSZz1smzedCMoj+2MxJCri6vGQ1SZFOIfSNeMfA1M16rpExxtp7UiLSKQSitjfq1gerxomGBCWgtwWsFrkZO8awbmSTiUiwN4Ur3xyqDT6kwaH4URE58HhPUoWgtlViJqYpQDu1CqMdjaOQqkHKJomVmHda5pSgkAcfAjJUUUNW9bl4xyncGrRkyZzDeVqIUmKqgkJ5BlAWhJQqSuAF0rwKeEkgTlqmodSB1kgIsOyqTESrTlZZsukPpSEge/FI6BoyApElvmc0E0CaqMGZnWgYDiQllOBFNRMNPTR7R8VEkY7iRq7JWhpo23T8+SaufbLY00z43JsOLMvVjebd7ZYUfMoBpJzIEojGOMwPTtYVusLzVGJE4r00IyBaKqDJ+rnZs8RU0+3Emn4pSESG8MzvyYMV2JSUudzJyNka+qmxDWieTeAaiHJAJnFeqWGcDBGDj1a5dUs8qIMWZUpfIoV1AuYDCWkjAlEk0GZkci8z8ioXyhp/2yrkVLSpgYcV9HQWAu35c1YV0TypLB1XTs4QJ01rCplcWvwMRCVGIF6ATRJpvEvwxInXL6eEotTZvSGDJnDtmy6bkbywCbE/KqJi4RS4zyM+GTTAHTmEJQWRctB9NinVJFTiK4M98INqFEsFeRUkUtKki7oybCc3w6n3a7Y6SdOPy9T3nn0sjMDYXcdJhr6z4GZmATIll1Aw3GNgfiuyIfY68emE/HwejjUjEtMZCuhY5KC5o5Csg1qmll5CKHevPnVuRrqWBaGenxNeiNx8CTBfV0gm7WoGkSWooBXldgXYWuqgV0mMHHGXVKWC9nlMuMckwoh4RyEFO55cAoF8LZSH2kgd4fSRlYMhqEMfr2ccUt7WxR8qS+/1RLgxZhgM0cUPzFKDM3AyszUBIyk4eETwuBnyTUlFEgtIoJxXOuoR7qCzSRHJiG8RJH5ErrFFKrm6rCI5mwZg6TIfR1UYFW0xY3DU37XjERYSbCQuJgeCLGRBKgYWXRPSCoY3UovUasmgiE5S3gk/1+nnb4uDHt3XsKffTUrDs4twdTjMBvneM1azjcQ8OfqE3qa3KvMh1xqBwQhwjn4A4HZXmyPyvBD8idjjPgVh2ooq1Iql2UTsD8GiNfNcxLV4z8pLh2JxmPmAnlIK5ZaGUk8yucCeVIKLMIlpcLPeyb9O9Bab1Z+DyeuLW9iDSICSIAMsmxd9rQKWpq6LgVNaL0w4ZNJxG6gbT+pPwlsbhLOUg+rCQmhwynodIkdCD0IBGVgEnoLkB5w5WwpoTskZdV25MJRR81k2ShCwWdzKyu6Jia8kQCcEwFa02uqJCpuLa+7GUstK72yloJC0xBIuNAIgQT0XrFiowndcKCDELGyZzQ3zI9SzTU51Uo9YEPfACXl5fnM9wgsNljls6eYOx08m7Y6ZGDZO4Bq7Nf2KkXoyliORG/zc4E2fboDCbT8InXAVU9lx8ecW8SULA8qTKmK2A6MdLazFp4EsfnFso3LcLwzW+sSEt1J+npalUwquLjIOlJ0aTqA3oSJ3wKSdiVKam2VkI9qEDqIBL4egTKI0jEgyO2J7gGDBR+z4w0V+SpIKUgmXbND25aAdrpzWQvoZwmYE1ii5xZVcUJeQIomeCHgDUhLUkc2hFEm2ICcADoIOFBtzuLPOvCH4Kf9MU8xsBJ9D7D06T32pQigguiNuGPlVFtWk7meYEwZ9EgIwjDZ9pZXkYC6iomiq3Tn3Z8PqRI7L/NAesh063waQcDuvu2396Gjg1M1t67OHw/Wx//TtvrO/PKLM7idSfGAkOItINtsf3xb1A3Nx9ymNH8FegGmE9NKFVzwzGQEVT6WRmH16sQgTNJePRrxnzNTYUdIqAhAJSS+BbQe6yMFFkACGvbDFnnpsV1JOCigo6MdKiY5oqc5XQ+JxMX29qVCKBCpBhjSGF9ap2g0Wf0WqlZTUcSrk8z1iWDl+DoKjHy3CZRBYFLQl4T8qIvmiCq5wcGZiGs7L1QvKnmw4FahBifF2zzI2KTfozh46YdZWGLi87PKeCWKcklwPHZzVuIJLxxFqGdmCfaiaUSXSwRaGpNqtm1d/z8lPQcn/ZTXKOBPxhpJ9OieyqDeJ++HWkioPNZt0fjkeUZtDmjy6AorBrxC9B37uFzwMBkajEmMFctThOy5wWYTvKx+vBBtDHzSWintALTNXD83YL5jQZ86fEJ6bXHoNOC+uQJcHUNXBxBtQKHA6ioKdlJHLpQzkBO4MMMvphRL2fUF2bUC6GleCbUC6A8ItRLNMo8CPm7/jQNqQxZsBry3dsf5oWsyXEAoM6QSRg+vc+A+qZq+VJJSIWQF6BeaB9miIbEJP5ATRieUptozOJ+wfB1Mk0pNpxVoRNIwqVnxqwHq07JBHxiHSTzWMVEQ5dEExjB5SkBcxIHw4XVlQPUh5WZ3HBWfy9x87hDiviE4fsXeboRo/bWZ7wX08ib3ZT/JiyL9wz79uoU19MeRhm+5HArYKz77gzBSeQZ6jN726ijExv9YsJgbutZMTGthLxQ02YyvmUy3k7M1VIBpteB+U0Wbc8ETAtwfKM2Gkx5PzBhzbpuCpCvqzs0LxZxfSbwgVCPytvlJpwql4x6YPCB48Lr+sEtYcDNt3BSYZGDNms/i/VKNxCmKbWS8G2L0IR1Aoi5absajVIIuYR+MpxXLVNMUJ6SGx+q9K7wi4x5quI3KoVInwTYod2UxJfUMa2637V2TCbwYrmek5Tl80LbZNrnpYqWvdGNmVQz3XhJAMdU8SivOFDBCRMe8wELZrDRmXcV3TxDNNRbEkp95jOfwWc+8xnUwUnEH/7DfxgA8Au/8As3Pj9i+dmk8+lsXttkA/HF9oIh23jBs4yF74Ek9dmcEEtwkadLIVnFoAEVN0TUyOAC7qS4zHBtKddE0HfRyqIldSXvLSawqsLc5euK+fUV8+eukd48gdYi3mZTAk2KsusKLPYCBtcKvjzg+t2PsL4op3z5pPey+DdYL+Q0r05iRlgOqqEwaVP0dJHVn5QTnLZRELcwxRaKExB7YvWLRHp6kFSSTWCUklHUUY1oHHEr+ERIb8o9nivKBYEvGflYxJwvrViZUapUNC1C3NAK0JWqz88CnqZl1sZIOl8cCyck04QiG1btH8AjvdhzBLjmk0+BJL6xEjVVdGNvjX5OEJX8TAW5JixlwmnNTTgWpk5lwlrUnw0DiUT1PUaXuU16lqTod0kPjU+7dBDhRh9eN/GB/p4BY87m64gxM5cYnqNWb8u/qR5jUHvSy1FeEBtvDJvlUQip6rclhkwHwU+9SP3cGUHDSRi8dBLNg+NrK+Y3VtCicHlM4ENS82RGKiwRQtVRU6UJyzsmLC9Ko+wQjpPgUDkC5aLVpc7q90BxiBUvLHiDqKiL5uVSk0TYI/MXII57l5LEr8owDlHr0TU7Qe30PonZbbmewFcJdBJsqIeKtS6YjhUpA0QFeKGiYsZSJ+QrUVuna1HhriA9HUwoVdTg2cycUfydcRyNvTSdLw4DavWbyLQ6Gz4RouBc8sdQ7PYeMccBcq3ed7K19f1UmLCUjGVJqOas1FVebp+e49N+6uiJsM67Lor4EDPs4Qzd+HOnAtjHl51CRtpnQ3cZfWe0fGmk067GVcSnNOTL6mZErCYaPjkjCWARHMrXynSpNkA6MaY3GPNjxvF3l0ZDPTmJOd6kEuLTArz5GHy6VtVkBqaM+vu+FOs7HwGJkK6KBJFJQjOV44R6TKLxeSCsl2KqJ8yWNuVaBcQXylBFPFZGmc2psjkyV38qQrR1vevMYXOm1Y8JqcZFOsn1cgBwoQeLs9Bw5cWCqkFv0qp+O1kYxnoNYKrgqQKJsayicZCyRFAmsGgSqLZrGvZLBoBUUSHaoqka884aTU/z+cGk9HVWZ8KkfqKqaoFldZZeWTQanpQZry9HAISEqqY33IILQcrM5sIBBDYnP7dMX8yaUm8Jo3bWLZ+5vssXnQOgIS+du4ctNhkO7fJxw/POQ1LIo7+JIcEGCJ0Ad/fFyivY0ZHQTAyYFo9eFP+2mn8B6ERIJ3lhnYTPS6u4OshXIoQ6vF4xPWbkVYMrzULbpMLITyqmqwKuDFoqiBnLywdcv5RQLpJoe15OjYeZCeuF+IyqSk/Vg+CjkZr5BCARyhQEU6r146aLE7c+UFV6tqhPQ8dw0Wt28Oj7gfqbq+LLb3oi9FY9AniE1lcZKJcVTISJSOknwbV8DVXUUK0uBniVwaMkfoeT2votqwaVwopDZuQkmpXMItQ+ZIm8XAFMaL7pooKBCKvEeVWigtl94EnzFs5Yi7HCsoEVTig8YWWho45pxTVlnDjhuooF0ONywGrBuXQOLfX+GPV2x6d7CaU++clP4oMf/CD+z//5P65+RyQ+KogIpdyyw0YhjaYOJKwjx3w7HcuWL4Ja3ABvkEp15UeAOgOMHUgZc7R5R5yxcKLCi1fmxokqtDzONEaJvjoHTqVpIbgkOxPyWpGWinxVML25Ij9ewKcVKEUlzJOcLhXRjjLnewCDjzPWFw9YX5hRMolkXSQrKHPCehC1zjKJNpZEsIJH+bITSIuONQrzuo+GJ6ckzJ+F/FUZjwurCKKUUaowNRbSnJlQSxItqUVDhBLUWTuDJvYyuZA4EF4EGJ2RJ2Fc6VBUii9zNzL9pJRLtwdy+2uaBnLaF31Otfd72wBwTc6wulALEPV2Rji5MzMgiRwjYUgbo2jvFBAN8yzcu0ty3xtof5/l9HD41C/+XYKKd7DJM59hEDfv2X4/O4JRgrDzd2MubHRDLJPQay6O6zVk9hPDSMRToENsLWlZI6PDkzKIGaCVQSfxcTA9qZjfWMU8j1mYHl1QVKsIpLh1IifC+ihjuUwomZALgCrq4sLkBQLKcMn9QgS1cg2TjlzD+qz9eBF3A1CjOYe3vVGqpSbXyqwsn1IIp1NCuU6ACppMIE8qkCcbnJqBhTxSoTBqWl9lDJl7X3IEM8mROnRRaxDyETy8MEKzmkCqYZFpQJm2g5kcA4rLvoaMSYxRtiKmyb2iztntVJGsb+8qNH+OT/tph8HaS85c6SNPpWvYCOynFHoTnoV3OCM45rc8515krh733sXO77TnjZaKazngnAulWKNLXcNN4MpsTrwrpmvRLJ9fW5BfvwauF6TrE3A4CP1UK7As4OtrradoRfFL70B5+RHK5YR0reasUxah1CGhHrNolushnzGQfqhp7YkRsmI/7fQbhf5tDzQ6k8Do4qPb/lEhdNEK8QGjYO7aHyHyGFehNbFEnGf1pVPBcwXlRueYOwYzXfHqKX3ngu/U8k1UxRdMmKdGjrHilGFuVq1y9+FpdKN9hx00ZFytE4pqmEPxPqeCpMKpwmJ+086PeTvXnpIiPtnvZz09CEadw6czNE40i+v+7qWQdxc+zuEThfUyfAf2eMShriZ48WciMdQym6msY9DOtNKdUiaeu2aRN6WV1J+muiIwwdAq5nzTFWN+XDE9LpiuAaqMmnUvLox0LXwgCoubhLWgXExYHiUsl8nryBBGhgkowfKlmMmeCcnYKyymezksOKMnY0cN9K/z5a5GG/rS/M/Z9Qrxp1VMW4pgEVLlQJGb/y7I81gZWLU9ChzV+FHzlcfsmvNpivyZ1VExRQXeDEZKFXNeMadVDuOoyuE/xATYiDAzJwbEsfmc1NCYJXLxalGKtRtWlujqlRMSRKBvbhLETkZo0qsy46SSyqp0J924+e6nZ4mGupdQ6i/+xb+Ir/3ar8XP/dzP4T3vec++qdx9002AxDv5Pg9pF+Ro534EJ7PxiAs45HN1dStAtQyaryFZ12ZC4WrmVlzwJ+VrcQbWo767Mg5vVBx/54Tpdx+Dfud18OMnQCnAS+8Av+MF8MUMMIMXOcHCNCljx1jf9QIef/klHn9ZwvwG4/g5AopEglkfJSyXhHIBCNOozaK+bgRRpaxmTxy1oBWAzOEdZVYH4moWx0nlcNUJDgJQ1iymH4HyqhXio0UvpSLAxdeMZcoAF0yTmrnNjPTigmsmVJpAb2ZRZ70mUE1Y5wl1ZhwuFilXmSeToOsWgcpC3Lm5jAKRma4UdfKXUkVOcvIWmTECkKaqPqHaxDAi7XrNeKM0ajSCZUJ1DQ4DJdkP/Js4hzeC7q5rI87Xp3E4z0B6UHy66Vnm/vZbwadz+HKmoG6YRuKPuj+NMIrE11g0h6YaPqHRCdHRbvSz4Iov1Ji+tCg2qDZlnaXM+TFw/Bzj+LkVh9+5Rv7cE+D1N8GvvIjyzhfEDKWyRn9hwTUlfJZXZjx5V8bj/x8wvQmkN8UPTL0Qk+Fyqaf8gbgUBo87DTCqJMLsNQuxksVEWJx3iwq14evKQlRkDVeeVXglzsylM82hbw34JOs6iUl0AlIipMdCStRMwBFCyGgfpkcF11xQiUBvZKRrBhVCfgxUsT9BOqxtqImRszggXwvtDKYMjDkgzhlgTliNfkyMiVZMuadODhM3DCQ45pYqGplFNzDDviYfbSbOlWMVyMsgFxa008Vbp+f4dDbd2B1xPQeMOPe2ET9uzHRTnh0s2+DV+DeFuplZL9D7leqYvvbX8hCJACWaBrqwIphtpAXIGmmPJ2C9kO/5CePy/1YcP3vC/P+9Afrs74IfPxEfUe94EXxQLanrFVxW4PJCTYkZ5d2v4Oq9L+P1V2dMV4yL3xGV6nKRsbwj4/SCmMMAqm3ADS+tbSrjAZs7BiMKI7R07dYFV+NvtI4bGWhbg1X7mKCmf4T0GO777zSRZEgQwdMli8/KlMVnDQOJCXQirJmB6wzMJZjEMCY1KbbqVE7qkqIRyczAnCsu84qVE655Aopoi1/kFYmK04JGT1m0VRNIsWLxdZ3wpMw4FTHDM7qqcjPFfpRXHDRoxTGJlUDhWcwHCagQlw/5rlzbSO8/xyhPu+se2Bf+3OUVY96xz8+U79kStgIp9L+9GF2rUVgMEw4Uy8UdjdQwLKxJggpN0OinwOMhq9CkwLUaOYnWpFjICO1z8TnG8XMFh/+7Yn79BDoV8HHC+mhCWrP4E74qSEt1vrQ8mvHkPUe8/t6McgEcfxeYXhPn2+WCsF4S1kuh1UzYz36oJ3UyH6W0ADSrsMciLZvAadP/pKZ9sZPtGakbx/Vj+FSav1DOgotpkaLqURUUTCFiBvgSqMygaxIt2Cpm2bgClmMCz1U1+Rkpi4/LnNtBmvHhpRJSyqgADmnBZV7xwnTCRV5wcKGU5L2qMxiMGYwDraKlSYyZikPwtQqeHtcD3lwPTr8xQ4JZQfxzHrGAiLDWjN8pByRUwajQpUmFVXOqUG/yt0/PEA11L6HUr//6r+PjH/84/sAf+AMPWpmb+uq2/N5taKZbvTuC1VMA1MdbgWZUVOExoxISwWZLCPoEPY1AQCpN4QQQrJilfqTA4uw8XVeQO61LwPGAepzA73wB9cUj6iEDpSKdEmidQCDQWkAglGPGcoACIsDMWGfCekw4XRKWF0Slm4mVeKFmJpMFoOrE6liYh/4xSko6R+XZIBYnvyiEnAWd7JTN86M56jUV7monf8xArqizDFZVJ3jymD1PqEVBLKmEvwJcCZVYqNhaUWswPrE40j4GcqcYMQhCSjaAomFgUfCmINRKqTk0tyoxA6uau9hYFtWKsjoksgnW94O8WU6qhOAyEo+1n4Yd9bbpGQKs26TPFz7tpdvQQvcq6yYicGTqwrOdptTwPR5G2XUnzKKpbQkYFnHHBJ+aJ77cBe4VTsAUI2wqQAsjPamgEwNFTd7mBH7HEeWdlzi9MqE8SnLKtxJoIVAiYGWklFBmE261BtQJglGXjPWRqJNTkhczk5+ScQ5aSVNV/yummmBOgtv6qnGdKpNFXBu2IKxORsOm8LtUiNo8KjhXMcc2vNeOFwfF0rFEjEoVNScxJVYPmwRxxsmFxDm7a5WqKZ5qTBoS9Em1AUoYQgISV7B7FtX2KKFUWYIlGFHFuh8VBiz4Q9uaDK8177gaqIKI2lS2ve2u6Tk+7aYbu+IG+LhNF37euvkpW5Thkc0p2RD7ipEyLq7QGAU3wZWC59VyrTxeJU8luKY3rRXTmxXpSQEt4u6AKYEfXWB9+QXwKxcoj2YwM9IVgS4ZiSVyHRVGfeGI9ZhQJo0enESrvFwkLJfA+oiwHoSRrRnOzJqDYwCy7pNoKXQHmFb3cBjg92K/BRrL/NdB6ZWWkZW8MQ5dBE4lq7B9YnW9oNoIdmIKBlMFS2hkxTutgIZzrxXudkGwgdvQkBXVNqE8CT5VpekELUUTqmoDSaWP9qwxjov6gBK8ThLNqmQxww7tFaFWQUZBVn8Y8oyYzgh1WUUzwVwY33XyR3waxuVZTQ+BUY2eHq6N9AsP+e+ZhuK2N+z++PvM97EMd8otKjAt8+gKoUJM8G3fDYdiADpzP9pjLk0gn6DBUKTS+Yn4wcPKYNWMWg8aufOFCesLSfxuLglpZuSiGlErg+eE0xFYD+yC/Aqhz9YDsBzkHs9oBwKk+kKEpiE5CZ/n7XGaZuiDsCYoYnjs4O4a+TMekMGJFtZAWoQyswSvImsA3DTZ6dtA51YSOgy1itDPsDFa6HgllKqpDE6iwZ8UG0xlolTVJoU6IaeKmSpmKoIzWvW1JqycsNaMlbO6OGha5sIzKs9JjALC6od4YnlTGBK1GISsOGaOEtoGccv0DNFQ9xJK/Yk/8Sfwq7/6qw/D9O1N6L3fujk7f75Xji2CUaBzl/eP18/9HfPaR/a2/ftVTO/cwa9VszaBFHj/FS611kXLszBdqOr/4P8WTI8LaJGC+dEj1HcfcXr3Ja7emVGOUol8YkxXLA7uVsb0RDjI0zsPKC8kIENMY+aM9RJ48iUJy0vA+gKjHsQkZ3pMSNdoodhniJnOQdU9Q2hiIPwmiIbUxB7inNkEPOaHpWAy58Is4X2bs3NlakzdcxZwqZRQT/qumUGTSMGLhSFPBGTxg4UJYipDEKaXMqDq3E0Ll1wTwBhUO/EXxlMc2c2ZFZqaiQpD/CAcci+QIhKAuV5nnxIswyd+oUrcqbQ/9IQwq3+arOrmTQVeTvg4KyNdNaLWHSUjhtP2/VlPD4ZPT5XxDcT+W5BINQIuFHKmvHGIfK+JOKTP+35vAqK9MsNaJdPgVGLDBRSOUUMFKJRBYS4lgFUDYboCDp9jHN4U3MkLgw8T6gszTu+YcPXOjPUFMWWhAvHroirp+UkFTozTS4JHmABaReOoPgKuv4SxvFzBjwrSoYq57pMMWsRcjg+1hQWGMFuirSkcbNVbYtbB3oFrJTH7UP8BlJoybGIldpTibGtfWB4RMGdQAujIqjnKYipzbPjnmGKFzgDPDF6TEB+qgsZEot6dmulvznC/FpWsrDAsiWEBVDlQxSaAk7gV7JFjRNuTFG/1d2DQ2LWk2if6uLNrgk1Wn4Sc4KrtEhWUnuPTQ9JPlujMd/t9G4L0NnTTTWN3hvnrcOkmTA0CJTMDNnqPARdGJaWjLJ+LQYJTYjZt7o3gRqEgATjIw9M14/C6+me5qsinAkoJ/GXvxPKuR3jy+w44vSS+oNICTE8Y85Pq0UHzmwuuv+SA0ysZ9QikNxjIhPWlGU/elXD9MmF9UbUQKmF6Q3ykoKI5YA/Cqc4BvPG+AbttmJw0tuUd/lJ0Lhw0pMQEWMOtJwjmsAik0irBaviCgaO+uOh6TQTMJBim/qv88JEUb9RhcE7i3DwR6+GZYIfQTtICAnBIBUTAqU6u1VQhQDLTCZd5xXWdIKyhCJOuyownZXafLkBjAJeaUWoCQwRbUyqYE+OYKy6yRNYi7cGKSYVXhENmZSQB4vSW8Gmcc89qehCM2qNFAGyw6i782l7ao3nP/b7p7x4+xe+BBzM+zdah+D+Ck+/iPJxMnguoaZao2bR6+9+uH4RgY/WHSSthfgOY3xD+i4jAh4z6QkJ9YcJySTi9ROJPVzVBhceTgDHT44LlhYTlSxPqpWBPKgAfCMsLJPzdpfiQQob4tTtJw+uh4RETN+0odZbOzAjkRQPjSv3BpgPZTr8qiLswqqpfTRCg7h9Agj3uvDwrfVRSM+/WQF+ptneQ0m48KSZOjOlQMM3ivNwyCv2nrGKWyHeXU8GjecGL0yL4oJGFD1wwpYqL6eSaUTNJMIUrnvHGesRaMxYW/rMogW38mwiqWpRi5oRFozlPGhEURFh5wnWZVfO0yCEIgFoLUO8Wfu9ZoqHuJZT6J//kn+CDH/wg/vf//t/4hm/4Bszz3N3/9m//9juVd5c+srw37Rvn5v5d0znmby+fYcnuhkYtk4NUhfhNCVnIBDxJYY5VyGOhz5UwKUd9l/puocqgUpGuV6TrBfT6Y+EAMlDoiOuXJpxeJGcQ8xPCdJWQT4zlKO86PSKsKly6ekkm7vIicP1KRXmxgi8qaFbnvxcZ6fUEWtW5L7G6LYiOzMP5nAFu0pWRRH0SJKdrtUrUFhP+lCpMmAhYJIBv5eQCKS8TkOgvjxbgQkIPU66oRcKx16rhiIua3xGjzuoMfCE5rXxCqCnjxIx8UBURgprZqfaAu5wxPwainbCqgwrXloBEoGKepF1+7KsRs3Twff/R9o6aDtGPCwN+kigbezDZIznxsw4W/1xA7Y5ubpF8AuP8JH+G0kPhU+wWGq7jKdcfOm3KHhg+vikvAkNwjgh0YgLtBKr4IZ3gWlGBg+4aZHb+Wp4QXc1cL6nWlDkrp4VFrfzJArpaUS8m8EsZy4vA8pI68ixCVK1X6jdvFue666WGK85AfUX8TdUXKuorKw4vLpiPKw7zCgJwejTjyeMj1jX3jTPnllkdXfpJGaMUIQSJJIITkURnMo0kO9WSNZv0u2g71dp8K5n20pRL6/PjCkwEXsWcrxZCWS0/qeYmBPMOVfp41WAMJwI9JjAl1EcibAdMwGMYEU9CzLQYncZTG2aWkOfLhNMqhLJE6Ks+SWyKZGcqzZ9fj0/RnxSDmg8wTWZuLBoQTRg1OkR/anqOT3dO57rprdBDNybDoAFbzmHR3vMAhAkLTIUrPBvDpxjFqvFDDJD6YqtJmahZ56UK1jnJHm6n+lUDyfCqDGQVc+H0uCC9fg363Jvg1x8Dl0fg5RlX7zjgybsZfGTQQpgey8Hc9Fgc606PCOVStDkB4PQOYD0SOAPXLwPrixXlUoQ4RIxySKhvJA1UI8Khzhm7Cpbsr/ctK2MYNCjYHDFFjQVWZjFqRCldYz61TLLOFcBBQ6yLmpJgnjoEFqJGaCVOLOHXi3E3+sx1Qpkn99eUSTWfbI9io33EVEXyVWHMChxLq7sjYLx+OuJUkmOHMGsM0RWoLqxc1PT6/8/e//zKkmT5feDnmJl7RNx738uXWdXdbErd6oFahCigFwS4oQRJ/RcIkAAC3FCAloIIAtKG6AXJ4oJ/gSSCGwLNjQRoKUDQRkCLAMENW0CvZsGZAWeqh9Mjsqsq8/24EeFuZkeLc8zcIm7cl+9lvaqubKZlxrsR/sPc3dzs2DnHvud7jGu+SZumbBsKtqqlXBeiEZ17IwlbKI56vVEwj8LHlFE+cfX9W1o+pYx6tjk+oTB6X5O/z24b7+ViirlwWunl8SN6vJUeNjt8XD617SJmw/UktM2xHhz505VNpaZqVAMIsShkCKcGKFDmN4W4mCxZvxc5fs/kjCLExWXUEcIJ4t6yppfJrr0eoH7fxnF+qOQHhV21Bf1QqWugnCJyji4zBlnTok0ap9RFY7GZMa6ndJ2z6ZS3FOoNtO4Ok03GBZzzba8bbUwGFsxObjpmqyMoNZmuIa5LhndCEUHvFZn8Ir441xGcLjMltGQ3SnSElFE7bPJpbQhLMZsrSyBLYJLSZVVTvFZpiCoDSUCgiiGfqlPWKA396R40sQQyp5IoWLbQXFum92r9pSfV+sDyLdKhvpFT6p/8k3/CP/7H/5j/9X/9X5/s+2iizq/7DltHb3PhLWHWjvHvfUX/pxF8TTvn6u+tOpu3uD5zjG7eSgFSHjyWblOUAIJlHKC4giVbmNyGlGr1K9NRmd8Vdq9XwuMKb47w7hEe7imf73n36ztOvyTUyYw8LYJmIwBXdINvvgyW7lehenzx8qqSHyrsK2G2bHb1HG0wBg+v8XTLJMyDPWHCbXwXQ/uE2WN5A1RLCNgRAC0jXZDG04LzSdmHNhDFm1gAUWKslBwh27aY7IKqAS2eirw2B5F4WIxXFRyhEXFeJus4tvK/CSIBJ8fEeKT82BZrr1edZa3bJB7Qga+AIX45OBlw6zwuEB2REkJL6e4P29lnNwOvCW2QzuvyBKn3NUVUu0F5bVh+G8unlk/PiZALDqZPxat3o5rreb8fdy2Tbskr/y5NhjS5GC73M8gmgW7wtRvoPFLivuVs4954m7hYRey3IZ5y/WjpidOjJ2D4yRHdJcoh8fbfnDh9z9OgK6iTe8aEjVu1VbzzK8gP9FS/ZVb0i8J8v3C3X9nFzG7KnEvkVGbjbmqGbLDzQlKCj/M+vjpsoqIE4wxofCiqG+edP9VFOC7iisWARIKeDcrkA4RJXfz4GGtKhZoM0epyR4PJk0b43mKOgsAM07TxULUXaPNc6KKtyUWR7Z4vixlfVaNPj6Y9i6MZQnDOOvEQRAai8jYeXDb2ztEn2xFyt125Iad6KN938unTyadb453b2z5IQn1TMXZDP9Kr3whPEzGMMhSTO20BW4b9XS7pdkpPitk0+wjV4XuhJRZOLvcmOtqo31IwVMD8CLsvM/PrM+GrR/Rf/QSZEnp34M2/c8fjr0fWF0aLkI7ucFkMyaCq5BjMsf5gukWZhZJgfaXkg1LvTbjqrqIF47NE+jhQD9frsnSU5W2sjNsukjhcfW9qTn8JQ0N7g0rjrQEbu7OHETdkWstY6ogFyjCYXea3sCMBNFY0KWmqpKgOBpF+D00/SWHIWhUa3UBDUQ1oc4GCctbZnZLGP6qONomuF1nG1Dg4s6Tz1cVgvFZJNr67TSaaw7wdmx1qZvJ/6GAfWEb51H5/28snkVHvG+83jv3ocu3guKUjXX9/To+6pUtdnzdkF75W9/oUWEGcD6kjPd05bFQnavU42rPO2BCIQ/0IIraAFVaYHoXdW2V+tOQM01sLNdYonL4XefdvBJbvVUMDLT4mF8/qOQs1wHpnC386q4cuC/nOZdMhG//kZOkEM0I4hc074LQoBEdHtmcYFdPB6SG+FthkiimMDJ1hKM2euX5RYnagGVx+WMEcdU3Gqbd1GU/dZJWtNxqfpc4Qd5U0F2JUUtSLdygCU1TmVNjFzD5m7qaVQywUWma+7TrS0JuKLWxKtYVDh5UFwcEkgV3MZssGMWSXy2ebz6SbD0HEdEMNnGpiqYkYWiizZxt13ax+pBL1bdKhvpFT6q//9b/OX/2rf5W/+Tf/Jr/yK7/yU93ARzWPD3y92vS+er+pjqXDl1GwXnvXr++vcahcHDPejBtuNVp8sGTMCQXM1ch6NW7KWZ6VGgyS2EjQ24qciBGdJ8+WIFHg1T362R3lbuL0/T3rQVnvlHLnK4uf2Qp8WC2zQVPmtKXxrL6SeKjwIhN2xcNN3Fmyq9RXlXVOhMdAOAd7BifnK6j1qmRZ7drArx73W5fgTqAW09scQVtDjSv84sR0IhYG00L4zLkW0DVaWlXFlKdFWHWGuMVHSg6bTHRBqXjbH4EQKFMgxOIIBztQMEinYCit6CTmIWwKzRbat/WbtXuxlTkWDtPCHCqrBrKHFKrCztPO51jJJfYMg70uNY4FqvZMNVGKE8Nb/a19iwaPUw7IT7PS94strz6ofEr5BM83yThJdefrp77Oeyrtq1B+8sX9DN8V+mrQhcLVjr0WqGJGUhgc58G55lrICQ5RV4d3d4qFYE7u5I6rMkFMxluCQt1Fyq+8IO8j5+9H8j2sLyr1rl5A408Fyw7lg1ZnV4REYSqku8zLF0cOu6WH2uYq5CKEUJj2CzkmyjGia4AVahJ0LjBbKGyQNp5NPq3ZINeGdKpOBG4rluLjb2z7ZjA5bsqHZPBVeZNR+ZwspLAKOFcWpWWQsRci2Y9vYqMOLzM7eecZ6qykVLrzCZr/qprT3sN9G6n4Nfl66ygtI0wLWdynlcOUKRXWmnq4jURIWg1y3onObbFg7GzN2GsreckzC3Z+luhoT7VsojV9J58+qf70gYKnH/sJZNXHXvvipFvnDLZNB/20e9VtxwXqz2wBO8aNvKjqZL1i6J6K8aS400eT/UY9hAVbrCuzj+55gn/jVyhzZPmlPXknlLlSDwWishyEvASWF4aSCi1j5uD0V4E6KeXOEOa4kxvBDKwXhXNU4rtgaIbV9LvqYSZ1h3PhcenALU3Pojvnu3HYPk1HdqT35vdp+pA3dHM6LRE5msAQxfj8isUG1wjqKH1xnVUnl3PN6BahhgC7QN0JYTYUVLMNm0+9oaUEk7lNb1l9sbDzTeGZ88qMiJH6fjaf+Hx+JIhyroniDR2jZbkqVVhLYHUHlTW1bnPSIKsnyUZEHNSJg023rYilbK+R43dE559ERt1shufG/09bBvnxnAPqyf3I5fYtzFi5OXW278Hkioz7bvUBH69NftVgNl1t8qIAiyEw+zUBokV0NJ6k9QDxnTKpjdF8iOQ5UGY4vwzke4WHlbCzKJCcA3kJyMloDDpCdKeW2EXsb9xn5l0x9Lhs9AB1Lyz7ifXdBMeErEKoJtg0Qd23GOomnNvzmo6jxZwrF8TwjmS8iLe+2RE2Y1mrOeGCc3pLBVnZshLOdL0yFG9TzxYoeWv/ECCeBb2TjmIPwXUlYVhoNL1lCpW7tDCH3Hn1dOgIxZPGAESpvAgnPovvmKVw1sRRZqoGduCyyq4RayWGyKKR7HpVdWoas4OVUmGpkWM2jrwYKnMw3Ti4TpV7tuePKN8iHeobOaV+9KMf8V//1//1JzH4gKeD/tZ+vfz+da/kG8m9G06m/veWkBqPbyCeOtzu4GsZ5J1N/k1g+TakherRIeo1gU7uYW9cTbo5nkOFdIbpUUknn0hTRKOQX+04/1Ji+ULMG95W+4PY9yC2IgZo8vTixVf/5goPFdkrkhxZENqjCLUGpARCDh772wSCwmycTtLOcYWks9D5zW/cJHrxMRSDDKFtAaFlXXGFQ2wfpS0vehuX4JBXUMI2MdRgJMXtXVSxj2C8VIdKnCspuZFIByt0h1OMlvGqrdIJ7nscVumuO0UQZZcKdylTEOq6hd610lBgxq1Ff74L3hZpBp+jpvwybX+Hx4v53/9152z5pPLpQ9pS+amBUl9r4H2dbGrfw439+HZfTe96xCif9LKqULdtTZFs3CeCybnGJXexcg8bbx6+svdoq3shKxpsLOeXkfMXifP3LAwPNxSbnFcGFKLQZRURwkE53K/c7VeSwyWMyymSSzIUkAYLl3NHigTjcoqTOZq38ez2roY+1g21Wft427LFbY2q/e823qwea8VcA3mNfg+mGEoOhNWh39HOb7JIm1Bvr1QNpaARQ6oelOT3PpbG3dRkQZMhm0y6lAfC1ldFYI6Vw5TN6d/Ig4f7qGAkxhfEEU87aguZiT0kcptyTP5bKE4Qublg+r7ynXx6plzrJV93bOtiP6WselLvjW16vV+4beht9oD91NuP9eTUQWa159KB6yRUG/rVkdwaB/k1ONvjAtM7ZX69Ek/ZB3ygfLbn9Eszj382kD8rMKuhi5rTo9oErM7J1LJQKYaGqHtFDxWJm6eoZ6BUW0EP1ZxR/bmajB15Obuj2mWCYLIiDfvHj9AzHI/60kVjKuaQytFoDPxYC3cRl+1tJd/ay9AcNtFJcwaCoZdmJewLu11mTjccOmrXEOjI0y1s7rbuZPct7FPh5bywS5WlGlHWNQrMA/H6nGHk5hZ+HN3QnmJlCubEiq4LWpM17lDTNathz58+w3vKn0ZOqU8io94nn94ngz60/a4FxPX3r7vutQ516zMeN47F8TzXWxonUtvcOMrbI0mgj23xNbgycTneaWPLUdYZpqMwP0JaddPFJiG/DJx+GeqrjOyroWxKU1h8nk3WH+ukm4yIIFMlHgox1q47tGx0lm03whod9eVoJPEkCMl0qd423fkrhri+UiZFBm6tbfQODatbO7Zt1WgbQt64qRq1Q8iexMYfR5xeSRsIYuBt1gnqHup9Je0KU7JF/WbHjT7SGBxEkFbukumWIz/mdcdRYJLCi7RwH1eyRqqvJITWLk3/AYt6EtNJXTOz1vD2t1MCWRNrnQwk5veanFYiBtOxru3IryvfJh3qGzml/rP/7D/j937v9/i3/+1/+6e6+K22eV97jbbBEwTaqHQN9Xzwq5Ora8vlGHlyX7f2N0/taNC1Y902aY6aDAQXTvFsAy6dPMtABEQs3A5ThkrrtW5EUUEWJazVssWsGY2BOgW++s0D7/5s5PR9pe6qxQBPemGEGr+KS9OAcQi4Q0emStpnUAufq9WDPjwOd7pbqbtM2SfkXTLek8aBUpr26VmjnJhXfHWBMmRqcecVbDwAgnG0tBtNsXZ0VA2FWgM5G9JIK6SvIuG8vYR0su11L5QDoEo4mwAYU8NTbeWguhNtmnJHQVV3WJnioh3BEMTSwgvN8X8rm5SD0qXyMJ/5fH9kLQb/TKH2LDNWH0gwonmNm6gTUaZg3vxSQ0cgzHHlYVqJohyLDd3ghmBxjqtcA4/hX28kwqeSTx9TfmbNdkOA6TPf+4ZbMqttv5ZzbcJ0g6nLsUCXYy1VeFux0snqadta9+lcKP4JC4SshKVlBVUIwps/O/H2N4TTr6zoHXaRaAZcmgoStSOYwL43zhEU9ruV7x0eAeXNeW8GicJpTazZuE0OhzPnUFlCop6TyYsshEkgqofNRiflLXaNKp50IFFCYJ4Ku6QQnGcKddJuH8PSnMTuGKtCkMpao89FihwD4U3siIp4NhlZdkLdWXuGzMYt00RfdbTFrhqyKxUa4eX4OlUghOZQcyebGqp247Ebu5K708QQUt87vCOJ8lgSSSpFDHHZkBbiilDVSqGt6mlPjbyW0OVlEtilzCGtLCU64ko7X+BaTQ6e/zVHcv4s9af3llt60/OHfrOmfkbh0vGLbH+foDejIwqW7dxu9w0Uca3vS7F5uqHOG1LKzhPi2U92J1WXVbj8ykpYFNYKpaLTxPFX9nz57+w5/qqyvnJEgAJTJeyKyYnPwhaWA0Yd0PSBWJHZjD3NYbhhkwnsC3VXWPaJ8iYwvQXJYs8cuQyPqZtcJapdpyMFmvG38V9uWfO8STuPp6PSHbHePGRhhfRWupMpZG/7APnOw4vcyAsneqghmEFd9wpT4TAvzDETJeOSrzudYuOWU89epYHYOERpOtTWcRrCaSeFP3P4ii/mR17nHbMYciETKBrNIBU1WgWUWbdFuyiVfVytXQR2IbMPmYd45j6eyRo56kRQk2UAZ0mcJfHV7S78fBnlE1ffv6XlT0KH+iblouvI1Xaebr/Qjdr37oTSm3bgVufg2GlTmG52mXl/tk2ooI6UCqudExa2THYCsoiBFgvIrN2x3OwnyQHJxnkXT3ZneQ+v/2+R469U6vcycZ9JsTBNpS+oFY/WqB49USu0ZCUhVHZTJsV6gSy0BXBlclT4EaWmCR4DUoNlRBb6wmJDrrekVWAcblLEkZRqyNA2PhpaqoonS2jtPrSzI0HF5Vw8KtM7eykNcRZP1k75AGWPO7AgnjY7G0eulp1SDpW4y8zz2hHwTZdrwANpfE1q4bxFhaBGjdKs0/6ULp+SVL4/v+ZXp69YiSRVJgkEqWSiZ82z7yKwI6NhYdHI27yjqGXWU6Uj96V7+czGa203ZiFdNbDUj3TdfIt0qG/klPpzf+7P8Tu/8zv843/8j/mt3/qtJyR4f/2v//UPq2jojHpDcNiObZv6b3nmmOequHndq6K39o2D5fper+67h4axeSKfrAi7Ema8IWY1GJLSBrNWLN7TidRABh4q9442hFVR4gnL/rLYpKpRyA+R9SGy3ptDiqT2acR0/rDipHWbG7q56ZUwmQE0EnM3ZbYhmrQGRM0dXWMgFCfLDCZ9tFy1XWcs3V6WkVBarGsL1TNi83ChqIgrDc2rrB5GJE7AKY1Us7b0pUINSgNdtvCii/ecKmVSdCrEybLvxVD8PugIr41jyu4teLs0x9I2vq+1EiWFDKqciiEQcrGJLUiDbtqkYU1VO4l6IwIVGagfsOwx0bMEimdpCC5ci1rKURTiRxKdf5u86B9SPrl8GmTQRfnY7R9yPS570rN13JBL4wR/zeVwLad6tcPz9VUd2caAz4996CqDktFQOTrcc8U6rUPTw8mVqdVC+DTA8lJY70EPbvDhBORBCbGF/ZrTI4gSY6EW41sKVPZpRUTJNXRnlTmZ7KmC1K70CC7nqss8Vzw2552l3rWQ3kZ+K0ioBCm+zel2xfJA5W4dS5dNVoLJtAqliDn6TwJZobb0497OsXGkqM8HrqyqbZdoDnOdK3HOxFhJnq1quPXOXUVXstw4ZbDgW7doeqDLsilmUz5z9GyDEfW4RNUN1l5UKNXeiYUOuiEn7dqtNQpTWIHaHfpgITIqDFwz38mnT60/3dSZnjvnuaI3vn6IDLs65mtfUe/At+tpMmicswfVxfvAML5r0w1baJlsdY0V+DiXAhS1TMSPSnqbCY8LNQZqFI6fJ84PyvpQIZWeuCUEQyNAsDTjDQo4xhsKBtPysdzIwoVh4LrxKh5/WFMwsvUkTzJ8jQv0F+HaI/cUw/cm3/s+GzydFqC6UrEKrCDLZiCquBM7GDK/JO10FMZJuOk8VSo1KpqsjaapkIJ91rrJx76YwGZYNd3qMry4PYTdp2UwziQq55IoJZBF2DjWjWul8XIqdHSrUJlDJkphrcnkkFaSZHaykCRz1tgJiJMUk30eny4fKWT+NCKlPomMuuqfH9wsz8icZ0Xcc9e40n2uK9FbY+fG9QdxM6Be2PiE/KDuPG5JicTmdq3jPVzdZJcPW92NIy9kCxGOR3OcN91tvRfWO7WMw1MmhEJKhRiyUw5ghOUKhEDQ4khC2xdjYfJELB1ZyEYFYqhzQas6FYhu2eFlu0fxdugahjOVt2F9gdDs87crp6PBPAprNQd5yBvQoS2ONlnU0K9lEuNhVjbqA7FFDUEps7LulbrLpHklSiGFjJqFaZdrVC6KZYanujup2b/2EJuOu3WOSGUnhaqwavKkC0b/ELRSMZBA0SafPPyuT0rbAmfDPhUa1YERpqdgep+FGo7hht9cRv2iy6dvnH3v4eGBf/SP/hH/6B/9o4t9IvLhShU8nZOe298a9DnJpDe2fd31rk+5Fm6jULulAIznXHvQr6/ZlIwGJ89bx9IoxGyKSq5ikEuvOBTMwaPSPcUhK7vXyvxVZfeVsXtrDJSHmbf/5p53/6ay/HIxmCUGtQwOt+yElnHjajJHjw85UctOBYNTZOM6avDreV/JUchThaPDEkVNINcwrPSZURhSMwYHdJEEH2hCiAaxjuKLltrCd9whBFRVcolGEpwjLIF4spelO4XJ9SvBuG4ciVCSee+7EE1q8dX7QtgVdvvM/d7I6EqXskquxlGQghF4zslQUlracoaFowBdgG3oAnu+Y515XHcgcEgmGNcSOeapk9VNsXSHVJBqmWZEDa6OedHvp8x9WtnHbN2osk0mKDGYUlVjsSyCH1Na34SvHz/fgvJJ5RM8b5g9J4uuZcM4917Nw9fnPGn+91z7QvyNytZ1nW1MNGXhOsQvDOeNylfGOe/o3Aja/D0D1FzcCGrXDQrTCeZ3sH9TLZwvQJ0jb/+NieOfhfpnz8R5myUndwxPyTSyORaDLUdLv6vDjc2x2uqfClmFtcQeftF46qapOGmkQCjUNbjsCc6nhCEe1BIlTCkzx0KpgVyC25jiIXHqxLmb0bPWuL3Koc2yBFQjWiKcEtPJVhjrrJ0kGIQ6WYgPAiWrhQNZPDAalbJX9FAI+0yaC/f75SKsTl1WNfRYaugyUTIb50B80n+2JA5K4FwtxfpSIrtYmGIlV2VZE2sx+TOnwtxDm81JGATW3GS0sEsrd9PK/ZQtFKAKhmloypYwqyV7YPpOPn0S+TTqIdfbb5VvoBt9o2Oujx1sma+7BY0+Nssgp67O6wS62QwoUUMSNF+QRfW7/uSr7jo5p5GaLJvfwfwa9j+pzKdKSAkFTn/2jsdfTyy/VuDe0o+GqMTJ5BECtdTujG06TfVsmp3HSTcfFM2Yc8tAopoT+mWmpEidxNBKRzd2PcGD6RoY+ikCM53L5kInHeebFsLSDB+X9yHa71oDuiQkB2I2rpiAhWLX2dqGbIZfuTNdNUy4XmeXqAnqQamHSrhfmQ8rX9w/koJyzuZVM1RUcBJxQxXE8D6H1PaWW3OpBhZNHNeZN+uOfcy8mE4EqbzNM495piLMYhQJTXeaQyFJMeS4GlJkjvBqOvMinhFRCpmiwe5LKovPCbuoG7/qh5ZRPl131m9p+aQyihs21scUfebnVRca9Zdn/17f2/uOv/4+hNNeJIJh2968NC3LnuByrPEb0WhZvB6D/tmpLQNmhXAW5tfC9FqZHn2+joYOOv5KIP/qSvr8zDRVUizsp8x+Wmmu1aIeYeHujuzIqbaoVKqQa3TUs6PRsTFbixAD7B4KOSs5JXgbCUXMliuClmg2Y1RHYao9ky8AbqG1PB0btTXrVaRJs00XQ5TF1UP2qmWcz3f2HsLZGrbsHcmpg56KOajKztpKHwrhrnB/yBx22eVS01eFQktiZSjzFP19yQYMMVl+2YGanYfAl+WB1+VAoPL59JaJykknvloOLJ6qesKchJadTyyzMUYbId5v1OlXpqDItJJrJInpvxayh69TaAeafXD5FulQ38gp9c//+T//JBe/luUfek4rt6Y0ufF9POHZ690wCq+Pfe++5x5Gbn+vHl8c1BWASOeZYtVOv9Q8wwYL3eL5tSpSfGWwKDpH8j4Yz0u0kLS4KwYL9TToqkY0Tov77RkI1MLImsECbtwJIZjHHGnGzPaQEioxrXBXqBJhibYCJ6EjsxQT0O2BWrpyxZ/NlxeCCDWIk4m7d17DpdASHOJoqLKQrW4NhiqocyUcvH2jZ6MAmGy1wka0QlLCrhDmQkyVmDItdXBDHdj/6qnaK+GifZxYmEExHfpFg6mfVgslWkowZ5t4lj+p5BpYc+wKbAqWFaKFMTZvudVv6AvcqCsXjj1XPIebCB9J1Plt8qJ/SPlU8unnVT60yW8qdsLFit+TeWeUay6jLq437O9KnffJEHzVyYe0aS0gK1v8fpu3VXtyzKjm8FF1bFCtqFgG0DLh/ElKSqaNmePX+A1qFXJJUIXdvDraBg8Xq/3m3XzxcDp1+6sZNbqFlVEtEYQqJUfKKXiGLoOd12D32hYBxI2nVltW438xdJDdd3SSqaLjapqH94ZCkECtyUOG1LKo7pQ6KWFvGlEVNfkkis5NULrFlhSZK3FfCKmQkik0gctwvFLphOWWGbQ58Jvmdz0DjvJKOa+B4g4pWz3c2qAUYemOPCw8wMO9G4dddRmJt1aQBi+Xfp82l7gS57/jR4bvfSefbpcP1Z++iR343oveqvT6RuTGtltK2ShDoDstGIZEc9Bw9TtEnCKALdmCGygt5E4CAxLSENXJrDZkVaM+yIWqFd0n8hyooaKhEubsyGgj1Y6hknMkr84LEmqnQJDgPbw9RHvgqHTBOApg87rAXGy8hQhRCEuw8Bfoq//SZLY0JPhV26nJ3wvpPxjVRnWgILYij4dDK1CDoDulNCoDD9tW2XhoyiSd51TUjGr2lbAv7qyrHfG9OcpdTjRVxFEILUzIwvbigIbbOoz4sy418KPTARBHpyopJO7CSi7CKUfWGslBqCi7YM9TFWaBc428y8ll28xOdkyyILQFP2ugqibnGxrip9Gf2u9ve/kUMuqJfPopBdFzdT3X3B+1/UPe2TClduT5rYrchiK5I7wAaUuKELL7ZUa9LWLupAZsKBGKILl2u7BEWGehRAWxhbRDWikIUQqTFNYqnNaJUiNTzOzTSgji+tNm3ymROEaB+EzeslJOsThaXZjuClkKRSY4R8Ji9CuNS1T7d/UIIN1CmbsQtwftC6Oqm7zs8hBPXCE9q55iiXOyJ+wiKtxtjj+i1dMJ5fGInV2l7i3cOkSLgCllu1zTX4qDPaZQCVoJ2N8WHuBY9pvdpSh8uR4Q4FQnApUke17EE2sNHMvEY9kByiTGZ9cyhZYqlvjKo6ImR52riiXs6dFSNqkVGMKdt6iADy3fJh3qGzmlPlkZvdHX2+FyxF9tk/aPPj3kYv9Q9Ma250++uj+58Xv86150j2p4es83ntXQO01ZFx+sdnzLDCMByl6oB0ETpNcQjzC/U+KpEhZzD+cXM6dfnjn+ilB+OTM9rAhQNTLvDfa3nJ0xXSHMlZiGx5ANvmm/7W+tIL56uTmsbIDECCkV1gX0NCE5uIEqNH6q7llzNFTjF9nQRhZKkpL6ar8JtNqEVLN8vW1qDdQlwjESl4gmRxXcGfdKC1tuCqm1vyMmxMKE4lwsNajHX++m6vdtJJpG+itoDaSk7KZq5MjiAT7SYm1k61dDh2jd8lwmFyvSjd1DyvzRm5ccz5buOCVboZiSGZXRlbalRkqNCNYuu1SYY2HVqStyDblRezuJZ+n7yNn/Sp/9rnh5Tj6N5Tkj7bqe6+/XSs1t/8GTyzxxSF3XeS2n2i7hklPt1nEbANAUqeaQGk8Z5EDvNzPUPTBBfIS4CGkxtFQ6KnGFeogcfylx+iXIv5I5vFiYUuXd48zdYWGXCksJnM+TXWfO7KfcibPnWFyeiWeBAyWQq63MiwixRY3QJvhgvH1USomQg3HaJUMrqKeRUyfwDUEMYt0g3e0/gSlWI50UNdCA4oD40NsFD+1Z1gkeJ8IxmtG3V8vCtatUoTvRtpVX/+3wd1Il7TIpmSI5T4ZMKmouutgJOM2ZtJ9WUhjnvPHlXnfQts1QBLmYvA6OWJ1j5c1px/G8I5dA9AyEU1RHc+JcUtHDdIQ5Fk/osJJ7+mRl8gUI8DlBGrHnd/Lpk5Svk096tfu5Yz+2Tb/m9Y2oyWf1Oxl2D3JMqzuNhMGA8dscu/TWjb0O15/aNVrIB8AOykEsLfgZ0iPs3sLubWV6LISloLuJ8/f3HP9M5PxnCunVym6/cj5NzLvCYbdyWibW02Q8UUlJyYmBHdUleD/X7fksKyZ2s0F7AhjU9CoaMidHpETj6Ivbc3ebLbr8vs7I1xoxijl+RhnvOw295RlERVBPuBBWgWQLBWUP6sjNTXfza7a0z21NYF+R/cq0Mx7OF4eFGJRTSZQhdK+qESbvnb8mSSMVB61bmnUZOkrwthIRck28Ky3xjLKjsAuVQuQnyz2P64ygTNEwDwY0NVLgYzXelnOJJKlUWTnETCWy1kQmOM2BkDHHVSa6LP8p5BN8J6Na+RD96UNk0nMy5H3Xkmf+vve6zR65lF/999XYuqZI6PfdOnXnl5ILh4BoZy2wOiIW1bHzfUsknQPTCaaTkM528voisH4u5F/K7L9YeHV/plQhobzYLZQaeLfsOS0TKRbud5UpWYRJSuo5ripLiQhidAliofhGmiI9QiVEJQVIUlhS4FwmKJF4DJ0bucltiXTZtsk9HbInb8JeXLA/99qlCjFLR0kRID/A+gDlTt1p57xV4rJSrSGb/0t3FdlZxEiMhsKfkqHt7TkNsVQ0UErgfrcwx8p+yhxS5hDX/s4becPli/bIHSKPZW+2Xo3sQ6Yhnf758XN+styRNTCFSg2Z0nmgTM5mTWRNrns1nSyS1VD40fUncUd7SzZj+IrrSeBryrdIh/pop9TxeOT/+D/+D7744gv+vX/v37vYdzqd+J/+p/+J//w//88/zd2NOvVVuWULDrrAB7f7E0fVtaF346JPQmWuBJWML/+Z0afiRJGCcSAlI8MLRTtJnKhS5tDTDbcPAvlgqXjLPJFOFhoXTpX4VghvhXrAQ/bUnFFAPUV4DFChLIl6B2mXib7aN8dMio0ziY4a2hQNK7W2YWlDI02F8PLMEid4FwnHgVRcBWJAp0p2bgYZMk2BoEU4qVCrsJszSYzoOwVDFDXi3YYKkKToVFkfXLrvKkwVceQBfu9d4W3nSSUmZZqyOcj8HpY8DvAh+5RUI2QX86BbWnTpq4F9lU/pHFh2fVezeviheb+XkngUIyuuVSg5OErDzkixIB732A1QDHX1mFNHjazajHFfJWAjKUThlD9e6vyie88/tPxc5dM3LE+a+j3y5OIYvTruSr7oc/uELeQlbvtGjhId/4oZIxK3bSG4kqAgdau+Boy/LVpmFkkOM9/7mJXE/LoYf8upkh4D6XWgPARSrEypsK5moKxLJB8TtQRqtrCch92ZFCu5CLuU3fYK/VF2MbDmFiSGr84H/2sPIwIhFHQP5RiRU3TFSu3ez5EyRZap9vTI0hI0iBIlck6Rw5TZeVaWJMZ9FarzBniaXsGeqcyFem9oMZNNW9jOaIohzf1lfDUhVGKsPRMOYHJnMJSqL7M2HkL1l5udvH1Mcdza5KIrSZNZW1h2VXyV1ZSkWqFmc8y3tEHNcb4Uk1ut2lxh8ZBk45Sx9jj6ZKruLGhOrfN38unnJp9uNdtHmtwfVulP+X5GA6/I4Hdxu6bLxUFOuS1ixOjRyc575iUlFOcfEeOYrAnPImWog+UhUMNMmgPRkzGkR2X6UlhfBuospJTJq5Fi5zWhpwhHczSth4DsLDGD+X2MEgGweV0s/XotYROY7mRv8rc5qerLlVUq9atEfBTjevJxo/5cNcqmBybtDrku26tYNuFolq8E+uq7ZndsicJULOyFgEZFd3U4b3iXbaFyI46x8J2p9nDGGCrnEtHFuBJGjjml6WMt/KQlmAjuVB+7jv1b1PWm3p8ijYsqEPlK9hziQinCaY1WnwZOazI02+AVKC5/zhKoesdaAp/PR5reNHLmCc0IVI7n/NH990+LfIKfs4x6j430daf1Iu/Z99z264O+znB0J5N5ja62X4wZr6bNe65LqdAzx7UQNQCikmelxoJMBapRsdSoLPcbG8ruDYRFiY8Q3grrMbDeCSlWjsvEV6cda4m8fbtnPU0IynI3cXd3Zj97aGso3KfKXSqEqh1to0iPuhMxe2eKRpWCLwjeHU6cPocsM+l1IL0T48UMoGehzp54IZrMs4rFM5aO7aLd2d6yFbYFBIDG7Wly3WgOykEp+4pO1fVX6bzCW0ZE10eCQjI9riHHLWolklwuqt9AQ4yvOXA3FfZhZZLszis6Msnue3RObYC2U0mAkjXwWCf+mHvOJXLMiTfLZCHCwehVJg/DayCJ0pxMIgRiR5rnQg/7E03etWwyCBhydx0SgXxo+bbIqI9yt/2zf/bP+PN//s/zH/1H/xG/9Vu/xW//9m/zR3/0R33/V199xX/xX/wXH17htTCSD9gmw2a9fdjFKfIz+lzX7S0Zxhd/84Yuvwvi8ckNIu1/iw3MfC+sLyyTXFgNeZAWQISApRUWNSTC+iqyfiHUV5U4q63SVUsXXlfjOAmreclJEJMSHQU1p8qcmkFmnEjG2zLGIl82aktBHqMZTiyR6OGBogEpgdBWCpuXqjYDcvsoGIIp1o6MSNHu38LkgguFQCkJXT1FTwL2IHtFkimm0hBrzagWOqdCnGCaDZUVW/jRrZfY7ksDh9l4VpTg2RJam3xdp2gZsezY5ApcFOXH7+4p2W4uxBbSqOB1F23hNPT09SkYb0zzpLd7yTXS0iGD+L5LJ+LXluZV27xr38ryyeXTh5RPKFOe8IRcd63rbvdcN7zxaePi4p7D1fcRKTVcduRP6A5b667UPeR7qHvjRUpnsRV4IFQhZmylT+D8MrJ8JpTvZ3aHjAisayIlyzK5nCfqkgAhTspuKkzJnLopKrOn8W1cT1WjoxFH1t8mU8YHsnNqjshiZA997Gtwm8uDSzRY6t4mczzWPwY8tNgMtdT4ZS5kQmCtkfN5QpdoYYqzIjtzpJuM2tAShhw1PoOQlJiUNCnTZHI5hK29n5MxU1JPw27cKcYi8bx8upR59L8h0FMOvz3uyaul2QouK2Of2KQ/czu3pS3ex8xao3PJRAtR9jnEAnd8dfI7+fTzkU9X8uNaDXly3Ce43K1LX2y/ll/ejVq3HGfhi0pHedWqaLKqIfDGqj1CtBxcf7q37elRSEcIKsZBVSFm0Cmyvkgsr4Tl+5X0kImpsq4TIdrC3Po4IY+JsESD9CS/J3duhLQ5kptTuzYul2Bcne3T0J1dHqjAGg3BVGR7TgVfcaITDV8gNuyJJYgjFuwjF0NMNv2tCqyBUIJxm+4V9goTlhAnaA/LIdJ1KFt9NDkWZ9PVUrRsX4K1gQ4TmLoMFoTDbJyZglA1Xsnmy09DKbX32+RVCsYluEuZN3nPm2VPLsn0OEx+qwZWjaw6sWoy/kAsPXtF2MXihMSJc51YdeJYZxadyZpQERZNLB+7Vn8tn76TUVY+UDf5Rud+aP1weY1bsvDiHppQuVFPQypeyzCG76MOpQ1rDQHx0TCcLhj37Z0id9UiUpZIPAeCnxuy6VRSjT9pfSnULwp3Lxd2U2HJE6GhCo97lscddUloECRpJz4H4ZAKu1j6/Bsv9IuthOByS0zPKU7gvS4JOQXCSTCOY/tchBTTfgTf79EnvS22/7bW9hZxmRyzmAxMUO+g3Ct6cBk1yr8mp9q2CEzqUUCmT0mg26kNqW1IKXcIqSGl7qeVQ8qkYPrm5oS6/A50HbTJ1UqgqMmiEOCsE3+8PFhUS4fybm+/EjH3uZ0fpSFEzX5bNXVdLhMppH687Y9Dsp0PLD8n+fR3/+7f5d//9/997u7uePXq1Teq46Ok79/4G3+D3/qt3+L3f//3+fLLL/lv/pv/hv/gP/gP+N//9/+dX//1X/9GN/BssZnm2TIs5vTfcrXv4tgbgum9pVV4hSrQYd/FddxrWyNbfOuV97xXrXQYdnEvurojKAQ7V3eB9V44fg7LSzXhJRDOdi0pwvmFEF8J07vA/FVh/y8zJSZySiyfRXfnCkUnpFjK4XgCqYH6ZaDuE6dDRQ+F5T5TDsJhXtklI4QLUgnOo1Bqc7LQV66qClrMqNrfreRUWHYzvEuEsyCrEAqkZvh5vl4NUPfVPOsAElmWyDpPHHcr01SYU7HUnZ6NTwREjYcmT95Iosx3CzE1dFcAxpCR1vju+AlbennVjU/Lnulpz4mxspRA0bnXt/E8jfUPXvXRUSpb/zxrtJVCDbw4nHgMVmfy58wqFlo0nG+e80rVRC6Bs6e7b9dbSuqp11Vxgao8Pl5mSvm68m2KN35f+dTyaRzCn7Rcy4Mb+57IrGF3P36QURccB+PK1HiNUYkaduoNWatDuEgNG1IquGyryYgkl1dKeVlgV9FicfKqgbgK+Q7Or4T5s4m7f5XZ/aRQp0A5zLw5JcvcpMKbY7J+twZksTF8Pu/5P1/Pxvu2K+x3C/e7hbtp8XAN42G7mxZU4byaM6tnSfGBVKu447yQHjLLPFEeE5wj5JY8IkFSalJqa8ypInMx5TIopzhx3Cf2c2aKlmVqCsZzFVRoLJu7BOtu5egIyHm3Mk1OcukIrhaRrGxyR8QI18PVO+8cO8iFvAGTZwgcVxvvDf00PP7lOx3kV1eK/bhaDZFbNbHfr1TEuXQq81Ro5KjXdbcsraUGvlr3fg0LacxFXD6JhwgCohyPH6dQfSefPk15X9N9iEr0wRW+70KNl6XJoitdSoMhyBtp7S0kReOQanQJ1R2qGqBmjLMlQJ1g+QyWl5X1wY6lQFx8EX8XOH4eCGtk/2XxpDERTYl3+Y7zoRqSQVxNXgJUJawQzwG+CtQ0oZNlOq67guwqIZneBBCnbGjD1jDOtRRi6Q8YoyKHSp0zy2EmvE7EdxbCQhHS+fKZFaiTUHfbQoYGqLvgmZYtRHnMuKwjx0sy/k0SyD6T9pY8ZdPv2jm2TaKhvjqKVLZjmuPckpkbC8rIsxdjcfSlPWtLVX89t/YpSHGT1eRwdnlZNVDqzFIiUyjsp6UndrDU9nDOozljC31BlFUjtQb+xbuXtqiAcRQqeHYsu6colRSU49v1PR34afnTxCn1Jy2jPqTcat6+Ta62XQu2W3RhN2TMkzLMlReZzK9vwPzNNtSTGg9w2ObNAJ1vqU5Kvq/wYuXusyMxKMc0UfLBFsFnk1/rS+HwL2H3E+VOKzUmXocHXt8fDJlULRSvrgEWQ1nqaeLxdeJxf0Ac2fiTu4WH/ZlDWk13AAQ1x1M1Ds5ODRLNTqpqNCG7KSNfPHJKe9ZpIr0OZosqxHeCOkK+tUsNUHdwEYMch6aWQe/Mg73ckFLu7EIbbzKD468OyYXF0VObgqBZLDxXISTj6SrFLhYEJze3d7ifcufpXWscKAouOTlV8bA5sQWNhvp2XryC8FgSSw0ElJ2shGRJFw7R5InJIY+yGeotnZJCut291Mh5jS73WgY/I0gHOP2C6lDLsvCX//Jf5i/9pb/EP/gH/+Ab1fFRTql/8k/+Cf/b//a/8f3vf5/vf//7/M//8//Mf/Vf/Vf8h//hf8jv/d7vcX9///F3cK1wXDuPWkN+jZNKhi+3jLwnQuRaeF2VMRT24u/V94vj1BWfawPv+jrXxxeBaqEYbULXKCwHId9Vyt7OjNXSZNp+qFGJC5Z5ACizsB4G4tyMxwdigzo36jSHgTceBrFU56IWMlirKSPFz32+2a2nNwdNLoKUClpQ9+QavxQgW1y1CWt/bq+DyaWSWuO386oLxuCTQinBuGFUkMmIykNwSKiT07ksu+g0IxnwGHa3rRToRVhL2ye0MCAuFLftOBnaRy7qGs5y55pSCyzZHFTRs/rhhly/EzVHn/Zr0vRZdKi19trtDmqFWgJl/UipM2qI32KF6pPLp3Fsf6JyS3m6eY1RzgzvpL+m52TT8PsiJC8M5w/O0ifXHOWaD82OlKp9eFID5J1SdgWmbCvsq2Wa02rZQWqC6YinHofyAHnn3ACojX/FjCi11UC3SkzBwWDUyd3NocmGioXFVNkcPTTySn8AwUNo2qOZ4qUFN558vI+6RwuBCYB4hi2HWse4jd+KhdSGaMZYrtKdSWsRTufo8qOSUnGCdruXBm1vSSuaYWr8DtVl0OXLvV7N7PrXtcE5fNeLTtLefXvB2o9laB/1v0uJFFeOLKS4OaQ22dfq6fdQe0L1fustDBw3MFVMOSzrRwG0v5NPz5Wvk09jW9067kqufJ2OdWvfeMqzes74Wy7PuahHNqPlVh3XMq+P7RbK4YtNqqBByJ6BKe/VDMlViGd6qEeJVkksSjhVahSWQ2C5c4HiWY+NrFws219W53C0G1Gs7zclSPyvOhenjRHd9Al34rQQPnsAO09zNFlZ26ixllBMF5L28A0p0AwN8ex8123Wx410uSNVLBkNAlKRZFlK0Y0zzpxAw0QgOPLL9Rgx2Rb8PET7vY16EXK5QNiQVMql40p1O+5CkR96ibr8bJw4LTNoC3mpw6Lp9vBP+5MlvzAERamBghMKu6xas/BumfmoMsonrr5/y8qnlFHXzfJJyyD7nrz2J33ptsy5eW/CM8qRb/cw1HZstzXGDVfX7Yp6kxeABqXMxjWZ9sYfqUUMxVhdBwpAUcLicivAuhPyfbVkVgq6BgimC1kYnNKSPGisqJgsiqIErUhVSqXP51M09vWqQ8iaXnVnNV6qqsAqSHGro6Eamx63gbI6lUgP0dMuSqyETads+qV6W4lnMtVgzndSpROoBx3ej79V3ZreHFfqznPd3kHTu4Y3Y26eyhRWJimbTJKxAcbOtQnWtrhnlCrmhWy24KqBQiRgBOeG1GRrgKt5V8EXNq3OorIliFC2DqZOs1AiufxiZjD+O3/n7wDwu7/7u9+4jo9ySh2PR1K6POW//+//e0II/Mf/8X/M//A//A/f7C5uKS9jueqDz2o1vKcvPfMiLo5v8/Cte+BSKVL/NK+4DJVdnCrPfFxQiTp0LxgRp05mzK13wvJKWT9T1JWkNfog/9LO1+QTdQ5Mj0YQvnsr1D8W6mye+PZXJ6UcoKxqqUkXIZ4gPSY0Rsr9zJv7wrv7lXmfududedgtpFB5d5756njoDdmV1wZzVCGEysPDAg9wfLdjfSNwjPDOFCFpC4MF4iqIxosMffWs1CmyzBOLoyPS7JRuouxmi/NXh58zKfMu86uvXpNC7Q6lXD2EJidOqxNvKoRQO7FfqaCNLFnbipq9rlIN0hncda9copdGxavqjU5CR9vTyOODtNTsxoWToqVVb/dca3B0wYbeagpWdaWpVgsvaquDIrCLlTkquQh//PqB9e0MjxF9d755X88V8Ymhff+2lp+bfPppyw2l6b0TxXi8PCPjuFTOdNzW9IIme25dS67OaZdrDqkATD5WPTVxflXhs0LYFUMr7iolCToL4WQ8ecVXqepbE5bpJMw/SuRHpe6UuvcLBGAHpM1pzDnA444zM+d95fVdZn9YOMyZ+92Zz+YTd9M7vjzv+FdvHoY04+JjfhtfiwamlHn16kitwuNpZnmc4DERlmAOe2mKnaAlDKnBlXWNlJKNPNMRlykVDx+xsBIbuhGp5jSf94VfefGGw2TI06yBtUSWGskldhSR3at6hhzLBNURBVfvanNMC6p1OEYu9uszsqm92XFKtRJcfgoxKoddoWVKNU4/D0MaFW6XbUYzHKk1DqSdMCVlwjLffPlu4vTlDt5O6Ovv5FMrn0Q+PVe+Tr5sOvaF/vKhVT7Zca1zDfXfLKMB2Q5z5PjIW3dRxdXxMqygawQJQtl5qMuDsrxS9F5hrugcODvMJ721/qvYKvf6WSKdlLTC4UdCyIFyiOS7iu7UEAk7u0bNuA4F6SzEc6SkSD5Eyp0lNGCuTHcrdwdbJT+eJjaYqrrhtpmpIUK8K+j+yPlxpnw5E04WbhgakqDQnVNSoJatUfQslFl79mVN6qgpb7uEcV+VgKzBUNkT7OfCw8PJQ5PNEZ+LyanTOrGu7vwJSkqVKRYGU+9CHjQkZpNdptY6DcPwzmzxIAzvVqiqQ3uMZZv81hpYSnID2lED0hYu5SrfaMBIFxz9yuU1pbjhiiFFlpz48XHPu8eZ5ScfmR10kE/t97e1fFIZdS0Tfgbl5jQ3OimGTW2DXP2+KFe6VvtI23YVwqet8v5lMER9zF74UCazOcpeqQ+V+NnCw8OJz/YnYlDe7DI/jlB+vLfzo7JkJZ48Ix0wvYloiOhUKQeFh5XpbmX3wigRljWxniP1bBnRwylQvpr5ar/n9cGQkWkq3M0rrw5H7tLCKQdKcdqCYWwHjPokxcphOnOeM29fHFh/tEOOxi2VTiDr1aNHR3q2saFm1xI321lbuLHSdUBxpGs6GfYATPbKpJAqcarEZEtfWoXsvLy9I4SGIN9C90yudKPVXp3LmilVQhBWjUzSSAbEw/u23iNXv+RqTwvxO9dI9ixdSZQUau8are4gSrlAs2w9x+w6ZQ4rsFpETI28WXa8Pu45Pu4oS6Q+/vQ61OvXry+O2e127Ha7j6r3Z1E+yin17/67/y6///u/z5//83/+Yvt/+9/+t6gq/8l/8p98o5v4EMfdlf7yZPuT/b5hrPsa1dSLDJPrOHteC6i2a9w3IKOujbpxsWn82z6h1aXmCBb/rZ4kr3bySdNENAp5BjmYgFILjkUWkFdC3gvrYZPGFhbo2aUaAV20/RW1uOO6IXIoUBeLWz2X2RxIqXLOkbHBmhdXaUS7Ln8L7FLhsDsRc2VhplYL/JUVixNuK35Ng2iOOUcpqALVFIrs7RxDJUvY5H6s/XaWHJBJCd25VFG1DIMp1J4xrzm3oBlS24qn+jPVunmpNXh2ivaO2J7z/SG5uvXJoV8UoJZhpUTpiLSe5l02A7OpcWN3bITvm9OLzUGVMjUmCqFz+nxw6R2A8TV/68rPSj7Bz6hZ9FI56t9vvL4un4bVqAvPwrUQvCGzlEsZ2L8PvAgX+4MpJL5w52hE216jorFCKE7uq86RUtBJKBVqMp6pvAuc7wVNsN65MjL2t1F+jvcfHHHQ9lUbQ8saQCfIBs8+r3EwZtwAqVaJKhsaqoJQ2KUKsxEhLwVboSxYCmZXrjTUCxuSDHW1xqqiRqBcocRKkECQ4KSabVVMu4xRNeNnEkshX7FzpzA4vX0+aIqgNqSW0NFPtY78Bia8jJ+GgTj46xxS3rztHWtDQGj/3RJctCyEdej8evW99Y3WUEb2vtXvzY44m6mqWht/TPlOPv3synW7Pte+MryGD5lexnc21PHee6j0hb4x4/UT/a6NZQ9pqx7WFrw/IlCSEwhPBZ0cIS2gScgeajxeXg6QJyHvLQW54joSikrdFLQAJNMPSuOeq54tuFVZgEUoElkcSWROXWuUkSvuOuF4DJXD7kx+UIpMVI2UYhlNKZtBUcOmO3bEgThIYurAMbtksHtqOh4NkaoV1WohztAJgC3Tk72QFF2fcQcOeD6qPr63+2/ywHQp44eSiGfw3Np6RHa293mhMw2yoxt0A9Khd1VVSqFz1kl75uFiQ9cCLkW6/TbBGaQSJQMT+rE859d9/TsZ9fMprd2v+4vw9J1cHDD8Hv96pU9kXKurWp+joZEaz+LFu9+UOSGg6nOiZR2wBS9wp7EtbE3BONcClkBllwqnfTZnS6iwT+RD4PyZUGYhu2OrumwKsfgid7uWUYLEXaFKomLIbaaKRGMeL2vgXBJv6sw5RUukEkC0dk6l/kgthA4hSOF+dyS/qJziRCEiORLP7jQbnXCN5NzlVqhsIX5pa7o+bl3/VDEUa/VENO1k8U8b14r6b+cQdTlhOk1bTXW2ULetOgpMIIo5wxu6trqeGAZ51Oys6+E9qt7av+HX89+i7qCS4ZjR7b59GyN2GGxVgDlU7iOcY+TEBDnC6ae38X7t137t4pC//bf/Nj/4wQ8+rt6fQfkop9R/+p/+p/yP/+P/yF/9q3/1yb7/7r/776i18vf//t//8ArHifx9bSw8j6h87nTZOp8ZGVzyqbTSlGq9OJW+6ZaR6PDpi83Xx/kxGnn6nN6TtWz3adcyR9PqXC35swp3dRgUtlpX3LlDbNUGyl3oziwCRmI5Y6t8SXu2FiYfhNUMsLCIaYCiBms4T6wr5JJYiMyae0P0gd2uKkrBV9GrcpgLL/cnjutEEQtR4+zCTozETnAlMoLkDUGl2RxktaqR4kahiAuhCSP/VkM9UAKyN4+5hb9ZFoopVN6sO9QJgCeK853ECwcR3VC8RD01HhUlULV6guAunq6Ez2UZjbD+3QUaImjLC6Pbx1YUx/q2ntfg/l1om1lnKC41D3z0DIWBYBl8SiA+JsLbj1zpa4otz4+zb0P5mconeO7Vv7/olbJ0uWuTT83guVaGGN5J+92+X02WozNpVNTAUEPFV6qeyKNmLw330wy/AVXcr1n3UB4q4WVhuis9tMMMEjXyXF+p1xKoBzh/L3YEg2V8MvQms17K5UE+ApYxCpxLRSgayaeJU6is+5W9ZnIxAt3YkFHtBGlj3B5wSpXPDob+fBshk1iWybj6qhAWQapQk/rMKOaogp7tpRpcFdWKhkzEsgjmasZmrkbCFabKbs4cJiPPTKESUd5kkypzqkxsfEwb+gmTFKE5msSz6gVHVLrK4+HIhvy87jjc+L11qhHdEMKGEm2yyoxD21hHL+XNekbK0k1ZxENyFHuOXBO6RNLbSHz9ceF738mnZ8pzrwZuG2S3tt+o4okI6kLkmWsO8um5XU/k6K37bnrLwE0y3m8L0+2OloamcgWqOWHqDPkFlFeGkpIB8aiTUg+2hK7RUOMShNWZwWsadSeMYHfWLd1515gVTq4/FDMydTbHPGtEs6GczyKEaeO0bOF7rY42dlSNG+nF4UwugZ8YxhDJEH2Auj3ZM6NqMFRBXwEXD40TIIjJYvEwn0GwC/7sOyXNG0eUIYYiuRo/326yVf5SbLyG0Hgr2zNsDqlSsSQrJbBm03WCGLpq1GG2RTi711ZPcPh9z1jcO0pzmrf3LwRpTq3wJGR462LtPmXYdlkES6izi4WaA7kmynEivPs4qNOfJk6pTyqjxnGuV9s/pHxAO466EHAxt10f18Pe33e5ds/jlNruI2J6zaSe3W273kixYZOgoJZK0hKeYDaXFtBZ0fvC9HLhxcOJh3llTgXBkhoxKXrwbLyi5GUiPAgk6fadCDAJ8b6wuyskT7JgyUoqMkMuyjIJJbr8mArTVMhLJJ8nVoHjOrPfrxx2K7u4eoKr5sQ1VE/eUqnzxd2RqsL/SaSGiC4TKZjeFBeQQucFREw+hWG7JsxprgMuQegcpp0OPJieyQHYgSSIk+lYTdBLaNOAXCzWhtASxeiFftMUzWYDEjJz8KRXNJRYQ1ZqX/x/vsc8xXWCcZi271mnQcaNnYwn/KH9LsWja6gOrKi8FuGPj5G6TMjbifhTyKj29w//8A95+fJlP+Y5lNQPfvCDHpb3XPmn//Sf8hf/4l/8qHt6rnyUU+p3fud3+J3f+Z1n9/+9v/f3+Ht/7+99cH2j8+5rj/UX+uQ9+na9PlaefufaVh+OGcNckGeuM16jKUZte7WBd2HcueKEr+g1aHo3RNUmeiMp8VucId95CsxdIcyW4aSqSRxFyVPsfAcajLATdfRCc0pFN/oa10Dermufis5Qkg/oOChva4DHwHqaKbtoHv1dYZrMQaU1oi0FutA5E96823E+R89eBfu7EyuFMifqY6I+BiPtRJDsbdUcc94TpQrhBJoDuhOYbRWyBHNCTXNmvTPn1PFx5v+fX5JiZTevvDqcCC79st/fdR9TNadeLkKtsRt+nYvF0QkxCBnxLIDbeuZzKKnRidSVZ0aul00YtpCdpiiO5OWt8zS+myCXjgHB3m+uZoh7kgz208J6H1gKrPlj442Vixv9lpY/Sfn0dfVcfH9ujivPyJ3Wr54zCm/U21ec/VO9fqA7gaTVOcosLmUUmNEVfPW47pS8U+qhMM+Z3bxYdkoFFWENhSUUSvHsdVJYQ6LsgoURz9qfQxv6wFGSvbQVyOAOjqCEOZPmTIxKrkrJgXdvd5zihDhayxQ7M6yWknqjSLD7ezxN/NH6khgrKpZk4HB/4hwK+ZSop0g8uYMoiyl/DdUzwFq1iD1fTtSpGumwQoqFGCrzYbHEBOeJ/99PPiNGZTdlXu5O7FNGoyUpqFdKTSPfzDWwZHNClRooJVDLgBQVsZXAxtGiLeTxOtT4qisNCnRTlOz/p3x6G1fehny65JqQruIV3WTY2JFGKTSlTL0LlFdQ14+Mb/lOPv1MyzZf+e9nD+RJaNKFPjPoUe+vaCgyiJ/Kphcw1DPKteEarV+KYnxPasZN3il5X9G5EHcrabLxX7IhsEtQyl7682gIFKdCKPtKnUyXYvKPmAy8vm8mx1J5dhr1Y8mGGuAksCbKXJF9RWYzMKxptodq+lOpgTePMxWjQ4iHhUJlkUR4Z6HP4Ww6krq+2Y1h1y0Va4tQQYtYMpmpWYAKqaKHChrQVXh8M3NKE9Oc2c8L+zmTQibXuLmGGuJAnMi8mqO8ydeG4iwaqGUIPQ5KKU6F0LifrvpEG871okX8drtDbTvWSJCt/UZeqrEuujy7dMBXdxaMXDONh3AfM68Oj8gr5e3HRcZcyqfLG/nWlV9UGfVcaV2gyYTupB1kyIU96OFjvfR9Vwgp3eruDq8ssBj6idjG3CA8G+JYmkxtlAChO89qqnCohMPKNK0kKaSQSWLsZvdJyQdhjpncxtNdIK8TeRb0YMkUCIpESIcVkUIutvjmy3Cd922eMjE45UAsTLGwpsTbIpRzoi6J0yKsu8i8jz7+6wV6OoiNTq10vrVdysSHSo6ZZd6R30Tiu0g8OtAB050kY4t5zSHV7LzV3lVNeNZPa+cyKRxsn1aQR9CS0F0h72F3tyJBB/4nDEE1vDtVyKtlN+1ceOO7xWULwlqEObq9jEXKmBpmPHyNG1g+wNPcw4iHjmSOKFPGZeiWdjz9XW3FEamOsK1qfGAv50f+rZeFfykLP5nuOZaLk76+3NChXr58eeGUeq78tb/21/grf+WvvPeY3/iN3/i4+3lP+cjcp5+4XBtYtzSj9iZHxUmvDr9SWi7qbd+VJysYCpeOpfcpVNd9oCGv3KgaZdP1eR0FcYVSECCulg1GKuQ9rC+U/EKpnxXCXSFO1QanWujKlopYzNEUgnmenbKgrTKqw8zb0llbgerG4BCyw4Q5pERhCUgJtgqZlKLOJTBVUoScm4dNujJl7WUZApZq2/fzapxOElCNiFp6+C1QGcLJbqlOLqxE+oRiwksheRrlZKtaS0MVVIEYWNYZDSt3cWWXCo95Mjj3M8yfWgO5RhceoYfEQBurFlEsQk//riP05JmyCZZtUrhQmLg0+J50kuHILTSPq9U+XykQaPCWNnlUIpnYU9N/TPnTgkT45OVaPnHj963y1D5/f50M7X9dTaAtvNnO61d7ZcD1ia8d2xxQgnOuXJ7ae5bcOAcIxWRUqBbWkh+gvKykl5nD/cLdvG7Z1twxRfJJXKEejTigHJw/KrKtarUwvtJSBLuyh2wCVRSZKtO+kjxbX63ROJ/cgZyiyZspVtbSxv7woGIPWEvgrIFI5W63mDwJQm0p14s3gqcaDqutAJZZYV9NeTIPuS8wbMiHYOLIlEMRWxUNgcd1ZieZpJWX85lzjZZimbA5w5GeyKGqsJbkiILQEVIjKTkKEqSndG58T5cT2WUnueaCglG+8OS87jAfztXhmEtWKuXpNYe6XOY1RFco38mnn3l52gUut+vzhz7Z2GRLvVHtKM9GhFO7xvveV9xklWJqhYThFodu9USvc/EQCySXTzVCuYf8EupLJb7ITDvz9JcSts4+qgZnr3QS1kO11fkmAycz/Cyc6+rJgzt6kEskesXCWFSMDiEAIgTXoURsQU363L3pHapY6m8Va4dgjaISkLClM9cI4j73oHSE2YbgdxRS0C1tegCSG2eNeTdCqQnVTEQ4zNlNog25Cde6iCVqaQtrbVGvyajipMfiKIWUqnP7yUUyl7G0+rffjlu42v508tzur/cXfzyBK1Ta+A4NARKD8UlNoRoXFpEigbx8nFn0pwkp9UnLDRny7P7rcqGcPHN8O8bHq3iY2Og4v5g2R5ttrPO5afP62HadK2eo3Yde6FZWn+s1JRhvpWCRLy8yu7vM/X7lfs7sU+lZ1bTaWI9J0arkNaE5GXrhZUXvjQIAIE2ZeSpux4TNFhOzYVI0x2xKlRQKs2f8fPtuoizJsok6MipIJUa9sDn63O9yvCHVVXEkUuV4tkx3IoHYomHcRAzG7oBgyKkmo1oWVJIf2xD8LfLHYELmUMJkpUZh2lVCbPQCTT/Z3k2TpbU0QdgW7vSJmpJiZkqVw1SYolr21otO0A5+rvNdFtPdQpflVx3hRj0bgutWxuXg21NQ5mAoujchsEhiXWeq/PyiYVrSg59X+ZN1Sg3liR0nTzf2FT3fd0sV7gNIfGCsSjzb4OjOIS+1OXGC8zMNdSi+L13W2+9Pt+PM8eOHXc+bjp7qAzGyZUpRu8cy232t9+aUqgeFHKjvJqrHzMpUCHO1jAq5scVBeWgZCWy1irUtmW03IcGz3Y3OKLwtWry/W74aFaZKz9q3BnKeeHeOpF1mmjMpFnIxQbi9JON/KS4s3pWZlCq7w0KdM/VVYDlG9DEh50A8CxohZCPy7K+6DZ6TUGMkPwrlLlJ2kWUuTPuV/d2Z82mivpnhFDjHiX+53/Hly71BVD0jn6oR4TVjqK34ZUch9FTNwuAJb/HFwpqDQe6vlJ7eruO8NOzrfYKn+y/CCG+cC2JZEL2vBmRY8TOuHhExEk+BqhERI17+7P7IMi+84SPLaDx8p1A9Wz6kad4/dXHZ1j5Bh7N2JBJhk3NVTFZ0GeWypb8qn8j1qu4uIxn6littHeHZjqlX58imVIxysETI90q9L8ghU7Lw5qsD76JBfmOs3N+dud+dWUJ0xwroF5n6ypw0tTaEUTS+hGbUhbZKqZcN6KtFqLKebbWwGUYSnUtAhbxE3hQhpcJ+zuzm1c5ZE22ykEamrlDWwNuyY55XQjQZFe7OlJeB8+OMrtFWRMUMzHDGoOrF7pUMkgOigTxF1n1lSdXQWjtLEpFj5PHdjvqYWHXHu6ny+s2eeZ+ZU7awY5RSLBWxW5O2ypeNbNjQZuHG2DQZtZZAGDIMvrd/3thpIN5rzf9SVjVZ1h3247UcKdscardKRyUI7O8W8pRZ88cipbjRBt+VsVngA2TPMxVchMUN+ntDFcTVQzBc4eqqhdDDyLq8GLtTWx1vhqEjoUQv6xj/XhiOzzxsk1WqpsMZ/wiUnbI+KPnOLKF8TJQ19ocKqRIPKzUG1B2jelDyi0aWiyHGx2vXG4OryU1wOgQujtFdHzB27CqUNxPHJTDtV6a5DKjEwepzx1Tjb5IkhBdn8t7kbV4D4W1CFiGcnfpg5HEZfPGhQjxBTIFygDo7outQYZ8NfX9K8DagNXGalD+6m0l32RxoqbgDTcjVZJCIyXmtJp+uF9caaqvmYGiGUMkZSG0x7qbGDhhCIfRO2P5tus92zqX+ZPUZ9914jBmZtbph+8T4sxtt7yDXQBTl890jL6Yzf/yrgR/evMtnyvVA/E5G9fJshAtcyovrcuu8NuaG9pUArGbfodbvn4xVl2MyvKdOvj17dEm7UONt8zGu17pSliF5gLrtYAdolk2HaTZhBopSZuO2Sy9XdncLVQM/eX3Hl3LoYXovDmcedifmkFldGZvnFb6o1GyRH2nKxLA1Q1XxcaXDjdr2ZTVqgbaAdMoJBeb9SlEhp2i2ZIb8duLNEjjuMvv9ys6v84Tb1uVTy273xctHTvuF85JYz4n1qxk5RcLRE2mpR8WUrn6ZzptBjr6Q0GgdgiGnyl4pAWSB+BbSV0LdJfLLwPpiNcRpqjhNlzmhXLS0sV4zNvmgSKqElqW9daVqHL1rCYQQPHTwUhFW1a4qh68Z1DoYfaPromUg1sHwbi6Cxsepol32BVG3/5qMUtZqaNPPd488fHHiR4c3/H93e/7wvXd0fYPjS/yYEz+u/PCHP+THP/4xP/zhDyml8Ad/8AcA/OZv/iYPDw8fVMefqFPqyndytfPpb3lu37Ctw32N+sNiWjOWZnfru1jIgoc7qF7C0pUtVGYMK+njXjahqdqRUpcrA7INFN0Us8Gu2ODqmGNqPSj14BKxHdhWlYNNsGWNhnxqDxs2z3k/tk3u1/c7GH3SRsaFTdIMRVOKmkCWYHDREA0maav3W4Nsnusta1zwEJyqYu1e1dKXKpZStIJkF5fNe96U4hY6EhWSbI0bdCP2XYIZjhWIgiSlihAb6sl5WHIz7NhQT6qmhLa0xdZc2oXcxgVlbVIrg6J68RZ7uXYs3do/ZmrY2vzyFLno6Leu6ZPQ2C0dbYGYI61+JHz8OyTCM+WWfPoaeaVXxwx69oUM67bIqmbw1WG8+QQnwfuMy6hm6HXjsI9XXM4McqNpAKNc0uHD8K7bvftinrpsooJnDCbvPKT4kN1xZuOxqo3B3T6zS5nckYh0TqEQ1VFUmOKml/fSoNJdRo361TDutIUZ46Ek2uSgP7IbILmIpzweG//ijdBgHz1FuBiaQsFJz3WTT83YEwzVlYOlVoeOTK1VCJOFBEZR3q2RcoqWQtnXCUjV22UziIqH6LUVycYxVV1OtaQS4v3hWvlSPiRkz8K+b3Xl1rXGzm4JIGTb3o952o63am5qrDmrtn0tJFk/Enr+nXx6plw1443p5HLDM23XZJT08bjpZqKmo4Rh0a29A70O2WzyTVvyFEfstHo9a90oj3oV4er29PL7+Dzd0G2UCUBNSj6oZb+bBqHXGMij6TA1y4ay9IeS4ItwyWTRZrm4jqDjRa8bT7f9XahvkDLxdugoi2BjpqGGttD9reKL8Np2DcEXOLVPBVJ9WpDtnsUvj2J0D9Hek1Tp5MoSKyUH5IyHKZssl9l0qBS030fxxQTxexWUtcYN5TkotKqmd1mbmq4WIxfo8O051Z/ftnXUfWtmcZkjl/LNp0aXWzLIv00eDap3l6ldf5MN9dUS47RkMZhaypvzx2Wg+g4p9TVlUEue239Rhvn/QtUdZBSwJXpqkSojybbrG13uDTIDP/YJf53LE9NHrJJN1tH1Ee0XcHkBNi6HMd9lQmlKkCKHwnRYCVFZTpGcAyGaEyJOttgvwDlH1tKiOfzGQzUk0oXeP+j+DJy/vtgnoUnh6lnFhRiUNUcDMHiWOFt5UE9sY9x2oT2DyMV1tsQGLt1FfW3RMoTb82rXH3GHcZ9Lrt+TCZbtd8vIXnXjHBbZ6Gh87KrrErWGTZ9o+wqOOBFfZGjRJ5uDOjrdw5SyodSaHHUB00OV1QGw48u90ZlbS1/8bjLP9zUZuh2rN9V0E+eGV914razNCoHXy+7CLfEh5eelQ/2tv/W3+If/8B/233/hL/wFAH7v936P3/7t3/6gOn5hkFJPyvXLH39fCZoLI6sd474dqRBXHV6EEs5q6SpFO6IKAVltuwrUHeSDk4c75LsK3euOAFU3Iddqb4LLLceGdNBoXuHQVhaj3VudoewxherB4VyKrYB5FjUz5ibynOwhs0/A9yv3L05MqfLuNLvgMMRSJxjQNrmrOeouOvPT3ilRvVd4ak3F+J0eI+clUPaFaW/cLtUVlouX5IO6wbmDxzLHIOj3zqjCco7k1zN8GQgLlrnBuVsa+kMAOQs1GoRTF0FX4VQC9y9PxH2lnJWwBOSNUJeZ9e3Eui8wVeJscdG1NGWR7tRqypNWyw4jYimZ4ap9mnOMUVF8WjalSZ7Z3lWwYVX1qoNraz7pvxuHgilMJtXtPnyikIHryi9/d5eZ9fyRXnTdbvZbzIfwqcszr/V2uXXMLcNqWImr0Vb4QrVMcI2EJ6xKXO1kI6317uHHKVBnIe9Ak/OmTVBFbVV6UMY2BxYdKTo62jTQV/46711DkPo55V7Jd4o+FDQILF5h3QyCd8fE425HSNuYm3Yrr14+spsyrx/3vDvutoYa7rE7pG6hEl0DaSt0AHGy1b8QHPXo/AjHJbLOhcNhIaXKqg0NORhA/jJUA8uaLMQkVEQq9/cL6bMTy2oop/x6Rt4JIQvpK0FjME6sDXyBLNsaWsnCo0J6OLKbC3lS9CTIY0DPgdMxwa7wbi6kfSY6V2B3kGNyyFb/hLq21TVFJu2O8u31va9j6vZH7FjtqlFrhY2kvKEYmijQQfaN1xoBIGBJKbjibrnkrtoWKgCmXYUvlvfc961H+U4+PVueM+ieO/a5/a4rNINKMJ9Nm1caaDEoUCHkrSOo4JwcghTnAYqexS5dGpXAhj5oRiJ0PWw0FHu3uZJPzSghWOi/hQYr5U5hV5E2boYstBoC5RwM2eWyK0zK/LAwpcL5NLEep01vknac9kVAlaEB5bKfd29JUEdQ+PcS7BnPAVZhyUK9W5mm59CC2zUMmaTElA0ZOVf0RUGzkM+R8DqS3ghhZYsGcOS9gwSICx19iwo1RMJUmQ6ZpQQjUn8HPEbquz11Vh73FdkX4lw8TM+lhFRyMmxlKRYO3Yy9mDxToRpy3xDr5oG8PXRNLl/IiEHPubDShnKJ4rx0SPkb6MazJazRwV4wB4D61c3gtk/1s3ax8m998RP+2TNv52YZ5dPTB/3Xtwxz/HuPeW7blf7UZZTLoN5HmjNJL48N3Sky3MtwbI2W1bLrOu3SrctLm+WsD2kUanIHicGIUKkwmfyza+jGAdsqfFGY7xdePRx5sTvxL378inyO6BIpfuxREqfHHdPexnpeIwHlxYsTX9yfWHLky3d35GLKRwjtzoa+3+XQ1pBVg2eAszFWqzlkprlQXVcra4RzhDeJ8zlS1sjD/YndlLdFehofnGWsSx6eG1F2dyeKCm/nwvl+tWQHxwn5coIvxeztozA9utq4oyNrxflKFYwEPpjzvB7UdOVFiEeIJyGeI2UfKHdK3VXYufO/2aDd7vZ2cOdUBWLM5mwTCzucU+YwrZ4B2WXG8KyodBu+XttpN0qrY3wXT5cB4SKetJ032nn9EtKdU7YtUFB2ofCbr37EKRX+77dv5Zkb/PnoUL/7u7/L7/7u7/5UdfxCOqXa/H5L33pOB3si+1xwSb7eblnebBnIPJU12KsPRQ3FgyIhINFXp92hQ2yToHeb7pRqKz1K6POp3VGNPtAmEF+5qv63OaWax7ol3rR7lOGBfXuxJxUn4aWaIaQaDN45OmB6kS4sGwnf1mJjq7q07+EWup3rHVoU805nOi/DhUI2pPFq/b6hjGw1zBxFUaDGjIZEDcHt0U0o9BUzAVGhFu3Gt2C8VjWHC5SIvQ/Q3Jw2wYSKt2PPWIN79B2Sri7IOiJBHOUlcN3Zrh1Tl2O8TWDX5dKYu7Xv8gKX9TYkccvc0Nqnr4r0qmSQO+8zVm/cxfbav1vluy4f15RPyrV86nJK1cLAXHEa5lV772oTUsjV+q57VEze+CpScgQgGDluFHNMNcTVoLgJGGKnqEXs9r6PO6Kkh+FsHzGFq2JOCxnCeots39tTVair9NVBTSYrzho5LYmyMlz0Vkvpk4ZqSJ+GPgjuQPLgG3c0yUUVLWTXiEYHeXQrz7w2mWCrhKjVPccVjZGaArpC82jpCO2X4aKittqILQqcl0hdceXZB6qHsrAKVQKElr1ULuYQcKeUt68hjNQN8lFGX2gx23Nd978bcqvLjy5rRsNuE35PFd2h3kG/Ck8PGeq6efYHl+/k08eX93SJpwcO7dsiasH7iRtx7X3XZnDJpXwxJ431c1XMoCjeT3W7ljb4ZFM32hzeVQft6Kexbg2mNzXEkbKJEXV+JW3pfUUdvT7oCOiWolztQTSZvrBqIK/Bxqc6hUF7tmpjU1sdF4159bt11Jaood3LqMOpOZsLisTqxmUTRhuie6sTD6Oz9pWgbhSL6ZOTdM4rpck5etKMkvDU8UpNdq5IYc0mp3WYCygCRWG1WylNR2oDPWz8m7UY2lwwvUoakZO3SUNU3EaQX/bIUR5dl+f0Jr1RTyuNTN0iFDY6BFHXo0a57Z+mc34Te+3niZT6u3/37/K//C//C3/wB3/APM98+eWXP7uL/ZSlte7oy/1p9Klusej4w0P32IA/+LvWsL2LNuyvL68KrMM9ytUHtyccuKBFnS+u9XP73mVT62itVIHZOZuCJWKZYuZE6tdTsDqpNu8XoWaxBb4Kyxo55WT8t9UQUBv6cFAcL1pqCz3ZiLeNR80W5S07eosWodnEbkOVIuQgTKlda3yBMrzc9iUQxZw9mWCcdxPUaYZsCK8ahzmDNj79Pfj+GjDO464bS9+v1ds9m7y5eP52a9Hfdm0yvgFStOt6QnWEZLnoS+2w9njtPhvFQXMBXug0unXtbZGvNc+YJEaf1Nv3bZuGZ9lk05YBWbdsgx8pZL5NOtQvDtH5VUNdCLLh8IsferV9e3fEDKJq3nKPaacqYTVHUliUeDZppimgSZBs26RWck7G8+LGWp2DkbUN8M8GG20ywEIFXSEqFupWI5adKYlldUnSUVP5gIWeKTD5ZxXjCRlCvKQNyCEriBal5sR5VSRDPkUL3xsbqcsRtdW7qE17u2p/tZhbTyvaBGMn7guCkV4JVYSSlHmyuJ6NKHxQODpMUnyid96jqEypoHPhjUbKWZgWIagQXEFV6OmXm8zTyQVVUs/6F9DmlPLBFs9i2WZKQI96Qbqq/vzqSllvm2ovTl2hbmmbmyK4NaWLoouOdl0+ZrYdKh/7+BUUa3MwaZ/cR36pOoQlNmPgthH4NWWUir/gAuvnWq7mvI8qTS7oJsv6kBB6ps5QMEcFeOyWutxS4qmakpBAZxsQ4VyRYkhE8fSMGoQyKXVimxZ9PLVrmsxST6qg/Z1rk08DgtP+CmXnFArFyMCbY5g1OCk4w7UCnFxguCGYA7ye7gyufkyQ48U5F86ppIbS9D6/TZw+9qIyz5kYLdyieuheHUIvtERLXxxtNTAEpa6uvF0hOpuLWxVqNfkUpLKfKtN+4W1SznmGxRYoQhF7F80pJfSEETL536hQI0uZqNkgH0ZOLFDMQNJTQImUScmNiNjlT1PGwMe+t7F6BlB0Syt/0Y5jUz358XVy69Y5H7r9eu/Vzcjl76fcLh9YvpNPH16u9KYnTX29f3xNPs132dEUWSei7XaJZ/4V1S3VtwDBkFIhmxwhYwZf3WSKzbv0vw01aiqEEtZNH+8ZPyNUR1D1j2wo8woW2rE3ItyaI1K3EFurBHuIutVPDqx5stDpxeVTcyI1mem6TU8O4/J75L2SiOlWsfax2bP19Tb1hzyK+YySckgmKEtVBq/cxbtpJbpMa6ydS4K1GB9MWMTkT7b5REIz7myslVmoe/UEFGL6mOsK4qRw0eVbIRif6RKHxDzq/GCVMg3OpmqyiVC3sJgEgpLS5bNsTu9LObztb8/bDGUZtvWjnhqFT4q9LwvZa+Ex6pwwgvqCxkbRYO4z86m1ZeGPFFDXVuXPUEYty8Jf/st/mb/0l/4S/+Af/IOf3YU+RWltPBj+X3d8L9e2X/vd0JJ545Eao126U8FlWJM1YyKAXn9wO9Ezkzfd57qL1oFXeFq6UbGFDjsfkjqAoTuwxBCcCKRUebU/8pAW/oW+MiK8hsr062hJ5OI6RjWn8HHaUYmsOZLPk8nIdG2PjA1mG3v/poUJV+ZYSbGy5sgiQPUMdYItFqwCp0QJcF4r+10enMUy8E+2+pUoNhqDKGm/9EW20y7xY41oVqbsCwBh03u73SwN7eq/J29bAfEEOi4WSCuUEAz4cVY0xaYuOsp2sO96k7jti43zKRV2qbJPheTysTnthMFu7W3ZoSI4ccRWfVNXn9GA2q9ul13Is3am9Bp6mKFv2aRWk3mxcwk/twj4bPkW6VC/kEgpuC3HnpNt43YN2wJ+WLcO3QRSBVYRagyWsa6YslQnU7LCDkKOF5U2h1ZLV6zes3o4X6A7VKqAVLF40KLIosSloYMEjWLnR1MW8p1lZqgTlMmUnzaWZHzaYRCD/z0JtUlM504Q0SE2tklpNZRS0C7waF6foBY242lArZhzSysWl5zUBVZETgGtEZlXDvOZo86czg57H2J2u0Kh26BXDQQq81TY7RbOd4FSLLNEPIopV8oGxfXJh6IG1XS9bT0b6bARffo7afHlZ3/qwT9XW0YvVVsdFH/uBudWDIkQtd/36EHvfWsQKk9D84Ztzw3690y619v8rblo2mTKdWLR62oa387HlG+TF/3bWC701YFbZCT47wS/jgjIs5BmkNVl2mwzUdhHQrY1G3XtutdfQYqaggE9rL5lvGsgBaluvGTMUX/WLZzBz9EI6Z0Q9yBZKAlLo75zq26EVPi1nwjnVchvk8mQHJ6scG56lHXA4Bwv1dEJY4Vt0g7uOK6O3hCphODIoxULQ1mV8HLhsD8jTJxOE1rCNi7E77f50KoZTWciQuLV3cL9dOZ8iLxbhRrUOOzKxpETVkdUJJOd074Y8ikHlnOgZOlOxr5E2xAMfaLwe0lsqefd2KM5dRwdgaNM+zFD55KxTcdyJau28MVt27PIgKvtH4IguJb943V/mvKdfPrm5dJU4fZ71U1PUsWd24PhxzYcFSy8fqLPv8LmNGL2xbltob47grS6AGhIpyEzXBsOQF/gQ02Himftc3xDdOL6VD5AuLfT1r0YJ2fwMLJr/ekKWU0W9GiIAbJcyrBrg29sqK5UDiU05JM5VbSICWB3qOsMcjSSci0RDRWdV2KsVOKG7pHL8dPSmY8zfoqW9KbuhZphVUP7pyjbYunibRTUQoxSgdnurWRv7KZbIRR3uqnae28INjMehTopurM2srlqGJCONA89/bq11VOn0mjI3ShdZ91eQXNUdV6V8ZU+U9EmdywERzCdPTQEXcBDmvz9BBPOQS7IED64/DyRUn/n7/wdgJ86RObnVcameO808NzOcb5zw6hGkBnja8xsiN/mnAjaQ/Ka40ijUj2U2MaIZfoOq/M0Nec429+mk9WpoQy3uVuKmxBFCKftnW/0LXa/Ogn1FFl0x5fTHfIAd9PCOc42DtujXfWhNujXY6AullFci92PFg83lWF89DZ8aoQYYbcSpTCFArGSYnDeTSFEc6zVNRGOAcmBKollF0lxvQKI2D23cwlCbDaHKAlIsXAXF0KF16qsMqMpUKdAOFvbR0eR12QO+rwb2hdMNlWTy6quyyY7R1bbLyvdLi4J2LHJJ8HACC7/VJXa0GBqdt+mOdsDansPbav3vTHQussvNZ1RhzbZvrat0uX30/dj9Vd/V0F5MgdUP1N83mn1tDXljynfJh3qT94p1Tr85cz7VEbp8GKvGrXr5GIKFdV4WqILjo3DyR1CYs4ZrQGSGXw1WVifiHNvDOyIncNA2BQdNwiroxxk9RtJgqzuPc4WDii5WujfxWARsoopFjOUncCEZVap0rpif8I2WTahKSLmbT+HLawjdPG0tYsAkxJmExxVIz0TQLD7iKkSJ8/m1hQz54OSaNmq5ByJj4G6U9Jd4dX9kaUkcklm8AU6rL+12eUKvaBUDjtb/iyaKATzvvsqokaMY8pXSNe9e9DvKrLXHhZAjsgpEk+GYFBHHEgRz7Lo4ZjVJqg6s3WEijnZAmbs+X1LkAsUQvOYj/3wqXF1ayZ9ZnYdN9+YfG4f7AJtgG2ZN91OatuvU0t/zfT/tNRBItZfcIn18y5f15TPNdeVXOtvdLK/4UQ36DYOJzE5AY4GMs6OOhuaiSCw2ERrSpQ50k0ZE4M0hz58fXXb+0hRGpmvxdoDYhxV3fAMJvPUDZaSlDobirQeFJ3VEFFrGCRSa6Mr4S1AjahnsdPrY/xEQSEqYW5Oc/GEDa3Dm1NmmresmnUwKGLwEOYlEh4NEh9eKi/uF1KsvDsltK1KjgaOjGPbXlIl8LBbuUuFr/LEqokS7Z30lMWr8VCggh6AQ2X/YMblskbLPBWD3c8xWqg1fm7F5BXSw2s0KDpVSAyILkeNBXt2icY11XjvGvnyKG9v9r/h2S5l1/VJHykvWp1D3WP9o9wfjclv7KT6Tj7dLu39XzfJ1Vzzvua+6EICunMZtbrRNR7UZIqjpsIq7kQ3GYVgyQEEdPFT6mYwCYPTu9XVZZ/N341hN2b/LHRHS0NINZWhTmb05eDOqL0SRKg5EC7SKftMroMcaoK36W3l4sgnc7SMSIvrBg1KmAsxmbWQF6ERz4XJ+/0aCY8BKVD2hXjI7HeZc06UamnWG0/MOJ7a1N+QRnOqzKnyWCOVYHK/ZWc1IAXB+TnLDsod1Ae1rHsIrIZkkDUQTi6fREy2Z5NPAp7QwZtmdj3JDXINg2xK1eWTZQDuCIrgegvbuN9ImW/1wqflVnKGW+VS99nq1EHgGHUEhK7T28AJPq1G2RZtPhrJOcqn9ht4/fr1xWG73Y7d7uNI1L/VRba/H9ukgwp8geasCUPTeMKUJlvUndu2gEdfiGv9tU50tKcUszPE5RfChgoMw99oMqY2jjbBQmWrjbFQLHN4XxwXts7jTota6TbevC+oBl6fDpS1eciGuVku/ti3mii9a2k/58JGCJdjQKQS47ZNBPZzZj8Z8umYI7kmtEZLXiVQToF4jKRHYX1Q5K7ycDDux1w3wXchl7z5QrP9gEDl1XzmWCZWCawhmG0dAzqbbhvfsfHfPUB+CXVvMp4sPTtfOgsx+xzhPFShNseRdKdUnXBSd5sYRJUa1ezpXSHMpj/NkzKnyn7K7FMeJjdvNzZUVGu7ayoDc1zJEBJ5OdlKf4OjI10vZMr23Y6LuO2JdMe4SHPtG5pVhrqfk6LvLd8iHepP3in1TLm222kDjOsdbF5pV1YayebG++F/U1NqhLwXU0TEV/kmoArxDOlsRMNhpRN3SjbEU02C7oQ8iXl5dw3eaR20CUc5B2I2Asq4VhNiLXQwe72LMr0uzHMk74XzLJTdgGYaQvie7YXj6l87rilurRWzGCKpwcs7Zt68xrU4H5UrFCEqcc7dQx5mKPtAXQQ5wfrjmT/mBYeHM/OcCaGw5qdd6cIIcb6J1487WrrLdL9SU2HdJ1YnJY1HYf6JIacaJFNSMXh88VXGjAmQTlLX3qt23oh6UPKDG/BTHaC7pkilnZG1Xwxvubz3W6t8/fv4W2/sv2GAXb9CQ2g9b7AJBvXXas8r7jBoGRlauuRGrCjbnT15F+8t4yk/Q3n1beJDuC7va5YPmSDGoazRJtnoSk7jP1A38DQCB+khcjVoD/ELWWx1z2VTyOKEntqRDWWCvHNn9wR11wwbr9tX1K0uU9DCqqSz3WCoTdFS4qMyf2XO4WUfqHfFHF2d0+3q6Qdl8uI7N7a3XVWo52iZocRvoDQh5mlxz5G8mgN9njL7aTEDsAZCFGRX0GMkvA2UH098We+5f3U0kmAgL7GHGWttjinMIBMjDq0FfvT2jtfnGbBMevcPR/LekLNTrJQ1cPrJAXkbbbUtVua4crdfeBdmahHykgx1mdQUX3V1R/ydFaHulHpfYVeQJp/UWkRESVPpZMjXkPHiSuItGXXZsFc/L+TU1/faC4TV6HO84slpdd9Ckd6q76PLd/Lpm5frd3e1u3WFpj40nUnn7QRpynhzSDk6vMx2Uicod8S46Togq+k6cXXkVNGe9apOQpmtjtGIbOHpcTXkdDy5fMqmlwUPt5GqyKrMXypUIc9Q54h8vsBcqI6GsEe4Fjhc6krXDVNubD/5OI4YWjQOxqRCXQ3JIKLORWrWVG/7qaIxEBYhvBFy3PG6QtoVYsw9MQwN2aPjHK89DXxVODmR+7RfKLFQpkjZm2dPCkxfRuavBDK+AFqNtLy6PF3Mw6SxIrXFZSplVtIxGJorQt4rOld737Mh0IiuP83FdT/j0RuzRI1OqOu+1hxFT7Jy3pRNYq/CPRLb38vrBGly6MKc93qtZ9fawpScdqaTo4WOxEihEp1v5qPKtcrl33/t137t4rC//bf/Nj/4wQ8+ru4/JeWnFtvt1Raz1TSp6VCZDrM0GaXuhLK+qnHrs+IhpT2JyBIIp0A4u3Op8c9Gq7/MSt0pujdkYkNCihhyen2ckMXGS1jNdpQqHekpK8RHsx3PceaP5CWfv3rHnBaWFC1cWIe2aXPoTSHtc241BI2oOWKC6w1aYF3MwA2xEu8WYqjdsXLOiVwDMVRSqLy6f2QtgSVHSo1Me2V9MDsxHoX8xzP/qrxgd7+wn1diKNQhVaE5ZoKNT61EimezVE4lIShf3L1jnxbe7A4c72dWDxFefzIx/5+ReMLI1qcKh4KuARV7J2CLokGwhco6AE5Wm0PyrJSDc+xNGCqqyai5Mu9XpqlYe4TKFCtTzKSQu8y4BfBvtt01HUr73f6WOrqHRkRTyzzstQ1RO12mM8gxtGf5K9UXdVACQr3S85od+JES6uemQ32K8tGhiZ+0XE/8N/RkufX9lh0kmCfcM7eF6jxFg/FBW/VuM+hkDibdWVidIENnkdG/Y36cACShzs6vMgt1Z9/x3+VgHC86B3MhB0FjNG6CuCEM2i3XXWB9KeQHodyrrVx5+IqMzxaAIMPzcPG9/Wge7Ivzmo/1GgPtYUTSDxa75TB6vwVdI3KOFl43ge6V+ZBt2AiUOnDFDNW375vDxEL47ONKQosxck6tcAqkk/FZrS/NcJO7JpCNy0bE2ihkj3L2VcyQnSB+Aj0ozP6ZWvvZsXFXSZM530Jrg3Djvp/0suvPc9ufHvdE8Om1kSb9/Vibib/jrU+On4u2vTjv8jk+pAh0eOdHnvpRpfEh/Jf/5X/5M7zKJyzXjXHj9cvzr/zifNd/bcUNU17EHS8q9qnJ5Ur0vpCcyHYO6OSya1ii6vIKEDUYujr5LbOfuzcljuTb9oP8arLQZR/tuk3pwVbf84N9uLeVvhYf3a7/pG3G30P/l6v/+oTt4SAhjg0aej29vwdxXjo30kSoGqk5oadkCqYAO0h3lilQCZuMGerrMk82WdcubVmbwnZMgHmfSbvKeZmRk3FF6UMh3WW+eHhkrZE1J+N9ACP3PFlbGTEx7gg0q6juFe4MIdUy67WxHCeYZiWl6gjO7R6bY+2jxvmznfR9nZebvze5NLQlX38v3xjF2c76Tj49X77uNY6bbm1v89CAMhDdEJT9ZEcL6jifRmy+9W29+va+hqQtovQMVtXP0Z192tzM7A6xEb4SWyYiaUO2f3SC9YWQXwjy4N6kHOy6lxJq6K/PNNB1azUogOLJG0Ln5rwYf1dDpkk8bX+rwDmSzsFW+neC7g29HgRiwHUpv+Oh7iByIZ9se3A+Sefz1NDbLpRAcgR5eTCUVLwvvsAosEaTtzUQzpFQTcbXWYk5EBfXyxLUgzuk9tXecwKJWNbCXSY5cjVe6Iv0OeS6PceZoO+51e7PTqRP9zeZqeO2Xu9WeSM470AY6er59sHexccipS7k0yCj/vAP/5Cvvvqqf37nd37n5vk/+MEP7N2/5/P7v//7H3dTvyjlA6YauXXs+FOHOcYRT4AlRxpeqjmTXH6k4TMrMuuAdvR+UmULaxKTUU3G1Sab9oocqp0/mbODSc3m8QVhXKaI2r04MwjR/bi6F+oLmO4KMSqn095WH4eJVIRLrshb0/A453r/FdcDS3aWcGCaC6k7za/sB4Tk6CjtcgTympBTIp6aPIC4L4QIuzQ6pCzsLYSNSiGG2nWU5PBai1YJxodVk0UozQCB8BiJi1APsH4G3LlHpgZbKPV1ybhs9lzduU+88X8lHL3v84fzHrb3nQ6FeWfo1SkpU1SmVNmlws6z8PV+Jtf6lAyoThl+h/63akD7JHgRXjPMMS6/L2S3v7uLeUz6/Qzq/ZVu1d7jKEc/vFzIqI868+df/kSRUtcLDE8aS7hAR+mtY8Y6WrxpW8VjUKyGg6VoJ98se+NyYrBbNAghQS62ypeOxmuQnBh9mgL5PnL6PKB7Q0uZ88lX/iZ8BXGLbQ6LED0GuqET4mKDz6gHLNSPCTNWRwIWZXPp3mqMwtjDL4tDIuOjZ1u4V2irXs6D1bgEqGLIAy3MczWFJ0DYZfI95DLZSt9XiXfnB+bvHfnV733F4eXKv3jzGY/H2RSwxoMCnu7cX2fz6iPEWIixMs+Gn0+xsE8Lr1/d8fZf3SGPgfqQ0b1SzwHeOc/XvhLvV+q9UMIM54AmhUmJj+Z9D1nJLxQOK/NhNUSU2n2kaBNDrZBLpKrxwNTiHUCUEI0wtSknMrwGGJxJQ+cdnUw3EQG9Lg/tDNtBtRrMV+toiLfwvM1NviGjtMPQmzc+hJa61LN2fUSxLJLav/+syreRD+G9rSHPvOtt90VdgHEgDOEuoU2yw7juPGkC2Sfkxq9m3HR2TJhBspBOyuQyKj5a/fkgnD8L5J1x15WWeXL2iRy2lUTBV/VCR2GFRXroTJnsXK2BkCq6yiY7uBoczzXEc/sLaBZknQxVnNSRCK09xLP/GcKplolSAp8/PBKj+qp2pValZOCtpUpfTwfyF5Ff+uWv+KXvveP//ZPPeftuj+bQZTKCJRT0ldYaArUKuQhpgHmnUHh1OPK93SOnV4n/56vv8+VX96SgTFPhx8c7zqeJZZlI+5XDbqGqcEwH9M1k/WhS5BSMH+doK7CEzOHFmcNupao4ebv2TJtrifZc1eUT3t9ULHTmSj49W65kk/aO3SrwN9mINntIwcBvKHTurTb3NHne5+nhPhoS4tb4+FjE1Hfy6acvz+lZYzdAIZwc6T9BvXPEU0PztmNbFjs3Dsqk3dnenMyabE6TDPUE8QSxQDyrIZ8WWO8h7z08rIWmuqM637Wb1a6lytkc+WGFeDZ+krD4cdXSm8dZTX+qbDfZ7vtW1xn1qOtx1PSuagju6a1Qdon18wJ3eZMjfrK25Wvnl6KKJWQJoHeZNUN6DISjoHXinGH63iO//tmP+dHxntennaMgzeDreseAKlLXC2MoTPtC3a3kQ0RQ5qkgvwRfPjwgP5lMx01KOXtmnSXAVAn7QpwWSkqU15MZXx5GHBZDc+kLD8/7bGXar11fiaEwOUlwBXIJlBLIJXiWKEMuxWjG6/YMLWpEL2SDjhNf3zY4sUeDTqFxZsaGEhleXanYognO5TKEzZTaQmRaf7EF0ipCcdlbxCg1tFx3hPeXUT613wAvX77k5cuXX3v+X/trf42/8lf+ynuP+Y3f+I2PuqdvTXmPDtWGZtedFGRx02WCsrc53wADhkbWJp8Ec67PhbgrpFR6H15zpE6Bug/k7Iipo5gTxB0hjctWYmXarezmlRSNz20fM/khsJRE8fkwl8DpcSavEZaInB2BdbYH1KKm50hlSpmyBDSES5k0IjSH9rlulDZ/14onYrC6eROhCMsiyCtLDGMZfe2cXAJFFCRyPy3cz2feLTNricRYOQZlCTPxXST9JHE8PbB+fubVLx95MZ94zBOlBg8xs4+qodUFc06p2P4olVfzkVfzkcNk+tA+Zh6mM//sxS/z7o9eEN4KmhwVf0rEU0Cjst4XSEreB+avbKWj+lrf9JXNSbnC+pnCy0w6rIS4ZRIMwd5TdB2pVGHVxCknzimyTit3aSWFSmCLtqmDnJXeL912xGSvqssIle7Qs+MbKY4iUh2RtnHURVGKO7qqmq0W+/EWDdDQVW3asZlgI8popD6C/MLqUJ+i/GJk37tWbG8Y/f34D2hP7f9sL68R/nbiO8FW7NzB3LK/2WTlJI0qPpPaR6M5WYxHQS39ugslxTPqBku/22CEJJwwHEp0fICnI8YNonUv5NkNsRMWXvIsiM1iZvvCv8olX8u19qm6ZaEJYl66OID/FFemNv9rEFPwqnvwzWHm7eLuW42VpIWpFn70eGDJAbQSotcjrd5N69PadhjYosXwb8MQliUSaJBxf1+rIIs7n1IlxoIUy0RQW1acbBBcVcsOCEqsiuSAarVB7ooK0I3A5pDSKtskqMNt+z0+dUQNfetq24YKaMaeUIvS4iC6B7z7oCpBAtU9sBfG3fBlVPDsFu0aTfGqzkfz0WEy3Ujd/v5rz4cAt528lzr00/1tX5NnN/Y1f7O2+Pg2GTWkpzt8Wjhf7Sti4/B2WK9q5x2XQA8FrEHpVAA+w1n9PmYEJFXC7Cfn4ET/NvFWD7ORKKx3StlXZCrmkCpXD9QbQi+NvD6gLp0f4xhq4Sp9W1CTT+2+rzwuihlGtZp8qp6WPDTHrlerSZlCYaeFL497lpzsVmLdHL7PvDqXEChKUZhDIWhBtPDleocWCKpIymhR1hI5vZuNQDQUDvPC4zmZc1xqDxmXFQ/xsTkkVJwzIZBd3ZhStoxZ6saSp4FuTvXm1A+6OZDG/vBcaTKp1zEaur7g0eQSyLBqqxcO9LGdRnLYhsTosnJApnFhnH680/w7+fSBRYbR+EQP2L72ojcOEZuba59dAPEw8jbXKqYYS5Mz2tOvW5e4RJn7Irg5q5pM7MvBLr/UdSZR40jyxa2eNbiAJg93CV5fBE2WhKHugGThtcbXJhfPd+18snm+f7lsmOtGqoIsNk5KVDRVTwzTxtEo8FyjUSwTsPoCXUtRrnSEWQzKLmSWNXF0+oPApqNcO3ovDSX7XiuA8fEJlfM6uRNRfWFWjRT47FxQsZKmxa6hkdWXzhUlPAYL+WtkwVoJxRYhslh7x2DGV/Frl0J3SLXwQIJzo7hi0vSVp/rRWJqZux138RY8ckDVEBl160gX7TXKmuem5vGeWjerPo+KYjr+x5RRPnH1/QPK97//fb7//e9/3EnfhnLNAH9durB6f3tfDk3xmRkz5BvZtFq4fG3yIrVPJaVKisYh1Am6h5sQVYiWLEWCCammi5GKOQ3MnUAKhRRWak3MsbpeLpxILCGSGlqnKFIMKV0FOBSmOaMaLGumL0Dd7qU3No+y68puRqUvFBIV5oqE0nW5Pqs7bYpoRbRyWiO5QjAiXmoWD/mtXRkQqezI/OS865fUZtuJuF6qm/rXZZQdm6uFx6ZQmGLmtCZqjkStlNmV2hXCya5dE875q0SfE2pw2pITxguNOmWOGm/zimVeDyBJESndGVeq3UipJpPanJUbIvJC+dzk02Yhy4W82txMw6vxecBzpJvOhrj66ogyLC1q1e3ljYuKtxYYR1kYcJvfda7RgfZB5YYO9YtafjE4pbxDy8VAo9ksF4c9cUxdvRvBjCkU5x6y3/mAEUGuEFYjU2ucKwRQz3KlThpZI+bddo963CvpsZCO1bgM3mlfFVySsO6wUJkZi0PeVWRXTMEqQllNQUHNOJFiXvR4Mggpzmkl2mDc3O48bgE0L/UT4TUS+kInNtZkE0S4L4RUyEs0QmHdlMPWgnmx9DsxFXaHlTgrjyWS12hkcwXi64nTu5f8v857Dq+O7OdCjkrOsQ/cEM2n15AOlwZUomreVuQ1sNSJF5+feDtBfT0TX1t8syyCzsr6vcrhxZkX92dqEf54cfbB6qsbBaYjTO8CcQ3k14n1Tql3Fblbme9WYnTP+Zooa3Rjz1c0nTRd52LLuk8m1FuC4MY2bQJ9EzJaAzX7yogoIVk2jN28MqXK28fdJXwXcwL2MKfe+a1U39QdGrq17ccKLHNsaP8O3/Eh9PJcUz4Zd1f7RjtnNCwCPtYd+OscLuUA9eAHORG5OuqypVfXiGVgaaSbwRzr51kIe2V6VKZjJRSYH/E05Ta+152lJ647hV01ot3Dwm7KrCWyLImSLQtUXiJ6DshicGoV4M7g71oGrahNku17e9YPHCaCmiPe+eQE4JCRuRrnQ0vT1XcKFDgdd5yXif0u88XDO+Z44o+Brx5nIzAtEI6R/HjHD5eZ/RdH7g8Lp1RZczL+vGGe6VxTPg7U0VIxSIeuv8kHQhB+9fCOhMmqxzd7lnM03qi58vD9E7/82Rse5jOnw8T/57Qj12Qh2QqiwnwUQ3isifV15PXLHXpfiPcrd3cLyQ33tUTWNdHJUrOg2aEZsXoG2E11Gh3jlx3yynmuLeSHiw6qZfsg3k9FSbvMPC/UGsjebrXxHd4SfV35Ge9jME5HrsQPLN/Jp/eUJ0rs0+03HVK+oQNx2zHmU6DscTnk73x2x4+6/pRNr6o7Nv6pzBZy54TAJMg7kFXQI6QjG9fUCVJ0hPmLCjszInEC7ThVpsnSbOYcWM/JZGUOlCWwrkI4GroT8DBdG2fNcTY2wrUvpD+2DJ/rktzSmk0PYaqEXUVmk4X9Gh1t6E7kbLXHuRKjslYL/dNkul86BvS040dr5N33Z149HJlCZSnR+KVoRutYmvPF5niteOiMcSZVjez2Bb534jEckDeJ9KOJsBp3S/68sHux8PnLI7uY+UlSvtKEHAUpFpIci5COEBGWPJPfTSx3Fe4y6cH0J4LY+1iTOSsV8hqpq/NaxYrsMqFz2tCd6s+F8Sqb7LiQZdpQ5GJyu2U09KQ0MVX2+zNTbG03OLSEYfFhxBzYTpXqPtZASwxZVKn1Orzi/WWUT+33z6r88Ic/5Mc//jE//OEPKaXwB3/wBwD85m/+Jg8PDz+z637j8iGi/n3Nde3wA1u0mzYLW7KYbnNXYK/9+DAX9neGXJ5CpaiwlkgOQo6QM7ATuK+ULJRzQh4d3dSEY47UUtkdFl7uzzxMC4dkn33IqApLTfzkfOBH+zsEOK2Jx2VmzZHlcbIF86mymzKloWs6MTfjNP41DbR5e3oQlxhPcJ1dNxQlTpUUIQShFFst2JwdgVUTb9ZIlMphyuxiJgVYzpnlnAzttAjTV4Gy3vH/yIlXX7xlN9u4KNUcayLKnLItsKHOL6VUgUUDa1bmUHk5Lawe8jbFyp/55S/5Yfk++uOZ+cdGri4V1gelfF5Jny3EVKl3kTXsCGfxjPYQVmU6QlognRL5LpHvlPJZRV4u7HaFKZk8XIqFHKpiIIsSOLHjcd7x+f0jUzyRRMmD486cScPvQRZd+HUu0KvWJosKuViCizkW5lSIofLLh3e8mh4510TWwFojS3UlvlvL43WEgmVMbOgrxLnvvM9k/dpOc1nrDR3qF7X8YjilvFzYHze2vccXdbFRMY+r7nHuETf8nIQ8OGKqh8nWC59M8/tYeJ9AThCSEf2GtYXcmDJFBTmrKSlTV33MqKw4lLsYWkYDmsWVp+AZAoIJWXWUQqiEkQPluoGe6vpPG66F+qkLKuy5NSlzzEypQIXcHrb/Hdq4KiWLEQwnX5uYCypqBpKv/PEYyFNC7lcO00qaTwiQa+SUE8fFDCutuCG1CcgWNiNAVqF0g6gi0YYlxZQ4WSEeIb+dOEplN2devnzkMezIjxOsgRotdTEN4v8I4Qz6KJSHRM2V8wNmrKOkKXv4j8Vk546awtO1Wqx0U2JgFFI3Xk8zutig67ZiKtRVzPhuRlmAIoFlCuSpkmvshuA1JYMCBpDVbkQ8QU0ZI2gn8Puo4iEK/TvGhzBCz59DIfzgBz/oYS/PlX/6T/8pf/Ev/sWPv69foPKhrfqc7Oq/fWZrKWxjoIfCmZPJnc0VT5cuXYdXYQsZceW9py12rpd8Z85ZBeONwp3gCzC1adUgWtXlzhQyMilrqKyrp20JBqWu2lBL1WVJsxxuPelVQzWhPQrva7HWs9YY2iKlyjwvrCTWhtkenrc5e7VCXoU3jzt2cyZKZd4v5DpZxr8lmEw/CeVt5HxfmabMIS00k++4Jo7LhNbYURNVQZxTpxQhi9BG33FNBHacS2BOCyeZKDmYwS3Ceky8STtqtTDhV/dveaOV4+MOXSI1GnpBXeiFBaY3Yvd6TiwLyAsIsxlzU8okN+xKCeY49ExdWh1tGrhYXbvuqaNDSuvVq2rbVrGMiouFR/XkPqIwJ9Yj5CQ91BMYUBtm+Em4Vq4ub6fWGxs/tHwnn24Xeb4ln9OlrrvKaP+3bbUYMqDOgJrR19CXKrZyHZLP5y6/+v0EtUUw5/a0TqoQLQPWesC5H3GCdKc0WHzuxlbHG6EwWKiWJAu1KCpkbeQwdp2qUEPdEJxdD1QPb7nddhcNdb297fbza6rkOZgxHCohVHcMhSdjyuqxL5sD3MLj6mpcdeJjMZ6E+mbiUQrTLvMwn4liWmSuwQmKTT6VjuBpjuVqkZTuaM6YQ65iiWrqFOwdeUY9OUF9k3gXJuROebF7RF4or7lDHye0CiUqMvnq/Nl9hGdBzwFKYqFS9xlQUlqZQkGANUXWmFhy7Aj0jky/gYTRp71xaMONbkGr6U8s0TJzZffau15fU2E5ziyzdvQcaKdoMLSC83J5goumZ7X+b/OydO7zj7bZRvnE1fdPXP7W3/pb/MN/+A/777/wF/4CAL/3e7/Hb//2b//sLvwNy4c15Th3PO/F6qpEs5VmtWzFq8kXQiXE0qlD4pyJIZvTtI0dNSRNiuZ+KB56Nu8USQtxB2WJZI0UX/Qzp2swniXJzLKyl8wsZj/Mkqmz1Zc1kpgt5L4KMRVUAhKU0zIRYyGESpGrBbdudI6//amHv6PefzEHh4pOljUnTStTLE7EbZ28uCMrBN2QQCpGdF6EtRitNqmYgwsLb9UCHIXTu4lShd2cCd5+DfWcNZCira4q0gnPA7B6uxc1LWp1g+rucOLdLlDjZDZ0MTRqfCsQI/VemaeV8hLy2xkebfzXZEnMNADZMvm1RY5SomWDv7fxn0Jmimbc1xLIOXbk1mmJ7GJk721mqFPpTvbn+p/2/SZLqgrLGlnOyaJuVtM7c1BOoZpz7Rh5vds515eh0kR0qMttPMGBCFv7tWPavdmU22grPqLc0KF+UcsvVPgebf666hTDYkc/7drQ6bpH4yPwuqOHoZQ7W/0LK92ZhJpyMDqkupIV7MJ1MrTC6mFpcYmEBdLJ0qlbFgRTrjqp9kAKGafq8a6Krq7ENGUuehhfAfZ2TljCpkhdy+fn5PWVE8OCVTcotBEWK+k+8/BiQRWWPHkbylDJVaUVavXYV4ecN+MwqBiZZoloEF4eznx+ODLHwrkkvjwdWM+WpqdDSK/0EFWbECwMJ3RFVAT0nJgeA+lo52kAreZlPiTl1f0j/0ofyG8jYTES9uBOraDAAulk113voU6BXJ1nAGWaLItXEONsOS9CUXMQgrgiI668XDfwZVv1ycGPC57lUIC8BOo5ueEnSHZCRHcynacKe0PV9f5/FZJzMUfJJZdCe/nq/8qT/V9fbnnRv+ND4H360c1j++FDP5erYxDnoPM+o9mcSfUA671u4TGNL6BrzXRFfJRRGhqayhwo4pmvok/ULeKmEeHKZN9DhCkqc/IxF8xpntsFhIHXCcTlmZ79otdtdC23b4mVjRiEa2c4CWSfefXqEVXheNxtDdYP2kJC0Mi6BkKEu0M2PpFGuFz92RehrJFSE3fzmVd3Jw5xJYrydp05lgkdMsp0hKM7rZCN7FIJLJrMwAvGr1dPE/Hkq3FiK/WnOvEinPl8d+JcJtZjQEuE7KizIXV7OgmcLFnGIoFyBymsiAopKvtpIQY1fqp1Yq1YCvuGFhBTRk3J8Udo7XqzXL23ivFfHKMhThZzaPbpNkDeKbkmuM+0tOrSw79bfXop2y/m6+tQHL24jQ8p38mn2+W9r1qf7rp1qFzvENA7qHf+0rLpK5aFyrZpsfD+bitpm3S9gi6fzJGps4XDFAGK81RliGdzgAYfu0xG/i2ixKSkZDxJ0f0QSxTKeTKEN2JafJNRk5gMaVk7hUuHVHM43Hjei8+thhKTr/UAvCzMd4aQqCVsdbZD2+V10AnEnVsqW6ILNad0jZYgYQ7CF3dH7qbVMljlxOvznuLyqXomv8vwjnBxq9Wza8WAzwVGXB4rlCBIDaw1sQuB7909kmvgy9M9rMm4pComX4PPG2fgLJQkLDGwKERPthOD8mJ3IorJp1OeWGukcZjiRldDKl0jDsZGvpDwrhvZwoMh2PXsHD3LhooDDNU+Rc4lgRTCXAjVkGmXL9SdnW4wi2w5Q9oLs+m0EtGPBXL+XJFSv/u7v/ut4bzrYNqvaU9pB7cfg503nt9UY5kEPVSYlbp6H5uVcF9JOyP1T6EYEb8AWx4zAJIvtlWNpKDsppV9ykyxcM6J0zqhpaA52qcG5rnwYrfw2e7Ei3hmHzNJConKSSeqCDEob9Y9b9YdxR0PISnFr6sCa0nkHLenGx/wffpT66/Dd/t4BEoEmZX9fuXhbgW2LL1bA/r8zdbnc4nMsZCr6UkkU0wVsZC6asec68Q+LczJnNCUBugXpqDY6BHQSvSF/pY5zh7NnOUBCw0sGtElkU6BtNqzx2LO7ELk/u7Efl75Kk/oayGdxUjOm/5UDS0lCnURlhjJGUoopCDEWLnfLZYxuQprjjwSYHXKh2C6YwpK1kDRcIGQuu60zTmk3fFmiyHHJfH23Z56SnAOsLY2d77WWXmbd3wWHvn+/A5UmIOFF7bsfc3d0K7aQqTF221Db1krp1BtEeYjyndIqZ+ijP6hcdvF72bbXI1lBVv5LUp+UDhA3WPwTgcflZ2hCsJiaYc7YW8yXb9W6/DZL9qQCK2/5p0ZaC09JWr1UUDO5qypLaQFoTSkg6p5nRtJqGLpelt4zirGOeCSV8bwiOs+NDbIrf5V2Hp5hUb2UN4mvtI7W7XMAxrrPYptXiIlBwiVab+6MiboPpBXy2y1vJv5kTxwWhKf3x+5n858Nj9SivD6uGPV1Ad0e0aR4fKhkbx5qEoJsCuUgzmJpDRUmsAqnM+Jd/PMYVoJX7zhfDeznBPLKbIcA+FdIC7BSO9VHPGh1AzrKXrKZkgR5ikzu1d9ThYys5ZoITx5M/7g0vG0GdeDkuQe9BAK+93/xd6f9kiSLGm62CO6mJl7RGbWck6f7p65nAuCd/iRf/n+HX4hCJAAAYK4IHinZ6bPVpWZEe5uZqoq/CCi5uYekVmZp5fTNZ1aiEpfzM3U1FRFZXnlleJKZGIVSwPt82W/yQawKI9iCpiI96/vzLo7v/3QhOpOtXNeHlVhJdHm8okH+unnfLOIvqL9D8uHwO2wfOnxvW3LU3hxkrCa47wOJo96mXTE0AQqeKU2nAPPjC+3a2xNJIs+2QnZpqS6E71WNsRUyz43F5+7LVBQLpIQaeTsyCnFUyXYrAh1RzSXiBZ30OrdJN4L7ddk1b69dowfp+fEz394hNRsLWzIB9ki7lr1qmcpzOfMn4oQUuPx4UR4ENbVZNa6RHRNlAofP4y0Ct8d4YfpzI/TM60KaxWWJXt1LUtfa9v67hcyYdo0baSeh2Hh8pgpOpgR5pHDeYk8z4lDzHw/nhl+rHw8TDxfRtbvTEbpOSGXYA7qthumAsscaVkI0khBGJM50ZIUhlCY18SyJtZqsre2bhgrLwa3y9ztNVshipjtwi2KIeomiwqj6nueOg+ZunxSc0iKzb2Q9WYL2l9ne86wS9m21mqgXm6rtf5i+yaf/qK2lz33CBC31Xbplv1HEM4KDwpHpcSGzJ2FXGG0chq6BsIaHGVuARajPthxWKob+GF3zWi8mzJg6IIq136sQgtivCAVqig1sPGDdA6jK+JPXS66U3QOm/Ww84G8VG8+pz/J3fe93Hw2BJeeI7N6KahNgbl6AE23uZVRWt1p/FDM0VLF0oUW14cugdOfDvyXJfD28cx3xzOHtPLd2BB3dq/F9JKemi8i25j0RwNQqhuCqaKHQlnSVt2VBnoJnE8D/5gfeZxmfvv2I89p4fk8sS6RZQm050R8ilvajA2pIquwXkyXC7ERabw7nDmkypQKg3PGXNbsRWSEUnZilFfmG9fl3VHl2kCiXr/0jIM6FepBTT9KfcztPclSnBuRFoSU200xCFWhKqgGWlOK6EaEHKQZjyowt2D0FV/TXllD39qXN+V+n/A150tM+kH+ryxq4IKpII8KxeiqxXmLcqqb83HbpaQxxJUhXektWjaEYb+2pXvBmFaGBJqvZNZjWmkKl5JJmFOBYHKmqSFmSovMNVJb2FBEYPYNqswXj0ahiDhrnwpXaDLXfxU6mm+TI3uVq49HMw6+II0ahGUOfJTBSMc9zbc7sDZeNpdRfU+4LLamh3ElD8V5dgU9RupitlA7JZ44Uh9m3hwuvB0vBJdNVcPVeaKWNtfRUlcnujlaSrN1mPKKHArl4IH6anImzEp9Fk7jAG8bh4cL5e9XlncDy8Wc3lKEcLK0v7iI2bvVEJ31HFlz3IrGfNflUzRdai6JpUYUeF4GSg2GRrenYuhXpYclHdFkN2HyNlCbkII5ObeMoeI3mppzmjVCasRcmaaVMa58nAdKiySpHIeFITaCZ+P0Z1pVzLm/nxEdeSb+/ZpZeoGPL23/BB3qX7v923JK7Wz9/Wc3SKadkkV/u/uBZmiPoBNWQYHgZYx187AKspXt3PwK+7/u0Nk7pLh+ZhyRFjFXwTgVMhZ+ibqVFSVDTLYwq3vdqcGUtmaKBcKGehANHqm+06TuX8srr8Pd6z5GmyAz5a9pcMfYTsJt577TWhXMQjHDVYIbu3ief69y46SAw1B5yCtDVJ7XxGnNHunzE76S8mNKgX/igrxVgXM0xxJmsFuJVkWOjXEq5NRYW0SipWVqhlaBRQg9p6Vziw2gRzXOCr/WODSmXBmiRfqCiEcJ/Z4Qm4svovo+qK8iqEBC43hYiUFZVuOHADFYea90tlPQxKFQ7XINodo17QGE7fXuGrJ7QKK78bNrqb7o9Ofblezh1nL5Z26/Oj6E+/bCutm1/dLZGzbu29jLqXrEU2MwrqgELavxs7gTyFJc5LokXe5sqZv3dr1y45zarh+u8kmCyS08HTnnRkq25c41sa6ZVqJtst1zLCCzOILLFYC9Q+p+XF4uic9/3vvuClwhmKHmCuLVwJNNYHe5ZhBzQzge8spxrJtCVIMpEFrsHkKCMTfejAsPeeXjOvC0jJSabjcAV6R6ieMQLHLVv1cNxFB5XkYz+JoY+mww42gcC4/TypQsPipBWUOgRqsyVqvAWYjRnfNFLCXqqHBQQrLBigGOQ2GI5iKrKlsJaBPJe+G+01j31vC2ufkw+33GZAZbKzteQfG51xGxPWYRQLI5CXFETEhdTdtPdO4Msy5rr9c32R4cnfYV7Zt8er29tv7udKX9VvHqZ3fHqkB5Azw0mwdLvOpEo+s21Ut161VX0U6RUdlV0ru7Zv9sj6QSzPHp5dslCCEakjMlNW4UMY61UhK6WvRwQ0HdgP9cr+qz81Py5jV59Qm96kaWY/emG6Iabgf2Vn8SP8GWYpMNLb+dy1HTArQQIAnj0DikyhAacx1QjGNUPekY5M7BaNe+fmYysS0J5kgoptNoMh2JqZHHwjBUplRZWqSEYBVWg1IQ5NnRn0m29Op2BI7NZIFf4+3hwiEVoiilWrpeR5e2DSF/r9Bf+7xNuG3PMvkqXmK+lAglIurQrU4inUzW9jEI0SrDWhaCE+WH68Pr+tJ+DvYiO5YK09+LpV292Fx/oe3lU3//rb1cV/DCIL6VRfLiS9nJq/66jqDHRnTkZlObA+NYGYdKlJ5adT3VlEzXX6qQ/ET774ujLw0F2DbTp6khU47DyhgbQ6iMsZJ2fGRrS8wt8VwHPq4TpzIYd2WLmy7RqgX2tYlv4HLVC1+xI17II27l2YaUcrYFdb4ZQzGbvLhyy9qNhptL2JvmekTDqBPWEpGkhAiLp213kIMmZciFh2HhEAtr574T2VKI+6nNIXW9fl9jtQUuJXM5j+gpEVdHe3YbbhI4Kmky3RQxZ3NJAkfMYX0OVn1crH+CZRrUoyIH43EW4GFYGFMhBWWpRo/S0ZHdydPXvfVStj+7D91kbl/iFpSEnCpPl4nLMlgmTOvZBQrZnOYxN8ax8jBZ5can2SgGcq4kB2IIV8qV7gxryJa611P5os+VqoFCoG4R2y9s/0o61D9H+6s6pT41NMpOGejv+5f++aecflIVFoOaazJDoCMGUDbeFune1eocLMGUct0r54ohFhaf+AGLyDj6UnadCAvOf2Tf1YTl6BeLZG8k17mhI0bevZiiL52bCr/ua6GkvdDSHcR4pxPdDiC3g+RoKVQ98h3oJKafvKbYC22wXJKjc1zJEiU6TFRVWJfIH/70hvOc+e3jM1MqfH88c1oL85o3B03rBi/QqzV1Ist+jyFV2tuFIhCezTveklpViAWeTwNPHyYUSLny/ZtnYlAuJfP8MLAcRsrlWqmHqMhQGR8WQlDWYqk/ZRDGWMkRFPXKGoWaoyERPIoi6BYxCaLUGoheIexyyVbxB7EosSjn2SJt/dkfjzMpNi5zZn4e/HjrV0jNFCxRg37WQD17n8dyFaT7R+Potx79KI5eC45wiF8N7bzO5b+EkupL26+ND+EvbXtbj24syPW7cDYZ0p2t0udpw4h1xdGcTTESfz+Rf76VSG9s+fQ0P9/g14q38klmc3RRzDHdgrImOyiIKSOtCiGq8QoUgXM0DjzRzZG+Gahc7+mF7Pmigbn7XLCJXdVROhU8///2J0ZIfpVvSl0CH+vIZcmeRmRr4/u3z7RHg8wvJfLz04FSA+dj5jHPPE4XJCjzmpiXZMUfcMcJbFF9wRTV5jceaPzu7Qfe55UPH46slwRqZmOtgQ/z5OXdIyE03k1n/u7xA+c189PlwNM4URZzhlVffHGoHA8zOTXrSxMuJRpkPjRTvFMjSGVMxco7a1eLleKoqRQri1fyyrFxuSTWJd8gFOrim50T6sujyXHmiHyMVrJeDJ3aRgPd05XTIrR58Co/lTg0jzTf0jL31EJ14uErMlct5fAr2jf59Je31/wCd1lt24u+1tIZ6iowVDio6SktbAEoovEjmZPa0VKrWDGVABra1ahaBVnFUldRc5C7H1izbmtfGnAJsEKbmld89NT+agigVsVItCc37i7x6tRosqHQ9QZ5wJfJpPsB0d2gCSZXHM2K87xtzvugEK402sq1QrKAB5ncMEzV+h4xJEYRG9sinP808Q/nxOm7xG8fn0ih8ONUaCo8pczHeTKniRrdQU+P2dJKOooqKNPbMxdR1pCJz3FL9aYK65L444cH/rG+JabKm2nmf/7hTyjCac28fzzy8eNkji2v6EtS0rQyjVbevbbIh8vE8FANgaKVkK0U/CGtzMV4eRSI/jyamoG1lERTYYiVpUTmNRnqs3SC+Ggo4CZowTg4ss+pNaBz8gqyCkOjBSHGunGdlqdMESUMls4F9RrM0W5EN0vjwrho+hgG2QnKL2x7+dTff2u7tl+Od3ZLt8v6h11n6jbPnV/F1OwFOEXaUMmHQsrVVp0Y8iTFDets6MoWOK8WoR5jIYZGlsbqDpIPl4nTPNCaMA6Vh3G2FCo/Lvt6P5XM6hQiP4zPDOliFd1q5nkdeH+ZmEsiSyVOF54vgwW9gBA8IAWG7NPdADS9zcK4mT87BWgvk0yamm0k0LmIUCU5r1ZTD4prd1yZE0aCXlU4R6H206dYUU8Vzm+qOWKKnacskZ8+PLDWyG8fnozMO1ZKMwV2D0AoKu70sfusapx3Te3+Dg8z5QdhZaR9iFY5PfgeUYT5lJifEyE3hqnwN799bw7JBpd14PLdwOX9YFXZEbOXDpWY7fm2FvhwmUix8ZhnUrDNYRpXVo0b4n2IlYOj0RVI0igamGtiiitVAx+XkZXIWiKX1f59fxopa6TOGQ22J6HAOcLZCnKU2GhvAqJKOFxQVZYSeb488CeOTEPh3XTmYTAi/hgUaWzIs/7s55pQNRt0iJWIVVf8mvavpUP9c7SvhFT887d7f8v29nMDJ5/+a9lS9hAMGt4wg2qHIpDGlq6xCUe3uW6ys5o7mbCF3xxE0NHjPZ1m7+hu0Sv3xQ7RxEtt+kGCGZC9IhPXj/dOuN6163V093d33y8G736Q/UBPxejCyweHK7GWfuI8rm61HcG5XInaBAyiHpUhVYZYOJfIWiO1CbU1MySvI2fnU72mlFy3EXP4VFPUNvJSdwjiVTdqsQc65GJ5zmJCv21pP2ql5aOR98WxGOmg32LOhSEVUmxbJbvmikltOwXPHVKmsDQrMSqWoldqMHSW35MFCtWU6OIOSRoxVGqDeU60ZTfvXPFWxbg7tk1JtjnRIfr9r0NyrdqORTqqO9Bsg/8LJM5Vs/3Lfv+F7X/9X/9XNpLK3d+/eYNvv86+dN3tHvN+LSMmnzYnlO9l2lOl9m2HflFRK4XsO0pfrp27REVp0XLNmzhRcZcV+44HLNLsZc1xR0otwWDaPt86Kb/9qq9Nve5u2y53//oT43dzX9wOSOcdCWbYbqmrXDnmPj3m/nu3mbuDOzmTcFW/pypIaMRoaXCXklhqcqWV3Tp2GeXacueiuMq6xpQWmsJcAmtPGQIkNuN0kWqlj7H5/WaYSVJZNbB6+XRx45bQkGQk7MNQNmRYipUprQwetW3aORo8xdnvS/p3Gkz2OPw8hrY5qsDnWbPUGG3iFTyMgFUUez8Hq6qGITi21CtRq6amvpf2FHR/5s3Hz6qs9r9ett5LJLewXf+r2zf59Hrb2TDXFfNSdXplK9/aXj4BEGA9Koz2oKwiI1c9qS+RulMh1OTTjQxQtiIloZojWUUtveFG39gpPd4/iWzE+dpw+RQ3B2d3CKnu+v1Cf1G2/3Z6mr4mQz4nz/eD2Unb2c1Fv+/NJStsMmvjl9pk2E5ebooo2zkUC7JNqRB8b0fZDGHd7vPaMVV8zct2rhQqrQZaMfJgfB/QoJC9+nKJ2/i9HS8MbrSVFrisyQNfzRxCrkMN02LOHwWh8jBcmOJKQFncaVnVKtmVFjdZRN9TXN731Brk2nfd5JPrl00sSKcm2wXX53vKs6dV4qT42/m7fPHvoG2PqrUui3wOqfG6tAZrMUO8NjHem69p9/Lp3zgS4V+tfWpt8YnPXrSX46hY2h2j7ZtgeruIbpUoxR1UmKvKkCfSSGJ7eZK27adziVzWtBVZGvJKDJY2K74+A82dKUprSg4rkUrURq2BU808l4FLTdt+W1tw9FXn7LzKO+E6WeWmytan9amrLNnUJRtaf91R0CHauVtfS/3IvZjtr7fh3afZdRJuc8opRn2iqMnz2MihMoS6kbmbLdIloG7jbs/merf9WTXcfluiBS0anmKMcws20zmDydtpWBiCOZsQ0+Xa6nqXp8qRK+GwknLxYTOKhSmuRGmsTUhSN2oG9ecSpZEwGxDX75Zq+eQR40dempHBlxocAReoNdBKRNcrtyLFdao+7gHi0EipotjvW7vaeSnUrUJpc9lTVSzF0WW/6XC2B6Bm4/5FIuZXJJ/+6ul7NzaT3n14//6uXRWS2/eKKc9SLeAOtr+qR/p9b9xsGhU2+LnU3Yn8+DYYSXp3BEvx85ZbeRIqpBkji8vRkFVNrxfs6W49RWK/972mBL1mzH3qu9cG54aFU21zT0qMzRxn7ToYr87Tm2uE2+s3u4GNkLIF1ufEn9bI02XkOC1b2suQzcgCWNZoClGT6zl3yto0rhzHlQ8I8yUhJxunUDAOhjVYCc8ikBrHceU3hxN/ng+8PcwgsIyVdcmAEpyf6TCsHIeFMa08LSOqcMyrkc4BtUVaJ7zbOQOaXqNoEMhRzbBsiSFVGIVliyhCuWRPP7I+ziEzn0ZCbl5uvQulPnfcUGvXCRAuEWZBR7EKI8UFvqeGSleEo3r1LEO01KAwNGT9Si962+nHf4nR+O+17deHG22ftwjZZExwhxTKFc3QuHKIX20cMyY8FVUKtzaNgA5KebD0P5vMupVtl+LKixuSoQklRC/bK5Tc3JHq87CGq2DsfQ96ex/3973dv9ze/6t73ytWMZjBGo3gOCRTPrSKDUgf222A5fqZn645x1Lnh6jFuB1itFQQBJZL5k+XzIfpyGFcGVNBBIbciKFQqnFRFUc+tiqsBCQUpmjO77fDhe/HM3NNnJeRc1bqs6UTVYRzcAVLLcXpd2+e+PvDe57LaPKlRcZcvXSwDUAMypRXjnnhTZ75ME9caubNsDLFwtyrb6kw17SlGoCl9XVjShBSMmSTVdMx+dcK6FZK1o29iitP0RAuyQc0eDVYwQIYfdw7UgaQJSAXoS2BMjRH84mhGbIr1KERYrO0hXOEJVpgYlDadu9f1r7Jp0+3F8vtNT3i/vPX1nLXoQRi8/SrqlADQYMFw5psKeiIzbdtDXr6Hb3anGL6UbW13Q62N5HYnPE4Sn3r+IIhYTSzNqGOlZTdudydEDVs/excjPvg4me9c/rK2y0/iDsjugtlP9BRDlRL15WEzecbnUxvzwdXZ1U3/KJ/5uu20dAabE0WYf7zxD8siT8/zLw9XjbH9I/ThXNeaS3w5/MRMEdw64EssfPmVHl3PCMKf2zC5RLRZzanjpZALWlz/L8ZF35zeOYhLXxYLZobvoPn42AIJg+CpdgYcuPNONPGlaVGjqkyBStzLwiXFrmU7BxYEXW9ct6N+CE7STxCVHMoIU5vMVuFLXrl1CpO3eVVDzv61wODYPqseKpQU6PUoACXhK6BdQqmcrUAYjwvEkwnLMkiQrWakSkoKVdKGfiatpdP/f23dtf+CbaMylW1uCI+hFasQp45sA0BJ7DjUwoWrMEIrQe3QdaWiNI4rwOndaS1yDQWjuPC47AQRJlrxDDIsLREDI1zGWgIhUT3Eq0t8VwmzmUwQvA10Sk1OhKvZ4TEHQ/dPmgjajyOxrlrgkxfjM/rjoQrl2M/b/C/LnlMgO2dTvu01p7yC+zS7YxvVwSGYMireYEaIuVp4M9L5HkeeTzM5gjcQW+iKEUjglrW36ZGmptqCI3Hw5nnWFmWxHJK6Mnlk2JVWEuAwdBeh2nl799+5LeHJ35aDiZ38srztPLhaPJqGIykfkymo4Hxgw2xMqZKDsqgSiNY5rgaXYsSWBpU4hbgG2NkbYbyLGugtECpkafLwGXO1DnBOW2ocQHLNRdMT257v4SAKGtNpKCsJZFioxRhfRqZn0Y+HI/EWKk1EkNlGIqh9EStciDKacmcL6MFW3NhzAWZL59YLa+3X5MO9Vd3Sr0mm3QTPK8f98lzuINJKjS/s83IEzYn0w3ctishiinq6nJh49RQ6qi0SY1Hqvri9TR37SW0+/Wx87CaoLTqxX5AnwxuIFrfd3f2C0acvPzo9fc7g207v990UNvEQ2gG++wljT83wK81NSef4sajIw2aWsW5WSMhAo4eCAIiSg6KxIYGi0yVGs1wwZAMPbopbnVrCLelnsvV8DU0wWKQXVHOGsihErNFQ1YntIseMbPIWCBKcwhrY62Bi5OIdmVqj5SCq2M5Bve0q1KrRUNqFbSpG9Dev3r9E8GcVM3IGEMsW9liYruiG7YJJ2iq14fawwwVpMgudcoNBCd/l9rTQAMsXwmA/BXlG/+rt77n717/wqGfbYoPt8si9nZNN9Y2QXKNOF3ngVwdWQFDQw1KmxoMuikZVu0poJ4C2Dtoax5DOqxO+tk1vuaOC/SGd+46Iz43N2RngH35iGg3/Pxf9fsOoaI4EnFfFeHTJ/J/XMGiOeGo31o3ZlHqamSSLYEkh/sHS42rEgiStuimwkawXAMMoZDDylwtgqX7vDgsYl9XQ47k2BjjyigrZxIqSgyFx1Ao0dAPpYmnt5iyVJwTa4yFSLM0vtUUpcWjr5tTSq+33pqlnnQkQKvO7eKICVbZInnBo5NSHeFSAY/AtdRLymLVZKMRPG+pSt0b6qWdO8moOblAizsrwDgWqyBzQBafS4UrKeiXtm/y6dX2zzUS+xQZA9E11CFt4ujsTUfqOozqy+t3vUahE+U3wRyeoyJDsbS1tRtGzgOkunFUGQGnwipoMNSNihUR0E7ivS25Lp+6+dU7+TkL+BfGbdPl9ObcNu2lqxGgSkx1oyPY66A3beekuuGC6k6VTUdTNo6UKrRLZJZMmJQ8GjJzCJUqyjEvrCVSpDGrpSb3B7RRENRo4wqOIlVPq1S0mZ6WcmXKC4/pgqDuZFOOaSFQCYxc1mQn0OaoUkMWRSkEaYiqORDVJkBt7I7b6VFqzoMSHZGkwrKawVfXcFuduMg1w0HZAg2qmM40NiMSHhopF6NkWBJbtCYG8LmGpyfRLIDXnXiCWvVrsXLxWpyPqiqUb5xS/6xtr0O9/PimvbQHbT2rbr4US93UbmUboimEhki1OYkhpDsizig4rArbUqPPRUcaayOHlcdh5t14YUqLIaiDUp24PKhQwxX5t4pwWhJBR5aW+LhmFkcLGeJmjw4yu0u6jBBeGQi5Gr03gb3uLLrKiq4nXT/bp/45Qr5to4ZSb8Z5A8u8Ouqvdc6+N7Lt5hQ3SlkCF82kXJjG4ulx5hAU3ztiMMKD2lHeiHEjeR8C5pTesgbAdA11nSRVxrzykM5kCqNUqsAULSOpDIGKEZjnVEliBatQIcZiTqpQHJnZCAiFsENBi5lpLTjaDiLCUgOlCYsmqkbOc2JZInUO6CUiswd8u34sunHYKRhqa7S/YSgch8Wdpm1DYsahmK6qeuVRXiNLMf9CoFGCGoB9SdRLRFRoSVlzoM3fOKX+ZdrOISR3H39p21IM8OUUQCc2Mk3d9ioxjpZwnUxwlQGhYaWKFRgsDRAMIVUfMMRK0y3KrDNok44QZgsauvISVnNCNNE7p9TOYbD3HXRd6kYuXAXUp8ZEd4LqPuKnmFHRP5Ok5NHS41Q9V9gjoJvCpC/nrOzOexWA/q/KNYoYFF0Sy5xYc+bh3YVDqiT3pqdQOUfoORynOTN7SXUJjTwo41AJGGcBNTpXhQsrQFdTHsKh8P27M3/78IygnEsmiPL98YwS+Ol0oMzRK6woEJAgDKm5J9rKG3+Ypw0ev1bLNdbWifuuzyAm455qCrOjSULAyJRr3NJhWKyqVlDMIANaCmhr5O8vDKMJk16ZA+DynGCNhjIYHUrXry0KSyBehM52J8WfceciK1eFvCXQy9cKLPZ29bfWm3zi3/u2U5heVzpuX6vr+cC1KILs5JJeZdZm4PtzDivG9TOYQ6RNSntscFztumuEKLTVsi42dGbs/TQnukXnjTuoc9pRZIfY45ry/Lkx6P28v39PQf1c6+io7byipLGSXD4ti+Xja/uFE13DGdv75jwhHTavGmy9rpFyydSgjI8zbw8XBkdMCcpcEqU1i/g14XS26GhLjXfjzG+mZyvZXjNLzbDGLUiBQFsTJcA0zfz48Mx/PL7nGFf+2/wdjcDfHE9ElA/ryPv54A5zvwc1XrhDKFw80vf78wOLo6OWatxXeoda7fI6uJFc1kRbHSFQBdZg6Kbi/D6rbEg9QbzqrFLfVDjUnePb0ZhzINRg4n70h1x9vrZAWIR4EVq0foVVrFJZglQhna6Bm5ahXv4J1a2+yafb9sp6fKFL7WXSa4rW/rMADCBZ2SAKHaUpXJ3kjpSSzp4rQBHCYim46r8hKRwq+WjEnHWNV/Lckxtdq11jSyMlWLVkAk0rIZkV1Upwh8FO3+n6Y7v267N+qU/NnzvdaXsduBKSqxP/IkwPxq0U1RzWe13tes69MenD23XVbh9s15NNN9XnxGVOVITjcSHFZtXtQt2cKnUQzmtmrYlaMiLKODYeppUpNU4tsZVs7QGsjJGeayQNhR/fnPmf3/7Ed8OFP88PVCLfTZaS96fLA+cykJJSqslPqzIWGVNBRXnIK6c6cmmJIMJlnZhLZlnT5pBqG6pTyW6IrTVSlmgoziq0c4JzJCzmMA9lF+htNoCtKS019F0ljc4LlCpDMhqFxfXIOJpntC7mWDISdOdvxVJRZTXjsfS9p7geK8o6NObLVwqZvXyCbzKqt91aes0P88mm++/9hVc432g8BisilRLEqAypkdO1oqJ4nlvAeI1CEE5l4LQMxKC8HS8IwpCV79488bvjB6ZYOZWMSEBa46ez8UJeauAwrBaERihrJAT4UB4ozQJcxYPatVdOc/tgW+fsxPDO5u0ObvWCCCqw82hhDqHrMNyk2YXrdz2l2dyt4ZoyfPMwfGx2+tKLcfZr3BZTsO/DoNSitHNmabCOmd/85gOHvLoeoySsWELn4lpa5NmRh4Fm5RoEJ+uOaPGiFd2BnKwDkpXHh4X/6bv3/B8eP1Cb8LEeeRMLURY+xEYTC+BNaUUxlNYYTU4ikKQ6YswzXDx1rhFoavJi6RWMgZwKqyZO68BpHqyfNXA5DeaMOkfCKqSLD/pubmtQK6b2w0o6mpNsHFbeHS7k0PjD8wO1JsZhJWblY0sGgGkRUaU+Z0PoJ91oh9T5ZWUOBKeJKHFgSdD+FSsY/2u3vzpSqre9HqHsjLwv/O224psRCddHq7bXBKReI3Gi5qxpyRSM2iDMZuxhTlZaUEo2hJQeGnKo7gAQNDqHxgAhRvKTk3hGIzdH7FxhhTZ4JGZopnDUuxS4Twnm7fPrwVcZ9Slt65WP7Wa5QsOaRYwCzk/Ulaa78qSfQyXI7pp7RXcvfUtAS2ROmRgqaTQegqpCDoUcKjk0HnPg51B4Po8sS2JdInPIrGK8TMRKG3cKZ19YzYyteU78PI+GKpC6ebynuPBmNHLUHkVsLdLawGUxDHgMyhSFuViJT+OT6git3TCqVcMzHheY8kKKdePL0hiMYFqjRSIzpgvWYLnOYIp5bkRpPI4XhlhoGlhK5LxmQozUwVKWJDTC0TghtlQqJ5ClODF/8b5ZyjqhXjscV6hfh+xEVJE+F/6Ne9H/Gu1LRuTG5ruTXTfySY2os/QqnXDVNJSt2hEBWlY0WSpeWAzaLGpypiWlDRWOjXhciGMzBV9MtpGFJhFtkdBM1mm2eaSKkVkvvmwPzfu390KZnPxFh5xsR/qP5BrR2278M4PW05ndea+96AQ4SsMcS3qjqH1mc1D/nx/SNsRX76NaekcNFBLnnMgPq1WLAYa48piNwDNJ42MeLZ1uzfx0OjCGlcdhobVgpcSHSq0OmxXduO2WNfE8D/zh/MgyGJw9SmUMK5Mz019KchJL4xA4t8TqiK6m5hyf1+jHWJQ/RmMnvzrNbefssisGJWdY1Z494BEXN6gTWyBCfdNVUSepVvK4ksdiznQV1tXTcLqMV4Wxbs6ujRNNbR+VCrHPK798nK9bUZhBzp+eEq+1b/Lp69rNtrz7XF45ZvOlhOuH4SLUVYiHanOldsjT7qRB0dGjcRXj0nDErnbuyqEQcyWPpqArwhojpVh6SUVpT9lQe4txcRr8HMI5oEuzPfChbEVWtol0f8/di9EN2hfHyM0/n9bD7n64S3VQUeNcy4aGTIORAoOt100tUrnuAzvD7z4lR7DMD22KpmZ6ThG756rUmHg6DBzSwiLXMudTXFCFhzRzCAt/lMrH88S6Cqc5EaQyl2CpgWOnDXAdsOdxqLIU4cMykqWyugyqEpCovMtn3ufR+FVwVHsJPGnmEqyAwx94IIXG0gI5NIa0UtX57Dwlrko0G7sXPFAnU07OjVfDNXACaDR0wJZC3OVTNB1qSAvvjmemZBWt1ho4tYEQi1c7M3RCGGApRjisVSiDWMBG7VrSudIEL3gEKgLNUpO/pu3lU3//rV3ba6PxS2bQVT7pdTt3WaWrWk7oZNxRKVZSNLROlOq+sMYQLAAvCpeSbL9dEylU1hQ4pJnvxxPfDSf+Jn+0ars6EqiW9qeVP54eucwD6xJJ2TiAaov8aXmg1kAIyjQuDKlQmiGd9ylxnx+FK7fajdvKS0NeszX2Am1nE+7kTd/MazWZcnVCXdP0buXQvdNKN72tB+h6ECIEq7pXo1AksiwBXSPMkfPzyENeeMgXQ3yrMmKcnmNcaQhDqHxcBkMpNS88s0ZaVTRX6uj3G92xExtaYVkDHy4jH6eBd+nMQzqztkiUxrtsgcvZU6J6wSfVSIuQXOeJrmQmUWKsJAlMIRhPlKcmV09Xb64nT6lQmvFHbcjcjerGdO9N1ns6e9evU6q8ezjxdrxwTAsxKpeSSFKJsSDSGNNKfKyc12x8wE0sgrwIzIIsRoegyeVexWw+74somw34pe3XpEP9m3FK7dfHZ1EHu9aBOhtSSkxhaA9qqJM1bJ7ha3XKngdqEynMxuXozlXKCPVo6Kh2UOTQLGroqQlk79MlEFchLublbYOdMxSQFQhCTUo7NIs8Xtzgu7nRXxiU+zGQu9/fOVBeRDxF3FgSJCkpN1LWLT1NNdAruG19U7kTVrd96MrWVfD6we6068qpTkocK8dxBXpVk8AhW6WBh7Tw58uBVSPLZQAx/hPF4JP1kj3VJNBGDCnVUSXZEBWHaSVGKJpYamZKhaMjs/58yeYo2upTq3Ef+JBlWVmqRRpF1CMcL8sth2Dw2JwbD6NFBOrax8gmX9vg83Idh2shCktdSI0f3pmwMjK7wPM6WCWaNTlCr5HG5ulVsvFvyBrM8dTE0HyVKwKwOb9Z34gaX4AsuWu/Imjnv3q7d8q8Ztn5+rjKGF5dl12xaiMwcPtj4KaCU5dpDeJiTilZoU0ml9qhoUclHQrTsToRfoAgHqETqJHoDhMdbc7Qrs6tNoAOGD/K4gJx315DSt23GxkltwbhXpB8aloF/zJ5Hv3QvLAAqJdUviHs3P/zis4mLzJXfZNwQm9dImE2HiUZleO0kuPmruIhrUyp8JAWLiWhEjgvAwoMqTHlyqkM/DQfuSyDcQx4tVbjN7GbilF5M83EqDQi79eJH8cTD3EhSeO/Xt5uDqkN/aDBURcYOadGTutkRL7YM03RiEebo1v7rasKOZtlZ2jSsAlrqR2Kx61c6n8ByJDfrBweF78GxqFQIhaawxE0fvxyHfwN3VDNARUW0OgpF9Uc5dv8aRj58te0b/Lp9faJNSn33ykv9/T9Mft/xQJ66VjdKeBf3qO6e4ViFBaLIHfEkx4bTIV8XK360bRsKVtrjcRkQae1BOI5Elaok25oqZ6+pTHQhkYa1avUxZt+3uzVr+kt+xvdy+ZPyOfXxkQQ24v7QhttnU8Hq4ApPkbdp9eNv80xvxvCvbzqvrWmwfQzN0SpjkpMjTAph0PhkM17olhFq0GU6OkyH5aDF2wIjKPxPpWaeJ4n1tV0qI3DdFQkKzE1hqHy9rAwpIaK8GE5EN0ge5MW/r+XH3heRq8eJtv1SxXAijnkWPm4jFv1qrUlYoCqVkXKRJBa+lMTUlJScL6e7sRbIxRLkaLPt77v9DkmQFby24UfvjvxbjT0wdoCl5qZS6a2SMzK4WhpO5clb/Z9KZ4myjU90DLCbcxNPsk2P6S92EQ+376l732y7VTpF1/cfPRLskyxdQIwQXio5LEx5MqYK0Ns5NgsY7yJBWe8otnzPHApAxevQjtNhWNeeTvOPKaZvx/fM8TCUxmpRMbYKArnOvL+dGSZE9NhJUaj/7gs2arnAg8PFx6G1Sq2rYYA3nMzvUAr7fUk3GZVlzN+jIknuTnPa2O02SA7+y0ldvLG7C6960dHcd3Lpa5P3BzrQ9+zfc5rsiq9qyBjY3pY+P5wZvCKugoEaRZ8i4VTHWhYABDMvrvUzOk8UZeM1GiuuayQTR8lQxyU46Hw4/HEu3yhaqQRGaI5mIpa5kvEnrf6CHbZGwSSmM0XpXNdBabYWJpY6iBQmh1/XiM5VMZYuayZtSRL95wzOkfkYoguadcB0qjXSrJRkWPh7fcnfvfGOPpyqE6AP7C0TAxwHApjqpwJsBp6v5RgiPsarZr2YvOjRYxXbxELLPujFjVu2K9qvyId6t+MU+rOvvtlf43snFI7hUMWCM9CjQrBysWK58H2NBmLzuuW4lc/RuLFzlUOSn1b4NDIh5WUKiEaR0eplqplFTADa0vQIvHsSlQwFIOn7iPNou8Sq6X/zbsSxvftxpjbDcLNYOjtMa8N4k75RzFUwGD51g0o1bMQL8nGK5ozyPgH5Dqe9/N2+2xnGLpn/MYFHxzdcBGWDwPPqfBwWLis5h3/GLMtypwYYuXHx2ekwdPzZCXZ/RYlN9oRahXiySK1LUN7V5ChUUvg93964Odx4vE4m59wTaz1wJTWrfKFqpPtEhAJlGJ5zMtq5dMto9PyfTtx6zhUh5/jZVVNcLx/nnj7cOHteGaMlbkGzmVgHhOlRca0MnjJ50uxShyK5Szjm+XawkYMGLDyp4h6uWmMA0gwz/k5GT9UMXSDCJael0CT0kaDeoalI/L8uTx/JZOdO7e219/a1r54OPYGErc20Pa9v4wXvNre7sBk3FAdsktoG5HvKpFwstzROin6tiBTZTgUci5kJ2xVhRa8+EAWVmmskgmnQPMNFMzRxSKGDG0QYoWhocWcJDfIrf3N/NLgdH6DTenSu2PuTqTALJ4e1CA2KwsuUGYvhuDcTqK+NvbnuHGI+UfdOeV5/u4Lv3IpOGJALkL5kHkfD4TvqvFHlMTPeuA4zRzTwOOw8P10ojX4/fs3/PnpQG1wyCutWQXPegiU5wyXiCYhPK4M40prwn/58/f8Ib/h7eFMEOVnDrQhWNUV72tpxl9wU9IdQAJziYRQvbQyaGhEmj1vj2Q2R4ee5oHLJTGOK+OwcByVUi2toB6sEmhKzUs+C2tJVkChi3MV8PQ/jYbEoqk5uHo2cMP4gKI7EZ/NWRoXNsJqDeZ01Qg12/g3R0ptPI+fmE6fbN/k05e3X5JD+/f7Ze5ZcaoQnwP1GAjHSsiFFmz/3UiiAcScG0GUdUiUp8EcILkxvJk5Ps68mS6MsbhhJFyqEQxXT5lob4RSBN4nZHV9zh1dUsWJzxXRRkgYV5AjCV/IJLm/x91a2sLa+999SoG6a12P6k6SAkTh+WkkxGa60+6U2/X2Otun5KeIyV4RVBoqAbKhO2WG8j7x53RgigsxNEvjbYbOiDTejhfe5jPpXeUfeMfaIh/PhhxvDdJQKEfQU0LmgNZAeFc5TAs5Vf58OvDHjw8cx4UxFwLKuUR+nicWd0YJuiv8Ys7qpViQ7PcfH8mpcVahxEoOFRSm1GiDUFtgcfLnc8ucT5GShRCVnFer9lrF+Huq6aJ5NI6oUowSoacoKZBGq/QXpG0l3ksxlHtKRoyMWh8Pw0JrA/OcqEWuOlUwZ6eKWmEGUUqOiM9dxorm9RMP7BNtL58+MY3+PbZfsuP2XHafclDdqg+mT8hFKKdEGSoxunObxrth5k2eETGde0orU1i5jJn//fk7zmkgSOOH6cTfHj/wGGce4sIYCoNU27NUKGoomr89fGBeI7+vb7icM6VakLrVQFsN4bKkRJkCYy4c8sp5zcYr9Qn5YgHDq55k/3cbwO9RVDyL5Sqg9+NwE+tTs037b0uFyJVLM0Wzd2LXCztqXO/PpTeyUvbvA0SUKsI4rsxroDWrnPfx44Gn8cSPx2dQoWJE6+eaKU0YYuH7/MxahFPLFlgLlRgr4VBs7YeEXILxTY6N4TATcuPjaeT/efo7/vjuyH/+/g8c40xpwlwz1fVBG2vnHERYamJthkwfYyTHduURFgv2TWHlMV9AoWjgVAYDCcwDp9Uc68dxMbutCbNY6nBrgZgrkgxJR2MrGCGKFeih0ZoiXp72tCROS0LwAmOu8+VYiKFweh5pa3Qdq6FRqKM7vMaGDJXi9AskRQ7FimY9fWVk71ekQ31lSOBfqMnNPy+/u/vT/fvdHYhg6QlH/9zxnipm8BAduhyNKJHYDCFV1RbH2NBjhamRppU0NGKytIi+VOkVFGogzIZc0WBcPkRTzqUZxG99aMhDMQGw7hxSG5R690d/DTezZu90+8R43PzdHOoVKXrlkmCLt/mG37Woq/yT66ledZzJ1sc9aGt77USgUszQlKnxeJhNOSnRvNbeh60SRg18fB7phIQErNSmc1VZSoD3JyscdMd5Eqy6HtwYdEtNXFbjYbEImaUL9BS85t7xpldkVBdqMZiB36vCqLKVPR0HSz2c0mroKi/HWDQwpJVpWBlSoYnBQEPq6C+cF8KUKiv9GXg6D5Q1WlpoAPGSpwJQg5HoN/OSd04LaXLNq3cuIBW1VK/ceFEp7Qtah3bew9D/vbcb9DSbOLn+7WURd//ey6n+lXZUZT/I59ig6OCOqNAsZdMNHunlbzOWandoRK9MFb3wRy/yKc6h1ppYudoVmsOiCWp8eNU2vTZVwsE5zpZoFuEWNtv/eT9kV+r8vu2NPbmO1SeNQGWb0yTjLhIH+GgTSxnSvSzS7YdbH16Ti+z6dzeVtYYtUq5RkbFxPM6ABRjWGoleca6n760t8PPpQFWTNcdh5bQOVA2sJdj6XfrzUfK0EoKl8DUPayVplBY4JksTXGvk5/lg0b8N6ms30OWQ+m/FZ5v6gAb/LEiH5hvKs9Ro8lOvmVitPwvMoZAGKwLRyy+TFOm8BbFtTivUKlItl2z31pEim9wF6fwvjpDZMoN8e2wBQ3O6s6pFe98jfV/TvsmnT7Rf2P8/e1y4fd1lGgL1oSFTM9ShK7MSrXJZiCZHQjJOH8RIprVi8mqsTI8XpmHhcZgtZSJYQY/VEXvdSVXXBJdoKXFRt+rGxiPU0LESjg2Jzciwe0GU/frfZG7Xoa73/GI4buTzKzrY3TkVzAklpuMpavtu8AIU0vWOq+7R+2Z/6oiEbXRv+vJCz2rqRQNsEcvUOB4WUmjGeekVglsTUlCiy4WnZWB1FFkKVuClarTiKiUYdyACgzIczAGlYNxPrvOsNZJCMzknyk+Xg1UZdvSs4veqV77NFO2+LKDX70e9cEOXPcELwtj+Iq6XBzG+FhRETG+JYyEO1Z1HpqNLNj09DY1pWDmkleQG5tM6cCnZeD3F0gZj0G0MrHy7IbG6h0S7Dh6B3IxPtYrtjWO1ffefKJ++yShvL9bo3Xe713uQgb52jDcVDN09VausK1bI6GFYeMwLQ7S5OMTCMa4MsfJhnVhbJATlkFd+e3jiGBceomVtZKkoyqVlmsunqoEPZeLn84H1kkz+ue1SFneghMY0LbwdZ5YaOa+Dpf29oiDdoiev8+Omgukms3STH90ulN3fXgvV7mjowTu3WYwn2OTPlVf3ms73Qk7J/rvbY7rOUZtVT2+r6VFMjemw8MPhTEJRt7O6chzFZNSskUu7orWXYtWBtfOYFi+ykCGMlTjY+LQKMTZ+OJwZo6WKFxKFyFwzxaO6HWm+aUuuuOdgxOIoW79EbW6YcxuKRq+kPDAXq5JXmwEGlhJYPNVcqyC5EqdCcKoVoulPEk1eD0PlcVw5pkIUZW6Jj+vI2iylMwS9govXxDwn40lcfG/TXUXbpEi/jle9lakSR3O+3yc1/FL7Ncmnvz7R+a4pbOkfv6S8vjAG3bijgcyg8fpwmRoyFvJkBphVjRM3gKD9TU918BSSpNvr5HnJo8JaI/OcHXKttIfGEh1u10u1J6EclPLY0EPzSLNA6xHGT9//Ngq6jcYvHPuJdn9sd740q2gj3XJwd/oGA5VXrunP4Mpfsv9Xdu8tRdCcJQ1Wob0f+LO84fjWkAJFLaKvKnw4TRxGg49PU+FyzmgT6hIdvaHo0SL3UpOlhZyFNgthKKgE2hK4SCaExpAqc42cvYzxWnq1DI869DKpzYz9KIXHw8yH04HzeTAhHhspBcahEL1uZimB9ZzRGvh5jczHxHqMtgkOM1kaPFgkYYorD2mhNOHn9cCHZeJ5GYx8uAY+LpPBT2MhSeXxsPB+SdSlK3DRcozB0iCrIJ62xc7oCwWqQ9t19NKyvVLWLF/vatbtAX+1QvbvpX1uWG5WTZdF+/e7AxVLGQYgQg1KOzb0WEhvFlJ2B7gr/qrQHky4SFSy6EaO3b+3qpYgQ7F53wSJSnosrAlYzPHZ+ar0YKgsxoYWW0cUT7eCK39QYDPWerWXnQf79dZli997P+cLrrqdMbn3xZc9kTG+4YuykYm/JhvvP+qvt2dhyqSIwqHZvZ8Dekp8+NMj0w8XM5QVni8Dz5eBP+ojh2Hl3cOFIVfOCyxL5h8/vtnEYkqNOhVKEeQ5oU+RNQ3ENzMpKcucOLWRIMphWPjj5YgAc40sJVA9TdH4/bx6T7No7JQLPxxPPC0j758PrCUiQcmxchwXpqFY0YWSOF0G5pOlqywpk0ZDzw25MsbZ7028WumK4Abdkg2qvloF1C4ze2Q1j5V5TrBgHCxgaUarIitW0GEx/sT+iMXnmAhGYehwfHVNI8xcnQ9f2r7Jp69ru337i4+X67IJsyHrJFYkwpALh2nlzXRhSsUJr4OnkAnrm2eqa8lRKo95YUwVUaW5E2nQSpTG0zJyWga0QRoLy49QjgnmQC+B1CZFp4ZMBQLMp8GDS9zeWDfieqrzNk9M8LhW8vJev6CpH6vZ3wW1CpWrBfoM1WVy9oU06k589Pp5l6luOJm+2uUSWwqtpgqjos8JniMf9C0hGvKnc88tmnleBv4sB94dLoRglT7XGrms2YJoRQgRwuQVAs8Cs1CeM3K88HZYEBWeLiMfLhNTLnzUkdICf+hINk8Rrk22FOpu8IUIh2zR+vfnibkkghgaYIzFEQrC8yVzfp7gOaFNuZwSDIqERsyVNBkSFJRpsDn2dpg518zHeeQ0D8bZBzQii0ZiS+S48ON0Yi6Jn4rtb02Dk7KnLQXcAQv4CWzcGxbci8ECtqGaU2wwlPtXlom5lU/b5PnWfrHt9+v7z+9NDNgyW6QBS6SMkZQqUyz87eEj/+n4J37Iz6wtMavx+LyJF/5P0+/52Cbm1lM6TS6tGikt0gSmUHiMMwL8XA58XCciym8fn8228MyH1oSYlXyceZhmUlD+29ObrWr3Lf3Hvik5Vd/vg6fB2ud7GbUB1f0cHSW4H6f+dXdyqZjzwqruRnfYW9rs1Zm1O8lN/8yVc83S1u0awJbVIQI5Km8eZ5axGPn3Evnw05H/Or7ht4/PJp80bI61Uz3y3XBxfqnKxYMKY648HBbqGJiHypIGeBZzUM2J8DgzjoXnFjg/j/xv6Tcg8OP0tHFA1W6vah8/CxQ0t/Oi39Ahrvzj+Q3Py2DOylR5yAtv8kwIysdl4Pcf3/Dhw4F6SXyIShgqMTViVHJu5hw6LMRYeRgXvncKlnPJnBbTo5Y1UlvgvGR+DhPvBjjmhYe8clkzxfnHVo0G0GjB6DZaMIRxR+S644wixtk5VgsQpcYwGX3MssZXFs0vtF+RDvXXT9+7F0A7v8e22cv20S82NWCM/1ghNyRX0lANiaIY6as6wgZxa9+74IsbxLjNdgZ+a0LtBInO8aPdvxOcTJ1GS4pGDxF7RStRuUNeXCXMZrT1O279RnR3wCfveH/S28+3AdTNUysdxpgLlXAVeh1pdCO89tbdvr3WoW7RWqUWwBS57Bt9fx5+WnUP9rIK8/LSSlEXltpTAoN4lNKNH1FCLl6tq97MndauHvMe1evXs65b2sHiBvyNH9CvWT1lr5aAqkVrUy7bxrI2ITWHx9KMWA+lNeVcnXhMeulRu2aUahsEpshaPrOCWFpEJ3kV9TmmTkqfuvxVi1D0Od782G7VN8951s9OmFceXX/WfGpH/ffZurF2s27v2k7Ov/j6lSW5fa7QVK8krh5xaTcayHX+ytVvfnVGIWiQq4LS7ADFlIuKc6JFY41VkSvCIPYoDC7LbGFt99rTaPpFxWQHKhs/xycFk+wHRbbN9oXnaC/r/XvxtSmxUm/m8SvG5b3o6/Yo17F6sXmIOhLD7ykXUDU4eD+NmgwJ0pjXwPM5b/uJNoP4p1TIoVFCoKrFCW2uXEuuRymMw8ohm1e5umFXWjDppjuHVOsRP5MJMeiWQiwuR2R3vxuCs1rp6xjNYx08UtwcuaJunIdQHVWFk6jrNvBbwEHMQDSkHZZa5cdpsD0OwYg3F4FqQ9kcXUbrs0K2fVP6s+1KV+U21eVL2jf59E9ru6Wju8/68rqmcNr8rdnS/U1XaAxD4ZAXpjRbGqkGrPy678+CB3GMq0O0sRRTnppAdid6L3bStn7Yejcku3XK4kdqKBlPX8arJgF3CKk7AeD7J6pbmt9NsYZfEuBd19rpKlcZZsdJR4rFeots7uffGXGffA4vpnCXWO3mXhQIyeVTC3T3V/95FCMUn0vapdiZ/iqhEUNDW7K+O9JL3FkoNJIU3o7FuOiCBV3bFqzUXapPTycK2/KrDYTGXLMXiXGfIkIVIYhX2avRKApUt7RfcTmgQTY+lhjNUUUT5uoFHxQCjeb7Vo6GVO+E1nO1tJjken2M1dEsyrqK6/H2rLaxKcLmxQzOuSEKwXSwWvinyaf+/luz9jnT4U4f2je9XytupqFYUMMreudYeDNc+C6feIhW4aehiFSy2MOsnc9I2xb8OdfMouZITcmI/psG5hZYqlXjrmqgRZFGCiuqVvlWpBFDJXogq3jmw07RYa8fme1l6zWERiHe7Pfbupfdje8QGdd9/0bS+GDsZJbaHi7BbL0YC8HT9q6pe36pTX7uUVn96y7DrrLMfmtjHkQsDTtYylqKhjg0NaKhtgt4VgiUljZnlYrpPLZOG0kaVRo1NIgRUjUnmSpTLIzHwpvDhRwLa7P05arhpvCNBUksjdd0LAOcRGmciqVdNreLqnjmgFqq42lNnJZonIWhOtWD0lbQCjF3x941RlubsGpwJFrbvk+hkaNx7YWglBqcHsY+T9IQ18tLMd2tUwlZtVtL3Wzai4VY8Qvtz0KVtQit7J7ll7ZfkQ7113dK7dpocahNAACtm0lEQVS97vCa/OpGx7bm757NxtOSFMZKGCvjwcrqdt2i1EikG3uuHimu4Au1Gp+JDkbOKKjDSnt6S7D0mwg4gbB4WgwBIzcfsTz16ptefKW/u2yZzUgsGJwv3I/Aa21nSd1/DvSqU5RImBp5qDxMC0Ms/OHDG0Jxhc0tiBuHVPeud6OYPpd3fZLd513QCWbw+PjUGqlq5VopxhHVUUvPl8mNrq7Z2QOSqOTBowoHpV0wzgkESmCYCtO4ErtS7cpuX2sbQqpxdUi1a6dVI2tLW3lS+96RVLHDUKGWhLZAPjQO00KMjVoDz+tIk8CYGkNcGUOxdB5NrDWTQ2GUxlCbkfEFOKTCmOt2v0rkOFQuqREP142ozRY1FsRQUMed0nwJjkwwi8JSR7HUTLW5E1bZOTa+sO104a9WyP5Hb3L3b399p1DdpIx9zpfidosG4wSrk8KbSvBKVuKKTk+TaDteDdxJtSxiDsioREe+9EvHoMQAqhbtKbFRUqIuwVKIe4WrjMmmNZh8e8XPJP2zoOSpEFKjrJF62aV0sbv4C4G9q0K1N/q63Oobaw2IFFJujEPhOC78/PFoufYdEiu3w/5ibPv5r9Csu3G/9lcHPE1SjUxZozm2MTSnumLzNE9G2r2dTqgtMuTCDw8Xv2xkXZqhiUqgnTPysPDuOHPIC8e08rSOzF4WOUpDtacTy4Z+6GkyYUuFUQ6pIALvT5MZ+BWqF4NQtUo/a4uMYyUfF+OWuoyscyKERopmhOZkKXmlJSqRGBqjIwRKS5QKEhs5qz8a609IUAc3cvvjW4U4C6GKVdCarnOnk3Q6gAavEn1FUDXjn/pqEfNNPn26fdLR8dIxcrN997W+c3YjoBkkCzHDcVoNLThdOGwIKVuFEUvBkgDZuTLWapUaf14eWFsghcbDMJOobrwZgqXpNQ0vDkqVaki6xZ2lgxI6qn3xAiRw1aHub1jMCZPGahxFS7jVu+/1ls8N5F4Gdt0EnPPRZMbhcQHx9FjYgpi3DinnE5W9DSDX7/eGZBN3dNnvWqhb2klz7tKBao5qdS5KEdaWWS55M1DErxqToTJSbCyLMB96VF4oLTHFxn94/Mj4rtBUeL9M/PnywFpNV6l4WvVOyd6nKQKoBuZq5L2tRVq1wGJr5mCqxbikltNgMvzogbcicLKKNe3QUCmIO43mJVNr4tAWDsPKmAtFjb8nx8rbw8ybvBKlWfqiFN6OC4tz1cTQaE04LQOlJiTA8FCIwbIeahPWNVFmzNHZidQCpNyVx4ikr8RK7eVTf/+t/fKS+5Jjt3Wye+9yZzqs/O3bZ/7zmz/wnw5/tHRWAjkoQZUsRnyONJIqSOTSBt6vk1XPU+H74UT2Cn1zS5zbxKUZ4bmI8DAUUlBO64CsyuqpbodhtRTSefAg/BXBvqWT7WRQlMbvHp9oCO8vhizcO4LUET+vObPddfTyU/NWmPwQiNlQUTlZaiPgfXIi8BtZhAeg/G/3CPrn+4cgogzJnDlRCqVG45WMhv5RMZO17IhSFeVjOZhTTq4VmofYGOPFxi+NVuClRfSiQCBH5X/+4WcALl55uGjmVKOnGeKVEtnsqebOqn6vTZVTHUjSgMBak+ldBB6GwqqJ53Xg5+dHyjIQMhCUtgY4DbaEx0KIhTS4402FcxmQAN+PZ4r3ew5Kio03h5nHcbZURrXq19+NM3PNKBbEQeHn84F5zoAQjsXBIm7HrtFSrpsjcnW/DCKtBFoNCF/Je/cr0qH+TTml9nJn//5LmuC8FbE7SXTjQQD3oLo3FTFfLnLlC9J69UhKsCeoQFkDAcsnTqEYd1Q2BWuDL4S93qPXvwA3HgLdvdjlC5tEME4VopqCVr4wB2uz1Hazt78N6rn5FRErmzqlhbd5Zh4SP61H9hHIDa1w8wBetTZ3F999s988PGpZlsjcrErYbY703X3sAw0NajFjPMRKOxhpppRg5arPCRkXjnmxqMearyU92SEQOjpqX6lAzXm4LIFaspOQN2JuW7TMIgIQQ6VFARqq9vxzMPitoMwl8kSmJeOgiWIloptavvIQVg4xUpMhqpKTzS81sayJiiEuQjASver8D1y8JOigG28UpTszoI7NSPA6J8IpICfjykGNg+tr2q+pXOi/ZttP5y85trdX9StfRltlWb36W7QKbQ5ovXIrhU6g2NE57gTqqVUabOGXIgSJpFDJTioseJpHTV4FrYBagYbNSd5llcANkUNf7u4c61DyWvB+NVqsVmb8F7XOXQrNJht3rXstkhl7ITSGWDikhToJP5eHjf9tG1jdvXgtWvRalzqCrN/ntikrtQjLKdBGM6aCEw53WXbv4G3NiFU/XgZDSYrBqssi1FOGRSjPCR1nxlDIUklSWSVYlK+FDVWgyoae2u7KnetLjfx0magaSLGRp9l57gxxGaSRA4yOwkpelSaocg7ZHPMoazXUQgyVHJopp9gcSg1DHQSP6LngKC1aSl9xoZyroeMqUASZ2XiAunySZk4p6PxRShsaUoV4EtIJS0cuGB/HV7Rv8ukva58aqTsfye5zpWalxeZR38IxLRziQqTRNPocNk7I4On+FqE2wn4BLyBi622pNt+j2FoZ42rzW6Kh9hqWEpqa9asX/lAIsdGi88ttHuX9HezlWLsi/nyd3BJv/NK8eeV7cWPRo9YEKys+5JUhFk5l8HT71+XgTVf3n+9l7eaoutV+JVVLSaswPyekNcaxXI0UaXTuQOhVAK/3XFvnJ2mEVC2N1vlgPj6NnA6ZHx6eOMRCpLLWQGkw10xAup27cyA6TYDL0NaEp/Nogbomxh3W0Zp+L1GqXduJh0XU9NvB9G2cU6YSrOJWrKijVounDAYxuoMhVZIzyjSFj/NAJVAUjvlCU5Otl5pZLpGyRnNUOipibUKrwYzqVIihcRjtXJfLQDl5YY0a+Fp7756n5ZuM+hdovt0bstwQnEIjs5LEZEpFWFrk0hJjXA3ZDWjzQF9roJWHeKFlc0Ip8LQMLDG600DJslJEqCQE8aqUi89hL2CkgkhliIWl5H03bzptDh+b+6c1Gx2Mo/1Kuze//5J5Y/aqoXaUIVUO2XjoztWpZriuyaus8nwNdR2TO7u76367fl1lj6XBrRif5YenibYKb6aFMTmnphd56qmJghq6Sq9JzaLKmFYeJ6AKl5ZRYJ4jpznxN8eP/JALlzawatyGZwMZqGWbdLJzyw5gQ6+d10wOpisd8+w2XSOFQhL7N6dCjJ4xE5SYlDpYf1CxynhgFd9js4CAnz+ERgyFISWi6645VJIo55IMJSowxrLd+/MysM6Ruhi6PkXPsKnBCjIoQEMiHA8zOTbmGpnPg3E3qhiCSr7Os/Rr0qH+7XBKuZ2x5dN+wt65SaXZeXRVoI0Yc/2oRgY8VbKX022eMiFi+ffdIBAsHUU1IMGcT01xFNPVlRyjVWeTgJWSxR0AIrdltgPIgH12hybYUuU8/Ur6vwLi52gNNxy/MMywH6v78WzApKRDYxwq7w4Lv3t4RqvwtE7mwbtzEN0SCN8anttY75SpfeupjxLxXH5Bl4SOlRS7oJLtfmux8/Ro5BZxBI8adu4GCNVKcmoU8nHl+8OFHCo/zwerluFRWjP2PFd3yyHhxoDtuddgMNCYMKcUJrRydMi62PMecuM4WinP2oQiFiVu/hBztMidCVxLV7CzBSqRIelGcv60jHw4T4CRn6eklGpRvHbOyIeErO6QGvz5OjkziJG9D43wWAyZ9zGTn5Lpo4Bm5WsrGv+aoJ3/qu3e7/La67vd/LPLtgdnE9TJ5JRm07aM2N9ifTl5CXA1JUJ7xalgFa/AnRpNQAJBKkOyDc5SNoRLyeYoEENFtypXrrGOQ8bTYrb73N8IO6SUrZEQ8PTlG8jCp8dOdw6pzaG0b2r8IpNFox4mQ2W8yTP/9afvrGqmuHHaZOdcvrv2/dv7rt2sf+9MsAO1BHSAEOt1nBBCuI10WtUcGzxTSiIpFiu0EAxVSTHjcHhc+fF44jEvPJXB5FMzg94MPaFWM6L6c953WYHaIpdq6KqcGsdhdSQKjMnIoxvBQG/OQSVghK7OPSciiBj3z+Ck+U1lI55W9eiiCEOupKSsJbLMmboYg37fl7RBWCLpyap9dj47xDilpMqV5Dwq9TtDZ4WPwvgzhOIyXv6CQN03+fTLba83fUZ/2tbiK7KtTlDfNNKbwpuHmR+OZ94OMzlYqtTSEnNNPOTFHZwmh+aaWVqkIRzSylIiSjDkijvDUzDUQlRPTS3BEYNOfo2lvUoUSEoaPCWkxdfv5U7/k2hrtG1fhuvvbqytu/Hi7ph9U5CEVS922Xs4rPz2zTM/nQ8beigEeSnaNnPs7pSbQ6oba7jzS67fi1eMVpPPtSohLYaAdXRl9KCfSk/x5QYJ0c8ursN4+U5oyvGw8vcP7/kP03ue6kQjGsq7pd2gCk3jpq/pzYQx3XepiaAKojxMV0+Obqk0ES3OcRMUSc2ee/DeBcDTYGJUYrS9KgaIAqtp3IxJeTsuvBsXAsr7deJSsgdizMifi3BaMqfnA+vZyn6OUyUmS6MpJSJYmnMcGt8fT8SovD9N1OeMzm4KdV7Ur2nf0vdeb/cyZt8+J6Puj8PntuDFXpTpYeVvHp/5Dw8f+O1wIolyagNPbWIMK5On14Gwklk0s5AZYyMqzFopRJTIRYWgi/HDCljCVXD9Xhiipb4u1Rwq3fkDBk4IrldtiEU3YnsqPKijYWyhlpoozSg+7hFJnxvK14YmuKkYgjLmwuO4cMgLp2WwglbYd6HLBrfdRHZIKT//Jku31/dC8opADVGpa6SWyPMaOR5WxlSYYmVu0c/b6W1sHZt8MnRidIqCEBrzKpstBcphKPzu4Yn/cHjP0hJ/XDKt6SbrGoEmQtGAuvFt2SeA9rTIQFMLwqWoDGn1KsaNx7SiiHGPlQQiBPvHaGZgQ+VqDTBYEZgYzLE2xMYhVU410TRasGVovBut2uxzGfh5PpozLC08Diu1CR+XkY+nI/NphBqIUyFlpZZgAcDmDsSkPD5cePd4ZimRy08Des4+/5ujOr9SxvyKdKh/U0gp+HJZdfMDN8gpXiFFFFpHGOyUEzqnUleLAyFYae/uTY7RHEO91HYIjSCWBxZDZUygWZgrqMSrlq0eYVG2nH4GhdmO6X7qGwWpk0fSHTJYznvnM9i8QL8wJp+SWNJAG0NaOY5OwH2e+LuH9/z48JHfr29pLW7Tey+C5IVAkpdz+bW5LWB5GsAlEU6Beh45/yCkQ9nGB7oStRPMm3CHsoRrpuSx0oLCxcby+fdH/ss5Gow+wLIGag0bbB5Hu7WGp+VdOyxikNPjYWYcKqUK5zlvQru1wGWxDnXOlkUjH3Rgypa6k0O5EiMvxqnwJndkhJGYiyiaoag5CIJHCo55QRXm2nkgxKG2FR5Wiih68SoWTksmqxvkwYaWS6BJIBwL8fsLJWZL+0NhbLT5a0sa/3oE1r/19uqS6HuImh9YfYnTDNVmwZFgFTaCOczFq3yGoMho8sm4hsASuMSziI3/JUghhYoAVawaZI4rqsbtcZLMuQ6ex25VQ8jV55hcO7VzIPV0ZFFhnRPropu8fSHL7oWQ3vzDiyN2MjmlymFYQJTndeAYF37z8MTvyxtai4aa3M52K6VeG3S9+/r2e3UjEFgFuQR4CibPH9brd7vz3MPeWxMuc6YUS/s7jgvT3xSeng6sp8zTn4/8/y6Rt+9ODEMxxcILMITg7uqgNDXuJt11NDovweO48N10IgAfl5ExVchwWrM7rRzx5OXtihdIiKFxHJaNj6o24VwiqsqYKsFRVik0Dnm58nap3XAOhToIi8tC3HcpQ6WJsoZAuHj1nT4XvOKsehwgFJCfA/WgtDeVUxbCKdo+naGuX+mW+iafXm2fUk0/qSvIy6WwLacGYVVCMx0p7P5SMETJEIxLJIdKDtV5QoSHNDOpld0eY4EMq6atNHqPxDeXcU0Da6xoZktJKyXQanJdytAtITYkdif43c0pV71KQFug9W2v+k3dr3+5H4DdOT/xuUon/S+OABAuS+L76YRw4LJmOk9NN4qul9y/3huFr1xqQ6ZawRUVCwDIKaHvM0/lQP3+QkqNjRzdfxccka9iqO/N6V19z4iF+FBZY6UuiX/80zv+r0viH354x98cP3KIM98NJ5Ya+biMG8F5isWcig2ko0exfSLnynHyyoDFvsvB0ABrMydQLcH2kCbQ4ob2JTYniDcOzLoYnUEe2qZXGZqzkvu4Ydydh7ggNE5h2Mj1g4DEFSZDSzyl0Yik5crLt1UpC3b+9+eJh2nm++OJx79f+NPHBysdnxqynF9/SJ9q35xSX9DuxmRbc19m7WmXC0kt+yM0qnql7ZoYZHVi8xMPYeYxzpQWmckMUngXn3kbTwSUlcibeOa5TswtWeVKMV3d1mCzFNH+b6gMwdA0VQ0VGkNjigVULIWvu4HdBjE0tOntEqzS5PvzBAJrMXjxyyp9r8+b6zlfjpWt78aUCkMuhjRswjHPXlAl2dg58j7InTzaOcZupvDuQXUidKHdOLNaLjxfEu058VN7RH5s/ObhtEN93p7Q9JVylZdumx+HmfzdytM48fQ88vPzxP/9v/49f/z+yG8OT4xxJYlRpCwtshKcx9fStav3EbXxSMH0m8c8c0wrFeP8SqJmj1Wjb5lXG5ta7go5RDX92/lH6xq5kK0AVjZkU1VhDJUSjNaiZ8okqTykmapCcSdTVdtD3gwX5I3yPq2cF5szrfVA73XP0iI8/XSgVeH7N8/8H3/3e37/8Ja5JoZUeBhm6nnmf/vkanml/Yp0qK/FVPzLNLl7+ZqHvXvKga2cMWzzPgTQCfQATIoMlqMvuxOKCDmqb3xXXoMQnGMtseV3IpZylZNuPC2ITbRSo/3ekU4041gRFTQrYWqG9FnDtdNy+3fDo+SRPa3BHVVydUjBHXrp7nX4xOcCJBiOlYfDatBDge/GC0vN/Hx+sHK5d8Mt7tW+Xvi1E98+HNl1t6OgtEbCJRLnQDta+l7w1Ld9pzcPt9/zdb3IdRik98UdjBKMsyv2iitpi+jtx/M6Ua5jKhHGqXCYCik25x7Y/9b+bS1ukQYChCBblZsUbT40tTKzOVh1iRic7C5UFGFp2aKPYgpbECM5Li1sDimAjpSpLViajATn/gGpgeAIC/Pe2yYno5IGNai9RnMvHxRG/vJI371y9e+97af//evPLY3d9zvfi6FLErQMbXCC87A7PEDIXnbd50Ts6XweRTb5ZGs0COSkxm2WlBTsiopBzlNHD2iglIwWi4R3VAHFvQg34bLeGV8vwBam1PCiLLv0u3xVZsvtOLwix2Qw9MGYLWV6iI1jLvx0eaA5vF3kblC39fzKNXdr/eXD2vVVBVkCcQ5oVuLUDPF0l5a4l239fT+nIqTUOAwrs0bWNYEaCjMcKjkbf9TzPFKqVz2lcwXIThbaBYLvOdNQ+W668JhXVAIShEMypawRvFqVbOWn+97U0Qx9T+vE9snlVidQz8HYcEpLrG7wx9g2mVZrvCrAsuO56M5LZYskSoXguT6d61VWT+Eb1AIzNaJBaCO0o6Lj/TP7hfZNPr3eXpE18srnL469/979N/UA8lg4HhfeTjOPeeUQV8B4jRqGCh5jIQiboo8IKRgH2uQkryGopazHtiEWREwWLc2qXqlaUDCII5ebKWwhKym5DOyozNfuqX++v0G9roFNrMkVjf2qLP/M+Ehq5MnIwC3q3vjtwzPnOrDUdOPnuh1u6UNr/7oT7SqbXj5MkWu/UYElIhfjAQxHQ1VvR988bHNsX3mfrtcR121Vw4YObwHyVJhy4RhXlpZ5LiPnNZtu6/qZbnqaX2NH9XCcFqZkwbmqgcE5W0sz+VGKpaiwQ9UKwZFbCuGa2EMwHqyUbD+bss2h5rJxTI03gxmYiNAkbMaxg65QjO9vbREVMWSvO75qtUhQjFZRq2kwuZ0Lx7zycR1pQYhDY5xW23+/pt3Lp28y6q7txmO/Xj8FK79f5+4fIIplfhwLbx9mfnM48eP4zGOaNzTfMay8jTMRdSQUvgc2pmD8YoLNbXOW2/7ZmRwrkdJRgyIMoTGExtIMKVo6V162Smgfdw6pLssE6LyR0j8TaHi1P43bWt9u+VU943ZQbo8xeRGCBZvGoWx26pQqlzKwFtOfYi9QwlUOil+j9/f2UleUZz+uO6+u8k65LJl6zkgR4rHwZloYonE4XR+160ousORmw5Ktf0pgceQRIgxD4zAUBt8/7LqBorYPKcZNeGXgFHum/hwe8srjYNXdVQOj70tVI0Ujl5I5rQPL7JVdNWwFfELXs33uIX0/M5TUlCpjrMalRSAGOKbClMw2LGp6tqULQvJxbgSKRgrR5J+YPazF/QRdFSyBkJTDYeXHw5lFM6sEhqHw9nhhGo2f+Kvar0g+/VWRUj1wdCd/tuYoyNvPZfcj3f2toEW9qlBDC7TgrPtdDDkKymDC1ZxUoVIJ24a7eg5pDM1RUrpFprfqSKFBSzttpIEEs+8qhnRJ5rml4twbarwpuZGGSlsDdb6e4yaKJv2DW8Wmf/WaQ/1+fETN4zo/DXxA+bsffuZcBv7h+S21BeessWvceMjrTvDJ/cn3b15uKNt5qlhEarCxTaFyHBavKDUaD0NPWbq7iy2Vr/9PARr5TaFOK+15gI+By3pgfpNITogqfj+lWHnzzielupssqpbadE6UErbqPh3BkJNVR0ixGndGclLgoWwVXjo3WYqNMVku+6lkqopVi4hlQx8I5qASr/DSVLxiiBmAAHMJVI3GQxUrHBRNAS4JuQTCIkizuaNZ4dhQUYZp5bdvnngcZtrvhM4tP6+JP//5K33NvyISvH+TbSen7ltf1x0tpWCoP7UosRZ17QAISismn3oELHR+O99LSjXLPwYjsO7R+7kkLh6dq2pb/5gtZTSERkqFNQd3RKnLRa4oU5dPkit5KtDE0iC6MfW5fawjO1/IhKus0H7cftCaoKfEB5348ftnCMrTPPD/vvzGqsUF4zLS9sop4Rf31pt9ZZMlV3mgotSkxNx4mC4MufDT0/EmjVhdCJlOtavCIoZCKC2wlMjfvHliPlz4009vWP808vRfH3l+MzJMRqAkwTh1ag0sbhxuks43ug71L1X4MA8sNXi9iMqbdOK34wdOdWCKizkFWmRuiYat/1MZjR+jRSMqF+MWW6ulDgYaOTTmaKkNtdl95FjdyWD3mHKFnt5Xg1WmQSA2dIQmQrgEwizExZBRxueo6KS0A9Sxkt4sjA8L6bd2b4KlcJ/+/JVC5pt8+qKmfe//5AHc7Om6l1sN4mxp5zHYPthUKBo3FFAQ9aQW54cKxkk2YsEWEWX2uZc8ahzFuF4ua+LcMksNlCLG6eipHJ1HrXesFWHBHKMWwbbULwm2jvJgxR0uz6PdkO7u75M3zk5Of2qEdoPXEU9rYH4eSI8XjqNxWP7vH7+zql2hsTr5rspVHqnzuW36zfa53vT3Rs9S3dkLYhV1c6NNFUmNh2nmbx4+8mEZuazD7lodWcSGUOhE6Ib8Nn0lp8Lxh5mn08T6nPnH//495yXz/N3Au/HMm2FmjIX384EPy8RSA3uiXZANvSuiXBZDekd3QFY1Z/chVx4GOK+JUxhYh3odS4VesRpRS430e6hVWFeTWUswRJ2JRuNtCShFjcszSTXuRdhKs9MRbU7Iv6yJeU7GFevp702UcbSsgTEVfjs98bvpI//nt7/3QjlWVeu//Xng//WpqfRa+0Z0/om2N2qun1ztm73j4pebFEVDI0ZDaqoaumluiSms3VVBonAIK1EqFx0oLfKkA12PmtVSjZNUDnFhaYmqhrg6VUOUn9ZM1cAYTfc3jjMYk71fmxUaCShLDaRYzWYUp+oQ+HCeNvl5y395b/Xe3eerX+nN97buLTB1mjNNle8OFyqBD/PIUo1TrZZIIVzBFndX7iLpxWc3/ejr15x4zfXBcVgox4hO8G468bvpA3PLXJzsPMr1+QuG6t+cVHf3f8wLP/72mX98euSn94/84fdvWErkP373E7+Znpniypt0ZpKVn9aJJx279bo5yUJo9Iqhc42EMjCE6g4mZQor02DpTGWMHNORn3Ix55pzJZa1pwNalpRk6EVpltW48aJEoMtgqwB5SAtTWKgayFJ48BS7oHDxAAwoU15oKM+XgdN5pF6ssBVgtCxTJU4rKTTejSf+0/FP/O77D7afOlLtT+sD/8D0yfnzavsV6VD/ttL37pwgN/qDvDzuRgkT0CxOmgsb+bhvNlf4oaX1NTfcmkeYOtxS1eGKQW8uZ9WOAqUGY8j3DVZgI20UuPJLVTHS6qAbdFIwh1ZTpczh9gbvFarXPHWfsg3lU28FQmPMiyN0TBiUElmWyBbavt6lXU65usT3zr9XLvaqYahYWtAqNFHyYWWMKx/mycqMv3Y8sl3SnmkXNb5tido4e0oR6VqxAGQjoDOotrza3+7kVDEuDOlkmhtxnCk2+LliqAypbIKtNtliiJ2QUxESzcgUxYZU1aLIawtWUtbPt9ZgTqhd2qYp/C6ouxJZg/k5qyDV7yWBJiOLiblxGGce8kyOxUjg3Xl6Ibnw//L2ayLB+1dtbotvr7lbfzujbu9Af+171OeG4Cl8fbzdABE2dJzSnShCip0Me6dUeOSmnzg4ya+pZF3e2WelBUoxuWX5NC4flWuaywbWseIQYJDl643tBuDuJeK+JleUXsgNu8kXA7P3Y4VojpHnNZuhsVVA3TlX94bri4ewb9fN4+VMlutFfX0RIR5WhrxyWYetIt7N6cJrimKX6c1lf+V5niirQAE92uetmowYkvHOLWvn0nG0Gj126M8YMyptb7JUgSFYZE5QBjF51O8ve8dWNYUpeFl12KUUcY36bY/G4eWqsg1La0KtcpVPqpZ+041lL7hAsb1NCj6HfF4Hc/QpClMlHSyloI9dCI22fJkBcvPUvsmnL2/3cmivK732nuvx9ajkoTCm1R1KhdZg0bAFWmxudsJaJVBZmjmvW+uIg0Z/perTxs9hSPPgqQ1Xhd/27KtTSMEjyE407h92x0vZEDivzKdXdMW9nvgJLeqmXal/bUBTLCxrcAeMcV3OJexMLjY9shdb6bLmPji9lyW33+2+aAJefCdNhcNg9AvFeQfv9Zu9zNLdK9ORrDLdWgKtYOm2h9UIeLUyl0gM5qSuaqXaQWhNt9L1/dFc9yb17+1+onPmWICvomqmRUDBCyzQxHX23R6BORqthH3nRewXM8qDMRSGUFyvMi6Z3qrPq9oCSwms1ciJLR1UoLiM86I5USqK8pAvfD8885jOKLC25GM0UL+yfPE3ovPX2wtfzF37xfW4tz16FkquTMPKlBce08wYVrJU26alMooVFzFUismP7uBGhaLCqtF0DBUK4vNHWP2vVGGu0Yo7AGsLnNdEUXNkie+Lc43MJb5w+FjASHaV6G4FsuzueQvC7/VIXr6+Gde9fewXHWPd0g+ry9h17WW5r/LhHpF1d+bbsffWtvl8xX8qUEpEK6Sh8vZwIcfKz+vB7KQbYvVf3vOTVOYaWYs5kmOujHElepEpMFm0aKRqdHu9T48rp19Pgw5iNllzj5vpT42GMIbCugaqKqKNIAUJgmr0dPKw9XxLHXaQSk8NjNI2J/kYTUZZkDI6wpONEkbdCWdzzFIq15qssFXBZH0PCrtefxwX/ubwzA/5mSmsiJjuN7fE0owO5mvar0mH+qs7pTZj7saI+eXf6f53naPo7vcbQTCYsadikMbkzinUPaSBfbROBCehhRgM+VJqtKhxjXbeJZph5RWIZIBN8+lcHJ6S0jPPwKM2PWXmNYn9KeP2S9qmCO0+qMKHjw8smgxF5JUGX2ip968VNsvxEztLdwhdf9BfCtKCkRJGQz+d6uje4n3u5SfO3Y10xSs1mdI6HAsLAutA+CnR1kh7LKTDimIVflq9dfbdCmB/0wJlMQ9BCI2cq0HGxSoHDbHS1CopjLEwxEoKytoC7+fJeCTE0AaK+98023NvskHKU4DclILwtExc1rTldHdS9utYisHd12BGXxXC4o9AzeAjGtLuNz984D+++5m/P7w355faBhoxssd/qCP/j1ef2Cfaryjf+K/SdobSJ20gfeU7/0x2vpotLdOr5+n+t6JoCbSgG/nvsnoKWzC+jJ6C1Y2NIZrxV/Uqw9YSaZoozaL4pUUr3T41alXjXylipPlBDT0lWCebIw33ysTn5M9Odm+R9b1svj/2FYO5njN/iI/Q7+Hep7o33D6p5d7Ls/sLXQ25HlAgCOpKyHkdKSUYsfJd3zf4+najV+Wu1MxzSzQJPEyVUlfOl0z8mGmXyPoYSMeVvXtId06fq4Jq39cWWCRRlkibrfrUf3z7nr+b3oMKsya+Syd6NRswg+yiifflwH+/vOG/n96yWplZotgsMwdVNEeXejUeuQYC1hKYnR+nexl7irs58QIyB2QJiMu4WF1JDTiBv6C5Eb5beHx35seH0zaGUQyGvwyRsH7phtYf5Tf59Gq737o/oT/d+zz2mePgczkYGX3zstkSrPqU0p3ipoA3se9jMG9T0UwjUAkE7QS2ppYXjSQxpIxV54vUZqmA62wlujfuDu3k3tZBXYxfSrK6fmcdbjVQQ7qVEZ+TN6+N1S+1e1nWIs/ngznHxAyf4EjJrl9sAbFPOqR2TiO9BtTuv9t/rgIMDY1Woc7SW7qBeXtDhkS0z3rgDHFu1CbMJXMYV+Rx5Vkj5WniH+eB0zryP33/Ez9MJ36czuSoiASeFnPs1HsKBB/M0jJ1NR7LIRlPTIzKIJUpFmQUplwtiKuBtZgjYFmSZQj4OMTs6HRH/SYf2yFUS6mTxhjNmPx5OaA42jx0dGdgbZG1Rs7ryPNpci4rgdUpMUQhWVqRhMDvjh/4X97+nv/l8I+8TRdHdyQUq96XH78ShXDvdfwmo15v+635tW36tWM9gNaHNEQYh8K7YWaKxdUpm3cJq2rXJNBQKpFZB9aWOLXJOcjUU6gCsyafS425iWNAnW+oZEMXC16wQbxym63xUx2ZS+IwFtZi6XiKOTrmmnZOYn3lVl/e9KcdRdd279i2uzFH8Md5YmiWNdKabPZrsN2fzgv12nW3oX7FYWU2il0pdNJ2nBMXIY6VlEwP+bgemGs2tC36Ijje+7zpvS4f1xZYdOTNMPPj4zNrjTy9P/CHP77jVAf+7u0Hfnt44jHNPKbZMpvwIjVG90wU62vPZlpbomrkXOGQVmKGQyqMofAQFy555iEXnqcLl2oFPC41cVoHni6jVzU1SgwR3ZBwKVmV0U7HMsbKMa5MsfBURhZ14vSu70m39YRTGfhwGVlXs8VZIyydUZ0NnfX2cOE///B7/i9v/wv/cfiJheTOTpvny/BMGTJf1X5FOtRf3Sn1mi7xxe3ODgkrhAXaLGbgxHazl7ZmpoE4b0jn+Kj1FqZs6TUOS66msPWsVVXdSPesbKReK3bso1Wbco/92w2R4lKgfsldf27yfPr3ShcufaXCuiRadRRA+/zvt9PfOwu/sI89ktY9jrXBMjtaY3/MtbefPp9fvzlviYSGjhXVaAZ1g1bFKoN5mU517zgqWzWt/fklGLeAVQpUg4eLQW8FZS0OUY3CEAx/ErGKaGMMaFOWGt0LL1tkTwmEGghisN7uycc98lbG1gTdWiNruY5Jio0SKk2Mm4yulDa8jHJDUiO68haxUsxdCVax+TbKyg/DVxKdN73O1a+MEv57aL80Ir8kwzYbwj2Y0jManJue0B0ldnB1LhCw3wlYFbRgqKKmYtEOMSdG8rK3ZkCGbf9pTQyzoCa/OvHw1WgyODaeltGdwHVXcvfrhPOXWoF6VdW8L3V146f3bb9st/RB2Z/i9lp7g/xFv/X2fWMHYbaCCPPFgg6bsbs7X6tcOSDcEG3syIYRZg2UaGhaYqVlsOwkQ4K0Jp7i1IiRTT52KLwZkLaOY7BqMV2EZyraLMKHR+i68jWFlRxWtDUeQ+BtTJxy5uf5aArrNs6G5DSCdFMyLSX9OlcUiwiK88TUElB3IImXclQn/9S2m0ei1EGpuUEytFSQhqj6/HOFPxpx9mP+Jp/+JdurIySf/m7TVRtwCpyHTNRKO2AcIarbb7UJC4HQ1B3hzpXRgqW0STMiYA8sVTeLUqgkFVIIFrUVpVUzqCSqkV93h1Svstkjlu6p6ai+uu75k/6l2lVmdDJccboUccSrbAjKnbmp17f3vorPXuvurVVWVeceacxrcqLla1Dvxg+yM327CLQghW762FKcx04akipEZV2Fp0smh0wcTA8a40JLVh251MG573bnwpAIKVaaYpXzXLcBC96VZmnKWo2fJQbjdomh0bxC7Haf4Upu3pe3+jWiF/Iw6gMTzlHMfTCXxLlk5hpdlpl+3la5ZipUDCU1FiN8l0IUK/gQqYaMUUMD9tyJx3B1pn9R28un/v5bu22vLNX7LbwP4WsozoClX0qBdRVOa6IONkcsA6YSaJQWOGmiauDcRksZ1sTcAgWr4N1Rm6unWokoWQpjMH08SEKk0Zod16JVrA1imQodPSOYzhVDX2u9r32dvnKfn9WRfslD9+mjVc1usde7z72/iukXmz55VQu2z27RWtewZD9dP4/lEm3GDfhafHIicXCAgO4utOvx3kl35cKDpVp2SY6FPK4uwxpzCVxKZAxClECgMoSVGqBUQ7t1tJT6TcRgYAKAIVpxqiSOllKYW+JczKGdpEI0pVAblGSVRTfqn2vEwZxgXtQl0FwWNYrLp+RMZopfY7XKtCLq5PlqRWSqB1+dQoFYiMNKToWc7I4awoc6sWqkqDlIC4GicAyXT8yVT7RfkQ71V3dKdcX7k97z19bjaz6MbfUIlAhjtZnTI1qIR8HVoz/+Y8EdF5vuY15OAbQhIZjB5yu5OdmvOCLHSgb76Tw63Y1PHD2pOwFFj8S/dj969/5+LD47KNevup4k/QMN1L8gbaJf6VaU3HV0Hy3si7i6tiYgWak1mcCUu/NshuZOodoJy03BUzZHU8zKGnGUB64kmuIq/ozSYLByM3RvUxQlKHls7nAM5Nw4jub97opuzwM/hsoxW+QvSaMGYW6NZ41UTTQgiVXRqBoQtchd8zLH3XBtagR3OVpFj7VFnudxS5M5jivzannHsgYnzYdQBQKU76qlw4yFabRy8++GmSC2sTaNDGFliitTLgxfGej7NXnR/1Xbfmp+fsm9rl+8tq6jbepEZyuKTnieoafT6sZX55M/KlYxr9JXZEfqRDFC4aaW2rAuieoFDIxnTAliaRMhmMEn7IgnA1cjsOcWVr92v/9flEfXY7rMeXHYjWzbW8hunJR0Z+Dp3W/3cuNusPW117vBv3mG3elr6DBJVihgXfby6V4Qd9REQwibv711e91TcEPzlLwEOrqWHZWYrA8WCcNlDcyrV2bdUA6m6L6ZFh7ywnPJTKHwu8NHfhyeubTM0jKXlri0zGO48BhnAEcYzHysEyImbxRP6ROlBYuedq4gYONRUUxGpaDkVKktMJ+zRfKaEHJ1MlAhFEGaEKvdLwLLO6iTGql5bhwfjCjbEMfGZ2Uph8K78YLW+X52fL59k0+fbnsZczflb5aN3P2m/7Wr3SA1UEvmeW1MrLaXtV55yfdgFSdydR4pYHVHSaK64deIwcpuizQSyhIgq7LWTNFoKBsP3KXJFX41h9PW+aiEhDkZNpkhllJ6L3C/VHf8pbYbRzPUrI9WgETNMdVLx3sK400Kjg/6ayio15qL4U33bNX1RY0bWpYIS0kbq/eVtuB6ftmda4/Y6jpNU6cEEEObWEV6obTISiJ7AYSiyjFXqlbTg9qOaN7vJ6XGNPTnqzwMC4e0OpehcTw9zSNNhcfRHNANG7srl6jLfZwQP/UUPnNipeBVtMTQKYIRUg+hEkR5XjPvl4Nx5/gAlJKpcza0eRVDZKogx8LwUDlOK2+mhd8cnvnb4SMpKJXEc5tMfgu8Sxfy+BeSCO/ff2vWPmW/3W2x/Rm+WDICoaeehWCQmBCYYuX7fOEhLoyxksWSiS+a0QaXNnBqg6d3BuaWnPdNNnllz9yCPU0jKShNjAh7qYnihVamWMnR+GHXLavGbJwsyqV1VLGtr6XGXSEjva5Nro6d1xTGa7rXberXNhR3676f3dDO0Z0oV/S1yW2XTf6rsLOx+jll/9rfdC5l2dbpdieownketoeWc+VSszvpzfkS/Kavo2Dcgkb4fV3/FrDqdA5WwCBlRbIiKoiYDScSiCKOojQc3KUNqAR056iHwJhW3g2LI7uEx7TwNs+gkINyaiM/L0c+lok3eWYIlaUlYqiUZrZh8Gqmwbldh2h+hMHJzmNQ161NbgYfv8e4IMBzyfz5cqSqZSs8xIW5ZJaSKKtl+VACQQMMlfSuME2FMRXejgs/jmdEhJ/bI+dm/GZRlDEsvE0Xjnnhq9qvSIf6qzul9rrUlx5/0xxlIBhSKn8QymhRPA7VDASgewlbFVN8YFu8fY309wpIbIRQCViaVvQo7zoHSgOpWD5oEMjVkAx7BVCuXFWvd/yf0j5vGe7vF7ghNruhiHlNkbs7XzfG0mCEvbWTiLtGe+Nxbz0NqHnVFbU82WQ537eExdenfr9Gbgj5xKL9Wi3VBhXIzbtsolKbGYhWacaq6hFhlUZZk6cr+rUarJdIHgutKcslcpbENBifQVNhrVZ974NmUiiEwRBKQ6i8SRfaCB+XiY/zyLJmUjBSQSEyx8R5tTmTY/H0qsYUV6TD06t9ty4jdTWo/IaCibpxL7SkXhmsEKcVK3EMfz4daApjXHlMszvNCpnCQzhz+FqBxU5g/fNO1F9122yMzzV5Zf7evxG2dOMwm+zQBm1wjSCANpuzKOAOZBWxtAMnatTGxn8WpJKjcZ4lh5eHZmXZL8UUrtaUGGXLszdZpxAa1GCozTsHz220bDcQX2XgvfKDG+P5lVGtjsJxA0j2vuSbU3eBsx9345qgO9h2Rs92hGJo1e5Eb1cEgbiR+bp8kt0QhauG1f/tTqkiSKpWuSlWyNc9pvNUtSYMqXrqicmApSRLt2xelU8CHy4DkUqUxtM68I/nN7yJZ97kC4mVopna4Oc2kaRwiIs5J6m8jSd+Mw5UhT+eHjivA4gpvKWIOQ248pSlqPTAjZuypFCJsVJrROaAzmKorwAtKqG5qE+gEdpYYXLG/CpczgN/phMPW0GIKCYDp7hyHJ5enTWfbt/k09e2V5fOa6+77qMgBcKHgK4D78sR/UF4HC9bMCUE23+Wkoz2QMVTPrz2UcDRxtamaHwvnRj9IonnNPBRR9NJlgBRqatYGpdATHXb71sNtK8E1f2T2ws55yPlKHvzUclWfTIEbuTZvd7f/02xknNF1TiPmvZqWu3qkNocQGo6lIIkJaVCSnVDAdwXiNnLwe5kvn6uu/PjxOSNmK2cfYiNp8vAf+MN5ynxdrgwhYU4FPRB+HM8cFmzlbH3TaFW4+GZcjFuHh+bKRZHWRqWotbIaUlkz1gIoSGhEVLbkJZazUlg3J6V1qA04RIiY7TqeEHEKhyH1TmEGiUIpcHH00CpxgdVO7S8OgVCcXkfGmNcEYHLmvjD+ZHM3/Dn4YkslUM0VOoYCpHKd+GfIp92c+Zb++Kmr73xPbb5nq1VaafIRznwX+Ut3+VnHuOZQzBMcKDRNPJzOfJ+PTBrMnRKuMKfA0rC0kOzGCF6DoUpLOQyscTAz1gK6LyYwzPHQA5m/xgyRkxXJ+2yP0wp2PSnl3e1tde+e3lkd13pNg49dGVOqO4yuq75G/S5NyeQMd1TdIvRXwMNJtOCNEczOk9b56n1c1cVar1SnghKLWFDQQ5xdbS+6TrVdaMAG7/Upjo5LYzZ7W1znNVm4zulhWWwPgxppQKXEnkOAzmsDGElBUM9BW08FyOnR4XOd7iUwHfTxZxeCjTlmBayFLRNdMTUc8mQlCiVQyyGcFc4x8xa3TnpAJQYmxVVAC7VEOUPaWUMBUU2frOAsoiBFD6eB2oLPOfcR9vkuPZnaqjVMS0MoVKq8P4y8v/hB/50ORBj401etsIhGiuPorwN51fn1qfbr0eHCr98yL9skxcvuDpM7j5Tufuu79/07ywKLikYeqnv8V4CXRDne7JIlPaS3HotVSli3AYpKkNupGjwzBCglESZMzJHwhrMETU2JJkRJZGtooiBOO/4k167+V8y9l6Mhdx+vn9zPz4dKISlbGx+6y15+FN/t9fKQyXma3RQ2JVc7ofXcO1aMb4tGZQ0VktX2fd99yBvFaxd6Wa6c9fGMDixeWvuGReQ7M+2P1+BFCFnU5C1j7865l7sGjGrI0QiMSrZS3kKRkRXm3FpTLkyJuOYGoIpj02MaO+8mte796XU5FuesHpUZojNeQ8iKZpHPUnjtA6cLiPlklDnXECgleDV0czBIAJ8VxjfLMRkXA852b01f7jHVBlj4xArj2nhTZo5xr/Qi/7l+Qb/vtr9Gr1fKrvX90tye9uXnmIiJ2EoqeBIqeTHN3ECfswZFS2CHKKSUiMEyFEZojLlxpjaVhq7tsi8DptxI6GnmHk0bXPWuBzs6+MTfb25v8+NxSsDtpcPPQvn5vh7kaO734XdAS/k1P48LrMjhEFvf3f/DDZlUXyNBcggYyOkm5O+vtF0gdr3j9b/rGCEiskhVUGrwbUlG3FlTGbQJ5clYzYehur8Pa2FTe6FoOQAx6Ey14GA8MN05pAKQzCejFUzRQ3dYE7vQAAqkbOOXNrAuYxcyuBV+Cyts3kJ47VGaovGayYmY0UgJZOFpUbKnK0CaB8rE34ER9oFR6us7xTeFuMObCDJAhFVjZvjMKykqEyp8JBWfhhO/DB8ZXrMN/n0de2XtvRX9Ce6/tSEFiEfK0Oq277aS6kXTSw1MTtnRz9pEItCA+Rg6OIpFHJoGwn22hI/XQ6cngeYkzmJs5KGtl1HgpXktnW/KTCfuaFX7v2fMk53cm+TXxukCecD3Jd03+sy9//at+O4kpMbbQTj8HJkkPga1L7nO5JTEgxjZRyLF2DZX/f1B3s1/7jpS9eNOukuIqSxWD+iQhCOed0QUzi/khKoN6Tyhq59HA0R0FQ45NXkWqw0xEqtu24Uo26qV60RdfJnibDXvU12dzlocjFFGKMhpZIoUywcY6US+Wk+8v70wHmezEFKpCwJloTUsCE6eag8vJ0ZBsNn5A3p0HhqB3JsNCJRlGNYeBdPvPtag+9ePn2TUb/cXpu+r30nmBNYBJKA7/U/PJz53eGZx7iQxYK9jcjHeuCn8siHeqBo2uYTIkRzAfg8WniTFh7TQgrm0lo08X458ufzkdM8UGskpcZxWMnxGoAPnt5eaty4PO8FyAv9p9+OvP7XeWjvX3fnkTjqaFOJbuTPfgDl5rdbf+7kxlWk2fsxGi2I8WIF74N919whZY5pQ1UvawYCQ648jguHbMGEILoVcAFxp7115orKuup56jI+BCFHJUTjg0KEMVem3DikyhAbx7QyOq9XwOyqRqBqopeIkWDZA+/GmeScm49p5pgsgA+B9/XAh3KkaLTzOUedYgjzqr2gRXBuLtnuqTvY5poJwDEVhlhcb2vkoEgQ3q8P/Hw5cF47Ws/sSiNyT1CiyalBmd4uHKeyjVkM0CTxsR1QbINoBKLAQ1z5TX7mMfyFaPNfgXz6N4GUgs/rEp8cQt1sGfP+emURssIFW90JtF5TLbSx43MSNBrEHBqSzIjIqTDlQndnNvX0PyNQgKLICrIKLRh5rIyNEE25aiqotC3l4YubfO5mdzf9QpjrL/5OHU4myg1y6uaa+vJDico4rHz/eKI04eNl4nwZqU7QpopHpVx5zGqpk6KE1BAX5mru/ZdBpRf9vO+LvWkVjCNKkVkIz2YItqlRDkocK5ogpEoOheNQGfPK02lkLuZF77dV5kiZLXVmniPznBinleO0MOTC8bCgagJorQGSUbmCecMfszAPkfOSWdZkpUJFmbnCXoOMnKeZx2kmh+bpVcYpc0grYy7UOdGWCKfk6D1Fk0JSak87DcZ90KSn+Vgk4GkZCNn69XfDTzzEC6OYxz7KVwqsXpVte/2t/aXtxeh1PaUPcTW0VIw2H5t5E4zQ3406xQx7pCGxEHMjJ4u0R2kMqfLgpW0DbUtHXr2aXquga6TMgZCaOzS7V8ZpKD16dCNMZLv6awXzPnGDXzIKcvv7W/3pRv4oePrg7mevXPvaf0jHlbePZwQ4zZl5ybTZC1IoJu+9QqoOavwB2SJdcajb+Td5vZfZHkrcUnPa1dDc3ivoaghLRGENyHNEKrRjYwV0NL6WOBpnyzGuPMSZP52OrMvRopAYmupjDTxfcq9fxv9t/Q/8w8Mb/pe3f+TH4Yn/NP4BBc513PgKEhYtjlJ5TBd+HANPc+apjMwtISjF+fVaE+ocKSmQhkJOFcHIzlUhxkoaVuYYkTUQn8WcUxh6s06NOoFUQYdGiIrkSguRENUr2Ag5GvfL3x4+8i6feEymKAbKl0yia/smn15tu1H5tP6kn1BB/Id7aiZpwArxFJhPA5dx3arR9rLCRiZ75XgMTZz41aolZTEk4ENatgpFlg4fOG8VhwKyiMm8FliJpEMheeXk1qBtuSpfoT99VfvCeXR/eTV9shfOMePq5bn2ekweVt6OZ94MC2uL/Hw58DyPG3qpNWFdoqEtI8RcyYNVXDKnrp2vaa8w/PqYXNFZNm5d5+uopNoMsVUJ1DlQnyficaWExlkS/yhveDdeeJfPPOSZ/+nxJ/40P/CH9siTp+v0K78/HQyRjvLT6cg0rHw/nTmmwuHxZ57HgecyeLVAnytiKN++HxWNVqxmDSzVIBxrDIRkqODncWA+GuLhkGBVoYTAEFYe8mzImFWo80BZBVnFaDVi9+s1qMJ5zojTM7SWyWGk6HeMYSWo8n+Y/sQP6YljWJhkpX1l9eIb+bS9/9a+qn3OJghq+kgBLlbo4OndyM/LxNt4Nt1bI0vLrBqILoMijSzmHB/FEDbqBRt+jE8c48yqiUUTLQY+lslkahVaCdQlca5GcP5mujClQo7qvIzunGpO1+F9vaUg+OcZmNtzmr7RHVeWkrhDSL6SgdLpBtR5/4xaxF1TammyQ6wMsXCWzDqPPM2DVUh1Wd9qoJXAkhrjtPJ4tPSy4zBzyLavq1jQy67XOZiv43JNXbT/G8jUjrHKhjDGQg6RD+vI02VinFbCm8oUhVNJBDIPaeYhLYxhZQrFQLeXA70wV2vCHy9Hjtn0jKW+4VwH/naE7/OJ/3z87/yn6U/8XI/MLRmJvTTGZqkKQYwXL4ryEVhKZCm2/5UqLCFSmnCSCDT+7jgbJ7BzlQWUKc7kUKlFWMrAabZ9zzj0bAhEzVcwnzMSDUWrIgSpNB0RGShT4BBnfjNcGIPp/D+VA2/a/7g23l/XKXWn+9/bLq8d9+KzfaRPsXLrg1yRB33xqmxEwtsJOtTcnKwIlqaXHMYYxJxYliccWJaEzrb5aVMY7XqmlFiPm5NiUoKni/xC/7+m3RtzcCOrPneNmzQ7bsds7yjaR/9UIebCwzQTUEozSGMrfmHFDL9qFZlIRgSIj0ccqpeud+SH3t3Aa2ujd+zGQbeLClSx9KYihoZzRVY8x7dzEaDKukYri+qC/MWgeE6VbOmZSuoZz0EtNSYbrFIE1iYsLbC0yMfZFa4u+D36oGKw9TQu5kgQU9zUIe0ijec1cbkk48poZsRucyV6ulYRGBp5KuRcOS/JCJCzpWvlUPluOPPj8MxjvDBIIYrzYr0oX/YLrVU2T0D7Sj6F/5Hba2v3c+v2E8af7NecQkvQghFCXx1Q+Bz110Gd2N7mZvTobgqNMRVTyH2Da02sekhJlNIh5O6IulEG8JQYT29owgZjuvdN3b/Zr9XXHFaf/UxvPr+XRTchvy4jxOQx7Kaz7PvmzqHYGAZDEqw1Unp6scrmkJJq8kI9VY3oeIWhIo5A0H78vZDtRmAnR9edLGrcrls3AGUOyEXQhMnE2IgeiRxCZQyVFBofV0Ncti3auku1cRSbSCPHymNeeIgLkxgEfdZEFQiqJDFD89ISl5qZmyl1c81X/qjm4yKY/JbmDqTmyrVHOWmsNbCeE6GCNJNF0n87GJm5rGJcZ1MlTSvrKQGWFhSTyZBDXvh+PPF2OHEIhSmsVAJZvlLGfJNPn22fFEnyyuv7aX63bkWFdqwMh4UcC0JzXkz7QWnBEX7ifIrGITL4nA7SyKEwUDjXRNPA6g6pn85HTpcBnQMe40Ezm662ZTU4yf7LMoFfMBifcqZ/8oBPtHtD8P4Met3vu6P6heB0vWrIhcdhJYXGqQwsNXig08a11oC609doIwxZmWMhe2WrtlFB3PVll673al93RmoQK45SVtehstESiDRisGDe6KkxTa164tM6clozN856BfECEdZn49acYgE1Pax6PxS2NKDSgiPdIUautApqepCK89s105WyV0LO7hgNQKIyt8xPlwOXOVsKegWKOc5NjLvnNAFjZRhWd6IqYyqM0fbPQ1z4IT/zXToxSuEYTM/NfG0hhp182t5/a1/UvtgOEtOTAowPC785PvF9OpPFaUVczqyaWFpAcDkUClkKQ1ydz1V4CBce45lVzdv7XDKnlvnT8sCfLkeeLoMF3dUcxKPr3JaS6umla2SpHUnDDpmk/v5TckZesbU+L5P2XFKb3dZ1o00muAXSU+42PeUqw1TNGeU9Nv1KxFGOK41gdAI1stZrJeRaBV3tVzEXkxWxUlV4GGZSsMq6c+vFCOTa736HLwx6Q601P3YrkqGB85pYFqsCNOaVMZatCnoO9f/f3p8syZIc997gT83Mh4jIzDPUqUKxMFyAl31bWu6S3HBH7PACFOGCC4hccsc34IKgcEuuuKCQG74HF3wBfiIt0pfSTXaDH8EPRLGAqjpDZkaED2amvVBzD4/IzDOggAJAhh6JkzH4YG5urqaq9te/UpEgY9y8qWI71qRiwznMDgtS7GMgOKWWkcvQmV6RxI2u5r4JZQ7bak2fAmPJVNiPgZis3wRKBUa7rpQcq2bkshpYeQOwJDyCkBCuh5ZtX5vNlUCjmxf2ECCZLapVxtUJxMbFpPMAap94VO2N566kmXoyG+kR/vP6eL9wpNS9AZb7fnuTTA9txFBMg6DOYZY1h8lvuYPAhF93DkKVrbylWHW0YbTS3LainnFBcWurGmPzlpQqHx6coJrnUrTM5OZfMCp5n71zz++nZ5KT35bK0CJuh50OzuHJtgp59Gz7FpWBscC4Q63EAfLgTgIqIEELOmOCg05O5VveTOVeJ3euZijmiPtR0FFR56EyhJqqMMRACIlVyAyxIqeJWF4Ox152UhZ0CHRZ4MKI0K+qnsuqL0SbtqKnyZy+oZQPFXGl3LKbr09cZuIRG8dAXwU2lUFOe7Uioc7B09We2mdebNfsbxtk52FUdK24daJejcTocF5ZrwfW9cCmGXiv2fG19Qu+0txw5Xe8F7aspGfjejqt+Cxe8SKvGdM7lgv9FYqi/0LlviH8gHN37zYlA1YS+CQwFlu/Kg+hV3uGnCI+EepEqBJVsFSatjLDyovSpYr9ULEbamJ0BJ9p6shqNYKTRaVNmSdnVZsc6TxHBJh3olCvuZiHba27uy/9ydO+03uCU3eOvdBZix9n1JKCZkeMllJrPFqFCwGsaEBBxk60oFSG6glVsn6mGF35nlTrSTdmLCiTZT7vLJNu60v58ShIJ/iycj8Gj2sjwZuxuB1qfElvislI6XVxzFMUREqOz15dctu1OIH/x2Xkfbnlo+oVt7nhZVpzW8pd36QV+1zTpZoppDcZqFPlWe8U31iRB+8ydchUPhNzqRwowrpJtF+55XbX0N02yHOH20JcJdzjkfaqsxXiLKzakcumh0tYVSO/trrmK80rLkPHld/TFi6OqI5Xcc11XvMqbU5v9OvlrJ/eLA9Mr6e9ded5X+qvsrHrHEPXcONBVz3eDaBWcXYiu/XOAhmNMyM6uGQOoLPgwcu45uXQ8qJfsxsrprLYocqkVankWAoq6OhQ70ilAeO+Ojxrr7m2N17su25wdB49cgaPNlI4lApziz7Uo/6cFgdi8rwaWiqXiNlz0YwEp5bCHx2pL2Z4WXRyXmnrsZQdn6r4ngToWAakZPHdoqXCHCCSOQXECi9kB+wD0cHFauDDiy2VS3zeX/Dj/SWP6p4x+dmxyoVHVIrNHHMoaAhIWXlVHNJHTc8qjLzf7rgZG27Hmj5WBV3nyMmB2vmX6eRTNb6cBKnyIX1mdqFhnwJRHSs/8tWLV4jAJ+6K4XmLv7bUorRRWOUZjeAqJeOoQuSi7vn65iXf3HzO+9UNj/2OJ2HLI78jkLlNDa/yii4F4N9eP1aWckZK3S/v4r+97hjlJQAJxl3Ny2HFp3GD95mncksjkT01nsyTsEcRaklsfM/KDTQysnE9FgxxjFrxebrgk+ERnw6XJRjhWVcjl5uerYcYLf10SJ5Q8myzCtuxohsLdQeLANSUjXLnqXwgOLPQI/eYR0cflgGs40CzBWEzy+IKr+vMxXGKLhuzYyjFdWKZ11Eh9kYvYv6dVf+ufGZVR66argSLEigM2YjiFxf2QA8c2iJAcHmuVJhwZT6x7Jq4r7jFUoWfXj7nSbXjs+GCV+OKlR/xouyiIboOi/529D5XRDVqi0G9+fFO+Kh5SRtGvtV+SlLHbWrZ5qZU47OMmqy+IO6Mc9M5GEtQLmdHckpVZepSBOsiWDD7Oq5QoBLlGxcvWYeRj7ePeH69ZnzewCDkVtGQoQIdKIsx1uhVHfnw8ppvbF7wXrU1DmO/pykVIre54VXccJ3X0O+B//26m30sX4IN9YMf/IA/+7M/4+///u/55JNP+Oijj/j93/99/viP/5i6rt98gCK/+KDUibyxu+5RdEfP+RS70BIMKaWu7SGYDB3baH7QzXqfjQiDVQspHZw5Sx9zdj+9FpLgEu10apHPXCLK82q/Ho5/eg2nAZI72x0MnDsO3UMyBeZeG8E6pPIc0AGH/Y+cojkwJew1GITRKd5FnM/EYDm9QiG/qwtPimoxYk418GlbXn8dyw9z0F8NXZKqidbPoL05SXEy7dzbviZOAbNlZG/Wm8trV3DZjpstDWpHMD4MSdTekAaDelJ27GOgG3ypTJSRUslPo8xc796XkrFqx4RMKCR4WYUhevrBkceiTFvFrSPVamDVDCTnUWfVZoJkGh/ZhI7LsOex3/IkbLmSjkpGPFZ+vRIjOt+5d4yiL2ezX/J841+YPBSQeovuujOcp0BHstdM8u3Lj3J4TUAmVQue4IRcguZjchZQwcgcY5JSRS2hIozRnMi54MIoiyDyRCx+99omuPfc3jfpn+UFvlanvVUPmXqeHEI9fnZPgzYiVsa374LBzcEc5hBJ9aQXzKKVOloqrjukKGaVUvFq0ZapvyZ054SSynrQG/dd17QYVVYkC2UKOQlxdIf07izcDBXXfV3S9qZrORlQJQg/oQbG7NimwC7XfB43bFPDbW7Za8UuVtzGll2q6VJgFytyFrwzt25QQ5HluTNLIY+C5ES1pGHZ2uUwBvreoYOQU4ZVRi4j7cWeq3ZPiqYP6yqxCgOOzGXV8aS64b1wy5XfceG7eeUw4umdJyF4ecf0vbN++mKyDBi/7vmcbFZRXLa5K0YYXEnjOHUypodE7dGw4K6lL+yyp0uesRBhp3xYxBFR8rTAVOyRrCARCw6nkzn7vrYCxznGb4jKPYhcmHZ93bi6347RA83TA86lFNtRGPrA6IwrqQ6jBfSqEWeYV6PMCQkXLD1fs5DEbNdDxbrXK+PTR+RoP4O7EacAkwBVAl/KpGfFWFUSTj1jEl52NUO06I7I4mKVUlhm4QhOc1SWggQrznsMjNH4aGK0xZL5MmbdXmqsF6A9IlAVone0MGZYipTx+cBurLndN4xdgM6hPqNNhnUirKwse1QPVcK7SHCR1g+0fmDtetauY+N31NLjidarYunPgXdEEpxGA8466gvJ/MguPyz8IS+GlInZE9W4oBIOUUPEqIKKULtIkBEnCUGJavOQV+U217waW14OLbuxYsiOscybhvbLBf1kwXePoQyH6BhGv7BDynN/4jbNT+vxZvduf6+/tvDlZtoZzEZYIt8XPXU4dumrmdNOjofkAS01HVsYopCy2ZTeR+psXJjRe5wqztlC3kXbmx0zpbgqFHIbJtxTfo2OOgqgl/NLmQOmtLlUCvakKlkqsyS0+FKVjCSxOeU21exiKP093a9i3eiEHMvWfhJODQGasvmzu9xwk1p2uSJlz3Ws2SdPH50hStWuJjizzcdkFQ5TsuJBHktHzuV++AUCvE8WkN8OgdgHsgPXZmSVCG3CK0QvpAA+HDIgGmevtevZ+I6VG2YEGVoZjYxObXsH+RJsqH/6p38i58xf//Vf8xu/8Rv84z/+I3/4h3/Idrvlz//8z9/6OL9cQamH+vl1/V9WRGw1215gDwoZg4pXYnnm8/F04nebNYIykWw7YqIw7s8bzUEPV2UjpJ7GX12UZSlxPCuEIwNwoTQWBuIRLPNo+3sGjdzz/sQ5Esf9Mo9HNSJaxRBdWRB/EqA6sXvyGNjeWnniqh25WHc0IdKNgX60fvQ+EZzS9RWpLygxzUwEutP1WRPus4zvFxEKIaZ9mHJuqZTcKG40YvucHQ7Bl9W1211LTmJlN6eOXnbr8joX4yBnxxBrrjWw9wZRDS6Th1JSuRhg+yEwxArvoaoicXSFo8qBz7iQjBxfhKSexiUuysTWpcB1t+HzF5ekzlYn9FEirEcuNx1X7Z7LauAn20sUWFcj7692bKqer7Yv+B/NJ/x6/SmVWAXCsZCrV9IRXKbNK4Ln3WSaHZZ9dJaDnA7XhwJUr9n/xHcpfoLgMkTU9EhViM1DJlRpTq1CjFzSVqcTQ3Lsh4p+DAViLYyFaH/dDNRN4rZrGEZbQcrRQe8MOcSiIabuFt+Vt8tH9E3Xfp9feCdYd+eLo++O6GNKUPco3VfKf/eMTY2OYdsw9GpG02VH5RNDDOw6kFLK3aoWauFXmRyjyWiTUviAg37Swznl9POJQaBFf0zzj4igbeF0UUGzJ+VEqEwnvurWfJ4uSvrvgcD01PkVMWQTCH0MvBzXvIwb6tGceEtVCNzEltvYmIGePLtYsxtaglPW7WjG9G1FjgGm8eXzXDTBOWXlrSpXzo5tX7Pdtui+MtL9pxl/2fPe5Zb3N7e81+z4vF9zOzaswsizdkvrRp5Wt3yz+Yxv1J9z4ToGDey0YSrD3bjILg+8qt/VoOKsn34KmYYs0997un0ZBz2oBYc6I8YfcwWjITH9hEDEKrN7Zy9ESBrosgXEh9xwM9TsxoZtX9OPoZBlF9t4GvACUiuuUjS5w3z9NnJfQOoh3fSW+vo+5/DI2VRK2fNpOC712inx8LST0HUN/VDjXObx5Y4mJC79wDYorMwpq33ECXy63ZCjI2YptBB+bodzExriroK+F9GFtddPOrWgSZ2H3GQ0GTEwYiTDrc/0Sbnua57vN3NZ+4mEflpsn6+9IO6nQhw4YciBfarYDg3dWKo0JsfQh5ICZO3KsXhy0wLaCNLboieqVhHLa0Ff2D5V4YV6Na757PaC5y8u0dvKAt9PEv5qZLPpWdUjY/TshprgExdtZFP3PGn2/Nrqmv/Wfs77/oZKIl6UuoylWhKtS6SH7OiHZKmfps9nMbkTlHn9tnc2cwefbloQytmTxJPxdLlmlxOXvmMTIkmtwqxDaWVk5SKCMlIR1QjtX+aG/+gf85PhihfDii5VdMnS1rzYvDhEJXvYNCPreiRmz66vGOIhIGWBlKWOOLZz7gs8vQ5gsESOL98bIktP9M6hY51MLvCBaDxnSjVK5u1mgvTFd2ZbWN84wexHl5A13PQNTpQ6jFxWPY1P7GNlQS0xQnHkQJoeMMRWoXZautf3BNLKPDJxp1oLibn4mk0mYfQVwWeuwsDTes9IxU0fuBmNTzOps0IITgsafLo6j5JKAY6ML8zqGcdOWz6Jj61CY65IasWpXg4t27FmTM7QV9j99yg36tkPofRaYt2MrKtI65NVVBeo3MConufDio93V/zo1WP2u9qydR5FpIms24F1PaIIL7crAsqqfHdR97zX7vla85Kv1s+prZoMqrDPNTtVJAujBsZ3pWj5Emyo73znO3znO9+ZP//6r/86//zP/8xf/dVf/QoHpb6IlECQKLiRqaKu/TcKknUBYBJ77yh5ylpWs60yCqpzvjxS3vceiQVmnMRI90TLajqLkx3+nAaNjnTJUgFPyuYkILR8f5SjfE+UdF7ZXxxflr+Va6mbnrpOjIOn7yp0nCIYi4BZPjl+Ak3GMbDVGn+ZedLuGGvhdmhRtRX5JsA4Cmn0czReF0rpYNC8vdyBu07oNK/oCK4XBI+6RFwVlFs0nqujGfFocpTTg6IZ4ugLSg7GweEkzJwzqeQD+2BILVtdNCP8arOnCyPX25Y4eHLnGTrH9SiMa8dQO6vegbIbK66vV+h1wPWOXClNO/D04pZHqz2rUiVidTlwPVpaTp89VfbsU81tbrnRhrUMc/sDhVxWBz70O3bVuzp9ixtzXuV7K7kvFvPG7acNExYwF7Us32kWL8+wJoMyqxeyZJwXsstkkbkEsYjxAaFGCjwOgXEf2EXoQzJOgIyRCQ9iKKlJP7jT5+Getp46dK8bFnKinx547u4MreU5ynvnMr4uPBGjI0e/0EdyvN/0t1SCS+rZ3lasVrBqBjyJ7VAbOoPCnYSz1XqMN0DBAlUzZxQHDquFOp/5GaQEm5bGnZY2TNeozAEqtxcynqyB0VngbELiHrrrrrEwrY5OZ8kKL7cN/xeP2ceK2lmlq5QdXa54NTTsY2Xl2dXaqAqN63l/c8uTquXjm8eGLthZ9b2xyYQ6Enwqq4xKjJ5hW6EvK3zvSLVSryK/dvWKZ5stmzAYymC153nY0OWKMTlqgVE9vVoaRJ4QXoXUfO0ST90OB+yqM5LzZyn3xV7u66XXfXcUXumU3Am5guyFiFhFz2J8O8mWLlvmY+NxtGerz1bBdkjGuSKSaeuRfQdjV5Fj4U8ayshO5Tmcn+mFEXTs4x1/d0+xlqNdjx5OPdheenqgxZ/7znVPj4UqWQA3uaPFyweHphadnoXbXYNTZX1xywera3axNkdPZeZ06rMnqyDicSVoMz0C96Uz399YvfPJ9i/8llP59+jYbhs+kUsump4BX7I7tBy1OMMiaCr28TIQpjDxYu26mhgidYgEl/DOFf1aentKKS9pPpKsyoevE6wKR1XnkMFBH9ilBpLStR7vzH7XDLu+Yf/5Gv8ioKOQG6W96Hj66JZVM5RqyYmX3YpdqtGCculi4OWw4vOwoZaRGkOhRydsZOBCOh5Jz+h/CiP1jJS6I/e5NA/KPRvNKkGmKdK+Sb1jtzUS/NBEAoYiHspDrihDrthJzdoFKrEqoCj0WnEd13TZQigrN9C6gWtt+XzYsB0by4qIlsY2jI4qWIaMPTvH6XOZ0jaZnpXDvZ+Ka01oZwvMHPaVsg/oXN30sLfM20CeUYjLc0/ZwkmO9ULlI6HKjNEzpDDzSk7bzGZg+U6xg2SBAY+vMk+aHe8311ZpT+0YuYAuxhSIMmUWJXxJ45XJji3tf9AmPJGpD0yXZNBMcCNVsIqdn29XfN+/x+3aqgmnbPs4FGZ0khALCGA+qjLftwTcxpogK55WRnsyeoeTXOYrRxcdfeEyVLWgXkrC43bP43rP5/6Cz/crxsFzMzjy4OgHz+2mpvERVaFLgc/3BjroX62M4sZDe9Xx3tUNV6s9bYi0MvKiXvN82JDUUqD76Lgeaz4fV2zciloiiNUirSTxyG1ZV5Yq2DVfHG1+fX19tEnTNDRN827HfYO8evWKp0+fvtM+v3ii83f0n+f9JlmMcacYCngFuVaLsiexxSZdGCozFNqeavEl9avAkbMWQ6NEgRkCsvMzc76USTYHO+hh5VwOxzxq6ANBJIEZsbB0tJaYT8FWzOYm33csOeqHuwR6ptWbVeTqqi/KtkJLOfO585wWLoeF4pyOX9ocauXpekcbRj7dXYA4mmBEgLuuIUVjLRWXuLss8BY3/DVOrCEZPGSHJEfonZUf92pIE2QmXl/ei0P/Lh3BkxcOyIhIKV1sBrVocY6Tw4WJhE5J0Sr2fXCxJavwar8mjgE6jyYhrhPioqVR5YpMpoueVzcr8k9WuJ1DvSKXkQ8/fMUHq1vj5ZDEs+aWj/tHaLRS27XPtC7yKOx5Ena0LpHxCEpNpHWJlSQ2kmlE2FXvaBTlySOf3p8FuDtc7xm6pxlXDx3naNcAWiu5KXqqLghGYS6VbcZPJk8JHgV1qFkJIaHR4ZytNBlpvhFDpspKD+WJPDdaBTUpleHUM1daPzxqi4sQZoh4+XGBcrynH0TLavu0/cKhnIPckwNz6mzKiTesVJvBEI9JiH3F3Ztw3KkyGXolCCPOsVmNtGHkRbSS5s5BCCVgnRal1xfTwHyeO0jOBZJpoedPh8Wkgy3r0lBTfnCoK3wPrXG5qDqrgleIg6fVy2k+kPlkxxwJ4EgEkgQGrYk5oxjM/HpoeNmvSGplr0WMKP2iGfjm1UtaP/K8v6CPFamv0M7b3FXHgsAz5zElIe4q3POKcGsBKdaR//bRZ3x09aqkEie+2r7i0+EKHa3aThsMKfsodDwLtzzye1QMpeclU0nm0nW0kliLclu/K0nnWT/dK3L058Hfjx6he2IXkw6bNstrwa0yoS6Vc/HGy4paZaCik+w3h4glfmVKQZjo2Q618f9Uke1Q0Xc1ui9o8r4olKBIU4pzLBeRHnjc735xqnzLM7h0hor3dQyWvs8ueUBkIiS37dpVpK4jOQv75E1XPrC/3tEtxmezaQc+WG0ZcuBFbzqq8iNOhN3YktUQG1aGfAnbObYz57S5k/Oforum/ZYEyCJTn9uiRhZHr4YEiYWgXjDbUwRi4iggBSBuUQUMKXxPihfYZ0NlCZCyJ3fBKC+82dlkgQxhnamaxLCr0cHjo0Oy/ZycIfYigT45coaur+hfrHCfVvheSCulebbnw69c82S1wwlcho59DIg3JHJVgqbrKvKo6rj0PZnAgMMxsJLISiKtJC4cjOEL2E/z57PAYrQs7PrjH96885HqUqjWiSdXOz5YbbkKPV4onJK2+NTlmkEDDZFIoCmBi722vIxrbmPDNjUonot64HZsuBlX3HarkoZs6D7nDWkMhkSP+ZRHqjxXJUAiC0qYCdGoSAn+yBwcmha4putyTmc0ogVDDucQJuYAQXWqbHfooukZm3poVSdWzUjOrlQDZqG/DvbFse1XyLxLiu7jtuO/bV4aYfe4YhgO/HHbWJvqxpCzTuygAra4hzPk+WxVHq55Pqcu3FydtrfvsgbAIeJQtVQ+FY86T6/GHzWqFYexBRI7ZpoOuNB3zhmJeXDlikVofWTtR3apNnSXKD2Oz7oLboeV7YcSC9fn09Wer65f8Xy44CbWDEMwDkAFXynReQat6Edr24tuxacvLhk+W+F6h3iluuj5yvvXfLi5YVWqLgvKi3gBo/l43gl1yFyGgcswgDh6GpxmNq6ncZmWSJCOIIl9/67FYu7aUF//+tePNvmTP/kTvve9773bcV8j//Iv/8Jf/uVf8hd/8RfvtN+vLFJqOdfPfV3eh2uQ3lklPrE4hpYqbbNf4THnsFQBMeyLJwrG7RLF+FcKksECIsYfpXW2tLdpRaVbrubf09BF9BiYq0gcV91aXM+0T3F0dNJCpXrUESzUTytpAlFwVaJqrRpVd9vMzipOGRP0gxlFjy8T+3rg9mZlyCKvhDpada7BlxLqJTI/KdokbF81/Gv3jNBEshpyw7tAXUdEMs4ntFRY4USBzpbvaYDozo295+sFmTh1Rr0jYvwTqgq9g2oZqdfj4ykscgdOJskSGR8caSgTgsu0a7seUc+gRnofO1/SCpU4OnKCr10+54P2mk+vLvjJ9RW3n6+R5xXp1nH71PHk6ZamGhliCQ6oWlBik2gveja+51G9J6nQpYr/a/ekrJ5aidSV71n5qeJComGgkYgTZU3mYoorAhWOi3d9rM9IhLeW0955o401+SMzdBBkpDgcINlQCNpbAGOKi2il5CbiqgN5/kQGW9VGCRyHkhJTHB5UiJ0j15ZO4ZtI9hmNlQVr4WA7H/GhHF/QQbfq8W/ueLt5+4JUmoMqC6fQ+YxrrNxtHiw9o1mNBJ8Y9hX9vj40QJSx87jVyKoZuWh7ttuGfm/l0yVkULFgWy5B6KmTS+rdcFvx4+7KuFmyQLKyvbEWfDWRlhSeliXK9SjqxpE+nw0oKXp7up9ajB2dD2uvMs/EyaF1wCikSnC+IA/KuXTi3tMF99fUnW7ZAsc21XTdY/4jXFL5xEdX1zxq9rzXjNR+5PP9muv9ipg85tlVdNHzPzf/zrean/DDy/f4/11/wL9//oTdJxv0uma4cNSPB+omQvbEbOdLVSZfJVaXe0uB8R0A21Tz/739gKSOIVtwwpHZ+N7SYVAaSWzcAGpGXy1QYSlfrXga946FGM766WGRt+uSeRHs4EuZuJMpU6F64Uh9S9fWxW7SaY3OUmCd4pvE5rLjou1JJYW+GwO7vmYc/VxG/EYsJVkE1Bel09i86kLGhUzsDeF3NFeXa3u9Xl3M8ZPHurSfKM9XnJDxdi3ilvsprlSLzLnw0rSxpOV7un1diiDYtkPv8T6xqkcu2z39GLjercjJ4cPEL1kWx/Tgmk1XMvaOf//8Ec+368ITZ8ikVeW4qHvaqidrjSKkdJgnZvqFcp1TsEmXOmvRW7MTOm8hdq1iixquVsbgydlRBSOqb9yIhJKCE73dk2IbWUAyl0qh5cg6YRwEzZY+8yIZQTAIl+2eJiR2VcXLrHS3DfQe7Sd9qaTgeHzR8cEH19xctrx8tSG9qqmfO3jVcPs00D3raNcDY/T0NzV643AdxHUmPx55erXlq5sXbELPPjfsxkCXK+OVkUztIhdVR+3i3Hdr2ePJrN3AWgbWLs7TW8U78h+ckVIPyoP20UIP6ekPy42P1IKlhvXXFf/6w2d88vKCTdvbItZRBUyl9sqHm2s+Wr3isgp4MvtU8Xzc8HJckdTRxYqoVkX0ou5mdEzjDVnly+umb9jGuvB3To05OG42ny9oAaZQj2ixUEqQRA4peBMPKGpo5xGZ0e/BRbyb0vIUL1p8LU/MwkXTs6kGkjo+vb1giFOpeaWPHu+8FUfa9MQsvNhvjA8Y49vMRS8t7Q0FNDt6hY+vL7nuGlbVSMaoAwDaEKl9ZMzBaCU4DPWsdr2uOH6Tzpl6bHmPl0F0J7m0xfrCuchlSPhG2TUV+6GmrUdqF1m5no5AKoitvNBBLlv/DVNhKoAsjMXoDk65HhqG9JSfuEtqn3ivuuE3Vj9GRPl6/Yh/3n7Iv9084Xq3Ihbuw1f7lq+vlP95+SM+bF7yg9v3+NH1Y159uqH7jzU/uq7YP7vhw6trHIkxCmlwyADZJVgnVhd7vrJ6xUfNK0O3q2ObGnJShETjMut6oPWF/0wTG2f2lsOCUms3MBAQVVpGmvL7W8s9NtQPf/hDrq6u5k0eQkl973vf40//9E9fe/h/+Id/4Ld+67fmzx9//DHf+c53+N3f/V3+4A/+4J2a+ssblFoGa6bPRY5iGlPgQw/+VfLHK9kqOj8eUj5PaIED1KF4g07NwZkIy0UhOkv58wpBzcJ2toqkvSF37m3onQsqDZ7OfZq7fmJQHSJoC2NKjo8lBQWm0cLGoVGqOpMGXwJSZtm5KlO3ibYxvqOUHWOs0GRBFl8nW/Wb4Oi6RICxpNciOyGqn1PaJgLfrg9zFatphe2IZE9kJrJcQu0PJznpjsW+R7wzBZ0maoFH6gxhqQKXUbsHpsXZGV9Gpw7bVI1VYlSMAPCAwMLKvyNsVgMfXbxiFRL7bKsvu7HGvawgOdJFZnUx8mi1Z8ye631LvK3xO0d6lKFNXF3t+PrlK5xk9uOKmAN99owaEIFNNXIRBi7CyAfVLR+ELRsXUaAR5UKUWhwRpcKxksqIad9Fzk7f6+V0nJ4EcV7HEzBtM+0mChpAvemTCZRpo7cEWMX0jHhw/nBCVWecAV4ZR2+In4lTr0y+0z6TocToTX8hB703eXvLwJOcXhSLYxco9tGjYspquRI/bzNtN+sVLDU6CdV6pGkiqtDvmyOPWDz4CurKeB3I0PdWEUWcGhfKeHyCuUki87WouBKQKjo9CC7Y8z1X2ZPlFLNo8DQPLL4/RsMd+ul4jfLQV8tuzJWiTaZaReOt0sl4lePtbWI69MXkB5exMfVzLoiUVT1w0QwEB0Py9KlmPzbEFFC1lben6z2/sfmUR6Hjs3jJTW55FVf0r1bQBbRR/DpTN4mswthXyN7j9454kZHLxKNHe75x+YLWJ16OrekloM+BqJ6L0HNVdbQu8l645SvhFY9cb1OpKK1AXcZWLUIrHnFfwOk766e78iaTY3r/kB6b9JOWWGYjppfUoROL6zRknaKi1M3IqokEZ8nsY/bsxpp9ZyvpxlkJEgoGORqpp1S5BKOUEBRUjOvsBAF+SJd9zbWd2IhH6MdTj3dazHOH51kB54teKYtwoUnUdcQ52G0rSn61HcMpoc60daQOicYnnt9ekAtvnfcWCDfeOnekGw9tNMWajbKWrB4nmabKII4hmXHpCzfMwxdvf+1SXj8AlnaR98YnF5MztIHPtgBQD0YEnS1QdWpHmXt9ohfvbZMjo1Quc9UODMkz5sAwVobaXaLwA6wuB67W5mB3qSaPAb93+N4xXiisM1VrqNCxr9FdRXXrIUC6yGye9Hz1yUseN3uGbKnDkcAu1gypMlqDeqTxiUdVxwfVLe9Vt8YlReLSDVw6S5MJQCsO796+UpR1zjko9ZDcGZlvq6smmW2NaXoXtIZcCamgZ3I8EPpPgfOLZstl3dN4I7EftOI2rXg5bmbuxS4F4wIKiduhIuNoq5HWF64xn+iT52Zo58rjSydt8m/kHgPQucMYmNCJh6AyR+1doq+8M2TP9OxPaCDNRiPehMxFPVL7zOe7FWOaAlJmo1U+01SR2mcql7gZNrZIhVGsLAy/OzdA5muSmWuui8a5VJWCS/vUYIVXrBKfm3200gZK8PCeW6wLvTH74nPbDQ0WHNTegoxJPSEoV83Ak3oPIkQNlqJXUFFHQT6scp6h07QgkAy5Cca3pcgM8vhm+5wr31lVu7Th837DTbeye10C+M/WO761fk5G2KWWV+OKXdegN43NJe3A1aZnVUU+32+43m1ItzU+OtJVpL4c+fDJDb+2vqF2iS7XjDlwPa7YpRbvhLaKND5zUY28X295v94RJJMRWols/DAjVytJbNzI8DMoZnV1dXUUlHpI/uiP/ojf+73fe+023/zmN+f3H3/8Md/+9rf57d/+bf7mb/7m3drJL3NQCo5HL3diFvM2C5/MvhqMP7Fkes3ciUeBIJVShaqcYNY1grYZMrhR0FFspRCsWlbnrJSjU9SXZcaHxscywLS8pgmlsIyXeKVeDfgJGVH2z1lIgy+8J8XRcoqrLBe/KRwlMTtydFyuOzZNz9CEueqN85mqSly2HZd1z0Xd44D9quIn6w0xesQp+65CXHlopxXUZYBsiuz3fkYUoUI3OIYQDvdCsb51pxd/UEUPz05ly3t2nUq9GyQokdbltypb0HCyNJcde1//L09yYphPMnSBOFVZcMrmomMYAkNXkbsAIXN92/JP7is8We/wTrmoe1bvj9ysWz57eQk7z+55yyco33z6nP/x/qd83DziZbvBOaXd9FzWHT/aXdH6kZQ9N2PNdrSI9bPVlquw51HYcRms0t6ojqGk6WjRyo04akBVGYkM+R2DUueS668XveMznf784Gie5+vplhQ95SKHwA42s2qBGVsA2KDQUZkDvKCkUeiZCM7NaXRVRkqgR3tPvKkWJ6cUyNL5/SyH+MyhklQJWolaIJxQYOlBWTUDm1U/G1EKpYpkII7eUJYlmO+qSKgTYSL9d0L0mVU1llVJYXhkvHaTTnA+EwofyaoQa2agGysE6LpqyrKde3xynmSec8V4tKZnX4HkGFNdEBJ6vO+SB0EX/TSLHN1DmUkYZHbYpQSNZkLWqR/nNEklja5A5B/wXya9NTnME2H6IminlPkgBn7SX/Bq31BXiTpE/m+Pf8L77Q0/uH7Kj59fkaPw+W7N//Hyv/GTzRUJW3z41qPP+OD/fs0//fhDum1N6j19qHj2+IZvPHnB5082vLxeI9HTbAaCS/z77jG+VCO6HWu6WCEo769ueVbf8DTccuX3XJTVu4RQk6kEGhE2EvBY0NXpxMn1DnLWT19IdPnmPluqjNdsmRNIAtdbYElDics4SlBbIArDtuI21KTG0lH3Q0W/q9FtsMppHhgF7QpYcQ5qH6ob910wuyZNxvIyCHL6hjtBKGQRvAqZUCcu1v1RCk1Mjn4MxN7P9pOqICFTr4xPLYRMzob6rkPi8XqPE8VL5nrXosmhWNCpriK1H7mqO9ZhJDxJvOxXxr0yelQ96pRkD/CivQedk5IUW4uSBuSIaYWfqq+ihvLJsz9+R+aZ49RGLrpp+ftk5rjCjxqTOTi+IMTG5Bizp/GRQayylkycFxzSjuZzLwiO59s0OYbFZkpJ+PHNhqo4mFdXO25dS7qtkZ1Hko2r/XXLZyFxue55vNnifaK7qOlWLQwOXgW2eUXzpOPR1ZZrlxnqChkc1dOeq8sdwWc+7S9pJNInz22s2Y41XjKPmj2Pqj3rMFBLZFTPq7jmwneowC5XrCSywRZPes3E/I4ohKV+mj+fBR7w2d609dKgmp5vKS6IqOmV68AuOroqGUJRip1SuJlesOKqXnHhe4YcuI0NP+4u+Wy3YUyetopsh5puDNQhsWl66hKMAjMxboaa26EmRnfCy7TQU5PPecKfZGl2B+eirUbaEPnW1ee0PuIkE0RJKjwfNny239Anq3A+ZGd0Hc2eNiTTTSoMySrNPWu3tH4gSOHSKgVTnFPaMLIOpp9W3vhpP6s39NECtn30SKmOORUyWHJNoULMjpu+YT9WR0G0KdgDVsVzwBFKxXMt13l8v0/1+cEvm0PYooe9ROYix8FlLuueMXmCWAW+x2FX0hitoILpJqNE0DJGRIzYZDp2Viuy4iWj4ubqe70L/D9vv8Gz+gYUPmxecvF0z/8OX+UHz9/jtmtQL/zw5jHefZ33Gyvm8o3NC562O/6tecKr2xXj4Pj4xSXjleMr6xviE+ETzXR+RbgcefLolvdX1+xjjQ9WqW8fK25jjZB51FgBhovQ23W6RJcDQaL1t2Z6Ais/AHaft1oxvmP23hexoZ49e8azZ8/eatsf/ehHfPvb3+Y3f/M3+du//VvcuwIkuIvV+XKlBGz1vhdzDOQ4trMI8i63n+REZyw4OhYbTDtkkCxHLwRIlPeTITU9RFODy3GSHBBVywbnw0smxNHktfjpFRFnL3zC+YirDF6MWKnJ6eVcsrS1ovjKYluBg5YXGecz3ltVtokQ2Ry9RBNG2mpk5QdzMDBjwZPxPhGTkKKhL+5ahHISzOG449WI4nOayDABeWjgT9fw8IOhRzf7+K0sA4ii4PIhzeUOH4wuxstiFBnxy/2RhGn7krKphaw15QK3TYBLuBBpmp5N3ZMVYhT6aKlCuyHgSYhLaJXxZIJGboaKnDNOE6EZqKuRxkdSsjLNQ3KM2VYwgyTWYWDlrSRokERFRNQqDE4TimDlT7NmcjH4x3d0+lTz0essC1nql9PhtRB94HVnG3lom6KDOB6uc4rZ3ACTnA7pZ6qgqTiRyR3pH6JwOOpJ4xf6SnSqoqKIz0g14qoR7yMhRKowsKothdRJwknCKiCUz64QR016rugrqyBYWMAxXabZSv+O0Rddl3Au4XzC+0zl0wxZV7VSu8v0xdfdq+MbVV7FOTQOTTk+zqQzjv4uDrbUE0enX77Tk28ANWNLpbzU9GOekBQnpKWn13EvHd/yY9FhKQuts+pA21iRohg3XRW5bDqe1lurLpMc+0J6+qpr8RKpXJzLwtdupIseNFGRqNueqhpZhWHmc9mPoXDOCKKZi7DnwvfUMhKINNhfFGK5dwfKRPuXKQ77O8hZPz0g942Rk5eefnffdkWmlPvTR+JI1MaeiiKqjKORAo+jJ49iemjSR1P6l3B0MgtKlWcxCce8CofzLG2MmRS4OJ4uJHyIZhsFSwdsqhHvis1UbCewdjpXBuNsN1i1CedSKW9uJMbeJVvcSUI3eDRnxNl5qjBSVQONHwmScMCYZU65iEvC9jszgN4xo5h1mn07lRvXezv+9CYcPh3rCjn6Y79PBMzWB6oTAbD1qXMJR2I3BsZoKUL3+y12jOW94OTewmEaALueXOwVm6+y6YFCg+HaaByJOpVcF1zEFhBCLumjGZ+Vfgigxl7m15G6Gbmsu0IAnemyN9Li6MiqNH6gDQO1G3GSqSXiiEBeXKNaMoRCyhAzxsXzDnKqn35eOuoHP/gB/+t//S++9a1vsVqt+O///b/zJ3/yJwzD8OadfxGytLPlvu8Xr9k2f+B1dFxKUcoFsbgw8x6JYGTfkuhSoEuB27FhOwSroKaZbvR0gy8FRzJanr2clZiEGC0duY++oKTg7kM3fZ4dQrxEgou0weZO+2uBosfNjk0YqF2kEXt5Mk4N1WQ8fRYMDy4b+blqCRLb/Fn7hGDk3NuxQtVS4IJLdtzQm34qz/SYBdTSEPNEQcMiEHQS5Z+eXc2UAI7ppawFvTTzgx5eS2TU8a1aWreHdweE2aTXD+PCFR2d1XiivEvleiK7VDFkZ/xRky7jkEKc58VXnVMl72uNYtfj1fzefaoImniZVnTJkXMmeKNEuKg6LsKAqlgAUG1xMStWnT0kgjfu4S569mMFCqGONKuBR21H7e1eWJU/Q+jFJFQ+sg4DjRtxYmTm3krxWFp3noa/EksQMavZ/oO+W+jmy9BPH3/8Mb/zO7/D17/+df78z/+cTz/9lE8++YRPPvnknY7zy4OUemge0Pu3OfUdpnski3s1q7rZwCkBEQU3yGx4qcf4XLDv88wCvCjzu9A/sgzITOc/uYA7uwVgnQ7w9YJ+yNmgnuIg+ON0GFDqKjG4wDjKgbS9SF0l2spY+LsxMBoKGYfBFpvVyLoaqULkohp4VHc0PhaYo0W+E8LL3Zqua0jRYJ7izbicFO/kVByMKmE2jKYOTFPHHhTCMn3vkH43eXZyjBoof+8GpMq5Tuw7HEj9gId631ia55B79pl+OzqHUKAr5OxxPlm6wSohknlyuePpas+YHduxBYQgiazw+KrjuoJdaEi7wPV2xSftIz66vKZyyqrJJBU29cAu1WSEGK3izpBqvCjvr3c8a7bUzpBzWR1bXbHVgZwdGxkQ7VnrSC2ZiBIx5fPqncuF6iF6foaeH0QeeH+6jS6Gz2vs2Skd7sjeUkMlqVI448oTNzryRAi7WiyLJG/l1TMQnQU8oj80YBCIWFAdZjSUyT33dlKSArTFSagSbTNShVR0SS7BpePgSwVs6o4uBm72xiszcWd5D6smUvtk/EoFZp7U0+eaMXqbzCtmLgXvM22Y+BSMS+HJes9t3/ByVx1041v4bEfbKCX1Vksa9MM3ak57nC90oee13MPMgWFzqpCnGIHv4tzq1JwqdeTR0GZOTmeKY6P69Rd22EcRhsHQFs+zow6Zx82e9y92qBceNR3funxOLZH/6B6xS4YcqFzi0XrAV7d81m64uVmRhorbYcU3Hr/gWbvn+SqyHysqn+hzxZg8vTMLyVIelK9sbvnq6oarqqMRS2VS50ni2GEkszWKE8EbVT8d5ny+0ndc5jvrp4flobmOxdN+aivd8x1gVABLROekO5Z/J9RUH7h1K0KdbI4crWiKy44cxRCW07kKDYJVZ3IUasQSkJJ71dJBisJ0iqsToTb9ELyNoZSt/HtVJbzLVM5S7r2zxbnKK95BNwg6+JnHRcTZYl1lukcwpFTKlm6WVRAntG0uKTUW9FpXI7XL1N7S6560A9UIn23XLFP9pHjHukDwzx2+CNpICViPsZqv182pGQejZIn+uk9syxMb9GRsOEcJEE1VFA0FnjVwPawWxzh+OTmovMnOzncG1/F7xRCuvqDBjCIiky0aCbVxDa43vVUYjhUiyqYd6LySPIzXNdI73MuKfXY0TzouLnrGVaSpEutqoAqZbWqQZOiKfQpEDVzWI++vtlyE3px8URKeXhtuNDMyktXTaqJjxJZYjJT6+sHUhwdkqZ+mzz8H+ad/+idyzvz1X/81v/Ebv8E//uM/8od/+Idst9t3Krn+5YqcvNUHf35w16Vt7soxyvOFGM+skwNZOCj7seHj3RMigcplXo0tN+OK/WDV9aoqkbIFS4exRkSofCYWB8sq8HmG8ZAeB4dnyv6Y8VSFhIiyqkfW1cA6jFxUlo0yaMChXFZ7Vm7kvXprAQgSQSL73LAKY9Gxa8vM4VAgZFMNCEqXA2OpbDvkoivEsarNxnKSqV2i9cb71LhM7eCRDHgnvOwNHZSmLJwsZZQf3wBX7B8rVDLZQ4qqLxxtiiuoQhULlZ2y4AglsPWaW3t0mxcmXVJLw3MolVeC2KeX44bGRZRAcCVolif/1J7b4LRkzBwPoUkXTwQ+FtYWXqQNHTWVRD7PlzQu82vrLWOuGbPjsup51m6t35Ppp5WPOIGvP3nFj24ese1qrl9t6GLNcOl50u5J6nGXPVfNnl/bXFtqMjVkocsVvQZWVeRJvWfte1yx/RRHnytudWULgxJxiFXhA/pckfEkFW7ftZjCl2BD/d3f/R3f//73+f73v8/Xvva1k9O//Tl/oUGpRXz8i4twvNi2dEhOTjYjl3TxME0V+jK4XmbS4bcKlr3mt4waD1UbCY3xqYSQC5zQorsZKz86RUit+WacCEodRvtNlZQsUOK8/TatgDnJOJnQOrbq14aBJkRWYWQTOmo3YmR+zpRTVjwZVbUg1DTO9fjal/xPy4y3e69bSwx+InZeHPK0b97p2ZgCYHdOuNzgXeWeCbIs7zufoVRjpMDRwYI+3h9WLlAtkXMpfBE2oCo/0jRCIll6oSi3g0XRV2EoCBAtsTw3o0KcJAsWZnvpBHxRIamwLxOSiN3znWZcttSaqBYbHN/1odLFw3F2+mZ5F/30NtvdC+RLFuiYh/bk1wjIiKExceRQFPuI/ZhMV6kl49u+E/JzGUiZ2nYapJnbZONbmoxvIqu2Z9MMXDR9WZUzJTlm01FdCuTFgbM4BKUJIzkYGmha/dQZelEah61Aai7OT3FUg89UPhaUA/P4D96cCS8LuNjSX0KZCEff3P+HLe7VYVNTldfe+OnrJX+Wysn2p3NRxopGpJLVfIAPlWDU/e18SKzPEt6XtHKX2Q4BoTW+qTDQ+gEhEctKKWhBVNqJgyQ2VY/bKEP0NNXA7RCofSZIZGUFZmx/DsgK8wd01k+WwWgkx0lgEONjME6pSINSuVSmVyWhpHfVMV+CfvrBD37An/3Zn/H3f//3fPLJJ3z00Uf8/u//Pn/8x39MXb8jx8wvSI6CTZPIPds8tP9iTOq08fJZWH7OoKOzqmxO0dFZWk0GiTBxpiDMtsCsBuZjnQSk7tFPOLN16mZktepZ1z1NiFQuoeroU6DgoRCMxiAteaCwioFNBaKZkVAWAqdV42n+tvE5RIdQiLCKLeAl0/iRxo9mt6G2iq9qiENxha+lLOpNz7Qs9NIDqMijBbvSB5N+OgSuTof9Mq334B7PN+8BseMuCuNQpo4FIbCIzLbIw2ip4zjB6863HEDeZXJI5NbSu+smWTBhXuwoyNgSAGQlRALZOSTYvUoKVTAkShNGYklt8pKJBT0skk3XZZszRTLm6pqRG7NjdI5BPZ0G9urNTi9XFt8VSLDUT4cL/5nLd77zHb7zne/Mn3/913+df/7nf+av/uqvfomDUq/pi4eG6vz9YaI+tmHUMiQKUtv8E7vf07MXM/Sj4/luhXeZfazYD7a4bwjNQobtSsLL6MhJcM7smazCEJ0hg5ZNW7RHULy3LJTLqje6jarjwndcBiv80eWKpI7KZ7xYde2kDi+pBIYtNe29akuQhJc1Qwoz4jOpFQiRghBMaohoV/gKajdSu0TjInWwQiOqNoaDKEFGVg62EnDYflnsORcs9W35LE9DV/XAMjNvkC1FMCG4KSDk7MfjW6l3vrl/PNzVIsspYGrDUGzgmI3qYUJRJV1OSXZHJr9sapVy0GPC8fai2RaEBfbRgn6imZUfqJ2ULJVUUgrNmU1AkETrBh7VexyZjkOxjD55Qz+VFEo3taz4cFNIzI5pLbGFSptLREzHOYQIjGpVTX1Z3TC0+dv7JYdu//nbUN/97nf57ne/+4WP84tFSr0u6LPc5uSznv42rUYttlXhwOkhpztYYEoK71t2OldbkqkaksjMJXX67Mwf5fi7e9seFLmI1KuRy3VHU0WCZMuaUauo0EUheGXfH/hVqsqi71VZNVMcQ5wI9Cw631SR4LI5jBSSt2LlNFXCS+aq7tiEgVUYgOJUaiHtcxaZ3Q8NeSbysz/GbVM6e4rczcYWnHhSh/0KyEzcfZvI0d8H+VUesqwXt2Yy3l5L9nPfoU5/XjZJMZRHMPJTXViKk9EbKmXdRDbNiHNCP9aH/iwlVScOnbaN7ER4sjaicxFoqoRDGdTyg1MpbSpYsFARgrP71vhYVvkytSQqyWQJJDJZXFmhsFSKBMRicsZlNPBtJGdmQpyfI/T8V87pO9VP942l1/kBp/uW8QUcUmQchwX2ecnIVnxktNSX7MtgV5BoEY8JCSWT03cyz4hb6Kj5OpYNKgafA1kZEfflZs/j9Z7H9Z5NsDTfrMLt2CASuE0NeTFlxCzUIVF7ZYiGgnLB2lSFTBMy3tlEPRFyxnyIwjhnSNA2RCqfZp4Dwaql1D4T1XE7NsSxlGMu6dDm85b+mlGr+lb37CGelvtv2slH5UAAL5jFmDggp5b9u0SY6NJ4O5heb5r+ppPOK7SihJBp6kPFMHD0qaZWCwA9agYe1x2Ny1bSWW1emYKVE0Ji04xG7tqOZHUkDTg30LiMRut7LahhxZXAO9Qh8azdcxEGasl4oRjGI1Yc26NkKlGCHKbnsQTGxjde84l8CfrpVxKFcJ/99KbPy++Wf4semfXGAhU1/z7HegqCfPRkXyb8UZBhKtbATNV5cCwnhcdxkOu0TUs7yysSMu1m4MnFjqum43HdEZxVnt3Hii4Zkm9Ux5g8MYVyJpn1aBUUlzNj9IiHECydrwpK8EpWR8yeFD3OKTFjgXAR2oLIWVUD3pmD48VelTOU2Gf7miFWsx2gixsz/z/39SLliGNdNNk1RjR8IB1+WOTonSJ3bKqlODf9NnHeYDdVlZT9TM5sAakjiO2dtp6ef5IpEOXE+nZCSaliKXlO8KtIXUfa2tK6J4oNwfSSd2rpeAOlqJAirRXTaarMuiDWpgXWaVI1h82KemyqyDoYqi2IUrvE2kcjPRYbp16gklz0kyeVaxq+iP0Es466vr4+2qxpmgcrXP208urVK54+ffozPebPTO7TT/dtc+9+unhm7v6VoLhgRV2MtmaaZUpwQoQ+GbJEROmGQNfVpLFULFZF/LTgZSlhOYMvQduYHBOP0ukcbKLUVaQJiWfrHb9+8RlPqx1PwpaN67nye4aS3ZBV6DXgVHmZ1mwKJceoNle2PuGko9Oa4ECKzR8K6TkICU/UYAHVXBZ6nFJL5rKylD3BCpCoCsEpjbOg7zYGBi19AQjOdEuZz81rORCdz4izYo/O3S65mDwW9nHzb5NxW3rmNI3p5NaeWj0zmFTsmTRT90CZk/GMKmS0nNuAHNO9MbL1Q0MPbHhTQGpJ4m6v2ifaUAKDwC63VJIYCbSVBfeuqq4Ex1zRw2bPIEodMs4rqzrSp4qLZiCroe021cjjpqNxlpVkU6fRzIzRk/EEUVY+URdOLidK43LRR9MM5syGKosFFHvMXu9oB30JNtTPSn550vfeUl4b45sm3WlEqt2HEkg/diDLZ1UMdTAfWw/3TpkWvw4iJ8dYfl++U1FLxXGGQKjbgav1nqtVR+ujReGzt0onItQ+ktWxbnpS9gSf2NSDKZ6iCPrac1s19NGg5ZXLBR2VqQtyp3IlLcLIU7ioO1o/UEk0wy17+uQtaCLZnIrVAKr8hAv6blH++L5r1UWM6qH7M6HQUnnaj7ijFjfmXm9x6tMHfr/v5k88EffObm+ICM+7LELpaDE8UzHipGxx6IghCS/27UykB7aCQJ7IjJXalwp5fuCq6akk0eXKAotipusEU52u20lRNyq8GNY4Ud6rb6hcLMR3SspKcjBkx5ZAkECWkVqUUPq6/mng5z/nKPqvpNP3M5KjWOvSCSn6SRbZTDoFrsr3kgVJDq0nHoAlia08WGThKFa7dATLvlTZEJwhE5rEZrXnabvjveaWdRhnot+swlWlbFONJ7NNFaK26j1xm/niNKDKfqzREliK2YJHjkxTR1uhXFxn8MaF4J2tdo7JnMPKJZKHyo1sJDGuhR8n2O6aQ/W8qSNPH/v7dPLJ7xOpu5x+f1hGe63M6sZhxOeF3+IIHTLdg6VxPfGqFOfv9cGx5dmOdeiEAAg+lzLthlraDYE62EHHtOF5tyLNxputCBryyVaDbdFiT+2Nt+F5t+FV38zohbnMM9mCgUWlpyz8uNvgSXylgafVFlAGPZgTDuUmW4g8uUQNhGIRruQddcyXoJ9+NVEIrx+qb9VTJxvNaCmz/OdxPk/L09ScsDex7Djpq+k2AYe8Du46mg+1YzqRV7RwR63rjmeraz5qr3lS71CFm9SCqqXciRU6WHlrQMpC7RN1sYemefomtNzs2xkt6Ipx6F2iDTYnp1SofNV4aeowFALkXGwoR+3MZqskcln1VBvjwPtsu6YbA4I7oMSPkBanSvmkC1Sn2KAtkioLR0pPtj0cYWm73j3P/Z291D2TE5gTJSB0f/uWxqD5aJPtcny+yUYUseDfdE3BZ6QeQOw8KZegm1KcRkPkCoacvdjsGSpDl29W/ewYjknoxGOofHNKExQnPpEz7MbAS1mhFTyq9sZ7JxEviYD9zQpdDuykYsVIRUGJyhewn+bP8PWvf/1osz/5kz/he9/73rsd+zXyL//yL/zlX/4lf/EXf/EzO+YvXIoNPsk8rpf6ozhzqsb7OlEBl5wy27FkNvSTrZ2EFGUGH0xnSCpWECtboCaV7Ii8pGhZtGV6bpyzoNFF3fOV5ppvtp/xrfpTnvotXpS9Bm5zS86OEY/DEFGVM17Y1lkQaXDeAmMqXLg9FZHr2BLVI2LowMol1l5xdWYXqzndK4iyDiNr39P6yDY1xYZy1BLx3hBYl35PkMjH+ojbsTnoF2f+ikMWz7wWfbCoFFiuPxfe0aTOMneSRz0ESgpf2ef47h36UI6+555PdzVlRorN5siSp9u3OLJZxW7WR9N9m3T8dJzD8EkYmbsqRSfkMt2JLawpRHXsUm1jDFd4vWxfwRYt3l/dMqTAk3rHRdUT1QpGGIrNSM0p6dkRW0iuJdLISJcDr4aGMTg2oWflbD4pNVnxRIREUgoSVKlkpGUgityZD94ov0LZML98SKnXzKtHzt3pNstYx/T9ySrf8oGZ7SMHM9BFZT6MbXBS2vIho+r0u1LFhgB+Hbm66HnU9lzWFk3tCiopZo+IoWUql+lywLlsVdyqsQQpTPapIqmhbYIYwiA4m4jH7C26XWDMVVA21chFNVK5bEoyVQzZymV6SVTOSnrexobt2BBjxcGSsk6zvlgalZRSoYv+Pr0f8/vDBofVu+Mbd+fZuHOD7/vtNZ1/X5vu3VYPiK9Fc201D6oq473lLM9gsbKdd1q4GfwMC/Uul6FmTndw5ij64th/ZXXLx7ursqoHQjbespN2ZrVS0Y2LtN7SLq/CwMYPtM6QUpVkKqdUc2Rd55XbaYXAv5WzexDNGZUJ1v/ziaL/qjp9wJtt/LfZbopXLJ2BJUrKLeZSxNKIUwEjl9WyZVreqeqbj3lPO+40K4BW2Ephk1mvB56sO95bb7mqeoCZcNKL0qnHiRDV2+ryxOeSbGUIjINhzMGejaxUla1sG6+CBUGkBHlz6YcqJCst7BJdrC1Ir4YmXIXEZTXSp8AuNvRjjeZJUZdqe0cW0NTBb7oPcki9u/cmPdhrx18v7+Vy7imfD3MIC92p83cz8fKD5z92HE0/2Y0PIVP5wklIKaQhxp0TCsIiEhjzARV1wHoenHRDPWXea3Z81m3oS2pwcBEtqE2ZjLxFX9chsQkjqypyGXo2rmdVyDonVCeiRV+pres4R0BIGM/Uu8h9+um/PAphKafd+aZh/FD3L8fzKVLKTT8sJ1g5FC8uqcP4Ez0GFjw4NqROTnw8aYsAwaqKbtYDH1xu+Wh9wwf1LbWL3MaWQSuGXBHxJHXGM1JQM01ZBfcy0RrAdqwYolUInp6J4K2iXs7GI2o8UmXRSGBVR9qQWFUjQwpzxadV1dO4xHvNDhH4JDVc9y19PLhnc5AbWFbhQo5X7E/7fwbLTv/JAUl0/w07VODTZf+xPP/h872P3oRclRMlxpQOc//5l/pvDpKVtKDgM97rXDLeEHSC98zoqWW/LPtj1g8iiIdVNdJUyeYXMR3HpNHKsYKYfkslHan2mdon1sEQUys/Upf0qcYlgiiNG2mdBaM8Sl1SqsIXsJ+sn+39D3/4w6OS6w/pp+9973v86Z/+6WvP8Q//8A/81m/91vz5448/5jvf+Q6/+7u/yx/8wR+8W4O/bHmTXXTfZ7nnvRT/w4F4y0awansnBtE0GWuxn9Q4WzXOjt7x8ZY7T3bFaeOOnlelDom2GnnWbvnvm8/4H+2P+Yp/RSuJnVa8zCvTTXjj5RRYuUSXGja+o5ZEVEcrFjzf5ZptNr02WXpBKOADQExHOSmLgEBbiLI3weykPlX0uWJVyNXfq7es/MiruOI6ruhSNaehPcQ/Nz2HB36uQ/cfFdYSe46DK9idhY6S+45/cpt13u6O1XOvjrLzm86Y0U+nem2aeBZ+u1DQrWX/ST+tfKT1I6EAAQY1FFnmkP6dpvNMWl0mvWNBKV900SoMPK72/KS7wjmhcYnKH1+ZQ3CiDLliVAsQeFcQWz6ycvGA6hTjRqwl0y6+Dxi1S0Co3jFw/mX4eD8r+YUjpZZm+UOmymt3fsAA09PtplW/hV2l3uKsWbCeUGUuFLXczx0+34NqPhxPFK3USBzbSN1E2mZkVfVGyuhiqQJhDthYIKJ1iKyrkcftDoeyqQYeVzvaAskUlH2qeTms2KWaPnle7lfsk0erzLoa7LLUIv++IKgUZUiWN7+LFQkhoKxDz5Nqy5Nqx0eN8NXVS36weY8fvnzM9fXquD+dHq8YvOmm5MXmkyY56tBTw3Yh80+LG/tWg6DsrPd/ffjuJCZfItlLyLtmYew90bkCodeSklgq+KiS5woQpqhVHVpWThxlRWGCmSp8vLua7+NRYBRTdLFUqIlKQT7A7VjR+oqtr3gcEq10VGKV/By2yjeooy9pN0EyKzIXTlm9o9N3XxT97PQt5FTPvGHT1/5+Yu/ItFPRTzq9V8ilRHh2eihwMM8nC0NMF9+fpjIvGqRiuokmU61G6sZ4CDb1wGXhQhBVrseWjJtXkNZh4MrteVKJEfOrIQXqUoEqA8Mq8GK14mZsGJJnOzTsB+MwaCrj0XOucBGpIyZXnh1hO9RWtj07qpBQzbR+4CLseVJlNqHj4+aK/7h+xPX1Cp2r4UxdIUfP9msD05OzONkvpz8uHcg3BMLvxtnLczTpzYUxvWyU5kNQ6OFxJVbh7J65ZhgcMdVmnEqeA+VDcqQc6N0E711W8kmmn4q+AqvoEvH8pLsAoPVDQb9N7T2cfOaUAsbkeTm21D6ycR2Xbm+OKEYyPeCpVNhJhajSo/iUaQQuxNNwcv/eJPfopzMK4WF545T5NkdY6qPllL0U0XmcH1CGwhHJ2rRfZg6yIMdj6yDZEOYhE5pI00RWdW/lz4m0zsbnq7HlRb9iG2uuhxYB1lXPVdXzpN0iqlyEgcvQUZcUipgcP2mveN6vGdXTxcB115CzZ1VFat/RBM8QjQx4CuQ6USvVnjz9GAjOKnU9avc8Dls2vufyasfjascPbp/yk9tLq8A0ObGiR06A3PdML3u+BJdsV0MP3asHlr0235vXWdNvllw4vvTewyyQE/dye8qsFRWzabQ4Yq4g833hqZsQs8uFSsXQlfN7gTZYavdkS1llxMKJWgywIBmcWtl3ZxypiGNIjm00G+rCC42PrMU4YgJWydiVdhudsMdpZiWJtUTeSR5ASl1dXR0FpR6SP/qjP+L3fu/3XrvNN7/5zfn9xx9/zLe//W1++7d/m7/5m795t7b+IuSt7acT+3y5yCS6yLwoaB6dFo4Pi8yTH6TFBq9KdbToM/ssaCzcaWXxRkuVdZ3RJ1Og627TbFwqTTVy2XS81+74cPWK96trahmKPZT5PG740fiEbW64yS0O5f3qmgu34z3/iqiexo08FkvxChh30Af+Jf8aPuBFXHMdV3zcP6ZPwQJPvpv1X1SPoDQ+cuF76w+CoQwl27GrHU/DLR9UNzz1t2x8zw/CM/5jf8l135aY3YE/bklEfUDhLMoeLIJOxv12QF5byt0BlaSL/x+68feE/crn+2evpEJOloo5p+Jh6XyhoDuDN3qIiQZl4pSaTOIZpC6wzwEXa1o/UglUpfKhuEyoMn0KZgstWjjpKBHjPm38SOsHHEpS4VG9I5ag3xGPlRrCCvU4sSqJu1hxO9YY0N6ymmo3MLdc7a+htgSjRBAaGXjkdqxc4p3kjJR6OzntmiMjf5KHlNkyTvK6beT4/emmczYIEzGvmw2KOfi6cPisjdbyCVl1CEoBXpEqEiqDT67qgcYnGkbG6NkOgTHZSWPJDa58pC4kmg5bwWlcYQYSI6XVadVbEiVDdU6z0BIIOihjm6y1BFDGbIz9llZmq0ZrP+BdJubAPlXshsA4ukU2nMJ0faeBvzvOlB7/XpSWIRqmpCMWnXp60LuHeZMc8U8tbeDJLzwJQB4ap4eAwHIMKXcMv6VBblVybBsrfCBHBuakTLXseLhm+36iRl8k0yy644BQ09LnlTM0woXvWcuILwZyKPt7MoE0ZQKBGmLKGBXeUelkndt5dvpO5HUOxOL3ezd7jS6b/TfMONAlemfx13RKCSgx5ZbLkWOnCm5aFVzkKc/rRWVTdQqVEupIVUWCT6UQwsAm9FSlelHClax1oXaxEHDaSrViZdODpELYbcGIPjtynsgahRgt+ELQQvaoc5nhKc3NYUGqnA1ObUUdEusqsgkDrYuM6uinMrrRH/TT6/r6TQZwgRbMuu1Nj8t0vCNn7TU7TXON3LPtlM7jivN5YrvNpdsXpxWRI/00pbHkDN4VXTvvZsUzEDkQqovemacmTgYpXuhUlWdyxEedAkc6r0xOp5nIWdeuZ+M6LlxHMJb9YgpaVNUXPGjOzCupTt6mw0/kHv10RiFw175h0bNHz8Mbxuqbjr04xPHxy31RSjWOgiw+PZ9OBUPmp+4wDU9KdHY8rchICOkQMA89Gz/iFF7FhtvYMGTPkAqy0kdanwjOuECCT5Ze5wovJ4leG1JWgkRALQ2ZKdChRHWk5Ei5OK0lbSYnIYtY+XiUyg9WJtx3PPY7ejUE1W2s2UdPTLJ4FktXyfH7+4AYR11/5/tles3pjhNi4O5vp8c53u542yXX1FTYybnZnDvyYyZb6DD/yOLsdodd8QSnZut0jiMbECDPfTL9fHo1wmHecCf6cXKgp2ubGKIEqCXRysjKDSU1Js82tMhkQ0XTa1nJDpzqvOD41rLUT4fOfGt59uwZz549e6ttf/SjH/Htb3+b3/zN3+Rv//Zvce4d+a++TLnjJyy+P3p/6j8s9l3OpVNAe/kMLUVZzFWCK1X5hEyMwYo5TTprOmfRSZoL+bfonQpu03a2MG2+2joMXNUd79c3vO+vaUjUZHYaeJ7WdGphz6iOS99z6SyoJGoB2kYSjSQCmSDQacuYG0SFQGbIzsjNnS1Ap4LkzAUJ6CRTlSDYUHy4pGavXQTTT0/8FiGzyxW3sbHKlLFw3JwYUksU2Fw9fb4dU3hHj+yTRbcf/b17k+905Wu+1zuf8tKnmfSOTmitUuaiIKgyC9uOQnm+VCql/X4iyS90KJMXZohZK1CmZWXmwJ11UF+TGCeVtS3pVKghc+Ajs+a6YjylQlyeiy6rCmm66Sc7visBMie5cJ5RKCcsFiDFdn4nuceG+mWVX770vddte893d4ywk+1e1/3G/WRbaVA0AL0iaTGxZ+ZVw+yxlbzy/dKoUq+wTtQXA2070tYGoax9IrhMp42tZKtBvAVY19mi3XXPOowEyWXQera5YeN7PqyueRT2tIzstOaz4ZL/GK4A4UcvHnOzb1k1I5dtZ3wfak7eMASe92tLp/CJdRgNJugnI2+gkZEknquq5xuPXhG88q/5PWI/EaFzx8C6e89OJ5SiFOaH957A1rT5pCv08PnO83KPQ6inN335rEWZ88lp8t223pnQZA5kKQsY6rTaW360SLWWbQw1dYCzlsACBTlVOFsM3jqpSGFVggB98qZWyiTqpDiFas55FuGytGtCFzuZkAgWLKA4lnsNdFjaTc8epwPhXYk6Z3jOoXPPTh+v1U2zTa4nQ/T1M+7x55NnSZdvinOXa+NWoc5Ik9DBQ+9monOk2Bc6oTSLsXHCJq1OcReRzaM9l6se70z3rIJVb6l8JupUE75MmCWNdO0NZeMlEjJGaC5C5SKPw46rsMcBr1YrPhsu+HzY4BB+/OqK/a5iDIlVO1CHyDIAe9O1c4CqKqShj1sjWr+qemqJJK1pfeLD9S2bEPmX/Ixua9jy2be53896/Xenvytz8Gc+8L37yd239zp/04el4hI0mX5SQOqE+rJ9MRSd14PamXZbDIxDAQkL9aU8pdcY+io5Jbg8owAohqyZMrmstx2MKy9K5aFCaRlxAl000meYSsFPVfZsbIy5QnXAGuMYCLQyUpXjJjzGh+DYaUWHoU8upUdlpC366q3lHv10RiEs5MSRPx6XevzdW8hSj8nJ5wPZOWY7NRlGZ/PutJ1IQVhjXFOzS6GHHPOjBmP3tVazn5qRNhjB+FXTM+SKl3HFoIFtqtnnmuCUdTXSBEvHuqo61qGfQxIOSyV97He8F25pVyND9nyWLvnJcMW/VU/5P1++x4ubSwtg1CMhZMYSmAouM6SqIBEzTYhcVCPP2j3vNXseVd18mUGU99sttU98Xz2fb9elAMG9PfvA/VgGV2wDnfpl/v51N/FtbvAhnW6JBZlR4srsTGkWQwRMxX7K9pPDmvJdW21JJlxceFDTUebwU/Sszryap/OfLM419cnkjE/21TQmp6p9k5M2Db08kww5VBxZPIjDOVusFRFDTLmEipFQ37BipQOOHSv5aVAI+eTzz14+/vhjfud3fodvfOMb/Pmf/zmffvrp/NuHH374cznnF5I3+XcP6Cddfk95PwVDhAOSZ54nj08y2/PZsao6LtqB5zhS9qTBW4puWXMx+l0BHLh8QFCdHFdEWTcjT9Y7Pmi3PKq3fNhc87X6BTtqRI1iJZDZaot3SpsjEjoeOSNAvxDjU0sLouIrJzxzDXUI/M/qJT9s/4N/i5f8y/AB/6/br/FPr77CkD2bUs2t9bHoNiWp4zqtGAqP0XvNlsvQ82H9iverGy58j2KpXo+qDnEvCJL59+1j+uiMVqpcZtaF6r4nCCNyqJI56SYtPstr7d53krvBrsMTXqYTFVK2p33lRyONd+Y/xeyoSyAyqmNIwZBTGL2EZRBZ6nYm0KsVB2s0oZIO05pA47IBCbSgyZDlaIBJ55RnvVdDVrXOOKq6Bb+mwMyAMM0Kg3oqySSckdgTgGjBKykaTa14UFZHp5WBUxDWLnLh37FczD021C+r/MLT935aOUJHvSkg9cADMzk0ogKjHhn/h8pO9k2moBCqbE7FBHMAi6hKBh9xPuIkIWrRrJwNmjkmx5gdfVlNc1I631tZypxhFJkfdFGP5IobaQwR422JfeV6Hocdt1XDTdvwql8Ro2PfVXhvjolzpeykWk4+PmJparmgHuyBG9QzJmHMBnscoseTSeJPVuYWHbnso9N+vdeRWtyCe1dsH9Jm+obfp23uevWSbVbRUQy5Nk2OZRVWkUJ4eGrNH45of/WB6+BAsCilqk3GOIKyVXN0UNBrtjK3qUYuvcF1b6XmJq5mALmW/yfAqYjO5MVGdOcYciAXq86jJBGyEwKJEY9Hid6TcPg79+31olnn1W09O32zHCbFN2/3rse9c5Llycr4AlMr6rDBlgxaTpVg9HbPzDq3gRkU30RQSDkcimwIUCVCPVJXI05SWYUxXeCmCp4q7GLFkDxehCYY2qXH+O9SFnp1BY0paA7sqKmINN5qP9YysvEdl1Xgtq5JyZA74yhQ4NCq04q8zrxtosbFVhVkluhU/e1gEGU1ZAMuw2kK37I/71MZD6gyuXMzFhu8+e7dv4Uu0m3u21zVdFS0C5/mMl9lqmD543lCbQh302UW17gEHphG0+VpzAwpSBVhkcWupneCZCNsDntaGRGnvGTFmC4ZNZR7dRJFKGgCI1UVkgpDdihhhtd7AtkJFZmhhMJGF0maSO9oFN2nn95W/tOiECZ5MCClh++/qMMwURhMA205NaeD8lIFiYLY0n7hwjvZPhQHMxdDf/rNKeIzrhRtodhUauYWXbLS6l2qiNnZ4tsCNUAh/M9lvhQEzY2lAsoIJbU0ENn4PU+qLe/VDX0V2PY1w+BJozk21h5n1f/EoUGpSr6Q1U6yFPqYbdU7Te01yE1ZvV8apa8bsyeO2DJuJcffP5TCt1zUe9M5TlP9lgipyeYzzG1J0dGCjph0lFgatoilYHOCKpnaqct7fnJNU+D/CGBUnOHTdNEJdylA5WwRxUsmqqF2XQlwOTfxRtgBMkpUq/apmhlVcMmRJBhpPZYen0XICAlHwJHyuz8sS/1kffDzcfr+7u/+ju9///t8//vf52tf+9pxG37JHc078tqAFIeA1iI1b/lILdP15n0P01NZ/IE4ClsCMZbBVYJbucy9LMb9IcVJ5zl3WjTzojMK6TLsChdZKurPcZ1bvC3LWBEGZEY4JXF0qeZWI4IyUqEqjBLocyYG5YmPBDI1nitJPHE7vhKu+axZ85P9FV3y+KEiBiG4RK3gpdhlSKnGl2hdR+N6akYyamTkCo6IV0OFBkkMYoSmdnUzGx2TN1KufurZ+X/h8Izq1Ncs7IqTe/LTyfHZ53sKc3Da0tqm9EEr51I7IYhVpB9yQHNLljDrKEN4lnuOoapyNhJyFYcvIIPFk7x4f79Bl8tvXjKtswwkkQyxZZ+rQ1CtZDKgtpzoKBlO5YgxC3utLMAuZseN3pW5TEk4kEx0MpO2v4t8ERvqy5ZfDqTUQ3103+hexkXuC0wVuWuk3T2XWB4DLoKqs4ovXpFUcMtTFSwFCcAmQVC084eSD4oFPtaZap1o6kwdjGzcOxizJ6Z6RsGMsaxVu0Tts5WldMa3T3nIFGFMARXHXgeeSIcXpXVGeu29cp3W5BvPMNiqc1bBJ3uIqrkqk6OtO2qfaXxmHUY23sjPk1oAo9eaXmt2sTEivCl9cerrSeNMs8UDAcDTezTTpC8mkMPv000UTp+PY7TUm9Sb3P0UHTIUMr/qEP3GZ3xt5Js5QRruOhzLth5WJosGnlb3yveTslnCR6cKMs4t4gRe+bXVLe83tzwOW4Yc+H9f/9phlUHFxl5xGw0ybyu9TSHBy+rYU8/BJgVaHUGMTD0jNEQbIwIr965IhAkOOL1/e/mv4vShC/XxGr1z7773bbc0tLweEwovUJjqJzJhhaCEKhK39cF0KMEFceAvR9YXHTcvNlO+lEmVCZcjl1c9mzoaaaLPtCFTu0zG02fPkI1rxap7JoJCklTIN83Zm/Lscxb6MkaTFHJZl7mqexBhnxs+CULK3jjYvBYuqMNKZEo2/VRVZFVHLuuex3XPJoxlNauMeDX91uVCNqzLcXPSsacfj/TJcpsDB8pyHzO6Frr9Ncd+6LsjfXfI77VTRYGh5IFPqDYUXysXFz2Vz1ZJr6vvDLbZ4CuDw52cw1CbxdhmWs0syZMyGWITVk2pXOaiGvnG+gW/Vr+kdUaK+mLYkNRzCJNP6Dk7nXOAOEPg+gEQem0YSzUzBQI2/0zkyTa099SSWbv2no58jXwB/fS28iuHQoB5aDyok95mrn7dsafBdppaPKGfFKQCHUCywyUj3dek5Mp00tEzFBSaBAWJfdSsNtOsjdA6OKXySu2Np7HLFSlaMGHIvhCOm2FfuUzjjbhacfQaZkLfW0kgjsd0KD1eMo9CR+Myo9Z8XD1hTIHUVSSnxKKDDYlhAbEQLEUmeLioRx7VPVehI4iW5C+PqkfVcRtXVnq9FGSYiLzvBJrmC39IwUxI8+PPr71dr/n9oMoOpdHhkOpkbRQme8Y5SMn4abw/bF+5VILmsOsdTqag98IhPWrH8sPCvZsQqbMddcDP2pRWAugFKeAls64HLuqei9AzZM+rIRhdgUy2li3GahbjbxFH5WDtI0EgaiCLx6sl+FREJHc4J4XYWvAysHKJC/eunHcL/TR//tnLd7/7Xb773e/+XI79c5MHx+VJQOrIr9NSmGqyiw7bTkim2Ua/kw5uaGQdHUlgiDX4iIpDnOA85OQs1dhlK75SfDnnoa5yCUyWlwrOK5erga9eXfONzXNaNxrFih/xCM/TpdkqKnRq9tNUWdvsc0O6iNpC9E1akUu2zJXb0fpPeUKmkopLF0myY4fwSf2ITOBmbEsqvhG2Nz4Bo3HlZW/py27gabXnK/WWp2FPLYmMZ5QKFUubH7QiYn6l4PByCCgvgPeHZ3nqXpa+zxQInhCLE1JqmR3z08pdf06XA6RoRMGyiVSV4Dpqb0WgGhfZ+B4Fng8XdM7oTmKWwgu8IHAvg8iIzZnTeZdtMJ3oim/H3BqrSGxtiuqoJPO42nPhO9a+Z58rXo4XTEb9pP99mQ8TVhSoDSNNaftIzah1Oa8FrqL0ZOfxJZBqKZ+ZK2c8ae8kX4IN9bOSXzmk1JtifA/+fs8PE1lbDiUSOwIVqC9Eek4plWeL46j4OqIhzSliOZviUsmkTEFB2ehLqSpRUFcI5QQkG2EbQnSGhhFv+aOprLwNydId9jHM+46144Pqmsd+y2O35cPLl3zVf873L7/C5+MFQ/alAoM3BSuQ1bioDGptBNpjFrw4tKSMGaeLRZ3H5Cz4EvIB1novDJ3TeeCevi1vFkTxs0N1302693td/HjftneNOq2yRYSn5y9hE1B0pAxp+m0K+7vFMZftPj1Zhlwg6AcixEPUfUIliALJCnvGgkB76VZsfMcjXwJKfuRmrEsU3EyzpFPOuE1mt7Hm037D2g/EytApo3qG7Mh4Whl4Wm15L9zw1G954nY8lpGWiRvt7eXLiKL/Sjp9J/JFeua1cdYyF1oaHrOBJog9vAHTN9FBSPh2JI3OEOdmvaMCoR5pq5Hq6SviWNKv1BFVCtIyE81Pw4nQR0evzYzMm0gax2R59ZVzVM4TfCoGh+nFMRvqM6qnT55dDDyp9qW0bc9FvedZuOGZv+aH7VM+6y8YMeTPkPwB8l3b9VYhElyicoYSmkylEu4lq9BHz66rDyucd/TFwkNf/Pa64TyjD6Z9ju7WW5pXD6ioO4Nl+hwUXLLPUwU+hdQ79lIzVMl4AMdSxqyQxk3BNWuzHox4OXA2pWIAOZWy6idzBxhPhis8XkZ2PuJofWTMwpA9lVg55Nrbim7WQ7DL5pHCGKWO7VDxiVyylp7UmtEW1VvgMlsJ5Ud+z5Nwy9Ow5bHreORGWhxJ3y095svQT7+KKATlAZ2kZXwsn4WfxlvQe95Pc2cCiYKKh1rRdSRVNs/KIBZ8VWWiJpNCK0ASJOTF8orZTwAxOpz34LOhWBSG7BiTp5u2UT/rEOPIjKhmpLA2Djmwi4EhmXN4M1Tsx4qPVi95r77lib/lo/CCr/vP+Y3wCf+f1Yf8n7cfcJ1aeg3sx4pRPRNvkhNlVVvqzFW1p5IR1NhGBrWVbEMy29ysaoGsnCcS4WJgLNGODw2nk+VvXbx5CCm1pECQEx023frD7dd527tNKHjtYn94b3xcuZCSB5dpCh3FbqxmLkCkVBJlUjV3G6mTY6aTY3h89nmNcvF1UhiiZxgCIjBGMe6VyoIBKYgFJ4sjrMW2TQXZkpJwPdSsZFWQFJlRzZ5WpAQod3xQ3fAs3PCev+Wp2/Fo4nJ9B/mykFL/eeSBcb5cINKy7DbDAG0ATTpNVI902wxygkNkRZVh8PgqEnzENxFVIWdHP1TG0+steJ6zQ3VCYysiEecMGShiNkpSoYsBXyV89nTUfKawzw199mT1UFCSXQ5zBW6H8S+2DNZuVfY50OfAS1qGHLiuX/JR2HHl4KkLbKrMV+QTvio3/O/1B3wWL4jquU2t2XPlGr0kGhep3Vj48jKDBnI2e2DIFZ1WhZvTEbPDk6i8FP+vIN9PQkCHzjz9O32S6TbZdKATqbjOz+R9U87pnHXY7u6YmNl3daIPKPpDcqlIZxUMd7Gmksi67ti4jhfjhhdDyy5WiDPfupaDPZNUjF+OQkCOK4hcKUTmh3C53GmxSQZiNts3lLEZZKR2pYiPZhsPxZ51Yv5gVixbicTtUIGurVq1ywwp0Gdv/KoCF1XH+/WWD+pr3q9MRz32u9lOexc5I6XeIFOn5L57t/2mN6ejXU5+P91m+YQsxph6M7ZdMqJhLUpPcvk8TZ6CIW10RMdccpDFUrUKhFlyQlwETeSQSWKGS1QhqxGfeZcZxgAkQjXitKeSHomJCOxjYB+FMRsgvHaJ3A7k3OHSjjZeU7sdtWRSbojDFeMw4uMenzxpsLLprpwbFVwYCHnA5R5xI9lHRpcYFUb19AlejJ4f39Rc7xTNPZrFCD6zrSg8zCTPsSF1ahQJc+UYWaSpzN7U9PEevfe2aCmbjA4DQLUYvgoaObwPWqJz0/ZqKQMLC2QylGVxydbuwzUwc0nZ5JULv1Qu6ZFJQCXTRzOm2mZP5bY8rp4zxsSn/ZqPb2qiJgw4akHLMWfSzDCaSGOikh3e7bjtYJcCYw4zAfHTKpPqgRD2rPwta99TOSFJRb+bJoy3Uz5Re6boeTwlI/oZya+S0zfrp6F7d2fuge3nIS93P6tXS/10HJBSJQ00ezULXRXxEQkjY1fZ8PVWLSQlh68SLQPV2KOxIpTpNGePJGcpwH2EMYFPZKfs81RxxiZYJ5GUHUlLRc80IrEjOdNPQ/aMGbpk6VoxZzQkxmYk1T0S9gTX0UgErYhdS9cndNjjstCNNVOufFZI0RF8ptaRVjpqBmrdI2NkFNOZvcL1KHy6DXz2MpDiSM5xTmdcplEf9f3Jd/chpswZ0jv73a0udXLMB+65LO/t6XGn7Zae5mRpqS0GJBlJHRZQ1GTB74njouw66yMHCTOaJn01/TZxY9g8YJ91SoEUO23Kjotq4DK8oOlv8WnHrTr+vVvx8W3DbkxMkX1ViMnSBARAMqOPVG5LM9ywjVYddsi+BKaES9+zqkZc2NOEW1auJzhILjD+EuqnXyUUwpH9dK8tpEdBy+PfHjro3e3mSsPLuRts4CUBDznEObDKIEjvcHtn+qw6OI7qFHUZceng5ghl0UuRnFGJ5Jzx9YBnQHKkV+gTJRgKY7KFHiiEwU2H045xzMTs2EZhP0LM2dyOKhHzQKLHxx3rcMOlv8VL5vPBM44Rp3saIsNQo2NNQApvklVt2/iey7Rj3Q9UqYOwZxSz7fYJrkfHp0PFx9cNXbRrSNkW/OYy5a+TKUXpvp/KzTn9/Y2fyz5LrphJjhFS5btsfSws7rVTxrLtZrVn7Ttu9zU3+4qYIhM31OkxH2oTlMI8cnxN03EO9peSomPfCTklnE9cyZbL/Iqq79nGmn6MKIfgdioBqWnxN6mjqXuC7NinRJ8C+xyKKyqsXM+mGXH1jnV4xcpbtWsnnmFbsKQ/hX6Cn5+O+lWR1+qn03nxSE8dfpOpqufsgx34W61IyFInTQ6dPWs5Fe5GUSQM0MeSVm7S7SvyaLQF6pU8WqDSBSO/TiUwNaECvSgrv2M13iLsiH1idBFxkb06tskRC5vdSka2qWEojVv7kaa9RcY9g0R22vA8BvbZ0+eAk8TTZmQYOwY/kHyNE0/QjKRbxh5k7Fgn5Xo0qhbFeJIsCJSp/Ehb7WjSDh17OkmkaRFbPdvkeD5WfLJvuRkzYxqJmkjZFe67ZaGC6a/O98RJnu0Lofh0JdiicnjhOMEa3TM2jm/90S9LvrvldqosFshgKsbifTS9j3JRb3ksL7jpan6w3fBi8HhnWUGUgBCl3wSjLRjLsbKYv+5kwoXnNyBTFVR4OQayKpsw4Oo9Vd6yRXg+VFyPAoyWqieZjHGxZoTbIXDbKUpCVj1DitwkW0wxGg1DobfNiM9b1vqKy/iKjd9Ru4EkSr99twDTl2FD/axE9BfgEf77v//7nepeZznLWX628sMf/vBOAGgpXdfxrW99i08++eTo+w8//JB//dd/pW3fMc3mP4mc9dNZzvLzl7N++unkrJ/Ocpafv/y0+gn+a+uos346y1m+HPnPaEP9QoJSOWc+/vhjLi8v57z7s5zlLD8bUVVubm746KOP3sjb1HUdwzAcfVfX9S+lsvqy5KyfznKWn5+c9dMXk7N+OstZfn7yRfUT/NfWUWf9dJaz/HzlP7MN9QsJSp3lLGc5y1nOcpaznOUsZznLWc5ylrOc5b+2/AqUvzrLWc5ylrOc5SxnOctZznKWs5zlLGc5y382OQelznKWs5zlLGc5y1nOcpaznOUsZznLWc7ypcs5KHWWs5zlLGc5y1nOcpaznOUsZznLWc5yli9dzkGps5zlLGc5y1nOcpaznOUsZznLWc5ylrN86XIOSp3lLGc5y1nOcpaznOUsZznLWc5ylrOc5UuXc1DqLGc5y1nOcpaznOUsZznLWc5ylrOc5SxfupyDUmc5y1nOcpaznOUsZznLWc5ylrOc5Sxn+dLlHJQ6y1nOcpaznOUsZznLWc5ylrOc5SxnOcuXLueg1FnOcpaznOUsZznLWc5ylrOc5SxnOctZvnT5/wP7yqu4T1mvzQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deepsensor.plot.task(task, task_loader)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Downscaling\n", + "\n", + "In statistical downscaling, the goal is often to learn a mapping from a coarse gridded data set (e.g. reanalysis data) to localised observations (e.g. weather station data).\n", + "A downscaling `TaskLoader` can be instantiated by passing the coarse gridded variable in the `context` list and station observations in the `target` list.\n", + "\n", + "Optionally, we can also pass a high-resolution auxiliary `xarray` variable (e.g. local topgraphic information) via the `aux_at_targets` argument.\n", + "When calling the `TaskLoader`, the `aux_at_targets` variable will be interpolated at the target locations and added to the `Task` as the `\"Y_t_aux\"` entry.\n", + "The `\"Y_t_aux\"` data can be modelled differently from the context data, for example, by using a pointwise MLP rather than a convolutional neural network.\n", + "\n", + "```{note}\n", + "The `TaskLoader` also permits an `aux_at_contexts` argument for passing high-resolution auxiliary variables at off-grid context locations.\n", + "For brevity, we will not demonstrate this here.\n", + "```\n", + "\n", + "Hypothetically, with the right auxiliary information and enough data, a model can distinguish between an observation from the top of a mountain vs a valley vs a city vs a field." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:07.670828212Z", + "start_time": "2023-11-02T13:41:07.667930830Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(2 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature',), ('GLDAS_mask',))\n", + "Target variable IDs: (('TAVG',),)\n", + "Auxiliary-at-target variable IDs: ('elevation', 'tpi')\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds[\"2m_temperature\"], land_mask_ds],\n", + " target=station_df[\"TAVG\"],\n", + " aux_at_targets=aux_ds,\n", + ")\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:07.671036003Z", + "start_time": "2023-11-02T13:41:07.669804189Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: []\n", + "X_c: [((1, 141), (1, 221)), ((1, 140), (1, 220))]\n", + "Y_c: [(1, 141, 221), (1, 140, 220)]\n", + "X_t: [(2, 664)]\n", + "Y_t: [(1, 664)]\n", + "Y_t_aux: (2, 664)\n" + ] + } + ], + "source": [ + "task = task_loader(\"2016-06-25\", context_sampling=\"all\", target_sampling=\"all\")\n", + "print(task)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:08.620254026Z", + "start_time": "2023-11-02T13:41:07.669951066Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wT1dfGnzuTsn2pu0vvHekdEVSKYMEKNhTFjtgbNuzYBd+fYKOIFRWxIoIooDQVRFB6X2BhacuyNcnMef+YkjuTssm2LHC/fsZkZm45M8lekifPPZcREUEgEAgEAoFAIBAIBAKBQCCoRKRYByAQCAQCgUAgEAgEAoFAIDj9EKKUQCAQCAQCgUAgEAgEAoGg0hGilEAgEAgEAoFAIBAIBAKBoNIRopRAIBAIBAKBQCAQCAQCgaDSEaKUQCAQCAQCgUAgEAgEAoGg0hGilEAgEAgEAoFAIBAIBAKBoNIRopRAIBAIBAKBQCAQCAQCgaDSEaKUQCAQCAQCgUAgEAgEAoGg0hGilEAgEAgEAoFAIBAIBAKBoNIRopRAIBAIBAKBQCAQCASlYPHixWCMIScnBwAwc+ZMVKtWzTz/1FNPoVOnTjGJTSA4GRCiVAVy4MABjBs3Dk2bNoXb7UaDBg1w4YUXYtGiReXaz4ABA3DPPfeUa5sV2S6PfRAPx/r169G/f3/Ex8ejXr16eOaZZ0BEFRqfQHCqIsankol0fCoqKsLo0aNxxhlnwOFw4OKLL67QuASC0w3GWNht9OjRMYutcePGmDRpUoX2Yf+CG44lS5aga9euiIuLQ9OmTfH2229XaGwCwcnA8uXLIcsyzjvvvAppv0+fPsjKykJqamrQ8w888EC5f74qTxhj+Prrr8OW2bVrFxhjWLt2baXEFAlVMSZB6XDEOoBTlV27dqFv376oVq0aXn75ZXTo0AFerxc//fQTxo4di02bNsU6xJOK3NxcDBo0CGeffTb+/PNPbNmyBaNHj0ZiYiLuv//+WIcnEJxUiPGpfFEUBfHx8bjrrrswZ86cWIcjEJxyZGVlmc9nz56NJ598Eps3bzaPxcfHR9Wex+OBy+Uqt/iqCjt37sSwYcNw880346OPPsKyZctwxx13oHbt2rjssstiHZ5AEDOmT5+OcePG4f3338eePXvQsGHDcm3f5XIhIyMj5PmkpCQkJSWVqQ+v1wun01mmNqoKp9K1CMoJElQIQ4cOpXr16lFeXl7AuWPHjpnPd+/eTRdddBElJiZScnIyXXHFFXTgwAHz/IQJE6hjx440a9YsatSoEaWkpNDIkSMpNzeXiIiuv/56AmDZdu7cSURE//33Hw0dOpQSExMpLS2Nrr32Wjp06BAREf3666/kdDpp6dKlZl+vvvoq1axZk/bv3x+2XTtvvfUWNW/enNxuN6WlpdFll11mnlNVlV566SVq0qQJxcXFUYcOHeiLL74gIqKdO3cG9HH99dcH7WPKlCmUmppKRUVF5rGJEydS3bp1SVXV0C+EQCAIQIxPGuU1PvFcf/31NHz48BLLCQSC0jFjxgxKTU019w8fPkxXXnkl1atXj+Lj46l9+/b0ySefWOr079+fxo4dS/feey/VrFmTzjrrLCIi+uabb6h58+YUFxdHAwYMoJkzZxIAyzi4bNky6tevH8XFxVH9+vVp3Lhx5tjZv3//gHEiFBMmTKAGDRqQy+WiOnXq0Lhx48xzxcXF9OCDD1LdunUpISGBevToQb/++isRaeOhvY8JEyYE7eOhhx6i1q1bW47deuut1KtXr5Juq0BwypKXl0fJycm0adMmGjlyJD399NOW8/YxhYho7ty55t+zqqp07rnn0pAhQ8zvHMeOHaMGDRrQo48+SkT+v1Nj7LC3aXxeMvjjjz9o4MCBVLNmTUpJSaGzzjqLVq9ebYkBAE2dOpUuuugiSkhIoCeffJKaNWtGr7zyiqXc+vXriTFG27ZtC3r9JfXVqFEjy/jSqFGjoO3Yx6H+/fuX6VqIiJ599lmqXbs2JSUl0ZgxY+jhhx+23CciounTp1Pr1q3J7XZTq1at6K233ioxpl9//ZW6d+9OCQkJlJqaSn369KFdu3YFvS5B1UCIUhXAkSNHiDFGL7zwQthyqqpS586d6cwzz6S//vqLVq5cSV26dDH/oIi0QSwpKYkuvfRSWr9+PS1dupQyMjLMQTAnJ4d69+5NN998M2VlZVFWVhb5fD7av38/1apVi8aPH08bN26kNWvW0KBBg+jss882237wwQepUaNGlJOTQ2vXriW3201fffVV2Hbt/PnnnyTLMn3yySe0a9cuWrNmDU2ePNk8/+ijj1Lr1q1p/vz5tH37dpoxYwa53W5avHgx+Xw+mjNnDgGgzZs3U1ZWFuXk5AS9V6NGjaKLLrrIcmzNmjUEgHbs2BH+BREIBCZifCr/8YlHiFICQcVi/7K3d+9eeuWVV+jvv/+m7du305tvvkmyLNPKlSvNMv3796ekpCR68MEHadOmTbRx40bauXMnOZ1OeuCBB2jTpk306aefUr169SxfLNetW0dJSUn0xhtv0JYtW2jZsmXUuXNnGj16NBFp42n9+vXpmWeeMceiYHzxxReUkpJC8+bNo927d9OqVavo3XffNc9fffXV1KdPH1q6dClt27aNXnnlFXK73bRlyxYqLi6mSZMmUUpKitnHiRMngvbTr18/uuuuuyzHvvrqK3I4HOTxeEpzuwWCk55p06ZRt27diIjou+++o8aNG1t+0C5JlCLSxpnq1avTpEmTiIho5MiR1K1bN/PvKlpRatGiRfThhx/Shg0baMOGDTRmzBhKT083f9Qj0gSXtLQ0mjZtGm3fvp127dpFzz//PLVt29YS67333msK7cEoqa/s7GwCQDNmzKCsrCzKzs4O2s4ff/xBAOjnn3+mrKwsOnLkSJmu5aOPPqK4uDiaPn06bd68mZ5++mlKSUmx3Kd3332X6tSpQ3PmzKEdO3bQnDlzqEaNGjRz5syQMXm9XkpNTaUHHniAtm3bRhs2bKCZM2fS7t27Q94jQewRolQFsGrVKgJgfoEKxYIFC0iWZdqzZ4957L///iMA9McffxCRNoglJCRY/rAffPBB6tmzp7nfv39/uvvuuy1tP/HEEzR48GDLsczMTPMLFpH2y1znzp1pxIgR1K5dO7rpppss5YO1a2fOnDmUkpJiic8gLy+P4uLiaPny5ZbjY8aMoauuuoqIAgfxUAwaNIhuvvlmy7F9+/YRgID2BQJBaMT4pFGe4xOPEKUEgool2BdIO8OGDaP777/f3O/fvz916tTJUubhhx+m9u3bW4499thjlr/5UaNG0S233GIp89tvv5EkSVRYWEhEmsvgjTfeCBvPa6+9Ri1btgwqDG3bto0YY7Rv3z7L8XPPPZfGjx9PRJFdMxFRixYt6Pnnn7ccW7ZsGQGg/fv3l1hfIDgV6dOnjykmeb1eqlWrFi1cuNA8H4koRUT0+eefk9vtpvHjx1NCQoL5eYUoelHKjs/no+TkZPruu+/MYwDonnvusZTbv38/ybJMq1atIiIij8dDtWvXNkWaSAjV19y5c8PWMxzkf//9d6nat19Lz549aezYsZZjffv2tdynBg0aBDhfn332Werdu3fImI4cOUIAaPHixWHjFFQtRKLzCoD05NuMsbDlNm7ciAYNGqBBgwbmsbZt26JatWrYuHGjeaxx48ZITk429+vUqYPs7Oywba9evRq//vqrOYc5KSkJrVu3BgBs374dgDb/+aOPPsKcOXNQWFhYqkSdgwYNQqNGjdC0aVOMGjUKH3/8MQoKCgAAGzZsQFFREQYNGmSJY9asWWYM0WC/n5HeZ4FA4EeMTxUzPgkEgtigKAqef/55dOjQATVr1kRSUhIWLFiAPXv2WMp169bNsr9582Z0797dcqxHjx6W/dWrV2PmzJmWMWLIkCFQVRU7d+6MOMYrrrgChYWFaNq0KW6++WbMnTsXPp8PALBmzRoQEVq2bGnpZ8mSJeKzkkBQRjZv3ow//vgDV155JQDA4XBg5MiRmD59etRtXXHFFbj00ksxceJEvPbaa2jZsmWp48rOzsZtt92Gli1bIjU1FampqcjLyytx3KpTpw7OP/98M/7vv/8eRUVFuOKKK8rcV2Vfy+bNmwPGXH7/0KFDyMzMxJgxYyxj43PPPRd2bKxRowZGjx6NIUOG4MILL8TkyZMteQkFVROR6LwCaNGiBRhj2LhxY9hVmIgo6IcE+3F7IjjGGFRVDRuDqqq48MIL8dJLLwWcq1Onjvl8+fLlAICjR4/i6NGjSExMDNuuneTkZKxZswaLFy/GggUL8OSTT+Kpp57Cn3/+acb4ww8/oF69epZ6brc7qn4yMjJw4MAByzHji296enpUbQkEpzNifCr/8UkgEMSO1157DW+88QYmTZqEM844A4mJibjnnnvg8Xgs5ezjR7AxzhBwDFRVxa233oq77roroN9oEiU3aNAAmzdvxsKFC/Hzzz/jjjvuwCuvvIIlS5ZAVVXIsozVq1dDlmVLvWgTI4f6rORwOFCzZs2o2hIITgWmTZsGn89n+XeeiOB0OnHs2DFUr14dkiQF/O17vd6AtgoKCsy/061bt5YprtGjR+PQoUOYNGkSGjVqBLfbjd69e5c4bgHATTfdhFGjRuGNN97AjBkzMHLkSCQkJJS5r1hcS7gx2Pic9t5776Fnz56Wcvax0s6MGTNw1113Yf78+Zg9ezYef/xxLFy4EL169Yrq2gSVhxClKoAaNWpgyJAheOutt3DXXXcF/BHm5OSgWrVqaNu2Lfbs2YPMzEzTjbBhwwYcP34cbdq0ibg/l8sFRVEsx7p06YI5c+agcePGcDiCv8zbt2/Hvffei/feew+ff/45rrvuOixatAiSJIVsNxgOhwMDBw7EwIEDMWHCBFSrVg2//PILBg0aBLfbjT179qB///4hYwdQYj+9e/fGo48+alkxZ8GCBahbty4aN25cYowCgUBDjE/lPz4JBILY8dtvv2H48OG49tprAWhfZLZu3VriONW6dWvMmzfPcuyvv/6y7Hfp0gX//fcfmjdvHrKdSMei+Ph4XHTRRbjoooswduxYtG7dGuvXr0fnzp2hKAqys7PRr1+/MvXRu3dvfPfdd5ZjCxYsQLdu3cRKV4LTDp/Ph1mzZuG1117D4MGDLecuu+wyfPzxx7jzzjtRu3ZtnDhxAvn5+eZnorVr1wa0d//990OSJPz4448YNmwYzj//fJxzzjmliu23337DlClTMGzYMABAZmYmDh8+HFHdYcOGITExEVOnTsWPP/6IpUuXlrkvp9NZ4hgT6jNRaa+lVatW+OOPPzBq1CjzGD8Gp6eno169etixYweuueaaqGICgM6dO6Nz584YP348evfujU8++USIUlUYMX2vgpgyZQoURUGPHj0wZ84cbN26FRs3bsSbb76J3r17AwAGDhyIDh064JprrsGaNWvwxx9/4LrrrkP//v0DLI7haNy4MVatWoVdu3bh8OHDUFUVY8eOxdGjR3HVVVfhjz/+wI4dO7BgwQLceOONUBQFiqJg1KhRGDx4MG644QbMmDED//77L1577bWw7dr5/vvv8eabb2Lt2rXYvXs3Zs2aBVVV0apVKyQnJ+OBBx7Avffeiw8++ADbt2/H33//jbfeegsffPABAKBRo0ZgjOH777/HoUOHkJeXF/Qar776arjdbowePRr//vsv5s6dixdeeAH33XefsKQLBFEixqfyHZ8ATbBbu3Ytjh49iuPHj2Pt2rVBP9QKBILypXnz5li4cCGWL1+OjRs34tZbbw1wCwXj1ltvxaZNm/Dwww9jy5Yt+PzzzzFz5kwA/l/vH374YaxYsQJjx47F2rVrsXXrVnz77bcYN26c2U7jxo2xdOlS7Nu3L+QXsZkzZ2LatGn4999/sWPHDnz44YeIj49Ho0aN0LJlS1xzzTW47rrr8NVXX2Hnzp34888/8dJLL5miWePGjZGXl4dFixbh8OHD5jRkO7fddht2796N++67Dxs3bsT06dMxbdo0PPDAA9HcUoHglOD777/HsWPHMGbMGLRv396yXX755Zg2bRoAoGfPnkhISMCjjz6Kbdu24ZNPPjHHAoMffvgB06dPx8cff4xBgwbhkUcewfXXX49jx46VKrbmzZvjww8/xMaNG7Fq1Spcc801iI+Pj6iuLMsYPXo0xo8fj+bNm5uf28rSV+PGjbFo0SIcOHAg5DWlpaUhPj4e8+fPx8GDB3H8+PEyXcu4ceMwbdo0fPDBB9i6dSuee+45rFu3zvK97qmnnsLEiRMxefJkbNmyBevXr8eMGTPw+uuvh4xp586dGD9+PFasWIHdu3djwYIF2LJlS1Q/qApiQCwSWZ0u7N+/n8aOHUuNGjUil8tF9erVo4suushc5pco8iXXed544w3Lcp2bN2+mXr16UXx8vGVp9C1bttAll1xC1apVo/j4eGrdujXdc889pKoqPf3001SnTh06fPiw2c7XX39NLpfLTBYXql2e3377jfr370/Vq1en+Ph46tChA82ePds8r6oqTZ48mVq1akVOp5Nq165NQ4YMoSVLlphlnnnmGcrIyCDGWNgl19etW0f9+vUjt9tNGRkZ9NRTT1lWzxAIBJEjxqfyHZ/sSyobm0AgKF/sCYSPHDlCw4cPp6SkJEpLS6PHH3+crrvuOsuCA6EWRvjmm2+oefPm5Ha7acCAATR16lQCYCYxJ9JWdxo0aBAlJSVRYmIidejQwZJMfMWKFdShQwdyu90h/+bnzp1LPXv2pJSUFEpMTKRevXrRzz//bJ73eDz05JNPUuPGjcnpdFJGRgZdcskltG7dOrPMbbfdRjVr1iQANGHChJD3Z/HixdS5c2dyuVzUuHFjmjp1api7KRCculxwwQU0bNiwoOdWr15NAGj16tVEpP2NNm/enOLi4uiCCy6gd9991/x7zs7OpvT0dMuqxV6vl3r06EEjRowgougTna9Zs4a6detGbrebWrRoQV988UXAogkIk3x8+/btBIBefvnlEu9DJH19++231Lx5c3I4HJbPcHbee+89atCgAUmSZK7GXJZreeaZZ6hWrVqUlJREN954I911113Uq1cvS5mPP/6YOnXqRC6Xi6pXr05nnXWWZbEee0wHDhygiy++mOrUqUMul4saNWpETz75JCmKUuK9EsQORmSbRCsQCAQCgUAgEJxmPP/883j77beRmZkZ61AEAoEgJMuWLcOAAQOwd+/eUyq37qBBg5CRkYEPP/ww1qEIKhmRU0ogEAgEAoFAcNoxZcoUdO/eHTVr1sSyZcvwyiuv4M4774x1WAKBQBCU4uJiZGZm4oknnsCIESNOakGqoKAAb7/9NoYMGQJZlvHpp5/i559/xsKFC2MdmiAGCFFKIBAIBAKBQHDaYeQxOXr0KBo2bIj7778f48ePj3VYAoFAEJRPP/0UY8aMQadOnU56NxFjDPPmzcNzzz2H4uJitGrVCnPmzMHAgQNjHZogBojpewKBQCAQCAQCgUAgEAgEgkpHrL4nEAgEAoGgSrN06VJceOGFqFu3Lhhj+Prrr0uss2TJEnTt2hVxcXFo2rQp3n777YAyc+bMQdu2beF2u9G2bVvMnTu3AqIXCAQCgUAgEIRCiFICgUAgEAiqNPn5+ejYsSP+97//RVR+586dGDZsGPr164e///4bjz76KO666y7MmTPHLLNixQqMHDkSo0aNwj///INRo0ZhxIgRWLVqVUVdhkAgEAgEAoHAhpi+JxAIBAKB4KSBMYa5c+fi4osvDlnm4YcfxrfffouNGzeax2677Tb8888/WLFiBQBg5MiRyM3NxY8//miWOe+881C9enV8+umnFRa/QCAQCAQCgcBPTBKdq6qK/fv3Izk5GYyxWIQgEJwUEBFOnDiBunXrQpLCGxuLiorg8Xgsx1wuF+Li4ioyxFMOMT4JBJFR1vGJiAL+xtxuN9xud5ljW7FiBQYPHmw5NmTIEEybNg1erxdOpxMrVqzAvffeG1Bm0qRJZe6/ohDjk0AQGeLzU+UjxieBIDLKOj4Bp94YFRNRav/+/WjQoEEsuhYITkoyMzNRv379kOeLiorQpFESDmQrluMZGRnYuXPnKTVoVTRifBIIoqO041NSUhLy8vIsxyZMmICnnnqqzDEdOHAgYKns9PR0+Hw+HD58GHXq1AlZ5sCBA2Xuv6IQ45NAEB3i81PlIcYngSA6Sjs+AafeGBUTUSo5ORkAcCYugIM5AQZdUWeArqwzydjnKjKY58G0sozflyT9OABIWhss1AZ/PYToAyHKAECksx7VEOWMJsM1EyyWkuIK1VBpf7EoKQYDIu1aSPUfkyRAkgFZAhltSMzfpqEMKwqgAvB6wXw+/71lEuCQQQ4H4JC448zfpxmnNUaSGCBL1uNceQJADqb1YbwfiMC8KlixD0xRtUMASALIpcfgVcG8Pq0ckVbCaFdRtes37gXfJ9niVY1y5C9nPiUAKqASfOTBktzZ5t9MKDweDw5kK9i5uhFSkrX7mntCRZOuu+HxeE6ZAasy8I9Pw+CAM8bRCCqS6rW9uOCGw7j0psPmsRkvp2HgZcfw8Wt1sGF1PN5fshmuGP/5vP1kBvbuiDeHFUb8Py0M/c4/BjDgt++rgUmAqjBs+zcOvmK5QuPywYvfMa9M41NmZiZSUlLMsuXhkjKw/1JvZCvgjwcrU5V/4Tfutf2+CU4diAg+nwqnU/v7nff931i6dAtuvnUAmjVLL6F2+VBc7MXoe2biaE4B7rxxAC4c1LFS+i1PcnNz0aBBg0r5/DR16lRMnToVu3btAgC0a9cOTz75JIYOHVrm6ziZEOPT6YHX44XTpX0+3rR6Jz569Qecc3lPnHNZ90qL4aU7ZuCPBevR87wOeOh/oyut3/KiLOMTcGp+x4uJKGV84HNAhgMyAEn7Qi4xMF6YMj8Y2kQVxpeRuGOSv7zEiVb8JnFChb1NS5AIXs4g4lRcIcpJzCpehKOs4hQrQz77SEQpQ1xh0L4t8f1KEiDL2mUy/XXRKgGk3wNF/4alSGCK/iVKYpqgJTlAkqyLR1o8ZP8SwYuMesgk+d8Dem8AGcVIqyPr8Rl1VQJUH5hTBpM4AUvWRCmSJTCmgkGBxDgBStUbl0g7pmqvKzOEJ+MegX+9baKUaganfXFSVcu9jPRLUmKStgHabRVEj398cmqiueCUJL1BMd5fuhVOFwDI5jB397NHAAASufDiR3tRq3bFCjuR8NAbh8KeJ9KGupG35gIAJj1YH9vWxMFR0dqK+TtB6cenlJSUCvnykpGREeB4ys7OhsPhQM2aNcOWsbunqhLGva6o+yaIPRMe+Rwrft+Kux44D4OHdcR77y4DALz4wnzM/mJchfRpF2OPHS/AiQIVDmccjhzzntTvtcr4/FS/fn28+OKLaN68OQDggw8+wPDhw/H333+jXbt20TV2EiPGp1Ofryb9gLfvn4kBV56JRz++G6+N/Ri5R/Owdc1eDB99ToX8qBPsB6VDu4/DIblwePfxk/q9VprxCTg1v+PFRJSywswHBoQXpAyBxC4W8a4bU4jgBCmzqyB17c/5foKdC1UnlEglhXmz2cSUoK6qihSkIhGcGItCgLP1Z7iVjHYAzkEEzRXl9QJen+aWMvqRZU2w4iFoa0Uar7XuuCJecAQAIk4AC359foOB7f4zgEky4GSAUztPAEhmIFnrkyQCIwZIdsEJnMCmgnl8et82N5Sq70uSds18fTMsBpIkra4anaCogqDqV6hGpHgKBKcP1Wp50XNQLtxxKtLqe+AKY8pp3TUPjVoVVV5wZcA+zDVsVYhzLjuKFfNTUZgfe1HNoDLHp969e+O7776zHFuwYAG6desGp9Npllm4cKElr9SCBQvQp0+fCo1NIAiFoqhYuWwriAgrf9+K84d3gdMpw+tVUKNmUskNlIL5v23AC2//hL6dm+KF+y8CYwzVUxMwcfwl2LT9AK64oGuF9FvVKMv4dOGFF1r2n3/+eUydOhUrV648rUQpwanP71+vAhGw/Js/AAA10lOQezQPLlfF/Ii7a9N+PHTF/yEpJR6Tvr8fKdUTAQDj3x2DX+f8iXMu61Eh/VY1+PHJ2D/VqAKilOEeYZoSKqlgTOJ+tdHPM6Y/wv+zsKUZ8pfRLTFEutnEEF94ZwpgnQZmmeZltMEJMlXYzl+hRCpIcYKh6VySJU1cMRxS+hQ2ppImyCiKNuXNcBQZgpMs69P2ZM1lZYhQushEZj/QRT/9nPn+gGa+M+LQxSUjTP9rGuQadFGT9PckmOa6IkmbxgcwqG4ZzCIWkfb2ULVrYx5FuxWK3w3FVM79ZLyfeeHTeM+ppP0dkBo45S8CVKhQuecCgcDP699sRb0m3ojKXntveHdSVebSm47gwcuqVSlBCijb+JSXl4dt27aZ+zt37sTatWtRo0YNNGzYEOPHj8e+ffswa9YsANpKe//73/9w33334eabb8aKFSswbdo0y6p6d999N8466yy89NJLGD58OL755hv8/PPP+P3338t8rQJBaZBlCfc+fD6W/7YFo27sB8YYPvzkDqxevRPnnNO2QvpcvGoLfD4VS//cBo9XgdulfTXo26M5+vZoXiF9hoOI9N/uKvdzd3l9flIUBV988QXy8/PRu3fv8glOIKgi3DTxGnz64tc4e6T2482kHx/Ckq9Xo9vZbSvEJbX29y04cSwfJ47lY9v6THQ5qzUAoEmbemjyeL1y7y8SFEWFLJdhFlIpUG2j0qn4Ha8KiFL+L+daDijtRQ5wStncS0yyOXCYvZwxFZArw9cpq1Mq4DLClItUWIj0H+CIYrJdYzT/uAfL2WQ/bxf0DOGJMUDWxCXTxSQzXZiBJsz4VE2w8enClKpqQpQkAQ6HX5ByytzryjmfjL4kFngvjJjN87brIWguLOPlNTRRCYDKAJm0+XpGc0x3SklMz2sFAMZ0RL+hy7g2yaNqzxUCmKTlnVL1qX6GaiYx/zWbcelCnSGqlRKFCIp+D5QoBS2B4FRBkglnX3oUm1YnYt8Oba59en0PnK6q/Tfx5y9JcLlVnNG7ACUsxlIiF91wCGddeMw/pjCYKf8IpP37CCAvV8YPs2ricFb55XIKRVnGp7/++gtnn322uX/fffcBAK6//nrMnDkTWVlZ2LNnj3m+SZMmmDdvHu6991689dZbqFu3Lt58801cdtllZpk+ffrgs88+w+OPP44nnngCzZo1w+zZs9GzZ8+yXKZAUCbOu6ATzrugk7lfu3YyzjuvQ4X1d/0lvVBY5EXfrs1MQSpW5OUX49Z7ZuHosXy8/sJItGlZp9L6DjY+5ebmWsqEWx10/fr16N27N4qKipCUlIS5c+eibduKERIFgljRtncrPPvNw+a+O86FwVdWnPh69qXd8O8f25FSPRFn9Kp8kdzO81dPxtIvVuDO/xuDC28bVGn98uOTsX+qUQVEKcPeApCqO6XAQKouUpmfps1iellVE6ZMhxTnlGIIrGeIAwAsn/b5unxIVdkpFcwpxlPBsRLTBRpAdzqRlj/JEG0VSZveZjifFPhdP/zrwJgmzMh6MnTOHWUIW/zUTcufH+8iMl1TAIiZgpG5BatH0N1PvHAHEPyuKuhtkuHOMjQpXs/U2yRJE1IVlwTV4QISnPocaNKaKVYgFXkhFfn8ydz5ZOcBDj7mPy8QCKLiwtGHkZSiYNEX/uSPz8zagbR6vhhGFZ4dG+LwxZR0vPzl9nJpr98FuSUXAvDK3Q0qRZAqKwMGDDDzSgRj5syZAcf69++PNWvWhG338ssvx+WXX17W8ASCSkdVCRNf/A4bN+7Ho+MvRNu2pXMNtGmWgcmPX1HO0YXG4/Xhv+0H0LpJOuLd1ik/u3Yfxt79xwAAa9burlRRKhj2leTCrQ7aqlUrrF27Fjk5OZgzZw6uv/56LFmyRAhTgtOWuXP+xOxPVuCa6/riwuGlmwacWiMJj787ppwjCw0RYctfO1CrXnXUrFsj4NxvX62CqhJ+n7uqUkWp04EYi1J+ZxTAOaWY4ZSK0CXFr7pnyScFq9OGLwsEPnJhRe6UCuLW4SG1fFxUZnf2tuyur2BlIm0ryHlbfCRpK+LBIWm5k1TO2qOSlqzeSP4tQRdfDKeS7igC9KlsDHA6zEdy6FP3QrmgjJhMwYn5BSmHzVYQxCHFjOmD0IU1w0kVtH1mOqE0cxQXj1HHuDW8A0vi6hjlvCqYD5CY4ncA2gU6o28ADJp1vTSuKZFTSnD6Qjj/2iM4uNeFxq0K0bJTAf5dlYBWnQvxy1fV8co9DZCUqqD7gBM4/7ojiE+sOn8fy39MQW6OhFEP7oeqoswuqWgYOe4gzrn0qOkgXft7Er6dUQtFBeU/9U+MTwJB+ZF9KBeLFm0AAPz00/pSi1LRsGZDJhRVRff2jUrdxtPvzsfPq7agY8t6ePfxkZZzbVrVwYhLuiH70AkMHXRGWcONimDjUzSrg7pcLjPRebdu3fDnn39i8uTJeOeddyowaoGg6jL7kxU4fOgEPv90ZalFqWjI3JKFnRv2ofewTnCW0vU57/1FmHzH+4hPjsdH2/8PydX9ufwYY7hnys1YOmclrn3isjCtlD8ip1RlwPxPCEz/Xm4TpCzlmXWVkFB5oXgMAcBwVtnas9QNcNaEedEtiaxDiVMRCD9aR36HVjjMWO12nZLaLwX8tUuSf0U7wzHkkEEOBywxq6RNzTNyKHm8FsePlk6Ju9eM6WKU5owyp8oZolSAgw1+55txkDEtF5NFiNLLcLeKZC121XiPmXmnmL95w3GlJyUz8knZpz+aDqlwL5f+kqpOCWo1F1iCA5JPBfOpkIp8kAo8YMUefSqjzxSoSOUuNMqXTwVBEV/6BKch7Xrko9vZJ7Dy5xQMu/YY3n+2Ds69PAfL5qXicJYLh7NccLpVPPfhTn3FvapB7lEZ7z1bBzOWb45J/w2be9CwuQcAoPiACdc3gddTMaqYGJ8EgvIjPS0F5513BjZu3I9hwzpWeH9rN+3F2Gc/BwBMGn8ZenZoXKp2Dh3LAwAc1h95ZFnC2JvOKXWMZSHY+FSWVeSICMXFxeUWn0BwsnHNdX3x+acrcfWovhXeV2FeEcad+zyK8osx8t6huOGJS0vVzpEszalZlF+EovxiiygFAOfdeDbOu/HsMscbLfz4ZOyfasRWlJIYJ1BwuaR0t1RA3idmW1HPkiMKplhjcUlxdREsD5Xl0dZnOCyxhVvhLsL2DAElIhWChY85XL6sUH2HQ5K01ef4XE6SZHMPMV18UrSgSM8bpei5lCzTIPXXR5K01fl0hxQ5JH+75mtlxMg/10RJYrzjyX+dpsGIczzx4qcZh/GyWe4lTKGSmC6QOXXrE9leHQZ9TU6mTfrjTxq3VIJ2PSo0EY9JkFQfJAKYT9HyuvD3P+CliE6VEk4EwenIxWOyMezaI8ho6EHzDgUgAq68+wC8Hgk9BubiRM5+ztkY01ADSKqm4IXPtkPxAXKE/yITAZ+/VQsNWxSj+zkn4CinRW8kGXhvySZ4PQyqyjDr1XSsmF8NqlKGHzc4xPgkEJQfjDE89OD5sQ6jRBat2YpDx/Nx2VlnwCnLeOa2YfhpxSb07xr7/DA8ZRmfHn30UQwdOhQNGjTAiRMn8Nlnn2Hx4sWYP39+RYQqEJwUXDi8a6U4pExKkfJk65qdWL1oPYZc1x/V01Mx8sHhSEpNRMO29VC7fs0KCLJ0CKdUhcOpBaaAEESQCjaXwT5lzfokOAH5p0rIzVRSW/4df0xBzVKR9MElvTabLEN8EfcL/70wsD/3KWBEWr4nGFmSdJ1G1p1OjAEkgykymFcB8xivrc+/4p3pttJW0zNX1dPdUSTL+qPepqRPzTPEOj1ZOjOmy/H3J4ihKug+g9mmv23rc/DnJYBA5uqBAUOAvuofU5m1LaMpgpksXRO3CL4EJ1iKA1KNOM055VUgF/og5RUBRR7A6wU8Hr/bKwpEonPB6UbNDC9ufzbL3DfyRiWlELSEdkD1WkosQosISQLqNIwu19Xe7W6sXFgNI+/cVnLhKGAMqNNIW51w4+oELPuherm2L8YngeDkpVPr+vjf41dAUQk9zohs+t6WzEN48J3vAWgfkUae3QkZtVJw/YVVbxn3soxPBw8exKhRo5CVlYXU1FR06NAB8+fPx6BBIueMQFAZxCfF4f9+eRw7/t2LPhd0jqiOqqp4aOhEFOQWYuuanXji07vhjnfh0ruHVXC00SMSnVcwvOvJdEgZ06T4HFJ2509QxxPvuoJ16ld5u6SsF1GyMykqtxSzPo8mpkhiCdYnX9b+JtcdSsSY38FkikmGy0kCVGhuIYLmClJULeeU0Y69nt15JTPzHDn0MryTiQiMmKby8MtJRblioSY02ZxR5r2D/zg/vU8yBMxg909fw0rS75NR32584/sBA/MRGCOASWCMNHFK0aY5kqKW2s2hwp9v/tRbLFQgCOTIARk/flINg67IQXGRhCmP1kO/i47ho9cykFxdwYOT96B6baVM+n5Vo36zYjz30TYzNV9FXFurzgWYs3EdVAKOZLnw3C2NsXe7G9G6N3nE+CQQnNx0bdcwqvJJCW64HDI8PgVptmkwVY2yjE/Tpk0r52gEAkG0NGhZBw2iWByBMYaadaqhILcQterVKLlCDOHHJ+DU/AwVW6eULMOc+mZMwQqX4dV+jogTDGy5pgwi+cRepg/0zB9H0NNRikQGpU3pEcz9FbZb5s+5ZdQ3nUhcKSKQT9XFF01xYYoE5tOnuKkE5tNX4vP4gGIPoCr+ziUGcjpBLhfI5dBX2dNeG965pMq6MGWsjGcIR8SpO8S5pQydivxxWqbp8PfRPE56MnKtfZJZgHMKqn6ZCgE+f24qkgDVwQlYpPev3xaVccIX484z6CMIgRGgxDGoRhI+csCT6oRclAi5wAc5rxgsNx/ILwA80Tk8FG7OsVJaZUsgOImoXc+HoVfnAAB++z4FCSkqtv6TiK3rEvHIlN2okVZ1XVKlhTEgMbli+5AkIClVG0Pmf5yCvdvjSqhRMmJ8EghOL+rWTMHcZ0cjr9CDFvVqxTqcsIjxSSA4vWCMYfKSp7Brw1607lG1phPb4ccnY/9UI8ZOKVgTlttdUXxB/jHgWAiXVEU6pLiYQ8Zmfx5sHwjuViqPmML1yfcbcJyvC+v9ZMw/m04XEhlBE6MAQFHBFAVQFH99QBMgnQ595T6/IMXnfNLEHMkv6AS4l6A7kAw1itfb9P4Z88cvgS/gz0vF55mSrDHwLidmJBw3XhYjD5VRnndDESdqGYnRjVj5twP8dfkkVUxlYCogKQTm9YF5vSAl+i/TCulpruB/FAhONc4fdRipNXz47H/pOLTPhfPqnWH+vqEqDE3bFeLxd3fitx+qodeg44hLoFPKKVXZXHH7IVxyyyEwAMvnp+KVuxvCUxT9LydifBIITj/q1ChdovDKRoxPAsHpR2JqAtr1bhnrMEqEH5+M/VONGDulJFiShBtTvMJ9ewiaS4rbtwgZIcSZYIJUqOlrIfvnhYxQYlmQeO0xGSv38X3bczyVhKmMBDnOXxffpJ4LyeKSMvqWmbVNBpBD1txNhjNNJTCforl/GMzV9phPAXy6KGWseCjLIEkCObRNdTCoTj15ui5AGSvnkR4DyfojQ8ClMcM1ZbiQyLAo6cKUDGtidP6ajesxpvPp4hBBT5yux8N0lxVT9TxW4PqR/I0TYBjH/LfXiIkxqIaQpc3U82tR+sp+RnmKY1DjJHhTnJBqx8GRmww53wsU5gNRLMolpscITgfOu/oIHru2qZmAm0gCKdCmwspA7yHH8e+qRPQ5LwfxiVX/X24iwOdFlVoVkIdJgFMfP5d8kwpSCU6XApAKeCJvR4xPAkFsyM0vwksfLUJinAsPXH02XM7YfPw/XlCEiV/9iqQ4Fx6+eACceq5Sg82Z2bh98hzUrpaE6Q+MRGJc5Q2KYnwSCGIDEeGDV+dh95YDuG3CJUivH5updESED174Gns2ZeH2iVeiti2OgrwiPHDRazhyIAcvfH4XmrVvUGmxiel7lYxlZb3IKnD1AItgBFjzMpWHQyqgvC3ecG6sYN+LgkyTM49HF1jwGPnn9ibDvZuDXKepAzG/A8hi6NKFKlIJTFUtApsmSMkgWYIqSdo+k7TV7fTXTuX7NkQjU6ziQrGldgqpUYa6dIsQCavzifkrGPFI/kNaOUPMg1WYgu6qIgYtJxbXB3GvvxGL5bKY9Zzk04RCggo1yreoCgZFb1BFlJUFgpOEcUNbwq46p9bw4akZOzHthTq44vZDiEvQ/ybLYDytDBQFeHhEU9z90l7Ub+ap0rECwOPv7TGfn8hTUD2KHxjF+CQQxIYFf2zGglXaL1z9OzdD3w5NYxLHvDWb8MOaTQCAAe2a4cw2jS3nf/93F3Lyi5CTX4Rt+w6jY7O6lRabGJ8EgtiQuT0bs9/6GQBQv2ltjBl/UUzi2L1pPz57bZ4WR/N03DjhMsv5XRv3YeeGfQCAPxf9V8milH98MvZPNWI7fU+WwZgcXDQyCJqryZ78HIFt2De+bYswYbfh2FxLfB/GE7sIFuzRLnrZL8MuSEXs0LKVDfUNJoh+FnL6abB7bri1SDvPGIMqSyCXrB1XJDCvwsWiOdyYMf3O6dQEGUkCOR2gOAdUtxPkZCCHvhkr71lyOllzTFmmyhH3JdMQefR8UkwGSFdwbBpWUBNZAEZeKj6XlQSQwvwOLON2GS+dMTNU9Z8nBwO4nFNm/zL3XIXu7DJbhCr72/O4GXxJDsgeFyhfBjZFEL+OSqY+Zj4KBKcegX/UGY2LsHFNPJq0KTgp3FEG+ccZ4uMVNGgeheWoBIiArN1OpNf3Qtb/lS/Ml1BwgqFmRtlybJVFNBPjk0AQG7q2qo/UxDgkxLnQpnFGzOLo3rw+UuLdSHC70KZ+WsD5i3q3xT879iO9WhLaVXKcYnwSCGJDRv0aaNauHvbuyEb3AW1jFkedxrXRpF197Nt+EF3PbR9wvlXnxhh2fT8c2ncMg0b2qtTY+PHJ2D/ViK1Tysz7xEzxwyKehNJbIs2ZZGD/qbxUn6pDBhP4aBekSoJPMh6uTFm+DUT65jVeE12Q0mUg3Rzk/4sINjtOK2LkdoLuhILmkHJIUCXNGUXGI6fLEL8xgCS9EaMTZnnQp9P5ixhvH3/MEVwy84tbflVJt0npApHpEOMa0wQpf/xMgplsnZh/C9qP0QbzX4PFMWW0oz9Vrc72ElE4JV2JSI0TCE4NNq9JQlGejLcWbDFnRZ8MfwEpNQjPfrS7XNt8e0JdtOxYgLqNcwAA+Sck3De8OV7/ZmtMnWNifBIIYkOTujWxYPLt+ke82P3tNc+ohd+eDR1H7WpJeHPsxZUfGMT4JBDEClecE//3/f0gIkjhFjyrYNzxLkxZ+iRUlSDLgXHIDhnjXroqBpFZxydj/1Qjdq88AOZygbldYE4nmMsJ5nSAORxgDllzUTkc2qNtg6QLWbKk56XiHFF8XqoA5xSszquSclcFOK0kf99BHVhBHFSRCGbRYo+LPw4EF8UM94+lPPz30NiMazMKywxwOXQHlAQ4tM3SFHcNTGJaQnOXExTnBCUnQE12Q01wgdyytjkkrV1ZdxVJWj/kYJqTysUAJwO5AHIZ+wBc2nnobis4mN9ppT+ax43NGWLT++WnB2pPudfQcHI5tIQqpG9w6vfJwQA3AyXIUOMkqC4JqptBiWdQ3Vrc5GT+a5WZv56DabmvHPpmiE8M+rUzKAkOeJOdUb01jEHLPnhFwtSpU9GhQwekpKQgJSUFvXv3xo8//hhVGwJBLKiR5kXfYTk49/KjcLr8Q/HpSnyiDx16nzD3iwuBHuccR2JybBO+l2V8EggEZUOSQiwmFISdB47i6ImCmMdhJyevEJv2ZINK89m5BMT4JBDEDsZYxILUkQM52Lcju8LiCCZIRYKn2IuNf+2Ap9hbzlEFjk+n4hhVNZxS/L6Z+LuEFF6l+QetTJ/GS6gbajpgeWJfpS9kOf1/9nIR/BvOzSgzXx8CNJeTkQCd4BfnFNJWqTOSe8PvdtKm4pG2SYDq0IUjPrk5EOiSMh4NAZH5AzMcSYx/brxVjPbsriT7RYbQJS3lOEeYJV7mN62RBJAxLU8C4ND3bV+IeReXxd1lPNryZBkJ3I3i0aASg6rfWNVi1yqZ+vXr48UXX0Tz5tqyqB988AGGDx+Ov//+G+3atYsyEoGgcohLUPD+0k1ITDkV0z6WjtEPWz+s1UhTMebxgzGKxk9ZxieB4GTkYHYulv6+Gf36tkRGemqsw4mIBWu24KHpPyDR7cJ3T92AGskJsQ4JAFDo8eKypz/AsROFuP+K/rjm3C7l2r4YnwSnG0UFxVgwczGadWqMdn1axTqciDiYeQS39HsGnmIfnvtkLLqeHbvpfnZeGPMeVv20Dj0Gn4GnPx5brm3z45Oxf6oRW1HK6QAkzglirARHZJv/VAK8shpMHDLdPwgshyDniJMDjNUBgzmsLG4p2769r1C/6vDnQuWzCoi5hHPBnFJAiPxcQdqRmOWektMBcju4VflgrkXJ9Gl+zFRqSM8p5dBW23M7oMbL+mp7nLAVJNk4OXShR2La9D3Gbfr7wcgnRSq0FQBV+NUdQ+EJdk32S+cEImtZ/yGVQRfR9OmEnEimGqKUmYOKU9hUTmUi28b3D2aNgcgU2Bj0Pitx+t6FF15o2X/++ecxdepUrFy5UohSgipLncbFkB1CkDoZENNjBKcbTzz7FbZsPYiffv4X70+5IdbhRMS+I8cBAPnFHhzPLyoXUcqrKJj1y2o4HTKu7d8FUiSfR20Ue3w4nl8EAMg6klvmmOyI8UlwuvHRM19g9svfQHbK+Hz/e0ipmRzrkErk2KFceIp9AIADe46UW7u/fPo7dvyzCyMeGo6UGqW7D9mZWjwHyzEug9Nh+l5sRSlZnxJmJgHSv7mrnDhVHoRKgFQRROpmqtAY9P9FEEPQO0wEgrFqHtPEKMAithADmMxAJANMBRGBJAmQANWhr7bnlKC6ZChuye+SMtxGvDNS31cN55GEgImlFkeT3gY/K5MZl2xPUsVpj9YGtfOWtxgLUs5W3mjbzB1Ffn3J3g9x/TMCoPrjM91TXHuAroGSv3y0VikFEhT95hnpjHNzrR/e3G433G53+HYUBV988QXy8/PRu3fv6IIQCCoJh1PFq3O2Ia5q/JAvKIFg45NAcCqTkhyvPabExziSyLmqf2cAQN2aKWiSUT5Ls//09xa8+cMyAECT9Bro17ZJ1G1US4rH/+68BBv2HMQV/TuWS1w8YnwSnG4k6+JLXIIbTndsJYFIadW5Me6ffB2OHz2BwVeVz/eT7MzDmHjNZAAAqYSbXx5VqnYenXYzlsz9C/0v6VYucfHw45O2Hz1TpkzBK6+8gqysLLRr1w6TJk1Cv379QpYvLi7GM888g48++ggHDhxA/fr18dhjj+HGG28sRe8lE9t3oMMBbdk06N/uVb+QEM5dBAQXf4I9t7uGwjmkLGX0c6Y7JojTKlgfYdu0xW06e2zXGq2gFRBbiDZsx+x6DBllZAY4ZG2lPX1eLa/JQF9tjoHpLic9z5dD0hxRDgmKU4LqZFBdkilGkcwC8jgBujOKcx4ZzintJAXqRKbriPljItKn8xkCmtFO0Dum12HWlfRsZS3TCDmxSBPkNAFNu27uBhlTG+0NqdAqmzYsrj/eDUbQpkMah6MUpYizd5L+2KCBdcnSCRMm4Kmnngpaf/369ejduzeKioqQlJSEuXPnom3bqmONFQgMGrYowsU3ZcMVV/65RU5W8o5L+HJqGrwe4LJbD6NGui/WIVkINj4JBKcaR47m4e1pi9Ggfg0888TF+G/DfrRrWy/WYUVMnMuBGwZ1D3ne4/VhT3YOmtapGbHjqXFadcgSgyxJqF+z9NMYe7VthF5tG5W6fjjE+CQ4HVB8CqY9/hnycwpw08Sr0Lpnc9RtloH4pJNDOGeMYeCIniHPExH2bD2IjAY14I53RdRmcvVE1MiohqMHctD4jIaljq1+8wxc8+AFpa4fDrJN34t2jJo9ezbuueceTJkyBX379sU777yDoUOHYsOGDWjYMPg1jxgxAgcPHsS0adPQvHlzZGdnw+eruM+VsRWliEzRAwr3Ld3yJT0CYQoILsxESqiykX7X4Z1JpXVK8apPSdP4oomHPxSuiqr6bT8+BvhUMCKQy2F5WXjxxZ9rSVtNT3VKIJekO6UYVAeDaog3jJvFJgGKU6trCDBGziZDlDKFKz7fkm36G2NaWUkBoHKXDZgiktE276BiQKALSeWm49kdU8wft6rHZ5qciEDkn27Ir8JniVWC6ZRihg7JuH0F2hRIVXse+RKCVoLZzzMzM5GSkmKWCeeSatWqFdauXYucnBzMmTMH119/PZYsWSKEKUGVY8KMnajf1BPrMKoUH7xcB9/OqIUXZ2+rcoIUIKbHCE4P5n67Bgt/2QAA6NenJbp3jd4VVJW5ZdKXWLcjC1ed3RkPjhgQUZ32DTOw4KmbIUkMxT4FR/IKUDOpallcxfgkOB1Yu3gDvnz9BwBAs46NcNHtg2McUfny4Ws/4tPJP6FRqzqYuvDhiBZViE+Kx4zNbyL3yAkkVUtE1o6DqNM0vRKijZyyTt97/fXXMWbMGNx0000AgEmTJuGnn37C1KlTMXHixIDy8+fPx5IlS7Bjxw7UqKE5Zhs3blz6C4iAmK6+p62UxzuSuOcBK+fZnE3GSnv280ZOpGDH+VX0guWCCtdOuFiCxRuKYNdhBGLmcwrRX7hrstzXMDEH6ZvpbiTDyMMATSx0SJbpcQFlwMxV+8glA24Z5JQBl74SnZ5HSstFxbTuZEB1MW31OQZ9VTrtuOk8MpxJEqyvgX3lQ15skgLPM8u+/+WG5Rr0J4YYxq+UZ66Yp5UhB7SV+2SuMVnLhWU6rYw8UJJtAzRnGT/v0ID0YgRIqv5oxBfl5yKFJMsGwFxNz9jCiVIulwvNmzdHt27dMHHiRHTs2BGTJ0+OLgiBoAJp0LwIT7y/E9VrVT3RJVYU5En44OV09Bqcg8nfbwEATBjdGOOGNse4Ydo2/5Nq8BTHNs5g45NAcKrRuWMjOB0y6tetjoz0lJIrnGTsOnAUALAjK7q8KbVSErEj+yiGvDANg59/H3sO5wDQfty7a8a36P34W1i6YUd5hxsxYnwSnA40ad8ANTKqIS7RjXa9W8Y6nHJnz9YDAICs3YehKpHnG01IjkdiagKub3U3rm91N36dvdw89+Ub3+PC1Osx6+kvyj3eSLGPT9GMUR6PB6tXr8bgwVYBcvDgwVi+fHnQOt9++y26deuGl19+GfXq1UPLli3xwAMPoLCwsEzXEY7YOqVUVc9TpH/zliXNKaJy2Z4D4L/Mk0VwCE+U3+6jgbhrCOHeCjC86K4qBgRPQF5O4RIfW4j2jWl7JDOQywEl3gnVLYEMUckvQYEppG2q7hJizHRFkVN7tAhBxqxMCaZrStXVLXJwcTBrbibTraS3Ya60Z8sTRbwDCTAdUKYDib9IYxod3z7npiICoJJ+zVpZibR4VUk/r1+z6vTHIRUTJAVgitanKkE7L2suMqN/AvxuKN4BxrQ+mCFmqYCkEiQPQfJEl8BZBYOqq2Bq1Gv3BUJEKC6O8TdZgYDjtqf3odvZebEOo0ox76OacMcRuvbPBwDcO7wZNvyZZJ6v27gY512dE6Po/JT3+CQQVEW6dm6E7+fcDYcslXpp8Yrmi5Xr8NaClbj+rC64YUB0+U8m33ExFq/bjsvOPCPqfncfzoFKhGKfggM5J9CwVjXkFBTh1/+2AwDm/7MFZ7VtGnW75YEYnwSnAzUyquHjHf8HRVHhcjtLrhADNq/egRdueBstOjbC+Jm3RzWO3vrUpajbuBa69m8D2RHdalEnjubhxFHt82Xmpn3m8R+n/YLigmLMe38RrptwRVRtlhf8+KTta2NUJHmDDx8+DEVRkJ5udX+lp6fjwIEDQfvbsWMHfv/9d8TFxWHu3Lk4fPgw7rjjDhw9ehTTp08vj0sKILailOF2ima1OQb/NDPDPROu/ZLaCpYrKpr9oIJSiJjseZKClSvPROmh8lxJzKKSmdqM0wFKcIHiHCCHJjaZ10cA6YnOmWGZkjSnFDk15xPJhgOKy/VkuoeY9m6TYXEfBSQX5wQnS5JwY9c4b7z+BDCQFpMuWJkCFV/WUJ2YvQ1bn0ZsquZaIsB0ckGfrmheDwDmA2QfwFSYK+f5HV4w4zIdWpwYZQptMOLWcmsxpolcsj4tMRrKYj9/9NFHMXToUDRo0AAnTpzAZ599hsWLF2P+/PnRBSEQVBBN2xaidl0PQmntpysXjT6EogLJvC/PztqJwnwJi76qjk8npWP/LhdGdmxjLqqqDUuEhi2Kce9rmUiv76uU+ymmxwhOF9yuqp00eNbSNTh8Ih8zl6yOWpTq2KwuOjarW6p+L+rSBsfyCpAU50b3ZvUBANUT43H7oF5YuXUPRp3VpVTtlgdifBKcLsgOOWrBpjJZ9NkKHNx9WNt2HULdZpFPpatdpxpuHH9Rqfqt2ywD4z8ch8zN+3H5ff7cUDc8dyU+f+VbDB97XqnaLQ9CTd+LJm+wfSojEYWc3qiqKhhj+Pjjj5GaquUBfP3113H55ZfjrbfeQnx8+ecgi+m/mkQE+HzcdCxdpALT7DVaoeCVS/z3wqZ0hPoWU9ZvN8FEJO5YqN9aQv4GwzuownVr7zNcPPZivEtIJX8sigJSVSgOBjVO8rueiEzRhXm1KW6MtHokS1BculuKyx9l9GOsUmc810xCusPKcAb5da/AWCn4MU6DMnNJmYnI+XJmIivyu6Xs90Lly2oOLpIZFNmaG4oR6W9L7SDJADk1B5jhlJK8BEchwPJ1AU93lZmPqh6HnldLdTKosnYviHFioQrIeT44cgoQDbylU4kyJ9nBgwcxatQoZGVlITU1FR06dMD8+fMxaNCgqNoRCCqKEXdmo1ErkUfKjisOcMX5FeykVBVJqSpmv5mOogLtg2fOocCEn9c/lI2MBpU3DbIs45NAICg/bjm3J97+eSVG9atcEcjpkHHTOT0Cjt8xpDfuGFI+K2kVFHrw74Z9aFg/umXdxfgkEFQNhozqh3+Xb0HzTo2Q0aR2pfZ99pV9A46deXEPnHlx4LhVGlRVxbqlG5GSnhhVPfuUPWOMiiRvcK1atSDLcoArKjs7O8A9ZVCnTh3Uq1fPFKQAoE2bNiAi7N27Fy1atIgq/kiIqSjFDLcLuEf7PwQhxJ6g50N2VIJLKlp3VLBzuphU5vbCqJYh+9braYdYoGAVIErpsap+8YuYNnVPjXeC3FwuKO2kKeqYxiJ9eh7pOZbIyA3FrZxHgNURZTiM+JxLoZxSegPMdrgEU1X4R7I1z7ux+ETnMjNFNKOueU/5a9GfM2N6o0pmTihDXGK644pxG6BN1zPuMWNconRFKy8Xq3Dke0G+6D4YafZOZj6PhmnTpkVVXiCoTJqfUYB23fPMBUtP19+xiYA3H6qHZT+m4rH3duGMHgWQQvzg+fn6f6EogKIwvDS2IVYtSrUo7ZMerI+3HtMcD4arUzfEwuFWMWHabnTolW9pf/XiJLx6TwPkn5DBXB4AkeeAKcv4JBAIyo8Lu7bBhV3bxDqMCuGJZ+Zi9drdaN82ui+zYnwSCKoGzTo0xJRlT8c6jArh81e/w/THPoUrJToJhh+fjH3Anzc4HC6XC127dsXChQtxySWXmMcXLlyI4cOHB63Tt29ffPHFF8jLy0NSkpYOYsuWLZAkCfXr148q9kiJ6WR3cjkBWdY28wu/8RgktICs24YqwLTyRgJzc58FijMMtkTgYQLkhaug5/iLoYDngXmkQmx8QmzG9NXsEHzThRMzGbhZX9s3z/Fth7oeSROjVMagxDvhS3JBdWoOKdXJTIORKXgBIAeD4mJQ4iQobgmKk0HR3UKqQ98kaA4sIigOQHHqm8NwBMFc5c7YVOM5/I/++6k5tCQvwDzao+SDJT8UMWs93p2lbcxc1Y93b4EvTzBdTcYKeiTr+aQkZtZh0MUjH8B8evwuwJcEeJIYihMBYgSpWIXsUSEVqWAeffOq2vECFa5cBe7DXsRnFSN5dzGSdhcheXchkncWIO5wMSSFwIq8wd59IVEhQdE3NbZ/3gJBuTLkqqNIq+eLPI3gKcqxQw7M+7gWGrYsRsfeoQUpAHC6gbgE4HCWC6t+rma1fgIglcFTJMNTJKO4UEZxkQxvsQxPsYwmrYvRqW9+QPvfzqyFo9kuFBfKyMuJ9kNV2cenKVOmoEmTJoiLi0PXrl3x22+/hSw7evRoMMYCtnbt2pllZs6cGbRMUVFRqeITCE4Xpi38A+c99T5+XL0p1qFYyD2hJeI9kRddPkzx+UkgOHVYvWQTRvd7Du88+3WsQ7Fg5KwqLojO9c+PT6UZo+677z68//77mD59OjZu3Ih7770Xe/bswW233QYAGD9+PK677jqz/NVXX42aNWvihhtuwIYNG7B06VI8+OCDuPHGGytk6h4Q6+l70JNemzmDGJiRETqkddb2dYRLqB14PkjZSPfDuqNKOl9C3YgII4YF22clNG53Ven3y5iCpzodUJ0yFF2UIqZN0TPzHqm6KmsKOppIo0pMF22052C660gFwCUDJ+ava7oP+ZeYP2YkLteTgks+0pKI83W4BOLGlD3GNcG/Jczn/AE7+pQ6Mu4jr24RadP6dBHPOGxoouY9Ie2eSV5NrLJcI/9o5r7SbAmSorXPADCvAqZq0xvhUUL/GYRA2M/LE3H/qgotOxbg3MuOnfYuKQCoXtuH+Xv/sfwzWZK5tmGLYvy49x8cy3bgrgua4/B+F0q6i//9kYQhdTvoHXAnyvBnUdbxafbs2bjnnnswZcoU9O3bF++88w6GDh2KDRs2oGHDhgHlJ0+ejBdffNHc9/l86NixI664wpqoNCUlBZs3b7Yci4uLizo+gaCqsyv7GOauWI+BnVrijEYZZWrr/YV/oKDYi1m/rsbQrq3LKcKy89yTl2Lpsi3o3CEDs969PeJ64vOTQBBb8nML8OVr36Fhm/pBp9FFww+fLMfBvUfx9fSlGP3gMLjjAlMYxIJRT16OjMa1kdGiNn4eGPlqfqGm70XKyJEjceTIETzzzDPIyspC+/btMW/ePDRq1AgAkJWVhT179pjlk5KSsHDhQowbNw7dunVDzZo1MWLECDz33HNR9RsNMRWlihqlwu11wJHvBfOpQKGuGjKEF6V4lxP/nBNbglWz7ocRoAL2gxwLVTbUed6ZE64O/6t0sHvATxM02o3mK5qx+pvuHiKnBF9KHHwpTi2/kVOfiqf6m2aMme8Uv1tLcz1peaS4fFISA3SnEVMBqAA54Rd8OA3RFJE4NYnpopSjiMB8miAleQHZS/5E4rqDyeeCFi/T7hvpwhLTNJ7AaX1yqNcQ2vVxOahUYxqiIcxBu1b+OvSQdXea/tbz6tP1AP/0VId+kSoBPq2WBABefQqlokLyqpog5dVS15EswZfsQnFNCdgS+curcuq5WD2mbCRX94E8spmTRxA7eg7KQWJylFn/K5j8ExI8RcwypgGw/BvEmJbrKSGp/P4WGTeO8hTkSXA4VbgC0wmYpuHt/8bp7qZI/83gBrpyoKzj0+uvv44xY8bgpptuAgBMmjQJP/30E6ZOnYqJEycGlE9NTbXkQ/j6669x7Ngx3HDDDZZyjDFkZJTtC7pAcDIw4ZMFWLtzP77/axMWPXtLmdq6ZUhPfLFsPa4/J7pE6RVNeloKrrikW8CqVCUhPj8JBLHly9e+w0fPfgkAaN2jOeo0jTzBuZ0Lru2LXZuz0GfwGVVGkAKAuAQ3LrxtcJnGJ20/+jHqjjvuwB133BH03MyZMwOOtW7dGgsXLoy6n9ISU1HKJwFOpiV6Zj5AZkzLBK+qpjslZN4n/pgh1IR7fSJ2QYXpx0al/5MVNI5SeAYMUYugr5rndzqp+mp7vPtI14m0KoaYxfx1zFxMjEFl+qxCo7JFFYK/31DnSZs+xxQC8xGYl/Rpcro4pJK+Oh4DJN1bJ/uFSr5pwHoNwcIIdvsMIZq4aYvQnVB8I6bTj+uMFAD6anww3F5GULpYZ2prxpdL/gumLm6pDgmKS4ISSkgLgUIMih6nQqV4bwhMXv5yOx66qC2s7yhBZdOiQwFG3HmoSrmk/lmeiEdGNIPKLXwQCCGjYTHe/nlLha8WuH5VIua8XQtPTtsdtq8GLYvBmH2UrDyCjU+RLGcMAB6PB6tXr8YjjzxiOT548GAsX748ov6nTZuGgQMHmr8MGuTl5aFRo0ZQFAWdOnXCs88+i86dO0d8XQLByUKzjBpYu3M/mmXULHNbN5zbHTec270coqoaiM9PAkFsadC6HgAgpWYSkmsklamtLv1aYfrix8ojrCoBPz4Z+6caMRWlvLUcYIoL7hwZcr4Xkk8F83g14cGclwDuEzbz54Oy54sC/FPAVJtcFOp1CyVUBXNG2fYpxPHAPmz9RyKOhUrobj9ur29xUDHrMUNZ4QUpWXNKqW4ZPrekJS3XFRxNKNF3ZK090yUla04pwx1FuluKJGiOJYmZ0+WIQXvNEPxlML8aMWhT9TwERxHBUUhwFKqQPKRP3yNIqv/6VQeD5JXgi2dQnYAiEVSn/p4ggFTiVt7TO1O4fvXXxZxOaNxSzo0FiWn7TI+TdBHKuJVGHjB9n3kJDp+2aQ4rAhStHtPj0VxdklZf0RPNkwTFRWA+h3bHJQZfvARPqoziKE06xlxj7bn4pa8sHD3oQNN2Wm6K/btcOBZk9TJBxVOrjge5RxyoVafyVokLR/Y+JxZ/XQ2qGmxE42Goke7Dtv/ikdHQg9oVGP+hfQ70Oz9HW7w2DNv+jUNhfvn8sy87CA1bFmDxf5HXCTY+Rbqc8eHDh6EoSsBKMenp6QErygQjKysLP/74Iz755BPL8datW2PmzJk444wzkJubi8mTJ6Nv3774559/KmR1GYEgljw+YiCuOqszGqdVj3UoFYaqEh76ZB5Wb4l8EQZAfH4SCGLNOVedidY9miOlZjKSqkW3Ot3JxFdv/oiPXvoyqjr8+KTtn3pjVGxX3/NpU7KMKVDE9C/yqq4MWCwunD3FkqicE1pCdhShSypEGSrLT9yhfpCOps1o+4/AUUUwHE8MxPS5bkawhibIO4V0mwJv/PELOsyi/RAAxZ5gPTAE63QXVe9DIW1am5cAH4H5VO194lP1ZaH8wiRTAOYFmMTAVElrgxOJVFu3xupSlni4t5WZGwo20Yq/DvL3Yd4iro6qb7J+LYbDi1Qyp0YaSd6ZxDRHmOls0GVASUsKr/Dv/whRSYKqW71UkROhTLTtVojXv9mOlQuTMeH6prEO57Sl4IQDNdKrhiC1Y0Mcxg5pCVUpuSwAbPgzCTMn1sErX22v0LjOvuR4if9MHNrvxMtjG4UvFAWPTNmNTv2PYnrLyOsEG58iWc6Yx746LUW4Yu3MmTNRrVo1XHzxxZbjvXr1Qq9evcz9vn37okuXLvi///s/vPnmmyW2WxXYvecwNm7KQv+zWiG+Ck1TEFQ9JImhRd1asQ6jQjlw/ATmr9sCpTi6xQrE56eKIffICSz7+g90HdQBaQ2jWxFRcPpRt9mpP5X+yzd+QE52lNP3uPFJ2z/1xqiYLi8h6TmDyMm0PDxeBczHfdq3rKQnaQ4TWfILE7Kkrzpnc04Zx4wtGLyoZcyf4svrx4l3ZdnFLT5flGUFPViPB+sz4BrDbKHKBrumYA6vIMco3gVKcEFNdEKJd4Ac4O6DP26jppFDipwAORjIoTmkwJjfMSTrFZwAxTGQm4FczHpf+PaZf2MAnAUEdx7BnU9w5atwFahweAgOjwrZR5AV0t4npOdtUhkkAhhvYWR6HDIDHEx7lJm1b/3R/HOW4C/nZIBLrytp12JsJFtfT2b2pR2XAMgEyD7d7VWsQi5W4ChWwBwMSqIDSqIDviQZSrIMcjGQWwLFyVDjHVATHdpjggNqvATmkKKeYMOvzKDE9s/7lCEu3ofzrjmMtPrRreQjKB+atCko0QFUWezY4NYFqcj/Mj0eYNfmihUKIvndQlUJg0YeQ4sO+QindtdI86LTmbmQ5PA5vLatj8Mvc6tFFWew8clYztjYQolStWrVgizLAa6o7OzsAPeUHSLC9OnTMWrUKLhc4V8LSZLQvXt3bN26NYorix1er4I77v4QL702D2+/tzjW4QgEAID56zbjnInv4f8WRDa1NhI+WrwGg558F18sWxe2XJ1qybi8Z3s0j3KKovj8VDFMHPUmXr/5bTw06JlYhyIQAAB2b9qPm3o8jsevmARPcXSrnIfinyX/4domd+DVMVPM9C+hGPXEZajbPLp8Wfbx6VQco2J6RY4TPjjyfXCc8EAq9AIer9X1RLz3hoNxeY2Y4bQKIdRY6nHnw7xh7LO+KhIKs5WpPVuOJbNNQ2wjVXP2yACBTAeUCi3Jtypp51QpSN4kPjgibaU9ozM9uTmfxMl8jWB9btbxAcznd2cxn74inU8F8/gArwIohqWOQMbGSG+TrCud226e2S+z3ws9PtW4MO4agjwn+J1QquGg4i5GZYCi3zNiulPKqwI+FfCogKLC6waKk7StKJWhOInB62bwORl8TsDn1F1mijYdkHmjeyeo8M87rlppoU9eOp1ZiKati5G9N7yDQ1D+tOuRh9ufzYp1GACAPVvdePXuRohGkAKA1BoqmraJbunfiiC9vg/nXXUUW9clItQ1MEZ49att2LI2AaoS/uPB7P/LwP893CBsGTtlGZ9cLhe6du0akHRz4cKF6NOnT9i6S5YswbZt2zBmzJgS+yEirF27FnXq1IkywtjAGOB0aPO8XU6xKIOgavDx8rU4mJuHaUv/iqpe5tEcbD14OOi5GYv+QvbxfMz6dXXYNhhjeOqyQfh47JVR9S0+P1UMLrcTAODUHwWCWLN07p/Yu/UA/vr5X+xYnxlxvdyjJ/Dvsk1Q1cARYv70X3Bw9yH8NONX5BwK74IaeuPZmLLqhahi5senU3WMiun0PdcJH1wkgXl8kE8UAcVeq5tI0l1ShuAkac/JeG5Op9Kn/YFg/qQeyZQ+wxnEiVXE929g5qqyHefFGqNOwLJvkTmXAsILH33g9elT6Pj6xPdFev4ixgBGIJcDviQXfAkSyCnpziCbaMeYlodJ8k/VIwfT8kYZ900CmL7P6Vb+e2CINvZ7ZcSpAEx3PzmLAVc+QS5SIRcpkIt8/hmc/GslMahxDqhuBtUlaY9O4/3C9cvdSHOKHLMeB7S3GPFLaOm3zaK9AZqbjP/MzzuvAEgEODyAo5ggewiOYkVPzC4BTqbliKouQdUXv5ILCc48/W1FBEZMS+xu5PnX70s0WFePOfVU9FigKMDuLWJKTGXRrH0Bzr7kGJxuQlrdquNO27XJDX9iuMjoNiAXF1yfXYFRRUeNdC869c3F2mXJsA/Itet6cN41R1Ctthc3Pp4FUrSFR5bPT8Xa3wPLl4ayjk/33XcfRo0ahW7duqF379549913sWfPHtx2220AgPHjx2Pfvn2YNWuWpd60adPQs2dPtG/fPqDNp59+Gr169UKLFi2Qm5uLN998E2vXrsVbb71ViiusfBwOGW//73ps234QPbs3i3U4gpOMYq8PD344D4dz8/HKdcNQr0ZqubQ7ul9XHMkvwCVd20VcZ+ehoxj+fx/Cp6p49/pLcGaLxpbztw7piVm/rsbNg3uUS4x2xOeniuGRD8fhr5/+wRlntYl1KIKTkA+f/gKLP1+G2167Ht3P61wubZ59RU+snP8PMhrVQrMODSOqoygKbu/yELL3HMaVj1yCMS9cbTl/wa2DseWvHeh0djtUq50SopXSE7j63qk3RsVUlJIKvGCKClbsARV5/LmL+MTmts/BfsGDLOcJ0BJTk02NMNqMgKjdSaHyRVnK8NcTeT+hygTrLlhZ8z4Zj2Qrp5I/obxuk9LyI2mVVFmrwwyNzxCldBHG/F5G0IQr7l4wvXzIvxeb2kMqQfJqDimoWlJzKAQoCkjlXmdZnzbIZKgSQZW1JOcqF2Oo+2TeD7tyB5t7SoIlnxQvplkcY3z8eluqDPjiAF+CkeNKhuRTtXvqIzjyFChOBl+CljPK5wLUFH0aq6I/OrQ8U4DuUosylY5CEhR9zrFCp96AFQt++rQGfvhQ5EGoDJxuFa/N3Yb4xKo1V/5AphPP39oY0QgzTdsW4vlPdlZYTKUha5cba5cF/7D0xPu70KqTltj/wuuOAtBW9ZvyePl9uCrr+DRy5EgcOXIEzzzzDLKystC+fXvMmzfPXE0vKysLe/bssdQ5fvw45syZg8mTJwdtMycnB7fccgsOHDiA1NRUdO7cGUuXLkWPHhXzxbciyEhPRUZ6+YgJgtOLdbuz8Ou/Ws67H//ejJvOLZ/3/bntmuPcds2jqnO8sAg+3YFw6ER+wPkRZ3bEiDM7lkt8wRCfnyqG+KR49LusV8kFBQIbiqLgw2e/AKmEOW98X26iVP3mGXhryZNR1VEVFccPaw6oI1lHA86369MK0/57o1ziCwY/Phn7pxoxFaXkQi9kjwfg80hJhguKc0gZU86MfFKy1QFkqBHM5noy56QFm7ZnS5ZufgUy81IFCViCNXu23SVlPNpXwSvJiWUnyKp6AaUjcFtZ81npP/IDgEPSnEbxspZ828G0/FzGdZlx+y/FmP6miTaaQ8q8afrLZZmXZ9S1CTvGeVNTJED2Ao4iwFmgwlGk5WGSPAokcxogadM1JQZyyVDiHVDiJfgSJCguPdeVg1nCtwtQzMhybhSQmCX+oHmvuLiJP05c89z1MQLkYkDy6O4vxsy8Z+SWQG4Z5NT7dmiVVT0XFytmgEogWatn3uso3QkqGFS9jhplXYGVhbOrY/WvNXB4v7CcVxbeYoYnrmuCs4fnYOCIo3DHxToijRppXpx7+VH8Ord6idPaDFp0zENxMVBC3u5KpWnbfDwzazu+mJqG9SuSwP8j9ubD9dHj3FxcdushJKWqZvnnP9nGWUcJh7Oc+Pj1DCQkq+g7/BAWvxh5/+UxPt1xxx244447gp6bOXNmwLHU1FQUFBSEbO+NN97AG29U3AdJgaCqUlDsxcQvf4UMhrRqSRjUIbarTXZqWBevjhiG/cdzcWHH1pXev/j8JBBULf7vzhmAJCEx2Y0Lbhsc01icLideWfQUVv2wGhfdMaTS++fHJ2P/VCOmohQ8xQDcgNPhn1tlTNMCOIGISzhu/z7AmDaligAimyAE+EUkQ4+wqBbmqUBCuaDK8B4IcC8FnCyhbpBQiN+xY6xoB+2RAJAsQXU7oLpkU2hR9R4MwYwZHdoEKZI5txQvSunlGWc5MkQnMFt5FeZ0PaOeKgE+F4B4ScsnVegDQYVK+rRMXZBSHBIUJ4Pi1jbVobdtXCsXqykgQeuP+Ph4pxezxkW8OAX/cQCADKhOWJKkm30BUFxAcTVtSqFcxCB5JcgeLZm/5CU481RIHsAXL8GTxOCL1wQ1xam5rBQFYIr1WtQoU9GIX/rKjylP1IeDCUGqcmHYuy0OQ689WmWSmwNA9l4XFn0ZedLcuo2Lcd9r+yswotKRmALk5zqwfkVywLlt6xPw7Ic7TEEKABKTgW4DrI6FF25riOx9bry9aDNq1s/HDVGIUmJ8EgiqDruzj2J71hEAwMXd2qJR7eoxjgiYv3ELFmzYhkN5+Rg/dECl9i3GJ4GgavHL7OVgkoymnZrizEt6xjocbF29Ax8/NwcrvvsLU1e/DKkSP6ieDk6pmF4RI2iuKFnWNoesO0v0zXSaGBuznrOsgKeLWfxqfNDKMcb8+YRMcStYfc4lFUp8sjt/jLqw7dvis6zix+c+srcVtE9rWwFVgrXHFTKfSgzkdkBJcEKNk6A6GVQHAxwSSGJWPdCoYzh2ZIBkBpJ1lw8n3ljqcSm1TOGJX7Eu2EYAA4OjmOAoUCD7VEgKQTKW+pYlkNsBindCSXDClyBDiZO0WCTtuoyX1uJ0kuydaveeJGZdLZD547asPEh+AY0xaNctB+nDFN0YmD7Hj4yVImWm5YpiDMarpzoYVLe2aiFxq/dB0u+v078ZDjBB5eNwnoppBKsu3Qbk4o1vtuLlOdsQJIdkTKnT2IN3F29E78E5YFL44AZefhSPvrMTSglTb9csTcI9FzXHp2/WRmFoI0+503doDl7/dguaB1mF767zW+Cms1phzru18PEbtbF8fjJ8toVpxj6/F+8u3oTa9WKfvF0gEJSeVvXScN3ZXTCgfVNc1ueMWIcDAFizRxPz/9q9L8aRRMfEiRPRvXt3JCcnIy0tDRdffDE2b94c67AEgpOacZNHo9PZ7TD66RGxDgUAsGGl9je9a/0eFBdUnZynpwoxdUqRywWSnfp0PFinfwFWZcRUHYIQ7LhxyMiVxDlzwmLEEY0WECRvlBGXmaSbjylcv/w+EDTekJdgmz5nOp0AkEMCOSSoTkkTQ3QHEzEtfmYsJ0e2MPV2ZBUgH2nTzQyRShfDLA4wydYGAczHPecTOKkEyUdwFBGc+SocBT59FUZVe80kTSxT3TJ88Q74EmX4ErVcTMSLTgSLe8lyk5htNiXnlrLcNod/eiKvzJHszyVFRv4syeYY467d6wR8idAcVgqD5GVwFALOAoKkAEwlOAq1eZSKG5rjywnzfcpssbIov5zzy4SeisuFViY+rwShCVYe976eiVoZUSZRqyRkGTh+xIkVC6qFLed0qbjvjUzIESyCNunB+jhywInXvtoGuRL/JXbHAxv+TMK2dYkB5w7tcyO5mg+9BuXi5XENcc29hwLKpNZUkVpT+zCWeyK6vsX4JBBUHSSJ4f6L+5dY7pf/tuPhT39ErxYN8eZ1F+rpECqGVy8fhu/+2Yire3SET1Hx/tI/oagqbhnQA85IBtYyUJbxacmSJRg7diy6d+8On8+Hxx57DIMHD8aGDRuQmBg41goEgpIZNOosDBp1Vtgy+3dm46Hhr8EV58TrPzxUIUnGDUY/cyXi4t3odE57xCfF49fPlmHDii0Y+fBw1Kpbo8L6Bazjk7F/qhHb6XuS7iYJdl95O1AwN5MduzBkUSL0/+k5MSxtltSnva2AOsz6GO4c79ixt82LUsy2z8dnyWfErGVDiVqS7jZy6dP2nJxLSpYsjip7VUMPNENjfjGK75u/esvKdZwTiW8bpK1WJ/sARxFpuaQKNZeUpSGnDDXOCTVehpIgQ3H5nVrEbHFY7rH1HvLOLWY7Z4hM9rbMKX4BjisE5qDi82eZDQCSCsgKgUFLws/AoMq6CCZrz+33x3IvER0qMah64GoUq4QJBLGkz3nHITtK+sUgNhAB7z9bBws+r46SfrEYctURFOUzJCRT2LSBAPDOL5vhLWbmWhMV+D0vgEtuOoTzrjxiLm7xx6JkTHm8HvJzHTiRI+OOwS1RXMBwVec2GD9lD9r1yI9IaCsJMT4JBCcfP/2zBYUeL379bztOFBUjJb7ikv31atIAvZo0AAD8/N82vPnzcgBA41rVcX4F55kqy/g0f/58y/6MGTOQlpaG1atX46yzwn+pFggEpeef3zbj8P5jAIANf25Hn2GdK6yvjMZpuOedWwEAuUdOYOK1b4II8BZ7cc/bt1RYv4B1fDL2TzViK0rJzJq0PAJCfm0JlfibTxJuZN428yyF60j/lhDhyn0BMYa7Jv4biE0cCSpE8Q0z/2WYx4KFaJR1SlDcMlS3rD9qeZlUly4uqaRNUTNyJzHdRQWYuboA5s8pxaDnqoJFpCH9mJFM3dRp7Dm99OtnKsC8Wq4lyaNCKlbAfCqgaEFoDimHJkTFyfDGS9pqdQ7SprgZL6+xGqD9XoG7TzInqtnulVnPuA7474HRPi9Y8SvzmfmkuDxZJMNMXg6n5obyJkPLFaUwLceUVxPkmKo952PgdVPb04hQOSX9VFwuVHBqMvrhLFSvpZRcMAYcOeDAl2+nRVT25ieyEJcQ2V9tfCLFbJVBhxNIru7/AeDb6bWQn2t8HGAoytcUqFadCtGhd+AqWKVFjE8CwcnH6P5dcTA3D71bNKxQQcpO07QacDscIBCapwfP6edTVeQVF6NafHyZ+yvP8en48eMAgBo1KtY9IRCc7px5URf8uehfuOOd6DKgbaX1G58cj7rNM7Bv6wG07NYsaBkiQs6hXFSrnVJmh6lqc0qdip+hYitK8bmSTMdQBC+aTXAKKgIZYlQ4YSlUV5G+cew5qcK1YQof9rYNK5LdShQiPmKh4w7oj2nT9pyytjkkqLKWp4hkrS0tLE64M8KRjOvTjhniDCN9SmKQvFsBLp9gt113BUmq7iLyEBzFKiSvCuZT/M4uhwRyaXGrLgmqi4vbWBnQ3mmQWxtM1At+r2ztGO3bHVS8U8p46Q0xzl7G0oFeTrGaqcx8Unp8fAjBhLaSUEmCqie/U0/BJHiCU4tuZ+fikbd2IyFZNbX6Nx6oh75Dj6PbgDxIFTtbIyI+ej0dTFJBavC/pzOH5eDe1zPhjlMhy5XveioPJn23Dao+/BIBL41tiL9+TcHlt2dDUfxpHMuKGJ8EgvLl2IlCLF67Db3bNUZGjcAFDMqDNvXSMPO2KyIuv3rPPqzesw9XdDkD1RMiE4uKfT54FQVJ3HKlTWvXwJJHbgYBSA0ihvlUFRfO/BBbjxzBK0PPwyXty/aFNNj4lJubaynjdrvhLmFJVSLCfffdhzPPPBPt27cvU0wCwcmMz+vDks9XoF6LDLTuUTGreyZXS8STH9wecfnsfUex6Ms/0XvIGWjcum5EdVRVxYmj+Uit5R9jnS4H3v3nVeQeORFy6t7/7pqO795eiMHX98cD70ceY9AYuPHJ2D/ViG1OKT3BtqZUcM4h4xt5ST8iGzmb+Hr+k/5zhvVHnyfBonFAlVSWc1RRMIEqIK4w/QRrO2R5BN4nvTwDQApAIG3anszgi2PwufUE27J2PySFNJFEd0gZ4ojhilKchhhliEF8bNAcQgRzBTxT81GNR388ZgECmI/gKCbIRQS5UAHzkZYY3OXQmnXoLql4Gb44Cb54BtXJ9H5YgFOJXwHPzC0VQqiiYM+5Nszk5oZrTIHmtLILTkb+J/2+kaTnnjLEKm6FQVVPkM4cgOrSnVL6ioDmdchcUJw4FW3CZwUMil5bieiNJxBUHowRZAdB8TEQMQwZeQTJ1fxv8hM5EtYtS8K9r8Y+ya3PCxQXMvz4ca2QZWQHYdioQ0hKqWKZ2UOgqtp1yQ5YpuNJMkwBMOcIw4oFqWjbPQ/te5RvBnYxPglOFoo9Pnw0ZyUS490YcVE3SFLVfL8+9v48rNq4B40zqmPOM6NjHQ6KfT6M/nAOPIqCXUdz8MJFJS/jfjgvHxe8/yFOFBVj1jWXo2uDeua5cM6s3KJibD2irR741759ZRalgo1PDRo0sJSZMGECnnrqqbDt3HnnnVi3bh1+//33MsUjEIRj/vRfkLlpH6569FIkVauaecu+fP17TBv/MWSHhI92Ta3wvEuR8Mq4Wfh31Xb8+PEyzPrjmRLLExEeGvYi1v++GTc9PxJX3D3MPOdyO8Ne09rFGwAA/yzZUOa4+fHJ2D/VqBpOqVC5kCJuBwHiQzj41E1lgp/ixz+WB5EIUkDAfbJoeZKk5y3SpsORpAtVKrSE3T4EJP4mcEIUgya0hcr5ZXMeGYYvBoBUMh1E1uAIkg9gCoH5VDCFQApZLkWVJagOBkVmUPRHIxbiHEqWaW/GMbsYxZe1ESBKAf5V+PiLsvdjF+eCTL803VP6PTLvsz7NUUWQmMsB4UQQVFVSa3oxdeEW5Bx24J7hzdG5bz76DMs1h823HquLdt3zMH355qiMsxXBJ5PT8MFLdfS94BbLrv1z8cysnZAdJ4c76kSOjNsHtoA7XsWb87YhIUkNGnO1moQfdq8HEJ2BORLE+CQ4Wfhp8X+YOXsFAKBF0zR07dAIAJCbX4TEeBfkSlwKPBxul/Yx3uWM7cd5A1mSUDMxAVm5J5CenBRRnd3HcnC0oBAAsC7roEWUCkeNhHi8NHQI/tq7D2N7l325+GDjU2ZmJlJS/ImTS3JJjRs3Dt9++y2WLl2K+vXrlzkmgSAYe7dm4bWbpgIAnHFOjH7mSgBAUX4xJFmCK84Zy/BMjDgkWYbsqALWdwC161UHANTKqBZReVUlbFi1DQDw7++bLaJUSdz3zi344b1FOO+GAVFGGSQO4ZSqROxf9oPda15AsX9ItsyJCnLOzCfFtDxKAW3bZAtuiqDlebAy4QhVJMh0w4DzAccQKIjwuzLTEpcbbiIJIKcE6IKUpGiJxUnPFWXke7LnSSJJT8Ytw+/g4afr8a+DTcRh3DFLcnMCoBLkYkD2EqRiXZySGOBkgAqQwwHFJUGJl6G4NXeX6mBmUnBekOLvR1DHFPdonwZHxjXLsLTJVGhxKH4RyVilMJQgZX/Lmis98o4nXYiS+FxcfJv8FEG9XVL08lGiANwvfQJB1aFu02JIMmHnxjjUzvCi//CjcHD/Am37Lw43P7k/puLO4SwHCvIkLPqiGnc0eEDdz8mFoxI+92Xvc6BaLR9c4b8LBUVRgKxdLjhcKnKPynDFEfoMPY7E5PCDS0W9BmJ8EpwsNG1YC7IsweWUUTe9GgBg7uJ1mDjzZ7RrmoFpj19VJdxTz40ZilUbdqNzi6ohgDgkCV/fei12HTmGDvUyIqrTuX5d3Nu/Dw7nF+CKju2i6u+y9u1wWfvo6oQi2PiUkpJiEaVCQUQYN24c5s6di8WLF6NJkyblEpNAEIzqaSmonp6KnOzjaNZJe69tW7cH9533ItzxLkxZ8iRq14+9K+nicUNRv2VdZDRJQ/W01FiHAwC497VrcP51/dCsXWTityxLGD/jdqyavxYj7jk/qr7a9WmFdn1alSbMAPjxydg/1ahaolSZykb34SBUeqHoGuF+RraLV+bzEB2Vx0/rxD0YghL3HJIEVZY0cQnQnEm6IkP8dxJD0GMAZKa5qYzGuHIBogzXN+NiMUUo45H0aYJkOKQIkkqa+KKXUZkmPCkOaO4oB4MqMai6a0sNksPKEkcQQUrlBSm7s4wT4YzpdrzYFjAtNJgQap9iyr3WRnGzO+Ne8v1I1jrmc9VWPgqEE0FQVTmy34W4RBXnXp6Dcy/PCTj/xtc7Kj8ojl++qoaX7mwUUdmu/XMxfMyRCo4I+H5WTRzOcmL0wwdKVf/xa5vgn2XJeH/JRrTsWIzpv282V/szhvzKRIxPgpOF9q3rYe702+GQJSQnaVPIVm/KBABs2HkAxV4f4t2xdyMkxrlwTpeKydVSEkSEPI8HyTb3ULX4OHSqXydELX/d5Tv2IDnOjQ71MnB737I7ncpKWcansWPH4pNPPsE333yD5ORkHDigjdmpqamIL4ck7AIBT2JqIj7Y9j/kHy8wp49tWbMLniIvPEVe7N60v0qIUpIkocfQzjHrvzCvCO4EFyTO2ep0OdCue9MS6+74NxOH9h5F98FnoN/F3dHv4u4VGWqJCKdUZWB+4S9H1xFgdRkFmQoXtjdLTqggjqVQ1WCIIDZlIlS74Yg45xUABwNJen4uh+QXpmQGcjKAMchegPn0GLn8UOZ0PdKOq7J/Chuz3aUAp5J5gns0RRSmO6N0RxQB0HNJMdLUKGaIWS4JSpwMxcmguADFcEhJDKqe1wphXJ8W4Ym7Lhj17MITOAeUIdgZVe0CluHC4u+3fo53g5F+LYwXmYwvfdxxU6zivxBybZgOK0LA2ycSFJKg6AOVcgoOWIKTkxppXpxz6VHER7gyXWWyZ6sbmdvdWPxNyb/iZTQsRpPWRegzLAeVMXtHVVT0HJgDr4dh09/xaNGhAHFRfL+pUduDARcfQUYjr3kslk40MT4JTiaqpyZY9m+9pA+csozubRtGLEgVFHvwyndL4XLIuP+CfnA5Yv+xOxp25+Tgz8y9GNKyRYD49PiPP+Pzf/7FzT274qFzzoqq3fkbt+KeL38AA/DNraPQKj107r5oKPJ6sTMnB61qRd9eWcanqVO1qVQDBgywHJ8xYwZGjx4ddSwCQUnEJ8YhPtGfc+2cK3piz+b9iEtyo/PZkeVXIyJ88e5ibN+4H2MeGoa0utUrKtwKIf94AX7/9i90OLM16jSxrpL88+cr8NrYmWjesSEm/TQeshz53/ShfUcx7uznoPgUjH3lGlx409nlEi8RYef6PajbPDIXKQ8/Phn7pxpV41/HIJ+S7V9dQn2ODvcVRxMEbCVU/WfiSJKX8/V1ISV4YEHK87myTCEjSncU31eIapoRifmnpPH1VNI2RduM6XoBuaAYAElzRzFdICTVuF5m5oi3CDp8TIbAouqXLemiCoPmiPJpfRuiGOPcQqrZHkGVANWpTR1UZf8UQt4FFXRFP8B6/fDXIe45JPjvgSFSGXA+SF7ksnQX6jXgHFeWVfj0xpitrHnb+Kl+nKjGjJxfZjCRQ2BQ9R6CTFIVCCqdhCQF7y/diMSUqidIbfknHuOGtkAk8m/dxsV4d8kmOCvRHHHRDccAAC/d2QDnXHYsKkEKAB58M/YJ43nE+CQ4mWmQXh0Tbj4vqjo//bMFX67UcrT1aN4A57ZvXhGhAQBOFBbjfwuWIz01GTf071rmJciJCFd88hmOFBRg2Z49eON8ay6VJdt3AQAWb98VtSil6gvhEACVSpGrIARXfv451h88iBu6dMFdXbpEVbcs4xNF+kOyQFBBxCW6cdvEK6OqcyDzKGa8Nh8AUL12Mm577KKKCA2ALoC99h0O7T2K0U+PQKJN9C8Nk++eiSVfrkKN9FR8uv1Ny7m1SzeBiLB17W4UnChEchTJ4Ekl829aUcpvotz0xz/D7Je/QZP2DfDy4sejqsuPT8Z+tEyZMgWvvPIKsrKy0K5dO0yaNAn9+vUrsd6yZcvQv39/tG/fHmvXro2630iJrSglMYT9uVl3KZV424PkZwoqSBl6UbTt2er7ywVpzEjeHux8sNX5+HMWdxesYkWwcrLel0Myc0eBNAHIP22MaYKQIXYYwontXhDpLilowhSTmJbk3BBnuBxIpmPKtP1wscrQBRXNFeUqIkhev5jEuBUCtVxKmpvLlyDBm8CgunSXlJHvSbL1EwRTL+OdXLKtLidCmToiV5nxbRjXat5zWzk+HiP3lr5vEesMx5MKf440PQ5jep6Zh4ojINl6FAgngqAqkFzdh3MuPoakaj6441TEJ1XND+w7N4Ve2clO/eZFMXMZdTrzBJq2K9+V8GKBGJ8EsURRVPz73z40a1obSUmR/+2XhY6N6yIpzgWXQ0a7+ukV2tcXK9fh49/XAgCKVB++/XcjRvXsjGt6dip1m079M7pbDvy6MPH8Qfjin39xbdfo2x/WriXinA6kxrnRJiMNmw4ewlu/r8TZzZvi0ijzSvHsOqYJ+TuOHo26rhifBLFm65odSK6RhIzGaSUXLgdqZqSiccsMZO7IRpe+LSu0r81/bsd7D38MAJAkhn+WbkSzjo1w/3u3WqbXRYNTX+jB4Q4cn66+73woXgVn9GkZlSAFAGkNauKNBeORnXkEfS7ogrzjBXj3sdlIrZmM0U9eGpXrimfv5v0AgKyd2VEL2WV1Ss2ePRv33HMPpkyZgr59++Kdd97B0KFDsWHDBjRs2DBkvePHj+O6667Dueeei4MHD0bVZ7TEVJQKZjwyYdZy5rFILFSkKZzMsPgYggnx54L0HCyhOe+QCqjDLA+W84ZTKtIvMbwjC/BfJ+e28t8HvVGJi1cly3NGpCVVUgFJ5ZIXMWgJ0Y26jJlCkyoBikRQGNOq2gUoPly9vCFyGSKL6YQCoMhafiioulMq2ItN0PJbEYHgj8Vs3yZKEX9P7E0ZdRmsApXtvClK8U4lPh67ww3+fctbQ7K6pMznEnc/DEHQ6NOI0RC4eHGQd6MF6T4SVGJQdcuYSqVpQSAoO4+9swudz8yPdRhh2bkxDq/fG/ofYp5adTyYMH0XYjXzZsiVObHpuJwR45Mglrz51s/49vu/0bBBDXww7eZK6bNpWg0sffo2MDA4SvlFJlLaN8iALDGkxsfhu/WbsOtoDv63eGWpRSnGGOZccxXWZmVhQJDE3f2aNka/po1L3fa5rZqZ+5OXLseiLTuwcPN2XNC+NVxy6Vbqmn7ppfhlxw5c1aFD1HXF+CSIJUu+WIHnRr4Op9uJmVveRFqD8pnSGg6Xy4G3vr0bPp8Kl6tiP+BkNElDtdopOHEsD4f2HsWOdXuwY90eXPnQcDRoVbdUbY6bdD16DeuMtj0DHah1m6bh4XduKnW8rbo0Qasu2ri38JNlWPDxMgBAt4Ht0bFf61K1ecek0WjYph66DekYtRDHj0/GfjS8/vrrGDNmDG66SbsnkyZNwk8//YSpU6di4sSJIevdeuutuPrqqyHLMr7++uuo+oyW2DqleFeRHQmas8V+3l7ceE1t7l9NFLDPfwvjuorwJ3BTF+NcRJb6xjUFOxdFP5YOGd+uIUhxZSR92h0Z0/S06yTVL4AYag7JzD/NjemOJKY7lNwMqpOBXAA5mDUfE2ARjMgB671XYL5mhkjl8ACSz4jduPcMjPndUiQxkFuCL55BjdP7N6bs8W4nAKEVTJvLKdgqfdw9I9UvnPGuJNPlFEKIM0WlYOWM47K/D8lon3trgGwbFwOvuZpvkyjfLgokKPqFKqjYD8ACgZ3k6j5cdms2GrYoinUoJbL93zhIkgpVLfnv5PgxGYu/qYb+F+bA6aqE4CoIIuDnL6pj9ZIkON0qLr35MJq0Ka60/sX4JIglR4/mAQCO5RRoP05WkvXRWUqBJVp6NG+A3566DW6HA9+u24g3f1mB63t3LlObGcnJOC85OeT5A3kn8Piin1E/NRVPnDUAcikdD/2bNcEvW3egT5OGpjurNHSpWxdd6mpfcHNzc6OqK8YnQSw5diAHAOAt9qIgt7DS+pUkCS5Xxb/fq9VOwUc734K32Iv92w9i29pdaNqxUanyKxnEJbjDJiD3eX2Y8sBHOHIgB/e8eQOqp6eWqp/2fVoiLsGFxGoJaNQmslX7glG7fk3c8Kw2xbIs45OxH6wdt9sNty3/n8fjwerVq/HII49Yjg8ePBjLly8P2eeMGTOwfft2fPTRR3juueeiirc0VI2cUkDkLiieQM3Jf8pwQ6mcWmVMfeMFK0PwsXfOO2g4e0xIXYRIm+5mzylV4jVwDqdg1jFOUALTRCXIkta+qgtQPsUvWHFTzDRBikCqqtVjWvJwYkwTpyQtd5P2CKhMz+sEzSnFT9fjBSkzgbgRouFOAsAUTZBxFhKYV7smxuUO4K9PE4YIUrEK2SVBcTPtHUl6P4ZriReVgr0A9nusT1M0XV6GK8oQkiR/LAFCc7jXi3t5DWHKku8KuutL70cFzOl7Fo3JEPmM61G5t4rRvnH/o/x3QvzSJ4glNz+xH0OuPBbrMEpk304XXrm7UcTla6X7MPCynIoLqJJY+3sSXr1Hc4ddc++BShWkADE+CWLLvXcPQdu29dC9a5NKE6Si4Uh+AZ7+8RfUTkrE+MH94SiFOJMSr01LvKLrGbii6xnlHWIAn//3L37ZtRMAcEnrNuiYEX7VvVBc2aUDLj6jLdwOOWavjRifBLHkgtsGQXZIqFW/Jhq3axDrcAJQFBXvPfoZDu45hDtfvw4161SPug13vAvueBdadm2KWVsmV0CUVjau2oYfpv0KAFjYqwVG3Ht+qdpp0bERvtj5JiRZKvXUvbISyinVoIH1vTJhwgQ89dRTlmOHDx+GoihIT7dOIU9PTzdXCrWzdetWPPLII/jtt9/gqKRpAlVDlOLz7RiYc550gk63sz3nRCSmEphdkOJFqVD9hMDqprE5oYwPDmV1SZU0vVRfXQ9Msz8Z0xM1ZxLpIokegwRNvDJELEOUkgHI+sp2su5UcjCQEyCnvlqfA9rGuYEsOZ44scdyg/R9RzEQl0tgipboPNjLyq9Gp7ol+OIlKK4guaSM53w/doIJS1yeJyOXlimkGe6lYG2FmboX8GgXpOzHmXadlre3zfVlHGN8v/b3dRSokKDqParilz5BJVKtlhdpdb0lF4wxy35MwVfv1oImG0f2N3JwrxPzP62Gcy/NgdNdcvny4nCWA9OeqwN3vIrrHjyAGullS7jZpmseJn+/GQQGiRE+eCUd5152DPWbegAAa5clYs+WOAy84igSKiAPmBifBLGkRvVEXDWiZ6zDCMlX//yHnzZuBQCc16YFujeqX2l9v7FiORbt2IEnBwxAj3qR99u/URNM/3sN6iWnoHmNmmWKIc4Z268kYnwSxBKH04ELbx8S6zBCsvXvnZj71k8AgGYdGuHa8RdXWt/Lf/gbH774LYaNPgsXjjk74npNz2iIhq3r4lh2LroOLJtI76zg6Y0lwY9Pxj4AZGZmIiUlxTxud0nx2AX/UI5hRVFw9dVX4+mnn0bLlhWba4wnxtP3EPCl2xR9QhQvEd7VRABTFN15wwCHbJ4w21LJrwyESTrmz+dkC0QXuojPR8W7pGwr7ll0HGMVQHM6F5fQiHNdEQCSJUCWtH7MqY3g5oYBJElcfHp9lUF16I4oPYE4PwWQZECVCarEoIL8U/F0AUsF5ziyJwDn7gm/wh0SAEcxg/ME6fmirCER0/Q1YwqdVKxCLgYUtwRFZqaQRLzwxbi+bcIO+W+Bdq9s0/f4fd7hFOCksj/asCQ4V/QmJWv7jJ9GaryuxmqD3P0y7hUZ5wEzJ5eZO0sKcq9LQCEGRb8hivilT1CJXHlXNjqflRfrMMJSXMjw7M2NQWp0fxv1mnhw3lU5FRNUGD58LQO/zK2BN77dWmZBCgDiEoDWXbSplTNezEBaPY8pSAHAi3c0wqw/NsBVQcKbGJ8EgtD0bdII78b9iRoJ8WiVXvH5ZAwKvV7836qVAIAZf6+JSpTqmJGBtbeNLXMMiqrCp6pwxypxH8T4JBCEo2GrumjYui4O7zuKboMq3oXJ88mr32Pnf3sx49m5UYlSiakJeO+v0PmSIoWI4Cnywh0fu/wN/Phk7ANASkqKRZQKRq1atSDLcoArKjs7O8A9BQAnTpzAX3/9hb///ht33nknAEBVVRARHA4HFixYgHPOOaeslxRA7H8KkAx3UZgNuroXLAdVkGNMBaCqYIrqFxccMsCYJX+Pv5ZfAGIhNjNWiXEn9L4lyRaz7bweZygzjGVKm7HxwpksAU5ZdzxpL5mRt4np94aM2CTJEg859ZX5HLoLSp/6Z5nG55D8yc8lpk8RhO6q0jZ+9T1DnDKvg3NQMQDOIsCZR5AUQFvNj78P1tjBNDHKl6hP37MnN7flbbK60PxCkf814uroL4E5ZY9vkyvHL5bIPwa+KLbXT28r5GKLxtQ94o7zhTj9MaA+LwRGgWHvtNs8BVWX1Bo+PD1jB174ZBvS6hcjeikydrjjFTz8v12Y9cd/OOfS6Fc7qmxccYSRdx6E0xWdwJO53YWfv0iF11Ny2bJQXMjw8l0NMG5Yc2zf4MYtT+3Fh3/+h0atyp5fQlGAtx6ti1vPaYHlPyZjw1/xmPdxTWTtcZi/hbz9y+Yy9xMOMT4JTgZ+/nMzbn3mM3zx09+V2m/bOmlY9cDtmH/HaKTEVc7qgAAQ73Ti8rbtUCM+Hpe1Kf3Kd6Ul3+PBoFkz0XHqW1ieuafS+zcQ45PgZGDn3iO4bdIcPD97EYq9vkrrNyE5Hu/++QLm7JuK1t2alVyhHDn/hgFIrp6I4beUvxASCS/dMAUXVb8Bn738TUz6BwLHp2jGKJfLha5du2LhwoWW4wsXLkSfPn0CyqekpGD9+vVYu3atud12221o1aoV1q5di549K8ZxHPvpe7zLKFwxfofP3WQ5rok5JAHMIWvtenyAooIVeswyAPOLYbZYzKf8OQnWsrzQFCwRexCXFB8t6X1ZhAo+75LRtsSgumSQQ4LqkLSE5gRtWiL562hT0ySoLhk+XYACoDlvmHE92qY6wOWGYlBk7RhkTnDS65rPCaaowws7xOfuVAHmAVwnCI58ay4k0t1gjGtLdTB/TimfCrmQQXECiou7n4ZjyrhG/d4y/fskn2zd8rdJtqf2t5dx3nCb2RxXBowvZxQ1ypO/HpgWk7EZx1TZuFaYK/EZieCDxcM7w0ynWJTmCCIJqn7zSSxpfFIwaMRR9BpyAm/cXx/Zeytxblg50Oe8XJxz6fFYhxExxYUMn72ZjiDSc1gatyrGwCsq/jr//DUFi76sgZF3HkSztlq+p8Sk8vnQuWl1Ar6dWRuDrzyCvTvisG55Cu59LRN1Gvrbr1az7G6scIjx6eRl5szfMOerv3DDDf1w6SXdYh1OhbEnOweP/u97yB5g3cZ9OLtHC9SqnlRp/Usxyqf08uDYTRvKzD2OXTk5AICVmZno0yCyVVHLGzE+nbysmr8Wr9z8Ljqf0w6PzryjSuaMKy9ueuFTHHZ4sWLHHnRpXg9Du5ZuJbjSwBiLyb0del0/DL2uX6X3a/DHPO0HipU/rMGVDw2PSQz8+GTsR8N9992HUaNGoVu3bujduzfeffdd7NmzB7fddhsAYPz48di3bx9mzZoFSZLQvn17S/20tDTExcUFHC9PYjvq2pxEIVfjs7umgADnlOYugl/80HNKBZpsGBjnzmKMWZ1JoWIKspH9GPiOgp1jliImnLbEuLZJljSHl+GQkph5nUzVc0np5VWHBNXBtJxTev4o4zrJnLrHtHOGI4rp+9wxi+DE5XcKcBmxwAtxFAOOIkD2AbLH6jyyFmdcDiWmTduL11beC5pDiuvHcB6ZK/OFclIF2SzhGi9NkK4A63G+gMVVZdwPwxGlwOIAM11aLHxofP+WvkLFEQYFzLIJqj5fvl0bFzZrj5/nVMPJ4pJyOFU8MW0n7noxU1vl8+QIG19Pqw2nSy25oI1dm+JwWZu2WL8iAWoF6jZ9zjuOr7f9g2vuPQAi4L8/EnBt9zZ49Z76KMiP/O/5t+9TMWNiOooK/XWadyhExz65WPh5dcx6JR0AYdKD9fDU6MY4cVyqlNdQjE8nL998+zfy84vx/fdrYx1KheKQJcAlgQDUqpmEasnxsQ6pVKzbewATf1yMrdmHK6wPlQjLM/dgX5SrSNlpVbMWLmnTBj3r1ce1HToGLXOssBDLd++BV6m4AViMTycvv8xegRPH8rF0zh/IP14Q63AqlGSHG1AJDklCmwaBU69OBo4cyMH7E77Eqp/+qdB+tq/bg61/7ypzO9c+cRladGmC0U+PCHre6/FhzaJ/ceJYfpn7CoV9fIp2jBo5ciQmTZqEZ555Bp06dcLSpUsxb948NGrUCACQlZWFPXti51QFYu2UIuK+ghn2Ih37veZcKRSkEEEXARgDqXriLknS3DSMgSkhvogEW1lP0ts2FQq/GkGmGsF1H+qRb9OWV8ouQADM2r+kTatTZYAcxpQ9AnwqmNcH5tOf6/E7in1QHRKUeCe8SQ4ocZI2XU/vkCSAHHp+KQfzu3IYQCBdBNPFKOZ37RhOJcYAhcHvqGJ+wcrImyS59GNEUB1+AYn0dsxr1XN8Md1BJXsIrlwVzCvBmwCoLgZy+GPhbyQzRB4C4IV1JUCjD6Me8x9nBH8SdXubxnND1FRgzQ1l3I8g+0z1318mAfAAjmKCXKQd9yUA3iT483mp0KY12r8AGveTjyNEbqtwqORfkUGNsq4gVjB4CitnyfDyolm7Ipw5tGxfRGLBh6+mw+ctzW8xDM3PKMIZvSv2w64kAfEJ/v0fPqqJQ/tcuOiGI0hIjPwPevb/0vD4u7sQF++vs+WfBPyzXMs7YExDJJXhvGuOIDk1eqGuNIjx6eTllpv74+tv1uCaawKt/qcSdWum4NOnR2HvoePo274xHPLJNTYb3DX7OxzIzcNfu/dhzm3XVEgf76/5Cy/+/hsSnS4sH3Mzkt1u5Bd7MOnnZUiOc2Ps2b0gR7CC4JqsLMzdtBEA8PeBLAxp3sJynohwyayPsTc3F6M6d8KEgRUzhUeMTycvl4wdjKyd2eh67hlIqpYY63AqlOnPXI2/N+1F9zMaIiXx5BTNP3juayz4ZBm+mrIQX+6YjITk8p+uvOnP7bh7wNMAgFd/ehRnnNkaRIQ5k35A5qb9GP3sSFRPSy2xneJCD2a98A2K8ouxYt5adBoQOMX5/+6agZ9mLkaD1nXx/tpXyv1aAOv4ZOxHyx133IE77rgj6LmZM2eGrfvUU08FrOpX3sTeKWU+ckJPWPEvmMdEhwB+VTrzmL1PPil5sHNmXijdscRtfotNiJi542S5vsBQg+4wrR5J+iZLUCX/bD1SteThpJJlFpnKoK/Op2+S1o7KmJbEnN8YzPzqqpFbSp/SR0xry9iMhOCmY4qbxke6oKUyAhSCVExgHmjJzVX+0pj/5bFcNgOBadcnAySRKXqZ/cAqCNn3eYGJ8TeE+AraZqmrT6czptQZmzkNj0gTzVRbm3ZFURfkDPHNTBSvC1WqLoqaQlOw9ozXnT9kvH2jFqUkyyYQVAS7Nsdh279x2t/6ScSQq46itG60resSkLnVFfXf5P5dLjx6VRPkn4jejfTg5Ez8uPcfND+j0KyrqsCjVzfBZa3bYfcWd9A2/2/eVqTV91rOte+Rj0/X/ofa9ax5yyZc3wT/G18PSiWkpiiP8WnKlClo0qQJ4uLi0LVrV/z2228hyy5evNicbsBvmzZtspSbM2cO2rZtC7fbjbZt22Lu3Lmliu1UZujQjnjn7RtwVr9WsQ6lwmlWtxb6d2x20gpSANAqvTYAoHVG7QrrI7dYm2Jc5PPCq692/e0/G/HRyrWYungVVu7IjKgdJ7fEerBE5wTgeLG2QMOxwtD59YioTE4q8fnp5KV1t2Z4c/EEXP/EpbEOpcKpUS0R5/ZqddIKUgDQuG09AEBGo1pwxzsrpI/83MKA53s27cM7D3yIee8vwtw3f4yoHSYxOJzavwWuuOCx5h45AQA4cTT8Yj++MuQAs49Pp+IYFVOnVNjP54YjyVyNLnwjhuxhFuNXtgM0wSbAosQ1wxiXxFwTnQiARcQyCPY+sJUxp7vx87BUvZxtRT7I1nokS5pLyiVDcWvT8UgFmEpQnQzklU2dQy5WwBQy4/XrcbrQpK+2p7ULkAPaNDnDCGaINYYwxDmhTEeQIUZxK81px8nvmmKAL1GbwieR1jdUAD5d2JH4KXvca6Q1A3gAVQIUN0CG48r+eTCYsMPnhSI9bEW/Du72W9xOhgsJ/rrMBzhPAHIRzKmRpvDmALzxgBqnPefjMd1gDIBTE6F8TgaWT5A82lRGVfXfQ0PAYuSPz7g0Sz4v/TGsPhsEFQyqXkuNurZAEBn1mhahTqNizR14ErFsXjKi/6vSaNyqADXreIPOMA/H+pWJaNGhAE6nGrauzwvkn9AGPXecgriEwH9+iLSk66sXp6B1lzxUq+VD7jHZLG/ApMCrZAzYti4ORfkSkqtrynlhngyfV0KvQceRlysjpboS9fVFQ1nHp9mzZ+Oee+7BlClT0LdvX7zzzjsYOnQoNmzYgIYNQ+eh2bx5s2V1mtq1/V/UV6xYgZEjR+LZZ5/FJZdcgrlz52LEiBH4/fffKyyZp0BQ0bx11UXYczQHjWtWr7A+7uzRE3WSktGmdm3UiNe+IHeolwG3Q0a804nmaTUjaqdDegbmjrwaHkVB93r1As5LjOHTK0diZWYmhrdtE7QNRVVxzWdfYO3+A5h04TCc16pF0HLhEJ+fBILK4dI7BqHXeR1RIyMVsqNixP8u57TD4x+Pg6qo6Dm0EwAgrUEtpDeujUOZR9C+b2Q/sLjcTrz1+9PY+d9edBsYPJ/SPW+NQYez2qDrwNCrEn7w/Nf49LUfcMntA3Hr8yOjvh5+fDL2TzVin+ich4XcKRGC4VYhc0pbwHkgUDwKiIFZHU7BEpkHqRPYps3NFUSBCy7K6c4l8z+AGJmJ5UjVtDNVYmCqChXkN+IYgpZsOKCgO7x0144E3S0VqIuZK9QBFqFJ5QSqAIcQL/KpAPMxTTgLUoVxxe3XbTiiVOYXvfgphODqBtitDFHJdlPJYiODZZohAzctznj06ZtCmiil+u+DsaqgdkO4izLcUXw70B1t0BKdKw7mvy5oIpbl7RlKKLVpqpEiljQWVAYHM90oypeQkFSxIkZ506pTEVb9XLpk8vt2xsHnYdq/MVFcc/P2hVj8dXVIcpBxV6cwX8ItA1oie58LTdoUYvIPW4OWffbmRlg2rxoAYNOaJIxo3w6NWxfizXnBy9vpfm4evvhvAwBg1c/JeGp0EwDAY9c2w9jn9+KiG45EfmGloKzj0+uvv44xY8bgpptuAgBMmjQJP/30E6ZOnYqJE0Mv+5yWloZq1aoFPTdp0iQMGjQI48ePB6Al+1yyZAkmTZqETz/9NOoYBYKqQG5xMVIS4yBJFTdAxzmcuMaWA6pdvXQsH387ZMbgdkb+FaNjRkbY863TaqN1WmjX1/GiYvy1dz8AYPGOnaUSpcTnJ4GgcigqKIbEgLiEilvchzGGfhd3txyLT4rDzE2TUFzoQWJKQoiagaQ3rIX0hrVCnq+WlopLxw0N28Zv3/ylPX67ulSiFD8+GfunGifZ79yhMUQGXgQB4F9lz3BCWSrpx2U9ObgsgSTJeszIm8QnBA+WxFxvj/i+7Im4jX1LTJJ/kyUzUTk5tFX3yCWBXDJUtwQ1Xoaa5IA31QlfsgO+FCfUJCfIJYPiZVCCA754Scsn5fA7n1QXoLoZyM1AbgBOAHEAGZsbgEPXcIwE5w79eBwA/bx5HaS5kUDMn/eIaQ4nJY6B4hjIpedQcmj3jZ/+Z94TyX8/SWaAnoydnPDnk9Lj8b8O3OaAP1m54ZTS3UuSMT3PeG2IezkMoYp3XDGAMYLDBziLAYcHcOmbswBw5mub5IVfKWL+/pm+TxJACUBxTYbi6gzeZP0+cvFb9D37mGKJpxROqVJaOydOnIju3bsjOTkZaWlpuPjii7F5c8UuDy84eUmt4UFhgXxSCVIAkJsjIepEbTrVa3uQlxv9NR/c50TvoTlwOEOLRsePMNRI96JN13z0H54Dd1xgWZ8X+Ps3e64Mhtr1vNi+PgEb/4rHhj/jkXc8dID8P1vZ+5xo2Skf8Uk+SBKhc7/j0V1YKQg2PuXm5lq2Yn1KkB2Px4PVq1dj8ODBluODBw/G8uXLw/bbuXNn1KlTB+eeey5+/fVXy7kVK1YEtDlkyJAS2xScvqzYvQcP/fAT1mUdiHUoQdl25Aj6vvsu+r7zLv49eDDiev8dzMa1n36Jt1f+Uab+E1zOqASp8qBGQjwePbs/BjZvhlt6lG51yFN9aozg9OBA5lFMfnwOfvn271iHEhSvx4fbuj6C69vci+/eWRhxvRPH8vHsqP/hlVvfQ3Ghp9T9O5yOqASp8uL2F69C90Fn4M5XSpfjT0zfqwxCfUqP5GdfriwRwIxH2Jw1RjGAN7lYm7DHxGz7tjIBkRnT/YLUt/cVwhhj3TGmH6oqoEr+KV/mBRCgEMhHIFVTXIg0VxUxvyvKcE2pXL4o3gllJg03bg53LsBwRgAU/30lRS+r76sSQXEAzMEAn6azgfTpecQ5pbh2GYxpcprDSnNNsaA3KpTTKsCGxbj7xJfhpvoZCdzN1fP0NASqIRwZgpVRXQHgIzCFaX81+lQ8yz3iLWKktcWPGUb+qpBfiW0OqtI4pVQwf6LOKCStJUuWYOzYsejevTt8Ph8ee+wxDB48GBs2bEBi4qmdNFIQPQV5DtRM88Y6jKhRfFKQwSEy8nOdqJnujeqfJgDoPfhEiWUyGiqY/P12AP6h397H87c2QsGJwHwGfy5KxZ+LUgEAl9x0CLc9sz+iuC4afRSqT8LUJ5Nw5wt70aB5xSeVCjY+NWjQwFJmwoQJQZNpHj58GIqiID3dutpQeno6DhwILg7UqVMH7777Lrp27Yri4mJ8+OGHOPfcc7F48WKcddZZAIADBw5E1aZAcN9383EoPx+bsg/h2xuujXU4AezOyYFHz6204+gxtE+PbIWu91f9hZV7MrFyTyau6dwRyW6ri2Ht3ix88+9GjOh8Btqklz5XlUdRcKygEOnJSaVuIxg3du+CG7t3KXX90n5+EgiqEh/930Is+uZv/PTlX+h1TlskJFWcG6k0FOUX48DuQwCAHesiX+3tt6//xLJvVgMAzhzeDb2HdbacP5J1DF9Mmof2fVrhzOGlE6YBgIhwKPMIatWvASmChRoipes57dD1nMAk6ZHCj0/G/qlGbEUpi8sozLkI2mH6r9+mYyrIN3rGlQfgzyFluKP4nFJhYggrKjHdIRWuLq/M2JxWRlwkS1oeJolZV4LTRTfJp22yRwUjwCdLUOIlKAmS5laSNHeS6mQW15Th1uFXziPeUWQIOoYbiVn75ae9SaSnP9LbVSVA8TItNgUg0qchknZt5kp8xg3Tlw7Qcl0xqHEMShzTnFxBbp/ZtxTkvCE68ecYV968734HFQP8QpIeAzkBVWaQvGQKU4z0e+3Qcpib94XP22I4xsjvOONdYUbuKcYAJsMqlnJiIAAzV35pnFLEzTmmKGrPnz/fsj9jxgykpaVh9erV5pc3gcBAYoRt/8ajXY8ClOO/2RVO/aZF2LkhDl5P9DkMGrQogsMV3T9NQPmVb9K2ENVqe3HkgBN/LU6BEmQVwWOHZfz0WTX0GJiL6rVKzkKfXMOL8645jI59K2clxWDjU2ZmpiXfk9sd/gM0s90gbTpl8JvWqlUrtGrlzxvRu3dvZGZm4tVXX7WMa9G0KRD0aFAPP2zagh4N68c6lKAMaNIEj5x1FnyqimGtWkZc77xWLbBw63b0adQQSS5XwPl7vvoB+3NPYE3mfnxzc+nEOEVVcel7H2ProSN44ryzcW33TqVqpyIo7ecngaAq0bZrYyz65m80aZ1RYUnEy0Jy9UQ88end2LByKy6/5/yI63U6qw2qp6ciLsGN1t2aBpyf9dxXmP/BUnwzdSG+zJyCxNTSuaGm3DMTX/9vPvoM746nv3qgVG1UBPz4ZOyfasTeKWVgz60TzTJFdocUUdBUPcFa9ItJ8Lt+gODfDPQOuNlbtjZY0D5KisFyzhCFDFFN0VxQpqCj/4zOvATJq4J5fFolp3YBRLydSjdbUaBDyp+IHabLKsDdxTuoDAcSdy8MNxUR+XNBxWudEdNm7hn5oiSFa9jQ/hRoziGjXW5KncXMYLjE/F0H3ktdJDLr8e4p/qIUfTPKcI0pDi2Zuazo+qTid0yRpA8Aqibi2ZOw8zqjmeOKoOWpMmLRz9uvzf6Ud/lF7ZQi7pc+/TE31/qF0+12l/jF7/jx4wCAGjVqRBmB4HRAdgFtup5cghQAbPo7sVSCVI00L56auROxXIzrugeyoarA1V3aBhWkAGDx1zXQrntBRIIUAJx76XGce+nx8gwzLMHGp5SUFIsoFYpatWpBluUAB1N2dnaA0ykcvXr1wkcffWTuZ2RklLlNwenFpIuG4YmBA1AzofKngESCLEm4ubvfKUBEmPDLL1ixZw8mDh6MbkGSiQPAkFYtMCRMLqZ2ddKxP/cE2tdJR3ZuHhLdLiS6A8WrcBT5fNh++CgA4J99WTi3VTNkJCdVCRE42PgkEJxsDBvZE30HtUdSShxkuWp+SOs7vDv6Dvfne1rwyTJ8+sr3uHTsYFx409lB69Rtlo5Pt04K2WazDo0AAHWapEHx+XDsYA6qp1eLOrYNK7cAADb9sRWH9x1F9fSKS8YeDfz4ZOyfalSdd2uwexvpP1KM+c1NoZrjczgx5s8PJct6Hic9n5S5MX8eKWMz7CsIIowYDimZ6yPcZvTD56Di8laRQwLJkuaUArTpcIq2OYsJrgIFjgIfZK8KyBLUOAeUOC33FBlJzo38TC5o7iMnNBmSz9PE5Wey5GuSbBdpCEemq0h3Xjm5zQ3AqeWu0txeDGTklHLoKpVTyzelOvRrdjCQS4LqZlDitZxXvHPI1I1sLiLLZlyHg9skbtOvienuMj7fFN8+uaD17wTIqcWsuaeY6aIiFwAXd3+Y9T1nhCMRIKvao6T6n1viYtBWLzNEQv245a1ifx+XQLD5xg0aNEBqaqq5hUsIDGgfYO+77z6ceeaZaN8++EoTgpOD7ufkok23PEQvb4YnP1fCyoUpUCp+xle5MmJsNoZcdQROd3TLhhfkM6z4KQW+KjBj8cxhOXCFiX/Z/BR8/EYajh2K/YcoO2XJh+ByudC1a1csXGjNQbFw4UL06dMn4nb+/vtv1KlTx9zv3bt3QJsLFiyIqk3BqQeF+WGUMYZaiYlVQkiJhKOFhfj4n3+w49gxfLpunXk8Oz8PO48di7idNy87HwvvuAHnNm+KAa+8h4GvTcOx/MKSK3IkulyYdNn5uLpbR2Tm5uKsKe9j0m8rAGguqtlr1uGbdRvD3v+K4lTP1yI4dSjp7yO1RmKVEFIiZfbr85C16xA+ffV781hhXhG2/bMbqhrZj2wX3ToQsza8hufm3odRze7ElfVuwdpf/406lnvfuRXn3zIQvS7oiqsa3o57+08w7/dfP/+LOW8tQFFB8NyXFYnIKRVrovhHyWLoYQAxhpC+JVNgYQHuH8tjBP3594N5syLDFHuMfd0NRdCug2QtTkZkOokYAyT9D5VI1XJPKQzMZ9wHBqikG66Y1flkTDMzpqHZXUlmUP74jBX8TEcZ46xpiv4oAYqLoMoEnwtwFDI49e/DskcP3QkoTu2YwwPIXpgptCQv/T975x3nRLW+8e+ZSbKNrZSl916kNxEB6TZEsIu9IIoFy9V79Vp/9l7AclXsomLFgqAiKqhIlya9LAtL216SzJzfH1Myk2TZwtL3+Xyym8yc8p4zk5OZZ573fVFKBLrTdVC4bXHNWZT3VnwoYSqihEX4YGxTAgYxZbkoStVBgilGxjwpAG9IJaWYai7dY6qpwghQcCrZHAZZcxlGoknHtohMfITslQ7by4toT/oq6h5zww03sGzZMn799deKdV6NIwrtuhdw+qW7uffSSJnzgSKllka/EbkGqXoUYcjYbF7+bwMCJRW7WEtK0el/Wu5hV4ZJHX6YnoZ/P/Yv+SWJsdfuJrV2xYi3Q4EDVSJMmjSJcePG0aNHD/r27curr77Kli1bGD9+PGBkzsvIyODtt98GjMx6TZs2pUOHDvj9ft59912mT5/O9OnT7TZvuukmTj75ZB577DFGjRrFF198wezZs6vXv+MU/mCQC9/6iHW79jDlvFH0bdb4cJtUYewuKGDy/D85oV5dzurQjrS4OM7p2JHft27lXPNBU0ZuLkPfmUpxMMibo0YzoGmzMttVFYUmaSl8t/wfJJBdVMyuvAJSE+IqZN/wdq0Y3q4VXZ5+CYDFGUYcvG9X/sN/v/4BgPSkGvRp2qjUNg4GqpVS1TgaMOX5WXz+yQIuv2Yg51989D080YIaHzz6BVJKLrhzFB6vh7ETh/Pe418xduJwwLgPvvGUB9m6JpPzJp3G5feOKVfb6Y1rsWLeGgpzDbJ8099b6TKoYg/XW3Zpys1Trube0U8AsG7RRnRNZ+/OHO4+91mQUJhbxLi7RlWo3QPF8aCUOjJIqf3N6/6eRDl89tx8koOQEmYbFllgxXuy1FBWJrzweFLR+irNZAWH6qkU+/dHsFkqKwuqYmbeE0ivEupQFwipowZA9WsGEaIq6PFegvEq0huS2AgrnpSPkAoKbEJLj6KGsgkUi19zEimu8tJNZpkxvaSpStK9ZtFCg3RSzODoupWdzwOK36yuhBRXutdQhSm6uS1iniI/u+IxmYSUEjSJKdPtziKKRMAgwsDYruMYq6WoEoYKzAo0LjSTczPVYbrPqKsEw5RWEMpEaP23bAx3fbQINydJaM6FXdc8lBUlwnVCPsfW//K6xwBMnDiRL7/8krlz59Kw4ZEZL6Ma5UOLTgW07FhI5355LP2tBpUlzaNhV4aHHz9L4uQzc/EeeSELSoXqkdz35kYCfiNTgZSCz/9Xm0Vza7A/4fDeLJV/X9jMELR6JedMyKJjJeNpZWV4ef/ZdHZleI2HGQIHE220P/a6LDr1jmxfUeHeNzby64xkvv2gJkF/pAG16vlJSD4yJWzR1qeK4LzzzmPPnj088MADZGZm0rFjR7755huaNDFk+5mZmWzZEgqc6vf7ue2228jIyCAuLo4OHTrw9ddfc+qpp9plTjzxRD788EPuvvtu7rnnHlq0aMG0adPo3bv3AY62Gocb0+YuZeuubK4Z2Zuk+Nhy1cnIyWP5diNj3Zy1G49KUuqleX/yzqIlAGRl53FNv148GpZhcndhAcVBY53YsG9fuUgpCxf36UJBiZ+GqUm0rlt6mvSy8MLo0/l+zVou6dEVgNo1jKQqqiKoGV8xoqsqcKDrUzWqUREs/mkFcz/9k1Hjh9K0Q/mvt3/4/m90XfLj938flaTUvC8X8vYDnwCwduEG7v7wJkZeejIjLw3FedQ1nawtewDYtGpbhdpv37c11z93BdlZOYy48pRK23nNE+NIq5dKr5FdUT0qsQkxxNeIpTCvmFr1UyvdbmXhXJ+sz8cajgxSqgyEK4kiIIRxJ68YDIDQQSoCrADeMkSiSCVE8jjVUi7SIMIA6SZscJQVhprJ2ipdPmfRB+PggdzEitWoLhGajtBVdFOhgxSIoMTjl4iSIBSUIPx+UBVUAV5VoGkqWozRjK6azenCIEUcKhzpMiA0dltRFE6YmNMrTbc4OwaUReaYGf+MGEjGAPUY8NeU6D6Bb5/AU2iplyTBOFAQhkui2bYIgEeXoBpKKd1LyEUwyhxZxE00QkotwVCM6RJFd9exgsbrpruf9ID0CnQzVpT0GkSQ0bcMBSwPO4aGu51wzaHBvOEK6B5OSFmZEW3VmUPZZWf8cx6rUk6j0lDZJ31SSiZOnMhnn33GnDlzaNas/Beo1Tjy0Lx9ERMfzmTuV8ks/S2xytuv38zP4DGHJjh2VUJRoGv/Avvz798nsWhu2YRtMKCy2Cw35Jy9nNCnsNI2vPzf+vz2bUqp+weP2UvnvtHbFwKaty/mznNbIEv5fl9733bad6+YS82hQlUoESZMmMCECROi7ps6darr8x133MEdd9xRZptjx45l7NixlbKnGkcm1mfu4ZGPfgSgRpyP8af2LVe9pmkpjO/Xi9VZu7i4Z+eI/QFNY2d+Pg2Sko5Y970T6pnx0HR48offOL1jW+onu9e5znXrMbR5c2Zt2MB7y5ZwaZeuKOUcT0KMj0nDTjpgO/s3a0L/Zk3sz72bNuKb8Zfg86g0Sk054PYrimqlVDUOJf7vkpfI21fAljXbeer7/5S73g23DOfrLxdx7oWRa5qUkqyte6lZLwWP98h032vctj4en4dASYD5X/3Fzx/NZ+glA1xlVI/KZfeM5uU73uOvbxeTuTGLes3qlKt9IQRnTRx5wHY2aFmXmyZfZX9OTEngfwv+jz2Z+2jVpekBt19RVCulDgWcc1raD2JpJI+pgLJUUZZHmSVPEc5y1n+nKspSSzmJJacNMiy2va0iCm2VVjvCsT3q03Nhq5RccGTqswRdQoDuVdBiFHSP4b4ndIkalHgLNDy5JSjFftB1ZFwMWoIP6VUMMkXFjuvkUklZ/ToVT855dQiyjIG5RVMhZZWMUBbZFW2SyqgoFVBKBGpQoCBBgWCCAMVQUAkEwpxjKUCRAqmB8ITasXkoJWRTaPIdBJoeIqSUgElQ6SbZY7XhcFs0OCWB5sikZ8ejslRRJmkFIQUUOghdOM610H47w55zn3AQUBbZ5XHMm0lGhZ8yIuJN+VDZi6rrr7+e999/ny+++ILExEQ78G9ycjJxcYf+iWU1DgwbV8dwZf/WBErML04VP1HZ8k8MV5zUBkWRxNfQGP/gdtp2LTrs7m0VRbeTc3numzW8fHcDVi1KAATN2hVx9X+3s+WfGN59ui75Oe6fyZ+/TGb14jhq1g0y4aFtNGnlj/rTpevw1uPpzP8+CS1orv8K5OzZ/8/u3BnJrFlqfOecsRK7nJTPuNt2UCNZ49U5q5n2Yh3mzkjhsjt20O3kPBTFeCiQUvPA3fa+fjeNb96uiabBFf/OpPuAfNQquFqovumrhoWgpvPSaz+yL7uQm68bQkolMyWVhtrJCdRMjGdvfiHtG5U/aL0QgltO6Vfq/gs++ojFmZnc2KcPNx2hccdGd2yP3x/kv1//QOPUZGomRJ/b5RmGImxTdg5BXcd3EDM55JaU8MIfv9M4OZlxnbuUWq5F7ZoHzYayUL0+VcOJr//3I/O+Wsil/x1D6+5VHwahTffm/DV7Oe16taxQvYGD2zNwcPuo+955fAYfPPMt7Xu14Kkvb60KM6scTdo35Llf7ufWgfehaTotu0Z/CL7yt9XIQJBAALav31FuUqoykFLyydMzyNmVw8X/PYfY+OhhTtLSk0lLTz5oduwP1aTUYUCEKkqUsR9MwkI4/kvDgS/aATPJE1kehRTufSKsb2kSUc6YRBE2hsUVCu/LFVLIQRKpJTpCB80n0L3GjaVSrCFKAlBUgiwshvhYpBCoxYYvmQgqSKEQ9Ep0CZpFhAVM1Y3X0V/4far1Wbo3WW8UzVAS6WYcJlMTZbchhUE6YcWjU0D6oLiujj8FYvYqxO2C+J3S7ktaqiuLENOlIXgLgqfQ3K+A5hGG25xqxKZSA9IgnixlkcBWarkOkbXPqTzyOPpF2pkCLZUTwVAbjkNoE1oW8WSfWh5jXhTrs5lB0Omt6VSmiaCR3c+VJZCQ/ba3Z/gxKCcqe1E1ZcoUAAYOHOja/uabb3LZZZdV0IpqHG5IXWHb+oNHJkqpkLHBcIc584pdR6wypyz4YmH98nhWLaphb7vy7u10H5DPM7c1iiCkAAIlKtvWxXHqhdtp2tpfatsrFiTw4fN1K2yT1X44Hnh7E0mpxgIrhGD2xzXpMyyHMdfurnAf+0PuPpXn7zBiufQekkuvwflV1nb1TV81LCz7eyuffrUIgPZt6nHu6J5l1KgYkuJjmXH/FRSVBEhLrBrCa83uXazIygJg2c6dVdLmwcJ53U5geLvWxPu8pZJNKcSQVVxAwxqJVUJIrdq1i7mbN3F2u/YUBQMIIWiUZNzAvbVkMa8vWghArwYNaVOr8m5/ALvyC7jgzWn4NY33Lj2nSpRV1etTNSwEA0FevGkqui7xeFXu/2RSlffxwPRJ7MncR+0GVZPlem9WLn/9tAKA9cu3IqU8YtWcrbo2Y9r2V5C6JD4x+rVqzXopIHWEELTo3CRqmYoge1cO30+dQ9fBnUhvUpvdGXtpbmbs+/vX1bx6uxGLslbDmpx1w4EpraSU3Hv+8yz7dQ3/eu0a+p7a5UDNryalDjrsG3MRfXvYvqhkj+EzZpAILlJCRBcH2DGlRCielLMfJzEjRHS1lG2Low2H4slVtDznjHMerPYVYcZoUgxlkR88RTqePD9KUTF4VWRcDMR4kV7VyHSngB6roMcqyBjsoyswCB07LpQ9D6G+o5lpT4WTQFHCXtY+xVFLAGroYChBBV8BeCwiCTNYuNWeNc8OdZZ0tCXMwOeKZsaoMoOVW21JJdR/adMtcLjNWUo5Z7ZBS53lyD5oKZwUxyQ4ySrb/Q6H0U53Pmc5EZoaFx8YTqQ52w1XhpUDB+K+V41qVATeGJ3rH9rG77OS2LjKR5M2/qNOKQUw/Py9tOlSyMPXNSFjQwz3X96U2ASd4sL936S9/nBd3n++Np37FtBnWA7vP5tOQa5qLANSIF1B6yqOBs1LuPPFTaQ3CgCS2ITQd7RhixI+WbkMpKHIskTAVYHEFI1PVi1DDwqEIqu0/eqbvmpYaNm8DvXrJpOTV0y3KrjhiIY4n5c4X9UEvVuzezenvvcOUsIpzZvxnwEDq6TdqoKuS/YVFFHTQcClxO0/jtZL54zi679Xc2qHNlViw7jPPmFvURE/bFzPX7szEMBX54yjfa06dKhTBwGkxcVRt0aNspoqE4u3bmdrdg4Av2/aVk1KVaNKoXpU+p7RjfkzFnPiGd0PTh+qQp2GVaMMDAY0bhj2KPuycmnRqRGX/2fUEUdIZe/KITGtBqpJgMcl7H99GnfvOaSkp9Cya1NSah+4OunFG9/g52nziE+MQ/V5ydubz40vXcUZ44dSr3kdEpLjKS4opkXnpgfcV352AX9+vxyAX774q5qUKicOiJTy+/1s3LiRFi1a4PFUvqlo6qeoiqiwG337PtqhkDLYBOOOXkS50ZbW1bVTteRiGqyCktKCk1uElDSJLVew7fBy0SqHj8NszzVUCYomkQEdFAXNK5CpHnRfImpqHAQlMkZFizWCouseI1C4poKONNzCFIFUQbMIqXD5T3g8I6dNliugVUVx1MMxNbZ/HyH3PokRHdzcLlWJP0GgFIOnxKFwslVVBvsirThYFlEjJcIkoVRTiKEEsONb6Y5TznkMZPixMBVOuhdKEkCPxU2ohdW32hAS88bSMS+qe+xCN8y178WdcaFcMjjHnDtVVCahFmFzmIqsGtU40tD5xHx8sZJ6jQM0a1e6YuhIh8cLv89KtpVfAb9KwF+2akALKuRnK5x68V7eeLgumZvLF0i5vDht3G5adymOuk8ISEw5OESyEJCYHL6AVaMaVYukxDje/981RuZdJfwC7MhDYcBvX5ee0bYtzVJTD7dJLkx88wvmrtrI+KG9uX54+dwKm9VM5YYB5Yu1VR7UjItnb1ERMR4V3bxQ2lmQT/tadTilWXP+uGY88V4v8WZ2jKyCfD5fs4pBTZvTKq1iN+f9WzbljI5tKQkGGd6uYu5P1ahGWRBC8N8Pb0bTdFT1yL8Q13WdooISEIJWXZvSfWB0977DhenPzODlW9+iw4lteOaXB8tFmCUkxXP+HaOqzIa09BQAEtNqsHOrEUR9xyZD+VqrQU3e3/IygZIAybWM+Hv+kgAz3/qZes3q0GPoCRXqKzG1Bpf+5ywW/7yKMTcMK7tCNYBKklKFhYVMnDiRt956C4B//vmH5s2bc+ONN1K/fn3uvPPO8jXkfPwaTR0VQUo5WQQZKuJQlLj+h2e+C48p5SCoomXJi/qViRafyipcVqbAaOVsg911jYDkAjwCVAG6RAkaRJWQIL0Kuk819itmcHBVIH0CvCIUOypM/ePq1qEwE+F9WzGdLBJKCREoESopHG1LEWoUEFKg+hW8RRI1SChAuasdh4TIaCTCHoGwA5fbwcedirYwUinCNRHQfCBjCcXCikZ6ul7CfVicKqjwc066tzmbLA3hbp/undY5vJ8GolezMzJU31JW42Bi5V/xXHZnJv1Pz3YtsUcbdm7zMvujVCqrarr74mZuprmSiInTePiDDbQ6oRCh2Hk7bIXlsYDq9akaTojw39gjGF3r1ee1M0aR5/dzRpu2h9ucCCzakAHAgvUVy1QVDVJKdubmk55Uo0Jqi4/PPZ9Vu7LoUrceH63+G4+iMLBxM3t/rXi3G+Vts7/jl62beXPpIuZffm2FbIzzenly9IEHM3aien2qRjiOBkIKwBfj5cnPbmHlXxs4ZUzVukJXBZb/shKA1X+uQwtqeLwH5qi1b2c2CSkJ+GLKr4S99slLOOns3jTr1JiV89eyfukmRl0/3N4fnxgHDlfCz1/6ntfvmQYCpi5/ssIxrS647XQuuO30CtXZH5zrk/X5WEOlzoq77rqLpUuXMmfOHEaMGGFvHzJkCPfee2/5SSmiKKKEcE90NIJKWtutuEYGeyIUBSlM0saSUkX4nzn6dTbpJBrMPzYH4SCqpJSO4OiOZq3YUk6bXXAwPM4fvSh1JAbxEvQq6F6B7jXtEQq6Ap4ig6CRqhFvSYsVaF7jpVtxncwg3+iGEEmaSiErYLi1X5ikiKVQsrPzWfPhUAXpVpY9k8WSElvlZI/DY3wWQVAKBN48gS8PPEVGu0YmwfC5kaHJNOfanhvHvOiKQI8z2vDXgGAcBsFkHyfc95WWC1wQ1GIjHpbuAc0njXoyVM9JEEWek25T7XmxszsKe1516bAjmlrKGpZZTlqKMeEqUum70Gr5eTUOFdp1K6R5+2JUFTTN/YyhstCCVElA7Yr08cfsGmRu8VHZL510pTS1t6Kojgcn9lYn3HvadSugY6/KZ/U7GlC9PlXjaMbg5i0Otwml4vGLT2Xm0n8Yd3K3/ZYLajpFgQDxPi8FgQBJMZEBfe/5fBbTF61gVJd2PDpmRJRWIiGlZGt+Np3S04nxeBjXsUuZdSySKs1MpvL5qlXc88NsRrZqzePDjZvFnfn5lGhBGienlMuOA0H1+lSNoxktOjakRceGh9uMqLjq0YtJTK1Br1O77ZeQklKSty+fpLREcvfmk5iaEEGMz3rnZx6/9EXqt0jntb+fKTcxtXPLHhq0rk9iag16n9qV3qd23W/55FpG5mpfrJeYOB+b12znrnNfIKVWIk98fgsJiXEU5ReTuWk3zTo0OOjuktXue6Xg888/Z9q0afTp08d1ENq3b8/69evL3U7EDbiTkHIQEqXNu71Zhv4JKR1thO70RXhF8w7KClbuasNZNNyFTxjsRYg0IYKQiiC8nB2HjUU6SDcnZ2W0L20VkHQSTVIizT51O2i3o39HjKVQP+abcNe5aF4aghDhQhhRFfbeflntWP0GgQAofoEIEjm/TiIrys2gdMyj3bxZJ+jFCOZujVNKhAw7JpjbhcGb6VIQ9IDmAV0JnRARhFQkf+kiuWx7rEkPe4lQMft9xO2qY76lo2AYZ+k+TuVE9UVVNQ4V1v0dx75dHnL2eHj9/+px/5sbEb7KE1OT76lPu275DDwr96CpJx67oSGnjMmmx8B8u48T+hYSG69TXBgu/6wcFEXy1Bdrade1qOJKx6NYcVYeVK9P1TgUyNydy0+L1jKoWyvqma4Yhwq6lNzz9WxW7sji0TOH06bOgQX0Li/6t2tG/3bN9lvGH9QY+8K7rN+1h5otEskoyOWJoSM4u10HV7lFW7YDsNj870Sev4RzZ3zIrqIC3h15Dm3TagPwxF+/8tLS32mZksbsMVewMW8fN//yFc2SUnmq3+l4ogQcfOSUYYxt15GOtY3siF+sXkVBIMD0lSt4ZOhQtuXlMuy9qQQ0jXfOGku/Rk0i7SkpId7rRQ1rvyQY5OVf/tzvfISjen2qxqFAcWEJM9/8iZZdm9HhxKqJ51YRzHjtBz5/6XsuuussBp1Xde67+0PD1vW59fUJZZZ77rpX+frV2TTv0oyNf29jxGUDmfTqNa4ya/5cB8D29TvJ35dPWt1U1/6nrn6Znz+ez40vXcWQi/oD8Nfs5dw95ml8MV5eXfAwqXWSeGTcC+TszuPf706kdpTYXsPG9adx2/qk1U0hrW4KP366gH1ZuezLymX98q107NOSGwY/zPYNWVx0+2lcfMcZEW2UFPkRQuCLjSTOZk+bX+Z8OFFNSpWCXbt2UadOpIytoKCgYkxhGHniJqQc7yHsKl26CysGsyB0SUSk3WhxpcxqdtBr5w77JSPquuJRKY73VhNKmFpKOEgHJyyyzTneMKLCqC5CJJIHpIbpuiYMMkURoArHf3O/I8A5YMdlQjGUQnZ8KceYhfNmyOxTqma2PY/RPypIRTpiIIWYJqFhEEMO1Y+KQNEI2UqINLSH7Ajujh5SSUlh9ilDn3UvBOONlxZj2mUTTE61lfHHdkEMGi+pgPTIiHPOrm5NWsTxCs2T/XISag41WXn0lKKULI04hmKTZmU350L1RdXxh1r1/OzZ6UXqh/Z4N2xeTEmRwi8zkmnUshh/QOCNKccXIAqkhJ+/SGbEBbvIyvBQp0GwVGJGSsja5iXgB9Ujqdu49LLh2Louhu4DQoRUQZ7CL18llxnUvDwQQpLeyE9yzcBRm43wYKN6farGocAdL33J6s1ZfDNvFe/ed/Eh7Xvz3mw+XvI3AB8vXs7dwwcd0v73h+zCItZn7UUK2FaQC8AfGdtcpFRRMMC1Q3ux4J8MxnTrENHGyj1ZrNxrxGH5aesGm5TalLsXgG15uWhSMn39cpbtyWTZnkyubt+LjjUjM5HGqB5ObNjY/nxdz17klfgZ2boVqqKQVZCPX9MA2JqbE1F/+vIV3PnN93RIr8P0Sy5wEVOfLl7Ba78uqND8VK9P1TgUeOf+j/noiS9QvSofZb5GUlriIe3/7Qemk7M7j/cf/eKQkVLlxaLZywDYuiYTgIU/LHft13WdfmP6EAxqtO/TOoKQ0nWdWW//jK5LfnjvF5uU2rFpF0jwFwfIzsohY20m8740soH+/MnvjL35tAhbhBC06xWKV3fKmF4s/fUfUusk0a5Hc4IBjV0Zxrq3feOuiPqbVmZw89D/w+Pz8OLP/6Vu49ADii1rtjP59vcqNDfVpFQp6NmzJ19//TUTJ04EsImo1157jb59K3mCh7vpmTfm0kUAlA5nyKao+yM7dO8oZ/1wdZdLoWRtC88Y6Oo23D1xPzbq0ggKbqplLJcvMEgeXTGy2FkcmtGGg5yxGjXr6eZcGiRRWN/SwfvpoW12E1K6g3iHkSnojnFZCp8A7kDh0cYY6iDUvgCpSiOjoMAIUq6AplgKKYmmyigEkuMgmi9pTppQQyRiuPIpKhlaCoSlknNMjrSaFsKOz+VUSUUTQNnDNndYXpVOd0mgWilVjf1i7PgsFI/koxfTD3nfKxYkckU/I7ZK7yF5xMVXjpACeOHOBmTv9jFhaDte/mENQgRLLfvOk+m894xxg/PYx2up16T0suF48buQknd3pocr+7c1FVIHjn+9uIVBo7OrpK1jFdXrUzUOBZJrxJn/qzb5QHnQODWZwa1bsHJHFmd0PLJiT9VJqsE9o05h+bYdNGmSxj/7djOxVx97v5SSs797h1X7shjfoTddG9ePaKNben3OadWRrKJ8zm4ZIq3u7TOYFik16d+gKR5F4bQmbfly40qaJaXROqV2uezr1bAhn5x/vv25R70GPD54ODklxYxpG0mQ/bFlGxJYsTOLAr+fpNjQ8W5ZpyZKBSWn1etTNQ4FkmoaJFRsQgxe30GOVxAFY24cyacvfMdZ1x95AbgnvXYd3/xvNh1ObMvK39cx4vKBrv3/++8nfPrS97Tq0oSbp1wTUV9RFK55fBxzp//OBXeNtrcPv+RkigtLSK6ZSNueLSjMK6LDia3J2Z3HiWf0KJdtaenJPPj+9a5tD02byNJf/+G0y06OKP/Pkk0UF/qh0M/Gv7e5SKnUOkkkpiZAJNdeKqqClJo8eTJPPPEEmZmZdOjQgWeffZb+/ftHLfvpp58yZcoUlixZQklJCR06dOC+++5j+PDhUctXBSr1bXjkkUcYMWIEK1euJBgM8txzz7FixQrmz5/Pzz//XPEGo7i8uUiq0n5YROiW31YWOVsSFjMh3WyIwE1Q2LGBZCmsiVnezLZnu+wpoe0uQsomRZxjME0pLYh7OILSSCaoW2RSaGzSoxiKqBjFCGxuZtmTHpAeg+EQQYfqRmIECBcgg0bAb83n6Eu6y+JIAW65AgpFoKvSVEuZQ7CUGdacKdjxlNQigaIJVC20z8hoJxxsTJgNph1SQFEaSJ9pSwAUzciapyVJdB+uWFKlzqcCWDbrEgLWOYKbLXKyQ+G+nk4mScdK7GgqysxjrZnHx2KhHERiRJNOIlAY4xBB01Y9SvcVvM+XUhiuheb7ahzjkJLfvz+07iluCBq1LGbAqH0RItWyICWsWhTHviwPf80xUoQrHp2t63wUFSi06VrkanPtsjiytnv4/fvQU8XiQkHAD15feOulI3efyvZNPnL3qQfosidp06WQ5JpBlv+RQMAPJUUQE1d2TQuF+QrL/0hA80PNegFady4+4lz3Mjb6AEmDZoEDbqt6fTr+sHjNNh54bSbd2jbk7iuHHZI05U/ccCZL12bQuVUDtu/NZV3mbk5s2xTPIQharCoKU84986D3UxqCus4b8xfiVRQu7dPNRcy8s3ox7+5czM09+lGvRiKvbpnHlt/38M7g84lRPUhgc94+ANbn7InavldReXJAZIDx9IQa3Nr9JPtz+7R0fjn7ugMaixCCc9p3LHX/Df16I5H0atTQRUgB9GzSkG+uv4SWj9xV7v4OdH2aO3cuTzzxBAsXLiQzM5PPPvuMs846q8LtVOPQYd/ObO4Z9TiqR+XBL+6wCaODiXNuO4O2vVvSoGVdpITfPl/ACQPakZha46D3DXDe7Wdw3u2RrmaHCj9/NI91izdyzm1nuub7799W8/Jtb9NrZDdOubA/3731C0+N/x+Pfv0vGraqB8C2tYaCatu6naW2f/ZNp3L2Tae6tnl9HsbeGFq34hPjeGbOfQc8lhP6teGEftFdMAeM7smG5VvxxXjoOdS9jiWm1mDyL/fxeaOXy92Xc32yPlcE06ZN4+abb2by5Mn069ePV155hZEjR7Jy5UoaN24cUX7u3LkMHTqUhx9+mJSUFN58803OOOMM/vjjD7p27VqhvsuLSpFSJ554IvPmzeOJJ56gRYsWfP/993Tr1o358+fTqVOnqrHMdp2z7uojJ9/leuXkogjjPBzEgmufU6Hj6jNUzw6Ybhd32+LuR+By5wsrE66ycm6z7bI4E2uDlEYcKXO7rhj7dEWgqaZSyno5lT8KBlmig6JL472C4WZnkkzSkYXOqUgTwuRVhFOJJUPkjZShcUqDnBJBbBUW0iRagkb/EoPIEuZ7RbrHjbNt858SgECsjvQCiuEGKIXhHihdvm6Rcwo44l5ZrByGi6NFpDlVUZLQYJwqMKsPi2hSzADzCFtZJhVHM4pFrIUUU84xRVs+pHTUs+RS1vAsxVkFoCPs7Ax61B6rcSzhk1cOvULKibbdCnjmy3UVJqQAvni9FlP+28C1TQuoPHVLE979a6WrzZ8+S+HR65tEtJHeMFghQkrT4JYzWnLvmxu5/ewWVJ6QgtMv2cPERzOYck99/vwhmZp1gxUipABuO7sF6/+OJyktyNt/rDziCKmNq2J56e4GPDm9/LEi94fq9en4w5dz/yZjVw4Zu3K4buxJ1EpJOOh9xsV46dOxKSWBIOc99i65RSVcNawXE0/vd9D7PtyYuXItT/3wKwBN0lI4pU0oOPtTi+aS7S/muaW/cUrj5uwpLmRPcSEPL/6Bv7K28u9ug3lr8Ln8lLGBi1sfnJuOqkTjlBSeOK30QOy1Eyt2k3+g61NBQQGdO3fm8ssvZ8yYMRWuX41Djz+/XcKaBcbv28JZyxh0/sFfIxRFofMAQ/n379MeYcF3S2jTsyUv/v5/B73vw409mft46PxnAAj4g4x/6lJ73+cvfMf6JZtZv2QzbXq2ZMPyLQBMf/ZbVi1Yx7CL+3P9ExfTrMPP9BpWRVzDQURMnI/xj5xf6v6EpIpdMDrXJ+tzRfD0009z5ZVXctVVVwHw7LPPMnPmTKZMmcIjjzwSUf7ZZ591fX744Yf54osv+Oqrr44cUioQCHDNNddwzz338NZbbx1Y7+HpmsLn11YdicjtSEdgaIFQpKnwiUY6iFA1C6YyJeQuZTJbjvq614MS0EN2OJRSVqBx1NAYQkSICPVvfnYFB48wxjk2DLc9MNVAwnAZM5U40qca8ZVUkD5TIaWA7hHoMaYNJiGlBLFd/oQEzLhKuuawz1LoWO8tsxQMQsiOJQXSI5Gm8gis+ROoAYEIiBAppYM3H9QSc5hq6DCowVAfTtJGSJO0Uo1yWrzEn2YopEQAlCJzjn0hmyLmzfnfeq+C4tWRuskwq2H7w0ggKaK0IZ3zJEL/babJUUFzvnfsiqIOs2KACd1s3+84/Rx8WEVQLT8/fqB6JH2G5bDyr3j2ZVWAmalC5OcorFkcS9tu5Vf4SAl/zE7klxnJUfdrGiz+tQZ9huXiNWNDptUtoUGLYjLWG0/DayQHGXhWNvUalwCwaU0Mf8xOok3nAk44sTAqSZa928Psj5PZneVhxls18ZccWBypzM1eNq2JYet6Y+5XLYyjTdcCaiSVX9548hn7aNSymCW/1mDJbwn0PCUfz6FX85eKmLggjVoW8eELtek1JIfm7fwH1F71+nT8YfTAE/h7fSbd2jakZnL8Ie1blxJ/0JBrF/sPXOl3NKBpzRQ8ioIiBI3TUlz7Lm/fg6mrFnJJ2270q9+ERbszaJ6YxjtrFoKA11b9wdRB59OzTiNXvRItyCU/fsCW/H38b8C5dEiLjA91LOBA16eRI0cycmSkiqwaRy56n9aNDv3aoKgK3Yd1PuT9lxSWuP4f60hIjqdm/VT2bN9H045udc7QSwawbO5Keo7oQs/hJzDw3D7k7Stgw7LNbFy+lTf++xFn3ziSy/97dkS7r/zrXb57Yw7XPnExIy4beIhGc2hRmvtebm6uq1xMTAwxYVlV/X4/Cxcu5M4773RtHzZsGPPmzStf/7pOXl4eaWlplTG/XKjw5a/X6+Wzzz7jnnvuqXprXPIZ5zaLuRBRi9vY32+IQ/VjFRU4xFEKoJsOgIpBOumqQCIQGihSGmXDlFKGuEYaLnSlDEdG2eb67BDp2LaqIdJGaBKhYNhjEke2OgqHWsohx3Fl5HMKi3QQAYniB93nznZox0n2GPV1IQ01VVg7NkmjGmPXVYkSFKjFCopm7tccijHb3S3k8RYxEabqCIxg7GhAQKJ7zOx5gAgKlCLQVJMcU0LtRzA4zkNkkXCKDBWWDtbHOggWOeQ8clYfujDUZbowFWgiNECTzBLmvAvNGK+CoexykW8Ok625lIrZtQ+k3yDiKotq95jjBxfdspO9WZ7DRkgB1KoXpF334grVmftVMg+Pb1rqfl+MpNfgECEFsHVtvE1IAdw1ZTM9BuYDBjF2w/DWNGxRwnnXRwabtHD3xc1Yu8y4Kf7ijchEHRVFi44lzJqWxsI5BrnWc1B+hQgpgHOu2815nTvg9Ul6DjqyCCmA3L0+vnmnNoPH7OX8iaXPbXlRvT4df2jfvC7vPTgO337SgB8sxPm8vDPpfFZs2cmI7oc+y9XhQId66fx881UoQpCWECIB//XTTL7bsJZHB45gZIvWAHw49CIAvKrg6y2rObdF9Jvyf3J2sWDXVgBmbl0TQUq9s/Yvnv77Jy5v3ZsbOxixVUq0IG+snU9aTALnNu1aYbfNPH8JF332MfuKinhr1Biapx68GyEL0dan8tzwVePoRXKtRB797j/Exh+eY3r3hzfz2+cL6HVq18PS/6FGbHwMb65+juxdudRrFlL6f/v6D7x6+zucds0QrnrUSE5x11tG/KYfPviN7be/x7BLosc+Apjx8mxKivx8+8ZPEaTUyj/W8cCFz9O8UyMe/GQSqse4sZ31zlx2bMpi7KTTiUuoePzB5255h19nLObGpy6i/5ndK1y/oijNfa9RI/dDhHvvvZf77rvPtW337t1omkZ6utu7Ij09nR07dpSr/6eeeoqCggLOPffcSlhfPlTqKmH06NF8/vnnTJo0qWqtcZEKIXWTdHx275eE4kiJ0p/UW22oZgFdGpn6zC6likE6WOSOKpA+Bd2j4CmWKBarYrqA2R0pjrhSpSiknJ/tcUSTwDiVPhZzY7l+KQLpMV6ucqbSBo/pimcdTWnwLxafEtGlih1E3CokpbHdrqSAjHHYrkjwYquPnOyKkAJvkYJabH22D0noUJlt2qotZ30cdnjAnyzQY4F4iSgRKEEFNWDUCcQClloq2vw5+3PtEwibYAuXLAmbaBPOiTIPtUH2yZDrnxSh2FgIYz50dzsWS2W55DmTDNrdqsZc2uosLSRWi3aKlAfVSoSjG0lpQU4+I5vfvkli3y6DbOrYK5/B5+wjJtZkK83zqWn7InZt9/HnrESyth+eC6qNq2J4eEIjYmIlZ125ixYd9v+0T0pD1eRaIMJQVCD44ZNUhozdh8+8TujSL4c7XjAYb4mgadtQdrsNK2JRPZJm7YoIBsATmXmXndu8FBZUzfdBUSQjL95D/zP2IYQkLT3A9Fdq8dbj6XTuV8Dpl+whIal8frdCwLDz9vD9tDTmfJHMgDNzKuSO+Os3ScQnaHQ5qQDlwBMIRmD9ihiEorP8jwQeub4RCTV0xlyziwYtKqeYql6fjn7kF5VQ7A9SK7lsN7w92QVcesfbFBYHmHL/ebRpdujdjVs3qE3rBuULtB3QNN7+bREJPh/n9T7hoMS/2lNcyGOLf6JxjRSu73hiufv4YcN6Zq5fx1XdutO6Zq2oZaSUvL94GYWBAJf1CN3klmhBpq0yslhNX7PCJqUs3N9zBAMbNsOva0gpI2xql5LOOc07sylvL2NbnBDR7wfrF5IXKOGdtX/ZpNTHmxbzzIo5ALRJqkOXmg2j2rwwK4P7/pzNKQ1bcEuXUEyqZTt3sDzLiBvzw8YNh4SUirY+leeGrxpHDoKBILu27aVu09plfreklNw++H6W/byCm1++llOvHnKIrAwhNT2F068dWu7yc6b9xpZVGYyZdDoJSVWvPNU0nbcf/JTcPXlc9dB5JJRT3bp51TY+efJL+o7qyYln9iy13IKZS1j288qImE/f/G82+dkFfPHSdzYpZWHwBf1o3LYBaxdvpLiwJCqBeNUjFzDzrZ+56K6zIvbN/fQP9u3MYeHOHLZvyKJR63psWrGVJ66YDIA3xsv5d4yKam/2rlwev+pV4hJjuf3Vq+2+gwGNme/9hpQw+8P5h4SUKk0ptXXrVpKSQrFl90eah38noq330fDBBx9w33338cUXX1CnzoE/1C0NlSKlWrZsyYMPPsi8efPo3r07CQnui5Mbb7yxXO1EUxKFdhp3XmU9d3Z48EWEhLLLmGSTrgqDVNJ0RIk0PLFU0D0KUhUhEY0qbOWTphrtKnqoQ2ndFTpcsqT9V9hCHJuIIsRfOLdFjMNBhkjV3KiDEpCgS6RPoPvM9hGhUEwW0WMpbDQQQZC6DBFEDqJIBM02EYY6ynLPs4opGNnvTDuEGWBK6rpxxjhJJwGaTxKI1Q0CyfrCWGN1ZOyz+TZH7CTne+kB3QdajCQYA6IIlBLw5EvUYmPcXlUQEAIZJ8ErQ+SdSzXlkCVJ8wRAgioRJiMmnbI5xXUQHcdBIlSJkBIdBSE0pBmxXZpMkoM7DNU1zxVNmE1rRrnwOFPCVIBZ/ekmSaVYIi7pUJuVE9VKhKMb196bwY+fptqEVFyCxqMfrS+VqJg+Jf2wEVIAOXt8/Px5GudMyCqTkAL4Y1YS7z9Tb79laiTrDL9gH6qDZGnYIkjDFtkRZf3Fgn9f2ILa9QP868Wtpbb52A2NyVhfwYBPpWDAqGxufDTD/jzthbrs2RHDnh0x3Pbc1nITUgC6DjPeqkVKTY3BZ+cY62E5sf7vWL6aWovHPtpQEfPLjY2rYnn+X4a8PmtbDFnbYrj2voxKE1JQvT4d7didU8A5/5lKQVEJL0waQ+8OTfZbfsOW3ezNKQTg73+2HxZSqiKYsWQ1T31nxGNqWjuVPi0ig78eKN5Zs5CP1xtpz09p0JL2aWXPiZSSid9+TXEwyM78fN4aHT1e0bzNW7jv+x8BqBUfz+hO7QGIUT3c1uskZm5cy9VdIjNN/blrExN+/xCAF3ufR1ZJNv/k7mBCm8HUjk3Eoyg81icyZbqFmzoO4KWVv3Jxy9CNWbMaNREI4lQP6XFGMONV+7KYsuI3hjRszZlNjZg6b6xcwPI9O1i+ZwfXdOhFgvlj16NeA05v1YY9RYWc2frQZDGMtj5V5IavGocfkwbdz+o/13Pxf87mknvH7rdsoCTAsrkrkRL+mrX0sJBSFUHmxp383wXPAoYr1WUPlB6vqLL4+7c1fPjkVwA0alufs68vX6a1V259iwXfLeGH93/l68L3ohIdRQXF3HPGI2hBnX07srntjQn2vovvHsvU/05jxBWnRNbLL2bSkAfxFwfYsno7vYZ3ZtY7czlj/FDa92kFwKgJwxk1Ibqtp14+iDV/baD5CY1p2MpQeabUSSYhJZ6C7EIatTGyjObtK+D1e6aRmp7CuP+chaIo/PL5Xyz6aQUAwy46id4juwDg8apc+u+z+G3GIsYcoiyGpSmlkpKSXGtUNNSqVQtVVSNUUVlZWRHqqXBMmzaNK6+8ko8//pghQw7ud6RSpNT//vc/UlJSWLhwIQsXLnTtE0KUm5Syb+ijXZs6pSX7YfGEqYKx3bHCYCikFEP541MMoY/fFs8gvSq6T3EREtJjMCUiKFGkQJHSiCVl2SrMGE929j2HvYKwsqE6ltudi8mw9oVbbfrj2XsUAR7hyP5nkDiowlY4WfGcFM0gkpwkiHD25zGVUpZSx5LnWEopU3UlTQJK6KD7HEop3P8VzVRK6WH79CjFrfFb9gmMsZqKoUCSJJBq9Kv6Fbx5Am+hUTYYB1qcYZeIcRBSwrTbJpmcc2n2rEoUj8HiSS20SziPh3BXE4pBYkkEQgGphaRUwjoIdl3H8UeYx0PYY7YPsaMfac21CB0jm5ByNFURSAeTfrze9GVnZ5OSkhJ137p162jZsuWhNagcqJEc5Ip/Z5Le2E9udoiNKSpQ+Oy1Wpx5+W5iwx5Y7c3ysCvjyPD3+u79VJb/ngBIGrUs4dJ/7aB2vaC9//uPUvn+w1Ry9lmsdunnZu4+lZtPb8moK3YxYNT+lUMen2TM+CwKclWKCyC2FPHGqCt2k7E+huw9UWRUFcSinxP4Y3YN/pydxLq/49m5NdTmvy9oTmy8sRCeetEeBo7OxrefexjVA099tg5NE3z9bippdYL0GpwXVe0VjkYti7n2vm3oOpUKNF8WGjQv5tmv1uD3K3wyuQ7dB+TRZ3jOAbVZvT4d3di5N498M/bJum27yySlunZoxEVn9iSvoJgR/dsfChMPCI1rpqAIgUdVqJt8cLJw9U5vjHeFQnpcIo1qpJSrjhCC7vXq89vWLfRqEF1xBFAvMRGfqhLUdZqkutu+oUcfru/emx82rueHDesZ3DwUAD3OseAUan4eXfE1AAneGG5rX3aMpOEN2zK8oZs46pfenJ9GTiRW9ZIWY/x4PbH0J+ZsX8+3W9dwWuN2qIrC6BYdmbdjCwMbNCfeYUeMx8MLI04vs++qRLT1qTw3fNU4MiClZMNy4+HU2sUbyyzvi/Ux6bXr+GvmYi6+55yDbd4BIzG1Bkk1a5C7J59GbRqUXaESaNK2AWnpyeTnFtLBJHzKg07927PguyW079u6VOWNL8ZLnca1ydywk8bt3Pb3Pq07vU/rzj8L1/Pdmz9xygX98MUaF3+KquCL9eEvDhCXGMuTV7/Mnu372Pj3Fl7+69EybWvctj7P/OAOOZRSO4m3/3megpxC6jY1lD/fvf0z3079GYDugzvS8cTW9BjSkXrNahOXGGcTYBbOu3kE591ceqKFqoZzfbI+lxc+n4/u3bsza9YsRo8ebW+fNWsWo0ZFV4mBoZC64oor+OCDDzjttNIfTFQVKnVHs3Fj2V/28kA630TwMgYZUOq9i7CL2e9t4iWsDykkmlcxSAAF8AnDXU9KpG6okFAFUgkph9BA1Y08b7oiIs2QloxFmvIfw19OWmnzTJVXVIWUk5gobWwW0aVLWy2laKZ6SRHoCmixAt0bUjkhjDGhO0gph1RLYKmeQAQkmg+0eIHmNYgeKYzsflIx+xESVGt4AgLGNiVo/mhb8a2AYIxE+A2CyuZfVNBMskwJYmQRtBDuNmgSVd4cUIpDSjFFM+ZZF0AQPLkgggqaIpFxmoOAMgeoyEiiSUgUVUdRJYqQBIMCqSmm6glbnRBdaSds9ZVQdQcpqdhByoRJIEpd2CopqYAQ0thnqs2Ml1XHbD1ASDWmE3KpNHlWWcGbTUs5Z70/HnHqqafy448/EhuWInrNmjUMHjyYbdu2HSbLSsfZ1+zitHF7eeiaJqxdGmJW4hN1xl63Oyrp8P4z6Sydf2RcLOdle1m9yLihuOT2nS5Canemh6duLr/iQOoKJcUKQ84pmwDxFwtmfZzG+wtX7bfcx5PrVAkhBdBneB6bVscx4+1Il6CNq4ybr4Ytihl2fnaZbQkBrU4oJmODj9kf1+TZr9aV2w5fLDRvf2CBx/fbfgy0617MD9NTaNDMz1lXRU8RXxFUr09HN9o3Tef2i05hd3Y+Zw+MdOMKh0dVuP6ikw+BZVWD7k0b8P3tV+BTVWolHpwsgX3rNmHpuZPwKiqeCrDJb40ew96iImrFl+5O07xmGnOuu5KiQIAGyZG/Db9s2cw1M74w2hs1hv5NmgLQKbUB0wddQ1DXaZ1ch1fWppFRuI9uafsnHfcHTep8uuUvsv2F3NxuKDW8sfSv24w529dzYt0mqObYhzRqyeLzy/cg+2Cjen06uiGE4P7pt/L714sYfUP5yIIRlw9ixOWDDrJlVYMaKQlM/ecFcvfk0aDl/hXnlUVKnSTeWf00uqbbpFB5cMFdoxlx5Skk1yqdzFc9Kq8seYKdm3dRr0VksoT87AJu7nc3AX+QjLWZXPnwhYCRxW7KHw+xZVUGXU/pSNamLGa/9ytdB3es+AAd+PPbJfz57WIu+vfZNG7XgI59W+OL9ZKYmkCj1sb81mtWhzeXPn5A/VQVnOuT9bkimDRpEuPGjaNHjx707duXV199lS1btjB+/HgA7rrrLjIyMnj77bcBg5C65JJLeO655+jTp4+tsoqLiyM5ObkKRhSJw/uY3ZaDhG93q5IiYP+OO9VEDgLLcdSEItC9CngUgxwIStSA6dYmhLndIKSkMNRIUkg8ZsBpwwSHDdZbS7FkK5cMdYxTyWTbamXf28+YnEIaQ4kjQ25eOHdayh+BVAUhDswksKRDIYV7ep2iHkNpJYyg4mqUl7XddH+TqtGo0AVCN2JpmdQUSkDgKRYounscunV2aQ73x3CbRIjbszYIDBLLGou05tEDeAR6rETG6e5sgZjkklOVZImZFImigqroJsusgFCMc8AUP4XHr7dtk9bxCLUnbbmb49yQjpcCQnPUiRi1Y4tFUFnH2rLfsqeCpJRuq7iO35TrqampnHXWWcyYMQOPGTl61apVnHLKKQc1QN+BYPYnKTRtW0TGRh9O1rr/6dkU5glqJIfWtJw9Kk/f2pAVCw5+avXK4KFrmpCQqDkWA4EQOrICDOvmNTGM69WW6/9vGz0H5aOW8ksVEyd54Zu1BIPsN0j4udfv5Pl/NSQv201M+WJ1bnx0q6EKuqMRm1fHUZY8cdbHqdRIsjI6RC/bd0Q2xYUQExf9Jywc9Zr6ued/G9B1xxpwhODkM7LpdnKu/bN6ILZVr09HN4QQnDu4y+E246CifsrBJ/rjyiOFDIMixH4JKQtZBQVc8OE0EmNi+GLcxdRKiEdKSUDXiXUskq+umUdsvEL3Wg25ZcFHLN+3nSd7jEUVgk8HTKRED/JPXgbvbPyJsxr2IdFruD9vLdhDdqCQTinuWEub8neRFyihU6qh5Fq4ZxOvrjVUB80Ta3Nhsz5c3rYX57ToTILHfbP7zJJfeGfNEu7sPoBzW5ZNdh4sHOj6lJ+fz7p1oQcLGzduZMmSJaSlpdG4cdW7glYjEt2HdKL7kE6H24yDhsTUGiSm1jiofXi8HsMzpoJIrVM+ouL+MU+yc/NuHvn2P3QeaLjxBvwBhCLw+DwE/EEWfLeYes3TOfWqwXz89Nd8/MzXXPTv0XQZ2J5Jr17DtY9fTF52Ie8+8jknn92LxqYLXu6ePNYt2Uyn/m3x+kLrXfauXDYs38IJ/dvi8XrwlwR44orJ6JqOvzjAvR9Pol2vlnyydTKqRzHmwMQf3y/nudveo/ewTtz05EUVn5gqgnN9sj5XBOeddx579uzhgQceIDMzk44dO/LNN9/QpInx8CEzM5MtW7bY5V955RWCwSDXX389119/vb390ksvZerUqQc2mFJQKVLqiiuu2O/+N954o1LGOGHfgjmjYltvnfcCFnFg3ciHN6RL1GINJaCb6iVDGSUtUkYViKBEIJGKQMMgpozsd0Y8IZdnoMnqCLMNcLi/meSCpVqytoUr7GQ4AyLCGE8ZIo+k2X5I8SQRQVA1EJo0AqCb7IZxz2cpccI4VAcZJjRQpaGI0nygeUUo255jLEI3x+aVIXJIBU3VDZLKYxwfLRbQVCM7XlCYcwvBeEkgSUcEBTF7TOIq6FaPueJTgaE00g2llMmHGUNSTFskCL+EEgHxekgZhalMMuNDSQcLKHWBJkGqKgKJokiksCRNDqJOuuvZcMacUqzPukFASqs/jM9BYR5ziVCESwEl9NC8Cinsz9LcZh9+QUi9VVGlVHXMFqZPn87QoUO58MILmTZtGitWrGDw4MFcdNFFPP3004fbvKgYfn42f/6QzIYVoZsORZHc9Ni2CEJm9iep/P59yqE1sAIozPNQmHegzzsUGjTz02do/n5LCQE104P7LQPwwXN1IwgpgN5Dchl6bjbvP1uHzavLF9BTDyrk7i39i5laO8BV/9lZrrYsKArUTC9/LKpDCa8PUmtXjW3V69PxAyklmi7xqAfBt/QowUerl/P+6qVM7NqXwU1alF0hDH5NozDoJyWm/PHwFmRsoyAQoCAQ4JqvP6dBchJ+T4CZm9dyb+/BfHbuhVzz6zTmZ29g18Jc/tf/PGZnrgbguVWz+Dt3E4PS23HfCaO5ZdH/0KROVkkOt7Y9i8yifYz95TmCUuORLucxrJ5BIG3O38PZP7+IJnWe7n4Bg+u1p3mN2qT5EigIlnBCaojA8qlqhHvP66v+Ij/g5+3Viw4rKXWg69Nff/3FoEGD7M9WMqiDeRNXjcpDC2p2JrbjEWsWb+aV+z+j1+D2nD+x4nGRpJTs25lDanpyuRM2ZG7IYts/mQC8+q93iEuIpdPJ7XjvoemcOKonryx9kufGv8rCWct45pqXOensXnz64nfk7M7j46dn8Mbd00ipk8SL8x7kkcsms3bxJn76aD6vL34MKSU3nXwv29fv5NSrTuGmF68EjPhbE/vfS9bWPZx13TCue/JivD4PHfq1YfncVXQd1MG2T1GViHPi+w/nsS8rl+/e/Y1rHziH2PjDk/G6tJhSFcGECROYMGFC1H3ha9ScOXMq3P6BolJXC/v27XO9srKy+PHHH/n000/Jzs6uvDXWI2KLsFAcn+0yuGVAFtESeut61CzMz9YXRkhhEDyqQPco5jbsYOiYQc6VILbyx3XYhYjsJ/zlUk85xiOIHKPzFTZM47+ILOpUZdljLKVs2LzaKikBWgzoMcKtkFLcL1sI5GzQUi2Z5RW/gqdQCbnuqaB7JME4iR4nUYsV1IBwx7Uy512AKx6UtNp19mXFvvIYZJUeB8QZhJSiOIZnK6eM4y3sYyUcp4SwP1u2hNZSEbFfKPbUhSZOihBfbZOPwnAJtUsK+5hY6i97u4NkDR2jKKd1lPOiLFjZGcKzNBxPiI2NZcaMGaxdu5ZzzjmHwYMHc8kllxyxhBTA1EfrMvuTFJz09BmX76akWES4lZ44ModeQ7L539xVfPbPMj5fu4zP/rFeyxlxwW6EcmQSHKVh0Oh9XDRpB96YkI/vyr/iWf57PLq2n4rlxNnXZBET527IF6sz/Pw97Mrw8MvXyZRXDJ1WJ8AL36zhszXL+L/315OYavngGti3S2XmtBSCgQO3+1hD9fp0fEBKyY1PfspJVz3Ht7+tPNzmHDb83x9zWJKVyVN//VrhukXBAIM/f42uHz7Pt5vXlLve2e3bM7ZjB05s2phFWZl8tW4Ns7esRwLfb1lL57r1OKWJEVexf90WNIhP4dymPWifXA+EhkQyN2s1XsVDitdQ49aNTQGgMOgnaAblzPYX2n0WaiVo0vjNyQkYmVFrxSYya+itzB1+Jx1TjPgxd/z1Cd2+eoi31s932Xxbl5NplVyLGzr1rfA8VSUOdH0aOHAgUsqIVzUhdeThw8e/4LTES3ju+tcPtymHDdNf/ZFVCzfy1uNfU1RQdqKacDx2+RQuaDaRKbe9W+46zTo15pJ7z6X36d35Z8F6ls5Zway3fkbqkt+/Wkh6k9oMvvhkhICWXZuRkBzPpf8dQ+O2DWjfpxXFhSXs2LSLLaszqNO4JgB1GoWykebtKwAMxZQFKSHfTLiRu8/YLoTgiVn38NmeNzjTDJD+9f9+5IzUK7jv3GddNo+6ahDN2jXg/JtHHDZCCiLXp2PxGqpSj7M/++yziG26rjNhwgSaN29eOUscLKt9eW9JoMq6ORfCUB+FF3OQH1KT6D4F3ScQfmHGKpKgmGopyzUhKE0VlDRJK2kqdQx3OakAOqgB3VS6yJBCShHY0iiBocpynjTCoZIyh+b0yAu5u2Bn1DNUNIKQVMkiQYw4U3ZcJ2G62Dn9TZVQRjd7Yh37RRBEQBqugNYwFAwZlWWbWUfIkHoJU0FmHRcZq6PFKajFGHGWNBAeQwkkkGgJGnq+ghIQ5jwZL0WC0IyXVECLheI0nUB6EGKkkbUuT8Wbp5hlBHqMRKoSRdFRfJrNHAukGZg8dAZJiRHnyVRLWYoyETbP9oQKQzHnPOEMtyOM+Gb2/DvZNfO880hQpZ3VT2ogNIHUBEIKUykljIyIinlcVWO+hG7MAea5ZYa6qmT2PVu8VWo2ymMRubm5rs9CCKZNm8aQIUMYM2YM99xzj13mSAxaKqUg6Hc/nbnktkzia0QexF9npNCpdyGNWkbGE8rdp/DdB9HThR/JuODGndxxTgsCJaE56NirgE59CvdTq/z45OU6lBS557dDzwJ6npLPl2/WdCnUysKJI3No3aUYgNkfp5G3z63ASkvXGH5e9gHbfCzieF2fjjcU+4P8+fdmJPDLkg2M7HfkBzk/GLiw7Qm8tWIx57WpuDvR7uJCtubnALAoK4ORTdqUq15SbCyPjRjO5pxsLvj8I+K9Xi7t0oU5GRuZ2MUgfR7ucRp3dR5Cks+Iu3hvZyOg+MrsDF5b9xOD63YgRvXyfydcwrxdazmrgVGvRWI6L/S4lKziXE5v0NXus11yfV7oeTH7/AWc3rCLvd2rePA6Hn3/sGMNEvgxczWXtggRUJe1685l7Q5+SvWyUL0+HT/45bM/kdL4f9NLVx5ucw4LBpzZjYVzVtNjULtKkS3LfjEUlsvN/+WBEIJx955DwB/gzuEPsenvrVx49xh+/+ov+p/dB0VRGDpuACeO6klsQgyqqjLisoGMuGwgObvzUDwqteqn0rZXS254+lIat2/E0Av62W0/OetuFv34N4MvOMnuU1UVnvr+Pyz7ZTWnnH+ivV1RFBKSQtd+v3+9CKlL/vx2iUtFd8KJrZn8038qPD9VDef6ZH0+1lBlMaUUReGWW25h4MCB3HHHHeWr5FA0ucgZe1/4NkJlIzfb+2xBTNgdvVQwCBMpjRjVitGBIqWtBLKCnxvklNWEQ8aCQGi67XoV6swch6likq64WA4jndshcoyOyZChDy4b7C7tAQubQLI2W+OTismRSXddy8VOeoRbHRU+3xKDVLH83BSDyJOKSeIIwC8QRZhKIYsMk0bGPo9EKVRQ/MLm6+wYUk6XNcVUVyXqEKeZUi5Q/AaRJzFIMc0jkT6LkDIOgHBEuHd7RjomyUVI6aH5tIyJSv6YR0A3JZNShA6HdB4MHARX6HhZp0eInJQ2jSUQpluofRK5vFOttitOSh2f7jEpKSlR5cNSSl5++WVeeeUVpJQIIdC0KpDeVBHqNPBz0xNbeXh8EwpyVU4+I4fbntvCp6/W4rsPanL21btRwtTlY6/bhdTdnL2FGskafYZm8/usZCosszsM6Dsih7te2ow3RjLyoj188Fw6lt0Lf07iou7tePartdSqF6x0LKNZH6eydX1kCrw1S+LZstZHt5PzSE4LkLPXw/7mLD5R45kv19KoRYl9MfCvF7fQfUAuz9zWCC1o3H3t3enl9KYdefLT9bTuUnRQMuMdrThe16fjDXExXm4bdwq/L9/EFWf2PtzmHDb8q/cA/tV7QKXqNqqRzEN9hrFqbxbXdKz4HDZJTmHepdewvSCXu+Z/S6PEFDrVNFJ/7/Xn8/m23+mR1pLOqc3sOu1TGvBMj4sBCOga4/94m/xgCbtKCri705kAnFi7ddT+Tk4vmzS7v8sZfJvxN1e36l/h8RwKVK9Pxw+uefQiPn7ma4ZfcvQkYqhq9BvZmX4jO1e6/h1vjGf2e79y+tWDK1zX6/Py1E/3EwwEeX7Ca2hBnW5DDdfdYCDId2/8RHKtRIZcHDo+ybUSufPN6+zPz932Pn/O/ptfZizl9fn3AdC0QyOadnDHuwNo3qkxzTvtP67bJf8di+pR6Xt6tyPSrbMq3PeOdFRpoPP169cTDJYd38OGpbSxP4uIfeFwlXUFexLhJSKgBCTSC9KnoHtMdZQOBE2FlKmeEpqhlhJBI2aT7lWMgGICFJOscnJFDq+usPGEtkWMz2oifIwCt1OlFEhN2mqliLImi6EQukm1FE9SMdVNZjZBRQ/ZJIShlFJKjIDk0hlPKtxI3WCgdcUILi4VQxWEpczyCaQPRKGjDgIRkMigQPokuteYbzsDnzVOzbCvJAVKammItAAx8QFjPuMFgXjduNnLUxGagvRKhGqQO4pHInXdDjzu/ILaLn1qaNIMQi5EUIXYMesixFUSUNA1c7s0j4X5PyLGsTCVTxY5ZfWjYDCEirSz9dntaObLNMcZPs1WtVXHlCoXfvrpp8NtQqXQvlceq/6KoyDXWIr7DM2mpEjw7Xs1eXHm6ghCCqzzOnp7BXmwdH4iRwMhFRuvMXTsHmLijC/enC+TI8q06VpATJxOoMTINlcZ/PZNElogcj6atyukdv0As6alkrO37KiezdoVkt7QHxHj6/fvk4iN1ynIDS329ZuV0LZbUeUMPoZRFevT5MmTeeKJJ8jMzKRDhw48++yz9O8f/Sb3008/ZcqUKSxZsoSSkhI6dOjAfffdx/Dhw+0yU6dO5fLLL4+oW1RUFJHBsxrlxzlDunDOkC6ubSvWZ/LX6q2MOrkTKYnlj5N0vOLiNl0PuI2P1i3j5+0bARjbshNdatXn+TVfMXvnUt7b9DPfD7ofT5QfmqKgH8UMbukp7QdnPwjqOov3bKVVch1SfMaxPr3hCZze8PDFjCoLx+v10/GIzgPa03mAW8G5e/teZr//G71GdKZ5x+rA9GWhy4D2dBlwYCrYFfPW8O3rPwIw+525nHfHKGZOncMrt78DQIOW9WjXp1VEPU3TCQaNGyjVWzkCaf3SzcQlxlK/uUHWt+ralPs+vqVSbR0KVJNSpcAK3mdBSklmZiZff/01l156abnbse67ARdh4yJyoiGc3HGqgBxt2p+t9kwOQgrMTHUGSaCbTQppxrC2XsJqzyCkDCJBN0ga3exFcTMTRl+iVFLNZVg00k1GFrP3hYbgGGdIZSNlaKxSiOgB2J31HZyMmzxzFJTG8Q2RI473uvGlUEoUVL9w9SOtXnRQig33O3vuFZBmQHND0QVBj+mW59HNugLdUh5ZGRZVHTwaeDUUj+agH6MrZCKUFc7Pri929EKWVFLqhKmkwtsiygcRUkkRUpuFV3X3Khy1w74f5YQuDXdB6/3xggEDKvc0+nBjzmc1cR7lx29sCsD4BzJISql4e/E1oEGzEtYtLzuL3OFE5355PPLBBhQVW93YsWchmRvdN6q/fZPKzq0+nvlyXdQMmeVBh16FzJ+ZErF924ZYNq2J5fWH6xP5pY5ExoZY/MUKsfGay467X9vC1Mfq8uHzxoWN6pHcNXlLlWSrO9ZwoOvTtGnTuPnmm5k8eTL9+vXjlVdeYeTIkaxcuTJqdqu5c+cydOhQHn74YVJSUnjzzTc544wz+OOPP+jaNXTDn5SUxJo17rg91YRU1SIY1LjusU8oLgmwfutuHhh/6uE2qUxs3rWPO97/lia1Uvi/84fjVY+8p+dlYXDDlry1eiENE5JpnWy4dtePTwOgdmwySpQFKsdfyKg5z5MbKOLKFiczvvWgiDLFWoC8QDG1Y6OngH/i7x94c+3vNIxPYfaIG6L2c6TheL1+qoaBp697nYU//M3nU2bx4frnD7c5ZaKkqISHL3yO7Kwc/vPhLa7YSkcLWnZtRrMTGrNvRw69RnYBIL1JbQC8MV5S6kQPt3H32GdZ/PMq+p7ejRufisyIp+s6u7btpU6jmlG9KH7/ZjH3nvMMHq/Ka4setYmpIxnO9cn6fKyhUqTU4sWLXZ8VRaF27do89dRTZWbmcyE86DelqKb2Vx+MDGx2ZREiMVw8ghlsWjcVU2aGPYQwM51JFM1Uq5iVpGLGAkJiRbxWpKE4kmDEmLLst7LDOQgwWwnldFG0bS9tTFF2qwKpY4eVchJTVmE7O53pOihVh3rLyhLnvO8SwhiHRbBZ11qmHEuC7c4nzLbwGISUAKQmDHe9YoFqxnxSzGx9qg74BRQKKFYMEs+h+pEY04mlLFJBUUFNCiBUI3i5lBLVI/F6dXRNEIwzfP2EquPzGAdK0xRj/sOYGynNAOhRVUZucslWPkU5MDYhpYcxjA4yz920oY4SplLKID+FQYAqZj8mGReqIwy1mKVIi7S2QqiOiQDfffcdNWrU4KSTDJ/yl156iddee4327dvz0ksvkZqaepgtDEfkUU6p5WfN0lhatC+mItnDc/cK1i2Pjdrm4UZiapD6TUrYvcNL3UYl5OeoJNc0nnRpGiz8OXqa4/SGftaviKN+E79dviLIyvDgjdFc8aoA0tL9LPmtBsWF5bvRbNy6KGr/QsDuHSptu+eDhBopQZq1q3jQ0OMBB7o+Pf3001x55ZVcddVVADz77LPMnDmTKVOm8Mgjj0SUf/bZZ12fH374Yb744gu++uorFyklhKBu3boVN6ga5YaiKKQlxbF9V4DaBzmleVXhy4WrWLFtJyu27eSSk7vRsdGBnSO6lAeFnNGlZMnuDJomppEW646P16lmXRafd5Nr29UthjGwTicaxtey1VBOZBXnss9vBAyOUT34wuShRZqfs356nh3FOTza9RxGNohUP+0uNjKn7vMXHrRxVzWqr5+Ob9Ssb1wb1qyXcngNKSdWzPuHeV8sAODnafM457YzD6g9XddRDlK8gc0rt6F6VRq2qufanpAUz6tLnnJt6zGsM2+ufIaY+BhqNUiL2t4/izcBkL8vn9TakcTVI5dNYe6nfzLy8oHc/MLlEfv3ZeUAEAxoFORUTezSg43qmFKloCpdZWzixolK/HhJ+0800ka4Clq8k8U1OLO3WS5UNqmlCnRVQRcgTJWU3bZOqIJtgOLiOEo7Z0LkW/QdEQSoOajwsTnFO/tr03UiO99YZIhGhPueFSPJtkUHafkQWuuWuVMEHbaYZI7QMFwjw5VaIqSOMJPWoSnScAuM8i2TGIHNQUdRdISw9EfRZzcUqsyazMhJsb/cUkTwda56ToWUvTucQSX6Z8AIni5CyjHLFKtD+xXa6Nxd0TXHGJew3x+PuP3223nssccAWL58OZMmTeLWW2/lxx9/ZNKkSbz55puH2cKy8eiEZjz20doKEVJSwl3nt6KSSVUPKpJrBpg6bxXbN8UycWQr8nM8LoLn6UmN2LszMu4TwG/fpiKl4N43Nleq75hYIggpgA0rEtiwIqFcbSSmBLn3daP/aHz07c9mVMq24w3R1qfwJAUxMTHExESeC36/n4ULF3LnnXe6tg8bNox58+aVq39d18nLyyMtzX2hm5+fT5MmTdA0jS5duvDggw+6SKtqHDgURfD2/RezafteOrQ4OgjA4Z1b882S1TSqmUzrepVXIQR1nYve/5jlO3by0ujTGdSikgmBSsHkFb/x9LK51IpN4NdRN+ArQ9GlCIU2SQ1K3d8qqS7/6XgGWwv3cmGzyIx4Of4idhQbN3UrcjKiklL/6Tyc9il16V27KZ6jJLBe9fXT8Y2bnr+M4eNOpsUJR4frXrveLel4Uluyd+Vy4lk9D6itqQ9/zscvfM+5N43g0jsPjNwKx7K5K7l10P0oqsLkBY/QonPTMus0CCOvwnH3W9fx65cLOfPqU6LuX71gvet/OIZd3B+pS5JrJdKqa7My7TkS4FyfrM/HGipFSp1yyil8+umnpKSkuLbn5uZy1lln8eOPP5arHUvZExFLqsIIU0zpInK3ReqYhIXuEUifkeZMBDGe4ghAFeAxxSwK4FGsZHqourRDBVkBzVGErUzC6TK3nzG53AmjjCTClc4ijywyB0JshaXSUg1b3AotRxnVVOyYtklh1TFpECENJZSzU+v4WKSSgnHGWDbpoATBU2yoruxA6YoZcqrIUdZSSZn7LXJPCgjWAD1NR/UZyijLBvPSAI8HBEFU1dgnpUDTjQMpELYiyuUu45rb6ISU5Z8rrfNFCdW3M/fZKqlSiChXNw7m0CLGrGD5Zhwyy40Rl0ug49wz99tjqI4pVWFs3LiR9u0NP/fp06dzxhln8PDDD7No0SJOPfXIdxnxxer0GpxL844Ve3qTu09l59YqDRNYZVAUyfoVcWRu8tGiYyEDR+917a9ZN0BcgkZRQfSbqZIShe8+SKHbyfnUaVD+uIVaEDav8dF9YC4r/4qnKL9y81O3SQlxCaZas1ItVAOir0+NGrmDkt57773cd999EXV3796Npmmkp7tl9unp6ezYsaNc/T/11FMUFBRw7rnn2tvatm3L1KlT6dSpE7m5uTz33HP069ePpUuX0qpVZCyLalQeSQmxnNCq/uE2o9xoXa8W395ZAfV/KdhdUMjCjO0A/LB2Q5WTUjuLDFVSjr+IgK7hU1UW7FnPG+t+4vSG3RherzN/52xle2E22f5CzmnSC69irIWL9m5m8d5NjG3ck2RfSGV1btNepfZXNy6ZBzufzercTK5oET1QdFpMPFe2jiS0jmRUXz8d3/B4PXQ8MXog/yMRcTXieGbug1XS1pxP/0LXJXM+XVDlpNS+HQaBrWs6ObvzAMjauoeXbnuXhq3qcuUD57Bh2Rb2Zu5j7aINDL98ELXqGw+Odm7ezQ8f/MqJZ/agafuGdptdB7Sj64B2pfZ555vXMfv93zj1ioFR96selVOvGFRFIzw0qI4pVQrmzJmD3x+Zjry4uJhffvmlUoZEVUxVAFbViHacJIKZpU7qGFn4grpBKAnQVRB6yAVNYqikLJJJ6DKSlZRgy2xs9YwMZd7b3/j2N1aXzVHacD6qd4i0pCR6uw4ZlW2yRTbpBiknAiBUI+g5VtBzi71xkjwSHMwcUoJusihO1ZZtfphYyZm0TrOCsSsSKYx0YhZvFt6SZbdzWoTtaymQpQ0+uvjKVnNJK/g45nlBaD4rjIiBW4OxpVvGvOoh0ilE0pl6Kqu8jGyyvCZEOw7HE3w+H4WFBqEze/ZsLrnkEgDS0tIiVBlHIm55ciunnJ1d4Xp3ntecwvwKSKsOIVQPxNXQmflhTV78bl3E/k2rYkslpAAW/pREszbFjLggu0L9vvVEXfoOz+PP2UmVJqTiEjQe/3h9RIDzalQc0danrVu3kpQUkt9HU0k5ER4fwsqqWRY++OAD7rvvPr744gvq1Kljb+/Tpw99+vSxP/fr149u3brxwgsv8PzzR35ckUOFv9dlkldYTJ9OTcs139UIoW5iDSb1P5FFGdu5slf3Km9/XOuuxHlUhjZoS4LXSO3+0pqZrMjZxqrcDJbs28TnW/9Ck8ZTLglc1OxEirUA1/7+Jn5dY2vBPobW68D6/CzOadKTOHX/KeLPbNSVMzm21ITV109HL3ZsymL1H2vpe2YPYuL2/xtSjUiMf+gcvnxjDmdeWfVETbehHTn/zrNo3LY+XU/pCMDXb8zhj++W8sd3S0lMiefNuz9EN3mF1X+u5cEvDEX041dM4e95//Dtmz/z0Be3Me+rRQw6ty91m+xfudqhTys6RAmQfjTDuT7BsblGVegye9myZfb7lStXup5OaprGd999R4MGpUuCI2DKlqSDYCkVspQyEocoycF4hEc/d1xEmeGh7DhHwmRMhOqIxaQYpBQC0CVKMMTF2GomUymFKoz4U1Z5S3Xl6j+K7VHGYpnqIrHsTsOqWMSFClIRtlJJYqnQRGjYNjkCqLhjUKlm85YSyoKKrZaSOqGMe2CSWQqegIInKELlrb4ctkpwqaic49djIJCmoSYFUTzSDn8F0pVKXbgmzBiHkKG5ssZpX1A4JtB6L6x4WRKkrhD9xHP41YVLzsqzAggiThQrMJ00I+rbY5GGHkwgQiIre38U08qB6id9cNJJJzFp0iT69evHn3/+ybRp0wD4559/aNiwYRm1Dz8W/ZpAl/55+ItUVi2Mo8/wXOLi93/y7dnhoSD3yA3CW5ivsGphPGdekRV1/5Cxe+lyUj4g2bgyjp++SIlwuVu9OI5tG7w0bB4oV5/+EsH2jT7W/x3LplWVD1od8BsZ/AaMysFXfa17QIi2PiUlJblIqdJQq1YtVFWNUEVlZWVFqKfCMW3aNK688ko+/vhjhgwZst+yiqLQs2dP1q5dW6ZNxwvWb93NVfd/gAQenHAqw/q2LXddTdeZteAf6qTWoFvrI3/9PViYcGLvg9LutsJ9XPjbFAK6Rr/6Ibej4fU7szp3OyPrd2F70T5XnT93baIoqHNJ896k+hLYWZxLDU8MNyx4GwnkB4uZ0Lriad4BArrGiuzttElKJ86zf2LrSEP19dPRCU3TmNj7LrJ35XLaNUO4+eVrK1R/6c8r2Zu5jwHn9j1oMZWOdPQZ0Zk+IzpXebtSSm7o/W+2r9vBObeeYT/Q6DX8BL587QfqN6uD1N3XtwU5RUyZ9BYX3zOG2o1qAlCnYRr/Pfc5dm7ezYJZy3n6+39X2qb1y7aQmp5MWnpy5Qd2GFCtlApDly5djJtmITjllEg/zri4OF544YVytxfO+lUW4W2UephMVZMIgKLpCBU0r2KQNAJ0p4uZk1GRxj5hqlwiqEpLLaWb5JAV8aiUp4lljdmuFUX8I8MLSvfLRWY5/NmcT39k2OMgoQEBY150BcONTxg7pVPqFAQ0k6zRBEqxAL85dMVQmkUouMJsdymmBEaspSDIIOANTSWAbimKrDo2AWm4aSqmbXoowJXjn3AEhXOSU2YfUoIu3CqqUh+RhR2Isk64qIopi0VT7LELRYQyG1o2C2nMo44ry0K5Uf2ojxdffJEJEybwySefMGXKFJso//bbbxkxYsRhtq5s9BuRR1ptjSv6teTZGWvLJKQAHry6KTu3HrmMSXKaxmnj9lLa9d7JZxoKNn+xYGyHDlFjQHXtX1BuQgrgoxfr8MuM1ErZ60RsvKwmpKoKB7A++Xw+unfvzqxZsxg9erS9fdasWYwaNarUeh988AFXXHEFH3zwAaeddlrZJkrJkiVL6NSpU8UMPIZhZY4F87ezAvj8l7955J3ZCODjhy6jad3ogWurUTnk+AsJ6EZ8vqzikBL4gqb9OL/JiQgh2FWcy9cZi2ib3IAFu7bw8j+/MDvzH1ol1ubtE68hqySXxgk1+XzbQvKDJaTHVv5m7e5FX/DVtmV0TWvEeydfecDjO6Sovn6yoes669atIysrC13XXftOPjm6y+bhhG6uS7pesQO3edU2bjvlfgCK8oo59erKkbHViA5d19m7IxuAXdv22Ns79GnFp1tfQgiBvyRAXIKP1DrJaEGNR8a9wN+/rSE2IYZrHr2QM64dQovOTbh7zDPs3Lyb2g0r/xvy/bu/8PSEN4hPjOOt5Y+TmHZ0JN0AjgupVIVIqY0bNyKlpHnz5vz555/Url3b3ufz+ahTpw5qRVLmOpUz0QiccH+t0tqI9jFKVjbM7qQ0+AFNCFPd44hL5GzEoV5RpLSVOQapIuzsdlIRoCoONZClmAqzz2lSKeMpVSVjqa/CLwit/qJk/0MJ60QJvaRKSBWmAl5hnA1mhj37pQKaqfaxvhC6QAkIPEUC1R8SBtnjtyYybOyWSguJ4Sqogh4HJGt44jTzhjWkiRJChhIsChwuA1aGPiMlpjVMi2yTlructJjk0AGVEnRNmJMVbfajnFDRgp2Hy8EEYW+kkbVQYiuyhE0OGuqokFIKw16b2BOhYO0VfWjjZNKPQRa9PGjcuDEzZsyI2P7MM88cBmsqjrceT+frt9PYm+Xh89drMfbaXcQnlv7rs2OLj+KCI/tY78708OOnyQwYlYM3iofh1nUxTHuxDvuyPASj8E4xcTr1mxY5iOlI/PhpCj9/mUwgYBTYuaVqntIX5il8+14aIy7cS0zlBVfVgANenyZNmsS4cePo0aMHffv25dVXX2XLli2MHz8egLvuuouMjAzefvttwCCkLrnkEp577jn69Oljq6zi4uJITjZuvO+//3769OlDq1atyM3N5fnnn2fJkiW89NJLVTDgYwMtG9Xm1XvOIze/mJO6ViweUozXuMxUFIFHPT5VCAcTHVIa8Hi3c9lbUsBZjbq59lnXTLVjk7isxUAAYpVY/rf2N3yKh38ve4c4VeWdE28ixRfP5wNuYldJHu2SKx/3K7MoB4AdRUe+q3wEqq+fAPj999+58MIL2bx5cwQJLYRA0yqeBfdgQlVVXpj/MKt+X0u/0aXHQosGj9eDoiromo4v7uhS9h0NUFWVJ2b/l0WzlzPyKjfhZ61PvhgvZ11vPDAuyCmkZr1U9u3M4ds35zDtqRnc88FNxMbH8ND0W1i/bAutuzWrtD27thnxTAvziyjIKz7KSCm3UupYXKMqREo1adIEIII1P1AY3lrR7zYqNOVO7sBJikh7d+gYSokSkEhFQfeCZrneYRIDEsNtT5MIzVDzhBMTtohIYsh6EIb6RTeJHYc7YXkJTRn+QYRtF44P4fucbUgMO0wyy3JJdNoiMQgpXQFdSHQM4k3a48cgpDSDhFL8mJn6BEIDJSht5ZQ9r07RUhira6u0VFNwpgC6RBQryHiBEqOjm0SSRIRIQIxYS4qwXPpMasc6ZNKI4W6cliLUj9mrtEkh93bnfApLtbU/X9KIgxNl8u3dpgpLOAtIXAHfATTjvTBdJC0iSuhGValUjAqvTmnsRlFREYGAm+Uoj6vQ4cTGlfFsXGmQsudOyCIsw3cEnr29IRtXl1HoMKNekwBDxuaUuv+xiY1Zu7T0MYy6YjennF36Tc7WdTE8dkOTA7KxNNRI0TnjstJVXtUoPw50fTrvvPPYs2cPDzzwAJmZmXTs2JFvvvnGvjbJzMxky5YtdvlXXnmFYDDI9ddfz/XXX29vv/TSS5k6dSoA2dnZXHPNNezYsYPk5GS6du3K3Llz6dWrYjc3xzo6t65AaAYHTuvbjjqpNUhLiqdh7ZSqNaoaAHSv2Zil2RsJ6EG8yv4fDHdJa8TPI25j9o6lPLX6Cwq0IJvyd1EvLo1asYnUik08IFse6T6ar7YuZXC98rt4Himovn4yMH78eHr06MHXX39NvXr1jooYcvVb1KV+JbJ6NmhZl5cXPkb2rly6DOpwECyrRrNOjdm5eTf+oshY1OFISI7nrX+eZ9OKrdx40n8BWPXnOvqN6klsfMwBx4kac+MIYhNiaNiqXplxqY40ONcn6/OxhgMK3bpy5Uq2bNkSEfT8zDPLGbnfkMOE3jshqfxCaKeowyVmCe9a9yhGMHNVGJnPwGBLhEFtCN0gBxTNJAlw2ItBqkhh1nXEdIpQSkXjOcLHFmazq7xzjqSIjDkVTSUlwmxQ3O+lqZbSvSBjjBc+a+zCdNszCCkRBLVQIHSTKLLmQ3cQc+GqHovzMQkxl1LKEV9KjwUSNXyxQZOQMnYK0w6QpmpIIJSQdupX2gABAABJREFUckoI073P7ip8so1tllJKCGmrlgROxRK21EtIc7tTZRehkorCCkbz57PjSjnru+2z+SoRUlJZVUPtVOw7UB0TAQoKCvjXv/7FRx99xJ49eyL2H2lP+cLRslMhvQbnsmOLj8J8ldj4/dt723NbyNsXuhGZOS2NGVNrEvAfOTGmtq33MuvjZAadlYMnilLqnOuyePHfDcjda+2UjL1uFxkbfHQ9OZ923Qp47cF6jDh/Dw1b+l1fi9mfpPLpq7UwFu+qZ45y96l8/noap42rVkodKKpifZowYQITJkyIus8imizMmTOnzPaeeeaZo0ZFeTRCCEGvdkdHivWjFTcsnML2oj0MrHMCD3QaV2b5FF88ZzTowc7ibGJVL71quW/09pUU8Oo/v9AmuS5nNe4CgJSSlTk7aBifQrIvrtS2G8SnML7NgAMaz+FC9fWTgbVr1/LJJ5/QsmXLw23KIUGzTtXr08HElFum8vWrs0mpncSH218t06MqJs5Hmx4tmPjC5Wz6eytjb3a73WuazifPf4e/OMD5t56G12dQGds37ET1eEhvXLPUtmPjYxgz8cgP4xEN1TGlSsGGDRsYPXo0y5cvN1ySpKVcMSaoIjd90lJIhbt7UX51UQSc7ZiyGWEyjFIV6F6B0CVKUKLqEqEJNJ9JTukgNFMhFTBUUoqLg3CTClJK0IyODDLHUdZ0ybIIJBeRFD5gJ4nm4D2izUGY9iYUI8qlgjI2OPu23zv4GyPToKGSkro0zggJIohB4ARA9RvElEXOOW2WznjhzqGY94ZWcTuGlJM7kqD4QS9QCcSoeHxBgzzSLbWUMYcCENJUPCm6rZZSFIOY0q1jKx2xs6Q1l9LNLpvSKmHKplyss31MZCT3JIVdV+qhGq7zwXWQHOySTQbKEPmomLGldIPkkzpGPClhZHy0FGu6Gu0M2A8sn1J70o8/3HHHHfz0009MnjyZSy65hJdeeomMjAxeeeUVHn300cNtXpm47oEMnrmtEU99vpaUmmWrUmvVDVKrbhCAglyFz16tTXQq/vChaTs/Q8/JKXX/B8+lOwgpaN6+mJ6D8sjaVpNRl+/hvWfqUKtegEat3A9AigsFT9zYiIM53tRaQc6+eu9Ba/+4QvX6VI1qVDkKg8UAFAXLViJYiFG9XN96ZNR9/1v7G2+t/x2AXrWaUj8+hdf++ZVnVv5Iemwi3w+/CV8ZiqyjEtXrEwC9e/dm3bp1xw0pVY2Di+ws49rPX1L+mKAAp18dPSnJX7P/5s0HPgWgXrM6DDm/L3/PX8vtpz2Oogpe+vlemravnLL3iIZzfbI+H2Oo1GPlm266iWbNmrFz507i4+NZsWIFc+fOpUePHuV6MmlBCuFWFTkRTWkUbXvUV0hh4tqsgPQZKhxFD+2QptJJSGGEUpIG+aLoOAipSNWKoQ6yxhDl5VAnSZdddiQhx/isLGyO7Xa/zs9EfrbiRFn22DaE9rnem0op3QPSC9IHeDEIKWEohgSGMkoNmq57mrDVYq5D4hijY3julxL2cmzXfUCNIL6YoMkCOwo5plwIUBTjZZ02FhHlbjQa+4W9zTgMDiLJeVgdbn5hByHyHAxrW4TPjHDUc24WhI69xKWKEtaYHRUqKhaU0v06HvHVV18xefJkxo4di8fjoX///tx99908/PDDvPfee4fbvDJx1wXNydrm5f1n61JUIHjnqXQu7tmWed8lEgzuv258os7HK/5m0Nl7UdSqdbM+EGxaFcPcGUkR8aLWLInjmlNak7ExFMvhvBt28OA76+nYO58bH9uCrsPAUfv49r1U/nNhU/bsUO1zOyZOMva6LFTPwRvrvl0exrRrz89fRNpfjYqhen2qRjWqFvmBIvaWFKHrgkSP4QK9aM9mJvz+Ll9vW1ZG7RCKtQBFmkFqdUipB0Dd2CRSfEabGYXZAOwpKbADqx9rqF6fDEycOJFbb72VqVOnsnDhQpYtW+Z6VaMaFcH29TsBiE2IRVVV9uzI5v+ueIU3H/qs3OGANE0nP6cQgIYt04mN9+HxqjRpZ8S/25WxFyklWlBn787sgzKOw43w9elYXKMqpZSaP38+P/74I7Vr10ZRFBRF4aSTTuKRRx7hxhtvZPHixVVtZ/kRFtPIJoOQoINarDtiXAvQQQlIFM1UqugSEdRRgtKlCpJI09UPgxEx9wlHpgdp9i/0kFBGCjOIumIpcQx7pF0hZEpFz6/oKirpZjIkhhrHfC/BCHDuMV66Yih1lCJhEERehy2mOklIaWeCc8UHdyiJTM84N1kmQ2Wc3JHTbqVYoO+MIT/fg1IjiCfWVEuFj8vxJbSy7gkRiiWlS+FQMEX7skoHMaS7SC1pxqKyFFERdaV0b5e4xhYanwzxV073P2dcKGshkbjOCSGwY3lJTLJKUOGYUi67jsEFqzzYu3cvzZo1A4z4UXv3GiqXk046ieuuu+5wmlYu+IuNJ9Djbt1BwK/w7lN1ade9gBNH5JVZVwjIy/bw06dHVoarFh2LOfn0yJhQn0ypw+bVIVeQ2HiNK/690/6cmGKcxD9MT2PzmnguvHkzNeuGbohKihQ+mZJ+EC0HENSuH2TAqKMwcO+Rhur1qRrVqFLEqj4axtdia+FuOqY0BeDZVbNYvHcrf+3ZzGkNTyizjW2F+zhv7ktoUuedftdyasNO9KzVlERvLLGqoWC9uf1g6sYl07VmI4qCJUxe8wOdUxszrP4xFIenen0CYMyYMQBcccUV9jbLK+ZIDHRejSMbbXu3YuPyLbTv2xqAb6bO5ZcvFwLQ/8zutDxh/+6TmqZz4ykPseHvrdzywmUMu7Af7658El3TSTIDlZ88uid5+wqIifPRqV9r3n9yBh6vypgbhqMeKwk2wu47j8U1qlJHStM0atQwToRatWqxfft2wAiEvmbNmspZEq6uKW3//uoohKQvpq9aOE9iKVEsVQpKSN1jNyWjKYJE6OU0xFZ7hSmUwtVSzvKl2S8cZVxtRRl/qcIgdx07GDi4su7pHuOFatQRKqF4T2CQdZqhlBKacPe5P/utlyxHGWHMq/QAXlB8mkHgRRm+oZKStlLKiCnlYLpKncyw6RTOQyBCBWxZZMTBiPI+9Nk+wxzzXeocgZu5k45z0VEhVMVlbLlg+RyH+x4fT2jevDmbNm0CoH379nz00UeAoaBKSUk5fIZVEJ+9Vpt3nkxHUXXWr4jl7z/jKc9DpfpN/Xy6Zhnte+RzpPxqrV0Wx5j27Vm7PNY1hjsnb2bGpqXM2LiUGZuWcurFezijWUfmfZeIdd27Y6uXH6anApLvp6VSkKfwzXtpnNW6I2e368ChGOOWtTEs+iWBY1QgcMhQvT4dfXjpw184+5bX+W3xhgrXzckrYtrXC1m3eddBsOzowt9ZO/k9Y2uVt+tRVN7qczPTT7qTsxv1BWBIvfYIBEPrty9XG2tzd5AfLKFIC7Aqx7ierx2bSKzqJasoj4t+foN/L/qCS1v2oU/tZkxe8xPvbJjP7Qs/IsdfWOVjOlyoXp8MbNy4MeK1YcMG+/+RhLmfzOfiZhN498FPKlxX03Rmfvwnf/606iBYdnQha+tu5n35FwF/GXL8SuCWV67l7XUvcs9HkwDoOrAdMXE+GrWuR4PmdcqsX5hXxPq/tyIlLP/tHwBqJMeTlFYDTdN5/Nr/cfOQ/6PLyW0ZfvFJ/PrVIt5++AveuP9T/vz+2FH2ha9Px+IaVSmlVMeOHVm2bBnNmzend+/ePP744/h8Pl599VWaN69AuuDwG/jwfeGQUfabRIxrl5QuhY4d3kdKRBCEmc3NImSk5UalGX1IRUFTJVIxOhE6RpY4ywwFUBUjKx+AFnZTpFisjLBVU1ju95YCxml/tHHLyF3Sud+xzY4V5XDxt7LtuZRNIrRPV0H3hmJIERR4AsJuUFgNW4owa4haqO2oxy9cPSTc7227VGkSZBLplaDqCClRhI4QElXRbT5GSjM0uTCPHYY6yvhSOjoU2PGoAEd9HBMuESoIIRGmCknqAl2ArilILYygshR3TnWURXhKu1vQBFI3A8S7SChTZSYc7ViVFJC6NIg487zAPF+kFUS+okqpanD55ZezdOlSBgwYwF133cVpp53GCy+8QDAY5Omnnz7c5pmQKI5j684MCSA447JdnN+5IyBo0SWfjr3Kd/EvBGxeE8OqhQmUvsAeaghan1BE8/bFEVnshAIe85foyzdrkVYnSK8heUgJmga/z0xkxxYjC8OQc/YSE6fz2Wu1KMoPj2kizXms+jE3allC5xMLOBbDqFSjGqUhqOm8O2MBEvh41hL6da3A9R3w9Os/Mvu31dSIj+GbNyYcO0+sK4hVu3dx5kfvIoFXTj2TYc0PLINUOGJUL3XjUu3Pl7Q4kQub9cZTzgXrpDqtuaJFfwJSY1j9jq59M7evZNFeg0z7a/dmTq7birbJhntfw/hU4j0xdtl1edso0IronFK146vGoYWVzfRowPRnv2bn5l28//CnXHzP2ArV/f7jBTx/t0FmvfjlzbQ4FuMQlQNaUGNCjzvJ2Z3H6BtHMuGZy6q0fSEE9ZqHFO0d+7Ti043PoahKuRKaJaYkMOn5y1g+7x8uuuN0177NqzL48SMj/t2s9+dx5f1jady6Hh6viqIoNGwR6nfX9n2sW7qZ7qd0wBcTJeNONQ47KnWFcPfdd9t+oA899BCbN2+mf//+fPPNNzz//PNVaqCNaIQURFeSmCRSNIdLi2ex3PqkSTxITaI79utCGC+zKXA3p8tQeZdCqTTWyC4sQ9tFZLFw9XCEp1i4CscqG42xcpohDFc9XXWQSoo92FA2vfCXRcqEijrGHGlgVHudhJSQ6IqOVMygXaqO9GqgamYQc4kwiSkhjEkTpjHGtlDroWDukeooa04sQsp+HxIpOUsaN7Lh0shwhi3qQQjr0KqmYx9zKU2yzDrxwsgtZ28S9/giHRnLgYhxlA9z587ljDPOoH79+ggh+PzzzyveyBGAW265hRtvvBGAQYMGsXr1aj744AMWLVrETTfddJitA69PZ/Ksf/h6y3K+2bqcb7Ys5+vNxv9vthqv8yZmmYSUUX7iIxkV8iFv3NpP3UYlVOpEOEhY/3c8e3d67DH8+UMiZzTrxMv/rW+SzHDSaTlkZXg5rfEJXNClPXuzPHTuV0hsvPFleuz6JpzW+AS2/ONOgxcTp/HUZ+tIqxPgYIw5c3MM29bFHJM+/IcclVyfqnHo4VEVLj69J/VrJ3PO0C4Vrp+SaHxPExNiUJQjhSA/9PBrQfuULyorMGAVobyEFIBXUbmp3TBuaz+SgK7x3vo/WZmdCcCguq1pkVibrmmN6FbTcLM5t2lPZg6exPSB1+M1+9lUkMkNi57ijqUv8cuupVU+nlx/Metydld5uxGoXp8AWL9+PRMnTmTIkCEMHTqUG2+8kfXr1x9usyIw5ubTqNu0Dhf9Z0yF6yalGvHSVI9CXEJMGaWPXUgpKS4sAaAg59AoH1WPWi5CysKwi/px60uXU6dRTX745E9+n7UcgMZt6tFzaCfSm9RiwJheALTo1Jj3Vj7Buysep1Frg0DXNJ2bhjzCA5e8zP/unV7l4wkGNNb/vRUteJDl9BE32RXD5MmTadasGbGxsXTv3p1ffvllv+V//vlnunfvTmxsLM2bN+fll1+uXMflRKWUUsOHD7ffN2/enJUrV7J3715SU1MrdJKF3OFMOBROEYimKIrSl9CkHefJJiGEo6+w9p1Z+VANxYw0XcqkKV9QAxJKjLaRoKlGtj4hMfY5yA5h9uvwILS5G2ufBBcd6FJNySiUR/icRHMPc7gJurgOie2yJ033PVRj3EIzjBRmBjghw9q1bLHacroiWoMKNzPcXRFc6igtTkJSgJiUYjyqTjCo4i82GGtVtRRSxn9VGK1KQsSg1a0mQUqljBt1wxCbsDODhFnHB8z/CihSopuKJmldM5oEkq2ScrRpz0uYuiWcbDTakK4i7gnDrZyzVFO6NBjASrrvWe8rgoKCAjp37szll19uxxQ4FtC4cWMaNz5yUv7WaVhCiw7FoQ1RDtPKBXHUaeAnK8NHSu0AKbUCEafCvl0e4hKCxMZH1t+5xYtEkJSqkbuvUst8laNhy2KCAYW8bIWkVJ1VC+OoVc/PwNF72bXdSzAIP3+ZjMcrqVUvQIsOhXh9krXLY0x1Vennc+36fjK3+Niz01dqmYpBUqeh3yDCgQYtSmjSpqSK2j5+UZ1y/ejD9ef35/rz+1eq7sRLB9K/V0taNqldsWvDYwyZgX2oacWgCxISDt88BHWd9Xm7aJFYG0+4ZNXEY8u/Z/rmxcSrXuaf/i8aJqQyY8iEiHL14lPC2tbsh2h+vWozQhQG/Qye8TJ7igv5v14juaBl1ypt30L1+mRg5syZnHnmmXTp0oV+/fohpWTevHl06NCBr776iqFDhx5uE22cPLYvJ4/tW6m6/YZ34tlPb6RGUiz1m9SqYsuOHuTtzaek0EhyEJcQW0bpg4ut/2SSVjeFhKS4qPvnfLaQJ29+F4BnvpxE225NefCjyIfNyTUT3RukxO831qWS4vJnKS0vHrryVf74fjknn9mNu169qsrbB/f6ZH2uCKZNm8bNN9/M5MmT6devH6+88gojR45k5cqVUe+RNm7cyKmnnsrVV1/Nu+++y2+//caECROoXbv2QbtHrPDdSjAYJDY2liVLltCxY0jmm5ZWucC6jvvyiiHMZc9uz0FeODuI4BVkWBmTCJCqxTQo2G5sOlY0bVNZpZssi8N+JxnhcN1yMUW2AVZFEXXgpc5JaZPksN9WbDkJuTATTPGQox52Zj1XsHKnyc4NYTyLNRRdkaBKIzi3tV8K233NcCeUCEVHseVEClLqKB7NdmESwtWVu3Nr+uX+ZsqmAB3bLKmadMSVEiEVkxnw3E1wRVrg2iPDNoRXcc6lZH/NRW9bWpRcBeA8zypYdeTIkYwcGT1F9NGGP//8kzlz5pCVlRWR3eNwuvApquSBtzYB7nM9HI9/spF7LmlKVkYMuXs9yLATZ953ScyfmcStz2yLWr9FxxIe+3g91wxsU5XmHxBW/FmDey9tyosz/0FKuOT2LC69I4u3n0jnvWfqAiCE5MVv11CrfpB/ndMcX4xOw+YBigv3L+rdtj6OJ29qUmW2jn9gO6Ovinwqv79jVo1y4ADWp2ocffB4VHp0qrrv5dGKhgmpeGMNXXfDGqn7LZsXKGZ3cQHNEmtWuR23LviE77evYmj9djzf+9yoZZJ9xs1ggjcGpQJX5i0TG/LoCRPIDxZyUq3OVWKvhYKAn73FhoJjY+7eKm3bher1CYA777yTW265hUcffTRi+7/+9a8jipQ6ULQ5odHhNuGwIy4xjrS6KezdkU2zTvt/gBsMBNm6OoPG7Rqieqo2nsFXr/3Aize/RVrdFKb+/SQxcZEPGWukGE9hFUVUSN2melSe/uYOVv25gZPP6l5lNlvYts5I0LN13c4ySh4AwhVSFVyjnn76aa688kquusogzZ599llmzpzJlClTeOSRRyLKv/zyyzRu3Jhnn30WgHbt2vHXX3/x5JNPHjmklMfjoUmTJlWSfSFiPp1RuUtTTZkKqci6RoNCRFH8IAyyxWP2oUtb9WT1KwToigAVQyEFRmwq04VNSIESNOMgaWbGNrOvCMGMST5YTwYlDuWU/T7sx35/aqnSrgvCyQ+H6iw8Zre0gpirIL041FLmK3wMznZx7LfG4cikJ8129ViJXkMLxbbyC9RCgfCHCCk8EsUDPq+OV9UpkjrEGeeSqhhxdhQhI8xQTTsMaik8uHlozoRCRLpMoYQCpVvHwfk0zCCmrIlytinC4lE5bIpybkYTQVntRCsfUdbZgCrs41UxOJmw4/Pu+eGHH+buu++mTZs2pKenu57QH+6n9V6fRvYelXpNQY1ybDUN1iyJo2nrYmokBejUJ4+MDTGsXRrHuuXYa8tPnydTIyVIzh6F5JrRo5/n7VPofGI+W9fFkrn5yJCmxydpZGV4adg89CQ9GITYhCDFBR4Uj872TT6Wzk8gGBQsnV+DhT/VMJMaHBh8sTode+Xj9enmd874fmdsiGH7xvCngzpFBRCX4N5aTUgdKKrXp6MdW3bsY/bvaxjSpw2N6+6fYKmGgY6p9fhpxESEEKTHJZZarigYYPjMyewuKeChbqdzbrP9K4KeW/Mps3cu5MbWZzO0btk3WhvyDKJ9fV4o8Py2wt3sLM6mW2oLhBDc0n4w/eq0oHVSnVLVVKWha2rrCpUvL2rH1eCVk8eyYt9OLm/T86D0YaB6fQJYtWqVnSDGiSuuuMK+QT1SUZBbxDev/0jLLk3pOugYygx5EBEbH8MbK59h745sGrWpv9+yD577NPO+WMCg8/vx7/dv3m/ZH977hRdufIPBF/Vn4vNX7LcswLZ/DJfhfVk5FOUXExPnI29fASsXrKfzSW2IjY+h1+AOPDvjVmLjfTQxXfPKi8at69G4gnXKi/+8fjVzPl3A4HN6H5T2DYSpRsz3ubnuzNAxMTHExLiv+f1+PwsXLuTOO+90bR82bBjz5s2L2tv8+fMZNmyYa9vw4cN5/fXXCQQCeL1VH5erUn4dd999N3fddRfvvvtupRVS4YjQvJRyE1/qvb3BNER15QoF2Q4xLFIJqVHs+ro0gp2rwvQPw3AF1CVS6oZqRZcmkaOYaqOwYNtWBkAdXJGwTRIr5EJYimzGoRIqdT5E2DarbRGmlLLVNqEy0lZ+WXNizo8i7eDlQoJw3gQ6TXbNp0T3SKTHJOt8RpwooZrRuj0gY1Q0IYy2daNxoWgENYOYM5QHFsFpHD9dGkQSekjVZU2rdAxcWKonCbp5HEJyRucMSrNtafQvrO0GuajriiPmkzlnjphQkRMRhmjsdWkMVWnvHaygcBy7CiPKk77yLFjHEp577jneeOMNLrvsssNtSgR0TaFBM39UQgrgrcfqUq+pn/bdi7jjhQyuOKkNe7N83Hd5ZIDhs6/ZVSohBdDqhBIuuCmLW85sWVXmHzD0oEL9pm7XjsJcD8UFxk+RFlB54KrQWO+7tGKBlfeH+6dupNvJ+a5ta5fFMXFkZFDe5DQ9gpCqRhWgWolgY8WKFa6He6qq0qHDkX8TddfzX7Fu625m//EP7z9yyeE256hB3fikMsvkB0vYU1IAhAik0iCl5Kvt89GkzreZf5aLlHqq11i+3LKUMxudAMDekjzGzX8Gvx7ktrZnMbpRXzyKwol1KrfuSin5Y9dm6sYl0rSKlV5DGrZmSMODQ3rZqF6fAKhduzZLliyhVSv3b+OSJUuoU6fsbGmHE+8+/BmfvvAdiqowbeMLJIW7cVUjKhKS40lIjhILIgybVxpJDzaviq7Sd+K7qXMoyC5kxsuzuOG5y8t8KHzRXWcRnxhL6+7NSaltrJf/OuspNqzYxklndOPuN8cD0KZL5dW3G1dlUFxQQrseVXdtCdCsXQOa/ecgB8ovRSnVqJFb7Xfvvfdy3333ubbt3r0bTdNIT093bU9PT2fHjh1Ru9uxY0fU8sFgkN27d1OvXtUTfJUipZ5//nnWrVtH/fr1adKkCQkJ7qv3RYsWla+hMPcm1+kaJShmNF7Gtc92rQgprqSVYc8pt5GEyCFNhtzGMMoKx49SKJmaQJFWRj5hbhcIKY24VFYVISL4CIHZvuJQTiFs5ZEz/pQ9OOd87GfgNr+ihM2ZRTiFi4qsAOeOvqRXImMIkWdBETG/EYSUKtFiJHq8NDLECcArUWItNzyJ9BkB40UNCXle8IGooaF4QZcqihQoCnbsKMsgK/h80JZmGZnyFKGbpJN5DMx5MsgtYe8LBUR3KGQUQ4llJf/RpUTTBNKVotChlnIppNxqrOhwH/WKPGNzlZURWyqGKBdV5VmwjiUoikK/fv0OtxlRIYFl8xI4cWQu3ijhj5p3KKRFxyKjrIQOPfPZleEj4I98Yr19k4cdWz3UbVR64Ny4GkHGTtgJUjDvu+QoiqBDi4I8wZolsbTtWmyrjtp0KyA+SWPfLpW5X6ZQXBj5sySEpO/wHBq2NGJxFeR6mPNFCgU5+/8J8/p0Tj4jm1r1AzRvHxnAMzZeY8z4LBbOSWTjKuOCLCZOo16T6vhRBwXH8U3fL7/8wqRJk1iwYAEAffr0obCw0H6oJYRg5syZDBky5HCaWSbSayaybutu0qtv9qoctWNr8EKfc1iVvYPLWu3/ibsQgmtanM4POxdxUZPB5Wq/dVIdbusYcr0KSI2gbhCjBcEDX/OmbVzEfxd/Q4zi4ceRE6kdW+OA2zykOI7XJyeuvvpqrrnmGjZs2MCJJ56IEIJff/2Vxx57jFtvvfVwm7df1G5gCCVqpMTji+L+VY0Dwz0f3cqP7/3C0EsHlln2gn+NoiCnkFMu6FcuL4WktBpc+l93BsXCfOOarzCvqFL2OrF59XauP+VhpJTc+/Z4+gw74YDbPKQohZTaunUrSUmhhx77Ex2EHwcp5X6PTbTy0bZXFSpFSp111llVbIaBaL8BopTtNoWxv+DoVkGLU3AomixuQwiM+NfmS5guelZVKUCogEcxVFJWOj4NwxXOymBnWas5mAsHGSSEMJRWVsBeKx28TkjdVBasEzJcXWwGKpelKKVsJZX1XgPLpU8qpspJlUZMKAFCFahBYQY/Nwgag+CSSFWG6nmlkUHPq9uEl9TdqirFp6F6DR9BTVPweAJ4VA1FkQ4XOmxi0IIRwkuYwxSO7IISBWmQf0LBboDQeSAtosq0QwgHiYg0SStQFB3zeszMvuc4CFblcgeSC5NHhV/YRDuR93diVxbOcZj/K7JgHQu45ZZbeOmll45ImbmqQs8heVEJKYCBo9yqtgU/JkclpMBQQu2PkAJo1tbP1Xfv5Is3ah52QgqgZrpGu27Frm1Dz8kGYMKwVlEJKYCRF+3lpsdDT+b+fWGzMgkpgMvv3MGY8btK3d+opZ8OPQr5ZEroadAND2fQrvuBXwBVIwqirE/HCyZPnsy4ceNc23766SeaNGmClJLnn3+eKVOmHDJSqqgkwKI12+jcqj414sr/m/DIxDNYvWknbZuml124FGzesY8H3pxJy4a1+NdFg4/rzHzhGNagLcMatC1X2XMbD+DcxgMq3Vd6bAov9riWbYW7GV6vW7nqZPsL+WDTr3RMaUT/Ou1c+/IDBrHl14Nc8fMH9K/bgjs6n1Jp+w45juP1yYl77rmHxMREnnrqKe666y4A6tevz3333WdnNj7YkFKydM4K6jVPJ71J7XLXG33DcDqc2Jr0xrWIja/ctW5xYQlPXvkyBbmF3PHmBFLrJFeqnWMRLTo3pUXnpuUq223ICUwecmDEzyPTb2HBD39z8pnliwOlaTpf/u8nhCI488qBKA4X5OJCv80DvPPYDGa+P5/bXriEhMToQdWPOETcpxrvk5KSXPd40VCrVi1UVY1QRWVlZUWooSzUrVs3anmPx0PNmlUf8xAqSUrde++9VW1HVOmTKG1/FMWKcN70W78ppnrIFbzbuvixtgVtRy6DzBCGOkoqIlRGF4ZbmqWwUgV4HI0qIYGLYvEjVjcWQWJ9drGLTuVUlPlwEBTCMbYIMY0IjdVVX8GtjBKGYsjKwqd7pUmsSXSfNM4Gi8DSzXGbbemqSUjFmOSXAnglxOmGq510GmPNtcQbE8TnCVKEDxWduISg4d1oxXDC6U5n/A/xjNY2U/lkTr0E0AxllK6rGOoogXRJwKQ9UVKComgmESVthYaGQAqrjlNSZjVhKq/Cj01UhB0QS/0V9cAePDhjaVn/y7NgHUu47bbbOO2002jRogXt27eP8Hv+9NNPD4kd8TU0zrpqFw2aGRfqUoLqlfh8ZTOPmZt9fPF6LfJzQz+ovYfm4C8WLP4lERD8+nUS2zf6qJkeYNRVu6hVt/Q4f13653H9/23ls9dqs33T4SOnNv3j44kbG3LaJXto173IFaPpktszycv2sGphPLM+SsNfrNL/9H30HJxLo5ZuImvM+CxanVDEjLfSyM9xHl/JkLF76XxSPgJo3bns9MYtOhVy23ObbSK6Q69DkxL5eES09el4wYIFC7jppptc2xo2bEiTJk0AGDduHKeddtohs+euyTP4bdlGurRqwGv/Pq/c9WJ8Hjq3PjA3hc/nLmPpuu0sXbedc0/pQosGx2/mq/JCSslLa79hWfYmbm83mlaJ+4/9Ul50Tm1G59Rm5S7/2rrZfLzldwSCmaf8hxRfyOXn0la9SY2JZ8aWVczN3MDK7CyuaNObWrFHhy/08bw+OSGE4JZbbuGWW24hLy8PgMTEQ6uMnP7MDF657W3iasTy/paXqZFSvnNICEGb7gfmmrV0zkrmTv8DgF+m/8GZ1w0ro0Y1AH76+HemvzCTMROHM+icPlXSZr2mtTnzykHlLj//26W8eu90ANIb1aTviM72vjbdmvLAe9fz+8ylfPP2r2xYmcHCn1aWm/A63AjPNl+RNcrn89G9e3dmzZrF6NGj7e2zZs1i1KhRUev07duXr776yrXt+++/p0ePHgclnhRUkpQCyM7O5pNPPmH9+vXcfvvtpKWlsWjRItLT02nQoHwXLJaXVGm36aXOt6WqMdkL6/4/WkPS+caq5+QdDAGUIWAyFUcoEt0iJIUwCBwMVy81YJIdGuheXBIfoZs2mcopoWAqeqQ7fpUwlTmW25vZD5bwByL4kagqGwf/YiulVBxPekzlknAIpyy1lEWeKUZcqBBpB9IjCZo+iYomQBe2MkrGaAiPtMeBBGnfC4eYOGGSeVpAwS89eH1Bo7jrgIQIIuPLFh7A3hqkRNfNKVIMVx6PopkKKyUU0Fzotuuf3Z5uqKM0KcArUIRAUXRTUKabJKFRRhpsZIijMufKdsYLO7/cpKl0HDjnqhHluEVDVV0AOc+zCraZn5/PunXr7M8bN25kyZIlpKWlRU0XeqRi4sSJ/PTTTwwaNIiaNWsetuDm427bwdnX7D8uSGl46JomrFseuthv0qaIc67bxW1nh+JDbVwVz8ZV8Tz4zob9ElIATVr5+f6DmMNKSAHk7PYhFEH7HpFKpD5D8ykpEjx3eyMCfoU2XQu4+9UtUdvpfnIBk//TMIyQgp6n5HH782XHOnAivWHQVmtV4yDjANanox0ZGRmuGAxvvfUWdevWtT+npaWxZ8+eQ2ZPboFB9OYVFpdRsuoxuEdrvvl9Fc3r1aRxeuoh7/9oxO6SXD7YPBeA6VvncWf7sWXUODhoVsOIKVQrJpE41b3+ehWVMU27UCc2ieV7MulVpzE1Y8qOU3PE4Dhen0rDoSajLORnG7HV/MV+goH9K8KrGu36tKJF5yYU5BTSc3jnsitUA4CpD0xn55Y9TH1gepWRUhVF3Sa17KyA6Y0i1Tw9B3egabv6LP1tLapHoVPfyJiiRyyc6xNUeI2aNGkS48aNo0ePHvTt25dXX32VLVu2MH68EavrrrvuIiMjg7fffhuA8ePH8+KLLzJp0iSuvvpq5s+fz+uvv84HH3xQNeOJgkqRUsuWLWPIkCEkJyezadMmrr76atLS0vjss8/YvHmzPaDyQDiIFfeOUj7LUopYxE6IjwnLQBdSNdmKIpOhEoTILcNNTZiKKOzYU0KXKLr5WRHoXuGIUWW5h0nbK8/gRkSIohCmC5+ptrLJGDPzn0spHBIRGX3LkPkRKinrs52pzTlOEKqhisKRfQ+PQTxJnzTUUh5CQiEZqotm0kKWu16chojRHQOyB+qyRViyNVPdpCgSr8ew3tpnx5y3OT2BOxJTaI4EAlWVeBR7+glIhaCmumJMIRzzLQVSNyVsQqB4QFXN7H6KNbUK0k5L6ByTdSI4mEGrSGniJ7MfF/PoLBz1wB0EHID8/K+//mLQoNATiUmTJgFw6aWXMnXq1Kqy8KDj7bffZvr06YdUdRANH0+pzT9L47j8zh2kNwqUXcHE5n9i8Be7j9229TG8+O/6RGPfv3qrJs3bF1Gr3v4v3M66OosWHQt589F6ZG07PC6ciipp0bEQXQMlSrB3b4zkyc/WogUUfLEaum4Q0dFw96ub+PWbZKa/Ups+Q/MYfv5uktIssvrgjqMalcRx7B6TmJjIxo0bbWXU2Wef7dq/cePGQ6poffT60/lhwVoGdGsBQMaObO5+8ktqpSbw0G1nEhNzcJ6EAnRsXo+ZT48/aO0fi6gZk0i/Wu1YkbOFIeldqqxdKSVzs1ajCsFJdaK7Dc7M/IvtRbs5v/EgxjbuQ8+0FiR6Y1m8bxOdUhqT4HH/nvSv25y/Rk+qMhsPGY7j9albt2788MMPpKam0rVr1/0+zCt33OADwIX/PptaDWrStGMjUmonE/AHefiyKezYtIv/vD2Bhi3rlt1IJZGUVoMpCx45aO0fqzjtikF8+NQMTr+yal121y7ZzKbVGQwY3RNflN+lFQs2MO+7ZZx2cT9admrEW389iJSSzI272ZWx144zZqF2/VT+99u9VWrjIUEp7nvlxXnnnceePXt44IEHyMzMpGPHjnzzzTf2NUlmZiZbtoQeBDdr1oxvvvnGDolSv359nn/+ecaMGVMlw4mGSpFSkyZN4rLLLuPxxx93segjR47kwgsvrFBbYXxGmWUcrENIkYRFQkkXMWXtNIobQcp1geljJwxllCAU59pSEOlm+8LRhiLQfAIlYFIgmkS3CC5hKJKEYqhzFF2621AsJzBpExdGeYORkRapZBFi1hAttY5TsufkPZwEianewjkWa2yWckgxPPKs6UM3yDSpO5RPAMJUDXmknWEQlwpLRjkwDtWX+V6YdYNBBSl1VDV0eKxg5IqQ5pQrKNFoX2HZL9HD+lMVQwamSYlxMEJxqoQCAs3c7pw/aTcrTCmZsOfMUFYZTJpjHm2GMxJurinUNpb7YGlP3cpiuCt5PSQkoaSPFWTRBw4c6M4keZQiLS2NFi1aHG4z2LvTR7+RuRUipABeuKshW9a6fdy1oMKm1dGfOI+5dleZhBRA7Xoaf8xKPmyEFMCJI3IYfVXpahBFgbZdy6fcaNauhJvPqENcgs6dL0VXVFXjyMKBrE9HO3r37s3bb7/NwIEDo+6fOnUqvXsfzHTSbtRJTeSCYaE4Qj/NX8PajVms3Qgr1mbSrePRo449HqAIhce7Xlbl7c7b9Q+3LXoHgMm9rqRnTfdv5+aCnTy6yngy7lU8XNx0CE1q1GbSwrf5dddquqQ25dXe11S5XYcDx/P6NGrUKDve6KhRow6bwtyCL9bH6deGgvKvX7aZ+V8vBgw3sXF3nXWYLKtGaTj3llM595ZTq7TNvH0F3DLyUYIBjcyNu7jkrlERZe6/4lXy9hWyfvlWHv1oIjXrpvDZyz/w6j0fE1cjlreXPEyNcmQWPNLhXJ+szxXFhAkTmDBhQtR90cQHAwYMOCQktIVKkVILFizglVdeidjeoEGDUlMLRoVw/Ctr/XMoTkTYJhzkUGhnWIO2mshUQOkGUSRs8sBhjDDLiVA7Qpcomtm8AtJjKaWEyTXJkCjL6b2lmAopYSinDPJJhOyxSCsh3JnylLCxCgcBEq7WscgnZ0wpSxVlxo/CE/pv2G+qpRQZGU5JCdUXmISOipnRjrDCoYMiHJuFEjoEimK53RnGW254iiJRBAQ1QxXlPGQubkRY9a0yAl0qaLpFYymm4sowwFZf/T975x0fRfV28e+d2U0lPRA6hN47CKggCIooRUVBBUHsDQTLz45iL6+9K9h7wYooCALSi0jvJfSahJC6O3PfP6bsbEkPRcn5fDbJztw2dyZ3d86c5zwm2ygUUF06LlX3Zd/TBbpuHajzmMw2EA4iS4RWSAVWCyQJ7QKlhPMCL231Svk5jzzyCBMmTOD9998nKurkfRDVapBPSt38Uit3Lr3hAGkbwsk8UjKlwrdvVaVekzwSqhYdwgdw4chDrFoUxeF9x5+Y6t4vk+F37iM6RuPzl6sx6/sEOvbIwusB1VUxaqb3563DU6Dg9YKrzMHolThhOI3Xp/Hjx9OnTx+SkpK4++677dTqBw4c4JlnnuGTTz7h999/P2nj69WtKdPnriMpoQotG1d8qud/KyYvXMbUtRu4q/fZdK1fp/gK/zKEq76FM0wJXkTj3dFUcUVyzJtLvWifIW5GgRFelVlQPg8+XUp0KXEVJok9kaiA9emNN97gueeeY+/evbRs2ZKXXnqJs88+u6JGeNzg9Ao+FbMzN2hdly7nt2X/joOcc+mJI+9PdSyfsZLJD35B7yvP4pIxFUsInQpQVIHLreL1aIVmU6zXpAarF22hfjPf51ZWurE+5ecW4MkvX/in16PhcoeQ9p9oONcn+E9+hyrT1/iIiAiOHj0atH3Dhg1UrVryLAmAQ8lU+P7iyhtkje/Oz48PcIh6DD8lkzmQwlADWV0Eciya9NUTJokjFBSvRNEkSoE0RDRWpj4BUhUIBXQVhE6IzICmkkf4K7WQpsrLJH+kIgyBj8DODOgQIBk/NAf5ZYmYdOkjtvARKUL4j1N3mW2baik7K6D1nUDDNDk3MxGqdnpBx/H4HicJxfcCfMcoQCg6COln0KZbP6RAUXXCXb72dd1QTVmZ9yxvKK/XIKAUYYTgCYzfug4KOpo0jM+leXEYpJdmmpwbqiqD1NJNYlGgKlb7CroZt2gl8jOIQWFkU9R9F4g9V45ry1aP+V2bwpxjhwrNatvh+YWv6WCU5ab9NJafW3jllVfYsmULKSkp1K9fP8iQ70Sx/pfdcoAmbUrv1/LV6yklJqQAht5+oESEFMAPk6qeEEIK4Pand5FYzcv+XW6mfZ5Mh55Z9B9xpEL7SEzRMBasSvwrcBqvT7169eLVV19l3LhxvPDCC8TGxiKEIDMzE5fLxUsvvUTv3icvU1mt6vF8+MKok9b/qQhdSp79Yy66lLw1b3G5SCmPruEOFbN8ktEpqSGTut6EKgQt44OPLy6sCp93e4Bj3ly8En7YuZTe1VvxVLsr+G7nYhYd3M4za37m7hb9UYSPWJp3YAsFmpdzqjcpVHWTVZDPgKkfsD/3GJ/0GUbHquUz0C83yrk+ffnll9xxxx288cYbnHnmmbz99ttccMEFrF279l/ly9mgQQOWLFkSlGErIyODDh06sHXr1hM+prBwNxO/GnvC+z3V8dmTU9iwZAubV2wvFynl9XhRXepJV8gFIjo2ijdmP8yuzfvp2LtlyDJPfn4re3ccIjEllt8/n0+rro0Yekc/YhOjWTJjNS/d8THjXrma+GRfZNf2dbvZtGIHPQZ3IrwQsgvgqRsnMffH5dz42BAGXderwo+vVChn+N6/AWUipQYNGsTEiRP56quvAEMBk5aWxr333lu6WEPnxV/ojXnADstU3OKWLPWTIHR7gaoTS1ElLeLI15ZfXcWhalKMMopuGpbrIMME0invsTkxh2LKJCZ8tkfC7t9P+STwqb3M7Hi+Ar727OE5xiwx6voskISvTdNLylBF+V6Weko6M/P5PaQSRoijYqiMnCo1v5GYWfiEikFKCQxjcbN/IUxySPirnISw1FIS1VRL+U6tPXO2x5RhgO6oJ0A3SahQsiJLVSWlMX67H0X3EVG6QPfzk1KM9pxeUqbaKujasCbePkfOaRGh3gbPXSiIQv4uDU5jJYKFwYMHn+whAPDb5wl07ZtJfLJWKlXQ4OsOsm1dOLnZ/stzRJTG2Od28vnLKaRtjMC6SKa8W5XU5mlExxR/wu97Ywezf8zk1ftqkXusYqRFyTUKeOT9bUaWQZsQl7jDDTK6Wi0PP2z+x8gBoTvXgkqcdjjN16dbbrmFAQMG8M0337Bp0yYAGjduzJAhQ6hT59RX4eTle7jv3al4vRoTrjmf5Lh/R1a1skIRgsvbt+KXNRu4pE2LMrczccWvfLZ1Cbc178ltzXtW4AgrBm0SiiZMqrgjqeKOpN/MpzmYn8X8Q5t4pv0V5GuSFRk7WZGxk0vqdKJxrOHzs/xwGtfN+wSA184YSteqDXhx9Z/EhUVwa4uzUcwPgC1HD7M9Kx2A+Xu3nwKkFOVan1544QWuvfZarrvuOgBeeuklfvvtN958802eeurf41G0fft2NC34YU9+fj67dpUukciJxqQHv+Cf2Wu58ZmraNm96ckeznHH+aPOYdPf2+gzokeZ25j15XyeveYNWp3ZjGd+ux/lVFAtOlAztRo1U6sVut8d5qJu4+o8d9sHzPx6EXFJVfh8zbPUapjC2w9+DcDsKUsZdL1BKuXl5HPHeU+Rl53P1lU7ueGJy/n+7Zns2rqfq/83kLikKnbbC6b9g5SS+b/+cwqQUlQqpULh+eefp3///lSrVo3c3Fx69uzJvn376NatG0888USJ27FEI0FxkTbPE+LOxeKUXMKnShHB58YZ6maTUBJEoH+SxM5Op7sEQkoUr6mUkiaJI0AKgeYyeB6hgeKRPv7CJJEsE3OpYHsRCSltgsWIJvMNWABSdxyTtVE1VVyq0abwYoQOWv5GGISSU7QkrCx70lQoSQFeH78mTfIIiWFarkqkSwaQUY4GTZWXdKqzhH3WTIWUSUYpOorqUyMBtrcT+GfYs/cJAAVVkbgVLy5FQ5OG8bimC1MpZcyVlb1Q1wWaFHgc14WdZU9ihhcac2sr46Qh+hJCJ8zlRQG8UrEVVVJKdN13PlBMVZcGaCaDFcgW6TYD6ZgT/78lGJ5d9kADruVQi4mT4ArstqQ4zW/6wF+GXhQ+//xzBg4cSHT08bmx6j/8SIkVTE58907VIEIKoN1Zx/DkK6Rt9PebuuSGgyUipABcbvj5o+QKI6QAzr4ok8Z+irDgsUT8+8P5K1EROI3Xp++//54BAwZQp04dxo0bd7KHUyY8NOlX5vxjqCR+nLea0f19YTRLNuxkwge/0blpHR4ZeV65nrgfy81n486DtG5QA7fr5KqLJvbvw8T+fcrVxm+71yKBabvXnpKkVElhKb2sMD9VKLgVlUZVUqgXnRxUDiBMdfHd9pV8sGkxAJ2q1qVbtfoAtEmqwU0tu7I7O5NhjdudmIMoCiHWp8CokPDwcNt7yYmCggKWLVvGvffe67f9vPPOY/78+cdhsBWPH3/80f77t99+Iy4uzn6vaRp//PEHqampJ2NoJcLsKUv48lnjGN67/3Ne/PMRe9+hPUd48KKncIe7eeKX+4hNLHtWQU3TWDt/I/Vb1SEmoUrxFY4j+l7dk75Xl29NWfzrCjSvzj+z15JzNJcq8f/Ohw1uM8TOCrWTUhIVG4nLpdCxt++hgqIoqC7j5tcd7iJtw17emfANAPHJMYy4Z4BdduzzVzHnx2UMu+OCE3UYhaOSlAqN2NhY/vrrL2bOnMny5cvRdZ0OHTrQp09ZPrhF0Qo05z7pKO8Mi7JkMVZonsUXSJ/6RkhfHVtRZBU3iQsUifAYxJUUDlbAJEiEbpIVOuhufKng8BFs1qCsXHIyKKQwNNFm7fNTPNk7ZVDRwF3Sr5iDMHGoqHRLCGRm0/Mnmhw/LQWV4iSk/K9+YSqhhNDNjHa6vc3pB2UZmjvHZSklFKEj0I3fwlBRSL/jNak6KUwD7sKkRL6/ReA4TZWUS9UNmy4pbMLK39PbPHrdOVlG28Yv50H5ygdBYocmisKIKD/GNADO0x7oalcSnMY3faXFjTfeyBlnnEGDBg2OS/v/N64OL4w31A+X33aAkffsQy3B/dWLP27mq9er8sEzNUzjfQNrl0Zx/cN7mJr2j7HB+jc3l7+S3gOed/kRNiyPRNPK/zQsuUYBF19/0CDXFf//ykpUIgin8fo0ZMgQkpOTGTlyJKNHj6Zp03/jU3xpLzZdW9T32/PDvNXsO5LFTwvWcseQHiRUiQzdRAlw3XNfsWnXIQaf1YqHru5bfIUSYtWOffzv46k0r1ON50ZciKL4r1iHsrJ5+OvpxEdH8MilfQirIKO6R9pdyNfbl3NN4xOfJj1P8/D0mu/I0zzc3+pSYt2Fn5dvd87no60zGZ7ai8vqnum3T5M6k8+4kVWZO+lWtTHpBdm8t3kOAM3jahLm8KZqnVCLL3peS4Gu0SmpLlXU3YQpKlGuMBrE+ELCFCG4t8M5FXvA5UGI9SlQwThhwoSQnkuHDh1C0zRSUlL8tqekpJTOa/ckwlKZCyEYOXKk3z632039+vX5v//7v5MwspLhWGYOuFTwanTo28Zv35Jf/2bLiu0ArJi5mh5DupW5n3fv+YRvX/yZGg1S+HDTqxUW8nb0SBYPXvQUnnwvj/10L8k1/bPGaZrG62PfZ/fGPYx75yaq1y9cPVQaDLtnIDlHc2nXu+VJIaS+eOlXls9aww2PXU6jNoWrNtcu2cqzt35As471+d8b1/jNu5SSGx+/jM59WtG0QypCCN59+FtyjuaSUjeJ2g19/5dhEW5e//Mhtq3ZTee+rcjNzqdqrQQO78ukeSf/+4FzLzuDcy87RTzMKkmpotG7d+/yeSA4CKRiy1m/bb7CUVFKXwieLOQGTTp0V44Ta3n+KBIoMBRSwitRTEWRkIZjiVRNAioMdLeZxc/BWTkz6NkMlebrLhRsbgLsiDGLi3Du868Qem6E1YbzEC1exck/WZn1hMAZByhtEgR7EFZ5iyrym0BFIlRDIaUIafJz0heaI3TfQPwm3p4gg4RDQZcKLry4FR0pNSSqTShKhCMcT6JLgW41LX2n0jk+i2xSFB8h5tUM53jL6NwKH5RIVPOmXpPGh7GRD1BxGMc7lVAhYJ0XTfiJyUKWKWoRCSSkiuqzMJzGni2lxfHPNOgzy7/gysMlIqTACD+d+1OcQfQ40Kh1DnEJXrweCC/7/R5zf4lF0wRRMV5zlKBpgryckisSFEXiDtdp3jGb+CQPovz8ViVOB5zG61NaWhrvv/8+H374Ic8//zzdunXj2muv5fLLLz9uas2KxgNXn0eHJuvo3KwOjWr7+4de1rMt69MO0KVZ3XIRUgCHMrP9fpcGUkqmLFyNLiWXdG3tRzz9vGwdu45kGq/+mdStGu9Xd+rfG5izfhsAAzo0p1vjemU/CAf61mpG31rNKqSt0mLRoY1M27sCgK77mjC4TpdCy36+fQ6HCrL4bPtsP1Jq0aFNjF/2MQ2qpDC52424FRcuodKwSjW2HjtA+8S6HPPksTFrL23i6+JSVNom1iZP83LhL++z9egRXj97CGfVTPUzVi8JNmQc5LedG7g4tRV1qsSXZQpKjhDr086dO4mNjbWLhFJJORFIUEgpTzmfnsKgm1+uU1NTWbJkCcnJycXUOLXQb/hZuFwqCSlxdOnb2m9f1wGdaHVWM9zhbjoGEFalxeG96QBkHMhE13XUkn65M7F8xko2LNnCgJvP8yOB/pm1hnULjbDuxVP/pv915/rV27YyjZ/e+A2AX9/7g2sev6I8h2GjXovaPPrdnRXSVmlxLDOHDx6fAsC3r//O/96+rtCy079cyP6dh9m/8zCjHxhMtdoGaXd4XwZjz3saT76X/5t6N8k14gFoe3ZTdm3eR9uzmqJpOuuWbKFes5rExEdTvV5Vqterymt3f8ov789mxH2DGHR9b6JjS/fZdfTIMaZ+/BctuzSkdbfGZZuEkuI08JQq863EH3/8wUUXXUTDhg1p1KgRF110ETNmzKjIsflBFvKylSnWNunYpjsLOTYrpiIpQC3jELkYNaxy5k6rfd+9ovBVDByvgzBxDsVv7CLgZfZtVJDGq7AbZxGiPeewHC/pUEv5rmGjbYlFUkkfGWKpm4x4R99vdAyHdd0wDDdJH8X0k0KAEDoIy3xYN8saI5SOQ/L5bxlqKd98SVOb5P9yhtuFpovts2e2ElDCcf5w9GBNmC+0EEdBJ3tZ2GQ7Yc6n37gChlnYvlBrS8D6UxLYp02WXmRVieODK+/YT416nlLVadU1h8CLYvnsOMYNaoTURaHLQknQumsON0zYw5QNa5iyYQ1f/LOWpBQPRTOmPrjDdF74YRPRsRpb10aia+UbTyVOH1TE+vTGG2+QmppKREQEHTt2ZO7cuUWWnz17Nh07diQiIoIGDRrw1ltvBZX59ttvadGiBeHh4bRo0YIpU6aUbXBFoGbNmjzwwANs3LiRmTNn0rBhQ8aMGUONGjW47rrrWLBgQYX3WdGIrxLJFX06BBFSAG0b1uSbR0Zyz7BeQfsOZBzj3akLWZe2v0T9vDluCLdfchYPjii9+n7u2m08+sUMHvvyD2at2uK3b3CXljSukczAzi2onRQXVPfMpvWoGhNNo+pJtKiVErT/34hW8XWpFZlIcngsnZIaFll2VINzqR2ZxDUN/G+G/zqwgQLdy/qju9mfmwkYIXpf9biF2efdx4Da7blh0TvcuOhdnlrzvV1v17FM1qYfIE/zsujAzlITUgDX/fk1L66cy/j5P5W6bmkRan2KjY31exVGSiUnJ6OqapAq6sCBA0HqqVMd27Zt+9cRUgCqS+X84WcFEVIACdXieHHOYzw7/WGiA7zwCvIK+O61acz7cWmJ+rntldFc/8xwnp/1SKkJqaz0Y9x3wRNMfuAzPpzwpd++Dn1a0753K1qe2ZRuAzoG1a3TrCbNzmhMbFIM3QZ2KlW/pyqiYyM54/w2RESFcdbA4GN24oLhZ1KvWQ36XdWdqrUS7O0blm/n8N4Mjh45xpoFm+3ttz4zjM/XPccdL41g8iPfclf/Z7m91+M2+QowZ8oSpC6Z9+OyUhNSAO8/8QMfPvUj9w99lbycglLXLw0C16f/4j1emZRSr732GuPGjWPIkCGMHTsWgIULF9K/f39eeOEFbrvttrKNprgbcKeyykEeFBbU5Xe+LIJJAWlmVRPCV9fKnocKuiZQTE8pq02p+NoJ3UHAIJzZ7ALLW2N3EksmAWEfomYREsJUN5ntSYdgTPgUUtaxoQi/9qStXHKMyfxbuqVpkuUjiXzElPFbmGbnwqHeEWbGPcVBSAmM96qpnLKUTVIKdDP0TncwLEIYCiVFAV0o6BhKq3BVxyMEiq6gS0O9ZBCEIKWRMU/TrOBI7OhNYdo/6VLarKKPKMM0XPeF7inWuTfHZJVBNbyrhIq/UiXUubZOhFPhhNNHKuB8O7cVea37SNTSK6VC9FWJkwhJp14Zpaqh67Dkj9A+BSl1Cti+MYKU2gVl8qsC2L/LxbBbfTeHRzME0bFeqteFfWkRxdZPqu4hKkYjqbqHRi1zyT6qElmlfCl3K3GaoJzrU2mzW23bto3+/ftz/fXX88knnzBv3jxuueUWqlataidlWbBgAUOHDuWxxx7j4osvZsqUKVx++eX89ddfnHHG8ZHt9+zZk549e/L666/zxRdf8P7773PWWWfRrFkz1qxZc1z6LA4zlm/ks5l/c1XvDpzboWKf+E78ZDrz12zn85l/M/P5m4st37h2Mo1rl+2muGpstG2kXTXg5rN57Wp8e/eIQus2TEli1kM3lKnfUxVJ4TF82+PuEpW9qFZnLqrVOWj7sPrd2ZObTtPYGtSK8oUUuRSVuDDDMPBw/jEADuZl2fsbxiZye+vubMg4yNVNC7/hLEpNVDM6ll3ZmdSKDiYRnfX/ObyXOlXiSYqIYsqWNXyxYSWjGoTO1lV4Q5R5fQoLC6Njx45Mnz6diy++2N4+ffp0Bg0aVLrGTgFkZ2cze/Zs0tLSKCjwv9keM2bMCR/P9jU7eX3MZFqd1YyRjw6t0LZ/eHsG7z1gEETvLn2Kus1qFlk+LjmWy+8u2zkNi3ATmxRDxoFMqtX1J/ej46J5dsaEQuuGR4bz6oIny9TvqQohBI9+WjLOoEm7erw168Gg7Z16t+SCEWdRkO/hrEEd/Nq2Mu4d2Z8BQObhLKQu7fvz2567it8+nceQ288vtN+i1ieLHEtIjrG9rEJh1+b9CAG1GqaweWUakyZ+R8szU4s83uCBEKzH+I+hTKTUU089xYsvvuhHPo0ZM4YzzzyTJ554omykVEluvp0EgBMWeWCzNcHVrN+6sPyljHp2kz4ZjX9XFiniUGM5xyCK+AAL3BTERwSQGUGD1YwOAtlQawyFCncCWDopQFcCylmSLwFCdezxo2Gt3vwP0vaJErovZA/DXwpT6aSgm2NUjJdjbi0vKl+MntGfIjR0BMJi38wDEGYrUoCOYiqvFPPcCPNwBNY7iaXYsg7VOAZrCLoujJfENkm3j1TqDqYrUKokfL8KudYwx+mYLkfNEIRm4PVsqdtEiH2V+NfhqvH7adk5r/iCDrz5UE12bwv9xGbprDh0TfDkZ9vKPKY7nt3j9z65us7Ej3Ywqnvx4SWKKnn6yy3UqOfh/jfTeOa2uiRU85bK06oSlSgrSpvd6q233qJu3bq89NJLADRv3pylS5fy/PPP26TUSy+9RN++fbnvvvsAuO+++5g9ezYvvfQSn3/++XE9nipVqtCrVy+2b9/O+vXr2bhx43Htryi8+O0c9h7J4mBmdoWTUjUTjfCnlHKYC5cUzeuk8OODo5CSoPC8E4HVGWm8u2U6vVNaM6h24aFy/ybUikrk/zoWTuYBvN5lNPMObKB/rfb2NiEEd7YrPCuYlJIb5nzNnL1bebbrAAbVDyaRPuw1lHUZB2iVWL3Qdt5bt5gnls0iMTySeZfcwoQFf5BZkMeRjIziD64CMX78eEaMGEGnTp3o1q0b77zzDmlpadx0000ndBzlxd9//03//v3JyckhOzubxMREDh06RFRUFNWqVTsppNS3L/7MilmrWTFrNRfe2DfIb6k8qFbb8DmLiAojOv74ZmUJjwxn0poX2bf9AI07HB8/06KQvj+TV8dMJrlmIjc+Nxz1JCeSqAiERbgZ88LwIsvc9NQwGrSqQ9uzm/kdc4+LO9Pj4mAi3sK3b85g8mNT6H/12dz69LCg/VeMu4COvVpQM7VaoaTU+mVbGdfvGYSAF6fdx7dvTmfF3A0snb2qhEd4+qBM4XtHjx6lX79+QdvPO++8oEwVRcIZZlbS8k44vKSczThJH6liZ8TT3cKg4Uy1kBAO4ZWKQ1rj35ZimVYLDGWRpVhykhIhjiGIfLL+tJRKmOSDIoIOQoAdOWcJmPzUTtZLNV6GysvM8GcRG4pvDoRV1j42YRy/6phARYIiUdwS1Q2qCxSXRFExlFEKqKo0zcN1wl064W6NcLcXl0uiqhCm6kSHeagS7iXK7UVVLOWUwKWCS5W4XRKXAi7FUFa5FEmUy0uYqiOlgjTHBgJVSMJcknC3JNwlcavS6Msyardny9imKBKXC1wuQ/kkEKiq5SUl0HSBpitouoKuq3Y4nz0fiqGSwlKIWedbEHSO/E6qdW1Y5RWMa82ae7879gByy689hyquDDf5ggBOsRInFUePKGQcKt0yG5fkITqmcOWR1yvYvc1d3qH5t1kADZrnUtyjFyF0dmwKx1MAXo+k9yVHUF2VhFQlSoZQ69PRo0f9Xvn5+SHrWtmtzjvvPL/tRWW3WrBgQVD5888/n6VLl+LxeIosczwzZuXk5PDhhx/Ss2dPmjRpwpdffsn48ePZvn37ceuzOAzq3oowl8qgbqVUl5QA9wztxQd3D2PS+MsrvO1QqJMcX25CyqNpXDnpSzo88RoLtqaVuN57W6az+PAmnlk7hWOe3BLV2XpsL0+u/Yy/Dv57b1IaxVRnZMOeVI2IJdfr4f1NC5i7f3ORdfI0L3/s3oxH1/l954aQZSJcbton1/LL6Afw2ablXD3zc1Yc2s2+HEOllVmQT77m5dJGLXEpCgMalM7Hq7zfn4YOHcpLL73ExIkTadeuHXPmzGHq1KnUq1evDK2dPIwbN44BAwZw5MgRIiMjWbhwITt27KBjx448//zzJ2VMPYZ0JbJKBB37tiGxenyFtt3z0jN4a+HjTP7nWZIquO1QiE2KoUnHhuX2Gpv04Bf0j7maL579ocR1fv9oNn9NWcL3r//G/BKGKx7LyOa1cR/x5f/9fAK8WI8P4pJiuGxMP5q0r4+Ukj++XMCvH87xC+ULhdlTlqBrOn9+tyTkfiEETdvXJyaAzFy9cDP3X/4Kv3++gPQDR81M75KMg0c566IOuMNddDq3dJ+1fuvTf/Qer0xKqYEDBzJlyhTuvttfEvzDDz8wYMCAQmoFwxHFVmSZkBstwkaXPish897PL+OdJcaxwu4cBk9+YhUd0+1cBPtSWVn9LIMpi/RxXhQyxCuQcBC+MdnvLTVPYZNg/b9Iv19+fxe6REgzBM2LQZZ48Se0NJPEUi0FlNGhIVUMaCigJ0vgJLGUXJYaSaIjUaVumJ8rmjWtjhZ8vlEC3VRY6ahCogoNTQikVMwyxvQr9txJ9CBPHStc0KeYAsN8HUVHIM3MfqBZKik7u57/cQkhkX6uzSFOTGESuJDFpSUEc+yUzt3+dSzFnp+ErxQ4jY2ES4t69erhdlcsuROIWg08xCcX/aEXiF1bIsjOKnxpjo3XqN2wdB5VxUFKwYYVURT3MSeEoHn7HNxhULexh7qNj1ToOCrxH0eI9el4Zrfat29fyPJer5dDhw5Ro0aNQsscj4xZ8+bNY/LkyXz99dd4vV4uueQSZsyYQa9evSq8r9Lihgu7csOFRWeHW7N9H9/PXc2A7i1o07DoEBcnXKpCmwY1yjvEE4p9mVksTzNUpX+s30K3BoVnhXKid0prFh3ehETn6bXf8njbop/gA7yx6UeWpW9k9oF/mNbz6XLfrOZrHv46tIYWsXWpEVkxihJd6hzJP0ZyRGzQvjzNw8y9G2iTUIva0Qm8s/Ev3lg/F4Fg9gVjSYkMrgMQ6XLzUIc+/LlnCze37F5o379sX89jS2ZyScOW3NOhJ5qu8/DS39ClRBUKr5w5mGqRVWidVJ348EgmdD2XCV3P5ejRo4wtzUFWwPenW265hVtuuaVMdU8VrFixgrfffhtVVVFVlfz8fBo0aMCzzz7LyJEjueSSS074mDr3a8+PRz8uskz6/gw+e3IKTTo2oO/VPUvVfmqrOsUXOsUw45O5aB6NGZ/+xbB7BpWoToc+rfnw0W/wFnh55dbJdB/YqVi11C+TZvHTu38A0O6cFjTtWD6Fl5SSpX+sISYhmmYdU8vVlhNH9mcSlxyDqvo/CJZSsuyPNUTHRdK8c0P+mbue526aBEBklQjOubRwRes1D17MV69Mo++wwtennZv3M/H6SaTUTuThd68lLMLNh8/8xOoFm1izaAvfb3+JcS9fjVAUupzXGiEEPQZ15OjRozz9ZSkM5k8Do/MykVLNmzfniSee4M8//6RbNyOt5sKFC5k3bx533nknr7zyil22OJlniaY08KZdByElikkuCQdxI03VkcRQCElVGNtM5QvO6CyEnZ3N3qhLFJPoEsJoTwhfG3ZkmYOQsrkDiw9x/ulUyUjHTnu/8FfiWG061Fo2gRYouBCOgta16mzHVPoIc9zCJqQEKNL0oLL6M1VSLnweUjh/GwdsvVcVUF2+bHbWIbhUCFMMQsirG+SSIgSKavpLYYqJFFAVSZiqE6ZqhpeUpqBJ1aSshDlgUxUFCCnw6oYUSTdJHud3N11aC6vEpepmBJ5FWAm8mmISWpa/lXBkCzTmWZMCK2DQupAMPtJJYhUC5wVhtid04TtPoRjYwPdO0lCGKlAMLEIUih/vaYC8vDy+/PJLsrOz6du3L40b+8JSVq9efdz6VV2Svpcfpt1ZRStHpYS/folj7dJI871g3dLQ8vE23Y7RuXcmqc1L9vS9NNi+IbxE10uN+vkorsoLqxJlRIj16XhntwpVPnD7iciY1aRJE7Zs2UL79u155plnuPLKK4mLi6vQPo43Hnn/d7buPcyidWn8+ORov32HMo7xy7y1nNkmlUZ1go3QSwspJbOWbQIEvTo2KvX50HSddbsO0LB6EpFhoR8+eDWdrxatJCE6kgvaNvXbVzshjpt6dGH17v0MP6NdifsdWLsLH22byd68dAr0knntdUhoxLL0jbSNL716IsuTzXtbvyDGFc2o1MtwKSqvbPyBn/YsIt4dzZSzH0Y1H7StzFhHuBJG09jQhudSShYf3kyEGkbbBH91zx1LP2TBoU2MbtiLm5v09dv3zKrf+WLbUhLCIplzwV2kmMRVFVcYkWpYkeO/plkXrmlWdJjjR+uXsy8ni3dWL+aeDj1RFYX+dZrx684NXFC3GTFh4dzYsgL83yq/PwHgdrvt6zAlJYW0tDSaN29OXFwcaWklVw2eaHz+9Pd8/9o0ANr3ae0X4leQ7+HX9/+kev2qnNGvXYX0t37pFrauTOPcK84kPLLo6zwUdqzdSUxiFRKrJxRaZsHPy9i79QAX3XAuYRH+fdz0/Ah+ens6Q8ZdWOI+G7dPpe+Is/l10iw0rWS+pM27NEJ1q8QlVqFG/Wol7guMjI4fTPyO3Zv3cdMzV1K1ViKzpyzlmRsngYC35jxMPdPDa/va3ezZdoAz+rUNIpYsbFu7i33bD9Hl/DZ+Zb559Tfem/ANzTo14MXf7vVbR+d+v5Qnr30HgDfmTiAuKQZFVdA1ncTqRX8Gt+/RjPY9ilZczvn5b3ZtOcCuLQfYsmYXzTum0nNgB9Yu3kLPwR0RQnD+VWeVaL6KhHN9gv/kGlUmUmrSpEkkJCSwdu1a1q5da2+Pj49n0qRJ9nshRLGkVJnnVJpfLk1CSuBT7kjhNDXHF9JmFTQJHEXBZ2ZtkToq6NI0OgekJu1MfTbbZWf1CzgQzf+tLXpxEEVO8Yud2S9EU074kVMiuFyh/kOasV1gck+muklzkiPmMUthEH3O+Qhs0+BZpMXdoetGF6pieD4JUymlSRBIVCFxKRpes02LCNLMgShSokmBR1MQqChSJ0z1InQVkAhTMWSRSLpu9OstJNuXbXKORBMCRUhTOWXtD/yfDlSEgVCsObBOjkPdJPE/AYV9d/SJtbBy8QnwEVOBcCi2QiYXLA1O4y9Vd999NwUFBbz88suAEe7TrVs31qxZQ1RUFPfccw/Tp0+3ifTjiUtuOMh1D+4tttzC32N5/Ib6xZar0yiP577dUmy5siDjkIsJIxsY6sEiIXnu2y3ExJ1mF1YlKg4h1icrq1VxKEt2q+rVq4cs73K5SEpKKrJMRWfM6tevH9deey1t27YN2qfrOr/88guTJk3i+++/r9B+C4PHq+FSlVKRIK0b1mDr3sO0bhDs7/PYpN9ZsGo7n/+2nGmvlN9DZ/6q7fzv9Z8BeGX8JXRrXb9U9Z/8dhZfz19Ji9rV+OLOq0KWmbJ0DU/8MAuAWolxtKnjOy4hBHece2aZxv5apxtZemQzPaqVLDzjyvrncmGtrsS4Sp/9ac7BRcw/bIThdElqS5v45mZyGf+vAEuPrOSZ9W8C8FTr/9Eopn5QW7MPrOPu5Z8A8FH3W2keV8vetzLDICNWpG+3t3l0LzneApvo1c0Oh6Z2oGVCDapHxhIbVnzyjOJwXYvOHMg9xiUNWtnbXjnr4oonj0/j709OtG/fnqVLl9KkSRN69erFww8/zKFDh/j4449p3To4s93xgKbpZgKiktsfNO1kkK0p9asSm+ifLOaHt6bbZuaT/n6G2o0L9ygrCY4eOcadfR7H69HYt/0goyeWLjR59lfzeXzYi0REh/PR5tdISIkPKrNr014eGfICAF6Pl8vv9I9E6jmkKz2HFK1uDYWbnh9By25NaH5G4xJ5SrU5uxnfpL2OK8xFWHjpogu2r9nFVy9OBaBO05qMeugSX8icBN1cNNIPHOW23o/jLfBy/cTLuPS284LaOrI/k9t7GXN+w+OXc8ktPnJ8zWIjVHjTih1oXg2X24WUkoyDWWjOED0pSW1Vh/eWGH3VbVpyxW9h6DW4Iwt/X0212ok0NBV3F13TkwtH9Th+6xP8J9eoMpFS27Ztq5jeCyNTCoOtUJK+2Ep8kXWGp4+wPaSkS/j8ebDqYhI1JnNgKauEUUdoIKRuCFUECJdAuoTZLqARZDwODjGUdVyY47H8onDsCFTUWKSZ9C9m/el3DM7OnHVDzKNQAtRTwhyPS/r8qCwVlWoppIRPOWQRKraayFBACWEopAy1E7gcY3OZHlEKhupIoqBamfEM6RmK0I0yiqVWM4ejQIFmHIiqCISUaLpxEFIqeDUVr9eF9Jssc94dzJyiCFRFopv+VHYZq5x13ai+adNNok6YfQUzfcI+GSF69z+n0lnLbEcJquQblAWnSspurHRwpgn9L6YLLQq//vorTz7py0zy6aefsmPHDjZt2kTdunUZPXo0jz/+OL/88stxH8uiGTH0vuQIDVqE9scBmP51AlM/KT60omPPowwcfRBdNzNEVjDW/x1BWIROXk7RX04atspFq9iowUqcZijP+lSW7FbdunXjp5/8U8n//vvvdOrUyQ7d7datG9OnT2fcuHF+Zbp3L1yuXxY4FeQWNm3axOTJk/nwww9JT0/n/PMLzwBUkZi2aD0PT55G+ya1eXPcpSiOrMI79qVzLDeflqnBN20PjejD9ReeQfUQhuVVE4ybwKSAjHdlRbRDFRAVUfow692HMwHYk164WjUlzhizW1WIjyo/eWKhemRCyCx2RSHOXbZ5axXXlGg1kihXFPWjjRuiMU0H0T6xIa3i6tkqKd2RTlgWcjdTVJmn2l3BH/tWM6y+8X+RpxUw9K+X2ZebwcTWl9ExuS5tE2rjMj+kWieU/2bPQt+6jelbN9h8v6LVjKfz9ycnnnzySbKyjCyKjz32GCNHjuTmm2+mUaNGvP/++8e9/50b9zKu7xOERbh59c+HSarhUxJlHspi2+qdtD6raRChcu5VZ9P+3NZUiY8KUhVZXlHhkWFExpT/f93lVgmLDMPrySUqpvRk8r7tBwHIy87n6JFjIUmp6NgoIqLCycvJJ7lWxRm7R0ZHcF4pwxvLcowANRumUL9FLfZtP0inPgap3OvSLkTFRBKbEE1qC4P4llIaWfGgUJ8nI6O7+bfu/w963SNDiE+KoXPf1rjcBrXxzM2TmT1lKYOu78Wjn99GlbhoGpikUc3U0im+ijzG+lV5depdQduP5/pkvf+voUyk1EmF8KmPhGqpYUzVkSLQVYFumpkHhbM5FSwChOUZJfzVVJoQ6CooOmbGN3+BjJODsNqUjvcy4BXELZgEiFN85deWCC5u/y185ewwRUdd4RD0OFU3QgPhcXIjAt0en0RqIDGIIN+QhT2PFjGlW+WtTlVQTEWUKnQEpgWXMMhDl6IZKidpnCvdVLhp5lh1MML2dAWX0BACVEU3wjMRKIqOV1PREBhuVboZWhdwWZgxnBIjq55HM8L0pOkfJUySzVgkzJA+R1pQS5ElhERRNcODyj5g86BMHyqb6HIqzpx/W+8DlFI2uWhdP35SN/O97minLOvZafykLy0tjRYtWtjvf//9d4YMGWKbjI4dO5b+/fufkLH0GJBZJCG1eVUkz48t3qMkqorGxI+24TpO1le52QqPjm6ArhV/sU2YvI3kGiWTe1eiEiFRzvWpuOxW9913H7t37+ajjz4C4KabbuK1115j/PjxXH/99SxYsIBJkyb5ZdUbO3YsPXr04JlnnmHQoEH88MMPzJgxg7/++qucBxsaubm5fPXVV0yaNImFCxeiaRovvvgio0ePpkqVKsU3UAH4a9U2NF2ydP1OsvMKiIkyQiZ37k9n6IMfoOmS524byDkdGvnVE0JQIym0qu3eq8+l/5ktaFK3/KF7AO2a1OKjCVchgGb1S69ae2RoX75btJpzWhbuf9KjWSo/jBtBVHgYNROKV+udiqgXXYvJXZ43H/AZ63ikGsZ51Tv4leuc2Jb7mt9KuBJG45jUkG31SmnJSx1HEukKo0Vcbb993ao2oVvVJvb7w/nH2JubDsCGrL2MaXZBRR5WmZHlyWdHVjotE8qgdDyNvz850alTJ/vvqlWrMnXq1BPa/+oFmziWkQMYyheLlNJ1ndvOnsCBtEMMvuU8bn4u2K+tMBP03kO7U6dJDeKqxlaImXlUTCRvLXqC3Zv30e6cFsVXCMDg2/uhKILqqdWo17x2yDIJKXFMXv1/ZBw6SsM29co75JOCiKhw3pw/ESmlrXoTQtD1/DZ+5RJT4nh5xv3s2bKfMwd0CNUUSdXjeXnG/ezddpDuF7X321erYQpjX7rab9uqBZvs3zc9fmKSbBQHzauxeWUa9ZvXKr5wICqVUqEhpeSbb75h1qxZHDhwIIjV/O677ypkcEGwiBfhI09sTyUFwz/KLRyElHBIqXAYcjtIFzMjnU30mE8MFQ1btSLdwlBKab5sf45GghVPliLJuU0PqGeRIQ6VlMCfHLNFN05lFAH1nESHdNQLUEI5M/XhwsxKKM2XoRpC+NRSPpLFedUbI1KEoURSVYlbNbLouVWTzDKnSgBeqfjqmeblEoFqEk+G6sokrNBtFYjUFeOwFImmqegYpJVXc6ROtGFk9zP+NDR0Nk8kFTMkSfiZt9vElIId4qej2L5Z0m/cIHUfu+l36+44ocFieXzlA0gmu5oVJujcH5Spr5Q4jb9UKYrilxlk4cKFPPTQQ/b7+Ph40tPTT8hYvnsnmbk/xVG3aR7XP7SHlNqGt8jsH+OY8m4yR9NdmNkVimwn55jCjb2boJortTtM5/qH99KmazZK8arrYrFkZgyRVTSyM4v+KGjROdv8P6hEJcqBcq5PQ4cO5fDhw0ycOJG9e/fSqlUrv+xWe/fu9fM8SU1NZerUqYwbN47XX3+dmjVr8sorr3DppZfaZbp3784XX3zBgw8+yEMPPUTDhg358ssvOeOMCvCocWDx4sW89957fPnllzRp0oThw4fz9ddfU7t2bfr06XPCCCmAay7oTHZeAWc0r2sTUgA5eR408wl05rHSede5XCodmoa+uSormpeBjLJQPSGGW/oVH6rdqHpymfs4VaCIoj9HLDSMTiUurHBFlhCCM6s1LXS/E7WiErmnxUA2Z+3jqtQK8EupAOhSMvC3SaQdy+C2lmdybb32xVdy4jT+/uTEo48+yvDhw2nYMLT32PFGj4s7s2bhRiKiwunQ2xcCK6WRCQ7g6JGsUrfbuH1oMrasSKmbTErdsq0f4ZHhXHbXwGLLJdVMIKlmQpn6OFVgROAU//0xpU4SDVrVLjJks1GbujRqU7KkE3e/NoqZ3yzmwlE9SjzW441X7/qUaR/NpXnnhjz6dSkTIlSSUqExduxY3nnnHXr16kVKSkqZJWrOZHYlhlOBZHMRpoeU6lCjOMQndj3M+31L2aSYRI70L4NL4FUc/dhm4L52bR7EMSa/34RWPDmGHWSiH6jG8nsjDCWPH4FmEWSW4bulklLMuZB2MTN0zVRPeS1iRkEKzRy3sMkth4LbPGaBUCRCsaSVGIo0qZptGhIfVQEFaZI60syYJxFoZjY9gUvohhoJ3Y9T06Qgx+NGUXQ00yDdqm0cnI5QdKRunAw/z3hhEGRGlj2BpiuGf1VQFkGjnm6SQULi4AQkmiZQVFBU3RidZhJS0ldQmifWj2B0nhMnhEMAb12wIc6zsKVt+E6a4xyXBqez/LxZs2b89NNPjB8/njVr1pCWluaX1WrHjh0V7hNTGHKyXOzIcjHynn02IaVp8PSt9UqkSvJBsGuLTzZ97qVHaHdmdoWMUUp45ra6eD3F39CMeXoX1etWxu5VonyoiPWpqOxWH3zwQdC2nj17snz58iLbHDJkCEOGDCnbgEqI7t27c/vtt7N48WKaNi3Zjf/xQsNaybx426Cg7U3rVeOFMYNJz8rhwjNL//S/OHi9Gs99PovDmdncf3VfEmONpA6ZOXl8PHs5Leqk0LtV6W6ENV1n7vrtpFZNoF7VE3/zJqVk1eF91ItJIC684kIAKxr3/PM+Cw6t57oG5zOqwbkV0uaQuqX3szme8Oo6+3OOAbDzWEap65/O35+c+Pbbb5k4cSKdO3dm+PDhDB06lKpVK0YBWRJEx0Zy15vXBW1XVYXnf3uAlXPXce4VZfN7Kw4/vvMH835cxqiHL6V5F2Mt0nWdH17/DV3TGXz7BYWacBeGtQs2oOuSVmcWbZh9vLBr8z7Cwt1Uq5N0UvovCb57cwbvPvwNrc9swrPfj6+QNtud3Yx2Z5+cOS8Me7cdAGDfjoOlrlsZvlcIPvnkE7777rsKCIVx3twLH9MQVMzJ3jgYJJsQEP6qIL/UdTgUVhg3/zY/IH1dW+UsWO1YhJSOn4dVsLrFMZbAbVj9OcsFvJzHKR1OSM42A8boPBxn+9JSRDle0lRIWb5b0qUjVWlsszLziYAOLHbEIQ8zjAcNUktVdFyqxO0yCSnhO6OKmfXOCnezstkZ4XmGJ5U9NQJ0XTFVS4qpqLLOl2KanKvomuo3PuEYj8/U3McOWu9902oZpBvHpCjSnnOpCzvroDTjNe3wR8fJFM6TIPCbm1DXnFUnKJTU2mePx9wecB5KQ1/Yk1nOlMb/Vtx9991cccUV/PLLL6xZs4b+/fuTmppq7586dSpduhSd5aei8fStdYmMNkNLBWa2z7Kfl5nfxbN4Zozfv2r7Hse47fFdxCaGjsMvDELAlWP38/kr1fAUFC67andWFtGxJcsiVYlKFInTeH3q3bs3kyZN4sCBA4wYMYLzzz+/wj0nKgJntys83K28WLF5D9/+uRKAto1qMaKfESb09vRFfDx7OQKY+egNJMf41Dzr0w7w4/w1XNS1OS3qB/tcTZq1lFemzSMyzMXMB28gJrLo7I0eTWP7wXQaVEtErQCTvpdWzOPlf+ZRKzqWOZfeWCFtHg+sSN8KwLL0TYyiYkipUw1hqsqH5wxjwYEdXNmoPRSU7jPxdF6fnFi5ciVr1qzh008/5YUXXmD8+PH06dOH4cOHM3jwYKKiQmcIPhFo2KYuDUuolCktNK/GW/d8iq5LPnv2Rx77ZhwAC39ezht3fABA1dpJ9HCYi2ccPMpXz/9I4w4N6DU02Idw9bz1jDvbUOw/98cE2vVqFVTGCSkluzbuJblWIpFVyk9y//3nWu4b/Dwul8qbCyZSp3GNcrd5PLBy3gYA1i7agqbppSb+/i0Y9+oopn86j67925W+cqB65T+4RpXprMfFxdGgQcV8cSksA12xsLgHsH17TEGNKYdx8FcOVZPt9aSArpovxXFuJUZKOS9GmjqTmZAOaVSgiMl+6SA0ifBKhMf4jSb9fIL8vKaC2vBJY/z7kGbqOLMtHTMNnUQpkCj5ErVAongCykmHOsqvX4mQAqEJRIECBQoyXyALFKRHIDXhI2Z0gfQq6AUKutcIh9N1X7tSSryaQoFXwaMpeHXD00kzlUGqouNSNNzCi6oYfjS6LuxD0iR4NaNunsdFvsdFgaaQ71XJyXeTW+Ai36saPlWKcVBWiJap20KgmQSZhqpqKIqpxlIkimoorAzPKSOzntRAekHzKGhega4JgzYTPqM9oViklTTqKjoIHSmkeb1J+5z7yb0Drjns8iHKKBKpSkeb1gXif82WCjLgdRrh0ksvZerUqbRp04Zx48bx5Zdf+u2Piori1ltvPaFjKshXyTziJvOIm6OH3Wje8n3QSqmQle7maLqbo0eM16BRh0pNSBltwccvVC+SkAIYPn4/1WpVklKVqACcxuvT77//zpo1a2jatCk333wzNWrUYOzYsQCnJDl1PNC0blXqV08kNjqCri3r2dvrmwqnpJgoosP9DYofmjSNL2eu4P73fg3ZZoHXWJu8mrSzzhWFcR/9zMX/9zEPfPlbWQ/DD7uzMwE4mJuNpxCD3lMBE1pdwfnVOzCmSfEhQ8cbmq7zzD9/cPeiH8jILz5M9EheDpPXLWZjhmkO7fXw98E9ePRgj8PO1eoyptXZJEeUIRz2NF6fAtGyZUuefPJJtm7dyqxZs0hNTeWOO+6gevXyZa07laG6VHpc0gVXmIseF/sSFVSvXxXVraK6FKoHGGR//tQUvnnhZ54a/gpH9mUEtenJ94T8uzB8/9o0rm19F9e3uwdPQfm/dx3akw4SvB6NzIOlD3k8UbjmoYs59/Ku/O/t0acEIfX75/OZOPINNq9MK7as5tX47bP5LJ25BjDuizf+k0b20eC1rXrdZEbcN4jGbesF7SsWgevTcVyj0tPTGTFiBHFxccTFxTFixAgyMjIKLe/xePjf//5H69atiY6OpmbNmlx99dXs2bOnVP2WSSn1yCOP8OijjzJ58mQiI8vmyG9B+HnqlOCLmUNNZL/3UyoZbdrKp6KadIRhGaock5Awf0jV15+iS0MtFXwARp+2MgZfyJ8i/IytgzLhOdvwO36H/5HVrHD4E0lfm37clnD0GeAlJS21lPW3IpGmn5RPYWb8Fn4Nmx0Ki6AxlUmKkWnPUkgpZj37hc/rSQjQUWyvJlXR7Uk2yCnFVDVZ8yhsdZWttpICXXf6SQkwfahU1ejfIMsspZXwnRcc5JwtfTOIJ6e/lNVPoNLK+RKBs+5ncSX8lVOBKqhA2ZxDSeWbZ8d1IP16KhFOd/l5nz596NOnT8h9EyZMYMWKFSd2QBWMxGoenvpiCzXq59uXiWKG6pb2vlYI+GnrSl64sw6zvkuw/wcB6jfL5bGPthGf7EFxla39SlQiEKf7+lSnTh0efvhhHn74YaZPn87kyZNxuVwMGjTIDiHs0CG0yet/ATFREXzzxKig7Zd3b0PnRrVJjokmMsw/q0OzetXYuvcwzeqEDh+68dwzqJscT+PqycSVIIPelv2HAdi873DpDyAE7u/Ui/oxCXSpXocIl/GVWkrJHX/9xMzdW3iue3/61S06XPNQfiZvbJ5CrchkrkntX2KPqNLgrKotOatqy+ILngAsO7yTdzcsAKBpfArXNS06DPCBRdOYtnMDCeGRLL/sDobP+IKlB3czpEFrnj/zwgob1+m+PhWG6OhoIiMjCQsLs7Py/Vdx7+SbgrY1aFOPT7a+BpKgLHgNTXKhap0kouOCFWTte7fmyan3o2s6nfu1L7b/tPXGTfyhXYcpyC3AHVa+fGS9L+9K7rE8omIjadnNl8Hy5w/nMvmJH7ho5NmMfmBQkW1oXo13HviKzMNZ3PLslcQmVrz/Yb2mNbnr9VEV3m5ZoGk6L93xEbqm4y3QmPj57UWWn/rxX7xx/1cAvD37Ieb8/DefvjiNlNqJTPrroQoj2U5k+N6VV17Jrl27mDZtGgA33HADI0aMCMpmbCEnJ4fly5fz0EMP0bZtW9LT07njjjsYOHAgS5cuLXG/ZbraL7vsMj7//HOqVatG/fr17dTKForzb7ARqBgqDRx3SEIa6hdhKZ4UafIDwkckhiKBwOdNZQhhjJPuNQkoL3YmP5twUgppw7FZWAoaU5FkK7pChPRZv4V5IM5EbE7jcnTpa0MRRgieNMap6MZ2TQHdJdFdwvbXspVo0jg+a56EmZFOejBUYS5hzptFrCiGesdiwhQFNImGRDPHWhCuEh7uwaXqZgidTpiqEe7y4lIlBV7VNDv3qaZUJIpJOXl1lXyviwJNRUqBqnhxKYCU6JpCvscI1/OJyJyEFHbEp64LvCbBpekCTcdQRJlKL6u88yGq1AVer7DHprhMVZXATjsqdeE7R9b5sVqzxqI5yDSruI/3ClLVWQSUtMkrwzdLWAReIaKqEiOUWus0R2ZmJp9++imTJk1ixYoVaNq/N4Ncx3OOUr9Z4Vn9SovcbIWZ31pfsqR9HfYafIRqtSs9pCpRwTiN16fRo0fz8ssvExMTA0Dfvn3p27cv6enpfPLJJ0yePJlnnnnmX70+lQep1UKnPH901Plcf+EZ1K4aH3K/26UysGPh/ldSStbtOkCNhFgSqkTywoiL+OXv9QzuVHrPrEM5Odw+9WciXC5eueBCYsLDSYyI4ra2/mE7eZqXH7avBeCHbWuLJaV+3jOfuQf/AaBn1fY0iilDZqZ/ERrHVqVmVCwZBbmcUbX4UKz4cOPhd3yY8XtX9lEA0srgG1UkTuP1KRDbtm3js88+49NPP2Xjxo306NGDRx55hMsuu+xkD+2kILlm6PXpvJHn0K5XK2KSqhAeGRayTHFk1J4t+0EIajaoxshHLiMmIZoW3ZqEJLmKgq7rvHL/N2xZs5vxzw0jtVkNVJfKwBuCw3V/+3wBudn5TP1kXrGk1Kr5G/nhnT8AaNoxlYtv7luqcf3boKoKnfu0YvH0VZxxXptiy8fEG+HmrjCV8Eg3B3YdAeDIgaNoHq3ilF+BN4XHaY1at24d06ZNY+HChXbCl3fffZdu3bqxYcOGkJ6YcXFxTJ8+3W/bq6++SpcuXUhLS6Nu3ZKF3JaJlBo1ahTLli1j+PDh5TM6L1OtQtpxKlYCG7bYAef+wCFbBtO69JmYO4kG6VA6mfsCuwtSLTkq2u+tV2D/gY0FqsAlCMs3yWJXTPWPHdFnZiAMVI5Zx28Jd6TVvuLfvh+D56fyMXZaOjKBBJcxHoFFDGGajesIdDQd28rcp7IwbnrtjHdS4NWxw/F8U2DsC54gJ/vnf5J94YS+4wil5DfIJrOMlU1MMY7OnlbdJLN05wQ62sWiypzMpPnDIXjyE3VJvyYcbwIYzaBCpYSTST/Nv1TNnDmTyZMn891331GvXj0uvfRS3nvvvZM9rDIjoaqHa+7d5ycSLQ9ef7AmP05OBiSR0TqvTttIrdQCo22ww34rBVKVqDCcxuvThx9+yNNPP22TUhYSEhK4/fbbuf3220v+QO9fDI+msXTjLprWrkpiTPE3XYoiqJuSUKK2D2QeY/qKTfRs1YDaSXEAfDLnb577fjaJVSL59aFraV6rGhFuFze+/R2JVaJ47+ZLqRJRtA+VhRlbN7No9y4A5u9M4/xGjUOWi3S5ubtdD2bs2sx1LXw+hruOZRKuqlSN9FcadEpoyrc7/yQlIoFaUcc/G+DXOxaz5PA2bmnSm/pVTpyBtYWE8Chm9b8NHYnbkUb2x+1reH31Aq5t3pnLG7Ylz+vh262rGVS/BRfWa0arRCN0bHKvIfy+cxOXNizan6fUOI3XJye6devG4sWLad26Nddccw1XXnkltWr9t4lSJ9Yt2kR0XBR1m5XsmKuVMANfQZ6HGZ/Po17zWrTsaqwdG5ZtY1yfxwF46Y8HadIhleEPXsJ9A5/jlbEfMPGb8TRqV79E7e/dcZjfvloMwG9fLeKmhwcXWnbEXf359MVpXHCVj1A/mplDVkYuter5G6I3aFWHlLpJHMvIoe1Zx984fOWCTfwwaTbnDevKGX0q+H+8hHjkk1vxFHgJC/eJbrat2cWL4z6hSft63Pr0MADm/7oSxaXwwk93EpdUhZQ6SYx+YBA16iXTumsjwiLchXVRegQopY7XGrVgwQLi4uL8MhB37dqVuLg45s+fX+JELZmZmQghiI+PL3HfZSKlfvnlF3777TfOOqucaWADeIZCEYpkcu5ytGOZlts8lAy+9/drRzoUUrpEaL59RpgbpjLJ7M9BVEknAWGRHdZwHIbsElNsZSq6DBLEMW4HaWHL8xy/0c32JCiqoYTSXYAqwIWtoJIukG586ignySFB0aw5EehuI1OdUIz3FGCodxTf8QnrvWqojmyvLSmQSLxeBd2r4g734nZpSFVHlypeKXGZ/znOZHJmUJ09JwBhqsSrGJnvJIqh/gIURZoknNl3gGLJ3/veUBpZoYP2eRXgsIy3/aT8Tb2EoULzCnTVyBio6yA1f0JKmNeDvSIEqagIuoH3u2yd17q0qT3fvsJQWkbgNH/St2vXLj744AMmT55MdnY2l19+OR6Ph2+//ZYWLSo+m9SJRJN2OSRVD/YYOLTXhafAyJCZUtuL1yM4tM/lf+k4OFTdXLOmf51gb6zTKJc6DQuO8xFU4rTHabw+yVBPSQLwXw7ds/DilLl89uffpMRX4deJ16EoFUd73/3+L6zYtodv5q1kyv0jAdiXboQbZeTkke/xEhnmZs7abexNz2Jvehar0/bTtUnJnuL2rJdKk6QkwlUXXWrVLrLsra27c2tr3w3fov1pXDH9U8JUlV8vvI7UWJ/yolV8A74/+ykUSpY6vTzI8uTxxGojBCNMUXm83fHNOlkYVEUh0M3wpZV/sS3rCP/3zxwub9iW11Yt4LVV81GFwuLLbrMVUy0SU2iReBwy6Z7G65MTvXr14r333qNly1Mj3PNEYt73S3jk0udRVIX3Vv0fdZrWrLC2v3zhFz59+gcUVeHTDS+QUC2OI/sz0E0v2yP7MwHYsW43q03j73k/Li0xKVW9bhJd+7Rky9rdnDOwaHVWlz6t6OIgfLKO5jJ64CtkHc3lf09eSu8LfAqh2MQqfLDiaXRdnhC/pzcf+obt6/eyfvl2Pl3++HHvLxSEEH6EFMDUj+ey6Z8dbPpnB0Nu6cvetMM8fsMkACZMvp7mnQyv7fikKlwx9vyKH1QhSqmjR4/6FQsPDyc8vGQPWkJh3759VKtWLWh7tWrV2LdvX4nayMvL49577+XKK68kNja2xH2XiZSqU6dOqTopCqHW/SI/kv1FK4VXsJUrgQwWPhLIUsw4jLOFuRkBUhEB9S2GRdjtOIRECGfWPFsZI5EiYNA6+H0aOz8E/cZl9ClsUspoS+oYpIgZToYQfiIsabFgjvmxeRiLVHP2Y0F1zpE04gIVaYdDgtmuFOZ+K9zHMOrWNYEmQNUFHlO1pOsmMaSApgiDAJMGv6Wb5JYivKAo+PlQoaIIgSZ9E2UrNxynwTJMxwzX0x3qJmldA9aps8gt3ZGFzzqd0jBB1+wLIPDkWBPp2xqklgpVK/CCsN8Jv21GSw4Czcl2VqJE6N+/P3/99RcXXXQRr776Kv369UNVVd56662TPbRyIy7Ry10vpQWpl759O5l3HjWe5k2YvI2qNY5yU58m7NocQUlX1/BInYcm7QCo9I6qRCWOI04XQ/OicDQnD4BjeQXoUqKUUYu561AGt7w1hcSYKN69dQhul0pslPFFPCbK94X85n5dSYqJokXtasRHG6TGBe2bMnfdNhKrRNGhQclvOmvExDBt+MgSlc3zenl95QJiwyK4rmUn0o5lIIF8TWNfTpYfKQWgHgcfqVCIdoXRNqEuq9J30i25kd++LE8uj6z6AhA80nooMe7yecaWFlc37cjLK+dyTVMjK2NsmHEeI1QX7lM0q+F/EU8++SQABQUFbNu2jYYNG+Jylc/b6N+CrPRjAOiaTl52Xpnb0TSN//V7ikO7DjPx+7uo27QWVcxwvLAINy63MZ9dL2jH2FdGIQSc0a8tYHhYnX91D3Zv2c95I3qUuE9VVZjwzjUlLj9tyjJ27TjMsGvP5tjRXLJMY+5d2w8FlRVCoKon5vOr63mt2b5+L136+JOiUkrefex71i7dxu1PXU7DlkU/GKho9Ly4M/N//YcmbetRtXYimUey7X1RMeXPlFhW1KlTx+/9hAkTeOSRR4LKWX7gRWHJkiVA6O8qUsoSfYfxeDwMGzYMXdd54403ii3vRJlWmf/7v//jnnvu4a233qJ+/fplacKAZbBtIZAFtBAwB4HqqFBljP3Ct0vi71/l4Fms/UIIpAubxPEPCTTD+gLa9I07mJAyJD++O0jLKN3iSkIpZRxWQ4ZyS4LwSBTNIKekKlHcZs45AdJttC9dvlfQHCqGgsp5PIHjF2CErakSPVxCuA5u6VMAWQSUNfnmQUjA61UNE3OXZp5PgSKs5IWGabmVDdEwK5e4VZ0wl0aEy0u4y2uH60kJHl1FKAIdie4xfLms/cL84fu/MAzJraSLTlWVoghfSJ8uTNMtf58pm4qUqsGU2ZNPEAQYyjnrxj3UP6cgxPUpHQ0E1HMSpFZp4Zv3SqVUyfH7778zZswYbr75Zho3Dh1W8W9ETIKXnoPSiU3wj+mVElYt8qVOzzkmmDs1hl2brRuykl08YZEa6QdcVK3hrSSkKnF8cRqvTwBNmjQp9kvdkSNHTtBoTg7uGXIOLeum0LFxbVzleOr+zHd/suNgBjsOZvDtglUMO7sdz4y8kOVbdtHOQTRViQhn9Lmd/epWi6vCezcfX4XQd5tX88oKw8y7ZVI1Bqe25EheDjHucLqmHJ+U9iWBIhQ+6HYd+bqXCNVfCTD/0HrmH9pg/31+jaLVFqGwKn036zP3M6BO66D2i8Oopp0YZRJSANe16EKrpOrUrRJPbNgJuOk7zdcnC7m5udx22218+OGHAGzcuJEGDRowZswYatasyb333nuSR3j80PfqniiKQlxyDI07lD3L/Mwv5rNytuEr9/qYD3jmtwcYfEtfGrSpS/V6ycQkGN/dhBBcMNKfeFJVhfFvXlf2gygBdm4/xIsTfwQgLNzF1Tf35v5nLmPntoNcMrx7MbWPL0becxFDbz+PiACPrsP7M5ny3mwAfv7wL8Y+O6zUbR/ak878X/6mW/92VA0wrS8Orc5oxKf/PG2/b9q+Hq///j90TadR6zpF1KwgFKKU2rlzp59QqDCV1G233cawYUXPWf369Vm5ciX79+8P2nfw4EFSUopWqHo8Hi6//HK2bdvGzJkzSy1gKhMpNXz4cHJycmjYsCFRUVFBRufl/VJVos+CQr7X+dW1HvtbghanFEoG1HEQAD7vKOGTHklHm84xWHyDk4hytCsdZJglMPITyTjH43zpEotpEY7xGu35SBh0aSi6zHpSDzgWywBdkQahojr6DZw3BwFnK6kUw5QcqdvKKCF804OQaJqCLsEjBVJX0VWB4tJt02T/g7WUS9LwnVLAq/sIKXvOpKFEMoiwUGyl/zZLMSWx1FKO+dKtJhzKJsff9nkJQoBKysFs+hy2QpUOQWr5vQ/RmTDmxJ8VKIylLRync/aYuXPnMnnyZDp16kSzZs0YMWIEQ4cOPdnDKhdcbp13Zq4nMSXY/Pi7d5JZMC3efv/cmPpl6kMrUKjdoKCSkKrEccfpvD4BPProo8TFxZ3sYVQo8j1eXKqCWkIlS2xUBFecU3qyIxC9WjdkzpptKEJwhhl+FxXu5qwWqeVuu6T4cMs8Zu5dx7gW59Eu0Z9oapyQjCoUIlSVujHxuBWVG1sWnWXuREEIEZIw6pjYkPrR1ey/C4OUku3Zh6gdlYBb8d1GHC3I46o57+PRNZ78ezpNY2rxwTlDiXCVzVdFEYLu1euVqW5ZcLqvTxbuvfde/vnnH/7880/69etnb+/Tpw8TJkz4V5FSmldD0/SgUKzCoKoK543sWe5+25zdDEVV0DWdbgMNolUIQduzj78nk4WlS7by0Qd/cV6/1lw0wH/NTUiKJj4xmoz0bBo2rQFAz/NOjn9TKAQSUgCJ1WLpel4r1i/fzjmDOxZZ/8DuI0RVibDVaRYeHf4am/7eweRHviEuqQqPfzOOOk1qlHmcDVqcOK+1wrLvxcbGloj8SU5OJjm5eP+zbt26kZmZyeLFi+nSxfBEXLRoEZmZmXTvXjhhaRFSmzZtYtasWSQlJRVatjCUiZR66aWXylItGBZ5IgPel7aNwrY5wuwKK2qrmUzj76KEWoH6miBCyrnPqZKyvqtZhFEhQ7f7kaaqSjM8rizFlFRAhingMrygDOWTMDyfzBduX0MS0N2GSkqGmSoqBfAa7QcelMRsQxG2ZEsIEKpEcesoqhFe53ZpCGFkvcvLc4OuGkbrukSiIYVGmC3zMxRkuhRmynkz05wwvBNsHylhcXECXSqG8gqBIgS6IhBmuKJNiJmH7gvhM9qX0nmWwIpbNDLpCYeSStiN2O5OzhNt/ZYBGxzZF0N+aREBbQWd3BB1rMm3rlcFLCW/CDRdqESh6NatG926dePll1/miy++YPLkyYwfPx5d15k+fTp16tQJMhk+1VGtVgER0Rrb10ewdFYVNMu3TggW/lYxIdS6lKxcGE2nXlm4K9CTsRKVqIQ/hg0bFtKr4d+KxevSGPPq99RIjOGzh4YTWcIbv7Lgsz//ZtnmXTww9FwSY6K4pFtrzm3TmHC3SkTYiV+4PLqXF9b+hgQmbZ7Dq12G++3vnFKbxcNuJkcrQCgVy3DoUkc5DuF+yeGxfH7mePv9T2mrmLZ7HTc0PZO2ib6br5fWT+PjbfNol1CXyd1usLerikK44sKjaxzzFLD4QBobMg7SNrnifHmc8Oo6N8z9inWZ+3mj+xDaJ58+ZtzHE99//z1ffvklXbt29VN2tmjRgi1btpzEkZUOR/ZncuvZj5B7LI//m3YfDdscP4Xiij/X8M1LvzDs7oG0OrMZKXWr8v2RSRTkFhCbeHK+d37w/hzWrd3Dli37g0ipKjGRfPDTWDLScyjILShxaFZJoOs6QlS8P56iKEx4z6cg27x6J5+/Op3u57fm3Et8atiFv6/i0WvfJTomkvfmPkh8km/+o6oYIcl52fnkHctj4dQV5SKlisOnz/3E92/OYOQDg7no2l7HrZ+KRPPmzenXrx/XX389b7/9NgA33HADF110kZ/JebNmzXjqqae4+OKL8Xq9DBkyhOXLl/Pzzz+jaZrtP5WYmEhYWOjMlIEoEyk1cuTIslQLQqAOpNSXryihjsQhkAkluLF4B4to8he1GKqhkj41sQQ4fsdm9e/oI4iQc2wO7EoAugq6KozfjnYsQZNdxyLXhJmND+OplpTSV8YiOiwJlzPMzBq41+jEMPcW6F5hj1nTBYpizovQEYpFBoHUBZom0FRhK6UMwsioZ5MvUjEVUdKwxxKG+sgipby68LXvmCtpZjJ0iLrMsEBTIWWXw86yJ50T5JxcS11mtu/3Hc86EcJxUp1nqLBrz+9CcUrpQpSVjnLCscGheCuBN25wm6GO9TRCVFQUo0ePZvTo0WzYsIFJkybx9NNPc++999K3b19+/PHHkz3EEkLy/JTNFOSr3HJ+YzTP8fHUcIdBx56VhFQlTgBO4/Xpv+gntWT9TjxejbQDGew5nEnDmscnc9y2fUd49ps/ATiQcYyP77oCgLjoigvpklLyzqKlbDuSzt09zyIpuujMgG7FRf9abZi5bx1pmTl0m/Iqb5x9iT8xIiRD/nyLY958xrc4l+uanF3ucX68fRbvbp7GJXW6c0fTQeVuryjct+wnCnSNLE8+H/UYYW/flGWEdmzJOuBXPtoVxvfn3sTig9v5dP0/1I1JCGlIvvDANmbv38RVDbpQOzq+2HEcyM3Cpagkhvufk7Rj6czeZ5Akv+xcW35S6jRen5w4ePBgSPI8Ozv7X7WObV+zi3TTPHzNok3HlZR6YMCzePI9/PPnWn7K+ACAiMhwIiLLbjgdiIW/rmDW1wu55NbzadqxeEXo+ee3YeuWA6TWr8ol/f6Pa244hwGX+BRGkVHh3D96Euv/2UmXHk2Y8OZIlHJ6t62Yt5EJo96hXuPqPD/lDsLCj58X2QfPTWXZ7PUsmrGGXoM72mNP27QPJGQfzSXjYJYfKTXh09v4+8+1/PHlAo4ezuKcy84Ianfv9oP89N5Mul7QjjZnFp9pLjsrl2MZOaTUCVYG/fD2H2SlZ/PzpD/LT0oFkibHcY369NNPGTNmDOeddx4AAwcO5LXXXvMrs2HDBjIzjf+vXbt22fdW7dq18ys3a9YszjnnnBL1W+arZcuWLbz//vts2bKFl19+mWrVqjFt2jTq1KlT8owNDvVIoctcYZMuCvnb3laIJCmQ9QkQ1gjnfuk3xEK7D9ooMELqHKqaoDEEya4CFFnS8BkXGG0ZiifFVDKZL9X0wLKy7lmZ8izCRDX24TZfqtm4Zh6oc0zSatMYgW0fZZqcC9UUfSk+tZKOgkSxGCVzygWqCqrZjqVe0nQfcaWYwW8SBV1KNGGwZ7r5ssobqipLyGZ6U5mDtb3jpUDTFF/bFiFoKqOcWfb8VFK2AspSbTlOgnURhFBKmXwaTmbMUmtZ45J+dUyyK/CCsfgnP4Yt4CJAIIIqFo1K+bk/mjZtyrPPPstTTz3FTz/9xOTJk0/2kEqFtx6uBUg0T8W3XadRHv1HHCahqgf19PAwrcRJxum8PpUk+96/DZf3asu+I0epVz2RBjVKL9UvKaIjfE9ZE2OKJovKik2HDvPc7L8ASKlShXE9ivdVearDELYePUyfn42nyT/t8CdGDucf45g3H4CX1s2gX62W1I4unY9JIGbsW4GOZMa+FWUipTy6hiJEiYzVe9Vowu+719Grhr9H470tB/BN2mLOSWkeVKdWVDwX12vHxfXahWxTl5KbFnxBnuZhe9YR3uxetMfJ8kM7ufLPj3ArKj+fdwP1qvjmr35MIlc0aM/ajP0MbRC6v9LgdF6fnOjcuTO//PILt99+O+Aj1N999126det2ModWKrTt0YxLb+9HdmYO515+fMcdHhWGJ99DZAUS5YF47sb3yM7M4UDaYV6c8UCx5QcM6sCAQR0Y0v8Fso7m8sO3S/1IKYDtGw2CefGsdcycsow+l3YO1VSJseSPNRTkedi0aicHdh+hdoPSKYN1XUfz6rjDiv9S2qV3C5bPWU+nXs39yLQBo3qQn+shpU4i9Zv5qzSjYiI4c0AHzhxQeKbb1+/+lKUzVvPrh3OYsvP1IseQfTSH0V0eIvNQFve9ez09L/afv1EPXsxP783iyrsvKvZ4ikNh4XvHA4mJiXzyySdFlnF+p6lfv36FfMcp063I7NmzueCCCzjzzDOZM2cOTzzxBNWqVWPlypW89957fPPNN6VusyTcU0nKlxfSSRAUMpYAzsG/ftAf/u/tuoH1TVWT0E2+Q4AUAmGmCtVVwxdKt8gui28xVUGWQgqLyDJYI6RmkihWJvkAlk0Kx8AsQsUyd/IaDUlpeEZJ1cywpxodG4STRCgaQgEhJKqqo6o6Qup4dRXdJKO8XoHUFZ9ITAFF0VFVFUXoJgdjjMVWVaH4IjCFIR3SzVA8mzeURjZCS1mk6T71FBq+E2pV8CMlzT/MOUcJPC0BDKbfamDNWQgllKV6cl5M9oH75jq4fYJQpv/x0/jLFBgL5bJly9i+fTtCCFJTU2nfvj2DBw9m8ODBJ3t4pYBgzk8Jx631xz7eSo16x4HtqkQlisJpuj7pul58oX8ZqsZX4bFrLyhVnV2HMli/+yA9WzbA7SpZfHq1+Cp8ds+VrNq+jyFnti7LUItFzdhYasfFsi/rGJ3rlFxxUz8mkSsatWdt+j6GNWznt69pXHUurtuW73euwK0IXErJ4/E1qZFecJTkcP/PgNsaX8hnO2ZzUa0uJW7Lwsaj+xk57z2i1DC+7HETyRFFhxW9csalFOga4QFPLepGJzG+eenOuwUBNIxJZk3GXprFFW2aC7Al6zCalGial93ZmX6klCIEj3fuX6ZxFIrTdH1y4qmnnqJfv36sXbsWr9fLyy+/zJo1a1iwYAGzZ88+2cMrMVSXyvWPX16qOtmZOSz97R/a9mpJfNWSWyRMWvU80z+ZS78K8KMqDB16t2TulCV07FM676drbjiHH75dylXXnBW077YJg3j+7i/A6yUiqmQhVmB8zz60L5PEarGojoQVA6/pwe7th2jQvCa1UquWapx5uQWMufQ19qYdZuI7o2jfveiERQNHnk2/oV1xB6ixIqPDGXFX2deF1Ja1WTpjNfWaF/85kHn4GJmHsgDYvn4PgWe//6ie9B9VgdfEf3x9KhMpde+99/L4448zfvx4P4+WXr168fLLL5eusSJYJ+HcH6huKqyuyWI4I6OKlDmJkIIY41dhSinLy6kwCAjMdGer7iyVUyi1loNYsokL1QhXk2HCDqWz21YwlFIqPr8o65gUk4wylVQown/IAl+WN+uXo12jiEAq0n5v+8ZLxXxv+DGpqnEwqipRFcNzqsDjQtMdJJKu+kL8AKSOlApS6uio4NRBSdDNPlQhURRpkFsIpGZOlsBWYfln0zNhb3OQUpZSyu9kS3u+/K8VP/bIcc6ET03nKO83tYGspVMxZ9VzZhO0/nByWDLgeEqK01x+PmvWLK699lp27Nhhs/YWMTV58mR69Ch5et1/M/oMOUyvSzL4YXIyS/6Isf9nAWo3zGPEXfuITfAW0UIlKnEccJqvT6c7Crxehj3/GVm5+VzdqyN3Di75etyibgot6hZPYhSG+Rt2MHP1Foaf3Z761YLJ/irhYcy44RoKvBpRpfCoUoTgiS4X8L+/pnHVr1/xzFn96F3HZxL+ePvBDKjThmoRsVSPjAMMtdCSg2k0jE0iOaJKyHbvX/ky67O2MqxOf66o57vB6pzUhM5JTUo8Pif+PrKDbG8+2d581h/dx1nFkFJCiCBCqiTYn5vF6Dmf4xIKk3tcQVKEL0usEILPe17DrpwMUqv4q+uWH05jb+5R+tVqYSu5BtVrzYHcLKq4w+lWrX6px1IqVK5PAHTv3p158+bx/PPP07BhQ37//Xc6dOjAggULaN36+JDCpwqeHP4Ki6f+TYM29Xj772dLXC+hWhyXjy+7Gmb3jkN8//F8zjinOZ3OCk3G3P/+TeS8PJLouNKpRS8c3AHFrfLqy7+TlnaYEaN8YcTnDupAauMUsrPyaH2Gb93asnk/LpdKvfqhQ7I/eXEan73yO63OaMAzn9+Gohj3LCl1knhk8vWlGp+FA3sy2LnFCAn+e/7mYkkpgLCI0vtO6LrO4yPfYtPf27hv0o20OKOR3/7REy7lvKvOono9/2Pfu/0gK+au56wBHYiJN9a0mqnVuPuN0aRt3MuQW/uWeiylwgkM3ztZKBMptWrVKj777LOg7VWrVuXw4cPlHpSFwPkO4qec4U5F1CtxucD9Raih9MCQrMIUVgFtOKLJgspZpJBhYi4QZuY9g0+xVFISKYSt7MFUSVkKK4v4kJqxX3jNYqaaSNoG6WY5k3QKSnBnvfeaRJJLQSDRPQKEkZFPWN5VuqGQcrk0IlweFCHx6gKP142mKWheBTSB1BSbGBKoaKrEq0qEqqOoum0GavtDaQoeJEKVCEWiqIZ2UZp+U/6MkKHcwsq0Z2c0DHHybSWT43BDCJ78JkMYxyssM3ybOJJ+p17g2+5HhAmzE0FAaatXxwCcSqtS6jNPZ/n55s2bueiiizjjjDN48cUXadasGVJK1q5dyyuvvEL//v1ZuXIlDRqUPc3vvwFVaxVw9yu7WDa7CotnxAXtv+3J3bQ/+9hJGFklTneczutTJcwHTqb626sFZxQ9fv1Kxk7+kTyPl12HM3jrhktClnMpCq6wosPavtz0D3P3bOeOdmfRKM4gVXI8BXyxcSUAX21aRe86DUnPy2Xajo30qJVK16r+mexeWT2XV9f8RVJ4FH8NvJ0w1V9BpUudLcfSAHhn9Sz+Wqfxer8BZTp2J/rXasOajN1UcUVwRrLvc1BKyb3LfmDRwe083XEQXaulAnDMk0+O10O1yNDEWWGYu28LGzKNm8tFB3fQv04Lv/1hqosGMf43fDuz0xk+5wMkkoz8HK5qaCjBwhSVW1uU34urJKhcn3xo3bo1H3744ckexgmHt8B4WOf1nLj1CeCtp39hyZyN/PbdMn5Y9khI7y4hRLGE1Jpl2/n+w784d3AHuvb2/d99/91SMjJy+ObrxYwYdTaaV2f2zLXUrJ1As4AMcn8v387d4z5DUQRvvDOaRo2DHwas/3sHAKuWbGPo2Mm8/8xwqkSVzz+rToOqjBjTl7TN+xk4wj98+pfPF/LpazO4ZHQPhlxrPMzwejQO7cskpXZCqbzODuw8zPyflwMw8+tFQaSUEII6jasH1btn0PMc3J3OkhmrefjDm+3t515+YrKqnsjwvZOFMpFS8fHx7N27l9TUVL/tf//9N7VqlcJo0EqfFgi/m3fw+RU56wa0E9R2iHKl2W/vMrOzOcpJVfgpoUrSvk8p5ZRmBZQPlNtIXz/SJXxny6nEsnykVPz6FAo+/ykhfLIvqz2kQUgZIiWEtIgun3rKUGoZL9t+QBr/sNZ4hSJxuSRul06ESyPCpZHtCaOgwCCkdK8p2ZIWg4V5XMYESJPssdzMpUX2aIYCys5CZ3pZ6VqAUZc5Hl+Ym/Df77cN/7l3bnYKqwLPjQK26t46fY5r0vKR8qOYpKOwo2+fF5az4xDjsZRUpRVMncZP+l566SW6du3KH3/84be9WbNmXHzxxfTp04cXX3yRV1999SSN8MTg4G4Xv3ycQO9L0nl75jpeubc2axZXAQSpzXOJTy442UOsxHHAgd1uXr6nNjs3h9PqjGPc8PBe4pNP7BfrYnEar0+VgHC3i0/GD2PNzv30bVu82mfp+jTufv0nqifG8MnDw/3CREoDIQQtaldj+bY9tKoTfLNRUmR7Crh3/jQkhkLqlR4DAYhyh3Frm678sXML17QwPFvGzv6Z2bu3kRqbwJ9D/JUD6fk5ABzzFOCVGmH4k1KKULi3+XU8tewH9uxR2eOpmIxnMe4IJra7OGh7RkEuP6QZpNp3O1bQtVoqh/Oy6Tv1bY4W5PNej8s5p2bDoHqFoXfNJnStVh+3UDg7pWQPgVShoAqBV0rcpQhzrFCcxuvT0aNHS1y2JOnn/6144LOxLPhpGR37tim2bFZGNrf1eoz8nAKe+/mekERGSdG0dW2WzNlIw+Y1ymUm/9bjP7B5zR5WLd7KFwsftrdfdfWZfDh5DgMGGV5K3365iHdf/wNFEXw65XaSHaGKRzNzAeMBwrFjeSH7uWnCxTzz0NesPJzJ0f0Z7Nh9hJaNy5fFTgjBlbeeG3Lf9x/+RfqhY3w3eY5NSt036l1WL93O0BvPYdT4fiXuJ6VuMv2v6cmGZdvoP7Lkal3L56okflfHBZVKqdC48sor+d///sfXX3+NEAJd15k3bx533XUXV199danaCjmnDumJMN8X6a0jDfVQIbuKJo+KGJQEy8PbscEngLEJJ+H/XujYRuG2MsnZuO3Gjf8HoMWzWG0ppvG3YiiapGKG8jnblD6Vk1QddU1yRWgY3koux3GYih+jrkFMSUWCJhBe3wFLIU3Sy8jeZ5wLgdRNVZPQUVWNMJeXMLfxW1V04sJzkTpkyzB0TSC9gAdDdaUJY0xSQJgEN+gugXRrqGFGu1JTkF4FPIoZogeaAFw6wq3byilhEVq2KgnADOcLIDVtOObNGeNpk0oyoJzVvG4othTVZ2YuLfN2IVFssknYKi2pOy4YuynpI/h0s/FA7kziu4AqlVIlxp9//slTTz0Vcp8QgjvuuIP77rvvBI/qxKNGPQ8XjkgHYPPqaNYs9oVoXDVuP6nNK0mp/yJ+nJzM0lnGF8v730w79QgpTu/1qRIGGlRPokH1YFP0tH3pxMdEEhsdwYEjWWQey+PVb/4iKyefrJx85vyzlV4dGoVo0UBGdg4PfTWdlrVTuKlv8JPrSbdcxoHMY9RIiOFobh5fLl5J2zo16NKgTonHHuly06labZYe2MVZNer77bunUw/u6eS7wQk31U+BKiiAu9r2on5MIh2SaxPlCjOyEKOjCl/ZTomteKhNEq/nL+KCRmUL1yspEsKjuLrhGSw4uJUrGnQCYH/uMTILjBvSDZkHbFJKSsm7G//iYN4xxrboTRV3sDoiMTyKT84ZXqox1IyK49veN3IwN4vu1Yomsg7mHWNXdjrtEmtXaDa403l9io+PL3YupZQIIdBOoMrxRCM2KYbzR50TtP3Ivgy8Ho1qdZLIOZbH9rW7WT5zDft3GNFBHz3xPQ98cFOh7Uopee3OT8g5msv4N0fjdvvffl91c2/6Du5AUtVYdF1n2tdLcIe56DO4Q6mu8S7nNGfzmj10OaeZ3/YePZvRo6dvW5hJrKiqEpRx7+yezfjf/QMID3fRrn09wFAludy+9alOoxQmvjWalz+YRUpyDM0blp2QKwmuuPlcPn/zDy52hB5uWbsHgE2rd/uVnff7ahb9sZYh1/ekbqNglZcQgjEvjAjaXhz+75f/sWbxZjr1LjqZW15OPuuXbKVZ5wZElFM95kSlUqoQPPHEE4waNYpatWohpaRFixZomsaVV17Jgw8+WLrGQv2vSWGTUcZ7GbocFKo08Xtfhs8sEfBO4E8WBQlxLK8nXfrGLvApo5wNB5JuzrYtpY4V52dn2sNfHeVUM1neUgHjsttWLHWX9DNJl5YSyjo4KWyFDoB0SXAZdYTf8QqEanhJhbklbpckTNVRFQhXvRzNjyTf4zKy4hkO7SAVo21pZvazxmK+FJfhHQUY5TUVv1hHodtkmmGqbmTMc55+6ZxEJ0tonUOHh5Yx/YWokWwVnK+wUA21lLV2W31Z8yIEhtm6c5EQ5jhMtkuY50pY9R1KKz/YJGzAtVMSnMZP+tLS0or0O2jVqhU7duw4gSM6Odi7I4xLmrXgvjfT6Dkone79MuyQU5dL2kR9xX2Vr8SpgFH37eXKO/bx918xTBhVnx4DMrj2gb1ERJ1CC8FpvD5VonD8Om8tj7w9jbgqEbz70DCufugT8gq8XHROS9Zs20dUhJvOzYsmj8Z9/AtLtuxi1tqtdG9Sjzb1/J/au1SFmokGafvyjPl8vugfXIrC/PtvokpEyW4cFCH4qt+V5Ho9RLmLNgV+qedFzNm9nS4ptYP2xbjDuaapEZ6W7c3lzhXPcqQgk8da3U7T2FS7XLuUGrx70eCQ7a8+vI+tR4/Qv14zXOVM4w5wf9vz/d43j6/GxI7nsyfnKFc18mWqWnFkFy+unQkYRNI1jYvPUlhSNImtRpPYorN15XgLGDDjDTI9udzVsg/XNjmzwvo/ndenWbNmnewhnLLYtWkvN3W6F82j8fyMh3jjga/ZunoXPQZ3xBWmonl1+o0INhF34oe3Z/DLJGOOo+Miue3//EkRIQQpNRMAmPvrSl59eAoAiVVj6HhWyUnpEWPPY8h1PYmMLnpNG3hpJ2rWTiClRjyJSf7huYoi6Hu+77v0U7e8z9yfVnDTxEsZeI2PeE+Mi+LRsReGbP9g+jEWr9zOWR0aEhcTWeLxF4beg9rTe1B7v20PvXE1C2asYeBw3xqk6zpP3/EpXo9GxpFjTHx3dLn7tpBQLZazLio8a5+FiVe+wrIZq+nYpxVPfn93hfVfqZQqBG63m08//ZTHHnuM5cuXo+s67du3p3Hj4k3JSoQQ6qRCGUEpTYGM8JE0jqrONoLrFtJ94Hbh/zklTPLBqYjSVVNx5CA9rPFZBIceoHASYKplAsZkEU3Sf7PFUzjLSRV0Fz5llMTnN+UYpyJ8XUlHKBqaAFUahJVLoiNQ8g3iSNEMo3KEsU8o5sEiEULHrWpEh+cTE55HpOpBCPDqCuGqh/AwFV2a3lBmFj+fgbswlUTm+ITEpepEheejKJJcxU0uEpnjggIFNFBQIFdBqhIZrkOYjuLWURTdJqpURSLNc6IrimGKbrFvzovBIpIs36bAa8H623Eh6B4F3WsqtBxqKfuUWKotK3uidS6sTIbWCTLrKIpx3fqyMjsIM5OUlVKiqKXM2HQaf6k6duwYUVGFx9tHRUWRk5NzAkd0siCo27iAzr0M3yi3+zS7EE5TuFzgipH8+lkSGYfcXHrjwVOLkILTen2qROHYsddQdmYey2P/4SzyTF+XBjWSWDppvF/Zv7bs4KdV6xjRpT2tavqegteI9ylC44tJy1491rgJi4+KIKyEGQAtCCGKJaQAot1hXFC/+JvJXbn72Zt3EIB/Mjf4kVKF4WBuNoN/+Riv1NnV4Si3tK54TxMhBFc17hi0vW6VRBLDosjy5NE6oRR2HRWEAl3jmDcfgMP52RXb+Gm8PvXs2dPv/dy5c3n77bfZsmUL33zzDbVq1eLjjz8Osm05HXBw52E8+caatGfrAQ7tMdar3GP5/LzvLb+yu7fs44tnfqRjn9acc3k3e3u1uj4Pter1iyZeE6vFgjDIoYTk0vm5AcUSUmC03aVb4cpTJ+ZPW4mUkvnT/vEjpYrCHU99w9Zdh+ncqi6v3H9ZieqUFu27NaJ9wDEoikKLDvVYuWgrbbqcHP/Y9P2Zfr8rDJWkVGhMnDiRu+66iwYNGviZBufm5vLcc8/x8MMPF1HbB1ut44D9VvpvlZZiJbCRwpRSJVRJCb++TKZHd3SuBDRiERoWqeTHHAkfj+FQFQUeTsjrKFDY4+OyikRgKJ8Ni/CRBgll73IqssChnDIJE804JCmwM/thGYxbCi4FFFXichnElFvRUYRxhnQEeZoLj1dB04WRBU8XfuSbFTJokGGYvlReFGFolzxeFekVtmm575oIUHs5pGbC6kCArpuMnpPFszXZQTPoIwKd6iS/cj4GylKcSN1UfQl8/lgBJJW0SS+LMTQIOL9TYTXtdw2a17oAKUpHSpVXfv7GG2/w3HPPsXfvXlq2bMlLL73E2WefGJPRisDatWvZt29fyH2HDh06waM5edi6NpKNKyNo3CrPQXxW4nTAxA+3OTKlhlBinkSczuExpxsWbUzj2e/+pG+7xtzUr1uRZYdf2AlVEaTWSqJLq3o8O3Ygew4e5dJz/X1dpJSM+eoncgo8bD14hK+vv9Le98TQ8+nauC5NqidTNzmhyP6u69GZrg3rUicxjjBX8Ndgj6axJyuLunFxFRoeFgqNq9Tlklp9OJifznkpJVP9KEKgmA/3XCf4HzwpPJqZ/cbh0bWg0L0sTz453gJSIovO6lcexIdF8v5ZV7M2Yy9D6hevWigNKtcnA99++y0jRozgqquu4u+//yY/3yABs7KyePLJJ5k6depJHmH5kX4gk0eGvEBiShwPfjEWNUSYrYV2vVpy28ujyMvOp9fQbjRoW5/F01fR94rgde2VWyex4s+1TP9kDl0v6mCHb3Xv355nfr6bnKw8uvVvH1TPiZYd6/Pur3eiqAo16waHOksp2Zt2hKo14k6Iv9HYZ69g7s9/c8WY84svbMLy/yurD2B58NRHN5CVkUtcYrTfdq9H48DudGrUSzqu6/rDn41hzpQl9Li4c4W2Wxm+VwgeffRRbrrppiBVQk5ODo8++miJSanAULagfaE2FGku5SgWqo0A0sf+LUFY7Zpkhi1acRiaBymVNOkjpzTHfotoENh3BVYklzNrnvV3yH+NAMWVxRk5h6A7/MOFF5QC473uxlZK2ZyJ6khIJ6Tdt+EbZR5EOBAm0XWJ8AiEJsAr0PMNCZgwySlhvox6EkXouBSJLg1T+DBVI9ytoesKuirRVN94fGGIprLI9GmSCFRVw63qJMVqHAsLJyc7HO2YG+kB4RXGMXpUZJ6CHqEjI0FGeHG5NduIXEoQio5UBbqmoOs66IqPUAs8hw7OyA8ORZddSQJeiwwzlWMCk5wysxEGytvsE+dvmG95YiFBs8zbhRHC6FsrJYp24pRSX375JXfccQdvvPEGZ555Jm+//TYXXHABa9eupW7duqVr7CTh3HPP9T8HJgwzfHncbzCON1xuHXeEbn4YWQb/xvHmZitEREnycxWadTxGkzahDSor8d9GBUTyHD+cxkqE0w33f/wrh7Jy2DztMNec25lwd+FfN6tEhnP9Jb4QjJ4dQz/BX7l7H9kFHgSgBqzlQggGdmwRsh7A2t37+emf9VzcoSVNqifTunbhHihXff01y/bs4eYuXbjrrKLDcsoLRSiMTB0ctF2XOkohTxSSIqL4ZcAoth9Np3fthuhSZ9HhlVSNSKRRFeOz+khBJjGuaNxKxd+0hqsuwlX/dg/nZXPetDfJ8uTz3tnD6FG95MbopUXn5Hp0Tq5X8Q1Xrk8APP7447z11ltcffXVfPHFF/b27t27M3HixJM4sorDq7dPZv3izQBMe/9PLrwutME2GGvLgBv72u8btq5Dw9bB4cSaV2PlXxsACI8MIyzC7be/7dnNC+0j41AW3737J8071qfbea2pnVq10LKfvDKdz16bQZM2tXn52zGFlqso9BnShT5Duvht03U9yIvKiZfvG8KytTvp2qY+AGuXbycrM5cu5zRDCMGxzBwjm2Bs+UP7AqEoShAhBXDP5a+ybuk2ht7Wl1H/u6jC+7VQI7UaQ8eHDmssFyqVUqFR2M3dP//8Q2JiYrkGFGqOQ3FJhholxA2ms4BFOjgacbYfiouwizrVM44QPFvZFXjja2aksyPFbH8nh1IqRGfWNRbEn0mz21A7TZ5COsMFPQ7FjUW0WeXcvnH5BDkWCYf/nAlps1e6tU3RDQLKeoIkjPAzl9BR0VFMHZsEvFKgSx0pdYTQMGIaAz7pBYZKStURiobL5SHMVYBbMdRSXqmYoX1GmCAo6BIU84RI3ZwDXZpm487DsVRLprrOb+IDaT187+1d1uQRUNa+GLDCK23yUUp03b854S/BMxVSMqhraZ4LaZ4g61iEwCC5SrvqlONL1QsvvMC1117LddddBxjZ7H777TfefPPNQg3ETyVs27btZA/huCK5RgFvzthATHwwUfnOxBo0aJHHnB/iGH7nfpq0y/Up9/7dPFwl/kuovOn7TyLUd8KGNZI5lJVGZJir1CFyhcFtPnWXQGRY8SF0Fp7/cQ4fLFqGDizcksaU2w0/l4zcPL78ZxWda9eiQ+2advn1B41wujUHDlTIuEsDKSUvb3qTFRn/cG3q1ZxdNbR6qnF8Mo3jjZCgX/bM5p2tX6Og8E6nR/g7Yy1vbvmcOpHVebH9/X4G6scL+3KzOOoxHoSsz9gfREod8+SzPnM/bRNrFZldb9a+dTyz+lcurNWG25v3Oa5jDkLl+gTAhg0b6NEjOEwrNjaWjIyMEz+gcsJ6UOlco1qd2ZR5PywFoGmniiFQFVVBURV0rw4i2EC8MMyfsYanx3yM51geiiL4YsUTxMRHoWk6v33yF1ExkfS8uJM9fsvge/vG/cWSQ8cD378zk3cf+ZbzhnVj7AuhExokxEbRp2tTALZt2Mudw94E4H8vXEGdeonccd5TqC6VN2Y/TM0GRYczVhS2rTUM0Tev2hm0T9N0NizbRp0m1YmJDya0LOzesp+JV7xMcs0EHv58LOGRJf8cKjcqSSl/JCQkmAbTgiZNmvj9g2uaxrFjx7jppsKzDxSJUDdOMtQNVSF3WCLE30URUg61TBD/oGP6GIHUQLpAdxqNmwSVFTZniXBsMY5idBDou+1UXdkm34EfghYRRcBv3ffb7xhUY5siDBJKClC9juYCxm0ftiIMtQ8CdJPAUUwz8QiMzHE6NgEjLNWQPV6DedGkiiYV3OjoUiFS1Yly5RMb7uFIThS67iJP143siG5pe1e5XDqRkQVUCc8nOqwAl6Lj1QWqopMQnk9MeAFHwiI56o7Ek+uGXBXyQMkTKJpA8wo0TaBLLx4BbqGhqjqqkGgYJJCigy58pJUMmD+//2drTXeYp0vr+G1iSwaYvps7pWIKq/xPpmKVdV5kNoHmHJd5gWgCXTdUVKg6ioDSKl/LKj8vKChg2bJl3HvvvX7bzzvvPObPn1+6QZwk1KtX9JPT9PR0fvrpp1JnCD1V0KBlDrEJoZVz+9NcDLs9nelfx9G0fe4JHlklKlEynKjwmPT0dMaMGcOPP/4IwMCBA3n11VeJj48PWd7j8fDggw8ydepUtm7dSlxcHH369OHpp5+mZk0fWXHOOecwe/Zsv7pDhw71UxOcbli6aRe3v/U9qSkJKKrCwYxjvHzjIN6++RL+2baXprWTS6xQ3bLvMDe/+R0J0ZF8NG5YkLqqWUo1utStzYqdexnRpV2Jx/jx7OWGglyFptV9CoRnZs3hm5VrCHepLLvjFsLNUL63Bg1ixpYtXN3Ov488r4d31i2kamQVhjVsR47Xg1fXiQsv2sOqNNCkxvL0v5FIlh5ZXigp5YQ1v9Y0b8zaDhh+VXlaPtGuwr0Wncj1FpCve4kP85WXUuKVOs+t/Zn0gmzubzmIhPDgm7YW8SlM7HABe3OOclWjTkH7R8z9kLUZ+xhSrx1PdBxY6Bg+27aIPbkZTNo8l1ub9S5ULXY8UBm+Z6BGjRps3ryZ+vXr+23/66+//Cxb/g1IP5DJmG73k3ssj44XdOTvP9dy9YOXcMmY/nTo05oqcdEk1yqZmKKgwMudFzzDkQOZPPbFGBq09E9iIIRg6F0D+PyZHxh0c99CWgnGO8/9SoFHR2CYaUdEGUTHn98u5tW7PgMguUY8rboZvs03PjCA6nUS6XJOsyBCatrPKziwL5PLruqG262SlZlLQlLpfamKwpwflqJrOrO/X1ooKRUE83ZJCMG2tbvx5Hvx5HtJ27i3xKSUpulkHsoiMSXO3mY9EPlp0p/M/3UFo+4fRNMOqSHrT5h8PQt/X8XAUcGE6wePT+HrV3+jer1kJi95vFCib853i9i+Zhfb1+xi4/JttD6zaYnGXhGoDN8LwEsvvYSUktGjR/Poo48SF+e7MMLCwqhfvz7duhXtHVBaBM65KGR7UCXh/9uZyM0W0AQUczYqHTucnERgN9JR3n5ZGfdCDdLZZsAYAsdj/zbbdZJmUhjWV7YIyRtMujhDBqVZDw2DgNGkr0NF2r5IfgdmOblbIWWKsUOoxm+pAS5jHB5NQZMGMaMiEWi4FQ/hqgvpBg0dTVeMUENVoigaoGNYq2soQkcV4BK6Gdamo6LhVjSkqqC5DIJNV4WPBNJAegTSo6CZ0jKpgCYtdZrF8unm8ViEk8DKvGcwhT4/qmBy03HxWAqowIulOLraZhN9F6EfIRUIc9hSmqqw0iDEk76jR4/6FQkPDyc83N8L4tChQ2iaRkqKf/rUlJSUQj2a/m1IS0vjmmuu+VeSUglVPdz3RlqhmfMenmQ8+Xn2q+0nemiVqETJcYKUCFdeeSW7du1i2rRpANxwww2MGDGCn376KWT5nJwcli9fzkMPPUTbtm1JT0/njjvuYODAgSxdutSv7PXXX+8XwhIZWfHhB/8mzF2zldwCD2t3+lRFz337J5PGXk67BjWLqBmM/5syh/0Zx9ifcYzvF61h6Flt/fYriuDja0Kb5o6e9A0rd+7jvovO4dJOrfz2Na9VldW7DtCmfnWeuPQ8e3tKFeNmLSEyEtVxE9K9bl26hwhZ/3zz37y0ai5geCuN+3MqBZrGdxddRevksqVEz/JkE6a4CVeNG1GX4uLq+leyPH0Fg2oNKFEb/aqfRVJYPFXDE6kakciwuhfiVly0iG1UYkIqoyCHwbNeJcOTw5tnjKBb1Ua8vu5P3twwl4vqNGf6gb8BaJtQl+GpwSGNQgiuaBhsjG7hQG4WAPtyjxZaBuCq1K7szkmnf602J5SQAk6oUuqJJ57gl19+YcWKFYSFhZ1SCqQbb7yRsWPHMnnyZIQQ7NmzhwULFnDXXXeV3J7lFMHGpVvYt81Ym2Z9/hfC7ea9h77kout6U79F0Rk9AzHrq4Vs+mcHAO889BVPfzc+qMzVD13K1Q9dGrT9g8e+Y8obv3P24M7c9ea1fvvOOq8V30yeS1R8NG//cbftE5VYPR4A1aUQ6yCWatRN4qYHg4ndLZv2839P/gxAWLib2b+uZOum/dx2T38GXFY2f6O8nAI8BV5i4n3ryKgHBvPFi79y7uUlS7CQ2rQGL3x5C9lH8+h4dhM8BV52bd6HO8xN576FZ8wOxINXvs6KvzZy1fgLGH5nf5b8uY7Hb/6Axi1rs3bOWqSUfBbu5tFPbw1Zv92ZTWh3ZujkE4fMZBsZB4+ia4Wrz3peegZzvl1EUs1EmnYMTX4dN1QqpfwxcuRIAFJTUznzzDNxhTCIdOLpp5/mpptuKvTpZLChdNEIGcpWWLuO31KE2G6JV4SPY7CbdhqH2zeAwqGCwp/AwuA2pAJSFXZ2u2DTc0wfpxDHIQOGLbEtjaRiqLWQGAou3fSNMo3IFa9t72QTU7YyyxyvIkFqph24is//yCWRlnm4FY+mgDAVVkKVKC4dl0v3i4QTwqSTpIJXulDQ8EiFMKERoRYYmfCkB0URRER4yS5wU+Dxj68WQhDp0oh2e3EpEgWDNNIlFKiSyHANKQqQikAqwggUNEP7VF2g5yvoCCQKXqmgSQWXS0co0jBNVySaMIkdxfckUUqJpmEYsEtpE022Qsr5pcTywQo4WYF1fAeF6bnlU0kJUzUFhu8WEkOBJ4VhmO78R5CGv5ZAMcnT0n0pC/Wkr04d/w/eCRMm8Mgjj4SuH3BA/wUfpv8CVLfOX1PjSG2eR+PWlV5Rlfh34kQoEdatW8e0adNYuHAhZ5xxBgDvvvsu3bp1Y8OGDTRtGvxkMy4ujunTp/tte/XVV+nSpQtpaWl+nnpRUVFUr142AuK/iMvPbsvWfUeomRjDN/NWoemSvu1LnsLciQs6NWXe+u24VIWzmtcvcb0DR4+xcItBzL8+Y0EQKfXF+KvwahquADPjMWd3o2fD+qQmJuIqQQhMo7hkBBDlCiOnwMMxTwEAa44cKDEppUudtzZPZXfuIfpVb8Vrm98nxh3Ni+0eJsZt3Hj2SelFn5ReJWoPDF+qM5J8pvDJ4Qnc2HBYiesD7M3N5EiBkc1ubcYeulVtxA87V6JJnUUH0qgblUR6QTbfbV/NL2mbeL3rUBLDS0Z4AUw6azh/7t3IxfXaFlnunOrNOKd6s1KNvaJwIpVSBQUFXHbZZXTr1o1JkyYd385KiXvuuYfMzEx69epFXl4ePXr0IDw8nLvuuovbbrvtZA+vVGh/bmv6Xdub3KO5bFi5kwM7jxTp7VQUOvRuicut4vVo9Lq0S/EVHPjutd8oyPMw4/N5QaTUdXf2Y9TYvrgCwpzb92jGW389TFi4mxr1C/eYspCYVIXoKuHkZOdTs1Y827cYZNy6VbtKRUrNmLKUWT/8zYVXduXlcR+TfTSXp74aQ2tTqdWmexPadC/dGt+8nS+SISzczagHLi5VfYD1y7cDsHbJVgAWTl9NQZ6HNcu20blPK5bPWkt2Zg7XdX6AO98YTfPOJQ/LvPHxodRvXou2ZzXFVYT/Yc0GKby58IlSj70iUKmUKgSBqUMLw5NPPsnll19eKCkVQnzkhxC8TcjtIRsOVCr5SaL823M2KqVB5ginUsoik5z1AtsxFVK643tNKDLM7jOEkipoPKaiy+lTJbwGaWPZKln+T5b/lJU5zw4ZNFVUVrigwHgvrLoIpJkFD+Eg/iySzSRNNCkM8ko3VUi6gpCQL7y4FGESFxId3VBM6RKXouFSNAo0gSpcqIoeEBJnlNUkqNJUNAG6VNB1gxBRhI5b9aC5BLpLIN2gawoUKOAFJd8M0RMGC6dJaRBqqkkMmfGQMkCeZqnIfDPvYAF9wihjHqTj5AtHebsx6bscLCLKDOVTFImi6DZ5JaRi+GAJgRDmCREOFZXZlmOKSocQT/p27txJbGysXSRQJQWQnJyMqqpBqqgDBw4EqacqceJxaE84U96pxuu/bzzZQ6lEJcqOMio5S4MFCxYQFxdnE1IAXbt2JS4ujvnz54ckpUIhMzMTIUTQ95dPP/2UTz75hJSUFC644AImTJhATMzxyzZ2qqNWUhyv3jQYgHsu7YVX0wkvIiPUsbx8bvvgR7LzC3h15ECqx/vmbkDnFpzfvgmqUEqVtSm5ShQ14mLYm5nFRe1D33AGElJgZLFrX6vkaq6zazRg7qDbiHK5iXGHk5aVSa7Xw+AGoQ3W12Ts5eW1M+lZvTFXNTBuYjdl7eGLtNlmiSx0dDI9WRzMP2KTUiVFge7hkdXPszfvAPc2v42mMWX3xmkWW527W/Zjb04ml9c3xnpv6/P5aPNCrmrYhT41mvFj2iruWfY9AOMWf83drfrQKqFWydqPS6FZ3Cn+XeIEKqUeffRRAD744IPj21EZ8cQTT/DAAw+wdu1adF2nRYsWVKlSsWFgJwJh4W7ufPdm+31udh6R0UWH275+x/ssmvo3d7x5PR3O9Sl5qtZM4Mfdr6NrepHERSiccUFb5k5ZWihREkhIWajXtOTrU0JiNB9/cxu5OQVUqx6HfPxSVizdxtCRoZM1HM3M4bWnfyEmLpKb77wAl9sYw2sPf0d+rocj+zM4esQgqjf9k2aTUqXBm/d9wS8fzuG6Ry5l8A2Fm8mXBPe/PZr5v/7D4OsNwv7i0T3Zvzud5u3rcdXY8zm4+wgjWt0DwIu3f8CVdw/gnBKSh/HJMQwde0G5xnfcUamUKh9CZcHyg1Mx5Lzpd6iYAvf5EVKFNR8YgiVC/B1Q1MyNZvs++fFXItRL+IYgLJUUPiVViOP0I6SsP0ONx+RHAtsVurndBXoEEGZsUwsM9ZRUQLrxEVKmIkq1Q8UsDkvYPIiUIDQliLCz5UImkSRVidQUk6QyiBrV5UUoCopisFiK0HELgaqYdlnSCJPTpctWFalmuJ8Qkgi3ToRLx61I3IpFSAmyvWEUSBc6Km6XjkfD55+lAopA0UAUGCSV9ILuVZFuUKShTJKAomgIhzrJVjaZCijng1HhmHj7spMGKSdCnS+zLZtschJcwlRqCYlL9XlLSQm6LvGaLKcQRkZDg5uSdrvY5yvEBVscQnypio2N9SOlQiEsLIyOHTsyffp0Lr7Y9wRj+vTpDBo0qHRjqMRxQcZhlUmPV6f7BZm06JRbaWBeiX8fQqxPpVFylgT79u2jWrVgj4pq1aqVOBQ5Ly+Pe++9lyuvvNJv7bzqqqtITU2levXqrF69mvvuu49//vknSGV1ukJViyeTlm7dzdKtuwCYtXYLV3Rv57c/rBgFfigoisIf/7uu1PXKgprRvuthTLvuRZSEt9bPYe7+zfy1fzND6nUgXHVRN7oaqdEp7MtL5+LafVmVmUJyeCKp0f7/B/laPisyVtG4SgMSw0N73uzLPcCW7B0ALDuyslyklBCCEQ38j6d3jab0ruEjcc+u3pC2ibVYl7GPxYe2cf/y7/nxXF+oTGZBDntyM2kWW71YhXWWJ4+3NsyhTnQCw1IrNnV6mXECSPN/E6KioujUKdgf7N+M4gip3GN5/PD6bwD88u4MP1IKjLWmLMbiD3xwC3xQ6mqlRkxsJDFmRruefVvSs2/LQsvOnLqS2b+vBqD7Oc3p2NVYP3pe2I4Z3y3l/KFd8VzUjvQDR+k33N/bTkrJsj/WEFc1hsZt6wW1bWHGlwvwFniZ+fXCcpNSnXu3pHNv3/HUbliNxz+4wX6fXDOBPld0Z97Py0nbsJdnrn+Hjr1bEJNgkKmeAi9bVu2kQavahIW7g9oPPL7vXvuNzMNZXHnPQCKiToH/+UpS6uQhcK4D+anCEPJjMJRyytoVooKtNDKr2AblgWSX1aSCoZASAduF73dQ3RBjCdxsheBZL+dnvB2mJ00Tdh3Tc8lX3ib4NAeP5gU0H9klvRgqI4uXMskZqRhkjFQVcAk0t9m5bjBeUkgKPCCkDlInMsxLuEuiCkG+pprpmoWZSc4gilQzu54KqIpOhMuDW/EiJRToxgA0qeDVjRcYxn9u1UuY2zA217wgNYHmUQxiygtqrjF7mhRIqaC5daTbmDxF0VEUicTKY2eMSwgz4x2mislUKNnzb41bxXccjvMOASF6znNjvoxwRM2KHMTSUwkkQtGRurDJKyfBZRFSUgo0UTqpVCAHWxqMHz+eESNG0KlTJ7p168Y777xDWlpa2ZMXnGC88sorRe7fvXv3CRrJ8cGR/WHs3BxJy87/DY+vSpx+CLU+lUTJCfDII4/Y6oLCsGTJEqPtEDfEJQ1F9ng8DBs2DF3XeeONN/z2XX/99fbfrVq1onHjxnTq1Inly5fToUOHYtuuBHRuUJszGtUhO6+A3i0bnezhVCg+27iCd9Ys5rpmnfhu+lp2cAC1jqBH9caEmRnnItUwPjjjTiQSRSh0Sgwdqvbh9k+Ze2g+Ce54Xm7/XMhrt3ZUDS6scS67cvfSJ+XsCjsOXZqKbUefm7MO8PK66Qyo25y60XFM3b2aNgk+o+cCzcvgWa9zKP8Yd7Y4j1GNijZo/2TLIt7fbCRR6ZhUl8axJ19FFWp9qmjSvBKnNiKrRHDx7RewaOpyLrqx5Gbl/wasW7WTFx/7kdYd6nO4bhjTZq+iWqSb+IRoGjb1hR+Pe/pyxj45pEjy7Y8vF/D8zZNRFME7ix6jdqPQ4cs3PTmU3z+bzxXj+1fYcUgpjUgax/iyj+by5r2fExYRxuiHL+X1uz+lRoNqRFbxkZDP3DSJeb+soGOvFjz+xe1F9rF6/kbeue9zAJKqxzPoppN/LRRCQ/yncHJJqcKEIH6KnWA1UaHlCttf2J16AAtkhcr5qZ0EZmq74Lr2AxVLxROokgrs1+ovcKzCj+tAWGSUqXaSitm+5utHhhm/FY/PY0qqvpedla8AOw7VMBk3/aV0Ybodme1Ls3PFVFJJazjSiNizQtgsjsQtDcJKFSiKgkuRuBST2DGNyHM1F16p4tUUJApuVZoZ5XQi3B5i3PmEqTpeMxRQl5Cnucj1GnIvVTEMynUUdIyJkFJBaAKhC1SPqdpSMUglRUEKiVCEoT4S4FKlSbYJNF2YZI8x6dZ6JhznyRJM+av4AmVk+JRSYIbqWcomX5tut45LsWZRMefUMlkXqIoR3mcQUhYpJkxFldlHaR/IlEN+PnToUA4fPszEiRPZu3cvrVq1YurUqcVmtTtV8OKLLxZbpm4I89p/E9YujeThkfVBGtd5QjUPw24/QPU6npM9tEr8S6Bp8MuHSTRpn03TdnknVnFXRiUnwG233cawYUX75NSvX5+VK1eyf//+oH0HDx4sNhTZ4/Fw+eWXs23bNmbOnFnsuDp06IDb7WbTpk2VpFQJER0RxqQbhpzsYQBwKDubbenpdKxVC6UC/hFeWTmffTlZvL5kIUf35gOCW1v05ZaABEBCCETgd4oAaGaWE01qhZZRhMLV9UMbv5cViw7s4Nq5X5Aak8jXvUcR4TIUBZM3zWX2/g3M3r+BOeffy7gW51IzKt6ul6d7SC/IAWB3Tkax/bSIr4FAkBAWSdWIUyT8tYz2BxZKSpz/19RH/zXc/MJIbn5h5MkeBvl5BaxbvoNm7epWiFLnl++WsWPrQXZsPcihsxLwhguSL2vCpDGXBZHexanBNK8V3SKNbO2FoO+w7vQdVrSitDTIOHyMsUPfIDc7n+c+voF6jYzP9Lk/LGXGFwsAmPDJrXyy5jlik6r4hVnuSzsMwH7zd1GokVqV6NhIcrPzadD6FLlvqFRKHV/4za+l6imkXFH7rfpFRgsGqKWcCinLSsi/Q2wvJ4m01UTWUPyOQQR8jglffb/QPYv4cIYjWn05yCpbqaX41E9gEBRCA6EbXkpSM8pp1lm0xmcqqITpN6XkgWres+oukC6Hosrlr6ySgcSaFD5Vlerbr2sSqSjkS7ehlkJHl+BWjEEZSiSDgnGpOop5gC5Fx6VohAlDNaXp4NWEaVgu8OgKui7QpYKmG+0YvlJevG6BrgmkbvhQSQxiSmig5ArQMPZrCpoO0g1C6CYx5TzDwlY4BV4fAmleG0YInkUY+mfKM9RNihl25wvhkzbppZvEkm6STbqUaLpA0zHnQQNhek4FKKTs8UmLNiw5ymvUecstt3DLLbeUvuIpgG3btp3sIRx3ZGW4WTQ9zn5/z6s7KgmpSpQKc36MZ+eWCAaOLv6LWUWjPOtTcnIyycnJxZbr1q0bmZmZLF68mC5dDD+JRYsWkZmZSffuhX85tgipTZs2MWvWLJKSkorta82aNXg8HmrUqFHyA6lEiXA4O4f03FwaJRd/HsqCfK+X3pMmk+3x0K9RI14fFJzNqrS4oWUX3lq9iJtadSUtNoM9GUe5tHPJs0s5MSp1OK3jWtAkpjFCCHSpk6vlEu2KLrTOmszNrM7cQr8aZxJXSn8qC7P3biZP87AuYz87szNoHGcYLPdIacKve1bRIbEese4I4sP8Tc5j3ZG81XUEK9N3MrR+8T4uPas3YXa/O4lyhRHlCivTWCsaodankpLmUHLivBL/fhTke9i2ehdNOtQ/bsmAHrz6bVYv3kpS9Tg+XjCh3P2cP6AdK5duo3WH+tTv24Bfl23glv7dy9Ru3yu7UyU+ioSqsdRpYnz+ZaVnUyU+qtD29u04xB9fzKf7RR1IbVk7ZJnisGnNbg7syQBg1ZJtNinVsmtjYhKicYe7aNyuHsk1E4Lq3vfOdcz6djFnDyw8S6iF5JqJfLz+RTz5HuKrluz//3ij0uj8eMOhHvIPjcLHF/h4gKKf6IYQswDBme4CBS+h2nQSM4rwV0EF8Bh2eYVghZXzZW3WLXWNo5zuKGIRUsJHHqH61xOOuZAmUSWd4bHCUEMhwZVvvIRutKWYhInQ/p+9sw6Qo0jb+K+qe2R9s9lko8RdSAiSACFIiEBwl+BwBwdBv8OOA+4OOO6Qu8P98MMdggdLCBAIcXe3dZmZ7qrvj+qx3VnNRoB9YDIz3WUtW9P99PM+b8L2RJVUUfYsSpa58e1U3niEAm1rhGc6bvkVPlvjszSWBNdLPSi9veMoCyEElkfu+C2F31Kk2S5SaCKuhYNEAGFXEnZtXC/VoPROCqUlEWWhlIVWElzDvknXyJWEBik0ygYsAbYJu7PsuKeT44o44ZMkTYvvsxi55L0SvaDiRJZ3yGUsoZ/3XXvlNEpLpACfrb36AqW8zIHaKKSipFi0D/DUUTr+dEII0XgVw3YopX7pqKqq4pNPPmHChAkAXH/99YRCodh627b5y1/+QjBYt6fALwmP3tqeVx5sC2iGHVzKqZM2kZXTWHf8FvyWMHxMEX33Kts1ne+E+alfv36MGzeOCy+8kEceeQSAiy66iAkTJiSZnPft25c77riD4447DsdxOPHEE/nxxx959913cV035j+Vl5eH3+9n6dKlPP/88xxxxBHk5+czb948rr76aoYOHcoBB9QdqtSCxmH1tiIOf+ApNHD5qBFcclDDUo83BhGlKI8YQn/qytW4SnH3J1+zuaycG8YdTKv0tEa3eV6/vTmvn6eCaVqCrxjSrCAHtjEkqtaa2+ffyeKyJZzV5QwOKzi0RvmQG+am2Q8Q0Q4bq7YwqfcZTer3zJ57s7R0K71z2tAzO04Cj+s4iF5ZbVlfWVRr3eFtujO8TfcG95Uf3M2Ms7dzfmoocd6CXz7O6H0lpYXl9N+vJ/d8fOMO6WPVEpM9b+vGEoq3lfPdtCV8PWUBZ15wEL37NtwAPYpBe3XlmXeujH0/6cA9mzw2KSUHTIirg5+5/S1euOtdDjxqL/709MUp6/zzd48xd9piJj/zJc/OvatJ/Q4Z3oMjTtmX8tIqRh0RH3/nXu14bPpfmfP9ctKzU8/dHbu35cz/m9DgvjKy04DG/w7sMLQopbYPI0eOJC2tAQc0lcopgQBK4KXqbKNWJVU1wirlMa1lfdSTSStDyiCp+aPlqZIUxIipqIKqOkkVVUTpxLF6JJRI+Kylp2qy4u2jMJnzlAnb0z7Pyyoa2ueF81lhoonsEBGNXa6Qnhm6sgXKl/jukVHCfI4qqaLjEo43JlvgRjROUKMsjbaMHMuJSCK2JGwZVk4KjatlLKzNEgpbOkDUIUrjaqhybITQuFp4/lHCGJITVRVJKkIS1zXrNMa4XPpAS4X2CxzbRlZIcAXCAVkuwIlm7gMHCUIapVRUkRZVkQljMB49Fmjhhfl56iihEUJhyfjZEA/9iyuc4qSVCV8EcC3l7b5oSF5Mb4clNZZUWFLVIGKlF+oXiVi4niRNNYVf+BVOVA3B008/zbvvvhsjpe6//34GDBgQm4MWLFhAu3btuOqqq3blMJsVRVv8FG0xn//+0tIWQqoF9SItA9IynF03gJ0wPz3//PNMmjSJMWPGAHD00Udz//33J5VZuHAhxcXFAKxZs4a3334bgCFDhiSV+/zzzzn44IPx+/18+umn/Pvf/6asrIzOnTtz5JFHcvPNN2OlyOzWgqZj7oZNsdPku1Vraax2VynFUY8/x8rCIv489lBOHjKwRplMv5+zBg/h9bnzuHT4cH5avY4np80AoGfrPMJfbkRrzUX/N55gWrKSZ/KyRdz1/dec3n9PzhtU/1P37UVEOywpWwrA/NKFKUkpW1rk+rPYHCqkTaCmSqCh6JCRwyMHnlxj+aryLZwx9SHCyuGqfuM5s9vuTcTOLFzKM/M+bHzFnXT9tGrVKrZt28aqVatwXZeZM2cC0LNnz19klrvfGkoLTVa6lQua5lV67zUv8Omr3zPq6KH833/OSlnmkr+cwH/+9CqDR/QiMyeNe25/B6U0ruvS4+S+/LR6HdeMHkmXvNykesu2bOOPb0yme+tW3HHsWKwmGLM3Fj99MQ+An79aUGuZdl3ymTttMW07N1396vPbXHbzsTWWl5dU8qdzHmPpvHXse0g/bn3i/Cb3sTOwee027rvmycZX3EnzU2FhIZMmTYpdFx199NHcd999NbIR14bf/e53PProo9x7771cccUVDe53u0ipTZs2sWnTJlS1O+fBgwcD8P777ze8sepsUqIyqhYVVFLZFG0khsylUsbUOQ6vc+GRRLHMb4lhgIltyISygrhqKrF/XaP5JOItVl8mkEMywRdKGaWT0N666Lii/QF22FNBee36Qt4yJx56J/CIL+HphrT3WeAZe3tj8gzSVdRs3TJZ/7Qf8IP0a3x+hd/vxhRJSkUHZAZgWy6WMBnwjKLJiJlMyKTAjZU3mfdcJVFaeuF7FjqBBVQxN3lvhzsCGRZILyMgljaKMR8IW2H5jHoruoej5uFAzHMK4mF5UW8pIQxBFFc0JZcRAqxEhZMGnzQHV2k83ZfpW3kheUpLBALLUthSIYXhGBNPEQVm22Oyu/rkgTWxveF7v2Q8//zzXHnllUnLXnjhBbp3N09un3vuOR544IFfFSmViHMP6Ic/oDlt0gaOmLgN/26QLKQFv3yUFUvuvHQPFv2chtaCfntVcPk/V5PXtnavm9qws+anvLw8nnvuuTrLJGYH7tq1a73Zgjt37swXX3zRLOP7rePJr37ggc++5fyRe3PJoTVVUGP79WJs356sLirmtgnJBrPrikvYVFrOnh1rz/C2aMsWFm8x4amPTfs+JSkFcPPhh3Lz4YbgKaqsomNuNoUVlQQ3RXjjle8AGDSsK4ccmawoeOCn6Swp2sY933+TREpt3VTCgp9XM+KwfrV6smyoLGHymvkc2r43e2Q2jDzySx+/634Bs4vnclSHI1OWsYTFf/a6jnWVm+mVWbcHyrqKIs6f9gR+afPk/ufTOlA3CfKvBR/wzLKvifpghd1dSGp7+GHbQqZvXcAJnUbSLq1mdsL7Fr/N/K2NC+nfmddPf/7zn3n66adj34cOHQrESfAW7Dr8PGUut550D72Hdee2965PmVH0nJtP4JMXvuG8W5M93cpLK1n800r679ejzgxvn776Ha6jmPLmjFpJqVEThjBqwpDY9/0O7M23Xy1i4D5dueXjLwHITQ/y12pz5Bsz5zJn3UbmrNvI+QfsTZ8CE4LrqDBLSqfSNWMfgrWEAYdDET5+60e69Chg4LCutY6/Oi7++2m88fAnHHLifrWWufL+c5lwwaH1hu65jsuNlz7HkgXrufnuUxlUzzimvf8Tf534ILJVTmwbdjXWLtnA2w9+yP7H7M2eo2pmQHzroY/55u0ZjWpzZ4bvnX766axZs4bJkycDRm0+ceJE3nnnnXrrvvnmm0yfPp0OHRqv5msSKTVjxgzOPvts5s+fH7uQE0LEstu4buMvVlOhegRfrfCUSbUxiA09btXL6YQPUS+nqBcTeCeERzRpTZwgAhOSJ6u16amRkjZMe2Vdz4A8gZCKGpBraTykrERyyTJkkXCNOkoo8/KVutihKIkkEBGNVaUQEW3UUxKUT2D5BW5AGLNy7Q3DBjdgXloKEz7oiyu2tGVUTFguwnYRltkpEdfCFkaqlSBwwxIaKVwsabbN1dIomJSIkU1aGwWV1uAqScSVuC5UhS3CYRsdsQxjJjXCUliWBkujbIUSGkfboCRW2OwHBDhSoKSFlhqlTGhdVNnkescq6ndlCCiNTjjLopkdtAZbughhCDON8OporKgaDrATCCqjljKsoFGJgSskUiiUkjFSypwMcS1V9HSQQiEQKGXoKu02Mn7vNxy+t2jRInr37h37HgwGk24M9t13X/7whz+kqvqrQEWpjZQOx16wbVcPpQW/Inzzfi7ffZoT+z72tG1NIqSA3/T81II4Xvl+NpXhCC9/PyslKSWE4D8nHVVj+bbyCo546GkqIw5/m3A4Jw1NTTb1zs+nU24264tLmbj3kAaNKTctyMeTzsNViq3ri3kv19z09d2zc42yZw8cyt+nf8mZ/eNth6vCnHXwHShHsddBfbjt8fNS9nPl9NeZsXU1/1s2g8ljG64BG5E/nBH5dYcxZtrp9M7qUm9b325ZyjovDO+nbSsZ3b72tPGm/BKEgFxfGlf1O5ID8ntxxtR72RYq4769L6Bn1s71VHO14sZZTxJWDhsqt/HXwefWKHNQm0HM39A4Umpnzk///e9/+e9//7tjO2lBk/DFq99Suq2MGR/PYvPqLbTr2rZGmVOvnsCpV9cMBbvuuHtYPHMlh5ywL9c+ckGtfRxwxJ589e5Mho9puOfcLXeejOMohCV4/clVzNuwiYN6dqtRbvyAPnwwdxHd8vPolh8nbP+77HcURdYRkJlc1ue1lH289MSXPP/QZ0gpeO7Ta8nLb1gSgt5Du9a5vQC2z6bfPj3qbWvj+mJ+mr4MgK8+mVcvKTV76iKU0qhtxZz715MZe+oI7vrdY3z5xvdcdu9ZHH7GgQ3ahubEfZc9yY+fzOLDp6fw5tanaqzf67CBvPLgu1DRiEZ3Uvje/PnzmTx5Mt9++y377WdIxscee4wRI0awcOHCJBuE6li7di2XXnopH374IUcemfoBSl1oEil17rnn0rt3b5544gkKCgqabr6WKBOB5B2cqCyqr/na2CtRy+cU4zCqKpG0LPE9mhGPVIQUJHtKJSqliC/TiW1Fl3vMp4yOwyOcYsQXHvHkkWJC1K6iEo7GF8IjsowyyXZM3Wg/ypMpKZ8w5u2CGFmlbdA+keSRFc3kp6XnbxUE/CB8YNlgWeCzXCwvs56KGXUrLOkawoZo6J7wCJ7opgtPFWRC51xlsvQpbeG6VpwB9ELqpPSIvmi4XURiRSSWE1VKmZBG7VcIv0J66q1EVVT0oEiZQENVOyDSU0JJadROWsfrCUG1sD2BFHGPqOj5IL3xao/M0lrG1FdSGGLO1I2PyknwnoqfSC1KqYaiuLgY245PaZs3b05ar5RK8pj6NaKsWPLhS7mMPqEIa9c6BrbgF4pH/9Ked59ujevNq9r7t3v/Km7573LyCiJeCHTj2/4tz08tiOPKMQfyxFffc+aIoY2qVxGJUBUxKp1t5bVfzUsp+eyS2sM3vl6+kg2lZRw7sB92woMLKQTSsmjXKY8XP7sWAMuuGZp5Yp+BnNgnmRCrKA+jvIxUG1bXnkQg15+W9L6z4CiXZWWb6ZbZhsPa9WPKxvn4pc3+bXrVW/f6AUfz8srpTOg4lBFtevHjtmUsKzMZLr/dsmink1ISQZeMdiwuXUOPzNRP48/uNpojW+1FG+5rcLst81MLAI65ZCwr5qymzz49KOjSplF1i7aUAlC4uaTOctc/eC7XP5h63cqVW5jx4woOO7Q/OTnxhAJCCHw+Mx+9fP6pRJTCnyJ0vH/7tnxyec35r9wpBCCsap87s3LMvBQI+vD5du5F5OoVW8jLz6R9p1Ycf+YIFs9fx4ST96m33gmXjqWsuJLuAztx7O9G47qKz16ahlKaKa9N3yWkVI89u/DjJ7PoNjC1anWvQwbwwqJ/k9+mbkV3InaWUmratGnk5OTECCmA4cOHk5OTw9SpU2slpZRSTJw4kf/7v/9jwIC6H3TUhiadccuXL+f111+nZ8+eTeo0iijpV40vqFEm1YKkorVcHOvq6+srRwI3EX0X8eUxNVZ0eWLFxAjGaJ1EYioaducRTzq63lNOKeWtT8h0hye6iaqhosSQ8hnFlL9CY1dogkUu/pKIUVEBbkCi/dIIjByNUBrhaoSjEY6gKt9HKEvGCSkMieX6wQ16SqmoMsqvUT4zFi00IuKRVzZon1EUuUriKInSJmOdlMoz/haEXctksfN2RFSlpBN2rOMphgyhZbychNDosIAyywtX1DhpLlbQwbI1lk+jM8IoNBFtY1ca5ZEMgSUlyjZqKqNIUmgJlqWQlmsILU3SXVU8G59RQkXflTYEk40b83xKNERXWnhElfbIqeQzVghj7G5L453lKEnUYz52amhBRAkijoXjGjP02HgaO+v8hpUInTp1Ys6cObVOmLNmzaJTp6Zl/PilIDNHMebkoiYRBi345UGpas9SmnDcE6PWXAdee7gNNZ8WaQ45fisFnbZTFv8bnp9aEMeYgb0YM7B+MqQ6OuXm8MQZx7NiWxEnDWnaRe+yrds496XXAaiMRJg4bEjKctXJqNte+4z3ZyzghhMO4chhcRfzz9Ys4Z8zv+SkHoM495rxTP9iAZNuOS62Puw6rCjfRs+sNkghuGff45mxdRVD8nbub9FNP7/Kh+tnM6ptX+7d+0z+s8+ZDa67Z6su7NkqrsAanNuFozvuw9ZQKeM77FVHzZqockP4pQ8pmu5zI4Tg/mGXsbmqiA5ptfvT+GUjb3Fa5qcWAF36d+KeKbc0qe7tr1zO9A9nc8gJ9WegrA1XXvUCRUUVzJy5ir/cenzKMkKIJELq3TU/c8fs9ziy02BuGBRXcK0sKeTKL9+na3Yufxj6J6ZvfY4hufFMo1prVq3YQkH7XIJBH8ecPoIefdrTtkNujKDaGXj/jRn8+/Z3aZWXwX/fnMTvrh7X4Lqt2+Vy1X3nxL5bluR3fz+dr9/6gdP+r6biti5EwuahW12hlw3BBXeczhHnH0pB19pJTZ9/O+Yn4p9LSpIJ0EAgQCDQdP+ODRs20LZtTXVg27ZtYwlgUuHOO+/Etm0mTZrU5L6b9Ktw2GGH8fPPPze50+rQdbyaUidWN/HOX9Rez6xPYBqqiVRqZPCLESuGi0rpI1X9mt6NFk7oVMffFF6Gu+hLm++4IB2vT8C1zDrhamREY4U0VpWLCLkI10iitKeGEkrHXqZfjeuXOAGBGzU4j66KEl625yEVJc9EwkZEt1Fiwum83SZQSQbuaI1WhtAxhJsx7Fba81hCxD4bD6louJqBqwRuRKIjMraDtQARNdTyNFYmFlCA4x2P6L6ztBcLiRdSGj0myUddq2qvhGMjRPwgKxWr4RmgG+IsamAuPWZPeSF/SsW3WUe305Ux8/JY+wmEU+wQJZ00Os4aNhDRZqsz6r8FHHHEEfz5z3+mqqqqxrrKykpuvfXWJslJf0koL7H48cuMmokjWvCrQrhK8PvRvThzWD/mTM/gulO6UVUpGn3cp32YzZFdBjGu42DGdRzMkV0GJ61v1SbC8zPm8cGa2Zz4+62x372m4rc8P7WgYXj+u5ns+/cHue6N1CbVB3Tvwhl774nfbtpT/KBt4/PUUdkNvHAvrqjkpW9+prQqxKvfzk5ad//sacwv3MQ/fvqCky86mLuf/z1dehXE1p/79TMc8+lD3D7LeHOk2T4OLOhBpm/nmv4tLzPK4WVlm+spWT9saXH9gBO4a69zaB1oWHgPwPStMzl7+lVc8/NtRNT2+VL5pU3H9PymR2qkQMv81IL6sGTWSk7rezWXHHQrkXDNhzSde7XnxEvH0Lp9bpP7yMwMeu8NmyO01vx7/ieUOlW8vPL7JH/EVxbPYcamtby2ZC4VoU6c3vVf9M+NJ0p49okvufD0h7n0vMdjFjyD9u5GQYdWTR5/U7BmpVGXFhWWU16+/RENx/x+NP/84DoGjuhdf2EP65dv5OT2F3JSwfmsXtg0A/sohBB07NUeuxnVZtXnp+gc1blzZ3JycmKvO+64I2X9W265xcvqXvvrhx9+iI2/OqLnRyrMmDGDf//73/z3v//drjm5SXvr8ccf5+yzz2bOnDkMHDgQny+ZUTz66KNrqVkNUdfoVNA6eVX0b6yx25pQvgYBVb3LxMXRkLtq32PqlmoEVKrfr1hzURVUAgkVfUikwBwFj4iKiYo8f6rod2WDk4YXsqfxl2oCxYpAYQjf1gpESTkqMw23dSZRh23pGIVUNEZMBSzCrWwq2lsoG/wlGuHE23bTwfUnDDxKQtk6ad8IR0DEQtnKI10krgItNbbQHskmibiCsKuxLRdbRHPvxf2ZlI6+vBA+bVRDWnnxdkIjlDEzF65E+SUyaMzChQARVISUa9RKZRYyBNIRUC5xfNoL4VMxJZMtzdgcNzFcL/EEMOF+tu16oYiWCTUUGr90sa1kgkhaOmZkbsL5zH5QnkIsKqczKqro+aOxvHA/pRO7NibsApFAFRvvqkbhN/yk74YbbuDll1+mT58+XHrppfTu3RshBAsWLOD+++/HcRxuuOGGXT3MHYpAukvH7iE2r/PhD7rktm7JxvdrxLqVNsvnpTN0VAnzfkinY/cwWtX605YSJYUWn72eg+vU/myqa99K/EFFsyXv+Q3PTy1oGP716TeUhsK8+fM87jh2TLOSDgAdcrJ574Kz2FZRwV4dG2bE+tXilbg+84BwcPfkOqf3HsKykq2c2mvPpOVaazZsLGZZqUmPuqRkU63ta615bMmnrK8s4vK+48n1pzYh3h7cNuQk3l07k/EdBtdfuBasq9jGpBlPkm4FuG/v88nxp9coM2XTDB5b+jqjC/bl3O7HJK2bXbwAhWJ1xTpKIqW03o4sgTsELfNTC+rBYze9QuHGYgo3FvPZK9MZuwNCw+77z0QWLVrPnnvWnbAgik1VZawpK8WSMCC3U9KcOb5rb15dMocuWbn0ys1PrldZxrJlZl5av7YQ11XYKcKVAb588we+evtHTpo0lt5DujRxy2rHaeeNJBD00atve1o30MeqOpyIw03H38OK+Wu5+cVJ9E3hX7Vi3hpuOfFu2u6Rz9/e/D/8wXhm1cUzllHmZVVc+P1SOvfp2LSN2VGortbxPq9evZrs7OzY4tpUUpdeeimnnnpqnV107dqVWbNmsXHjxhrrNm/eTEFBQYpa8NVXX7Fp0yb22CN+zrquy9VXX82//vUvVqxYUWe/UTSJlJo6dSpff/01H3zwQY11O8LoPNZ2c7TTiAuc2G9Tde4i4T25bfOKKaeiBdzqBeNlkxqKqo2iBumehErrBBJM4Zl6a2TEhYiLC8bAPCuAk2HhBk3InxYgLDAZ9hSuzyLih4hPY4cFWhk1lrIFyta4fo2KklIaXE91pD1KVkTVRrYypFninkgIf3M9RZjyCDXpKa6Mc5SI14pum05QnUXVVNoL8BPaM3/XIF00yrQbvdf2TMmV0Iboc4UJfRSmkNbxHauipvyexil+IBKOrDCyKFfFt854weu46go8EkqjlIXSngV6bDviioVY9j6vX0GUnEzWRNU4CeKHu3H4DV9UFRQUMHXqVC6++GKuu+66pCQMhx9+OA8++GCtE+qvBVXlNmfvN4DsPIfHv5zfZO+fFuy+cCJw63kmo+RPX2Tz0xdZDB5RTiBNN/h4z5qWwbUn9UDVM8GsWxHA5294u/XiNzw/taBhOKhXN96bs5A98nKalZAqqqqkPBKhY1Y23fJa0S2v4YTIft0706Nja7TWnHngkKR1J/YYxIk9apoVP/3iVJ567hu6Dstl2ClDObnrsBplophfspbHlnwGQKf0PM7veWitZcFce6yr3ELrQDZBq2Fqih5ZBVzed2yDytaGqVsWsqbCKBr+Of8N/tj/OLJ9ycTUB+u+pihSyptrp9QgpY7pOIYKt5IeGV12P0IKWuanFtSL0aeM4OcvF+Dz2+xzWOpEC01BOOSwYX0Rnbu0JicnjX326d7gum2CmRzevj8ztq7m8v6jk9YNaF3At6dcXKPON+tXMPGTl8nqZnN+u70ZuX/fWgkpgLsve5pwVYSSbWXc+Wb9Gay3ri/Esixy22bXWxYgKzuNs39/SIPK1oa1Szby4+dzAXjgmme5+qEL6No/OUz669ens37ZJtYv28SyWavou2/chmj4UXtz/OVHolzFyBNqzyK4y1ALKZWdnZ1EStWG/Px88vPz6y03YsQIiouL+e6779h3XxOGOn36dIqLi9l///1T1pk4cSKjRyefe2PHjmXixImce+659fYZRZNIqUmTJjFx4kRuuumm7bvJqx7mVmOlh+qqqUYgpToqRVu62rokQipVGKDAIz+qDbVa+9GsfTE/qSgRAzEP7xjzkNBHlOMRgPaEaEKBr1zjL9b4KzTSAeGzUfk+wl1zqMqziWQKtC2MD1VIY4eNr5RdoVA+cDMk0vI6sAROJoTyNOFchc5wEQFl2KgKC+FIsDT4tXmP6gWlUQ9pLU2omtBGXRR1a0fgaInSYAmFJZ24Gbg26h/jxSRipt4aoxZyPaNvy9a46Y4JYQxJozSyJVLGd5LWIGyNDmq0o9FKeOGE5gBpLbGkwrLM4bcss85Bo1TNUBcpMdn9YvSRYee0Vggt8FkqpvKSaLQQxpRdgyXATfDNqn6SRfMNQoJAMErcefvCtjRaqlgmQq1FoxUKv3Wjzm7dujF58mS2bdvGkiVLAOjZsyd5eTVTRv+akZ7lsPjndAo6Rejc69dt7v5bw7aNFutWJN6ICrJaRZj5dSbd+lWS19bFdWDxrDS69a/EiUgW/JiGUoI27SME0zWfv5GbFDJdG7JyHeb+kIHQmj16h2nTYfs8pX7r81ML6sfdJx7BnceNw06Rhr2p2FhexqHPP0VFJMxTE47n4C7deH7Oz9w17WvO2XMol++b+kI7ijZZGbw9yaRtn718PVPnrGT83n3w1xGasXCxedK8eVYpV95yWI208ivLt1AULmdw7h50Tm9N+2AuW8NlDM3rVu/2vLH2Cx5Z+ibtg615fJ8bsGXtN5PNiUMLBvHJhlnMLFzOZxtnURDM4bI+yRnITug8mpLl5RxWUNNTp00gj0m9Gn6DsrPRMj+1oD4cfvoBHHrKCKQUzUqaX3nhUyxesJ5TzzmA8y45jDlL1nPdf96hR6d87r7qmDoJIykE/xl+MgAbCkt5+cufOXTPnuTn1K64XFC4GaU1xYEIBx47mKFtklVBxdvKWDJrNYNG9MQf8DHs0AFMe38m+4yun4hb8MNSrjz0r1i25MFpf2OPPg1TpG4vOvdpzxHnHcInL3zNop9WcucFj/LQ1L8klTn0tAP5/sOfKejShp5Duyat8wd8XHzvOTtlrE3BzjI679evH+PGjePCCy/kkUceAeCiiy5iwoQJSZ69ffv25Y477uC4446jdevWtG6d7O/n8/lo165dndn6qqNJpNTWrVu58sort1t1kEj6JYqGqLas+vJGoxZCqtY2q5NQtYTnRf2YapBcsTg1ksUvrhe2F82sF1VVpehXeyojZREL/8PF85hSiIiLDDuIygjattBK4vg1TlCgPJm59PqSYdAuKL/A8YFrAzZE0jTap3EyFVaGg0xz8PlcUJoIfpyQFcvQF4stFAohtXlFFVSS2BN3jYkW1LhIIYwqSQuU0RIZUkfHPaWU0ugoKeW1IKWLUsJ4N9lmPFoaRk9F92mU3HNNHW1po6bCe6QfAcICZQuk9IzTVcL+jrKECQdIRElDQRJhZbyvBGHH8kgpsISn0NJx7ZdRYInYdiT+YGmSw/Wqn1AJ+jEU0lMmRH2rGoGWJ30A5OXlxRj+3yI2rAzy8M0defizhbt6KC1oRigFfzyxVw357jfvtyIjSzNsVBkA//pjJw4YV4I/UMnvDunN+pUB2nQM8+fHl3Px6D71KqSiWDI7gxtP68F+o4v5yzMrtn8DWuanFni46pX3mLt+E/88fhyDOyVnb2tOQgpgU3k55ZEwAEsKt3Fwl248N3smRaEq/vvzT0mkVJXjMH3Daoa0aU9OIJjUzrbSCs6752UcV7FhWwm/O3JErX1edtGhtC/IYdiwLtww8w0KQxXcttextAlmsb6ykNO+/jeOdvnL4JMZ12EIr4+6GkcrgpZ5Cqm0YvqWxbRPa0XXzGTT2ZXlxmx2Y1UhIRXZaaRUXiCTfw07l5O//gdbw6V0yahp4rtv6wHs27ppJvS7HC3zUws8vHrPO7x53weccNUEjrvsiKR11Qnm7YXWmtUrTJjviiUmnO7T7xaxubCMzYVlrN5YRLeOrWNl585aTV7rTDp0qvmw9bIH32DJuq1M/mEBT151Sq19nt57CIWhStqkZbDkzUU8+/GbnP/HIxi4tyHFrzrmXtYt38yYU4dz5V2nc9N/f0dVeYi0zPicuGjmSqrKQww+INm3ad2SjShXoVzFxhWbdxopJaXk8v+cQ9GWUqa99xN79K3Zb4ceBfz7q7+kqP0LQC1KqR2B559/nkmTJjFmzBjA2DLdf//9SWUWLlxIcXFxs/bbJFLq+OOP5/PPP6dHj5rxmk1BKq5ZJLJUzcFG19ZECkIper1fm0oqVs6quSzxPbG6cD0uyvUIIg3aNn7cKC9Uy+eF6VmYwpq4sbgLviqjkPJXKOxyF7uoCuFqdLZNRQcfle0lboapJ8JgVwmwwbIFOiCJpEE4D3QAnKBGo3FbO9hZYTLTQ/gthzS/Q8ixKS6XRKSEiCGlhNQIWyEsjWXFDb9t27BnSkuEFghpFFN+bULepIhRTV5oXnwnKS1RMXd4A0t6nk8CpK2RljKm7EoipKes8szPlWvUVSDAywSokciIQDomrE5aYNk66u4UM2fXytsuj3OLqpeiZRIPqkbiaHAjFkIYTygjfzPjjbXpEiPdEgkp4Tmt6yjxBcY7KuG8MdkKDfkltCCaVGM7EtS04DeOcAgW/JjOgH0qWkL4fiXYttGmuDD1pLB5vc0rD+UDmtnT0snIcigplOw7uhjbp8lrG2HtCr9HSDX8hOg3rJzRJ9We4r4FLWgs5q7byPtzFwFw49sf884lZ6Usp7Xm7Z/n06NtHgM7tGtyfwPbtOXvhxzOxvJyzhxoPJVO7NCX5ypmkT99C3//6j9c9djF+AM+rv1mMm8unUef3Hw+Ov68pHZsS2JbEsdVpPnrzs7UoX0uk35/GNM2LeXdacYc/b01szmn5/6E3AiOeaJGSaTStC0tbOLk0murp3HPgnfwCYs3DrouyVD8nG5Hku3LYEBOdzLsZOJsRyNo+XnxgGvYGipljxSkVAta8GvAY9c9h3IUj17zTA1SKhEzpy+loryK/Q9tOhErhOCv957G9G8Wc/SJ+wBwyP7t+X5+Nv07bKKz/wq0czvC7syH7/3M3Xe8i89n8cwrl5LfJtl/KT1gPJLS6skel2b7uGboQUTCDscccyNawyuPfREjpcpLzLxUVlQRG2MiIbV09mouH3MHaPjzM79nxPghsXWjTtyPzWu34Q/6GHZ4zdDmHY0/PXMJqxauT0lKtaBhyMvL47nnnquzjK4eblQNDfWRSkSTSKnevXtz/fXX8/XXXzNo0KAaRueNTQeYarOqL9uee6rtIRNj+zzVAJRHIlW/R0gMyUusqxPC8hwQEfM5sQ/tI+azhADXZ9qSGlxLo4TyvJEETtCHkBDKsXD94AY0bkChhUYEBG4ahMPG/FsqUD6Nk+Gpr6RG+lwCGWHSglUEfS6WcFFK4yqTXc7yObjaQjsS7QhQEm1rhHCRFl7WOc8EV4PrCpRrIaT2wvY803NPkRTbDTrRNyqB+o1l4TOqJjciUY4AV5qQQiVBSM/jCqM881IW6mjqvai2yNWIMKiIMXK3LTdGQgFY0iPSMORa9MGHTiDNUp0HWhvjdr8VQUqB44XZgecnLzTCM2+PLndVQovCEFLSywQYNUEXZvORQqCEjimyVKOz72lE1EupJQXbbxpZuYqB+1bs6mG0oBnxx5N6UFGa+mLzpy+z+enLuK/AG4+l8dgX8xlzShEAa5f5OX9kXxrza9p7zwr+9c6S7RlyElrmpxYAdMnLxWdJIq5iRLfazXxveP1D3pw5H4D3Lz+HbvmtYusc12Xi/15jU1k5j554DD1aJ6sGlhZtZc6WjRzVvS9SSk7tHzf4/n7aEl667iN8G7ZQtHIdnwJjzj6EvQ4bRHHIZG8tCdcMe85OD/LyjRNZs7mY/fo2zIR4QKsO9MkuoChcyUEFvQDomtmWM7oN5otNP5LuK09ZL6wMaeVqhauTrwNa+bM4v3tyqvO/z32b6VuWcNOg49irjhDAn7au5s7ZH3Fo+95c1Gdkg7ahOjLs4E4nw3YGWuanFkTRsWd7Vi9YS+e+tZtdfztlAbdc9iwA510xhpPPH5W0/qE73uGbj+ZyzhVjGX3M0KR15aWVfPnOTxw0YSgZ2WnsOawrew7ratY5xXxQcT0Hn1HMebmrjJih8jVE1hWUlpr5yXFcIuGaGSzvv+RYZixZyz69OzdoO31+m8OOHcbUj+dw6NHxMZ5//QQe+tMr6FA4ZdY1x3Fjt26RUPI4LNvilKuTw3o/fv5rnvv7Wxx3yRiOvfjwWsdTtK2Mf97yJlnZaVx109H46yHXUsGyLboN6FR/wV8YEuen6PdfG5qcfS8zM5MvvviCL774ImmdEKLhpFSiCqmeYk1F7JA1UCkV4yRkwnpZrayndklUSkVJhWjoXkwhFf2e+PLGFbX0iGbY0xZGJRV9JZQXGnxhgb/SKKYQoDP8hDItKgtsKjpApJULXiIBHTWuckQs7lTbOr4tAQdfZpjW2eX4LTe2r0KuTcT1oRFGmaSkIYO0GYSwHKSlsaTGZ3uqKcBxJa4yjVtC4YtmvZNRMioe5BbdY4acMd8UcR8l17VwQjY6Yse2QYYkwhVoSxt/Kw3CU3FpzytKKkNSSS1QFuiAxg4o/D43yZspmuXPEoZIktJTc+n4GOPzb3z8oPFZkBmIELAdwq6Nq+NEl8mop3FcgRs7GRL6jemjDHHmkyrWd7Ss1hpHaO+YCVyrJXyvBU3DpjU+7rmyI4edtI1BwyubL4PaLkRZseStJ/LZsMpP+24hJpy9lezcX3+Gwa0bbN58Mp+tGxr2k51XEOGYczfTuiDuAZXT2uGKf65EacknL7di7veZ1Pfr2qVvBU4E7MZfF6ZGy/zUAiAzGOCH6/7AtopK2ufUnmlpQ3FZ7HNheUUSKfXm3AV8v8ak7b7148955tQTYuu2VJRz2KtPooH3li/i0cOPTWq3zLux0zmZ5Bbk0Lp9K/rsbYyF7xo5nneWLWBUp9TETuc2uXRukwtApVPFrfPupzhSyp/6X0LHtLilxWebvmBJ6VKO73QMrx9S02h4QdlMfHYJH22YwoQOo2usP2WPA8gPZNMpLY+2wZxa9xFAcbiCV1ZNB+C1Vd/XSUo9uXgqPxeu4efCNZzVc3gsXLAFtMxPLYjhibn3sm7ZBjp0r12huWl9UezzhrWFSeuciMvbz04D4OE73qlBSp1/0G0Uby3jmbve58Uf/5a0ztVhXB1mq+unhD3IlhWIoJkjjjtpHzIzA7TrkEv7jq2ojqz0IAcPjkcx3Xf5U3z12nQuu+88Rh4Xt7SY/fUC3nvic8afezBX33kyV995clI7s75aSMW2Mqa+9xOFm0rIK0ieg/oM7crtr11BRWkl+x8xpNZ9FMXL/3qfjSu38L+73qmTlJry0Rx+mGoehI0+ck/2HtGz1rK/OezE8L1dhSaRUsuXL2/ucdSJnbXfk461RxQlrRDVxhINr4uWjy7TySGAQoDr9yK+vBfKhNjhi5eVYUPOJBJcyjIhXFKbcDuFRnuGTMoHlXmSirYaJ0eho4bklsKSCmEpBMb/CEBaOuqehJCK9GCIgB1BaUEoYqO0wHEtwhEjffL7Ish0RbjKRjuW2UZHoC2BFpqIK3GVIagEhoRyXWky0imB33bMLpQKS6hEtyUE0gud07H9ZkmB43rLhYYQyEppyCcv66BA4PqN+km4RgGmwainMPtWSY2Syiz3yDnpKY4E2tvf2lMy6RhxaByhZNIxjpJIUflbwAqTZkU8LymFROBqidIy1paUyhBjWsb6jIYxulrGThuBJmCZm0ZD6Bl/LluaNl0l0Y1WStFi1NkCAEoKfZQU+dhz/8pdPZRmwxO3t+f9Z032kMe+WPCbIKQA/jFpD2Z+3fA0ydf8a1XMXyqKzBzFuNOL+erdHOZ+X39bXfpUcs29axs91rrQMj+1IIqAz66TkAK499QjuenNj+nfoS17dUlWLOy3RycsIXC1ZkzvZCuJ4nAodg23rqykRrujRg/AVYr09AD7H5RswpqflsG5A2pmylNaIavF0y8uW8nCUnM9/P222XTsaEip4kgJTy03Cgpb2pzXrWZ44smdj+LddZ9wTMfUGfFsaTG2/ZCU66oj25fG8Z33YfqWJRzXee86yx7VeRDfbl7OIe17xwgp11Vs2FBM+/a5CclkkuFqxZtrpmILi6M7Dm+yyfOrK3/g58LVXNL7ENqn5zapjR2FlvmpBVEIIejYo32dZY46dT/WrNhMWUkVv78uWRlk2ZJWbbIo3FzKAE8BlYgKjxgv994Tke1rwxldb2NraB2ZuYchZZw4tm2L8UcNrVHHdVUNryvXcXnv0U/QGj58+oskUurePzzJ2iUbmP/dEp6ee3eN9iacfzBL56xm8P69aVVLBr2hB/VNuTwVTpw0jufueIvj/1B3BtC9R/SkTUE2GVlB+gyIz/lry4tpHUgnWMcTsmnvzmDZrFUce+lYMrLTay1XF2Z9OY/3Hv2YIy4YzZ4H717eeDvL6HxXokmkVLNB1PIZkoigOpc1tp9aliUqqpJELqLaK7FuVCnlqWU0yd9jkqjEdqQxIY+F/VnmxNLR9iRom5inlHTBcsGugkCZJlCisByF8llUtPNRvodFVXsHHfCIE1shLaMQQmgsacLrpDQElatMqFvAH6ZNRgVKC0qqAmgkrhaEHBulJX7bRWlDjhjZkdkY6dNYtiGgtDZqKksagsdk4zPhe1JoTy1lPsfmyihZI+IqKTBKK+Vl33MdiQ7ZWGU2MmyUXjJiSDvXj6nrmu9oQ9rFDNkBFdDodI2d6eD3K/y2S1KIpTY/ONEqUpr9Es2CF82eFw3tw3RJut8lL82TzioL7dFSyssgGPPP0hKN5SmoTLZBS0LElZ7fFFhSkREIYQtNyLVj+0cKjaMFWsUJykah5UlfCzwIoek5uBzXAWvXzvTbhXCV4Ll7Cpj7fQYbVpsLkq59K2N/m78FTDh7CysXBincXLeqoVWbCGf/cT3d+9dORA4ZWcLfnl/KM/8sYPNaP2f/cSMdulWxZHY6L/6nLaWFpo/+w8oIVUGgOaN0WuanFjQCuelp3Hf60SnXdc7NYdZVlxJyHLKDySdpj9w8rt1nJN+uX82dI2veBEkpGD1ucI3lteHhJY8zdet0xrcby/qqCg7IH8p+rQfRN7s7+7ceSlGkhAPz40RWhpVOp7SOrK1cR9+s1JmHDml7AIe0PaDBY4hCa82c4pUUBHNpG8wFzPXMjQOPjZX5dP1cbpvzFoe1G8CNg45Jqj+mY3/GdOyftOwvt7/Fl18tYtyYQVx7TWr/nCmbZvHvRW8B0C6tFfu1bvgNaRRbQ2X8ZdbbAPiExZ/3TH1sq6PcqeSehS9gCcmVfU4nzQrUX6kpaJmfWtAICCG45Pqjal333OfXUlpUQU5eZo31f378PF558DNO/sNhKet3yRhMl4yGzVEf/PcL7rvyGfYeM5g27XIo2COfk646Esu2OOvmk/jq9emceHny3/Vehw5g7ZINDDsstedTn7268eAXf25Q/9WxauE6nLBD90HxEOexEw9i7MSDAFizbDM3nfsYOa0zuf2Zi0hP8Krq1CWf5967Kqm955fM4M8zJrNHZis+Gv87fCkSO2xdV8gtJ9yN1lBVVsX5t5/WpLHfc9HDrF20nvnfLuKZJQ80qI7WmidvfJH53y3hsv+cR5f+Oyh0sEUpVROVlZXMmDGDvLw8+vdP/mGrqqri5Zdf5qyzUptW1olEZVJzlo0qlhI+11c2weIoqcsaUB6BJPCypXnLLS9ELLFNG2N27pj10gUZMgn1tHefIRyPJBHGQilGZDkaEdaIiELZAtcyGfZcH7hpLiLoIPxGSWVZCst28dmGELKli21pbMuolbS3MVJqHCU9G2+XSsfCVdLLEKdxFUbplKYICUUkYryllCNxhER4YWfKtXE9ZZbfdrAt1wvDMySM33KNGkp76i0jnTJeVd5xFJhQNi1tHCGNr1TUWMsx0YMqANF5SAvjj6V8Ri0V9e/SQqN8Gp2uzD4RLj7LSTJ5jpqJGz8rkNLFlsbePKwttJZe9kCdcLqYmSDkSMoiPiyhKI/4EYAtFUIqIq5NpWOjtVGm2dIFHfWripJ4FkpbhrCTDhKN33KwpDLZBtFIqVHaEISOJakK1YwZrwstT/paEMWQA8s488rNu3oY241PXm3FS/cnZ3q9+t7VdO4Z3kUj2vl4/dE29RJSABOv2cD4MwrrLJOVo1m9JMiimZlcdscaxp+xDYD7ru8cI6QKOoe44q512z/wamiZn1rQnAjYNgE79WXsJUOGc8mQ4c3Sz3eFM9BoPtn0FZuqFFO3/MyrB9yNX/r4v74X1ChvS5vbBt1MlVtFut20J/a14fU107h34ZukWwFePfB6sn012397zQyKIhW8vvp7/jhgQsqbuEQsWrwRgIWLNtRapl2wFRLz4K5NIDdpnclErLDq6Sfbl0bPrLYsLd3MsNZd6yybiGlbZzN16ywADsjfk1Ft92pw3cagZX5qQXNCSpmSkALY++D+7H1w/5TrGoup7/2IUprvP/wZFTLRF0MPHUivoV05/bpjOf26Y2vUufTesznrphPIapXRLGOIYumsVVx6wE0opbnz/esYMqrmNk7/bC4bVm9jw+ptLPx5NUMP6FVnm3MLzby0uqyICidMjj+tRpm0rCBZeVmUbC2lfY+CGutdx8Wy689SOmz0YNYuWs9eoxv+0GLz6q289E9Dtr/1wGQmPVDzN6E50KKUqoZFixYxZswYVq1ahRCCkSNH8uKLL9K+vZE4FhcXc+655zaOlKqNKKpLIZUirK5WFVUDVFKJy2NEUj1KKQ0xT6moJ1RK5Vf03TWklDDRdYbQ8mOOQLSMp5zSvvg2yTD4KyBQDr4qsMIKISWhPB/lnSROQRiRpjz1j8b2KWwvQ54UGr9HSNmWm7Tb/DJqoikJKx9KW144m0RKjc9TXLmOZULOlAAlED4XIfEURcLLwge2bcL4tGMkP1JqbM8zybI0tqeWcpWhwSBeN7rxEdfCcSxU2EKU29iVEi1A+7QJexTCZOLza6Mqi3j7X5hwQnxAUCPSFFZAkZ4WwWd7Ge88jkt5ii4QWJaLbURbuNrI1GL+ULEDGR9jwDYEVqXjx9UWQcsxCiglPYWZOWgBWxlKS4AltZdRUOIo06/Pcgj6HDJ8hnBytFGbxTMVRvtPVpM1CC1P+lrgYc536Uz/JJO9Dy77RSulho8pZvKLeSz8KZ3oX8aNp3fj0BMKmXj1Rr54OxdfwOXgY4rx76AH6LsaJ/5+M/9eGqB4W93E1KN/ac/LD7Qh+sM0ckIxp122kYzs5MngiDO2MOLwYtIyze/A3O/SiSRwfCPGFlNZDmnNe73aMj+1YIdg9poNvD93IRcduC+tMmresNQFk7XXJBmpDed1PYtpW6eTaefz/vrpDMyp3+dECtnshBRAUdiE5Va5YcIq9UOrM7sfyKZQKYe1G1AvIQXw5xuO5uNP53JEgnpsVuFKHlr8IQcXDOCULgcwIKcLL+5/HVJICjyFFpj9d83MR/i5aCnX9zuNw9rVThj5pMUroy6hwgmT5Wu4BHNwTk8KAnlIIRmY0zxZv1OiZX5qwQ5AYUkFT7/7HWNH9KVft8ZnEU0VmpeIMz3SqXOvdrx532Ry2+TQrmv9mTGzayHMtgelhWUoo26gZGtZyjKjJgxl+qfzyG2dxYC9u9bb5hUDDyLD9jMsv3OMkNq2sYh//eEpWhXkcNm/ziI9K40n597NtvVFdK1mcv78ba/x9J//x1EXj+Wy++smjC67/wLO/sspZLVq+L5p3TGPvQ4bxMIfljLyhP0aXK/RaFFKJePaa69l0KBB/PDDDxQVFXHVVVdxwAEHMGXKFPbYo2GZSJoFDVRK1TheKeqkUlBVr1fbb5RwjWonKWFbgjIrFgYoiIf6hcG1TDY9HPOuo+bkRlwDAaMC8ngjlNBoodFaoYXADRpfJVBIofD7w4BAaUHQH0GjCYd9uErgBiDLcjxFlFHwSAGuFoY40RpbOkQciRASSxrZkaskrqfe8fsctA/CIR9upVH7YIGwDG0rpcma5/cbpZS0TGifoy1M1mONtF0sFD5LYwmXiLJQOurKZLLjpfkhErGM55aGSFCjLY1OU+BTJrQx6gMVjygkJv+yFFbAxfa5SG9srsYQauAZkZtseJZwYz5XEo1tObgqkSFMOP7eSVIZ8RFyrJghulY2aT4HgcJxJFVhH0JolIoQ9DteWCMoZfpUWhjvLUCiiSiJwrsojrnRe/sL8EkXN3oSNBAtT/paEMWe+5ez3+jUFwW/JHz9Xi4Lf0pmR0oKfZx0yWZsH7z477Y898OCXTS6nYOX7mtbLyEFUFVus6E8/rN+6qWLahBSAMF0aN81boL+2F87sGGluUnMauVw8V/WN8Ooa6JlfmpBc0MpxSmP/w+lNZ8tWMaHl5/b4LobKko59oP/ElEur449i27ZeSnLHdhmBAe2GQHAGV2OI2sHkE0NxZldDyHXn0G3jALyA6m9XvZp3Z0XD/xDg9vs17cD/aqlT39q2Wf8VLicmYUrOKHzcGxp0T6t5v6pcEP8WLgYgGlb59VJSgFYQjaKkAJoG8zjv/vdHPuutfFXtUTtN+pNQcv81IIdgXP/8iLrNhfzv49/4tunrmxwPaUU15/3JHN/XMG1/zyFkWNrCbUb1o2/vmLaPeO6Y/EF7CZlrWsO7HlQP2545g+EK8MceGxqf7v8djn848VLGtxm27QsbhyabI7+6YtTmT55JgCHnjKCPQ/qR3ZeZkqi7YtXpqI1fPnqt/WSUgDZeQ337wSwLMnfJ9+YtMx1XSyr/gcCjcFvQSnVqBl96tSp3H777eTn59OzZ0/efvttxo8fz8iRI1m2bFnje6+uQkqlSqqtHLV89l66vrZre8mGj0tLau0/1pb3ipqbS2WIKIEhSZJoQWHC1NygqSNDYIcEviqBr1Ibo28BTqZFKE8SbquwsyL4/YpwxMLvc/DZCq0tXGVhWRD0u/gshRSYED5vzNobpMYopeLqJRLUS8bjybK0Ce0LW+AaaVH0WkAIkLanxvL8q2LtYFRCPkt7ZJTZHSpm8y3j+wGIuBbhsA9dZSMj0vQRAPyeCsrz3MJO+Czjy6RfY/s10sILWdReP/FselpLtLbw2cbnSXrHylVR1jDViUfMf8rQSdLbnxq/7VAeChKK+NBeWKRta2wv66D09rXryeosqfFbLum+CIqoakvGMgGaTsxBUDXG0wDoaq8W/GYx+9sMZn+bjmocr7nb4ciztvLAhwtp2ylE4kn9v/va8toj+RRvszm29wCmfZiF27ho118Efvoqk01r/U2q+7/7CghV1pxDNq3x8YexPTmu9wCO7TWQxbPjN4mlhRbvPN0qSTnVbGiZn1rQAGiteWPWPF6dOQfVgLTX2ivjqMYlPpi5ZR0bK8vYFqrkh81rGlQn25fRZJPv+lDuVFESKa+zTMDycULnA9grryfrKzezorz5w2wBxrTfk4C0Gdt+CHYdaqsMO8ilvY5lRH5/zuiS2h+nOeEql0k/3s/4Kdcxdcvc5m28ZX5qQQMx65uFvHrfh5SX1J9IxnXNvNSAqSwJ5SVVzPpuGa6jmD6lYQ/eMrLTdhgh5URctm4oqrOMEIJRJ+zH4WeOpKyogrnfLkY1cl5uCPYePYic/Cy69u9Ezz271LV7kJoAAQAASURBVFn293efwz7jh+6wsLrqePLGFxgfOI0nb3yheRuuPj/9CueoRimlKisrsavF7z/wwANIKRk1ahQvvNDMByCqhGkgdPXrhATVUkPC+FJ1laSSSlBoxa5JEpYlZuyLkmKxd9twJ44wHkky4rGc0Wx8gA6AsjXK9hRClsS1NKEscG1JwCcIFLvIkMKqlNilEpUnUX7w+4zvk+NKwiEbp9wPQqMiAp2lyfBHcBFYliJouTjC+Bb5BISlpEQHYy5KRt1jjMe1EriubUIDgw4RZSMqvQsUGxQaZVk4tk2FTxkTdGm8kQRQJRQV0ibNb5HmCxOwjbeVzzbeUyHXMqbh2qiyLMtF+V2cHA1SI3yGxZMWMVo4GjZoIuRMf5alsC2VlPY+7FgITDnlnUzaSJwwS5TJIKgtL/QufkATfzzigiyB1xwKQcSVVIR92MJFucL4baGpClloHTV3115mPQOlBWHXoiLiw5aKKseK+WvpaLieMCSi0hCKixkajF8je96CxmPIAeUMGl6xq4ex3bAsmDo5h01rkmPzTr98E2fu0w83IukxsIIRY0t30Qh3LF57pGF+Uqlw2uUbCaTVnBA+fzOXJbNTx+bl5LkcdXbdvlTbg5b5qQX14atlK7n2nQ8BWF1YxEdzlnD04H5cPKpmaISUkqfOPpF3Z8/nsoNHNKqfQzr24NSeexJWLuP3SG1IvrOwsWobF33/D8LK4Z6hl9Evu+4brdUVG7jsxztwteLWgZewV6t+zTqe8R32YnyHhnk3ndB5JCd0HtnkvtZXbuODdT8xqu0AemTVHd5UGCljTvEKAKZtmcf++c2bIatlfmpBfSgvruD6Y+/BdVxWzF/LqlWFtOnQimvvOwt/oOZt9RN/OpVH35zGEQc07m80KzedC/5vPLO+W8ZJ5x/UXMNvEpRSXD7uTpbNW8vv/nIix154SJ3lXcflkpG3smVdIadefSTn/Om4Zh1Pt4GdeXnF/Q0qu9dhg9irFkP3hqCyMsy7b8xgjy757FeP/xXA5y9+g1aaz//3DefddnqT+02FX/v81CilVN++ffnhhx9qLL/vvvs45phjOProhmXSiCIV6VfjJRr+AhqkmIrVIXWdhryS2qWWz4kvldCfrtY3RnXl+MENarRfGQ+qsEa6AqEEMiyQIUOqRNIEkQyNk+tiB42RdyhkGZNsJXDDNrjCqHZ8Lj4ZZ6l9Qhmzby8LnEZQ5frQHhGjvOx8OmEjowSNUnisGkbupQCVyOxpL7wOz8PJVLSkxhLmhQahzTgdJTy1kKntKIETiaqxFNguwlJIy5iJCy+uz3hR6RghJWU0y6D2lF4JFLKIb4P2tkdKY1DuKoGrheczFS0najzN0AnLjS+V2UCB2aayKj/KMdSVZRsPLUuSYKoery+FRkpFwHIIu9JkLNRGGeUqgfLCDZUyPlRaCxqF6CCjrxb8ZjHvhzRWLfYbDvYXjLXL/XzwQh7VHxucPrQ/bsT8fSydk87x/QawYmHgF7+9ACsWBDl5UH/GdxrED583TkqeiHefzsf1lHKV5ZI/jOvJ+M6DeOrv7antiU/xNpuxHQYzruNgThncnzXL/M03lbTMTy1oAFqnpyGFQABfLVrB8q2F3D9lWuyaojqGd+/M344ZQ0FOFmHX4T/zP+OxRV+hqk0Gn69eyukfvMS0dasACFg2dww/grv3P4pM3641pFtbsZkKN4SjXZaXxdVPReEK3l71M5urkkn30kgFrrd9ReHmI+QLw2WE3CY8DdsO3DzrJR5b+jH/99PT9ZbND+RwQfcjGNG6PyfvcXDzDqRlfmpBA+AL+MjMNSG82zaXsnjWaqZOnsXiWatSlm/bOos/nT+Gvfp2BmDyM1/yyHUv1vBcWltSwnmvvc6TM2bElp1w7khufehsuvSsad69MxGuclix0IT1L/xpRWy567h89eFsli9MDvl3XUXJNrN92zYWN9s4KkorKS2sW03a3Hj5+Wk8ev+n3PTHl9jUgG255N/nMuzwwVzyr3ObdyDV56df4RzVKKXUcccdx4svvsjEiRNrrLv//vtRSvHwww83vMEmRCc1tN3qpE/K5QnHs16VVOLyRLIpSusl9KOrfxCAzwh0oqIZKUC73jAEOGkQbqVxcxQEFPgFbsRCao0bEISzBZEsi7StEn+xS7BIE9loUykzqfQboqm8ymdY1LBEhgU6JKgIZ1DhS8MKuviDETICYTL8YQJ2BAtjrp3hD6O0IBQxp0OMCBHEbvCE0ASDESKWIlLhgyobIgKpBTokwdZoy8bFZBQk4CB8RlYUEoqqgE1VwCZgu/gs14T6CYVEewZbGr+l8PlcIhlGCZWebuJHlDZhdzFVmhYeXRwnpOJqeu2NN+F4xKRyhsySEkKunyiJFl2vq500sQyK0cOd0KjSgogS4EJa0EEJw0L5fY4X7iiqtWkCCTUCpSQl4aAhw7yTMuJIwsqKkWdSGhKwsqJxMcktnggtiKL3npW06xymmW03tgtOBEJVEn9A4WtgRNpPX2ZSvLWm31t1wrbngEradggTCYO/cZYlux2+/zyT0iLbZCLdDhxy/DZCleYEmPtDOktmNdS53MxdvQZXkNcmQkWpJJCmsLczKqBlfmpBQzCgfQEf/O5slNYs3riF2ydP4ejB/RoUNvfumlk8suhLAPrmtGNkQfzJ9oWfvkFEKX7ctJYFZ19VWxO7BENa9eL8bkdS7oYYXRD3Yrnm+1eZunkZvbMLePPQi2PL++d05499z6HCqWJU29TeLY3FV5vmcv3Pz9A6kM0L+19Dhr1ziLr2abnMLl6ZZKBeF87oumPCBFvmpxY0BP6gj0em3sr6FZvJyM3grxc+SX6HXHoO6lRv3fXLN/GvS58CwBewOe/Wk2LrLnzjTRZu2cIXK1YwtmdPOubk7LBtaCyC6X5ueOR8Zn69kBMvGR1b/tp/v+apez7E9lk8+/m15HqeTv6AjzvfvoY50xYzbuKBzTKGjau2cPGIPxOuCnP3hzfQZ+/uzdJufWhbYLz70jMCpKXVf+E64qi9GXFU88zJifgteEo1ipS6/vrruf7662td/+CDD/Lggw9u96CailrD9BIL1BGyV4PISqGGSlJY6XifQlerm1A/sXyiiCf6UUlwfeD6FFiuUQkpCcozAvdUN8IF4WiULXB8AtfvyXYcryHLqHqE0niJ9Ax/I7ShQzxmVSmN6wqUt85khTMqI6U8JZA3cK3xlptwPKXwQuIUCOk9uRTxDVIJXx1ink/SCw40qYPNS2sRD20TxgzcqIPAthVSaIRQCOUZiwtD6ngNgUhQTYnEm9Toe3xsUYJJQkI2vug6ESegPBPzVEjcVOHtHIEm4hr2TggTPiggIRww2o/2yAFt9kF0Pwtv/yYFCBulVCRso51Gyj4Sm/kVTlgtaDhWLEyjqkLiCyh2kAVKo7Btk83vDu1Nmw4R/vX24tjcUh/67lWBlJr6rLF+nprFxYf35sGPFu8229xU9B9W4Sk+t28jJu490PuUOCk0vM3vP8vhuD6D6DO0grteX9LgY1YrWuanFjQQ3Vq3AqBHfh7jBvRucL1e2QX4hIVPWnTNbJ20LsP2UxSuIms3TNMpheTULqNTrBEJ/yZjZJthzTqG+SVr0MCWUAlbQyVk2PVn8GoO3DTwZE7cY396ZbXfKf3Vipb5qQUNRG6bbHLbGLLisSk3NKpe6/a5bN1QRK+hXZPWtcvMZOGWLQggO7D7zVEHHDmEA44ckrSsrgcF/fbpQb99mi9b5tqlG6koNR5eS2ev2mmk1PijhtKrT3ta52eSld247K7NisT5CX6Vc9TukSi8GW4ekggpUX1FHf1WJ46qk1ai2ueE8D0d9cZO1Uf1ED+PkBLenZW2MCSSMMbmTo6CHBeZ5mDZGsevcaUAW0IEk/1OgV0lscIudgSCRRZVWKiARgUVWihjAB4EXB3/ba20UWU+KqwAFekO/vQIacEI6YEQuYFK2qaXUxwOsKnE55EpcSbOssB1BVr7AJfMzDB2VhXlVX6qKvxQbiNCEuGAFsLLnGdC4rDMAdBCU6kswo6DZSssqfFZLpZllFoBO+IRORbaNYqoYCBCx5wiLKlRGiLKIqwsHNcm7FhEPDJLCo3leTA5CSRXqhC8aBxlXPWYSFiJGsqL5PrxDybsUaIxIYeWBUFpSDSIh+ylOCUAgcIioiykl/0PwG9r/Lg4rqCoNEik1A/lFpQ3TpogEjzKxK8gjKkFTUdBpypCVZLs3eREWDInQMk2H0MOKGP1kqBH8io6dguTVoeAZ+0yP517hdi0xk9Zcd0/We27hqmskGRk7x7b3FSsWeonPUNRWtxcMrft+ZEVdOxWxerFQTTQoUsV6U2MKGyZn1rQnJi3YRO92rSmrCxEVmYQ25IMatWRKeOuTpnl7cuTLuTtZfM5tkfjfYgqQmH+9upnSAE3nHAY6Z6Z8LrKrVw78zEyfWn8c8hFZNrNe9Ny9z4n8tXGxQxvs/03YB+s+5F/zHuDw9oN5k8DT6qx/pQ9DqTCCdE1sy17ZKQmpJRW/G3usywqXc2fBkykbz3eVw2BLS0G5W5/O9uLlvmpBc2JNWu2kZUVRAYsLClJ9/tIywzy5Mw7KS+pJK8gWQn1+HHH8vq8eQzt0IGsYOPl3g98/S0z167nhtEHx0j9SDjCTUf9ndUL13Hza9fQe1jzkUQAx59zIB32yKNDl/yYSqqpWD5nNdcf/U9aFWRz14c3klGNABoyqh/n3HwCFaWVHHbq/rW289q/3uOVu99h4k0ncuRFqYj+xqNn77q97nYGEuen6PdfG3Z9YEeCyKYpLxLeY9BxZUxUvBO1PzKKm2p1VIpXtcaTyic0rLVp1xWeuEmCssy7TmhKJ6zXnoJJkVDeVmA5SOmZcAsXIV2U5aJ8CiVctA3K0oQzBeE0QcQPOuG/2LYnjjdh4FrEy7pKE45IKkM25WEfVWGLBBrLU/MYRY/WGq2UUfe4IITCb0fw2w7Sp8Ay5VFAJLrRnooruj8d0K5AuQLXlTiuxHEEjgOOK3BcgatAa88nCo3rqbKMd5NCEt83lnCwhIMUrmd6rmNlo3vdeGSB6ya8VNwbyqi2jKpJJS1P/Uo8AUTMdN0zT/fG67rUSm5pvF2iwdVRZZjAjb3wwv68/lwQjbV2SPUH0oLfJIq2+MnJc3aLsPOirRZ3XNwVgC/facUlY3rzh7F9+PyN1nUSUgAHHV3CxGs21ktIARRu8pHbevfY5u1BXoFLaXHzphPeHnz2emsuGdObD55r3WRCCthp81NhYSETJ04kJyeHnJwcJk6cSFFRUZ11zjnnHIQQSa/hw4cnlQmFQlx22WXk5+eTkZHB0UcfzZo1Dcva1oLmxRnPvMyxjz/P3v94kAkXPMT51z4Xy3KV60+vQUgB5ATSmNhvryYppT6bvZR3f5jP29/P58t58WzT07bMY03lZhaUrOLVVV/X6nvVWJRUVnHts+/z7ze/YUz7/uQHm3bDVxqpjHlEfbj+J6pUhA/W/Rjzo0pEjj+DK/oezbGdhtdYF8WGqkK+2Pwz66u28eGGmh6zv2i0XD+1oJnwwgvTOPusRzjh+H9z0M0PMeqfj7K20PgRBdL8NQgpMEkbThw4kB55eY3ub0NJKf/+chpfLF3Bf7/7MbZ89YJ1zPh4FptWbeHZW18hVBlq+kYlQGvNwy99zfX3vk33IXvQrYmkTbgqTFmR8Yj67qNZFG4qZtns1SybtbJGWSklp149gfNuOYlAHWF0L//zbbauK+SVe99t0ph2W9RGgvyKsGtJqQRCKva9oS8S6lZbltiWlhg9mM97twGJCaUSNYrX/jw5oXxM/GQZBRM+wA/a7333J/SV+PKBDpgy2jbvKgBuhoIshT9dYfs0tq2xfRrSNDoTVJZCZ2mcDE1VvqCynUW4jUAHE7dNJ40xGjYX21YbsEAg0MqisiqNotJMNlVkUxRKJ6z8aG0hhfG7El4jQpg6aGPKnRkMk59eQW5GFelZYUTQNfsYgRUSWI7Hxll4bJ0ER4JrocI+nEo/kSof4YiPsGvjKJuw8uFoG1dZgERaYPtcL1OfJt3nkm47+CzjO5Xhd8kMOgR9Cr+tsS0zZltqbEthSc+zC6OcMtn1LJSWXuY+M16N2abU8ZrJZ4OIHXuj7pJeyCAioT1t2owfiHgb0TIiZkQmUdgoLBwtMZSbxNUSpQQiJPGXWvhLGqdwiMYcV489bsFvD3v0rsQX2M5wq2bC2qV+KkoTSRYzqPJiySev5PLlO9mUl6YeqJmDFIccu5WDj91Gdl7tTK3lU3zxdg5rl+6YlMg7C4t/TqNZJMTNCkFlhWDKmzkUb23a2HbW/HT66aczc+ZMJk+ezOTJk5k5c2ZKL8zqGDduHOvXr4+93n///aT1V1xxBW+88Qb/+9//+PrrrykrK2PChAm4bn3BpS2oC8u3FnL7x1/ww+q1AHyzbCV3f/41m0rLaq2zaNMWACpdB4ClqzZTFXaa1P+nq5cy6tXHuPfHr2stM7R7B/Kz0mmTncGQrh1iyw9uuye9MjuhNDy29GO+2jyvSWOojg9+XMgHPy3k1W9n89WC5U1qY8bWZYz57DaO+eIfFIXLOaf7oQzO7cKkPkdiNdFssF2wFWPb7UPXjHaMb18zG+IvGS3XTy1IhYrSSp7+y6t8/NxXAKxZupEn/vJ6kuF3dcycaUgVrUEURygLhVm6eVuT+l+/bCMX7/1Hbjrm74SrwinL5GdmMKxTBwK2xSG94qrKLgM6MXriQUhL8O27M3ji+heaNIbqWLluG0+/OZ2vZizl+Xe/a1IbRZtLOLP7pZzU/kJmfTmP0acfwN6HD2LMxJH0269nk8d25p9OoEOPAk6/7rgmt7E7ovr89Guco3Zp+F4S0bed199Jx6Z6W6pawYSQvZSkVvWQvejnhLpRHymtMBxDdAASYuYniaRbAvehlQnj0xJcS6F8CmwHy3Lw2S6gsaTxhnICeGa3Ap0GjmPhOgoVAOXThhizdHwMidfG0f6ENjo/qRGWQlguQplsb07IosLx1Ftam/41RLzYxJjXkpc5r6LShxuWRJA4Cny+CDodlGUb/6uQd+PpeJ27UQWX2dtaRTP0edIxn1FeaQukUNi2iwLCEZtt5WlIoQn6HNJ8DhYKB4GL9Aig5L9IpaWnuDJklHJlUva7KMHmuiJ2XOpLYBC9oU/2UtGxZUmvBO+HmG9VwmlhxkjKcz1GfGuBFArX7+KmC0RVI2edxA36pctFWtBktOkY5k+PrtwtCKnyEskNp/cg1Yn/wQv5fPBCPjc/uZyMrNrP1xFjyxgxtoyn/t6Okm21E05LZ2fw+Rsuh51Q3BxD3yX48ctMnv7nLvZWqQWfvtqaHgOqyGndxLllJ8xP8+fPZ/LkyXz77bfst5+5aX7ssccYMWIECxcupE+fPrXWDQQCtGuX+olvcXExTzzxBM8++yyjR5uQgOeee47OnTvzySefMHbs2ObfmN8I/vz+J0xftYY3Z8/jy8su5KKX3iSiFBtLy/jH0eNS1vn70WP5x6dfcUjXrsg2EfYa2JmMBpjQpsKTc39gRUkh//l5GpcPPQCZYuLsmJfDp7deBJDko9I6kM2VfU7igu/uM+uaiUzep2cnbL8gIlye3TSVw6g/FXl1zClejasV28LlrKssZEirbjyy78X1V6wDUkj+2O+07Wpjt0XL9VMLUuDNBz/ihTvfBqDP3t3599UvMO+7pXz2ynSen31nyjrXXDOem/70Gvlts8g5sC0ZgQAH9OzSpP6nvDSVJT8uZ8mPy1nw3RIGH9S/RhlbSl486xSU1knzl2VZXPno7/n2nRmUFZUjZfPMT+3b5NCmdRabtpbyzvcLuOS0g0gPNm7+Xb9sI0WbSwBY8P1SBh/Un9veuGa7x3bUxWM46uIx293ObofqN6y/wjlq13pK1UEGpUTi/q9FGVWjC12zuE5cEBWu1CgQJ6REdFGCCEZjiJzabvpi1kzROh6rKR2ww2ZZJF3j5GpEjkN6dpjMYJgoaxZRAldpZLoLrkC7EuWzIcOorFTAMG1CiTjj4USVOIakipFJ3hisoIs/4GBbisoqG+VahMOCiM/CshUZaWH8tkvElca8O6qX8jLBaVdQUp6OtBU+W5GVHqISRcQL0dMhgfC8sgBkyNRXaRp82mTZc4yBe9STy4S/SROuKITJ2BeRhCI+tjg2aYEIAV85fsvF0TKmRDKHSMYOm0IQdi2UMqGBritxXStOQmq8AFxDTikt4uRYjTPEnASJx9Z8Ntn+4svj9WsnpJLbrclJefsocYnEqOp8AvxNU0pFP7dg90SfIRXsd3gxlq1QSvDl27ksn5/ebO1XlktmTMlkn8PKsHZRFNjmdT4+fqUVhZtsqirqfio/8+sMBuxbRk5e3UHyg/YrJe16h5JtNh+9lEdpUU2Cav0qH4//rQCfH0afuI2O3XduevPtRV67ML33LGfRz+nsfmop+PHLDAo3WbRq67Dv+K2NqptqfiopKUkqEwgECGyHyeu0adPIycmJEVIAw4cPJycnh6lTp9ZJSk2ZMoW2bduSm5vLqFGjuO2222jbti0AM2bMIBKJMGZM/GK3Q4cODBw4kKlTp7aQUtuBvgVtmL5qDb3b5OOzJB1ysllZWET31nkUV1Xx2fJl7N95Dwoy4yFsh/XuwWG94/4oEeVQ5YQINiBjnKsUv/vmZbZUlfHoAadwVr+9WFa8jWO6909JSC0v3cqV01+nU0Yu9+x3PH6RPKn2y+nEw/tcTJUbYZ/WjSePUqF7QWu6jQkyv3gDW1TT/h5O6LwfW0IltA3m0C+7Y7OM69eMluunFqRCl37mbyerVQa5bbLZo0975n23lM692uG6iqnv/USHbm3pMahzrE7btjk88uh5se9KKcqLK8hq1bAw3Kf+9CJfvvYtl9x7DiNPHM6nz39Jfsc8+qQwDg9VhvjbqfeybX0RN718Fe26tk1a7w/4eOD7v7Pkp+UMb6ascAG/zWEH9+WZD3/AdR2qwk6jSam++/bkgjtOZ8vabRx5wY7JqPlrQkv2vZ2IhuzbOi/PE2VXUTLJ0choZjoRL2fURUTjQmJZ6vAWaZkwHp1ibIllq0d7RU2kEkgpEW1PEyNjXEubbHs+Fw1UVdq4TlTNo/H5XYK+CI5UhIUFUqGzXbRjnJMQAu1ayUZZQidkiKvGpmqFdgWRsMSVwlP+aLDMBioXqqpsHFtgWQqf5aI1uE784ktI0752BREtqaiy0QJsO4yd4aD9Fk6ljYoSTxKEIxBhgbYk2tZm/7gCQhI3LHADAteWOD4LYRmvKiUkkbAPp8pGVVi4VZKyNB/C9sbskUyOMl5QCLxMfgLXMf5UWouEJ14ecaQESggcN36DXNt5J4hXj5JMhsyqGfOa+GAtdpw95jN6fet69WXCsGr06a2zLBc7LYzWCjfcyLCQxL+DX+GE9WtAqzYR7nl7MbY3+370UqtmJaQAcvJc9h1dhtyFAdo3nt6NlYsaZvq7//iSegkpgL0PKWfvQ8r540ndUxJSAGuWpPHKkjTOuHLDL46QAli7NMiin+sx2tqF+OHzXH74HO59ezE5rbZ/furcuXNSkZtvvplbbrmlyePbsGFDjEhKRNu2bdmwYUOt9caPH89JJ51Ely5dWL58OTfddBOHHnooM2bMIBAIsGHDBvx+P61atUqqV1BQUGe7vzZUhCOc/fDLrC8u5dHzjqN/x4IaZdYVlfDN0pWM7teTVun1zwE3HD6KU/caTOdWOVhS8tYFZ7KuuIQe+Xmc99YbfLFiBT3z8vjorHNS1l9fuZErfroVheYPPc/m4LbGE0lrnTI71MvLZzJl/RIA/vzjBzx84MmM7VI7mfTOqjnMK9rAvKINzC/cwJ6taxI8Pmnx8YYfyfIF6ZvdOUUrqTGr8AMKI2sZ3vo0Alby3/09+57Ee2tmM65j443ZATJ9Qa7ud1ST6v4m0XL99KvAf656lk//N42L7zyNcRNH1lhfWV7FFy9Po9/wXnTp16ne9g44em+emX8PGdlpZOZmcOk/T+foCw6hU88C3nz4Ex67+VUs2+KZmXfQul1uyjZO6XARRZuKOfiU/bnxxSsBYv5z1eeoSDjCC7e/DsA/z32Al9c/zuNz7q11fAumL+Hbd2YARlV16rXH1iiTlpvJ/FXFqCkLOHjsoHq3OYpZUxfx9Ts/cuQ5o+jSJ1nBfcGE4eRmptG7c1vysht/DSuE4ORrjm50vd8sEucn+FXOUb8MpZTHQ6QQs9Soqj0iSIY0VpUXdSYw6p0EjkJ5xklR8sGLTkPbCY2JBH4nYaxak6yuEgllo4t0jCcy1TVgvMwNKZUFqpVGZCjPkNsiHLHQCtLSw6T5HBwliLjCZKmzNa4tPfNxCRFpCB7hbZAmTrJF1VEJsWPC2y6tLZRWRlElDVFj2pC4WmBLhW1DOCJQnscTnoG4jnkiASi0kCaDnA+k36UKiXIwpJMrkBEvE56l0N6kK1yBcMxyZRuneNc1Cqv0YBhbKkpCfiLlfkRE4PgVVX4NriYgXXyWi8AQUmHXhBgKPPNwZeEq4xOVmF0vSmIJqb19IOsMaxIJlWJeUiJKKtU8YasrohLJrMQTRKTQSZHQQvSTkALL1oSFQDUyGqHlSd/uj16DKwhXCexMc4CGjizhz08swzs5AfMXFzt/tDaZLatNeFoJijZbfP5mHqOOKaJws81bj+dTXmrTY0AFkTAEGp/ApQY2rfHx0gNt2LqhOgmkGXPqNvY7rAwr4Zdk01ofL93fhi3rG+7r9NQd7djroDKOu3Az2a3qJ6fOvnY9P31ZxhuPtqGsJPXP2Gdv5LJsbpD8DmFOuXQzbTo0zW9mZ0JrWDo3iJncd30ekrrw+F/bk98lG1hWb9koUs1Pq1evJjs7O1amNpXULbfcwq233lpn+99//71pO8UEXxtBEcUpp5wS+zxw4ED23ntvunTpwnvvvcfxxx9fa7362v2lYcH6zUxdspLj9hpAq4yahNKSDVuYt24TAK9/P7cGKaW15uj7n6E8HOGl72bx6sVnJK0POw7vL15M+6xM9utkyBshBD3y4+a+6X4fPdu0BuJ66LrC4n4qnIfy5sdvt/7IwW2HM3XLbG6f9zQDcrpxx+CLkQkeSkNad4wJqIe37VrvPjmic3/eXzOXTum59MutScIB/HXui6yu2MyMwiU8P+KP9bYJsDW0io82/AsAnwiyf5szk9Z3yWzNJX0PblBbUVS5IdZWbqJbRsekbf6tYUHxWi776qFG1Wm5ftr9UbipmE+e+5K9D9+TboP2SFnmo+e/wQk7vPXoZylJqRuPuJ3ZX83HF7B5q/gZfP74tYrWmp8+m0Px5hJGnTwC6T3ZK9gjP1bGsiTd+nvEdPTeRqT+3QEIhyMUbSoGYOZncwBYv3wTVxx4E9KS/Gfq32jTqXWsvO2zScsKUllaRY8h3erdJ3327cmQQwdSuKGIkSek9nl7/vEveOdl4/00ZJ9uDc6U97fzHqW0sJzl89byz7euTlqXEfRz9rh9GtROFEopls1bR6cebQk2Mdz614Dy4nIuH3ljo+q0KKV2MKqTfrXes1cvl4DYQdEmOsvjV+KiKVcjNegISNdTTnlllEcsCaURCrQUuH6B8olYhjxtATL+XYAJVfN+67UnJIp5T0VVV1HFlRc6Fx2TluD4Fa5foywFEWFURVHiTUNlKEikwgJbozw1kM/nkpEewrYU5ZUBnEiUCfOYr+gVFpgwuWqEn44qqizzWdoay1JxJY8jcMISFfET9rn4/A625eBoyzMDNyqlKAGjtSActpCWMKbflibgj5AWDKMcSVWFH9f2IaosZEggQgJtaaOWih6vkDAEkq1xHEGFCpCWHiIYiOBWGWN0WW7hhAXl5TaVARfb72L5XQTaEFBKxMIUtRZoBa6Dd3ANmZf0O+F5UdX5t1ytfHTHJnqKRTPsmRBfs7BGm9GLG+/Ejqvx4iWjBujgBSV6UispwZcRRriNVHq0eCLs1kjPdLn5yRXYCXxNmw4ubTqUNqm9v1+6B6dfvpFhB5dx+l79KC+1ad0uwvUPrWo2ldS//9iJH6Zk11g+cL8y9h9b04j4P9d24vvPapavCwt+zOS6B1Y3iJACGLB3Jf+8rEuthBTA+hVB1q8IcvOTy38RhBTAD1OyeP6e3dNPqjrmfp+J810jw4pSzE/Z2dlJpFRtuPTSSzn11FPrLNO1a1dmzZrFxo0ba6zbvHkzBQWpCYVUaN++PV26dGHx4sUAtGvXjnA4TGFhYZJaatOmTey/f+3pqX9JUEpz2sMvEnJcXvl+Nh9cdW6NMgM6FTCoQwFzVm3kzSmzuezw/cnJiLPfFeEI5WHzu7W5rJyvlq7g6jc/YO/OHbnyoP054ckXKEt3EMDHZ59L94R9qbVm1ZYi9sjPjd3g3Tv+CKYsX86IzrWrjw5vN5KvtnxHaaScs7ueBMDULbOJaIeZRYspiVSQ64/fhPXLLeDbo6+kLBKiS1b9ma56Zrdh8thL6izTN6sTqys20zerfuVFFBl2K9KsHCrdYtoGu9dfoR5orblm5t2srFjPCZ1Gc063Y7a7zSjmFK1kcek6xncYRtDa/W8mv9o8n8JwReMqtVw/7fa49aR7mDd1IU/c+D/eKX4an7/mNcDRvx/N6w98zPIV25jx1UKGjUwO2V4132RMjYQdtqwt4sYT/4W0JX97eRLXH/UP1s5fDUBVeYjx5x+aVHfj2kLy2mTF+j32d4fRvms+7bq0SZlRD8Dv9zH+gsP47v0f+d1dZwMw+8v5bNtQBMC8aYsYddKIWHkhBK9ueoJV89fSY8+u9e6TYHqAf35yc51levU11xUFHXJJz2z408qegzvz0xcL6LVnlwbXqQuP/fVN3nziS3oO7MR972+/f1QUm1Zt4es3v+fAY/ehbQKBuLtiyU8rWDF7deMq7URPqcLCQiZNmsTbbxsvtaOPPpr77ruP3NzcOuvNnz+fa6+9li+++AKlFAMGDODll19mjz1SE8jVsevD9xrygDGFQqqGXsUjpaKkkBUBK6KTnnrYYUNSIQVKGa8kFDGiyvV74VmeR5LyJRh945FeKj6GGKkWVVBFBUsJ4Xoieg55LxXQqAzQmQrh02gvW52IkkYIlFQ4wgIHtCsQEoLBEJnBCBVhP2HHZ0L3Ep+kRxkzYfpP2FVm7ELEyCphgWUrhJdFznE84klZaKmwbI0UGA8nnXhnG2W6tLeN5nvUZ8nndxFSU6ksHNdCVFmgBcIRJkxQYOLXEshDLIyyytYIW5Pmd9lWGkSFbWREGrLQNsonpTVKuEgtTJY6N8HAXBjiR7lRthGEZcYpEgk6AbXLpHTKVVGVVPwpSPVCIsWy6ut1tffkfmUCORXTakmB8Ddu0ml50rd7ov8+5Zx51QZyWjvN+jty4Z/WYnkE1z9eXUJVuYW0iCdg2E6sXe6naGtqU6r5P6bz+0N7kZahuPDm9fTdq4INq/wUbWmaidVL97Xh/D+tJyu3YcTUyZdu5PG/daC8uO6fsfuu78izdxUgBOx7eAkn/X4TGdm73x+HUjD723Skpcw89ivE9sxP+fn55OfXf7E5YsQIiouL+e6779h3330BmD59OsXFxY0ij7Zu3crq1atp395czA8bNgyfz8fHH3/MySefDMD69euZM2cO//jHPxq3MbspTIi6OTAbS0oJRxye+XgGWekBTh61J0IILCk5rHcPFizaiLRr/u5lBPyct/8wPp6/mFuPHs2bcxdQVFnFJ4uWsldBe0JhB9LN76m/GnM+/vYnWbuthIGdC3jxitMByA4EOLpv3zrH7ZM2dwy+NmnZSZ0PpTBcwuDcnmytquTZpd9zVo/h5PiN+qt1MIPWweYLk71xwKmc32Ms7YKt6i/sIWhlcWHPpwm7FWT6WtdfoR5oNBurjM/b2spN291eFCWRCv7ww8M4WrG+qpBLeh3RbG3vKBzVcW9mrFnAjEbUabl+2v1RUVoJgHIVm9dsZe78DaxZtZWTJx5ARqZ5SLL/kXvxxrPfmgopjuNlD1zI49c9x/gLRjN72iLWLTd/K9+88yNrl8YfaAQzkh+63H3ja3zyxgwCaT5e/fYmbJ+NZUn2P2JoveO+6tHfJ30/8Ph9+fHT2UhLMvigvjxz6yuMPGE/ug00N+/+gJ+eDVBJNRRjj9mLvYb3IDsnHX8KIq82/PWFS9m0ZhvtujQP0bN22WYA1q/c0iztRXHLSfew5KcVfPL8Vzw4/fZmbXtHoP/+vTn0jAOZ8vxbDa6zM5VSp59+OmvWrGHy5MkAXHTRRUycOJF33nmn1jpLly7lwAMP5Pzzz+fWW28lJyeH+fPnEww2nATd9aRUUxCNcklUB3nLUXEfKWUlEFauxpUay9FYFS6WAmULtC1MYrqwwqoCGZJon/EeUj6PmPKJJGIqETKika5RWqEBCco2bSspjDIpYZkT8chOS6B9HpMWkSYjnzdWHIl2vEOjzIVGSSSNUMhGSI0bNuFxxEyqEveB8gzYdVy+lagmEwqf7RiVFEZdZEkXbYFyBCoiqSzx4ws6CFth+yIeaSWS3Li1FzroaoFWEmUBWpMWCJOXWUZGoIpifwbh4iDClQgvpA8Xo5gSZttQgF+B0LgRi5LygGnc0mhLI1yBrBIoR6JDgkipTcSnTMbBqHJNYgg37WX2i5q0W6B9CmkpQ5zJKEGYinnytivxDz66a3WCBxeJ5RLD9xKWV5soouqyuLCtJvmVnJXPhIMIoRDVT7j6kNh/y0XVboOr7l5N556hZm+3dbu4p0+n7hGgeT2UnvlHO5bMTn3j5kYkyxekc9Q5W+i/t3ki/fQ/2rF4VtNu9M64alODCSmAF+5tVy8hBbBto59tG82T/bveWEJ65u75hzF/Rjov3Zc689uvBjthfurXrx/jxo3jwgsv5JFHHgHMBdWECROSTM779u3LHXfcwXHHHUdZWRm33HILJ5xwAu3bt2fFihXccMMN5Ofnc9xxxwGQk5PD+eefz9VXX03r1q3Jy8vjmmuuYdCgQbFsfL90CCH458lH8NiX33HeyL1559t5PPjOVAB6dshnWG+jAjr38H3oWtCKbgV5SSqpKP5v3EH837iDAMjJSGP51kKGd+nEyfsOYvH6LZTqMH84dASdcpKVBesKjen94vWGWHno42955ssZTBjWnxuPPaRR29Ilox23DTY3goPe/CuOVryzahYfjb28Ue00FFJIOqQ1nljyyzT8Mh4mqbWmwq0kw268R4sUklsH/oEfC+cxvv2Bja5fG2xhEbD8OE4VWXbDfAJ3Ndql5fKPvc7iES5reKWddP20YsUK/vrXv/LZZ5+xYcMGOnTowJlnnsmNN96I37/7q9B2Jf780lXcfdEjDDigL660+Oet5qbeti0mXjgKgIH7dufOF36P6yiGHti7RhujThoRUyaVFpWz39jBWLbFuLMOomxbGfOnL2bcuaMYdcLwpHqzf1gOQKgyQlFhOatXbuP2G1+lQ6c87n383FioX0OQnpXGdc9cCsAFg65i5dzVPP+3V3m/6gWsHZSdpk0tSq66YNkW7bu2SVpWXlpJMD2AZTX+4dmlt5/M5Bensc+hNTMIbg+iBvINNZLf1fD5fVz+4EX8+fn/a3il6veXO2iOamoG4xtvvJEjjjgi6SFd9+6NUwDv2sexogmv6tVF8mrpkTvS9ZQtwjgRCAWWazydpOsVtoxHkoxohKvRUsSXCaNUIcF7SirDfcReSmNH4m1KN8pcCoQWRpgUZTa1MAbrPoFKF+gMbVRCjkQo6fklRBUyxOMLtQQpkX4zXsexDWFVS+Y4YWO8k4iPW3hSIWFpE/5mG4WURiAlaCRaSXBNf9JTLVmW51+FMIbqCf3F1UNGcSYE+H2KgKXwW8ooukI+RJVERrfPU0YZ1RZGHeVXRs3khfVJS+OEfRCRxiQ9pgATZn/EnOijsZFRZkoQi5NEmv9tsy+ljKvHasR8J51XCcdA1PU99YkZJ6RSrI/ur4TjEetVxI9V8oASPbwaBqGTXy3YPfC/+9pQVvLLUr+sWhxg+YIg9f3yvfdsHicP6scpg/sx/ZOsBrXdpkOYSXeupm2nUKz9iw7pzTP/LKCqgREXD3+6kInXrMcfaLjZ9sR9+vPKg/mEqhpcZaeh16AK9h1dVPPJx68IO2t+ev755xk0aBBjxoxhzJgxDB48mGeffTapzMKFCykuLgZM2uzZs2dzzDHH0Lt3b84++2x69+7NtGnTyMqKn9P33nsvxx57LCeffDIHHHAA6enpvPPOOzvsJmJXYNW6Qiq3hvAri67t8pBCEPTbtG8d3w+2JTl8aG96dqj/6Xn/dm05tc8AFs/fxIoNhdx56ngePO0Y+qRQvV027gA6tMrm+uMOBuCxz76jtCrM/76ZuV3bFFV/Vbm7fxjvE8uf5aIZl/Psiv81qX7/nO6c2XUCrQO5zTamdDvAsyOu5D/DLuKMrqOard3dDTtrflqwYAFKKR555BHmzp3Lvffey8MPP8wNN9yw4zr9lWD92kJKRQBfq2xy8zLIyjEkadceycktBg/vmZKQqo6s3AxOvuE4Kgpa8eVXCzn7zyfw9/euY+Sx+9W4X7ji1uNot0drxp60D/ltc3jsPx9TXFTJ/Dlr+fG75U3eplC5eWCplEKr3fvC/bNXp3NSr6uZNOYOXKeRiU6Ath1bcdY1R9Bvr67NOq5bXr2K2965lltevapZ292dUH1+2lFzVH0ZjFNBKcV7771H7969GTt2LG3btmW//fbjzTffbFTfv0ylFBBTS3nQFmg/CBessMdZaOJZ9vyCSLpRNllhiXS18Y+yBUJLZASkk6CEgZjqSgFaGk8gZZkXEoQr0FIjlEB49WVE4wt5YYNR/kSYutqGqkwJEU2VJdG5rlHfVL8HiRqYe9uJAlXmI1RumzYT9kEsjhBAaoR0kT6jGFKRxAtlr5zQSKkMKaVAeUopfAoVFogyC1Hkx82WpLUpJ5hRRVF5GuGwn0SzcDNGw6Q4WiCEoEwJhNZkZIRom1XGZg1lVpBIpQ1eRj4RARk2pJS2wbJd/BkR0BAO2VRW+NEuCMe8Yi5WEUP6aSnQUiAB5dOQ5powQhXfB1jKG6dGSBX7y01UMcVNpOs+t6JqqWSbgRREUeK5mKrNaHZEj4+L9l+jbELTQugkdVaDoLQnuyL+3oJdjjOu3ERm9i+LbHjj8XxWLqz/qbhyJcVbG/d0d9zp21g+L41Na+Ly+IpSm1MnbcTfQJuizBzFi/8uwIk0nOyLhCUnXdK8svHmwsKZGXz3Se6uHsaOxU6an/Ly8njuuefqLKMTJt+0tDQ+/PDDetsNBoPcd9993Hfffds9xt0Vj3z4LWHH5ZnPZ/D0Fafw/u0X4LMtWmU2TSGjlOa2lz7FVcbN8eE/nMA1T7/LJ7OWcP3xh3DKAXvGyl44el8uHL1v7Pt+PTrz1cIV9OuYfMMZUS5///ljSiJV/GnI2FhIXm14dP8zeH3lT0zq3zi1VSq8svp/fL/tW07b40yGtmqe9OqJmF08F4BZ3jvAU0u+4ekl07ik78Gc3LXxfWqt+XjdArL9QYa36dakcRUEcykI5jap7i8GO2l+GjduHOPGjYt97969OwsXLuShhx7irrvu2mH9/hrw1n+/Zu2KLbz04KececVYnnnjMspKqyhon9vkNp96Ygozf1zJzB9XMP7IIbz9yvc8cNdkDhrdnxtvOyFWbsjwHjw1OW72fei4QSxZuIFgmo/+g5O95N599BOmf/AT59x8Ej2GdK2z/7um3MIT1z3PoacdiO3bvtvyL16ZxkNX/ZcxZ43ivNtO3662UmHWN4vQWrNszhrKSyrJzstkxqyV3PHvD9h7zy5ce9m4JiX+mD9vLevWFnHwIf2w7MY/wE3LDLLP2D3rL/hLRuL8FP0OlJSUJBULBAK1JoxpCJqSwXjTpk2UlZXx97//nb/97W/ceeedTJ48meOPP57PP/+cUaMa9jBj91ZK1VYnxVdDPoFUAuES85eKbaE0mpOoykl7oXtYRo0jVJyFiApzkAJtiVhdhNeP5WlaXGJKlpgqKvrZKx/VughMCJ8OCtxsTyklhVFKJZZKqeRJZKjiypu4QsirLTXS56mCdEJZr5jlU/gshSV1gkG3Ka9cCx22ECGJtsDOcMgIhqlyfDgRO4koi6qGRMKQjWJKkxOswpaaspCfyrDPMHhRRZMG6Zr9rX1AQOFLc7CkMS1XrjSTWcQyflJRdZV3XKOdGfWUANtTm0U3MDoWTxklpY6puMxJEld41XpuxfZpYrn6TtS6TtyEtoQnvEsinqLv8RXblchJV3vtINx2223sv//+pKen12t81wI4f2Qfnr2rgEh4V4+k4Rh9YiFZuRGa+0Rq2zHMqKMLOeSEbTXaP6bnIN5/rhUNFTSc+PvNSNlwsi9UKRjfeRBHdhnECf0HMH9GGmo34ApdB159ON9Tuf6KsZPmpxY0HeeN3oeC3ExOHzUEgLa5mTFC6utVK3l38UK01izZtJVb3/qUqUtW1tmelILDh/bGkoLRQ3qhtebT2UtRWvPZ7CV11n3oguOY/Y8rePmK5Ax+321eybNLv+etVbN5a9XserfpgIIe3L3viXTJbHh43ZaqUh5fPIUtVfEkFEorPtk4maJIIVM2fdbgthqDC7ufw4jW+3B+t4mxZU8tmcrmUBnPLP22SW2+v3Yul3/3Mud+/QxzC9c111B/fUgxP5WUlCS9QqHmD8MHKC4uJi+vftP93zomnLk/bTrkcvwFo7AsSUZmMEZIrVixhffenUlFRYiyihD//t8XvPrpzKQHEKkw6pB+SCkYdYgJKftmygK01kz13mvDiWeM4MPpN/H2F9eTnh4nAcJVYe677Emmv/cTz9/+Rr3bVLBHG2544QqGH9VwwtmJOLz+nw9Y8P3SpOVvPzCZrWu38fJdbze4rcbg1CvGc9jJ+zHprjPI9jL4vf/JbDZtKeX9T+dQUtp4GfqmTSVc/odnuONvb/HGa98395B/Pag+P3mnZufOncnJyYm97rjjjpTVb7nlFs8apvbXDz/8ANDoDMbKu5A+5phjuPLKKxkyZAjXXXcdEyZM4OGHH27wJu4WSqmkP/lEBYuoeYuf5BdNchSb8tRSFiKeHU96y22jshGemie6HCk8dZVEhvEUU14ongKrSqP84AQEbhBcv3nXlpHTKGlC8oRrCBcZMkoty3sXrjahfY5R+/hKFL50cNIEOqhQtkQrZcaFSMrwlrS9UfmO9kiLWCq3hP2gBW6VRPi8nSNdE5IHoLXJrqf8SFuZTHn+CAIIOxJpSYRPGUKqXBLZEmCLhrTMEL6gQwQb5Uovw53niaSEt48N+eO6kvUlWdieiXp6WhjXH8HNlvhtF7SgfGs6utBnVEABlzR/mIxgmJKqIE7YwnUkSC8/nhKxKD2pNFZYoPwaN1tBUCF8RmmmvQx5Qmr8fgfbdk1IYkKGPKWEUVRpUpxUqU9E7VXWNTyoqn9PUGLVKKk9YlTHS2piCqhEBVat6qlGQBAThjUy8K9xCIfDnHTSSYwYMYInnnhiB/b064ByJcdeuCkp697ujk9eyaW0yKa5z6QRY4vo3DPMf65rT2lR8g7x+TXjzygEkv8masMrD+ejVGPGJ1CuQLnQc2A5fYZWNrivHYnVSwJ8+1EOO/avdtdjZ81PLWgatpZXIFvZ3HPx0Qxsl5ypcM6mjUx861UAIoeP562v5/Ld8jW8N2sB3930hzrb/fs5R3DjqYfx+HczeHXWXG4+eTSf/LyY340ZXmc9SH1x3C+3gPZp2ZQ5IfZr06URW9hwnPjVfyiJVPLc8m+YMsak7pZCMqHDMXy39VtGtxtbo85HC5bwzpz5nDd8GEM7dWhSvwNz+jEwp1/Ssov7jOKZpdM4ulMahaFFtArUH5aUCL80T+8EYMtfT6hpcyPV/NS5WtbHm2++mVtuuaVZ+126dCn33Xcfd999d7O2+2uDE3HYvHwjv7t2PAccNSxpnesqJl36DOXlIebPX0urPq15frKxuR/SuyM9O7dJ1SQARx0zjCMmDOWD137g2Yc+4/TzRuLzWRw0ekC9qp9U630BH/uMHcIPH89i+IRhKWptP24+4V5++HgWAC+uuD+W+e/Eq49i28YiDp9YU5myeNMWHpjyLSN7deOEoQOa1G+7Lvlcc985ScuOHT+ERcs20T4zyIJvF7PfmMGNalNKgZQCpTQ+f8v8VBsS56fod4DVq1cnZTCuTSW1IzMY5+fnY9s2/fsne4X169ePr7/+us4+E7FLSamkh6W1/N3XEl1Vs5xHVGkF2vXajpI7UbVULAZTGI9tb7lUhrRA6xjfZcL3DKmgMcSLFoaoUDJKHgmUpQ0p43p9q3jon/bkMaZpQ+Q4aQInA3S6G+9Dx4aXgoxK8T26UxLIOby2iHNQccNvdKyu9lgRKZRHu2hUNJNdWCDD2pB4PvD5HcKONEoC5e2VWkidaLvRUDeljFG3xkIIhWUpIlU2ImzKuQEX23ZJ94epjNiEIxLlYOp4ajeEMTvXSiMcI5lSlgbbuMoL6cYPvDChgJbtGv5OxckdpQxhFt1nDb0Z0spUSFSVRRFXOEUPgE5arr2TT2NCOXWt/YrYk5hkk/Vovw0cbGzQCZV2YLrQW2+9FYD//ve/O6yPXxtO7DeI6x9cwahjSnYpAdJQTLpzHYOGV/CPSXugG0X81I42HcOcdvkmtIYRY8uY/EK+IaI9hCotxnUcTCBN8Z/3FtOlT6jOffXu8jnccnZXpn+aTWNpjplfZzG+02A696ziX+8sISNb7bLj0r5LmG79K1k+L41fNV3TknJ9t8bNH3/G5IWLeWian38dfwTvLl7IOYOHMrBtAQHbjl1ypNk+Bndux3fL1zCwY01z/rLKENc++A6VYYd/XHIU+TkZvPDTzzw4dToA75x3Jsfu27SbIoC8QAafHzEJjcYSO0bwH3JN0oiQSk4ecVSH4ziqw3Ep61z/zkeUhkJsKC3jlXNPa7axnNZtX3pmTGFxyQt8tOYZTuz2EZZseHjG4R368fSBZ5Nh++mTk/qmogWknJ8aesMHRokQvTaqDd9//z177x1XxKxbt45x48Zx0kknccEFF2zH4H/9+OC/X/LANSYs+5aXr2DaFwvZ64DejDrShG35/Tbl5SGCAR99u7RFCMjNTKNNCvPru1+cwrS5K7hh4mj26tOJRXPXcv9tJrNYVnYaf/tX00PfhBD87e0/4joulr1jSJbSwvLY51BFXL034qi9GVGL4uq+z6fx0bwlfDhvMRMG9iGwnaGCUQzq14kLDxvE7ec/yqxHP+eeD66l/349G1w/Pz+LR544n40bS9hn38YZY/+mUP2m0PucnZ2dNEfVhh2Zwdjv97PPPvuwcOHCpOWLFi2iS5eGPzjatUqp2qKdalOzVFNJJVXz+BJ8hgDQEYxvkddmIsOoLFBBUD7TlpCmjrIFuKAc8FVorLB52ZXgq4BIpqAqzxA2yg9aaENKBcHxOjAZ9UCGBLISZERghb3vXuhONPuciM5VCaInM95qG5molkpcmLSfhCGhqixznvo0BFV8fZRUUQIVEVQiCNgV2JYmiAtEcDMsVNjCKhdYxRaVTibBthX0aLuF8nCA9duycUJ2tQMgjKJJaE84ZRRJftslYCvwuWQHQrQOVJDhCzE/s4BNW7ORShAIOpRFglRV+ohEbHxpXshg2KbKTYewRNuG1LG8/YgNjq1Iy60iPRBBa5MBUAptfKY0RFyzD1xXeioKYYguoRp9v6e9zHtJjKGIKtYMiYnUSJEQ6ps0b4gYIZkc4BdXcdWUxiXXbwxaUhrv3ui/T3n9hXYTCAGzpmUgpcZtJlKq58AKfH5D/sz5Np3U95OCdl1CZGS7lBZJslvVHl8XroIlc4PkFUSIhCWlhY39SRP0HlJBRbnE9mmC6bvmj2bjWpuSrTaZuS5lRbuFgHmHoGV+2r1RVGmUg0LAlR+9R1EoxNLCbbxx0un0ymvNu6dOpDQcZr+OnRjboyen7rcnBdk1b/h+mL+a6fNWATDlpyWcePCe9MxvjQCyggHaZDYtQ2ciZLWEIc2Nh/Y9l6eXfcXZ3Uc2uM7BvbrxzpwFHNqr+W+sfNLsM1sEqWXirBP7tunazCP69SHV/NTQGz5ouBIhinXr1nHIIYcwYsQIHn300aYM+TeFUMgjiIXgvf99yw/fLOWT12cw/LD+BII+HnrkXBYv3sA++3TH57N4/1+/Iz3oJy2QrMgurajixU9+BOCVz39mrz6dyC/IJi3dT1VlhD161PTTaQp2FCEF8JfXr+KBK59myMEDaN+tYeM9sEdXPp63hH27dsbfzGNLy/SysAoIpDc+g2SXrm3o0rV2NVsLkuen6PcdgaZkMAb4v//7P0455RQOOuggDjnkECZPnsw777zDlClTGtz37nX128DrixqclUhWXUVVMlGiKpqQLVrAtT1iSmLMtLWJRIvZ+mhiYWPKIqZ0UWiUFuBosLxselKjvBAtYWmEbRRIQkqwJcqTTmlHoHzGpDsS8NQ+1U6oqKl3TFaTqIgixffEZTqhLnhnr0rYYQkkiDbmo1pDJGLhYggWG0VE6zj/IhTSddFhQWFFALRCSCfusVVtIFp7xIwCrcyNrBRRNZam3PGD0vilg2tJlAsRVxKqtEFqbKHwWREcjPm662U+JOIdA9cozmQYCIGjpRGDSYGwHEMuKoFSAteVuMqQUdoIqxCW2SVS6pgvVm0P65MellVXSiUqnxTgemo4bz9G209qO3oueocidm7qxGPm7fbo+axF4/1ukv4QzFtzm+C1oOnYtMZP246Vu3oYDUa3vqEkJdP2Ys3SIL6AmSu69gvhhFNP+isXpHP5hF48NmVhnaF1wXR44ccFlBVLzh/Zl9qfaNSOT19tzbaNPm57YfkuC+Pbo2eEBz5azPkj+9CUbfjFIMX81ILdB473g1PlOIzq2JUPly1heMe4gW//NvGbHyEEHXJT36wP69uJwT07UBmKMHKwIWgO69WDLy65gAy/j+xgcAduRfNgSF4XhuTV/4T3h23zeG7F+4xutx93HTOOvx4xmnR/6jjtLaFtBK0gmXZ6o8ZSFN7ItMKZBEVfxnW4BUvUbL/SDTG3eAn9s3uQbu/++7curCzfwoytyzi8/SCyfE0z2G8StnN+aqgSAWDt2rUccsghDBs2jKeeegopf1nZeXcFQmEX0oIgBF16t+eHb5bSc0DHWMhXmzZZtGkTzxLaOic1+Z2ZFuC4gwYxbe4Kjj1ooKlbkMMzk68mVOWQX9AwEnJXIrdNNjc+d1m95Tas2sK9V71Ah25tuPTvp3DU4L4EfXbKsMPSwjIqy6po27lh53AUTsThrUc+JTsvg9/ffgo9Bu1Ro4xSilnTl9GhS2vadmjVqPZ3N5QVlfPFy9PY85ABdOrVfud1nDg/wQ69hnr++eeZNGkSY8aMAeDoo4/m/vvvTyqTmMEY4LjjjuPhhx/mjjvuYNKkSfTp04fXXnuNAw88sMH97npSKtW1d/VliWSMTl1OeMojLcxDJOmpVdw0UOlePde864CnksJjGq14u9ojOcJ+gevX+Co0vkqF5YC/ErQf8AlCAY3yXgQVMs0lkB4mzR8h4krCYT+uY8LinLCEKstknVMa7deINJVERsTjBhPivKoLaGpTleGprlwR2xekOwifQoU9di1hP6EF2rEpLMnE53donVlBmq+SzVoQKgsYXy0XZKlNZTiLJSpAdk4FIsOhKuxDuSS1acgXaRRBngdTRIGlI9gWVLk+iiLp5Acr6JpTxELXT1FROuGSACIiwafIbF1BQasiMuwIpf4AKyuCoDXCFUghsCICXzn4QhbhkEVVmZ/yLAcrM0JaehifFVVJ2UQc25BIystAqKTJyIfJPFjTuyk165dESCUcK60F2gVciXbN8RISEApfWphAwCEUtg3xpOPhf9V/A2oosEywX2ydViJpPzcEwjsG0c/QcE+EpkjPW9A4KGVMra1dP/M2COWlgvQsh4rS5hlwTusIWzf46dA1TMk2i6xcp4avVBTZrRwW/JSOENCpR4i2HSMpywGUFUu69atM/pv2niYs/jmN8nrGn53nMPOrTIRU9BpcSVbuzmdMirdKWrWJUF6y/ftaWpp+e5UTSFOx3wmtDOMWJdhXLw6wdWPjn2huD1LNTy3YfXD5gfvz76+ncnT/vpw2ZDBbKyvJT28cgQKQlR7kyetrKkbaZ2elKN14bAuV8/KKGeyX342hrTvXX6GBqHDC/P7L1whYNg8deDy2Vb+a4MWVk1lctopVy9YzocPIWgmpHwvnctv8B0izgtw39GZa+XMaPK6lZTPYFl4PwJbIJvKC3WqUuWPe4/xUtICB2T25Y8/LG9z27gatNRd8+whF4XJmbFvGbUPqVh41J3bW/LRu3ToOPvhg9thjD+666y42b94cW9euXc1w2BYYjDllBPNnrKDdHq05949HctLvDiUzJ63RhJ4QghvPPrzG8qycdLIa/mdZK1zH5b0np5CZm86hJ4/Y/gYTcP9Vz7L4x2Vc+9TFdGiAQuqj/33LrGmLmTVtMUdMPIBeg2sSRgBb1xdyXr/LqSyt5Lb3bmCfcUMbPKZ1yzbxw6dzAFgya1XKbX79ya944h/vk5YR4NmvbiAj85dLnN/7+0f58pVvyW2bw8vrHmlStsGmIHF+in7fUWhsBuMozjvvPM4777wm97vb3Bo1ZNemEggl8lTKUzhhYbbMU7RoQNmemkmAsjzixxMrKWGyoiFNG8L7rP2mmGsbhY2yhTFHd0GGQfgB75pea+0phEAKhS0jCNsiEksLqFFSIbybJe0QT9MXJTx0tT1RnYDTKd4Ty2qI+jBJqfBZDo5t4yakTNcJWfRQJlSxKmyhtB+08ZFyIgLlGFN4NOgqCPstsBVBXxjpA6k1jraoili4ju15bOlYkj4pwFUCxyOVXCWodGwcJZC4WNJFKRsi/D975x0nN3G+8e+Myu5ebz6Xczk3bOOCjWmm947pBAIEAqGGmoSE8gsQkhAIaQRCQiCUBBJK6DUOzfTeccEG997OV7ZJmvn9Mdq9vV58buQef9a3K41mRiPtrPToeZ8XhCBIC+IJBxEBtKYwliCuNF7KRqctlNQEtlGn4YNMmXGTgcRXNimtwdZorbEt37g5SUGAjRdY5twIQCEQWaVUawOZQ1bpXOKocZ0OgJQEXyD8xsyMCAm+hecJfCRC6lAZZdoIAlMkE8rXBDndUNk2Q9lZV6ByNgn/9rQJXi+6j9I+wVZDSAEEvuwxQgqMZ1TfQSaOWUraJKQA5s3M48qThjNx9zpufOjrduvtN9jnhgfntVj+z5sr+fj1jm+Epz9RxvQnyjjxwhVsv2e8w/IbA7ECzfKFPaNgvOjGxRzy7bVtrn97WiHXnL4ZvBtamZ96seVgypBBTBnyreznXELqs1XLuePj9zl8xGgOHNp5v5AMPl6wlI8XLOPYHcdRGNuw8/zGz6bx5KJPicjXePeIy7NG3huK6z98kdeXm3nkTzPe5OLxHYfuHdhvCgvjyxhZWMWLK15l38o9Wr1JWRw3pFIiSLIuvb5LpNTool2ZVfsGroxRnb9dq2UafKPArffj1HlxZtctYkLJcFy5Ff3ghIhK87sQszZxZpBNND9NmzaNuXPnMnfuXAYOHNhkXUeZ4v6X0aeqlF/cf372c3FZoxJq/fo4d9w1nQH9SznpWzt3mShYtraW5z6czb7jh1Pdd8OyIL7wrze57bL7Aeg3pE+X/JXaw8x35/LUX18A4Fen38Yt06/tcJspB0/g+X+9RX5BlLeefJ+qoX3IK2ypPlyzdC3xWjOHLJixuEuk1MCR/Tj4O3swf8YSDj619TmzPqw7nfRIxtN8+ekiho7uT0lZy/DvLR3RfEOodSdMcYOQOz/BN/IaavN7StEJQipzE99MLSRy3wiMn5SLCasLhUgqBl6BzobvyUycVcgHmbA7GkmdTNieC9oSeEIgPInlhdn0FFgBeAK0A8LVYJnsc1JqXFshpMazIJUW+L5lTKst07+MGbmwMV5MgWy5Q20pwpr8FY0BpRlmLRwDGQsoK43j+5L1KZcWFIjIpHUU+L5DbUJS4TbgugHxqAKl0EmJ9A3xEiRcvEKf8vwEBW4KVyp8JVlZX4BKuznxZhK0DkP2TP06VFClA4fatMC2FLalUZ6NTFiIQKBsRTLtUudFyYv6lOfFSSiX+nQUEhZCSbQljEoNsNPgpCSBI0gHFinXwsoPsLXCdRQxx0cIjRdYxFOCICXRnjEO0ygsSzdRKOmc97loopDKnCKegLiDjEustED4ORyf1PgxGy9fQb5nIiilDo9TrgO9bnlMwz409kUbz6ouXmu39qSvp03wetF9zPooRuXANJEt/CGRUvDOC4W8/ULPKBsySCUFcz+LMnJCkq8+79wgNNRJHr2jnJ32rWXg8LbVUs0RBDBvZtdufpcvcli1zKJP/6BL2/UEpNCM3r6Bz98poDvhe0Jodjmwln6DU4zfua7dsvnFHkedtRIpNOmk5PVnS6hZvfFvAHuVUlsvrnvjZd5btoQXF3zNF9+7qMm6f3z0Mb9+7TX2GTqUPx5xeItt42mP7/7136T9gIVrarj66P0A+HLdam775G32GzycI4Y1ZpxLBR6vrpzN2OKBDMgraVFf/zxD6PSJFmD14FPqiRUD+OfcjwDYrrxzYRkH9Z/CytRKnl3+DHfOm0HfaCXjike3LNdvTxJBkvJIKUPzB/Hrz17gsQWfctV2B3L4oHHttpFvl3By9S/bLXPFtmfy5upP2KV8Ahd/+CfmNSznwL6TuWJsx4bNr6yYyeza5Xy7egqFTpSF8fn8d8WzTC7diYklm1YZLYTg7l3PY0bNYnau6Jmb+U63vYnmp9NPP53TTz99o9X/v4jHn/yQZ54z2eh22nEYI3J8oWZ8tZxLfv0oZYUx7vrFyeRFW5IJl//9OT6et5TH3v6cp/7vuwA01Ca4+4anKO1TyEkXH5RVZGmt+ejVWeQXxRg1qbpFXRVheJrtWBRX9Nw1VN/BFQhpMqCPnNiy3dYwcsJg/u+207j0gF9y/0dz0RpO++kxLcttP4xLbz+H1UvWcvi5BzL95ZncevM09t1/LOddsH+7bUgpueTm09otc9L5+1E5oISho/rz7zun8/i9b9CnfzH3vPSTDpVu82YvZ/ozH7PfkdszaHgltWvquOvqh+hX3Ydv/eiITaZUyuDiP53JbkfuyJidR2zStjelUmpzYcvJvteJshk0D7bKwjdEke+GBGJGOYXJKGfKaAhEqFgyBFaWIwjVUwjMyGTCHuyQqJKGlNIZP6oASAu0EChL4nuSlC2xLRV6KoXqLcjKb7QM3ydDF/bsSdWJE7s15VQrZVRK0rA+ig8oX4RthOFjGYVY+F4AgS+oq4+ghcZ10sQK0/hRG5UnCTwLLSR+WlLfEEEojRVNEbU8iiMJkimLlBcSX9r4N6kw618QjrOfZQ0tAi0QKOyIRzpiGZJHGoWT70uSnkXKsil0k+giQYPlkY46qIhNKikhZSE8YY5DZtd8jZ+ywDXHxZEQdcJMfFphiYC0ZeH7FirTr5A3a+07nVVH6UwYnSGXhNQoYU4C5WBC7Swdhu5h/MVcbRRwQRiyJzXCFkYhRbNDnnPcRY5jXaOflUCnu+gzkPul2ojz1cKFC1m7di0LFy4kCAI+/vhjAEaMGEFBwdb35GNTQAjYfs/6LZ6QAnjmH+XcesXAjgt2EcVlAaMmJnn2vjKe+2fnCNA5n+QzYmySY85a06W2/v3nPrz6ZNeeeA4fm9wshBRAMmHxxbvdI6QAjjpzNedet7RTZcfvnGT8zka5ccvlVZuEkAI22fzUi57HnoOqeW/ZEnYfOASA1xbN5/1lSzlt/ERufedt4r7HM19+yQWrVrNNn6bfbVtKCqMR1tTHqShoVF/d+N50Xlj0FU9+PYtDqkdhhzcnv5nxPA8vfJdSN58X9v9xiwx7F43Zh/36j6K6oLxHs+8dN2w7xpb2w5UWw4s7/4DmoQXvke8aQqXMLWmx/olFH/H7GdM4bsgOfGvwbgDcM+cdfK144OsPOySl2kLC9/j9p69R6ET4/rhdmVq1NwC1nlF71vodqz5XJ+u49P1/ooEGP8UPxhzMw4vuZ079LD6t+ZCbJ93Zrb7lwlcKKURoTt8xKiKF7Nl3TMcFexq989NWi3HjBmJZkvLyAvr1K2bR4rU8/+Ln7LvnaB549gNqG5LUNiS57/F3OfvElh43FUVmXiovbJyfpj34Ns/84w0Attt1G8btPByA1578kF+dfScI+PPL/0f1mKomdU3ebxx3vPdLIjGXykHlPbaPZf1KuH/271k2bxXjdt2m09v9+/dPhwmXBH0GtrwmmjNvJVfc8DiDq8q48apjcRyLZ576iHXrGnjskfc45/z9kLJ71yX/eP9jvl6zlov2mMKhJ+4CwDP/ehuA+tqksRXoYAr/5UX3sWT+at57dTZ/evxinvrrizx31ysA7HDABEZ0kqBrC1prAj/A7mQ2QjfqsuvUzWBj0pw0+QbOUVuOrre98z2Ht8mKcMjhZTKKq4jxkMoqqwDlalTUEElCAcqEpWW9pEKSCWipSskIXELyQoXEgrKNIivjL4QwhI+0TEiKEAJf2Xieg/Zs4/WkBVghAZES4IeN5fpKtTYerS1vK/Yro5hSkkTKNeRIyMaJ3IELd05k/vctEgjy81MUxlKkAwvhazzPIp2QkAKlJQESx1YUuykEmpXKwddOI8OVPTA6VAiZAyGEQGlp+D4NvrbxAxsthQnXczXCBscJiLk+rq2wtEc6ZpPQDliKwFGoOsuMrwvCN7us8jXEtCEKtcSRipjrE7EClBYorVAE+DokAf0wJLEFqZcZw0Z1VNbXSYDlBqggw0wKsBt3W9sYYk2EhJSjwAuPrwVSqsb6c8cp277xksoa7QMqkChfovwu3iBvopTrV199Nffee2/286RJRur78ssvs/fee2+0drdmaA0vPVLK4aetIZa/Zf6aaA0vPlLCCw+XbJT6l3zt8rsfVrFwdteYuc/ezeN3P6wiv1Ax9bur6T+kY8XU2J3qGTgsweKvO2+U+8GrBexxeE2n6u9pFJd7XPTrhaAE0x4uY+b7+XRMUGn2OLyG7fesY+iY7hno733UOsr7ejxxdzk1qzeyHH0TzU+96HlcOHkK3xk3iSI3Qn06zelPPUagFSsbGjhq1Bju/OADIsKiNNby++baFo9deirzV61j0pAB2eW7DhjCC4u+Yud+A7OEFECgg/CvMuFMzb4GUgjGlza9EewpjCnt2+VtRhWO4J01KQ6v2okBsZaeQA/Me5e16Qbu+/otLhhtVGKXjt2Hxxd+yve26ZrnzCsrn2BW7YccNuA7vLp4PXfMfAeASRUDmNSnP8nA43eTzuXdtbPZr2/HITj5doQSN5916QYG55sb6G2LxjOnfhajCsd2qW+t4cv1K/n29LvJs10e3fcsKqJNH1rNrVvG3Lpl7NtvwuYPNeydn7ZaTJ5UzVOPXozjWNi2xQ+vepBZXy7nxekz+cElB/PC27PRgWZsG8bU1596CCfusYyxgxu//6O3r8ZxbfKLYgzMUV4FmetybZJGtYZB22wcA+zy/qWU9y/t0jbjdhvFa4+8Q9WoARx82p4t1r/4xiyWr6pl+apa5i9ew8ihlRx/4i6sXVvPvvuN7RIh9d60T3ngpic5+LS9GHbwWH4+7WUAiiIRLtx9F1auqePsK49g5LiBjN9paKcyFA6ormDJ/NUMDLPzjZ0yEsuxKK0spt8GZuxLxlNctNfPWDZvJT//9w+YuPe2TdavWd/A6x9/zW7bDaWiZDM/cM+dnzKfv2HYckip5pxJO8WgpVBIAyINImLUUoEDMpPgLgAsbcL5LI1QEqnIeiYhQ2VVhswKQGYyvklDQmGRzcyHMCopY1wOComWCs+WWJaFlAo/MHULqRAuaF+g05YhjTJ9yuxI7t/WdratZaKVhZk+BmHYmAxASVq5rmtSlQoEiYSNCkBln2ZpCvISEBV4SPxAsq4+DxQURhLE7BSFUYuktEn7Ge8qY/4daCtUoGl8obGkybQXAFEnTVlRHbUyRjrhmr4p8HyL+rRL2rfxAoFCUBRJUBqNE0851Nkx0q5LEBJLAhCuwon6RNw0QSDxAkHKs3Cljy0CHCnA1gg0ruXjB1ZoOq5RGpQKvZ+URCmwLI3n2fielc3ah8YosQJhjpvjQwRDcCUsZEJmDfJ1RimFUeTphCRISbAVwtFIu9mxyrwNlVJKEZJfZvxFJoPiFoZ77rmHe+65Z3N3Y6uClHDoKVsuIQXw9rQibrpoyEarf+1Kl//8q+shoovnxlg8N8ZFNyzuNGH0wSvFXSKkAHY7pHazEFIARaWKQ0+uYfqTxcx8v3MXP9vt2sD//XXhBrU7fpc4//pj341PSPViq0dxKPOMWBaV+fksq6+juriEc7bfkRO3m0BRJEJ5fuvG6OUFeZQXNF135rgdOG7kOArdpmG2l217KJPKhjChdDB26BeVCnwufedRVibr+MPOxzIwv6Tnd7CbuHHSd1iZrKFftPWbxe+N3INbZr3IsUMmZ5edNWpXzhq1a5faSQdJnl1mzGenr3yCcWUn4kiLmGVTHoty3Ou/ot5P8ptJZ3DcoJY3n60hZrs8sffFrErWMbzQ3Hgf0n8qe/XZj5jVdZP75nhv9QLq/BR1foqZ65ezR7QxJK/BT3LWu7eSVj7zGlZw3shDWq3jzVWzuHfeyxw5cCcOHTC51TK96EUs1vgbNnBAKbO+XM7AAaXsNGEIT916DolkmoFtEDoRx2bHkU2TJoyZPJSHPrsey7Zw3Mbb5b2P2ZFoXoSCkjyGjW1UlP/jZw/z8gOvc97vT++SJ9PGxjEXH8bux+xMad+SVkPlDt1nHO9/soAhVWUMHWyuz3bcaRg77nR2l9u6+9qH+eqTBcyfuYR7j/8D/QoLWFnfwHZV/bjw6of4bNYSTjtuF876Tuczsv30llNYMGcFQ0cZwn/i3mN5ZOlfcCJ2p9VNbWHFgtUsmLkEgA9f/rwFKfXjPz7JZ18tY0x1X+699uRW61j61Qpu+eE/GLrtQM765bc2eTjhNwlbBinVGjHTVqiaaIO7EqBCQoowtE7LMPTODeWBCoQOCSktmqiuMsboxnfKvBAhIZVZJ5s1mPnfVQhXY7s6VAVZ+J6NVjKrvtIJKyTBRFPRjMyprgXL1sY4tTZmuZIxC8hYPXlG6iVEhsVppd6wIo3Ex86yr3muh20FpH0bnRYEvgURH8vSWFKQVo5xNJcijEts3BkhFVJqZMZUXAg04NoK11LUYxm1FCYznh0JiLgBQkBNMopjK2KWT2ksRdK3qfMsAiFRtjD7J0BLhRv1KchLIrQgHlhELI881ydqB6QDo6xCCWzLhAhqoREo46USWEjLEFaehmgkIO2bML+sQ35msAIJQSj+iihDbCUlMpUZX4FvK7DCcVaW2VIZeZ+wFJatm0r9cg62tDQqkKGPlRlHaemsiq+zEJkmaPzbiy0DSsG/b+/D8eetJq9gyyEb3/pPEc/8o4xkXNJQ2zOGwe3BiSi+fclyBg5Lce+v+7H4q84TRw/cWsErTxQDMGpSnBPOX0lRWetjeegpq5i4W61RgwrNlx/l8eCf+lJf0/bP3kuPljB5rzqqhqa7tlM9iEl71nLTv+dgZqaMrLMRH7xSyJN3V5CMS0ZuV4/vgb2B0XfnXLuEmlUrM5HevPlcMc/eV47X1fDhDtA7P30z4FgW/znxNJbU1TK63NzEDC3r2tP7DIpbiWeO2S5HDJzEkvhaLnzvbobmV7Jrxba8sGw2AM8s/oJzRu3W/R3oYVhC0j/WMixGa02tX8e+/cawX/9tW9mya3BkhHHFOzO79iMmlExhQskA3j/2ImwpWRRfSV1odv5V3TJ2Lh/V6XqLnBhFTtN5OM/Ob6N01zB18Hg+XbeEQifKLn2GNlknENnwy/ZUUn+Z8x/m1C9jfsOqjUpK9c5P3xxc8cPD+NYxO1I9xMxP5aX5QNfP6WheS19KIQRTDtmOdMrjpjP/TH1NAxff9j3+8fOH0UrzyO+f3qJIKYDKQa0/DKxdW0dV32LuvOnUHmnngJN3Z+GsJRx4yh4URCK8cN53iXs+JbEo1897GoBZXy3vUp2OazNibFNlbKyHsvcNHj2AU644ioWzl3DE2S29s5xQyeU6bV8bP3PXK3z08gw+enkGB5+2J4NHDWiz7IYgd37KfP6mYcsgpTLooloKmpaXKZB2GE6lwgMojIJKhxftWmh06A2lwBAcGBLLSKlCoZGlCSIaFTP1CR+kLxABiIwnkQ/SNyFwKrBIKfAjRnmjAoEKwwUBsJQJ/YKm5FYuSdRaSFlr8aO55Vo5KTXGDE3YhnzRgcy5scn520QGCIEnw3A1s7zOE7hugGUpbCsg8CX1dRFSCYtY1MO2FRKFYwdIofB8GxUY8koFEl8LlBIoxyfq+NhSkeekKbSTSBRe2qIhLdFJiec7NChBEDP9S/uSYtej1KknbdkIFBaKVMQmUJmwQHBsnzwnTb7lkXYlSeVgiwBLKFwJnm9UYmnfwg9EGLQIQaZvSmDbGq0hFYbcWbZPkLbQShp1lCeMD1kQelnZMsz0Z7I6ioxyKwjD/UIfLx0IcxySAp1w8CImg6HImtLrMNQRAhmY6MGUBemQnHJUUyP8zqBXfr7FQko46cKVuFuQp1S8XvKzM6vNebuJcMDx6/j2xau4/doBXSKkAFYujrJysRnAH/5+UZuEFECfAQF9BjR6qvz+0sHtElIAB5+0brMSUgBFJZoJu7buBeN7cNW3h+F7klET45z10xU90uaQbdIM2cbsd/16yU+OH06nfoy7it756RuDokiE5fWC1xYtYI9BQ7JPh1fXN7Csto5x/ftu8BPjRxe+y9ur5/D26jkcOGA7dulTzcpEHQcNaGkkvqUg0CpLtNzx9d28tvpN9qvcm9OHnrLBdQsh+E71j5osKwp/ULYprOIHo45iZWo9Rw3s2TT0762dyVf1izliwB7k2137ASt0oty4w1GtrsuzI9yzyyXMq1/BlIq2SbRDqybzlznPc0RV6z4uWmsUesP9xXrnp28MbEtSUVHImx/PY5cJ1UQj5iYwmfaZuXAFY4f0xd1Alc3HL3/Of/8+HYDt9x3HsZcczssPvsHh5x64wf3fWAiCAMsy9zrT7n2Fm777J4aMHcTtH93UqVC6jnD09w/i6O8flP3s2jaubcb5V5cfxevvzuW4w7bf4HZysWDmYqY/9Bb7fnt3BrYRntkWhBCcetXRba6/6aKpvDtjITtuO7jNMlMOn8R/7nuNIaMH0H9oZatlcse92+gN39sEaCt8rS3VVGvrw88qCtghpxKG3mnHLCNUzAgljAoKE9aFDMP+QmWMDO9xlAs6L9xemyc6hngQpumQsdQ24AijTLIwiiBlXgShIZXQ4Gfe05KUyt3PLOEkGtfrVsq2vsD4GjkaK2IUSoEKWa8mF4e5cYiNjZvf80Y1l7QUQpqb6ZRn4XsmJE+7FloEYZii2S+tpWkvsIw/EtqQYwJcW+NYmnzHozSSxFeS2lSMRCKC9iwz9rZCOgFSQhBICtwU/fPriNoBdckYqcBBC2MYboXqKykUeY5PvusRlT4JFSNqB+Q7HkJAXNn42iKtbHwls4SUUYUZnytpaTIqMSGMAkoFFjoIw/WUQPgWQpljbyi/sJZAIAJpRlMCEZMxDwtIS2OCnjJltK3McfdCFZabczMtlNnvlA1py5wrtjL1BF27qBfKvDLve7HlQCn45819+dYFK4j1zEPoDcKbzxdx/+/7tqHe2zhwo4pxO9cT+HDKD5Yxfkodt11VxaqlXU8Rf8kRIzn45DWccN5K8go7/nH+3ZNzSDRYPP/PMh7/WwVequUFwrP3lbHdbrX0G+SzIffTj/y1guf/WUY6ZdK+Fpf6XHTjYoaNTdFaoplH76jgufvL8FIiTIwBCKgamuaCXy2m/2Azp1k23PXGTPy0wLI1StHEi64nkF+ouPedGQRea7LkRvWWQLNsmWDn4zpfd+/89M3B0rpaDnvwH/hKcf0+B3DS2AnUp1Ic/Jd7qU2muObgfTl5h+26Vfea1HoWxVewe+UoHl30LtX5fRhZ2Je/79kzT/M3BrTWnPvO33l39Tx+OekYDq2awKy6LwGYWTt7o7cvhOCYQV0LB+wM1qXr+Olnf0WjqfcSfG/4VADSyue6z//G8uQarh57BoPzTWiN0goRqsc7g4F55QzMa98M+sQhu3PikNbDfQId8H+f/YG59Qu5bNSZ7FQ+oQt71xS989M3C+f+7EEWLV/HAVNGcd1FJivoxX9+nHe/XMR+E0fwm7OO6Fa9yXiKz9/8ksGjqxi4TX8a1sfZfv8JDBo1gHN+852e3IUexb9+9Rh3//RfHHHeQVx4y5l88cYsABZ8sYiG9XGKyns223Jz7LjdEHbcruftIX527G9ZNHspbz35Pn/+4Mbs8nuufoD/3PMy5/7mNPY6wcyNOpNds5PzU2F+lP12bN9UftyUbfj3glvbXP+3K+/nwRsf51s/OYozr289BLAzyJ2fMp+/adj8pBStc07NkfVzarEirEOHiqjQ/wkZEgUBiLSAbHiDRgmBRBtlSxCqoALjQ+U5Gm1pVJ6CAt8QV740fkmeQCYkVtqQW9l2kwAS5YFyJcIJO+qLkFRovLjPeoJnTJGa70tISAmhs+GEZnn7XyAtM15GIZQJiZNSmKxzgTBKreb15NyPamVuOIS5j8JLGW8lKQ0RY0LMBKk6m/R6B+Eo8osS5EXT5LmmsypPkvIdpFAoLUimHBoSDiqiKXR8YlaKQEjynRTr3RgqYZkD5QvSDS6BJ4lEPRxhXgVWgjoZId9NUhyJA4K6dISEb7yoAg1xz0Y6AUVOkpSy0GjqUhEaPAcvMH5XKd9uzKqHyBLOUmocOyDwIPDcxnHwBKQlwhPItECmM2SnwBICZYOKKlSRZ84RMONvaaOs0hLtgY4oY/oehvshNFZSQK1lzPeDsE+WEdNZSWHUd8JCOxZBass0Ou9F1yElnPrDFVhbxKwLv//RQGrXbqKsayF2PXg9+x1bA0B+kWb646XdIqQA1q1yOOnCFUQ6KbYq7xuQSigevq2Stki4qd9dQ//Bfrf6k8HalTZ/vbap1HyvI1YwYnyq1fI1q21uv6Z10+aTL1nJgByPKyGg78AN619HEBL6DepcG4V9euen/1UEWhMoc1Wc8n18pVjTEKcuac7zO19/i0MnDMESEfIsN+sN1RHSyuPc939Nrd/AqUMO5uUDrt5o+9CTaPBTvLXqKwCmr5jNoVUTOGvYd3l11evsU7nXZu5d9xG1XArtPGr9BipzPLO+rl/Me+tmAjB91Uecmn8IX6yfwy9n/on+0T5cP/4yIpbLY4ve4uuGFZwxbH9K3Z43Cl6frmNW3dcAfLDu8w0ipXrnp28W0p75HUt5Plpr6pNpFq6pAeCluV/x4deL2XZAX4SASKTz10K/Ov3PvPP8J4ydMpK7vvj9xuj6RsErD72BVprpD73Jhbecycn/dyxaw9jdRm10Qmpjot/QShbNXkrfoU1Nzx/69RN4aZ/Hb32OvU7YlZpVtVy460+J18b57UvXUD12IB98tpBpr83kmIMnMmpY15NcdAavPPAmWsMrD765QaRUr1JqY6N56Fpr0B0TUoAxK4/Q6P+UUSRJsh5EIvSSkkpkeR6ZCcEL/aekhiAC5GlERIMyKiAQSF+abYOcJ8hSmDYdbbLrWWGHs6F7OZ0UtL/PWUIqd39F62Wbj0OGkJIg7Yy/Vbgy61PUSiUi943OeeKeCeMzf3UgQr8jAYG5uLRdn2gkwLF0JtEecd/CDuVmvhJ4vk3E9cmPeJTHkrhSsTKdR00yDy/umn4JDLEjNLatibk+FXlxyiMJ4n6E+iCCLSEiFXHfIRU4ZIg7IQSupXAt8JQkYgX4yiIRuATaItAWXmA39j131wXYtkIpSeDboQE6JmTOlwhfIAOJDERT66/MeEc1uDnkojTvtWchA4mOGGMyEXpEaamRnkR6htQSAUhPoC1D+lmewPLNsKvQA012USmVJTKh9e9MLzYblBI8cGslx5+3Erd7PEyP4qSLVnL3Df1IJze+j5S0ND/6w0J22n+9SSAQqnsOPXU1H75WQO1am+6otY4fOw5pg2UpfvSHRey0X127pJ8b1Tw+51PSacnvLhnEOy8UhfO7wbP3lTF5r1pKKoJuqY8eu7OCf91ciWUpzvvlEqY/VsJn7xbw0G2VPHl3OULAxN3rufS3iygqNfPkU/eW4USCFsqtQSOSjN6+IevztGm0bBsZvfPTNwaDiop56NgTWVpXy96Dh7LfXXexrK6O4QUlzFtdw4q6OFd+8iveXukyvKCSf+1xPk4niKlAKxKBIbbq/NbDWHsaDV6aaYu+ZIfKgQwqKOlWHQVOlJ+MPZQ3V83lzBHGZHxM0SjGFHXe2ymDD9Z+xQ0z/s1O5SO5bMwx3epPBia0LcAS3bvcj1kR7tzpClanahiW30ieDy8YyG4VE1ieWMM+lcbn6aOaL0ipNPPjS1ieXIUlIvxm1uMA5FmRFkbmSxLLeWrJC0wuG8+OZUZV5ymfz2uWMLqoPzG74+QLZZESThlyJLPrvmZq1X7d2scseuenbxRuu/pbvP/5AvbeaRt+fP+zPP/xl4wd35evIzWkyxRn/ukh+iwWWFpyxx++w8ABpR1XCtSurQegbl3Dxux+Flpr3nryfUr6FrPtLu2rdtrDOb85jX//9kkOPmNfACoH9+EHd5zb5XpWL13LNUfdRCTP5brHf0xByYZJ/33P3yDD8msf/RFzP5rHyO2HNVl+ytXHM+2elznuB0YRN/ejeaxYsAqAj1/5guqxA7n25mdYuz7O3IWr+NsNTUOsGxJp7nzsLcqK8zjl0B2y6qpZ81ZQXpJPn9LOkezf/+MZPPGn5zjy+60ncug0cucn+EbOUZv9mX3mgrtNPynRSAbmJIVr/JPZVhtPKeXqbMhdtowKqxagHI1yNMIDOy6wUoASqBj4boDOU4hYQKQghbTADySBpUy4V1Sgax1Q0kTkRUyolvDBrpdoSxMUAPl+2C+ryY7pXLPx1hAqqHTOAtFiZ1sbRLOPhGophWFTlW5kt4RUhmDL+lQ1G8wWNz06a6IWeIbQEVKb0DxPQErgBS5xxyda5CHDeoqjCfJsjzzbI1CCVdECVtUVsLYuD4miX74g6RvmULo+ypchkWcUWp4naUi4rHXysGVAzPIATYGdIt9Kk2dZJH2bBs9FhSF5tUGU2mQ0PEc0UdujIekaizAtsGSAbZHNtpch3wIlEELhuAEaSKdt4wMlMQSjA0ootCVQGc8xYY6jtjXSVkQLk0Rc8zQm7VkkGlwT4igUQhviSrsKEjIcfzOGVtwQUlYqPL8tQ0ZJzxwLSxsSVSXbOFfaOoW08RPLvO/FlgMpNSddtLLV8K3NgX/+oe8mIaQAho9NZBVSuXjq3j4bpNZKhf0fPi7FlIPqOiwvBMTyYek8l7f/W9Ji/eHfWUNpV9U/ObjrekPyVY9OMGh4is/eMU8ftYZEg/m5PfSUtVlCKp0S3Pfb1j0QDjl5DYNHbl5/q55G7/z0zcIO/augfxVz1qxhcW0tABNGDCBNDVblcmr8BjRlzK1fSZ2XpCzS8c1LzIrwm4kXMrtuIQf222lj7wIAP31nGo9+/Tl9ovm8e/wF3fbCOnnYLpw8bJcub6e1YnbduxQ7fegfG85TS95laWItjy9+h3NGHEyR070seFpr7pr3C+bWf8Zxg85ncune3aqn2Cmg2Gl6A+ZIm6vHntFk2cH99mRxfDkD8/oxOG8AiSBNZaSYValaxha39GT5x/xH+WDdZ0xf9Tb37fJHLCG59tPHeWbJJ4wvGcg/djunU/07dmBTD5/HFnzCx2uWcEpV11RTvfPTNwsDKouZuq85B96cvQCAoFYxdGg58+atxlqvSSQDpIK581Z2mpS68t7zee2x99j18J71RmoL0+59hd+ccRtCwJ1f/IHBo1tXVneE7fcbz/b7je/WtjPe+pL6mgZ2PHgi7zz9IV9+YNSJH7/8Bbsf3f15+oEbHuOuq/7JwWfuxw/+2nWCDMCNOK2Sdd++8hi+fWUjqb/d3mM5/Oz9qa9pYN+TTKKMCaOreOWdOUwcM7DF9k9O/4x/Pv+BKTdyANttU8XT0z/nF3dMIy/q8Ojvv0dJYcdS/V0On8wuhzcmaPhgxRIenPUZh1VVd2k/c+enzOdvGjbv7ZFo59VKWd3adjnLlJvDA4UrBRgVldAoFFooNArph6FTgUBb4LvKqF5cjRUJsB0FaHQAGEoKPIlIC4TfmJVPC23M0bVpW7sqlFs1dtRwZrr9/e1IMSYga5bV1vqQ/5KWRljGiDsIJEqFKidour3QWT+S5s2KbJ9ySDXC8fIFQgpkJCDipo2ZerjelQGW0DjCJ6lsEp6D51u4TkC+kyZQgoa0S8qzCNIhEwNZpZeUEHF9Ctw0jghI+A4SjUOALRS1XoRk4BjvJ0BrkX0pJbBQJNMOmVBbpTKKKjMemfcCjRTmpZQgyITRaYzCzacxwlKEblRCNaZmtBQyzzMm76FCyvMl2reMl5gQYIVVBhjSUIusUkoocx4RAFKghUBnziNCokq1fbjbREbe2Vzm2YvNDqUEz91fas61zYxH76ggXr/ppv85n+Zx3LZjmT87YpRSIfY7di1uZMMD47/6PI9jxoxl3qym9Wfw1D3lHDF0HI/dUU4QwLCxSf494zOGjI6T+yV78dESknHRqa/OF+/lceyYsdzw/UGkU2abI05bA2jmz4rxkxOG09oXeNpDpaSTprwb0Rz4rTU4bsCND8/l6fmfcPcbM9h+z1r2PWZddj74xqB3fvpGYkRZGT/eYw+OHzuWy/bbg9OP7IddlWBZPMLg/EJ+Ov7IVgmpv3/xIac++zCfrFrWZPnooiEcWbUHMWvTSEplSEJtrlTe7619locWXs/fvvoRtd5qjqzamUF5FRwzcEq3CSkAT6eZU/8JGsWs2g96sMetoyJSxuVjzuWUIUchhCDPjvDg7j/mmb1+yp6VY1uUH104HIDhBUOQ4XXmymRt+LfpQ4b16QRPLPiM1cn6dvuwJtnAT95/kn/N+4C/zX67azvQOz99Y3H9SQdzyMRRXH3k/vx0+B5UvqfJW+oTQ3LiMTuy204jWmzz/uxFnPeHR3j67RlNlvepKuOYCw6iX3WfFttsDMjMk0whetQ/srP46pP5XLz7T7nq8Bt49eG32eWIyYzeeQTb7T2WSfuO26C6X3v0HbSG1x/p4ne1G3Bcm4tuPYMr77uQojJDsv/ih0fwxF/P4YLv7NWi/OihfbEtSXFBlIGVJQCsqjHquETSI55sfGgYKMVLH8xh7uJVHfbjsunP8dCXn3Hla9O6tgPN56dv4By1WZVS7Q5na6FtounH5uUsD7RvSKbQtxzlKnRMh/SbDs3NNX5Uo4WFjEDgalSRj8jzicY8HCfAthVagdISyzahHIEFHoCwTf12yFpkSAdASI3tBgTaQge60Vy7lRjEzOTS6HXUfJ+0KZQrJ25ZjSmWkmg3QAjjYaRCs/UgbZv1VqNXlFa61SFuyUyF4XxaQ0j6aGWURCIOKm7TEI0RjfikfZtk2mG9jJEfSZOI2ORbaSrz62lIuDQkXJZTRFl+nKTvYNsaGQkI6i2jIoqAU5TCjgQkUi5zV1eQH01RHEsAAtcK8HybQJvse76W+IEMv5eNrJ6nJFJgCCcJljSKJcf2saQOb/LMvtSnXNJpm2jUIy/mYwmPlG8RBBZ+ngVC4boBAqOCUmHYYlaZ56jsmCklUJ4FKWnOhZAEwzddE4FAJsFKGzJUaBDSmPMr2xCqVhpIh+RmmPFRdyz+aHEuZBm5b958tZVDc8jJ67YIpdSTd5cR+Ju2IyPGxRkwJEVugqRXnyomneqZq6wRYxP0G5jG82gRHvmfh0pIpyT7Hrs2SwjNeD+P5Qsj2I7G90wfdj90fad/5994roiGWos9jqghCCBICJ68pww3qkknW4YLZ7DX1BqcMBFFOgXTnyxh6JgEE3czFzufvpXPtpMbNkixtcWid37a4rGqoYFVDQ1sW9l6FqHWIITgnB13zH5+edVr+NpBCMG3h+7AsYNbZk1LBwHXvPkiGohYFncetGFhahuC63Y6gD0HDGVyn6rNRkzlYlLZMB7Y7bINrseVEY6qOovZtR+xb+Wxnd6uwY/ja59ip6jNMr7yeHPNC5S7fRlb3LZixJU2rtv6rcZRAw9ir8pdKHIKs+P+8+2O5eklH7N336YZFi9+6zFeX/E1o4srefqgs9tsr9CNUl1Qxvz6tYwv61omrt75actHMp5m3heLGTlxCLbTeaX3XtsOY69tTXjXJX95ACupkAEMH1bBed/du9Vtbn3iDT79ehmfzlvG4bts2wO97x72P3VPisoLKKksZtCo7qmkehLl/Uu55c1f9khdZ990Kg/d9CQHnrZ3p7fx0j5rltfQb3BFu+Vee/ojatc2cPC3p7SZWVAIQUUbYXiTRg3kuVvPxbWtbPbGkw7ZnljEYXD/Ugb0Kc6Wvf8/H3DLw6/h2BbP/OYsSovafpiwY7+BfL1+Hdv3HcCbHe1sLnLnp8znbxg2e/heEwPw9ouYcu2sUDJHYZITZmXULYTxUYZREL406hkbcAOIekb9YumsQMhkrmv0WQp8wDdSaxVm9BOBCJ/MK5SjwVYEQUhQ6Jx+6oxSKiSEsn1vJySv2f62d6nURImFebyuAtmMzMs8dg+ZrU5cfDXxfNSYGLhAoyzAUri2RxAYgkhpcKQyGaGUwtOSuLJJBxZCaGwrwAskvpL4vjQKIj+HkZNGKpQxILeEJlCSqGVMCpUW1Kdd/ECgskRxRilFo+pLKATaqKe0QGiNrTVKmWOptQj7YPqllVFQ+cqQVQIFGiwnwArTG0gkWgRApi2BkAqBMjekShgzfGWUc1iNuyU8o7wSgYBANJqbZyaX8HBoE2Fp/M0w5vtdRa/8fMvFj/6wCBnOUZvzvufh2/qwbH4n3cF7EPNnx4jXWziRRr+mibs18NIjZT1S/ydvFnLu/tvwp2lzcFzVZIx33LueOR8XcMI4I+WP5vn85cUvuf3FLzn/wJEhKSX4w48GM29mjPOuW9phe9vt2sCjf4XrzhgaLhFc/qf5PPfPcj55o4C2ZuyPXy9gt4NrQRjy7MmvPm/y0Ougk2oAvlleUiF656ctG+sSCfa/627q02luPOhAjhvXvafgo4tGkQo+Q+ByzKDGrGlf1i7nwQXvcPCACexQVs1B1SN5YeFXHDy0+z4pPYE8x2Xq0E1z0zl3/WpitkNVfuMNzY5lh1LklFPsVFLktH+j1VXsUn4Qu5Qf1HHBEGtSa/nxp9eQVmmuGvNDRhe1fmymr3qOp5f9E4Arx/yBPpF+3epfqVvc5HO/WDHfG9FStaA7eQfmSounDziXunQSJ921i6je+WnLx1XH38yMd79i3+N35rLbvtutOnbfaQQffrIALeD8cxt9yNY3JLnj2bcZ2q+MY/eYwEE7jOLz+cs5eIeu+8L1JIQQ7HzY5I4L9gDWLKth/epaho1vDLcdvl01f3jtOupr4ux0yMQebW+7vcay3V4tVZRtQWvNxQdcz9efLeK7Vx/Dty5p3adp9kfzuf6cuwCwHYuDTprSrf4V5UebfI66Dice3JKE112YL27Y4yB+MHl3on5A2zn7WuJ/IXxv8xudk0NItaKOasLdtMPQCMAKs+kBBFKj8jTkB7hFJg23DhvTGlSeQlcIpKWwhcYKzbkz4RJCaFxbI6SP71sESmJFNFoEKBcTyheSCzqi0YUaIgEoiUpKQz5oYbIAQpYUE7n72t75JFobEJqSTDmklwhj8IwKQRAEOaywMOF8JpAw7FAH2fyym4qMEslsI1zACaDegrRFvCYf7ZgQOaUk8WSUOLC2voCywnpcWyGFJggs6pIxUr6DrySWNNkBvbQN9RKdEijfRrpppNSkkg5SaCzL7LCXtAi0JOk7+No412dIKZUJ3bM0Ucen0E2xLpFHQyKC0gLbCkAI8iPGn8rzLRoSLqm4AxrSjo0TCXDsgLyIj2v7aC2QQhGxPSIyoN6LkPAcEmmHtGejfEHg2ySFwJIaKRXS0SgkQguT1VEIo6ILQPoC6Rk1XyYKU2QMnwPAAR0JD42NIax8uh5gq8lhEru4bS82KvpVJwgCsDaNjVOr0Bre/E/nsqz0qUpTu84iFTcdlpam/5AUS76O0B2qpHJgCs9rKj9f+GUEJ6JamHx3F/2r06xcbMJ7K6vSFJYotIa3mu1zSR+feL3FR68WEK9r+jNYNSzB1zNcBo1M47bjs7twToQho5IsnedmvbmKy9PtElIAg4YnSKdokjVwCxBnbBr0zk9bNBrSaRrSJiRhWV1XZboGaeVzcN9DmVK+MyMKhuLKxi/Rzz97gs9qFvPS8pm8fMDl/OWAo9BaZ1UyX9Wt4qbPp7FjRTVnjtyty21rHWYK7qEv1Dur5/L6yll8q3pXBuZtOHn+6rKvOe2lB3GkxbTDv0d1oalTCMnoou7dNPU0VqZWkwzNLBcllrRJShU5JYBRY0VltNUyraHOi/OHLx+lwIpywTZH4cjO3Yb8ccoxvLxsLrtVDu2wrCstyqP51KZrO90voHd+2gqwaslaAFYuXtut7bXWTBhTxXU/nkpJaT7jxzV6Cd33wgf886WPANhhm0GctO8kTtxnYnZ+itcluPXCv2HZkgtuOZNIrOvhxUGgsKyeUakvmbuMJ259nilTd2DSvt3zispFzapazpxwGYn6JD+569ys7xLA2F03LzGXge8FLJxlHhrO/WRBm+UKivOwHQvfCyitbFvx2Rxaa2577A2+XrqGy07ah37lndv25IN2YFBlCYP6lrarkgJzb9g3v4Da2g2YnzKfv2HYAgJJ2kfzyDagVfJKhwIV4++kjdeTpcFSWYFPpj7IhLCprAIoCMD3hVE5KRGahBOSWBqhFYIAIQKEDMAK0FKFLx3GY5n2CYQxtRYanbsHurHDQiqEpYwcRrR1Zulmr8xi3aSu7E4oQ8rpUC4mpcKyQs8jrXN8pVoZ2WZEV/OsuOZvpp1QcWYpcAKj8AlD1kAbVZMyIYSJlCH0DAmnjLk4Glv62JZCCDOGoFFBqEZDE3XSxNw0tgxQ2mTy8wNBEB5fpYyiSikTOqfDTgo0gRZIbVRMpmxIRGbLmzosK8B2AkNaaU3gC1Rg6jbyN00QCLxAEmgQBCYsMCuBCsL3pu9aaZBB9pzQwoyFCIxKSmkILI3vhC9bG3VfqKrKWoapkKjKKKq6gm94vPHWjHTC2qyEFMBDt1Yy472OSaldD17PKZeuyBJSANfePY/8IqMW7A5qVrkUFvtNTsuSPi2zzm0IPnq1iPP2H8W9N/ajoMg8aLjnxn7Mm9nUz2b5gijnHzCKO37eUgp/21WDmfVBQbuEFMBx567m4JPWNjGLv+LEbehofOrWu00Iqf8pbKL5ad26dZx66qkUFxdTXFzMqaeeSk1NTbvbCCFafd10003ZMnvvvXeL9SeeeOJG249NjYHFxdxx9FFcvueefG+HHZhbu4ojX7ydS999BF91zvvt+hl38ZPPbuW/yz+hf6xpiu3tSgcBML6k8XuXGy73tzlv8OqKOfz2i/+yNtW1zFYrE3Xs8/zv2f3Zm5hXt6ZL27YGrTU/+uAfPLDgTX4746kNrg9gWYMh+jwVsDbZcWbB++e/yJWf/I1F8Y59SnoKowtHcsrgb3HUgMPYq0/bxOCOZXvyg21+xRWjf0dhSFB1Bi+s+JCXVnzEk0vf4qN1c5usS/geP37jWX742jM0eE2TPBS7MY4aMh6pJLNWbKTx6L1+2uLxs39ewKmXH8GP/nQ6yXiK/zv9r1xy9B9YtaymU9s/9sh7nH/23fzxt88zamRTdd+2Q/oigIrifMpDYiF3fnr90Xf479+n8/xdL/POMx92qd9KKX5y2A0cUX4mrz76bpe2bQt/uvhuHvvjs1x95I1dUuq0hYbaBIl6Q0ivXNzxHPrW0x9wxSG/5O1nNr5fXQaOa/PTf5zP1LP35cyfHddmuaphldzx6v9x2wtXsNN+nVdifb10DXc/8y7TP/qKh1/+pMX6O956j7MffJyvVjclRW1Lsu8O2zCoXymfLFuOtzHMY3s9pTY+2lRJZZZlQl10K2Vyts1E5ilh/HmCmIaCAOmaDTNG12iyWdssmQnxEPi+bTaWGsf2kFmiSGNbAqxMWJnCtwReKowVkxgFkhs2njZ2jVqSE05Ho0pKaIStiOSlCZTET5iMby1iFJuroZq7uud+VBljI4mQPrajiEU8XDugpj6G9mU4Bo1V69YGXTcOemZcjFIqLClNeS2AqGFRtK1RWuJYhkHxVUZZJaiJ52ePnyGQLCwZUJSXJN9NU5MQpKIOIgnCk6ikg12YIj+aIGZ7RCyf2nQUX9k5x0OClmgtCJRAhencpVDGQ0po8mwPz7WpTUpQFkooIyHToLRF2ndwHE1eLAkaGpIuXsrFsgOUEyClwJEBnrLwtCRQCkdqpKPwlSItwLIVrhOq6zD9sFxtzovcI5UWyJS5eVH5Gt8KD58PMiVMiJ7IRpUablObLHxSNQ0f7hRUzmHdcP/oXvQg1q20SSXYbISEUjD74841PmpiA5at2OuotQS+4INXClkyz+Grzzv/RLw5nEjAoq+ijBiXbLKsqMzboAx8LWHmrRVLbPoN8iko9tn1kHV8+GoRyYbOEWD16y0aagX5RW3/6AsBbjRg98PX8fFrhdSv79zPabxeULtOUFT6zbug6BCbaH769re/zeLFi3n++ecBOPvsszn11FN56qm2yYVly5qabT/33HOceeaZHHtsUy+es846i+uuuy77ORb7ZjGM+wwbxj7DjPfKY7M/Ydb6Fcxav4JzRu3O6OK+HWwNK1PrAFiRaqlk+OGYQzhl6G5URlsnxvftN4pnFn3GxLJBlLhdG9dP1y1hRWiO/cGaBQwtLO/S9s0hhGB4YV++WL+YbYoGbFBdGRw7bDzJwKPEjbF9n5bZnnKxOrWeO79+FoDySBE/HH18dt3a9CqUDqhoJ2RuYcMSPq75gj377ExJsxC59iCE4JD++7dYrrTiq/p5DMyrImaZ34FBeR2rlppjUukICu088uwIIwubPhR4cdFcHprzGQC7DRjCMcObho/WJpMcfNs91CZT/OLwAzh+UuvhpX+Z+QZ3zn6b7w2e1LXO9V4/bfEYum0VQ7c15817r8zkg+mzAHjz+U858rt7drj9qpVmjqivS5JO+cRijU+f9pk4gv/eeA55UZdoKz5o43YfTUmfIizHYkwr2d7aQ8P6BB+/YgzT337mQ/Y8ZsMzi46YWM17z33E0PFDesQLr2p4X659+FKWzF3OEee0nAOa47ZL72HF/FUs+WoFu+SEF9bXNLB83kqGT6xus1/rV9cx7b7XmLT3toyYWN2lfu584AR2PrBlZs35MxaTX5xHnyqjQO3Ic6o1VPUpZptBfVi4Yh1TxjXt15qGODe99DoAFfl5XH/4gS22P/Pfj/HOosUcMWYUvz/i0FbbePPLBVz+4PNM6NdF9W3u/JT5/A3DlmF03oxvaa4O0c1WN3mTIZpEmKxMk2WMdSBQaWPSo6QGaXgVHSqNAt9UIqVCCG1WSvADgfQlttRYIkBK44HiK4nWFkqCbUOgNZoM+5RRz2iyLuuZ/omctyFBEwTGdVxYCjxFx6I1HVbVWtxfOAiWUefI0L8paqeJ2hYNXtQUaXI/lsP0tXJvlCGimq4K1VZZ1RSoQOCnJCiFsAj9nEL9UCtfmEAJkp6F1i4acBwfLyJRgQOewI/b4KZwLd+ExAmF1hI/VKwFCgLVqHzL7a/SJgNebcol6Ussy8exPMMdhrGWlgzC8Dxjgm4JReBCOqNp00YxJ22QNHrfSKFBKCwZIEPfLEK/KR16ZAVeKJXL+En5AukLRFqghDbLMxn1PFOvEqAdjbYV+AI7KZAJE+4nNGEWx86j1xNhy8WQUanNqpD595/78MZzJR2W2+XA9Zx4kXkSfcAJNfz2BwNJ1Nvcfs2gDWpfCMGwMckmoWprV7g9TEgZ5BUq+g3yATj+vNVc970hnSakAPoPTbdLSGVw2CnrmDcjr9OEFEBllfe/SUixaeanmTNn8vzzz/P222+z8847A3DHHXcwZcoUZs+ezahRrYch9OvX9Ab/iSeeYJ999mFYSNBkkJeX16LsNxVHDBzHf5fMYlhhBcMLzQV+vZ8kUIpit/UQhau2/S6vrPyQvfq0JASEEPSLtSRIlNZ8tGYRk8uH8NHUq5Ci7eshpRW/mfEcCxrWcNW4qQzIKwFgj74jOL56e1KBz8FVnX8y3h7u2OVslifW90joHoAtJaeNamn63hpKnQLGFlfzZe0iplQ0+l0tSyziN7MvR6O4YMS1DCto/Xy+bsbvqfPrmVk7h5+M+f4G9/0fCx5k2oqXGBgbwI0Tftbteqrz+/H4Hj9DIFrcsG5fWUWfWD5Ka3aobEnaNaQ86pIpAJbUtB368vc571GTTvDA1x91qW+9109bF7adPJRxOw6jvjbBLgcYgtLzfGpr4pT3aT3s6pTTdqe4JI+RI/tRXNJyDitrI/Rq3ucLcWMuDy2/E6BdEug/97zCtL+/wslXHcv2+5mwusLSfM654dt8PH0GJ/zw8C7tZ1v47i9O4qDv7kNlN8iXtjDl8LaTFjTHPt/ajQdveoK9T9g1u8xLe5w1/gesXrKWM391Mif+5KhWt/3TD/7O9EfeIa8oxr8X/3mDQxpff/J9fnHKn3CjDn/76IYsMdVVRF2H+685JRShND3GJbEoOw6u4uPFy9hn5LBWt1+83sxLi9avb7ONpz6ayZr6OC980bUQ1F5PqY2NXCUROe9zCSfRcnULyPCV8eWJmht9tEArifIEwtY4dhASQ6HCRhmJlXSMYkppjVYCrSUCgWsHOJYhIYJAonyJEALbDkO8fBBW2FFLQyANIZXdr5wdkaHiKyOwkuZkCrKdb2eMwioyvlHZscndf0cjYj6OqyjIS1EaTWALxXKvBLREWCpUizWRb7XB+LXucZIlpFRmJzQoSeALnIjCthSeNutEs6OVUV4pLfECB9vCkH62Jo0FgUQojZPvUZaXIGb71HkuGonSVjacMlDShANmDMdzOq81pJRL4FtoDYUxD0soPGXhWD4RKyDQEmkZ4i5me1jSkF5Bo5kYCIElwZGmPEDE8kkGtjk3BDiOxnUUvm+RTDkEacscWxd0oCEtseIWTn2o0IoYc3jpgwgJJy1AuZqgJAAFdo0gst6opzQmK1+Xn33kSjq/gRPW1orSPh6FJf5m7cPQMXH6DkqxYlH7PgjLFzjcc2Ml+xxVQ99BPssW9gxpVF8n+OTNfLbbrQHLAi8tWPxVBzFy3cTCuS5/v6mS/Y5dR9Uwj10PqaG80uOFR0pbeEi1hjeeLWLtCov9jquhsLj9x1GT9qjFjQRMe7iMuk4QbB++VsCa5TZlfT32P66GwpJv4OOutrAJ5qe33nqL4uLiLCEFsMsuu1BcXMybb77ZJimVixUrVvDMM89w7733tlh3//33c99999G3b18OOeQQrrnmGgoLO+fTtrVhdEk/ph10Qfbzkvhavv3GH/FUwJ27nMO2xS2Jg6pYJScPObhL7fxx5svcPvs1+kWL+O9BFyPb+eH7snYF/5xv0oc/svA9Lhx9AAARy+a6SUd0qd3W4KuAmbWLGFbQn3w7wqD8DVNcdYSU7xMoTZ7bdO6wpMWtky8k0Aorh6Rb761FhU+rary2Q2yKnULq/HpK3M77qbSHNaHybW16XRMfMDAPeh9c9ATLEis5begJlLkl7dbVFuk4IL+Id0/4fpu+YP2LC7ntW1OZu2oNJ+84sc36Lx23N/fMeZfvDJzA9A73LAe9109bFfILo9z0UOP8FASK7598Owu+XsX3f3woU09oqUbKz49w4re75t/2wX8/5cojbsSyJX95/wYGj24/A95tl95Doj7JPVc/mCWlAI658GCOubBrc2Nr+PrTBRSWFdBnYDlVI7qYYbKLCJSiIZWmKNZSJX/GL07ktJ+d0IRQ8lI+61YaQmb5vJVt1lva1zycKC4vaEH+dAerlxiFbjrpUV/T0IKUev69WTz77ky+e9BOTBrR/vEzofktl1tScv+pJxAohdVGGu2/Hnskz8+ew1Fjx7RZ/7d3ncjc5WvYbkAZP725gx3LRfOQvW/gHLXZw/ey6MQ52WL4daMdk1aNKimtaDSK1gIs0Fl1i/H5kZZRrgg0Igz9QptQLCnNMgiQwjchVQJcy8MWPkpLbCwSyiWtnFDuoo3XlAzb1IImXlEqDHsLyRkvaaPRaL815VPrg9EGfxSu1AgUju2jgbhnU+SkKIrGWefnGUJJNaukOevX/FxvrWsQqsEwZt4pAYEgrW3I90O1kdk49/uS/YJr8DyBVja2ZZRHBcUNJC2XdMolsT7CCr+IgsIECEh7knSYut4cF3NsVIaYytZvVFAxJ02Rm0IDqcAhYvl4SuJrK+upZQlzQae0yVAoQkNzo74yYYEp3wJLY0njUyXQuMInYqXxbWHOJa2RIjBjrkxYqLmaAhyFioGnNcIPyURlMjWKcF7REgjAqhMEEQjyFIlKjUyYk1E5oNJdvGHtvajaInH13+bTb/DmJaW+eK+wQ0IKYP7sPCbu3sCQUWluuaKKz97smZua8sqA7fds9Il54I+VvPFsaY/U3RxzP81np33rqRpmJIn7H7ueR/5S2SlCCuCVx8s4/rzVHRJSALsdUscz/6joFCEF8M60Et6ZBn989sv/LUIKWp2fmpt9RiIRIpGuG8hmsHz5ciorK1ssr6ysZPny5Z2q495776WwsJBjjjmmyfKTTz6ZoUOH0q9fPz7//HOuuOIKPvnkE/773/92u79bExY2rCYRGK+fr+pWtEpKdQerwrC7dek4gVbY7Tyoqy6oYNviASxqWMtefUf3SPu5+P2sJ3h8yTsMyqvggd0u6/H6c7Gkppajb7+PdBDw4JknMqpvnxZlrGYEzqjCCXxr0Nn4ymNiyS5t1v3zcT9mXsNCRhWO6JG+fnfoyQxbVc12JeNaqEQWxBfz2BITKlsV68cJg6d2ux0hmj/SbIp9txnOvtsMb7eO44dN5PhhE7thJNx7/bQ1I5X0WDR/NQCzv1jSY/VmSJbAV9Stre+w/AHf2Yvn/vYS+5+8R4/1IYPpD7/FL799M07E5t7ZN1NRtfFIc6U0J93yL2YsWcnPjjuAY3dqGS7bXOGUVxjj+mevYsabs5l6fttZP8/+1UnsNnUHqscO7JHQw8PO3Ae0pqKqjKFjW6r6f3H/C8RTHnXxFHdftmE+kG0RUgCj+lQwqk/7yrXxg/rx8MUnU1tby0+70vAmJKXWrVvHRRddxJNPPgnA1KlTueWWWygpKWlzm/r6ei6//HIef/xx1qxZQ3V1NRdddBHnnXdep9vd/Eqp1v5Cc/OjFutanMK28ZLSEcABkWFeQ5LAdg0RpQKBlCBCpZIJddPGuxsBlsa2FFEnIOoobGlMto1yyoTJeb4gri083zbqKEtj2aB9o7Jqsj+ZlzY7k/m5VcrKqo5EtkyoRsrd70bWpel+5yqmJOAq8vPTRJwABbiWxrEU9ekoYIX0TfNRa0N51RFDKELCKS2RCQtchXCNGkz5jSqmTLdzNkNrM0ZKm7DJ/GiaOqJ42CaqLRXBK06jpYXnS+Jpc3NiWTnBtDpDSGXGVOPaijzXo09enJjtUZOKUWB5SKFIp20TtknGwF5gS+MzpUIFmi01GoEXgBbmHHFsw+LZQuNIRYBDgG22tzWWNESU0o2eXZk+aqHRlkDbjaoxEYAMwuPvYCL90uBHBLgKbWlU2kLnC7Rj1H6q0X6nc+i9qNriUFmVJhrbCKaHXcRO+9fw6pNFLJnXcQzhW/8pZOXSwcyb0XPxhkvnObz5fAGT96rnyXsqePWpniG72sK7LxSy95FrGTLK3ESfc80SPny1iCfvKSdR3/FP35+v6c/kveo48rur2w3lW7Pcpm5d50IDC0t8Tvj+SoSleffFQvoNTlFc9j9ETLUyPw0a1PQC8pprruHaa69tsem1117Lz37WftjQe++9B7QeWtFc3dEe7rrrLk4++WSi0aZPh88666zs+3HjxjFy5Eh22GEHPvzwQ7bfvvNhD1srdqoYwfkjDyQRpDlowHY9Vu+Pxx3I8MI+TC4fTMRq/7sZtRz+uXvnL3K7ipm1CwFYHF/FovgKBuV17KPVXcxZuZraMBzt86UrWiWlmkMIwS7l+3ZYLs+OMba45zJmlbolHFV1WKvr+kUrqYr1Y1VqDeNL2lYItIUv16/glpmvsEffEZwwdHLHG2ws9F4/bdXIy49w5fXH8ckH8znhtN17rN59TtwNL+WTVxTrVBa6C27+Lhfc/N0eaz8X8z4z85OX8vnPPSZEcGMhnk4zc4lRO73/9eJWSanWsP1+45soxFqDZVtM2KPnHio4rs1R57f0eMpg30kjeebtGew7aWSX665NJPn1E9MpjEX4weF74GyujEWbkJTqji/npZdeyssvv8x9991HdXU106ZN4/zzz2fAgAEceeSRnWp3y1FKQQvhTrtFdVg+o5ZShNIXjA+PwLAgCpCawBOILBllFDCZ4xmE5txCaBNSJn18JUh5FmkhUUoQaIkQGtc2Gfhcx8eLWHihQksFjR3TGZVUaGpuuQEoQeBZZP2m2rpHFTlhZE2IOR0OUbggszyzjymLhtoYojCB4/rUplziaQvLCvCFNGRZ7vnbyfO63cMhNcoyG7vSJ89N06BcPM/Odtx00SicEBmvdPPZCwRpz6LATZFXkaamNp9UbYSGlXmkCm0sJ0ARHheU8W1SjYqnXPJPaZ31k/KURGD8p0qjcYqcBL6SuNKEb6aVjdKgkaQDi7jvkArsLLmktFFnKeUa0lIqPClDj7kASwpDcimzL7ZtFDBKmcyN2g9jNW2FcjUIiUhJhAfCyxw+TeAaNZR2NSLi4eR5OIUqlI5qfCVJru8imdFr1LnF4dLfLmLY2NTm7gavPVXWKUIKYMXiKCsWd9/UvDUM3TbFrgfX8/w/y7izlax3PY09jlifJaQAJu4e5+dnD+0UIQXw+duFXH3H/A69pf50VRVffpLfbpkMTv/Jcg4/bQ0/PGY4F/1q8f8WIQWtzk+LFi2iqKiRoGxLJXXBBRd0mOmuurqaTz/9lBUrVrRYt2rVKvr27ZhgeO2115g9ezYPPvhgh2W33357HMdhzpw5/xOklCUkpw/fu90ySiteWvkWUkj26bNLCyIw0Iova5cxtKCSqGXUhcVujDNG7tpadZsch1VNZN6cRcZvsjVjzB7E7iOqOWf3nUh6HoeO2zJSrncHUSvCb7e7BoXCEl2/YfvTrOm8sGwWLy6bzdTBE7LnxSZH7/XTVo899h/LHvu37yn3/kfzmfvVCqYeOpG8vJa/N/MXraG4MEppifldtyzJIWfss1H621XsfeKu/PP6R9BKU1hasFHbKohG+MUJB/LuV4s5Z/+dO95gC8Z1px3ET0/Zv1uE0tMfzOKJ941J/R6jh7LrqCE93b3OYRMZnXfXl/Ott97itNNOY++99wYMkXX77bfz/vvvbyWkVK6SqLV1uSRVK7FrmUxl2gLtgoqCdgjD8owxNhbggOVopEVocK1zVC3aEDYhUWXbgcniBhB6TwUIFMKYbwtIBzZp38b3TCo1IQ3xoj0LlFFOYWFUV7EAy1Kk6lwalUmixb5k3ouQaGpJFImW45SjntIIsDWF+UnqUxGkgIRvo5QV7l9rDWYIqeYVa5o/UM6SgOEBExrwjMeWU5yiuChJMu0Y9Vj2AJm6MkpHkSMiyyiRbEtRGEmxsq6QVMJFxCV+iUYIQyxpLYg4ARpJoGyUFlm+MTNEltQ4FjiWUS9pDIlYEWmg0EnT4LsURJJINL6WCGX2wVeQDBwCLECGF88ZBZYg0JgwzrBBP7AItI0UAim0MV9HoLSVPY9VxlcM81cgEYHA8gSWZ9RSyjGqPlxD26mCgGiRR8T1jYoPjdKCIGGj7a6RUr1GnVseHv9bOUNGJSjvu3nVUidcsJxR2zfwt5/3Z+WS7odHdRezPszjvP1GEm8IY6W77pjWJTz85wpmfxzjrKuXUrfO5t5f9yOd7FqbPzhyJAd+ay1Tz1hFrA3e6byfL+Gki1fw6dsF/PP3fds1Pf/7b/ry7H2lrFjics3p1ew1tYbjz19FQSfCBL8JaG1+KioqakJKtYWKigoqKjo2dJ0yZQrr16/n3XffZaedjKfIO++8w/r169l1146Jj7/97W9MnjyZ7bbrWAn0xRdf4Hke/ftvXF+PLQEPLniFWbWLOXvEIfSPtR0y8t7aT/nzV/cDxtdocmnTp+s3fvEEjy16j/Elg7lryrkdtvvFumXcM/cdDh80jr369UwoWns4euCe9ImWUOzkU52/cY+rLSWX7rfbRm1jU0EIgUX3FAR79RvJC0tnMaVyKBG5+W5Leq+ftl68//IMnr3vDY44bQ8m7dm2AqemJs6P/+9hlNLUrE9w7pl7N1n/4qsz+dlvnyY/z+VffzmLkuLWjc8zWL+6lnuvfZiqkf055qJDeiQUrT1UbzuI302/jlWL1rDn8W2H7/YUjtxhLEfu0DOJIzY3uqtwmjysivyIS37UZZsBPWcq31W0ZXTe0xYI3fXl3H333XnyySc544wzGDBgAK+88gpffvklN998c6fb3jKUUjq8j2+OHFFQG5uZlYFRoEg/DIsKyBqLawUEGj8ljTG21KjAMsodyKpSMn5FSpmQPiEVSosmWd1SaRfHURjKQeO6Ab4VoAKJVhIsBREFgTA+Uwj8lIV2BMJWRkHTqRuxnNi3rFqqlR9I3bRcELdZsboYpA7D5GhUFWXGOWMW1aS65jeIuaRYs3WZOrQI2wlIpy3q4xGkpcz6DJsbhsoFKKQUaGXILkM2gedbBIEk7Vu4jkdRWQMNxNB1Dn48gp8XYOd5+JbAsQNAoQJzykppTgwhTKp7zzfkUFqZTINSKvKsFANjCUqcOAAxK40VGmtpLfGURX3EZbVXwPKGIuKBgxA2FsoEBWpDRBH210RKKgIhCTSkfUkQWFkNG4TnV6jaE2mJSIdjlvHhCpVtQoFCQ35ArDBBaX4c1zahl5ZQhvx0bWq7el3UKz/f4nDC+as2OyEFUFqheOOZks1CSAEEvuTrme1f4PUk6mscdju4lgFDPL5/djVzP+t62yuWuBx33iraiyjqM8CnzwCfn59V3WEWvvVrHNavcbL9O/78lRQU/w99TzfB/DRmzBgOPvhgzjrrLG6//XbAPLE7/PDDm1xMjR49ml/96lccffTR2WW1tbU8/PDD/Pa3v21R71dffcX999/PoYceSkVFBTNmzOCHP/whkyZNYrfdtm5ioTaV5PHZM9lxwEDGVLQMIVuZrOHPc58GoNjJ45LRx7Qok0GpW5wNWS91WpKNixqMOfeSeOcyD/3s4+f5eO1iXlk2h/emblyPJzAm3Hv2mdjt7efVrWJFspadK4Zt9BvULQF1Xg2+9il1zc3a4vgKXl31AXv02Z5BeZ3LUnnMkEkcPmgCjpCbd8x6r5+2SCileOmfr1NYVsDOh7auSL3l8gdYuXgdC2cv487Xr26zLjdiU5AfobYuSZ+Klgkqlq5YD0BDPE1dQ6pDUuqxW57n6b++CMAOB0xgyLY947PXHsbt1v2wt/Wra5nx1pdsv/94IrHNcy24KZFIeSxdW8uwfmUIIahLpHho+ieMGVzJrttWd6qOUQP68Pp15yFE+35SGx1thO911gKhs+iuL+cf//hHzjrrLAYOHIht20gpufPOO9l9986H0m5+Ukq08R4MIdVcMRUuB7Muo5RSEQgiGJWUEMZEHMABbBCWUeoQhoNp3ahwMidaqA4SEjcMxwqUNJF2yiJQJhROCvADQ2gYvkcihMwhf0LJjDR9kZbpfJaQau/3tkm4XrOCrYwN5BhChs0KR6PC7HMZ5bnxcsqtpC0GsK0OhZ3K1CEwXlhKom2Nm+djOYpUyjHkXO72wiilmmQeDP9m2rRDhVM85RA0OEhPoCIgXY3tGL8oX1kEyqiwRJaQMn5Spn6BFBkSUVLgeAzOr6HA8YgHLkV2HEuokJSSBFrhY+MHNvVelLR2CJRtFHZhzxSGoLSk6bOvJCo0YPUDCz+wc0ZNoJREB6FKypcIXyK0QARgpUN1mWhUSmlHYxV5FBakKYim8ZWFhQkhVVrgacuY53cFKhPPGr7vxWbHVacMY79j13LGlcspKNq8ipgjTlvFZ2/nsW7Vxsl6tyVhwNAU1WMSfPZOPrU13buQ8FKCE7fbltN+soyDvrUOp41ruPdfKWTKges57LQ1THugjMfvrMBLt/9UbvdDa/C8MNvBRsAbzxWxaE6UqWeuIi9/C5kLNtH8dP/993PRRRdx4IHGY2Lq1KnceuutTcrMnj2b9c3SNj/wwANorTnppJNa1Om6Li+++CI333wz9fX1DBo0iMMOO4xrrrkGa3N5TPQQfv7aK/x75hcUOC4fnnU+jmWhtCbpe+Q5LmVuISMLq/i6fhmTy7dpt65tCofyx0lXIxD0j7W8sP3p+GN5cvH77NV32071bZc+Q/h47WJ26lPd9R3bxFiRqOW4V2/DUwFXT5jKcUN22Nxd2qhYnVrOjbMuI9A+3x9xNcMLxnDDzLtYEF/KG6s/4k+Tr+p0Xa60+GLtCm799E0OGDSSY4Z3zr+mORY2LOPJpa+wa8VERlhdDBPvvX7aIvHi/a9z0xm3AXDr29ezzeRhACQaUsTyzY/ylIMm8MTfprPLQRParSsv5nLvX89kxcpaRo1sSZoeP3UyQggG9i9h0IDSDvu27ZRtkJakvH8pFQPLOiy/ufGDva5m4cwl7H3iblz1z0s2d3c2KgKlOPHG+1iwsoYLjtiN7x20E7c/+zb3v/QhUgheuOEcSgs6Z2lhW5L1iSQ3/udVyvPzuGS/XbtFUNXFU9zx9Nv0Ly/i0B2GdW3j3Pkp85nOWyBsbF/OP/7xj7z99ts8+eSTDBkyhFdffZXzzz+f/v37s//++7fbbgabnZTSzQmn5utbWy0a1+mQPZApsCwIdBjCJ0FLbZgFT6J9gfJlY1iaUAipkbbGshWBkiAUEoXnm5AxGRqge4FAKcu8ApOdzw6VVCojOgpj07StTQifFuALAm017X8nHwIJoXPETM2VTZnFoS+WEGF7kK5zsybu2TJhGF2LOnQb71v0tVlBjVGChWnk0nGbtCebtpslsARBGPsnpCEEg1DircMDmErZWLbCdhRBaYogbpQEQVrg24KUsHDsANfxDFmkJF6oTpNSEwSaAE3UTlMcTZJSNq40WfdiIoVt+aSUHXpJCcrsevLtJDGZolDGyZdJ5skKljUU0eCbMEsrNKX3lDl3ZDjWGaISjGrKsozKLpl0jEl5AEIqcDQ6LRBpcy5ooUEJVETj52uCiAJXY2mFIMAPTLigryxsKXCtgH55tWiR4tNWDk2b6H3St8Uh2WBx3LmrNzshBfD4XX3+JwgpgCPPWM2IcUku/9YwVi7qrj+WwHbh8O+sa7fUXdf349q751NS7vPwbZV0ZqI/+5qllFZsPAXd7dcO4Lb/zt5yCCnYZPNTWVkZ9913Xwddadn+2Wefzdlnn91q+UGDBjF9+vQe6d+WhuKI+X7kuy5SCAKlOPa5+/hkzXJ+t/thHD1sLLfveDG+VridCK8aEGvbu2tAXinnbnNAp/v2g3H7cvrIXSh1ey7pwsaCpwN8Zeb5TJbCrRlaa9Yk3yNm9yPfGdxifU16Db42GU5Xp5YzvGAMfaPlLIgvpW+061nBfvPha7y85CumLZzLkUO37dZN3+1f/ZtP13/Jq6s+4M5xbStmWkXv9dMWifxQrSQtSTQkoe664Ske/stLHHzSLlz8q29x7nXHccaVR+JGO/YjKy3Jz/pFNUc04nDKcZ33T9rp4Ik8svyvuDEXx93st9QdItlg/E2T9V3NorRl4uvPF5FsSLHtzi1Duz1fsWSNCW2bv8IocweUGfKmOD9KtIvH65EPv+DRj74AYK9tqtlhSNdVcQ+/8gn3v/AhANv072KynzaUUp21QNiYvpyJRIIrr7ySxx57jMMOMwkxJkyYwMcff8xvfvObrYSUEjmvdoq0ppLKXa9lqDyxhSGFREhIWTTuocxl/sIwMimwrMC8F9qE7QmBYxlljApJAj+w0RgySoZqK5U9N2T4Cr2WVOjvlGkz1xSr+b629ZuXE7aYrUu0to3IUVaFH2WzCkRGKdWs8VbjJZv1oXnfwxXGWN5cLAhLGyVatnxuhxqXZ8Y4877xeyWQ0sT7aQ3as03fbI3laixHY9sKhQxD/wwxRGgmnzmkjq3Ij3gQphMujiTpH61FCo2nbECS1hZR4VNom0lZIfCxqQvyqPOipJRhM2V4fgRKIoUOzdlN5r4MSRooiZQC2wrwAwsv5RiVlBYIK0AnraxSSgYCGZrv+zFQjg4VfIpovkee6yOlwAuMdN0SELECXEsRyK5eGOVOWr0XVVsKztxjFJatOePKpUw9fS32JvZxnT8rytWnVbN6+WYykN3EGDQiyc77r0crOOw7q5n5QR7JePfULGtX2Bw6eDx5+QHX/X0eo7dPsHS+yz2/7scFv1xCcXnAH5+dAxosG56a9yk3XTSY154ububnB+N2rmffY9cx99MYBcWBCSnfSNEqd70+y/wWbsQ2uo7e+WlLxE923YM9h1QzpqIPlpSsTyX5eM0yAF5fNp+jh41FCokrNk7owvTlX/KbL6ZxzOBJfHdky1DIssimC/vdEAzMK+WuXb/L0ngNh1S1n31qa8CCuof5bPUvkMJl/0H/IWI3JZqGF2zLcQPPJBkk2KFsDwAuH3MGX9cvZlhB15NZ7DtwGK8s+Yo9B1R3O0xmTNEwPl3/JaMKq7uxde/8tCVi16k7cPPrPyevMMbg0ea8evdFYzz93kszs+U6Q0h1B8vmreSX376ZqhH9uOyu87CdprfO+R2E+G1JuOnFa/jgv5+y1/FTNndXNhjzZyzm+7tdg9aanz14MTsfMrHJ+qhrc8u5R/HenEWctJdZd9LeE5k8ooq+pYXE3K6dLztWVxF1bEpiUYZXdJ10Bxg9pBIpBMUFUSpLW4aPto9mpFQX56iN6cvpeR6e5yGbzduWZaFU5x/Ib1ZSSue+aX7RLFqWaUFQ0citWEkQAYhAEEQNuaQzrKIAPAFpsiF92hFIrdDaKF6kUNjSx7UDoo5nsqtpECjiysFP2yAVyhKh/5TJtmYUQAp8aUL0cvclc/5kyaKcHWrJ37QgmEz4om5CIOlMmYz6qdl22gsVTMKEJxKGMjYZ1MymTc5vjRULs8gFMuuJ1WSsA8MKGVIqVGlJbUglCTqbgTCnv5lMiM3VXrqxXGBJLCcwFduBMRcPTemVMgRQ1PFwrQDbUqR9i3jaIZV2CAKjvvJ8ybqGPCoL6/ADyfL6IoqdBINi64jINAkVAS2oCaLYspACmcaVPq7wKXPqicdctBasqC8goWxsqQiUIK3MjWwQmAPoOmaMMr5jljQeY5YVoOsjkBYo2zjla1sjfFAWCDsMMy30IRYgPDPG9XURUmkL21IUxZJErIA8O02hnaJPtA6XerqE3id9WySMAb7mqDPXsjlC0l96tIQVi775/gEZ7HVkDf2HmCf4T99T0W1CykAQ+ILh4xvYdscEAK88UcrYHeOUhEonO+eXtG6dzatPtS77P+Tktbz0aAlnXLGM/I2snNvUxGen0Ds/bZFwLIs9B1dnPxdHovxyl4N4Z/lCLhy/8bPiXfb+ozQESX4744VWSamtCZPLq5nczv1KOvC5f/7rlLj5HDVwhy3ad8pX5vpDaZ+AlsovIQS7VTRVvTnSZlRRdbfaO3X09hw/YjyR9kz8OsAp1YdxSP/dKHGLaKjrvX76pmDMziObfP7+L47jyXtf46ATNn5WuN+f81e+/GAeX34wj6nnH8TYKe2HMG/JGDC8HwOGt+/19tK/32XZwtUce+5+RFvJTrilIBVPZxXP8bpEq2WmjBnClDFDsp+FEIwa1DKsvDMYX9WPdy8/H0uKbpPmu46tZtpvziHq2nip1vvcJtpQSvU0uuPLWVRUxF577cVll11GLBZjyJAhTJ8+nb///e/87ne/63Tbm19r2AYZ1RrajTAL12dENFroRgGTzikZpuwTKKQ0LyEUUgZYUmHLACuM2VQI0p6NH1gmllKbVjLnRSOfown9s5sqkLJKpVbkXR2hCVmVQyq1RWI1aVNk+2nIPNGyzezDoLBOWyGkQivR7KQXjZn3AgzZktlXSyMshbBU6F8lm2yX25bOaTPLp2UZRQWhyTyBNEbgUkNI/klhGjTjqE04pYYgaFSBSaGJWB5KCVK+TZ9YPfkyjY2PF1h4SHxlTMRj0jPOUdpk44srh6SyaPBsPCUR4cE0JucZnyqBJVSO6sD0RaBJ+8IY6adB5uyr8IQ5L5RCa4kf0WhXhSeqBkcjbRV6milsK8C2fGzpE7VTxCwP3dWcnypzsKDXE2HLglKCVx4vYp+jaze5cmXn/Wt59I4KvNTW7X2zx+E1XP6nBTxyex/uur4/mYktElP84ak5VI9KNj7Q0PD6s8V89nYbafM6gQtvWMT7Lxfy1n+KmftZjKXzHfoP8Tj50hV89HoBh1ePY5+ja7jkN4uzZOOffzqAX9z/FXf+oj/zZ8bInXxvusgYUn7wSiGn/XgZJ120io0kPtky0Ts/bTU4fvh4dq4cxJDCko3Whq8CfB2Q8ozNQJ9IF8MZtkI8ufh9bvtyGgDDC/oyobRlWNyWgmHFp+JaZeTbg8izN02GyWgPsOnlkZLubdg7P201GLfTMEorCqmsav0BUE9Aa028Lml+o7UGKageu/GNzDcnFsxexk0X3guAbVt866KDNnOP2saoHYZx3cOXEK9LstexO22SNl17w6+hSwtNKHqXSanc+Sn7eeOgO76cDzzwAFdccQUnn3wya9euZciQIfzyl7/k3HM7zrKbweYP3+uBshmOQAZg+RhPKTChdCpXZaQNkeIobFdhOwGuHeBYAa7tk++kDT8jFL425uUpZaO1MEoHX6B8G8vxTfY3DOGktGXCNFo5P0ST0LdmaItl07ROOEE2IV92v8MbmpaEaW5B3ULBld0mZFAieR4lRXECJalPRPBSNiotzfgFAhEItA+4ZgzJVwg0dl4Qji0Eigwj2NiONqSRIWJo7ETmszbETZApk5LIegtta3SRT2BrfKlxrICI5VPkpihyUqxO5JNOOyhl0sv7gWBdIo+apJHRxtMutV6U4cUxhuavYYBdg+0GNAQRktrBCk3SAyQCQb6VpjiSoi6VR8q3UCERpbXJ2uglbXxLo4XIGuErJfFFaNRuQyAFIiVw46GPlNT4eQryQPmGkJIRQ+IF0sZyAizL6NhsS1Hspugbq6PASplMgUJhWV30pdCKrMO93rhKjF50FZoJuzZsllCqt/5buNUTUgXFPvscbUIfP3gln7LK8LshYMioFMO2NR4JiQZJQ52Zj1/4d0lW5dgdjN2pnlsuHwgIhm2bYEC1l1332Vt5FJQE7HfcOqSEdats0klYNDeC42jmt5ppsPHgT9qjjtUrbCxLU1a5+bMzbhL0zk9bDU5+/kHeXbGYM8dO5uqd9+vx+lcmV3PKW78j4Qf8aPxUFtbHOXn4ZADifprz33qIdak4f5pyAgPzS3q8/Z5EnZfixSVz2KnPYAbkt0+sDcqvQCCIWDZ9ol0N39gwrE+voNZbycC8cZ1SaEnhMLjwqB5r/6O1C7jq40eYVDaYX2x3bIs+vLPmC/4x/3kO6r8zRwzofMamHkPv/LTV4J9/eJ77fvMsQ8cM4E//vbzHFYdaa743+QqWfLWSw87Ym+EThjD5wO3ILzK/63+97O+89ug7XHjr99jpkEk92nZPQynFm0+8R59BFYzaYXi7ZYvLC8gvitFQm2Dg8La9ATcGGmoTzPpwPuN2Hk4k1jnv050O2q7H2l9bF+fCvzwOwC3nHkVZYdNruAXrarji+WkMLSvhugP23/SZ+HLnp8znjYTu+HL269ePu+++e4Pa3fxKqVx0dU7RjX8yUW5KEKpTyJIiiKxkKBtuJqTCEgFCBEihkCIArdFa4iHwlUUysAgC0ymTsS8Ttper8BWowBA3xvxbNLaV23zu/jUPY2tn35qSU51RXDWLe8wVLOWcv83nbymMcXugJCoQjWoohVFIBZk6Q4VQGL5mCohQYZXbT0E2PDBbV062QEV4sMx7nakqqy4CtCGOhDDhlSYQUeErScqTKCWafCkaBWkmpE+GkrZ0IBB2gNYaW3g4GNWTQuKpxlfSd/ADc3wFmOMK6EwfpPkrsgbzpvNKm5NCSg9t2SghEQpUhgSVCuEIdERhuWlzrliaiJsm6vrYQlEcTVDu1lMgk8REGonGEtqQdV1Br/x8i8ay+REq+sU3aZtfvJfHI3/pnlx5S8H2e9Xxy/u+zqqKfv3v+S3KaG0Ioe8fOJJ0qmcuFs7ddwwAeQUBl/9pYfYrJQR857KVfOeylQgBd/y8P//+cyU/u+drIjHNT05oabrZHJccMQrQ/P6pOZRVdvGJ2daK3vlpq8GX61YDMHPtqg7LvrTife6e9wxTq/bg+EH7sjq1ji/Wz2HHsvHk2a0blP93+Ss0+IaMXebN56qJJ2fXfbRmMW+unAfAf5bM5Mxttmz/k8vfeZrnF89mYH4x04/4frtld64YwRN7/4iodCiNFGxw27VegheWf86OZcMYlN923GDcX8/fvjoHX6c4oN/3mVR2+Aa1q7WiLvE0tiwnL9oYcplWHqtT6+kfLW9BFDy5+COWJtaxdMk6Lhp9IH2jTQm8+xf8hzn1i1j89coukVKevwwpY1iyZIP2qXd+2nowf9ZSABZ/tZLAV9hO2w/d5s1Ywq/Ou5vBo/pzxW2n4/mKN1+dzZhxVfRvI8Pe/C8Ws3juCoQQvDvtU/7xxW+y67y0x8O/fQqAJ297fosnpZ7+y3+55YI7kZbk3jm30K+67evBkopC7n77Z9TXJug/pGP/oY4QBIrpD71Fn4FljN9jTLtlrzzpT3z5yUJ2O3Q7/u+vZ25w259/spBVK2rZc79tsSxzTaiUZuHqGgaWF2NbTa8T35q1gC8Wrsi+P2zHpv19+LPPeXfxYt5dvJiTJ05k276du66ua0iSSHpUlm/gQ4hNFL63ObHlkFLthfG1Ne45vkwCQ0rIkOxQyihVjIRKg2VMuaUd4EQCHMcYSUcdH8cKsIQirRwSaYeGtIvvyzDjWwDCRxPWGQhQlqFmNOZzwsoamuvcfgnCH2XduCwXbSmlMn9bIZagddNaQahIarVe0Xjuiox1usgh7QSBlihtiB6lRej0Lo33UQAiY2Zla3AVTsRHSFNXEAi0yhi+N3ZYh0QUCoQKFVTN+6ZNO3gS0gIrKbCTAm0LvHwLaXnYliYdOCQCTQFpAm3jBU6owBLZJnO/n6mUw4p0MbalKYskEEIywF6Lp23WBnnUqTxSWlIbxIgrl4RyCbQVmn9JAmXGTFoaW2bIMU3EVri28ZvyAmN2HnECnPIEtW4Ur97CbjB9UsUBTnkSxwlIp23yIj6FsSQSTczxqMqroV+klkI7SZEVxxUKDSSUwzq/gLiK4AVdJKV65edbODSBbwyxNxXWrbQprfBZs2LrzbpXXO5Rs8amrNJvs4wQULNaUlrp97h/Vn6Rz8I5ERrqJYNHpLPtZdBQK3HcgFRSMPvjzpueCqlRAZv8nNhs6J2fthrcuf8xPL/gS04d0/EN178XvczK1Dr+teC/HD9oX6767PesTK1h1/LtuWx06zcXe1XuxBNLXiXQLt8e3FSJNal8ILtVDmNdOs5BVe3fyGwJyJAvosVFXuvoH+u5kKOff/YoL62YQZ9IIc/ve3mb5QLtEYSZ8pJBXYf11npreGLJLRTYJRwx4PvYsmlYXW38YZavvRSA6r4vEnHHEGjF9z/4DQvjK/jesKkcP2jfJtscM3gHPl23iIllg6mMtLxBO7j/FBbHV3JI/7ZJyED7SCQifELRkHyFxatORooChvZ/FdvaAHXHJpyfpk6dyscff8zKlSspLS1l//3358Ybb2TAgAEbtd1vCs66+mgqq8rYYe8x7RJSAC8+8h6L5q7Ivh59/EOee+pjSkrzePDJS5Gy5fe2/7BKKqtKWbOshm//qCmB67gOJ1w2ldceeYcjv39wj+7XxoDI2b/OKMoKS/MpLO2+7UEunr79v9x64V0IKbh75h+oGtG2n1X9evPAtq6m4we3gR9wyyX3smz+Kn5w25n0HdyUQFu6eC0/PO/vaK2pq00w9bgdAfjVIy/x0OufsuvoIfz5vGOabLPbttVMHlEFCHbfdmiLNg/aZgSPfP4FQ0tLGF5e1mq/lNIEWuFY5pxcW9PASRfdRUM8xU1XHsOU7Yd1uG9tYhOG720ubPWXwVmVVOZYhaoe4QN+aPJtZZRSxgPJxPUZ5ZOvMp5LAk8L0koQBKARWeJBKXBsD9+3Qn8pQwDpQIBnQttMargc8ilHxQXNeKX25oT2zrEOz7+WSqps5r2ckMAW5KrWaF+QjNthOJvCsRQ6ogiEhfIN+SOEBsdHWLmhf6GiMLf93JC9TFtZFi9UQuVCNf7VaAJLoG1zmFRa4lsSy1IEPsTTNrUpF89vHOSWk2xmOfiBoDYdocaJEiNGUrk0qCgNyiWpHOrSERLKJelbpHxp1FTSR0hIeRaBL9DSKLKkzJHIobClwjLpFvF8ge9JCDSBEyCiCrcgTUE0Qcz2SVm2UUdZKVyhDBFlJyixGii16imwUmgEvpYgNWkZx9EecdFFeWbvk74tGsXlwSYnHyIxvVUTUgB+WrZLSGWQVwArl/T8vq5aGuH3PxrEna/OanW9l5Z4aYvrz215IdMutKCkj/+/QUhB7/y0FWHHfgPZsV/n/FOOG7Qv98x/poW6pb1LnYF5g3lg1z8gEC1+w/Nsl7v3OLmNLbc83LDTYRw4cBQ79WnqD6W15voPX+LTtcv4xU4HM7J4w5UHzRGxnCZ/20KhU8GJQ25gTXoR44o7Ts/9ac10vqr/CICJJfsxtKBpNkEhouE7iRCmbV/5LEkYZd28+qUt6hxfMpBH9rqwzTYP7T+FQ9shpJYlvuSB+T8hZhdx2tBbiNlFpLwvAY3SdfjB8g0jpTbh/LTPPvtw5ZVX0r9/f5YsWcKPfvQjjjvuON58882N2u43BZVVZZx19dGdKrvfsTvy3otfMGRUfwaN6Nz5Ec2L8PcZv0UpnVXZ5OKsG0/lrBtP7VKfNxcOO3t/KqrK6DOwnL5D+jRZ999XZvDIUx9w0jE7sdduo9qoofuIRM31mLRkh+Thz+87j3df+II9j+j4Qcicj+fz3D3TAZj2j9c49aqm54JtW0hLEPgaN9I4N85ebOan2UtaKoBL8mP87eIT2mxzfL9+vHX+OW2ur0+mOOb2+1lR18Dd3zmG7QdXsXptPfVxk/F93qI1G0ZK9SqlNhFEG+/bW5ZZlVEk5UbohV5SPtp4IDkaYWksR+E4CksaIkMLidI2Gp9kYJNIOyQ94yGllcBXNkIG5EfMk/G6eGh8rSQ6LSEpG5+MCWPU2UQsJJr2scN91a2s083X5SivdNOCIqMWCvshoDGsTuRu37xdgZdw8TwH2w0oLEhiWQHJtEsyKbAQCBkgpc4SckaaJEKhkjBtC8L/RKNflA5VVtp8Fko0bxqEQIRcoZACHTHklFaSQFkoHWChSQYuDXVRvMBCa5ElE5sOnEZIsMJm4oFDXRClNsgnrqJ42iKtLer9KHWe+ZwKbOKeQ8KPEHEUeU6a+lSEhrhjjM0dhWUpXEdhWRopNLZjMu8pJalPujTUxyBpm7C/fj4FRQn6FtXRJ9qAJRUrEoVYQlEebaDATlHqxKmOrKLaXU2hTJLUDgntorQgpT0i0iehIkTcLk46GfKvyTnTiy0Fcz6N0XdQmki047Ibiq9nRPnsrXw+fadnnnhtTtSssXjsznK0Ajeq2O2w9ZSWtyRsv57pbrQw+yAQPP33crbdIc6oiQlDenvw/suFFBT55Bf5NNR27SdVA3M+jlE5wMPdcpPc9Bx656dvBJYnarhj7ouMLxnMUYN2ZN++k9m37+Ts+l+Ov5QZtXPZsXR8O7WA/Ia4/Bc4EaYOGdti+eKG9dw5610A/jLjDcb2ddm9z3i2Kew5s+T/G3c0+/cbx/iSjg3TB+WPZ1B++8ckg20Kd+CdNU9RYJfQP9bSh6YwNhW7TwVSluA6Jlw5YrlcM/ZMPqmZy9ED9+rajnQCixo+xdNJPC/J6tRCBtnjKMk/BaVqsK3+RJwJG9bAJpyfLr300uz7IUOGcPnll3PUUUfheR6OsyWmTt16kE553HvNQwCcft23GLptFbe/clV2/fmXHMSkHYYyZmxVqyqpDIQQWFbb67cWSCmZcsQOra77892vsGZtA3+991WWvjaDQaOq2P3onjMNP+i7e1M5uJyy/qUtCLHmGFDdh6O+t3en6q3ediCjdxzOigWrmHL49i3WV/Yr5s/3nsXa1fVM2rHxYeG1Jx3Av9/8jAMn9XwGxXlr1rFw3XoA3p63iO0HVzFyaCU/OedAVqyp5egN9b/KnZ8yn79h2DJIqWZojZvpqGzGu0gHGJNsEa7NqHW08QryPYmywLKUCVcToJQd8jsaS6qQ2BGk0xbphAWBg5SaIBAmQ5wC/BzFj2ylQ80XNZdMtROS2DRbXyPp1dKgvFldOfyMEArL8Y3nlWehg6ahdS36EGT+SOJxi2hMk+emEFqR8h3jp4VGSI3vS7SSIQkWElU5Pl7NbwrD4cRQTZle5IQaZrbLEIsqDMNMgJYCX0isfFOpn+tdlRmnZsSxDj2hhDBqp1XxPBzhU2ClQYKvJcnAocEPQzWVIFAWYLIIRq00ZQUNrBEFrIrn4aVtVNJG2xLPldi2ydQoBASBJBl30ettZFKgXE2sME1lfh2lkThRO0W+lUbogAYVJVBmHzwlSSuT7S8QwpjGY5QgUZmmSMYR2qLe7iop1atE2FIhBEzcrX6TEFLLF7p8/8BtUGrrv6AC+OytQj57y4R7/PD3C1slpObPivLbS4bQ8a9G97B6qctrT5VyzFlrssv+flM/+g9Js2JRpMuEFJgo6Ym7N/xvEFLQOz9tpUj6Hg999QkjiivYtV8193z9Ck8t+YCnlnzAHpWjKW8WilURKWXPPjtupt5uOeifV8Tu/ar5fO0Klnnz+HD+Ip5d+i7/3v2aHmsjajns3XfbHqsvg8roYH44+u4Wyz2VIu7XUuz2aeIllcHO5WPZubwlQdcTGF9yICtT8yiwy6jKM2GdUuZRUfzjnmmglfmptra2SZFIJEIk0rMT9tq1a7n//vvZddddewmpbkBrzav/fptUPM3+p+7Bm0+8l/V82mbyMPY6vqn6Lhp12Gf/jXOObm2YevB2/OvR9xhgS+7+6YMA3Dv7ZvoP6xmTcyEE2++/gWRxK4jmRbj55atbLFdKs3TlegZUFlM9rJLqYU19n4b1K+fHx+zd4/0BGNu/L+fssRNLatZzwmRD/gshmHpAD+1/r1JqI6MtBVFmUXMRTGtVZOoQgAW4oKKgIhoiGmEbVZGQgJLorNrHTGQKgRdY2JYhcITQ2LYmlXRRnoMQGt82/IfyJQQWJC1EKuywhQkPlI0eI7oJOxSqspornlqL6xNG5dNEBZUh1zIqpEwGO91820ayRkhFpCCNtLTJoueLxu0zaKK8ytSp0UqDsCiMxZFo4mkjvbQsjWMHJFOOGQcEookSs1E9RS7hlKGfMu0LQS7nJmgM9RPaeE8JBVZaotAoKZGu2b9AyUaVFjnjKpr2QYSqMYBAWaSUS0JFUcICJdBaUO85rE4UEGiBFZZXWlIWizOqZBVx32VxQ4nJ8Bd3IABdEGBrQEk8ZYzQvYSNXO3iNEj8iEJWpBk9eDllkTiW0BTZCfKtFIkgSkKBY2lcS1Fopym36ym2UmhhMoU5QhOTHgUyRUwoXKGpS3dR9pFlTTPve7GlYMDQFEI2ndC0hhcfKeHzd/KJ5AVMPX0NVUO9NmroPObNiJhEBGrLy7gnhOaAE9Yyevu4GQABq5c5PP33CmrXdnxB/sLDpcx4P49+g9McduoaCkvMeV7aJ82FNyxm+hMlfPpWARuDnBqyTZwggNAugF0OME/Fnvtn6/4CHUEpuPPn/ZmwWwP7HLkOdxMQlpsVvfPTVonbZ77NzZ+9hkDw5lEXMKl0KI8tehdLSG784klumHRSE9XTvxY8x+NLXuLkIYcxtWrvzdfxzQxbSv6x30kA/HrGAyxbvoiqWM+H8DWHpwJsIXs8I5mvPP485/vUeCs5YsAFTCo7sEfr7wgxu4jDqy5rc732F4KwEFZV9xpoZX4aNGhQkyLXXHMN1157bffqb4af/OQn3HrrrcTjcXbZZReefvrpHqn3fw2fvjqTX5z4BwAiMZfh21UTzY+QTnr8/frHGLf7aMr7l2bLv/POV9xw/ZNMnFTN1dcc1ePfk60Jp5+0G6eftBsv3P8an9zxX/JL8sgv2bjqeqUUWmksu+evT39+y3NMe30mB+4+hmsuPrTH628PUgou3a8lUZ/B+po4a1fXMbSTIaQtkDs/ZT9/s7DlaKdzRE05i9rnpEIOJPMSAYg0yCRYSYFMSIhLiFvoOhtdbxPEJX5a4PsSz5Ok05JE0qYh4eIHEt+zSMQdPM8wQ1qBn5IEPghLId0AIr4x/M7tpGr2ylmuczPXZeMMc95nXjpUegW52ewaWSxp+1hRD+H6CBlgRz2iRQkiBUkjL8qU1MbjRCtNJJqisKgB2/WM4btUCCcASzVrn2ymvXTcZvWqAlavyycZd/ASNl7CJpWyITT8Bm2yEOZkymvcD93kwDXyXzoMc9Rk/mXGKNt9AdoC39EEQqNDE+AgyBB7uWdF4zHQAajMS5lXEIDvS9Y3RFmwtoR5a8tY1ZCP0lDgpCiP1BGVHinPoj7hmr8ph0TaZlhsJXtVfskOVQvo13cdruPDWptgjYOflEgRIGWA0BotFdpWqLwAN+IZtZX0EFqxLh1jWaKIpG+htAalcfGRBGgEEkWRSFIqEvSR9ZTLJIVCERNQICTFootPzRoZ128ki74141f/+oqyyqY/Im8+X8RNFw3hufsr6NM/6BFCas0Km5+dOZTA3/IIKYD9jl3HD3+/mMNOXcth31nHYaeu45M3CjtFSAF88mYhz91fwa4H1WYJKYDickXfQR6fvlXIxiCkRoyPc8lvlmYJKYBtd0zw+N/6MPuj7l7ECd6aVsK+R/8PEFLQOz9tJQiU4o+fvMGvP5xOKvApixjz/jzbIWrbHDRgO6ZW7YCnFC+v+IKl8XVNtn922WvEgyTPLXt9c3S/Q2itURsxnXZr+OGYE/jLDpdw08SzN2o7by1byLj7/sABj91F3Ev3aN0pFafGWwnA8uTXPVp3V5EOavFVY9ZSnf4AvfoA9KoD0N6X3au0lflp0aJFrF+/Pvu64oor2tz82muvRQjR7uv999/Plr/sssv46KOPmDZtGpZl8Z3vfKdFmvVetI6XH3iDm8+/k5ULV1NYmp8NwyuqKGTQqAFc8pezUdJi8ZfLeW/ap022fenFL6itTfLq9FnU1m6ZmW+DINik7e1/8h7c+elvuWfmHygq2/CsoG1h3cr1nDL0Ao7pcyZff7qgx+uf9fWK8O/yHq+7K0ilPNbXNZ5bDfUpzjjuVs759u08+/iH3au0+fz0DZwrtozwvbZ8lnSj+qjVbRrFSOajJFQuiVARJRCBFfI9GhwNUmQzEWgtwsxxAicWGCPzlG3USjpToVEvyfBGJFBA2oJAZL2bWnRa0qzjhozJLspViGUUUejw/ApVQzJDXIWbWBo7olBKIHyBjGhiBSksqalbm2cy2GUqtE0mp4ircG2fZMIlCIzfkXRNHVkmL+yQETKF46IkKd+og/BNvdpSIEPCTIvGbZoctFzZWvhZ5IyObvwgclRbMjMOWpgP2ijbdBREfoDt5vhltSKva/S40s3UW2ad50uUtrBVQFXJeqKWT6AFWlgkvAhJz0UDtqWoyIszvmgpeVbaGKAnXOrTEdS6qOlDgcKJ+VgS0kkHGhzsuIVfpJBlHv0qaqguXAtI6gMXX0uUkiSVjSsDSiIpCuw0fZx6BjjrqLASaAE2mogARwgkEBUWMWEjuxrP3hses8Xi52dVk1doboQyDzgaahtP2Mf/Vs68GVG+c9ly+g7qPjk18708IrGAZLznpvfq0QlOumgFxeUmxHT6kyVMe6iMwDPzQyw/4JQfLmf4uEQ4rzTOXe/8t4iGWos9Dl+HE9EUlba82Dr8tNUs/irCkFEpBlQnefnxUlKJ9km1Gy4YTEFRgAb2PKKGA7+1llETG5i053o+erWQnn7msuDLCD8+fihHfW81C2ZHmbxXHSMnJDnwxLV88X4+q5d2z2A9Xi+5/IRhWLbmsO+sYbdDa7G3jF/mnkfv/LRVYPrSefzuY0MoDSsq45SR2zO2tC/984sodmMAHDdkFz5fv5hti6qoymuqFDx96JE8tXQ6xw9qVNL4SvHC4jmMKC5nxEYw/O4sGvwUp791G6uS67l1xzMZXtCP5YlaqgvK2lRMLGhYxKLEUnYpm4wtu/fltIRkVNGgjgtuAHyleGjOp6SCgLnr17Cwbj2jy9r3cekK8u1ijh10GUviX7Jbn2NbLaO15qM1d7Ey+Tm7VF5CiTukS20orTr0Glud/IRXlpyNLWMcNOhhYnYfCJZhLiR9UCuBbnjGtDI/FRUVUVRU1KnNL7jgAk488cR2y1RXV2ffV1RUUFFRwTbbbMOYMWMYNGgQb7/9NlOmtG323gtoWB/nV6feglaadDLNZXedzx2f/RY/7TNsgjnfdj5kEpP3G0c65bPLoZOabH/MsTuyZPE6tp9cTXFxY7bcz96YjVKa7fYYvUn3pzluOPWPvPyv1zn/5jM44rwDWTR7KVUj+mE7rc89a5ev491nP2Lnw7antG9Jt9sdPKabCsMu4PVH3mHVYmOB8OmrM7LHq6dwzUWH8szLn3PoPm2HZ7726Ls88af/cMzFh7Dr1Na9ttpCEKhWje9zUdeQ5JQL72bd+jg3XnU0U7YfRiKeor4uCcDypeva3b5N9IbvbRq0N6zNo9SabJNZIcNyCoRn+CBDdAi0o9EZY3OlAYnSGu3obCiNRpNK2ghpPI90YEgh6fpoZcL2VNxuJE78ZmFwurEfCAyZk7ssQ9/YGqRRGglLkR9LYVsKMFkCAyXxfBvPs1CBDLPeSaOQcowyx7bAF8b3yhE+UddHlGjq6qMEoW+UsBRCBAitcKRPrDCNlAEpz0Yj8DzbqJy0zO6DzoQEhgOrA9lUxJWy/5+9+w6Po7oaMP7OzDb1Xm2523LvxjZuGHeaDaEHCL2TEAIhCSGUJJAQICGhfxBq6L1jgwEbF9x7kbtkS7Kt3rfM3O+PXTVLstVly+f3ZGLtzNyZu7O7g/bo3HPxmjo1IlHVMa0aiUs1q0ZVvnpV++nKn5xlVX9vrTyQVrOZBpbmnx0Rj4bPrqMHMtMa/DwGam4pi1pDGSt75PVq+Lw2dhyKw+XwYBgWcUEl9I46xKGyMLILwvH4DA6WhLHE1osuwYV4LBuRjjJSE7LJtpdzsCAMy2ujosROaHgFXWPzKA91UBQejOmzYbf78Pps7CuJxtAtvJZOmc+B17Rh6CaJQUUE6xWEG6U4NC9eZcOtDFyaiYH/wxikGRho6Gj+S98Jbzonqx0bjp5Nc/iAkzHTsloUkCot1vnLDT0CgdrWc9e/0+kz2P8f1JwsG1/+r/aXynnX5nD+jTl12lWU6Tz26268vnLrUY///nPxFObZ+cOz27l05CAs89j937XJ/8tkVJyXs3+RB8Dq70JZuyiiUc+pqbxug6AQRXG+jZJCG/2G+a/HZ6/ENjsgBaAsjU0rwkgdUcqUc4qO3UCINtY7PJoQmx2vZdE/Kt5fFyTOX5zbUopnty4hz13GC2NvJMRe/d63lL94wbSEsUxLGFvrmE9tWso/1/+Iy7Cx4vxbCW+F1MCcimKW5uxkcnwqpipja/EmhkeOItQWRlrhYfaXFjAuvjvXLnuJ9NI8nh57GYYG+0r9My8tz0njjuWfsLckj7uGTOO61FPrnKPUV8a9mx7Gq3xkdcnmgpS5ze6vzzLJcZeQGNQ296gHV8/no4wNhDpcXDVgDKlRrR/8GxQxiUERkxrcXuo7xLq8lwDYkv8upybc2ehjv5X+NKvzFzE3+RdMjJvT4H4F7m0ofHitYkq86f6glGsOmlUAmhMcDQ+haUuVQabmqPxdz+12t2aXOiVXqItuA7qwb/N+BoztC0C3/tUBlcUfrmDlV+u4+bHLSemXXLVeBWZdT01N4smnf1HrmBuXbOeuM/4OwMMf38mI01pep83j9vLjBz/RZ3hP4rrFsujTtQwY1YNufRMpOFzEhqVpjDp9EC/f+xZfvriQ6x+5nHNumsmi95ZjWYrF7y9nz8Z9fP78N4yaMZS/fX1vvef507xH2L5iJwPH9+OJJX9tdn+VUuQcyCM6KeqYgZfmWPTecv5964vohs6pc0cz7ecN30eaq3/vBPr3PvrwuGfveo3DGbnkZOY1KSj15YsL+ddN/8eEeWP40zt3NLjf4ZxicgtKAdi6I5vxI3sRGx/Og49dzO6dh5h7gdRbbEjHB6WOUlPqKKvrNq+MXhn+RRmBRCe9sqS28mdQ2ZR/n6r0KsDU0Zwmlqn7M4505Q+CKFDo/swon14d6DADZ65OAaqRJOSviYTCP1yuspOG8i8odLvC6fARHOwNBIYUlgLTq2EG6i5Zlubvi01hOCxsdoXdANPSUGgEOb2EuLxYSqPM7Z+1TQukHNnsCqfDIsjpI8juo9xrx0THsCs8blvt4YGVs9hVPpNA9pcWCIpU0VWtzKr6Q4mVwaDKdKjq2lJVf4CsmS1VWRuq6sTUfj84FZrLCmQ/NfBOqFnDSjsys646WwOl+0cKaho+7Lh0N3HB5RR5nBSWB+P12nE4vQQ5vUQ43JRaLpQCHzp2wyLXG4KpbKBpOFwmcaFl6LpFvrLhtmzYQny4grxEB5XhVnZc+CgzHZT5HKAgylVGgquUKHsZ4YabGFspUUYpwbqJrvmzpII0A6dmoFAY6OjoRxS9bwSrRpTUkoDWieY/d3dhxbfhXPfHTKLia2cU+bzw3ANJrPkhHNMMfH4qJ0Co+fHRlT+TswWi4rzc+tB+evQvBzQi43xV26ITfLy0dAuWWX1eV0j9Q2GcQRaPfbADn4+jZv/8+bXdlBUbBIVaXHjzId5/Phavu3HDD/MP27h8bH8MQ+HzVAfD28LKhWGkrQ/CsCkGnVLCl/+LYcuq4GM3bIS09UH8YlwqgRJzxCV6ue1v++nW11PrvrbgnSjefz6WirJAllqwxc0PHWDQ6DL0Bn6PVAre+k88Cz+IxOvWCI80ueT2g3z1RgzpO50MGFXGdfdmEhXXxkMG5P50QugeHsVPF96CqRQRRwSPVudk8Pim7wHoGhLJlf38MzVtys3m4vlvEBcUykdnXFGnnaWq/wjYWq/8rStfY1tRFqNjepIUupnD7kOsy1/FxSk3MnfBC3gtk+v6n8KmggMA/HBwO7ekns7Pe0wkqzyf2UkjeHz9cgDSCg/Vew6NwCyBCowjU7Gb6Oql/2Vdfga3pp7O9f1Oa9Gx6nO4vARNA7sD7hgxsUNq5QTbYkkMGk5OxTa6hTbtS+f6gmUoFOsLl9cKSmWW78FSFl2D/bMA9gg7h1JvFk4jgliXPwtG0wwIuaxlnW+n+9OKFStYsWIFEydOJCoqit27d/OnP/2J3r17S5ZUIxiGzrOr/05xXkmdzCCf18fDVzyJ6TUpyivh/nf9wYOy4nJ+OeFP5BzI5W9f/YH+Y/rUameZNUqgtNJr/8p97/DuY5/iCnEy9dpZzH/7J4LDXLy9/iF+/7N/smfLAcbOHMraL1biqfDyzf8Wcc5NM/nVM9fxwztL+fkfz+f5u14FYM+mjIavR6A2k9FAJlVjvfrAu7z+5/cZOmUgjy28r0XHqk/ewQLAf62vuO8CwqLabpjg0cy4fDJv/+MTpl/WtPvTjx+uwDItlny4AtNnVl33wwfyyNiRzbBJ/TEMnZ7dYrn9mtPZn13A+WdWzww4dmI/xk5swax/Ne9PVY87lw4PSqmaP9Tz389jXfLKIErlzpXZUpWzfFrgz1DS8Gc4leooLyiHhe6w0Az/NrPc5s+8CQSffEaNrCBT82dgBb7oKV3ViMvU+LnyS1rlesNCc5kYDhOX04vNZqKj/P9qCptemSXlDwA5DS+hTihxuyjXHPg0oypbxqb7sBsmNl3DMqHcY6AbTgzNwm73+YMXGuiahc1m4rCZoBSmBcF2DzbdpMztxOvxV2SvzArDrPkaVF+0WvEnAF8gQEd1UK+qyHzNF0rD/w2oerxd4DkGtmkq8MWZ6ln6/Als/iF9yp/ZpjR/PS9VbqB8GprNQrNVDdirFY3UNNWIzBB/G4/Hhs+nKKswUFYssSGldI/M5aA9DIfNJCU0H5vuI88TQpnP4S98r1n0jj1MQZiL/JJgKsocZOWHkRxVQO/oHIpCnJT6nOiaosjrxGdpFGsOlAKPqePQTIINN8GGG1sgja7MclBgBaMox6n5MDX/jH6OQGpaGV4spShs4rhypSxU4MKqdq6ZIVqupMjOGZfl1glIAaxZFMYn/42vp1XrO/vKXCaeWX/Wjq5Dco/GZXNpGiSk+I65X3S8SXS8SXmpzlv/iadpQSWNQxntM32d6dPJO+jg4tsOsnFZGCu+ab2MB2XpZKdXf5E/6/I8uverXRPG54XHfp1S63438+JchpxSdtRjH9jt4OW/JVU9njDnEFtWhbJ8gb//dz2R0fYBKeT+dCIJtdf/meoRGk2kI4hSn5uh0dXvqcVZeynxeijx5pGWf5gxCbWHqt065FR6h8fQLzK2TsCquSqDLgYatkD9Rbtux1KqKggWZQ/lkh6nsK80j591G42u6fyq/xkopdhQ8D2/HtqbvPIYruw7Dp/l46PML7FpNs5JnoWu6QTbgnl4yL0cKM9iRNSQZvfVUhZbCjMB2JC/v4XPvH4PjpnN8NguTErq1WHFm3XN4IyUJ5vV9mddr2VtwRKmx59XtS69LI2nd/4BgOt7PUCv0EHY9CCGxd7eGt2tpb3uT0FBQXzwwQfcd999lJaWkpSUxOzZs3nrrbdafWa/zspmt9U7VM2wGfQf05vNS9MYMrF6GN6+rQdI3+YPTq9esLFOUGrY5AE89NFvUJZi5OmtMzNfZZ0rTddxOAP3J4cNTQOf1//fW5/Px02P/YL5r/7AZff6h8TOunIqs66cyqYVuxk4bQS9R/RixuWTAfj2neXs2pjBRbfPISLGH9T58yd3s/abjYxs4SxvW5fvACBt1a4WHachZ10/HV3XiO0SQ8/B3drkHI1x5f0XcOX9FzS53RX3nY9Siglzx1QFpCrK3Nw48X5KC8u5/Pdz+fldZ6FpWq1gVGupeX+qfNzZdPzsezX/rW97zfhPA+P4auXvaIANlO6vK4VBVdBKg6osKs2mqjNwfP4sGn/B7UA7rTpAo/k0/6xw+LdpWmWQRVXVQKr1PJS/D5rTQrMr7A4Th8OHroGuKeyGCvz1DaxAvpAGGLpFudeB1zQwfTooDd2msDsUDruFroHHa2BaBg67D5th4fUZ+Hz+oYeaprAZCpvhn+XNZihsgeGDljKo8Nnx+WyoylnsrKr0Ln/XayY61bnWgRWVswxqWr2vh/+1qjl8Tqv1Ola/SJVbtVr/Vg2BrBzPFsh804wap9NqXuhA62P+/uWfWbGy7w6bItTlxWFYFLpdoGvEBpUR6yol3xNMic/lDxRqPtA0THTcpgOv146ma4QGu4kKqsBn6nixARpOw4vHMrAsA8Pw4VP+6F1UUDmJQSWEGm4cuolL9xGsewnRKtBR2DWFK5ApZWgaHmUFYpyKJt9yAsXUq35uA3v37uXPf/4zCxcuJDs7m+TkZC677DLuueceHI7mD2MSfh88F0eP1AxCI/yv/ot/TeSrN6PxuCtvNq3zZWPOz3O57DfZOIN8tTIVNfw19CpntmyvrzZfvxnNy48k1o5nH6fefioeu7MyJbZ1rpDdYXHrw/v5/NVo0taH8N+HEln1XSh3P5lOVJyJpvlrBV5wyyHefzbO/98IYP5b0Sz+LIJufdz84bm9JHT11bkffvG/GAy7VVUD7P3n4nC4LPoMKeW3T6aT0LV1CyI3qB3uT6JtxQWF8uNZv8RrmYTVCC5d0HsIG3KySAwOZURc3dokdt3gnJ4tGxKjlCLPvZkQWxc8SvHk6MtYkbuHCfF90fCysySNAeGDcRku3pt2JftK8pnddQC2GimEbtOLoelklG3mwwP/AuDMLrcQ6XCyPG817+/3TyWfEpzMqKhhACQFJZAU1LIp0nVN5/HRF/PDwe1c3qvuMMHWEBcUyg0DOybTRikLy/0tmpGMbm/el/rR0VMYHT2l1jq3WVH1c4XVxkWp2+n+NGTIEBYuXNhmxz+ZaZrGPxbcS3FeCZFx1bXA+o3qxXm/msOh9BxmX3VavW1HHqUOUWOlZ+RiGDohoU4u+sN59B3Vi95DuxPfPY6Rk/vTZ0hXDJvBQ+//mrXfb2Hc7GGER4cy55rTAfCZlj9gZVn8/vLn8HlNZlwwhi4Du3I4M59Hb3m56nle9+D5AIRHhzHlwpbfU27+15V88MQXTJjbNsPLbHYb59w0q02O3Rhb16dTUljO6En9mhW0Tx3Th4c+rz3RgemzcJf7/0hbWnj0Pw62WM37U+XjTqZDg1KNupzH+oKiVX+fqtrNDMQtKgMcCn9wA9C8GobbQJXrmE7LP6TO1PxZUGaNAEmNEWrVARtVfwCq5nsEBS6FLcRLUJCbqNAyIp3lhNncGLqJZemU+Jx4LIMitwurMvdHgVfZcNh8hAcpihV4vP7Z7pS/ABS6ptA0C023cHts+EwdQ7fQDQtDt3DavTht/ui7pTRMS8PSwWXzoaEo1Jz+nKVAcEYZBIYiHnGNa/58ZDaUqt5XUw1tq/+LWlXASz8iW6rGta4K9mkEZgPUUErHVKAbqiojDGpmajX8Bqm872iGhd1uYjP86WxKaWQVhVHssuM0TKJdpTh0Lz5Lx6ZZ2DQTrzLwKR1DWQQZXmKDS4hwllHkduK0+8gsCSfSWU6EowKPYeC1KoubKbymgaU0dBQVPoMKnw2foWNpGh7LwKPpFBGMS/fgVTpKd/tn5AtcVC8WPqWoaOpNR9V4Q7bRDWvbtm1YlsVzzz1Hnz592LRpE9dddx2lpaU8+uijbXLOk8n5Nx2uCkgV5Ru881TLvgw15KrfZxIRXTNdsWP992+JFBxu4myTHURZGp5jFGJvqv4jywgJt0hb7//rp2VqTD+/gOgaWXOmD9558sj3g0Z5iY3J5xwisZ6stIJcg/efrZ1hp5SGu9xg7tW5dO/bTgEp/4lp6/uTaHsumx0X/s/q4YpiIh3BxAaF8Mxp57b6ubLKVpFesogBkRewv2QBG/OeQSOYDWXRDAgfx8973B3YM4gRUdX1QYZEJxPi0FlfsJuRUb3RNI1tRfu5eeWzhNicPDbifHQMLEye2fU2mvYVt/e9FptmQ9d0klytf9+dnJDK5ITUVj/u8cAqex1f0f2AgSP+ezSjdYom9wkdwmXd78RSFgPCRrXKMRsk96dOwTD0qoBUSUEpuqETHBbEjf+4vNXPlbn3MB+/8B2nTB+CPTaUX935hv8P2Q6IjQ3n9SevJjjI/8fa8bOqMy3jkqMYddZw1uzLZnyYC6fdRlmZh2t+9TKHcop56J55RMSEkptdyMLlO/j00if5y+/nEtclisMH8uk9tPUnTejWvwu3P3Ndqx/3eLAnLZs7LnkWgLsfvYjTzhjWKscNCQ/isS9+y871+5h2URv/QaDm/anqcefS8ZlSR8uWOjIARAOPawSPKofzVc3EF6grVRW8UICmoYzKLCd/FlSt2koNBFCr6mdXJRjV3DEQLNH9M9wZNotgp5cgm48Qmxeb7g8/mZqOqQx8lg2L6i81ltKwG6Y/G8o0AgEp/1AZu82f9WQpDZ9lYFm6P1GpMqNLgWFY2HSFofsLpoOGTbew6xaGBoVeBx6PHcvyZ2BVz753xAtQGfSp7xoE1mtHe81qrdRq/6iObFLjgh7ZrGZQ0VDoenWWk/+1qHmwGlGtGgepWY9J08Fu82cbWJY/s8pmWP6MMt3CbliE2d3oGhT7XHhVYIx2ICKp8Ge1eS0bNkNhKoMgmxcjUDfMp3QspQWGOAa6qTQM3SLaWUGEvQKnYWJoFi7di0v3YdNMDA0cmkWQBi5Nw9B0vMrCgqZnSYF/Wjct0LKNUjtnz57N7Nmzqx736tWL7du388wzz0hQqhX8em4fdF1x+Z3ZHD7gQNMtlKUfu2EjTT8/j9se3o/DpapG2h4Pzrkyh9ceTWz1Iu0nApvd4rwbDvH6YwnUDOo/ensKj/+ma/WOVTNE1L1G//dgEmsWhXLv/+3DFWzx/nNxvPz3RHzehts89usUVi4M485/ZeBwqbZ/L7TD/Um0nzd3r+DPG76gX3g870+9EeMYs6Y1x8LMu/Gpcoq8GUTZ/YEiS5WjodhXuq3eNjuKFpJZnsO9G9diKos/DrqQOcmj2FSQjtvy4vZ4KfLaua3fM3x7cBFbi78FyrDrDp4e+QiaphFqO/rEFKJ9aJrG4Ihx7XMyuT91Kmmrd3H7hD9ic9h4bt2jJPVq/UDz8396j58WbOKr15fyy5euD1RvUShL43BuMbn5pVVBqUobd2WyZtt+3lyxgaz8Ys45ZSB/vmwW2YcLycwuBGDTtiye+eI3LF+axl+e/Bosxe70XP5v2QOUFJYRkxjZ6s9FNE/qyJ6kjuzZ9ieqeX+CTnmP6vCaUkDjRj/Us0+tEWJ67bCEpkDz1divMvhhgu4D3aNj2TVUzStQeQ6r9sPK49b8rqTV/IMKCuW0wKbQ7RauEDfRoWUkBBcT5SxD1xR6oLinU/lQdnAZBnrgzWXTLXyWjoXm39dloSkNt89AKdB1C5+loQOGbhLktEDpWIEYm91m4bD5sBs+fD4Dt2nDtDR0p4mGIsJRjkPz4jF18q0QfB7DXwDepCoz54h0rwavOco/i2GdLy+VWVJHBHJrqTmqzwBNVQYGAzWhAkEkBf5izZXBKRUozI5C0ysDUkemdtV+tbTAC1Q9FMj/BdxumCjdQlkaXlOnzGPHtPnreu31RVd9STc0f2aaz/IPmdLxB6/CHBUE2bwEGV72lUSRVxGMXfdfZwsdQ7OwAplYWmCWxEKviyx3OJqmSLJ7MFB4lY6m2TCURTk2DMsCfARrFnZNw4WOpSm8Tf2SWM9f+oqKatcGcjqdrV63oLCwkOjo6GPvKI5Naf4smQvyuXz0QFp7AN2cn+fgCjn+/sLy5RtRJ2VACiCpuxu7Q7Fr05FfhLVGzURYue+pcwrQNIWnQuOjF2Lwuo8VJNCYdFZB+wSkQDIROpkN+f4aLTuLDlPh8xLSQB2qpijyVODQDVw2fyZWtLMvhyo2EONMZXDUpYTYk0CLwVG8j2FRk+u0zyrfxIKsP1PkdWEqf42VCtM/vGJO8kh2l2QTbg9mRHQvDE3nzOSzKTM1IuxhpIb17rBaTCc6PfgybEYimpHcallS7U7uT53K7g3peD0+vB4fGdszWyUo5anw4nF7CY3wT3DSZ2g3flqwiZ4Dk5k6ZQDlFR68psWeA7n07BZLSnJU7fZeHzf9/T3cXh9alP8LaLnXf3/q2S2W666YRMaBfM49cwRhkcFMnzOMAo+P7EOFzDtrBM4gB84gKZPRVD37JfLY/26gpKicMZNP0GxVyZRqB03473+9lz8QTzkyRNHQKLLKWIaqTBiq0bLmjHMa/te7KmZT83f7mu8JTYFugW756zrZfNhtPhyGF6fhwdBMvJaOEeij0jUsNCwFGpZ/SJ6/ChO2QPaPUhqWsgLF2rVAIW8wawZeAgEP0NB1fwF1LH8QxbS0qkLqTsOLpiw8poHp09CsQPRI1Xym9VzTY1BQe/hevQ3re8W0+rdWRvkqM9qqstEqM8JqJAlArTQiTdNqfTY1nSNqrWuB2TQsLAtU4Pr7E+j8199/SfzrbbrlD/hpgX00/+kq3w8OzUex1xk4toWGFRiG6T+psqpCY2hY2DUfNs2HAy8G/p/97RSa8g9JNCpzrFQgK0vzZ0s19fdjZVkorXahzpSU2mm+9913H/fff3/TDnwUu3bt4j//+Q+PPfZYqx1TwOWjW6fYZk0zL85l4Jg2rsvRTKdMK+HzV1unAPKJJmNnEH/8eS8aymhqrP/cncJ/7q78vDfuOGsWhTHxzKJ2CUrVd38SJ6bV2Qdw6gaGbhHnCsFhtOzXyTU5+3lu61K+27+bMIeTr864jrigUGZ1fZJS30FCbclomsaAqF8AMCCy/uO4jHB0DMLtFdw7aDKG1oXTE/3BqRCbi98OPI9NhRu4be1N9ArpxR397uKKHue3qO9Hk+cu5o8bX8Gh2/jL0F8Qagtqs3N1JE3TMVwzO7obLSL3p85j/44sSorKMYKD0Q2dxBYGpHIz83ntoQ/5ccEWykvd/OWNWxgxuT8//80ZTLtgLLFJkei6xllzhh/1OIahExUeRHZuMfNGDCS1dwIzhvcF/N9lLrtgHAfzi7n00TdBKV668yIumDf6qMdsCcuyePT6/2Pnur389oUb6DO8R5udq6MNHNG9o7vQIjXvT9A571EdH5Q6mhq/JNcJb9Q33KtS5bAv3R+VqIxzVDFAGQplV/4hfiZoqsYMcZX7Vwa7GvhlXWkK7Ba4LOzBXpwOHw67j3CnmxhXOZF2DxWmnRLTiaGZWErDpXmJcpRiQ1FsOjCVgUP34dJ9gZF4GmU+OzkOH2U+Ox7TRkFZEB5Lw+kwCXb460MpNHyWfzifLVB8vcJ0UO6xYymNYKcXp+EjwuEm1llKuMONy+4j3R5FbkFoYOr0I4bXNVZldOjIVLIjj1MrwlfPPvUOEVTVxdQrH1eNLKwO/NQKbh3x5lBKVQX0oDI4peP2OPDq/qGARiCI6FM6+Ox4LVtVl2yGD5vuryvlD1ppgYCVholGgdf/FxKnzfQPldQqI2Z64Glr1RkfmoZH2SgzXVQoB7oODt3ErvmDUJamYWLgxsCmFBWawqEUIWiEaAaNTpKodTFq/6UvIyOD8PDqgo8NZUndf//9PPDAA0c9/MqVKxk9uvo/kJmZmcyePZsLLriAa6+9tomdFQ3RNEXXPm50XeEp18hKd9LcYEVEjJeIGH/a6JRz8tFbf4RNq8jY6aBHajnuCo2sfc1/vieu1ni+TT/G2OmF7feekEyETmFRxl6u+OI9gqPKcIVaFPlKqDC92PWm11nzmCb3rfqKTzM2U+b1gtLId5eztzifuKBQdM1GmL3xmTc+71amx19EZNBUYl196t1nTf4aPJabbcVbKfQWEuWIqnc/AK9VzqaCj4lx9qZbSNMLAC/J2cKmwn0ArMrbwWnxLZshS7QhuT91CkV5Jdww4rd4TTBCQ1BA9r5cuqUmN+t4Hz31NW8/+hl5h4vQw/w1H7et3sOIyf3RNI2k7rGNPtau7dlcMDiVvsO7MnZoz6oZ+mpas/MAB/OLAVi78wBJp4TX2aeSUooFry3C5zWZfdVp6E38j3nW7kN8++YSAL5+bVGnDkqd8CRTquM0FOeof8UR7VTdpWYcxT/xnApkSSn/UDGlo6zqueCUAl1pKE35Z+MLTEWl1RiDpgJtDbsXh92L3WbiNHw4dB923YuJhTcw7EwF3jy6sgJD+RSGpkCZ/n8DfXFo/uFlobqObvNRopzYDTsoHcun4cVf3LzqaSqFssBjBgqbBzKwDM3CrpvYNR8ohWn5p0i2YeK0eTG9Goojf4FsZJCqwW01/sp/zM9KwztUBRErg4uBx1blsMrAttpJWqqqhlRVDKzqFKrqwIGEqaq2eiALqjItSQ9koCnlrz1VGRSrPnLlzqBj+YfoASa2Gif0/6tU5WsPmrIAE1QgCwuF0vzZb7ryvxN9aIHsMw07GnaNqvdNo1mV6X1U3bDCw8NrBaUacuutt3LxxRcfdZ8ePXpU/ZyZmcnUqVMZP348zz//fNP6KY7qzicymH5+Pj4vXDOpP80NWPQeXMa/P9+BYWt61l17+8d7ezBNuP60VE6+gFTHOPPyHMbPKmm/E9ZzfxInHrfpD3KXF7oICdboERaNy2jeJAUL9m/n7V3rq/5b2zc8lrk9BjM6ruuxGx+hyL2BLYdvAyDEFgU1glKLD29iTd4uLu4+hekJM8nxHKZ3SJ+jBqQAVuW+ztq8NwCNK3u/R7CtacPUx8f2p19YF+yajVFR9QfJ2luBp5QIe/BxP1Sx2FvEirzlDIoYQqIrqe1PKPenTsH0mZg+E+U1cRrB2B0GXXo3PnBUU0VpBc/c+XrV47AQO1MuGMdZV01pRr8s7rzlVSrKvUybPYTxw3tVbUvLyuGdZRs4Y0QqU4b0YvboVBQwZWjvox5z9Tcbeex6/+/fYVEhTDpvbJP6lNgznsnnncLOdXuZfunEJj+ntlBSWIYr2IHNftyGKADweX188/piErrHMuL0Icdu0FI170/QKe9RHV/ovB5V2UnqyMBDI45TmUSjV/+sjtiubArsgEOhuUyUpaHKK19rzf+/ysCBTYFDgQ//DH2VfdQUBFsERZUTEVruHyqnmwTbPbgME6ehUNhQmo6mNGy6wq77CDG8uAwzELbw4dUMNBQ2XRFlKyPCVoYG5DpCOOwO47ABpV4XRSXBaBo4nV6CXZ5A4Eb3Z0h5HYHi5gqH3YfL7iM6qIxoZzlhNg82zULXNEJsJglhJVT4HJSWOwNPNZAhVqtgVuNfq6ptqsYwumP+nlPjhT1yeGWt9TU+cJYGpu7/127WyKDyf0gNWyAQZFUfp3IIn1aVeeW/RkqpwGdb4TM1lK6wGf5gYWUxdVUVOtSrh9Ep0FHYA0XXHYYPXYNSrw3TrI6BVgbFFBqmMrCUjsNQuAyFoWtomhaoWUWN82iUKzsV2NCVhTLchAB2rYkfURWIulX93HixsbHExjbuP9wHDhxg6tSpjBo1ipdeeqnJf50RR1dapFFeAmjQf2QJUfFetq4KoanBml4Dy7CdGBPaAWB6ITbZw4E9jlYt7t4eXMEmIyYV4whS5GbZOJzpoN+wMvalOUlPC+6wfoVH++jay82W1cFH/McQvB744dNwhk8oJiK6HX7BacH9qSn++te/8vnnn7Nu3TocDgcFBQWN6JrigQce4Pnnnyc/P5+xY8fy1FNPMWhQ9TBat9vNnXfeyZtvvkl5eTnTpk3j6aefpmvXpgdQTmTTu/fmuZlz+Wz/er7P38i2wkPsK8mlT3j8sRsfITEklMq09J/1GsQjp8ytEywxlYmOfswgik0PR8OGwofDiKlaX256uHfDa1hYlPjKuGfQJdzR766q7ctyNvFl1jLO6zqF4VH9ah0z1Ob/b6JTD8GmN314cawzghdOub3J7drKf7Z/wf/2LmZG4lD+POySju7OUb2y90U2FK4jIjuSfwx7ou1P2E73J9G2ouIjeGLxg3z31hLe/+dnAKz6aj1dbml6YNMZ7MRwGJgek6Te8Ty/+m84nLV/qfJ/p1AYx/g9WNM1wiOCqSgvJDomtNa2+96Zz6aMgyzctJOFf7qeh68+o2rb3qw8nn7/R0b1T+Gi6SOOeK7h6IaOsiyik44eYK+PYejc89qtTW7XVpZ9sY4/X/4U8SkxPLvkAVwhrVv/tjV98vR8nr3zVdDgpc3/pEvfNg6c17w/VT3uXDo0KHVEIlqD+xxVQ0P8jsyWqgxQWYHAhT+9BXyArtAcPvAagYLa+KddswDDwnD5sDw6yhNYpwXa2Exshg8jkJmka4HMGU3hNnW8lkap147P0rHp4DR0bFrl9N4aHsvAGwgmmZYdAwcGPlyGFxs+gowKImw65Q4bHpeNEo8T09SocBvouvLXMVL+4KlpVgdiDCwM/EEWSyl8yr9Bx0THwqb7MAwTsyrIptW4SLV/bPDF0Ko/D1pDO9Tr6K9ondnAqqI8gTQnM/BCaso/wyKg2yzsNh8aYJp61eyDlcejZj+1ygyz6v4rFagpRWU2lhZ4v2iBSQqriwAbmsLQfITbKwjR3RiaIlcL5lBFGB5lq6xQVdlpNA1MC8p8BuU+A49Nw60ZKOyBQvcKGzYsXUNH4cVAx6JC8+LRLYwm3nSUpQLF65uRZdVImZmZnHbaaXTr1o1HH32Uw4cPV21LTExsk3OebJK6ewkK/M5yy1+zuGz0AJoakOqeWs6vHzvQ+p1rQ7oB+7YGnXABKYAHXt7D8ImlVJTp3DSjL//3/TbSdwRx6+y+HdYnTVM8/uEObp/bt05ACmD+27H0SPUQEV1UT+vW1x73JwCPx8MFF1zA+PHjefHFFxvV5pFHHuHxxx/n5Zdfpl+/fvzlL39hxowZbN++nbCwMABuv/12Pv30U9566y1iYmL4zW9+w1lnncXq1asxjKYPXTtRaZrGrJ596RsbSf66fPqExdMrrP4/aOwpzuHD9LXM7jKIgZHVw2e+y9rOO3tXcXnvcTwyfg57S3K5of8k/x9plEIPzOS3vXgvf9r4H6Ic4Tw2/LeENFCTyevLIvvwJSTaQ4iPeozI4Ooi6A7dRreQOPaWHqRvWN0A4r93vEOep4iDFbk8N+Z3tbYNjpxHQtBAQm3xOPSOCy63lpW5uwBYnbcbgP/u+pZXdv/ANb1P54pep3Vgz+oKDsyAGGS0Tx2u9ro/ibaXOqYP3QelkL33EGWFZUw+v/4ZHEuLyvngP1/RY2BXJp1bPTw3Y0c2L/35A4ac2o+/f/47Fn2wkrOvn4bdYcP0WRg2//2puKyCnz/8BnlFZTz36/MZ1KP+34EtS3HPnW9SXFrBdbdN57yLamc0DUpJZFPGQQZ1rVv76qXPfuK71Tv5bvVO5owfQHhIdXC897AevLjhUSzLomtbB0XaweblO7AsRfa+HPIOFpC5N4e/3fhfBo7pxf2v3XRc/QE8NNL/3wO7w46jHYrP17w/Qee8R3V8blzVWKsaj+v7ub529e2j1VgMVStjSgsM27K0GjsaYA/y4Su1owyoHNGmUGgOcER4sNlNyrxB1RlYBhDsIzSynIhgNzbNwqZbuOwmLsPCQqfCcuAxDcp9NkDDiZcguw+fMsDyZ9/4LFug6LmGVymclonSKtABu24RYXdjYaPAYeHTdUzTBlj+zB9F1XA1n89AKQ273UeIw0eYy02Eo4Jgmxdd11CBVCGl6bgtOxWmHdMyalyoIy5kPdlLdeupaYH/V3Wa1juDVqOyryozlWrsoFVtQvMZ4NP8rys6KAvdrggLc2M3LHymRrnbWevLl6bVeJaaqow1+bO6AENX/jHdgartCt0fpNKsymeHCrxJDRQhdi9dgoro5solWPdQ6AvioDsCn7KhVGUtKf+bTg+c29A1HIYixObF0MCr7JiaUfnHYexYKKUHXk8dl+bBqSlCNAOlNzVTyqL6L31tUwRv/vz57Ny5k507d9bJEOiMN8n2FhJuEpPgqXpss5lcfNtBrMoxyFVBVi3weVEU5Nj45r1oSov875c+Q8o484ocTsTvyaNPL+K7j6LweY6fXz4a4/uPI1m7OAyPGwpzDVZ9H073fuVcfmeWfzi4BkrTqCjV+ebdaPIPt34Km91pcfq5+SSkuEHznzMq0cPo04pY/Fkkpq/uNU3b4CIny0Zskq/V+1NHO9yfgKraeC+//HKj9ldK8a9//Yt77rmH8847D4BXXnmFhIQE3njjDW644QYKCwt58cUXee2115g+fToAr7/+OikpKXzzzTfMmjWrTZ7L8axXWByvT7ruqPv8Ye2HbMg/wBcHNvHNzF9jKcW2goM8sP4zDlUUs680j8t678PhSGd/WQjvH3gRpRQ393mYGGcCGwq2U2G5yao4zL7SDAorPsbCxylxv8JeI0hU7l6G19wHgK5yavXB0HReOOV28j3FJLjqZhNMiB3Kp5k/MiFuWJ1tmqYR7zpBZ2uqx90D5/FexjJmJ/kzLj7evxK35eXj/SuPu6DU5d2vYmz0eHqE9ASg3Lubcu9eooJOQ9Pa4L8P7XR/Eu3DFezk/vfvOuo+7/7zc978x6cAvLb1ceJTYjiwM5vX//4JS79Yx9Iv1nHWXefw9Zr9JK/P4PEnFrB9ayZ/fPA8JkxOZXdWHvsPFwKwYls663dksiZtP7f+bCI9EquH+ubllrDqJ38gOCM9F8Oo/f6959ypXDllFElRYXX6OGFoT75avo1hfZIJDaqbOZTcu+WzCh4vfnbrTEqLyukxsAvJvRJ4+z/zKS0qZ+W3mynIKSY6PqKju1hlxhVTSO6dSFRiJHFdYyjKL2XDit2MmNCXkNA2mLSn5v2p6nHn0vFBqRaqb7hYVT2hyqymQLZMVcUfS1Xv49OwvBqG04epG/4vD4ZCs/tr/miGD5fDgz3Sh+kzAlk2Gj7dHxTyWTq67s+08fg0fKbDH/hS4FP+45lKR8OgwmfDsCmMQFFzlIWpDLymjlfpeALZVVH2MoIMDy7NQ5LdQ1hIGeFaGftdkZT6nJho+CwdS+koNOx2f/0jm26ia1ZgwFl1BpB/wj1/1pTX1PD6/AEQpavAtHKVV+6ITClV/fBo179mDKn2AY714h3Z7oj1R+5jN/0BQb26Y5ZXo7zMgc/uw2fqeL2BKGSN7KY6cZIaz820quuHGbq/ypaFP0Zl4q8x5q85peFTCkOz4XFoVJg2nHgAhUv3oGPhC0Q0K2fzMwPBsQqfTm65i1AjDLvmxan5g5Om0vEpHUOziLCVE2mUEGmUE66V48IKFFc//jKlrrzySq688so2ObaA3/wznd6D3VWPg8Pg0tsPH6UF/GZe76qAVESMl399ugP7CThrsGVp/PhF5AkXkAL48n/VmSKxSR7GzSjCsMFld9R+7R69PaVNAlIAV9yZzYW31D5feanO0q/qD0gBDJ9Q2j4BKY7fTIQ9e/aQnZ3NzJnVs4c5nU6mTJnC0qVLueGGG1i9ejVer7fWPsnJyQwePJilS5eelEGpxugVGseG/AP0DPUPp3tkw7e8sH05YU7/+/HUuCT2l38BwLqChZT4/F/w0su2E+NMYEbCqewtPUCcM5ogbT8riz4EICFoGH3Cq4e4hATNIDTozKqfj+TQbfUGpABu7Xs+1/eeh6OpfwQ6AQ2KTGFQZPWMvLf2O4O39/3IpT0mdWCv6mfX7QyK8Ndq8ZoFrM86C0tV0D3yd3SJuL7Vz3e83p9E2+nS15/ZFB4TSkh4EMs/W829cx/BFuxCc7noM6wb3y7YjLvCy5cfr2VPei4APy3byYTJqQzumcjlM0ZxKL+EqcP7cP4fXwYgLMjJfVdX/zchNi6MSy4/lU0b93PuhafU6YemaXSNqT/gMnNsf6aO6ovNOPYQ5hNdVHwEv/rXFVWP5103lcw9hxkyvu9xFZAC/2s2eGL/qsf3XvcSaRv3M2piX/7y4jWtfj7JlGojlRfS8lQ0bURKPfuqyvU1h/FVDtUz/EO8VCC7SfPXmcZyBF5YQ4FmYnO48bptoDQ0XaFhYZk6ht0kRHPjML14sWHYNEyl4fHasFkWdq8PZZoo3UTZLNzKH7DSNYXXMjA0Dx7Tf2Kn3Q2mB81WgVcDS2l4LDsVpo7bAq8JLkPhcpqEOnwE28tx6eXYsLAsF7rXhe5zYfP5sEwDZdoBf0DF8hoYhokDL0FGBUG6GwflaF4Tj2ZhKp1y0yDXY2N/fhDlZQrTdAfqNAWye6pmizvy4tZ/3aFymJ2qPSpENZAp1dBnp/K0VfGwGmPtambR1fxZWf5hl4GhlqbyYpaBzwcoj/811FXVUD3/8ZV/yGWgzxqg6/6hef73gn/opT+7wAJNYWkWlRNjWMofDwsNKyLEW4SNMspQHKgIIqvISZnPBKqLpPssAwsNA4XPMMFyY7eXUm5ZFJhO3MqG1zLwKY0IowKnw4vNXk6wUUyI7sWm6/h0nbLSpv2C5FPuqui5D2+j2ojaKq+1D28jxg+3vsIii6Ji89g71uDTvPiU//V2mz4KikwamGTxuOb1aFiaB586sb8cur0+CgrNegODXlX9WrW24hKzznunoszC1Dz+LN16FBXXbdNYRSXVfwBpjPruT0VFtYcOOp3OBmcIbSvZ2dkAJCTU/otzQkIC+/btq9rH4XAQFRVVZ5/K9u2h8lofed2OV3f2Po3z4gbRPSyGoqIi0rL3Y5VVUFSmiIsspqsRQpRtBrnuDE4JmouvNBiFIkXrT1FRETpwQ/L5AJR4D2KVhWIpC5enR51rEOZ4DIDSEgU0/fpUtPTJnoDGhvRg7MAewPH9nvKaBZQUuVFYFGoFhGnH7mvl85Hfn9rPiXZ/GnvWUP61+I+ER4diaj52bdmLT3nxlXox7BqhccFcNm80Cz5fz4WXnUJ6eh7bNh9gzlmDqp7jNTOGA/4hegO6RrJ17yGG94qrcw3Ov3Q05+OfvfpEuT4dLaZrOPe+6p/Z+3i/ZqWlJfhMN0UlxY3qa0vuT9BJ71GqA2RkZBxZ8UkWWWQ5ypKRkXHUz1R5eblKTEys0y4xMVGVl5e30ye7c5D7kyyyNG1p7v0pNDS0zrr77ruv3mPcd999x+zHypUra7V56aWXVERExDE/80uWLFGAyszMrLX+2muvVbNmzVJKKfW///1PORyOOm2nT5+ubrjhhmOeo7XI/UkWWZq2yO9P7UfuT7LI0rSlufcn6Hz3qA75c3RycjIZGRmEhYV1+lREIVpCKUVxcTHJyclH3c/lcrFnzx48Hk+t9Q6HA5erDcY2d2JyfxKicVp6f1JK1fmMNZQldeutt3LxxRcf9Tw9evQ4dqfrUTlBQ3Z2NklJ1cViDx06VJU9lZiYiMfjIT8/v1a21KFDhzj11FObdd7mkPuTEI0jvz+1P7k/CdE4Lb0/Qee7R3VIUErX9ZNuCmUhmisiIqJR+7lcrk51c+oocn8SovHa6/4UGxtLbGz9M7y1VM+ePUlMTGTBggWMGOEvAO3xePjhhx/4+9//DsCoUaOw2+0sWLCACy+8EICsrCw2bdrEI4880ib9qo/cn4RoPPn9qX3J/UmIxpP7U20nduEOIYQQQoga0tNxXKVTAACuaElEQVTTycvLIz09HdM0WbduHQB9+vQhNDQUgP79+/Pwww9z7rnnomkat99+Ow899BB9+/alb9++PPTQQwQHB3PppZcC/l8er7nmGn7zm98QExNDdHQ0d955J0OGDKmajU8IIYQQQjSdBKWEEEII0Wn86U9/4pVXXql6XJn99N1333HaaacBsH37dgoLC6v2+e1vf0t5eTk333wz+fn5jB07lvnz5xMWVj1F9z//+U9sNhsXXngh5eXlTJs2jZdffhnDqL+IvBBCCCGEODZNqU44p6AQQgghhBBCCCGEOK7pHd0BIYQQQgghhBBCCHHykaCUEEIIIYQQQgghhGh3EpQSQgghhBBCCCGEEO1OglJCCCGEEEIIIYQQot1JUEoIIYQQQgghhBBCtDsJSgkhhBBCCCGEEEKIdidBKSGEEEIIIYQQQgjR7iQoJYQQQgghhBBCCCHanQSlhBBCCCGEEEIIIUS7k6CUEEIIIYQQQgghhGh3EpQSQgghhBBCCCGEEO1OglJCCCGEEEIIIYQQot1JUEoIIYQQQgghhBBCtDsJSgkhhBBCCCGEEEKIdidBKSGEEEIIIYQQQgjR7iQoJYQQQgghhBBCCCHana2jOyCEEEIIIYQQ4sRlWRaZmZmEhYWhaVpHd0eI45ZSiuLiYpKTk9H1o+cIVVRU4PF46qx3OBy4XK626mK7k6CUEEIIIYQQQohmy8zMJCUlpaO7IcQJIyMjg65duza4vaKigp7dQ8k+ZNbZlpiYyJ49ezpNYEqCUkIIIYQQQgghmi0sLAzwf9EODw/v4N6I9rC7MJdnty1ibvehTEjs3W7nvW/N53y6fyNzU4Zy34gz2u28raWoqIiUlJSqz0xDPB4P2YdM9qzuTnhYdUZVUbFFz1H78Hg8EpQSQgghhBBCCCEqh+yFh4dLUKqTen/vOv66fj7n9RjGH4fN4paFL5JZUsG3hw+Qdsnv223Y5iZ3Dkawi03unBP6vdbY6xUS6l8qmaqNOtSBpNC5EEIIIYQQQgghGvTe3nWU+Ny8tXs1AKFOf36Lw9Y2UZJ9hQWc/uaLnPfhGxR73FXr/zZ6Lj/rPpy/jZrbJucV7U8ypYQQQgghhBBCCNGgWwZM4p+bv2Net2EAvDvtGv63eymzugxukyypBXt3srswHwrzWXswi8kpPQAYFdONUTHdWv18xysLhYWq9bizkaCUEEIIIYQQQgghGjQxoTcTE6prR4U7grmp//Q2O99ZvVP5es8OIl1BnJLUpc3O01h/Xv8ln6Vv4t7hczgrZXC7ndfCwjricWcjw/eEEEIIIYQQQgjRKj7avJW5L/+Pz7dub/YxEkPDeHfeJfzf7Hm4bPZW7F3D9pcWUOJ111mvlOLN3aso8Jbz3t617dKXSqZSdZbORoJSQgghhBBCCCGEaBWP/fAjmw8e4rFFS9rlfAfLilmWvQ+rBQGbTzM2Mu3rfzNz/pN1AlOapnHHoGkMiEjgun6ntrS7TVI5fK/m0tlIUEoIIYQQQgghhBCt4tIRwwh1OLh0xLA2P1eFz8usT17kkvlv8tTGpc0+zs6iwwDkuksp8JTX2X5tv1P5aNoNTKgxhLE9WCjMGktnDEpJTSkhhBBCCCGEEEK0ipvGn8JN409pl3N5LYsynxeAAndFo9vtLcll5eF9zO46kDC7i2v6+jOg+obH0zUksi262ixS6FwIIYQQQgghhBDiOBTmcPLWrEvZmJvN+b2HNKqNUoqLv3+JfE8Zy3P28tiY8wh3uPj1oNPbuLdNd2Qdqc5YU0qCUkIIIYQQQgghhDghjYzrwsi4ps3Q5zL8oRCX3j5F1JvLCiw1H3c2EpQSQgghhBBCCCHESUHTNN457Ro25GcyqZ1rRDVVZS2pmo87GwlKCSGEEEIIIYQQ4qQRHxTG9KDUju7GMZnKv9R83NnI7HtCCCGEEEIIIYRoV0opXty6kt8v+5Kc8tIO7cfLaSu5d9WX5FbU7UeF6eX6Za9wzsL/sKckp137ZtWzdDaSKSWEEEIIIYQQQoh2tac4nz+v+haASGcQd488rYP6kcef1ywAIMIRxJ1Da/dja0EWyw7vBmB+5mZu6Del3fpmoWGi1Xrc2UimlBBCCCGEEEIIIdpVYlAoXUMiMDSN0fFdO6wf8UGhJAeHo6MxMqZuwfRBkcmcntifQRHJnNGlcTP8tRZL1V06G8mUEkIIIYQQQgghRLsKtjv4bt71lPu8hDtcHdaPULuTb8+8iQqz/n44DBtPnHJJB/QMzCMypUzJlBJCCCGEEEIIIYRoObtuNDogVeJ1k+cua5N+OIzG9+NIllKkl+RhqdZPY6oMStVcOhsJSgkhhBBCCCGEECcJr2Xy5f4t7Cw63NFdabSD5cWc9uW/mfD5P1mZk97R3anltys/ZvpXT3HXyo9a/diW0uosTfX000/Ts2dPXC4Xo0aNYvHixY1qt2TJEmw2G8OHD2/yOZtCglJCCCGEEEIIIcRJ4pltP/Krn97n3IUvUOSp6OjuNEpGaT5F3gpMZbG1ILvVjvtj9m5e3L6cMp+n2cfYlJ/p/zcvq7W6VaWlmVJvv/02t99+O/fccw9r165l0qRJzJkzh/T0owf2CgsLueKKK5g2bVpLut8oUlNKCCGEEEIIIYQ4SdQMa2gnyGiwUTEp3D1kOnnuMi7oMaJVjnmwvJirFr2JQlHoKeeOIVObdZx/jJnH+/vW87Puw1qlXzWZ6Jg1conMJrZ//PHHueaaa7j22msB+Ne//sXXX3/NM888w8MPP9xguxtuuIFLL70UwzD46KOPmtHzxpOglBBCCCGEEEII0YlZSvHiitUUVVRw/bhx9AmPo294HGH2jisw3hSapnFNv/FH3Se3opRIRxCG3rgBYcGGnVC7g2Kvm4Sg8Gb3bUh0MkOik5vd/mjUEUP2VBOG73k8HlavXs3vfve7WutnzpzJ0qVLG2z30ksvsWvXLl5//XX+8pe/NL3TTSRBKSGEEEIIIYQQohNbkb6fR77z1xJKCg/j0hGtn9XTkV7Y+hMPrfuW0bFdeXv65WiNSAELc7iYP/smssuL6BceR6GnnAhHUDv0tvEamn2vqKio1n5OpxOn01lrXU5ODqZpkpCQUGt9QkIC2dn1D4HcsWMHv/vd71i8eDE2W/uEi6SmlBBCCCGEEEII0Yl1i4wg1OHApusMiI/r6O60upWH/TWS1uVmYjZhFry4oFB6hsUwe8FTjP/sURZmba/a9v7eNUz7+nFe27W81fvbWKbS6ywAKSkpREREVC1HG4p3ZIBOKVVv0M40TS699FIeeOAB+vXr17pP5CgkU0oIIYQQQgghhOjEkiPCWXTLtfgsi6ig4ysbqNL2/MPc/eNXDIlJ4MHxMxqV7VTp7uGnE+kMZmpyb2yNHL5X6VBFMVnl/syj9XkHOD0pFYD/7lxCVnkR/5f2I5f3HtekY7YWCw2rRi6RhT/glpGRQXh49ZDDI7OkAGJjYzEMo05W1KFDh+pkTwEUFxezatUq1q5dy6233uo/n2WhlMJmszF//nxOP/30VnleNUlQSgghhBBCCCGE6OTC6glcHE/e2L6edTlZrMvJ4trBY+geHtXotr3CY/j72DObdd5eYbHcM2w2u4ty+EWfsVXrr+k7kWe2/8CVfY5ey6otNTR8Lzw8vFZQqj4Oh4NRo0axYMECzj333Kr1CxYsYO7cuXX2Dw8PZ+PGjbXWPf300yxcuJD33nuPnj17tuSpNEiCUkIIIYQQQgghhOhQZ/fsz5d7tzM4JoGuoRHteu7Le59SZ9153UdwXvfWmelPKcXO4sMEeZrWruaQPf/jxg9NBLjjjju4/PLLGT16NOPHj+f5558nPT2dG2+8EYDf//73HDhwgFdffRVd1xk8eHCt9vHx8bhcrjrrW5MEpYQQQgghhBBCCNGhRid0ZcXFt3R0N9rE/3av5C/rvyLSbFoIxj98T6v1uCkuuugicnNzefDBB8nKymLw4MF88cUXdO/eHYCsrCzS09ObdMzWpinVxFCbEEIIIYQQQggRUFRUREREBIWFhcccUiREW1qTk8HDG+ZzelIqNw2Y2NHdqfLQ+q95dddPqDI3aZc/dMzPSuVn6t31/QkOM6rWlxWbXDBsW6f6rEmmlBBCCCGEEEIIITqE2/Tx7t419AyNYUJC7xYd68W0ZazPy2R9XiZX9RuLy7C3Ui9b5pYBkwl3uOhlC+dMHmp0u5YO3zsRSFBKCCGEEEIIIYQQHeKlHcv415bv0IBvZ/+K5ODm15M6p9sQlh/ey+lJ/Y6bgBRAhCOIWwdMoaioqEntLPR6Z9/rTCQoJYQQQgghhBBCiA4R7QwBIMiwE9TCQNKsrgOY1XVAa3TruGAqDVNptR53NhKUEkIIIYQQQgghRIe4oMcI+kXEk+AKI8oZ3NHdaTMf7F3Pc2u/b1IbEx2zRqaU2QkzpfRj7yKEEEIIIYQQQjRemc/Dt5lp5LvLOror4jinaRrDo7uS1IJheyeCf276gZ1Fh5vUxlJ6naWz6XzPSAghhBBCCCFEh/rtik+4cck7XP7D6x3dFSEAyCjN59LvX+HulR/js6xWOebG/EzOX/gij2789pj7Xt5nNOF2V5OOX5kpVXPpbDrfMxJCCCGEEEII0aFKfR4Ayn3eDu6JEH4f7t3Aqpx0Pty3gc0FWY1uV2F62VOci6pn5rvXdq5kQ34mz6ctJc9detTjXN//VH4465dN6rNFdV0pU2m0Tijt+CJBKSGEEEIIIYQQrerRsXN5YOQcXp5yaUd3RZyA/rdrJZcveoXVuemtdswZXVJJDApjVGwKqRHxjWpjKcV5377ArPlP89z2JXW2n9NtMFGOYGZ3GUCUo/XrYVXOvldz6Wyk0LkQQgghhBBCiFYV4wzh0t6jOrob4gRkKou/rP8KC8Uz2xbzwoSft8pxB0QmsujM25vUxmuZ7CvJA2BHPfWgJib05qezf9Ma3TtpSVBKCCGEEEIIIYQQx4V/bf4Om6ZjoTij66AO7YvTsPHsqRez+OAuruoztt3Pbyods0Zxc1MKnQshhBBCCCGEEEK0jVd2/oRHmQyOSua87sM7ujvkeUp5ffdP/G7Nx/XWlWpLFlqdpbORoJQQQgghhBBCCCGOC3cMOp2+4XHckDqho7sCwKLsnZhK8dPhvVUF/NtLZaZUzaWzkeF7QgghhBBCCCGEOC5c2XccV/Ydd9R9DpYXcePSt3AZNp499RIiHEFt1p8b+0+k3PQyIb4XoXYnPx7cxfq8A1zWe0ybnhfARMeskUtkdsK8IglKCSGEEEIIIYQQ4oTxffYOthZmA7Di8D5mdOnfZufqGx7P0+MvAqDQU851S97EVIpcdxl/Gj67zc4LYCkNS2m1Hnc2nS/MJoQQQgghhBBCiE7r9KRURkR3ZXxcT8bH92y387oMO9HOEAC6Bkc2uJ9pWa1yPiuQKVW5WJ0whCOZUkIIIYQQQgghhGgVllIsO7Sb5OBIeobFtMk54lyhvHna1Y3eP6+ijK/S05ic3JOuoRGNbmdaFoZeHQhyGja+mHEjmWWF9I9IqLfNPzd+z9Nbf+Sa1HH8btj0Rp+rPpbSsWrUkbI6YU2pzveMhBBCCCGEEEKITuibzO28sH0p5T5vR3elQf/bvYJrl77OuQufJddd2tHdAeBXiz/lD8u/5rIFbze6zS1L3mPg+w/z9u61tdZHOIIYEJmIptU/lO7zjC2owL8tZaLVWTobyZQSQgghhBBCCCGOcxml+dy87B0A3JaPWwZMBkApBdBgkKS9lQdmqPMps9WGsbWUy2YP/Nu4EIhpWSw4sB0Lxfz927mo14hGn+veETN5OW0FP+8zull9relkyJSSoJQQQgghhBBCCHGcC7U5CbU5KfG5SQ72D0FLLz3Ir9Y+SZDu4MnRtxPtCOvgXsJVfU8lPiicHqExxAd1fH8A/jXxLH7M2suY+K6N2t/QdR4cNYcFB9L41eDJTTrXlKQ+TEnq05xu1mFCrewos1WOenyRoJQQQgghhBBCCHGci3IGM3/WzeS6S0kN1DNaX7CLIm8pRZSSVpTBuNiBHdxLsOsG87oN6+hu1BJidzCrW79j7negtIAcdynDortwce+RXNx7ZDv0rmEnQ6ZU53tGQgghhBBCCCFEJxTrCq0KSAGcFj+cqfEjODNpHCOjjx10qfTunrU8uPbr46bmU1O4TR8LM3eQW1G37wsObGfw+3/jmkVvVg1rbKzDFSXMWfAMF3z3Xz7Yu761ugvAofJiTNX0oYym0ussnY1kSgkhhBBCCCGEECegMHswfxx0eZPaHCgt4A+rPgfAoRstniHuWD7ct5aDFcVc2Wc8LsPe4uPdt/pL3tu7npSQSL4789Za277ev40K08cP2bso9FQQ6Qxq9HHLfV7cpg+gVYN1z21bwmObFjIqJoXnRp3XpLYKDavG8D0lhc6FEEIIIYQQQgjRWg6UFhBidxLpaHwApSWinSEkB4eTVVbEkOikNj3XloJM7ln7MQAVPi+bCjLpH5HIbwZNb3Zh9pJAIfWyemYgvDZ1HAfLixkf36NJASmAbqFRvDDhUtJL87mgx3DKfV6e3LqIaEcwV/cb1+z+rsnNAGBDfmaTs6WOzI6STCkhhBBCCCGEEEK0iu+zdnDD0rcIsTn5etbNxLlC2/ycQTY782ffTInXTYwrpE3PFesMJdhwUG562Fl8mCWHdrPk0G5+1n0kPcNimnXMv44+g1PjezA+oUedbf0jE3jttMua3d9Jib2rfn5t50r+b/tSAIZGd2FMXLdmHfPuodOJc4VyelI/DK1pQSVLaVhKq/W4s5GglBBCCCGEEEII0QF2FeeggBKfm8MVxe0SlAJwGjacRtuHA+KDwlkw81eU+jxklhWy/PAe+oUn0CUkstnHjHAEcWmfUQ1ut5TiP1t+IKeilLuGTCPc4WrWeQZEJmBoOiE2Bymhkc3sLfQKi+Uvo84CoKioqEltTXTMGqXAzU5YFlyCUkIIIYQQQgghRAe4tNdoynwekoIjGBjZtkPpmkMpxfNpSzhQVsgdg05v1hDDKGcIUc4QuoZEsers37dBL2tbk5vBU1sXA9AjNJprUsc36zijY7ux9Kxf4zBshNgcrdnFRpNMKSGEEEIIIYQQQrSJIJud2wZO6ehuNGhzQRaPb14IQFJQODf1n9Ru5152aA/Pb1vKeT2GcXa3wY1u1yssljhXKIWeckbGprSoD1HO4Ba1bykLHatGdpQlmVJCCCGEEEIIIYQ4GaSERBHvCiPPXcqImK7teu5HNixkU34WG/KymhSUinYG8/0Zv8RnWQTZWj7bX0cylYZZIzvKlEwpIYQQQgghhBBCtKeskiIeWbqYnhFR3DxmHDa9fTJmIhxBfDv7l3hMH6F2Z7ucs9KZKQPZkp/NWd0GNrmtXTew60aLzv/XdV/z9p41/G7oDC7tPbpFx2ouGb4nhBBCCCGEEEIch1bn7eGvGz9mfGwf7hp0Vkd3p02d897r5BaVA9AnOoYz+qa227kduoGjhQGe5rg2dTxX9xuHrnVMIObdveuoMH18sHd9hwWllNKxlF7rcWfT+Z6REEIIIYQQQohO7719K9hbmsOb+5ZT5C3v6O60KQuFQqFp0DMquqO70yxFngpeTFvKmtz0RrdpTkAqs6yQ/aUFTW53pJv7T6RXWAy3DJxc73ZLKbYWZFNhelt8roaYaHWWzkYypYQQQgghhBBCnHDOTRnNxoL9jIvtTZjN1dHdaVMfnHcp3+zdxendetMzMqqju9Msj23+lrf3rMauG/x01l0Et8GMdlsLsjnv2xcBxdtTr2ZodDIAH+zaxK7CPG4cPJYwx7GHIbpNH89vX0ahp4JVhzOYmtS3zj4Pr5/PKztXMCQqmfenXdPaTwUAS3HE8L02OU2HkqCUEEIIIYQQQogTzimxvfls6m86uhvtont4FNcM7ZghZK0l3hUKQKQjCFsbDQfMLivCVBYAWWWFDI1OZk9RHncs/hwAQ9O4Y8SxZxBUKDymCdBgJtTu4lwA9pXktUbX62UdMXzP6oTD9yQoJYQQQgghhBBCiDZ1U//JnBrfix6hMW1Wo2pKUl8eGHEGprKY0aU/4J+NL9oZRJ67nNSouEYdx2XYeXfaVWzIy+SslEH17vPAyDN4e/caTk/u1+Bx/pu2nCe3LOK61PHcNODYwbAjWWhYNYbsWTJ8TwghhBBCCCGEEKJpFIq+4fFtOoufrmlc0ntUrXURThc//OwGCj0VdA2NaPSxUiPiSY2Ib3B715BIfjPk9KMe483dqynxuXlj1+pmBaVMpWHWGL5ndsLZ9zpf7pcQQgghhBBCCHESyako4fFN37Ioe2dHd6VePsvivG9eYNTHj/DRvg2Nblfm8/Dgui/4x8YFeC2z2ecPczibFJBqLb8edBoDIxO5Y8jUZrWvHL5Xc+lsOt8zEkIIIYQQQgghTiKPb17Ic2lLuHHZW5T6PB3dnTqKvRVsLTyIAlYc3tfodp9nbOKN3at4cccyfjy4q872Qk85z25dwk+H9ra4j20xi94ZKYP4aPp1nNt9WLPaW2hYqsbSCYfvSVBKCCGEEEIIIYQ4gfUOiwUgOTgCp378VemJcgbzl1FnMa/7UG4aMLHR7YZGdyHYsBPlCKJ/REKd7Y9t/I7HNn3HlYveoMTrbnb//rPle4Z//DB/XP1ps4/RFlSgplTlojphUOr4e7cKIYQQQgghhBCi0a7uO57TkvqRGBSOTT8+c08u7DmCC3uOqHq84MA2XkhbxuV9xnBWyuB626RGJLDsrLvQNK3e4ujJwf4hedHOYDRNo8L04jLsTe7bwqy0wL/bcZtzcOgGmtbxAaDKDKmajzsbCUoJIYQQQgghhBAnME3TqrKlThSPblrInpJcDmwoqApK+SyTXHcpCUHhVfs5jYbDFjf0P5UJCT0JtTuZNf9JijwVvDb5CoZFd21SX+4ZNotXdv5ElD2Uwe//jSlJfXhh0sUAbMg7wO6SXM7sOgh7G80a2JAj60hJTSkhhBBCCCGEEEK0q+cX/MTke5/lnaWNLxJ+PLGU4s3dq/jfrpVYSgFwfo/hOHUbF/TwZ08ppfj54v8y9evH+b+0xY06rqZpDIlOJsddwuGKEtyWj7W5+5vcv9Gx3fnPuAvJLCtCAYuzd+GzLA5XlHDxDy9x96qP+O+OZU0+bkvVqid1RNZUYz399NP07NkTl8vFqFGjWLy44Wv7wQcfMGPGDOLi4ggPD2f8+PF8/fXXLXkKxySZUkIIIYQQQgghRDvYcCibBXt3cmH/IaSEN342uNd+WENBWQVv/riOC08d2oY9bBvfZaVx/7ovAFifm8lDo8/mutRTuS711Kp9TGWxrSAbgLW5GU06/qiYbtyUOok8dynndR/e7H7eMfg0nLqN6V36YdN1DE3DpumYyjpqxlZbqawlVfNxU7z99tvcfvvtPP3000yYMIHnnnuOOXPmsGXLFrp161Zn/0WLFjFjxgweeughIiMjeemllzj77LP56aefGDFiRD1naDlNqUCYUgghhBBCCCGEaKKioiIiIiIoLCwkPDz82A1OYqNefprc8jJO7ZLCG+dc1Oh2by9Zz5tL1nPjjLHMHpFaZ3up10OwzX5c1EGqz5aCLH628AVMpTBNnX+OPZdzug+qs99/dyzhn1sWEGq389HU22oN4+soe4pzySjNZ2JCb/QWXt/GflYq9zvz62uxhziq1ntLPXw+64VGf9bGjh3LyJEjeeaZZ6rWDRgwgHnz5vHwww83qs+DBg3ioosu4k9/+lOj9m8qGb4nhBBCCCGEEEIA32Zv5MGN77K35FCbHL97eCQAPSOim9TuognD+Oi3V9QbkHpx208Mff9Rblj8bmt0sU0MjEzihVN/jmbZMTDoERpV735pRdloukWp6WZn8cE27ZNSig/3ree/acvxWGaD+/UMi2FyYp8WB6RaU1FRUa3F7a4786DH42H16tXMnDmz1vqZM2eydOnSRp3HsiyKi4uJjm7a+7UpZPieEEIIIYQQQoiTns8y+dOGtzCVRamvgr+PuLzVz/HGORewMz+PATFxrXK8Em8FX2RsAWBx9h6UUsdtttSExF78eNZtmMoiMbj+LJ8gw4FlgUKjb1hii89Z6nUzP3MLI2O6kRAUTqGngoSgMADW5x3g7lWfABBss3Nxr1EtOpdSit+t+IKl2Xv4+9izODWxR0u73+DseykpKbX2u++++7j//vtrrcvJycE0TRISEmqtT0hIIDs7u1Hnf+yxxygtLeXCCy9sRu8bR4JSQgghhBBCCCFOeoamMziiG+sL9jIiqmebnMNlszM4LuHYOzaCqSwuXPQM+0oLSI1M5uaBk467gJTPsrDp1QO04oJCj7r/rQOm4jIcDIlKJj4QPGqJv274go8y1hPlCMaOg6yKIh4ZPY+53YYS4wrBqdvwWD66hkS2+FwFnnLe3b0egHd3r2/ToFRGRkat4XtOp7PBYxz5nmhs4PLNN9/k/vvv5+OPPyY+Pr6pXW80CUoJIYQQQgghhDjpaZrGM6dcR7G3nAhHSEd355h8lsnBiiIMQzEiIY6zug3s6C7V8t7edfxx9WdMTerL0+MvbFQgJMYZyt1DZrVaH4xAQEzXNLLKCwGNLQVZzO02lJSQKL6ZfSvlPg89wmIAf6BvwYFtdAmOZEh0cpPOFeUM5sp+o/kxey8/7zuyVfrfUFAqPDz8mDWlYmNjMQyjTlbUoUOH6mRPHentt9/mmmuu4d1332X69OnN7H3jSFBKCCGEEEIIIYQAdE0/IQJSAE7DzrNjr2Bl7h4u6nFKR3enjm8yt2Oh+C5rBz5lYdeMFh3Pbfpw6EaTssHuGXoGk+L7MjS6C8sP72NLQRY3pE6s2p5wRDbW/3au4i/rv8bQNL6dcxvJwY2fIRHgT6NmHnunJlDUnnGvKbPUORwORo0axYIFCzj33HOr1i9YsIC5c+c22O7NN9/k6quv5s033+TMM89sRq+bRoJSQgghhBBCCCHECWhMbE/GxLbNUMOWum3AZCxlcXpSKnb96AGpyiFlDQ0tW3BgO7cufZ/+EfG8N/2qYx6vUrnPy4SEPoTYHMzrNpR53YYedf/KYuYaGjoa6SV53Lr8HWJdoTw17iKCbHa8lkmeu6xOQKstNJQp1Vh33HEHl19+OaNHj2b8+PE8//zzpKenc+ONNwLw+9//ngMHDvDqq68C/oDUFVdcwRNPPMG4ceOqsqyCgoKIiGhagK6xJCglhBBCCCGEEEK0Ia9lsiBzG/3C4+kT3jpFzpvii/2beWv3Kq7tdyqTE/u2yzkHRSXx/IRLjrnf45sW8n9pSxkdm8Ka3HSu6jOeO4fUHjK2OHsXprLYXJBNbkVpnULpj238ls/2b+aPw2YxLdk/Q+GqnH38YvFrhNgcfDr9JqKcwfx1/Zfke8q4f/iZRDvrZsRd2ns0ycERJAdHkBgczgtpS0grOkRa0SHW5+9nbGwPLvr+v2wuyOJ3Q2ZwVd/xdY6hlD+fqb7g2g/ZO455PWpqaVDqoosuIjc3lwcffJCsrCwGDx7MF198Qffu3QHIysoiPT29av/nnnsOn8/HLbfcwi233FK1/he/+AUvv/xyk87dWBKUEkIIIYQQQggh2tDT2xbz1NbFuAwbS878NWF2V7ue/6/rvyLXXUqeu6zdglKN9UnGJkylWJubgakUn2RsrBOUOrf7UPLd5QyL6VInIGUpxfNpy1AoXt+1qiootaUgG1NZFHkr2F+az+7iw7yzdzUAo2K68Ys+4+r0Rdc0Tk/uV/V4dpeBfLF/M7HOUIZHd8VjmWwrPAj4Z+870r6SPC7+/mWcusE7U6+uVax9X0ked6x4v0nXpqVBKYCbb76Zm2++ud5tRwaavv/++yYfv6UkKCWEEEIIIYQQQrQhraouUMfMjndOylBe3fUT53Qb0iHnP5p7hs7ktV0rGRWTwtq8dC7pNabW9qe2LuKJLT8wLq4H16bWH0i6MXUCn+/fzBV9qmtrnd9jBIcqiolyBDMyJoVCbwXdQ6Ip9JYzPr5Xo/rWNSSKD06/vta6J045nx8P7eLafqfW2X/F4X3kuksBf9BqRpf+VdtCbU6CDXujzlupNYJSxztNVeaWCSGEEEIIIYQQTVRUVERERASFhYXHnBHseFDoKeeunz5B1zT+MXYuYXZnm5/Ta5l8m7mdPuFxdAuNZmNeJoOiEnE1MUjREg3Va2oPyw7tZnvhQS7oOYoQm6Nq/daCbB7dtJBJCb25oOcIbln6DoWeCp469YKqIuNXLf4fSw7txmXY2DDv9y3qx9GG1rWGYm8Ff1rzBS7Dxn0j5tR5fXcePEDfxK7H/KxUfqYmfHwrtpDq96ev1M2SuU+eMJ+1xpBMKSGEEEIIIYQQJ41vM9NYmOWv7bMoaydndhvU5ue06wazuw4E4FfL3+PLA1sZF9eDVydf3ubnrtRRAalcdynXLnkdC0Wuu5TfDK4emvfc9iUsPriLxQd3kRQUztJDewB4cfsy9pbmcFbKEO4ZNpOXdvzE9MCwvJZo62sQZnfxz7HnNbg9vonF0S20WrPvWR2UadeW9I7ugBBCCCGEEEII0V7Gx/ekR2gUvcJiOCWue7ufP7OsKPBvYbufuyO4dBuhgWy0I2esm56cik3TmZzQmwkJvRgX14OBkQlsyN/PkkO7uX/t5/QJj+Ovo85ialLtWljPb1/CzK+fZP6Bre32XNpb5fC9mktnI5lSQgghhBBCCCFOGknB4Xxzxi3H3rGNPHbKuXyWsYmZNeoNdWYhdiefTb+FrLJChkQlV63/av8Wntj8A7cPPI3r+08A4NUp/syx13etYEthFmd0bTiL7altP1Bh+nghbSkzuwyotW1bYTZ3r/6AARGJPDRyHrrmz8f5PmsHB8oKuaDnCBy60eTn8vimhXx9YBv3Dp/FxITeTW7fVEppqBqBKNUJg1KSKSWEEEIIIYQQ4oSllKLE6270vrf/9D7DPvobX+zf3MY9q1+30ChuHjCJPuFxjdp/2aHd/G/XStymr036o5TitV3LeWLrt1SY3ka3yywr5B8bv2Xl4X1H3W993n4+37+JnmExtYbPvZC2jH2leTy1bXGdNpf1PoXPp9/MtORUvJZZ73Gv6zeBBFcYv+gzts62D/etZUfRIT7J2MC+kjwA9hTncv3St3hg3Ze8vnNlg/0t8lRw508fc9+aL/HUOLfXMnl2+xL2lOTy6lHatybJlBJCCCGEEEIIIY5j1/74Fouyd/GHYTO4ql/dAEVNbsvHF/u3APB5xuajZuIcD7LKCrnqx/+hUBR6y7m5/+RWP8eavHT+tukrAGKdofy819GvYaUH133Fwqw0Xt+1knVz7663XlO5z8vli17FbfnYU5zLAyPOrNr2iz6n8I9N33JRz5F12lWYXn723QuU+Nzc0G8C05MG8En6Zi7oOYzUyHgAbh0whVsHTKm3b+d0G8YPB3fQPyKBbqHRAATbHDgNG27TR6wrBIAyn4fntv9IrCuUy3qNQdM0PsvYzMfpGwGYmtSX05L6AP66YFf2GcvXB7ZySa+6fW4LJ0OmlASlhBBCCCGEEEKckJRSLAsUx16cveuYQSmXYefuIdNZmJXG9akT2qOLLeI07AQZNspML9GOkDY5R5fgSEJtTspND/3CExrdrndYLAuz0ugZGtNgAXFD1wmzO3G7fUQ7g2ttO7vbEM7uNoR9JXl8l5XG5MQ+GIFhdpZSmMoCwKtMbl36PgfKilhxOJ1PZl5zzL4Nikzmqxm/rLUuISiMr2bcRJ6nrGoY4Tt71/Ds9h8BGBKVzPDoroyJ60a43UWwzc7gqMRax/jDsJn8YdjMRlyd1qGOyI6SoJQQQgghhBBCCHGc0DSNf5wylwUHtnND/8YFma7pN55r+o1v4561jmhnMJ/PuJmD5UUMj+7aJudIDIrgm5m/xmP5iHGGNrrdnYNPZ173IXQLiW5wH4du8Mm0G9ldksOomG51tpd43cz95nnKTC+/GjiFWwb4M8GCbQ7enXoNmwuymdNlIDsLCjhQVsSAyMYHzeqzsziHJQd3E+0IpktIJKnh8ehohNgcJAdFANA3PI4Vc+9AQ0PvoBkLKylAqdqPOxsJSgkhhBBCCCGEOGGdmTKIM1OO72F4LZEcHEFycESbniPM7mpyG03T6Bsef8z9Qu1OHt/0LftK8nj21EsYGt2lapulFL5ARtT32TvoFx7PjC79eXfPWl5KW86NAybiNGw8M+F89pXkEWJz8MauVZye1I/E4HDAP0Rwb0keqRHxtYJIZT4P6aX5pIbHo2kaHsvk5qVv41UWB8uLeWLczxgf34tFZ/yaIMNeNUMgwOqcdP66/iumJvXj9kGnN/natBYLDQ2t1uPORgqdCyGEEEIIIYQQJ4EdRYf45fJ3eHvP6mYfw2dZTdp/d3EOa/P2k+cp4x+bvuGOFe/z6s6fGPXJ33l00ze8M/VqxsZ2Y33eAW776V2KPBU8sfl7dhbn8PjG7xj/0b85f8ErJAaFc/tP73P/ui+5bsmbVce/aOHLnD3///j7+m+r1imluOC7F5j77XP8a8t3ANg1nV7hsQD0r5FxFecKrRWQAnht1wq2Fx3i2e0/Uu5rfPH31lZZU6rm0tlIUEoIIYQQQgghRKf3zr4VTPz6Lzy5/ZuO7kqHeWbbYuZnbuP+tZ9T5vM0uf1f13/J0I//zFPbfmh0m34R8VzSczTDorqwImcfn+/fzEs7llPic/Pu3rX0j0hgdteBaBp0DYkkyGbnqr7jiHYG0y88gYPlJWzIy2JLwUGCbA4AQgL/KqXYV5IPwO7i3Kpzmkqxv6wQgL2B2fc0TeP9qdfwzaxbuTFQT+zT9M0M/+BR/rDy81p9Pq/7cGKdIVzQYyRBNnuTr1Nrkdn3hBBCCCGEEEKITuD99JWU+Ny8vfcnbk2d3tHd6RCTEvrw1f4tjIntTpDR9GDLVwe2oICv92/mlv71z3x3JEPTuW/EGVSYXs5f+AJ7S/O4tNdo5mdu5cyug9E1jZ/3HsPkxD7EuUKx6wbXpI7nmtTxZJUVUeb9jKTgMIbHJPOP0XN5bfdKftZ9GOAPNP138iV8n7Wz1ox4Nl3nhQmX8uPBXVzaa0zVeodho1toVNXjD/dspNjr5p3d63lw1Bxsuj9vZ2pSP3488zdNvj6tTakjakp1wqJSEpQSQgghhBBCCNHp3dj3dJ7f8T3ndx9z7J07qXO7D+OMroNw6EaDM+YdzX3Dz+TdvWv4RZ9xTW7rMux8Mv1G3KaXZ7b9SN/wBM4NBJcspViTk0GkI5gpSX2q2iQFh/P66ZdWPX5w/Vd8dWAr32am8dmMGwAYFZvCqNiUOucbE9udMbHdj9qnGwaMJ99TxhkpA6sCUseTI4fsdcbhexKUEkIIIYQQQgjR6U1NHMDUxAG11hW4y/n6wDYmJPSka0hkx3SsnTmN5ocBpif3Z3py/2a31zWNzQXZPLt9CQC9w2K5pt94Ptq3gd+t+gSAD6ddy6CopDptlVIUeSoAKPW5m3X+zLIiXIaNaGcwAGPju/PhjKubdaz2IEEpIYQQQgghhBCik/rdyk/5JjONLsER/HDWbR3dnWPyWiZ/XvcVue5SHhxxJjGukI7uUpP1CoslwRVGobec0bHdAKoKjRuahquBYYW/XvEBSw/vYVpSP34/dGa9+5T7vA3WgFpycA+/+P5NXIaN+XNuIDmkbWc0bA2W0tBqBKKkppQQQgghhBBCCNFJVGYNOVqQPdSeVudk8NaeNQCMjEnhmn7jO7hHDTtcUYKhaUQ7awfOop3BfDfnl5jKqrr+M7v05+2pVxFmd9I7MEPekb7P3glAgae8Vl2oSvev/Zy39qzmun6n8pvBdWuG7SnKRaEoN71klxefEEEpqSklhBBCCCGEEEJ0Ug+POYszUwbWW5PoeDQgMoGeoTHke8qYmNCrRcd6MW0Zz25bwk39J3J1v6bXiDqaDXmZXPT9S9g0nY+nX0evsNqBJpuuY6N2DacRMV2Pesy/jz6HzzI2cW2/U+vd/l1WWuDfHfUGpS7oNZxCbwXRzmBGxHRpytPpMP6glFbrcWcjQSkhhBBCCCGEECelYJuDmV2bXyOpvUU4gvh61s2tcqzXdq6k0FPO6ztXtnpQak9JDqayMJVFRmkBvcJiya0o5bFN39EjNJrrUseTVV5EvruMjflZzOk6gAhHEAB57lLmH9jGpITedKlR52tWlwHM6jKggTPCn0eexbt713JZ71Pq3e40bNwycGKrPs+2JjWlhBBCCCGEEEKI41Ceu4zthYcYE9vtuJw57Xj3q0FTeHH7cq5Nbf0hgNOTUrmm7zjig8KYlNAbgFd3ruTdPesACLLZ+OuGr/xBF2DZod08Me58AO746UOWHtpDz9AYXpp8KT8e2sm0pP7EOEOPes7JiX2ZnNi31Z9LR1KBpebjzkY+uUIIIYQQQgghTiiWUsxb8AKXf/86j2z4tsnt0woPsvzwHlRnHA/VSOd2H8ZnM29gXvehrXpcpRSXLXqFl3Yuo9znQdf82T2jY1MwNJ0uwRHku0v9+wbCLLmeUp7bvpgyn4egQKHzIJudG5a9zgPrP+OuVe+1qE9ZZUWU+jwtOkZHqMyUqrl0NpIpJYQQQgghhBDihGIpRaGnAvBnTDXFvpI8zvvuOUyl+PuoczmnW+sGZU52plLsKj4MwJbC7Kr1kxJ7s3renTh0A7fpw0IR6QjGadh4YN3nrM7di6UsHh5zDqty0hkVk8J1y14DwGU4mt2fLzO28MvlHxDjDGHBnJsIs7ta9gTb00mQKiVBKSGEEEIIIYQQJxSbrvPG1CtYcXgf5zYx08dnmZiBDKkK09sW3Tup2XSdp8ZfxI8Hd3F577G1toXY/MElu25w+6DTAch3l/HPzd9Q7HPzzp61PL3tR54ZfzFRzmBeOPVyVufuY1xc84u6bys8BECuu5Q8d9kJFpQ6IjtKMqWEEEIIIYQQQoiONygqkUFRiU1u1zs8jlcm/YKcihJmdxnUBj0T4+N64dBtVUGoo4lyBvP1zF+yuSCTa5a8AcCSQ7uYmNCbSEcw05IaLm7eGNf0G4fXMukTHkv30OgWHau9+Wffq/24s5GglBBCCCGEEEKIk8opsT06ugud2j82fctLO5bTJTiCb2ffVlVXqiFRzmAmxPfmtgFTSCs8VCfDSinFe3vXUWH6uLT3KAzNXx47z12GTdMJdzSc/RTucPHbodNa/qQ6gMy+J4QQQgghhBBCCNEE6SV5gD9oZCl1zKAUgKZp3DpgSr3blh7awz1rPgMgyhnEWSmD2ZSXxQULX8LQdD6beT09wk6sLKhGUVrtIXudMCgls+8JIYQQQgghhBCi1WSVFQEQYXdh03UKPOU8sOYrXkr7qUkzHlqBfeNcodg0HQ2NpKAIAHYUHcZrWVSYPvYGgmCdTeXwvZpLZyOZUkIIIYQQQgghhGg13UOj2FKYTa/wWABe27mS13etAmB8fA/6RyYctb2lFFctfp1VORk8PvZcZnUZwIJZt2Aqi26BulBnpgwivSQfl2FnQkJP3tq9Gruuc1734WiNyMwSxwcJSgkhhBBCCCGEOGEsObST/2z9jnNShnFpr1Oa1FYpxcLMnUQ5gxgZ27WNenhiKPSUs7s4h2HRXRs1vK4p/nHKuVyVP44Bkf5C9MOju2BoGjHOEJKDI47ZvshbwbLDewH4NjONWV0G0CUkEvAHrB7Z+A27inK4f8QcuoRE8vWBrdy/7nMA4l1hTErs06rPp8OowFLzcScjQSkhhBBCCCGEECeMZ7b/wMaCA6QVHWxyUOqjvZv4zfJP0YCvzriOvhFxbdPJ45ypLOZ9+zyZ5YXcmDqRXw86vVWP79ANhsdUB/0mJfbmp3PuwGXYcRrHDkNEOoL47eBpLDu8l+tSx9fatqPoEP/dsRyAN/es5s7B04h3haKhoWsQ6wqt2tcfeMtlWHSXVg+8tQcpdC6EEEIIIYQQQhxHzu02grSig8zrNqLJbTW0en8+2ZiWRY67BIADZYXtcs4IR1CT9r829VSuTT0VpRSLsncSanMyMjaFHqExDI5MYk9JLlMT+wEwIiaFL2fejKHppIREAf6MqnO/fYH9ZQVcn3oqdw5u3Rn4lFIcqigm3hXWtsMFO2F2VE0SlBJCCCGEEEIIccL4WfeR/Kz7yGa1ndtjEOEOF9HOIPpExLZyz04cJT4PHi9YaETYgju0L3nuMkLtThy6Ue/2+Qe2cdvy9wD4aNq1DIxK4oNp19bZr0doTK3HprLIcZcCkB0ovN6a7l79IZ9mbOTCHqN4YMRZrX58kEwpIYQQQgghhBCi09A0jdO7dJJ6Qy3g0A2CbQ6KvW6SjlHjSSlFjruUWGdIq2cEfZy+gd+u+ojuIdF8Nv1GHPUM7VPNTBWy6wavTb6c5Yf3ckGPpmfVHcua3IzAv+mtfuwqUlNKCCGEEEIIIYQ4frlNH1/s30S/iAQGRSZ1dHdOCKF2J1/OuoGM0gJGx6Ycdd+7V37Kh/s2cGnvkTww8oyj7rswM42HNyzgnG6DuW3glGP2Y13efgD2leZR6K0gzgilwvSSVniIgZFJ2HSdWV0G8PyEiwm1OxkY1bTXd1h0F4ZFd2lSm8Z6ZPS5fLBvHRf2GNUmx/fTAkvNx52LBKWEEEIIIYQQQpywntn2A8+l/YhdN1g85zdNrl10skoMDicxOPyY+608vA+AFYePnRH08o6f2FeSx9NbF3PrgMnHzKy6MXUSplIMi+pCXKBA+TU/vsaavAzmdRvGw6PmoWkapyX1bcQzql9WWRFu00ePsOhmH6M+I2O6MTKmW6sesw7JlBJCCCGEEEIIIY5fTsMO+Idr2TS9g3vT+Txyylze27uOi3sdu47Xz/uMZl9JHnO7DWnUUL+EoDAeHHFmrXUHygoA2F+a36z+1rS3OI85Xz+HzzJ5ecqlTEjo1eJjtisJSgkhhBBCCCGEEO0jrfAQ8UFhRDYh2+n61IkMjEyiV1gsIXZns87rsUz+tmE+JV439w6fTZjd1azjdEZj4roxJq5xGUGzugxgVpcBLTrfs6deyjeZ25jXbVij9ldK8WnGJjTgrJTBtYJhORUleC0TgP9sXsRX+7dwz/BZuAKBzOOe0vxLzcedjASlhBBCCCGEEEJ0uLd2r+FPaz4nyhHMwjNuI8TmaFQ7Q9OZktj84V0Ayw7t5n+7VwIwPKYrl/Ya3aLjnSwWHUzjzT0ruaTnGCYn9GuVY/aPSKR/RGKj9/8uawd3rvgIgHB7EFOSqgvZj4pN4R+nnMOPB3fxScYm1uRnMCGhF7O7DmyVvrY1pfxLzcedjQSlhBBCCCGEEEJ0uIySPAAKPGWUet2NDkq1hoGRSSS4wig3vYyJbeM6QZ3IXzd8yf6yfHYX5zB5RusEpZoq0hFUVf470lk7w07TNM7tMZSRsV1ZfGgXhqYztI0Kn7cJGb4nhBBCCCGEEEK0vZsGTCLE7mRARALxQWH4LJOHNn3GgbJ87h82j6SgyDY7d5wrlO/n3I5CYUhdqkablTyQ/+5cwqzk1s08Si/JY09JLhMTetf7euwoOsgP2Ts4J2UoI2NT+GzGDWiahgYUesrrFLvvHhrNsrPuQENDb0Stq+PGSTB8Tz5tQgghhBBCCCE6XKjdyc0DJjE12Z9xs7Uwi/fTV7E8ZxcfZ6xp8/PrmiYBqSa6Y9AM1p59L3cMmtFqxyz2VnDOt89x/dI3eSFtab37XLPkNR7f8g1/XPsxAH0j4lmbm8GZ3zzDnPlPUerz1GljaPqJFZACNFV3aaqnn36anj174nK5GDVqFIsXLz7q/j/88AOjRo3C5XLRq1cvnn322Wb2vnHkEyeEEEIIIYQQ4rjTJzyeQRFdiHKEMCWhf0d357ixPu8ANy55m4/3bejorgD+WQ9bk6kUvkBx8grTW+8+sa5QAOJcYVXr9pbkApDvKaPE627VPnUYVc/SBG+//Ta3334799xzD2vXrmXSpEnMmTOH9PT0evffs2cPZ5xxBpMmTWLt2rX84Q9/4Je//CXvv/9+C59IwzSlOmOpLCGEEEIIIYQQ7aGoqIiIiAgKCwsJDw/v6O50elf88BrLD+/FrhtsPu8PHd2dNrEpP5MdRYc5s+sgHEbdqkMl3gq2FmYzMCKJFYf3MTg6GZdh46Udy9lWcJAoZwi/HzqD0BqzMWaVFZJWeJgJCb2w6Q3n5/xl/Vd8nL6ee4bOZl73xs0A2FiN/axU7pfyzz+jB1XPBGmVV5Dx63sb/VkbO3YsI0eO5JlnnqlaN2DAAObNm8fDDz9cZ/+7776bTz75hK1bt1atu/HGG1m/fj3Lli1r7NNsEsmUEkIIIYQQQghxwnp1xwpuWfouWwsOdnRX2sX05FQ0YHpy8wuLLz6YxqSvHuauVe9wPOapDI5K5tzuw+oNSAGE2l2Mie3B3zZ8ww1L3+b8b18k1OZkZHQK32Sm8e6etXycvrFqf7fp4+wF/8e1P77Fvzf/AMDH+zbwxObv62RVvb17FcVeN+/vW9dmz6/RGsiUKioqqrW43XUzwzweD6tXr2bmzJm11s+cOZOlS+sfFrls2bI6+8+aNYtVq1bh9daftdZSEpQSQgghhBBCCHFC+i5zB39eN5/5B7bzl7Vf19qW7y7jmsVvcOOSt1s8nEspxe7iHNymr0XHaQ1X9D2Fjef9gSfGnd/sY3x+YAOF3nK+ztpEsbeiFXvXvsoCtaPKTS8KsOk6QYYdl2FnZEzXqv0spapeu1Kfh93FOdy18mOe2rqYV3b8VOuYdw2ZwaDIJG5Mndhuz6NBDQSlUlJSiIiIqFrqy3rKycnBNE0SEhJqrU9ISCA7O7ve02VnZ9e7v8/nIycnp+XPpx4y+54QQgghhBBCnGSio6NJS0sjNjaWqKgotKMUgM7Ly2vHnjVNeml+1c8DoxJrbfsmczuLD+4CYMnB3czqOqDZ5/nP1kU8uXURqRHxfDLt+qNer6Yo9Xm4a8VHuC0fj46ZR5QzuNZ2pRRPbVvEvpI8fjtkBnGBWkqOFtZxuqzXeDJKcxkf14fwI2aqaw9v717D8kP7+OWgyfQMi2lwv22F2fxp7WcMj+7K74fMqnPd7xsxhzFx3RgT2x1d03how9dUWB66h0QxILL6/RBks/PO6VexIe8AZ3cbjMcyibC7KPRW0Cc8rtYxr+gzliv6jG3dJ9xcR9aRCvyckZFRa/ie0+mkIUdeM6XUUd+/9e1f3/rWIkEpIYQQQgghhDjJ/POf/yQszF8k+l//+lfHdqYFLu41knKfh3B7EJf2GVVr28SEXvQMjcFhGIyJ69ai86QVHgJgb3EeplLYmvgFfXN+FlsKszk7ZTAuw161/seDu/gmazvgD6Jd0HNErXbbiw7xn63+4WZdQyL51cCpLXkaVQZHduF/k25olWM1VbG3gj+u/gIAQ9N4dOy8Bvd9c/dKNuYfYGP+Aa7qM56k4AgA8txlXLn4ddymj5cm/ZzkwPq+4fGkFR0iNTIBpRR7SvLoEhyB07AxIDKBAZEJPLHpB17buZKbB0xiZtf+dA2JbFL/y3wePsvYxLDoLqRGJBy7QUsozb/UfAyEh4cfs6ZUbGwshmHUyYo6dOhQnWyoSomJifXub7PZiIlpOHjYEhKUEkIIIYQQQoiTzC9+8Yt6fz7ROA0bNw6of5hVUnAEX8++ud5tprL4Yv9GkoIiGB3b45jn+cOwmaSERDEpsfdRi2TXp9hbwcU//BePZbKnOIffDplRtW1MbDf6hcfjsXxMSOhVp23X4Ei6hUSTXV7I2Lhj9/NEEGJzMjy6C+vzMut9zjWd2XUI32ZtZ1hUFxKCqoMwq3LS2VboryG2+OAuLuo5EoBHxszjxv4T6Rkay5NbFvPvLYvoFxHPZzOuq8r0eX3XKgq9FXy4bwNXp45rcv8f3fQtb+xeSbBhZ9lZd+FsoO5Va9CUf6n5uLEcDgejRo1iwYIFnHvuuVXrFyxYwNy5c+ttM378eD799NNa6+bPn8/o0aOx2+31tmkpCUoJIYQQQgghxEnONE0+/PBDtm7diqZpDBgwgLlz52KzddxXxozSfP65+TuGR3flij6ntOqx39qzkoc2fokGfD7tNrqHHj0LJDk4gruHTm/WuQxNx6Hb8FgmwTZHrW3RzhA+m9FwxlKo3clXM2/GtKwGi36faHRN4+3Tr6TC9Na5Hkc6Ja4HP55xZ531ExJ6MS2pHxWmjxnJ/avWG5pO3/B4ANKKDgOwtzgXn7Kwa/4hj3cMPo03dq3h1oGTmtX/YJs/OOM0bEcd0pZTUQpArCuEPcW5PLVtESOC4pt2sgaG7zXWHXfcweWXX87o0aMZP348zz//POnp6dx4440A/P73v+fAgQO8+uqrgH+mvSeffJI77riD6667jmXLlvHiiy/y5ptvNu3ETdA53tVCCCGEEEIIIZpl06ZNzJ07l+zsbFJTUwFIS0sjLi6OTz75hCFDhnRIv57fvpTPMjbzWcZmzug6kNhAPaXWEGz4gyGGpmNvYX2mY57L5uDjaTewuzjnmJlB9TE0HcNo/hxlRZ4KHt+0kPigMG7sPxG9jWoDNYWuaccMSB1NiM3BM6dedNR9fj9sOl2CI5iU2KvWa3xJ71Fc0ntUg+3e37uWxzZ9yyW9RnPbwNPqbP/VwKmMie1OanhCg7W9tuYf5NwFLwEaH8+8iufSFvP5/s18XNaygvtNddFFF5Gbm8uDDz5IVlYWgwcP5osvvqB79+4AZGVlkZ6eXrV/z549+eKLL/j1r3/NU089RXJyMv/+97/52c9+1mZ9lKCUEEIIIYQQQpzErr32WgYNGsSqVauIiooCID8/nyuvvJLrr7+eZcuWdUi/To3vybt71tI/IoFIR/CxGzTBvG7DSQqOIM4VRnJwZKseuz5dQyKbXLuoPi9sX8qLO5bzy4FTuKRXw4GVmt7Zs4Y3dq8GYHBUMpMTex+zTbnPy/+lLSUpKLxOnasTRXJwBL8bVp3dtjh7FxWml+nJqUfNcPrfrpXkecp4ZedP9Qal7LrBlMS+ddZvLcjmxR3LmN1lAF5T4bUswF+HbHxcT77Yv5mhUcnsbMJz0Dhi+F4T2la6+eabufnm+oexvvzyy3XWTZkyhTVr1jTjTM0jQSkhhBBCCCGEOImtX7++VkAKICoqir/+9a+MGTOmw/o1p+tATkvsi9OwNZjdU+yt4JUdKxkUlcjUpLqBgoZomsa4uKZnLXW0/+5YTq67lJd3/NTooNTwmK7oaFhY/HHNJ3w351cY2tEzr97YvYonty4CYFBUIgMjk1rc9415mYTZnfQ4ymx7TeWxTOyaXm+QaVN+FiE2Bz3DYlidk8E1P74BwJPjL2Bml/519q90Y/9J/HvL91x8lOt7oKyAu1d+RHJwJH8ddTZ23eDhDfP5KWcv32RuY9XZd/PbYf6i9NO79MPQdeZ0HYSvrIIPuLXxT7CBQuedSfNzAIUQQgghhBBCnPBSU1M5ePBgnfWHDh2iT58+HdCjakE2+1GHmz215Uee2PwDN/z4DjkVJbW2mcri84zNrM3d32r92VOcwzeZW/FZZrPaH64oodTnOeo+q3LS+SR9I75Apk1Nvxw4hV6hMdwyoPH1kEbHduOMlAGgQZG3AlMduzBR77BYNCDU5iTOFdbocwEopfhv2nLuW/MF+e4ywD+z4M8Wvsic+c+ytzi3at+sskLW5GagjtKnzAb2eWfPaoZ//FduXv5WnTbfZaVx3sIXOGPBs+wuzqk1zM6pHz03Z2aXAXw24yYu691wHbOP921gVW46n2RsYFN+JuDP7AMYF9cDm65zw4Dx3DBgPEagMH6o3dn0oZOqnqWTkUwpIYQQQgghhDiJPfTQQ/zyl7/k/vvvZ9w4/2xky5cv58EHH+Tvf/87RUVFVfseaxr69tYt1J/dFeUMqlOj6I1dq3lw7dfoaHxzxs2khETVd4hGK/ZW8LPvn6PC9HJL/9O4pf9pTWr/fVYaNy57m0hHEF/OuJkoZ90hiRml+Vy26BUUinxPGb/oM7bW9ot7jTpqBk9D7h0+h4FRSZwS273BOkg1nZbUl+/m/JIQm4MIR1CTzrWj6DB/27gAgGhXML8aeFpVcMpUFiWBoFy+u4wzFzxNmenlvuFncEmv0XWOlecuY878Zyg3vTw44oxaz/377DQUikXZO/BaZlXdKJ9lke8urz6f18PQ6GTeO/0aPJaP0bHdmvR86jMtOZV39q4hOSiC/hGJgD/D6pJeowm3u1p8/CotLHR+IpCglBBCCCGEEEKcxM466ywALrzwwqphUJVZKWeffXbVY03TMM3mZQgdS3Z5Hnetewan4eCx4TcR4agual7u83CgPI/eoQl1hmld2nsUo2NTiA8KqxOUqgxS6Jp2zOFqjaGUqroulqqbxXQsWwsPVgWbDlUU1xuUsmsGNk3DqxRBhr3Ffa4U5Qzm2n6nNqlNcnBEs86VHBxBYlA4hyuKGRmdAsB5PYahoRHtDGZwlH8ooNv0UW76AMhzl9Z7LLfppSKwT76nrNa2WwechobG1KR+Va/1n9d/wZu7V3Jz/yk8POpsIhxBDI1OBqj6tzWkRiTw/Zzb66xvagDvWDR1RE0pCUoJIYQQQgghhOhMXnrpJVJSUjCM2hk0lmWRnp5Ojx492rwPq/K3k1nhH9a1sXAPE+P8M/4ppbh6+VPsKT3Elb2mcmPfmXXa9ouIr/eYF/UcQXJwBAlBYc0OsNQU7gji7SnXsaP4EDOSBzS5/eW9T6HYW0FKSBSpEQn17pMYHM7H027gYEUx4+N6trTLHSLU7uSb2bfiNr2EBbKGDE3n/J7Da+2XGBzOSxMvY1dxDuf3qL+YelJwBC9P+jl7inM5v0ft9gMjk3hq/MW11n19YAsKWJC5lY+n3dRaT6lFlFJklheSGNSMLEPJlBJCCCGEEEII0ZldffXVZGVlER9fO7iTm5vL9OnT2yw7qqZJsUP48fBGXIaDUdH9qtZbKDLL8wBILz3cpGNqmtaomeaaol9EAv0aCCgdS6jdyW+HzDjmfr3D4+gdHtescxwvHLrRqGGCp8T1YFz80YNv4+N7Mv4Y+1T607AzeW/fGq7sM75R+7eHf2xawEs7lzExvjePDTmnaY0lKCWEEEIIIYQQojOrHJp3pJKSElyuVqyPcxQRjlD+Nuz6OusNTeefo67ip9wd/CxlXJuc+8sDG/nh4Hau6TOJvuH+gJNSis/3b8ZSirNTBtd7fY5mT3EuForeYbFt0eVjyq0oxa4bhDva5/Vrjnf3rOVPaz9nRnJ//j3u/FY55swuA5jZpelZbG1pfZ6/0P6mgswmt5Xhe0IIIYQQQgghOqU77rgD8GcU3XvvvQQHV9c4Mk2Tn376ieHDh3dQ76qNjO7FyOhebXJsn2Xyh7XvYyqLUp+b/5zycwAWH9zFHSs+BCDE5mBacmpVm1Kvm7f2rmRARBKnxtfNxNqYn8kF370IKN6cchUjYlKO2Y98dxlhdhc2veW1r9bm7ufSH17BqRt8OuOGFhd4byvzD2zDVCrwr9Uqdb+OR/ePOIs3dq9kTpdBTW+sNP9S83EnI0EpIYQQQgghhDgJrV27FvBnBW3cuBGHo7pQuMPhYNiwYdx5550d1b12YWg6Y2J6sDxnN+NiqwNMEY4gNPyjpSIdtQuSP7P9B/67cyk6Govm3Em0M6TW9jx3KSowziq3gQLeNb23Zx2/W/kZ/cLj+GTmdS0OTKUVHcJUFmWmRUZpwXEblLp14GQsFDOS+x8XAalvM7fzffZOru47jp5hMUfdVynFwqw04lxhVQXUM8sKiHWG4jBqh1n6hsdz3/AzAWrNZNkoMnxPCCGEEEIIIURn9N133wFw1VVX8cQTTxAe3oxCzCc4TdN4btwvKPW5CbVXD3UbFt2Fz2bcgKVUnaLkiUH+ounhdhdOo+5X6skJffj7qLlYKKYlpdbZfqRVORkA7Cg6TKnP3eIZ3OZ1G0p2eRGhNifj4npUrf9i/0b+ve0bLuoxhqv6TDzqMSyleG77YvLd5fxq0FRCjpjZsDUMi+7CixMvbfXjNoepLH65/H28yuRwRQnPnnrRUfd/b+867ln9GToaX8++mR8ObeWxLV/RJyyedyffgt5KQTYZvieEEEIIIYQQolN76aWXOroLHUrTtFoBqUp9w+uf1e/nvU5hREwKSUERhNic9R5vXvdhRz1nfiCDKsoZwm0DJ6GjMSauW5MDUkopHlu/iM352dw/eibdw6JwGrb/b++uw+Mq04ePf89MRqIT9zTaRmqpG3UX2qKFQvHissgCv2VhYffdZWEXW5bFtizuUFqgFKm7t6knbdK4u4+d94+0aafxNKnen+uaK5lzHjuT5I/c1/3cDw8ljGvS9v2jG8iuKeOd5LVtBqW2F6Xz2oHVAIS5ebEgemiH1nWh0aDQxyuIXSVZDPQJ7XD/g8frRaVVFWG22zBqz33m14VCglJCCCGEEEIIIS5p6ZWlODvp8Hd2a7Otoij09gxu17g21c7qvEOEu/kQ496QcZVckc91a99GAT4fcxc9PQJ4btB0Ht68mEWHN/PaiCuJ9mhfgfT0qlLe2L8RgA8Ob+eZwS2f7ndz9EheO9iQKXWC2Wal2mrGy+C4RTHCzQdPvTPVVjN9PIPatZYzcaAsly+PbefysH4M8gnv9vlOpygKn4y9mZL6avyd3Ruvp1cV8/e9y+njFcK9sWNRFIVthRmEuHjy1sh5+BndCHfz5sH4yXjqXRjmG4VRq+u6hcn2PSGEEEIIIYQQ4uK1LjeVW9d8jkHrxM/T7yTUzbPLxn7/6Hr+dehX9Botv0z6PV56V45VFWGx2wA4VlVMT48ADpcVsDzrEABL0vfySN/x7Ro/2MXEAN9gDpUWMjG0Z6ttZ4b2Y2Zov8b3VZZ6Zv32Jvm1lbwx/FomnFLM3d/ZndXTf4fVbsdN1zQbrKs9vWsJB8vzWJOXwqppj3T7fM1x0mgcAlIAHx3dzJr8FNbkpzA3rD+5NZVcv+pDAP435nr6Hq8nFeTsyRN9Znb9ok7bvncxBqUkp0wIIYQQQgghxCUrs7oMFaizWSmsa7sweUvsdju/2/INV69cRH5NJdCwvQ4cYwkTAuN4KH4iD8VPZHxgQyCol8mfcUExRLr7MKtHn3bPqddq+Xbqzeyf9yijAiPabL8q7xD/O7KeWquZwroq8morUFHZXZLVpK1RqzsrASmAfl6hx7+GNLn3zuH13LPxc45VFZ+VtZxqXGAsBo0T/b1C8Xf2wH7KT9J+NgJEajOvi4yinvgrEUIIIYQQQgghOqiiogKTyUR5efkFWSzdbLPxQco2vA0uXBnRF0VROjXOssz9/G7rtwBc5h/Fe6NvwGq3sSLvABFuvsR6dP82uNZkVZcwY+WrANwfO5E7e43l06PbOFJZxAPxY5ts4TubVFUlt7acQGcPhyLh+bWVjPnpFQDmRQzkzwNndXjssvpaNuSnMSogEk9Dx4vI21W7w5o25qdhVe2MCYxupVfz2vu3cqJd1FN/Q2s8We/MVldH6l//cMH+rTVHtu8JIYQQQgghhLhk6bVaFsYNP+NxYj0DUGhIZhnkGwaAk0bL1OC+Zzx2e+0uzuK/yZuYFdabaaEJDvdcnQy4OhmottYTdPwEwfnRQ5ob5qxTFIVgF88m130MrgzwDmVfaS5jA1vfnlhlqUevdUKv0Tpcv3v912wrzMRTbyTS08Rrw64ixLXpXC05/SS9kQGR7e57puT0PSGEEEIIIYQQ4gJRbq7hpvXvUWmpZdGoW4l0a1/B8M44XFbABylbuS12ODEevkS7+7Juxu8ora8h1jOg2+Ztzd+TfmVncRYb8lObBKW8DK78MOEhiuoq8Xe+MLJsnDQaPht7K3ZUtIqGtMpi/peymfFBvRgfdDJItbEgjdvXf4qPwZUfJ9/lcIrhifpdZeZakkqr+TFrP3fGjuq2NX+ZvpnP0zdxZ8wEpgW3fgqjkJpSQgghhBBCCCEuEvvKckitKqSwvoqNBUe6da6rfnufL44mcfWv7zde83d279KA1LaidP7fnuUcrShsV/vxQb0AiHT3Ycav/+aHzL0O930Mbvw7+Wcmrfgbz+75lq6o5rOnJIsxy15h4YZPsNrtZzze6RRFQXs8W+n5pF/5PG0nD2z+Cvspa99dnIVNtVNQV0l2TZlD/7dHX82fB01lsH8wUW4+TAmOazJHYV0V7x7ewMGyvHatyWK3UWmpb/be2ykrSK8uYtHR1e17wNZcAjWlJFNKCCGEEEIIIcRFYYhPBJeH9qfCUsv0kO7dNqc5XnqqkyWo2uWBzV9Saq7lQFken469pc32d8WN4uaeQ5mw/FVKzTW8fXgds8IcP4ftJWkAfJe1kxG+sUwN6X1Ga1yWtZ/8ukry6ypJry4h2r37stMG+ISwOi+FPl5BaE754OdHDya/tpIQVxPxpkCHPr5GN27oOYgbeg5qcdw/7fqBlbnJ/Dd5I1su/32ra6ixmpn+07vk1lTw9uhrGB8c43B/QeRoPj22gfkRIzvxhI5k+54QQgghhBBCCHGB0Gud+NvAKzvUx2yzsqskiz5ewbg66dvdb8nk2/noyHZu6dV9dZniTIFsKkyjt2f7i6QbtTpujRnBh0e3sCB6WJP7D/Saxov7f8Rq11Jvt3ZoPXU2CwaNk0Mx+GsiBrKzOJM4UyCRbj4dGs9st3Hb+o85UlHIWyOvI9E7tNX298SN5orw/vga3Byue+qdeW7gjA7NfaoAY8N2Rj+jWxstIa+mkqzqcgC2F2Y2CUrdEj2GW6LHdHotTVyEgahTSVBKCCGEEEIIIcQl6/fbF7M8+yADvEP5fNxt7e4X6eHDMwOndnrewroKlmZvZbhPL3p79mi2zX9H3UB2TRk9XL06NPbC2MsId/fmjUOrsKo25kcNbbw3P3IE0W6BlFlqmBJ0su5UdlU5Oo0Wf5fmAzP/S97C83t+ZUpIHP8eeXXj9RgPP74af0eH1ndCelUx24rSAfgl+2CbQSmAwE7Uw1JVlWd2LGdPSQ4vDJlFvJfjFsun+k9jZlhv4k7Lsiqpr2JvWSbDfGMwanUARLp789SASaSUF3FrbDcXij99y95FGKCSmlJCCCGEEEIIIS5ZhXXVABTVVZ3Vef958Dv+e/Q3HtyxqMXaTk4aDeFu3g6ZSac7XJ7Hn/f8wPbjwZ0T3k5ey5HKQv51cCXQEJhZn59KWmUxw/wimRrcu3HcHYXZjF78FqO+fZMj5cXNzrMyNxmVhuDRQztfoc7WfE2ljoh29+OGqCEM9Q1nXqTj9rofMvcx65e3+SptV+M1VVWpaqGWU2uyqsv59OhO9pfm8Xnqrib3nTQaBvuG46YzOFy/bfO7PLzjE/6yd3HjNUVRuC12KM8PnYFvOzKrzsSJ7Xunvi42EpQSQgghhBBCCHHJemnIFTzWZyLvjJrfZttaq4Urfl3ElJ/eJK+64ozmDXb2BiDA6HlG4zyz+3s+T9vOI9u+crg+P3IoXnoXbooeDsAnR3dw69pPmfXLO00CcBmVpdhVFYvdRk4Lz/V434nEe3nh51HJocp0UqtyzmjdABpF4ZnE6Xw05mbC3bwd7r2+fy3JFQW8un9147U7V39Ln89f4e39Wzo0T7CLB5NDehHo7M7lPdpfQ6vOagEa6kidE1LoXAghhBBCCCGEuHgFuZhY2GtUk+s1VjN21Y6bzojFbiO7poxlGQfYW5oLwPNJv/HaiNbrV72xdyOV5noeHzAWjcYxJ+SB2BlMCUok3NUPgJ+zDqHXODWpUdSWvp4h7C3Npo9nsMP1q8IHclX4QIfnAbCpdiynnZJ3eUQCRbXVGLU6RgdFND+PdzD/vWw+Lx3+FH+DF73cm99y2FVujBnCvw6sYUHMyS1y63IbirSvyT7KXb1P1svaUniMNXkp3Bg9lGAXU5OxtBoNb112TYfX8O7w29lSfJTJgX1abWe120mtKCbKwwcnTdfl/kihcyGEEEIIIYQQ4hKTU1PG1WvewGy38uGohTy/dzk7ijO4PDQRBQUVlamhca2O8XnKHv6xay3QEAh6avBEh/saRUO8qaGG0orsZO7d8A0An46/kWH+4e1e61P9pnNrzAgCmwnGnOrWXsPwM7oR7uZFkItjXSYnjYaFpwR5ntvxM98d28czA6dwReTJ0/v8jV680P++ZsevMNexoyiTYf7huHSgYHxLFsQMcQhIAbw8ahbL0g9z9ylrtasqd278jDqbhfSqEt4YMe+M5z4hzNWHMNe2i7c/tGEJyzIOMaNHHG+MvqLL5r8UakpJUEoIIYQQQgghhDhFalUhVdaG2kWHKnJJLs8HoLC+gr1XPoFFteF+vP5QQW0FH6duYZhfJKP8T2Y5OWtP/rvt3EaQ5kQRbQCDtmP/piuKQkg7CqHrNFquiOjXrjE/PbILq2rnq7Q9DkGp1tyy9lOSSnKYFNyLty67tl19OmpGeBwzwh2DgQoQ6ebNwfJ8Yjz8umXetiSXFTp87TISlBJCCCGEEEIIIS581ZZ6Ht/xLQHO7jzdb2arxcNH+EVzT6/x1NrMzAjpR6izNytyD3F91BCMTk4YT/lX+pnd37M2P4X3j2xi66z/awwwzYnqjVVVqTLXcVPcoJamAmBUYCRfTbwZJ42Gft7BzbaptNTh5mRodd1d5YnECSw5to97E5pua2zJiQLkFZa67lpWsxRF4Ytxt5NVXUqUu6/DPVVVqbaamxQw72r/umwu36bt5cp2BvDaS7bvCSGEEEIIIYQQF4Fndi9lVd5hAPp5hjA3fECLbbWKhntixze+H+oXyVC/yCbtbKqdDfmpADgpWvQarcP9q6JbrkVUaa7n84NJ9PcPYmhQKAN9Q1ts+17yZp7f8xujA6J4b0zbBdnP1G2xQ7ktdmiH+rw35npW5Rxh2vFtjZk1edTa6ujlHgGAxW5DQenSmksnGLRORDeTJXXvps9ZnZ/Mo70ncUczdcO6SryXP095TWy7YUddAplScvqeEEIIIYQQQoiLXpTbySyaHm5t1wlqDw0KNjvY7Ao2uwaN0r5/sbcXHWPMN2/w101rmP/9l1SaG7KMVFXl56xDrM9LdWi/Ib+hwPfmwmPY1bMfmfj22B6GLnmZl/aubLFNqKsnC3oOxs/ZjayafB7c+Td+v+efbClO4mhFESN+eJnLlr1Cbk35WVv3psKGz3FjQWqTe6qqcqyyhHqbtdUx8moquHXdRzy5fQkWu61b1tkiOX1PCCGEEEIIIYS4cFSY67ht/SdUW82MDYpkTX4yDydM4r748fTzCsHL4Eofr5B2jWW321m44Qvyaip467J5hLl6OtxXFIWrwgfxWeoOZoS1f+vW07uXUmWvBQy46fTojmdY/ZR1iAc2fgvAt5Nuob9Pwzp/33cCHjojk0Ni0Zy2fW9l7iHyaiu4OmIgOkWL2W7rcF2qtnx2dCel5ho+SNnGo30ntNm+zl6PnYYT/qqsNWRVZjVu69tXmktQG0XZT1BVFYvdhr6Z51l65BAr049y38Bh9PTybaY3vDj4Cn7JOcjtPZtmSb1xYAOv7FtDnMmfH6be0eK2yCWZSWwsbAgKXh0xgMG+3Xvq4Klk+54QQgghhBBCCHEB2VGcQVJpDgBpVQVoNCpP71rClOAERgf26tBYSzL3sTbvKADP7FjG/5rZOveXQTN4vO8E3PVGh+sfpmzhrUMbmBvej8f7TXK4N8QnnPSqXRgNsGzaQoxODf+aG44HpxRoDFQBxHkG8Mrwpqe6Hako4P4tnwNgtdv4JesI2wozeHHobOaEd66+kV1Vsauqwza7u+NH8fK+1VwTmdiuMWLcevB0wt1UWKoZ5z+EWpuV3SXZ6DVaxgbGtD3AcQ9v/Zafsg7wf/2mcEvPYewoTuexbd/QzyuEH/ZkY1Pt1FgtvDN1brP9p4QkMCUkodl7h8oaitenVhZjVe3oFG2z7cYH9uLjo9vwN7oR7xnY7rV3iUtg+54EpYQQQgghhBBCXDSG+UUwPrAnVdZ6UqvyKLfU0svDv1NjDfAJQUFBRWVMQFSL7U4PSAH8c+9K6uxWFiVvahKU+vOAOdzVayy+RlcMp5y8NzGkF5+NX4Czk44Er7YDIG46AwaNE/V2K+46I1sK0wFYnXukQ0GpVTnJLMs6wNURA/j95h8oqa/h0wk30s8nqGFdwb2YGNyxgN5g75P1tFyd9Pxl4MwO9QdYkZOMCqzIPcwtPYexNDOJ/LoKfsmpoJ9/T3bl51JjM3Ptsk/58/DJxHm3//S9PyROItjFxGWBkQ4BwNP1MvmzbsbDHV57V5BMKSGEEEIIIYQQ4gLi4qTn7VHXAQ3ZQ6mVRfRsIyj1733rWZl9hGcGTSbR9+TWvgg3H3bMfZQqS327t5ydMMA3lE0Fx4hooX5VyGlbAU8Y6t/+7WGBziZ+nHQ/ZeZaEjyDqLHY2JCfxr0JlzXbvtpq5rX9q/DQG7knbjTa4zWwHtm6mGqrmUNlBWRVN9R82lyQ3hiU6oh/Ja3nk5SdPD5gPFdFndlpdH8dNIufsg5wd1zD88yLGMTe0mz6e4Xyx34zOFZRwsTF7wHw2PofeWLwWEYHNy1I35xgVxN/GDCp7Ybn0iWQKaWo6jmokiaEEEIIIYQQ4qJQUVGByWSivLwcDw+Pc72cDqu2mOn71T8BmNEjjn9fdmWXjV1lqcdNZ+iy8c7UJ0e38Zc9PwHwv8tuZIR/Q/bX3Rs+Z2VuCvfHj6HabKWgtoqnB03G2+Di0H9faS4eOiM93LxanKPvFy9RZTHT1zuQpTNu7b6HoWGr4W2/fs2G3HQs2NBqFHbOexDT8cw1VVXJqyshwOjVriL0y7J3UWau5trwETi1kj3VWe39WznRLv7ev6E1nMzCs9XXcfA/f7hg/9aaI5lSQgghhBBCCCEuWS5OOi4PT2BNzlFmh/fu0rHPdUDqUGkBz237jWEBPbimxwZcrL+h14zBxclIlPvJrW5vjpxHmbkWr9OCUKf6OfsgD2z+Gp1Gy89T7iW0hUyv3/Ubzacpu7i794iufhwH9TYrr+5bQ2KwHyOCe/D8ztX4GF0xnlIU/aXDn/Nz3lbG+iXyx943tzrevrJM/pT0FQBGrY4rewzr1vW3h3L8der7i40EpYQQQgghhBBCXLIUReG1UXPP9TIAsNntHCkvJsrk3Wqdo/ZadGAbm/Iy2JSXwRivdwh3tvLRUB/iAj52OKFPUZRWA1IARXXVAFjsNqqs9S22uz1+KLfHDz3jtZ9Qaanlnq3/o9pax7+H3EKIizcAP2Ts593DmwB4e9S1LJt1KyGuHg7PdbgyA4Dkysw25/HSu6LXOGG2WwlybjkT7Ky6BLbvSVBKCCGEEEIIIYRog6qqbWYTnak713zDiqyjRJu8WDH7rjMeb0Z4HMvSDzHYP5Qg08OUVH9DiOftDoGb9poXORCtouBndCPOFAA0bJ/TKC3n7xTXVfNz9kFGB0YT5tq5QM+e0gwOVmQDsL7wMPPCGzKwErwCMWqdcFK09DL5EdbMlsLH4+bzU+4WJgcOaXOeEBdvFo99lFqbhXBX306ttatJoXMhhBBCCCGEEEIw7qd/kVtbwbjAnrxzvJB6V9tRmAXA0fISiuuq2VmYw4rsFBbGDyPa1HzB9NaMD41m//xHG98HmR7o9NqcNBquixrU+P695M28mPQb86IG8tzAGc32eWzrYjYUpBHu5s2v0+7r1LyDfCIZ5x9PtbWeiYEnT/SL9wxg1Yz7SK7MJ8DFvdm+Pd3D6Oke1u65/I0dK2bf7S6BTKm2K30JIYQQQgghhBCXuNzaCgC2F2V0qv8/965g4JIXeD7plxbbPJI4Gp0TDA4MwkNn5P51i/niyB7+tnMFP2Tt5O/7vqOwrqJJP9WWjbXkDmwVz6Oq9k6tr6OWZe7HjsoPmftabOPipAfA9fjXznDW6nlp0I28Nex2fA0ng0+qqvLI9q+4c9PH/N/OxZ0e/2wpra/hxb0t/+xbpNI0OHURkaCUEEIIIYQQQohLWlJJDlOX/4fHtn6HvYUD6m+KHoqvwZX/6zfZ4brZbiWlIh97G8Gg91I2U2U180HK1hbb3NRrMCnXP8nXk29Bp9XS3ycIgARvf57b+zXfZG5l0ZGVTfrZaz4D82rUmkVgTTl53W7HYt6D3W5tcU6r3c7yjMMcKi1odf2ne6zvREb6R/KnAdNbbPOPoXN5a+Q83h9zY6tj2VWVB9cuZcJ377C3OK/NuTcVpJK49O/sLW3Y1pdf2zRQd7bl11byn/0b2F/a/Pr/d2QjXx7b0aExT2zfO/XVXUpLS1mwYAEmkwmTycSCBQsoKytrsb3FYuGJJ56gb9++uLq6EhwczE033UROTk6H5pWglBBCCCGEEEKIS9q3x3aTVlXM0oy9ZNeUNdvmj4lT2TjrEa6JHOBw/a6NHzNn5Zv8ec+Prc4x1C8cgIE+oe1e12eTb2DrVQ/wYN/LCHNp2L7X16tHk3Yaw3hQXMGpNziFN14vK5pGWdEMSgpaPknu3QNbuGftt8z+6X1K6mravbbh/hG8P+ZGZvfo22IbFyc9E4J74al3bnWsjMoylh47QGpFCV8fSWpz7pW5KdTZLNRa7dwcPYIXB13F87tXMGrJ6/ySdbjdz9CVntr2Ey/tXcNNqz5r9n4/r1CUjp6fpzbz6ibz589n9+7dLF++nOXLl7N7924WLFjQYvuamhp27tzJ008/zc6dO/n2229JTk5m9uzZHZpXakoJIYQQQgghhLikXRmRyKaCY/TzDibExbNDfY9WFjV8rShstd37o1vOFsqtqWB7QSYTQnriqju51U2r0eDn7AbAF6MfotJSh7fBrUl/RT8Irf9ulNOKjtusqQCo9o5lQZ0tJfU1uDkZ6OHuyZzIBPYV53F1TL82+90UM5SM6hLiTYE8lDAOu6qy6NBWVFQ+ObKTKaGxZ2H1joKcG7YWBjo3X99qUnAcv0x5kAieb/eYZ6vQ+cGDB1m+fDmbN29m2LCGAOa7777LiBEjOHz4MLGxTT9Pk8nEr7/+6nDt9ddfZ+jQoWRkZNCjR9PgaXMkKCWEEEIIIYQQ4pLWzzuYn6fd26m+/x5+Hb9kH+DqiEFtN27BNb98SE5NBbPDe/PqqDnNttFpnBwCUmt3HuXVz9YwfWQ8C68Y0RiQyi+r4oVvVxHm68ndE1+ktupVjK6OGS/FtTV4GoxoNRoWJgwj3N2LKA9vvI3dd7Lg6b7P2M/Dm74jzM2L5dPu5LXR7c+wCXP14u2R1ze+1yoKD/QexQ8ZB7m119DuWG6b/jRoKnMj+xJr8muxTYdPbjxLhc43bdqEyWRqDEgBDB8+HJPJxMaNG5sNSjWnvLwcRVHw9PRs99wSlBJCCCGEEEIIIVqQUVXC3Zs+J9DZnXdH3oBW41gFp59XKP282r8lrzn249GGtupSneq1Rb+SVVXDoiWbuWPu8Mag1Ncbk1iRdASAaQNvID70Sod+/929g/+3YTUDAoL49qrrcdJomBEed0br74xdRdmoQEZVKaX1NQS6eJzReA/1HcNDfcd0qE9ebQXXr34fm6ry2dibCXH17PT8ThoNg3zP7PfgdC1lSlVUONbQMhgMGAyGTs+Tl5eHv79/k+v+/v7k5bVd4wugrq6OJ598kvnz5+Ph0f6fpdSUEkIIIYQQQgghWvDsrh9JrSxiY0EaP2Tu7ZY5vpp8Ey+PmM3fhs1oV/vivDJKVyejqbUQbzA6bNsbFR+Bs15HdKAP4X6eDv0s9nq25mQCkFSQj8XechBsQ34qz+76idTj2xO72t3xI5gfPZC/DZ7R6YCUTbXz6NbFzP71HZLLm9+imFldwvVr/stj277GYrc53NtZnEl2TTl5tRVsLUrv1Bq6VQs1pcLCwhoLkptMJp5/vvktgc8++yyKorT62r59O0CTrZ/QcMJhc9dPZ7FYuO6667Db7fznP//p0CNKppQQQgghhBBCCNGCsYE92ViYhgaFAT5hXTauXVUpN9fiZXAhxNVESKSp3X09/TwYEBFA8vp07lx0p8O9xMhgNv79PhTFMdCQU3OALzKeIDzYh6sMVzEpIha9VtviHPdt/ooaq5n0qmL+10o9rBOqrWY0KDg76dr1DP7O7vxlcMsn97VHakUR32fsA+DZXT/x4pA5hJ6W7bQ0M4k9pVnsKc1iQfRw+nufzGYaF9iTWWF9sKl2Jgef/WyxzsrMzHTIRmopS+r+++/nuuuua3WsiIgIkpKSyM/Pb3KvsLCQgICAVvtbLBauvfZa0tLSWLlyZYeypECCUkIIIYQQQgghRItu7jmcGaF9cHXS43JKEfIzHnfNJ2wqOMbv+07grviRpO3L4IWbXieqXziPvXcvGk3LG5u0Wg0v/fgENpudSlsdK3L3Msy3J246IwAaTdPsluza/dhUMwZDLg+PiCTUpZfD/VqLhaOlJST4+aNRFHp7BrKtKIO+XsFtPsuh8nzmrX4PnaJh8cQ7CXP16uCn0TmR7r5MDO7FmtyjbCvM4MFN3/DtpNsd2kwJjmdJxh6CXUzEmhwDLC5Oel4eesVZWWuntFBTysPDo13BH19fX3x9fdtsN2LECMrLy9m6dStDhzbU5NqyZQvl5eWMHDmyxX4nAlIpKSmsWrUKHx+fNuc6nWzfE0IIIYQQQghxyVuSnsSc397hx8x9Te75Obt1aUBKVVW2FzVso9tS2LBt7Of3VnJ09zF+/XANmYdzHNqn5ZVQUlnTZBytVsPvtr/Pk7s/48ldn7Y6Z1/PafTznM4I3xvYmFfPvRu+4mDZyeyYa7/+nNmff8xf160G4IPRC1g17QEe7j2+sU16eRmHS5qeMnigLJc6m4VKaz0pFWfvpD8njYY3R85jsG8PQMHH4NqkTU+PAH6Z8hDvX3YLRm37srjOFydqSp366g7x8fFMmzaNhQsXsnnzZjZv3szChQuZNWuWQ5HzuLg4Fi9eDIDVauXqq69m+/btfPLJJ9hsNvLy8sjLy8NsNrd7bsmUEkIIIYQQQghxyfu/Hd9jVe08sX0pM8P6tNgutaKIWpuF3l5BnZ5LURReG34Fv+Ukc0fsCACGXDuENd9tJjAectz/TYD1MYxOvvy84zBPvrcMV6Oepc/eire74wluZrvV4WtLjFp3pgT9DrPdxm2r/44dFTsqb426FoCM8nIAjpWVAg0Bn1MLfx8pLWbqVx9gU+18NPNqRodGNN6bGdqHlIoC9BonxgT07PTn0llvjbqWPSXZDPDp2kLj59xZOn0P4JNPPuHBBx9kypQpAMyePZt///vfDm0OHz5M+fHfk6ysLJYuXQpAYmKiQ7tVq1Yxbty4ds0rQSkhhBBCCCGEEJc8X4MreXWV+BncWmyzpSCNWzZ8CMAz/WdwfdQQh/tvHljHD1n7eLzvJMYGOQZnLHYbO4rSGeIbgVajYUpoHFNCG+oYVVhqeaRiMS7v6rgmYj259WCqCCfB+x6yihqCANV1Zipq6poEpV4bfAsbC5MZ49++mkg6RcNlgVGsy0tlfFBM4/Wnx4/hxW1r8PXTN1vgurSuFtvx0wELaqod7hm0TjzRd4rDtV+zD/P2wY3c2HMwc8P7trieCnMd/2/Xr5j0Rh7vPwGdpuU6Vy1xcdIzwj+yw/3Od4qqoqiqw/vu4u3tzccff9xqG/WU+SMiIhzed5YEpYQQQgghhBBCXPJWTH+ATQVprQY39pWf3FaXVJrN9ZwMSlntdv51eAWKAk9sX8zmyx936Dv919fJqS0j2NmT36b+zuFepaWWSmsddTZXrKofek0F/s4NtX3mjx8AQA8/TyICvJusyc/owZywwY3v/7V/DcuzDvBU4lRGBUQ1Xj9QWMDXB/dzZVwC/73sOsx2GwbtyZDA1rJ0inUVfJ2xh8cSx+Hn7BicGxwYwr8mzqLKXM/cmPgWP6MTXtq7iiMVRWTtLms1KPVd+l6+OZYEwNigaC4LjGqx7SXnLGZKnSsSlBJCCCGEEEIIccnTabSMCYxptc0t0SNIKsmm0lLHH/vPcLinVRRcNUZq1Dqi3Pya9C2oqzj+tbLJvRAXb/4x4HrSqguYGf4nnJ2c0CgN9Y+c9Tpunzq0Xc9gtdt54+BaVOB/KZsdglK/+3kZR0qKWXMsjRU33eYQkAK4MrIf6/PTGOIXhq+xaW0mRVGYHdP+E+quiUzk1X1ruDYqsdV2Q3x74Oqkx11nIM7Tv/G6aq8CxQVFabkU9s7iDI5UFjAnrD+GTtaLOlCWx+Jje5gb3u+MtmR2h9PrSHVXTalzSYJSQgghhBBCCCFEO2g1Gl4bdm2z9xRFYf2sRzlYmk+iT0iT+38eMJv3UjZye89RzfafGNQb6N2udSzL2s+zu35kUnAcgUYTwS4mro5MxEmj4aaYofyUdYB5kQMd+iT4+nGkpJh436YBM4Dh/uFsnP1gu+Y/XWFdFTa7nUCXkyfC3R47nNtjhwOQU13OAxu/xcfoyr9GXIHR6WQAKd4rgB1XPIIGBe3xEwfV2qWo5b8HpwTw+RpFabqlr7i+ils2/A+bqlJQV8n9ceObtGmPx7Ys5khlEWvyjvDLtPva3W/RoS0kleTy+37jCHXz7NTcbZJMKSGEEEIIIYQQQrSHUatjgG/zxbbn9khkbo/ELpnn2/TdlFvq+CZ9N3abAij09Q4m1uTPU4lTeSpxapM+L02ZzoPDRhBu8uySNZxwtKKI2b+9g12189m4W0hsptj4j5kH2V3SsPVxR3EWowIct0ieXkdKNW8CVLDuB7UCFK8mY+o0WgwaHTU2M+46Y6fXH+sZwJHKIuI9A9rdJ7emgr/tXgGAp97Ic4OndXr+1kimlBBCCCGEEEIIITqk1mrhi9RdTA7p5XCCXVe5vedISupriHH347tj+3DXGfA1NN1ydyqtRkOUV9OaVGcqp6Yci90GQEZ1abNBqSmhsXyVuhsfoyuJ3k2zyE6nuN6DqlpQ9INRNA0BqQpzHS/s/Q0fgwsP9R6Hh86ZJRPuJaumlCE+EQ79Pzm6nZf3r+TmmGE8mDC21bn+OXQu98ePIcK9/Z+Nr9GVeM8AkssLGRXYjQXWL4FMKUXtinLpQgghhBBCCCEuSRUVFZhMJsrLy/Hw8Gi7wyVg2k9vcaSyCJ1Gy8Gr/6/d/VRV5fEdX7O1KI3nB17JSP/Wa1wBZFeX4aYzYNI7n8mSO01VVT45up16m5Wbew7DSdNyDagz8V7yZv6e9CsAn4y9iSF+4S22nfXrWyRXFOKld2HL5Y92y3rsqorltGLxbWnv38qJdoPm/RWt/mQWmM1cx44vnrqo/ta657dFCCGEEEIIIYS4iKRU5PJD1k7qbZY225Zb6gCwHs8gaq9ySy3Lc/ZRYq7m+6w97eoT4urZbQEpVVWps1hbbaMoCjfGDOH22BFYVRtplcV0R+7LIN8wjFon/I3uRHv4ttr2gYSxJHgG8mifCV2+jhM0itIYkFp0eDODv/sniw5v7tpJ1GZeFxnZvieEEEIIIYQQQrSi2lrPrZvepN5uZV9ZJumV1QQ6m3iq3/RmM4PeHzOffySt5KqIfh2ax1Pvwm0xo9hcmMr8yGFdtfxOUVWVBZ99zdbMLP42fQpX92u9CLtdVblixTukVhXzaO+J3BnbfEH3zurvHcK22b9Hq2jazMaaGhLP1JD4Ts9lsdtYlp1EhKsP/b17tNn+oyPbKLfU8dGRbY3F3bvKxVhH6lQSlBJCCCGEEEIIIVqhQUGraAErqZVFrMvLAmB2WD8G+IQ1aR/r6c9/x1zX+P6XzGRSyou4JXYwrjp94/Xymjr+uWQNo+IimDYgFoCHE6Z078O0U63FytaMLFRgfdqxxqCUqqocrkzG1+CDr+FkxpLZbiWjuhSAlIqCLluHTbVjV9WGwuYd2Cp3Jj44uoF/HfoNjaLw66TH8DO6t9r+d33G8t/Dm1kYO6JrF6KqDa9T319kJCglhBBCCCGEEEK0wtlJzyeXPUBqZT5eeg/2lnxCgNGDXh7+bfbNri7nrjXfAFBvs/JI/zGN9+56+xv2Zxbw3bYDDIoKwc/k1m3P0FEueh1/mTaJ9Wnp3DfqZPbPb/kr+TjjUwwaAy8nvoibU8OajVodb464js2Fadwc0zVZXoV1Vcz97V1qrGY+H38Lsab2n5B3JoxaHQA6RYtWabvq0dzwfswN71hWXHvI6XtCCCGEEEIIIYQg1MWbUJeGE9o2zXy83f3cdQZMeiPl5jrC3Dwd7hl1usbvtd1UIPxMzEvsy7zEvg7XqmxVAJjtZqx2x3pTYwJjGBPYdnH29jpYlkdhXcN8O4oyz1pQ6obI4US7+xHs7IV3G6cadqtL4PQ9CUoJIYQQQgghhBBdoNpixqB1QlFAATSKBg+9kRWz76KorppYTz+H9m/deSXvrdzGsF498HZ36fB8P+et5UhVOteFzcLH4AWA1W7nye1LOVpZxD+GzCHGw6+NUTpmZtAMPHUmgp2D8dR7ntFYxypLuHfDV/g7u/PmqGtwdtI53B/hH8ktPYdRZalndo++LYwC3x7bwwdHtnBX3ChmhLZe+6o9FEVhhF/XBdc6vQ57w+vU9xcbCUoJIYQQQgghhBBn6JNDu3lq0y9oFQUvbxtueie+HHsn/s4e+Bhd8DE2DToZ9U7cO61zdYhKzGW8k/o5AHqNnoVR8wA4UlnI0sy9ALx+YC0vDb2izcLg7aGqKj/nryCrJodrwuZi0nl0ehybquKk0bA86yDJFYUkVxSSVJLDMP9wh7Y6jZY/9G+7xtZL+1dSWFfFa/vXdElQ6rxxCWRKnX/5gUIIIYQQQgghxDlktln56OgWVuclA5BfW8m7hzaTWlHcYp9lxw4DYFNVKuosFNZXcaA8t1Pz59dWcvu6z/jD9h+w2G3NtnF3ciPUORAFhQSPk1k90e6+jA6IRoPCD+kHeXXfmk6t4XR5dfl8lP4FqwrXsTT7506NUWGuY/LPbzB46YskleQwIyyB3p6BjAuKob93cKfXdmP0YNx1BuZHDer0GOejEzWlTn1dbCRTSgghhBBCCCGEOMWHR7fw0v7fAPhp8v08tXU5mwvS+ThlB2suv6/ZPn8aNpFbf/0aP2dX4oNccdMbGekf3an5v0tPYm3eUQCuCO/HEL8eTdroNE68nPgUdTYzrk7Op1zX8sbwaxj03ctYsFJhruvUGk7npffERfGg2l7B+ztSuSbUgvG07XZtOVJZ2HhC36bCNO6KHcWSKXec8druiRvNPXGjz3ic846cvieEEEIIIYQQQlxa/I3uADhrdbg5GfA1NhS79ja4oKoq24syCHTxIMzVq7FPLy9fNlx7d6fn/ChlGz9k7uePiVMYGxjDe8lb8De6E+/ZtLi3xW7jud3LKKir4q8DL8f1tP/sjU46vpx4M7uKspgb0XItpo4wao2Emmfw4b7t2OxaKurrOxyU6u8dwu09R5BXW8HV4Yldsq6LmZy+J4QQQgghhBBCnOfeTP6FH7N38bu4GUwKahqEsdhtrM9PJd4UQKBL27WQZvfoR7SHHz4GV3yNbrw4bBbzohPp6x3EZ6k7eHb3Txi1OlZPf6DF09kmL3+D9OoSbogazJ8GTG91PovNxp93N2yJu3vDl2y4/Hdsmf1Ii+13FWfy1bFdAHyXsYeFvUY1aRPm4sWa8nR25uYypkdEm898QkplDusL9zM9eDCBRi+Hew8MGoGToqWPfwD+rm7tHvMEraLhiX6TOtzvkiU1pYQQQgghhBBCiHOn2lrPTzk7ya0tbbHNh6nryK8r54PU5usn3bvxC+7a+DnTfvlPszWaDhQXsCErHfWU7VG9PYMIdG4IYBm0TowMiMBdZ6Dc0rAdzmyzYrY1X+/JbLeSXl0CwLKs/UBDnaiZv7zFnF/foaS+2qG9VqNBr9ECEOLi2eJznhDvGUgvD3+8DS6MCWj+lLjXtm7kH5vWc+vSbymtrW1zzBMe3bWIRam/8vz+r5rc83Z24alR45jTM77d4wHkVldgs1+ER8d1QK3VwsJVX3eoj9SUEkIIIYQQQgghzqEndn3C9pIUnBQnVk96rtmT5OaGDeKbjC0cqc5kd2kqiV5RDvf3lOYAUGOzUGqu5K8HPkCraHgq4WbuXLmYHRmFALw2YWaTgIvZZkWn0aIoCgC39xyOt8GFSDefFrOu9BonJgT1YnPhMe6PHwPAhvxUUioa5tlccIwZYSdPidMoCmtnPsjWonSmBMe1+Zm464x8P6n1rYKh7iYAvIxGjE7t/9c/wOhJibmSQGevthu3w8t71vGvpA2MCOjBZ1Pmd8mYACV1NazLOsaY0Ei8jM5tdzjHdhXlsCk/o2OdpKaUEEIIIYQQQghx7uRUlwNQb7ORVV1KZk0xGdUlXB0+CIO2oabRhMDefJ+7EYBKS9OsoId7j+efe1dwRXg/dpUmc6DiGAA/Ze9mZ1E2oD8+h9Wh39/2/MwHR7fgqXdm44xHGzKatE7MixzY5rrfGjnP4f34oJ6M9I9Eq2gY7h/OkoxdjPCLxv94NpaP0ZXpoQnt/2DacEv/AQwNCSHYzQNnXftrP70+6C6OVuUR6x7SJevYWZgNwO7izp1E2JKFvyxmR34OgwKC+Wb2DV06dncY6BvM6KAIPu1AH6kpJYQQQgghhBBCnEPP9b+WJ3d8TR+fHmgVuG/rxwDU2szc0bMhC2mwdwx/7nsjNtXGZX5NAzvXRw3i+qhBAJSaK4l174FW0TArdCAHelWxMy+Ha6MTuTq2j0O/33IOAVBmriW/tpLS+lruW/cdPT19eHfsNR16Di+DC++PubFhPWveZl95Dk6Khh0zn0bTTPbXmVIUhd5+TYukt8Wo1dPb5Hjan6qqjZliHfXskEm8d3A7U3v06lT/lpxIGrpQkoeMTjreHHsln3Jr+ztdAjWlJCglhBBCCCGEEOK8VVev4lzvSy/nMFx0Bpy1emptZvyOn5AHDQGYCQH92jWel96d+yJv4N39W9mSl8Pfhs1ose3jfSfzp10/MsAnlGBXE3ev/Zb0qlLSq0rZmHeMkYERnXqmgvoqAKyqHYtqx3Ael3veVLSXvx96nwSPKP7a9x40SsfWGmPy5W/Dp3X5ut6dcgVrstIYGxrZ5WOfLy6FTKnz9zdfCCGEEEIIIcQl799Jm9iWn81ftqzCU+fC0vEP8vnou5kTNqDTY/51+yq+Td3Pg2u/B+C7tH0kfv0yz23/xaHdtNAEtlz+e94aeT0AY4MaalU5KRoSvByzkH7K3scfdy4hvaq4zfn/M+wGhvpE8Kd+szFozyxXZG1uKpcvX8SiQ1vOaJyWbCpOwmy3srssmQpLDQBJpVlcs/odXtn/W6fHTa0sYkN+qkNx+Y7wcXbhyp698XF26fQaznt2tenrIiOZUkIIIYQQQgghzltzohLYkpfFzIheaDUaApw9CDhehym3upK9RXmMDY1EVVU+SNlOmJsnM8JaPx1uZFA463OPMSwgDIAvU/dQYanjkyM7eWbQ5Ba3qj2aOJYFsYMw6YwYTikeXm+z8Pj2b7CpKtXWel4Zem2r88eaAlk0qgPbuGjYQrci9zDxpkBCXD0br795YCMHyvJJSSrk9rhhHRqzPa4KnUCxuYJ+phg89W4AfHx0C/vLcthflsOtPUfiqe9YYKigtpLLf30Hi93GswOmMz96cJev+6Ig2/eEEEIIIYQQQohzw66qGHVaPpx6NUOPB5BOsNntzPruA4rqarg5YSAhnq68mLQSgF7T7yLGw7fFce/tO5zre/ZnY8ExPkrZwZ3xw6iy1DMnok+btZP8nd2aXNNrnEjwDGZvaTaDfMI78aRte3jrNyzPPoCCwqaZj+FpaDhxbl50IsnlBVwZ0XT7Yl5tCV9mrmKQVyyj/Po0ud8e4a5B/LXvPQ7XLg/rx8aCo/T08COzughPfY8WejfPqtqx2e0A1FotnVrXpUDhtO1752wl3UeCUkIIIYQQQgghzktfH0ni8U0/AfDZ5PmsyUxjVHA4o0MjUAGz3QZAvdVKqKsJAFcnPZ56Y5Ox3jq0nvV5qfxf/8n09goiu6acBzYsBuAvg6exdNptnV6noih8OuZ2ys21eBtcOz1Oa9KrSgBQUSmtr24MSs2N6MPciOYDTu+m/sDqgt38kLOJH8b8Hb2ma0IAowN68rdBl/Pozo+4bXMKH468j3hT+0/rC3Yx8cm4m8msLmVWWOeCZZcEVXWs5H6hVHXvAAlKCSGEEEIIIYQ4L5Waaxu/fydpK6sy0li0dzt7b34Io5MTiy+/kR0F2cyKjMNVpyfW0x9PvRFfo2M2U6Wljpf3rQJgUfImXh52JSa9EZ1Gi8VuI6CZ7KeO0iqabgtIAfxr+DX8YcdShvqGE9lKFtipYt17sLpgNxGuQTh1sEB5W6yqrfF7m2rvcP9BvmEM8g1ru+El7FIodC5BKSGEEEIIIYQQ56U6tQ6t3oaiqAS7NdSRCnM3oddqAYjx9CHG06exfUtb9tycDEwM7sXG/DSmhSY0jOPmycpZd1NpqSfO07+bn+TMhbl68dGYm9tsV1RfwevJ3xPi7MMd0VMY598fL717s6fmmW1WzHYbbjpDh9Zis9tZviUT74ow7h45jD6eTYNLqqpyuLiIQDc3PI3OHRr/fFNns7A+/wj9vUMdTn3sdlJTSgghhBBCCCGEODfmhPdjZW4KYa5ePDNsArcmDCLE3QNNG3WfTqcoCm+OnNfkesjxLX9nSlVVlmUexENvZHRgVJeMecIbSZvYWZTNCyOn42tsOxNrSdZmVuTvAWB8QD96ugc3266kvobLf3ubsvoa3h99I0P82l8L61hxKUuSDgFwKKASopu2+WTfHp5evQIfZ2fW3rwQF52u3eOfb/685weWZO4h2NnEL5N/12bdsa6iqCrKKVv2lItw+17X5u8JIYQQQgghhBBdJMLdmyWTF/LvkVdj0DoR4+WDs1NDcKPKUs+LO9bwZUpSp8Yuqa/hm2O7ya+tPON1Lk3fz4ObFnPLms9IKsk54/FO2Fecxz92r2VF1lHuXr24XX0Ge/fEoNHhZ/BkU34GZpu12XaZ1aUU1lVhUe3sKsnq0LrCfbyY0CuKUE8PLu8b12yb9PIyAEpqa6ky13OwpIAai7lD85wvzPaGz7De3vxn2W3szbwuMpIpJYQQQgghhBDigvP+gR38Z+9mABJ9g+jl5dd4L6WigHs3fomv0Y0PRy9Ad3y736ke3vINmwqP0dPDjx8n3w1AndXCm/u24Gt04cbYAQ4ZMQdK83Fx0hHh7t1krBOBMgUFo7brMoK89Ce3vQW5eLSrT3+vSF5NvJerVy5if/6vVFks3Bs/ukm7fl7BPNx7PPm1FVwXOYitxYd468j3TAgYwI0Rk1qdw0mj4c15c1pt88CQEXgYjPT29eej5J28nrSJaJM3v825o81Mo8yqMn7JSGFGeCxBrh5UW8y8uX8ToW4mrotJbPMz6Gp/6n85I/yiGeIbcdaypC4VEpQSQgghhBBCCHHBifXyQwFMBiN+zm7k11byU9ZBJgb35K1DG0ivLiW9upS3Dm3ggd5jmvR30jQEqnTKyYDV5ylJvJa0AYAEnwAG+TWcKLciO4WFa7/CSdHw88w7iTwtMDUlNJYvJtyEq5OeXiY/ukqIu4lls27hYGkhV0QmtLvfosNbsKsKigIuWn2T+9k1Bbx8+ENCXQJ4OnE+WkXLlxmrSavO43+py5kfPqHZGlTt8evmw6TnljB/+iAeGDIcgG/X7G2Yt6oCm6ri1EZg5/aVX5NcVsT3xw7y3Yyb+ODwdt7YvxGARJ9g4rzObg0wd52Rq8IHntU54dLYvidBKSGEEEIIIYQQF5zJPXqy8Zp7cNMZcNcbuG7l++wozuLzozt4uM84vs/YhwpEefg02//VYVeyPj+VYafUUurp6YMCuOj0BLucLGhdXFcDgFW1U2Gua3a8wX7dc5JcgncACd4BHeoT7eGLqoKvwY0bowc3uf9b/maSq9JJrkpnTsh4otxCmRUygqNVuUwMGNChgNSOgiwW7d/OlTF9iNX78Mc3fmy4ocLtVwyn2mzh6SETiPTwYlRQBE6atsc+kSHmZTACEOvZEID00BvxP8OTEs02Gwu+/4qjpSW8O+MKBgQEOdyvtNSzJT+dof498NAbz2iuMyaFzoUQQgghhBBCiPNTkOvJLW2m44EMk96ZqaHx/Dz1XsrNdST6hDTb111nZHqoY/bRqKAINl99L0atDpPhZEDiqsi+qKh46p3p73OycPgHh3awLP0Qvx8wlsH+oV35aGfk/oTRjA/uSbirF07NbF28zG8Aawt3EOLsT5hLIADj/Pszzr9/h+d6dssK9hbnsSkvg9WXL8TD1UhFdR09gry458ulrExJ5YlJY3h0eNNstZYsmng1OwqyGRrQEOibGNqTDVfch6uT/owDRWllJWzJaaihtfxocpOg1D3rvmZjfjpD/ML4YtKCZscoqKvg1YO/EO3uz23Ro7tvS5+qNrxOfX+RkaCUEEIIIYQQQogL3qvDr2R7UQaJPg3BoUj35jOk2hJwSobUCVqNhnnRiVjtdl7Ys5JKSx2/7zue57b/hl1VeX3vBj6Y2PR0v3NFURT6eAU1e8+m2olyDWXR0Oe6ZK4JodHsLc5jXGgUJjdnvv7nrVRU1xEW4MUjq38BYN3RY9w+fFC7x3TTGRgb4niKYXtrarWlp7cvN/buT3JJMdcl9Gtyv9raUIy9xtpyUfZPUjfxY3bDCYcTAxOIcPPtkrWdTlEbXqe+v9hIUEoIIYQQQgghxAXP2UnHAJ9QDpUW0t83CN3xmlE21U5GVQnhbt6drpN0wqaCY7xzaBMAcSZ/5kQmsCz9EJdHtL/e07n0S/YhHt7yDf19QvlozAK0Z/h5ADw84DLu7DMUl+PF3k1uzpjcGrLW/jFnGj8fSuHOkUPOeJ5T5VRXsCI7hSmhvZoNIrZGoyj8v7GTW7z/1mVX82t2MpNCerXYZqhvFB+nbSTMxZtAZ1OH5u8QyZQSQgghhBBCCCEuDNf98gn7S/O5LqY/zw+fAcDDW79kRd4h5oYl8teBczs1rtVuJ7k8n0h3H3wMrtRYzQz0DeXGnoN5ZdTlXfgEXevTo9t5Zd8qFsQM5cHeY1mdl4JFtbO9KINycy3eBtcumcdV17SYOsD0hF5MT2g5uNNZC9d8ycGyAr5L28s3U29pvP6/5K18d2wvj/Ydx5ig6E6NHeDizo09W8/qGuXfkw3T/oheo2020Pnfw5t48+AG7okfxR2xIzq1DgDF3vA69f3FRoJSQgghhBBCCCEuCnm1lUBDJs0Je8uyAViWtY9bokcR49Gw1aojdYB+v+07fszcz5iAaDbMfgC7qmLQnv//Tn96dAflljo+PrqNB3uP5faeIyiuq2aoX3iXBaTOhRNBsNODYS/uWYnZbuONAxsYExRNhbmWOzZ+RKWljrdH3kgPV2/25ebz08Fkru7fh0gfr06vwajVtXjv4yPbqbDU8fGR7WcUlJJMKSGEEEIIIYQQ4gLx4cTrWJV9lKui+vLn3T/xRdoO+nuFkFtdRbVd5fKfF+GquuCkaFk8cwHBru2rU3SssqTha1VJ47bA7rarOBOT3pko987XK3qg9xj+c2Ad84+fwBft4cvbo67r8Dil9TU8vn0JRq2OFwbPxsWp+cyos+W/Y69lW0EmwwJ6OFy/IWYQ36QlcW1UIgB7SrPYV5YDwJq8ZBZED+feL5eSV1nF9oxsvrjF8bOot1lZlLQDX2cXro3r23g9u7ocD70Rd52hXet7uM84/nt4M3fEDj+Dp0RO3xNCCCGEEEIIIS4UCV4BJHgFALA0IwmraqfKYsZf70VOdQVWu406cw2gsKMgm+DI9gWlXho2l8XHkpgZ1rsbV3/ST1n7eXjrNzgpGn6ach9hrp3L6JkaEs/UkPhO9T1aUUSN1Uxf72B+yTnEmrwjAMwO68PkkLhOjQnwSfJOXti9mht7DuTxAeM6NYaH3sjE0J5Nrv9xwGT+OOBkvajBPuFMCoqn3FzLtJCGn12kjzd5lVVE+3o36f/5wSRe3LoOgF7eviT6B7Es4yD3r1+Mt8GFlZff3a7T/+aE92VO+MmgVnJpEd+m7GeSf1iHnlNRVZRTsqOUizBT6syrmgkhhBBCCCGEEOeZPyZOZ5hvBE/2n8zfh85CgxZQMDhpuSq6D5PCYpr02Vecx+/Wfs9vmUccrke5+/Jo3wnEeQaclbWXm+sAsKp2aq2WszLnqY5WFDHr17e4auUiVuUkM8o/ilAXT2LcfRnk27HAyuk+P7KbSks9n6Ts7KLVtszZSc+/hs3jg9G34GdsKIj+7vVzWbrwRv4yY1KT9uEeXig0FM33d2nY3ni4rBCAkvoaiutqGtuqqsqB8iMU1pe0uY77VizlzaStPLp2Wcce4MT2vVNf3aS0tJQFCxZgMpkwmUwsWLCAsrKydve/6667UBSFV199tUPzSqaUEEIIIYQQQojzltVuI6e2jDAX7w7VgZrbox9ze/QD4NZ1H6IqVhRFS5S3Jy9dNrPZPs9tWcG2gix+yzzCvhse7pL1d8Y1kQPQa7X4Gd3oZfI/6/NXW83YjgdAyiy1hLp6snL6A10y9kP9RvNa0jqu7zmg3X1UVaXGZsbVqfXtc5uyMymvq2NqVEyLvyt6rZa4AL9m743rEcna6+/AWafD17khKHV73FBsqp1oDx8iPU5mV/2Ut4Z3U7/CqDHw7pD/h5uTS4vrivb0IbmsmEgPL9a29bCnUgH7ae+7yfz588nKymL58uUA3HnnnSxYsIDvv/++zb7fffcdW7ZsITg4uMPzSlBKCCGEEEIIIcR56+HtH7OhKIVrw4fxZO/OnXQ32DeCjQVpoNh5MnF84/Uaq5lPUjcT6ebLpOAERgWHs60gi5FB4V21/E7RKhquDE88K3NVWeqpMpsJdHVvvNbPO5g3R15LubmOOccDe11lUmhPJjWz9a4lqqpy//Z32VWaymPxc7kyrPk6TfsLC7j+uy8BeHXSDObGdm7bYpiHp8N7D72Rx/qPa9Ku0lINQL3djNneejbb6xNmkVxaRKBWzwcdWMvZ2r538OBBli9fzubNmxk2bBgA7777LiNGjODw4cPExsa22Dc7O5v777+fn3/+mZkzmw/2tkaCUkIIIYQQQgghzluHKnIBOFie0+kx5vboh7/BA3e9gTGB0Y3XPzi6gf8cXg3AsokP8bvEy7glfhCm43WD6m1WXt2/GieNhgcTxp61IuctKaip4svDexkbGklfv8AzHq+8vo7x37xLaX0tb024gqnhJ4NFE4NbDkScTRbVxu7SNFRgW3FKi0EpnUaDQkMykV7b/p+Tqqq8t3cnR0qLeWzoZfg4t5zxdKorQqdg0rkT6hKEt97UaludRktvnwAqKipabdd0cZx2+l7Dl9PHMRgMGAztK8LenE2bNmEymRoDUgDDhw/HZDKxcePGFoNSdrudBQsW8Pvf/57evTtXb01qSgkhhBBCCCGEOG/9Y+D1XBc+nGf6zqXeZuWJrUu5e8OXlNTXtN0Z+CptN+OW/Zt/H1zL+KCeDtu6Ql0atmO5Oxnx0DUEojwNzo1tlmcfYFHKJt4+vIFVuSkdWreqqjy89VuGf/8Sa/OOtN2hHf6w7hf+uX09Nyz7ErULsmYKa6spqa9FBQ6VFrTZfntROk9s/47tRelnPHd76TVO/LHPNUwO7M/CmCkttuvl48v3197Ip3OuYXp0+zOxjpaV8JeNq/jsYBKLknY0uf/l0T08sflHsqvLT1uXjmlBY4j3iCa7pqRLfh5NtFBTKiwsrLH2k8lk4vnnnz+jafLy8vD3b7pN1N/fn7y8vBb7vfDCCzg5OfHggw92em7JlBJCCCGEEEIIcd5K9A4n0bthO93avKN8m54EwA8Z+7mp55A2+x8sywcgp6aCSksdBq1b473Lw/rT2zMYT70LJn3TDJkEz0CctTo0ikJcB2s7lVvq+DFzPwBLMvYyJrBpYfWOCnFrOC0w0NWtQ/W1WhLj6cOLo6aRWlHKrQmD22z/hx1LyaguZXdxFj9Pvb/xutlmpcRcQ6Bzy6cZVlvN/JJ9kEE+YfRwa3ryXWumBw9kevDAJtfzaytx0epwP57Z1sev44Xog9zcCXHzILe6ksGBjjWRSupqeGJzQ3FyjaLh+WHTm/R/YtcnrC04yJVhw3iy95xm59hZlMUfti5joGvztaxaZAeU094DmZmZeHic/KxbypJ69tlnee6551qdYtu2bQDN/j6pqtri79mOHTt47bXX2Llz5xn9LkpQSgghhBBCCCHEBaGvVxBR7j5UWuq4LDAKaPjHud5uxajVNdvnvoTL0Gu09PUOwtfo1uR+lHvzgYL82gp8DK5smvUICgrOTs2PD/BLZjJLju1nYfwwEn0bAhueemfu6jWSDQVp3BQztKOP2qxnRkxgdkw8sV4dDG604tpe7a8ZNcwvkozqUob7RzRes9rtXLHybVKrini6/wzmRzUfKPzzrp9YnJ6Et96FjZc/guYMg2prc1O5bc0XuOv0/DrzrmZ/tu3hqtOz6vrbqbNa8TgtuOOuN9DL5EtKeRFD/EKb7X+wPBuAA+VZLc7xScpOksuLOJTbcpvmtFRTysPDwyEo1ZL777+f6667rtU2ERERJCUlkZ+f3+ReYWEhAQHNB/rWrVtHQUEBPXr0aLxms9l49NFHefXVVzl27Fib6wMJSgkhhBBCCCGEuEB4GVz4edo9je/tqp2b173PrpJM/jZwLrN79G/Sx8fgypP9J3Vonh1FGSxY+wE6jZbvJ93dZmbPY5t+oNJST15NJd9Mvanx+qN9J/Joh2ZuXl5tBa5Oetx1RgYFhHTBiK2zq2qzQaM/D5jJw73H43VKVlmtzUxaVTEA+8tarvvlpDRUD9JquqaK0OHyAlRUKiz15NVUNQlKrc5M44e0Q9zWexAJPq1nuem12mbrUOk0Wn6ccTvVlnpMBudm+/4t8Xp+zt3N3NCWA49XR/Vjc0E6A/2i+Hc7nq3RKVv2Gt93gK+vL76+vm22GzFiBOXl5WzdupWhQxueY8uWLZSXlzNy5Mhm+yxYsIBJkxz/rqZOncqCBQu49dZb271GCUoJIYQQQgghhLgg1VjN7CzJQAXWFxxpNijVGWlVxdhpyMDKqS1vMyg1JiiKHzMOMi44utV2nbEqN4W7N36Oi5OeFdPux9vg2uVznKCqKrdv+JQtBen8c+hcpocmONxXFKXJ/O46I68MvZrtRenc0WtUi2M/PWAaowOj6e8dcsZZUgA3xAykwlxHkIsHvb2aZvM8sOp7Ksz1pFeU8dWs6zs9j5NG02JACqC/Vzj9vVo/rXFEQAQb5jxARUXFWQ1KtVd8fDzTpk1j4cKFvP322wDceeedzJo1y6HIeVxcHM8//zxXXHEFPj4++Pj4OIyj0+kIDAxs9bS+00lQSgghhBBCCCHEBclNZ+SZ/rPYUpTG3bFjumzc2T36UVRXhbvOyDDfiDbbv37ZHP5unY6brvMnoLVkZ3EmKg01mb5O28Odcc1nrnSFKms96/NTAfgt53CToFRLpoYkMDWk9bZGrY5p7RyvPVyc9Dzab1yL94cEhLAiM5VhgWEdHrvWauHVpHV46I3c03tElwTROuUsBaUAPvnkEx588EGmTGkoJj979mz+/W/HENrhw4cpLy9vrnunSVBKCCGEEEIIIcQFa17kYOZFtl6ke39pDikVBcwI7YNe2/Tf4KK6KlydDI11o/QaLXfHjW73GhRF6ZaAFMCU4HjeOrQB1Iasne7krjPyZN/JbChIZWFs9wW/zob/TrmS4toa/Fw6nln2bepe3jm4BYABvsGMDIzo4tW1UwuFzruDt7c3H3/8catt2jphsL11pE4lQSkhhBBCCCGEEBecXcWZLM7YzdXhA+nn3XKdpTJzLdevfQ+L3UZGdSkPJox3uL8yJ5l7Nn2Jt8GFn6fci8fxk9xaUmWp550DW4j08OaKyD5d8iyt6esdxFsj55FVXcZ1UU1PoOtqt/Uazm29hnf7PN1NoyidCkgBJHgHoNNoMGp1RLh37KTArtRSofOLiQSlhBBCCCGEEEKcV1RVZX1+Kh56I/1bCDg9sWMxmdWl7CjO4MdJ97U4llZR0CkaLNgwNpMltb8sFxWV4vpqCuoq2wxKvXdoG6/v2wBAP58goj18Wm3fFSYG9+p031qrmZTKfBJMwThpmhbzvthY7XYqLLWNta/qrBa+Sz1AvLc//X2D2jXGAN8Qtl/1EFpFg6tO353Lbd1Z3L53rkhQSgghhBBCCCHEeeWn7AP8bsu3KMDSSXcSa2payDrRO5TM6lIGeLdeM8hdZ2TxhLtJqyrmsoCmhchvjhlGldVMhJs3MR5+ba4txtRwmpmn3oiPwaWN1ufeHZvfY395NleGDeKZfnPP9XK6lV1Vmbd6EfvKcnm6/zRujB7Ka3s28ubezeg0GrbPewCTofWg4wkeeiM1VjN/37UKX6Mrt8cNQelEbak6m4X3U7YQ6uLJGM8eHX0gUFTH9xcZCUoJIYQQQgghhDiv2I9nhKinfP9u8gZeO7Ca22KG80ifibww6AoeTphIoLNHm+P1cPNu8QQ9D72R/+s3ud1rm9EjjnVz7sFDb2wzq+p8kFfbUJg6p7bs3C6ki+RWVFJvtRLh7dXkXr3NysHyPKChQPyN0UNxO57pZNA6odV0LKj0xZE9vH1gM9BQW2qQX2iH1/vxkW28vG9Vw3jD5ness2RKCSGEEEIIIYQQZ9fM0N64Oulx1xmJ9wwEYHH6Hix2G99m7OGRPhNRFIUgF1O3zF9UV8XTO5bRw9WLx/tPRKs4FhgPdfPslnm7wxtDb2JtwSFmh3Z/ParullZcysxFH2K12fng+qsYEeGYeeTspOOfQ65kY0Eqd/YaBcA9fYfT1yeQKJN3h4vRx3sFoD1exD6skz/zMLeG4Jmrkx5Pg3MHe58WlEKCUkIIIYQQQgghRLdSFIXxQY51lB7rM5H/Jm/ihqjWT9rrCv+37XtW5x0FYHpoPIm+Hc+QOV/EmYKIM7VeS2ldfgrZNWVcGT4Aveb8DRMU1VRjsTUcQZdTUdlsmxmhvZkR2rvxvUZRGBMS2an5hgf0YOuVD2LQOnW6ttTUkHh+nnovHjojOrOtY50lU0oIIYQQQgghhDj3JgTFMtCnBx667t8yV2Mz05CVohDh3v2FzM+l9Kpi7t78CdBQ/+iWmJHneEUtGxwawouzplJZX8+cPvFnZU5v45nXDYs8/jtUYa7oWEe7ikN2lNSUEkIIIYQQQgghzr4Pjmzm73t/ZrBPDz4cfUunik63RlVV5q38H3vLs7klejjBLibGBcU0brl69/BGfsk5xBN9JzHYt4MFq88yVVXZUZyJn9GN8BZqaZ3grNVh0DhRb7c2nlh3ttTbrKQUFxPn64eTRtNme0VRuKJvQpfNX2Gu45HNS1CAl4fPwf20GmH5NZX8ZfsKIj28eaT/6C7/nWuTam94nfr+IiNBKSGEEEIIIYQQ572tRccA2FWShVW1o1O0LbbNqC7m2T3fEePuz5N9ZmJXVfaUHSXaLRhPvVuzfY6UF7OnLAtFgZ+yDrB65kON98x2G//ctwKVhuDU+R6UWpyexJPbl6LXaPlt+v2tFoP3d/bgh4n3U1RfRT+vM9+mqKoqmwrT8DO60dPDv9W2ty79lk1ZmVwVl8A/J08/47mTS4ooqK1iVHC4QwCpvK4OD4OhSVBpZU4Kq3KPALAq9wizw/s43P/o8C5+SD8EwIzwOOK9Wn+eEyx2Kxa7DRenjtWwauIS2L7XdihSCCGEEEIIIYQ4xx5JmMicsP78Y/CV6DQtB6QAvknfzo6SY3yRvpXUqkLePLKUx3a/zV3bXsHeQrZJoIs7rqobdqvC9ZFDHO7pNVrm9uiHu5OBOeF9u+yZuku5uRYAi91Gvc3aZvtgF88uCUgBfJu+m9vWf8wVK94hu6as1bbpZQ3308pabwdgV+28c+Rnntv7GSX1TetJZVdVMGPxB9y47Cu+St7XeP2l9esZ+MZ/+N2Py5r0GREQQbS7D9HuPgz3D29yf3RwBEatEzEmH8LbWei83FzD9BUvM/rn59lRfKxdfVpkV5u+LjKSKSWEEEIIIYQQ4rwX7eHH3wfPbVfbiUEJLMnaRZSbH+GuPlRYagCotta1eH6Zu97A5iseotZmwaRvWrfqhSFzOrnys+/GmCG46QyEuHg22b63vWQfv+StZ2bwOPp7xnX53HXHg2A2VcVqb3272buz5rLsSDJXx/dutR3A4YocPkhbCUCYix+3RU9yuG+127Adn6/Oamm8vj49HYANx7+eKsDZnV9m3N3inMMCerDvukfQKkqzW/cs9jo+OfYUZZYCruvxLIHO0WTWlFB4PGi2uzSDQT4RbT5biy6BTCkJSgkhhBBCCCGEuKDZVDv/S96MgsItvYbRzyuM1VOebLz/YK8riPPoQaJXNFql5Q1Deq0Wvbb1LKwLgU6j5ZrIAc3ee+voZxSby8ipK2CM1yzC3bwZ5hfRZXNfFzUIk96ZIGePNutZJfj5k+DXvi1xPVx9CXH2oai+gkHe0U3uh3t48eXl15NTVcmsqNjG689OmMD7O3cxJ6FzhdFbq3VVUJdOdu1hAJIrtxDoHE1vUwj3x04kr7aCa3oMabFvu6icFpQ6s+HORxKUEkIIIYQQQghxwdlccIw6m4WxgTH8ln2YF/euACDUzZOpIY4BCHedC1eFjT4XyzzvDPPpz7LcNRjw4ZldP6CgsGLagwS7mLpkfK2iYVZYn7YbdpCrk5HPRz2GTbWj0ziGMirN9bjrDQwJbLoFsX9QEK/MDOry9QAEOceQ6DmFUkse/T0bMrcURWFhz3FdM8ElkCklNaWEEEIIIYQQQlxQdhdncdO6j7hz4+esyE2mh5sXTooGBXgveROl9TUO7bfmZzJhyTs8veWXc7Pg88jCqGv5YsSrDPEcBjTUyzJoLox8FY2iaRKQenb9Cvq+9zrPrPvtHKxHy8yQB7kx4m+Y9E0zvmqtFvJrmta/aje7venrIiNBKSGEEEIIIYQQ5711eUd5dd9qiuurHer7aBUN8Z6BPDtwOqqisrs0ixW5hx36fpqym9SKEj5K3klpfe3ZXvp5R6/RMS9yEB+OvokfJt+Dj9G12+Yqr69j+nfvM/LLt0gtL+ny8VdlpAGwOjOty8fuCLuqYrHbGt/XWM1M/OEtRix5naXH9p/DlZ3fJCglhBBCCCGEEOK8VmWpZ+H6L3jj4Hpe2bua/t4hfD7uFj4YfSPjg3oCMCk4ljiTP1FuPlzm71hzaF5MP0JdTVwX0x/PU4qYJ5cXcris4Gw+SrOeT/qVod//kyUZSQCU1NegtrJVq9JSz4rsFKos9Z2eU1EUhvpFEObq1ekx2mNF1hEOlBSQXVXB6qzULh//+bFTmBkdy9/HTm2xzaaCVB7e+jVbC491+fwA1RYzk5a+S5/PX2FLfgYApfW15NU2ZEntL83r3MAntu+d+rrIXBg5ekIIIYQQQgghLlkGrRMBzm7k1FQQ7t5QPHugT1jj/U0FaazPS+PtkfMJcvFo0n9EYDjrr7zH4dqe4hyu+vV9VODLSTcxyLdpPaKOsql2NhccI9rDF2+9K+uOHSPB358gd3eqzWb25uUzIDiIdw5t4vOju3mi/wRmR/Tm4yNbsah2vkzbRUp5Ie8kb2RGaAKvDruq2XnuXPMVWwoyGBkQwccT55/RmutsFgwap2ZPlztTa/NS+MPubzHoDQzw7sGsyK4/7W9kSA9GhvRotc3Tu74nu6aMQ+W5/DT5gXaP/VPmQZ7Z8RMzwuJ5btD0FtsdqywltaIhC2xD7jGGBfQgxNXEP4bN4mBZAXcljGj3nA4ugZpSEpQSQgghhBBCCHFe02m0/DDlLnJryunp4edwz2q3s3DdF9TbrWRUl/L6iIZATp3Vwk2/fUVOVTmLJl5NrJdjvzJzbeNhZmVdtKXvjQPreP3AOjz1zsz0GMCHu3fj4+zMpjvv4uYvv2F3Th4z42JZUb+fWpuF91O2MTuiN4/2mciSjCTuih3FawdWAw2F3FtyIkPqTDKlAN5P2czf9/7ClOB4/jX8mjMaqzlHK4tAAY1LPc+MGIe/i1uXz9EeYwJi+CxtO6MDenao39dpuyk11/Dp0R08PWBq40l8FbV15JRWEhvki6IoJHj582DfkRyrLOXGXgMb+18V1e/MFm5XcThyzy5BKSGEEEIIIYQQ4qxz1xlwNzUtJq1VFMLdvEiuKCTGw7fx+oHSArbmZwKwPCO5SVBqTGAUr4yYg6qqTAiO6ZI1VhwPEtVaLVRbzADU22zYVZWi6obi64VVVTww4DK+PLqbO+OGA3Bbr+Hc1ms4B4sLGOnVk3BXb66M6A/AysyjHCwp5OaEAbjpDAC8M/Yafs1KZkpo7Bmtd1VeMurxr93husjBVFvNBDp70Nure07Aa49nEmfySO9JjZ9fe90RO5yCuipmhCU0BqTqLVZmv/QhhZXVPD5rLDePHoiiKDySOKbL162qdlTV7vD+YiNBKSGEEEIIIYQQFyxFUfhm0m1kVpcR434yKNXXJ5C5UQlkVpZzZVTvZvvNDm96vaOK66vQKhpcnAw83Hsske4+9PMKItLNl8FBIQwICkKv1bLo6itYceQolyfEEeTuzl3xjlu66qwWrlzyKbVWCzclDGCYbwT5NVXc9us3qECluZ4nh4wFIMjFg5t6DT7jtT/WZxLvHF7P1JCEMx6rOc5OOu6PH9stY7dHuTkdi70aX2NChwNSACMCIvl+ykKHa3UWKyVVDQHGrJLyLllni1TVMTtKtu8JIYQQQgghhBDnF6NW17itz2K3oVEUdBotr46+vMvnKq6vZGn2Vob69AJV4bbNb6OgUF2vI9zFl68n3IFRqwNgXt++jf2ifbzx93AlpbwQf1dXtBoNdTYLCze/S0ZNMS8PuBGDVkut1cKSwwf5Omk/b8+ag8lgpKy+jjB3U5c/S1+vYF4ffm2Xj3s+KDensyT9RlRsjA96gR5uo7tkXJOLkTdvu4KkjFzmj0zskjFbpJ62fU+CUkIIIYQQQgghxPnpSEUh81b/D4PGiW8n3kGgc9Oi52fqnweXsLpgHx+nreXhuDlYj2+psqkKKZWFZNeUE31KxhbA0YpCdpdk8e6hLRypKOLGmME8O3AaGdVFHKjIBmBzSQrLrrqZn44m8//WrEZBYVduLquuuoP8mirivZtuXRQts9hrULEBYLZXdOnYo3qFM6pXeJeO2Sy7HZRTtuzJ9j0hhBBCCCGEEOL8tKM4k0pLPZXUc7Asr0uCUqqqYkdFqzTUFAo0egLgbzQxNbAf+bXl1NtsJJeWEmPyJ8rNx6G/xW5j3ur3qLLWo9gbMqhyaxqCJDHuAVwfPpJj1YVcGTaEIGcPbu03iNLqOrIqyrm+bz+8jS54G13O+DkuNb7GeCYEvUi9vZwo92nnejmdI5lSQgghhBBCCCHE+a+wthpnrYKHwYJWoxDj4XVG45XV1/Je8iY2lm2kylrDPwfcSR/PCO6PncGkwH5EuAWg0zpxe8z4VsdRaNhKCDAtrBc93QO4OrKhiLlG0fBYwkzKLRW8cOhfqCo8Efcgj4287IzW3hpVVXkhaQX7S/N4buB0ojx82u50gQpz677P8WxQ7XZURQqdCyGEEEIIIYQQ560Kcx0Tl7yD6lSGv08VAOk1eYS5+rXRs3lL0vbzr/1rya4rINCrEoDtJcn08YxAq2jo7dmj3WNlVpeysNcoAp3dmRQch17b9N/wfeUHSavOAGBv+X5G+41o0uZUa/JSsNhtTAyKRVGUDjwZpFeV8t/DmwH4+Mh2nhk4tUP9xVkkmVJCCCGEEEIIIcT5rc5qpdJcDxYjPvVaXLR6Ip3DOjVWrdXC7zYuBUVFo9ViM7szPiSCy0OGd3gsq93O1Sv+R7m5jnmRicwI69N4L6emhJ9ydzLWvzf9PfvQ2yMOUEn07NvygMCWwmPcufEzAN4acR3jg3p1aE0hriaG+vXgUFk+U0JjO/xM3cGuqijQ4QDb2WZX7azJTyHQ6EG8Z9DZmBAUCUoJIYQQQgghhBDnLX8XN96feC0/ph/iyyNJoMBvWUe5OW5Qh8cyaJ3QasBmhwCjOz9OvAsPvbFT61IAp+O1qJyOb+E74bl9X5BUls732dv5bsyT/DHhkcZ72VUVvJG0iWGBYcyJSmiyvhOMzWRdtUWn0fLp+Js63K+7bMhK5/Zli4nx8uabK+c7PN/55qtjO/hz0o9oFYXlkx4i2MWzeydUVcB+2vuLy/n70xZCCCGEEEIIIdppbEgUA/yCOVpRTKWlnklhMc22q7NZ+epIEtEmH0YGnjxBLbemnLcOr2egTxhvjrmCxceSuCt+VJOAVLXFzE1rPqagtopFY66nl6n5LYKqqvLElh/Qo+eR3kO5Pc4x0yrY2ZuksnSCnZvWvnpl9zq+PrKPz5J3Mz40Gg+9ofFeoncoX427HZtqZ4BP57LBzierMlKps1nZV1RAdmUFtUoZLx3+mD6maB7uNf+8yp6yH99Kp6oN2V3dTbWrqKdkSqkSlBJCCCGEEEIIIc5PHnoj30xb0Gqbt/dv5pU969EoChuvvJdAF3dK62r514HVLM7Yw5dpO7g7diz7SvNIrSjmo7SV7ClN5/8lXscw3xgOluWxpyQHgN+yD5NnTuVgxRGuCp2Or8G7cZ782iq+PbYPgIyq8iYZQE/1vpqrw0YQ7d50G9hAvxC+PrKPnp6+uDrpmtzv5x3S4c/mfHVzn4Gkl5cR7+NHpMmLV5KXk1tXTG5dMbdEzMLbYDrXS2w0L2IwfgZ3Apw9CHX1otZqYV9JLv18grsnw0u145gpJYXOhRBCCCGEEEKIC5a3wQVo2Ppm1DqxMSedG5d/idGoghHC3Xz43+EtVFnN/PfwBgrsmQD8kruHYb4x9PMOYU54H/JrKpkcEsMf9j8HNNQbuifmZEAswNmNa6P6s70wi3nRiU3W4aTRtlgwfX5sIpN79MTTYESr0XTxJ3B+CfMw8e70KxrfTw8awcGKNPqYovHSe5zDlTWlUTRMCo5vfH/H2i/YXJDB1NBY/nPZVV0+n2RKCSGEEEIIIYQQrTjxj3JFRcU5Xkn7zA6MJmzkHIJc3NHUW9iWfhRLTS2WGsDJTrDBk5nhcXyZupMbgxPJqPdnT+kxZnj2aXzGP8VPAMCm2vCzeZFTl08IAU0+gz/Ej4bjMYyOfj4GoNZSTe2ZPvAFJgQfXop9AIDKyspzvJrWZRUXYq+pI7Mwv10/3xNt2htcsqr1DtlRViydW+h5TFEvxlCbEEIIIYQQQoizIisri7CwC7+2kRBnS2ZmJqGhoS3er6urIzIykry8vCb3AgMDSUtLw2jsXPH9840EpYQQQgghhBBCdJrdbicnJwd3d/fzqii1EOcbVVWprKwkODgYTRvbMuvq6jCbzU2u6/X6iyYgBRKUEkIIIYQQQgghhBDnwMVdMU0IIYQQQgghhBBCnJckKCWEEEIIIYQQQgghzjoJSgkhhBBCCCGEEEKIs06CUkIIIYQQQgghhBDirJOglBBCCCGEEEIIIYQ46yQoJYQQQgghhBBCCCHOOglKCSGEEEIIIYQQQoiz7v8DmCIZt3Vd0fcAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deepsensor.plot.task(task, task_loader)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Gap-filling\n", + "\n", + "The `TaskLoader` can be used to generate training `Task`s for filling missing data gaps in an `xarray` object.\n", + "\n", + "Let's generate some fake missing data in the normalised `era5_ds` object by setting all normalised temperature values\n", + "below -0.75 to NaN.\n", + "In practice, these may be missing due to cloud coverage, satellite orbit gaps, sensor issues, or other reasons." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:09.177437497Z", + "start_time": "2023-11-02T13:41:08.619566169Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABnQAAAEiCAYAAADAjzw6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRlV1XvgX/nWnvv09yu2lRVSCBI6BIEIagEHorNrVvl0PADX1H1kpcw6BQBERkqoIDPjjjUxwOHEkE6QTD5BcSfCiSU0kj3RGmUxhe6YDBU+kpV3eacvfda8/fHXGvtfc691SWVqntvzc8YN7fuOfvss/fJmauZzXcSMzMURVEURVEURVEURVEURVEURVGUVYs50xegKIqiKIqiKIqiKIqiKIqiKIqiHBsN6CiKoiiKoiiKoiiKoiiKoiiKoqxyNKCjKIqiKIqiKIqiKIqiKIqiKIqyytGAjqIoiqIoiqIoiqIoiqIoiqIoyipHAzqKoiiKoiiKoiiKoiiKoiiKoiirHA3oKIqiKIqiKIqiKIqiKIqiKIqirHI0oKMoiqIoiqIoiqIoiqIoiqIoirLK0YCOoiiKoiiKoiiKoiiKoiiKoijKKkcDOoqiKIqiKIqiKIqiKIqiKIqiKKscDeisET7+8Y+DiHDvvfee6UtRFOUUoratKOsPtWtFWZ+obSvK+kPtWlHWJ2rbiqKsZzSgswp52tOehpe97GUjjz35yU/GgQMHMDMzc2Yu6j5SVRVe8YpX4Pu///sxMTGBc889F1dddRW+973vjRw3HA7xi7/4i9iyZQsmJiZw2WWX4b/+679Gjvm93/s9PPnJT0a/38eGDRuO+p7vfOc78djHPhbdbhfbt2/HS17ykuNe5yc+8Qlccskl6Ha7+L7v+z782Z/92bJj7r33Xrz4xS/Gjh070O128ehHPxof+tCH7ve9P+1pTwMRjfzs27fvuNesrD3Uts8u2waAz372s/jxH/9xTExMYMOGDXja056GpaWl4163snZQuz577Po73/nOsvk6/lx//fXHvW5lbaG2ffbYNgDcdtttuPLKK7F9+3ZMTEzgCU94At73vvcd95qVtYXa9dll19/61rfwjGc8A1u3bsX09DSe9axn4fbbbz/uNStrD7Xt9WHbAPC//tf/wqMe9ShMTExg48aN+Mmf/En88z//80nfu6KsdzSgs0YoigLbt28HEZ3pSzkpFhcX8YUvfAGvec1r8IUvfAF//dd/ja9//eu47LLLRo572ctehg984AO49tpr8alPfQrz8/P46Z/+aTjn0jFlWWLPnj34hV/4haO+3+tf/3r8xm/8Bl75ylfiq1/9Kv7xH/8Rc3Nzx7zGm2++GT/1Uz+Fpz71qfjiF7+IX//1X8dLX/pSvP/97x9579nZWXznO9/B+973Ptx000348z//czzoQQ+63/cOAC94wQtw4MCB9PPmN7/5mNesrB/UttevbX/2s5/Frl27sHPnTnzuc5/Dv/zLv+AlL3kJjNGpd72jdr0+7fr8888fmasPHDiA3/qt38LExAR27959zOtW1gdq2+vTtgHgyiuvxE033YS//du/xZe//GU885nPxN69e/HFL37xmNetrH3UrtenXS8sLGDnzp0gInz0ox/Fpz/9aZRliZ/5mZ+B9/6Y162sD9S2155tA8AjHvEI/Mmf/Am+/OUv41Of+hQuuOAC7Ny5E3feeedJ3buirHtYWVU8+9nPZgAjPzfffDN/7GMfYwB88OBBZmZ+xzvewTMzM/x3f/d3/IhHPIJ7vR7/7M/+LM/Pz/M73/lOfshDHsIbNmzgl7zkJVzXdTr/cDjkX/3VX+Vzzz2X+/0+/9AP/RB/7GMfO633+LnPfY4B8H/+538yM/O9997LeZ7ztddem4659dZb2RjDN9xww7LXx3sf55577uFer8f/8A//cFLX82u/9mv8qEc9auSxn//5n+cnPelJ6e9rrrmGv+/7vo/Lsjypc48zfu/MzD/6oz/Kv/RLv3S/zqusftS2hbPJtn/4h3+YX/3qV9+v8yqrG7Vr4Wyy63F+4Ad+gJ/73Ofer/dRVh9q28LZZNsTExP8rne9a+S4TZs28Vvf+tb79V7K6kHtWjhb7PrGG29kYwwfOnQoHXPPPfcwAN6/f//9ei9ldaG2LaxX2z506BADSNd4sveuKOsVTRNeZbzxjW/EpZdeOlKxcf7556947OLiIv74j/8Y1157LW644QZ8/OMfxzOf+Ux86EMfwoc+9CG8+93vxlve8pYRuYDnPOc5+PSnP41rr70W//7v/449e/Zg165d+MY3vnHUa9q9ezcmJyeP+XMyHDp0CESUSj4///nPo6oq7Ny5Mx1z7rnn4jGPeQw+85nPnPB59+/fD+89br31Vjz60Y/Geeedh2c961n47ne/e8zXffaznx15bwCYm5vDv/7rv6KqKgDA3/7t3+LSSy/Fi1/8Ymzbtg2Pecxj8LrXve6kMwDG7z3ynve8B1u2bMHFF1+MX/mVX8GRI0dO6rzK6kdtWzhbbPuOO+7AP//zP+Occ87Bk5/8ZGzbtg0/+qM/ik996lMndV5ldaN2LZwtdj3O5z//eXzpS1/C8573vJM6r7L6UdsWzibb/m//7b/huuuuwz333APvPa699loMh0M87WlPO6lzK6sXtWvhbLHr4XAIIkKn00nHdLtdGGN0Pb7OUNsW1qNtl2WJt7zlLZiZmcHjHvc4AKfu3hVlrZOd6QtQRpmZmUFRFOj3+9i+ffsxj62qCtdccw0e9rCHAQD++3//73j3u9+N22+/HZOTk7jooovwYz/2Y/jYxz6GvXv34lvf+hb+6q/+Cv/1X/+Fc889FwDwK7/yK7jhhhvwjne8A6973etWfJ+3vvWtp6znw2AwwCtf+UpcfvnlmJ6eBiCa1UVRYOPGjSPHbtu2DbfddtsJn/vb3/42vPd43etehze+8Y2YmZnBq1/9aszOzuLf//3fURTFiq+77bbbsG3btmXvXdc17rrrLuzYsQPf/va38dGPfhRXXHEFPvShD+Eb3/gGXvziF6Oua7z2ta+9z/cOAFdccQUe+tCHYvv27fjKV76CV73qVfi3f/s37N+//4TvXVn9qG03nA22/e1vfxuAaAD/0R/9EX7gB34A73rXu/ATP/ET+MpXvoKHP/zhJ3z/yupF7brhbLDrcd72trfh0Y9+NJ785Cef8H0rawO17Yazxbavu+467N27F5s3b0aWZej3+/jABz6Q/r8qax+164azwa6f9KQnYWJiAq94xSvwute9DsyMV7ziFfDe48CBAyd878rqR227Yb3Y9t///d9j3759WFxcxI4dO7B//35s2bLllN67oqx1NKCzhun3+yObjG3btuGCCy4YifZv27YNd9xxBwDgC1/4ApgZj3jEI0bOMxwOsXnz5qO+z/E0Lk+Uqqqwb98+eO/xpje96bjHM/NJ6Z1671FVFf74j/84Rev/6q/+Ctu3b8fHPvYxzM3NjXw2//N//s/UuG38fZh55HHvPc455xy85S1vgbUWl1xyCb73ve/hD//wD/Ha174W73nPe/DzP//z6fUf/vCH8dSnPvWE7v0FL3hB+vdjHvMYPPzhD8cTn/hEfOELX8ATnvCEE75/Zf2gtj3KWrTtqM398z//83jOc54DAHj84x+Pf/zHf8Tb3/52XH311Sd8/8r6QO16lLVo122Wlpbw3ve+F695zWtO+J6V9Yna9ihr1bZf/epX4+DBg/iHf/gHbNmyBX/zN3+DPXv24JOf/CS+//u//4TvX1kfqF2PshbteuvWrbj++uvxC7/wC/jjP/5jGGPwP/7H/8ATnvAEWGtP+N6V9YXa9iir1bZ/7Md+DF/60pdw11134c///M/xrGc9K6lfnKp7V5S1jgZ01jB5no/8TUQrPhYdi957WGvx+c9/ftki5lgln7t378YnP/nJY17L/Pz8MZ+vqgrPetazcPPNN+OjH/3oSEbc9u3bUZYlDh48OBJlv+OOO04q63XHjh0AgIsuuig9tnXrVmzZsgW33HILAOBLX/pSei5ew/bt25dF8u+44w5kWZYm6R07diDP85HP7dGPfjRuu+02lGWJyy67DD/8wz+cnmtP4Me695V4whOegDzP8Y1vfEMDOmcpatujrEXbXuma47njNStnF2rXo6xFu27zvve9D4uLi7jqqqtO+J6V9Yna9ihr0ba/9a1v4U/+5E/wla98BRdffDEA4HGPexw++clP4k//9E+T80o5e1C7HmUt2jUA7Ny5E9/61rdw1113IcsybNiwAdu3b8dDH/rQE753ZX2htj3KarXtiYkJXHjhhbjwwgvxpCc9CQ9/+MPxtre9Da961atO2b0rylpHAzqrkKIoTloz9kR4/OMfD+cc7rjjjpGsluNxf8tF40T0jW98Ax/72MeWZTJccsklyPMc+/fvx7Oe9SwAwIEDB/CVr3wFf/AHf3DC7/OUpzwFAHDTTTfhvPPOAwDcc889uOuuu/CQhzwEAHDhhRcue92ll16Kv/u7vxt57CMf+Qie+MQnpsn9KU95Ct773vfCew9jpPXU17/+dezYsQNFUaAoCkxNTZ30va/EV7/6VVRVlSZXZf2gtn322PYFF1yAc889FzfddNPI41//+texe/fuE753ZfWjdn322HWbt73tbbjsssuwdevWE75nZW2htn322Pbi4iIApHNGrLXJqaesD9Suzx67bhOlmj760Y/ijjvuwGWXXXbC966sDdS2149trwQzYzgcntJ7V5Q1Dyurjhe84AX8gz/4g3zzzTfznXfeyc45/tjHPsYA+ODBg8zM/I53vINnZmZGXvebv/mb/LjHPW7ksWc/+9n89Kc/Pf19xRVX8AUXXMDvf//7+dvf/jZ/7nOf49///d/nD37wgw/IvVRVxZdddhmfd955/KUvfYkPHDiQfobDYTruhS98IZ933nn8D//wD/yFL3yBf/zHf5wf97jHcV3X6Zj//M//5C9+8Yv8W7/1Wzw5Oclf/OIX+Ytf/CIfOXIkHfP0pz+dL774Yv70pz/NX/7yl/mnf/qn+aKLLuKyLI96jd/+9re53+/zL//yL/PXvvY1ftvb3sZ5nvP73ve+dMwtt9zCk5OT/JKXvIRvuukm/vu//3s+55xz+Hd/93fv171/85vf5N/6rd/if/mXf+Gbb76ZP/jBD/KjHvUofvzjHz9y78r6QG377LFtZub/83/+D09PT/P111/P3/jGN/jVr341d7td/uY3v3nSn7eyelG7Prvsmpn5G9/4BhMRf/jDHz6pz1dZW6htnz22XZYlX3jhhfzUpz6V//mf/5m/+c1v8h/90R8xET1g/0+UM4Pa9dlj18zMb3/72/mzn/0sf/Ob3+R3v/vdvGnTJn75y19+0p+1svpR214ftj0/P8+vetWr+LOf/Sx/5zvf4c9//vP8vOc9jzudDn/lK185qXtXlPWOBnRWITfddBM/6UlP4l6vxwD45ptvPmWTUVmW/NrXvpYvuOACzvOct2/fzs94xjP43//93x+Qe7n55psZwIo/H/vYx9JxS0tL/JKXvIQ3bdrEvV6Pf/qnf5pvueWWZfdyvPMcOnSIn/vc5/KGDRt406ZN/IxnPGPZeVbi4x//OD/+8Y/noij4ggsu4GuuuWbZMZ/5zGf4h3/4h7nT6fD3fd/38e/93u8dc8I4kXu/5ZZb+Ed+5Ed406ZNXBQFP+xhD+OXvvSlfPfddx/3mpW1h9r22WPbkauvvprPO+887vf7fOmll/InP/nJ416zsrZQuz777PpVr3oVn3feeeycO+61KmsXte2zy7a//vWv8zOf+Uw+55xzuN/v82Mf+1h+17veddxrVtYWatdnl12/4hWv4G3btnGe5/zwhz+c//f//t/svT/uNStrD7Xt9WHbS0tL/IxnPIPPPfdcLoqCd+zYwZdddhl/7nOfW3bc8e5dUdY7xBw6VymKoiiKoiiKoiiKoiiKoiiKoiirEnP8QxRFURRFURRFURRFURRFURRFUZQziQZ0FEVRFEVRFEVRFEVRFEVRFEVRVjka0FEURVEURVEURVEURVEURVEURVnlaEBHURRFURRFURRFURRFURRFURRllaMBHUVRFEVRFEVRFEVRFEVRFEVRlFWOBnQURVEURVEURVEURVEURVEURVFWOdmZvoDTjfce3/ve9zA1NQUiOtOXoyhrFmbGkSNHcO6558KYMx8bVttWlPuP2rWirE/UthVl/aF2rSjrE7VtRVl/rDa7Xs8MBgOUZXlCxxZFgW63+wBf0QPDWRfQ+d73vofzzz//TF+Goqwbvvvd7+K8884705ehtq0opxC1a0VZn6htK8r6Q+1aUdYnatuKsv5YLXa9XhkMBnjoQyZx2x3uhI7fvn07br755jUZ1DnrAjpTU1MAxIimp6fP8NUoytrl8OHDOP/885NNnWnUthXl/qN2raxGnvnglwDeA8YARKAsk39bKwf0uqi2T6OaymGHDlR5mJpBzgPMAAC2BuTDYzWDmOW52gOA/A0AVQWUFWBaGah5Lu/lw2vYA3Utr3VOrsU5cFmCyxIfuO0tp/PjOSHUtpW1ytNnroKdnACXlTxgjYwBWSa/rRU7dGLLzI3dI2aS1zW4ruWhogCMAVkLFDmQ2WYsIQLIAIbARQbOwr+tgb39INz3bsff3POOFa/zZy98Od7/zdc/YJ/DSqhdK4rw/9n8PJhuASo6QLcAOoXYMrg5aHxccB7wDv72u/CBO9+64nmfsePn8YEDb35gL34F1LaVtcYzz3sRaMsmuI2TcP0cpnQwlazJ4VqOdSLAMah2wSZ5uW1WVVqfw5D8EAGZzNlM1Kzj49rcGnCoeiFm4K6DeP/Nbzjq9f7sQ192zOcfCFabXa9XyrLEbXc43Pz5h2B66tiVUIePeDz0kv9EWZZrMqBDzMzHP2z9cPjwYczMzODQoUM6GSnK/WC12dJqux5FWYusNjtabdejnF52bXw++IIHYenBkwADxJBNIANMAKxs/KhmmNLDLtWwiyVQOdkoAuDMApls8siPOXprn44DszwWN4hEgDWyUfS+OcYz4J38BsJG00qAJ2xYeTjEDXetrqDOarOl1XY9yplj1uyBKYLz1YZAS4DLClxX+Eh17dFfF4Ot0eHjPNg5UAzKWiuB4ChvkmWgIm8cRyFQnH66HXAnA2cZkBn43Mq5mZHdcRj+wO1yrnjePANv24xy2yQ6tx6Gv+VW3Dj/Fw/0xwZg9dnRarseZf0xa/aAshyUZxKcBcSe8xzIsyY4G+0aGJnT2dLo4wCo9uA778YNd70FO4vLZezIMpjt56A+ZwbZ9+7Gh7/zf07rfa42W1pt16OcXnbNPBc4b4espzPTrJeN2BRnFj43MJUHlQ6mrEFlLQlSwyB7FZMnjGlskkjW2M43iVRt+/QcXtd6z3hMfN6QBHKCbaegjvegu+6Fu+NOgMLawhpQUYC2b0V5ziSKW++F/+6tuHHwntPyOaodnR7i53zHTScW0Dnnkf+5Zv+fnHUVOoqiKIqiKMrqY653ZXLKkjGgHdtQzXRgBx5UMyhk4ZFnkEezaVwcAoMhUJaywcuytFGkzIoD15h0biYCDAOWwLY5NmX8xcCPBwgegGkFdXxzwXHzGTL/Ya1cX5Zh16YXgIdDwDP8cID9/vrT+lkqylqhbRuzZs8J28r460BGHLHxt7XBgWMbBxEgj7XzGZ1LtpucwR4g58AGoJrEgQWg3joNbJ0GCMFxBHDMHgZQb+wjG2zFXPeKVOkj2cMe7BkfKd97Hz8lRTk7SQGcIgflObLNm8W5m2USwIlER3HWCginoC2aed4YELMEduJxGUAP2oZdj301zKMfltYD3pIEe2YmsXvHi/HhA3+axhqTZ+CY2MF+xaCzoqwHds08F/Sg7fC9fDQQE6rczaAGDeumwr2swMMhvPehIpZAIWEj2W2cH41p7JZI7DIGfMI6HIDYMAB4Waen9bppAjgpQOtcChTxhmnY6clm7W8JbC18bmEqDz/ThxlubQK58ToDXFY6b69hPBi+XaV5lGPWMhrQURRFURRFURRFURRFURRFURRlTVOxQ3UcQbKqnai3BtGAjqIoiqIoinLG2LXl54AHbcPwad8vUmoE+MKAHDc/BoBjmJphBhVoqQItDYHhEP6ee0FRaiVKK3UKkWCJMivGSIZfkGGRKh2MZO4DADtJvk9/GwPyoU8OINn2dSUVO1Wo5HF+RA6C61r66VQ1wB77/fWS1QsAZLDfXffAf6iKsga5L5Vss2aPVN20KnQi7D1o7HgOGcZkg5Ra7MMTq/OqSuQZY5ZwgZQRPIIBiAhsQlaxJ/jcoDp/E3D+JhnLYhWfl8rCXd//G6Db7saH7/yzk75PRVnvzNq9IGtFTi1U16WKnFhtF/8dqwQicZ6PlTftKoJYdcsMU0m/LbJj0lEu9NYLvbgQ5FphGJxb+PO3YeeTfhv8334AnBlUhZFK4VBFMHfJb8J87y58+MCfnv4PTlFOIbs2Ph90zhZwYcFZBn70BWndbConcsWuBg0qqY5fGkhFztISPlJd29hxqloPkojWiERxkFBL6/K2LS+bZ8d661iAEart6iCrVrf685i23Qfbr2up2I3vk0fJZMAXGdwFW8Hfdw7YGnAWKvMYADOKQyV2P/TlcLfeBq4rrbZfY2iFjqIoiqIoiqLcT+YmroKZmgQ2bcDiwzaic/sS7G33oP6vW+WAg4dQ/IeF3bYVfssGlFv7IZjjRWKt5mYjWdagYSkSa96DJnqgTkdkHPJcHLFRKz8y7vwZZ2SzaEefGpbAkXn4w/MSOArSL8hzcQZnFlhcAi8sws/PJ8eybGYJO/N9I31BZu3eFOhRFOX+w55BxoMdADixQaZGQm2cIJPGVQ0MhuC6BvW6Mo50O+AiAxeZjDeVA1WlOH+tTfJrjRSMAfkQJCakHh1x3JJgjgc5Bndy8EO2Y+7xvymO4ADdfrc6gpWzkrakmp2ZTn0ukoQatRqix0BOnONjYgYwMsdT5ZL0U5R44swCuYXvSCCHhk7WEmU5ekHBESwN1y1gvfzOQoKHk4Z+djia1V1Pd4Hp8/CTP/q6IA0LwDPMv30dNy6864H/IBXlJNm18fmgjRvAhw/D3XMwrUnd4SOwzoGmJkH9Hth3UkCUXAh6ei+9ccoSHGyIOh3M9a6EnZ5q+lqZILMWk56A0WBOpNWPZ0XJNUCSKMqWvFuUR8szcGbA1oLq1vNtPKf3S9LKFSDLfQNkALGsIUxrr+C6GdxDtwIXbAUI+PHZ3wcToXPHgs7bawAPhtOAjqIoiqIoiqIoiqIoiqIoiqIoyupFK3ROA29605vwh3/4hzhw4AAuvvhivOENb8BTn/rUox4/HA7x27/92/jLv/xL3HbbbTjvvPPwG7/xG3juc597Gq9aURRFURRFOR67Zp4LPHgHyqdcDJ9JBrvPCIPtPZjN58I8crtIFhmCqT18KZns+ZESZmEIWhxKlm1VgVsZdxxkzshaULcrVTJRYs2EbHmP5RmA4TcBgENqkpxkHaKECjcyD36qD+p3QOdsSo+xk6x7eQ0DvS4os7ATfWmy7j14MAQPh5J9HJo3c1XL80wn1QBeUdYCZ+I7fbT3i83LydpGis1Io2RyBugYUK8r1TRx/MgsOLepyTJ3rFTstbKETVmDhpWMDZ1cMvdjg2YGyDfjBzmWY0OmMTEDtZPqwqqWTOROAWycwe4LflnGEmb4ew5qVr+y7tmZ74Pp9UChioai/GGsrDOtylpmmTujPGKYxxk0KqWaGbiJTiOTSEgSTORDM3XvgcyAkQGWQLWXqoMqZPZnFmhX6kZJtjAQkG/WEm2o9qBhJRUCmZUm8o94KHY99tXy+kNHUB+4XWVXlTPCrk0vAG3b0kgNPuRc+MwAMxOw556DXRf/BmAA+5hHiHxwkCGkew6nSlZfVSJhFmDnpKouCzKJ3U5TwW5IJNaiHcdqO4hUWntelTnXg2DA3o9W0wQ7Yxipns0ywHTDAQQ4bo41BpxnMqfHSiIXZNcMAUXRyKd6gOBkrPCtCr9aLiweR8xS9Vc5qfLrZqg2dGG727Dz0t8BEyG7ex7+1gO4cf4vHoj/dcp9pGI+gR46GtC5z1x33XV42ctehje96U14ylOegje/+c3YvXs3vva1r+HBD37wiq951rOehdtvvx1ve9vbcOGFF+KOO+5A3RpUFEVRFEVRlNWBm19AdvAIim6BwTk9+CLu0oC6JxIJTIBxDHIEawn5kQpmsQQtlbKJHAwaXXtAAjlFkDszptHmzkSOJUovRG3u6JylqKMfTpUcPgYr03IayQtaWvveN/rcUas7SsHEw3vd5Jgia8G1BHOICb5iDeYo6472d/qBCu6M98xh58DOLXuv2LuKXeiNFYI6ZEjGh7IU2y5ysV/nkw1TEOkgbunxB9gSkAc5qGDuppIgLnx0VLX+3db35zhOWMAGB/UgBK1NlJYyMNvOkd5iZQX2HlxW+Ej53lP+WSrKmWBnvg+U5TC9njiCozxTZkel1trJFfF3fA6Nw7WdgAFmcci2JVejhJpjGPYhqCv2R3WwUecBP2arVQ2qg4RikHijIAk10ocvBJPYGKBbyD14D6q9rEdgRc5120ZkvS52P/Tl8h61Q/292zTAo5we6hoYVuDJKfi8CVgSM7zJk1xolAyk0kliVV1Lb8ilJbBv5kLKM5ggd0zRbuN6PMojZrbpbRVshFo9rQDImtw2dhQfS8GcmCDhPcA02s8urcf96Gtc6z0MBck3E+7NA6WXHnjBjlN/nQAbI+34on2HIBh5kWG1rYQxzgjluTPIprrY9QOvlfesPfg//0sDPGcYdwKSa8d7frVzRgM6r3/96/G85z0Pz3/+8wEAb3jDG3DjjTfimmuuwdVXX73s+BtuuAGf+MQn8O1vfxubNkmW5AUXXHA6L1lRFEVRFEVRFEVRFEVRFEVRlFWG41TAdcxj1jJnLKBTliU+//nP45WvfOXI4zt37sRnPvOZFV/zt3/7t3jiE5+IP/iDP8C73/1uTExM4LLLLsPv/M7voNfrnY7LVpRVzc58HwBpDrtSts+s3QsTZV88A+wBMpLZqNlBiqIoyqmGPXhhEeZgB/3DS0lugY2Bn+5iuLED4xjZQg2qHcyRIejwPPjwEfi6Bld1ykyf614B6vdFYq0oJOPOmCTnwFaaJqcsw5h9ZyXjkGGCJAPkb8ZIRt5IJnCrISu1H/ftrMJQpROz/zjIOrGX63IOZD38kSPwnsF1pVU5ylnDA1WdI2mzLciArKxxwX7kfccrhkAMMIlUExFQ11Klk8VsXi+Z+MaECr5YUdhUAlDwENBgKJm+RE12f7txe3ysPWa0G7zHv50LMoyt4yBVfegYUGgmvXvrC+EOHdZKHWXNEvehpteT736UWUtN08Ocbo3YjW1V6sTKADOaSS/Z/ZCKGO8BHyRUXci6b1UBpGboAXLcVOd5BwxL8GAox8RKIENyjb2u/I7XZ0ftmFrrDSYCxTXAwDfyrIBUIWU2ZfzbDZPYfcEvgw8ewg2H3v6Afv7K2c0Nh9+BXRufD7OwABPlDeP6ud+Dn+6CKqnKgfPA0gB8+Ag+vML3cm7iKph+H+h2wlp8TFqNCJyFSvm2JKJtquaTTRpuHjMYXXcDTWW94WRr8Bhdp7dtbFwSsa6lCq+u5b5sM69Tlonsafws4uNwzV7CGLFXG6p7Y5VPiATYSu7JFxlQAJwb2Q5sfgR2PfbV8P/xTXykuvZU/C9UThKPEWW/ox6zljljAZ277roLzjls27Zt5PFt27bhtttuW/E13/72t/GpT30K3W4XH/jAB3DXXXfhRS96Ee655x68/e0rT4DD4RDD4TD9ffjw4VN3E4pymkgb2LGN6lHhYwxN4TxSGitDAFmLncXl4nhrBXoArNpAj9q2cl+Jci3pux5QR+uZR+16/TBr94KsFX38fg9+4yR8JwMbwC6KpJq9/RA6blo2kItD2TwuLsIdnl/RaclRNoXF0cPdfDSAkw7kZvMYfb9EInmC6OBZoceOB4h8E/hhBkgCP8nxM9ZfB63gEQDZcLIBuJIePQB8WZ7144vatnJfaa+BV4IMgb0BGQ/2RgI7kfCa/f56kWCze+VcZMTh2pZsGguopMfH5F3gXCPxsjQALw2a/h6ASEjF5Kmyah4PwR6KjiPPYPagsN5m9o0jKgR42If1OqRXgel1Mde9AjcO3nMfP81Ti9q1cqLMmj2yHigKUKcYDX62+2tEe7MtWbM4XwOjc/o4rZ4XqFeQaxt3FNdRKtEBVQ2uKnBZwg+Gaf8bg1A0LEH9XiOn1komkeu14mg2Rs5JIdEj9vEYv1TXClb1uqBeF7sf8Qr47922KmSa1LbXH3O9K2F2bAO6RSMhVtbAYAi69zCsD32kwrzm5xeOn0BgDdDpgAs7uhZuz63t5CqgkSYmbtbkbXu27amYQI5SMCeds9WDJ0kgjydleRbbDsEcrmuRMa2knw6Ffl1UVZIkZkiODfdBhiTYnGeAiwGnENwZkYuTa6Ay9N7xISmk9nCTXZjHPBK7t74QH77zz072f5lyP6mZUPEKc8XYMWuZo6mGnzZobDJm5mWPRbwXrcP3vOc9+KEf+iH81E/9FF7/+tfjne98J5aWllZ8zdVXX42ZmZn0c/7555/ye1AU5fSjtq0o6w+1a0VZn6htK8r6Q+1aUdYnatuKoqx1HOiEftYyxDyeinR6KMsS/X4f119/PZ7xjGekx3/pl34JX/rSl/CJT3xi2Wue/exn49Of/jS++c1vpsf+4z/+AxdddBG+/vWv4+EPf/iy16yUXXD++efj0KFDmJ6ePsV3paxXYnbgSEPVVM7ZVLU8kBm4O4vL5f0hWXpHK92ctXtTk9j29ewsLgcVuVQmONc0r2tlDXGUfBirXEAWivnqOmUFHj58GDMzM2fMltS21zdzk8+W7NSyPCVlyrEBK+WhxDyWW3seyYSF82JfZ6mkidq1cipI9lbkSVKFt23GYMckypkMxWGH/EgFs1DCDEpgWAFLS+BhCR4OcePCu5adc9buhZ2cAHU7QK8L9HtJYs13s9FmqkCQSyKsuE6PK9/4XGq+HLLs6jD/tSXXQkYgtcWWxzN92/On80BVgasKN9z1lvv1eZ4K1LaVtUSspCVrgwxT06w50ZZialeYj9F+PJ0zy0B5GKOijFImj3M3lyzcILu2jMqBKslqxtIAfmkprR3SpeUyJrXXzYDIRiLLUtUNxquEIs7J+cJeI56brAXXVVoXqV0ra4X2uoAmJ5q1eNsWgtyh/I3lVTjhOSYalUJtZ/i31gJJYq0tyxQz+auqqdCJ+4Cygl9YXLYHSFU6/X5Tfeekqie+98g9AUHCqZXJ377GlN0fJVttU3VQ14BnlLd/Dx8tr1fbVk4JO4vLQXkGs3Uz/NYNqDZ0QJWHHTqY+QFoqQSGpaxblwbg4fCo1eVzvSvFjvs9YKIvlfKZBfJGSjBV17Wn5LGKeKC1Vh8jrbvTA61KHg6yp3FdXoc1NzNQlo2NJ0lUsXOuanBZio2RjDdkZAyiKLvmHHhYpvek6Ump3snsirLORyVWJmUGNKhhhhVQ1ShvvQUfXbpO7egBJq6NPvPVHZicOnYNy/wRjydffGDN/j85Y5JrRVHgkksuwf79+0cCOvv378fTn/70FV/zlKc8Bddffz3m5+cxOTkJAPj6178OYwzOO++8FV/T6XTQ6XRO/Q0o655Zsyc5gE2/n8oyIwSkySIGQuYmrmo2ls4dtZdNPH9zskZK4mhBIXYOFCXSsjxJpKVAE2TTaopCFptZhl2bXgAeDgHnYGemReeUmwkw6v9z3OjmWTMJhs0jh4APGQPOsuRor+vBff5sTwVq2+uXue4VMBtmAGa4g/V9Okc7CEvWisRDKJumKPEQ7Tk6SpjBVQ1yDnPdK5ITKAVvgQc8cHu2o3a9jjAiPUIbZoAiB5hhBw62a5AfKmEPLYEWFkWzPgRyuKrBdTVymp35PlCnAzszLRuuPDhgqxrEFgyAapFAIAAc58PYU2clZ2lkRKYNIA8wTNp0xn47nAI6BrCNg4gcZBPpHBCllaLzKDp46xqzZs9ZP26obSsnSgrmZHkjixKljCLRaRrsj53kWbJvHRPm7yjJBiA4cWw4f9bIqWStZI/gMKK6Dv1yWgHe+Ds+ZgiU54BxSUZNrsulNcTOfF8KyJhOV+6Hm+OOS1ijs3Orrg+X2rVyorBzYn/OgJxrJNaAJpgTnMFHc5a2ncQjQR0gHd+WWmVPqY8O+SbRAlUta4+6Flut6iYY3AoKNz1/uo30YZRrIgN0OyKrGB3HRd4EaYDRXjwrXKv09GK5nthvK6whzIYZ4I77/bHfZ9S21w87832wmzZKYIIIqCU5yZQe5vAAdGQBvLgIlBX8YHjUpMa4Hqdet0mGqGWfLutvJHnjZMM22mRb3hSg8N1nT8s1o4jADk2vuySzaJpgrffiBnNOAjo+2PawBFfVqNRhTGCOa4gsawI5WdYkjAQ7pskJuS9mIM/BvWI0SNXu0dmWgGz3wHNyr1TWImvnZPwxmzYCt97n/5XKSeKZ4I8jqXa851c7Z1Ry7eUvfzne+ta34u1vfzv+4z/+A7/8y7+MW265BS984QsBAK961atw1VVXpeMvv/xybN68Gc95znPwta99Df/0T/+EX/3VX8Vzn/tc9Hq9M3UbiqIoiqIoiqIoiqIoiqIoiqKcQc4GybUzVqEDAHv37sXdd9+N3/7t38aBAwfwmMc8Bh/60IfwkIc8BABw4MAB3HLLLen4yclJ7N+/H7/4i7+IJz7xidi8eTOe9axn4Xd/93fP1C0o65RZs0ey6ELWHo2XhY9l/MbmqOxck61b1SD2qZImZvlH2TZTFM0bUkolws7i8lDx40efA+AryYKI2UKp2iBmAxkTsgwNYOSaqX2tzst526XeMWsJaDKLmcHOALEBdXwOkHMYarIjFeUUsTPfB7tlM8zGDY2Mykky17sSsAZ2amo0mzdkByWpwfjTrtTxXjJ1nBPbAlKGT5IjdE6ybU+DzKKirEVSJmBqJOrgpqcw3NyFqRmdgxWyexeBg4fgDx+BX1o6ph19pLoWc5PPXi6XCMgcVXvJjmcOWb4ENgacxQy6cGw723ekModB7aGGII1bY+ZgOJ6YpYErAwTJ9uOVFN28B5fSWJmr+qyVb1SUkyFW5YCMVMebFTbYFObwzDbzu/fgqgI5K7/DPN2urG3/m2ImbqgIkLWAbSRjYvZtkGhKck5xDR0y+qNEEzyLpKQ1IOTScNl7gAlkm+s2xoTHWaoRx/YEWOl+Paf9gK45lLUOWdvYtfOSwk4kv4PEYcp8N2N7zJZ0E7mWTUaisgRJRU6stG32sJA9RR0apFdhji6rEQnDNrNmj6hexP26ETulLGvGEGNAvW4zZpSjFcZpvbJS1dF41XCUgI5Vey1JdEW5L+yafg5Q5LBbNouNbZxCtXkCpvLIjpSgYQVaWAQfOowbDr39+CckI1Klsao1fp+9lLhTTQBqgC1gGQwr6+noijIAQFINz5B5kkQ+bQQTquNpdBxgE8cHSKUfyXsw1fIWSWqNRyrvkhwqGRmH8gwoclCnI/YWfQO5VAWjyJfLqjFLxZAPFUjASHUOL6sq9E2VTlTFafvglNNCzRYVH9tnWa/xCp0zGtABgBe96EV40YtetOJz73znO5c99qhHPQr79+9/gK9KWe/M2r3NgE6Uyi5jOabdsEFKSaPMWjZmKuMDMhHgfCNlVtdAIcEdihu4NJkca9AQve5GW1s2r23Zs/SW3U7S5mV2QMUiR0Mkm9M8AxfRUR1e09YOjkTtYOcbrV8XYtVZS7M8BqqirrfOR8opYtfG54vDY2YaPBimTQwPj172vewcYdFqNkw3CzJgZZmDth5//M5H2/CysaQ8l+ODfVC04apu/u1cE4CNp4/OGSAtItUBo5wt7Mz3wfR6QJ7Db9uI4dY+siUHs1Sj919HROahqsH3HASH3hNHs48o7WB6PZipSbHrIm8FYoP0ghWNarY2BHPk73GIIcGd8b46JD3xCAQ2DPIEgJveORg9FkRgeAnqcJBZcghyS6NBIzKEWbv3qNKrinI2016Lm34fQGudG+fnGMSJSVXR/qO8GZFIrwASUPG+kWJyLhj+URyjYRxpfsYcMkYkGCms8SVoTNErJecPASBiSoFcX5apVw97BuWZOI9bAZo47kV52LbscnoM0CCOsqZp98JKfSwzcabC2vSbCzviPKUYMAWCFNLKEmwAUvBV5msGWwrO3eb51I9jBYcqHyV5jLJwbVUNX0pPDdPrAl2I3FoGGY9ca3yJ4067N1ZMhDSjko4jPffaUuhhjzEuP6soJ8qs3Qs70ZceN5s2oN7QhxlWMEsViu/e0/h9hkP4+QXpA3cM4trezkw3tmsNYh+atCbPTEiOMCGxKiRXtaAQXB1ZX6/kb/fAiLPJAGACB9dWDLgQPLjIwpzvk72zczL3Oif2Gt8/BnOslQSMspTX9GXvEvveyMHLA7AU/8kM4rAnsGPJXTEhJN1H63H1n51WTqQCRyt0FGUNMWv3whSFLMhiZl2RySDe67UWVdxMVJkdzbABVq4eSLr5wSFc10DWCp60mpsmxnvVtBd37cmn1RdnWcZOtwPKJ8OiUvT6UwVNDAzFyS+lFKC5rtqDYlPI9kI0BnpqB67rRo80bYx1RlJOEd5LI/RW4+ATJTl9J/oh4zZo05sM6BbwnVwCmbVvAppR67rdfDUwYgtAWPRKsJdCMIjZg3yWsm54fOOZMoQNRlP/FWV9Eh2zICObo4VFmDsIvcUSmF8EHz4Cv7h4Qlnmc90rQEUBMzPd9LgImbExA5fzDFyMLmHFqWtCZR03Wt4IZsghaBNcv8uCOgjPWwAwsklkjDRujU6YqNdNtU9a/HHOZOcAa2CyHpg9rPOY614BX9XY765LmvwgAz8cqLNWOeuY614BWAs70W8SlkKvO+lB0fR4HCEGYOJaPFTSpaAPmdBLB8EOLQgOgE1r6uTMiWNLzDLmmCXMI46hkUbm0QENNOv1qpYmzMMS1O2AJifE7zS/AHf4CPa761IPnZVs/UQfU5S1Rtxzx55VCL2wUtLiyJ4TkpUPJHukkLXPFJ47WhNyIsC0KmrjueM5WgmJqOpQnVPJ3jYEWGft3pSQJZX8JGMFAOp1kW2YlgqH+QW4g4dA1sJM9EHd43wIsa8H0OxR4n0Yaqr+xvba7By8H97nz145e4nrcT8YSn+ZskJ2sIA/Mo8Pz//FSZ9vZ3F5sx4PAY/kY4qVrW28B1UsPrBQSYPY0xJAmmOB5X2w2hylqILGAyQrvtaI0kbsMz3mv2OWSnrq90AbpuX5hUX4O+6UCqQd54T+OM24w60+2imA7EMPXmNG++sAgOOmv8/CUtNj09233sDKfcOxgTtOhc54gdjxuOaaa3DNNdfgO9/5DgDg4osvxmtf+1rs3r37Pl7l/UM1kxRFURRFURRFURRFURRFURRFWdN4EDzMcX5OrkLnvPPOw+///u/jX//1X/Gv//qv+PEf/3E8/elPx1e/+tUH6C6OjVboKOuenfm+9G8Tsm3ALFUvnaLR+c+zJMO0LMoOjGj6Ji3MduZurOLhLGj02iZzwDMolHQmQoZAc/qxzKLW3yN9P5yTrIJeN8hPNPJsXBSAkeojWipBh+ebjADPQK8LdDtAZlOmRMo6ruvRjMSINSBkIkEHgJcGcPPz+MC9b8PMzP/3JP9vKIqw+0G/KJmuzKDpKVDZwa6Z54LLCr4sjylRtLO4HKbbAbIMZmpKHozyLJlNNs2WkmQKukby8mup1gHQpDS0pBHYkhwTbYFIZkpmsekordiWR6jq5m8szwzeme9bUZ9bUdYLZEiyVbduRr1lCiDALFYwg1LmkF5XstaPUYmXetcVRZIxZV+BolxJFnvoBD3qWK3Tsl/i0OPGSQ+LcakHOQapSoeTNGN8HPIfFn02ilnDsZeGa7SwybUqda0ZqxQIUhBswK4EyMD0upibfDbsRD9lIBvTG6neUZT1SqxMY8+pjwZ7L/Km1kj2b8zib1fORluP2bHON30iAcAy4G0jf8YiiUaASBfFsSGcVypzbNNvMhyH2oFi6m9bqrWVTc+mkWWjspa53xAw0ZefVn8QsgZZt4NdG5+v87+ixDkxqk0EyfMoaR4rbJOQROh/R1EuzUGqZ9tVOuOSylE5Iszbst53zf42jiW+ybonawH2qcIP1ojsY5Y1PoKsVV3U6SDbOANUNfy9h3DDwbeO3OZc70rQRK9ZBwBJlpnaCgFj/W25rmVdYQx8WeEj5Xtx+PBhzMz89an/f6GsS2bNHlCWixLNg7bDb5iQPfb8EJhfAHU7mJu4Cn4wPKH15s7iclAe/D9VLXO382IPyMVeyIN8a240rTkVCOtkD84NgNDTMs7TAamNXw631vUjfrEgW9bsxeWcnBlQt0gqNRT9ZrGqN1TnocjFh5Zn4NymyhvqFaAN06CqRn3Tt5JUJKyRCqXpSXBux2w3yLtZFj+eH7Pt+NMpgMEQvLgEv3j4pP6/KvePki1ytsc55uTO+TM/8zMjf//e7/0errnmGvzf//t/cfHFF5/sJd5vNKCjrCl2FpcD7I+7OdpZXA4qclCei8PXtDZ0aXNmmgZoQVaNc9H9XKmsO5WFMjeyLhT+9tSaWMal2MYmIuclkBMfd66RW4vXGPr5yAKPZRMaN57djvTPSRq8XvT70z0BbC14sgfq5qDSAcOhTCT3HgJXddLz9mW5orTD3MRVsuk1Rt6rU0iJepCT2e+vx+HDOiEp94PJCXBh5fsZNztEgLUw1khvmroa+X7Oda8AdTqi4dspGhkmoJFlAhod3/h3ZppS72AnKSgLLAtiiv5241DioNGf+mw5L2XWYYMY9fWjXSe5FzIg48HeYNbuBQB12irrE2rNm4QgySCbPDKNk/ZoWvUARK9+hcbgInFommbksa9VHZxCBYn5puaskCAMk2wmoyyTnKzlDApvkFpVHEX6wYckjrZ8QnQO1fXIuXlYymNEEpiyJvTjM43sSzy2JZ+6YgN4RVknROklyjOZL4OTJenat/vjxD501rb6S2TL19I+Ng4fDbzI2twkKdT0fvGYaGtRVs1XK447qd9FTHjyDCpycKcAcgPu5EAeg0wscq0xEcSFNb61oCLXPlrKqiZKNJ1oz8pjniv0zEnSZUBrfxpt3zZSh+P77ZaTti3LlJIsxxIe269bJpUY5cyqKj3GLflzMgbc7n8T+tZSSBhLSWLt9U1mAcj1G2uxa9MLAOfgFxfxkepa3Lj07vQ5HE06MfY3Sf15o0x6aOJ+Kv4/KGcPKZDT6Y4GMpJUqBmVPTwBUjAnvibO1ybYYLQpL3Mk5Rm43W+aKCQ9S5BS7LK11g3Kx3KsBHXSS6M/LAY/Uz8aBoWgbexZHWUZEdboTDTSbxqAzOWZBYpC3rpofQbxMzKQoFSRgesM2YN2iB/uyDz80gD1bXeA7rxb1vPt9ggAvOck02j6fWBmSvYmgPgVcwuqJGB7w8G3hkCtyqqeLqRC59h7rPj8uG+z0+mg0+kc87XOOVx//fVYWFjApZdeev8u9j6ikmuKoiiKoiiKoiiKoiiKoiiKoqxpPAzccX58CImcf/75mJmZST9XX331Uc/75S9/GZOTk+h0OnjhC1+ID3zgA7joootO122NoBU6yppgrndlyNI7dnXOznyfNFOe6EuFSRGatw1L+KUl0NQk0Os1WUKxMbql0NgtNElvya1xyDgmFyphIFkDNKiabNsYqW9LRdiWBITjJJcGQyBvwCZItrUbRI5DhFRC3n4sz0ebtYbMJ6pDc3byUpVQZJJFONkBDWpQUYDvvBs3HH7HMT/vGxfedcznFeW+Mte7EmbLJvDGKclacdxIlsUGqUAqdZ6buApcljC9Hqjfl+yYLJNMG2uk8mxhETh/+zK5xFgCzq3sWw7VOextk21fe7EdoLmOdoZPYSXzqN0Q3dmQoWRS5Q7Firs6ZAgZqb4j5iTrcF/k12bNnlDtQ6nCQbN9ldXCrN2L7PxzwTOT4NrDlE6y5IYVaHEJWBrAzy/ALw2O/b0NFW5MPo0FqUn6yHEh85a8NF11DqAsNVSWWTNU1XGQQGhDsWoHgG1lBpqxKp0o+RKqfdJc3JZRiEQplVbzVS7L0WxI75uqnJWqeRVlnRJlS0AEdk7m905nNEPfUFMVk6roou2hWWe7IKMU199AsxaONmkIZLJl0sZipxwkX1r253j0PEQQjaemej7Ks8n6IY4Zppn72z/epQo+ruqjr/EVZRVAhu53leis2QMAUokXZVOBphovSirmrcqcVJFHjQpGHTPumz0uGQI4yDVlZnkjdWbZS7QrcWMlfZJI50YdYwz2DLLNuRp511blYByj4j477lUmJwDnYIsCu6afA65q3Lj07qNW5wC6flfuH9HWYiVcqswJ9kVbN8vzg1L8TItL4PkF8OLiUSWPVyTaqQ8yp1nLFoL/DKalfNOqnotyaelUtdRJNOoyPPK66H+jtg0DzdxsMNrmIFxfXB5IVU5LKt1YwAR5ONNcb1LhCbRlVNMenxm8YVKuuduBXRqAh0P4Q4dx4/xfHPMjm+teAcwvgJ3TSrtVgmMDx8euYXHhO/Xd734X09PT6fFjVec88pGPxJe+9CXce++9eP/7349nP/vZ+MQnPnFGgjoa0FFWNTvzfTC9HgCRMGLPy6QLYqm46XZE4zIPDt88TyWPMAYU9GnBHsg7qR/OyEDuGMQOYCPa+45hWBaD5tAiUFZAWUofmaVBkoSKJeaU5TAzU02pdqcIjicC6nDB3gPwTVDHjJmhl9JVAKK3awhcVuA6bAopBKnKUn73uqMycbFEPUhOcbg/c2QAnl+AL8sH6n+XohyT3TteDDzmQtS5BdUeZliJfQAtCcRMFmY2BkgJZmqy0bEOEomc27CJEycqVQ5+opMCOjxech0JclBU1aCyBg1L8D33wg+H4KpONh2Dw9TrykZ00wZwEUqojZEgUHthGjd4dVhU1zXYGbm+IKnI3oPIrCgdGceQ8ceSbEUI6FAm93Wi8pOK8kASgzn1uZtTUgFVDnapAkIwhwfD4wZzYn+NJOcQ5D1RlhKgifr1445R9iF5AzKXB4gZtDBMx6QASttpnGfgzKDa1IfvRGmY8MuT6PUbAE42ihSCQ2zMaPG+cwCCvBIgck9lKY5rlse5LCXAA4zcQwzQHkuKTlHWMjvzfaBOR9bmyWkb5BPDY7JmbiVaAaPSSu3XOAc/vxDmWJdsh4JcUpQxMpMTQJG1el6y9OewZtQpFc8fif/2CD0BWg4hJz3zyDO4E9bpw1pkjZ2XNb8fO1ccyxRlFbFr+jlpbiJrT87R22Jnvi/JPfmyFHv0XoI60SajzBpRE1BtB0gQkiYXF0W+2EnfGw49ZWAtKMtAsffVxilZjzMDPiZvjCVJtKXNV0qORHMNqbcXhTGCKI01yFn22bGHbh6umUj6d0XbLgAMh/DDwX36HBXleKy0JwRFWV8L6nXBWzdiuLmP/N4lmPmhrMFPMpgza/fCdDupv53IBXvZlwPN/OlDAjGLTRAz2EjCFAGj0olHFlr7ZCdSyhSCRKFXld8wAR/22WmtYFp2G+STGdQkRIcoDzOSVDp3SNoU5JnMzWUFFEFqjUL/u9qJj2yy0yRyx/PmTSIYIZfPcGmwfH8eaAdvT+QzfuZ5Lzqh/w/KqaFii+o4PXSq8DWbnp4eCegci6IocOGFFwIAnvjEJ+Jf/uVf8MY3vhFvfvOb79f13hc0oKMoiqIoiqIoiqIoiqIoiqIoypomyqod+5j7n1THzBgOh/f7PPeFszag87MPfRmy/hQAwN9zUCWmVhlz3StEOq3fH8mciyXhO4vL079NrwvKc1C/J9H4mMFvjJRm5xaGWY5vN0+NtKRTJKOARBbFStYPLVWgw/Pgw0dww6G3r3i946XVc70rQd0OyPeBXheg0FQxykXEZm6AZCu0swM7WdN4MWQGUl03lT7AqCRFVQN5p5GbykU6DkCSmjKLki3tjxw5JaXes3YvsGPT/T6PcpbR66GeKqQ6Z0ky+VHVIosQMtnJGMmmsaapygnyB1zYRhoxM2BrYIlAnbx5rN1wEZIZxAiZPo6TNIoZVsChI/B337NiRs145cuujc8Hbd4ofxS5NDo0UkaexpWYhVjXTVWgDVIPMVs/h1T2OIe5yWeH8cDDFAVABjvzfWDn0phC1qYsrLacExkCVzUU5UxiorQKAWZQiczawhAYDsGLS1KdU5bHnHd25vukOic2SKeQdRgSqpJ0GdGI/Ilk41vA1qkSBsxSvToswcNSMvnZS/ZtzGY0UhFA3Q6o20VROdSbJwFm+MLC50YklZhBCJU6HDL4sjiGtKSiyIQswtaGgbMmQzE0YWbP2O+uSw1s5TifHleU9cbO4nKpdM1zqaTLLNiQZOYCjWxLe00LjEqoteVRhkPw/MJxs2B35vukkm6i30ioZi37PF51TjwGCA3LQ5VOG8dgS6MSMUsDkYj0zb4CR6sWVpQzCE1NgodDwPN9qs6ZNXtgikJUNIocKCvYvOVWitU50Y6cayRIPUZtbWkAXlgELy0d81pm7V6YXhfGe2DTNMhxWIsbWVcbtPb5QYJpTPpphDwTRQznpconPIbMNuoBzgPDCuh1kq1zUtGI55cqPT8YHlNq7WTYtfH5cJsmTsm5lLXNrN0LMpT2iXEvGKu9qShCpUsHbAmckVTnHD4CXliEm58/4e/lrN0rsolZJjJueQ6QVNSwc8tby/vg12pfU5BZhPPAIOwHlgZHlfvfme+D6fdhhiVo0zRABN/N4AsLimPF+Hxt4v4+yLQRIapqMWXymPegzDaS6h7gwoiSBgX1ncUSfrLbyKhagjcGVJHIOJZhzbGSn5hMWru3q6diRW7cv/uqhskz0OQEaPMmVD/wMOCTJ/S/QzkFeDbwx5Fc8+356AT49V//dezevRvnn38+jhw5gmuvvRYf//jHccMNN9yfS73PnLUBnfrgvbCVSOBoMGf1kfR3gz41okOzrYVNQZe325GJp9NpZFSsvJYzI06a6R7AXVnbRfmFpNG98mKPKgdz92HwoSP48MG3ntT137j07hTUgQsanp3WJi/KP9TBIev9qNREW580syObySQl1e+l9xvXHWUicN4avILs2tHkmWbNHphOV8p2jcENx7jfWbsX2aaNqE9y8FPOXuYmroLZvAn1eVsABqhmCXbEYE4V5RCDfSRpteAAyjORV7CUAjmcGWmPsWWi0dOO0ivxqxnlGEIQVaReROqNb7sTN9zz5yd8D35hEcYaUK8XtLVDafZKUklZBlBcQHrpBdIOKBuSjWTa6AaJCWaQy8Dey2fW6404tWhcjkZlXJQzxFzvSlCRw2zeCJ6egFmsYAalODQXluAXF+GXlo67iZy1e+UfxCDjAR8CJ9aAjNhCI6XC4NiPKvTigLONhFlmRVpiYQl+ODjqe+/M98F0Oo2zyXnYw0vgTg6fm1F9bnAznhiIDEPU+zeUNL0TIehExjS97kIyhjEkPcSKAgAaGSYeP4mirH3SujI4hmJyBnU7SRZtvA9kw1jApXbSi+vQ4ROSGaUsbwK8UdLNmqbXVaTdC6vd32p8X0AE2Axc5DIOtOZi7neAbt4kqAByvXGdryirjN1bXygyR1V9nyXCkrxhlomNd7ti48Boj6v2ujUSbb12wOEj0pviBIJK0utH+tHS/BLQ7TTy4uVYX534PqG3Drcl2ICW/BulvW/6yTLxkLX35JaafnvhvphNk7iRZUftlbVr5rkjnwWXJW6c/4vkBE4JLYZEWq7bAc1MAU6Tts52YluB2Icu7QPjY5kFb9oAZAa+l6OeKmAHLiVVuYXFkw8yBvlTIvGhocgbiXHX2tsa0zwWt6PGNQka84vw8wu4cendx3w7DrKkVFWgwwvgqb7s860JCVWtxG5uWgugBshwq6dd65xkwMaCojRjfL1jcC8Hd7MkB9fuycUMgIKPwYfPe4WkjCjNvvuhLwfIIPu+C+S4UmTcAciYUOQwWSa+yX4PbqoDM9TWB6eTB6JC5/bbb8eVV16JAwcOYGZmBo997GNxww03YHZ29v5c6n3mrA3oKIqiKIqiKIqiKIqiKIqiKIqyPqhhjttDpz7JgM7b3va2+3NJp5yzNqDz/7v3nSfc9Eg5vcx1r5CyxLbEUF2DsjplsQMIWX9WykHzvDkBc5JuoTo0S4sNzzID9gDVaLJsW5F7jnJGZQ2qHfjQkWNWqxzrHszMNDDRbzJ82pl6IdsHbBo5iPj40QgN3GIDOBBJaW2RwXfy0cwkQ+DxU9XHyPQhA3/Jo1K56q7v/w3QwSPgwSBlNPGgafbojxwBF8e4VkUJ7N76QuBRD0XdK6RyLmKtNBuN39tYpZNlYg9FLj9tWbFgHz5vZcdagrdBSsmzVAAxg2r5t3RUl9JpGpSgpRIYDE+qOmfW7IGdmgJ1OkCnEOk3oGnECoxm+ravN5afx8rASDszmUIDR+fBNtwHMJqxPP5YWWmjZeWMQb0uaMsmcJ7JfNmWVggSYyeaFRjlU6W5uWT6kSFwyEBM3/N4XPw7zN8cG6YTwc8v4CPle4/6XjuLy6VBe7cjcqi9rlTmBHkHtkbGCt/YNa1UQGNJpB5GVtFuVEomZBI3NxolYZpqY9YMfmWdst9fj7nelamhOUKGscinNmtWjnYRaa2DaVABVQXUDn5x8YSqc+Z6V4ImejJfF3kjUeMckhZrnK/blcF+dA09chwZgFyQdWqkXaKqU7xu7hQi12ytSD+WFQg4aua+opxOds08V+Y+a5Lc932WCIuyidFG0rxnl1e3ROKenoxU8zJLBv8JVOfM2r2wkxOgyQmRlup1wN2w//UeZEmkUBGvp1Uhd7R5NsrCZdmoMoZzYdyAjFe9Aq4vlbUjEoseMEQyLrT2yMs+qskJ8NaN8N0MZqmCGVTYfd5LYaemwGXVXEc4r19YBC0NwKiO+7ko65dl1TktOTPKmhYDfqKDcnMXTEC2WMMuiOxwquI5CSjaqAs1Cxyq1judlatX2/te70UyPf555MhxbVtkFHswU5NArwd0C/huAd+xjY+OqJm6RUQ9XAuCzWLk2jjO01Yq9CjJJ45V6BrAdeS9ZK0f1iTWgJwHs3zuPFi5Lwp1OuCpPpYeMoOqZ5ANPezAo7hnA8zdR4ClpcYHUDvQoSOwRxbA0Aqd04ljA3ccybXjPb/aOWsDOsrqZGe+T5wtNGpYlOdApyOlzW15sqjT2ZZv8NIrA4YbiTVjJIBiwmCdNQEUZinBTJJMJL1z+MDtR9X7PNb1m5lpmHO2pr4fsGZswou/fZCNay2C4yYylIGn8uzCACaXwJSlRnbNSLCKcyNSNFExwojsFBvpbcCZbKJnzZ4VF+/73XXY9bjXwPdyuH6OasskaNMEzLCGWRiClkpQWcFUVep14qkGjpzUx6OcZezM98GesxUAUr8Z41kCrSza16Jr3xGbbRN6QVFlQYcXQHctAdNTcFumkgwZMYAaMB7gLHzfY38LA5iaYUoXFnQOVDrwvYdww11vOeF7mDV7YDdsAG2YAU92m00f4qKxGatif56kvd0mLhZajuKRTXDYSBLM6GPx2Kj7FErZuaqbDbWinEaiYwWDoWhT17U4QMoKHP9tCHPdK8DOHdMJm/Sng/Rau5fMrNkTZNHCRrbtlIkBEZJgqV88MVkJyjORMux1gX4PvpfDd3P4ImzonAe11gTyJjJ2kfdJvkUSMSBBnZzCIGSTxCJcS9o19OCI0iyMljwF+1Omua8oq4GRdSaPJTGEBI3ooBpJ8mgfl/pTEbC4BHfw0DEDtZG5iatgJieAbkd+Yi+M2i2fcyNR8rSdMNbptLRbw33UkPO1Hb0jewnZe5D3KXAV5Wcoz466/laU00YuEmk8HIIHQ+mhcx+hlrOYy6qViOSbwAgwOm97DntxAi8uHTcBIzJr98JOT0lPrH4PfqIL35OgMIXASkrSBFZOjvTNGjoljEY5pfZ4QySO8rjWztt23iR+gglEHKTdrawtgpzqMsoKtFTCBNln7mQgMyHSamUlMk3REc7cyDFrvsdZS+otGaSBZc6U71kM5MCInL8pa+SHJUhgFiuYxWGa66jIMde9Ar6qT6hXI3uRRGcyMl+zB2cZjOdmXou0kxrjvpj9CfW5A8L+emZGgrSTffjJLlw/X56QDKBRO6TROTwmhliTEjrlb0ls5sKgnTHCVMDUPvghAM4onLtJ1ADEn+BzA5OHz/wo0PwAxT1dmElJLPcZYbi5CztVwAwc7PxAEkmrqvmcjlMtopxaPAh+efenZcesZTSgoyiKoiiKoiiKoiiKoiiKoijKmkYrdBTlNDJr9sD0+1IOXuSjkf/YdK0tYVTkIUMuZvmjJZ3QyrB1XsotK0hGYGZAiNHxcEztJdM44r1kAp0EuzY+H3b7ttT4tbluL9lIuW2y+Z1rrs+HY81o5Q085JrKCpRn4Dw2UGcQO9CgTk3wvLEASIL+IYMoZT4SgF4O2r4JWb+H3Q9+GTAcwi8s4sb5v0jXz1//DuyObcA50/CdDL4wcJ0OTC+HqcJnGKsoDODcELj1pD4i5SxhrnsFzI5twCUXoTYmZMDE72dshjrWfDwPx2SmqTqz4Xt8zkRz8qg46EPptZeseg8LzkeTatHOmAXAhQVtmMHuHS/Ghw/86XHvY9f0c5A97KHgiS58kknkpsout0COVmYSi12HTH6K9t/ODPYMeKkaappBm1EJGBrLQGpL0rTOSYZOKut3Z74P7PmEsrQUZZxZuxfZ9nNgL364VJrEClhrkqQnAeD4HSYDsiJzNpKpHytu2IvkWHyufQww8r3eme+T17Xl2diDwtxvp6awa+Pz4RcWV8z43VlcDtPriqxDtwOemYSb6sIXIrFmqlZD9DatjL/m+mnkWG5JJi47Ltp2PF1olK5Sa8p6Y9buhckzmH5fmoBbCzM11TRIjtXyVS3zYJFL5ms7mz7MkbKuJ5mzZ6Zhe13MTT57ZM3aZme+T2RbNm4AJvryOsdNpZx3zVwMjGbjR3kmbiQSmb1Uy8Zrqh0AF2ScfMiWZpFPjHM9JCt4RGoqC5V/nQ4MEXYWl59QRYKinCrmJq6C2bxJZL0mJ2RPHPbRJzIL7SwuB+UZqCia77Yh0ERP/h1sjOta1gHWLJdCB5o1bhgPaHpS7Lp35VGbps/avbATfWRbNwNTk/CTPXAnSB4HSfVUGT8uZR6qe+N7juRfx+ocoBmXgNZ4EGy+VfFDxss6nAhsCJwRvDEw1gBFBksEQwa7tvycVCtXNbiu8JHqWnz4zj8DIHsKOmcL3KYpUOEBV8gaqvagKC/dGqPIl6qEcRYya/aAsiAXGqtz8kxk1rJM5pV+D/XGPsoNBUwlahSmlO8oZ1aqvIhAxoDJwOTZ6Fo8rqdDBRAAgBmm2wlS+1K5ys7JnF3XQBbGAUNJSYeDtCHlIpdOnQ4oz7F7+4vg7z101EqduYmrkG3eDGyYhp/pw3dzqZBhkVRjz3JZwadFYW2Q9vjRpxDm6Tj3egLIM8ywBlUOXGRwHRtaETT3SXHNb2wzDsa9vAlVhB5wk11kD9qO3VtfCK5rcFUBdZ0qnnbm+2DuuBPdjRvgdmzGYHtPpOALA+pZ0HQO44LfwADeEio3BP7z1HxXlOPjYOBGdH1XPmYtowEdZVUwa/bA9HoyUQBJsoTbGrgIMg1x4eZCT5kQQOFu3mzQDIN9WIjZlpEShdLs4BBNQZXgSK1roHbgw0dww6G3n9C179r4fFC/B9owPVqKmq6lFagBVnAYhb89mv44tUiucScDTNFMQqY5r5/qyHnD5JUWmGFSawebfWZR9/ugLT1QCHbZpRq7H/EK4OAhWYgbAo7MwwIwEx34yS583uonEDetMWDmx5xXylnPXPcKmC2bYR5yvvSZCQuYZTgp6YaXzRhbAnFYuJZhU2OMBCY7Fq6fy4KsBXn5XopTOcikMEZLrjMD3yNZ6C5VoEML+PAtbzihe9n1uNfAX/RQcSwBKaBJUWqpbZMpyOQRNRIobgj96Bgm8ku5BIKcl8V1dAQzj24sTZCF8CtIxTgHAmDISKDGueMGdmLvkVm7V6WelJNi1/RzkG0/RzaVdWvsj99NJ1JjXIded1HGCJDveOxrZ4J+vjVJskT0FRzYH31Bzc4FHVEakRqMUkk3lssdvdHBTL0e7OaNwOQE/HQPbrLTJDxEk1pJ5jCOJTEoHH9H+TXPy+fzKN+CurH/caknGzbS0R5ViklZB+x318langyQ58nBk/pTjDPeX6oFlR4oASwN4A/eixsX3nXU992Z74M9/zzwVA/emJb0adNrC8Y29upb822UWCMDJm4cus4jaRjH6497idAjDN6AnGmk44iCjEsYG4iS9DIRgXpdoK7F4VvVSZ7Sl+VR7V/HBuW+Mte7EtTrwvT7o4lIzOKo9f6E+jB+pHyvzKVEIhGWtVxHzDKFtufNuJ9eyb6j7GJZoT5w2zG/93ZyEtmObcD0JNxkV6TNCK01fiuhIv6OsmtJ7q2VCNq+vkh8vH19jgFUzetqeVsTAj9RKjo5kAuCzwzqqRzYNgGqt4Cch6k87EKJ3Rf8MvjQEQkEdzpAXcMMSrC14I4Fw4KGDjBogtBA6De0tp2Myn1jv79ekpggfaKlB12QO+v34Kd78B2xw2yhhqmDvFrtQZUDVTV4WIq0YggsxvMCYl+AA7IcZAFK61aITZOX9Xm4HvYMX5YgFySWrW32wJHgk+OyPOZ8LT1zujAPfhDcVA9cWPFXrZTIGCUODcSnZ+RaZP+PEOAJ9+6b62FD8J0M3M1GAzmAnMsauAkJ9kaJZZYNtSSSGvGlcUaopix4exem3hT8YUC2UCG/awG7H/SLsNvOSUFjszRE524D181QT9iUMMZ13F+E9zArrIeUB4yaLarjyNzV43u5NYYGdBRFURRFURRFURRFURRFURRFWdN4NvDHkVQ73vOrHQ3oKGeUue4VoF4P2bZzpGQ7ZL7x4tJI5hBZKxJrphXBt1YaG8cGxMBYlh8vz8ZhL9H8dll1fE1VAcMSvLh0QtU5c90rYDZuAM1MSWl5uwrHmpRVMH5dbAyICD6j5VIuQCPjYsxIRQ6AkDkgWUoiTdVkMMhzSDJVxIApfVO9EzMPgnRbPWFRzRQw5UaQZ+R3zKdqAiodqKxBlDflru2qJ2B5doZy1jJr9yLbsQ30qIfB55IF4XMpcfZZ8z0xFcMullKFU1Yh2y0LFWXyfeduAV9YmNKBKsmuY5JMmYRnIH4TDcAgUM1NU1bfPG5KDxrUoPkluNvuOO697Jp+DmjHNlQPmoHPJNuXKg8yIh/FQDMGxUxBi5CpaESGhWwj/+BbkhAjYxEHORYTKgY94I5iU3ZsoeG8yDACkvWHHGRtksZIn1EomU9N6YPUVZSt2pnvO2bDekWJ0EQf6HSATg4uMpljyhpUs8iLLC6ClwZSpePciDwabNHIRtixLKlwvBx59GzhlFlo94aMQgKCdOpK8mVRYo26HVC3KzJrXbl2qjyojjc2lhWYqv1a1agxA3ClhurttQTQVAYcLdsrjgNt2QsbqubivaokorJGERs3oCIHokRTnL/G7awesxMjrxUJJwfUTiRbjpLtGzN97eZN8Bsn0lqZvQe5KMFim8zdKMUUKnBidV9ac7f3HEStcUkykpM0kyEAksG8rCF0FiTYaGzOz3O5p1hBlNUgJzJVttfDrunngIPkEjsnGdVkQFmOud6Vy+dyRTkGu2aeC7N9a6j6trLWJAKWBrLPXVg6qszZOHPdK6TS1QSp1CxrKt2OIkeabCfuE6NUOiA2Vx+9ojxJMU32wZM9+Mmu7DejkmGSbgsPuJihH+QQ0xzLQVqNIDpMY0oXQHP9obpg2b3Ezy+8L2csl8EMA5nG2RIMPHxuZL+TEQAD8kA1XcBs7sPUW0Up4PBArjNerxMZ+CgjB1/L2sa37kE5K2HPoaI9SHfmOXjDJNx0r9k2hu+yLwhm4GDKGrRUAoePwB06vOJactbsgSmKRhEHaGTXDMn+EpDKnrA+H7fVWbsXZEhk4drzu3PwS0sr3k9U4rEbZ0D9PtxUL+yRg8SaaeZSjuYZ7TSuw+PzJmydmcDj1fXAaAUMA9Sq5oNH40/w1MitReUNkteTZ1AF+EKuxxVNxdxwg4U5pwNTbwSIYIYenbsGoTrKw6IGW4LrGfl/lJFU3ylnBAeCAx33mLWMBnSUM8auLT8Hs3WLTAJ1LZNHWaaeM3FwpqDJiYmeLCSNATIrGycAQCYLOg9QWYnUE9As6tqLzuhIaQd1PANVBX9k/qj63G125vtgN2yQa89DkCnIMi0LwgRnNGzr3wapRJ2PsliLQZu2dJoppe8OOSeBmRDQkU0r0gQoTmYAjkV+LRNnuAR1AFNLySgx4PPgSGcA2yZhF6Ust9EINi1pGpvKUwHAR71f5axm1uxBtnkzeGYK9XQHPrfp+wZmGMewizXAgFmqmgBsWQG9LvxEB1xY+Iykb44Ji7l+BhO+w8SAHTi4QvrxEAgi9EDpOylBzEZWgioPu1jDHpwH330QH77nz495H7u3vhDYOAP3/Q+D62cpSEpR/jDq9TKDWo4cBknpd5Bii7IJzAQ4cd5w3PyOaPaHMauqw4K4FdgZX6BGR3h7LMsy0SrmvgTDlwZAHD9tHIdEc3lu8tki89DtjDjWiVl6HRgjusAAai5P3ZdDWRfsLC6HffCDwJ1CJAwAkXYY1sBgKE4iz6Asi1YJKgpQv9dsFFuJCel77BzgrPy2Fqhr7CwuB9fVsWWG2AOwTSCHfQj0WPnJM5jpyUZvvCjAHdm8moWhvCZIOsI2weQRxhMWwiaTgqRrW75mZD0ByKaP3TI7TgkrLvTiICMBWBf6c8TPO98HslYduMqaIEobIsuaPphRlqloJTtFKTP2I1KlAEYTq5YG4KUB/NLSit//ncXlMBN9ZOduD2uIrrxHlFLzIQnJWoA8GAYU5dOijBKzLJqTKuQKveuAkb1I+u386PjgguRT7J8T5WGAcJ8ixyL9NW1zjqUBKMzZbI2MV87JuiGOCxQDSBYU5FV1TFCOxVzvSpgtm8D9XiNpPKzFrhYXjxvMSXNpIYlC1OvJujH2uwq9NJBlIaEIALH0nRqXCIvSwYDs8wdD8NLSsr4aUWKN+j3p99PtwE90Rd4MIZgCGnHqjsPGBEW2sf5XcSwaT75o99Bp/273tHQMmCijaEHegot2UMkChYWP+/EsrBM8ADDAgC8MfE6gjoXpZbLPHpd4M5C1SCF2n2RtdZt9VpPaDHgvrQWsDYm7RlwyhmBqDzOsYY4MQYtL4CPz0ns5BDVm7V6YKJVorQRL20EYz0nam9k3c6T3ILYrJkzFNbgkIsra1jt31GSkud6VsJs2gvp9mbMnO0GWnJvkRw5+MsNpjy8qy8HPFS/DI8yJ4aGW7DoQgjmmdSwAO3RpnR6DYKlHL5rAETHDRx9EZuDDZ+yDny1Krlkvj7tC/AJUWNQTEygO13Js/P8XgkdsJLG6pTCtnEa0QkdRFEVRFEVRFEVRFEVRFEVRFGWVU7GBPU4PnYr9MZ9f7WhARzljuIOHYBaWRDrIOanOQcjsjbIsIUsIeZBviJUw7awfZilxrn2K2sdjyFAji1DXy0uYvYc/dBg8HB43622udyXMzBTsju2SdZhnKXsoMVaV067Y4XamH9CqfGmXkRJ8LlUxseLGuND83RopAQ3l5TG7IB5LsQkrpDohVtKwIaDmprdiPEfIJDRBqopqD85saggHQsg6at0eQ6St3Noe+JT7x66Z50q5dreD7IKHiAxTN4PvWHhL6Ny1BN/N4Xo2SaFR5aSRqImZuxOAtfBdC5/b9N12edP41I/LIkAeTw0UERoheoapvVSneYYpHezth4CFBdR33nV0aYfuFTA7toFnJlF9/0PgCmkMmbLsHIvsmmEkebXwfmhfUij9lsaKJvzNIZNfqhE4z8E2NJ70DFOJpBwDIr2AcE9sllUpAghykxQynKP9EmAywDsQuimrH7Ex/UiDSXlvMkZkX2LD6lBBQYOhyGSslI2lnLXMmj2wU1NAnoEWFkFLIcu8dlIRxgz0usE2vDRNjRl+vW6T7RqJma3DphKMDAF5BrgMlNXgOkuVOq2DQIZg8ixlDCZJN8qD/EMm15mHNUOWybV6DxqWci1JdiWsITLJ3mcrf49k7BGBiMXcHCQhEaHqzpgkq9Su8ElNjStIep61o82h25uG0Dy9LfU0IvuU5ZjrXgFf1SrDpqxK2tU5FGWVPDff+Vh9F2WEAJnH6pB6HrODnQeGS1KpvzSAHw6WzdtzvSthpidTtaDvF429GgPyQdYkyKmwD5n67CQj2cds59bcGip7KOwnOFYPmpZs3EgT+Jb9UmsPEs8be6x730hBx2PCbzZGmraHqkE4J5X3ZWu88xzGOTeSzRulVT9SvveE/v8o65+5yWfLvjnPZG05Pdl8vw8dSRJfvDSAX1w85l53rnuFSJVGWw6Z/ERmdG4CWjJNBqBQud6mVZHLgyG4qpbttWfNHph+H9nWLUC/B/S6Iukas/bbpzue/JgJ44AjaeoeJY/rcN3UZOmnawcaiceqbqp0xiXl6vhYkFyzLV+CI5AjGX9iZV7Yt8eMfDv0aY/DYaxJ99OWZreQcQSQNVatJTpnI3MTVyE7/1yg0wGHNSxIKtSk+svDLpQi8VVLtScWl8ADqUCPssfJnlsVOiPV8tE3FiVI4/feGJAxYCt781mzZ3Q+DvLdvhKJwJVk2YDQVqHfh9m8UWy735Hvvweik4rCZYjTi2WtTRiVWSfAh/U+meDWCxUvSTUjniJW0zOSzJnPTVLzIMdIvn2PpHIjrw/rfh80QIIEW7TlWKEjqjgM45DeC55FctG0ryVef6wOlII/ry6004pjA3ecCpzjPb/a0YCOcsY4loNi1uwBZTlMtwOughOybi0mY9mkDdJrHqCc4ClrLZJY9l7GNAs6z8CRefjFRfnbuWWl3yPXYffCTk6ApqdgHrRd3q8jgRxu9QIYX2gmabWktx0eN7G3CBqNz9akw1Z6jsSJTBzEkAmqaCYpMFqOJyBqfgIhAFSL3j8TARlgSh7RB5UXijhOChK1HwuSEga+tWEW+SlTe3F01+r4PduY614BMzUFOndb0/Mmy8AdC9/JAA9kw1pkjRwDPgfVHqasgcolOTIAIudHBFP5sEiS72sGCSS2e+/EHlAUeuOkYApDvo+VR37PImh+IBuzYYkPH/jTo97H7u0vAiYnwD/wSCxu7iZ7c3nzniYsKuHFH0ReHDYkgrxhgYYRZ7UvTLq2GCRNki6ZTfdk6mC/nkCw4Kjtnxn5fPLwmlZAJ27KoxN4RO87blA7JA71KNfifLMptWj6l8QFfVzcW9m4h6s79pdAWdfsLC4HOydOWmthN2wAdQrgyAJ4cakJBEb5JACwreBh+3sZNexpLKgTZQHHjqcgK0Fxc1nXYO/F0ck+6XWnPngtqNsRadbUby+8Z+1kTKCWQ9kQ4Bo5C84MpDEPp94baU6PAZsQvCEKGz2uwdExHKWWgEbuxVHTDyQEktKGuuUo4qpeLmlBBklqycvGedbu1aCOsvpgL1r/LIFJkUYCCOG7Hucgj8b5G+XNymETxGAGB+39cXuY614Bs2EGZtsW8EQffqqTnKIIUsLkASaTnETSxyZkhkRiQDcFaw2YuJkXmVPvnGSjcc6Nx/jwvlno99OWVV7J4Rz3HkFiEcyyn0mSTa3xL09CsuC2kypKRZNp/q2c9cxNXAUzOQHzoB3AcNjYWkj2oXsPw999DzgkDZzI/HHj4D3Ss6ltpwAYrWAIAB6WMhfHeWrMScyDIbiu02N+aRCea767c90rJJDT64qztyML39R/Nv4OcHBoj0iZxnk09qaCzMHIwyLa+yTrSrUXe4xr3ogxjV3Hz7BN/Bw8y0ATAlsUXsuOYeoQfE0XGw9A43R2IRkyyi2PjxdxnIzXqQGds4657hUwM9Mw526H2zgJM5CkKY6G4D3s/FD65MwvyBq5rFaUMRw5b+9KYKLX9LUKiX3JftpS322idOn4nBPmfentNvpU6tHT6cDMTCf7Fhvy6RrYoZUIBYhRhPkUMv95apKWY6DGZ4R2mwHyQRqdEOTRg58hrEuAENBBCMgE+TMg2GDst4fwm5ugDVyw20z2+3F5ARf6GzmG8bGNQfgswziVelfH3kAs/jn5rXP46YRB8MfpkcNrvIfOGffcvOlNb8JDH/pQdLtdXHLJJfjkJz951GM//vGPg4iW/fy///f/TuMVK4qiKIqiKIqiKIqiKIqiKIqymogVOsf7Wcuc0Qqd6667Di972cvwpje9CU95ylPw5je/Gbt378bXvvY1PPjBDz7q62666SZMT0+nv7du3Xo6Llc5jcTSzZ35Pph+v3mCWTLj2tJmAJAZuNwiSjWR90maDABQhwydu+5Ffffdx264HNi18flS8hoyhzgz8hOqbqLtkx/JARzJcuDQKBGQKgNfBFkH05R5kodkF4TXmZqlugGxKgApQ4Fz0xQn0Gi2QMxOiEUM3pjQjA1NY/dQGUQulI9WPjShDy0kYxayR5DPaTWQM9RUHWhxzlnHXPcKmC2bgW4HcB40GIZsUwvkGUyvEAlC78GFVMrZI0tih1UtzY6rOjVUpV43SY5QzHC3BDOEVPVYMyo/GJMnYjVZLKmuGab08P/v28eVIZnrXQmzeSPcBdsxOKcHn0tTQ2l2iKa6hoGjfsmN2BYQqnCcZOSkiiKWTB32FBIlY6k1w1ScxieE6sG0hkjZhc2/YwYi1V4SdGMWZI5GfjJkFlHtg2SElNCnTMa2dMSIBBs1GZeeRVbGskqunaVESYVxG5rrXgEASQaVXZAmcQ5c11JhUlfY768faaZsQiNleBZ50qxpbizf4TxVosmJWTJfWWRjUkXa0kDkIGKT4PB6MkbkkcK1UacjlWlFsfzmkg26RuIJSHJQ5CxQMNhkoRqnVR0YMnljQ2aRcg3nNDI/y5gU5+xWBZ0JaxVHIt/kYiWAb2SpiEBOpBKThJy1ST4OnkF1DS7L5bIXirJa8KEK3PtGMhkQu6tCE/Asa2xrMIQ/Mg8fJGIApO9/lG+ZNXtgOl1ppNzvg6f78EW2rPK9DRM1EqbxbyJwZmT+TPNgFqr3abQptHMytlQVMBjKviE2gE97j7j4l/PCmJGmyvA+SDKGa6zdiNQN51lYpANUVgBqxObtFCsjKpsqFCWrn5qMaJ2jz2pm7V7YmWmYbefIevreQ3D3HFxmN1xXx5USX4kbl94tUklFMSoX2rZrAKhqsUVrxEYCvDSAm58fmatmzR6AzMhjNDkBTEyAp3piR5Hx5HUnYwu1Kls4zL9J7tQE+yCA7ahrS/azPKIWkOZpoFVd3Lq/IDs1Uq3TrkqOkseAjHu2+du39vZR5glGmqeDg9IAeHRN7uPawaffiA3qlbMC2Z9uAm+eAQ1r2AN3gw8dbqQOicQmDcEvDXDjwrtO+Nw3Lr07yRuaiZZPLayziUR+GAjVOu0KklBl315/xnGmzazZA7IWptcDdTphj99pJFWJQAjr9qCsHquFZN5GkHkksBXfmfiwgv8rC9U6pqnOkfUzi+lxqMABUjVNUp+xaM7HlMaSOG+b2qcqHvF3MXwR2g+EPUdTESTVOVS19ukklT7kPEyoyEOsLrKERmVExi4+yvpFeWCo2MJoD50Hjte//vV43vOeh+c///kAgDe84Q248cYbcc011+Dqq68+6uvOOeccbNiw4TRdpXKmmJt8NuymjTIh9LriEIoBFSAs4oLDN7NwPSuTgov9NEKApHSgspaBvXbNZuw40NQkeKoP7uTwRSaTaNDHTP1v4truKNq+3BrQfR43fEhOXDYEbwHKmiALYs+REMxZds6REnTIxEXN31yE0kJqHOG+Y+BzAEQwlfQdMZWHcVJGCmaZzDIk+asoxRYXn6L9C8TeJcpZRpbJ5nG+Bg9L8NJScjCYXg/U68qmLmnmG3GABN3p5LANUl/cKcDdrLFhE1Z4LdkGYpY+OiFYiaBjG23bDj2y+RI0KHHD8YI53StAkxPgzTMYbu6imjTwVjR4YxCDLZJ8C7kmhhQlDcX2qOlPRUg63+3zxKgqGwNn0dgzNxraIt0UHFhtKUSgFViS17C1soltB4uT5J18xmZYA64A1TWozJrNYlyYx8VK/P/RxhCQRT3/tb2oUe4bRwsU3Dh4D3bm+6Q/U9jIwFpwWS7Tzd7vrhM7s0GOKEkEeul1FR2qQeJvmaRgHpakLkiOsE+BHfJRh5BFhs25loRaSx5mfC62YfeXpIraNsHJHsiakBjhU1CHg5Z2OjaahjHggoJOfkuqIkhjELycK753lJyzrc8ibDDJGCAPwVoT5C2iHGII6KAsgSKHWVLpNWV1sd9fj535vvA9z5rvr6HGGRqdo9EOnEtSZKYognZ/lCRrzT/hb8oluNkeL5LtE8SeuJljk51Gpy+s9KghBHvLAaqlL0aUUwTEyWSCzUWpmTDejUhJjjljkkQUEBI5wvt6kp5e7d6fluC7MteaQdmMeYDINBojCRlFLu9b14BxEmiCA3uDEWkn5axg1uyB3bABcA52ekrmmrvvAQ+Hy6SWTkXQn52TYGZbpjd+71v9WpOUKJDm1di/Y9buTeeL64f2/WTnbAW6xUhQVPbSXiTNUw+dlix4m7BuTg5Ta1OgFIjrZ4RACsMYgjcAZSKTRqlnCEBVjdSnMt7biOwiJ+ezzOW2SfK0JuzxDVxH9jFUi1y68UhOXBi09gvceKXjOiImegFNALhq9dVS1iVzE1eJpOjmjTKPHbgLfnHxpAI2J0JKujIGKHIJ4lgzOgcCICZwDMCExCnKM5AhmevjcW2bjvN27NVq7WgAuCXfSNbIPMmSCMXEktTJQQK1vRmOZtLqF91cQAighkCPqUQnLfnSIGODyK+h1atKErRgG98d+xhsATgX34BIu8k+gMMQR07WG7b0I32rU49dADEpmo20P4CXft6uMNIjGACrkuJpxTPBj/d4W+GYtcwZC+iUZYnPf/7zeOUrXzny+M6dO/GZz3zmmK99/OMfj8FggIsuugivfvWr8WM/9mNHPXY4HGI4bDLADh8+fP8uXHlAmbV7RXuzyEV7s9ORhutFFnTuqVlAZWERlZmRIAeI4GwrGxiAvbuE/+6tJ9dcOMukP0hmmmAOtaLtrUS9ce3FqPcpf4TMXQ49WSlWurA4dTIJ6hiQ6GabEIWREzdz29FiKCFzAUCTyRArcWIjt/DDYAkscWgmH/sBYGyijOelkXkeAOAzeZLPsGKj2vbp5cb5vzjm87NmjwR22o3JgZGNH4pCFpBFITYdN2Bhs+jz5Vk5QJNhl5oaeqnKsYsVzG334MPffePxb4BE7ztWrsVgzrLDxKcr/a5IAp7kwzWE5yWQ1b63aJ4UgkGcbFCuP1TnAKCMUxB1pfdvw8CIg5pavq4UVGYGyKDudAAAZuBglqom269dqeh55HwrblTpzLbWU7t+YLkvVR4nmuW7M9/X9LGJ360q7FyIgMyGjN5WcCfAeR6qViVQYuaXgMML4FANlI6LTpZWL4nYu2NZFVokOFLhIL2kxoOW3GjrJ83tjlQTpEasIdsWCI7Z6ECuW06feFrnxKkb+2fEMa49Fo5lRUqQq9VkOlXrGKDfB7EHhcbzc90rjqmXvlpR217HWNs0Ug9NkpNDOMtSEBdEUp2zuCi23SIGdtL4tEI1CnkPqrgJ7tjYW5JTQ2OYECB2CLYPmdARJvYwZyL2BQGaeTCck9p9QaIzOzl6+diC5dGGQ8U7g0I1rox9xAy2BDclfQXs/BC0MAgLjzCI1MHBHJvSA8nhTYZWVbWe2vUDz+n+f83OhSBo45wlMqm3XUw4oDwX+wbA5SL8/IJ8h0OANlXdHav303gVSszSN2H9bVvTeitYM77vjv0w2utrqtuL5vArJlTFfhku7IPLavkaYvzawjoG1oKLDL6bJ4dy7N3BWaPGgdLDVBBvWx2Cz+ObeYMmkGRCUkjcHFjdZ69n5iauApyDv/ue07Km2++uw87icvnKFTkoTmRZSAKMVe9F3gRgWHpi+fZ8PZ58gXZyB4PZh+Svse9vqggKdtWeV4HG9sbsjoM/KlboICZQxqBu6zlqJWWCSba07X10ewsc1/wGaf3QnIuk540hGRas+OrChcu5QoV+Wtozwp47+NWCn2HZtuQ4e3/l1OJh4I/jszze86udM3b1d911F5xz2LZt28jj27Ztw2233bbia3bs2IG3vOUteP/734+//uu/xiMf+Uj8xE/8BP7pn/7pqO9z9dVXY2ZmJv2cf/75p/Q+FEU5M6htK8r6Q+1aUdYnatuKsv5Qu1aU9YnatqIoax3HdEI/a5kzm4oLNFHaALcjt2M88pGPxCMf+cj096WXXorvfve7+KM/+iP8yI/8yIqvedWrXoWXv/zl6e/Dhw/rhLQKmTV7QFkOO9EX3c0sGy3XDNlzvsikj8yYLmWsJEklk1lTHs5EyLOWdv2JkllwLhnFIsMk5aEgkySSUn+cVnQeCMmASacfAEF6dcRrNATfaTILQASXAwAtl33yHCoEotxUuL6YoB+uI2YGGCdVOG25SPIMO4zvJY+ZiqVfT6s0NZ5XMpfkuuAZ5HxTHWCQSszPJGrbq4uoqWsnJyWjrw6yKjHzvJ2py9IXAgC4Y0OvHLO8Midk2hkXKtrCd5NqBlUeVNbgpaXjXtus3QvT64pNGtG4jgm7sQ8OBTWmZFeG5E9u7DHSrtiJMoQUrjGNP4RmDLLRvhHkFZpKo5VkFQE0Ei4xK7dmsBnLXmIGxQtuSdBILyMCnAEXaCoCat+SwcGojniQwGLTbmxy+lG7fmB5IDN9YyVPrNShbkcqdpwXuTFHIrcQ57BY1RKlS3KbsnLNoFx2/tgzJ2bhwzea101fnkzGHe+lssf5pv9FFiZXO1rhE6WgyEuvKjiTxoIRqReKlbCSacuEpsImZPqKbAql3h0jEocxc3+cWHVU160qgVDtELJ2k8xNkQPeJ+mLcdm71Yza9jqlLWNM1GTyB+klkV9tZNNo3AaCHUo2v22qT0Z61QQJppBBT7GXRmZGpZipuY6RSvmcZE6kMGMyy/jh7YgcTLLPKA8bj61bf1uRUUEd79dLxbqVaiBGa75NlXuxN4aMdRS1oWLlX6wCcgiVTGLn7Xx+IkpyVrGnAQC8/9633cf/cacGtev1h0gnBltIMufUqP1FqbU8lzmJCFRV8rq2fEU6HwCmZbbNrWpdakuORXswlOwJgMgkeQa3riP++KyROzM1N+ePh3qk6hdRdpN+W+lyY987oFknpznYNHuZ2DfIMah2MCxrGgqyaz5cJ0h64prSga2R8cpQGMei/YeKvWDry9blY1VIpxu17QeWUy2rdkKwDxV4VuaycZ9r6zseq+/IGNmztyvjvRG7BsS27V6YPBsdG/JQ+eN88ztW7dgwb6fe1O1rHK+Ukx9qqWNE247786i6wQYwLvgP4vHAqP8snjZV9oa/HcM6BjkCgnwimGFq6dHlo/RaVNnh4CMgwOcytphY9RcUhKIUrHEs072llpykcjpQybUHkC1btsBau6wa54477lhWtXMsnvSkJ+Ev//Ivj/p8p9NBJ0jRKKuLuYmrkt623bRR5Ec6hcgy5Vmjsd+WK4kBHEuh8WBokGZFGzc5ZhigitE9sABzxz3gpcF9L2dtBUzSQxw2dJA+H1R56YnWsak5enJKR93PFOxpBXLQOK3T+7SdywBigzZEXackO9VcX9QKjj1vomSUCQ3jTSVBGQCiD5oZaQjfNWnxa8rlnuUkY5OuITzu/MqaxqcRte3Vx35/vZRzh8boyLJmYRgWd3EDlzSy04ZshROO1SlHOTEzrIA778GH7/yz415TbNRIrY2ZLLTETowjeDBMjSTdGAOothJ7cjmNSZw11xsbNJKhoAMs15wWj+P3RWL8IiVDywK0clKMloWzOHPINaXhpvbh9SGIFIKsnIeNpgvjkm9slTMDeCMbRpLePMs+5zNcCq52vfZhz0BZNXJLxsjGyjayBs2cjsahU9awiyWwsAQ4By6r5GzlpHfPSbqJ8pa+v5WAjYwvWfiOkxhzlHpC817iTGlJmwGA8xKEIQeqbZB5bd1YcLI08otxUufGMZuuh8CwAKT/FQYAvFtho0pNrwzPMibGzyzLglOr2QDHfgU8HN6nhtdnErXt9cWs3Stza56JHGCUVLUW5G0zV7KMB1gagOo6NXmmXHrusQ/yLcHJS5nBznyfOIdiMkh7H8BhLIlm5CF9q4AUROHcpkbr0ovPAGSDI8aDqkx6zZWV2F6UdqxbsjLjcmzGjAZkrWmuK0KUkjA4gziGTAz0Qib2+BtBQjoI9FMZxgBXNwHpIHmVlgnMYOeT43xcku5MoHa9/oiBQ4q9sHJx0I5IKROJDSwNgLKS11gDERAHYr+s1HsPEiQase2wHk+BjbjOjkmFrQVpdIxy7MFnQuKVbWSUEdbinFFrT8ythEwJuIZdOqIkIyPMuR35TcNKxgQfEi1aSSEi99706yFioPIgR6Daw1gDXxj4cE3ctUlyOX12JgSX2j34gEZ+zbSOPYOoba8/2LmmN2Rr7Zz+BtJcjMEQqIJtR+liJpFTNa1jmSS4E2SBo73EORjGNGtyIAV3CADXAGWQ5GkbkqiDb4CYpadPMN8oqyaJlGj51Rq/WbvPbnwO3GorEJMpgeSIS8/FtgWWmmRqx8mnNmLXfZt8Zyn5OgZtiVLC90hWBsb+rZwWarYw7Sz3FY85iYT/U0hZlrj55pvxsIc9DFl238MyZ0xyrSgKXHLJJdi/f//I4/v378eTn/zkEz7PF7/4RezYseNUX56iKIqiKIqiKIqiKIqiKIqiKGsEz02VztF/Tu81LS4u4nnPex76/T4uvvhi3HLLLQCAl770pfj93//9kz7fGZVce/nLX44rr7wST3ziE3HppZfiLW95C2655Ra88IUvBCClnrfeeive9S4pSXzDG96ACy64ABdffDHKssRf/uVf4v3vfz/e//73n8nbUE6AJHnUyrA101OStd8ppAzTO/kbAKyB7+ShMaIZyeJFrI7JCK4TZdcAX8QmimKVnXudZAMOh+DhELN2L4CQvXMCMiV8z0HY2sFvmgSQiSxUHsrEW83iAKl64fB3tuQlig8AjFT6ja5JVTimauSZfNFk/6es/CivFs5BnqWEtOaUWeBD2SbFilKCSFaFxH8bMoIkS4Bhhw5mfgC6d15ev2UDhtv6IgfVMci8kxLSNjHzvy1P5TlVACjKUTEGiJldsfGh800z0SJkn/tQSeKoybjLTdP4MEoZcaiGYwYWl+Duvfe4l5Cqc2KzcUgWbP/WJeTzBQabM2lyaAg+R6p+ixk9daeRMswWndh1TGTybftCyOqRip9oGz5KryHeC5ps/qyVwdPK7Od2mkWyfcnEjRVAKRPJM8ywhlmqpKmyZ/BUD9XGXqhCykDOww6dZC7HzEAPuYZWdjFVDqjPfOWdsnaZtXtDpZoYiV8agMpKpNeKHCgKkVTlkLkXM/HCb5EEjHO8B2UZmH2TyeecNDxP8ko0Ks06GILyHNzJRAKpMI2kQrSrtnRiXE+4VuYgILKIlUsZhcvkRUMWPgC0pdaS5Fq052BfzAB6HVDtIKWAPqx5fDoHnAeXZapEoiBRBc/gsgSYYfp9YGZKqu6K4hT8H1OU+85+dx2AILE4nlmYZUiySVkWKk9cepqKQr7/1komfNQ9SlmtzVoezoHunQf1uvBTXRkvYrYwZD1OPlagN6U7pnIhozdU6sS1c26l4pWkqpaGLWmpEZm1GlxVja1GqaVWlQLF6vUoG2lMU3jLVmy1cjDzVVNxEyoXEJtMT/ThNk2AMiPSNpWVqof4OQAiYxfXHuEzFNmp5jNVlFNF3B/vLC6X6ru4hs7zUJlmwJl8v1E7sVsmseuW3TJCBUuwa2onSTsHuucwbK8LP90T27HU7DnbsonMI1XrsVKnLdOcfACBbMmHSnYkefZ0ntrL2iBoORExOBbnZTK+UG5lXRwrfFsN3sWGAXJ1kJEMT3iAnJPXEcFNd1Fu7MLnAHmCKV1rvY9WRU7YeEQJuLgu8Wrfyqkl2vbc5LNlPiMK1Wexak4qR6n2QFWl16V5z3uZf2PlKoC4wCZj0tyJ+UVQtwPud4DcgOPmtq0aEefxkYp9YES1I1TpEAMcHFwUJdUA+DzatyhthEI88S2EChu5uHC6oPKDIKseSVU6wU/XSKMDdqmGHdQwiyVAhGpjD0vndOBygrcGpmbQUrivMG6l95FBMKxT4p7+zFSDnK14NvAjzpWVjzmdvOpVr8K//du/4eMf/zh27dqVHv/Jn/xJ/OZv/iZe+cpXntT5zmhAZ+/evbj77rvx27/92zhw4AAe85jH4EMf+hAe8pCHAAAOHDiQIlaAlCX9yq/8Cm699Vb0ej1cfPHF+OAHP4if+qmfOlO3oJwg0amaJBmIgF4P6BbgIms0rKODxVrprVEETX3TOFBiyaXPSUofC3ncZ8EhHCYC1zXwvQ5stwsik5xMXC7X5l8JXhpIH4C6Dz8lfT58TiOOWQ4zRLvHB6L8WerPETeXHF7PYaLhZjFqKPS/8SNOXmKgc9cQ2V3zo3IQWQbuFag3TaDuZ+Bi1OFEFY84nF3fwnUN8sIiA0DzSyAvUmwe8llS3ciyyeccN7lBm9QgaIaHA9ol5MpZT5JfsVa+q8xIMipJ7qz1PU2LKjQBmxoyKzlxwpILARzPMJUHwnEAMK7RvSLR7uMPEejIEmzt0xgxnGmCR7IKC44fQrDJILMfSq2jfGLU0k0Ltyz8uwq3Sc2YFBefbQWJbNEjXxJ7NpUHBdvnsKEdbsylF1aQYTRRGrGSk6T+YVb0y+2gAgaLoEEGO8jB1sB3lpcYMxFQiK5xdD5JazADyhy4POOt9ZQ1yn53nTiARvrf+TTnpo1jklwLskNEab7hwoJ8B6gMYOoQVHHguk5a8+FkafNJQWq1SfhA6m3D7U1nkFeJxzFoVEKpfY7wN8exK563Pew4BjnX0r0PG7pBCQyH8rrMNlriAHiiI8fHPj9B7onZt66fRW4u9hkrSwnoFkXQMR8LQCnKGSTJfmW2kSWzRvpR5Jk4flOQM0ivROm1EKwdgUbtkutaxo7agRzDdSxSr0cgyKHYZu2NkIhkuZFucTzaQjP0sWBkQTZJHLZJpu3wgqx34zU4BwyHYoe5yMtRpxAZqk4BKnK4yS6QUZJdFsdxWN9YkxJY0vhShiCPNaG3hgX6BrTAY+OZOMTJS1CHOgV4fiF9bk+fuer+/i9UlGXMmj0wnW7T/zKzQT45E0nD3IYkoC6AMAeGtX+SVWwHZoGRBAwuKxkXrAHVHfjJPPXGFVlyShLDANJ+INq9t43DlFrp1Y2ckuwjfMckP4EZetihl2RIH85be5j5AXBkQV6XWaDXbYLQxjRyruNBX8QldJCRzgHUITmlqpMUK1uCcV4cvys5c0kS2VATiOvGu7wKJBWVdUpdA+g0c21saxBt23hQtyN7cyMbWWZZe5IxTZJD67XyzyZwE3vncNhzApAela25Ob7e51Z8YnE+bBODM0YSpNrBnLjPtiVSf8vYb6e4ewB712HxRdiwHunkSZK1mi7EV2hbASRgpEeu7xB8kcMXFrkHzNJQjmExU9c1oEUfeuI2yZkxOMUkEpAxuAwve37l9OFBWGGlueyY08nf/M3f4LrrrsOTnvQkmScDF110Eb71rW+d9PnOuOfmRS96EV70ohet+Nw73/nOkb9/7dd+Db/2a792Gq5KURRFURRFURRFURRFURRFUZS1QuVDX8fjHHM6ufPOO3HOOecse3xhYWEkwHOinPGAjrK22JnvG5Erm7V7JSs333fUBr27pp8DM9FP2WwxY5V7BXwnF5mCjJqyaidZdpyFhqEhY8d1GskyDhnwiSCLxBSaHXrJ3qmnCtjpSWnQvGDBw1Ker2rsLC6X7OGWDERbho2yDChy+G4G1w2ZA+F9JUMgZts1ibvcNsKYLRgrDGoATKHZGkJFgFT3cLh+qnm0JB0h22g4BB+ebyofsgxU5MhLBzvZQT3TRT2RhVJtjJSmE4cMSkMoN+QoZzYgn59ENZnBZwRTc6tKaPS9G2k5pMoCbei2/thZXA4yBF+Wx5UiXIlZsweU5aAiNE21JkgzxAzdVlYbIHJGuTT19blk44zKKSBIrXnYQZ0y4KmsRcrAM0z32I06Y8UQYtVQOrcPUkto2ShGvtccpRBA8JLIizqPFy8vM3Wr5FzUJkJmrlQdSIUOJPPONHIR5EIJtiWYoYOdH0imf+2SpAPnFuS68LlFNWVR9w3qwsBUDJNLpQ6FCjliwBUGpp8jW+jDdZtp3WcGpvaS8ZQyoTCSGRXHDJFsNPDUlNgrytGYNXtWHCtSZm4cC0JT71SZWzvABjkzbmXtBWkk7uRNxjxRkGMKciRAs9A1pqnOCRIwMLFCAOBYCQA00mbt17YqfkcybmPi3HizcyBUCBFgQm2ugci/mpCqF6QWyJDIzdS13HvtAO7IeOjDeQoLwIJqaRRNQCM/FbOCQ9YjdUKW5ERf7jGMaXH9pSink53F5QDC99xa2Il+anAOoiCl1iplMwCTAXVDhX6oMouz5bJqs2jX4d+SIZ+lLHnOmqxealfthuOZ0UittcYXAtKcD8j6lixJ9nCUfozybaECkAAgEwlErmtgMATHZumI63uRijSWwD4HOhl8YaWyPd5kv5B5Pso0E4EmuoD3cNM9+I6F9Qx24bmsVekMSNVeLDFq36/8j9B1uXK/SRU5QSLZzsw0EoP5yu4izgzQyUC+CDKCBNR1IxF4LNu2JuwRxA/gMxpR4wAwsm71uVTVcHtubhf/DPzIXiJVzgclDKm8b53bNGtxWZvU4MUlebuJvsjBhzUMk4wTnLeax7eqdjmsR9gSuEfAZAFTM8rpHL4QmXV5TzT77LYdx2of7+WcLlbsaia/8gATZROT7JkBmVCdXuRSUVbLOpzShrFFlFQfWZub4OvLgjyjSfZCFCrtw3wr/gE01bGpygVgH+ZQQpAz5KRSCIR/BEWc+NtnYdxgCutsgA8dkVPmmSjvZBnQyQHHsF2LaqZA1W/Jmjo0yhrB71h3DaopC7vURTlj4TOCLUMLAh/8j2MVifHxdO+p+v+U/h9UjoOH9Mk53jGnkx/8wR/EBz/4QfziL/4igGZv++d//ue49NJLT/p8GtBRTorxoE10JhwrmEPTU0GKwYrEWi49NFwvSxq4sXQ6ypRFnygQBtMks2aCRiWSI9ZUzQRQ9wiukEG9nCIAOchNIr93IJJC+RAoS2BYgpwDez9S/jzXvQK+qkGGYDdtBE9PoJruBOmj1o3FycWQyEARweXLBwN5jWnupdVvA60ST1P6MCGNlWwCcB0rAbEskwVzWHCCGVhYhAFgujkwkTXSURmJvm9yIrNcpyFwTihn8kaizgDGyWX63CZnt0jdjS6o0/sq6wp2Dh8p77tj0PR6IxIkSY83BHPSJghIDlMa1KJf70XOUB5sgrrkghTZ0ImsUSrX9hLQ7HSws7gcHynfO3Its2aPnMpasc9wXooOJytOITeRoe6PyraNBEK92AZbJB3vFNANwZpUFk4iyyYSaC05NhNLtylp8QKcNnTUtiXnUo8Bqh3yysH3C3DWg+sYMDHqLsHUEkwyNvSz8hJcdjngut3wxu2bWi5NN9JTJBweFbD4NGepKGuLGLw1na5ocId+EOxcI70EpGAn5VnTTyP+1MEhWtciw2oM2DG4a+Apg2GWaZNIvr8xUcO2pVzM6EYys+LwLSy43c9jZCMVr883UkzcDm5S05cjSklYSokiy/YDRKlnB9sQdK49wKFfECAOq7oGhnKN5IN0DRmRaCGX5J6QWVDuGkduDETHgJQx4uAJzmZTFBrUUU4Js2YPQAYmOm5JvmvseSTpyeSZJFMUuaxJx7X047FVLfJDkGNE5sTLnF+a1JeG2kGXyLgTOM9FZribS2/NSJIlQxO8bck3tmlLOaVgjGeQM7J/qA1QtwIm4T3Tmpw9qKpTXy+yFjwYgl2w37oGDcJYlRmItiPAuYGPcjSeR+Z8Du/FmUlrdFPWTUApzxtZxtCzA2iC5snZq05f5QQ5WiJGSsoKDk8UeTP/WCPjgQ+y30RJ0tQXGcgYGCLQoJUMRE6kj8aXk3G+DomJyDNwvwPXz5Pdp4QroNmfU5AYjsHcGACJx8XfSfo8bFkp7K9rCj0nG8d1Opcj+F4O0+s2Dlnmxsmdh36+uYXr57IeaF3jMnm44AB2zOCcgp+CU49anxvZC6TxgJt7UilV5QEmyiJTpxPW4UH+N/ZvtNLvhrsx0QEyt8XkhXHaa3sgJGGE9XhXkqJTsrUJ81hI/CAiwIcErNDnNe6b03wNpPnPgODBoHCcqTGycee4DzfSY2u4qYAZTsFYk3xmYJbeQOxleDI9wHFo4wAZO2yQcIvJjkE+zVmCtzZco+y/7dDDlC3bbgd0agYRw2cm9aAGWkEr5bTAJyC5xqc5oHP11Vdj165d+NrXvoa6rvHGN74RX/3qV/HZz34Wn/jEJ076fKe3A5CiKIqiKIqiKIqiKIqiKIqiKMopxjOd0M/p5MlPfjI+85nPYHFxEQ972MPwkY98BNu2bcNnP/tZXHLJJSd9Pq3QUR4w5npXwmyYbmQYQsNR3y/gc4O6H5oEBwmFVBINStU3EakkoRThTpH7UA7pC0pZ8j4LWfIWqPsE4g7qqRydu3KYxQK0VIKWBkBZNtk4IQuH5xdgskpKzKcm4SalOidm3Ig0E49WnIaqbRBGmr5ziOrHZoxAyNCPCUbhMbvkpRIhROw5ZATDhIh/x2L4oGnYQQ27WIH6PVBVS4ZBUYA7UgVRd0LGsWMYZkmCQpNFACBIxsj92nCNUjnAIg9hAOaQfRQTMcK9c0rqD5kUyrrhVGR4U6eQjLtOkZqVpyaibQyaJuJhAjWOR9MLWs3HOVaNhaxV7uaAy0B5Blvk2LXx+fALiyFz3UiWYbRDGxqwBzmEKAHnJ7uoJmyqquNmOGmaLaYqm6YKZ6Qyp5W1E+2IjSwciOUesgFL9RuzyEmECh9iiL1u6SIvLOxiJZIwtU+Zh2yl+o+8ZP/7XGywXS1IDk1VI6SiQd6b0xjqLcFndqRqJ5aRt8csE8ZX7zRDUFnOXPcKqQrp9ZKUYSM7IjKGXIUu4uybhsLWNr+BkP1KqUqlLbFCjuELK1m5RtLvyJpGrs05yegHmnVFnL9T02YrWYWuXenayoANSCYvNdVqJI1emcO5U6VO+A2SyleEeZSiPbcyCtmAjAdlBpRb0FIp83QdrjVUG7GR6hzuWGkQa1x6f2QhC7puVSXGBrRVBYQkaMozAF3YPJPK4vsol6mcvcx1r5Bq1zyH3bChqaoLtsoc1qWtKrxoa5S1Ku/kYPkdxwUgrfujnfpODuMhki6xYXKsPonHx6q7+P2P1b5FLnKMsfFyrGgP1Tnk4rzZfjzMc4bgo6xLa3qLa1+qWdbgmci6whO4kzXrkFjhV3hgoi/XXoV9AuR+UOTgIjZbtkEiOuxpsrAu8JDsZA7ncwzyHtlgEDKkg/Rquzov/tu5Uamq3IOZAV+fyq+Esk7Zme+TytpeD3MTV6Wqs1hVS1nezOtRwjRKosVs8jwP30eT1vXEDN/LxCaMAQ3b1TxutOokZvHHLP88A3pd+F4uVXUpGx/NPju8nhH2sR7L9tnt3xReH/ewsZLGDF2q4mNj4Aszch7fK8DbN8IsllJptDSQ57MMnGcyX2cWdVfssr2vbt4YqZo/+irskVqux4X9S6wepLDnqdGsPcK+P+1FamClCntFua9EWUUKUmgJ09g02uvxTqiYt2Ef3lbLSHYdxgrnm/nbGKmWL7L0nWc0le4jVSwubJgp+AwQq2yS00mOY4Adh8r9IHHmGcWR4CvLCHVX1hpxj15OW9TdSXQPdpDNVzATXZFtZ5GU414OziyiRHqjqtH6HdcWFJbqjkELYVwJrRKiipCMVc3nR+E62z5MOZlW6JxO6hPooVOfRnWSqqrwcz/3c3jNa16Dv/iLvzgl59SAjnLC7Mz3AWSkh85xHMCzdi9MrwuuqsYBU4g+vutm4CzIqzmGR+OsjCXQ5Fv+x7GBTwI2JOWRUe+SJYADCs5NJtmHZcD8DgPAoNgygYnbOugemAeVpUw63Q54wxR86DthD/ZAh0VrE9aCPCNbqMFWFoDLevcYSlIKcXEYAznRERQXpfkRJ/0sohM1PG6HDmZ+kN7TF1nqK8RZ0Bi1hGoyRzWVp01qNnBwhfQYqnsGdd/ADoOcU3gPqmVRTFG7O+l+I11rdKhxTqEHiDzRDl5FKTcOPikpfdeF5nog9Zphf1TpxONB0YkT5ZTqGnAe1O2InnS7MZSYo0gapYWTbwUQg5O1tVkSWaNGgxcWQG5Fu3t6EnYwhL/tziaoU+SgyYnkBE7yDploYHMIfGQDMQTXCrrGDdmI84cau472H8eZfKmRiPN5CMSEYIodMvJ5B84IS5uaz0B0ekUekmdymH4Gcl0Zv4IsQ5SirKYsygnTSDwEJ5PPpPw8bP1kYdkOgoeeX1H/d7znWLqvME5ZA1DF8Cq5pqwAOwcOQYOdxeUwvW7j/LFG5EOsFWcNB41sZnBZJudQcgKnHlum0c2OveZKB84sfIdAhYUZVLKni9Ir1oocTFxXRKmI+Hd0lPIKG6cV5EyIuSm1Z7FjDgGqKPU2IlHYkoVhkjmToxSsZxgisDcpqAPXTRJKHCTaRIbSwGdG5v94XkuACz2/siC9FqSplpGJ1A06hWiClyXmJq4ClyU49Bjjql4mSakogDh27MyM2KQ10h+mciKB2CnSd1/6w/jGzhDme2aZ56OUaXQAAylQGzXyASQ5MWQGDAlQ0rCWOZtZJFryrDlHFdYR1MikAuIYjcHYNvH5kR4ZrWBOu+9GXA9Hm03zZnQ+t3pjpJ5c8TkDgDJgoitOnNwmh4/vZPCFQd21cF0DWzFoyCNrmRSAqr04lmovQZwY4AprGACN7Jvz4iCPY0GRJ+krshaGCqC8H18GZd3DnkGmFawl+YKvlL7DdR3m4wzIw9o59MSIsqSpL4STOdsXGdABqMhgjAEtDRuPaGaBTqcJoETbzrK01jeVJIGkfrrxWlqyySMBn9baVR5j2KGMJSKlGJOaJCBNQwezOJRDOxmoW8B37UifXmQEn3dBkx2Qn0hJIb5rwdbAda30wylZ1tuuWVvENUJK/6ilB+hIT+DgP3CFSX07TeVhDIm0ZS7JksZ7katjCRQryqkiJv3sLC6H6XZEdi30tRbZ36yZs5lBlReZU0Ow3kuws3YyT2UZuMhT8hPVvrVOb9bj5PxIkiaARtK4ta5OgQ9rlgVz7NA3QVMre+P4tKkYdqlGNVPA5U3ANSVh5sBgUw5szGHLrvgeaxknfEd6d9U9A28lYGPqIJHo2v4zyFjnJPkDIRkkJXdCxhDfMclvYGoGVyHAlBuw99KDMwaclNOGPwHJtdPZQyfPc3zgAx/Aa17zmlN2TvXIKoqiKIqiKIqiKIqiKIqiKIqyplmNkmvPeMYz8Dd/8zen7HxaoaOcMKbXk2wR51dsRt4mVvDsmn6ORP4n+vBTXfjCIjYQZCMNxFJVTshYYWoajMfHpPE3UmaOpM3GPySRxQXZtZRZH20zhC3LaYLr5mCaRJcIZlgBh+fhiwyDc3ro3DWUrIKpSWAwBMoS9vYa1hpwr4Cb7KYy7ZghwFGyITY7D1m7kqXvQR4wtUd2pIS5d6GRUqnr0Qxj71ODSNvpgHuFVOrkkt3jrGQG+dzAFVLR5ILcA4UMQxOkWDhcF0Jj6dQc0vOyMnHOm+wk1zVwRUgxYskusAPJMDKhaoB8yDYcz45S1ixkrZRfE2GuewVuHLznpF6/a/o5kuUTs/WjtFCvK+XWxqQGqgCa7B8AZFpZ9K2MegJSxU+yp2jQPmbVA0wZqMNAt4CpavBgIBnHAHjDNNyGHuzhJdCRRckAtkaybJYq9L7n4HMLN5GhnM7gOtQqC2ySC9uyarFk2pYMW3oUB0vYhVIyk9pZ9O3sYcfgfgH4HsrpkGlMDF8QXCgZNzUAFnlGl6Np7EhIki/wBAInuTU2BLZhwARL4+XWZ5wyh1KTyPgkktRMGk8ZIE9S0MSa56GMMmv2pH/Pda+Qpuh5lrJ9AUjVXMpuD9IMoTqOqwrkjGQJOw9wLnKhMbPfQOy+9pLtR2JwnBm4iUIyeJ2XTMKqAncKcL8ADSvJco8VA04qayhW+QGjaUutKlV5Tt6LHAcZCN+MP1Fqqm3L1qQMZRgTKgeDeRYh89lyek9qZfFWE9lohjFkjvUZgU0mGYO1BXkPdhmorkGlaz7HzI5ee5TDCfdOtQMNh+Aj8/BLS/BLSyrBpqzIrNkDOznZyKRyqK6bnJC/I75VhYNQSRvlT+O/41rWhArazDbypjZIFzI3VbhxTi+yRhIJAJwHZxbcy8WunQGKIr0PlQ5ULokN5layhm2rmsa27JSRmhFzZmB8qCzykslLZS2VMbHxeZy7gwwVnE/ZysjsaDaxMfK3lfHJdzK4jm3kVoyswe3Ai5RsC/IrVOek6qdQhRPlqbs5fK8jWf+OQYMSdGgBKCvw0gA8HMq4EOVuFGUFZs0emKKAneg3NukZ1K5qHZdNdCLFJvu98N3MWvbcqlgl5wCHIIMUbLtfhLHCN+fLLPxEB2ZQyhog2DaVFWxZiV11MviJTiPRZABCW44djfxRlGRC2AM7j/yuhUbmrT3XGwLKSiRLjQEtEGy/B5ruwQfJcp/J3t6HSiBvaXRMCdiBl+z9VoNzkWxmkVMERirlRUYK8h65gesa1B3ZZ5NjZEOD/HAFUzuYhTpUObjWfaptK8cnKm1wXZ3Quo/rClzJ+pHi/JFki5uqWmIn+21LYr8AaACpUvUeyAx8LwcNnVS0ZTbN6eQYtFgm6XXO7ej3Of7TI0kNwgFsWvKKzMgWa1DlRmTa2lLJYE5Vt3aQodyQw1uxQ58RfAbUXfnts0wqbgkjkuXEUU6tWbeTF8l0qbZjmDpIB7Vk0ZMvMDeoegZ1X/bt5AFbMbJFD1OhkXUN0ovK6eVEAjanO6Bz4YUX4nd+53fwmc98BpdccgkmJiZGnn/pS196UufTgI5ywtxw+B0nrdXOzoG6HfiJLtxEIQuz2sM6RjWdtySNljsckxQCjy6Q4nO2DD0fwoAdB+nY20K0tAGqEYJHUkF+7yNyFNtmsOEbS8gOHoK9+Xvof9OJUzvLmkUvIJvVikGDIbLDC+IUziw4l4Wn72Ww80OYI9KTB4Nhsyg2ptEYH3NYJ018ZlnYtiRkuAhO37BhZCOvN47AhmFqWSCamsNk1ExIQAiIZdIPh4z0xvDwMEac2W0FGm71L7ADD1OGJ2n0mCi9FvvswEO0f5U1TwzM3pdgztzks2GmJhtpkBjQiVJK7Y1iexEzpjUbF2Tj8kgcNo8jwcN2O5gYz+hkQLYZNKyAwwvg+QXQ3QeR3Xu4kYIJEjDEDBpW4JJgLcEuGuT3UNDIFmlF18uQLdbI7l1qJFHS+5sg2cZBImXUaRP7AMRAFvcycfCUHsU8wRXywyHY4jORXgMBLif4vBXA9jJ+Jbk1YGR88xTskVvvjfD8+HjatntCCqTH510HoJrgTvOiRlndzPWuhOl0RTItzGkxADwyt0Wnrpcvb4gTjva9cS44Z/zofBg2dDG4AnCzqSSCmyrgezns/EAcootLoCMLjV53lHgCxKkS5GVGtPuB4LwNtuxH7ZaA5edr9+gZ+3fq+8Mh4YG8OGw6wdnbsj8QUPUNTCXHxt/E3EieGgZlBHIm9BBC+DxtMza29bfLMkhbuuYxY0C9Loy14LIUmVxA+iSwx/vvfdv9+zIo6wK7YQOo10XqLxeDg+2+VBzssG0T3o1+B+N30jvA+KbHRptl/fG8BFyNBG+4m8EsVYArQQuLoCOt94zXFF4n53PiBF4IMsXhHvx0T4IeS2UjVRivsd3Lp92TIjqc29dsLFCE4CmFfleFSLUCSH04mnMER09Yg7f3NO11dOoHEpxUUWKRjRFneMayQfEeqGvQQD7SNA56yD6BWSSjnWtJ4+icrYyyM98H6nRgJydlzm4lXzBa69mwXg1/jMyLzF76uERcsF2Ex9tr+mhLIUHD9wtQkeH/z96/B9uWVfXh+GfMudbe59x7uxuQh1EQJQ81EDXBlEXU0i/x3gZfxEq6um0EDRqxFB9gGSGxSqCwMOIDTYIF36j5+UUihSWaqlhCGzWCxtKAiqlWK0G0LQVBlG667z1n7zXn+P0xHnPMtfe5j6b73tvda1Tde85Ze625HnuNOcYc4zM+g84fA9sj0N0fRb7n3qaLXQ8+BWNsNsgfPS/jWL/L02vU9SDAqXsviG6bP25jWS+ruM424IXJwVr+md8OgI63SMySXAaEVt2OyRqYndRmT7UBNMI5OLX4hIPAjMKNJEHkdJGVpWfusVGwSg8OAWelRuGWEph4dy5d5BEvTpGuIn5uQlqtZANXB2BdNE5HSXTWqT6DPS8MZGjPZYKQUWlC8swB6GCFdOEYdKGAPnoB+Z77un61PKitDIkdsdsymRggop5aIR1Nsm4HWusC0thXDsmlTKgptyQO0PexzATaSj/q9V9vUIckbRnWIYHKaD1ps9KUVwFDi47DQc/WW89A2UaFDmahhMsKmNTzozDG+wqGo7AdbU6QP+BAdVpU+6rKVBOoXjw5Pl3i8wda/tN/+k941KMehXe9611417ve1X1GREtCZ5FFFllkkUUWWWSRRRZZZJFFFllkkUUWWWSRRRZ5ZIngYy8OfLnaObb3ve99D+h4S0JnkSsWRwJcRM7mW5EOD5Ae/SjwqUMgS2UOjwnlYNCqGnLaH/uZtkJl5LRKWlZZMwndmZYyMkFR7eRo9Y5mDegQ7UBDqacNkLeKYF+vACiiz1C4QEPxaRm2oxC5ApsiSKLzF5CHQapyjo4F/XPmdGvCnrJXBTiSKIqWhpePO4PjjztAHRtN0rxpeUTce9P1GvbJJIcMoWJnImWyEbRzJQJyrHpS9ISi/5M2b3RKPG3K7ggERR+y/lmHq5vNXuTBFS4F58bb8PbtT1/W/jcfPFeo1iajPKoAZfB6aPQr26LIdzT9MrqSMSsyjeRdpr7ahVPyd/vEEmVFujIBqFmQNCn3TZtXq3DugOyx47cFtAUoSZPhTITxr1kpUQowDnJPsdG6jTHk/t4MOaSNz48ed4Dzj89e0WPUanJ/6JA8ULQe1R7ZK/tGJGSo2DFEsNGz6Tic2rgG9IsVfHGO8c8TARkoV7Ex4CLXv9TNBulgLZSrOTmKj7mhfMnKNjt0bNJ3KoNjM3VrwBqoF6Rih8C1hiapplv2N1oVkNlYb7RaIZxvQUrBjsyrXHISOw2ESoQ2V7DRwTl9myDz6npEXedeT6s0h06TNmGPVTqJsLrHKmkUJahzGyVqOj1pWR4nUBJ6RaGPq36/PgdNWXwSo5jR68OpQ9B6Ddpq81qtTODtFl/xt1540te8yCNI+MIRkAh0eCg+8CD2iqYq74zRfzllESC8h7m305PC92OFjzVQNzokZqUi4mZ3M1yXqAidCw0Z2BpNk1WlzKCsdl6jRgv6nI6P9dpLqxbGzKePdpRIbiz6AsxC53gQ6OBY6Km6yhzznbck1UWAVCTrPfGQUQf4/MFEyKW4njvKP/5uFI9FEdPTMejCUXumQ5YKnXEAjkfQqUOZdy9cAN139/17ERZ5WEs6c1psba1etcbc+9kmjvrP80HSTuUeFfQVYr6v2qs6qz6z9UBXlcsNfW96WVPTa60+TcdbpJyELk39cRysw4W36jsOVb1z4fWIuh70OnQ37vWQtlWq4gBgo58bVfmklLB6n7buiAh8i1nY2W09T2a7KyNVqfTx5u8Doayl+iGNCWmSin4mIB9NwEc3e77ZRR6pQokaTXrOoodKy8uVAUogjc2cW90uB7FQKAKi55QIabWSMUa1LUFniJXJpVZQSqLP5ovHqYPmG3rh2Zjd7xMj3Xes7q6yWQRWD6c1tYqdBP+9DSTnmM5kHN+YZf1cJI5o1bKcpSImbVjW2D6/aeyxwCt13K5bjKwwUmGkjehsHZNX5/hcY5diLDkTOz27VerzIG0QWOls03FdGG6uslyPlGsPtCwJnUUuW24+fB7o1Ckgndxr4+aD54JOncLw+MfKQnEcG9futrZYDSfUlQUyAEyMXMJEmKBctuT0QMSQUlDA6VSMbk146DVIavyYLH9XfcvH88D67orDv9xi9Vf3SSl4ZSlHj06r0TPZYtYCQ5agscUkJVl4nToEDg9QHnUax487QDlIqNYXqLQEiieW1HCM9xUM926xedQam5tyo46bJ2uSBWjJt7XESzM+MrYEjRMkecPVDAv8INbr8uwMgrFlNWzEICbQRB3PqZWZLvLwEuPZNqfvUmJ0DhgHoVWcJnEKLcGSknBrAz3dShB3jPQdT7BFH1qS0hZ6tpiMEhIoVBj57gug8xd00Tc2x2/ILcg0o0rCFMZkS4poAvTMgTiLN61w4XGjcGqr7pmeOUVCDApBuHjTpmJzY8b2lC7qCgmXbtDXLqETZUaZJtcLT+IAQtHUP4/wuc03pDSJNVAtxvNp/JjQrmPuqC7yyJY7yptlYWjUJtstAO76azAxCEqPYLoGwPptUDGAxOAJHV7lLoHinNgp9KkBQFNBOi4SVN0Wyz6KkZwv8IA+2DvfnjSpG8AWPA6ymLTkjdnemKhVabzd6ANDtfXK4UxIdU7L0OYJ93GCvsZ+VhSTNgkaHFNecqqNpvL0ugXgLUDW9bUbQ2+hIgv59Ro4f2Xf/yIPP6mbDVJOoHGUxOCoOls1mTNN3m9CDiDV29wM0wS1qdx03pJDpkvALABDHqgBgHQkQVuaatPrzHsDsi3pMU8cB9u7WsnnB2ux305ZDOlbU2fzQgw4ae+KlryFJKLm80gMSscglVI7kxrShIyKCkZqvQJtCAV4tC+EGwVzTkBete+BWb4Lo8cB4H1+bLLK8yj8Io90efv2p/HsT/xm0cmNNVhlYDt7nxNJ30nrnWW+tvvvqdEyEnkiputRFwAPngC9b2oUp0mdUZPoLzvAQt9lEiAXou9PBKzXwIpRTx9gumndgbOSzx/U1rBVAVhF+nfFZA8PpH0vwzxix7kDIFMbFU3q2Pxhu8x8A49zAGA0gJXTVllA2nAmrD14lK3SzgeW5FEyn+IkMNsij0jhqh7gagQNA/h4I3YhZ1BHpZha0qdWGB1yB64ynzC0G2DroaPgBAcpZKECTkeTgCCN9nBQn2AGmvTLmNnJ6Ouz9rMBEep6wHR69JjAbvKoxZ8sLpAmSbZIYpU9HuZ6FNe8JOcxQLhcG5ofr/t77K1KMsf651hi1wHPYQy2dQvQYpSs31VF8/H1/q0H8CJXT67HhM4LXvCCi37+4z/+41c03pLQWWSRRRZZZJFFFllkkUUWWWSRRRZZZJFFFllkkUUe0nI9JnT+5m/+pvt7u93if//v/42PfOQjeOYzn3nF4y0JnUUuW7gIGQ+No5cO7sgwSIZeET98MILXipZPkAw/A3R+Am0H8JiUUoy8WoeKZMKlUocFQX4ktAxlFHTftCaUtdGtkVCuZQgiPQF5Iyh5Q/+DAFRgOF8xfFQRDURCYVBKgMPPbzrUUw9KJ1UhiB9tllpPr3Dh8WvUgXB8k4zDA1o5diwCUCCdlIBm5O0KdYA0Sc/tmHnDNEMs7NDKAQEBAEE/MCsTDSmY0dC/7RlLOa2gDYiBmqirqOXYyFGppqgwuOg4JI3iFnl4yB31LTi3uh00DjibbrloM8Wz+VbkM6elqbIhQ5NSFw2hiTGp/kZR9B4jN8qFRKhjAlJF2swUZlb54putwCwgXckQuqOiXUODRUMYOsIegqKDlZKrLvtlDgnHj1njvo8fQAxsbmi6IzuQo3lMJ2tGV81GNaOOrUIwb+V0cZyOJi387tV3UbcDekgqD6lRr2G38kfGVxSjoxn7Z+ioIW7HLBV4i0Q5m24RujXA7SZzbQjeUto8MEet5qQIvkH1XamZ4jwxE6vO8YangfrIz2E+hlXK2nZWna+h1CZSLdn1ZaV3ALTCKCD9MxqKUJGJnAJyD4bER6uQtbGDmG4yyNGBHaoPcJoGp3QptVEv2ZgZiphG98xYKVQx5oAKZG/47JR0eo+oVSoyFnnEytl0C9L6APnMaXkncpb3ZbMVxG0N1Tm1grfbHr0/Fa0W0XfUqtoNwZ962pT4c16Bt7daZk5LnE4wRkTt+o2SxdDEK6FVqqs4J4lNF6ehndOr6KB+bqlt2qhV1xSBVtWpk2r7O16WUkc6hVNJ4KyUclNtVTmZpHIHANeqtIuzuXPQezNaO6Nis+/IKhKK0MwuskiUmw+fh/TYx8gfwxCqu7ijGCcK6PohN3s5aYWNHRMr04q8sxxtOJGfw2kEEwFpaJUw+8R1PKwltKl6RPLzmFFOjwAzyuHQEPgMGPeH6JfQG7XPRQ+NtskpnTKJbqMt/9kqeAFB5OucQNvilT6xITsB4jcQqZ0Xf6EOMk6knIq0yaz+jcU6qEozd9qGKkIioHD/jBd5xMrZdAtoGJEOD0CrlfhyKYFWQqnIm63obhezGpRWbWz6vt2Cj46FEplSo/TMWf1zalXyZreJWhW627CZX4223uxYXUxPmBu1WqRdz0naKTD6MNw8dGD0Zan9LCOB1uS0arKfBeaDfe6q7HWT+d0lVOZYpbx+jkDDtkPXDj2FsYwYxbLGBqzijyZGPq7iW0B8Dqq8MGFcZSk1gerF59Jyic8faHnrW9+6s63Wim/8xm/EU57ylCseb0noLHLZ8vbNm3Dz6eeLgdjDwfusG/9l49nPSeiY1BFL9x0Ll24ogU5HEtSZbjpAWQulSM0k/LwcShUn5a9cZ2Bl9GoyiVat9qwZSFpVnkh+ryNApU3Mpz9YkI8Z6XgrhmY9SNl15PeNjqctXAGACEd/9wmYTiVQBfJRRT6awEPChcetcPSYJNeilGlyTP98OCRkylp2oArk4/a5JVQ8tlr78bqgL+BBXlLacTN0aeJm/DJAkxjkVCDPn4KDaYYwKT0Tq7FcE/KRDEwTNwcZ4mzSktB5WMnbN2/CufG2iyZzAHipNsZRKRWpBXYA1d3aFommQ0WDjyyJHKoVKOqMTcI9LYFT0vJmgFMrm+4WRGZ3lRYlbUrX06ZzPIEuQNtd00DgIeHep9yI6VD0cXVPARXGR5804vjR0Pko6GLQPbsGo3bkASgHLdCbj+AJHM5oPXS4nx78SkMyB+h1G7WNa4kkjqOEhM+cltHmhu6zGv4I5zwpt73II0vO5luRxgH5zBlNnnDrXQP4T65VFpWWrMmppzIBlLi6yIIzJmmNgkkDLbHnBAgS4ChFadu4D/oSA0bTeBItycG6jWlBaQ0qS9IXPSVkRweRlf86oawzpkOhgqEKDPcVD8667mriqUsaW28rCyaZ6JzgSVVdOHZJI1sI67PaWSwTgSmBafCEVx0S0oUtaBuCdGEMLDb7ES3p8BA0DKCDdUvSlAIc9cFenqaWGBzQ3qPNRvzi+G7FgKMlEZMke7oeVGp3/T0u7DrISZIbAjKaJUr2JE5ACfWGU+B1Vt0S/7ausidTWp/IcOzcJ8jkPT0BIBVGvjApxcosIGTAkSJUxnsTzZgFfAqDuAA1tfnCA8EQo2vJHaIWQCfpw4ME0CTfE48Z9JF7fQ7m7dSCTLzo9cNFLgWoupScW90u/WvPnJYN09R0T20plyJ91mJPu6gbRftnxT509n5qXzwAjU4M3MCXO+CL1IBdM99hJ9EzZEyPu8GTsWlTHNw5nR5RDlLQ7ebb+lxkLIQZmA57vR4/OvXnS8kBlp58ggRmUYE8VU/mOCVkXNd0FG4KTB1Cf425b6HzESfpB8ykc8lAWP3NRs5Vq6+rH+LtHBZ5gOTceBtotUK+6SYBVxj1ofnkRokIABx0OyUBXRrdWk6qv6n3Cw38SNV96+jDupj/WC0xYcqH3bW+7W+/6uf1xgPpQ2OJU7XZHF165k6ne3o0XbquJJnDakOH43CuTCgKgiImX7/LILZT+5kKPJGzA6TOBCChwvS++esWQ4tg66rgctK19XRAOPibAmwBVELa1jbWIldVKgj1EmjVS31+NSSlhBe/+MX4wi/8Qvzrf/2vr+jYJaGzyCKLLLLIIossssgiiyyyyCKLLLLIIossssgiizyk5XqkXDtJ3vve92KyyuwrkCWhs8gVCW8nQYaVIo2SAVAipBtuAJ0+JQ0YUwYOVqinVkJLlpNU6Xz0CFauDa6g+wQRkInAN63Bo9E3MFDgKJZEhEQV06GgZOuKWtmlZsSdLwxA2gDruyvqykqapXnawQePkI60jGdUmpVUQZsp0Jwo0s2QyMcb4GDtCNt7PmlAmoDhiJE3Iw4+PKGsCGWl1TEz5oN9FGmC+gXKShH7ETVADYXfGia341xS/zlZY0VD72ulE09a9TTKuVj73CZD6dt5C2uJuCINRqHBkioJYDgPJEU3kTWInGZwhkUe8vL27U9f9PNzq9uRTp+SKr0hO80KAKc+oW1p5cSB9odqBVcCr0dpfjgm5AuCfnMVGJIAdBSVZ40OZQD9MTWEizQqhVAiGIUSEThxo5jQbTs0MADq4QgeMqZDwj1PJqQNsLppAFWpuKkjGqOTIX1Mpw0xpDpvtI81A+VURTomUKGG/BmBOsErBndo1wCtTmjoQyqq26UdM58bKOpxamP6fqFKB+grdQRNRO16eKnQWUToWvLpU/KHUZxVlvercoekp6TUDYb2HYZmP71RcZXtithlQwlaNYxRthkViVXkTFqhE5D9gm4PVUBz9H6pauAUvX8gDdvraBRMWvkDNBSizmGsFXx1VL8lkdjClVSsbk8ThguiJDvUqHO0cUDvAfD5zC6ZplZfR4oQriMp7VNuPgkzQBkUy3dUDElZB0Ejc07ISaoB0vkNMAnFmjewzQuS/5EstFoJyreyNEp3vVY07D5kvunXdmpof6M8s8/N1mZBmTNSU44UUL+kNKFV9RoIFKgJBC1HPUm3bR4BgCFhOr2CNRvPR6Xb3ysFnHZQKgApzCWGugUB02HCcMygKYOyUi1FdXF60wpQlgqbukeftMqPmLX5MXXnpGxLDQIyQ8iOK7gAZChqtOoHXmuj6DEjbw+BegDcdx5EJA2x91UwLfKQlI+1OufmM18tlTmJlOqUW6VdKbr25mZbrNoma6Wrru29iifPqFGnVhWGNAsfmSpw0HujPJ6zX7gwnCJqHIXWfEjYPEoqhtImgyqLbpux1DmLM/kalhFsMYkdr4P8254mrO5lpFXSWIBVwAS97Gjftfl5ZacydZnRn/EoTeStKqfqGoSTrBu8+jZJtZFTz1NFPUgoq4Q6EtLxADoYMN5z3NY229JX+y3yiJR0eAhar1tles67cz41+82liA+5WgGj2vrtFjgWnUaR9TNR0M9a2hwAdFXgALTSlJvNNqaLKHGNbXZRTJuvzTknWfsnAGazg8zj6UzwSjjWtTFnkkqYBEwHhHzMXgUv64R2PbIkPsE2WuEiSQwThfvzEyQGNjGSruOd0MKr6SVWCYQixAoUbQlR1oTtJmE6TFjdPQl7ToyPLHLVhJnAl0jYXOrzB1pe8pKXzM7PeP/734//9t/+G776q7/6isdbEjqL4Gy6RX6xyKU5WPr3HeXN3f682SA96qZ+Qh8GL93mtVCt1bUGcPYEOqAUXiiysEsToxKDkvbOyUkm7YFQDoC0TdjcmFHW5EkGThJwrVko8+sBnKKIM3Dmz47kNkpwJlMSWjQzgJCANBG7ofN7X63k94M1Nk96NOoqoY4Q5+yjQD4WRzMfS/Oe2C/DrlH+QDMG/hDh1EnlAM0Znu8TKVhC0sp78RRJ1FCBLAgncyThJaHxmXBW273RYFyVcnQCgWtL6oBIA9paHkuEAUDa1hbQXuQRJbZYpFOH4ijm3AKOQLf4IeTd5KaWhtsCyvet8MVQHcnfebLxqF98EYB0QdALkd6Bx3DCwkJhAnhQ2QMqzLIvM3jIuO8TDjwZa5SJNImDxiTzilxPo3XsdDomeYxCMRHykVHIaf4lQWLMlmjxe2uXXdfsyZi0JU/o8IQu6SLcvCHBY88sTLVs84c9Bmqfe88xyLFCxShj18XZfETLzaefLxRqJkmSJ5yqcBDnpPz5FIAQaAs6s7Xewyppome3z4MEQnLrZwO0XhNVf5oeh/gxKonNjgHbyHVNBF6Nwtc9Zk0gATtruxlNku+nSR0LDlEF0paRJhI616H10JLj21h+b7qNCQrgUIrVIxabm8UPom0FeaAb4JT1d2685bYwDslx+8kpeW+Aukoo65XQPa4z8vlJkt22KM5LD51HopwbbxM65GGQoM6+BMDMLhstIZcCsp4t8/0tsOSBH6F0IWiSVkFXfkgJOmtUx4AGl1mSOhwSx9GGO3AkoZ5ZN2ojkuRo2khkxfxVs73EVfRbr7OsM5KCkSTAUlFzVjsauO2VAzmCI4TqNPlcVIeho4TxayCS+WuqkrhJDDaAFMvYJMoORvWkDoK/j80WlCVYTEjgFWF6tNBo5fUA+tDftCBfXWz2Q1XOpltgvS/ubzLH9JvGUcBWTsEUbHP8mQi83aotTy2Js9l6MpdOHWqPqtT6ahnVEwXqJqUGNOGUOrqxZsO5ny/s2pTujccB9cYD7ysDQPvLCCCTR4b1yCWdp7zvBWZLbGahCz9MoEres6JL5gKSgAk+ePSf6yohJQLXhIQZWtrmI51n6pDAA7nv7NRRKlRY5xzWdbcE5YWKmXD86EGvhzDeu0U6Ku1eFoDVI1KsVy1WM5/N+l8BTrcmdiKBOIMra1KnAEfHQKng42NP0NJ6DadJB/oE7xz4yOy+pttslZOSjZ3PDshCmkjAkw6gkgQKTQwiRllZnEnHqOY/wwHGTrkMIG/Y6RQB9dG9j2S/pu6o2knXvQwkaklhqi1eYONwJkwHyVsVWJ9Lid2FfpgWp2AgT0KhaOedDoCjx8hN13HEqb/cBJ9m7+Nb5EGSB6OHzqtf/Wr87M/+LP7wD/8Qh4eH+Cf/5J/g3/27f4dP/dRPvazjf+d3fqf7O6WExz3ucfiBH/gBvOAFL7iiawGWhM4jWtyRVGeSLPjiM5W83OfG28Cl4I76Frx98yYAwLNuekFz+ACZpBRhA13IpeNJgjMbba44FUkWMevv6hQVRjqeUAcxXBJEbQ4SZ8J0CloJQ0hbRt4C20NJonCS6hQzFtMBsKYw0QJiQJi9ESJFBOKYwczS16OkltjJCThY4fhv3YiP/J01qALrjzAOPlJx+q77nE93PMzIR+IYTto7OgZS5abQBbgtIFtHqdSxKps5qn7O6WniiSMLJGsPoRSCu9YTzsZmrVygEha7FeBJjGGKoEyrfiI7H2kQi4BJDeOyiLzfcm51u+jULFl6PcjZdAuSJjOjE5hOn2o6HhF3Nbw4EZFnChC5prV3Tj6/bWjZnLqeMR54TQCjBW0Y8j6miVqAU8cFgDpmcT4rQMSi01Es8VNbr47jx6xw/vEJxMDhh4DVRxmn378BAFx43IjtmYSyArY3aFGcB1Q1KUK7DmSaALpXE7wr0be01f2SJKBjkkUGlB/lQBautNV73ZIgetUJjdU9aau/1xZYlkF1yFmyx+YU7+WlpyW9L59LlgXkI1LOrW4HrUZB5c4XZabPpt+AIP1tHsgaFNKAriP0rCoH/ZhdYCUBPJBz41tfLACewLW5wq+FeH9ix1B64wA+HNv5rF+Onnsuvq1Wb5TeArsAivgcuLeiHGhTdxZQh1ynzgcB2dhsp3y2uYGQjzX+pT3t8jGQKWnAB6FaQReahUGpKtLXoP1636EfTtpWFK1aRiIJelUJUqcEYNLnsrj8jzgxDn7rn0HzJttEXaAGiUBZ9wckybHdtqBPrSADO0VO/04/qf+3L/Fq57afWiHPNTQb930bOpkPVyhn1vLnsVT42lqDM4k/n2T9IL60KSIkEZOMe5+9ApgqI20lGMPqg4jPjKbL7tKoLg2pC0Ql6zNp91n1HMwyn1nlsPWkDM+AM2ClOwS0aqjKoO0EPlwDB4MmyiRJTePYErtLWe1DXyjhbL4VwC6I8iQ5m25BOjyUZO1qFJsc7XbUwZxBK4hfrPMAHx2DLxxJ3yxD9+fcAr/jCEyTVIIxC9CD2zxga/2dhJEtXGMvSwOAxKSO9tvllFBPr7G5aYVUGMO9BWmqyPdt3FenKfn6oAV44eh6k6TzAFeAJ8ZwQYK/tEpAYuRaep84JrFJdNV6fJQRAriwQF+cy6KtzwpwyXqPuiYgyH62VqZSJd5h43AGjQSqAqDkkWQdUxhc9Hsryzr7kSY3n34+8o037PHBg3S6nZAOD1EvXJDEQyLw8THq+fPgyrijvNkZdcAVNKxFf5lbNW5JQMm6Xp/ZkwgszrP5JV5XbT57FB4zyoH4nvm4ABdYwMEM6Y0NiF6vJIGCqQEr6mBxP13nMitrhWzjTChgpETIGwZr4tjWzJGJxtffeh9pC2fJ4YyWNNK1Mw8AM2k/bkLKLWnkPfVqW7sQA5gYQ1GGkVMau0iyDqiZNLfdktaLXB3hy6Bcu9IKnf/xP/4Hvumbvgn/+B//Y0zThH/7b/8tzp07hzvvvBOnT5++5PG/8iu/ckXnu5QsXuAiiyyyyCKLLLLIIossssgiiyyyyCKLLLLIIoss8pAWy8Fd9N8VjvmLv/iL+Jqv+Ro89alPxWd+5mfiJ37iJ3DXXXfhXe9612Ud/8xnPhMf+chHdrbfc889eOYzn3mFV7NU6FwzuRyu3LP51gccwR/p1SiHkhFktGYRcwRfAg39tl+8+8d9PBpGpBvPCFJmS6ALEH5OQND7AdnnaIBYjnz3R0EXVhjqaWzzIXgl6Lqi3PV1IKFVGyVT7hB+0qqUrZRgltEQqlL94mWYlWE0KtMNKzAJzcJw76YhiRWlyMaPnTRbXypWHz6Px57fOjKHFNnAOYPHhFQYpz9YcN8TMuhGeI8cE+P+bIT5iuhNguDngUETNYolRSFxcjByGyuM4WglO1dq273fB+T3lBVxWLS3TmKpttEKnlSEi9QRhgwM56vSyrCjE+sg9HTEjDrn1FrksuTc6nakM6fxi3/9/17rS9krcV46m24R3n3tI9Vxcs/plqxvRUTwWL8MYC98gJWyACS9I5LqLWfSShRB8tdBe1kMgkgaWMufp+oIwe1NK0H1XRCeYEewzyihrEoIW8bBBy9g9ZHcIerlWgnjfRU33AXc9wkJ2xugpd9w/TDaRwYQIUnV6CDXLBU6WwDcU0W6EKTawIoVNqQVc6L3VWkmqLS5oaNwswo8br931U4M77/TnxNeJehzTaSPWuQRIWfzrV6ZSzn36P1QtYKcm00HGo930ZfL5oREsv8cfTaVNkckpV8btVSNyFGyXVWtXcaoHPVAs7/FqCAE0e/c9FahNxXp0UdW4ddXIVjvGZqqo4Wlx0ez/Wmqvh8HKtJpDemlczS7zoD+ixV41u8vbxQAvCKfR2Suk+oAJ+EGHOVLCfK9hAoHo2NL1pNHVyNpWzHeOzl9ZdpKHyJOSTz9ikW5H+JyJfRMUbeFpkWQ7l55Q7RTrdPx6nOVypJpAteZLQUAHqQ3k9G3GO0yzK4n8JCEh76wUIwFW8RD8A0AUCnSc46kn4xdI4Cm26WCjrcYPzS5bsYqIGL1GwZGRdYee8340UZ647i+JwCZkDfi65aDhO3phLy1Phpo5y8AV+561qVtgwB7tbFOaw7gL9zQ0LEqkZLCgG2ele1IQsHY/K0COt4gb7bg1QheDUhHs7VL7r/HRR6aYlRijqYHAK5Ch81V7HQi0CDUavmmm6QqJ1TOdu9Z9H1zBsZBK8aK9MOdto7gn8vZfKtU6ltvTIsXmK5n6R+zU0VA5HSLRBU8oVEjezUMtcreyqBakO47xsFGqM063VZJ24rho1tMpwZgVMpTQ8arXqat+B5WSEdbRsqM6ZCwPZUwnmftBxKu1fxo96HVnh5VX0Oz9gOymAKVfj60XlnWj4O1ypitUicBtRCS9gmjUpGVxikfV413JAxHBWlT2/jBN1rkoSvztgYUvlNjvzm3uh3pYA2utVXaJel1w2qL3T4DLQqdkrcHIK5ir0vZ6Yf79s2bcG68TXT/wlGz/9pDS2xOkj5uhdWOqV9u7BZmsy1U6HRj3K0xu355AGhbMNxzpO+z+iFOgywUxEX74gAk/qpNXVrJHoWT6GHeAtOaUE5J9TtZeFFjbhopFN3WNe9wDPUV4v7KiAFItR+ZD0NtrArpy11Zj9N2BoVliqwAR/q1TcXhh9sckzcaWzMWgUWtr6pUEHZrx3b3ASShEmW9XmO9Xl/yHHfffTcA4DGPecxlXdOv/uqvYrPZ7Gw/OjrCO97xjssaI8qS0LlGcjlcuX3C5QGSuUE54W8AHuEzTs59SSj7+9zqdqTNtgVOcvIAELMGeIyOBeg+RynAZgPgtNCsrQhlJVRHVZM0cVLlDKcXYQLKWpqjTYfwQMp4bywLlbLOss64728NOP84wpm/YNxwl1C90dHUGSDiCm9XrAFl1oWxBJ8HmegH2V4OkiSfrIcO9Qkc689BpW3zRMqkE00FQCwlnkALvHAwSLNYlwWPLKBrSSIL0Nq90xbSAC5JvIoKlOJGj62s9FGt3w4Vc2xlEOMgtsyOLM+XReT9ERoH0HqFmw+fh7dd+P+u9eWcKGfTLTIHVRYHcBhAI+/ycwOywEu5BXe6cvCWSIniwVcmTyYAwRHToEvN0htCkjpA3Ujzb6pVGx0TeEj46BNHHPxNwUFhpA0aDYM5lqbLg04cA6OuB5R1bhSDSvNo77vRqgHwEm5reOo9rea6qY5iOiZNrOpcNcwU2BKqhdr6O+lzjToMuEcaE0KJJUgspdzwOaU9X/lXBnhyZ0dGeC8Q1v4++/o8L3J58rE2Nb4aYkFhyhlpHORljgEhQBaVs+QOcwVZ84hA4yJSwdtJ+zAFvUsk1EFOzbrnXDZWfEEtKJUYdSV0DZLwZaAQlGRB9Dq3czK0H14cW6/F5585PVSt6rPois58IaVost4aQptYsb4nYTgOCRxqc8Tu74S4hqi5jUlVg9BV5hnnBCc4Bar1EPAET21ADBA12gZPStm1ihJLML0CU1IaysVm3195MABWl31uCwgB7pd32+Zigd+odwC8r9XO/rqv0acFYU2kgGtHw0bQoIwFg+w8FozVca2P41x4SBIQVmgkMcu8o3qP+TGWuIjJGCJN+GYHWjnVmTU/DwGodnJuVKMadU3asyoNgqQS2iW0xE7taVI8mZrUTxksQKX3kszuslOj1pEavWRtgWVPeHFqYDBS4ElYB9JUQFvtZxSD6WUx2g912bcGp5yBNIDmCZUQ7AWgAIo9uh3fn2B3WXtjzYO+UeZz3dl0CyTGK+eGAg3YuL2B3rYmTVhqcqPdFLXkjq0PmMWXj3qtCWEDYzowQ0UoztraFwqQIMB1ME0MulCRJgGDJQvW6rqBpkCRaPSIkMSQ98MakiRqY5A4BKsBW6ugt/+JUAY9x2SJLjS/X/UeqELbtK1tTqHWW5Br0/9FHnqy06MaElMTABWBVivpT6ugSRpDz5zKYOcfljiN9LGkLtZmQpRkOXoCnVfU93PjbcAwKr1paj602lQ7ZxROCbxqNtv7XEaJywZDD6bk+mvr9TpYYkfX+KPqkG7rzmtTY0jypC0hTUJVXI9hoSnfr1GmAtIn1nzo/nJriIJXm4/mQrI+9tjcKBSraQufb+b7tx6brH2uw05JYhiLXD0pNQna9lL7AHjSk57Ubf/u7/5uvPzlL7/oscyMl7zkJfi8z/s8PO1pT7vovu95z3v89zvvvBMf+MAH2jWUgl/8xV/EJ37iJ150jH1yzRM6r3vd6/Ca17wG73//+/HUpz4Vr33ta/H5n//5lzzu13/91/EFX/AFeNrTnobf/d3fffAvdJFFFllkkUUWWWSRRRZZZJFFFllkkUUWWWSRRRa5LsUK2i61DwD82Z/9GW688UbffjnVOS960Yvwnve8B+985zsvue9nfdZnCUiDaC+12uHhIf79v//3lxxnLtc0ofPmN78Z3/Zt34bXve51+NzP/Vy8/vWvx7Of/Wzceeed+KRP+qQTj7v77rvx/Oc/H//0n/5T/OVf/uVVvOKrK2/fvOkBHc+RuQEJ1KGCdpB72dHtlOjEKh0A4FJQj44bxUPWUk5D3eWsTRlHQfMDUpljJaOKOpISR9ImYtIMzZHwgFfpxObpjoyZ0ZzJL9b4VBAAZUUoB4qyn2qjQ1gNgko4AmhbQBOD1yPKo0/hbz7tFO59kqFqgMO/BE79VfHqls0NGZvThM0NwHSKFXkbHk5iR9YL2ldQRFQhDWAL+70B6OiTHKm/B9zvtGsInxtCKKAVMPYofUELaBVB0QoBQzUqNRQGyO9F6GAS9DqtnBy44gZii4jwZgO+7zzAVRoWZ6E7pNOHwHYCTxPedt9PXuvLbKLIXCKShqpWXWfVODlLyfd6VMSuIXGSVtAkr6QxZFpD8dk5WqkyeWNFdoS70xYCMNAPGw1KbnOGo3dN7LyVpWInyfnLOqMcDvjoE0dceJzMHXUADv4aWN0tiBpOQrFWVmgNFms4v+kmQSgMrfGp0aJ5k3Ru110VmU/cjolqROyVMgiHtslBf01Sol7WDaHo1GtWsZeazvucwuE5Qv/W68013NMi90tOqs4xalLK+apW5Rk68I76lp5u9RI0Hnsbp5vYZ7EKb5ocQcxcd+cH37ehizklpWYhR+F2hu4k77ubPxqyUHwJRQXm3CF6fQ7S+cSRsABoI0ZUGqKaQc3AEHTBUMnddaDX3fiRzUdh3qpjsNtqfzESJsg8QCu4jlIlFGakSSlemNzfoAqlhUhdxYDNe4785fAMyVDEi82+v3ItqnO6Kpw5FfIe2Vtpb7/7Z/qeqE/uSH/z2e2wQav3pgmMLcCKfrd9uxNT05Gs/vyQvLk4Jxb/gWa3EapzxFc36kZ1lq26hbVCPGXwalDql6jfQNruebeLou6nUEEA7FQL+/VHiSj62o5vfgh5FU+kZBRKJt0/N4ecSgVlqW7nrEjgiTvkLisNDieAstIlWhURIJU4kbo6J62eukSkYpHrUpxC0WSfba7sVImUUiuh5gQ2R9F02O2BVtSulSo56mtKoNUKYMa58baLVul0ctL80+koPGbAodTbKlp8feA2iqXCbswoZ9aYDrP7vmlTvdJUbpdQR7PjMLZirZyT65AK/GYHjdKJJi38scdTWeh3zEZa7IEhz3pI4FL9Gq0Ru1XLUqQ7tHOBwjwAtdv+Vc38fITKZLmGVOBMAVadDL2/RR6aciLVWtTzqtVpVhVfjJ54t1rW7bRVx5tPbbIaQYeHSHR8YkWxXVOr3tVzWLXPkFq7AsArXntqxWCTbIyBel8cEP8+E8rBICwbmcBjX7Fbs9pPpVxjRufXRtlZu0L2TRP553GNa9UzXUwNTR+pSDzMKNg4xLfiOa0SHwjr+yR0ycwkbKklVPuFOTy2TJBYgfgMV9ywZZGPSZjpkjFL+/zGG2/sEjqXkm/+5m/Gf/2v/xW/9mu/hic+8YmX3P9973sfmBlPecpT8Fu/9Vt43OMe55+tVis8/vGPR74fDF3XNKHzgz/4g/jar/1afN3XfR0A4LWvfS3e9ra34Ud/9Efx6le/+sTjXvjCF+L2229Hzhk/93M/d5Wu9sGRq0XRspPMOUnmBiQlccyGQUpES8HZfGvbQekfPJhTGUBRPyoYgXGQBeJqBRyshWItBmWUt3M4P6GsR9QxdXRHQB8MSROjkFAw8YDW38JoxBj9QklLOj2hwfBeHWTJJGoMizwkfOSpN+G+JyQcPQ6YzlRP1JQV4b4nZhx8GBjvFX7esoYkikZ5Bp50YlnQSU8fM3LsNGqRGs2NEfRDzIK98XvxewzbNEjUAsmyn1OzqVHjpM8gQUt49Tgi3ycVcWAThA6rmt9gxhFoPOeLXJHsW0CdTbdgOHMa5cLRA57IvT9idGuWbAJJQlcCOiQ0R8alPY7AOCg9gjiiHKjWJKgZFbl3BLvPLLDb8c3LIonN8ZsHVPRn3ugiURdFZOf1QBIrjQPh/CesceExCZub4AlezsDRY4ALjyWs7obw9hJQV9CeU6pXIWFLFUKlluCLa2st5Ys4X3nqsUr7AABsGWmfeKgtBG1CQHM864h2bJZxWM8li034PBWTODaGnrTNBfq3P/sK8C6l6yIfo1DOD6pe76VfouSLvbP51o5+yYEXc2oDW1TuBDcZRDnQvaQGzADatlpBHJI4kRIiLkYBD5zUQXu+1DJb/LiSaCJDAqsSYA0LykirNua+L0dIHAuVhFI/6JgJ6KmdNNAk+i6JFKNXrVn9CE301Nx0PAZynBbRYrkAnIpJ78f3y0rz4Pcpvo38LefyZE7RxI8usJPS20U6VlK7TQbEKXptAzSpfQn/b5HrRk5K5uz14fd9vicAu0PjXAqQZj04YqI2K/mwUjRhGBrvfqRps8Ssn0gDNEqtkmKAZr7GiAnafQnHDEmCeCIn6bsdKdUIZR2SUeaDowLb2npu+fhZAr8EXWskp1AWAJUqLIdngv0xGJ+PgEYVx3JMHZMGkoUCTmjwqAWe/VxQxxzN91HqN+mjw9JLZwrJJaO4rduFJ/UhKFG/T9TpWRIWQHs/jCo0+Mmo3FOcHx6qzQ22lxJovQLuZvAe/v7LktC7zdaOknBVmjQLnNocQVX1NPm1MwEYM+rhqAHf7KAvMKOOCWWdmq+aG9CTs4DLmGStmlQHY3K1OoijrYd59qwJRvOkx0BVsJpOqj0tRece3WzUj3o+Hax9RQSloQy+vtHJzfoRO/1irUC2vmO6Jqjc09Ut8pCRvcmcfS0O5rpv+my9KyNlIiB6Z/3qkn42qB1OJEnce+5BCjzmkWaZBqF0c9sdRXveCh1YBVlC1dbpqoMSpyJQEhvp73ZVKkLdv5wSva5DW+NaL9k6mG7KZ7a+NxriFkMLyU7ztQe4re58bPThBaCtfx0EWttamGobO4r572nLHheTdbasySnsV0f5PjkTaLBFdTh3uKC6SuJTMYAJi1xFuZKEzuWPyfjmb/5mvPWtb8Wv/uqv4lM+5VMu67gnP/nJAID6APtt1yyhs9ls8K53vQsvfelLu+3nzp3Db/zGb5x43E/8xE/gve99L974xjfiVa961YN9mYssssgiiyyyyCKLLLLIIossssgiiyyyyCKLLLLIdS6lkgBqL7XPFcg3fdM34U1vehN+/ud/HjfccIP3wrnppptweHh42ePceeeduOuuu7CZASy+/Mu//Iqu55oldP7qr/4KpRQ84QlP6LY/4QlP6BoERfk//+f/4KUvfSne8Y53YBgu79KPj49xfHzsf99zzz33/6IfBLHqnAer4aqXdEdUrsr877kYUjfSrzAREiWAq1bjZB/LGr0BEFomo1nLGViNDdVLJMgC6/2mKAOaJqTjjLQdUEY4ZQkAgc4MLSNeR2skDKc1ycdAPgIO/4qx+mhBOtoKSm6VMZyXdPghAQd/I83UrIKnHo6O3sVWkTerAdMB4cLHCzpfLlDQCNubtOHwkIAnKEpgZJS1ogI1yxsA9u355bZdq7T7fR35T93fHTSQFGUwoZV4zlAKHTq/NjSwjVMJoAyv6qEc0AtaTpoSN2RxhVCzMbxB87xx3dWW6123r0TuqG/Bs256wXVTnePofkMQhYoZ1+dxaChRQ7YbSDahoXpmqFtOqVEW2LgUKdPgjYYF9SNI+bRl0LFQABpC0KhTqDJO/eUkPVg3FTRVQd1a89MK0JYcicyJMEV7q9Vu0ykWNHsir2yrh8pFVnQ/sCD4DMRrukW807xxXiIez+c6m/rjXM84PI+AMtQSPn12hmzS55gFNRIrc9DNBdSaNdpPu04KVUDXUB5Oem1iqLgHQ/Y1XZU/58i/PRSreypyYci9ysCkMLJSpLLWELaG7OsqbgiYSqfTjt7vUP+pzQt2OUUqcGjabbJKtSJfqFp9Vp1Gqc0POsycxtFsY60AZRCx6gb1FQEBMSvIeXk2VauHylp+WiWwVenUrE2Oo24CfYVOQAanEq5J9bYYvaJd+oRAnRYKBGr4p9V7XqFj242arQjqkCYWBKVeABVBPV9LeTjq9oMh+6pz9ulz+5X2bnfR5sum147MZxadH8em2/EfAAwVhBVwfCzV+qrD0rA97R4X6MmAptux6bh/pghg0+vYFD3SMnW3XQNF4lRBA6MiA9ZU2eeVcK7EYKTml2ij8zrKv7nvgcp+DUzUoZ0BmQNiZV+atOKgNl9JCm/Nj0mOXAYDPEojaCIo8wGDkt6XonqdBrkysC1y/KANqQ21X7lRW15DWfT6yuSkitpuTT6nSIzfsemEVul49SwqsFFaPmbVa9VLrWSTOWAAHWxAl1GhE9k9uBShVx3H5iOAQTmBKfoC6Kt0lBrVKNdoAgCp2rEKO/KqU4CYUbUihhOhjBQqdPp1r1Olkfni1FXb7azDnaZc/GenbUvkNtfpHGP1YBEGj7iuaOfR39U/kGofoSqPXxlrSb1U7CkdfGr3Q6XKtDWEpun7qhavoiy6ff8k0hxfkhnHZEZ/5jYW2K3CtBio+dlE4PVK3q3tIVBqX5ljFKtWNWfxPauuzcn9etJK+NYOgIRxA+JXAnBbzkarTlC9D9dJ5NU5nHVda9T9BJS1fO5sFgykovbb2CmqULZyUr97pFYdb7up/kcqt3nszdwBo2pPpd9ByXS66nq7DKot5ghIrBNKL8kaBo20bj6+ruE7CjmLG1xjvX6kiUzlF3/mV8pc+6M/+qMAgC/8wi/stv/ET/wEvuZrvuaSx//xH/8xvuIrvgK///u/D29pAGh1J1DKlZVnXlPKNaBduAkz72wD5MZuv/12vOIVr8Df+3t/77LHf/WrX41XvOIVH/N1PphybnU70sGlmy5dqeylWTGZO40mYcG1j37FDAHXWeClFBk/kQd8/dzDoMmc3M6RJSkE0u3xHIWRt8BmTc0Z04+ZgLqGByQBTeqQTKJ5AwxHjPXfbNH188iEfFxw+MGpOWqa7HHqJmbUMYNvPEBdDzj/8YQ6slAq2cnD45rOVE06hSwJ4I6llGmGZxTKQ7sEDvXGQGiX0CiSUjvGkznG/Rmk66czX/uzPG4kCwDrOAmgDKA2jmGquqaFGCLh9BUjz4AH8K91r42Hgm5fifzi3T9+Tc8fnT+fL8Ki0oO9icRpq+bpJKBaDfOg+rDHcBK1hE9JEsxJs899YdToDGoI1FCtQkkUEkAAAGaM9zWFYA3SRjoEo3TY3jhge4r0c9UbC8KqTGcqatB7ccio9dDxJG9IqATZ6zdUajzcYZXpzmzVfap/JIFgp3CJJwg/3VFldxbjLhYAZgsUafKKSvs+hBJSGeEO9lz7VZSHm16fW91+VRO1J1Eu7dCszQJFxnnP2y2o5m4bWeDWKNQ6Lm+14aUCgwR8Ot53CyYpnUhH7aSSpioBDgugePCTQduZU5s0MOJjs/5NHd1aPD/VqonkXldZk0uWIGINpPBAqGujg2t64kGiYEcjtVqkd6ie6AW8/5adN7X9OOhsVYbL2O+qBXzC3GA6bAtIBVykwqCJwIVBGUjbNhYIqNfYaD/cdPuayKUSOScEj/joGDRa/8oqDmEOvnfsjRXHOFgDU5Gg7b33hfOF4yzAG5O9KqbbLZlpgaFZgCrvzguc0aEqqbDrK3QNwlM1thcdoyVDZAwSJ3eUsV3PNRALNF+dLFiTdHFNELq4oNceiEno+uvs+PtGi6X7cjTgjEYHlQHSXjuiz6zJ60YrJ3MvA7mCWL8zC8ZX3qXOucqy6PUDJJdK5sTYCLPQIOtPFNVte+c8UJu78SxpSjfegJQSbj7z1ajnz++lfj+bb0VarbpzOt3aVHxN36iN9TzeS0J+7yiY0XSS10p9qIADG4s9mRLsrf5LBmRU+4hBkqMAOloms62cqMdDktExqg9uj7Ryc8sTOh/Er9vWJVnoFJ3+zRJJds5Bgods+e5g07seW2jrdvNd0raAOYENcLrzrVxdWXT7AZKT6Naijgd6NY+fxTibJfBNz4JuOyUaCLjxDCgnpO0WvNm67+8g62Hoe/GoDXeA5CQJ4QiwYE3Kmrp0oKywDrfkDg9JKMYIHkNiQJKVtruCoiJYsepwREKbbmtvVpBlHZp+Gz2jzTvJri+sj92mArA4Yd97MnxFwdTL9TX/nJjdhu/0tbbcTW3+hwBJWa9PH9O2gTdtzlrk6siDRbn2sci3fuu34lM+5VPwS7/0S95P58Mf/jC+/du/Hd///d9/xeNdMy/wsY99LHLOO9U4H/zgB3eqdgDgox/9KP7X//pfeNGLXoRhGDAMA175ylfi937v9zAMA375l39573le9rKX4e677/Z/f/Znf/ag3M8iiyxydWXR7UUWefjJoteLLPLwlEW3F1nk4SeLXi+yyMNTFt1eZJFFHurCl/nvasr//J//E6985SvxuMc9DiklpJTweZ/3eXj1q1+Nb/mWb7ni8a5Zhc5qtcLTn/503HHHHfiKr/gK337HHXfgOc95zs7+N954I37/93+/2/a6170Ov/zLv4yf+ZmfObEZ0Xq9xnr9wFe/PJDy9s2bcDbfirPplv0oGaNAAq6Ilo1y3qVV29NkcY7QJa3AsW1epaNNj71Mk2OWO6AMhkERALmdy1C9hu6XnQXhM2SlQFDqtQoM5yvKKmE6CA3R7Z8hX6vQAxkKNh0D+ZgxHCkl2kE7vzdbU4SM0aZAm5kxEdJUUdcZdTViezrj+NERRWOZ+T0qrwh42VH3SbPtBhBQ9iZD13bogArQRK38ej7LRJRPhO0YAhftOAcoUNunNVPXbQrSdJq1CqFysDJ1RQfXrKc2yjatMLjWCIOHgm5fSs6mWwQBNwx4273/v2t2DXNaRp83ol4bSq0UeZW2W4GiZX3bJkHVSEkz9ZSJADqOQUP+2EdajcOGttNx6khOf0BV6dbY0C9tOKkonOmm0raRIu9AQp90fFPGdKB6FCrXjGJtx6oTK5I36DV63Y2VMSfNFa2CzqBKDdXkVTthFz11p7vWY9VpGyNgc+grdPxejAYGdr+k6EZuNGwCvnJKi2spDwe9BlS31w9OudMlKZn2oQEBR/d1iF+jXigFrNU1PE2d38AAqBSDzjWUoFE9KOKWbLshy7NAVHnIwGD0KmjHAKrXQpO4QysxQ8h224Hus7oaYJWkjs4narh4m8t0/jA0LbE2WE6hOif8k2tEq7o9yet3RHCrzmHTpap6dZFj5XqbCjckZPijNvsvSMPWPJYKgycS+tQivgRno2STyaJehGL3asjDRbcfTNlHobiPsuUk3W6fB79+msCloG42fhxXpTkcBkHbAz1FUxtIVorMQttm6OGA7LUqe9fzITnKXqiFaqu+A3b12c9lNru2/YaA/FfEv1QIt3WHU5NF4ab/PFDw9eHPiwJ9GVkVwJw1IomvQoHi1fcxPxlhjiK0qr+ktlV9qUjFyATwKrXrZ9JnJWsRo2vZmTQcGa3ny7M13jWQRa8vLTs0aydRKc6r4vV3+Sz8rWwmHGlR4zEAcLwR/TyQKhsOVXCcMuj0KaRSmr2eXS8NY1vHA42eKdAsRjqm/j5mP+2dNd0eEup6kGuyV7xCqNWp3TNVIE3sU0dk7bCK2Wg/gX49LBvQKl1JBmB9HgnBNy/sOsdJ5z1ntpB5rQ5J1iVWoWNrF7XTdYBX7VAV8oK0lTmNNoHZJFQjz7fRVFtF08eIAv9YZdHtB0iMkQZArM7pWHASgTxOpj4si4EiSmCuIGjszfQ+jz1Vqb7fOHUIOlh7PI9yBsZBfhprTpZ4HXIW251zr8vGdBErdYKdAxD8eN2mvv10akAdbS0Mvz+zfbK2311Hu420eFOwxx5zouYXM6j5xyUsrS1Oxm1sj6dR8AMiK9HMjEYmHSrytdVR/G4b36jbaM6OZboc4nl+zVZJtchVkwejQudjlVIKzpw5A0CKXP7iL/4Cn/qpn4onP/nJ+KM/+qMrHu+ahm5e8pKX4HnPex4++7M/G894xjPwhje8AXfddRe+4Ru+AYAgA/78z/8cP/mTP4mUEp72tKd1xz/+8Y/HwcHBzvaHoliiJiZ1zuZb3Qg4f+1lijtjF6FYidsAtBJP+32fIxGNj9IeIKVA7UZC62BUDifROAB9MmfM8k/3J5bS6shHXy2hMwBpI1RE6RjAkUymhx+uWN1dZOLMFq3RSyXjxw20TzqxWgC5UpKyzhXh+FEJPMqFdL1tYhCVZhuIvRSTqhqM8AxtmwRY9LsAa8A1BGk8G4NmmGIS52L+nV0nZtcZg9dmVFL7HWgBK++50zmqujjVctWLBrYWuSxxHR2GTveu5vkB+PzSJXKCrnYJXUACvtCkzqRcXclWLxVUkiQzWN9tox1CeIcDzz4P5Asle+eMjiRtpS8PHdfGKW8LoE63Z0HfUIYNwJM7dZVQRjSHsFpAZiZMjZ7J3n9VKqaoZOEnt2TsXMwBlD9iuLb/rPuIuynMP4+0jf5MiUS3B5YEmy+Q9Xq1dw4DIKOosr8rSy8P691z9V/Fh6Uk7VlxpS7iPPDj/sClAkKXQbHWLx5Nr+0Kswd+PbtPCTQOM58hBeo1S+aQUALxLNgzyAKRbaEYKF+sJw5tddy5Dl8k6Au0YK2LU0+go4P189k5oEES66clg7ovYBz8tfMTWvBIaBio2dHZInQfJRuS9MvxW4g2PvxUVfXz+j1Ycjz4CWlrvoT+SxZEYlQm9zOkh4nY7nKNe20scnGZJ3OuJEkrm3Z9e0pJzFMVB/DtW5lPzo23AYAEhA38ZcftSxAQgVajfD6OGghKwKhBWeuHYbtPNfSG2OMw7tHvFiyifpuCrkSvDZzQkrbSV0ZCJE6zatTANhdZ8Ci1oBSFYCpX0sRN8Acs8DOg0a10l21zC7XAr84NldSHyC3ZxKklsk2q8vKTMdBuzdcOya9MMjFU7feTCZTWoWfZYrSvZ4mgzChRl3tdp12/W7c3ex10xan50IK3gPrg8o7wPDlUIe+P/n1uvK3FGJSeKR0eeBLXg8WHh8DBqqdRi3Zdr+OiYjZc7W3HK8YAfN3Z+7kOeKDmKzvFGsTmUkXo34O21kX7GY1rJbOpLJdVG/2qOQHWM8dp1sbgK4Rz+HnsEQ+QuSsJHTwnkqSRPQOyG0abp1bab6swkPYkqhd5SMhJ/noP1Ag6TiGZA4C5dtTFnFSvzd7V8N7E5J/bwypJoGFAsr6YwyBxN+uZp/2g7Bo4gq7C/NKtpX36mfvqDfBgSc86UNdP1qkJs/agdIBDbxPdLY5THc0+jOvg+e/hUaT5MdSWARark+eLNt/4GqOdU1ocsPfTqYP6CpP25J7561R0HKNWB4Dx5BjBIg+yVBIf7xL7XE152tOehve85z14ylOegs/5nM/B933f92G1WuENb3gDnvKUp1zxeNc0oXPrrbfiwx/+MF75ylfi/e9/P572tKfhF37hF/DkJz8ZAPD+978fd91117W8xEUWWWSRRRZZZJFFFllkkUUWWWSRRRZZZJFFFlnkOpdYIH6xfa6mfNd3fRfuu0/6Ur7qVa/Cl37pl+LzP//z8XEf93F485svn43L5BqTqwDf+I3fiG/8xm/c+9l//s//+aLHvvzlL8fLX/7yB/6irpHcfPBcpFOncPPp5wOlII0DuBS8ffvTVzzWHfUtOLe6vW0wRJo3XbsMpKaVRu+t1FFUTaws8HLRgDpwZE9ABxkSZS2vH48ZnDPqKqOuM7ZnMrZnEraHgmCxUk7KUplDFwTtsr67ggojFUHXpC0jbZQqLrfG6o4QYOqaEcIqUBSRCwjqpqzlXx1qq6YJkAFBBrE3QWsofv1XAoIIcFqjHSokwJEFqYS/w2cRkdSh+AOyt/vb9rOKnNTvQ/p1epPnmJBOrSGdAqgd8cSFGopJaV64XN1s9sNN7qhvwdl0C3ja7qVafKDEqv52aJrmlTm2fY74DQiinSq7rom56L4jfiAIWNbqlYawCdU5RE0HTQ+roNOSVoJhqyjail3k/UniVQiKrFXkrFed2XRkumMVcIo0guuOKnKy/YKuX8z4W7UebFx2mjhBCXPQSzp5PNrd7KXtek2GBkqgpttekaA/U6OsEEhiqHCyr6PoeOViN7bI5crbjn7qio/ZQfJy7SgRo1y0Mse276V16CkeAAiSLymdaiJwDdUARILsO1g3qgY5aL8O5tQQwUa/tBqU9hSOPqU5vdoJY+7TckMDR9oC07dkTYcjbRNTm4IKg8fU0yepreUOdau0rIogtIasThXh6EI0CiWtII6ftWvec1PRNteAHKS2v1XlxbHMXzA0MgFaPQv3UYxuolXpLI1Yr2eZ6/4+/T5RtwFgroteURur/Nt5KGfQahRaloMDp02TlzDQwyRyWjIMQ5sPxgG8Htx/B4J9ZtXvuYpfzGb7dfd67XOCI2prV/FDALhSqzw1dG3CDH1L/fwSz6OoWx5TZ7fN77amzrvGGOoowyuR3b9ISgM7UGjK3BD9xABNrRzI58eq/gcRoE2ZE5TCbjU4dR1ti1AzTRXYXj57wyJXV1zf9tAmnkSVt+N3m8zHUP3n4FNTEj+cViNwKHrNKYGm0h9/vAXuuw+82UolcVrpu1eBYUA6PBSbf8PpntJJz7Njq+Ot1Nnfeoy807r4tDU6ie762lynH6n6C+sGoNlF0yM0VP68StbEq/6hukU2N7RBmRiJofSrchGck9Mmc9aKg5VW6JxgR81Wp0nKA2pGRw+HLOtmphaL4DF1VYMyjlRgpInB167V9SL3U/bRpsqfwe+2WFhcW8dqevPJ7VijQFfbi9UKvFJ2jKrOYwVomqRi7/gYGHKrqh2Eao3XK2DMbZ0+r64LFfB7q3FUOOzPBKdqk0o2cj1hbXXg+6ags2YvQzwq0iV2FTpox8kf2PGxaQg6VGUn0eewTujiaLx7H9SuY059nje2jmfQQKgjWhyR1ZZbha6flgJ1G3c0bYtcPbkeKdduvvlm//0pT3kK7rzzTvz1X/81Hv3oR4Mux1eeyTVP6CzS5G1HP4WbD54LAPc7kdMJV+FShzRB6ZI5+14WMya2+JjTrs2CQHPn0stF1aHskjn2u/HpJ7QSz0G2lYMB5TBhOpUwrWWyrIOUOqZJKEbSlrG6V/rk0NScQJt862rm/DAjlnO2IA7gXJbm8IUgitGMAbbIsgGaQykLSN05UDN1C2BA6I5s0cdtWOHlDAtOG79zNttxcqPYNWg2lq3D54mjmVH0njkJbsR5aKXnKPo7tX3999TuZV88bpErk5jIOZtvvaIeWXM5yYkEJaFvDH/Lj/ni8OLJHJolb/tjSQK5RsNkcwUzaFtFVzKBU9LkKURH7L0tDEoMbJs+U91N4gBw6pWOcgXoFn7RQXWdN3oHC6a0mJDTGNlAHCM3BE/AoKquy0n0p/xuOusJ3nA822OPum/j7bPbe/TWj2k3CeeHsVPqXFMzhHotc78/QyjY9gSmWPflaXE2r4XEgG7TzROodE7qrzHvlzenbtmTlDW7TTUJlzYzyAxYzqBxBK1XPe92ZWA7idNJoXeGBTpsgWlSQoj2hD4aJyVo9waN9iR+OFGvH4CuqlioS1KaJYCoS+4CvT8Q6SDqIDpVR/K+fZzgfN2e4ImJHrPN9i/Y8G7doPrbFpaz+49/6LlK1t52Nod6Tx14gqf3CXRe2BdUXOSay47uXyyxs49CcZ7UifSFqrOEEWFQ0GqUoO16JcGepP0xpgnYTvCAk1G1jKPodQmBYfMN5n0houwLBu1df6DXa7d/YrcliVOFisjmlwhMU3o1o0dy2pXKwb+njhZNrgXSp2cglLFtT4D66DNfQL8DT/YYTbL7I/p5Ct+VJZbCXCC6ychGLa3J47pKkoBNoreSUGLvDeaBoZx8W90szvhDQi5Gu+YbLrI29110nAyx15aI1bmABgn4dvpZCnDfcRuEGRhH0DCAygoo1SnXaByAG28AH4zNb9jXyy6KJXH2JXFnQWNOSd71UeeYAvXLWVGFul/n02MnACxjBdvvvoWcNwaPZV+jIuVmkxlIe9THxpR+u5rQsZ6eFxGLRVBlZL0v6xki95EkdhH0ew5UMztdGZi2S5juoSInUqbO6cxtPb3PJzeblpO8H5VbXC1n0etxEJ/b1upTBY6CblPS/UY4PVtOktxdDc1XD/q8z+7uEwdHoMXCIvCw6thVEx5pkiSpA4xNN4MuV+ubpfNHKr3etmuM19fmBPN32RKoMWlzMaH9fXNA2gczJouq3AsgsUig+RV1BaFeSyx+OEHXRuz+uQHGJHZGKNe4790jTnxBdol9rpJM04SDgwP87u/+btc25jGPecz9HnOxFIssssgiiyyyyCKLLLLIIossssgiiyyyyCKLLLLIQ1q4yr9L7XO1ZBgGPPnJT0YpD1x19ZLQuc7k/tC0nCRcWXplcgWQpVlibFoaEPfMtUP9xO0AHCVAs6xyd9y8OscQfxT+JRIqBiZFuSatzBlQDhKmAylnHC/AM/+AZMrTRqjW8oaRNoqGM+Rd12wQDUEXkATzzH3N/fFOhVCB8T7GqT/P2DyKJfs+R89Sy+Q7fZFzu6FRnpRW0eL0SpiN4X9zV+JJhfpKHaD9HVF+c0RCrNKJyOEwNuI/CmPHZpKxKXRqCGD7V4d48Y8sMRqzB1LuKG/G2Xwr0mqFenx0ReNftJmyywztP0cE70P0AwHpG/TYJOq7NmJEFkRgR5vCLCjVDHC2cVlRtRCU3Da87LFCZSbzih1SZC55ybMOQaH6Tk+XtozVRyuoEranqUPZA4r2yywIQIJU4yRuKKDEjT6xUjenQMfx6j6tyHHKOb24hqSf6behjULVUPccuP0kMmSifh50myuBFCbIOVynHd7NWWH8WGG0yIMiZ/OtANcTdfvEapt9n8/3maN4rYHqDAU4t+G6USgTxkEqWbZbmQdyFrQvsyD3R0X5RyS+Hstj9oaqNNXuc2JWJHtA8u+psrkou4jbvkbTGIVz0opZJSkpUkULKPowk1KnpNbc2KiU4qMIBWxM5ieIvauDogkTWpVO0MGTaNXchgY7PW/6PJc5OnDf9mqf6fhznyBSr4G7HruLXCcSqVDNJz+xKgdw+3siwlc+DbvnVlW3SZDqDpkbuBTQdis7DgDy2Nt4ZqFpORC9p43CT5XGyfcps4rZUEnX/bTP55Kgc0dAzJrvngllnUGVMdyHRrcW55AE8KDH51alQ5XFHkafQZZDei3qH2ShR4r6WDM5qphmle+xkp+yUqvZxljlF+1rLPRhgJmVJlU+sKr52FDZvChB9wc7bv4SS+VO5Zlvt8h1IR3d2sUq403SyRW1O3bb/fURqNyqa6wB+jQBF46A9Qp8MLZxTRfOnEY9tQZNE+h4ArZboWUD5PhxaCwdQd+AE3QYaDZ6nx03HSe4fvKYRIfsNsP61uyYU6yZTkVKtZOuw/ffWXLPKnqARAyuTU2teh8JqJS0ei7MS3tYS1hjCb0NZqQprL8zwFqx4zELDxk02ipfA1ThCahXuVH3IvdP9q7B96yxd/xyFadUszU1oLZVdXIYRC8BoBRdYw9Ou9bF806tUQ9WoFJA2yKxsQSt8ul955Mqcy6lY111zp7KV6oMYvLKNJs/avCbvdo9S0UMdC5QlvKdtXX3M2y3ZXId4fEpMJwFZB+dud1frJqN9+Z+fdi/DsGnBjQOhq5KKH7OGhexyn/7nBMvDDdXWa5HyrXv+q7vwste9jK88Y1v/Jgqc0yWhM4jQLgqhUrWpI5Rn1kyJpHQsu2ZuMkXKWjRgOCQUgwSxyDwEJxBAMhCreb8ubUqt770zplOJWzONC8wbxmrjzLobpuc2RdVaaMLGY1JsjqCdUU7wRGfeENQBUQSkw0OIkgDNll+ljVQDszgsASiE+tzQLMg/k89Tw30zinSjNu+JX2oC9ga/36kUOPMoImEiSLSqUTjZIGbLmkUAkdW6pnEn+ic29ouW76TMLZdQ2rngD5nNsq2CY8oiYEXC8g+0IkdS+qcxK19qesy4cq7/XF0OzALGO2jcDGZB4uIer1OUsYt9A4EVKFBZHvxUmqBH3UiqXL/HuriRy6wD240Xtt+VeYJHADGq+/OpVGumGiwhjOhrLQ/1mjb4EHauuI+QBuk0zn7LLP0lgo63OjYAJqoOXA+3zAwSOk2beVAo02yx9u+rPBvfi0sNJTMIWhkF1mhvb0glI5BpzkZn7FRwrB/tpcuY5EHVEy/5/NG7JND1nshyN5+OUFv5aOYAQi2eB4UssRs1GGjZhkG4Hjjx9E4AOt1O5fSN/AYXEelTQWg1C56zpk/QbEn30mUS1HcdnNbMM6DvnqdTrfKDOKESkLRVGPwBhZ0iUHj/pROA+EJG5lTaia/Pg80mU1MSnG4x77GJOz8czufX0dI9rRB7LqbL9Pps51Xt1Ntv8drtc/q0mrjupJ5f42L9rIzuZhuz0UpUAlZaMpsX6NQYwa2297+jqPY+CJrBuHohwSCVhmwtYLOIRSBGLbd6Jf26PpOH7wEScYGChijLauDJF7LQUKaGGmbwGkAjbqOIPEnUNjHsL4cNoYEZufXMA9I6fYQ2G3B4HnPPUYMNjm1WmdnZ0kdQANcOscQuX+dKFyP+Qs633S9gzi4AlV6lFlfyyWh89CQjk5xD9Vap+fdR7PtOfXzwDSJjhs94mol22sBSgVNFXy4krX/ZuPrcKoVPAzgYQDxujtF72Nfvs0mZmBiB3eASNb6pmtDcgqzaS1jpqTBNG7rctOXagnSrMkc09tIcUgSEM7bpnNOxxTWxBFEUZNu6/yoKv54WEew9QLZc/tgBoGACSBivz4BZMrnaWrXbOdjxcXsrMH1Z01QYBzAS0LnupaYyNmbuD0JLBmAkp6MMXtr+j2pDVYQBUYFXKgvLRSFFXw4AkMCbYvomo4X+9tFStNog92/Bpr9DWvv2PvFkhPmd8TEUDUgRZb1dVxnQ+1ozT1dYh0QdDo81NRckihOZ2zXjuAv21TlfeeAAkIi67Pd7qUO1J3PEzC+lkYHjnYAh/raPoVPrTdl1GUe0ADS0cew4+ulqRsXeRBkzzt1LeVHfuRH8H//7//FJ3zCJ+DJT34yTp8+3X3+7ne/+4rGWxI6iyyyyCKLLLLIIossssgiiyyyyCKLLLLIIosssshDWq7HCp1/9s/+2QM63pLQuY7lbLoFaX0gfyRCvXBhbzXAzaefD95OePvmTf0HrCh5SyeXAlBqLD5E4FRbdY4jBgLsJjY3nqNxLlLu7MhBzer7vrUCKaGeWqGuMuo6e6MwyaKzUKpNDJq4UadhjlwlR7HE7H5SBKoh4utAPQIGcMRbHQVNsD1FOH4UcP5vMepBBRVCOiLJomeWCh1Fs3NWmJwOGAputEFpy9THSh35vD/OELxWmeNVCRHJm7jL5BPQmsmH0lIriLCdOFybI4oD+jAOuPdbjGjDgHQy1EHSUtNHisSmxXeUN/v2j6U658Qxy5tx85mvxrM//hvBF47wi3f/+OUPahSJpvNcwbUhh8jQMfOqHP1dPuvRQy5zZJHpORmchsBraZzOVgWYyWkWHG1s5d9+zdwh7oCGEOrvLVS/IByzpxoAinItBwkXHpMULQR53yegrNFTNwD6oodryAxkbgoyr7wDGh2b0po5y1SR+cOR8gA4V79vroLgYpIqAlTyucuuP1baxfnLf1cUIBn6Ry+K9Pn5IyFuVUeVHIEEI3QZIyz5pAlhkSuVk6r30jgg3XADnvWYfwU+f15ojwalNJoj9aOcUJ2zV3/t70iTGpGokVLJx9dtOfWKURVuf3gglbaZWuVdvvTLYui/bk+jSgIaWrDM9j+pubrNNUPCdJDlGipr43Q4ajA2QveRHPXe0IWxcNapWrSpa6zYi3oXr8yQd1al4/Y4o9txH4h+H90D9uj8PtomucfZNmpjdvStVeaKpULnOhat0AOwi+gFer98Vjm7o+OAVNTPbDbNbWZOrbrWkMGAoIF5aMcpZaJLYuyg9uO+cXukZ4wSEPwAnL5E1gUJVRscG70iszRcTubcRsrHxI6oR6iwbcha6uiMGGgUzamdv+dbREPm23FqZ63JczzHDpLXaFZMv4m8qk+mV9J5Qr4T99f1uljvbd88wCT+QpqkQqrOOzsvct1IVyk/q4hv+1zEBzfZVynf7T/zhXMCn16rrcti+86sQUWrd6JOJvQUySpcSV3Fy4c2m33diRckoU4spzLK2PuZRj/WKtnbfRji3uy5bERYh8DtdIm0hEC3zra/Oc1MbrTtRMLGATh1Yg20rPvifVZJBJLn5T5DuC+wMBe47nO4dqeObNfS1trcxz0WecDl3HgbuHK3Br9ciWv4kyjW9trxeXXOfE1t7Qq0It7F3pXDVVtfZ/GB62rY9ZmBvoWCV4vQji/p45ttU7+287vZ7BODKYEAlFVCOcw4vimhjFL94/6mUREazdpszd10W2/fzjuLP7n+of0emWkazVvUPfkKOBEqWB5thbMOxeq9LnY203Gfk8yeQ+4tFXbmnDRxr/ekFYZOvQaP46XC3TUvcpWE93y5+/a5ivLd3/3dD+h4j6CQ7ENLzuZbWxkmV9Sj6cTgMW82OxQt/lllUJKgLgBQMg4uXRDZIsYm2cDD6YvBOdnjSc5dN/HvCRTp71ISKv/qoMHWQShShiNWSjXsBCV8YrdE0eyeOSnHfSbwIH/f93hCOYQbqbQF1h9h5ONmTKZDoVfjkYHDAt4mVE5iHO2coT+OX5DZRIYGb6lRFmn5uJVtynWzB1QZ0Gtk8KCf6fFOE1cg/S9KMFzBMY2UTDEo1SV37Ppi4Dc+10jjMjtGdui/YusDUNU4PxIk0qKcpGf3W07op8GbrfSjOYGCIUqkf4vjCl9zcv2nVDsnEwgLySiadO0WnBYwigvGWVCJU/KFowdsjTIkBFB9/7nt9IDQbLMuiObHCR1CcjoDpz5RR6quCEWTtnWlAVcAmPXAAOAOKDRyU4cwJzJcnzsKJYYmegF2ujNbjUGSwUppJtRnem0x2RN99TDX7X1G1O8fnVGKek1hDtGAGJW4n1LeZQJlBnPy61yczAdOTrLXbzv6KTzrphcAEPtsve72JXE6ikQO+gu0haL+frGALwDvg3eibba/SZNAKYw5DOBBkydEnszheM40G3PWJ0fisM03sMDl3J/gMTfbGsbrF4LiO1jQxaiHYq8ZsrnaA13CiR+DJtHstZ4X5HzZThFBbb6oGdJXz+aRqLcW9LaBo82NQA3/aVGsts2DxXFbAniQfQ3IEfLbgVIu+ElhPPusbrHIdSR31LcIxWqUffQsQNOri1Gsxf008erHz315ZiANkrzJu2M5ZVIUo1Kz8+wDU4R95wEmT/RYgGTIIWlCqKukvapknkobsaFpY4GTqsApDZByO4f7F+pvE6JON90TChgKPSJPAI1ZAAvo7K7rctjfadSgQCfX+7j24d7eJzTqF5YAUJqCezWnV/Zn2I7nBPA6LX02HmqyD4gBnKjr8TjfL+qe6fY8cJxz0znTR2alSA36Ynq9o89VkjrBzu/0z7EkcdB3HnqqZU6q2yP5GpIm9j6sZqtJDb+tq5udtJd+j62D/uTW4+LE9etMHX1tXOHzChOAUWnbdG6KtK0y0HyRoj8sWMsaxLZkbSWkLbfz+vl3FbyjhhtoAWE8yMIKdL5fEinNT0ja7k3mzG34fE1tvnfKaE6lXu+gNGpDCqAk85Fn+hv7yhJ1PrRRqMl+6HxWGUuOKevc6Wyy/pi6pq9r6X1tFOYo4lxbDK6jMJ/Zv5gE8VgW4MAoW/P6NvTjeA9cm2pCrMxbFISkqAGg5uvqeULHdTDEBxD75FH7POk5O3CV2npbRzRwmX4lCaiPsJYF11xm8ZYT97nK8pGPfAQ/8zM/g/e+9734ju/4DjzmMY/Bu9/9bjzhCU/AJ37iJ17RWEtCZ5FFFllkkUUWWWSRRRZZZJFFFllkkUUWWWSRRRZ5aMt1mNB5z3vegy/6oi/CTTfdhD/5kz/Bv/pX/wqPecxj8Na3vhV/+qd/ip/8yZ+8ovGWhM51KneUN+NsugVcyiVpnd6+/en9Y3TIfUUhMAUGAEEBMFdQTUpdogg+6VLYfo8NjU3mlAvaoM23hWoGpzkxqhbNvrfyYtnABEynMranyLP6ecPIR+zZekABFXITjrjbnCEcP6qnSdmekeob0kaHQutAmE4DBx+SsTY3ApsbGWlDKMcZKBB0fUQVaGWNNTp3JENA4cuFGeJAUDlWZQPImBSQ8F4lkDkcI/vTFoLkd/QQvHrHm7sFFH570LNttf+M9Lxe2mrbT5rsOHxH832uQTb7Wsgd9S2iizXBKc1OkLP5VpxUdbNv3JOEpy14msCbDc7mWy+rHPzESp06q9KpqjyJwNZc8SKVQDvVOVYh110wa0P0Ak5aQm5lxkZj5Cgh1YehR8ZS5UbRuKcSKqL4dsqik1Aobk8nQblWoI6CsBf6RpICudEQM4DRqEDRNWmyU5NMlauo16owBJlKC/VIutH25abvNkcQZI5g7FKxKZrPKRZ0iHbeE7+W/tJMTwMaOSIQAbQKPZCCKhlcyMvS7TppWtC+J8lJNGpXKrzZarVMFR2dqlAYhKrcbv8akIBWaWOyDzF7kuyr0plLSkI1CAQEXxUqJXshIxVDgtj1QXW9Q79RN440Czb9rmLT/CYFIUtTdSo3R/gBKAdKKVFl7gAD+ag0WhPI2KTofdrK4KmyU02gMuoqViHDUfxz9KI1N61WyUdmr+Vf19AVMzsckcPRj/A5QZHMGWBqzdLFvtMuIwProN54uado5Pn5/Zjwc5HrUu4ob5aK/FTR8aNEOak652KNda26Z16tF315rm6vHGmfU/PtK1qlDyCV5LrvDlIfcLo1qwSgTYChEnmFn/jYGWBGORgcqc8DgbaM4by83Gkr19ooTESvxddgJBufGXx6LfaLAYY2YA7Njx1lC1L97e/bdL6heQPFit5CrA6W84Q1jqFxIw100L0EPY/Z5WC3Dc1v1YZpkuOZtaFz5VbxE+abRs282OzrWSId06V33qPrhryfI/2tsi7SD5pe2/ZQsce+ltVtJbygRNJEXd8xqgwUAiX2dYJX4ZTSHefnsvmiEAgV9WAUPUuEskrgRFJ1R4FKjLDjz0daIq7UKuatEsHWz0G3SV1vR8rHMW2shOYLsFIWRt8b7bjmF1C7Rl++kz/bautpZfTwdbKyn8g8Ij+lCqitd1ozdm6PkQAi6n2HRR40+Vj8+Z3qnO7DE6ps5zTI+6rr41qb2zl8l1q130fYD+antopXWzPHtTdp1Y7YyqC7+jnP7sPHBINXyanMAbFZ06FU1OYt2thZqQpnU55Xsasu1bH51s5kY5ejOu12rqsO1v3i79Qq9EhjAHvX1HYd4f7muraXWrEAibn3923uYKmu9flBYwpGrcqZUbPFDGg/Nd4iD65ch5RrL3nJS/A1X/M1+L7v+z7ccMMNvv3Zz342br/99iseb0noXAdilAvzoG00NJcb1N0nc4N1brytJXU0gMSkoRozMKWcHBiKwdZ9Pqo5fOOgZYrcBYM62pXK0qwqE8qKsD0ji5qyJhjVLxXCeJ/QsZEGKGXxlFBHePKnjMD2xhZksUk7bdvEzhm48ATplVPWGWkDbD6uSACrkPan0YNDsDUGSP02zRCRGEdxgvUeK/kC0dfAU7NCxuVbje5ODSwPAKbgKHD4BzTn035eav6hmfFCMHLz+W1fAGh2fHNoH/7iiRELtGpCNCZtYoD3bLoFlDO4Jv+dcsbbjn7qkueZ6+gd9S141o3/EjQMSAfAudXt0msj0YkJ3HjsfHyhXCyQgJGMg5r6wCywy+8bF5PunGY4508MFpXaAh8jAMpyOqUcANiTiZwl4IJMzpVPk3HvsgduATQah303y/ouVmA6TCirNm9Y4NOCJJygCaOmy6xrOyrQwHR434nBgyRheUptgVuaB0kWSd3oIriQLnoBHlg4ta0HV0gSUwmLRE0WUbi2WO49v9+9f4f5yTjCbXucQzoGmNoSbWS9gBKByyNBu++/nE23IK1WQM54231XhqCJQjkD6zWoaFJ1HFDuO+/BmC5BG4xQ1F2utad0mJ8jLhz3JYJsYWF0LRbMjcAO229Sn8ATN9TNH943BgCPyXUvBnyEd1psazoGyChdavXgEqGANbBNep1lnTUA2xaplhyiaWaUNLhCzIB+RhlgaOLUAjE5BGtCrz4ewgIv2F23nUaplGzhinA96HSY1cPuKRDZ9btxbuu51JegoIMdsMQUPYnf5POfHT6b23bs//1kFlnkwRVL6qAUEHLT7UiBPA/wyh/9QPsomXLSfhtFfNwYXCpqx5PSroXPvBeOzQdhnpnrvgdzmUGltMDvVOQcev00DkL3pMdX1es6yrUKbSKrLxDWCfE2CaBNAW0LMNX+OohQR6Ftk/4CQY/MD7BdjZqt2Bql94eFNqrdXgNrqVS1oapndcBO3y0fiwi1MpKBtOY+NbcxzC6nIuAK4f8nfx7iLrTBbS2xyPUrRn3eeltys90x6XJSwNc/6/1zp3fqEjeq77VKQnXMAtzUXpexHxZZj1xm8SmIUA8HD+qmiYFNEfBnYdkf0He/Np8iJngj7VomoVcfwn2EflFAnzTpxH1XUY7Yi8MohJ01bkQDLtnPsJ71Hh6p6ScxUNF6XbAltj1WYLRr2Lk2jpFke/yBRjnabEvGcoYE0Ik1LqL7FI2MkH2ncvEEu97FH3+wZb4GvyLg1ox2raNM9X2CXsfkbLTFMWEL9MAK2ycmcLUXLaut2wFpmR7qO8SDvkvc1tkMdOtMT3YCve/rekYopxPqqiWNygoORmpAbfJx58kSX4urPbWkjgMZgLaGpm6J2yWDYvLHPucMT/w0CjQ5gOa6aT58vGe9bwem6NwQ427J5qS981kvfhwBpMldS3o9IoJo15EodvKS+1xN+e3f/m28/vWv39n+iZ/4ifjABz5wxeMtCZ1rKOfG2wBgfwPk2X5ptcLNh88DuO4NENtYXBmXqhB4+/anBRFY1bHQhaM156Oc+wWjGR0P8qAPDs0cuR2J6KEkjp4suhKs4WkdpFF5WWm/i5AsAYDNTYTNjYS8aQ5bWQHTaWA6hTbrQ35PxgvcRTtkW9rKPU2nK3BaPythUtfkDCbaTZrE31OzeOJ/y0RNx70VqoNO+Nr4nKb2ODiHANJ8UWbXTM0BZZb97Lr2ooMRts8ezXxDdHq77eEa9n2rJ3zTD3kxRy72zQEAT+ogg7iCK+Pc6nbQMLru2WItrVbCy2tjnpCMPZtuAQ0j0uEhbj79IwtcLwABAABJREFU/C44fDbdgnzmDGi1AsYBtFbn7MLRFd9TvB/vw2Fijqc1ZryY02kB35wAJO3xM3NEDZlbGKglIGrkZRVnTgKWTNpc2BYtg8aWgMaDz9wohGOSE3IJ3qgwzKE1oHId/arBV9cdc+wMYU9tnzpKIoczgzKDss57x7mhmYG+Mg8AbQlpSx68rYBU+RDanJI0SJZUuc2xrfK5B3IpBGlCkNY+88cwMx2dPmP/75H339qLcCVgYHk9Fs7uE0UStizJVexf+J3NtyKNg+tb3U67+p8TaL1uX18iqdrBbkJ2J7GD3CrtYlJnloTp9Bjwqhe5kdnvHgBOWp0zhM9mC03T8RlIgzWIq2YWlJR/25DwFjvSwK2fPo5n15LJfQNrdB4XlrYg7SQkegxt6Ih2Mj8jdePGuQKAIwtjcNYBELm5Ml1fDu1/54taNf8yn3DTs0KtGveERbNV2XFWw9sResuOcUFKdi0c/IOZvvs8EueURT4m+VgAVifJHeXN0qC5wJM6c5+60+nYTFk+lJ8W9Kncgrum34OOaaAsrv05am0voY8DeceDT0MpgZEaYGOqso6Yqq8pWoV/Wyew9fUYEupK+ufA+lN4IgewJu2+3XTbkPsmWj3EWo1Tx4S6SjtN1wHVE+u5B3iwJk3heZg/QaFqL/gSjn6GbI8Joh2+/GC/OQNUZV5J3vsHTW9trRP0tRKBqFX6O+LYfHiSi2DGAsJ4AMQAXA9EBa6J9cjy6js2u03okjqA6GgKTdI7uzxbaydqSVgiYBzFH8+z/QHRSTO+VpE/S8RSreABoOMtEhHqQVZ91ddMkzm0nTmHlszJ7VqZSPQsJbfdltgw8IRcBPxvS55E37R7z1WfqlbWUVa9he1PAiJjTYRWSM8avc9iyRxP7EDWFcn0lsDESMbAgbAuN2AKsLN2ngO6rVLnRMYL2PRKrWoftAu2sfHC3LfIxyYnJWnO5luR1gcSXwNEB4fx8ga9WDKnA0FaXC31Ot0lZ81+Z9cjGtTpnAOoDETFLKAGt0mkiUP9s7D7pQx9j1kBA0Cnjye9Z54EHQJQIlGrXNelbQRQRls2BzfImP26nLO6u1kB2FG3DCQGOBgiTeZ7o/nhM59anqutk6lt5v4Yr8KNQAsGSJNAHYja9Nuq72x+sNGtUir317R/ntj7uBd5sOQ6rNA5ODjAPffcs7P9j/7oj/C4xz3uisdblneLLLLIIossssgiiyyyyCKLLLLIIossssgiiyyyyENaPDl3iX9XU57znOfgla98JbZbAXMSEe666y689KUvxT//5//8isdbKnSugRhlSzp1SpD8zODtdOkDjWpl33iHhwAAKgVc+ZIIQqd4QADCMAt6zmgfhoDcz4rIr/ovoSH39R5cDGmwL+OfDCGbUA56aoSaySlbCHpR3Gfxt2fgCPJqIApTxFAux1JM0TLxhtA3VNwEJChKxlB3iXW/hvS16wFmYElHDgmCjhWmQKFfjqXnvY9OYlSQVA8Z4kg5+jEaab+Ob/Q1muU3KhehRWq/23VG9D77A2yvi+8T0Lx+H/YMMdtmQ87RFf4BHvISadXs55wC8dx4m6BwHEWTkPTd51IaMhwAjQMwDKKHRehGKOe96CCjZDNE3rnxtp5OTfWOSFE6zACvcW51O96+edMV3WfsA0QZjiZy1FBO+5GBc72mtIsqSrNKAEBQLABwXNpcYfz5ynOWNkWRigmsNCntPmU+av02VB9D6bhx5HuVDplR1sqBgKTtkHnYgw4yXRy5zUGVRA8pCS0UsIvGt+tytFDjzPZKn7FC2S6EdnFgpTlnp2kgaojchIBWNHRQRCBFRNIcMXilDokhuQC5x3Ry+fgjVZw+cbVCOnNG+kQFvZ8L5QyYXgNIe7jzKWdgNTYbykKrkw7Wu/PAXHjWDytW6bj+UkPrzqkfgN5mx5cmEZCM95N6dH9ODSFYASEsSWqnemMQe19UNkoICAK/VKRtRTK0r1FDjLlRtHhlTqNyMYSv6bjzUM9tmj2mQedoRdHB/ICAzOPoI6gfYL1xHL0X0IbV5ovQh6udMMwvFMY1lCDa3NLpXdBrP6f5M+E7itSvPj5m9x3niXhp9gqc0KJlkcsXmw8edIk6FZH7w9D00Wzy3P4C7d2Z99uo7JU1wm9c+/2NToQZNGTEXjlGT8YJoNxeeNpMfWXOHHGeM3jIwJhRV4PY+zGLjhd2lHpD6JOxw8pt1ep0bCjyj1MSW29VOookrtaPZmYjOTebLVUzMifUqjSWjigm39902PvpRNs7k0jfEvd1emXl92ez+WbfC9Bx6uv+xAAlqfglvfZI6SjPSX6vi16fKFFfL2ZXnVb5QTp3J/sqMohArtvRF6em5ybJbHPQ+8HWstSgurW9W1Zd47rlVQKiS7KvVOFk1l5zDOlTZZUAkW3DKnMA0e9M0hcr2HDRAdWn6L8O5DrFQads7Rrtrh27Y99T0CGjMYJU2Ca0db1V4FjvzDg2FdFzaStEbUzAr61D/ofr8GsN+zADxMo8wOh65vg1V6vOIX0P0M/d1M4FhDlrkfstxnKzbx2exgF0eND0sTJIGXF42u6dMyKlOmYUqO6Hq362NXZba7vMbbfaaU5JqtyAju600+3wN8U+kQg+L/Tdq1XbAFDzLwHVgRj8acebbtsau2YoNWp458Pv1fTdr6/52HMmGdfDPZVvsZUBWKpxjLGDB0j/vRTGD/NFT22sapSwuy6OzwnoKutTtT584V7sGtkOavNLnOPma/L5/OD08Xvms0UeZLHv71L7XEX5/u//fnzxF38xHv/4x+PChQv4gi/4AnzgAx/AM57xDHzP93zPFY+3JHQeZNnHzSlB0dTRMsXf58KVhVubxUjMA7p31LdI0Nkd0nJiEDleB+UcerVo+TcgzhlXEKthGkddPE6NgzvOkKWCJwkAifMaG6GqwSpVArqB17OOJL1yRpLkDMGTNbHyjSBD+uIoOGZWfmnHzAO1gI5pk78nbdBRJkW6EmJIgmWw7yY0MncyUflHUxIKqUQa7G0XzVkbjGtQto6QpI6df2Bp9jgoDQsCd36CJ4ksAE52nSSfJ13c+XsyDxaZU0jt3nx793Dh99Qleqj9unf/h7A4pZottuJiSQOmQpUg5dc0Ds5LDcCDpPL1BI/bkx0abJgmcCk9bZKeT/pwtKArrVsw9476Ftx8+vnANLVFHrP01LnxDG4+/XzUCxeumB6CEnlyioahBZ5j8DcuLubJWslEtGc2NId0XhLuiz279kmDMLCFDYDKyAxwYZAlfHSRCQte1Lg4a1RJxrtvAZwy6u+x7NuvW39k5ey1cnGVOog++nOqBNaeV8zw3jgAnDLOEj4tkcOoI4FzlYRuhiRzhgpKDJTUzzGQRLAkhCH7pEbz5JzECH06YtI6OMPe4yPobSdhUen3aHNJmBe4Ukcr90gU11HA5wgPptba3u8yNb3WvlqW+PH9UwINA24+89WoF448SczTBJomYLVq+jaOSGdOg48GWUxa4sguRe17R/Ewl0jbMgbaiHnyZipgbhz41PXNobAgTf0C0+nQLiPwxUDaFqUa0/ky0pEYlUSShK4lc9pii0JQCI2qRecDWcCxj1NXUaHj4on83LCvL/BiW0IqJnyNSsl9DbI5onF+x3+ecJk/A7uXkKTpFrUZMncU8y+gCXDrX9J03k3z/NGbbgffQ+67/X2VmQQe1uIUplcgJ/XJ9M9jgAjoAkTuV6u9Rk4tqWMB3yg16HpHp8b9vnPalyi2zZI7ISjre9ucYfskAEgN8KXzHw8CDuPV4HTL1ldjb+8MBF1l9YE9WMV9MjdcC3UJITQ9COsAo0wxmmcJ/KQd+yj6HueeoHdhfjoxearzhT2mLrAV9JUM0+LRbD2F+kbxeohIwVw96IIZ7qssskd0vU2JTqZdssTL/SDRj3TG836anU6feH3U/PC5Xkc7bPsCYpNjcNfu0/bxdYiSAc31JaU+UVvFMImvKz5/YvHX62qQz1PqaBc7Pz/FfjmpA17Ne+R4bxoKQWAFW3bJC0ZHg1RWjJTIN0QdsIbkQg0lP4v7+UahCqdYMzPLVYFURfzv6Hfv2NmwHqZwrZEu1RNF5rvvCRB2cyg1MOj8XO6jTHsGWeSyJVIgp/XBDti5bifkaQJWI4gSOFUQZdBNK/A04eYzXy0xrvDup9VK9M382qifRnkcbXXSn8DFbbDpdVw759y22Trbki3B/keqULOX1jMHKYEKI6F2a+hO7M8U+kui6UEdqesR5+CHYNM8uRP8ZqdctM8R9KViR+ftc2S09gQIS5jUxu9AU6ozptfdkFGFYhLJrivECyqR0Dn62lupT22pwe2+O+AWZn54eK7dHMjY9V8WefDlOqRcu/HGG/HOd74Tv/zLv4x3v/vdqLXiH/2jf4Qv+qIvul/jLQmdRRZZZJFFFllkkUUWWWSRRRZZZJFFFllkkUUWWeShLdZX/VL7XAN55jOfiWc+85kf8zgPWELnD/7gD/AlX/Il+OM//uMHasiHvBhyZ07rFNEBVgUQt918+Dy87cL/53/fUd6Mc6vbG4qn8g7SiEvpkECUSMpGD54rSN/aI+s75JA3aoRU6UTEgFE1jIoy2GyA7QRMU0uZ5wTKK+wg+UsVBL8h9AsDkyLWWaiJykiYDqRCpzUhRIc2ZcCbnwFtH0PoOBIuVL40KqWA5gl1jl0i1qGv1N1DWhfUbW5KbpRodo1GnVBIkQSz7C5TQwxm+8VOrg3VRgZGqYziKQnFhCF5a2uwHukb0gSnXmhf+Ozv2T068tgQBPOJi2c/I4gkoibC+R6KqN99lTk0R7giCy2ZfT4qaq6Ghxb0g5SmENMkFTmVfXyhVJTjzo23IR0egjcbL+M+m29FWq1A4yCNhiPq3mid7FxGPUYJWK2QiHDzwXP3N10/4b7bP0UFKkWc06spTZxLLAe3+y86J+TU9JwIlJNSnfWoPTiSLVYJGNoI6EqWO/onKFLOUExQZK2g8TsaBUXcRvq1rulh+N0qdGI1oFenEDs6nyYCCnVIQP/6DVGv1TkAvHmxUyytC9JYQcTgSq3Sz6r9DFkEacZKWwJNJJV3fiL9UXe3dX9zjxrcKxfTbf2PwrZHrCja1ucJrqjbSewe4JWthtg7t7od+cYbwJuNUKeWIl/vMDQqw1IEJejnoGZbiYBJv/RxBKUEWq3anGLzQJynDL1tDU0DrZIjfa2h6vFGKnKmqdE32DUkkvkEQGuanOTYeK4EQd5qQ3MeqGtQ3ujPWlNxIKDSbForqpcDgTk3iqJB5oo6JkftygDQ49scKMhB/SBB6UyBOqRQ3cZgpg4Jx65MAAqLHa1KxzJyh1jumrbaZmrbW5VOewZyoN23KZNcatrCJ5pIVyG2mDp0Y3tH5B5tfvLq3fBsDMUbK2rnFbpsx9hcuMjHLFfcOJ0r0molVbeAzBHBJ6dhFD9kXnVndKZG2bIavUqHiQQ5b1TIQJsn9lXfxPljjhA1qhdD/Uc7Mqu65bjNxioc6NZyT4U2JPCYUVe5VegYgj/aIqiLPYjfm2yOq+woXJp499q137zpfdpIA3fzBaxKwJH0Q9vuNG/qL7RmxtTpf4fIRW8jO31G2KeGzwxVbJUIprsZ4CnosR2X9Ikw+9zZjiUfw37Wy+zh/XAUW1/H6pion3eUN8s+OXf7pNUKbzv6qe7Y+yNWlQtA9Lsy0vrg8o7VJulis/VfCpVC5qurrfbKWJsm5lRMVtXmTBhhf/PxuwtQvQ6lPjYWm28CCMVrrWDV7Ui9Jrbb6NNTp3eyD7ptViUHMjtKUl2HsE4N617zddIk9jxNjUrNb8Or5+X+rdLGKgmsutbnG9P5MAYz6ePgXf1G0PlQKWCft3vjprK2dDO/3HWWZ2MQMPta2r0AdTV3+Be5Eolr43Or2zGvwrujvBk3n34+CLuTKA0D6LS2IVCmnEvKvDpnyK1KBxA76f47mh11mkJqFXRzO8sscQIEXcuBDSOstVsFqeozBb3M1Pm1Mn57j/3nIBUqTY+ab77rr0Kr7prv7MwSOmWYzZpXw1NBY9IJvnFsNYCghzZOTQCPch6zoXZev62ov9E3tmu2ZxCqhZhI+DPsWQy6IwOpcNjPrll1H7vn9fP52gWLL34tJHz/F93nKst//+//HT/0Qz+EP/iDPwAR4dM+7dPwbd/2bferSucBS+hsNhv86Z/+6QM13HUpkWbhchzAy3ISuYJnNiImc0zevnmTBH8P1jBqF3NcjR+09cUYG29nKcB2As1LyT2IUxFLtTsH0xzAkLjZWXBGDtiYBJrTOKjTydScUi/bDBRqkQ8zllICaOXS1lsmPkYC6gotmaMBFS/xBNDNwvuyFNSOIbuNLAEuj0H7YySlRbGTm8EI48VkjF1EAmpmwBI8hSSIb/Rvds2DPFuuUHqn3qH0UtbuGbfP24ORf2lOp8azwxidE9tRrgXD/1AMDsWE6k4ix97neRl0ELZgielB5cbzV1n0YppQNxsAjQIRlMCVfR54+/an9y42AbhuU5IkDQDQeq0JXOUJsgVWzqAsVE48TUjDtqdoCtQPfv+WxNXeGp7QjX03rJ9XmCtIE70AGq+3PYtSez5gZuGk9qSpUijldgiARsUQjm19b2zOgY8Bc1gtsJLiPtZPB0p31uYRl6SOn53OnMpAUbjDlR3moKgXnY6r0wnoIpVY5iA7tuj7lSs4BnqVP5s0mGulwBawjXz482kq0rAZzUTsCxDL2uPx/hXZNdNs2/zvR7B0gIs9FC1Cr0a+MLxYP6ubTz8fdOqU6Ox6jWfd+C8BIqQzp3tKtEH67qAUDeIm0EQa7BgQ6Y04UhoBYrNVNztqJmqRWennpY5GKb5obKsk6vvlWRDZemh4AAkaWCJfnMhijbvEq4vZmtk7KlRnqS0wE7W+F9Bz+GKp3SsgwR9UAiZ2bm1ZwEIXt7pANDaoaO9mC0afR0w/SeYFX8RC/9ZgbNdTL7MHXeCnYB+nm09YfBPMdS0ZlQO1a6x2n6rbEdiBdu079A7ze5zfr9JCPlzkYpTC14ucTbeAhhHp8NApTgEohbLqcvQrgEaZGBO0FiAyCjML4DgFMMt8xGoASJOyISjrYkFEoyucgyhybr2WYmA4QXpk6NxjQQxRsqrgBw597SSZA6V3iTRrPDT6FjkBhHJVz5cKKSVk80/F/qs/Mui1GeUp4EGtBloy2kLp0dOStG2e4UwoYRqMc45fXwjcuq5HX9zoW/fYTV/DpNk+wa7zoOqpCFKarTNkDmvfkZ/anz9Q5t/xQ1xOojTcp+/3Zw64P7SJ++TceFujWDVxMBg1e219pQBPuLrdNnBU1mTOCb1yEe1wSNh6EFjPzRYI9esJuuh+pOq12uCdNQ+hgUWKJlsogdfJ+2g5TWluCVrra2m+uic7MrnuUWWk7YwaKut7bs/IbFxtz7G7tuiXz/3zLpFDzXaHAHMqOnUMMm0m8xf02bLPN2188mRZb3YdkEYAg9wXQQJqWBsYfZQ8t5kd1mcRQWg2B5QHuK/T9SZX047v89XPrW6XuFplYCRQUtDEkGWNO00CcmYWQIXqMnPtwY8RIBWTOSmss4FmqwHRc+JAtZabPlsydY/9jsmZqmAoB/4omEmuKfqC1AEaOrHPFBjZ6a/rDnWg6x0f14YyHXQbGz62d7uYbsPjbbEvjn2+D1zYrg99/NBOYWHKGNNSnbUxa1gDWILIY1t+IvJjo8TeXx4T3HOde0GY7mfsobxb5MGV65By7T/8h/+AF7/4xfgX/+Jf4Fu/9VsBAL/5m7+JL/7iL8YP/uAP4kUvetEVjXfZCZ2XvOQlF/38Qx/60BWdeJFFFllkkUUWWWSRRRZZZJFFFllkkUUWWWSRRRZZ5IEQ4v0Jwvk+V1Ne/epX44d+6Ie6xM23fMu34HM/93PxPd/zPQ9eQueHf/iH8Vmf9Vm48cYb935+7733XtGJr7U856bn41f45y66z14Ej6IlrMnpHA1/KbExrdE6DWPXbM3G3keh5NRQOYMogYYRNx8+DzSMgqYpRTL+OWQZiUDjIFRqESXgyCHq6VwMoatoQABK2TIBhwdtu1cOMBzta3QuRA2ZEFGFQ/Im6nVIHXJGULEt227iyLaQEZ+j3Yz6hEc05IslYxNLNYwhARyVS7MSSyg6URH0BNRC0qjcYIBVjhPqJH1mOh5Dx4vQu8wtcV9IUEnggOBq9+AoXEdQoWX9k9BXsKL3dhpIBmSuPY85DYsjjTggHtGO39l/nqimhmCISIrrUZ5z0/MxUEC/q85aRU7XVDy+90CvI0CHDAPgusrbCU7LlARZk9YHQCLcfOarRSe5gif5kqxJajp1aq9+31HejJsPn+fX5JRtXIEttxJuE/2cMAjyNxF4O4GPj4FScG68Ta7VqpLsZ0T82v3ta9BnCL5UQQjow1iFF6ldZuXiMCRtQBJxDtU+QCs/5jZ2h9rjhrRpSCAGCpBArj9Sjdc3a+zQ6o7M1U1a2l3jXGPjIPxNgKDaqZ8niMP1wCvoOMl84Ugfu71qUH90tEkCpG43x1lLuQOlSkc9Yb+GucH36S89PGTs/4DnO7ZnhYcRin8uc3qWS4kjeQNNqenmHfWnfb9zq9vB03Z33MpOh8oRvRfRegmN9nAcgVzl5VyN8hWVCmy34O0WKEKJyqW0uSqlpte2rVaglobCv5jo/GUVOfF3p01KSrcW9dwQfUGPu2af0R6a6HsvKF6aIeL0sVBD0EWUL6AIO3uuhpADEBuUR2oXqnIFHVWTz2GGtiNHENdBaSbC3DD3O6TBslQCIzEqtTnA90+Al8vts5VOjRGewcymG+Vqp99qh+dVR3uF4rWzVlicsO9DRDqfnFLnhwMfG3XSxc55v8cN/gZrVU77jLyZMtcqfrsi3wH0jdJNL3eQ9CToYUf11+bXGIo+Ivv1muRgvZYKObdRpM7oXrwSBEHPDD1shhoQalHAq3O86s50LCD4DT1vOiW0KwyqhFTM9yC/vkbpCK84MKq19iygLABoiGLzPYZQccO9/nRVvT4nINCvtWMMUK03364p/m1/6rqlWpVPuNdu7tJrssIqVHUtzWdgubl5RV6srCg7tMEPXekq6k13Iqr9UkJJKuQB932NwSLa8nTq1Md+sZQafSLQV9fpmphS2q2qVR/c/fpYHbujr9QQ/Pa3VefMmTFUzL56hXtSajSC6yXQ2812sP6INlf1r2Zqf+uy2PU7wRun13FGvRr0yGmRmTu9k3OSo+XT1M+VNo5TJ4a1gV2rVdpE2qdIk1qHoMdTK/Cr+lVSBVDauAjX7RU4aHRWkW7Rr83mMNvOACVCAjdXjKi39/a8g89jz6Q+zKrvTJwG/EGQc+NtTmu+77xxTUyrUSnRVJec/nCQCOk4ts+saufCEWi7BWParay1+Jj54lyBCXKsjVGbDiOLf+1MFHvo1jo9nVXGdX7ezB/fEWp2sZsvkvm8Oj9xGDP4vratZvRzVPRP9Z+3UdjjRydCq6Qzn3bPPGTtFMwPdgq2BKlGzOaPt3OnKehyNBnzeNn896jnMb4Yriva7o6yLqzb/VEwz54LdT7FZZD3LfJAysx/OnGfqyj33HMPnvWsZ+1sP3fuHL7zO7/zise77ITO3/27fxcvfvGL8VVf9VV7P//d3/1dPP3pT7/iC7iWcsUl1yEwbA7cFSVz8q0hkaM0KqV40NeuKdKpRXn79qdxbnW7B5BtQWh0KlwZlGo/A/mlpz0zJtSgUODgl2RRR5vGLBz/x1sJEvlxs0Bv4PGHBY2N9zdBg0LKkz8YnYxM0r7GDBOpO2VDP3myBUvQG4m6qsDAEhidyMejsSKtiky2TOBNFgMbJ+XEHsykLKuo8WACGNgeDxDvyywPAyPcG+MqvS+4aNl4EafPPDy73polCCX9Nwg8VDmf0qpA6dXSVntxBI4Hc0qLGSzt1YGw8PPn4d/JzJHWS+ewfyoyRhckioYKs/EsYL7v8+tFvObW/iTfflIyZ0c/UvBWSmm0a4A4aMZ9Pw6BHkXpEraTUBBt44JE+mLQOCJNE/YJl9KPBwCbrThwdh+RCtEDOfK7BX8kyNOegVPLxWROEkoTKvCycaE4YcSgkvfX6J6NjmfbbIEYysWZtMcGijqsso8HhhKhHEiigybeoQoD9zzWFPhnZdEk9G7IOq+EeUOuqQVSPDhjSR1zXjP6pKgGV+uaJWC7rp4A5kpCKaP6xgB4lF94aMGmtJF96prl8VRyfaPjJAFmAjAwyBJDmVGJkZB0MaknKHI9c379feXtTgWT+s/7F0yngpne+gI5hzl1EQCNMsn0UmwtwNPW9zk33iYJXOwGf7kUkPXUsf4XZls9SBkSM54k1VADkSR4oK83SS8cApq9nS8kiQSAcSwUkNY7pwN17EsCOe1LCv00dLE5GGWL6bW+J9nseAj4QhaWYAnQGp83qR65W5GoBYSaqYPxnZTRki1QesF2Xl4lnSM0kVK55xL3eSYswozazYNQ8OBTDUmcmoEywukTWc0/SH0RS+aY+bBkTog523TCBhDxe7M5hBrFCyMkbtpi3PV+ltTdS7W2Z/Fpx3Dmlsh5cOInV0XmAaAu2Evpkn3k7q90dEr351hKvU2PSR0DZuh8wLW2YK/1t3MqJrXnzEI3aDROxslvSR0LClMLEOlJ2vlDsDcGjahWDybxkFGHQHEIoKz1emu7h0aTJNdkyZw6ENh7YpHPF3UglLXonbzz7IAIs9Fk2LBJvmcqjDRV1Z9dA8djQl1n1FVC0aByo4eRcxstqxwgz5F1bAF4UOczd3Rw4ZQ1t89PoluR59HWM12CSD/ToZvvo3rNgEz983Nz+9uo2szel7neP0Rl3m/2SuXc6nbpVZezAp004RIoR0l1i3I+ETx5uULm8/sG6uwriIReca6D82SO7R8TugE01QV4YzIn+NvdNahdtuAv0Gygrb9NIp0x1Vl/CEDtPTUbmIDO2bZxB0JZyT9LnPgx1A5pwErzFWS/rnekveOjzIsx+WvBUQuYWq+cOhA4JoPts6H5++E2/NKjRLrmqHeE4FszOWjDE0sU7ws6F7e/U+F+7qJ27ztr9mR+iNxjucpBxgdD5kAM/3mFgOjLOle+te9XuUecJnHQ/QxsZbob6VHN/FvfOv0dPMg7SDwDN+aWvLF+nACcOh1osQKz0URKZ5pcr9n0H/aONcCjrYU5K4Uh7F0MVMi6Zq65vYcNXInu5Y9JRKcv6/xK8nUz8Wy/qAdA62MzNt2QD1RH1GaWlfrWgFC16znTFPZPQF2j9dhhOR8p3Xgd7TysFRjUbKbZVTt/uC8HSxTImpvaPALdx9WO2jHmR3c6a0Br29eHmM0uJOsKG2OPG7PIgyiE3o87aZ+rKV/+5V+Ot771rfiO7/iObvvP//zP48u+7MuueLzLTug8/elPx7ve9a4TEzpEBL4UEnSRRRZZZJFFFllkkUUWWWSRRRZZZJFFFllkkUUWWeSBluuwh86nf/qn43u+53vwq7/6q3jGM54BQHro/Pqv/zq+/du/HT/yIz/i+37Lt3zLJce77ITOD/zAD+D4+PjEzz/zMz8TNaLYL1Ne97rX4TWveQ3e//7346lPfSpe+9rX4vM///P37vvOd74T3/md34k//MM/xPnz5/HkJz8ZL3zhC/HiF7/4is/rKP59ZdxeLlIvihS6EmTPudXtUvZtmXzmHao1oDVUvyhqIdC+cBFaFStJ55pAGTL+dgunQ4g0S5DPaV6REBG780oAANCm7zIg9T9juaqjlOSnNTyXnwCVilQSUmGUVUO3RrSbI+pzQ8TJ+RrVyrzkuS9Tt/uS1DoZjVCVbD47YJKleXnSfRJAqYIyY8gFU8lCJeEpeDvXLHmpFUFUKKDlBdpjNEtCC8eK2tVxtuTUKtIgHd7QkpUqzr4vrtRnmBWtEGs35xnoebM3B11QO4/f0w5cafYs/d5nn19nQon6d3uuw3uo1lychqTNC47uc1Rdbmi/9bpVyQBSnRP1WmkeKGfR0+12r94D2K3O2UuFVmHN0R2ha7qnFTwKKFEUv+pgqMAzNBJz7aty7J5TQwoyzyjXmFsjSK49wrhMQqlIok8YknMapImBpJVAub2MnACMVtnGDT2DgJTTfUlR+Ib8BzNoMFQhORI/Uq85XWPqP2sw+nC+bDqrcwYDdJwcVeTIWBLdpC21OWhg8FhRKfmcg4kalSLrPGBzR2oNyik2XzQqJp1HetqVgACMv8dX+GI6aUgje7azYzs008NMrHLmctGAhvJL6wN5zyuDywaslbBdFU5VLNYetKFV1dF61WjV/EPaj9CN1GCDlmUObTsBorcAOgo3s+86P3hljs1VsTqHAiIxB8hY1RerVNE3ADQA2CoKMAt1olTHETBJpdkOJZPtmwQ1l6baUyeZGM2o2zlVv4llGsrqhtmUYyhlDj+1enYvutaftV17q9CJlC+ObswNNWjVOXW0+1FfxJC2ZliDHjZEPjf7ndD8g9rre6NMDPOEjReu3eUk/Q663FU7aoWwVd9ddZLoB0hidQ6l3UnqwarOAXAidcul5Gy+FWm1kkqbWJEHeDN0q4A1XaVxlO2DVucYWnjIPVWjjWU/fQ5o/jg75Qv351ekMKUETOz2mKxxOiDHWmdwowpR2jRBopuvqvOS0zyrrzujfZ7bFqdQUb/JkL9U0GhkGIqOFl3jLPbUK/s5VhMlr84RXYejjp1yaQjXwfJ5HQCrzLXrcglfl6PvVZ8NnbxDejCzp4x2ftfRuHbhPf/CXNhdxnzqVEob8EMf7TuvzOmq7+SXvbY7HpfGQZqb27tuDBi2RlYKYrfnx8cf07xxNt0i/kGgLCenW1IfOykvYLTp+6iZEkkV3nzNvac6xxgv5Lk0n8D/JpL1tvnLWgXAZHSH1OlnrFjFIHpvdokJoKjLvKeaXq+zp1qDo/erVgBRbVRlMPupdjdW3THpUkGfQR3I6aBSYaGUIvE1nOYswdezNZPbbKNZ88s0GqZA32QPcO4Tx/WxUySaG0ahUs/mBtsvASVU/1PBrGK57btDxUpKiZVtziDw9NB0yjud3qPXD5rN5oq63c+CcTbdgnR4CFqv++o6i1lFu2ti12x6WKG6WpvN9bV10GX3U3I/Qesc4HrsfrnZOMi7Irci790EecmGsEaw2Fqm9t5WUyp2nbYqHTk34OvumV2ev8cE9HZ75psyNbtm62yvrIvnC+PbtkhzShVIGlo0vyC2YLAxibTSbgCwVqq1kWWtXEjoFktjnensLNq5yShN4/Vxu/94z2nqj410a10FYupd6/lzs+P9+gFwI3lY5GrIfF110j5XUX7sx34Mj370o3HnnXfizjvv9O2PetSj8GM/9mP+NxE9sAmdj//4jwcA/NIv/RK+6Iu+aO8+r3/96/HCF77wcofEm9/8Znzbt30bXve61+FzP/dz8frXvx7Pfvazceedd+KTPumTdvY/ffo0XvSiF+EzPuMzcPr0abzzne/EC1/4Qpw+fRpf//Vff9nnBdSwMHDR0u6Pkd/TArm0WomjGZMkFtTVXjge9AVAq9VeDlBzID2Zo308hGqNpFcD0Dh9zcnU0lKKZaiVPSgEoAWGzCgB6HriAM3RjAtLkxiU2lnlAM53XWURmI8KhvMJTAnbFIOeM2OANnF2TlX43JMrNilrIkXuXRI1REKBVHUmpkEPqCSLU03qxFXUVDJyql6ebmXcKEnGL9rX5igjzZ0u1uuoFBI0ckyaOYpGD2f3WQf0ySk1TnVg5Knx6jvlg51vVipvz9Ac3ngOO8afK2bnDPEfBjpDZtd03caGZpRrsonaZ7NkDqV+X1n4NX57VHYKB1qtNBBDTT9CcsXXAzGROg9A7ZlXzqZbkG+4oZ3fdg36yKW03k3ugOpYRseSc0jm9AFcLyvXBJQldTrZR81YY8BG761oUmkqygmsAeYLGjweBvBqBE6tPKjRaGEgiVMP4OgFW2Js9l45XRLQ+kyx6HgqLL2plEuXUnvHqQBcmlNoDmnVr4BHGcuDLiN7cJcKgbZJHemgP4AkfyfZkRMj1eZYYpL5hAApA1eKNXFSWeZAS+YweXKHthIk92Av+mu2xWdHAzEP+ASH3J9b9yDt2aEFpzg8f3u+DyOJVA8X64VhwVdLqqTDg8Z9j9SSmJC5xKhajOKFVsKzHSlczuZbkW+8AXR4AJjtDXzbnuCxZOwe+8qZQNb8xHQ1JZDOUQD63hox4au639FJxrkoUjj68aWjVaU6AJPOLecZPA7AmFEPRwCS7ExTdcoXSuwc3lQaTSIA5d1vASHX5QL5hdp+qQDYtls2G8Ysz8kTrHO7xhpoQejeY8EVW8BCEsyi5xAADNDph43pC2HIvqLrMj/EnlvSTwe+zTi+kVioGuOc5sFsqP8RzhmTOpgtDMO17UjwlTrqjKDbdovXozznUV+DIQIH5rIvmXMSIOsScjbd4j01wNWTtA80/UvXOyf21SDpa4lxbH5Coraf0b0MQ0ef5vQsnmwBMOozizbbdJ9C/xv9R1ObG1gTsaS2nMcBNGbUA+3J53027Iba767XBLmeiTt96PrnEJRCBu1dZGjPHPVjAdAE5K1cZ5w3LHPCCeCV3G/aVKGB1AAx6/ipsPf58D5YZr+5V6FOtw0MEucltPnFA9TUqFxhAe/4jOySow7m9ndnnz0oP/un2y6mq0Ix3dYAJ2CErmu5WMC3gSol6rVPL8+Nt0lw1gAJ1gcDEDtryRwV6X+nw07bliz6GMR1FuLzOlUiIHqu603m2nzveSLHqJnmweUcemn4TVBL7vhF2PpDbCcPCSgsQKqjrSY7M+rh0PWw8sMtmWM+R1KKZ6P77u6Ygo0JCRXS5EluCRSCJicGtbNVrLIEckMvGt0PaHRvVW0zAAc2pQ17EtgSPKZPaeKmwwYA1TWxrTGooNl8deu8zUULGfjaIdyyb4/0dfO5oQdStCR1SzaRnpvbcbO1oSef9R58ffQQkJ0WBifZbEBaA9yf8S+Dpu1in6XDQ9Dhgegq0PvQnowJvrhTnoUvwcGTCY0zjPr+k1GYA9BxZsdjwtZBl+04sc+qh0Riq4ncjnNK4FXGdGpwwIVcb/hp609LoOj17oAsoqKbnYu+pxnP6FuajtWwDWiThupBBDOwxapIEib5WBM60Z+HPFqa0NOjhRBmmgBiBY3pfq4vadd3Zj1fF//aJ3HumFGqdq0hwj3Gv+exsggYdZvNfaJ5kQdf/Pu8xD5XU973vvc9oONdsan4ki/5Enz7t387NqFa40Mf+hC+7Mu+DC972cuuaKwf/MEfxNd+7dfi677u6/Dpn/7peO1rX4snPelJ+NEf/dG9+//Df/gP8ZVf+ZV46lOfik/+5E/GV33VV+Hmm2/GO97xjiu9jUUWWWSRRRZZZJFFFllkkUUWWWSRRRZZZJFFFlnk4SJz4MxJ/x7CcsU5wl/7tV/D8573PPzSL/0S3vSmN+FP/uRP8IIXvAB//+//ffze7/3eZY+z2Wzwrne9Cy996Uu77efOncNv/MZvXNYYv/M7v4Pf+I3fwKte9aorugcAACWnZbpcpM4+qod9cm51O2g1CuLeqlaARq9g9E1WraNUZ07NoHLz6efjbff9pP+d1gegg7WMsRX4ql87pYZ6ULSPNYUkQy4ZIrBKzbFTKaXU0AGGEC61r7hhbiXh+yirDFGUkqD5DTFkNE5DUlRCOyZtGcORNiBXJA9ruSXQUHNeuswNTUQEGEofrE3eQiN1WmmlgDYeZ62nZgbSUMFMQrVmmXSt4HFkXiVMmyxoP71lsFT7cGLUKcvpt0nQxPNXiNu4AlWyyhpC2sKbzEp2P8CDuG2ThsiENIWqnaQIYXsujIb4DYiBDk0RnqF/XsPvgNND2HNGbUP4Ldk1Xuco/h3KNdkoP0+qzonvsb7vXIo0TxyGVmmzWgkSB0BPP8bANDnFklCVjcB22q1yA3DzwXPxtqOfapenTdWF3k3HzKqXtVGbdde4Dw2UVGnQKoMcGdg9kx5NKxV0uf2txzHXHrFk84ehAm1OmSZBRRrN46ANIweZZ1nnNp5/L5UFeRNfNuZdpIShZpS+0a+TFZVrCEDVLw5Imgp5HGawk40XUXaJpdk5GSKIQFYSHdF7aEgnpzFSPUUhpC15NQ1nAiJtYtJjFMpHE3lVEMjAXqxoJHLai0hJGSt0YjNWf0b2HPeZNJr9nH+s8+F1W3l3mbK3AStOtt+RhgGJ+mqcLNVnguIkt+HEVapzjOJF98033oCbD54LUEI+fQp0+hRwsG56bLQviVrVzh5aFRfmgKpTOHakT7WqNrtuqwIApGooUr34TZnfMaNHrdwq76K+28/jjVBCrVcCUD8YQHmY2Yg2z1EFUqmNao0h9IgTIzGDc1JbTmClUop0nmlib3Js92p1N45yzdTm9LBrpJSpQ9MnaPWP0dG4v6BzC6xSyPQqoHxN54jRGr7a9WYWVG2sFs4s1Xesul3h9KuxCqirvINPD/qH7h4rBLn/TJ777t/uV9BszOtQKGfQxSp0gE6X4zbKF6++A9QnVx/bKmEBOMLe3qebD54rFTulfEzVOmfTLW7TnabVKI2tAmc1NpuZdD2yWrXKHPW/I4KXU2qVKSb7EPuG1tdKYtpMguqdQvWd7b/ZqL5WgEfQkBT5G86jqHqp2mOfl6wCh0hpFc3njNU51GwmKNgYuxSt2k9FK28Ar6ql0ir6mk5npT7SSp5EqEMCTSzzga0fVLdctajXE/dzS9O/zqbateeZH2zoeR17l36q9z+6eQL9NcQG1M48MJsPdqp/bB0QqSEvoTrXSp7zqK/BQCNaqWWwx51Pu99OsyLyzabfUd/ibBadzY6VrwBAWi1vdtcoQa2SfBhA09RV1N4fIX3/aBgAo0wele/LqoMSQDQ0e2vrhyGEX+LaG+jpmOxzBPsaq+8AoIj+8pjbsUSyHRWJCHUtTB41U1edFtH6ToNIobm62k3Xw6DX7R00Wkb4u10Tter4eLoKt5NOxw60tbZSoRIBSatq0rbZfGJ7Ftx0jXu98iocWxewVr3M9JDjXBHWIUattoOyj7oYUPkdVVOYP7w6f9Al/xh8ANozvuqyI/75IaDbJidRou5hy+CaLmmzAanCExufhd4wEVAKzq1uR6zOjTE8q3bdN3Y6dUrtbqt27+JcRkM8r6YxqejWB35s9MmNOrm76ZmPn9S2GiWifuaUhGb7agVpBTwlNJu5LaLbQwIzI41is+us8ia+r151RhB9ttKyeK0+z6C7Hp690zZXxPUiFXnHbQ5wesL4DpP4xUKTBqmsiVUzdn3mc1P77KS1cKzE3amKRdNNr+jndu0uZnPj+Ticz32pdolAsO0UzhkrlcLj5fBsbL9FrqKcFBeZ73MVhZnxMz/zM/iVX/kVfPCDH9xpW/OzP/uzVzTeFSd0PudzPge/8zu/g2/4hm/A05/+dNRa8apXvQrf8R3fsRtEvYj81V/9FUopeMITntBtf8ITnoAPfOADFz32iU98Ij70oQ9hmia8/OUvx9d93deduO/x8XHX++eee+4BoEaHzQBdeYTaaFeszw4ZL+4wIJ0+BRA1h7UrOW0LKefB1/JwyTZYMGYFAHjWo7/OjUu66QagNE58m+HdgKrD6BQr5mDGhM2co98Cw8GZBCBOp1FaxF4d4T66ILVSvVBKwBaycNQeG7xegXMWZ3PIqKukCRxxLp1SKCZudLGV0NltT/LIpEk++UuyRWkZKkkChTT4a0aFSBIyVcu99ZugQbMXiZGyLiiZULepJX2KrryURg2A/KxoliMGWnySl4UFKpA2Fuwld2jF4WvHEwM1WRBNx6zNca9DswMWcI5BXuihXaDXPqPwMywk7ToQvk4yp6LO5jgK411jOUm3xaGaJzraQgjAbiInJEZinwcy/vq4+Cq1jRd1JugXAS0RM08Y5wRsM24+/XzX13TmtCRF7NyJ2mLUevdYUibSt0SdjDQBNh9Rf9/RefP+ObPnRDFhWwDe6Iu2nYBpAtcqQbCDdT+XxAWoPZJtAQ0JNCWnS7GFEG1D4Dy8w7HMvAvSxoCvOaUWH98SaN3mEQoOVqrN0fTAUkU35wAkdBwEScLEgCt0DrJEDgG84pbQMao1y+35InfGmV2abvZJVZYePKzXYby9J+mY6nBVyrj2fOIz7A/ZR8fYBXntGEZbcF4jOVGvLyKXS/dwbrxNgrjDKJ9RQjp1SnStBH4L02VAgq02Rlz8GKXLbE6hM6dbYOfwoA/KjKPbcwc/UL+o80CM8WTbvFBLm29ikrZU9UNm35vNFZE61fapVeabmMDebH3yp3HYPSbQS9JmAuncxZTaex3sFU26rwWEKiSBO1X9vPqi1nj9PYhk9KZAs0vh/qwXzj771XZSQxbsIVWjSqPORopeU7foAqFbVPpCMfd643OK9uAzH4EseTtCaHGPo63QS6dglvWy4vgx4Sy3RK6rke5m596NLie13w1bci3lRH88J0/oWHDmUoEhF67AMOLc6nbRxxA8NhrFZHo40xG3sYFmmJjBtbp9NqkXjrrg70kBKadaNpCW0rUiJ/EjxsjTX4ItT8BaACM7c8Oe39kCTuYLQ7/jIjRqzAAdF6TjrdjuUntK5LhuANocZHNPZUnqzBNGQLMXmoVwnykmbjXR4rYuRb2xgBL7NUdgVAR0eCApk/gFpssI86aNW7T3VrLXhdzfiAFXMCSY5AFsnV/MP9bzVutlYe8L93/vBKv1PHEO8Z478fWd67cO5XbafP8wd3VBOmqUTg7uuIZykl6ncQBxBvYka/dRMclBbbus/xhg8TlvPv185DNn3LYxV5BRjUcfP9POXCf76uIyJwBr5Mq4+fTzUY/02rmChhE8nUz1BjQdb7556D8rJ2v/PGicW/A3+uUzsEVHxxT0HrUKjWkVhZJEqAR2kQm8GsBDAg/ZddZdwpxEdwa5NumvBafs63xH08uwIOyAB6QAzAxfg3P3r/XRga7tpX+O3qLbbPUTAriCuFGnOZDTdNSeF4A0BT3IEFp0mxdigjYAueJ2MDpqc+up4WOqKY92HuHvzr+O+hd01Xex+UdzHxQoGP1rr/1YbLe6Zyl7teViMbQTgZOYb57bXQKG8cSE6tl8q7croGCfADSfFnBaZALcN7d177NuegEcmGltB+Z+gMW95utq/cx9To9NqU7b+xj62xktm/ntJiclcizxyim5PwyIjkvCpsh5h4T5HCGJ4Wb/0rYKlaIlVQDxLWOii9U1Mv0Eu/5HNK/EmEjCXEntuVwZjB4VbdnT3mXTEXtnVYdTQbdsYoubAb3NN5sXbF+0tXWQxG57rvZLfyzPbLYlahlosQfznxHuPUhM4Mq+IXkepSrEbJbM6XSWZz/n17/IVRGj7rzUPldTvvVbvxVveMMb8P/8P/8PnvCEJ1xRDmWf3C8Wvz/6oz/Cb//2b+OJT3wi/uIv/gJ/+Id/iPPnz+P06dNXPNb8Bpj5kjf1jne8A/feey9+8zd/Ey996Uvxd/7O38FXfuVX7t331a9+NV7xildc8XUtssgi17csur3IIg8/WfR6kUUenrLo9iKLPPxk0etFFnl4yqLbiyyyyENevMzsEvtcRXnjG9+In/3Zn8UXf/EXPyDjXXFC53u/93vx3d/93fj6r/96vOY1r8F73/tefNVXfRU+4zM+A2984xvxjGc847LGeexjH4uc8041zgc/+MGdqp25fMqnfAoA4B/8g3+Av/zLv8TLX/7yExM6L3vZy/CSl7zE/77nnnvwpCc9CSBSqg8+EVVwKZHKHqlkMaqliPjjUgTxXgOaFmgUbA4PYUEbTVMbvGolDrNSPq3a8YbYjaUrrNfifzP46FiuabUS1DnQysANkRDRw7EKx5unJ3ipTDyXVQNoCSxKbaXt9nMc9RxoSBgDQg4JZZVQV+Qlk9YIWRnhHEFkFAdeLmnIAM3EW/k4GzoWAIqhfZUmDVKVQ8SCnAWEdq3KviB49Y5/tk1KJ6EIHqVV0i/PqZnkgD6rz0rh1J67PuMEVKNh4oBCshJxliSnN8JLkFL5Sc9PSjOhSB7S50Ph1Zkjm7vm6anfZ28Vj1UiKEqpK1W8yhnsi8nFdLtrHBwR9DFZPG90aDIMfiyX0tA/Ni4ZFIz6Cp2c+oqXnNEh9VQviGXeIaBV0QGoAQUFQJBHeh+OREwANlt4c1Wjd0jUUEv7KNb2okt45xnJrnIu5gpstuDthLrZdEiqmw+eC6eJsWeZk6CPiRyJzKNWDZaKtO2br9ZVa2pMkyD1OkRRadcnZe+pUS6avhVGSgQuUg3j6JskOqWzl7NVxSrACgBDQ+GkY/Le84JcajA7+cpZkDgDg4cKytzQRgQAhLqqTe+KDmz0aQnAVlFfA4MPKmib2lxHaKC9gE7q6OcMwTebF/f5IY6q3IN2li9g9/OucugayUl6/Zybno9f4Z/r9r0kvdqc7sEQtfaZ0gm6rpWAmI/6E+lhwliIJdLM4M1Gxliv5TGvVg3RN296nCB+gqFwdQwwi974fBHQgHa8/WQbVytqa2lzkB03RzgCotebDXizbRRT5c2tYfzhoVQVWPVCrCwYB6ehSFvzJ+KDUWSxVxgpMtqQ/xx+HxLqMHS63yHuGVrNhO75URU7yAOA0uifSBG5jtBjRj6G08QIik6Mr9HE2PUb1YnvF5B8XpkTdI0qiY03NLKdMjFoLVRzXKkvbiCZP6CUE5y5QSqjTVYfAjPdFoQ5vErYaF3n1QftYnRff57XFhZ4os3OCea/0q6qiZwI9EquI11DctPhHVrS2Rcyo0QGIEYg2sdakVYrp25z+rQ9ckd9i1DFQG04kfj2rJV+KQGYRC9LaZU7aj/3IfS9KbP50aFax6nMjJ7RquA2E+j8MXDhKMw5Y6hG0rljHLwiyCvpteF4mqqfg4oh6YV+hEIljz9NRrPZVkGvFHCut2RVq4Ei2ar3TAeK+gMRKavUbGSfFQH/1UF8A7LnMDGGCtSJUQdCWRNooJ7STFH/XuFmvm8QHvRfeC1qana1s6Un2GDx99HZ8+64OM+FeWuHcu2E8d1nuMYo/ovpNdGwtxLcJeg1zXR1Bxnt73F7hznVprux4iWHbYBUAMZKMgCMAhoGpEPyagAuBXx8jHrhwkXvmaussZ2dQ6nU5Z5To010CsXcX9Ps+naoFWd0TKRMFGkztfX2NAHjCE5KaZz751dXGZwJdUyomcAjdfbTaIyoasUKyfvaKH973WaSapiyIkQkfkeLxIyq1W7iW8uHRp9myH0CO51pHaRaIGnVXCqMuI5tNjcsZhNapZD58TP6RD+f6fec7SPeW5zOU1e835ZJdu748zKko2NLs226tHSKp9lx1xrJf5JuU84gyldeUWsfZznm5oPn7hxnVMZuw2cUw/FcyVoZhHgYhW1UB6EfHkeppomUaR73QtNfi5FtJ51bqff/qzJ0pMH1PdKycTQks3hDrM7hwfQfwMTAVJHvOZbzb7buF3BetQofHZNXg1apJ6nMUWpW2lakSj6/iu+qvkEKdter4Kj5lECjIVa9dEYcAhLYfXG2hTWArMQGdWhzidMRekwrfL8bdHbPGHoIvW3koVE6xviYV8RFnSKdO/boplfpIeyvdpzN7bR5g/tju331wnp71PaJ8xQqGjWrPQO9D48PXON19iNN/N28xD5XU2666SY85SlPecDGu+KEzg//8A/j537u5/DsZz8bAPDUpz4Vv/Vbv4V/82/+Db7wC7+wK828mKxWKzz96U/HHXfcga/4iq/w7XfccQee85znXPb1MPNFz7ler7Fer3c/UMo1CQDc329RjJkbl8riIEaak5hniaWY88VpJhAGSeJMkziV2wlv37xJFpFWNqolpACE3k0dWw9I2djBcWWuMpHE3hyB+qULABW7RvW+aDam9wwpSsumQZ7MYoisZ0hKwOEB+NQadTWARzFg5lzOg5DGd5urDGll4JwgFG5h30bBIP+GCgCE7RnCdBpyLZrc4YGBsSIPFSBG2WRN2ogHRUp3BAJSZpRtAqYEbJJcw6pqkoikR4bRpliwNBqAExZpqNIvw4yS0zBFuxDGyBv4So0TUFesz4KRbJx9fXviY6q9MQYAo1nbW1YYned5nCKM4dd9jZ1M4GTdFj7+mTMZEw/7AkPBQaS5I5pmx84TJV35NrXtsrEPDE0T+OhYFoybjQRPV6uOhoFWQ3+dkQathuQOautZU2qjcDSOfqVBtGNc5ovryCdsVGeDBKx4pV//1Gqdz+Zbkc+cbuex+52KJnbaQpR1TOJWPs6q38PdGzl2X88tItDRBnQsmUpeD6iHa6dnqmOSxWsmD9LkjTiqRsEQKZmccqHI+11HgFfo+KrdadzGialfGDrFjJZaUyFgm5peF9qrl0xA2pCPKbeZlOObQsAK/fG2kLS5hmaf2YIQYT61V9CcybCI7JzO2XE+X1zBQvXBkBNtNvZQqwHYSdqc0CtnJ8kTkp5dstcDwReZE1SYq9hEs8mAJIFN37fbFrhJotc8ZO39kjx4y5nQ9b1IAG0q6N4LHnjl9cozlFRr63cD6BxjekyQiIR+HoNY3gtsVMq4I7x98ya/9jvqW4RqSu/Ng2DTBBioRANqxAyeKpLOgbaodcoIB3joIij25zk6BrZb0MEa6dRh4/4HQHHBS3JvKfTSYRK61hh1EUecUUdS+guZUyw41PkbqgPmX9Tcfp8Hp2xRaqCOaj0BSIAZZpeFwkmTzZYwKtT6UlU7qV6DUbfOA7d6fRJNn9lvtN+NzlEAHuHaAezob7TZV5tTYCYXtdnUgBQnSkx8Xs5+O9SqtF+X57TITJK8307g4+Oul+WlpOufY8CSai8RN7u8VcrDnICDUd/3sE9K8o4k7W9D0msKSecJww4kAGDxr4lQ13IveVtk/iESX321anPP/BlakDxBg8cMbCtoggZN5T6G86UlY20MS9gkOLc/EsDrEeXUqL2ylGJ5kAQnJ0KarE+kJWnsWgAP+mrypqNP5LC9VCROevrUAF2A9A0ZBFCXJqCsgm+rwVPn4c8AZ0bRgFUdRdfjGsX48p0OrXt/go3V8X2eicCLqKdBdkAbwWe3hFB/QOv3x4Csc66hXFyvs6+Bu3UqsN8XB1xv97J1BPu8A16a6/2+c6g9480WfHSMenwkvXnyrUjjAFACT9uL9vew/aWPrUb8NHkrOq07WjInzlvxekLCxnTQ/7bL1bUzDRk0Fdm1qP3PGTwO4IOVJG+G5O8FgEaBRgCPmvxlRioEZkl4MomNHM+3QK8zz5qOVEbait6XgwwgoawjSMLOF3yA2do46of5umbXJSkr29PEyJv+feYYSAa6fiBUmlsSg9Pi65NPT36twd91G296ZufLgDPxBz8bsOeBXuI6w64rns/uf7atCyBbENiel/kZ94tH54GTE/1xIlgPO5cTErUnS+p0oothzfXcxvdnFPQ+0iIrwFj60QpYyYEe82uz+FfVLyLaxNiXy/xro1tPWYAQq3DzlsiI1xaTtUBHtQZAkjGJkOzzUoDjDQwUyYcrp1L0uaK7DztX0LkiyZuaSViALxQFR6oeqf03qtY0MdJWfHMeFWg9yhq7rEQ3BXRtaxRJ4jRfdI9eHaPZvLDGTgVdq4A0oa15SeJ/c1r0NKGBJnUdbIkRJnWlh3auGLj3RJM9Lz1PRzMXH2dt5+jmLrs9Dt/l/P7seHsW4RnZtXRgkEWuruzz2/btcxXl5S9/OV7xilfgx3/8x3F4ePgxj3fFpuL3f//38djHPrbbNo4jXvOa1+BLv/RLr2isl7zkJXje856Hz/7sz8YznvEMvOENb8Bdd92Fb/iGbwAgyIA///M/x0/+pCym/uN//I/4pE/6JHzap30aAOCd73wnvv/7vx/f/M3ffKW3scgiiyyyyCKLLLLIIossssgiiyyyyCKLLLLIIos8XMQSdZfY52rKLbfcgv/yX/4LHv/4x+OTP/mTMRrjjsq73/3uKxrvihM682ROlC/4gi+4orFuvfVWfPjDH8YrX/lKvP/978fTnvY0/MIv/AKe/OQnAwDe//7346677vL9a6142ctehve9730YhgF/+2//bXzv934vXvjCF17pbfTZfeRd1PpJEhquAhB0wgyV4CikSL3GhiZCQ+HNUEURUcCbDbgUQQ0drKUcfBwcKeAl3XbaWCpqjeCsmqZUsMFMk6IPj44b1YOXf8/SxqUCrB3Niv2s4GkCb7dIh4eC9F2vtTFc9sofXg/g1YC6tlJwbXxMhhIChuOKqijWsgYKBIWTNkA+6jPfc4ohQ8rSBKStoGmoADQllEOWqpYVFD1IqFP8vtFS7gSQNxy2h8nAqgLHyZH4sh2CjGVI1U1Avu5QlwE91cm+Vylk7A2lEFFDVg6aNq3JZNo2dFNEUsn3hVY6uoPomyGL4jXbz4B+cCY5QwHO9mFcxyiDlLCXtyWicvZIhwKy/SNSKI4RZY6629mPGypQq3OsUSOtVqD1WpulJm/o2CENrWqlVq8IYNSe7glw9D1vtkCapIKGArRMKwnYkfMG46veeJYr447yZtx88FyhatQqHFqvcW68DbRaId90ozSX3PcMqlYrHB0LVeR65SgjYgYdb0Hnpak6Jqnyq+tRKncygZGkGvF4K9UJF47kca5WyJuCemYNXgejF6feImXhHCglIoKm+72bS+Q5UKaG0AmVLUZrJPepcJ0KRwPvOAlRr3SO6ugZiaXpJCAoex2DKkAT9Qgh0/EZYsjpGeI8FtB/UX9h01BEHNl+AX3Ylaxfj7IPWX+Z1Tnd/idV5gA9slcrYxwFDPT7EgHHjcKUNwI9o/Va9GO9libnVkW7UvrBoy04DairAel4C7Iqu0kR9XZuM0ij0CSRIffmc01ED5pu70Epghl0eAAaR2kQu14hMePmg+eibiedj8Zetw25mEh08cIRMI6g1Qp8uAZWUlVBUwUdFdDRVhCGVmFwoL6Bj1eF7u2ej+IX7/5xqfY7fQp04w2gwwPw6QOw+0nyXMmo56xKhwhapgCGohZz218eNjvlkxbwuhg9W2zq7BV6+lXbMZHawVGIKdju2r8TxAw+TkK1VuCKaEhnt9lW0RAQgYLm53ZehHMEvYz7xso7JKPc2mej9PPdT64PSWlXv2Pl6Fyi7TsJjb9nLuiqc05CE6t/ztsJ9d77ugq2k+TceJtU5eSEfMMNu9em7zBvJ6FysUq59Vps7CTUrhwbILNW5rjPFv0CfaWt+o0Z9XAEDxl1lVBXCaAV8vaU7K90al4B65V9enwprcIgJ0EFK12qUyROk+i33pdX+zi6mEH3HgHnzwOlyvxy+hTqmTXqwYjp9NhXU+gxUqnDrhNS2Uuud5jM561OG+M0lYl1jmAQ177qXyutiIE6EdJW6NdMlyMK15tAI/gK+6ppZnbYN9v8ENHK0d6a79FcgH7Y1MbZV0k3rx70v7WiovZxgOtHcu588b00hRdD8s+Q9Ts++v+fvT+NtW27zkLRr7Xex5hzrmIX5xz7OK6d2Mkl4RL5hcslN/CACy7ORVSC4MhATEIeMo4onsWjEAhwgIAugufo6YXiBRK4IiEKCooQcYz/QCgkJEwt+PFAuS/BsX3sU+y9VzHnGKP39n601nrvY6y5duE45yzHs0l7r7XmHKOPsvXeiq99rd3/catzUtLqnMtLpRK2ShxiKgsAWcN2p2ilXm+wTFOpTA93b+uae00lPUSsgt7oSq9QN0mptoOYXwzTQacbzgCjRyZCWgVgFcCrCN51Wg3HjNwH5L7SybWvDo8ZtEuQwMg7xrQJpVKHkiCOAh4yeBTwpHODMOkcElRXvFIuXkwIZzvkdUQ86jCeRKQVY9oogt+315NAXdeW1Wuw9zwAOVfaN26qbrJTP+2pxPS1lCYgwyiXWdfNUrlTjwSAKuWy29JLybW4YmYzN69NGW6P/s+qd2y8Mn9ZZV/2Cr/2Xvick+fPra2qfdzQ1CsuTvu9kCVt4mNV6uyppNU/F+v10jdu92lozd3eBbPGzWJUO7StlqXm5rbziVeSezzNKVLLcU2HxwnEVOkRm+rQWWU8kVXSMiQB7K0V2jU7EogD+HgN6ju1abuAvK4Usm11jtsFlLO2BoislXxBY200CeKQEc5HmycA6aPOIVYF6LSj8WIC7ybQmCCREfqIdBwxHQGp51LJM6uQM73OLRVxqLrTrlezylv72VI9tj6sxwY5A9hipq8zm1jqkM4wd4V63I7DbTsC1H2v/I5qFziVabHzCbUiutl25ksHG665ztm67vfP9RoHeUWlnbsfts0rKL/7d/9ufPKTn8Tv/J2/E88+++z+iuQnkFe5mBP40Ic+hA996EN7v/uBH/iB2d+///f//i9uNc7M+XvEtj7xP8ygxJ7FrJFZH4z6oVIi+QJkf1PsNDDEDPQdiLhSraUMIQvi+HEteSPO/d0kdzRhE6oTSQRJEyDZeOwbbv6GPq4EZz2RMwxKP7H9uwCUWoI3G/DJsdJGbdZAVM5eT+bkVbBJ3SgSSO9hXjFS3y5QWmoNoAQrfQGZ1oS0BtL6qrM1c5BsouRRF6ucSClY+ozMatTBAqb19hNkslmcAGyUzDOsJ+BIKdkkM/KkfPmCAAw2VmWhqsab/V4DMQSnaIL9SSwQ/9w5g630tNAesf4tAmBqFoImweWLTDm22SjXzUkzftLW8G5+ln3bhagNKFFDAXHFeL4hsi/oCew3Evd8P3MQ9yVzHmfSXVIMNUFVhKDJDuaazElKwSIp11487RzjDqIHbFtpOf2zQNKgL0iQqtMJ8L5cMk52Ljpn7KOWKDpuTi2vV6CjI9B6pQHmvlcapnE0qjW7V56Q8v5B253qvlGneUAXOQPHR5juHGG83RdDipI6ljRl0O0j0JSs9FpfNgkBNGUEEeROdVPZcbjygk/qQ2ejVpvWhGmtBtd0ZHQqnUA6QLgGRSmLzh0T1aBpa7QBABktRUbtfyO4EqABABqhXOQezC0Gp/YfCIn26KFOYgIzattxm9fB+cKXiZyytnjSCmaUulErrdHtF2mGsVsDN1WvAcyCvo+iSt3XU2f2daPbj+NQtmL67SALSQl80leQhFMtef8KD5baMegSCOc71SFgvta6eI87P/fS/44rjYsnbBtOfZkmPaed8nG7LrfynpMP6FCWnGGbk9BFUIw6xjghT+rIUtfp90x6zimBcgLtDGSSjSpiShr0OjmG3DlBOtXkUOmhMyZN2G7WeO51H0K4fQulD9/lVoPGfa+AkFWnzmmyec+CzwQAO+0zRKlD2gTkQBhPgtExYp6oyQ6EqD05XKdLzxzbnmya5ayX1DqoV6gVzCsj6+Gjuke6dk/m4IsFm+B2iytgPY/qFNZn31IwFb7zRTBXosy+8PGF5/sXXSdA0p6J6ibIvjX7mh41AK7qKzBbLx+5xu8Tt8VF1+J8ud2bzHkXfzN4pe+1pKQ9NHqlIyz2/5W+Pe1cY2tyjAUwUfpQxsV+LaUZbAmwhCCJKG3bTvt2hdUKWPfIm84SLpqYKX05IgNjUh2cGjvCbQShklSmlEGDnXPKwDDosTZr5FsbpGO9Xk0gSrk2OlmDd8eg7QSydZ62Ezirs5mnoJQuK669cESU+3+y+x8JHBlppfqcjtkCuHovvE+Hzgu19xZN1q+IUc7N76Ena7Wflum7f930tmkBVjzVOcLvfeHdRzMftPPDnqTNFRsCvt9cF68Ew9rvwlW9bcfIS3DPTZFH2cwP0ce9yZvrxnycIHJLtTaOpX/uu7tvAUhtcXKEbM7gwKrPbtNar5w2KVV6Hnkix7dvjld8Af+87XNTgFVG3e4vyWDAiGkCXW5AxyvQydqSLQF5FUHuawdC6rkkZWhsJguBBm9TBmdBFCl9dtTezaBB54R83GO43WG4Fcq+POk5ChOGWwHxokOw8ZWCLYOy9tRpKQ1boEIN3Po6ZWs0AdOGylrliSOZCExixybQNRmNmW6avz3rF9n4sA6CbKna/LviO2dNuhA1ut3YC3sTOY2UQHAzR7Q2iMc0ZrbHss9GxhWfIF2vIq+utOtd81mRh8TCrujndQmc5bb7krZtrMs3a3vu+No7qr/qYMorfn4r7mc7SDEETQi1fbAm62W1XPNtzS59kN02tH68tJt0PZ0SggGj+Kg3utQOFLms17mzdTLlmnD1tVYEwgzKGTQY9SNQ7GUaE+hyQD7ZYLq1xngrInVU1z57B/l2VFBFMlrFbMCgURAv1WZOAkiC7h9qDIgE4MESOwKklfqRaVXnAqCdA4wxb0QBGZbedq6LaLDQGeq7UrNOl0H1H2socw6o4KrblJq5oJ0TUI9XPmvOwecNAWpSZ/H9Mn5WL9juUXMeIKN9tXNIj9ed5CBfJLmJPXT+0T/6R/j4xz+OX/ErfsUXZbxHpTEOcpCDHOQgBznIQQ5ykIMc5CAHOchBDnKQgxzkIAc5yEEO8oTypje9Cbdu3fqijfeqV+i8WkLMMzSA7EM4tWjZfUiilrZlz+czaRH3pcwTRomiqHyioGiaEOo4jhrkpvJmTxmyOE1Ecx0FgdxW51g1DnWGDPJKnHI8O2ZTMSTjBEwT8uUl/vH49+otWa21wmCJrnR0oCEM2jLG3GtlzrRhjMdkKCCpZZF+Co5gcaQtmky7fZd7RalKqLRJ8YIQtgSMZLRtSrOQe4GsnG6CUJoSL5GsSatv8kSgAK3gyaToh9KEWGE3jrie0bJ42a0jc6xJuiKECG1TNq/I4WmePS7FV44QaH6W5x2abLIjEmCn2CLsFwiEfUiCK1UCQCl1naGDF6iiFoFxo6StNJt9fA3ib7lvGWNPdc51+yx1cmr01HUQUKojR6qNk1btJSgq2Ctwmgbr7dizhrJ+foHn6EASRbinVOmSgEqVOAwzHX6UfCL9MN7dfYuimjZrrc7pIrDugSnofOI0UYHL90Kk1zmMVsnTIBStqaRSsThqkSBWYZO7ACodShUxyVNGuJgQzge7ngQOAbmPgEQkIms4iRmSpkW7tnMHADgLJVrkXDS0vc0Rs3LqIBUpa3MBOfViqlU9jkTiqaIPvdyX/Ik4FVPRvYrmaps1F5QlN+P453t0tz1eixhstylQ45Y20u8PC/JNRfEv5boKnIfRsFmF6mzNvqY6Zya+fjcoflqtVBemVCrIECNK0/OmAbqkVOYfccrUYagVAQBmDZ69OqdtqExsZSNOBUG1OiYlpTKz6hlJCfny8trGzh8/+9t4d/9+2AkV+kfEAKx6UOqAOJYKIooRODmu92oYrCpotAobu14m0PERsFkrzWKWYpso7VOEpADqAmj1lKIV7z9Afvm+3uZhAPc96HgDPj2B3D5R6idAaRm9YoHMxghG49pQP6kOSINE1OpaJCq6rvpMBVFPRs1aEH8MwNdY26c0PAUKLSmR2Sis93G2VsLsDNdTo1PzprB1Llo0hG+lWWddK11Pfd8yB9ix4JWKdr5ObwOSV715+rVyzZr9kB2uVLE+0fru4mu007Q0NjYx4T3r36G6aDa7pKTvp1NB7UMRN3TLs++YCl1T0e3YIH6NurA0TTZKlaJbrS1i1XiOOm55eRhQnZFQmjBLVBo2DgyK+q/YvqZHALTKZTeChgb1bPqGGCCbHnnV2TtvuucVcQCwCqDjCBozwi6Bz7ag8x1onMDnW8gqIq46pOMe01FUVHwgrVa1woBCLyNieo2C4A2GJK40LVRR+g0lY6m688eetaKgpV+t6ycVmxYAOBljUlNtMKNJEhT6FGFAovkrwW3jhvpwtl43iG3/rPnpc8SSNgZAtTtENySxbaMu9De28g64qnMPq6RrfeQl9fFSrqNWaymYXFq/OTCIeq02d73x9btUx1uTdT9GMueTqDJlANWv9soc12s/vlfq7pOWIpVNHyWr7zCpz62fa0UdX45K02q7e3VO7rTiTYJVtwQq+pFWoaxJXr1TKl7K/SDk2Ok4nVKFik1vWu1aaZeGU0YYBN2FoDubIIkQz7M2UF8zphVjOiJkWzsd3S4EcFtq4n6wFx1naMWQ+8LSrLm+S2u/i+uazVs+TnurpaofBIXSbaZ/rT9A1T5frsfFd85AS5XaSmtrU6OuxWawqbSlmCpz0KIaaFYJcENh11foioHrdXKfOEWh/T4ffI8+76v4cb12m7nEzBYVNhbj8jVesNDhVkdb35+oVt2HZq1uzotEjLrazjNJXbeJQMEoeHOj26MFvKYJNAZgR0AXIMH+GYVa7hk0iTI9TDW2JJGRI5vdKgi7pDTmQK1oT6IUxquA3Fn1julEsX/Zq0bUXgyjIOwE8SKDBAhbrcCjiZFWhGkDo1dsli+rbJNYdXRG72++qNvSxd9cvN+yeO+9OqfY3Uu9bR9Zskftj6FZo/0cynaLOaKM6fd2sf4u/edllU6p8oces1TmFN9iMef4eS2p4A7y8ytNrOOh2zyB/ORP/iT+0l/6S/jkJz+JT3/60/gH/+Af4Df/5t/82Pv/5b/8l/FH/sgfwV/7a38Nb33rW5/s4HvkyzahszQSr0zqwP4kTzvEwxavK5QL+n0J5gA1odI6fKFD29/Cgz3uaMqe8lIPUF05Xw8kG//v7By7ThfD1un0xbBxcltHtvT02ayVpuXOrdqDp9feOXnVQTotCfe+OYBN+B0hdYS0ZjUUA9ToEkImqRyhpItSCbiwlnX6gpB7FE5ccQOrWSRK2bcHXSYC+ia6maHBTE+2CNQxhSjNBDf+sQc9gUrXFtVwzr0UejdfCDwnRonAg+6vz1ZKEqftkVESOcvAb2tstq9Wrtc3o44jvSduQM4WxtaARHMsYF4S6kZ2a0T7uM3+Jbl0Q31IoibJcfXLR+2sP1uD7rr9ePF94aVfWvr2t1MbOte1By08qQvMncXFHFIM6PKTKkVEe/4xaBDbnGIxfnxkUZqJL0SIQJuN9sRgDQCRW0veIyNqQhoWgJWcQSnUe1IS2QFYa18dHtTrk0izAAyPWcfywFZSR1S8F0CiGuht6FVcF3my+KwnThtd4xGWpLX5I5hRTpoYdsOQR4LOCs1tSHXegAeHzBHU48wpJNqeVSV54gYsYz5xFW8Qc932uc7mudbBm7E3tYYyY2ZozpI7NkmUOah1PlHP76YJMeFajtmH0avRfJ2+lmrtCYLDRFx0Cl3E3vnBHDjXaZFqwUtBOLhOkNkG5jiuVvXYHhSKoa4nfs6Q+XzTUCpel8ypJ6FOL23WGmjuG8o4qlRr7tTKqq/66Nc3m086PccYIV0EXwxNrwuuVBHJKJ+mpP+yAVqYtXVOF9Xh9e/8mhvecL/fTAmURB1WW78kEnJUXn9fP5WjHHDKJr3+mrwRUmCJB2lT33CGuzO6XE8Xa7NQ1eEZzZJAky1OvUY0dyox19mZEGYeYaGIZJkHgZbOigNP/EAZul7c9DX7OlmCoQDj7lh8/7jr+1JEQMQKnEIwvdioDhgQQcEXbo/n2VoNoNIzBZ4FfmaAixh1DTXbQmLQoEwwHfc1DyjBmkLZVM41l354AOpc4bb4pNENIkLeaKBWe0YxMjIYQalajH5JE5x6fJ5EEz59Q8vGrEGpqP3raMqa2w42Z2ZC6QUCVJuaCRIjsEGZNyRazy2jW3MaGR7s3ibRXnZJwJMFrI2GzqlYl89TLIAtgWa2K4n22OJRDJyha37uqK6xPFebYn+L2er+GN3GnyWCMOsfkKNUOztDkzA+OGO2Vs/scT1ZG0fmdvo+O5stgNj0bKA9lGw3Qpp1da9+X9fHijG3vx8Fmtxnp7c2edPLilqKcQCFGg2otMhN38qy/z4bITot6iKR4+N3nepr06u2rIMtxZrv4xTGRMDpiW7vdm7OFigG0jpCAiOtWBMygZTVKRDSiitlsAVtnYKco1E4GYAhk0BWAWAgdQwelEYtT1T2rQseTAcIOQjSOiiwciRIR6jU6lRMrmJzT1KSLhLVTha2z319FSm9cQBNJlmGt84HC73hsVIml/NdqILbuVIvof7SJHM8HgE0P+14xW7ep2aNXTAL4DY2gPoWzfpuvoleRHOe/rUHvtvtbpq4L7r8zOVJ6BSv87P3Uau6LEEO/s/10bdx2RPPK9RrLYjakzhOr8as/S+X5xHruQl7wsTtsmbuErG1LVWK5eOjsv47GAgApA8GElAf2/Ua4AoWZirfAQROgpwFLEH75fh5RkI6WWlSSAQ0qm9LTDV5Ak10ivvHTvtvNrSQrpe5U0pF79VGwCyexeaakNvLZMtT0W3UJI/rGqpvq/euUbukfjob3VpuItVle9K4YpHm1gs3aul+c6PHLWiy/axcnI23lBmo2u0B97MbW6Akdmj+CgKo/tNBXlGhJtbxsG2eRM7Pz/H1X//1+LZv+zb81t/6W5/4nH7n7/yduLi4wFd91Vfh6OgI3SKe9+KLLz7ReF++CR1gf8a/rXBpuXBN9iZNrhuvTdRc46xe2yQy6ExACFeCvGIBjRm/r6Fsy/7mJBI1QeAGqYAQrNnywlFujVZDBlLSHhkhBE0QrVfmlDZGbFRUARxZEFm5sCcNzBIp/ybQGFa2GAAacAFQKk88mJsbRJ02PUc1sjJAExkyoDZXTH11rHJnjtIqg7esqDnvazHRbGKviDvl8ZbFrOv9MHTiFrToHh4I2m+HzEAl8IjqNAoZjz90Qvfb3SJ9ZPH7HmfuClrBHVLz+z2ps7capx2jueYynh/fF2U/leVYsjjvmyZMcyQNsN8gvHb/JplzXSJnn7jeceMpLJE/boRaLx0Ycl8s8t9W1T00mNwGe4G5bhPVSoESqGJQ34GZ8O7+/ZBpfHTAF7VfAHUdsF5B1hrgpSnXYFPUAFExcP2ak90L8SiwXbeh9r3RIo8ZWcgcXChfsPF063FyQd+mo96SP1GbQBIpH/+YNYFKekxhaJVd9oQrFX2lqIapHcEcSQvgBtKgStCgCQ9kDp1Yry2dByRICeBqkqfOJ+U5tUuFYJaInTVLRDsf6JhadVCNzaKfuc5TfvrlEI3BUvr1eBDZA8JoxvLAW/uaLasWb5BQCCDas16WDRY6vwf1dyUp2mx3rZPZ7K/fN5+V9dT1UGoCpgSTqAA3KGgFDIA5atjH9uat0dZ1r9hzxPLSXlhewzW35l38zaDYXUUX+zmtVzWhM056L9kWFO8JVI4nkM4qDUsginSB9vP3Y2zHMo8SYIkaqyK63BYHl4+1eTudxhKglqMVaDfV/lvuEFtwm3yeiwGyigibFaQPmI4jKBKoq1VzOWqlrlfXgtQRFjttF2F1XGeoWjTrnenkjJO7iXcVZ3XWmwsaPAuKhKDQeJem52XftrGuxwMIKIstiSYy2KsAMFfgdk32ip32uy+VNbsN1rQS9nnIqNs+ap3fx5Xv+zEqSMGP3wSFydAtpaLOKuJ9TiHXnzbQ1QakPVnaVLCSV/IGXaPRVJoJia6pzsdfEP02ZmB45QxiMD5/qra8iDVM13WSHZ1vc0kOlugptoQGeCkoqpiSrbu2BmuVTyh9rTQpA8CSyj4fFA5/2y8fr6w6j9XOZ+350T0Ybd2eFF3cVjUzQ2LQHkBmV7RVeG2PgtwFSKf3PXetjYXSdweZgAgI6v6+Tfl7qUfta0aNf8A1eDPzM+J8e31HbDhGk9BF1XWvtgHU7uBmJ9B8bvFxCWqf3NQkTiNfMLhq6VcvEzX7tt1rLze6kuWqXV1s2Di3xVv99QQPK4tGmae8IqdNHPl4vm/ksq5qArReSyZbQ0s1r51t1xmAorNKO6m2gAePmZCtF1UOiqxX21l912wVd15ZI6SMEsIolTJk1W4SqARwdSexahIp9rOQVrdpr1dNxo4bjZrKMZCDvsepA8IgCFl73/AIhCFrMLm1Ta26yP+uIEcpNm+ebM0OAER/hsGrT2XW6zFHmidkgOqnUvM8lq9Gq5+5mpBtz8u26v7agF/7SrXruf90m92Xn8bPLz79wo7Q5zm3T26ULPVyoX+PBdB4WNK2/f66uSI0+lE+22NH2DpP2e0n08VZJTzXzz35amuOmN3d2rzClmz1w1lSUvqq16VaRkSBxTb/SB+rbkN1ysEJaRV0HWOq/bAABV24PnPVVT0XXV8VuFNf0rQJSJ1lNxpADyUgJClxNU3EovTSGY+D9ZolTGuy37UHne/vSVrXldRZbyxPXArmuo36M3vigzRZ49VzJACNQBj1GCVJQoD3yGrnEXPBdRt7BmS6XPTWl9Eyx+AqaBl1+S/mNtV/5Y7uWYtLUsf1239v9/c5oPXpb/7y/QtLLH7yyG2eQJ577jk899xzX+gZ4aMf/egXvO8++fJO6BzkIAc5yEEOcpCDHOQgBznIQQ5ykIMc5CAHOchBDnKQL3n5+ajQ+bnKBz7wgS/qeF++CR2vbNn3+RIB6Cg+kf00aw+lXnsIT+h10o6xpIJIqVbiMINW/Ry12+7rlGptKWq7XeDKD84AnN7Nx3O0WxY9jpeCd5320ADmCAaGodYfjrwKg6a/lT6kVsJkQ84XugOpme5CmcSopZ4AOAMweuNSlkmoPXM6AfUJOOuUBm2nVGh+DB7rsSgDuVdUggRCWlc+a57IUAkopew5AtJVpKwwKVNNi/rxU5oq2oaW2fkGkHel3LMFpvmElFCQDbPS1QZ9AcwBh+0YZdsWCEioSBNHBLUohkU5OmXcXA7QfZRKLi2azuUR1Ip13D0owRaFJJUKqCKJ/eVuUGL7EMaOKrIKOYqxUrQtj7k851a3W2Rxg14ip3QZtVeGjCPes/4dyOOET6QfLkO9i78Z3PeQrD0EeLMBrVa1NL0ca3H8UBGEFdEsFbHIhiT2+cTL0IVBOYNF0b+URZGDYyoIXyRRfmEyJOEqIPXK950jIV4q32+haSsc9grbIadVYlKQxgqlIl7nAUMsOiIoWKl5LwXhQ4lqWXV0Ln5FXem8QFf5eYEZ6m5W6Ua4unEh4qWC1hXo8fw7HgHv9dHSO5U5p4wxH9Y3aGkmWzqI2WuWFh/cFAkMXFeh85A1Z7Zmt+v+vrV5ifS/DjX4qOMWXm82ZL9U9N9mXXrvzPQV0Pe9qXDRB2T7evXswj5QnbPr6iKo70DDiPecfKCg9sPJSakI9CodWs4vViVAVq0AhNrnw20EIsCraf0U2PpyDBVhT07H5lRRTIU7XHY7YJyQL7fg9arex/UKONpA+oi8juAHO70fu6FQ0cgwaJ+ghnqLjjeg9RqcAUkRIRCoZ4StfZ9yoafJ1r9Pgq2Tzbrma3qOVKglAFszxVTX0bRAXa8Lcr/Soc0oSUURxaWyL+p3spK6TSKjrmqUd4kGXIqhpuFzmB/Th+C63WySuImytBufpKK23X6fvu7bzqW195dr86y35OLeWXUYlfXVKu+6iIL09WoAP2bKSrHishyTUezo2f0Qo/1MtQpm7/rvayVD12Og6Suj4zgytdAhOxrfK2Z7e1eZ4Jx2lHLh7899qOOIovtpyrqebyfTe0UmSx/h/TRzz0ibWGzr/uUR4f6lVt9td8A4Qsaxzhc5KxVk3wOrHrIxPyeQ3odpKlVLzEq/Ot09KpX6wlQp4KhS1CwpDWu1DV3VMdNvaf+F5t9iXXf9JwFkLUUXaaqVgqVSx+cOMfo0/+fVxE7RKDRHlZLuL0FmNGtyU3XbKItm8iS6fV0fy32VAdfZ5P5Z6+MCVf+Wemi2+KzHbttjp63MCVx6ZWgF0OJaY1Cdj1yq2MXs5RnFuNnJNFV6dO9B67oGCZBYr3tpu7XIb++TI+Q0Zb44ECZjtOCmys7pynSZsPXde/FAx2OjY1IqIWXGSF2tohECugvdIewEPGbwKAhDNkrFer8lanVgWnE5DgmUVtHOK/u8sSJMR6xVQA19skuO9dzLfQDmOuVfEOp9X943r8Ilfyb2p906Qo0xlHhEW90bivleEfrNs2qR+uW4zedLWkYyl01usp+9ZJ950hjXvrhU+3tbfbdv3nhYFRAASKrjMFsfQ6p+gPeEdSrE2FTKAjP7vPSCnFXoNH47rPJkVglj/q5X6/i+kSGBq54W+lN7l42CnDPZkkBwukNqbF9hsrADFTry1l7xSj1nrRCba2a04I1dkHpltUhrrVSfNoS0AtIaCFt938NOe13xJOBRao85qtU8PlaOqLG2SddETsa8E7QnjwSg9KaaNMbmrQWyrbXOvtNSEer9RbV7qX6uN8f+bsIytRKw+R2oOui7+bGAqzSOi3W//X3GnoG6v8cnJXgFIpVWqAd5haT1jR62DYD79+/PPl6tVlitVj8vp/Xf/tt/w/d///fjv/23/4bv+Z7vwWtf+1r8xE/8BN70pjfh677u655orC/fhI4HR/Z/OQsYzGiNlrI3wUPNR3sCRtc5kC6tobnseeEOqNOptXQofhxzNuEOktNAtAGcssjZtRo37+y6/PwYRllgDloXrYEbFYcNgDqTpVEj6WLnfTxswgxDnSVTT/OJuHGaYOXdYTefWLVJI8rkSVat7pRG0yZDeoF0GdRlEAu69YTdLkCGOgPzCPDOfiaUZE1aa5O43EMN1c4CVAMQL6C0TqjnlHtd8HLfPL7QNEeG3ruZ8VbOQs+7BIR8XJ943JBsJqLcxAOU69QWvViDQzyZQd4sOGXcdvzFIlWCQ7l5DteICJBvsqF5XZLT/2717kkczod+50mVxTyxbEIqUumWPABKFmR0GsOWusjplpzTV2RGPTTT4yWF0yLwQ6u+zB9IHTgM2vgZAELQwG+M+qqGUDnCvQ+IBVUkdPNy8t1UjV9Axy89MOz8ESofeBKEzz8AgtIlpZN1uR8SCTKZ8R0CsNJkTzqKSJ0GZVOv9zr3ZOXa2ryxUDb4MaD6k1p6RTMecweABSER4pklSzxXRcB4ok5r0VszyDSgYwdx+iSg6vYevSoO5/JVdIo1C+S6sUfiZekCWZtnaZQ/ZFRR7fzQmPhwSscZg0xorp3mfYGuxHrboPINkr2Ua48bHFr0ypmty9clcfaBE3zuWH7e6viSZhGoVErmcEkgoFcDsTiSgcDbqfbGAJSyJUPpnTzRYmPO+kkQKbWLJ1WZwU0frXJs5+F3WriUC7+/WFNWp3kqtEauxwjFsS2B5XLunQJMxgScXQDDUO/DZq37toEvEe3Ft17p96sVZBWR1z0QCGkdNambs9K5MSt6IwSjuppKX7+wXs3mp9wr5SsPGfFiVDonZnQ5I686pOOIaRPM/tB76UGp3JkD63zhjcMHNLZHqIAKCbX3TuVPbylmTLd3PqcB0gnC0ai9vIQgO01mL/tqNb/qGAvVJO/TsWe7GZ8/PAiBmykeJH0cuQ6A8YWu403iZPb7tbvyvH+P29e9JXSYSlBIKVksQDxMs3MXt+UzdH5oaUuBou/CoZnrpSZ22u080SFX5yGnaMmroP0nLbDqwdMcYQFmv4/WEwMwGqYAThqgjQ+Gcp+m4w4S2FoACMIACDQhnHullUmrYMc1e9/GlEiFoqYkqFLWhK31AAtiBGmBQVOErDrkTvWfzlNJBAEA5YyYBPnWGmkdDQxRqWmWgbJKgeKBsKrbZc32ddvXbl78TVWfKEGTYCRqi2+SXR9BLhnIpJ+3r6Q7BYRqlzfiPXioADhgtoKZmsWekBu7Zs+DstcEblvZlzjd9/O63jtLfzsv5oRZwlbm75/tR5nr/taPg+BRylTXWF9TfVy3z41SEYCujZGL3QyYvhJKUqMkH7PUAK9RKEmkoveVplFmdGUSCJMFejmpfcKjrTltcLn4oJqESaTUiWEA4kWqtE8MpVyKdf3gUc9DQZeE1LkeA2mF6p9Gs6PNDlcfwe5PFqVXHJP22e01HjGdxDI39PczwtkIHqYSV8iriOmkw3hia3ae29IlSeLLeVl35zZwua8zHfQvMPe33WxLja4HFFrFzEC4NHNwcXyfO+pBm/Ph5ruMmd3QJntm5/yYeMNXWigEENvF7Eu6Po4sqUmX6/LMPn9E4qiNlUku79xsXW96QsJaCEiva7Sv2bmPqndkYIXs/QhpPp0QXbHLHBiQLWHr9ISUuay73rPO16ZWtx0g7f1rxPphOdCRR+07533x6rmgrnWdJj9BhHA56fkHT44yCpCgSQ5pbI0xrdX+ndakMbBe39e0wix5ycmSOk69ZtRwPLIBppTm0XtREmssb3XfwB52rpo4orJdmwxtKU71JBt1XT5+QgFK+d+zfZb2sSdslqDldj8/F1+m2zF8Tmjtban7lp8+XnO+Bfw13dA1+xeoPEmFzpve9KbZ53/6T/9p/Jk/82e+6Of0T//pP8Vzzz2Hb/qmb8JP/uRP4s//+T+P1772tfgP/+E/4Pu+7/vw9//+33+i8b58EzoHOchBDnKQgxzkIAc5yEEOcpCDHOQgBznIQQ5ykIMc5BeGLBJ4124D4Gd+5mdw69at8vHPV3XOH/tjfwx/7s/9OXz4wx/G6elp+fzX/Jpfg+/5nu954vG+bBM6pVnjdVKANwbX9oaKnoZ1lGsdUH8+qjqn/em/lzEbqKWha0sDVkMF+vmURpNNo2BJSRFGq1VF75fjcEUVNQhCu0ht2Ga/L27UHOEQuFThgD0Tb9/1jLQJyFGRRd6Q1FELWqKsqDMOiiZKbVYeNdMtDl7sgHghpUyTB0IOQNrUahVHEaVNhpxOCJsJfT+BSJAzIyUu2XaJAoxUMvTclnKiQdgwMJ0kpW0jAIhK2TZowzYebZ8LPY+0BqYjPd9EBHL6FQLAghSgz40V6SCLbPEMneDftciqa7L9PEIppSYtbwXX8lk4EoDs2Lk5DgxV2L4m/ho6wmiBdioVDr5dQ0tzo2Qf6r79Li+QuNdVyrXf7/v7uvmDuMKqHCFkVCRlDEcPNc2gCaajPq9YA/FCkbRaoTRwnJLqfqlEaq7Xrz8tjlfOTyliBFDaJR8jRq3KcfRSey59h3y8hnRBUfOAoYkCaLLqnGGwOYaBsb2HVv2XQkEik2Tg/EJPZ73SSprjlaJrAeSNKSIRcmSko4Bxo9U5hfbA9DZ1Np+JIofmuqzzRW6qZNIaGE8EaS1AFACsuj2h6DeyIorSSueagkIk0ymjTREiMERfKdYxpNERRWvZ46FauTerilmWyNgGPNjxxqA0b6S6XtBDnW5XHq03Sk909XU2nUds5iXX/SCQRIVe7sbqdYwA7TFZrqu0XVa3Pmllzj40sG5Qx1/qFlArbFr0ro9vuqtUTfqyEBFk3dXtm/MSOycBgGa60WbGUqiQ6hdUx8lR55y28etSiIF1r4jZVQdKCQKuxxomfeeyIW3ZULyBrPK0opuFGSR6TfnsHLLbQbJW4vBmo5RqzKDNWm2WrgM2a8jxGnnTlYbrLtJHLShbdaDdCGx3StOYleIJ0wQZRq3yWfWQdUQ66TCcRkxHjHiZkTtCd58KMjgME8IZoesj0lGH8aRDWtu8wnbLYq3ULfQu+9Zqr84p66WhHV2d95TVUCIgAQRCHntIJ6CYKxViQeCrneRzCQWDGma6+hkE6EQpK4BSGUBBrLqrzgfU3VS4b6Nvj5IlLfLSFvfx9v2+3Gbf+u5j7tNtAIU6EaiV7P53SvZ87TurWgcRYNRkAAoSF1Zd09rTevzmHKluLyL6bsyQ/HTFhvE1cDztkHsCjVLmMQkEHhrbAKTvjuh4jkJukeo5KhULXQygYQSIEKc18nGP6SjauAw2pK6igQPSWitzckeF7oVHRTDnW2vwZQDZfSBDTlOcINOk9k7XATEirzpMJz3SWmmnuo4RQgA/uAAut5DdDvTCSwiXR+DTDdLJSiuD/L6x2wJU6VfNJnD7IHuljlXfuR28RA6XqtgGqQsh8CiQyZ7HsKcSwCnZ/Nm26z77Ag0USjaX0FTukc0NDd0akYDjDdXrELRypZWHVcwvK+QepcePQu+XSh1RO7Rds5e6Xs6Z67jt2jnqe+mVprTq1SZZVPtL5PJT/zXrWnNdwlQrxsxA4zEXfc9Oi6g76P9CQISuWUYNSsaUkK0peRj0Up3mjFFtX68qKBSAhqSXQIgXSWmL7VzH44C0rlTDswodY7Fw25aSovWFK+UStxTE1DiTOUNiB+kY01HA9m7AZMdR+lAB3c+g3QgaEugyIJwPiA/6Ul3rVRCtuC4vkfSlIopQ7BqZ39Zr6dpmDcytyiBb0/d2DqjUjfM5A2jsB1f3XI8tZm+4byBhcQ4AcneNb/pqS7vuAVerbfbJvur1x/n9uliaj+n63fq8Pq+IoFB+u21sfm67dlJS7n7qRO2sxbTllTV6fH2vJFCpml36G05Dhgxgat45Vp+2VJ40c1dac6Ej40lm77JWGGjVPEuu77atbR7Py0HZcXIkUAro7u9AaULuA3gISOtQKAxztMp0+zmtCGkDTBu1gdvqGGH3g5UVQ0hjezmShgy2XrkIpA6YjgjjLbOjk+03MVb3k1K1TYLuXJCj0iBPGy6Ux2UNjii6S1at437qlarZRuf8nNsqmtnnAGDxv6KPqTlW478XXZc65pVx3U+wmNoV6rVsj7nx/ZfFowf5+ZUnqdC5devWLKHz8yX/8T/+R/zgD/7glc9f85rX4IUXXnji8b5sEzrqlD3agSTXOk+mlGD59dq4t2fOdQHmZuERp2ECipEpOWsPAMsQXglIZUvkjDXwC6D24NjnrJoDB+Za6mmL8xUqh3IfmsUyid4P5+meMsDAtOl1oSKguz+Cxqz0J1knaV2g9Fiz6lgzxCQ2k3MApgjQChiPCNHp0SYNuMoFgDXK5Jp7aLImCELM6GKCCOmxE6uTFN3hWhhiBG3NkN1g1UUIjELblu8KhhAhgdHdU8XhUQPA3U7QnQPjljAdATi1xbCbUyPpfdSgLyX7qJlkfNuS1LKFBFO9TqAZq/05GotOaIxXczSVa79xEmdEvc22/rU7kNAEmi9QuTOH0v5O4RGz46slDwvGOj2JS5tMbY3NfcGcvBhPfJV+iDg9mump629J1GYGVt1VpzZn7XcxjJVOCKbXU7Ot/0y5ziVO4RK4zhMtRRKg1EVdB1jwRA/Lle7Ny9KdMvFoAwRCeOlMe1rECKw6SGTQ+U6TOdNUKSBjnPOn+3lYkDqfdKBNBxqUC5+mDL4clY6B2YxUxnQckTaMacVIa6rOVAmKQCnYSMvHw651tJRaYlqpcZlW5ozZGAgCsGC6pSXsORK6B3Z7dkD/QIAzYDghjMcATnROkiCQXhWXEiGDwdDeGBLNeHWaxcUrROYUl/fJqSkEVS/tby0Jd8qMpiSddK7LpAPOHEvSAZzKDWgMVCHkkogy3U7mmESlYZMgyOFmkvtSjCAsvKx9a/gyKARUZ2sfuGIfxdrD6B6keflMt2fHdC793ng4c2rG98Bv1s/tvChnTabaMYujue/alk5xWG7ni6ngCuWaX6OdsxyvC/VJeHCpNEYxQvoO8L44U9JzZWDWB6Cz19soDAEgxzWoj+CjDXD/AeT8AvnyEmm3A4hLwpi6DnTrFLLuNJnUNeAQBigJ0iYC6wgeEjhan56GhxxEusRFhnQB6bhXPTZKmOE4IJ4w+uOA7iwhnk/gywF8tgM9uAC/AISnb2G8u4aEThPDAcgrtQFyj9n6vFyr3XZoe2nM+tMtvIei4x4smggY7J4SLElMNVjLpsfB5hrrOUgW+SKjWRJRAAlZwDfvgiZoSec3YuWo4ZBBYcSXlOwL7iyp0cIy8rJY6x5nzPZ3D/CmDJGMWS8NybpmW9BW17gwnytc73JSs2oJlgoM+PxM9s6TU3/5egk4PVKhBWt0Q/vQ2bDk5272eFYatekoIq0Z/YMJ4VJ9i9ypTaDBXrtOo29xKrQlLZHbgmnFkDfcQvdg0H45IuDLAf1uqgknIqRNRDoKmNasemQ2aV3XBHmlPXWUHsruU4wK9CBW+rJe5waJjLzpNUm01kBYemaFeBTRHfcID7agix3khZeAyxeB+xHxqbtId44hp73Sv5XgFdUgkdOwmS/T9sepFGfNZ9BraINI5dXJAEDFXtdgfQOeIPU9yBO/JULXrNnicwBUn/14ndirJUBiSNZkbVxNECEwu5NwA6W8m+1nzd+LhEWRJRhj79jX6Pc+YdIImpiPvaA8Rq7+N8UI9F1dK3mx5vr8EEKh/IPppouYnSuB7b2rX7oPXPrWNP2bSv+asmZbAsZ73RAwHQf1T4nQ308Iu6zBWXvPPViqYKj6zntvyJrI1GOlDkjrgPGY0Z1bvywBwthQwNkY2vPGkjkWcC0JixElKNxlFDAhZ6NuJSD3EcSMtOkwbQKG20GPv9JxtncZadWjP47oXxp0vb4YgPMR8ewSMQR0tzaYTnuMp7Gs2e29bNfjWSK2PJz6eZvImYEbgVnPDg3a23Px/QkWB6kqfYW60Y8PXPEHiv3A6kcQQZO+cQ78yukxdOHVkCVN6tJ+fphcB6Dc57fvA2FdN6YDjNrzIJr5qzoWFz8TWe1v35dGmxsyF/AixOMgft5U3y2p9Go6tq8tnqTUObqArwpAoLHdzU6f1vp3fy8hXioyxOnVwk77ytIkQKyUjGUOcdpU0nhbjoTURwy3ArrzjLBNCFvz9bNYQpiKTk+rSrOWu5q4BDTuVnpcJ0B2AGVSHQ9+0dZTy3rbenuEtNZ9hls2j3QB/X2lSA1jRtgKugeC0WgVpyNgsuvyMSjrOTgwUfyQe3R8Gc/yx1Xfk6ufzQDU7aaOybMxrySLF+fhc7SZ3vqsxebbrLEKsp7fdDPd7F+4sices3ebJ5CzszP81//6X8vfP/VTP4V/9+/+HZ566im8+c1vfuT+d+7cwac//Wm87W1vm33+b//tv8Ub3vCGJzsZzEyQgxzkIAc5yEEOcpCDHOQgBznIQQ5ykIMc5CAHOchBDnKQL0GRx/z3BPKv//W/xjvf+U68853vBAB8+MMfxjvf+U78qT/1px5r//e///34o3/0j+Izn/kMiAg5Z/yLf/Ev8If/8B/Gt37rtz7ZyeDLuULncSkeQkXnUOarlTp7ZInqu4JaWFb3eGWNows6ozAYR2CakLOAhgHU90DfGZK3ot+JWVFtPp6Xlvb9VWqZ9h9g2WW2X0SLDtqSdCvxBFCoVQxsp9vtlEZCoiJjhaGN23ZKcQLqFDlvCIbcMdIRN3RpoqgkP/mGAi31FSVQkO9SEXMFUeP7WhNRyYY8ygQBsN4MyCtCOmbs7q3g9GnChjxwNEIE0lFGOsoIRyP6PiElRggZXZewXXfYHXdI64juASGeA5EAPge6c0HcCaZzQtgRxlPCcErIazFaFmv2DrHjUkEsOsp5lv1vkTyLEm79EFreKagVB2iAf+33bcm5owUNTdSWjvp9L6XvuVLThQEzmgo0jdxvnLTVd1fQgQvdIwCSZ3peKNmWFTuA6b00CKIlrIvrT5lDMApNYpZSESTI+lj7rlThgUmR/4ZAL5VxTgXhNC9+jvuq8EQUORxIZ/l9DSOdOiIEbTAuWXWR7TxHa9BOBLl7qx7P56ucFOW73VW6R68y8POeptk9p8CgGCDSIa+1mkeAGcKXx4QctJnydKSNHFNPM1oUfS8FeUOFGiVsCbwxRCFZc/OGMm3aCNJR1uoaFq1+CQLqJuQNY9goRUz3gNCdAd0lEM8zwkCIW8JuUmWRwMghF8olygIpSmuwHZYKBDIKJBduyu/bakFtimvD5Do/Z//eEUSi4xVKNoai92F/R4GUyaQZT+pnlWqSQIPOIV6Bd2MbpzNfpW/Zt00rpdnxI7ZfIvWX1TmzSqBgiDqpY6xXul1OtVpuHJUyaLWCxEo3WJCAQ1ORa1JQg4CuvQ3aUDKVY6q+xNKkt5y62xBJrGGtVQH5sY06BtMEsFW1rII2R34ArcYJATROwCAVgRwjJMYyT1LO5Z2iqVLWSKdVQLKKoFunSqc4ngK7ATIMyBcXIHRAB20eHWPTCJYL2jCdcqGsiOcJcRvAQ2c2CbTytw+KBOwJqWdMm7rOpTVh3ADTMWE4DeguGN15RLzssXqhQ3zpArj3APziGfoxATgG0Bli0XTWOKdykKJzYmvnjP7OTCXKXu3cIPio2YYwf94totB/yUZ/S462FBBIKYBJq4+Jcy26zFwKwCQTREgR/AJg4FK1XGicHsU58GoJYb89vrfSlup6tqzG21eZs4++6cqYJnl+TMqs9n6yitlx0r9jBK1XoFu3gBggXaxo2yQV2dsc0ytsdGxdw2fUxUHf6fpeUEX7NjYafGoq9rjSM4EBmtReJ1Gdp6wNi2lKSok2md2WrUqgD6VB86w6p7UJHe0fgPEkIK/W4CGDx1wqffhy1GvpY6kEoKzIc5jN6LblcEtvQg6ELjIisyKPRZBXEWkVjLKNytpfKnzMNhMCpiPGeBoR7/YIFwmrGICX7iE/OAM+/yLCdgcabyPdWmE8jmqSeQW7V+c0KH2953N7eEbxwo3N7Pa4mF/S6LJuN6/OgSgyt6D82WxIr6LzKjx7ojpY+c/WcdLiUCHIwEgctErPq/NuojyqWh64apO7PQ5cWR+vleuq5WfVQL6trVXDqLSgwwBJCZ/IP4J38TeDYgder9TXjl52bU/GKYr9urxCL9q61wdICFrFGo3SiWs1TlnLfX1oqmud8rBt4J0Nqc4EwBD+aaW6GKwShyZRut9RgFFUx8nWyIKUb6rR7NiUa3W3Ux3lLpRqIJ50G54EaVZRBDjFUEsnNh3bKQqsqslQ+2uuvq2dx7RhTGtgd4eqjolWCYzHhOGE0Z8y4kWPeJnR3R8QXjwHXr4HvrhEf3YE3h5jOlVUv9rABOkwt2FJ2T8cRe+UZzN1aXS+vS6eGvpyoNA1ts/P9/F5gKH3uNIsN9v7dq0JkIBgfra+kzoP56iVD9Qya9w02VeR0+r648TXHle/r5s7yvco+lF85JZuMSdgJMj6qFR9SqTi0/LoFTo2luupV9b50FkaGkT7yqlMbT9hPd+WuksEQECtziNAOl1vy3uWdc0IO0HYZfAuQSKBzdbhwWJtbLaCV7W369riPZ42eoy0IoQdIwzVYfB1XQLUv/Z4W6g/6zgyuy+7YEwzmWoIhBiT0bVNx8B0LMirDJoIZFSkaQOMx4TxOKA7Yxx/BugejFqJN2bEbcTuTqexVquKylbBV5jy27XWddvnEFur2zlgRkjj9lPzTJfblG3btb21532K3mM/eOxN/FhGRQkAYhTuYnSuOT+GfhzkiyZPQrn2uPKrf/WvhjzuHLZH/vyf//P43b/7d+MNb3gDRARf+7Vfi5QS3v/+9+NP/sk/+cTjHRI6j5LWQfTYT2YItyu9B3YeMt51yZz2Ow/YOk+897lYUsfQfHJF2wfDjcwYIateDeO2ZNf348ofKjOqtUUQ2y8zi+7TRaAL6jwOk1Id9B1k0yH3DBAQziYrDc3gIRXqtmz81+ooa2+ctHJLR2lSpG8cJ6AaOlwXGYlA6kWNN2mMyomAxEgTYzt0kEzImRBDxmZVqUamzYThTgAuAnir5wwWINVFuFtPWHVTcZSIgDEGyHpCekqQ+4hpw+geaBll7gj9WUYYgfWLgrAjhEsNKE0bQu6da9+cY5ZCu9bylFJSflJfmHJjmLb3ozyi5StHzSKzMDjbZE7ZNqAmZiZd6SihcPq3r0O5zxGaLEo3dEGaGZp79O2KnlqAlnDVmXQqtmXgKNln5fn49wvH0o1LAECu1A4NvaI/GoRQ6c5irI5im4xhmge1G9qmvfPZMpFzjRS6NZ9HpgR5cKbB3ZNjyCog3LtUurVhBILRwU2T0kJ2HShYz45xAvJQk85B9Jy7qBRLHvRho2/ouOG7V0cqOycw6XsYdlKN1hIgIkxrS8h2VtLNqj+UapLW5zASAJsMClnf84aTXrJAuox0CoA1Oc2TcvX3Z4K41fPiURO20yYgbUT72MB0juvv3pOs0K5A5wR3GNTolyZ4RMqVH3RfwVVHbka51jgLs2RteU+a/bOOR5lUZ9vkMUt1cjOpXg83VK9jANhMlqURdd1a7gmUR8l1VBGezNnnQCJUDv0p6Xse49yqYi7JHA/0+PlLjJXqwY7tlBCFWsySnHvPN2B+bUv19p4BPt+JALsRuLxUPT/qS9+aeH9XEz1Otei9SfoO6KKu9yIlCF2O3dJX+HGSHXezBjYAUgalhLA9aebQDN6NSF0w56w6pxrMteDPOoJyKEEmNsddCGCfh2HOa9P/IlvfK6V00UBR2DGGU8bqTo/+5SNN7ADoXry0YHgHnjSLqrQVdkkOYiB99rnpRUPZPbxm2zB/LsIwmq2rj7Loaquz7hg6RVNzAPbtDLACAJKqp0lkdoadlyRN8GQwKN3QbK3Tcy7XOpelDlwJ+DbfL+lTW1kGl/fqNVe9zhkkDIFRKwYGwAqiAmxNDcWuFmZdT2Z8XKrXriOUjOLYe2SQv/capJlThzTnJ7ZeiZTEhm9HosHcsJ3UzFgH5ADES0280KTvqzBrkKRnCzpZUklEe3EYNdMskNkEvsiCTmmtnPecACRBOOlsXdHgmFKKEOQogETb55EFXVPv1KmM8YQRL6Mmh0ZRUJgdP5suT2uqwSXRJJXb/TkSxqOAcMLI/V10d48RX74AXnwZSAn8+ZdBwwl4WCNtIqbjiEm8z4cnngCnT2UCUtR76qAzP1ZLgzSzjQmzQFLrk0ihd6vvY+llicVYZosAosl7f/aZ5qab99eaWMcVQIYb6sq3tLutXNfzRnfSH26Tt3KdDfuwZE6rQ+5jh1DARzJO0AYK0KROeB9kGCpwsQSIWQEa5boCZLMqyRunOm775vi/NmE9S5i201RDbybRgEpmD4dLtVm9xwZIbeJCu206AVjiwaiPSGB0SUbXmaDrVyRfLvSYUN3NEZCOmnOj+m5mPaYniRxIReavKhWwbjucqt4OpwE8AmGoz9J76VLWXjwSqx/LCRADGE1HjLBlxJ2guxXRn/boT9fg518GLreIuxHhfINwe43pWBM73uOnTei4T1z665h+znrjUXMtfkMaHW9p1PzvQs3o9yrVfdidOqnbLnuyUF6M2dyfMNgcufDBb5QQrur2Q4FQC1nq9z7dfhgwerl2x1jHaKnIAdXNlLTfqy7hQA7mS5ICKVo7nDA7dwc1++duk2vwfuF/CxTUsbx0ArJTsRl4gpIgXGgmMPWa+OzOM8IugYcJGHXd9T5AuQ8F9MFTRnb+NkYB9DmVWo5U165AGE+otrYtn6OAsGdUq+5jwt7fTm1eCYzxBOCJSsuBQolmf7e9mhWArc85B6lUdFFtcpKI/ojRPYjoHgzgXcLmswnduerzcMoYj6nqkdvjjV63utX2hXZbvQVVFcwlmam3dCOlnrvYPSoJGRvPe1UW3WzmmjaWN0veip5b2AEyART150FeOWl7pT9sm1dSuq7D3/27fxd/9s/+Wfybf/NvkHPGO9/5TrzjHe/4gsa7od7dQQ5ykIMc5CAHOchBDnKQgxzkIAc5yEEOcpCDHOQgBznIY4o85r9XUL7ru74LFxcX+Mqv/Er8tt/22/Dbf/tvxzve8Q5cXl7iu77ru554vBsK63kFpKEse6jkRcpOFHlKjuoH0PZpntGtLdGx1yELQlD0QFAIiUgG9Z3SOjiS36sOnG7J6VOWSCf7XJgh1uyYZjQtFUHhKEGlWqNC0yCWTdb7k/U7JkgXtVy1j6DtVM5LjnqMp70ifc8Twv0dKCVtdmwIYEUhKjUED1qGmdZe8qRlpzwAaTJULKNk0wGrVOGKvKVEyhiV26w8IzGQo1Ii6a3NVmhB6DhpczofOyrCvmTwyRD3q2zgEwGTIAvh4rJHSow8MajLyEdaXsMTN1l4xup+RrzMCAMj7AjDpNRI0zEhrZVgy+kYiGiGCCioCbvWikJoKF8WgJWCGAQK8qClVpnRJzmCwCsDCErJ0qCO2Bq6wxDJjnKucLV6nnxTEQYh4FpqpmuR/GVn/eHoIWoQ9K7vLb1LXuxPhFKl4xU80uhszqBgUJMsdb6IhhASh4KaboaqI1ck27aOVl7OBc7LUyp4GIVurUUxexPY0Fz7OEJyBp+eAKfHWnr+8n3IdgcQgaIiHIWN1qWLSkczDHYoRTmTjxm1kyoBwJTBRtMIZm2iPmZFNpKiDWNpIEmYjiLyStHL05oqctbQOd6s0RuSJ0PiOZKxlG2vBQgZHLM2EjcdyWMAklavSMxIa31m0xGVcvr1yxlhEPDICANjOAXSQJiOSKnKAhTdbKgm1x9hAFEhe5K4oPSFpZyvoo8aSyKqUhfAWqPfbYVd2cPGg+t2EFBsxsukCP5JdyIYdVQ7N/grkkgrFG6ixIVe70PhLyvpgDnq/3HkcSptlfNIz8mPF6NWoTGX6rJSueK0So3NQTlDEK5U1pBRMVb4Zz2fMl7R7TqWVpnquVDOqs/r1dVrEAH6HnKk38V7A/iF+8Dl1q6hq8f1caYEmnaKbG6p27IAMSiKWQQYhkq12DanDUGr+bY75IsLSBaE27dARxtwZKSjaAg8KjQzQtpktTQNNj0mo3pjgxuWip6+Ig6zUbT6O577ejt5Igy3A3K3wioy4ovn4BfP0U0ZkA1yt0JaEQZlkUSGVtgi1HXTKdAAQEaqhTUErc4JAniVa0H2XfMeNpV6IKnTOBnKkwUcMigIQsgIZtvk8l4wklcJsYC7SvUpYujGTEAmpPERlIWvlhQKoz26tw99X77b99kCpbtctx82vq/5LkHXZeo6tQuTUSoyqZ7EaPOSofSJIGhsbNd5poUt1iB1ydcE/XvmNzTnr/QmbtfVtQmA0p5NSn+YVxF5pRRQ8XzSKnl2Orc5QpjHDBpUT7U5sq7nPEixTSm6vgnCrqGRFZT1n3cJfDkWfyWuOqSjDhII0zoU29Rpi4SV5kUpnQEhRo5S5zWCNVBWKhineeKkfkvc1WeZI0CicwBu95COEYlAL7yE/PI98Dgi7I5Bd47V5iKd37RYlgobqVO2UEKhdfU1WmwqK3TEuIoALojhQm+Ict2lak/q53C6NKNE5JD1VSSlUJPMWmQ5MSjogTl6dbFuJ16Fd1PpW6jxUfetqw9jydg3F7ihvW9931fRR4vPYmzmgwyiDQIxZBjwnpMPACIIx0e6bRcrxZpTOJXqeavCOern63qhVzNdRtXVK2wKy/shhq7v2apfCGGnTdB5zJiOAqaVUpHGraA7S+AhF79a/Tnzs52qbdIXjuz9JqdvSqjNuyeZ+55+u5pp0GmhUu9V8cao4ctJcyll/fX1unFBlKYJ9RxDc0yPO+ivumbb4Eq3HiC8wQoAf/YlyIsvg3Yn6C424GdOQanHeNypzjLKPDM7N9c9Q9Z7dbpfgxTdglVPNvOtnWtB6vs4Pm4jbZWCn0fu6j0vVXxklU5tHKJ5tfdRQd0YCY1OuLS6/igGnCv6vUe3y7h09WfRH1sXyQ0z1HGiNDEzmtMlwt8Han6SzelU3htq/IdSLe+n2l6CNHRss8/1Rw5KD+y0g2FUelSeMtI6IHeE7iyjuzcgXKgfLV3QWF5kSMfIUdl0vGKIkZFJ1wluqkhJYP6qblsoH/2OyfzahYFpYlDW9bbQ7zOUotzYLISV3pEs9lPo/hOAyf5uWgCo3a5rFI92w0Spx5xikbL5/dKhe2kLvhjAux7xvAPlFSiz3rtO12GvyFnqlz6rRufLNe55VjACAns+LTWe708JV4XqODXWhhKHaKsQ4SEWnyeKk6DzIA97xj/Iz5/YvPvIbV5B+chHPoIPfvCDODo6mn1+cXGBj3zkI4/di8flyzeh8ziUa1bmCGAenHDZ42fOEj3XUUa0CRqXQpkmILD+HZSmqDh4ZkjOxlwcQ4IuWm3yJntgmarz2FIo6GFldj6l/Jh0NpJVh9xHXVQ6BjMB0oH7iOm0R+60fJSSAJExnfbWV4eRey6TX7hUGjYA4IERekbeUeELdsoFL48u1ATm0Akbh3DUCZQzdHEhYPsUAcRIiJgECCutgc6ZsRsIKTCmiZFG1iRVJkifNakBAF1G6BOONjrTjlNASrrPtNXZmjiDWJRWoxek3oJNIxB6NXjjJdCdJaM30UXSHVRAE0S5V2NDgEJvVuIQoQnwuGEq9oyk3g9q6KTapEwbAPZAsSeENOJNkE3WAJUFy2aDsJXoN/y9M0PUHMh8UxM6VN99AHMD8VE67xKaCy8JEU+G4Oq4ReftGB6NJ6oURsCVJHKhOvTtfCwfpwS6uCnzltL/phio7XW3PWz8WkoJOmoyRwRY9Sh0aNGoYzJA6x5MBJwcIa860JiBVQ9a9fW4TtWYMuT+fcjFBT6+/bvX3tJ39+8HmZMsIYCONnp6Ps92HbBWB5kmo4sKDN72GJ7aIG5JqRaZkNao1GNNUld0CtD+WyvnEhegz6CjSRO0iXUuAWvQdTTjPlhwJQrSWpDW6kimFWFaK0d5f1YjO6MfLxHSyuZPS6i0NBUiMAonKeeoFjdq2XYT+BV/B6wXRhvsnSd3bD+jcfPydg8QYV+Qh1S34Qkgf4XtHIGm/85NkxhRKNdcHkan1urkPvHE6+PQuOwDZHigx7+PYZbA0XNuqU3nc1IJAs2ofbLq6BJ40SaM0fzutGtCVaczVCdXvVK8tfv0UV+boxWkCxqIHazP1e1bOgdERl51GvCYMvjlc+D8AvnBmSZozVaR3U7HTEl7cGXBJ9IPX3Oz98t7n/m9oN2R9uRYCaZenTfAwAWjzBwrIajus/YD8b47qa/rEzIQRlMpRqGu8V4B6sCSJoiPIni3QhgSaDsibDt0Fx3GI0IYCMluvWRPGkuZI3UesPXQ10pCnQNYKh0bQYMLqK9szceIm1lowRiFQ0OAPAT0J4MCUkiQMiMn/6cXR6xJH2KpC7YvQ0GDvzy+wpwCjyse+H2cZKrLdbSLreeeW8NqeeMXUo4dMAtMtfa88/EDSmvcd4VmCcwzXdVATKP3VHW5BGFD7VlTAnrOye82F1l/DAvkeFBnFiTugpoNkUpvKd2WkPseYgmb6TiUwMPqpWT6n0DDhNgFtfFt31kQAtDtxgSMCXRxqQldT+6mDFxuIQZMo80aeO0dxFVA6jXg7RSKJKqfNKmOW6uqEuyCWMDYgsdKLwN4wNd7fJRECS0eeWTk45UmcXYD8tm5TskhIHhiyx6Stjl0f0N74XmiONv4s8BNGyT2v91eb4K9DtjwdR4AJOp7SJZcRSbwjiGnRu3sZmM79xtChEMCBSn63waHRAg07Ys+3QDhxq5tZbmOfSFS9Pkh9v0+8GRJrJuedx1ItM9UWUNb/8H75JSETijAxryKKL0zCGWdL71x/N2USo9W/PRWbI5JK6X7VcokfZd5hCVGVYfc3hUmjLeiBjujgYuizjGr+xlhl9E9SEbfpgkmHm0NauxHTnW9oSTgMan+k66RSg2lCePpOAK3Y6GqSqKJlzJ3mR3OI2aUZk6DlgOAja7X01r1urhKuQY5S/KEUanNSJNd00mP7vIENAyQs3Olcu0iJDDCLtq5OK0jPIZcKc5MfazFTwV42u8ZKJRprn9XKJ6aZb2cZ5OYAvQeCFdzgccKPIPvF0UD4GGR0JHmta5s8TdLOFS9cNmXePlC5GFJnYYudZlgufJ7+czme++fE7S/VEufVvrVtf1vfC7wOdzjZxaPafs4F51a2jBJdG0jaA/p3tb/3kBJAmRL1IatzuPT7TUA1X9ds3XO6B5MiBe2Zu+S2g9dgBDB+22W+YcIfDkVWmcalI4VgZCPeqR17Q2WO0YYBTkG8EDgHQqlIgDQRAgTgUYy2mM9b/E4HIDxWO9h7pS6kSa9Fzypj+xxOqdY5Fm/HkJaB4R1B9qN4IsBEEF3P0A4YloFJDHdMb0t9GuN3rU9bSqtOKqvLKjrdOuj59mSCgdNLNsXSLAhbC4RLPS/NUGb/fwz8r7W8uQ4w4P83GTxOK7d5pUUEVEw5EL+/b//93jqqaeeeLwv34TOQQ5ykIMc5CAHOchBDnKQgxzkIAc5yEEOcpCDHOQgB/kFITeph87du3dBRCAifPVXf/UsqZNSwtnZGT74wQ8+8bhfvgkdQ3zo77QfEdBKW6lTxmjTr83+LUKg3cbH2Ida8FLufefh1GrMBR105Vx8DKd2CdaI2RD7SxQRRBQdQ6iNjh0p4yhfEUXSs0C6gHTcIXesJZyG5hFmhIuxZLtzx0hHHdJa6Zh4yto0NSmikIeE/vkzRfd1URukG2oirYyizZASXtWSeiqNyXhQuotkTd/GE0UA5ACMR4S8MnTTxMiGVJ0smz74YxYyFLs2o1OqA0G3mtDHhCyEydGvmZCGAFgzYQErqq/J2OdOaeCmEcApgSQobdRFRv/A4PNCSCtDeHhFUIMamFEveSq5VIKgoAGU7kUqQqh5XUopqCMDCYoEjGJVAoYYJqn0MS6T3uMcYE3s5SrSxSsZCIoCDjcVYkBXK9kehc69dihqIBWGtSoVLw8Za4noXyLy2soA3zbadJxyrdJpxiPo+yOkFIjgMKdnaRBL1KIMvQImLRCIrMjDWWNXADRMWsEWI3C5BYsAOwL6vqJxR4ONXW4VoX9++dDqHAD4x8MPzv5+d/9+vbSUAMng1Rq0WYOOjyC3TpR2xFCQecVIPZVycjK14lEB05QUKZhX+jOtpNAkYZ1AMSsSKgXIRKWIijIVaiQSUloy1oOkHpWChRU5KQT0Z4JVElDWBtPjKQAQEgTiDFeO4so6plfKSRQ9nuu+V/NAUXoODPeqnlmZcEGBqW47El+MLq6ghrNSQEkm0ERa6ZNsHnD6N65zDgBgonIO0tK13SRpqkMAXA9xcl3n5vdWynzgCsZ1u0dV1/r4XgnXVPFIq+dlvAwCF/qV8l0BF4tRNKHYJIqKs+29+mp5bS7ZdH1SOihvfg4iyFor4UrVnSP1mEGXA5AzwqiofD5ZK0WrIfkoZ9D5qPucneNjn/neq/fx5yjv2fwu8Guehmz62VTKyWwTQ+m63qdeKdgKypWp0Cp6VQ4caWdTH4xGCSMKGk+r1PT3tGbsnlqjN+o8GhLi+YTuiMFeOWwUFEVXEl01/AVGldggBBla7SYARQEFn+/rxVKry6ivput2trlJ7AYlt0kSI48MyWxVw011DoBS2tfMHRxzqRK4cXJt8/SHrLHXfTdD/zskc6HfQK24WSJqXY9LdSzqNlngbpNEReljRrmk+ztKVn96lR5qVY4jx83OBfwdkxltCk1Gy5LE1qJs9GLB6NpQK1ag8xIPCST2nqytWl+g1KhZ0F3oPegejIg/+yLk3gPIbgdarRD7bk652F63iFKxXlziY/e/f3bL3rP+HeDbt/Si+g5Y9Uq5HNSu5ATkLAW9D8AoofyeNEhXo1pLRrlEtr47ZZTrInv161QftdM2Sh+QnjpFYAaNI3B2AZxfgPuA2DGEO4BYqyBs7S8I2oYKCdB5aEaN7P/QnrOunf4ZSHQ+oJm6gzotLZLJKF69EsdsS6dGbO0DMprofdU5gPov19I5vtri1MNLXd2nc08qj/LZrz+p+mtbFd/bmLmuobPz80r5yOqzdgG5Y8wq74rN3+zaTrn+PuRqA+h56A7TRv3dHI0C3SpEUiZwEvU9rWp8zFqx48cQBuKlGnXdRcb60+dKpbpelQpC5Rni6ivMKhsYtBtBuwm4uAQ2a6VZ7yPSaQ9kqX45WXWNUy8xCvocRv/kFSrJbGIhACsU+jEAoAle8F4raLLNfTZP+FKWeh2ENxF49gRdZK06eOkecHaB0EfEyx4gVnZh9nmvHqOg6lHPGwmlQrZQJjd621bngMwNXOhgsS2a513mo2S2gNPAWszAqdelUKCbbqf2wLNX6WZJu2bvq8hZ2tDX+OBCVJkqZl9cv/1MuNnGK3GW77bvazGxGg+r24nFx9r3hGBUe6LbF/o1UpvMqc9m9n2SZv6u+jJt2HTb3klROmGJhHCZis2QV6Gw2rheh60atvFiQvezLwPnF5DtrjJmtLrtVbMA4FWHRncswwi+cwvh+Ah05xjTSV+ux2kawX5+9i5b24Byu43KuNK2mY43dOBawWN07FadQ6Lvf7bwklMzpt4pFRnCPXqLr4TzAfFiRO4Zq0jYMitz87ISxmyl8rdVAvK+otVm7S46jfq4fAxq5oKyjZ2/+xW+j+u7v26Fes3Gb9l2SlxPcC0xxEF+nqSd+B+2zSsgH/3oRyEi+PZv/3Z85CMfwe3bt8t3fd/jrW99K77xG7/xicf9Mk7oNEYmm/a1zl4bkG1/f1jfnWWCxY/zsEVv+bfTMzVB2hI0ylkX+8iaaPFF0v/5uWYCsSCb4ZZjc63kC6gaFhrsWQTJJoCnSRNHREhdQF4FTEcBYZu1/NpoGmiYyr0Uc5CdVxsAuhcv0Y8aaJIugC52yD/7GcgwKDXDagXue2CzRlivIKuo2zJD1hF50yOtAihlSMcIlzpL514TQCQB27uMaaPB3NZ5kszIKWvvivopuEs1GGpGJIeMnBi7TMiZlJYJKA6WWBCHzoIGaYGSfHEamNwBaatGw/olfXacgO5c78VwhwqncOEwNlolXdBIS7Bt4i+fE5qycwsERFEHwhctIQtEo/4EgAQN4hBQyMKhxiQRtLeG0c/lldSAT6k5RrMvQKMGiUlQDc+bJm0gon748H0etbiWxI7NE4QnW5GXdDLFw0Cdd8xhLJI8ckHFWKPlNg2NUxtQlgTt1YPGYPY6X98/dpBVrzzgkUHbScvIh6QO3XanPX5SrknlSZMv+fnP4+Pnf+fxr3+PeILnXfzN+ET+Ebxn/Tvql4EwPHOC8TRiPOLCtz2tLIhrrzQlfd0zPJEDfY+DWXkskIkLxzwlS3b4623JEMoAn1MJpuRe9XA61nF5UCd6/aLex7ADemSlbbQgfO4x04uiPqMm4PIq15P1pcYSrM77DTtvdYypcOTrQPao2YIBlniiQEqj6IFg6LxFI2uihgToGmpJqUtKa7nSzvo/3NDYkDCj7UFzHZUatWshcDWIu5S2x4Ynga5bqxeOZ3EI3Z5YbE/J+uEk/07gdA0wZ5AgFXzhxzRQhW5Xndil4ytENZmzHYtuSx+Q1wrA0L4Xejw+36pupwSSY8hadUJCAJKo/n/+Zcj9B0iXl/hE/pH9N/nnKM89+/tAX/M2pUdaRUwnHXLPZjeooyxmS7jelz45tj62VAh60Si63QIl+guAsqieRgsgQ+molFqNIR2hf3lUvciC7kFCd8HqzEcoPdJYlwnKVKjgclftgOIEm7PeBoC5073bfhfECxolAXImsAWH2XoaKg+fivfyEyFwlzSgC5S+YPoaSt125OoA54fYr6+mOGBpn1xHw/YovW63aZO8s+NeY/O3AdxWx5fSUp4sdJOy2oKwJIUnK5xuqdJ5qL7T4nRoEvAkCNs0CzI4zWCO1o8yWX+brfbLgQjSUQesAnKsEYvVC1usf2YADaMe8959fOyzf3X/fXtCob5XwMdTtzAdr5A2St0mRgclVBM5casXqb3vrGcmMA98N4kf7bshRZ81QSSgCYi7XBn17PGkFSOtevCQ0TMQXjzXJJMI6HyHEEKhgi7n7/Y4NMFOE0ArwCmPZ9SkzXpcaF6ClIROjQpfc6+CRZiD2vv6WmmPvZLoYSjobE+gMwadC3ZbDcYRL32cGyTBgouPE5TdZ04/9LLo6j4lqtZsJYv7uC+g3DZRaPpWul63c4AY1WrteYWSzPE5oIA07PglcdeY/QCMNtQCyYEwbTSZyaMlP5MGc4P97f03iEQpDI2ycfP5CcefGhVcSQQ+30E+9Rl87N7fwru7bwFFbUBBq5X2wesUrAUi7RW0Xuvv0wQcH+nPKYFiKMHv3TM9Lp8JNgcZpRlQEqyUqk3ugWinPZtFTG2b8rMxm8Ruc7iA0bbZ2mrnMG0I0xEj7FSHV589B61XClY83yJeHCslfFSXKYyooI/WvAqamBELXnsSCY0K+yvW0in67+0r6LRxZX8fI6DYJJTMXRTzE7iJv/jE3/j+vOPSp4SmG+pnL4GTbcwKe3R8luyZfyWzl6CdYPfs2yaH2s/aBM3y79l2zc/lFTW0fIWST5pjqnlap3jTe9dfB4nwqHqNLApOWFn/145Kb5swAPE8IV4m8Jg1iWPUiE473L+4xfpnLoGd2fZn5/jYp//fV0/8MUR7hOW5nQNguNNhPAkYjgnTkV2fU62Z68BOl2bJEqc9owTQiGLb+D31+JYmwapuUAL6c8x78CRgPDZw9sBIPWP9wlCA6/F8tISu9iAqfvUC7EYZZt9D/X6hSsPerttofm/8iBm9uX1XAGJW3VFwUu1x7R45BZ33721pI/XeCcKWKuDskNB55eWGxDY+8IEPAADe9ra34Zu+6ZsQ48NTMX/xL/5FfPCDH8SdO3ceut0NtQIPcpCDHOQgBznIQQ5ykIMc5CAHOchBDnKQgxzkIAc5yEEeT0rV+yP+vZLyq37Vr3pkMgcAvvu7vxsvvvjiI7f78q3QYaro9oLea9KzX0j2NATsQ1RdQe5eV17u5xMIs4bMi2bKNCoKT6I2OK5oXjvpztEgoWaeMc/KK3KOC72aowZ5zKCONQMfFQWTVopm85c93tuBdyOwHSCblaKBO200F+9vraF5Bu0m5J/5WeRp1EqczQb57Bwfv/w/rlz6e299G9B3oK6D7AaACXxyDD7agE7W2sgtC9ImIPVGfxS0Wfm01oZs44ki6wsaSGAVKH4flXYkxKx0TkLIltP0ipwCxEikDRETQSbWpnDnjLDThnFa4aRoqbQWpABF6wdFH4QtIV4AYdQy1DCSlpCvAR4IYqXXnsX3LH9tpiZlfJ9ovCy7NIYLUh+pl7s69YKjgPtct2ko0pz+hRzFQqzUVCRAYmvW1Yytv9SqIdSfN06YrtcxzJFDdB1ydyY0RwMXyrVwddOmJLt2+2zhHA2KqfzeoAOzADFodQ4bYm5yxYsVPTirGtwzdiSIUSYiEDBMOlf4GMyQTY+8joUSJkwM+uxLkLNzbSS8Ximir+8AZqusG69Qp/1chTcbPPfs7wO//isgmxVyH5FurbB9qsPujiKbWoRfef/9H3nptlXWOFqWYNVnqI/K6dX8lhkitnugZeVhpzqZesJ0Itaw0dDQCXPat6TIpTACaQCwUR13BKA/V63aQaVa2/PazPv66txU/mbbwD9y3W6XGjZSpkLhBAic7isr5ROJVdpRqe7R+yoQ4QIUpHy97ryqYnRFjxKtMjIo3ZKyzKVF8nIzDwBXEGyzz/fC+gwNuKBdmm2Ss62zXN7lQpUmUilR2u2bcyJruN5W6njjUxgNC0QpUNEF5HXU5uidrtvd8w+AswttItx3wGoFWXeQVQd+8QwYBmA3IL38Mv7x+Pcednu/YHlXeB+478Enx5DXPY3ds8e65oVKdVFQsLb25Wj0qt28yfFe8fvqfwvQXSgSMmyzNnG2xuzTmgoKMUcgbBlhFcCXk86HkRC2grAirdAbATFaJjhiXxbHBmZUhk6DKKZjbGtzBmolDQvYlD9ntTm4XaddrwEwCZgTcmbkkEslD5MgJa5MgCGXMcVpPUSr/fJNrap1e3wpC7TvTE8fMheU7du19TpZVvF4ha/rW0O/dgV17PsFLvOOU5v5cxfiQhHo860jV82A12HaShD4XCygMet6HlgrS8z2dcRw92AEb0fQdtLq/T4qLRQTVp+70HPaTpD/33/HT5z9bbyLvxnc94+kSH2YvLv7FvDJiVK+rFeg170WsooY724wHUWkjVcH12tBQ3cIVJR/Do661euhDLCtXgAKzVr5l7SZdPdgQtgmhJ3S1aR1LA2kdUdG7gO4i1rZ7NXNKdn6LZBeK++cojZ1VCsKGnEalStzj1ETS2z8DrsOLxUkr7Jd6forzURFoZlIfG0uJYY6hmRASJCJ0HUZXVTD+9JsGSAgD3uMihsgs6raK9Vxi5u57xIeYsfr97J/u0bvJeuz30frJO38wqi2VTkngnDYT+HUrsWZwGbvKyVypVLNkSt9V6y6SxlAUsql3KkvmxoEencuCLuMeJlVV3ptqJ47wurlBB71PeNJsP7v95R6LGeg7yFn5/iJe38LAK6s516x0/rh7wrvQ7h1CjraqG/w7NNIRz3y2vztFWN3O2A4oUolttQTex0dpS6o/q1Xsnh1uk97Za20uUEI6B8I4qUgbqUg7IWB8ZjLeDkSwhAQj3vEi16ZA2IAjxk8qbMcBlG0vtkOZap1+7w571kFkf8NFCR+9cubOa3MR0AYUG0Cn+OsiqFQN0avSrSfPZCjqF8eBIi21ruP4j/HG7pme/VdIzM9eZjuPqx6B5ivxT7ucohGn8v3XkXHPLPDpa3I8YoaqtWylARsDDsZtl5LZZop76lRJBPM7zTKxbomW3WK63W0yvKVMeXYOKv7GfF8QjgbS6xNAiGcT6ApIzJAuwT6Pz+Fj730fQCUovwL9b3fc/IBpURdrSC3jpBOVkibgGkTMJwGDLcI4xGQNihVc3rjUCtQqNF7YFZhUmwZqms9LfSER2hMbGtVuqJ66La4mA/PEyFuI3ibyjMOY7bKJtIY2ghIsgrA6O9AnWv0HKWyEfmr0Lp5Zm/NQrMeZ/NLtutf0maCrMLPqv+cBtp/prVUVh3fx8fwnw8xSQ/yxZeb1EPnSUUek172yzehMwuo7ll42nXqSR7yshx0eYzrqCHKOXHdbhn85T3nu29Rs3P2xafQOpQJ1ma4gEJpIqyOa16xloxaDxyxgIoEQrxIiOcD+MEFZNUDtjDwdkR84QJ0foH8mefxE0/oKD73pj8IvOX1SvU0DKDNBugi8tEK0+0VpuMI75szbWxxDFTK1dlLvEt/CJ2VnbsWBA14euDkOnoCafyxmXNl9y0R4jnQ37PjBWA4hQWKtPdECgBO1UmMW4ZcZqWIGAVsVGUi0DJqO1ju1Hl1PlaL+FSjEqjGJMOcSLWGJaAEfPe9FuTBIUK1ssuLAO0twqQ9dUa2+1RfMT1XBg2snKSpnteNre/bo88zg6/93Km4HjWmU0K4fu8r+waaZA8ALHrctOd3XYLX9b79V4I3uQRu2zmhGK+A0jixoHLpkgZ3Yq9c+13Q7QMh91FpR5gQLifw5+8hfeZ5UN+Bj49Ad24BF5fIn/7sz4le7d39+yHTeIW+6bk3/gGg78FvfD3yyQrpuEdeBVASpJV6Qc53nM1JLPz2Zky5IaiGndT74P0jPODCGlihqfa/aA1TmoDuDFjdE6NQJJz3FgwNuv+0IYzHwLBlhKE+ex5hfXZMH43z352IYjhmNUJnNAs2v0gTuJVsnqAQqPSzaQJGbjh7Tw77XDIVfSfONrcLaGBg0GvZlxySiUATo/T5uam9sZZ6459dJy2F2nX7eOAbrd5eM+a+RFdD7/BQqgdA9a6dN9o+O6OAKGtipz3f4gRkfXbeI8+CVBIYsupAXQB1RgUTNZCZ1gFhlxBfPId89vOgvtP+VLdPQZc70PMvQu7dx8d+DoHdR8m7wvsQn7oLnBwhftVbS+8t2k2gSZDWOv/UgInpe7Bgr1EttoHhWXDFdRjVYPcACmUNInXnGf09PW7qGcOtqI5krHPL9i6DJIKSUmSAjNrJaJ88kFN6+wRAutY7nDuD5WOyNZgEOWm/GwBKs+aJFt/WKNOcUgkAAguyKA2sB3IpJoxTwMWDtR7XxqKgNk5JEInTMKK8U/wlotvXrtetbl5Ht7Rv+2uS1CSyNzF0hbqlDRAtg0z2zlKuv9fxoesuu+nV2E/2/d5eAURmPjCwiZWyrTMe/kCI24z+/oj40oUmcdZR7fHdhO5zZ6AHF/jY//n/vHJtj0Oj+K7wPnwi/fCVz9979ztA6xXCm94IOVkjrzqds4yuMWwnpVsj7U9Vegw0+loCW0BZF/1+VrpM02cR4+PHLPhLSRCGjPhgB37pXOeQN9wFSaWISoEwHXfgcY2Qs1HYAjRl8G4CjmPR9TZo40EZsSAMT2pvuM1RAtpBkPtmvWzt4hlCw9bbkMs2RJZoSL6YLwKH3jtLMXnIEkCSMZFgmlZIQzDb1d7FmwrCYOxPvD7M994je0FYj7t/ADyxcyUIvAw+x/l4wqxJ0uV6nqHU4zv1/8jf75Y6tYyB0u9KgtEpkT7fbL1gvWdU7hRU1J0L+nsTcs+YjgLGYwaPomvZyyP6588g//3TSGdnRZ/fFd4H7iIky97A73vWvwP8xtcjvOErgPNLvPeZ3wsiBmJAfPvbkI9WBQiSVgHjSdBAtdurbq50jfo237VUqKV/RbtWz6c+/bqlHzY1iVtg9VJCf38ETQkSGLtnVpiyAqqE9ZkOJwweelA+AV+OwKjUVcWPhp0Hqb+0pH9rg3ctUMPp6Esyp5wsriaCynxUxylAM/dRin8CTBtRmikDnJG5dQABgwJGnX7dz+XGBhkNZFSkBTI9hn5ft8bbjns+WujVw7bxxI6vt7Yuy74YWvvskyhtKZHpLJVtlIKNZlN77vV7BVrYOy4E7tnAgITUaW+s3GtCY3U/o39hp2P2AdNxBA8Z8WxE+K+fwsc+99f23q9HJXPee+vbIMMwA2o89+zvA27fAn3Vm5FWHfImYjyJ2s9nRYXCEahLVukB426iwN5Z2y7V72fSbF9o1mB6ZDrCg/ag7R+onu5uB+RgVOmmc+MxYTcGIPWI21SOozE0d4CrvS/S6KX71e4bGBiZlkCm5asj2Bvnba+hTWBno1gvuh0sidNu52ZBBmhUgLdTUbZjH+QVErOtHrnNl7C86iHZ7/3e78Xb3vY2rNdrfMM3fAP+2T/7Z9du+6M/+qN417vehde85jW4desWvvEbvxEf//jHX8GzPchBDnKQgxzkIAc5yEEOcpCDHOQgBznIQQ5ykIMc5CA3TW4i5doXW17VCp0f/uEfxh/6Q38I3/u934tv+qZvwl//638dzz33HP7zf/7PePOb33xl+5/8yZ/Eu971Lnz3d3837ty5g+///u/Hb/gNvwH/6l/9K7zzne98soMTY0aF5OI0SRya32c71l/zNU9/iUrYhwq47pyuq8xZloYTgVJSRC4z0DXb+6WUknBAIAXZ5k3dJXKhXgOsOWPQrH3OAEQKGk1pSbLSqfUdpqePtJF6EkX2f+rTXxBVy3Nf/Udx7xvfjKPPbNF9/hwYJ8jtU6Q7G4y3eiuz1iaRXtaaOr0HU0elARlPigCQCEC0qWlBjHS5UB3kwdBUIRdEqxgaptAcZSqITsk1w96WjnaXWu0yrW27gEJpNkWAR8I2EVYvM7oLa4K3U/RV8ubpVMsyJSq8d4ZYAmboJmFRVHAGMBEo2H4xYwZhBkAd5ogDR48ma5buJe6hQVBadQ4cPWi3D8nPS++7M0KUJus3UPZSo7QIIhdH7zk900KoRc96pYxvd12Vzmx82+a6artyoDmyj4LNBbGBhKU82740bHYEZBLQpHSMiEH1czIkVVQaIfIKgAzkXpH8wkD3wgCMk9KsPXVHqdmm6efcNPnd3/hnEd74euTPPl8+e+8zvxd06xbSG5/R+SSJVR7oRJv6SlERBm3+CqAi9VvUn1MYFGoHKWXSpcDOEbKjVegY3SEV1FBFXfEIdBcZQsD5G8KMwnE6FfDE4ExYv6iIoXgpCINg2jDiJWG4a7Xmjjr2iplMlcrM1ZVRqRO7rFSHk9J1gAHqEihIoX/kkHWO4krJJkIgCCQzZGBgpBla0kWizncItYyAWKvyCiWMb/+lhuIH5mu066XPYQ/RUWG+Srd2nVwHfylIQKq/twhBoN5bsxmECegCyCFmOSv9Ws6Feq0g1rOuu0IEODUbAxCjYYsEoahzhqPsTIfivS3o7FLpYJ+6o41Gp4z8s5/+OVEuvecb/jTo//vT+In7318+e3f/foSn72pT5ZQgD860OqfvdD4B9OduAKKAp4ycFLG8rGoQM6452VJlDYYhANsa6dRNXhXnqPqi10ngDZwhQDgfEVOCdCeYjkJpliwMjKdK9QB06M60CX13LphWSrE6HdmxfC0uem0nLdB1skEbIwAUMng1IU+MNGg5LcdcLG+lUcvld63SsSEESJmQMmPcRVyOKxSYc4YizmMGR0HXT1qQSIJVP2EYAySzjsW5nHip6rth0tIJXm1ivGctF9lP0bQUnwuW27bNy327ffv6eYWruu3nDQJoEq0SCVbN48MJQFmMss9M70AQW6eQBJzqnODVnOL0gj1BiEv1V+qVlglk9viQlHr41goSGJQF4fn7yJ/+LH5iD7Xxo+Rd4X3A//w/Ir7hK/Du7luKTf+eze8C3z4F3vgssJsgqwjpFc1fqsS2CRI78JBBR3ouOVaKUqeHqg3HyZoHOwy2cagN6uvV9wWlmwRhJ4iX2W4mATkB51vwcAtAh9zpGk+iNE08dEDagC93ygKQBeH+FuG0B08B04a0GqpF3bYoWptPyJDGuYNW1fcCdLnaHWZa0cBlXqFoVTlUK/KQSatwJwLtGKVpc3MPdI5x3w2gLUMQMPax3MtSrX+TxatSXZYo+z2VrDPZQ5laq+6u3212lMJFKfNKpmVFwbKytp2IiQotEqB+NKUMHrNRFqN8V753WtRSLV7t2BydTrvaXqnXKpLuTKvShAnTRpH+lATrz4/oP38Oev7FvY3R91XUuTz3mg9i+79+PVYv7RA+/wCyexl06xS4dYJ0a43ptFfqw0KLqOfHU9VNrGH3SLehjEKhxntQ+2VNt+ujxsYUhvrozdxAWamYvMKGdxP4bAukjOm4A50o3aRvP60J01EATz1iYPB2BF8OoKkDJ8HUUTmftmoGaPS6VR87v8zVJtCN9VzjhW3m/geqDdJWzxd/JADTcaVYkygznRUW8KD+hN8PMl9bHqYTN0XMfwGwX4+Ah+t2u9/y90fIXv++PS/SOFapmPX3lq9W0OVAWpknur6UKq9RQL6mN7E0yvqOCpHR5unYXlUuDNAKpUolrUjfAQbipYCHDImE6SgCROApo3vxAvT5l6+tznmYvIu/GfTL/keE1z4DPP95AFaN9/RTSG/7CvPxyar2GcOtUKvVUH9mt7EJhWaNBCWW1m4/q1TzfZwwoql2dducp1rtLgytSDqfMK0Z4xGVKheQ2trDSKAcIOcE3mVwEnRnCcMpI4zA2NuxqZ5PWUez+sT1/NRekijIpHa+VxkJ9PoK86k0u/h1ul57ewTx9g6m14UFpO4PaNsFr9xjs0e+JPT6F6o0z/eh23wJy6ua0Pkrf+Wv4Pf8nt+D7/iO7wAAfPSjH8XHP/5x/NW/+lfxF/7CX7iy/Uc/+tHZ39/93d+NH/uxH8M//If/8MkTOtdxdreeX7HqgZLccRGZ798af0uZLVqNRj+EM3yZzJkFbpdjMiBdKAHRcope2g2dQGnKmgTKUCqmrBM9JUFah2pITc0gWSCr6qDmVUQ67gERTcD87POYXnxpL43Dc2/8A5C7p5A+grYT6HIHnJ9Dxgn5wQOEZ57G9LavsL4z2kcgv/4ZnL/5CBevDRhu10BK9wCIl7pQTBsr+7ZJ3J1fZO1hwQJkFpvsLbAnUOowS0RwZzQlZM/MDLya3LHxPHmSlb5oPNXFe7okxK05gGbYFBo1M+qmI03sAMqxy0bFBKhD6H02hGvQuCZPmn+2GEkQPRd36ARAEA30Gv8+eblpImDg6mwaVVrhMgeqcW0OZ3231EFX2jrji40CgZR7Qolu7Nx3rTF5XXAIQKFnAmaO4hWqB3f49iVzPXi0PMZ1Rus+w9cDRf5w2KIEImh7bLT0LzQmYJyUzihZQiEwKEbIugMP9j64lOffQamF7Fo2a9DxEZAz5IWX8BMv/n/23qr33v520N3bmvS+uEC+92BvX6zn3vQHkb7qWYRhALLgPScfAH3lm7D7hq/C7k7E9g5j9SBj9eIEHgXpKGBaayl4KVPvKoWSO/ctdULrPNFENheYDgRLgLKYw1jfXTdYOaEEaYY7OmeGbQCPNm6U0mfHg8ij6fXqnjraEmqyVx1iWxtaajfyPgA2F5khmo8SKApkYtUtmwPQZSAAIWYkcBmLWJAnhuwCpNTIE5BIA9LF/7b3Oej8QkHvA7FYfzWCWN8NsABBNNF7U/tiQZ+NBLoa5NlH70A1SibtnLcXw/EFOJXXBJ19nW6pHspx9hnzlmClQXvpYPL+T+roYUqq1yIgDkAMOjPEgLzqwCLAqMejXCeutIkajMkA+h54qgdSBr3w0kOTtO+9+x2gp+/qXPPgDPnl+1d0+7k3/gHkt7wWIVRb6bmv/MOQ/+lrcXGntyCLYPXigPjyJWhMyEc9ch8hsT4r78vnYA0PIpXbmgBAQJ7YKvcYBWQiAcWZKrRXQFlDJQDDCQHoEU8iaMzY3g0YTgnJuLidpz+tCUPWB8VJ5wQHcNAEyEognc4vhd41EUrvi6xrZgnIdkn1ddSgt0xsupaxWQ0YxoiUGZJZ++BkxnjpZP8otEySWXv5pTo2WJPAoU+IXUII2ZYJwm6IyGYLcFDKiZxY++fcVAjaQ4JDe+VxwBTttq20lKWLbfauxw/RbVnMA2qPWjBJoDqcPUjJuhRlAWf9jpKU8/GAcI46L5cAhdPl5To906T2SF4HpJMTQID48hb8s89DLrfIwzC75HfxNyM+/TRwvAF2A+T8YpaMdYlf+RYM6wCMIyQl3e+NbwC+9isxnqwwHUXE8xG8TUDQvjVOBwdaIxsdXA4KqmIPagOFcqr0xEkCisDE1aYF6to+o1gzmmieLMgsAgmM6dYKke6AdiOmo07BXqS9KymJ2QiEdBR1fiRSAImvIyKaULa+eWnV2Bf6yGaUj2I2Qe4FssqVEklYgRlBgE3S8ye1zYmBnAhyEQvIwB+kBKm9MhxYYe6A0jFRAeB50Ix29tJ15hwA19NIv9ryuCAM37ZsKHWb6xK6+y55X5KntcuXid09IIx9iZ3Sa8f7YAFqr00WtWXo3D9mZcM2u9B7OMDfxaiDUhZN5qC+W07zSVlBf9NawzP9Wcb6+S3C+QDajkDXzfppPPfGPwB56hbyUQ/eTqD7F5CX70F2O3z8/O/gvXe/A/KVb0Bas1KTXW5BRxvkZ+9i95ojDLcipo3asP2ZzknaD4JMJ1w/cEUvHeCXQ/VvC/VpBFJDXdYGhcutF9RelIMCHwFguB2AcIR43iNcThhPNfEqAeCdzwG2bq8YkKitQYek93aq843E6iOU9lSuz/XXArJKvfYSKRv4r+V9MHvDe4EZmLSY45YYTms7ZpAadC7JHD1WXuXqm/j6bkFjB6bkm2qTE819UgBX+mU9yp5ufeDHlYfMGzMAVZvMMb2Vdv32KSaJAqDYkjsAGLn6+BkgKPCCkpjOE3KnNIieAC3PzG1QaX5PQBz1HZdI2D3Vg0dBf29E/Ow94MEZ5OJydlnvfer/Bnr6LmTdqd6fnSO/9PIVIFZ861uwO+0RPpsgOeM9x98KesdbsXvdKc7e0CuwayfgQYqNkjoqsavkiYlY3zltYYDy3jotefmssbVLT1s3nRbX7VRr3qZgPCZQjogbxnCLMB2rrniCWFgp2MakChkJ2i8n1Pli5vtHaC8qQgVLFqXGzOadAa6anyVJ7R9b2KXE3+z7HE2vbU7xuX8GrrAbkdZSE8eXVEDUfo+ljbMe5OddvpR76DyuvGoJnWEY8MlPfhJ/7I/9sdnn7373u/Ev/+W/fKwxcs548OABnnrqqWu32e122O125e/79+9/YSd8kIMc5EbJQbcPcpBfeHLQ64Mc5BemHHT7IAf5hScHvT7IQX5hykG3D3KQg3zJSwMaeug2N1B+5a/8ldhsNo/c7lVL6Hz+859HSgnPPvvs7PNnn30Wn/nMZx5rjL/8l/8yzs/P8dt/+2+/dpu/8Bf+Aj7ykY9c/WKJ0NvXOLltcJ4XsAACStVOW3XTgg0k45EVOX6s5e9WnVMQD15tsw9J2JSDO7rGx9BGvgLKSudCSUDDpMih3ajb9xFCBieZBGGbMG10vNw5woW0gbG9Mv0LF6AX7+Njn/8bey/pvb/kT+LynW/C7paeTHchiBcJ3b1b4PMdwvYudm9+Chev65Aj4d47jgA6wtkbSCtzbidIzOC1NkXbnXfoPxe00mWo6NwcvVqnome1ZFQrSIgJ0hntQZ/LIxEhwPqtVYS2IuQkUYOWIyAKxBBXWYDhrmA6Jq1kcoDWdoHSN/TQeKzojbAjdOdKQZHWwHALlbYltdAA29fKT0FSUEU0zd8fygSMjDw5h5siFcioBahTSjkfVpGAtHhHbVdHl5IoirAgmaQgN+AIXyKt2HmVEQbX6jawHyG0D/G7rKh5HORfW6XzsGqcvee10OEGFbiPjkK6ABIB7UZF8y+PkY2yKSmiSC4vKzUbEejObWDV6SPf7iAnG0iMkFUwihdDeB71YEMy0mc+f211znNv+oPY/i//A4ZbAWEQ9C+PiPe3eO5tH9bxDWVEb3gdhre/DiBgeuuzwFtei7O3bLC9y9jdrhVs/QPG8bpDd67op7TS5rCpU7Rs6hXt1gLLHaEPQ/LkToweotnG0DKFKrBFvxpCRrdDaVgtAbj4CgGPpOXhBPDAWvU32WemL9MaAAhhq3NbdwajjmKMp2JonTnymCYqiD1tiJl1nnIKND9XQPU6E4adQUoF1lwdigx1mpqJtGrPUL4FTWSIoYJW8spDr9TycwqGdMyk58yKhno15aF6fR3K1mRWUddu8zB6pmvomPaNv+/zK2uxIwB9OG63Xew/ZkXxU62yoQQgJdXtyV7qXYO4nxIQA/j0BHK0ghAhXOyQj1ZAVBpFvwF505X5jD/z4sOrc77uT+D+u34RdrcZcSvoHzyD/t6E537RHwfOLpBffAn82meQXv8MIEB+x5vxnnf+aWxff4zhl38FdrcV5ThtVL82p2scrQPCNoHGjLwKpdFsjgTprCmrvaNC9T4p0r+ianOp7EG5t04PA6czCHWc3GkVnaMNz58l8MQzVCEZspaTUqF6w/bdbVYKV1HbKYyEMBgyz6tp0wJxJ4buJClzE01kKD/Tb9sn7yLuvXhSnQeWQqdIXKmb8mjP0aZ4bfBKpdLO1/mcGBMAdrpVEkSb/5Ih94kEISak8drH/4rII+3x6ypY94lXbj2p7Bt3T3XQtXrdIn+p3Ud/5Kg0WpwE2WiJ/TxJRN/JSSmbaBLwmGZzznTSKx0LgHgxqS3OipbXd0y3Sz2XNXz9sw+UimmPfj/3xj+A6df9UlzcjqCs1CXxwYjnvvIPA7sd5OwcMozgN70e4+vvQAJhfMfrwW95FrvXbHB2yhiOnVYK6O9HrF+crAKGSuN0CXaOUSlUuF1HGjR06sh+R6VILGuzFJvEq5NamxoiRrvEyMjgBOye2YDSGjwkxMsMygQetIEyDwnSMUCEdNQhECm15TChe/kS4A2mTY/hiGpjZqdv8Wr6YD5GVFsjrQTocm20XKpqrGrd7GRi0ko51gp6RIFkrYSVlU5ElKnY5sKG6HUaLjH/023PTAjnPKONcvrHpW/wSst1en0tlSJw1TYvO8lMD/fa6PvseD/GdVU6e/6+tjKn/E7z9Zsb2z+aoeWnmrK9p6broyAk0eoyALlnRcZH94kzxiOlVEu9N23XSlGvUjt6PmH1wg7xUy8A55dIL788ozZ/79f9Cdz7v74F2zsMStZw/f4JVi/cAj/Y4bk3/yHI29+E7Ws1GHT5hhOE1xxhe7fDcIsw3FJdzb2+791ZwPolKXrodGGFNmxBteR6ydkQ9IbcdzR+2Qaq705zOrPF3ZRdE9gqfXgCLp8OCKeMsOsgpCwXgGgMYLKKA/g9Y4AieJvQPRgBIkybiOkISB0w86/bnzwP7SRj/6jvSd0uHWFmY7se8lSviZL7JBaTKBXEUir14fa5+dqUCOFiHkMSPzY35/AqybVr9oJOcS9d4Z71+9q191HyqLFovp3qk9sVzVxEKGuMjoFKgZhUr4W4VuSIKP2aVdpSVn+bs67heQpaldprDKi7yJg2XKpfis1KqudkL9zqpR3ii+fIP/OpK1U3z73h9+PyG9+B7dMRQsDqXkJ//y66z93RdfviAkgZ8vrXYPf21yB3hOFtrwG/4WlcfMUal0+rnz0d62sWzwn9/aayzSpMXPdTD+QVSjzLq+a8aia7Dnm8KNffW9t79riaapm0AbC1IQJwdkLgMSBu7RUYa3UicrUdctBKKF8b40VG6hjjCSGvrYp+6a6JXld7Ps7IUdh6fP7xohr3Hfx6rEI3W+WRUueZbdBU5Cx/18Hc1iMgAfGCqi67393EIA7yygiJPNJf+IL8iS+CPP/883j++eeR89x4+SW/5JcAAH78x3/8scZ5VSnXAICWQUyRK5/tkx/6oR/Cn/kzfwY/9mM/hte+9rXXbvfH//gfx4c//OHy9/379/GmN71p34lc/bs1HPcuOo8g8c6MvbRsj/p72XNnaXC2n9l2ZfFy+oYS9JBaOloWNNJeG0zAlEAiCBexGJ68TeDImHq2ElUzmlbc9OHJkAdnVy75XeF9CF/7drz89U/j8hkNzup5AEIBYezBg5LTjscofLHTCTDcFuSnBnCXPB6KPDKwC0ACphOBbAndZCWcYoFhAqYeyF0GSuklgaw3hgxBExC9JXaMgkmqBaA/fMKHGmCUdUJGZtBEiOeEeKGGASU1MOOFXoOXV1MTHPLFPIyeVKvXC6eDknp4FzfmWm5xp3K5kkH2JEsgYDNhdTQiZ0IalEPfByA2Q2Ui0GQR7Nxcu8dS/F+XmwVIqhGeCdl7BaR9ntMrJ9fq9mMYlUUe5Sj657Dn/tAeG4t9s1z9bJ8OL53J9rwCQZLNk76NJZoLXUt77CyQraKpJCWlRRpX+t0wgEIATkI5llIHMNIq6JhTBvHeyQ7vvfsduPxfvhoP3tRh2hhNwjMBlFeI21uVIzcob7AahBrAGU4J22fUKCp0aKzl1xfPEroHhNU9M9q2GvTKPSm9opWGFz5bmAFovLyUqSR19N41/4T0PfdAbidIAYWvGoTCj807FI5uHoHuTGnfPGgbLnVM583mAaV3VxhUz/34OUrRJ6dIyp3pvtMnNlRwJYBT3p3ac0eCgNcT+qNRg7dDqIkZ43+WkXQibEX0fZXZNKO0MGTHBtAEkNV7pBur1zTTz0dRNRTe6/JBXQevbtzo9XWBpn3HbVVlGSheBn4X40mzApVEspAlZ/N8fhWBDKMGmLY7UAigGNVIBYDLrcaZjlaAJXRyJORVsPdXgO56c++9z/xe3P9fvwbnr2ekDhgnwngSsX0qoH/6aYThKdCktC1kiewcCeMxYXdHg0ItZZIQsL1LEO6wepmxemlUOpTLDGFG2kTsjruGPlHnNA/WAABWZJQtVPWo3Fv70YAnikPa0K5154LuQrRvXYb237hISt16HAqdY7zMyL3xeXekQaVRQB1hsuCUGA/+vgCLO30awJFKm5KaE3f7wuYdiYJ4MuLk5BI5M4YpzOj/kiVsJBGQ2GwT8zgZJalDLAic0XcJgXOhXg3mrU6ZMU4BKZNG3l5FuVa39yR0HkrP5NvkPQ/jYbLQ1/bntfSnbYKWqNjEhY9/cW7lPS3BgoaDP4smc5x2TMQoU51sHQgNfTIPZosfs/W4tPGjBogLOKBTmrSlvPeZ34vL//ntOHu9rtkkAA8BPHXo37hB3GlSCQCmowCnMM6hx7QhAyTZdbB+Nx4Rpk2H9YsJ8SIjXmrCFqxzxnCqiaZkPgnZAhR3AA9SqFs8Sdsmc5xebdZL0vyPQmskAE2C7sGIcD7otecMfv5lnUdPjyGRjepkB3RKPSvMoGlSypxxKvR5uTOapR4laeXPolA6RyBtRCmS2DMpzTkCNvfY54FAxyNWRyMEwDQG5NH262zOzvVdE0tESKbih/m1Q3Q+okFpVSWIzptu4wDFb3m15KG2eOurujyuTd78Xexv/36fLZ4XQZllfGGfjptO70vaytLm8B46vrZbcnJmiwP2jhqIcmBQzko5WvrokPmEmvR12zA7tRmo0A/xbgLOL5EfPICkGgV87q3/dzz4n96Is69gTEeqH8MtBiVGd9Ehbk/A09OYnM4IQA4B00bBVNl887YnRrKeIP19tcPjlhC3UiiQxxPUICbpMXk0G9gSG5VezG6x64kFiltQRg71UQgDkgjhIqM/095UNAriZUI8G4ApI532NqdAdZ8Z0mmPUBozeDdCJKq9xJrMyZ0dn5u5uQF2+Np+JWE1e2/8fUFj0/s7Mb+HOSoIsszNDpSKNYJc+mkmAo1kPZPqvhV4Rq86cPI63d6brN3jcz9yHX+MeN/esWb2YHO8pc3dHtue3ex5ov5NAl3XpU7PZb1Ojc+UM/hCgdE8hELVJqy0ajmK2pKhJmqdSgygovcYxqvJnNd9CJfvfCvuv6XDeKznuH0qKk3ZxRpx53SihHFj6wUBQp32n7ntx0GhS3O97c4VWBx2grBVXR+lWeOD+Yr2noet6ncYGroxN0ObpM7sETTj+T0VUvet22kfodRp8mvzQgJPgrRii5cRwjbbvdRr40l76SEJsOKaaF6JzmEO7GrfCQcz+vG50qxf6Zu1T9x2Mz33zTT5h5rMcXufqg+g7wchbKnEKdr5odDQHRI6r6zsi5/u2+YVlE9+8pP4wAc+gP/yX/4LxBOBRCUPktKTvSSvWkLnmWeeQQjhSjXO888/f6VqZyk//MM/jN/ze34PfuRHfgS/7tf9uoduu1qtsFqt9nxDj15InmCh2Svh6uK2d8zHDPpeQfSjLnAS2IxFrg4B6cwrkSAIOgF3AupC6aXDZ4qo590IsUCQRAZPGTw6+ohmk2D3YAC9cA8fu/e3Zqf93l/yJ3H2vl+G+2/iaiCubSFbq1GTuxoQqRzhQN5k9Ld3CADG86446rRj8I41IHqUrPErI56r/ezNkMEAD6yVNFGsd4Q2QQ8WqM0CyDrDo5tevaJc+Fx+96IqGbVBMeUauN18TgNEHrzu70+gLBhO1ZHlpCgCyoLU60C500DS2esDxlvAeCqKBOwUTXjF8PDoq6OBR48W0ezeFbRPEMQ7OxxtBpyfr0Ft0MaTNo70afcT0msPFnze2UZdRjwawUEwbqO9SlIatOeklrHsXuHZbyHX6vYyOPSQIPBe52+f02gO97Wyr/pukZh9ZCJn+XdWvQYLMjoN/LCdEzMEGYSgVXzMIGYQE6jvgJSRXn4Z+cEDcHtu5xcgZnDOwFGn71o2g3XK4JfPkT7/wpVLee7Nfwif++avKxzzaa321XDbnA5rCAlSJy0M0KRJVq7e8VQMZUfV+JkIuRdsX2ONI3tCf18TqdwkRxzFW5xFqs5i2JmBlQlpo9Za6aFj/W9qYM2aEgcBmaHLOyoG1tHnBGHwJAuwemnCeBKwvcuGvFLj0tFcEghhp4b7eEIYToHxdtYgcdTeFUXvxBw6BiQqr773stkrXlkXBatbqtsPHmwQYgKRNuQslnXQscj0GTYsdQa3mrj00Al9wmo1IrBgu+vgPbcCZ4whaK+NV7nR8nV6/VC0LzDXz0Zfl4mdvYnZRyVuWlke+7rA7zVB6Nk2kZCOe4TzQUESBJCt44hBk8IpAX2vydica8L2/GKeW7jcgoMFj1bWrNx0m8+2yJ95/sqpPPeG34/ha16Pl37bL1LdNsdj6tUJDDvC5dOhIGlpqk5LjmiCxChBk1LFdqR6Pa0iciSsXxxBiRHOB6RNLEFaRaQaIjiKBYkyhNga1tY5oHDgc50TCqo+6vmBarI3jIL153ba6Dar3sSXFd2YT9eK7hcgbNVwDpdWudgRxmPGcKp6vXsqq/6uMzBwvQlJq1W1qlU0WQMoVt+TyX7OaH4GwdHTF3j69BwvnR+hiwmcGJlR+mEwC4QE2QjLOUhZmmI/QYQQQ0IXEzbdhNPVFpEzXt5uEDiDSRAoY0gRgTLGHPBq03Zfq9vMtRrd5Tr9AVAAVw/bxueDZRLnIYGoGQd/s8+VIFGTzLlSkWeJihy0p8Y+cJiwVmMxgNzHeopj0n6TK7PFA1vzde03Ne6xM7oHE/jexZVq+efe/Ifwwm/4HzAeayJoWut15bu69l48q2jhEpjxYCvqGk9NsKQ0RQ6WDxkU8BVe1BsdLieknu1zW6uzWH8Bc1YF2hQ6UWkmrchcqf03ktTqk5LshQV2BDRaMudsB3zqs2BiyDRhuv8AkIxw+7b2AQOAy0vgQQKtV3oO6xUwjJC7p9g9e4LL13a4fNp6hNj1lgqd3Fyz283LZI6gOjL+cgRBuLPD8dEOu7G62MQCgpR+l2ACcbK+cGTzCgo6uOAFSZDB4E7X+TaRI2bH0/hz9FV/jnKtLc6EZZ8N4CFr6yNk79rdVjEttnlkT6yi16bDS123z32cWinKukaZr6avQDsJaI8cAetadTmCRdDdBySukIPaw3Gr/hcn7y2B8g6s7mf09ybwy+ezZunv/bo/gYu338GD/+3NmpjxhEQPjKf63u6e0nMvPeDMxvX3vAUSlveNAOnMth/0uh1BH3dWGWfI/RLYtLWtIM7t89Qg+sXCCA54hB3Ok32lX1gGuktBd5Gx+en7JQGLEED3zhR8Opwg3dnoMYcJvB0hnfbHkj4iH/XYPbXC9umI4TbBe+2V+7qYy0qCpgm47hXfr6neK9fS+CVtVY30HoeRCrwEatKXAHQZklmfCdTe914hyPpccVP97EDX93XGHt171HbATG9bPb9uXS7fX1nHm7+p+g77KmrL/kQQktkhhBUcI4FLog0iamenjPDyBSRHdIGbPjy6hnEicBKMTAWrpfOMoD/L6F+4gDz/+dm9+FX/2/+Os9/4DkwGEM5WNZpvoQCGNNHh7Ds6sK9b05H2ZHO2itKXJmiVjL63hHipa2wYBZP3lp0sKQsUoJUEAEMzlr3jbXVJsclRdd3vr/eiUVtc42DHn55M3wXxYgKPGeOtHsOtCCH1scNOSsWUdAyaBMMt9cV3d4HdXY3x5W5RnWr3d+ZW7wNfNDKrMhJoxX/rS0q9RmrmexCMtUMriMTnw1znQ+/lVdeI+Xt3kFdO/Dk/aptXUr7t274NX/3VX42/+Tf/Jp599tnHKmZ5mLxqCZ2+7/EN3/AN+MQnPoHf8lt+S/n8E5/4BH7Tb/pN1+73Qz/0Q/j2b/92/NAP/RB+/a//9a/EqR7kIAc5yEEOcpCDHOQgBznIQQ5ykIMc5CAHOchBDnKQGyyFuvcR27yS8lM/9VP40R/9Ubz97W//ooz3qlKuffjDH8bv+l2/C7/0l/5SfOM3fiP+xt/4G/jpn/5pfPCDHwSgpZ6f+tSn8Hf+zt8BoMmcb/3Wb8X3fM/34Jf/8l9eqns2mw1u3779ZAdvEfyPkuuomB73OAAeSr3mh7kOTfQwFH/ZDqUcvCCKGJAY6tg+/JjBW1bqAWZgNyr/76pDXgcQFFEYdgnCQbPXls1fPX8Ofv5lfOxT/6/ZuT/3lX8YL/yq1+P+VyrNGlvlTFqL9bdR5Lv0uaDFyStQBOj6hJw1jS2JQAMbKo+a8kaBbDKmrKWsYdCSUBJF2vu1a98fQV5n4/7luaKyoeWMeohIkIBKY2TjUMzAELTKZ0vo7wGrlzPCIBhOGbkjAEpVNx4zpo0jIXlWUpk6YPsU4/JZIPeCdDppFZCgVBPQZCi9jELJRFErYrzKQJbIear/RAjn52tMZx0oCHg1gTghTwycRxRU8zoBnb3SrPQRRICMrK/lOiGsEvp+0r+NIotJwJwxpQBIUoTh8Grjfa+RZYUOFohA15tcP3+kds8QG81zeFK9bquGFnqtlTaYfa6IQMKVogkGEIKi3kQgKwKlCNpGzfKPU+Hafu+tbwM5wion4OJSgWRThkQtaw4XI/hnPrufg//Z34d7v/rtuLDCydxV7lpHCUkAUm+VMQHIQ0WkFSQfKZNU6WPh1AQsGO6q3k5HhO4M6M6UVoSmuhA7wlDIaNgMyVaQxY6WhWj1WzB44FTnPgSr4skEulQkU9hCdfue9hjb3Q6G6ouYNlRo13JHhYNY7wPh8hkqFBZpLcinqvSSCGTl2DAdlpVSQlIwmG3iOSJkAQ8Rm6cA4PxihekiIkVGXE/gmDHeX1V6qXUGYoJX4IWgVUDJ9ZoE3XpC30846hVylYUUyc9i+q0VALs91D03QniBCGxlH1q/0XNgPgc8NkL4YRUA7eFLRR/Ku9YivK/uoEg7BK32kGhw1Ya6paAUU9LqnMstQARiRr7cKu1aCMDKuFOS6fZqBUqCuE0I5wP4vz+P6fnP4RP5R2an8N7b344H7/463H8LF95459J2hJvTsjiCXxGB9pHpn7Qofkflsc0RAdg+A+Q+YDxhrF9K6L0PRlJqJckwGgXtoaWIfsBpUwoAHs0xqFEXn1uiTYvnWiHYXQjipYAHpb4Zb6+Qe0VSkgBpHTDcjpAAhG2oVE/Q/iQXr2UMt5QaVm5NOreNVNcKX5uBUn1XyogchevvRIvMa9bsFx4c4/JshdBlrDcDOk4YELG7sCplArr1VOyUwBldTAgseHC+RibGUb/FU+sLHMURkzCOugGRM6JdDJOg44QMAq9fXcq1a8Ve/5l8oRX0bVVtu93SjsYC+btEDjf776NMJJmRJtp4OlYORt3pJ5GhVT0gXYMAowxmhKDnREnAZ5dKgbyLSOtYuOPDNiF3DO4J2ShbeJex/uw5+MUH+NhP/ZXZebz37nfg8ld8DbZPay+q3Ld0pyiVbG0FbGsji1fAeQW8bed9b4SBy6eUAmza9Ni8kAx9SohbJasp6Hh7HNMKirpPUhHEzZLn1TmFcpFhVQ9idoYgnieEXUK4fwm6HCDDCOk70Oteg/jMU0o7d7TBdOdI7dbdsVY223uR1z3SSYfdnQ7bu2qzj6f1XGRxP9zekOC9LGmO9l1W2HoVD3TNTju9Af1mhDBhvOjUzxBY7z4/IApNI4zSWKmaKsrfaS0LlZP1vytVPTdQZlW118njnvs+G/waCuSr/vFC31s7Gyj6f211jlfiGYWSUyzN5vV2PRJAQgbvEihnY8PYgaaM2AdMJ1qhiiTozrP1ndKxeQSOPpexeX6H7lMvAecX5bqee/v/A/d+2etw/81cezpEYDrJ5VXknZ131HvGo71vtk57JVyhE/Kq2mInAbu76pOGQamHw2D6P9bt3Md3mrjW53VzHKh6Ve8zSjWMUw12l0q3urqXEC4SaJiAVYfhtadIa0Z3ew0aM9JxxHhi/cVOu9Kfj6aMvIm4eHaF3R29N+Nxva5Zvxt7ZoVm6rplxF8NqX+3eja7f7AePwKtul6L0rUDxUfkiwDvkaWU06bHq4zUxG4QrIqP9KV6tZkwrhXC1araVpaVsSYPmw+utdHbXVyXr62Ub/5u9Nc/m1FV+sfNOyoEpVLMpBWmIdS+KkyA0YCFbUIgAl3sEIgQj/TddNs0Xja0fyBw1oq8k0/t0H3uDPJffxofv/w/yjk897oP4aX3a3UOuFbAey8mSii0v0XXSx8668FmtLzZqnYAW2fs3Z2OYdRvhO5c6eEoqQ8Mq6QBADYKwtQUZhXKsiUTgj8vr1KT+b+4Vbry7oHa5GGXkCNjuB2RNgGUxKrhtbKXrWclj2onpBVhPNJK+eG2Up+m25Oey2S0s0LaMzPD6DNrbNEra0qFxsPUiZp/AJCrXudRq5ycnUOCVkM5NaLHOXx+5cGeV+sPeTW09TA6yCsoj3r2eIzvv8jya3/tr8W///f//hdGQud973sfXnjhBXzXd30XPv3pT+MX/+JfjB//8R/HW97yFgDApz/9afz0T/902f6v//W/jmma8J3f+Z34zu/8zvL5Bz7wAfzAD/zAk5/APpqkffKF+MDXBHofyidKe/Z5SNC3jNdaTwxk8tL9ZoELlQJGbFEKOUNiKKWtvNPZnLLSROQ+IN+KmNZqbMZPTeCzHeTe/dlpP/cV34nLr38zzt9AGO5kSC+ILwdMt5JSlGwZ4VwTNIkAWo2adAjZgohUaEaqV6Un3k56nuQBgHScIZ0GVPqXdOJUejela5o2ADFp2fMqVyqUyRqXRgJ3enwNmiZkZjWkspfZAoiCcJ/Q3QdW9wTThrF9ijCcWKM3qsayBCu3tdXW6eByD0wbQV5JLcOeqBoJAiATeMfIR0mDvoAuDq0hXF6ixXuTCOleDy+9hQA5aOA3v7RCvNDGi2kt2k7pyJ1vWJCKQQND+gyOGf1qxDSFEnRizno/hOrPhpruxkmbLGnlIQHfkthZ0q05Xco+eZyeHnuCStdRKqpzwMW5LMcQCx5Fbj4zZz40sYWOwaVUfYt3d9+Cfzz+PeTLS9XpaQLIaAyeuoVpE5DWjM1nt+AXzzB9bl7+DWgyaPy/vAP338LYPSPo7pHSp3UC3hK6M02KeIl4iV+tczWcS9BBQIk1AGzl3LURsPbIGm+pcbchNTi9OXkJIscamMq9ILMaUxpsJmQSwBtRsiilAbH1skD1zswZ40ENzf6BYNoQhpOA4VQTNOSUSWaQkdMX5noeaaNl34A6ZsaLo4a1B2NEz9F7eGkz8+YmXxMcIhHIxNjd0wi78zvnxFhvBuTzI9CkXMJCANbqQXqiPA0MmTSh47021v2I7Vi7vjrtZLZjB9bEzk2Va/tY7dO9ZWB3KY9a1x93fpMFTYMBItA6WmiCwq4PQa+Fh1R6PiBC3w3n5AaAFMFh0mPsdkDfqT6nDNntdIdBGwFT30PunCKtA/oXLsGffQkf+8z3Xjnld/E3A7/86/HgjYzt06pLvel2Xgm6B4zugTp4aa3rKUgp2SqPuP0aNU/s61nLoe/B0d1dYHeHsLsVcRoIqxeHCkBhUgqaoMALBWFUr6oEn9DQqzkdBOq5ACg9MMJO6R14l7F7zQrTmrG7xWoX5Fh7CpgT5oEeD3qNR8DuaaWInY7tQgdWaiNbnCkReLDgTWiaHkNmtoqeGNW5BwAS4fJF5aujTEiZMISIOycXuP/SEXAZQaMmgUcB4nqC5IActEfOMESkbcQUM+6HNe6sL/HiboOUGZMwsiRka8o+5oAspBRsr3IPnWuFaE7N9IWCqJb7LQO5YfF3E/yZBYgelSyCvQcZD22lmaPOBdLV5L10NWFJHswnpSLjLmrD5XMN/vq5SmRMm1Bs8c2LGd3ZCH6wRV7Qtrzn5APA17wVD14fsXtK17e0URu0OyPV60kDntMRUBICBChlKcBDpXGRZv1zSpW00WufIjAdawPy058W9C8NkEjgIWr/gI4wrRhpTSAGppXqNSelVSm31e/BMsFTktsa4KGUEc52oO0IbHegN7wO09Mn2D3dI0frSzIK8koTSksAxnhkfbKsL59TRnqwygPqbV/M1KvdLlHmwSo/T8E8sZcJ0wPNhNNIQBSMJMhDAJ8HBakFB6nVl45I/RNKjd9mx+KpuUHFlqrHfKWRpY8tZmd90YYTwZVkzr5rb+1q4OGJXKDq/zKZ4/2v3CVg859FKv1am8jhus6XJMIOQBd0sykjPtjpubNRFQfS4Gav61Z3IegeTIifP4d87gWks3O8u38/wmufwfhVr8ODNzJ2T2v/iP4lwnCakY8SaBvQ32PwTvVzXGe1iVemQyyq1+ZT6MkJkKn4mxADdDCQTm39XwGrFwn9WUYa6745EtJKg5PJwBvSUA0Rm73QiHjvJ9Zt2mfQP8gIFwnhcsL2TXewuxuxvat0ZGHXGbhL1G4QIIwMnjrwKAakJAwn+qza3r0lsD3BeuPpNXGq25Xn2C4dHoq4zvfmGpTtzlD6+k5H9n6Jx2F0XN5STYJFXQdmCdrGV/K5GEDtpXvDRJj26/aetfPa5MzjSutnX5soWnxGjd4/4rhVZ6k8L0+UlHW7gIsIMiqVsfRRjzcmxAeDjWVzBxN2dwJyr8H+1T3B6n5CvL8DfeYF/ESTzHnv7W9H/pq3Yril605/D0gnQDrK4IHQ31cfdzwBpnWuuhr0XHNMoJG13y7bOsrQpBTm60M60n+5A1YvEfozwTRp3Kxca6g2f6tLPNi9CQ1Q0++f/2vo2ByI2Z0B3UVGd56xfbo3KmOa0SE6nbsnoNnAUupnW4+7TpA2WX3ckcvczw0FYn2ozc9sJ7lYt/duTzXZu3rZrhmWDBvrd3ojfGxLhhFmCTLJ86TYdcnjg/z8y02kXPu+7/s+fOADH8B/+k//Cb/4F/9idF03+/43/sbf+ETjvaoJHQD40Ic+hA996EN7v1smaf7JP/knP/8ndJCDHOQgBznIQQ5ykIMc5CAHOchBDnKQgxzkIAc5yEG+tOQGVuj8y3/5L/HP//k/x8c+9rEr3xERUlpmKR8ur3pC51WTfdU5LTK//ftJEEaPU42zRDBc8/eVUtElJRM1+7ZDUIMsIUCs+ahX7FAE0iaWCgPaTqCU9PcxgaYJsuow3O5x+XTAcJsQzwFKgunpE0QoCvDjZ39bj7dWKpO0gqLYYJnOTKCzgO4+o7uv92AnjLELCBuF58So9F2pQc5PJKAW2uOZ1aFp4DrVRqZhpwgAb9gsrGXnuQtKGUOilDIFhaHVDikxZD0hxAwioFtNSBMjT6wVQ0ad4uiGy2eMUu1I/24RCgV1TfUcnGouxxaZi3ptSxAqWTURRKtmJlbqFsyPYS+HflCGXrxDmZDGgHjGpVxeG98RZMeV3kFgZbp6LpIV1TuNQauVkr1n3vSZAA5Zm6cPNxMW+NDm6XuraGRGyzSrAGh+p+W8ADzecR5C+eDfS3D9rkjB+UXVl6VtJj77LAMSGfmoB0VGeOqu0q3FDjKM+MfDD+Ld/fvBzzyF7etOsX06YnVf0cC4vER46i7e3b8f/3j4wXrqx0daqdejoFB4JPC5In1X9wFkYLilyKXxliqrEJCPk1ajJCro0uw0RX7pgkoxEvX9mk4zhkERzauXFVXoyBdHDilCSPWxpYXiUe9j6TvKAuoTkFip17xSByjNCwHV7dxV+pW24Wu5F45YDoqOzFZxU1BJE1kJQXk5bEdD1IYMGQPyqDwutEQNtepkOkfl/aljSiKMY0Q8t2cfARm0MSMxtApPUCcj2zeNAeMUsBsjJBPSxOX5EAMhKu3ldEMpHmSpQ9fIFT1dovbbyp3c/FzKns9IZDZH1HORMgeUKj9xvaS9DXdJpKFJJa2280q92HzuDcUDgVYRFCPocqvNvafp/8/ev8XatqR5feDvi4gxxrys276cvc85eakqYy4FlPsBuyWgDcjqysp8aCMstUBYhUUbWwbk6qIkNy7TyAZ1N1a3ZOPGLtsYYbVb4IZ+8wNUOS1hBOKJemrJkimLoior62Sey957XeZlXCKiH76IGDHnWvucPFXkOTur5iftvdaac8wxx4gRX8R3+X//j7jvCbs9ZtEhbz+jf75m/9ix+Pkd8W7Dj6z/CD+z+W8OvtueneFNtgtQ/QqKinM7oXuhumeHyHBh6BNyUOIhYq+mbMr0TLGqosk6m+kG+sdgJgu0tLcTUQQzaWNwCVmnBd8qLVtuEByTrsS0JdaVQJKqgzJCLr/uW2F4xzGeSUHJhaZC8mUbCa1YqM+pVUlpv5uEsLWlmXG9dwLQhkJ/JF4SdWraU2NlE+Q9NNtG+fmm6eNHw3Zo4bbB9gIBvBgYhWmvFbMeGOvtKQib6wW/JFf4IIiAT9XOIVG2GYk0zmsV0Ga4PxHfAIlm3rOz/nzaxunyQFXPfbqVai3Nrx1X0T547ny+/AiTMfaaj5TK63QN0dQ0ghn1m3Q7Gr3/JmCGDulH8BHZD7oGLRzDkwX9Y0d/KTR3WnkmU8RfrbHhOT+y+Ff5mf1f02u1Vm3fBgpV4gCLjbD4SJHwEpQGeLiY7dloErrcKfWgr3ykg6biCZkuQkHYDmewf+yw+0D7wR126witAwG3ckwri2+krHehEWw/UxyWZ3Bgb4FMCQktYHzEjAFGDzESnl0xPF3RXzl8O1+rHWKiQ9aqnqzXvhOtcGoo63EeG9LjKFV6MVHOLONMcVPvq/W8yP6JoJU6ifm0+ClA3DnctVX0MZRKhejULppZCeZr0YbWSSemTO9YOxhqi0gQzPYNLZevbN9fkVRVOJ9YnXPsYz9QnfMdV+aUivlDusWyX0bK+es5XM4BxMYwWUE6pfm0+6nQ/7nNqOtCaxnf6ugvDOM5rN/TyrVpZfFXS9ztBV+//quAUjJFo6j2KGgT8z24jcG8Uh+7vdF76y91QPxC97DQhWRfG7QykETzXUwVrZqphjYjmn2n+2HYC4sXmVNNKwXHlV6P6bJeU1D5CErvXT2bYPT3KGCqcQtW93rfGfrHS3ZpbYpGdSVk+rhERSYB4iDlOfhG/YBckWM8kOnhsrmXKaOyrmb7IehYmjjbLa9b12sEd03N6HbMtqRkZoGjvSjdd5RkJ0huYC/1kkJotOIo09Sb8XtHtx/csx8ay4f829d9R33YA0PxUGVOuRZzdE2vq/yV1CpgmnU6uGQXFnsknSK9P60scrXAbqcUNws0r3oAQufYPesY18K41vlh97pvj48WtONbfPXij/LTN//1fGmtTZRjenxooLkxtLdKQY7A/rHQT5bxIpRYG8sJ2wTCYIk+McxEA4Pag5KIIw722piqUydoNkJ3HVI14qwXZtC90ifGi9DMlGyFMjFRkgp5XlP0LdsM8+/C9qllPNcxyfty9qF9m7a2iqZMfYdY9BVJe2pvS2WMeCkMPNGhepX36XB4/w9RrmWbpvydxsiM4LZaiZkZOeqYX4431nOujEmitbU7/RmPIu12nyo3T/LZSVRb8pOO+Szlx37sx/jRH/1R/uyf/bM8f/78V32+X78JnY/ZjOTob15H83Ikn5jAOf75Sec6Cvoe9tc4dESDM7ogH9QMcy9xFY0GOiTx9UYRrBHMYCBRrU0XazZf6Ng+NQyXxXdgXDskwu7tpyyfnPG1L/4Yf/uX/p/EVze0109ZfOiwe5uoDsBttZeM2+k/DfAI7auGadkwPJuYFg22m7A2pFuJSBOJU0SGOShSEhtpAc9lyuOl0tWERuhezcaZ3afFNwXUgtNy1WKsC0znQhhFA7MmYpxSjlWjBUaduTEZl8NVus6QjbKjByczv2m0Uek4jumV6oBvTDcoSp3EzpZHR2WMHhyfxyRWhqBPL0Z1KGOi3cvUdNElyjcb1TnM13S8IUVhyPz96cU4iCaXUvA9JOoJ8/LNTOjc4+M/Tq7UckzL9DG39CCFW72OVMHXj9Xxh+ggoDJaKuNRBCFqL6y0GYmvvYr5AWpSyCI2Ua8tF4gI9AMSAl97/seRH/qNbL54xt3bLukGLLoGOT9T+qcvvs3XfuAnCO9/yM9s/humb79P+/ZTlu+32L1ge3Ua7aAcwe2t9p1ZvlAqk/5SmNZCf6X3E1YeaXI0CGIXiMYUru1y35D4GFUX+sd6XLCSvi/xFvcaENMErY73tNDvzYahSQFQvzCENkIToInlu8jc8+mZjxe6VgyPw5wDmWQ2mEO2WDnkr88B2nq+zWqjcyk/xy7ATrfbHBguxzwQIDowECW/gSbHjGHcCyYHm9qs16ZcQjmHQYOPo8WHwF1YaP+r/PWD1eRxgMlqAC6+/OT96XORemyP5cDRzvvGd6iLr9H5nLx56HX9ongYfD44T5oXVeI9aXK5mQyw8EunOn10vXOASfArwUwWsT7HDMAYZDRgDe78jPCFt9h8Yc3muc6zuGiQ9QpZdHztN/6foB8I73/Az+z/Gj9981/ztX/232H1wRI7CKHVOWn3ae/eKN+320earWf5AQwXhuFce0ZlOqIopOQJ9xIlGrCkPLfcU2f7DgRnufpfAnYMECJuN2G3E9GZeVwWlvHMznQORIYzwS9SX5Cm2uP9/JgzfVp/qYmc/lHleB3pVgnetnMwp3Yy8/6fn4dQOYYoVR2ZJinZKQffxXxs7jFyQL2Xfw6GAGxDB00ghMQNntetwZT9XfI65PS7YzDcfrSevyTR6JREukT2KVkePnpDTf7KqT6kr+JwL3+dhNfsz3C4z2Ya4odAE8fygM2fn+FBXwi96DKvgk1USkeBwRjntf+A/hh07x7Atg4To9KtieDPW/bPF2zfsuyfUIBZ3Y3FTIow6J8/Y3G+4quX/wd++vqv8tPXfzXp9hrjDWaM+I1gBmg3AbdTx9btAlPat6NVjnozCKE7pDrGaK+gnDjV66XoXQ66bt8SjG+QuKZ5scP2OwDci0CzaolNsm19JLSW6azRvlU+4rv0XohlTIDU/yomKmWPGTwyjMRFQ1g0jGtbxjI0yfxtZ/s202LNgVSdAiHfw9Gzm6mo8j2mtTuiB0l1zLHE6jQJpCKRpKMJfILu13l8Ncisc6JQS2ZzMFOqVeuE0uJI8XO0XwDEu9dc0+csGVz1ur30WB70s8PR6x9HtVaDpF4HtqqO/cRkTk1bLoevEXQuF10u7+u58tzTY3QfN8ZgRk8UISwdu7dadm9Zdk+VVih8QKLkEm6/f8m6fc7Xvvzj/O1f/Iv87W/9FF/9bX+Gs1/uaO70Wu2eYh+73Uxj2N0I0wfC7omClPxyTu7ki402T+eYKP3m+1AbmBLsHC7Vrl6/FzSpmvSg6VLcwUrSY0N/ZcqY2D1lv5YIxmpSJ1r9fGEiTePfP7KMa6WBLUnXTFsUZ2pXtcU5uOYaoJU/l/1tgXLNvlOKuNhU9jbp9ypxPScKqjlT2dW1jGv9fO4vWkAu+RR5za/iA+X6AthEBaf3Jal/ifogcvtm2uMHuvBx8oDe5/lRxuihtaHS+Ydo1g723+8ksfQ6SUnS0GhSJycEdd8BtdXz9+iPyanNJ5MCo+1OtO8T4Nct2+cd22eG/lGaDwa6ayF0auftfusVZ+uOrz7+N/jpF/+V7tm/9d9j/c0VEpR2sXupem37iNuqgbt4aRi/Zdg/Moxn0F/B5IWw1oykpDBN6LQ3st1Vvp6t9u9km4yXekuul9JDNgOWps4c+Nm+E4aLlFAdtGXnQS+snIQpa2VKbCYbob8Q/AL2j9Pnsp5VlIKqJ1L6BoUm9wU6kuxrHIAmqW5Q5vUg2eVlLahjcPmz1fdnMIUEGC41WTydzf7BPWq3o0uBBH5L42P3ICm5XHoXRmD38HlO8t2RN5Fy7aOPPuJP/ak/9U8lmQOfrvbkJCc5yUlOcpKTnOQkJznJSU5ykpOc5CQnOclJTnKSk5zkzZP4Hf77DOVf+Vf+Ff7O3/k7/9TO94bC9b77ckDLVIs5Qgjm449Rg+nY8vdryr3L38el4tX7B9U4x69X10WibsjIooKOyH8LhyVlxsxIWTN/RiZFxeUmo9GKUrCJMK0c+8eWu3e1OkeRq5HQCbtnDjNGxpXBTB329rx8v3u14+yXO6aFlmFPawqKZlomJG362+5Sk7Q7x3gO44XDdwEWnsXZwOpiR981hPcXWk1ynE23sTRCF2+YLj3j44h/r6G9hvYW7Kj/glWkcbAyN2FM42kmw5RR/AaCi1qtE1FkjIswmlL+Ol4Eunc25RQ+UbOFyWh1wZB+ZmSvTYgJnxC8FWL/sCxVG2frSZlhS1HuowmO5KDkM0EEYq4eioboIt7FUpUgmXbqmENE9Dp1LtvyGoKOg1NYgnnR0H3b0L4CuRF+4fWX9vnJQ/qX5FjnD/6qaJTkWF9rtO9xpV197CfodbRyf/2oz1d0HH1ePhSqlhrlqMjM+8hC8UrFwhTAOVgKsuhgtWR6vObuSwulWjnTrwzOYMY1y/cdZvBM65YWMLu9XmK3wNztOP/FFcOlY1oqbYlvYVwLw7nFDIokarapYifC7omhvzT0jwzTOhKWAdYT7qrHjxY+ahU1Y+IB5UimVwtNpH97on9sWLxvaG6F9lYwY8BMEZeQiDJFmtZgJjOjp5bCtFCEm1+K6vgiKmLGRcJCEexmALdVxN54HjFv79IjiIQgqXrFQm8S3UlCE5m0Bk3os8z6VCOEgup8qa4RSVV0VMaDHKD4jqUgfmzWxRl9TxDCIiS9FmRM33fQVVr/kzxFg1EaJhOVis5EsEGp4KKw+rlOKTtuPd94/WV9vlLvpQev33/peB9/kIrtdZQtofrM66icbKXXx+vK0TVqQ/H75wm5qi4cloMfU8OYUaFm5XoaB8bAooNly3i1ZPOFRUHuiYfdly5YWIvpR8K6Q7YNpq/q/O82XPzjLeNFy3Bh6S+MUgm61ADUGcYxYiZoNpGLn+8Zzx3DhdVKnYUi0XQP1/2luT28bmrEnkBsIrGFzRcE2ze0d4HulVckvg/IGIjOIEGRwGVMEnLOjFYRv07XIN9KoXkZ1/rT9tDdBPpzpW0ZL8NcLZv1ZxLMqMhKk5DIodH1ITYRjlGBGRUfmSki6/PxANq3+mxB5tYg6foYL7C1xOjmNcGgNI5xthPKWIR5PdFryhOtqgAyEXEBNhb3kaW5BXlTq2rzHnmsaw9QFT4o5qE1odJN4UDvFfUZD5G/B5/JK+dsIuXf52M5rMykOs4y0zVJts2reXGAPhaYdF/DCKFroAO/duwfNezeMvSXihINiQ4QLGcCtg8MZwb3aEH75DEAX2n+EPbt56y/ucftWvpLy7iC8RHsnhnsfq6wdXtYvAw0G894puj4ca26HRpdB8Yz1VuzTfM8VZLE/MgkUxTCTWfYP1pw9k2H2wbal3vk2y8x+7TuiIEYME2DvWthCsjkicuW6HQwY2MJjSFagxnVPwmNQXqUhu7VDfLoEkRpUn0n+Fb0OpOO2SGhgzPNjMwI29L0Oj+6wIwYT69ps+moup6eYaFLrCRWz73QslXzQM+ffBUtqDqofsr2wQEK+Xgq57Wzi4REHSkeuo+E9lrR3HH7GUciPqV8p4j5+riPZcV4qHKvXj/yz6oSL4ocUJkeVBfI/N2FBrVcE/PEyB/PFWDNbIMXmqD0nRKiVlSlPSw0aqOGzuIXlv7KsnuifvZ4BmER2b0laQ/TyvPh0tE8vgCU5tw8fczFP14RnWFaO8aVUbq2tbB/JKmyQOdHs4k8+rmJ/srSXwjjhe6VwSqCf1pFaCJ2Z+Y1rqZWzPfvYGph+zY0m0arB16NtN++w667WVcHT2gtEtxM8eQj08potYnRitnQKOrdjjAutTKl2Uba64nh0rF/pOtOcGk/zhW4Xhu320E/402ld2l9ZSD5TfM6VVfMHlCqHU+v7J9X1Gn1/ChzIZ8uHROameKx3ihq6rZYv5fnmwFMxDslRzFjjmmkyqtXSgEmN7yZ8ro9u5KHKmv0jXjv/Xu+UHVu8bHoGBztw6WKLhvLR+vN0bMry7jMn63nfDQ6t6Dyz+pLF63gMbHSaxzSWqalZf/EsX2uej0tdO8MTfYHLXaI6qOeNbjL8/nE17dc/dwFoVXGmf7K0l8a/ELtXp37Wol3/ktqL2yfWvpHhv6qxS8jfhnhbMJcDErtvW9KHKJM+WSnqj2uFTPTShjOLO2t+vB2F3AEYqIjNWMktAbxpti5mb40V8nnqvmsZ5kC0Q7Q3Ya0TsHwlie6gNio9HCT+rPZhyVVk0cbldEjM9P42QaXiqbwgPGioi7NVTa5bUJNv3ivEuN4PRCNC0xrEgOB7tEHc7T6zHE1X6FXtFp5matzlh8qfZ7bBeK2Dkie5LstZQ58wjGfpfym3/Sb+Mmf/En+/t//+/zQD/0QTdMcvP9jP/Zjn+p8v24TOoUm56FkzCdJKdU/CvZy9HoO0ObgjzEPG6w5SOPTSpQNQg43plgCvun9EutINERt6sMhOUBxbLBSjhOvm4wdDGbQJEZwwnBl1YF8rHRdapho+eP2mS64vgPjLcgVP/y/+b8y/M7fyLTU8kzfzVyTteF00EPAJMqDRPlkRsHcORBHv24IK41O2CBgE0lNkAP+zlzCGBBYeLr1SB+F0CnXve0TJdReDYFxqd9rBgrdUzS6yGqJZzI0F/qdIVEZWV8FexL9iZGIMZFlN7LdtUwxOeVNSgYFrXst5ZtANLEkU0qSKm0QUQCnx8xJnHmTel0Z4BFFbwoY5j/SvxxwGiuLpeILqR3REjSqaKCOy1hzr4LFy0jz3pvJx38QvOHIuKuTsB8nNV93Oa8c/B5FwJk5cZPlOBhcnU9itSbUX1cZqxpw0p+5rD02RmkWrf4dbFpTmI0H/U6LGSK2szQxKt98YxkfLdm827J9bpQnPzlBo8D2mcUvlokyQVguDM1Fx4/8C38O/y/8FiZnQDSRMy2lJGhjZcARBTsIbq/OaLCCHaC9hu6lEFrLeG4Zz5vE0S8lkSNJx6KLyanROegvPfZiYLdoGO4c00e6vrWbSLMJ2H04eE7tjQaAm41JQR4YzgS7BL+U0lcjDbjqY5zvJU6m9JLpuonN3mnCZDVpcsCLflXS6+gqJ5j0euZgznqejLrcY6NQMr0uVlE7H8eKnxI3898gg5nPJRwEhmLpDSVISirFotcRsdrXR2zEiPYZcxtov/3pGvF9ZnKcSH1Iap2t10KYE7VHlC3ltSpoHqXqa3X8dbH6HEfneGjdqff8krSJRDHERvBuDi7VCYz68ZvJYJqANWCsFM7u6Azj1ZLtOy3bt1Q3SfvJ9rnDL84LFUpz62mvlnztt/57hHVH+A3vanCpS3q9rvbtpBf55qelYKaGaanBmCgJlLFROtVxrXaBxBSwPLCpKCCMGAQxkenKc/dlS3NnGNeGM6C5m7CbAbMZlXrNKv2amTTRYybtoeFbQ+gUjDEtYep0k7VDUs00fTP9ycHzcxG2RilmRG0cHyXZAcwJqNw3Iz0E8aIO3ZiCLCE5sAsOkgk1d/cn1r9XYIp6PciUFwe6DvfXjNqJzecQEElgEqsJndjoGtHcQfvhmxn4LQCrB+zjh4Iz94PeD9MizzqvHzroecU8V+ZkT6LUra8jf8JwkOQp11Y9P6VgVFvaN4nyK+lTfe3i5+syDqUgWxoWEczg8QvLcOnYvqW0LX6pgcNoIARNXmyfWSRYTWSYFnjC137wJ5F/7jfjrUV8YFoY9k+EqaP0iwit2ujDebKT9xa3NZocTe+1N7qPR6u6Pa5SH42qXx1QeljlXhz940h/JQxnju4GVt+2rEPAvNzA7R2x76FtkLO1DsduT9ztkMUCaRw0DXHZQteovZ0C78HpP2stOEtYLxjPG8aVzEnd1Lsm2yXRzvSL+fnlhErmuZ+fRz2XQGpKIMlropT3y7pQbzf19Ktt7fxSplmb5MEPHSQOHpJM/ygpIL+3NBvoriP2/TfZFv8Ojz0YywfWqSObvKYeVh8bpfU72oPzuSRGZMxrQEyJOim9I0rizlNe08/N16b+WuqrYNRnzHtmBkzOCQb1s+1osfuIHbUfpO8M45mhvxSGS9U3M0H0Sl06nAuyEqaV+tn2nTO++r/6s/BbfoAA2N3EdNbiG6G/NDNgkjS3G8CAbwTxlmmpPSCI0FyDCbouZYqp0M5gBuogdn4maYsaLyM33y80G2Fx1nLOGe56oLneaD+/rkUuFpilxfYBu5swuxF/0TGtHKEVfOq161Pcyjfq12vAngIWC44UCNe9zPQm9aVJOoz67lQUbCTbw3h976BnRiSBNmf6tmOKw3tzMX1G51H13gPHF987z5MaufGQ1N9vkq3SxrIWNTdCdw3rb3nMh29ms4085w99jqODXmerH4Arjk+cwE2Zztig9uCRX18kpJ5QpPXRp/1bKtshxcyCk8PnUoOoDPP7Mr9WkrRQ7HLxcwLODgFjNVk8XFi2z4T+EZowRfUqAMOVQBRMjqFNDRlFmIMAAQAASURBVPCcr/62P0NsHbzzBAkRv0iUamvVhWhVXzLtp0l+ttvpOmRG9bPlVeprdd4yraLaFU4vuvShTfpTYmkRprPIdJZ6zK0E31mWH4IdI27vsTvPtHaaWPJqF9g+YKbkZzf6jIyFMCX9TPumJMo1oq5tfgG0CiI0TdCkUwZLZl2ve0qNyRg2aCxQAK9jIPl55P456X1N4sy2eE21deB7H+zX1VZc22rouey+2vurz2S5B+io5nROnNHAuFKfqXs5IS+2nOSzkzcxofNX/spf4ezsjL/7d/8uf/fv/t3DaxE5JXROcpKTnOQkJznJSU5ykpOc5CQnOclJTnKSk5zkJCc5ya8zeQik/dAxn6H8/M///D/V8/36TehkNOAxpcN3WBr+cecsiP0apRlApukQtCGiNAPpc2FZPY6j0vGDJnIJtRaN3KN8MD6jGpkbjCVk2kzNRCqFjDQ3I8TIcNWyeVvLnfunkenSw8In1HokTIbd21ZR5wF2o+Bbx+0XHNNKs+8ZDRcSmsD2HCD55soh/Tk8ivhFysoPFplg8b7BL02ifQnEpVcU49ZqOUFIraXT+cwI7S92hLZDng1M58LWGJo7wd0Jy4/0GjIqodkoImS4yOXfiuyVPUSn6Dm/0AEMjSdYRSbZvWA3hukfn+GXkbj0PHp+i7VB0ZiDnUtDc4Y/Z+wHo4iOPv1MCISZniMSJDVAzIioGn2bf8+T5xi5L0cIItL3TlIQCuVlOUTUlBeJM11cjTzwzDohihKdVsLmbWExHJYHvilyj07xIaR00s8oGelxhLYvf1So4YTmm8+h1TniPYyH546NTZRPokjz9LlceXOs20WvU4PRCIkaMaTGwYHc1DlaQVqlz4qNKZV30UqiblKUr+wG/OWK3btLdk8su7eE8QKmpdIoEQSbkKzjWWryGCBYh3vkEqpXSvPzXNljpqTrI4XCIDQwNRn9pjoUnd5Xc50oBK61sbpfwnAZCW3EDMxzNEipDjCjIN9uVT9NJKw8fbSERpheCs2tZfUhSFCUkh0jdh8Yzyyh1Sasto8sJpj2wjgm6hgLwYui4ZbQP1KUcnMrxLslfhkZlgHztqJn4pief4X2iQkaJIPMyP209hXdyrrtFF0UH3jvnhwBd2OGVGVKtyMKxnK+uVRTf8j8fl2lk6sFc5NrpWGzxKCVOuN5ZPNFXcveVCm68jo53r9jhZSsx72uzgGtxMmSaVpixIx+XhvSuUNq7q3VrnMz74PvzJeTKX8yRWpG9Kf3ZIzYQOLcSM3I05oQjigZZQSz95hNj4SAv1qxe3vJ7rGi8Mdz8AutBDUT7K+UEjFfw6JJ1blPO3ZPtDIn0wJMC71GO1JVLaRp75QaZfPcFvSs8Wo/iIfFC7C9VgcNlxkdHwsSvaayyIg6d63NzIeL9J40dLeW9rah/ahHYlSapRBLdY7vVP9zxYnbhUItOi31YkMHk4Ftom+yPax+SasS/QLGp5nqISP7pNgHBQFPon7MOhuk2DYmVSNElx7LwV55pN/1fDtC9h1WvlaHxaPPPSSSDqzndU3nKvM/kQjLielC2Iolbn4V9u13UypUbF1Rd/B++T3bKbXOzccfN2A/eL3Rqi+7GRHvC8q/plCMVojOzk3N85qfq/eOGkGXv2Nao702MjZTar6dUd422Sa5QqQuARBwg1Ir9o9bdk8sw7lW5vil6nUUtHocrZopVSlBke3DhWNaP2bzTPdAgCHteWbQ9aNUlya994larb+UhNLXY5qNnre9Dbid4FbCeCb0V7MtP98/BbXstqo3fgHbBfjW4hcXdC9WtNeX2G9fwzQpHexmC8OInJ9B2xJbhd7LZo/dj8RFgz9f6DwOEb+wyEWHdW+BCLb3rN+LDJeO4Uzor6TYzoX51B3OKzOmaogadc3h776dxyjbw+Ln85S58JDNzeHY5GbMRa/rcZP54AOErxydI3JQnZN/Dm9NBOcIjWE1vpm2+K/Kn4aPraSvdTysGkJrtRL1ZkSmoFWseS+v9u7o5r/rZ6lVOYeVfmUOGNFKgBAxCMRQfGtJP0O2lZO/bSYQSbbpEDBjVGrTK6Ueyv7nvC/q38Nl9hO0onxaGvbvnDFculJVE41WzYZmntO5oiTP7dDA5h05qKxzO5AprzV6zLhOtn26/oN1uIpfNDdK6ab7vHAXW5qrhua2o/twp03hvaL6zd5jhik9F5PYMCLddiRYYVprRaLbq45OC2H31GmF/Vaw31AffVpJomiKBE9ht8ho62gp+58bEgPHqHGQWmdBK3mjzNVMkO1s7uncA+yKh/pfJki17+d9+WCOzufLTv9DjBuF9lG0+m640nnpW8tqeEPDdGU/vP9alntxiXxYvXVnmz5VrEoIqcIi4pdW6QUXFrf3ECJmioWlpsS5hEM/20eiqyo96mMhrQHzNWpchurczBU7eW3OeiW6HCitodoQ45ll+8wqfeI5SjPeqn1a6H5RWyHv2eNKGM8t8UsX7J+obgeb9Lqd57IM1dyw87qxfzLHsCRA92L2s8e14FewfUcp0GMAGWU2TS06xgHaa4Gg9z+t0lwUq0wYLrVoSOPevZwgotfrdHzsEHH7mPwIob9MvqaH2KhvsXuqTAd2D+17DdNKadjNxaBFUntbmGEK3Wl6OGaYJ5hMGj8zdbyFmfYtprVA/OwrZxaNe1U6R3p4TM+YqYxFKhvuaA6/bn4/GI8T6J/oOjsuO9Y/t3j4wyf5rkhtF37cMd/L8obuFJ+BHNE7lNd+JVIHaEPQfcJaYmMxmx5u7mAcoWnAWS3zjBGsQdoWnCVawY6+nC8sG6KzJdigHIxpdSFx3npdUaJVJ9Lk5E1amGRK3yMkmqbE5Rl045IUJOkfOTbPDfu39OvtTpDJIcFBhOFRQM5HfGeQRPvgV7CFwntp9xBzmXMKeiCUYHChncjrtE1B20kKFUFIPkkU3cyaYPCTEJaeuAgEb7F7NFGRF9kUNDYDmBuX+uBE9s8CPBXGC6PnupsN38zr6bYUp9j2qeeO05L30ME0WKbzoMmt6Fh8KLidlolPa8P15koDtsvM9YD2yxkPaXpk0Ps0wwPzK28yHt24skN3HBQ6CB7JwytPXfNZUardCxgdiVLDHVIMHJaY54vUf8NVwC8E37/BwaGjYGiR7zQDX5WEFwlBjZ3GEluHudtjXtyAtRqgSHQtOEdsG3Dm8HyZc7drNHiR3/KasAGbEm6xJGYIyTC1h0F2mSImQIwBMYnLFnVkMoVi/+Urts+Ugz+YlNC8TX0uoiY4plUk2mQgZaPj0eyY2kF7XtVBiboMvdCWpEBDqGwUM1ISuIVeICqtl3hh/0yNN5P4ZWWs5qeQjLn8uyXaqP06zjTgOlwqr3B7U/XUCVF1OaYyfB/ormF6Zdg/Vke6aTU4NV4EhkeR7oVh8aE6u74TxjPLrj+DVdCAaKz4fQFSPwyTEzoVhWO59lpfE1XTJ8rR1Mwl9vNJa4NTqjWi+j1va5KoKgufIgfHS9A9K2ZvJRjCxcS+Nfj9d3Ctn4MUo/ooQfuJCZ5jnU/OYqY5laip19A6wsJityPmZqd7trX6LydfncU26mRGZ1JCUp1Qv3DKIZ+CxGYKmuwFCqdLUG6iEgS2iQbiINKX+JrTx6Kp1gMDcdkwPFqwe6th+5YGS8ykuu3u9Dx+qfzP2fHRwI0gwSn/fFcPbNoX/TyW9fqfX5sSF7SZ9Dqmhcz7ntE9tH0FZq0J4tDGwn0fj0EE1XPMtDO7Zwa3MyxeWOwAzZ3HjBHTo8E0HzDGEDMt1hRpbiPtraG/dEoNdaY0NsOljsfiI+2hl3t+7ftG7Zdlctwz5euUA3IxBcCrnntZhZJtI1OKM6ZgcU2RehCoyJ9NA1ooQZg/8zqHsIx9PncZs3p/T7+bww9okFEX65jo2MzlwLSybN9UlocDe/w1e/TH2etCCQjBrN9qI0eiMcTW4l7t9IApzaGkjzjd0KIVBI0wmSAlMBzWLX5pCsWaGYNSHgajYxxIFI3J9va6mUq1P+LRORCZqdrI9qcGfTdf6JQ6caX7bvdS5zHonjxcpP6UOQicAoH9I6G/dNhR9XRO6ifdrseJNK+mhGvJ9GReX4smJTXWCkYRD81OE1Sh0cRt6UWRz1XZq3XviP1TmJYG805Ls2lZf2uB7SPN9YD7pRFsWh+9RzaT2lDbHXEYka7FDZfErsGJEJYN40XDeN7gNhPNR1vaYaI9XzI8WRBto9eWQSGZ7kWq11KwVwO7GhA7TlCR7JocCDucc8zB3tpWqf9+jWleviLP0frceR2Ro48L95M5FcXj9HjibmUY/SfxO36O8jq/+igh+6AYig7XVKkSlG43to7QOcQH3M2IbZ3qZQZVSqJNtXKoc2PAjJ5prQkHIAVb1S8W0aRwTBGSKEp/LJMGZ/PcN2O2O9Wm8o0UfSp+dqI83T3RYKdfgemzXs/zYDxPVEzJpogNDOcwLazSCC+k0AXmz5U5lP3GfL6o02Rapd9TUDgnMySBstxeaaBtP1Mx5j56Dz2XrEfjmerP7qlgxpbl00b1+nZSOqZ+1OfW6Vi7US/UbifEe9prx3jR0qws40oYLgy7tdBsIqv3PXaMDGfah3PXW6JLa5KZr9/2HOheplmvfZQa7HhAs/iAPEi/Vo3rwe+v27fLlz1wWDbokpFwoNP5/bS4RBcZHqf+Q28owCoDCY8Bo59Wsp8r2R73Xg0sZ7C7CRk9dqnBoWgEGYO2YjNGfV+nIJ+QkjlmjJgpMC4c09KUPdKOEbNX4FSORWUqz5Dos4ObH5G2A1DfSbwUyr6crDU+Mi11ju4fC8MjEqhBgQ0yafwuJ3hkyvSCeo7+EqaVpb0xxZbOCcpM9SnxaB7nJTDRJGbdxsxUgqHVn80ddC+0h23+vElrA0fPTPLaIHq9vktgx8HSXmvfnGaTEjrouqGxCgVb2V7X56bTzdN3yQ/p9Hy7i9meMR/Ofvb+WQddvilROmPPQbI+2+d6zEMTMY1TFO1DGDTxnO/zkAr18N7LHHzo9Qfm8j0s9Wv2+nufl/m9/rGun35sjz96ku+mvObZ3zvmM5LdbsfP/uzP8vjxY37rb/2tB+/t93v+5t/8m/yRP/JHPtU532Ar8CQnOclJTnKSk5zkJCc5yUlOcpKTnOQkJznJSU5ykpOc5JNlBkp//L/PQv7RP/pH/OAP/iC/5/f8Hn7oh36I3/f7fh/vvfdeef/6+po/+kf/6Kc+76lCh8Ns8Kc6BVCqc3KZ6Djpa8aDt4o222zBe9jtwTnC3Yb/fvjr5Tw/bP8gYm157SvNH8JcXiBdp59brRQqtlxoSakx2BC0rLRq+hadK78TtAwdUDSx0aZtShNjkDEwrSz9paG/EvrHiiyIkso8czYzgtsaprOuNDgbHkfCY23CaV602J45g57HpkLJFARcei2j5mr0nO+iogzWEbMXxApum6hc9o7pwhf0rNRN0+KMMDC7VEFkIeHT6b84Er1g7yyLDwXba0l9exNoNorMGNczqsZMWhYK4KKiu/wTXxAOMsHiNjLthebO4BcwLa1WOrhYGiZn5FSuTpBJm8SDohaiieXa82SqG7Peq5ap0YAJ+lsQv7ECA1RI6AN0b40ePJ7uGRlUA16r74scnQMtC98//wzT2Z9GaurD+uXvsDrngHYh6zbMyMD8+6Yn3m1U39uGcH3Dfz/+f8p5ftj+QcTIwWsAX734o0jXaXXNcqmfX3TQOPABhmFu1pgq+fSeUv7dGuKi0XvslGoiOkNwhtAIZgiMFw13X2zor7R6zuRGiLs8GIpo8wsdI0kNR/vHMDxWigN3YxV52Ka56WdEcDSKIKxRbXOTTGY0hMB0pq8FN+tF+wral4bxXCkXiVJo4PRk87HRgulnqprQBRDD5kv6HJpbYfmBYPtIe+sxY0hIJUVtSYRm9PiFrn+yTfcbDP1bXkvHrSJBlx9FzGBwG6F/YktTSjNSNVEVfKdN3o1XhFRGRYUmHuhqRldVFeSfKPdQP/WHKpTJPVTRAbpXv1SflxwemOj9MLHQskWvC1xsI/3bR4v5Gy73GrFyjH4WCvVapVcyhVm3oz5PmQz4qK/79M96bfrb94hzemyutt33eu7lArNeEVuHTBNYiwxToVSNxiAhKC1JoXVyxM4SU4UuMRIaW+jGgk2I4kTFFg3sny0Z14b+wjCepz27bv6d9qmwn6nRAPZrpTglwPLbM2VBqf6NlOaloEtNTEMXBK2EraZFFK3SzdQudg/BQ7OdkfHjWvCLNO4mHu5NAdX7IIXOEVSPxjPdQ93GsXgZWX0LTBtpbnrMy1H35PMWv1B7xwwBOwSl3DBaQTtcRmyfqCvuIotXgeHc0F1rFc/UKf2k2hP63QaIdqayynQwSEI/+ll1Qqc0WIBSInJfH6V6HkR9jpn0ItbHcPSZPMD5wLxnV9UBB5SMpPfN8Uko54gI4gLju292g2XgPiXsA8cey3GVnmSqxIBSqxlDDFptA6heA6WqflK+DjFG91sfYJyUHswazLbFrDrEe2Jj9TzGJNvazDRvBkJrCU2iB8wUqkYrVZQ2ZTbaarql/WPL7fcJ4zpy9g2tBm+2MVGQ6OU2G2FM+6kZVNf2j6F/pK+1L7WqNqZz399L5nladD9X1Wekq53Rv36R7IcJuutIfKFUjuPFw8+m3rMLmv+CQic1nrlUTeh40l8i+wm5viV86wOIAXN5AW2rz2sckX2PiCg7gVXE8O5pq/ruDHI7Yu+2dOMV0ayZVpbhXNeU0kQ9sRYEpwhe47VyYlxBnISxm/dprd5L+h6kVLumoZvXxwfQt+Wgo+32YL9+QA7s++RO3kPu5/Pk5uui14dA7ALbL3neRDmmtvtOmg4f2Omv0evs6+b9VUav/1I1j4ggm33avxMXj4hW3U5e9bppaJcL4rKFKRBXLYSgFfjGJJ8srRlHtMuZkjFag++0AmjqBLMweA8h+ajGQ39pGC5JtJ+R1XtaEWP3+iyz/rm9UqxlX7q/VCS3HXRNNP5w3tVjmfeaMu6J7cIMFLR/aLLvCXGJVj9NWhXTbJSSbFrDvqPM4YPvCPOzjBFCtQ7dfkEnZbNpWbwMrJOt5a573EYd6nCxJCwa8Fr5aPc++cCW0ETGlZS57TYT7ctAs21ZvNQqCN8pfZOExKgxUAJwUVS3m03UageUuqqwfyQbP+TK5NqO5mG7vKZdK8dkN/mBdXX+IAd+dh2rKAdUi8FchXFUwQuERWD77hvsZ/Od+TTHEg+HQKvkh6nEtCQEpQnbT8g4YbxX1hsRTD/CflC9TnocG6frxuRVx9sWc7miWTrER0JrMENQ+j8rSB+V/cKaRKWWKn1SjIzE8JBtcN+lSp5MMe5UT69/wCprxEVk8aFWdbsdc2XsBO2dzsWyZ3voL3Rf9KPqtu3Tnl2Py0OxmmotzZV8ANHNtIpTtscnrVAfd0rHHBqt2K4r8Q8qddzs42rbAX1tWul9u63weK8X0N5MuM0EIWrV7JkqmusjzVbHziTzKdhks3i9Rncdae40tidTiqGtAImYUQ6vycysOmaYWXx8tUblvVJbN2T69qNx5Gj/PX4tHh1f7+NCYRzSDx3N+aNn9BB9atkDs8vQwd2XOMlnKG8S5dqf/tN/mh/6oR/iH/7Df8irV6/4iZ/4CX737/7d/I//4//Il7/85V/xeX/dJnQO+mx8Up1SePiYGI76bxhmZ3AYlHpr3yNdSw4Mx2HkuI7/6/5vHPx9HAD+kfUfQZYLZPJIDjBP0+yApmuI17dE74ne83X/N/iRs38NaVukbZQSqnFKH9M2+IsFEjo1eszco8ftj4zuCOzVgDKeEtAcYgsCzbXcK33O/6I5LN8+5rSNlpIIiUYDatFEYiMw6mpoemh7IBl9fhGxOylO8D2jdhIIEYPRBJBE7GpCzgd2dgEYFh9KMaRtH0upbnFCjRp+GqgS/MbhNvNGKFFLu82klFDtK93wS7+R5Bzm8vi8wWTOYmMTvYuLs9N95Age7Bd1MPjguNcEiI6TONXv954ter9RJPFNx8PNKs7G7HFp9ceVr3+eEmtKo/JiukeAj0vspGTovWMzbYMH2Q363naLLBfgA2G3u6e3x3qd5adv/uuDv39k8a9qYsd74jgRpxFJFGthnF57HoCvtH8Yu+igbTTYvOiIl2eY8wWhabW31Zicn6OEoY0pySOzbvo7CNaCibiNlHLug3Gs9CMnQYvI7MSHljJp7F51Lrj5u9pX+oFprQldiTIHlg/mYAqYJqPKjEm3DdAE+qUAlvW30nE+YvpJ6aXSPIhGEz7xYqatsL0mge3+UMfaTcQP4PZS+n3lewsuO8Yz1YDp1XhWGis9OLgq8FLdh1RKeaxTDyZfP0mOnMUSrBNdHdQrgZpSsRwcZE7qyLw2vKHuIw/SpH4aCsV0bKFbi5HYWNXtGJHRYxg1EdO1SFOTrRtEhLjXIJFA+Vzc7cl9riQEGEZoG03qOKfUqjHqnj1pIFiMIMbCdpuiI5Gw3eKWC00Wda1StDZO17PWMV12Za+eVsp9Lz45kEm3czBMwkzvoAESUj+Y2eEMTRqSFLjJidjokg7D7Iyk/Qw7UzQhyakk7WsyO2DdS11blCIqj3s1x+pgZdpzJKpeZdqwaZWda8fyhcf2SqdjtgPY1O+rzVkAob80eh1eKdNMDmxbwTeC2wacCMYbFiEy3sw0PBl4knsE5WsNyVEOmYIpjY1vsw7ddxwPHPFY/Roob8jx2pAH6Dh5W0tEg8ygwbicRBAovbJsGtxyLbF8NkZRCsk3UWqAlclzuHKEHzo+S0x2VJCi1wqqmjn1TT/CmHpWGqM2dLadg9KnMXkFSzQWGotYA8N8XebVLUxe9dOaoselP0fXgBWMCHYzlDVHhgmMIazawvOv1FlzT77xzDEFTeb4dcC3lvYmoQbNvGuYKdK9YqY+RIPAOSDRbNKS38zJyBL0qIMKOdCQ936SPd7On7G9ztnSH0QiixcesGCU2vAg+HI8n+NsUxuUeiVfZ38pLF6es/z2Hjd5TD8Qbm+J41R8GrEWGvVVAE3gJi5/GcMc7LcGs9nTvmzoXkQWqRdpTMH34LR3WHAyU9n4SBRTehro+VW/QwMHEfJsfxzc7AP7dz72IT2ubfdaJN6zq+9J/UVx3sfKuQ/43L5HpFqXstwDXD20t8eogd2UzJcpIH4qSZccDJb9qGCLEBQU6YMCMJpm/tsmP327g2lC+rXut42ddXdSUEehSBalZcMKFpDU6ylaS1g2hM4egCfHM5vAQroP+oXqttvO0yQ/Pu1ZNaOEozHYBLwoyYsgyV/LY0ZJ3ubxzAnMAgBI4KuQ+mPltSBYxapo8DWy2EUGL9qP6/KBuQ1lzTgAcaW/g0t0TQtDcB2Llz5Rznnkbo8MEyYnxJKPNq0tfqHBcTto/MGMM1Vmcz1i9xYzaS9ATXjp+3PyOCfPImaIiDeM62TAxEQj59LeXY3bwf3UtxgruyiP6QOmZ/78/TlaPQv5+O/6WImzLfRGStrDHnQY6jYED300Uq0BOuCFWtEKEaMJnn6Y41age+kwatJml+zprkUWnYK1UlwM6zH9qPt+CJjWKdjKC6b3SnEeUHsAvQ+zT8rmo34uRn3fWsLCFeBVFIiNYTxz9FeWwaVkiRGa/WHvaAmapOj6WPr0SI5FpPlre53zwYoOZ7111AnxWvcOYjf6mgKH8wfTudP1SFR72i/iIWAmnet1dNbZ//WdAh12TyyLlyHZohEzTNjeKuWdk3KOnFQNLtHTDXotMs0+gNvO++S0BEnUtYjaDZn+LoPSzKSvZZpUBZ7M+pF7ANeglQep1B74uwaw37PnpfpHtd1WPsyDdI3HX1OtyQ+N9Um+y/LQXHjomM9A/sE/+Af8D//D/8DTp095+vQp/91/99/xJ//kn+Rf/Bf/Rf7O3/k7rNfrX9F5f90mdE5ykpOc5CQnOclJTnKSk5zkJCc5yUlOcpKTnOQkJznJrw15kyp0drsdzh2mX/6z/+w/wxjD7/29v5e//tf/+ms++fHy6zehkyoxXtuw8eDY7/ApG0M407pHc7eHTeI3cg7aFmJA1mvsoyu+9vafINzeEYcBs1ohqyWxH4i7PWEYMI3TapsQMakKoNDDGJMomhpi2ygqeLPDXJ4rSmmz5SvtHz6gdavlh83/Hnt5yeLZU/ziCbunpmT3pSAIKBlnk8owQ8ooN7fQ3M1VPbHOYGfEqigqaFpqFt2Mgs1UTJKz/lEpilyEjDD2QnARkzL33StFLW1GYfN9EXnSEz7oaK5NqXgp11DQxoIM2uw93Dmad3sE2K08w4UhWKWD0eoEpXZrdprp3z/W8tD+ccAMgtsKzY3Rhm43qUyeuTS+26UG6aNgfCQ4YVwrgtp4kFQWGxpFOBTkQaaPCxzSCtRovixHqKJYH5sRv8zP7SGajfo8h6g4ChtRBvvdk/ga8MF3qheftQj3ELwHY/oxyCGgVOkcnlPw6xaiAvtkk5D1STdN1/K1d/4kcbMtFThfaf4QZrXSdeHu7l4FT5af2f81fmT5o4rkbxyyXioKOAS42/CV5g8h1vIz+79277Ov0/GvPf/j2N/0G7WKbKI0b4WEDioIIg7oRpo7pU2KGRWc6dWk0uuEkglNqvDJdE/oz2hT0/Hc4HHS18Tr62KV6vDiFwKbaBiuIvZJj/+ooxmkIHEOaUdmekGtCtDqmXAewAt+adg9NYTG0b4SZGlxO4+7GyBGhsdLfCf4BQeUNe2N0N4qnYxLuj11el/NNuA7KWM3roTxXNcNMzIj+ru5ClErHOKMnCrDfl+DSjVdPRUfQgi97hQ14rdGAKdz6PIgiIlHRQPVhSXaFpGMcn/wUt9cuafnqtv5XmYKwKPBzPptDOOVVr642xGzy5BYIbS6l8fGEh+vER8wu1GbpHcNYdlghgnpR9gNivyt9Kymc8MYpUx1hthpaYwMk1YB+EB8dU0cJ35m85dfe6tfffTHaN9+i9g8ZveWKWivjHiTCvVc6NPSvtzeALkJ86SvmVFBjeWZJ90N5hDNWtD8TlHsGelre/0ew4yac1tYvh9wfWD7lmW4EEIXkTFVDE16ntzEtOi15MvVv/06EEbB9oa9F0Lj8K2hvbHIowXNqx6zGTA7GJ6u6C8M+6daLWdHXcfcFhYvg96nE6alodlG3C6kdSRiB0XID2eGcS1aJZz26Gmh1Tkx067lisMoc+VtmXvzz5oWDeZxrJayQ0RfWec+RvHyep1RZolKUZsDz9SJWsETC6I4Jv2XVMHzhu7Yh3QjdaXOQxV5x6/VOp/GRiswIv68hdjgbsDsRq3KcGr8h0WDXybk76SGUGgtfqHUfdpcOWJ3E2bwmK1DdoMi/aGgd2Nj8UuHX7pSMSaTNmZ2t4Pq+W7A3u6UTtUY9QkAolYGdasl3fNzrn/DitgYtR0LXSb3bMIosx62d0qZlFG6vknV5HK4t9dSN1fPej8t01xPup3RsZnKxW+F85/fInHFcOHu06sePCcKup2YqvvQ5zOuA+KFu3ctvluyWDc0lyulzPrwFfHmljiMmC+8zfDuJcMjvQC7D9je02w8bjOWiilWS8LFEnu316qp/YTpR7X/zxZMZw3GS6HPmZaGaW0YVybpdEIiu1zZFB927I+qbx6kWIwo0jjfe4Xqzc/xE9G88ej9Y3qmkBf+jznHmyK58u47raTNUh1fquW9VsxEwC+XhEabptvNMH9dqrQlRuLFWdkTozOERYtfOa16m6Lu5ZPqJoPqMiEq5SoRGktYWmLr8AtHaMzsi4WIux2wr+6QYUD2PcbaUkmQqw6W6xXj83NesdS9sNGNTsJM56SHx1IlmhvNu13E7WbdzXtOzDZi/qw53HPqJurRpsqzdA7b6x5sAoVaUe3+QHM3Ib5h/0jZMOyQ5vlxxTzz99Y253SmVTPTIPRXQjSWabGgPW8gntO+6DG7XhvWPztn91ZLf2mwo+7D7Q20N57FB3vwEb9yTCuHmSLtzURINOzNjT5vv3T4zsIQyp4wrg3jmcG3ovZKW1XnpOutK2bu3xRlHa3tJ4ED3/oeHWJ9ikq/5fj1WrLdI9UB9+hSRakU3kApDDcPrkP5vUPdf7jqS9Qe98ppG1et6vZWqfli1yjNaT9q9c56ActW3zOGcLHQ6k0BSi8Mfd5m8MVexyQ2mtYSjSM60b0+PW/bO0zvaV7tYbtTdp0YiUm3pdEK0eiVsrG7vGBafJlxbdRP7JN+haP5Ue/bVoej2cbkZ+vrmSUm75vzWkC5vmJiynyu7CeLp7Q+EK8+aRRYfuhxu4D4hrul+t8AJlXwZ9uW+twyX0fWl9DqmA5nAhiaJq1lpsPdjrQvlMq3f6KsP8NFYrjp1c92G9TPTlXHvhWmpdDcxcTaITQ7fW9cCuNasJlRRMA3qsulOsdoXDHTuMuklJQH1TlHtHKv86tLVU94zXt5C0vral4LDtbf/NE87SP39R0g+eJqXL2Zev1rVkKET+qR8xn10Pktv+W38A//4T/kB3/wBw9e/0t/6S8RY+Rf/pf/5V/ReX/9JnSyofkr7J8DqHKG1G8j8Wn7xNnJosUkCgeSoRc7LeeOrUPGM2R6ClbwXUNoDe62x+xGzG4P40Tc74m7xD97d6f5p/WKeHVG7Br8umW8aNQZ5RGhEcYzQ7MJSICv/K//PGY/IC9TJGffE6cJs1wSdztku1Ondaw2kMQpnxeye87HHBUsG9cBf2/6PRtPWu4pxWnM3P2I0jCZUctAwzIQl155UweTVlD9DrcLtDcW/75h1zaIwLSONLeHjlOmQyt9e9Ln+/fW4LTkdbrw+KUwXAlhpR9Y/aJD3kvHPoLhKmKe7YnfXuhGgb5nRuXfnjoNSLt9xG0jodFy1s3zuR9A2VwStY1fhXs8mhJBRrkX3Lkn9RpT23zFgXz4/YPy8igVlYkeVEr1y3M+XMzuUb19r4jMyUZJdFM5qRNJ+ioP3FReC7ITmHvp2NSjprVIiMSFQ4aUSXQOlo7MrS3nZ3ztn/13oHGY3/abCK1DRo/d7PnaF/5tYkriHidnfmb3/+ZrX/i3oeuI647pYqll4UBoLdO64Yd/1/9FuadfbbQf1zDgX7wkhniPli3c3OH2MVEbJCfRp0CFxANKuuIMZp2HuaQ4GztprmS9bu7UwIqOkqwhfwYKLSKJnmhaxspRikQnhS6q+8iw73Q8x/OAu6ssJDNPQomURGi+LvOiKfN39xaMS0P8gkEinH0zcPaNiAye7dsNuyfC/uls/GbjWxIdonjlOvadYFOwt7809G9rKfe0OjTWfafrUHSpjP0BY/BeWfUxFctxoJaj1x74WBnnag3OY1s7EvPzlPT8YvVRORxfRCk9vgeCRK+jrZAjJ/Jg7B8IKkWX9uwUhPVrp+AIq3aBUp1ZQqM8+RJAzluiCKHToIHbapDR7L3u3fsU8A1Rg7eNg3aBP1sQlhqgGM4txmelU5qx7sVbmDHytR/8SZg88cMX4P0BleNPv/wrmqjdXWF3EJ/MOmmmOM+fEnSi6MYBxVcV2MiULiHpsZlITpYCE/yi+kxKguYEbWjnfTbTIigVVMTuA25n6F4KoTEaWOoiNicwj/ebymaIBszelL4bwyN1UKeFIX5Rg7sXv+BYf2ODjJ7dW9orLDgKpVzuA2h7dUTHtWFaCW4XaTaeaIVxbbl716b39RryOPiF2gGSaWZz8Ao0YFBPpfo2yjFy77V6ry7J8ay7kvecw3Md2wwHz7cK7hUnMaonWWyzatqXxM4bLAe6fa8H3v3X5mRZ3uP1hdxbIzilOwzLdj6niAYDF45prZRImZJr6qSAhMSDHSLN1tFsA3bb4rajUrIME7GxDI8WTCvDeGYZzmbK3RxoWXzU4vZr3C7gdh7Te9z1nmiMrhX9COOe+NGOJka6FytCI0XHyrML3Fv3jik8YE6cZJ30OQgRMu2i6ra/pPR3zPpoe4gJqDCudX8zY6KQIVGKRtXt5YfpPJ0mgky9fx1cZH54+gCDAZk0KrJ7Dr41DOctwbVIgKufW9L9zxE2W/ofeEJ/6dg/tnSvdACUtiWdNFPkLRr80tG82ij91dmC7RfPABhXplAnRitMC+3RNS30mubgUP4Xy2UXirV64MMDc7LW6cCxGV1uP6+VZa0zsThQ9/ysA5/qfr/Msn+/qRSK36l8km+R9p0ogkkUSOJjCdxGlygSQV8fvfa/cYZwttAEbWeZ1pZpOdPumSHSbFrcZsJtWg0WR7UVsaLJn7OGaaGfHc4TdV8z69j6Ww2rVvcPsx8xL+6UgmoYYZqI+x5u72iAxdOO/soyrdPaXPVuy3teSH30Dtb1NC80sFv5u8yv5+RPAVN1UuwCBRvqGKotnkCQQSnOQpyDyeIjdoys3o+EVgpY6SBpa6rroprTaI+N/Pq01D1wWgm3X1Iq1Mt/7Fh/02Dvem6/vGA8m6l+3QRuiupj70ZC64jWEFrB7Tx2P+l6vbTc/DMrtccTVVveJ6cu0UBC6TuW9bveg1+XUC33leMJR2uaVGN/gCM6tvHt0ZSWo2NqZKY88HotyXd/U+W1fWrreNDB8fm4w9dzDE2mSWl1Y0R7JS6JzmBGr0AomPtMtlb7t6wM0zLP4US9N4IdAnYfML0ap7mHzpjWgmkpDOeVnRb082fvtTR3awV4DRNm08OrG43x7fbE7bb47//SD/+H9Fcd00rnYqFPjBTqRKo5FdPfBzp0NH+K7ppkbyc/b1ylc1WxDTtQaMpCk2zyOpYkCkhsbwOLF6nfl4kKrKzBhLVNiX5HEIpf7zZ6wHgO0WnCxbcKfLn4RcPqWz0yBvaPFMTVP5op1poBTRyh6250qqvjEhYfqc02LeH2iWAm/d1M8xiEFqYEEC3jloFMEWQ0h1RreX59wu862If79kESKM5jXb5zZt488FlyjKQGcJStrXoeBwDVE+XaZyoHz/djjvks5A/8gT/Af/vf/rf86I/+6L33/tP/9D8lhMB/8V/8F5/6vKcpdZKTnOQkJznJSU5ykpOc5CQnOclJTnKSk5zkJCc5yUm+t6Xur/lx/z4D+cmf/En+1t/6W699/6d+6qcI4ROyTw/Ir+MKHcgo3HtyRLn0WnzEAw/fjIHQGMJSqdBkTE0WQyDmxm77SUs5rTBdLJiWlui02R/GIK0D75F+iby8xl/fHNA1/cjZv4b50rsMj5eMK1Oa+E6dMJ4J+0f62vTbzjEDLF4+xo5KWeD6iLsdsb1nElHU0IpCn1BQoVW2u5RfZrRnhb44aPCVkQfpPaU00vNOHUxnBZCm4xAy+keQYPDLKTWADdrfbmWZlmjV0S5ivwHg2H7fyKN3bnj5jx/RXBtsP5eOExVVIEEKDZLxaHPXLkCjFTXubORyvefxasvPL99iOO9ob2B4FAhdhBcdzUbpoPy5x95a7CC4naKcpgWsvx3prrUUfPPcKNXaownaAKOp0Hh6w2ZrkUnK9SER8QI2fmcgnGNkQZCDjHNB5GYUboXS0sUqPaMxoXgTwm+m3jhs2n5ALZG/v6qYiG8ocqhGPsyVOjNUuVTe1Hr+OlqIan0wvSc6ISwabcY6aPPUaLU0XHaKzMNYpfpYN0RrcNuRODkkLJCEQvrq43+Dn37xXx181d/+5l/iq0//TeKjd/ArlygZtGJkuLDsn7iE/j0jpPWivVVamN/3tf87du+xmxGz65F/5ssMa6P0Rn5GC80IqVjotuqSYYFCzXNA2VI9ajtA91KR7/vHwpSQQxl5WJc9E5WOcOpCQa1nOqPhXLB9ZPUtARy7L048efeaF9+8VH3bCz4j7UxM96E3kdE5GXEXusj+rQjPILYBlp7xrKO/XNFsIrdfVLo1t4HFR7peKLVixO4EMwh2ICG3YPXtgNt6ppVlPIfxIhJtLN8fmjBXOkyi1QuT3mtGQwYLNJV+wazDDyGGDl47RE8JsSCnynNsq/LtdB2motDLKKCZeixV6aX1vKap1Acrh3+/YRLreXhQepBQ+enCH6bLSS8WqrX000fcZmJaO6aVJUqH7b1WtIVYGvjaQZUiNIZppUi30Mg8tq3BLB1m6nCvHHK7g76Huy3s9thhDW9dMD1tGc6FaIye3yg1yLDWCoLptz9DAjSbt1N1auT3/u/+H7jNhN1NyJee6/enypncUPW4mlIR3TI/a6gU/HBM6/Xd7iPnvzRihsDdlzq2T1Vv8rgd0BIkVKBJKMHQqF5PK703t4ssXugYbr4Use9umb61xO60+qbM04xwi7Mdkq91WuuX+VboHyvFQui0sfR4dk5749lfKXJ69W3dm8dzGC60UsftzIFetzeT0kNYYfd0zXgGw2WuPgCM2gfRzgOqCGeldMg0NuX9Y1R9maiUuVjW3Izer+ysArrOFZMmnbvejoTS8HVGbMf5u9NDzMhuIol6Tf8WWz3/N1S3v5Nq+WP9Pkb7Kn1tflMHw23GmbrHJZsnxtS8HEX1O6O281pR6THtOWaC0Ai+1ffMZGlvLG4bcBujFIxTIDhF8A9nCf1eVXyMZ5KenSFal2ziFWZUis9mG3Fbj9toM2ffHt7TvaruI3svH/OQKVYYwoJW4i1feOwupEbkZqYJTefP+2tA58x4FrG9HNhQ4+UCu/cs3wczOm6/YNi/FXF3Uuz5vN/V816rEJJ9GfWY8TIQxdA/UUqXaR3wbcdV90W6F3uldbPC6gNP+2oktIb+ccO0NLRnltWolXZ+3TKtHO7DF8jZmvHdC3aPLf2lrq2leXqqnMrVU7pnKv2UGXM1omiVTlLhe3tJ/txDe/YRyveAlkVSlVBVIaeVzQllnG2Z/Lw/ThWqtbI85E/v+3++crB/c39dOqqWz8h/8RF8oHmxJaw7pUJrrW7nJmqFbT7FFKC1hEYYzg3jSn1CM4JtFOk/LQ32oqG5nbD7SSlXY0S8xwwW1o7+QpQuLdF2Zaqy0Bp2b60ILtnE1+dArmrT6gC71zKc8cyonWyq+ZHR3gGtoj6q7iprfY3wP54XUdep9kZ9e98KvrP3dTvOQzwt5uocGhg8NDubxjayeOVBLJu3he2TgLsxhXHigE4s67Wd5y+i1X2ySswUndrmfqkVF8P5iu5mqZRsFs5+yRNaHd9poVUTbrsgOMN4bvGtoflog9xuMecrdr/lEf2lYTybKZ/zvpirAAipYjiPs5v37Xt6VdlEB2NbPYfal9EX5p/52dw7dxUjAV1by7qTv8scjmfxycuX3r+WN0oMh5DwVEmX/WrJVOcHxgxlD4a0/oVY9msmj3m1IbYNcdXil06r8hKVokwBEwKha/Cdpb8wDGcG36W1N8VWtFJcMKOluzG4O4+EieZmQKaG4BrGp8J4TqL8mm/DdxYzWszUgqgNvvrgMaZXfba7ia/+c/9nZPSMv/lxsR0zTWqWHGfIFHDHc23W77THVr5dXhvcLlGBi9ohU6JEnb+k2gtE9S3TLUcH/YUgwWKHyPJD9Te2z4Xp8YhMjVb41PtOOidhfnTlNdSuznTrfhEJq0BoLMP5AtvD7i2t2m2vtV1CcDCcw3gBdgfNVu/VL7T6r731hF7YvuUYz5W2EUAyk0+hntNYWUTXO4KkGNrhmJdrPfCl7+twUa9ks9R+Tb0dBTs/l3vnMZVeV2M1x+Gq8cvXVa/pb2b47NesFDvrE475XpZftwmdWCdzjqlZ4IDfMCL3DGapNqhossejG1doLCavMuMEVpgerRjPm2SARcwYmM4cU6cBW7eLiZqkwQwGGRNV2+Ip9uqCrz79N/EvXvL18P/lZ+7+X3z18b9BZwziz9k9bxjODNNSaYHGtS6MYREwvWH/li58ZrTYHbidw+10EZuWSjNWArJS7cEPOAl1tTDpuIPy5LSHhwbMbv7c8Eg3AtuDDLoQFoPWK0WT+WaHX0XCo4HmYmBsOvwrHSM7qkX66H8OuLuG6+vHhKuJQcD2okHVyumVZOiGZExIFAKGSECaiO8tt2EJwBfefsk3/WOgZfmewQz62evfNtE+2bOwnv6spb9bJnobCrVM+9EOsx2w/QX7pw27p47hQoNE44WHpQYCZW8wgzr3ZlCDOkri+RUdwNJT5zWLyjzGUsat7nkhkIxZOSizz5vScKHUdmCSEYUGG3ycjcvsydabVxU4UM80jXHedN9EOeqtkQPaEF87vjM1m6j+ZwM1vx0C06LDTAGz1TEc3z5nWrk5mTJMTBfJ0WyULgDQcu1li1gL44R0LV/70v+RuNvx0x/OfTN++sO/zNee/3Fa/xb7t9eJKsgwLjVx4heq46DJA7fNTqrFDg3iF7R3ZzSboNR/xeGpknXH918ZOTm5k523MgfSPPMLPWdolRamf6S8vG6r8zr3lqkNFjNB+1Jpl6Z1JKw9k1jGM0ml8ZFH/yjSXjtuXjwhPp60h0YjM5VZNpB8dgJKikOZS7wQFunZeoG9Zf+Oxy8siw+F1fuRZhNptoFpYbj9omH/PBAuJnwU3K6h2eg92UHL9rtfuuGRXNA/cgxnhuFcGC9gPI+wjBrk3RstR0/rp3gtNS+l4iJEiQfJw9eWfZe/UyA+J2fK/BNknJ+p7zT45FeB2EZkskfzPiUlarqoagrUFEZRmIOh/g22NOv7E+HA4agSO4WCqT625sc1Ju0LaS9emsJvb6aAb5VGyS8MZoi4fcAMgfHMMq00AGx8xAxCcBYzRWIT8VjGtcPtV7jrNeblRhM7uz32umHRWqK07J4q/UoOMGa6BL+ImF71Olq0j9veYAdHc6fzNxohWE1O5rlQgtpUumeOkjpVIIL6b9J8WkLcCdPK0vae4UyY1uoYmoF5a8j7jQeX6ZgWac+fNGAk3igv/m2gvQXbWzbbNfGxx0vQ5OP4gNPDvO6Ip9CuhTYldKM66rt3NVG0+Mixej/Q3HmGK8vN9xm27wbC2jNEkKmhe6X0qE0KOtu7Pez2XFrD4mVLf6lrUX8B46XgF6qobqP86sanIJ2y3xaK1eAO11MN6so9p6A4lceOY14PfEoGDzkwJSX4M601GGZA+wzmtSHFPw7WbnSNiBHl3U/XUvcqisMbbPJ/4rIz6/drjyhADdV/00+MF63qtoBMkeHK0V+YdLzOwf4y7a85MJQoP4IF00CY9Lv7S4cZob11dK+82k4otZ9theks915SKs7hSSQ6NaxlEszOKNWQUbphpQe0tLcaXPFpzyYqFZIh9WicDu+z6PjRUEQzr4l5jsQG4qR9otpIAXxhgLEKCOUxTAmOZtI1aFqhfeFE6B85TWjtPGe/sMHtljRbx+7ZDKqSKd1Dong6SFym/n05ceRXEZmUesn0hs0XwfiGs86wfG+P+/BWqaKvztj8his2b1umDnZPHHBOczNhxoAdAj/98q8A8LV3/iSLX7zAXy7pHy/YP3XsH0vpl2PGmSIyB8S1z5be63Al+C4DRmZ9mwd5Ht/6tXpfr9dI8dlm0gQhKEDErz0yzDaOGWcFKM/3gWDvTJ1cnpgCw95UeR3q9XUUx8eHxUjuR1eCpLsB1p0mVQeP2Q7ExjJdLRVIldZR3xn2jzQBMC3SGl7WWMG3+n3bZxYzdWoj3nls75MtGWkTBWl/pXukPsfIcEUJ6tm9aA/HNj3vwWAmcNsWt48EK4QW7QuS7eyK3qf0+sl7Xzzcn7Ne1z5ZJNEmRk0YRRvZXxldf9xMW1RTA9lBffA8132n99ZsBLvPvbsiZ7+4p71taa8t+6cJ8OAq27ZhXmeSLz8H1FMy+zzva6rf++ex2GwXvzDR3IyEznL3BaVDDh2M54LbddghIBGajUd2A+FbHyAfOS77ifMLfcb9k5bdY6tB5pXeX3OXrimtYUo7rbbyuE6UVDVohPnnQf/Ij/GRSvJ7SutyCsBnmrdprXZcDTiQ6QH9jLOvpc84fX/aqw96e3wviDn8PcfNpEzYozleqPyO7PRhgFZ7yJq9JyyF4bIFkbLf+oVh90TpvaYls33lk+mb+iZKB+PK0ews3bWl+2jQPmx3hsVLBWPun8C0iqWfzPAoXUusddshE7i+LTS+bq8J1HGVkwyU+wP1Ie9Rq1VxtuNkTq3vvtE9ajzT+OC00r1UYvKxpdJtma/V3am9Pi1hughMK8PgTWqtELn6XzzdK8vuo0aTWc3R88jXSfV88rqTr20x26zsDfvnaosvP1Sa82arLR/6C/Wzd+9oLFIm9WVMSiLZPbQv9wqGnVYMl5ZhrWv1cAHjZcQvAwTB7vVfvi4zzH3+YkocF50JR/OLo/vJz/ZgDs7rbr1nxwwAQfePDKTLY5R7FukXzP+O1/eiE/m7jtzTk3wGchx3ed0x38Nyolw7yUlOcpKTnOQkJznJSU5ykpOc5CQnOclJTnKSk5zkJN/TIj5+R/8+rfzUT/0UP/ADP8BiseB3/I7fwd/7e3/vu3D135m8wXC977IIczrrXqNVUTRAnUIttFQJZRAEyUj+fI7ccHVlmYwltIbmhSG2jmmt1Ru5QV9B3MWYaAqE0JrS8FNEoCOVlBuiewvTB/63v/f/ht2OyDvPwEBzvWe4dHDGAV0EAEtP6AKhM6nJsKJj/GLOIB9QB+S/U1a+Li3+2OxmhTDJiBMz6Gu+VcTK/l0t5zDfauZH4OfPRFK2+1YI+47xbYEmsH8atdJhK9rIfITFywhG2DhLuBqRtyacC+yvF7gPXUJnpkx+SGisJqH6p4xgNATg9nbJZtthFx5MxO2E9lq/s/3AMYQl/lHP5cWWF99n8N/qWHyg6ADfCsPjJXbdIjGy/HbP6r3ItG7YvO3YvGPZvSPQKGrUP1MIbhwM9s5ieqV5skOi9rBxHvNqbA/QWnFGKYinzGHx0NwqxV2zjYoiqRAioRGtMriwDFdU1DGk8lVFZtXIwPx7QSVN1bWkz7+RUlUdlCqE11XpGNVlgIfQgXWDdEQYzyzBOZq1o/vQMV407B9ZbG9xe6d0duhYZpompVUyaEdgQaw2Yw/rjtBa/qUf/g+x2wn3wS3c3ukxL26wVwvGc3eg13keaDPiyHiW9GKnt2UsjGshWJOog+ZbydVGhY4pK95D4M5jRGo61iRE/rTQaxieTTq/o8Mx611pyJ7nZ5o/zY0wpq6h4znICK4X3F71OorglwZ52rNYDlgT2e0bxrsWe+0UBRUyylcOz58qxuxeCm1SaCIEodlEFh9NqboHFi8UvbkzjubtLdvvF7pvOVbvQfsqodkXjvZFT/fBFpkC0+WC7TsL7r5g2L5jCQnxOzz1RJcQvYPBbUyiwkoNpUVpJ0AO1tusS4e0TFIQP9HFQmFn9wnNndbAXEUYjTAtlZrSLyu9djGtgzPNkILkRNeMI0qHjEaOJr65MI+6Iufee+lnhZDOVToHaKlU5RWtUBpcR1IlnDCuhKXR94dzfU28ounNlChTo1aV6ThDMHMT4mAFvxCCdQS3wA6X2EHX42bjkRBpb73ShqwUXRhNOk+mMegifiVatTrp9QWrTYCjMTrXSftn1rEjupZ8X7kq7yFqWUnnLdV4gUTTYBhXHf1jpSU0I+AqVHsa7yj6ekb+UtYm/SU0qSHrXWD1vlaG3lnL9NaILCZ8EMLOYe/sjK4MR884ghnjjCLsRcHaRmkcmjsSvZsnNsLyfSFaw/bdSPf2ls1vgPgLDWffgO46KM3t1QprBXvXs7rrWQF+3bJ9d6kNnK0htJHh6YTYSAwgg8HdGUUK9hklKYV6ra4kfNBWkuo1mVGGbpv+7ZWirqZrCo02dR/PheGcUm2rTa0rvc5o2Ezdmst1on6ZpPFSKrc3E4IWzWvojyuRegBzJW29Z9cUjPm9GPELw3BuAEuzCQznhv5K51kkobbT/qq2GLM+p+qWOOrY+4XqyJ01mN7QbOYKD5v2xtBqFSpNBBswNiImEkZD6Az9WpDe0NwaQqqwy3RvdlehO6v985jKtJ5OB/Qd1RDWVSJaaSNMC8v+id6HHaqxrdG5eQ8H8AnR32pF3XBhmJYGtzMs3w80dxOrD4RoLfvHCSmbaUrCXJlSKk4TJVs0c0WK2gtCSHc0nINvBDNMsNnCMCJGWH3DAWfcfsGyew6hcZx/w3D2Cxuamx1fe/7HiaNS18Vf/CYCrK4u6b78DPvlFZu3U/VCC8Nqvm+ZKM/R7nWPVbrb+bofpHYpA80BmjmiY9bekKoqI3bQewupaf1wbugvHf0TiCYe7NmF+pr5nFptWT2vCDNlbpwpIN9wOdiLaylbsfrdD1XrRBHEoLodAqG1TEuL6SwOtEn6Zcv+ymrFhENp1nLlWPKXil5Lts1hOMtVpoLtDbZv9Bne6t7d3Sja3a/SHt1oRW50EbFRiycjSG+wG6OV86nCOrSpej0xUzxkW+f7rtf/g+rVWq/t/FmTbN5poZRl+8e6Ppk+7TGpUXuhLkprhfEgm3m/HS4gOovdR5pdxPQWMwTaO1F6xpaZDjKh83N1ULFlq+sVT1m/dG/Xee0XqlsyRexWae7WRjCTY/tM2D2Dm+83rL4tnP3yQPOqhxgxVxdaVb3dYW5uacaR9uKC7suPuf2+BTvR9bN/nL4/rT1+k/brSe3m7PPeq9Kp5TXzU9JauHgZae4CbhuwfaDQWRtRP/vCsX9stKKrSxVdVaQtP4+DZ3lQypHYFJLOh+bN1O0DlpsH5EB/qw3rQROkip8B0FgwBjNMhIXFL5VeLeuH75KdKTMrhFTzMOt7sODX0D8S7r7gcFutsM22VvcqMq61Et2feTKlNhKVOt9oYXQ/CmZncbdGK729Vp41Ww7jebWemso+CZVpmNadOsaSxyXPEzvoPfhWGXfGc52v7TVl/882Xj2f8jx1W4hW2wBEEWwv6ocMQnsb8Y0kirNASBXpZmewW7VpQg7THcUHMu0wUCi+QdccYrJj73x5hIuXhtgI+ycGfzmxeVdt9OWHuq6OF13ZW5cfjKy/GfALy/Z5w907wu5to8wHi8h0mZ7PJJjB4O5mW9zmsct+wkH1Y3Uv1RzM1Tz5b9vD4lVQ3d54pctMFVTRGaalZbiw9FeGcZlswYo2s5w7fddBdWS+Fl/v2ZzkMxRJjByfdMynkb/xN/4GP/7jP85P/dRP8bt/9+/mv/wv/0u+9rWv8T/9T/8TX/7yl381l/srkl+/CR3gwUROeS85yfXhx05kPr4EkPU9nzh7zbmlWVstiV4ZDbQ2qvxuF7HZwCOXBFst0ww2nS+dPpeZLpV+yZw5JNX++YVhWmo/DbcTJpQiwowQghC9llLnhEh2YPLG0Wyge5kcrNopqeIq9/ge8zBw9NpxICNtLu018AsNoVGH6ZhKqCSC0HO4LZhfapVu5NnA7onAYGAS7Fbvxe3A3RhG0xBcYLHuGRaO4By2CjwVbmsvqQeGEL0uqIIhRCGIwbhAdDCu9MKz8Zpl8obzqx3bznN31WL2hs0XDc1ty+JFDrBG7AhEDbSHTp3W6AVMRB55jIl4ZwhtIPQGvzeYUZBRDvjKD4JDaYrluVLuKWipsEyCTYb7tNS5JF4OAhOZ+9kvlaoHSQ7P2bzhxcS7f1DWfxAsyPQfSk0l248PwHxeUvhpmW2zB2tcj15TWrJKLDOdotH3p5VhfyUYbxhXK6JRZ8q34FtLe+tLSTYB/EL7Y4XWohRP2YmUZPClZ7NuiPYC83itVG+txS9s0mu9BO2bk9gnJBYjxO4TTVgOoDjw57MTefAs86CUMeCTf2c+h+R5KeD2sPyGm7ms4+F8iczBkBwoMhO0r3Ru9o+UF3cISnlj9/p+95FhiB27x8LqvGe1HLgdLdFZJFH+5fl/sF55NSyzMZ9pL0zQsRvPtG+C75SPOButY++g8+y/EBkvLTIIbuu4eHypPYrGUNas4VyftellpuVZR6QNiAnExjB2hqk3hQpSvGB2ugbco3Cxqr+SxzzOhv34SBVeaVkMkwikQFTum5B1NVpN6ELS8yp5FFxy3MmOdjyg5tGS/xRMGgXZvaEZnaLTD687hbP7dTaZoAa6Je3Z84Gh0UCieCEahx01qT8t9HNmEtw2JXLSZ3wnGvgDZAFRTAFsZG5w32qgxfjIeGYQrxQnwakzZIYUUOZQP00/J/AkqCOlfTmSY9YrxqQ4Llm/ax86BwWPhuuYh78O/AanwWU7aLLEVrSpxVHOP6ugU4RCy7Z7SkqAqdPXbA1mUsrD9S8L+76hf2pon+2YJOp6lu5ZKk58SPM2VPoh+oxkUjsG0YDZeO6YFqbch90b+psO03m23w/DhcNMBjMa3F3D2Xsr2huPGSLGKyWOJsJzXyIhXEWk1T07NJaxDUx77e1lxkRrOsrs1OWxzwFZS6Gq1DlECWrp+qT/olGu8/0jKfzk2cnNwUe31WdrHExQkjsS0YRTZE5wZ/oOofTjwasTHLZvqMmfrvvjpAAv6iiDzNSbIlLRCqY5E3SccsJkWlgFQ6yYA5wc6pHv9NfcD8dXQct8bA4ODxfzZ6PVYG+mfItxpn6MXucxo9J02o3B7tK+Pczfl/f6vJfGtL4YEvBrvvNyvWV8Du7/8JhMH2c9ieZttiPz/CzULWlOlSGewCYwz/6xpPlt2T9aaW/LXnv5ZVqq6SwynennzCDz9+Rxzv5DFYTShLLMQW+B0DrM2VptNGfJfcfsoDbstITrHzDsH59rgM4/ZvHRxOL9LWY7wH4Aa5TKOgVw7QBxIvXgUN2QSemwTEVnmvtyHlx7tpOrpERJNKfxmZZqj7ntnAyIRnt49RdKdecXiRJnrUkfgiYVxrM5QXwQzI/JBqiftUGjWFHXIt7UPfsBOaD0gQft8PxTSGNcgyfzcVbwS8skamcHJ4xrpcYNjhK4h9lOmpbqHxOV1ij3u9J+RqobmWZQkxiCSXRZuT+F3akOeAOyUBstesFsrfqnuwpwI/o9OchakjD5VipfO5L8xCP7pdbre8FwqdaEmBLS/tAeL3Sc6fgaBOi2ui4Mj7THbfZF20eJWirTDw3qa/YX2j/M7qovPlpD6+/MYBWSr+I2qG3VCsNjXWinpVKb2l5jBb6DzdvCuO6wQwucY0ZYvPK4rcf0HrsdiTEyrRQkm5M2Sg+p12CsBsTtoHZU8UEy+OQ4XpHGp044Zj8udOrvtDeR9kYTOQCh1QS375S+y7cplrOC7lq/c+pguEq0XhlwK6S4xPyM68RtnQgzw5vpZ9fPHnit3V2Ss0eUyPGBuV4+01ims1Zt6M6WRPi9nq7ZX0qJOknPuFAZ5z7KKeEyrYCg6zEx29QKmNMTqM1U+jFF1P7cW+wu+ahJf2MCeEiiy6393+wnlxiiPVrfqnuIx0t3ZVdnirXcIqGAal+z3Ndra3OroKcpUcLJpL147aDnWXwA4rWHXbyciG3A47BDzjbO+1+5npwUrxIZZgS71fd8I8RLh4RY+vwqrT/IYPDLyO4Z+IXqy+adlvYmxUP7BIKVmR7VbfS4aGFqg4IebFRTygohUbHl68g6XWJk9fyK8zMSn5LaPq0RPXQ3kfbaY/eapA2tZf+kKUn/aPS6Fh8F2kbn0Himul7A0dlGTDYByU/Kz9S3ecwEdm+oXv9alYfW+4eO+RTyH/1H/xH/+r/+r/PH/tgfA+Av/sW/yM/8zM/wn//n/zl/4S/8hV/RZf5q5A317j4DqZMw5bWj94VDQxOZDzNRHcyqCZyif+aVNlg1ViSoYVgMTEn8nj7iEg9rDCmAtJybizbbgOkD4mNK3Nj02Tg36DXZeIsJiSf4nEXfG+woxfiaVnre7gUaOIlq/GQu+ziv41DZ2FJefGCc4tFrtXFXOUDZea4Xvfz5EvTNBkJacN2dMJGiXWmM/ZOJ6ZFuDmYwuFvDaFpu8phfTYSdoifdRsp3FD5ho86qBor0gqOJuPXI8GRkTwMf6nj5Ti/U95abjy5Sg/PI8ql63ftNi181+M4kREVGagt+qYgCTMTe6e7nGo+RSPAG03gCkdgFplGQSSOBykGugeCwCJidIrLDMmBvLC4lUbLR2VynvgB73bzHFMxevwftXSyB3/FMg5PFofbQ9GrQ+4U6l8dVIPpFMfVo0TfcPjvfEBveTKkRuswOxnEQtxybHcVQrQd5fXAGCWpkRCf4JjkMMSGEshFn1BmPVueTGSJmCukcQmy1Ai/PcW2Y6kuA1y+dNmp2pjhKxkfYB03OOVsC/RndKglRKjE1Io3QvqIgPEsFnpmLEfSCjn7Cgf7G4zlQHVNzzmYUeQn0TvPnH0wIMRuCpk4IprUpr08SoX2hSZ1NEM6vdhgb8RcTvjdIn/pRBWZEK/o7UywOOKgTNZxLCiylgEorJaAno9D+3CIFWiLhnZ4QBL+zbPaO/lJAjDoMRrm6h0dBHdDtvNZLQmJ7D9Iq1ti3wGBKYDYj6mMbkeSkxUXA3lpsHgtJjkgbsVujKKhBmNaB6Up53ZuPnCbJyYjH2gEEs1Nj3ndJr7PjVD3UHDSPLj+3+Vl4d6Qjb4jc63uX9lyg6O49xzHpfTRxDnhHASMIQRU5ISuDAyko/Dm5HgVC2sNyU2U1ypPutmiiMQUtmm3QwIqD4UyvJViBVpUmWilBQ/Ew5L3RqfNjegVfEBMf+1IDf/mZacKesk5EK/NenX+pIr/HCbDjxOs95zJq4sinQFd2VnMQpO7dUgd1yrqR5pVPc8svNQiWnavl+yDeMlxZYhTM+ajzrnGYjS3oc8nAi/x3dmjTd0znkWGQlKhRB8svpDS5XfyT9lCvgTgZ+jtH6AzuzmnVUbpuv4D+se53bqtjam1ETCCMVvVaUo+gva0C+bEkTKOLZc/2y6CB+/38vIkaXDIpeKgBIB1nt9XnnNfIca2BpGw7SUjVPJt0rVfz88zrsZqsAk1uxKu2RK4gjO2bq9v1z2ORe8CLo80r6t6rtmosSRVtlM6c2Dmbq5wOqlfjnHCTKSVZu6hBfQ/iBbfRddUkR72/ogSE87qtSfGI9UZbkTmfqrwERq3MdqlXW2hgEmhTFR7M+2uoglMAQaoq6ipoUPTNyP1Knfwv2wJB79m3lL5Y2fSJcf6+GPT3MsJZ73OiMPV63D8l6Z9eW3sbi3IOj5Lt5fTeTbbz83Wnn6RbNOkZ5Yqe/tLQbDvM6CEEorX4dcPU6aJ89suRcSn4Bdx9Qe1520N/1TCen5eAK6I+1e6J9hjNVVRmSrqVzD+/iKXnQgaGTOuQKhjUjja9Dq5fxBTckxK4cbtkU9/l6pyoKPJGk1CLV4H1tz3Bwva5LfOKkKoHku5rkCj14LAUEEhkHr9o0hwctJKQ+Abb4p9WHjDRyXs2JHtdJ2GmSIkuAXTSXhxaSj+TYvsHnWN+ofO/6L+kZt03s4+YkddR0hxx83lKYka0Z2O0kdhb7K0tPdpyMsnc6Dqf9dmk512C0nG+pRJsqnr9lcBvDX7MY5SHKycFIqU/TJ2wkSppTcz7QzpHBQrKPVeD00vYPUugpbQ/KguA9ggrtmyV+KhBBJJsBMkXnK4xr6tDatTeXeuaNa1M6R979s2oALkOtu9Q9lUzwv6xw+2c9iCelimuAv2V7vku+ULBgALeco/aOZCax7PYy8mmyntz6NL+POp8KIH0a00kdzeeqdNYjJlg+cFA+6rHd5ZoTenP5jspCfL2DpotbN/W9Sq4uV/LwVw3EbxWodk9Bfzr39AKnXtSzTNI+3TqRfv6z6ivHi0paStg7D07IO9vxRZKe5+ZUIAuzFV3bbITg84JM1ISZ8Nl2gO7+ZrdDmKvQEP1mYTpwivAddJq2gziyRW67k6vIfe6uQdSTlthsc2KMV6N1QO+cgGZVPtlWKgtaFJiNTNRHHy2svfJ45R88lzJL6I2S05kiFcwN2LocZrUSUmHbAvl9aYkdnKlcFpzcpzBr2DwEK2huwmFIWRc65gisPxlqyBIC/tngdgoyM0vBLsVjFfgosbe1FbzK91ri6/fqMJmgHZoE1B7FEylU9mOKnqdkjakxF7WbeMj3Y36cu21J7RCaB3iI+2rgcVHIwiMZ05juMaQ4yDdq0B3LfSXoiCChtIP9QCYHedn0YxzL6RfM3v294rE7Lx+wjHfoQzDwM/+7M/y7/67/+7B61/5ylf4B//gH/xKrvBXLZ87rOfT8M+99957/OE//If5zb/5N2OM4cd//Mc/uws9yUlOcpKTnOQkJznJSU5ykpOc5CQnOclJTnKSk5zkJG+kSIjf0T+Am5ubg399398734cffoj3nufPnx+8/vz5c771rW99Jvd0LJ9rhc6n5Z/r+5633nqLP/Nn/gz/8X/8H/+qv39G46cXHkIHHryW0FCZzsFoGj6KIBluZhSBa8eoCPpRaVcgoQkSDUfpMxE1o+sbwe1jQdzYQdPzfmHYP7bKBZxQKHaImHHmXJcQkSFinBCcKZQuEmckuxlmRGJBcmZUDQ9k+/Pt56RmznzXQ3N46IzEkOqzku6vSxQHRgpa595QF5TS/Lu7O0Ip3Wr5LS4WpMDiA8u4XeCfjgVdGFaByRiiiTTX+mEziiIl20iwAToPBi6utiyakesI47VT6oc+oXSdIYhLiABYv7Xh+x6/5JdvLghRGCZDvwiKuM9jaCIsPK7zrFc9d8sFYbAsu5FhtJoo9kIcrCJAKiikIioEKX1tRO9zbwqyKPOGuu2MPjE+0mwlzaU0VQvqOqGWKzRh5jVfvFJk4rCbn6dfzqXK0Ql0CXl+m9AsRlHKbzxuqFQdzD0YspR+MnVG3hx+LqaqHOVWSHOhkcLBa/eKEDFTLPRp+kE9b3AG3xmiE0WMesXpaBmyIor3T9tUSi40d0rXZqZQ0HlmUERKszVMC6VCypU6ZkSPqRA7B7ys8sAzOkLH5tfuKTaHfxdkH7Ne5x4ivlOUZPAzqqic9/jrj9CF+TgzpvGPulbZARbvC0PfcXvnYO2JSS/iIuCtgAF7p8+m7sERkw5O6wBrzzA1tDeChFjGyrc6ltxpGX04g+nRxKOrLdcvV7Ca2L+t1Di5KjJalG946XGrkWnTQm8w6xHXefykx+IVQURCLucxyyijaIKiB0X/9p2i2OwgZW9oX+m9ZhoYf6P9F3zSxUyVU/dks/uk10B7CyFR6/il0oXpfSedRp9fRgrbvf5UJs/PHefxsFTo04L+O5J73PvV/q17SLp3I5h0stCaUtVhq14YoGi20tYl7UmZTsu3UvjkFeUaC0p099gU+iyTUHKI0qXhdSN1G0rFkNKqKZotUzBlOq5cBVCqcqp1pujyMRKQGZE6v3D494Eu5nOFqlLBK2LVm/k7yj5cIXIfqvbJlBVSrUdmSP2fJlh9G6blkunSE9qA2IhbTXgbtcLxZaPVO4kqotxLoo6aLj0sPYNvaG6lqqRI95DRxa1W9T55fMftdoEfLdMk7N6N2DvtK5iR134RCW0knnmGzmCXE007MU2pXMEbZG8S5ahUNFKmLIpT4WHX6yahse0+off3ujeYVJmdqUR8N8+TkPS69HZB10PfKhq1vZkpoexe15GQqi5K75eW1PspVT04RZeae4v7myP37HEoc/1A36tK2kKzKEIMUXve5Y0vzcHglPLQjqnqLFeiZBqRaZ43BWHpos4hq1VzzV2yt7xWQucedkrVkuYcyT7bZXS2wZtIiBBHg90Z7HaurM29ZpQSM91ntfSWeZQRnpFSWV7oFMv4VGMmR3+nc9UUTEwJqZvPI/NxGGaEfX6vRhYzz7XcH8IlSqPuZcSMovTP66M1IlIqQgUKrZuk6xcD47ny/I/bxGrgDDJGJATM4JWS2ketsmph9xz6ZxP21mpV4QJCY7B7w5iqCXLFRV1dmfugiJ+R9PX4ia8rcIXQxpn6KFIoJd1GbeJmG2nuNCBgh5hsNCH3VcvVnNHOa1VGCftW73/5oVYHDueC77TiKFo54Oov1R8DLD6C0Grl/fhgSfUbIJ+Gkz5X1R/sUVIqywiCGKO0O+jYmCHoOmvV583PMlfNmWGujMl9YHKFHVBoD0no9egO5wlVn9LIvDc7gWgMo3XYXvtqmNzb0M1ri96X/gvM5yr2ILPOZzsuGrm/HuQ5WlXtlWELlXKmvSxX5pfP1hIfeL2y20vFYaIhzP7m4gVI0P5EuaInX7fvmFlD0np20C9JYLzI8Q3RimMfcX3A+MhwbovP6RewfQ7DWxPuxir6PlVVjAOYaaagC6nayi8Vye8XsVQf5vuSB/wSmWY7J7jDKuR8/PLDSLPVfhpaYauMCk0z0zia3oNXWuZAsisTBZfbR8aVxg2WH+rCOq1Sj083z8f5PqRU69kUr1GKsDfTHv+OlxxDonPPRmaiSZVqUgf1h3EGoSE6gxk84oP2lg4RO0YmJ2XPzi0CcgUIkmwqM6+tttfJvn+kFPgh0f+VyrYkzUbP6fbZbjZEm6kA5xhaqfBy6NpAcsUSY4DkOV/bylQ2Ooc6cTCWcvh6ppLL/WC15He28eoKu3KOilWg6F9eE10aatGht8mfWHwAZjCMmxa/CmBiYZvJepz77ZXzyXwd41lMe7zSRMsEhlTxmnTJbaX0OuqfRuRJT+wdYRT2T8Cu536hEnLvqYg/94Q22d8Lj9hA6G2y2ZWiufjNtV4niuqaHi/bUm6r9GrNRnsAyqT6S4gzFb7RPl9mGInGYJs04JKotDsdxMVHA+2NYbhw+E73ed9K0XugUP/ZQeNtU5dord/4ANqvLSkx9084BuBLX/rSwev//r//7/Mf/Af/wcOfOa4mjPHea5+VfK4JnU/LP/f93//9/Cf/yX8CwF/9q3/1V/XdB86jzAvl60QXsuyVpM8X+hcpzkm0UqhHRNQpKQmdMTd7VCOs0JigxlB7oyV//YXyLezXyqveP9JjbJ95fIXuRq+n2QR8k41eKQGp7iUMKRlgJn2t5uEt9FrZQHxo/lWBojwGH2efZ8cM0nVWQcfQzo0kzc5gMm3A0fkOjIQ427F583W3JvFVquOY6a8WHwr+rmX/joeV7lRhBSKRoXOFS14Gg7vW8Q0msny65enZHYN3TKMt3Pi5yV5zK0ze4NeB5vGeLz16xZkbCKk09PzJBmsDm23HuGkOBiIGYZws3WJkELh+tSJORgPTgzqddWltuecg2kR9Uk7xzCMK6oC4vRoX3XXU5EBg7rO0MPhWOYhDKvvOhgFGqQWKsbik0GXkRGGziUr759VJ9YlH2o7QXXtk0u+ZVga/n/i510+Hz08+xVp6r28OWbdRw9OoIkeB4EwJDOQAmYTUbNPEQq8AlOclIeJutPmnXziGRy3RRaaFob8y2oxUVD/HpWPxKmBGobn1+EUKOYsmhJqtPodpkUv3KQ6c9fN957l7T1WrF2KcDcHyXv58Ni6PA0OSyoX9/H4OjIQuYvYpEZkdylB9Rz7/8fckHTceSDSQpqeUjHcfQffCMq0t/XPl+RUboQOxgck5TaBGWHyzKcmuaY1Sm1X3KBOEhfbJAA3GyKjHDs8nLp/d0VpP9LoRuHd2DLct9tYRSzBR9ToGDfh6a+mWI7vbjjgpRRrjnEgvtEdJx6d1UJoOAbszhKRPed3JQYHsROdEASRKqQ6270T6J7HQwQA010aTD0H7Oui1zkaM7bVBc2h0T3B9Coo5TXS5vY7VtBB8/2ZamvdoGKq/62Dv/OLcX4O075YktzWENHahMTPn/jQ72YVWJFNzpCBNcJSm2e1G18jhXIEd00KN9fFcz1ee46TUG8EKzTYwLdLePEbaO5AohD30l/mZp3WlcvQKXelx0jT/eyAweSC1Pj/gTGYqn0wnl/tV9Y81yJqToWWc62sT7n8fs44XjulxBgucfQOGa8v2i8CZLhrtesA5zzZFmYMX5M7SfaTUhaEBfx7KHp9BKSHz1+deGGkNGJ+PPHn7mnU7cHO3JEZYPtrrnv1qiXnZFBtJJqU7iYMhdoGmmxj2jjAq1S073bPNIIXLvHCaS+6Zp72zTA9hLxifgBBb6K5DAuGow2y8rlvaq0m4+4JhPE9BW6drajTQ3JjyfPvHM31M7q3T7FIQLu3jmpSQBAyan820hLB/M4NDx8EMoACP5hfSz5raJNRrAJrUEdGIa1rHc++paChBnUJJkgIOOWmSqX/ctQbU/VK094EoFdZ4oUEGANkrtZ67Szb9TsEwOdhkB2GcHDlIOOtWsn0zDTCV71HZ29jq70ihRct2eKE/rcauTqCUezLzWJY5a47eywFkqb7zaO8/uM6s1wnDEIw2oDeT0o0tXmiz6bsvCH5Z3aeNiFMKQGLqR5KvPSfYKhpEgLBQu9p3SrNlJu25t3sG/dsjbjUR9oaxU4q0aEzq+VHNExuJDUyJwjHY+Z5DFwvArHb6S+/CRi/Q7kkNo3UtbO6U1rjZBOzO09xNEKMmofy8t0Qn3H2hZfc09XFaKwimvUk9EZ02vTaTFFBBtEph110HplUKaPaJ4rMTbB/pXmpmbFpZptG/mbb4x8hh8jLPg/ubSAE9SBrb/LrN9rnaMaFJflLtU2XdSXZ7c6f6N60zeEXXxeHdQFgrd5PZ2kRpLKUvoe3nxGu2+cWDGW35vmy/MdV2RnUj+RZDtV8e2eChvvZ6b60/n4OzxZ7WN0LqA5RBBJmK9yC5VF3LvT376O9o0bhGdc3rX9bv3j2b9/GaUjjTBYuXA2BMjjeU/nc+xUMSlZbObe0lt3kXprcHXDcR9gsFaCaKLKW+OhyXnIAfLzS+YLem9JDNibn8neS1Lo+zUECOts9ACGhvA+v3Bu3Xc9fDpBl78boX4AzRGPZfPGM4zyDaZKO3uk7k9X5cgT3XYK9JTenbW49vdfG0fcC3htCqLd5sQpkD48owjYF/zJspx0DJ++8ngFWd1AHmyay+syBEa5We1OiamUGUvk2A3NQ3MfcTzjG0OOne3mz1fb/QMQ8WpgthvIDhSv1Upe9Kei0aTwkZAGsoYAuXwbGJcjHrN9R7GWWfjCGpYTi0W4pZnv3t18TacjImU6qHFnzQ71YAgNrisdq360RzDewo+n7svzOvX2WfS6Zl91LXxmlp2D2PCpgmJ5gBkaTXGhOLArg8PlWfnEnB6ENnZwByoi30LQyPIvFpj3WBcGOIZ55oImFjsbscD5M52TYKsYkQwHYef9Nger1xuzOFtroAuVIPvmh1eGzypX3qadbeRLobT3MzqW7f7opOS1Cli40lWsv+3TXjmS2AXd8Jbqv9dYiatLG90rO5rUe8ob2dsJsJv9TF0YyeaBXYa/uAe7UHK0znHWO4X/Vxku+ifArKtW984xtcXFyUl7uuu3fo06dPsdbeq8Z5//3371XtfFbyuXl3mX/uK1/5ysHrnyf/3ElOcpKTnOQkJznJSU5ykpOc5CQnOclJTnKSk5zkJCf5HpT4Hf4DLi4uDv49lNBp25bf8Tt+B1//+tcPXv/617/O7/pdv+u7eCOvl8+tQuez4p/r+/6A/+7m5kZ/KSh0TWHnLPTrJObmqg80VleUmpQMoCTUZd3ATZEIM3pdUZmKylp+6HE7TxToLyzDuTbZms60AbfSECliwS8pqBxFuMC0EqaFVg+4XWTxMhAaYf9E7yfT7RSqpAq1UzeYy3JITaXfV6qJHkAV5Z+xei2jYPxSXwpNVPQ6qTQ7oX/q6pSH0MPl7wrZoEgAmZF2VfNCszdwPhAzoisIi6c7rA2cL3pebZbsFx3Nt1rAst+23CwW3O06wm2DTSiI3OAMFD0fRm2S/MHmjE3bsu8bLs52LJuRpRvZ7tsEVRRiQgL5rWO7nVVM9hZSc2KZhNCGdD/zDUejKIPgtHm69xX6IcxjEBpFhedS2Gg0Nzst9L39s1gQZwTB3iktgE00PplaZP8Yumsd3/ZOkVLNNuC2HruZiI3Rkucx4DZjQcV3HwT8bsPnKa/V7WPJVA73Xoe52o55Apu0JlghWi0HzxJlLvGOVnC7DI0BYsQvhGnlMGNk8eFIsx0x25GwahiuGvZXhuFSGFdK3VKojfbaBDBaw9l7odAoDOdW6dh2gdX7I6E1bJ5ZbQTaUBCEx2i+e+jmfI358GOwwhHStz7XQ5+fVmkdS2i8aCJmEoJLi0kqP4+hWjuqc9fXWFfqwIxKKhRNac5Kb2Axkjmwoje48wFrA4tu5GZ/yfLbWtUkE9qc3Fva63S8y/Qm1eAUxFNku2sZJ0ucBGki61XP1FtCazCDme9pY/F7U5CQvWvgtkkNQBWVj000fCPzAIg20TWd1yqtJqE7J600ZJDUWFvvf0Y45uaxCbn11ki7GpgGS7htsRujyLSE/p1WOg+P5wYoDYTdR9w+aCPhhORvdoFgwe2EsKu4CD4H+Ti9PqisfR3YRo7+KHoOmRogOinVN7mi1i85oOapvyeKrq3TSj/X3URtYC+6Do9nCfXbRvw6QMhVs7ou5/X77FoRmNHYVMWqaOvlB1rGv3+iGEa3OdS/g/05o/Diof4cwAIfGqPj81Xv5/06I/IO6FgdBH907BEU6GDvPkYh5kqBpH9ERbA2G6UnMKMh2pEw6Zd6b2iWCplv24ndoqWnY/G+IdOQhsFg9qbQrfk22UHreW8LbQQbuN0sGEbHuGuw3YQxagtsWJZ7Jqo9YfeCGSzRGfqmha2DLoBThK5fhoTQ13lgJoGoSEBtxB0LolJCovTpVe+iEcazZLdZpf+SqBWw4xq270bC1Qg2YlzAbx1mawsV4ngG01lgvNCqnbqBLXH+nuDAe60AajYxIdl1Tsfd65Tms5GP3bMf2HcOqsofss8thWIxhlRhJarQM22RVjb6VtH4pVosfafv5r/dBtrNXOk0paqd/bMAbcBeDNgo+EGpc6dGML1l+b7OgeFirk53O1h+kNaICxiuSFReHFQn3LO98zhkvyFvV7naINvsNaXK8bmEgtzN1UE1ophKh+/ROr3mfFB9Jvs1VKjiTAc4qA3pW4vxMCx13yPfA4qk1z3ZaIVTug+3FZobRdIqhZpTSszWMK5Ss3F79AxBz2ciQaKC6fvDOSCTEIhauZWqOZWpQH0oI0LoglYE5uo7LzPNjlU9ynuD22p1TnvrE11mxC8tMsVyvYSYrlvYvCNs3w1K5TdKsk2UHtkv9N/uGbTX83PO49veqH9oeo9fOq3cHiK290QjWCPakfpzlI/T64foBI/l49kxdGIqtfnMVlD2cVHK8pDnRapcB93Tp1Sp4ja67/jkI/kuMlxGaAPt4z1EGHtHDFoBrwwJqttun+yv5M7ZHTS3kd0zYUh2vN0d6XVdGRMrHc4vVaZMeatmzqjHoP5cjdBXk7P4q5mOL58/Vx0eF0YcX8MBor86plCCWVi81CrT/WOtLJnOZop4giQdgdCFRFEuuK2UNchtBHcH3Sv9jtCo/Tmu9HwhPbtMLxUmpUyPbdJXL6Wip7ZdtOLRaEXGWcAMUmx6CcLkdP3L9Et5Ptr9/WeltnGku1EKJgkRv+4ww6SVI40BkcTQYLl72x1Q9dl9qsqeYqHLCg72j5WOKrkByv6x8dh9wO4nQme1AjFE3GYqc9zdCb6vLvRzkE/ys+s9+kAq/7qu0tG3YvmsoP6jGPS+g/rdoTlUgii6zkaRVBmic6t7FWlvI3bQ6vjhXKult4+Uis+fTXruCD7Z42ZMer2Dca22vUStUll9oJUo+ydSKqabDQ/qdmGtyfqTKtXK3lv9fo8V42isYqUD2YbwXbadI5Ko36IwM+zkfThvr2ldOKjsr/bquu1Ctsvba7Ub1RZKa6tLFKNR/cPgItFF/DIChuZGIFXG2J3B7nXv1yojSfa3JOq0qiraRuLWMTVqv/smIC7NjVxhKBFEMEOyxdPn/MJhNjZ9hw6m72Su3Mp63R+tvem1ZhvprlMlbRoff77EDFPSaX3AoTH4pWPzjmM41/M3G62QVbtLyj3uH1mtqMt7tld62OamR4YJ2Q3ERYNdtJhhQm624CzOR/CnCp3PUiTGQzr21xzzaeQnfuIn+NEf/VH++X/+n+d3/s7fyV/+y3+ZX/zFX+Tf+rf+rV/Npf6K5XOlXAO+6/xzf+Ev/AX+3J/7c6/78sqZkQPHqhySHai06UAyMGOcPy9SjAfloNfgJlCMrmmpTnv+vsz9qiWKhmiF3RPD7rm+Pp6r8R8bNZqit0xrdVoIgplEuSNRhyGXj+cgYDTgV8oDnhf+4/urg791siZSOZbZqcz3ArOz8dDcT++5baI9SsmDYsTcSrm+A5oJeNCRPChTTRte5h+OqQzWDsmgHtQAGp8IcbTErcVMwn4yygsaoW0mwrkQvt1iemG6abhulox3rX696LNpr3WD2b8VyLzo4ZdXvFh3XF8M+MFqeSoNu7Fh2DREr8aIeClOGRUtEiYWeqjYaa8AaQOxED+nZ3XjcFthSqXkw1sj0hvMqJQsdif4ZSS0Abs1Sj2XxtKMeW7FORAQoL0W3Ca9n5jh7EAJIHc3ke5VohJJdBHjZUtoheHMqIFrBN8adSg9yIua++ezl9fp9kHAHu7P0zopK9VrAsRY6fTsPELaECr6peBgOEuc6OlZ54CwBCHaBre1RLugvzRsn6ueDhdqHOWAjOml9HQZ1zCcGUyvZeeZKoadXvLUCcOFMFzO3N8x30d1W1AZmvWt10NSB8uOHepaF/Ppo5a1a+IpBTAjOn9emUTdIkd0EMy0jg89i/xyTjBHIFNbpLXIDknPdwb/KBImg7mzSFDqv8lE4rnA+Uh40SWKMYGkt76DaVRKmO5a9W6Iwt0XU1+JERa/3DBeOHaXo+qvjdxtOuLWJY+ZqveXlCApJhJie5AgKyX5rYdkIMskmL3gNoZpbRAXWDzf471h2DZM54K/c4SVx7QesZGwdzAkDyGogRu6iHGemCgd7a3B7TSJlIOVkp1ro0mdbJDma4sO+iuLb5Xior1T43v3WK/VvKp5Qj57ee2efRRsOJyjs9OIpwR/JQWC1JGOs9FuRZcBCzWQI6+NkOiZ6r8rOhFB+xL1l7B7OxKWATkbiVU/lbi1eJmT9tNey/TdVvtuZd3ONkNolQO+3rPv3XOc9ekgKRvL187H17Ror9lj855H1KBVpqIKOREm2s8pg1OKs1if69hxfMCOipbSG8Yk2jU7qJ3k7oThsYAX/J0FDz4lhv35oMmNxwPT3SKBNtThd3dKlRc6GM/0eUxL6J9FQhcwg6H9Rse0ahnOvJ4/wnbv6Pct5tol+yLfAIWSCi/42yYFfZVikSbtd8vI5JOz2ysFmxmF9hYGlIZrWimAJQf5QyPs3tL93O5MoVrKQYFpFfFnHtMEjFOv3W4sZpeAGmuUhhWIjdKHtIkWLAcZieAXuv6OZ9DeCLl/3nAOsQFe/dOzrX8l8vo9u55Xs32dJ/iD9GvZXs36WwcuY+Iwj7FQZGRdG8+j9kJD9TK6qEk7QHyjdLRrpRMdn0yIjdhOkVjWKcDKDwa6QJwEv1C6nGYTcTspva7cVoMIUyfJrky6DQfBmELBxOE+XNNGxTwss5ly//jIoY2fzl/6SaS1I/cUkZAohvIefbROPESjWL9WWjuI6rdJzySva9pjAg3Kpl5ExZ8ahbAMhC4Qt3amj0P3q2mhvlT/uKG9mcBr8nf7VMEPbgvnvwDboWH/fVH7Ye71PDJmh4fZV0GBWYyoXbfSvpeZeq7c0zKUueVuDBIEdwOy1uc6reckrdJsWqYE4ok298hKfSxRQMq41GRATmo114kqJiQQQerflpPoBVi1icV+8o1hPHOMK2G4MDR3EeMt/aX2aot3n29C5+P87I9L1tR9Lh/8HYpvDSjl2gSEgJkCIfXP0YbGCpLU9VbnpO9S8jBq0H+fEuPjWyPiIm4xYmzEWU8ISodNAtpFMSUYaaZ44GdlP8C36mfbnRT6onJrOZibdCZW+nUAZCwfSLpoqzfqfb3SzXrv903y+VrVt0KrmHzZA6P/oeX/+LXabpdETRcz9VMsPRfjYz1QUj+pkBaQDOwKLbA9pLq1QwbOCBKs0niHyO4tTciYEVbfFPpdw/B0njhmNNhdokOXeVzqAbQe4k5mcEp+XqL9zqSVsh7aRMHkdhrMN15/ur2efDgzDGdd6oUhhSo1pP6Tbh8L9bVENBYxzborXoEaGeyBKEX6MaUawHje4JeW/SOjIJfOJKCu+lRvrG7XbQfqPrUP2X9VUgeYEzsGYkiUa8YoQAOdEzkOIUap5PtLSXS0yR7K/T97Kcmc/jIBY7oAax0323rERPzOwdLrnt0Z9blzrswAkz47O0SGtdKhj5c5QSgHNkfdtybb0Ad0pfn9bFPmpDaoncJ8DPnzUGiebQ/DZcQvdF0zfeqvNFCAQJk6/MD/P9q3C4itfhjpc96C7NLePcV0fqG5U5q6bL8W42MrDI8DfpGp6xJIKGgiLKRE1HBhNEEUNe45XJCoEIXltzR+NF7qPmvvHMEd9qfLi0Whbfe6XoTk80f0masfFFUHE7CqTVSY7Zb0+kzDDCR6xIbxTHsSR1EbrQbI2L3SnE4LKfZ5c6c9nCSBNJQCVd83HtzGY8aA3Y0gyfZsLGG5JnSO8aKhuR6wjaV/skg0qQ38/+7rykm+SxKi9q/9pGM+hfzBP/gH+eijj/jzf/7P89577/Hbf/tv52/9rb/F933f9/0qLvRXLh9nan1X5bPin/vJn/xJrq+vy79vfOMb/9TOfZKTnOTzk5Nun+Qkv/bkpNcnOcmvTTnp9klO8mtPTnp9kpP82pSTbp/kJCf5XpdcofNJ/z6t/Ik/8Sf4J//kn9D3PT/7sz/L7/k9v+e7cPXfmXxuFTo1/9wf+AN/oLz+9a9/nd//+3//P7Xv6bruQf67grDOlGs1OrA+7qg0NCP4FQUtR+9pGt4MAZfQVr4T9o8N/SPoH8VSsUNEm+xN8GolqWRXkfvHZZnRKHJMRilUHuM6NWpdKTo7N/6bFkJ/KUwraF+mpoAJ/SXMqJsDVJpNqL3DG78/ZjO48LCKpz6+Qu1mWgSJiQotHZerGLLUaJXyWkL1HKMED5qcJ+SDXygyYPEhLD7SyhIabVIvI9iPtPFx/37L7m0tYbImIWh3hunFArs3hDYQ2si01GqW5haGK8GvArER3K0wWoN3DbjA7e0SEfCDhd6kyq00FiE3RZf5+dmIuXGFQiq0kSBgWkXcMxrMztBcKx2DGZw25J2E2EbCcgIbCQEwkXY9Krp/MJidVZSDz8gJAW9K6Xl0YFLTuNBQmvK6qM1X3TZi9xmlGhEfMAGis4UWxrcN01KfY3vjH0Z7fYbyOt0GZoR+tUBnhDkwN2GtP2MAcqPVVKGTAPfiI0HM3IAvzePdW2jlXEyvh4T4DbB/agoVHkZR1UBq0JuqdIDYKgVHe6vIjv0jg+8aRXol5Ne4Muy/6Ogvdb6310m346wj9xD9GRlUo/vqsUhvPTAU5b2HtreaxsH0UhCBsanW0XikuxWyMb+fj8nVe4dfojqdq5/soPp9d9HMSPkg2Fudn+GlI15Npam1NkhUXciIddsr0q7ZRtw+vdfoIuY2ivwPjSV2Aekt08aVRsUkXS4NVSe0BH0Bcj4SrxuaG6uIJZuotySh+oOiGLsXGTXeMj4Z2dPSLCaW5z0ikXBh6NqRZTOxbnte7lZs9y39tiHsHXHU84TeEYaIXXhF7W8FGWeEtNJmKfrMjhldBMR5PomPBKsII20mr3uG22n1yucpH6fXUM0xDudNRgHW1ExRpGoeWlXUNorWlhCVukEP0B8O+ovItIpwptRfMdFiilVdv7lKJ20iZjFhRS8m+ljoHcIqEndOdWRStOzuKUwLq7QcPqa9XNg+N4zrtGdPHFTX1Hok6LkzPUGtOwWpl+/9oUKro306f6bQjDb6u9vN1ZxGFM1XpKaeqK8xnzCjkB9ac9L3jBcw7BSRyvvCeNEQF6HoGX2yde4WjI/0GYRWUXFmAnNjtKFtqnSeFkrTZPcJMrnyWs17m/bFrVUqmFunFXi+KfszorZAHs9yrecjceuw19okOzqlM4tNhCYio+DuDO1LaG/1s26TaB2donen1BB+PIPx6YRZj0y9g61VxHH63kLVMRmwEddO9MsmVXRIQX+aRP1qetFms/EQBZrtOEmI6rxf+E6rGj6ugfFnIa/V7Rrtm/+ufzLb4pD0QLhngsRcWRbQ50pCZU/6b/skwKOB5XrAB4Ofkj3TThgTGc4c42QKGteZSBgNfjSIiRgTEYnYNuAHi9lakFQVYKU8A0kVWHfvKE1yNNC90HXA5Of9ABVVaJmrQauqFepfzeHr9w+Yf88VmXUFN9P8d3k/D3fW33pgK/0+qLY4Gvxoob9KbARLhx0i3SvYP0tI9tzsOK0ZGVV7PBbTEqTTPSlYXXjsPmD7CEb0/Ukpz5obYXzRMF1OSpE2yb1xy2tSIlhQ/ewCsnM010lXnFLF+FXUKswAq/eExYuEtu/Ut4pOK5Omhd7DuNYm6H4J45kijXMjZlMxqkiiZwydriE2ra8+NWHPdFBur5WL7V3EDgpHzmu8+FjWi+Bg/8QwdeD6N1ivXyfHLBxHun9YrUe18ek6ISJpPJR5gU7or4T+MfTPvFbZWB042wRihO2lwbiAGOgaj58MMRh8VJ2G1Hh7sMTeIr1RhoRHQmj1gkqj+3Ot0PJLaF8qNZ9MzPtq5WPXuibV+vygj13rV5zX9/o1PcHh7wVdPlKqWDIV4gFdej7N/5+9f+m1bEny+8Cfua/Hfp1HvO4jM28Wk1V8VJUIiECjJ4KmFKSpvoFEAQJHggYENddMbKJGlDggIAgCAX6GHhENkg0BJbEbIqUmRVVVVmXevBE3Ik6cx957reXu1gNzX2vtffaJm0UVKyOztgER55y919Pdzc3c/G9/m+n73G84yPIrc0imDts/h2rnjNb9rdBfOeIiK5bIyFIgu5wBV7KqZnPHsGFsx7AUFu+NJl7Fsi6qrWX/1PeQak9cJbN1Xc7OKXGMo2eUSKZENR9gcWP3SN7m1LCU0WdqbmHxVlm+jUaRmLM1Um0ZIGEpJJ9pOlvTbaN/EqrOsjjY56yGvMYI+bhY2/O7CCmj+Eub1g9GZe76RMkcdUOaaHkvLeO4v/TWd2LZA+kXS4TxdAxt/kfOpp3Te9nn04EHa3KH2eh8rqKIy756EiQk+7VydM8qdi+E3eeWNWt+mFrwIgrDRWZgkcyusQ5Gv6ogVcL5hHOKtpH4UCODzeN99o1Sk7O2YvbFvyhUa0r9weX10vG7TO+XqsleG4PDYyl+8oE+j4E0pnlj7gtUZqfonM37+dpa5eyc4uec8McPfj/SlXnfxBa655YB1XxQ2hsbs/dSbJUcrDOqe3fArFPiSAesJRemE1WnpHvBvYBhpUgtyF1u6wdHXFuWbNUZteKjuEVexyOZim4T4X1F+36aC8rclDKt4uobKznhghJal+OqQmgtVopYxlDIPrExdNj87Ttb95Ts3oPyBI1Q7ZPRJUvKsYCccXcX8LuA2w2QEjhna9EQkF4ggWstu6h/vmDYGBXtL9pm/5kT5ciYPnHML7H8QinXvot/7r/6r/4rfvKTn/A//A//w3jOP/tn/wyA+/t73rx5wz/7Z/+Mpmn4rd/6rT/ezWcLSJv4ZhGTIjr7vBirfMBIQcLR8c4cTRUY1o7+Qtg/Z0rNzfQ5osBgKY6p1NpJjPUQtDI+2MINTTBaNxUsmJCEobYNI99l7tY8AcVFcSAmx+7AmZs5mqmG/johQYzjdjcdc3LCmRujceHMgUEqFA9+b4uzuFDiMsEmoq/rAydn7oyOfVFucSpQdRwkmhmz/jqnV/ZCFDPILskYaJcEvG4PFrsk22xKi0T9Ys+wqxiocYNj+Rrat8J2CenZQPgs0rSB7qFByyI/OxW2icO0kRMlv1vmD3dKte6NUiYZZRkCKYlt5kRB9pZ23n0RUKe4rae+s53B4TKZ41AprkmkwdM/1IhXpI0kFSR4c2CXiVTpSP3mBkdYWcpryn1feGGbe+MGjQvh9tesDpDvjEfYdwn1Mm4sSFKqXUKiGbEnfJdfvBw4OIKMHALT4DlJA1EWknkzh9m4BHN6RI1LfVianvXP4+iYuUGmoFOUTBvEWKOhus+Ofi0MF7bgVK8wyOF9Giwg32Y+92R0TN2VOZ/1LZP+Voc6UzZS7Xlzc/QTFcixPdPZeQeSU5tL8EjJ7yFZr1em12mVcBc9vV/gchq0K45nmRfm+pZvKrObHwST8vHzIJNb2POkFtzOGXVTYx6kJLHAfBTqt/W0kGaidoorRQL0l0K1dUjK9WLurdZUuIr0n6mtSYruZqeybOCV2jgSZ+8VzLEMu8rMSeHxVfCYQ6zR6JiqB2H/uZJWVtfK7TzaOfokLNY9bROoXc+QPNu+ZtvXtFWgbQZCcKTO20bhMiJVMp73wcFFIO5rtLKxq37iipcIw8ocbGtfo6WqdqWmhwWiS80R39nm7vALXkA+JU/Rhj6yU+74mGyznekVfqZvIvQXLtOz5LmzVdxFb0O/UPfgpkErwNIGggYh3TYQxBaYyzhS4hFzYFgnn6FQ7Pid2X4XLBgwXNgt6rv8ntXhuxUbWfo4bOxR/N6CgHO7+NRCYbzePGCb9aUEgYwqxMZNbKF7YVQzZcP6FG3LIz/o+BnmNl4mGrv+Aly0gKjfC6EWC8LNasoh4DM1Wnn/0g1hhS0KM8VSzNRW1b2g3x9onu1wXyohOnZ3rdXDUbPJqEzPWBb/s81vUWBX2SI8Wj8xCM5BXIEGwe+E9r3Nd4XSzO+hvQVSrnmzKkEDxd95UueMCqRJpOTGYHK4iviV8UL4OlOFXPaEfmHziGC85ntHdWdBht3njAth3wmus4DYSHUl9kyxZdwUH2YUgp+aHPt+JzduZ4Gj43PKd6KMYKnYWp2y2ED3DJrvP+DyxZwY/abzCRHFif2eYt7oCQ558EbxV0G8MJ9HnJKGGYhHLJColfWB70EydWFc2c/6jlFHSzBm3HgoY48M+lKrZVbfHumRHvw4Kce0i8VeFWBDXNj9Y8sYBE3VzP/Op86DQY+o12afz58v5fpYBVQRB8m18CRTYOkISEPAb/P8mAPC5ebDhbWZ78hzuWdxk681QP9M6V4qD19ZIEY9uK3P6xrzz8o8J2XemrW37yHtPKXunwTTl9RkH6MX/NbWQsNK8ga3snxrjdRfOMLK5u2UN2SMukcYNjlYSd54ycH/kGuJSi9W5yM4W6c5e8f61nTX9XZPs9lmc4wiSsc6Xb7X8V2qzmq5DPwSyDFY8oTdeHSs2H9KpmXyIIN9L9ECjv2VZ//csfvMNtXGMYXpc9nYrZeBlKz+VbivLdgmwMqUpGpmKxpRqBPR5Tovl5n2KNP/amX+b/vttJbVGfXlsZ1Mldl+o4gC2U/25sDO6+waWc/GeWKuh2qbN4V2KbVAskClzz5C0cODe8yeq2zmzFz0g2cev482zo2qN+tcVWpVGL3vARW6GD1y+d3ln2imymqMsqm+N10C08m7TG8+Bq8lA8YKlTXTPDXq9xyImsyPwE066YGYQValjtLqja15+0ubM+r7xOLdAAn664p+Y+twPzACoOIi+2SZrk2iEldGyVfWW67P4IlBplptzgBV7b0Sa2F4WWXAILjBnqPaWV2+9tbePzY2fH1nNbr21acbZTxcu022+alNHTvnsKaO5AWm+tLvZgtS5Xj4XsPupYHNim05sEeCranK30FwH2obs7WiFwGtTYG00N9XkCTR5z0qCbZGc53N2XFlD9u8n+agUrNmrttWI9PqXNuYF9obgciBHs2nAj1qi7l/X9auhY7X9UK8ssBSSFmJy3Gl3oybdHsOrjoFCj94IJ18grL+Q83Pjc10Xav5LOO8VGrK2R/TfFVqDZX6cv1GxvhjtYP+e5FwNRA+F+i8gdOHUg9PDza45VivNd9356wWd8ob6MpYN83KLRQqVKMqbO6V+sbGRn/pc2kKyTaUcX0f1vZOY0yusrVEnNFVdpeC7+z+ydsGf3MXqW8DroukxjNcNKTKwIIyWPzM7wNaOfw+gJq98oOBp4c/Bv7hLH8CoicCYKeO+SWWX+iGznfxz3399df8+Mc/Pjjnr/7Vvzr+/ru/+7v8g3/wD/i1X/s1fv/3f/9P89HPcpaznOUsZznLWc5ylrOc5SxnOctZznKWs5zlLGc5yyciEjWDuz9+zC+z/EI3dMD45/7G3/gbJ7/77//7//7RZ/ontIM20XnNkUBHMkPDPIk+YPo7NQ71Dq0dYekIq4I+zbv5ubhaWBmqsuwwW+ExYbhUYqW5+LbtYIs4QxCtIpKRhCmnhENGE2SKKBxj1s0c8V92v0fKKZkQAcBYBDy1wHaGSpi920F66AxVMKKGdDpWvSGFhgtIbS72ezGw2ey5f3s9PltBt5X+OG7P+d/zx3jUTTnVtaCEFm+E/YuChtZMe5bbPEyQEvX2nfT2MsPbBbSJtEz0z4T1T4XmFrZAs+5Ztj27fYOI5WFIEEMTJzFkSEFDHqGgiAJ7x5BapFbC9zqIggaHtBFfJ5KzIrGI4tpI1URCXdN7jwuZ+qt31n9Vwi8CKTjqNhCDJ+VMoLSwNlevyE5oblwuKmeobjdkFPEHWL5NVPtkyKG1WFZOX9Ay0F94tp8borJ9rzz73+5xGWmglSNVnyiUHyaU/vEjHlM9zGScDw7Goo28/rKivygFcA19nRbJ0OuZai81dqwkjF6vk3G8pdbo9RgMIeJ6IeHQZUKbRMQoBiTY7QtyxuXsspiR1upn7zY+44TaUc9IsTKnNfT7Q2TTHAF9/Pu8/ea0NuoNadpfQloocRNorzo+u77jJ28/p3rI71ozzgePKJkOHpwDVM6jrzNSJzaM2THL18Luc8uoG893WOHcQSjZZyVLSDL9Ddh80z2zzAg/QL2zvqo2A3UT2N83SPAQJNPDSEZv5Wc9RgcWGrZQje/TX0+TlXqFSkma0b9NgtYKdGpToFZWAFYBt1AaH+lz1UrvlIqErxKhSVArvjVqoGFbIx8qtFbCxjIsXSe074Xla0t3D62wf5lRhv1EFxIWhqDaf2Z/13dw9X9aOnmqhdB8ok7NMS0TTIiaPBbmtA46s+2jbhc6uVz8cPt5xe650F9bloRsBpqFDZjQe3SwQsl+GXIBV1AVdHAwOKRNqCYkWkqr9o4UBXyyf61ND27v0DIOM62ZVowUmCUj51FR9GKr3ey7GTpRKw4pU5jp2hFKuHw0t9nj525C8BsdqKGd04sefd8Y9dfROeWGT1IHlK5JTP7W7P3COqOVIyx/JmydM3rTgjj0RhUqQaZswSrreZaSFRhby4Zxg1GqPPSeH7x4z/PFjp89XPAmObrgkMF0a7T9czTlfA5M0Ly1jFdJlsU8fgcUnsrSZ1plZGN+70J9Vu3ICE9DMqM2hkpmR2qV1Oo4B/X7iu69pXNLneBiIKlA56g+eBZvclbXAnQzUdCVzOywUcLLAINQ3VRc/h4jpVtBXn6KcjyE5pQmxXeVsYMeG5MDvzz/DKsqZ8k7o0i6Tqx9IkRH6CtSEJrVgHfWtzEJKWb9VXCLQPJKrD1EjIJpMGpecZbdo86yTlQyHUzO7PX7Q509znKZMgQn2w05y/fYFpf3O37puZ7nH8d2VlxGsWZ6krAqVKZKe5MzgKON32LT5n0xv96jdzjyG+ZZ9mFhCYu+g82PYful0F/ZfccMWJ2OT75kMk/3iEulF7Es+iij74qAXg+4OhHu6pzhXLJy8rULwvd4DtSMIn6QkQJq9JNcLkKdMwRjjWUw5Ywby9aza1RbO2VYgdZTG8/1KzbmL4WN0e027+3LMreKmh/Y3MDyjVJ1OTtyLbiUqZsGzTZA6Dfw8D17lPoerv51ynSTMs09n5qcsNmPfMFTPrmUYx9n2GvjSQ7iomLYeMuYWhY/R0Cc0VRdmM0WUeomEJNlOotTaJLpal67RfWkIPgmUi8CsXKk4MZ1topmaiaHz2vk0t8HWTVlvM1sdtE9nX0+nj87dfbao7+pR8dJPlg027wlDOtMGzXY9VOT7apOGTzy6AZHzX28HpgdO6cwHDaW5VLtYfNjpXsm9Fc5plGYKubnFJ9G81RefPqFgghhYQwQBXHPdY+rI8Ndg/QO1zlbn8+fNR22yRh/SKbXhsi3Zy1UhnNaLBVjSYg1mVJKcNEjgyJRae4Skhz9pRxQ2kqc7HpsDcVfshvbD/aCYWnZOSUTcPFeWb4ZcF3k/quFJYjsEr7X7HMJ3bVn+7nL2Txw/a/2RsXmIC4rUv2JGu2nl9J/PBn1R0mtTcapcgyXFcPabjLO/SqWnV6mAzG2A8ksDanVbNPEQnYPlWW3rALtciDUkTh4tPdGo+wUlkoIDrd3OZs02/RMKz6+Z6E3K7pZYmiKUb5VMvoqx010kJkz81WmOOT0ubHmKPFVT9VG4r4iRSFcCK53Y4mFUs7gSd0+Wns/yto5+ny4KDYHVj+FYWOxjkJ7XvR4vPbc5ufvjLLQPqt2tg6t7+xG1y8eWNYD337Y0H9o8bGk3eUmLLG54/hfzDHSd35kUhjWjFR4RbfLXJMqSF4YVgB+DNLXu2w/VnLIWjTrG1tLiPnXHqNczfNod2V+hu+UxdtA+2aL7Aa0qeiu1palNSTcQ8pzvRDWNdsvapI3+sSL//PeqCSXFbrgLH+acs7Q+RWWuaMpoB8J9MqRuzUFTEqqoCLBgnSxdQxLZ8FXi/EYr23mYR42TFy6KdPy1MXJ0HEzQCtLY9Y24eqIq80TMZqvBDmYrsERMZ7+cXIsC7j5hD77vSxK8lqJ5oN9OQYu54u4eTvMjND492xSVKaJPy5guI6wSBbE7jztdeCumk5yuTbFdwaFyvdPHKMCeDNGzW3mna2FrgTYg4zXmdLxS1DFfncB5N6hfa6Z86Jj92qB72D9+56HtGK4MgoW/dDgc0rvlH6quX7N5NTijOtVG6W56li0A3c3K9aXe4bB029tcyhFsdRjr0bDlcR49hOwisR8TektuJgGj28DVRPxPgcjKodWDiXTeGU+2diagZ4c2Wlxod5R7WQ0zPWDpX7HVnBRWdxEUu3proWH7wvIBt9Z2uiwFlK3h//piX77BYqKTGndj76bfj+mdSmbOWPdjYRdIympqhhWk4Mz0vbkTTyrq5DGDT7TgdIPmnP/s6NZFlp1poNw2IZqBSwnipxqC9Kbngwro1UYg0RlniiLxOIQJozTNuv5yM9+5NjNF2wnf59NeaO/7XPQ8HmARUSCY+gq1nVvNYHKc80cvXLRcsk5ZdKTYIlZn6TK3s/dW32s5kGJjdC9yuM2zM5xiurEMV9q6fidjHW7hkt4qMQocIDN7zsehgX7C1upua1x3WqmOVCvRqeVDuegsnE+vAhIE9HBUb+rrK9h5PNncFbfZrCgfko1aRFx7UQToNHacQtcLPfULlL5ROsDhJqmioQmoknwlW3qS5XQRg8WzdooYW2bOL7LVksnbmBJk7NdbyE8QH+lhC8ViS7Xc4G0+5Naqf3Jy1PBTjhcz5RaGiM1k5v+llgoa5SwEIYrGC4TrAL1IlDXkRCN7gavVIuIr639ozqqOhJFkUWkaQerxTF4xCUbf6KkXJsjkReNYnY+5M3Oag6cyJQHj4KnfnyZkTO6vKTP/VloEMexNNerU90oj38XJt3uL23su7xpUi0CobHCEYW69NEm7My2nrLTo/9x9HnKYJfFO6trFReOfWV82hLEbGF5wGLC00y3I0gnI21U98xqEEmA9l8t+L3hM14/23G92uFdMnpUGAO2thEza6w02UmqTKepRg2lmT5TBmebo12mL8wBZvKmabG5MbeP63IwossAk1rNzkcdN+BZRurG6BXL++q8sJkq2mK6rX6ivMmUfYWO0uhuBbn36CYSvuy4i61ReNSZFuz+E12wHPmdj77jaXPx6HBVZEiklae/dHTXMFwo2qZxvearyHo9sKgDITl2XY1zSl0HmibgXd74aTyhtuCPhmxok/WPpIkOSOvsdyVnmzKZ2z0szfhVD3O/kHFuLjpcfLJCzVYoEOebNqcCRQd/zI4tkvJmY1hOgRlJjGuOEhDS+bWKrs59+/m1Z7o8fiyHxycH7KC9STR3ibisiAshej3dkTLTa4VCXxwb2L+C1ArtO/v+4veE+6EhXiSj08m+d6nTWXykg/VJCUg5qz+aGgPnuV5MJxNIL/itO6BvGcFwzmr6lOu5weYZ3090TMUvVDF6OMk+YGp0qreXpmezuUIZLgVEMm2b+XtGpaljcMpFZflWCQvH/jN4+MpQWrHNG0bbE236ichpMM9Tg7mcUxoam0wB1GqOpNrZZu3G2zqkjOVg/ZIa0EWiaqKB71RMt6uBi9WefqjY7Wvi4MdjJPuOKRq90BgaqBPU+Rk7B4NR+qVaSW1CxU9D7BhoNfeBJY+nYieOdLuscQ/W2272/dQE9mxia4hUT8DIAtpJM90GDtbt888e9cvMFI50a3MdYppDFu9Nr1NVjXRYT+n1AZAs5g+zzX74Uli8M599/fuObWgJm2jUq7PrHdcmmW+Iz33ysLE//N42xn1vNrjUtKq2RlnogtEoFt0OrUNy/MUNRoMWW0eqBPzUtpA3bxsZN+GtFqccvaNdd1gJ8qLC9R5JmWKty5s5te0Gtu8DqarZvRIevgfqF7jeYhjDGmL/CQMnn5BTwOfD7w/X5y5Y3d5UO+KyIiwdw9qNsTIRkFLj0WfKVRWoUq6ng3H75flCkhgtd5uo2kjVBJxLVJVdK3kdfeUUJpBP3CRYmq+vd81Io13W2WWD1Jc6dALNjSlqKTVwbLNPTX/zNfeBjmjx1ZLVSH5ocO9r/M7qu00L6cP5ZR4TGDdfjnz9uQ0/XCsxbjRXD7B8q1TbxPYzn4GIR+81e4Yy5412O69nhgvr4/aD6eDqX9fccMH2oiNFZ6Cs4m+PG9wTmGIOjFYPfaZXVoHqwQCd2gl+n2tqlrITg5pPTol/WcOqA7830ARYiYGyqTNu9DLNnSXuEJtcl9VNawaAYeORtMR1DZr1uNqnTL9moH4JSvN+T2odD597bn/oCMsLA1BvIAyfqC/+qyrnDZ2znOUsZznLWc5ylrOc5SxnOctZznKWs5zlLGc5y1nOcpZPXM4bOr/icmrr/ER2q6aMJjiBMoWMuhmipcc2QljJiDAq6PhSCHhEm3pALBW/pPG6YNvSBb0/FvlMjrj1NtaS7WyzzNQ9KRNR5FTrslPv+oIcYaJQuTAKk8Wb2S54mhAlj9qkoAZOoGHmyP0RnZu/ttRn0Moz/HBAuxoGx5s/eE4BVgCPUO/2ULPbFxTRxxDHBamgUwrm/rmw+yLirnvkZ4vDgq8Z+GPtpFOxOwyhMV42Obbfj6x+4ll9o+Ac3f2CuEr4TkgLRZtkiP5c6LUgdsb2cRjK2ilxcHRS4erIi80DDuV2teCyNVjekDz7UOFQEsJ239Dta1JwE+CjNWol7R1hqJHGEC2aMPo2rxOSODjLEGp0yhTb507LqcNhYZ3R3Cn1NlHtEkFcLsrq6NeO/QvYv1LiMrH9qrRTQjqH/+ZEf3yCcoq2wT7nEVJwnqlXsnPckHKKvaGvgUzVp5aN0+iYmYHLCKI2IYMbryu5sLjm7ykoI4BBjLJvmMay3cP6rSBXXUH45SKfsWRbeaPwUA+Lb6eiwxIO0XmH713eER7p/OznPPPHsl2guvG4H+3pPrQwOP73f/X9kUYFpvnkUWHM+T1P6PkjRFeZU8r842D3XOheJuR5R3rfHqCFCt3K2Jczaos5mmn3eSIsHe07QyMlL/RdRVipITwzZV21nYqzHjxzAY8GqD541PuDNtTKdE4XERkc4oW4VLgYcvu4MSPPeUWdIcKGwXPLgrYOpAxLHZIjJkOYjpSbMb9Ymxt67zOq2VBHhUamerCMRd+ZjYm1oVnDytqje6Hw2Z6qjey/EJxXQucJP/00nZoDM1HG0pFOl+9GOzOnVM1ZOmbzFFFlWGdqsXXEeRtwITrC4NEkuCrhq4h3iYjD+URdB0Qy5Wl0qAq+jlTe+iNEjyaIvUMzbYjfuoPsIjcwUmGN9jojxWIz6XVY2rO3bzlAzR5QlR7r8hN+yoHM9SY3rt9D7WH3RUKdZaWEN0sQnV27zKPTeaNulH8yQzWWe53ozBGl3gjDRth9kZAXHfqhsUyg2bGHz65TFqVMc2b3wjJKmxtYfAuxbXjIDxGTo1n3DD6RbuuRKtMytuQAYVja1fVyQIdFrSRJxLXi7z1kJD4wZnTOs5xjxUTbUd5DQaMg+bm0TVStoUf7oUJVqOope2/YVZatk+e31NhkWe0ZEf3qIXglLpWooFcDz1/es6wH4mc2f3in3O1b7n52qjM+EckoSJJOv5e/YeZg5s+PbJdiIF2JigtKf+HpL8UoQls1fymZvlZVpK0Ci3qgD+a3A+y62lzeJMToiBm9K5nSlgioIUxdL1T3MlImMgi+FFbO9KhG0TFl2I0Z0s6yqgCam/x6ykQvdNxN83fm0J4/kjIf5DEtgy309pmSEKaCz+OcMqNFfOQTHMt8njn6/CCL1Ztu339Z8fAlhM8G3Idqojk8vkZZGx2/v8DuS0PML9/A8lvL0t2JI17kfmkT2uds2MDhnDS7npbM6yBGvSXZX6sxX71KpK1NLOUaLkzofBXGbJwRKR1AMu2L60vmlmXfxFUy7rlMB2RzVz4uMyWom2XO3lkx55I9EFZimZNrYVgJ3QsYvuhpLnriF0pTB+K+YfjZJ2qzD/rx0Nc+PO7EgHP5cwFJKVNrJ9KmJi4cw8YyKArV9ug/ekUqNZ8pf+FECdFR+WSMB4CrEs4nqsxyMARvlIuDs3X23o9+usRcNL23ObisFctYnut1XJr/176bdGzMMNHp3U621ew9xrXvvNlyTGpc0+3smDSjJXblnHmbzH/P7X+wvi5/l8OPs41mtj3WMCyFfl2x+wy6l8na5oh+aX6v+buPWW8C2x9Gho1n+RoWN0pqhS56wkrzmtqo4F0/rY8Osg/mNttj2ZMeYpN1uwJX2RxdbcmZk26kH3aD0Yy7YWqPVAkuKM2txWdiI8TGsuRKwfqwlJHqqdC6FZ/Nd0yxlaQMK8FXwuJ9RAaj+kuNrbMtC8ex/UzYfanEi8juh2qq4hS2Hvf68Vj5ZOQJX/NgrD0xNY3r8hxolSGiy8raZuMPWBaE3O9udrHMQkI7Le4kml+otWXn+CbiK3OW+77KzCeCZJ3XwVsbJ4xlY2H+WOgqUp2T68Okd+HCWFeW3xj1WWIaz8cZoeO4hMc2VY78Y5mNmQjtt56hX9s77LIPkan3R92cN8WMuuwgay1TBs/1elwblfNmc0TKlJ/7a8/+JfTPEn6bY1DF9Zeja5R5ZL7OVth9TwkboXkPizcQVjU94NpgVOSbiNs5pJ/oUksG8TwmoDmGJpkiL9X5X/GjGqW6txfbijEJuGCZeGP2Tc7WcVEtsz2aXpdyDYL9TIXaXiyzSL1lyCafs/FzX9s62+MrodpFmrveyhEAuJZhIcS1Z7ioePii4v4HMFwp938hWhmIvUPefZo2+1dVzjV0fpVFjpzIOZ/tjIf/0WdHnoqiNrllbn7Nyj9PFU2F4sqVdOspyOT3ZoS00pFmrSwApNDy5DRwkiBdNiQqJK82GUYhLBVXyUizNA/ulEnSDQL9wePndztqm0Ob+dhInXA0D66ZP6/vIH7TGq8xM+MxdzaPnM7j53h0i2MHYhY8kmi0JmWjIt021DNHc6qrYo7EU4tit3No5+Ai0F876nth9TOl2gndtWO4mAIMEmRc7MFk2EbvOAiCI6aadNfQvNjx1eYGgIum4+XiHi9KJZGkjoTQxYrbYcHr7YZv3l4ahUPnbcNmTPM2652iWIBo1i9u60fKmlFmATLfW6DXHGTFRUuxLcG12AipgbtfM3qt+rqzmhGAeMX7RBg8Q5zvBP4SiIz/HX1mMgYJmZxNcyhkimNm1hXXAyKjw+Q6R6IMRLVA/iCTY1LqOJGpt9bWdtI7CyhGwe8m+pVUeNmXjEHbamv3Cut8/0Irkox+hyPn7MCpPl5k/TyBodJER/NBfSfsv15RdZl/OswcueNzj2gnHi005/c4tQjEFki+h2E5UQulbY3Pm2QjjcSpZ5DJAR4Xcb0QLszLq3bC+htz8vpLq2NWnNYS/Dq1oVye1++mDbRho+giWX0OYaxzJd7q4CwXdsGur+jvWhQlJh1pQTQJoTeTrLljQnRWHs0nNAndXTvquyZGJ7i8f7WbaJ4KrURZFKUVY22m/fcH1i+2fPXshj56+lixqnt2oebrUPNJyjwAeDBWsu0dIwZml5GpHoV6GftVJdtlJ8xOQZwSC1VamByCGB2u6K5TQvRjoNd5q6fhXWIYKqq8eIw5KFRqG1UPjFSLmheq42aA2uZb0f1x00lLfb182NGC8ECUgwXWRwOyR9cYF5xk2tIbnzebZgtIN3uI2aJrHjQ9sON6YuE43ix/lgOlcQmhtc/jvsKVzWHNdm12/fF6LnteOXrlBnC9I6ytnlG1h4s/gO2+5mG3YfGFcRJdXW+5iWtS520xGc2fOp4bBaju3Iw6M4+bRUKqRFLoF9a/krC5PtrCu7rHaCLJdWukbNKpBRu9opLHTROp6sjuobVNXlFcZZOaiKIxBxd3jua90UGVIJLP1D1hPY3r9nsP/PD5e3794luSOh5iQ8g8IbfLlp8ODX/4cwyNP3VxMm0mODkY63JqcwcYN2lnoqlQXjlbdK8yJdUyIS7hXMIL1FVEBIboiXnzJqkQgzNKEMlxpmTzMsEhdURdnu8ztWq1A+3MXxiDJ4VKTzMNyN420X2XH7sELI7s5pye5RS15PjO3yVz+5qPL7Wlyjg/rldDYqJ4ekqOff+57s/sbAlqSrTgUGyxIMa9t7WAAk4PA7P5gc3vmoI5JYibamHYqG2i7WDzk4QLjv2LyupbVQaiAduwQ3lUn3O+DpK8Dosr00n1iiwVV0diXZGWjrB2Yw09v7c5uqynYmPvXgL5qSKv4exGoc5/NwnZe5tjZFaDtcy32Tb43t612lsNj+m5bT2ZPGy/UvSzji9e3tJHb5sVwFBF3OITpWU6rqFz7G/Dyc2N8XvJ/neyAac+16FdOsJCDjdIvW3cpsbWzzE4xNnGTp83awxsIaN+x+Bw2f+KGcSBCvQub+jL9MilrkYOLkoQuuemV0XfbfPGaiBNL3L4+yMA05FOH4MY53PAqHozKjqLIUybjqZf+fenhoXOrl3coBP+bXmGUR+zLx6WRocYW1svj76yO3zHg/fL71U+d4PZzbBJ9L2j2gvLN0a3OlwIYZ3nCG/9Tjx8pulhGeciv7c1XFxYPEWj1a6LbaYwu8ibQyHTqPVCtRMW7xWNBn6yeWmqn+MiaKbpTTnAW3RexCjeNfPXl5pkiNGINfcWB1APrk8j9W+qZBy/2x9B9+XA5sXWqH5h3GTcL2r68InqNhyO7X8TcZh/I2IgIrH4Q6lvBFh7Zb/Z9TLVpPJAVwaTjmNPK6OknnZbYOhyscm9h0FQ5+3vJGPtFo3Agyc8eFzvGC4j7VtvcbtsL91ecEwxpUcxrKea6dhuz3Ti2NZLNLemeS+k2tu6Xxnt5YENma2HyrrG/KL89Qw8cUC5diJOUADRw9poROPC9MnnmOFYxuHoHcY5Kd+30NRJwNbTWM3ai9+H7a5m/5lHc/wjNWrhsk5GHT5ur7JmN1CMgSO1SVYzKTm0TUSFuDRgmMvUm34vtDdkqsNsI5Cp5ECeN6S0XzWtjwvAbv4MkkyX/QDNfcL1CQmK6xPuroPaZzpOR2qt/MbdDxy7zyF8bkXCqkVABELrCb9s8bNfdjln6JzlLGc5y1nOcpaznOUsZznLWc5ylrOc5SxnOctZznKWs3zikn6Ondd03tD5pZQ5Gn/8+9QxGBp0/GxOBSIgsaBIHJIMxVF1MOTd9ELHoH5GqzLbmDXEkV03eqwAV0HaK4hPKBmp+lAZ0isKMpAR+YZAETWEgaQpKyBVTAi6CPU943b6nF7hSTRgeUZ3hLgp7z5H5OYN9ikjwf5ubibY4RxhYG03v8nR9cptZvedUyfN0X06/ynW1u1bd/jckhHQ5bljbvcRwaBokDHzRRRiqEkN9FeGFklFW8rOfrSCqqG1B/Z7N6NRKMguRZeRxaaj39W8uHzgZXPPLjaEyrOPNTf9ksZF/sLFGxyJzldc1HsWPtCFivfvMwR3ECvsLArBWZHeaJvKklEmMljGR2oUaqNGq28N2UsypKgVWoVqqyOFF6rcfdVY0fuFpd6Gi4isAimjVDU6RC0LZb22SuufJNp3Pk4LanROmziT4yy9efbceIwT6vtEvbKB1F8xUm+oywXoBSssr9PcIhFDHzk1eh/PSM1D7yxVXEC9jqixkuYb1rkYoc7GbUa9jHQfBSWUDBV+gOQ7ns4+hvRVHrXLqePHrEMH7Ts3PtOja546d4YGfHTMDJE4FjOePYfrbbw6DDXUfHBW7PDguMfz9wEqaSZuEJIYNUb3TIgLeYQIkgRhlfV6JyMt5pxOIi6seKXf21yS1hEW0eYQgdR76B3RO5rrPYt6wDvLcIvREbe16ZUK0iS0II6S0UIUqqSUaTVTfkipE65K6LftSBcVLyzDT50hqgpNTEFtPnwphLW9U2qV5rLn2XpHyBREMRlS9fvrW1av4P983Gy/eHFi/9Kkx8XmAIyZOpJ/FyYEv8w/15wxK6xfZ+Tmvqb7EsRndF+xadHmvj7bBc19qxlJmXym7mlsHk4qeGdUDyk4dOdHGgUXTHeGxuZYyWN7pCDJqMNiQxCoZlQgRT5qr+Wx+s2/my5y+NGIClabSwrqufw8yKBgOvbRMzyBOgYO6MdKlknJUopLy4iJ8Wj+PQanzvvd6eRLkAsh5+zGYWPUML6H+oNnv1ywuDKOsnoZSK0h8d2+Galfi39REPixNdRnWiRYRMiUuGwr3NZsfVxbZqvIlH2t1eTnuTDLzinoSTEdFpezddQyc6pFHH3N7v0iF2q3ArAuZ0LW91PbuQD3PzCdjpsEq8jVas9ny3u6VBGS56Zb0mQqwC+Wt1w+j/x/T42NX7CMvlv5oIzHmW0AHlGxHc/vxVVPtctUOkL1IPTXCVcbvZJzSj94huBtHo6O0HvEqWXmpZljnH8fsyF9Quts+II/oNkL6yljo1AsWcZR9hXmGTkyZdw+aody3lPtxGO//RjxPzZd0TfJ9EwyO2amYyUT7lEx5VMikx2cI/lHtHI6vFeqob435PV87WEvdPhupTh9+W5Eyeds3LiE7lrsb0znfCdElxH5i4SKwyejqBkzEfKaKi6NmlCiNVhaJmjNZotLpH2Fe/C4TogbozhOUUZkfVnDHVCvCdbHOXteq2xfqqlj0sJ8wPrGj2MjrnScc3xn1672RgOlDh6+XzGs7J3VQ1om6iby/mE5ZpIBNG1gc7n/jk77BUmZ87KcYsU4SbeWz51nrQGonxbtEqes47C0dooLQ1FrNFYDgOgwvc1rd3H5mJzJNdJcAs4rsZcxu7b4rHGZRpo1NzjGDDCnpMKMoaAJ6rI2n7fBkT4XXX2kwyfOmWfsCIf6U84ra4Tjcz+arTufQ/LfI5q/+Lludh3N2UAl4zvb1/Fd3PSs8zX5qWydicLZPogt7J8xZkv4zrLyUm2ZuOrMZ3KF4uyYdQNG218ycnCG/lcV/M4ycSTBsFZ7dm9MFDjoo1BtmfpVsXhOFMTl94wKIgzOnkHFbPuwsvVBczt10v65kIJQdVA/JJv7g0IF99+rCSthWBnjQH+daC76cZ1daHwBFouB9tUnqttZJp9QvzNeOp2UT6HQoYNWDlGLSfgh+2BNZqtozaY6gDxm1Bf6Q8xPq3Si6s3poqmynxqzn14ycqLpdtzEKVN+cDnjWqjuhLh0B1SJotB8mD1/sStMx4w/5zp3Sv/mNvC4XdTeVbJeH/hFOnON9HBaGbPtZj7xwdwxs++pZBSm6d3G2FrWf7+HcU01p3pjdo9yz/m753v5TkjB5uTumYy2s7p3Fh9dGf1Y6TK/nc2jM1q5VJNttn2elhHXRtK+Aq+4rae6t/4cLpU0gDQTJWL9YBSKJXs6FVaVaJl/RZdLhpcbbJ4p2TqLGx3Hdr9xpELDGRSJCdcFJCVUHbsfXDCsHaEVYmuxorCJ0DvUK2FXg4BvA+2z3YkBcJZ/a3LO0PkVlo/RCxxNtDr7YL65Y19mpzA78/V9QJJHnSfkQGGaOfsltb4EDZKbJlAti5I6IbXi22C0G8nZoiKB32ZDpbPFBJgDOpsIRy73E4viMhmPv596/5kzeTI1vNxLZ4YDJkdLD59jdBCLockLmXL9+e/lGv0144bDWG9gtiAeg711dvRCDuQsOEiTFZgW2MKYqn74fjIauPIsxuFqQaKwMqfzYINJgE1AqmRBUVchwZzHMX3Ugd57ZAN6XxNfOH66u+bV4o7GBe5DSx89u6HmbbuilsTS93iUxgVWTU+3qbjvPLL1aFC0tg0AGYzCQj2kJhPNJkitUVBQJ2Tv8Hss9VQh7C3QNQboSwCkdTx8Py8qd9aG1b0nRrEmf9YjVaJeBBbNwIv1A89W7/lfTwyfT0VU8iYOWD+kE4P91KZuCTp4ycFjwfWJ9TfQXXlSJcRlZrGrrZt9DiyMgeCyuHfY5p6aridntBC6iEZx4tU25O4d9YMt5oeLQ65co/NgpP5wmYbplPN8HPh9tKA7FSQ7sRCcb7w84tNO+RlKO82cr/GYskDNdGQH860YN6/buZE2aJxDil4PjBzKLtg9ho0FLy1gNrX1AQ/w/D3zvR45q+M9zOkLizyXOsYvRS1Ya9dwpMGoXubX9XsLIoDV24lLgeCgSjY4OmeLBKcMg8evlcpHlqLEpWOrQrxpcL2QOkdqk3G0147UJIbU4NpAs7DJSxWq5YDLNCJhv6B6yBs6+4rY6tgW40Law/33rT4JWOp68pAeal5zAcCXzz+wqAaumz2ftXd8cfnA/5NPT0YQQtnUmX0Os7m5jN0ZdVPZzDHHXTIdA1S7xOWPhYcvHMOlJ62yoXGKqy0IpMGRglFqqQPxJcqYAzw+UflI1aQDarauq0hDQ30r1PeTfQLGzY1S986FvIAqdoPp50kbfSzftYA8us7BYk+x+hG5DcdFlZ9YK/RoHjnedC1/95dqtGK9GP1Jnh/MV7EAid8fzo/9daYrrHSqxXW8WJ61x/x9ZHbvMle5HAxIFYS1UbjIvWcXl8gLpaoiIkovSrjwFvS/nyaosnGttZ2refOlWkdi76zeWd6A10Ye9U+qgCYvDEtdtALvSA52tknDKut1EppFoKkDdRW5vV/ido7mxqhs4sJl4ABjPRbfK/ffF/pneUNpMOrVm/sl/1JfEdXx/YsPBHVUmrhudrxq7mnXt6cHxy9a5Ojn7Hc9Gnejvucg+1xsfpjGwfJb27DtVfDVNKBUhd1DY1S2QTJNyxSQK76UNDHX0TIdT8nRO83neZo7QE2v1WWbVfw+N60PXaE6PqXbJ/z079L5eYB0tv8xtdHc31amOnRHdrEEhubB8/HaM7suaj5h8cWZUUyVIKjvJ4rBQhUZVrmmWzPTZ8Hm0nnNyoN+P2yE0Q+qLWAXFiA1hM3slChQ28OoU5IaAqQEjMfrJEHbaOCtIJDBEVUTjZanc2MdHNTmABWQBqIazVSVfTAJUxupA9dJ3sAV8x0KoKxNBhS4r/A7aO7s1eLO/I8yT/he8fuEKNx/UbF/YfOk31pAs3nnCfuV0ctchRF84FziavlpBodUpnqyBzIHT8FJmzXabHSk/ywH1g/Jaq8hIz1QXCXb0HM5sLvPtEpe0abc12i4Sm08gLYNFuupIyjEoaZ+73NA02zI6MPqtNbyD476dlo3lrXm4xd5/F4nQRoyO/TIRx9VYnZNrfL8cmotcGSfH/n2s/mjv7Tzqy24jtw3+Wd+N9fZGCy0TGEBcTX56GUd8NRG1YHkuRUwfazU1vF57hiv6fIzlKCvU1IUvEy0SvP2sk0mq3NDZf5ZzJSH9dYZDWTAxpKf3nFaA9gEWN8rEhXfJZwX0iCjXvYXHldDCXSL5o2tznzJaptIrSN5R1yUiXmqk3z//Zrt5zIC/tTbHDW8bxkAf9WPVIp1FVm3PRf1B/43PnE5DoSeWJuelDLuHUhWgOohogKhdSNlZ8z66wYDOYHFY9IslmE0Y9kvr9MYrxhvJYp/7436NBkVq2YKXBzQJFIS6rcV1Q6q3QltnuvRsY4xG++n1tf5dz36e7T5xWZnILY8dY3Zd4/0vuh21uH+WaR6cOaLM/ko5UFLPd4xBlnoK+tpjTL2T3qsywcbwvPPc6xOG8UFGTfmYstU1yaXBVBREg6i4jzjs45tmmNapW6hVoqvlPp6T3/XQu8y6KP47RhINtqG7QBIEuqt1VakFnyfN3OCGoDCC92lIHmzp8wn1U6pHxL1bSDVgt/7Sa9zvEBFSIuGhz9/wfaV2Zxqb6CMagt6Y7R9w1U0qrja/MnL+tPeqP2VE02QvoO+Ur/j+09c/uxu6JzlLGc5y1nOcpaznOUsZznLWc5ylrOc5SxnOctZznKWXw1Jc7Tkx4755ZU/sxs6TyKHTiH+YIacmw4QzcXwRDOyNdnuc+PGFD9Ro8sZ0/Tz6SWNNCwNVZKajNpvEs0ikKLDV2ks0qzbCtfn4oOakdaNkCodCykXVKLrJ8TQk+iA4+9OyVNIg/m5R8ifgrwtKIL5/cYCbbPvcRNyr2THkGD/mRJfDmgU/L3Hb50Vjc9UJoXOxPUTOnK4gP5a4SgTQ8IhkmFsmxkaefwuTs+dGksBrW9h+U4JC2H/0hB4yRt6l0ZpVwNNHdi2DeHbhVFvFYomBQlC/+MNPsHrHz/j5sWS3/7iZ1zWe37r4ms6rbkdFjzEhtr3OFEeYs02NlSSWDU9D7LK7yKWjZWRzNW9UbwENYT/iH4kI5Fkeic3KOsbHRGP+2fOqNUWQmwcw0ZpboVhbai0uLB3TOvIYjXw4uKBVd1z3ewJ6tgMnz7C4DhL59T3oxwhge0ca2ffJzQq+swfIMdLMVCJ0zhTmZAumhH4yRvVVVrHMY1fE0hVkJtC/aC4qKRG8LtMj5fRJpLkQE+O9ffnQfE/onQ4+u7Rx+UeWcePM3VKO5W5bUT5ZtqiAxTwTK/2nyXcq45w08CdMxRtPs/3E/o1rBkR/GgpsJjbfUT4Tdc9mbFUXmqGZCwZB24wtGz7Xomt0F3Z/Yz1SeDSsu9C7aneV4CMadvlWu07Z7Q7EdpvPWHtiJcRKsVdDKTgELEC54sMLVMRvDeEaIyCDFY0UoeMKB1A94aqChtHl4R6acUUU5IMhrNsBjdYW7Xv7JldhL4gohX6C6G/hLSKuK03VGfODht2Ne2mY133/GjzlmfVlm1q2FSfJtr3u+zViHbPtEzzMTlm55TPc8FVN5idjgvynDrBZFPuD42CBKNZweWMOq/4JtG0NvevmoEuVMRktHkhOsKHlvbG0XyA9tYoA1Il+EWmiGmK3yDW52Lj6OfKyDnx7k9m7J243tg2xcctOs7s+IzOVSZbDdOxRUpWbf9MSS96XJWI+wq9rageMtWkqBVY7QztG9bQPbfzw3qaUCVTTBzMcSfQx6cyhMZ5N2c7NbfQB6G7nopY7+4WNKuetgm0bUBe7hneLuw6syw+ABkss9LfVZa5VSd8k5BXO8KqMWRgP8s0KBkFlSFKqwQ++yiV5ozA2igRh40jALoZULEMPjAUaUqC64wCxnewfGPtUu3VCsyL5LFkty2ZUCFZ8d9vuwuW646gjq/WNzQu8KJ+AGDju8eD4ROQMfvuO9ZTj1DtB19ieu7spxsS1d5Z5mSeg0OmV4uDR7MPVYoouzpZtl3O5InRsVz0XC737IYah3K/by1Lf+up78XQ3Gq+Ygx5/HnLKChUi6RD+zfK8e9/XL0/Pn6uw0w6Ps/UOUAXy+yZNB9adGmWfV+oeuPS0LZuAH/PqKcjBeCg9FdW0Lp7Zp/3VxjzgLc1y8fe8bjv55l3MK0tqj20N0o3CPvns3clZ1V6sXvems0uGavlfd29n25yV5EuQBaBZjngVj37bWOUmgmb83YerSHmNnNDRvIGxgLQZS1RP1hR6dQKaRknf1wFl6YMaxdh9dr8PTdAbMWKN/fKsHR5jZczIlKmHIpGYR2WGB3rKuDrSEyO9BRt2S9aMnL+WI6pjU8zRcw+nGW6u8H0U50f0eSp0ZFGyL7L2Z45w0McIEq9MArpuo5cLPcMybOoAnf7FhS6Dy31B099z4jkR0qh64TWlgEgvRsLdT8lpzJx5t+dzKqdtcdcHx5Ni3PbWP4Vv/uEvTygHy/HOFsvD89ipuz21AHq7eH1LXtY6a6E4WLmm2f6okILdfBufMdcrtM6oTxTc2t6HWuhe57Hfc6aHFknooAX5N4Z9D7r6Gg/sv/kHxxxlZA2gleGCxjuKlxB+edMat/JmJkQ6kxLL2S9VAg2jur7AUSIC0efs8UkZpB+blsX7Tz6xOYnMc8ViWFToV7Yv6wZVpY1UDI2CzOA23rSOlLVkcvlHhFoqkAfKtzPzWP2pyxHftjxfP2kPFp7SvbZFUmK6y0FtGSJMxu7mpdIqTIqr7SYsdrkseKayGLZk5KjriJ98EhShruG9a3ZDwXUC6FzOYMygcf0epj6d/5ueqSjJ+nWjl5v1LeDtcjsM5jW1fPrz+z4QSbssd4fP5/atKlqWe9yNRB8jUTLTCrZMZIpfKvtxD4TVhMzhsUv8hx6/K4n5FT8YMwiisYQU9/DsILu5bQGR0HqBHUieo/c+oP7Fb12OzfewD14YqW0ix652sMVdA8N7HyudZF9DZ3eJe3NJ/cdU1ZOjiM2txGtBHWefc7SKzFGa3cbl9Uu0b7ZorUHEfqrhrT0qAhx5ekvHLGBequZNYex1EZYK9okqnWgasIf29U7y5+AaOI7M3DOGTq/IvKxheL8+3nwQyZeTpsEbAYzTuQpTTy2jA5Uam0Cj40tkFJraZ/aJvwy4HwidJ7UedK2zRs3CotEWiZCciPdkAvg42R8JEF9N03+ZcF/sKlS/j61eH7CED9y0I4Nsj9xbJoMTDn3eHPnkQOgkxGVBDo4S/feu/Fcv8vOUz8tPM2hNwNmdC/mqB1sIJVHj1NbjRtIs4DQPEBd3Zvxb26V+j7hO2FYObhSo0wZHHSeoalYtANhW+M6Nz1/TsmUqOZsJ6F+VxF2a35v8ZzffPENtYv8qHnDTbPidX/JzbCiSxVvuzU33YK7vmW7b6x+TrLrlQ27uFTCyt4xNckcEwHd+smBuAo8VJ7hnae+FdobW/A+fOl4+J7VyaluvW0oftaxf+5oNj1fXN3x5eqOTb3nut5RS8SJ0qWKb7sN77oV33YbPlmZjb0nObrLcUcyOW5Zr1FIRrxY+M7Vgea2n/Plj1QFJQXcY06nU7RRZO9wvaPamg7HpeYNXRg2YhQErnBI52t6ob7jYPPi0bg+djg/psunAkEwBT4+1lZ69Hue18rfI72ZYovoEhQquu3MmYx7j9vbhqIEo/lz/eFCJzX2PHGhY6DMArMcOMTl/U9tPpcNpVEfKHov46Ky2itVp1a3ZsX4TPTOgrgPfky/Hynkiszsv9EhCV3lScuINsJy0+W6DYkheR76hpSEbqgYurzAHGyzoVBRqbcUcLC20mQ1NpxXYqgsoCDK8GVPbGuaW2HxDvyg7J/bYjhsEtW9s0XPJuKXgdQkVpd7fnB9wxfLO67rLV+0H1i5nuf+nn+5/5K7sOCuu/7IIPhE5KiWzsHnTOP8YBNnJmO9lJBtdiw1WBy6SCM1i0SZ1CMHfqUyCi5fRypvA+D9/YpuV6MPFdK7ydY627wRNXtUqBNdbWNQnQUyRhqCGW3Jqecucjzex2c8FSR66m9mi0lO3Lfo8vG5x9eZLTjZe6J3VvtlGQni8A+2SK52ZErQUvMgWZ0JB0Qb6ycDYEdz2eFmjky6fkS96AYDY4Sl0L8YaK/2dPcN/bsFnbc6UsO7BdWtn4JhTHNpodA0+ghbRLo24Dw0lx39tiZ5j/Q2TnymXCr9WH4vNUV89gXLBleZk5xThs7TJwNitO3A9rOKLjUsvoXV64jfJ/bPK4ZVpiDZiQV5U+aRvx747OUt37u4ZVX1fNbe8aze8rK6Y5tavh023IYFt90nGhya17/iqI8/YpPmQdNRBzKQxQ1q9DgAnaff1Vxc7gjBG31xk9DK6LB8lWjrgHOJZR1oqsCur6l84na3YLdv6G8bZLAd/9LH/ZXYmK7MZkjFCLapH2Z6Pbe7xz8P2oHTtvvE+uTkBq7j0dwwjwEVW3xwaZ0dl5919F/z92XTdqyhEc1mS9KJb74xOrS4yPXnXKZJUywQKzlIlA3yd8Upkzfgxug/lPdSW181H2BYC/3LhLvqSe9aCwAvooFktm4KDM3mOdeL0fKooBGSVDYfrAbqOrB6fk8/VGx3Ta5r5yHKWN+jANdsjOX2EBBv+h2XkJYJ10ZUBU25lssmsv0BNO8d7Q1c/DhQbSPDRUVsHLEWfGVAPc20U6m2TbHhRcCtB8RB1QRan1CFfX7GN/Hi4435C5LvAk4e+NpPSSnw5DKYJemh/1fGUZ1G8JO6PL86RZzico2c5aK3mio+cb9v6fuKm30FD95AU5WSKqMhq3aMdL9GbZ1p+gTaNxO48tR7waE9Odk25Xjh0HfPkmb6N9/gGX+fuT/jPHh8/Fxv5s+UsM3bKKYnwahQU22U3Hn/fwImOhuTw3oal7aTXfT66J3m6+lT/kyho8zzyjSnKNVeCSuHPjMaPenMf0hJoE7WMDr5cGNpVGWsm6XO4gaxdkiTqNqAW/UMXcXQebtm72DPWI9upEiNmWYxqgV6vRDWNWHp6K4dYZX99YGRGnv3CoaNNwDPnbL5/XtQZf/Ziu7aM6xkBJ2m2v4Nlwme9awuOhbNwPPlllU10LjINtS83a3Z9TX32+vTA+hTkTnd2lNz+kfWpPZ9NuBqVXVgsp1pVs8xVnl9VNu6WRub4KVO+DYaHbVPdF1N7D37vTcgm1OksY29uCQDdq3ucUoCW9P/xWuZbPYsrjVfx47vOXunp8b4+O5zHddJX+a+wFPgqzLGgZECUebfHfsDOT5W7YT4M9uojkub16qtrZ8LJWqhKRup17zZ7EIvOT5b+fs7bLbVE2csa1BqvEqE5l5BhD4Y7bysAu5tttkXA9I5ow6ezXVl7hptdhJ8hOAquqahXfQ0eRO0j56bby7yfOGmOrJZT5MXaG29T651mSohLB2pFsLCxmCpVayV1Z7dX1cs3nvaD4mLN/foEOlfbeieV/RrR/NgNXOGjfnmqTEQZf8soRcBv4i0i551ZZS9+64mBsdNXHy8Mc/yJyvnGjpnOctZznKWs5zlLGc5y1nOcpaznOUsZznLWc5ylrOc5SyfuJwp1/6MyHeghRSddr+PkTRq6BX7XXFDwoWEGwQvlg8cFoK2hlwr2TmpyamiZXc9CCk4Uudh6/G9m9CdWyvKnNaR+HKAB2+oUmznu76zTJKCGkjuEF3wVNp3ef6TiMETY39+jZPI3Tka5+jzlJGScyRySZE+voeL0L4V6ruKVEH3wrJPwnMIN35MA1WvlsUwppFidGSloKmbEEKFyk1O/CufuyPkRNUZkkE97J95XFT8APWdpWfGhUIU4ruGD29a/CAT/ZQ7fCcoRV3tfjfv1vxe9YKkjn+u3yOoYx8rHoaG2/2CIXhidMToGB5qGBzpMiB1It00RvVEQUZqLgiLvcTFYJljg0c+VLTfOkNTRnj773i6Fwl5sWNzsed6tePrd1cQHN97+YHaRb5c3/KXNt/w6+03XPo9+1Rzlxb0WpFUeFnfc7dccPMRUN0vUk6h3eyLx599F72RejH0OIrrIq6fqK7qB0OaI1gBwJypUn6SkR4ygC4wCp9cULs8j98KUht14rAyOp6Y5wrfg7uf3qXozEF2zDGq5+j3J9vi1LsfIX1OIYFH1G5Gw5dCppKphbSaPVPRr9m1XYDFa0HfNew/S+g6kq6VcFuNGXdam9JWHzyuF3wvhsZKEwx7Tnt2Umafj+/jpp9l3gkLox70nVFiuQ7cXkgLu7+8qyYKy9ImM2qLeVsVhJMEkM6hoWb3UEGTwCsf0mb2QAIPHt9JztJKVA+O5oOQvMwylOzYGBxVlViueiof2fc17Y8by1hMsP3SUKXxypC8y1XP9v3KkOjLwMXljraKfHV5w1+5/Am/vfwjFmJ8IYN6Io4ftW94Xj3wLn6iig2MWVbKlKVTxMnBeD+gWpsjBGdoOKcgfZoKU++FFD1pMFpEyOdlypYRbadC6DPyevDEzsPe43YO15keQxnPE8ItNrm4eJ8pXXSyz09RGh4g9+a6eQK1e3D8rBsPEL4n7nOAGizHZSrXYrMeteP8ORO07wT9UFnmwrOEbhJpMZBaczM7yXaqSrh3jWUfc/Sc/uj6R/eSJBw4NPn7VJGLkNrncQnd9ex5B8N91stAH5zRqN1UZHatMRtynr2LTm0AQBCSeFJXwdbmJqN+NXq0Mk+UDIdS6Fmd0U1U9zbGwnL2ekkIg8dVyTJ19hX7XcXyD2sWb6G5U3bPPfsXnv7a6Om0TdTvKuJSiZuA1Mr6cs8PLj/wWxdfs/J9zqhN1BJZuY6Nr3GihO7I4fpE5akslMc2y4qml+9UAC8jit93Cd9larzes+9rvE+4hZLUJhPnlKYO1FVkCJ5tX7MbKkTgw8OS/r6BrafaG5Wu6yfqzVRhlGTrPIZytumc5ne02+NLMI1LOaFXx/b8CRt30EZpbI7Jjh/Rloxug5++L1mz82cbH61koyajZvF7MXrjrKP1gyFcU20IYK0SrpOR8vgg21CwbDwtrz312fgOxy8njIXfC2WbqFHD7J+7ac4UaBcDu7rG7Txy58Y1wrjuSNNPUXtu9Wr+CkAyG7tLDbe7GjoHwfy1audG3S7zQ1hmvX4w3S5zRlwUhLO9kDhFFsGyQl43LF4Lzb1lImw/qwir2iiOV/aO7TtvReeXE61V2CT8xcDzq3uayvQ3qbDta3qfiNETh1OT+icgT6DOYe6bnj5gPjZUxCiRckat6yOS6kk3ynqvUvPPukyZV8xEskzn3b6hqiIPDy1xV+XjhOrBEN2pVvPHBLS3DK64sAz6+s5R3R/q24FdPuVjcNpHfSpTfn7OQabd3JdnttbI95Y00QtJZKRXSp7RD5/fs6y9F69B1BkN6Mrs5nAx2a2STUI+fqRjnHVQmscaGFWXeZbOQV+WU3PmhcvUpmEJuxfWD+PxTURF0a3H7wV5qKZ5bW6bmfQzVTbXqM83jsJw30zsCAEkCtV+YuHwe2hvE75LhJVjWDsWbzoQQYJnuPD0l84yZGu77dDk+V9tfrz4o0T7bsB3kd33Vtx/UdE9N0r42CrteyGsLDNH24S/6vns2R0/vLjhot7TOKN6CMnjZMk+2nq7H8LjAfQJiPVxnuc+Fgd9Yg06+qTZN54YUnSM2fjeqGRjXbJMFHyeX4Up1oOzpJA2ErraShTsPJJ9ekmZmn6psLfxlhZmr5Y/c9T3OSMuZ1yN8ak5A9MJNqZTFIfjlJAwavUTrz+uYZ7w11PNqNcq9u6oZd3IYM860q8dZaaj4CP4t9bIw2W2L5WONjmsbF7bfl/Nrs6yTw/88UxjJ8nm0APX5Cg7aGRF8JOPUbIYwxp2OmMT6gW5tP6stgLbJsfuch/k9i4+uY+QarPZI/OQQoieEDzDvkIHy8aq7i3e5Xc2fiz2pYSVMFS2Hmz7ZHNkyPTHC6MyLfqsLWgNzQ2sv0nUdwE3KHe/+ZztS093nX2+xjJuXSyZydYO4SIhzztePru3zO+sIA99Q0yC8w7dfUxpzvInLmluuD92zC+v/Nnd0DlybqbPP+5cjoeNgZRMu6bTuSrGlT5sLBVvpNnIk57vGQ2MuhwUjYIGGQPz6pW0VNzOUd9CcycMnS3iZZhqTVQP5Xp2nZKeWoI9c2MyBiM5dMzmfPUH7+mys5Yd1bLAKwZv3BSJh+ce15lAYf/cNrBkEJoPmZpkzr17ZBhdplVyA8i3jv0XSv18T+8bqpvKHLfaqMaqB5dT4qf7F4egLMCOU8/HPpXpEcjGY/y9BHgiuKTUW0sHl2Rp16nVcdE3D3qJUzQHC6zd5l56vuZNzTdyybavcW56qK6v2N0sIRhtgHgdDenyas9f/uw1P7m74rV/zvr3PNXeaD+GjbPnyc/uOqG9gc1PlPo+0l057r8S3L/7ge9vtjhRvCT+0tVrWh94fW/BZu8SCz+w8XvWrqPPwd5WBq78lmu35dLtWbmB+yrx9/i0ZR7IfDS+j6WQz8qsv2CkBIIcYKjM8PvBsouLnrjB7jHytuY6Ji4IWuh38liJjdWUaG9sMVBqK5Qghcsp0Ycv85GF3rEjlhd2YzB61h4n9ZrpetO4ZaJemTnl42ZODbsfBMQrcu9ZvJkCH2UxCJMeFhonN4BGo63YN4mLLx4YLjz7N1YnioXxT/NhVq+oMo758TGPnNiDfi7vcdR288W/C5OupxraD6bfkhxhDeQaFnPKljFAdeQTlO9KH/hdXmQ0IFvLQdcKqgebbOJCia1t7roBwrPI4uWOblfT64LmBtoP9nzdM0c31GZLvIJPaO+p31W8+JdWU2P3Stj/xT0XVzsqn/CS+N7FLX/UXnF7vyTlui7jIAaSOu50iSfhJHHpdvzF+jUXLvBA4r/m05ODgMa4GJTD7+c2/ecIFJWf800VSUbFALlvK4UAJIeSOSCqBAr9fYMGscVjFNLSBn9zl2kSxfTbBavTlBrGukdzm3qwuIOD8TtuMDAbg+Xfke6X2l3MNi2PN4EPQBTHQSKd2qW7yjSRg1BtZVyczTd+xoWcHj5nc+PoFon18z16CQ/vVpmuRvF1QhOTzR4dEjmwvwfPV57rmBdNpsXxCNzIEpcGdqkfIL2v2OtqrH9QFsEWWMrXLHb8RNu4ADx40ooZeGJq0+re7EHK9XNcZ4Gibgn9pdVFW/5LZfHeFtUPvWMXK4bBAk4KaBSaG+Hy95T1z3pSJTx8UfH+31F4tUe84oCrix3vlhu4rce2UYV9rLgNS27DkspFNr5jUQ9c+D2f1x+4dltwO/4ffKIy19ccKDppr+VQ5+dhhgIoEATiBMTSWo12MtqGrarRWIZ9hThlqP1Iu5ZUGAajaCOKUW96CNcB9+CpHoT61nSt2ll/q2OkMik+IzO9K8GXR7a66I1Oc88ceHJAUeQPfewRwOUPfd2DQEsOkMx9huGSsd7mSKFWQAqz248qqJjpSBYo7p4r6flAH2QMkk50wJKDy0ISRQ8c7Fn3zildZn1Z7qcuU2fNTi9zZqos+Nzc2b/0rWen65GKumwezcFyj8Bmsz6QBLr3aB1xdcRV0Uy8Oup3Hr/P1/QTxVr/TInPAuHBw9eO+g7ae6M93T0I3b4iXOSoYIJ6J3z2u5H6LqIOumcV7/+yo3ue67J4xa0HhosF9e2sNkvutxSE/VCz7RsAKh9ZNQOrZqD2kfSw5w8eN/MvXI5t9oEc0Sw+kjwIR4CcSrZr1pGpsmD5cJ1IjdX7lJ3R2IL1e6o167wgtW2YD3mSKONCFxHthOpW8DshrOx8FyZfvrkRA/sUut/5M5Z3mCnOuAZVDu3q0TxQgECSh4obKc7s8xLULJ+n+SZGYowhqLdNg/R8gL2nfueNfj1O88a4HsjPPZ9vUmXvFimbknkTt7djw0qphtxe9exdy+Vm/hNHX8+b6xQopLRpWTM190q1tzn8flFbu2Qw3KM2nMcwZv1R+l96gcrqqujgRl/Ld7B4Yxur47Pla/Vrx/45NHcL2vcD1V1P/S7i9yvks5phLbheRyBve5u4+D9ucW8+wHrJ7teu+favVOw+T2ij4BR/MdDrguP6vqpCnzxvuzVOlEoSF/Weq3rHVb3DXSb6Zc//h09Xfq7NnJk8mhNyO44bFFg9rGEldM/KZrcB7sSBf/AgOm3c1WpL98ERBofUFmcx+k0F52jfCdV7q3+sfqJdq2+FKlOjUnSp6PBRDZ0yZssacK7yB3pV3rtsCsG4uVzWiqUWtMWLGJdm803ZMqZjC82fv8M55eH9kvrr5tAX18kulecYARx+0q9UK6zA3UmmIROrXyky+gCpmvkPxwrsMqiSaV4bN2zhUd2hEutCDDgpwcAP7Q1IcnRpgY/2sHP9Hdv/aJ6Yjx0XId3VxCtlsRhG8LMkoX5g7NMx9peMLrJ7YXX+EMfifaL9EFi+jnQvGrorZ7XsQrH1ysv/91vk5hZ9fsnDr1/z5t/1BlZrbAC4zcB23VLfugOgemn/Pnq6UCGiND7ycvVAs4ksfED2W/4VZ/lTkzPl2q++nEIJzQ3OU8bqIPBS/khqGzy5oJ4vfOW3MqJcwCaLYQ1xYZs9fk9eDJlz6vZCtZMxSFgmSdeDiqC1EpaK92aMYDa5zjdnCnKmBHLK7rebFoHlecYA2XzRk4zDetx1n42WYWNG0/VCfW8TZVwnSLD6I3/wHHFhGwyhMdTu/kWi/YMGJ7bL7buMbp07nEzv4vew/CNPer1mmZGv5mRCwI1O0phtc6LPRiNcDN6cE3QMKk33LAYXbHFarh8WYkXHS7bNbDxIuY9ORu8A6Zu9SeMVFdi33L9tUa9sfnjLoh6oFxGuYXezxN9Wlt2RHZdlO/BXr/6Qv7B5zb++fMXvxl/n5f8sLN7D7qWw/dKQAa63AFzzwRzWD3/Os38F4Yd7/vLz9ziUd/sVD7Hhd19/RRcqQnQ8vzIO3++1H/iqfsdX9XsGdXiUC9ezkEREWIhyIRWp/nQ5QH+eheTB5s3suxH87acFhOTjmptItbPCnWB1b5Iv3tNUL0vn6FcFSYYAqbYW6IvtVCsHTB+7zxgDsu17JoQs+RrMfi9jt+i6m5zBMehb5oDZOBQBohXrtmD10TyBObtAritiAaCwSax+4sZ6Qamx4ySBLCJ6qewaz+Kn3haGCxgulOoh184oG1qzoJEbYPHTiu3tFTho9tYmYS1oa8p1sJl03L8zZ9Ie+Pigx+fBTCcriLkNXK7XFZb23u6ofecbX/PA8YgKhykDUMA9CDxYMKd7ZbVCUufxvQUH1MmY3UStfHF1C1fw9mLN7Zs17Tc1z/+F0t7Aw064/3OO+rOdIXHfNSze2EZOdw37Hwx89cV7ahe57RZ0oeJfvnnFMHg0OVarjmfrLeu65/PFLT9o3vFF9YFePQsZeOF3XDtlr8qFczyvVsDr0433Kcg80DP/LMuov4/0PvdXLliuWupiKZufJBbvhNBOmwwjUs8JycPucwjP1KaN4NEgLL/2U6AvQGo8qc622tl80F8Yr3KqbWHafiuHgaF59CP/PLAtWbfL5wdBYT3UKxfzsPWQ2tn11exl2cx0fdbrlZ24/MaQf2XOia1tRA9LhUUkPlfaP7QNhLi04JnLRYkPNkGyuAHan1Xsby/ROgeDgLgSolOcywvM8fnksM/m/sh8kTq22fG8PR1XENVunxfvjdWKk/VA6r0BcLz5UocbOOa/ze8tav2qYtzdrq/G+gzxle3Ax/sKv3e4DxbgL9nSZcEengeiV+63De074fn/vmPx1nP75xru/pw3BP7WsXgD62+UzY933P3akt0r4fbXE1e/dkNbRe52LcPgufmwgr1Hl5FqPeCrxNVqz2eLe14090R1rHzHq+qOz6sPDOpZuIG167jwu8ed9SnK8ebOR2psHG7kltosmgEUyvqnSn3vGVbLR9mnjYP9KyVeD2gTiYO3APCuwt95tFJcl+uceU9aJFID/TMLem6/p1a3cRAW38ohEKMEgGb3ewQqKqjgfHxBrjMbfyo2BgsAyuaRQ789+mms+t5Q9mGprL6ewEZQbF32nRulv8KeO+t+qpmQsUf6J9j1m/dC3DWk2kAplvHCCCiytYKezgSczVsHc/apjs1OTGmbEljG2dopNTZPDVcJVhFurb5cqV05+ffWiGV9Mff9zQ6IzRVDS1c3qFdefO8DITpumzXVNw2Ltzlbf4bgbq/26KXwsFjQvKlYvIXn/7/I8o1y94Oa+19z9NcRv3M072HxpmP/qmV/7bj/obD/4YBrAxqsRk+6bWi2Mmb6jHWIVpHlamDd9gzJ4UVZ1Lbj41DaKrBePZxqwU9Cfq6NnPmYmA8GPzs2YVk6KpCU+kFZfSNUWzet3QpgMdvJ/lrocZZxo4rfWgZtXCjVg8PvAPGUcgZlzJqOG/CGJtG8r8a6E/Nn1dk5c90eN2w48hX9Y9+9ZKSIy5vDpZZFo8RFZgToTEf7ZwldRkjC8ifV+MxxocTLgIjCMjC8VMKFo/3Wjb5MtWWq95mmZxgBSVggtKyv3TDzpbyMPvOBXst0jakR7It5KMEucjgM5hkQsZ3+lfq3isUNUlXmRR1R/Iq1V6kpMl4/2eejL64OHZzZbAfuyy2aHPttRWxrVj8TFu8V36uBvNT6fv+58u3Ss/rGs3pdc/E//SHL97f4/jNufmNhmzoBFu8Ty9c97t0d/a9/zvbLhpvfcOx+dKjb8bamSkJcJXQTkTqyWAxctHs2VUdQhxPlotpzWe3ZxQYnidYFNssbPknRGXNNkWP9nR/+XfOAs2viDABV7ZXqPtd2qmSMrZj9EuIys97kLB3zR4XwLCCdw2/L2Ndx07O/trWsLmzQiLrRpiaf4z7z552vv+frQXeo26MvHijl2cb6W8VOlQ2PUrOpu2aMqfmdbU6H54H622oWezLf1SXHZrHDPVe2y0D6o+UIniA/xxgvmM9BCjJYPEHv3LixO9YnanI2a4kV5BOnvOfDvpOZvh/7/TOMVX54e56w1LyxaY2mdc4CXEXcvYecKTsCMjjyk2b3GzP0k+DUk/oFD7UtdNpXW/ZR6Pc1vvjhycZS8W3Cy8DwHIZNxeKNZ/XG8fx/2dK8vqf5/iV3XzWEZc7iuVVkCOz+yg94+F7N7Y+E/kd7fBMJXWV6va2o9wWkazW/EGATWKx6Nm1PTI7KRy6aLtfIClxUHZe84yx/ipJmjvBHj/nllT/zGzpnOctZznKWs5zlLGc5y1nOcpaznOUsZznLWc5ylrOc5Zdczhk6v9pynJ1zKvV7pHR4AiWosx1xvENrQ/xKsAwddeCdoYpG1E4En2mbnGDc/y4jZ/dWM0JCRuy0hqYzGhhYfTNHIRrCf6QDKjQPBT0QLcNG1DhICxVaqiY6pFQbmi58NoyZLqrYDvjeUA4FVSCxcIWr1W2hoImEcBXwq0DqjW92zLbJ6Ie4TLBMuEXAV4nulTcqgg/+gMKtoBTnNDgFSef30++ooRpcJ2OK6nHdoGOkJBMAoPw5prUfUDAc0b6U64aFWDp6m9ECncwym2R830cIlQPU9azOQyoZVsL9jy+5qwz5++WPvuX5ZstPfvaM+o9apIP+Wvlwu+L/9e2vswvGh//9v/ian6bPaG6Mls/vhbCB9Z+75e7Zkv5FTXft6F5a9tRy1fOvX79kuejZ7RvjHQ0O10Q+f3nLV+v3XFZ7frR4w7V/wGP0TWsJXDi4cg2DJmpxOBz3+onuZos8ieg9QMoe18qaI3JyGrgm69SUc/urfSQqSBTUC3EwKrCS8TbW0zpCrvnOxpGLUzZa4WsFq9cEjNkBrtAmnxhPc2ojdKJ2E50h1tTQS93LROEZLlJqhZTfS+2bsMqowDZzGAchtsLwasAvA/29pe6kSkmtktaGEF8sBpwoQ/Ds/NJ4yZtk6JvSrkc0TZLpIlCo76f5D0CCQ/2EukxV6bCjThwbZLz01LcHHctjyeekjIYeNnbZgtQ8yI46ca0RuXiMVmRCh5a//YMDp4SrSOqF6t701YWcin7v+cNvn+G9oXv8MpB+o+etW1vtja3x9Parhs++vOFbYOta3N4RLiOrZzve3G5YL3p2XU23r40f3inrZzs+u7jj5WLLRb3n++0NrQz0eVJrJFKLshKPI+IQOv00Obthsg3HfXMq09b+fvy9/a4kyahTcfg+oZnwOmXaJstktROlznzegzP67kGo74Tla9i/yPSne9BtplDN9xwp0DQjZKPgM53O/DWKHzna8PzllCE4vVJcMNaWOxjrUfD7TBWoZGSjjW2jJ7WDXTAKk/5FNHrDzjFsqlH/1M3QZuuAX0ScT/TPvM1Ne5lqdUjuk2O0NaYH1VYO50RxaNcc2uYTenZAjzQTLd+NzsH0zPP5dsxmqDAufcdEjTu/98Hvs+uV95v3w0jfkO3+hxr1lqXQv0i4aOOnvVGjhPD2/v6uIq4j+1fKcCG4uMD3UD8kFm8ce3X0z6JlfTkhtEvuvxL654nm8y33DwvCYmAYPGFfwa6CILRfbFm2Pd4pl+2epMJ9nsBqicTcGD435l5rujFt69OSp2iXiv/9MVqmA91XzehtG6MuQnNrqelukCmLdUSeG4IVIA0OokPuPe2d0Wj1l4LvDLmOGN+6+cxmByVZjcsxy3yOKp3Z7uPxPM82m/8+XMD+yzCeVFDobuupP+S6miGjf71lcRQKJIlms7WC/iqhi0j4UI/0LEUfwgrS0miqEOiv/PjsvsvDfuZHzN+p0D/JDqszlu2k1Z+TqT/U/KI5PeNBht1H5CC72s1o82bZGlbrxDIttE34NhD91LGSb3icTVvmdfMtDIcsDsuoLgsEJ7x7axTEly8e+JAEF2qW32QarsbqaHbfLqFJSJUIF4mHlTVwvTO6lvpWSN4TriPDpWf3+YKHLxy7V9B9GdAopDxn0DmqO1trDRs1JH/OUvYry7yISYjJ4VwkqdB6owdMKtwPzXc37C9CnvDFD3zt8dijn/OaeH6ajBMOUaXaJWJjFyp2dk5v5tLka5f6ldWtM5pqNeR/c5t98cbOK8wM8mAUueqE1Dqq7ew5Z773mA0y1+WcpT2O92RrxlRhdSOb/ICZak97ZzRSye4ZF0q8itBauoAmIfUOotC83LFoB/ZdTbdfWSZcpUgbqepE1QQESGth2FeEXYtEo4gsz3kyzjHL0hlfc+YHuX5aBz+6xthvOrXBzLBPNvvEOUz6qHmu667zPLXRsS7ZSV+8XJzZGqMMkyRGrzrSTltNxOG2NYrovSN80bOVBhXh4idKtZ+xAmB00mHt2T/3qHxFfR/xXaK9SaRXpsepcaS6ZVV/zocfNWy/hN1Xg/V50e1BcFvLxOUi4NuAczrSe25jQ1Jh4QdSvrmTNNbd2JVgzacs89jHqfH1SNcP612C5Gik0Uu43rKm/GB1Fue2qGS/p9rWsaPPV3znIFYjKVMGplpGOqzla4gfHJLcWAOt1F8stIbjIxbfO01rOjdfGuV3VQf7lxNd2fw5S2kA9bB8Yz+Hlc03qYa4soNTLcaushkYwMavKLQJ10QWzUBbB9o64H3i/bPaGFwCNLeHMYe5rs3nWRnyvOQYaeOrrUw1sEq2cDn+aK07+t3Zvs+ZEObde5zNI0kg01eGde67RbL57f5xsW+Zv0P5OVtTlDY3ClbJGUZK9+0Sv/OEz3t20pDewvpnlumV6swosHPIKhKeB3aNp792SLyi/RCpton6waix738N+ktHff+SDz+q2L+E/fcH6D2uKs6azdsSheEq5Xey9MFqOVD5nAWWqRQbF1n5ftTr+/hp+uK/shKTOXofk3OGzi+n2ER3tIAvcjA7TYvKR8flYxUsAFxhgV+HbeokxQVbRIooWgslSFlt7doppx+CBVebWxlpE9RZUKY4qb7LC66cOTY6sXPDmK9fOPSNJgz6q2xA1nniyROz1GapxKeJH7NcbjUwLGr8vZ/SMisL5KrXPFHbhCzBjUUmU61opnJJHqiTFQbPQRVV8Nc9+vXiIFW0BIYO6NDKs8yCpIVSypXC097eN8nROceG4cQYEPL9ssEffdp4uA4pDkSsS5/k4EB1eL3jTZ25k3xqQau5Tf1OxgXrN99esrnYc/38gfe9Q+rEZ5/d8uXmlj+8veZ+14JC2wTa7z+wv2wZ3tUs3lqweLtt+eKzD7xbrdg+Mx54v4js7lsrENlVViS080id+PzlLb9x9S2tC6xcT68Ve214G9esXYdHuSJi2zjKh2QRkDfx0y2w/GQA6GPf/xwLyYOFSO7PEvyQBPXWuH1tE3VaaFadku7nNSOO7qs5IDyjUTnYLC56nRed5fnCKut2CVTlehASrcZT+Xt+r9AqqXZGl1K4g/P1YqvoMto7dQ4JNoA1CWGTSKuIVIlqEbhY9qyagZiEhNUkiFcdw0NN9abOxSg5oJkYN1BLU8dJR8p7V/tpgZmeslBP6PQ8+HTw86nL5CBwWE3XHDdzZsGfg36HaaI4Gg+Pns1lKgCx+gIqENYKyZxAnvcsVj27+5aYX1aqRIqO9GVP/FBRf3A0t5CamjfNBc+ePfBehdB7qnVPt69t0R+d/euMVuri+ZYvLm9Z5MBPVOFDWPLOb+i05sLtSQgLCWwlcpMET+Jd+ESdmpNULYeKfLhIfHz+ZEMEkhqVgwP1h7qp+Zg5/Vr7DiS6Ub+tfp1SP8hBYeARIJBBCr4np/5zaJ/KM89/z/Y8LnPh7UJfVBaTKqRFsuer1fxTT55wBK0EdVbkWMKkW2mhpGLr8wavDIKKQzpb3A4X2WY3FiSlTYhLOJ/Mf9lE3J1/RFs6t9ll3hrnrqOAavUgY/Al1Wpzwomu+ljw9+C7+epV8lwTZNRPK44Mbu9INLhS/FXl8Ppi11I3rU4fUcnJ9JkIsHPT/KpCWJT3NSrdsLR6I2D3j6uEesftj4TFt1Dthc1PU6Z7NG7u1Di2XympSsjVQL+tIQm7KKTgYG8Dzb/oxs0cL4kuVGxjw9f7S5Z5x3DlO27iioRjUE8tkfsuAX94umF/wfKxTR3gpE4XP36ibclzhIK4XES3mb5PpWBvGaMCzQehdzVxmaxo9r0BbZoPUyCz+ONV3rA1bvrsq89raxwFIOxh7O/UMIIGUjOBJxBbJ6gwgiRQwXnTvRgcsfH0rsZvHdVOiMVmO0yvnY17K8eYN1o6ZzQzSzItmlGbpDorqrd5JVxEXGfvnXyOixZ+f470MweohSm4pZJpZsqBfvpdjvT7YEP+WP9O+MYH/e9Mt8qBsVWjPu4c4b6eNpk1n6RTG+Wtm0f3Kf6bRcFBVBBV0l2FtomHhwXilf55RJIf7XfaRKutlOcTbRI6OLY/gPatUWavXiu+E7reM2yUt7/lrOj8M6PMEsXQfoPgOqPD6V5Em3vzWghRNAoxOu52C5xLJC94pwaiiTYf9NujaPwnIqUrHsmRvj4pMjtfhLFOqdpmiwtGlRX9ZNunG2fq4iCEtRA2VpulfT+tq0vdSr9n3PxzeZ732R+P++94wfyMqZ1sdlzk9XUGT6TG7FBaJttQaCJVExFRZKP0ixoNjr7JDm+b8G3EV1n/nTeaTbVNPVVBNwa28FWkriN1FaldZD/UDMGj0R6svsvUzsdNPZtXR+rHI7/2uO9U5sc8NtCHvpmOHxzb84Pjjuibhs1sHTSntCrnFvAGTHU29PA402u76UgvlzffyztoNF+qf+bY9g4XHf0Gdl/keSUKw/NAqipebzybP/Q098rqmwGkIjaO/Qury3L//YZhA/2rYLESzT5IEKvZJ+Ced4hT63NnALjt0BCTszpYKjQu0qVq/OdFedh+mtTmJ/2zp2z0+P3Mh5/NARmGkQHRAt4o7QpwYTw9r7ObO1s7xhrCZlqnVQ8gwY/HACMNagEsFEpc9Ux++8ynnVNrF6CEVhZHg+l5CvC3PFOhWEPsuoUuUZIdW+L36m1jI6wz9dsgyGC2KQUHdcIvIuISTRNYtz2Xiz1drIjJsd03433rBxk3PA/iWbP+mLf/vM/K87p8jh5Qtj12wJ/0u4/tePks65kbsHhT9n3UGWUzDxNlpD1QsdMw0iGfMg8pU8LNQexYHVMABkdaJMLaMWyEYS3sXtlmOg7oHaJC3ERU4N1vO1ZfVzS3yvp1JNVCfS/sP1O++b9V5ss/D8hgG7TRG92260yv+5cBaW0un7eBqvDQNzQ+krwBL4I6+lixl5rd/pdgo/ZXSFQT+h0bOt/1/acuf2Y3dM5ylrOc5SxnOctZznKWs5zlLGc5y1nOcpaznOUsZznLr4ioQvoOhO+Zcu2XVJ4qzPjoOCak11PHjbvgMqLd1U3p/uO/OO3gixo1h3pLBUx1zr5RxsKF8532Y9oAOYEcB6b0b8mZOdeW1pme9TSrgav1ntrZxWIS7nYLkgr9fXP4vlFQUdwikIKQOm9oxzqneDuF4Ea0vds6tDKIgJYCqW3MBUmx6uMomoSqjUAi5qJuY8pmycxhAjp+DLVZwNkFBTgicZg+HxHCevjdwXUw1ISkDK52ZNT24XFzZGcpHJnKc+e2myOcxtvNUIGGGJwGVGrV6Oi8wpBPft9ylwRxSnvd0daBZ8st21Cz76vxWiE66ioyLALuBwPb5QJ/3RPvat43S7xLLNZ9Lo4uE2oiWr+JV1wT2TQdThQvhvb1JG7jgt55BjzePbDXwEIDA4lelQR0J6ve/uLloN3/uOKOU8GxcT0iAxnHOYBExSFjJqckpX6wn7J0Yzq3RGhuM0rP2/njUEkT6kxyZthxGnMp8lmyVmIL3XMr8JgurRKjqyzLTpOYvg0z1AqQGkN+apOITSLVHnVuuu7CaFqkSmjOzMGB7DxJQa4G2tXAorECvU6UfTDUUEqCqo1Zdt6yc4LNBQfvlziY18a21gn9cxKR/SgP/KjfTsL8j06RJ44tuq35lnNk0BwZWObe77AHI7LYkxHYds1S4FUihAvLeGjaQAgeghtZPYuuik+kZWK/SgwbT3rZo3vP/a6lXgS0iRMSWpSUhJQzKXFKUwec6Jji7fPvH8KKwfuRkmklPU72DGqka/efMkjlqYwceNxXT503ovHyxCyG9j1Jn5f72hmomvYdY1ZmyRD1O3DV0fhgdsxsbJ96VpftU6os2657GWEZqdcD3icqnxiCJ/TeEHzBGZ3IXZWRqmqZhArqlXARjaJFZcwsLUWBZcCKLAeo7h0pZxGm2rIFdBGRJk0oPczH9T5nAxX06fw9ZEI26tFnp+bgERWvAqqP7PxBW33Mv5YjBSf36VF2QEHx+a07oIA6SUEzt9szf2T+ulAyPXRCRkaz5SkaGjAuMq1Eebfsf6Q2MXhBkiPsIXlD+Zbvw2WElTmAGp21t2ieE3J/eMXXkcqnsUD6sh4IyRHEM0iiixVdqrlLmSZThT01d59qUu3cl52BP4ucRvnPfPhj32s8Xki1/Zuotg7vJw4Wb4S48EZHujMqFjfkzJlZpqjrJ2TrSBM6o1yaj5/yCLE1CsPhQokvB1wbaRcDTR1YNQMhOvaDoTWTCrttQ9VEvEuGxFfB1QledIRFjX7IRZNPIOqL+K1DKx2pE7VSqNTQrX2e70QtQ7/Csk3m7ZjNVkHtnkRjH7/orN8K1dTxHPBRyrWZn/zonZSRfm1uz91g85d/8DMfavJ15xkU4jSj/o+M+JH+J4+1FVjmT17DDFeWGZmWaaKfmUulRKf0l56whFQJwwVjlsb+8zhet9xMFWT+HN788lG8It5su/kRVuA9zRQiJkf8N3J2/xRkrtfHMve1y+Hz+ViKjTYpmRWFhnD8vqzzFMgUW3OU/fJbJd4LXS+076C51zGLs/jZI1VSsQluslNyPM7HB8pI/JyJmdqEXAy4OrFoB2JyDF3FMBidGmXNnCUleyFfR5rVQAyOYWTJ0MmXz/cCGHaVUXmJ4tpI3QTqKtLUAVXhft/S95Vl50SH63N2DlM2QlkXw9GcmXX1oP1nc8KYVTGnVntCn6dMvGlSKH8+9s1O+HGa9TQxy4Kdnnt8j7mqf0wFxPy2VLKZBWTvSN78o+2XdkzY5OznZur4eBFJG3iIFd1WGJYNYUVmRIDd52oZWU0J0hy1ETZ3eZ9wzu5dV5ZRpRm1L0lH+sQuVSR1JHWEJHTp01xn/zzy0ewcN/vbz6jz81grfpWEyX2Xma1tbyzDvkuMJQSqPdT3TLT5M9tU9Bqd7PeBz6+Zdm1mx1IN4dqOGzZqWfE+Z94EoXqwAeiGiW2iZPCmVkc/s9oK/dV0zbhUy86pNPuFdl0nijSJph1YLXrWTY+XxEPfsg8V/WDrgFEXMhtPeVc90pHj+XeMV8vUxscyrV9MiU/q7Hjg4fz8yA8qn83av1Cd+p07POfEGmm8XLnV3Dec36vSyf7v3TjGtp/bz+5FHI8lls4V0tKypPahor8Swqoa6dcR6L4Ikx9R5puYWQ7IPkmT8PU0MH2VqCvL2HFPTJBBHeGXWK9/KeWRcjx1zC+v/Jnd0CnxBOBph5Of8/timBxoMSR+4o43+jXjlAbJqd5qtCjJalzERia6kuJ4pUNezzFVeE5pcCItsaQsdy+UcB1orzpeXDzQ+kBQR+2MX92h9DllP8XMOe5tERmDw+ffh+SsVoiC5lTkMsmlRSK19nDFiY7riNQJV0dS722xGAU2AXHKs/WOpMK37QY3TO8tlAl/6qNHC4ITC755wORRMOgpYzG7xuhoutnfM8M/9ktJS5fZz1nfjM96tLDV2b3KsYVj2JyZvElWuCx6hw4e9YnolV2s+df7l6iK1dnI10oqhOjwlVHiLD9/4IurW34/vKS7b0EU30TbnCsLwjHaZQ8qAje7JY2L/Gj1LSvXM6hn0IpGI/tUs5eaDykAAS+wdo5BlSv3iUZ+52OmLAjnO/MfoXnQo/E2D86Lk1HvxjV4gtKOhSJAktVQKMEHNzAGOABLzZ3RAo3PPN50NoxmYzgss8PY2gIyvhioVwPr1oJCtnHniL2AN+6IpGLB31Wgac05cWJpzf2uJtSVRaoT6MLoIFyVSAisIrFwdHvl6tkDIrBuenaZ1qEPnmVrFD9Xqx19qHhzUTHsnTm78/6YzWvzd35qgTc6ezNKxu+ajD+2yPxoMKncFw75z2U2JuZ/n1jkH4wdLc59do2jTEGIOi9S946+W9q1HDYPOJtfVYwGkzaaqq4Hvnxxy+v3F+bQQ64JIuNPsLGl+ee+r3moG66bPVf1jut6O9bF8iiDeiKOrTb4lLh2HRAJ7tN0avTUeDmhq09y9p+6Zg4IPbk3PVtA+rLYKxs5fe7bxEjRqQpaApnuxHicByFmtiksbFzsvzewfrHls4t71nVPnzxvt2tUIeDH/nV1JC6cXaNNNlbIYwJI9zUh2cJP67zY8Ubfk1olqIwbEgDxMkKT8I3ZbA12bdlEnFdeXt7z9eCJe48bJr0eN7FgokottvJEfx3byRHQMdexgw6a/X6irx9vlJXJM9tWzfQMs7Yf+2z+PKMPMjkjevQ8c1uumb4KsSAxmVKi0NZZW8j0jGXOF9P9/jpZ7Z1rGJ4HJFOp4XTaTNfsh0CmjynjSgmdp94k1k3HqhqoXGLhBxZ+wIvS+kDUiWptlXcfq6rnk5eTen6owIdB36NzRKaAjVhgfQzqz1yWYk5cYKRjkWQbOlWuf1nWgMXP9lm3dabbx1RC8ycNS9vc668T/vMdP3zxgVfLBxZ+YB9r3u5WOPEMyeNEaauAKiyaYFQdKoTkqLKvdeOX9FGMyiePpzKmzB+3YVbaJK4jmuu8sKuQXnCDENf22eKiy0FEwfXVtBniZm00C6YcBH2fMsWpqKBkP/fE/PoRf/x4M2b++TjHzK5h9HAy6S4c+Fbj2qL4Ea6Eq6aHGDeJFANX1UaNpNE+k8oCrlY7003Hlzm0BN7zhrrx6oNeBOSusgBQ2cw5mBAxnXeKkDfb1MMyIj7havPtnVcqb76A91Zfw6Fsmo6QHO3QPdGgn5BkmtNH/veRz1TkUcCx6Hg+P1XTl8f0mGXD0+V1tgtKWAr1gyJRERXGeJrO/o3POtEzzjFE41o1mc2OK+ivlPR8YLHpuFztcaJse6MAHABxCUVoNz0xz+113pCvq0jjLfj39nY9jXnBanoBmmT0yaUAK0RoWqutJKLcPSwIvSfuK1wT0ejwy0C49LjBTZRr+T3nfsmcVnhO4S6zZxm/P+q6+bFPfje3qRzJ7LN50HY0vbOxIbkuznj98hIqI+Du8NrziTnrfdFBpxmcogwXafIH/OzmOfhcxmX/IhJXju4lxEUyyiUmilrbFJw9o6j5gHkDIHQVzcpqoTR1wIvpdO0ilUtUzvo4qcNJ4rIykJWvPt2alqM80ffT9zJ9LpwETgIGlmTS8bLJMo7X0n3B6iP5aHV2xlhZOrLx5e8y1uupZs7cvIyhDJ3W2Zo3a8PaNmtp01jzqoB9Um20fRJsnKRGbTNwEXG1Be/SfU0YF78TsJLG/HZZKCm4kYLxcrOn8ZGLds+73cqo+XYNvkqEwbNY9uhiYOeWoBXVTsbyCgcxsJm9nhp4avNxs/ZEPxx05GxTZ96v8w3bj60YH/kKWZc1x01OniwzN+CUH64z3yK/p+bNseLDDFcTCnfcgJlNNtLnh6qU/irhett0S5uI7IvjbXPL3Cc6eCcB7R1RlGY5UOWNWhGoXaTJGzutD6bjkljUO5I6Fs3HuDzP8icuMRfI+5jop4p4+/nkz+yGzlnOcpaznOUsZznLWc5ylrOc5SxnOctZznKWs5zlLGf51RBNCX1UGPXomHMNnf9r8nf/7t/lv/lv/hu+/vprfvu3f5vf+Z3f4d//9//9J4//R//oH/Ff/pf/Jf/8n/9zvve97/E3/+bf5D//z//zf7ObP4Uwg0MU0Xeg+w92rY+KMz7a0VZDFkgsNA6WnRMXGcmfpt3fQk9UKNhO9lYB2aoV9g4r6C/VUjivAu2654vrW1ofeH2/QVWoq0g/VGwWHS/XD1Qucd/27ENF4yOLjPgMyeFEudkvuV0uGfYV8qFGekMlsJzSGDWIIV6iGI2DQtxVuJ0VqEsLQ/9ebPa8Wt0T1PH2yzXD6wXNeze2lcx+zhG7BygCffz+B4jnU3KCPqWc/+j680NdBt/NUs6PEQcFDTZH/xakmaTpnTSne0uSjMizgp5svaH0JCOEKkNSC47YFYSA5EyemCnhEi5n8muyTAx1ytc3V7g6oXF6sZK2L6JogaXN2mI/1AR1rFxP6wYaCSSEiMPh2Gtl/2LFQgILiXzuPeEEEv6TECcH6dyiPNLbpxD7j/R29o4nkeZz5EimVTSKF6NZibVk9G9Gk4y0B8pY+K9cZn49ndC/YWG0LWENYaWGAroeaJYDm1VHN1TsHxp0yHDCvUfrRHvVIRdGaXS52nO12NG4SFBH4yLv9itudwv64InBEW5aCEJySrWwrBtdWjFuX0e8U6Np3LfsSmFGp3iX+HzzwGcL0+sXqwf+YPOM7U83tN/6Ed18jLQ50KMT6L0DxF5OLT9A7Z3qvo/NAd8lM/SSnEDlzI+bozZPZfEgNhb81mUELmjFiA5W4YAaxko2Gw3OAXxSGIstvrnZjIPQ+WS6LIpzSgxiKeRxos4JcXr4580DF35PnREqtYTx94jjLi2oJfHKdTO42qcnj+bp+Vg4RaM6fje/yNE1C/VCLq5u//KcqUfmJtN2SJoy70YU3GycnkJ1HaPMDNFn80RYGRKwve64XHa8Wj5wHxpe32+4v18SB2dFRAVYBnydqJ/v0CQsWqNAXFTDmHn7ZrXhoV1AEtxNjUtG9aiLSAqOVAmuN5uSPIY+BMuo3XlDtK0tq+/FxQO/dvEeJ8rP/CX9myX1jT9E+x238Xch/0rbHmfQPHXcE0i+4wyo6Z46/zFdKx58/QgBrnCYDDK36TJ7FSVnDlqGXKG0G58xZz2O6ObZtVCz82Ft50i0fhhvGazxtMqUbUnGjGGc0d2m6EgqbOqeVdVTSaJykdYFaklUEqldoEs1OGgk8Kq6Y++Gx434CcgB+rOkupXfedxP43kHGSOT75180espW2ee7WknM/ZXXBgVikTL1BnngYzmHbPJSga5MmZPzfWg/J1qQ/qGFYSLiH/e88XzW66aPc+aLV2s+MPba263Rnk87Cpcnfjzn3/LZbunj55VNXDd7qgk4SSR1PHj5pqv3RXD4Im9x72v7caVQptQL1Z8uWQAr4x2UweP9JbVkxqFZaDd9Hx2dcd+qLkBuiSo89T3pgh6/H75HU9RM53S8aLf6CHCd0T+P2Wrn5o3PjKfiDLRU4l98Mg2HM8V5Zc5bU0ZI0GgYqQ/Uw9CMiqrVMbZzAmQ2b8qU/MIiAq6SNOzlUx5UVsrzSgsrYC02NQRBb9IVPVEpiYC3qXxn6H5het2j8ZPFO0788XHv7M8Qm7PxxSMffaUjVfPQXZJucb4M2fXhqVR3YYVDGuh3s70uzAwuJwJULr0GNnOpPdaZ398BcOlklZWwNwYLeBmu6TvKkRsDSxOqdcDl8s9TRUZomdV91w0Hc/bLa0LOEn8q/oVf8gzVIX+Q2u6ujQKZAR8G4xyNeuOAmHwdPva7tM7+6pSmk3P1WrHe5fYtwuat576Np8nU/vM232cg4tvddyX49rkSJE46qNTciqF59iXK7/q7A/RiT4v5vncZ1ubyuJfedRZYLpWsvGyz65BJhr4kcpNbZ6K+UWynX3krzmjryz+fCp+cqaCJMo0jySxuSK/35jFm4SmtuxL79JIiVwyMB3KQ2xoXCBJ4nnzQNd8mjb7KXkqs3aenWPfHdn82XElQ0Zy34zjAsasm9iabQ9tngsC+ExxPF43z+0SZkP2OH5UKI8bs9vDxjJtUmW6pLXCKtq17ir8YGPQ9UK4iLA2/VcVqjawWvY8X22pfWRT93x9f8m7uxVhyIv/e+OHkypRt8Fo+FpwzuiVny23xOR4t1txe79k2NbWVk1ksex5sXnAody2A+/rNcO3Lc0HmbJXT/rDjDp1oIrHKnmspkd6/nOtr4/8hUfPMv86Zf+XMufaA5R1csl8fZSlk5jWaOiYIaVeR4rGg+zqaTmdH1Gm9432Syr06Ir1eWnL4h+IZr8+x23KGmMQqIQYHctFnzMujQlFRC1Tx0UqSQR1OFWeNw+E4ZcgW/5XSc6Ua/925R/+w3/If/Ff/Bf83b/7d/n3/r1/j7/39/4e/+F/+B/yL/7Fv+CHP/zho+N/7/d+j//oP/qP+M/+s/+M//F//B/5x//4H/M3/sbf4NWrV/zH//F//Me7+Xxy+QgF06nv9cSkqNNMcUD7cHyeBXF1XBj1G3MCwgJYGAeoG/Jc4go3p6WLh4Xd1++niVWiLTq7a9h/kUhXZrnEK8tVz2bREZOjozLDWFL1Fx2rumdVmbOwqntbJOQXWfjA55s7lm6AK/jp1RX/8ttX3CXB/6zBbx1xlYirhDRpnJQRcB+qsUFSm0hNornouVjvebF6YOEDt0PL1cWOXRPohwvq2yf64NihPzZWj33Lg3PLKeMi8qBDHh/7yADJ7Bnk8DNRo+cozsKwmfkl2QikOk/6pX1UxsDAAad7kpGSSosRiuY4iM/eKJlLP0cKVdJomMCoGESUprEgL8DuoTkINIwGKxvKODicSzTuMNXQoexTjXeJXitu0pKbuAbgVXUL3HEt9RMN/4uV49Tg7wzwnjruOEX81LF5wTmeMouDh0XuZw/DEmoRSxOfBZR8p5m6wRac8y4oxw0rq5UzXCY0p3371hxIccp23xjV2oybm1WgaiOrpdW5KbQt26HBNR1frW+4rncsr3tuw4I/2j3jZw8X/Cw59JsFcu8J6wpZDxasjI4IvPt2M1KyNY3RBizrwEW753m7ZekHHmJDJYln6x18D7r9JdXDVCurtP3BJs+pfpmNWYGJy58nTHIZ1x+bD56S44Vblmo76fXBjfPcfXD74ivo9P0U/MuLRBTJdsE29BgplKbAca5toIwbNsi0gaMKdRusrkpeINi8XvwVsXkD24yvXTQaJhK1RFymW4s4FmKf73Otjb02UN3wQj5R+pZ5sOHn1NVH/TTS7py4dvlVsUV+GXCzMZkqGNbQfjhxH830TcGOjc10nsxpI/IzhKXVuAurXJtuEfFJ2IeKP7q/YjfUbHctYP2fVgFXJdrlwLId8JJGqibvEqtq4LPlHRvf454n/tebL3lzv+FD2tB+XeNuPHHhx7pO1U5IXpBKYV9nTnijD2EVWV7ueb7Z8nL5YEFllM2qY/dFohs2VPe2wzqnSR3b49S8Oeu7oi9lYWaUa/9mzvTJYP/RpaToRjalhaIiLKcDD2hXmNtsDvS6UFCQa/MU/Tt4htnG7aNnLR+W3cIh1zGr8zxQAlG5TezakwOjweGqQO3NYJTNnDq/QOsDCzeQ1HEfGwbd8Kx+oJbIc/f652jRX4CIcNCIP89GTv7M5lGZfj/azBnn7vm/cnoO+kaF7plS3wtxb30vSQ9qR7jM5w+5LtUTfml/CWGjhE2CRaJa9zy/3NKHig+yYBtqA1HtG6QE8xawXPRs6kyNJ2nkX7+s9ny1eIeTxF+5+CP+4Polv//wnJ/eX/JWL6h+1uLfO6vVs0zTOHKZHibXutRFInmlWg+slrY2aH1g19e2LlgEYp2Q0FDt85zlZ7qtk896vJnzSN9nbW0bO0fTwb+Jqh/r9vynYBvU+fewSVNwtdShqs1BcNE+K3NxAVgVW2z0qAKkQwowh4ErdLb4m2/aFn0e20ZhEAvkVjrNJ8fvk8X1dhzk4T8bYCJ6EGuIyXG3b1k1A42PXPtPMzh07IsfbKSfsuUw6f6oe4f2vYzBUouyBPaOx6Ebpvmge27n7V+Aeplq5eTr+t7W2bGVUbfdwNifZY0XWxguzXanWknLlIP3jv2+JiWh7yqcT/gqUTWBZTvwbLnlsjG/qgAlN3XH0vf8xuo1137L//3i9/hH67/EH9w944/0mvh6iX9dExdWZ9UtAhpyHbgE3UNefykG9qttLd4sBzZLq71aVYm4HuidIqGi2jHqzZM0s2M/zNq0fJSm9j8O/p7asyn9Nqdnenyf6cS5/241+WQ8xAXbbA8LGanwSs2VUiewUCvNfYsRbBHF9mlSthejjc3PkSmbRplvvs4/V6sPimJ0lg6jlS9BX2Y/VSCBC7ZRK842KMrc7lCrQZpjL9vYcD80tlHb7Klc5IW/e6qHPjn5zs2c2TEHuu0Oz53XtJyDnOfrPHVma3G2GRNWVvvOd4zAHfVY3bus27GZgNPk+Np8nZ2W6SDWY7EZDHSbwHcy+snxRWBx2eFcIiVnaugSizqwrnt+8+obvmhuuH615af9M368f85Ptlf80c01d2/X6H1NHx3VYqBpAt4pdRV5fXdBTGK1sDIAtxyzamyef+gb9r2BQOLzntC1Yw3uvNSc9cMTfTRbB+lR3zBeY/JVT+7J/jHt+AEGYla6wfc2txaQqwsyzt3Ts0zXKLGVsZ/KZuzRO9s19OBzibPyFvnv8dRCxZgE6jRt0o40itNaQvLGzhjjk7wxzLSZE5OjEgNf7GPFtlty3e5Z+p5X1fs/XuOd5f+aJP3uAftLvqHzXSb936r8nb/zd/hP/9P/lL/+1/86v/mbv8nv/M7v8NVXX/Hf/rf/7cnj/7v/7r/jhz/8Ib/zO7/Db/7mb/LX//pf5z/5T/4T/vbf/tt/yk9+lrOc5SxnOctZznKWs5zlLGc5y1nOcpaznOUsZznLWT4V0ZjQGL/j36fLTvLzyC8sQ6fve373d3+Xv/W3/tbB53/tr/01/sk/+Scnz/mn//Sf8tf+2l87+Ow/+A/+A/7+3//7DMNAXf8xMgaOU8F/DnmE+j+FNCifuRlqMP8sn7tSwIy8YRgMfbL7TOFGcP3hLnpE6C9g91Vg8XU1ok8AaKG/gv2rCJtgCHqv+MqKLu6Hmm3f0PcVcXCIg6oJrBeG3u+iZe7EZBQeUYX71HLfGTL48+UdjQtsqo4fXN/wU5f4sL+ifueNTgjQnRufFcDtHeqUtFBoE/XasnM2bYcTZR9t2IkoIfjTqfdwAHZ5CoV7cMwpANAE2DncnNXD759EMRxf7ggB4QZDhLhgKCFDCoFWMDy3QtMEwW09rrcLH2d4Hb//AWVbRhSBGH0DiqoiqlgusSEBqipxsez47Rdf86LZAvAHD8/5n/c/QEOmXZuhU0vxbBT6oSKo4y4uLCsnD65BPSvXs/F7PIlBDQ2+ch34O1r5hTM2npbj8QSP+vt01s4Rouip40UO9Hw8xzHSKboI1TbhO6EfHGEN7m66porgMgI4NbD7HJavp+c09Lgh+MfsnFxEEVHCviJkxLkGZ2m/CtoobhnwVSLmzJoQHarCrqt5aHLawBqqJnJZ7fmti6951d6xqAb+9f5zqm8aqhtP7IXkM0VgrYbyXQdco1Q+0VZxLModkucutGxDwzbU7EPFftuAP2qjI8TNgW7PaU+O+qugaQ+oMGR22BEwbjxXD1F/3yXz7AHfQbXL9D31hAoLS6w9AL+VJ6998G75miczRnSGIjxAkNsvJZvuixcfeLl84Hn7wDa0/C8//b7RLSYx1GHJS8/3jMn6vXaRbWrohpoqQ9eCejZ+z5XfUUtg0IqV6/Ak1tLwKcox2vdJBOAJupTxOD//o1zn8NoTvZaO6F8XNI8lQ+glD1WCeqtUrqD/bEC6oBk9JgxrqLf5ujNE6bA23Y6rjAj0ilRK6D13ccmDb4nBGcWK2nwtXqmaaBR7SRhSTddXxOi4lQVv6zX764rvrW5ZVx2/fvGW63bPj6vAm90LVj9x1PcQmwnhmipGxHJYQFoqyUHVxjGLF2AbMsWiKH1Xj7owZrUUWirlsT3n8O/R98ldUH5O8LfjTpsKoI59/ZTM541jVG2hzMlzUrWbPXsxj4ViIxldoqTyXExo3XKLAsg/lfVVsoGYzis+SKH5kdy3aZHQTaRaDjin9Hfme4noNCeKvZxkpLEmR+0iffLc9MuRugXgruq5qBpaF0j5oa6qHbVErtynSc30SLfncmxrj/zuMhbHfnRZT4/8q7G/ZnNstTPaWzcIcSmG6neZDlmEapdtdG0XG7OrvdmB+sGu76L5fv0ldC8SemXZra42pH5U4X7XcqNLwCi1RvpbQFxiCJ43uzWqwkPfkJJl1Fc+8RvXF/zG+jVX1Y7resuf31hGnhfldfeM6icVzS2EwZkP6o2a1UUBZxmANIlmNbBedSzrASfKLtRG0yiKq5TQSaYUmvzFsTB8VtYDtPSsfU/1mfnlU7bTgb/984Ihy7Flsjhx7nw95XqIS6MsVK9IC1olfJ1IUUh3NTJg1CmAij4ae5JAgyCF4mk+L40Zt4ftMH9vUvYLlhHfROo6sn+7NOSvzq5R5gYnU1a+KDglDo44NBPyV8HViaoxuiaAVAcqSVxWn35W7cheMZPJz5ajv4u/JRzMreP4MwR/8vNjp+smPyHxJRdL9zvA2Xq5fc/U/hRbaCwYu8+hfctUUD3Yz7iA/mKiXJ1uBvSOSMWu86BCcg5NlqFT+iokR1BHH80JuR8aXsuGoJ4fLt5xVW35i+tvWPqe2kf+j/4z5H5BfSuEILbOrhVt7HoyyIgeFwduYRSpTR1IKtx3LTE6Wx/s3dhOcqxHc9t8wn6Puj/zT/WEU/0xu3yQpTPPUJ3LY4fA5lVvKHj14PdTZl05JlWWmYiYP16uNVI4zeeiBKJiGfJpRt8mHOp1eZ7jZyvfL81eN00gJsf+3XKiT5z776LgZMzsdKLs+4puqEZ7DVBXkWU94F0iJoeI2vyOsvpEaVIP5uRjOaHPgMXcjnR4Hj8r5xT/+XieV7GPS5ZGWae5IdMgLnPWzezeLhg9W7+xtXZDh12hAAAgdUlEQVT18P9v7+5j7Kjq/4G/z8zch922u6VQSstDBU3aX3kIUB5aURoCFBMloibgHyAoGAkmFkg0oImAfyBExYCCBlJo/IPyVCqKVaj5lULkQYGFr35bRWlpK7ZC+VG63b33zsw5n98fZ2buzL13+3Db7p2dvl/Jpt3Z2Xvn7Mx7zplz5p5pHnoSfeK+cZidckvpaLYDx342zAkU4EfXAIFKHpUgTrN9oY0Do+3sCUY5+MjYjE8u+ehzfExx6phd2Y5Z5Q/x375B/KtvOl5Tx+Kj9ybb84bjoha4cEsaDd+Dv6uc5FM5Bm41RKlk+/N87cKvufADz0672nCBmpets+N907ZPxtiHrftorJ+jGd/sdXbcMGh5nZbjI92GiPdfMMXm1vnQST41mXwiy7NT30EBTj27cc2pNiU7O0bUVk8+ZQ9A0H6Nnv00mC1U0rc3KUSpL4TnadS2TbILU5/8iz+JJw7g+E40O4b9uR94CLWT+bB5ydOoh3a2G6XsjCkVJ8RUb7TDH5wOGok/brendSaunvXIbt++HVprzJgxI7N8xowZ2LZtW8ff2bZtW8f1wzDE9u3bMXPmzLbfaTQaaDSajd2dO3fucdt222HQqUHaYcqX9Nzdya+mOjySLzf6PQFMRRD2K6hKPDhg5+kU13b8OJMD1I8T1OLph7SCqjv25NUXNfKiN9HaQb1Rgg4diFZwyxomcG2HcBnQ0QnKUQItdi7mRmgrCq0daG0rpV1BGUf2jeCw8gjOOGwzdg1UsG7KUXjng2kIGnZwydS8zJRiybQP/RqlvgB9VR99pQAV187nHTdqPxrug/y7H64f/a1KzecStLX1Mp0zzb91W701VgOjdb+O0abMvmnzNZM2ZlyZRR0zumK/ANtYUNp+fNT1AVN2AOXAaahkwEdSjcfMRa40t0cUoMLoI8du9OPUAAwA25EL2E4BrVAatM8mMuLAUxrb/cnYOjoFolV2bnHYC9W4glIlg/poGTsm9WFrYxDDQRW+ceFrF6E4mFqu49j+D3Fs5QOcUH4PR7rDmO7WMc3xYLqaN+PA2VO2Mw2P5uEZfd9+kHQcNIyXj/EsndZ14++NB+iqA4jYqda0gvHsiqZkG5KmZJ+d5Q8Auk8wMivKZGg7JRB3LAF2WofQsfvdd23e4sxF03nY7TRRJ5CGUoJG4CH0PZjQTiPil+0LOkrgKY1P9L+H6d4wTunfjLOm9OHlKR/HX2fNxK56BaF2UB8t2+ncFOzUAZ6dK7xcak75E0aDwSYsoa49DDeq2LmrD9hesQ3gsj2onQDJR+E7XTB27CgCMhd5ycVclP3WAZzM7m7pg2nVemwk7xU12sJJ0cfAPUAFgBum8luzmRaF5nMWkDrfS/Olk1OSiS4kHdsAVK40OzLTX2IHaJQCMOICnsB4BvXQw9RyDa4SbK/3I/TdzFRVou25QARQjiCoeRjur2AkLGMkLGM0LKOuPfjahRYHh1VqOLp/Bz5W/QCfqGzDyZX/YprjwPT40Xpj5rp1WiZkLxg7dvjuzlg/j+tpAErbaRFd3w7UONrOyR/2AaZsLx7Kw/YX4vpcGds5FA8ehdXm9qmoc0g8mwWnoaCrYqfkcQTiuwjjY0crwHeaA/xlA+3a9ULtIAxc6LpnOx6NQijApsDF6NQyjpn8Ec4+bAOmDw6jfngJLx7+CbwxexZq9TK0dhDuKkEFTvNvoAGpGrh9ISb1+eirBJhU9pOpOHeFZYz4Zezc1Qf9QQWOVjCeQLm2rkoGdsa6KEx3Io2RxeYl2B5221i5bs1xp+2I/1X24h/Knm8BIJyqofpCoObB3eUmdXyzAaCSSiWuWzKDOqnpl9o6MtKbaQBvlwO3bn8eTHYgAz76+3woJQgaXmb+fQjsuV5stuEIVMNBPSxhNCij5pcQRs/UAYBJVR8zJ+/EsZM+TM7v072dONwZgfJ1+waNo7GzjbHbbWPlOvXMnOTvHg/mOECn5x62Dfyn3jeeYiyYZKdvEQVUPoyn1UDUoYhkQAcSzbfvIRkcDSdFA4Kw+0qi55p9NNwH7bvJII5T0jC+m+xn5QpKJQ1HCQLjIAhdBNGz7UQr/MM4GA1LOLp/B46q7MTRFXvePmXg33h94Disn34kGvUyxABmuJxct4oDO5VQtdkBKQLUghJEgFC79lzie9A1D140XXJ8XRJ3akvL3yrZN6319Vj5j4/j3bTPM9J1f/r7eFkq3/EUKFD2uQemHJ1rfXt+U1N9TBmoYeeOfrjvl5vPEXIE4qE5yILm6wDx8mgap3h63eQA6lROW0hnNDp3eALj2qnsjFH2uTxAdmqm6L3j86c3CkAphK6d4sfxHdtBGQ0Q6X4DfyBEZaCBE474AFPLNUzxGlC13nZEjJXr1Cmz87EDNHMMtBxLqlmvx8udDgO4Kl1/oFl/x+u5sOeCaABIPHvuVyb63rXTo5qKzb6pGjSOUPC1SgaEkmmaYP9vlF2ugmiaPE+gXDsNsgmjQZ1o6r6BSh1H9o2g7IQY1WW8H05CzS+hEXrwAw8jfgX/7Z+CGX3DOHnyv3HWlI04ZfK/8T9TjsFrhx+LXfUKHFHw6549DtJ/I9e+r+M1Owv9wEueuxjUPWDEQ+X/RdMuetGMnjrVFo//9JIcwqmFLfvKpKLpZG+0aNuv8e+3rpKqwDsO9KR/L96XYveTP2BzFbfR9RQNVDUw4sH7yO2c0Y7nkGjbtbJ/F4XM1MeZ14lewxl1bB1RFuiygufZ56YEDS97HRI/tyc+r8Ttt5oLv+TZgaTAntdV9Dwupy9EY3IDh08ewVGThnFYeRRTSzUMuDXo2t6cMA+eve1D65hnwP4tU8+0zdyIkfp/cqy5zezaBanrqLj/I/pdcQEdD+qmbxyMXseUo+fjlYFgkr3JOBmMNQpOI8q4UUndnvSt6ejf9Kk11X4woYITDdaK2GfNGq2gAwdBw8M/1RH2uniywnGVDzC3shVn922EmaLwv4fNwv+d+X/w7ugg6qGHnY0qADs4pEMXInaaZc+zvSwiCkHoJrnWxoEOXKDhwh22BTclRNOVoT130feZmKWznWorxeXLXH+nGk9tY7KtA6Hp92z5u2WIvXaI+0vi6UbFBcLBEKpsgFEP3s7UdUrq5ob0diXbE7fBJaqv05lObVM22greSHRzVUVgYKebL3kaNQeZZ40BaNbjYtuZbl0h9Bzosn2uoURttniQCFWNvskNTJs8inlT/4vp5WEcUdqFci2nA7UFJUbszTK7W2eCT7nW81vsVWsHjUjbsj2t32l57Ic//CFuu+22tuVhOPadigd6QMfeCRI1KI2C0gKJOgd1w1ZmRgOmZqDrUaNBA0YLEA3oGGWgRhswvtd8nkR6QAcGcO1X/CBPOAITdQKrUMPUNZRroBFAhyHC0IdEd4Ro7dqvIITW9o4DrRoIpYHA+PB9H41ygIZ2EI40oEfrMPGATj07oKN8BQkFUBpGAmgTINQNhCUf8QO3w1DDjNYhdceWMZqvWMLmReTuJH/rDo3PtoutlgvAzO4cY3nbxalqWRZ19qS308QXv/E86/WoMmkou791ttERj/JnOiwcaV5bOrAPbnTtQ5dVPJdndNdRcueeVtClOoKqDz/00QgD+L6PcKQBM1qHMemWjsoO6IT2Ux/hSAN+2UcQOgiMi0C70KIQBD4aJkA9CDFa0hhxDaqugecYmNG4MdObk+CY2Q5sttvuJEG20dmqmwGdOIv2m+giSQE6OaYFBsp+H01zbiQ6FgJ7PaEb9lhRQXQeCe3PYK81YJSBhLbTN7lYSA3oiCdA3bHtKtFQEkIjsFkPQhjfSy4uVaihnQZCpwFffNRNiJoXAkqjZkL4u+xxoxuA1gpm1NiBAgW7MaGGNiG0+AjdEKEXIHB181k9WkM3FMyoA1O3D2GO57eVaEAnubuq09+/9e+e2h9xwzPdadqW33Sn7W5yD4yRfUktbwAqjKZeDdE8Z0e1psQDOvFAT4dtbu1szGTetVlPnqMT/RtfXCpXgJod0IETQJcb8Cs+xNFJtuMBHdEKRrvNAR1PoBwDPdpAEM27HIRAqDXCaEAnCH34JkA9DDHqa+zyDUoOYEbymWsdtNfZ+zWg0yr13LvkRov49XxbHxsoe3xHdbT2BWEgsDdXR/V8YD9Vqz17sZn+BEc8oBPdjA0xAiMCAwNlNBA6zefBtw7oaAPl2robAEzgwjSaAzoQwJQbCEsNBMpHvWSzXTcK/i4ferQBXTcw2oGp6fYBHTH23CEBtA4QBg0EpQDiGITGgR71bK5rCghV8lwBFarMHbPpfWD/mKllrfsk3Wbq9PNkvc7H4p4GdJJfE9WcVz3dQeg2L/BNTUMhhNQ8qLqLzN2FJvVmqQGdeBsydzarlmMnzmhq80zdARqILmYFMlqHdhu2U27Uyd6EIYg6flXqQa8K4UjDfro6MPZcHb2pNgEC5WfO76OuRtUxQE7r7E7Zju1uQCdenrS19zCgE0vqH9+2xTUUdKO5brw/tR/lNZ6z3Y/a8QLoaB5+E9VpRgPGtYPvSUXnGijPPizdBM0BHQT2Bqv0gI726gjdhj0/11XyCT3RCrrUQOD68I2PRhDAcUJopVE3CsGIzbapGzugUzPNTgijomdDRG1xraGih/aKIGr3K9tGqHtQdc/eTBTCdt6auNMmuw+SfTNWfluz4Eg2E3uSalPtqT2fHtCJ2wjGNOf8V2Uf2mvA1ByourEDOqbZlkoGdJLtjTqW0nf4p3K824pFCRCdO8QVGKVhPB9QYs+bQHZAJ+qcUoGy5wQ/dQwZAIEDpAZ0jGNgSiG010A40kAQ+PBdH07ddg7lLddxW7zT6XtvBnTSAzeAva62/yIZrDGuivZ5/MLRPwEgYVxn22Umeni6biAzoKOiZ54bFzCuARrK1r9RlOPrUhPdpGEMbL0tUbvcGKjQ3kRlok/gKMdAmxBh2V5DwwkRaCCsefacHWroIESIBgLx4WsfdYTwnBB1SdfZ9jrP1L3kTnBbPtcO6DgGiAZ0xLWdVnHHr6kJUNPQdSdp24qybRfbLkembZ1+Zljbvkq3wZ1UPsbar/H+bK2LW9ZN19GZ9nfUrQHX1pFw0BxAE0Q3vEUNsZoHU28Z0GnZ9kw9kK6TU+eoMQd0AKDu2mPBCIyroct1u7/rGqamm3fxO6nfE9gOYN+BUQbwfNsfFGYHdCAhtOMjVKn+llKAuhvAqdn2Xu6yHfehdaiXM1uqkB3QcZBkPv3/5HXiATatoAVIPx8PTlS1aoExzVxDRfWvttmGsYeFieoKY6Lzqkhztxplcx7X7Sr7KdJ4QCdzU3/8usrAOBp61G6A1k7S1xZnSpcaCEo+GghQC0KM+BplN3pWkq/ttXatgTDU0H7cdnNgRqN2nmugowEdezqUpMmjtWPPB1FbVUVtxHT/074O6LS2z9uvZaXtZ60DOmP2l3e6NtCAiTKn6iozoGPKIZQ2Ua6d7BumB5DiHLe0O5LjyZH2Y7F101TUHpf4nG6gR+vQYQhTq2du1Mq0PeKbNAJbZ6joeeRtAzoS9bmoBvyS7Uetl0LoHuf6UBNKA3v6BE6IiT3IpqRHR5Pv++jv78fjjz+OL3zhC8nyJUuW4I033sDatWvbfufcc8/FaaedhrvvvjtZtnLlSlx66aUYHR3tOOVa690F7777LubNm3eAS0N06NqyZQuOOeaYcX/f1mxv3LgRp5566rhvB1ERvf322zjhhBPG/X1ZZxMdXKyziYqHdTZRMbHOJiqeXtXZh4p6vY7jjz9+zJm/Wh111FHYuHEjqtXqQd6yA69nn9Apl8uYP38+Vq9enRnQWb16NT7/+c93/J2FCxfit7/9bWbZs88+izPOOGPM5+dUKhVUKpXk+8mTJ2PdunWYN28etmzZgoGBgQNQmt7auXMnjj322MKUByhemYpannXr1mHWrFk92YbWbM+ePRsAsHnzZgwODvZkmw60oh43LE9+ffTRRzjuuOMwbdq0nrw/6+yJqWhlKmp5WGcfXEU9blie/GKdffAV8bgpWpmKWh7W2QdXUY8blie/el1nHyqq1So2btwI3/f3av1yuTwhB3OAHk+5duONN+KKK67AGWecgYULF+L+++/H5s2bce211wIAbr75Zrz77rv41a9+BQC49tpr8fOf/xw33ngjvv71r+Oll17C0qVLsXz58r1+T8dxcPTRRwMABgYGCnNyAIpXHqB4ZSpaeY4++mg4jrPnFcdBvB2Dg4OF+hsDxTtuWJ78y1OuWWdPHEUrU9HKwzp7fBTtuGF58i9PuWadPXEUrUxFKw/r7PFRtOOG5cm/vOS6yKrV6oQdpNkXPR3Queyyy/DBBx/gBz/4AbZu3YqTTjoJq1atSu4A2Lp1KzZv3pysf/zxx2PVqlW44YYbcO+992LWrFm455578KUvfalXRSAiIiIiIiIiIiIiIjroejqgAwDXXXcdrrvuuo4/W7ZsWduyRYsW4fXXXz/IW0VERERERERERERERJQfh+RnvSqVCm655ZbMvKATWdHKAxSvTCzPwZfHbdpfRSsTy5N/eSxTHrdpfxStPEDxysTyHHx53Kb9VbQysTz5l8cy5XGb9kfRygMUr0wsz8GXx23aX0UrE8uTf0UsE/WWEhHp9UYQERERERERERERERHR2A7JT+gQERERERERERERERFNJBzQISIiIiIiIiIiIiIiyjkO6BAREREREREREREREeVcIQZ07rvvPhx//PGoVquYP38+Xnjhhd2uv3btWsyfPx/VahUnnHACfvnLX7ats2LFCsybNw+VSgXz5s3DypUrD9bmd7QvZXryySdx4YUXYvr06RgYGMDChQvxzDPPZNZZtmwZlFJtX/V6/WAXBcC+lee5557ruK1///vfM+v1ch/tS3muuuqqjuU58cQTk3V6uX+ef/55XHzxxZg1axaUUvj1r3+9x98ZrwwVLdvMdb5zDTDb45GhouUaYLbznm3mmnV2N5jrfOcaYLZZZ3eH2c53tplr1tndYK7znWuA2c57hmgCkgnukUcekVKpJA888ICsW7dOlixZIpMmTZJNmzZ1XH/Dhg3S398vS5YskXXr1skDDzwgpVJJnnjiiWSdF198UVzXldtvv13Wr18vt99+u3ieJy+//HIuy7RkyRK588475c9//rO89dZbcvPNN0upVJLXX389Weehhx6SgYEB2bp1a+Yrj+VZs2aNAJB//OMfmW0NwzBZp5f7aF/Ls2PHjkw5tmzZItOmTZNbbrklWaeX+2fVqlXyve99T1asWCEAZOXKlbtdf7wyVLRsM9f5znU3ZWK2930fFS3X3ZSJ2c73uZe5Zp3dTXmY6/yfe5lt1tndlInZzve5l7lmnd1NeZjr/J97me3x30c08Uz4AZ2zzjpLrr322syyuXPnyk033dRx/e985zsyd+7czLJvfOMbsmDBguT7Sy+9VD7zmc9k1rnooovky1/+8gHa6t3b1zJ1Mm/ePLntttuS7x966CEZHBw8UJu4T/a1PHGF9OGHH475mr3cR/u7f1auXClKKXnnnXeSZb3cP2l7UxmNV4aKlm3mOt+5FmG2xyNDRcu1CLOd92wz16yzu8Fc5zvXIsw26+zuMNv5zjZzzTq7G8x1vnMtwmznPUM0MU3oKdd838drr72GxYsXZ5YvXrwYL774Ysffeemll9rWv+iii/Dqq68iCILdrjPWax5I3ZSplTEGw8PDmDZtWmb5rl27MHv2bBxzzDH43Oc+h6GhoQO23WPZn/KcdtppmDlzJs4//3ysWbMm87Ne7aMDsX+WLl2KCy64ALNnz84s78X+6cZ4ZKho2Waum/KYa4DZBg5+hoqWa4DZTstjtplr1tndYK6b8phrgNkGWGd3g9luymO2mWvW2d1grpvymGuA2QbynSGauCb0gM727duhtcaMGTMyy2fMmIFt27Z1/J1t27Z1XD8MQ2zfvn2364z1mgdSN2Vq9ZOf/AQjIyO49NJLk2Vz587FsmXL8Jvf/AbLly9HtVrFOeecg3/+858HdPtbdVOemTNn4v7778eKFSvw5JNPYs6cOTj//PPx/PPPJ+v0ah/t7/7ZunUrfv/73+Oaa67JLO/V/unGeGSoaNlmrvOda4DZBg5+hoqWa4DZBvKdbeaadXY3mOt85xpgtgHW2d1gtvOdbeaadXY3mOt85xpgtoF8Z4gmLq/XG3AgKKUy34tI27I9rd+6fF9f80Dr9v2XL1+OW2+9FU899RSOPPLIZPmCBQuwYMGC5PtzzjkHp59+On72s5/hnnvuOXAbPoZ9Kc+cOXMwZ86c5PuFCxdiy5Yt+PGPf4xzzz23q9c80Lp972XLlmHq1Km45JJLMst7vX/21XhlqGjZZq7znev9eX9me+/3UdFyvT/vz2zn+9zLXLPO7ua9mev8n3uZbdbZ3bw/s53vcy9zzTq7m/dmrvN/7mW2x28f0cQyoT+hc8QRR8B13bYRy/fee69tZDN21FFHdVzf8zwcfvjhu11nrNc8kLopU+zRRx/F1VdfjcceewwXXHDBbtd1HAdnnnnmQR+93p/ypC1YsCCzrb3aR/tTHhHBgw8+iCuuuALlcnm3647X/unGeGSoaNlmrjvLS64BZhs4+BkqWq4BZnsseck2c806uxvMdWd5yTXAbAOss7vBbHeWl2wz16yzu8Fcd5aXXAPMNpDvDNHENaEHdMrlMubPn4/Vq1dnlq9evRqf/OQnO/7OwoUL29Z/9tlnccYZZ6BUKu12nbFe80DqpkyAvbPgqquuwsMPP4zPfvaze3wfEcEbb7yBmTNn7vc270635Wk1NDSU2dZe7aP9Kc/atWvxr3/9C1dfffUe32e89k83xiNDRcs2c91ZXnINMNvAwc9Q0XINMNtjyUu2mWvW2d1grjvLS64BZhtgnd0NZruzvGSbuWad3Q3murO85BpgtoF8Z4gmMJngHnnkESmVSrJ06VJZt26dXH/99TJp0iR55513RETkpptukiuuuCJZf8OGDdLf3y833HCDrFu3TpYuXSqlUkmeeOKJZJ0//elP4rqu3HHHHbJ+/Xq54447xPM8efnll3NZpocfflg8z5N7771Xtm7dmnzt2LEjWefWW2+VP/zhD/L222/L0NCQfPWrXxXP8+SVV17JXXl++tOfysqVK+Wtt96Sv/3tb3LTTTcJAFmxYkWyTi/30b6WJ3b55ZfL2Wef3fE1e7l/hoeHZWhoSIaGhgSA3HXXXTI0NCSbNm0Skd5lqGjZZq7znetuyhRjtvd+HxUt192UidnO97k3xlyzzmau85vrbsoUY7ZZZzPb+c02c806uxvMdb5z3U2ZYsz2+O0jmngm/ICOiMi9994rs2fPlnK5LKeffrqsXbs2+dmVV14pixYtyqz/3HPPyWmnnSblclk+9rGPyS9+8Yu213z88cdlzpw5UiqVZO7cuZmT4XjYlzItWrRIALR9XXnllck6119/vRx33HFSLpdl+vTpsnjxYnnxxRdzWZ4777xTPv7xj0u1WpXDDjtMPvWpT8nvfve7ttfs5T7a12Nux44d0tfXJ/fff3/H1+vl/lmzZs1uj59eZqho2Wau851rEWZ7PDJUtFyLMNt5zzZzzTq7G8x1vnMtwmyzzu4Os53vbDPXrLO7wVznO9cizHbeM0QTjxKJnsREREREREREREREREREuTShn6FDRERERERERERERER0KOCADhERERERERERERERUc5xQIeIiIiIiIiIiIiIiCjnOKBDRERERERERERERESUcxzQISIiIiIiIiIiIiIiyjkO6BAREREREREREREREeUcB3SIiIiIiIiIiIiIiIhyjgM6REREREREREREREREOccBHSIiIiIiIiIiIiIiopzjgA7l0pNPPokLL7wQ06dPx8DAABYuXIhnnnmm15tFRPuJ2SYqHuaaqJiYbaLiYa6JionZJjq0cECHcun555/HhRdeiFWrVuG1117Deeedh4svvhhDQ0O93jQi2g/MNlHxMNdExcRsExUPc01UTMw20aFFiYj0eiPo0PP+++/j5JNPxre+9S1897vfBQC88sor+PSnP42nn34aixcvbvudE088EZdddhm+//3vj/fmEtFeYraJioe5JiomZpuoeJhromJitokozev1BtChafr06XjwwQdxySWXYPHixZg7dy4uv/xyXHfddR0rImMMhoeHMW3atB5sLRHtLWabqHiYa6JiYraJioe5JiomZpuI0vgJHeqpb37zm/jjH/+IM888E2+++Sb+8pe/oFqttq33ox/9CHfccQfWr1+PI488sgdbSkT7gtkmKh7mmqiYmG2i4mGuiYqJ2SYigAM61GO1Wg0nnXQStmzZgldffRWnnHJK2zrLly/HNddcg6eeegoXXHBBD7aSiPYVs01UPMw1UTEx20TFw1wTFROzTUQA4PR6A+jQtmHDBvznP/+BMQabNm1q+/mjjz6Kq6++Go899hgrIqIJhNkmKh7mmqiYmG2i4mGuiYqJ2SYigJ/QoR7yfR9nnXUWTj31VMydOxd33XUX/vrXv2LGjBkA7F0FX/va17B8+XJccsklvd1YItprzDZR8TDXRMXEbBMVD3NNVEzMNhHFOKBDPfPtb38bTzzxBN58801MnjwZ5513HqZMmYKnn34ay5cvx1e+8hXcfffd+OIXv5j8Tl9fHwYHB3u41US0J8w2UfEw10TFxGwTFQ9zTVRMzDYRJYSoB9asWSOe58kLL7yQLNu0aZMMDg7KfffdJ4sWLRIAbV9XXnll7zaaiPaI2SYqHuaaqJiYbaLiYa6JionZJqI0fkKHiIiIiIiIiIiIiIgo55xebwARERERERERERERERHtHgd0iIiIiIiIiIiIiIiIco4DOkRERERERERERERERDnHAR0iIiIiIiIiIiIiIqKc44AOERERERERERERERFRznFAh4iIiIiIiIiIiIiIKOc4oENERERERERERERERJRzHNAhIiIiIiIiIiIiIiLKOQ7oEBERERERERERERER5RwHdIiIiIiIiIiIiIiIiHKOAzpEREREREREREREREQ5xwEdIiIiIiIiIiIiIiKinPv/zumWSPHKnQ4AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "era5_gappy_ds = era5_ds[\"2m_temperature\"].where(era5_ds[\"2m_temperature\"] > -0.75)\n", + "fig = era5_gappy_ds.plot(col=\"time\", col_wrap=6, center=False)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we pass the `\"gapfill\"` argument to the `context_sampling` and `target_sampling` arguments, the `TaskLoader` does the following:\n", + "- randomly samples a missing data mask from another time slice,\n", + "- adds this new mask to the context set (increasing the amount of missing data in the context set),\n", + "- the context points which were just removed by the new mask become the target set.\n", + "\n", + "This may produce NaNs in the target set due to overlap between the original mask and new mask.\n", + "To remove these NaNs, use the `Task.remove_context_nans` and `Task.remove_target_nans` methods." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:09.177634813Z", + "start_time": "2023-11-02T13:41:09.175009662Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-25 00:00:00\n", + "ops: ['context_nans_removed', 'target_nans_removed']\n", + "X_c: [(2, 22491)]\n", + "Y_c: [(1, 22491)]\n", + "X_t: [(2, 867)]\n", + "Y_t: [(1, 867)]\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(context=era5_gappy_ds, target=era5_gappy_ds, links=[(0, 0)])\n", + "task = task_loader(\"2016-06-25\", context_sampling=\"gapfill\", target_sampling=\"gapfill\")\n", + "print(task.remove_context_nans().remove_target_nans())" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:41:09.529695849Z", + "start_time": "2023-11-02T13:41:09.175234683Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAF8CAYAAABiwjyTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7xdRbm/n5m1djk1PSGd3qv0HhASEJCuiN4bUK/lioAFFfVeCKgI6rWg/kQRooJXLhBBVCBICzVUpbc0Agmkt1P23mvN+/tjZq299uknCaTN8/lsOKvNmrVOzux5532/76tERPB4PB6Px+PxeDyeLtAbugMej8fj8Xg8Ho9n48UbDB6Px+PxeDwej6dbvMHg8Xg8Ho/H4/F4usUbDB6Px+PxeDwej6dbvMHg8Xg8Ho/H4/F4usUbDB6Px+PxeDwej6dbvMHg8Xg8Ho/H4/F4usUbDB6Px+PxeDwej6dbvMHg8Xg8Ho/H4/F4usUbDB6Px+PxeDwej6dbvMGwGSMi3HTTTZxwwglstdVW5PN5Bg8ezIQJE7j66qtpbW19X/oxdepUlFI88MAD78v9EpRSnHPOOe/rPbtiwoQJbL311v2+TkS4+uqr2XXXXSkWi4wZM4YLL7yQ1atXr/9OejyeTRKlVJ8/U6dO3dDd7ZFLL70UpRRz587doP144IEH1vp9vfHGG5x++ukMHjyYhoYGDjvsMKZPn77+O+nxvM+EG7oDnveGlStXcsYZZ/CPf/yDrbbaikmTJjF69GhWrVrFww8/zPnnn8/111/PM888s6G76umGr3zlK/z4xz9m11135YILLuCNN97gpz/9KTNnzuTBBx8kn89v6C56PJ4NzCWXXFKzPXfuXH73u9+x1157ccopp9Qc23vvvd+/jm2BzJkzh4MOOohVq1Zx1llnMXz4cG6++WaOO+44pk2b1un34fFsSniDYTPlE5/4BP/4xz8477zz+MEPfkCxWKw5/uCDD/Kd73xnA/XO0xvPPfccP/nJT9h777157LHH0t/f97//fS6++GJ+/etfc955523gXno8ng3NpZdeWrP9wAMP8Lvf/Y6999670zHPe8tXv/pVli5dyp/+9Cc++tGPAnDxxRez1157cd5553H88cdTKBQ2cC89nrVEPJsdf//73wWQSZMm9XheqVSq2V66dKmcf/75MnbsWMnlcjJu3Di54IILZPny5TXn3X///QLI9ddfL3//+99l//33l2KxKCNHjpSvf/3rUqlU0nMnT54sQKfPkUceWdPmjBkz5Pjjj5eBAwdKsViUffbZR6ZOnVpzzte+9jUB5Oc//3nN/paWFtlxxx2lublZ5s2bl/avq8+cOXN6fCfz5s2Tc889V8aPHy+FQkG22morOeKII+SGG27odO5tt90mRx55pDQ1NUl9fb0ccsgh8te//rXmnO76cf311/fYjy9/+csCyE033VSzv729XQYOHCj77rtvj9d7PJ4tk2T8mzx5cs3+G264QT784Q/L2LFjJZ/Py4gRI+QTn/iEzJ07t1Mb48ePlyOPPFLmzJkjZ555pgwZMkSA9LvgpZdekuOOO04aGhpk8ODB8vGPf1wWLVqUXteR5557Ts444wwZOnSo5PN52XnnneWHP/yhxHGcnnPkkUd2OVZ2fI6u+P3vfy/777+/DBgwQBobG2WHHXaQT37yk7Jo0aKa8xYvXiznn3++jB8/XvL5vIwePVrOO+88WbZsWXrOJZdc0mU/xo8f32Mfli1bJmEYyi677NLp2Pe//30B5I477uj1WTyejRXvYdgM+d3vfgfA17/+9R7Py4a0rF69msMPP5yXXnqJSZMm8fGPf5xnn32Wn/70p9x333089thjNDQ01Fx/++23c+edd3LyySdz+OGHc88993DllVcSxzE/+MEPADjllFNYsWIFt99+O5MnT05j+bMx/TfeeCOTJ09m8ODBnHrqqQwcOJB7772Xc845h7feeotvfetbAFx++eXceeedfO1rX2PixInssMMO6XO+9tprXHfddYwbNw5jDJdccglTpkzp5JYfOHBgt++jtbWVY445hnnz5nHyySez3XbbsWzZMp599lluueUWPv7xj6fnJiv948eP52Mf+xiFQoG///3vnHTSSfz+97/nE5/4BGDDBaZOncqKFSu48MIL0+t7Cw14+OGHATj66KNr9hcKBQ455BDuvPNOWltbqa+v77Edj8fjAbv6PX78eCZNmsSQIUN4/fXX+dOf/sR9993Hv/71L4YOHVpz/tKlSzn00EMZPXo0kydPZtGiRQRBwJw5czjssMNYtWoVH/nIRxg3bhz33HMPxx57LJVKpdN977//fk444QSCIOCUU05hxIgRPPbYY3z1q1/llVde4Te/+Q1Aqjd78MEHueCCC9Kxurex8je/+Q2f+cxn2GmnnZg8eTKFQoG5c+dy66238sUvfpFhw4YBsHDhQg499FDmzp3LCSecwJlnnsmsWbP45S9/yYwZM3j88cepq6tjwoQJaVjXySefnN6/p+8OgMcff5woijqN2VAdxx9++GFOPPHEHtvxeDZaNrTF4ln/jB8/XnK5XCcPQk9cfPHFAsgll1xSs/9b3/qWAPKtb30r3ZesYOVyOXnsscfS/e3t7bLLLrtIY2OjtLe3p/uvv/56AeT+++/vdN933nlH6uvrZa+99qpZ5alUKnLaaadJGIYyb968dP+zzz4ruVxODj74YImiSO655x5RSsmJJ57YqW36uDqVcM899wggV199dadjS5cuTX/+5z//KVprmTRpkrS2tqb7W1pa5KCDDpKBAwfKmjVr0v1HHnlkr6tTHRkyZIg0NTV1eey8884TQF544YV+tenxeDZ/uvMwdOVdnTFjhgRB0GncHz9+vADyuc99TowxNcc+8pGPCCC33HJLui+OYznhhBM6eY/b29tl1KhRMnr0aHnzzTdr2rngggsEkEceeSTdl6zu9+YJznLooYfKmDFjpK2trWZ/a2trzfh82mmnSRAEMn369Jrzpk2bJoB897vfTfdlveh95eqrrxZAfvSjH3U6tmTJEgHkjDPO6HN7Hs/Ghs+StBny7rvvMmTIkH6JYm+88UYGDRrE1772tZr93/jGNxg4cCA33nhjp2s+/vGPc9BBB6XbhUKBs846izVr1vDaa6/16b5/+MMfaG1t5Uc/+hGDBg1K94dhyGWXXUYURdx2223p/r333ptLLrmExx57jG9961t88pOfZPDgwekq1brQ0tICQF1dXadjgwcPTn/+zW9+gzGGX/ziFzXn1tfX8+1vf5sVK1Zw7733rlNfVq1aRXNzc5fHkv0rV65cp3t4PJ4th64ytR1++OHstttuXWawKxQKfPe730Uple5rb2/ntttuY4899uD0009P92utO4mvAe644w4WLFjAlClTGDt2bM2xyy+/HKUUt9xyy9o/FHbczuVyBEFQs7+uri4dnxctWsRtt93Gxz72MY499tia80499VT222+/de7HqlWrALoct/2Y7dkc8CFJHlauXMmbb77J0Ucf3SnEpbGxkb333psHHniA1atX09TUlB7bZ599OrU1atQoAFasWNGnez/xxBMA3HPPPTz00EM1xxL3dkfj4xvf+AZ33HEHV155JQA33XQTW221VZ/u1xNHHHEEQ4YM4T//8z+5//77+dCHPsSECRPSZ8r2uVAo8Ic//KFTG4sXL+6yz2tD9ot6bY57PB5Pwvz587n88su55557WLBgAeVyOT224447djp/m222qVkoAXj11Vcpl8sceOCBnc7fd999yeVyNfuS8f3JJ59k/vz5na6pq6tb57Hy1FNP5ZJLLmGvvfbi7LPP5qijjuLAAw8kDKvTm6eeegpjDIsXL+5SCN7a2sq8efPWqR8iAnQ9Lif7/Jjt2ZTxBsNmyIgRI9IvhL54GZK8/sOHD++2PbArKFmDoauVlGSQjuO4T31dvnw5QDr574pk5T8hCAKOP/54Zs6cyYgRI9ZbqrpBgwbxyCOP8M1vfpNp06alXpWjjjqKq6++mt122y3tc6lUYsqUKX3uc39pbm7udjWqp5Usj8fj6cjixYs58MADWbx4McceeyynnXYajY2Naa2BUqnU6Zquvg+S74pEF5BFa82QIUNq9iXj+zXXXNNt39Z1rPz2t79Nc3Mz11xzDf/1X/8FwJAhQ/jyl7/MxRdfjFIq7cfdd9/N3XffvU73644BAwYAXXsRkn1+zPZsyviQpM2Qgw46iEqlwqOPPtqn8xMjYNGiRV0ef/fdd4H3ZrBL7r1kyRJEpMvP9ddfX3PNiy++yBVXXMHgwYN5991312vqwJ122olbb72VZcuW8cADD/CFL3yBGTNmcOKJJ6Zfqk1NTTQ1NXXbXxHp0j3fH7bbbjtWr17NkiVLOh2bPXs2Sim23XbbdbqHx+PZMrjuuutYuHAhN9xwA3//+9/50Y9+xJQpU7j00ku7DMGErlfDk/E68aRmMcawdOnSLs9/6qmnuh0r77///nV6Nq01F154IS+//DJz587lN7/5DVtttRXf+ta3+PWvf13Tjx/+8Ic9jtvrwnbbbQfY8bkjyb7kHI9nU8QbDJshkydPBuCqq67q8bzEJT1gwADGjRvHs88+26n6c0tLC//85z8ZP358jXehP2ht/5l15XXYb7/9AJg5c2af2qpUKvz7v/87SikeeughjjrqKK666ioef/zxTucqpfrs6ehIsVjkyCOP5Oc//znnnnsuc+fO5eWXX077vHr1al566aU+taW17nc/DjvsMADuu+++mv2lUolHH32UD3zgA91+0Xs8Hk+WZMJ6wgkn1Ox/9913u5zgdsdOO+1EPp/vcrx++umnO2VJ6u/43tN3RV8YP348n/70p1Mvwp133gnYcKn3uh8HHXQQYRh2GrOhOo4n47rHsyniDYbNkOOPP54TTzyRO++8kwsvvLBLd/MjjzzCSSedlG5/7GMfY/ny5fzwhz+sOe+qq65ixYoVNSlF+0sSB/v22293OjZ58mTq6ur4yle+woIFCzodf+2113jnnXfS7csvv5xnnnmG7373u+y6665cf/31NDQ0MHnyZNra2jrdt6t7dseLL77Y5fnJaloyQf/sZz+LUorPf/7zXWo1nn322dR1n/RjyZIlXf4eumPy5Mkopbjiiitob29P9//4xz9mxYoVaQpCj8fj6Y1EcJz1OlcqFS644IIaLUNvFItFPvzhD/P8889z6623pvuNMV2GaJ566qmMGDGCSy+9lFdffbXT8bfffrvGYOnpu6I7/vGPf2CMqdmXeMuTMXv06NGcdNJJ3HLLLTX9TlizZg3PPPPMOvVj0KBBfPjDH+bll1/mpptuSvcvXbqUq6++mlGjRnUSXHs8mxJK1tUP59koWblyJWeccQb/+Mc/GDlyJJMmTWLUqFGsWrWKRx99lGeeeYZ9992Xp556CrBx8QceeCCvvPIKxx9/PHvvvTfPPvssd911F7vtthuPP/44jY2NgK0ketRRR3H99dd3mrhOnTqVc889l/vvv58JEyYANtxozJgxDBs2jH/7t3+jubmZcePGcfbZZwPwxz/+kcmTJ1MsFjnhhBPYeuutWbx4MS+++CIzZ85M23ryySc55JBDOPjgg3nggQfSVaDrrruOT33qU3zxi1/kZz/7WdqXM844gz//+c+cc845bL/99ukkP4k17chPfvITLrroIo466ih23HFH6uvreeyxx3j44YeZOHFiTezrVVddxde//nWGDRvGpEmTGD16NAsXLuSf//wnzz33HHPmzEmzkvz85z/ni1/8IhMnTuSwww4jl8txwgknsMcee/T4O/zyl7/Mj3/8Y3bddVdOPPFE3njjDaZNm8aBBx7IjBkz+pUFy+PxbBkk4/PkyZOZOnUqAHPnzmW33XZDKcVZZ51FQ0MD9957Ly0tLQwYMIAVK1Ywd+7ctI2tt96arbfeusvsSbNmzWL//fdn9erVfPSjH2Xs2LHcc889RFHE4sWL2WmnnWpW2e+//35OOukkKpUKH/rQh9hhhx1YuXIlr776Kg8//DDXXntt+j3y/PPPs+eee7LLLrtwxhlnUF9fzx577NHJM5Jl4MCBDBo0iEMOOYRx48axePFipk2bxurVq7n33ns54ogjAFuH4fDDD2fWrFkcccQR7LPPPogIc+bM4f777+f0009P31cURYwZM4ZKpcK5557L0KFDGTBgAJ///Od7fPezZ8/mgAMOYNWqVZx11lkMHz6cm2++mfnz5zNt2rT1prfzeDYI70fuVs+GwRgj//u//yvHH3+8DB8+XMIwlIEDB8rhhx8uP/3pT2tyVIvYXNHnnXeejBkzRnK5nIwZM0bOP//8mhoEIj3nqO6u5sK0adNkr732kkKh0GWl5yeeeELOOOMMGTFihORyORk1apRMmDBBfvazn8mqVaukra1Ndt55Z2loaJBZs2Z1uu+JJ54oSim59957031vvfWWnHzyyTJw4EBRSvWa3/vFF1+U8847T/bYYw9pbm6WxsZG2WOPPeT73/++tLS0dDp/+vTpcvzxx8vgwYMln8/LuHHj5Pjjj5ff/va3NTUwyuWynH/++TJy5EjRWvc5v7cxRn7605/KzjvvLPl8XkaNGiXnn3++rFq1qtdrPR7Plkl3dRgeffRROfzww6WxsVGGDBkiH/vYx+Stt97qsk5MdxWbE1544QWZNGmS1NfXy6BBg9JKz01NTfLhD3+40/mvvPKKTJ48WUaPHi25XE5GjBghBx98sFxxxRXy7rvv1pz7q1/9SnbaaSfJ5XJ9qqXzi1/8Qo477jgZPXp0Wr35lFNOkZkzZ3Y6d9myZXLxxRfLTjvtJIVCQQYOHCh77LGHfOlLX5Lnn3++5twZM2bIwQcfLPX19X2q9Jzw2muvyamnnioDBw6U+vp6OeSQQ+Suu+7q07Uez8aM9zB4PB6Px+NZJ+bOncs222zDV77ylU6hrR6PZ9PHaxg8Ho/H4/H0mayuDKweIin6eeKJJ26ILnk8nvcY72HweDwej8fTZ/L5PBMnTmTnnXdmzZo1PPDAA7z66quceuqpTJs2bUN3z+PxvAd4g8Hj8Xg8Hk+f+eIXv8j06dN5++23iaKIbbfdlrPPPpuvfe1rPhmDx7OZ4g0Gj8fj8Xg8Ho/H0y1ew+DxeDwej8fj8Xi6xRsMHo/H4/F4PB6Pp1vCDd2BBGMMCxYsoKmpCaXUhu6Ox+PZAhARVq9ezahRo9JCgN3R3t7e56q4+XyeYrG4Prq4yeLHdI/HsyF4L8Z1P6ZvRAbDggUL0vL1Ho/H834yf/58xowZ0+3x9vZ2thnfyDuL4j61t9VWWzFnzpwt+gvGj+kej2dDsj7HdT+mb0QGQ1NTE2B/wc3NzRu4Nx6Ppztee2oWf/v1PbS3lhFjGDZuKB+56MMMGNLz3+2sf87hO2f/lDUrW0BAa8Xxn/wg51z20ZrzRITvnf1T/jXjZURrsovTokC5NA25fI7t9x5PsaEIxoAIaAXGIKJQCANGDOD0C05gxPhhXfZp1apVjB07Nh1/uqNcLvPOoph5T29Nc1PPK1arVhvG7zuXcrm8RX+5+DHd4/FsCNb3uO7HdMtGYzAkLuvm5mb/5eLxbMT86JxrWPLWMrdlZ++FoMB5V3+qx+ueuetFVr/bCigkjjHA/X94hPN/8h815y15exnP3PUiKgxRSiEIKA0KUAoRASOU2yu8+MDrIIKIsV0RYxtR1cG/ZXEbl9/+9R771teQmcYmRWNTz+cafPgN+DHd4/FsWNbXuO7HdMtGYzB4PFsyIsLq5WsIwgAdaMQIUSUmCDQ6UAgQV6zbNMgFKMDEhoYBDe97X4eOHsySt5ZCZhBtGtRIy8pWig0FgjDo8rohowYD9lkTBg5vJqpEhLnqUKS0otBQpFyKqheLwFrGwTcPbaJ1dRtKK+LIYGJD06CGtYqrj8UQ95KIOk6MFo/H4/Fs9PQ2rvsx3bLR1GFYtWoVAwYMYOXKlX41yrPF8YNP/oLpUx8ApVGBJp2MZ+e0prqSrpQgIlzwy89w4mePfV/7umZFC3/83p+59Wd32v4JiAsJGrntcH755PdpaK7vdJ2IMOPWx/nZf17L6mUt7lmEYWOH8KtnfkDzkCZmP/cmFx55CaWKsQaCUiAGpYOqwdBhyLIeBxeS5LwP9iXZ/6EUBAFKK6QSgQjHfPwwLvrt5/s87iTnvfPquD6FJG2105tb/Fjmx3SPx7MhWN/juh/TLT6tqsezETDj5sdIrYNkQpwYC27+a2fm9rgY+/PD0x5/v7tK48AGVq9oTftg+2h/WDh7EXNfmN/ldUopGgc0sGrpGhtm5Fg8fylvPDsHgGfue572llJygTMCMo10tb6RGArQ4dz0xnYzNul5D017oq+P6/F4PB7PFo8PSfJ4NgBvvb6Qv/5qOq1rSoiCbffdnjf+ORdRGq0VKG3D8ZX9KAERgxiDcoZDEGrC+iL/8/nfIEbsgjyAwD5H786Ejx7SYx/u+9+H+ef9LwB2ld5G/SgnF1AccPw+HHrKAV1eO/HfjuCR22ZSaqvYZQcTgIIhIwdx1/UPMP33M0AEI2LbDDRKIKpEDN96OCsWr7YCZa0ZNGIA9097khl/fpK2Ne0MHD2EtlKMaA2iUMq9CDH2OV0fxBkKQsa2MgaMpO/I6hsEpTVKKYzYaNRt9hrP/3z+WtrLbf36vRkMvTmnez/D4/F4PBsLvY3rfky3eIPB49kAfPesH/PGP+ehggCVxO9rjdJglM6s3ONCbOz/xbjwGyCKDE/e9VxV9GvshBrg79fey7hdRrPtnuO7vP/rz8zmio//tMPeJIYH18Y/+P3rP2fktiM6Xf/I7U+wetkadBhmroV35i7mnTkP1oqPlTVEkr6pIIAwQKEBzeJ3VjH9dw9CHEMYouvqoJCvvgCjqqFGRpwGooOnQaoGQhqehDMg7MureiyAV56YxSsz3yCKS12+n+6IRYh7ieLs7bjH4/F4Nh56G9f9mG7xBoPH8z5ijEFEqGuqpmYTtwq/VtTO8au7A02ukCOO4up5VM/NFXI2pt90PxDqICDIB122UddYtHN5Y9K+9/oIid5BZMPknMgO+h1DnfqIQTC9XNjbcY/H4/FsPPQ2rvsx3eINBo/nfWLeS/P50hH/ZcOQRKELeVQuhwoDtxKvINSoMHThNpDEGalkou1W15UIJortaroRtBgkipDIADaE5z/2+iomtivsyq3ym8wqf1AopMcTgbECxAji2vj37c4njqxQWAUarTVx7FKYKlAibhVfoXIBOpcDHdhwoyCwHhTcXF0BgXu+RNAcBDZcSSl7jlixsjKuXechUFpZDYILN7JtJpN+G5qksDoFu9/Yeg1x1ZWsEEwcu30KAkBr6FvxZo/H4/F4tli8weDxvE88dsfTrF7WYkNyggDlagUkk2m7Ut/Fqr/JSISTuP1E6Os+JjbYvHBWi4AxqbBYRFyEkJuMK5u2tSYu03XCXZF6D2rCe2KTnX+n3gIAFVT7rjRVA8hpI6wWw2Z/qm4rMrerfV6TETJDB4F1bWrWJGyr5h0ZqdVHi7jnkWqIl6h+exkMQuw9DB6Px7PZ0Nu47sd0izcYPJ515J25i5j++xmU28tWh6AUSmkr+NV2Eq6VYs3KFppGDqG9tYSgIdDoMIAgRJS21wYKpbUTDAP2TFDpYjtKCUpsHQYxBu1W1KUSY+LYbTvDwoVAKQVKlB34FGilq0mIJJnfa0AwsU5X8e2282po+1yC1QZorezzJW0E2noUggCjFUoHaK0QA2JiRAStrHFhtH1egsB6WNx59vlAGWO9IcY4J4sVLFspgqQeCHEpVDWBMwoElRGGixNFO9MMiew7UkacxyVT66EP+JAkj8fj2bzwIUl9wxsMHs868l8fvoq5L71lJ8xhRsCsbBagtOhYGoaTt7UWtLYTZ+dxQKk0wsYuwdvQnzjdZxFRbpXcruobQJKqM9nQnuy0P12gd9d00A3byXrW45AN+VFpW6Lc8+jABS0lFZixx9G2loTSiFhhNnFs+xtojNEuYkoB2oYm6Q6KBudNUO7eVU+BBozta+LqcM+RitJc6tTUA+G8GEbEviMDiMLYzlkjpB940bPH4/FsXrxXoufp06dz2WWX8eyzz1IoFDjqqKO48sor2X777fvcxuzZs7n88su55557WLx4MUOHDmXffffl8ssvZ6+99lqrfq0t3mDweNYRHbhyJms7T/QTzE2GRCHS2zkej8fj2TTobVxfmzH9tttu47TTTmPIkCF86lOfolQqceONN/Lggw/y5JNPss022/TaxowZM/jQhz5EEAScfPLJjBkzhkWLFvHoo4/ywgsveIPB49kUmPfyW3zjuO+yZmU7Bgjqi1UxrnJpQ+sKqELBrvobgxUrUy0khrIhPKHGoFIdg9I6rYsATrxLYlcICoXCxvlLbFBiUCaHRLEVBru1fsjG/tt2xMX6V0XQTkgspmZb0hX+RC/gaikEGnSAaI3OhagwsG0mWoZs7Tml0IUchKGtKyG4vhr7vIEVSqtcmGZERdnnq8molIixXcE6ZQRtTFXgjFNfuH0YgxIXthTFSByDiVFxnL4j5e7T0bnh8Xg8Hs+6UCqV+MIXvkBDQwOPP/442223HQD//u//zhFHHMFFF13ELbfc0mMbS5cu5YwzzmD8+PHce++9bLXVVjXHo6h/4bTrA28weDxrwQM3PcqSt5e7rEBJ2I+bnOc0SgeArob6pGJlqvXVE0MiViRChSTDj2uwek0GkWp76SQ5ju0nU8wMqNYtEFMbgpT8N2kjqeVQo39I4pZs/yQ2qGQmr7Eag6gqiq626wiUDQPSJGme3OTd2BCsJNzI1HZMOrhqqrUUgNggsWsnre7sntEYG5LkngdjwBkMEscQRS7cybhb9a5H6EjcB9Fzb8c9Ho/Hs/HQ27je3zF9+vTpLFiwgM9//vOpsQBw6KGHMnHiRG6//XaWL1/OoEGDum3j6quvZvHixdxyyy2djAWAMHz/p+/eYPB4+oCI8PjfnmH+qwtQCtrWtFOozxNFbrKqFCq0gl90UK3QHLg4fTFuZd8KhU121V4rjFQ9DDihtBi7Im+lyFQLnyUr7rErRhZolNFIHNhJMZkaZbFxqVh1JnuQW7VPPAoAGAICWyfC2GrIBG6QNIIk1ZqVM2qMQGgFzCIgFTuB11rZ500qLejExBBEK1QY2pSwzmpSibGTZGQyYg0wl2VJgsAJwZOUsOJqwWlrBMTGvrfEzEg8Dkm1bJduVWkFYQBx7ITRMRJH7t30nVhcMqpezvF4PB7PpkFv43p/x/SHH34YgKOPPrrTsaOPPpq77rqLmTNnctxxx3Xbxq233srQoUM54ogjeOyxx3jkkUcIw5BDDjmEAw44oH8dWk94g8Hj6QOP/+0ZLjn1B9UdLnTIpRyy4uYwB/lcVcQcBkiQGA9O1KwUkplPSyJ0dphEKA2gDIi2E2XB3idJcQr2HjrjhVBiw3/oIFg2blLu+qrsCVXHgMLeJ51sJ5oMd0KQpHx1u0KX2QhlBdhRnAqbjVaQzzvDyVZyFhHXV4UkBhRAJYJS2X6yKVwFKBZsO05InRhlaQrVKE69I9ZzYWr6nK2InQisCRSEIapcQaIIU6oQS6Vf/w68hsHj8Xg2L/qqYVi1alXN/kKhQKFQ6HT+rFmzANh22207HUv2Jed0RalU4qWXXmLfffflU5/6FNddd13N8dNOO40bb7yRYrHYTQvvDbr3UzweT6m11PMJHcscb86x8V2VdO7LCkxyXab+Qs/nd3PPjtf1em+/5O/xeDyedWPs2LEMGDAg/VxxxRVdnpcYFs3NzZ2OJftWrlzZ7X2WL1+OMYZnnnmGadOmcdNNN7Fy5UpeeOEFJkyYwLRp07j44ovXwxP1D+9h8GzWPP/wK1w5+Re0rm5lwNAm/vumL7PNHuP6fP3UKbfw12vvw+iA4tBBNj0nSeiQDSciEekqW1uBIEC0C08KtV1VD9wKd5JaNUNaD8FtJB6AtMiYCxFKKz0nguRs8bZAQWzDdNLrRcAoEI0YbfcnmocEoxFlQ59IwvtF7PNoW4WZ7HViw3kIbVVqnQuQYi5ROtjQJSdzALFtu2rVAs4T41LKFnIo6lBxjIpiqMRQKSPlCqpcQlrWWP1CGKBig6lUQAzbHrgTOx+xhxNl2+c0kRUyL3htIS888DyxJCLtEPJ5+7syBoljDAFK5Rk0dghHfnQ/Hrj89j7/ezAo4l6sQbNZW4sez6bL3657gBuv/AsfPOtgPjXlzA3dHc9GQm/jejKmz58/v8YI6Mq7AEmikKpnvit6OpaECsdxzBVXXMFHPvIRAHbbbTduueUWtt12W6655hquuOKK99XL4A0Gz2bN7b+4m0VvLgGENctbuPO6+/jPH5/Tp2vLpQr/e9VfbBiLdpWLk7Q6SrnCxUmsvrYhRAYQ7eL/TWoEiDK42XPXK/RU18HTuPpY3AQ9E27jJvQ1RkUq+I0zhkKiPzDV42BFw5IJ/UlEz0lIUELyfAZnLDidgQAFjYoFpQwxxoZFdfIeSHVbAQFIoOw7AkS5a4yxBkPFQLkMlQpSrkB7CalE9r1GxtZMKJcBeO3B5/npPd8iCIJO7/BzB36LUlvFGmuxQCFARdbhLFFkn8WFQC16axk7H7RjD/8COpMtFN3TOR6PZ+Pjhu/fzvJ3V3LzT+7k7ItOoq7x/Q3p8Gyc9DauJ8eam5u79Bp0ZMCAAUDXXoSevA8drwc44YQTao4NGTKEAw88kHvuuYeXX36ZffbZp9f+rC98SJJns2TWv+Yx/fczaB7SaOP2FeQKIQeftG+f28jlQ/abuKfdCLRd6XZCWokiu4qQFF7T9jih1SyI+6QCZnF6BadhkA7nWEdA4qlIDIqqB0FFxsb8R1FVKOwmwNbl4IyZZIKuO0zg07apGi2ZnKKJGLvGoKm6CjLtA5XIpie1JZxdV6V6/2w7SlVHGRErwk6Mmzi2uwOFyWlMMY+pK0B9EerroJi3z6dVWugO4PAzDu7SWAA4+qOHpH1RWtl35X5PQRg4kXiAUjBym2Fsu/vYPv97AIjdSlRvH4/Hs3EgIjxz34vc86fH2O4D20Fdkb2O2o1iQ9erw54tj/U9pieZkWbPnt3pWLIvmz2pIw0NDYwcORKoNR4SBg4cCEB7e3u/+rWueA+DZ7PjzVcXcN6h/42JIrtyLoIKND9/7Hv9CkcSEebNWoKuK7o0oEC5YifuWttV7EIhM1F2VY+1dkJom+WHIDmmak10J3i2XghtJ9+G6nKGCCo2qHKUhiVVvQdSvR8upkk5L4dkJvruPqnVktY0gNTQSA2EoPOwKB1+FiBnQ5VUmgpKVYXeqWch62HIiK1dKlallE27qrBC7WQkinNQju17aLWDYWNDgetf+hH5fIgx0uOq4Ee+fAInfeaD6NC+aIkF47I36UBjYsHEBq0VuWKOlpY13bbl8Xg2fe7/v8e56jO/gaZGaKiDIYN4c1kZExu7iODxrGcOO+wwrrrqKu677z7OOOOMmmP33XcfYRhy4IEH9tjGkUceyZ/+9CdeeeWVTlmRXn75ZQDGjev7fGZ94D0Mns2ONctbMNk4fcDEhlJbuV/tmFhYvbylcwiRSO0KOmTOWYvV5R5iGXsXBnfRt95Y15AZlTEUOj1/d+dn7ps9t+NliWEDaYhU6+p2tFIUG4rUN9X1GPsJUNdYpFDMUyjmKTYUqG8sUqwvkC/kKNbnqW8qUmwoEAT9H/68h8Hj2bRYvnhVNWW1sn/za1a3E3f4jvBsuazvMX3ixImMGjWKP/zhDzXZkB555BGmT5/OySefnNZgaG1t5ZVXXmHhwoU1bXzmM58B4LLLLqsp0nbzzTfzwgsvcMABBzB69Oi1feS1wnsYPJsN9//pEaZOuZnIQMOgBiqt7Tb2Hthm93Fsv8/WfW6rva3MDy+4gbphA6G9UvUwVCKkVIRSCUKFCgTyeSQXIEq7L6XO4T/GaQIkCdlJwoFMImK2iaBVWwnKMSqObCx/uUzcXkaZCB1oxu+7IwtenEtpTbsNrQlDVH0dKgytxyEfImFgpQJi9QrK2KJstnaa2zYmFU4LTpvgvBVJ7QIxYitRa+Wio0yq0JbYgAYdKsiFaQpZ+xyxs6kUks+5MC3nTUhv49LJJt4XF5alBNTqNlRJEQxpZsc9xnDaFybSOLBh3f5xrCeMuJoZvZzj8XjeW+6e+gD/96O/8KFPfZDTL7Rx3i8+8io/+cK1tLZFqHweyeeQYpHirltTzoXkiiG7bTeCM//tUPKF3AZ+gi2P1ctb+P7kn9O2pp2vX/+fjBg/bEN3Ceh9XO/vmF4oFPjFL37BaaedxkEHHcTZZ59Ne3s7N954I4MGDeIHP6imaH/iiSc46qijmDx5MlOnTk33H3XUUXz605/m2muvZd999+WDH/wgb731FrfeeiuNjY388pe/7PdzriveYPBsNvz66zewbPEaOwGNDRJV0mJnrzzxBs8/9Ar7HL17n9p6+oGXeeTOf7lwmQBi7Mp3ewlpaQVAGWXFzYGrkpyE4SRi6GRSnIQOKRDtsiVBWlPAhuoYVGsJVXIhT5UKUioh5QqmXIHYrjC889wsVi1eZcOhghBdF6DKse2fUpDLQSRVbUMSw5+pDJ2tdyDSzSpbko0p+U5NwqS0soaMUlbTgcYqmhVUTKbmA5ALndjbtdHBMyBaQawQLek7Ue0V1Op2WGFDhVpbyxx4/N59+p29H/Rltcl7GDye955rLvoDa1a08Ouv38Ap5x1HEAb875V/Zt4rC9CFAqrOaqGkzmDq88R5KJUiyvmADxy8/Ybu/hbJQ7fO5KnpzwHw99/ez7mXfWQD98jS27i+NmP6Kaecwp133slll13GtddeSz6fZ+LEiVx55ZVss802fWrjmmuuYY899uCaa67hl7/8JfX19Zxyyilcdtll7Lbbbv3u07riDQbPJs+rT81i5dI1bL3n1iz9x/OZkBW3ZC0waMSAPusXRIQoNhQaC7SX4lRELIDKhxDnoexchMaJkXNhVaeQSfeZkngdMFTDeahO5KPYrtpXKtaISHQBOq56KkT4wLF78sD/PWabFlvATIlUqx7HBgq56vAWaGckUNU74PYpbNrVNK9rV/11PwfuubQzSrIZlYyBWKWC77S9KLbPYACtq5FQCiRNRasykgtBAo1WtiI0UcSBk/bs0+9sbZjzwpvMfnXee9a+x/LEo29QHNhEoDW6ElMA9jx4e7T2EbGeteOduYvZZu+teX7Gy2y719Y8ff9LmFgYtvUICF+GfA4ThjaldU5j8hpxEq8DD95hQ3d/iySODSoMKNTliSoRe0/YdUN36T1n0qRJTJo0qcdzJkyYkKZh7YjWmvPPP5/zzz//vehev/EGg2eT5pHbn+Syj/4EcjmUUuhcLvPHZyfe2+wxlp89+l0Kdfk+tXnrb2fw2yv/hoQaiiEE2qYEDTSsEVQ+bz0PQrrSnhoLHUiFyrY3Lquo2PYElBFUKYI1rdDWBqUyQS7gB3//OsNGD0YHmiDQiBjiSszQ0UM47+pPEUcxcWSII8Oit5Zy0cTvYrQVLatQ29oD2RSnccbjoDPZl6DqdajpuKqGYQUadJB6SlQU11ZRTjJEaV27Xyl7v3xYq/kIlK3FkHpgnHehFKHaK+j2EuRzfOln/87Esw7u0++sv7w883UuOOy/MEM7Z6DoiRhN3Iv0K16Xjm2GXPr92wnqG1DliOLri1ACH79wEp/48vEbumueTZAlC5bxH/tdTLm9gsrnmfPau1zysZ+nixl6+FCkWMA01xHXh8RFTVy0Y9mUL53IBw/feQM/wZbJ1Cm3cPNP7iRfl+OXj36HrXd5f+Pve6K3cd2P6RZvMHg2aRbMehegVgjbwVhfNH9pn40FgIXzlmRW4xOSTEMdTs4I6fpMsnpvMg0ak4b9xJWYcluFYaMHd3l506DGmu23Xl+IiQwUwtqUpgnrInLu2FbiPejqvK5u1FXdie5Ey0I1nAlYvbKt393tK+/OXWwfQ3fTl26QPmgYxGsYaknCzSKTRu0tmLdkA3bIsymzfNEqyu2V2p3Z9NHJR7nU1Zm/8dWtpfexp54sC2YvAqDcViEqR72c/f7S27jux3SLNxg8mzSHn34gf73+AVYsXl3VDRgrvM3lG9hu97Gc9bUP96vNo0/Zl8cffJU1raXUc2CLjoGqa0orLhsj6LQAGlX7IvmCygiJcf8Tki80bE2C9hK0tZEraMbtvSN1hYA9Dt6BvY7o+yrY3hN25ZwpZ3L/zY+z6K1laZE0lQtSQbHts+uUoZpuNvE+mNgKobOi7UR4oa13RVzNCdVYdGJp91haWzG3O72a6ciFcYVBGtIkuAJuaQVse5FSQDGHLgZorRg8uJ7DT9i7y+ctlyr8/Lxreenx163XxqV0VUFAfXMd5/zXaexz5C7dvq85L7zJX341nYFjh9MqlW7P6wqvYeg/Ta8tJD9kKIhQP2YQHzhgWyZfdOKG7pZnE2TpwhX8/orbGTh8AO2r21zihACVz6EKOaRQQOqLmIY8cX0O6gOoU+hQM2xwI4cf6LULG4pPX/4R6pvq2G7PcWy35/ubDrQ33gsNw+aINxg8mzQP3DyTd+ctra5ki6RVi0utMHjUYD7wwT361eb0Pz/N0iVr7CRXKSTQtYXQEiPBuAl3NgwnoYtVdMmG5IigWtptKFJLGyVg8JB6vj318/1+B1prPvrVE/nDd6ZhcnlUYABXy0Cb2j4n/U22k+Jvyb6u0sUGSXE6sSOGkar+AGxgcHo+NY6GVJ9QztRlCBTGBEgoVvuQPEdbBbWmDb26jYWr23jg9qf5yBeO7fS8T931T+787X2uFkaICoNqlijgVxf/L9c8elm37+vG70zjhcdnETQ2EPXd8eRZSyoqgFXtIEJ5VTv7TtiV4aMHbehueTZB7vjt/Txx93NW6wV2DAjFJl/QIaagXSkbIdJCRcXEsUKUYd7iFdz75Gt85Nh9NugzbKmM3GY4X/l/n9rQ3fCsA1515tlkiWNDXWOmWmcST5/oCZRi14P6v6K06z7ja0XAJpNdyJia0CTBub3JbFMzZ67dFlu4jCi2rvLMibutw+rXsoUrGLvTKOc5yFRfNlI1DhI6Gja9LZ6YrJGRefAkjCqbfSm9X/VcEUG0sp/kkZ1hJ85TIYAJQHKhM0Jgp27S4G69+1jydTlAIYU8UlfAFAuYYg6pKzB6lzG88uw8Xnl2Li/OnMWLM9/glSdn8drTc3jp8dcZtFUzUiljKhWk1L/aHLHoPn36w8KFC/nc5z7HBz7wAYYOHUqxWGSHHXbgnHPO4fXXX+9zO+VymSlTprDddttRKBTYbrvtmDJlCuVy/55xfSPt5fTfXK4Qst2uG0/ssmfTYuf9trUJJnKh1ZGlY70bblxWOFFgjEBsdWKIoBXsss2IDf0Ino2Q9T2mb654D4Nnk+UXX5rK3377AKqumAmlcbNfFwtfWQu1UqVUXb2CanKjZCKLdh+lnQHgFvEzXo5kDl7NDKRs6tRKbI8bQdpL0NqGDjTfmvo5Dj3xA/3vLFbH8dl9v04lyKEb62316d4KqiUZasQkD1N7vJNR0VEX4UTTWlU9ExlE4TKUBEjeDjM1Z2iFckZEehsUyhhUFIGCqNR1uFAcGYxR6PFjkIGNmLpcuvShW0o8+sgsHr3rh7ZWhpssiBEolzHlUrW/7e3Wy9EPDArTyzqL6adoZN68edx0000ccsghHHrooTQ0NPD666/zxz/+kf/7v//jgQce6FTpsys+9rGPMW3aNA488EDOPPNMnnnmGS699FKee+45br311n71aX3ykzu+QuPAgYShpmlAPQOHNm2wvng2bSIdoIcOhpKtUYOIzcBWLEBdHlOfJ2rMUWkIXWgm2Or2dqUi8sXaPF3Q27je3zF9c8UbDJ5NljeenVud+NJhMuuY9fyb/W531ssLu19176XKcI+VlpOonGTbVW80saHUuvarwAtmv2szhjQXbTajLH0JvextLHThR/ZnVeM96PmazLVdnN9JRxZL1cITmP3S2+x7VOfUe2+9tpCoHKELeaeByNw2tt6bTvcTsdmzkv19qVDdBe+FhmHfffdl6dKlndKMPvTQQxxxxBFMmTKFv/3tbz22cccddzBt2jQ+9KEPcccdd6Rtfe5zn+Oaa67hr3/9KyeeuGF0A+N3GU1zc/MGubdn82L2KwszXs7M33KiXwu0XYRIxp1kDHKnz5q/hH12GrMhuu7ZiPEahr7hDQbPJsnfr72XSqlCfWORONDoILR/0q5eAijCQsibsxfzlZP/h70O24lPfOX4PuV+P/bUfXnigZdpaa0gAUkpB+vaVljxrwut0TpACqQucZUJM5LYZL+vEBVaD0N7mSCEobuPoygRO+41jsM+vG+/38HT/3iOm3/0V9oiYciOY2lrj5Ck0FwQpImLxH1vipMeIIJxlZ4VoQ1jSlbetEIp7TLGVqs+o8Eo7QTGKiPg1qmIW5L6EgkajFKQC+w5LkRK4WovJDUYki/4QoiuCwkCxZCBdRxxctfv5IDj9+b0L53AzEfeYEVLCaMVphAi+QDZqhniRqgYgthAOUKXbNVsFcUQRUhkjRKlNRUqsKbfr369kst1XXH28MMPZ/DgwcyePbvXNpIKoZdccknNv/FLLrmEX//610ydOnWDGQwez/riw584mAVvLmXB7EWsaS+zpFQhVgoJFZLTBDkNBY3KayRUBKqajWLE4CaO2v+9q8HQ3lbm2u//jVJ7mc9cfBJNA+vfs3ttirz5yttc/+3/Zft9tuHsb55Wm9nQs0ngDQbPJsfKJav4yed/Y2sv5PPoXA4oZ1aV7KdUipj1wtsAvPTUHD5wxE7s3gedwD1/fpqli1dboW82649zf2crOaMUkmxnMTbsqIbYoCoRtNh0oU07jOCH0y5a6/fww0/+P5Ytb7MhWcWi7a8kRdq6cb131Bgk+oTU/aGrqVkT7YPCPbfYqtbabotSdp9OjKhsGFOS0jAJfbLZmarGU3KOSgXluhShV7WiV7ayYGUrD93xLGd8/oOdHiEIAz59xcf5645fJSoWkHJkhY6BgsjeS8WCrhhUW8XWd6hEtsBeFFVDkjTYK/tOX+JZ4968L33kySefZNmyZRx11FG9nvvwww/T1NTEfvvtV7N/5MiR7LLLLjz88MPrpU8ez4Zk4OBGvvHDswA47bSfsqa9YvUKgCghUoIRk+oXEoGUEpi3cDkPPPkGpx+z13vSt/v/8ix/++NjAIwcO4SzzzvmPbnPpspvL76RR29/koenzWT/4/Zmx32329BdSultXF9fY/qmjjcYPJscpbYyg7YawPIlLTYdqISdVyuyE3wRcnW2oNu81xbaYmhhgFKKShQjArlcAEphYkPz4PpqmE4y6U/ai2O3ZK+qE+ukajFUl/KzRgYkSt/qBNwIw0YNpNxeIV/seoW5J1pXt7PV9iNY+uScmuJwqRGQDQeCjJbC/cedr5IV/oxxk2o1kl2ZGgsqjrEWg0nfra0W3TFMqaprEEOtMJHMa8g+VIDVOwQaJUJ9cx3zXnuHXE67doTR21nRYhBqxmw7nLnzl9t4ZgWUlPWuYEWPsQKd0ygT2GxWtjy2rYwNoHWveoSO2FjXnlfGejveHa+99hp//OMfqVQqzJ49m9tvv51Ro0bxne98p8fr1qxZw6JFi9hjjz269KBtu+22vPTSS6xZs4bGxsYuWvB4Nj223WYYzzw7rybjhHKfZDuLUrBNN7Vt1gfjth9hdVlG2Hqnrd6z+2yqbLvneB69/UnqmuoYNmbIhu5ODb2N62s7pm9ueIPBs0kx619zOe+gbxKrAFXIo3I5VC7XfVy9sSk/K2XD1878eRquI0Hg0oVmUqZCtZ1ckE6iVXY1HtL/i7s+CYWyO93HiPUoZEV2STYhpUEiHrj1Sea8+Ba/+Mc3CYK+T1xXr2jhMwf+F8tXlggGDbLPEHb/pyxK2crKOlnWt4aPMpnnTY0Dqtmmkm33PCq2FZ4VICqoeloAFdtvahUZq0XQCgk1JrD1Fjp6HwBMUmAp6acO7btRGtVS4upv3QKVClKpIG02Lednv/8xTjvvOJRS/PgvX+Y33/wTf7vuAYKhg1FDGjHY0ASTt1W6JcpZb0NkrMcnrtaPQINE7TC/z68e04dKz4lAbtWqVTX7C4UChUKhq0sAazBMmTIl3d522225+eab2XnnnmtyJPfpTieQ7F+1apU3GDybDd+74iO88spCV5ReExljFyACRRBqjFhvAygCrRjYWM+4kYPes/7stu/W/OburxJVYsbv4A2Gjvz7pR/hgA99gBHjhzJoxMAN3Z0aehvXvejZ4g0GzybFq0/OIipV0PW5agrV3sgKXDvWGOjrwkHH8SLrUeiYPSj5f1cGjNSeN++VhbSubu9XvOs7cxezfNEqqK/rfP+aPibP2aHTnQTB3VyXXJJ4S7LHO772rEci2c6KD3vDXa9cWsSa0KkkpSvw3MOvctp5xwFQ11Bg0bzFkMs5oymo3jPzbKqjSLK7Z+0D/QlJGjt2bM3+Sy65hEsvvbTb60488UREhPb2dl599VUuv/xyDj30UP74xz9y6qmndnudpN6inp/Fxwx7Nify+ZA99xzb+4nvI6O3Hrahu7DRopRilwPfOw3JuuBDkvqGNxg8mwzvzF3Evx58kcFjhtLWHjtvgUYHNjOQuFh8ccLatMCy1hQaijQObSKKhFXL12AkdpNJjShneAQ6nQhbsW8i1MXGxbsZcSoeVi4tqAtNEsTWMBOBQCFGu+JuBoldjYJymVwxoHnccHJBwMSPHdRnY2H2C/P5v5/exZqWMiN2GsPKFS3WWwK2gJETHSeCYqWqtQ+UVohy3hDECrKFNEd5Ugk6udamIiQ5G1RQDcFSCqHabio0V0k4gNV1iCv6JqF7T07vIRmRdNpG8s5N3nkCrKdCxQYVxahKTCEWVpmA/zr7F5hyBYXQsrKVhoImLrejVmpMMY8Uc/YTKsgFqEBbb48J7O/RgFihB1q9d/m158+fX7Pq35N3IUuxWGSvvfbipptu4oADDuA//uM/OO6446irq+vy/AEDBgCwcuXKLo8nHoimJp/O1LP58Py/3mTarU9RKlfYY89xfPSsg9DaG8Uez3uFNxg8mwy/vuj3PHTbU+h8HvJ5GwajNUrbybiIqYnFB+zEV2tKrWUumfpZbvifO+2qtNZpeBKBtuLcUKfXVHUI2Elml2lBEy1DssOKbYHagmZxbAu1lcvQXqIEfOLLx3PK5zpXMe6JH58/ldeffxtVyNlVda1tClGoipxTIXZWZ0E1zCizYp+GJCXF6BK6ED1LGr6lnXHgvpjTrLaJIUGNCNoaStrVZXAGjEuFKh29AemLlTQOWSmF0gEBEK9Yw8tvvYa0tyNxDCUndA9DdBEIIkRZMXYSmkRsxedKbDgSUPO7jOKoX78DQ++6h8R93dzcvE7pRIMg4Mgjj+THP/4xr7zyCvvss0+X5zU2NjJ8+HDmzp2LMaaTjmH27NmMGDHChyN5Nisuv2QaS1e0glbMfGI2O+wwgv3233ZDd8uzCdLbuO5Dkiy+fJ1no6fUVmbF4pUMHD6w80FXMdgYYysHI2mIRpYwFzBgSCODhjV1Dhsyyaf7jDmSPb/D/Wt+zobQZLdTma9lq/F9d123rm5j1dLVDNlqIKlwuisDJvPpEmNcZWo7sTfp+arm2i4/6W1rW8+2YzKf7LVGJHHSpG1kt2vemZHqIybXK5vwxOQ0UggxYYDRGgk1Egb2eZJOJt6JJFVsYvC4586+JzL/7yuxqD591hcLFy4EIOxBowJw2GGHsXr1ap566qlO17/88sscdthh661PHs/7TRzFLF+8imWLV7NyRSurVrQwZGhjOm5orRi6DgUBV6xuY8WaNpavbmXJijUsWbGGlatbWdNWWo9P4dlYeT/H9E0Z72HwbNQseXsZnz/gYlavLkM+RzhksA09SrwJsUGiyG672d+4XUbzycs/mtYaQCvG7jiS//nSDbz01By7Ol/I22tiN8l0qUJrKxpL2qZys1sdaD5x3jGM39FmxFBKEUeG155/k//7f/dXJ/LJCn1s03lKuQyViCGjBvKN336WPQ7ZqU/PP+eFN7ngiEuphM6r0thgBc4dtRuBrmZAyq76Z9EZD0riARDpcpE/a5DUeFIy+g8BV5NB2Um7ymxj33s1xMl6FEST1nFAKZQIOkrChMSdoyAAQqzHADCNIfHAPCqqCph1JUa1R+i2Csp5SZQA5RgVBu4Z3TtRoLRY64OM5KKfIQxxH0TPcT/NkGeeeYadd96Z+vra0LQZM2Ywbdo0Ro8eza672gJ2ra2tvPnmmwwYMICRI0em555zzjlMmzaNKVOm1BRumzJlCiLCOeec068+eTwbC+VSxPkf+gHzZi9BCnlMXR5VDDEKtFJsv91wvnHpKYwfP3St2r/jkReZcv3dduzIfJSCMAz49Tc+wu7bjeylFc+mTG/jen/H9M0VbzB4Nmpef3YOq5augWIRlZ0kZ5e+k23Hmy+/zd6H70xdYzHd17K6jZeemGUn20lGouSa3sTPmcmziQ2VcsQhx+xWc8o/H3mta+9D0sfYhg4tXbCCAUP6vhL2/MOvUGorowfWZdK4dtHF5D/vlc+wm/cj3Z3T8XzVzfFMCYheBehSG06EAVXpwiuUGE+dUu320v4G4mc/+xl33HEHEyZMYOuttyaOY1588UXuvfdecrkc1157LYHT6TzxxBMcddRRTJ48OS3WBnDSSSdx6qmn8uc//5lDDjmECRMm8Mwzz3DPPfdw6qmn+qJtnk2Wpe+sYN5r70Ah7zKu1f4pz3r9XcasQ7rUR56fA2R8wJmvlEoU89Qr873B4PHgDQbPRsob/5zL3669l5bWCsN2HMOqlbbYmWAz6UgU2RoMMaggTOTIaK054rT9mXHb0/zr8ddRYYhohRHYet/tWPDmUluxOExy+7tCZ2nqT6tDkJxOV8Al0iDWWzFgUANHnbRXp/5+8JR9eejv/6RtdbsN2zGCYFAmQuc0xUGDCEQ4+EN7M3bH3r98/vXgi9xz4yOUyoZB24yktT2CMER0gA6DNP5f0tVzVQ25UcoKiTO1D5LjWRspeV5x1kaaRUfE1TZTZMN5VHLPNKORpF+wAogGFWj7vp2nQAVOIK1tOtOsENt6dUDlbJ0EcV4IEk+EM7ZU4g4OSQviKQFVL6imHKps0BWDNsbaaEoR5mw6V6M1KHG2lPWoJIacVgrpyuDoASMa00uWJNPPjBqf+MQnKJfLzJw5k7vuuosoihgzZgznnnsuX/nKV1LvQm/86U9/4nvf+x6/+93v+PGPf8yoUaO45JJL+OY3v9mv/ng8GxNbjRvCARN357kn5pBvKKAbikjRjutBGHDqmfsThGu/UnLyobvx1HNzKbVH1stgACNoFIMGNTDxgL55gz2bLr2N6/0d0zdXvMHg2Si59IwfsXjRGlSxgMrn7c44RqLYGguVio1Rh04r7/ff8gT3TnsG6l314yT9aloTAIjctbG4+JTYflFEsQ2ZMYlAOJPqU4QlC1fw+L0vM9YVEEt45K5/sXLRqqpXIYqQcgVpbwfg9M+ewr99q/vUmFnKpQrfOvH7RDpnKzjnc9YzEks19CoxEBLhsMmECnUMIVK2mFDqSUleVRI2ldJRnyDp9ShnWCRRTZGtMZForZPJvmiBULn6C866UPb1piuDLktSR8GFBImeQlUNkiTMKDk1I9ZWBnQsaCPoTL0LAcTVhRDi6gOLSU9QbjuK+2cwvBchSccccwzHHNO3qrATJkzoUqMDkM/nufTSS3tM3erxbGosX7yaJx96AxFhhz2Hc9WNn1uv7d/72KusWVFKjYVk3DHA4raVPPbUbE4/vuuEA57NAx+S1De86NmzUTJgaLMV6SaCZpf6U7AiZ3H7UjI/5+tzrnpx7WQwDdvpjY6RRTUbQl1D5/SYAwY31oh3qxFT9urmIX3LUFNuLxMboX5AQ83zScdPh1As+2a6OK/DNdlt03GbWsFyl9vOHjJu8h9njnf1viRzTXVnJlSrpuYC1W2T3TbdnGOq3o0Ofe34fF2JsTv2uy8YehfI9c8E8Xg8PZEv5sgX7drmwCEN6739gU1OO9QxYYX7eWBz1+mMPZsPvY3rfky3eA+DZ6Nkh/224/V/zUNWrCTI5229AZcRiahiT1IaghAVBDbURQE6oL2iUPkQyeUgF1ovQyoIdoLfVM2crLK7kJwkXAYXxgOAdpNW28wvLplG6+o2PvK5o9P+brPTVmg3iTYtLZi2dogiBo4YwOf/5xwmnHlQr8/86B1Pc/knfo6qr0PCAnpwnfUs5EObAjaDSuN4XehPVnistRUNJ5UjnLdBJdmE3KtQQSa7kNsHdnAUrZC8rQ5tkvMRtHGr90ZjjKAl2XYVlENlw5KS8KJQ2b4mKU0Tz0cs1ZX+JLQqdt4E5wRKQruUc3QY11cdi13piG07SrD1FpK+Jh6MQFvHS9X5Yp0MruKzNt1KQjwez0ZCY3MdP7/9Ql5//i0O7qAdWx987sxDGTm0iWt+N4O2Uhli0MaGW+bzAeO2GrTe7+nxbIp4D4Nno2TGn5+0Ofxxk9pkYp/UDBCqWY1IVtxVmvVGBGco6Oo2VGeIXSyLJyvwaZvpknR1ZTtZ2f/Hn5+u6e+jdz2PiQwmNki5kno3Vry7ksEjmvtUZfehaU+kC+lpJiOdmeRnu5vtf3JNEkIEdFo6F2ra6SpDbI34WFcfu+M1ya0QECM1Rkj6qhK9Q8f70nW76X2zXcm4AVKbxv1fsh6IbJtVGUbnV2A69L2rk3ohydfd28fj8aw/xmwzjKM+vA/F+vx6bzsMA+pzeVpby3YITcYYgVIpYubTc9b7PT0bF35M7xvew+DZKPnEN0/hxu9OI2ovoXP5zMRZIIrs5B2FCkN0aD0MdnVZo/MhKswRB5pKbACNcgXHjBhQVjiMUnZb7Mq3SifAggpUKug1cWxD/20DBAo+9LFaj8EHT9+PGTc/StuqEhRz6LocgRh2PXhHdjlwhy6fsVyq8Jdf3s07by5FF/JEuRzF4QNtLGUYYgINOft8aG2fTyTNjppMgINMpWnjPCjZ6smilLtG2VAirWxFVK1sQRr3XrUzzmx6U40ObZE1K9+GAG2rMBtBtKCTatCJSBprr4lWKMRpLLT1DgS2AnfgvDtWNiJOZqFdiJM4L47UpGrVWqVpUE0Agbb9UEpsasVEGK2clENInz8JRdLJO3IWjBaFVgEq7t8XQSyauBfRc2/HPR5Pz7w883Vm3PI4RmmkUEDydkylmOOwI3dmjz3Grtf7HfyBbRg5ZhDvLlmNKscUVsboNe00DaxnwqE7rtd7eTY+ehvX/Zhu8QaDZ6PktC9M4rQvTFqnNj62/6W0L29xfjS74i+5AGJji/5qSOOPxFRz82OFb+mydhq4L/Za4OHpL3LKOYen93rib8+wasHS1LNw8n9O5D//Z3KP/bvlf/7K9f99E0F9PTQ2oHJW3CxBALnAFiZLRNsZOtaXi42kYmZJ+plFxOrDlWCS7FBdCDWUu07c5D0JAUrigcQ4kbMLzcoKwdJ3p8is+gvJe0/7HsVoA0S2+nIMiBIbQhU7/XZN9ejqfUTZPsbGVdR2z5p6G4Kqi0KMDUsSVxciSsTtMejYYIwgsRBX4m5+O11jsFWkezvH4/GsHeX2Mhd98FIqhKgGOzbSWEeluQBhwO1/eZZb/3wBDV1oydaWF2e9w/ylK0GgbkkJtaQVtaqFNW+v4LkHXmHMxw9Zb/fybHz0Nq77Md3izSbPZkuu0IU93EN6tP5Ep+Q7tJ0v5nrc7rKNYq730Jj3Mp3bWrS9PnrTbRtrOyb7sdzj2WxQWhHmw07jYhIqFATaegzXI/lcZjzPZpKj81jv8Wyp+L8Ez2bLD/70n/zxF//g3tuexaQpRW2oiwpUKpQWpZCcC2tyk2gbxi8QOaG1W2hXRiAyPPvELE7a+gIGDm7kB7d9iY98+QSGjhrMsndWMGBIIx/8+GE99u3Wn9/Ndd//G7lxo1CFAiYX2JSvYQA5jSERMGcEy8mqukoEzJJWak62ASQM3FJAsk8gDJDQPS/Y1XitUk+DMvaThmQBYSwoo2xAkjjxcSKKVi7sJ6er3giS+g5VjYV9Z0loFCitrZdCG0QUorUdhZQznIwVY5OEmCmXPhUFFZci1YmpU1F0LKl3BOcZ0oASZTUl7r5o5bwk7jr33vqDD0nyeN5bcvkcP3v0ezz+16dZsbyVO383g5IYgkBRGVrP6oGaT1z0O3556UcZMbR5vdxz/93H8aOvnsobby5mzv0v8fg1/2D4NiOY/J2PcdSp+62Xe3g2XnxIUt/wBoNns2XEmMG0rikRx8ZVd7YFwQTAYGsGYIuMpSv9DhHBJCE4WaFtLDYmqK1EVIpYsnAFM6c/z8mfPoqJ/3Z45050w+2/vg+jNcplMpIkZh8XYpMVb2e8EEnETzatqlDdFp3E6avkQmskOM0H7pAkYUyuDYxg4uzzJ20nYVnVfogm7WtHL0UaDZX01Uha/gBV3VbGbSOI0x+kIUkG0LbfiQjBOH0DHfqlYve+TPV9KOPapRpxZrJpWY24c2p/532hb3UY/JeLx7MujNt5NON2Hs2tP7+btpYyqr6JqCFPlNdERli4eBWP/XMupxyz53q756H7bMuh+2zLBT/8KyaKWfj6ArbZcat+Lyp4Nj16r8Pgx3TwBoNnM2fSmQfwzMOvUTLVmgFoW+lZKWXj491KudKK2E2wtYAWq3cwsS0nprEFyxADxQKqElEXwMoFS2lZ2UrDgPo+9enlma8zbofhLF7Sgso5vUKgkFCjAts3UYpYAYFytoOycffixMbKTaxF7PHE4wDgKiyj7POgsJWtA5XOqwPtjAvsZFyFuuoJcBPqRPSdiCaUtiv9iaPDOTEQl/I0yZgKrk6DOLGxpppWVSvr3QgEI2IFzYH1fBgnwlahzatqAAwEqS5DQZQ6iqzxkbMWoE77bsCo6vDu9A3JO0yK0SmXaVf3M8G2EYWRnicQvR33eDy9s2ZlG2vaKtSNGUpbPofJQ1RUxA2a+qY875pWWktl6gvrN3PShz8/iTnPv8luh+7EuJ1Hrde2PRsnvY3rfky3eIPBs1mz3xE78e1fncs3Pvc7u8OFzCThLhIEmJxG3CRVXIED40KPIBP+UolRpchWOW4rYVraWbVyJX+YcjML3niHb/z+vF77s/zdlXzlmMsxDU3QWIcp5CAXYPKhzVqklBPq2gk92k7Q7Qzd9S1pzM3YU9muqvVWoEG0RjSpxyIhdq6KJCQrBoxyXgxX2dkktRIMLoOUFSBLknGJjINBpYv/NRgjqUg6lUAnImcUURIqhs2AJIFG3KiknMchNlYgrd2Dmi40H1HSd1zfM/cFa7BI6vZwzy6dBeQej2fj4Opv3cwD/3gRM7iR9mEF2gcGRHWauAAtuTJX3/MYC1auZsqZx67X+37w7MP44Nk9h5R6PFsi3mDwbPZEUQ+ZcFQ3P/eJ6qw1qkR9usIYUw0HSlzdWZf3lryQ0fHZpftDGwrTh5Akn7Pb41l34ijuMD5XFxeS/0fe4vesB3ob1/2YbvEGg2ezZ79Dtufr3zud//vjY8ydv9Su3AfahgE5j4NyYT5J5WMloIrVTB1KBF3R6EqMWrEKWb4CopjmoU0c/8mj+MhXP9ynvgwcPoDdDtmRl597G7RG8jnIB+hAYwJXtdl5BYwtUoBot3KeWVlXqYaAqpjb3SNJnEpS2dmJpyVbxdqt2AuktRkIkjoL1XdgjRmpipidl0ORVGBWqV7ARf2Q3N511Oo0MhqLpJq2QVBaoV3bAS68KelvkOlrGbQSGxKGcjUjJM36Ck4XYawAWrn+S1LXIXlnif7B/c51pX9DoBGN6UUA19txj8fTmX/NeJnv/fsvqKgAaain0ljEjB9M++AclUaNqYO4DiQPhAqTgzvefp2BD9Rz0YS+68c8no70Nq77Md3iDQbPZo9SigMP35ErvvMXV4gMBIMonRoMNcvZkqTwS4S0gooNUorJrW4nXr4S014GI6xaspohowbTPKSpT315+/WFPP/QK6jhw5AgSAW74oqQ2dsZO9k3pMJfle1f0snsTyq1JKpxQqp6ln3mrDBYbNFsbXNMi3tOncQZpZpoIfu/tO309tV7dY8zFhSuerYLhdJAbPuhkuNKpdqMlFigAlI29jHFiaBrbmF1F8SJsSBpjFS1a5J5X/aaOOrfCmWMIu7F39HbcY/H05m//vpeVixrQdfXQRHKYUA5p6hooRwI5ZxdTLC5D4RYQbli+PXMp/jSEYcSaj+p86wdvY3rfky3+L8wzxZBfUOBffbbxibdcSvY2bh7cZWA0/mxsiJfo8EEyuocigFxUxEGNKcVjOubiuw/aa8+92PUdiPYZo+xsHo1Uq5UF+TdJN5WIXaFydzkNy3KBmlK08RbkEx+VaYycvosyTUKu3yfahywhlNgM0SlE2hlnzfWVk9gQjA5RRRCFCYaA1st2ri202gqyXzcdrqpqsaCEkEbQceCipJUrdVrVCQEceZ4ZCtQK4VVomcMgiQ9aupm0LgMTlVPRpquFStcT68xYjMxred87h6Pp3+88sQb3P7L6TQOaUQXC0hDEZPXYIz9+48gKAlBm104UIL72zXEecMxO23njQXPRsn06dM57LDDaGhoYPDgwZx++um88cYba9XWc889Ry6XQynF1KlT129H+4j3MHi2CKLI8Pq8xZCz+fiNm0xm42LTsBrspDMOqudILJgYcu0VpKUNZQxiDK2rWnnzlbcZs2Pfsmm0rGzj7dffgeYBqGIeEwa2D25Cr8RNcBU2ZCm7zp+kWk3nuCq1cWzNBlIPQ5LKVHLOOFDVh7Sr+S7kR1U/kqlVYaB6XBTKJKlJbXiUcjUTstlZUzIvUlTSX4VSzhAyQOjE1V3oFCSTCSn1mFQEnUwWss6F7DO7EClbwTtrTGG9OBnpiKQX9w8fkuTxrD/efOVtLjj021BXj2pqgCGDiAfWEzXmiPMaU7ALFHEIEirIQZwXogYwRQENz65ZYGvH+PSnnrXkvQhJuu222zjttNMYMmQIn/rUpyiVStx44408+OCDPPnkk2yzzTZ9biuOYz796U9TKBSIor7pJd8L/DebZ4sgjg1tbeUeQ2d6/bpJ8/jXhrGsWd7S536U28uUSxXQumvR89qyNk30dE03x7LegD7ftsPz9buriVHSMSqrPw2szX27IKbqvu7+4/F4+kLb6ja7ENFh8SZdyICaxYfsAkfC6nIpLbjp8awNvY/r/aNUKvGFL3yBhoYGHn/8cX72s59xzTXXcPfdd7N8+XIuuuiifrX3s5/9jJdeeqnf161vvIfBs0VQLOY48qhdePDhV23tBeXEt2kIi105T+qdgQ2FIQbdFpFb0Y5avgrVViIYUM+Oh+/EsOGNbLP7OD74ib4L7oaOHsy+x+7FC8+8acXCgUJyGhNojFa2ujTKpVgFgiRkyH5DJpWmrVteEYcuDWsSfuNEysrlD01W+NMwpRSphi05UbfKhixlvqyVVrbIXca7kIQXpduuDVDOCyBVDYVO4pewXoZM2JAJbC2ENPwoFoiN7b3GplkNFBIGac0FZaxg24qcrQjahkdlvUW2boaNQdO1GhCpPr/uZ35t72HweNaORfOXcNmZP2LxijLU1UEuROVCGg/YnYoIphDY4mwDAir1mjhvvaAmgDAAFdg6LTY/g2BCUHk4ZftdCHxIkmcdWN8ehunTp7NgwQI+//nPs91226X7Dz30UCZOnMjtt9/O8uXLGTRoUK9tzZ07l//6r//i0ksvZejQof3qx/rGGwyeLYKWlhL33PtiNfNQNuZdq0xxA0cyAY4gv7yNaEUranU7tJeoACuWtHDVX7/e737Mf20hT9/7AmrEMBsWFBsksl+ExMk0H2soaBCTmeg78XVanyCvMbGd3deGJLmbqczkv0OsflXsTTVMKXNN1ftBtb10pd+GFanUSEjeV+acTHtpG0lBOHH6iMQgiwVdEVSlmuEIbAiClSioqmDb2LAmnakR0SXigrmSMKpuViCjuJ+iZ9HEvXx59Hbc49kSuef3D/LqM3MJhw+DioYwsgsB+RApBESBohIKFSVUtC0gmWZNU1ZbFWmItBBrQYIYDPzxtX8y5eBjvI7Bs9b0Nq73d0x/+OGHATj66KM7HTv66KO56667mDlzJscdd1yvbX3uc59j++2358ILL+SGG27oVz/WN95g8GwR1Nfn2XPPsfzr+fnp5DoRERvcYrt280u3UK3d5DeqD9GtYXUFPooYs+1QHrz5MZRWmNigFOx5xK4MGjGwx35stfUwRm03ggVvr7STWqkDyaEInJBZpULcNCVqumE7KjozeRaxlZ21wmRm94pqzL4EzjsBqQfFygqkaihpZVf+EyW1TrwFmZSq7j1JmnrV3ccIKrY3sAaFqhoK2diBrOdCQMWJZycx3NxtY2cYlYTARNbLUAiR0BbZA2vkiTMKlPN2dNJDqKrRkgq0MxqI1KDweDzrjZVLVvOvB19CciFBEGBiYyvUN9QRNDdgcoFNIFHMIYXApbi2HlbjxggVCXEOTKiQECS0xSbT4pIRmBJQEHYfOpx7F7xCYz7PIcO281oGzwZn1qxZAGy77badjiX7knN64oYbbuCee+7h0UcfJQw3/HR9w/fA43kfUErxPz84m9Wr23jyX3OZ8qO/Vb0LCiuCDiBZSLAL4kJ+lSFsj9ClMtLeDqUSUq7w0E2P8NBNj9hZp9M0DBszhD/M+QVBEHTbj1JrmeULltlJcXsJggDyoV0p164fYcarkEmTqsB6ClxmI2VciFIsmJw1eJIYo7Qqsgv5SeftThBsQ3/cswYu65Gb6CtVbQeoZjJKDAdjP9rYMKKsh8J6J2y4T2JgpSLoTGaqpF3tDA8XEIY2QlCOUS0l1Jo2VBRb42BQM+UhRSsKT+pJGIXCOK9EFy9bkntWQ69q6jQ4b0d/EBLDrOdzPJ4tERHhgiMv5Z1Fa1D1dRDFdnwMA6SQR0ZvRTSwjqghpNIQEBUVQRl0JJicsmFIGuICRI2KuA7iPHaMDuxYJYGrNh+CCoSXW9/mK0/fhFLw5V2P5dztfZVmT//obVxPxvRVq1bV7C8UChQKhU7nJ+c1Nzd3OpbsW7lyZY99WrJkCV/60pf47Gc/y4EHHtjzA7xPeB+eZ4tBa8WAAfWsaSnZHR1XoroaLwRUbCAbupIJb8muZq1YtJK40rM8qnVVK21r2u3sPhE+pylQk5X5fkw4k8l49pqOk2BV+38ltbulw/G+kBoQPZ7Qv3aVm9CnHpBk9V9p51mp9Vak1/TWh45emnUgcV339vF4tkSMEZYtXGEXQrJ/b04zlox34vRj0MU45HYm+rL0pI4/u8WJrDzrnbbaCZ3H0xf6OqaPHTuWAQMGpJ8rrriiy/aSQqU9ebt684RdeOGFhGHY7T02BN7D4NniOPTA7fnjHU+xeFWLK+QmJBWVkyrESTVgnQdVCAgLeYJ8iGprRyoVJIpcKI5dQVMKJnz0EPLFfI/3Hj5uKPsfuzv/euhVVKXd5guMDZLLExdzmFBhQvflajJr1VkdgTF2dRz3nSzGxgIHGpeX1eocpKpfMMqFJrnq1ioyGS+EwuSseFqh7PO4onEqjeOx3oygJSZcXUa3lqwRFcdVfUAQIFpDqDGFENNQICoGNh1iUu8BV3vBVWVOnytUUMA+VCyocpGgtZ5gdQlKZUQZcmUhygVIiA1NEhu6EJQNKluzQsAoG2KF1pjMxEMnRkmipyj3L0WdEYXpRSjd23GPZ3MlCDTHffpopt/yBNLUhKnLW41CqJBQE9WFqKJG1WtoVJgGqKRiJ8AIWiAMgSJUGiBqiCEHOhQIBeUGPx2AChW5nKKxKAws5DlhzG4b8Ok9myq9jevJsfnz59d4DbryLgAMGDAA6NqL0JP3IeG+++7jxhtv5E9/+lPa1saANxg8Wxz3PvIqby1aieQVmEQYrKyuIYmzd0vosloIlrRTWdZCvKoVyhWkXMbWOjAQRUhsZ953XXcfn/+fyRTrux5EwFZ6nvm3Z1CFAjrIp1qAigITx7a8WDJwdSHWVUlITeLIcFWTjQBxnGYRSsTAEoBEbkUvp5DYHY9sVWcTgEFjlLIhSsaFK0FVKO30AbpiyK+swNI1zusSV1PMag06tgZDISTKh5goJq50CNFJnAaVjLg5uVeyMB8LudYYs6KNqK3sQhpylLXCRJFzHxtUBYJSTBxJzXuyRpJ2q5Sxq7nhakfEpEXflBHiUqW3fy4ej6ePxLHhr9c9iGluQsRVbXdV5Y0SYjFEQFteiEJ7XCcV7Z2uSQnEOSiHEAeGGGMtfV0bOKJVTKhiAl1BdJnllXbufOdJ9hw0fsO9AM9mTXNzc48T/YQkM9Ls2bP5wAc+UHNs9uzZNed0xXPPPQfAWWedxVlnndXp+Lnnnsu5557L9ddfzznnnNPX7q8z3mDwbHHssdNoggAiI1SzCrlvrVR+YPebAMr1IaqtgGpps5oBBCqRnUjrxHcujNlpFK8+OQsTxWle8DAXUNdYZMd97eAwdMwQho0dwpKFKzGVCjqKkDiCcuy8HZkEoK5r2bCbVJCdxOQ7TULV25B8+bpJtKhUwEyUrPRL9XwDRMaFSLnXIB00AUm7gU2DqvIBek0FoshO5sV6Ncg5IYXEaAyYIkZyViARBC4EQdU0m24Zt+WMtTgEacihAtDtZcgpjBiMskNW8uwmULYYnFDrjRH3lM6bIck7cGLwavrV/hGjiXuJ5OztuMezMbJo/lLeen0hiLDLgTtQ11ikZWUrrz87h10P2oGFcxYTVSK227P7CfniBSvYeo/xzJq92OkOnCYhVJjQGgJRiB1btS3CZsRqEgRBG4WK7bmS/K3qxCUpKG3IBTFaC0EQk89F5IKYnIpQCvYe2Flk6vH0Rm/jen/H9MMOO4yrrrqK++67jzPOOKPm2H333UcYhj3qEnbffXc+9alPddr/+uuvM2PGDI444gh22GEHdtxxx371a13xBoNni6O1vUwcAzm7rWO7Yh8XqFYLTrLpKIUKNVIMUXV1EEaodo0ojapUXPBshMSG+a8s4KJjLks9Dlm+9rvzOPbfjiSOYkrtFVQuhyrkoZBH6guYhhySszUHamL+RaUr/NkMP9XYXpc1KDlfOUGyu0a5iXMSZpXIp5XLMJSEHenEeDDVVb5OGNAVsRP49nZoK1kvAzgPQ9n+nAsJKnXoWKErhrixQFQn9hw6SwvSGObk/4EmbtDEDTlUxRCUDVF9gEmyPRkgSLTVznvQYeqfrVpt7ZDqS1XuHa1N4JAPSfJsjiyav5RP7/U12la1gAg7fGAbrn78e5x36H+zYNa77LT/trz61GwQuOT/LuSQk/bt1MZbcxbzuQ/9iAiFGT6QuDFPVAyJGjRRnSIqKuKiInahRnGdEBcEyQsEboyLQVfs348JBPIGVRej84YgjKnLV2iub6cYRNSFFfI6JtQGnQqzVrx/L82z2dDXkKS+MnHiREaNGsUf/vAHvvKVr6TehEceeYTp06dz6qmnpjUYWltbefPNNxkwYAAjR44E4JhjjuGYY47p1O7UqVOZMWMG55577vvqWUjwS2GeLY55by+1P6jMMnNWSJfFxcmrKCt6NrWCvuyP3Qhr33zpLQBWLVnN6mUtdvIc2JSCqaC3v6LjrsgYFZ0v6mZZvYtn7uoGKtFURHGtCLwrAl0VObrMTv1CVe8p2Yl/h76lHp8urq2pJQHV39k6aJ8Nuk+f/vDWW2/xwx/+kAkTJjBy5EgKhQLbbLMN5513HosWLepTG1OnTkW5zFQdP/vtt9/aPKpnC2LxW0sptZXTv5E3X3mbSqnCO3MXA/D2G++mfzfzX1nQZRvvzl9GVInteJb+/ZMKmG2dmOq2dDfmJqjqNUluiCAw6TqAVtIpP8RbbQvX4S14tlTW95heKBT4xS9+QUtLCwcddBAXXHABn/3sZ5k0aRKDBg3iBz/4QXruE088wS677MLFF1+8vh9rveM9DJ4thr/c8xx3/OM5SuWIQQ1F2qPI1h9QArGAscLfOFTEoQ3nUXUgzSEyuADL68itKaPaG1DtFaRUQkWx1TFEEcSx1TU4IXLyBZsrhDxx9794cvpzoGDouKG0tEboYh7TWCRqyKOLISavEWU9AqpmUgzVwmiCxFJT1diG34DOpDFVsVTLIIgTcQfaZRoSF3Zk7yPahgcoF5mkgmqbtgnlwgsCgkGaMD8UvbodSmWIYlQc2fSngBiDcmFJVCpW7FjJERdCoroQ40KDqh6N2nAiSawVhe1rMURECEKdplNNNBo6J6gwQEe2mF1SF8KKnnEVqlUa2gXOKxFLWsMiCPonen4v+PnPf86VV17J7rvvzmmnnUZ9fT0PP/wwv/jFL7jtttuYOXMmo0eP7lNbkydPZuutt67ZN2rUqPeg157NiV0P2oHJl5zOM/94njCnOfk/j6NYX+Dr13+eGbfO5PhPHsUTd/6TqBJx4mc+2On6d99ezl9ueISGnUfQEih0qJCCQpoCpE5BnSD1ClMvkBdyBSGXFyjEhHlDPmc9BVGsKEcBYlxsqLZjnQ4UYaApBjmacxFDChE5DZHkGZgbyIB8PSOKQzl19Anv85vzeLrmlFNO4c477+Syyy7j2muvJZ/PM3HiRK688kq22WabDd29tcIbDJ4tgta2Mj/41fTaReZApXn5EbsdaYVRCnGTdNEQtgmyJoaWCrK6BG1lG45UtnH8UrLCXDHGxvRni4GJUGotsWrRSsBOYlWhgKorgg4wWlMJFLGJkXIXcTKSCZ9xsfq2oR4e1kht7QX3vBKYmh1JSJK47+Z00t2Vl0TZdxWUYszSFlQ5shmi4hja2m2TTs+gggACqwmRICA2QlkJphylMgWSGhLZR+4ggpYQJHbF7JCqNsMJs1VZCCKTZlxS7uKsiFqSvieijZhqlikRon6KnmNRxL24p3s73pEDDzyQmTNncsABB9Ts//KXv8yPf/xjLrvsMq655po+tXXOOecwYcKEft3f41FKcfY3TuHsb5xSs3/CmQcx4cyDANh/4p7dXv9/19zHY4/PojR6ACZUxFoRhYpyAFEOKgWrV4hDQXICYYwKY4IgRoKYXFimzWgqElAWAZKxQtAIAYJWZXRYJgzaKIZrWFUpIsQsLi/hf/b5GYHqvv6Nx9MTvY3r/R3TEyZNmsSkSZN6PGfChAndRiZ05JxzztkgoUgJPiTJs0WwpqWdEcNqsxuIEbvIre2KtME6BjBWbGew+yt5qBQVcR6ivMIUQ1utNEzSiIbVmgpauXh+9wl0Nfwo8auLWMOiEtmUqrFJV9trChZ3HfXULemifeZ5jKp+Okoh0pppznOBcfUmkk9i/BhJxc0GiIshcSHEhBoTaCQXIkFgn1HrTP+t50YiA2VrjZjMfWs+2c4ZrHEUiRVkGwORsWFh2b6JIEql7WXbrXlpzltilEozYvUUudUTSaxrb5/+cOqpp3YyFgC+9rWvAfDwww+vRU89nveHOIoZOKAeohiJjRtDQUX271qMIBgMgriqj0rHKGVQyqCJURjyQUQuiAh1RBjYT6BjAhWjsONHbBRRrKjEisC5XsfXj0b7qYxnHVjfY/rmivcweDZ75ry5hE9+6XdUjKEm1iepu5DE17vVdhMmdQlc7K1SSJ0ikAKmPk9udZmgJYdqr6DaKzY0p1KxK+6ZyswohYQhtLahK3YlW4UhKp+DYgHTWIdpKCAFl6EocALebGG47KxWdfg5Cealw35tJ9E1SKatjpc4YXGnqs2BSpTF1bCeQkCcr0dFBinHBG0VpBShImOfP3JuiiBAwhDJB5APMEWNybsvdYNTl7vuZ9w+2ZBmcWlebUXqTIhU1qpS7r2532Ga4SmjS5GOGpHk1x3132QQ0ZheCrPJeircls/bmh65XK7P1zz00EM88cQThGHInnvuyVFHHdVj5XGPZ135zqd+wyOPv0E0ajBS0EhOYQqKuE5hilAajk16UGfQDRVyhRitDbkwphhGNBfbyQcRIopIAkSgYgK3qlsdrAIVUwwi6nMRJcmhFBw34gg+Pu7MXotgeTw90du4vr7G9E0dbzB4NntmzVtMJe4i3CerA0j30aXfTbvIFSWgKm7VPZnoJqlFoVYMnYqM3blaV/cHgV2ZT6uf9rzi3dvXYXrtWnxvqtTV0NUNu2lQpGai30kI7upaJIJnk9uAA25Xoud1ED6/X9xwww0AHH300X2+5r//+79rtnfccUduvvlm9tyz+3ASj2ddeOXpOUgx7xYYEv2RTUlNABLiFkQEMsXttRICbdKhotIh5XJHFBBqU7NOsryygnzQc7FMj8ezfvAGg2ez5/ADd+DEY/bg5TfeoT2KWNraRpTExLuaBMZ9C+WSLztlJ/iigQBMM5hGqIhgxhQIW2LyK2NyK8ro1XlUaztSjlCBtqlSi3kkDOwXZClCtZZsKlIBwgDy9k8vRmEqIGgMVnSdeDUs9qszER7b2gnGirWTfUgHw8MuryciaVUxaOOE0AKSpiB0yUaVthlHothlHcJ5R2xVZXGhVkZTFU7X5xBnNKXVk8WKj5M2JLRpYqWgKRYD4oKyBeNi0EnxuaTismsjFWsnYVK4Z0ie1XkMkllHmm0lm4XJeVPEpY5VqhqOlPQ1KX6nc71ke+qADY7oRcPgjicVPRMKhUK3lUE78sYbb/Df//3fDBo0iIsuuqjX87fddlt+9atfMXHiREaOHMlbb73Fddddxw9+8AMmTZrESy+9lKbx83iyrFq6hmv/+yYWzlmCUpAPFSd99lgO/NA+PV4nItz6078zcECR9pUl4raIKBcS5ax3oBxoWusVhIa4UaEKQpAPUCpAYkUcQUUqSNhKISzRFERoFaOUrZFTiWu9DEYClCqiVUCoIuq0oj1azC/fuJztGnfm2BGno5VfCfb0n97G9d7G/C0FbzB4NnsK+ZBvnHccAOd972bmvryK1MPoQley3u9kEirKWGPBJKFJ9nhYFgptBloqqJXtsLIFVa6AGCSfh/rQVk4GiAW9poxqaavWLECDEkweW+StDBIpTNihDkN2jOpQdTkNwSGZMLvD7r5JWJMuGTdJtx8hObfanqoYdDlCtzs3itZIoDGhgVC70CybKlFCV2SpJkuT666ANlaPYUJlMz4piLUQ6RhVcnUcYme8OOFzWnjNVWyuCTmSDrdx904rc2tnYKXvx12T8SakBphk7unuG1X6J3q2ko6evzwSm2vs2LE1+y+55BIuvfTSXu+xbNkyPvzhD7NmzRpuu+22NDd3TxxxxBEcccQR6fb222/P9773PfL5PFOmTOE3v/lNqonweLLc8rO/c/fvH0KFIaalFYDnHnyZ25df12Ooz+x/zePXX7sRvdUwpKkeExsqsSGOKrQHAaWC0FYQKk0ROhcRBAYtBhNrorIml48JVYkgbEWpEsYpnJRAyeSI3KBrhwNFJIq8iokkIicRsVR4p30pyyoxs1teYOv6Hdipee/35Z15Ni96G9ezeUy2ZLzB4NmkWLRkNVorjDFEsWHk8AH9il/devQQnnzxzdr4f3EGQnJSx223DwAFcWCF0EGoCUKFLoTo2AlzjcFUIjvRdhVNRSubOSgJXTJijYeKi/l33gxbZE1XQ6JUoiZQacx/RiVMmjc1LU4g2ErL7qTEGxEZKz5OBMwdUrLa4662gohdhk+qWEfuZSSGTEx1dV+qhpZLomRDEJQNR0iMMoMgJuMhSN5pbYhyzfN1NBqqx1X6c0bT3CkkS2UMDWUyXpVM2NTaiZ571zAkx+fPn09zc1Vo3xfvwpo1a/jQhz7EK6+8wnXXXceJJ564Fr2sMnnyZKZMmcLjjz++Tu14Nk9EhKZBjfbvWSnI50CE4VsPo72lRF1jsdtrB201kGJDgXIlQsUGVbFjjcTaehpjsTqkWDBGWc+jAhHjKtTbUpLJZC0pxm6HNiFwKdSM2CxpgdJWRO2GzzKaQGkCFROqgEH5Ye/Xa/NsZvQ2rvc25m8peIPBs8lwy1+f4afX3lsj9D3zxH05/1NH9bmNwc319odMUa8ktaiEtfs6TWaddlTqFOVCQNyoIddAfmmAylfQ5Qq0tCFhQNSYJ24Iya8oo0INdQXIhTYVK0Bs0K3t6LayDfPJBZhiDlPMI3lNUodAtLKxwEqBCylS2ZkyNlMQAamWQBlBR4agNbLC7HKEqkRg4mrRNWOqmookQ5JIWkzOirPzUMi5jFDuyxprMInGCsNzmji0ccomsGLxlGRFH1ARtv9k+uomELgaEEnKVZUIlzvITpL3YcO27MmJQN3kdMbgEHQkBGWxXguy74xUFK2SrFbvEc3NzTUGQ2+0tbVx0kknMXPmTH7+85+vl/R5Q4YMAaClpWWd2/Jsflz9pd/ztz88jNpqGNJUh6rEqDWtvDVvGf++59f51aNTGLLVwC6vHbzVQK597ofMe/ltXnjuLW767QyCpgLtTQGlIYq2oRA3CwRCEBp0ACKKMDQ01rdTn6/QkC+T13k+s+1ZjCg2siJaya9n30R92EqdrpDXEWUT2nSrcUBZQiomJJKQQGIqEmIIKOoioe7euPF4POuON5s8mwxP/nNOp30zn+28ryeeeH5uJx1vrxnTOhoPOKdABDqGoGRcTQFj04MWcphCYLPwOO1Ampo022a20SBJvdrzfbtdFu9C0KsSj0LHYx1zPncUK6cfqtWak+1knwvREtdPUb28R3FGQRf701sL3T+fu09Xv7tO9xVq3kN1f+Y9rCUG1adPfymXy5x++uk88MADfP/73+cLX/jC2ncyw1NPPQXA+PHj10t7ns2Lp+55zi4MJGmhRWzWN2D18hbmvvR2j9cPHzuE/SfuyaoVbUguQLQiLiqiIlWxcwhKV//4lbLi5VDbEM2yqZAPcuwzeHdCladsKgRKCFWc/i0JylbczfyxayCnbBvtpp35rW+uvxfj2aJ4L8b0zRHvYfBsNLS1lrnh9w8zf/5SdBDY1Wttc/cHWtHWXqGhPm/To6IItKKpscg3r7oNAQYPaOATpx7AyOEDur3HaR/cizlzl9AeR6lewGgXcx9Q9S4kQmJdnZAq94MoQfKg6qDcEGJG5citiiksKZNftAq1fCWFVRoTgBaFFjfZztkUowlCZuW7UkFMjJSs4aASzUCgkULOfhkrUOUY3V6xlZWjGExUDTMCN7HX9n8GlDGIElu9WWsbWiRBKgi28Ty2poRKakYohWiNygX2vqHG5AIIA1d7oVrPwGjtaj4oW+tBa1dgDSsu1i48KAcqEFTk5vw5F3ZksILsRAQdGSuIdt4JyWTCTXQLRmPfj3NJmFhcSAUkMQ0qAAru3sZVts7GPIn9fepy/yo9vxeF2+I45uyzz+bOO+/k29/+Nl//+te7Pbe1tZU333yTAQMG1GgbHnvsMQ4++OCacxctWsSXvvQlAM4888x+9cmzZfCZ732Mqd/9M+VcgdZShXLLGiSu0DCskX2P3oM9D9upT+1MPG1fHp/+HMtCoU4HxDmFNAphvRBQoClsIF+wf4dBIORyhmJYprFQYaemMRw8ZHcA9h+8JwcN3of5rXPIB2WKqsKycoXIKEIVIGi00i5sKaRscmgVMbZuBLs07fpevirPZsx7Vbhtc8MbDJ6Nhmm3PMFNf3wMlCIu6E4i4FRsmxEsv/DagprwoXeXruKH3zy923vcef+LrF5TsjH2oQ33sfPWZCWL6op5dpU6ST2qwCR/NVZ6QM4ItMYEK9thySpbjM15E0zoCpoFQbWoW0LHqtBp4TcbFiRhgORDTAxSNOi2CqqtgpQqUKlAe6mzd8AVT6she042/WvyCZzwAJ2GCYk2TtgcO5Gxca9AXBkFjaCIcTHFuIrMYtL3lUzW0xAgk/EypMfEZVbC1XIQdFIBuqMjxIVpkampIG4/lQ7em5oQpKzIwZ0iVvgc9dNg6I+Goa9MmTKFW2+9lZEjRxIEQZfC6GTfE088wVFHHcXkyZOZOnVqevz4449nq622Yv/992f06NG89dZb/O1vf2PFihV87nOf49hjj+1XnzxbBoedvB+Hnbwfrz4zlwuPv5JoyVIb0tdex1f/3yf7rA978C/PsKSljTVbN7NymKE0xBDXGQjt3/J/bHcAF+x9aK/tFIMCF+38mXT7vkUPct3sP1AyIRWjMJKMQFiNg8S0G8PrLW/z6ppZ7DHAGw2e/uM1DH3DGwyejYYhQ5vSqr/iQmfcOng11Sb2CyidvUN1EqwUgxrraG0tud1CbAStFdrFqg9qrktVsmKoyT4kRtUG6bm4+vSTFeEmC9WS9VBoDJkmxK1sp5PzRNGXfAlnG808kySVn7UzKgzEqvqcyb5skbh1xIqRbd9Uop1In91mOzIkvxvlxIrJF7hyaUzdO+vwRF1tq8x2zVCsqk10SGSVaUQ6N5RJB2u3k2OqVjPdoc318/bWjTfftKEUCxcuZMqUKV2e01t2pS9+8Yvcd999TJ8+nWXLltHY2Mg+++zDZz7zGc4666z13WXPZkbT4AZ04mE0hkFbDeyTsRBHMe2tJZoG1kHFLpSoKEBVFBhlEy0o2Kq+ca36NTg3qMfj1b9txYBc3/VCHo+n/3iDwbPRMHLMIFRjjhg7V05CgjQuNCWZEyar0pFBR3amqrDzyHtvf457//ocEijiTAXg5KsvtoGvKK1QgXL3AQkUKqh6GACbcCjTP+U8DypjMAROx0CgIB+gG+ugrQSVCKIYpXXtir/OVN0NsOFHgULixKhwrow4RsUuFWmL8zpEsfUsVCpQyEMSeyyJOlhXvRRBJg9sokPIkgidjWDyIWZAkfLAojV8smlKs5coGwpkkrCtRGfsPD9JZqKs91Zl2knsPQUua5Oyv0flwpFQ1jDS1iAwkrxrSWf3Nb0yVAXSqcfBisAltO9B0l8ctReLe0bTv5Ujg+o9rWo/412nTp1a4y3oiQkTJlidTAcuv/xyLr/88n7d1+NJaBpYz4CBdSwrNYFSbLN/76FIravbOO/gb7Ng0RrM8EGUdhxOeVhowzUNqLKCUBFozbimnif+3bH3oD35r92+ztLSMhs2YgAUStlFC5sx2TC2fhTj6ses1T08nt7Gda9hsHiDwbPR8MSTc4gisZO9TJiRdLFqnYS7pDsSVDXSJvs3nmwn9RTSUJaMRqHL1XDVYRtql76d0RC2xahSZFOlJgLnZLKcFRJ3QTr/606Um4ZFuQxHycvRunpQqHlnnbY73TTTbt5qE9J6Dj2MjWnXMgv5XR7vCan+DhMvTZIVqdtGunsn2e2s46arU7pyb/QT6YMATvyXi2cTY/bz81n2zsr0b+OJe5633tEevAxvvvw2b7/xDmr4UOLGInFBEQfY+jI5QQLrmYyM4YG3ZnPwyHFr1bedmnaAprW61OPpE72N635Mt3iDwbPRcMzRu3LXnf9idUu7E9Equ3IfWCtAiWBTeGtUYFeSVVz9UhMRtwqeFBvD7QedCGQVxFohOUUcKuJArE7CVVgWQLRkJvmAGIyi+uUpoCMhLEO4xpBbHZMrxYSAri8ggUYVQiQWdKgR5dKkKo0KXSYkY1fDkwrGdsVfpf23t7VZl1SSwSQoQp3tD4UccV2OuBgieVdROemc2BU45d5J8ixK4aozO0dERdDlmCAWpJhDioHVjmj3ThKZsLPYtHsOWwUbUAqt7GBqV/ZBp+/I1ZtOQ4TElXZQ1WJtrip0ICr1GBG7ytHJNVjhuHLhXYlhoNIwKOslUaJSFYpx9xVJhNBiPR2SMRSV9SgpyXh8+oANw+rFw+AFcp5NiPa2Mi88OYfhu4xl2YpWEGG7rYdw/61PcPQZB3Y6/515S7jjugdZEwnDj9iTxataUM05wnxAnSh0WRGWFbHSCNDYkOfU7by2wLPx0tu47sd0izcYPBsNMx9/g+VL1kBOEytn8YtKhbJJetIanTAu9t5tCMoKjrWCqOqFSCJeorzVGdimEgGvm0hDmuFHktll2i4k/w3aQbcJao0htzQiXNaKaq9gyvYDpClU40js3QNtQ22iRBSceAayS/2JkRK7ma1Jd9sbB85LEmDqipQG5THFwIYRJTUkOtZqyF4PaRgPsZAzhsDExHU5ooKiXAAJDCZwcVdSNS7suzGpR6a2TkXWM5J9UxkvkHtWZXCVnkkNBxO5EIZYqiLptL/VWg5VAUJmvSeWNNtS9nklTgwl0nAmEVJDJ9kXRTH94b0QPXs8G5Jbf3Uvf/jp3TCoGcnlUSvX8NrTc/jB03MYufUwdtlv25rzr/r8dbz08jvIoCaigUVKI5qI6jVRA5TyQjlvx2iJBRMJy1a2c9+sOew8ePgGekKPp2e86LlveIPBs1EQx4Zi0VYZJY5dalE3yUvThkq6Ol8lM1nN/k3HhmoDSWiQOzWjQahpqSYWvnq7mlslC+YKJ/yVmqw93ZLE4teInjP9z9yg41xfOh53xo6dBFs/hUnCB1KDp3OXavYpa0TZgqtCds4tXZ2feYSqAdX1ObV9zpzjDtQIwzuc2/HiZLNjxFFX0UTZSCP7+7PvOtVBZNPPQm2NCo9nC6W+oVCTSEG0Sv9ei/Wdq5PXNxbTBRExrgZNmgzB0eHPqjGffy8fwePxvA94g8GzQYljwze++Aeee3YeRiAMNKokhK2xzdRTCFC5JNe/m+8l82K3Iq1RduU7BnCpOpXCKGOz++RsyJGtCgySU6hQoXLY6wLAZT01bjKsFARGoSKpGhJJpWe3gp+rQL4S2y9MBbhaBhInWgM6x8u7L2NRpF4GpZNsIgpyAboQ2u9jI9bToQPIWZ1B3JCjPDiPhIpyUREX7MtQgcIo29d0RT5zW6XssyYJpjSCjhSqkrcGRgAmb2tRpCoJd3HWSaCdoWE3bOiPycwOshP85AcFLuuTQmmxYUvKip6TaCsVJzdTqZg66YhSNnQrCaey4VXKhVtV9Q/JKxUXyqYUiSsJLTaMyUSuU05fok2HmU0v+JAkz+bG9ruPIWciImOIB9QhdSEBMHSrAQwbM7jT+bsdvjNPPfum/RsqhJi8Jq7TVAYopElBICgFB44ayzG7bsfwpgaO237H9//BPJ4+4kOS+ob3s3g2KO8uXMG/npnnJuV2UphMDMVluYmT6CBV9Q5kI3nSNKxUj4lb9TJuYpikP02LtSXhSLrabjKZTrKfSnrjjIMAG04TlAwknyhOJ6YSd6itkPVkuGw91b7bA0k4FFrbYmim9obi9ACS01ZjgO1rnKveIqmHUNPfzHs2GQ+Cvae7r7HPa3S11ETN83aYT5ua9+48Hdl2O9w3/X0kvzdT/X0pqe1H9uZp5tTs7zPbbEYgniSW6ihqrrmvCCYxOKqvvmtXRQ+8V5WePZ4NxaN/fZaKUUgQEBdC9Jp2xAiLF6zg5Wfmdjr/vtufQXI5u4AR2EWLqAAmgMilYAZ4aeEizvnAB/jQDjtVtU0ez0aIH9P7hvcweDYIq1a2cedfnmH10hbGjhzIgreXIcZ6BpQRxBh0SaCYg9BWPI7zASZIhLY40TMEySTfLWcrFNoJpJURTKghtKvSGFusTQVuWwSjIUiE00Zs5WFt76M0xOLS96WxOEKAIsgHqPoAHdk/I5UL0EaQOLaGA24hWwTj4n+0ExMbrMBXYVfCbYhRjDQ3YBpCq8WIDTq2/UErJKchp5EGjckrdAhx6ITGgUIw1XIEiQTYzaI1VtRtlDNCQu2iv5yuAPsObMpU6boNqfZVcPe1D5h6GbRSztiwRoAOnJFkkvtoq0mJDRK530OorcEVWWNRk/wbEIhtDQ3l2kjuq9w9jMJ6E5J/WM7wJNF0RMbe1yT/JmwYmcIJo/v579Z7GDybGx8862Bm/OVpVkUV1PJWTFMduhwxetwQdt+/Vr/w0jNz2WqbYby9tAUVKHJubIsjW7gxQFm9VgCfOWT/DfREHk//8B6GvuENBs8G4WdX/Z0Z059HlzKVdt0kUURQUQyhjY8RrYmbCsQZAbNou9JPLMSZwm2JBsIYrKvchczYVQJrHBjlKhQjtlYDYIyr7eC6IpH9IpSQdGk+8XwUlseEbQLtMSxvRyLj4voTDwMkbos4u6ptIBZjtysVkkxCCZURA6gMrsMUbLomXTYEFYOqGAgUpYE5yk2aSoPL6OT+euPsun61ahzZnyQtYgEmBAkl7ZN2tSSy4vFqu1XBsTG1x0Vl7pu03WE7zcokLlwpCcOS6q9LxKTHk3OsCNoZfDWuEWvAZVPQChnvibIrnRIIupSIrK13QeLsOxEnyuyYGNbj2bLYfs9xfOfmC/nPiVcSjaxDr2zFtFeY/9o7vDVrETvsORaAVctb+PonrqFUyCHFPHFOU67TtDUqyk0Q5wQqwh/OOYN9tx69gZ/K4/Gsb7zB4Nkg6C4Kg70v9HdJuSuywuhsu+vhkXoUKnvWClGK/vsSusZ7GDybI92Nx9lIor5Ufu54jcezKeA9DH1jnQyGP/3pT9xyyy289tprtLa28sYbbwDw0ksvccsttzB58mTGjx+/Xjrq2bzY96DtePihV2zu/rYK4gqeKTEot1Iv5bKtSRBogjgmri9gGnJIztUd0KCUQRtbV8G4JWsVa7QBk9NIXiFFjcopVFIIOVAQggmdWDqwk8kg0RgYIYgg32JX0QWskNootIFgjSG/sowqR+hQQ6Bdyk6FLoh9lsiQ1I4gqSEAKBPblfVQI1GMimJUPocoRdhWJg6gfXQOo0FFQlgRgjLk1hi0Aq01Kk+1SnUShqU0IibVeiShWTaCyoV6OeG4VpKKv8UIEoFELpzIxfujbJiXRjmNQLUmgriwLHGiZ6s/qXofVOYaxIYDJflrRVwbOUjFGEYjsV3xV6Js2tUIG6YUV9OqihNWKEAZ7eoy2DSsot3zKVChDUlSgdNLGEGXFNqFPNmwJyu07m+SpC3BYPDj+pbHiLGDGTd2IPMXrUJyOVR7G4FSfGni9+zfWT6EMSOIRw4gzmsqdQGmoCgP0ETNEDUKKlSMbG5mu+FDNvTjeDz9whsMfWOtDIZSqcQpp5zC9OnTGTZsGGEYsnDhwvT4Vlttxfe+9z2MMVx66aXrq6+ezYi7//4vKu0RuhJDKXIKWuNCVsQKiSGdBEsYEoWuQJgRO0F0hb5iEUQCG8pkbO5vjBAVFHHgQpFsXI7NtqQEI7Ytk6T1SYozYCerUhbiiiB5Va1tYAzEkFtTQcrWKDDuGlH2PDEGksxJabGxJPzH2ONgny+KXKy/feZKcx2lOk05EHRsC6uZCIiEXLuhPDCgnBciF+6UZm8SSGo2dJAGZ3502oUkZAcbPmT1BNSGHCVXijNIksijxJiwr5JUGZ2gyCjH7f+UyYQYZdswpLUXEqMApzkhtn1SsbhwotpHUuk7yzyiy1RlQitgSzURCnTF2H8TmRoYxvXJxLVvrDc2Z4PBj+tbLq88NZt5L78NY0fCshVIJXaRlTZJhNTXY2Kr/ynnFEYLsYZKIJTqcOOoMH/lSh6fN59JO++wgZ/I4+k73mDoG2tlMHz3u9/l7rvv5sc//jHnn38+U6ZM4fLLL0+PDx48mKOOOoq///3v/ovFU8NTM2cxe9YihgxttNV3w8CuXpUqLpepq+qrXV5wJ2A2bW1oVUS0BuVi0jWIKLT7YzbKeg10qKy3AmUXtgNlU5emdR0ybnNjJ9A6IM2OBE7wG0FQNug2a7wEgjUKXLYlJdqlB00C8HUqApaKsYLmVNcgrl5DgBKDBBrr5jAorTG5AFWJybUbcmWhUrQr90EkaG1TnuZWRRgVInkr3DYuu1FSiyzJ9JQUqUal6dLTUhHGTep1MplXVg8iqrqKn0gw3KMQZzQIys3VxT2u0tZWMZlt3DnKQOAyGJnYGQhOYG0SwYJS1fcei/UWadsnE4FocYJlpzMRUqF44nEg0UNo5X63guQ1xqWrjQNNTguqoqweRCSTdvW9+Fe+aeLH9U2bZe8s56FbHqfUXkZr6/VUWttFCqcn0mGAUoq9jtyV7ffeOr12x322YdQ2w1i4aAWmWIC6nB2XXJIDFQZIIUBCu4gQhQopWE9tUMKmQg4VYwcMYP9xYzbYO/B4PO8da2Uw3HjjjUyaNIkLLrgA6Dq2cbvttuPpp59et955Niue/+ebXPzl/7UbboKoYoOUo0yWG6mtY4BbYQ5Da1xgJ8GSFEBT1ntgNEhoM3XESjCRotKoMTllU6kmC8kBSM5mFxJtjYW0PkFg+xW4GghEhsLiss1SJLYqcW3eUbepVTpjF7dCnmRgSlOzJvFAxti+6wAXS4TkQiojBxA35KjUa0oNtrp1WAZdwdalWBVRbg6RPMSB7bcJcSliXX+SFLFkfAvuNh2lvemk32VvSj0tCdlrEieJVOfXHas9J4ZHSow1xtz/Vea9RVQNGpzRgzMEjDtRBBtShA09ipXtlM2eVO1jIvJI0ucS2H8HJqmZoRW6ojCxQZVMWo8h/V31MyTJ2ps9rzb1s8mNBj+ub9p864QreOPZOQCoIACt3b9zl2hBaxviqTVhPuTGN37KwGHNACxduJyFsxchA5qRpjri5rqqeEopYg1xISCuU5QbNFG9IqpXxEVAwZl77s6UU45Js495PJsSvY3rm+qYvr5ZqzoMb7/9NnvuuWeP59TV1bF69eq16pRn86S9vdJ5Z1//Evv6JeQmkSq73fF4d9vZnxNPg9Rudzy+XkhdAi60qYvupDuyn3W653poo7+k3pv3G6n9N7EOJK7r3j6bIn5c37Rpa2nv/SQ3vpgoJq5U3Wvl9kpmEaaLf7816mcyxoS7d7li0x17Y8GzCbK5junrm7XyMAwdOpR58+b1eM6LL77I6NE+tZrH8uK/3uRn37mdOqWIKxEqMqjIIHGMClSqH0Al/7GudBvmYgXCQWQgFKK8QgJtC7spkMCKgSWAWNkqzs0NRYYMb+S1xcuIA0HHrmqzgjhQqILVQQBpbH+y6i0BqDxoo1HNQrg6sl+EbrXeVlPWKGPTgdrKcjZ8SoUKck5PkYhyjaTnpPuVsiuAWlMZVE80PE/7oAAFNLYogjZDfmVMcWkJYhvelBchp/IEBUWsFFEAlUI1VMg9SvUVJgvo6QmZQc9YgbHkIXYpWjWkngEbniTVWgUuXimtzZC9D05bElgvQ1p5OUmN6sKTVMXpEiTxtpCGGFkPjm1YudAk5VLdEoNOQo9i0nSr9j5S1Vsra3DFAdaz5Ar/EYAOBB1odMWgKvZ3ogApZ9L69oHNWcPgx/VNjwWz3uGS03/IsndWEkcxuboiIKhciNKBCzV0HjWlUNquEQYa/mPvi8jlQy745ac55MP78c2pn+e5x95geWuFZ56cS3tDjjgfWC+dBgoa06gJ6hTkgLxmYCHPSfvtwn8cecB7/qzPr7if+96dys7NBzNp5Ofe8/t5thy8hqFvrJXBMHHiRP74xz/y4osvsttuu3U6/thjj3H33Xdz3nnnrXMHPZsHf7lpJosWrgTshJBKhIqNDT2KDa4EsP3EBuI4Xe0SDRS1dRuKIY4NYlyGH6djIDSucrOCSLF0ZSuLTTsV5TLzRBBEUMm7OgyJONfO86tzaTf5DNoF02ZQy8qdw9ydQFuZRKxrqtemdQYkcx7uGaX6CQMwBlPQVALF6gHKTX7tZDZoEfTSduL22FkoilJTjvYClLDiw1JSI0IynpAOz5GGDanMzjTay2Y+Mk6HkGgMatur1opQ2YY7YLL6ECektgXTXHsVW+vBGhBSNRYkc79U5+CK1cXumtQ4yGw7IXpHz4EJwASKOO2QFY/HJYH2GB25a50oPbvKuqXjx/VNj3v+MIN5L76FCgIXYmcFWgorbrJZzNzCRRDYv2djKEcRUioD8Kcrb+OQD+/HEafuzxGn7s+VF91ESyUiImevjQUDRALlQBEhRFphJGZZSxvjBg1kUEPde/6sDy3+X9ZES3lq2V85dOhHacwNes/v6fF4qqyVwXDppZfyl7/8hUMOOYQLL7yQ1157DYDbbruNxx9/nKuvvpphw4bxjW98Y7121rNhMMYw82/PsmZFCw3NdRx44r4EQedotmfufR6tFTvsuy0zpz9vxbJaY4zQlA9RibDZZRKy4gMnCI5jp4zVVeMhNhBomxy0rQ2JIlSUQ2O/wCS0fVAZT0EigB3YXM9ue43mH8++YePaAxd/H4OKBB261J+Rm/QHtp1ED2CcsLncqMmtsTNslS0WphQSuorDRjnBrvUE4CoSK7AVmtP0RFSVxAAi6FJE0Fqm4S1DVB+kzgDdbjBaCJLibgp0a4VcXmFyighNqCFqdC8/kWkkzbtfTyJgTr0n4jwybr9RQqwEFbi+Jh4GU62eLJnXq6EmO5NSGRMi48RIPDYm8TiEEDsnTVoIL/E86DTJkXW8uIrTYD1CQezesctqFRhQgbb/PhKjJHl258nQyqSZnFTkGtcKCQTBCuuVsqlp+8Pm7GHY0sf1t99YyOtPz+agk/ajWF/o0zXvzFnEK0/O4sAP7UNdY/E97qHluRkv8c6cRXYMEggKoaskr0BcMmWXRjkJJUojhUSsliEMUCbERBFHf+zQmvYPPXY3Hpz+PImUS8QQLGuBQXXETXWY2C7ASAGa6goctP249f6Mi9tX8M8Vr1EXlqnXZYq6wtbFYej4/7N33nGWVEXf/9bpvndmNi85I0ExomQjAipJUUExPQqY82N41Oc1IGDG+BgfMQLmwIICoqAIEiQJPgaCBBGQHDZPuN2n3j9O6NN37sSdgd2lf3wuO919+qTue27VqfpVXcs2/ZuSl9dB68kz3m6DhycaC8PkMC2FYZtttuH888/nyCOPrEXReNGLXoSq8sQnPpEf/OAHbL755jPW0QYPHX7++TP55vt/GHfSjzzuJbzyQy+qlTn/pxfzsZd9AYAdnvpYbr7xHqTP/+h6aTUQgV1YnWoHHnAKA+AkVqqwmdZGqdd47h6tHNsvYFz0o4F2i+9/+/UMDLRRVYwRWnlGnmd87pTz+f5vr3QuLRb3xhtB/I9e1sEpAAbUqFM+xAuyw0o2nFoM/GAFNM+wba+wFIoZKZHhajzRlzcI0UactB0EVL/LrapkqzsMWOCBorJSeNclBTTLIBe0L8dYobVaKeYots+3YRJlwTcZCciJAB8hTnhHcPkYci/gF8EYIZXiQdLnxCAT20naiPeov8VU5eJlP9fBVUmzxDIRxlJSuVKIy9JNBqJOOymtOCuBMS5DdSAvewVG8JFbSKwTMQytQYxC7ictsKMnifVZYXg4r+srl67iTbu8l6FVw+zzsqfxwR++c8J7hlYN8ZYnf5BVy1bz5OfuynGn/Nes9/PyX1/FBw7+hBP6s8y5GBkDuak2NMCdy9y73f02CkCWw0DOB77xevY9fK/a9afv/3iWPP3DUZH/2nt/wDk/uIhWO+eEb32MhRsvAIHMCMYY2vnUvkMTobAlb77i82TmTjYdWMEWfQ+wab6cjbIV7Dqwis3z67nnvgvZeKOf0d/39Bltu8HDE43CMDlMO3Hb4x73OK644gr+9Kc/cdlll/HAAw8wf/58dt99d57ylKfMZB8bPMS4/66l9eM7l44q88Bdy+Lfy+5bWW1prQkJrtetQSJM3IgCmXrOQHtU8RWrhydXb6jbXw/JwqQ7vFB3HeKk5NqP9USQRLIO2/8T9Sm0GT8SoyLV+jMV9HDFmswt458Y597ANRiv0Bj9kK7rk2m2p6C0hlAV5wI3QZl1FQ/XdX1o9TDDfq24/44HJnXPyHDB4IpBAO67c3L3rCnSdTZFdD1KjieDVctX9zzfP6daS5fftxKAzkiBHSmY22OdnUkUWrKyGGSDfiXzsWvcnouSJwtEWd4zq/1o8PDBROv6urymzySmpTDsuuuuPOtZz+Izn/kMu+22G7vttttM96vBWoJzvvcHLjrtcvrntLFlSZYZLjvzT5y1yyM46LXPiuUOfsOzWX7fCkxmyAfa/Pj40ymLjtsBC5E3TCDdhR+3hAScbg8bcWFHQ+ZmxJ9TsAVWhDwzFP05tA277bwtGyye27P///nCpzN3oM09963AqHD/itX8/fa76dgS8Tv0VnBJFjKXDVrF7VpLK0dUaC8rHO8C56ZkcwN9GSMbCMML3S533/3KnHuGyYYtMlK6cLHgXAOsyykhpToXHZ+tmaJ0PIzcoHmGtvzc+MQKipsLNbi+5S5MrLQFNQaxQqdFFU41XdN8LoOYYM1qXYgIv7vWuSVpBuKnPKwKqup8obvukfB3KtynbeeVYcVlVXZZl8m9FUO9tSCwsr2CRuHdizwhO5ClsY4ETeRIaMwjEcnVYYzJPSF3REwIR3LNK4JSjKURPvzwcF7XN9piA47+6X/xf+f9nUPfcfCk7lmwwTyedvhT+fMfrmX/o/ad5R467HHgk9hyp624944HqrXVCGLyKtmKGOey10NpUKsYgQ02Xch+L96TA171jAnbfOunX8Fm227ETrtux1Y7bjYLo6qjP2vz4m0ezbXLL2Cz9jBbt1eyOBtinkAuOTDA4mwu+YpPs3LFJ7BqyNq7MGfxFxCZfS5FgwYPV0xLYbjhhhs44IADZrovDdZCnPDfP2DZ3csqsi7K4IpBvv5fJ9UUhnZfiyOOfQkA/7HD2xlcNYTkeaIsuKRmIk4A1cBTCDyGNJxf5szskgqkmTOxa55jVekYKG0JI5aLrriRO+5axhabLRrV/w3mz+G9L94nHr/mcz9h1XDHZw+rvFJiHoESZ24fVPKVit4zzEiZuAf1ZZQGRlownGcMtS1z7lT0gQ6d1R3KkRIZ9m5VQeGx1mUZjsqQumzQpfVRnjKstTDiIplEVx7jI/1kThsojVJaQ4EwnMFgnx9Dwh0IXIa42Rh0sbRMMq9ptusoeJOW01H31EjRKaTLRSnUCU4ZCKTn7vrwikRUJqiToGvKgXYd44niyT3hmPo9IStdvAYUxRSjJCET5mGY6Praiof7uv6MFz2ZZ7xo8n7x9925lAt/eSUAp3/rPJ7/+mdNcMea44JTL+f2G+/yBOYy5lYgeAUZ73IXiD3RNTK4eLp/77j5XvZ58V602hOLAJtsvSFv/tTLZ3gkY2OoHOSKB85j8/ZSFmbLmGOW0ydD9MsQc6SkD6Efw7BdTqluY8YO3U4xfBit/v0ftH42WH8w0bo+3TX97LPP5iMf+QhXXXUVfX197Lvvvhx//PHsuOOOE977hz/8gZ/97Gecf/753HzzzVhreexjH8vrX/96Xve61z0kIYynlYdh11135ZprrpnpvjRYy3DXLfey3c7bOmE/CLv+i7P9zttyxz/v6nnfHvs/EVuU2LJEyxItCrTTcX/Hc/5fTXZ4g2IRvgiBzBy+F9a6jNBFiQwVULpd8A03ns8DK3qb1gNuvP1eLvjLTWy54cJqdzzsmHvhM3CTFSjazr9/ZJ4PGQrOD760UCrZsIWOIh0YmQcjcxxR10UlqpQrp4h4wT8oR6VrLISGLdvC8FzDqg0zBjc0DC42DC02DM8xlD4JWQj6E/tiwQwrpVGsOBK4Fao+4PgRKu5j/Z3Vf1Q79p7oDPWpCWMOc5POWbe+EOTxWHuqlARZpUf98eOT6FnjPxIiHiXjSq/5cabHIfN1rYw/Vog5LkLSuW4jyWSwPudhaNb1qWHRRvPZ7nEuq/FeB46fv2ImUJYlmRGy3FTuR2O5Qob1Wro+PljFFttvwsZbLJ71Pk8Hfaaf7efuyGrbolShRUkfJS2BzIVdoFRLhsH4HweRRWStJzy0HW+wzmI21vTTTjuNAw88kOuuu47Xvva1HH744fzmN7/hyU9+Mv/85z8nvP8lL3kJ3/jGN9hyyy1585vfzCtf+Ur+9a9/8YY3vIFXv/rV0xnmGmNaFoZjjjmGAw88kJ/+9Ke85CUvmek+NVgLcP9dS3n97u9neNUwJjNOCLUKmQvL97cLr+V1j383J173JTbeasPavffceo+PhFRUSoZxu+2YEL7Hk4NDRtI8R/IsEvWiRSP4jgRyXyuHLMP25WjmIhXdtWIVr//Qj/jCB17EXk98xKixXP2vO3nVJ38UUiU4t6NwUTzxNnefoJyEsJ75kLfyB9JzZtCWUPZn2H5DMRfaqyDvKFmhmNLPkzEuilNm0OESozbueIN1pOm+nHJui2Xb97N6M8G2Je7e990LfctLGPTuNApFv1D0G4oBYWQBdBa4PovtXszUuzX5jxKJ0eIJ5MFdR5P/h/nwVdR4AwJViNb0WjqPoj6MEj2tEOLnPtQZ2/OKmiShWRVncXCRpUBDSNXIYXHKmFhfsb/X6WoCucsIbQrn3oTxbkhG6n2f4g/B+sxhaNb1qSHLM778+w/xwN3L2XjLDWa9vW++7/uc8j9nIpnPeu+Jz8F6S5b574f7O661KUTYde+dOPY7r5+UdeGhgIjwnp2O5tK7Psry1T9lp/b9zBNDv+S0xPU5x421PedIdO5bMGYeYuY8xD1vsK5ipjkMw8PDvPWtb2Xu3Llccskl7LDDDgAcccQR7L333rz3ve/l5z//+bh1vOc97+HVr341G25YyVef+MQn2GOPPTjppJN4wxvewFOf+tQp9WtNMa0V44ILLmDvvffm5S9/OZ///OfZbbfd2GSTTUaZSESEo48+ekY62uDBxbJ7VjC8eqT3Rb+rNTI4wv13Lh2lMPz7+jt73NTjC5cSo3t9H7t3z8IOWRJxKP0e3373sp7dvf3e5VVVaTuJG0+NAAwxYpAp6rvl4CwGNvcuTAZMB8yIptvsoxvrNRYRbO6UKdv1TQxJz2o1+XEHZUCDcD5JTE+MldGHY7U5RgNxmqe6nT9x1RPf06X4rCnW5yhJzbo+deSt/EFRFgD+ff0d8W9JXTjdifrf47gr3HP70rVWWQgwYujYu+mT0sd4kGhNwB8DYO8jyzd5aDrZYL3BTEdJOvvss7n99tt585vfHJUFgKc97Wnsv//+/OIXv+CBBx5g8eKxrXzvec97Rp3bYIMNeP3rX8/73/9+LrroonVDYTj22GPj35dddhmXXXZZz3LND8u6ifvvWsqJHz2FRZsuZGjlcMU3gMqv3Zb09bf59FFfjYmB8MTloigYmN/vXHCCdQEXAlVFMCLRPURaueM65BnkOZrniHq3HevaVcWHO3XhAy3QHraUeUanP6MYEPI5LU6/7GoetcMm7LTtpnzuZ+dz+T9uxWJRhUVz+hkZKgDF5lC2gMwJ4FagbCna8oqLBZMrrREwmwh9SzuRKGvbGUUro4Uhs0JrxGA2Uoxm5GrIhkpMp+X4CZnB5gZp55h2hnQKrBEkz+gsaDG8aT9DiwS7gaE9H8q+yieqXCgMDWWYElorIR90+QfoE6SlmD4XGbTsxxPHE5Iwlc1AfIxTi8ZwqcHVSJSKKKneQhCeS8hGHXkBPp+ESIwepZ48UdMhJJCrHVHZ4kLVRhmm1MRdoup7RWwQT8yUim9QqMsLEVyobHUcuQyhHvUWGU+UlrKy+tQ4Gurm2uRN4raAZl13uO/2+/niW7/F3AVz+M+vvu5By68wHs785m+5/Z/3MG+D+ZTegulCBAsaSM6ZcRwxEbeeZnll2VWlr7/FTk/alv9414EP9XAmhV02ei/X3tdPpr9FWc2ItGjnO5DLQqwYTLYpMu8/H+puNmgwChdeeCEA++2336hr++23H7/+9a+59NJLOfDAqX8XW61W7d8HE9NSGCbjf9Vg3cWZ3/o9l5x5FWIMGvIkQKU0lCVqLYPLBll61zLnL5LCJD9cAeIjJEVegrMWxJ30ErdlXhZQFFCU9V15b2ZXaWNLxVplhJLCQlka7NAwf73xDr7y8wt59fP34ifn/7ki4AbXlBJsDjYmBgMN56wfhifatgaVfJmidwwxHBUiKFpCB+gYZVgMI8Yy9w7F3jNCZ0VB2fGk50zQLENLixkqXNI61CebE1YszBmaowwPwEh/SdG2XvB1Qm825P7OR6AcVlpDUPS5nY4SKAQ6uYLTgboyNEslwXvXnTAVmvwhEN20oG6tifJ7UBhIrEDd5OguRPJxetKTnp1bl5v32CGvV8Z+hbpjpmfojogkvq6QzyGGbC01ljcWpKM1YjRUY0eVcqQz9kB6YDZckm677TZ+/OMfc8YZZ3Dddddx//33s8UWW/Dc5z6XD3/4w2yyyeR2UEdGRvjkJz/JySefzG233cZWW23FEUccwfvf/37a7YlDYTbrusMv//dsLjnDkZmfuM/jOPDV+z6k/RkZ7vClt33bqfzBNdNr4PE4BIoIxyWeCF2tXcNDHbbdaXN2euLMJ1qbDcxvP4LHzn8MK5f9iFwy0CFKLHM2+v5D3bUG6xlm2iXpxhtvBGD77bcfdS2cC2WmAlXlRz/6EQD77vvgr0vTUhi23Xbbme5Hg7UIj95j+94M/JB4zRhGCfPB8gCVM/l4jiRpiuAgkJe28rsNbaVQdRmiixJGCmQIJBe07b7sKrD5xgsYHOkw0M5ZPVxEAdlS72YwiEQ/+ESAFa+rqFWKPmitCnRdgU6JGVKyTMnakK8Ga5Siz9CCGOUo7OIrgs0EY8TtrqtP1ra8g5knqBpH5yhwgrS3DdjM398HMgT0ObclRwz2JGbr7nFdczvubsa8NSF5JDF60thPJJnnrr+163yvStJr3hIwqkiqEEhSpqu91KPLGq8keAtFTPpGcmyrOgNPQrwiZAJ3o/TXuvo+1aCqOgmXpKn+uHzlK1/h+OOP5/GPfzyHHXYYc+bM4cILL+SrX/0qp512GpdeeilbbrnlhPW8/OUvZ8mSJey1114cfvjhXHnllRx77LH85S9/4ZRTTpnw/mZdd3j0Xo8Ece5Gj3jc1lx9yfVsv/M2k87+PJO48f9upugUbPnILbjtH7f3XhPTv0MyTFWXDDNYGPx6Pn/RXMqiJJvhZGuzhVbriSgZVp3VMWs32Z0bzDwmWtfDmr58+fLa+b6+Pvr6Rq8LodyCBQtGXQvnli1bNuV+fvazn+VPf/oTL3vZy3jiE5845fvXFGu3I2ODhwR77P9EvnrRR3jPwZ9icPngqOuqzu3EhUhV73qUIHzvFGcqD7vTNZKe/7vlQ6/meUXUM5knWJtEgUhijqtiSh+LXwTb8kJ6DqdddjWnXXp13Mmu+AniI+WA+pwAKXfBeM8UMwL5aqW9QmmvtLRWFZhCXZSjliEfsQjiQheK0rfCZY3OBy3GekegthuTikAuSGmdSxUG287Rdk4xP2dkoWF4Y9+HrJomBXSuO7Yl0DKMhL4bRXPFtomWBfHKQph36TYVdH/oEpylLrPHu4OXGV1E4V7wilfkXSg97/FJv0fzCrzyVktGl/ZfnVUiKAL4DNESvOWiTucEJBFXPspK3sXJ6bIas4dHi9ckoYyW2XqVmQr22msvLr30Uvbcc8/a+Xe/+9184Qtf4CMf+QgnnHDCuHWcfvrpLFmyhIMPPpjTTz8d4783b3rTmzjhhBM444wzeN7znjfFnj088ZTn7cb3rv8yrb4Wn3nt/3Ll7/7GDk/alq/+8eMPaijD0776a776n991a0eWI3nLrX8hMEQS+ciFWU2st0Hz9kR/d97w3c/8ipuuvZ3/98VXPmjjWBO0+/Zg480uQ8uViFhM/qiHuksN1kNMtK6HS1tvvXXt/DHHHFNz5YzlfWXjrRdTXUvOOOMM3v/+97PTTjvxv//7v1O6d6YwLYXhNa95zaTKiQjf/va3p9NEg4cYqsrgiqGxLk4sFaXbxLV/w6HUf+DiFnLSRq8vVPjxM+I5AowShuvtMEoa1jG6FMqagiSxV/B1qfoawqSmdZhOjwlJFCes1uoo+w1lX1JujLVjVKbpdKzdlgAY/7lMQ9aZhKpQtTtW28GyMPXmpyR9dysh0t2vyczRQ4BDDz205/n3ve99fOELX4j+sOPhxBNPBNwPmEmi4xxzzDF84xvf4MQTT5xQYWjW9QqbbrsxADf8+WYAbv77bVirZNmDpzDceNXN9RNB8e0+R9d5SRaUHt294a+3zUwHHyRk2eZVnokGDR5C3HrrrTWrQS/rAsDChQuB3laE8awPY+EPf/gDL3nJS9hyyy0555xzWLRo0RR6PXOYlsIQfpzGQkhT/3D4YVlfsf0TtmaXfR7DNZffFN1oQBK3Hq80qM8pEK0M7hdKrMWqRbLMcSG8RSHuhBmpWRzUH6sxCC2XBKEMjvkm1gFAO8NmQssKfSOGYWtcmNNWcHsJ/inOZcWGnWvCzrpic3HhVL2fr4veKY5MbKGvsPQNQr54ABm27n6fN6HPgBaCXektBwLSymGOj+Phoz45xUSgnWPmtl3ytzyjMz9nTp/L7Cy5on3iCMcQd/Td/QoZSB9JfS6vgoTYsMG3P/dWhrEE92BlEUd2DiToqlmn0EiYo7ADLyDiSMaqGsfrXgGtwpRaPLFYvBXA1R/vMa5eDYqTl2nUVmTs2JPQRsvVqeqeTeROhEzQkduQjKX0IXELJbOV8qelOk5DyvVQJc+mtgTaSdhbZipxW+AdTIbcduGFFzJ//nx233332vnNN9+cxzzmMVNSOsbCw2ldV1V+9NkzWLzNptg5c1m0eA4nffw0jvzgC8myaaUvmnS7P/jEEv70278yMlQwf9NFlIWtwkqDXzNThUCqddTV4tZMkSrTOy6LfauvxSGvenAjqzRosLZjonU9rOkLFiyYlKAfIiPddNNN7LrrrrVrN910U63MRLjssst43vOex6JFi/jd7343ysrxYGJaCoO13dueDitWrODKK6/kQx/6EJtssgk/+clP1qhzDR46/PNvt3HV7692B712+oMSkRCCI8ok8kzmfuwkzyFTJPNlww+gsS6iB860HttKM/CKidc0c0mLNM/oYOkYS8cKHVXU81ejEBySdmVElxXxri82uMDYyuJgSshXgSy3FMtKsqUdyqHS5Qcw4hSWLErL1dxEFxdqWZpDOUe8tZAJZQZDfTnLN7AMD1gKSe61TlnQsB0fqoj1+vMWp6hFErDEOkZZJHD1VHWE58cot6SoaATB3AvlNQKzibe7kyn5OCElj4JNmkhfp17Wn6DgpSRlr8TE+m3VXrguiguHa0FKJSuSY6uYIq3PKbxFZ2qZnqdCep6sv+tY+P73HbmzV6SNFCtXruTuu+/mCU94Qs26ELD99ttz9dVXs3LlSubNmzdmPc26XuEfV97MyR87FebNhU7BqvtW8NP/OYudn/oodn/242et3WsvvYGTj/2Zc0HyQSJqROeYybnLopCD+zL649rfoRwMDXY4/XsX8oJX7z1rY2jQYF3DTJOen/70p/PpT3+ac889lxe/+MW1a+eeey55nrPXXntNWM9f/vIXDjzwQNrtNuecc86kMkTPJmZ0q2T+/Pk885nP5Ne//jV//vOfOeaYY2ay+gYPIjbcYhED8/rHVgomjSC9j1FHet5Ooq0YqckiHesiEpUWChvvTzbeYxfCxntwdQ8+i9pVtRV12ZWNLyt1/0b19ceNfFtVUmtD621Zqc6rVWSYGOknFhwPtY6H1vDKQPKfVJmcRxkcuk+OqnP0dbVd5cvkPkvXRFdV1A665dCxrCDpNTu6u16HGTNjdO15pd30ikh6bdTcTBJTyfS89dZbs3Dhwvj55Cc/Oel2brjhBj784Q+zePFi3vve945bdiITdzjfrcBMFg/HdX3jrTZgYF5fzEavqmS5odUe2zfm3tvv546b7uTWf9zOv66+jc7I1JRRgE222ZC+OW2qMNXJxWg99f+mbp1TWJ+3e/QWU+5XgwbrM2Y60/P+++/PFltswfe+971aNKSLLrqIs88+mxe84AUxB8Pq1au59tprueOOO2p1/OMf/+A5z3kO1lp+85vf8LjHPW7NB7qGmBXS89y5cznooIM4+eST+fjHPz4bTTSYZWRZVv9x9LtbQPxxkjF+rDTZ1Yq7Y3nmrQxddfqMpaOSDUmiy+ZZdAfSzKDerUmAzAr5ENg2lJm3BEAkz2qwMITqvEVBcypSNE54NyVkBeTDlnxY3S19WSVLdyWYC7vdjkjtr4XkaiGfQaHQBzbLsS2hmJOxekvD8AZQzKGyJGhiXeilxod20y36cC6jipYUrnfLD34HPpwWm8gfad1hp76UmqWgZjUI7SRWiRjaNJVxxpB5IOleD5fsOESTnAhKhAY3JFxo1hARyUdBwpOiQ7QkzRKrSzpHIa7uqCzZM4fJ+rt24/777+f5z38+K1eu5LTTTmPzzTcft/xkCHaTuT4RHk7r+gabLuRbf/okH3/lV/j7ZTci7RYj9y/jPfsey3+f9Dae/cpn1Mpf+bu/8v8O+KgL2OBf6kfuuh1f+ePHpjTvWSunPXcOI3bIuRnlWQ+Sc1ZfL034u2sNTaFxcWDOWpBXokGD9Rl9fX189atf5bDDDuPJT34yr3jFKxgaGuIHP/gBixcv5jOf+Uwse9lll7Hvvvty5JFH1txCn/3sZ3P33Xdz0EEHcfrpp3P66afX2njSk57EC1/4wgdpRA6zFiWpKAruvffe2aq+wSzjzpvvZtm9K8Z0R5oSYqzLbukwHI/zg1qTNus/kpp5HoLxx+MJ2r3OdQnK4HzezYi65F9jjWVU1ubqz1G760mZkCHa5oJta70fE03pRDLHVB7JZKwZE6G7P1Pdqp9q/WO1020m6NEP6S63Bn2djLEtXJ+sv2uKlStXcvDBB3Pttdfyne98Z1KRjcYj2EFlWZg/f/6U+tILD6d1fcPNFvGvv9+KZBma5IX524XXjFIYrvnjP5zlMHEVuuGqfzI8ODKlcKz/vv5OVj6wykWP6xXBqxYJaXr462VTj//eoMH6jMk6NkwFL3zhCznrrLP4yEc+wre+9S3a7Tb7778/xx9/PNttt92E9996660AnHXWWZx11lmjrh955JHrh8Jw8cUX88Mf/pDHPvaxs1F9g1nG6hWD/O4nf2SzR2zM0ntXVLvQnkgHoGr9Lr/fFQ+Zg1O/e/W7mpnLRKpZhhi3OxZ2kSWr/HPd7VLdH5BlkFcWBnIDWUbLGErJaEtGpzQUKhTtoEAAIlijzsKQSXSfMaVrSQvfXe/fng1DXlhyI2QDhizLEescfLy9oNq8V0/WTdyDVEAywXpSt8WFfgVndbAtwQwYl6UUKFqKGqc4iJFqEzBYR/xMRPKiaLVwSaK7eN3DZWOmFpEpjE/EOMJxsASU1Vy7esWHZ1W3KlgwkdyB39r3NapG64QYnH+n8byAeN13ztchvuNVNeJdqOo734FU66w0eBcrYt9UxWV6VhfONmZwtjjCdctZdVyWZ3zWZ1zG52CdUCJxOpsi6Xk2ErcFDA4Ocsghh3DppZfyla98haOOOmpS982bN49NNtmEm2++GWvtKB7DTTfdxKabbjouf2EyeDiu62//4lH84PhfcN/dyzHz2izecC4P3L2cv110LY9/2qM572eXcN5PL2ZwxSCLNl3M0FAHRDAo+770qVNSFlYtW8W5P7qAjbdazPLlQ0iWo97CIJmJFs6whmJM7fujYirjY7TMqbtPIc8NG28yn9e877kzP1ENGqzDmGkOQ8ABBxzAAQccMG6ZffbZJ1qJ623O9C7cmmNaCsNYJLyyLPn3v//NP//5T4wx673Zen3FL0/4Had97Zz6ydQlKT0HlXoekrp1l8kzJLgFpVm4BJ+ldAy/YC94qwWsRfOs4h2USpHnWCuUJXRUGRZQK9F9xfr8clF56fjMwf4YiNmETUeRVYouD9mjlayTbLV3efn0IvYG1yQ16dy4e21LKDLDcBtWLlA6bT9fCeE5mBpSpcDVm/r1RP+lpGGq3AtjuCKhNs5LJEqnNyQO/jF7MoxdZ69ryS5+uqs/Vj2R4NxdvT+vwSUp7ap3AxPPpQhkaxPIz57kbMoqs7QkSgWeAB3GVxSzR3qeCkZGRnjRi17Eeeedx6c+9Sne+ta3Tun+pz/96SxZsoQrrriils/hjjvu4JprruGwww6bsI5mXR+NfV7yFP568XWc8c1zUVVW3buMm/92K9ddfgMnXPUZPnXU17AjI66wGKSVo/74Nyedx5s/fyR9AxNn2Qb42edO55df+w2mvx/abSQv3TubAYHoHLIPGoNPROPblmpthWrhS747I8Pw1AOfyJ77PXwUvgYNJoPZUhjWN0xLYbjpppt6+mUaY1i0aBGvec1reMtb3sIuu+yyxh1s8OBj3qI5o086ti41bkGvXAk9z4X7u64FAdLqKPO7dt2rccda48a1S9rlCb6OsVwJrUHQ9LvpdRZsZX+UUjy516LBmhDbrKqatK6vVdmaLK24TM+lOstG6bM5+4KjOAJjIQm/WneFSu0z1IT3XuxeDVYAQj1aKQ3JbV16SSze3cXxltNoVRh1oasRod7XLp0mnIsBqsKxROpCvCc8akk/qcFkjHE8FCjLkle84hWcddZZfOhDH+K///u/xyy7evVqbrnlFhYuXFjjNhx11FEsWbKE4447rpa47bjjjkNVJ2WtaNb13tjM52QwmWHBRvO4/46lbLT1hnQ6BXMXzmHFfYXLroxfh7zpb4PNFpG3J/8Tu9kjNol1iHU7HmoU0RDKbfSzqdbJHutuFwTYdKvFk+5PgwYNGqSYlsJw8803z3A3GqwtOPFjp/Ljz55R36kCIg8hRcinoETXkxqMzwbtcyyQhgeUpM4YU1yqTyb1MKuZ8YRng/ocBmW/oRjIKOYYyn5xOQvS7kHlrlI6fkI+pOSD1h1bXLQlq26nGlwI1CCT566f1rsipcK4+1GvDzdwKTDO0kDms0t77kLZJ9i2QXKwuY2EXOnqddWOd9kJblphW7xbdijd3EmiIEj6THpIxXVlwf1hugR1SY5rl1JJ2ytuPa0J3YrQqD4k3UsMJ/F86YeQ1YdRUwBM13MJr6kAOT7Kk1RKY6nYEC7WAuXUdo6sSj2T9hhlpoLjjjuOU045hc0335wsy3pmDg3nxiLIHXLIIRx66KGceuqpPPWpT2Wfffbhyiuv5JxzzuHQQw+dFBeiWdd748XvPJiNt96QL7/vRyzvKPkWm3LjLSt41ZM+gFqLmTMApWWTrTfg9R97qXOfQ3nc0x49pZwNB7x6XxZtuojPvelbLF8+5L5bIo5InRm/VpoqCERMduldBIWucKvEL82CRXP4r48exp7PfPRMTk2DBusFJlrXp7qmr6+YNdJzg3UTF59xZaUkTBa9itdkYBn72lhIfviiQBkUFH/d5sbxEyT8WPboQ+omoz4jcw8XmzHHoj3q7VUulc27BXpxyoQjPLucdJr3qGM6SJSEbovAhPdMdG6SdU263emgu+JuC0hXv0UZ+/nGkJTT785USM+TxS233AI496HjjjuuZ5leSkQ3fvzjH/OJT3yCk046iS984QtsscUWHHPMMXzgAx+YWoca1CAitAb6WLV8EObNRUrrXCSD24+3Ltx96/08ctft2WzbjabdztxFc1l+/0pot6kFikg3U8asoOs4eQ+XL13N3PkDaxwpq0GD9RGzQXpeHzEthSHsgh199NFjljn++OP54Ac/OGUf4QYPPsqiZMnXzuGmv9/Gwo3m0ze/Hy21+kFUi4rUyakIJoQPVecSI0hCxFVHaPZWBM2MD7GaVQJ4l4VBxZOjk50ylyHaR0QyGZobbF+Gtg2SG6QtmLbBtHwEIqOYZAdZVTFWyUYgGwGDwah1u+mKj2qicVdac1NlKhZB8eRcwFRprisPgFQGNQrGOO6EVxJEXIpja6BlDbkVZLUw3DaU/daTlU0k8Cp+V9FbFyK5WVyOCExi6BFQLFhBCIkjlMBpqDI2+7mOyo9iMG4MXuoOhG3xrlgxPKlKXC0l1BEsLL4+CZnw8H8HLcINpgrnmmZkJrhvhPeA6j5/XJG+KvOONW43VXLfF0/kNmG8pTrCtk98ETNDe5K3y32hMaxsacaOq98L7odlfKFrqj8uJ5544oRZlgPGIsiBywx97LHHTkq56IVmXR8bu+37WJ5y0JP4259uZnjVMBbBIGSmRXuDueQCzzh0DzbdZsM1aucxe+7Ao/fYnpv+cgtKiYhb/8jEkZxbOZJXiSyt+MRu4NYMwnfVYDKhr52T54Yn7rk9j975ocsQ26DB2oyJ1vVGYXCYlsKgqpNicK+NLO8Go3Huzy/l28ed0rXTPp4vSbXLP04hl4PAOFchLE5YDX4vYfcsHBvjXHqCUOvdbDRz4i044diqUKpisXRaQmGgxMb8YSnp1ZFgFe0oZlDRYcUWilolRk3VxHIfhhMVoyjZdp2vI9zrZHVHLnZjEVRcxlWbQyHKiDGsmgNFq/QEXBf1J82mrFHIxwnzMXt00ichKgfO5SYI7H5MpVQuQumue1ASkt32UaMKZW3XdWX0Dr7tOp90r1aXVq5LaXv1ee/6N5Tx+RZ6unEHEnQgNHdnnE4yQsf2bTUHZZqV/GGOZl0fG/1z+vjQd9/Ii3d4FyOrhlyySP/uvPy/DuYl75qZyEP/+vttXHPRtZ707NeHQNJpuaQjioAtIcvcd6Is/ffcPRe3eQEU8JwX7Mrb3j+xO1qDBg0aTIRZc0n697//vcZh/Bo8OBiYOxuJfLyjymR8OFJYT/ALu+jB5G9cArXoBYA7iLvoJS6ikms1kmBrVIykHz29VsLN44yIpEhaR/R+SsiH3bK1+PCelL6/XpEKBOQxZ6m7X6GzQYBOd+JTwT1MQpcwP9a4uo/qzfb6a4w6uxWK7svdSkrakIye1zgWk57sul/rh93Vhr/H8dqYFGYzrOq6gIfzui5GmLtwDoOrhmov0vwNZm4+Bub3k+WGMok8p9Y6ErRat2tg/RfbVG+vFen6Trl1aEGvABYNGjSooYmSNDlMWmH4yEc+Ujs+77zzepYLIfh+/OMf89SnPnWNOtdg9vGb71/EF9/9vSqbaPwN8rtV8YeLKh8A3tUGokDq4udTub4AZM5croHonIlzSUr9ck0lxqXJSqMFQEDynLLPULYzbF+G7TPYtlMqTAFthdIIBaC5FwwzkA6R7NwKJGeL26HLUiG/6k7NCyYTL+9KTdq0YUc99NlHLCVz90T53FSKjwBZB9qrYMG/hc5ARmeuUswHbXcJrsnaFLgZblqDNUaraVbnBiQiTgmxOBelYDmxldBdU0r8kOrroFYCu1RjVL87b9Ls0FC1kfQ5Vhd38ZN51eqemiJhqn5ENyySe3zFNUUiaIVpnb6ucD3mBTFUmahD/q0QWnaKpOdx9K5amXUFzbo+eRhj+MKv/5s/nXs11loEZYONF7DngU+csTa22GEzvvLHT/C/7/s+f73oesj9uqoKncJtkkjLbaBYhVygnTvXypBnRWDuvH5e+9ZnccALdpmxvjVosL5ionV9XVrTZxOTVhhSv1gR4bzzzhvzxwVgt91244tf/OKa9K3Bg4DfL7mspwFA45Z78k+UFNPQquk9XaE6o3HBawEhbGf3bnm69atJlZm7YMFHSHI5DpwwXq/CCo4AHbrkhcIQj1+92096U/emQfc82K6+anffk3tiRNJQR2ohCcKw8RuEBsqWJz93CcJjIQrlkhyHcUAUwNNIST2tKOMc92ozdWmqjW+M+yMvoutcr+NRlpp0rifoZ2xHk+OkcNrXqNT0mKOpYn2zMDTr+tSw8RaLOfCVT5vVNnZ40iO4/sqbHU8haMphc8WYajHwx5q8z0G3WLliiLkLBsjyqXF0GjR4OKKxMEwOk1YY/vnPfwJOKNx+++155zvfyTve8Y5R5YwxLF68+GFrtl4XoKr8/pTLue7PN9M/r5/WQAvrd6fUb+s6C4KialELxlQSsfXZeI3JUBwnAIIe4baTVUE80VlFUCNIK/NJ2gT1OR3EuB8+jUmJpHLPF5CWQdsZZYgQ0spgQKDlMim7DWQhHwEt3C68I9a6HTcpnOyeZQbTVrRj/Y61IAZscCHKfP2oq1cMIq42qxZBMCFDtWr8DQ/b5xacRSUTp5eIujnLpMoTkIFpC1kutLwEboygRrGZRhKwyYzTd9RiED8tgsU6by3jyNiodf0wLnN04D6IFb/jSLXraAIhPRC2XZZubPU8xRgUxYp1IXHxVolMY+Znl7dC0VIxxjj+BV4hQzAZoIKWbs7Ek6JDjgtjqmcTFExBsP66mopMHzJhiH83FH+PBJMBqPg6Mt+OZ1gbP2b1OTdEBMkdX0RLl+XZIHXN82GIZl1fO/Hc1+3Haf97tltHvN+lW5od3dodSxI4wEAbciPkecZ2O27K7k/Z4aEdRIMGDdYrTFph2HbbbePf3/3ud9lll11q5xqsO/jzBdfxmbd+tzrRi8yrdTJoWQS/G38ZxZouwqgjFiSFrBfEcbth8XrY+rVoDKTvd9NCUjUR1O+eWaDMhaJPKFtK0Yp7xkjpBMDQviO02qo/6oRZ27FYS+JGU20/a3CJMVrt5IfMyLgOiFck4tDibr96hcgL44mvveIUCRWXpM3mgm0pRVsp+qHsU8rg5wOoCT/+Zd2EEP7x7ZU26YRXCiQqC66sWI3z4Sw8oQDR+iKBEIITvFVtlfMg2bYMb4dzS3KWGpc0z1a79r6sTecskrI1WgOCQhpdjRKF0xHF1fO3YwFH6PZmAU2fTbQyaKwrnLe2Oo6RklTr91iltD1IFuMheX3HLbOOoFnX10784Wd/pCwsgsVqCbnbcPDRIECM+86WftvE72A8/TmP4wMff9FD2/kGDdY1TLSur0Nr+mxiWqTnI488cqb70eBBRKvvQUy/ETOfzkRdPc516zoyRrnJ1j9dy+Nk7+3la7Mm7a4BptPsQ9TVh7DhLkzCJalnEsN1AM26vvag1dcawxdvgvumkFm6QYMGHhOt6+vomj7TWKPV5eabb+YPf/gDd9xxB8PDw6Oui8i4Mb0bjI9//u1W/vu5n2LV/SsBeM+33si+L50+4fA7x53Cz79yNmSGLDfeDUQ8xcC5sQSOc/D6UGtR69xCgouHWq3uofL1l9SdSP09mUHFudhIZpA8czvxZeV+g3Gm9VCGdkYZ8jHk7lgyn4nYitvhVtBCyQrFlIqxlRtT6Et0R1F81mlXxopzYYluLhDdftTH8RdvFVEUmzkXGefKRIzU5NJIeKuIgLZd7PNOCzoD0JkPwxsrtk+x4rgU2YiQDbp6yBwHHJ8/AtS51nhrhas2cQ1KXKGcm497rqIuR4T6OQgGnRA1yrnoeLee4KKEO6ch90PuXJusj+UuuP4hlduDq1Jcg55AnsV3orLehL6G3XyDn2dfh0j9evDssv75ia2eX9ATjAil75fg3bLiHDGKGB2fJxq5J44Y7u4xwRIzxaiqkwn6ta5HHW3W9clBVTnu8M9z6W//hpk7F8kzJMsoli3HLl/Bs175DN733bdNq+7dnv147vjG7xDJ/XpgoXCms+AKKShozpbbbMC+h+7OvIUDPPugnWd2kA0aPAww0bq+rq/pM4VpKQzWWt7ylrfwrW99y0WLCAKARzhufljWDBecdjlL714e433/6tvnrpHC8ItvnIv1LhgaJE8vkjlhtNKiq8RtGstrkbhveKUgeepdx84VSEV9QjOvjJTBncS1a4PEh+uP9XWoavRjt75vZSZY44VEC6bUqMBYb6mPzilBIE08i4LHCqI+1buGrkclJwjTVl3/MdX93WuGhjLqXY48P6DMoGwJRZ9SGHUcgNK7yZRgCqEcAJurS8YW+mdwbk9JQ2GqQnyjeBzjyzop2Ub3IjfPNhRUp1yEMLRpxTY8Wz/+EFJJSTZUwj3Wl+/Ku1AGdygd3Tfxr4/tfi+iq1LXXIZ+eK5FOgdlwpRWXLu1OUr/CFMaxhfGG5QlS1QapuiQtN6RnlM06/rUcN/tD3DxLy7HLFzg3q3CvVDFshVgLeecdD5v/8rrphW2+uyTz3fR5TznxgWA8Mp43KExoMptN97Dsw58AptuuXiGR9igwcMDDel5cpgW4++zn/0s3/jGN3jd617Hn/70J1SVd77znVxyySV87nOfY+ONN+aFL3whN9xww0z392GFp79wd+Yu6MdkkGXC/q98xhrV95xXOGVDVDGSeHiI29kPCUPjcW5cVA5vfTB55raufSZeZ3UgViRGMJlUdRhxxF9wyYVUMZ4YHOrwnOdYh8mM38UO1w2ZEdesF34zBE+dxljFIPW+C2TiLQrGtWdycSEIfX89H3l033PBZgItQfoMtF0I15FFwshGhpGNM4Y2EoY2EkY2MBTzDcWAce3krh2jgikgL4SWFTIVF/u1rUi/YudqjKHuxlIFPM1UyHAkZrd1rhj/GBzBV33fhUDcdterTNzO4hCsDIDxdYTxelnDZZB1Co3kYHJneVETLBDOyGCs1/lwxG+TtuEtN6HdzLeb6IDxOFg+smg1qawHBmLo1sy3G5SSMN6QoM31y1mcQkK2jOoenxC7llfQCO7dM+n48X7hDaBZ16cCVeWay25gm8dtAyMjoBZRixQdsrlzyFoZB712v2nnuNn/iGeCLV2dahFbuo0jf84UHeh0EGt5wh6PYOPNF87wCBs0aNCgjmlZGE466SR23XVXvv71r8dzixYtYs8992TPPffk+c9/Prvtthunnnoq7373u2essw83XH3xP1h53/K4Y/qn3/6V5xzxzGnXd8Vv/+p2rARsIJKKuDwCYXcX6taDsEtrg/NOvUyEEF1I4nW8RcE46cwd13fQrfr/GSd0B5KwC6EqzgPJCLbliM8us6klGwbTUW9B8FaJQNi1bqfeb7jXuNji/7ZhJ1qohUQNBGU1gubu+tACQzFXsO0wNuPzOyjt5ZBZXDQkL9R3+qGYK3QGlJE+CwMllO56KULZ5+wgjrOcdgzKHuyraIUIV6zfcS+dG5JNshiHW1Mur5viygLhqwDUZdIOWkEQsK0QuclK5QJm3XsTMiU7S09lTXC7+FWjPmBRjGYrvl/SwxKVdjbW4TWKSKT2p9Q/8wiptwv15xuOJY3naqv8eVOCChP6s66ju1HNuj55/PGMK/nYK77sXB0H+p0FrtNBVw8CsO/L9+bd33zztOu/4uz/c9a5EGzC+IhzpTNTqsnc97O0XPenm1m9cph5CwZmZnANGjzcMNG6vo6u6TONaVkYbrrpJvbee++qEmMYGRmJxzvssAOHHHII3/jGN9a8hw9jlJ2idlx0HU+9vjEcMHpFSZopxO3nyZaftZ5MH2P1Scc4PxbGKv9QjXltnOu1HMFLb6LPuohmXZ88ys74qmZZTFkVraGYoH6gUoYDr6xBgwbTwvq6ps80pmVh6I7FvXjxYm677bbauc0224xbbrll+j1rwPPe+BzEGP59wx0s3Gg+z3vDc9aovqcfsiunf+tcT3L1vv7e3ajmQxJcW0RQFy+UELrSxfFPErRBtZMrMtrv2QgauBKBBA0xF4BmApnL1UBm0Fbm/jWCNUDuiMTWuyG5jXSDaYPmBptB2R/8bxyHICuUfCTsgqs3pATnfD8Wn/shkKQ1B9s2FAPQ6ce7Lrm4/jYDHQDbV+2aC4AVOvOFEXE73u3lPldBv8IckAHoL3LKQeOtHwotP8cVPdeTc/HzClJ4Pog3ADn/GiIfRBBC/gA16vIuqDhLgA95ik2ehQBZuC/ZZff5MWzwPQq5D7y5SaxgrMTwrCbMo3sRIoE55nrwQ4yji+kSnD+ZkhxrZSUQrR/Hd0+qM6FdRZM66paKYLWpjsVbj1wpE+4RHOEcqTKWTxajDUC9y6yDaNb1yePph+7Bu094HT/77C+57bp/gwhbPmoL9nzuvixYNIfnvm6/Nar/k7/6AL/9wQWsXLaaC0+5hGX3LgcEyTKklXt3O0X62jxxjx2Yt7CxLjRoMG1MtK6vo2v6TGNaCsMOO+wQE/4A7LLLLpx99tksXbqURYsWMTIywq9+9Su23nrrGevowxFZnvH8N+8/Y/X96sTz3M6VT8ImYpwwakNYIGoKQ4S1dRV7LHW7l6VCnLsR7cwJlglxWqM0bF3OBdFIrHaEZ8FaS2kFMheOX61rX0uii090awKkUOgodLr64QXcGonbrwI2c649pVqGWzgClCXyDIocSq83SepyUwIjSjEA+SrnYlygdHLotNSToi3Wk56Tzozqm+s8wX+ofj1EYUJ9fgO8fxAVCdnnRzCFVBmQI+lXYy6JWpNGI9k7Ha/LWeDGaguX/E6sRHeimN/Btxv/7l50o5eTVsPWej/SftYgWuW6CJrGWHWMiTSvRkXyDvWUqjEIQINmXZ8KRITdnvV4PnvUV+K5W/52Cx877X1svv2ma1z/1jttwas/8lLO/9kf+eWXf0UgKwkWEYu2AAQ6JX8671ru/vcDbLrVBmvcboMGDRqMhWm5JB100EH89re/ZdWqVQC84x3v4M4772TnnXfmJS95CY973OO45ppreMMb3jCjnW2wZnjGoXugZYl6BUBtiRbVsXOa9U7xQTILAlUvRSI4uYdka1V4mrodTy10Ch/tycYyYm3lV+7bNeoTbJWuXmMhs/64cFKpZoJtC0UO1njrQEso2jAy4PgDxRx3XGa+jP+3yKDIHR/B9gkjc4ROn7NS2LZAKZQ52DZoC8qWG4bxhFxRoHDDEAN2QLG5ZXiRpTNPsXPdrr81FtuykKtTLJLpiYK1F/glJGAriQqBhOMSFwnJh5MFb2kQnxnZS+puA14iH0O8ZSXU6wjCvo4ijEdc38L1ILxLGt3KjWcUfwUI5GH3/IhKQ2y3l0zf/QrJ6HPR2BXnp4ujEQxi2uNjk09yLtB1as9hGi5ZIZrGRJ91Ec26Xsf1V/2T0084h199+1zuvvW+Udc32Hwxu+z3eHcg8IRnPIZVy1fz2x9cyPDgyKjy08HOez+Gjbfe0H3P/HfaGAFbooNDaKfDI5+wFRttvmhG2mvQ4OGI9XVNn2lMy8Lw1re+lSc/+cl0Om4b97nPfS4nn3wyH//4x/nlL3/J1ltvzac//emHPTFubcO1l1zvBfUg1eHchNJd3pisoEcF3VaGVCCMglj37riFLKtC1oipikSysUKWRdccJ6H7/Azid4ZFoGXQTChbjpCsRlw405YjRTsCt2BLJRf/chvXJbWuPZs5NyibQzGAd8shZnvuzMPXXQ0huth4wd9XiRWlMx9snyIdYcQIFEqxyCkKCGg5eqGpzZB6grEXkyWZdwlTHuY6k/jcVBRKHxnJCupdkaR2d5DHJT7P4P4TlBNa1SPR4E/kB+ySfatzswpuREmRUCa2mwrjVRdGDV7TS933hMNuxaA2KT2MEr2Uk6AkhMPud3oyRopemO59azmadb3Cnf+8m3c848Muwz2w0RaL+f6NX46RyMBxPI4/58N0Rhy3bPm9KzjiUe+g6JT8+by/855vvnGN+7F400V8/59fw5YWa11I28FVQxzx6HcxOFIiHbjlr/9iaPUwc+c3bkkNGkwb6+m6PpOYlsKw0UYbccABB9TOvfKVr+SVr3zljHSqwexg5dJVo0/OJuG5u/5RbY3RdvCT73HfKEVfuv4l+Mkz/gLQq+keu93jIilf68YUpzRlNEztLhJhexrPcarj7VF8Om/PtN64B62h8bE+52Fo1vUKQ6uHo7IAsGr5YMxBkUJEaPe1ABgeHIlk5ZUPrJyxvhhjMKbawVi9XBke7EDmfr5HhjsUI2sWEKNBg4czmjwMk8O0FIZdd92VZz3rWXzmM5+Z6f48bHD9VTfz2dedwGbbb8IHTn4rfQPtnuXK0vL513+dK87+P8rCZ/lUZcEG83jfyW9np913mHSbz37ZU/nl1852m81GEeNZqT6jscl8mmG/4+w4Do5LIGG7NrgtQXRHcmVdHRJcl8LOuM/boCZDWp7LEMi3VtE8Q3KDZv7TMqg/tsZZA7LcoC2hzIWyDWWfoWyBzQHf5SwQtxWkpTBHfPI1R4IWn+AMo9gcygHQPhzp2m97iwhtglISSMK4TNfizxuJ2+wKaOGJ0bmiCwAR+oKlBEXyhHgct8fDzVRZjVNXIr+1btW3a/zcG618h8TxOigF6QiCSVxuEoJz0pYJrk+Bz+AtE6WxaKaOBB59k1wfMk/Klg4++3fSd0+MluBKZf08U1krlEA27hofVHMUJ1PjeQnzpdX7RTJH4SAQxWMZtCKmBzK5PxcVz2DCEMGU0/LKXC/RrOvwhyWX8c0P/ZiRwRHmbriAkeEORoRn/cfTa0J7N+6+9V4+/boT2Pbx27DB1hvxj+vv5eWPfQ87PH5rPvDtNzJn/vTyMfTCwo3m85GfvYuff/Esrrvsep6496NZsMG8iW9s0KBBgzXAtBSGG264YdROVIOp4bSv/oabr76Nm6++jat+/3eefPAuPcvd9H//4pzv/QHAZxV2ItDSu5dx6pfO5P+d/J+TbvOX/3s2Q4MjSOYJdFnmd/Md6VkycGF2pHa+ErS0xwdCxB2gXjYcG+OSpgXHfMUpHUZisZD3IcqjqtjMoIjLqWCEoiWUKpTWZWoOCkHNEyqRd1GQAsqi8sAqpaIDlI5vXd2bbiKEekL/TFIu9NMToS1a5TmoRSHqegDhOLRpJeoRvbrg2vFXDKgfbLSeFEDHIIUgpVYk4yDQx79dA8a6e2IbAmWubn5DboMgfZcgpVAWgoy4vyWdk6C3eA5ESKAW5l7DYDRpL+lX7Xov80q32aXr2YxnkukuOibUx7mfCiZoe+JG11406zqc+JFTuPsWx1cQYxy/CzjzO7/nLZ97FVnWW2k4+/sXcu3lNwJw38qC1UtXgrVcce7fufy3f+WZh+4xo/3c44An8s3/9wNWLx/kj7+4gntuu59Ntt5wRtto0OBhg4nW9XV0TZ9pTGt7bdddd+Waa66Z6b48bLBq2WoWbDAXgLkL53DfHQ9w4WmXs2r54Kiyy+5dzuJNF/odZZ91WQTEsGijhb3djMbAngc9CbXWJf+x1hGgayRo65Kv2R7fnpiyt/uTXA9/1xzMvVQfMpWm16z6nW5vbSjLSKCO0Xu84G0Vt8sdCMSBFJwIr1G4D0UEyhyKNhQt94kkaEbfH0i2wb8/6gBhGEnTKslB4RQTt8su1Xmb9kl9mNBEQjZd5xIicyQ0RwFdY9807ZtYV4dJ7k/1u+Q5WFGn5CRzRImLOBUH6a+Y2GvP8UgUOknqiCFf69dq6HqdorIQXgOpPmnftPvWySzq41TQy6g89d8BmeRn3cPDeV2/+pJ/cMGpl7Ht47eB/n7oayOt3PGvgF32fdyYygLArvs9jnZ/i/65fey532N9skqYv3guj959+1np8zMO2wuAHZ/0CDZsSM8NGqwB1s81faYxLQvDMcccw4EHHshPf/pTXvKSl8x0n9Z7/PcBH+MfV96MZBmrlq/mS2/7LgCPe8qj+Py5R8dyv//xRXziFf+D9PcjrRZirQtFqkBZcsoXf8X/nX81//un4yfV7m3X3c4oC4FIPVKRzygawvjVFAWrzg0mjaoElfKQuiulMJknMQdfJ+J9GpitmUHyzFkVMoNtGzQXbG6wmXO/ceRmweY+C7NxdaW54WpCbAbWe0AFMrE1QFYXWuNOfNI1paofqEJ8JuejVSBI0j78aYhWFLfThZhLAXUCumQ9HlC39BqOTVJvTSty+ReCC5MaEvee0LwQSR1BkTHVeGwbtwrk/tmGwYYJCo/Tk9ZVEyNUKoyH5xAnhd7WA6n/XZvXboWg20IxxjxJj3O1a1I/1vRgqr8D67GF4eG6rl965p/40POPJ9tgMTJvLmbRAigtjIwgPnPznf+6tyeHIeCxez2Sn/7rq4gI/XP7eNPHDyfLDH39bdr9rVnp96uOfhHPf/NzmLd43rjKTIMGDSZAY2GYFKalMFxwwQXsvffevPzlL+fzn/88u+22G5tssklPQtjRRx89Ri0PX9x96709BZW7b723fnzLvZVFIUGaGK1XuL+xcE+tbCpFTfT3mmjXQSrv+rdWJJHchGit0GC1SLvRJXBO1Oy456OGsYZ1dPdxgnumRVDuVd9Y/R5zcZPRAnkQ2se8o+s7PVYbkxGkp4LxxtdgVvBwXdfvvvU+t86GTQ0g8ZUE4L47lmKtkmVjf1kG5lU8hUUbzp+1/qZYuNGCB6WdBg0aNJiWwnDsscfGvy+77DIuu+yynuXWtx+WmcJzX/dslnzpV5TWEY/F/0hpWfC1d53Imz53BMYYnv/WA1h2zzIuOO0Klt27HCWrdvo9IbY90OKIR76dTbfdiPd8+y1suu3Go9ori5KvvP3btPtz+uf1AeItCdUOf/ixFB/OFJNDniF5hoawqIrb4y6tT+7lpMSov6g6t6OydGV8vZL5HXeXDAAxGZpnfldcHDE4F5e5uZWjbYNtZdi2ULYrq4LJIM+hlTsytOMRuEzMQBWWNbjlGMEKkKlLdGR89uBk91vw1gqrVXZnn1VZjbNsBB6BCx/q2425CoDQFx9fNJCYUefO4wRzt4OvpqwLYKqomspK4YnKgidL+53+kIcgZD8Wg/v2iiQ6mFS5C8rqbwSs8bka2u45OpIztDJFc+fSpH78qLfICBgxzs3KJ8wz1tdbSkzaJjEzNNEly1l0knfDk9Jr2Z3DOxPa9S5Y6nNcOAsKieXGjTFmGvduVMHSkZ6rLEjVs0jNDerJFmp7mXrGwXpsYVjf1/Vff/f3/PKrZ/H8txzIga9xmZj/duE1nPnNc5i34QJsBqIltFpoK4eWM03KyAj7v/JpzS5+gwbrKxoLw6QwLYUhzQbaYOo49ctnsXrFkFcWnPCuRcHQ8lWc9pVf8+z/eAaP2n0HBub286z/2Juf/8+vnDAvxr23idvP4MohsCV33Hgnv/jKWbzhM0eMau/qP/6DM044JyoE0eUo7ub73bWgGGQZYtT74UvlmhNcjsoul6QAq9DpoIUP8SfiiNW+TrLMJx/z2aaNcb73CqqCRVApsCanzBRbGmwplF7wt+Ki+ljvKhPzJ3R1I8iiVnE5FXzXncDtuxaFWoKc6pOURZm97rqSEnq9whAYQM4Nqst3JgjHSuQDRNZw0l9V/zyj4B0apJZ8TFSqNoMiEQT3tLM+K7NYMKVUfYvPKIzB9dcmka4iPOFZCsEUWk/KVop7fIHkXFb11ojP3c8kvkPpSf9vei2cS5PY0YW0nHaVSV2iqE9nLJIc207JlBCIGhOVWQexvq/rX37btxgZHOHLb/tWVBi+e/SPufEvt2Jabcz83GWitx33HStK7P3LQJXTv34Ob/z0KxuloUGD9RETrevr6Jo+05iWwrDtttvOdD8eVnjSfo/jotOuqJ/MMihKFm08ny123Cye3my7TVi86ULuv2tZshObwB+LCHMWz+Wqc/9GljuuQFG4kDirlw8yZ+FcVq8YTEztXnIkHPpISRigREUQ9VmfBcdDCO1lBoqQdtgrEYHDIHiuQrcy4ctY8delOlc6ydOFEMUdFwY1FkrHZYiJqHFVwCSU/mSHvSZkJvJ4eqzxo9F7JygHklW77hp2w5NN8ho3I+1cEOxDO4ZKcYBkIereOU/6nbYRFJBQbxrlKfQhjk+r82mZoPgYvGUljKWqIKgQqoki06V3BNEpjZzUM+FfOh/jXOsuEoffS2normK8MmnFodLJvkM92hmVNK5HmXUR6/O6fvct97Ld47fhuitu5BFP2Ja//OEarLVsvv1m/OUP17j1L3yMQYsSLTqQZ9ApeNxTHxWVBWst11zxTzbbZkM23GxRrZ377lzKHf+8m8futWMMwzq4cojrLr+BR+/1SPrn9D3YQ2/QoMEEmGhdX1fX9JnGtBSGFMuXL+eGG25g1apVPOMZz5iJPq33+PBP383tN9zJXbfcy4cO+4KLt28t5MJIR2tJeIpOwdCKQRcLP5CEvQQlQcD3P2QnH/Mz58bSHeVInCVDfDbliFFCbvjWmBiJiTxznywj5E6gKJyQWRSjIx8ZQUw++htWi4HvrBoYqeTUuJPui+aC5MaRnltC2YcjO2fOagD0lBCj/O3JzVGA7iJIqyTXw3Eo5wnTGuoIUYD8kCJJvMuiMBqJxB/qF0Va1utXghbVzkbI2jyqChuccaSKxDRq4NUERKJx8LbpLi7Jx5OeJfPuQz5ylFhxeRsSC4ckik+gnYTQqsG60K2UjQvp8W8avrbbetA91h5VdB+EP7VXYWFy/XwQ8KUvfYnLL7+cyy+/nH/84x8uQtgUf6VOPPFEXv3qV/e8tttuu3HFFVf0vNYL69O6fte/7uE1j3s3nZESMRn/uOIm3vOs41ziM1sixjBnbovP/+6D9M3v57KzruLr//X9SPQ/5M378+bPVMnrTj7+dH7yxd8wMLePb19yHIs3djyC5fev5A17fJBVywd50dsP4PUfeykA/7XvsVx/5T957FMexRcv/OiDPwENGjRoMAOYtsJw7bXX8s53vpPf/va3MXpE4V1RLr74Yl75yldywgkn8JznPGfGOru+wBjDVo/agttuuAtblrUd+cGVQ9x3x1IWbbIQgPvvXMrqFYNIq0VvyW8iTF4iiknXuj+jfDp6+JxMtb2asO3a0ZB8LRwHLkD3ZyoY756Jzve4vkbypb+5O1VFRK8p7aGbjIvJyJij5rTbfygtOs5WfC/3orHamyLWEjl+NMZ79dMyU8Q73vEOwO3yL1y4kKVLl069Eo8jjzySRzziEbVzW2yxxaTuXR/X9bv+dQ8jgyOOj2V7v+urlw+StzO23G4Tlt9bz9J8/51LyfKK6/Kva28HYHDVMPfduSwqDPfftSyGxr756n+76lW55Vr397+uvm3Gx9agQYMZwETremNhAKapMFx77bU85SlPAeDd7343V199NWeddVa8/uQnP5lOp8P3v//9deqH5cHGHvvvzEvfcwhXX3J99DTZ84Ansv3O2wCw/L4V/PCTp7LRNhuzevlQEjXIR04yFRkZNJKN1VofaEh9SnN1VoZACvbuSBJCZRoT6xNjIDfuXMjC3DKQ5yieYGvb0OlAp0ACwRlHhhZjYpZeT8+tSMCeOyG5AZN5BUGchSTP0dxQth0hWrOMMjd02kKRO+Jz2fbk4tzv/oPnHKizVogkeQ0EifkB1IVmje7HiWkluO8Y9VwL93cgAYsnStfuEkBdwjMRR1h20+zZuuqUL5fhOWRrBjLn/iNS+rCqipaCqoFSUJ8cTW3YaK/v8Kuq+9c616WUOOxnGkzlIpTSJUIWbhGXCI9AcgaXe0NcoyKOUO5yXgiSEzkRahVRE7kLUjpXLVNW2Z67la0YilL8+6DhnXB91PQYfG4Of5D7MdiuMoEYnhhwsJUi5qpRZ1XzRcI7EvoWLA6WqZKeK4vQuGWmiDPPPJM99tiDjTfemH322Yfzzz9/ynUEHHXUUeyzzz5Tvm+21vVVy1axYMH0ovmoKicf+1MuPesq/97D4562E2/87BHkrcn9fD3+6Y/miGMP58+//7t75oVFVTF5hojBiPKUQ3Znm0dvCcC+h+/FOSf9nmX3rWDO/AEOPGLvWn2vPfow2v1tdnzC1uzw+K3i+W0fvQWv//hL+ePpf2Lp3Ut563M+CcBGO27JsjvuZ+HiOXz7gz/i1R996bhZoxs0aPAgo+EwTArTUhg++MEPAvDnP/+ZbbfdluOOO672w2KM4WlPexqXXHLJzPRyPUWWZ7zmuMPHvH76Cedw/k//6IjDSD1xmjGISbgD1qKdYuzdf4nSYf3Y1+lIz9YRnjvezSkH2s4NRoukqhGnLNRckgIRNwplXV+wELIwkKsz660Kzu1JS7CaxQzKhYWyVIrCKQylgi0kJh4jfL/Dv7Z+jlAmEJnBudt0G0vAuRxZr4j4KESRBmy76gx3RWHV9jjuKueVFkqXt9qodQnTFNQKWIN2iIuWVFK+O2frx5JmdE4tAImi0HNHJMyDT8KGUilYaMWHKMQpC6XECEnB3UisRQowZVAaQJJM2mHeeyIV8GsPwKOb5DzWq9xl2RgzUzRdUyT16ypQjkyN9CxjtTdW/yaJgw8+eOo3zTBma13/7fcv4FXvn15eh+uvvInvf/TnpC/P9VfexK7P3pmnHLL7pOowxvCqo1/Mq45+8aTK/+6HF3LXzfcgRhheNcyvvvU79jxol3h9qx035f0nvHbUfSLCi952AEu+cAb3LR1G+vvQTgddPYh2Oqy6bzk/+fQv2POgJ/GEpz9mUn1p0KDB7GOidX06azrA2WefzUc+8hGuuuoq+vr62HfffTn++OPZcccdJ3X/yMgIn/zkJzn55JO57bbb2GqrrTjiiCN4//vfT7vdnl6n1gDTUhjOO+88XvziF49Lktt2220588wzp92xmcTdt97L6uWDFB0n9W75yM0ZmNs/wV0zg1XLV3PXzfew3RO2GTPpD7idtH9d8+9wQKdTMHfh3FQyrHZwY6Scrrc4CU1ZHdNVrktq85KjBh6FMahat3ttrSc3+/JhVyy6Kq0Bkk3+MBYpLWqNyzhdGCSzLtOaBS29hSBER2K0IK9d/5JW3+M8UFkPJHSjXkqT/8ej0K46O0oFiTvoNUilUKm6pNdSs3ZYp2j50KVVra4RiX+78tp1XFk9eo1fYhd6EsADe7l78qRSKkQl3hcI4VbAjPEOSDoFPSY9NtHj3nFk/1qZsZSiya7rY70r6wMuuOACLrvsMvI8Z+edd2bfffclyya2pMzWuj5nfv+4Sc9S3HPbfaxcuoqyKFGFodXDDCwYYHD5EOElzNstWn0zkwxNVbn5b7c6a6sIRWGZt9FCv9a5t+ORu00tU/Ojdt2Oi3/zV+jvcxa7kAATGJjfzxbbbzojfW/QoMHai9NOO43DDjuMDTfckNe+9rUMDw/zgx/8gPPPP5/LL7+c7bbbbsI6Xv7yl7NkyRL22msvDj/8cK688kqOPfZY/vKXv3DKKac8CKOoY1oKw+Dg4IQm5qVLl07qB2K28feLr+NdzzzGuTX43fUtdtiUb1/9P5M2aU8Xg6uGeN3j/4t7/30/L37Xc3njZ0eHPA340ad/yUnH/XyUBCNZywmTZRDcEytDmmFZxPno+rigzt3Iu4KkGZhTa0AQfIOFIc9cxuUYYtW4+zoWKS20W95KIM4CUXqpN2R+hroyoVopGcZbLYIblTHOxSrPIBPIDbRc+9rKXJbnlqAtl6Mhko8D6dkf17kQXpgPxOXkXJUPgZpLSjgfskOPyu7sy2F0FIm4lyUguAnFne1Mq3qN+vwCxgtQ/ji0ExSiINyr39kPVhtNKg7TnTaWhnYNdZRdwnUyB7Xx+vwLxCrEuz3VdVYx1Pog4p9Fat0I6NZTk3mPY0mfn0nOp1Pdw6IwUQbpbqTWhfCOxHdlKhhL8+wugyMOp+jr66Ovb/aj5Hz4wx+uHT/qUY/iZz/7GTvvvPO4983Wuv6Vt3+HB/69gtd98j/GLXf1H6/jXXsfjS2TdQ5iwIZwbBE++PxP886vvY6DXrPvlPrSjRM//BN++IlTATDz5iIDbiPJ9PfFSHB5e2rKSdZuxXU0nzvA+771ejbabAHGCJtsvRGLPT+tQYMGawkmWtenuLM0PDzMW9/6VubOncsll1zCDjvsAMARRxzB3nvvzXvf+15+/vOfj1vH6aefzpIlSzj44IM5/fTToxvjm970Jk444QTOOOMMnve8502tY2uIaTlSPvKRj+Siiy4a87q1lgsuuIDHP/7x0+7YTOH6K28aRXS7/ca7WLl01ay3/cCdS7n33/cD8PeL/zFu2asvvX4SNU7lh3oKZdMszD2tB+GcP297WDe6Mcr60aNPXe2qSBU6NgNrEtJzEPBSIb7nWMbvVs+yk6lzojLjbY2nQvp47Y0yjUyynQk70NWPcYp0VzdWVuox3Z5mGrPRxgTKxbgIvq4TfYCtt96ahQsXxs8nP/nJGRtCL2y//fZ8/etf56abbmJwcJDrr7+e97///dx0000ccMABPPDAA+PeP5vr+tUXXzdhmeuv/KdXFiaHay+/Ycr96MbfQ7/SXDRlWXvvrrlsau1cfdkNSO42o4qOC2rxmD12ZKfddmiUhQYN1kZMck2fLM4++2xuv/12XvWqV0VlAeBpT3sa+++/P7/4xS8mXI9PPPFEAI455pga5+mYY45BROL1BxPT2mI/8sgjec973sNHP/rRURk/y7Lkfe97H9dddx3/+7//OyOdnAwu/82f+cVXz2J4dQdr1cXMFihGShZtsoDBVcNkmWHDzRfxvDc8h0Ubz+7CPbR6mNO+fBabb7cJg6uGOOTN+49b/rmv3pfrr7iRwdUj7scLT7ZV/A6+D1UqOP5CsACEFylaDlLrQbLTD16Ltv7QEXYJRGr/YymZ8QnVjL9O5QNi1FsDMueT0s4q60JwxYnCsFRuCMEqIeKTwpkqApK3PKi3MJTtjLIvo9USypahaIlTHBBKAzYDm1eWhrhj7a0E7uOzNAeIRmXEDcfzJ2r3eQuCz4Cs4tyy3CMQNFPEKJJbNw++YS3FWVpCTgSknhwthHM1fv6M+9tk1rlcodgyQ43xfAYFvBuWinNOCmtFmOYCRA1Yf7107UYSNJ7QHKwDNrwL4T3w71Yexpu8M1oRhY0KkklUDjRasny5jsZwq4H0HC0CqRUg9EN8bghJw+kGM4U3cgQSdHJdLY6wHeq0GvtZ2xlKFLGYoK+akSRoAFgfv9fq7GV6vvXWW2s79rNtXdh7773Ze++KoLvjjjvyiU98gna7zXHHHcc3v/lN3ve+9415/2yt63MWz2VosMN79jsWVN0aA6CCVcX4tcEWJYs2XcTQqmG/PyHMWTCH+RvMG2XV2HjrDXnpe54/pX504/yfXUJRKPM324Ayy5GBPpdK3g6gq1ajqwfpb2ccdNQzR907MtzhxA//hKGVQ7zm4y9n3qK58do7vvxqTv74adx1+1I23WZDdt+n4Ss0aLBWY4YtDBdeeCEA++2336hr++23H7/+9a+59NJLOfDAA8etY/78+ey+e52rtfnmm/OYxzwmtvFgYloKw3/+53/yu9/9jmOOOYbvfOc7DAwMAPCCF7yAq666ittuu43nP//5vP71r5/Rzo6Hj73086xePpTsWtPzIW/72K047J3PnfX+/Po753Lql37lCcvwq2//jue8au+xy590HkvvWeEjCSWCfiA0W/Ub/RJJwxLKpspCQC3fgjuvSYboUKYS6A2SqXcbMlU/ajkWSp+PwSsJ41kaUuuBqdpwuQ/K6NerpnQRklTx/F/KHAoVSqvYQpxnTeYyPcdcZQJ0iG4umlW6kteHquELTli3VfmoZIgXJoNgHuLfKzHfgSNVK2IsxtgouKsVKFzCvZgaOkklrUGiFXcsfr6MKJmUiPrE2R3QMtQh7jlFrwyNpGf1WeukFK+oEfMySPd4E6J0/CoIzkUJcUpV5p9hIDtbPwaf6dmU0ju3guIJ0b79QH5O5j2SpLv7ldaR9iuFMloZgCrfQ3K+m2ydPtuuKmsKYrheTjnTc71PY5YBFixYMO3oQDOJI488kuOOO25CsvJsreurlw5y/RXdu/RSX6PSK4myP7x6mK//6XgWbTyz8zi4aohPHvEVNMuQ/n5kTgbkMFigQ0Po6tXY5SsYBH7z3XPZ6+Bda/f//kcX8fPPnwHABpsv5pUfelG8tteBT+LPf7iWU796NivvXc5Vv/87T31e/f4GDRqsRZikwjBZN9Mbb7wRcFbfboRzoUwvrFy5krvvvpsnPOEJPSOqbb/99lx99dWsXLmSefPmjdPxmcW0XJLyPOeMM87gi1/8IvPmzeO6665DVTn99NMZGBjgc5/7HEuWLJlVDoOqcufNd3Pf7fdz3x0PsOm2G1OXEnvft7UPnTfb2PKRm7tueIF6m3HaLUvL4k0XVQJ9KvyHnV0voKtVNAjsUZnwH9X475RSEwaFolvx6JWtOQqqdmptdLVVG2eaZbX0n8KRoF14JI07+DF8p9Y/QVlI/67WAO06rja3q4OueuNdVRmX+DqpyTOJNfkvHmtacdI5NEnK5XgMo9M1V+2OnmJNnlOtaP0wrdaGeUl6Gu5Py1hqc9A9j+nHSjXiIKTX2h79Z6/hjXlu1KlEaRnzreuewm6FY4zz6zs23HBDAFatGt8Nc3bX9R5a4RhIAw8s2mQhc+bPfICKYrhg8WYLQ4PuEyK+pZZbYKtHjc5hscWOm8YhbfWozUdd32rHzQAwmWGzbTea8f43aNDgwcdk3UyDYtFrwyicW7Zs2ZjtjHd/er5bgZltTJv1KyK8/e1v5+1vfzurV69m6dKlzJ8/n/nz589k/8bEF9/8Dc78xm+h5jaT6D/JTuaiTRbyrhPeQP/cPnbe+8ExD+9xwJP48iWf4LjDP899tz/ABpst6llOVXnvcz7G3y6+DsnzaJFQ/+OlqSQMgDhXIXdzndAcSgRf3C6XpFE/9Mnuv3NxEjeH3Rptamkoy9HXuv8O7lDBGkJ6bKLnkiZ9UiqXE6OQlbjQoy0oTXVNffXBA0oBzaiRotMMzqCjQ62G4+TcqMzQksyX75RkGlJJRCE7ZoNOpyL4YZuE1CzepSlTstySZc5/pywznz8iPKvQeLinPt0urGogm+NcgsIYkn9jNmh1io8add92fxzJzqWbxJBrIW7F++cA1AnjkDwE13bIAF3rQhhG8rr0EjNHGQK7C/kCqSVBuvvRq9JeCM85fKajNExG2VjLlJGQ4Xm86EcBs7GuS5YhkRk/XkHDoo0X8M6vvYZWvwsZ+Mhdt6fdP7PhA2+/8S7e8oxjGS7ALJjv3JDy3G1MlKX7WPWRy5TFPdbuJzz9MXzjqs8wMjjCo3bfYdT1g1/9TLZ7/FbMXzyXrR85WqFo0KDBWoSJ1nV/bbJupjqWzJVgoqiZE5WZzPWZxoyECZozZw5z5syZiaomjcvO+jNRMujxoEUkkp2X3r2MzbfbhO2esM2D1j+A+Yvncd/tDwBwxdn/x5HHjo5F3hkpHPFuUqFKJ1EmdQWaDGrtTqYPawDp+iM26xSXNNOzZqBZPdNz6koSbWOplBqUgQnb73G+hxvLqOvUddK4tZ6eSnbC6/drVYefZhvcmGr1TdBf27uTPXfju+uJWtp4N4/9naqVquWGGKP8VATnyb52ayCMx1vX5BWfpcRtU8Hq1au55ZZbWLhwIZtvXgmjf/zjH2PitYC7776bd73rXQAcfvjYOV96YWbX9YkenJuzpfcsZ9NHbMoOT5xYuZkurrvyn44nMWdg9LobrJzWej4RXPnbv3Lo20fnyXjE47Yesw0R4bF7Ti7WeoMGDR5iTDJx22TdTBcudNbLXlaEiawHE92f1vFgbdAHrJHC8Pvf/57vf//7/OUvf2H58uUsWLCAnXfemf/4j//oSfaYKsrS8tPP/IJ/XHGTzxaLi6IhsOGWG7Bi6SrKwo5y1xe/Oxx2sB//1J3Y9nFbjdnORBgeHOFHnzuTW667HTFCq93i2S99Crs/e/xoIVvsuBmHv/t5XPm7v/Lqj76sZ5l2X4uDX/cszv3xxVjBWQ9U0dKgWnoiq3prgtsdNsF6EJWD3MuCiuDDo+YGl07YE49tsFbY2s5+TAIXSNSSypTijz25VsW34f4vwSLhXVNSbTdwFByJWgheORJJ2mEzXVxfjVB6y4iqYDuCFShEKDNDYYQSwXpis1XBZsEc4c9nPtOz0Vq/CORjSI6dMuKm2x/7bXXN1EnEuSefEywMGQbrE+Y51wVrjM/W7GoXPHm5JCoJYhTFuDCqohhVjM2dxaHlokGVZVqPgJWQkNv1QcXXJ5gQMspzLvyDdD2NO/JuAdSQAyKEmTV47kn1HcEAJY58SvgOKeThHdPQRDWJub+nEOfBUbjjQFYNblPG8yJEq0zPIqbKf5HE5w9Zud2sU/EwRBCrkTMRwwiHvmj17ml40eqz4s5nBsRxZcL7YPOpkZ5nK3Hbpz71Ka699lqA+O9RRx0Vr6cRMS677DL23XdfjjzyyNr5gw46iM0224w99tiDLbfckttuu40zzzyTpUuX8qY3vWnS2Zlnel1vz+sj1xYhu4jJhDlz+8hyn8ob976YPGevg3dhuyeMLYhPB6rKGSecw5/PvwbTalFkORs+aisGVw0xZ6CFaeWQZQwNFQyvztFOB5nTRuf0kWnJ0OAIH3n5F7EWstwgWY70tSmHhthq+415xfteQP/caqfx+itv4swTzuFph+3FHgc8aUbH0qBBg5nHTCduC5GRbrrpJnbdtc5fuummm2plemHevHlssskm3HzzzVhrR/EYbrrpJjbddNMHlb8A01QYiqLgqKOO4kc/+hGqSp7nbLTRRtx888386U9/4sQTT+QVr3gFJ5544qQSBo2FP/zsj3zngz+e3s2JnPOnc/7CHTfdzZber3SqOOM75/Hjz51J6ppz4S+u4JR/fZm+gbHN5SLC649/5bh1F52C3/7gQkY6pYsepIUn0QYuAoiRWmhYMT5lcYg8FGCMi8YT8wH49MwxaVgX6Zkg0OMFXFuNMc2hkJ6LbYm/Xtb74PsRw6MmQp9D1QcN50uDbeUopRtnaSgxlMZQGqXIlaIllKVTDKxEr5nKz96Alt4K4dtxwrAT2uPQQ3hWL0QH+TIkJAtKlRNGfZ+NF3StddGN1A3DWsV2kjlRfLI7b5IQr3iUrg6xTtkyRhFVl/HZOrckW1inFKhXGqyvw+IUEAWGDVKC6Save2UlCvQpCVpBM3WbpSk5Ob01vC9BLwgyd7crUkq1sCAFZCOC6VT1JoGa4vCjUB+feTf53t8S2kr6EesKHJZax2u3188n7UWys9oq34avb8qk51nCr3/9a84///zauZNOOin+PZkQem9/+9s599xzOfvss7n//vuZN28eu+yyC294wxt42ct6b1ikmK11vTPYCap7xDMO3Yv3fOtNk65jTXDNJdfz5bd/x5Ob57hoSC2XW+H5r306R/3XQdx75zJe9YyPwXAHyhItChgawa5ezf+dfw1iMq9wCjJ3jtuAWb0agIF5A7z8vYfE9j760s9zx413cfZJ53Ha0pNm3KWqQYMGazee/vSn8+lPf5pzzz2XF7+4nmH+3HPPJc9z9tprrwnrWLJkCVdccQV77rlnPH/HHXdwzTXXcNhhh81K38fDtEjPH/vYx/jhD3/Ifvvtx8UXX8zw8DC33347Q0NDXHzxxTzrWc/ihz/8IR/72MemXPfgqiFWrxhkxQMrmTN/YDrdG4W8LydvTU1xGRnusHrlICuXrWbuQm+WTwTmuYvm0BkpWLV8NSseWMWq5asZWjXE4MpBd7xsNatXDjG4aohVy1aP2U5ZWuYvnpsIOolgHv7pyiPRnY04uTBxmVH31O8bq76e941bb7WDrFD/1ELAVpaP2BfrPmItUqonQmvXLnPyb6+/u8t1E6XHOheE9SBJx0xqYTzptHQ3HFSPZMxd86S24laqrSwTNUk37VzYRncbsV1aUv22eDoSkrU2DMrknl5z1N0NHTWaWhmXq06jUN7dpfgajDfvvZ5DdyWjD0cVnbCKXoWmg16NTND3yeC8886LZPhenxT77LMPqjpKifjoRz/KRRddxF133UWn0+GBBx7g3HPPnZSyALO7rnf7gW2w+eJp1DF1rFi6ir65bbI8mBiTdQZY7KMv9c9pMzCnh2AvlSIdv8zWVskUcb8FKTbaYgMAFmw0n2yKFqwGDRo8BJjhNX3//fdniy224Hvf+14tGtJFF13E2WefzQte8AIWL3Zr4OrVq7n22mu54447anUEC/Nxxx2HTTYJjzvuOFS1ZoF+sCA6acmywrbbbsvixYu58sore4Z8stayyy67sHTpUv71r39Nqs7ly5ezcOFC9mu9iEzzhOzbq9fUr6W7kslCrl74FIF2f4vPnXccO+0xsV/pbTfcyX8+6+MMrhqOzYScBFqUUQoSQEtbF3hjdlLnZiPe3P66j76EF/9nPebufbc/wFue8iGWLR10uQ9UoSjcDlcaWtP4UKYBxm/9GontIMEFKGROzhPh0u2K1x51FsK3eitFsBiEUKnixlCb5srAEl2ZepKe/d/qs53GXX8FCQpBeGStzGV2Nq685hmSCaVxGZ7LtkH7DSP9QtnnPrYPbI7LyeCjIZI5/m4gtAYjgkK1q+yF7+5kcBpyJOT+70wht0irkp6dB5gX4IM7TWkQwpQJlO552yL4dSmSV/dU3j0Cxvp8DOoTeXu3I9+WWkGtYEuDFAKFgcK5AKW5EuK8AtbneXDzDDUzTOaOpQi7/pLswGs9a3b46uUaXZmctUCQsjJ+iEI+Is6QZb2BCqqIVtZF4g0LbmgvlcHw01HLqt0NG408pFM4ljUijF+qQ+d+llV9D/eUw0Nc+6UPsGzZsnF9SsP6tM3xH8MMjB+1xw4Occt/f2jCOtc2zPS6HubsF98+m7lz5rhnZISBuX3seeCTZl2Y/ubRP+WUr/8OmT8XyVsg8NzDd+fRu2yLaeXMXzSX3Z7xqOjOdsct93HNlTfHCHBGoBwpwDorapbnlKVLxPbAfav53hfOYmSoAwqvfPeB/Me7DgJg1bJVXHH2X3jc03aKykODBg0ePIS1Z6bW9ems6aeddhqHHXYYG264Ia94xSsYGhriBz/4Af39/Vx++eVst912gNss6uViCnDYYYdx6qmnstdee7HPPvtw5ZVXcs4553DooYeyZMmSSfVjJjEtl6R77rmHV7ziFT1/VACMMRx88MF88YtfnHLdId/AuBpdr+1GGC1shJ1QVYYHR7j813+elMLwfxdcx+rlg06oHqvdVABXrXyrs8RNSAl7vJy/5LJRCsPVl97A0ruXI/3e/zVNgpYKQN2IElzimC8kSdwgTmJ0R9IedUj9OIwl9r3rll7z3kvAo6q7Vx3xFiPVdSNx1y50X42EHGaoVw7UVAJgdDWJbVb9qZ0bD73qMNrzvnTKVLvGFzYf092IHkJwqm9JUDx6tANEV6T4uMvqYvc9lt59HvWMkv6NO0dC7TUKr5IT+mKjUY8NXkaxuXBPj+rHGm9PjDHeXsWkq+DoOZpCu2Mg0RfHLbMuYrbW9X1evNdDojidd8pl0MohsCcUlq8Y4Vkv2rNn+c232ZDNt9lwUnWf+b2LGBnsVG394sqoMMxdOJdnHv6UsW5t0KDBWoaJ1vXprOkvfOELOeuss/jIRz7Ct771LdrtNvvvvz/HH398VBYmwo9//GM+8YlPcNJJJ/GFL3yBLbbYgmOOOYYPfOAD0+jRmmNaCsNOO+3EnXfeOW6ZO++8k5122mnqHeprkUsruq2IkZrQ6ywI7pw7TkKM+jqMkUgQDhaG/rn93HfHA9x9y71ssk09Lraqcs6PLubqy25ERBgZ7rBo04WsWjEUBf6Y9dhmqLVuV0p9TgSrXphyUlLIVmsyt0OfZRnzF8/jf95xUjUmEUZGCjbcfjNWPLDK51fIEB/WTwuLVYsJO/lkKOp+zIO1A3fNZMZnNnbWBnfsw7Na6wnLzl/eCYHeEiGeiCrOUiEiaMug6hK6Oe6EczoxpAKyp1dnWcye60bslSXridVhZz/cZwNB3Sk7mmeQZ67N3HgLg4HMOK5CLtjckOVCpkJhobSCxSdzC8nRPHlXAdtFog3vhVHjFQ0bnmi4wQnbmTu21jpB3ajTG4xG7of49y6QiyX3Ar0NyoszWWiwxIgjBLuKqjqc8JKhpSHzZGajgrVBD5S486/GuHatgRZIxz8b/33Q8L6Dt5g4P30jnjTtPyY8CB861oQ50kCUFnePl6wSL6zKAmF8GeuI5dISR5QuQDJ1PAbx4VmNOlK0FWcd8Aq1kDwbQv+Nn7OEkB+enRBJ0Fr6OgLhv+uekAXa0VP8PTYh5Af+i89sLSLYYlpemeslZnNdny1YaznjhHO48f/+5cK3ZpkLnJBn7LDHIykuux7tayOtNnMWDPDCo54+I+0+7eAn8rsll3PbjXfTamdRWWjQoEGDgAMOOIADDjhg3DLBxbQX2u02xx57LMcee+ws9G7qmJbC8P/+3//j1a9+Na9+9avZe++9R12/4IIL+PGPf1wj7U0WxUjpBa/u/cCxMLpcSmMMrk2d4VWcccJvufW6O/js7z5cK/+Xi67j82/9rjswplJCvDBaqzW402jCAA1uPGmOAhFK37WiY7nyvKvrnQz5D7wbkJaly71QFPEYXASd6F8hQim2Cu1pXESlUm1FeFYo1W9HqxIToiX9cj4hkhwDpqtMaqGw6kafuHsh4oYbiNfOjyZMejJO39kQqhB17letlss27OdOvQBsvQtVGZQAtRRqsCilCo7S4Ei8QVC3gaWrxKzMKdy50lstgnDvn2MWPPRd3zUoCKqI2jqnOygO4X4vaKNgY/bl0dv5gkYXqXA9TFXhTS5OGPZz7qMYgc/6XBjolJiO8a5GXYuLqI+GRIw+FCkQIb+CtXW3odQSE86F/BFOw8IGMnwcimI6guYalS0ppMr0rDjOiSdEO5ekqj8StnlD21H3943EqdPqOEycVrdqaqYK/9p6O6JakbdxqklQqioug1KWk11nQkXS9YzHKLMOYjbX9dnCBadcypff9h0kz5BWy3362jDgQqY++dmP5ZhvvGbG21204Tw+f+o7Z7zeBg0aPASYZFjVhzumpTAMDw+z7777su+++3LAAQfwtKc9jU022YR77rmHCy+8kN/85jccdNBBDA0NcfLJJ9fuPeKII2ak49PFnAUDkUAS5K6+/rYTqKLVIGyvhqRYM/CyBAuI+h39IPhNhkIS42sGYdM6RSP01Wrsu6QD6/57gv6NOc7gltKrX5rs0KYuWgHe57dytQrz7O8N563f5QdP8q6sBulutxNUw4WuT7es3n3cK1lXcn/ckc+q425/+zAV7r1I3hNxdpjqaiqRV2PQZBxBfq4yMY92q4nXcWtWzVe/u1O1m9K/ZNRUpP92y+mxTZtc9P2P9pn4TELo2q6J6upW7c0aa0K7z/fAqNewx3uZDqNWje0+MQ2k7+J4ZdZBrIvr+pwF3YEx6pM/MG/ms0Q3aNBgPcNE6/o6uqbPNKZFeh7Lx3XCxkQcaawHAvnkWf0vIbN5ZaLxLgm14xjnPTlOw476LdR6HRr5ESbLMJmh9FqjaeWIMdXGdCATByHI+9ePaieEO60JyooWNkp/IuKI0dY5fEcFxGRIu420MrQo0U4BRcdHCLLYsnQ7qplv1ysMEojEWu3Ox3wIxiB5Dq3MlQnJh0I/guXAmEgO1yBVmUCC9XVl3u0lhPQJ443z7vsT3Vhw91iLltZZFKiI4VEha+dInmPzHG3n0NeC3GAzwWbGkaDbhiIXbI5zV2obilwpM9BcoAWaQWmcpw6Oz4gVT2rNncuNFY19C7pQjMGfO33FimIzb9Rqg81KNAtZncVZHIKVICFOI0qWOxcbizqPryJDMFjPNRDjsjv7O/wrYRDrDB7O9cv3Nbi1WXHuU4mLnXNJwodF9Vmv/fvtds0VyQSbWU/aJoZJVX+PKYMbU7VZYkTQ0j1PUzpLhATFCdAWnvTs3Xoy955osCLEOvDuR1R1lI7wHM5REhUfIxKjK5Hw5uM3y8+zJicN4qxPVHUEd6PwyiZfQVdF4FiEdSLz70ScVyiHpkZ63vYTH8f0T0B6HhriXx/44DpHep7pdX2yxMM1xeW/+TO3XHs7JvfumpnLlTCwYIC9n/skBub2zsbaoEGD9RNTJT1PtK6vq2v6TGNaFobf//73M92PCFtaarF5NO5hVsc6zjFBvk3OWa3qUMGW3u3EOCHb8QdsjTSswd862WEd1U7q+hIE2Y07iAABAABJREFU+HQbOdyT7KIruB804xOLlV6oL30OguBClOy6hsRiVZupguLOOWEu8Cy07pqT1pHWk0pqXg+ILkq2ErZ7jjeMOd2ytX4ObDVmTfrpyoD6H3VMpdSpj9SkOOcgNc5/XwVK1BkjQlQjL/RWLi3EgEBhzmz9ran+lqQOiNmjoyCZCKs2qaFbqzYmuDL5/qu3iAR3IpGeVkwXJlPSV6Tqq38OdtT77AYYchrU3u/Y1yDBh3r9pKT3aH0coR1JrsdXy3R97yS8Thr0pVhHVE6SOmp9De5RXe3W+C3pPId3Pzlpa6XAWq0X6brHqqNRpNdju5Lc0yBiNtf12cQeBzypSZDWoEGDBrOMaSkMz3zmM2e6HxFZOyfTzAkEUhFYg4AgPlSp9cTasCumah3ZUXzSMNXkHl/GuuRYxgvOQfBym/MuK64Nu74+Qo/6jLqOWFoJuJJYHIILU+YtH7a0PkmX74dnG4snJIsRik7Hjy8HsdjMIGodaU8N1rvlmCzdbXZ9DxYGK4BaN+bMzYFgvE4QrnsrhTHYEHo19D2Zo5Dl16oFjCdXOyIunuTtvJ7CPZ6AjTsmMy4DNcZl49bSh+K0zr/fW0Kk5SwgpbcmSMuRFF22ZsHkxvUlCq+OaFsmupjgdrXLUtHclVHjBW8F45iyJGpizGqsXvmQ3AnTtuPl09z12xZC2bKQgclw74Q46dPRTnytahCfQU79HOa4d89xM/ycGdffssTzCRzzVkvXF8n9eMRiRcgklInGISdXa3KcEpYhEvKtWvdsTHBB8tms1derFZ3FkYQ1eomZQNBW/11TMNb475G/J3NzaAOxGk9HjtY0V48IzkoDrl0/7/h2hPAeef3UiO+/1p+V1+rE32PDsZEYotZ6JdZI6Js/DnPglecskJ5Vq3k0QjlFd8PZyvS8NmA21/UGDRo0WFsx05me11dMS2GYTdjCekHXCzNdu7waJMdQvou0aH00oNH34F0tPL3VC+QY0E6JhpDgYVc7EokBK5SVpOXqSnd5vaBTBl8O6wUZa53loCyjW04JLN50IQ/cu8JZMXymWe026fuoRWXMiyA+AJE6fxbwbk5KKRasIC3jlSLfCfCCs/E8An/c5UalQOnrxAiode0mjuWaEqe9paQsithXRCnTb5UGwq6N/VfJ0CyHVu4yO2cGNUHIxgv9TvGxIu6DE/Csf2RqxZFzS9AMtPS7z4FOoTiFJZEDFSIZWDN/3NFq11vcPVahyDW65NhASM7CPFpUnCLrXJCkvrUtNhptQsQiEbAFjrhcissCnezio74+vxNfFmBCtEb/mAJvOJB4yy7rgmJr1i/Ha3HzJIVTjEpv+Qg5GKL1Jz7SLouSUstirV4hcXkr3LlSFRNyMHg3rCjUexek0rpnFVyV4i6/xlepehfjeJRkiKMte2X9GIXCahXuVV27keCNJ5d3rQulVRcgYCqoLz9jl2nQoEGDBusGJlrXmzUdWEOF4corr+Svf/0rt99+O51OZ9R1EeHoo49ekybWT8wEiXqqGI/U/HDCWvjFb1xj1iE8DBSGZl1v0KDBwwqNwjApTEthuP3223nFK17BBRdcMGr3L8V0flhMO3Mx4zX441PtiuNdGLw7TZCBRaTa2ZT6rqTi3RdE4s54JBKrKxddHBBvm5LKl10TFwef+VhDPwL52GfNjXkLCrdbH5Jc2dJbBdRi8oyVD6zCtFqYvjamlbmAQX4HP2RuDrMqnuisNri5+GkJVgsNvtyBkKwItnLr8K4mUpbeHcf4eOXGk6Cr8cQ6wIWlRKt21Vakb2/Z0LJ0YxVxBO52C2m3UOPioNdcSTJxhOdWjm1lMReFZM49zPpnZPyxUUEL90zVGWocMbrtiM4qIZynH7/x+Q+C2cC7mKn36REjjiTtTBiAYEI4UO+mpG2hGM4o2ortV2gLNnduPhiL0QwpXQhTQck98Vut414EF6TowO9acQm0vZVCMnXWlxJnBfAucC7ngns3Mz/m4PtvkucUbaPxnBuLiHFWAu+8H/NoZMTcDiZs3AdXoK7gAVnpI29Z//xtkg3a+O9FIb7bbp6zyJNwO/r456iZG6tY3DO1OIuHda5M6boR3lWLene6ZLz+eUqaW0Wc66H77vnvZ8hcrVXfTAhaoD6fg6Tvt/9+p6GCH+aYzXW9QYMGDRqs25iWwvCmN72JP/zhD7ztbW/jZS97GZttthlZlk184yTgXJKC20LlmhCgyf97HkfmJUDwZU/KiHNjqd/jjqv8C96/Jfg0iGA1yQ3hBZw0v4GCiwykinZKF+kouCSNdKL7kPPbdr771oaISs4NB4I8aJJ6vWTjXZaikGRDJKJec5JoThjnpqX4nAle+VJby2Rdq8NWghi+LQ3O7n6cam3MGyF9fV6w924f4v6tuZNlxvvL+7PWC+lJyFCbVcegqI9CZQUsQinOncz6xGrx2fnnl5Kg8UoAuDoDdyHKQVq5yoR7rCqdDGym3hXKPX/1CoB6JaryRNMokAZpVaIffihjUWsIuRUiCdjnd9D0HbfiFJLSPzrvPlRzN4LYVvq8YxlTPTexuKRqKkggsQeXpFCb+nfOEt+nmMsg5Bzx86P+2caWLVA4vkMt+UlSr4tUVM21dL8X4VlIdVx3liK+Lyls6iKnxOeiyTntXj+63KHUMmWXpPWZwzCb63qDBg0arK1oOAyTw7QUht/97ncceuihfOlLX5rp/tQyOWOMI2ZC9WMv1a6nC4Xid2iT6DRVqM8gRIUyRAUgCmvgiKli6q4hiUzl7glShm9dqOq0NoYltYnCEnIlkOdQWkTUEXzFCzi+DueDr1WD1lYKhAnpaa0j1xrBxHtsNd5Qh+BCtnorRdh9F0/GRhXJM0yWVUJXDJFKFYXJ91Fj4jf1lg1FywKx6vSNVo4tCuzICNLXdsnOTAYtx1UQMZ6M7OvMxCdbkziWQIgV/PVgDTBud1p8iFcpnI4j3pnfhsBA4p6LRSkNmFyiAlJ68jLe9770z9UYKFv43XRCMm1ncSgcSTaE8rSZgdwrA1YjH8JREEx89ySrCL4hCFWItOUEfSXzZGDNnTUgy937blV9pCjj3sVAFPfZk6Oy4R9XpRi5Noz66FIFPsSoD6PqrXTRMmXwhPxqZ11LNxYDjhsSkrD5IuJfrUi+lvhVIyRiDykowqZ++MrGSJ0h8JeJ+mQsn3xTfeCCREkJem9SBl9P/Kr5Mt3XBaqwqlRlQj+MVO/DpLEeJ26bzXW9QYMGDdZaNInbJoVpKQzz58/nEY94xAx3xSFySJ1EXwkBif99PJfmEkikhSj4e0G4Vm+tjETpa9RGY1A4auFMK2EMpSJfKmhh68Rl9cJ2UQKC5JknBwvSakVJKpK2425ukKx8u6V1rhxBaCyS8KtpO3GefEQoJLr9qOKsHoKXmq2PmJTMqyTzqDilxVtF8G5JWhTuuOMsJmqEb/7fZ/jW//s+F/3yT5ig5LWCtOeaIzOQOzclm2doy/g516o9456nNS7/gs294pAIoAQh0Q/XhF0BBURrQmDZhrIPl6/BKwsEQVuc0BuenZAkOTZuTtS6nf4oaZdgjZdgjY84FKXN8Kx8//x5twYp9FuCO5K0nIYiJK+jiiNDi0CpjiStIayvd1/q8WrGCrzlxQngEl2ZVKncitLN9lTZKJJcCYW7Lyb9luojybxH41WYr7TeLkU7JPeOr1oakyB9tsm5EN0rWh2kfj3OQdJWWmcYn9ZvqdrKkt+HKSsM9Oh0jzLrIGZzXW/QoEGDtRYTrevr6Jo+05hWpp7nP//5nHfeeeP6uT4sMA0SsaTS1pQxzfnuvm3K/e7drrVKMVIwtGp47FsThWTCgUcBeIxyk+h2FAKnIwyOh0nXNZ1GU012Fpt5iLEOdvlhhWZdb9CgQYMGY2FaFobPfOYz7LfffrzqVa/i05/+NFtsscWMdajV1yY3be8vDgR3Fr/jqGEXVcMWKgRngyoQkN+i1OpPQmx/wcetD5YH9YYIE4/dTqnEc9GNKUnsBjgiryq2sI4k2mrXBGNnceje6vSuS+AsAH43v8thAtUkRGfsq41uHJpJHL8Enxvv0hITw3kCtdu2zQmJ1ST0XaqPc/3wfQj+J8ZUCeW8Y7uWJZLBI/fckcPe8Vwe8biteeZLn8Y1V/yLIjOYmFfBWRXIXX9sbtC+HG1n2JahzMXvXPvxZgK5OOtEn0Fbrssu3K24XfBCyax3UzHJ4/UWChWfL8O7HgVKhfoMxda4rM6ag+ZujNY4zoK3ySAdIRsG0/F5Fjoh2R6UbXWuRDlobqtn7f36xXq3rrB17q0eag1qFLEZUpaeGF1Zp1CXhVvx1ouWz8odsjqPuGcTd9oljDdSnqPlS30OhWiRClScaFHz/4RzwdCk3nWrisZLnQvjYZLNGHHzAt4lztcb3L/EuvJGcSuNTdrVOEXRryk+T0naDeW6LQuSXEwRFEWtEsrFxHGSWBa8RUt0ansm6zOHYTbX9QYNGjRYW9FwGCaHaSkMCxcu5Gtf+xoHHnggP/rRj1i8eHHPdNkiwo033jiluotOdMKOUX96Yqq7YHGnW5wP/Kjrtn7scwtUxz3uK8UpBWVwptdK8Yi+/2MgRGdJog6N2/du16P0cohg43MaOEFNnTAXlKuyrHgSwdE8krwTibAsK2UM0E5R5ZIoSpcoALjpL//iGYfuCcCvvv17hoY7SLvlCOvB6T0QtQGbuRwRthRsy0dAigNQl3NB3cenWXDdLQXUIiWYwnNrvb98qDy46ARuREg2ba2PqGSjXO4D+mjks9iUHKBeWRgRjK3mREPCL0/Yjm5jUQjXrgbCuLzQnal3y/HRphLzpwaFwXpfnJCroXBEaSnxfdG6C40NgnV4btV58QSA6EakTpmpGiUSkilx0aJs9Ynj9s8mjiWtosuCE5SZ+BUJ7YaF2Ia+jf6q1dwJfVtjrdATuhGFa+qV0dBucq8GxUihLMf5jvbsQL2/Y5ZZBzGb63qDBg0arLWYaF1fR9f0mca0FIYzzjiDF73oRXQ6HXbccceZjabR7Y7id76jmVzcD1YteVMQipN7gERwSyWb+u5lzzarwrXtTcVGyUgkqSD5u+qnuJ3+cC4RIhNDQnVPJCCH66GfVWbcCREsLp67UGPJBgUltNsrnGQaGSkUliDEuTq0FLAlO+6yHb/94YUosPkjt+Aff73NWTpEvKTuI0YFGTpE6QGnYGVOeqsiG7nwtBE+UBUm7JY760AM3UkipFa9dV32QrCq88cvW273PLXjhN3mCPH75LlgffjPULN60rCxQln459JK5igoCerf1UgocMcUXnGwgqqzgGhVxAn4oY4QxUg0cjbUC93u38pKkDoUSnj8Ppde0CWq18btuAcScJTJwyte6RLVdarrzpKVzFkPhS1YH4L+JP6+2AVDJGCnYno38bnmKJnquJo887TerjKRFN6j3djX0MGp/hAoE+82raM/LrO6rjdo0KDB2oqJ1vV1dE2faUxLYfjABz7AggUL+M1vfsOuu+46032KEoQkQq+MUiQmOIb6TqSPJhSRKAK1OrrLGBkl0cR6LEl0o+o+MfV6YnjKwCoOkpx1Lj4pgbn2YoZd/uTv7v5K6LMxkOdIZmrXYz+Cv0n3GOPYuhQwm+yiq8+50Cm8hUH4yx+u5W+X3gStFtLKMXPnOFckcBGSsszlY2jl0MrQliM7qxE0dy5hfnMdPMnZtgTbMs57qh3m3ndNBDEaScnpHMUoPZk4oTUDCjC527Q3pbM0BCE7FVhHRfUpvZCfSSXA+7wPatVZbVKBNigWFreLr+FN8G464FyLTMhhkTSu+BwO/h5LEsYptO1D+BYuf0H1PnTJuxZMRxJFxyss4U/frgmvYCLwm+AmlOisdL0OcQMmdDYqesScJVRVVoehnmCwExe9KjbUpetXmgqVhheq6SKu1+onURaU0e1mieKT3jYNhWF9tTDM+rreoEGDBmsjJlrX19E1faYxLdLzDTfcwMte9rJ1+0dlGoTlGcUUXsBRytKYBWs3dVcy+QZ7oVthGastSSQ+Sa5Jj/t6Qbo+k0WwAnW3M5n24p+pwD+5e6bUye6i2nW6+50Y7x0Z1ew4/ehuZ02wJpXMZD+mg4f4K7+2Y71Y1xs0aNCgwaxgWhaGbbfdlsHBwZnuCwCt/jatrI86odntzov65FlJqFSpSVVa7YImJMro2iOAVll5K7Jv1U4MBI8kQmclfcYcDxJi2beo/DqqHWBHypXqVvVjwBGaQ8hSsTmRn5DmmjACYmr9C7klJKk0hE8Vcbv3YlwG59iTMN7MgLTcmE0lHEcrhmqVAwNQW3qXlZDRuUASHoRmBtNqQbuFZrmbF2PceI1BMwO5QVs52nJEZ9ty58Ic4R4Hmgk2Ny5vgv/X5asmhu2ULExs9YmuNKV7ZupJzMHKENx4gseXWmLoU5cV2e26W7+9b0J28QxsWwOVxrkQZS5LtuY+P0YhjmNgJbr6SOkyDocdfMW/SyaMU9HMb5tHtySt3i91dYgm9xhFjWKMqSwDBTV3osBbiPzkuOsf3vXqvUnNrgL+mWvFC9Gk7vBdS3b0Nesx/z5ViPi5qnE00Opdg4q/kFoJQme67wnmh5A3InWJkuSeUHe6S5TkmnCvjX95UqulQllO0eVmPbYwzOa63qBBgwZrLRoLw6QwLYXhne98Jx/60Ic49thj2WqrrWa0Q52RApUeho+xCMRdO9+9iNIxuhGM3g3v6crkzyV+/tKrT2Mh7Kx3cyfCn0HwDmRkqBGaY4SjUezQXm2JJ2Qbn9XM1oSiiMwTAFJ+Q/eXIBKxbeVq5QnPFIXPKYF3f8KJ9Jkr4wRjf0+mnrOgIMZ54XihEmujj3tQXqwxlKWlNMYlhhM/PabLfyQRVAkeVsH3P6umNOaT8JQTxScbyyodySqQE5U/wLmOWS/YJ+1a0ZgtGlFkWJyiYIkuRlJSnSORZaMCo5WLEvgcD13zn7g1YZyyEI01nrMjBVUkosS1Say4a0Ho9u3GyESp21FqRUmiFqXKQg1euE8F/JpLkKnKUFZ9qD27UH9yOKEVyVJTcKrEi9QrSutOx9E1hqqi6lOGd3qSWJ+jJM3mut6gQYMGayuaKEmTw7QUhsc85jE85SlPYbfdduMd73gHO++8c89oGgB77733GnUwopcQHK/x0GiAY7UbdsLT3eOx7o3/+vFFQUi90pDe4GG8RB0sMEFS0nqxnvwEJaRGrreb3mNMJY2aKgStc/4PY/KKh7Uuk7VUYT9jbd4ihFW0qJSV9LqLDOTqFGNddCDxgnOmVcK1ZJc6ZAEOfIQQISgqCv7LH6ZTS5zFp8ApGqEDhR9+ly6oJVXYUv8hw3Eo/JypOusCpVcWfATdWiSgVLg1OAUlrx5ZtJ74W6VI+h9O5lTKS+hrWReO46R3f0USMnboW/x0C9zJIcnlURdq76yf52SsNb5Dt1Lhn0tUplIrQVf59JH3Wqxrp0Z9l3qMKb0WbtOueh7meEjW9QYNGjRosE5gWgrDPvvs411zlA996EM9feyDO0NZTm0Hb9xd/14KQ5qPQStXozHrhiqcaPf5FN49J46tV1QhGH+HNBW0Q1/BuQ+hPqVu5nbduy0frRzJsopIPFZfg79NGPd482ekUgDUeCEukR5T5SC8GVYRtY7InIagND7PQl+7UgIyf2/moiVFgrIxSOZcpeoColTCtBEEIfMEZc1c16zg7vNzrYLPgxDGT3QdikJrEMS1aibqYl6azUqqSEyeeKx+qiVzuRlsrtBWyP0ns8hgjpSCFOJIxp1KQRDrQr/GXXb/0RbYzOWa0JAHIlgxwtQXRAuFBAXICFr4PBG5l3dD2FSq8cRxCT4vAnXlJSgw4Thc74X09dH6+VpUpuQ51qwAqYIU3K6qx+e+ArUQST36EHTZVNlJLyfzFvvkddya61raRnqsSZlpsbjWT8zqut6gQYMGDdZpTEth+O53vzvT/Zh9PFQk5zHbncivYRzFp1bNDO6RjtXemE3I6D9HkZylvtM+VruxfFWH9irffa67b936lHSd7xYku+/VrrLxk26NV+3Wqugh3Nbq7tWHbnQL6d1/p7vxk330vfo6XUy2ku6+T/E1fYi+rRNjvGecllkHsU6u6w0aNGiwpphoXV9H1/SZxrQUhiOPPHKm+xHRntOmZfqoPaEY+1IjcTi6p/jtSLdr6qwNkTQZtzT9jqyEjLo+23Hcmlaf2Tn1iTBVHWGHOs1lEFqJbcTOVnXirAnO98Fnb47JAEIGa431xe1yEWddyDNPJE7GK24cZJ7noDh+QajLuIzB4nf5a65RkegtPsOyErOcBbK3t0SoSiK0aZ3XgGtfc9dHMnG74QKSZY57oIC1joidZ5Q+ZKq2nI+RI1k760HMvAuoVax1pGlroMzVcxkkuifZzOVLCMeqirHiQqIW+PHgxiFQthSbi9vZN+p2+q0jeQfffEdIFrQF2rLYXNHcIi2cJcgIWds6S8GgQYYMZlgwRpx1oAApFKOO+Cw+5K4pHSHaWsXmLieEluI4HTloZl2G6lzIhgXTUUwH9+6NEBWYYJmwuR+/EK1egesgyeNS349AzKZ0cxRzJPhnKQQXMY3vluLyUDiCfvVWa3xHQjsaeSY1ryLx5PMcyphAMLzinijuK9H43fPX1D8bpLIwWPU9Tb5Zntgf83jgxpeuCzE4QvL/2K5fF9RMjfQ8WxyGL33pS1x++eVcfvnl/OMf//B5SaZe0cjICJ/85Cc5+eSTue2229hqq6044ogjeP/730+73R733tlc1xs0aNBgbUXDYZgcpqUwzCZGBjvYsdx/IBGwk+OA8TIrQ+9d+zFcjiLJOdnx7unvP96PejfpOem7qq2PJSZdM67tFlBo3X0q9EWkIjFb6xQGmwj8IqOfbPc4I+k6dTOS3nNku/pqDJpp9JF3BF4XJSl1ZUKBTLCqlGJcFuiQdlm6lIWwgS9QopRSYpE6+dngsy4HAnWYO5c/wQzjBV1/WqDs80muw7CTLL9VJCKiT30p1gmxwafHR+cyYsmsZWSwDxkEM2wxIwZTgBnBCflFcC0iuhaJBdvvE1b7pq1AmTklInQ2W41TGEa8WxOucJSz2z77daU7+zFq/ZUM16w4jzf/MSlBvGq2pohG95yUCN2N5HVUiG5caV0EZah00ahqFgZLzKKtocNSXQvtjiJidyPo7pXO75L1ddc5FoK+3JmGa80s/Hi84x3vAFykooULF7J06dJp1fPyl7+cJUuWsNdee3H44Ydz5ZVXcuyxx/KXv/yFU045ZQZ73KBBgwbrERqlYEJM24N3eHiYT33qU+y+++4sWLCAPK8k1KuuuorXvOY1XH311TPSyUnjoXI7ShFC8NiwKx+EbfU7v+qUhZ73Jn+Utrrf2pg4TdOoRWVZF+TTMEFdypOmH6n+rSlKfgd4dM6FrnmNcUpDONj0klZtSJWnLCUk1/oZpWg/Z6U6Ranwf1tN5o5K2E+E31ht5vkPWtUlHUUKhbLSVTTpUxC+nf7mojs5KdUixiJSYqSMAxBTgrFYUxGiQxSoKGN3Cdvq244KlsW1o4o1FmssZVudJcRovY7SfaTjFCIz5P6WAvB8iZQTUE2zUopixdUZFBVNFJf0kdTuTZ9bj8/oE11I+o0d3U/3fNJOBBWtUtVqfRmjue65jvqR1Pnd6bnurk8iDtmDgjPPPJO7776bm2++mSc+8YnTquP0009nyZIlHHzwwVx88cV86lOf4uyzz+aNb3wjS5Ys4YwzzpiwjrVyXW/QoEGDBg85pqUwLF26lCc/+cl84AMfwBjDNttsUzOfP+pRj+LnP//5tHxiRcz4H5MhmftgfCjRzJN1QzjS8KlXXBd80+PJWhfS+7rPQ114h0QyUX+5LvKI8WMwEsch3iUJwQnlnQ4Mj8DgEAwNw+AQUpROoQhZopP8DW4esorAbLzrUCuHvhzauXMjantCdWg/7OKPRZ6OpGnf1zxzGZtz1281Bs2S+4xx+Rfm5NiBHO3LIBekVL977MpFikPYkS/BaHDt8W41SEWi9e4tqRWBzJ/PQEQxJWSF9ySyYErvitOmIky3/L+BYN1W7IDCvBKZX5Av6DCwYJiBeR3aAyWttkVDrFLxeTJy95IY9e0oZFqZN+POuPF9zH1bfWDnWMp5Fp1r0XkW7VPXv5brqykg70A+Au1haK+C9groW+H+zYbdjrqoVBvqUrVFGGMLyMVZrHLcjnzIVh3+zqjCsCbnYlSnrLqn9k1Jd/IluV/8sysh6whZx4ehVV8s7TNJJKxAfu8xjuDWFAJ01fSU0IdQvusTn7mf/1rdU7Wx9tKgempVU8PBBx/MxhtvPPUbE5x44okAHHPMMS5vh8cxxxyDiMTrY2E21/UGDRo0WGsxC2v6+ohpKQwf/vCH+etf/8qpp57KZZddxuGHH167PnfuXPbdd1/OOeecGenk2JjCUxwzctI4J2bSYjGqq+PUPV5fa4J8l+QUpcakjgldM6bxTeilMAmjj0OUpCAdjuprr7r9PUGI7BZKu+9Pm1dGpa4ILkej6kr+rF3PAKNIDCfky3RvvwdDBFQ5DsZaWGT0xyk+SeFSogtT1ejoerRHXb2KzhRm5BuQ9rX7HZjBr1isc6xzMzBJqTI43uehwIUXXsj8+fPZfffda+c333xzHvOYx3DhhReOe//as643aNCgwYOHtXVNX9swLQ7Dqaeeygtf+EJe8IIXjFlmu+22m/AHqhfac9u0s75kZyulR7rjCA0kaKoSNV4Azv8jECTjbep38mMT1c5+2kQiuCu+jK9FqWRbTawI0U3Hak1OEetdkdSPyYDmuasz9fNOeQTqsixL6f3US0/oFovkPiyqMbhYkr4zRhDjyNJuR1iwIkjusy9LyHkrbm68K5B0J8Dz9blyGsu6bnqBPsvQzKC5szDEsKqAimD7DLblSdGqmI51fvUCqoIVg+bifNcFRC2KuERuRrC5UOZgcxN3562pCM8qCiJY47NUB4G9UKQUWgW0rRtNqYIdAdvCEZqzijRb5optq2tDDSIleV7QyoVMvHdTaSgkw/YbbGZgxCDDQpYbZ6gZBsmUrKyTdUVdKFXbgrKt2LZQtqAtGWostl0gGUgb6ICsFszqjHwQsiEcCbp0SdmMBTqKFootjONntKEYcIRqbQGZcz/CBCXGz69PLGcs7n2y4R2ovkuB5B/e8Nr18L3RKlt0Nwk6hNwUqlfahnwVGpQ3rSx6/lhjNmz/Dddw0X2XFTBI5GAE0nN45TWS+jWGclUUURPzY7h2iBaKkIuiyGcv0/Py5ctrp/v6+ujr65tae5PEypUrufvuu3nCE55Qsy4EbL/99lx99dWsXLmSefPm9axjNtf1Bg0aNFhrMdG63igMwDQVhnvuuYcddthh3DIiwuDg4JTrnpD0nMJWTzHyArqJxGN30P/r/u7phjSqbI9+pYpC8O0Pfvexn7a67oUbabWinF9DkolZA4eh8LwFf11KoGOTjNC+X5kBMU6yzPx4jHECWenKhpwGEvpSqhcWkyF1j9VaVz7Mt/HRpoyFVoaWmWfVEjWpsp1hMy8kFpCNlJgR65SelmBbGVpatONcV6LbViaUWUZhwRaCRSixQf6O2ZprhGUlOqgHwnHWwfn628ooUBr3AZxPveAUEhTr/ejJC7KswFKi6li0RZFRluq45SPAsELHkZ6zYUu22pGeTRiLn8SQPM7nd/O0FqU0YJ2vFPjIWVoKDGeYYSUfUfJVkI14MnfhSdXenUsNFGIpMhd1qbRKaZ1SGTNI22qcYr31QiVmio47JomlJL6xUvUfiKFpRYk5IuL5bhJAapjRetno9hR0u+AOFjgNSTvJi1j1JbTVwzKhqHOtCpq8BVNYQq6NWsShMC4D1hbMFrbeeuva8THHHMOxxx47K20F5WSsRGvh/PLly8dUGGZzXW/QoEGDBus2pqUwbL755lx77bXjlrnqqqt4xCMeMZ3qJ49uF4fpQN3/1Ess0RaxJu5IiRIx6nxQHMrSWy3CDq0X5MPOKtT7EP5OrRm9xiJJ28H8EaRtqcYVazCEYEC9vUPSesKxTebHSV1OUUmUNSlAWyYKampCuE7rpHbx6ZRxxosQbtYZhSxaeguK1YSt6nbLQ59rzz+JdBQyQIuvIuWhR6arVPcRMkBbhQJn2TBCHg03GjsoAuSOz6AFlCJI7jUCI1GoFanas6KURp2lIVMvNCepod2LgHjOgR2Bsu07OOyuqVQ52QIpXEacpUoCv0CImaSd+1L9PfHNxM14ovWu/jUay4MnleOn8tXTMf5GiVm6a0qAJn9TkaDx/e/uq9J1X3xVvUWkTMpIUka7FIlJYCphVW+99daaAD9b1gWoxtEr2Vqtb+NcX2vW9QYNGjR4ENGEVZ0cpqUwPP/5z+erX/0q5557Lvvtt9+o60uWLOEPf/gDH/jAB6Zeea+wnuOVDT+UYXsxCgE6OfeBUE+v40SQH0V6TpESj8MtwcqQZ2BDNCH1RGVFO4Vzo2m3fS6DrG4xCLkSjAGT1YX5vE5qJs8ry0gvknYghwflxHhpGuoKRTzWajwldXclX76ek8KfL6yTxUJs/rZzU5JCkY4lGymhcHkHBBMjOYkFawTbErTtXJwqDkOI0e/lvHCe6kuuuChFIexqsByEjMsKkewaH50XLgU/FYEEK4BKdK0pVZx+YaB/oED7hbIUbGHoZEImmZ86L9GXLlqTUw5Ac8X2K7bPon2WrK/AtJRMqmnOjJLlJdYKnTk5nTkt7ECGXS3YQYnuSaqQDSnZMLRGXH6Jok8oRoRsrtCZ4wZmWxpzMwCRTAzeAlGClBIfm4T5SK0F3RpBKOfJx7Vsy+H+oFcl8xtI6ql3U2qBEEBDzNtR9WpUAKPbU5fCEL/j3X21jowe2pBC4vtRuUbp9EnPE5XB7eqPteM/01i4cCEAy5Yt63k9WCDmz58/Zh2zuq43aNCgwdqKidb1RmEApqkwfPjDH+b000/nwAMP5OUvfzn33HMPAF/4whe49NJL+fnPf86OO+7Ie9/73hnt7IQYa0t0PHTrJjLexWn0I0i7o0KVwphKyHgKU3pprGhNdJWZKdSiMflz0YWq3kdtJf5W6t1Det0fYPBRlvBKTV05cP7u9H4k0vXpfu7S9W86pBB5KYnUY1LSs4KqjNYRC+MtH1IjPQfdoSb4+rFISLAWhN9EghbBJawLwrOPGBX89kV9VKTELUcNPhmdF4Kz0XPmGkoH/CDulowz72OWnYn2xsAoK8N0MAWF4cHEvHnz2GSTTbj55pux1o7iMdx0001suummY7ojwVq8rjdo0KDBbKJRGCaFaSkMG264IRdffDFvfetb+cEPfoD1O8X/9V//BcAhhxzCCSecEHe9poLWQIu2cRlJY8ZmesuAtSzPAKr1ctbWSNGhHvFlwxZzEPIk+rKELLE+sVjYig4uKSKETLFhd1bVIvg4/qFd67PnKs7NRq0nP6sn+JKEiHXkYElCnTpvoJD5NhlbtEY40rHL+ux4BSnZOoxFg5XBh0VVv60eZWt1vvHifWhc/5SYfC3hZvik1ajJkFYgUuMFUee2o62clhhG+jK0ZdyOOmBEnOIgoGK8pUHQtjhic0soW5mzNuB3nhWsCFaF0vujW3HKRSQ+J3+H/A/i3xINRFgjaKYucVtWPbtM3W6zNepMAkUOxiKmQEyLFkqOYC20ckveshhRdKBkeMDt7uuIQMegw4LpGEd0FrxkLm43WxVrc/LWCHm7JDN+S1/cO24kQ1swnLsuaFthWDCDggwZZEhgCBhSzCBkw0qfde5L1kJZCGVHKPqUcsCTu1tuTkSC1ccRu43irS9S5UYI73xYOK0Pfxp0XVXvQea/eZVRgHjgXYCqxVcrgrN/e21UmKRymQqEdV9OY5QsrY7DfBrBUgUyCG5N7rLEvgdXP+Pf4fhdMm7dCN/5QqeRuG0txdOf/nSWLFnCFVdcwZ577hnP33HHHVxzzTUcdthh494/m+t6gwYNGjSYPFasWMHRRx/Nz3/+c+69916233573vzmN/O2t71tQtdTgPvuu4+f/OQn/OIXv+Dqq6/mrrvuYpNNNuHZz342Rx999IR8tV6YdqbnzTbbjFNOOYV77rmHK664ggceeID58+ez2267scUWW0y3WjpDhYu4Mxn04giEf70Q3/Oe1DeiNvE+vn73bn84HqtfaXK2GA1JKzcf/8MbSdFJvyVTJ7Vm6pSATOtE5m6IJHHypSL8Br/+WtlkjCbEu/eKhd+qjoqB76sk4wjKgnQRuTX3kY/A54NQpFNAp4R2C5sbOjmUqtApaS3rYIcKzIjPH9HKUHFCnwLan/kEYwZbOAUhkHdtJpRIlYxLpabHhCzNUfDtdl8Ju++oS64WXGQ0yqPYoOgJII5mbdTSKR2/wFrBGEV9BjIBRoqMYevGaKM5xGCiFcXPVeRmWEyrQLMRRCylOitGpexCp8gY6UBZ4DgcnQxTKqZU8hHIh92nHFZag0E5EmwBhQhF7jJIlyMuW3Zq7VCjnqeBI0Hb+ApEeb+bKG0CdyQtk75b3daKpM5YJjlOQ8KGvjm/r6QMOI0msdYAlTtR2CEIXJHSVRxI0YHcHd2jkg2F0NVAtFagLKdGep4Kh2G2sHr1am655RYWLlzI5ptvHs8fddRRLFmyhOOOO47TTz89WhmOO+44VJWjjjpqwrpna11v0KBBg7UVaxuHYWRkhP33359LLrmE5zznOey6666cd955/Od//if//Oc/+fznPz9hHT/72c9461vfyg477MCBBx7IBhtswFVXXcVJJ53EqaeeygUXXMDOO+88pX5NS2G45ZZbWLRoEQsWLGDjjTfmoIMOGlVmxYoVPPDAA2yzzTbTaeKhQ5BEU2UiCIHWjq00TAXBahGD+1P/e8I+JtmAu+7q5YVS3TNaCamsK9Vxd6kkmGpsN+7SKtHqAsSQspQaiZgWdZvTCelbvbLgTicKirVQSpXEK2QM9qRiESWm7xWhp9+9SY5TeI5BEJzjYy4TgbjjrBdll/DbTe2QII0GBnXYDcdGu1j1DLwAXIo31mjyGnnFQiX5278LxmWCRrwSZQRr/PSEJlGkVHeyEBcZKkm0RlbriG9R43MOoVNHKwT190WTe+sWu2DLIVp26tfrB3GYoqPKpHMWox0l71mwKNbd8qiMH7EWd0Pgtpta/7v61WNPYVxM5ms6jR+XT33qU5FwHP5NBfw06dpll13Gvvvuy5FHHlk7f8ghh3DooYdy6qmn8tSnPpV99tmHK6+8knPOOYdDDz2U5z3veeP2Yb1e1xs0aNBgLEy0rj/ICsMJJ5zAJZdcwhvf+Ea+/vWvA2Ct5ZBDDuF//ud/OOqooyYU9nfaaSfOPvtsnvOc59TOf/GLX+Sd73wn733ve/nNb34zpX5NS/rdbrvt+OIXvzhuma997Wtst912U6+8O1vzRJ8Y9iWxBIR8BN51Z6xM0WLCdjP++hiWhVinGX1dxGVMzjJCFuToZpRlzl2o3UIG+jHz5mLmz8XMnYuZOwczfx4ydy4y0I/09zkCdKvlsjK3cnccPn1t6O+DgX6YM+CO2znaDtmbc2hlbve+lUG/z+zc13Kfdu76k2cuO3OS70FEXA6FTKrzxlsy4lwad29fC+3L0b4c+vMq/0GYkzltyjktbL+zQuTDSjZYYgY7UFq0laHtzGV+7s/QAZd52vowsKYg7qZnwy5rc6twYVLzYciHoDUIuScD58PQGvKfQWgPQmuV+zt88kGXcTgfErIRwYy4f/NhIRsU8kFDvtqQDRsY8Z/SxC1xEcUYL8z749xYz0eXSiptAS2pskhnQK7+vEKuMXWGMa5ON91Cp5MxMpJjrUGsQXJgwKJzFB0AnQPlHCjmQjlfKOc5Yng+rPQtV+Ysh4EHlL5l0F4htFcKrUEhGxYXlrUUlzVbqLIn5/+fvX+Pt+Wq6rzh75izaq21L+ecJFwElM4NQbzwkQiNSEgD3SaoeAHaVvqRGNu2AyK0IHbr834kF1ptHxTF1ga7aZ8ITTcqorzICx1tDAoaLmJEobVDQppLIEAu55x9Wauq5hzvH2POqlprr3323icnyUlSI5+dvatq1qxZs2bVGZffbwyrEaFtxKr7kRzJmquSrHMVsvEyV0256ze3n+9Ty13ajOxH8+8y77Pq14zTz6j3e2T95HMosLWYIGdaAqvdvMX0o6ug49SeBM86iOg+fw4o73nPe/it3/otfuu3fovbbrsNoN3+rd/6rX3389a3vpUrrriC2267jV/+5V/mxhtv5IorruCtb33rnufeo9/1QQYZZJDTVe6Bb/rdkWuuuQbn3Fwabuccr3rVq1BV3vSmN+3ZxzOf+cwdxgLAS1/6UlZXV0+qns5JRRhUO+/xidrsB2d1t+SAKRF36eQU9AFzUKdF6Rsf+77ckrlbTIl6KuZ3B6xryd8ZipSHlbgQQPL2p6iCM6MqjrwVRktOeFeF+fE6t/P2lpiuOdtSLkQ2577OKKDdbqv/O7fb5Zy56skFCR7WYVns8Wn7t0OpYmFe77bys+RAwk4R69N5ixbMJeFKEmK6wS7LqtVmCBleY9GWlvgczbiSYFCziCnfsejuUX3v3pj/e2lYKm8e1Ot+b8my5d7/mN8LH/Z7CpJ03XXX7bvtM57xjF2/v6PRiCuvvPKk6j2cNt/1QQYZZJB7UU4nSNLW1hZ/9Vd/xdd+7dfyiEc8Yu7Yk5/8ZNbX1+9W8UwRoSiKk/qOnzSHYS/55Cc/eXKk53FB4YoWvpCTDEFGI0jKptrDhwAZ6jI3BQm60y8EpSjOSQfpyeTjFlhtcBmXScT5umLF3RIbwfgGXbctPKQPu+mnI1XnzUufCNNdytTk7Ufa67QpMLP3n54e5B3irQCbJuVdnJvTmTIPQ0lz6DpNMcNdcqVniS7NW9YqO3Jzy8kImrIHWRG46D1aikUcJhFpSjsnRHRkUZ3GObR0eBX8Q1bwWw2xEEgVp6MX6yNxKpwqBMXH7llqpWiwzEFRhZjSnqoXNAghe8d71YYjnUJjGP9E0B0J0dOe45JyLtHWhHohjqGJSoieqBHRiCsCUlh1bQ+p2nZk5ABf4IInlo6IWM5/5ww6k0jYTgQpFFeAH0FROASXCpDbytMgjMTRBG8ZmQoBiejYjCZxth59IcgIfCl4D+IdbksptgISLAWrlWgw3kfjoBlBHGHXiQbTiSlS0GZ2ymRlETJQTBppjZuYFriI64yRtEZEEo9GtHtP1I6TjmesUa7MnUt2tOdkQnZMb6KQ3j3rQ8uEOXJKFDX+hUgy1hSiRU9EMINLsGu0Nno29qR3v/bOx3gKIIYPIjnZ7/oggwwyyP1dcnrqLOPx+JTX17n55ptRVc4777wdx5xznHPOOdx0000n3f873/lOjh07xnOf+9wDn7tvg+Ff/It/Mbf9B3/wB9xyyy072oUQ+NznPsf73vc+vvM7v/PAA6qrgLp9ZC5Z9ITFuHz/fqIQJyJC70Z6TqTd+T60G0v/us6Bi4mcnJQc6Y1N6XlPTXHulOC+0WEakSKGpchZbVIVaM1jzREB6Wl8eX/UHrG5f1ntfkfL8IT2xoKzTE+lNwU7goZgNRYUIz5HJZSexqe6E9OITiMcn9EUznD4mOIYM2k6GVluFpEmEkOeQ7XMRoUSY7peZVluohdLJ+oN15+RNtmD3kZC0j71EIK0tRGSrdRm11FnFZObAmpRYoxoiBADjoiLEYcSsDkrfKSpHHUVCbVDaytGZ1mxQlurAFGkiLgyMhnX4JVabSzt44iOEIRmmi1jRVw0g6N20ERoSBWgDU4VK9AZsKWwFWFmaytMhDo4y5ZUCM3IOObaJGK3WATCMkL1DOnIXHYjaXrzmedSU+RCu59scLSrNCnsMG+ks/hn34AXndvX75OIPee0UBXtxpopJMEiPC49TzNA59/59tXu1YgwkrS0mYD2Lf3xnajN/UTure/6IIMMMshpK3t919OxRz/60XO7r7jiipOK5p5IslGyWw2fw4cP8/d///cn1fftt9/OS1/60jYSfVDZt8HQJ9eJCDfccAM33HDDjnYiwllnncX3fM/37ImHvd+J6k4j4SBhnaSkz2+rYcE5gJ6RGKH99rv93W6n6EsvYLNAzO32LfbRqbLpR3e+X21fIRhEx9FFCpIXur19ZcFoku7v9id5/1WtzyK7ttO5uZpaOk+hg0ll42cONqWdMZgzSmVWrJLI1UkRjaaEapgfUtYtzSmtiaceaVnUOyZf2wsZ3CMNPXHn22y1eWy5i9g/X1tPfBRped4BWzZ93VmVZOj17i+lpu2207zKTju1/elsznnJ/Ui32T+46/rt9ynzr82ys7pxdUaMzg12YbxzQ9euz4VzbLP/ru1H+5+X0yFL0qmU4bs+yCCDPNhlv5Ckz3zmM3OK/ImiC6985Sv3ff2nPvWpPP/5zwdoYaEnggydDJxoNpvx/Oc/n09/+tP8x//4Hw+cIQkOYDD0PXGZjPGqV73qwBfcUxbTmsIOzVayh7jd7ivP2qUzzY139GEQnBavK7T1DubO65/jXK8+mXTnaL99LxLRPvSe8pXgJS1wyjmk8KhzlkrW99T1xfvN1/UO8UIU1ym/fchRIn4KVssgWwmCmLcaushCzqCTFbisjOdt7y0dq4AWRlCOLnn1vXl1RSytagL5UMyi5QUtvXnJS0dcK0GVOPKm4wdtIwkuK3WN4meB8q5tpAloE8xbPC6RUUH0Ll3XESceLTxRgnm9fVKkhRSVsCq/OfuSa8woi16ITomlEFYkwZHM6x7GAhWwabCe4MWI53WwiIbr5qmpu8fkxFvUwnWPHongjAcxGgcKb/MeVQjBodGR69hpFGh84iqkh+B8l2rUJZhP6VqDy2Pn1k6IY8d4y+BQbhZw24qvwUfBR6GeQJiAjFMNggzT69losODZl+6nXb95TfQjOLmPtEZazkfqtx+gaNciJLhQb4Fruql8XooitHU2it47kDoTlZbfgYIWIEUyQFyat/4tKUiQNs0tgGRI20FkPzbG/chguNe+64MMMsggp6vs9V1Pxw4fPryr539RfumXfmnfl7/88stbgyFDPo8ePbq07bFjx/Y9hixN0/B93/d9vO997+Oqq67ixS9+8YHOz3JSHIY/+ZM/4ZxzzjnweR/72Me44YYbuPTSS3dv1Nc02n07m8xv665tl+7XBc+mLvSx13UzRGOXSy0/RzpPKWpaUz7e4y0sc+32DY4W+dRT0Ba3Deoxfx+KziuFC/eoSoIq2Yb2jmWSc4vocNLOWdtnOlcFywyVd2MGgpbSuw5W1bl3Ly5E3KwxjkD2knsjAsdWw03GSr7Oon0ltHUZWkU4GSb5HIM0pXFp2k77ohjeP5aalNWIOJ0PKi1M3U7OuLaKtjjzdotoW8ai/wjayMWist6XaEpurpvgAlajItUc8HUaQzTokroEOyLdU68StBW8YyfxO41rmc+iXQfCjqXT3u+yc3bZ1v4f/Qv2tPu58/3CFbKBkI3eXj99Q2bHdZWDp1B9kMk9+l0fZJBBBnkQyV4JJHaT8847DxHh5ptv3nEsxsgtt9zC133d1+27vxgjl156Ke94xzt45StfebccQidlMPyjf/SPTupiv//7v8/VV199wn9YXOkpnDeYhpMOupALi/Xz/auRj82jadjzNj1qLqCGJN1cWqK0JDKxaiSGiHPJ1a6kProCbpq0EEkVjTXDZZxLfaTMIvkcTWPL4xBsLEJK6yqt4ig5qiCmWKr3iaAMLXE6EVG7cwScVUmOSZF33rXIk0yShb4ClebRR7Sx+Eaui5AdjG2dhCYiIUVQEpk6OkFGHkaeWAgOI546J4jEVCEaHBGi4KuGUDocHo2KltaPExDvkBgpN2skGxzJi+0UytWSQkq0iVavYGJpZtUL0Tm0cOjIoaUnZOXQ2z1HTPnXUvAIsYqEusLVti60UYKHGDxBIY4dzciqHzMSexaN4mpnlZKjWCpYgiV20i6i1FYh92lLFJdSOeVCcU4cPjo0WBVwiWLbmonvtg5jJpM3IOpaQnZMxpUgUGQwjeA8UApxRalXwW053BRELErjg1DWQrNt2VwbjCAeghAbpXHR1qHksWNVuNN7E9E2amNGmlpWJiDXHNdEghbRlCQqWmQrrXlNhpokDd6gaREnLhHCWzYOTl3itdj72q8wrYjVlUhrRKPgvLTPQkXt/c5t0rrPQTdN3wZXWGSOALHJQQghHDSz9DKje1mb+6Hck9/1QR688vEP38yfv/uv0emMf3jJEwhR+ch1/wtGI+K4pFkpCKueOBHqkjYCLoUQxkq1CjoJUEARPRef/dU8+RFfdV/f1iAPJNnru34vftNXV1d54hOfyA033MAXvvCFuUxJH/7wh9nY2ODCCy/cV1+qyuWXX85//+//nRe/+MW85jWvuVtju8eyJJ2sxCbSpGJVpIw5867CBTdhmCdI76zurD3gfG+fWQepi4U+8jlJYWpdmllEOkB7u48EzeldQ3qu25zCJfawHm06UoeW0nnWyd7+ndfVGNsc+NGZ2zyEBHlJXvsd1XWTYkbQNooQ54ZqxGKC4upU+dY7CJFYemLhrJhZkQyJ2qoPa4i4KiJ1kwjLaRwrIxSlCQFN7mzLbATEQHn7NjShiyYUDma1ZfEpPW/64KtYO7TC3ZXnf++vctdxi1pEAlqK3Y9EQuGYrUWaUogjCKWihVq15CISnbbke1G1Zbajulm0DEpOE6qqCyGIi0SgVjXPf3qU2luLmTxOULQGoiBRiZU9R4OVpXUUFVd3MCq84hsr81BpZDxT3LamV0YJRCNxqxDMDiSgBJd4JT3ehMSUQSlHYxJ0qcUWBRtCSGGZLkIR2wiDunbhzk9RD/aHQJAwj1VSaDRYhfO0VkNisVu2JO2aJvJGzCSONA+aq6V3U2vGZE9CTIZwk6FJQkCJzcH+JegHtk7UZpBBBoGtjSk//YL/yOzLd0Dd8PZfew8yHqOHD6FrE8L6mNnDJ0zPcDSrBht1FWgJ1TrUh5X6jAiHa3RmeaKv+fhf8dEfeAmHRqc2O80gD17Z67t+b3/TL7vsMl72spdx1VVX8frXvx4wZ/bVV1+NiOxwznz6059ma2uL888/n7Is2/2veMUreOMb38gLX/hCfv3Xf/1uj+u0Mxge8HIiovSBSdQHa3rKFv1BOlp2Tyc43/uFAnp3Q4pyGUD9BJN2ovmUPY7fLTn5pzNnw+w2xqWYoF3a7nnBkzhnWR8HvN2TjO6anMpn9wCOMAwyyKkWSwedi+iASxy80H+PlmXRgJ0QWjEHmXfOoqGDDHKq5DSKMIBxGt7ylrfwhje8gZtuuokLLriA6667jg9+8IO8/OUv30FYvvTSS3nf+97Hpz71qRZW+pu/+Zv8yq/8Cuvr65x99tlcddVVO67z4z/+45xxxhn7HtdpZzBI6Q0+ogDzkCOFXp532ycuwYtiNN00b2eoUD5HDNZkbUjnSKJM2HVUY0ehaFmh0taDyFnqsw4sznXXle6cFozh8jnSO6fD5OdtVQwKZKeBt3z8qCIaUwrI5NHPfAIFFwN4QVO2IEdH/rZ+00Vdum6RoTR2XxnG5AAJ0bzXjYNGrWJ0IUTvCCVoaXAqG7xDmsBoq0ZmAa1qi/RMxlAarCqOrF5EsVVD1aToRsQ1kfjlO9HNLZ74Hd/ENzzrG3jvm/+Mz3/pDr75Oy7gB175HayuT+7WGtranPHKH30TRz97F+IgrhbEkTNsvxi8RyfOqgqPjRQcV0BHghYGrXEIqLeIVcrVb85uSXAcwRURX9oBW2tGiIiqqDqLqOR1k0gUkti/CombYJWdYwSpoZh6fC1IlTz7CfakkmpIlKlOiAqxVOIIxAsehyPgtyI+iNFOKnsXaocRh0eC1BBD2vZCSHUqxIPHokBd3QVbpyracgZchhel2/XO+rB1pm2kIJPEnXRzFjH4kBNpMw+LA1dmCyK9OYkJr+krLt7qWcSARROiwwchuog6xfk01igtHyRX0I50kEGviQ+Sit8JGHl6kEEGudty/M5NXnnJz/LZzx9DRmO+4we+hQ+956/xGvjuH3s2DzlzhQue9XWEqPz1B25ERyWzCNf+9z/njlumhJUSnZQUGzMUoVkrmD58wvbDPdOHFoQxPOsbzuWl3/JU1srRfX27gwxyj8loNOLaa6/lZ37mZ3jb297G+973Ps477zxe97rX8dKXvnRffXz6058GYGNjg3/37/7d0jaXXXbZ/dtg0BA7eAOdodBuJ6V/brvXYnF7eR90bdIxDR2OR9P+LnVQ5h1keEXa7p+TLYnMQUDNINlxTrZIDChk26bUt1CRlJJUYkrHmaBZAqaMJjiJik/cDruuipqhkaEuZHjVXLLJBEnSNitTDAYxIhkutAaXEJxaRqY8dgVfR5gFYh1xTYA6oN61/I5QODNL6oDWIdVosNoGoWrQ45sAfOpDN/LSX/jnvPlnfgeAL3zyC5z7NY/k7son/uazfPJ/f4FYCNF5oqjNW1Jcg4NGlMYLTQmhyNlHtSvaLIoSUnBE2+fVuhpcTBh8bd3ffSO17zyTlBZVW3Z6TskqBgVLaWKldmhQYqrojKaxpNNiJgAnhV0iFBVQgdYR2VYkGFAoKgQnNKUSCrF7zhmvcp+qbYQiJmgUKlbYLd9DDxKoan1Dimyo0mgyDkQTfCgPmkzfSQYVtsaB0PbZGR/SgzLNzWCau9DOsRmtjUa6XHjdfOZvQ8wDzseiEoJ26XPTFeIBQxcPtLSqgwxyquRvPvB33PLxzyIPPQsJkfe85QNUG1MAxiPP9/3Ec9q2X/NNVpTqo+//37z1tUeJR1aJ3sGsIVYBRgX1Wkk9FhoP9ci+GZ+77TiPf8jD75P7G+SBK6dTpecshw8f5nWve92+0lhfd911O/ZdeeWVp7xGxGlnMORqyK1eljKUtlBoZzTK2CNBi/a20/HWCwptxtNMO5DsfUwFzTpusrZwCZeLjOVxJaJ0pNcH0ioc0vtfioUkYnS6riORRLMSlfpMxGJN17Aq1EkxlBSlEPMKKx2ZMyoQIiJG2M5RjBxNyNeR5MWFLl8/3jzQiuG4pXBmVCiEUnBBjZzsnXm3vVUfFifQWMYj58ElL3QcFXY/kxKc4GeN3U8MuI1ttG6Q9TXcuMB7RzzjELq5xXN/7Nk84uyH8A8v/gZu+NO/47v+5TNPuDa2t2b80Ts+ysZdWzzsEWfwrO96Ij5lZPrEX3+Gv/rIp4ilYxYDRx59BrfftUnwgo6NKB2LBH1P81w0wDQ97wIiRoTXqJbuNXozYM213iWyIiaFWJCYeAZqJGfNxhbZg53O0b5HW5LSLPjUaXQCpSJB8HV6BjNz2qsHCqiiEEdqVZrFsjk1qzlS4KgUyuMR3yQufa3oto2dwqILjdh9phqAZlyIIt7WjUWC0nrMSj/5nbDxZ6NBRFIdQjPIBG0NrJjT0Ob3NVVNy9G+iBn3kt41JHZV1EXm3i2XzostsRrjXWBRBzRH83pjTWsmpqiORLHoiNj7kCMMB0aC9T8KJ2ozyCAPMnnChV/Ded/waD7zuWMwHvHtL3waH3z3DWwdn/KPnvvkHe2bJvDpOzd4+Nc+ki9/5i5QqM4coYcKy1xXKmVj4UpthDiGFz7pG+/1+xrkQSB7fdeHbzpwGhoMrYc9ySK32CIIC9u6+3GYNzi6bd39HF3IwCi9CEPO0pS3u1O6//XbZM2xB2dKnWb/9Ny42iJeagRljV20AGjTc7Z9pEgAqqkS9OJ1aTPW4GnTo5pBohaZcEKTFTycQV9SPYdQ2nGzMBRfR4rNBtmo0ONTdGRZjOLIo+MCmTXItMbNatjaJt5+BwDf9aNP5Edf+4Msk6ve8pKl+xflN37hXbznbR9BUj2JreNTvvvSp/Gl247yyh/+TWYTT1zxxJEHJ4Q1TxiJ1V0YWV7/XO03p1YNhSnkQZTg1dKOeoxQ3iOti0LMGrR0UQMLyGQjoF0E3XPo7VLNZPPkhccqMecIg6sdzATZVIpj3VjVQ73efdPaZ5cMmSAQNDKqadOnSkyKfMqGFLFyDzFHFPoRjJS1qF1nrhtvCgTYOf2bkUR5lvS++jaw0B43Qyt2faQoTvseJLhT7EUUuzbaXTcPJhcDdMloa6zT/vuboc1t/oGAkZwb16aj1diLMHASMvzjMcggO2T9jDVef/3Pzu27/Irn7dr+t9/+Yf7TNX8KwGv/3x/m/TfczFvf/VHUQ7MCiPD4s7+CN//M/3VPDnuQQUyG7/qecsCcgoPco3JPwqlPdd/7gnJ0bZo6nKDd/qRp4sK29RmDdobW/ofUiSz8vtflBBeWhb8POsYTtb8/wffvzlgHnsIgg5x2UjfdvwlNE2jCTvO9Dnf/341BBhnk1Mi9GmHoY7x3E1+WeFf0kuskF692MSMjRfe2U9+tNzjBQvq5Q+cqLtNr02JHkpe+CxB0fyxuz/Vh184wJ3PCSqfcuXmbTJzBVnLUoYVnJHhHpxQadkJTfQftjaG9Lpjn3zvUgRdpvcUGlyG5sPPtJRhWIVZdWpIHOm3nKII5dxWXxhc8aGHwqSKA9x4/KnHrEFdHhElhUKSo+ONbcMed6LENzn7COXzjZU/njDNWeM7l/+SEz3032dyYcsWP/L984tgxqtWS4mHr+KNT1lZGNEH5p0/7WaqVAh65TiytYrM6wYdU982DlAIj11UOllQt2Vsa01BbJCUEiyzkZKESSITflOu/sFy7uWCd1vYscAquV+QtRagMjuS6pat0aXV78SkDywiIUHqhKARfKuUW+MpazbxQFdCMhFAYhEgBHSmsQiw9s7FSbjhGm4qbKmWAYgtiI8wKoZgK9YoSxmmJOYNCRa9WmboQtLH7bjOUiHnwW/hOWosqapNYJAidivED8uuaCNDi2xfMDubCGz71m2pRtK9mfklV0CCWCjWS3oFU/yGt+1xhWtqoT+8zkd7H/C5KgggiFkXK9S2a8mDGxMBh2Cn7+a4PMsiivOCfPoXVlRFnHFnlH37TuSjwx+/+G9ZWxjzl6V/N+hkrfNfTvv6+HuYgDwI5HTkMp6PcqwbDD/3QD/HMZz7zhG1CExC3pJbCXD0Cuu0T/UMV7+ZTdj1loiVA7yHiunZO5jFVmdCQDZSsKIl0EJN8HZGumvEcGYO2f4N2ZNxRUqDStqCJbNxBSNSnSskh4cVTlWONvR4jXa0G1AjBJKsmRopjDbpVEWc1WgeaIhlvjRJnDXJsm3D7UYiRmz58I6/5//0U62es7X/OF+Sv/+Im/vYvb+HYNz6c8R0z3GZFmDUcmzX8/ps+wLHtiuigKYXaWRYcyyiFcRa8QbBCusn+conOSM7BpRoFkAjS9KumdbiinpGqCdcleW1qV+OifR4KLejFrMI5jFLbR4xQC75yhBlIpaboz9TqDjiYlVCVtHUUuutArEBmEb8Nuq2ESo2/EA16VRfCTByNU6oiD8nuLUrP2I7aKeht/wtrPhUh1P44dP64kZvtgGhvoP1Bt8ZTNx9zvyJWMyG/PtGMmu64zp0r/Tml9w7UAiHxGLpMAO1F4kFBSYv3u1ubB5Hs57s+yCCLMh4V/LMet+E9f/Q3bG1VbG1VPOMJ5/PkC869D0c3yINK9vquP8i+6bvJ3TIYQgh89rOf5dZbb6Wu66VtLrroovbvs88+m7PPPvvEnTrpKWkk0JR0ykVWqmNyJ7YlXZNC17pCe8pe24fO9zEfcsgaeDeORemPSzDjYLEP6KIWyyRdu+3G9byr/ehCOw5rH5OB0ZKte9fsDAu7uJAUrRCMGE2qhBwlGTFWrVk1J2J1bV05TV5icWY4SJOMGWdE1GbVIbU3Q8Q7JETzLtcNblajTW2Vmaczvvk538TakdW52/+b6z/J/7nxNhgXIM54GiEiIUAIfOPTv4avPK/LgvG133Q2Zz7yCNPbp1TrBW7qcZWjcI6vevwjue3jnyEc9tSHhHpiXAXnwDV2P6nodstNCCkluEi3HYCc8lRq897jpctclQ2p/OyiQsxVyLPRZ1EH53OQJqev7anJrRdDWmMBJKcXJ/pIGDtcgOqw4LagqMEFwVfgZmYEaZEKuGWF3YOOIKx261MQpAGi4mZQVIrOBO+gWUkk52SMthGUNCdAMhoW3kVNr17Po5xTHLfXlc5oA01k/9hm70pLtttOVcV7dpRFW7R/4ZzIoJ0y2vxjbRPp3n/NkR6LuGUjRjTZStlm75+/T3kwRBjuke/6IA9aufXTt/NX138SPb7FE572WJpRyU2f/CJPv+hxTCZdkaln/aPH82d/fiOP+IojfM1j7362vEEG2a8MEYb9yUkZDCEEXv3qV/Nrv/Zr3HnnnUvbGExHdlRR3pe0nvSeuEW6RcYitFdc2JaeVpD7WOjULSr8LPSxsK2L11w2rt41+21Flm7rDsNEuuNODL7knf0sZG4i/+27cySqkYKDIiEkaElSmMrM9LW2OqYzlNJjau8mpVCNE2n710bxU6sXYcRiWz5+c4Y7uoXecRfhrqMAPPMFT+On/+u/pl+E7RMfuZmf/Ke/CkfW0NLOlSrAtEK2tyFGVg9NeMtf/3sma1bF88tf2uBLTaR6+ITyWI2rrO5FVXg+9JnbmJ27xuyIoz4EzQSDySQoTjHFYDIOmjFogcGSEmwL3/3dphrNyik94m1WpnOEoHGIJpXVg/icZaiv0M7bn9mqayNC6VlLMtIkWG0FgDASaOyc4EFrqNcgTuweSFGhtoaAJiU+r5nCUrC6DOUpQZ0QPcSR3Xf06b4yYTk/+PTemmHJDlEFyjTPkgzMZPTYcW37FQ/i2/BVXqKdBIcGaSMHpsj3GrTwrW5e7adLB0ven55VG7PITO9MSve9LGjJQtHIQG/oyT3+XR/kQSfT7YqXvuD1bNz4WdjcYrS+Qv2E86jrwF9+5Ov5qf/7u9q2F33LY3nP21+O987qDQ0yyCCnlZyUwfCKV7yCX/u1X+Mbv/EbecUrXsEjHvEIvF9WVfc0lkXF/2TOORV9nOpzdrOE54yVxWMnunZ3vI1cLF5DIcNysmzetTVnLABsHN3uxpIiGosy266o64YJZjBsbExNuXMgKeVne1nf53YsjDOPa3G4e93rQeWU/Lu2pJO+ZZjtgoV77LeV7KZfFlqdM5p72yd7v7K4Y5d2u7W51+b5HlA6HsCQpAfEd32Q00pCE5lu52qRUDVNmwDj+PHpjvZlOay3Qe4DGSBJ+5KTMhje8pa38OQnP5kPfOADp/wflGJcUvpy3vOfsQcZddCH/mT8T4JJ2BHpn4hq7O03T6zg0mkL51iVJ9riBbknydftQR963k/pbbfXpXeOYNf1rlt7OV1pC6focRrAPMkiVnXZJwJ0TjubPeJpXO0UOTvunCJeoAmW+zMqVOmtUKD0REqaiTcCNIpvrMNQghYO9YIrhVA6ogM3AnEOtx1xlUGd3FaNV8V5x0O//mwe+9iHceSMVZ73498xN39//7ef5T/9hz/GX/AP2J44mrHdQDFV/Ezx0wa/VTNS5V99+2vRqMTC0TxsHTn/EKVXmn9Q0iS4yewwzI4IzTqE9YiWaqTkwsqp1VNP3HC4TYevLZ+3OtCUOjVmmFJBlxrUSY8YrQiefjE99YZLEt8tFREBKSHh9SXtz5CblqDvpC0YNucKT554vEAtuAIkOGSCzUED2kCpQgGEqGhtBoJEEnEYxAtuJfW1omgtaKVIBaMKRjNlvClUIhaNWYt2/9kAUKuaTpHWeuytLZdXs7aQQc0T0PcEJu+zQiryp1D3Iy+KOm1pPurFojOuW79GKkkvXNFeKM0ztNwIunEo2nsZctBMbU699SVRkejayIKkZ9fEg32/HsiQpHvyuz7Ig1PWDk24+tdeyJ++66+Idx3nad/xROr1FT7x8c/xvOfvrM0wyCD3hQyQpP3JSRkMTdPw9Kc//R75R6WpGgOCw7zR0JfWYOgd343g3COqppNpAftL2+fqbgv97RUiXRYF6O/L8KKcIF7ojIXUds5YyLaJSxmNNHRWcN+Wac8DaayisoSIBIUmIk1IBF5pFcNcV6JZLYlBycQFnUWasRXJUbU6EQ1ibSJWDXojolU0hTIqo2NT4p0bSAjc+qkvc/VvvWiOg5Dl7W/6ALd84S6qh61SlWrY+lrRWtEqwmaNTmvCrGa7Mg9UfdYa1WzGbLVIkHabm+hha02oJ0oYRYIzDVCKYLcYTDkvN8A1lgVJAgbNSQiZSDIYsjGQFORcRbtVTtN8qySltIUYpel32MmpCFm33ObXqCaIUR9GNBdBqATXWFYgScR4qTGoUuKVRJc49PnjFklkXtvnZsbdcA2EGnwFfttI3NFDjTAtreJzW225v8zzK9Fg41RaiFcLA9oPR1jSfOVUUTnS47KyT0tOlpZYkJZhtGJ4nVXSm6MMEetPL+kasnAvWZIRIkr37iXokwIxHhBa8wCOMNyT3/VBHrzyTd/yGL7pWx4zt+/pF33NfTSaQQZZIkOEYV9yUgbD0572ND7xiU+c6rHsT5bp7ftBHrQKReeJnFdIei773VbHjnN2b7qjTe66jYjQKe/LjI08TDUltk3Fukw3SoaAppSVbTZJ6TzIktPM5rSpAm6rhrEnlt4UN1XcLBBGPvUpUAOlthmWwliMNF0rzkEYedykhKMzvuoxX8HDvvLMHbdy/Og2Z561RiyhGSuxUJpCkDEUKRXqbKXETwU/c0gVUIQwsgI+cWTZjlSAwpTfWERiEbvUnc7uzx6xzVBYiejUrCuf0n5qIBG67RabgjkDQSXOG2QqxifoQ7GErk3PiNh1KfSWVZtMNSnfLZRI7BI+mqGAYkXHIkhOdToDn8jb+dIuGQ2otWEOGaZEr0idDIkK/JYQSoUR4LTjLvTHWWD33E5BZ0TNiyx/9dLYW/hTG6GIiI+JYC1tAbV2ctp2meshtHCrvqGyOJb+dr+4XurNymWTQw8WRYpp7LIfC+jBIffpd32Q+43Mtiv+8o//hq9+4rk87KvOuq+HM8ggg9xLclIGwy/8wi/w9Kc/nd/4jd/g8ssvP9Vj6mQv7P6cB3+XNgptXYTFKMFi97koArKkrew8Zxk5e3Fc/etmgnGrSLnOWOjBkPrbKmIKok/Kk8te1t61sxHQS4naaU0O0ZQtKUcYMqxlrEhQvKS0oLOITDwiQixcC9mxjEGpboVIBxVpFDdrkOObsD3ljltuo9quGY27zBcA//aH38gn7jrK1vmHmB4RI94mbW6WPPsugDRj86YnCSVEQ/uAQBhDWFHqdUXPaJAymOGT2scg0DioLfWRekFH5tPWmc1PLgsgalWe8STSr6KF2huR5zWawSRqXm8Nam2LLgqlLjffsZg6Q7G/Btu+MZhNSM+1EXwlZjRNe20i+Br8tv2tLhGXnR13yZhQSXOV4D6+VqSBIqUmVW/rKE5AR2LQrXJ+uK00zH8ZfPe8bL2RoiWcQHoGuALjgB8HfGmk9VDlNE1dxwIpMxUWDWikM6j6g9S5q8yL1zmexvzxFM2I0hmAB/0CPoAjDPfad32Q+7X8wr94PR/4g49w6Kx1/uuNv8JkdXxfD2mQQe6eDBGGfclJGQxf//Vfz5/+6Z9y0UUX8drXvpZv+IZv4PDhwzvaiQj/5b/8l7s9yCUdsytc6UTn3BeyG1F6v+ORftsEb9ktpLJMkVJd2O71uZi5CSxrU99oyRmF+udnZStHSVLFzq3jU7Y3pqyfMZ9K9Yufv4t42Js3e7GvPLhlj3OZDp77WHJsTkHvK5dxobn0fk6GBNy3BxfP2c+ynH+ctEp1v/5BPrLY325j7c3J3DkLUTT1zHnh9xUhu7uSbVfp79jPSadYTsFH/4HMYbjPv+uD3C/ktlu+DMDGXZvMtqrBYBjkfi8Dh2F/clIGw9/93d/xnOc8h6NHj3L06FFuvPHGpe1O5h+WclIy8uUC8kcyUKFDDUELPZnztM+do+3uBW5mctBnsqW22wbtSX9LD02SIA1zOeTJQQPpHP59h6gm0muOFkDKSy8dxEhcq7gq0hK6NXWupBSmpbd9MbbFcvOctG7lmEm32r0AEWiCcRsUtIm4WdUaXapKLArbLu3eowpRHBEh4mgKaRV178CX0SoJb9X4Qigecpizz3kIz7nsojZE/YXP3clrX/V2Pi0VG9/8MKZuRiyFwoOWYuRjB01ppNfo1FJ9Sp7XVIgupQ+1qVL8CMZrASkhxoJYOYssgGHfg1jtCIAVYE2tKNqKo5gKUmtrVATMwR89qLMcmxIElYj6FG3wiVfQYHUNUjrVWER0lKI2CUojOT1otmdzvtZ2PRgkScAqJAdnfIEguELwI6tQPTlmaWF9pSkzlOBnET+LhpCaOJoViwC5AG6WCvQ5IXpbm+pdqpUBYSLUa+BXhckI6oknFEYUF6ftPbWLeJSiFjkK0t6X2vxqeh8zmkfSNem9m6m9OsWvNJQrii+gmpW21keO2CRYUp4jsfUcwQjYPkdgbGz23hhsTDKJPEekBChACotk4CKx8R3sSbR91WLorhv0gHj9B3CE4Z78rg/ywJFX/ud/xe//2nv4pn/yBI489NB9PZxBBrn7MkQY9iUnZTD82I/9GLfeeiu/+Iu/yPd///fziEc8AresHsFJSD1t0JMh3R004rAf2W8aVTnRsdgq/0Dnvc9wJOlVkep5/FuDwUEsBI3G1p2rJtxeMnQVndPJZiyoQZGikaGJINMKCcHmWCEUDqrQwpq0EFOiazNgqlFEazGLS5ViU/GzSLEdYKMi3nYXNXDs+Ix//H1PbYfwjv/2F3z0E59h89xDHDtT0FzLIVVg1miVlvOoo5t/fuq1rY6crfvoI64MhKIBhXrqUzaeNBEzwTWurb0Qi2hk4pkQZkrYpvswSEIuSSpCFszgUKd2bdI8N2aASJCWOB1jtHNiyr6lCk7n4PBzivAS0Vrs2QTr203Bz4TyGBRHFbYhNt1zHG0EQlTCyNF4pRlZBiRfRVwygmJp60fF5s9XUE+EZiQ0IjQephMlkmpMEBNXQeYV/Ux6zmusLYhGl+lpoWaCrVed78cpuEhR1jhfMa0KmmCGX6gcGnMRDLprZfsgiI2jtcClNUBwZtAwy6GLdG2veF8jGCm/abrRSbuIIEYH0XgSse6RNfYhkit679Hm/ij35Hd9kAeOnPv1j+YVb/iR+3oYgwxyymSv7/r99Zt+quWk/jW4/vrrecELXsArXvEKHvWoRw3/qMzr6jt+lp6yywLccU4Eghkd6rpji9eIsuTHGxcheiE6Iy3HwqXMsRHqgMxq61+T8h5B6pSKtVGk0jmydHSaimxHiAEt7Nk/8emPa4dczRoOr4+JKMGZMt4UKcuPg4gSXURFiRKJRKJG25d+kAhlAz5YulQfEIJFRFIFZ3LmokDraW6jSoAGRV0klJHolaZUQk6pmsjE1HSk5mj9SE3bp0VgItHHZOAkQyJlLrLHmI24pIRLRFxiIC9dEdoq02AGS1tnzJMiP9HI7ijRQZOI361hrFaluhkJIRHBg9i+DNNvUopUdSmSglqEBaVNF9VfTaoduVjTOOxpWdRFMrGeFOHq/lu60pPir7VQ1xYF0yCWKjaHKDJjO6VgpUlzG9McSb5C7NpLMnmk9zxSyWlL+KWIRESC/XYxbdvfzjWIi+Dyczo95Nprr+XCCy9kbW2Ns846i+c///l88pOf3Ne511xzDSKy9OdJT3rSvvoYvuuDDDLIIIPsJicVYThy5AhnnXUPZUdYgqs/oWQF6lRzFObSm+4v0qDLjufoQd7f5zD0GbstTEl2npNIx8COlKqL+9rIRL52VFwTkVk0OJJzBjOpg2UYCt5SiY5863kXwDdKKBRJ7VUtrWpRQ7lRU96xhbtzA4AfueJ5PPdHntGO4d//6//Kn/z1TRz7ujPZeLRlO4JkczgljjBCtVcj1IKRVYusJIJkYnHPsHI+thAawDT/4JDaJkCSR7rlOaSqyDirG6QOXG0/kubNRUnpPBOkCVAv5oX3CmNtx6e+xYG13AfJVY2dwXskebs1SmuAzUmLkNFkuQguiEUXtoXRMWV0VPE1hJFlkFIPQoGMrIaEQZLSOCPEsbcsSilYpQKhEMIEmkn6vapomWpWjHuRgJ6eL4mATUze/EwgzqTnkDz7+T6WvQay8Heqd9E0JbF2xJk3aNCosfoMqgbxm/pU2dnmknHsHr9P85rmVwFqG0ALmRpF3DhSlg2+aONW5MiESz9NmnPVgKrQzA6YJelEXoB+mwPKH/zBH/C85z2PhzzkIfzwD/8ws9mMt7zlLbzvfe/jwx/+MOeee+6++vnBH/xBzjnnnLl9j3rUo/Z17j36XR9kkEEGOV1lr+/6EGAATtJg+P7v/37e9a53MZvNGI8HwtMJ5WTsmEWlq5dSFfa5dvuKaf+EMF+RWb1rjZHeJdrrqp8/XSK4HIFIcnyhqvMtf/d5wlpJzAq7ME8aEnYqnDvueeeNykInBvtZfvutUk8PXqN03I5lY0iisnC8r1T3jy+O2y7WXmvPB9WmapU2faoLPV0+G1N9/b4lfXfQoB3j7w1WHV3qVOn1uetJi/dDNwetFbpPSc8gURx6fIJeN7rwu3/u4ppZHGtrvCUjMxtwCyctsY1OWu4J0vNsNuMlL3kJa2trXH/99Zx//vkAXHrppVx00UX85E/+JG9729v21ddll13GM57xjIMNIMnwXR9kkEEejDKQnvcnJ2Uw/OzP/iw33ngjz372s/nZn/1ZnvCEJ7C+vn5KBjRaKSnLUacv5Acl2WFuVV5bJSRBElqSc7/iK8t1jn4fLYBFAecSF9j6sDoG0l1XnBGi83UTCZr2HOZJy2kEuUptjBhZU6woWio32xZw01YR7I6pYrCf0hETjwByZELa2gv55hRSBWnasVLHhHWPuEmBbFdQBVwGlKgSU5/tHCE0hacoPfWKI3ootpVREyjXxxSzBrbgjCMTnvk9F9i1Vfmd/3AtslqwVhbMDnnCihBWQUVxUyGOktfeg9bgqpSyNIJOIlrWiAdJDFWDk6Tnq36eqrIiBPEogqhDfA8ihCCxoK0uPHLIyB641FBsCX6WHr2HWGhbxZgaYlRDHTWaqkgrOjLjo4PDJ6K0REQU8QHnk2EzsjSsGS9vXu3eIvSCFooWnmLTUxRCWcCoUPyZhQWWRoJOlDgRqvws1UjB3id+i5CgS2LlBtTmWguBkZHEXWk1MyhgVDiiT4X38jrqL6vGIQ5iGXspSgVxkRjSc8mKf35P+u9qXr55HUVFNsuOXJ0MDwkFlAE3VuJGgajH1WIcgxJ0FqFUKGN697r1GQMgDlfm2hwKZaAsAs5J+10ovVkPLrH/JVXyRiVB2qAeH/ATeA9EGK699lpuvfVWXvziF7fGAlhdhIsvvph3vOMd3HnnnZx55pkH6/iAck9+1wcZZJBBTlsZIgz7kpMyGFZXVxNMRXn605++azsRoWkORiqsZg2xqfd/wqIH/e5I33PL/N+6sA2cmAFygnSqrVKfDJLOaOja5esZb8ETNe7oS92SMTrmUqNKY7h1XwXctMFt10jVICFBPkYFSkBDR/pR7wgTTyXekCIx4irQ4wF3Z4Pcvkm44zgcPcZtdxzjvW/9cy571fP53E1f5Jqf//8y/ZpHcvxRE46vB6qxKexuy5Tm6IJ5hGeCVIKrbKBhJYIERENbuVgkImjnTA/ZvW4e5WarsDoJjbDU1Z6J4BG7X2defD8Vmm2hmGZjoVOYM+Y/qhK8mjKe+1Fa2BL09hNxLuI04lKlaFUMrx/dvHfdnor9qgXZVsIm6J0gxxW2QQKECdReCG7J8k7zE/M85X25WrUzrkkosWxUJINWMO5J3UVd2mhJxAjYVUTHsXuvAva8ckqpSneOpS87blO7j3HMVg/gA44A24646fHbjWWo8hAzHErCfBYk1baKtzRprRYR1OYeXxMauyEzYBJnQRKUqUlDiV2b5oCk53tC3v/+9wPwrGc9a8exZz3rWbznPe/hgx/8IM9+9rP37OvP/uzP+NCHPkRRFDzhCU/gmc985r4rN9+T3/VBBhlkkEHu33JSBsOll146B0F5IMmc/pMLld0jfbMU3bFUOYzR8O7ZoNBU+bkX6WjPzfpZC9ewVKhRMC7EyCMhWppVxLTOlEFJU+QFopFVoymKWmJkYYHolTAucJMRslVAiKyfsUoIkTMffpjDZ60xO7ZNeWyE1II2atWZS8VtYwpgk++LtqKwTM3Q0YSXb9PVJpe0pLSYpuylqFIR0UZSEh+ZnzN685sJzUlCAeKU6CRBrFLyn2zTuaQj54hLtDmwAJZ213K0hGlVsTlWQbx20KVcBEIWGOvJDa8+Eb8LRygt+uFIJOUUJWptDdebN9L+ng6OS6TkZDDERVu6r3zH3t+5Xyw6QSBVuEv8gtC/Tm/h9jtfZrQvMyby+KOlNxVvCr9ZOekaPo21Boq56cohlPl7chahCk2+pBJz9qX0XMweV0KvgnR+tQ4iB4EkHTt2bG7/eDxeCvW56aabADjvvPN2HMv7cpu95FWvetXc9mMf+1h+93d/lyc84Ql7nvtA/q4PMsggg+wmAyRpf3JSBsM111xzioexD1lWrK1PTL67fe+23VMkd22/277e/jZC0Scoi4Bz7TXaaEN73ayYpv2t4rg8wmAVi6WHwZdWSVMpkkLuEOdg5tGcFlTE8v0Hy3oURyX14TGzh3iqdeus2FZ8MIw9oxI9cx0nDv3il/jP//db+T//63O8+DU/gFuZoCuesOKIKwIj82y7KDiEqA5m5uUvtoRiy8ZarzkaD6H0uCK0cyACZWlaXYwR7WVuibV5z90i6zt73RsLGbTpThPxGQc6Fqi6CspSM/9svJjBU5B+LJOR5krQko01i8gQFFWHji0zDw6cU3yhxCDEkIjQoU8oAKLDRYM5xbEwm1jUI4zT8yRdM68JnT+9lcRVyGRy3eXNlmwFaddlPzOSgEGwxqnmSQNEq71AP0qy7w+odDZG35BTySmzKDYTHAkbu6RohAa3YCykD3fPYDCIn11ARYjBEYMzw3JxvO37YwaoBoc2B8ySdABI0qMf/ei53VdccQVXXnnljubZsFhWJC3vO3r06Akved555/GGN7yBiy++mEc+8pF89rOf5Td/8zd5zWtewyWXXMInPvGJPSFN98l3fZBBBhnkvpYBkrQvOSmD4V6XB5vXaxHW0TcW2GXtLho2ac52VP3NKVIX2nXbjlh6g+kkj7+rwTVWHExy2somWl9J4frE9Tfy5S8c5a7bN4iPexj1urTKORi6pCXsJrSJ9LzcWSnvV14WevnzIRXM650T3LxSuEyWeLlzJk9R+7vtNiu1whzxWd38+Yv9mZde2zSgyGJbWfggpQPRajuIWmG4OXHzTfcyirVvAdzd18X3J21JNOGgsmM95x9NGa66BnOVvJfdy+I4EuGZZHuHZsnNL/oZcnhhx+D2cSsHiDB85jOfmTMCdiMSL/Kflva5xzfwoosu4qKLLmq3H/OYx/BzP/dzjEYjrrrqKv7zf/7P/Jt/829OPPBBBhlkkAehDBGG/cmBDIbPf/7zXH311bz//e+nLEv+8T/+x7zyla/kK77iK3a0veqqq3j1q199YKzraGVEWYw6fE12L6YAw9yDc53umz2QbSXdfF6Lzeka5jpUc97/FnPR+52aaK9t3tn1Ybvm0Etz0ZAuYtCSmqUbjzpnZMwMUWmjCdpeVwuLDKiTdH/S6aBihFDFvK0xk6Wll140qnmx1xRXR6SK+CogdTRsfxq8Fo6w4mnOKOEMhz/sGE0sYiFrIGVEVkr8dkTiBH30Ifw5ZzA6PmP1oYf4+Ac/yQ/8+CVc+yef4Iu3KneNPLOqIKa0qlKDzgAnuCalaU0FuvQuaKYFYaTEMTBWwgjz2I8UKSOFs/z6iFHcx4eEphCYeeMxtJ5yg62IS88pVUtu18xI0VVw64JsQ7ENMktRkAxfqtUqEZepNoKzZWGF9CCOtFet29Kdhkm0SEMRkSJBqbzinKU01ZAiLNlLPlHUeYro8N4hjT3PuIKdn9dRvxJyuzR7lczpGVoOK27WM346K6j37qjFZjqxeaUE0cKgZHktu3SVTNrvnTL3Xmj/j94Aep799n1V0KjIJCJnCTIz8jtt2l0ls9hteUr7DkmC5IkouMLqWQjIrKRI7406Z+NORSm0XwROpa1eHWbcY3L48OGlUYNFOXLkCLA8inCi6MN+5Ad/8Ae56qqruP7663dtc2981we5/8pnP/Ul/vsb/oTHfsNX8d0/8C339XAGGWSQ+0j2bTB86Utf4ilPeQqf/exn23033HAD11xzDW9605v4tm/7th3n7Fac7ERSTWui7xSZzhFoypP0988pK92x/cpOQ4AlHmSZ/734936vs0BqhgRB8rH7W2SOsAxmQEQMPrR43QzX6Dzhqcqv2PVaPTM7vnOmpL7BkEDcVtRtxPa6Y7amzCZKMw4G+ZnCaFPxxyMci6bseYgiTLYi8UvH+eTn7uRX//rTXHP9lVz7wZu5Mx5nEyFUoDVtNEE9EMHPwFcQEhSonpgxEQMEhYBh+9VbgS3nAp6YpsAU4nq7RGcCdYPUnSe8ha0ouY6aKY4uRTKiYf2LylFsGzzKVeATH0ESZj9ErEZDfh7pvuvV9HdvvYRJNNhRk4D4qfqzw4jbGiwNrOZwhWKk56kStgqL2Ihla2pGadXnOmWajd/+g7c/Wkh+1HmOw+Krt3R7AYvU/+kjdXbtb95YkMXDWWRhj09GjkSkFmRGCwlTsVJxgJGzdwut5UhO6xpSOtKGtPemNVarI3brgV6kS7fuOUjSfiVnRrr55pu54IIL5o7dfPPNc20OKg95yEMA2NzcXHr83vquD3L/ld/49+/iI3/2v3nvO2/gG7/5fM5+zE5DcpBB7tey13d9+OQBB6j0fPXVV/PZz36Wl7/85Xz+85/n9ttv51d+5Vdomobv/u7v5s1vfvMpGZAu/Ox2fD/n7vVz8MHp/M8+r50b7Hb9HbpYry0KGmN33uIYUmNd6CxXbp47L3l8818RWlJtxDIDadC2CHDUlLGmUJpEfG7KRMbFzgslhJURKsL6GausH1nhqx59FsVGwFURqlRdOFVRbiskSwth71BS2rWRGqQCKqAGrSA2QgxGVFXFUq56wzYpkbkb203Jjd0YIpFQRItq+EhwalmJcuQq9PrKAw2Kq3r3kioTu9oiJTT5t/1oMCNIFZvX2HsWWUHWbuyaJ8NFMyZ9aC2eXAW7rY7NfKVlbffE3v4Tic7PWX9h9ucx7nN7t5/F4+150o67HXF+r8Ky9sv71tDN7Y52QmcxZixaJts37ISC7UNaA3yXn4PKhRdeCMB73/veHcfe+973UhQFT3nKUw7eMfCRj3wEgLPPPnvp8Xvruz7I/Ve+6tyHocBkdcSRs9bu6+EMMsg9Iqfym/5AlX1HGN71rnfx1Kc+lV/6pV9q973sZS/j27/92/mu7/oufuiHfojNzU1e9KIX3b0R9Ym/c/vpqh0vP7H7c1Ej75tF+diiqbRbJCErMLsRrvOlMnSjj1PaR1rWDtbSgxH17tOiEDldz3wURdIe9T2IUj+tavKiSlRDbQSQEHGqUDgonOlWTmhWCqojjukZjtkZQr2OwWiMz4tfERh5xnc6/NSIqc1EEBnjYsQ7z9pXnkk5KnjY6pjJHRVxMrIqw2NLExrGKRuRAx2ZsaHl/DMqpjDaAlSI3hMmnnpNCWtKGCmMIowDo5WG8UqNToRqVqB3jM0jHed80t1EueStb6yysxYQD0XCGabJu21PuSH4DQymNDWdnYoUrFB8leaqsvH3+4+l4CpPGFtGqAwN0kKtTkDqg0JxZco+pALBU1ZW3yOMlHg4Mn74djsfqhAa1xGmo9gk1i5FARJOKfNFsuc92xl9xXluMaZz1bz4mr+K2Tnfz6JkC/FAH07ZsSHp0taJaDKsRKA0KJSmsbcRosUx5LH3o2o5khRyTRTt2guIJ1UTT9c97vAbjvK4MDoOHN+3zyRdP1u3e7Q5gFx88cU86lGP4s1vfjM/8RM/0UYTPvCBD3Dttdfy3Oc+tyUsb21t8elPf5ojR47wyEc+su3jL/7iL3jqU5861+8Xv/hFXv7ylwPwvd/7vUuvfa991we538qZjziCjktWzlpnNC73PmGQQe5vstd3fYiqAgeIMNx6662tJ6wvj3nMY/jABz7Ak570JF7ykpfwi7/4i6d0gKdc7vHnvk+40n5RTX2Y1LKxL1oQi4d750hkqdKn3gwM9UIzMYx+XymTDNOJiqtpsfyowXjclrlpv/C5O/nybcf4yz//JM1q0aZItcw9zFUcBuZSnebrzI+Lloehnh6xGFwi5sacDedEVZ8XJyjfW+pbgrTKtVviddb+2PJYdsxhMtZaqEzvPncjMDfG5ZCY+i2NqzEHSVtQ7ncLj82RnvvnHFTmzr+HZfFaJzHcvdb/nChQi5H4UwTjdPAejcdjfv3Xf53NzU2++Zu/mX/9r/81l19+OZdccglnnnkmr3nNa9q2H/rQh3j84x/PT//0T8/18W3f9m18zdd8DS984Qv5qZ/6KX7gB36Axz3ucXzsYx/jRS96Ed/6rd+69NoPmO/6IPeY/OWffxKA2790nM9/9o77eDSDDDLIfSX7jjCcddZZbG1tLT125pln8j//5//kOc95Dv/23/5bNjY2TjqfdzkpKHxhxEbo+pGeozQXP+tnF2kLU+VztEVc5G0jTeuC598aSaq0LAmyk6s6d0pft5FGNu/41K7AWAsvgZR+P8UCXJcmMnNOxeXrSMs9oEdoRYToHbF0li4zV5cmeb6dtHyF/jlZGTbIthiUZk1xdSrkFhRiSkvqBVY85apjpRBkAnFVjewroGNFJoKbCGFVYdPSsLqRUK8WuEMed6zhEWvrvOE3r+PQ1z6c8f/5EpRCGDt8kVKmFlaBuCVje52rnKyFcVglQXhKgSCWUz9UVuGYmRrxdjOi44AvI04FmTikcm0xNUk3LwkCJC5tB8lYK0IMsNIg61YgTKcChx26IchdUNSm0NMoLmSKgNAoNEUypDJlYao0AlGF2CQDIlVc1qBWSVp6kBunUIJb8RS1s+rT6gjBUdTgxo0F2wrFC4Sg1LUjNFbVuoVwRfOyixiOKq8v1Fmq1tQmpyq19KjaRhbauh7JzomKRUQSd6LlXWvPjtH+H/13qXtf26rr0lVUz2lo7V1LF3RKV6XdLiZi74kUtHUvlE65V4ngciV22qhC208uqJeLI6aihyKCrDk8jlGAyZbgqoN9pw6SJekg8j3f8z28+93v5uqrr+aNb3wjo9GIiy++mF/4hV/g3HPP3fP8l770pbz3ve/l2muv5Y477mB9fZ0nPvGJ/Kt/9a/4/u///l3Pu7e+64Pcf+UHXvRMjh/b5mu/8dGc+9UDf2GQB54MWZL2J/s2GB73uMfxp3/6p7seX1tb493vfjfPe97zePWrXz0XLj+I1LMGdX7eQ5vlZP+xOkg4KZOPs0s5Kx3OzV9fYze8xXBW31PeepdTn30DKClMZMU/GQ5ttyRIUFEQNVpueenIzJoLmS14ajXbS2ZdIapWoKxSXJN+6uShdxBGjqaMbK8q00NCM7HqzGhW5MAFoamFcpouVxjkZnUT3DQgs8jn7rqTW45v0IyFWEqiC0RqH4kipqf2uQWLL2noPL+QshEBQZUgINsg0eYxoEQXW26B31IMlJ4nTowHkbtTkMrOR6ywWVipKMY1IIQmEhWKShltC1qbkeKn4CvjdTRiEZjaCVpbNMKl+wkjI3AHsWHkmggxaoLq25zGrHlHkErw04BuqkG2ygijBi2n9ryc4iSiomw3JU2TnndvgWl+UfprTjGSfF6LuRZFFJuibKT1YD/qtFXoqdM5/YWY55ATy9LghvQiL/1G/WxOyaBpH9ZcQ+k2pXdOz1hY7Fuhze7UXxN+A0bHlHAnxDsU98UDpknaJcKzo81JyCWXXMIll1xywjbPeMYzlpKOX/3qV/PqV7/6wNe8t77rg9x/5RsuOJv/+NYX39fDGGSQe072+q4PBgNwAEjSd3zHd/C3f/u3LYlumUwmE97xjnfw3Oc+l1tvvfWUDPDeEl342XEwRgiZvaoQoyllJyA/t4Te/v5MRm7365yOlM9rx5Gv3RJN1UgFmRyr6e8dF1oYfn9XHn/2SKt2Y43mBTdSbSCTZ4NEApGYqwmTkEDO0o5GL4k8rVk3S8PtKg5rOymLk0SrAM4d1ny+EYNbnH0+r0dKji3JO1No80h67ftz0JKWpXdBu7/olShq3UtS/vO4lB4hVzuScu9xtN7//v31icL5fFGCKAF7FgTQRgiZKB1JmZUWVpYmYvrc/gVRXTLPunM7t+kR0pcunHzp3QjOJxBd7HOx/90IzeyxvWye+9uLxOlstHmLnrW86wNIG1Xa4+f+Ig/07/oggwwyyF7yQPqm35Oy7wjDC17wAm6//XY+97nP8aQnPWnXdmVZ8ju/8ztceeWVfOYznznwgMTL7uTmXasps7vSsgBB2nFOIhtLTkOaFYxeKk2iGlFYgKZbOVb3ABtvrtjscmrUXmrYnsbUpdY32JCAwUok7fMpioCNQQFJaWZbZ2pCldCQohSkGg2m3EomPmfPq9rteFX8LFJsmSe+WS2oD3umZ3qqw0p9JjRrkbgSjVwcHW32oeDQkTBbU8P8B6tbMAOatYLpWYBLJOfSruuCXT4kaJOoFYGb8wJn2FMyGBjZ7ybVOghjRceYt74Gtw2+Eco7MlQLtFDCihJHwVa0gkyd8S5CL4qRuBpE68PfOib6MeoVVygcCeh6ZDZyNGtCuSXEbYibMNpIz69ItRpUrX6DQjPCSNRjkBKLbNTAFCgMohRKiCNBymTYFMZVkFKIZwhuBr4S4rECPbZOPYLZKOJWGg6ftU1ZmNYbGkesncFvWkVaEvSNVjmWxrcGlUTBNRmSBTlElbOwqmhbpC8bkTtCtMkKTMGS9h2SdP7ca7UQXWhrmfTPgTaiIHMndO20F+XoXs0l4bQl734OPrQRONJnoICwCnUU8DDiwU3ivLe+64MMMsggg9y/Zd8Gw1d+5Vfy8z//8/tq65zj6quvPqkBnRQZ/RSc0153sa/dvKP5nEWC6m5ZnhavI922LGzPQSyyPtS7Tlzsg972cv3JFLMaXDJ4VCGWjmYipnT7BAEqFXwv6pE1wGjeZel76xWkSUZAaparO7d1F3rj3JHqdAfkrHc4QXpwWDE6UupS7RTjllSdUqG2q7nvzV/2PPv7WlK1WrGw2s2RoCVYvYj21HS91vBRiGVHFFftzVG6nwxPareTkUfoKf3RjI72Oh7wSjkyiyeqEGOq5cBOmdvXJ4DnyECebt3lnN5Ycw2G9pzdrgPoXOcnfn1272P+Ovs5Zz+y4zppLlydKmvHbu0eqNO9BnMyg72P5N76rg8yyCCDnLay13f9PvimHz9+nJ/5mZ/hbW97G1/+8pc577zzePGLX8yP/diPnTSX7J/9s3/G7/7u73L22Wdzyy23HPj8A1V6vjekGHm882QtR1qy8SLVOBE1nWvbdlWQs/YSW2XEPKO9qrHQO8f2xeS+V2dViKkbqGo0BKRfkTkTnEUgeKK3iIJ4BzFY5h6ROQKoeg+FS8TS5PLP/II0jn6EIZIsCe/QjP/3kkjS6X57pG9FWlgLpG1nUCMnHhFFJiAUuBJiKci6w60Isi4UY4erIB4XwiwFSDRh/ccRGQMFViAtKe4OsQhAZYq1FRgTi8YE8Elx9QmyI2JKh5FzreiYuI7ArliESRO0yacKvWDQJy2sYrUrzDvsE5RKgrNIQOOI42jjnFgbmQlSCy4/C6f2fFscvxKDIJUnbnhiEdFRWncTIRyG6Zkw2gTXWDXmMhqJulDjMfgZNA7jaZTZILA0rK4xvkMolGYMOrZxRR+JpZGiGSkyBrctFNMUDdiApnTo8YKwNcKV4FF7Lrb4DIalgo+u9z2zfa4XcpAoRnwXAa8WaUhRPM0Wqijg0cYK5oH03hNNFcV765dsG3sywTlXHW/XPOAyIT89X9e3ZZK17JxPH+w4/35K975aVC1bi/Y8+/2KSKqX19tuj2vbnhJkDYtkrXkqWZLy6gRyT5GeBxlkkEEGuW/kdCM9V1XFxRdfzPXXX8+3fuu3csEFF3Ddddfxspe9jE996lO89rWvPXCf73znO/m93/s9JpPJSY/rtDMYmjq21Y8Bw+tDz2u/8OTCYqXW3UIHC9v99C/WETiHFg4aRac1HN+EpkmKlrd6CNrrwzsoS1PqnTNlHxI8Sdp2cexbQ6P1jAdBYr/SskN9pK20IBhMRCOqYtl2AI3d/XaLuKcu5vNc9noLMTa4AH4rEqLSeKFacWydBdURiJM0DyEFDxqLJgBUh5WuMJqzqrkZVyIJglPa9FkGIvAzM+tCMob6NQEkGk6pRaHkcEn7Sw3ek4qn5aJcGT8TknLa8scjaDAlOHglBm3JtFI5IyaHdB60qV0lZwpqIyE2NzFkj3mAEiigqByhFJxEiiobCYpMbfj1KgQVQqMtT8PVaR6DttWhrVCdjS2MDUsfJECh+E1PuQm6CVqpRXsmRrGoS2fQrXHo1RRQq0IdhBB13kUfFamjLenGjNKQjId2qQRtIw7qcrG+/ru04HJRmGNWt8igMLcYW/hda7P3t7XrIin+KIguvMO7vbO9sSxeZ66N9Le1u3a6BUHAKY1TiuqglZ5153iWtRlkkEEGGeT+IXt91+/lb/pv/MZvcP3113P55Zfzhje8AYAYI9/5nd/Jr/zKr3DZZZfxhCc8Yd/9HT9+nB/90R/lxS9+MX/4h3940uM6YNWie1f0FP0slUxYzgZA3k4k1qyQqKpVWk77tHesv4hUlZja7byWdguyvW4aXX978Xh/X+zGtq9zFn4sa04mXOscsXjXiYudom/3sfN4jtKo6Px8z9sBS2XXZ7WMwNozKPoVjrs6x2m8eSOQxtRvtXwM5HnYQZJNx8Tub2dt5aT/tgRiNQN3bl0s9Nff7hHZ7Ro9YrXmPneZqP4D3K3/ns68OMlL60Hv9RIt+/tE27v1udtY91iLBz5n1wVmEtE5/sUggwwyyCCD3NdyzTXX4JzjyiuvbPc553jVq16FqvKmN73pQP391E/9FCEEfu7nfu5ujeu0izCIN++8QsI8LDgMF7dJsJbY7eghKfpZTDv4RWqjQSFEJETbbtTyu3ugqqCuYFaZ4uYE8Z5Y1eis4vxvOo+L/+U/RnHc8rFb+B+v/x84J7iy4Dte8V084jGPQKPyztf8Pl+4+cu4yQQZj6y+hC8sYiHgVsbEDMtxXQrUmMfqSORqATGWtHjL7a8ApUGdcoYhLRI0KmeBcQKlkZRD6agnQrPuaA47mkMKDiPvCi1JOCtWDig3HGHsiBMM1pG8+YJSHwE93BDLCI3gjzv8doIrpbl3dDn3RUE85CLHuPlnpamN8wIheb1Lu/+gVstAC5sG9UpsDCLl1WBBVELc9MSxEg9ZJhwt03Vjl442Q9RIY9C0horaEUK0KIS3uVGFcCQSHqZIdDTbgtuA0V2Cv9P6LqtIuQUUAoVQjyy6k1FrEoFpsiWSERZmQlODi554BsgYdGbzUyD445F4HOJYiEc9cQRN4S0ysQIUWIQh5np2BkmLgkGx1J45TSpGl96N6C0SI2LPM/a06B66b+49ith+lyZt/hxJsB8LOeR8BVk/z9x768NgQyLSwotsadia6QcNDPrUve8iQmyjFYpP1+23yddF208HUTrOhxPpYHzOYGv1V/RDM3vLAEkaZJBBBnlgyekESdra2uKv/uqv+Nqv/Voe8YhHzB178pOfzPr6Ou9///v33d+f//mf8/rXv57f/u3f5vDhw3drbKedwaBRE+wi71hwDC5u53P62zr/d4ue0G6ntp5ZTdukbEeC1g00Aaqmg8xEw75rZSzJm/7yZi659v/D6qEVrv7evyTGiOCIsxo5vsHzX/g0PvP3t/Kf/v5zyPq6aWMxefpHiaMhrkVc5VQymr3K0Gpaihr8Kd9/hs34HnZdMUiUYopVxo6ngmVEtdSnpRAKaEQJI3DTzlHtYndZ0jDU05JxYw/GE8bGb9AynVQLMdVRcE03933FME1jT2PvnlVbO0Jpfd5tOlPVjtgMrcIqIY8r1W/AFPXgE1FawSdicc9W3IlwafdrO7aMj0cFClsfGtVI0FMzUNp115DRNZYC1tssarpvlTSmdD8uQhybMROLSPQRNy1wM5AGtDE4URwnGJMajzkW6acLEyAq3TzTzVG2wPK85FuOfn6s2j7wne9V7M1Zt60LbRbevcXf2s1v3r8YhdvxPi+848vO2e26c31kVGA2fNqifvl7oAePNGdLaK82gwwyyCCD3D9kr+96Onbs2LG53ePxmPF4fEqHcvPNN6OqnHfeeTuOOec455xzuOmmm/bVV1VV/MiP/AjPfvaz+d7v/d67PbbTzmCQwsjFplnRklXbf+wTmThGU5ucEwTbBvMUS+ILxKw0udyHQXucT8TbEEEcTp15/mMk1rURnL2D1TGxDum6SfFdGaNVxYXf/WRWD60A8JzL/wk3XPdxmjqwdmSNb33hRQA86jGP4Gnf82Q+8iefgMLhJiWiEDTQbFdI6XCi4H1KqqMpwqDEmCjc3vgAMUZi3dhxFAoPZx5G7zhuGpD3ZpQUDvGFpfMUS/EqI4to+Ohx0UimbiIwVZqRKb8uShd1oZt3Vyk+AKPksk0RBmqhUUdAjBStRnL2OUwQrQ9pFW+LNogk5dcZtt+8vgCmvNn5yWiIIIUQR8kr7u0cnzTAOFLL/ORs/NSKm0EZHBEhFMYTwEERBE2RGwF8MtBia4GmsQVr43ApEqKEyuFWIlIormgIY6gmBTK21KuqEV+Z8o4mEnR6s5wYXp4IjUL0ghRGYNYg+JknbDojWpeClIIvHRIjZa09e1UoKkU3hTgRKGjLKpgX3zz/bYSBDp4ldZpnB1IrsUhRtMSpiGk+Mu0mz1EmH2fl3CW3fUyciT6xONGkU1ICbec1r6OQ+8gtshGXrq29Z+Ekr/n0zuXtNjrg2jQIiQFk90dnTLVjzefkscZMirZvRzzgF3CIMAwyyCCDPLBkvxGGRz/60XP7r7jiijnY0KmQbJTsFg04fPgwf//3f7+vvn7u536OW265hXe9612nZGynncEQQ1ICkhswLHoSF8gpMWPGs2c49kzF5PwO2Y2fFkVsYtdHUs4J0QjOCBpqtEq5NFM9hRgj1A1xewox8uH/cQPVrGY0LrngnzyBt3/pv+y4F+8dV/zuT+zYf9nXv5LP33EMiSMEj7FjE1cik7hzxenkBY7HN9GmSUaP3dh5Z4751Oe+iJQllCVSFoj3ZjwUHpf+1lEgro+JpSM4aAplWirVJHnKG9Ba22m0abH5iTlZf6PzkYISYh1pArDtrDrwFmilLdynhZAk0nPIkYIyebpder6964Yc2iB71CPNSMFj1afpKazRqklrUKRSS5eZFN4mTZNmknDorYmFdaWtBtt5pZuYirI50DKiLuLKQBiDViXqDBbjasVV6fQY0QCNF2hMgW289duk6EAotL03xNZmg1IeFWQbdKbEWURmdpxGiRgcR5IRLbX9dj5FFCTh8dOc0tBGa3L61yCJTO5tf8j3liY+P4d2TujmhCVtspHX4Zd6++j2Nf0+tAe16zVt2jBTuk42FPJY4nyf+fnnbYAmn7xsrGnAffCRYv0sRir2lIXvz65tBhlkkEEGuX/IXt/1dOwzn/nMnCJ/oujCK1/5yn1f/qlPfSrPf/7z06U6J9dusp+0qp/4xCf4+Z//eV796ldzzjnn7HssJ5LTzmC4v8jBkM+nj2S40QNG7q8PIskD7nkMMsgggwwyyANQDh8+vG8ewC/90i/tu9/LL7+8NRiOHDkCwNGjR5e2PXbs2L7G8KIXvYjHPvaxvOIVr9j3OPaS085gcKUY6bWnCebKxq1TsUdeJLWc206EyH4OKMGI0ZJS0Ejy3GvpofSIOJhWyHYFs2iQHyfgCvsbTdc9E2IghIZ/+g9eQpxVxKj4lQl+dYI6T6wbI0s3NVo3xlsQSbAmqyztnEM04kj1F0SgKMGPUwpXTywcLioyq3CjAm2CWZazGXFW8blP3sY3/ZNv4LFPPh9xFlUQ54yAKoIUjjtuvYP3/uYfEVxJeWid5iGH8f/gMKwLUpnH2aviVHCaoXyaxmt0EtVUM8E7cl57H8FvOFa20jlinmNxtDARxPL/q0YywZjS0YwVSohe8U1K/RnsOpkUq4IVkBsJvpQu5WxM5FtNlYk9eCf4Rii2YXRMKacwO0vYfqhSnxVhPeCOjnAbYlGIqKiXOa6CJChUm6UoWt2FKEqMgjSR4mENzkFzRkPthMY7WBUjQk8VF+y5UkX8FIpawQv1mtVnaNaUcCRFAgK4mVDUQrFhVamLWhlP7V5U1DgPIyiD4LaxaJhYdMerJF6DElYgTOzZ0GhKFWsPL5YWmRGfqkEnQrf3Al5sbaZXx4mjzZqkuaaJHVPVFPSSjlOghqmMmROU3jN7+vbSZjhRG7HI272ogWv7zGdKF7HQZX1gfKE82sxwlvloQjvW1KeRrW0tSsIlZbjifmWAJA0yyCCDPLDkniA9L82YuQ8577zzEBFuvvnmHcdijNxyyy183dd93Z79fOxjH+Po0aOUZbn0uIgcuIDbaWcwGCSpZx30RJf8tTSMtECCbrURTQZD/hGxuguGa8HNGnRWW8G2EKAoUkXeXEQgWSBVQ5hO0e0pWlXIaGTwnGljSu50is5qtLYfKXwLOUJBJuOu0FSGUOWiAgAu1W1oIjFEI19XTZqfYH3PagLwt+//e37+XT+963y+4RXXMN2Y4ddLGI2pDo2YTWDmlWoEfhNig2UlyjOb3d4Z0pGVxhgXejf4UHu8ByfKQPWW9Jz6iRppMik5YISGprVU5p5vU6gp7LmDlBVINSPYbTvU4Cpwm8BMqRxUDqbrCuNghlGtlDMhNgmKk+4vI2Ra+FHv3kIi4EdR3LghOkPIz7YLZCaEGqRRZEbiR0AMxmegVkI0Q6oqoBpBXSpNW7UapIEQzTgoplhdhzoapIjEgwiS4HIJRlPYtYzEDo0TQppXIBXQs/tT301r/njFxA/JyjhKW4siK9MdzEj7E5K18bkVEGKcf1d3MMrn4UaL0CDoQdfmLzR3Trudxqd0123J6ju66UOZdOlYdku3u6vMrdMTtBlkkEEGGeT+IXt91+/Fb/rq6ipPfOITueGGG/jCF74wlynpwx/+MBsbG1x44YV79nPppZeytbW1Y/9v//ZvA/B93/d9PPShDz3Q2E47g0FSpqIOO91qBanBgrfROYRe1qNl57ikL0SLPIgTRBP+XSN4hzhP1BFoSg0Zupyf6hxSCHhn+vCkQFZHyGwCTWNe98kEmYxAHLo6RqoKVzVIXVvEAcHFYBwFVbRpIEaLGBTeCr+VY2RUoGVBKBxxXOBUkWZErBsiiowcUtXorIEm8tXf8jh+763Xo03EhYjO6kRetqJwOhoxWRtZtp3plPI20JWCcMgRN4V63GUYygp5nkHBFMw8r6473LbpZwKaS6nZc/y23uOUAtTPsJWXCN140KTopgLYBJJSLYJXR2gi0ZkCL219heTRLgVGUK0prlJG2xg5+AvCbObRMwNSQFhRxKV+sye89a7TGhBRbB06UWI0xV63ipZALShaRFgRQiHE0owG5+28eqaUR2G0KTjA15CzcflRNEVehaBQNiBB0BE0tRoBXcwokAZ0pO08UqtlWJpYmtumsGWqI6BMY/eWhUkEtFCalIq2JQGTokUu4SBT/QxRyYm62ofbcgh6z7tPW8jztkB1mPv4tlDLbFjmfnuGpuS5j+l4TgiW+0htcnpX0lqLqVGbmrd3/facvs0gzNsQwoH/HRgiDIOcDnLL393KR//07yBGLvhHj+ecx3/lfT2kQQa538rplFYV4LLLLuNlL3sZV111Fa9//esBiy5cffXViAiXXnrpXPtPf/rTbG1tcf7557cRhV/91V9d2vcf//EfA/DGN77xwOM67QwGzcrGIqmjt639fZp9hD0NZ+E4PY7z3Dle0FGBlg4JBuWwrDZJY3GurfAcU70DLQsSaxRWV80rXXi09Ghh0Bo3q6GaIFUD0xmuaQyaVFV2ngAhoE2DFgWUI1iboCtjYlkQV0ua1QL10nl/PYSxEAuh2Dbojp8G/vpTd/C3v/Q/kFmNbGwjtRGomVVmlABrR47w3/7ul3jJJf8Pt2zNaMaeuhCqVfBVT6HXeaWwjTakeZ2LLyxRtvoO6LYKcz6YCLa5jbRVyuxXKs7cKYU+ddIkD/JYoFAo1IjDCtRJ6Y+gM6XcFIqpEaAtamEwlFB787w7pUhwrXadJdJwt+7yEtHufp0Zm/VGaeNKB5qxglczJo+AjuyGJ5/3LdwpAFsPVep10MMBDteEzRJHSnnaGHTIzaCYWqREGwgjiCPTpKVW3Baot/1hDLMzrP9Y2k9r9EULSsRCiStWuwJ6inN2sqcohNVokHa8+dn2ms4/3132ybIGi16btK399sk4yn3Mcc9y4CA/nww76q+9HnF7x9jmBjdvLOTtQbcf5P4mm8e3+fHvfC3ToxsQI+OVEf/t4/8Pa4dX7+uhDTLIIKdALr/8ct7ylrfwhje8gZtuuokLLriA6667jg9+8IO8/OUv31Hl+dJLL+V973sfn/rUp04ZwXmZnNaVnu8VWVQ2DoA7a0/di7G+W5f9qnI7DKQlF0vRlTnTaU4hW36halajUZluVaiTHYrhrqPf47buluyY97tx3Wyk9BXUlEY013dYep29xrTfY9BVDJYl3grp/fTHsaDQLvNiLO5rlWXptk9W7snHe8qve18NdlFyRe+9fgYZ5B6S0ESaqmm/903dEJpFuOgggwyybznNvumj0Yhrr72Wl73sZXz84x/nl3/5lzl69Cive93rDkSmPtVy2kUYitJTFEWrFAnSwY+ggxdlTVA6pcpgMJrO6SnTfexyVESjtXGSUrgKOvEwLpDVEjerkTpaBCJHJLxLhGLMc+0ECk8Ye3RSohOx2g2NIlWBm0Zc3SDNxKIKISB1gI0tdHMLrSrO/bqv4jFPegxuVHL7bUe54bqPE44coVkfoaOCes0RU0796CGUQlyBQCK8upEVFfMCjcFZyk3F12rpPmvFV0oR4J//0/9AOGOdgohfLSjHjkmEOIEiGPFZvLTec8neX7tds2cENBPOWyNHW49xhiEhCdZDp+dlHq5EwW1qW9wtlEpYkVTsjDZ1qCZqSYavMBNCE9ExhCO1EXgLQRuQIhFavRBHjuK4sloLky9Ac5ew/TChekRg8qhtnCpbX1zDbwi+stHFDJVxXbRF1A6o05S61zz8thawgnU+xbaKSDGpWVmpOTyesvEVE47dvoq/vaTcdPjVSFxRoIBjBeNNh1TJoDlTiauRJggcd7gvC26aoD6lzcNkKzJqIrIdaWrHxhEhjoX6kMJKQMqYsEndsxFntR5cFCSRyiW6NsWtRGkrbZv3Xq3YX+95ZsLxou3TBmPa550qrbfvonTPstu05yl0HJL0PufrttIzACXQWUWSDDOXOhLtGUxpTfYsi7yZEyYIqep4jkmK0MxVidyHLEZNdmszyCD3kBw+c41Xv+XF/Pm7/xqawLd8xzdy+Kz1+3pYgwxy/5W9vuv3wTf98OHDvO51r+N1r3vdnm2vu+66ffd7EJLzopx2BkPdBFTD7l77HR7jnSTKOeljHCLGG8iHvKB4VKIpWgH8dmXF2qJijNeQjAYx3EebRgfwSrNSEESJAdCAnylMG2IVcU1AGjMWaAIyq2FrRji2CcCNf3ULr3v/q/He8X9/92uYNqagzUaeqlCCWsVfARoPwQsxSqu0xqzQq2HbZVtpGiOO+8aMBaaB7Vmgqo2wO33oiO1xZOphNoLyOIQEg2kjFguKXgtXWfRq7wYF6bXNvNlcgVgiFDOzodQnWwpFw0IffQhKGlL0SvQBJZgy3wCNIDVo5SmOKnFLaWq7bnQwncB0otRlw9rqNsc+t45OI1o5tNaORNwuioWlk+BJGpOSK6BiWKoMY/JFTVHUiKtQV/Gl44dxG4LOFA0Ns4ka/yICDYy2kiHibX90Ebfp8MeEMBW0hjgy7vPouBK2InEzEB1snSlsl8qsUJpRk8pGY9in9hZ6xnItSBAkChJiZzDkew3dHC9/mLscWVwjaS5ag2GRC512az9k0oMjzVkiaVvqeQMEtK3+TTI8Ooxb//wlC7PfTrp2UQ/mmRWWR4IW2wwyyD0pT7zwcTzxwsfd18MYZJAHhOz1XR++6SanncGQC5bN72NeQRHmsvHoDnZj+p09lX22Y+shT1pSiCla4BJG3OMTYZgQDSdeOHTswDnzpEY1XcUL0ZlzNyZiaSwULRw+KpKqBWcvrClS0Uids5qv/sZ/wHW/8xesHZpw4Xc/iY/+2d/B9oziS8fRagKHR8QVZ550UmTMA94KgIVS0bF1K0FoSmW0LZbeszaFy8085VTws2jUi6RkSVLI6nFSzGQhStCXrI8tzitLFE2ZP6ePUxefpj2xpyUAo2wM2LZgCq1mhTBPXQSpwOGITlPFaEV9RFZMU63OtPSkOU0rQHFUmQRw0TELKzgXqcYK0SJIMRNtSdWEe4aOQJeZyVuVYk3cCFWQwrzdsXJMKRBVvEQOrW9TU1Ozghx3uC0xUrWYx981VrlaJwEZRYpS4VBDLR4XCvy2tN71egLjlBrVbTesfq4GHVHUnuq40Kw74tjGEbyAj91bncMl0bgwRvwHaXJ0wKpfqyhS7IQ7nVAx7kUBtLfddtJT/ude3xRlUlV7Rq57zppPL0C9GpG76Z5FJs4Ldo4mY2fRaGm5KPmcLH2Gdl6jC4bqIIMMMsgggwyyU04/gyFLXxFot3uKv+sfYJeIhLbQiq6fnkGS4RBOCIlg7KOaJ7YOMBbi2piwWhImNlXSKBIsK1NY9TQjIZbGC5CZKZMiQOGITpBEzJV83XINGY1ga5sbb/g//Pv/61cA+Jf//gd41ZtfwtWXvh4/GhlhNSihEOpVoRkLcWyE13pFCWsQJ4qWapCTCtyqGLQFkEYs405lWYn8zBTxWEBYgekRwEOxYU5qmy3MmFkMz+UIQ08RY6HJ3KNgvoEoSILXaE2r9MUxVEfMm54rEmcFTnqe5KyQOgStBLnLoFms17iViC8ijY6YBBBxRK9GolYYbcFoCiqe7WKFsB7QcSTgUZ/mLhkArbKcFNM8dhVJ6XiTspvTRWVoFkIMnlkNvgysr844HhzTFUW2HaNj4KoMC4JmHaozA5zRUKzXeBepqwJmnjBKzzIpw8UMim1l9OUpbru2zFmuYDZz+DMczaZQr0K9rnAoGinbp3uoBDdzuByKiuBrM1jyPGsBsRDLnqTdufvJCpENQmkXSbd22ihG71UzA93eM6uHkcaQ60M4iKVSjxSdKFTSwuQU2mhbazjkdbkkRJL7njusdI6CNMYDBhiYZ2WfoM0ggwwyyCD3D9nruz5804GB9GwRh/QbaNNfZlFJPIb+KS20QVrDZtG2mZPFtabJ1duLitz5hTvZOj5NnYnxJ3Ke0nQdzQpS/6dvCy0GWXqKn/QOqOt2JHTN/mQ/cbkTtdH5w7rX6tvretLdJxj0JmdeyqdmaFKGsKjTXqhkl+vtZz5k/regxp9Jjy8E1yqtO0gAYhELcXbA7OA0fp1/Vi7onFe8Ja2LdBmCFn+WDNP+7in1iweXbZ9qWVyLy5osRgx2k5MZ6ym4v0xo3+tnkEEGGWSQ+4cM3/T9yWkXYSjHBWWRhtVGFdJBUSM7z0EmshbSdyMmyYpWUswlGQKayJxZu9PCUa+VxJFDzxrDNFAerwBw44JmvWR6hkcLu06ISZETsQlUu5bz4Ebg6oirIzSKCxHXaGJeWlpULZ3xJ0RxdaSMwp/cdBd/9vfXs/qYr6KpG0azwMrRmu1xQbXqqLzQlClC4Ky7EJUwaZAJyJoYfKYCqQQ/c3gnuEKRsSIrgouGWBmhFCoED7IOpYJrUoXddu7ynOdp7eZM+5pf3tbOgWvqs+4wpFRAcs0AD0zAPaxBRqnq8VGPm/W8wq47r41ypMsyhVgVxJESz6gpJqCPhnCGwx1PxOFaYKasbCrj47D2WWF2ZkH10Eg43OBGAe8V52xdNdMC2fTIpkuRB7p6Xxkm5Wm98VEjBE1wLYU6Um2OCdOI98rKGSCNMJo5RlOLFEQPYUuYfNFTb4+pjzRwqOHwao0/Z8rWmRPiHSPKo0K5CX7F4870ROdxW5GyiRQirBwNHDlqYworBdMzHbMzC2ZnKNWZ2tZmYByh1MS7ECM+1yDbDlc5XBAkkbqj2pxHp+19z+nYvW1t3z/pPqYRS5fbkuK791RqKLZsDoqp4Gu1aF1MVbax62rhqFeEZlVoVqBZ6a2FhaxXQooQiHEbhN6aYed6lrSY8tqkgDA64Cewb3CdqM0ggwwyyCD3D9nruz5804HT0GCoqwaNKYXOgmd/LhKwG9m5HzpKsJFsKOyAJgHqHcFDjUIdcLNA3GqI2zWMCmoHVRGp6LzXLvQszlTnQZIR4WvFzaLVdQiKa8xwyMpMdAUxxkSkNkW9qQLVXVNk1lgmJQeKUBUwk8hMhJlPnG2FoGoFgH0AjSlKIFAJ1IKrHcVM8du0MBjXkBQ6gwDNBGigPAZadbCkE8mOPP0n8FDPKfc9p36et6aAeiVQl4Y3KY8WxGlo6wlk2I9Ch3FfCONED7EIRAIEcMeFYiuglVVhdjMYbSjTJiVa8sL2JBJ8QCVQuNBWb47B0dQOf1ySIitz0RdNmX1yqlaNioaYiLdqnAhRXIwWgVKBTUE2I8WdSrOhBIWoVixvVkBTRKILeFczLrY5tjGm3lb8NMJxiBWwpdSbEb8R0CpNTqA1hOPIUY+FaYStMjIbKyER+AHwobfuBa0jMnO42taeq5KiLWYIxcLWxQ6PSobxdFMyT0hOa6uds14ETKJB39gGthVmEGfJWOhxkaK3DGBN7aijVevWpjPUlkaFc6akHnF9bu31xr4MZhdDs6TTQQYZZJBBBhmkL6edwbBMdjPudtu/qMfuhsBQMAJzFZAQCaWjmTgKKVANiIOoCkFRUYODYBAXn5WqXucxQU3cyEjHDjXDQHqKVj91Z1KStBDiisfnSsZgqVITwVoaxU/TmFVwXoiVVaxWBxTZmNLejc0rTm3qUAUqU6YzdryviC3oVCc2rBcnNiuK2vub+WPZM+1mUB5zhHFM44gk9/28LBgpcwML4DbF5krMeKjXBJxFclwJzUgpt3JkBPymEEuHukgUgREURcSX0SI/K6AbPtkoPR91VkjDwjhCjsDYoKJ0HncZRbSM1KuWztRNabP8SAVuKsSJoLUwnTnKsiGsOJhCc4bQbDvCKBkoXnBTh69o+RREadPcCopsC25bCGXPBV+TuDr2UKQE1YhqQTJtksGb7rTZ5dktPu/FfdlQSL/Vqa11Ne5JKOzxSmlGbExtJa0HM6ZBCwg+DaE/ltRmRxbUvnEi7Bz74rjzdt5XcyCRvgPiBG0GGWSQQQa5f8he3/Xhm25y+hkMC1mStL9/sd2iZNjMkkjCrueKKZzN2FGvOcsc0yg6Ns0kjIRmRWhWnUGSUlRAxIi60utORwKNQY2i15Qbv6df5ctmGIsTtPAwBolKXC1aj2sohTgSwsQhatl1tBGrAdBHfKizrE8KUjmDIk0FN0uRkIgpcUnZkipFGzZtn4SkS7bzMfdrycbO3bqk3Y5T+gaLgq/BqTD+cokWBllx2XMu879zilVZ6Ng3QGPwobAKerhGi0gVLdJiKVfF4E7bkowuIwJrWaArkXEZGI8bvCi3z4yZLS6lId1xL2bxtJCWDq+FQXOcVaYWRXxsrTR1to60gFBahEdHoKUp1RSKc4JzyuRQzXapNCsjpFLqSpg91FNsekbHwW+n9ReS0RqV6KBaE+IhgVJx0eqBIEYsp1B8GcxADYJ6h44sEsPM5s8FbK4CSx7swqPM0Yae4p0jC9lYigl2JkEgEe7FQxwJdYmVo3bJYM7VtnP0xlt9EJfI+u2+1e559L8LAvP1Q2A+GpbDXPlJqRlI0kCY7rK4d5P8Pu3VZpBBBhlkkPuH7PVdH77pwP2V9HzAf+NPeEry3mYSaZ/zAElZcV1b6ClMbaMl/ercKXsPaBlkIpN1RdpxmFKVLt4eT6dEmSf9LkRA2rHLwvZuY7o7so+++vN6wnHs1teid9n3IyzppNhl48l9ZTy8OHBecaJW3wIxRXYp9OUEf/fmc+5GgiTcS/KiLyixmjz/IuCS1Rbz2PswmqSI91OA9nTgtE6SMbn4RjuQNCbpG2C968ji2jsF0o4jG7dLrrGUe96bz8XnduD1udBed904QJfJE7XXz8nItddey4UXXsja2hpnnXUWz3/+8/nkJz+57/OrquKqq67i/PPPZzwec/7553PVVVdRVdVJjWeQQQYZ5MEg99Q3/YEmp12EYTQuKEdl57gFclVXU3C059LvNcraUD+dYqsdkeAP1mYOWSGg3uERaikIE4EVcBMrhlY48/YXJcTSjAoZg6sM/+0bcHXKKS/AJOmx0eoESOYqBHBVtJ+UDz6UEMbeMiJheG4JRtYss66poEGIMyNb1x6aAE0UmhjRYHckCuLE+i5Bxna30kCxoebpBWRkL4dNo6Alc4qVpqnURNLujKLePPcnUPqH+6GAtC02761/V9NzSBCfpjAiNz5FGJpeH0LiDUgvhSZdbQtvyyKqwkyIdxSWarYdu6BjRY8kHH9wFI1QBEGmoHeVhGpCtVYznlQcGgn1wxSdCcwsOuErZ3UqeverMRWRSxqtaqqOrIrGlFZXA8XhQJhEZL2A447RhsGHtBDiCIJTQnTozBNmEyNaO2XkoDgSKcoGFOppgW4XhA1BthxaKQEIKYuWOiM5FyuKrBivQmbO0sU2Hh0HirLCJ1JxaBwxYs9+RdoieFYHw941hWRsSTKq1Qj1UQwCJ4qbCn4mlrY1u/3z2sg6alQjVk8gHErRlwjltlBugJumE1K0IYyFxhsJXVfBV6BBrXbEcYvWxFIJY1u70WXDovddSM8k1/xQ6YwtFw0ypqkmSBgfsNLzPSR/8Ad/wPOe9zwe8pCH8MM//MPMZjPe8pa38L73vY8Pf/jDnHvuuXv28YIXvIC3v/3tPOUpT+F7v/d7+ehHP8qVV17Jxz72MX7v937vXriLQQYZZJBBHqhy2hkMs1lDCDXzsKGFRouwoyx5VzrWkZ2ZV3J7bdUJYQVmKLU2qTKuWq56hWaUiJhRrFBUY1AkVyu+Bj+zti3GOufoT8qKqG37KuIrxdVqnIhCCC5huwPGVYi9CAA5umE1AoJCXQqNCjVKnbP1RFPCXWP49ZyaE2/XLbYgTLs5aDP/5LloFfPdZdeUYn27bdmx3aIoyescRmYfaLB6ERKW3H+OpKQ+59KI9gnSCk2pMEtt03OIq4G28nEQXOOsJkIDzSQivmIsNSFEtmeeOAtQKdQRVzv8dqA1m3IQolA081oEw3TlsaSbK8Y1VbAq2m7LMToeCXUXKarFKjxb5eMAG96IvU7BK5O1GQ3QNI6mAZkKxZZQV4nknvgBmlLFBq+EiS0gScR3gLhS430g0uAUqllhHIYIGhwQ0EZSfQSZm08Jtp7iKCK1mEEDRBeRacrENcuRnN46EbpIVzClv16nzTblIsgdoJUZ2jka0axACEJIHAe31a0JlwjwsTSkX4hqRfeabOQsLkB7DhEzKCTVonDVfJMQD1i5bT/RmAM6o2azGS95yUtYW1vj+uuv5/zzzwfg0ksv5aKLLuInf/Inedvb3nbCPt75znfy9re/nW//9m/nne98J87ZpL7oRS/iN37jN/jDP/xDnvOc5xxsYIMMMsggDwbZ67s+BBiA+wsk6SQf1tI1oAv7VZE6QhONZBnUUjVGK85GAKk1EZBpDQO1Uw361kOQ5IRFLexDra/YoVOsOnQidwaf/i5S1h/XHxs5fypSK3474mZqBss0KT81hpsP2ipkJEWKgFXN7d1vO8Ze09gb6uIPexw74eQvdt6TSBp3ihDEQpPX3uZz1/IQ/Yle2CdVd9/5R6Zi+/KzE7X0nRHD1m84mq2CWInNIYq6iDpT6GOZfrtoxkBMfTcLv5OX22p0RIRIUTSID+go0Iy69USTnt9M2ufXGh0xQYiiMi5M2Rcf0SLQTCLNOBKKSPDd75jGa5maAjKqoQiot+xRMZJiPIq4bmZV1YzgNuvSwjPLabkSL0Pzgq8xZVyS0ZSfSejmRFKlcWmARvGbipspUlubUHbvTX4n2/PT+m1TqGo2NqwPN1Nkhv009tzb6+X57I2l/15INk5zuwOSntsCP3v9HECuvfZabr31Vl74whe2xgLA0572NC6++GLe8Y53cOedd56wj2uuuQaAK664ojUW8raItMcHGWSQQQZZkFP8TX+gymkXYZgjPcvC/sV2OyRpHr1jLTSp9VrLfNcCeIeOnKUWjSCN4oJ5M0WsPxcl64SWplTTD1hVYp8gS5iBIT0lzDUGb0IEnQizdUezKkaE9eaBdbWijeJ6GZEELPXkDMuNj6AzI47a2CwFKD4pSwmvLw0tv0Ga9Dt77jPBtH//WTFbmEpJv5cdl4W/T/g6LfaRvOxxDHGsBi1pwHkxJf8ETl9ZvHDvGr6WTtFMOlNUZ/Pu0zwFe5Y+CMUxT5g64lTZHo9gJbYWn3ixpE2pHwlQbNoFnQoaDEamQCyS2zyRmFfXZ4xHNQ7jRjTHS5zadV2NwXVWDdoTa6vJQXpOziuTM7Z51JFjTJuSgBBx1I0nFpEYzdM/x5nwCqOIHwVGowbvI1tjRWtPMW4YjRvKIlAnEr5GQaMkfJu0dRDaaU1rtyskZ++VS6EASf3gbPG4YOvMhU4hdw0dxC4a7EwLISYImmvI9Jz2eWlhxHDJt5X6yfuKLbtG3BaqVdBRvkZ61cYJ3pbSEuMxeB42pmITihRtU2/Rw4M6I/ZTxOegRX7e//73A/CsZz1rx7FnPetZvOc97+GDH/wgz372s0/Yx6FDh3jSk540t/+Rj3wkj3/849trDDLIIIMMMi97fdeHwm0m948Iw1Lj4JR1jhbJSElQis6YkA5m1IPYzFVHTr91QXntet+5GLVgrtoyC8eX3q1gxd56mWTmquIuXrs/1tNR0j20BNd9hS1O3N9S8cqiYdHnuWiGAc09D5lvT3dOp6gv+UkneB9xooT8sEIyFHp9qE/3n6+bjCpXRESg9JE6OCtUqL0xLc5Re327T+diR+DGMi+Jy3MgaFfZ7AST1l1HEONERNlxXHTh7/Yc5qJKAjuqUi+rMN6uh3RSH64EZiy0SQj6/bQNFm4pG47JyG/HKPNjuafk2LFjcz+z2Wxpu5tuugmA8847b8exvC+3WSYbGxt88Ytf5JxzzpmLLvT7uO2229jY2DiZ2xhkkEEGGWSQ0y/CMJ6UlEXRRgLmFLKs5PSUM11UUnq/JR2Xbsu6af8HiBrpWRxh5IxEmVKNRi+Mkpc5osTozGspIE7xDquknIjHOItSOGeVntVbWtS4ag7oUEKzKsiqwJoNzEfBZzhFUIqppZL0lUEvouvspegM393UjrCR8NyloiNpicDiFB+Spx1MYSoT+bq9baUfxWkrX/eNGlVcjs+o/U8yml9756TjkjUxaR8UfYJ6W0GY3jicUpdiUYZJKuJVCS5IivZogugsaPy5z7yrr99LehaZsJ3hWl7a/LHigBVBAqzUINvmQY9jCKtKs65QWgE91nL3avwI7frRxuErB5UQiagLlKsNa4VndRJQBR881SGHqwtGgZZEPFYIDcSpYfHjSNFRxK9EHrqirLiSr1xr+IKuMqVAzwh4pwiRqioJlScGR7vAnUdU8U1BMWqYrIFRgUrGBVSzEld7JtERAxZZCL7LrLVActeoOJw9t1iAj0gw3oJxKAzW5RF7JaIVLnSN4BuDzUm0dMASFa3tXQuFEEshrAnNxAjMmq5bYvwQnOAa8KtQbEPwSpwIbgJ+amtiomL34W1fMQXdpk077GcKPkU0PPhGKbbsvZKQIkNjoW6EGzmA7Cc8nY4/+tGPntt9xRVXcOWVV+5ofuzYMQAOHz6841jed/To0V0vd6Lz+/uPHTvG+vr6icc+yCCDDPJgk72+6wMkCTgNDYbZtCYUvsUrtI7QvTyBOTKQi1rtJj2vPpCUepgSrQpu6GyTOBIjh/qsu0aoTTGSJuXBz1WcASTgp1apVzCIUjXyuG0lltA4oRoJszVMGQ2pHsGMRA5VwjYUM/DbKQNPIk6rg6hC8EIVI1p3cPo2qNAkqMeyXPrZQb3ogFw2r8kTu2iE9T3K+5Zs7BRJt83z7szYqaXjXrhauloAYWdkJvd3Iuf4sqiLOjMact0Js65srnwi1mK11Zie0Ste0UYEFIKgMXaFwyJI4yi2PHGsRI0410A5ZTw5TqWOzemYuzaBO5TJlxtiJe1abgraDFfBQ5CIH9esT7YYTY7hXcVnjx3h2CzShJqyjEQfaBpPFaCpYa6KXDB+QikNTbQ5rRtlbXXGxsyxtVVAiFadOtWucBVtxGVuyrInXgM6NpKzmwpuKhTT2Hn4QzJuZykRQGPwu2Ka3gtlrppzTMZCjLB5xAzyuWBOTmscoNy0KuSVM65DKKDc6CIFOVBUbCtxW4kVhBVJ75SiTTaozUjTSnEbgZje7+gh1kIzOxiJwQjUe7cB+MxnPjOnxI/H46XtNSdpOEEk9UTH9nP+fo4PMsgggzwYZa/v+mmL1LiX5bQzGO6OLOjGuzbqV0AmKlIHCB71zqATKSOLtuWYSQq+edEzQiRDLRx2TKJ2lmr+FZUmQU+M0JvIoyn7kQjmUcWUGz+zLDAuwS3ytWKGdESQEEFT2lRnipiKnRMl6bSLcI8l979MFnz5e7bZU/qQnmRZKTZOCSSCedrv0rwtucKOPXqCgSwe68GQ+sT15FTHqUV4KMBtmzLZQZlyuKoNVSFOcV6JsSB6NZhPo2glhFrYrgrKIiIS0ZQWKJQeqdL6SeNpuRaJnBsrYVZ76kaYiWdUNG1D1YgjUHqldt4WRyJYtMnAgnEibFKVGKCqHM5rIs9rYhrbOGKaFHFmGC9Otmh6F9SyMOEcQaCfNaq1LcTKToD9lpQmN1OSLOOVYnRwm28dpwKHrREp7XUj0qZM1fQTClq+hF3IpsClKBmNRUFojFydsyvZO2wZxaSJFkkJdgNSHzRL0v4jDIcPH97V69+XI0eOAMujCHtFD/Y6v9/HoUOH9hzLIIMMMsiDToYIw77k9DMYWgiSdJAayQdOIEnZzLUWdhPrUxKeWdu+RSRxCzpoTotcchaJ6PRHQUdQr4A0QrEdGW0pxTTipwZFalYc1aGCZl2oV1LKyFWlPpyuGRRXi6V1nZjOKI0gYoTrjG9vVp3lnHfmrfWVMjkG0SvNipixkGoptNV/+/cqPcU038/ifKfGsst+tPcItPd7x8QukdQ248cNCoIRijMpNeHjDQomc178RX7HjujCsmWxcFxgrqgdYgaDi1DUBntxNVQCTWWWhBbzNyQORuszIyWXNSKwsT2mmoxwdwrMPFEc9WzE9iSw1SjT7RG6MbLKy0ILkcGZ9xtvxpGLEBtLaxrUced0je3QMK1KQiw4tDZlXDaMfUPdeLZmI1pYVuY4iEDlqBdqdM2iGDf5+MhI33leIzBKcxp1jvjc3nmDra0izVmyDDSlHG7zEzhaqB6IefWbbHgnSxZT7sMItIDZQ5VwKKIj7dZYJfhth98Silz7wtsYdATN2MjL5RbtmnSNRenKmSLb4KsGN4u4aYTCEQtbAFJHimmTbCW7GYmRZrq1ZAGdQLKFtFebA0jOjHTzzTdzwQUXzB27+eab59osk/X1dR7+8Idzyy23EGPcwWO4+eab+Yqv+IoBjjTIIIMMskz2+q4P9gJwfyE979envZ+HuqQrLZPmkyERi8d3U7KTGF47HVLjGsTC+lOX4Di5Cq/r2i1eS5JD2SVUTJ8U3CeKZqU5lKZ8tQ7fhntW7sZLMzeHOYNRb+ywEPY72WvtY6nkdJ2iNmcSu2cTx0C5EH9UEG+4HRHwTgnBWbYhFaRKYSav4JSiCHa8MWtXYoL/5LEJO8fpsUxHufKzKFVd4J1d16V9s6ZE23BTb552mS8pNI2jd8295rZvECaDQBZz3faiNv2133ax7D3qkZXjJK3v3kWlkS5DU/qZSzqAGQh9ydmY8lCln2UrGzNq0b9lTqIDRcvuIbnwwgsBeO9737vj2Hvf+16KouApT3nKnn0cP36cj3zkI3P7P//5z/O//tf/aq8xyCCDDDLIICcjp12EYTQpKYqyU97baEPG4/S0nqx0pwxHogl6QQdtyBVf8z4VTRgGUhjKXPBlEJqQvPmpCxExGNEYmrEkBcdcm9kIACGeoXCn4rawyEEBMhE4U5AVKEYgK4obKb4EvBGlZeasXdbC1sCvCDoBjkM5jbixI4yTYRDBbytFwp6XEWYiVKWghSLOsN+i0hJ/2yhKqpbdOqST6z3Xvc6E5j7Becc896ILWSGUhEvRfI6mOaZr3+c+aGlQk1BaReMgalGGWgwalD3nZa6ebPdjw+yFfuZCIykapX0+SV43atEZkS4zT5oTVwrFKnhRim0lVML4TpjhCWUFXqBxaI1VM14JUCqzasJoUnN4BZoyEJxHbx+hlRI3CipKyonlAy1GHllzeBHK40IxtVS4MQrNRKnXLa1sqQ45VqCzCdU4ElYaiiLS1A4pCqI0VDEy8bAqBZW3EJSSXouW3GGe/fY12SyRIsLIdZGm2FsTLvbcBpKqgNssuqlHGjG+zDgg3sGqcRNokoIfrQie1EZgjr3okBXjMwtBxZ6NU3tvVhUaFPXBnnkEGQujqVCo4MtUMRslivEe1Cu6ZuToYmpcBQEKIr5wNi7ncKOIIEQvSCmEUpBppJhGUO0MekC2PHyCfYuodgUhT9DmIHLxxRfzqEc9ije/+c38xE/8RBtN+MAHPsC1117Lc5/7XM4880wAtra2+PSnP82RI0d45CMf2fZx2WWX8fa3v52rrrpqrnDbVVddhapy2WWXHWhMgwwyyCAPFtnru37Qb/oDVU47g2E2awixw9XMZUtalL4XVHsPVRe2+xmC+v0ksmcohUodjSrMekRrDHYURFp8NiQ+Qaq9QAOT44psK6Eyxb6aCPWhlCu+hHo1mgKc03cGrNpw6OF91PaFmaCboNvKLCnUUewcP1V8uk4cwWwkVGOoC5AKRhtCbJgbfyuy5P777XpKvfS3+/O5OPd5evcRzste/OBTba4IsUi48iD4TVPKFczT7+k8zYuEI5nreuc99O4z5rSa+R56XIZym3auQ4B6LGyXECY1gQAzD9tY3YMyoqGBCOO1GSFGRJQqQPySQBPQQgkx4IsZYdOnSsYBt6WMjgtsCnEKeKgKqIto/BbATTFeC4pKwI0b4pajLCsKmRGjKerbWyM2t4AQ0yRKW8U439fcHHntJrzA6j2QDWfAxW462+coVvG8Aj8TmvWQsm6ZwcRMcNG1MCZf23qMZQflcjOrZSE5cgdt9EALaEYRdUYsNwMERnd46k0hzgxap5LIyYnEHxX8FHRLYVOJNRTbkaaBkHhDrrYJiN7qW1Sl4CulmClhFox07c14ckFh+4BhuQNwGPYr4/GYX//1X+d5z3se3/zN38w//+f/nOl0ylve8hbOPPNMXvOa17RtP/ShD/HMZz6TH/zBH5wrxvad3/mdPPe5z+X3f//3+ZZv+Rae8Yxn8NGPfpQ/+qM/4rnPfe5Q5XmQQQYZZDcZOAz7kvsJJGl/sqi36gn2Z480moiQIRopVDUpYr3KthhZOWJVgsl/qxJFCaOkCCeFWJOrPhKJGtukO30Yh/Vn1YNbXc+l/c4y55ACJrmSbr8KcoQuTVKqjtuvjLtYKnlxvZ9Qx9/lgC75OUHzHZLnIRNsJY876o6qvgptNGQve2Rpg90efu9YICmkBW11b6mw6tBKilZhyneuFh0gNg5tjCgco6Jl0oQDlk2pkrnnoJKqWPu0OyYoVJMfplVMRmmfZ2xsoE3jbDmmH+swja2NmHTXan8nsrLp/3kB6dzxfiVkzYts4cFqqvQ8t9YAJa1vuirYmh+wRIsGeCWKvQPWvvdONb1xpHHHIrZV0nXxvnprXKGt/KzSva/E2EbI8oRJSBGFbqrnpupECQCWSn/+dvs5iX9bvud7vod3v/vdPPaxj+WNb3wjv/M7v8PFF1/MX/zFX3Duuefuq4+3vvWtXHHFFdx222388i//MjfeeCNXXHEFb33rWw8+oEEGGWSQB4vs9V0f7AXgNIwwdEXS5j39QA9nkaX3FBNMRVoIDlh2mdynzJ1hzbX1PhcNMNWWaxBGUB8S6nWhXlfqQxjOvK9QpWhBWIfthwukgmw5I0wmmbb30f9JpFfqDJUxCEZYg1khNNNUMTelFyUATgirQnOGEUBjCephdMzaZSVM0hzmiIIuXFvz2LM3epmVtShLFKtddS1d0ij/LkAyNyMKrpb2sGL30/IyeufultZsbn6XDEx6jdru0jNnAvXYamOMjts1xsegxtMUgpTYfAasuvEdxhKOd4yYlhE9y5i5kgjxEqCYOZqjlj7TNWIe+VIIK/m4kXYlZRAKK6ArQJk8+ptC4xy6XUKpqI9sbq5aop9G0MYZZ2LRmtI+5AqLZo3ArzS4UaDZHOE2PVKZ5qxOoYQwwaIM3vogOKgFN3WUG86I9DNHLJUwMaNIC7VCEmUEb7Y2KDjFjyK+iITG0cw81A4381ArktLmCuCCwMwljkKCypX2DnnAB9rkZCL2HHJF9HJTKaeK3464OlVR15S+NVnYzgtaOqvQ7kEnjmbiaEZiULOo+I1gf58mcskll3DJJZecsM0znvGMNo3qooxGI6688sqltR4GGWSQQQYZ5O7I6WcwnErZyypMx7UwD+RcJiFJ+0tTzHfVjrPyKQuK6zLozyIkSLtfc1Vzswd6UZFPxk8UOhL1wnn7Emm7OjWyT+s7V6duya59xT7Mb88Rb5NX+KRUuxPYmFlcPxW/g2ZVjbBOegZL5lXHse1bpq4dYMyGYi1dH1g0oa32HM0oaiZYFiChJWC3FbyLdPE+/CqHmJaJLqyjdC+uDEZ6jnThqb4h6RfscBUkWOG0vmE898ySkj83n5IM1fR3bBYMmtitz9Zgld62GPzJ9SMPxc4IQJtgQJPRtfhseg4DFYseSRsVoV30rknOgnAw19E9wWEYZJBBBhnkvpOBw7A/Oe0MhnJcUPgCElRHnGtBOwpGXhVSqnllngSdlIC+tmkn2Z8JKtRWNfYOQkTEUajQ4GhKIY6FsOIoR0CZ6huQogcocyRTAZcVQ2+e21a3D/nEFLkYY7AMp+bVFYfk4gm9sctYjBU6S1WPa5C6K4DlSzHoE1ZR1yGmwI0SVMOlOWrnUNqCbeqMBGyeZYykXUnKNiMtDKdf+Vk1EV3bVJ52IFeCzjgPScUpNN+LYFV8e4rZqBFCrdRjUrpMRUuFQ4rbcPjgMg/diLLJg9/iUNrnS7su+hWnUSN/q/TaCOBT9ClFhbr7UzgEbiRtqtCV2lHUVmWbUTIAGkH6XvwtZ3AdpzA2DTXPkdYJfuQUv9rYnE8cuiIwccgxYWWqjI5B7aA+ooSVCOuKQxlPohUrCx5NSrE4W67qQApvxQ7aCJEayTXxREg/qhGpx5QrtcF9nMKmh5nxRWKAWDmii4gLtm58utAayCodLzoIvrFzY0jRBhfMSHBmEWh0SCyQShn5NJlFiryVFrXwtSUP8EUkpvTG4lKd8EPpffOCm1m6WXVqzy5YxM27iP//t/duMfZk113/Z+1dVeec7v79fjMeO5nYjD0MkCi2hBRLQcpFiEtIFCCKSPzCizUSikeRHIOFH0DCuVhKiBWMMi8wUQBFliIiYSlCSCaJ9Jc8YISdBJy84ITgS2IwJvZ4fpfuPudU1V7r/7D2rqpzuvvX3ZPxuGdS31FPd9323rX3Pue3bt+1KiMcCnaQuQvZjRQUpEtIZ0QTYhCC5YQAuWAbvae2lRCoAtjyml+BZR9eds+MGTNmzHh14LLv9fk7HbiBCkPXJqxKkzCeyUqdY50fj0cF4UKj8l5oCp16qEcFvQq9QB8DfQV9rWwPc+rS6HwFjFxaWYaw8NC6cGrBdq3imkNSEl5zQIyUY7kxgyRegG3PQlpqEgQVQhaCYsrpJIWBOIxlAmgPfbHUFqvtpM3BQmvZ4iqgldEvzInUrRB7IU7z9+/P4Zm53runEFf33ADFohtaSoQYKtBGSMHj+q1SWCnhxUhImYgqu+OWyZxOp3hKdpZpn5NxDOFY2co8CI4TSD/U5CPVkJrMTynKU+9W9zFE3xU0W5dx5bSdk7FpUGSR0FVHv4nQV8QWDzs6zvSBGjo1No1Ck5BKCVUi1kp7WrtnoJA7Yn4HFSSlCZklC91OcHDlpMT2B6NptrQYSSN6UhHW6uMXr9jcR9dIxMw30olfIxpW+4TL1gV93fq7dbXmom9ehk0wLOXNqUWrzRmrFCxVhE0gdEqnriRqqZti4qF0BqH00cpYcd3AkhPU6xNDO3PuSOWCv01ilkKbw5nI8yEyhumVYooRaCG0SjhJ9P3Xn/Q8Y8aMGTO+jphJz1fCjVMYpkLXn6QNuDiEZSrXjiRJ2yGRWiFauvF0JF5OB2iTsZb7SjgE7k2ASVhLaWOnFPOulD2cLSEVJewlW8SLY4V8LUybOK9JmYyz3DOwprMXYnCWnB3HRXN4Zh7PO7k3R0PXA6u5fEgVcuYaM3OBNpLTs8rOOM7sjVFPPJvt52GDnzZWxpiHMngREm6pnyiu4uKxNz3lgEzntoSKJU8H6vvChfgklrdJVkCmITijS2f3JUq709NqTON1fEyjV6i0qSqE4AqQr7XlLnTSzdiwlbiivTGogIybxrNe5Tka5md4pjxWNDnFRIaPR/FQ7Yx5Qiwr9w0hc4YrQUXZVj8eYr4m54FhP7u3yT8klvJx6QuYMMlnzJgxY8aMGQ/BjVMY/B/4iaR3jtA3iZYZbjFyWI/kRyZyy34bktvQJuexj4GwiNgioAtBlwILrwIcsjWTXIitrz1vfmnDolt6q1YGZSHVhi3w+gJWhBX3OFgQzyZTK7LMZFNRLAnWBaTLue+DW7qrVpAqW16zMFrIuFRAxxg7vjdnwxwFv0fz+ILlfPgBbOnnq1YKB9zn0BjKOAyemekxozw4cClktAoPVn8BqRjrWRwaNKCNYgdKPOhZHbT0KN125elmyfUZogumoShwe9tiiEYZhzjekhWuM9unvEsZewn5EbAczx83Qn0M3SNeK6F4bsRk8JQU67j/6UqXZxDNlZBTQJOgaYnUitaQbhtSQ+qE+CBXmDbo3yBQJ6rDjqbq2W4bYiYTl7YGAV29/kEwxiRO5p+bcT6yB6wV0r0FfSbfSyPoQe9E7CSgwQvSVUaIBkHQAxtCrWKjhFrRA0W3kbSOhFRqXnjBOlkGhB4qZ4db8kA1iUqIivYRTeJhZ1k5kIWg0b1rsoHmQXDFI+9VO8IzRXXuRVuceHVz947gqVEP/bMbkvMRYq4Mrfh1WwW2j3nND+mM5X3j9ufWxJMO+qzK12GsGXJV7O3DC++ZMWPGjBmvDlz2vT5/pwM3UGGwYnU+kxFpes/04KzVeSpIXtpG8JjqhNdj0ApPb0q2VJaMQ+W5OHQ7/C/kIg0lI5NWe/fk2PLB8lnZpE3NoRsu4U6NtJJcULZi9c5CcBl77CbvMnnh4Xji7RgGlGsclFAdSZn0uzeP4/udM2f7900OpiTVab9Web+a59Qqg6gQXLDsHjRDpWor85zHZOd8WM+s+Xl/783L9OJ0bYY+8y2SnOiegg3jKBbwS/st7Q9VvbPCkfA0qh3I1tfOAnRL6BujXiViUJKGnCFUMsmZcV7LXuLsWpyXNnfYA9OxVTYY5H0/GCGHByl5H+IKg2XNSlOEXkaHUAl9C2C4RicTD5cBISiW97MqXsCtKKnFW5O86JuVkLYwPu+8l1zJuQd65yFYhFSN398y8QgNCkf+DKZc7LBqIZwmZJuwZIMia5YV/mtgJj3PmDFjxmsLM+n5arhxCkNVR2IMrjiIuMcBhpzyIZuxS1iDSLbyqmVFYWJWznHlpdKzVyPOcpR5GykAVYA6UGctQRDPoKriMdN5r2gURJVUGcGDSlyArzwuXHAvRBWc9CrilmCrPO5aquB8CALEHi/WG8GMFA0JhkSXyjz2O5M/g7iM1hqCp6JUMTg0wrFzHUxKyIkTnkXECdZSwj78HlXD2kAtRQg1AhCrorCUeWXQTswMibmSbo7tlzAJYDKvDhzE51+zZBnEZ9swQlECG0EXilSCpUjsAnTGrW9Yc2pHxBPnC8RkpGAECcgg0BqS+yntlrFKXl8rYSj5eqlALUPVZ29DgnsITFwCD+QCaK0RWqM6DrQGHdA1CQmBEDy2vhCpvd0xTEzE28Vw/kMXEAKanKuhDYRG6aNg9wPVA1hoIHw5kDYHdI92xFUiij+X+gg9BMnCOu4FCMHHasn3ZplnF9/NU9eGAHUiLhJ102MIfVuRTIiLHlTQXlDzz1oQJwlb43wEk+Acmj5QB88WFnIq3mAeVhUsuHbdBaxKxJg9ZoAQCEGhMXrMycmt5M+veO2G2tcgmCAdA5FEgntMiIrWQmqEfgG2yalnQ15PMwTz5yPuIRFzHsMG6rvQriAdCu1hw+kyUD1ISKeuKDSBbSFmXBUzh2HGjBkzXluYOQxXwo1TGPp+DGYeillNoPsnbK9S7fT6Oa4IyRvDrchCCoEUoK+gWxqpyoZcA3q3DisuF/XBSJXl2HDPWqRNHmO0HD/jlnRgIFoKbhnV4OEfUvWEqKQAZi64AYioh3YA1guk4JbmrVJtsuIkOvAaqg0k9bj40bpfzLyTYmjZYkx+DzDIclKx8PbFxj6xZO/MZdLdlJ06nWcXz3XHxO5jywEs9Avol0p3kDyHfyYhqyZuL9fc+z+30Y0hnY+jVLc203EY5/UzXfdySm3v+t5xMafn34Jn24lbo34AceuE7PYOtLlyMb1i7X7sl45W/GL2n3pY1LDWvN5BNIiKRaWPNQs1LHq1bzuB9R1XEKXLYXL3olvlJe+5knbWXPj2tLuu5GlZMMGJ5GJQGfWtlmbZEoLR9ZHNJrI88oXv+0ivvmfFcrahwrHJhSoG/kVe6z7k4hEG9JKrK/vchkkRCAlGjMk52gm6Xj0dFEaPZo6HeZG73iD5Z0l21tGyE8OGULooeDieby7i1pVoM0iVoNHbia2To7tloAtCXwtiSqiE7rDyz3QtpIWQ2sSMGTNmzJgx4+G4cQrDS4HbJa//zEPjS/4keNiAXk5F9Tov/VIm6WXA0O1l771Xc+DrAYMhpOq6oe1X7qBA9s7v9/cyzYXt/7WzD17KS77EjTQJWTpz/oq9viQYQ52Ul6XB2cMwY8aMGa8tzB6GK+HGKQwhekhCCbWwHF4z1BQox2ZjGAiCebnZ8boyklNzlJKph6c46VfpyaTIJiAHAQmZYEtJYyqoGkGKQdytqymaE4kNJHq+/lCIs7l9Jw27FVmDYtEImXyqGtAuDGFMknkKgBOhQ64BECBGITS5FkXO2hMlW2ZxGgABrBL3NASwxisIp9qfWdzzUJCUrbaeNdNDh6Z0kWFexXnnIiUG3WPUQ5CcrWYSHp+fGeZZZMiCJHkNNRnVFqIKldX0r2/pa4M2IhZ48X+/Duud3E3IYWeTfmION9Jpv0zCp8ghSVhJSOT9sj/W8XM/fcbME1dV5IxCjZAOIb3ekNu9h+HcbYasPSV+voTHafDMT6VmhE73avDeggqmgQBUj7ekR4TuqzWrr0RWX4X684HtrYZ0C3Rl0Od+GqA2QidYKwMJnDB5X4EgARVDJIeLBcPainUSQjRCgHqhLKvEnaM1wYTTrqGKPXXs3VNhkW2Kg/PITGi7mm0X6NvKCc2a94QXSSCm4GF7XfAQssr3j4aYuRFCsJgL0nnIXRDBkntSpMa9YZmvE1Q8DW/58AYINdih1x4JW6NZQ70F2SjS+2c6rYRuIXQrob3jn8futtDeMtpbii2M9VPle8SwIMQ2wFev+QU1KwwzZsyY8drCDVQYHjx4wPvf/34+8pGP8JWvfIWnnnqKH/3RH+Xd7373UHvqKlBV/s2/+Tf8q3/1r/gf/+N/YGY89dRT/J2/83f4yZ/8yWuN6WUr9vtyQXXCGcgC7fTcmWPFY8TPHI8hKqY2PGNqaDK0V1IVSJXQR6PLoQ8u/JUfP5eCJ5Xpg3MNhnEUDkSOmknmIVMllj4ZpBw3b5LvZwwVUvOwHc171YLnt1fMM8v0gvaG9Yb1Y6hUUhewQpuPSz84qTiJ0Ucfe9jm6A/bncM0nUNK24UVkKNTbKxFMMx7fsAmc1SmWif9lJ/Sj4rXj+hF6Q8S1mWB14yU14xuMlYmY83KAoz9lLFOj3XyPjvvyxhZY0zGPt1rCbQ3L0wWPTytqxLWJOzUeQhlXwzvltdTcyPT9/c5tJzdNNecCB4+ZjHRnUbCqcDWoDUPh2vyHisCdDA0KGqK9jnEScf1HubEoDfNRQGd3+L7zou1Kd5mUjhYbQCjM+gMqtAP692b4QWQ/b9kRqfQ98HXKIdDKeNnqc9rU57RfJ2cPjapkVKe61zUcNhX5uuuWWE2w3kZuS/NIVKa8me6B2nxwnidesigOjk9YfQxK/OaP6/RaFc+996UDeGFpkZS33PXgl7xZ8aMGTNmvDpww77T27ble7/3e3n22Wd561vfyj/4B/+A27dv8573vId/+A//4ZXb6fued7zjHfzIj/wIqsq73vUu3vWud/GWt7yFX/3VX732uG6ch0HctD0IjKWKcvkJhQRdimoV8moW2iVbx4slvLQpWUAkZK+ERGKbPI688ed7c8FFcrsGHkefsiW/8760Gr0WtDgB1hhSl5aeQ86MpOpVhiUTR1MmF3vNKc+GY8mQFJ2gHMeQGIkCi8yL6HMJBxGIRlpArNyairmQhEJMTg5NFVg1ztFg+c5WfBfw8jzndygR3WVsRRguxGJ0TCFadNwhY03+GTwBYbTiYxB7vNrv/2voVgrb4ERak5zeVIbUpEPRtEJoLtJ+Hqsx8cpI8dyU9WYkX+fjQXm0vWcoHonsHVi6wFlthXoTSSe4hf90rHkxeBhyPH9RAmN2Y6hkgn5JaSVA65WhgwpqQlgZ6VGlJ9Kb0Jwa1cboj4R06PH4loAkhEo8u1EfBk8WureeEjCUlNybJCKwFVJQghkxCDEap6dL3vjoi1QiHOSibatqS8yrlxR6y2Rui2yaLetFxfF2wWazQFN05Q73YhTvn9MhnJDtHgMZ9plEXxsr86yugVumRISSiSp70CR77yz41FUKsRcM99RJJYQuIMELPIr6WkQFTUJagK7ADiHUCqseKpl40NT7XAS0u2bhthkzZsyYMeNriF/4hV/gE5/4BM888wzPPfcc4J6CH/iBH+Dnf/7nefrpp/mLf/EvXtrOz/zMz/Crv/qrPPvss7znPe/ZuXbtoqXcQIUhy/Tj8TnXCzzMiCE0Bfzv6T2Ue4brbsVMSUmritQE+hra2i26JexIPeLCUzhG9zKY5vHk9naqKJexljSsJZNREVajYZW5QJ6zMWl5qIWQPB4q9ZLNvXg9ht6tziXcJSlIMkKPp5gUYO2KwXSOEt5G6Mr725BK1WWzIjmfndfh2GxQCtyqbuO8c9ZLV5S68jfZWo0xeFWsVToV5H7MpF0/H6beASb96G6/xTNz0fqOx5M9cQ6vdccDmZVBa1241yV0B0a3UOiFeBqGtKLDQCQn9ckhYVCUrbwZhGxpn3Ta+5pr5dclP6Od0RwDCxee+8pIR76+hSwfNpHsDBhI3ybk1KbZql+2b7Hg9+7WUXMFpH50w1te9wJHi5akniHq0eaUKihBjOh5qFCEZIEuRR5UC3pZEbqaPmvQmpzVX7JsDQuXvWiuGWSFbnDt+ESoQtiI7+88j4VcLQqSRuU/tBDXEDZAb171vAXZKnKiw37WCroK2gWkBXRHsH2dke4k4q0WxDDNYX3BU74CpD46ofwamNOqzpgxY8ZrCzctreov/dIvEULYCRkKIfDjP/7jfPSjH+XDH/4w/+yf/bOHtnF8fMzP/dzP8Vf/6l89oywAVNX1xf8bpzC8UpDJ/y+98erhYlft+GuLaR83UXZ5JebgJeDCYX2N51AGFey8QdjL0//AU7Hdk7Jz+dxuPdeV7Fx7JdZwOtSd7i6bj8nNhVf0smHmMMyYMWPGaws3iMNwenrKpz71Kd761rfy+OOP71z79m//do6Ojvj4xz9+aTu//uu/zvHxMT/0Qz/E3bt3+ff//t/zxS9+kTe/+c38rb/1t3jkkUeuPbYbpzBUTSBGwUycNCxjKEFBIeMWyaGEihSKq9jEGlys1R5jAapOvDSvSBt6I2ogdqEYZN1KW7l1V6K3UCWwEvpUzOE5rmX0JAha25C6tBSoMrEcU6SE4LHcark+wDZQWMeSgrdtHtokcQzJkQB0mRRaCC9mUDmBeShAVuKK1i6EmuWQHJGcntJy1piR8FvmrxCYSxGtUmnBBk9DDklilMmk1G4YZE+ZuhcotSmGNiRQ3cvTUUS5MNZUcKv5+H4e2jQluTO0O45rr19hmFMlh34hQ3rOUeKUoY9oECrJYTNeq6F+MY7hReWpMoASd+WuBEptBkwGb46UhdTyYt6XdtWwh+QIkgU4AumcGN9IIGR+AJrfcyU5BMvDgGInHtaTa2KUML5SpZllolr1mBh9GwkCj6x6AhWP1ce0WlFLJOmS1mDdN1TBeMPiAY/Ua8Sg1chjTcsbllteXG34YvMI944PaDVgnWTSf/ZeBUG64kbycZTK4EFDWV3Q4KTnGjTXbQi9EE+EuBWkz883gq0Mor9OlTzES8Soo1FlsnS3EraPVaQlWIPXdlhAOFDC0hDz+D4rNSOcfEEMxtFRj1VrvsA1oLaryVx0z4wZM2bMeHXgsu/1V/A7/bOf/exATN5HCIEnn3ySz3zmM5e286lPfQqAr371q3zLt3wLf/zHfzxce+SRR/iVX/kVvu/7vu9aY7txCsNYhyGLkDsCXsHkeEKIHS6dqw2a1xJQdz2pgtaBPgo9Sq/Q5ypclsMkSgVoD2PyNjSTnEublivLuhySayRkpcK0CJFA7cxOwbLgJ9545+FFpL1nFNAslGGuLCRBkys5Q7x3roI7jCiHqTCJ+besKEyrMA8fjiz7DsJ2gcIoxjMUbduf0oFtYntt2OT6zinz6sm5rsAgSJZxkseu08/vfpv5YGc4k+O8Z0p7hZQ7SP17MVWhBfoxFCpVIym6PJMm7e6QNrKCN1TxLl8sZb6T5dCrPL5MBi5tSAdhq7Ahh7GBmtJXroh6LRJD+uB/5zatz+x8YVAkIO+hoCCJUHW06wpTpa4TsdnyDauv0hm0arRmCInTVJMsIaYc1ScYnkEs+bRw0gfubmtOOmHdgrZZGcxjA7zOguX9W+a5rFfOYJZZ0IQ+oJV5DFLyPSxrL+AnJYGAGGELsoa0NSf4K1RbI20UWoUorFeBLngYYsq6WbdQ+qhITIioc4RUh38UAoaERKIDuWYdhtnDMGPGjBmvLVzRw3D//v2d04vFgsVi8bIOpfRx+/btc6/fvn2b3//937+0na985SsAfOADH+AHf/AH+eAHP8hjjz3GRz7yEd7znvfwjne8g09/+tP8mT/zZ648thunMEyRbeSciX+YRHAUBuzggZDJ3VMBslh/zS20LpQbYZOIxchvQt+4XT0E5wsMgnkW4kPLQPoljHK5AERBekWrbFHPAqYGAzxdapCsZLjEBTF4ppbeqzlTSw75Ht+nWP9VIAZzdq26sDm+2+SdJ38PdQUmp4f7ZPKnTM4zXpseD21Mzu0fC/mzNYTAMJCTh6UoKUNDXr7pODMHBB3bLZbqUVlg4DeUadSYuQHmMvzO+1oJTZm8k45j1ehk8jDhqCDj2HZ4NUV5FB+rjHKoe4RgUBpLStWhvzzRAc/sY4XvUkNaAj2Z6CuEraELb8MiWOU5lyQaEFxB6Xwf+PbKnwPNXp0opBgJVSJtKvptxfq44fP1o3zT4X0qUZrQ06sQSWy1QjXwf09v8UhzSkB9HGIchg2PNIHTRU3qAmurSevahX0NnmJVzPdwnuhcEy6nH5axCGPA3TlkFnQFoobW5lWct64kl7XQAFZ7GuFC5A918OxJIWcjW+DtGK5YnwqhFghx4PZILHvSXJkSpQ5KjC0zZsyYMWPGZXjiiSd2jn/iJ37iwtSk73vf+67c7nd8x3fwwz/8w8Aoyz4sdepV0qpqzgLzpje9iX/7b/8tTdMA8CM/8iP84R/+IT/90z/Nv/7X/5qf+ImfuPI4b7TCkKdt96Ts/S6G5WmYzv4908dlDKshuHIQW3XhbRFd+AxCyhWbrcalScuW0ElbWq5loU6DoQ2DEK/RPLtN5fnpQ52rOVjOjNQJdEJch0GoGjI5TaR5z09fhGDPLhO7YvWHHU1gKuhP5uGM7izn/rmDPYP92MZDlAsrxyVyx9jJUuQTVzJZuYA8PFKUi70BDbrgpA2bHBvQH1JkwSGn/6hs7b2/+lpaFjJjx0AoTisnPacm96m7ykIpVFz+hvG69eOxIG6eL4rOEDLGUF9BYCD5EsBWvo/AU6wSfX4sGkRDYt4Eqmjylwo5NGlQ0HJmLusCcZHotpXH2SWolz11hGQVi+g5ebdas0k1nTo5OgZlq/WgUAiQiPSWtaHKsJRdIZ24MlwHpBOvTJ0Re19VC4bVu9qpfy5wxcGAXqiOoT4WivyelKxM4J/X5C2EfJwCHL+pYvuIoAsn98cNsMQV9y6gG3FNYZGgSYBSLRJ1nVjWHXdWa+4s7vPbXAdX8DCc/bTNmDFjxowbi8u+1/3aF77whR3L/8O8Cx/60Ieu3PszzzwzKAx37twB4N69e+fee//+/Qu9D1OUdr7ne75nUBYK/ubf/Jv89E//NP/9v//3K48RbrjC8IpAsnW7eB3K8eT69M8doVk4I9w+rB+YWMuZNLYveJ95VPaOub5MctVxvsx4Sd2ecYdc4f78zI4H4qL79y/sKVw2beRrhfMUtvP23QV78dLBlb2c75MczhREnRs00ewmDJWBFD0lR7uXZRyQmYzK277yeNFYpvdM301HReLCNibrOnidYPDQnHlu/7MZbPc87um7zsd3HMsVFIY5JGnGjBkzXj24YkjS7du3rySs+yMv7d+Bp556ChHhs5/97JlrqsrnP/953va2t13azl/4C38BGBWHKQrhebPZXGtsN05hqOuKWI/DOiOk42ThQdaW4fQQHyM5NsZKbEwOD5IhzaN6Gi3yPkhCUqHuAl0UUg0agnsZclCUBZDaxQsDiF4RWBuvqGyVobW4BTZXgqY2YmNZQAuEmMmXgFpArSJIINYB2Zpbx3sgClrlQlcB94Q0PvbQe6XnULuV3M3ME4ksk5mJQK52PIiDgzDs8yJ5jkq0yOjVKAKWC4butBnvMMY2dnON5nh9fN7c6ZMXqBB2KXM4bWW6iLtjFZu833TsCuSCeO0do7qjaGOernMdiNtAaMU5AplHIAkPQ+vdE5EasErQlXnOfhOqBlgY0dwbJcnvxQxRyd6fcY5Kalgzcmo2GTw/lt9XzPsVGznQmq3vGFSt0BxD3Lpnob0tXoRsaWhlqCpSK6FyL0EVle5I6U9r9EEkJvdQCXjxuUKW/mLNcjKtD77wev7g8BEOb6958+te5Fa95YnVmsP4Ip3VnKaarTZ5hjsq6eksEkPDqgrcrqBe9SxSzwk1FM+YF4p2z0oJ+zOh2uRQMQOr/V18j4TsNciek0WguhWokzvkQm/Ee/nzKsWDFEiN8ypojT4K1QHYyugOjGoTkIU7FGShSANC8M9BNJqDxK2DDau6Y1F1HFYdJkK9uWbtSn2YZjO9Z8aMGTNmvCpw2ff6K/idfnBwwLd927fxO7/zO3zpS1/ayZT0W7/1WxwfH/Pd3/3dl7bzV/7KXwHg937v985c+/SnPw3Am9/85muN7cYpDG2fqLiAiLgfqjI9/VBvUhaai7KQhbcCrYRehU6c+JxUvAJtxVBwCiYhMJnoXFLdu1KRq0tPfgtKLQlNuciVeZVpDHQj2CYRtlCd6iBoF+VkqKpcXjBBSBBaQbeuLOxnyITiLZnMz2TOptemkyh7x+de3+/rvPk2BuXjjPl2+nm8yKwrg8439Gsw8BmmiqEL4dAfGF1laNN72EobPDyl8/z9mf/rOf5zKFI57huwNHKYQ4L20EaGs3moS+lL9OxclVCjYVxp7xXLPZO9k/WWoU4Ga6juGX0NPUILdBFUlFI1HEk0VUuQRDLYJqE/hrD2KtBDd8HGuhRl3Pm8otT1ltXiGJENRsdBvEdPpDVoVVhrYBk6oCOhrDVwvxOOO+E0KZukvHi/wjbqYV35ZSUX3it6ZDzNBQrFa4+o6LiOpepzUOjEPwN3IZ2Ateak/vW4XzV6fUQ15xD16nVRugraxpBSQ8Ogr83J4gaSBK0TVdNSx63HLIWOKrYkFDNhFU4v2IwzZsyYMWPGK4+nn36a97znPfzUT/0U//Jf/kvAvQsf+MAHEBHe+c537tz/R3/0R5yenvLn/tyfo65rAL75m7+Zv/yX/zK//uu/zn/5L/+F7/qu7wI8besHP/hBAH7oh37oWuO6cQrDZRiE0esofFND+CR2pQhy0hmhMcLGxgQvQindm8srT4T5QTi3XFE6eyEGydIlWkHRBJqALhDEoA9D8TgELCppGZC2KDEyCKclhl2ywlB+Bk9JFs525uai+bkodOQK83jeLRfJ/LbX90XDOHPDNKSoKGn5/c5wIBivhzWElStgxCyI4p4Hiz73USdz5qHsPtc9aJPXMRdJs2SemjMxrMeUFrMz5Tb5mSo1aTL2/D5DVqQs9A4cC3UBOgWjOsXj8xvxTE3BLfNe3E/oQwUCTd0RRKFOaKmmPE0JVaZzMmeSQDZCulvzQjpkEXpkZdyPS25Xp9yOLZX1NNLR5erT0bIHCs/wZebKSL1qabcLzIRgTsa3Msf4fKZFzj4FozehLlpgGOcsGlYr7SNGXwvNKVRbkGTEnDnKasEi9I2hK79ulXMhTAxdeWpZwQiN0hz01E2iwoh1R73saJYdh03LInTEkBACrUZOunp/Rz4cpuyw+C+6Z8aMGTNmvDpw2ff6K/yd/swzz/DLv/zLPPfcc3zmM5/h7W9/Ox/72Mf45Cc/yXvf+94zVZ7f+c538vzzz/O5z32OJ598cjj/L/7Fv+C7vuu7+Ot//a/zjne8g9e//vV89KMf5Q/+4A/4u3/37/L93//91xrXzVcY9gVi2TufLdpnsvzsNyJAyHHLQ4XhUhtgFASDCpbEY7ZLjDQuTI4kVLzewiILnBEPQ6oVaTwbUvnRLqBt9LST2+DW0AoXnirz3PEp954ttJJcCLSeiVDpVW7jZrS0WwkxKu8+GW+OTtqZs4uE/IdiOt82OXVeYxd4gAZlYN/rd5GyMhHQz33GRmt/qvKaBJ+/0AqxdQ1P1Mm3sc06XPEWkBW/JV4PoPYKwQiuHGYBX1IOSTpvjBMlRIqOqJPx7r3bIEzn9Y3ld2vUx1CfjDUpSKALsKX6JzQJaMBMfY+K0J40yLoi9GHczwKIC85W5jsrW5ICsQPtA31t3O2WPHZ4wq1qy+vrUw7jhgfVkhe6Wxz3Czqr6AxebA940C447WtO+4ZNW9OdNJACIW/A0DOED2llQ5IAW7jyoAuDxs+LMWQeK+FC1EYXArESqAJ6bCy/7PPRLYTN6wLrb4T+UJFe6NocsneoTmiORqdCfdhx52DNI6s1r1usOai2HFVbFqEnis9dZ5HjfsH9bkmrEU3XTIk3cxhmzJgx47WFG1S4DaBpGn7jN36D97///XzkIx/h+eef56mnnuLZZ5/lx37sx67cztve9jY++clP8k/+yT/hP/7H/8jx8TF//s//eT70oQ/x9//+37/2uG6+wnAFvBRBeCdaRoQp6XlHSN4/3j+/f27/7/zH4M0gp5jcT/nzkP04NDUNf7kM+5PykrSFlwEPVeT27nkJsJIusyglOmlsb5rP9FmUwTA5NxnrVYa1422Y/r7CQ2UbCL4/ijJaFBfbC6+XYF74r2iJ6XoTVxS9UCkxKCJQh0QlY3k7RdCsZXiFZ0+wahPt1HTi0bgIU8/R9POw7yLcW7syJ2EyHwO5uXgFd9rdnfAYlJi1NhEvwrc/LDUZ5/C6mDkMM2bMmPHawg3iMBTcvn2bZ599lmefffbSez/2sY9deO1bvuVb+Hf/7t+9LGO6cQrDoq6omjIsN5NPLdWjHFJouDaEjEh5JjOhC1nX8v1eeRevQmsQzHIxN0gIqoGkAe2d9Nx1QlcLaZHTXAbxGgsRtFavVhzJ5Nvs6khZWMnhG9IH6IILsoKTMpMLe1orulDkdXmMWwinkdALIXlbYQuxFRegDCdQZyK0BsYMMMggPCkM1Z1LeA6Cp5TNnpWiIO1US55cn87zEN8ydceUWS1/2ygLDqT0aT7hWJ4pbfgDGvJYC1k4lcUs0ryN6z14hMR3rsKqNdI90NOyLtDfUqwx5DGwXrCTIlzn3RCMFCEiRNzZMx0dAah8akP0sZZos1DyomZJXyRX4Vac9KyTd9HJePM66SB3CyEaEiEeAEtvcmFGlYTlPaHrK/rDnKoXw04rOF2R1Djog1d4jjKEbIU875b3iAio2OhpMmgQ7P4RD0LDH6YV6/YOdxZrIkZvQmeRbV+xTjWnbU2XIn2KmdcTCdvIqqqcvH+UkEqhDchJpDpxL49F83ChmD0OlUGMWDC/f1kI8QFLgmwCcROoWiEq0MDmW4W0MvojhTsdt446VsuOKiTuHa/oUyREo1kkjpYtVUjcara8fnnMm5Z3eWPzIrerDQGjt8BaazoiapF+ccpJWnCiCx4E5deYMWPGjBkzZjwMN05h2HY9qSS03wup8XP7cS+jtHepvVCLQJcFwKSEXrEgnqq+MlKvqHh++U0Qen+MXAODZJnknAVeK6Wgc+x8MReL4kLqBucnFOtpDmPRHMZkloPlN8EFpy1ZWci55bdQtQzSrHl0ylD7YeCHy3i9hDHtHO9b+i+arOso0vsWfNm9dgYTw3LR64CBWzCQg6eW9fPWNRsDJBdQK4+pQt8ofbnBIG5kDNsB5ziUCJ4SUlSUncDAP5AkTkguXoBJ6NFI3h2Pp2FJJT5/mJswGXYO35fkGa9CZ4SUz5lf71VoA3TBSKV6cllTdUt86HUyZ2PiXXcE2DDP09SjkudcVz1NbNG4pa4ecJrc6p4ssFVj3cOmg3UHfYKU1JXpXkmbACcKTc9ANjmtqY6h72SYX83jGBIBZAuOBBsVriTQRmQNi7ug27EeRr+A9kCxw5646AhNS1isuXuy4lQTakoTe5b1hiQ9MSRWzTGvX7zA6+q7HMUHHISWjVb0VqMoahEDtragNaE3aK9rOLqhIUkPHjwY3Ndf+cpXeOqpp/jRH/1R3v3ud1+pyA/Ak08+yR/+4R+ee+0//If/wN/+23/75RzyjBkzZtwM3LCQpJuKG6cwFLyU5bnomR05di8aQgUkGSTDesvx1+Lyds+OIGvm5yby2CjIZWK0axjZopzNupYtwCY5zaZ6us9SURgkG9yzgKVyltxcUkxOX2YanvGwSZmEfZyZFINzBf3zlLVzbt15fKpATC9MBWeb/OBcEAvmqWMN5xkwpibd6dh22xscHVlxQCGsxashiytkuvKUQdKFIUWs5bUAXJEoc2xjOzt96d7fk3GVR4Z9tTfPMh1fQS7oNkxF0W9yytcQjHjiZGLNZOydCZ9mXSrenzJJ5c/pmPcVsE2gqyPbZcULsmJZ91nxCrQqpJSVry6Qekgp5HHm/RkVeiMslKbuibd6+lCh9xp/1y4rW5I5PgoEce7O4GkSpM9pb9cQNkrcuOKTKjz8KnbE2CMxEUiYwmMHDzC9Rds7UaLtI3VMJIVtH7jfNzwSa1KAPhOhoySCBaq8qW6HjhU1G6lZVdcksw0Ldsk9ryDatuV7v/d7+cQnPsHf+Bt/YyDIvec97+Fzn/sc//yf//Mrt/WWt7yFp59++sz5b/7mb34ZRzxjxowZNwiXfa/P+gJwExWGqTV8XxB+mKXsvEv71mlxaU5CFsZFPKREDIuCLQJpFUhLoa+FtMJJyUVgK5ElKVt0p3HWMhHWPN5pVCIErJA+N57uM7auOHRJ0KyESAdV50JUzgA5VHQuoVCWvQvTVx4EZzkjrw7jHITaYm2eZK49L5zbhLMkajvnOi4QTr0nQ1+TdRgGNlXWGqO9Y5nYa4RWqE9kzAa18xLTlx1PS+7feggBFEEk0K6U6laLJSGJUD0IQ2Vpq7xuRugKYdfXzqrJ/EwIzFMPw9B3uTYd4mScIgz8hJ1xT9tLHqsf8rzFLq9568/rUkg2Wd+cunTwYuTGS0jXOC+Tv3No3LBnDOgFO6m5Wx2wtUBVKWGiVHR9oNtWtMcNJMn7w7LCJ2CBatlx+MiaP/voV/ny+oi7Lxyx7mvqe5HqgXvGCEJ36FW4tbaBDA0gLVRroblvrP7YqE/NvQq3he4R4FuPefRow6LuCWIEjCcOX6SzCFF44eSApJEqehG2KhiHdcuj9Zrb1YbDqkMRUt7Ey9DTSM+tsOZAOlahYyk9J0H5Ka6BG+hh+IVf+AU+8YlP8Mwzz/Dcc88BnoLvB37gB/j5n/95nn766TNZNS7Ck08+yU/+5E9+DUc7Y8aMGTcMs4fhSrhm1aLXHjwMRFxCy/UVBmF4KjAz/r0f5nMu/3Nf2h0k+VHgm5I5pwJ5kc/2w32utWWvFoXwsrdxnUf2Ccthv4bBS+l4ouhINCfoTonQ0/kukzr1wsDZib7OxO95QS4ca1nfqQJUPE4uk6P1ZI9cdxwX9UvZ367NxGjnRvmZ7m3yPc9WqJUmJkSg10DfRefm2Lh3d/b3/qJmpTX0+ZKN70xtSG1OzC5DF1jEnlYrko6TEkUJ4l6ZKtigGJRBj2ULvYBixPwZzr73qxW/9Eu/RAhhR9APIfDjP/7jmBkf/vCHv36DmzFjxowZrwncOA/DsnHSs2doyaELE2FQzTwm18sUl/iS7DxwicqYOCN2hO78zEB6BnpFekVDQDWSUqBXISVBT72Ss8ZCHs3W1gj9wis7W+McB0su7Q0VhcVIK8uCsBA2g75AaCRXnjY0CdY5OdRWwMLvjwuojiG0uXpy8HG4pCWjYJkrIe9n1AEfp4GH3+RqyUPl5uF5F6Z2zeMeHlNin4e4+NLGRM62OlvsAXqvWoxAOjDS0utMV2uhvi9j7H8W6jV6KLxWhh0Z3PZiXtW9SHUScmEwr6gtghddK2FihhOTdZyD8j62MfSPBe41Pi/q3htRgegVntPCoIEQ8nql3XkltxkmnpNJiY0cvm+EPG8GeV/5Mx46NHJXytwPFvaKnFo073FADiB0SoqCLISA0ea9hwCNv4OqESYVpT28KY/V8nyYk6Gdr+G8Asl7FxNsY1657v4qp0I1mkc3NKueW0tFF4nNqmO7btB1g2wE+jzPAWQbqVT5puYrfOs3/R/uP7bg/53e4f/cvcPJiweEP644+t9CODb6w0B3G9rbvicwoTKh2gpNbSwasEPobgvxDsRv7HhdFO4sQUQ47Rq6FPlfdw+JKKmvWEgk1saqqrmz6FlWcBgqKllyECreEJVKehSfx6X0NKJEASHQSM2BNNyJk31/FWjZDJfd88rg9PSUT33qU7z1rW/dqQgK8O3f/u0cHR3x8Y9//Mrt3b17l1/8xV/ky1/+Mt/0Td/E93zP9/DEE0+83MOeMWPGjJuDy77XX8Hv9JuMG6cwrNueSnt2TIsZReCenpDruoryM2JA56RnEI+CqY0+BVLn6SVTEM+mNa3HEDxnf4pOPk5D2V5cSMvcg9QY2nuYTdzkgWdhVLY5DIVcRyxlgXwITRHqe5Da0equOStQ7ibPzRAhMhzvQPY8JjoxVk/1g/OmcBp+lD0v7PVjeBhJGXfohHoN20cMrXSI6199NdAn2eknZUUrqZGGFFCeZ18fCN1Wh/dWIGxz1eXC7YChRsJ0XwwhYjZmSpM0zmO/BFVDe6+aLf3Y3lCDoYQSZcWgFHE7Q3ren6/cF3CGBL0fwjSEXE3mJHSuYCYRtjW0CyNhI7E9E5zZb3fiKSn9Wn6fYW6K0pFgiJfKXAXrjXjYQbVBrKfHw5LWvbBdG3KckC4rfBVYNA4ePeHRw6/w+OpLnGjDfa15sVde7JTNCdz5Qk/3wPf8dqWsa6MPiimEXqjvCnZfCPeMcGw8eJOwPRTS7Z54tOHwzldJGOuu5rQP9OqKbZ8CvSqqxuGio6pOQToCHXfqF3i8+hKPxbss5ZSeQJWVhaUkajEUqIEFwpJILdf8CrxGSNL9+/d3Ti8WCxaLa9Z9uASf/exnMTOeeuqpM9dCCDz55JN85jOfuXJ7v/u7v8u73vWu4biqKt773vfywQ9+8Mrk6RkzZsx4VWEOSboSXjUhSRctlz3k2kX3Dj8CGiQTjQ16Q3pF+nLs5E5Pk8SYzafDiavlZ0pOzh0VUrOVFKVajrOiEfIj6m2ELUhb2h4z+VCEvz0r9/ASk/NDNej9c7mNktJTxa3WGpXUJFKjaK2kWklN/l0pGgwNPl6DkZw7aU/VvK3gPyn6PJqBBQ/87w9yis0sc6qMbRiWU9G61G518jGVMYgOFvIy/sk0j2t/3pyks+eky3Oc8IJ50+tl7vY3ytnD8/cT4/hMLrg+edD22t6Z5x7ozlnP6c95g5oeTgnz5f12Ohz3jG0CaRPo2kC3jWgvCEpVd8RVh1Ve6ZkE1sP2pObF9Yq7mwWbPmIKVUhISFSLjvQNHd3KSJUL6WEDss3emODZj/ojpT00uqaMVbHeeT2nbWTTRcwgJaHvja4LpF7Q5BtIzfdZpEdE6VVYa8VWI2r+goIO8yzmOmHxCfkd1yU929V+gCeeeII7d+4MP//0n/7T6/V1BRSl5Pbt2+dev337Nvfu3btSW3/v7/09/vN//s+88MILvPjii/zar/0a3/qt38rP/dzP8bM/+7Mv25hnzJgx40bhit/pf9px4zwMO/HO+xatcyzoJZxjlAousYIVk7ThLNlsphXcOht6nMuQQ0ZEwPpJCFD+HXuwOluuTXZizcX8vLVOqg1JxsJcFV4BF7dGxy1Udxni7IdX7xieKc4JjDN8CQ9tGl4DxEN9SgpNqpxpJxN6U8Bz5FdGerT3HWAyfh4USEJoA3HNkK0p9D5WjT7+1JhnOCqhNQoWIUUhHSXsIBEaxbqALiM97JB1NYLVhjYGB+YVsmsliNE/UrmwnFHfDz4BmTS7Q/q1C7wm+BpNLe+QY+ZNCC07Xpdp9iyYzGduTPaOz4PAjpdi2MtF0WQvLKn8Gcv4PZOQNmBLkOh1H2wyF1K0kYsgu14XmV6YnC/HceufINsKp3rk+0GgXnY89k13CbfW3L1/wFoD1XGNGHQHRrLIi6dH/O6DJ+g0YHgxtNUy8cibX+TB8oj7hzX1caA69v0d1LCoHL7xhPVpQ3sC7aOR7pYTndPKkMPEYpn4v3cfoa56RGDb1vTbiPUBglE3iccefcA3HhzzSLPmVr3hMG55y+IFvqF6wFHcUgcPalyQWIpxEOCWNCScFxElIAS66yoM18AXvvCFHUH+Yd6F973vfVdu9zu+4zv44R/+YYCctpaHWv+v6hl4//vfv3P8fd/3fbz97W/nbW97Gz/7sz/L+973Puq6vvI4Z8yYMWPGawc3T2F4hbET0hTApnyAIOcKh0OYz/Rn54ZRQB+Itfv3TgXHc2SWM/UNJsfn6brnCc1TBWeH8Fruqc5vrGQNKjcOMfv51IRzOvqopuOrcr79/IB050xiGVsJdQpOSrU0cSMIO9mcBkXhYbhMNpIL/n4Y9oT8S++95pDO3CyufA3Zucr5h7277f2+yjPTx/cI/nXjwroItG2FtONFq0Aqpak8g5FlpT3lzRcE2nXta1dCpKqsYFeKBE/VWtKqTt83VKMGF4KRUszKbN6LAlWVcpVqpQqJKEolShMSC+mpRSfb04jiRfqKV6HwTnyqrxlmc41Kz7dv377Q8r+PD33oQ1cewjPPPDMoDHfu3AG40Itw//79K4/hPLzhDW/g+7//+/nwhz/Mpz/96StnW5oxY8aMVw1uYKXnm4gbpzAsmpqqqXeF7AxjdCAMBuZC8BxuMgby6uS+/WdKrn9JBqpOaA6e+z6FgErwaJCsQGglOw1pZyRxUrRVTqK16EKJBCG0hrUyxJSH5MKKqbhikscaTIh1js+30YVgde4oyCjkl3iWPAlePDqLa+rntTL6lXiGnQpoFBrDcjaciAv0flA56XYQyDLNfAWYuqDfRsLGSduhz2MLzvfQpWG1DmOTNhBCYLmNpJgwU0QDcts9FpY9OYUPYZVhtUAliEREeqQ27FGDPqCtIOtAXESfn8DAYSi8ApcmZfQ0SCYJFxL0ZOXH+c2/1ZUfySFPVhREmzwDlCrOmIzKnY47a9gWk31lNnnGjJDjsYb0rAaiOVytZOgSvPBZFCeDb9yTY5UMPBIx8xS+E5TkAKXot+XPwKgv5PW20ZsyiPkl1WlQrK9GT9OLFaeyoDlqef2dRH/Ysn5RMA2slomjWy23Dlo6PUS72usi5GnvzLjzeE93R+jWFfYgsjwNyLqiDxU0Fa+71dI8umF9WtOvKxYaIASkqqCrCCpovyQGpdGAEbAgxCpxe9Xy+KrnVh1YhppahCbAcXqUWhZIOKbTLUvpMEmo9VSiLKSiMqFHWWcS291rktnMFLOHP3PZ9fOfeWn/ID311FOICJ/97GfPXFNVPv/5z/O2t73tJbVd8NhjjwFwcnLyJ2pnxowZM24iLvtefynf6a9F3DiFYVrpeWJYHDE93g8hueiZfRThUg1JNqSAtACpCWinKCHzDCSTaEdh0gRMRx5CH524XCzRcc0QHiQJD38pFvU08QIkz70ft4xkVcPJqlMLvJwZ/nBuymdItZOJ+/IuC0UbhWoSt1PpJOuU5bj2vQ7Ewzk0QdiYV0vOyg/iykIKiobsdlCQLhBaI7RKf5QwVehAOiOcCsQ0CPAGuQBBjvMxCNJnARswJXUBWUfCKcSNuYIwURaGkKFpqBDspPLc2Qt73pwhFEjYJYbv7anyzHSezxSVm9w/jEV3xzeMfUKcHvbroCy4lT0J0Pu+sj7rJhUDB+HcPX6BB2SiC57/+VAomoYVToOArXqEjkNaxIzNRtikhNQ9j915wGp1igbjqydHnGwEzBBRYlSCksnJQp+cDN8cK9pAEoW65bHlA463DRsT+rxeoXK+gW2Da8OV7y9T8xC1SrmzPOFgdcxRc48mtMTQE6UjsKGWEw7kPmJb1DcfwTqWoiyA2mp6lNYSPV6Ebn3dfwgGNv0l97xCODg44Nu+7dv4nd/5Hb70pS/tZEr6rd/6LY6Pj/nu7/7uP1Ef/+2//TfAi7rNmDFjxmsOl32vzxwG4IaSnq/g9L/wuev2sU9OdYE0b54s2FEyIU2JpiUVZ2+uEKTJvYzHln8eSkyWvXe2ye/9ybDd0BybNEO2HGtQLKf3iUEJISHiv8O0wppN3tEm4y1OBxKWycy5RZRcCCxJ7tSGQZn5fU7WzS+lNhr1zfK4coelMwXVXO3a8uSKV8hWbCQHT6KVzl3Li+bsnHuB3fWcTuTenJz/8AXtTxSVadPGSPqecquVva1lZa7GZdp5aJ/0/JC5OG+e9q9anl8VQ1FUzPdQEq/y3HmK4ZAJ7JjSJ6E3IVCsMj5JZoIpqIKIIcG1JJNEWvhaWy4k124jIppJQGnYPzLVzHZkeX++6yNdEpKCmpFMSOrHyWBrldeFUKFXobVAa5BMSaZo5jD4Xn1t/Dvw9NNPo6r81E/91HBOVfnABz6AiPDOd75z5/4/+qM/4vd+7/foupEc8z//5//khRdeONP2c889x3/6T/+J7/zO7+SNb3zj1+4lZsyYMWPGjcaN8zAMkAv+3r/HHnLPw54rf0wtzPlHRDy0RCVX0WX0MJTbzKgekL0S7iWwKluPcxrPYlmmDHOqnu1ZxgsBd4frMP0pjdjeYe6/P4K0NHSl2K2OetVzsGxZ1IkqW5CTQtdH1m2DmtCvK6wQNspYEqCC1IosXcA3PFVS6c+iYbV5ga1AVg6Ck4kR6IIL/iUlTY5Pt9qgSWMF7CJFC0PWz6rJguwGrBdiH3zaytrAWKl7b0ltct+FnqkwmXe5YPvY7u8znoyLhMz9PSsT3aj0W6Z7Xx6G3fS1+dmBhK+c8TYNwyjv+zDhV/Z+FzdXjZPXG/X2e/DAsQD3F5xqhEoJwVjc6WiqxO3VliYqW63oU6kuV9r3fRJEqWtFDxLhMNGfVFgKhFWPnlYchyWxSVQR4mEi9QE1GTksMmqHokD0PVlXiYO6JwYIIkQxQoAqOFehtcgDlrRS0VvHLVmzMGOD0uTd3GG0uKLWXZfDUDS6S+955fDMM8/wy7/8yzz33HN85jOf4e1vfzsf+9jH+OQnP8l73/veM7yDd77znTz//PN87nOf48knnwTgox/9KP/4H/9j/tpf+2s89dRTxBj5zd/8Tf7rf/2vPPbYY/ziL/7iK/pOM2bMmPGK4bLv9deCZellwI1TGF62ZbmqHLDfoYyy1CCgndfW5LmhYnFp4rwohwtCSM49vmTsOw6HPEar8jgqc6E4QBU1W2xH9DoyaU3P70jC5JlekMJdKFbpUnCszE0xnRecF0YVbKguPAi3U2k97ParXSR0u66Xc+f1ujhnvV9WPGwDX2dz7ys+Vwize0kQxnXZ70jIheV8bQoJeln1GNClSJrsoSm1QsTToZZ2rIvIIg1uolDrzivZGTfbOe8VjNWipY7uKQtiRDEqSfm3V3AefsRoUBpRKsRJ9UCafPnbdTeA6uUb8RWOd22aht/4jd/g/e9/Px/5yEd4/vnneeqpp3j22Wf5sR/7sSu18Z3f+Z384A/+IL/927/N888/T9d1PPHEE7z73e/mH/2jf8Sb3vSmr/FbzJgxY8bXCZd9r88cBuAGKgxNXVHVLtQORn0ZYloYyJwmgwArxURdYlJKKWLycQgTYcRJyUZ5xHZTawbJaUgDipByaIwFwaKMhFGFGARRg1OjT85/KGOVQr7O2ZIGLnYJOclkW0S8aNsgRe+Zi3dCcPwvrXP6zQAhGroU5MDQw0Q8MFZHHYu6J0ZBQhg8DGZwWPWcbAUl0sdE13mqpFAs3yqoiR8Lnn51BeFBlurzrFt5QAyavC6Ve2WKN8ZKVe4Kz+NfC6HKykfy8BWxHJpCIEjg1qIlBKV9Q8vpYgn3hLgJbmmPIMmJ4tNwol1OQalqHEYFR0oen/JMrto9md9SFXn0LpRK15aF3FxxGxnD1XYk3kw9DhPB14wgMhovMil66q0YjPOlm5D3Z1FcY05Bm70PU+N7CUFj+IyM/XhVbsnjGqt2i3iYl5RNGUCJaEi+VytAJe/xiLQBaoWkxOCT/pV7NVVQ1IQmk5HLKw68cTOWlVGLfyaWj/UEMw4PtqxPF2y2q4HDEoMRgwvv7onLHIbcjpCp/SqcntzhXqwJtkAWaxbhhDorC51BYEGQjso6ttpzTxpUtqhu6VFqgSDGAlARDsM1/yG4gR4G8IxMzz77LM8+++yl937sYx87c+4v/aW/xK/8yq98DUY2Y8aMGTccs4fhSrhxCkPb9WgZ1stl/RXds1ROGi7CH7jwFF04UWwwnJvlis/qgpyoEXqw3p9PjQsfOq3EBTthTuX8VD6x8+6ZXuTseQ14deX8t9ZG3xjpKFEftlQHLdVySxWTx5mL0ZuhBATjtK9pSZglTrsG6LL12DtMFnKSKZdgu7aCjeyE41jMH66UT3biAt50jlMW0QW0VsjeDsFrM9CFkd1bJ4IkDusWYktCuHtao6dK2Cpx42tUiMPDHOq+sjCdSx1DlPbmdSd6p8jVJRxsamyfvPNZxeQCTIqjybSNcm7qmRKG+gyuhDGmrwXfj+LGjzKG6X45txxDeXgqB0/uszyAUiHai+4pVj4jKSvgisew1U5KkKAE1VHRyZpOjJOOxMYq3EWxNPckiBi3VhssKHc3S0zzRAXzVKrqyqpl5WznfUq61kWirrck2dLTsqzuswxrmrChkhazXFXROkx6jEQjp1S0lCp4yaCRMatadc06DKZ5rh52z2yNmjFjxoxXDS77Xp+/0x03TmF4JXCprlistPuMaLUxBp1RJivOjfIje01NMdAUBpMsZ4Xa/Ydzo0WW0qwNWxbLNLOVx4KEimq+boUja4RsXS0jDygmgZFhi/M3JpKxBIGYzcY6EVKHl2ciGY9ajlvr8xxOCOSanx1eecI8VSOnBFViTFgVsaAknBshOV3uVJc6V68yzhemz5vba2B/ba9y/0XnyvQU2Xw6XWX8Z6Z1bz/s1MDY33TnTcwg7ZfLw+YYq2Lr7jMDdyKTmSE77Ia9xhCqdGYsZb8qxABJhTpMmP5lBSdt7Q5wd7ZNvY0+k557FVJW5su+8Vfwc56XQFAVUoCUI6JSGLPJzpgxY8aMGTMux41TGOQ8a/u5N+ab96z6wK4HYXo/oxwyCJthDNXYETJzbEW5rxBvLQtVwUAq3BsRPUxIl7mPCemZOJHdFEJOlTlEkgQuFG6LwChAX0FaeDXc/shTqFqtTjxeJOpVz+HBhjurDXVIvLg+oEvuLYhBSamijh3LuudosSUKbFYt2xTpNdDExCImgni15WRCEDjtak62Dev1AtNA6gXbBuS08poATSZAL2wYtCVz03iucF14FWaCtJWHuaQ8swsl1Eaz6DlctXzDwSmKcFD3PDhacvfgAHtxCfeBLcNa+Rr5WpSyG9NsSjtRafso1v+p8jHdExdg2JuTm3YOp96LidB83roOsn8Y995+McBiXBfJ3ofiociFr4cscDZ534kXYzDWFw1VRuUWyQFmBrINTjYu6V0lK8aVh2FZ8gum0TPxln6jQaXDMxK8KBuMY0G9TJqqcbxZciJLYg2axkmU/MLGZG0tjG1MXqFPkU3fkKyj1QbYsAw9i5ho0BxyFTCJmMCamlyHmg0NtfXU6tWfHwuRdMUqyANuaEjSjBkzZsx4iZhDkq6EG6cwvKRleYnW4jPHWRizMApVA6l4cu/EUAuMMebDdR2vT4VJ2NuXlwi10z8LqdkiuTAZQ4VkE5BoLOt+EPZ79QGJ2JBiuIoehy651WSBpJK9Dn5vEEMnGkyXIn0fBweLGR5OVMaVx3Bm7NM5mmRFMhgrSed6E0SjqhOrqoPsOek0sm0rrA+USJNpm/vhPnTmHQUAAA0ySURBVOeu51UxVSaviZfS73DPBf0+9Hj/mX19ef/4PHl4r439RFlThWWqwFx4D5wh15ebbXp7VmDOe7/9KKRzmkKih0A1MRFC4qBqOYxboqizHPIYcj4vBKMmUUvKw3dSdMRoRM61K1wKnWhkF2H+x2XGjBkzXj247Ht9/k4HbqDCUFeBGDNhVSCEkIXsTCqdmJP9OAzk5UKyFSkig2braw5lMReeJUi2RHo7bm32vJdmWTAPwcPyxUhBkCiZ3GlYMKpMykwRYp29DXUg1ebW1g5iny3sOo495BAcMdAKrPEKyJhBj4feWLbyqo9VG9CVkW4Z4RDqBucRRCMuEqGCKoKlBo1QB+OoNjadW4SrylhGJUqkFmUZlBCglsQ2Gq1GhEhACPSsqsRB1bMIPW9crmlT4H57wEnXcLqt2SyM7UlDPKngFCwotnBSM9FciTEQz30JrWTLd5YyI15tOhphBXUUFiJEqWikw0TQ2oiHHU0I9AujP6ixFyvCWoi54rJlc7lkGzV5fQfmLQwVdCXnx7UsscpAns8KVyhqVNFqJs/o+f3s7MVybPv9jntv5zjXpwgDYdhGwTz4XlSzPI7cbvI9ERC0Aq18XwUZScdE358irvWa5jZCttgXF0NW4pwSDZO3Q7XwPyRrieoE9UiuUp7bxBALLqibuy/iEGaUJ2IyryEoUXzvatHQswcjEXxOhjlyUrwvRVZQO/GCihVY6jnujngQjINoYAGTnogXXeytRuhZWwRaekn0FlGEisRhbNlaR3gphdsu4z3M/7jMmDFjxqsHl32vz9/pwA1UGLo+k0+ySTLp/iJebo+1gXmasac5WhbEdh7PBRMs5OJTuJCkOVREJ0SFoNDmDDPtEojiZOSYSAsIW4jqYRfSl/YBM2IH0htaQwqC5n5D52FMWgbUkz0cRruA7euUdJhgmZm+AeqmxyovtlU3LSEmkhkpGQ9aAbJHwZQqGnXVUsWEBEXN36G3SC6nhpiyiB0H9ZbbtYd6ANzvlqxzUa6WyKY3UqvYsY9VF14V2mKCYEhXzM9OepBtURZcibPGsEoJTaJe9NSrLUfLNQd1CyFx2jec9rBVI8WetobuwYK4NSyN4SylxoFM9oDBJFZnir09Mb2nxDNNLc42eaZI40XoHzfS7v37XyrTOKk9BWaIS8oC/WDtByiE4NKRugIqvS+9itFXDHuknygbWuWWNGWuSM7SVHrwhR7Dn0o/mpWL4HvOCtkkcxgsFKt9bisruWJFsQVRI1G4MLvvW1XJEwm4JjKkaU29sO1qxhLT+Zkco2UKQ0q7SqnqLVW9ZlGfcqe+z1F1TCVbkBYs5YxYnjq1oSWGFqNnbcKx1gAchY4D64A1R3LjvgJnzJgxY8aMG4fX3L+WV9YDsxX5wmuDyXb3fDk9cIen95YiXdkzcSbHu7hYFGEITdJ8l+2IvZMus7HWpgHrWQgb/z+GHYX8XkM8f749pew5yceqk7Yn76WTa1r4AaLjC4tnzEEGNWMkzk7nbNrgfuyVTecyKx3l1kHT12FWzFxLU4k5ses5sv303JkTl2A65qkg/ZDbX0o0y4WNXPRCk+Nhz5Vr++Rk2PFk+O4bxPvJrZPYImOHxH9mbPtraYzZpLKSMJCiy37TUVnYadKmYUuTwe/Elk1S0O5PQP6lOe2vlr8zGXuan2D6lFfR9sSsqu6BVBNKMXfdV/IugXuGHv6MXbPNGTNmzJjx9cNl3+vzd7rjxikMoYSxZEj+33S9ZO845JSmRWgarZvj/aUN8wcIMsqyQxu5sBNRCLkew/S6Rbdqi5onNxKhSs7fjQbUgEJ3YKQjWBy75yAb2p1yUHmGF43QHxnt40p8EIj3oV4zeMWs8XvSLWgfVfRAoUmESK6vkAiVsqgVM6FLNdu+9grOnVfVVQWiUdeJg0XPuhM6TTn4REjqgpOnjQ2sTXiwVe5VKzYHp7x+cUoTWxah59F6y62q53i55d7Bgq8uDzmRW4T7FbRC6M0LwQmjY0983qSkoA0GS5yovUzUy45bBy2rpqcST/3aaU0gUAfQqPRqBCpkabDFLe0lEmgic+7JnVkwHDfJdE+UqtLTPSHlmYnI6TUUbOxnsPhP+pUxe1B536HfMTJqHFoZO7v9piEwKLdRVCnL+0bdwxB6/ztEoa8NDR4qJJXQHybSUqEyQgrYVjybaD8GHOmwn73zYc8LO4Rln1PJdRpsPKYodv4WIQpmiiWv+i1hDPVCvPpyrIymSjx6cMqfvf1VHmk2REmc9jVfPL3D73/pcdquIqm3KzksT4f58b4Vo+8qNu2CXre01GxoQANrWxGyy8kMEpFlSCxkSxM6Qj4nKGtrqMR4HR16XQ+DFWX2sntmzJgxY8arApd9r8/f6cANVBjUbMgWCQxC0xT7yt6+lXD/+hnl0IzdOrO5+utUsTBDi3QnZIVECMlzzZd7UgXgIUkKHl8dIbZZUZjk1VeFkD0FWkNaGCkY9VoI7TnvVUOqjFQZVJoN9ZZTpBpVTOSyXMNcuQU2C7HiGZLcI1AKb+U2suV1tOf7nFRiLKveq+eGRMBorUIxkhmtBk7bmm5bkXofN/g7n/eRUjNCLzm8KodcVZ57v6rcUxFCIgbPzqTZb9Fn4nafAl0CPa2oyhxdsr6uBOztifP+npzceUbGsV/UzyD0X7YX9/+2yd9yfr/DXixtas665cuIBkhhDCvyNVRSY665Zst5SDhhHN+rg8drUJaLtjR5v4mHZar4uCK4NwG533J8ng1G8arLddVze7GmDj0xh+Gd9A33N0u2Keys685Y2fVExTqxqDtC6Lldr6kkeXrgwcVF/mwrQqKSnqEmRB7rQdhyIC2N9ByF+pxRX4zZwzBjxowZry3MHoar4cYpDHFi/ZdssYVReNkhjeIWzYCnbSQflwK95ZmQn3ESqYzW1UJ4FXEyJjmSOgLZUlrEECeWipN1BWK2pte9F1ILkgnLW+jFqyMTyIRfQ8WQKKQkWMqW4SpQByM93qMnbokPeOw26hZ7WUAtQkoBouZaCk76bbcNMdhYyDq5tyAiBBEPQyJCECxBL7CouuH9e/X70YhZwDSw1UjXVaRU06WGw3rLKrY0wTiMHXeqlm9sjnlwsOKFg9s8uH3A8WkDKoQKMKFPPnFRPMWUHRh07l0Jjc/LkLlThGABMpciEggWqCWH6FukbitSDdRueZbo5HHNylvIBOayB4JI9kLZsI+KhT2JDccwfhHI5BmbHDNtI2+soR6BjG0Yef2ne5PJMzttjML3Rf2aGak8EwUWoNG5BcGEGBgEflGBTqjuCd0qINGQJITk646VYufuUQDJnGdBs8i/M2d+yYnTakOpjJjJ5Cqaj0NWRnQIMgrqdTw0axD+PonUV6y7BdumpY9KLYllTKzqxFGTON1EZ4yUz7zJEGYXbfz8pm3NKYEH0fhC7PnGxQPqoF57QUOuN+eVzJuQOIwb7tSn3IpbjsKWg7DhSFqWQamk4fhcvsuMGTNmzJgxY4obozAUwW3brqku+Ee8WGUvxQX3DM8XQW84nlh8s3BtAc/mE7wIWZZpSxg/fY7dbhuwVtx6rp41qTfFtqDr7HaIYNFKIhmoBG3U6yjQYSlijUCTB6og2+xnCVlq6hRRzYpHfp8iuEZDk7iCIYZEI20rCEasEqKJLiWqqqWLbn9NGkga6DTk1KnBvRMpUFUJa3t00ROWLaHachhbFtWWRhJbq1Bd8dWg3Dfo4xaT4CTxbcxVniXn6xdoGVLAYonKemp6Yt/DtoPUoUHpBVqDNkXWbcPJtmJzrPBlRboN0stQ9bhUfRbj0iyXw1o/ZG+c2Tv7953j2Tivk4c1v7N/z7nxvMrgwzO2c9oVgX6s92EYnfg5FEInzp3OaYH7sNt2yg2WvZ2m4wljGNYwruDesIEAHXIigJJSV4CsjEH2VmhWy4623Fne46DfoKcbJJ3w5XbF/10v+OOTyL0Xe8zSMLhSosF6H2Aqg6kUiYr0Pdv6lKq5z71WSRbYpIbOfC+ruefsVt3yjctEVXes6hMOqxd5XTjldmi5FZQYIv1Jlcd7NcWht+2l7ume7kptvdZR5vT+/ftf55HMmDHjTxPKd87L9b0+f6c7bozC8ODBAwB+8//7ma/zSGbMmPFy43+9zO19Fvjtl7G9Bw8ecOfOnQuvN03D448/zse/9NErtff444/TNM3lN76GUb7Tn3jiia/zSGbMmPGnES/n9/r8nQ5iNyQ4S1X54he/yK1bt4awjRkzZsz4WsLMePDgAW984xsJITz03s1mQ9u2V2q3aRqWy+XLMcRXLebv9BkzZnw98LX4Xp+/02+QwjBjxowZM2bMmDFjxoybh4erXjNmzJgxY8aMGTNmzPhTjVlhmDFjxowZM2bMmDFjxoWYFYYZM2bMmDFjxowZM2ZciFlhmDFjxowZM2bMmDFjxoWYFYYZM2bMmDFjxowZM2ZciFlhmDFjxowZM2bMmDFjxoWYFYYZM2bMmDFjxowZM2ZciP8fuomQLwzC0i8AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deepsensor.plot.task(task, task_loader, figsize=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The spatial characteristics of the missing data in the context set appear realistic and\n", + "will be similar to what the model will see when attempting to fill real missing data gaps.\n", + "\n", + "Once a model is trained with `Task`s generated with the `\"gapfill\"` strategy, the model can\n", + "be used to fill real missing data by passing `\"all\"` for `context_sampling`.\n", + "\n", + "```{caution} \n", + "Recall that we generated missing data by masking any normalised temperature values below -0.75\n", + "to NaN.\n", + "This means that the true missing data is *not representative* of the observed\n", + "data; the distribution of observed data is very different to the distribution of missing data.\n", + "A model trained with the `TaskLoader` `\"gapfill\"` strategy will never see values below -0.75\n", + "and therefore its predictions will be heavily biased.\n", + "\n", + "This is an extreme example, but the same effect can occur in real data sets.\n", + "For example, if missing data comes from\n", + "clouds and the target variable is temperature, a model trained with the `\"gapfill\"` strategy\n", + "will not learn the effect of clouds on temperature.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Combinations of data fusion tasks\n", + "\n", + "Real applications may involve a combination of the above data fusion tasks.\n", + "The flexibility of the `TaskLoader` makes it easy to generate `Task`s for\n", + "diverse data fusion problems.\n", + "Here's a concrete example combining forecasting with downscaling, using the past\n", + "two days of ERA5 data to forecast the next day of station observations,\n", + "leveraging high-resolution auxiliary data." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 29, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(3 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature',), ('2m_temperature',), ('GLDAS_mask',))\n", + "Target variable IDs: (('TAVG',),)\n", + "Auxiliary-at-target variable IDs: ('elevation', 'tpi')\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds[\"2m_temperature\"], era5_ds[\"2m_temperature\"], land_mask_ds],\n", + " context_delta_t=[-1, -2, 0],\n", + " target=station_df[\"TAVG\"],\n", + " target_delta_t=1,\n", + " aux_at_targets=aux_ds,\n", + ")\n", + "print(task_loader)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-11-02T13:43:09.657278772Z", + "start_time": "2023-11-02T13:43:09.512036743Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 30, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2016-06-28 00:00:00\n", + "ops: []\n", + "X_c: [((1, 141), (1, 221)), ((1, 141), (1, 221)), ((1, 140), (1, 220))]\n", + "Y_c: [(1, 141, 221), (1, 141, 221), (1, 140, 220)]\n", + "X_t: [(2, 667)]\n", + "Y_t: [(1, 667)]\n", + "Y_t_aux: (2, 667)\n" + ] + } + ], + "source": [ + "task = task_loader(\"2016-06-28\", context_sampling=\"all\", target_sampling=\"all\")\n", + "print(task)" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-11-02T13:43:09.890622157Z", + "start_time": "2023-11-02T13:43:09.826278132Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 31, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAJOCAYAAABYwk4SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5gUVfb2e6s6TGKGnJMKgoAgigFQ0VVEUMzKGlDMrmkV9WfaNbvquiqyKoZFMK/rh5gDGAADJhATScmSc56Z7qrz/XFD3aqunume1DDe93lqurvqhnNvVZ3pfu9b5zAiIhgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYpMDKtQEGBgYGBgYGBgYGBgYGBgYGBgYGBgYGuyoMiW5gYGBgYGBgYGBgYGBgYGBgYGBgYGCQBoZENzAwMDAwMDAwMDAwMDAwMDAwMDAwMEgDQ6IbGBgYGBgYGBgYGBgYGBgYGBgYGBgYpIEh0Q0MDAwMDAwMDAwMDAwMDAwMDAwMDAzSwJDoBgYGBgYGBgYGBgYGBgYGBgYGBgYGBmlgSHQDAwMDAwMDAwMDAwMDAwMDAwMDAwODNDAkuoGBgYGBgYGBgYGBgYGBgYGBgYGBgUEaGBLdwMDAwMDAwMDAwMDAwMDAwMDAwMDAIA0MiW5gYGBgYGBgYGBgYGBgYGBgYFCPMWXKFDDGsGnTJgDA+PHj0bBhQ3X8jjvuwH777ZcT2wwMdgcYEr0WsWrVKlx11VXYc889EY/H0a5dOwwdOhQff/xxjfZzxBFH4JprrqnRNmuzXR1BJ14RfvrpJwwYMAD5+flo06YN7rrrLhBRrdpnYFCfYXxU5cjUR5WWlmLEiBHYd999EYlEcNJJJ9WqXQYGfwQYH1U5MvVRU6ZMwYknnohWrVqhsLAQ++23H1566aVatc3A4I8GxliF24gRI3JmW8eOHTFq1Kha7SNIxlWEqVOn4oADDkBeXh723HNPPPnkk7Vqm4HB7oIvv/wStm3j2GOPrZX2+/Xrh5UrV6KkpCT0+PXXX1/j37NqEowxvPHGGxWWWbx4MRhjmDVrVp3YlAl2RZsMqoZIrg2or1i8eDH69++Phg0b4p///Cd69uyJRCKBDz/8EFdccQXmzp2baxN3K2zZsgUDBw7EkUceiW+//Rbz58/HiBEjUFhYiOuuuy7X5hkY7HYwPqpm4TgO8vPzcfXVV2PChAm5NsfAYLeH8VE1iy+//BI9e/bEjTfeiBYtWuDdd9/Fueeei+LiYgwdOjTX5hkY1AusXLlSvX/11Vdx2223Yd68eWpffn5+Vu2Vl5cjFovVmH27ChYtWoQhQ4bg4osvxosvvogvvvgCl19+OZo1a4ZTTz011+YZGOQUzz77LK666ir85z//wdKlS9G+ffsabT8Wi6Fly5ZpjxcVFaGoqKhafSQSCUSj0Wq1saugPo3FoIZABrWCwYMHU5s2bWjbtm0pxzZu3KjeL1myhE444QQqLCykBg0a0Omnn06rVq1Sx2+//Xbq1asXPf/889ShQwcqLi6mYcOG0ZYtW4iI6LzzziMAvm3RokVERPTLL7/Q4MGDqbCwkJo3b07nnHMOrV27loiIPv30U4pGozRt2jTV17/+9S9q0qQJrVixosJ2g3j88cepU6dOFI/HqXnz5nTqqaeqY67r0gMPPEB77LEH5eXlUc+ePem1114jIqJFixal9HHeeeeF9vHEE09QSUkJlZaWqn333XcftW7dmlzXTX8iDAwMQmF8FEdN+Sgd5513Hp144omVljMwMEgP46M4asNHSQwZMoTOP//8jMsbGBhkjnHjxlFJSYn6vG7dOvrzn/9Mbdq0ofz8fOrRowe9/PLLvjoDBgygK664gq699lpq0qQJHX744URE9Oabb1KnTp0oLy+PjjjiCBo/fjwB8PnCL774gg477DDKy8ujtm3b0lVXXaX854ABA1J8RTrcfvvt1K5dO4rFYtSqVSu66qqr1LGysjK64YYbqHXr1lRQUEAHHXQQffrpp0TEfWKwj9tvvz20j//7v/+jrl27+vZdeumldMghh1Q2rQYG9Rrbtm2jBg0a0Ny5c2nYsGF05513+o4H/QoR0cSJE9U97bouHXXUUTRo0CDFkWzcuJHatWtHt9xyCxF596r0H8E25fcmiW+++YaOPvpoatKkCRUXF9Phhx9OM2bM8NkAgMaMGUMnnHACFRQU0G233UZ77bUXPfjgg75yP/30EzHG6Lfffgsdf2V9dejQwedjOnToENpO0BcNGDCgWmMhIrr77rupWbNmVFRURBdeeCHdeOONvnkiInr22Wepa9euFI/HqUuXLvT4449XatOnn35KBx54IBUUFFBJSQn169ePFi9eHDoug10DhkSvBaxfv54YY/SPf/yjwnKu61Lv3r3p0EMPpe+++46++uor2n///dUNRcSdWFFREZ1yyin0008/0bRp06hly5bKCW7atIn69u1LF198Ma1cuZJWrlxJyWSSVqxYQU2bNqWbb76Z5syZQzNnzqSBAwfSkUceqdq+4YYbqEOHDrRp0yaaNWsWxeNxev311ytsN4hvv/2WbNuml19+mRYvXkwzZ86kRx99VB2/5ZZbqGvXrvTBBx/QggULaNy4cRSPx2nKlCmUTCZpwoQJBIDmzZtHK1eupE2bNoXO1fDhw+mEE07w7Zs5cyYBoIULF1Z8QgwMDHwwPqrmfZQOQ6IbGFQPxkfVro+S6N+/P1133XUZlzcwMMgcQWLq999/pwcffJC+//57WrBgAY0ePZps26avvvpKlRkwYAAVFRXRDTfcQHPnzqU5c+bQokWLKBqN0vXXX09z586lV155hdq0aeMjwX788UcqKiqiRx55hObPn09ffPEF9e7dm0aMGEFE3Ke2bduW7rrrLuWPwvDaa69RcXExvffee7RkyRL6+uuv6emnn1bHzzrrLOrXrx9NmzaNfvvtN3rwwQcpHo/T/PnzqaysjEaNGkXFxcWqj61bt4b2c9hhh9HVV1/t2/f6669TJBKh8vLyqky3gUG9wNixY6lPnz5ERPT2229Tx44dfYLBykh0Iu5rGjVqRKNGjSIiomHDhlGfPn3UvZUtif7xxx/TCy+8QLNnz6bZs2fThRdeSC1atFBiBCJOEDdv3pzGjh1LCxYsoMWLF9O9995L3bp189l67bXXqsXBMFTW15o1awgAjRs3jlauXElr1qwJbeebb74hAPTRRx/RypUraf369dUay4svvkh5eXn07LPP0rx58+jOO++k4uJi3zw9/fTT1KpVK5owYQItXLiQJkyYQI0bN6bx48entSmRSFBJSQldf/319Ntvv9Hs2bNp/PjxtGTJkrRzZJB7GBK9FvD1118TAPVDKh0mTZpEtm3T0qVL1b5ffvmFANA333xDRNyJFRQU+G7sG264gQ4++GD1ecCAAfTXv/7V1/bf//53OuaYY3z7li1bpn5oEXE1Qe/evemMM86g7t2700UXXeQrH9ZuEBMmTKDi4mKffRLbtm2jvLw8+vLLL337L7zwQjrzzDOJKNWJp8PAgQPp4osv9u1bvnw5AUhp38DAoGIYH8VRkz5KhyHRDQyqB+OjOGrLRxFxsiwWi9HPP/+cVT0DA4PMEEZ2BTFkyBDfQtaAAQNov/3285W58cYbqUePHr59t956q+++Hz58OF1yySW+Mp999hlZlkU7d+4kIq7gfOSRRyq056GHHqK99947lMj+7bffiDFGy5cv9+0/6qij6OabbyaizMZMRNS5c2e69957ffu++OILAkArVqyotL6BQX1Fv379FPmdSCSoadOmNHnyZHU8ExKdiOh///sfxeNxuvnmm6mgoEB9byHKnkQPIplMUoMGDejtt99W+wDQNddc4yu3YsUKsm2bvv76ayIiKi8vp2bNmilSOROk62vixIkV1pNP6n3//fdVaj84loMPPpiuuOIK377+/fv75qldu3YpTxfdfffd1Ldv37Q2rV+/ngDQlClTKrTTYNeCSSxaCyCR7JIxVmG5OXPmoF27dmjXrp3a161bNzRs2BBz5sxR+zp27IgGDRqoz61atcKaNWsqbHvGjBn49NNPVUyroqIidO3aFQCwYMECADwe1osvvogJEyZg586dVUo2M3DgQHTo0AF77rknhg8fjpdeegk7duwAAMyePRulpaUYOHCgz47nn39e2ZANgvOZ6TwbGBj4YXxU7fgoAwODmoHxUbXro6ZMmYIRI0bgmWeeQffu3avcjoGBQeZwHAf33nsvevbsiSZNmqCoqAiTJk3C0qVLfeX69Onj+zxv3jwceOCBvn0HHXSQ7/OMGTMwfvx4n58YNGgQXNfFokWLMrbx9NNPx86dO7Hnnnvi4osvxsSJE5FMJgEAM2fOBBFh77339vUzdepU87vOwKAGMG/ePHzzzTf485//DACIRCIYNmwYnn322azbOv3003HKKafgvvvuw0MPPYS99967ynatWbMGl112Gfbee2+UlJSgpKQE27Ztq9R3tWrVCscdd5yy/5133kFpaSlOP/30avdV12OZN29eit/VP69duxbLli3DhRde6POP99xzT4X+sXHjxhgxYgQGDRqEoUOH4tFHH/Xl1jDYNWESi9YCOnfuDMYY5syZg5NOOiltOSIK/aIQ3B9MZMAYg+u6Fdrgui6GDh2KBx54IOVYq1at1Psvv/wSALBhwwZs2LABhYWFFbYbRIMGDTBz5kxMmTIFkyZNwm233YY77rgD3377rbLx3XffRZs2bXz14vF4Vv20bNkSq1at8u2TP4BbtGiRVVsGBn90GB9V8z7KwMCg5mB8VO35qKlTp2Lo0KF4+OGHce6551apDQMDg+zx0EMP4ZFHHsGoUaOw7777orCwENdccw3Ky8t95YI+JMzPScJZwnVdXHrppbj66qtT+s0mKWG7du0wb948TJ48GR999BEuv/xyPPjgg5g6dSpc14Vt25gxYwZs2/bVyzYJYbrfdZFIBE2aNMmqLQOD+oKxY8cimUz6/t8TEaLRKDZu3IhGjRrBsqyU+z+RSKS0tWPHDnWv/vrrr9Wya8SIEVi7di1GjRqFDh06IB6Po2/fvpX6LgC46KKLMHz4cDzyyCMYN24chg0bhoKCgmr3lYuxVOSH5fe1Z555BgcffLCvXNBfBjFu3DhcffXV+OCDD/Dqq6/ib3/7GyZPnoxDDjkkq7EZ1B2MEr0W0LhxYwwaNAiPP/44tm/fnnJ806ZNALhaaunSpVi2bJk6Nnv2bGzevBn77LNPxv3FYjE4juPbt//+++OXX35Bx44d0alTJ98mncKCBQtw7bXX4plnnsEhhxyCc8891/ejMqzdMEQiERx99NH45z//iR9//BGLFy/GJ598gm7duiEej2Pp0qUpNkjVmMw4X1k/ffv2xbRp03wObtKkSWjdujU6duyY0TwZGBhwGB9V8z7KwMCg5mB8VO34qClTpuC4447D/fffj0suuSTj+TEwMKg+PvvsM5x44ok455xz0KtXL+y5554ZkVtdu3bFt99+69v33Xff+T5LfxX0E506dVI+IlN/lJ+fjxNOOAGjR4/GlClTMH36dPz000/o3bs3HMfBmjVrUvpo2bJlVn307dsXkydP9u2bNGkS+vTpk7LoaWDwR0AymcTzzz+Phx56CLNmzVLbDz/8gA4dOuCll14CADRr1gxbt271fTeaNWtWSnvXXXcdLMvC+++/j9GjR+OTTz6psm2fffYZrr76agwZMgTdu3dHPB7HunXrMqo7ZMgQFBYWYsyYMXj//fdxwQUXVLuvaDRaqZ9J992oqmPp0qULvvnmG98+3Q+3aNECbdq0wcKFC1P84x577FGhTQDQu3dv3Hzzzfjyyy/Ro0cPvPzyy5XaZJA7GBK9lvDEE0/AcRwcdNBBmDBhAn799VfMmTMHo0ePRt++fQEARx99NHr27Imzzz4bM2fOxDfffINzzz0XAwYMSHmEpCJ07NgRX3/9NRYvXox169bBdV1cccUV2LBhA84880x88803WLhwISZNmoQLLrgAjuPAcRwMHz4cxxxzDM4//3yMGzcOP//8Mx566KEK2w3inXfewejRozFr1iwsWbIEzz//PFzXRZcuXdCgQQNcf/31uPbaa/Hcc89hwYIF+P777/H444/jueeeAwB06NABjDG88847WLt2LbZt2xY6xrPOOgvxeBwjRozAzz//jIkTJ+If//gHRo4caR77MzCoAoyPqlkfBXDybtasWdiwYQM2b96svgAbGBhkD+OjatZHSQL96quvxqmnnopVq1Zh1apV2LBhQzanxcDAoIro1KkTJk+ejC+//BJz5szBpZdemqLGDsOll16KuXPn4sYbb8T8+fPxv//9D+PHjwfgKSNvvPFGTJ8+HVdccQVmzZqFX3/9FW+99Rauuuoq1U7Hjh0xbdo0LF++PC1pNH78eIwdOxY///wzFi5ciBdeeAH5+fno0KED9t57b5x99tk499xz8frrr2PRokX49ttv8cADD+C9995TfWzbtg0ff/wx1q1bp0JTBXHZZZdhyZIlGDlyJObMmYNnn30WY8eOxfXXX5/NlBoY1Bu888472LhxIy688EL06NHDt5122mkYO3YsAODggw9GQUEBbrnlFvz22294+eWXlT+QePfdd/Hss8/ipZdewsCBA3HTTTfhvPPOw8aNG6tkW6dOnfDCCy9gzpw5+Prrr3H22WcjPz8/o7q2bWPEiBG4+eab0alTJ/X9rTp9dezYER9//DFWrVqVdkzNmzdHfn4+PvjgA6xevRqbN2+u1liuuuoqjB07Fs899xx+/fVX3HPPPfjxxx99PNQdd9yB++67D48++ijmz5+Pn376CePGjcPDDz+c1qZFixbh5ptvxvTp07FkyRJMmjQJ8+fPz0oIYpAD1HkU9j8QVqxYQVdccQV16NCBYrEYtWnThk444QT69NNPVZklS5bQCSecQIWFhdSgQQM6/fTTadWqVep4WGKHRx55hDp06KA+z5s3jw455BDKz88nALRo0SIiIpo/fz6dfPLJ1LBhQ8rPz6euXbvSNddcQ67r0p133kmtWrWidevWqXbeeOMNisViKtlBunZ1fPbZZzRgwABq1KgR5efnU8+ePenVV19Vx13XpUcffZS6dOlC0WiUmjVrRoMGDaKpU6eqMnfddRe1bNmSGGN03nnnpZ3PH3/8kQ477DCKx+PUsmVLuuOOO3zZqg0MDLKD8VE166M6dOhAAFI2AwODqsH4qJrzUeedd16ofxowYECF58DAwKBqCCbrW79+PZ144olUVFREzZs3p7/97W907rnn+hKRp0tG/Oabb1KnTp0oHo/TEUccQWPGjCEAKmkoEdE333xDAwcOpKKiIiosLKSePXv6kndOnz6devbsSfF4PO13k4kTJ9LBBx9MxcXFVFhYSIcccgh99NFH6nh5eTnddttt1LFjR4pGo9SyZUs6+eST6ccff1RlLrvsMmrSpAkBoNtvvz3t/EyZMoV69+5NsViMOnbsSGPGjKlgNg0M6jeOP/54GjJkSOixGTNmEACaMWMGEfH7tFOnTpSXl0fHH388Pf300+qeXrNmDbVo0YL+8Y9/qPqJRIIOOuggOuOMM4go+8SiM2fOpD59+lA8HqfOnTvTa6+9lpKoGBUk+1ywYAEBoH/+85+VzkMmfb311lvUqVMnikQivu9yQTzzzDPUrl07sixLfdepzljuuusuatq0KRUVFdEFF1xAV199NR1yyCG+Mi+99BLtt99+FIvFqFGjRnT44YfT66+/ntamVatW0UknnUStWrWiWCxGHTp0oNtuu40cx6l0rgxyB0YUCKpkYGBgYGBgYGBgYGBgYGCwy+Hee+/Fk08+6QtlZWBgYLAr4osvvsARRxyB33//vV7lshs4cCBatmyJF154IdemGNQxTGJRAwMDAwMDAwMDAwMDA4NdEE888QQOPPBANGnSBF988QUefPBBXHnllbk2y8DAwCAtysrKsGzZMvz973/HGWecsVsT6Dt27MCTTz6JQYMGwbZtvPLKK/joo49ScjsY/DFgSHQDAwMDAwMDAwMDAwMDg10QMgbvhg0b0L59e1x33XW4+eabc22WgYGBQVq88soruPDCC7Hffvvt9mptxhjee+893HPPPSgrK0OXLl0wYcIEHH300bk2zSAHMOFcDAwMDAwMDAwMDAwMDAwMDAwMDAwMDNLAyrUBBgYGBgYGBgYGBgYGuzumTZuGoUOHonXr1mCM4Y033qi0ztSpU3HAAQcgLy8Pe+65J5588smUMhMmTEC3bt0Qj8fRrVs3TJw4sRasNzAwMDAwMDAwqAiGRDcwMDAwMDAwMDAwMKgmtm/fjl69euGxxx7LqPyiRYswZMgQHHbYYfj+++9xyy234Oqrr8aECRNUmenTp2PYsGEYPnw4fvjhBwwfPhxnnHEGvv7669oahoGBgYGBgYGBQQhMOBcDAwMDAwMDAwMDA4MaBGMMEydOxEknnZS2zI033oi33noLc+bMUfsuu+wy/PDDD5g+fToAYNiwYdiyZQvef/99VebYY49Fo0aN8Morr9Sa/QYGBgYGBgYGBn7kJLGo67pYsWIFGjRoAMZYLkwwMNitQETYunUrWrduDcuq+AGS0tJSlJeXq8+xWAx5eXm1bWK9gvFRBgbZwfiouoXxUQYG2aE6PoqIUu6zeDyOeDxebbumT5+OY445xrdv0KBBGDt2LBKJBKLRKKZPn45rr702pcyoUaOq3X9twfgoA4PsYL5H1S2MjzIwyA7GR3nICYm+YsUKtGvXLhddGxjs1li2bBnatm2b9nhpaSn26FCEVWscta9ly5ZYtGhRvXJctQ3jowwMqgbjo+oGxkcZGFQNVfFRRUVF2LZtm6/c7bffjjvuuKPa9qxatQotWrTw7WvRogWSySTWrVuHVq1apS2zatWqavdfWzA+ysCgajDfo+oGxkcZGFQNxkfliERv0KABAGBA4emIWDGAMb5JpHvv7fSvGDKtnN6WZWn7A+3pddL2o3VQ0XEr5FhK+ZC+LM9mCtZh/iqZ2ZlBefHZ11+wL60OMc9OEnOr9jG+jwDAZiCLARYDWYBrM8BmKC+0sLMxQ1ljvp+R7Fwbp3zrAla52JL8MwCQJeyQ5mr1GXnlPKMD7ZPWlSxP2nEAEPsYEViCENviIrbNASMSdQhggBu1wBwXka0JWJu3gzmuv0MivjniVYfr8n2uCxBfzQNcwCW1n9RxAlyAXD64JCXwmfOmunfSoby8HKvWOFg0owOKG1jYstXFHgcsQXl5eb1xWnUBOc+HsuMRtWJQPoDB8z3B+1jfx5i/nO6XxHvGLJ8P8PurgN/S98n9Gfuv2kIlfjEMFHQA6coEPodVkeUqsiE4T0T8fgOED2NANAqyI0DMTumfGPdpqqxLQNIBE/c3I/L8n20DEYvbSrJveJ+hf5Y2BO0D4JLwO7qjY9pcEJB0wRIJoCzh7QP4NWQLZYDjAo735cU3Nv3V577cwDFKqUMh++ASkpTAtPKJxkfVEZSPwhBEEM2xNQa1jRbty3DmNasx4PjNat+o/2uD829agfsu74iNayIY89GvqEQYVOt494VG+OL9EjD53RDCfQmf2Lx1OU44fx2eubsNAO5PVi2NYdPaWK3blkQCn+O9KvuoZcuWobi4WJWrCRW6RFAFKSNt6vvDyuzK6kk5z8F5M6hfcBwXjDFYFkNpWQIPjpmEvLwoRl58NGy7bhzS6s1bcdrTL2NHIolHzzgOh3bqWCf91jS2bNmCdu3ame9RdQTjo/4YcJIOmMVgWRbKdpZj9A0vI14QwxX3DYNt23Viw7qVG3H1oAdQtqMcNz9zEfoc2a1O+q1pGB/lISckuvzSF2FR8eNPsA1BAslXKbg/QKRbgbppiCt/mTR9pdhQAVmUro1MFgV0cjrlWHh3WZFWOmFegS1k+Y9TgLgji+9jak7BCXPGiXGyAFgWXIuPybUZEOXvWZ4FFmew4/wHlSLRJckEQWq7/NUmUrwSswCAgWyPSFem6eS3gGqS/EVA2hqKIsu1dnSbiGBZBCvPAYHAXOJFHFEhYoGVO7DybFhlAEs4AAgMpOpzwt1NJaEg9jG+j1wCyPUmhbkgneVnLp9bjUzL9AdTYRHfHKq8rEEqlI9CFBEmCSrupzxy3JKF9YrqNYVsZxpJLu4fBub5ENmeZaW0FWKgZlIF5WodWRLpFFzxCitTgyQ64J8jlwCLxKKF9GERUMQGLJvv85HX0jmKhTGXhK/iC2FM+ktmgSwbaj7EYqKsCshFSHh+AhB+XuyUbsASC2m+MXj2c//iAJYFZlveohsA2DYn0QngzlEj0dOQ3/pCDSfRxXEGYYecD0Gi+1YF5DkwPqquEe6jDOojevXbhvv/t0D8a/B+8N02ZhUAC8yJ4aH/twQNS+rmx2BFOPPyLTjz8i2Vlnvs7SUAgG8+boC/D98Tkbr496X+ZVTNRxUXF9cK0dKyZcsURfmaNWsQiUTQpEmTCssE1em7EuQ819a8GeQeCxeuwdV/fRGFhXGMeWIEXnrzW3w183cAwN57zcPwUw+ulX6DC0hLt+1EmRWBHY9gXVlyt7/ezPeouoHxUfUfi35agmsO+zsKigvwxLf347XRn+C7SXMBAJ2774FhVw2qlX6DPmr1ok1wSoGIFcOWNTt2++vN+Kgckeg+BMnu0DKomEBXDGkWBHplNsmGMyHcU+ql2Vcp6a+NpaK6mSKU3INvvhSBrynLU8bM4FNMkthPgigim4EiFsgCnBiDE7dUH8kiwClgYIIrZn7OGCwJWI7ghJKAlRAcs+yDeZwOWUH7AbIDn3WCXCPHSXBnYOJ4cDplu8QXCJJFETj5BEuQ+8whbqdLIMbgOoBV5gIxjShPCjLLcYEIAckkkNRILEmOCnUoswByLcByOd9lWVyByhhXITHGCTNywSi78++C1GZQdTBLu7jkvcAP8NeQ+5iF3nfafSXq+An0EH+Q1qiKCPRsSW2dEM0WVekrk2aZv7w+7762GFL8shvoIzhHFgAItbac95gNRKOAHehEqsIdF3Bc8eqI+5d5im+5uEIEkit9YmFR9anbEFSZ633JsYU93ZR0uX8QT64wgNtgMY8Mtyx+bUonatupxLl873OWEG3agEtCbe7y9gLKdBY4P+S6fO58q7GVw/goA4P0aLNnGXr12wrLInTdf0eFCvMDDtuKZq0TdWdcDSJekMCQc9ZhxtQGWL2s5pTdNYG68lF9+/bF22+/7ds3adIk9OnTB9FoVJWZPHmyLy76pEmT0K9fv1q1zcCgIvzw4zLs2FGOHTvKsWDhGnRs21jdLe1aNayVPh/94As8O+VbXPKng3HFMX0BAD1at8B9Jx+DNVu2Y1ifnrXS764I8z3KwKBi/DB1NnZs2YkdW3ZiwQ9L0L5zS3WszR7Na6XP8Q+8g9ee+AhnXn0MzrluCACgc6/2GPnoudiwehOGDD+sVvrdFVGffVTuSXRA+0HPPJLBB20fkx85icKYYFnDTo5sMy2C7WrkABOMamhMlVoAaX2l6bLKl1+QeAZ8RJwMlULyvRQySqWm2i9Jc/FeKNEhlOpOFEgUMiQLARJXVjIPcKPwj0kj0Fm5IKiTIoSL4KdgAWSR6Nt7LFhyyWouNPI7bJ4C3XqQZD6EslS2Tf6NBIkOAC4DYHPyk/IsOIhyYl6EX2BJuTmwki5YGe+Rh3yBpxhNWQDSyEByPXW9ZQnlbnB1pXK4cOGKV4NaQDrfUpHPUWQkxEIJP7cppYn8avRgm8o/hpDL2S62yesvU4I7xVb9+sqSVK9JhKnVFans2UUAyOYkOlmWCMNigSL8vfekjFB8u4JATzp8UcwVBYT/42GsLCDCAMvSntCR5LmmQIc33dJkH6TfJSYWzbQxEfFLgTEwJvonBubK60NrGOJ6sRj3JcH/qeneB+cu7T8ibXFDf83yEjI+ysAgHMWNkxjz8VxkGi3kgltX165BtYhefUux7NdSvPdi01ybkoKq+qht27bht99+U58XLVqEWbNmoXHjxmjfvj1uvvlmLF++HM8//zwA4LLLLsNjjz2GkSNH4uKLL8b06dMxduxYvPLKK6qNv/71rzj88MPxwAMP4MQTT8Sbb76Jjz76CJ9//nmNjNXAoCoYeHR3zJu3EkVFeei9X3scGNkDbVo1QsS2sH+P9rXS5zsz58BxCe98P0eR6ABw8n7da6W/ykBEcIlg5yCWlvkeZWBQMY4+53DM/24BihoWYr8juyMSjaD1Hs0Qidro2W/vWunz09e/heu4+GTid4pEB4CBww6plf4qAxHBdanOwmvpqM8+KrckelCxWamSW/+sKT7DYhJX1GawXFg9XXmaiW2Z9CERVK8qW6GR3azi10yhxJIh7WjkuCLtLPmZKXJcqildi3FC3PYU7GRxsodsoKyhhbJGDE4eHwfZEApLQZpranQ7wVXnVjl/bwsRlSTsSdQnmyliX5JSwUUB36v8GOCV1HtpgyR8XO89AxR5zlyC7ep1mbhbvJjvlGfDcXlZ5hCsBMEud8HKHaA0ASRsTnjZ4Op0ZZxnLLPAFZxMLAwJYp+JcA5kMXhB4TOHQ6Q2g2qACWUvIFwCQ5VV6CGqcRbmWzK5561ge4F2wpTMYZCksSJaQ5hoRZK63uewshn5w0ztctMsHGht6U0FV84Y4ypsxjQiHVy5HbH5Jgh0XpZXJBkuxXHBXLE5gkBPJoUfiPC2IzYoyttRT/VYlqc8V0/xMOghpdT3CN1+KzBWIr5qx/hnlZuBvIa8kFT6tWBp1wbjheR50+PB6/MYnFtLhBnSFiaUMp0CdroumFCrsyx/QBofZWDACfNDjtmM6R8WY+tGrjrusPdOkFNJxRxj7swCrF8dwcFHbUGkmuHMux6wFZff8zv/vgThloQP4i6KKUnL9EkNMHNqMTL+X1INVNVHfffddzjyyCPV55EjRwIAzjvvPIwfPx4rV67E0qVL1fE99tgD7733Hq699lo8/vjjaN26NUaPHo1TTz1VlenXrx/++9//4m9/+xv+/ve/Y6+99sKrr76Kgw+unXAZBgaZoKgoDzfdeLxv30G9OtZqnzeecARe/uJ7DD90/1rtJxM4rovhz7+GH1eswqhTj8fRXfaq2/7N9ygDgwpR1LAQ/zf+St++/QfsU6t9XnLHKXhr3DScfNERtdpPJnAcF9f/6U7M/eY3/P2/16DfiQfWbf/12EfllkTXCIEUNbqvjCRxxB+hEldq9DBSIlg33Q98edzVHqHXlX11JUaXSnTVn3axMS+8h7evgraYrB0gmjQOS6nPBTlNjLcvY5wr3la+twE3ypCMA06cwcljcOOcV4nsZIjuAKJbCVY5gaJAIs6QLGBwxY8rHhIFnEBKgofqdfi4iQGuiDpAFlexu7Znm/f0gXivCXH180OBedFvV8slWAnALvfquKJtV4QRtRzAcgjM4fYq1btMiKrPr+3nLpk2sQQLrhWFFbFUEkLmOFyRXp7kCQGTYb+QhWFMO9dVVHka7IKQ9zDpPgzh4YXCwIIXt94ePDIc8MJ7ZLLo5ruPQkhVabvsON0/Qp1kr3GofxQVH1ZEtlCXSwJdqMtB4PeeS14S0IglHjPR1eykcj3AJoAiYLbFm4naoIiIo24zL645C9jiNeW9CJ8aDCnO3/O5ZY52PnVYjBNLLrgtjIn45+Qn6X1viDsyV0tg7DipMdc1G1Ti0JTrUhsjhVxfxkcZGGSNv/7zd7zxn6aKQM8vdPCPVxYitmtFNvFh+xYL//hLe4z7ci5qIidXp+7l6NR9faXl5n6fj8dvbVv9DmsZRxxxhEoMGobx48en7BswYABmzpxZYbunnXYaTjvttOqaZ2CQE6xYuQm33vU6GpUU4N47TkF+XtVW347u0QlH9+hUw9alR9JxMev3FejSohka5Pkd88YdOzFj2QoAwJRfF9Y5iW5gYFBzWLFiI26/5TU0bFiIu+47Hfn5VfNR/Qf3Qv/BvWrYuvRwkg5mfzUfe+7bAYUlBb5jW9Ztwc+f8xjwX707s85J9PqMXUeJDoQT3WmV6HxHpWp0/XNQGerrW6+vKRdDFaQVjCGtrZXUU30gfb+WTtSkqZ9un49AZ96rDR6OQPbpU6JDkEQMbpQhkc/gxBgSDaAI8uhmTlDbLoFcwHaBBDGwOANFBB8sSGmZQNTSN8kXCdKeIgxuxCPwUyKZhH3WX3UFupw+B7CTgF0qwo/LZKgyLI0NWOUEK0lKEY/A1KUQY1IlKjdLkO+M8TjatgXEBKHnuEDSAijBm3G0pKPqPAmyS8YyZoCMP5yygJIB6nMMqjoFgxcXvTpx0MP8FIKJRQP1wvyOz0/oxwM+LahEr1QlDr8qPQUZXEcsxH/r7Wd6DbsU0pYyLk37Yg5sQaDbFifHZUxvx9UWukQzshxj2lMogsgGD6nCxHtEbACCNI9GgKjtKb4rGpZoWy5aeoQ+89ZAhFFM5FwQtz7kAgmT4xOrLUz5RqbZHjg/LnH/5mq+Rincyb9onDLNpCUcZVD/ZxkEMSQMd+ElYjU+ysAgYxQUOTj+vLWYM7MQJU14TPBYnoM2HRP4+PWGuPWsPWFHCIPO3IDDjtuMyC6UN/bnrwuxaE4cV93/e50vnHXYeyf+8cqvkE53+xYbLz7cAkvmFVRcsYowPsrAoOYw7Yv5WLR4HRYBmD1nJQ7o3aFW+yMifL5gCQrjMezfrnWV27n3vU/xync/Yq9mjfHulef5jjUtKsT1Rx2KGUtX4IJDDqiuyVnD+CgDg5rD51PnYdHCtQDWYs7s5dj/gD1qtT8iwoxPfkFBUR66HVz1hcHHrxmPd56ajPb7tMF/fnzId6xRi4a46P6z8PPn83D6dUOra3LWqM8+Kvcx0dOpzjOCUHLqj6SHPZ4u29ZJep9KnQX6lopEySylsU/vK9PwCSkjSHeAlM2KRNX6J9m/NFO8klILhpA7zHvjKdFFzHNL+yxjn4tXV8Q6L2vIkCjgn3lcdKC8IZAsBHYkBBskVZbMi3FuidAtMva5DGdgaYpyjVcKV2lK+8nbr86WTmaHnXoLSMQBJ6Id1041mIjbLsLVyESicLk6XSn7ZVSPYB+CbHNluxaPrewSwGw50QyIRfh72+Yxll0HSCRVolF+HTJfolG4Irmfmz1B5WTptMaMGYMxY8Zg8eLFAIDu3bvjtttuw+DBg7Pqu15BEdTys7Y/3eJamA8jCvgZ3e+pP17ZSm0KtO01xOGEELyZhFtR91DYzafvDjke5r+r4hZ1P5y2f223ZfGwT7YIrxKxVWxyRUQTCR/DRLgSaOMVJLskl2UCT1FHT7pMEQsUtUAR3jYF51jYyBj8oVOC8ybmWVcrcpst/+knSVIDgEwYKgqI/SlXiwthv8uvA0eMV8Z4lzXcEFvI9VTrao70BNRaeCNLOGPlq2rfRxkY1AecculabN1o49gzN2Lfg3fgqiGdcfMTS3DVkM7YviWCH6c3wJ7dduLIkzbn2tQU3H1xe7zw7ZycKOXzC4EDBuxQn8c/0LLWCHTA+CgDg5rEEYd1wSdT56BRo0J036fqpHammDz3N1z9v3cAAK9fcja6tapaEsE1W7cDANaK1yAu7ncgLs5Rfl/jowwMag4DjtwHn37yCxo1KkS37rX/1NsX73yPe84bAwB4bMrf0aln1fJIrF+5EQCwYdWm0OPDbjgRw26oUtPVRn32UblXooepLEPLph5nulqxUiW2RniFKdN95TQCqiI1qGqvAtszCqegkeFBki6oQk9RqwbqBNsL6UuuD5AgoMCg4vqq91KFbgNOvoXyEoayEsavGI205hwPU6Q6CDxhqAjfYicAq4yT0rZQpANQPI6PABf9+RTeAb5RqcuFUJK048HhKiqOafMnuyZhiyINRcxN2bDFlCoUkPMDsQDgGc8EQWcRtykYtp1ptvrIf5n0TzsvTFiXEv4Z8CudM0BVVv7atm2L+++/H5068dXQ5557DieeeCK+//57dO+em4Q9uYaKWR5Qn/viP6f4gwp8BX8TUK5rxxjzJxUN1k3nb1Iu/gp8XFg5iZQklVo5qU4OI/lD/W8W/QbrqdhNyjCoJzT0cpYl4pxbPFZ53BbEttiIxKKX+CwXtfTxui4PuSRew2KE87oWV6CLJKSKWA6YyTT7fT5IzockxUnzL/oiKfPa8jtK8q7HdAvOLji57Yr5I7EgIEO5kOaE5BSrxWDyVOq+8+H9D2LyXnB5/76QBUaJbmBQIeL5Di6/ezkOOGIr8godOOXc198xbiHyClw8/uE8lJfyfZbtwnWgHozcVTD63V+zrvPV5AZYsSiOY89aj4KimrvfT//LavzplA0AgHmzCvCfe1ph09pqBmjXYHyUgUHNoWWLEjz97/PqrD/96wllcQ9/PHcBlm/agj/32RexSAR3DD0K+7VrhUM7dagFK6sH46MMDGoOLVqWYMwzF9Zdh7qQKouY4V++PQNrlq7DkIv+hFg8ir8+fhG6HdIZfQb2qg0rq4X67KNyT6Kn7Mu8OolwFwC0x8+1djO9IJU6WZITcp/2ubL68vF6vckwostHAlVMMCnrgzxXYL/qSxAi0nS5j1LaYB4BbkGpKZUaXdophIlWGSG2CYALlJcwOPlQhDkxIBnTxuYClg2wBBBJ8jIMQtGthQHnqlComOvKHrGfbM+OoNJcKsFTzi753xM0Als/TP5NTY3lRZJgYv5cm1JiVjNHO5WCDJOxreWTADxmOiecmM1gJTQCKmIBSa4wZ5bNleiCzOPxiuUgmadGz1LSW5VEDkOH+h/zuffeezFmzBh89dVXf1gSPSWBZ5AkryyZolSgp+yWhGhIHTeQVFMnTVXuBPKT1CnnWVwzKl8EpdoehnQqekDLGQF4jkXW08tX3EVGCI4r3VxBKqh5WXIJFLfhRjzmiYi4ytsGiFmqHeYSrKQLlmSwLAZyLDDLHytcLTTKJ3ZEMlLeHlNJkPkUaDYTb58RvHPGwAltOXcWJ6GZ9EVBMt57K8TfTHDdFD4VjAkC3SP4WdRWyZ8ZZOIJ4Wt8fboiRJXucyBU6eJ6dBmIuf57Aoz/L6hC0vX6nGzGwCAMR5y0CceetVHbw78UNWnBXwsbJHNgVXZo0S57Gx8e2RYvflfz6vXCYkJhcTkAYPSN7WqUQAeMjzIw2J1xzD6d8PRZJ6EoHkP3Vi0yqrNw7QZc8d+3AABJ18UF/Q5AswaFuPiwXTOOsPFRBga7L/oP3R93v3o1Chrko3OvzBbpls5bgTvPGAUASCYcnHbNEDRu2RDDbjixFi2tOuqzj8o9iZ5CNGdGFrKw+LsVqdF1AixTJTrgJ6pCyyJAKkBTKAbsCZpcmUpTqWDh/6z61Al05rc1QOoHyXuSbchy+qtUbauY6IArkok6edo4ZJsyAajk9YjHILccEdIlyeP9ymqK1A/2pW2KONel3TrhXRkXGHhPIfvlZ48M50SYoN48BbjGZimhuitJMq5Ct1ytLUhCTbQhYsGrwau4yyEGSkVoNX2Nq21VgeM4eO2117B9+3b07du3esbsztDuORZUiFdGSof6AU2FHuZbwpTooX4q2C5CygT6SefHKoKuePbF8AfUdRpcJAhLOpmu33R2pPSVBozxVTuhRqeoINBtS7XDLE58e3HEAbgeea1IbOLH1e2o/KEg3gVxDkWgM7EA6CnOlQJdxlKX0nTfQghkD37Rv1DaM+04N4MpYt4XIz1sLrQvKUza4yPztbIgP2Ee/IITPAcpi0j8WvbUExleUwLV9VEGBrsbvppUjN9+ysOe3UuxaE4e3h7fBPv23Y4XHmyJgwduxogbVyG/sP790Hjuq7m1rqa/9+UFKNvJvzC++WwTvPrv5kiU+7OeMuV/M4PxUQYGuy8YYzi88x5Z1SnKiyEvGkFpIomWxUW1ZFnNwfgoA4PdF4wxHDhw36zqFBYXIJ4fQ9nOcjRt07iWLKs51GcflXsS3WKpP94zAJGSWIqmmP8xdI14DVVrqmNIr0TX64URST51KDxyGtDCPwTGG0RIH6Tv1+0EtCST2k4xVgq+1/uX9QFFUgeV50oZLlSrJOxiDkNkB2/RLuVqTAligBsHkvm8cVvEP7fLAHsnwS4HLIdgcbEQ3AjgxgBXJBCF7bWjbNeIc9+VIW2U062IZ22cpL0odXigrF5f70DOi1aPLwSIpH8ElfxPmUQAXE0NK4hzAsBsiJjzDIxZYAmxkMDAYzQTJ/qYy7y46JEImGWBXBdIOoDrglwX5Goy/gzggNQGAFu2bPEdj8fjiMdTZWE//fQT+vbti9LSUhQVFWHixIno1q1bVn3XK+gxoOVnIDNyFxD3L/nK+56gCYbwCPqVsNeKEPRPyhZtYSasDZ/KPNBORX2EmZMNWZIuHEiYf03bhoj9bblgSRcWY4BDSiEuo8C4gjC2HHBiOenCLnPAHKG0TvL/KW6EcTI+avPY55ovJwj/JHJHwOPq1eCZC5CKZc6E+hzivfAfKgEE/HMe2McvH+FTbMavRdmeDL3i8nGnzCfAr9co0069xXMx6KS6reVekCp1zf94/Yk+HCgynRTBT7zdLBD0UQYG9R39jt2CTvuWAgDeGtcUfY7YijefbYqVS+I4/fK19ZJAB1An44rnAfE87qP+O7oFkolUoU02j0sDxkcZGPzR0LxBET64cgQ27SxF15bNcm1OpTA+ysDgj4UmrRpi7I8PYsuGrdirZ4dcm1Mp6rOPqiQWQW0jncItixZYIL6wbDaoKE/pJ/AaegypdgXLpt00OyraKm03pJ10ISZU+bD33kbp+rICdS1vP0UAJ8qPK5MArlKP8FeuzubqcyvB1eicNPIE5bAhYp/LcSDzLXCK/ec75BIIPxRQjKc2yMRfJsh0qT73vRefQRWYK1RPTMyLUoO6ngpVdRsgOJlOZlVhkckhbwOAdu3aoaSkRG333XdfaL0uXbpg1qxZ+Oqrr/CXv/wF5513HmbPnp11//UF0r+wdPdMpvd1oL2UezPMD6VrV9YNN9jvG6w07etlg/4j7Fi6PiqzIZM66Y6l88H6PouJuOiMk8FSga4NBRYTiUChchcwl2A5BOa44l6WCm947Sgfpb2m+GBtbiGeY9GcivID8J5x8TyM99dXXvMpvhKM+UrLrlgaH6TmTIwtZYblOAJ9pqjW9baC8y9RAz7KwKC+wbIItzy5CPscsA0A4f2XGmNwu30xpP2+mPRqY9xzaQc0a12Oi/62HO+90ATJRK4trh94a+FPeGfJD3jjtx/Qq99WyC9Ylp3dTx7jowwM/nhoWdJgtyDQAeOjDAz+iGjWtvFuQaAD9dtH5VSJzmwLjFmhj1eSDGtRCTxFOgCEJOwDhJo0HYFTyT4Zaz1YP6gKZVLlnYZAC9QnvUw6BLsMvpFKclmW6e362/H1x+DF8g2wKwShLhdhXMjiSUNdi4EiQCIfnAgnTpRbCSC2GTzMi0gkapcRIuWEyE6CXU7qGQ4nAjCbcWGvCBXj2kLZqdvs8Tr+cYuQMZ7UOzBXktR2oVSovulwvTKqSpCpEqJK5sCbJwBWgnhoGiJOiMs6DsFKuGAJ8iUiJXnNMHAlukWclCOLx2aWyk9XqJJlyAiH7yfH8Y8vS5Iq+PjMsmXLUFxcrI6HqdABIBaLqcSiffr0wbfffotHH30UTz31VFb91xtEbKjHJYCKCewM4FOhy/YA7/xDaz+FuMy074oIa72tsD40ElhXRstj1UgkmRaVKexlv1oZkuS5BZBILuraFpyoBTdui3sN/P5yCCxBQEQ0IxOJJl3AcZUSnQBQ1AZZFlyb8S0iCHhb5ppgym8yfW4E8SyTmDKZM4K8ciScKw8D5T3po5PnJNTlKjQ7Md8TVtxfWerckMXnhTEGlnC8xM0AXzEQ//tUTlZyvXPMtEUHl88FXBeIEJjjcB/kOHx/0P84jnj6xtvIzY4BrM+P+BkYAECTVuVo1jqBOTO8sACuw/1YJOrCdRiOPWs9nrqjFe56fjEi0VxZmh3Ky1Dj8c1rErbNt+WLovjl2wJEYzxHSFkyu6dljI8yMMgN5q1ai3999Dn679UBI/runzM7dpQlcP+ET8EA3HTakciP+Z306k3bcN5jr4JcwvirzkCrRsXhDdUSjI8yMMgNFs1ZgWfvfxv7H9YFJ190RM7sKN1ehiduegUAcPkDZyKvwP/lbN3KTbj+hIfgui7+9eZ1aN62bkPA1GcfldtwLhUi+yWLFEW6IlzJryLkhcNf9Xpew2Gd+eoq+pTgV3QDXoz0sDYqHFBIOU2NSpId10nnFDWpvz+PXA6O3yuvEo2Cx/x1RfJPxwYIpPHYgniywROKOiJ0i8NJaOb4p5JUCARJ0OtjhC/8gi+IeYDoBwJXB0s9wMLKKbsDx8ROSXapZKQaKc+ClVzyCHny1weRR+IJck0mBFR1A/YwX9uuF1ZB/5wFXDA4YHDFTBQXF/tI9ExBRCgrK8u6Xr1FNYljluJv5EVP8DLaBvpJR6qns63CutprZe3tCqvGITaSXHQSyT7Ve4uJRMkEmeBXibGFT7YcV5Hrkjh2tXYVga7aYyokk1yslAtrITOassYnw0L5B5D6L8a3VkHalw3yl2PpHKEks72CvkUPltInU2p6SYYzvX4m/kYn0d2wgVaMoI8yMKhvWLs8jmtP6Izg3der/1YcN3w9vpvSAPsesgOPf7igxtYkaxv3X9EOR526EX2O3LbL29yhcwLvLP5ZfV63FmjZK/P6xkcZGOQGT3/+LT77bTE++20xTu3dHQ3ycrNqN+WnBXjz618AAId07YDB+3fxHZ+5aDlWbODhMmcsWI7j+9Q1iW58lIFBLvC/MR/ju6lz8d3UuTjmjINRWJyfEzumvz8Lk176AgCw/xHdcMSpB/mO//z1b1i9bD1//9Wv+NNpB9epffXZR+WWRA/GG1axYwksEGnGrzgPA0t9rxS+aQijdOczTClaQbdeeBSkqDvTJhmtDGFcidynJw1VRD00G1hIXS8JnldeHwNS1OkUASjClegMPExLsghIFvJGrQQQ2QFY5fyYneAx0HnccGkr48S7CAnjRuCLxy5/W5JMKBoydt98hLHjwX2SvNYYc18oea2cMkGqy/Xj+vwAkEslMqyLahhQBBQjscjgkjonzJKhYSzwAOqWUOMTP5eOiIXjOEASgGXxuOh2BKCkZ0AWUOGSs6h3yy23YPDgwWjXrh22bt2K//73v5gyZQo++OCD7DqvR2CRKBhL4yZ1pba+OlNpo/JVvAn6qGx8lToeuEF0f4BA20EfkS4sh7pfsriItBAimdfJ4LiIRa8WClWyUPE+wpOLkm3BjdlIFoh8Aw5/GkbmMuD5CcQiV9RW/3+IAWQzuFEbbtzipHmUq9BlAlGyocLCkCCflZ8jgBwR/1yR9AALJl114fdL+vmSc+0CStWuk9OO/6kr9UoM5FhgUdsrI9rgnRAQEc4g6ldRkc2vPRaxRV/E27AtHrvddYFkEuS4ALmqjF+FLs9Mlgt9VfBRBga7H1Id3J7dduKzd0sw4PhNKs3G7oIVi6I44IiaJdA3rIkgL99BQQPuDIiAlUuiaNEuAduupHIFCNoYz89SiW58lIFBTnB0170wac6vOLhjOxTFYzmzo9cerdC4QQF/37FVyvEB3fbAoP32BhHhiB571rV5xkcZGOQIfY/pgc/f/wG9+nZCQYO8nNmxz0F7oWGzBup9EAcP7IHDTzwA5BIOHtSzrs2r1z5qF1aiZwdP4YmAxE8nhQLfqENJqxD2OvhjQSPN06rMq4sg0cb8A/MSjIYbGySjKfCqFydAqc994V4AToATgyuJbhIEOTFFlnPVOYElASaTcCb9fblMhIQBE2Q98/MuBI9g0mxPS6oH5ymDIjq37gNpm0terHO5GKDimWttCNJLtuVqaygECJWsphvVyVYxfqZevZliPmMDhGYWcMTKn5NFxdWrV2P48OFYuXIlSkpK0LNnT3zwwQcYOHBgdp3XN6QjhqtCoOvtqXbEvRx2T1d5ES646pShLT67gp8rGWSVfWHlNpL2XpLo8j1XiRNci4RvEc/L6P8TSC5+kfI1JJJIi/yf/Kkbm8ERinZ5D3MSH0qN7ltnC6xZAPDNmxMyOlUnuFinTYfMbw25DqL5Gl9CZBniioSv1k+78LFMzoXF/KdQhsTxEeHifyljXhZky/IWBhjEdVD9b0NV8VFjxozBmDFjsHjxYgBA9+7dcdttt2Hw4MHVtsfAoK4w8ZnmOObP63HY0C2VF97FMPq9hTXa3qwvCvHWs03x92eWqH2P3dIG+x68Da07bq7RvrJFVXyUgYFB9TG4RxcM6rY3rKAQoY7RpkkJPr7rEgAItaUgHsOD5x5X12YpGB9lYJAbHH58bxw6pBesHCshWrZvipfn/AsAQm3JL8zDzU9dWNdmKdRnH5VbEj1iAyyiKdrII2r0uXYJjGVwkepMhh6+JSyUS9i5DPbhY0aC76HUkSpBpt4vEK5CD5L8gEcep7m+lPoS8FLBKgIJWhz2AIGu96tCzGh9SYWlFSDOxTEmiCM3BjhxTqoo0twF7J2AXQrY5eQlEnV4WBetCyTzRWxhmyk1ujSUaayUUqdLojndfFH6/T5iSmfMg4S9LOvqYyJPZa5INygSTRllc1EmcwT5ZDEgZnvCT2j9utpOC4BrQ7FkUoluWXzSEhpZSzxYjhoquUApMkZVnNbYsWMz7+CPgmiE+yjAr+x1Xa5m1pGp+tp3XwZCuGSiQk9LVks/F1K2MgU6kGp/tosDGdmYYT3NVuVHLW8MSoUuyGE3HoGbZ4OiFpy4BTfO60QcQIUq0RNsWgBgq3vQjdlwYhZXn0vyXMs5QSJHBGyPVPfiT4mps4ivpjngCnTyVJWSCId4GCXtkzQk6rlMxFMnkAtYSZkAVasr6+nJT3UQRExzQYRHAv/uBSHOXBLx0C1hJwFke7HQIy5YMina4rHQWVI8PeO6PL8DLO4Uyys/xRJV8VFt27bF/fffr/I2PPfcczjxxBPx/fffo3v37pl3bmCQI3TsuhOt9yjFocdtzLUpuwTKdlg47ISNvq/fBUVJ9Oi7NXdGCdTnH38GBrs6MiXQiQjzVq1Dm0bFtRL2pTpEfmkiifkr12KfNs0Rrc5jNWlgfJSBQe6QKYFORFg0ezlatGtSK2FfqkPkl+0sx6LZy9GpZ3tEosZHZYPckujpSKMs4z/72gtrqybV4hoppawMlTenq1+1vvRx+GZHKZbTLAzAx/X4FelBoloqLQU37DARD13yOiKkAQhAApyAFgp0q9zlr45I5OcyNS/M4aa7TO/UM0QJGx0o4spHkmcxZ/JUpBMJp+UFA2S7JUMqOABLkqpEgTokOVCNKCOIS1uLvkCWR/AzsVrBSTFBPrli0cK2wFyLZ8VSC0oMcJOZTwIAl5jaDKqBMB+lK8eri5r0T+lU7KovZOd/shleLTyR47/XNAJd84NkiQSgQlDt2qTWqSASDJO4MZnjAknynisj6T55aBYiHu7FtfmTN/qCpe4vpWhbLTiK7uRCJBM+Ug8Rpe59USetj5JuXPgLcgEm8lIwmyclVe1JvyPJes0e1SiJp2F8Ca9FPXD/xhcGtf8tyl5Lu8Zt79JxXcAmdT5U2052X+Kq4qOGDh3q+3zvvfdizJgx+OqrrwyJbrDLo1e/bfjn/1uQazN2KRw8MJUsv/DW1TmwJBXme5TBHwlEhMmfz0UsYmPAIZ2RkmdsF8V/pn6LUR9+gVYNG+D968+vFbK6qrhs7ER8t/B3HLdfFzxw1pAab9/4KIM/EogIn77yOaLxKA495eDdxke99thkjPvHm2jWphGenX5nrZDVVcXf//xv/PTlrzjilANxYy0o1uuzj8pxTHRBUEmWVio8gzdFNr/NK1Kiq/2BcgB8Mhj9uN6u3Gdr6tFMVOg6IRwGXV1e0XgCKnRpK6nQBvDCDwRVsoGwBLC1stp4mQVQhMGNA26MqzKZBVAcSBYDIMAuE/HQywiRUv5qi7joUtXNmWhOPjESKvSoFyYBYgqlgFMRSsQvB0ViBecuOEXkfw2K/n1TIMsx770avnhvSfLLIaWs96nbJQEl59wOEPdqBUJcz0olSlyBagmGioiXkXUsC7BFKBlNMcqESp252cUErM8rf3UKW8vbIBMoWjq5CC8BrLz4Mg17kuKXQu5ZH/mZ7lz6/UGlPi9dW+kWBipb6KzOl5iUp3SYR1rL45qP8pKKAojacGM2yOYKcqfARnkDoVAXbDATCY/thAg3JZ484U//8JjnsBkoaoPyLDhR5qnOg8OSvj7olwSzTuLpHT3mC8nbXfYrFzxlPe9FI761zWKAQ6CIBQbNd4i2LPmkC/P7VsinXWwrpA+hPk8SVKwqV/v/oic1JgKSrviiyq9H5rj8HIiExwwAXIKV5XfC6voox3Hw2muvYfv27ejbt2+V2jAwqEvssc/2Gtd1GNQezPcogz8Spn71K+4a9S4AYPQdZ2D/fdvn2KLMsGzDZgDA2i3bkXDcGiHRHdfFS5NnwiXCOQMPQMSumtJz5UYesmv5xtp5ssb4KIM/Ej5//Wvcd85oAMCDH9+O/Y7skWOLMsPKxWsBABtWb0EykawREt1xHEx4+B24LuH064bCjlStzTW/b/C91jTqs4/KvRLdsvzR5uU+PbRLVZHu10q2iswgXJ4ok7elkVd6nz61aqBMBkg38tD9Uj6oGF4GcsWrRvbodaVZFGiGTzuBRDiBZAxw4wDZgFXKiSAryUl0qxxcpe2ITea0YxBhYng9N8qjmOjJS1X/zLPDx4fLHQz+86UR7vp8qsNyqslrR+e6ZFnSK0lijODFfRdEvuLwZDtykkRIBhlOJ3hemEzGyjiBBkBTrDMeCkaGhBDJETmRxV+Z/MLmCAOS2X2Bc2CJzaBaCJLb+j2sPymg78uUTM8EVWVcUvqWPgl+snxXYXMCvij0KRS5QEk8TwNBRE+JMzh5FpwY4/el+H/CRCgXIlL3ssV4bgaemFQs7NkMyRiDGxF+Sm7BqQn4K490hhcCSqrPNT8kVeOMae9JqxfWh96mGLpL/I30Q8zlMdx1/6jC0ID7Gd2xStsZ8blh4KQ/c8gXdkqGkJGqd9ha3HQGTqi7HomuQlM52X2BC/qoLVv88aHj8Tji8dRHs3/66Sf07dsXpaWlKCoqwsSJE9GtW7es+jYwqGv0OGgb/nL3qlybYZAFzPcogz8SGhTx5HiMAYWFNR8WpbZw7aBD0bK4CPt3bIOCWLTyChlg2g8L8eiEzwAAbZqWYGCfvavUzr9HnIiPfv4VQ/ffp0bsCsL4KIM/EooaFQIAmMVQWFKQY2syx4hbTkTT1g3R7aC9kFdQM771q7dn4JkbXwQAtNqzBQacXjUx0e0vXI4v3/0efzr94BqxK4jq+KgnnngCDz74IFauXInu3btj1KhROOyww9KWLysrw1133YUXX3wRq1atQtu2bXHrrbfiggsuqPoAKkCOlehC0se8H/BpQyfon8MQVFlWpkL3lbe8/ena1etYetvw1w17rUhpHoLQWOoWQtoG9DjB3meWGgNdGz/ZEEnztDISNoAoA8UYnAKGRDGvb5UDkTJBvjiAlSDYZUAkyZWeluvluEOEKzzJZnCjgBNhnJyyGO9bhluQmxXyqitBQ8gsH4EeYMfVIdJsktPGoGLQS2I8SJJL4kueYou0OSKubmXEeSTfkwj85CkiTcVFtrlxBB7mhpHjs5FZDIzxDfIVjF+XlmD2s1RBkHh0hurh4zN1CssCLBFaxyV+oQsBr2+xDPAvnFVEfgd9kv6qv09RobMK2gxpK8xfZKJGl2PR+w+m1Q6zWyKTxQOfbwvz0SH9qHmxgJgFikfgFtpINLC5opwxWJLsJcBKEt+IE78WI7VgRbbI0xBlcMRGNg/lwv2j7B9+dp8FbJQktVhYY756TCQwFcNhfHHSI87J367+QbbrateRUMgTiSdWdOW4nCPNTUgVvOpJ9uGK6xOyEemjxDH9KRp5zVsWmEXgq4PCecrj6nrPjkQP+qh27dr5jt9+++244447Uup16dIFs2bNwqZNmzBhwgScd955mDp1qiHSDXZZ9B20GUPOWZtrM3YpEAGT/tsIP3xZiBPOX4cuvUt3mTVdCfM9yuCPgFc/nIkff12Jv5zeH88+OByRiI092zfNtVkZo1FhPi4/Oj2BtLM8gRUbt2DP5o2RafiHds0bIhqxQURo36JhlW3bu1VT7N2q9ubS+CiDPwImPvYBZk+fj/PvGoYxM/6JSCyCjt3bVV5xF0FJkyKcfV36BMSlO8uxetkGtO/cImMf1bpTS0RjERABbTq3rLJte3Rrgz26taly/cpQVR/16quv4pprrsETTzyB/v3746mnnsLgwYMxe/ZstG8f/pTUGWecgdWrV2Ps2LHo1KkT1qxZg2Qyu3DI2SC3JLpU0MlHw4Pzm03s4UwUmz6yswoKT8mG6OYQBNmUjtwHvCC46fvkJAfz15PNMq2Mdjy0RwJIxEQhqUrX2lPXsEbkEESCUUlgu4BVRoiAAJeTTXYZ8QSiWogTlnC5Kl2qsiEEipaIURzxYqrrykxyhNIzGDKB4B9UOt5YzomcF61tXckJeNyfjIIgp8IXMsH1fyYm8n+KSB6uVJhK8lyGpQFfQJDEvR573pLj0NSqEKQ6yeSEwk6XuCLUkmp0QdQxKWG39BOXGerz4zN1Cp2g5Eyo+AyoC1Evk/bplwx8mI50/iJsX5jfTNdoiBo9xfeENauPvUbiEUhZs3bLM33zk/3Sh+lPspDjAkkGq9ziD8GQzMcgfIFDsBKc3CZw1TaRWMyLcL/mRgRxbmn+SKyXkM19GABfwuGgsls9HSPSG+iLeurpEwZPpS6bCLap+zHNV5H2Rp4GV4TlYsrpIfyckFdP9/3MFn5cxFnn+Ru482MW8cUASahrfpY5rmqEd02ak832aRm/j1q2bBmKi4vV8TAVOgDEYjGVWLRPnz749ttv8eijj+Kpp57Kqn8Dg7pAmz3LcMe4xbk2Y5fDzGlFePi69jhu+Dp03T+LrOl1CPM9yqC+Y/3m7Xj4xSkAgML8GG65cGBuDaphuC7hjEdfwqK1G3HVoH649KjM1Jad2jTFe/dfBALBdQlrN21Ds4ZFtWxt9jA+yqC+Y+PqzRgz8nkAQEFxPq4dc3GOLapZuK6LqwY/iN8XrMG51w/BmX8dlFG9PXq0x0tLnwSI+6j1KzeiSatGtWxt9qiqj3r44Ydx4YUX4qKLLgIAjBo1Ch9++CHGjBmD++67L6X8Bx98gKlTp2LhwoVo3LgxAKBjx47Vtr8iVD2da02BaSxKuvnNRD1Z2WaF7Rcsqa6EDOvXpyq3QtqtqLxHiqbUTbfZWj2ldtbaZF7bupqcZFgQfVPHmb8tnayS+0V8YNmvVERHS8G3HVyNHkkAkXJCJAnYLieMLUjSiavYERPxhiNC2cmYpwS3tU0j0hVPx7x9YdcEY6nlfHW1qsGm1HtBYClyXBBJir8LzqGoA4urVxFhvnALJMrJU+Zxrtp1opsn+rfUxlRb3C6dSfPqZwqHLLUZVAPBha2UCw7eOdbLp/gfy9vCyvg+h9RHoKxuU3B/Sl3dLoS04S/Li4TZJsqH3Btp20vrj4XflfPhazNdHVE+IraYDYrZcKMMzGWwkoCdAOwkV6HbQoVuyfHIujELJLeo9FFM3cOwwH1hVPgw3SbfTS5exZM96mmSoN/QT5b0t9p50+sw4aVS/JZGoJPFxBwwkC2eUolY3HcHN4u/krZP5XPQ/x/JudVBnsmMefWY9OXSQsviiZCzjEMa9FHFxcW+LR2JHgQRoaysLKu+DQzqAgNO2IiRDy+BY5619+GtcY2xZYOFR96aj8Fnr8Njt7TGVUM6qe3R/2uDDWtzn3jLfI8yqO8oKcpH147NYVkMB/fokGtzahxJ18HvG3iouIWrs4v527i4AOs2bcfxN43F8TeNxfxl3tNE9/33E/S75jG88eXPNWpvtjA+yqC+o7hJETrvvwcs28IBR+2ba3NqHMmEi1XL1gMAlv6WXVL1Rs1LsGHlJpyz15U4Z68rseCHJerYv69+Fic0PA8fjPu0Ru3NFlXxUeXl5ZgxYwaOOeYY3/5jjjkGX375ZWidt956C3369ME///lPtGnTBnvvvTeuv/567Ny5s1r2V4QcK9FdvinJHvykjPxRL5ONZhsmQPUTUE4SgWfLJKUODq2X2pCn+JO2SIVxuuouBMNMaRWfnu1aN0GyK1AtdCZkrHZiXI0OGaubvCSiKUMiFcucLK7WTOQzJAq43UwKD4WaU8VDd4Xq0/HqEjipT+Axi2XOOsvi6nhiUKFN1FBDwiYwqQxnEAR80ObUefOpWQU5Lnhpf9xhqRSVynTJVlnecZ89iiQHHFFGxRaOMRV32Uq6YAnAckgR9FKdqhL9iWSuJEIjsKQrhslgMQtMMGUE4qc+CTDH4de/UoBmBhcMLiy46Z6QMMgMjnjUIAim+Y2gXwr6mooQ9D0p13oa31SRu6rwCR55gwQdilc25PYSb0J8tO5XSP2pGIz5fWFwLPpxcYwEeUy2BTduI1EUQXkDG26M7+e5Gph6UsYS/zJYkrwIPCrEFBNxz3n7pN3rLoPfhxE8lbpcdNMWfZVKXPoaph0XdZn4HyAX7ZQCXbSll/cWKrRTz+QYyQvPol0XetgWCaWSl08CQfN7YoGUVPgZpqnieb4GRhZYkvgm/A9zLDDLBbmuWOTTOyT+ZEAWqIqPuuWWWzB48GC0a9cOW7duxX//+19MmTIFH3zwQVZ9GxjUNvILHdz4+NJs15bqPZb+GsenExvjkbd+AwBM/E9TvD2+ma/MFfcuR+NmuV95MN+jDOo7IraFcXeejfJkEnk1FE+8NnDPxE/w6ewFuP2Uo3H4PntkXC8WieCJC07EV78tw9n99su63+XrNiMpvtv8vnYz9m7HfdXEL39GIungna/n4KR+uUtuaHyUQX2HHbHx7y/vRqIsiXh+LNfmpMVj17+Ir979Hlc/eh4OOqZnxvVi8QjuGn8pZn0xHyeMODzrflcuWgMn4Yj3q7FXL74Y+sHYT5AoT+KjF6fh2POPzLrdmkLQR2WS/2rdunVwHActWrTw7W/RogVWrQrPLbRw4UJ8/vnnyMvLw8SJE7Fu3Tpcfvnl2LBhA5599tkaHJGH3JLoANQj4Or5dvkeqUSQTlz52mCp73UVZVDJHfYafK/v09tJ6QOeqlDs88U0D8YyT0eiy3bS2ha0Ses3+Gppxy3NBqa1JT4qct1moAhP0pcsZKCYIKNEzHNdtW25QuEpPvM45yIOeoTxq0qoFX1RSJQt0NSY/vHpp18RQfpOUYjpBJb+Sqm7wl71xH7yM9MvLaYf9ydoVa+ud71arpgPYQMISqHq2SYKy8UC3jIsMDAiMKlGVySbYPqDhFUGMI/41RQC92BFpyKMPK9scS7Fl4T4tmCYjHTlKrMprI8wXyNBJNTPafxQoKxPnV8Rgn2m85FBP2dboJgNpyCCRHEETj5T54Q/RUK++0e/ZWEzL1dD1Hs6RkH6I+HLfE/KyGHpC2zQfJturiTC1WKrPE7ee1GRl/d8iJw+Jhwb00LehC62yH41n6eT+nyBQBpL3pSr/kksImttOmLMSa08Y8pXecp5bf7UamT1wrlkgtWrV2P48OFYuXIlSkpK0LNnT3zwwQcYOLB+PYJusPvjiBM3Yud2hqJiQ27oaLtnGf7+n4VwHf6v7bjh63DocZuwfEEcD1/XDquXxXDLn/dEfpEDGQqRCLAswiW3r0C/Y7cgUkdcn/keZfBHgGWxXZpAL00k8d/pPwAA/t83P2VFogNA384d0Ldzhyr1PWC/vTDyjAHi/Z5q/3WnHo73vpmLiwfXTjK+TGF8lMEfAZZl7dIEetnOcrzzzCcAgA+em5oViQ4AvQ/rgt6HdalS331P6INLHxzO3w/to/Zf+uBwfPzK5zj71lOq1G5NIeijMs1/BQDB+PBElLJPwnVdMMbw0ksvoaSkBAAPCXPaaafh8ccfR35+fjVHkoock+gMII2ZSKdMtIQsL53Ckn/DTm1elQeU+rIqKvRAWdLt0ImE4HsG/+fggkDYWIHw9uUxrQ759nvsjeQ0SH72WB2voiJOyIvl6wiVeTngRrhS04mIU0QAizCQS1yl6XoktxCdi1x1pEk7PdsZAOaQFw/d5bHTEREkvF4QHsktH1TwzRX55yFl/kR99SpINRWv2IGnAtWJMTEHgFCeWjw2umuJrvSw/YIkk7Pr2Py6YC6DBaHgTHrGMjE3khxnIn4zIJSvNgNjFr80bQZmu2ARBpQzsGQZkMguMYL3+Iz5AV9tSB+lB9uvbF4zfXLG14/4k04lnu5pElmmsqdwFNkZ4qvSkP6VjSCbr+0UtE8jyMm3WOlvnMRxkgp1F4BLXhJQF0otzmwGSgKUgFpPhAOVSNSNct/maqGkSPTp+TORJ0L6IMuziRj8anRtklROCW2fektaPel7HDFk6VeYNxbllyTEOOF4vlHZb2mXWuCVaU8h6Zevf7USXl4Imw+EpC+yXN5fxBJKePIGJFcRkg6sneVAWQLZoCo+auzYsVn1YWCQCzBGuOr+5bBzL1PZ5WDZQOPmnoOLxYFmrZJ45dEWWL2Mq5G2b41g+1b/5HXuuQOHD/UrmGob5nuUgUHukReN4KIjD8QnvyzA2f33q9O+bcvC2QP3T9k/bMB+GDagZmwhInw/53e0bl6Cgix5QuOjDAxyj3h+DMNGDsH0d7/HCZccXad927aFU69JTVp6wuWDcMLlmcVXrwxEhB+nzUarPVogr2F2TiroozLJf9W0aVPYtp2iOl+zZk2KOl2iVatWaNOmjSLQAWCfffYBEeH3339H586ds7I7E+T4K36AVFZsg/+Qd5xSianKFOY+pXYlZcPaVW2kazddnyz9MdUuUlmolPKBY3qdUBV6RZ9FNZ30YfDi5kYAN8bgxhkgEs8phbXLwBwXlsPDI1iyHQYv/q4W/1xXQzJJTqkx8+NMT+YXmA+fCj1ljtIcE+SSrsxMedWO6+UgYrsz2XcwVjuFmCJIcanSVCZRuMlq7ok4IaUdlPUA5tV3AZZ0gGQya0KWPz7DN4PqII2P0lER6V0ZUvxBmJ9gqccr6j+07ZA2wo5n0i5R6lVVyVgprIzul30+M2gzEzkbhBI934KTb/GnXmQzLid1+St89yIsePkZxOIg9DBRTBD8OnkviXP5XjuUAgbVZ2hB4SO8z6SVl/HPFeutJSCV6m9AZlPVfYaav6CaHfqCgDdIJo2R5qnrWetfNiT9lGyXaXWkPYyXsRwXrDzJCfYsYHyUQX3FyRevQ3k5Q55NGf0bqM/48JXG+M89rXDa5WtwysVrEU3z++uKe5bj4ttWAAA+fb0hnry9Dcp2egqLX3/Mx3Ed94VlpfoZBqDf4M24+oHfUVDkHXcc4L7L2+PbT4pBLtC8404ACzO23fgoA4NdA9cMPhTXDD4012bUCl79YCYefWEKCvKieP7eP2dV1/goA4NdA+fffhrOv/20XJtRK5g4+n08ef3zyC/Kw5gfUpN6VoSgj5J5rypCLBbDAQccgMmTJ+Pkk09W+ydPnowTTzwxtE7//v3x2muvYdu2bSgq4kmg58+fD8uy0LZt26xszhS5zURhaUylio8eAqVQ1BKhSajY5NprGNmuyuhsQwaq0nTxzqUiT6qvg+0w8h0jXSqYlhxmGj1HKS+kyR/1MCki2rp2XKjRQZpEXO/H34UkBlUsdAdgCfHq8CR9VoJgl3OVOnM54UQ2g2szHkcYAByenBMySWeSYCVJhCXR+nIJcIi3L2IYq7nUFeJCGZ5ugyMuGzU/3tiIiU0oTH0zwLzywXUbyQ2pfkizTU6l3JhHSxG4sp4YV667llCpJwks4Xqb46qx8TkQinSXeNzzhOO9JoVUNRoNf9KiAriw4MCCuwvkDt69IS8oAlxHbBS4oIJVmP8e1wnPypAiKQ5jaPV+wsjvkL70HA6avyIE+tMJ5OCm9avuL7WxCjYEQkxBLe7JMr7wTmJcxBhc24Ib43HQnbiFshIbpSUWXJtAjPirFvcbEK7X4srzZJ6FRNxCMgY4EX5vStU6gfsfKwm4NsGJAk4McGPySRyuWFdjFJ+lmp0siIUusSW0947nw4iJehFRLyraEp+dCOBEmHrqxZX9Sj9iMf4+wpT9nsMin69T42MakW7px0RbKedPu1QAtbDq2pbw8xbcqOhfXkOJJKwd5UC5eEommd3TMsZHGdRXnH3tSuQXGAIdAF4Z3RxbNto49ZL0BDoA2BEgv4CQX0B4a1wzH4HOwZAst1BeaqdsZaU2hp633kegA8Cy3+L47O1GKN1uo2ynjUWzM0tWLFEdH/XEE09gjz32QF5eHg444AB89tlnacuOGDECMjG1vnXv3l2VGT9+fGiZ0tLSrG0zMPgj4t9vfo7j/jYWn/6wINem+LBlG7+HS8uTSCSzzS1jvkcZGNQXjH/wXYw47G5Mn5TbhMVBbN24DQAPW5PIMjJCVX3UyJEj8Z///AfPPvss5syZg2uvvRZLly7FZZddBgC4+eabce6556ryZ511Fpo0aYLzzz8fs2fPxrRp03DDDTfgggsuqJVQLkCOlejyCXJActoaAa6RlBVCVysGFaDBOL1hivLg+2Cb6dTqYUpxX99pyHek2a8T6EF1amh/LPVYiu4a4WS9IoE9U50IgxPlhLiaLkEQQRBCzNES24FBfQiq7sMg+xQJ+tIeZ1o5N6Q8C3mvXUREqYd870m7LLR21T65O7juQOCEd0j3vlFrCyucSBOqU/J35lOrk0fWM4g6KnQCAU52Dgswj/jVFLQctxx6jPoK1dtVZE+CxHhl/qeyfWHHWAVXccZmZzO+gM+Ti09yrNpCJaWMHyDLAlkMTsxCMm7xhbsIJ5hleBS4/n8fqi1xU0ky2iOZhWrdAdw4fOFaoBHQvunR/BMRJ8qhhzjx/TOT5ZnmS5jPt/iuK3FcxnXXinlz5lJgH8DUXMqh+n0yBdoh0Yvcy+D5Hq1Z35jVsIl5fszliZGZ64r3yQrXlcJgfFRNwczfroQz/7oa+UWUeb76eo5xX8z1XGGGczJm8nwQgDF/b423xjVFJv9vRp7UCZpr0+B5Wsu2eDi/DFFVH/Xqq6/immuuwRNPPIH+/fvjqaeewuDBgzF79my0b98+pfyjjz6K+++/X31OJpPo1asXTj/9dF+54uJizJs3z7cvLy8vK9sMDHYnfLVwKb5YsARnH7QfWpY0qHI7rksYP+k7uER4dcr3OLLXXjVoZfVw3okHo2mjIuzVtgkalxRkVdd8jzIwyC2+/+QnzJj0A068cjCatW1S5XZc18VrT34C1yW89fxn6HtM7hIWB3HmTSehSatG6Ni9HRo1K8mqblV91LBhw7B+/XrcddddWLlyJXr06IH33nsPHTp0AACsXLkSS5cuVeWLioowefJkXHXVVejTpw+aNGmCM844A/fcc09W/WaDnJLo1LAIlLTASsuBpMuVtxIyBrmE/AaeTpGrx0z3IYQwquj7uI9AD+kmrOkUMrui9vXXLImwYBuZlK/kmiXGlZWJIoZkITiZJBTiVkKo0F3AcsgjX7TxEuBTQnrEk1Cly2nU1ZOAigNMBK4mF8pLNSyHq94tXfktbZbKSpurRp08eHHVw6ZDqk6Jl7P0eXH9ZZT6XSf9wRcQLFeqNL25ZcH5FeNnUmGeQqDL6fHUwD55e/Cat22goEAEcc4crlj1Mxnbq4mSAiBpAzvLANflTwlIBO/hisKuqFjSSC0fWof520tbLxN/oZWxKigfdkiOkah6zy0FyHEVZkQp1GXyXqZsJHgEejLfxs5mEZSVMJ4zAPBU4AAPP0XgYak0VT0xy68+jwAkEhyTzYlprkT3yHRfEuHgXIjb1BZJlyM7CXYZX/iSYVh8yvWoSNYsiXomFyCh5W3gOSbgynni7akFRHndEPPimruaOb7LQdDovoUA7X8ZgeduIMafhNHXg4JsO5hnM8n1AB7WCw5/qgYiLBXl53GpexYwPqpmUNw4ifJtESQTRom2K2DQn9fBzu7fda1j+1YL5aXM03jIA9rCIADE8lwUNqjZ+5FZqe40Uc5QXoa0fck6X07KhjRjqMyVuE72Ks+q+KiHH34YF154IS666CIAwKhRo/Dhhx9izJgxuO++1EehS0pKfHE833jjDWzcuBHnn3++rxxjDC1btszKFgOD3RUJx8ElL76BcsfBso2bMeqM46vclmUxXHjsQXj/27k488jeNWhl9RGPRXDK0b0AAFu2ZJf3wXyPMjDIHZKJJG497j4kyhJYuWgN/v7qyCq3ZVkWhl1xNKa8ORMnjji8Bq2sPmJ5MRx/6UAAdeujLr/8clx++eWhx8aPH5+yr2vXrpg8eXLW/VQVOSXRHYuH0rbEN3vGGCeqAI/clMiGLNKJSNf1SARbkAY6EV+ZeloSPGH9+CR7smuNyNelhpJE0upU9V8e6e3KD+mGoe+nwKv8aGn8BwFMxUEXZLAIUaArIdXvriBRo5FuykzidTkppM2NTizK7KSarSwpGCR9v+iYhNKfk/DMR3BRanFokW48NWiaE+A7rTq/DXi2hMyr6kPKl11KJdnDyNSAPUQEnhBQO5zB5a/DIaY2g6rDtZjKlatCsSo1LsAv1ACprd+fmUJelGFyverIGcOeaklXRvdVyofW7PVDvv7EPazCIrGUsUqSWCYDJc0XSxU6CQJbhRlR9XhbKnSJUKDLxT5GIjKP5S3CKZ8WZrgkr0WflCQgQcJHupyYlvVlXw4vyx/xEQc1FxDkrmVfej7llPmDWGfQGtHCoisuKYUT1/ukQPs+sj6kY7lf820kGpKLBm6Wl4rxUTWDK+9bjgf/0inXZhgAOO//VqJVh+yfHKtNzJhShL+ds6f4ap3+XmvcvBxPfzqPf/+oxVty+1YLN5yyF+5/dUGlfe29bynWLa85pTXzPRlUOYI+KvjjMR6PpyTFKi8vx4wZM3DTTTf59h9zzDH48ssvM+p37NixOProo5XiSmLbtm3o0KEDHMfBfvvth7vvvhu9e+9ahKCBQU0hYllo37ghflu7Hp2aVV3hKXH50H64fGi/GrBs14H5HmVgkDvYERutO7XEkl+WoWO3dtVu79yRg3HuyME1YNmug/rso3KrRC+MgRwR77k0ASQSPBMQY178cyBAujChXtQIc1coeF3BpISp1S3B8KZTYqb05fVHwTLyeGg9hiApRSl1AmRSpvAR8qLtNKFUJFHirygg4tqSTDpqCYUSg4oRbJcDdjnBTnBFejByi85968SUsgcMTLCOlrSFGCegJBHuCgJLElkiVjJTSnhCpBw+IpogSS+CG2FwHIYEwOMMW5xsU2QX894rpTk03l8SSSR+XIlsqSTr+3oViwqkLWLoxJpaFBBJQwn+kC06ZFJRnbhiDLC56pZZDIjYqj0AXDWaBRwRg8ox6oRqgWIRkB2B5YpHFBwnvY/S70WmHZMXVEXsun4PpyO+mbYjG5I96PMUaR1sO7VMjbApQT8aDN9iaX5Z+m5BDFOEgaIWKCrCuMQgFtjE/aglBGaWqGhpfkIQ5GQx9bSLfGU2wCzmrfvZSK+21+5n5gKRciCyA4jucBHdluS5DwTzzQl7BooyOHEbyaSFBDG4MaYWBJRf4pMg6skOwAl5Pd4ZERCThgKUhP8EBkPKaAmlSX2G8LsibIwrx+Wx+tq/qJDzCJ6cFRbAImCOBUQj3jnOTuRpfFQNYf2qCPY5YBsIDItm56N0xy4mg/4DoaRpAmU7gXjthF/MGqt/j+LTNxvCzWCFq2GzBJbMz0PT1gm0bJeoNZs2b2ToesA2FDeu2GEkyhl++LKwxvpt0jIBssuA3zOvE/RR7dr5fyTffvvtuOOOO3z71q1bB8dx0KJFC9/+Fi1aYNWqVZX2uXLlSrz//vt4+eWXffu7du2K8ePHY99998WWLVvw6KOPon///vjhhx/QuXPnzAdlYLCbgDGG/3fpWVi+aTP2bNo41+bUKv732Q946v2vcMYhXbOqV5XvUffddx9ef/11zJ07F/n5+ejXrx8eeOABdOnSJVuzDQz+0GCM4fFv7sOqxWvRvmubXJtTq3j7qcl48Z7Xcdzlf8qqXn3+rZdTEh0Oj4/hMgZLEOOcXCRvCyOLdC5KV3frJJOEFsOVx+OwAan4zIAoCiXQQ7pJ6bPCNjMkpnzFuBw2dCFHqliVIl2bIKEahCSYNAacIMIYWCIWughjIpOCwiEgSTyGpHz0XzbtI/0CYxc7U24X3Q7ddqnoFS88SR/x5KZJ0obDVKx0smXOVKHyTIJfza6/aRZ8L3npkHtZTY0YH8FP4EvBu25+qtJcmwfXDe1HEoR6Uz5b5WKEb192ZKZLltjqn9OqU4iQFfr1rMLzSB8VXLRTqzdZnLN0xYMhXrJF0B1W2H7I52oitD+dQGfMu7b1cC8ET+GsJd7ki1TM8xuuiD0sCefgghu4v5XJNl0tXIsMucIg1OohYQdYsDGpfE8QWLkDlnCBpMv9pZR3WzwOC5EtVOjcjzKpeNcUoelOe2W3rRyDbh9z/f4k3bn37XZd7t8DJDyvn2qZWnCwuLrAK8LgZqkyMD6qZnDsmRtxxiVb8OLDLTDnu6Jcm/OHBgPbZQj0uTMLcM3QTpX6EomFvxTisVva4rEP59dqPPfW7R1cff/KSsvdc3EHbN8SrZE+2+5Viic/mo/tpUn8LwuOKuijli1bhuLiYnU8qELXwQITyFX3lU/q+PHj0bBhQ5x00km+/YcccggOOeQQ9bl///7Yf//98e9//xujR4/OZDg5h+u6+PzDn9GkRTG6798x1+YY7AbIi0awVw2o0Hd1vPjpTKzfugOvTJuVVb2qfI+aOnUqrrjiChx44IFIJpO49dZbccwxx2D27NkoLKy5hcvdEa7r4rP/9xWatGmMHv2zW9Aw+GMinh9Hh33a5tqMWsfro9/HxtWb8ebjH2ZVrz7/1stpEE1LJuiLRwWTIQkreGFdgkpP2+Jxoi2bv6rN4vvCSCGlELX85G+wfUvbguQOA58tuYWR8MHyYYxMqOI9zRasLOvrCwh6u+qjZIB1IlYnrzgJkiywkMy3eEzxGOOxzxNApIwr0CPlgJ0A7CRguzwajmeW30D/cMQHi/F4PfqwiCmVtiXWNdRGDHY5EC0FYjuAaBnx2MPEjymCn/EfKEycB8vh9aGdah/BxLRjlnZ6AtOn3tgARQDYfOPKcLnBi5MuSCdGmvJc2Gg5fM6YvhG8pygYS70MLcYJuEgEiGlb1OZbFvBW/kyc3OrATrpgSQeI8nlkjuNfKNEhzx+z+Kv0JbrPCvsRLc894F2Iwfs8RfGub/D7roAfq3CT/af4KoaUCzRYryLIcpY2FzZTvpOkit9m3rxZ3ljI5gr0RMMYEsURJIoZnHzuW5j0G+Rtmoibc8HiHuZKdvke/P4V9zXlAW4R4BQBlO8/ppTb+nDA7+PYTiC+zUXeNgexrUnY5S4sh7gfSgJWwvXsA2C5DLYDnohU+i7t1Ps6sQI2qM07pxRhoLjYYsInRRgQ5ceUr2JQ7ZHeofRfwk9J/2trflSdK71vm58X2Bb3R3kRUF4UiEeAuM23LGB8VM2iWZsyHH3aehQ1rD0VsUF6RGMuOnTZmWszFH77OU/8i8rAXwu4LrBodl6tEejZoFPPHTj0+I2IxtNnAmWM0PvwrWjcouJrnogw6dVGmPt9lkn7Aj6quLjYt4WR6E2bNoVt2ymq8zVr1qSo08PsfPbZZzF8+HDEYrEKy1qWhQMPPBC//vprVmPKJd7/37e4b+QruOGcp7F88bpcm2NgoDBp1nwMvP0Z/PvdL2qszS9nLsTJlz+NR8Z9UmnZS449GB2bN8IFAw/Mqo+qfI/64IMPMGLECHTv3h29evXCuHHjsHTpUsyYMSOrvusj3n36I9zz50cwcsBt+P3Xyhd7DQzqCtPe+A7ndL8B4+95vcba/Pq9mTi7w1/w+DXPVlr27JtPRtu9W2HY/52QVR/1+bdeTkfESpNgZQmw8gRPpBa2ShHcRyHlgmRNGEnEK3vK7HRtISBorMqPCanq0x/HB7ywM2n6rbxdrW35PtinfA/S+vP6Jm0XXAJZxBWeLoAkwJIiyZ2vGy3xndx8ykW9b9GXq/XPAopUTdUJFyqRKSsXyTgd10vMqb3yOLzkM0PGO3ZZQGEeUKVKBboym4VsWtXgdOvzoU85ADU+RVQRgcgFkctDfySTPGlukifkIxFH2LWYp4rVTPZsYvwpAZu/ZgMXXCmaZYQFgyB2JoDyBFCeBHMcfu6IuMI4qEiv7N5OWblBkEX1l1cXYPVWb/VrK22BGobqL2xIMpyMCPESvB/VPW1zStyJAMko1NwRCRfE4CUN1e+hoL/RVOrqlMH77GrtuGn8Akn/6Ag/6nKfpK4Dx/XCiYH7S3LFK8Q1A6rYRwV2B+cjZVyinKvbKcagxiSOITgecR3D5Qm9WcIRynqprhc2a0lZ1Xmx5MYV/o7N4FjGR+Uag4ZtAsCwbVPNqHcNssNf7l6O7gfuGiT6/B/y8e+b2iHbL7AFRS469yytHaOyxPDr1mDp/DwkytIvzp1wwTr0OHA7Nqyu+JpfvjAfo29qh1vP3CsrG6rio2KxGA444ICU5FaTJ09Gv34Vx2OeOnUqfvvtN1x44YWV9kNEmDVrFlq1apWFdblFNMbPpWUx2JH694PaYPfFK9NmYc3mbRj/8XdZ1VuzaRt+XrKKf58K4M2PfsTqdVvx2vvfo6y84lwZxx/UDW/8fQRO6tsjq/5r4nvU5s2bAQCNG9fvkDmZIBrn/0uMjzLY1fDWMx9j3YqNeO3R7JTg61ZswLxvfwv1Ue8+PRlrlq3DG6PfR3lpeYXtHH3OYXj254dw7Igjsuq/Pv/Wy2k4F7ssCdsWsZ93lHGVp67IDG4W42rOIFEu46JbBF/wa8AjrvQYxSzQPhBQgsrj8P8GCVWRstRjYQpPqTL0jS3DidLaY4J4ClOlM0myiP38M1NNkAiHwkkRBjfOkCjk82o5XJko1YgMAaWnZg4P4SvssBlXTYYMh5PKwYWMENErwMMkWFIJz8kqGSpFcU4R0ZdUl8YZoKtMo1AMlJ5IVMVz16ZNSlbVe1efSn6QieOMxPhIHBOOSJ1eMT9KIesCtsuVqXD4GSAGFcqGhDpfhgmBZpM6fynILlmZlw3ZfAmoDqzyBCyb+xQq5zkbGAtZrJPKaks8FaP7FvlsvEviJgs7Jyz1vOu5H1L8UobOI8w/BbpNfbIlg7Yr8oUSWuxzACp8i9qvPsM/VgtwIxbcCEN5AxuljXg8cd2VqOhU8l4VzcmwLDy+ubihNFW3CqkCbx9P2gD+n9723qtpET7QdgCrHIjsJMS2O7BLXTDH5UlFxfjI5tcCizAgYoFiFijGFeMUZZ5CXM+5IP0r8/rzy+q1977/R6KujHdcgRCcLxqQ6Itgu0AkKdXzYqFSnEOyGdyIsBeMhy9y+NzJ+O2Q7SmjGSiZna8xPqpmsX2rhTUrDIFeV2CMcNSpG9G51w4AQM9DtuXYIg+LZufx/zWU+b3Vq/9WHH/e2lq0Knv0G7wZa5dHsXN78KcK4U+nbMSAEzaAiKGoYQKMMaxfFcF7LzbB1hpaSKqqjxo5ciSGDx+OPn36oG/fvnj66aexdOlSXHbZZQCAm2++GcuXL8fzzz/vqzd27FgcfPDB6NEjlUi78847ccghh6Bz587YsmULRo8ejVmzZuHxxx+v+gDrGANPPgBNWhSjcdMGaNnWEHYG2WP1lm3462vvoDg/jlGnHY+CWM3c6+f96QCs37odQw/slnGdLTtKcfI9z2F7aTn+9uejcNqhPX3HTzu2N5as2IDDD+yEeKx26Jagj8ok+bEOIsLIkSNx6KGHhvqdPxoGjTgCTds0RuOWDdFqj4qfHDIwCMO65etx9xkPo6hRIf726kjkF9ZMcvRTrxiEjau34Og/9824ztaN23Bht2uwY8tOXPPkJTjukoG+4yddORjL5q5A/5MPQiyv4qffqor6/FsvtzHRy5Oc+UgkuVpXjy0cRtJIZWYY+2wx8ExxzCsLvWiA5dWDUrOQ+N2ZQhJkehBJtU8z3JXPyUPT/4cwy0FDmNaeC5BF/rmhsLqSfRbMrwXAZSCLQEKKSABYkmCXAW6UH2cuJ0ukEt21BEHN4I85LAlfaZujsVs6QSSYeF8oATlXwfNDgJUgHvLAlVJTUYSJcbsEl3j8dhcMLhF/1fpNUXnKzROJ+kgrtSBh83EzvY4gqRRvxDSb4B+CVHu6grVXUTkCKn2uXIUiE0kQVD4EApJKVWo2cMhSm0E1kEwCjuUlFLU0gtx3H5Lnn+T5C5LTgGBxyV8vHUi7AaqIrPxamC+raj8BF6UvSqrbQfcj8O5FGW6KLIA5BLtcJOOUPpW8sq4FsChEvHSvb5WoGABLCD9ng4eukgumQZ8m6+qGi0deeDERCz0pnuhxCUzGzBfrt0g6XiJTskBEcBmDYwOOWGxUqwB6/gZJiEPzN5pdYf8Wgh8I8C88ak5KfWZi7c7m/y5l2BqLvEwdLOmC2eAhd+SatHhlmh/V1hN95zFTGB9Vs3j6ztb48csGuTbjD4OjTtuIGx5dlmszUrBoTh4evq59VnVadyzDA68uFMmZdx18/FrjEAIdGHDCJtz4mDf3PQ7iTwCMPHGvGiPQgar7qGHDhmH9+vW46667sHLlSvTo0QPvvfceOnToAIAnD126dKmvzubNmzFhwgQ8+uijoW1u2rQJl1xyCVatWoWSkhL07t0b06ZNw0EHHVS1weUAjDEc0H/vXJthsBvjw9nzMet3HmbjuyW/4/DOe9RIu0f02AtH9MjuSZWdZQnsKOPqzbWbt6ccP7BnB/x31AU1Yl86BH1UJsmPdVx55ZX48ccf8fnnn9emmbsNGGPoc0yvXJthsBtj2oSvMHv6fADAT9Pm4KDBvWuk3b5D9kPfIftlVad0exl2buNPF65fsTHl+P5H98S4ueHfOWoK9fm3Xk5JdOY4PCGbJNAliR4kcHQVelDlqavRAR57OKPOmdduitoT4QRYWBsVvWcALKZUihBK8NR4w+JVZ0rC+ld1g7YG7GbMI2MYuE6TQcW5JUsouW0GshhknGHmeqpzjwRnnHhn4CS7NFUck8WU0loS0XK/rCJtT51EftjliUQtETtYxjgmcHWpiqkcFbbHGCgGUAz8KtY4Sx9RrvXC9Pf6QUloacRWigJdDUhrR+3n15+nQvdiNgNcs0/yOoswT4ks1PbMa9p/LpUh+o7M4IKpzaAacAlwygGXeGx86V+CvkrmZLADYaUkiPznVO2rxL9UpEDPWo2O9JdRNir0dP2H+CG1X6jPOSEr5s5ifp8mY37bAEUtOHH+tIwT5/c+E/emeqAH4ItfxHzkD0EQ6IyT8JEkv1fdOPcd8p5WxLeEVKRrJsn703KASCkQ20mIbncQKXVglSdVeBf5JBAsC7AZ3FgEbr4Np8BGMp/ByWN+pXiwb5J+k/sLFjxXIYuD6rDuQEJOnyLQwRdKGZjwUQzM5bkwmF7XZqAIH4e+KK2XYcH+5DnOAsZH1QxefLg5ls0pxu8La0dFYhCObz5ugDsvaI+zR67GXt3LqrPWWaNo2b4M/Y/biC/fKwFl+KOlS+/tKC/DLpMUVeLmMUsw/cNivD2+KUp3eA50xrQi3DaiA87+62rsvV+pmvu/3L0cm9bznzXydEx5syE+eb0hhpyzEYiWY8rTmfdfHR91+eWX4/LLLw89Nn78+JR9JSUl2LFjR9r2HnnkETzyyCNZ22FgUF+wZP0mjPn0a0SYhX1aNcP+7Vvn1J4WjRrg8b+cjJ+WrMQ5Rx6QExuCPiqb5MdXXXUV3nrrLUybNg1t29b/xIgGBrWN5QtW4eX734QdjaDTfh3QvX+XnNrTrG0T3PvuLZj79a84deTxObGhPv/Wy60SPZkErDwgHvcevQfAZdCSLQAQGj5BT/wJcHa4YlUn0wPiCuLBV4MFXiuDrhQNvpeqSVeywcQJlhRJIQsnP5QSWlet6swFpZZVxgfqSFbb4WS+GwXKiwQ5JYlvWZMJIl3yJ5bXh/57TKpI9f49FbcXigVSgK+HUQjOoSVUmoIos5KAXc7bkKpUJwK4ERLxfhkci+BGGFeoAp5SPjiHunJVU03qinKfilI7pk9dEJJQ4up1fr0SuH2wLbhx8HhqjsuJK9mOA06qizlxLQtwXbAk8US7uqqVASoZrpvGkDSozyt/dQoiwI7wxKI6SZiy4JVKcvsWRQBOsAsZL9MvSHHPpO1fV7VnanZwR2X1s1Shk15Htq/fQ/LpHsYEoa2PgYTvFk/GMAKBiTjogBtlSOYzlDdgSBaI+uTdo66+PiHcq3wahWyPRJdEeiJfGKwpwdX0i4ehIPyM9HfKVZDXdzKPP5bmRGzELCBKBLvM4fc4+BcFshjciAUnwpCMMyTygWTMs0XBClFui4VMuaCpE+eKtK7ohISUIX2fVJGD+1uKMdiWBTcCWI7FQ2iJfq2ECyJ+zJXx6IkBLmA55C02yn6IsnvqAcZH1RQmPNkCEWbCuNQ1tmyIol2ncnTqUZZrU3xY+msevni3Ucblm7RM4KbHdz1FPQB07b0DN56+FxLlfh+xbVMUbTom0KW3P357MJ77yiUxTP5fE/Q+bCuu/MdybNnq4K9ZkOjGRxkY7Dr4dvHv2LST3+OX9D8IRRUQxHWF6UuXYezn3+HHdWvw+PAT67z/oI+SSY8rAhHhqquuwsSJEzFlyhTssccedWGqgUG9x0/T5mLrhu0As3DmLaeisDi7ZOa1gR8+/Rmv/vNNzJ+xAHe/eVOd91+fv0fllkQHOLEcsb1f9zJrnAx6CxZOoMuwCrIYIT3547oidi48siGoQPeRQBkyVmmVmOI1JQa6RrSFKdHTdavZp2KiqyraZ6l6F3UkKc7DoTCuMIwylBdaSBYxpS70zOPxbxnEftm6zrDL9jVyXRE8sj1dJSnJLxVzHor4UgpJfXxC0Q1IAl3G5wUoynh4mRgD5QOuEN4xN/3UpUyvRozLz4pQJ6keF/NHXqxlX1x1OT7i9soxKxW/mEs1OfK9+OiKhojxc8LKGSx44RTkGxXPXpxngxzBtrmPApCS6FOecNvW4qKLBb5geCrSzqi8+Fz9ZglBmEK8JhXo1ekj+JRMWFsWC/ha/Rh8ZUjEEXfyLJQ3YCgvYRoJD+U3dD5e3cMMXr4HSYhH4LeR/K+6j3I1Ah2Aym8gm+b3PYPFCHYCsMtcWOWuOKciFrptATEbbtyGU2gjUWTDKeDKes+Hwt8582xQSm897rgOETLI0uvJuup/YLCOdkyNw/P7gPBV+mTIp5WYWJSwLbXoo8+HD7uKDPcPiWyXLwyqAztCuPDWFdh/wFYUFgdjseUee3XfiTEfz8Ezd7XG99OK+UJlGhxx0kaceulaOEm+VpwOv/6Yj2fuaoU9u+3E2SNXo0HDukkRZdnA01Pm4s1nm+Ld55sgUe4pMd59oTG+/rgIrdoncPy56zBnZgFOvHAdmjT3zknztuUY+9lsWBZ5eZ8NDAx2Swzq3hnTFy5FXiSCwzp3zLU5AIAZS5YDAGYuWZFjSzLHFVdcgZdffhlvvvkmGjRogFWrVgHgT8Pk5+9ijyMZGOxGOOyUg/D9pz8jlhfdZcIC/fTZHADAL1/My7El9Q85JdEpLw9kx/hj44CnyJQ/2PWAq8x7VeSrvqhR0W94i8emhYgH7n8MvZK6QICIyeBbuBbD3CObNdVpurYrbDP4RmdfxLgcUkQTmAghIpWVBDg2QyKPz6FVDqUMV6pMSfIRAufCb4ZPhc7gRarQySxJCkG8JkksfvjNl8csB0LRDZUPSyrQKUJwogxODHDiIq6xCOGiq8x9M0neRkLZqWzSYyHrYELlisAxbYGA9PHJcbicXuKXFQOzCMwCXNtW1zAj8NAPrsdquSIJIeIA2Qws6cJKuFqSP1HRYln/+nNgqc2gGsiPA1bMI8SDJLr0JYI0V2F7FFup+w7mfyKCwH2fIGL5UwiB8xziHrK6EqrIbWbUB1FoCA9vUQ8+tbXyG0J5LheSyGJwbU6iJ/IZEkUMbpTBSopY56IteS/L+9Fy4N334iEfy9H6KufkuBsBEINv4U/5Bd0PyKdmxH3uCvLbckXyzTJCdLOL6JYErFLRkbLdghOzkSi0kSi2uYo+DhVqyk+SI+15Ucp3LSyWD5YWSp3SlGHeXDPNP8pQW/yQUP4zgEWZ8k/MhRe2S9ZxSC1kyP8ZvoVSwBeDPlMYH1VTMAsYdYkDBmzFqZeuy7UZaRGJAmuW5WHm1JIKy1kW4YZHlyKSwUMMT9/VCj9+2QA3jF5WZwQ6wP99Nmjo4o3/NE85VrbTxvIF+Tj9snWY/FpjnBQg0AG+tt12r4SvvWxgfJSBwa6DBnlxPHT6kErLvTb9Rzzw5lScdGA3/O3Uo2rVpttOOAovTZ+FwT33Vn0vXrsRlxx9MEoKaiahYEWoio8aM2YMAOCII47w7R83bhxGjBhRg9YZGPyxUFhSgJufv7LScu89Nw1P3voqjjmrH67859m1atPVT1yMN/79Po78c38AwLtPf4Rl81fg7FtPQYNGRbXaN1C/v0flVoluWSKGMHysjaQjw5TeHkETcjwdfMlINTkjECDiAypKfX9FSf7SKdKD8c/DlOgVDSGoVteUg2ohQSjO9XYopS/AjVpw8i24Ma6aVOpI8ppWCkXSPmvmKELM0pSLJM+XbqKmYFd1OaEfJsBXCnZBoMvybgQiPi8DhALdjYPHNba8eikEuj6FwVdK3ecrzzTyH/55YHohlUhSjJiRPt1c1S9JVLkgIecOQtNp81AtLClU7zpxxpj3BIHFkBr7oWK4xNRmUA0wLca5WgDRjwMqHnTKEyfwyuurLvo6GBFXArtaMH5f+xX4pIzsz6BOpn2E+cBg+7oCXfd1ap4C5S2p4mZw4ly5LX2UKxNfWv6u9Kc+1AGGlPuZwE8fIvD3q93f/oZT9zOIPAdJIFZKiO1wECnj4ZeYGicDxWy4+TbcQhvJQgtuHvMT6PDepyzc6j4Xfv/jg5xHfcGTaT5NXlrB9uU+C2COiLmukelMXIdKsm4xvjDIIPJoeJMrQ1MxaY+EhexjohsfZbCbwY4Qjjx5A5IJrtze1R7AcF1g9P+1wefvl6DC1ToAg87cgNIdFopKKifF73lhIUp3WsgvrDsCXaKoxMGEOT/CEfz4jm027vtLB8z7vhAAw2M3t4EVJXzzcQMcddpGXHLbChQ2SLcMbHyUgUF9x9vfzUFZIok3vp1d6yR611bNcPcpAwEAi9ZswF3/72MAQH4siiuP7VerfQNV81FkHskxMMgpPv7fVygvTWDSy1/WOom+V6+OuO4/fwEALJu3AqP+8gwAIK8wDyPuPKNW+wbq9/eo3JLotiBQLC+eOdNjq+ohXnQEw6HIfdAI5CBUTHQWrupNSzBpTVRULl09OR5FvEoWRCuYSZMU9oF55FxwSJqq0o1wFbcbEWpBQaC7tiCtk+AqxCRgJcgXHkWJZgUxoxSJ8NqXcXQVCeR4lRU/JWJ9E9MIfN9cSZIZWhgBEQvd5pucOitRiepRU6tKtan6ORkyZap7V68j7FUFvDbVExJyLlxJ2HHyidl8DuSiACPi13kkhIAFQFHGVesRBitpgTmuV0+QX9l+53HFqp9bD1f+6hS2BYrYioRMgU4s6+SlTqAj8F6qq3X3xrR8CUS+2yPt/53gTRrcX9k+vY/KyqcjZtV7fYETKYSuHhNc7icmfFPcQjJPxEDPZzxZqCDP9VAuJPMlJKDyOBCg4qBDvHcjwic5vA7cwH0sF21VpcDnwNjIAc9ZIEO4JAnMdVVYsWSejWQ+J8/Lii2UF4k44jaUf1Q+Ve9Dd0BijnzEeHCB0Lf4ovk25hHvKU8OBRYPHHl6bO2SJXhJXsk7SZZ4IkatFTKxuGkxsIgXxgrgMe6zTNtgfJTBbod99t+OP52yOddmpMWSeXl4/+WmGZW9+O/LUVic2U0bzwfi+XVPoAPcTxWVeHZ+P60I87731FPJpAUk+ftTL1lXAYEOhPynqxDGRxkY7H64fFBfPPHhdAzts0+d9tu0QSGaNijA+q070K1ti9AyRIQNO3aicUE+WA2swhofZWCw++GcG4fixQfexlFnHFKn/TZu2RCNWzbExtWbsPf+e4SWISJsWrsFDZsVGx9VCXJLomtxg5m+D/CUcWGJ7iog0VPei7ZYurKZ1Nf3ZRQrGBqZxvz2MqR+zqTdAIklL+ywnwRMxhG2RKiEqAU3ZsGNMMBmPMSBILIliRIWA9hHPDGmhWPwmwXGfLHBg3wbE+SLr3GNAFTJ9LRGSYZ+ESpVRMBJKcuzOxTahLCwV0rdD22/jwPV34fV00gtRt6AUpT8Uo2eloSUcei1eZT1gk8zZAiXLLUZVB1qAYwBKUpsoSL3lQne92kb1lZyGNQKkTrvQYQq4JHGAaSpl40SXW9bjSsDn6sr0MV+794PtC/CoFCEwY1bcOOMLzQxsZDG4M+9oPkoBalUlyRvQLVONvxKdF3lzdJ/1hcIbQeIlALRnTzckiUTiQr/SlEbiFlw87gCnSSBzjzfKkXewT5Y8L2sE5ziYF3ILAnks11dmnKfXl/uUv6JqdPiC9EFiETGus+WTpfE0zr600bM+CiDeg7CLU8uxiGDtsB1+aW+ckkMT93RCiMf+h3FjZ2cq9JdF3jhoRZgjNLGQT/s+E245l/LEM9zYdvhX693dQw4cRP6H7dJ+bQfvizCPRd3xCHHbEGz1uWVjCk7X2N8lIFBzWL2stVYsHo9jt2vC6IRu/IKVcAhe7fHIXu3z7j894uWY8bC5Ti9b8+MQ7CUOw52lidQku+Vb5Afx3u3XIDtZeVo2qAwtN7f3/8I//v+Z5zRuwfuGTIwYxvTwfgoA4OaxfwZC7Bk9u84Ylg/RGMZxLurAnofvg96H575It8v3y7EL1//hsFn90eDRuG+JYhEeRKl28t85QtLCvDcr6Oxc+tONGrRMLTeo5c/g/f+8wmGXPQnXDPmkoxtTIf67KNyGxM9Yql46CTjlfMPipitWCGuqR+DJJavrIyJLtrWiRP4eAlvb7q2soG+IAB4j7tXFBomXVOaUpLkDslbEPONQcV/dwFmcRaHLKHSFEpNAFx5LVWWSV7XtRgsoZ6nCOAoUov5JowBIoazMMViYBb44/5JwHKZF1tXjVlneLy2wMBDzAgSjCzAFeEcyOZxjYlxe+1yKJIN0Ig25m9SNS0vK50ck/MZAh9XJblTeS2IUAbqPNhc6aoIMvBxuFGmlJwsQTyespwzghbr3+uTk3EA2TYYWXweXb1MdhejA6Y2g2ogans5G1LCVfiT/Ipd8F2MlS6OMX5vCNUyadeXr82UroM3Y7rjIZ81Gyl4XO9LbyKMRBf1gm3on9WTK1qb8mkUN2Kpp0xc8cSJE4MXxgUAXP7kCXPBn3Ah7t8sh7flRgAnxpR/k0+5uPr9TgAS8PIoyENBl6Tdo3B43ojoDkJsOyG6xYFVyiu48QgAghO1kCywUd7ARqJQKNDz4D1pADFuW2uf4Dtl6nyLOWLiCSL9CZrg9aDipjvgi6ny/1oAKsGqJLzFfDhRpuaFiXjvMr688nlRBke/FqUPZv6LQveHjh1yfVQA46MMdmXYEX5hO0mGRs0TGHDCFnXMdYEvPmiArr23o6RJ7pOLJhPAmhVRfPFew7Rl7AhhyPC1KCrOjaK8KkiKcOZ63HbGgKj2edrbJSgvYxg6Yg3yC9N8sVPIbuzGRxnsLnjn+7n45ffVuPjIA9G4qCDX5oRi47adOGf0f5F0XPy+fjP+Mqhvrk1CaSKJi56cgPKkg2XrNuPOYZUT26WJJI5/+nks27QZo089HoO6dlbH8mNR5FdAvH29+Hffa3VhfJTB7oJPXv4M879bgD/ffDIaNivJtTmh2LxuC/7a729IJpJYtXANht9+eq5NQtnOctx8xr+RKE9ixeJ1uOZfZ2VU59KDbsWqJWvxtxeuxKEn9lHH8griyCuIp607a8ps32t1UZ99VG6XBSohmNJ+HWYMhFTyJi2Z5CMYvEI+vopp7FFNEujyfTpFaGXf+WUiQ32T9dTmsW+cP2dwGYPLAMeyFFnlkSpQCTyZ45E1rmwKEHVl8jnelsv8OTkpMAxXM9GlQP5OoWRPUTwG+nQZ4Oj96XGUZWMu/I0HP+tth85pYPq0ZoJNKBIrQH5Joi1ln+u9Jy08jGpXDVZMmCsPkrLLRWBIVbgW6/PK364Nj0gmQTBnslUYryctgZ6ufAUEeliDKQR7JkZ44/O1IYlWtYCoZUxg0jfxxTrX5qFBnIgFJyoSdEr/IH2UdnMyeKSz9BckcwyIenqqAlL2pE6Bb+5drS/53uGhrexyEcYlSSCXVLsOY5xEj/JwNE6ML56R5feTwb4qvAYqOOZAuRtf20hXX/nZwMKGVkn/1+GSN2ekVVBNyPll8P0vcOV5YCF9VALjowx2VZxyyVq8u+RHDDlnPQDCdaOWqntl/aoIRp7UCYPP2og/X70uLP96nWL0TW1wXIdeOL/vPkhnycFHb8FbC39E70N3ZB0aLld46s5WOK5DL3zzSYMKbb72X8vx7pKf0K1PaQZjM0p0g/qHtVu24cb/vo/nP5+Jpz75Ru0vTSSxozxRQc26hW0xRMTT5/FIbh+El4hYFhoV5gMAmpdkpvBct307lm7cDCJg5rIVWfV339BjcNK+++C+ocdkbWsYjI8y2B2wfuVG3HfOaEwY9S5evvd1tb9sZzlKt5fl0DI/LNuCHeX3UjSvdlTo2SIStVHShIewa9KyJKM6G9dsxspFa0Au4Zevfs2qv+ufuQxHn3M4rn/msqxtDUN99lG5D+ei3sMvAZYJ90IQTtwE94WQ1joBXZEtmdqcwa8RqlBJD490Cq0c0j5jfnW01gwRQHGGZL7Nlc1K8Qmu9I4wWEkt9C3xGMOACEEAcKJIEi82j1ns488kOewCjBhIsDEM4GpFl5PezCXA8ZgVAnxxkb2xy/1MxUKHVJVqfTPHv84hFwSYeA0lmoN9SVie4lMdk0pgF2BJYY+WvE+9EHwhGLzBQc0DATwRqs2To1oJxmPOJ7Q4wkQqbj1jPKawCl8D3jcc4vWq8KOXk24MudfI7eawAtlw00Erk+KfKiov/ZxkaBRTHFJWvxjD+qgs10PAHl/pdAuHacJYhY5RLZJJ/8E0Ul0Q6BEGJ99CotCCG+WfXelnbIAigFXG7xGXC769pzgsAFHhUyPilhN1FDciVew6qxycGi0mOkumLoJZSSC6nRDZSYhud2GXicpxC5QkUIQhUWijrMRCeSFDooABMc8nyfb1XJ3Kb+iMN7TPcp+duk8Pa+MSVLx3WZ/5Vg28c+F7DVwaKteCxeeTWXySfPMhy2nkOn9SSPufIJNBE2W9JG98lMGuik49tyGZABb8EkfHfXbigMO3K1e3dEEM3Q/clnNF96plUZSVMkx9U/6oSv//5sCjNqMuOKtN623EYi4KKoxLnh5rV0RRthNo3jaB337MQ/vOO3Hw0Vsz+leaGbJVohsfZbDro0F+Hlo1bICVm7aiW5vmAIDlGzbjtFEvIek4eOnKM7F3q8xyJdQmigvy8Nr152DJ2o3o37Vjrs0BAERsCxOuH47Fazdi33YtM6rTtmEJbj/2T5i7ei0u6tun8goa+rRrgz7t2lTF1FAYH2WwO6CoYQGat2+KNUvXofP+ewIAVi1dhysG3AUn4eCRSTdjj25tc2wl0KBREZ78/l9YPn8F+hy7X67NAQDYERtPTL4Jvy9cgy69O2RUp2WHZrjy4XOx8KelOP2awVn11+PQruhxaNeqmBqK+uyjdo2l4DSo8Gt4mHqygjjhKdXTtVVR32m+raf9Dh8koHTCnLSKIbGW0xsSYHC15lyLcfW4xRWektRxZHxxF4BDvr6ZK7qTSfAkjyeJkyBhHDJ2Xb3IBJfiSp5Fvoo+Sa+ozZOuZpTv1WFd6eWbN+3VhZ/E0blFzU69Xhi/pJfTj1v6YoBePkDWqS40IszHmTNvjhUnGnZdybpVVI3V55W/ukTwfKc+2VIzfajmgwcD4TOyQiZ+raYD4ipHAN89SWAgRtxH2UKFLvMzWAyOCNvEw0tJ2+CdAMl9uNo9J9vWpdmBG1je++q0BdokSUqLzXJ4aCurnHj8c41zcV0Cs4BkjKE8xpCMAU5US3qsxWaXvjA430GfE1yHY9qrmlIWct4CQ2GB17Cy6QzR1vOUf/IV8RHy3v+d0NBDWcD4KINdFetXxhGNAY+8uTDlWO/+O7Bfvx3Kn9SwB80I//13c4y7r1VGZQ85ZjOOG76hli0CfvmmAK8+1hx3jF9cpfqT/9cI/7qmPYZfvwrnjFyNBycsqlkDAWR7toyPMtgdkBeN4J3rR2DT9p1o2bABAODXVeuwtZQrPGcvX71LkOgA0KFZI3Ro1ignfRMRtpeVoyjPH8qgpCAPvTpU7k+/W/Q7wIA+Hdvi7D69asvMrGB8lMHugHh+HM/OGYUt67ehWdsmAIDFs5dj++adAIBfZy3ZJUh0AGjbuRXads7s+1VNg4iwY1spChvk+/Y3aFSIfQ7Yo9L6P30xH4wBPfrtjaGXHFVbZmaF+uyjck+ip5A45P+xHoT6tR/eDmWQ4CzjbLMZlKuoRIrSM9h2gEjmlSog0PXFAm0OCICTZ3NSKs7g5ItwNwygCBOxgBksh8cXVupvXeXppNrIwLzEfWE2ufDiRctjLgmlOq/LACDJK6XE1JX2S7WjUG/Dgo/UV5eErCNtcMGV66JZksdT5pqPV6nAAV+8cZ9ylWmfLQZyeSI9leBTI82ZQ94CQcA0WLIvwTbJ946o4DJf7GTfHIoxVBTmvzI4ZKnNoJpIWQxLuVF8563CNoIEvOvtT+uXKg3PkgEqUKTXSHlAXLP+8C38CRMGshmShTacPAvJfKHeFk9fuBGo5J+WC9hJjZQmrgxnOnkOeKGhIBa45CKXAxWHXFih875+c8lr1y4F7DKeh8BKEOJbXHGcs8wMAOVZKCuyUV5kIVnAUN4API8BoBKJKlY7EIKKOaFuSY1Fj4mvwsroBbUY8bJdkoS3Xi/YuANf0ufQBxki8OKyMHj+SnNbKb6a+fuoSmJR46MMdj0Quh+0HX2O3FxhqZpee8wU83/Ix9rlUXzxQYNKy7bZswztOu/EgKGbYNXBLbZjO8NhQzeBMWDuzHy06lCGkiaZK7+TCUK/YzfioKM21Z6RWa76GR9lsLsgLxpRBDoA9O/SERcdeSDKkw6O7dUl43Y+nvkr3v1qDs495gDs16nmFNN1hbmr1mL+mnU4tltnxAKP39zw/Lv48IdfcdXgfrhk4MFZtfvNwmUYMfb/AQCeu+h0HLhHzRB+RIRfV69H28YlKKhCEkPjowx2F8Tz42jW1lvA6nNUdwy7djDKSxMYcPKBGbfz+Yc/4ZM3Z+LUCweg+wEda8HS2sWCn5Zi8S/LcNjJByEW99/z/7joaXz25gycd8uJOHPkcVm1+8Pnc3Hj0H8BAP75zg3o2T9zv18RiAiLf16Glns2R35hZomXddRnH5V7Er0mIImbDH/ZBFWAwf3ZoNI6gXjtvvI+VTX57Q9rWJQnIYGSSnMXXigU12KAI5OyQhHQDFAhXAjwAuwKmTQnWUio0plKhscYtLAMmilM45T1CZWEtXhviWF5CehEYRnLWAydJNdM8KnQfbyPJJekLVJdL2Fp0+ZboNDGHVCIMsBHTOnjA7xTopT1erNyWshfh8dFZmCMz6srFKqMgSdf1c6JT00PORlQxJjP9ixAYPy6yIlOzsCHavqldOUq7DLbelW9TPSnaFx4j2yIRomgwi0ReExxV4VT4RJoywVcl4EJIlq5CgcqdAkjEq/wSOoIvOtbv1+T4AtselJT5We9V6VgdwisnGCXEleiy0Sm2lAci4eccWwGJwKuQpfEecjc6d2lKNIDtiiimjSf6luRQ6iPAgK+Uq+jz4f0y1r/8ruMJOyZ5fdJvtAzckEw+P+JeT6K4K0HZQrjowx2NZxx5RpceMuqXJsRiilvNsR9f+mQUdk99tmJxyfNhx22UF9LOPDI7QCAt8c3wfrVUYy4Mbt5HHz2Jgw+e1MtWFZ1GB9lsLsiatu4ZvChWde764XJ2LqjDGs3b8MLN1eewK46mL1iDV786nsc17Mr+nfKzLdVhC2lpTjjP6+g3HGwYO0GXHtUf9/xz+ct4a9zFmdNoiddN/R9dfHYR9Mx5tOvsUezRnjnmvOyrm98lMHuikg0gvP/fkrW9R69dQK2bdmJ9Wu24NH/d1UtWObht+8XYeK/38eRf+6PPsf0qnZ72zZtx1+PuBOJsiSWzl2J8+84zXd8xie/AAC+/ejnrEl0J+mGvq8unr/zNbx07+to16U1/vPTQ1nXr46PeuKJJ/Dggw9i5cqV6N69O0aNGoXDDjus0npffPEFBgwYgB49emDWrFlZ95spdg0SXVdphoa20JgDO/V4ivo8qNrT+yGlk6zYFlkoXUHFdATra8dTiGeW2n6IbWnZLlneYlwlHZHJ+IQCPY+zVcwlWI4k1T2VouJTpDqSAIiyMvY2RZggRHg8dYsYT2SnKysloRz8gaYRLSSIGSTII/HlGILn2Oa2wmZefGPJzelD1+aFCRJMku+uTqyHnTNps3ZOfGELdNKI6eXlSoB2HPCy++lhZCSZJGO5C+OYUOUD4OeOUSDzqlC7B0KFMKbVyzK7aH1e+atTWCzU5ygEFeaZKnJlebkQJM69uuYqa6+CPljQnnT1wvxbhqp3Hw8cVkf5KIv7qQiDm2cjUcATcDKX31b88mdqkUk2bhGApLhHRYgVJgh3Egt8rst9lL6IZQm/oETVul8I+FUG3l5sGxDfxGOgp0wHGCjK4EaBZL6F8mKGsoYMbhx+9Tm8VzWtTPMxPkfmldVV8z4fE2KrUrXLRQSJsP8XPt/EfOdZDz1DBDCHlyURi4sR4/470DbBq6d8qG5HloSd8VEGuwL2O3QLuvbeAcaAg47akmtzQkEELJwdy7h8xy47a9GaitFmj53otO/2nPVfkzA+yiBXICLMXbAajRsWoEXT4jrrd0CvvfDO9Nk4olenWu/rrnc+wQ/LVuKTuQtx3H5d8M3i33H30IHYr13VQilYjCcuLXccxCKpX0juPXMQ3v9+HkYccUDWbffr1AHPjOCEX9+92mP5pi146OPP0b1Vc1zYL7u46DoWr9sIAFixcUuVyHnjowxyBSLC/O8WoFHLhmjeru7CRR1yVDd8NHEG+h7Vvdb7Gn3lWMz56ldMf3sG/nTWYfhx2mxc++TF2OfgzlVqj1kW7IiNRFkS0XgqBXv94+djyoRvceoV2Sce3v+Ibrh3wrUAgN4D9sHqpevx7J0T0Hm/DjjtqkFVshcAfv91JQBg9ZK1cJLZRzavqo969dVXcc011+CJJ55A//798dRTT2Hw4MGYPXs22rdvn7be5s2bce655+Koo47C6tWrs7Y3G+waJHoVEUrgyAM6sZBJAtAaskkhYJZqv7KFAkK4vUJtTxbg2pzYc2I8TAJJkiTJG7CSLg8fYIEn93SZUmYqhaEgbJQSUSrTQaAI53h5SBbyGKkAEZOirtQJI8ZJL8jkgFrcYo8Q8qtWOTMebBg+xaNqSzWkjUci7D7VySDm7WK+N6KLoCJUEJ0p5WWyP1mO8YUSV4TAUby4LC7mmUGbTl316R+yT5Ga7fXpElObQe0jrS+S0MlWaJdrUFkM/6Ws3yNpkxQHGiXyfQzrpuoI802aTyPisc9VXgYR+5xs/oXLEqFamAO+eOcKdXqEk9VKTa2TzuJ+Z3LdiTyOWI4t5TKXBeSNFiSnNb/H65MXHiXQrnJVrteEa/nbVoS9r7I3hKB9gcsh5X8WWdp5DPhsvYpqjAV3cv8vnxjS51SFwtF8FHO1Lfj/IWi4Bqk+DxtjZTA+yiDX6NVvGx7436Jcm1EpPn+3BK/+OzNiqV2nUvzfY8vqJIRLGPYfsCM3HdcCjI8yyBXem/IL/vHEh8iLR/D/Hr8YjUoK6qTfu0YMwq1nH4V4tPbpgYM6tsUPy1Zi3zYt8NI3PwAAXvnuhyqT6EXxOF6/9GwsXLcBh3feI+X4Uft2wlH7Vn1xoH/nDur9s9Nn4N1f5uHdX+bh2G57o03Dqi103HjcALRv0hB9O7VH1LaR7fKn8VEGucKH46fgoQufQF5hHC8sfBwNm5XUSb/XPXAGrrrr5JRQKLWBXgO6Yc5Xv6LrgXvhrTGTAABvP/VRlUn0wuJ8PPHFXVg6bwUOGtQr5Xi/Ib3Rb0jvKtt7wJ+8hYUJj32Iqa9/g6mvf4PDTuyDFu2bVKnNyx4cjtZ7tcT+R/VAJBpBtk6qqj7q4YcfxoUXXoiLLroIADBq1Ch8+OGHGDNmDO6777609S699FKcddZZsG0bb7zxRnbGZonckujyF7z6nGaCK0qQJ2NqyB3BEB9aV5XbozECKZJEBh+BFFYmrK107YdBI5Y9EtWrQzYDRS1BoFtwY8xjLgTfzYgry+ESiDGl9rQAT/ms+hKkrktc4WkBZDGuKJSxyRnjQ9fHq9sfJG9sjVMTiQKVEjJAUjH5x2Kc8LFZhXkUU+rKriVRxMKJHBb4wPQDkjDSlJe+oTK9EunNcKVtQIVOtqhkgcdTl7HhZYMq3rrXv0psSAHbJDMl5igbOLDUZlANWAwZ+6h0x7TwJSzoR3zrSCIMU5iKvKJ47OoeZICrqdnDbAzWCR5L9xkIJdBlX8pXWdxHUcQCRbmPIsbgRgCK8OO2yM1gJ/n4yeJrffq9KxeidAJdKrApAv7UShTcV2lPn0g/pUjdwJMp6r52ADvB461HS/nm8yna/QkLoJiFZCFDsojBzYf3n9OFL1UCg0dCqzBWAdW4Lza59MP6pFrefl/DjufnUk8CUldg5EKC5d+lq8nJhQqjw6X8mv8m4k3q/zP0/oLvs3Q1xkcZ5BJ9j92M485Zm2szKgVXoccRssQainWrIvji/QboO2grIru1TAZYODsPbz/XBDu2WuhzxDYcceJGROOV16spGB9lkCus38Sf5igrS2JnaQKN6oafAoA6IdABYOQxh+Lcfr3RuCAfN70xCd8u+R2n7Fc9dWnHJo3QsUmjtMd/37AZ97z5CfZq0QTXDz4s8xxpAfTfsz1emfEDOjVrgmYNCqtqLpoXF+Gvx/SvvGAaGB9lkCtsXLUJAFC6oww7t5XWGYkOoE4IdAC48B9n4ZS/DkFJs2L868In8cO0ORh03oBqtdmmU0u06dQy7fFVi9fi3yOfR4eurXHxvX+uso/a/8hueHfcFLTv0hqNW1b93DRp3Rjn3zWsyvWDPmrLFv8Tn/F4HPG4/4tdeXk5ZsyYgZtuusm3/5hjjsGXX36Ztq9x48ZhwYIFePHFF3HPPfdU2eZMkfuv2D5iOvxCqVRFqRdQ8kRBRrkBUqoyMrIGM0Zlpf7UCwvyQn1kTKkHiQHJKOMEOjhpzpIE5opNPJrPiWECEQMDg0WWIKm08QnSHVpYFJJx0WWICUZgxLhIXMYsTkPk+Pa7gJ0gP3Gvj1WOkQA4AemsjMEebD+lDXjktxyPINUkgaaE7Rp5pbggF15CPqn8ZPAUmXpfklDT3qpIHoCKT68TlGQBTgxwHREVJMnJOwv8nDJXxEwXqwtKra8Taww+Li1TGHVCzYNfRwQ/uQ3/YkxF0Plzcf69RAAhZ1hXoYs6IKrYh2nXu26iai+df6vsWMAeP8HLL1ayGAgWiAiueGKGhAHMBexSgl1GgOsqJTrA7xMrwuDGLP6UjUgsTHKRinn3FzHhUhhBBl9RHK8sJ/1UILmnb3MBOAR7J8HeKRyBK+3Rbmw57CTBKgesMoDlM9WH75zKsjr5LhfKKrqBpe8R5QjwEqPKBbbAqWD6wLV2fHYz75JR9dUqghyrF6PesuTTAfCF/ApeTynKe3HNZRsT3fgog1yhXadS3PHs4lybkRG+mlSMl0dlrsxs3bEchx23tRYtqjvcctae2LgmisYtErgxB+p646MMcoVhxx2A/Lwo2rVshNYt6pBBzwIffD8Pr3/9M0Yc2Qf9unSoUhtNizgB/c9Tjq1J09Li1a9/xGfzF+Oz+Ytx8gHd8P/ZO+84Kcr7j7+fmd2rwB29SO9VFAQRUCmCimIvicauUbFGjT+JMRpNLDFRjFFjSawRib3GLlYsIIIKAgJK7+W4fjvz/P6YeWaemZ292z0OjnIfXsvtzDzl+zzzzHd3P8/n+T7dW9cuDMWYXt2Yfd2lxE0To752mqbBRzWg/nDib44it1EO+/RoQ9surevbnEhMf+4L3nz8Q06+8kgGjx1QqzKati4E4NpHJ9WhZanx2r/eZ+bbc5n59lzG/+pgOvet3SbGw47cjxeX30csy8Sor6WJJPuoDh06BK7feOON3HTTTYFzGzZswLIsWrcOjqvWrVuzZk30fjuLFi3iuuuu4+OPPya2kxQk9Uuia4RSjahR5anS+e+FtkkjkDq2sa7yDBPE6ahQI+BxDunEQPcyOWSaQ1CIoD0xV4GeY2DlOAyLYeGEbnFJdEMjrD3SzY1N7Kgzg+SQ6h+vy0wgLnwVuuHkkUoVqohyXd2p97tGKBoJiFX6ZHR14knHRnwFfJTSMcSzqzdCkWURNupq0vD8gTfREAG9KaqOaIW6T6B7anHdT7mJhC0xXEMCZJrwN4AVOBuRKmYqMNTUJrEZwMbwXg3YfiTtZwChAZEio3rOvRkRTY0eHtOp8qu/Uf4pbI/Goiclq8m/RR1HITyro8Z+zHSe3ywTO9v0/Qh4MdDVpJ1wNwl1iG9n0xFVvTqXtL+B8hEx4foKgjG6Dd8XeD4h4tERtqtAL4PsrRKzyrEHvV4dpkBmCawcQSJfYGfhq+TD5Qt89XloMoyoeYqojwfVJls7DpUZzhtZZqqJHe0zUtWlwkypfvRiVIlQOeE2BO5PZk6qwUc1oL4wYNg2KsogO7e+LUkNKeGlh1vw9rNNSW+W1sHPC7KZ/nITRk4oIrZzxFoAlJcKHrujDSuXZnPu71bTuVfFdmtSbp26mPISA8OE/z3dlCaFCYYdvo14HEqLDZ69vyWHTNxC597bX1cUGnxUA+oL2VkxTj5yUH2bUS1ue+EDNpeUsWlbKcN/e8ZOqzdh21z3ylus2FLEX449nI5NC9POO6pPV6Z9MZcuLZvSoVn6+aKQvQss9WnwUQ2oL2TlZHHcZUfWtxnV4v5rnmTrhm1sWV9UaxK9NrASFn+79FHW/LSB3/7zPNp2bpl23mFH7s/rj7xP+55tade11XbZkZWzE78EpkDYRy1fvpwmTfzwV2EVuo6wCl8qDiUEy7I47bTT+OMf/0jPnj3ryPKaUf+fABCpgkxbeRsVH1tXd7pqTxkzsONOEFhFOnvZvCDYGjvhlSdrjkW8IxBQoQokEivLxI4pBavbjiobw5KQcAl4jyAHKhwey4ob2NlO+9Wml45y3a9OCMASGBUSISQiLrBNsFVMc0XOmSHuXyPtvVi7pstRW2BWuJsEhtSYUr9fyg5T425sP49DtOOHGpBaXvDbIXGU6GjjJ9Wt09SfAfW35YaC14mmcFk+T+nDdvrUU58KvDEtAct0+wFXgWvibIxqCWdTV3yeNFJFnCEsKbxXurjtttt44YUX+OGHH8jNzWX48OHccccd9OrVq5ZW7BnwbkdYBZ7pzXHHhVQ+Srh+yLa9SR1pukypIl91/+PJnKupWzufNEbVsSpGKDv0TBHH+mRkWJUuhBMHHZBIbNPAUgp0KRGV7gSf66M8v6NcrvsSWQZYBla2gcxywjuR8El/KcBW+0S5SmkhXbLc3Zg4sBJG+RX9b6gbLNMp0yz3JzQ8Zl894+p5tCRmBcRKwcp2fKN3TfkkdZvCxL/mr6RbRdSkr3esThmeKYF7J2TID0ZA2Z6kKNfq0MuUOH2h/F54VZHQ7NbrDqjRM3weauOjGtCA7UWrfSq54i+r6tuMGvHjt7n886Z9Ms7XY99yRh278zdIffe5Zrz4cCvOv2EVXXpX1EmZXfs45axdEee1x1rywLsLvWuvP9Gc7FxJlz51U1cUGnxUAxqQGhMG9WbqJ98wYVDvnVrvvDXreOW7HwB4ce48rjh0eNp5B3fehy9vumS7bZBSUpGwyNlJoW9SocFHNaABqTH6lIN45Z/vMPqUg3ZqvT/OXcb7//0CgHenfsYZk49NO2//4T15cfWD222DlJLK8iqyc9PflH5HIOyjmjRpEiDRo9CiRQtM00xSna9bty5JnQ6wbds2Zs6cyezZs7n00ksBsG0bKSWxWIy3336bMWPG1FGLfNQ/iV7tZnwZfCjo5Ama4tENGyLjJjJuYCSkEwIlqo7qlJrVhDoIVB0ZiziiPP29Fs4hYJdrjzAEVnYMK8dAGo6eXCQkRpVDTglL+jGD9aok2IZAuBuRKuWmsGQgXInU2i3ACWcg0BTiLqmkVIsiggNSKlF3MtywnZjDyq5ArwhACvXHyRMDO+7aqBNTUitXleNW6nWfumcqfIv7vjrVZxJxpYg5bQh4/JAaU/rkiipE73evX4TXT56C3Z2IEIqIleBuCevpB4QQCELjwLmQ2bNA7Zb4ffjhh1xyySUMGTKERCLB9ddfz/jx45k3bx75+bWP+bc7wxnbmsIj1bNcHfQJOve9AM8/BcKIGMKdFNLS6/c/7J/CtgRU76nSaufTXWmjEejC/eup8w0BpuH42GwT4gbEhDtZieNzLZ9A9whYRaSr/DEDGRPImBOCSpnv+QjXHzk+yr3oKtJlSJUuNPI6yQ1YTmileBnES21nBY9Xj0iaKJEmyJggkePGRM8m6DP0SQnVV1Fd6uZJuge6X9PThvPb1aQPNDA5T3iCIdkfB32rLmryYrvrxQvtQL3PUAjVsAx590KTZgmu+usycvIt7r6mA2uXqwdh98Do4zfzi8vXktcogZUAw8z4Y3WnonPvMkYetZlP/1eAtNN/uBbOyeWTNxozbNy2HapElxIeu6M1n77RhAv/uIrDTtrI0DFbyc61q40Oli5mvNWEx+5ozaHHbCVhwZplMaa/1ISRRzkK+2POXU95iVEndaVCg49qwK6O5as28Y8pb9OqeWMmXT6O3J1ImPzf8aP47bGHYmS4Cm170atVC4Z2bM/yLVs5vHftNvjbHli2zWmPTOO7lWv5y4lHcNS+O3cSQUeDj2rAro7lqzdz+7Mf0LJFI649cTR5OymeOcDFfzmdC2//5U4PZ9Klb3sGjOjJmp83MOKYwTu1bgDLsrlq9E0snLmEax+dxOhT059orGvUxkdlZWUxePBg3nnnHY4//njv/DvvvMOxxyZPSDRp0oRvv/02cO7+++/n/fff57nnnqNLly61b0A1qH8SvTqE46VHkBSpiFFpuGvShQGWjVFWhVFehcduKqI4SXmJfy1QZApGSiOU05fPRzTBJdd01buUrrIz13QIZukS4C6BblZaGJW2V5g0HLLHUbPik1aVNmbCRmQbkGV47fNEpUIGwhgI6Wz8pxJYADGH5FWx05NUl9Ihp0i4G/ZVueds73IolIkvbgXABsOSWG5IF6kIJ03F6akd9XLU/IN0DFXcma3Id53skcl5A2WrY6UAVWENBH6cdJ2Yc9kl6Z6XUpH4DlHuEVfSKUu6ISNElVuWRVCdakuPA5UeYan6J4PBBUhpYEsDKdP/4HjzzTcDx48++iitWrVi1qxZHHLIIRnVv0dBDQwjmZhOuithF+FNsAiP4HaIY8O5ubY7uCwbEjYiYft1GULzLbL6cBlRsdqj7AjYFMqXSoUeVZQQTszymIGVbWJnmc5Kn5iT36iwEZbErHTbZDuTl84mo4azSXLM8G2wJEaF2pzBwHY3DbXduOjOS7oTDT4pLN0NkZPCM2nPtnT/GgnnZVZI4iWSeKntkOCWdMqQziof9RxjuHlt57xZAbEySGSDnYNPilvCJ6Gl/1LPd8AP6StghP+Sen6tDYHvHGqC0Yi8LUlt9yYglB8Nh4NREEAMZ8NWFWpH+To7aLOngq+m+nRRGx/VgPrDuJM3cdAR27h38j6sXZ5T3+ZkjMtvX05e48w+R+sTi7/L45PXm2acr8+gUkZO2PEx0VcszuaZv7dhyJgihox2NkHMyUvUWfn3/X4fNq6JM+FXSzh13/702LeUUcf5CvvsHMjOsaspYfvR4KN2P1iWzfWT/8uihWu48Y8nsO/AjvVt0g7F5b+dSvHPWwDo07cdEybuv1Pr39kEOjhhVJ468+SdXq9CUXkFc1c4CslPF/9cryR6g4/a/WBZNjeedDcLZy/lhqcuZcDI+hs/OwO/vm0aqyiDH2Hfzm05YfjOC6sC1Es88KycOHe++tudXq9CyZYSfvhyMQCz3v22Xkn02vqoq666ijPOOIMDDjiAgw46iIceeohly5Zx0UUXATB58mRWrlzJE088gWEY9O/fP5C/VatW5OTkJJ2vS9Sv163ms9e7FI4FrCvfCB3rhBU+KeFn0+R9IpgWXVXpEcSha+G6vfzuK2rDQaHnTya5AsWF0xkCmWV4yk4nhrZDcBiWQ6QHVN6GcHeH89N6dZiGQ64bWm/o9RnhuvE293OU4CKg8k66H+7LcOMNOzZq3azbGZXXxAk1o+LWK9JGpQ+N1EBZmj3eRqJhG1PAuySDSfXyo8wNlKGTkvoYUsNCCudlg7Dcv7ZM1YWBLgq/TxcWwnuBsxuy/qqoqHkJ9NatWwFo1qxZhrXvQQg8v6FjL41Ifuk+QfNHmmfSSFfpjQe/vFC5+phKVa86F7A9lCdwPpQvDTmf0NPGHPU5cV99rpT0QuKvkrElhj4RYbjPuaHV7Z6TprNpp7OJqPD3OlD5ws91aD+EqM8HAd4kmGE5ezXEKqS7p4T0+kIo3xjqHxkDabox0fNcJTruc28LL2mgn5RCPcpXqo4Mqb39Dg7fJ/dVkw+NupXaxGBUtoB9Kr02ARE2x7O1OueVJsI+qgG7Np5/sCUTu/XnzalNyUgxUM8Yddxmnvnme7JyZPWTT7sQbBte+ndzDDNzkvi7L/M5dd8+LJidi70DOeb23Sp4efEcrn9wKbYN61bGufiwHvzmmG5sXGum3ddrV8T504Wd2LA6mOfki9cRi9mcfkBfQLJobi4n9evL91/mYVu1tTqznzwNPmr3w7p1RXz15RK2bCnlgw/m1bc5Oxx5BdlIAYYp6N2nXX2bU2u8Mnse97zzKcXlOzA8k23z2eKfWVtUvF3lNM3L5azh+zOwQxvOH3lAZJryqgSfLv2Z4orK7aqrJjT4qN0P65dv5Kt35rJ1wzY+fP7L+jZnh6NJPAtsiSkE/Tu1qW9zao13p83gsT+/SElR2Q6rw7Jsvn7/Ozau3rxd5TRp3pgTrphA7wO7c8o1EyPTVJRVMuvdbyndtuPaA7X3UaeeeipTpkzh5ptvZr/99uOjjz7ijTfeoFOnTgCsXr2aZcuW7QiT08Yuo0QPfN8WoTdRJFCq8xqRHlB7WtqvCRXjV8Ws9spJoTYPX0plTzWQUXYLpShUm0rqiUFU2ZguGeUR+rbEqLQQCRuRsJyX5bAd0hBI00TmxLByYlhxI0jUWBIDiTRdNajtkvCu8lAKNwa66dpkQcyW2AnnvIiBFXM6zFNquuSJHlLFNsG0JLZJQNGod6GnZhdK7ekQWlIKzwZpaONC72Otq1S4AkVIGrYr7k3gh3zQCJ6k33WubZ7qUr8F2oZ+0nbTaYp0L9yM24eGK3n1JhqUGlWAlQ2Wu4LJBC8udKAtQoDhrB6Q7uAQ4NynDJXotlRLaJzjdHZDDnSLlFx11VWMHDlyh87i7RbQQvCogSajfFOq9+4JzzUZjsRYKh9kAKaBsGxfYiw0FboecNs7V43TUXGE8P94YznwHPl1BcLA6NcUXLW3xCG3pTspZ8cMbJf8FlIiyqXzZanC9VGWjaiyEbbtP/tCYOfGsPLjWFlOCBfPD+D6IxMstQ+CssFVm9sx99l2zVXPpPJHtiLVVft11be7T4ZIKOW75sO8JSnBY/WsmuWSrC1glEOikcDKJmlvBdWFSj2vVuMIGyfkjP4ZZft2ebdC+QPlu7x7hbOaJUSKq2uez9H6Svm0gKpcDQvpTCiYFc7KIWm4PioHZNwdDlW4m8EGbQyMDN1/ZkhQhn1UA3Z1CCrLzJqT7WI49dJ1NG1VdwrpnYGVS7L54IXaTl4L+h5QRq/9d+wPIyEgR9uY9dP/FbBkXh4X37KS5q3TZ7k/fLmQ7v3LaNE2mOe/97WisiI43noNLKPf0NLtsDqzWYUGH7X7oU2bAk44cQg//LCKY4/d+cvodzbuu/00vv52GYP6d6CwYPcMu/jThs1c99xbABhCcNlhO0Y1ed/0z7n/oy9ompfDh1ddQFYsRklFJfe8+SmNc7OZdNgwzDRUq8s3b+GxmbOREj5duoyuLZsnpbnq5Td4d+FiBu3TlmfO+sWOaA7Q4KN2R7Tu1ILjJo1n4awlHH1B3cdp3tXw4I2/YOa8ZQzu14mmjXfh3dyrwcrFa/nrxf8GwDSMjGKcZ4Knbn2Rp29/mSbNG/GfRfeQlR2nrLicf18/lfzCfM74w0mYZs0+avXSdbz0z/eQUjL7g3l07JU8wXrbmf9gxquz6DusB3dPv2kHtMbB9vioSZMmMWnSpMhrjz32WLV5b7rppmp5rrrArrf+JyBz096mQ1ynukH6ndOUm9J9OUyMevlEkW9PivrSaIsMkGGp2yFx0tpCYLuEhVSKTXAIKunGQHc3S/U2TdULcgkcbzdPxd5rUkdbJ3JUTltnQUTkJnGRBHToUNqARSAShJqzCFQYIt8VKaanU8p376XqCB/j8kM6z5lqfMjQsUYAKZW/R3Dr70NF2BHFiVACYeGGsJDYQjqEusuT+puh+pvB6tya9C/XCra7fMZ2O3b58uVs3brVe02ePLna/Jdeeilz585l6tSptTNgT0LSKhTdN4SvOVDPfdTtk+BNnnmwpZ9e+aXAy7cl4FNSG51sVNQzIUJtSadMFWrGUMpx972aKLNspC2dkESaj/Lap/IFJreEtxpGGq6P8jcLiP4c0HyAIqfDmx57z7Y7CYaFs9lplVRJND+UfJ+d6DLOXzvu+mbD3VhUe26lX2Wgrx3fiudPw35Q+TI71Jaw3wPfj0pVkGqTXrnm9u1wHr1+iTcx6BxKbFNGJAz2s8Sx1RaaDwzVkS7CPqoBDdgReOuZZli7F4dOm44V9D2gmMyfKgfff5XHmuXxjL8/bFwb47cndWXLxvSV5ArHnbeBN5bP4ZizNwS+8027txVHdtiX//2naaQy/uRJ6zll0rqk74lPfjWfY89bj3525vQmnDaoD+tXx2r53SgzX7M9Pur++++nS5cu5OTkMHjwYD7++OOUaadPn+7siRN6/fDDD4F0zz//PH379iU7O5u+ffvy4osvZmzXng4hBJdcNo577zuLzl1a1rc5OxyFTfIYM6L3bkugAzTLz6UwzwkR1qN1ix1Wz1ZX5V5aWUXC5QVe+Xo+//nsG/753hd8tWRFWuXEDBNTOD4h1caim0udSczNZeXVllVl1XpZDdDwPWp3hBCCi/9yOne/dwOd+7avb3N2OAqb5HHYsN67LYEOUNCiMU2aNQKgU5/MN3xPF8VbnNB45SUV2G5413ee/JCX/vEm//nT88yZ/n1a5cTiJoZLtmflRsegL9rohP0r2lT9ypxE1fZ9gd6TfdQuo0RPQnWcjh7DV0eS+tBNFzNcMscvV4YJKk+NqAgrrfIAcVMD0RRWkkYS56ETpm+2qluaSpGsynSYdQGOalWAzDKRCRuj0mGthWVBRcLZB1EIiIMdNzUbHFWlYQtHrekxTz7ZI6Sm1VFEkBsGwVOau6HmFZkjUcQ9ENf63sJRUbtle10U/iv8E0qJKSP7zTfZU4uqzcG0QvXy0N+Hi1MkGz55Lty4ybhtkmrTQnDuU8wlwS2HhBIJvyzVj75C3SHOTQky5ij0MUFaTtnC0n416uPPwBmvlkAYLvmeIWyE94L0dkNWuOyyy3jllVf46KOPaN9+z/+ArxFhgjzVNfXsqvdCeOMgcAyOGh3wJMQxwPIJ5yjy3Eku/GcgjChWIZWvrAmeOl1roOk2x/Rjmttx4e7DgBNKqtJGCtNV1kvnsVdqdCkRVZa76sRGJiTSlI4S3fDJan2VR5If0Nhadc0LpySdR8fSGV/9Jdw2xIXzcm+Lt6GonlwE6xY4+zzEcUX9BiQaE1DEe8x1yE7Pv6vyQhOG3gSifl+1zzKh55MgqhwFeUBl7tprZTlqcq9OE0jgrYjx7BROvTZglkrMBFDp7H9hx/wmeXa69SdNrkq3LsuvM12EfVQDGrAjMOKILRi7mYB+3coYS3/IpeaJzWj0GFhKQbNEOhG6Avjh61w6di8jJ9eqNq9tw7YtzpfAWJYkv7FECDBD/Vy81eD1J5thW3DguCK2bTExTZtGBf7nkRAgIu6PYcCn/2tE40KnHVVVBmXFJj0HlpCVLaksh+yMf5NnqESvpY+aNm0aV155Jffffz8jRozgwQcf5Mgjj2TevHl07Jg6RveCBQsC39NatvRJ4BkzZnDqqadyyy23cPzxx/Piiy9yyimn8Mknn3DggQdmZF8DGrAroUluDm9dfS5FZRXs0zS93ym1wVVjR9CtRTMG7NOavCyHWBrQoTXZMZPcrDhdW6W3+qdtQWNeuuB01hWXMLxL9PN893ET+N8Pixjbo2vKcv7x3gzu/+BzfjVsP3539OjMG0TD96gGNGBnoFFBHo9+/WeKt5bRukPyypO6wrl/PIWOvdrR64Cu5OQ7sUN7DelOVk6cnPwcOqZJ4Lds35z7Pv0jm1ZvYf/RfSPTTH7iUj5+4UuGHTUoZTlP3v4K//nLqxx74Rguvu2XmTeIPdtH1e+0gCKYorA9fR0qUkpd5YlGUOlyQZfArK5yTV2qv6Kq985XQ6BHlSPDdQj/HC7BbUmJJcAyBJYQ2K5yU4Kv5vTaqfogbJsMiBltHBLLT+VzQkp5KP1L0R0gHWJZ2mr5RjSX5fWL/lL9690LfDV7ig73wzCkeT9k8snI5oQrVh0RccpTkIbssLVibHeDRG/CQV2LsNUzTwbTZUiBYknhvdKFlJJLL72UF154gffff3+H7Wa82yG8wbH6G0Uo6u9l8umkyyqNPh7Cvkkn0L2T1Y/5jFAD05Lq2ZXuZJ1a0SPdB94Z/66PEk5YFtvQnhGNMA+ErQF/JY7miiSa/4kg1JOef/eNN7GlNspUq0MSuEy7X2bw80GvSHjXVXob6Yeaiuj8qGEQVN0ntyVQjN5XUS/XzyLxFfbuChdvI1Ft1YunHBea38J3cRKwTEjE/H0vklyeqMYm6ZeZCWrjo2677TaGDBlC48aNadWqFccddxwLFizIsOYG7E2YNys/YzK5vtG8tUVB0wS19e7LFuRiWyLjudPOvStYMi8PYZIyr5RwzfHdOKX/AM47pDeVZUZk2hcfacGJfQawdkU2IPjlfv05bf++bFqbvkL+PzMX8ty8eTw1cz4FzZzd6me81ZTJv+gaDG+VNjIbCLXxUQB33XUX5513Hueffz59+vRhypQpdOjQgQceeKDafK1ataJNmzbey9RmJaZMmcK4ceOYPHkyvXv3ZvLkyYwdO5YpU6ZkZFsDGrArYmt5Oc0a7Vilan52FqcNHciAffy4zP3bt+HjP1zE+7+7gFZNGqVdVo9WLRjRtZOzt1gE2jRpzDlDB9GxaWHKMt76bqHz9/tFadcbRm19VAMa0IDMsG1TCQXN0/cRtUFuoxwm/voweg7yJ996HdCN59Y+wtRl99OiXfph/jr32YdBY/ql9FEt2zfnhMuPpF231inL+Pjlme7fWWnXG8ae7KPqX1uftCMboWX8ES8iruvQN5szXXmMIRCmCJI2uiowilgPE7x6HjdmbdKQEMLfAC+qHUnpVZlOGANHLWk4m/ZlOX+JGRAXzsZ9MYHMi2M3zsZqFEc2iSNzY06erBgybiJjhnOMahvuxn1uf7gkFnEBcQOpyhb4xJQAaao0wotRDsJTijqqduflhW02QcYBN4Z6eJNNX3Ht2ubaJw3hq9m1dOHb4GWM2mBQ/6sn14eMDPCSgWkThxeV7qaIjvJUvYT+Y00p7mNOfzobDzov1N8YyCyBzBHYceFvpGgIhIHzShWmIjxkUo2dalCb5TOXXHIJTz31FE8//TSNGzdmzZo1rFmzhrKyHRtbdZdHaOKrpnReau/eRt9cIdxxYQpHuW0K51k3Nf8RVqAHSPxwfWn4yhTtStke9VI+KWZ48dBlzIln7o3/bAM7x0BmG8i8GHbjGFbjGHZ+DLJNR1qofJTyU8ofuCFeAs+VgVc+7rMFBPYlUD5HbYSMXyRIZ1WJoa0yQbr+KctwfJ6p2kjQdyi73FfQfYmgPwjcA+2vKi+m2kTQb+GXr/yGVGpvrT3ee+UThbtBahmY5RArd97HyyCrGLJK3NU0BpDl1C3jOPcphtPHcZDZYDWCqkKB1VhAtmunW6fQP0dFyK6wbeq+ZYDa+KgPP/yQSy65hM8//5x33nmHRCLB+PHjKSkpyazyBuw1aNa6ksrqV9Tvcti2xSAWr/2uoC3aVlFcZGY8ebBuVYyhhxWRnZ364yFRBRJJn8HbGD5+K01bJavWpYSZHyT/2MxpZFG0Jca8mbnMm5nL2hXRy4zDKC4SNG2RoF0X50b2GVxCVjU2pkZmrHvYR6WzQXtlZSWzZs1i/PjxgfPjx4/ns88+q7a+/fffn7Zt2zJ27Fg++OCDwLUZM2YklXn44YfXWGYD9m5s2VbKXx59l2ffnl3fpqTE1NlzGf3AvznyoSeoSKQfOuCDJUv4xbRpvDJ//nbVn5+dRXaKsCw7EpOPGsUhPTvzh2PG1rqMPTlUQgP2DmzdVMI/bnqJV57adT/LXn/4Pc7qfSUX7HctlRVVaef74s05XHPEbXzw3xnbVX9uoxyycrK2q4za4KJbf8GQcQO47K+/qnUZe7KP2iXCuQQVmLUpoIYvxlJTHXr1aHWlocT0IIIXZOi0p070SJLMG6TX55BB0tkYNSEDBAxSQMJGWhJpuQsl3JjC0nAU6lIITwXqkUJGUGGo8z4ecedKDKUUjsJQb4a2mae3QagkEB7BNpx0Og9n6I2LYMclWhxpt1z1XkR1dIquDStmkzpUK1uFj/CIMsPh+qTE34xRSTzdjQD1DU+FIpYMn6BXkxBItyvVSYS3KkLFfBYQDCujt0GzO1PBlY1wNnLI4IFSKqlRo0YFzj/66KOcffbZGVqwByE81lI90+HwJ6F7GlVs4Egbq+pZBt2HiOTxTPLwrg1qHF9qTKvE3sOvZtxwQxDpeZTMWTox0m3bIbOF2sPA9VUIf1WHIKBE9xT6eru955Jk+bPwz6v9DKQbjko9a87jLB0fZYWeOQhNPvjX1MqagOpa8yVJfa/3WaB8LY0hgyFrBEljTYbGkR4/3XMtuEYlnJNCkfYqreFuk2GH8klntYBH0msV2eGP4yTbfJ8faF+aqI2PevPNNwPHjz76KK1atWLWrFkccsghGVrQgL0B0jbIyqlvKzJDXmPJlk1xauvRt20xad6qKukjqSbsP6KU/YaXVpsvngV3v7yk2nKef7AlMz8oSDpfvDnO1cf1AKBjj3IeeHdBWjY2b21z46M/c9ZBvenat4yLb1mVcdtqg7CPSmeD9g0bNmBZFq1bB9VdrVu3Zs2aNZH1tG3bloceeojBgwdTUVHBk08+ydixY5k+fbrn19asWZNRmQ1oAMDU/33NC+/OAWBo/050ykDJuLOwYN0GAFYVFVFSWUV2LD1q4i8ff8zCjRtZsmkTx/Tpk3T908U/88GiJZwxdH86NSustX0Jy2ZDcQltChqnnefHzRv5bv1ajujak5wU7RnevRPDu3eqtV1Qu+9RDWjAroQXH/+E16d+DsCg4T1o33XX28ti6XfLAFi/fANl28rJyk5PAPDoTc/y07yVrFi0mtGnHJR0fdb73/HFG99w7MXj2KcaRXhNsBIWm9ZsoWX79EPNLFuwih+/XsrI44ekJOgHje7LoBThYNLFnuyj6pdEFyHiIh2iKox01nMaIshmuHWreqReX5jAUOeizFExasMsltDyhssMwyPKnENPja4YioQTZEYk3BjphnDIEAtnk9FKG7Os0iFsYgYyO4adE8POcmWbntIVdzM/d8m+Upa7JI0il7ymCkVy4RIswuPw9PaqvQPdJjsxynEJLLUSVREtdrAvPPJI4Kv39RjkMoJgVrydkTSfkVSmd+9UghBJpNuHcO0zBNKQ3r6sqlAVn95WZFNAUerea0OfVRHe2JTaxISTRXjxpbHQYp77HSsMgXBjMQghM/6x6BCTDkGZdp7a7mK6J0ONSwhOiEV1q3a9xl4P3VBhGN6DJLT74K2QAW1li5bR9sdZWnc6Qo2eRB5r+zp4BSuf5m0K6sZCd0NAqdAp3jyzwPFRNhhVkli55fovx0/Z2aYTl9xdXUNMOGpp5asM119pCnS/U3wfI4U/x6UIdM/XuOFbDFvzHcItP2YgLenF4tV9tZpc8zrUwFtBgiEc1XW2a5fqqqhHJ7xaRvWL8jfCjX9vaOkDgdG1D0iNKFc+0VD+0Q4Va4C0HHJcChx71eambn7pTmaofR6S+jcqxnn4c9CbTCHJt6eD2vioMLZu3QpAs2a7HjHQgF0D61fGKd4qAnG4d3UkqiTd+pYx57NG1IZI79y7DDNeO5K5LojpwhaVHHHaBirLBV+8W0BJUcRPDWHz9n+b0WdwMV16V9ZYppWQjDl+M136lJEmx7bdCPuo5cuXB2KWZ2dnp8wbXkItpUy5rLpXr1706tXLOz7ooINYvnw5f/3rXwOTg5mU2YAGAPTv3hZDCFo2a0TLZjs2FEFtcdnIYeTEY+zXri3N8tIP6XJ8377c9dlnnNivX9I1KSWT/vsK5VUJlm3awkOnHV9r+8587Fm+Xr6Ky0cfxKRDh9WYvjxRxbHPP0VJVRXnb1jL74ePrnXdNaEuvkc1oAH1id4DO2AYguatm9C89Y7bE2F78KvrTyA7L5veQ7tT0CL9ybSxvxzB47e8wGGnjUy6JqXkj6feQ0VZJauWruNPz19Va/uuHvNHvv90AWf98RR+9fsTa0xfUVbJ5SNvpKy4nEXf/MyFd5xW67prwp7so3YJJXok6lpmonMT6hiXOIyoJ+XPLUWOymAiPX2mP9Vk+CAwueAS6bYNVe48TsJlsy2JqLSgvBKHmo05m426wbglwo3LLd0BrAhdkjbO0/kQtblngB0XiiFLJhL1GL3YIZU1eIrQMAHv5de7NCCx9DmlwB3SSRv9Qvg2ho6j7osS0aqNUoUbqkUKvLARKq9033h2uuSXbWjdoyljvSHnBUh38ws3D36fSEWEuW1XZJjQ6swEthTeqwHbgVQdr/Gc/rna+yxvDwNVsCJ804GbLfBo1TAhknQ13dU4SQ+C+94d41I9M0IiLPdVYUHC3SjBdMl3ld+Wzka7JkgpfHG5CNdH8vMtcZTv2rOY1Djl51S3GkAMEnGHhDZckj3gy/VJA5xnUxrOqhypVuek8P8idBz8XJDBiUMvtpTm59TEmQpXE+LThdsGyxUNGFVuxCy9Da4iXVThTkjIQP9IW/i3OzQQvNOuD9fvu1qg5Nni2u6R+BkO/bCPKioqClzPzs6ulqSSUnLVVVcxcuRI+vfvn1nlDdhr0KVv+W5FoAMgDebNzKc2BHq7LhVMvn9ZvcaBP+ykrRx20lZuvahjNIEOLFuYx0evWEw4fVNaZbZoa3HlnSvr0swaEfZR6WzQ3qJFC0zTTFKIr1u3LklJXh2GDRvGU0895R23adNmu8tswN6Hgwd1480HJ5GTFSOrHkKWpIPm+XlcN8afLCoqK+eyaa9RkUjwj19MpEWj/Mh8vx4yhF8PGRJ5TQhB79Yt+GbFGvq1bc2aom0U5OaQG09PQaogpeT71WsB+GbFalZv3UabJo1qmLwS3nVT7NgQBg2/9Rqwu2PYmL488/kNZOdmkZW1a/qowlYFXHCbTzQXby3lljPup7Kiij88OYmmrQoi8518xZGcfMWRkdeEEHQd0IH5Xy6mx36dWb9iI42bNSInL/XvnihIKVk0y1kdOP/zRaxbvoGW7ZtX66OEAOGK4Exzx/qOPdlH1WuAmoACMokQraPO1svWY7x610Ry/eG45kJLq5FTAZNFOK06J0L1CK18LZ2r8nQ2lfOvG9JRnhtVEqPKxrAkZpWNWVpFrLiSWFEpRlmlQ8SaJjIeQ2bFnJgkqg2e0lM48XFjbvxhFXvZU6sL56FS5K1wHnLvvWJ33WMvXrAes9fEj6WrSBZDa68eq97rg1DcYz1vFIGu9X0gxrn2CqrcQ6/web1O0+8fEb5HehnxUDkm7v0TOP+UUW7RPl/m1qP6wlH7ew7NFMFYzfp4zAB7cgyqnQq326V+L0LX/OM07lHYz6l8brwjJ06+G1MorEIP+xDPBhGou1orAj5IqyPJf2nPqnpGlQrdFG5sdOHEcHdne7w9EnDIadNVoMfKqjAqE07ZMQOZZULM9MoVhq9IlzGcv+E9EvR45Vo3eo+gyxN7f92X7suUf5Gm8PaBEHrbDZdkd5/jYAxwxzY7W2DngcwO2SS0esL+RqVTsdHjQFz6scld3ye0PSuEFL7vM7T7KvH2nZAGgbjlIuzHskDGZSB+udT2ZAjbFxi+BsFY7rp/Vns+mMH8mX6bCPuoDh06UFBQ4L1uu+22avNfeumlzJ07l6lTp2ZWcQN2OfTYt5QDx23FMGsfBzwVZk5vzJYN4WUVuzaycizO//0qho3bijeTnyaKNhvMnN4Yy6o57Y7Gfgdvo7B56vihq37K4p83tWHh3Mx+NO4s1OZ7VFZWFoMHD+add94JnH/nnXcYPnx42uXMnj2btm3bescHHXRQUplvv/12RmU2YM9ETatIm+Tn7LIEehRmLF3OFz8t55sVq/lggR866qdNm1lXXJx2OU+ddQrvXnYOnZsXcsjfH2H8/Y9RWpl+PGNwvpPfe+pEfnHAvhimwai/P8INr7/rXX/t+wU8PWsOCdv30zmxGK+fdCYPjD+Gq4cmK1DrEg2/9RqwO6AmH9W4IG+XJdCj8M2H85nz8Q/M/3Ixn785xzu/cvFaNq7ZknY5f33rdzz27Z3s06UFp3W8iHN6XU5ZSWab+AghuPG5qzn6wnEYpsHpnS/h7gsf8q5Pf/5LXvvXB1gJ/0thVk4W9824hd8/fTln3XRyRvVlij3ZR+06IzZJyqfYUhEWy0UiM4oxQokZVoDXlFkG1dtKYZxxvdWlFWDFwJAOWeWQxm7lApDa4oiEhbAsqExguGpPL56uYTgEhxtMV7j59ZAuAXWhroBU8c8lSCW3FvhhYVQ+W58UcZXWLh/onvKU2rZGuHjEUPil9WXoMKkzU91LneDyECrXU1xqJJgXWsckEOcd4fSX7ZJtwgSRwAvRrNIZbh8GlKS6ycIvT7hlScvtQ+mf926NBXaG3MKePPNXL1Aqc11tHuGzUu6B4KWpxleF/I/3bNTgl8LlSeUXwl9ahEi58iapwKhnSy3BcOXiwpLYCdv1NS4ZLHzORwjpqq+FQw7j+gtbQsJGSHcyT+DE8jbxwtMoHt92J7XCBG2yXREd4R6rlSJecnfCzzbAiuNsPlrlEP/eShHTT+c128YJv1QBRgxsfSIt6h65N1B67zXDlRu3NNs0XypcmzDAUqQ1eGpwOwbkuH2uynDHlm04tkl9BtL1OUI4q5K86GlaPs88Nbz1WYoIpb6Qrh9Uce4z+22a5KMyCZVw2WWX8corr/DRRx/Rvn37zCpuwC6FvMYW1z/4E+cM74PcAZ9Xh0zcQmGLXYBRzgC5+TB4VDEP/CHzsd2iTYIDD9u2A6zKHJ/9r5AtG1MrP9cuz6akKEbPfZM36NwVUNvvUVdddRVnnHEGBxxwAAcddBAPPfQQy5Yt46KLLgJg8uTJrFy5kieeeAKAKVOm0LlzZ/r160dlZSVPPfUUzz//PM8//7xX5hVXXMEhhxzCHXfcwbHHHsvLL7/Mu+++yyeffFJ3DW7Abof7n/+Ex//3FecdfSC/Pm73nFD5esUqXvxuHqfuN4D+bVozrEsH9u/QlsqExaE9uwDw4eKlnP/sS2THYrx1wVnsU1Bz2Ie4adKhaSH/mTUXgLXbitlaVk5eVmZq9EN6dOGQHl047N5/AzB7xWr37yqueukNALJjMU4c6IeV6VRQSKeCwozqqQ0afus1YFfHvx/6gGlPzeD0s0Zy5nm7595F389YyLtPfcyR542m56CuDDykN32HdqOqMsHQ8fsC8NU7c7nhpClk5cR5+Ks/07pjixrLjcVjtO3Silfuc/Z72rByE9s2FZObn9lGPkOP3J+hR+7Pmd0vA2DejIXO3y8Xc/v5DqGelRNn/On+pF67rq1p13XHr2Tbk31U/ZPo4Xi/4fOpjsElW9K4KeE4guFzQkunk6/V1C3CB0LLr+eJMi+pbRpxqwhtFWvYcmJjC1exCQIsC6PKRlQlfHY121Wgx0xXVejaEjOQMcNRmWsEuYxpqktF+npkiQjyzi5v5oWCcVWiYSViQA1uuHyjCuWiyEBPgY1HxiWpN3USOqqvI/s+4paGJzZ0okvgqyrBCQuh2Y5LEIGfR8WS9/IlNALM0IaO1P7qqxfUPVHH/k3X0rh/1G9+ZaedmfOxEd6rAXUAERpgEO0novwHgKssjpzY8XbnVQMfPxyL8iuQXD/gTTFGPSth2/R2hO0Mx/eIqtfU8huOGp2Y4T9DtsusGmAkpPcSbuwjGTex4yaYJsJVtgvDVYXHnTK9R8R2J7EUya5D+Y6orow4KbSuVX8lwlG8SwkJgbCcnE7MdrCzXP+rujeGY2MMZJbTFwLfR6h6AoS5/ld/gaM0rwThTmwqXyqkQ+YbVY7vtJUiPFysUsi790Xta2G7PsrOAjtXa7etqnf8r1AbqoaHgnsgQ/YGoA8VWzuXodg37KPSCZUgpeSyyy7jxRdfZPr06XTp0iWzShuwy6H3/iXk5FmMO2UT7z7XFNuqW7XK//7TjE49K2jWKlGn5e5otNynglue+tH57BBQVmbwzD2tWPxdHtV4elYtzWLyLzsjEMRzbH5xyTp6DSrDqEW3Fm0yeeru1qxckq1Nygr0mb9xp2xk5IQiYhG81NnXrWLf4cU8e19LijYnJzBMSedeZdg2tbJvR6O236NOPfVUNm7cyM0338zq1avp378/b7zxBp06dQJg9erVLFu2zEtfWVnJNddcw8qVK8nNzaVfv368/vrrTJgwwUszfPhwnnnmGX7/+99zww030K1bN6ZNm8aBBx5YN41tQL1i+tc/MuP7nzjjiANo37Iw7Xz/+3w+ti353+c/7LYk+lWv/I+VRUW8MX8h/zzpGIZ0aM/U834RSLNiaxEAFYkE64qL0yLRFS4c7oR86dO6JW0z2Bw0jL8cdwQvzvmekwcNAKAwN5e4YVBl27RKEXJmR6Pht14DdhY+e3UWM9/9lpOvnEDbLq3SzvfeW99h25L33v5utyXRbz/zH6z9eQMf/ncGf3zhagYc3Ie73pocSLPmJ2eD5MryKjau2ZIWia7wy8nHA9Btv8606pB+vjD+74lLefvxD5lw/hgAmjTLJxY3SVRZNGtTWOtytwd7so+qfxJdKSPDMa7d89UqtwXB6+nIvL17qCS/GvGRijSIMru64+rIlKh8KYk1sGOGo/o2bUQCRJWNUWVDRSWUVUAi4fz6KAVhS0SVjciJI3NM7CzT5cylG2tc+PVo/K33HjyCylM2an8Nl1iWhnTUkYgA/6uUlV4YBBzFpFKsm5ar5nSJHokT/kERPGrTu2SCj0Cs8ehOdJPK4HlFFHnkkGqjANsCYu5moUpd7uaz3QkANXmgVKkBck7xjW4b/HjQTrtUKPmk1dhufygCTlhgJARGlcSscuqXKh69ez/sjEMl7Lkzf/WG8Iab+iWo3n8ISLoVSbJznHjYoUvVmqTMCSnHk8zQVfKhi0HfFd2AJD/rbmoskNhZhhuOxZkENBI2RsJGlCcQZVUIWzqTdZZAVLmkMY5fs2Kmv2WAO5kQeOaUvbqvD3xOaM3RCd2wchp88l1NrpnOs2/HwYoLzErpENEGWKbEynFik6tnEksiqgSxEjDLHd9mZeNuiKrZErqvQielpRvyphLMMp8sD98Xdc6Og5Hl16PHKbcMZw5VSscne8r5cJgV22+7RNugWtWrNjmWBMhzz0dp/alPbEpVrtu326tETweXXHIJTz/9NC+//DKNGzf2YgQXFBSQm5v+hmQN2DUQi9v88fGlbFqbxdvTmu+QOo47b+NuR6AD5OTC0DEl3vGzD7Rk8Xc1EzWVFSZff1gAwNFnbqDPAWW1tuGpu1rz8r9bprzerX8po44tSnm9e/8K/npF00gCHZxVAideuLHW9u1obM/3qEmTJjFp0qTIa4899ljg+Nprr+Xaa6+tscyTTjqJk046KWNbGrBro7Iqwf898BqWbbO1uJzbLz467bxX/3I0096bzS/HDYq8vmbTNpo2ziV7Fw7nMrBdG1YWFbG1ooL/e+Nt3r/w3KQ0Jw/sz2Ozvmbpps08Nfsb9t+nXdrlN83L5brDtp+8G9ShHYM6+PV2ad6UNy8+m/KqKnq0rD3xtT1o+K3XgJ2Byooq/nTGP7ASNts2l3D9E5eknXfSFeN56fmvOOHkoZHX16/cREHzxmTlZLZCZGei99DurP15A9s2F3PnuQ/wxKK/J6U54qxDeOkfb7J84Spevf8t+g7tnnb5TZo35sK/nrnddvYb3ot+w/1Nytt3b8MjX/2J8tJKOvfZZ7vLrw32ZB9V/5+qUUr0VCr0pP7X2d+o61H1pShXhM6lWYy+CZ36K8Nl1USAuun8fC5Jodgx4Z8zqmyM8kpEWTmoOMOGgTAMiJmImImIm9gxA7JclaeKee4WZZmKDBe+bREEX5jb1xXZwhCRSnRFJgp8AkZU4hE2hnBCKEhXDamXn7LnI1S2+uSDPi8iQnnUe+9QqcsVQa0rOvW8OpmvlOc6OaeHYcC79Q6BLgiKfcMrIYQW71lNUiAd4h0CoRn8mM2ZOZ892WntdARU3Cmu634gHUj9ARP+OBDVOLOkByCZtE1Zu74Xg1avVNdqgun6I288GggVEz0mvPEpkMQqJbGSBGZpFSJhuTHUTaTp+CkVS13GBTLLfbkkvOfSY8Kb3Ap+NgT7QJ9ASLqsEcIqvWqu/1gId/LLJfDdMC5WrhMD3Sx3MxnCiy1uSHcBkEZYJ22YrDH+ypWoSUajCoeIr8B75rUmObmkG7JF+akYQV8tQ8du/PKkNtt+EqE5Zy+r0MqLItBVQnciNTBSBP6kp25PmqiNj3rggQcAGDVqVOD8o48+ytlnn52ZAQ2odySqBL8e3QvTVLPWdS9HvuWCTjQqtBASRh23heMvWE9ufrrTlLsOJvxqA137lvLADfuw/MccQND/wGLOunYNcz7L57l/tqK8JPhl5p1nmzLns3xa7VPFRbespEO3ylSLOpn691Z8/EoBVQk/QfHm6peXLJmXw3kH9/T9CIB0Nje9+OZVtO1Uxc1PLGH6y4VMvac1I44sYuJZ68nOcxQK2bl2dXPTaWHN8jgP3NCO1T9l029oCWf932oKm9dNbP2G71ENAIfk/vs/36O8vIorJ42jUX7dxvCPx0x6dGjBDz+vo3/XNhnlHTWoO6MGRZM1z304h9v+8z4dWxXy35vOJB7bNfeGuPvYCRiG4NV5CziwY4fINIYQLNu6BQz47OdlkWnqEiWVldz/8Re0aJTP2UP3T7nqvUNhwQ63pTo0+KgGgENyP3D1k5SXVnDp3WeRX5BXp+XHs2J06d+BH7/5mV4HdM0o74hDejHikF6R115//CP+8X/P0K5rKx788AZi8V3TR01+8lIMIXh/6ifsN6pvZBrDEKxcuAosm6/f/26H21RWXMZTtzxPszaFnHDlUSl9VJtOqYUQOwN7so+qfxJdwWMawsrIOipfEFBdh68l1atfjtgQQSe8dYVkWC1Z7U81zZakMhTrIpXtwokjXFaBLCrGLtqGTCQwcnKcqmwbLBtRUYmRyMU2spHZBpYbniCgONeV1eF+VzYZjtJQJ+mExFGLC5CWdMkol1TTVhJ4ykpXuW5nu4rKKjArHRVnuA+kRjyFiRrvmlKqE7QrkClAkIULc8qQBr76HZcUc8Pb2Ep5Kfzul6aj8hQ2bgxjVy2s+tDtKxQP4PaBMElS9HvtcNXrqp9sE2SWwLAkRsKtw40/LaSrms8Ae7LT2tnw4ohL7WFRz6lGZGbkt/QwP1p66Y4tZ2zI4MRQRPnSHahe2BFVdsiMKD/kx0fX2pWqrgAT7J6wQFTYGJYzWScNAZaEKhtRXgkbNyOrElDYBOIxxz8JgXCCczvhXYQTgsQ2XBJb81MCt4v0VUrKHxL8Gw79pB61pHbo90m6z3DMj41uVjg+KqtIeiSyBKQh3VArDulu4vqzMqcMFepJxpyXUeH4ORVnPdyXQuL0X9hE13/Zbr3CcspCOiFaZMzpK8/3qLaa0p+E8EJoBQelNNwOtf3VN0LzD854Dg04/bruW6Xj3zxfaoDcCUr0mjYnasDuBsHqnzKL/ZgpNq3NYtNaJ3TIKZesiww7sjsgv7Fk1vQmLP/RX3FxxR0r6Nizgt/9sitVlckTEBVlJst/zGXi2Rvp2L0yZdlLvs/h8TvapryeCtI2WLE4eQXIKZesp20nxyG02ifBs/e3wrYEV921vM7Dtky9pzWfv10IwOQHltUZgQ4N36Ma4OCrWUt59X9zABg4oAMTjxhYp+ULIXjsd79k07ZSWjWtfbgRHVtLypn+zWIAlq/fQnll1S5LohtCcNfEI7l+7KE0z4sm/xKWjZkwsLAY1CZ9FXp1mLdmHZ8tXcbx+/alpLISQwjau6T4f2d/x8MzZgKw/z5t2a995v5Rh21LLnjsBeYsX81dvziKQ3p12W77ocFHNcDBrHe+5Y1/fQDAgJG9mXDu6DotXwjBPR/8gS3ri2jRrlmdlLltcwkz3nT2K1i9dD3lpRU0qmPyv65gGAbXPXkpF/3tDApbRU+cJaosDAG2lPQ9MH0VenX48ZulfP3OXMadNYry4nKEIWjT2Qml88bD7/HfO18GoM9BPek7rOd21WXbNtefOIX5Xy3m+kcvYsi4AdttP+zZPqp+SfSwUjsQ1FpjUlLlC8WRrg5SiNRKuaj46FAjgRXIa2jvwzGHa9psUD9OIsAcIs1I2BjlCURpObKkFFlejsjORmRnObNPhoEwDYjHsHPjyJwYdraBjOs7VLrNMvCV2Bp5jWa+JoD3Ltlo+UzhKTN1BaN3a9SxVrxha8rLEBkmVCU66aNfI2hPKgToQK18rwBD+6u9Asr0UIUyjqvCFO6EhXscIseEDHRF0mSAMtC7prXXzysQLjXqS/tJPYZSYE92Wjsdejx0/ZmOesZreuYVojb49Php6Y4nQcoBrwh9aWvhaX2/KPRjBU2F7pHtqdT1OrS2StfXKJ8iDIEw3fjmQKxSEi9NYG4pRhYVI5oWIPNzXSW34ZRlGshsE5njqtHjQou37tYTfiY9W0iy1yPQA21Lnd5LpF0TOJNWhu2GrdLLUv4udIulqlvzn2qyzax0wsCIsNJcHdgRZgndv+KvflHkfKo+0ZXq3meW/j9BXyMcQ0QgAUH/aAfLCPSpPvcSriMDNPioBuwsjD5+M632qeTFR1pwzDkbyN6xvP0Ow9mTVzN49Db+enkHNq2Lc+mRPcjOsalpbumhm9rx5F/bsO/wbQwbV8TT97SmeKvpTVQ6+WuYTK0GeY0tJt//Ez0HliIMiMdl4CPu8Rnzqaw0sK3gx2ld4JI/r+DcyauRSHLyappka/ge1YDM0btnW1o2b0RFZYKB/XfMRtaxmFlnBDrAuXdNY8nqTXRp25SLJw6ncd6u5fTKqxJUWRaNcxxVvxCCFvmpw1XlxGM8ftqJzFy2klMH7bvd9UspOfOp5yiqqGD6j0uZuWwlQsAL551On9Yt6dO6JaYQ5GdnsU9h+vHXU2FjcQkzFjsK+ne+/7GBRG9AnaLn4K60aNeUivIqBozsvUPqiMVjdUagA1xzwhSWLVhN+x5tOPO3R+9yBHpFWQWJygT5BY5fEkLQtHVhyvTZuVnc8fb1fPvxDxx1wdjtrl9KyW/H/JHiLSV8+b/ZfPvxDwhDcN+Xt9FtYGe67dcZwzTIa5JLm87brzbfvK6I2dPnAfDJq7MaSPQ0sF0kemVlJUuXLqVbt27EYrUsSv0YF7oyMhkBFXn63HlyXkKEQNiWcF5FSKUq21OpgsS3P9VYiaw7BfkjNXLMihvQKAtkPoZpYjZu5FzLikMs5sZNdzbvk8LZME9USUxhY8eFo2JUIVw0IidghgjV725Y5yknwYl9K5y2SrVZogptEMqv0ity3TZBmLhKazwyJnKFgCKDLP84LC2NVAJ7ZJ/2Hv+cFG6YhJh2DUcxKpWiUiPWhXTUqQEbXLJJqjjDSlmO01+Guh5WoOtttAjESlerA2yJs5msioku8ePMNyBj1ImPggDpHRhn6r12Li1oJKR+Tobee8+dntabeJH+cQoWxTtbnfovBXeiP1+B8eeukABcNbV0pn5igkSOQDbNIhZvidGqEMOWyJjhhHMRjv+xTeEorSUIS2JUOePeI4pjLnmrr9bQn2cj4lhqzxsEnvkafb1w6sYGK4az9wShuqV0+0B4/SXUc59wT1cCxY4N+sbAyr4AXD8a8Lc4ae04VDWSJBrp9TvlBvag1Zti4ftK/bMu/Jmp+olwjHwZDAVj4o0pGR4fgTEp/P7fNUVuDWgA512/mgvH9OS5ed/vkhtYpousLHj/+aZsWpcFOErzirKaH7xEwmDbFoOjztjEv/7cts7V/weN38rQscUpr+c1luSR4XK6NJGVDVnZ6ZbdsJKlAZmjebNGPPvExc73+wxDK9YXtpVVgID2bQoZd8D2KRTrGuu3lTDxvicoqazk8bNPZlDH9JTlQzq2Z0jHupvEaJafS1FFBdkxE9v9Xrt2WzF9WrdkWOcOfHrlr8mOx8jPcvztlrJyXpzzPUM6tad/29YZ1dWySSMuHn0gX/+8ijNH7F9nbagtPvroI+68805mzZrF6tWrefHFFznuuOPq26wG1BLN2xby1I/3IKXE2E2+5JRsLQMhaNe1FQcfE72nQ31h05rNXDDgKkq3lfPX928KxBmvDgNG9mHAyD51ZkdhqyYUbykhnh3HtiXYkg0rN9NtYGf2G92faaseIjs3i9xGzorAok3FvPPUx+x7cG967J/ZRF3zNoWcfu1EvpuxiOMvGldnbdiTUStWqbS0lMsuu4zHH38cgIULF9K1a1cuv/xy2rVrx3XXXZd+YR6JIEJ/w+fxyQRC19KpQ4TSRxIris2W1SZLSq/Kdv/KmupKOhYB8sz7q00WGNKNh15pIRLuD4aYCbEY3q/CmAFZMUflGXc2+5Om80LFP9dIlQAvohMo+Gk8kxTJI/DLCpFZSWSi+/L4dJcI8u9fRN5quikJYdW4srMam1T4hgCpKINpwnaHLVH94YVN0KuRkSYFSdNQHl8VDEg3NIea7HBjr1c/lZMMZ26jho1592DUlY+SumxOf67D78G/hzUW6mYKp9WDw3rjKGLGUAbHm0LKqkNx0P0MKc7rBYbbpqvX1eoe5V+EcElxiWHZjpLeEMiY4cf0NwTEHQU6MRWDXPiTUkrxrSm1k57nqJeuBifiek2wQeCGU9LaL71JNZFUVti+JB/g5tfTR0666MeGE7bFyiW4V4MVTBNok3BsT5qg1RxM0CeFGhFljzbswhPYXhlR6TLA3u6jGrDz8NIjzZk6+3t/si3DsbqrYME3uXz1fmNSznzWgOtP6xr80Kg1JP/3j58ZfuRWDHeB0fbGNt85yGymr8FHNUBBCLGLj+0gHrriJGbM/5nDB6dH/uxM/LRxM1vKnLie361amzaJngqWbbOhpJTWSlyWBoQQPHfOL1mwbgMD92nLc998hykMDu3W2UvTLD+ojL3t7em8NHc+efE4X/72YuJmZv7kssOGZ5Q+HdTWR5WUlDBw4EDOOeccTjzxxDq3qwE7H46P2n2c1O3/vYxZH/3AocfuWgQ6wIqFqyna6AgDFs5cnDaJngqWZbF57daMlPxCCO79/DaWzP2ZPsN68Oa/PsCMmQw9cj8vTWHLgkCeB697mnf/8wk5+dk8v/IBYhluKH3G5GMzSp8O9uTvUbUi0SdPnsycOXOYPn06RxxxhHf+sMMO48Ybb0yfRHefdV8RJ5LPh4kcpZjLFFFEtV4nUeeko7FMpfKM+jUmguf02Ok12hIKa+Mo+xxVuRQG5MTAznEI9dJy51eLbWNlZyFzYk6M4bizcZ+UIGyJUYlrv8BSoROUYtMNS+KGKPaU2h6Z5akfpceX2IZPLOmK0LBQNhC2wHLV5y7pHCadvEw6URPV5RpBJt3+CdgRggxNGqDZpN4Lia8it1Tb/Xbp5QbUre79ErbfXjesM7bA33BPKOWn2y5XcW6p+Oq6bS55bsfc/FI6pFrc3cgwA+zJy2fSQV37KM8nue/Dz6/UieV0ynR9SiC1Hr7HWdfil6erz9VYEcLdoFcGfUq4rhr8rN6uav2UGs/Cf5jU2PdeMUEiz0QagliZhZGwETYkTJBxAzsmnJUxJthCusS1+0gKQEh/41095IneOBt3o1PNLndzz4BIWt94MwS9OCPhxjcvlwgVL1xrW1IGQv5JGyMStb+B40sSec7LU2m7/kaFhAob5fkiA6y47whFQrjXIlh8770MEN6eb5Eg3fjoEudzwRkCoQK08GgB9bzuO1UyNX7dsaj8cSbY231UA3YeJp69kWw3dLeVAHM7AxnatvMIZMihZAQpnb1QdFs/eKmArRu1HZgzLlP/AuOdxTAjPo9IcnteiqYtKxlzwtZa2VC/yEwN3+CjGrC7onPrZnRuXXehF+oSgzvuw5VjR7C5pJQT9+9XbdryqgQSiSEEli3Jy0re1OJXTzzL18tX8ZvRI7ho5NC0bLBtyYrNRfRv05os0+S0wQNrzNPcJdULcnMwhODzJcu47L+vMaBdax7+1fGYhsHW8nLWlhbTs1mLtOzYXtTWRx155JEceeSRO8iqBjSgZrTv3pr23TNb0bGz0H9kb8750y/Zur6II2qIL19RVuHQNaaBlbDIzU9e6Xf1qBv5/tMFnPOnX3La705Iywbbtlnz8wZ6HtCNeFaciRePrzFP05ZO6KnGTfMRhsE3nyzgT+c9TM/9OnHL05dgmgbbtpSwac1WOvWum70lasKe/D2qVj8lXnrpJaZNm8awYcMCs159+/Zl8eLFmRWWjgLdPdYFw5lAihTEA0TLkvQwCdUhoM70Kksi3gJkVSpbPII4BeNjS6QlIWFDwkJaFsI0nPJMlwU3nJdtODGKFRnlvVcknQzyIkmiJkXSEeRRVJsD8dQj2hi2XdpJpzylZqr8qbreI7Y08iyJ/NPT6W3S0+v26WmqQ7ge6b/02MgBtX0IeoQIVYROemld76eRNQ/FpHr2YKeVDurOR+nPs36j9Oc4AwI9hBRzRell8oPZoq+eCa+CCfiVCBtl2Nfq57TzUs0kB9ToIbvcyTkSNlgSafvErPP86b5J+SV/wksdez4qitURwfdSO53kCqI6U3WVS9RLG2dDVOmXFfBLels12/Qm+xMVeLHL7bjEioOlbdapQs7oiwPC5toxjUAXro3eVRm0TW+WwM8jgwlEyMnLQEfobQ2eTppc0W5n8uDNzEvt7T6qATsPn7xewIkXbeDm8zpxwq/X0//A0lqrSjeujXHLBZ3505NLyG9i7xB1amWF4LpTuvDbvy+nTccqr44ho4t5+d8tsRN1U6kQkjue/ZF9DyoNXkjjy/buoTwPI7Nl7g0+qgE7GluLy3jz4/kM6tueHp1a7fT6P1vwM3e+/CFH7t+LX487cKfUaRiCiw6pmexetmkLJz70H6qkjZFtUmVZPHPGKfRr4xNvtpR8t2otALNXrEoqY0NxCb964lkqEgmeOONkOjQtAODOtz/isc++pneblrw46Vf8tGkzV7/+Jh0KC7hzwuGRKvOrx4zk0O5d6NGqBaZh8Na8RWwrr+CzJctYU1RMs/xcxk79NxvKSrnlkMM4o/9+SWWUVVVhCEF2RHjJV+fMZ86Sn2vsFx0NPqoBOxpFm7bx7pMfMXBUP7oN7LzT65/17rc8eO1/GHXKME677ridUqdhGGmR3asWr2HSAf+HlbCI5eRQVZng7uk3BkKp2LbNwplLAJg3Y0FSGZvXbuHqMX+ksryKO9/9A227OJ8Dj/z+v7zwj7foOqAD9396MysXreb2s++nbdfWXPvviyJV5ufcfApDDh9I577tMU2DT16bTUlRGbM/+oENqzZT0Lwxvx5+E1vWb+OSv/ySo885NKmM8tIKDNMgKzt5wvL9/37OvK8X1tgvOvZkH1UrEn39+vW0apX8YV9SUpLZUpJU6kn0H+8ieJwhhR7iEtLIELQopQrdS4BPVIWYkSShYTg0jcoTqDCiMlMgMZwCq0xE3ERUuMeGU7kK2yINgcxyFOfScEh0pR4X+AS0SBAgRKJi7Xqks9tAT8SkVKBR/aKTTS4hY4SuO+FKIvpIETjhsnWCCgKbgUaFbvGIrZBKPcQPRdcVPq+IuggyTxFJXmxkjUjX8wvNfi+72waPjFJ8qOUOI49BlAi1yWAG2JOdVjqoMx+lIdKXeGNQJP8+D48HoZ2LnCzTCFB9fbwqwp1NEdqsirdiIQzll7wJvmjWNmq1T5BEdv2vS4Arn+w1TZtECkwICYGQNoaU2Iazd4ItVPgWkHGcGOjas6ueCXUsQpNvXte4RL10/ZA0XRvc0EfVQibfR+fWCYjh7wHhJ/f9u9av3iSjtnJF4u4XEYdEriTRGGxTOhsT6/XLoB5SCultCupVZEp/RUxCRDivULM8Z6SdUH5M70f1WaCXFS435E+9czKYPunjOMPHam/3UXsbmrasomSbSWX5zo/X2X3fUpYvivPNp/lcfPPK7SJ+F8zOoWnzSrZuioGoolGT1A9mVaVg3Yo4GJK8RjZNW6SnhN60xqCwhUXbTlXeua0bTaa/VIid2P7+E0LSukMleY0TDBxeGpFgu6vYRZHZkr4GH9WAHY27H/+Atz6dT35uFm89fAnmTo5n/PgHM1m8ZiP3vfkZ540dstPrrw7z16xnW0WlI0ogAcCcVWsCJPq28gomjz+UH9au55xhg5PKmL1iNUs3bgbg85+W0aGps1nezxu3AA5RL6Xkxe/nM2f1GuasXsN5BwxiQNs2SWWZhsGBnTt4x6cP3Y8f129iYPs2tCtozMayUjaWOf70562bk/LPW7uOU5+cRk48xivn/Iq2TfyNZFduKeLa59/EqijPqI/CPqqoqChwPTs7m+zs7IzKbEADdNx/xaO895+PyWuSywsbH8XckUvwIvDclDf4ef5KnrjlBU797TGY5q7joxZ/8xMlW0tBCESF8/1iwVeLAyR6SVEZF085h8VfL+GkqycmlfH9jIWsWLgagG/e/462540BYOViZ3Jw9dL1SCl556mPWfDVYhZ8tZiTrpxAz8Fdk8oyTYOBh/gx2SeecyjLFq6h96DOtGrfjK0btrF1Q7FXblJ7vl3GVYffTlZOnPs/vpGW+/irmdYu28hfLnyEhKzMqI/25O9RtSLRhwwZwuuvv85ll10G4JFSDz/8MAcddFDa5fjEhMZyho6jfp5kpnerARFx0ANKz1T1u+STHqs6aQO2qHp0IrWG8eSRPS5JhSU9FTpSIkzDI1o9A1wlokfoCBxluqbw1MsXgTf4ExcinEg7VuFQIsjhAOGsk8Mkd41OTAW4Z+lf926FXlcK4lxXpvrkZvBYauVH2ZREIOntCbVLtzNcln4u1Rj2JhTCxcvktBlGc9mjnVY6qCsflQT1fKj33o12Zpmiulvgj6F07kbUePLO2xqRXl0Zup2hkpJyes9WsnUBrjXsJwKZ3SOJE6vIssGW+HNLwVqlcLYj1UPBeAR+hCsOd0rYxwSShMhe723AxwXz26TQKOokf6h7VNW22hDV9Yu2CsFkSmTMdtNGDQDXV7skulONcPrKDa/gf9a4gy3VAPNslcH+CDRcuskyiU2XHD5NICI/GjP9XN7bfdTehJETtnDA6G1M+W2HmhPvAPzfyT0AMExJZUXtf4BtXh/jzis6UbrNZOvmOHc+vzhljHXLgosO68mKH3No3qaKhz+cn3Y89jadLP7wr58Bx+/On5XH1cd1zzisWypcc88yDjtpS90UtlshM1/T4KMasKNR0NhZ+t8oLxtRD7NXJx20LwtXb+DI/XvtUgQ6wOheXTlv+GCqLJt4tklZVYLj+vf1rhdXVHL4/Y+xubSMP08cR5fmTZPKGNG1ExP69qQikWBc7x7e+T8cPYZebVpySI/OCCGY0Lsnr8z7gY6FBfRsmV4olu6tmvPkOSd7xy3y8vnXhOP5dv1azt43Oc7z3NVrKE8kKE8kWLRhY4BEL8zNoUWjPNZuJ4neoUPwM/bGG2/kpptuyqjMBjRAR5PmzjhtVJhfLzHXJ5w3hqXfLWfUycN2KQIdYNjEwZxyzTEkqiyycrMpL6tk7Okjveul28o5/4Dr2bqxmN/cezbteyaHUBk8bl8OPeUgKsuqGHG8v0Ln0rvOoGv/DgwZPwAhBIeeNIz3n/mMdl1b0bl/et+lO/Vqy19euNI7LmzZhJuemsSiucs49oLRSekXzFpKRVklFWWV/Dx/VYBEb9Isn6atC1i/Jpl8rw7b8z3q/vvv584772T16tX069ePKVOmcPDBB0emfeGFF3jggQf45ptvqKiooF+/ftx0000cfvjhGdebLmpFot92220cccQRzJs3j0QiwT333MP333/PjBkz+PDDD9MvyCMHCBDoElxFYgTxkMk90B/2SLVmBIFeXTVJMYJF6K9fZph4DdQg8BXoKdoTzi+EQ5wJ9S8eB9NAxmPIrJhjmyGQpoE0BHaWexwjsKmoXp2Bz7noYQiSEgXaDHpIlADJFt5o1I37qzYUVXnDJGEUaShwYxMbvm2RfRUixjzC3PD/2lkOqQU48dmrQmXoZFvICD3+uZ5WqPdq3kITgSpVabVx3aOU+Am/HYHZA4kTsicDSCm8196IuvNRzh+pTSwFn+WQD1DnXFV5IMy5Ki/qltihfFI71uwQwh9XQjuvwyPQU4afCeWL2qMhnFfzb1IEk2ABQiJsZ/8IUwpnfwDDYYZlzHA2OlYrWFx/JBX5HNq0M9ykgMpdPdtGqP2qCN2Z6PdLkNxulV51lRa33NvHQKTI7/qyiqbuJqASzDKnPDtLkmhiY+e6m6vqs4Hes60R6KaEmETE3dAQlkAqtamFF3bGm5EIw7NJ+uWr9Lbw51llct8GbEsqUwYnLbXZPH3u1ruWoavZ233U3oR4ts1HrzepVxty8y0GjSqiXZfMVDQARZtN5s3MY9mibEq3OV+b8xpZfPVeY7oPKKVFW19hXlEm+PbzfIq2mKz4MdtNm2Dtiiy69qnIqN51K+KUlQoWzM7FtrfnOZH03r+UJk0TfPtlPokEVJThxYlPB5UVTrvKSwSNm1r0HVJKRESCekVlhWDhnFx67FtKdnJYUjKd6mvwUXsXPpy5iLufnM7hw3tz8anRP9TrGpeddigjB3WjR8eWbCur4OuFKxjapyP5OVk7pf5xA3swbmCPmhPuIKzdWsyTn37N0K4dOKR3F++8LSU3v/MB89au4/YJ4/l+/Tpueu99EobNzYeNBaC4ooLNpWWAs1lpFPKy4tx94lFJ59sUNOaKsf5Gn71atuCDC8/d7vaM6dyNMZ27RV47pm8fFq7fSKOsLIZ37hi4lp+dxZtXnMOKtevo/ZffpV1f2EctX76cJk38z9oGFfqehU9f+or7f/MYY08bybl//uVOqfPXd57BsIkH0G1gJ4q3lPLtR/PZf2x/8hpn8AViO3Dw8UM4+PghO6WuKGxYuZEXprzOwNH9OXCCPzlm2zb3XfEYP85eytWPXMTiucu478onsG3JZfecDUBJUSlb3Q1KV/64JrL83Pwcrv/PFUnnW+7TjLNu8EPKdBnQkScWTNnu9gwdP4Ch4wdEXhtz8jB+mr+SvEY57D+qT+BabqMc/j3zz6xatobu/Z5Mu77afo+aNm0aV155Jffffz8jRozgwQcf5Mgjj2TevHl07NgxKf1HH33EuHHjuPXWWyksLOTRRx9l4sSJfPHFF+y///4Z1Z0uavUVePjw4Xz22WfceeeddOvWjbfffptBgwYxY8YMBgyIvjHVIlW/KtlOLX6g11ynW6BtR3+vVsSNIUiSD4lk1aZM8R60tIoEyrQtUiKlw6BIJNJ0mGjpxhf20uBzrhKXoFL2RJAlMnwQVnSK5HOBtFo7PJW3gu2/okjypDIhiZPBdspVinrVfyr+eFJ5rk0B/tnrD4k0pUNqmTjkUoQNAfJNJ8xSQF0KTD5EzdeET2i2KjsN05lwsDVy3kue4ZixEd5rb0Sd+ygduj/wBp1iY9U593I4a4oiUz0bInRS59S9RzZmICznQQurBFLVF3k+RKCn9GlR/ljiDFzbiYOuVsAgpPf8OvZqanMpkeGCFFEbfpZ0/yQctXcgvUoiiH6uw2XpecMfAREmRRVl4+YVEjvLRuJs/ikNnE2nkc5kga2VkjRDgGewlBLDtJG2aoQ+M+DeE29JjlaWS3gL7ZIzSasK9itNtVF2Jl5CRu6qmik91eCj9iZ88GL9b3D3l+d+pOfAzFR+4CjKLx7bkw1rgqTWV+8X0KjAZtj4bYHzt1zQma/eD04YWAmDDt0zI9DXr4pz41mdueT2lfzzxn0ytlvHsedtYNItq7j/hnZ8+X4BzVtZGRHoAHdc2pFPXi9ECMnjX8zb5Qh0gNsndeTY8zakINAzR4OP2rvw7NvfsGZDEU+++hUXnTJyp6guYzGTIf07AXDGn59m3k9rGdG/M3+/4vgdXveugClvfcIrs+fzxKdf88WNl5Drbhy6bPMWnpnzLQDT5nzLgk0bKK6s5Jm5c6morGLxps3cOeEI/nHyRBasXc9ZByYrv3c15GXF+cO40Smv52dn0bYws8nmsI9q0qRJgERvwJ6Fl+57k3XLNjDtLy9zzp9+sXN8VDzGoLHO7+ZLD/wdC2YuZuiR+/Pn167b4XXvCvjX757m3Sc/4oV73uClLY+Tk+dMTK1avJbXH3oXgDceeZ9lC1ZTuq2MN/71ARVllaxYsJprHvk1Nzw5iaXfr+D4iw6rz2akhZz8bCbdcVrK67mNcmjZPrPv87X9HnXXXXdx3nnncf755wMwZcoU3nrrLR544AFuu+22pPRTpkwJHN966628/PLLvPrqq7sOiV5VVcWvf/1rbrjhBh5//PHtqz2sDNRV6O6xl04/zqR8cAmHiLwumRBZKckfngABAABJREFUqgQ720BY0ndSUfaIiGMtTVIc9LACPcqssP2AYTsEjYFAZMUhZjtK9JjpqDxjBjLbRGYZTjz0LMPvR6VCVwSz9EWLXh0Gblx1fKI6ZIenCA8pzh11qVaXKl/jjQLKxZCqW2+4skkC0nRDJaiY4KoMK9Rtui2heOkyBtKUyGyJbbpiUylq3F8qcA9ChJ5Qtiou1dAyuOxaQP2ZQump4jlLzRZlt5AO+SZwymuIiZ4+6tZHici44ck+IHQuXUiXRvbGkEvIq2cwpEb3Q5w7ddhxE6PCCaTvbW4b8DMi2Z96bUtua9J5I9guZaL/UPtj3XD3BjAkYDoN8vZqiLl/4wI7rmKjC3dTZN+ewKOm/IFGnsu4s7JEmiASTp3ePIbbh2HX5U1wRTyLhnRsFpoKPXKSQPfXEk9Fb+VKEi2qwBbImIGREBhVArJAxLWykmYIVR86RglTEs+yMU2bKjuGpfyo5ysl0hIk+Uz9o0nZqCYwhdZ/2iREeHYkabTqE6eBcY/jh7zyRKBMUYNPDWNv9lF7FyQHjiti2cIcVv9cf6q477/Mo0P3cnLz08+zaV2M958vYNP66K/K61eZLFsUp2MPf3lbz/1K+e7LPMqKnTydepVx5OkbiccdXzVzemOWfJ/NiAlbad81vCzOwbJF2bw5tSnbtpq8/kRzMpvmSsaqn+L8vDCb5QudiYAfZufSZ3AxjQrSn/ra/5AiGhUk+OjVQr75tBGjjt1SZ2R1XaH7viXMnZHP2hVxDj56C7l521deg4/au3DqEYNYs6GIw0f0qZewBeWVicDfvQE92jihUzo0KyQr5v/QaV9YwOhuXZi3dj1H9enFmEQ3SqoqObB9Bx75ciYAz377HdceejDjencPlLm5tIxzHn+OksoqHj3zRNq7m4nuiaitjyouLubHH3/0jpcuXco333xDs2bNIlWeDdg1cMLlE1j383rGnn5w/fio0orA370BXfo7z0Pbbq2JZ/vfBdt2acWBRw1i8Tc/MfrU4VSUV1FWXM6Ag3vz3N1vAPDW4x9x3p9OZcTRwUm+oo3buPbwP1NWXM7t//udt5nonoja7NtQWVnJrFmzuO664ETN+PHj+eyzz9Kr17bZtm0bzZrtOBFPxiR6PB7nxRdf5IYbbqhzY6T+JoIvqIvypUZ4CjtEVioi1k0nBdhZBoYlEXbImgj7Uh4L7dhVsWbUNumosUXcIJEbQ1TZjvIUh5iyXaLKNpwQKJYJUikQddJGL1Ijaz1SxJYeAadzP1ISDNWCn0fnZrwM4bADigfUOLqwGDLEUyebrBmUxEcpsaVuU8hWWYUfusYIpo0ywOkf6W2kqpIICydshU5Y6WUIjYOz/WJTDg4VR9l0yEFhO1EwjIR7KyRgaMrbNLE3L0PeIT4q7JN0olU9JIq1TDfwrZY9AI0M1iN0OM+7n8EJ1ySwTROj0sas8mNtSCk9Ij1dX5OUTqQ4r9LrK4XcB1EKsGPOOWGCxN9M1HZfUoClSH5b+jMDAXI5aIOTFqTlvALhkPRnXpugS/Iz0r01rn/yfJ/KGybPZeBPoF88nyhBlAtktoSYjbRMbCkRFSDj0p3sdJ2t7edPapyERKXANg1nJYoW21wx4cJ0n2d9YLiZhWG7JLbAtgTSNpywMAJ3KY/bSKl3lsqe3lj14tob2mcmamIiw8809m4ftTdh/Kmb6dSrnC/eqV8iY+hh2zIi0AGuP60rS+allmx37lUZINABZn/UyCPQGxcm+MebC8lyfx988U4Tbjy7C8efvz4lgV5eanDpET2oKHO+eLz//PZPPPQYUMGbTzfn64+dezD40MwIdICjz9jMJU+1oLzUZNi4ol2OQAf45pMmzPm0MU98+f12E+jQ4KP2NgzbtzMH/eVsYrEMVSt1hHuvOJ5Pv13K6P2715x4D8E5Bw9mbN/utC5o5MVk31ZRwZnPPM+msjKe/MWJdG3ukCAjOp1OpWUxf+06lmzazITePSPLnL18FT+s3QDAxz/+xC+HDAxc/9eMmTzw8Zf8esQQfj3CCRNRmUjw78+/pjA3h1MHDciYoLSl5OIXXmH2qtXcc8xRHNRp5+z/UVsfNXPmTEaPHu0dX3XVVQCcddZZPPbYY3VpYgPqEAccvi//OuIuYvH6WQp26xuT+fKN2YHY3Xs6Tr7mGEYcP5QW+zTzNlUtKSrl2sNuZuuGIv7yzu/p0MtZLbj/x3+kqjLBkjnLWL5wFYeceGBkmd/PWMiSucsAmPn2HCZeOC5w/dl73mDqX17l1KuP5tSrnHBUlRVVPH/3azRu1pijLhibuY+ybW4565/Mn7mEyQ9fwMCRvTLKX1uEfVQ6+zZs2LABy7Jo3bp14Hzr1q1ZsyY6LE4Yf/vb3ygpKeGUU06pvfE1oFZP4fHHH89LL73kOd3tQngQZKJCz2D8SEDGhKfsNBIOo+GRVAHiRiDjBnaOgUhINy5tuna69YUV6OCrOqMIIq9NoZNebGU33nnMUcbLhIFwCSsZN7DiBna2wMo2sbNEQGmtx2UOtFUndQwcskcRxjJ0LRyTXGjlxPCVtLYvsIxqjssHBQj1MCsu0DbrU2VrfaZ3oa5CRzhknYzhE56G03fCVXwLSyT3f7jL9TKVCl7ijANby6/9BvViKku/TSLUX7oSVurlxwA3ZrtTh9vOwNghI+ztCqq68lEuPxj0Q2GfJFKcV0h1C6SWVgXhNnD+kxLD0gcYjrrbZYWl6QwQKxvMcolh2b4Nhjt4dB+Vrh+N8lvueT28kUwqF4Qh3BjnIKQIKMTtmHB8lYnjn0wtv1ZPFL/svVfPivt8q9Uu3kSXppJO8g/KRqWU155Fv5/wnmkRZYPyW259lY2lQ5TnSYeYT7hKdAmJbOGo0VU8c+8zJMCMB/scw5mYkCLgp/0hIoMbERsqu8RwtsXAtgik8cav3maPVAehHGogQ7KJ4djo6sub9783dtPH3u6jdmc0Kkgw+vjNfPZmARvdMCc99i3liNM2kpOnvlg4g6lt50riWTYdezRl2aKdE0MzCg/9sR15jWz6HVjCuJM31UgCr1mWRXlp9WPz2y/yWPxdNt36+6qs03+zli0bNwCCWJbE/c2FlLBkfjZmzGafbuUp51oXf5+NYWY6JRUNw5RMPGsDIyZswbKgWetKXny4JU/+tTUDRxRz9JkbaVSQ/m6lY07YxJplrXn7maYcffYmcvPSt3PR3Fx+WpDDwUdvISe3btqnY+OaGNu2OE7ogRvakZMnGTiimLEnbCarloR/g4/avbFxcwnZWTEa5dc8EbV0xUZ+ff3TxGImj97xK9q02PkhMdo0a8yJh+6bdvr3vl7EwpXr+dXYQTTO2zGzWq9/NZ+PvlvCBYcfSPd26W24WZmw+Mf0GQghuHTUMOJm9KTEltJyHv/8a/q3a02nFoXe+W9Xr+XbNWsBeH/xUo9EB8gyTf510gm88sMPbKuIVsMe1KUj4/t0p6SyisP7Jsd7nzpzLtsqKnh65hyPRH9+zvfc/cGnAPRo1ZzBHaJDaC3asJHfvfEO/du04g/jRnvfhdZuK+a9H5cA8Nr8H3YaiV5bHzVq1Cg37GAD6hOb1mwhOzeL/IKaZ31/nrecy4dfTywrxgMz76BVx5Y7wcIgWnVowdEhwrc6fPz85yye8xMnXTWRRoUZqhjSxHvPfMoX/5vDadceQ+d+7dPKU1VZxRM3PYsQcOZNp6SclCjatI0X7n6dngd0Y5/ubb3zC75azMKZiwH4/LWvPRIdIJ4V408vX8P702ZQUlQaWe7+Y/oz8vghlBWXc/AJyUT7aw+/T8nWUl596F2PRH/7sek8esM0ALr060C/EdEk+M8/rGTKJY/Sfb9OTPrrrzwftXHNVj5/cy4A01/4aqeR6GEflcm+DUkhaqVMOheFqVOnctNNN/Hyyy/TqtWOU/nXikTv3r07t9xyC5999hmDBw8mPz/4YFx++eUZl5kk1M1AzZnWx4AAbOlsuClBWgLDZXwV2SpdosjZoNOpW5oCW4IRVqLrdSeRS1qdoXNKORkSIaYm2lzCxhIgTEd1KmyJsKSjzDScyQEZdxTpthGhNNTt1W3zOTmUEl1I/5xQ/aITLTqBrPLqMYwFvihXE1NGElIQuHmKuLJdO3V1eUDdHlKXgluXUvBKgoSODUaFQ8zbhoQ4jqJc9ZOQoUkUt1rDiaMuYxJMEAmBYRpOOJmEy1VabhgNbULCUX+6HGHIbqmRd8Il5r3xp8LQxLR74LY/0z3F9nYFVZ35qPBzqt4IQMqkvRGc68m+K9J7aM+SGvteyCRXde0tmjBcRbcwwARbhUERzri2sgRmQiV261cEc9iOsMlRaWoDWzq+VYVpwfHjTjgXgqGLbFw2m6CRun/RfKbnCywwKvFE1V7O8DMY1T63fzUu2OeX3TQqNI3+nOrleI+yAITEjgGlBiIhiBULjHKn000gIQ3sHAsjbjt9opaTSIKFqzoTwivXiDnlSM0xCUHQeQg3FJCQGIZNzLSxDEGCGNLGicVuCCfGuttIqfreFi6ZnmKQeBvdutXryneBo0pXgxYV2T6zkbO3+6jdGeddv5qZHzT2CHTDkPzluR/JaxQ9Bp66q3W9EugAn79dSG6+xVV3LSeexp59t17ckVU/VU9MDRldHCDQAQ4YXRyZ9usPG/H4He04+swNTDxrU2QaKwGTf9HNU6FvLw4/dROT/rTKO/7vva3ZuCaLjWuyuOqu5RkR6ABvPNWCspIYR5+VGYEuJdxwRmee+GJ+rQntmnD3NR1Y8r3zOT/jraY0KkhwzZTlxOI1ZKwGDT5q98Xs75Zx5R+eJScnzlP3nkPL5o2rTf/9otWUlDmbDi9cuq5eSPRMsG5LMb99+DXAIa2vOL7uN0KtSlj84am3sGxJZZXF3b8+Jq187/7wIw998hUAfdq05Ih+0Yrx+z/8nCe+mI0Q8Ok1F9Is3yESB7dvx1F9erGxpJSJfZKJnqfnzOGPH3yAAN466yxenbeA4spKrjp4BHlZcXKz4vz91Ikp7bty9HAe+Wwm5wwb7J3r3KwpQkBOLEabxs5YWbJhE/dN/5zhXTty4qD+AEydPZdvVq3mm1WrOXvIIDo1LQSgTeNGnHPAIGavXMWvBu2XVj/VBRp81O6LOR/O4/8O/zPZ+dn8a+5fabFP9WEn5n/xI6VFzka6P87+qV5I9EywYeVGbj75bwBUVSS44I5f1XkdVZUJ/nrhI9iWTWVFFTc9c0Va+T598Uueuf1FALrt14VDTz4oMt1TNz/Hi39/A2EI/rv6YQpbFgDQf0QvRp06nC3rihj9yxFJ+V575H3uv/pJEPDwrNv54JnPKN1Wxjl/PJmc/Bxy8rL5w7TfpLTv7D+cyLNT3uDEy4/wzu3Tsy3CEGTnZNHCjUu+fOFqnrrtJQaN7sfhZx4CwOv/ms78rxYz/6vFHD9pPO26OWruFm0LOf6iscz7agkTzx2VVj/VBcI+Kp19G1q0aIFpmkmq83Xr1iWp08OYNm0a5513Hs8++yyHHbZj49DXikR/5JFHKCwsZNasWcyaNStwTQiRAUGl/fQ2ks9npOxMRbi7TIsE7LiBjAmMSjCQeFtLmsJXmisCKCa8/A6ZXM0HVNjOAFEdcS6qXSmJLcX8SFeRLZCWdDaHM11yLQZWXGBnG2AKX3keJq7Dr1B9LlWDcEkRqewPh3Lx2oZH8ocJwUDx4bpksHlJSQyHcHNU5CQT7Uk245Hg0sRXdQfSCoQhHZW6R9BpjJqmdpf6OaUSV6pNvV49XE4ozrtwb1lU25Mao9S17nUl/A+kyfD7kXRn/fbWL1Z156PUK4VPUs9I4NlI8VxH3QqPixQuWY4z7i3vcXeI0Jjh+il39YlLUhuVNoYlMVzS03luhZY5wv5Uq38C7U7hcz3foj077h8phKsIF4ENmWVMKdSFQzp7/kREPx6aj/IeF21fByB5pYx6FMMFBj5XwNS54Kh7o3PDUca5dSVyIdEEZ3LNMjBLBFnFwv2cAZntTGwacScNVZqvCHwGqLLdk8LGjLuTu5ZA7yGh/KHmQIVwCMysuAVAwlKbWvhlCz18lXQzCTcklb5MCT9dcLxI/55513E2aVZJ9TxpYm/3UVu2bKGwsDDy2o8//kj37rvekv78JhbnTl5Nx55lvDWtqXfetuG/97XilEvWk9coSMyWlRj8vCCbwMxYPaGsxOA3x3bHjEkMITlp0noOPGybt0nmxjUx/nVrW1YtzWbl0pqZ9refacrKpVmcM3kNnXpWHyO016ASho3fQvd9S7HdsG1hGCacfPF6nn2gZZ0Q6V+815iv3m/EZ281Yem8XNYs99v0+191ITff8TXjTt7EuJNrVmzf8PBSSrbF+PK9JpSXGow6bnPaYV3+9J8lO/T2X/ynFfxyXZzvv8pj0dw8Dv9l9ERFJtjbfdTujMU/b8CWktKySlavK6qRRB97UC/mL15DVjzGQft32UlW1h6NcrJo1jiPTdtK6dx6x8R8jZkGg7u356uFyxnWu1Pa+Xq1bkGuq+zs2Sq1er1rC+czpGWjfPKyfN+UHYtxzzETqEgkeO2HBfRo3px927bxrue7aWOGwbdr1vGPGV845TVrymn7D6zRvqP79+bo/r0D5w7q0pEPLjuf7HiMZnnOhO990z/n9e8W8MZ3CziiX0/ys7M4qk9P3vxhIb1btWSfAp8IEkJw/dhDa6y7rtHgo3ZfLP1uObYtKdtWztqf19dIoh96ykEs/OpHsnLiDDlyv51j5HYgvyCPwlYFbFm3lQ69t29z9FSIxU32Pbg3cz6cx+Ax/dPO12XfTuS4K5S6DEi9B4Cyu1mbQnIb+V92snKyuH7qb6isqOKDqZ/QuV8Heg3xv7PnuWljMZNFs5bw9G0OYd+hV1uOvqBmYnf0KQcx+pQgsb//6P48+eO9ZOdmUeBO8j5120tMf/ZzPnzucw45YSi5jXI49MShfPzSV3Qb0JHWnXz/K4Tg17ecXGPddY3a+KisrCwGDx7MO++8w/HHH++df+eddzj22GNT5ps6dSrnnnsuU6dO5aijjtouu9NBrUj0pUuX1knlntoYvN9X6WpbktPJICGgka9SuOpIgaNGF9ILlSFsEK6CUvHVMiawhXCIalwFJS4ppPgLvR7dHp0cEQQU9REC6mCeVG0TOIS5ImhNJzQCSCceeswl05E+CyWiCgrVoRNHnvLSz+S00yHolErfa5f6fWe6ikednHbrDvNDyjydS4IIUyUYVXgbhEYSWpEd5eSzJR6x703Q2CAtiZ0lISYdBXnCQNhqsgBPGav6xlO/Jpw30nBU6UIKLAOE6cYut4RDYiqSzRV3qlAOAdGpuxGirlAXlWBY+HHnpWaTNi4zgcQbrnsl6spHKQTifwsIqNBTKdLBv5fu+6hxHFA3qzxqo1/10EvpjGGhxqLw5nDA9W+2dr/DyzR1G6vzs6mbkfqCoblDG4R0nxUvpIzvA4X+nIRK9UXXrr90V2ck1Rf28RpnJwRBf2PjK+Djzl+zQnsO3fRW3MkjEs6zqFaA6N0htfrixWBUCs8Peu0SIKrALBJQYWAXmNA4gTBtRxGud75OiLufScJw4pubpsQSNrZl+nHQpXTvueZIcb6gVFY5DlhKnPjorg+0DQHScPpBCnfFjvqgc/tIhgaEuxTIC/3idbxqf/LnmeOjMvM2e7uPmjBhAu+//z45OUEWcsGCBYwdO5YVK1bUk2Wpcdz56zn6rI385fIO/DCrkXfeMOC0K9d6sb91vPZEcz56tWnyhXqBYNEcR608cHgxI47YFrj61F1teO+59Ampoi1xBgwrqZFAB/h2RmMaF9ocedrmlGmsBEz9eyusRIaxkVJg5FFbWfBNPm88maxY++kHR/XZom0lR52R2iYdnXtXUlVZxc3ndWbqN/MiJwKiIAR0779jNyLbp3MV+3Su4rZJnXjogx/Ia7z9nmVv91G7M44+bABbtpZS2CSPAb3b1Zg+NyfOb8/fsaq1ukReThYv/vFsNm8rpWOrHeNfhRA8eOmJlFVWkZedxvIdF91aNueTay4EIL+afL8YMpChXTpQkJNDdkQc+gc+/5J/zPicmGHw2cUXeuT2CX370r5JE1rk55MXj1OQk0N5VVWAaM8Uti15bua3bCwp4+rxI2mck83wrh1547sF7NehHblxR501uP0+fHbZhbWup67R4KN2Xxxxzii2rNtKQcsm9D0oerWGjtz8HC6//4Idb1gdIbdRLo8tuIfN64po36NtzRlqASEEt796LeUlFQGSuyZ06tOe/65+2LMzFSZeNJ79RvejcdN8snKSfdnUW1/gqVuew4ybTFv5kEduH3b6SFp3aklhqybk5mfTuGk+FWWV9BrcLcMW+rBtmzf//QFb1m3lvFtPI78gj0Gj+/Hhc5/T58AeZOc59vUb1oOpi6bUup66Rm191FVXXcUZZ5zBAQccwEEHHcRDDz3EsmXLuOiiiwCYPHkyK1eu5IknngAcAv3MM8/knnvuYdiwYZ6KPTc3l4KCgjpskY/62ZlAIUyOVqdAjyJ3otSSISIXXDLKFA6pI5zQLIo0FqocgaOejBnYWYZLrruFqri2OCrtam0MkOii5vOhtsnQcaBwnW12lZ0yHrLf8FIHy9MJcM2eCBN8WzRSS/E9XrgJ/aWU6BoZ75WnyGB1qHVfII1nrHY+NFGhn0rK5hLQ0iAortRslFkCspzYM6LSbZMirg0ZNErrL4e3VB3mGyN0sik05pQ6MxDXXIW98fd/DMx5KH7Nn9DQ8mYabxhHxWrXs/Jvj0C6KvTqVsxUcxsELi+p1OMGCEuF6hC+8tsQoDYRjgvMCkmswnbCOyk/pSb61MRd2N9UZ28Ndnr8bziWuVa+/6i4qngVbkrPYyRX4z0HXkgtkifQwsdem/znTRJ87z3/Med5NbSY4erZtJVa3A65Ad3fasfqmmEJ/5nWnmVMtx1ZEnJtZz+GiA2IFXHu9Z0AIyaJxR0y3LZNrx8D7VS3INCJfscIdxmMdA0KzqeI6HhyujMVmv8Jx4v3FPNaX+j5M8De7qOaNm3Kcccdx2uvvUbMlULPnz+fMWPG7NCNcLYH7z1fSI8BpSxbmIM+k3PwxC2UFZtkZVte2ooywT3/155ZHzYKpN1VMHdGPqcN6oNwJ88FUFaaOXn92B1t+Pqjxlx+x3Ja7ZNIuSBjyJgieu1f7IshItKZMfjFZev47/0tqaoIkkpNW1Zx5V+XY5iSv/9fe9avzKKmPn39yebkN7Korv8PPnozpSWQl2a40lhccv87C7GtaDV9feMfby7EjNcNpbS3+6jdGTnZcc4/bWR9m7FD0Tg3m8a527/xcHUQQmREoCtUR57r+OzHn7n1jemM7dOde3/phGCxpcSybU/NLoCb336fa0aNpFF2Fmc//wJliSoePeEEmufl8dmkC0jYNp/8/DNfrlzB6QMHku1+pi7csIEqy6Zf62Bc3MXrN1JaWcWAfRzifdayldw/3VG0d2nRlLOGD+LEQf05ol9PcuNxjOpWo9cjGnzU7oucvGzO/uOu+V2vrpBfkE9+wY6Jha4ghMiIQFeojjzXMevtudx/5b8ZftxQbnr+t4BDaNuWTXZetmfDPy7/N+fdehp5TfL43cS/UFFawZ9f/i2FrQp4euk/sBI2s977jm8/W8DRF4wlK9uZmPtp3goSlQm679c5UO+yH1ZSXlpBz0FdAfju0wU89afnAWjfsx0nXDGBw888hENOGEp2XhbGrviFjNr7qFNPPZWNGzdy8803s3r1avr3788bb7xBp06dAFi9ejXLli3z0j/44IMkEgkuueQSLrnkEu/8jtwsuVYk+rnnnlvt9X//+98Zlxn1lTc1oaylCMceDpEuAhAJiVFpB7O516UJospG2Da4IRMkEivLwEi4sdBtLb1eXRSjq9KlSCa9/0V0u2sYYwGCSSOapFJ2emRvCgO0a2olgLDxYo4n8X5u7GKHOBd+zHT18jbNw+8fjWCRwt8kVFjuy63P6wXtfgBB0kfVF9EvnqJbXXPJOc8+136lKjVsEAnTiXGu+kwzIOleSO2vIjmRDiEm3D1GEw5B5sVXd20Stm+P6ithuGn12O162/RxppT0LqGe6U/CvT1OXl36KKm/cQeYrzyXTh9HdbO6b4LgfdYh1MSJRFQBtv8xo/ZnwBBgu5sh2wJpOBLtRLYzUMwKiax08gnXzUkb70ESHmujzPINqdnHVgOtPwIVKJ+BQzIbVTLgs7AFScNS2WbKgH2qHzyOWH+2XRuE7T/LQutzz025SnkZA5nlhHQxXF5J4oQqT+S7PqAYzArhKuq1vtFIea98wynTVuGnNBulcPZhSJQZiLjt+AJDOnHjCX1sqcleCVaV4ZFTwnNcWje5PkHawfvokPBqhZXU0qv8TkYppbPBhm04MwaGG7pL3yxD4sa3F/69VX1hum+U8l7FW4fMleh7uY96/vnnGTduHKeddhrTpk3j+++/Z+zYsZx++uncdddd9W1eJMafsplZ05uwaG5wE6zLb19Oo4Lg/f/i3SYZqbp3NqQUXkz37UFlucmYEzbTun2i2nSxODRrVX0M8kSV4D93tybKKR9x2iaGjdvGX6/swPqV6RFnVpVB0ebUP6zym1hc9Mc1Ka9HQQho3rr6ttYnCltYNSdKE3u7j9pbIKXEsiUxc9ckIXYG1m8u5k8PvkmLpo2YfN44YhHK8JqwtbSc3KwYWbH0qYUPFixBAtMXLOH0f0zloF6deGHJD6wrLuHxU0/knqMncOWLb/DGvIU0ysrikB5d+Hats+noNW+9yeerl3PZ0GEc3aM3k155FXBI+PMPOIB5a9dx7BNPIYEnTjmJ4Z2csA2L1m3g2AeewpaSh04/jkN6dKFri2a0aJTHtvIK9uvgq2bjMXOXJdChwUftLZBSYls2Zi2eyz0FG9ds5a6rn6Z5myZcfvsviMUz74uiTcXk5Gd7BHY6mPHaTKSEz1+dxeUjrueAcfvy3n8+ZuPqzdz+9g38buqV3PrLKUx/5lPyGuVw4NEHsOjrpQDcecFDzP1oPqdNPo5RJw/jltPvBZyVLyddfiSL5/zEJQf9HmlLbn9jMvu7IWl+mreCiw+8HtuW/OmFqxly+EA69GpH09YFlGwtpc8wf8PkWFZslyXQYft81KRJk5g0aVLktTAxPn369FpYt32oFYm+efPmwHFVVRXfffcdW7ZsYcyYMekXFJbTCe28Oq4uzmpkLF/tj8viCjvF/IdwyABh225scRM7y1WiK7I3RCx79oRJMZ2DUKpL/ZreNpGcJ6n86qDIKI9AjygznD70UjYKN+Z7VHY/zIlvt9Tr1lSeCDzC2lf444VSUOfCdenkeZTy3K8/1CZJUAHuxlCXoXbq4R2EIZCG9O+BZkxg8qWaftOJdbU5qVCzNQTbLrQ2BYrWiUCt3qi+CD8S6cKWAiEz37F9T0Gd+iiI9k3pqrqre74V0e2GlfKGmL66BGcyT7qx0e2Y4SrRHYIaW3uGvZAzMrgxZlKc9Bp8RiqEVeh6m9Q5TVGvNmz2fLl6FvUuUL7EJHkPBv29W4e+T4IitNVlFTHFe/ZjWtmuEt1QvsO11c52XrES4SjVVXVuPYKgXxH4xLn07HavSZ/Qt7NB5NmOMt01VhHoigxP6gwhnUk21UbV3uQbETBQaC/Pp9l6Or/fvEkfrwjh1yEDf3x4oaWE9pmo3fekmYGasbf7qJycHF577TVGjRrFySefzMcff8yZZ57JnXfeWd+mpcSTf23jxOzXvgAd/suNIJzQU/oQGDiimAPGbOWs366hfdcKbZw7A+b1J5rz+J1tkhTXuzLiWTa/uWsZLzzUkh/n5qEa9b+nm3HA6CKaNLUz/qzWEYtLTrhwPS890gLb8r/gNmtdxcijtrD4uxy+nZFP6lnZIFruU8lN/15Ku84VfPdlPndc1pHiLTEvb0mRwauPN+XI0zZv1wacuw8y+6G5t/uovQEVlVWcN/lpVqzZzF8nn8AB/VPHx92T8b9P5vHFtz8DcPQh/dm/T/uM8r/77Y/85slXaVvYhJeuOZO8rPQcylXjRpKX9QVrNxUz5+c1zF61hsoC59oXy1fw6wMPoHerr1i4fgPDOnVgeKeOjO7ShdKqKn7cstGx/cdFnN5/ILmxGGWJBG3djUG3VVZ432W2lpd7dRZXVGK73723ljnnmzfK472rz3cU8K7tf3j9XaZ9/S1XjBrOpIMPzKg/dhYafNSej4qySi4feQOrFq/llhd/y36j+9W3SfWC9174iq8/+gGAcScfyIBhme0b9OnLM7nltL/Tsn1zHv76NnLy01Ovn3fraeTm57BuxQbmz1jI/BkLvWtzp8/j1GuP5Zl9O7H0u2UMHN2f/Ub3Y+iR+1FeXM7yH1YC8MmLX3L0r8eSk5dFeWklLd349yVby5C244uKt5R45ZZuK8N2z2/b7Jxv2qqAp5bch5WwyHEV8H+/7FFef+R9zrrxRE677riM+mNnYU/2UbUi0V988cWkc7ZtM2nSJLp27Zp2OR6XGCJkAudq6PPAj32NhZTqiiFAGEhLOqRHXGBUScxyGyzHAhXrVkiJUWUTK5Wu+tMhT2wTJ4RCzI2BKwRGpcSskp7K01dABkkRfcyEiQkZfp/q11eYdwsn09cHRxHRERUL4Sg+lUoTgR/XG/9cgIdzFZbqxnkxjjSVpq9OdU2wteuB+rVzmvmqfZ7CXr1PCivgcmxKMeoqSw1TC5Fshuqw8EPPhDYcVPfPqVdn/JUKX/p1CxBCOEp0yxk3eoxhb/JFhY6whR9jWanQbc0ujcAKxGIWWndmOMkopf/aG1GXPirp+fPeuKppxZCGEnorKAKXIsgP4RKyat8BQyAsiWFJhKWNOykRriI9VuaESLGzDWS2s2+ldEloYYOwbMxySazU9pXo0vWL+h4NImhHaoikZ1iPhR6YjHJJfKVUNjy1vnRV6m6b8UO3OD7WPa+vtFFlarZFCp6lf03qfW65fStxYoTH/OdSqfaNhJPOiksME0RCq8xA7U3t3QYrDlWNJJVNbWSe5ai9y02MEgMj4X5uqEk9S2C4FUkEQk28CNv5aFL9pp5V16Emh2vxSXfHd6oMwutvFZaCUDqhxqdw/KOM2UEyXeLEa1fnpOPfpJ9NG7bOShzprihACD/sWcZK9L3PRxUVFQWOhRBMmzaNww47jBNPPJEbbrjBS1PT7vX1ASkFicog6f2rq9bSqEmywnr2R41p076KngPLQ1ecG/7cg612KwIdoNd+peTmSX6cG1yefNSvNlHQrHqVeTpIVAleeLBV0vmRR22he/9yHvhDO9YsTz98w6ETt9B9gNP/7z7bjOItQWKrUYHFxLM2b5/RuxUyu0d7o4/a27BqXRFLlm8A4Ms5P+21JPqI/bry3ze/pllBPj07J/ugmjB32WqkhFWbi9hQVELHFoVp5evXrjX3/vIY3p67kBvWvMOhvTvTcp8mrN5WzKn79idmGLx07umUVVXRKNvxfY+ccDwA7y1ZzNTv53L2wEG0atSI+46eyIL1Gzi8h6PSPLBDB/5xzNGUJxIc0dNXbu7foR33/eIYiisqOErbYDQrZuL8SHTw9g8/On/nL9plSfQGH7XnY81P6/jpe2ePnFnvfbvXkuhDx/Tl5X99SNOWjenWP7NJPoD5X/6ItCXrlm1g09qttOuaHonec3A3bnrht3z03Az+dv4DDJ0wiNadWrJ++QaOPH8sZszk/ll3UF5SQX4TZ5XmLS9cDcDnr3/NG//+gOMuOZzmbQr5/dNXsHT+CkYeewAA+x7Sh99PvYLKskpGHj/Uq7PvgT24cdoVlBaVM+qUYd75eFaMeJZP3X780lcAfPLiV7ssib4n+6g6i4luGAa/+c1vGDVqFNdee216mTyiUiSRMZGKRw1B8jwqkaaSs2TwlBXMb0iHwLI9skERoi6Z7jGnTiHCdjbb1AtVxLa+Kl43Rd/UL5wufC2prcoElUYjmL32pyL6ImxRBJZqj8NvyUCeQJiYQHxlgvfFK88ngAO/U/Sm1fAA6YRZ1Iaiiqf2bpMi50WwjKQ2q2Nd1Spwwg/o9yNEnnvvkwhs4bVTutM1endIQWDzPXfLVwwhgqFm3LRe/HT89ikCK7ItaaBhiV8yau2jIOhjhHYsQteS8unnRNIj4F0ODVwvbJLwh6IUYAtnLElDOH7M81F4wxLpKq6rgp9auiLcf84yHB+BZz+1T/P8pfI1YWhqaD1uu/7ce892dSZG+T31EIWfedvx/Z6Pcuu2YyBjTvgVYYnIslUvSuGGf8mVyBzLn8VLmM6m1W5TbANkXELccohszxHKUNGhESHAMHRFr+tBPGJcardUcxwuua3S6kp3dRwsEzdcjLo/SV5MfbK5p0L9YjsVCFubSMpwKO2NPqqwsDAyJr2Ukn/+8588+OCDrqJbYFl1F5Zie9Fqn0qu/Osy/nxRZ0q2mhx0RBGT7/uZN/7TjLeeacZpV67FDPHhhx67hUMmbvH9WKjMCadvZOo9rXeL+y+E5OYnljDo0GK2bTFp3bGctcuyUa26/ZKOfPVBY37zt+XEYtEfCengkT+1xZ8J9DHzg8Zs2WAy8sit/O8/zagoq37yoaB5FXe/8iNtOlR6/T/5gWUcMHobU37b3tu4tHhrjCM7DOD2aYsZMKx0l4xxXrfIrIF7o4/a29B5n2ace9IwlizfyImH71ff5tQbunVowWv3XVTr/GcdOpji8kp6tm2RNoGuY/y+PRm/b09mLF3G36fP4Nh9+9A83yGkFm7YyFsLFnF8/750auqXPbZrN8Z2dTbqW7etmIumvYxlS4QNFwwfAsARvaI3bBzbu+YN/m6eMJYX5szjnGGDMm7PzkKDj9rz0bH3Ppz+u+P5ef4KJl44rr7NqTd07t2O/8y6pdb5T7riSEq3ldGlXwfadW2dcf5DTjqIQ046iNnvf8vjN07jsF8dStNWBQD89N0KPnnxC8adcQjtuvkbHA87ahDDjnL8x6a1W/njOQ9iJWyEYXLyJc69PFgjz3UMP3pwjTZdce85vP3kR5x4xYSM27OzsCf7qDrdWHTx4sUkEhnESnTj/fqcQJiois4WmV7lSUoEmI6yU1g4sV4Ngcw1EJW2o0IUDsVhVtpOvNhSl2WXYMcEVraJ5YYAdRSiWgUa75Ck7HRtDHAegsBxOIZ7ZFsjiNzqSLCURHLIXq9+qRMpeh0igngOlhVQiiveWRAQJQplVIhAjiLApF6fRiJLga/udFWkEjw1Kbh1KqVriKh2FK8+MR54L/CZShVbXrsvHqWkeCZVvnp6bIcEEZoaHdO3U6nxbUX821r/SH8CQrqx1JXyFdMty0ruq5qwJzut7UHGPgoCZHHSRFMgnXs+dKzKiOQ+tevekLMdkhwTRJVfo5AQq5DIhIBy2/dRJljZBpYhIAZGQhIrs73wMIC/GTBCW+kRwWyl7IPk40BfhM77fk3oWVACav+ZxAuLomwMEOnhelNNxKlbpNsV9jdaaCih+QhhOQS6era9ia1Q2VKAlQOVhRK7kYWI2whTOnkKq7CbAmUxKHcrMUAgMJUSXjVcTZQIGxHeZFVKbwNRoYhsIbHVfIiafLA19yjcxsnQPbEFtiW0uOh4cdN1dboTY90Jx6FskFI4SwwlWmx04XeHvqJG3xcjA+yNPuqDDz6obxNqhb5DtzFvZh4lW50PvaGHbaWiXPDmf5pxy5NLkwh0cMdwNVzv9JcLdhNliqR9t3KGji0GYNGcXDavixNy8Bw4bivlJQaNCmqvSJ/+UpMIpwcDDiomr5HFx28U1EigA/QYWErz1lWY+jd8AZ+92YScPJuSIt8PtWxXycDhpbW2efdCpkr02vuo+++/nzvvvJPVq1fTr18/pkyZwsEHHxyZ9oUXXuCBBx7gm2++oaKign79+nHTTTdx+OGHe2kee+wxzjnnnKS8ZWVl5ORkvqlaAxwIITj/lBFJ57+et5z5S9Zw3Jh9yc/bsZt37glo3iiPP5w4drvLuXf6DL5evorvV6/lF4P3BeDCF15mVdE2Pv15Gc/+6hde2qLycmwJhbk5lFZWYgiBhSQW9YFUAyzb5utlq+jRqgWFec7zNL5PD8b36VFDzvrF3vg9am+DEIIz/3BS0vk5H81n4eylTDhnNPlN0tskc29GYasCLv978mdopnjipv/y/acLWDRrCUe7kxo3nnAn65ZtYPZ73zHl45u9tMVbS5G2pHHTfMpKKjwRTW32nLAsm3kzFtKpb3uaNGsEwMjjhjDyuCHb3aYdiT3ZR9WKRL/qqqsCx1JKVq9ezeuvv85ZZ52VdjkBjkMPMQA1kzvVEOhJAl6pEw4uIaBCbaBp8KQEywnz4qmcDZd5cQkdFaoDGawr8rdgaFIgTED7F/zj6HKChzWOQ60uncxWXIhHnEs/bVKRKga6ZmKkXTrh7ZYZWNWvSGCXUNbE397liCYGOzaUQSfl1eXAWNKuOepdlzR3iTqlQE/eCE96/ZRkqLJSOumkbpwAIR29udKcSteAQDEa0ae3RSCSmhnuh0y5hj05BlU6qCsf5eWPIsQVEU3190eGJwfVef1UiABVsZIC40elsS2/AGWI7TzIwnZDwKjNbTWbccdZSlsFQaNSJJReeQR8hP9e8x16JolHtHoEuqEVEjYubI9WlN4n3tvwUA/tpeBMomr1aD5XAkYV/kbEaO3SfI5tgGXa7opf6U2AgfuZYTthVaSQELcw4kr6ngyHLw81WvgEerDdisgOdoZHhjsWeGGiZLiDpF+EFzY/MPAiOlqognQnr4zUHKxbuMyQoNobfdShhx5a3ybUCtNfbI4+Tu+5piP3XCM569o1tKphQ81U6D+0lFVLd/0ffjc9upSDDt8GOM9P514VxOKSyvLgp/atF3bhjGvW8Kur1ta6rr4HlPHZm8mE3eJv8/j280a8+ljztMpZtiCXRFVynPob//0zj/+lDVPvcVRYhiH5/UM/ByIC7tnIrIG19VHTpk3jyiuv5P7772fEiBE8+OCDHHnkkcybN4+OHZPDhXz00UeMGzeOW2+9lcLCQh599FEmTpzIF198wf777++la9KkCQsWLAjkbSDQ6x5FxeVcfuuzWLZkw+YSrjhjVH2bVCMSls31/3mTZRu2cNuvjqRzq6b1bVKtcNzAvny3eh0n7tfXO9ehoIBVRdsCKvSfNm9h4mNPkrBs7p54JFe/9SZWtuSGQ0Zx+uD9ksotraqitKqKFnl5SdcA7nr7E/796SzaFTbhnd+cu0tvJqpjb/we1QAnTvbkY/6ClbDZtHoLF95+Wn2bVCOshMUdZ97Lyh/XMPmpy2nfs119m1QrjDvjUBbOWsLhZ4/yzrXt0op1yzbQrruvcF+1dD2Txt+BlbD4v3vP5C+/fhgpJRf96RQmnpP8W6C8pILykgoKW0WHcvz3DdN47p7/0apjCx7//q+79GaiOvZkH1UrEn327NmBY8MwaNmyJX/7298499xz0y9IiMDmfGFC3XmvpQ9zERH3I5KU1TcAlA7J5MUJNoQjEbYlhuWoN3HjEEtDODHUbbBU2AQbbzPOYFztKCaaiLalaGOIjKq2nHAZIYLJ4z10HsYlrRw1pvAU314YGjfWO7aWVRDcwFTnU/RGaSRTmHv2Yg9L/3pS08JkmVKJ6nHDVV49rREqz/Bf0o2xbMdAKrWoItNNn1T32yO1NmrXIuyWAoj715yJAukSmcnkoTex4L48Jbr7XhF3+vsAtybQw/SlhT05BlU6qEsfFQ6blDKMUvi5jQpTpR9L/Ek95Uskjo+yNSJVy2ImfFLUC8EkDGeiKiGxDeE+c9Jd+oC78bDwx7put/43DQYl3J5AWCpwfEuoHi/uN34eb1POkAvzVrWI0CvUb0kdo5HzAfLc9UdCe7aERuYLnNA3WaVOA4SllRP+7FHd6Nmupr8ksWwbYUgs9xPV2YrDJhaz3Rl4sG3ddOmGbVGvYAM9nx10+FpH+yS4GkIOga46QrpphOe8pDveHGJNInD+OntHiKCvcH2H7anRnU7xFPU4nyHCwNs7JNNvE3u7j3rzzTdp1KgRI0eOBOC+++7j4Ycfpm/fvtx33300bbqrkSDJTqxZ60p+mJ1Dt/7lxDPYmNKyYNaHjerUurqDpHOvcuLZkiXf59CkWSWWBabpPHOLvs2hdFv0YG+h+qNfOfGszGvestEkKpxL6/YVfPK/JoHNRqtD9wGlkYp4IWDDapPegxxVfU6eTfcB5XsBea6QmbOprY+66667OO+88zj//PMBmDJlCm+99RYPPPAAt912W1L6KVOmBI5vvfVWXn75ZV599dUAiS6EoE2bNjRgxyIrbtI4P4ct28po0TS/5gy7ABauWs//ZjsTLK/NnM+lE4ZvV3m2LXcYkVxcXsEPa9YzsENb4iHV+CmDBnDKoAGBc/8++XgWrt9An9Z+rPalmzZRVuVM4H61ciXl7grTgka5GCGHtqWsjPGPPsamsjIePv44Rkfsi7Sh2FmNs6W0DFtKjAwn3OoLe/v3qL0V8ewYjQrz2bphG83aFta3OWlh8Zyf+OCZTwF498mPOPuWX9SQo3rYtr3DiOSSolKWzPmZPsN6EIsHv+9NuOAwJlxwWODcn1+7jp++W063/Tp751YsWUdFWSUA385YRGV5FQBNCvOS7C7aVMz5g66jaFMxNz/7G4YePjDJps3rtjppN25zVgrvHhz6Hu2jakWi19WSZJ0n9JCGstNJV3PZUckUJyFx48vaisR1SSf3Ljub/Dlx0m0VYkAtXY+oJ9LmKOIsKp06KbS/NeSrtn/ckCZCS+jxslEErSJrdPJdI6EUMR+oM0yko5Hl4XbJ5LThJKD9bgwPDBl6aefsFMlSQoCsyRC947xLoQ4RwUyKdBO4P4DdMSUD49nJGNj/VfjJhfovQtCZ6QJxx2GJPdJppYO69FGAT4iL0HFN+fQ8NaULJU/iijX/BK6oWqgx766CsHCU6FLjm93xqvGfyfXXgkVJItC1PqnRVwUMkX5DVKzycPqQeWE36a2w0erz7pfuW+1gGsD366FK9dU8ygdaSmUuNXJZNUcCwsZ0SXzTcFToUmf5U/dI8JoIlp38JcQl21Wbo5bKaR0hwSPbRej+J69P8BMIIbRUQnN0mvP1Jjtqs2nf3uujfvvb33LHHXcA8O2333LVVVdx9dVX8/7773PVVVfx6KOP1rOFNePuqzvxh38tpff+4c1Dq8ffftOBjWt2zRAJp1+1ljOvWcvtl3Zk0dw8TFN44Wo2rI5x+yWdiP6iBnf/tiPXP/RTxv2hIG1BmEAH+PR/6U+otGhbyf/9Y1nKWPTXTFlZK9v2RoR9VHhj4OzsbLKzg+O4srKSWbNmcd111wXOjx8/ns8++yytem3bZtu2bTRr1ixwvri4mE6dOmFZFvvttx+33HJLgGRvQN0gJzvOf/5yNqvXb6Vvt91j0qJ72+Yc1KsTyzdsYfx+2xeC5IOZi7j+/tfZv9c+3Pvbk+qcTD/9kf+ycO0GTj6gPzcfW3OM5+xYjAFtg/fhkC6dufqQEVQkEvz6wCE0zcvFlpIjeyS3fW1xMRvLygD4ft26SBL9ugmH0qtNC4Z2aU/M3E3YKRq+R+2tyMnL5qEvb2XNz+vpdUDyeN4V0bl/RwaP35dVP67hkJMP2q6yPn19Nrdf+C/6D+vOn/97eZ2T6b855EaWfruMCReM5Tf//HWN6bNysuh5QHCfhcGj+nD2dUdTWZ7g5EljKWiah23ZHHxMcqzzjas2s3WDs+Lxx29+iiTRL7rjdLr078jAQ3pj1iIcTH1hT/ZRtSLRx4wZwwsvvEBhYWHgfFFREccddxzvv/9+egW5qmgPOgkS9Zmd4ed4IHmAuQRibggNS0LCRgjhxfK2s0yIGVhZJlaOgZ0lsHMMJ3au2jlOX/+qqxarszGVwh409WZ0I8IEXqAMjy1L4nb9Y6XONH17A2p0FbdXaFyI4n70V9ge9SPNVXmG3VjYnsiL6vdoRDz0AFGm5zOD6dS5QIxlEzClX4gqP6I9uOFYMNyX6XPp6oetgKBCNWxrwB6twXoIifDLvSYtnBBDqkz3vFdmxkr0PTcGVTqoMx/lTmwE1NXqvP4X/1pgnIbLSlmJeif9AgzhjFFt5Yw3XNV+EjGBnWUgY86xUSkxqmxXyew+nGoljtDPUeOGxikhgm2UylZVll6P9lJEtOMz/L4SaB+uIsUrZGdgBYpKo8LDuD5Nascqj0DV77fBtJLLCvhbJe6Og8zBeRY1XyXcGOaGIYmZtvtXuvOyAixn/Bh6pQRV6OGPFN0gZyJEPcvCTeN3gNQ7NtAQ/60IOCf3rQFRvxWlGxNdJXO+AEls5Z/0+yVxJqJjzisT7O0+aunSpfTt6yxZf/7555k4cSK33norX3/9NRMm7LqbBCnEs2yGjCmi96CSjPJVlguWztt1Q1Bs3WiwbkWMNT/HOfSYzXTq5RPiiSro2recH76ODgkA8NP8bARNGDKmiJzUyZJQUmRQXGSy38htfPt5vrf5Z6bo0L2crBxZm3nRBoQQ9lEdOnQIXL/xxhu56aabAuc2bNiAZVm0bh3cuKx169asWbMmrXr/9re/UVJSwimnnOKd6927N4899hgDBgygqKiIe+65hxEjRjBnzhx6RBCHDdg+NCvIo1lBBg9wPSMrFuPBi06ok7I+/HoxCcvmq3nL2VZaTkGjug27tX6b85mxrsj/7PjXF7P4eMlPXDvmYNoXNGH+hg3MX7eOlvn5HNWrl5fujUULWV9Swi8H7MvFw/wN+S4dNixlfT1btODmsWNZtnULZ6WYdGqal8u5Iw/Y3qbtdOzt36P2ZhS2apIy9MeuiKzsOLe/eUOdlDXjzTkkqiy++XgBJVvLaFzHK4Y2rd4MwIaVm7xzz9/7JjPf+47zbz6F1h2bs+TbZSyevZRmbQo59BR/5c/HL3zJpjVbmHD+GE69dLx3/rRrjk5ZX+d+7bn07jNZ89N6jr0oemKxSfPGnHzlrv/bIIw92UfVikSfPn06lZWVSefLy8v5+OOPMy4vJWmeaRmhYlJNejjqX5+18MhRd5NTaQhsU2DHBXbMeSUpH6upJ7Lean7RpJycETWXnUTY2RCY7lGskdpw01sCIoKdpshxRaorFSQhFaROoqs3mpIzWp8V3bZwO8I8UIj28Yln7VAl9BS5yn6C3ZCSxA6WpJ3XyHeBQ6xHBo9HI95UHv+vM7aEVqcISIgl7qSFe09sId3ihL/ZKESJ06pFUhP3MtSZjwoQxiGSPIRq+zrVuAllDkxOCeFshIxPGuvDyPNTXqx/95rhjJvAsJZa2QSf5bTbEGG/U2ZQlS9DfyMrUX4DfHZbTVBqpLheV6oyvbapcqP62nb6RF2OsjfVIxaY71KVWXgTB1JIT4ke2G/CNc4QNrZyUl6sJjzyXOj3JKltMvDFQ4ZvnMC9HmpFqKwogl7ajqre8GLc+BedQDX6B4G2gkbaSTY4Pi9DJbr22huRlZVFaamzhPzdd9/lzDPPBKBZs2ZJitddEZP+tJIJv9pUc8IQ7rm2PUvm7brkVPuuVTx6e1tOu3IdQ8duC1yzbYOF3+RR3bec/9zdlvve/iEjAh3ghjO6cP2DP/O7X3arNYHetGUVf3xiKbtJqMxdHmEftXz5cpo08UmLsApdhwh953fCaNX8RW7q1KncdNNNvPzyy7Rq5YevGDZsGMM0onDEiBEMGjSIe++9l7///e9ptWdvgJSSz75eQoumjejVtXXNGRqQhDMmHMCWbaUM7tOhzgl0KSW/O3oUP67dyGkHDgSguKKS29//CICHZnzFnI1rWLZ1q5enQ0EB+7Zpw7x167j09dcAxwM3jmdTUZXglIEDkkK46BBCcPp+A+u0HbsK9vbvUbsjpJR88frXNG/XlB6Ddg8V+a6Gky8Zz9aNxQwc0bPOCXQpJZOmnM3P81ZwzCRnc+/SbWU8/Pv/AvDfKW+w4PMFrFq0Gmk5Kqw2XVvT64BuLJ7zM386/V6nICHIb5pPZVklR5x1SLVqeSEEEy/Y/o2Zd0XsyT4qIxJ97ty53vt58+YFVBWWZfHmm2+yzz77pF9gIN5w8HwmiCRBAgSV9BIJIZCmQw4YXmxzjc2IG9hZMaxcg0S2o0KXMYdwF17oF7ccVY/3ChMLNUBvezi9R1Dp50RyPv2vxI/XrhXkqT/dv7aKW6zC1CjCSkaYHVZtCz+PFI4KU29OymZHtC/QVp00k76tSXn0WOW6PzJwlOiuQl26x4oOCij99XL0+oV0VegyUL9QMdpTtE9KIpXivqpceuR5IK67pvgXCL/scFwK1b4MsCfP/FWHuvZRUqnBFYEeHpfVbHAceRy1LNbWGXQQUrhjTjobhapypFufIZBZjm+yYo4/k6ZAWBLDlhgu4RkYk6oNIvReszHJ39QAqbdH75dAPaF+cMd6NHybpO6bQvZ5nC1aGqUO9/Y+wN8Dwk2jtkGIqj7wcaGfUM+rAXaO8yLmttv1F4bpxDfHHSqm6atADcMNTW+HfKXyx6CFaVGORotzrjmt5PjoaD4ihffV+13/eBJgGALDkJiGqs8n0q3wBtoCd7WW8OKvCxXzXhXa4KMywsiRI7nqqqsYMWIEX375JdOmTQNg4cKFtG/fvp6tqxlzZ+Qx9LCtSNtg7mf5DDt8K/mNq/+aXFpssHZFBsHT6wHffpHHfiOK6dqnNOlafuME59+wypvc+uDFQhZ/l/wD7vO3m9C204Ya+0Nh8/oYWzfFeOHBlhRtrP0y3bJSwRdvN2HEkUWYtZLINEBH2Ec1adIkQKJHoUWLFpimmaQ6X7duXZI6PYxp06Zx3nnn8eyzz3LYYYdVm9YwDIYMGcKiRYvSaMneg1ff+5Y7HnwHwxBM+/t5tGtdkHbeyqoE78xYQLcOLejdZe8l4Lu1b8GUq+tG1R7G07Pm8se33qdJTjbnHzwEgPysOKO6deGzn5Yxrmd33ntviZc+bhg8+vXXHNatG/u1bUu2aVJhWWwpK+fmt6cD0Dg7m6P69IqqrkZUWhbfrV5Ln9Ytyc1kY49dBHv796jdEf975D3uvvBBDNPgsYV/p20Gvqayoorpz3xG5/4d6Dl47yXgO/Vuxy1PX7pDyn71gbe599JHaNQ0n1OvPRaA3EY5DD18X2ZPn8dBRw3i85e/9H5UxbJivHjP6xx0zBB6D+1BVk6cyvIqtm0u5oHrpgKQ3ySPQ08cmrLO6lBVmWDR7KV0HdCRnLxdMwxiddiTfVRGX7P3228/74f0mDFjkq7n5uZy7733pl1e+OfF9s5SpKUElTjshGWD7ewFiRCImEAIw9/0zuMoXCWgANsEEhGEy3bY7ykoRcT5NOtJ4lH+n73zjo+ieP/4e3YvjUBCSEjovReRIogdpSgWxN6wF8SvBexf9WfvDfVr/YpdEb8qVizYG4igiAIiPYC00Akludv5/bE7u7N7e0kuhBqe1+uSu9kpz8zOPLf3mWc+j+V9RAUtlML2ngQH/BFxtMQ42ZTDpHqvz/u4Psa0CzK0K3FSkXEKrccBnqUCawJ6ebzEnj6Ax+euNlMUgG0AQjGkO96YhlajGs84N96gYoEZ4QNZpQvmY9nGhJhwgFPHu9Oy55kLShkSYTmgu/LwT/Z39Z689VeGVLWN0qUq7FVoGeH758RfkGBZHvW0xgWiAGbLqdB1ejYgFhFO4GT8lCe6odHeV+aEQ4U/a7ub/nQJlvCC6yoQ3JKOPdFAeLw6AF9wAH2Kx3lx6+s8pq2jQHWJ+uHaEWfYpQSiEqJ2fS5NjBDImMASAkNIu7mYsNewU5EQEkMYSAWQE/BIFI5dcDqneMuluk+Op7kKCqq0j/dcL8P66rbZqdvSAjd7wL/9fWcHHhU4xED2ISZhIR2bZdi9cKZS4EukolJNbZSS//znPwwbNoy3336bp59+2t3c++STTzjyyCN3snblS69+G8mrF+OyAS24+bkFFQKMn72tAX9MrLUDtKu89DxiA0eevib0WnauxYmXFAHwxds5oQA6wOEnrK0wgA5w76VNWDw3ncVzt43mplZtiwMHrsfcfegyd22phI1KTU2le/fujB8/nsGDB7vp48ePZ9CgQQnLjR49mvPPP5/Ro0dz9NFHl6+alEydOpXOnTuXm7c6ieUGE4GE8Y8SyMvv/8yosROJmAYfPzmU7FpV64W9V2DpBvt0z4atW9lcWkrNtFSEEPz3lOPd0xqN62TzU2Eh3Ro04KVff+ODmX/x0V+z+OqC8/h0yDl2EFEJT/7wM5aU5NesvCfq9R9+xsfTZ9GjcUPeOPuU8gvsalLNn6PAjiExZ84cVqxYgWX5T0QecsghO0mrxGK5jlMy6fs2+t6xvHbnO0RSTMYseZas3F37eWp3lJWL7Ge84nWb2FK8hRq1MhBCcMdbV7k2qn7TXKZ+PZ0O+7fm3cc/4as3f+Kbtybw0qzHeXbKvZRsLkEieOOhj7Esi9xtCP768NDn+ebtn+l0QBse+vTGKurlDpQ92EYlBaLPnz8fKSUtWrRg0qRJ1K1b172WmppKfn4+ZjJP7z5PxQCSVFEpK7+OLksP1DAcr3IAaRoOfiogIsAUWOkmMiLclwKhDSnjPRldR8EQ/cOwhaC+ugNhwOPSyxOoWyvjA8FkPPYk1SaB452Jge25GvDS1IFn14M6gQd6EPQL7VpiLMdrS8+n2rL8yW4Znc8c4r0elee500+XG1m5nyqgTq9H76cDdgvDRh+F5vHu3Q8NpNLuaZlT1nCmj4OMyajXrlD9FY5Xp8OtjKXRBwlAikqA6M6u3x6481eWVLmNclyG/Vz4fgA0vkzgc9D7XF/HzuRyudAlCM1GSXCJq4U6QRIRWKm2rZKmY7ccDNa04k2SO38D3OiJ4zCEzxndnPr6EmbDtZd+2kho+dx0w53mAR39L1ctBTKrtky8tS+8ta+WrFAnQIJdVeMfZqe1UzEIIAIyA2Sa1p6BDTabEsPAi6thqOFQHt4izgvd3cSQquPKEDle7fGD65RNbHXVtXiqHrujAlz+drVhZwg7aKLppKtne8X85XGgC4ThxIVQ9SvHeWccRbLBx6qpjVLSpEkTPvroo7j0Rx99dCdok7yMfqwuX75dm2WFKXzwYh5nDl9OzezElD7rV5usWLLre/p9PbY2XQ/aSEHj0tDrn4/J4cdPsin6J/zxuWnbzWXWX7JFMObJfGb9luGunYWzqsa7aM0Kky/frk2fwWtJSa2SKqu3VNJGjRgxgiFDhtCjRw969+7Nc889R2FhIUOHDgXgxhtvZMmSJbzyyiuADaCfffbZPPbYY+y///6uF3tGRgbZ2dkA3H777ey///60bt2a9evX8/jjjzN16lSefPLJKuzw7i/HHbEPOVk1qFunJg0LaidVNi3VXtORiIm5GwWX3J3k0gN7Ujs9nXYFdakbAL/VM8w+9eqxTz07kOjfRUV8Nns2+ZmZHPrSKJrn5PDJmeeQapp8fuG5xCyLFrl1Kq3P0nU2qL90/YZycu6iUs2foyZOnMgZZ5zBwoULHScTT4QQxGKxBCV3ngy86Ahq52eR17AO9ZOknErLsL/YI6mR3Sq45O4kZ9x0ArXq1KRFl2bUqZfju6ZsVNseLWnrBBKd/+cifnxvEnUa5HB22ytp1KY+z065n5TUCM9PvodYLEbj1vUrrc+KRasAWLk4efrEXUL2YBuVFIjetGlTgLidvm2ROMC4PCkTuS2jjMSmckUQM4CIQEiH5sMUWBHngclwvP0sEDEwSwANdHcrFBrmojweNIAjCBYLKtZXvU5fGxUsr8cEBdygcFKCFML2vI9rLLxNd/NIA6aUiGDZcnQUcZm8xDBPUn28FXDjemea8W0FNxPsNOnVLyQuZ7nhpAonj0pT7ruOd7oCsX24lU5OrbXnHVORLoAXX4cDnFmGy10vpY1cSccz1zY0UvNCFwgLrGhyW3g+HvtqJNvNRjlvpD4ZyxM1N/X8IrBGAoC0DQ7bPOfg2SjpgJ7KXrmAuyWhFJvGSXlbC3uTTEjpn67uuqhAXysgieosz065bTinQUQMu78Cb1NJ27WWcQUDac7Lt9Hh2O9guQqLov1WQ22BKAEjVdonkpz7Y98rA4Hlnd6RDqiugekg3Wnj8zJ3AW7vRIxrO4QEabg863pwUI/aRd/li0PPfSKlQFpeIFMhIIqBVQqmaTm0LjLAn27rbhgg1REg7VnIO6YHGMn9WKmuNipMNm/eTGmpH7QtjzZiZ8vCWTVYOMt+f/KwFWUC6ACvPlyPX7/dtfsEcOTpaxIC6LOnZfDw8CZllv/30wtp0Cy8PMAnr+fy2sP1tknHRJLfMEr/U9dul7qro1TWRp166qmsWrWKO+64g6VLl9KpUyfGjRvnPp8sXbqUwsJCN/+zzz5LNBrlsssu47LLLnPTzznnHF566SUA1q5dy8UXX8yyZcvIzs6ma9eufPfdd/TsWbkj4nuqGIbg0F6VC7R65jH70apJPo3r1abmbnhsfneQzNRU9mvSiA1btlYoTsBZ++5L/1ateHzSBN74cxrz165h3dYt1K2RSdOc2tusz0ODjuSDP/+iX9uW21zXzpDq/hw1dOhQevTowccff0z9+vUrFHdiZ4thGBw0uFelyp58zXG02KcpDVvXJ3M3Cny8O0lGzQz2ObQDG9duqpCNOu7S/hx4/H68fve7fPz8VyyZvYyNa4rJKcimQYv8MstWRK57/hK+GvMTBxzbfZvr2hmyJ9uobWJNnDFjBoWFhXEB/I477rgKlZfur3knoTzbJ6gYeKXnB4i56BfKI9Nw3OmkKRxPUU0PAxuoEsLmJI45EIURoqv737umgzlCz5OojxqYHFdnsK0E4JsS3cFaqgRDICPY3symCPHC1urScRjlHa5AIwXcyQS3Kkw3LW9C8FBXHDCsQBW6rqY/b7AfHuAv/V7nJj6PVV85A9sD3fA80EM52fFuiRtIUPrTXSBUatNVlXE2cdSckFqlyuPTawh7XiramSQ3nCvLQfXdd9/x4IMPMmXKFJYuXcrYsWM5/vjjk2t8F5Jtt1Fo8yWwHpUkWtNhHuuJ5r9G3SMADBtAB8c+KdvjrGelk8C2UVja4Qzvcrx9cvjQQ/tVVn8SXQ8blwRc6HHjodaKa2dE3PqO85YPbkrqa1thvBJ7PBN1Jah/2Bd70C5GHE70VBxOdFx7YTj/lRe6cKhdbN5xR22J462u0ajogyNs42U49VmWgtO9wXJ50p017YHx/p7qwyy1LxWhTtio98IJH+o0rzzUVZ1qykggJg3fBoDH2e605wZHrrjsyTx5FZHi4mKuv/563nrrLVatWhV3fVf0oNKlWbvNHHT0Wgr/TidaWv49POvqpQw8q8g9yfDbt7V4fWQBxet3LfLuj16tQ8eeG8lvGI271rTtZg4+Zg0/jMu2N8OB3HqlHH/BSv78OZNjzi1i6cJUJn2ZxcCzVvk2FkpLBKPursdPn2ZT3oZXZWVpYYRPR9fmiBP3eqJXhWyLjRo2bBjDhg0LvaaAcSXffPNNufU9+uiju80pld1VTMPggH2b72w19miZtaKIU14cjQRGnjCQgR3K5zLPr1mTy3v2RgJd69Wnbg2/B/vC9WsYNW0KfZq0oE8Tmyc6Zln8uXIFrXLqkJma2Bg2qp3NsIMqB2juClLdn6Nmz57N22+/TatWrXa2KjtETNOg51Fdd7Yae7TM/2MhV/T+N1LCzW8O59BTDii3TG79HM789wlIoH3PVuQEYnH8M38FY58az379OtOz/z4AxGIWc35fSJM29cmomZjKr17TPM64rmKYxa4oe7KNqtSvl3nz5jF48GD++OMPjacVd7dmm378hYxxeZ6NZZUF7B/3CggXICO2p6dZagNX0pIewAw2ABO1iGiekNIU4J5EVp53aM6EzpuADuXNmbI2ZlwPVkm8p2dYPcL26BTg8Q2D7YXtAGc+fRzgzudprtGYuBUHHcxc8Mb9WHY/QvT0FQ7W7VQoNB1c+gaV5PBC+7zStSpdvmgBUnl5Svs9OsWL2hFQoJ2UbltC3wHQeyA0oEoRrvt+E8s4XBIhMUzAtByPUGET8kuQlvNZavWB551uCaxokp7VYYT2FZDi4mK6dOnCeeedx4knnphcm7uQVLWNku7fBOOZyG6V8dl3TQgQ0jmNYNsbgcSIgbCkbaMiauJJiIFRqtFSCbuMTT+lyjp54xagvx++UzRCy6bWYZi+2hv3hIfUONadJuKa1tpwyyuvbynt+ADaYtf7p29+ud2wsHnKJd4GmWazyoWqgjclCEBr/TFKQZTiBi9WmxFW1EBKyw4wisASEokggu3ZbRrS3ycXDHceLpwGPE5ynK8SJ82SNje59FBs38OIkPH9COmUFxDU65+9NgwsKYgJi4hp2RsADqe75UwE04g5XOmBMVL/LYGI7BgbtafIddddx9dff81TTz3F2WefzZNPPsmSJUt49tlnue+++3a2euXKhbf8w8sP1OemZxaGAs5Bya5jkV1nq/v5lrNa7HIAOsDgC4oS9mfOHzX4/qMcX9rJl65g9h8ZHH32KnoevpHzDmzHyA/+jvPMn/RlLcb+d9u9ksqSRi1KOfL0tdu1jWol1dxG7ZW9UtWyNRp1nxuiSZwYLahZk7sP7xd67a4J3zB+4Rze/GsaM8+/CtMwuOP7r3ll2lTa59Vl3OlnV4Hmu6hUcxvVq1cv5syZU21A9L2y/aVka6mLcUWjFccKchvkcOV/Lgi99t+b32LCuKl8+sr3vPfPU5imwbM3vskH//2KFp0a8dT3t1WB5ruo7ME2qlKkb1deeSXNmzdn+fLl1KhRg+nTp/Pdd9/Ro0ePCnlUxGmgfpgbPpe4BC+Se4ENFqsV4fAIG7qnokPvohACjdXDBnIN4fKlh/L+QuV0C3vFjUH5ZRTg5WjvqeXUJ03hbRI4F11vcl/bxAfzE1rdwg9IBfCUkIRk+u3k18ddG1o3n+51GvQqV+Oh98UI5Nc9XdUQu1QuaJzB4bcBLU1hh0KIBOWEx5PstoMXANUZIOEOrL8h3bs9eS9P75WMHHXUUdx1112ccMIJyRXcxaTKbFTcmtTSfS//zZflrl19IuHQsTj0K45HtpDCW06K+9w5NSOcDTCX9kQI55SJXUbRags0vX1tB/sWoiOBtRdc33F9IT7OgpNPhl13x9cBpg3hOymjLwufnQjqoPjJ8WxHsJkKSVn3y4RYKsgUfDZEOICz4Vv/AtOwg3XaFCmqfo9TXMrgYIjglNCOEGqKaLuQ3kZdMJ/ecW8E/PV77Smzo/pgGDqNv1d3mF10D2cJXZ+KyZ58xK8i8uGHH/LUU09x0kknEYlEOPjgg7n55pu55557eP3113e2euXKHec3o3BWGqMfy2fTBsG7/83jrB7t+PytbEoTs5m48tw3fzHkmqWkpu9aHvfvv5jHmpXxR79euLcet1/QFPXlXTuvlPv/N4d+p6ziyvsX0bn3RgBO+9dyLu3XltcfzWerRo/e5YCNdNxvA5S947VNsmhOGqd07sDPX9QkVv6+RjWU5IxUdbdRe2WvVLXMWbOaWKokliKp6fA7v/rLVIa+9T6zVhRVuJ6NJSWUOM4w++bbfMMdcvMxnAeRRevXAbBkw/qqVH+Xk+puoy6//HKuvvpqXnrpJaZMmcK0adN8r72yV5KVwhlL3PeKMueD57/i1jP/w/wZiytcz6YNWygtsR/E2nZrDkCLzo0xnB9YyxauBGD5ot2U67yCsifbqEq5AU2YMIGvvvqKunXrYhiGze900EHce++9XHHFFfz2228Vr8yPCyTMUxFJdH+EaYM4wpKIqMQsla7znvJwFFF1l8GIWoiox3ErTAMrZmClCiwVbDSs0YDHeDI6eteDXqLex/LLYnMhqyJKH4nNDywlRITnde4AcAqHc3Edp6zuCR6mQLLrwTdUAYRLgguKWzggjdJP4UeG5mRqJGhfOcW6C9bxQhfS4T+Xjie6QsC9/z4QyHXulPHelwqgVNzqgUmgBxFEKo9PXLBKCIkVdTogba9VYai86mYLtyxSIJP2RPertn69/0EyLS2NtLQ9l/OxKm2UuybD3JrLWZthti0ur8DZqANKbRslSjWvdGdNo3jxFeAes18A0hQ+GxXLMBAxiblV+vnFAwC0ftrF3eBJYN4S9s95o3uhh9lBbd8oLs0OoqoITOJtFIa2kS20go5BEAnaTFqkds/09mIQ2QQiZmClSax0C5mKM3aWfYLFMZo6B7olBabvs73GLWkEHiikQwHj0MA442Ah7ECjlv3eihmeTQiOp6pQaunelLHtjABpSExTa1xi1x01sAyBZVi2jZKeIRNuxdIH9CsxkEixbTaqusnq1atp3tx+sM7KymL1avtB+qCDDuLSSy/dmapVSEq22kDzWSOWk1ZD8uytDajftIT+p6yrUPnMWpI3nyigdOuuFcBv8IVF5NT1A/urlkcY84Q/AFifwWvZ98BiLcWeyK+PLGD18hROu2IFegzr376vxfRfam0vtR0RNG61lV59N27ndnZXSdLYVHMbtVf2SlVL69xcUiIGpmHQvE4diktKuPPzrwFIT4kwcvDR5dbx06JCzvngHfIyavDpGedwWdf9Ob51B/JrZLrOB3f36cdb0//gsGYtWLR+HaOmTeHQJs1cupc9Rqq5jVInps8//3w3TZ0+3lUDi+6VXVuadmxEJCWCmWLQqE0DNm/cwlM3vAlAekYqNz5/cbl1TP1uJjed9Bi169bimR9v47Srj+bwU/anTr1s10Zd/sgQPnvtB/br15llhUWMfeoLehzRkf36dd6u/dvhsgfbqEr9eonFYtSsWROAvLw8/vnnH8AO6jdr1qyKV2QjitqLsl++cgmuBz4rMFk4yEhcdcorT12T2OCUC0QIxzNUeznemwLlRRyieyI9w9JVOz6ktXIvoffGEH6PbI1LWQdahJ5HjZsOxATG0zd2Fe1zeeOh+IwVH3qwfaVbGK95oC6pXFGVt2jAI133GkefflpaMD3Y+/hr8fUEb61K83iM7f9eFYqH2J+m/6uoBDmoGjduTHZ2tvu69957k6twN5Oqs1EJ1iTqvTYJKrQeAvZC/XMQ1rgqBH57o65Jba0ol2DdRgkntoDUpo6Bv+3Knu5JVD7ohe68Qr3ydZ10+6Rzv4fZAN1GabcneIvKlUT6JLomQBr2iR4rBYjgi6Ngc6N7Q2IIXH7zYKXeurRfYR7eYZNILxNni0IVt1N9cRuEX09vEP0HLvxtxesXBNHViZtkZE/myauItGjRggULFgDQoUMH3nrrLcD2UK9du/bOUyxJGft8Hq8+VA8zIlm+KIUJn9Wior9b35/9BwNOLyJhpPKdIHdc0IwHr2zMls3evKyTH+Xjhb/z4Xz79cqk6fw8PovLBrRm9QrTXWPj/5fDuqIIUgrefz6Xkq1w50VNOaZZJ+4d1oQd8Sti9rQMZkzOoApja+9BktxPnupuo3Yn2bK1lOF3vcM517zCkuVrky6/cuV6/vfWJP75Z03VK7ebSfGWEr6YNpu1xZvLz5ykdK5XwE9DL+GnoRfTPCeHGikpHNi8CaYhOLx1xQDuKcv+IWpZLCve6HqcN6yZRYph8veaIo4e+woPTvmef+23P10K6nHPxG956c9fueTT9yndw0DV6m6j5s+fH/eaN2+e+39Xki2btnLjkXdxSddrWDpvedLlVy5dy7ujvmVpYXwMneommzZs5vt3f2b9qg1VXneb7i15c8mzjF70LI1a1yc9M41uh7bHjBj0GtClQnXMmDSXWDTGqqVrWbbQPmGT3ziXSEqEhX/9w78Ou4OX7xrL6dccQ9tuzXn+//7H+899ye1DniJaumcdI9yTbVSlPNE7derEtGnTaNGiBb169eKBBx4gNTWV5557jhYtKr7LKw0R7j2YYJyD3svx5ZyLKuKZ8k40hA1Q6el6fQKXY9eQEgyBZQpkxEBGVBA+4XClSyynzqBjqutEHOiDQPvppBcQId6EWj0+ACekHYLtGY7XagzP015RJahKHP5h5emp8kDgd6yh1a2uadcT9slV0v8/bqy1su69MO3/wrJBKd84Oh65brWJvIJDxkrxYbt9d9pSVAzuy6lXAUjSodOQyvtS1SxshRTWJZzB0HVzcTClu9rIcUAsy2Y5tj1KJQjpVSLdMsIZd4GI+EYtaVm0aBFZWVnu5z3ZCx2q0EZBGUCr8PKElRUJPrvzwrvfwhAQczaAnPmj0+2juYrb80hgpQh7Uik7IsEosT3ZrVQF+DoncCy8iSWU3ZVxaKhKjlvbgXzB6wljNvgMZLjtcmMygHNiRkvTx96KX1fgrSt33BLppv/X7JNbnbINmu2zueYd2xNxQHMkToxgDMNCGJYNlmtfP5b6LpE2wi00RU1TQszCUgFCUd7rYFkCS3vYsKeZJGJKTANiwiIaM7FUTAUEUv0mVCbE7VvgnjmTKWYJLMNp0wXEBVJILEsSMwyEc/5CVWs5+ezNAe8Oq/sh/W71e6UCct555/H7779z6KGHcuONN3L00UfzxBNPEI1GeeSRR3a2eo5IO3CuwBdQ1hPBoPOLuPjwtsSiBvWbbqX3gIr/qIlFYfyY3HhjuRNFSsGA01aRnqHNc8cOmREwTfj9p0z+WZDKWVcvI6tOjFjMTv/gxVy2bDYByTHnraJoSSo/fFw7rg0VPLjsB9rKSavOm2nbdbMb1Hiv6LJ3Z2FPlel/L2XS7wsA+Gbi35w5qGdS5e+4/T1mTF/CuI+n8uLL5Xsa7sly3Wvj+G7mfNo3zOetEWdWef11amS474UQvHD6CcSkJFJBozWkcxeWb9xIo6wsOtb1x5n4399/8ueq5fy5ajmXdN6PtnXq0ikvn0/m/U3rOrm+Nv5YsZzNpaX0bNioajq2V3a4NG3adGerUGGZOfFvJn/+OwDfvT2RU68blFT5e694jZm/LeTTtybx3GfXbg8Vdxu558zH+fnjX2ndrTlP/VL1MYSy8zy8RAjB3W9fhRWzMCPxVH9hcuwFfVi1dC0FTXJptU8T37XPX/+ROb8XMuf3Qk66/EiadWhIq32a8MMHv9K0XQNfG7N/X8iW4hI6H9C6ajq2V6pUKgWi33zzzRQX28dY77rrLo455hgOPvhgcnNzGTNmzLZppAPDSYjUQR7NS9PGjTywSsNbHABBR3OwA/iBfazdAQ6k62XnEQ4oigcdaIhzHpRe1Xrf7PcBlF3TyZfmKxMCCOlj4DSq9y8OUA683Lo03cPG3tfPoJ4ykLECvwu1+Jk2WKbRyIQqENAxYb0OKiaD98KnfFBdZ3dBnwt49C6KYiGuZODeuKBeADh0MwoF0kN4J/F2P9wKFVBaiR9/WhNZWVk+EH1Plyq1UWFzLgigh4Hs2n/XPql5aTlguQKWpXQ3X3xLQD/S4IglPWDT9lDXbJT0gli600wB9U5+Nz04qcPWrmswpd/GOn0J2qzgpoPUK0wwRlJDxhV47tqvoI1SOiWQuEtxazE+U1mbINKQWIZEGtj/TQXu2wMbt7GrlqywHI9ttQXiAeP6+teYdNxr7q69M3r2AQLLyWtqDen9DBncOKPt11Nq7wGPNigG9ikr1U9/9xSIaoPp+s5IJYD0aoy9Dx8+3H3fp08f/vrrLyZPnkzLli3p0qXLTtTMlrQMi8c//psmbbaGf+0KeOvJupyzf3v7o5Bc9VCh/+RDOZKSBj36rGfSl1lsD0C5svLjuNp06rXJ7cPNZzVn2oRMnhg3m6Ztt9Jxv81kZsV47eF6vPZwPQ45bi03PFnIwces4++pNQDBsc32cWrzG9ZWnTdx9rXLuP38ZsSiVd/nhbPSWflPCgWNSpM+HbLnSyV2FqqxjdqdpGOb+vTatxmr1xbTZ/+2SZfPzraB3ezaNapatd1OVm/cBMDGLVvLyVk1IoQgkoSxqp2ewV19+oZeO65lez5Z8DdtaufSonYdAIZ17cVxrdpRkFnL/c0/Y+UKjn/zNSTw32OO54gWLbe5H7psjUaZt2oNbfPzXJ727SbV3EbNnTuXkSNHMnPmTIQQtG/fniuvvJKWLav2nm6rtN+/DT0G7Mua5Ws55OT9ky6flZMJQHadzKpWbbeTNcvXAbBx3aYd0p4QosIAOkCtnEwuf/is0GuHndSTHz6cQtN2DWjU2qYJPHX4QA47sSe59XNcGzX3j0Vc0e9ekHDra8PYf8A+ofVVVkq2lLJ47nKatW+Asb29Lippo5566ikefPBBli5dSseOHRk5ciQHH3xwwvzffvstI0aMYPr06TRo0IDrrruOoUOHVlLp8qVSIPqAAQPc9y1atGDGjBmsXr2anBzv5ldIEoCiCYGpuPIhQJbjdanYAAR4fMOOS6CCNdBPTBjYAThTI0gBVgSkohawJEZUYkQd7lcJVkRgpdjYppHo5EW5gK+WJwTojfPaDI6XBtzq4JW0/NVJcD3SFWDtenlq5cA/zwUBHYO6a28qBKNITRcDO0hfyBzQMDX/eAT1CYyFW68b+E/66nfxaa0Nw5AYpsQwsb0pLYHw2UmNA1gE0oLjoXXeXQYGcYMihO2NbgNmLorq1mQ6XOtSCqwYSEv4edYrIHvy8ZmKSJXbqJAyidZG/OaVBqADrje5vnYcG+WeWFCVWN4JCWWjEPYmn3QoUKSTj5jEKAURlcQigli6zY9ulkjMLTKeoqmcbvvXWqAPYYC5z574wXPfEtBsjT71XRslQBiaz6DTRthtC94DfSUFmgsvG1ZGKvskKa0pkSk2mO5mjkg3SLBXt0DtghjCDihqKAA9sA7V+hfS4x13D8s4J1Psj4YNpBuW61VqGtLlepTKm1U7AiX1uRPaebu39imbwMBZdtwIG6x3QH5sD3W7a/Zmo5COB75jBy2nj8mCoJW1Ud999x0PPvggU6ZMYenSpYwdO5bjjz8+qTp2RWnSpAlNmjQpP+MOknpNN9OsXdkgyp8/1yC/UQkrFqeSViNGg2Ylcet0/RoTM8Uis2b800HpVij8O5U6BaWsXp5alepvk7TrsZHliyLkN4oSLYXFc1LouN9G6jUpYVlhKj99mkXx+gi1cqJk1oyxT++NxErhz58zy35wAlrvs4mJ47OIRavmR4sQkvzGJQhpr9q2+26iXuMKRHatlpKcM0J1f47anSQ9LYVHbjqx0uVvvuV4/vxzMR07NqxCrXZPWVFcjBSQnp6yU/XYWFLC8o0baZHEc3vnvAJ+ONV/kkAIQeOs2r600ljMfUzaEq16+oSzR7/Nr0uWcma3LtzW//Aqr19JdbdRn332Gccddxz77rsvBx54IFJKfvrpJzp27MiHH35Iv379draKrqTXSOPeT26qdPkbHjuTGVMW0L5r0yrUaveUNcvWApCeuXNP1W/asJmif9bQuE39Ctuo1l2a8vJUv/e8EIJ6Tev60qKlUfe3XMnmkirRV5cbTn6Mmb/M45hzD+Gy+06r8vqVVNZGjRkzhquuuoqnnnqKAw88kGeffZajjjqKGTNmhP5Wmj9/PgMHDuSiiy7itdde48cff2TYsGHUrVvXjZ1Q1ZI0iB6NRklPT2fq1Kl06tTJTa9Tp07Sjfs8LoNSHgAd4hXpVooCJ9FAHuG2pyhDDAf3cMFn5aWp1yXtvFjYIIPhTAh1PeZiJ2X9borXv5zPoUBxaEb9WuKLfmqIcqpzOhP2c8PvU6WpKP15gpmCgFsQeHPrsDxA2k0LAfvD6vdoDOw/9r2W2v1Vddhk0T72Hx9i59PapT0oZ8a65f2G1OlUHHIZzGMPuvJedT3WpV5HEiKpmLoB2bhxI3PmzHE/z58/n6lTp1KnTp1dCuApS6rSRkGIrSkvv3oTcrulwL2VcYF78d8yNWPstaMBpcp9WS+rpojU1rqyXYoipSxldZsXvwT8GYWWL2w96jtKQVfrMFH7BVq9FbJTIRI39mEFhX81WUH74tgKaWpVqJ0M4dgUdackWJbXTdMJXuw2L1Uw0UQa25rYgZB0FS2kgrmd8nZd+g1PBMJ59qSsy1K7pUinD5bXX184ADU22okhS3rVBd9VSCppo4qLi+nSpQvnnXfednsw2lEyadIkvvnmG1asWIEVILHemZQuKakWt7+4EMALjB0id766kPv/1ZivFqdRssVkyyb/nJw1NYOXH6jHna/OD60nNR2e/342Fx3aZnt0o9Jy36XNueK+RRx99mpME17++W+KNxics3971hbZj80d9ivmoXfm8O2HtZk+KZPUdGjYYqv3UJNAPnk9j6QnfRly838XcNBAf+DwZE4DVC9JckAqaaP2yu4n6ekp9OjRfGersUtIq3q5LF+3kXYN65abd+HKNeTUzCArI71KdSiJxRjw6sss3biBWw45jPO6dqvS+rvUq8/Lx59IcUkpA1q2qtK6ARasXgvAvFWrq7xun1RzG3XDDTcwfPhw7rvvvrj066+/fpcC0bdV0jNS6XbQrvWstLOkacdGrFy8ilZdmpWbd/HspdSum0XN2lXrwV9aEuXiHjeycvFqhj5wJoMvG1B+oSSkbbfm3P2/K9i8cSsHHL1vldYN8M+8FQAsmpM8P39SUkkb9cgjj3DBBRdw4YUXAjBy5Eg+++wznn766dC4fs888wxNmjRh5MiRALRv357Jkyfz0EMP7TogeiQSoWnTplUT8TgZ5zXt10AoSOVccHEQdcMESITrXe56r0uQsZAqFH+4Ax5gSYyYzTNsWNienoZExmwvTyGkB2VUtD8hXp3B/wmwH6//PoRNr1f6dVAIiBZY0wWK0D4HG0kIjuFbDEEAPRj8D0J+Uxr46GTcy1LrguqGDv6H4c5uH7V2TYd2QUg3CKn9Xtrc4iZuMEAbtLYr8ANdHqCtvEs9ehcnhw/0ircRAo9P1lLglMaD6q/PD9gLIWwndgV2Jb1SNUQwCZk8eTJ9+vRxP48YMQKAc845h5deeilZJXaKVKWNkkZwkpYhoaB5vN0SQtjxGQJFbK5+DSyXEqKav7BACxasLzA73oOQ0rV9MiYxLIEV0eY53joSCeIxhHXHyye0fsWX0+t38+tj4bsWKKnWb0hw0kCMy3gF4xQoQ3S7p9rS7ZUCrB2PeGkApvQHM1Ze6I7dEBhIabmBRA3XvgaV9itoe6PrdkTYadh85Tb4LtxxjMYMZzcf9394l0X82ChRN0GCezTHbULTVwPrNYIwYtJAxqSja3AnJzlbU1kbddRRR3HUUUcl2dauJ/fccw8333wzbdu2paCgwLf5mtRpme0gKWkWa4siFDQuDeXWtiyY9VsGTVpvIT3DonPv9cz9swaL56ayZH6au/R//bYW6RkWq5eb1G0Qbo+3bpY0arWFzCyLOX9kkPw82j4ikWzZBOkOu8PmjZBbr9QB0QU1s6JM/qYW336QTUGjEiaOr8WkL2tVsPay+5hdJ0qbfYvx7VYKmPNHOmtW+D32o1Eo2QqpmkPWXvA8kSSLNFXORu2VXUN+n7GYP/5awnH9u5BVs2pB3j1Z/nPuIOatWE2rgtwy870/ZQY3jfmMnMwMPrn+PGqmJ/YKXbVpE0NGv83WaIxXTz+RBuXQS26JlrK8eCMA89ascdOnrVyGADrXrVfxDiWQg5s02+Y6EslzJx/PF7PncEqXztutDVuqt42aOXOmG5Rdl/PPP98F03Zl+ePHWcyYOJuB5/ehVs5empaKyp3vX0fhzCU07di4zHzjX/mWB879D9l5Wbw85wkysxLTda1duZ5r+95ByZZSHhx/C/lN8sqse+umraxyAlEvnr3UTf/7twUIIWi9b9MkehQu3Q7rsM11JJLbXx3GhE9/58gzD9xubdjit1Hr1/udPtLS0uLi9JWUlDBlyhRuuOEGX3r//v356aefQluZMGEC/fv396UNGDCAUaNGUVpaSkpK1Z+sqjQn+o033shrr71Wae/Oykjc42/I87AvSQTSpB/IsRQHrAy/rjsc2tedN8ozPSZd0EVov3VCgWf0dOX2p2UpC/QIuxbsu/T0UxQJXnPSiQznfFQ/ijUEJo4jPU7nsnVwMSjLnyD1/8H3QedqFfwwbNdK6apTrcgQgF7iOX6bWqJzo6W0HABTIfWhNyguSYINVmr3UIjgTfCAeAV9egCZtqsT1kBQfOUqgg6GlK/Ezt9hhx22RwQJ3Bk2qsxR0259WcPrA7Yl9oYTmn1xM2rGQ7vPbt2WtNdBVNrexXHrTca/FfjsUmLthD/JCFxydJUJXFjjbbRjn5R+RvC61reyQPyA3qErSx9HqW1SOd2WCtg2tDFzgzFLf6WOK7YVwwkMDJawwWWvGb9Snme6nc+rTt1Eh8LF+exufki9Lq0Dzi5DcAOwQuLep/hxUbrqmx5S2LfGMiAaA2E5Vk7YwH8s2bANgblbkQerPUkee+wxXnjhBc4999ydrUqcxKKCRi22JgxO+cajBWRmR2nffTNXPriEy49qxaYNEW4/P56D9MCj1iYE0AFqZsN1jy/mrP3asysBAdm5lgugA6SmCRbPS0PpOOnLbCZ9me1ef39UPlUhKWkWz33zF7Xz/GP23YfZ/PJls7j8ufkxH4C+V6pQKvkctSfJ9OnTfQ4JpmnSsWPHnahRxWTT5hKuvO0tolGLZSvXc80le45H6vaWFNOkbf3yvdDnr7C9rNcUb2bD5q1lguiTFy3h76JVAHw/fyGnlgMuZ6Wl89yxg/ht6VLXC33S0sWc8uFoAN457gy619t1qXe6NKhHlwbbDvSXK9XcRtWtW5epU6fSurU/8OLUqVPJz6+a7+TtJZs3buGGo+8jWhpjeWERVzx27s5WabeRSEqEFvuUD1IX/rUEgHVF6yleW1wmiP7H9zNZ8OciACZ//jsDLzyizLpr1s7ktv8NZ+bPc1wv9D8nzOaaYx8E4JFx19Oh567Fy69L227NaNut2fZvKGCjGjf2b3zceuut3Hbbbb60oqIiYrEYBQUFvvSCggKWLVsW2syyZctC80ejUYqKiqhfv/629CJUKgWiP/7448yZM4cGDRrQtGlTMjP9u2e//vprxSrygbUV/PEU+KHvwosKOBY4fLXCV8b2KhQqShsu4BngJ1bXhSW9V8zDWyWAYTgOiXajOp4TR0+iiaunCgbofsYHVoT219+d+O9LBYBBAOx12nNAIqHAcu3lAui6t2VYYxbxDSucTLsf7iV7kOz69ZkmNPw6CIQ57ej4tqpeEq+7z3NVtWuAVN6jpgN8GRIMEIZAmBIzIhGOl7jLI6x1yuVBx/9fvXTPdEW1EHMxNq8uvYx0wDlFgxDcAVCBH0NGJH6gypNq/mBVpTaqgvsevmthdFO++SQQhv/m6PbBzWjI8A0l5c0e2A9ymzcM95SF0C7oyznYDZmgYzoji9RmeNyyCU5VBwHW7VycV7kAgc3vrtsmGVjXcetef8n4l68nYWtA2Q4VI0KAleKVV/EV7L47jWgneYS7sL36lR0RQtgHBhwlLOz8lgUxy3B44ex7Z5jSLSud3U3DqTpiePXGLAOJEbhHQY455w7ptlDve+gNS3jXnTLOPZQesI/EIZuxxcCy9y6tZAM3aC8q9mC1J4lhGBx44Pb2AKmcSAt+/6kmvfqvJ8x5o2m7TTRq4fGlt+1azMK/09m6OT7w0uoVERb+nUrTNok5HQ1hMei8lQBMn1ST6b9kkvR3XhXL3D/T6HqgoGZte4IKw9ZRSsH0SZnMmByuY1adKIccu5bMWlGkFCz4O53JX9XCipW9PrLrRDnkuDVk5UapVTt+0yEnv4STLlnB9+OyWb7IBqtq1Y6SW6/quTL3iiPV8Dnq+++/Z8SIEfzyyy8A7L///mzatMl1rhBC8Nlnn9G3b3hgx11FUiImtbNqULR6I3VzK3pCZK8kIxccth8R06BNvTzq55TtWX5Q86b0b9OKrdEo/dtUjD7l8OYtOLx5C/dzcaln64qje+0eUC1tlC4XXXQRF198MfPmzeOAAw5ACMEPP/zA/fffz9VXX72z1StTIqkRsvOyWLV0DXkNd5xDanWS064fRCTFpHnnJuQ3KXtjsEf/Lhw4uCclW0o4aHDPCtXf68h96XXkvu7nzcVbQt9XawnYqEWLFpGlnUQqy1kqeCpXxQRLJn9YelVJpUD0HRnEq7zvBdtBT7oZ4zDeIGijPPqEsLlwDTAsbO5g6V1XR/kFAhGRCEt4nolRCyIGMmYTq6sT9y5G4dTlA+d9wI+O8iS4sbq+Qvsf7LyeT/P8DMSqtIFplQ7h3p7aGOre6so7E2GPk+t5rzwPg+C6hd871QmiqbcpVL4EOiC1dtR1gc1BL7Bpd4S/WanQM6WbKmN6n6WwaS+k435paA1IrcJ4L3MdkJK2t2gQJ3VB9QA46vuokyPguyk+j9C45pN8QlI7I9U02MzOtlG+tLh5Svx8Dyur2RQhHRsFzvryCrq2ytksEzFp26aY4QYRDp66iTuE4Saq9yKBjkE0H3fOykBSqMj4KekG13U2z9yyISdm9Lrd6a02CKyAXQpRwm1arTUnrzScVW16S1Jxoru2ROFahvc1AiAMgYwBQmJZAismPfooAUIKjRddukE4Y44tRWCXc04LGQJMw7ZBwtmsM4SFaUgsy8ASwtd+8MuhLA5rPY+vqBrD0MxemZgUHle62oR0GgtQepcvARuVzIPVniDDhw/nySef3CWPHEdSYb/DwwF0gIOP3uD7/Ot3WaEAOkCjliVlAugANWtLLrhpOX//nsFbT+4A770KSJcDNrkAOkAtR8dZUzP431MFCcvd+sJ8OvXcBNhBVc/o2qFcAB3gzlfn0bbr5oTXO/fazF9TaroAOth86A2a7Q0iut2kGj5HPfXUUwwZMsSX9vXXX9O0aVOklDz++OM8/fTTOxREX7JiLctXb6Br20YV/jGckmLy8qPnsHjpWjq0rrxNmb1gBQ8+/wWd2zbgX2cdutOptnYlqZWRxr/6H1ChvJmpqTw1+Nhtau+wxs15pt8ghBAc3LBZhcosK97Ay3/+xsGNmnFAw90jrlNSUg1tlC633HILtWrV4uGHH+bGG28EoEGDBtx2221cccUVO0yPpfOWs2JREfsc0qHiNio1wjM/38U/81bQtkeL8gskkLm/L+Txf71AxwPacNF9Z+y1UZpkZmdyzu2nVihvRs10bnt72zZeehzRiZtfGophiApTsRQtXcuHL3xD10Pbs+9Bbbep/V1SAjYqKyvL91svTPLy8jBNM87rfMWKFXHe5krq1asXmj8SiZCbWzY1WWWlUiD6rbfeWjWt6+6+ZeYr45JLYaK8AqW/jPKGdD/baVJxhKsofChAAD/fsANQEZNuMNJYxECYCunQ2wIs6XmFBoAfLTagTzcXI9LrCftf1rg4/cLw2pYqTbWhdFVUBYaX5vXdy6NzBUsJIoYHjjvAkguu633VARnhcNFrM01tLuhDp1MHKLBPYXru2BhOPcojNOiFrvXLezk1OKcQhCkQJhgmmKbniW4591Y1bhgEMDjhAlqm4Xmqe4CVzWEetZRS0k333jt9tWuz/7ugoT+fdNt06k/WyVN6r+ooVWajlJRnpjR7I+PSQv676Li/Gp8dACf6Me7xBXcdq7aElyilRMQse76Yhs2vbgoHdHcbRcSkfx8vIK4t1bsngvs72mkanVM8YHfdNP294X2UTl6BvRYsfU1r5YL2y90cU++VbYoR2jER/KDXa4BMkchUTyepncrxfS/ohs7ZtADp8M4LTFMSiUDEtO2ElGrzVWAF3OulBMvZfbCk4doDtVsihMR07JBhQMxyIpwj7NF37L10ATrNhuj9k56+uDZB5fXuhGauQsRnrZ1/KrN9r2WSRipooyryYLUnyTXXXMPRRx9Ny5Yt6dChQxxf37vvvrtD9MiqE2XwRSvJq1finrxISbGIVIA+cMWSFN5/Po/Vy70v+H0P2kB6DYufv6iFtAz+/LkGD1zeiIxaFidcWETDFokB9YLGW7j60UI+H5PDHxNrUr7h3X4y5sm6/PVrDY45p4hatb0dooLGW7h65AKsqMFHr+Yy+/caZGZZDL5wBfWalNjBRR1JrxHjqocWMXF8Fj98nI3UTmtkZMY4/sIiGja3vZXqNfXKJZIefdZRO6/UtcVNWu/1dNqeUh2fo3755ReuvPJKX1qjRo1o2rQpAEOGDOHoo4/eYfqsWb+J0298ha2lUa475whOPKJLhctm18ogu1bGNrX/zudT+XP2Uv6cvZRTB3Ynf69Xe4Vk6foNXPvhpzTIqsXdA/uRYoZvsiYjQgiObJ5cYMW7J3zDh3NnMeqPKfx53hWkVoEeu5JURxulixCC4cOHM3z4cDZssDf3a9XasWt07cp1XNh5BCWbS7jiyQs59tKKB5jMyq1F1jbalA+e+ZyZP89m5s+zGXz5kdRttH0Awz1NVi5ezUNDn6duozpc9cS5RFIqBYn6RAjBQcckFwT5+dvf4dv3pjD2ua94Z/YjpKRuux67klTGRqWmptK9e3fGjx/P4MGD3fTx48czaNCg0DK9e/fmww8/9KV9/vnn9OjRY7vwoUMlQXSAtWvX8vbbbzN37lyuvfZa6tSpw6+//kpBQQENGybHU1Yp2+/8fvec8aT/t72qNwjgoP32d34XWQKE8kiXIC3p83YGYXtgC5Cl9nWiICMWMiJsb3SnfgN8ntku5qI8H3VwSFE1uOhFyNhoOIWv72HDIT3QJphFKr00UFZadr/dMdT1NnED7ClsRJr+PMScKnVcCQ0QV8CbZedVGJIMepzKwH/wvNfVPXX0lJb33kXi0fZCFG+xjve4L2l75cZsGgUpPTBcGNKmU3DH2nLxS2+e+XnQfYFFhURK22NUEuQo1vNhw+casCVdZCuIXMrw9xURvd/VVKrSRilJNJxx4Ld+zbm1vrJqMypBhbpTiTIB0rFR7ppAItWGoFNIpghkFCcoqd2OZQKGQFi2EgZgSImISX/7OkCtg+EJe+yBwaq8bnND32ul46rDxY/djTZpaAC6wmsdG4DEoWzCtReuvdFsShwurOp2wHEp7TIihhtQVC18+7qzPvV4D8JrU2U3sJDSwrKkzZ+O7T0uLIOYvv0QGFKb5gWkZV9Qv/GEsE+8GEIiMTANxxXeEkjLcG2OhYSYUDB42fdMaO8DN0FqlxM+7DjjpjYWFF2QiBvkCkg1t1GXX345X3/9NX369CE3N3eneQ9devsSDj9xbaXKPnhFE6ZNqOl+zqlbyrC7lnDxYe3ctKUL01m6MJ2Lb11SJoAOkF1HUjM7xh8Tdz5Q9dt3WVx+zxIfgA5QO1fS/5R1fDa6DrN/t2nCzr9xKcecsyqujtQ0aN99Ew9e0TTu2llXL+ekoSuT0ql5+xKat99LY7DDpBraqCVLlvi4Q19++WXq1fM8uevUqcOqVfFzfXtJSWmM0qj93bdhU/kbTVUtfQ9ox3eT5tC5bQPycmqWX2CvADD2jxn8XLgYgNO67kO3Rg12ih4ta9uAYtOs2qQkCvKxO8s22KinnnqKBx98kKVLl9KxY0dGjhzJwQcfXNUa7jDZ0eC5kpItpUS32ifCNq7dtMPbP+yUA/jp/cl02L8NuQ1ydnj7u6t8MfpHfv/+LwAGnncYHXpVjGaqqqVxK/v7tX7TPCIpe9YmH1BpGzVixAiGDBlCjx496N27N8899xyFhYUMHToUgBtvvJElS5bwyiuvADB06FD+85//MGLECC666CImTJjAqFGjGD16dNX2R5NKgejTpk2jb9++ZGdns2DBAi666CLq1KnD2LFjWbhwoduhikhZ4JNP9DwyPtkGUIMgpJfBbkd4nspaYRvY1FAAge3B6TkVu/iDQCIjApkqkCmGL9ClcGhhdE/0MDDbBSDcND9iZvclvg+hY6HVqzjfhSX8+TTQx/XWDrkutM8+j25VPqo3pjmgCg3jDZZz6CQUgK7znCfoiu+++MbDcMB9DTjzlXGuSUN6OqiLhoSIwIhYGBHb09wwvD5LbcwMIb2AatK+PyrNcMfJN/Mc0MmuUEAcjqXzp/sAdEkoeKJ7kyYeqDKkmh/xqzIbVcH15/O81sQXADNIkeLb7NE2Z5y8Qk8RAkNxe7n1CmeTy5tcQjhnHEwBKcLd5HNQXkSpxLDAcLzRg32QQpu7ihoqdEyEt74MLc297r1cPFvg6RsE74MvVW9g6NzlI7A3AHUbLeJtrm+p6on6aRXXbjj1GSH5InZ79jcAroEXQoIhMQw7zkLEhIgpiZiSFNPe1CyRpu1p7kwGfywFG/yWjgu+EBLDFJimhWlAREgsp4yUhse7rnS0bPshhbCDm2r3L7jz7zczQaMdT08VGEVHpPNdqc7SqIlciV9wlbRRGzduZM6cOe7n+fPnM3XqVOrUqUOTJrvPce1XXnmFd955Z4d6dYbJi/fXY9rETIZcvZzcetHyCziyZF4qG9f7QYl1q0zuv6wx+iabkq/ezaFX3/U0alk2CNzlwA3cO3oOrzxUj5lTdh43eqvOm8psuveRa3i4pe0JXrdB4j7lNyzh4fdm886zdZnyTU1Ov3IlnXtuJLf+XjB8l5dq+BxVq1Yt5s+f73qen3DCCb7r8+fP36Enhgpya/HkjSdRuHQNRx9sBzT95sdZPPPitxzdfx+GnLL/dm2/R6cmjHt+2HZtY0+UI1q3ZPRv06hXqybt8ssPUlpRKbVifDh/Js2z6tC1bjwwb0nJyzN+Y3O0lIs69+DK7r05umUbaqen8/2y+fSs25j0ihyz2l2kkjZqzJgxXHXVVTz11FMceOCBPPvssxx11FHMmDFjl3+O6tatG19++SU5OTl07dq1TAeECse/2gbJb5zHA1/eypK/l9LvnEMB+P69yYy69S2OHHIIp11zzHZtv2ufjvzvn2e3axt7ouw/sCsfv/ANeQ1zaNGpcfkFKijR0ijfjP2FRi0LaNc9nqbHsiw+fOl7tm4q4YRLDueMqwdy0LHdyKqTya/fzKTT/q1Iy0itMn12ulTSRp166qmsWrWKO+64g6VLl9KpUyfGjRvnPpssXbqUwsJCN3/z5s0ZN26cS5XZoEEDHn/8cU488cQq7Y4ulQLRR4wYwbnnnssDDzzg2/k76qijOOOMMypcj9TflDG2oSCOZdOruEUFKG4NBbL4ACxsgMRSIKwDcvvALJ3HWznquUCQQKba2BRgA8oRSSzigUnCAaiNKIgYGKWBrsmQ/yLBAOge12WMjS/4piVdIMzdPNDBLOH128eZrjh/ddAq6vQxBTsoqKonZvdNxPB5petjLvX2FK6m+qPaVzqr9uI6ptWp0qTTpsM/HNe3OFRQauVtRMmK4XrZW1LDAR2vTn27zBBeeSkVaBQOTNke7ZY9hRxwzAXc3PxCKyPjxs5/syX6J40kpEISRilUnaQqbVTcEGrLtcz1qa0vG+yVLkDum9dotgj7ZAym3YiwcIBSj9fc836280hhr3skxExHISkRUdsmWWrzDIGI4DhwC4wYiKi2hedQUdnrKYhIBzspkZYN4nsguUKy422vW0qqDmgD6Mdo7f4a2PZHrW9nEwCtKJZta2XEA7+lQ+nimtXADVRe+5LA97q0bZq+wahUdQuoMVe2xtHNPsliIZHEpH1aIBoTSGlgGhJTWMSEQApD40BXY2oH7BRCuLEUpCUxTAvD2ZGNCIuYZdjsYYawPd2lTe1izwmJwLA91BHaRp0ImhMNZPeMsNROcYWL30r7YjcI4fHzJ2lrKmujJk+eTJ8+fdzPI0aMAOCcc87hpZdeSq6ynSh16tShZcuWO1sNVixO4/ATFiUFoAM8fWtD5k2v4UuzLIO50zND8x95+upyAXSAzFqSfxamM3PKzvX6vPrRRTRsnljfrBzpcp+XJSmpgBT89Elt+p68mtOvWFGFWu6V7SnV8TmqV69evPLKKxx22GGh11966SV69eq1Q3Xq1q4x3dp5IMeYsb+wdPk6Xh0zYbuD6HulctI2P4/v/3VRldf73PRJPPjrd5jCYMJJl5Jfw/898cOSBdw24UsACmpkcmLrTrTOyePkz19l8srF9GvUmucOPanK9dpZUlkb9cgjj3DBBRdw4YUXAjBy5Eg+++wznn76ae69997toGnVyaBBg9yYOYMGDdolOMC7HNqRLod2dD+/85/PWLagiDce/HC7g+h7pXLSvGMjXpv5cJXX+/aT43nprrGYEYNXpt5Hbr3avuu/fT+LZ/7vHQDq1Mum70k9adq2Plcf/SAzJs1l/yP34dZX95yN2215jho2bBjDhoWPRdjvvUMPPXSHbJwpqRSI/ssvv/Dss/G7Xg0bNowjdS9TEgAtZaY5P+A1/NQHTHkv4SsncUBcx8NcWC4koL0XLvev502trtgenAKbPkGm2t7omMJTQkqHMsGr04dhKKBaFdF0ddsFzbPTr4NPpM9/3fVCd4EmBZQH+Yp1r3ACefxD5nl8K7Aohuttr1hT3PZVPQEvdL1tXQ309zqaTiCTCLxMfBQOvmuGNqZBj1IThAkiRXqe6A6g5Hp3KkBM2JTSeuf89P0O+KV1xFB0Em5dGuCkZVTt2biVNnf0AdLyCu19UhICIFYn2f42SvjzEJ7Pi02Ad0ODJ0oVoKpsgDO3XWoT2+oggvPOcKhcXE90b11Kw/ZCdz3RnesAhiUQUiIszYa49iBgR8EGePWxEE6b+ho3hH+sNFviTkWlq7JR4NsIA+LG22ejnCFUp3h8dtqxU6KU0JgLuO3bL5emSvOil4b02TufHTH9acLZFMGQCFPa8RUMiBg2HYthKBsiiElDQeX2Zoi28yKEDTwq+2MYFikRi4hp86GbhsSSdh0IYTcp7ACf3txwZohzekHq9ev3V5t3cTEoQmyPmy/OYivedaHRWyVaKGVIJW3UYYcdFhe8eXeU2267jVtvvZUXX3yRGjVqlF9gO0mrzpvIzk0+OOXx569kzu8ZrCmqmFffJ2/UoUefddRrEi33++yAAWv59I0cZk+rQdLzKkmpUSvGlQ8uom2XTSyZl8Zj1zcir34p6Rmx8gtXUNp3L+aVn6cTSZHuxtwu8Lt/r5Qn1fA5asSIEfTt25fc3FyuvfZa8vPzATtA1/33389rr73G559/vlN1PHlQD5558VuOGbDPTtVjV5OpC//h/o+/5dB2LRh6+I7d6NhRkm7asEXEEJgh9CyNamWTZppELYvm2XXc9DVb7Q3P1Vu2jW5DSklUWqQYuwjtQiVsVElJCVOmTOGGG27wpffv35+ffvqpStXbHqLHvLrtttt2niJlyAnD+vH8/63lyHMO2dmq7FIyY8LfPHP1K/Q6uitn3rT9PIR3pqSl28/EpmliRuLtREHjXFLTIkSjFg2be6d01q/e6Pwv3qb2pZTEotauQw2zBz9HVQpET09PZ/369XHps2bNom7dqjm2lXCsnd/qUgWQk8qb0HNRtAEC6UcHFEDleN3ZoIYTYE/3qBb+e60wBGmClS4womBEJaLECz6puNOlgJjjdWSUSswoLr1LXN+CP6CUVyBa+2XhEo7HppvNkrbHqfL4Vh7pqi5D87rU/ocOthoyBzR3aQ60cZRaOSnwe4IaXjph7QlbTx8vevBZKKiT+hzVgEnVL1WnAuYktle+C4pJ27PXtFB85NL1AA0ZWxR4pGhdbCDLsjxgyjCkBsDbnqXCoXxxuekleP7rHvCn6GAsS0Oyyux02LVypBoeQ9Zle9oo350Q+NdzyHC7NkUhoO5EcDJo1EF6I27QX9dmeSCy+uzmddZdLFUgSx26lhI71GMsBYd2ygbdY2lgmQZGiWV7oyswXYbooRaUA+C6WaS0gXoC61wfA2ezSGjVKKolL4aBo5dm/8IGXG0o+DbJwD4xo2I76Jt2jgd/nF3XbaBzWaebcu+LArqk/V0jDSBiOXZEuu2oEyjSqbw0JohZJjFTEDNtGijlum0IC0vaHuqWcxMNBzg3HLJ705CYhoUpLFKMmBO7wR6EmGWD8dGYwBBOUFKlg2EhYw4tjD4xtLll30Zbd8VhLuO4vbRh9xl6/3VfsuONblkkJ9XcRj3++OPMnTuXgoICmjVrFhf4Zkd5U5w1YjlN2yRPLfLOs/kVBtABjj1nFfWbVszb/fuPcpg9Ldyjvarl8MFrOOy4dQCMfqyAFYvTuO6JQho0T35jIZGYEShonJyn/17ZBaQa2qg+ffrwxBNPMHz4cB555BGysrIQQrBu3ToikQgjR47k8MMP36k6Hn5wOw4/uF35GauZvPTDFKYtWsa0Rcs4+6Bu1EitHG1JzLIQQmDsgjt957XvQavsXBrVzCY3PX7zuUV2HX467RKilsX60i28PfcPjmnajlGHncLo2VP5eVkh9035muu7HZa0B3OpFeOE919n1uoinuk3iMOb7PyTZEEbFfzdk5aW5nptKykqKiIWi1FQUOBLLygoSM7JaBeQFi1a8Msvv5Cb6w+muXbtWrp168a8efN2il6HnNCTQ07ouVPa3pXl7Uc+coOgnnDV0WRkpleqnljMchyP4jfSdrYMuvhwGrepT0HjXGrnxfP0N2qRz8s/3060NEbxuk2MHzOBQ47rzu1v/ItPXv2eP3/6mxfueJfzbhmctI2KlsYYcfSDzP/rH24ZdRE9+3Wuqm5VXvbg56hKgeiDBg3ijjvu4K233gJACEFhYSE33HBDctwz5TmvlQEgu0XVj/ggSKu58bpAj+FPjztioIFBOEC0lyZs6gMF1EawPT11jl8FepVKDKm8R0P64dNV+NN0L25D+MtqCFOQ+9cN9mYID2gL1hkEtH3jpb3X3rpAnmpf80J3r4d5a2r1unlkeJM+8Eu1k+jeq3Z0T3T91IC6mVoe4ZQRJhimw19seJsgIHxguud1rqNqnsYKLA+MlMbb7PVSOuUUYO/yICfYJQk6OOue8knJHrzzVxGpMhulJI7kPtF/dZP960ePseBLV3t/MlCXuiYDs0S3F46N8DaohA2Iq7ZN20bpp2WEo4CwLG0dC79Oug5avz0AW2inToTfvuhjEbBRgWWUwG7Hv9xTOsF0NLunm8q4MdPHC89OaZ7o0pCed3pQHxMHPLdtiNIJJMKQGKZtY+zuCAxDnXSxFbGk8jQXSEs4ALqKnWAvUCmFDaBrnOqmaduMUsvhU1fzJGQgpCXiDakRnDcegB5qf7S30t2ACJv3nr3zvNHjbVm5Us1t1PHHH7+zVQDgo5dz6dRrY1wAzfLk2PNW8tdvGWza4H+MNCOSqx4qZNwrucz81eM0/3R0Dr36ryMnL1auF/Yx5xbRsddGbj+vGSuWpJL03EogZ45YxqDzV5CS6u0IKno3gCvuX8zQO5a4HuO7IIa0V7ZJkvzBXU1t1LBhwzj22GN5++23mT17NgCtW7fmpJNOonHjquOO3Z6yaNka7vjvZzRrUIfrzzmCSIhH4J4mx+zbnolzFnFI2+ZkpFTq5z2zlhdx5ktjyExL5d2LziQ3c+edkgoTQwgObdiizDx5GZlsiZZy+AfPsSlayvTVy7l1v75sLCnht6Kl/Fa0lLPadqNRzezQ8luipTz02/dkRCJc2eUgIs4PvuXFG/mjaDkA3y6av4uA6PhsVHB93nrrrQm9tYMAnXTiKu1OsmDBAmKx+FNjW7duZfHixTtBo4rLkrnLeejCZ2jctgFXPHEekUqu2d1JDj/jIH796g96DexGeo208guEyPw/Chlx+B1k1ErnyYl3k5Mfvo53lhiGQY/DO5aZp3ZeLbZuLuGiA29jS/FW5v6xiKF3ncLmjVv4a8oC/pqygKPPO5SCxrmh5bduLuGV+z4gLSOVM6852vV4X7VsLbOnFQIw+esZuwiIzh77HFWpFfvQQw8xcOBA8vPz2bx5M4ceeijLli2jd+/e3H333RWup8wxFWHvhevaqLwgXVfHYMVOzQoIFwKI2V7kLrALNrc3ziZJBKyInSYkGJYkpgHviktd8XKLqEREbI92D1yw64kJm39dDzYK+AH7gOL6PLOBZ+khSDHpeI2GjJPQClrSwVKEN7iudzo+r3EPlAkMnQYiyeB9UOWl9l9oryAQFQAH3fodAFt5t+qUDQo81D1jNezGBvJLBJYhkRGvDpeb1wjMLMtpyLArVsCVpWhafLltD3Wwp1bM0oL5CdUh2+vSA9K9/DYA79UmJMQsDzRzuyTDB8hHU+DiXtIG5JKRPdhoVUSqykZByBCK8HSpXxe+6esHKPU3Wj4s2/b4f+ZLXzBadepFxBw+8Jh9AkVGcAB1m5ZEOnWJUul5aUvhzjYrxfZKN9RpmaA3ujs9vcUnUM7d0plaNh+71OhiRHDO6YC0tNty+c3VwrU0EN/0wHoZtFF6vcH3Ab31jTs9i7I1/kCiUht06bNT6qvEXX6G5W16YG+GxWLCNi2Gw20eE0hpUhq8kzK47m07om+qmaZFxIhhmlF7vJ1rEuHaIkX7giWIWgZWzMCK6coKt6OKN19ozao5IJ2bJaVwiPgDYxjwGgh+km5lgrjjVhWRam6j9CPJZcno0aM57rjjyMzcPp7Zx51flDSADvD+qLpxADpAy46bqZMfY+avfq7agWetpk7dilGkmCb89Ek2K5ZU7kdWmBim5KwRyynLcSmSApGUajohq4UkOc+roY167733OPbYY2ncuDHDhw/f2epUWobe9RZF64uZNvsfBvRuR48OXrDED3+YzpNjf+CUw/fl/KO3jfakeNNW/l64ks6t6+90oL5vx1b07dhqm+r4ZeFiNmwtYcPWEmYuW8lBLZtWkXY7VoQQDuVKKakO9YrppHXNq0/9GvEeoko+mD+T52f8AkDXug05vJENljeqlc21+x3MHyuXcWHnHtu9DxWSgI1atGiRL/Bv0AsdIC8vD9M047zOV6xYEeedvqvKBx984L7/7LPPyM7Odj/HYjG+/PJLmjdvvjNUq7BcM+AeVhWuZPqPs+hz6gF07eMBr5+99DUv3jya44YdyRn/PmGb2ilev4m5UxfQoXebnQ7UHzS4JwcN3jYP/Wnfz6R43SaK121i7u8L6dFv96T1EoZwvzNSUu37YpoGkRSTdt2bk9cgJ2HZb8ZO5t1n7NgP7bo3d8Hygsa5nPvv45j9eyEnXHLEdu5BBWUPfo6q1GrKysrihx9+4KuvvuLXX3/Fsiy6detG3759K6dFoo1P3QtSS7MxDO8HvAtqqOdjHbjRkCrhgMwetqE3bINRImrzBbttugCBXYeKwSZNsExFmRLQU7q+enFd8nlM+lrXVFIguFafoU1CFw8JAbjjgHm3vvhXKDioA+dunUElA/UH21BlJX7vVum75AFnIaJDyz5dffdWQ9hc3aW/n2rwDOl4iyoQXXoelHo1wgpwn/vTlUe57c3pIXc6h7AdtNSmf1EUDGBTN7hc6KGemxr47qjlAvKJ1kgi2YONVkWkqmyUdInyg+nOG6Hlcz87a1cHdtUck9p0C1lbAhvQ1q/rxQEbbLf0zRY1hyXC4S2R4MaAkLqiqh5pw+LSt33kM7lOVzw6It0G61ziQfGZXXehk2AOC++adl2nXPFVHLRRQc/xMBul8hmB/Kp5VV+QEkZ1xLUpwcodOxLXI4EfrAkz1P667NMtNuWLISyXssq2JQaWVPbGK6uCiOqbLK5evjgMdjl9f07ilLNs73jfZPPZDuH2W8fo3ezOexG8VxWRam6jKiqXXHIJvXr1okWLsr3vKiv/d3Zz9z6ee/1STh62ErMCWNC9b87jgxdzefa2BlgxD5leMCudrJxSxhX+7i+g2YOKfJ3tP2A9Y5/PY9MGdXRk2+SCm/5BWrinV/ZKdZQkQc5qaKNOOukk8vLyOOecczj//PNp27btzlapUmJZFkhIT4vQpmm+79roL36laG0xr346eZtB9EvvHMPshSs55tBO3HTJgG2qS5eiDcUMe+E9TMPgqfOPJyczw3fdsiT3f/wNs5ev4tbj+9I0r3aVtHvcPu34fckysjPS6NWsUZXUmYzMX7OGW7/+ko5187nuoIPL9Iy+c9JXfDz/L+7q3Z++TfybBxFh8NHR5zJzzQr6NGzJog1reXmWTZG2b16DUD51sJ+zOuTkk25GSDFMWtfO812/bN9dLJBtwEZlZWX5QPQwSU1NpXv37owfP57Bgwe76ePHj2fQoEHbT9cqFHWSTwjBOeec47uWkpJCs2bNePjhqg8aWZWiKBnTa6bTal//ZtXYxz5m1T9r+N9DH2wziH71Ybcyd+oCBpzXh2tGVV3AyjXL13LTMfdimAZ3f3Qj2Xn+eWdZFk+PeIkFfy7iqmcupmGr+lXS7hFnHMRfk+ZSMyeTfQ/rUCV1JiNL5i7nP9e9Qat9mnD+/51Qpo167ta3+f7D37jsvtPYv7/fK9yMmPzni38zb/pi9uvbiWULi/jg+W8AaNu9OaaZ2Ea16NSI1PQUUlIjNG3bwHf91CuO3LYOVrXswc9R27Qldfjhh28bN14YjuheC4A+GhBrgyLar3aNPgE0rCOG53nt0BwA9lF15THtlDckGFtQqAWG/fxFLAViaQKZ4rSZ4nhxCmzvTyU6N7fiI9cBXaVf2ERSQFwi3nLds9mrzo93CL19Ly0E4bGvJ/JED+ApBLK4GKE+/EFMWCRIB9srXuDjoY/Tz+F2L3PRKTBHAfVo/XeBMD+Arg+AaVh2vEUdGHO8bv0wlc1rrChcVP8VUYuFB5ZKKRywSxCzhO1hqiF/lvSaCe0Q3rS3S3p0QMkHFtXRweorVW6jdLDQnefCN/dlWDkNi3WLavPbXhPS9h4P6uAD2LHtU6nEiNoQuJUi7Feq07gh7JM6zlpw57MvVoHNyS8MYXuix4TLva5TXPlsr2M3fKdagsrqGwWybHDVPUESGCe3rRC8Oe4kTVylCepI2IZ0Ao1KD19x7Zv0l3U6LJwyel63XmeDTjnn62ve20DTC0p3Y88Qtld41DJBCExhIaWBQGIKgWFKLCfeguVA9TY4LnxBQ73x8gbOR9+iTgM4tsrThwQ2N+ybwN+TSsleG1Uh2f5BVIU7H448s6hCADrYJ7G+/zDbPgWhSaMWW6jftITSEkF6jcrrPuWbmmzdbJBew8I0vY2cZEH1GjVjbNpocMhxqzH3/NPSe6VMSTJYbDW0UYWFhbz44ou8/PLLPPTQQ/Tu3ZsLLriAU045Zbudhtke8vTNpzJx2gL69W5LVoB399yBPXnmvR85uc++29zOqrV2ELiitRsrVf7LaXNYvGodpx3UhTTNS/THWQuYsWQFABNmFzJwX/9mxryVq3ntp6kA/G/SNK4ZWDUBDLPS03lw8M4DYV79fSo/FBbyQ2Ehp3buTLPaOaH5Sq0Yo6ZPBuD1WVN9IPrYudO55sdxHNKgGS8ccRJCCPIyMmlSszaLNq6jW35D1pds5a/VK+iW39ClaymJxTjp09eYtbaIJw45lkMaNCc9khyv/LJNG3hrzu/0adiSzrlVAxqWKZW0USNGjGDIkCH06NGD3r1789xzz1FYWMjQoUO3k6JVK5YThKd58+b88ssv5OXllVNi15OHxl3P5C+nc9iJPamV4z+5d9oNg3np1jEcd+m2b8ytXrrG9z9Z+WHszyydt4JBlw0gNT3VTf/l06nMnmJzzv/6xR/0Oe1AX7lFfy3hvcc/AeDjZ8dz8YNnV6r9oNSsncn1L1XdZkCy8sGor/nt25n89u1MjhpyMA1a5Ifmi5bGGPvc1wCMe+V7H4j+1f9+5pErXqbbYR24/Y3LEEJQu24W9ZrmsbxwFe33a0Hx+k3Mn76Y9vu1dOlaSkuijDjqPhbO/Icbnr+I7n06kpaRGtp+IilaupbPR//Efkd0onWXJuUX2FbZg5+jKs3I/+WXX3LMMcfQsmVLWrVqxTHHHMMXX3xRNVqFeaCXIVL778MPVHC5mHTBdwv75LoMQSUlOCCoFpMu8ANWB61tXZ10BUpoTcvAKyzNp7cL7vgBDaH/D1XGefk43L2Xj25Fa0t51athsnTQKTieqozWNJAQpHKBZW28gvX56taAd4n/HgRBy6DYeTySibhq3XulAC41oHr0QRmXz67J8gB0hUFZzksH99w+C4eCQX/hewU1VzrHTUkX5Fd6Vlzi+P6roVS5jUoEoDsSij8GxLfWHUDcfQXWY9h3jjtjwmyUDCwRXd/AVPfVFXzpdROcpXr/Q5RL2OFg2cDnBPY0bExcm6ZXL7Q1FlQnDEAP2Cg3Da9uXT+pQHWk00bitaufSgm0oPXEfun62oXtOgXSsTHC9UK3JD77kdieEG9zJLYXbhBADxrnRPcwJM0byrIKJ5a9NmrXkktuW0LtOsndjM69NxFc0PNm1OCiQ9uydbMRmJ/JSftum+jdfz1jZ/3JO39N591Z0+l3ypq49sqSk4au4LjzigDBzMk1y82/V/Z0Se5H3LbYqKeeeormzZuTnp5O9+7d+f7778vM/+2339K9e3fS09Np0aIFzzzzTFyed955hw4dOpCWlkaHDh0YO3Zs8oqVIw0aNOCmm27i77//5quvvqJly5ZcccUV1K9fnwsvvJAJEyZUeZvbQ5o1qMNpR3YjNzse+O/fsy3v3nM+p/frFnetcNkaRr07gYX/rK5QO4//+2SGnXYw/744ebBrwfLVjHjhQx55/zve+O4337VD2rege/OG9GzRiAPbNI0r2yS3Nt2aNSA7I53DO+wC3NxVJP1atqRmaio9GjSkYa3EHtUphsm/9ulNy+w6nNehu+/a+EWziUmLb5bMY0vMDuicEUnhy+MvYuppVzKgcRsGf/Qqp3wymtt//tItt2zTBqatWsbWWJQJywuTBtABbvr5Ux6d9j1Dvnwz6bKVkcraqFNPPZWRI0dyxx13sO+++/Ldd98xbtw4mjaNn2u7ssyfP3+3BNABGrepz+BL+5KTHz/PDzv1QF7663FOuPLouGtL5izjtXvfY9HfSyvUzv3j/48L7j2TEc9fmrSOi2Yt4fYTH+K5a19hrAOIK+l1dDc6H9yeLod1pMeALnFlG7SqR6eD2lGrTk0OOH7PCbJ6wFH7UqNWOh33b0V+4zoJ80VSTE676kgatSpg0IV9fNcmfPI7sajF5C//ZOtmO4h9eo1U/jvhdt6a/TAHDNyXq/rdyzVHP8jTN3q2pOifNcz+bSElW0qZ9v2spAF0gCeue4NXH/iIf5/yeNJlKyN78m+9Svnl/Oc//2H48OGcdNJJXHnllQBMnDiRgQMH8sgjj/Cvf/2rctoEg1xAOOCi/1c3RQ9cqf2eV1iP8sz0HddX+RzKAmlgj0hMIGIOsCWExrkd0EvXTX3Wg106CJiUIB0vU2IaKK731eXn1dL1CSf83fa1qfXLt+Gj3gcDcBr+/DoXua/u4Ocg0BVyLxQNgW8swn63hN3XIO2Muj8h+LHql1QBRNUrgutd6tVlK2YYEsOUCMMiYtrAuCVtQNzvFYrLWBHXrhoTxZPvAlV2Y/pn6eu8F1hUH9wwD3PXC13gUDxALNntrsrhWnuMVLmNSgSg62sgZI0QKIPEtgMSlzbKvi7cNaCDwm4ehXNGcBeeKMHZyXE+q7fCq8PlKNc3yJQtUYGLTbteKcEotSuK+7ITdn+lfoLHaVO3h8GAx8H1r28K6PY9SDslEsVwCLkPwXbieNm1Bt09Kd1DX417CNULQnrxM+zIzQjTsj2/3XR/EdW4YeBSO6nyKraBlGBZjo1wAWnvBlrS8NFKxdzgpE7daHbKkJ4NcjbufAPkA9uF9zn0C7bior5bbS54yuSaDpVqbqN2JRFC0qPPuqTKSAk/fxHOK5tXv4RlhamUbi0lr0G0UjotXZjCgQPXYmie8UVLTVp23MTcGRnE7TDGa0j3w9Yy/q1cWnbaRN0GW4lF2euNXq0lSWNTSRs1ZswYrrrqKp566ikOPPBAnn32WY466ihmzJhBkybxnl/z589n4MCBXHTRRbz22mv8+OOPDBs2jLp167qB0CdMmMCpp57KnXfeyeDBgxk7diynnHIKP/zwA716bRslSSI59NBDOfTQQ3nyySd58803efHFFznooINo164d06dP3y5tlidSSka+/R1zlhRxwxlH0Di/dpXW/++RHzBnURFf/jyLN+4/t9z8LRvn0bJx5UC8WjXSyEhNYXNJKfVy/EBaTmYGL196SsKyqRGTVy85tVLt7srSu3ETpg2r2PP5Nd0P5pruB8elX7ZPbzZHSzmsYQsyNCA8xTDJTjWRUlK0eRMAKzZ7Jwga18zmqi4HMn31cs5rl5jzvKwAnA0z7ftYv0bZlCrz1q5GIGheO4dZK1dyz7ff0rtJE85o167McvHKUOnnqGHDhjFs2M7z6K0qKS4u5ttvv6WwsJCSkhLftSuuuGKH6yOl5LlrX2H+H4Vc8dRFNGhZr0rrv/Os/zD/z0V8P3YSz066p9z8zTs1oXmnynkc16ydSXpmGluKt5LfxG/nsvOyeOTbOxKWTUlN4dHv7qxUu7uydDm4He/OrxgAfc71x3LO9cfGpZ82/Ci2bi6hxxEdSa/hAeGRFJOa2TWQUrJm5XoAVi/3ns3rNc3jrOuPZe60QgaVwXlelo3Kb2QD/3Ub5pSp++I5yxECGrYsYP6MJfz3trfZ96B2HHlu7zLLxSvDHvtbr1I/J+69914effRRHxB1xRVXcOCBB3L33XdXDkRPxFfhYUTx6SGfXYwT/z1z76EG9mDZIJVAeV56SLWlmlVumU6CHbhPvXcyO5VLCPW80rsQxKZ9XXEBL6m9d/R0gpNqcf5s4ETolWgtBQAnGWxHddAgTiG96aAo/fXb5QO1FG6jgBofGicQwTIJPuv3Ux8zHQiUwvUN1ShVFFLmcJ4LB8p2h8VCsTwrz87gPRPODodBHGO0O0ektkGiBweU7jXh75SIb0eVd7O4mJejP16Q0z3S+mxHqWobFQfchm34BRZNHA6t2QkhpW9uK65gCS5IHQyuKzW7ZPnqlPYpdX3jSAHkvgacdE0/HUgWysYl6rv6oPdT00/o3EZqjHSDHBQt7oOvq2qtSDz7FDRIzli4tjygoggm6DpIbI9sPZioroC+E6ACoCrji4VU69K1OWg8yxJTC15s66LbDTtVbda5V4V2zbFnluM1bkkceigwfUC/qke4Zf199tqU7pdf4LrUrGtZmGTIfVTzOOGXxV7ZbeTSO5fQpHVpUmVeuKc+86bXCL02e1pNHrm6MU9+9rdL65SsHHnG2rhy//f8Im48rQXlA+hwyr9W0O2QzXQ7ZDG3n9+UWNTcC6DvlR0ijzzyCBdccAEXXnghACNHjuSzzz7j6aef5t57743L/8wzz9CkSRNGjhwJQPv27Zk8eTIPPfSQC6KPHDmSfv36ceONNwJw44038u233zJy5EhGjx69XftTs2ZN+vTpw4IFC/jrr7/4+++/t2t7ZcmCZat5bbzNbf32t9MYfnLV0JgoqVc3izmLiqifVzYIWhWSWyuTD286l7XFW2jdoOJA/FsTpzHysx85o3cX/tX/gEq3vzUa5fZvv2JjSQl39ulLdnp6+YV2A+lYp4AX+56c8LoQgjeOPJXvlizgpNadfOlXdTmozLpv+P4z3vr7D27p1YfzOnWPu35rj34MbtGJNtl1E9bx67J/OHHsGwgheO+EM3l5ym8uhc1Ru5kn+M6W3377jYEDB7Jp0yaKi4upU6cORUVF1KhRg/z8/J0Cohf+tYS3H/kIgA+f/pxLHqoaGhMlBU1ymf/nojhQe3tITkFtXvr7CdYXrad554rPzY/++yUv3jKGQcP6c/b/nVTp9ku2lvLkVS+xecMWLn/ivDjam91VWnZuzB2jE+MQQgjuf/9qpnw1nX6nH+hLP+v648qs+7GrX+Pz0RO4+PYTGXRRPJ3t0LtO4YiTe9G0bWK6qZmT5zHiqPsRAkZ+diMfjPqG3779i9++/YsDjuucsFx1k0rRuaxfv54jj4znTOvfvz/r16+veEVu0L4yfhAluqQBCcEf+ApkxsD2sjRsD0oZwQORNGBJApjC3lJwQAoXdBXC3c3xeWKaXrrr4a28oYMe3yrAn3bdDc4m/PndO2KBYYERA9N57+ubCGnD4WL3caor0EXTy3Wg1evRwWmDuH7obevYmNTG2ccTbAIp2GPqgkWBcdJfwf7r990dQ6+/MiLtuiOBOiISUiQiRUJEIiI4AUXBNCWm6XhMOjfABbxVs8L27EwxLFLMGCmmRYopSTHBNPwTTXmT2oH/HMhbGhr0HZyQelvx7brvEZgGrre8eiUjAuK9gquRVJ2N0vCaEAzSTVfrQJUhUEbHlp0/bnWGbXtkBHvNBCl/FUhpYtspByD3OcJrYLLrIa/h6LaZFf71rusO3mkY1Ubwpa0/FdBZ4IQdsAI05XqgVc0mhY5d0H7q9knPI7yyUtmXgJc6MlBWH3fdg163W6Zeh9S+OyTSkGA6ZQ0QJhimuiF+13XTlKSmWKSmxkiJ2KddIo690dd3xLmWmiJJS7FIiTi7BQJSTIlhOLYJgxgmpVaEmGW6tsWdbobEND26KcMgEPshCKAHboY+sStiKIT/vRAgTOna12SlutuoXUnWrDLZsC65O1Erp4TM7MRe5sKULPw7vdJBPBOVy623ldS08rmtN6w1WLPSXhCNW2+mRcdNlVNkr1RbCdqo9evX+15bt26NK1NSUsKUKVPo37+/L71///789NNPoe1MmDAhLv+AAQOYPHkypaWlZeZJVGdVyKZNm3j55Zc59NBDadOmDWPGjGHEiBEsWLBgu7VZnjSqW5suLetTMyOVw/ZtUeX133PFsfz3ttO596qygYqqkrrZNZMC0AHenDiNdZu28LrDiQ7wzPeT6HjXYzz85Q8VrufHRYW8Of0PPpo9i1G/Tq5QGSkl//1lMrd88QVrNm9OSu9dSTrmFnDpPr2om5HJ5mgpz8+YxLdL5pVb7oO5M4lJyQfz/gq9bhoGXfMakpnip1n4aclCzvzoLd6bPYOizZtsXzYpKdpczIDWrUkzTQ5u2jTpjYzq/hw1fPhwjj32WFavXk1GRgYTJ05k4cKFdO/enYceemin6NSgZQEdDmhLZnYNDhi0X5XXf9Or/+LRL2/hltcvr/K6wyS3fk5SADrAR8+OZ8Pqjbz35Gdu2uj732dgrbN54ZaKUx399uWffDLqa755awLvjBxXoTJSSv732Dgev/Il1q+qXKyKXUFadm7CKVceRU5+Fls2beWdJz9n8pd/llvu27GTsWIW37wXbtNN06Bdt+ZkBGKFTP1hFjee/BhfvTOJtSvW2zSilu0Rf8DAfUlNS6H7YR2oWTvceSaR7Mk2qlIg+nHHHRfKxff+++9z7LHxxxYqI+X63eoOuva3EViOB5/wv3w4qQyhKlD1WFqVyjkvJm1OdctrNM5zUupgRYiKwntZwl8+UCS+vMT2MtVIinX9Qitzx0Qr5/LD216YvrQwsnap6R3i6RmXENZuDH/9ZajsG8ew6hUAp+5nXCWKE93R3a1YgrAQRgyJhZSel2cs5nl76p7sOpexm18q2hfp5le86Lq3qAosWqaE3Pggt7F02rbjdyeKwlpWG9qkq4ZSVTYq1FQk8kIvqwK1LvR1RcBGJRKhtaERY6spZAcGlRpJf0h0AGU04hadP2No/IRgH8MWqMbr7rUVaC9kzdrltPEJs0mBdJ+tDegbpp4rgTpFDIhi2ykZuI5H46IbW2UP7Jf+3i7nUtxbEIsJn41x67AcW+F4lwshMY0YphHDkhCNQWlMEI1BNCo0GyXd/wI7toPQbIVNG+aprDjQ48YybnKUNWjxeVxOdddGhRi0ikg1t1EVlaZNm5KSkjw3azLSpGUJtbKTu3//zM+geF1i1+60NEnLjlu2VbU4mTejBiVby49+2qBpKTl17QVx/o0ryAxnntkreyWxBGxU48aNyc7Odl9hXuVFRUXEYjEKCgp86QUFBSxbtiy0mWXLloXmj0ajFBUVlZknUZ3bIj/++CMXXHAB9erV49JLL6Vx48Z88cUXzJ49m5tuuomGDRtWeZsVlZSIyQvXn8a3j11G19aNEuYbP+Vv7n3jK5at3pBU/akpETq3bkBqyq57bOXSvr1oUz+Pq470PBTfmzaDqGXx3u8zKlxP54ICaqelg4RnJkzinwo4mMwqKuK+777jjd+n8epvUyujfpws2bCeD+b8xabSkvIzV1BKrRhFW4pDr22KlvDhwuksKV4HwNN/TuSuyV9z7pf/Y9mmsufLnQf25cAGTbiuRzyNjJJpRUs55N1nGfr1WGJOAMz7J33Hj/8s5JYfx9OvWUseOGwAD/Y5kj5NWtC/VStmXHklL514Ikayu87V/Dlq6tSpXH311ZimiWmabN26lcaNG/PAAw/w73//e6folJKawmM/3MV7a16m88HtE+b79n8TePxfo1ixqCip+lPTUujQqxWpadv3uXBb5KybTqB55yacf6dHOfXl698TK43xxWsV3+hr070FterY3udvPvA+KwrLH6v50xfx/E1j+HjU13zw7PjklQ+RFYtX883YX9hSHL9xXlmJlkZZuzLc5m4p3so370xixeJVALw18hP+e/Nb3HLyYxT9s6bMeofddxr7HtyW8/59fMI8f/9eyPkH38ldl7xALGbbqBfvfo+p38/iyRveZP+jujD8sbMZ8cS59OzXmQMG7sv7hY9z15jLMZL16tyDbVSlnhLat2/P3XffzTfffEPv3jY3zsSJE/nxxx+5+uqrefxxjytom47SlDfeDkhjOP+l8phU5XQvRfXP+a1vn9AXHoWGBrQLaXtXAlimQEaEzRlsCqQZ8Npz3QKxPRr1Npy3GE57lnAqj++nx03uodaGjf/6h0L4Xx5fsPDniRsrRx/NGzTEWTPeq1b6nFXdLDKYX08UmheZvmh0b1EdCFei01iE9MX1lBUhL4cPXekuDBARiRmxKQ8MUzpTw/HydIFIJ0XYHp0R06ZjMBzvTksjI5cBl30FmKtAonEKlzd/9azaHBVCYBg2dYOyVUZ5dQWlkrjWniJVZqPiJr9uTPDPQQi/59I7SeLOX0v4T2Do0Si1+yacS9L5IBAIKW3vb+nVqWyTfUpDxKuiKlLmK2ijVN2KZsRA44zBA6sNrx7VN8XbrtfljpVTVjjlgzZKrb84MN/wZfMuBT3PVaNW4lvg76NWn3v6RRkl6XmgC/s/Ao//3ADDRKNPUeVsL3TDULZDEJOKx1znRLdPs1jSM67q1EvUMOyTLhJi0rQDilqenQFhn6QxJKbTiZi0T754XwLazVLv9RviuznBQUpkYGQgj/SWgPBOyciy6k4k1dxG6bJlyxbGjBlDcXEx/fr1o3Xr1u61P/8s3/OkspKWYTHgtFW06xYONiiREn74OJuZv2a4myjTfgr3RmnbtZgDjlxH/WZVB4goWbUswsa15QPoKWkW9ZtW3Y+dvVJNJWCjFi1aRFaWR/ORlpaWsGiQj7QsjtJE+YPpydZZGWnTpg1z586la9eu3H///ZxxxhlkZ2dXaRvbW4q3lHDjf8dhScmWklJuP9cf9HPeklV8P3UuR/ZuT0Gdbd9dk1LyzdS5xCyLI7q1TvqeSCmZ9c9K6tWuRe3MjIT5vpgxhyVr13N6z33o16m179r1/Q5h1IQpnLlflwq3W7dGJlf1OIDbv/oKCUStkABUAWmYlUW9mjVZuamYbg0aVLgtJT8vW8ST0yYwuGVHBrfsiJSSE957g+WbNnJC6w48cvhAAEpiMb5YMIcOefk0y84JrStmWYwvnEOL7Dq0ycnzpR//2YvMXLuC23sMYEhrP+3K//3yGe8u+IP89JpMOP5yCmrYc6BmSpqPQz1MTmzdiRM1CpgweXfedAo3rKVww1oWblhLi+w6HNuyPX8WLWdQy/YIITilfRVRIlTz56iUlBR3vRUUFFBYWEj79u3Jzs6msLBwJ2uXWDZt2Mw9ZzyGZUm2FG/luhf93PQLZy5h4idTOfzU3tRtWGeb25NSMuGjX4lFYxx0/H6VslFzf19AfuM8snIT28yfPpjMsoUrOebivhw02B9M9ML7zuDtRz/muKH9E5SOl5yCbM7+vxN58qqXbebSaPmnEAsa55HXMIc1y9fRfv/W5eYPyh8/zuLNhz/i8FMP4IhTeyOlZMRR97Nq2TqOOGV/rnnyXABKS6JM/OR3WnZuTIMW+aF1xWIWEz+ZSsOWBTRr39CXfsURdzPvz8Vc9uAZHHtBH1+5/1z7Ol+8OYE69bJ5ffqD5Na3bWCNWumkZyZ+7gDoe8r+9D1l/zLzfPXuZJYuXOW8imjUIp/Dju/BnGmL6HOCPT8GnFk2tVWFZQ+2UZUC0UeNGkVOTg4zZsxgxgxv17t27dqMGjXK/SyEKBOgqowznC+jxPN+BKRlgx8K6A4G0tOBKZeDWHr5FA4gnWP7wvXac1hwAzZHBv77OiD8HyUOiKSBQ3pQviDW7FYn/HXEfZYu5u6hRY6NUWCYNLRiGvWKNLVyeqMKQNOxF0m4B7/KJwJpqqDQ/ovA9QR1hW1WCX2w9R0AVa/ihEarQxsbKyY0j1WpYUZ2x4SQmMJysEaJYVh2eUcp6UwWz/PU8RDVldTvhaOHUDqWI4o3ViJBKo95qfHJJml99mCjVRGpKhsVlFCbFbYjFViT7nzEmYORAOgsvOzqjRBgGbhc5XqblrO2XRtlaQ0GlHQ/qjwaH5PUikjnkouRG4E8CeZxmVMseFHV4doo6YJyQrNb0gTLEE4gVa2eoO3Q8WJtU0BXNc4+O/lE1MkvCFC64FWkAGJDNS8wTMvfgBObwZIQtQRWqU3zFLUMZ/1Llc2NnSA0JNoUjud61HDvjVRAvTPBhGYA1TtD2SZp+Lzi1SSTPqJ94v+XZ5eC19Wc0ey6foonaammNuraa6+lpKSExx57DLDpH3r37s306dOpUaMG1113HePHj3c3/7annHPdUk68pHzPnomfZ3HXxc3KzZedW8oj782hHByi0nLHhc1YvrjsHxAAZ161nIOPSYK2a6/slTAJ2KisrCwfiB4meXl5mKYZ5yG+YsWKOE9yJfXq1QvNH4lEyM3NLTNPojorK0ceeSQXXHABXbrEg7GWZfHxxx8zatQo3nvvvSptN5FIKYlaFilm+ZtnStJTIzSvV4e5S1fRsVl8UL+rHn6XZas2MPGPhTx9Q2Lu7IrKpJmFXPPUhwA8+q9BHNIlOZqZN36Yyn1jv6FOzQw+vfkCMlLjDei8lau5fLTdRsyyOP8gf+DLPm1a0KdN8vQ2Z3btQm5mDerXqkWT2rXLzV8rLY2vL7yArdEotcrYREokD0z5likr/mHK8iUMbtkRsCPNgE1vouThST/w7O+/UDMllcnnXEp6yJfKs3/8wv2/fEeqYTLpjEvJSbc3ILbEosxauxKA34qWuCD6lliUrbGo+xSl/p/Rugud6xRQL7MW2anbzgt/Sqt9mLC0kI65+TTLssGvC/fpwQWdu1f5pld1fY5S0rVrVyZPnkybNm3o06cP//d//0dRURGvvvoqnTvvGO5mKSWxaIxIEqdX0mqk0bh9QxZOX0y7ni3jrt98wsOsWLSKKV/8wQPjbthmHX/7ejq3n2Y/c97+9nD2P6prUuXf/8+nPHnlC9Sum8Wr858ivUb82i+c9Q+3n/IoALGoxcnDj/Zd339gN/Yf2C1p3Y+5pB+162ZTt3Ed6rco//suM7sGL/3xECVbSsnMSrwpmUhevP1tZvw8lxkT53DEqfZzuOX8fra0jcaX736Pt5/4jBq10hn918OkZaTG1fX2E5/x4h3vkpIW4fXpD5LleNWXbC5hwYwlAMz8ZZ4LopdsKaVkaynSaU+ZxIHnHkLrfZuS1yCHmtnJ0amESf9Te/H7hNm07NiIBs3sDcjBlxzB8RcfvtdGJSGVAtHnz59fJY2H3qZE9y4IhEvpeh/aQIhAmGClON7iqowCQxQYoaoSDqihc3HbCCpGzJm8Dge6lWp7oxMRfgAi8AoDxdy80ga83KNaOkGQ8AqrQG2+y8H2tHql8qQU/qrcoVKfNQDEUqCeAuL0/IrfNqSrBP8rkD0AwocCxxrw4hsnHfhS/dGuufUFPVOFsD1FNT5loTllCmFzFwtNGSGI4ww2jZjjIWo5wyiJGBaGISmN2cia1NqUls1LrDjQbRALB1DyJpwIDpgugTQ/HzqYpuOFbvqnSDKiYiGGbnxUA6kqG6XHbHDnrHtNe+lpThBgAvdVxRpwN/kCQLu+KAy1NmMijsNceaMLywOBZcSw642I+Hvus1EKpPXqVOC4HbzY8UYP7asgbD6L4AdnvPR1Ln06EHddIMBygjwbzloy0U7oaP0I80YP80RPsGbceyFwYltI1/ap00CenXF2sZwAnkJIx4Z4Bs/2TrfXLQ6oHbMMG8gWEn84ZWcuOdWmmBILA8sykc59tb+Y1JwTmIbtsW4IZ16orwthYEkd/dcHCfwBMjQVIGSwQgYp0QUh7U1mg2162KquNuqTTz7hnnvucT+//vrrLFy4kNmzZ9OkSRPOP/987rrrLj7++OPtrsv3H2ezf/91NGyeOKjo52Ny+OT18j2hOvXcyPEXrqw0B3p5snRhKps3lV95WkaM+k2rnkZmr1Q/qYyNSk1NpXv37owfP57Bgwe76ePHj2fQoEGhZXr37s2HH37oS/v888/p0aOHS+XUu3dvxo8fz/Dhw315Djig8oElw0Q/padk9uzZvPDCC7z88susWbOGAQMGhJTcPnLtsx/x9dQ53HjGEZx0yD5uupSS3+f9Q37tWjTI9W9smIbBGzefydqNm6lbOz4QXW7tTJat2kBedmaV6Fgj3QNPMtPjgZTy5J/V9obf2uItbC4pDQXRa6ankpESYXNplIKsquOmMg2Do9u1TapMqmmSmsSmhi4Dm7Xjt5VLObp5O8B+hnj3+DOYvHQJ/Zu3cvMpYN1zG4gXHXTX82WmpDLygEFMWL6ASzvY62Pd1i30++B5Vm0p5pnDBnNwvRb0qNvIfYbZJy9xkL1kpUOdfD4bdH5cepWDU1Tf5ygl99xzDxs22BQ8d955J+eccw6XXnoprVq14sUXX9whOtx19lP89NGv/OvhIRx9/mFuupSSGRNnk9ewDgWBIKCmafD05PtZV7SevAbxz1d16tVmxaJV1KmXXSU61qjlgck1aiYPLC9bsAKA9as2sKV4SyiInpmVQVqNNLZu2lol3vNKTNPg0JPL9qwOSkpqhJTUylFyHXz8fvz1yzwOHmzz2QshePST65j+81x6H+VtLntAd+LFJx3QXVFxKsmomc71z13E1O//4tThRwGwYW0xQw+5k7VFG7j5hYvpdnhHOu7fyrUbbbo2q1R/wqRFh4Y8/fn1cel7bVRyslNJ30I3JgLgk54cl+58tk+9SxvkBCwhwdBoAnTAwLJxBQ2n8GENCIhFQJgCYUk3SJ+lgTZuAD+nzqDHe0LaH+E4Wxt24bi+C3+aCyyH9UMvHyykNhqEdk0B0gIbAImBleJQ5Ooe6aodx8NV6HWql+YZK1ReI9DvWAD4VaCh9HclCMAHAT4M6fXfIT4WOG1GvbqJaRsKEpASaSkqBLtSywGm7YB8NjAlJZjCwnS80T3oShIxoggMpBs41CKGcL1J40SA/4L0DSshn9xs2kB7vO3C5j0WJO/tqd+vvVJpiRtCbfLKkDTAN5+V167lrDEVF8HFPfU1hgOuOlz7ql73i0e3V9gnKwwtrp+3Trx6tX0dL5+mv7tp5aQLYasmg8V0O4emt1YfwTL487r66f9dgNw2DPZGIzbHuwRShT1eplZG98yPX24Vm/eOfRKljn4Rb1Ck4skRjsGOSLBsqhykQUw6wUXdDUjbXtgnU/RNNdvuSLWGsbfkDGeHVADRmF1DNIZL34LAoZOy9YhZOHbA/mznkwhp2TzqBliWYW88CPWwFpikwfGQauyDFyrwACVxudctZ5j22qiKS2FhIR06dHA/f/7555x00kk0bdoUgCuvvJKBAwfuEF36nbS2TAB91tQMHh7epNx6DENy9xtzSd92B5mE8sjVjVn4V/kNnHhJEYcdv9cLfa9UgVTSRo0YMYIhQ4bQo0cPevfuzXPPPUdhYSFDhw4F4MYbb2TJkiW88sorAAwdOpT//Oc/jBgxgosuuogJEyYwatQoRo8e7dZ55ZVXcsghh3D//fczaNAg3n//fb744gt++KHi/LLJyObNm3nrrbcYNWoUEydOJBaL8eijj3L++edTs2Y8ML09xLIk3/4+Fynhm6lzfSD6Oz/8wT1vfEl6aoSP77qAnFp+25ASMUMBdIAnrzuJvxYsp3Or5OlIwqRzi/q8fsuZWJZFhxDP9/JkaP/9qZ2ZQYdG+dSpGW7j8mvV5JOrzmPtps20rVd3W1XeaXJBxx6c274bpsar27hWNo1r+cHCq/c7iE55BXTMyw/1QgcYuk9Pmmfl0CI7hzqBL59jmnbgmKbe9+zi4nWs2GwHGfxrzUou3+dAdgWJWRbT1yyndXZeuVQyoVJNn6OU9OjhncioW7cu48ZVLPhkVYllWUz4+DekJZnw8a8+EH3cC1/z+BUvkV4jlZdnPELtuv7NvpTUSCiADnDfh9cx+7cFtO/VKvR6stJuv5Y8+eMdWJZFm27Jn1gZ8n8nkZVbi9bdW1C7bnZontz6Obzwx0OsX72RFp3Lf27cVWXwsP4cd0lfTNOzUQVN8uI2Qs656XhadWlCq32ahHqhA5x8xZE0aFFAo9b1yA7Q4Bx6wn4ceoIXeHbF4tWsXr4OgAUzlnD6iB3zO6A8icUs5k4rpEnb+qGbJ+XKHmyjKgWiSyl5++23+frrr1mxYoXveAPAu+++W7GKdFAm0fWwvArgFXhIrSFsz8UU4ePz9tXhgAzCveiI4jlXSI8hICaRhkAaglgKthe6sEEeF9g2tfpFgvdOU8prVChQLGy3x0HlBdL1Bi/Tc9Ct0MsbaNb7LL2NA4kNnEtF6RL09NTq8jXnAOhumvCDbS6tc3z347ogwecFH9e+cBp0kUAvSZXFxKNhcN9LhEMYbRhOXsvuoBC2h7nN42sD5hFTEnG8PBVtSsR0QDFpOrtyNoIYk4bDZ+wp6QFHzqZN4D553PD6RU+CXOc6z7AhcNqXodOlTNmDjVZFZLvaqETrPOQeCZw1ptapgcfdHwZsSmcmqfmjL2qFVDp5hJRgCGc9C9tGgbvj63pxu3NReI7JQrsuPaDeWSlxG2DB/uk2ACni52egvGo3GO9AAffg2EjnuiWwY1HoNkqNt3ZaJjiGIjjnA3bRtR3aCRYMYRPMO23YFhjHltjAuGuLHKov23bZtsY01EZX8EvAqc/poIqzoNa8opWKxZRHuXP/hOXEQrA/R0x700/dfktCigkxy0AGB8eNXq0ZUn0nRDfswXsmPZ3LFIHthe56olfSyFRTG2UYhs8jZeLEidxyyy3u59q1a7NmzZodosuL9xfw/kt1aLPPZs6/cSl1CmxOpS/ezuGDF3MpXq92r8qeFJYFw/q3ITXNfm+YkrOvWUavvhswq8BVY+HfaWxYY5Sbr0atGC06Fts6lJ99r+yVsqWSNurUU09l1apV3HHHHSxdupROnToxbtw4d6Ns6dKlPr7e5s2bM27cOIYPH86TTz5JgwYNePzxxznxxBPdPAcccABvvvkmN998M7fccgstW7ZkzJgx9OrVqwo66smkSZN4/vnnGTNmDG3atOGss87if//7H40aNaJv3747DEAHMAzBzWf146vfZnPJMX5PxHUb7dMmW0ujbC0tnydXlxrpqXRr17jK9ARo1yScE7ciUisjjYv69iw3X0FWTQqydtz4by8xK2CcDSE4vEmLMiljIobB0S0q5kXfISefm3sczqINazm7bffyC+wguf3Xz3lt9q90rlOf9wecl3wF1fQ5Ssntt9/OWWedRcuW8ZQoO0IMw+Cqx8/hhw9/5azrj/NdW7/a3rTZ6lB0JCMZNdPZ5+B2VaYnQKt9m1W6bGZ2Jmf8+4Ry8+U1rENeFXqh7yzRAfREIgxBzwH7kFkrsWe/GTE55PgeCa/r0qJjIy66/USWLVzFMecfWmFdt7c8fcNoPhr1Da27NuWJL29OvoI92EZV6ufNlVdeyXPPPUefPn0oKCjYLu7/kAB3FNhgudTuiYHP41JYxHuDKzzBKRfk2Ha9y518lgKZDc0LHScNby7otCg+rMLXCSdZeSiGgXBKj1jIPNPq83mWShCK59j5bKi+G4F2FDDkgOBGif1eSiDF7pcK/ufVrXdUewWAdBccNPygWJz+enqAdx2Bx3cc8I7FkO416YBcwaCHWNjoksNhLCRYURscU0CkpXQXnpe3otQXQnmISgQWEYcXPeZQM0hhYBp2OQvD5+XvgmyuSh4gr3tpenzITjk3cJQ2VAKkZZ+mMJxylfHy3JOPz1REtpeNSrAX4l1T17X5YYFNC6I26wJfJkF7oLzQBXh84Sq/Y4tihh30WPGlux7lzpp1q/edEnFiOwR1FF6/9E0xV7eQ/vpsaNgYuAke7YzSx8HdNS944cZuUOtaWGCU2MZSAjIFj9JJ2S0fMh74H6Zb4DuCqDfG3prEBYllTCnq7TBIC4gKb0wtByA3LWedOjprfOTSGSypYi+YMdf2WJaBZeHjPBcob3PH3ErDPjFjSlfJWAwMYRExS5HuDqITzDTufmkD5RoGNZ4adY9jo9wvAXcixE8Ad2wMZaD22qiKSrt27fjwww8ZMWIE06dPp7CwkD59+rjXFy5cWOU8x4lkw5oUNqxJ4Yr7lrgA+pZNBg9e0Zjyd1N0ESyZ5/2Q6HLgBg44ckOV6fnC3fWZP7N8L/QjT1/NwUdXXbt7pXrLttioYcOGMWzYsNBrL730UlzaoYceyq+//lpmnSeddBInnXRS8sokIQcccACXX345kyZNom3b5Gg+tocMOrAjgw7sGJc+pG83sjPTaJKfQ70qCA4alC1bS3lg1BeURmNcf2E/ajoeeGs3buaNL3+jU/N6HLJPch6dUkomzC4kt2YN2jbYOd7kSzasZ0s0SsucXRfoWr91C0e+9gori4t58fgTOKhJ022uUwjBhR3K36jY0VK4YS0AizaurVT56vocpeSdd97hjjvuYL/99uOss87i1FNPpW7dHbu2+p91MP3POjgu/cQrjqJWTk0atapHfqPcKm93y6atPDH8FaIlUa4YeQ6ZDlf2+lUbePexcbTr2Yr9j0luw0hKya9fTCOnoDYt9tn2dVcZWbFoFVu3lNC4ddVRLFW1bFy3iaEH38Haleu5883L6Xpo+22uUwjBCUP7VoF2VStL59vxJZYtKD9+UpjsyTaqUiD6a6+9xrvvvrt9jhyLwPuw33HqV7/E8wbXPbKFl8UVGSzueejpWIELJAvNCzIiPI4DHbwJcvPqDUj/ex270EErHyAuvWpc2EP1LTgmEpsXWW9W+vMIA5uOxum/ymsZ3gZBaEA9/Lr46rf8jv4+ZYkvIwNpvn4Hx00fTy2vB/J47MI+73P9ZUiXt1jnLlZpNo2L8vIG03A40B1PdIEgYqhxtSeDhe0pGtN3U1z9tHmkxs55H0ZzoN9Kw/B/VtcNYXOie9cSLYQyxI2iWjXg8e4mVW6jguu7rGtBu+KcktE3h0Lr0Ne/du/9/OrCRX6F1MBcAzef+m+3Tbx91DcdNZ18a143RCGLuswZGbRrYd0WIA3hxTEQIGJaMQOkKRLaqER7InGe6EGd9Jfmja7srG3/pT+PY1uEAe5RIscoCSHd2Au27vrIeMZUOGs6YlqYii5G2lRR0umcv0/eB9PQvGolSGkSiUSdDUDTCSxqc7HHcZMFuXbUWOu2Xtlb/fsDNY4CQsba74muMu+1URWRa6+9ltNPP52PP/6Y6dOnM3DgQJo3b+5eHzduHD177tgf+/8+vQXpNbzTOsKw6dAqK7//WJOTOnbQ5rSkebstXPP4IurWjyZ9surY81Yyc0oN1q1OfNy9ZnaUHoetszeYQr5b98pe2WujypfDDz+cUaNGsWLFCoYMGcKAAQO2m6PUtkhqSoSTDumy3eqfMHU+n3xvB6XvtU8zjjmsEwDPfDiBt775HUMIvnx4KNmZXiDK2UuKGPvDHwzYry1dWsRTxXwwZQY3jfkcQwg+vv5cGufWLlMHKSXzV62hfnYtMlK2PVrzvLWrGfDmS5RaFq8dezIHNd45IFl5smT9BpZttL14f136T5WA6Luq3N3zKN6a9ztHNGhduQqqoY3SZdq0aUyfPp3XX3+dRx55hBEjRtC3b1/OOussjj/+eGrU2I4cc+VIaloKx1x4+Harf/L4P/hy9E8AdD+ikwvkv3zb//jgqc8wDMH/lj/vBrMEmP9HIeNGfUWfUw+gQ+82cXWOf+VbHjzvSQzT4KVZj5cbyFNKyaJZ/5DfJK9yVB8BWTxnGUP3v4VoaYx73ruabn3iN1B3BVmxaDWrlq4FYMYv86oERN9V5cqRQ/js1R/odWQlv2/3YBtVqQOv2dnZtGiRPKdSRUVS9lgrL0aXyxvwuaZb/v+qPlXOMvx1uKCyAp4sEFGJWSIxohJRKhFRaYM8Fp4XtNTqT9CHuJcR+KzKal7v0tBO5AfqVG+EtPUxSiCySZKy0SKl2MLcbGFu9XQ2nP9ge0JaLhWBgwVFQZSAKLVfRgkYpTag5SoX817CGR8seyxcb3WVLwqUOv+jTv1Rrbx6RZ02VLrl/C/16hRSy6OAQQW6uQOvXCClB/pIh7fc9Vi1XU+FsEDax80Vu4dNj2DnN4iRZpYiJcScwTeE5b5SjBimEcMUMQzDBsPsa7Z/r8DJa9hcxfrLMOx0objXdc9TYdmBTQ0LgceHHnO4sdUrKZHaqxpKVdkod43q2KS6pl/XCyn8UgGWlmM/nHXg2hB97YBvflvqZYIVcf4HbYdGyeRyrVvecnA9ri1bByyplgJGTFtbmi6+PiWywVItO+l4Xmsvd2Cw24uCsVVibpJEii0imyyMzRaGZqNEVLoxDSzD7q8P3I85NqnU+y+UjVJjqNkS234HbE/wVI2yN04eI6qNg6XKCM+mxUBGBTIGMmogYwJp2a9oiUG0xCDm8JtLpGtjLAusGK4tEliYwnI27mybZJoxUiJRUiJRIqZtK8CyQXIJ0ahBSalJadTEkmCaUUpjgtKYiZTSsx3CQhiWS2flGlHfjPWuC8NCmE5eQyIiEiPFwohY9saAqkfVqyaTBBkTWDF/3xRPeoWlmtqoE088kXHjxrHPPvswfPhwxowZ47teo0YNLrvssh2q09bNJutWpbgvaW0rF4pgw5oU1q9Wr1QOP3Ed+Q2SB9AB3ns+v0wAHeCgo9fR/bBiTHMvgL5XEkmSxqYa2qjPP/+c6dOn07ZtWy699FLq16/PlVdeCbBLgunbSzq1bkBBXi1ya2fStX0jN71ZQQ4AdWtnkhEIXHf7K5/z5tdTuf658KDQJVH7tI+Ukmis/C/M5374hYFPvszgZ18jZiX7BRsvqzdvptSp55+N67e5vu0l7fLyuOGggzmj8z6c3WXfna0OUkpG/vYjV3zzIcs3lX/SaWssyut//8rE5TZlkyUlvxctZWPp1ri8DTOzGd75EPbJraTXbTW0UUHp2LEj99xzD/PmzePrr7+mefPmXHXVVdSrl3x8gt1J2vdsSX7jXHIKsul8oHdqqHFbey7VaZBDeqYf2H74omd4/8lPuev0kaF1ljq0M9KyiJZGQ/Po8uYDH3DhPtdy6X43EquATStP1hVtIOrQcxUtWb3N9W0vad6xIRfcegIDzz2E4y44bGerg5SS1x74kPsu/q8L7pclJVtK+fjl75n202zA5vafNXUhmxyaNF3yG+Uy5MZBlQ9sugNs1Jo1axgyZAjZ2dlkZ2czZMgQ1q5dmzB/aWkp119/PZ07dyYzM5MGDRpw9tln888//yTVbqU80W+77TZuv/12XnjhBTIyko/yGyrBZ7NQ90UPJ/XnFW4+x0HQ7/EcVnXQgS7gMYlUlC7C5Rp28wY9GcPaUR6TzqRJ6OUp8YJzunlEeF69jKWwYc33UYJQ3puG8OupcTK7VAqKwiXgteUbY6nVjdYflU8BhSQWiVZ/4N4IPHBSoAGPTubQ+63aVRQyjreoMB0FFb+5wPMIdz0n0XjHpQOEOzQLhu2ZHlUc6kAMw6FTEEgMbLjcVtLDDYUDjBP38kZLOPn83VCe504tjs6qrgSLoAKyJx+fqYhUqY0Kru+ybkvQrVfgrT3tFWqnNDDdriOkKddW2W9sL3Th2AT/yZR4z2vhrbPgdenvZiIaF5+3fFi/tQuejdLqdmyUZQqNjxx/4wInHgXxp2QCNgPHduo2Stcxrp+aujJoQ1wvbeHzRhem3156+VRDAmFocQt8ykk3xkHEjNmnXIRnN9TLcBaqBBucd2MvaPbAqcsUUOpw4ShqKuWN7hpQnfxeNaXZQGUb4+6x8x1n/8724jx4Aa5VYZnAxlVcqrON6tu3L337hh/bvPXWW5k6deqOVaiKJSMzxt1vzKNl503295u014BLl5Rkfbe/PJ/Px+Tw5E2NKN3qAfyRFItbX1jAPgds8OqHuO/ZvbJXbEluc6i62qjGjRvzf//3f/zf//0f48eP54UXXiASiTBo0CCXUqZbt247W83tKnXr1OS9Jy6OSz/t8K706tCUutmZpKb4f0K3b5LPjIXLads4nE7ixJ6dqZWRRn5WTZrnl0+nMrdoFQBL1q6nNGZViEu8LOlerwGPHjGQ9SVbOKGt5+H50+JChn36IfsW1GPU0YPLbed/M//k4zl/c8V++9OtXtUEZ9VFCMHF3fcrP+MOktlrVzFy6o8ANKqVzXXdDykz/7PTJ/LotO8xhOCnwZfxwozJPDt9Ei2z6/DFoAurdDOqutqoRJKZmUlGRgapqals2LBnU7vl1s/hlekPxaUf/6+j6NZ3H3Ib5JCa5nc+aNWtOX9PmUfLBPzoR114BDVrZ5LbIIfGbRuWq0PhzCUALF+wkmhJFDNBgM2KSoderbj2uYsoXreJI047wE2f+sMs7hn6Am33bcptLw8tl7P88zd+5Luxv3DmdcfSfr+q58sXQnDSv/pXeb2VlYWzlvLaAx8CdhDU824eXGb+/z01ntce/BjDELwy5S7eG/Utbz/zFY1a5vPc1//e7WzUGWecweLFi/n0008BuPjiixkyZAgffvhhaP5Nmzbx66+/csstt9ClSxfWrFnDVVddxXHHHcfkyZMr3G6lQPSTTz6Z0aNHk5+fT7NmzUgJHDMrj9fPlcDv7oTAtwxJU5cCiE7cZ/yffXn0+h1POr15w/EkFKXSDuDnAAnKm9wFwYK66xPFAnOrlyz1oIKKH1gB6Vo/XTxNa0DlRYAVERhIx1PS9koHkDFbV51v3OZNlg7nsAZaKYBL41F3PcBVkD/p/XfzxyRG1OtPLFXgxsUTGkjv4S22nvoYafHKXK54A4jgeuOKmONQqWFBaswd6mEH2LHHUsbApWTQOdQtwDKwDIlpWpgmSKdDlhRELUNBkhjCwrIgimlvpEhhg1TgAO02UCkthxcdBxFz55R0PExdfM1Ow+ajtjRiZjvQoNSmjPTNHQ+HtcsnJdXcO6HKbFQYxRDe5yBa49mBgJEJ2gURcmtCbJxbn7NhIywwlId31K7BUlRGavrodC2OLu46cf67YLO+tn36awr4p7dfTbdO6Q6HSwcescFoIW0bquI9SCkdb3pPL922eYnCPZXi2kjnuUlEtSFzjav3MmJeHmmClerZJde+KPsTBVMKYpZ07Y8wtO7FBMISng1NkQi1aScBKbCiJlbcHbWNgCXsNR6zDEpjECFm252oIGoJLGkQjcWXc0bHtkFR+6ZEY4LUFOGcoDEcG+WNjxQWCMOzgZ4Rcr7jhG2JDLclbzKo+4dEGMIbT20+eBsHdr/dHquTYMlINbdRQVm3bh2vv/46o0aNYurUqcRiyQXL25WkffeNdNxvU5XVJwR8/EqeC6Crk1xN226m5xF79g/lvVKVkqSnXDW0Ueeffz6PPfYYtWrZPOP9+vWjX79+rFmzhtdee40XXniB+++/f7e2T9sqzeuFA+D/PuMIhvTrQcO8rNDrhiE4skvZPPPzVq4mLRKhYU4W1/Q9mIJatejVvDHpKcn/XH/ou+/5eu58but3OPs1aoQQgsFtO8Tl+3D2LNZu3cI3hQtYXryRBrXC9Vdy0zdfUGLFKIlFeeP4U5LWa3eTxrWyaZldh0Ub1nFQ/abl5s9Osyl+0s0IaWaERRvXAbC0eAOWlJhVuctbDW1UUObPn88bb7zB66+/zt9//80hhxzCbbfdxsknn7yzVdtp0qRdOAB+5ZMXcvKIY6nXPDwQsmEYHHrKAaHXlCz6eymp6SkUNMnjwntPJ69hHboc1oG0SgDoLz44jklfzeCy20+gU88WCCE44tTecfm+++A3NqzZxOSvZ7J62TrqNswps97Hh79KtCRKaUmU+9+/Jmm9djep1ySXxq3rsaywiK6HlE8tU6u2TXOUmp5CaloKyxbZG7ZFS9diWRLT3H1s1MyZM/n000+ZOHGiG2j9v//9L71792bWrFmhsV2ys7MZP368L+2JJ56gZ8+eFBYW0qRJkwq1XSkQ/dxzz2XKlCmcddZZVR9YNKyqRNXrJNQQB6AHpUw6Hh0bkDZ4G3MBYeGW1RwEVTH/Gz3gJXgUMBpIHQdM4U9XKLGGbXiigVtSAcfSxXJsXU3hd7jxIf3SoXsQ/jodIFoH1uPa9123B8nSONe9Tgd01hePxB84VP1RALzCYqwwwFL7n+he620FcUyhpozdWUWdYu87COVfTswy3dsYswQxyyZrcW+xQ2OhAoWCArwUVYvKhwsAeucFPMTPyyu98XN1DEiyW3g6QFoNpapsVCiNlwaglze8+rLwA9vBTIG6E1XmrFMXXFY2Sivqp8UOrHNA6CT9GnWSD3ANaVqoKLwBfTzwXWqK2ItZSLAcGhkL235aEcdGuTtNeOWULbMgzm1Vt4/B4MaaTu4JHUsbC3UjdFBY28hwhySRvRXS22h0FpaUltZ0iEES+Na4shGWY/SsMg0ZHkuO8goXXrplCZfiybJsL3RLDbBDZZVQlF3SPwsFoAfGIe5LSngXhT9vsoFFq7uNUvLVV1/xwgsv8O6779K0aVNOPPFEnn/++Z2tVqUlvUaMYXf9U2Ve4d9/lM09lzbBcuiSLrt7Mceeu8q9vtf7fK9UXJL05K2GNurll1/mvvvuc0F0JTk5OVx++eVcfvnlFXdC2M1la2mUX2ctpmPzemRp3OeJRAhBk/zaFap7w+atfDRlJt1aNHSDjP40ZyEXvvguKabB+1ecTbO8HIYd2otz3nyHGz/9nOdPHkzb/LwK1V9cUsIzP/8CwCu/TmW/Ro0S5j13n67MXrOKbgX1qV/Tvu9bo1Hmr15Dm7p5GAHjemTL1nw0ZxZHtqwkj3cSErUsHpj4HetLtvLv3oeRlbbtvMvJSkYkhfGDLyBqWaSaHo/sj0sXcPevX3J00/Zc1ukALCn5YM5MGqbVZkz/s2iYmUXttAxu69WXdjl1OahBs20+TRAn1dBG6dK7d28mTZpE586dOe+88zjjjDNo2LB8D+o9RUq2lPD7tzNo17MVtXJqlptfCEHDVhWjuSlet4kvx0yg0wFtaNGpMQC/fjWdfw9+mEiKyTMT76RRq3qcedNgbjjmfh697AXuevdqmjt5y5PNxVt56+mvAPjglR/o1DMxBetx5x9C4eyltOvWnLwGtQEoKYmyeEERzVrlYwTW1UHHdee7dydx4DHb/8RULBrjxXs/pHj9Zi685Xgys6qIoSMJSa+RxrM/3kYsapGi0Yz99t1fPH/bOxx8XDdOu+ooLMvim/emkN84lwfHDie/UR1q5WRy6R0n0bxdQ7oe0rZcL/+kZTvbqAkTJpCdne0C6AD7778/2dnZ/PTTTxUOkL5u3TqEENSuXbvCbVcKRP/444/57LPPOOiggypTPFR0sMknZfww8uE5YViElhYHyKr32g8wAW7gTGkIrAhI5+V6QysPvpgHqBsKdHYAc917XNVvOd+7IgCy+9RUoJSDJPs8wbV6lV5EHDzJEG69lonrFe7is857RWlrRG0u21iKU4/Ttss9HHPwMBOXQ90Fp2I2V3xki7R5giMSKxWi6YJYGlgpeCCVtmmgdHdBcx3EUc8kGq4mlWetjMcbpfII1VE0F2BTHfavVuEAWi4NAQaW9KhULGmxNRoh5lK32DzploSYNBBITMcL0zCEl8eZREIoWhhbHxcACyCmijrGLmP3yHABPenLa/fd9lZPOsabDjhWQ6kyGxUEvN10DUBPcG+CpyeCdenYbsK2wb2HAtsL3XA2sYRw1nsE+6SMWldBoN7bt/HRMSmboZlB15Pcp69a+2h16CC2Y7PcL0mfXkCKYa9ZHBA9RThe6v6+qvojpXYfYpZjT5TXuAQc/nKF10unHdceODbKcPjTAWQpxNIglurkI7xdwxJYhvSAfJfSxQHQHf5w4VBBGY7tVPzw8YtUW3yavbDHWH2hhIsNntt2Rk+LWSZEVSeUR7pDv6Jv6hk4gSGFTw3VprScex3Yy4ibM1pfDAP3aJBLf2+pQZTJg5jV2EYtXryYl156iRdeeIHi4mJOOeUUSktLeeedd+jQId5TcHeSRi0307hVSVz62qIIWzbZJyHq1o9imLBicQqWWmYh80cI+OrdbKyYmvOSQwat2guY75VKyl5P9PJEVmA3dE+nclFy10uf88nPf9GqYR5v3n52ldb9wHvf8N4vM8hMS+X7u4aSYposW2cH0yyNWawu3kSzvBz+WrGS35YsBeCL2XMrDKJnpqZycudOfDNvPid1Kjs4X9vcPN4+4TRf2jlj3mHy4n84s2sXbu9/uO/a4/2P5tG+R1U9IBwiE5YU8tzv9vH6Dnn5nN2p63ZvM0wMIXwAOsB/Z/zMzDUr+GvNCoZ22J8P5/7FVV+NA2Ds8WfSMDMbgPyMmlzR5cDto1g1tFG69OnTh+eff56OHXfNAJTbWx656Fm+fOMHmndqzHO/x1O7bIs8c+Noxr/2Axm10vnfgieIpEQo+sfmKY+WxlhXtIFGreox749CZv48B4AJH/9aYRA9IzONAaf05JevZ9LvpLLpm5q1a8BDY4f70m4c+jJ//lbIsafsx79uPMZ37Yb/XsS1z1xQ9YBwiPz+02zeedbeDGjRsSHHnls23dP2EsMwMFL9/X3n6fHMm76Y+TMWc/LlA/j2/Sk8eMWrADz6wQjyG9mnqurkZ3HGVQO2j2IBG7V+vT8eR1paGmnbsDm6bNky8vPjT1bk5+ezbNmyCtWxZcsWbrjhBs444wyysso+iaVLpUD0xo0bJ9VIIomz+WHebxquGJ9fQ0ErUn+gPv3GSu16DDxKEvCoUQLlpAK23eB8Mi6AncAG5H0KSX99Eg8UElJ6gLkLpEuXRsUDfRwQSvPYDnrNi2B74GEqManRVNjAjohJN/AnBsSE8KhrsIEZIfE4xgFp2l6ltpoOkOQDbfCPCXjguoULoDsYkA1iGX5w0aMnDtxrHcXT76W2USFcmhlv7GxPTlshlybCyW8I2/tcCOFWKRyQ3MXqHbTSSvBjw4uvGDJpNEviHqQQToBGF7nyUE89aOleqbhUlY0KlYoA6MHrQVAb/5JIWIn2UuC1S1WEY6P0B2h9TqrdM3cNyrhGhV48yOeuKSvx6+B6pbsgu3TtlE1cZDgqCJ99tbnOhQ9vDu5QS0d1YjhBLx09lI1S9sSAmCHcwKpgp7l0MqaXZunfE/q4anUF7aSb5g6DBaYFhoUwLS04sN2Iz+PdAad1G6U21izLoWAJ/cJz8sQUMO5WZ/+xbNOtbLYzyIHy2o1JNFHjp4J7IX5KB3ZzfF/KcWj7XilHBg4cyA8//MAxxxzDE088wZFHHolpmjzzzDM7W7VtlrQMi1tfWAj4v1t//CSLOy5oBgjOvnYpZw5fwd1Dm/DdBzmBGsLmkjcjr3poMbXLpxLeK3slgezdfamIVKcAomXJumI7yNr6TfHB1pKRtcWbOe+Z/2EaBi8OPZlaGWnUqmF7tmempbie3sft254tpaXUSk+jaxOba7xTvQIGd2rPP+s3cHyn8o/p63LvkRXn7P1xzkK+/mseQ3p3pWlubeatXgPAnKJVofl3BIAO0Da3LnVrZFJcUkL3en4P44Xr1zDi209onpXDfQcPILKDdFJySqsu/LF6GUc3bYdpGGSl2kCQIQSZKWUHwt4rVSP33HMPACUlJcyfP5+WLVsSiVQK2totZf0ae+Ntw9ribapn3aoNXNvvLkzT4KEvbyEzqwY1s23Kjxo10xHO2jritAPYsrmEmtk16NCrFQBtujWn75kHsaKwiCNOT26z6Kr7Kk4HNWXCHCZ+O4vjz9ifhk1yWbTAtk0L560Mzb8jAHSwAf6c/Cw2b9xCh/383vT/LCji4atfp2Gzulx5/6mYETNBLdtHBpxxIHN+L+Tg47pjmoZ7Tw1DkJG540/1gI3P6HLrrbdy2223xeVTse3Kkl9+sU9bhT2zSCkr9CxTWlrKaaedhmVZPPXUU+Xm16VSlubhhx/muuuu45lnnqFZs2aVqQLwP84m/Cke7L8OQCUanGDFYf/dSvAALgdMUZy5CBu2NWIB5Rww1Yxq5SRxFCgKDPIVVcC61MBpJ7NQYLkKyCcBS2LEwCyRGKV24ViKIJYKRBwwT+msgH8NODOkP93Fiyy83QKcdqK43qnRVIHMcDxBFdgUtfPHIgKZKl2PUJwxEiV2vVbEwdJdgM3rvyFBljr5UjzPeRn5f/bOO16K6nzj3zMzu7dQLr33LqBSFCli7yKKvQRrrEE0RqPGxBpj2s8SjYldY4kae1dU7CgKKlKlSe+d23Z3zvn9cc6ZndndW7mAyn35LLs7c9qcmXln7/M+53kN6JWhQY0dZ4C6qfT5EuHPpBmetphjGhBWOkXDewKtTa4Mm9d1JEI4+MpB+vachLTNhQpys2rWnO4w/XtNs8nDN2smvi5Mfccm9gu2mXSljm7HxFC0/rqw7SqkW8+gqonVlY/KyJ4IVIxLBvszwfLKfHguX2U7CYPn6YiOHo4n0kCxTSxqLjonVDac37SybtL3nEZXNSFbhPNIpnMlGHkWC6hr8Fz7J0cjvPgxhR8X4Gr5FgzQLe3qFrPSRPh6JU/Ed5HGsJFAMg3uByx0AalCgSzUeudgfFfKJNqMEx2jOUZHgTLa7NIxfYfActdPs7u1/1ZID/AkTp7C9SSOK3VuBcccq4SUr8NcKuynsKterC8y4TDlGkBdM83Dzz4NoAukDEUvFSEnGvYx6Zs7IsUSjtiIcB2RcfLDDlqYdlRaT90GBGyZwMfaZ5jQQUprNf29uov6qHfeeYfx48dz8cUX07Pn9l8Ov6OssJHPPodupFV7nYwg7Da/+6KQ8DX2+bsN+fqTXEuPK//B6whJeRnkVa2sUG/1lsNq6Gx2UR/Vq1evKv/4XL9+/Q4azc6zG889grcnz2ZY/y7b1M4/3vqUuSs14HPfu19w5TH78etR+7Jvny70atciAKQ91+H0oQMidWOuy19HHbFN/VdlSinGPfkKZakUSzZs5L6xY7j/hGN55/t5nLLn7tu176qsVWEDJo29EKlUFhP8f9/P4KtVy/hq1TLO6jeQ3VtUT6YibN+uX8acTas5ttPu5Lk1g0SO6tyHozr3Cb4f1Lk7L405g0IvRq9m1VsxsM22i/ooa6WlpYwbN47HHnsMgO+//55u3boxfvx42rVrxzXXXLOTR7h97aqHL2Hi05+y9+EDtqmdR69/lh+mLwHgyVtf5IK/nMF5N5/EXofsTrfdOwaAtOu5jD7/4EhdL+Zx1f3ZSZjr0pRS3Pjr/5IoT7Fi2Qb+ePcvuPmu0/n0/Vkcefzg7dp3VdasVWMen3wTUqqIlArAu89NZuaXC5n55UKOOWskPfeoHks/bHOmLGDBjKUcfPIw4vk1C86NPGYQI49JrxwbcnA/7nz1N+QXxuncu22Nx1Iry/BRS5YsiZAcK2Khjxs3jlNPPTXnPmtdunRh2rRprFq1KmvfmjVraN26daX1k8kkJ598MgsXLuT999+vMfmyViD6L37xC0pKSujevTuFhYVZSfuq++Mqp9/P8but2s+GMMCeq5FMpN58luEkazn2BwzOMFMxPNbKHmDhMpnkwDCxLwM0EwE4hWGIy0DjV6Q0KBOAXxD5izUgBzqazRgkRM0AqmyiQguSWazG4jcy89hEGnxSHkHSTqEMiC6VTmyaEuCZZH4ZKwXCxx457PAXSQSQURYwV+HtKjqP4dUC9vgMc16FXqg0Hm/xUYszidA2QtsCuqpKy7cQ+mTnMnoaVI53FakbvCzAr+we26YF4owOTw1sV8/YXlc+Ciq4tSv/+zK7biawXlHhyEUVLWivMRnc8+ZdpstHzrfVScjVocgcW3plS8RNhi5wZW7UMHge9GlXyqSsdrhJJGraRGhfkHlojkgH3CJa7uH+zaqR8LikE1r0okLH46SnMZjyzFwPYSA4PCdOxoaI/9ca6NbrWEZ52m/oQJwyfkoEN196ggLvYX2RnYfQpEhJoP0cOfeh48/0NWl5mFwnzlrW0UaeA+FnW05yuZ3jkB8NHYH5XO+jqmMff/wxDz/8MHvttRd9+vRh7NixnHLKKTt7WNtoirvfmEOH7smsPZ++2ZgX70//kH3sr+1q3UujZrIeQK+3HWa7qo+66aabKCoq2tnDqHMrK0+SF/eqzbRv1riQ0w7ZdumaA/p259nPv9Of+2mmYsx1Gd678za3XV2bsWo1t7w/kRGdO3Hp8GjiPiEEvdu04NulK+nfTvvqAe3aMqDdDgJZqrCKGOZHdOnJc3O/o3OjpvRsUjFoLZViwZa1dGnYPNLWxkQpp098lKSS3PbtO/Rt2oaH9j2dfLf2LPIBrXbsnO2qPsraNddcw7fffssHH3zAEUekg02HHHIIN9xww08ORC8rKSevIF5tH9W0VRHHjz9qm/sdNmoQrz/wHggYerT2eV7MY/DB/be57era3Lkr+efdExg0uAtnnjUysk8IQffebZg1bSm9+urfkH1270Cf3SvO9bAjzfVccnHMhx+xBxP+9wVtO7ekc6+Kg3xSSpbOX037ri0jbPUtG7bymyP/Qirp88B1z9B994788fkrapXE1VrvgTvuuQPZPqpx48bVAqtbtGhBixZVByOHDRvGpk2bmDx5MkOGDAHgiy++YNOmTQwfXnGSXAugz507l4kTJ9K8efPqHVDIagWi33nnnbWplm2WdZzLMv1H6LuCEPqZAbxkvtuvIgMXMKCADCfh9KPohAbVQ0BR5oMqF0AVBqwFGiUSpJmeFrAOkwKVBqAdq6kuCWRd3KTCSYX2CVCuYVAqA1tY6RFXA8fK1SA7frpPzfYWgUSNSBnGamj8wrYRE2k949D8Wfao1gcW+EqPzysBN0mAoUgPUnm6nVzn0Y41OP8h9rkwcxeeX2Hnz+DoyjFjCepondW0+LvSOsqmET0FToCcpZd46JOq0Jrn6cmQOIZ97gRs8LTuMEIEYHsY0AoD6Ll+87mGhe6EpsVqqetaFmbTh+Y64DpGM33HrlL8yVud+SjIDZhX9fvG+ptcvqmiNnIA6CJUTugLMp0nIKJLriJ658E9HQJHs8ZG2kel5VBEBEgPV3VMsk7H+iczRsdXiJQGzR0FUojgsNMJmY3siivSq04URrKFwEcGSZElus0AbU+/K2F01eOk/QAZn+0UKFApcBNaiSXAfD0TY7D+0fYfIoBr4B9wBbihVSQ26ICyiwD0u9Vut3kXzMtxFa6TVh5TSudjsEx0O4B0wueMm936lrR+S3qH/WSBdET6WRcMtmIAXX8MtWsfEBnPNOFkVhTpfdYX7thVij9ZGzZsGMOGDeOuu+7i6aef5uGHH+aKK65ASsmECRPo2LFjVlK/H7s1a5WkUdMUyxbG+WJCY5IJgTD6+TMmF9ZZP/O/y2ePYVto2HgXRQzqrd52gJ166qk5NUZ/yvbM+1/z96cmMnz3rtx12Zjt2tfzk77j4xkLufbEA2ndpBH77daVSbdcomU+8moPfmyLPfzVFL5auoyvli5j7MABNCmIJr97/Jcns2LTFspkioTvZ7G+a2tKKfMbqXqgYE2sf4vWfH7axcH3h76dwtSVy7hq6Ei6FDUNtl/71Su8uGgaB7ftxb9GpAPWnnCIuR7JVILiVIIv1y5mzqbV7Nls+yWmvGv6hzw+7yuu3P1ATu2+a+QW2J720ksv8cwzzzB06NAI8Ny3b1/mz5+/E0dWc3vl/vf412+fZK9Dd+eW//16u/b1xkPvM/mtb/jVnWfTsn0zhhw5kBfWPojjOBQ23DlMheeencx305bw3bQlHDdmLxpnJOj8+4PnsnrlRhJlSZKJVBbru7amlJbUzUxOWhfWo38HHv/ipuD7iw99yKypCzn7qqNp16VlsP2O3zzFu/+bzNBD+3PDI2lWv+O6xPI8Ukmfks2lfPfp9/wwcym9B0dlY+rSHr/tZV554H3Ouf54jjp7/+3WT13ZbrvtxhFHHMH555/PfffdB8AFF1zAqFGjIklF+/Tpw2233caYMWNIpVKceOKJTJ06lddeew3f9wP99GbNmhGPV+85Xasr8KyzzqpNtRpZdf9EykWYq1F7Mo2CZsouhEHuLADdbs/8XRCmDIaBNLu7gt8RkTxzNmojQUmFMrrn0uh7B+V8jQIpRyENEKalaIQGiiHNAg2B+xZUD8vP2CRzYQa6SJIN3qrQy4BSvgFZwuAdPoiE0prIYYmZMOhsgHxl2lIhMM0CWkGTmUBkWMvYFrIMdgOmKTOPSmrWahr/EoFsgbCAnbAglwqaU2gGgxDSHEL45JpjUOEa0YkSBkVUpOVkHCGNzrnIeflYMF+YNuzlWY1cT5ndR+Z7V7Pt6aO2ZUprVFekr+FIXXMv2zhQGFrNyUZRub9mXR6mvSwmsikY1AsFFoVSKCmDAJrvhnyZvSeFMrrlIuSH9MHJ4KZM+6iwD7Dtho8xaF9qH6KsHwgXsitTVPoelRk+REm0tEs4R0O4GR8tYWV8ikxZtFjXcRx7D+t723W0TowyBxFos5ttvjRAtzlxOg6s9Gohs0+/px8e9hzbgIANNEaOIzhXGeC6CJ20cKQ0fGIzGtM61hkXVaSKDZ5EPZcy/2pku7iPKiws5Nxzz+Xcc89lzpw5PPTQQ/z5z3/mmmuu4dBDD+WVV17Z2UOstv31ufnkF8BZQ3tRunX7RVMGjCiuB9DrbcfZLuijfq566J99txAFfD5jEb6U203Te83mYm5+5l0AlqzbxPNXjwWgUX7d6s9O/GEBL86eyTl7DmJg26pX9xzVuxfvzptP5yZNOOSBhzlpj925+oB0AryY6/LYd9/wyDdT6dykiNdPH0thbNsA/7JUihNeeIoFG9fzyNEnMLR9zaUMqmtrSoq55dOJADTOy+e2A9J68HM2rY68W2sYy+O1Qy/ky7WLeGbBVDo0aErfJtls0Smrl/H6wjmc3ntPejSpmq24MVFKmZ+kTUE22/KxuV+yOVnGk/On1A2Ivgv6qLCtWbMmZ8CvuLj4J+fLvnxnGkrB1Pdn4Ptyu2l6r1+5gTsvfhCA5fNXcf/UvwDQsHHdER4AJr8zjfee/ozjLj6U3fbuXmX5/Q/cjc8+/Z527Zpy9sn/5IhRA7lgXFo6xou5vPrEJF76z6e07diMe18aT37htvnVRFmSK8bcydL5q7j5sYvYY1iPbWqvMtuwZgv33/ISAA0aF3DZbemA3sJZy/X77OWROg0aF/CvT29i+mff88bDH9CmS0u679Epq+2Zk+fz8ctfcdRZ+9GxV9WrYbZsKKa8LEGLtk2z9r1833ts3VTC6w9/UDcg+g7wUU8++STjx4/nsMO03x89ejT33HNPpMycOXPYtGkTAEuXLg3+xhowYECk3MSJEznggAOq1W+twzjz58/nkUceYf78+dx11120atWKt956i44dO1Y/S3IIQKlwf4apkKC0gpCcSY56FmTI3K4CLMSAxwboDetpKwLAILwMIdxNzushBEYrq1vsUPlxku7DsjyF1AxPR5qhORrltW0Ju01ozWFlJVYM49PxRVRf3DDUIwn00lOpB2y1il29zTUAdADcm5vASrhgWPOOxVxCqwNw0LrNFQDoEQBZGhBehs6FQY406z1UX9nmRBq0D4HZSijwlD4Gc4x6WCLNuLRU3tBwA5DbsE3ts8t1wDPbZEBT1YlHpUHm3RDz1B6fnVclLKtc4TkyxDpXaf12M4rgMsQC+kaTX6jKdbVz2K6+xA/qyEdB7nu3ivMRgMG5fFxF7WWcqyB/QritcAf2+g37qWqOX4X9XiW+0/YlzHgcpULXlgoSfTpgVsI4mrntpP2P8oRmjlsWutknIjegedlEwD6BP4ngvA76qRUj8P0RFRbrl+xn46+ccH372TVtWZ8afl4YBrpwQDn6gaHZ2A4KmfZBxpe4jtIJiR1Qvu5ERPyCQCrH1JEagFcWOHeMHIt17CINoAfnwvgIczLCfxukV8SkL5IAfA8mIu0Psy3tsLJSAGTVEVnlEeC4IZmhalq9j0pb7969+etf/8ptt93Gq6++ysMPP7yzh1Qje+hPbcgvlJSX1vBBVQ0rbORz3HlraNMxQfvu25bgr97qrSa2K/ooVWPGxk/DLhmzL/nxGPsP6L5dk2IWxL3gd1uTBtuP0XnVO2+xvqyUHzZu5JVTf1Fl+YN7dOfby8ZxylNPs7G8nP9M/ToCogPMWqsT9P2wcSN/nvIhNw89dJvGuGTzRmas1cD1xMULagWil6dSxF23SkC0aX4Be7Zqw/Q1qxjZsXNk31/3PpbnfviGYzpmS1N0aNCEDg2aMKbznhW2feF7L7GmtJhv16zg+VFnVDqOlaWbOfLtf1GSSvLwyNMZ0TrKGP3N7gfy3/lTGNd3ZAUt1Mx2RR8Vtr333pvXX3+dSy+9FCC4Th544AGGDRtWWdUfnZ19/QnkFeYx7OiB2zUpZl5hHkJosmVR8+236vHvFz3I5nVbWT5/FXd/eEOV5YcP78mrb1zJ5Rc9ypbNZbz83JcREB1g4ZwVAKxYvI6H//wal9x8wjaNccXidcyfvhSALyfOrBWInkikiMWq9lGNmxbSa89OzJu+lEEje0f2XXnnL3jnmc854Li9suq16dSCNp1acMipFUuT3DL2n2xYvZk5UxZy+1uVSxitXbGB84fdQFlxObc+dxmD9u8b2X/2H8bw+iMfctpVoyptp7q2I3xUs2bNeOKJJyotE/5t06VLlzr5rVMrEP3DDz/kyCOPZMSIEXz00UfceuuttGrVimnTpvHggw/y3HPPVaudmgQmAowgx44K2d3hLyJ7Xxp4UYZOTfDKVTcAaiGSwDOCN9k2nNDnjAPNGq8BdKzGrxPIIhBo/CoMCB4medkdUmmAShCwKoP5UmlQPwJYmfEFTFfzblnhFpmKyEFYAN03AJpNRCrBd9J9Ss8A+qDZ7LZbU1YoM04nnVhUmGOTLqiYbiMAaXxz7OFjkGRfDwKEI1C+AEdpeQVAScMGV+lyAYHdAPaa/KkFVRxUcHP5vj4pMZNIUCkNaEvlBFIOmsWuQXgNrUVwL/NdIQiD6LqkQuRMQho+xb4UASO9RraL/qiCOvRRmb6gpha+F2ta1fadCxy393ToO6Gytk/7noXRi2idTJOhemGAW1opI6nlW4S951Bp/+OmE5IG+tkSlKtXpijLMLc+hwz/pNLHHyDk9rgUmq1tfZQN6Fl/a31UCEDHSF9ZnxOs2DG+1CZTtj5FOHqBkiO1hJNAy65IHISndJZ6TyKUgxJS/xgN9OcljqPvWSWFWWHjaN+u9D1vlzUr43dkKOVBWG/cEtKDgIn113aT9SXBSVbpwujzYgMsOQMx4UmNPMxUNKAQKp7+0SEi26UvaiqJnqODXcuUUkyZMoUffvgBIQRdu3Zl4MCBHHfccRx33HE7e3g1sklvNd1ubZ9z7QpGn71uu7Vfb/VWqe1iPkrK2jjyH7/17tSKv1x8TI3qLFy5nkUrNzByj67VBt4b5ufxv9+O5ct5Szh5xB61GWq1bGTnLrw8Zxb7d+5So3oX7TOE//v4E47vn00kuemAgzjm+f9Q5qQo8GoGD2wsL8UVDo3iaWZoj6bN+dWgffh+/VrO7D+wRu0BvDxrFle9+RaD2rXjqVNOrlQSxnMcXjrhDMp9n/yMsfcqasXv9jysgppVW++mLVhTWkyfZi2rLLuqZAvFqQQA8zevzQLRz+gxmDN61HEixF3MR4Xttttu44gjjmDmzJmkUinuuusuZsyYwaRJk/jwww939vBqZN336MTv/3NJjeosnr2MpXOWs8+owdUG3hs0LuTfU27jmw9mcsxF2xYoq8wGH9yfic9+zuBDapac+LSxI3j4vokcdlR2YOvi349m/Ji7SBQnaqwLvmVjMY7r0qBROrjZqWdrThl3KIu+X8ExZ+1bo/YA3n/la/7vmmfpO7Azf3n8gkolYVzP5c6XLidZnspKENqlTzsuuOH4Gvcf1O/bgQ2rZ9K1X9Ua8WuXb6B0qyakLJ6zIgtEH3XegYw678BajyWn/Ux9VK1A9GuuuYY//vGPXHHFFRHtzgMPPJC77rqr+g1VyIwjgw4XKm8sAF1E9r4qmZWRzyIg/wXtWUxBhiIo4XG4aLalVDmHGQBFluEow/uISqQo260GPATp/hxEWg/cavOGQWSr4esZhmfMgCfhZKFh7fGK5kWFxpg5bhUq7hsA3Wgju77uQ4o0yC2NfrCMEZGLwYLv9rB9Asa1dEKyLma8ljeuLHCTKROcdUMKlKdQrtJMdAcdFTQTKtLFzPY0S9RxjPa4eXmOAbcQOI4i5mo2ekqCUiFhFythg65nr4WA7Bqab9eReKZMOLFg5gVq2avh4xI5ha2rMBV67YK2Y3xU6HPmPNt9uVbKVNRGGOkOBWAqCh6GA3TC3iLhsk6Oipn9VQC+5wTYRWiA5j4KFp9Y5rkn0v0a4N0y0GVMBD7K8UPthvIbhI/P+sJw10LoAJ2t44i07xYYH2ODfyH/LW09J/Ry03MXPl791fgIR9/n2r+ltwUBPpwgsKbzKAikEgHwLsxJUSYxa6AfDoaF7hLoVuU8SQS+SoPbemIcxwLo0bJpJoQIAjDB3AhC2ubhqU6frywmegWRl0g7Rh5LZY67KtuFfdTEiRM577zzWLRoURCYsED6ww8/zH777VdFCz8P23PEFk64YA1fTmzEm082J5VMX1iFDX3O/O0Khhy0eSeOsN52aduFfdSubpuLyzj91icpT6YYd9wIzj1iSLXr9mzXgp7tqk6IVpF9v3otT331LUf17c2QLrlBkdsPO5KbDjiYxnk1kzM4sHs38oTL1S+/zaylq/nrsUcEvxt6Nm/O+2ecx+z1axjZvktQZ/nmLSzfspnB7drlZFtOW7OC4197krjj8tqxZ9GtSTNAP9OuGlp7xvWHCxfiK8WXy5ZRnEjQqIpjFUJkAejVsdWlmzl/0hPEhMv9w39Bs7wGkf2PHnYiizZvpFtRs8j22RtXMXPjSo7u2I88V/e7R7N23DTwKNaUbeXkbjUPHNTYdnEfNXz4cPGXQhgAAQAASURBVD799FP+/ve/0717d9555x0GDRrEpEmT2H33moG3PzXbsmErF+91DYnSBOfeeiqnXTOm2nW79u9E1/7ZsiDVtR/mruK1/37OfkfuwR57d81Z5rf3n8+4v/+CBkU1k4nZZ0RPvDyPv/7pVb6ft4prrjsm8Dude7TmwbevYuHsFRE29+rVm1m9ahP9+nfI6aO+n7aY35zwD2Jxj3+8dgUdumoJICEEZ19de8b1Vx/NQfqK6V/9QGlxIgLQ5zIhRBaAXh1bt2Ij1514B17M5Y/P/ZomLaIrCG55djwrFq6hfY/Wke0LZixl/neL2f+4vYN+ew/qyqV/O4P1qzdx5Ni6WRFTqf2MfVStQPTvvvuOp556Kmt7y5YtWbeu5oyhLDwxl4UB9PC7yr3P1qmUBWqAieCP/xxAmIKIXkBArBQKlUea/Jc5xhAQpUQI9LUAahg7ddIsSf1ZIH2dkE5IkWZrmv3CsjBNfcsOl65FaTIOJ8xutOPKLGPY72SM0wLhKujHJDlNhSbLASUF0tNjkHEdRHAUiGSoXioNwIM5TgO4SwuySVBxDVopDLguQCUNSz2c8DQ0BGWA74DWapLZCHPQ6eNWIcRembMfPfHS7JZA0hco5aBchesoYm4KR2lGqgbcBL7UF0iAWZqkpOHrQYAB13R/rrn2fBTSXGDKUGktMG8nXgNu1Mi2ZfnMvffey9/+9jdWrFhBv379uPPOOxk5cgc42jq0uvZRULkvqdB1VQSuV1TEgsXms8pZKFTUgrKGPR3Gvu1Klpz95/JZEJXRDvs/dB/CEXrViG+CXw4IlyBZcuDHzNgsxmt9lHKUlqWyXYQCATnN7I8w1VOhz8FqE4JVOygDpvvpcVnWunTNShkT9BO+PpZIsELqbTrwJ0yyZwclJUo6SMNCl2GxdQHClQaE1jeeAr0qxh5nsFrFzI8SRg9dEV5WEL7Xg5nKuG7COugqdGEKo10jLJvc+Cgp0xrtIrM9pUJvIgD7IR30iyTsyGEBo74GtqsuQ543bx6jRo1in3324Y477qBPnz4opZg5cyb/+Mc/OOqoo5g2bRrdunWrurGfuN3w0EL8lMP1Z3Ul8yIffc5axvyynoFebzvPdlUfVW86H5I0z8aUv2PZ+de/9i5fL13B2zPnMunKi3KWEUJUCaDPXreGu7/6nIM6d+OEPmnm+YvTZrJ6azGvfDeb3x12AE0LC/hg4UKkUhzUrRvtGqS1vDeVlXHEo49SnExyw0EHcubAbGB41oY1JKUkKSWj73yMf586hn37dKndwYfskn32oSyVYljHThEAvSSZ5JzXXmBNSTEPHT2Grk2aArChrBTQ0i41sU9Wz2fuZi0788XahRzZPir7EnPcLC304lSCkyY+TLmfYt7mNfx2j0MAfV5O617HTPNKrN5Hwe67785jjz22s4exw01JhTK+KZX0qyhdt3bXjS8x65vFfDxhBs98/LucZYQQVQLoC+es4Ol732fvA/pwyJj0fTPhre9Yt24r702YziWXHkJRUSGTJ81DScU+I3rSsl3ToOyWLaWcd+b9lJYmGHfZYRx3fLYkysLZK0glfVJJn7GXPMRtt53K0AG5wf+a2KkXH0SiPMWeQ7tHAPSykgTXX/gIG9Zs4cZ/n037LjqounlDMQCNmzbI2V5FNuX96fwwcxkA0z6ezX5j9o7s92JelhZ66dYyLj/8NhJlSRbNXs4vbzwR0Ofl6HP2r9mBboP9nH1UrUD0Jk2asGLFCrp2jV6AX3/9Ne3b1yCrdURIuqqy+i04B5kMT5FdNv2eo/HMTeE6IRRJhPh1Vv9VeUJr8obrhoHpEMidqaUeBpmCAwpkCSxl0AAgAZOaAGyPBA1EGrhSngikXgKQ2tYROV7hsSsDhvkhsEqltc6zAHRp9NLB6B8DHqi4QMU00O2kCMraeo7RUNfMT6HVExw0ndSyUQ1IbvFupO5DAcJRgQRDGFsKdNNdIKbv1ChTUr8sq1844Lrm3bE66Cr4nD6RQg/NlNOgooPn6glWSpDyRZCUNHyZ5SIB25btPok+eRY6z9RUDypkbquO1TLy98wzz3D55Zdz7733MmLECO677z6OPPJIZs6cSadOtY9a72irOx9Fbt8CabA7Y3skKJjLP+X8btHKjHOdA+wO9ysM8Km7sjeFSPuLXCC6yv4eOY6MYxZgloykOxeOwJHKsNFV+sJ2Qgcg0P5A6DwNER8VHpOT4/oOP3Azz4G91zO3maCf9TuO9VGWdR7T48Ew2a0cVdCMIu03HD1uXBWUj7wEIIXRMseA4w4KvSpFSeOYg0lUOK65982pVtIuJcp9cwc5HcLzIyC8WjDMRBehslY2SiqhE6RCkO8hMs0qfelZ9kYQCAjaT3duwfXs53XmSaqG1dJH/dTtzjvvZOjQobz33nuR7X369GHMmDEccsgh3HHHHdx99907aYQ7zp64ow2/uGIlj30xk//8rQ0TX2qKTDk0LErRZ/BWpIxe7/X28zDfh/tvassX7zamQSOfy/+2lO79y35853oX9VH1Bk0aFvD4NaexYMU6Dh7Us8ry3yxYzvgHXqZF40KeueoXxLzaJ1jeo30bvl66gv5tW1dduBK7/YtPeWfhfN6aP5djevYh7uoxnbHXAL5fvZZhXTvRtLCATxYt4tyXXgTgseOPZ2RIIqY8laI0lQJgfUlpzn6O7daX71au5NlPpsEWxadzfqgTEL1H8+bcO3p01vZvVq3gi+Vax/itBXO5eNAQ5q5fy6jnH0cpePmEX7Bb86qlV6wd1LY3+yzpgue47NuqeprIDgJPOJQDcWf7JdOu0nZBH7V5c/VXpzVunJ3c9edijZs34u7Pb2XRzGXsd+I+VZaf8fk8bjzjHpq1LuKeD/9ALFbrtIj03r0Ds75ZTM++Nfh7Ooc9ftc7THp3Jp+88x37H70nsbge0+gxg1mwYDWDBnehqKiQqV8u4LrfPA3AbXecxl77pBOVJhI+5eVaO3jTxpKc/Rw4ehDfz1jKC+9No7xhjC+++aFOQPRO3Vvx+7uzc1LMmbaE7yYvBODTd6Zz8gUHsGjeKsYffzdSKv7x3Di69qk6Aai1oUcOYM+RffBiLoMPql5ON+EIXM8FksTyas5+rzP7GfuoWt1Bp59+OldffTX/+9//TIJFyaeffsqVV17JmWeeWaO2At3fmvz9LaLnIovJmbmNGvShMt7Nx2AJPmgNcqlBIRXSAg900qUGjCNthD+LdLlg2EKDz0oSMEttss3MehbHiByzMunujK54WOfcJtpTTmiMkYPTdSwz00kY1rglSBopA6sjLKRmoSrSzE4Z0/t8o04g89J4k2W1S5VmuwtfpaUXsMCN0Ix6T/frpMBJELBjbT8yT8+VnfN0vk9lgHiFEmkmZoDIBxOnX5YVbiVULDPUAkiOYZMmfAdfxnCF1kWPC588T/+oTPgu5dJDw+sGeKoCULJwm2v0cpQQVZQGWUPvU9vI3+233855553HL3/5S0ADPm+//Tb/+te/uO2222rW2E60uvJREb+fAwhXhAvkqJxpIrRP5C6SeWtnbazggRTOU6vs90xw397/BnC2QTx7HAHGnlFPWLDVNb7MAekInJTSwT/jK6x8lIKIpJW+gQ1r2hP4QeDQ9GtJFOH5Ma+gLft3igS3xLhQR/sFAUHOCCUImPKBj4qFcjVYBZW4wf399LHb8yJM0A+T7FgIfZ8ilElaLHUS54QDCSeiVe57CuFpFF9LvyidgFQphJGM0l99o8MuoifPTkAAeqvQAKPPEhG5wbU2u3AUruvjeRKFIJVySPluiGFu2wkF7hSogPJPsNGEL02Qr3JnUtX+rPK19FE/dfvggw8q9KVCCC6//HKuvfbaHTyqnWNnXbWC/EJYv8rlvefSTL+DTtjAsMO27sSR1dv2tJlfNuClB/Vy6hMuXE3PPX6cCWN3VR9Vb9p6dWhJrw7ZYOyiVRto1riQRgV5rNq4lY1bS7nr1Y/ZVFLGppIy3v76e0btvVuF7ZanUlz9xjs0LSjg+kMOyJIfuPaw/Tlzn4G0bdwIX0qe/fo7CmNxRu/ep8rkdWEb2akLExbOZ1iHTsRCEaoBHdry8gVjg+8WXAfNug5bq4YNefykE5m7dh0nGR31pPTxhBOMJd/zuGXkoXRKFDFn2RrGjhxU7THWxga1acehXbuzpqSEY3r0AWD+pg2U+/qH5PwN6wIQPSUld33zKeV+iisGjswp99IkXsgj+55dozEUeDFePuQC5m1ew35tKgfei1MJvtuwjIHNOgayL3Vlu6KPatKkSZX3gVKa5OP7O5ahvaOt+55d6L5nl6ztS+euoGmrIhoUFbJ2xQY2ryvmkVueZ8uGYrZsKOajF77i4FOGVthuojzB7Zc8QuNmDbj4r2dkzfeFVx/FcWOH07JNEb4veevZyRQU5nHg6AE18lGD9u3F5+/NZM+hPfBiad/Tt1977n/4l8H3MOAfi0V9VPPmDfnr7aez6Ic1HGF01FNJH9dL+6h4foxxNx5Poz3bM/eHNZx89PZdLbLbwE4MO7gv69duYf+j9ZiWLlxDolxjR0sWrAlAdD/l8+Td75IoT3Lmrw8nngPwbtysIX955coajSG/MI97P/gDi2YvZ+9DspMqh610axlzpiyk7z7diefXTGu+Kvs5+6haefNbb72Vs88+m/bt26OUom/fvvi+z+mnn87vf//76jcUJblV27KSZOZ6hwAxyMInqju8XMxQQBnd7wgbUhBhn4twf4qMcVUwZAsoB9zkNHgfmatQeyoAuoU+myJ9oUZIg3Z8IRA9AMwMw10oDRxZrXOwQJhI6wv7luEZmgPDMA20ij0DflsddJmeE6MWnAb1YyKoL2Mg47odkQSRMqC7GaxwRMBUD+bDUWkWe8yAV+ETELD6CZjojqsZ506IhR4pY+dfEIBjluXpOpJ8L6VBNSVISO3MLQm3KgBdt64CgF4ZtntVtiOY6IlEgilTpnDNNdHMzocddhifffZZDQewc22H+CiVsT0XCJ3TL2X2IaLvKre6dA4MP3p/h2/s8CtyLEK/++YetGUyANbMY8rsQyhlbrNQn4FPNNuMfwySeoZ8lD3cyDGELYobp+VXwtvN/Wz9ToA3y9B+ge7TvMI5ImygMDK3mf7cE6iYSid19hSOJxEO+OUOJB2EkXPRkT/7a0EgTA4E4RgWuhPWMofsZULpebG+KMxAz8yVkH0BmvwOriLmyaCI7+t+0sFCzPfQdNtzGXoY6WePAAO2V+WDdtRqmZ+6LV68uFKtzv79+7No0aIdOKKdZyf16885167gmLPW8dLcb5FSX0Q20AS1uK7q7Udv/YYU8+Kcb9m4LsbNv+zCuCN78IcHfqBV+9R2Pt81pLrvoj6q3iq2lyZN58YnJ9CsUSGPXXEyJ932BGWJFCeO3IOvFywnP+4xYrculbZx07sTeW32HAB6tGjGGQP3jOwXQtChSREAL0+bxY1vvA9A26JGDOlcdeI4a2P7D+CE3v0o8LxKga0hHTrw3CmnooDB7dpl7R/asSNDO3YE4Nl507hm0lsc0K4bDx10QmgFm+CCQ3KzYaVUvDNrLm0aN2JAx+qzLyuyfM/jgaOOi2w7pHN3rhqyL1IpDu+aXjnwwdIF3P3tJAB6NWnJiT0rB5NqYp0aNqVTw6ZVlvvlp08ydd0SDmvXh7uHnlxn/QO7pI+aOHHizh7Cj9refvQDbr/oAZq0aswdH97EJQf8kfKSBEedtS8zPp9HXkFelaDqvVc9xQfPfQFApz7tsxJNCiFo015f+++//DX33PgSAC3aFrHHkOpLEY46fRiHHDeYvIJYpT5q9wGduOu+s1Eo+u3eMWv/gIGdGTCwMwDvPPM5d131XwYf2JebHr0g4qPOPj534EBKxQdfzqVVs4b075ntA2tq8bwY198bJewNPXA3zvr14SgpGX5omk3+5Ydz+O+9emVq515tODSHHE1trW2XlrTtUvWqnOvG/J0Zk+Yy4ti9uP7JS+usf+Bn7aNqBaLHYjGefPJJbrnlFqZOnYqUkoEDB9KzZ9VL3sJmNXMzmY/Vrl+NbcH3ytoPM/vC3w2V2X61DEyUBmBUiCUuDVPSMr3tH4CZbNDwWBQEbNAALBK6DUFIPcEC5UIYlmf0KFOukVHJkHtRaOAXI6NiMZJgjMHgTXknfT7cci3BogTImNJ65U5IT9gAYzIGfh74RibBtu3HTVueAcOTmvHpK7TOu9QTqq8BZaRntOyDn6dQ+eCWgyoVuAndhpcCtxRTBvx8w4AXKq0vI8CNp3QyQKUnNACCQtRWIWwiUYkTSuaplJ0XoYFCg8b5CnzfJeG7lKU8Yq5P3PFREnwEUkDMkbhCsz+tvrltW+us67E4lv0O5LnJAERX6UNAoRMU2svFcVLUyDKcVubyt7y8PPIy9BTXrl2L7/u0bh1dQtq6dWtWrlxZs/53stWVj4JK/FNom01OqYIK6cohpZYI9pkm/WZG2aLtBLJGtj27z4L2GWMLVqwowEiW2L6Vo9J+Ilw/7A8ywHQVKhvpwwU/BGwrywJ3Qm2a774H0ksj9dYP2ZU3SKWZ38FYDDxvA5kp7UuC7VLhpkzwKmX8QVwEYwgufxOc8+OgPKWfeGan7+ofVUGgLhWaWzt2pRC+Co5fuIpYLEU87uPHHUrdOKrYg4SDSNl0yI6e5zyJiist/SUkwpE6gOaE8ie4CikEys90yhaMN6ch5/NLRBjwAFI6SClIplxcR4ZY76ZA0HcoB4Nh1wd+K/w8NDkkQqk2UKEAYzgKI5wa6sb+jH9YVWZbt26lsLBincjCwkJKSnIvSf25mUJw/AVa9zyWp7fU28/fHAcKG8GHrzRi4cxCzrl2Ba071PA3Tq2s3kfV27bZwlXrAVi/pYTVG4spS+jrtmPzIr6569eRsl8tWcaz33zHyQN2Z6+OadmDTk2aBJ87VCE30bpxQwA8x6F5Yc20vgEKY9Vbxj8oB3iey95bMg+pFBOXLSAh/Woxq5+ZMo2bXn8fRwjeuvRsOjVrUq2+amKe4/CrQdkAWa+mLWgYi5OSkn7NW9V5v9WxtWVbI+91arugj9p///0j3z/++GPuu+8+5s+fz3PPPUf79u15/PHHs+Q8dxVb8v1yADau3sy6FRspL0kA0LZrK95c90Ck7PRP5/DmwxM58twD6T8inagzDLy27hjNB5BpzVtrH+Z6Dk2aN6zxePMLq8d87rt79QKIX0yYjpSKr96fSTKRysnszrSX3vuWvz3yHo4QPHP7uXRo3aRafdXEXM/l1IsOzNreuWdrChvmkUpJemyjPE5tbcOqTZH3OrWfsY+qFYh+8803c+WVV9KtW7dI8qvS0lL+9re/cf3111ernXDiOUTV85tFxMt4T4NAImg/KBNm3YW/BkBVBMGM9BPwQkXGK3xRWK3f8MWSAUZFPltQxgJqGdttn2GQKwCnMhE9C95DRP4lkHIJjyU0FxHQzAJhEp24T5r9FtsJMgcSSnRqQCsr4RCeGxlqQ6WTo+qvNvGmwHe1LISVhfEtSJ9UIAXCJN2L4JIm0BBOZKiMjAuuj2M0ZAImW+jEiBD73Ikw0HXhaJK+0DwpDVjZOo5p31eOBsbtMYVm1vahgx6OGYtCCIkjLGhuyiiQOGmN4+BCcnCE1PNfA8tcPtOxYzRye8MNN3DjjTfmrpuB2NllcT8lq0sflek/ogVC5ez1llk2E0DPtT/iH9Koe+S2tWB62E+EAV/ChQnuVQxrXOcTMI4yBKxnjSMUEAguw9Bh6GoCmfaMaS10QRRAt++eCK14sc5ApFe3SCI+QgQHZ9sX6TEo7ecUOqendI0vCgUH7LEpm0jUSFGF/bujQs+JkDZ6ENwN1deMd4Ub83FdDU6XljmolNB+KvT4CD7Yk2YSijomcBc94Sr0ng4y2IBn9iKFjLOQvlTSiZWFiPgzy+5NX5cq9N0C4qExiXQZ3YcirJEeTXIcPEDTzqaa9nNe4leVzZw5s8LA5Nq1a3fwaHaeJcsdJvyvCQefsPHHp4ddb9vdjjh9PYedokHJSOLj7WY10y7elX3UrmRvfDGLh96azOkHDeSEkXtUWva8w4aQ53n07tCSwT07cMcFo1m2bhMn75td79IXX2NtcQlTli7nvYvPDbZfNHRvujdvSuO8PPbplM2qDNvQLh154+KziLsuHZsWZe1XSrFk8yZaN2xY51IhuWz8niPwleKgDt2r3Z/r2L9/wNnBf0t0atSEL0/9FVIpGsSiYN3mRBllqRStCmsO/NXE7ht+Gu+tmMPRHeqOBW9tV/dRzz//PGPHjuWMM87g66+/pry8HIAtW7bwpz/9iTfeeGMnj7Bu7L3/fsLTf32FMeOO4KjzDqq07Km/PZZYXpzue3Zm9+G9uP4/F7Fy0TqOPme/rLJ/PP0uNqzaxIxJc3h05h3B9lOuOJqOvdrSsEkhe+zbp9L+9hzanfvfuIJY3KNNx2ZZ+5VSrFyynuati4jnbX8fdfqvj8D3JUMO7lctAB3AdS2ItuN9VNtOzXnysz+gpKKgQZTcWLy5lPLSBM1aZ/v+urSbn7uCSa9P5YATK5b4qa39nH1Ura7mm266iYsuuiiLTVVSUsJNN91UbYAqnPguAujmMpXjo8i1rQIAPRdIH+AXKgKiBICyCGmFh6uEcU5TTyRIa+3mAqlzmQHGM0E0CxThEwV3TB0VwjpSRucXwE0YhrwwwI9Ig2BCEdVvzwUMGj31ZFwgEwK3TOElFG45eOWgHMOaNOzOQF84BGYHbVr94ZRmHflOGJDTSUUV6Tmz7wLTTyOQvkLmC9wycMvAKQc3acZSCslCSDUUpFwNTishjZyBH5EtUBkgvMi4mCzAhQIZ6JNn1DAgWUo6pKRmozuOwhVpXXWJUZYx4JmD0mxQQOJjWehpKRdwhWaGSgWlKRelBK4j8SxDHp+Y4yNjiQouogpMhV7AkiVLIglWMlnoAC1atMB13SxwZ/Xq1Vns9B+71ZmPynWfZALWEAWgczwoRI7NmTBqTgufR+sLwrgrpBMI56yn0nJKCsNETzs0y2QO14usDgprmmc0jxI66CZDh54BoCNMYMzc/05C4STNPW/8lkil8yNgwW6IjNMep3JAxUHlC3yTRNRRaPkn6+NM/4EOuqsB8OBYbK4JT2FVvwklMLQSWcpTyLhCxRUqZidQmOeBomGDBGWepDwmkSUxKHMQSYFICZykgHKBn++gCgVKpBCej+v4uI5CKutnHBwHpCuRfnji0xOdlnRRQfAt2J0BoCsldFLTFPgGMBLWH7nSrIKJnEWzKkcvZwweRUE/Mkg0KoBEygl8puvIIBGr60iQ27ZapiZ277338re//Y0VK1bQr18/7rzzTkaOHFnzhnaSHXzwwRkBEW1CiJ9k0DLTHFeRXyjNsRBcmwClxQ4FDSSlxQ6NmyU59KSNO3Ws9bbzTAjYAbhfyGqoj7sNPqrefjp28xMTSKR8/vz0+1WC6I0L87lk1PDg+4F7dM9ZbsH69awpKUYg8LzsCOGhPSvW0V6xZQuPfjOVEZ06s1/nLnRvkQ1MWfv311/yl0kf07tZC9489cztDgD1a9aaBw86IbLNPssqem6dNKg/rRs1pFWjBnRoWsSGslImLl3AyPZdaFnQAKkUq0q30Kag0XZ59hV42UDaqpItHPzKAxQnkzxxyCmMaNulzvu11q1RC7o1arF9Gt/FfdQf//hH/v3vf3PmmWfy9NNPB9uHDx/OzTffvBNHVrd2x0UPkCxPcfdlj1QJojds0oCzbjgx+D7syAE5yy35fkXAPPbi2Q/i4aMqzm2wZsVGXn74Qwbu24vB++9Gx+4Vr/L43/0f8Mjf36Rzrzbc++rlONuZMdG9XwdufOSCyLaqfNToA3enZdOGtGjakHatiti8oZgvP5zDoH170rRFI6SUrFuxkRbtmm4XH5VfkM3GX7dyExcc9CdKt5Zz61MXM3Df3jlq1o117NWWjr2O3j6N/4x9VK1+vlb0R963335Ls2YVP+yz2iFjTnMB3RVZLiArxOLLLJPZbgQizQDoc4Ht0oJOYVBNhfClTLApF/iW0XlaOiRqmcOPABu2kEzvs6RS17QZAPOKAEALs/6Dv92jOHG6vESDYyoNKKUnxgzaEek2w0oEFnwJHYQF17JwvhAALz2F9CDlKZSrUEozuIVwcBAoYfozoJcFy6QAhUoDEjZZZwBGhcAvrCyBZoSKEJgtI8zczCW/VkDHHpSMnieL9amMKXJUpL6DBcb1BOmEhfYcpgMLduKlMuBUaE+1LcNpNW7cuMos5fF4nMGDBzNhwgTGjBkTbJ8wYQLHHntszfrfyVZXPirLMgNkOXZn3lbpQYUKZAHTuVsMbqVcDsxe84adrhDRvJAZ9ZRli4c3V+GncrmKoO3Mqpk+2TgnLcNijiR8KRsH6BgwPBi7MuXtwYuMSZfp6tL4YD/sXKy/c9KvrECq6UMayRTtIkTadTpKB/NcZfIuSJyYxI2lcB2dE0EaRyeUq+9eISLny0pVCd1T4EWk6VuFZzd88PbdHHukzchZCPspeyJV9CDNvohcVaiR6HZzwoLzGL04rLyUPiKd6liZRMxCyNDxVNNq+cPqmWee4fLLL+fee+9lxIgR3HfffRx55JHMnDmTTp061ayxnWALFy7c2UPYrlbYyOe+92bTsn12UOX1x5uxakkcELTtXM5Rv0izkH/icYN6+0lYDS+yn/Eff7uq5fpt2KZZIxav3kiLorpjJDeIx/VvDkeRH6v+n9ovfDuD370/gYQjefSbr5l28TjyPA9fSv77/bc0juczuls6aemstWsAmL9xPQnfz5k4c3va7PVrOOXN/9IkL5+XRo2laX625IwQgv17dQ2+X/T+i3yxaim7N2/Dq6PP5KKPn+PdZXM5t/cQfj/okB0y7uXFW9ia1OSk2RvXZIHoJckEMzasYs/m7SKJVzPt2/VLuWbKC+zZrAO3DRqz4wPgu7iPmjNnDvvtl82wbty4MRs3btzxA6oDy+WjWnVswbJ5K2nepkmd9VPQKB/7TMwrzCbWVWQTXprKXVc/jV+a4OWHP+L5mX8hnufpBKOPf0KDogIOGLN3UH7h7BUALF2wmlTSJ563Y5cdLpy5jN8edzuNmjbgzjd/S+Nm2X5eCMHwgelV67eMe5zpXy6kZ//2/OOF8dw89l4+f/Nbxlx8CBfeesoOGfeaFRso2aKTrv8we0UWiF5WXM687xbTe1BXYjmCINZmfzmfv5z3b3Yb0oOrHrig3kfVodXoadu0qY7ACCHo1atX5ET4vs/WrVu56KKLqt9giIkOYWAn4wQrVekfWDkB8jDKkxPxCRU2IKhyQLoiAJPtfitZEmFbG2w2i9giiPQZ7lJllsvlR+yFJgnkCSJLIELbBAagyjPjTGpASjn6PTgOQVryxQlNbwZeE3x1gTzwXYGKC5yUQqTATakA+A8D2eGxWYZpwIRPgijXY5OhemmGqNZcV6GEocoD4kprKedrfXS/HNxSgSqGWLFmpcfMH95J4ZB0QfkKpNBMjNCkaaxLf7eSCuEEopozHmVcWuzOAk6WLW7ZoJlxG6kESekFrHZXGBAcH89RFDh+RPs8pcA3ERkLbCkl8JWD7zt4jiTu+MSExHMUyq2Zlmdtl89cccUVjB07lr322othw4Zx//33s3jx4prd1zvR6txHQZbfyO2nFKFLKnqzq1AzKuOeyWgm2nYUNc10X8F3c+0ESTPNhasBTpEba83VYKg96w9z+eLI8YWwW8skl4Z1HvhQk6AzwIXtPvNyrBa5IK3nbm8+O3cqHdyz8iw2Wai0fUDgN5VdKeOBclVa8slOq6fSPl2hJayU9VFK67fnKcjzEXGf/LwUeXlJYq4MQO1Cz6cwJimNK0ryFIniOJS6qDIQpQ5eicBJCHzfQSqHlCvwPUXMS+nVKY7CJaxNTjBA6w+InIKQ47ayUnaapAo0ykX4HIdOqlICKR0DWFqJFu3PHEfhuennrJTgy7R0SyDjYl7Sd0FpX+q6KVyjnV4Tq62Puv322znvvPP45S9/CcCdd97J22+/zb/+9S9uu+22mjW2E6xz586V7t+wYQOvvvoqZ555ZqXlfqzWrmspLStIELliUYz9j9nA//7ViuMvSK94qgfQ623H2I7xUTWxDRs2MH78eF555RUARo8ezd13302TkG522JLJJL///e954403WLBgAUVFRRxyyCH8+c9/pl1I1/qAAw7gww8/jNQ95ZRTImzNXc1e/HQ6f3r6PfbfvRsLFutcDA9dfTLPXX8m0xasYI9u1U96OXfFWi6570WaNSzg8ctOIx6LAq2tGzbkkB7d+XDBD5y71+Bqt/u39z8mlZSQB52KiogZAPeF+TO47rMJALQpbMiQNloG5uphI2lRWMjIDp2zAPQ3Fs9m+rqVnN93CEXxAtYUF9OqQYM6BVE+XbGITYkyNiXKmLl+NSPaVf58A0KJ/vT3qWuXmfelNep7c6IcB2gYTwOASilKUkmu+/wthBDcus/hFMayWZ4DWrTl5iGHsqa0mNN7Dsjaf9b7z/Ll6qWM6rwb9+x3bIVjeHHx1ywqXs+i4vVcuttBtC9sUqNj2Fb7OUslVMfatm3LvHnz6NKlS2T7J598EpHy/KnYmw+9x12XPMDw0XuzaN5qAG6fcB33f/NXZn4+l75Dq5/X64dZy/j9KXdR1KIRd751DbF4dEVGi7ZNGXbMIL58exrHX3pktdt96P/eIuXrv3nbdG6OF9N/gL3/7Ofcc9VTpu0m9DdjPeeqI2nSoiEDR/TMklf56P1ZzJ2zgpNOH0rDRgVsWLeVZi0a1qmP+ubj2WzdVMLWTSXMn76UgftVLk8D4DjWR+n3WV8uMO/za9R38eZShCMobJgfbFNKUVZczt1XPYUQgkv/djr5DbKDGL0HdOaSW05kw5rNHHnG8Kz9151yFzM+n8d+x+3F7x68IGu/tbcf/4jl81exfP4qzrr+BFp32k6rYiqwn7OPqhGIfuedd6KU4txzz+Wmm26iqKgo2BePx+nSpQvDhg2rdnuSHDhyJlOyupYp4xKyCDMaooix6SzAhUIM71wWbl+R/cdfVv+CgG1cXcs13GBMJiGn1RsPVIkVJtGpQYIcEaDWwbFZ0D8DZIlMRwgEVEoXVwKES5qdHgB1kEmSVgIkWtrEAj24Ii3lbCYtHJCwrExlETYndMc5AuUIpOfoMdgkgULowIAEkiAS+l0mHFJGf9kJAgZmpgRaE13ICAMzOsNWniU6Myon4phGlSwoFZxrpfsKWKjKAF/m7FrOq2bTCqOtTjBOy0RPKYEXnNsaWAjwqomdcsoprFu3jptvvpkVK1bQv39/3njjjSqBnx+L1bWPggqmMMcDPrNcppsJLqkKGw1XDN9U0SpW5zyia26jaiLaayhXZzhmFr3/LQgeGSihCzlys1RoyuL1BtS1vsYO1ywbSfsNQPgqCPRp/xa+gUzDjlkxIgTSBu6ckPsJ52OAUO6I0CQEsmFpVF6FopF6VYxIl3EVwoDv+tAlQkkcIZEotMqX1D+whMTBx3VTRp/d1QlDzZzgK0gqVLkg5QiUdHCEDqLJEIAenV7TdlbEI+xvwtsJTWLmeTIrZ0ydTJA9OD/mm11ZI4QEM8Z0suToda+UQkmBnxmsqY5l+KjqJD9OJBJMmTKFa665JrL9sMMO47PPPqvhAH6ctnjxYs4555yfJIieX+jzx8d/qBAUP/8PqwC47r4lO3BU9VZvtbRa/o6qiZ1++uksXbqUt956C4ALLriAsWPH8uqrr+YsX1JSwtSpU/nDH/7AnnvuyYYNG7j88ssZPXo0X331VaTs+eefH5E0KCioeWLKn5NNmPo9KV/y/jfz9N8NwP2vfs7Vpx/EoJ7VS1pn7f9e/ohVm7ayatNWXpo8g5NHZMvA/PuE3ODrla+9xdvfz+WXew/mspFRcOTAnt3437fTaZXXgFdO+0Ugz9I60O1W/Onr93jpyLMBaN+oMdfve2BWH2tKtzLu4xdRQEKmWLx8K+8uWMD5gwZz7cj9a3Ss1qRSrCsvpmV+msk5pntfpq5eRtP8Aoa0qd4c/vug4/hw6UL2bd8FgLtHHMeri2Yytmf1gw2z1q/m2FcexxUObxx3Fl2LmvGb99/k5XmzGLNbH15aOBOAg9r34Jiuu2XVF0JwZu+K+1tZssW8b66wDMDxnQcyee0P7Nm0A+0Kiiotu11sB/ioH7NdeOGFXHbZZTz88MMIIVi+fDmTJk3iyiuvrL5s54/IPvrfJPykzycvfAH5+QgheOK2l/jV/51ZpTZ5pj1w/f9Yu3wja5dv5J2nPuPos7Pv+xv/d0XOun+78EE+eeUrTrj0cM783ZjIvn0O6MPbz39FUesm3P36bwJ5lmYhlvwD1z/PXe/o3+mt2jXlwutGZ/Wxft1W/viH51EKkgmfFYvX8vlH33PiL4Zx/mWH1ehYrUkp2bh2C81ape/Fg07ch1lfLaBxs4bsPqx6QYjf3z2Wrz6ew8ARuvzvHrqAD56fzDG/zPa1FdnCmcu4fNTfcVyHe96+mvbdWvF/V/6XiS9P4aBRA5j43GQAhhy6O/uP2SurvhCCY86uWKZy3YqN5n1DpeM4/Mz9mPbRLHYb0oNWVSSJ3S72M/ZRNQLRzzrrLAC6du3KiBEj8KpYNvbnP/+Ziy66qEJGhabAVQBGhTfnQsYjhY1l4g3h98r22YiTbTJD1zwsDaDHTZrRmBldyRhqJpCWcwwZxyFC20SO7cLXrEw/LiCmx+OWgWsAKSHQzEo0OIRhqDqhdsNznAWqWfzKMj2VQPiAKyLHY/Fu38xJwIT1gLjuV3kgDVMeHxw/MwoBwhFac9gzY3VBxEwvrt6uEkrrv8fB84RmoyfBTQHlQMwhWQ4qpvClrzXOkYQTiAqh8FyrNw6+1IlB7WBcoXCdMKClAlxKGC3k6GlURhs4nXhPbxfY5KFCCFwh8FyFZ8D7RMoJQKmUcpAGqNL66gKJQOHgK4EjQToSWUPlpW2J/F1yySVccsklNa/4I7C69lHp3Ao5fFAEvwxHylQmll1htSzgPTPgZn2XFtYPzmdwj4YacpQwqyVMQy76Bs3FRA8zvW2dXP1mHHdOTyyISjsBrvVRMTQLXQi8pNIa5vY4lNIrZ9C+Vdh8BKFh2TwOyhU6D0M4iTHms80LIUgHQe2qG+OjpADlqGCbdNC+M2bHrG8WGyjUEi56uwA8F/LjEs+VQZBNKIVUDp5Q5OX7+MrFVzrdqo/AKxM4KYFIOPhC4LuCMiHwVArXSwfeHLNqBbSvdYxPcRxFyhf40iaziAbrgEAGQ7maPZ4Nxqd9X66TZwONQujPjvnso8+TLwRKmYTHQbv24tYnXCq9SkfKbfNR1Ul+vHbtWnzfz8rR0Lp16woTddbbjjM3JvlyYmPady2j716l9QzzevtJ2/ZmUM2aNYu33nqLzz//nH322QeABx54gGHDhjFnzhx6987WQC0qKmLChAmRbXfffTdDhgxh8eLFEUmrwsJC2rRps30G/xO0C48eii8lvdu35Kl3pgJw6F69atXWkYN689mcRXiuw767dalR3ZdmzALggclTskD0P406jJuPPBgvQ0Jkv/ZdGdK+LV+tWcLsTauqzJ3RKJZHq4KGrCrdSs+ilrw0ZS4AXy1fXqOxfrt2Bbd/8zGHduzJu6tm8NnqhVzWd39+1VdLaDTLL+SfB+YOFlRkTfIKOLZ73+D7sNZdGNa6S43amLV+DeW+D/jM27iOrkXNeGXeLFJSMm/teloVNEQpxT3TPuPZed9y3wHH52SkV2SPHHQSby/+nmO79qu03B5NO/DGIZfWaOx1aTuC5Xnrrbfy+uuv88033xCPx39UMim//e1v2bRpEwceeCBlZWXst99+5OXlceWVVzJu3LidPbwa29gbTsL3Jd0HdOXFf78HwMgxQ2rV1v7HD2HKxJm4nsveh1R+HWfae09rUsrz/3g7C0T/9S3Hc+kNx+J5UR81+MC+9NunOzO+mM/CmUur9FENGubRrHlD1q3dSuduLXj/tW8AmPFtzUgWc6Yt4fE73mbYof345KUv+ebjOYy9ahSnX6HZ9UXNG/K7B86vUZuNmhRy4DEDg+97juzDniNrFsRYOGs5iXINxi2Zt4r23VrxwStT8VOSJT+spVnrIpRS/Pfvr/L24x9x/eO/yslIr8hu/u+lfPb61xx44j6VluuzV3ce+uavNRp7XVo9Ez3D9t+/elHsP/3pT5x88skVg+iZgFElVmW5XPep/TtfpcvkZKWHygTgjR2bBYdE+nOYkJeFlVWGkOXaFMYjVOhrqKAf6l+Ex6mU3mkAtiwd8xDQYmVnBBmszfA2MJroKi3FYDoLkqiafQoQMZAxk2jUE0b72PQnVQBkKVSQVNQyVW1fulmtpxvWCBbh8yQUuBI8B+VpJrpIgSsEIglOApwycF1QMYGMuxD3jayHbjetRS4NTG2AIyUi/QaJ0MzMCJNwVOBHMSTSILrASsBYvrrWCNZ9+emTI2QQs3HRzHsfQLkIdKI+V6Wwmj3CoIJJ6eikgzWxn3HkrzpWZz6qEss1taKCfZl+IhMAr6ihitqLxHTChcwruKYV0Rhk+N4PDSqEP1c4/vD2zKtRg9QEclPhlSfKMMGt7IgFyQXpXBM6yKZbD+59e7OYhgLg2E/nEhCuGYvtMGwOCE8nSxYOGPq4VvMWdo70K2Bn23m3q2ECz6RQyt7HZhwGPNYHJPHcFComSKUcVEzip8BRDsIHpxTNpFcOKeUi4xLX04mQ7dzoe14GfYLCNQFeGUirpMcbpIEInh0awEdEpyK9QiYkOYT1V7pP68eCVTqOQBiPaVfLKASOIyP61fY9lRKobfRR1Ul+nD6maF8/h2ScPwcr3hTjsb+04dFJs+oB9Hr76VuGj6rOapma2KRJkygqKgoAdIChQ4dSVFTEZ599lhNEz2WbNm1CCJH1O+bJJ5/kiSeeoHXr1hx55JHccMMNNGrUqNbj/anbnt3acd9lOuHeuGP3BciSYQnb+q0lXPbAywgEd51/LE0bppn8xw7px5GDeuMKB9etmcbvHm1aM23lKg7pmTspaSaAbu22oUfy4OwvOKR9zyqfd/lejPeOuZB1ZcV0atSUDvGmvPb9bM7cc2DO8r6U3Dp5IiuKt3Dz8ENpWdAAgH98+ykfLl/IR8t/oFEj/YfkV2sXV/dQI/btuuWc/cF/6diwCc8cfGbOhJ/VtaO79mbexnXEHZcDO+p5vHnfQ3h13mwu33s4e7dpz4MzJ3PrlInM2bSGX330Mr8bfCA9m1RPyqBHUQt67L5jZQ9qZTvgb71EIsFJJ53EsGHDeOihh7ZfR7W0W2+9leuuu46ZM2cipaRv3740bFh3+Q12pPUd1pu/TtAM+nNvPRUgS4YlbBvXbOaGMX9DCLjpxasoapH+DX3YacM58IS9cVwHtxJd/1zWe3BX5kxZyLCjcvuLTADd2vjbf8EL977L0CP2qNJH5eXFeOTpS9i4oZi27ZvSpnURH7wzndEn5w4a+L7kgTvfZs2qzYy7+miaNtfn+Km7JzDl4zlM/eR74r7OczD9i3nVPdSIzZm6kN+ddCdtO7fk769dRX4NtOIzbd9RA1g8dyWxuMveB+mg4SU3Hc+Hr33NLy47gn57d+WFe9/hgd//jx9mLuNP5/6b8246ic592lXRsrZOvdrSqVf1Jch2mv2M8ajtmoFEqSpmLEMTPWJhcKUyYLqyezQMFoVA8UwAmTQZWZezrMYMmQBlGH9ZiFIWwkUAiAcWPs7wGAI0KYoZ25cKgT9Bu0qPQ+UJ8DSIHCtTOClTPhadFIEBx+1QnQAfio7HJPizyUWDwzEVnaTCTabb8c18KFegYgSMd1w0e9wz47UInRAag1IgLHrmKj3emEqz0MNzbM4DntIgm+OAJ1AxgUiAZ45Z+gZYyZCKAYHnKVxHf/WM9i+A9J1AukADVhpsVwjj/LVecMXXmC6vcb404x0UroCYo4i7ipgjiQm9TQGuoxmvvgAl9Rg8R5cDUMpHIfAVpKRLSimkqtkD8OfstOrSqvRRVni6wv22ISLBl+Ats/0MvxBxJRnAebhQ4KcCnyOCz2G/JrA+Kw2mhtsOj8OOOWC/h3/whHxCZlVhj8P271q/qEsKqXCMj5IFAmI6r4L1UbqOyLg+NUvd9iUdNIhrNM6l9YnS3q16PqQiYLMHByvT86D10oVOEBrKuxCsmHGVBtjtPJuDE27aOXoxSV7cJ+7pe9haufS0zjgOngO+q0jaYIJZxSMS4CUE0hWkfAE+KN/A5CoNjLuOBqqlFNrFuRLXUXq1jEyPTed0SJ+J4PyFr4WME60vBxOgEOnTLNBa6I4DrlB6hY5pW0pFEoGjlFblESIoG2ldaYAfHM2Yr4ll+KjqJD9u0aIFrutmsc5Xr16dxU6vt51jpcUOj/65DYP238qAfbdSw7/d6q3efjyW4aOqs1qmJrZy5UpatWqVtb1Vq1bVXllTVlbGNddcw+mnnx7xn2eccQZdu3alTZs2TJ8+nWuvvZZvv/02i8W+q1pl4Lm1T2f9wLQf9HmYNHsRR+0VZSLGa5nE84WzTq9VvR5FLfjzPkdXu3yDWJwGhn09olMnRlSSePvrNSt4aMYUAPq3aMOv9hwKwOGde/HB8oUc2rEHp/Tuz4RlszmnZzbzcd6mtSzYvJ6D2/fAzfyhYOz95XPZnCxnxoZVzN+8jv7Nar9KIs/1+O1e0YSSp/Xdg9P6pmV1jujcmxcWzOD7jWuYuGw+JakEzxx+RrB/Q1kpy7duoW/zllUCfmWpJHd/9xlF8XzO7zvkxxO03wF/6910000APProo9uvk220wsJC9torWxLjp2yVgefWvnr7G2Z9oVeZTJkwjYNO27fGbeSyu97/Q63qderVlsvvHFvt8gWFcQoKtY8aOKQbA4dUrGM/e/pSXnzqcwB69mnLqefq+3/E4bsz5aM5DD2kL4eNGcxnb37LmAsOzKq/eM5yls1fxZDD96ww8PnF29Mo3lTKvGmLWTJ3JT337FztY8m0eF6Ms685JrLtyNOGceRpaUnZEccM5r2nJ/HDrOVMfuc7SovL+dtrvw32b16/lTXLN9CtX4cqfU55aYKn/vIKDZsWcuL4I3cpH7WzbMem8c4wBdlKLVVNciaAHbDwKu6jsg22fwvCBMnTBJE+grFmgPpBc7kGoKLN5ByPrWqBLBXdEYD4BkBTgIqbz4qAYS49/V25GoAK5AwkOCkNXgXguGk3WF5hZB2E1EBWwDhXIHwVBeVShiWOQKQ0COx7BvhG6LHJ9LgyJ0A5pj1l2JYW3AoBYJE5NQA1QteVrjRAOpAH+AInqRONOsXguALpuWnGuydJCYHj+TiOlmKQSmgtXzPhwiCCjmViguGq674DtrkQEUw0DJxHQXQ99JTUzFPH84k5SrN1lQb+dP+WHY9mgwbaxWj5BAHCMD9VziunYhOhV73V3mri9yuM74VAzsz7IXJ+Kuko8FMiBF6HfaHI+G4as8zkYEsGTp4FvoqM93TzWd8DnxmA1RqVFw7pZMeg72kBvpf2odKA2QLro7SvESFJKuVoLrQSwmiNiyBJqHR0sEyEQHHpoHMomDaVA8LXxyg83aaMG39jB+frlSjWB2OOQzgS4WggOxZLEXdSgDTJNnUfvhQmObC+/2OuxI+lkL6WNlExhYyDn3IQKYFbqk+alK5msOf5KM8wz520tAto4Fyg/Y1mh2upnrQvIvAcoAMBjiMCYD63xnnuBN1KWaZ99OGjA4RStyu1L3JCgRxlk5g6wgDp299HxeNxBg8ezIQJExgzZkywfcKECRx77LE16n9n2T/+8Y9K9y9btmwHjWT7WPFmj28+bcT519fL69TbT9syfVR1V8vceOONAfBUkX355Ze6j1z5Vaq5siaZTHLqqacipeTee++N7Dv//PTy9f79+9OzZ0/22msvpk6dyqBBg6psu95g3926smfXtggEw3erPZjyY7SlWzZxybuv0LKgkAOcztzz0ic02SuPlKcYGUoOenKPPTix++6BNvuBbbM1hTeUlzDqjUco91NcPfAALuqXO+/QKd0GMn39Sro0bErfpnUX9JZKBeOzNmX1Mu6Z9hnn7bY3Ly2cwScrfmBgizTDszSZ5JD/PsK60hJu2Pcgztmj8nviuQXT+ef0SQDs3rwNw9r8OK6HTB9V16tl6u3HbXsfMYC+w3ohhGCvw/bc2cOpU1u1YiN/vPpZmjZvSI+je3H3y5/QoVkBlEsGDU2v4jnsxL055PjBgTb7kEP6Z7W1ef1Wxu1/C4nyJOfecAInX547keqRZ45k7reLaNetFd1375izTG1MShmMz9rMyfP57/+9zphLDuP9Zz/n6w9m0mevdBChrCTBBSNvZtPaLVz0x5M49vyDKu1jwpOf8PTfdS6VXgO7sud+2bkgdob9nPGonQqiR5joYZApbBWB7CGwssozEyqbIzdaFJi3LGgLXBuQSImMfSrjPdyGAc+FlbLNBKZCZUVmPfuC9NkJabQDCF9o0DxmhumDkJoNHmigu7o9xwc3qUEqJxUdq/BBBAC6efmmf18zz4WRZZExA9YkzXBdhYo7qLjQTHJXA1VB30KDMMEECFBCRfTk02xQO49mR0irwmr5KqkHLqSD1hwXOEqzUB0MgGYY6sQ1UC9MclHPhZir2Z5YgBojTyAIGJ6uI3GFgasNUOaafY7QP9QCti3RBKXCsEkhiEkAgpgDea7EFeBbqFw5JJWLrxwkgpjQAFwYhhJCH1fKatw7NQzh/YwjfzvUQtdrGDjOMlHR17DzCckUVRL4q/BpE/Y31sIguPVZmD/MRWh7+GWDZ4iKfZRtVGQMJazLDuk8CK4IJeE07bog4xpodZIaFMY1vtTItCipcH2d28BJaV8VBAR8I2riKITSslH6kg6NyCQvlS4IzwS5rC66sprspP1SKEcECA2YRxyywokpvJgGtPNiKQriCfK9lE4AjL5nfemQMvkUHDS47EsLiFiNFkf7KylM7gjrlHw9D6CTDxtfKYRCmknU50/7Qscw7j2roR7yM9YcR7PH9eGn/ZpuK32hOFZWR6X3uUL7SM9V0eShCqSJxrpuiIUuSGuxGx/j2MBtTayWPuqKK65g7Nix7LXXXgwbNoz777+fxYsXc9FFF9VwADvH7rjjjirLdKqEMfhTsKXz41x/VhdskDi/oeTUX62ma9/ynTyyevup2fQvGrD8hxj7j95I3o7Oi5nho6qzWgZg3LhxnHrqqZWW6dKlC9OmTWPVqlVZ+9asWVPlyppkMsnJJ5/MwoULef/996sc16BBg4jFYsydO7ceRK+mNW1YwH8ur/w87igrSyWZumo5A1q1rZG2d0X2+oI5TFujA53rl2zCL5c0mRpj4t3jsgDpzO+ZpvOi6B9efiWrO9s1aMxD+5+yjSOP2guzZnL1hHc4qGtX/j1qdBB8+vvXHzFp5WI+XbGIWWdcwYqSLbRvkL5HyvwUG8pKAR1QqMp2a9ISVzgUuB6dGjWp02PYJsvwUXW9WqbeftxW1KIxd350884eBgDlZQlmTV1EnwGdtkkGxdpHE2bw/Uydw+HbonISQrF6QEM+/sslWYB05vdMk1IhpfZR0pcVlmvZvhm3PD1+G0cetXdfnsqdv3+BvffvzfV3/yLwUY/+8UWmfTKHbz6axUtL/8naZRto1bFZUC9RlmDL+q0ArFqyvsp+uvbviOs5xAvitO2avcJtp9nPGI/auUx0C5ZkWhhYjlQgwqSz5yTACCqql9Vxup+KAKQQmTMtq2J1d8NAemab4XZz9VtRvcyLTICSGhwKwDGzX7kG5DafldA64eE2RdKUVZrdGSuWuKXK4jKBxIrQGeFMslKFUEYPXSnNOk9pbQQVd5ExBxlztf65o7WFla/AB5ESkCItjSDReiXCaKPbd1cG34PkfYr0xRCcRxHMgT5225ZEug7EIJWvz4tbrus55eBtFaSEh2rg42PZ3g5CCOJ2Ts0J1Kx0rU8e4EYKA2j5SPRnz/G1FIu5WJSZZBed/M8J1XeEZrj7JmFoSgoSvquZsyhS0iUpXVJSg3GOgb2sVr/BWgN9agvWu8JS+6tnP+dEDjvF7D0dcToVWzDtOUDpnH6gogYy+xFZbiJdJeLHVNS52qBVZtlwd+H6IZA17AtDwwhWVihhgljmXhbGbwkf3HKlfRiaie4Efk5pn+NrH6Wkwin3cUt9nJRCuiLtpwDlOHqbK1Ceflk2uz0e5QmkJ/BjGEkuoW+klHklQ3PgpA9C+yWlky+7+t53hG8kVXwcoRno+n52zEoSAikTabI2KyVw3RReTJBU2kP4gBQOTlIP1CkDfAfpg8oXpBSomA8euIYhrxRaV92VgZKQEDI4PWkfBRp2NzIzBpj3jS+1fsqulAlWzJg58M3YJVpKJuU7CBS+Evi+DvYpJYIVPJoFb0+fCPyhZccrUfEP01xWWx91yimnsG7dOm6++WZWrFhB//79eeONN+jcuXPNGtpJtnDhwp09hO1uZSUeX0woCr6PvXJlPYBebzU234dbLujMk1/NZBvkk2tttfVRLVq0oEWLqvWUhw0bxqZNm5g8eTJDhmgd2C+++IJNmzYxfPjwCutZAH3u3LlMnDiR5s2bV9nXjBkzSCaTtG37E9BQ/YnZ+pIS1pWU0LMa57y2dvprzzJ19XLaNmjEpDO2PWB8RNeePPf9dFoUNODCfQbz5JtTOHZk/yoB81zWPL+Ql444m/mb13FEJ63jX5JK4AqHPDc3zKCU4pl501BKcUrPPWvVL8Db8+biK8m7C+aT8H3yjMTO4Z168fnKJRzRuTeu49ChYVGkXtP8Ah49+gS+W7OSsf0HVtnP4FYd+PLEccQcl0bxHw+zO9NH1fVqmZ+bRMquapvWbWbjmi107tN+u/Vx7Rn/YtaUH2jZrin/+ez6bW5vxEG7MeG1b2jSrAFHjdmXxz6Yypih/aoEzHNZkxaNuOu961jy/Ur2Ha2DyGXF5TiuQzw/948LpRRv/edjUIrDzxxZq34BPnt3Br4v+WLibJJJn3hc+6gRowby3WffM+KYQbiuQ+tO0ed442YNufm/45j7zSKOOfeAKvvpN7Qn/533D7y4R4PGO5pxULH9nPGonctEDzMuM5+fmUBVDgA9Ui0MoOcAnnJ+r6jvMFBuvmt5gRxlc7WbC9AX0SJZJnNcaBHWpG5LYFQTSGPOwVgN0C6MfIIjNQM0XqyIFytEUhmdd41+CalwJKGEocrUN8B6Umo5l7iLRGggK8+ko4sJZJ5AFjjIPDQL3uiiiwDpUyhHwy4BUGV1iY0UgwLwRYgNKkLTpicy2OcLhDJMdMP6FMrMkcnHKeMGQItpiQPXBc9TeCYBoTTomT4KzQB1XcPwtECRMICYUMQczTC3xFUZjAkcFJ6TTvKnQGsjG8BN4ZDnpgKGuq88EtLVMhAIS9jHcyAszyVDbFDNjq/swqnAfsaRvx1qmQEzkbEvbBUB3zbGYu+7MJBeWb8V9ZPDFISScIaqhnxEsMt8ENFbLuKzRMZ3bNBNRV2j8kw+BHtPG11zR6aBdtt5uk0V5GhwlGagx0olseIUbkKiXKH9kvUFQYBK+2ArieSErnHlarxcOcYXYRIdx0HlAzEQngjAcnsPAyizykM4Wgs9FlPEPL06JD/m47kgDfNcGWes2ehmJoQwwS6dw0Baer50QJl+XJ27QiDwXTOJnkK4Gjx3XQK/o2VSVJZ+uWV/pxOFCuOD0uWkOTwbewzKh86Z62hJK92I9nOO0PPrS8ccg5GSCVY2aB+lbMAz9JAMAP0dxEQHuOSSS7jkkktqXvFHYGVlZbz77ruMGjUKgGuvvZby8jTA7HkeN998M/n5+TtriHVuL9zfgk9eb4wAuvUr49zfLad5m5oFhutt1zPHgb8/Ny8rtcgOs+38O2q33XbjiCOO4Pzzz+e+++4D4IILLmDUqFGRpKJ9+vThtttuY8yYMaRSKU488USmTp3Ka6+9hu/7gX56s2bNiMfjzJ8/nyeffJKjjjqKFi1aMHPmTH7zm98wcOBARowYsX0O5mdg5ckUebGa/Vm8ZOMmDrr/YRQwbvg+XL5vxcGPbbH5mzQTcXnxFjaWlfL+ooW8Me97xu21DwNa1zww0rlxUyacdG7w/YA9e2zT+Po2a03fZnr1xMwNKzj1g0fJczxeOfQC2hYWZZV/b+l8rpn0FgDN8xtwWKdsmZjq2LghQyn3UxzctXsAoAOcvdtgBrdsz5ZEeYXySPt16sJ+nbpUu69m+YW1GuN2tQwfVderZertx2WJsgTx/JqtRFm5aA3n7Hk1SipOv3o0Z143ZruMben8NQCsWbGRLRtL+GLSPD56byannzOSPv1qDt6369CM+5/9VfB9W31U99070X13vcpz3rTFXHHEn8kriHPvh9fTskOzrPJfvPUtd41/FIAmLRsz7Oiqg2257LSLDiJRnmLogbsFADrAsRccTN9hvSjeUlahjxp8QF8GH9C32n0VtfgRJg7/GeNR2xVEHzlyJAUFFUdDKmSiQzYInVk3/G5BodDnCi0DmI9szwSlw2ZJdmE5ksx+wtiCYSqKyEArGJ9lfWZolksRYnhaWQ8fMNIHSgAxkLHwmBROGXhlCjcBIqXwilN46xO4JQlEykcJDewoR2jmuS9RKYnwDbIVi6WHleehfAG+o6VdJCQbCpKFglS+QMYVUggNlhk5GIVhyTtoJnlMA1XKlaG5tbIpgFBpVmPmvKSEReJ0OUdpcMwFXypScfBKBW6p1mj3ikFYIKgBJA0FVymXmCcDpqVSmnXpeb4mxAvwNZ0UC5VpsE7hKanlVizIBRo0Q0vAWPa5QgNRngOe0Ex0ndBPaikIpXWNFQJPKGJOKgDnNaipcI0GsS+15ItUDkrIQHu5RvYzdFh1bVX5qMCq8itV1M1ZVWW7mfC+8M5I/fD20LiURVlDq1YijjKKfWr/FN4XKpM13vQtCMqw0AVIodL65MZHipSCpJGZEiBiKvBpKBBK4ZYpvDKJWw5IhZfwcYoTOCVJPTDX0QE4R6BcHTjTyiIOvucg811UzLDTPd24lTqRKUGqUJEsFPh5oOIqWDkjpF4REsyh1fKOaVTecXVSCKW0nyhLuXjSMd/Tzl+Z+9j3HfyUYwB1nagTIXE8UAW+HmO+A6Uuwnd0otFigUy6+BKkhBQS4jqoZvM0SCWQKVf7KFfLxQTBOiVQQmmGuNB65q7wjeSUCeApJwCebHAweAQJHZgTSO1fzFFJSQCeayBfan9kAx/mOtCAug4iJFOuCUeq2gFdu6CPeuyxx3jttdcCEP2ee+6hX79+gR+aPXs2bdq04YorrtiZw6xTK97ssXCz/rl54c31AHq9Vc+EgI49Ezt3ENvZRz355JOMHz+eww47DIDRo0dzzz33RMrMmTOHTZs2AbB06VJeeeUVAAYMGBApN3HiRA444ADi8Tjvvfced911F1u3bqVjx44cffTR3HDDDbj1mX5z2i3Pvcezk6Zx4aH7MO6I6gPhc9asDS6RL5fULp/Fee8+z0fLFnL2boO5bsiBOcvcOPxg/vDpBEa070zjeB7XvP8OCelTkkpyeklHvp40jzPHH0rnHlEZoNXFWxn37ms0jMe555BRdSIFU5VN27CCMj9FmZ9i7uY1OUH01oUNA/Z568KGte5r99atefS4EyLblFJMW7uSMa8/gVSKu/YfxbHdqg9E7QxbV76Fu79/jaapWrDca+Gjqrtapt5+PHbXrx7ktX9P4Izfn8DZN51c7XoLpy9BSX2RTP/0+1r1fcPZ9zH1w9mMPmd/zr/+uJxlLrr5eP55/QsMHNGbBo3zueNPr5JM+pSXJdnjrD2YtGARlx80gh4to4zr1Vu2csVzb9AwL87tJx5NYS2TodbEvp/6A4myJImyJItmL88Jojdv0wTHLAdu1qZJrfvq2a89f7z/nMg2pRTfT1vMFSfcg5SKq+88gwNG1w6k31G2ftVG7r/2vxS1blDzytv5d9SGDRsYP3588Nto9OjR3H333TRp0qRa9S+88ELuv/9+7rjjDi6//PJq97tNIPrq1atZvXp1oDNkbY89dHbsN954o+pGKsMGQ+BOVSu9ItrilQHzmcC5fRc5voeriOxymUsTVMaHcHMqvCH00QLJQhkQKiw34BKcIctQd339EooATA6366QgVg5uwuiglyvim1N4pUlEaRJhtYhtm1JBSiFSJgOfZWFIhcrzNP3Qc1AxBz/uIPMcUg0cZL5JIupq5megOyzSgQCNtiiUp6IsdAgSAiqIMtEjYJ1A+LqCEipgTopQoMLxBU5SM1etJrz0lE46Gle4njJMdAOwSSfQ/XVciedoNrk9d45IMzgdw0SPGz11aZmgpntHKNyAFaoBKFdIfDToZ/XUQWspawkXJwDLY04a59TTYeUSHA3ok2a4ytA5ro79nJfP1MTqxEdZyzwHmQG5is5R6ByIkD5KjVeviug9krPfHD4ms6iNx2T1H7qvIg4qdE+K8D5XpO97s9kx/skxrHUZS7ct7NXtp32UlZHySlK4pSlE0tcAutU0MgC6HYsSAmGXblhBb3PTKlfLucgY+IUiYKAHfjS0CiZwyFZSylU4nsT1FK6rGZCWnZ2+M9MeXSoNoEspSPl6AkR4iZCZYGUo2k7CwUlpP6eE0glS4yDiCjeGAcl1vbAuueNoySghNMgN6WCBHZ/npPMxiFBdq4Vuy9tAn/Vl1p9aJrkO9DlIqSfIDbULZiWAbV0ZX2rOjiDH9VSF7ao+6sknn+TXv/51ZNtTTz1Ft27dAHjiiSf45z//+bMC0cN2/ZldKWggOXDMRs68cgWFjXaxC6Detqu9/0IT/vO31pQWa32xC29czn7HbDJyMDVzUjvCRzVr1ownnnii0jLhpM9dunTJSAKdbR07duTDDz+sk/HtKvb+jPkAvPfdvAiI/o93P+Oxz6Zy2SHDOXN4tpb8wT26cVTvnizcsJHbjjw0sm/1lq0s3rCJwR3bVZoo9r0luu8nZn9TIYg+pmdfxvRMA8GHdO3Om/O/54B2nfnnWS8BEM+LcfXfoprjby2cy+SVSwH4fPkSDuqsE/JJKZn0ylf02qtHTgAJ9HX31uLvSfg+o7vuVq1ktwCjO/Vn/uY1FHpxRrTulrPM7s3bMPE4nfy2c6Omlbb3yfJFXPLeywxs1ZZHDjuxSumXSz96hdd+mB38Fiv3d37QdnHJKl5f/in7tRxAv6LsOXlp6edMWPkNqeKayZ7tCB+1ePFi1q9fz+LFi/F9n2+++QaAHj160LBh7QMg9VYz++xlnYz60xcnR0D0R69/hufvfJ1zbjmF4y87Oqve0KMGst+YvVk2fxW/vjcK5q5buZEVP6yh3z49Kr2/J787A4DXH/+kQhD9oNGDOGh02kcOHdmLTybOZtDw7lz/5vsA5MVi/N/x0aSeE2bN46vFOgA5+YclHNBL3x9SSuZtnUTb/F40irfM2adSik/fnUEy6XPAkXtU20cddNI+LJ6znPyGeQw8MHeArefALjw45TYA2nWrXGP86y8W8MffPsNuu3fg5n+cUaX0y23n3cdHL09FFOlVI4nyZLXGvT1t8exlvH7/u+x3wlD6jeidtf/1Bycy8dnPSamaERt2hI86/fTTWbp0KW+9pVc3XXDBBYwdO5ZXX321yrovvfQSX3zxBe3atauybKbVCkSfMmUKZ511FrNmzQp+zAkhguUIfg0eWBGCbS5AKMySzGVpfKXqsqHy0UGk3yoj/AppitrEbkKDQAFo7oTqZzJBbd/h8dr+MhK2aSDYgOSmTUeBWwZumcJJ6jJKAY5AJLX2sJNSuAlF3voUsa2+7koqnK1liI3FUJZAlpWZLHUuIh5DeZ5uKJFIg+h5eVCYj4o7pApj+A1ipPIdZFzgx7XmcKJAIfMMeCXSLFMFgTayEsrMh0ARBTGDvwEU4KggQZ0InwAfRAKtt45JLBiA8rqfVEB514C6kOAmBLJYc8VTJhrh+4J4zNdMUdO/9AVSCHwhcA2QLpVO/imUwhGare4Kief4eGn800ggaBa6TTDoCiv2ohOU2gN0hSTuQJ4jKPc9pHJMez5S2TEqXMfHEwpX+ggnRrmv+Z9J6ZD0a6iVkOv624WsLn1UpmUGxAh9z/mQCJWt8nRUVsAwza1+fmbbwfk2fkYBSBVNBOroe0zlqk/o2Oz9HPJPQqRvciW0j5KhwJjyFU4i6qPwQcUFTlLhlkv9nlLENyVxi5O6LcdBJJKQ9FG+jygrB8dBxDztD+MGLZYKkUjhSIlC4ed7Oh9ETJDKE/h5BkCPg+8qUnkKmZ8enz4+Mxmu+eboJ7twMdrf+mWmDumLQMbEsrQtiK6UIJV08UtdlL0/XYlwFW7cx4tJpOsjHakZ576LV6KfI05CIEsESjikHIGKuUamxcr9KBSClK9PgOtII62SflhZj+pLYdjhCkf4Wk5G2FOr2/MN495+tkFAx/G1CxZKy8pIRVK4KAWeI3EcHRHVl146aOhIwFPIlBcEJv2aRvp2UR/1/fff06tXr+B7fn5+5Af3kCFD+NWvfpWr6s/CyktdyktdTr5kdT2AXm91bvfd1I6Na3T0tlPPMg46flNobw2vt13UR+2KdsOJB/Pi5BmcMXJgZPuzX06jNJHkua+m5wTRhRD849hRWdtLEkmO/vd/2FxWzm8PGcl5wyrWlh7WphNfrFzC8T2qz5a+94hjSPg+Mcdh3t7fMmPqD+y9XzbwcVDnbvxn5jc0isUZ3CYtqXD9mL/zxWtTcDyHlzc8Qn5htnzYpJWLufiDlwDIc12O6Jzdfi4r9OJcN+DwKstVBZ5be33BbDYlyvhg6UJWlWylbYPKJQs+XbkIBHRv0oxfD9iXvVt1YP+nHqQsleLZY0+lc1GTavVbl3bnnKeZsXkhE1dP5dnhf8zav1ezHjz5w4c1Z+XvAB91/fXX89hjjwXfBw7U94hd+VJvO8Yu/9cFvPXIRMZcekRk++sPvEtZcTlvPPh+ThBdCMHvHsuWPywrLufCfW9k68YSfnnjiZw47rAK+95zeE+mfT6Pg0/Yu9rj/cOfTiKZ9PE8h9f+s4wpi5exf88uWeUO6NWNp776loZ5cQZ1SgOZLy27gQVbJyNwuLT3i8SdbB/17eQF/PGK/wIQi3vse0i/ao0tv0EeF91WddLoqsBzax9NmM7WzWV8+ek81q3ZQsvWRZWW/+bD2SAl7ds05MzrjqPf4C6cs+fVJMoS/O3Na6vdb13aHRfdz4xP5/D+05/yv+X3Z+0feGA/nr3zdVq2bgIzatDwdvZRs2bN4q233uLzzz9nn332AeCBBx5g2LBhzJkzJyKNl2nLli1j3LhxvP322xx9dPa9U5XVCkQ/55xz6NWrFw899BCtW7euduQn01QIrBHh70EBqtYPDoPmVZUNt2urhcGk8Cu8j4zx2TGHIysi1J6KNgMB6S8n+BbIuEjSbEmrhW6xmaR5pQxm7GpwSQnwUkZbWEKsTBErM1rnDoiUNDIuKVQyCYkk5MW1jIuVbfH9AKATrgexGDLmouIeMt9Dxh2tge4JZExEWOhAWuImIyBggW7lqPRxpUmaQdBA6wZnTLbU4LlQ+qWslrETakeBk9RJ+9wkWpvdFUjD8iSm9YYdB1zDRNdAqu7cc6RhW6Z1qi0X3DLRPUcRd7X8gVSaTZsGu+zJd0wdDXyFbweb9E/7D0FKucSEr/tGJyDVrHUrsQAS1+gvV3AxVsN2VZantbryUVk3cnh72Mw9X1mQLlI9czxhHwagVIQMHrmocvlJsv1TZlElMEzoHGOtyP/Zl/VRtrJld9uVMKoCHxXTjbkhH+WVK9wyiSNBug6OUjgJHyGlziSnFMJz9SHEvCBhgFAKJTTgrF8C5TnaJ8VMslFXs99Vvor6KGth/2G/e+C4moXuOATSKSACKROlohNjQeNU0tUHKwW4CuHoFS6Om+5Q+i6i3MEr135OCgImOnkKx1OBPwwSqZqJd6xeuRO9BOxYHKECHwaYNKMiBzM8XR67T4ESwsi96FJWdsoTPq6rk5laWSoRGZ+DLy1rvd5H1cQ2bdqEF9JuXbNmTWS/lDKikf5ztefvb8nZV69gB6gL1NvP1OZ9V8ANZ3dm4zov+A3pp/S+i25eyhGnrUMaKUTtu2pGRthVfdSuaAf0684B/bpnbb/qiP347xff8sv9qg8eASR8n+KEZuytKy6ptOx/j6wYzJmzcQ2fr1rEcV36UZQXlR6MG2mevzz6S1JJn1g8+0/6Do2KePfkc7K2L5+vdfRlSrJ1Y0lOEL1RPC/4Odk4vmNzdGxNlrOyeCvdi5pxdt9BzN24jsGt2tGmGiDz7SOO5qWFMzlnt8EMaNGOtxfOZdHmjQB8tmzxTgHRezTswIzNC+nWIDfbcc+mXXnnwJvYumULL1L9pIw7wkc9+uijPProo9uvg3qrlg07ZjDDjhmctf2Cv/yCV/71DqdefVyN2ksmUpRuLQNg49rNlZb987OXVrhv4cI1fPPtYg45uB+NGkX9RCymfdR/zjyRpJSBzwpb+yaNef2Ss7K2b0ysAEAhSfjFOUH0Bg3zg79BG+3gZJolxeWsXb2Zjl1acOyp+7B4wRr67tmRFq2qzklw5b/OZeL/vuC4iw6m9+BufPbaVFYsXA3Atx/N2ikgeo8BXZjx6Ry67dEp5/7+w3vx4vJ/s7V4K082/Ue1293ePmrSpEkUFRUFADrA0KFDKSoq4rPPPqsQRJdSMnbsWK666ir69ate8CXTagWiL1y4kBdeeIEePbZN5D8MZFh2ZYS4bb9bljI58KgISkSIgZdhkYaz28nVbibonclSt6C5BpfMcndJ7gGYC0hBAOLY+laGRLnmUF3dl81PJ5LgJBRuudZIlzGQnsApVcTLFPFNKfLXJ3A3l+GUJqE8AZ4Bn5I+lJSgSstQUoKSiJhHql1LZNMCkAo34YMSKEcg8xz8PBcZ18BUKl+QKtCf7SQITRTFz0cDVWHgzhLDXWWkZsxJ8YX+7IIIzbaw7EqJ0SwRobYMy75UGSAdUgUg8xUqrtuSDXySrgOulnUJ5johwNXMVMcDKQWJpGP0haVml6KBMMcw0WXoIlCgQXEFKTMuLTetdYItCqmZqVpr3RX63TE6wtJcMK7Q6Ux9JXA82JKMU+zHgzoxR6KESs+LUDhIPAetTaxp9jkuqkpsF2dQ1ZWPMpdhbsvwO5GpzvA3ERmU8G57yrOCayK9WqOigYVA7qBsyK+ExxjcokqZxMN6R6aPEyrti+12m3vB99Arb8w2aYBysP5J4ZalfZRywSvR2uexLSniG8pwtpZDygffR7gujqdZzyKZ1AC6PTxHkGjViETzfJQDbkJpEN0RmnleoFfFyJhAemgWuvFF0kEnGk6hV614ZJ0c5SgtMeWCcPR9q0xCZikdEyDTgTvPJOZMpFwDphORdVLlArdYg/4qprSUjErhxX0tGZWfxJeKpIrhljg4vj5JolwgXUdLTzn64SD1UgFzziwbXeuWu44M+sX6C2WZ6Eb2ysqzEE6STDABrpAhmZf0tJjaeDGfmOtSnvIoT7lGsopI8mSpBElfs/EdEXrgiehqoyptF/VRHTp0YPr06RX+sJs2bRodOnTYwaPa8Xb8BWvqAfRdyFToWWfTd9SmjfBzccJzTVi7IlNDWBHP9xnzy3U5Wqj3UfVWMzt2YF+OHVhzPe0mBfn8Z+yJzFy5hhMH9K9V31IpTn7ncTYny5m6Zhl37XtsznJCiAiA/tH0Bfzh8bfZp3cn/nLOUQFpY2NZKePffw3Pcbjyv5fy4Pj/sNdhe9CiXVrOZcmWjTSIxWmWX8juzdvw1uhzSUpJ/+ats/rdXpbwfQ578RGWF2/mD0MO4rx+e/HcqNOrXf/ADt05sEM6ILJfhy4c13M3ylIpjureq5Ka2VaaShJ3XVxR08zpUbu4x/GMbj+StgXNKyzjOS5OTfup91G7vB165v4ceub+Na7XqGkD/vLib5j33WKOOGPfWvUtpeKyy59g69ZyZs5YxnXXjc5ZTggRAdA/WjWH675+gaEtuvPXwSelfVR5KeM/eA1XCG4afg2frv0XXRrsRcNY+r5ZsXwDhYV5FDUppGe/9vz7+fGkUj49dqu5HEdtLZn0ufDUf7F65SYu/PXhHH/6UP7v4fOqXX/IYXsw5LA9gu+DDurHQacMo7w0wb7HVrxqKZeVlZQTy/O2Od/JJXeczbGXHE7bbhX7ei/mVSlVk2UZPmrz5mjAJi8vj7y8WuSCMLZy5UpatcoOOrRq1SpIup7L/vKXv+B5HuPHj69137V6Khx88MF8++23te40MANUW6AqF7Cd+bL1MtmY4f256gX9VNRujjYJ181FtrOgsf2qMGBw5oDNZ5nxOTQAC1AELEknPWYNoqe/+54wTG3N4PTKpNYTLk9BImkAOwPU+D4kU+kBKoXfoADZMA8/T4MzSoF0NNPc9xx8T+A7At9oDCuj7avCiFyIgBgcZpiUGD7ugKabcazBhlAjtpxv5sgHIfWxqHC/FjyUCpVUkFRIKx9jy1mQzA5bWPBLIYQRbUYD5TrJn8BKZ1sQyjEAG8poEkeQzYCeGwGu7FTL0LmVCpLSIeE7lPtuAGxpwN3HM9IwChUkH8W2JyKzXC3b1RlUdemjclkuf1KZVVWmUt+UazyZvsreD5n7LPBJ2OVEkfWIf6tkAPa+jdxjBhBxUiCsj3I04K6kQKQUIunjlvk4ZSmUBdCVQjkOUujIo5JS+xiFTuKZF9NSUnETTFBaiMU3ILrvGf8kBMpNy9NoiSuCVTBZ5y/MRDe+wN4oItSG9QMOut+U8Q1SimC/L4VOupwy/tj0LRxl9NG1n9E+SgcElTTCVraspzSAHkRTQk8xkT5jyiQhtb7E+g8hdHJjvc9GHyVCSAOi68+2bOADzfFLJXTwwLTpSy0hkzLSLAKCgIKuo9LJTYNrw4y/hs5mV/VRRx11FNdffz1lZWVZ+0pLS7nppptqtazwp2YTX2hSu2S09faTs3v/0I4j2u/O5xMa8duTurJoTl6Nz31pscP5+/fiyA57BK+XHojqpJ522SreXDqNV+ZPzwLctdUz0eut7uzJz79hn1vv5drn3865f69OHThzyMBaJ8oTQMOYBhea5FWfCf6P1z9hU0kZ73z9PVtK06ua3l08n4+W/sD7ixcwv7Cc2yfewOnXjgn2v7dkHiOfu5+Rz93P6pKtAPRu2nKHAugAZX6KVSVbAJi/KVcwrGZWEItx58FH8+/Dj6WoBvP4ycr5DH75rxzx1r2UpLYtwbEQgg6FrXBF3Sb2rfdR9VaZvfLA+5zYdTx/v/ihnPv7D+vJcRccTH6D2oGYQkBhoa6byUKvzO6c+S6bkqW8vWI6W1Lp38LvLp7Ph8sW8v7SBXy7OslpXf6PYS1PC/Z//sn3nHXCPZx5wt2sW6t9RJeerXcogA5aw3ztag0GL1m0dpvbyy/M47cPXMAfnhhHo6bVT9z51TvfclzTszh3t8spLc7+m6ImJoSgQ692uN729VEdO3akqKgoeN1222056914440IISp9ffXVV8HYM83K9+ayKVOmcNddd/Hoo4/WXqmAWjLRH3zwQc466yymT59O//79icWiPxBGj84dicq0Sn1+BsuzspXiQTuVzYOqYj9RoDwAlsJ9Z4JW4USa0ujEhsYTBqYssVH4aTBYYIBWIymgZOiwDRAkpJZIEIDyIJWv+/TKJAXrfPLWlBNbuRG1cTOUl0PDBqiGDSA/BgkfJXWiPhEvQAB+00aUd2nKls5x3HJFwToHsUWQauCRaOSQbKDZnSKlgTEEKKszItCgtgInmdZtj4Dn9njMJqWRGsNw1WCTocSauyo0nzZznW8mT6CTlpaDW6o14XEwWuxKJxvNU+BKUo6HW2oCB0rglIHvuqg8hYinQl1oiZb0eXL0kCJgoSTmSgrcFCnlUKb09e0JK/ngByxyZZKJQloqQSGQChLSo8SPk/Bds82+IOb45Ls+DbwkoPCEIi5SlCsPR2jNdduOI6QG5Wpi1UV3f6ZWVz4ql+UKqAUfM4NBdWxZIHlGIDGyzcFmxkwXUDm+itAXacSJDBhu2coKjDRTqLibLiOMFJV0tCY5QhAr9clfnyK2vgRn3RbUlmJIJqFxY1SjBqiCmAbHE+YB6LogJTLPI9mmIVs7x1EC8jZJSIBvkhonCzUTPfC9kM5HYVbxIDVojWWiO+Gjxi4kQXgS4RrgW+hJkzbAha/LKIGULkpp7W8hNKCurJSJC44UOAkB5YqE50AheK5u082TJESKFA7OFhen1CRELoak5+Dne8QKE0HwTEAkd4OG8qVmqcs0GO4KhedIDYSj8zi4rlkRIxQKJzhOR8h08MTMgAbNdVDP9/WxpGUPFAJp5GSkGZdCk/yNJJB5BazSmobkd1Ef9bvf/Y5nn32W3r17M27cOHr16oUQgtmzZ3PPPfeQSqX43e9+t7OHud2t/9CtrF7q4XqKFm13fuK3ets+phS8+78mxPIUTZqnWL8yRpMWqRox0VNJ+PazQpbMq3y59h7D9B+1Fbddz0Svt7qzu977lC1lCV76ZiZ/Ov6wbfpjPJcJIXj5yLOZuWEVw1p3rladRCrFrA3rcB3o1KYJjUMyLfu270yPJs1xHcGwdh0j9bZuLmX6ci2fUJxMsLashFYVSKfM3biOu77+lJHtu3BKrz1yltkWaxzP48GDj2fK6uWc0y9bvqK6NnP9as5793k6NCzi8cNOIt/LDma89MN0bp36Lid325OrBhwY2ffFmkWklGRR8QaWl2yiR+PcyQ13qtX7qHqrxB7744sUby7l3acn8Zt7z90uPupf957FvPmrGTggtwxIpiX8FLM2rsV1oHODFjSOpZ/r+7brTM8mzXGEYFjbaHubEmXMnq99VGlJgo0bimneInd+hMXfr+DJv73OoAN24/AzRtTy6Cq2Bg3zuen205g5bQnHnbpP1RUqsPnfLeaGk+6gdacW/Onlq8gryF6e+f5/P+W+3z7B4Wfvz7m3RKW/vv1gBn7SZ/m8laxevJbOu/0IV7Fm+KglS5bQuHFa8qYiFvq4ceM49dTKdeu7dOnCtGnTWLVqVda+NWvW0Lp17gDwxx9/zOrVq+nUKX2N+b7Pb37zG+68805++OGHSvu1VisQ/bPPPuOTTz7hzTffzNq3rUn7dCO5N1fnGZGzTHUq5gKjKtgfLphOiJn+nMlqF+Eyth2fNPjsp9vL6stP96NcDJ1U4pZKnHKJSPooX4LjoArzkY0LkI3i4LngKYRyIZ6vHaevUA3ySOY7JOMKp8ywDz3D7szT7zKmNXAt21aGmKrCSDj4HoGUgz3mgAVqt9m/Vyzqljm7FrkOWI0qEnDQQI9mbgoHLc/ioaUYggnV/SglNcQjCAB4258FgDDgkmZTWkhJpJnxZjiOo8EjqYRmnpoDUI4CpTWblVD4dvhmOBLbrxZmSfguSd8h6YtgWxpmVyb5qGWHSnyT1FRrryvzT6Svs5rYLv7Danv5qEoTcubelVWupj9hKjuFWfsyGg9DBplMlTCALhQaoLVBLhGqbJH0yH1MWm9cpstK1wDBvsIplYiED0nNxsZ1UZ6LapSHbBRDxl1ESiKEg5Cu1udOSmTMIxl3SMUVbplA+NoHyZhJbBwX+DEVjFFIEfgoKUAKhXSVTnqawUbXgVEFjmGJk/bdUrtRQOE45iVUwPyWJrG08s1nX6Bp3HolT+CfXLsiRU+WrwTSB6W035FC4ihh/L8uIyMXkAXQ7UaVZqCjx+gIm4PByEYp7ReVUqRPYvrsKwiSo1pJGKkg5Tv4vpNONhokLzXzG3IiQqSTq6YlYvSFEWWmV9N2UR/VunVrPvvsMy6++GKuueaaSOLjQw89lHvvvbfCH34/J7vs6N6A4h9vfF8Pov+M7a7ftqd4swavLj+mF4WN/GBVTXX+nvdTcNEhvVgyt2q906ULChi0X2X60zV8+u6iPqreqmf79ezK69/NoVOzojoFp0pTSVaWbqZLw2a0yG/Afm27Vbtu3PM4YZ/+vDdzPpePHhnZ16ZBI949+dysOquXb+Sio2+n1E/yiz/vy4CenenbrGJN3ju//oTXFs7htYWzGd1tNwpygNNhK/NTLN26ie6Nm1V7ng7s2J0DO2Zr1NfE3l70PSuKt7CieAs3fvEu1w85mMIMDbEn505lXXkJD8/5MgtEP7PnEFaXbaFboxZ0b9Rim8ay3azeR9VbJbb3obvzwfOTadu1ZZ36qLKyJGtXbaZ9p2Y0bdqAvffqWu26cdfjxM6DeHf5HC7fLZrMtE2DRrx7fLYsyrKtmznslQcpl0nOP30gA7t1pHvPNhX28eRfX+Ojl6fw8ctT2H/M3uQXVq4dmChLsHLRWjr2alvteRoyoidDRvSsVtmK7LNXprBm6XrWLF3Pv377JBf9+fSsVQGv3j+BjWs28+Ldb2WB6GPGH8m6Fevp1Ls9nfq050dpGT6qcePGERC9ImvRogUtWlTtd4cNG8amTZuYPHkyQ4YMAeCLL75g06ZNDB8+PGedsWPHcsghh0S2HX744YwdO5Zzzjmnyj6t1QpEHz9+PGPHjuUPf/hD3f2xJyr5nMYStr3t6vYtcrwyLZOBnfFVGIBXSC1pbfFdq30uhVnJb6urNElboutZJqHME1pSPKnI26yIb5Z4ZT5Oyof8OKppQ8raNqC0VYxkoR6FWw7xEp3Ez01IvOIUyUKPVJEHMc2+VHkOyXyHkpYOiSJBqlAzzN2EwNsKrpFokDHSLE/QTHmH4MZQdj4sCz2Eu2FYrQHzXCgttWLKqhAYZ4FtIQzIlG9iDDF9IfgFCuIKFVPgm1RSroA8ESQjVSiduA+MQLJOLBpztfRB3NXaCylfI2wWULIXW9zTA0lIN2CPKxwcAXEXYsIniYvCxVGKlHLYmsw3x60nI6V0EtGkdPHNGBwh8RxJ3PHJ91LE3RSeowEvhUtKaQDScxQCH185KF9rJNf02berL/GrUx9lr/mM75n7saBArjkPb6+oTAX9Vri9onc7HPvd3qeZgUL73UhDBQpHpo4GpYWV684yFZJFUa7OnyDQ+uXxjZL4Vu13hAAKC1DNi0i0KqSsuaeZ5AichE6E7JZLnITEK0mRKnBJFbkoT+AoBY7Ab+RR0kKQKBIkGypkPggfvGKBW6bHIuPgxxTKU8g4Wg89tCpNhfyOMFIqdmWtUg5C6Iil4yg818d10rkNlHVuZiWJsvkbPKCBQjoKaVf7ujoZqOsoUlLXEy7abxVg5F+0n7JJSdM/2lSwYkY4aekWZZYvSRQoScxN4QjNJPfNkimlhM736voIJfFVmhqulENZKhY8yhTgK0ilXHypJ0E4VppKa6e7jsJzJa4JGCrjC0EQc3R40lcC3w8z2Ktvu7KP6tq1K2+99Rbr169n3rx5APTo0YNmzZpVUfPnZY6jWL86xpyvoeeeZdRUarHeftzmp+C7z6NLkwsbpJg/o4CW7ZJ06a2lJhZ9n0fDohTNWvnMnlrAlo0u8XxJ193KmDG5kCVzq7lMXCkmv9+IggKf3fYqIRvbq5mz2ZV9VL1VbX8/+Sj+fMIReG7dOS5fSY57/z5+2LqeK/sfzPm9RjB17RIu/fw5+jVpw79GnFKlPvfNYw7l5jGHsmFTCS+++TX7DOpKu9ZNKiy/cul6Skv0D5ihG5szqmdUwz3h+0xauYh+zVrToqABI9t35fWFc9i7dQfy3cphBKUUx7/xH2ZuWM2luw/nNwP3q95E1IGd2KM/7y2Zz/R1K3l67jQ6NmrCr/YYFilzUd9h/OWbiZzULZtR3zK/IX/Z+9gdNdxaWb2PqrfK7JoHL+Cqf59XpxIdvi+5+Bf3sWzxen457mBOPnME075fzrV3v0rvLq3426+Pxa3ix9wtg47hlkHHsH5LCc9+9C0j+nahfYuiCssv2bqR4lQSXGh3WHsO671nZH8ykWLaZ3Pp3r8DTVo0YtABffn4lan0G9qdvILKg3xKKS4/8GbmT1vM6VeP5qzrT6z+ZGyjHXrGvnz+5jfM++YH3nzsI9p0bsmpV46KlDnlytE8dN3THHbW/ln1m7Vpym8fGbejhlsr294+arfdduOII47g/PPP57777gPgggsuYNSoUZHcU3369OG2225jzJgxNG/enObNo/kpYrEYbdq0qTBfVS6rFYi+bt06fv3rX29XAL0iHKrC+tsAsGdWzQkYVVQ/FF2xwwgT+CIXjkXHZRpLVgoNAttyjgGnJEHCVWkY6EKBKxX4WmfYKfMRpQkoLtUsSKFIFELSrG5xY5qd6LngOgKpXFIFDilP95HygEJQHiQbQqJAovJBOhLlOOBrdqEwy/cVpLXr7TghkL0JAHYND2nQKozahIE8lfGyHO0gYKERSQVaksH2H0lEatqSBtBxQLgq3Y/RVPeTDq7ja4YoOlkPAaMyfWaF0TWXSusC656sPrAiJRzKkg4JJ6ZZ5wpclNGaVoGcix6agx9oqCvTkkXEtLayLwQpdGJTOykOtg2hx4k0usz1y5BrYnXto7IA9Ap8jsooVllb28IJqK7PClaQVLcxiUZXbTDM+ighdDAHG0ATOkGpY/pxzaUtFa6vwNerZEj5kEhCWQI8gUKSykMH+gQ4rr53XAGuEEjp4Be4JOPa76U8EPkaIE82hEQDiSpUqLjU97Z0NACuNOCvsLeY8UJWm5z0MdgbQxm5Esy6jzQTXRcJ3LU0K2KU1ia3TjCdzFWBl8JxDBvbNTrqKRGsZpF2RZGQ2p/bBKUpIAl+uaNXDpnxShUKqMrAOxopF2XY58qA6yL4nhKQTDpp3XVz2L7xsYGnUaCk8VGhA9bzZxnu+ti1q9MrcsJJSnVZgV4/Yy+eGtgu7qMAmjVrFjAndkWT0uFPF3Xh8ckz6wH0n6HddXUHls6PMsjXrszj7qs78tAnswD44t1GfPBSU66+ZzFP3N6ax/+u2WW3PL6AP4ztxpyvq68P+s/rtETFP9+ZnQNAr4XV+6hd3pRSXPT8Kyxcv4F7xoyiV8soM64uAXTQgPXS4o0AzNu8BoDXlsxgTdlWPlg5j2XFG+nUsFkwtq/XLaVZXiFdGmUnrPzjna8z+esfaNe6iGfuuyBrf3GqjKT02X3vrlxw7Si2bCohNrwxJ7z3MKd1G8SJXQcAcMtX7/H4nK9p16Axnx5/Eaf22oPRXftQ4MUCAsCa0q1MWbuU/dt2jzDTpVIs2LwegDkb19TZPFXHOjZqwn8OO4kDXryfzYlyuhdlB6kPbt+Tg9tvG5t0p1q9j9rlTSnFDcf9lSVzlnH981fStV9UBqWuNa6TSZ+VyzcC8MMCfU+/8/ls1m4sZu03C1mxZjMdTNBOKcXM6UspatKADh2z77/fP/YWk2Yton2LIl67KXuVTPHmElKJFPu07sgf9jqITYkyOi/xuOy6ezj6tH047IS9Abj/phd57bGPadm+KY99fiOH/2IE+4/Zi7zCeOCj1q/axKwvFzD4oH4RZrqUiiVzdQLKH2YsrbN5qo616dKSP718JecOvJbiTSV06NU2q8zQowcx9OhBO3RcdWo7wEc9+eSTjB8/nsMO0ysbRo8ezT333BMpM2fOHDZt2lSn/dYKRD/++OOZOHEi3btv21KrCMO7IpZk9u6K26qFqfAYKhhXloRDGAjGMM3N9qCIBdGlBdIVToZsiy8g5ekaTkqD2ZapjkuaQWo000U5xEohf2OK+PpynI3FqNXroDAfVRhnc888ituDzFc4CYFXLFB5LioGMk8hG2hN9WQjPdBkY0GyESSbKFKFClmgwFMoT6LKwJEujhSQ1ONRlonuEgXOrX+282bGG0gpOCp30lFbQaCRHke/Cxfdp7U4BpAO9amE5pD7IZQwD5QPwgJUaJAHAZ6n8MxJkso18usa/nGFCuQRHKEZnMKMy+oNgyClfLb4BThSA0ye8AN9dd2GBr9ThsFuD9o1Q3QdrcfuBsxyJwg4CNJa7VoyQR9fzEhKUFNN9F3c6tJH5QTQw++QDtyoChi5GQGkgLFeWyQ95KMi/imzvbBkVOY9qGM0EV/lJa1z0m8pq6vuAEm9IkUJocFz46cEBD7ALYNYmSJvS4rY1iSiuAzWb4JYDBV32dohj5J2WjrKTYBXIvQqk1JQeQrZ0CNRqBnnOOA3FPiNoLyZItlYogp9RFzixiQy6eALB3xwUkL7pZjxo3EFMe3P7FxrSSc9D8JVuDGF4yqkWSXkOAQSLoYProFkM3ECJ81AFwSyKLgKJ99H+g4qlWZlS+UijVyKln4R4AhU3Lj1hJGqSXmklCTPTZl4ooOWniKQk9Lj03JUMU9rlEuzhCcA0s14y/z0D2ZHaAReIfCCcWnwUjPQ7SoZffwi/B4Cz4P2HL0iSirtZx3j/2uliV5v9QagFDMmFzLk0C3E6gL4rLcfhZWXChbPzb2EOpWElx9qjhCC6V82oHiTy4sPNCcvz+eEi1ahFLRqX86aZTW7IBo09tlv1Abady2vunC91Vs17MP5C3l/3gIAfv/Wuzw7tmKN1te+mUWn5k3Zo2PFMgNVWYEX495hpzB57SLO7K61dg9q2IPP8xYQn1vMP467mysfvJg2XVrx2pLp/GbyS8SEwztH/Ir2DZpE2irM1/dfQX72fbiqbCNjP7udMpnknr0uZMzZ+wIw6p37mbNpNYu3bghA9M3lOmHd1mR58LM1Uxbl5HcfZ9HWDRzTuS93DT8u2O46Dg8fdCIfLl/I2N47Hghqll/IR8dfyOZEOZ0aNdnh/ddbvW1vm/zm10x6VSdYvPOC+7jr01srLDvx9W9o27E5ffboWGGZqiw/P8ZNfz+FaVMWMcbogR+8bzu+nruAPTqupq07HpX6E8LrwMQJM7jtppfwPIdHn7mE1m2aRNpqYHxTYV72s371knVcMPC3lJeU8/d3/8B5wzVgfskxd7JwzgpWLl4XgOhbN2kZt5ItZUFCyUxZlKuO+TvLF67hgOP35ur70pIxrutwy3NX8NWEaRxzYVTiY0dYUfNGPPrNn9m6qYS2XSuW0aq3iq1Zs2Y88cQTlZYJk2ZzWXV10MNWKxC9V69eXHvttXzyySfsvvvuWUn7xo8fX+22qgsN1gV7M6vPHI3lHE8VYFdmgEWEd9iPFngIQHUL3CiU1GCKUJp9KQQaXDGgl7SSAx74cUUqJoghUK4DTRqjCvNINoqjhEJ5IGO+AbwdpKt1zp0ynfhUeZDMTw9SuYpUgULmS1TMavkCMUWq0AeVToQnUuaYTEJRZfR/VRg8MceoQmUtWJfF4o1MWjijoamXdCApECnNshRSay1T4hgpCRFpR7mhdiVavz0BMinwfcCVQcI+PQylgTE0W8IhzVrVDFTLatWW9AVSeghH4QlJYSxFgZsy5F19khyl//OVIIkGqjSgbgYWsD0Nk1UpXOHjORLHMjodDaT7wsVXjtYxriHLUygVvHZFq0sflWXV8AfWKiq2Lfi5qsbnrDoiRwGRftlbSaJ9jzDJgIO0B2Z1jIN5EAnNRJeKIFEyCnAhFVP4nsB1wPEcaNwAlRcj2SiutcpjgmS+JBWHVAzcAoFTDm5KuwE/D5IFyvhJgfQUqUIJeSlEzMdxpGGxa1kXX3rIUifio4QQOoeBp/MXCDd08EqgpNCgt9L3lU2QqbW9Veg7Ws8dpft1o/rfSgpUSiCFq7f5LqQUqVLHJD8WelJTAiGFYbKn3ZRIgkgACQc/pmWnwmx5vUrFrAgS0gTgZBB3TLPUtelVMzanrMRzfTzhm5UxjsbxESZgpyO0MiL7kpa2svC9MAx4nUBZn/u0D9P+Seo1PJVcgdm2q/uoetPmuDBo/631APrPzP51fXtmfZU76de6VXEeuCWaAKvfkBLO+u3K4Ptlo3qwfnXlOqaZdt19PzB4/601H2wFVu+j6q1/m9a4QuArxciunSssd9PL7/HM5GkAvDjuF/Rum05CqZTil2+/yOz1a/jHQaMY3CaqXbumtJj3l87juK79yPM89m/Tk/3baHb0unVbufXSF0is3Uxy6hy+Bd5+ZCJn3XQKm5M6WJRUklI/SaZdd/lRHHFgP/rn0MpdXrKeYl/Xn7dlBXs06QLAyV0H8n/TJ3Jqt4FB2csGDmPalnkUFcCGxFaa52Xf1wmpmRflfipr3/C2XRjetkvkeC+c+AIxx+X+A4+nKK9iuab/zZ7OEzO+4VeDhnJY1x4VlqvMmuQV0CSv6pwKP0Wr91H11nNwNxzPQaYkex0+oMJyd9/yMq8/OxmAe58bR7feadazUoobxz3OD9+v5Oq/nkLfgVFft2HNZia/N4MDx+xFPC/GkOE9GTJc+6gtyfW8U3YtB5+xhbObLIYUqNLnEY0uY+tWHYBLpSRlZdm+4eYzD2fUPruxZ9d2WftWLlxNyeZSAOZPW0y/4Vpm4/CT9uax29/iyFBCz9MvO5xpH8+iID/GprVbadoqW3M7mdD9J8qyfeWAA/oy4IC+6eNdvYmbT78bL+Zx/VOX0qhpxSvi3nn1a1577itOPWckww/oU2G5yqxRs4Y0apY7kfNP3X7OPqpWIPqDDz5Iw4YN+fDDD/nwww8j+4QQ1QaoVAjEqdQqY3jW0CoE0EWOz5aFKqLbsljylpFumYkWawiB5QijLEAaI9HlNRglUlqywDI8Aza6AYMxZG6vTJC3JcX/s3fe8XEU9/t/z8zuFUmWbLli4wY2tgHTm+kttFBDJyEJISSkk8IvhRT4ppNAGiEhCflCgITyJaEmEGoIHdOLMQaMbcC9qt7tzszvj5ndKzpZkpGNMfr4ddbd7uzs7Ozuc3vPPPN8VGcE2SwmnyMalqdlQob2MaAbtbMTiERqCaCFwORdHYn/uAVHaOUtpk47f2B/YMn+CJziNG2jJk3e50h06+pLOBjjFKHW4mwJZBnBlqhg/V8hS50oqr3lLY50KkpkUaTkuowEKqLk0S5dm7CgszbdXuiyc52BMKfJZTWZoAaLWKYSTzyQAU8sVUqOjVWpAr0hU2BYrgOwdOjQg4Prc8dEObsW7RWdArzXcLIvS6g0WanJyBglHakvcUpYbQUFI7BGOjsG+hi27PU+jH7DqHSjqr/VUa4st2sv2tO6Xm1QhUfdqtFLwumUKE/XJwN6fpG0/uXzOJAcUsLrascREwg/gEYlRhm3fdgJYYdGxsbla8hniRsztI3J0D5GUhzscxrEPpFxDDISxH7WiAmsv+AFVll0nYGmGBlqhLSpUtpYsKEARUo2p/yztBBaRGCQyg+oWVwe0NidpGS2R5LY16mwnSe6SDrMd6IQDtOEdUS4EGBigS0qbCTT0QZRlIjIbWc93oiEQE/q1X5Q0oiSmj9rCIIkkakbgBDCTbQRQKAsSpkqjKr1BerfC0M21AzKFDBWUIhdX1rrLbK8DY+xjuRPDjX5TpL+YpY+GXModVkZ7xVvBLG1xEa4r4C+zpZ5n2PUQLgoFgSXfHMMOx/Qyj5HrtpkyPTXXsxx59+a6WiX7LJ/C3sdvrp/LEY28ih0CG7536E8+3Bdr8pLZTnitOXMOGxlxfKTP7+Y1SsDXns+z53XNVPsWPuU9CHDIwYN6frj+B3FAEa972NYQz1PfeVztHR2MnJQ7UEhgIWr1qTvl7W1U+6q+tTit7ln/msAnPfgXdxxwscrtt3n/35PR6T540uPc/cxZ1WsKxQiokhDfZ4Rk0cTrWljz2Oc+vLkiTuRUwEjc4OY1Dic6shlQ/barUQ8/3nOg/z51Qc5e8p+fHjiHnxu8hGsiTqY3jiRbz75D/YYPpGPTt6Vj07etaKe2S1v0qaW0VaEJ5a/xmGjd+iyr2sP+ggPL36Dw8b27Cd735uv8dTStwF4cOEbfHBC98TTjx/5Dys6O7jo8QfXmUTfpGMAo9730TxyMDevupLWle0MG9N9Xp0lC1el71etaKtYN+vZ+Tx+38sA/OaCm/ndTZW/kc/Y6/sUOiNu/MP9/OHeb1asi22R2EYs1RlaGMcg2Y7IOUX3B4/eiUw2YNiwQYyf0DVJZD4Tst/00ozx6y+6lesvuo0Pf+s4jv3coZz1k9NoWdHK9H2m8rOzLmOH/bfhmI/uzTEf3auinleefoPlC5YD8PR/XuLAE/fosq8Lb/4qz/53NnseuUO3fZTE43c+y6zHHWY/ff9L7Hvcrt2W/eOv7mLNqnau/P2960yib9KxCWPUOpHoc+fO7e929Cp60/+1BJf9WT94BXE50R6A1S55aEKkCTwhXkaYo0rklNQgIzf6ZwNXkYxKjTAJ4Yy3R7e+rLAYKbwaFOJBIa2bBbQPT4hkryfNAKFGZyW6rkQu2TJzcystZAyE3uu3rCOEMNicJZYGEyhUmyAoCIi9ejIh+hOyLSF2hE9QGPl9ZZLRgjKGUTkyyw0ulEYbhHDKTi+XdB7mGlS7J3q0RRXdsegATM4X9W0yIRUDHyZ0rJlTeBukHwVIeklJmXo+GyuwWqJk4jkM1YNmiSpdYahXnWRERGQVGRkTGUtsFQKBwmCFJRQgpPYkuiPIstIpaQWWjIzJypg6VSAjY2IUxghXTjiyviBiIhNQ7ONV/X5PNrO+MKri3q8KUf7G1saT8rGivhDp1XWVk+Fd1tmqdYLEIYTE0QRIiVRwntk2cNtKPzilIpCRwwabcRXJyNdq3OBcmhxYlFTbxg+0KeMS/Mb1Aa2jAtpGCTfrRTq23WaAjGuXTgbefFvTfAwCyGpUaLBY7xGeoLxFhjEM0mgVIDoVsijTBMNEAkKn1k6tXARuh0ZgI4HWEqkMMvCY6u97KZxHetpVwiCEQAmDNs673Urp8E6DbJNu8E4LZNEfUyh8v+H7TaT4lA5SSIsVBmkdJkhp3H0r3EtJm14rySCbwI/TVlxjpW8+Zw2lyQdFAmkoxIpAaqwB7U+YAJTQ7nvG7yzBqMDbxrhBBqdAz6qIQDqrK5+uA6lAW0ksBbGRGFH+JdJzvN8xaiBcGC159uFBfPWXb24yvujGwNc+tCXtLQGjJxT46sUb1mfz3YzrLhnBNb/ovZ3FoSev4As/favL8j0Pa0FrOP67Y3ok0AHO+fkCttquf21cBjBqIADqwpC6Hkb3fn7SEZz3938zedQw9po0vmLdVs3DyChFUWsOHLdFxTprLZ2xk8ks72jvUu/o0UO48GensnDhKg49dDqB9zd+s30Rf557A1sNmsjeoyoT0WlrkJQnLHfx17mPsTrq4K9zH+cjW8zgtAn7AXDuzBu5/c3nuWXBcxw8ehr1QaUNwl7Dp7Lb0EkIYM/htUnysQ2DOblhh7X2URL7b74F2w0dRUYp9tps/FrLnrr1dlzx/FOcMq2U+LNYiFi5tIWRm3dPGBZ0zF9efZxR+UEcNW56r9pVK26e/xwPLZ7LZ6fuXdN3/t2OAYwaCIBcXY5c3doTcH/jwpO4+Dt/Z8LkUew0o3JAavyWIwizAVEhZrcqIthaS7HgBqhXLe8602tIZhSnjf8Bq6LFNAw+CCkctbhgziJ+f971TN1lIof9v6MqttHaOHvIKoy6+dJ/07KilVt+92+O+/xhnPgVh20/OeN33Hf9I9xz7cPsfcwu5Bsqj3W3Q6az0/5bg4BdP1D7fh81fhijxncl8mvFrodsz1Y7TSTIBOy437S1lj3iQztz87WPcfixJbuqgo5Z2tnK5lUWW+VR7Cxy0yV3MmxMMweeule35XqKu69+gKfufo7TzjuezSd39VR/t2NTxqh1ItH7LcpFdOXsUndluwtbY3VPDNXaFKX+b0pU1Wqnf+8FkKnKvKJIogK1OJ9uAQiblk1U2okC3FpPdgkgUVobpwyVGrLtltwqTbiiHSElJhOwelIdbZsLOkcabNY4ol55QgqnJCdwHr/WArFXU2JBGUTWOGLZOPl5mvRd+Y6NJMIIlHYdIjXojFdZVnmhp11lS/tNvN2FwCUaTdSYyXZepZ4oWdOIJLIgCFsFQouU+1IF10cm4+qU3gLCKIHUpIlHdd5i85agQVNfH5ELNEpYNM7HV5vSiUxAXCREfg0Vuu8NAqkZWdfKqHwLa+KsSyxqE2pLltSaXr2akTZVjmZVTEZoIivIypicjKkPijQGTi0am5BAGgJhnIWLvwDj1KemD7EJj/xt0Kh171djR3Lvd8eQJ2Rw2blYKzz1hE1l7eqCUbXaWrY8wauSnwju/rPCSbulv88jZ6eS5DxwdKrDMitxUyrKMcqT7pl2yLZowpYiKAlhwJoJdbSNEXQOs86rPMBtS+kYhDQ+Yal1BLqf9WeVJayLEYDWKk2saa1wFiOhJTIORERyT1u/n6x1+RX8cQsJRieg4zpBSFdGCJuq0JVyf7X2XuiihBHauPfWCkwsIZaoFoWMvKpdO4wyEmzGDcbJCEQiKfdjhGifpyJvEfWGbF4TBCa1kSlXhiefA69CdwR6cgxlOObLS2FpzBYYnC2wupBBCoiMRFvfT/57yxr3xj3IujpCZQikIdLS9YW01IURdWHsLKa0IBDOziq1vjGO3u/zTLEBjBoIH1vv2kahA/K9zyG5Uca8V7JcfdFIVi4JiIruhth6l1Y62yHXO2H2ez72OXIVD9zayIJX137AQlhO+OwSDjxuZbdlpIQfX/ca9/1jMP+6eigHnbCSfY9ahbVwzcUjefGJBkAwYkyRxuauU8XfcQxg1ED0MhryWX714aNqrhuUyfLSGefQWiwwOFdpKyKE4Jf7fZDrX32W/7fTfjW332mnCV2W3b7wPp5dPYtnV8/i4JF7MizrCOVHlj3Fr+b8mckNExmsppIPMnxq0oEEUvH5qQfyl9ce5szJ+1TUtduwCdz+5vNsO2Q0edV1sKAxzHPJrl2T/vUmWooFnl++iJ1HjCGrHOUwIt/ALUd+LC1z/kP3cPOcWVyw98EcPamSwDt39304d/dSe3Ws+dwRP+fN15fy6e8ey7Fn7Ftzv397/Ul+9vw9AGzZOJytB/fdp74jjvh/T9yCxRIZzS92/1CvtjPW8oNn72BuyzK+v9NRayXS3nEMYNRA9DLqG/J85xcfrr1uUJ6/P/Fd2luLNA6u/O4WQnDuLz/CHdc9yhlfr41xE2sMoN30x3t56j+zeOo/szjsw3sx3Kvk/3vTTH7yycuYtusWTNp2LPmGHB857zhUoPjY907gxl//i5O/Vrmf7fadyn3XP8JWO00kW9fV5m3Q4Hp+9Pcv96YbukTbmg7mPDWXrWdMJuO92ZtHNvHr+7+blvndBTdx/y1P8Znzj2P/o3as2P6Mzx7EGZ89KP0cG8ORd/6J11uW8+0dP8AZW+1Wc7+3/eEe/vStvwEwftoYttxhQp/b3tle4MKPX4I1lqgYc95fz+nVdsYYLj3nCha8spAv//4sRk1Yj17smzBG9ZlE7+jo4Mknn6S5uZmtt966Yl1nZyfXX389H/3oR/utgb2NPp+b7qSgZYLpCll79fKEr/FqTht4QpeuCmZwBI6QrgyALFqnTtQ+WZ8nqlTRqZikAuPFACK2BK0W1WoRRYPJZ6AzIqpXmIwlGmQhrx0priwqo1Pvb2tkydvXe7FYT0qn6m/rialEVpoow6XF1ll0qDF5hWyXBG3OhoCYUjI573dupVOsCmPTG8YmXujJqIH3BHe7SRsGON9i18aE+QLj+9UEuASjodufCSw6A2STGQCOjXNWLxaTtZCJQWlCGZENIk+cC4xJrAiEV2Qal7xTJKr06gsibQ7GClYVcmRlPdpKOnVARmmyMkJhaIszFIy7rTJSE0jtSCepCb3xvdYhRR2QkZqsKJIVRd//bl9KGIS1KBGSETE5GdGq+naFb8ojfz3F+sCoLpeE6H59TVjxBZLz0R38rHW/a1lWvo+UXE/KJvdp9caybDuJs0VRjgy3CJQ1qKJTlOusTMn0oACxtR6jPDmsLarTojoMIjbofIgo6hJGNVhMvYHAqdBlmIwkOowQ0iIDp4AmIzDGDyJ5YttZRMXJKBmJTzdYMlmDUZo4G2A6FXS6ZKMUwArvTa6FH8Bz6nVrZAmjtEvKKYSbSRMo4+xMpPXJN13HuaSeEGuD1mEJ0wTOA1BaTOBnERkw+M8BCO3IZvwghM1ZTMZAXYxQGiU1odJuBoy/MowVGCudGlyalNRGCwxOGU+a+NifWmsxWDqjgFYZEhtFUSuUdIlLjRF0xCGRcQNzgc927VTwltAn7TDCZWGQwricDSJGel90a11yZARoo8hIQU7FdBT6RmK9nzFqIEoxaEjMN347f5NQof/y3M156YmSr2XzyIhzf/3+UaED3PN/zT0S6AC7HtjCJ89btNYyQsC4SQVu+fNwJkzt5JyfOcX6nX9r5sUnStYaZ377bbbeueOdNbzW/gcwaiD6KQIpuxDoSRy7xTYcu8U2fapvt+bt+c/Sx5jUMJ4hmcHp8idXPoe2mpdbXuWNNcswVrLd4HHsPWIKx47bkWPH7dilrhMn7Myho7emIcwiRf8C8Wl3XcvzyxdxzMSt+dU+XQk4ay1XvfgM2lque/m5LiR6dRQ6I96e52wbXnux6wyWJMZ64jqvQpqzlXhkrUVbS9DDl05WBWzfPJpnVrzF7sPXrpgvj9mrF3PN608AcMMbT/HlbQ7s9bZ9jQGMGoj+iiAIaBxcmxY84LhdOOC4XfpU356H78C9NzzG5B3G01yWUPSxO55BR5oXHp7D8/e/BMC03Sex22E7cMhH9+OQj3YdTDzijAPY97jdqGvMI/v5YfHrH/wJc56aywEnzeAb//uZLuuttdx29cMYbbjzuse7kOjV0akj5rWuAOCllYu7LZckEc3VZWkaXunhbq3FaIMK1j4LL5MLmbrbZGY9+grb79f775C5z83nlt/9G4B/XX4vZ3y/+4TZ7zQ2ZYzq05X4yiuvMG3aNPbdd1+mT5/O/vvvz8KFC9P1q1ev5owzzuh9hdXqyepltdb3VE935XtbZ5mCM1H21dy+rKzA+winHypfiVd6okiXGpRPJEriiVuueA48GS0cQRx2QLYNcqs1YadBdUTYbEj76Bxrxgv08BgyFhGAylhU4AiuRHWaEvgJR65AqESlKVI2PG2/ILVWcApxCVY6tWXsfHyFEiCFb7c/QFXWP7J0bCU/dFvRH0lZqZwvpmNlAogUolOiCgLV6ZTjNuMHGgSQWLmESR2u74Rw5LrJWWzeoPKGhroiTfmiV3C6BlqkTwQqU49yKROSPDlx1RcECCEIpGFwthMhBGuiHAZJTkWE0hLbgIIJMUhCackqTVjmfZ5VmtiExFahhGVw2EljWCAjDRpnBRMKR2QZ4doqJFiczUyfYhMe+Vtb9DtGQc/YUbZMULtMNWzUhJ+esKu6LdWfy3MPVC+zVeWrJ1tId31L/0UnY5foUwJWiQqMsgJsILAZAdJjVCdk2yzZVo2KLLKosbmAzpFZWjYXRMMNwivDRegxKMmPoECGDrOkf36T0mGUCty96bCrBB4JnkmPbcZKp87WLn8DgYVA+FtZlA5TOVm3qOqjROEeBoZQWZQsqb2FEEjphPXgiGMdKygqRIdEtQukFQ6PkplFgcBmccPUyUXh92WVxWQs5A0ya8nmNPmsTn3YXb8IR+BbQaAsgXQ2K9aCKftyESLNZJFCYSAhH8ZYBG3FDBZBRmmUdJZTkQlw2Oe815V0CU1DaQiUcUlIrUAJS10YUxfGZJTLdp/UH0ifQ0O47S1iAKMGYp2iZaXipj8NpdD5brfknccJn15KY3PJl3vF4oDTd53CvX9voq1FcNn5mzHryXyFVdSmFgeftJwxEzvp6caeeX8Dp+8+lY/tPoWP7TGFr580kbdeD7uIUOoGGa549EW+9+fXMRo62wXPPFSf1j96YoFR44o1xSvvOAYwaiD6Od5YsYIf3HcfC1at7vO21lq0B48dh2zNX/f4Jf+z7ZdRZcT3MWMOZech0zl81AcIRYZBQY4tB/WsMmzM5PudQAdY3uksapZ1tNVcL4Tg/+22D1sPHcHZO9RWbJZHXUOO8y79GMd+Yl8+9rXD0+X/futlTr3vCv654EUADho9hTsP/Sz3HP55RuVLBJU2hpPv+Qvb3HAh/35z9lr3JYXg2v3PYOZR53LKFjv32LYkthg0jO2bxzAkk+egzXr2iH9HMYBRA9HPMX/RCi7+6328tXQdMUo7jNr5gK35x9xfceE/voJSJWw58ZzD2f2w7fnQ5w4hkw+pb6pj/LTNu6syjYbB9f1OoAOsWuryWaxcUvt4hRCcce7hbLH1aE789AE91tcQZrlkz+M5Y6vd+Or00oDAQ7fM5Csf+AH/ufExAGYctTN/fuEirpz9ywove601X97nO3yw/sM8dNPja92XlJJfPvh9/rHiCo789Ad6bFsSY6eOZtruk2kcOogZR/VtcKTPsQljVJ+U6F//+teZPn06M2fOZNWqVXzlK19hr7324v7772fcuHF93nlv+7QnDr3XO6uurDc7L5eMVslHE5WnLfHQ6TJhq6qXjixOletWIGPrlOmGdAMjXfI+a8CGAtUJIrbIokVoA5HGZAPi+gAdJr7DhjAfobVAKUM2jCnGikJnBrREBAYVOoWhDEWlL3rSUJlIxpMhI09yWQv5GHIxcYPArAoJVktEwVkXOAW9V19asIF1QvKSY0KqVMf7uFtRZukCmNgNLjiCTWM1ICVWQFRvneo8ZyFnK3ZmPWkvvNUM4MiznCbIRQRhjBSGzkhirPC2D6TqV22FI+nKlOixdrYHtuJCSelDYqN4q7WRUGlHHAlHbA3NtBFpaC1mKMSKTGCoCxX5IEJqRSQ1Ulja4gydcYAU1iVSzMfUqZjYSmJPXkkhvAoVDIJQxsQDfsO9ivWKUb2Qj3enSC+Hn1pQVL1tT3WnCvOqddV1pMSCwt2vyTEkDSmvw2OZSm4n62bGyNhX5Ml4Id1YlzVgMgJRxE3f0E4xbmOTYlScdfYiKtDIfIyJBTIwqMCgtSSOQq+sBplxti1KmdRaCRzBjcUnxiy3nSodbZDRBJkYUyeIWzPQFkA7ECunRAesNJjQ7V8qjZTeX917nGOhKB2xnAkMmcASG4n2uGEc/06oDFoaN2NIC2dvpQwmbyBn3PdA2UlOLFmsdV8MQhmCjEGFMVIZwkBjrEsomviQO39y578uhHFe6cLNUolNCVzTRKF+Hou1gkhLVnbmEFjnYa4FUgTUB0WMgc6CQhuJUpZcGJMNI++17tqQzNgBiI2zASto6W2r3PkEkBiUcIr5UFp0H8Hm/YpRA1EZTUNjPvSp5e92M/olrrtkBGtWlNshCBqaLAd+aDUP/rOJ9lbFtPWgmN6Y4o6/DuOtuWv3ZgXnhb9kQcl7+YSzlzFmi66JQYWAUWNLqdUfu7uRe/9e+sF50ueWMHXH9dOnAxg1EP0dR119De1RxI0vvsTTn/9cr7cz1nLa7dfx5OK3+M2BR3HYxK1qlhtbtxnfmPZZAE4Z90GkkORqWLRsqPjLwSdx75uvcszErbst8+kdduPTvSDQk9jzkOnseUil7/GFz93N/LaVvNW+miPGOkXmxBoe5iuL7Ty5zCnY73v7NQ7ZfO0ktxSCxkzPeFYeWRVw/f5nVizT1lQMdvRXDGDUQPR3nP7da+goRNz+35e453d9wChj+MYZlzPrmfl84+cns9cHtq1ZbvzUMVxw3Zfcvr51LFJJsvmuFi0bKn5087k89q9nOPDkGd2WOeFTB3DCp3om0JM4ZPMpXbDlT9++jrdfX8KS+cvZ7/jdAdh8q64e5muWtfDiw26A77Hbn2KvY9eOjVJKGgb3zQsxk8vwqwe/X7FMa41SPeef6WtsyhjVJ0R/+OGH+dGPfsSwYcOYNGkSt9xyC4cffjj77LMPr7/+et/3XkvhWaXqFGsruy77W8u6CtX5WtqZeMom5VRc1c5ylixRW0KFv7lTrvuKZOniEgGYOoHNOsV6WICwQxB2GIIOjYw1BIrikAydwySFkZqgPiIILFhJJmNACKIodGy8ABXaiqnSoup/906mKxPlelpe4hKJRgrZIZGxV0uq0nEL5RT01erzpJ+sAAJfV8U5FOn+nE+vhIJCFgQydgpYskAO78HslwWUVJ7J/iSQMYiMJsgYwsCSz8RICdq6wkI464bYOIuDQBmUsD75Z6LyrOyhROGZvrw63OJ8ivNBTKgMq+N6itodZKgMWaUROCW9kpaCCejUIRqn8hwUFhgURE75iUL6siCxjqLyl9OA33BvY71jVPWyWmVJL+1aq8ov/fRla9Xdy1eSW6Hmer9cmqr6q5Xpfv/SCKTxKvRktoy/x5LEpDYEXSewOadcdxgFQYdFFbRLghxIik0BhWZJYaRB1sdI5SyjgtCpmo0O3KihAhXqdPZM7ZdI7aYSrEhxGA+j0hJrhe1UbmBNipISXQBKIJX1L3/8VqTrhbRkAkuo8PdhYpXiXklug1hL4mIAHQrZ6fDBZihhlCq9RDk2JZgZGmRGE4QWpSATWG9FL9JjsQhi7QbjQmXS5MTWSj9bpvYFmWAVCI9loIQlo1wSn7ZiDm0cFgbKEgYaJf1Ah3SkuzYKl5zUYVtGGayfxSNxfZO00SaYamXfv5Lfpxg1EJWxernin1cPJu7Kn77n4uf/eJXP/uBNsvkS6fvG7Cz339TEv/46hH9fP4Sz9p9cU3G9KcTbb2R46j8llXhf4s5rh7BskarZL3/8/mYcv/XWHLvVtlz8lbEV9d/x1yEsX1J7u67RR5QawKiB6CGstdz8wixueOYFTC8uwqRMb8qWx6pCB48uXEBkDHfPf61X29QF2fVGoFtrWdi2JlXGdxeTmobyqW12Z0S+gSeXvNmtIv2dxvETdiAjFSdM2H6t5YblGvj69gdy0OjJfGrq7uulLdXx69k3cfC9X+equXf3f+UDGDUQPYS1lnuue4Q7rvovphfT4IxZN4xqWd3B80/MJY40j933cq+2yTfk1huBbq1l6dsrU2V8dzFuymhOPOcImkcN5qXHXk2V6f0dh5y+L2E24JCP7rPWckNGDuasn36EGUfvwknnHr1e2lIdvz3nzxyePZVrfnhj/1e+CWNUn5ToHR0dBEHlJr/97W+RUrLffvvx17/+tf9aJujyUNznH+nV0UWmWfXecy3YMlILSkrqqgYInLJcl/mhJ+UMldtY6eo0CmQg0JHzRE8SY4rYJfIrZgU6sOiwdM0ZBYVGiVEZgjaFKhhkZAjbJJmVClMvsXURYOgsBFgj0K0Boi0ADXFeQZ1GBJ72kBYVmNSOXAqIExl8qkT3XsRGOlWotIjBhkhZ9MqAzBqBKJbIZhuBiF2CT+sJdRvYij4FAaF1V50sJdGz1iUSdDYGBjIak3d+yzajIWtBWWcHA176b0vJGo3wVjHuuIIwJpDOF749CinqypE1p6Z0x6+EU73GRhIb6TyJk934k2f9xeg8iMFYhfH2D0Usa6IMAk0UC9qLIdpIYi1oK7pEoc7vPOkpR4YVhaSztZm2OEMoDViLxl0ksSfDQmGc8tRKCn30GwY2yVG/nqLfMaon0CknpMvC+v9E+eey4jU3q9pXtdocUXtZUtiWVZ6W8ztJbpG04loNEA7LjBRoBUEg0twNQoPQDpGMkB6jhLvnhUUHgkKTQmcFQZtGRgZZtKgOS7hGYhoENuturmKncok5OxSyPcBiifMSWx8RZGOktGQCTSaIU3W1a2tApIOKYzDG3Z/OIx3ydREFYdFrMsg2CUWZ2pZbabGBIg6Mm7EibWpbBRITC9qsSx6aDWMCackFEbFWHhuEx0uLDDU6p4gloAxkNXgbrUrje1ECcmVRXnkeBCWSLdKSSJdGLQ0+aaq3bwmkxlpBIQ7QfoZKilHp+xIBX3rv+kRbS0E7bDcGoqIs2zZDNnB+56XnHIECtIXWKER4lXxkFZGRSK9wl9Km+SRiIylGfQec9yNGDURlDBmuOeIjq97tZvRLZLJw42XDKXSUnjm22LqTpqGamfc2AbDHIS01FdebQtzzf0OY98q6ZVA9/LSVDBuluyxfs0Lxf7/r3o7iiI+sYOiIrtvVjgGMGoj+jYffmM+5t9wBwJurV3PHnFc5dKtJfGXfvWqWv+HUU7jyqac5a9e+TaFvztXxrd3349GFCzh7u96rttdX/OLZB/n1sw+zx8ixXHvYaT2Wv/SFR/jZ0w8wNFfHQ8d/lpzqc0q2tcZnpu3NZ6bt3auyn5q2B5+atsc672tZZxvXvf40e46YyI7DxvRY/t7Fz2Cx3Lf4GU6fePA677e7GMCogVhbPH3/S/zs7MsBWPzmSh6660X2Onw7PnbuB2uWv/y7p3Dtv5/m9MP7hlFNQ+o582uH8/wTr3PCmbUT/m7IuPrnt/PXi//F9D0nc+GN5/RY/rqL/8kVP/gHTcMGcdXzF5LJ9e8A5KnnHsWp59ZOzFodJ517DCede8w672vlijb+ecvT7LjLBLbetmernPuvfRhrLP+5/mE+fN7x67zf7mJTxag+KdGnTp3KzJkzuyz/zW9+wzHHHMPRR/fziEkVcW2rXjXVoL2JshERUb082XV3ZaqLW0cwpdWWE1hlvsPW+vUJ6WFEquzEAt4aJa4T6DqwyiILIAtuHbF7ychiAklUL4kGQXGIJshpsCJNghcXFbagIPLsUeBUlo7MFi5hqCevRRkJh7dJcApPWzp+n9TSGqAgkEXh2itswmdTIYstPy9+PymbnpB3ST8kHhJJ3xsBkSPVrbRO2RlYP9LgO8y/F8J4osp6Uj1JTui9ksuUqsnOLc4qRVtBJtBIXF9ob6WQ+CAbnMVEiXcUpeSQiYGCJ+EzwmCspKWYRVtQnsBPiCnj603IQGOdZUYoDBmp0UY42wUjib21hDUgPIEeW0fg9Skqkra+f2K9YlS1+LfW8qrF3RWxVSvKHJbSV29U6BWV13qVjYuttYHlbTK4+7vslgOwxmIlxHUSXScwytlMyYLfxuASDscWqzxGNUA0RCOzBmuES3QM2EgiCgoRJxhlEEFJLRDIuASk/j7S1jUu8S/v7lh0JB32GeHxySVDLs87keJUeecL5w2uZGn4zBjhsaG0aWwEuqigKFwHBRYRWoQ07pVglbDuPZ6w97YsSq2d8EmV5BaygbO40ekAXxlGGZFia3KrJ8vSwUnr5rUo4eroKLofrjKZhSN1Spxb67Ax+S6QwqnYlbRExhH9xorSYKM/XaVlAxg1EH2PVcsCHr1z0CbhE/7Pq5tZvqjyh9erz9fxjVO2IAHS6y8ZwZeOmkTrGrlJXPprVirO2m8rDh87nWt+OZJ1IaoB7r+lifbWUp9c95sRfHD8dE6avs1a67z4K2M5fPPtOGzz6Vx2/mY9zGjo41TlAYwaiB5iSF0e6XOTPDxvAa8tX8GljzxOUdf+nt96xAh+etihTBo6FGstf3n9IX4169906GKP+/rUdrvx50OPZ9KQrjYlGzqeXvo2AM8ur0wO/Oyyhdw5/5UuKtYl7a0ArC50EnXTN+sSi9tbiDfwl8f3n/43Fz//H06//5pe7fucKcexa/NWfGZy7wi0PsUARg1ED9E0bBDST7d/5uE5LHh1Mdf+5i6iYm1x3lbjRvDdTx7KxDEOo2685E7+fP4NdLYXetzXCZ/Yhwt+9zHGbdlzHob1HS8/OReAOc/Mq1g++/k3efjul7qo8lcsXg1A66r2bvtmXWL5wpXouP8wrzdx6S//zRV/uJ+vf/EadNwzRn3hkjPZ5ZDt+dTPPtr/jdmEMapPQ8HHHXccf/vb3zj99NO7rLvkkkswxvD73/++9xWujQS3VeW6W5es7+25qUGMV6tFK6otK2/LCyfLJG4qf0I4VUdCiElHkmPcNkaAkML5ncegQ0GxHgqDLVGTI6ukAd0hkMZispJis6SzoMiu0ORWakwoiOoCOor1kHFETbEzcMn1YoGMQRYktEtsEGBCi80a4pxEZDUqcIQUAlRonJVK2QEK6Xxv3XuLzFjiYQXinHHe6G0C6QTwBEWwBby1inAK/YzAOQc4sl1npGPCkqR/ypbtTmKNJ+4VkLcQGoL6Yul3T4mx9wQ84Ik3oUxKfiUkm0xHQhJKzBHY4KwMtFEUcAMJsS6VsZVnvGKZsInli1Omd3h7lrxR5MPYOUgIS6CcijRVznq1rPIkW2QU2krmtTa79mJRwpFViSe7EoZAGiKtaFvTNwDelD2o1hb9jlHQFX+qiXRb9rm6v2uBSnWRahzsAxeZ8Jblu+lyyoXDHqFrrSzbRpawykg32KalQEYWqcFkJYUGQWezpTgYUG58zxSE+5sXFIcIgnZJdpUmu1qjswHF+oCoU7n7XQusDRFaIAugCiCswq6RxLmQuM5AfYypF9TlCuQ8iWykGwCLYrxHeeWQhPMG92r0QUUKgcG0ZBDtChHh9tfuSHWUcttI0HmLDZObRVKIJMVMQJiNyYSaTKAJpCGWjix2nuiWODToOgf6mboiKnSDccZ7tsu0eSVSWkjrCXSBtbZqkK/r5RMGlqIOiG0A2NSrvFJ9LtIB2hTnrEX6oT5rLZGQCO2SGddlYwrKYU0Yaq9UlxUDBQluFuIAbSRFHfhljtgvaEWklSfwXZLR2AgK7X1TbbxfMWogKqOxOWaHfVpZD/mi3lF0tkuMgbqG3hM09/zfYOKoO5BPQrDrAauR0s0MWQ8WlBs0Xn4mx9vzshj9zk7gnoesxmLpaHP2dTf/eShx1Js6hR+AERxw3EqKBUlUtOTrawHLwHPUQPRvbD1yBHd8+mPExjBv1Sq+e+e9HDplEple3NhPr5jHRS85FfuIXCOnTlx3dfSGju/tdjB/fmkmh46bnC6b37KK4+74C8ZafrT7YZy21Q7puq/tuB9jGprYYdhoBmWyNWrse/z+hcf4yVP3s8PQzfjHEae72cIbIMbUNQEwIt+A6sU+9x+5PfuP3H69tGUAowaip9hy+jj++PgP0LHm7fkruOS8G9jr8O0IMz1TgC8+Moc/futaAIZtNoSjP93/MynWV5z9/RO56Y/3sefhpXtv4YIVfOXU32GM5QvnH8sRJ5Vm9Xzs28cxYuxQpu48kfrGfL+04YZf/pPLv3sDU3begl/e++0NhlEjRzmMah7WgFQ973PfE2aw7wnde8K/k9iUMapPJPo3v/lNvvnNb3a7/tJLL+XSSy99x43qbZRzV70qWFW+J76rywblBcvE0wmha6uKVvgc4y+gMjG19epNLRyxHmdAZ12iUDSI2CW7S9WpVqC0RRUNcSCJM4I448gxmyhGJa5CUzY9X4jU6sHt04J27i0SnG9v+WT+xLc8abRw660/SKFDsAYrZKrGTxNx+mO0whPW5V7MlbspY6cF1o9ACCOc6j6pWHlbGU+gS5FYOJQqFTJRfJZUqrVwqqTOdHUpYSvaaD1JVCKj8F7Fpf4oHa/vE3/StRBEsfRlvbrdyJRoSrY2htQTXvjz7hTteKsG4a8jg8CitaC9GKB1H9Gnon/fP7HeMUp036XdwESXqNi+B/Cqta/qwbyKevy1VUHMJ3hTPmZlqwh4UVaNL4/HqOR+M2UYZQJnP0UsfF0C43M7CA0issShQIeg/SCjv1HcjjwOWen2YWVyL1iUy/qL1e6+EsIlQLa2dEF3HdB297L1HIkxIKw7kMRL3d27Im2LFR7TEl5FUPGNaK3bpzYiTS6KgFhbdJEUdIUyzh6KxFbGvTMJLiZ9661PrE2OoWzAMsHZFKNISXatAVEiuStwLO2R8rqgNJUq2cjhi7MGtEjpCHRTVk/ar9LVZjyOY53FTGnfvkLr9qO1pFAI0FEf1WDvU4waiMpoWRWw4NUsk6Z39j33x3qK6y4Zzp9/NJovXbiAIz6yotfb7bhvKy88PqjHclf9fDRzZ+U577L56b3+Xo0tphbI1Wlai2tTxfQcvz9/c35/fmKNsG71fOFwl8jr23+cyz4frOVr2keifwCjBqIXMaF5CACThg3loElb9nq7MXXNNARZOnTElMZR66t56yUmNQ3lRzMO7XZ9NaYNymT51Db960H+9DKnhn9hxWJiawjFhhmR/Np2B3DI5lPYctDQDUaKdRsDGDUQvYgxW44EnP/3Ht0k/KwVoyYMp74xT2d7gS2mj1tfzVsvMXbyKL5w4andrq++d+sb85zwhe4xbV1i1hMuf8Wrz81Dx5og7F8bq+7iE2cfwF77TWHc+AGMWp+xYc7mukQl91h7ne1mfQ/VVWySkE5l77vdb7KsjHAyCfFiKstX1F++qedUrAQRgg2ch3icg+Jgg240UG/AQCQEQgusFGmCPy0EUWOALDj1d36ZICoExHXWKSND6zzJ86BDR0SJCFRBoloEVkrivCKu15A16Kwhk4+or4swRtBZCNNGOy/00iFIASoLdlgnhfqQaFUW2Y5TpLeXiDcEpI4FCrA+AZ2xmAxYZZ1femhB+b5SIAILWiKKCisBpWnIF8iGGiUdAWWsoKgVhSigUHTJuaR0yu8w0F0IpbTvPYlkPBkWpBkTRXpvG0tFgjxHqieEfOnkJokO3faSjjigLXJEk/RqWOMJcUPqqEFJH+o+ayzak+qRdWp0KSwKi7GSlR05WtuzRB0hpq3nqZ7lkTpKbAJT5DeKqFZ8V11i6QhrdyN03W3fXfnqstU4VV6uCmNqkeLVmyUke4VtDJ4XTkll4e9R55Ee1wmKg/1MmTo3SOccowRhS6mx0kDYIZEagqIgv1wQd4DJuPvfhE79rXOg/UwcWRSErRLRItEtAYWGLIWGiKAuIp8t0pgvMChTpDMOWN5aykKe5kUQwtnFAEppmpo60Q1FWlfXYdtAtEtkh7PQkhowoIRAGpXmbrCAKVpMp6KQCSlkNUEyYwdLEDiMEUiEUVgrCeoKjGpqdbYrwuFMbCRFE1CIAjqjAGNdok7lBwS1TixZ8Ir0knI9waiEjLcJYqQEuvCK99qElcMQ0oHExJLF4mwSgsASoNO2GuOSgkp/AQuPiy6xsSUyDrsT/BUScr4DO4ohK1Y3oNeEiILEdvQ81bOirQMYNRBArk6Tr9+wU13XFtbCI3c2AjB88wJznsuCEOTrNGO2iNZKeL/5esiEqe3MeyWPNWv/4TJ2ywKdbVDXM+e+UceiBRmyOUvrOyDQS9E/P/aahxeY83yuxjnrG9gMYNRA9FfMWraE8Y2DKUaaukxIJgwYmW/k3wefS9HEDMnU91xJH+KGO5/moadf4+yT9mHqFiPT5efNvJV7F87hRzsfyQGjt+rXfY4bNJibD/8Yi9pbOGjzSe+4vguevJPrX3+W83Y8mNMm7dRl/Td32p+huTr2H70FoaxNoBd1zGcfvp4Fbav47Z4nMqlx+DtulxSCHYb27IW+IWIAowaiv+K115YwZsxgOoymPhOSCQKGjR7CVbMuIirGNA3t34eVq2Y+w31zXucr++/FtpuVMOris37Ho7c9yVf++Bn2OHLnft3nZmOb+eV1n2X54jXstv+Ud1zfb792FXde+QCf/slpfPDMA7qs/+T/nMTg4Y3s+oHp3RLoxULE+R/6OQtfX8z5N36N8Vv37GHeU0gpmLbNAEat79jIJtC+w6ipciYRR1e8LHSx4+5ScG3kvC3twlgnsNTSv8reG+EUnF326dfp5KWcutMqg/WljTDYwGJC6xWdljiEOLREeSjmwATlh+uVlalnuMVKi1EWowxGWbR0y8Ado4gFNhJEBUkUKU/S2JIy0tcLNlUhCmvJqJggjBAZjQ1dG60nZvAklS17ob1CNXZ/0z4us5iw2r9M2RGZ0n4tFmuEJ35ACo2UGini1HvYKbi1++v7IFWp+m21dopMYxLinDRZX7fWTWXn26blq4fXPEFu8D7nwqs4K7e13e3TVyGSKQtWY61xfdLXPGSb8MjfuxEVXVnjd3533dwDhJQwBI8VoitGdZnFUX5B1Yry8qbsmqMKczw2pVglS9jUBaMUxApMYH2SX9fKFKM8Qa4DSxxAFEKxTlDMOoyi/B4WFqTFCuPU4NJiAoP2L6NsabZMJNBFSbEzoKMY0FmsfAgx6fE5hbcxjqQ2xiUPzoZFVCZGhAYb4hXtDmeSvkm83J2fu3/5pM/Evg2xwBhLFDv8cCJ0g8XNLtHWY50fdEugQQqNEjFKxh6XbAmb0pkz+JkreN/42nhUwqvuFJ9lmG1L/aItxNp5uZPYvxhHoGvjZjulOFgDF43HM2OE7283cqGtdcck3AZiAKMGYh0iKkgyudqzx96N+NuvRjDryQYAvn3aJD5/2FS+fNRksvme2/iNS95i/JRCjwQ6wKrl4XueQAdoHhGzesXGpcf5yrHunL3j62oDYNTKlSs5/fTTaWpqoqmpidNPP51Vq1atdZuPf/zjCD9LK3ntsUelFUihUOALX/gCw4YNo76+nqOPPpo333xz/R3IQHQbn7/zNg6/7iq2+9Nv2fdbl3LU96+gveCEMfVBtt8J9EIx5hdX3stjz83jipseTZe3x0VueOMZlhfauGTWA6wqtvfbPh9/5FW+/qVrWPX8Kj4wdjJyHW+8FYVWjE+4csPrz9GpY/4+9/maZSc0DuFHexzKIWWWMtUxa/ViHlj8GnNbl3P7ghfXqU0bdQw8Rw1EP8T3/+cmPnXW5Rx99C/Y68eXctivrqDNY1TdoHy/E+iFOOYH/76PB+fO43cPPZYu72jr5F+X38vKxau56n9uYM2KlrXU0rd45Jm5fPFHN/BWWzt7HDgNuY4egiuXrE791O/8ywMUOorcdc2DNcuO3nIkX/zlx5jxwa6DgEm8/uw8nrjjGd58ZSH3X//wOrVpo45NGKPeXRJddPPqrlx5+JORKkBtjSpSCTVOER2UvRTp0XfbhPJ91miDAIQEMmBzYPNgsu49Wb884/cXuvc2BBOCDdyLDOh6iIZY9GAN9QYR4Hx6c5aowfkPR82WaDDEjYLO4QEdoxTREInNCGxosRnrfMRzFhGCyAB1Fhqcst3kweR820KnpBZFhW0PiNqzdHRmiWL3Q0gpi1Sl6XgyVW071ffghk4GD+5ADInQTYa43mJDV14Zz68BQnmttnYvVRQEBYEqCFQknV2NcUn/MJIkE6sUApRFhAYVOGpcCGd5ElmJQRIGlnxOk81ogsD5iippCRVkAsgEllA663WnQpfEWhHFAbEO0FZh/AG6pHrS+xk7mqvMz8b/EWWfXBKhCj9jAdJfJLF1fuek9YiKbYSovtpKsmApIKMM2cAgpMQUQ2RbgGrv24/UTdmDaoNGotb277sTynX3e6Hm4ur6JJXYVAOjqNqkVnsq8veWn/ty/AuBDJBzL+txKsGqBCNMFjdrJBDYrEDXCaLBlniwgQaHUWSAvCWqtxQbIWq06EaImwQdmzmMipuEm20SePzLWsh4H3KPUabBoAdZzCCLyQJSIKyEYoBuydK2up7lrQ2s7KijU7uZMuUJgy3CK7mlT+AracgXGTaojYamTlRThKk3GK+qF5TSLAgBwrhkyUFREHRIgnaFbFfY9pC4I0NcDNE6II7dX2P8iVEOd4QEayVKWnKBSUnuTGhoyGnqsjHZ0GGTEiWschjr7FS0TyisjXTYZFTVhSK9mrzaD77sOLzyvPwzQmIJMDhFfGIFE2nlE1EnBWX6ShKbCr9fTUBkAooeN4WwKGHIB5ogsBArwlZF0Nq3x4kBjBoIgOaREYOH9V8Sp3cSxsDsp7t6YarA8tSDDdz9f028/HR+rfmRRmxe4MDjV7DLAauRZcmSq6PQKbj/piZWLXtva1nmzsoSFzeSEZCykIHlmYcaeOGx/Donrd0QGHXaaafxzDPPcMcdd3DHHXfwzDPP1MzpUh2HHXYYCxcuTF///Oc/K9afc845/OMf/+Daa6/lwQcfpLW1lSOPPBLdj0kd34/x6vLl/PD++3n6bWcl8uAb8/j5fx9kSWtrt9s8u8Ql34ytwQpYtKqFZWvWjcBesGYVR914FWf+6+90dpNFNxMq9tl5SwIl2X+3EsFcF2T43LR9yCrFS2ve5GtP/N86taFW/P7Xd/HUE3P51c//2XPhbuKyOfdx4N0/5fOPXwXAeTsezI5Dx3DO9H3Xuc5pg0dx6JhpbD14FEePm77O9WysMfAcNRDVMf/lt7js69cw6/FXAXjq/pe44gc3sWLR6m63mT3b4ZmODSKChatbWNa6bhi1cO5iPrvr1/n20T+h0M0M1YxSHLTVlgRScsjUEkbl63N8+NvHE+ZCXpn5Gj889Zfr1IZa8aur7ueJ5+fz08vvWuc6rv7BjZw85tOcd9RPADj7J6cxbfdJnP7t49a5zi13mMA+x+/OpB0mcNBpe69zPRtrbMoYtXHJR9YhSvTuWgY5ErVh9XO+KFN7+s+9GSlJeXtByf7A1y/KG1S1D5Hsy29jjSOXdGjRgYXAogKNkBZjhFNLZl3SPqxFWAFaYo2rS2cTlbon0ZOkm4lSNT0uiw0MZJzK3AY2tVnBAkXASkzGIEKLUsZ3hSeZE4k07kdmR6Q8UQQq0Ng8xMUAi0QJkFqkqnRB6W/FaFRcWkdYJreUTtWKAqslnR0hQloyGUk2iJxdSqqNTw6wNG3AWDDa28dgsVaijSA2kjh2HuVCGLSGIPVhxmeSL5249EeysBXHYATp/mtdd5ZS8tKKekgUp25BQgIaW7pmpNO1OjUrllxQJJ8LKOQh6uyr33BZnw7EOkdvey+9XHpYX12fLX9TforLKkrsxKuhpdu2JAUlXWfVGD/wh7v2k3LpJWvLBoxjfwkpiDMeZwI3SiaVb6yRkEkwCpefIS+dql3iVOrKDRw6EtuWDipppwCEwSgBGUfd2tA4eycvn7cdkliH2MB5kAeBRghnRZIoqdN7zEBHZ0hRSoqxQkpDkIvQMWihfMOSwTPSXBUWd6xJB4gId6MmFirS2S1JqZFhhLECHQla2rJIacmFMflMhEhV8SKxfq887xY/E8YR6MY6lTeA1sIT4BZtLMr7xNvqi6KbMLYMl8p2mkC4SWbHePxOVfM+hAe51Fc9GZTx50kbEMj0qyMMYqJchK6zUOwj1gxg1Ps+pLRcfNMc+inP3DuOa389gkfvGtxleWe74uJzxjNybIE/P/jyWtXNnzxvMdbCx/aYiom7J8jvvbGZiVM7GTzsvTvHddGCkB9+egK9+2basFFoV/zpf8Zw1RMvrnvS2vWMUbNmzeKOO+7g0UcfZffdnV/0H//4R2bMmMHs2bOZMqX76ebZbJZRo2r7aK9evZrLL7+cq666ioMPdongrr76asaOHcvdd9/NoYf2r+/r+ym+cee/eXrhQm57eTb3f/JMPvmPfxAZw8KWFi464vCa2/zi4MP5xn3/ZrdRY2gYETBp1FDGDR+8Tvu/9bXZPL9sMQDPLFnEHqPHdikjhOCnXz0WYyxSVt6bX9pmf+5fPIvZaxYjRf8N4O287yTmX72cN0YWuHvuaxw8sffe8Ek8ufwNAJ5eOQ+AUyftyKmTdnxH7cpIxW9mnPCO6tioY+A5aiCq4uLPXM6sx1/l/v97jCtfvIjvnfZb4kiz9O2VnHvpGTW3+cY3j+Kii/7FttuPpX1SlkkjhjJ+6OB12v9/rnuYOU++DsDLj7/K9vtt06WMEIJLTzgaY22XWSsf/59TeOTWmbz+7Dyk6j+MmrHjROa9vYLlHR088Oxr7Lt93zHquQdmAfDig7MBOOITB3DEJw54R+0KMwHfvf4r76iOjTo2YYzaOEn06ufxcoaqirHs8uguur4XpozE9X/KCSSS9+VMV3fnOpUwlv6Uq+HLCfZUYJwo3q1TaavYKbN1APEgiJosDI7J1BcJQoM2AhFL4sA6pWhgU7LbRmDqBHHeYHKOdEZayPjO0GWNs7h1XoVqk/YrHJlmhCfmLQaByEAQatKk8n7afqJqNJ7NK0QZx3crC1lDVAwQWec3rLRnV3xyUuFFLzZwBJWVTuOoNJiEz5K+7cq6JKdCpMxhe3sOlY0RyjIoZyhoWXYCvfpS4n2AoVAMXBI8m1giOIWntQKt3TYqsCglHJkoksR6tdWdFc+fwhHzKhFvkmCCq6OcQK9c79uHa2tpnUhPk1snUBKUdIR6qAwqZzAtEhv20cvTbrojfxs0qi+N8vdVuCSqlovq8uX1iarPuqpqfw+lSvQES6hxTss2TO/xkhG/mxlSTqgm32V+HykWJphmQRVdXgMTQtToXnpIjKyPURnjrUucxYmb3WKd70vREc5R3hPSCm9hZV0ZcNiTZtT16wIcwR6CVY4ox4JoD8D7dhetREpNLqfJBBatPRGN8BZI7jNW0NqZQymDlJZMRqO1cir4KOkfkRLEMnZtcsp7QAhk7AYcjfKJQKVASIEKHDkuQgsFiTYBq1obCDIxVhRoyhdoj0NMOhsl6XpPWmMpxgGxV54nRDqIFEvAeadL4Y4rnSHTzb1crsoXJPYFiee6vwz8QEBlMtPqmsqHaZyPuvDvkmvZWoW2BpX4uEuwGYsNpLsO+hADGLXxx9Sd2tj94DUIabBG8MCtg5k7q67f6jcGHr1nEAcfv4pcVwH4Bglr4aF/NvLKM3meenDtU5Y72iRPP9DAzvu30o0FbxrHfnIJUUHxyrN5HrmjKX3+KI9nHqpnzUpF09CYQ05eQVPze4tQz9dpdty3hZn3NrJREukF+MvPR6Ek7LhfCxOn10o22n1UY9SaNZXbZ7NZstl1HwF65JFHaGpqSgl0gD322IOmpiYefvjhtZLo999/PyNGjGDw4MHst99+/PCHP2TEiBEAPPnkk0RRxCGHHJKWHz16NNtuuy0PP/zwAIn+DmLa8OE8vXAhU4YNI5CSzZuamLtyJVs0N9NSdATy7qM3Z/SgxnSbXTYbw92nlcgrbQxrip00Znr3pfnTZ+7lnrfmcP7Oh3LEFlvxjzkvMbKuge2Hdx1E0cbwlYdv5ZXVS/nlXscwZXBXD/A/7XU6jy2dy94j3rlveRL7nbAdP9PPghAsbF03C4Zztz6cq+c+wkGjtu63dm3qMfAcNRDVscX0ccx6/FUmbrs5KlSMHDeUt15bwuaTRtLW0sGj/3qW7fbaiuFjmtNttt12LP/7v59KP2utaV3dRkNT76ym/vj1q3nk1pl84ZIz2eeEPbj76gcYOrqZKbt2xRitNT/96CW88eJ8vnn1l5i47bguZX5y53d45t4X2PWwHfreAd3EIftM4y//eQqEYNHK7mcOrS0+c9FH+fuv/sneH9qt39q1qcemjFHvKolezlWv8+O3pbIiPCnkVZgy8kRuQpgnPEEZ0WSrFKA2KZvUb6pOfhUBVlG+VtsShaf1HsPKvdcZ69XkBgxEhQAd2xLxqiw2E2NjCcZiA0Ec+GSjCmxgqBASVBi8l7UBcGp0W7HMBmUjQwJsURLZAJ2BIGMIApN6DldUmW5iEcKg8kWs0OicxNRJZLtCaOE80HHkekKmY1Nu3pFXEZisdOrzSECoIdCelJNQUJgOQSErWRFJp0SVjsApJcYTSOksEiw+cZ8RKXnlyD6c17p1rumxBCWF65e1DJAZf/7KeKoKtWft8DMJqpZKX5+k5NNZqsdgretvLUBIyKqI5lwbmWbNyho/wHtowtoHgwaiz1ELAqrXV3PsNXlKW0ZcRxYVu4G+JF+CoIQpVtUmPW3i9iHoep4FVUb8lJTmSZhS0bQ9Hg+NcANcBI5Y1hmLzhhHZhcUNi4R10JZEB6jlGuXzgqETHIkCKz33U5JeuGIWWTZjZSOJJmKAU0bGoh9UgktsJ2SognRGYEMDFIYtJVd7mE3aObue6xEKkOQj7BKY7IS3R5ALBGxxyktEImjRDIo4r3RTUFiIkGcF5iMRAYaFWikMESFAFsI0G2S1g7J25Fwg55+oM15nbs+sOBIcYNvm8BoV7B0bksq9thIZNmXUzVGVQ/UJd1Yfc8n69O/CTVeXV/ZpVGNNs4CvjQHp+gTMIdKU1dXILKGzr56Jgxg1EYdw0cXufjmV9NB9buuH9KvBDqACmD/o9a8awQ6wH9va/Jq6p6jqVmz60E9//gSAj501grWrFBceeHWNQl0gCfvb+LJ+5v4yfWvvucIdIA1K8ONlkAH6GwL+L/fjWTqTm184rxFrOkrt1eFUWPHVqp+v/e973H++eevc/sWLVqUEt/lMWLECBYtWtTtdocffjgnnngi48ePZ+7cuXznO9/hwAMP5MknnySbzbJo0SIymQxDhgyp2G7kyJFrrXdTi9eXreBjV/wfrVGRTFPAb485il3GVCZbe2XZMp5ftJgjpmxFPgx7rPOCgw/i4zvtxLjBTSgpueX0j/DWmjVMam7ms3fcyr9en8PYQY3896Nn1dy+tVhk5+t/RcFovrDdnnx1B2dVUpqlWnkvtRQ7+cPLztf83Mdu5aFjvsBdJ51Bd/HqmuXcMu8lAG58/Xm+tdOBXcrUqSwvr1zGkvYOPjZ51y777C6WFVbyjzfvYbvBW7H70O0q1m07fCSXHHoUS9vbOGXrdbNNmdw4igu2P26dtn3fxsBz1Hs6FsxZxNeP+hntLR1kJXz3ui+xzZ6Vg6dvvLiA2U+8yn4n7UmurudB28//8qMc+7lDGL3FCJSSXHLPeSx+cznjttqMH3ziMh669SlGjRvGFU/9qOb27a0dnDjiTIqdER/+9vF8/H9OAbrHqLY1bVz/s5sBuPDjl/C3+Zfxpxd+0W375s96i/v+5jzE77ryfj71s492KZMflGfeik5W/fM5jj11j15j1NK3V3Ljb+9i+72nMOPw7SvWTRs/kh9/+oMsX93OcXtv26v6qmPi9HF89U9nr9O279vYhDFqo1Ci93hrlJEqQHoyynJfpsWMcESOMBAUHFGbktzaVyNL1VTs35NJTo3oifO45PGd2lwn5WVJbVnBOtQiWX19UjvuyOScujNuMk5FjsAaldoSqKxGSON8axM/Y5xi08Q41XYF0Z+w+WWy2HKSrcymIPWvKVNSCRKSRCCVIAwS+X7t0YHEN1d6P+c4BwTWEdYaVKdrk/QDEMkuBf68JR4VgcAIizQCg4aMO3ZdCKA1cAMGgSQKBNYYAmMIpctGaqzzEIYE3DVRHNRWllvhrCeEcIRa4In4LrLg5EsiOWmJGt0r8tNypb+VZFR1fW6wISHOE8U8lL+3qed7oCyBHyTIBQYhNMtFgMz3zTN2Ux7526CRDJSVfVxb0bV9TpYlSTulrsQoW3Y/ustVuHNYTjRbT3BX4U26v6pZNam9VNUtkZDnKcnu14tkpowFk4fiIIiajPMvx91D1kgQFpnXyMCgI1Wa4RLiEyDgyPaicJX5AT5hy9pYprQXVWp4Z6HiMS1V47v9GyxKCgJFWaLLWr3uRgUszjbChi7BsjZuIEAaP5FHl/BQQDoAIawbjCOwGAxWS4y1hGFMGBjaWjLQkkFEAhNKihnAZAi1JgzdqKE2LhdDkoxTCEscewW6Kc2mSTDAWveAKpLkz92kLen+ebJyRYlA91hVhU1dw3pcEmm7QPgH2PIkfRID7hyEhnYpsfm+ee0OYNTGHZO2aycqCFSdO0E77L2G7/7p9XQQhoq/pfBDNOkHAXS0Kv55TTO7H9xCJmO47ncjWLk4w5bbtBNH/UPAag03/2kYzz9eXxo49DFhSifHfWopTUMqB6X+fe0Q/vW35q6VdRNL3gr53hnjOOLDK9jlgNbSrL1uIt+g+fYf5nH/zYP5761NGFP7fr7ix6O4eUTMVju0c/QZy2lofG8Q6q88m0cGFhNvnCR6EvPnZLngE+OZuP1q4PVeb1eNUQsWLKCxsaQw7k6Ffv7553PBBReste4nnnjC7aMGmLsE1d336cknn5y+33bbbdlll10YP348t99+Ox/60Ie63a6net9rcdfLc1jZ3snxO2yDquHZ8/Br81na2gZAS0uR216eXUGir+7s5MgrrsJYywNz5/Kro46s2L4jirh9zmwmNQ9lh1GbASCFYMuhJcyoC0MmDx3qPiS/c9bSxy+vWkLBuO/Kuxe8yld32JdZqxbx0f/+haHZeq7f/8wKhXpdkCGvQjp0xDbNte17ymPLxqF8YPPJzFm9jGMndLVRALhh7jNcOushALYdMopdhndVgtaKq964lfuXPs4/Fz7A32b8jJzKYqzh2VUvMjI3nCMndz9zortY1NZC0WjGDRrc5203pejURc556ncsWNa3Qa6B56iNOx666XFWL2/l0I/vj6phTfL0fS+xYvFqANo7O7n/+kcqSPSWVW18eoevYbRh5p3PcN7fvlyxfWdHkQeuf5ixU8cwbXfnLS6lZNyU0WmZXH2W8f5zikxr+RqY++w8ip0u38Ijt8zk4/9zCq8+8wbnHnQBg0cO5jcP/4CGwSWFeq4+R7YuS6G9wOSdtuixT8ZNHcOex+zKvJcWcOCH96lZ5s5bnuZvlz8AwORpo9l2x/E91gtw5Y9u5p4bHuPW//0PN865mFx9FmMsMx95lc3GDOGQXfqOUcsWrSIqxGw2flift92UorO9wNcO+B5vvv5Wn7bblDFqoyDRa/XrWh/z/EprKREelP4mZJKR/rMulZPalpSXKvG4dusFYAKnpEwUoSSErywjS23lPmzoyfek0cn76hegQ+eBbjKWOG8hMCUCPM0RI4iLAqGM+8Hq/XKDfEyYj9FaEXUGTqkNJGpqdCo1rNyvdGUq1KngSG/piB0sXvktiaMQkxMEuRgVVCsWXaWJT7oQIKQjjWwg0Epjc5LY16VbFEG7QEYCVSD1gbf+yhMF7y6TBWEkFoUVliAbEdcDrQrVIbEFhe7IEmcsUVYjss6b2XiVq5SWWJVIbaMdCSekcRYq0iBUcg6d77gpU6+WjrFUh0hU6gJEGaHeVWNOapVgK+oqPx3OaiH1G8aT89b3oSdLtYBYCAK/lZKGkQ1r6LCaV7vsdS2xCXtQbcioHjwtf1+NUSmd5LmlZMZFud1Tgh0yIa8tCG0dxgjAWFRk0xwLVgp3j1rrZtVYMBlBnJWYQPgypYFCm4zWmfLBqtIAoMMl4W2UHHFvFSRW4cmAQZQDk7HonMUq6y5MytTaOD9wnfEY5G2cVF6TzReRylAohMRWYbVKsceWd2gyCpp2ZI1r1dsYiaTjrFOGF6OQOCMJshqptLNsMmVnJLEvEfg8CE45HyiDrLPYbISNJXG7wqwJUR0iVaPLZFaAt16SbaAQmJzEFgXFCGxdRJiNieslpiVAdkpsHFDslBQz2g2CBu7kG+1zMeBm0eDblMyWETjbGdypScl0a9wAoyOxK/vG2lK5WlGyhin1avn3V5coe7LWxltklQ0oGuPxyZb6JqlKCEtDfQdF28fkkAMYtdFGU3PMd/80r8JLevhozfDR6zZN/6qfj2Tfo9Zw7JnLOO+0iaxcnAHgh9e8TmM/KbAfuGUwl10wpua6T3zz5QoCHeDFx+u5+Ku9I4+SKHQoOtsCdj+4d1OBwwyMnVTgPzcPWWu5l59uAOCcny94zxDoS94MufALvfth+25He0vAw3cM5oF/9W5qehpVGNXY2FhBoncXn//85znllFPWWmbChAk899xzLF68uMu6pUuXMnLkyF43c7PNNmP8+PHMmTMHgFGjRlEsFlm5cmWFGn3JkiXsueeeva53Y46nF7zN52+4DYA5S5dx3qEHdCnzwW2n8LsHHmNpRxthIDl1u0qF9LxVq9DWDQsuWLOGm16cxQV338vR06Zy7LRpnHbt9RSyGiUED3/i0wyvL10/xlgWrFjFuKGDU9L8ZwcexmFbTGb30Zt32+5dRmzOAWO2YPbKpXx/d2e38+CS11gTdbIm6mT2msXsOqx0XykpeeK4c3hjzXKm9YJED6TkD/ut3QN8StMIlBDkVYYx9YN7rDOJLRvGcv/SxxmTH0EonWr/nwvv5pr5/0coQn67008ZFDb0ur65a1Zw6M1/JjKavx56KjNG9Q2P1xYPLX6dt9tXc+z47Qh78t7aCOKNtkW8vGYBcVQ7EWO3MfActdHGS4++wgUnXgzAvJfe5DMXdVVc73f8rvz1l/9i5cKVhPksR5xZOXPk7VcXYbR7Jlg0dwn3XP8ov/1/f+XAE3bnwBN352sHf5+4s4AKJNfMvZTmUYPTbY0xLFywgtHjhqYY9ZVff5y9jtyJ6XtOprvYZq+p7Hb4jsx9YT5f/O0nAXjyrmdpXdVO66p2Xn9uHtvtW7JcUkrxf0sv561XFrLl9hN67BcVKC74x/9ba5mJk0YipSCXzzBy9OC1li2PLaeP5Z4bHmPzLUcS5hxG3XjNI/zp13eRyQRcc/uXaRzc+xmVb81dymc+8FOiKOan136O7WZ03299jSfvfp4lC5bxgY/sQxBuFHTsWmPeiwuY/cRrxLZ2QutuYwNg1MqVK/niF7/ILbfcAsDRRx/Nb37zGwYPHrzW7WbNmsXXv/51/vOf/2CMYZtttuH6669n3LjefRe9u2etSh1ZU8FdXrYGGVVdBQKnKNSkNgmpoE5bpMaRTQasEM7fWlvHO3k/7sS7PN0XZbx0GTFVTsBDSR2YkGeJRYIQZbyRBJ0BXQfUa9BuWny5l7lNCROZEuwqG5PNx0hpKRaUY+89YWat8G2QJdV3QlBJSokEbdI4HIsXOAJdSIuNlfNHNxICgwjdVOvy4yrv6RKpI5DSEcFx7FnmDNiiI8VV0bVfRk6gaoWzs0F6clE5Qj0ZlLAhZOojOjtDKCpkwdUR55LBBIMRFiUM1qj0eCyO5bEGtJZYLZHKqW6kdD7zCIFShkzGEKjy46n+W2a3Uua7kpLnVSqTcsKq1hUs/UWaqttLZzpVp0sBgXB+6IHvW+G3zYYame0baG2Ikb8f/vCH3H777TzzzDNkMhlWrVq1/na2EUV3GCXKMaqqbAXM+etBRhAU3X3hVlhkwaIi0mSfVgGx8yiX2g3ymYxwCurIfU4HppIBGuPrLPHOJVLfX7s6JPXtsFBSrFuPUTmHUbrBD/LhbZlqYhQuv0JWk60vkstGdBZDP8AlK/pEIDzhn+Q/qNWx/h5Jpxp52xgrsLFwyZWVRQaglPXJMsuU62k1pRkzjkD3DQnABpaiEVitUAWXG0JGOAsXHA6l3xuhcDZSuAENqyCTj+noyGI6A2RRImOBDsFap353tk0aqyXWD0BYYZHSW2QZgdUCGVrnta5Kg5UJkV6OF+XYlF5rXTuuKkQVgd5NueRAy9TmqRlWhQLdJz2Vri+S4Q0pQYQWkR1Qor/XY8d9WjjlC4tpGKIxmnVPyFgVx5y5hEKHIzK+9LMFrF7hHi4yuf4hjHUML83MUzHtrSy+c/pE6ho1+3xwNceduZRcveWZh+tRgUGvJflnrZj1ZJ5H/93Arge2ps9Ia4tR4wocdPwK7rtpMKYHW7avHDOZXJ3BWjj648s4+ISVhBtJ0tXqePI/DWRzmkLnxk9QrWusK0YNGzaMYcN6Vq3NmDGD1atX8/jjj7Pbbs5j9bHHHmP16tV9IruXL1/OggUL2Gwzp5beeeedCcOQu+66i5NOOgmAhQsX8sILL3DhhRf27WA20tDWpr/LXl+xkrfXtHDlzKfZa8I49t1iAgBD6vNMHzuS++bMZUJ+MFOGV/qDbzNiBB/ceiteXrKMnx52KP9z1320FIpc+9zzDM/UEccGso7IVlUJOj9w0eUsXN3C9puP4m9nnwpAQybDMVtN67Ht/3vQSRWfPzRuB55b8RbDc4MYnx/GRTMf5EOTtmbiYKd4zwdhrwj03sbuI8bz0FFfIisDBvXSlx3g6DEHsMfQ7RmSGYTyPywjT6gY/68vsaS9jaJX5S9oWdVvJPrcluV84r/XYIH2uMjHJu/e4zbvdkwetDlHjdmDN5a+xUN92G7gOWrjDa1L98OCVxayZPFqbrr2MXbabQt2meG8wpuGDmLqXtN47J6XGL3lCCZOr7wHJu04gf1O3pPXn53HV//8OX73retoX9PBv/7yAIOH1hNHTrwilUQFlc8XZxx6EUveWsmUHcbxy786C5K6QTkOOL5nP+8f3v6tis+HfGx/Xn78VYZuNoSxUzbjyu9ey0Gn78vmk53CPZfP9opA721st/ME/nrH18hkAuoH9R6jjvv0Qex5xA4MGdGYKv8j30faGIzp242yYskaoqLbftGCFWw3o0+bdxtvvrKQb37wx2Chs7WT475QOyn1xhSTdprIBz91MG/Mmc/9997c6+02BEaddtppvPnmm9xxxx0AfOpTn+L000/n1ltv7Xab1157jb333pszzzyTCy64gKamJmbNmkUu1/vrbaMb+lirSK78Q9WgRmrZ4skliyOYROKDDo6wjUrkOsamKnJiUAVHqJtiiXw3EpACk5C+CYnuiU+L9d7fpN7fVvqkmQFYJdKEmkb65HW4v8aCyEXYonL+vKlPsSPFbfLQZgUmUrTbDDKj3XFHjlR21jNeuWqTFHBlIwwWL1sktZ0RfpRAKE/AWdyoQSgcmV8Q6CigIy8I85owEyNIhO6eREs4l7IzFgQG6bMYihzEmYAozCJXO7YsaBfIGGSHI6ls4JsaW+Ks92w3UGjNIEONyRhMznkWq4KzhrBFiWkV6IzzXkgISasscWAc2YZXcWKdGjTjrG+kMgicJ7FJSarag2OlhKGkivSURKrJRZWxkFVklfGDF9pvLxOSXFgkTimvhHXnxggiJEpYp1yttavehC17racoFouceOKJzJgxg8svv3z97Wgji/IuFVXLq89XRfeX3ZOyAMJYhwvJai287ZRGtRukthjp7Iwcwa5R2iLbJCanvEodTCgxGadaFlBStif1GouM3b0ljU0H+EwgMKF/BQKrBFq5WSFoQFh0VmCyBiKJNKXRQCEcqW4jUSLrI0WHzRLVKSwCXZTe4N/3ROqpjQfL0kCc6yzrMdzdt1I5ELbprBKHESJy3uhxFKLzgjCnCVRMjPIkVVJfqf+NEcRIN2goDIEyZAdFFDMRhTCHXBUQaIHyHunSkCrzlcf0qN7hJZGkvSWLDCxkjMOlGKdmLwKdAVZZjAhKTRGAssShLXnBa4GJLQQGG8p0QDPtF9sVo6o/d/FDrxGlMlX9XbXYwYX/7hFJX/nvOT9jxs3eke5aK2uLpfvEp93GBsCogehb/L9fz6d5ZB9nFPQiGodYGOLqHTEmZsSY/t3H4/c0csv/dvWWTmLR/CxSWX5z+xyCEF59Ps9VP9tsnfY1fY929jik90mp3nwtxz039s4y5q3X3cP7qHEFDv/wynVq34aI1csVvzy3/1SjG22sZ4yaNm0ahx12GGeddRaXXXYZ4H78HXnkkRVJRadOncqPf/xjjjvuOFpbWzn//PM5/vjj2WyzzXjjjTf41re+xbBhwzjuuOMAaGpq4swzz+SrX/0qQ4cOpbm5ma997WtMnz6dgw8+eP0czAaOXcaN4RMzduK5txdx3iH789P7HuD2l1/hL08+zbNf+TwZ77X0s2MP5745r7P7hLFd6lBS8usPlixcPjtjN9qKRY7aeipHTpnCnMXLsBk4Z7+9aM5XqhcXrXazcmYvXgbAHx56nD889ASHb70V3z/yA306lqG5en6zhyPWZ1zzexa2tXDZM4/zyie/0qd6+hLDcr1XjJfHiFwllh064mAGh4MZX7c5TWHPszTKY7eRm/PTPQ+jpVjkuC1rW8+sS+RVSCAVkdG9Tt76bocSkq9OPYE1o9dwCef0fsOB56iNNqbvNZUTvno0s2e+zmcu+ih/+vXd3H/Xi9x03RPc/J9vEIYOo8696FQeu3cW28/YsksdSim+XWbhcupXjqCjtZMDjt+d/T60C3NfXICwlo9993iahlXef0sXrgLgjdkLAbj2yoe47soH2e/gbTjnW5XWVT3FkBFNfO+GrwJw2vizWbpgOdf97Gb+2fG3PtXTp30OXTeMGjl2aMXnY0/ejaFDG9hiq1EMbu7bbLRtd9uCcy48hfbWTg48bpd1ak+tyNZlCMKAuBhXWONszKGU4pzff5o1a9bwq6bafvo1Yz1j1KxZs7jjjjt49NFH0yTtf/zjH5kxYwazZ8/uNkH7eeedxxFHHFEhLNhii57tiMqjn3RG/RSi68cuBHpCZFOy1i3fNlFUJvnpyiuRVqTOJiIllcuU58KRJcI6v1zHmzpiK7XxTWwSfN1Sg/LKT1V0hEvCDwkrKkdgvNLaZMDkDTKvndVBJJ2S0//D71cg0joILSIArMR2Bo6RT/2PBQKJSE5nmQJeJL7Dnstyx+0IdPDbSn8wWpYU7sqpJMNQo1IxaaIQrf0Cp1xzKm9JrAMoSmTB2bmkfeetdBA4j/e86xcCR84FeY2JAtcvRYE00vWFb6cQ/kSlPhb+4KRbbo1T8AspnBo96RbhlKtKlXv7Vis9Ky+aCvV4xQVVVibt9C5XbFV9omytdVsIUaFEl8IR6smyrm3rXWyIkb8LLriAL3/5y0yfvm5JhN4T0c0pTe+lqmXVHyo2T+4R464W5VXPfjQO4a1cVAwqtv5ecQMvKrZumQCULGGWTK59f9sbSl7fuHvO1ee9zssGEUsYVcIZocCGAhsKdJ3DKYwj0IX1mCT8dSzKMcsN6InQgauJpMOTFLPL7hmJwzKZdGJpuesgkD5psrMsEalnutACjMe6AFRoCQONsYnveOXLYZNIdyOES0AcKoOQlmIxwBYUqqMSo5KyAo/ZOZzfe2hBgcpq4kIABYmIBNL7m4gEDI0/KQlOpVNO/IVg/Eu6Pk82k5IumLp2/Fnbq3qAsAwru8BdNT75U1H6OvJFRKlv/DqbXAF9hKkBBdXGF3/91QjaW/v+ffNuRhzBf29rREiz1nJGwynbb83J223NN0+dSG+f6A8/bTlHfmwZQcYpJmfeP4iP7zmFF2fm6U0u3fFTOrl65ovsvP/qXl/si+ZnOHm7aTz0r0HEfZw5uyGicYjm6DOWooL3hvVMGhshRl1zzTVMnz6dQw45hEMOOYTtttuOq666qqLM7NmzWb16NeB+yD7//PMcc8wxbLXVVnzsYx9jq6224pFHHmHQoEHpNr/4xS849thjOemkk9hrr72oq6vj1ltvRfVk5P8eiUIc88aylXQWY0KpmDLCqcwnNA8hKJtCMyiX5ejp0xg5qGdCZsb4cRw5ZjIzn57HmrZOfnXyUfzq2CMZV2NK+OcPmsHowY2c98H9Afjtfx+jpVDk+qdfeGfHpb1q0m7899bb7as49N6L+OaT96BN36fMCCE4efL2fHKbXfvVcmVUXSP/PORs/rb/xzl23HY9b/AejoHnqI03ioWIt5Z1UqxrIMxnmDjJDfSPGddc4Y9e35jnwGN3YujIph7r3GHfaex5xgHMnLuMlo6I71z9Bc67+guM3rKrKOD0L3yAEZsP4TPnHQXANZc/QFtrgX/e9NQ7Oy7vl67jjR+jFi9Yzsd3Oo/fn3MlwTrYiQghOPSUPTjuk/sThP2HUcM3H8ofn7mQX9z/PQ7+SG1f+E0l1jdGPfLIIzQ1NaUEOsAee+xBU1MTDz/8cM1tjDHcfvvtbLXVVhx66KGMGDGC3XffnZtuuqlP+97olOjl0UXxWUt1V0Zox1n3VxY9iVSmJrQCYp9cU8a4JKMSrLPmdAk/k+n8xikOhcWp1cs8hPGq8iQJoNCuPhmDjCyyaAki572eugsIZ2FgFMR1guJgQTuSOKuc4lpJb+dSFsnnhPAoSmwkU6sYTPISZVdm2ZWajjCUdZoEITUydB68LqGXS7InAse+2ThArlFIrdAx6DAmE0QYoVLf70ShmJ6bqjtDCENDvoiSmjZhicIQ3SrRbSVvdNnpz0m9dbx9PnYe7VpQbA3dYUTOp1gHTrErDIjILQd8QkaBzllMVmIjZ7VAYHziVU0yfUAqU0oQSklJX67o7Hp/i7KFlb++Smry8j7oXo2ZKNkNSf9ZrDSoRPEunANxYF0bQ2lSMt1NJOgj+hhbeg3EO4/kvvNRS9ObTPgoj/JyFjeApg2ogrfN8BhlQ0dC64xA5QSqIN2sGCUwGXefqihAFoyzakmuu9im3LP1pLRROJV6ABjhrGACwIAqeoxqNwjtLZCUwHpW1CjQ9ZLCYIXVAiMlJl8mVU7uCYFXq5deIhLYVRnidKSSkuq6AossQjjPcGsENvJgagRIi1QapYzz4NYO36zGKb+zYCKBbAmQawLMEEs4opNB9Z2sbs9T6JTuPCg3k6PiPjduNojW7mzUZyPsoE5agaLKoNZIgjaBjL39lLemNNIfa6AdiQ4UWzNu4DNymGatrZjRZJPBAutwzmQtJisgdgMLNrBu9BXrld+Asqn1Tvl1l1xTtXzQbdk6qrctj6T/a1hdVF/XKSkOYJwlVjLwLLx9mBUOA5OZNetkdTeAURtdnP7VxdQ1vLfOx4tP1HPPjUN7LoigZVXY5/rP/M7bnDCtbKDYCrbZtZ1tduno1fZSOoX5k/f3/AO5FIKRYyP2OnzdPOjXd6xaHnDL/w7vueDGFn29tDcARjU3N3P11VevtYwtA9h8Ps+dd97ZY725XI7f/OY3/OY3v3nHbdwY49m3FnHfnLkA/Oul2Xxmz105fMpkNhs0CLmOyVNXtLbzy9sfBKC5oY7/OeUQzrj27zw6fwEXHnkYR28zNS37mQP24DMH7JF+3mvieO555TW2Gl6JRcYa/vTanbzZsYwvbnU0w7Jrx4HrjzqVXz75MKdNe+fk75MrXuWHL97ALs2T+ObWJ9DfSWXntCxmTeRw8IVVbzG5cRQtUYFP3Hc9a4qdXL7/iWzeMLjP9bZHRW6bO5sdh49m8pDeYHvXGN/QzPiG3s0Aek/HwHPURhsvPzOfx+99CYAHbnuWU84+gH0O3JrhIxuRct3uxVWr2vjTZfcBMHhIPV/7xpF88wvX8OyTb3Du947hwMNKzyqnfnp/Tv30/unnnXbbgkcemM3ELStn7RljuOK71/P2a4v5zEUfZejoIWttw8X/uYCrLriBD36qbzNuasXT9z7Pzz9xKTseNJ2v/ukz/Y5Rb8x6m5ZV7QC88sw8Jm49hrb2Al///o20tBb4ybc/xGa9GLyojo6OIv+5bxbTth7D+AnrlnB0zKRRjJnUfzZdG21UYdSaNWsqVmez2W6TtPcmFi1axIgRXWeijhgxgkWLaidqXrJkCa2trfzkJz/hBz/4AT/96U+54447+NCHPsR9993Hfvvt16t9v7tK9Fr3SqWQrhfaXjwpgVMy25IaMymQJkKTeBWlUykTCuefjldZJmrwZMQkkdeVi4wTFbUXWUq/jYw9ER+DMDa1gxHlhIQnxOI6gW6wiJzGxMqRxWVHmao7EylkmVKQRMWYlBSV+kHhPdBFRQeV9VtgkYk3cKLkTnzTY4koKFQsnSdwvSafi7BItFaeQKf2q+ysZEONRVCIQkeQRQIZJ2rW0iwBGzrfZVtnIOM73EhQ1qnQC0k/uD5PlbCItN/TJKX+3HoJrusDnzBRSi/YFU6FmqhTS52TOgD36lU6Vr+1qPxcWlarztL6pE2y7KWkRUmL9AR6UrbP3yu27IUDrfJXodDH5DUDURG1cGltOAV+4E14fNJls19UqbQQlEZtRYJRHkMSXEvUzL5Om05b8FjlpjOAKFdW+/caZGxTjCrNePFtVQITSqI6gR6EI9CNT7pZDsokyTpLBykqjrYcm4SfLeM/BW5WjfNvTyTm7j4X0qKC6pkifl8JRhUVqiixGQgHxTTUFSjEIVEUOl94f4+n1VbcP65duYybBlAohuhigCgKVBlGCa/mt8r5w5u8hayf1ZKcg4KbKSOSLNSyhN3p9wzOzsuEpX5LrMeSY6p4lbdXVH0vVFxgtQC+G8yq9WVQ6wIunVwE1uOTSPddGjAsYVdpWV8BioFpyBthnLrD1txw6bCNUv3cXWy1QzvTdm5lfVxIx521lDBj+eDpyyqU7nffMIRP7D2FRfPDXg0gTdmxnSk79a2Ns5+u44jx0/nghOmcsdcU3n4jZGMRp153yfD3ngod5xvbpxjAqI02po8eyZ4TxzFp+FAOnbYVQggmNg8hFwZoY7jplZd47O0FADw4bx7fvudu5ixfvtY6B9fl2XXS5oRKccC2W9JWjHjojfloY7l3zutr3fbSk4/m5W+fw61nVyYPfK11IVfPu5f7lzzHzW8+2uNxTRoylEsOPoo9x4zvsWwSxlr+8urjzFw2v2L5bW/NZHHnKm5/eyZrovZe19fb2HP4JM7Ych9Om7AHh41x5N2TS95k5tI3eWX1Mu56c8461fvDx+7n3Afu4Nhbrqao+5Zr5X0XAxi10cZW241lx70mM37ySPY+fDuEEGw+fijZXIjWhrvveoHnnnX37OMvzuMnV97N62+tHaMaG+vYfsfxhKFiz723oqO9yFOPv47WhkcffGWt217w85O587HvcNnfzq5YPve5+Vx74S08cONj3PaHu3s8rnFTN+e8v32ZHQ7YtseySRhjuOnSf/P8Qy9XLL/zf+9jyfxl3Pm/99Gyovc2eb2NnQ/YmhM/fwjHfPIA9jvW2bE8P+stnnvpLebOX8aDj7+6TvVeduk9/Pynt/OFz15JFA1g1FqjCqPGjh1LU1NT+vrxj39cc7Pzzz/f8wzdv2bOnAnU/g3qbEhr/zY1fhrpMcccw5e//GV22GEHvvGNb3DkkUfy+9//vteH9u4r0bv77e051dQLtrxsmWpYCFL1Xrmy3Ho+1XoixCRkK0Den88kqaUB4a0OkpcqCqf41BZiryDNCvc353yDE490K1yDgoJAFgRBh6sj6HCElYxAaKcAza6yWCmI6gRxTiHzGhMLR8hUdYjwB2KTA0yIj3Kf98RzOGHBIgEdEist5IyzgSnrYxO5RHdCGqQyLlGedQk5rbJOxW0Eql0QrQxZTT2ZhiKB0gghMLbsR0jZOZLSkOS0KMaOFQzDGDHIEmUCorwi8irIYIUit9x5D9vAIgKDysaYWLrp0ZEs8w222NBiQovQEtXuZgXonEXnHdNlM9aVVxYZaDK5iExGl+g8/6akOq990VlrK9ZVK9XLCUK33lb9LZVPVO+26nwK4c6nS27hCbVEiepPrrVgpCCQhkAal0RV9O0Ha/klAQ60yuN73/se559/fpftzj//fC644IK11v3EE0+wyy795w22UUdyz9myv6U/aRFw57A8QScJNpXff8qPgfkpJdJjWZqbAUGUdUSu8y13OCW0U5QHBelmcsTO51xasAWDjUBnJXFWYEKfGDQLwkqssG6wSYCMFLLosElFBtXpZs3I2CJil98haNVkMxDVS+K8QNfZNMGp8AdlISXzE8V3Mt5lffJmbIkYd5u5AS5iiY6FS2ycThly/WEt6EgRW0BYVGAIMnF6b8nQzTrRnRLVCcUVWZbQSL6+SD5foKACdFXyvsqEna6hLR05N5tEQKa+SBwqinnfSdZhVHaFOz6TtdiMQWa1TxIqoUOl14bFprOThLaI2H35RA3WDRAK6xTsSR8pQ5CNCEI3ilKOOeXK8mrSPPkeqPAft+XrKt87SOmaV8FaapBxooRjCAwSa3xeBpEozxOMc7Oz3EOM9+H3ORz6EtUYtT7i/Zr8eF1Da8mxn1zWq4SZG0vMfqqOWU/W9VxwHeKULyxCYLn9qqFUD1jtemALIzaPatyrXWPWk3lmP9XXNgq0n3W3034tjBoXpc+6/SzW6lMUC/CPPw5n/d656yeMfmfPUQOx8cSc5cvZY6txnLjttjTX5SvWXfPSs3z3wXsQwL2nnMlnb7uV1mKR11es4K8nnlS7QkBKweWfPZHl7e384bknaF8Q890PHMCDc+fxmT17TsZX6wf7mPwwxteNYFHnSnZpntzn4+xNfPmxv/Ovt5zi9d+HfJYJg5x6+7ixe/BKy1vs2jyJpkyl7+6yljYu+ud/GTd0MGcftPs6DYSHUnHOtEMqlu02ciz7j96CpR1rGFK/jE7dQU7lu6mhdmT8F1BGqXcV694Lsb4x6o033uD73/8+9957L4sWLWL06NF85CMf4bzzziOTyaynvW4aMX/WW+y48zgOOX1vmoYOqlh36y1P85tf/xsh4Iq/fJqvX3IrbR1F5i1cwe++sXaMuuhXH2HVijZuvPJBdHuRz33tMJ587HVO/fjePbap1n0+etIoxk0dw+L5S9np4PVjz/rjj17KAzc+BsDlz/+Mzb0C+8izD2HO03PZ6eDpNFb10bLWNn727/8yvnkwn9lv3TAqCBWf+M5xFcu232Zzdt9pIsuWriFesJz2lk7q+pC8FCCTcRgVBgMY1VNUY9SCBQtobCz593enQv/85z/PKaecsta6J0yYwHPPPcfixYu7rFu6dCkjR46sud2wYcMIgoCtt966Yvm0adN48MEH17rP8njP/FRKuKmav9OFFzSCIyS1IwoMlBKOitJ6hCfclU0cBBwxZDyZnLxsifhIrgIrfaJQ/w/hiDFVsBjriHdjS2SNxZNjfr9xKIjqBTprEVntfiTFpGRIxTdhTaauh45KDjq5YtOOK6vWK1DTUQD8NrFFFACdDDpYVBiDdcpo4xuQVplYpVSR1I5oEWjfhza2rlOUSwqoCq6dcR7XDxmN0cINJkTS2RxoAZHvZ+X2K4r+PAkwgRshsYHP6iqdRYpQGqU0UpjUI9kmgylljGa133AlSU4ZKVUi3a0tI6sS8sgvl9JfLySkkvBJ+Nx6QUIklqxgyiPdsy31K9YirE3de/oUlQfd76D1folygcc7/Z5MBkyEwdlJJRgFFayI8OcswZoUo7RNt7PG3VLSWLdckQ48lTBK+Fk4wiVZjryIWvv7ymOAKYcdATqUFOukTypqEbHbX1fH7LJOElXvqy/x6jL4yzwF6dL6rkkzS2fAagGRcMcSgA0MYRgRa6cwty6Lrye2kob4/rQiJbxEsmtvh2Vjv0PhBhJU5GbpxDlLnDGQNW6ATwso+Nky2mK1dBinwGCRsQTjlOc29PdfqEvHJ9wJkIFGCDDWf0dUHbNMBkrLujyhuEsEeuX5KOFU2l0en/zlJZLRD1dxMjBRvp2oPBVd92+hfLAwGQ+qbYfVQ1Rh1PqI92vy43cSR06YzvlXzGWPD7S+J34cbL9XG1fPnMUXjpjMyiXplI93HKd+cTGNze6bd48PrOHRuxor6r7pT8O56U/D2GnfFv7nL3MJwu7J7R33aeOambP4/OGTWbm072287Yrh3HbFMHbYu5UfXPU6QebdI9LDDOx52GoevqOJ9xq9LGtZJ64tNgBGDUTfIzaGD19/A+1RxKylS9hu0nDmtazgy9P3Y3A2Tz5wtk1KSkIl2W7kSB5esIAdRnX1DV64qoWvXnUbTXU5Lj79SPKZkEufeYzLn3sSgMdPP5vTd9lhndtaF2T5yx5fw2BRoo8zIXoZK4sllXlrXJplut3gCVyz51drbvO3R57llqdmAXDgNlsyZbP+sWeqCzL8Yb8P8bVnP8MdSx6gzSziw+PP6FMd39xtP2aMHss2Q0f2q1f6JhnrGaNefvlljDFcdtllTJo0iRdeeIGzzjqLtrY2fv7zn6+XfW4KoWPN/zvyQjrbCrz2/Dym7L0Nb89bzkfPOYRBg+vI5R1GSSkJA8XWE0fyxEsL2GaLrhi1aEUL3/jdrTTV5/npZ44klw257vIH+MfVzu/5mrv/H8ec1PMgX3eRb8jxx2cvxBhb4dXen7Fmecmarn1NyQpv272mcvkLv6i5zV8ff5abn3UYddDULZkyqn8wKp/L8MNvHMNJk77MlX99hKWvLuaLF5/epzrOOvtAtt9xPJMmjyQIBjBqrVGFUY2NjRV8VHcxbNgwhg3r2SpnxowZrF69mscff5zddnP3wWOPPcbq1avZc889a26TyWTYddddmT17dsXyV155hfHjx/e4zyQ2LhK9FlHseZAuj+pVzJaMgQh0BmweiL31AZRyT/pkoVY4gsNk3HKrcF7nyinMbQwUgA5ngysiUrsWqyAOLKau1EgrLXGd4yiK0ibG1lAEoQWyKFCdTqWuijj1u3Cku5JgfOLMtXWLTRjYagK2mnSPBdmV7qCKzRLTWNYRFYyIq0cGFhN7DWEIpt5iYuva3KYwIocY1sFmzaso6IBlrXXERiKETT1x/RlIWpl+l+cyBiEMxdBgLQRKk1WGFflBRMszqCKQsdhYYYuBU9FnDEF9nHrzmg6FDZwaXcUQtIHJWOImixgck8kXUd6eRilNRmmkdARjrAWxlhjjFPQCi/R2KeVhPIFerVSvJtLLCafEwiUZKrHWpFYxyckQvm5rhd/AIssJQX8+E5rPJCM+RgAapMBaSSjKTLB7GdWJHPobtN43Icr+1iCIRXXRWgRyst74y0CCzTpym/Jb0+CUzF6YbUKnJk/WGyvQfraNjQWq0yDaDEFRQyfYVoOuU3QMUcT1DsvwCmmd8ZYiQKf0A1NGEHQ6qxYZ+VwSRVApQe1VyKFFxjUQKr2Uq9XoiSa5BnB7jFLtTslt6g1kTFou3dIz+zqWZHMmrVuGBp03mKLDKNkS0q4byA9vZ9ywFXTEIYvWDKJYDEhyDyB8fV2YfoFSmkAZMqHGApkgJhfELKlvpLgi587FYO1sXDoUdCrIWNSgyA1ASIHpVG4WT2iRraA63V7i0KAaI8JsnHqJS2kIlDueKHZ5JnQsMNpbawlvtyVMzVu+FoFe/vup6+8oUQEEQiYe+u6zMcLNCqgYwK38crW2dOGXbLAS1BJpya6a97XHhkp+DHDFFVesv51sYhFmLVtt3/GeINDBYercWTkKHUm28v6JHfZZDUBUgJefznVTt2Cb3VtZtSxg8LCYsBthnhDw2os5pIJhoyJaVivf3r6EYJtd3b6ahsVk1t1C8h1FVITZz+RoGhqzennfPebfzeizEn0DYNRA9D0EyYA5LGlr5YdPPwtAc7aOL03flxOmbMPohkEMr6tn80FNXPmh41nU2sroQYO61HXXc3N4br7zTX1q7lvsNWUCU5rdM/DIugYG9cONJoRArccBp0v2OJHzn/4n2w0ZzbZDRvdqm922HMvl989kVFMDmzc39Wt7pBBkZJaCKZBTfVN4glOgHzJ+/aj2N7VY3xh12GGHcdhhh6Wft9hiC2bPns3vfve7ARJ9bSFKT9Irlrbyhx/fBkBTcz0f+eIHOPTQ6YwY3khzcz0jRzXx668dz9KVrYxs7opR98x8hRdedxj19Jy3mLHtBCZOdgrbocMHUd/QTxil1h9GfefaL/KbL17BlF22ZKudJvZqm90mjuWPD85ks8YGxgzpZ4ySglxdhs62AvmGvmNUGCr22nurfm3TphrrG6OmTZvGYYcdxllnncVll10GwKc+9SmOPPJIpkyZkpabOnUqP/7xjznuuOMAOPfcczn55JPZd999OeCAA7jjjju49dZbuf/++3u9742HRBfVP90rw3azvLpMQt44ladX+SWJNr2a0vgkoSYhgT2znigyE9EeAlBl3sWU7DfQYJV1tinS+ARyApRBBE6WZ6XbkZXCEWbKYgKBzoAOHMGsCwHC2BIpUt0J1bxPd53kZYLCeBpKOXJfCLefSgsTX4lzbvEEk2tzony26SKL0BYiWFMMsRg/rd/Tx6l6sVya6G0ZNJUKbQGxlmCd/YvO+p1EbqDC2T0YlIqwWmBRREo4/+BYpIMgRuI8nWOLLQqXqy/wfuf4/AVGlF5WYDwnJbEVAk5L9SBZ16ssMSooV6KX2yEIC0KK0jVD0j9JnaX31RiSLCvnxqw/F8a486G9qr9PYamseD3E/PnzWbFiBfPnz0drzTPPPAPApEmTaGhoWH87fpeiFgaVL+sRozy4JAp0oUvbWY81yReNVSK1fpGWVLJe9hYBaO+BLnEYZ5JpNUYgtFObGwFaWmfrIqxTUStP1Hu/9cTGxMvi0RlBHLjkt/jEmaxtqK+6I8qXm7J1WOchDj5PhSkb7fT3i63cVmuHUUJBaXZGSUlvhUXGBoqwqpjFGIsUupT7ILmnkmrL6jfC4Uk5CV2MHaEtlUEHvh0RiE7prGqEQajY4RgGneTNSJJS47E3sshiIrYXoESahNPaSpyyxmOpx8s0iWiNNpfI7fJ1oup9aQPr+19A6mduKeF2YtHSpX98LeUzjcpPTzLBKhkrMe8Qo/o72cxArFvERcnKpSFDR753fB7HbFFE97OP+/xX6thhrw7CLAzbTLNqWe1yV/1sNMveznDOz95aa327HdzKNU/O4vlH6/n6iVuuU5uu+cVmLF2Y4asXv7lO2/dHZLLwl8dm86kDprznSHRRDqq9iQ3wHDUQfY9CrCm2xCgJjWQZmR/Ess5Wdhg2BnDnea/Nx6fllZSM6UZEcuC2W/L3J15gcF2OHcY7AvqkqdOZMXoszfk68uHGf403ZnJcvPuHeiy3Jurg28/cSCAk39/heB674LMESqJkV/VpQUcs7lzF2LphfbZRuHvxoyzsyDFj6I4cO6a2NcWbbSt5u30Vuw6bsG45VTaiWNrZwn2LXma/kVMYme9ZrNSv8S48R61evZrm5vdB0tZ3EFEhpoCCfI66oYMYOrLAymUtTN1hHOAwaqedJ6TllZSMGlr72tl/x0nc8uALNNXn2G5Lh1GHHLsT2+0ykabmOnL5jd9Wp6Gpnm9e+bkey7WsaueiL12FDCRf+9XpzPxm9xhV7CyyZP4yxkzerM8Y8u9rHiIqRBxwwm584ru1sXPRghUseXsl03fb4j2PUcsXruThm2cy46idGTZmA9+7G+A56pprruGLX/wihxzi7MWOPvpoLrnkkooys2fPZvXq1enn4447jt///vf8+Mc/5otf/CJTpkzhxhtvZO+9e7ZFSuLdJdHLxIG2enkStuuiinJl5IIAbDb5pe9UnibrFZkxyMgtsxmLzloISmSoEM7KRQggcApQEwloB+E9zlUMYQfYQGBDiHMuIaZQztdbhsb5gAuIY0nUGWCFxsYSU5RERYHskMhYIqTAGOWTmVb7oZdUnV0OVVDRbxWRsdgizpvXAFmDyBhXNElGmpK8zovXFl3NKmOQEmJtnA2Bcck75eqQzljyOoohg9sIpKagnXrelmlOy0+YEKB9wkBhNWFg0Z4kQlnqm9tpoR7WBAQrAlRRYAJL3ByTbywwZFA7oTS8ZRSsChCRcO3Xzss57BRIExC1K+J6i62LCQZFyGyMFYIolkRxkBLkcVFhYq98DTRZGSOlTRXoUE4+iaqjSYi9qlENK5wFjRapl1BRGJ/I1JDPF8kEmqJWjiTzpFhK7JGo1oXnCgXCWoQ1GCSxECgk2lpiY9F9VlDZ9LW+4rvf/S5XXnll+nnHHXcE4L777mP//fdfb/vd4JHcfNV/oTQIx1owKomEGA1xpKx/JjBZ52EuNMiiyxVgMk49jnRlrU9obBMvEmmJQ4nNCmg3iHaNKlrCNpMmFi0oQdHnbyCL8/bOGUTWWyBpQVSU6XsRCUQsUB0O6wjdBetT+VYca0V4RlYkVHU1RiXXO0CIw+DAgrTI+hghLbqoSmx2Su46jIo6Q4S0ZMKYXDam3UqiQuB8ujWo1SHtHY3MjnI0DO4gn9NEcYJBLpRyybesKT8hAmsDjIlTQtlYh80NQztoDSlhVKdEGIgaDao+ZlBDkUAZlkehA1wt/MAFhO0QdkhknCFuDYnrLLY+RtVFSG/DUIwVcSEszXDREmJvv5PRoHTXYfsq9bn7W71MpF2e2GoZLbCx7wthkYElCGOymRhroaOz2tOv9D1U+b3krcqSU1o6+f75qG8PmdUY1du8DQOxfkMGlkKnG7xS75FZqquXS5pHxiyc138NzuQ1hU4Pp0H50GXXyNdrZt5fj1Iwbec2cjXsz5N7ZtUyxXYzWiGZKePrjIqCWU/Vo6O1T6eua4iZeX8DUlqm7dxGvn6txddLdLa7Y+7F0HGvYuykToZt5m0o0iQ2pY8tqxRznqt7x/uyfXwe2hDPUQPR96jLhJx70D78Z85cPrv3HkwZeSQFHdOY6buicPPmJm766ke7LB/bOLgfWgqtUYFrXpvJtkM2Y6+RW/RLnUl8f+bdPLn0TS7e8yi2aBraY/n7Fs3igSVu+vqhS17h0NG1/Y+ttZz9xG+Z0/o2Z0w8mDO3PKRmue7iXwv/S0tc4OHlr/C5yV0xeVWxnWPuvZQOHfGt6YfzkS1371P9G1uc88TfeH7Vm9w4bybX7feZDbrvDf0c9dprr/Gb3/yGiy66qN/q3BQjV5flzG8fy+P3vMCpXzqMiVuPodgZ0dDYt/wAAGOGN3Hd/3ysy/JRmw/pj6bStqaD2/50L5N3nMBOB2zTL3Um8ftv/JWXHpnDuX88i7Fb9TxL5tE7n+Oxu18AYOa9L7Hv0TvVLGet5Yt7nsdrz7zB6d89kY+e372PfK247fL7aVvdwRN3PY+qYceyZmUbZx95MYWOiLO/fTTHfHSvPtW/scX5x/+clx97lX/+6R5+N/MnG3TfG+I5qrm5mauvvnqtZWo9/33iE5/gE5/4xDrv910l0bsbmEiWVXPptR6f0+2FI0kMzqpABBZ0QlBabGAxQrgcdsms37IZ89ZP+zdJQjwshBZbh/cTdiVNAEin8iS2ELqkjyI9GvdS0iX1tEifJM+xSlaCURYjjCOTbCI99URTlT9wtwrP6g4S+EEAiwk8QSs1oixpX0W/pZ2cKBHBJMpYZTHKe3sbIAbbISlkAlRGk1ERQaJktYKiUY5U94rvhExxaktXubV4j3SnvFQqxigJSDeQoYEITIekMwgQ2YiGbCedddDZnkV0SKeqDV0fCe1sE4SxGA1WSmIpIWux1hKoiEAYjBXEKCIREnvFvTbdqDwBW+tKs4k6tMxf3YCNBTZydhjCAMIRcCjQJqBDSYx0xJgQFimdfbUjofw+vL2Cxfsg+/fGOKWtrFC09yFM2Ws9xRVXXPG+s0moxqbyz+WnqOZPfVl2SgIQGVz+AT9GZAPHmUvt8ixUuGb42zhJ8JhYVJkMGCGIMgJVEH6ZcIkfYyC23j89YV39wKG0SGkgTW6pnPWLAKsE2jqMsn5mikwxqkYHdIdPSSRKdIFTcicRgJIGFbiEnemlWsPb21o3qFlEufYrgw38NsoPUnUK4g6FysXkg2JK+sdGUYgVxgQlD3Rb4mqMXyYQxDhVuLHCjWqIwLXf560QRYvtFBQ7A2wmIpcpUshZ4s4QYo9RgesrGYHqwM0IiB1RHgvlckAYgVSa1BBKSrSQ3iPdeiy2lCxUq/qk4iSUMMk10pb6zJQI+rSDY4mJLHEMkXW5G/BjKekYYfmgn/RVijKMsv6aEiVS/Z1iVG/zNgwkP16/YY1g2Kj4PUOgA+TrYfGC/lVj1dVbsjk3mLCqBx/zv/9hJH//w0i+cvF8dtynba317nPkGvY9ak2X5d86bWKPBDrATX8ayU1/GskXf7qAnfZd+77WV2SygqVvez/Edxi7HbSG7181t9v1UVFw+m7T+mVffY4N8Bw1EOsWZ+25K2ftuWv6OVuWDfm211/m3/Pn8Nnt9mBqc999dB98cx5zVi7n1GnTyQXvTIn+65f+wxVzHkMJwcNHfoUh2f5Jgjx75RL+/PITAHz+wZv45wfP7HGb3Ydtydi6ZiKjeX7VfHZqHs/wXFf1q8Eyr33CNgUhAAEAAElEQVQJAK+1Luxz204eezjXzv8Xh21WW9EXGU3RxAC0RJ3Ma13Oqqid7YeMrVl+Y4+8ctdIPngXFMEb8Dnq7bff5rDDDuPEE0/kk5/85Dtt+SYfJ372YE787MHp5yQZJcB9/5nFQw+/ymmn7MEWE/uOUY/Onsdri1Zw/Izp5DLvjMq7+ic384/f/hupJNe++ksam/tnJvncFxfwj0vuBOBHH/sdv3vk+z1us8PeUxg9YRhRMebFh15mm10nMnSzroMFxhgWvOxm/73+/Lw+t+20/3ck1/z0Vo78xP4118eRJio6jGpr6eCtN5axZlU70/xMgvda5OocDuT7wfqnz7EJP0e9+3Yu3TDj1Yu7fXwu/80Rgq1zhLixEhkLTM5ic06dbrXFGOFIWHC/+r0dQroT64mo0JFaWuDsqb3liCo62w5hBCIQEIIMQShLEFjCwBB4j+44tHQWQih41ksJ1+MShPJEV1nWU1FGUtUUfYqqV1nHWP/BKjA5EKFBNWiC0KBjlSa5TGpOrG1FSgpLhLSOAFdOaS8AEYMqKOKOkEJDxKh8G43ZAoGwFIxiTSFHoTPA4nzHy8kp18XegTfZv/W+5JnSOQo0aCEQRUWhkCE7KGJE/SpWBZp5nXlEUblBDAk2cORUUISgKDBKUdSKYjYmbtAooQmVZVC2EyWcFUp7lKG1Q6GLgSfCLRZTRfyItA+7RHJdJESWkZiCgg6JLEpkwWl13Xmw2DCgI5+BuhiZ0UhlUMqU7ac02GKtcD7Fqce8249Bpv9LUWlB05sYUFD1U5TfZ54wTsWD5Qr0MiJZULmeMtKbAHSdG5wy1hPmOdKcCkR+MMwT5yK5bFTZvhSQ2kK5QRsRKUfadlqCotteapzNUGidAlzhsEeCymhvHYJTgWuXNFkElGbBZBxeCV26vtcKzNX4lLwkIPz9Zdzolc1agvqIxsZOdCyJ46AyyWj5/rzVTBwJZBA7W5eMBWmwQkJRoCJBXAjRosjw+nYaMwWUsLRGGVa01xMXFUmi4TTxcnLKfL4EA5hYYnySYikEtigJOqTLZSFBxpKoGBKZmOF1LbQElvZiBtEikUXfZuU95jshbBNYpSg2KgpSE9VbAitQ0pLJFgmUI/SLUUBnZ4gtKjDOK11K6wl/1+5Si8u+JyowTCKkQbpJN8SRxHYGUBQQu1kGwtelRUhb1kBOI0PjLalMDQz0O6jIf4Fvj3LXu3SzmOiZ/6uIaozqbd6GgeTH6zssLz+ZZ8iIFjIb/yxh3ng5x21XNrvBsP6sd3aWnfYVtLYoVq/o3YjC7KfzgGXvI1ZT31j7u7fWrOC2NZKF8/pG1r31eobVKyRNzRv+l4kxlqk7t/HEPY0un8M6xKTp7Wy7Wxtb79qy1nLGWA44bqUTLljBK8/meemJejYEqT7wHPXeC2MtX/rPbcTGsKZQ4IpDT6hY/92Z/+If857jjMm785Xt9u+y/aK2Fk6//QYssLrQyTm7uMRkL61ayOWvPMphY6bxgTFT0/IFHfHg0peZ1rg5o+u6kj2j65oAaArz5FT/WcOMzA9CCoGxlq2HjOzVNqPyTfxlxqc59L4f87d5D7O0sIaf7nhql3JKSH66/Rk8tnw2J4zdi7nLV3L2X29iWEMdf/jwcdT38MUwY9gOzBi2Q7frh+cGccXeH+f1lmXsMmwcx91/CbHVXLjTiRw2prY6PglrLX978Xk6ooiPbb8jgZQ8umwOt731JCeNm8F2Q8b3qi/6M36566k8sXwuuwyduMH3vaGeo95++20OOOAAZsyYwR/+8Id31Ob3exhj+dFPbiPWhtbWTn7ywxMr1l/4v3fzr/++xCmH7sSnT+46ELV4VStn/+7vWAst7Z2cffgMAF594U1uvOxe9vngDux52HZp+WJnxGN3Pc9W249n5LiuM1ZGbO7sPQYNrieT6z+MGrrZEKQUGGPZcrvekc/Dxwzh4pu/zKlbfombZs1nxcIVnPeXz3cpp5Ti+7d8gyfueIZjv3A4by5YznnfuJ4hQ+r58YWnkK9bO0btfdTO7H3Uzt2ubx7RyE+v+jQLXlvC9F0ncvaRvyCONN/4xansd8T2a63bWsu/rn+cQkeRoz+yJypQPHn38/z7qv9y9NkHs82MDe+lfv7fv8az973I9vv370yD3sSm/Bz17pPo3UR3is90mahBMkcWWzRQbzF5i42kF2FbCCxWgtWC/8/eecfbUZT//z0zu3vKrbk3yU0lDQid0Am9iXQpihQRpago+rUrNhDbz4rYRRQLCKIignSRokBAOgQIoZOE9Nx+ztndmfn9Mbun3JLce5OQEPPwOuSeLbMzs7vP7vk8n+fzyFgmgFgiP6BsRSsxZf4mTND0WNpzrEArLRjHiLYGiJ3msMTpEWvjwA/XXCKZkg4gAe2tdKA+YTqIhI04WEJ8H9CuZiKqmaDGAWTWc4CQKChMJGvlSBLaoO0DiggERjtgikyM9ZwusvGFo+cbiLt92mUdUZ2iIVMi8DR1XgkdCEpaEceK2KiqzvVnJ9pE39taC36M9gUY4ebKgC0JSkXFyt4cSEtLQzdFGxMWfShJwoJE9CpESSJNJdMADToUhFKhlcUXHvXZElnpFM2FsRSlT6QVFkEci4TlWQ2m0e9CK+sXa/dFyKoNhcUqg84l14oyLhAhccVllXFM0GT+rGccqzM9XdYFZDQiYfVT1ptPGeixEcRaYaJh0gJt1WezrVMbyDeJ1a2vCnRZ7a59nXEZM7LkgmlWuO9WJIGrSJRxXpe9Qrkeg0jibka5dQjnr8qnPAHCdSKdQuQYxEbg5GCkwFTrc6dKBanuurDlNlIf5XzTakCL1V1nhhqANQV+dUnS055BC1dAdE1RamsgKinAIL3YFd5VEoQi1q7uRFTwaO/MYfKS+myJQGrq/BKlUFIyPiDLt28SL00yRUQZKHb3vMuqQZnER7mSwK7mr0VHgt6Sj5KGuroi2sbERQ+TUxR7pZN/CQUyzYZKopUmksTS+QEpJL6KUcq4l4uMJVIKoxUWiGNqdPhq/FOfB6NNniNpFo4SgFXEvstUwEsjOen+TnoK5SRurBZY5QJ6ZZPVbVcKIafPRJnOlRFoITBDYNHWntCqzzBsc/Hj9WtSwi4H9LwlAPTlb3ic97at3fN5Hdv2e/RS32T58OFbUuwd2qvyTX8Yw8EnvDAogD6Yfeu8KSx6eXhp3jN3KWwQAB1c4PGJ/zSMGECfvGWRH98ynwFkTvtZJgsfvNCxYV96Jsv1l2/NmwGgA5vfo96CJoVg9rjJ/HvRq+w7YQrWWv726pOsCnt5z4w9uPqlR7DAz569j/O225dcH6Z5VnnkfZ+eKGJ0vsIa/9YTd/Dg8lf556J5PDHx8+XlP5p3C39+bQ5Nfp5bDr4AT9a+q5+55Z7sMXoLxueb+h1rbaw5m2POiefzcudK9mwbOjvy9y8+RGgsSkKD158V31EqcsZt19IbR/zu8HcxLtfIrx75L6+ubOfVle08vWgJe00dGWP8ueXLuOKxRzlqq605cOo0dmudwgtdS4mTFMWOqLDGNu57/TW+eNcdALTkcpywzXZc/NRfWF7q4qXupfxx34+NqG/VppMCLwPpMA9k9X6Wg8dtu9bHHZG9Ce9RCxcu5OCDD2a33XbjiiuuQA5xXjbbwCalYOedt+CRR19h112cj7r1n0/T2VXghGN25W93PokFfvv3hzjz+L3IZvr4KN8jF/j0liJaGir38K8u/htPPvACc257ir89/93y8su/+ldu/M09NLbU8cenvt1PvuT4897GDvvMZOzkljJjeV1YY0s9f5x/KQteeIMd991mzTskdv1PbiWOYoSU1Df316vr7C7yqYv/QqEY8b0vn0TbmEau+eMDLFywioULVjFv3hvM2mVkwbR5S5fzu/8+yhHbbM0Bu09jh92n8er8JcSR81Fd7Wv2UY8/8AI//srfAGgaVc8h79iF73/gMla80c6rzyzgF//95oj6Vm2pxK9SQ7sX6xrz7POOPda84fqwTfg9asNrolf/2wcgqC7UmK7vx+KxFSzZZgTU47TBE010JJA1Dj/Qjo0HDpywAvBtP5DHVh+fBFBXCWCQstY9HLM8YXZK5X58KuXABWMFYeQRlxRECmFlmYmKdoMUVoB2ADZiYIbSapmeVctE+iVhfjqNd+VkCKonCqjoK9hKGj8AEuHhpBJ0AvwKAZFFWMcW7dEBeRkSeIacF6OtQkrwcbrnIpFzKcta1oA8ogxQWasg9tzYpcB6OLZsxjH7rYJ6z2mcF0wA2Zg48tDdCmUkSoiK/EwOyFnwwFiFMJb6bEjeix1QiEQHGo2HBuI4YXZaWwap+gHo1RNvBFiJVBqswGqFSEBtm7Gu8qPvCsqmyjlKugCNiZSTCvKqL15bA44ZKxNwyhVMdMkRDraMEl0PPdyqfWXdmU3Qa20oS85t39u0Riu8KlZVE+hL74cMmHqX6SIKwhUCVm55aimALhOgN01WSRnqJllm+/gBm2imGy/xhz6OSZ7qqAscSKpAem4nE0mIFUKrpBnhGOtlv+K0wFMfNei89PFHA/kqQdXfRoBWlKLALetTs2HAibYKoy1eYFGeRmuJNRYtjWNwx2CMomR8hCqR82KMlWir0KiKzzfViH76kDFVBTRlIoOi3NwgXf0MBTYAsuBlDJ7vCjbnchFdSGxGEwcyyRoQKFnxUSYPJmcRyt3vwlqymZhM4qNCBFYYLJII6/yvVZWHUDIllQvJ0o/6LSz5XEQm0ERxIuGi3LMp1S6rckGuJS1cgK48D8mTRFb7qPQCT3wl5VLLgEBbdzFqXX7YDM3eBB/1v1b8eF2YjuFf143iyNNWkBm+fOebZvMez/GP37aU77F1bddf3sq9NzazatnwAth//vlo/vnnUUzbtsDbT1lJrn7N1/fsI9qZ90SOzpVDB9nm3N7Ajnt107IBCsB6vuG8ry3EaHjozkbm3N5YzjpcnW29cy+HvnMlLW3RkAD0vtbSFvKxb7/O3deP4skH6lnvYPrm96i3pP3hiJPpikIagwyPrVjA5x+5AYA6L8M+Y6fznyUv0erX4cv+93ZzNsc/Tz6LN3q62GXs+PLyfdqm8+DyV5k9dmrN9nFSWMvYgd/RhRBsP2r8gOvW1sbk6hmTG95zbIdR4yk8F9CcyXL+1m/rt/7Bxa/zxPLFANy14EXes80uHL3jTP71/EuMqc8za9LQx9Ie9vKVx28grwIumnUsX737Lh5cuIBbXpjPk+edz5KebsZnm/nZXmewrNjFsZN2XmOb4+rr8aUkNoZJCeN6r9atuGnRo8xu3WrIfRvMXuxczrvu+D2BUlx/+FmMyzfUrH9l5SoeXriII7beivrMRhBpXs8+atGiRRx00EFsscUWfO9732PZsmXldePGjVsvx/xfsO9+62R6ekPq6zI8/exC/t8ltwCQywXstd0WzHn6VVrzebwB9Lqb6rJc/4UzWdLezY5TKudgl/1n8uQDL7DzvrX3gY6db9LaDHiZCCHYatbIQOc12ai2Jka1NQ1rn612nQ5hSF1LA++/6J391j/xzAKefcH5qDmPvsTxb5/FwYduxwP3Pc+olnq2227ikI/VubKbSz7ya3J1Gf7vx2fxtdvv4qHXFnDrs/N59NMfYfnKbsZMGsXXfvV+Vizt5LDjB9Zor7bWtiY8X6Fjw9iJowDY9dAduOPK/7D74TutYe8122vzFvGJQ7+Gn/H5yb8vYvSE2kKhry1exRPzF3LI7ltTtzEUnd2E36M2WiY69Gd4AjWE6nSDhISHLFpEEWxgIdAVBnYsHFiuLNZLEPNE45aYBJAyVZiEcIX/YuHAHeWYmY79aSvImAZKAqslGotUDugywul+W5OAVkHsAPdIOgBHJf0yVeOsGsdqJ6TayoBIFeAkSNA3RzEtt5nSLmUCiKW896RSnCjjJ8l3aRyAnjEQCEzs0Pa412OlqSdukLTWdaOUpsEvYKzEFzG9IiBO5AgMqZRLBai2yR9eEGEbLdoG2B5VllkhEkQlxaquPB246c96Ea25HmIj6c0EdHt5wl7fnVdwALUf43kxUhq0VXQVMvh1mqyK8WWMURYZWHylCGPPAf4CV9grBfqBWCukrEgsWOPOpdFO6sFNAq6vngUvOYmRxEbJeVDWabcrC8JgjSAqKoSQSM+g/LSgWHLuE631cqaCEMRJ4VascMz0TVFM6i1gA92OA5GBB4jtDfi3CC2EFutbxxTXuHtTUwZqjZcE9rTT/k8ugwrrPK0RaUAmuGUKtpu0WHJ60Ni5NWvcIuOI3A48l2mhTYv1tPNLYUJZT0eU4jP9ilxWz4BbUPY11UGFakuX26Q9k3xU+l1WthvQ3L0aRxKdzFt6F8kgcoVQJUShx/KOOuJY0pAtkvNLNGQERekTxgotlGNflwFpF/hL41Q2qeMgPI2tD9HGwxbd/WiFhRjCkseqrrzzCRI8L6auPiQMQkpBQKh84qKHMMk97YPIaPwgAmExVlEMPQIZ4ymDJ2MX1AsMSqmyBJdI2PEmkbQR0mXFKGnQVhAlElVYXLHZ2DHtYy0xWuAHEb4yxFpSKviYOCkILQ0om5w343xppNyp9wwqwDHVq8wkNTfS8xinF2XiR6XY+HzU/0zx43VoXgBHnLpxA+ilguBTJ2xJVFp/jLiH7mwe0X4P3tEMWP7yzNNDAtAB/vXXlmEB6ACHnNixQQB0AD+AI05dxSvzMlz62aGxYP2M4XvXzV+r66q51TB2UsyTDzSseePN9j9rQggaA8dMGJ2tIyM9QhMzua6Z3x54Ks+1L2NyfRPeIJGc8fUNjK+vvcbO22Y/Tpu+G41+bfHSj888ip2bp7B98+QyCz02mi88dh0vdy3n27u9k+kNw9c8Xl926ISZ/OfoT1LnBeQH0PDed8IUDp40nd445O1TnOzAhKZGrj7r3cM+1m0L53LnG88BcMTE7dlz4kQeXLiA3cZP4NaX53PebX+nJZvnX6eeRdPYoRWF3bKllXvPPCcB0R0495UdT+IT2x5No7/2D61Hli2gIypCBE+tfKMGRDfW8s4rr6G9WOSh1xfwnaPePmAbL3S9wSXP3ciuLdM5e8ZhA27zVrHbb7+dF154gRdeeIFJkybVrBtuoebNVjEhBPV1zke1jqojCBRRqBnf1swlF5zEi68uZ0JbE94gTOO25gbammt91CkfPZyjz9iP+qba++Dci05iuz1nMHPXqXi+81E61nz7vT/m9XmLuOCq/2OLbYYOPK9v2+e43blmwS/JNWTJ1fX3C7vtuAWzd51GoRRxwF4uYNDW1sSlPz1z2Me697qHuP+GRwA44KS92GPyRB56bQG7Tp7APXPm86Xv/J2mxjxX//QsGgboy0C2xYyxXHHnZ9GRpi2RyvnUZR/gg995Dw2j1r4S/DNz5tPd3gvA84++UgOiG2M5+2tX09FT5NHnFnDhuUcM2MZLT7/OLz73R3bafxve8/l3rHWf/ldtwzPRV0MkEX3BmL5M0JQtadxveV0Ptt44cLOUIAASB6A7sqEDJa2oAMmplmv6sTj5g0RDFmExVTWlhKzgRyI9gGdQvsH3DEo5ECaKFTp2yLtQOLDKygoVMAWTUtZ2X2RudfNVw/C0td9TRF5ZhJ8c1ySdFX3lYmy5cBxQxcRM5sJY8AU2YTRiwUYSnRP4vibwHGLme4ailmgUCAf6VlhJ1exz1w+lnFxJyXigE4aoB2RA5DReoOkpZpHKkA1ixjV0YIGeKMCEikhJx9wNkvH7hmxdRCajKYY+AsdEz3lxyjHFkxZtLcomx1egRBqVFUhhKEQ+nrIEnqa3FGCtK5bq5FiS8RggUg6A8pPKtKF0ARKFC2AojUyKCzotDncOrGcSffTqk+2usbRoXyoDZJLjSQmBckGA4Ziwlc9mG7mJ9H+2z7K+2wyyoNpXWBJGct4BqzLRGrcKl4VBcs6MW5cqa6TguZOCStqLHYBervfpuwOIZLu0H+XgnCeS4KItZ0zYWELsNhY+Dki10nU/8YV9fW3FTw3gqKr9+UC+qqYxkuBXOjGyfxuDzms6SBeIlIlMkjUuA0lHEpsReJ4h62k6Sn6qk0Tqbyuy6JVB2bRyazI8oZKgmpEgJVZZl3mSMShf09uTBWHJZCOa64toI4mMQguJlRIRuPPlzq8mUxehPEMYusduLojJeNr1R0uUrEg6GWVd+Qxp0EYiLXhKE8UK5RkCX9Pdm3G+CRDSopJsl0h76FjheTG5bIS1gt7eDKaURIKFBU+4YKGWjnGvk7Erg0z8Y83Up+e7HHiU5SKtUoBSxo1zGPZm+Kj/xeLHa2tRSfC3y8dwwjnLyeY3ngfIa/MzXPWDNlYt8zAGJz+3nm3mLj2868NLefaRPP/43WhKhaFf5F88fRqZnOvj209ZwYHHdeAPQgo6/1sL6FhReR2/75Ymbvlj62qDBDf9oYXp2xdobRtmBsg6tPFTSnznL8+XiRKCcqlkLILX5mf54yVtrFrms90ePRR7JZnc2gXbttuti2//eX7yTdC+zON33xnHoleG9gN3OLb5Peqtb5PrRvHPI86nqCOm1DuwYdtRY0fUVlPQH6TNeQFHTdyFJYV2/u/h3zIx38LRE3bjloVPA3DD64/z8e36M743pI3JDsxe742LeFLx28P7sz9HYnuPmc6YTD05L2CnUZM4aNxM3rPTLFrzeS59+H4ssKLYy/JCL02Zod+/4/oEOIQQ6wRABzhqi215ZPkCssrjgPHT+633E1AzWE3l7atf/TePrnqJR1e9xAmT9qYls/6y3ta3j3rf+97H+973vvXT+GYDYPy4Zq7+9QcolmImTRgFwJZTRxZ4a2juL9GUrctw6Lv2Yunry/niMd9i/PQ23vbeA7nrmvsAuON3d3P2t04f+QDWg7WMax5weW9XAeVJvvulk9bJcXY5aDtaxjWTrcuwze4z2HtMI6fttjOtdXmu+JPzUe2dvaxq7x0yiA4wug/7XgixTgB0gANO3JO5c+aTyQbs/rb+NSTS7IXAH9xHXffT23nyP/N48j/zOObsg2kes+Y6CiO1Tfk9aoMz0fvNaRVQPhiuXFNkMcEpLaCKEBWcNi7WOskAHPCLlwCe0mIwVanqKcAuKlTpVCbEs5jAQpC89BuBNQk7NNlUxAIbecSxk0ZQGY1SDvgQwiZanQljUpkEWE0Lm1baqdULqkXhqmCe/hNXNYzyx1isdqCRyJhEiqaqTTHAvok+vKBK91smky2cELPVErQg7ghYGjbSWZ+hLheSD0KUNDQFBUJPoo2kq5Ql0orYSidXkiCJAkPgRdQFIZ7QdMV1mNh3cxKCLUhKnue0xY1ASU1GhmRUjC9isBZfRvSGGeKEGW6xeJ4m8CLyQYlIOz0LTxg3HqsoaY9SrAi1JIol2koEqpxd4imDxBIbSRhLpIwRQmC005UnEojISdwInUjxeIkUh7BlPWkkiMBpE0uZyOYkUQpRUMSRQGdleXxCWoQyrqiocmC/BbSWGCNR0hAFAhVvfFIJ/wtWJk5XL+sTzBtK/KtMFi6BKAps1kn3uOKhTp8/1URP1DHKCicpy7yG6JsEDo0EEzimM9qB68K40gZp52QMtgAKgRWJJrhX1ZgR2BD3hJOmXPxTpMVAy8G5vjOzhokbdLktj0FYi/QNVrmMjRo/VT54/zZsXFluIplkfbg6FdYICp0ZFoeCznyGwHcOXUlN4JuyXEsUexgtK+B5OTBq8DxNNogoCE0Y51CdrlgoCIyUxMJPrgMnveMLTcaLENYg6g1FFRBHnksSSoDpIIjIBxEyZynGHlIYPKkRWGLhpJuMcYzv9FHk+ue+ayFQwjHQtRYEXkRkLTp2gvhxJB3oZiQ2FmgUUa+P8ExlXtMLWoNJT6xNgwggeiU29ImzVdpBwrqgYRqITXwUkXsmCGURnkJEm33UpmCZnOVd5y1jHcr3rhO79LOTePrBN1eC54u/fJVRo2O++aGpw9RdF8x7zPV1i62KHPbOjtVuPW3bElACoKtd8bmTZ7D6JwqccM7yDQqgg9Mr33mfwTVCr/z+OFYtc5HSr17xMrm6tb/X6xph1r695e8/vmDiegHQgc0+ahOxtlwDDy9dwKpCkVljJpSXv96ziqKO2KpxZKB6tV2/4L88sPx5AI4cP4v9x27FKz0rOHINhTI3pGljyrrfz3W+zkce+RlZ6fObvT5JW7Z5rdufUt/K3Ud8umbZmDoHJJ21024U45jpzS3MaG4ZaPcR222LnmJpsYtTpu6JL4cHc9T7Gb691zEDrpNCcN17T+OpN5Zw4PSpg7ZxSNtO3L1kLrNGTaU56A9qAmhrUGLwIOmQbbOP2iRsdGsDT8xbSMcLRbbfsiKZtHB5B8UwYsaEta8DdMuv/8V/b3sCgENO2489j9qFBc+/wcGn9i9eurGY1hqVBKzmPfwin9j/y2TyAb98/HuMnbz2czJxy3Fc/eKPapaNqXc+6uRjd6MUxmwxoYUtJq5bH3XPtQ+wfNFKjvvw2/GD4fmofEOOT/38nAHXSSn47YWn8czLi9lnx2mDtrH/8btz3w2PsMM+W9HYOvB7dfXcr5Vtwj5qg4Lo1eBTNWOTquU1f1hqAR1RtVpA1ADkHTVTRMqxYqR17OAU+NISgQNBrWexKWM4bUknDFEr0Fnj2MYejqlXpnUmgEuiZ25VAjIoh5ca61Lpremra5sy4NOvfQCjMu2VCkjXd0L6MT37InpJH5V1rFNJjdqL29cBTikLvUb6lsowUx1kmwQC0KLMajeeQCiB5znt3CBhSvvCUoh8dAKeO0Z1yu60+MrSkI0AKBYzmIKHSiQBjGcha1CeRccCL6MZW9/N2GwPK6M6IuuhrcJIVzBWehZjIVCawNfUBxGFyEcJQ3O2SEbF9MQZQusRGfeJtXIavghM1f3sq5hi5JiaUlniyMMYhY09iCUikgjtrg+RzkGigShMnzkPLEo5PXSsdPMbJvOQAqVxokEtnV6HFaAS0FJr5QotJoCV01cf3suWMJXPZls7K9+Htup7320Gxnprd5AQ14HNgjTCaZ8nTPRaiRaBTDBMW+1CEheETm5hAXGWstSUNG6ZtFXHTf9O9bxdbU230lJB6z0HmJazdGqiBlVj6BfRHGS56POpniSL62RgkEEK5YraTewgkzrQwRL/7ooju8wPK8AqAVIgJUTa3X8yKeIaa5UAy5UOCpxfVNKSy8QIBFEhQBRUol2fyHoFrggsoQtSNtUXGJUtsrxYhxVOg90Kl5kipXE1I3xNLohpyJToLDnApz4ICZShpD2MVU673apK0LHPmH1lKEWeiwXLJNBWta01zkfbOPlXgbYWaSUmyTJI5yuVarFRWs0WZMllIZgUMI9kksWQPAvSwCq4DIZIJpeRRUqGpIlcM6LNPmqjtFJBcO3PxnLiB5aS3QgkXV5/IcNPvziRl55ZT0DpILbzvl2Axc9Yrrj/Ga79aRu3XT2KeJhFvl+bH/D+fWdyzpcXsddhXXhreOuua9T8bs4zRKHkt98ex/23Ng1YwPOvl41mi62KjBq7dpIuN/62lRt/10pYdC+L+QbDR765kG136x1Qt/zuvzfz55+Ooadblv2/BeobNed/cyEzdymU9/viZa/Q0+nmSw4zm26o9v4LFnHCB5YmL1a2+gWW9Mnijix49P4sd39m6G1v9lGbht278GXe+89rAbj+qDOYNWYCL3et4Jh//pzYGn697+ns1zZjRG0vL3Xyas9SZo+eyZ9fm8P43Ci2ahzHz/Z+z7ocwjq3m19/lk88cD27j5nMHw46nXmdC4hMTGRiXutZuk5A9NVZUybLBbMPXOftzut8g8895s61EoLTps0GoDcu8dnHf0tn1Mv/m3UmE3IOFDPWuF/mg75v1tr4hgbGN6xeTmrfMdtw56FfHXT9Va/8jesX3c6JE4/g1CnvGNJxB7PNPmrTsAeffIWPf+uvAFz+tdPYfsvxvLpkFe/8xu+JteFn55/I7G2njKjtFYvbeX3eIvY4YhY3/Ow22qaOZfpOU/jGP76wLoewzu2ePz/At95zKTvuty3fvuPLzH/kJaJSRFSKeP25hesERF+dNdRl+fB7172PevGJV/j6qT8EQCrJCR89EoBCd4EvH/dtOld08dXrP8v4aW0AGOOIv0P1UW0tDbS1rN5H7fX2nfnbwp8Nuv7yC67i2u9czykXnMhZXz91SMcdzDZlH7XBmehQS1ocCP/pd9lUYTEk7/HWgiwAIYicgYCkOFsC/iZ7WGkd01zh9LwSYFTGwoG4vnW6wcog8xEqozFGOFAzFlBU2EgiIuEABW2RBYGJPXQo0b5CBAYpLTom0V6v/BKx0lYKmdoKfFPBSCu/SmyfRYNOnEjGkuLpCVveSoHNGYJcVCmWZ2VtewkI0vfeFKJyAOHZsiQE1oE1ptOnq8ujN5+hubkHUddLQ1AikJomr0BHnCPSkkLk09mbo1jyQVh8FSNFTEZp6uoKRL0KG1ekXgglkfTw/Jh8ENLoFwhkRFaElKSkra4DTxiWFepZ0Zsn1k7fvBQpOsmQ8yOksERG0ht5lIxEYhLmqaQUKVeQ0DqtcyyOxYpDIqNQUSwl6eKhgl7pwKVIIJOCjymbU0mJ8cA0xIjmCBU4TfYg0Chp6BVZdMKSlc0xOgGsHFhnMCWFLvlJcEcQV1eTjN18xCqg4BsoDvNW3YQjf2+29bldylPaF2cedN8Ep7WAKlqivCssajM2kWQRji2e3L9WWoxM5FwsTrpFu6Cd8R3z3AjQgUXXWWxgEha6RMQCVXTscxmKip+JQPUAWmJ9gQmcLjsk/jD1kQKXWdF30P0GlLQ7aPDA1i5IfVQ1kGLcZHqBBh907LJYyprsNtVsH8AqLt2x8lMWe1m+yhJ2Zgg7fWRgqGsokgliPOmyPuoDKMUeFqcfXixmCEvKueLAST8FyuDnQ0pZhQydLJXQYAvKSeH4hiCIyXshHjE+EREBrfluRJ2lu5Slp5hJh0IYKwrKpy4oOYkWYShGit7IJzKKSCvCSGFMIiOVTpUVSGkwnsBT2hWsLjp/ag2Y2J1XIgGRRCbBTheEkdjAoupC/OaeRPZGVPpkLZR8V8ehIUKkmvixu2Blr3RZN1Cjzy8AESWiaEnhZBtuLn68KVgmZzjlo0tHVPhxfdg1Px7LY/9+8zWwP/L1hbRNckzvIAM3/X6kP9gkY8bH7HtE19C2ljBui5jnHsvxn5tGDbrdu89fttYAeneH5CdfqNW5PfL0FWy/R+8ge8APPjlpQFmb496/nG13q2WljxqtGTV6/eq21zda6hujIW3bOKYAwwDRN/uoTcNKVUWvQ6Mp6Zilxa5yUdCf/PdOdjtyPNoa8iqPHCJDODQx73/wB3REPbxv2mH889Avr5f+rw+7c+HzxNYwZ+mrdEVFDh+/G6/3LqPOy7Jry5YbunsjtiY/T0Z6lEzM+FxzeflTHa/y2KqXALh36VxOmbI/Dy57mfPm/JHp9aO56oCzyCifq+c9wdMrlvDxXfZlTG7dyC/0tftWPFL+d21B9M0+atOwMKz4qCjWlKKYpR3dxNr5qO/dfQ+/m/JujDbU12WRcpDfRn3bLUWcN/vLdK7o5vTPHcdfl/56vfR/fdgDN/4XHWkev+tpejp6OfQ9+7Ng3kLqmuqYdcgOG7p7I7aGlnqCXEBYCGnbovJeOff+53ni7rkA3H/9fznpE8fw+N1z+fLx32XyzAn88J6LCLIBN/zzSZ5/eSlnvWs2Lc3rx0fdfc19WAv3/Om+tQbRN2UfteFB9D4Ajei7arVoulsmLCBB11vIJSBkFQOacjE0WaWHThm4ljpBBYIEPJI43dts7EADrVxbiX6CSIpSusMLh5F71onZJmx0m/bB9hUXruzn/qhmzVTmYbXjrmaFpiz3lMmajM8mesNBRjs1EZMcdZC2qpfXEOQtFWAqFpU2tAOR/KymLheR8zWBMgTS0BVlkmEIIuNRKDohUN8z1GXdtsXIp7c3iy0ECCsduOZZ8BxjSfmG1roeJuS7kQK6dRYpIKc0hdinN8pgrEp4RgIlLRlfo6QrcNcQlOiOMhgUsVWUdECsVZkZ77IE3ECVivGUpRh6aO00hzEKQuVY6Fo6ENPUyvAYYR07td7gZQxSga8sgWeJYo+45IEQqECjoypJG2UdQB87tqpI51glJyTVJyYB1Y3E6GGm1FSB/ZttLUzU/NPv76Hs24+JHpBIriSR5SpQXiTyIGWXlfg3qROiXVKfwXpgsmCzSTZEkmHjEm9EmZWeErqtAuuJRLMfVzMhPcBAIxrI/5QbG8A3DzTmvn8LKnUnErDaC0zCqk4KfVrhjmEGaJsBfFPfM6PTCcP9LSV+EBMEBk+CkuBJSzFWZZCwFCvCknsUSmXxA3cP69gj6g1QBc/1y0uY6BI3h76hvq7E6LpeQNCrsyihCTxDGHuEse/ud+EeDb4yZJI6DTGCnKdZUcyjUY6JbhQWWcWQr4zP8w2+0vSGAVpLlGed1Ev6jDESdPJsSvyJAIx0gQsvr/F8koLPrk9xKCHxUfgGkRZOFsJJjxUVMpYuEyJhEViVnMok+IN11yJGJPsPwzb7qI3SSgXJdb9q5R3vXzGohvebaUecuoL//qsh0Qwfsvcdse24dzef/MFrjB5XAWabR8ccfsoK7rh2VLkOwXDsifvreMdW2yMFjJkQ8ZVfv8zE6dHgyTbAzJ0LXDfvCbrbPS4+ZxovPJWjevzXXTaaKTNfp75xZDfQDVe08scftiGk4UNfXcRD/2zg0XsbuOWqFu7+exMC2HLHAp//2au0jHW1G267usXVXuhj9U0x+x2zCq0rtV02Thtmxzb7qE3CDpu8JZcdfCKBUrTV1TH7xksw1tLUPopVpV6eLq7gB9Mv5OXeZWzXuAOf3PrTa24UJ8nRq50MU2c0uKzRujRrLf98/QVasnl2GzvyYoAf3HYfOsIi+7RNLWu9n7/1cSPqz9eeuoEHl7/IV3c+gd1bp424T1DJ8B1qIKOvjcs1ccPBn6A7KjKjoSLTs3PzVPZunUlH1MNBYx0Ad++S+RR1xDMdb7Cwt51ABHz+vtsAyCqPL+91SE3biwsd/GLevezaugXHTd456a/liZULmVrfwqjMwNItfe2saSdz6+J7OHLcQSMaY41t9lGbhO232wy+/al34HuK1tH1HPTVX2It+DN92gtFHjWLOftrV7P46WXsscsUvnfxyUNq18SGQncRgK5VPetzCGWz1vLAjQ/TPKaR7WbPHHE7p3zuBLpX9bLLITvQMMpJjnzoB+8bUX8uPe9XPHrn03zq8g+x84HbjbhP4Jjh1toRS52MnTya3827lJ6OXqZsVyEx7LDfNuxx5C50Lu9k/5P2AuChWx+n1BvywmOvsPiVZQStDXz7l3cAkAk8PnrmQTVtL1nZxRV/f5Cdt57Akftul/TXMvfFN9hi3CiaGoaWXvqRH53FDT+7lePPP3JEY6yxTdhHbfjCon2sjNuk2FIVoFzGckTVtlV4o+oVmCYQ+RjrGadlnbIaBU4rPDDYbAJc9ipkyRUQtRmbsM9j/GxMNogJvBhtBaUwATisIBQBYpWPLEpMYB173YDsEQhc0U3RFCIC4xjWwlQ6XAWm2SotkYFf60UtSDUgoF6FviXAG5ayRrcwEMeSfBChhZNdsdaBVdZUN9afiV4Nrrsic8bh8Fo6GYNYYENJSWToyETkvBIFPEKh8ISm0deoQDMm2029X2LxqkbCWNFd8JEYB2hjsbkIa/xEDsedAyEcW7QQ+yzobaTBLxEbkRS0s7RkeugoZegNfQekWUsYK1Z25/GkQSmNsU4aRQmDL2MyXoQnNZGWTqs90RzXRjodZSvwVezASSMSdqebQ2RSXNarAElIN88mo8kFJUY3dSU674aeKKDDZlF+DELhezGNdSGxVhRDB6zFJkaX5RckMkpkGJJMBRWBFQIbKay0yMIwpRKsLX8229pb9e1X1kQfCETus0+1Yoi1oAoQ512BSq2EY/NWBWistRhfYDzAgNcLKgRisBnQviWus+i8QeQ10jcYDTZ20h7agO6R+O0SLwLrC3Ti5VXBtRfnBGZUUiQzElVgOv2jBf0Y6bY8lj4rKqMeDKdIhb5JmMvWIrEYUyk+LGQSrZYiYaFbFxQcoFlXINTWPpxV0r4RLgsokpRMgPJigvoixkJsJBmlyXhFsipG5wUrgjpWrKpHR4qSUBgTOD9ggazGi5WbohTc14ARlEoeS3vz1PshEo02AmEtLdkejIX23hyh9tAIYp2hEPqoxMfFWhDGHlEV81wmEk6mfOG4gRvjAoWj6nopRp7zYUJirSXWPlYZyFisL5zsVPrc9CwiiMn7JVoaeh2AbwQdpRxaZxx4DghlULkYHTufAwJ8iy1ZROgyJWRMuRC3NaCS7zJy3dTFQc77ILbZR22cls0b3vnBFRu6G2W7+crRdKx48wTaT/rgMiZMrWU2r1rqcfs1rWvRqqDY4xzxXoevYNKMNTOnhYS6BnjwjnpeeKo/OHPSB5ePGEAH+M03x1PoUYzbosR2u/fy8y9XfswVul1fDzmpnda2CpP8t98eR29X/58Nex3Wyc6zB2evbzw2vPna7KM2DRNCcPgWWwFwy4Jn6Yoc8P2umbtxy9yHmLDN6ywvuev3+a7nsNYOKXU+pwJ+stuHeabjNY4cv9v6G0CV/fWFuXzq3zcjgDtOPJutmkfml7ZuGsPlB7x7RPsuLa5gXtdL7NGyE0Wt+etrD7u+vfbwWoHo7WEHX3r665RMiQu3+xyT8iMLErRlG2nL1hbKy6qA7+96Vs2y06bvySvdK9i6cSzT6kdT0jGT6htZ2N3JrmMn0Nd+/tw9/PnVR/nzK49wQNtWNAd5fvrsvfz4mXsZm23grqM+it+3KvsAtnvLTuzeslP5+zMdC/jraw9y9MRd2dIb3vnc7KM2DRNCcMDuLgPk9ieep7sYAnDKjrP44zOPk3kVFi1vRwKPP71gyD4qW5fhe7dewLyHX+Kw0/Zdn0Mo2x2/v4fvvv+nCAG/evoSpmw7ac07DWBTt5/M12/8/Ij2XfLqMube/zyzj9uNqBhx06/uBOCWy+9cKxB95eJVfGSPz1PsKXHJv7/G1O0nj6id0RNbGN1HZz2bz/DNm2oldt5x3uEsnL+YqdtPZvLMCYRhzPgxjSxe1sn2W4+nr/36+jn8/e6nuP6uJ9lnp2k0NeT4zfVzuPy6Bxg9qo7rLzmnXHh0dTb72N2Zfezu5e9PLHuDq555gpO23p5t65qGNdZN2UdtJAm7fWwgv5CA5Sm2UPMvOCZ6zkKqsWuqgASRphE4Zq8QFoz7WGMx0mB8A4FBBa4waMZPkAHAkhQJjSWUBEROV7cG50hy3K1vEYEraGlTHcukD6KMcleB31SNoXr81boh5WUDfMq7pBOSLFCAtHh+7ABlKyoMx7TJpE9CVP9ta5dDJQvDJv1KmOlCgczG1AUlPGnL+Fm6TyA1JePRGQaEkUJJQ8Y3CAHFSBHHKtHVTTrkGZAW6Rk8L6Y+KJFRGmMlofHwhCEjY7rDgK4wQ2zSoEC1hrBFSktGabRRKAGxUclMOg318lwIBwbJhL1ubFpkkLLMj8VirUPOhHXXj9NgtlhpEL4hWxeS82N8aTFASSvCyENrgfQ0vu+yAcLY0c6txTHLE9aoMGBJqkEKi9C2DMBaaUdW0XgTTp/ZGEz0+2OADap8lAXnozIkMio4QNZQRuVtWuAR68BhbUAnkh0S4sCiA4vxLfgG6WtsLbzvgmclXJFeIcqgp0iPJYQrRJpxYK2oDjIO5FsG8Te147RVnwH27ztrwkkaKd8xjqy1SYZI5XKtdZGJ7yyX915NALIabTeuboMMNIEfI6r8qZIaJazzUdqjN/Sd3JJMgoYClz0SCUTJ3YdlJj24YJ9nyGVCMp7zUZFRKGFcm7GiEHlOngZRBslFcv8LBJ50slPV403OfmV8yXg9ZcioCItIajokt7dOznvioCvlN5K58jRCGepyIX7iX2LjZGPi0LHXUSC8JDiSstEtrg5E+hw1AoNwrj+5zmz5OVVzSoZum33URmnFXsmdf23CrF8VjiHZ3IfyzLmjgTeTwnLR+6dyyacmEYWVZc1jYvY8rGOd9OPan4zl/47Zku4OOeClf8mnJnHs9B147L46jIGDT2jn8nufZdTYyjspwK1Xt9T0cXX21Jw6Ttpme77z0cmEJeeLjn3fchCWxa9l+OhRWw04trv/3kShpyItdcyZyxHS8vHvvsY/Xn6Cvz77FLvs18nJ5y8tF0TeuG24GX2bfdSmZoeM34qzt96b9221J5/e+0A+cng3k8avwFJkUm48507/0IDg1K+ff4Cz//1HnmtfUrN828bJnDR5X/Lem1OzQVb1bc0Q2ro3ay1feOp7/HD+FVz20jU0+TlOnrInU+paeecWe6xV26/0vsaqqJ1eXeC5rvnrqMeD28R8Mz/d+1T+b7tDEUKQ9XzuOulcHj3tfI6etk2/7XducYDZtPrR1Hku43pJwcl0tYe9xKYiaReZmNvfeIpXupetsR9ff+o6blz4CBc+ee3wB7HZR21ydtD20znzwN14z/678On99ufwxRNommdQC4tMndTCVz59zIA+6g93PMJHfnQdzy+oveZm7jad4z54GPkhspDX1oSs+q23AdLSrLV8bN8v8633/IgffeTXNLTUc+x5hzNxq/Ecde6ha9X2/EdfZvnClXS39/DUv59dRz0e3NqmjOGrf/0U77/4ZIQQZDI+V196Fv/49XkcMgDLf8ekKO2UCS3U5Vwq6bJV3QB0dhXL8kDgZIPueGger7yxco39+Ny9t3Ht80/x8btuGv4gNmEfteGZ6H3vr75zLAZYXQ0+y8p5kaFAa4nIGBQak+TrS884SRMsUho8ZdBGUpIZTEkhPPDqSzQ0FWjMFMn5UXIsQU8pQAnHlow8TY+WmJKH7JFI40DZFDUWWiCMRQkHggllEiA9YXr3BaZSUDoVmR3o+hrU/9QC8VjKOtrVCF9U8tHaIpWpSNAI+jDPbRlHq+2CBSFc+q4AKxN2v2exsUWGoHt82nM56jIhsfUpxo4drqQl50U0+EUm1XditaQnDOgt+VhribSHFxiinMYaiSi5YqFBPqI+71gir64axQLZRGPOfY+MojPK4glLqD1qirRisVYQaQdcrSCPSsBuX1gCaRDSUh+EaOvY6MXIp4BPseg7pqcyBEnQwWiJ9cDGApnR+BmnVxaHDmET0qIAz4vJeDGe1PhKI4wgjAO0kXi+u94EFiksdZmIrkKGqKRACwdcWRx4bgHfgq8xvR4idAEhstoBcD3DRDQsg0pibLZh2kD3ZvWyQXxUddAv3cwrCeJYYjPGZV4kl4Apa4Un4KfCAZXtChWC9SxRvcE0alTWZct40mCBKJIuvcwITCww2kdHIBJioBW4LApNUqjUIH3jgGEly1JPw/pFNlx/lQYaQyDrgN20noXWirjouQCaSgOdte3VPHv7HCPNCLDWImSSZZP65RLYgkcxF1CXjQhjj0LoI0WGjB9TCHyyXkxLXS9xyaNY8olDB24ZIyFrMEYiOx2T33oC3WBc3Q1gxap6OnqyNNY7HxXis6KoCLyY2HiOLa8dkxxctoAUtsxEtwhk4o9lErj0pHZguXF1G4yWlEKPLhXQkC0xoaEXi6CrlCHKeRQin5wfkk18VyHyE2kYVwdCSddXXRU8jCPlihVKW5HYwbrMhl4FRYmIKAcOrOcCCTawmIxFFp0Wu/Vdlo4wwHAzRTf7qI3SMjnNoSd1bOhuAHDX9U0DMp/XrwkOOG4VXhX5vX2Z5PH/NLBuYCvBnod0oJTFGKjOCI5C+NffmmkdF7HNrF5KBXe8h+9qoLdLJjUN3LYHn7CKOBZ4/gCZhH3sP7c00tOl2PfodrQGXRDccEUrQcYSFtMHVX/b5+0dZHKV9m//0yjq6mOOPH0VAPOfCsg3aKbOLK3VjLx5tvk9alOyF5atIB/4TGhqXPPGiWWUx+d3PgyA2IQsLjyIL5rRQnLixOPZqXn3fvt0hkW+/eQ/AWgOcnx/rxPWzQBGYCfM2I7mTJbWbJ4tR8hCX1fm6mkJvrjjseukvR0at+XwtoPp1UX2ad1zyPutLHXjSUmjP7icSm8ccu0rDzOzaRyzx0wfdLtAKVrUwO2cOGUXDhy3FY1+rsw4/8yOhzKlvoVdWyeTq3po/GL+nfz2pXvJqYA7DrmAnDe4Ntqslqm80L2YnUdNWdNQ+9tmH7VR26vzFpGryzJ2UsuaN04s8Dw+fewBAIRRzCOPv4pfdATRs0/blwP22brfPl29RS75670ANNfl+MbZ60CGY4R22HsOoLG1geYxjWyxzcglp9aJJYz9j/3k7HXS3K6H7cg7PnIEvV0FDjl16Mz+9mWdKF/RsBoN82JviZv/cB/TtpvILvsPLoPj+4rmQXzdsQfswL6zptOYz5QZ5x85ZX8mtTWz09YTyGYqPuqX19/P727+L7mMz20//BC5zOAZn3uMm8hzK5exx7gRnM9N2EdteE30QSzFQAY10X87nbEIaSpBD2MRvkEqJw9ircVTDqgxkUDimHr4Bj8TEXgRWRUBBolFW4EhYZULB6rYyAHlVhm0xEXakotD+xobaJAaHakEQE9kSKrB7po/Uhaq+3vgMQ9y5YnatcJaxzwVKShuywxsSEiaou/+bp2oYRT2B6crfaxElKwSCN/p/BojiI3EWNcPY0BajdaS0AgKkUoOacsyKkYLrMaxbYUFZVCeRgrt2jJOR1iUgw2OpdkTOzkDY1OeqsUaWe6fTQApKRwzM713ZcKi19YBVLEWhJE7pyjQFoTnChy6m96xdZUXo6TGGoEUwoGPpBITlsDTyGR+SlqhbQqOVrIPhDWUYo84FkkhxKpTm14ewjoJGW0dKuVpkAYbyjJLeai2KafPbAy2Rv+UWu2thA4SVnPC7rWG5DzbCjCdsscj5zuM7z42o8HTKF8jEhq7S+kDIZLrX0uI3DVkpZP2RwqI3DWnA4POGKd5HUsn/YFwxx/KoFc36qFMSMrmlgAmkU4S5fug7GfsmmZ4EFS9aj+RyMLgOUknrSVx4ifS54SwhkgLwlhSiipFl1OJJ0xS9DWJllrA+k6OJb2HhbDOryUpB1IYx/TW0gHlSSTFGpcAZYV1usGeC6A6wN4B6kq6Ishpxoq1zk/p2ElTmUSqJU59nwVPuACeEjHWKueLZFwunJw+z6x1QHoUy3KgIR2VTddH7vrBWKwWiRa6+9emJT50Mj9pTYg0O2mYb0ibfdTGaZ/7yWvAAO8Lb7I9NaeOm68czTC87Tqzx/7dwG4HVqJCzaMNk2YUeWlurS75SO3335vAS8/k+eJlr9bMs+fDDnv28ui99Ry/1Y4AjJ9S4qe3zWfLnYp87l3TnQwc8PmTZ3D2F9/g5I+smem48+we/n75GC4+a1qyRPCZS1/lrutH8fBdgwcHnprTwLHvW1nu4+/mzCuvsxa23a3Ily9/rZI5tAGvl6HZZlm8TcXufv4lPnT13wmU4uaPnMmkUU3DbsOTAeMyk1C8RqPfzE7Ne5XXPd3+Kje/8TDHTtiTbRonsV/bdB5c9ipvmzhyjd91YUIIDpk84005Vm8cMq9jKTuOmoCXkNKEEHxzx08zr+sldm/ZcZ0ez5MeZ049bVj7PNX+Kuf995cE0uPK2R9nQn5gsPKXz9/Lr57/DxLB3Ud8itHZ+hH1sTVTu19TkOPcmfv02244HuMz2x7L+6cfxOhMA11dQytAndpmH7Xx2kO3P8WFp/8UP+Nx2X0XMW7K8IuTB77HtImtvPz6csY05Tlg/0qGxBMvLeLGB57hhH13YLspbczebgoPP7+Ag2e9Of5hMBNCsNdRu74pxyr2FHn56QVsvds0VAIaCyH40X1fY+5985h9XP+g6NqYH/ic/+PhAfLPPPQinznmO/gZn1/850LGTRkz4HbXXHobf/rJHUgpuPLRrzNqzNCDw9XW0lgLsDfWZTnjmP5ZQsNxGRfvcxjnz5rN2HzdZh9VZRsfiJ78FhfV3wfapoqpmGKsMhJlcEEoyGRi8tmIpmwBTxp0ss4TBl0vCFs8p8OLJe9F1AUhMmGdIxyzUYqIrlAShS6KrPIxkRBQcFIkwgA+xHmDyGlUYAkLQVXxKVvTbyErixJ8o7yykoq/mrFXNylqsSbr4dit4FjpOinYaUSlkGBNuxUAfaD5dmBWMp9pWo4Cm9cQWGy3B70enaIeLzAEnmNNx0ahjaS7lKU+UyTjabK+oTf00NZz/4YC6YHKWrS20AsiVJhQETQYclJTigKi2KdbCnJeTHvRIzIKY0RFJgGwVtZ0XCpDY7ZIIfZp780TG4ESFt/TZDyNFJZi5NPTk0V3+xBJwlCBb4mUk/TxshopHCCWS66hrIrpCjN0FbOUIg9jBUpZtBEUjYevQpqCEt1BlmIYuHm3AmMVpUSDXViBjVNRdcpgajmTIAvkHYiuAjefWgzOFBvUUiBy0/NZb671CzrRf04HODX9akOmgGXsQElrcWzzjPMbXjYqswydNrjbx+iKH/GlRXoOsPU8g58EB2MDpVBSipICmBlL1GSRJZCxKzaKgniUJa43kDWuoGScUuRtpZ99x2X7LKj+PhIxsCqwxVpZDgKkTPjy330rz9vKvqt/Dica7z6uUHGvhaKit7MOlel2gVNctkgpgu5CjnymhKcMysOB3gaMUA4Q9y22XjuZkwhULDCRdEVJPYsuKeLYoxg531LSTsbFWEEcqyoprWTCEjBaypj6TEhvGNDVnXPyY9Li+5pMEKOEQSMJQ584KWy6qkvQ1NCLiiy5IKI115tIblmyKqZOhQgsq6I8HWGW7lIGrT208eiNLaHxCLyYrK/x/ISBGrtnhEWgY+sKZ1tXo0HGwmUPGCrFbTXYAAfyS8dEx4DQAtv3nA3lWtjsozY6a5tcckHwDSz298i99S6gvQbLN2hy9ZoVb1SYfmMmhnSuUpR6R1b4adKMImEJApexT3enoLdr3U7I5C2LvPxsBilg4vQSQRYKPYJH762j2hmPn1Ziyes+9/y9qc98CCZOLfLyswFbbB2yuhpXrz6fZYuZRRa9HLhMOKB1XGm1ADrApBkFir2QHwBv2vgB84HMrHmTatvsozZaW9zpUtRDrVnVWxgRiF7Uvewx5hNY8wYT8rWa5hfPvZpFhZU82f4yV87+NL/Z//QaHeKXuhfz8/k3s0vLDE6bcuCwj22txWBRIyyg2dfe6O3gty/MYfaYaRw0vj9TdSR2+l1/4KlVb/DuabP4xh7HlJePzbYyNrthWfCpvdy9BG0NBR2yoLBiUBB9bLYBgDo/Q1YNHfrojUK+8pAr5Hfxnm8jP8Rq2+dtdSjbNI5nq4bxq2Whg/t9PSY7MsBss4/aeG35G6sAiEoxHSu7RwSi9/SU+Ng5h7CivYddZk2pWfflK25lwfIOHn9hIX+58Ex++rETa3zUK3Nf51efu5JZB23Puz49sqLBxliUWjc+aunry7nukn+wy6E7stfR66aGxKcP/ybzH32ZI99/EB//WQXcbpsyhrZBwOo32159bhE6Nui4xKKXlw0KoreMc8+wXH2WIDv0OkCFUsR3rvoXAJ89/ZDVMsqr7UMn7MPMKWPZevKYNe4jhKCtbmSBx03ZR22cmuj0n2vbZ1mZFClSFi9YzwJJYUoZ43sRWVXCVxECjXSqrg4AwCIxKGGSdHdDGEuKkUdRK5dKbxMnkujNVtg2tqyNbaXBCKdnbWWiUWxsDVhUAf2rR+FS+pFJ9cqEZV37H30+/dfVzo4tX6xCWpCOhS+UpkZj3VZmeM0/hPr2ws0vpGN2sjVaOykdNw7KPbQWwlgSGZlC3omTd1InUhg3n8pihMFiMRqU1dSpIo2ZXhr8kmOCV7UM7txYI7AmZW0mHwORlmgtcGxddy6NEWgLkYYwEsRRsq9MmMDWQiwwkWPHljWMjSWOBcVIoY0D1qXQpBx3JQyudKBBG4EnNIGKUcoglXasVZvIN1iLkBqpYqSffDztmMFpwANINY1tei0NVxh9E9ag2lhsTT5qwH3SosLWlrMNhIqT60SX7y1RTldIKgQL54d0jPtoUS7IiU10+20fryDASosWFi0MRiW6++Cy2m3VdmUyeMIsTu51pE60+vu0P6jfqPYVfZan16JxOu8i8YFecj+4+2SgSzfpy4AASN+OVPUd55+sBCG1kzEwaQ0GU35BNAbCKPEXiaQKJvXdSXvSOGa/SPyPdufHUxG+7+ScquNcjlkORguMSf5NGdzGrY8Spno6bpLnjbWJHL4m0aU2CC/G8yIEllhLoli5YsvW4gl3vWgLRaOcj0muH5v6bFzAxXU90aSXSUaCjN2ArXXFWK1FC432NbGv0b5BK4NRSXBIJxdNek41FT81HNvsozZKi0pqgwPoT82p45pL29a4XUNzzA/+Np/u9gqCvN9R7bznE0tGDKAD9HR4ZQAdIFcHcVQbrF9bu/pH4/jw27bhoX81EiRyyl8+Yzp9X8sfvbuJ8942kxt/2/8H+MXnTmfpwsxqAXSAUz+2lLe/e2UZQAf4/Lu3Zk3j6VgRDAig/8/Ym+CjVq1axRlnnEFTUxNNTU2cccYZtLe3r3aflNTS9/Pd7363vM1BBx3Ub/0pp5yy3sbxZttJu2zPF484iB+cdBQ7ThzH3Usf5f0PfZ2/vn7XkPa31nLJ81/ipy9+i7ldS6nza4GN7ZscYLV9YwW4qtb3/eOr9/DAiuf42fyb6IyGV1S3Nw455p+/ZNe/f4eHl782rH0Hs+89fSe/feFBPjLnWko6XidtLurtrPl3dbas2MEXHv89P59/C8YO9K62fuyICbty1vRD+ejWR7F7y+AM3NOm7ck1B57DPw79CPX+0PXr73h9Pn958Sn+8uJT/HPBCzXrjLV88+57+PANN7K0u7tmnS89Dh+/E21BM0++vhht1tOcbH6P2mjt8NP25UPffDefv+wcZu4ylXv+8RhnH/xNrrv87iHtb63l/A/9ls996mpefO4NxoxuqFm/4zSnf73j9EqByWofde13/85DNz/KZZ/9A50rh8ceLvaU+NCeX+TEcR/k6fvnrXmHIdjln7+Sv/7wJi488buExSEWdFmDLVuwAoClr69Y47bLF67kq+/6Pr/+wh8x6+t+HMAOfffenP6ZYzj34ncx64D+tRZSO/Z9B/DDf3yKy+75EnXD0K+/57EXuPG+udx431zuffzFmnXGWv7fP+/h/L/eyNKuPj7KUxy+50zGtjbwxBubfdRIbMMz0QfJAh8Q3E0Z16kkgKhgi0ZZTADKh1w2JhdEjMr2kvU02oCxgsiS6FOD51msjdEJc7qoAzpDD7Dk/QglQ7CCyHgYqzBWOt1aaVGBRguwClcYU1pE1iB9MKHLeRfgmKZ9WN8p6i99g1AGE0tMSVbqHZXnYnU/bkTlH5EC56nztI6FKQxeRpPJRcRp8bo+2sciAfYFKTN0gHOQnh/jWPRp4XEjEwa5tRgpiK0iK7Xrh0lf8qE3yiYFp6qY4hJkxjEuw8hDx8oxPa1AG0VjENFW347fZImtZGmxjvZiHoREJdr21oBFJmz82h+32ioi46EkaOO0fw0Sa502vjaSsBSAVpAB4RmIBBQ9hyXlJEbGKJw2cSkOsEjyQYjvGbTVRFrhCUtTvkhztoQUrpgpQGMmpDcO8K0DqrSR9JZ8tPZQviWTi8rs/0hL4pKHjaouFmFRXgrmSYQSiOHeqSZp7s17TvzvWJotM4iPqg7w1dzGElfEUQlsxiAyGj8XEgQ6kZuCWCuUSp43krIMh9ESa4ST2yBhifoGKSC2EmOVuw+suycILFaBTeSDEGByBgIQkSovK9865SCfy+JxB7EIZZ3kUigTbGcIIFJ5AmoWVIBXo5DK4Gc0DdkSAljZ5YroVVP4RblPaU2JVEIp9VVVxxC1jxKRKrN4bn8jJdp4eIHGIynomRQS7i1lk4BZVUQWN3bP12ih0BmBLTrGtdACz4NcQwk/kcFJpVLSYLu1IslGSsZTLuBqSc4qsVFIaV22QVIk2SiFxWCtIo58QBLUafLZEISlpH1i46FUgXoRkvMiBBBbjx7to4QmowwlYxBSoKQl78UuSyiZKCEhl4koRR7Kc37aaLBFzxUS9YFsUkDUWihKZCiQEQgrEDEu60kmhZEjl2EzbFez2UdtlLZiiVfDwt4QNu/xXM07w2A2fkoJ5Vv2PrwDa+DFuXmMhXtvbFqr4/d0S7o7BfWN7q6JQsu4KUWWL/YZdlbYGqzQLenuENQ3WSbNKBJkDI/fV1+VhQSr87sdyxWlAmTW8JsryGn2P2YVj97bQE/n0F4oosiycqmkZez/6E36Jvio0047jQULFnDrrbcC8IEPfIAzzjiDG2+8cdB93njjjZrvt9xyC2effTYnnXRSzfJzzz2Xiy++uPw9l3tzCsu9GeYrxRl77VL+/ufX/8WiwnKufPU2Tpp88Br3t1g6olUArIqW91v/le1P4YNbHkFbpnnA/fcbvR3/XPw4OzVPpX6YRUVf7V7J/E4nw/SfJS+y++gthrX/QLZNcxv/WPA00+pby3rda2tXHHAq/1o0n5Om7bzGbf+2YA73LJsLy+DQcTuzdcMEwAGBL/W8zvjsGPLe4Nff/cufZmXYyZHj9kINo/+B9Dh3y7f1Wx6ZmGc7FrJ14wSyykcIwU6jJg253dR2HTuRMVmnY7zrmFo94KcWL+bXjzwCwLZjRvPR2bP77X/mL67lmYVLeffeO/GVEwYuavjg0lf5+JzrmNU6iW/tcPjwOrj5PWqjNc9XvOPcii/68y/+xaJXlnPVj27nxHMOWuP+1sKK5Q78XrqkfyDr6+8/gvOP35dxoxr6rQOYfezu3HXNfeyw7zbUr0aLeyBb+OISXnlmAQCP/PMpdthn7WWsZuw8jbuuvo9JW0/AC9YN/PjNGz7LnJsf4/AzDljjtv+47A7uu/6/ABx08j7MmDUVcD7qhcdeZsKW46hrHLyuwgM3PcrKxe0cceaBZemYoViQ8Tnjgnf0Wx6FMfMfe5kZO00hkwsQQjBzl6lDbje1nbacQGvS751mTKhZ99SiJfzmwUcB2GbsGM7ff+9++5929bU8vWQpp83aiYsPH9hH/felBXz6jzex8xbjufi4A4fXwU3YR214EH0QGyxeMehymTCKE5ZwRoUEMkZi0FaiE2agJxJ9dIQD1rXEJJICMgFNtYVSrBKWtMGXEVpBaD20TOQ1Eg3vlPldYY1CDXpW0+EKQ9MxR0nY6IJEYH0IIx1knXCOQCjHmhTSoLyIjB8iYkWsFXY1P8QqALqo/d6v/+k21oHPifxBWFAUhcJTJtHvdixTgcSKBGxJhHXTWYjToqtKgycgVphY0FMIiHKK5kw3YCl4HiXPw0QBkVVJ3xyj3YGGNiFFivK/vSUfsInkikZKl3HgRueYtSJllSbzZj2B1ckcxamMCigvYQEnpwqbFAw1oKRBWoMnDCWtiIyTbsl6oQu+GChpSRRKdCixnk4COC6w42QcDNK3ZLwYqSxhrIhLCopJcKFKAmiotilrUG1Iq70Dhm6CRGFJWKxJfYWjgxsNJgGIjbXlApOpDIiOkwwGRJIxQSIXksg1YfBVjPWdVrY10hWuFS7Y5TqQ3nVJlKsvwl8eWCKWnQboBBW99mElLg3ko2zZbwphUELjq4isiOn1PHqKGdIiy9VBvUowr3r2+x6j1reVSfPO8WAMREWJsMb5yPJc9O1jpWlrbMIod9k8JgOyqCAGUxSYPPhehBAQxgqb3O8WmWS+uEyZSjcTP6VBIwilchJjSRFqKd0H64IjUmoXWEhY9Z5wmS0IV9ehqD2kMO45J1z1jvRtxRMxgYoIFShhUUJjLMTGI4wUYazwlMYI5yOt9qAkEJHAeKZyeSQZC1Y4PX0Cg/DcvMhQIGJRKUA6zBekzT5q47SpM0sbFEB/+sE6fnXxmosX5eo03772RfINli/8/HUe/089nzu5hYUvDQ/QGsjGTY7KADqAUpKX5+bXOYAO0DY5or7JHev/vrOQM/bYtg+AvnqbtGW4RgAd4Nj3ruKVZ/NDBtABWsbo/10AnfXvo5599lluvfVW5syZw157OT3uX/3qV8yePZt58+Yxc+bAwMW4ceNqvv/973/n4IMPZvr02oKJ+Xy+37abqh0/8QCuePkmjp2wX3lZV9RBRmUJZH+HJoXkvBlfZF7Xk+zdeki/9UIIxmVH9VuurWFu+yvs2jKDfx3yDeRq5Fistfxi/j95qv01PrPdsUyrHwvAzKY2PjBzH17pWskp09eNrME5W+3DERO3Y2y2AbmOtJa2GzWO7UYN7frZe/RM/vTqvxmfa2FyvpI1c83rN3Ht67fQlhnNT3e7cED5mpe6F3Hh078GwFjDcRP367fNcO1LT/yJu5bMZc/WLfnJHmeNuJ3J9c089K7zgVqWL8CM1lZmtLSwuKuL/aZMGWh3Fq1y4OeClR2DHuPG155mWbGHOxbO4+Mz+oNcq7PN71FvHTv+/Qfw2+/ezDFnVApStq/sJpsPyGb7S/5IKfjOD07j4f++xFFHz+q3XgjB+Jb+MkBaG5554Hl2PngHbuq9Crma1EJrLb+76FqenTOfj/zw/WyxrXv3mrbDJN79qWNYMH8xR5/T3z+OxE7+zHEc8M69aZ0warV9Go7N2HkKM3Ye+N7ra3scPovrLr2ZtiljmLBVxa/9/qJrufJrf2H89DaumHcpaoDUvpeeeo2LTv4hAEYbjv3AYWvd9/931i+474ZH2OXg7fjW3z8z4nYmjG7i1h98EBjAR41uYXrrKJZ0dbPf9IHnaWGn81Gvtw/uo2567DmWd/Vy59wXOf+g4T2zNmUftXGA6CkiVf3vYNv1ZXgKMJ5FN1pEo6GuPqS1rkBzpkAgNSXtUTI+kZE0BCVkAs7EVhAaD20VSjpZlzihYBqriC0E0mG7RlliaynFaZE4ifScnl3KjFS+Y2nbyIHGtWbLfU5XSSWQyiY67VUrBsOHBseLKos9C4FGKksQxIyqL+ApQ6g9QCATzdray3h1L1uVdaLcxVTfVyA8V3TUao84siAix0C3MgGBIDa1+5t036R9KRxIrT0gFlitCIKYSfl22vwuFkdNLsZgpTtXgBUC7XIKEgaqKAcIHBsXCmHgsgakIZeJy+OxFjASax3zW0iD8g06ltjqzAEjXUBGOTanFAIl0wtP4ilLJhMxKlOk3gvpjLN0hRnHSPc0dTIm1NBZzNDTkyfq9UBZspkQBESxY8gLYfF8Qy6IaM4X6A0DwhX12K7kpV9ZSEGt4dgmnD6zQazKN4k1+aj036rb2iqwWbAZATmQOYOf1UiZgK6JjI+v3A2jEyxbxwprJEIapLRVgTCBsRIpY+fTsI59bQFbqV9QBjcliAC3LBZlzfGKa7GubkJa1LTq45Q6qgYz1AmrliBKAe2sReVjMpmY5nyJ8XXd9IYBpTgAq2qLMJcZ6GknK46/PK99Gel9e+E50JpYuThl3tU60MIxshWpZEoyZzLZPvkupUOQY88mvg0EEpmB5nyRej+ko5QjtpVApdNBT7IC7MBsUmskpci9NEsBXkaDcMWPPZcQVc78CXxDPuN00l3xZnfuQ+ORFxG+l97rEiVcMVqZpO9nfUPWi5BAZylLVzHjnlfK4PuGKBbooofo8pE9iQ/MJv4mciA5CPAtZA2yLsbEArXKx+tULn4pkqLew7g6yidvs4/aqGzMhJBc/bqRAhipNY8JmblLN/Meq9UG72txDH+8dCzb797LHod18eIzGVb/Ajl0m/vfPHsc3MmosS67bMFLPlG07gF0gP/eVU9vl+Swk1fS0GR4x9nLeOGpHP+5qXlImvC3XzuKV+dlOOj4VeTWQDbbdf9OMhnD7X8eRdeqNetmPvdYnt98q426Bs3bTl5FSzIf/zO2nn3UAw88QFNTUxlAB9h7771pamri/vvvHxREr7YlS5Zw00038bvf/a7fuquuuoorr7yStrY2jjzySC688EIaGgZmLb7V7W3j9uRt4/Ysf5/b8QhXvPIdGrwmPrvNJeRU/5tjSt2WTKnbcljHueyFm/jTa/cwLjuKP+5zwWq3XVLs4Dcv3gXANa/czwU7HA+AFIJP7zAw42+4Nr9zCfVehvH5ZibX9Qf917W19xZpymX6gTU7NU/ljkMuRqTvUoktLTqZhZVhO8bqAUH0vMriCUVsNaOCdXN9vlFoB2BJ8m+1aWP49sP3sqi7k4tmH8roNTjOvmNNrT4IuO19Z2Jh0MDFZWefyN3PvsSJe+wwaPunzdiNuasWs+voSYzLDVMbffN71FvGDjtpDw47qVLgcc6987joU1fT3FLH5X85n/oBJDy22XYC22w7od/y1dlvvnQNf7nkJtqmjOG3z/5gtdsuW7CCP37zbwD87ce38H8/OwcAKSVnXXzysI47mL389OvUNeYYu8Voxk9fs0zf2lpHb5HGAXzU9vvO5PqVV1Rq/CW2+JWlgJN70bEZEETPN+bwAo84jGke27RO+rn0Necbly1Y2W+dNoYfX/8fFq/s4rMnH9yvWGhfG9RHZQJu+eDqfdQV7zqRO194iXftNLiPevfsnXhm0VJ22WI8bU3D1PjbhH3UBgXRK7zsiq3uZ8qA02+B2EJkwZqyHqzAse88AYF0rHIlDEpYNAIPyHkljJF4SuMLQ06V0EYlgK9121qBLy2xlPhKo7VEeJFjglqFjh3T0BinsS69GB16/UeSDDYlMulIoGMoixEPayYGsARIk9LgeY6RX4gUo1RI3g/ptQHGyor2bk37onx0O9BJ6TcQUdYxtzFQkpiCRw8Zco2hY3j3BcJwUjgpu9ZJvCRMdGHwsxExFqsly9rrecpOYGVjO9kgps4r0eAHhLGiZDxswqZ1ARGBEJKylJNw7PCsH+Epp1FOytG0ToM4jgVWJ32XAm1VgtG5MaVTo8OKo5XSAZueZ5w+u3WzZiwIYahTJfAtsZGp0hCejMl5Ap2T9JIhNglZ05BoH9vy7EexoKfk46uY1qZO2mUdYaRQyiIDTSyGqR+2CTutDW2rg2n6zXZ6vxkgTs55ognugPNqYNxtLKVj+goh8LwYax24KpUr8OLWWaQwZQDcUxrfF+jYaaWnjPW0wLDVNtH5Ng4QDR3CXgbQE6DaSbU75rtNCyyX9dNrR756DzXAdScA6/odeBHaQkcpQ6NfoDHby6q4LvEJtbHE2uMkPe7LCB3sMpcGjECUFBQkofXx62M370bUNlAdACEJtoZJf5TB1sXEUoKWhN0eK2ig2FBCS6czHuu02LEr/kp6foys1XcXrjBsLhshMYSxVyZxW+v02bFOR90aiCJFdzEgUBqlNEro8rOpO/SxWHIyQgqNFAZPWLIS8p6kEAcu3CgsOS8i9kUC9pPIkxmUFxPnBRqvUuTY4KIn6RxJoARGCYSvEY2GWATYKLlGsgZbGCbAttlHbXT2zT++RGvbhmUev/FqlnmPrfklPSop7v57C++/YAnPPFzHZRcNP1V/MNvzkK4ygB5H8JmTtiIsrhuJhL52382jOPbMlTS1uHk/9syVnLzj9kMC0AFuuXI0Z3zy6TUC6AD7HtXFzVeNHhKADvDEfQ08cV8DX/zlK/97ADr081GdnbUp9ZlMhkxm5GkbixcvZuzYsf2Wjx07lsWLFw+pjd/97nc0NDRw4okn1iw//fTTmTZtGuPGjePpp5/mggsu4IknnuCOO+4YcX/fSrag8BIAXXEHndGqAUH0kdiKkpNX6Ih6kszBwbcdk21k95bpzO1YwEFt262T41fbXYuf42MPXY0nJDce8lEm1Q1cVHNd2Q9vv4/L7nmIt++wFZeceky/9QOx8s+ceiLjsmPYoWkrfDmw3xmXa+E3e36errjA1g2T10lfvznrFG5b9ASHjusPDD2xfDG/fOohALZpGcP5s/rLsAzVhBCrfRfeflIb209aPXC43ahx/O1trihiXx+zRtv8HvWWtfnPLsJaWLWih5XLuwcE0UdiKxe3A9CxvNPVK1rNq0TrhBZ2Pmh75v33BfY9fo/BNxyhPXDjw1x44vdQvuI3cy9h/LT+z7t1aZfeeh+/+tdDHL7jVvzgjAF81AAM+A98971MmDGOnQ/anmCQApvjpozh8kf/H93tPWy1y7R10tcLfnsed/15Dgec0H/e576yhN/f4aSitpo4hrOP3LPfNkO1NfmoHca1scO41fuobSeM5dqPngZsnD5q1apVfOxjH+OGG24A4LjjjuPHP/4xzc3Ng+7T3d3N5z//ea6//npWrFjB1KlT+djHPsZ555035ONuWCZ6FctQVC9LzfbZru/fDqeAQECjIdcQMSpfpDEIyXtRgq97ICw5pckojbECbSW+NAgr8b2IjHTMqzABaFPgJjISBYQ4wNxYV3BLShwQm2reKosXWJSCuFitbd13LFW6HLYCVghHp66ZmH6X2hoxdYsMDNlcXJaracqE+MoSh0lgoBqSKh9goIar+l/VkZSJnoLiRgsIPWSPBxmNyOBkUUz1DVsBoq2RVBp2QJ2UjhUZl/sm6Y0zFKRPrBQ5WaQjylE0flmfHlxEzQpRBaalYLelvq5E1ovRRmKsR6AcyBVq5QryhR625CVMUVe8U0ib6CeTUCsFSMcA9jxL4BlyfuzgeCFQWOr8kKagSFZqepAoaWumVwFCCowQ4Fl8kVw7WmK0Aguen7KRFZ4KachEdJosOhB4gdONB1BmM0C1wazqPhDl/yVW7aOqt6/FxR0jOgvkLOScfI9TC0pDLhZPmXLgxyLLxf2EsO7awhUJTWszBJ4LCkrh5F10mmGhcK4mFk5T3whsYJEZg/DAlKoA9LJkS1Uku3qQOvn0YaJXxcj6zVGN/FC6PDmGzGqaGooESmOtoCkoEWqf7jDnAPRqVygE/QPnfSe6z9qa1W5sNvJQvQrrG0QmQiqIIlnTUVHWWxcgRVI/QrqgrLQIhStcrRLfFXmEUhEIdx8XQ/fipSRgnW8SpEz0io8Sic58Y0OBjNKUYoWOFJ6nk0LWAqzAGOkKNQuwQiQ1OWIynq5kUyX1Enxh8ZULtAQyecYJhUYhpSFIJH1MOj+y4p9dck3iS5Vjv+MBJYFMwHzrJ31Hgq/xswZT9NB+sm1WJ0HcYYKvm33URmUTp5eQ3oaX7pi+fS87ze7iyQfqWdOLT/tyxdfOmUJ3x7oFuO+8rpltdu2lc5XHdZe1UioMk9QwTLv92lFM3abAqDEaP2P4ws9e4T+3NPGvv43CDAFM/8EnJ7PHIV0ccepKsnWD308rFnt0rhzaXGVymnd9eCnNo2Pm/jfHdrv3MHr8hs1SeNOtj4+aPLkW4Lvwwgu56KKL+u120UUX8dWvfnW1Tf/3v06bdSAGmbV2UGZZX/vNb37D6aefTjZbK2N07rnnlv/eYYcd2Gqrrdh999159NFH2XXXXYfU9lvZ9h99JCVdYHRmPG3ZdRdgO3/rd7Blw3hmjdoSbw3a3UpIfr7XOevs2H3thU7HoIyt4U8vPcqndlx7iYHV2QMvuiKoc158fcj7NAcNvHuLo9a43fjcaMavcauh26R8K2dvObAMxZbNrUxtbGZJbw/7Tpgy7LYXdHXwzTl3s/3oNj48a68h36vrxTa/R71l7fhT96a3p8TELVrZYtqYNe8wRPvQd89g+o5bsPOB261Ru1spyXfv+PI6O3ZfS3XVdaS56bI7OOdbp6+3YwHMme981IPD8FGjxjZxxlfetcbt1nUAYML0sZz+ueMGXDdtfAuTxzSzvKObPbcZfmBx0cpOvv+Pe9l24ljOPmSPTd5HjaS2zCc+8QnuuusurrzySqZOncrtt9/Ohz/8YSZMmMA73vGOIR1345BzgXLNuaGe5pQYaS2IkkUUwMaJ9q2RREYm0gBOlzuBPvCkwWLxhMUj1SF2LGWwCVvdJNsrStors6fjWBCbpHictdhUZ9hAHAqMJx02bnBF+YQDYJSnEcISh74Dkm31IAYZXRmUWg3ntQxQOUDeRIJSr0ddXYhUMd2RT8koFIYomYPq5qqL4FX3p1oPvf99Z5PxO8YlgcZkhWNXiphGv0jReJRir4q96g4sUq1nDKJq7p1+s6W+oUCx5BGVfJYuayKOJYVGj0AZmvxefGK6oiyFyK8CH9MpqAQISqHn2LvSgtBo42Rdsp4hq6CofAoiQEeKVDM5vZYc0OXkDKy16BgiIZFCUpTKBV8SZNTirjVPyATAijHEYB1gj3XaxBkvdtelVoQl6QqdJpqnRmkCP0ZJQ6BiWoJuJuVWETYmGvbC0h1nWGGHCRJswoUc3kxLY13pvdP3GVCNlQ/cQPIJgTDJftBgYsqFLG1ZB9xJgUhpUcQOr8UB5OACQY6VbhIWelrbwVaud0yFPQwgrCsboMGWpGMliIRhLG3yMUjPID2LDpWTMoLarBSRLqjcc33nYKCh12xjQBclHR0ZWpt6EBIW99ZjLCgVA+6esdUN1MbIavowcASjajOEG6+n0QEIa5FWk/dLFPEoRX7Z99UwxUmBDVszB0IZZGMJEypsr4dekaGrJFE5nWTeWKeDbgVaCxdkTJ4VqbN2clKC7p4sxaTYp7UGY0iCcJVAipKumHXGi/E8jZSWWLtgnZIGX2oiI+iKAiIjCKQm9sDDZUX5IsaKJHMHUEnbQrjshkhLbOLvZBBjMBArJ+OiRSrZj1UGsgYrLUrFNGSL5OtDbEtS00FZSrFP16phviBt9lEblX3h568yaXq0obvBsw/X8+QDQ0vpj0qKB25rXud9OOo9K2kdF/PJ47dk8WvrXyD+2DNXMGqMC5R7HszYschFZ01jqG/ETzzQwIVXvLJGLfuffGEizz8xNEbuO89bxhmfWsp3PjaZg97R/r8HoEM/H/X666/T2FiRWxiMhX7++edzyimnrLbpqVOn8uSTT7JkyZJ+65YtW0Zb25rT3v/9738zb948/vSnP61x21133RXf95k/f/7/BIie9+o5buJ7V7tNbCIeWnkbzf5Ytmvqz/SLjGZ+1xts1TAOX7qfy81BHadMOXi99Hm4duSEHblk7l0YA82ZdcO0X5196diD+cP9j3H0ztus92OtT2sMMtz9znPR1uKNQJv58qce5uaXn+fml5/nuBnbMLmxed13cqi2+T3qLWsNjTk++MkjVrtNGMbccPPjjGtrYr/ZW/VbH8eaF15exoypY/B9hxM0jW7gXZ/sz8LeEHbQyftwxZeuxmpD0+hhShWNwL5w/MFc+Z/HOHrWW9tHNeQyXP/V96GNxVPD91G/v/cRbn9yPrc/OZ8jZs1kUmvTeujlEG09+6iR1pZ54IEHOPPMMznooIMAB7z/8pe/5OGHH37rgehlgHcgdKb6X1HBZgUOD9J1oFpiGuqL1AUROS9GSShpj9h4SGHxpZNsiaxCCQc4lIyHkgZrJQZZZvJJ4TTTI6MIjaKoHeASaa+KhS2xcUL5lMbpoRuJDR0wK6TTF1aexQ9Mom08CBDa93dSyogcwu8nW54QJ2viBxGZTEykZcKulMSp/rcQFQDcJvv2m+SqblWvqgLYra06EbFrO9tUYnRzD1JAFHmIBDQ3RlSOl+wnSJmaFcsFEZFWxLEHJQ+TD8lmYvJeTGh9PAlWKMdGd8I5CZAvwMoKk1Q4OYyUNS8FeMqNVContxIbB1ALL8HPrcVqUQbOhMKx6QVIz53DwDP40mJxwFPgxTQFJbLKuGVJH3xhiYxAo9BIQu0TJ9eX1h5GizKzTChLJqvJ+IZAacbluxmb68EThth3QaAeHdAe15Hxh/cDdlMu5PCmWt/AXt9g30DE6D4Yr8CxeU2dgLyTUxEKxwBO7l0pDb4yZckjd91qYqMc09yI5BqzCYhauT9d4WRJHHvYuCoVzQgXoEJglSUpKAChxErrpIukRXrgZY0rqjuYj4LaiFo6B4MRw0WfP5OAnZCCXE6Tz8R0hxm0VZRijyjyGbyC7mCOsM9B+gQByzUcYomwEq8xpLGpCFYQxU5ySwjKevQVPyoqz5h0kAJ8P0Ynfl8VJLpOYxMfgnU1LqQQRKHC6qpgadnP2iQjKHGdRrk1wmXjSOHAcSksxkqUgowfE3hO914baqTGTNJX95EoqVHCXQ8l7RNb9+yTQGSly8pCoiTERrjCx1YlGQDC0dC1RMRJ0VCbXDdZIADpGRrrS7TUFVDSoK1ACkukFT1xBhVs9lFvZfvLz0dz3tcW0tS6YX+N73ZgB9/72/Nc/vUJPPfI6nXR15dd8unJNLdGtK94c16Rv/Xhyex7ZCenf3wJj9/fwHWXjaZccGAIFpUE5x+xFce8dwVvP3UlmUFqq3746ws57eNLePrBeq66pI2u9sHHd/2vRzPntkZWLvV44r569jqsg/d+ZjHNo/930Jq+PqqxsbEGRB/MRo8ezejRo9e43ezZs+no6OChhx5izz0diPvggw/S0dHBPvvss8b9f/3rX7Pbbrux8847r3HbuXPnEkUR48evS77vxmeRKXHbG7/DYjli/PvwBygqmtoDK27i1jd+D8DHt/4RY/ow1r/w+DX8a8kz7D9mJj/cffWAPMDzHUu44oX7eduEbTlk/PoHcSbVj+KPB5zNaz2rOGrS9uv9eDtOGsd3Tj5yvR/nzTAhBN4I2ZkHTprGVc88zpajWmmr27A1Bja/R731rFQI+fXXr8cYy7lfOYFMrn9R0dSuu+FRfvHruwH43WVnM2Vya836i753I/c+MJ/Zu0/n218+aY3Hfvmp1/jzJTex/wl7MvvYdVPUeHU2ftpYfvjvr/HGi0s46N1rfqatre04eRzfPnUT8lFqZD5qn5lTufaBJ5ne1jp8DfN1bH191LqWxRtpbZn99tuPG264gbPOOosJEyZw99138/zzz3PppZcO+dgbDYg+GLOx72OhmohowckQlCDq8OjN+uR9j6J0shsmBVUQhMYVrVMYDJJQS7QVRHhInGasQKONK1opEka6TYib1lqnY64VQiaSL8KU68bp0KX1IxNpECvK+zhuYMISrQGuB7Ey63MIlhbvswKrodTrl9P2iwmYL1dD8bcmnVfbT2fYpiCSre2OA54SfXPpQMFSJOksZKnLFJFCExmv5gdgCv5UtZ4cw7E2e4q+0z9vKFCUlrAjy2u9Y2hvzjO+uYPGoEhbtoNARrSHOXpKAQWdMkkrjFRrBWHoEcWqzOpUUjg2pzDkPYMnY6KsR6wT8FFL4lgShR5WOwkH6Wk3d8K48RvHmg9UjAL8BETq1R6R9jDWgZteokWtjSuqGhtBoegTRp4DzyPpwEohsEYThZJAQXOum4nZdqZllyYBHp/IKiIrafF6WKKHpmFac/I2p/itvaVM9D4BvtXOauKjype/ARGB6rXoQIAvMFJU3VcCkIR4rvBSIt0SxTKRdhHlU5kCtlpLfD8GnMZ1HEt3LxuLjWTlfvcTZroA0sJ4CXheBp01xKHCZVeYpONigEHWMr+HemXVcMcjQWd7jiiSzkcbx9h2mRl9nwK2cvn2JZ/3PcYAy918CBAW42uiWNJTCAiC2DH014QFidRHgdXuGeL5Gq+hhBY+otuDZRmiOo3MRyBAKlfFtX/b5YcR1go339aF5pVvkIEm8AwSS8aPHTtfWAIvJiM1njTEVtITBpS0crr4yTm0VhEbiIwgZySe1HhSk0EQGUkx9uiNArSpJEaktRykcGo9JlIuS8JapHEFVN2DxIJ210U+V2R0XRcT8+140hJbiQtHWsZksiwVimfXMKX9TtpmH7XR2Kn/t3SDA+gAuTp45dk8zz2y4V78ly8KWL5o8B+269qWLshywjkvka2zfPNDU1wWy7BM0LnS57j39y9QVW1jJsSMmRDzzQ9NXS2ADtDT4fFiR2Wbo9+78n8KQAfWu4/adtttOeKIIzj33HP55S9/CTg21DHHHFPzw2+bbbbhW9/6FieccEJ5WWdnJ3/+85/5/ve/36/dF198kauuuoqjjjqK0aNH88wzz/CpT32KXXbZhX333Xe9jOXNsnkrlzFn0escv9V2NA0QLXqu8788uPIWAKbUbcdOzfsP2laT7wIdvsiQHUAz/fXelTX/rsn+31O3Mmf5y9y26BkePfaLQ9pnbW1W6yRmtY5MrqYQh8xZ9jKzWiYx6k1gsm8MtqzYicUyNuuYmS+sWsGN85/juK22ZcaooWnKH7zFdOa+/+P4Um5YmQTY/B61EdrLT7/Ok/fM5ZDT9qNhVP/3mDm3P8WNv/03ADvsNYODjt990LbGjHZBmmzGp76uP9C48I12ABYlOuhrsp9/+g88ftdc/n3dg9zY/tsh7bO2tt3eW7Pd3luPaN9ib4nH7nyK7WZv/aYw2TcGW9rejQXamt218/Lildz2yDyO2H0mU9uG5qMO2HYaD37jfDy18fmoocriDdVGWlvmRz/6Eeeeey6TJk3C8zyklFx++eXst99+Qz72xgGiV7M7BzrXfRmOyUc4KVZ0DrymmPp8SM6P8JSDbXSiWS4wCRvdYGyio53ozAIJA9CihNOZ9aUmtpJC7Ds2uvYoRYFjSacE8QTBd0zmpGNGIHzjUAmZsMklDrDRqQZvZbyrjRYM8ZoXZUa5IxJKlUimpBIRCZmp5lDJPmVG+SAHLcuv2IHWkUjTSFCQq4vIZSJi46FN/8KqNo14VB9JpKx4QeBrPM/QWwqIih6EApO3ZLMRzdkiHgaLoGACojJwnUq61I7DpsVAhSRQDpzyJATSoG3lPAhJuXiiNtKdIwFCgVQJ41NZAl/je5rAc+nWCsgoTVbFdEcZLBKBRckYgaBkFLH1iLVHbylDFDlwHi2hrG9qUYEhk9E0ZkIm13cyObuSZq9A0fgIYV3mhPYo2gBfDfPHa1m2Y/OL1dpav1txTfdmFYCeSo6bAHReQE6DV8mUgOS+lQaEY5hDcn8hkiwHd5+4LAswWhEEjp0cxbLMUjexh42Vu+cTHeyKD0o7BgQGEeO8vxCJHrp1QLaVDGjlIIKofB+K1cTvBCiL9CxWCnSsXPFMPVhgsfpYfdH01Xay6qtAGIlV4OdDgkATaw+tq2pXQFXEo7+fI/FRynP1EcKSgqKHKApMnQXfovzk3FmJjmvbrn1/SYMD7iKRUuIHMRnfAdq+1I49LlzALqM0gXLZUWEkKMQ+KgnUprk8jpkOnkzlypLMFyMxVtATBWgjy4WYIfW7EmMUOvKwWrmshVg6FnoqW5YBm7EEWU1LYy/j6rqp9yNC4xEIgy80sVX0mgBPDVPuYbOP2qjs48dtyZGnreQ9n1xMvmHDnpPZR7Rz81UtvDQ3x4Zgor/ZtvvBnSjP8q/rmsnVaXo6h/9qvmqZx7t32pYPfXUh+x/TiTdI3P2Ru+vZ45AOjjlzBXf+dRR//eUYotLq5eJ23Lubuob1J+eydIHPHy8dyykfXULb5HgAGcENZG+Cj7rqqqv42Mc+xuGHHw64glg/+clParaZN28eHR0dNcuuueYarLWceuqp/doMgoA777yTSy+9lO7ubiZPnszRRx/NhRdeiFLrp0Dum2HGWt51w9V0hiUeXbKISw91kgWRcRJlgfKYmN+SnGoALJNyW662vZ2a92NMZiJ5r5EGf1S/9d+adQq3LHqcI8avmekPsOeYacxZ/jK7t04Z9tg2hH3xsb9z68K5zGgYw42HfmRDd2e92wtdi3nv/T/FYvnN3uexbdNEzrv1BuavWsFtL8/n1ne/b8htBUqxsLOTb//n3+zU1sY5uw0OhK7OirrArYv/SpPfwkFjRsCg3fwetVGZMYZPHXwh3e29PDNnPhf84aMARGHiozIeW8+aQsOoOrCWrWet3lccetC2TNmilabGHK0t/QH5iz5zLHfc8yyH7T+0zJdZB23P43fNZcf93hpyJ98762fcc+39TNluEpc/fcmG7s56t/kLl3Pqd67CWssfPn0q223Rxqcv/wcvvbGCfz3xAtd+4Ywht+V7ioXtnXz/jv+ww4Q2ztp3ZJkHPcWQy26cw9jmek47bJfhN9DHRw1VFm9915b50Y9+xJw5c7jhhhuYMmUK9957Lx/+8IcZP348hx02tPoiGweIDgmguvpN+rHSE8xE9griNzIsCSWdTRnGNHST9WI8mQKPAq09tJWJDrcDk6IETPWF0y/3hMaXmpL28KWmMSji64BYSwrKA+FjI4WWBi+jEZ7TsjWxTLRhE93xpLimtQ5Yj+MUJOqLnNeOf8jUzn77VhiTOnLFNEUKtMgqeRNhyz9OUq3fgRjo5fmtIYZW9jU6AWGMBenojcXQY2VXniDQNYzz6jacjrMo41XGODakEJJSqNDasSuD+hKR52MixdL2eqy1TGjooNkvMjropt4r0a5yLOuuI4zcJWxJdaGdBIKUBrD4XkSQFI6NE1ZmT+iDhYyvkb4lihXW15S0wMSOkamtQPmuZa0lsZLERpJR7rqSwjFDMyoGnLyCAFaVci74ohVKGpTSWCMwJQegi0ggjYC6GD+I8GSMlNox3YGC8dFWOiAdyMmQbXKL6Bru79fN7IR1ZuW7drj3aEr2FkAEXidYFCYS2JxxWtPJfemAVzBxksmSNOCkRiq+Qwr3MDIlj0wQo5RBCNBaYEWi1x9Lp4Ge1eBToR+TaFhbwLeOpW0BI1x9gCHPxmA2iB8hBZItxE5GpBiL4U3qkFCVKsTeJkx0Tdk/RqGiszOL8k15o4rvq+HLl/90AUe3v04Y/so3mOYS2vddAeKYJOPIyfJIT1ekdiJZVVA5GYq0BIEuS8Z4MsaTbh+Dy3aKjQPBc6qXQMb4QpPJhHhCs7KQpxi57CZPWowVhFoSakXoSTJKu/CLMAiryHgxkZFIDMZKugpZSrGTJgu8GDKWYiTAem5OpNNDtzmDzUeorEZ5scu8shadPHgjo5BSk1dFtmnspRvLP4dwliqna7OP2pist8vj3ecv3eAAOsB//jGKl+bmN3Q33jQ7+4tvMHp8zE+/OJFSYaQgp6CpVXPwCZ2r3erX3xzPVy5/hTETI/7047ZB3/+q7b2fWcy4LdYfiH7Tla1suUNxvR5jRPYm+KiWlhauvPLKNXSj//E/8IEP8IEPfGDA7SdPnsw999yzTvq3MZkA6oMMnWGJxuSH94KelZz6n59jrOWq/T7E1PpxfG7bK3Dv5Wv+iTs+N23QddPqx/Dhrd825P59aOYBvHvqbjQFuSHvsyGtNw4Bx0jfFExbzZPtz7FFfiKtmeZ+698orCK2jgy1sLCSbZsmMrmxifmrVjC5oWnYx/vVIw/zj3nz+Me8eRy19UwmNAxf2uX+5Xdy19KbAJheN5NRDLPA5Ob3qI3KhBDkG/N0t/dSP8pld7zx2nI+duwPsMbyw79/gknTx3L149/AWvD8NT/vt5w+eEHLKZNaOef0oTNnT7vgeI4+9xAaBgDkN0YrdBfdvz2lDdyTdWM61jx21zNM3X4Soyf0D9wuWtlBrN1v1AXLO9huizYmtDby0hsrmDgCXfPf3PcINz89j5ufnseRO2zN+Kbh+6i/3vskV97xCACztprA5JZhvpv38VFDlcVbn7VlCoUCX/jCF/jb3/7G0UcfDcBOO+3E448/zve+9723CIhejQ9R+bsv6bEfWVpSi5f4YHMWmTHUZcJEwsNUNSlI1LMTdmcC4FgHLKQ6tSmLz5MaJSwF7SfAa4Yw8hMNdMf2ljK5Hkw1GxqEspioL7NyAKZlNXbTd9lQLcF9Kmx0p8PupFPcoByALhIQPGUhrm6Cq7ojKDPRq/+uUG2Tgq3K6YYrVWHYVratPU5ZHoZUj9hpm0tZ6buOU6kDS5AxNGZD6v0YKyQaRWQUPVFAnLJJBUnBAoGUGk9pjBV4ypLxDEq4wIlBEGoPYxQZP0JJCLUr5hhrialqTyo3HinBUwZfGjxpnGSLsPjSorAUrSKbMEVLWlHUflnHWltJqRRgoqRYo3EF+xCg6iOCwJAPNM2ZIm3ZLupViACKNkjmypKVEQaBJ/XwL46aypCbbaRWI+XSF/Md6NZJlyUFPQUOnzQZ56vwbZkdnt5XVN2/FUdY7TeSe0cCVuApjacMsXbBOmOU809xosUdWMq/H1MUO70cfAdmr9bhrM4/9ZuL1TuudP5E6qxkurBvw6vry2BZMVWdGTBzJskukQY8l2EyoD/us6w8VEESbBAILwlIggs6JPcyPkjP+Qp3npw/07Fje/d9yEnPIJVBa4XyDJmgooUvgDjZJ++HZRkqKRJpKB0QGT9pSbjsF+Gm1PkpW/Y9FoFOihynmVZh6LJ4wF1DIIgjz9W20I6BLhPZH5M3kAHlW3LZmJZskTovSvqoUMIx37MqJrYenhx2pG+zj9rI7NRZ2yE9OO/iBbz9lFWDspnXl/V0Sb50+jTmP5VjtaSDTcj2OaKDMRNCrHXFPK++dGy58Phw7dV5WY6esiMNTTFfv+plpm9f5PUXMlz1g7F85BsLaWwx/Ojm+Y58IuHGl5/k0s9O4p9/HpX4qopN367Auz68lDl3NDJl62JFTmw92Hs/sxgTU5ZrXH9nfbjzutlHbUwmhODGE85g7oolzJ6wBQDPdiyiM3JAy9z2hUytH40S649t/8DyJ7jy1Rs4Ytz+HDvxoH7r30qyKN/a9XhuW/QM+46dsaG7sk7s6tdu4O8Lb6fRq+cXu3+rXAw2tX3HzORT2xyDxnBwm9OQ//kRx/HM8mVsP3pwoHIw23eLLbjqiSfZenQro/MjC/pOyk9FIsmpOlqC0djCcFvY7KM2JhNC8JM53+SFx19m1kHuGnvh6QV0d7gT+/yTrzNp+liUt/581H1//y+/+fKfOPYDh3H8+f0Ll76VZFE++9uPcO9f5rD74UPLBtrY7Xdfu45rL7mZptYGrpz3A/yg1kftv/10PvvOg9DGcugsl0n1/XOOYd6CZWwzefg+ap8ZW3DNw0+w1ZjRtNaNzEdts8VYpBQ05jOMb2kE3pzfeuuztkwURURRhOxTWFophTFDV37YeJjoqYmBp9kOsl5IELFAtStsIcPKUGDHQEOmhKdMUijUEsaK7lARoxA4aRchTFJYxDE4JZDzSgTCsal9GdMTBXTILDrOQkk4JmUOrK+dDIOvkUnhTB0pzIDg1BrAquFcV4OAduWiIlY4XW+TgFVJMUIhQVZ1rRIUEmWwWwhLLhsipSWMVCJ5QAKOO5AnTgIJJIxYJKhMTDbrghcmkYjpD6BDyvysHW4V8JWs8AKNlqA8jTawuLuenshnQl0nORWSU2ECLBkKUUAx9NzgjAPlpXBFGiOtsNbiSSeLUNA+4BNrgTYBmSB20gnSoJTTTTbWyUvoSKJjHxNoIulYnsXYx1Oaer/k9lOSvArJqYiMjFlp6ihFHiu7c2it8HyT6DKDCN21gxZQF5P1QzK+phQrVhZyPEcbK6I8gdS0+t0IIC9DMoS0eN3EXjSMi6TqBG9mJ6wb6wukD2I1qiCWsrw4GrwegQoFUQi60UDGOtkV6djJJhKYqAp0Fe6edCCwxQonPeUAdI3EkvUN1mriSBJpHxEBEVgpIGNcAVNV1f1Ygk4L8g5z3NXLakc9+M7pvZ3q2kCZAV8GZMpyM32bs5V/qgoHB7kQC8RRIsGURtHSNlJZJnDpY0lQwfNjkC4DptJ8xSlW+ywX10j2Tc6FNa4IqQCEb1yWgHBhWaPds0hJ8LwY39NYX1AKveS5kEZNLDp0BT8tllJBIYUHGYvvabSVhLHTPO8g6wJ3gSGQEXlP05rpQWFY0ZunEAYUpef2MwJfGXzlAsB5P0wY6dAQlJJ6IJZIO732sNcntD4yMO4aS65DK8EEFpsx+A1FVODGGcaSRV2NdEc+OS9mbKabQMXkZExehjSpdkqZzT7qrW5aS/yM5ugzVm2Q4z/1QD3PPPzWYEitKzv+nGU0NDun9OefjRxAdyaII8G2uxfYckcHLP7rulHsNLu3rHfvVb31F3sVd1zbOlBDHPrOVTz+n3oOPK6dptbhBvGHZ0q5z/q3YcribfZRG5215vIcMGla+fuBbdvwnmmz0dZy6Pjt1vvxvz/vD0S2yBUv/21AEP2tZKMydZwybY/VbvN0+6vcu2wu75i4FxPzA/uKjcUKsfN5JROWMwirTQrJu6fWgioZ5bFL28iK7b5txpY8ff75+EohRxhh3LphB76+4y/wZUAgM3QWVp9J1M82+6iNzprHNLL72yqg716H7sDxZx2AMZZ9j9hxvR//2+/7GcWeEr/83FUDguhvJWsa3cixHzp8tds8+/BL3H/rkxx1xn6Mn7Jm0HVDWm+nC6aUCiWH0/UxKQWnHbRLzbLA99hx2sh81KHbzODRLyQ+So7MR+25zRbc8b0PkvE9chm/X2HQNdpGWFumsbGRAw88kM985jPkcjmmTJnCPffcw+9//3t+8IMfDPnYGxREX+N0poBv1fe+2Gw16dD4lkw2wpcaqFSDNRZi6xjHxoKXkDWFTbSIcYCsJ2M8oROJEYi1oKQ9OksZopKXgDMW4ZkqjpQDk60RfYrJrWMujRhgtgYE4EU/QCqVvTH03b4K7LYCqZwMirXp8pRZ7jYyBrR2DCbHarUIZfC8GCUTeYKqg9emCZdnq3zc6nsqPZ6xIilaakl/8KRsR19oF6xAUIgV2gpi3eciERZfaiLjCiWmGsPGQpgUELXWAV0yOc/GCLROGfcGi3Jf0gKygMQVmZUYd41g3PWFK9xqrKQ79imEHjqWZfAwDhWEsszyxILNaTIZJ+EihSVQmqyMwEJA7M6F1AQyJCdLTndYjEATHbtZJ28d2FD4kANc6gMC70Y6Vnp1YU+w5SKY1XUKhHQSRcJdyk6eSZhEJsjJFVnrJF/C0MOWJCKVSVHVoEcCkuqkA+mgBrK1cVv92Ou2drnou7GtzFHfSbZV24CbYGERnkZIjday7DNqDpe6jXJfLCiLULpcELq6Q4NKWVWPw9Z2zCaBtrTPKXsyvd2UdEFHneiK1wS1k4alMoRhygh3NTusJckscH4o67vnkScMCk1sBZGVlIwL6lkLAnecZDQY4xjmKvFXFUEz5zeLke8CoWn9WGy54DEGrLbYRArIy7hryFWINwlzHTIiRgrtZGZkRE4WnS8dLhNqs4/aKK3YK3ngtgb2PrzrTdemnrlLL6PHl1j+hsvGeivbZ370Cgce18FnTpzBs4/WkY5n+vYFvvfXF8jVmfLrmrXw2/83jrA40jFbvnz5K1x32RjmPlTHs4/kWb7Io3V8zPs+t5iH767n6Kk7cNhJ7XzsOwuQSdbfT780gYuueImrL21j3uN5quf8Vxe7H223XdPC0e9dwfnfWFjOFnzr2jADFJt91EZvgfL4wFYH0xOHZNX6S52JTYy2mt7IBXxagqEVeHur22ce/w1dcYHnuxbyw13P3dDdWa29Z+oJTKmbyFYN0wjkm5NGlfHWHkap84YvsVC2zT5qo7cg43Hax95OoadIJrv+CpbHUUwcaeLIpXWNmfS/4aMuPOPndLX38uKTr/PNaz+6obuzWjvr4ncxbYfJbLPHDILsm+Sj/LX3Uc31ayFR9ib4qJHUlrnmmmu44IILOP3001m5ciVTpkzhG9/4Bh/60IeGfNyNj4nex6pB8pqM+z6gi9QCQkmsFZH1CNAYIEo2MlaWU9xT/WxfWfJeREbF+MJQ55XwpaFkFNpKtFV0RlkHdoQKUXLou/XAKIvKxHjKtaWtRAvhWJbD/fG3xs1Xc+H1A6iqtrU4pMQIB6KloFW6ugokEsJSlw0Z19CNEoaOUpZVhTxRrMpAcxx52EhifYPyNUEmRkpLXcbNsrEQlcHxAQB02+e4ySprRFnWQkpDFAaYnoDQV2TrS0Ra0R1lUNLQkimQ8yLa8j0EyrLIKLq1QghR/nHXVcokBRotqwp1NGSLjM710qoKNAclOsIsxdgrF9uLk32V52QVIisdGywWxMZFDHTkgbT0iICozgPRg/RDjBMyJq8igkQOSEcelCQmdKCmMMJVIwWsbxEGp+UuHPBVjGNWRnV06SxtmS5GB92M8brIyRJ1MiIrY3w5TM1CayqfzbZubJD71K5mXbqfAIQGIgeUogV4Vcg6yT1TVWTTSR5ZQIO0KGXIBo7lnAaUBRAbx1wWcSLFYcH4CuMDSqOSQqbGOga6NYN0drAxDMgSH2DdUNzeQH6qelF14KHPxAphqcuXaG3oIdKK9kKOYiFwWuWQ6JNLl2kWOPCcvCvY6ud02Uc5Fr6o9UODdbbcp/RcuH0JJarLc5h9XmOERWacdo+nLPnABel6VUCXyaJDKoFQKyn1ZMugf2d7HcV8RH2uRMaLqc+EWCsT/XvwpXvOGC3Iypg6L6ZD4J5TRpWnKEyY80JYSrkSTdkiqlxMG5QweEnwxhrn30yn75IEFJjAgBLYjEUErj6IthIrKgVLSzrABiVagl7G+Z0E0vl+X2gCVRzCBVB9vjf7qI3R/Ixhm117NwhY+txjOZa/MXCRobeOWUaNCTn4+A5WLFUsWRDQ0lbJ0jjgmFXUNbprvnOlIgqd77/lj6MYaeDACwxjJpaY+5Bj8c/cpYfREyopt0/eX0/jKM2hJ61EKVi51COOLfMey/OO9y9n3uMDSVBU+rLL/p2sWOohhKW1Tb+FgfThMtE3+6iN3VYUe3j77T+hOy7x89mncPD4rdf5MRYVXueLT32TyBo+tNVpLOjt4PhJ+wJQ1CFfeOL3rAy7+MZO793o2doA9y15CSkEs8dOW+O2U+rG8nTHq0ytG76UwNraC92v4QnF1LqJQ9o+p7IcPu6AdXb8pxcv4f9uvIltxozmR8cdg+qT+v/EikVc/Ojt7D9uOh/fcd0dd1i22Udt9Na+vItz9ruYnu4iF13xQfZ62w7r/BivPLOAjx50MTo2fOC7Z7DkpSUcd54DFIu9Jb564ndZuaSdi/76mf/P3nnGyVFce/up6jAzGyWtcs4IgUgi55xNsMFgbHDAvs4Z21z7tbGvAxfniG0csI19r7O5BhwAg8k5R4GEUM7avDPToer90D2zMxskrbSrlcR5+A2r6a6uqq7uPjPzr1PnMGFm33GidyUev/1plFYceOLWPfcnzx7PC4++wtS543dCz6p5+enluJ7LjL0nblP5mvocZ11+wqC1//zydXzq+luYO2kMX33HWb1t1Jo1fPFfd3L09Ol85Oi+Q5sMOTvBRm1Pbpnx48dz/fXX71C7wy6i9+vl2cfGsndghfNxpSZjXJN4oafe54mXJqnIXdJmEi9BrSyOjssedI4yaGsoRprAaALj0hW5dBQ94lilnnupd7JKvEBJ6zcWoojE03MbzqP6hLZUfltnbXqo0hV/ur0kbXVR1aM8NhVcIDaawDhgDSr1Go9jjQlLJRN3T5WOoVKJ66cxlcJU0rC1Pc+iwlO9oj/WWlCJUGQiIE5iGCeiV+JR7ukYY6EYJWF58qFDMdS9nktrkusNCkcbFIbIKBxliS1oLKrq3CjfJ6Xjy301FquTPtgYtGdwVIQmWcFgTCLKhSrxDlXW4uqYiMSzU0UKo5NzSzyEbZpQMvEidl1Dxg3JOSE1usgor4M6nSejQrI6AGswMYRmgB5UssRvUOnjCRuo321io5zUjnTf+Mn9ZnsUTIX30n2j0rBDSlmiOLmXjUnib4dhstIhWXViU503bcPasje0CVVioyoNZ0+BvC97tS0nOiABvdub0aZe46q031TfspWJkJVOkmXGRhEaJ7FJhvI5YhRElWtekldp3JL2VO/z2ZIdTvtU6oO1SWJloiQJbCnufdnDXFkUBmts0p1IE0equzs9x8lCKSSMLX+sqHRlVIjvRGgssYHQKCKTJBGN4u7+lMdIW4zReG6MUjFgsKZ7gE26WsrVFqOTJKOQjJt1Y1Cl0C4K5aa5JSLwHEPOC8m5ITk3YLTfTqPTRUYF+CqiaFwMNp1wHABio3ZJokCzaa3HyDFDG8KjJ62bHL7xkSls4VvhbsGHv7qSM9+yGYCxE2P+98kXet3i1sIdfxnBVz8wlcE41yhw+NAZ8wBobAr5+LdWVMUXf8en1/KOT69FKfjplybwh2vH8tmfLmXkmIiPvG7rouOX3jUTgE98dxknX9Cyw/0dPgY41mKjdnk2FDtoj5Kkc0vaN25VRP/bmr9w/6a7eMOkSzhw5KGsK6xkTX45+zYeiqv7/kl89/q/UTCJPWyPVvK+OW8u73u+dTkPb34JgH+vf4Y3Tz9+EM5q6Lhv3Su8/Z7fAPCrYy/l8LHTt1j+uwvfzcqujYMmor/auZKlncs5qulgfKd/r9ynWhbxuWe/h0LxjQM+yay6KdvchrGG3yz7Osu7XuaSaR9lRu18Yhtzz4bHGZdtYu+GmeWyhTBkXWcn00aM6FXPjc+/wLKWFpa1tLC0uZnZTdUTJD9f9DBPblrNk5tWc/leh1LvZ7epf5FpwZo8nrt9IRqqEBu1y9O8vo3O9sTJZMXitVsV0X/zrb9z228f5J2fO5+jzzqAZa9uZOnidRx13Dy8fhKR/uXaWwmLycT5mqUbeO/XLi3ve/Ghl3n01qcAuPuPD3LRJ88djNMaMh6//Wk+deoXAfjav67igBO2PF7//ccPsXrphkET0Zc89SovP76UEy4+ikyufxv1xL2L+PTFP0ApxXf/dgWzFwzARhnDlz/8P7z49HL+8xtvYt+DZxBHhn//6znGTxjBPvt111UIIja0dTBl9Ihe9dzyyAus2NjKio2tLFvfzMzx1Tbq+kcf58k1a3lyzVouP2Qh9Zltc1Jp6yhQLIaMadqBVTIl9mAbNewielk86YMqR8Q+HLzLCf/S66KjJC5wITS4jsV3DLGF0LhlscFRFk+ZxPtcG3xt0sSQhi6boS3IsrlYQ2fgE1uNSb30yFiwphxH3MSa2DhJArlQY0KX8rL/vgSqbR6MqrPfSpktlKuQ+pJ/VQoctuqfpXOKjEtnmEnEcQW12YjOglOO6wsKHIufiXAcS9YP8XQSiiCZpKgMbpxcMNuj01UCGd0CkEqTKCqdJP+LcaBosTUOTbk2xtV20FzM0dJZQ84JyboRrcUaYuNSSt6XVGGJrVtuvRAk551xDLVeQK0b4TsGpbPkQ00Ya4x1MLGbjIU2qaeu6g6vESWx1pVrUGgsGqUVWkFoHPJGg4ZRmS4KDR7FyMV0ejhtDkqDrbfYnElEPtfi+slEju8axte2M6t+I5Mzm2lw8ox2O2h0usiqkA6TpcXk6CJLaAYYb1iW+A0OlXan+rHp3t/XMT3Kd9so0CaxH9aY8gqFsodzVbuJIK61xfMMrmtAKcLQpTNwMbFGexGua9C+JfZJYqzZpC4VOeCCjUwSfiR0Ktqw26fd9CGEb6lMd76F3oXK+3r1RaXCckU5CzbShMajGBvCKHkOXc8SGYUNkpAkCpJVN65FaYvjx2jHdPfFVl7QbRiA8iRkUj6xWQqrFa7VqCKEblKvdhIBPIxcfC/GsZZi5IGttIt9DFTkEHSqJJmxa6jRAfV+gKsNrrLEaILYoxC7FGOXonGJjFtOylwKX2PdpH+xcTA2SW7sayjEGkUSNmpEbR7lWJp1DWHkowMFDtisJVMfJDktFNTmitRkImqzIU3ZTqbXNDPWb6PR7WKU00mNTnKHtJocnSZH3mQJzACTzYiN2iXRriEIksnlnROnOqFls6ahKaK9ZSdnMx1ksrmIoACVekpftrJlo0NtQ0Rn2+Ceb+OoiCXP5hg3JWTi9KBX+x2tCs+PiSN47pGBJZryszFhEbzddrHAAG2N2KhdnnmN4/jyQa9jdVcrl8w8eKvl/7H2/4hsxB3r/8H8hv34zsufJjBFThx7HmdOeFOfxxw1+nge2HQfSmU5Y/xpVfvmN07lsKa92FRs54Rx+w3KOQ0lquK7yLbE8fa1y8y6wRGnCnGBzz57DYEJWdG1msumX9Bv2c6oC0gcmPLx1le5rcmv5HfLf8702tkcN+YUnmt7GIAnmu9hRu18bl59Nz995c8oFD855CrGZZuIjeF1N/yaV5qb+fRxx3H5wQur6rxg3314YNly5o0dw4yRI3u1ee60fbh37SscNX4Gdf0YRWMNxpryBE0Yr+PF1SdgbAczxvyKhtzxWz23LSI2apdnxvxJfOQbl7B+5WbOfusxWy3/u+/eShhE/OUnd7LwhPl84PKfUSiEXHzpkVz+nhP7POb0y47l9v+5j0wuwxs+WB0Hfd5hczj4tANoXtfCsRcePijnNKRU2CW1DXG8/YzH9Hnb5gm+NfIdBT501GcJ8gGvPreC93z9sn7LdqbJYq21dHVs3Ua9+vxKvveRXzLvkFmc+/7TuP/25wC446Yn2ffgGfzfHx/hR9+5Fa0Vv/jjBxg/YQSxMVz0tV/z6vpmPn7esVx2QrWNOvfwfXjopRXsNWk008b2tlHnzN+be19dxlHTp1Hn9z0hEBuDsRYv/cK/sbmDSz70c7oKAd/4zBs47ICtr1jaInuwjRp2EX1HnB+rjrXJhxVh4s0cRKqcob2nltU9KZLEky2icVQSFqEQOQSxIowVsUle1iiUNhit0nALiQhqYhLP6UD1vUq050lUxTXvz9W+/939V9zfvtQrtRQjuEI/qq5eYa0hDDUF3CSBoU7ixGfcAIxBWwftgaNjXD8mMg5xrFAoHG2r4qhXqE4V/64On9AzFjrKprHQ04Drafxday1RrClEDq4yeDoittBayCRe6NaWPeGTk028blUSlrwcvz0ySWgWayz52KcrcChGmjjWBJFOvEtNmnDRqHKfsDqNJZ1MRxidOMnHJo15nM7iGKPoMi5dgUucCnrWMZiMgWyMm41wbBJeSOlk9YOnojQOf0RGhdTpAhkV4KiYJNZ6jKciFBAO9MffHjzzN9xsUUDfQvmyU3OUrGogSqe4dO+ClXYtuafTmNlRcv+ZNMGBiRWxVYl47sRY10nCmShAG2xsk0SiJW9o6LZDvezTNp/5IC3n737OugXutJ0+bl2LJS4qCngEcRJmxNEx2jNE1sGg0+SeBusl+RWsAatUes6lMdgGQ9trAqQ7AbJNVyXF2qCd9PhYEUcq8ZbXljjSFCNNFKo+6qLX2FuVrmqKFYXQQeHiaYOjFIGTeN5HRhOZdOIvvf469RyPY5WsNEjjsSf5KzQxBp3GVVfKEsckSaODJCmr9QxkYrxsSNYvoi2E1sHRBk2ySqbGCcjpAvW6iyannVoV4KsAUPg2pFblCXDS1Q8DQGzULok1mlFjo50qoAPU1ML6lbutOlsmW1ctoPeHo9WgC+gAy1/O8cPPTuba2xdVrVQpEYUOYeDwlfcM/IdRTZ3djQX07UBs1G7BBdMP3Oayp48/lwc23c2JY6uFJrWFL0BTavfi2wf+IinV44HKOj7fOPDygXR3WDly3Ax+deylKODQMdOq9j2+YRVfeuROTpoyi/cvOGLQ21ZoXOUSEG41ZvkRTQfw8b3ehqc89m2cs9W6795wK0s6F7GkcxHHjDmFw5tOZ3nnSxzWdApAuT1HadxUGyjGMctaWwB4ceOGXnXOGzuGW97ev4h24qQ5PPb6j/W7vy1s4/PPfZ58nOfKeVcyrXYaYbQWY9uT9sOXYEdFdLFRuwWnXbztz9PFHzqN237/IOe/64Sq7T1tTyV7Hzqbmzb+JA1t28NG1WS4+u+fGViHh5GDTlrA1/51FUop9j9un6p9z724mh/87E6OPHQWbxmCCQGlFZ7vEuSDLXqhAxx15v586vtvxcu47HfE1m3UX398O8/e/xLP3v8S57z7ZM6+5HBefHI5Z150GJDEzockuaibxCSmGMas2NgCwMurN/aqc+6kMfzxPy/ttb3EibNm8ugH39fv/s2dXbz+x7+hrVDk129/I/MnjGXDpg4684kDxtIVm3ZcRN+DbdSwi+hb1GK24IXe81htQVtN7GgMitC4qEjhOd1L+UthWxxtcTRYHAKrMCZRXDtDn/YwQ1foUwg9wjAZnm5n98RrT2Vs4mEcuthY99+pKvoQblR/u3vcaH2d+xYGrnSfaqek/1SK2n0bYmscurocCk6GjB8yoq6LWj8gjB2yfhJnwE/jfq/vrMPEGmUU1rEYm3whURq0VanAU+3x2beArlBa4aSCt7FJoj3tQuwnhbROVgLUuiEFA21BhvZiLgnlYFU5QVZ5oqsU7znJAopSybUyaPKxRzHK0RX4BJFLFGvCwCEOuj10bSlRqU47GShUoMG1EBuUA55rcbTCoPG0QQFdsc/mrhrWbRqZxBmONfEIg9MYUltbpCYT0FXwIXbJeCGN2QI5L2RMtoOp2c3M8DeS0wGuMvgYHGWSFRM6xuDgbPFB6esmSMdgz7NZw8c2eF73opSE14Ay4BiISzPrcXrzVj7vKk3mq7ortuUfbprYKmJT8mxWYDQxKlkt49lEQAfwkzBERA4YXfb2rnLErpzsKpkk1Yf3+Lacd4X+XbY3qh87VfosVRblpPeoSTqn0ueuKuxKqZuRQ6ErS7EIrh9RV58n60XkA5fAT8bNdSM00NmVgSiZALU6mWRTKrFRSdiUfj5U+jpNXXk50mvmgM2CLaa2SyUTcG5qD9vzHnGksZGuHkxb8SrVmdooazXF2CPGoWh8fCfG0Ya4mOTyKK3r6Sz6xLGD5xm0NhS6/OSzyLFoFScTnTqZPHAcQ04bHCydkUdLvpaW5lpsmKxSoDaipq5IQ02eEZk8HUGGQuSRdQNG57qo9wpMyrUwL7uGGd5GfG2ShM5JUCxcVUBp6DKZNNntABAbtYuSxMoeNa6NfhxXBpX1Kz0e+lc9a5b5hMUBhgTaBXnu4RrWLksGbtyUIoee1I7XYxyNgSXPbdvS/+0hiiw3/7KJfQ/rYPa+SaiLMFA8dmcdtQ1R6gE/8K//r76YZf7BndTUvUYeWrFRuz2L2pfytzV3ccLYwzhgxN6cOeF8zpxwfnn/R+ZczZrCcvZpOGSL9Si1+9umEv2FcPnJcw/z+IZVPL5hFeMaLSjD+ZOPxBmkc884Ptfs9xlW5FdzwIh9tlhWKcWxY7a+sqDEASMP4/HmB5lWM4uRfhPnTXpn1f7Txx/F+OxoRmdG0JQZAUCN5/Gjc87lwRUrenmhDwYr8ytpDpsBWNS+iGm108j5+zF55NWE8Vqa6voXv7YZsVG7PS88+DL/d+0/OeWyY1l48n5c8tHTueSj3ZN8P/j55Sxdsp4jj9lri/VovefYqP5CuPzuL4/w3Iuree7F1dRtasOGMee87zQcZ3DOPVuT4UePX8Orz67gkNMP2GJZpRTHn7ftduPY8w/l7j8/zF4LZzJ60ije/9lzq/afdd5BTJg0kjFj6xk9tgGAmozHty4/h0cXr+TSEw4a8PlsjZfWbWRtWwcAj7y6kvkTxjJv1jg+8R+nsGFzO+eduv+ON7IH26hhF9ErtYSe2/oqV7WtJPyUrk1oIK+IMwrXUUQojE0EJK1BY7Dpe4UtJ11LIlxripGThvcAz4kwMQRFDxNqbKghTIUMzyYepWk83ipRvD/vTtNjW+X9VOl5WlJYFH3XVxag+2mnoqDSMZ4bY40mNrocpqTfySALJoIQTUeXj6di6jMFrFG0RxmMVRgLWSegGDrERqFijdbd4RKqJ5tsj1Po2cmSmqTKz1gS31ih3CQERRRo2juyrKcO5djUm9x0i0oq8SCxNvHdLguPZbFKEUWarsAl40Yk3puJ+KRMOqFgnEQ8L022pLGJtW+w2RAbu6jAgUhjIo9Om0VbS9YLUcpiUQShQ3trDarFQXcqrGvxskUa6zqpzSYJA0e4XbSFOUKjy57x+cinJczR6uSIrMJVJvVKT/5mifGUosMRL8/dHWtJPNBDm4aHIhG9DVRFQrIqEcCTmcHE2zzqvq9t6oUMaXzugoOyCqL0ZelOAlHpeV3pBd1zTq9i7qm0zXY/ntVlS/+sFP9thUhMKUZ5RXnVh4nC4nkBnmsIQ4eg6HVPYpVsYElgLxEn5x+hyHd6OLWGukwB42o6owyaJAmm74XkYx8bK0ychEopPw4DfCyqylrKM3ZWJ3HPVaDQHRq0JtZpHo5YJde6PJ59TKL2aCMOFViNdS1x5BKg0U6S38PEDmBxnSQ+ukpPosYrkq0NaCdHEHiY0CEIFB1xEo4jypCErwI6A498hw+dDoQKMpZcfZGRuQ7q/SK1bpFaXaA9yhJZTWgUgXEoRC6dcYZOx8ekHugWi0eMpyxZJ0LpPG0DnekTG7VLojUceHTHThHQ4wjef/oc2jbv3iFcKvnjD5OkXZ5v+N+nnusloAPc9Ismbv3d0CUgXPVKjodua+S8yzeVt/3iv8czZXaBdcsz2yWgAyw47DUkoIPYqN2Q9YVWbl3zNMeMmce0ujH8eMlvWdq5kmdaFvHzQ6/uVX5sdhJjs9uWuHJP59wZ87ln9ascMGYs33npLygFDV4Np44fPPFmbHY0Y7OjB62+EnvV78M1+1/Xa3tXVKQrLjA608iBI+f12n/irJmcOGtmr+2D06e9OG3caXREHRw1OklEq5Siqf4tg9eI2Kjdjo2rNnPnb+/j8LMXMmWviXz3Az9lyVPLePLOZ/ntih/1Kj912mimThv8Z2Z35OTj9uaRJ19l3pQmfvDBn6OAhqZ6Trrk6EFrY/z0sYyfPviJlA84fj5/XHFtr+1d+YDOfMCYUXUsPLS3LTpu35kct+/Q2KiDp03mbUccREtXnvMOmA8kNmpQxPMSe7CNGnYRHfrxB+zLC70PDVZVFvE1KhfheibxqMRJBAdlUNYQK506hhoMGkfZ1BvdJYgd8qFHIXLJuDFB5FAs+JguL/GQLKbiVNaiPLCV3qD9nUSld2ZfqngqPHXHBLaJ2KIrPEJVVSX9jVb3YKRtOa6hpiYReYMgCUvTn/t6dSgFRWzBcaGppot6r8j6fF3ida0ism7EuvYGothN4nprQ0VgZ6ovlq3wbO1uu6obNg2hUvq3TT1GFdhIYxxFYB26jJ+EGog9DEl8dq2T+uMYquOxp17xqqQXJnHPtY4xJvEgT0ZMERc9CJw0jrJKxUhw6kL8bEzQkQhTOtAoC5GGkIjIOrSHDtYqoljR0VqDWpfBbdeYrEWNKjBuUiujazrRChq9LlqDHJ0mQ4zCcyyeNmSdiFonxNFQJIO1EbU6IKtisiqiTkONUnR6AzQ+Jkl8mi4LELaXbXdYrj6mRHrZVCoiKw9sViVe4zaZAEpimJdE79TfuDShoxPvbKV0YrdsIrRqxybCepcHxSRGN6QTQNpinfReLneoNOFU2cHqE7OV/6o0VWUhvaIeXSqjepumyuc9PVZVtFCad8zURDQ2FIhiTRC5YHS3HXJMeTwqe20pTRIotBMxsjZPjRuwrrMerSGTeqK3hF6ySkiBdvqaCVDVb/ublKzYXrZlVpf76hZ1MvmY0eClYa3ikgd693hV2ubqS5DYfKUU1jqgLLFxCY1OPrcMREWNtRrHj7AqLnvS19cUGV2TZ1NnDZFxEzsWaOKsIbAxPg7F2Cc0lkLs0NZag1mfxSloTM6QG9HJ1HHNNPoFXBUzyu+kI8rQZTMYYxMbpQz1bpFGt5DkGMFFk6yWyemIGhVRq8BXio6M2Kg9gSmzC/RcDWct/OtPI3ju4VoyuZizLtvElFkDzNPRB8tfzuzSl3/CtCJnvGUTdQ1pJl+lePj2Bh66vT4NPdc/UQQ//vwEXBcOOq6dI09rw03nCvY5rIN3fW4VN/+qiTWvDo1H+rS9ujAmDWkHHHF6K0pZ/vab7Rfvf/eDMex7aBenvWkTtfV73g+iXoiN2u343NO/5/HNS/nj8ge58bhPsH/jPJZ2rqQ1LPDrV//BW6ZXh3G5bsnPeaz5Sd45860cMmrwvZF3J06fthenT9uLVzvW8Y6HnyG2hgnZkUPebmRiXD348cPawy7e/MBXaQ07+dJ+b+WYMVtOUDjYOMrh4qkX97s/jDcTxOup9XuL+9uM2Kjdjqsv/R5P3/U8f732Vm5Y8j0OOmkBS55aRkd7nl9/5S+85dPnV5X/6jU3c9+9L/PxK87g2ON24F7ZAzj2yLkce+Rclj2/kvde+3fi2DB+2pghbzcKI1xv8CXTto4Cb/rwz2lty3P1J8/lmENmD3obW8J1NFeedly/+1tbuti0oZ2Zc8ZtfyN7sI0aXhG90nlxC9ieGkjF8dYmOosCVB7URpegUxG6iRenTQVZlXp1un5MbV2BGj8gMknCyELokS96RCaJkd1FWqey4FgwFltj0TpG+yaJwRu4GOP0EppURd96CzM9N1h6Ck/WkHhb6qR8KbxBqZBykgkCY5IIfq4f4TqGKNRJ+Jk0nreJIAg02UxIXbYAGWgvZIiiRPzWThLH26RhFCoH1cbQ0enzqhlJzg+S8AKRg6MTj9caPyjHi4/j7h9p3THR+7yKVRex0lu95xi5rsF1IFIGQxLj2FVJjHZPQ6wtsUnj3dvEK1IpU/GjVnVrkijCGIxxCaMkhrtVUOcXsJ6iwxo6bBZbdKCoEu9ZA6ao8WvyNIzqIp/J0NGew3R4uC0KW8jQPkrhNoa4riEouNiCgwossWMSgSobMtLvYITXRRC75COXyChQSRxjV8dknMQzPrQKbExGBXgqJkNIhggHm46aJqMG+KjuwTN/uwPlUa94vq0GAnDbQRcVJs3Va53kVdLTu0OOJH9tpAmVTifYLCrS5Rj93fbHYl2L9U0SIsWxEOjUHvRhPHsJ5CTe8Np2h6Dp4xxKoVpsrFLveVtt9wAckzxnaUgWx49xvRgTasJCmoBZW6IYCqEm50XU1+UpuBH5zgw21ig3SQhqQicRw42qmoyzMeQ7PdaYRvxMmCTbjBwCR+O5Ma4TY3RyjDGUJ+Z6XJ2+x6ZnkdImU/ossigvxmKJ6y0q0FhsYkNsDD3tYOVYW/ps3hqwRhHETnk8/WziVY9nCEOXqOhgijr5XLOKIND4tQHTGvI0unk2dtTS3laLafOwhQxdjQpnZBd12SJhrMvtxm4MGYN2YnIqIKeLRFbTHNSQj91khREWR8VkdIhBEVlwiMgQoZWhRllqVTIdqQEPh9xAA+WLjdolueb3S2gYWX1N7v9HA1/70DQA3n7lmkER0AGuvGgWHbtwItEv3rCUKbOL5fdLX8jy3U9N2aZjrdHc9rvRTJhW5MPXrKIyIsLsfYr8+8+jhkxAX3B4B+/5wtqqbfse2sWX3z2VRU/Ubne99/1tJO//8qrXhoAOYqN2AzYUOvjhi3ex78iJvH7agTT5dQCMTP++dcb5PLx5MYs7VvL7FXdUieihCbln4/0A3LvhgV1WRI+tGbSQKtvC9Lpx/PbIK4msYWJu1JC29ZPFt/OzJf/igqlHcMXe5wxq3ZuCdlrCTgCWtK/Z6SJ6JYEpEpmAGrcegMh08OiqU4lMC7ObvsiE+r6T2m4VsVG7PJvXtvDrL/2JuQtncvrbT2DkuEYARoxLQna865q38OQ9i3j5yVf5/bduqRLRgyDin/94BoDbbnt2lxXR4zjG2YmJdKbNn8wvX/ouURgzYcbge41X8qsv/IEb/uuPnPP+0/jgd98xqHVvbumkpS1JUPryqxt2uoheSaEYEgQRDfU5ALo6i7zjwh/Q3prnQ1eexdmv387Pxz3YRg2/J3p/v7u34DgIdAs9GlScaD9G6WQZfVEnCfVKx6lk6T2uxasNyXoxSilC45EPPDryGaLISeLnRgrlWBzPEIductE9i3YNjmdwXYOJNDZye4jPFd6WfZ1ThWNiWXAv9S+NId7tEZ6Em0Englop/IB2LNpNwjtgFG5NSC4TgoV8Z6bba1NZtAcZ31CTicg4ES1ducRbUYHnx0lSTFvygu05wEkYnHzkY7Qux2D2vQKuE5PP12BROE63gF41DiVhqMoDvZ9ZEBJv3NTvFs+N8b2YYuCAY/EdQ102oMYP6QpTL3SlU6/QyrpVrzq7+6KSsD1Go5VlZK6LnBeW4/+ayIVUYMcmEy65upCm+jyhcWjNJxMmfrtGFxXFnMLJQtaLKRQ9im1ZnM0uXl5RHG3wxxSZPn4jU+raCK1DPnYoGpf2MEsYeWS9Io2ZIjknZGymg4l+G41OAQXU6yKjnCK+Snzrc0rToDN0DdQbeg82WrsEPT2VK65PecTTZ7fkxK1K9soqVKyS+TmHkvHqtlWlGNmlStNnVTkmSRJa0EndjoUgtTquBd+gvNSz2Sis6WuFSB+dtLZbPNc9ivZMelq2FekUVbl8+rw5JslBkCbqdbIx2ZoAZaGjLdNdzjV4mZicH+M5hhhNFLtgNcqz+LmIMHBSG5WMWclulrpgraIQe0mizDT2uOPGWKUIo2RWQmnKK1a6Q9WUrUNV+JreY1Mu3l2uNGNLapvjJC+E9ZLPCYVOD68wjKqPRsqfTVVu6umMCnjZEN+PMFYTm2QiwcaaGIvyLJ4TM6a+iwm1HeRjj5ZQUcTDdnjoLpeoPiJTEzGiJk9oNG1dWeI2HyfQxCMiMo0BU5paGFvTQWBdwsijGLsUYpfIahr8AqP8LuqcIuO9NiZ6bTTqAAvkVEyDLt3eiiyaOp2pDu+zLYiN2iX53FtnkMlVTgJZOtq6bclNvxzFq4syXPaJtUycvv1i+qInc7ju4Hqm+FnDmz+6lr0O6MJiWbMsy2++OY5Na7tjqhxxWiunX7KJTDYub1Mo2tscbrq+iWPOaWXyjCIWGDmm+vwmTCtyzOuaeeCfDZz7jo08+1BtKkr3/wG9frXHJy6cgVIK17Vc/KF17Hd4F8e8rpn7/1HPqqW5QR0DgJeeynHlxTM4/10bWPJsjkNPamfWPgVOuWgzzz9ay8Y12x+r5wvvmE62xnLUGa2c9qZNZAe/+7sOYqN2eX7y0r3879JHYSkcNXYWV+13IedNOZT5jZPLZd409VSuX3oLp0+oTkTnaY8LJ7+ex5of58yJp5W3F+OQO9YuYsGISUyuHXpP7C3xhWd/wb0bnuUje13AGRMOZWnHJqbWjsLrx3O7Pezk0c1PsWDEPEZntl8AH5sdsd3HbistQRd/W/UEAHeue3bQRfTpteP45N4XsrJrIxdM7Tvcg7WWny65jedbl/OReecyrXZgXq3GGvRWJjg6o1Z+8PIHyMcdXDr9C8ys2w9juohMKwCFcMWA2qxCbNQuz2+vuZGbfngrAAefuj+f/MX7OetdJ7PXIbPKZd70qXO4/qo/cPrbjq861vddLn/ncdx770u8MU1ACRAUQh782xPMPWgG46cPvSf2lvivC7/OfTc+wod/+B+c/o4TWLFoNZNmj+/Xc7ttczv3/9+jHHTyAsZO2f4wNWMmD11IvBJtm9q57Ya7Abj3zw8Nuog+fXITV77nVFauaeaNZ/YdNstay6++8EdefHgx7/vWW5my18QBtRHHZqsx45tbu7j0w9fT1lHgW1ddyMIFU8nnAzraCgCsW908oDar2INt1PCL6FuhryHv6eVpU29OZUEXEo8+G6fendpiS7EUYkWhw6fdifDdmMhoCkWXsMtJvAj9RMyygSYqpCE+Un3DWjCxIog1xmhsOTum6t2vSs2kh9dhIupa0Ikon8uGaJV4HFtLEtogcDElb9M48UB1/AjHM0mMcyD2HFzHUOMVcdPQB50FP/VQtziOQSmDq2Jq3ICahoBNbkgxdhMvxsgBRxFZk7q+llxSk/MxRhGEbiKgp+JIbLIEYZpEVCUxhis90fu7ghUaWw9hvVvcUiTidWwUYaTR2mIxWEUSqz5SuCpC4ySiu3Uq6gNV8touK5ZU7bcoTAxaKZo7sxQzSTLRXDZJ5pnvyEDeQYWJoJ9vybDRqaW2tkhjbSeujilmfILNPsQasylDR6jI1AXUjugi72Qo5lzIGVw/xGLZFOTwVDJhUYgcgtjB0TE5JySjQ7JOSGQVLVEWXwVkdYg2HhkVMkIHKCDA0GYKFM2ekzBkT6aXvSo5iytSAR10QPJsO6BLK5xcKibaVPnYqoSUSidiLRYdamxE2caoSCUhRsJEELcoiOmbnt7QlNpMN5YXdNhU7A6h/Jwmgn4cpWFLLEm7qjTRGOO6cRIqKUryJdT4AZ4Tg4F8wU/smWvIeMkzUOsXGZGBBq9Ac1cNUXqvm1JoFANWmR6DCRhFHDpJWJt0ArIQ+YSuSVeoJONsVE8b1YcreH9D1UtQt+UJP1yDrbXY2AG31JDt4YneLf7300LvLgFBwcHYZKwUlmxNQBg6RAUXU3QIHVjdXI81lqwf4aiYprp2oukFNjXXQcEj35phvapnXEM700dtZr1TT3umBuWA40YERrO+UIuvYwqxQ0foUYg8PG3wVIyvY3JOgMHQGXvUKgdfRUQkIfdzSpe7XbRhsqJG2O158fG6Le7fuCbDQceu2yEBHeDL757GxrWZHaqjJ2e8eRMXf3BD+f1nflwtoNfUx3z2p6/Sl8PU9f89nmNf18bZl23ut/7lL2e556aRHHdOMxOmhfzpR1seK4A41DzzQOJxdvIFm9n/yC4A/vXHUUMioAMU8w6No2LWLc8QFBxm75v8ELr5l6N3SEAHWPREHfUjIv77d69s5bufIAw9+4+cxA3AlJqRjPBr8LXLIU2JONURFbju5dtpytTz00P+M03QnlASP8+ZdCbnTDqzqs6vPXsr/7P0EUZ4Oe4+44pBCTXSFua5e/2LHNo0kxpH8Uzro8xr2J+RfhNr8y0837qSI8fsxddf+D33bHiWK/a+kBPHHcC9G57BYLlvwzM8vH4Df3j1MY4aO4ufHNl3UsrvvXw9T7Q8x4TsWL570Bd2qM/NxU6yjkfOHfwEGbE1vP7OH7Gh2M7sxiY+uveZWz9oOzh74qFb3L+u0MIvlv4LgD8sv5cr9j5/i+Ur+euqv3DLmv/jlHFncMGUi/ot1xysoytuA2BNfjEz6/bDd8eyz9if0Bm8wISGQUgwOoScc845PPnkk6xfv56RI0dy8sknc8011zBx4sDEvNcq8w6dA/ydCTPH0tBUh5/xOPDEZFVEZ1sXv/qvPzFqXCM/feKaahtlDFprLnnzkVzy5iOr6vzJ//sdN/3kDupH1fLbl7+N4+64jWpv7uDBmx/nwBP3xc36PHjrMyw8bh5jJo5kw6rNLHp8KYecvIBvvfs67vu/h/nID/+D4y86gvv+8jDGWO678SEWPbKYv/3kdg4+dX+u/sf/67Od/770ezzy9yeYNHcCv3jxuzvU55YNbWRqfHK1g7+qL44N71n4KTas2MTEWeN499eG5jl93UkLtrh/w4pN/OYrfwHgL9//Bx/63rYL+b/6wh/49Zf+xIUfO5t3XdN/LoY161vLHvGLlqxl4YKpNI2u54vfvJglL6/j3Au3nHj7tcquI6L3/P3d0xM9pcr5mFTfLYnTFnBSIUMnYrJNPQcVgLZ4uRjfsxirKUYexUIGW3DBTZXcKI3L65Wy4lmUY9GJA3SS4C3W0DMepur1jyoNXakKD3Vt0Z6lpjZJqgeJWBMbMMZJwpJoBWmSPe0ZXD8R0B3HEkWJG2B9TZFaLyQfeeRDH0jEZ60tmUxMbSagPhNQ40a0FLPEaDzH0lV004kA6FbuKgY59YBP4sqrsle3VjFxWbzWSViY1MuzdA5V518S3pKKuj1rK/aBqgj7rnC0SU49dVBztKXGT1YPtBWzxDYdn7TPJUHLpu/LH0CVyn1SebovSc6nlKIQuTiOpSN0IdSook48Xj2DUxPjZ2NcbZMQB0oTB25y3ihiF/xsTF02oLk9h4kdlKfwRwSMaeygLhOilSLCpWA8OsMMQezSkCnQmClQ5wZkdMRIt0C9W8TXBhdLTkfU6RhXJZHmHQUumkK/YXL6IU1+mPwdfF599VW++MUvcscdd7B27VomTpzIW97yFj7zmc/g74yMdDuLHo9Gn/v729aH4zFQfuSUSs2Ik7qpl+5Zbbu9pUsCrAHrJ290pBPbohUYyuW6BV9VXt3Sp6t8xbsqE+BQIaCDciCTC1GOLT+71tokYSZOUjZODtCuxfENvhejtCWKk2eyvjag1g8oRB6FMJOs8nEtGT+iIRdQlwnIOjGxVRSNm+Re8GO68j5xqNNEo0lsc5XaclvaVPaSL4UqScbRGKesYyudJJWu8iavuEDV2/sj/RyomEhAg41IbbVNVwBU1919uOpdnYLq8F6q+o+b2kujyeaKxGmoMRs6KCdpL5OJcVwwaGKr8T1De94jMG5yXbIxuVzAuLo2VnSMIB/5xDhkaguMrMtT40copYisS1fs0xkmX0JHZ7sYlemk0c1T7xQY7XbR6BTJ6CQbRU5Brdbo1P4mt07PGEDbwBDbKGHo+NFVE3nkzjre/fnVjB5fPVtnLfzqa+O495ZGwrB7Qrv0Xa1kllo2DcbXT8ubP7qOY85pwXMNmawphS4H4BPfWU57c/ePS6WSVTJ9iegXvX8dxcKWVeGZ++T5+b3P4/gW17Xc+tuRvPRUDVubjCvx7/9r5PlHa0BZOtuHdunzvbc08vQDtXgZy7wDO7n5V0288HjNoNTd3uLwtsPn4aTfm/2M4b1fXM1+h3dSqTc+/2gNP/3SBFo2dl/r179rPade3Iy/hfmTZx+q5WdfGU/rxmT15FmXbqKrQ3P3TSNQ2vLeL6xm/yOr2xoSxEbt8pw1ZQGHj51JvZvBd6ptyv+teITfLkvCtRw4cgb7jZwKwL/WPM8nH/8DB4ycyk+OeGsvT+I4/VJgsAP9VOuX//fU77lvw0tMqx3NSRM6eanjOcZlJ3HlvK/ytvuvZVPQwbmTF/Kv9U9isdyx7glOGX8QH97rAu7b8AyXzTiNzz/xTwBeblvfbzuOcqr+bi/3bVjEhx+9gRF+DX865iM0+oNjO0rExtAS5ImNZn79bI4dO39Q699WRmcaOGDEDF5sW8kxY/cZ0LEPb34Ai+WRzQ9WiejNwRrawg1MrVmAUopJuTmcOv7ttIWbWDiqO5zQqJrjGVVz/I6dwE6wUSeccAKf/vSnmTBhAqtWreKKK67gggsu4P777x+yNvckTnzTURx40r7UNtbgZ6rD1/3953dy4/f/AcCCY/Zm/uFzALj3xke4+i3fY/4Rc7nmn59G95ixNqlIYo3tdurcQa556w94+O9PMHnuBMYtmM2T973E1Dnj+OHtV/KhU75C8/o2Tn/L0dz5u/uwxvLv39/PSZcczYeufRf33fgwl131Rr7/oZ8D8Opz/a+ucD2n6u/28vDfn+D/nXMNjU31/Oz5b9EwautODQMhjmLaNrUDybU58tzhEZKbJo5kwTHzePmxpRx5zsEDOvaO/02u1Z2/vb9KRF+9dD0bVjWz31FzUUqx9+zxvP+tx7FxcwfnViQVPfSoORx61JwdO4E9+HvUriOi9/DW29ahLgkqVUcakjjmTsU2lQhAhRafqOig/bgcL9cqi8qnXp6ORcVgo24xi1hj0iDbiaijenewSg9JBRU3xvMjtGNwy7HME7HBc2M81yQemlahtcECnhOT1zHFwCXGAaMxkcK4Cu0bfCfGURobunTk/cR4Ksh4IcYFrZKl/lkvIusG5SUUI/w8vg5pC3IUI53EvVWgVOKJbku/cNN73Zrkflc2SeAJEIRueSyVsmiVCEql/X0MRI+L25eg111eK4uxChMrlEplO2toL/oEkZN669v0a63trkmlSURLDvVVtXa3ZVMhPx+6qVe4xcSQzQUUlSXWXvID3Itw/YAw0ljrgbLUZvO4Y2LytT5hu4cqaqK1NWxqdMnWF8g0hSgsvhfj6pj2wMdahadjgnTCosYLaPTz1LoBWiVfz1uiDJo6Cq5LToUUrYO1lhFpeJfkDCyd0cCMj7Wm/BoKXnzxRYwx/PjHP2b27Nk8++yzvOtd76Kzs5Ovf/3rQ9LmcLG9Zr9Ss7W6Qje1JKK4AuJuwack/Oq4JBbbRKxN46WrrjR5ZSn8S/c8X9KMAQLVOzpTzw5VnpBjIBehPIN2TCJKqOT5104ygeg4Mdbq8mIV1zEYJyYIHYx102SaiW1UviHjRviOoqg8CoGD77g42lBXm8SmzLgROS+k0S9Q6yXJj41VjK2xZJyI1nyOONJJTHWdDlasqqNnpTYKqyomKC02TL2j0/jxJQ/68qVIPweqzFEfHzx9fSetyuNgEyEd35QnMKqGXNm+b5z+tLaeiRwjRWw0SlsKBQ/Xi8lkQ0Jt0crQWNfFiFyeIHIIjJd8dmhDfU0XjhvT3pklyHts3FBPHGnG1rUzddQm2uuyRFbj6piOwMPi4+mYMP1cyjgROR3gYgmMS0F5rIvqsBg6rUeNCgh0AITU6URkiAFrI9rjXctGCUNHZ5vLaRc39xLQAZY8m+N/vj1+p/Rj+rwCl31iXb/7RzTFjGjqb0lONTX1lpr6LZd1XZg0M/HAv/Gno3npqYHFF49Ch9Wv7py4oVGo2bzO57JPrOWxuxp45I7GQaxdsW5ltwp+wvnNHHBUZ69S131hIi881j1GTeNDzn5r81Zr/+HnJrL4mUS0q2uMOOqMNt56+N4AHHN2Cwce07utoUBs1O5BU6bv53B+42Rcpalzc0yu6Q5t8u91iwhNzCObltIS5BnV4/hP7nsqBzVNZcHISf2GTRkopZjmWilcnTiaeCr57I7S+8tYy/vmvI57NjzDm6edBMDZE4/g7IlHsLrrCS6b5fDk5oWcNflAAJ5svpcV+Zc5fsz51HsjAPjQ3LfzZPNzzG/YMeHjxdbVWCzNQSfrC22DLqL7jsv1R72VRzct4w3TDhzUugeCqx1+cMh7tuvYi6a+mX+tu5Xjx5xU3tYZtXDd4vcT2YDTJ7yPhaPORCnFkaPPG6QeV7MzbNRHP/rR8r+nTZvGlVdeyXnnnUcYhnjerpvTZFdi5Ni+P3/3OngWjudQ11jDxJndsb0fvPkxwiDiqbuep21TByPGNFQd964vX8Q+R8xhr4UzBy3hpU5DfmhH42eTOr1MoovEUWqjjOHdX72Ue298mIs/eS4AZ/3HKZz1H6fw9IOL2ffUhcw5eBanvOVYAP7950d48bGlXPTh0xk5NjmHK2/4EI/840n2O27HJs5efmIp1lhaNrSxceWmQRfR/YzH127/HM/c8wKnv+PEQa17IDiuwzf+9bntOvZ933orf/7O3zjnvaeWt7VsaOM9R32eoBDyga+/mbPfcTxKKd40RJMEe/L3qOFPLKp6vO+5v79/V4pHlftLopNTUa6UAK/k9ekmB9hYYyOdJOrTgAuqJJLrbrE4EekVvTvc/3mp1Nvc8SyOBtdJhCJFIkK5TiJ2UyFCW5vEIjfWSV1UExdR7Rl8P8Z3EyE+8Up0yGULONpSiFyi2MH3YrSy+K4h48X4jiXjxDgaQqMTj8PQJ4ySWMOVHt3JeCaenEmYXoUqe5mXBrt74HUqopcmRyudLXt6pPfpndnjmNL5J7J8KQSMTeKuK5UmW9Tpnu5+9/IkVX21X/k+OSednpfWlmKQxlSOFWQNTtbiZ0zZy14riK0mMpoocMFonKImrjPobEwuE5EPPTJeRI0XkXFjIqsTkR5NMfYwaBr9Lhr8Ip5KrpOnDTknJufEOCoRwWp0SK2OSPRVlTj7AgNeOG/TWb8hikF1+umnc/rp3R4VM2fOZNGiRfzwhz/c40R0YMuPfR9zQ1VCdjoXpyofA02353e6+AVAl5619BksJxiOKds2lYrsVfWVPbF7TlH1eOaqDrHggfItygGd5jgwJvEs1xpcJy7XUQpF5TqWYpx2xiY9Vo7F85N8Bo4mmaiLNfU1AZ6OKcQusXWp9QN811DrR9R6Ea42GDTWagLjEMQunYUMUZiEW+qOMV6yDWm/U+/yKrNsKwecNB5699hXPwrdI9G/N3pPG9bjQtuKPmyhWHV1Vep9dbkediyJQqZw3O5k0sYoaupCGnMBngNdsYtF46gYrSC0DkGUJFkldFB1EfW5InWZgHVd9aAVvkomdSOT2CiLJoyTeEKNmSKjMnkyToSnYrJORK2OqNERrjL4ypBTMbnU7sdpt2MgHuh00xDbKGFoufFno5m7fxcNI5Mvxr/73lj+dN1ogmLl94UdZ68Durjiu8sYOTrqsceWPctLK+d2BoUuzZf+YyrPPlzLYJ7nUHHDN8fi+aXZ28Hqq+Udn1nDC4/W8OBtDdz5lxG89FSWz/30VabODcrfC89/13qWvTSFrvbkp8amtS7nzt6HTM7wqR8s54CjOnutCnjsrjo2rev+adLR6vAfJ8zFcQ0f/9YKDjmxNZlAVdtzzQd4gNio3ZoDR83g1hP/H652yDrdYt/bZh3F5mInC5um9RLQAXKuz+um7LdDbVtr2VRcRK07lsBqvrDfG3hgw2IWNs2gznVZ1P4Ms+v2xlGa6494L081L+PE8ftQ42a4cGoiQMU2xtgIayP+sfJjGCKOGfs65jQcT0fUym9XfBsAY2POnfTOpO9OliNG73iC1DdOO4LWMM+kmpHMrh+3w/X1xf6jJrP/qMlbLzgEGGt4pvUxRvtjmVQzbbvqWNC4Pwsa96/aFtuQ2Ca/2IrxTpjs28k2avPmzfzmN7/hyCOPFAF9EFhw9Dz+sPJHuL5LJte9ivvCj51Ny4Y29jtm714COkC2JsOJbzxih9q21rLo5bWMHdOAxXLFz9/LY7c+zf7HzSdbl+WJexax4PDZOI7m2/+4kuceXszRZx9Eri7L6z+chF+KYkMcxURBzKcvu444Mpx+8WFMmj+Zlg1tXPPunwFgopj3XZMkz62pz3HchTvWd4Dz3n867Zs7GD9jLDMWTN3h+vpi78PmsPdhO+iJvZ3EseHBO19gwuRRzJw3YbvqOPSMAzn0jOpJyrAYEQXJ9+nONITLkLIHf4/aZTzRt2VobV9vVLd+VA5pkDovViXFU4BRqEARhV6SlA8g1JDG1FUlz8eyMJOKWFFFez072lM00RbHj6mv66KhJs/IbJ6cG+KpmMC45COPwDhExiE0mq7QT4QSnfwq8ByDmy0QeA5deR+TeoKb9B4sCVnWWtq6sniuwXFiHCfC1TE1XkDODxPPbCyR0bgqiW1rLbQ7PoF2Uq/SkmBecmntMcAVzpQ9hSaTjpUylMOk9LpeFZtsz4vWByqN/5scm4hbUawxxhLFXvrDzGJMEi+5+tjuPlf2tY9epU6fNh1H8LzEmMR+jOvEZDIRTjkZoSLG4ipDQ65Axo1o78wS+4mHehwrCqFDbaZAfaaIqy2hScIrlI7TyqCUJoyTFQDaAVfFOCpGYcgbF5PevA5ZfCLqdDHx0CVJito10GUwpQchHYi2traq3ZlMhkxmcOPRtra2MmrU9icy2hXZplHveftXiqKpLbGk3uiV5UpCQAzaqsTDPL1sKkirdcC66eRWrJKY/dpCaZ6tj8e2Z9f62mcci6oN8GpC6muKZPwQVyX5I4xRhLFDaJwkD0SULg/WBscxuDrGy8YErkPe8bBpTHSlYhxlcLTBcyB2NR1Fn8hosl5AY66LnBtQ5wXUeQU8ZQlSO2hR+DpZxaFVyU2/YkKhIsFy2ZNf93GOledqwZpqF/HuBKGli9NbWKryOO9Zey+RvNLjXG3DDWOr/105q5HWpxyb5LlI7ZgxGmMS++j5EU66isWk4xBbRUyyUkcrS12uiOfGBHUaVxm6Qo9N+Rx1XhHlFYhwMEYlK39MYuccbTAGirFDIXbIaIVRiS0rKIfNcQ0541HULpFVWArUqhgURDYR0fMDjYnew0YNNq+ZkFPDxOvftbEsoMcx/Pzq8QyFoHzu5RuYOjsY9Hq3lyfuqRtkr+6hxcaaYJB/J40YHXHEqW38/MvdMXEPPqGD6fOqr9Offjy2LKAnKApdLnP372DhsX0LTL///lia1/tVxxTzDnP37+KkN7TsYM937HuUsPtR5yVhyqy1rCu0MS7bwKz6sfzgsP7jw24v6/JPsKz9X+w14g2s6nqcB9d/C0WWB9omMrNuL66c95ly2f1HdMfqnlLbRM6Fl9oXsWDEPjjKoStq5zsvX0Fn1MY7ZnyajNNIPt7Eky33csfGB7h46qcZ6Y2lOVzPpNzMQT+Xei/Lx4YoTvmuwF0b/sGNq25A4/D5fb9HozdyUOpt8MbwlulXsylYxX6NO8F7dSf91vvUpz7F97//fbq6ujj88MO5+eabd7hOIaG2MVnlYa1l46rNjJ40imnzJ/Ol//vkoLf1zAMvc8/NT3D2W4/lsRdX851rb8P3XfIqZr/5k/nB1ZeUyx51RvcE0cSZY1EjsjyybDVHzpuO62ja2vO840O/pKW1i69d9XoaRtbSvKGd2+5fxI2XvMpXPnMe46Y2sW75Jmbvv30TVVuitrGG93z9skGvd1fhr7++n+uu+RuOq/nVvz7JqD4mU7aHMZNHcc1fr2Dl4nWcfPGOT2ZslT34e9Tu44ne3zGlzTbVXSq8O6udxxMP50qBHJMI58qmoQJK4VtUdzmlVN/XvVcfUqFLg/ZiarIROS8m58Z42iQaPhqbvpSCMHaxKJw0dElJJy15myflEo9QzzW4OvFmD2OHOHZwXYPWJvVY1PhuiO8a3DSsiVbgaoOnE0GmI/QpRB5RKSFg1QCp6lNR3X97hfRVvV/9/3hW5f/bLXp9Vorf3UpVz3aShIH93ARVJ1DZekIpVmrJw7w7lrsijpOxdj1LKT9Hab+uaLsYephYQ6RRdUESf95PvP59JxHlTdq/ROxSRNZBAfVeQNYJcVQS9z2jTRILXVlcZfF1TI2OyOgo8X5P6+npTbxNGJNMjqTLZ6ZMmVK1+6qrruLzn//8wOvthyVLlvC9732Pb3zjG4NW5y7B1m61ynLpX9vjfblI1WQbVTbKlp4hBSpdsYIC69jytrJt0qp7sq9HF6ra3lJfXYPKWHzf4HuJzdAqnSwmWRGjgCh2yhUmyYqTlTXGKOJS/gYFjmOTehyLtZoodohiB89NhHHXAY0l58RknRhfJ3kpYuuUn+fIOHQEGYpFj8rYLarqGSiNQbeN6tMdUZHETFdpuJf+LtYWB6mfbSVtv8peDbCq0q7KrqSavaNtOdez6tFVx4GcH5NxDUHspDkqunNJJBOPTiJuxw71tUXiWJPzTNqeSpJnl2xU+pkSG41W0OAXqHVDXBXjacjqmIyO8ZTFU4aMipNtqQ1L5pfVQKWphB42arB5LYWcGg7+800z0dpy4fs2JN7gjk3D3Q0OM+fn+fL/LKFxVFye8xp8iX7g7HNIJ5Nn5Vm5JMuu0aOdz2WfWMvPvjw+TTCfjMH//Ww0N/2iqaqcNX2Pz9MP1HLRfvP5xl8WM2lGwOJnc3zmkhm0tzr9HvPSUzW8Ye99+PqfFzN9ryI9wlhvIwM8aIhtlLDz+MJTN/Gn5Y9x9uT9uPqgNwxJG3etvpKiaaW5+DJN2QMBMBRwlOHVzqXlZKaVrOt6iE2FRXz3lUfpjLs4e8LpXDT1AjYW19AabgJgeddi3jD9lyxtf4TfrfwuYFhXWMrH9vo2XXE7jV5Tz64IW2XoBJ2ptfsytXbfIau/iu38rff5z3+eL3zhC1us+pFHHuHgg5MYzJ/4xCe4/PLLWbZsGV/4whe47LLLuPnmm6sSYQo7xrffcx1/+8ntnPTmY7jyhg8NSRtfuvwntDV38spzK5l7TrJiJQgiyCheeHktcWxwnGob9dBzy3hx2Xp+etcjtOWLvP3kg/nIOcewYlUzGzYmMcOff2kdP/rHFTz0wMt86fv/BGNZ/OpGrrvv87Q1dzB6wsghOZ89maHUnBccOZcFR84dugYq2YO/Rw27J3qfGoSq+HjrY1/3gRX1VG4vOVaXwiSYVHhBJTGIKypVEUmoBIckYZ4iSUpqE6Gq2pOxojNVbtZJ6BNcg+NHjKzrZEr9Jqbkmmn08kTWZWNQh7WKQDnoVP1pyBTIxx6uMmScEEdZnNQbtSXI0Kxr0x8oFlcbFGkIEL8UP7zb1b4ukyfnheSckCB2KRoXRxkymZCME9Lkd1KrEy+hdaaOYuimkwqJ96mqVM5LbpxUSLjlU+/2KTdGpR7jtizgVF0T29OXM3lXnYg0HVlVKRrZKoHbpC6Z5eQZZU/ySlKxPg06XSnBlfuRJmvU2uKkkw8JBicXlNtN4sUnbSosVmmMSqY/6msK+F5EWBNQly2kPyKTmPldoZu2a1MRXOPpGE/HREbTHmZQytLkd1KnC+R0AVdF+Coko0KUtURWUTAuWlkyKsJTJp3MGKDx6THzt2LFChoaumcx+/NMGOgXK4DVq1dz+umnc+GFF/LOd75zYP3c1ekpovflcd5zdz/6a89cxMnql+QYTQ8bVuFxrSoeSRWXngWVisSliira7c8rXlusa8G1OLUBjQ1djMh1Ue+HWAuF2E28z63Cc2Iio6jJxkTGIeuG1PlFPJ2EHrIWOkOPtmKWyCSCu+8mXuSOtjg6xnejdCWNQRMzKttF1onIOmF5RU5gHLJOjKsixmQLuCoRzFrba5IQS6mgkoRz6uM69Pf5QPq5rVTycVCZ2LlslfrwNKdnmT4296Q8g9vPvj47aCsEcluxK8n54Dhx6uTenTy5dEN0BB5doVuux9GpDTKJKJ5xQ0BR5xcZne0giB06o0xSVnUnidWpTVEkcdZjNK1BDk/HjM9EZHURXyd20VhLrKBoXbqMi0tMTkVklCWrLAaIdtBGDTavuZBTO5s0f8kpF27mA6fPxcbbpWr2y1FntjBq7LbFM9+ZPP9ojjXLMrxWBXTHNSw8vp3vfmpKjz3J/bBtKOYd2MnoCSHFAtx5YyOtm7ceGmD2gi4mzdxeAR3SjNvbzh7sQfVa44nNy9O//Se8GyjtYQGvIlTMqMxerMk/zKjMPPZvuoyM0wBqFJ6/hv1GHNBLQC9EG7l7zfuJLQTmIACKJvmdNrlmNieNvZDWcDOHjjqZrFPPvMaTOC3qoiVczyFNZ+Jpn0YtAvr2cNyYMxjlj6HJHztoXujDwnb+1vvABz7AxRdfvMWqp0+fXv736NGjGT16NHPnzmXvvfdmypQpPPjggxxxxE7wZH2N8Oy9LwLw3P2LBq3OzrY8rueUQ8XMWjCFJ+5+kTn7TeUtbzqChoYs9fU5nlu8hiMPmdVLQN/Y2skHv/GnxMGqMfEwLKShQPaeO4G3velINmxs53Wn70dDfY6Tz9ifliBi7fpWzjv7QPysJwL6dnLupUcybtIIxk8eNWhe6MPCHvw9athF9AEJ6AOps+rYSjW35EZok+/TVvUOi1DSaivE+P47k9bnGNAx2o3JuQG1TpGcToTxrjgRi4qxm8TVjjWuYwhjjcbg6hBPRWhtcbUlNokgokk8mbWyqYhqidP70FpLIg8l212deKpbq4jS2LkZ1+BgyOkkkWXRaIJIYU0qDvca5G7xPBFubR9jWVFU9TiyUgsq19TdUp8H0rcjaV/7SmJ4OXa66llvz/Pp2V5yftbaHuFeDCVxv+RVXz6Xkqiflk68NpPQFZ4TERqHclgcm3jy6tRjWFmTlLepUIXBIU6utY1xtcFRMW4aI91VMUk6WZMcnwR5QaUhYQaCNQaruhM5NDQ0VH2x6o+BfrFavXo1J5xwAkcccQTXXXfdgPq4u9DnnaWq9/XJluyXovrZqpxQqmjQluyhTTy502UnvRtX/fSlfJ+nCUmVQTkG7UVk3DDJmaAMReMQG5WGT1LJRFJ6vzsqJqMDfB2mHs/JfiARZZUpJylW1qYrMZLnTGPQKkarGF/HaCzGKCKjCeNkhYa1SX4IhaEYa2wM2sbpSoyeMbkqXFIH8PnQv1ze7Um5TZXsKBVfIqzqo0+p53wSxiXdW7LFVNqZkhCe1lkxQWAsaZ4Ni69DmoNsZfUVdjptx+okX4eyuCrCVTG+CtE2KoedclXyWaJLf0s20SahXAZ4OZKe9rBREnJq9+Sdx+496HXO3CfPBe/ZsEt5oJeYtW+BmvqY9ubtuet3f+JI89bD5rPlScit8+BtIzh3duOAjnn1xRwdbQ4jR8fbGQN/YOp7Txsl7H7ExnD32lcY7dfxChsYn63f4TqfbH6VX75yD3etXUyDl+VPx32QpkwdJ076Jp3hWuq8SSilWDAqCY2woB8NydFZPF0Hpp3Lpx1GqOZyRFMS5kUrzSnjL6I9XM3Ny9+MVi5nTvkxR4w+Z4f7vyVuWHovf1r+EO+beyqnTlgwpG0NJ1rpqpA6uyvb+1uvJIpvV5vpl8hisbhdxwvVxLHh0X8+xegZE1jxygbGze05QT1wnr1vEX/43j957N6XqRtRww/v/AwjxzTwxd+8j3UrNzNh2miUUlx8wWEAnHVa3zkgsr5LbS5DR1eRtx23kInjR3DGwr0A0Frx9kuOYtXGVi74yg24juYXV1zMhecd3Gddg8Ufv/N3bvnpv3jb5y/kuDccNqRtDSeOoznqlJ20omUI2ZO/Rw1/OJce/+4loG9Ju+5FtUCBLvsnV+5JQiGkwrlNVxmU66yot3xsxW8F1WMvyoJncDIRmWxIbSZgVC5PjRdS7xYpWpdNQR0bi3V0RR7tQRZfx2TdAiNyiSdzRkc0egVqnGJZMGv0G9jg1xNaTTF2acnnAEXOC8m4Bs8xFCMX0gSVfpqktGhdulKPZ1cZRngFxmXaGeF1UaeL+NrwiqNY21aPSfN09UqOl45YVeK+qvPu9masHJxyXHKqfcG7xa8ebfRsc4s/ihKf+J4TWWVZrYf4XaKnsF+Ssy1paIoK8SlJ7Nq75Yo0pjga6rJJOj2rNE4apx2SsC3JmSfid5wGcnZUItPHaCJcYjQ1bkStCvBVEuPYJ8LF4KhEKI1xiJUhq0NyaZzpAbGdM38D+WK1atUqTjjhBBYuXMj111+P1oPribgr0Gv0VB/7tuXHfI/nyPaxreLxSVbGKJskSXZJYoDHaYFUVLL99aXnZJayWM+isjFONsLPRDTk8tRnAhq8IoF1aQ+yBLFLbBRhrMm4MTV+QNaNcLDUekVG+Z34Orn3HaA1ytEc5CjGDh1hhtZCDqvjJHmoE2P9iChOPNF9nYgekXUoGpfOyMcCGR1T5wWM8dupcwPGZDpoyuZZ0jKadZsbMBXpGlT6bPQ44/7H35bE/NLaowqxuTxOgySg923i+ilI8rlhoaenugJM5BBanYSdKic3TuxVKdRXuUFtUFbj2LhcdcmRRCnYWKxHpROZyQqC6k/E2OpkRZNK7FxkXCLrEONQ4yQ2ylXdIacgCUsW4mBQxMTUKUtOgR3o89/DRknIqd0Ry6RZRVzXEgaK1Uu330M7VxszdlKSDOLY1zWTrdk1vVZWL/UZOSZi5JiIzes9OlqG3xdleBiMCYSB1TF73y5GjdmR1Qniif5a48cvPMjXn/43NbkQpWF1vnW76yrGEVc9fgv3bn6crjgitprmoIsVnZtpytShlUu9v+2JMuPwKY4edT74R9OUPajP0Bjr8k+QjzcCsD7/DNPrtxxn+7nWe+iMWlk46nQcNXDb9JPFd9AZFfnVK3fv0SL6HsMQ26iHH36Yhx9+mKOPPpqRI0fyyiuv8LnPfY5Zs2aJF/og8fuv/R8//8xvcUc04NTVsWFt29YP6oegEPDdD/2Cu/74IIFR6FyW1k0drHl1IyPHNOC4DhOnj9nm+hY/v4Z3HLYf+x46gwP2mtSnjXrs5ZVsaE1ynDz1ympOOWjLYUL+/YcHaN3YzlnvPBHXG7iN+s3VN9LVnucP37pljxbR9xj24O9Ru8a3//4E9O1x/at2Oq6opYeypG2Fm2dFS7bH31Ls4koqXVO1QelSYs8IJw3fYQ0EsSZvvMS7Mu2PmybP83WIq5MM3p4KE4XMGhxl8DDU6zzGh4LxaLVZMo5HbBRBkMQQjknCjlgLSitCVxPGiUhiLamwHuLpEF+FxIY0OalFE5HRAZHKJDGNKz08K8dxCxMVfQne/SfzrCy/pR9NPY9U1fVWPIMlh1yrKp/Lfo4vv7Nlod+kv6VKQmR1r7q9PlUPD19TcRuZuKJu3T0upXMtt2UV1iYhEaw16Sv1iE89zpUi8dpN/fajGIpa46PxSzE/BoKxqVA3NEZr9erVHH/88UydOpWvf/3rbNiwobxv/PjxQ9LmcNPnSG6DBrAlR+d+r46tOM4mIT5Ka9jLYruh/NgmizPSexBVJchbZcExKCfEdSNcJ8Z1IhSG2EIYJ4krS7ZDK5OubIlwVJRmcTBJgl9UIqrqmJwuYF1DJz5RrCk4iQgfRDpdkZGsxLBGEdtEnI/SVTaWJCSVpyM8FeGqCDCpnTQ4RGScgILJVMTI7SGg97JRvUez0km7rFlXGa8teVNu2dOyv0erZOvVNvaRkp6e2rKyt7lJD0+vbyKmlyq15dwOpDajVHMpApnFVtnGZCWDJbal3BSqXN7axKPcWJvMLBOjrCnXXFpPpKxNEh7bNG+Hggwxnt4OW9PDRknIqd2P939lFee8bRPWwvtPm8P2Cqs1dTHX3/8CI0bHVZ/3u5oXOsD+R3Vx3Z0v8fQDtXzqwlnD3Z3XDI2jIq784fKde18M8fcoYegpxsnvrKDoUpsz7Nu47SJ3T25Z8Sx/Xv40NZkYz7HMahjL6RP3Z/+RA/ccjeMNbNj4RsBQX/chVG5hed+yziU8vPkuDms6jqm1x7Gq7kG0cplUu2XRclXXS/xpxdcAcJTLwlGnb7F8X7xt5rH8YdlDXDL9qAEfOxTE1tAV5an3aoe7K1slMAH3bLifqTVTmFO/kz4bhthG5XI5/vznP3PVVVfR2dnJhAkTOP300/ntb3876CsFX6sU84mNMp1deHU55szf/t/Q//7Dg9x2wz3l99P2m8aJFx7O3gfPGHBdzZs7uPJDv8YYy5u6Qg6c1207n12+lhsffZ7zD5nPCQfM5r7nXsV1NEfvs+V2XnxkCVdf+n0APM/lzHcOPPnuGz9+Fjdf9y/Of/9pAz52KIhjQ1dbF/Uj64a7K1ulmA+47Vd3MXO/acw/YmfFRN9zv0cNv4jen4De8+82UOndWRY/S2pSZfxg14IfQ6fb3URZiKIcNz053lb3ofIe0BYnF5OtDch6ITkvZESmAEoR4rI5rqfLeHSZbBqrNsZzDDk3pNErknXCkiSdbHcixnmt1Okic4ANUT3rwkaWdY6ipVBLa2ctSll8P8R1LGHkUhJ8W/IuSiUe6jV+4mE6NttFk58n50SJrKY0dV7IpLp22oMcnZHqUwwvCci9x76ngJ6Oka3c3rvCLScerSiXljXdF66XgJ54i6skt6Ibp2JRUlan18rYboGoVE9JQE+cJRMPcWtLYrlKRSyb3CY94xirUt+q64qNgyGZsNDp/abLMdmT+MMl4Su2OhEnFXgOadxoW+Xh6abepqF1KeCRsSEZDCNVjNID/MloU5V1iIzWrbfeyuLFi1m8eDGTJ1f/KLF7kqHsdzKpj3J9bOvXrm2lDass1gVIvMitBlWkatVMGuEJ45LYNOh2tCs9NxqoNWTqi2SzIVkvosYL0sk8KMQZ8rFLaFws4GqL58bUegF1XoCv40QIRxPg46ki4zLtNDh5MsS0mizrgkYcB9qKOVryNbhuTF22SNaNMDYJ/FGwDp35DK5KVs3UuCE5N6TGCWj0itS5yZdIraDeD5nQ0ElLoRYblsZGlR7bLY5b9z7VXbjCnvRezd87R0OfyY976Pe9dlQKf5GCOO2v38PzsRT6qeJ4mx5vy3a3dGKGkjc9OFgSUVtrm4b46p4eJM33YNMJFKUsrpOoTQrIORG+NhSMi0NJNC9NFCqMcRL7pRW+kySA9ZzENnmpXSqFFovR5K1PAZcMET5d1CtwldNzcLZMDxslIad2P/Idis52RbbGMm1Ontr6mKcfrNvyzGEfjJtSoH5E4mG8O+QpUwrCQDF2csC6FbufkJDJxRx4TAd+LqZlvcfa5T57HdjFqld8Xnl++MQqrS37HNLJkuezdLVX/zzxMjGP3lnP1NlFZu1b2DkdGuLvUQBf/vKXueWWW3jyySfxfZ+WlpZt6JblC1/4Atdddx3Nzc0cdthh/OAHP2CfffYplykWi1xxxRX87//+L/l8npNOOolrr7221/e1PZ337XMUU+tG8r+vPsxzrau4dfWLSTjM7TA043J1gKWr6PHm2fvzuf3O7VVPbJOAdj3jn/dEqSxK1WFtG44ztmrfDcu+z4biWl5qf47PzP8Gx034YnnfhsJKbl37G2bU7cuRo8+qOi7n1OMol9hGNHjbF6rjHbOO5x2zjt+uYwcbay2feuo7vNC2lPfMuoDXTTp2uLu0Rf6y8q/cvOYfOMrh+wd9gzp3J4hqQ2yjFixYwB133DEkdQsJl3z6fCbOHMdfr/0Hix5ZzD2/vw/76w9ul41qqog/fvrlJ/CR7729t40yBoVCb0VX8DMeuRqfzo4iI5uq7+Ur/+fvLNvYwsOLl/PXT76Na97ZbYteXbOZa/90LwftNZmLTzmo6riGUXW4vksURIyevH2hFd/0iXN40yeGNqzVtmKt5Yozr+GFh5fwvmsu4Zz/GPikwM7k11/8I7/72l9xPIffrfwxDaN2fxs1nAy/iE5fQpOt3r69lVq6xfNKV72IRK1xLYQkgocBFZOET6hsPCYN/2LBJCFFVEn1UDFKx4lfeOpZHNvEyzkfehijCNJYw2Ep7my6pMFgU+/wJAxIHGcItUZbg/EUORXgEdGguxjjO3RmPYLAoT2fJSi4xDqJqa5UkvxUaYNSOhE5TOmEY8AQpx6mWIO2McoYvNTLNMLtdunud8Srt1clBC3/r8KLsufRleX7Ee3Ll8xWbyu1UvXs2ZKHK+l5J5u1MmidJFyN4iSrbFUtPcSx0u1Rher2AC2913TnqlWkIn3aJ0cbMk5ExgmJrCayOg27kN5wpXsFm94PSd8ioymqJCRCqDSOMhiVXDEHQ4RG2aRMVEp0OwCsSbzch0rQftvb3sbb3va2Ial7T6Bq1PsQ0Ld6VdLPHIWCYiKo25KneelesBVlVTo5GKo0AWfqO6ySXA1KJTHHSYVYY6BokySiQeyW8yg42uKapJyxEKbJgxP74YKxtKgc2rMoJ4+HoVF3UfA0nRmPYujQFfrkCy6xS9lAODoRYY1SeDouz4o5qQd6aHS6WgNik9y/ro7R2mBKCQtLk6Cl2c5KW9Hz8ajQlys9vbvd0XvS3/Nlt7Cvj/3pY69isHE6m+uUkjPbdOVSGoe9PGvboypb9c9erVlblTs7uVVsOrlnU9/x1I55OqbOK9LgFvF1RGtYQ0ecwVC6rhWTiSRjX4wcimkej0Iafkopg4MlVopIazSWiCQfREFpQpvEwx8I22ujJOTUrsO4KSG19cn1++g3V/Hmg/YesICeyRm+9qdXcHaJb6PbThTo3VJAB7jq56+y8LgOgqLiXcfP5bo7F7Fxrc9/HL/XsPbr0ivWsnGtxzMP9f5ht3FNht98czw/vmPwkq5tjaH+HgUQBAEXXnghRxxxBD/72c+26ZivfvWrfPOb3+QXv/gFc+fO5Utf+hKnnHIKixYtor4+ifn9kY98hJtuuonf/va3NDU18fGPf5yzzz6bxx57DMcZ4ITnbkzGcXnDzP0YX1fL15+9nbMm79uvOPVcyypuW/Mc5005iOl13Z8xf1/1LH9d/hTvmH0UX1x4OmvzLbxrznHpai9bFsxfbl/Fhx77IXVeDT899MM09uM9bU0nbL6McU4Dcf2XyeTeULV/as0sNhTXMq1mZq9j79rwZ55ve4jn2x7igBHHUuN2x3gflZnA++f8iMAUGJudOuCx2tUIbcSitmUAPNO6mLMnHsPnn/0Vj25exH/OfxNHj9m1ws3Uusn19rW3XaF0toedYaOEocXPeJz61uNomjiCn3zq15xw8dH92qiXHl/KPTc+wmmXHsvkOd0e63ff+Ci3//4BLvzAaXzwu29n3cqNXPKJcyjl0CsJ5otWrOed3/gDDTVZfvPpSxhRl+uznXxXwCc+eAPac/jEZ8/h5DOqY6bvM2Ucyza2sO+U3l7zv7j5Ye58bDF3PraYM47Ym8aKNibOGsfPn/k6+c4i0+fv/hO6YTFi0WNLAXj6/kW87l0n8OV3/pTH73qBK753GUeeccDwdrAHdSMTG5XJ+bjezvkesCfbqGGPid6vp+aWPDe3Ume352IPcaXkkagAz0Kg0LGDjhO5wjh9HONayMZQdCh59UEiwDs1hmwuxvMsnmPJuIasYwitSxw7FI0hsJrAJMOssfjapMn8LDEO+dinmO7P6pBGv5B6Q0POCfG1IbQeqz1LEHlERQ+UJUonB5ROl9zHGt+PcXREzosZkSkywgvI6YgkgEuS1tLi0BFnKcQesXHTc0rGpCqZZo9x7xage7hkVsQo3tqk6dYnVVXZyztJeJdsq2zXSb0rrVVox5bj/7o6xneTpeBdgUar1Ck3vZy9tBOlKk6x2yOz1FYiull01X2YnHNsk5A6WbdIrR8wwi+gsWws1uKqxMNcp7eZVmkixdRbNOvE1LlFtIKi9YmURacJGC0a11piZbFotIqo0RENWhMM2BM9TTq7ByZy2Klsadj72teXTdtC2f7bUCX9Owny49nEiznS3epp6Qb3LTSEkE9V6/KyCKDG4NdGZDIG3zX4TrJqohh7STgOqwiNJoodlAJfG7KeScJzpAGGonT1Rxi7WKUoWC/NuWDJ6iIZJyJULmt8S2hcwtBLVoyopH7XibHWEBlNfbaI7xgynqHWDal1I9zUFkZWkzc+BevTEuYoRkk9JXtkS+pwacC26TMi9c9Wfdi1iuVKvXIt9LJ3W6q/x7tYo0IN6cSBSq+F9mKc1DM9KlRksy6ZUt3dx+7VO6mcntqi0hdrm056Km3Sj7TkP61UEuYFcDVMqGlnbKaDEW4n7XGOdcXGRKS3pdSgGqVUuT2tIOtG1LoB0G2jSsJ+LQGq3C/IEpFRlnrtEO5iNuq1GHJqZ1JTFzN2UndiMYXl9f+xIQ1z1v29oJSgXWlFsUtz+x9HsnmdD8C4yQEnv3ETubrd73OqaXyRGfO7WPp8zXB3ZcDc/ddGnn6gljhStG1yeOTf9czdv4s3f3xt4hBiEnsUBpo7/jSS9auGZrLgwGPa2OeQziT3g1UcfEIbS57LMmJ0Iy0bvV7lO9oVTz9Yy/5Hdvb+TjcU7ITvUaXQVL/4xS+2rUvW8u1vf5vPfOYzvP71rwfgl7/8JePGjeN//ud/ePe7301rays/+9nPuOGGGzj55JMB+PWvf82UKVO4/fbbOe20XWMZ/M7kqLGzOOrELYfY+PAj/8P6QjuPbVrGDUe/i9gaFrWu4/NP3ER7VGRTsZPZo5pZV9jI0y0T+NJzfwbgukM/yMTcKJ5oXkJnXKQzLrK4fSUj+SNh3MLMUZ/Bc0Z0NxQtgug5HMA163sJZm+Z9j7OnHAho/zesYvn1h/Ek813M7VmLlmnt0g/wh/ba9vuiq89rph3KY83v8gbp5xCV1zk7g1PA3DHuid3ORH9zAmnMaN2OuOz48g5WdrDFpZ1vcjc+gPwdXbrFWwP8ltvj2HhKfuz8JT9t1jm8xd/h02rm3n2vkV861+fJY4NS59exnc+dgOdbXlaNrTD1HGsWdXM/CeW8c1r/gbAd697OxMmjuCRRSvpLAR0FgJeXLGe+59eSmtHno9ddHyV2P3KknW8vGgtAOvXt/WyUVe/6Qw+cPqRTBrZ2KuPR+43g78/+AILZk2gvqb3fT9u2rbHZN/V8bMen/zxO3nsjme56KNn0tVR4L5bngDgrhsf2+VE9As//jrmHjyLSbPHU1Ofo3ljO88/voyFR88lW+MPTaN7sI0aVhG9Tx+/NIit7XPnNlZaEkQM1a7GqXO2MmAdDa7B1FhsqBLRIybxTC9FSVGpN2EMOJUXPxE1TAxhlKgeWiVefIFJ4p/H1qGAJTKa0CSxgpUCP41FrFQS/7poHLoil8hoOvCwpolizmWM306D20Wj7mREpoNxI1uY7GzilY7RtEU1hFaTjz1i2x3jwHEMtX6ROrcLXxex1mCsJbYQW0WUvuLUU8x14rKQ1jP8SU8XyLLI1IcXZ8nZui9P9Mr31fv7mpGy5XJ9tWJJvcRV4qZbiuOslcX1InwdUYzcVIAvxXe2FXWpHjV2C3NJ2JXerZoeR1kgCDVxrImcLBrLCC9P1g1p8AoUYrcsIFhLIkCmYmcUK1qDDLVOTfd+nCTkhbXUOkVGeR2MdjsZ5XYxQndRpyIc1IAfhT155m9XZkuj3e++fmydVRbjpPdoCLgK6yRxrq22KC+t00lF4lyI9dNQRUaBUaAMcZzE2He0RsUOJo1RHqXPvklXbFiT3KNhrMimSS2tTXIvBEYTG00x1ihrcazFZBSjvXYaVQe1mTyNDZ2M0a2s6BpFp/ExaAqRi0ElcdWVSW0jGGOIrSU0CgedruJJYqmb9LNWYdCuSWwwKv1boocHdx+by7tTr/6SN3pZTN+mR2MrlfeqRGEdg83Y8meRjYEoDZliks8OG6mKCd/uv6V46r2WyBgwSiWrXHT3oaXH29iSJ7lKbH7sEDnQ6mapc4o0OgoHQ0aHdEW5ZCWNSQQZY5LjFJZi7LC5kKPOqUNnkjojq4mtQ2gVNSpglNdJo9PFSKeLRt1FrUrDzuxiq2VeMyGnhokPXL2S+Qd3h9XwMvCmD2/YwhHwnU9NKgvoAF//y8uMnRQNWR+HkhWLc7ulgA7wj//t9rJtGBVxxKlteD685aPrq8pd/9/jh0xA3+fQDv77d0t7bf/zdWP7FNABmsbGHHh055D0py92xe9RS5cuZe3atZx66qnlbZlMhuOOO47777+fd7/73Tz22GOEYVhVZuLEiey7777cf//9r0kRfVuYUTeG9YV2ZqZe6J97/Cb+vPxJ6tzkfjywaTyPtycCya1rH6YlTO7FZ1uXMTE3itMmLOTFtpWM9OuYnt3I8+uvB6Ausw+TGt7W3ZC3H+TeCPFqyL2+Vz+00ozOjOuzj/uNOJr5DYfhKHe7wj3sbhw3diHHje2OF3/5zDN4eNOLXDT1+OHrVD9opdmnce/y+x8v+SwbgzXs13gkl0z72JC0uSvaKGHomDJnAptWNzNlr4kAfOvdP+af1/+b2vFJaJQ5h8zkpjteAuDWvz1NS0sXAC88u5IJE0dw9uF788KydYysz4Gx/M9tjwMwb9o43nRyd+iVeXtP4ozXHcD6dW2cemZvYV9rxZSmEX328dTD9uKEhbNxHf2asFHHv+FQjn/DoeX3l135Oh6783ne8N6Th7FXfaO15sAT9i2//8Sbf8yqVzdy7Jn78Z/fumRI2tyTbdSwiOilgTTFQh/emrbbm3Nrnpxp8Z5lyrkyla3+XR+BMgrjW6wXJUJFBAQap+BADNYDGyfr5a22WGVQQVyu3wIYDcri2BhDBH6EYwMcExCFhnzkpMv8FIGxRHHSUUcZ/GwRTJEgMASxQ0eoKEQQ2cSbMFsDBRNjoiI5r4NRTisZHWHCAN/Wk3WyWALaihmcyKe0GMNYqFEBI22BxihPDUW8OE/sRHRZKMQObZHDptBnRWuWrjDGmGIiqBmVDtpW6BXPt3LYe+/b8vvEs7LK+53u0ASV3qHdXumUPcOVKgWmUNRlCtQ5efIFj7Yuj8jEKBWVHXJND3Gn73NIwqmU4gwr1e2Jbsv9teSLHsViosiZTEBDppW6sJ04UBSKLiYNSl06j8joVNBXRFZTmy3iqDxtBeiMfQLrYtE4xBg/YEQmJOu1U++2Ua8DMloRKI98Z2mCYduMUGSLYA0R4TaVF6qpslEDOQ5626q+5qV62raSqFsxWWU80LFKPnyw2BiUVYldKsX0cCzoGDcO00neZBLPxhprFMoa0BEQEUdJbOuYJEyLSWeFlUryK7jaoL0ATxVwbEgcWILYIR+5FI3G2Bhfx9RlI0IToE0XNVEbtToPQD42uHE9GduJMQGdgYeNfEpJKa1VaDfEtQGOKaDCEONEhDqiaBWRgY5IsTFwWb05QxBFWBMnQn+ksMbZslBbOQlWMVmXOJwn4nPVZ0KPi1V+tCqq2RZv9LLwnX5AWKsgSv21IyBOvNGtbyCw3XHrlQVdbfvK/S3buTT5sAKlDJRWuSiLdixGJTHSrUr+jTKEcfL54/kFHKeLEd4mCpFlTaGODR0OsY2SyUWrCI1DGCcJj7WOCbVB2QKe00V7EfLGIzAuoXVRwGg/oMEPyTgd1Lnt1DoRrtKEWtPZVRqPXcNG7ekhp0rjHBFu44TQ4NLWbmhrjwd0TGRDItt9vZtbDNmGgdWxq1CMoqpz2V0J4oiW1phMH46SYRwO2Tl2FaI+75/Q9t9mvhjR2hqzlXDT/dLWkX4/204b1dbWVrU/k8ns9OR6a9cm3oHjxlWLrOPGjWPZsmXlMr7vM3LkyF5lSsfvDErj3HPcdlX+e+9zWNaxiRn1Y2hra+PldSuJuwq0UsBzY6bqBmpqFrKuuIkLmo7FdCU/oQ/ITKGtrQ0FfGTq2QCExc2EXWOITTuqdn7vMVCfTH6BdwLsHuOzK3DOqEM5Z1QiWO3q91VHeyfFMKRddWxzX0vldpXvUXs6u5uN+uQv38XKxWuYutck2traWPL8q0Q2pHXdBpxRI5g0q4mTM3uzenUzb3jTQrz042nfAybQ1taGBj51YZI0uKU9z6hal858kbkTGnuNwTvf152DYHcZn12Bs95xFGe9IxnjXX3cOjo7iOIi7R3tYqO2BzsMrFixoiQ7yEte8hrAa8WKFVt8tvL5vB0/fnzVMePHj7f5fH4nPd17BmKj5CWv7XuJjdo5iI2Sl7y277U9Nqqurq5XPVdddVWfx1911VVb7cMjjzxSdcz1119vGxsbt/rc33fffRawq1evrtr+zne+05522mnWWmt/85vfWN/3ex178skn23e/+91bbWOwEBslL3lt30u+R+0cxEbJS17b9xIbZe2weKJPnDiRFStWUF9f/5pY6iEIO4q1lvb2diZOnLjFctlslqVLlxIEQXmb7/tks0MUj28PRWyUIAwMsVE7F7FRgjAwdsRGWWt7PWf9eaF/4AMf4OKLL95iG9OnT9+2TveglM9h7dq1TJgwobx9/fr1Ze/08ePHEwQBzc3NVd7o69ev58gjj9yudrcHsVGCMDDke9TORWyUIAwMsVHdDIuIrrXuFaNUEIQt09jYuE3lstnsHmWkhgOxUYIwcMRG7TzERgnCwNkZNmr06NGMHj166wW3gxkzZjB+/Hhuu+02DjzwQACCIOCuu+7immuuAWDhwoV4nsdtt93GG9/4RgDWrFnDs88+y1e/+tUh6VdfiI0ShIEj36N2HmKjBGHgiI1KGNbEooIgCIIgCIIgCK81li9fzubNm1m+fDlxHPPkk08CMHv2bOrq6gCYN28eV199Neeffz5KKT7ykY/wla98hTlz5jBnzhy+8pWvUFNTwyWXJInBGhsbufzyy/n4xz9OU1MTo0aN4oorrmDBggWcfPKul+xMEARBEARhd0JEdEEQBEEQBEEQhJ3I5z73OX75y1+W35e8y++8806OP/54ABYtWkRra2u5zCc/+Uny+Tzve9/7aG5u5rDDDuPWW2+lvr6+XOZb3/oWruvyxje+kXw+z0knncQvfvELHMfZOScmCIIgCIKwh6Ks3cb0qoIgCIIgCIIgCIIgCIIgCILwGkMPdwcEQRAEQRAEQRAEQRAEQRAEYVdFRHRBEARBEARBEARBEARBEARB6AcR0QVBEARBEARBEARBEARBEAShH0REFwRBEARBEARBEARBEARBEIR+EBFdEARBEARBEARBEARBEARBEPpBRHRBEARBEARBEARBEARBEARB6AcR0QVBEARBEARBEARBEARBEAShH0REFwRBEARBEARBEARBEARBEIR+EBFdEARBEARBEARBEARBEARBEPpBRHRBEARBEARBEARBEARBEARB6AcR0QVBEARBEARBEARBEARBEAShH0REFwRBEARBEARBEARBEARBEIR+EBFdEARBEARBEARBEARBEARBEPpBRHRBEARBEARBEARBEARBEARB6AcR0QVBEARBEARBEARBEARBEAShH0REFwRBEARBEARBEARBEARBEIR+cIe7A4IgCIIgCIIgCIIgCIIw1BhjWL16NfX19Silhrs7grDLY62lvb2diRMnovWWfbELhQJBEJTf+75PNpsd6i7uNEREFwRBEARBEARBEARBEPZ4Vq9ezZQpU4a7G4Kw27FixQomT57c7/5CocCMaXWsXR+Xt40fP56lS5fuMUK6iOiCIAiCIAiCIAiCIAjCHk99fT2QCIINDQ3D3BthZxAZw7ee/hc1nsf75h+301YgbC50csG/f0p7WOSHR1zEwaOn7ZR2B5u2tjamTJlSfnb6IwgC1q6PWfrYNBrqNW3thhkLlxEEgYjogiAIgiAIgiAIgiAIgrC7UBJQGxoaRETfQ3m1fRNvu/c3NHhZbjj2Uq5/8V5+vfwlAKaOGcObZx+xU/rxStRGu2vB9VkatXPibn6/bevkQ21d8ortEHdoGBARXRAEQRAEQRAEQRAEQRCE3Z671y1hdVcrq2nlqc2rGJXNAYmi2+hnhqTNnz71KNc+8RAfXHgEb19wEAD7j5zEJ/c9mXWFdi6asXBI2hV2LiKiC4IgCIIgCIIgCIIgCIKw23Pm5PnctXYxDV6Ww8ZM59jxsxmZyeA7LmdOPnBI2vzZ04+xuZDn508/VhbRlVJcPvfIIWlvV8Zgy689DRHRBUEQBEEQBEEQBEEQBEHY7RmdreNnR19Ste28aYcMaZsfPeRIfvLUo7z3wEOHtJ1twVrLhx76A49tWsE3DjmfI8bO3KntGwwm/bunISK6IAiCIAiCIAiCIAiCIAivKda1d/CJW/5BU00N/33mqWTc7ZNJ3zhvAW+ct2CQe9c/1lqWdmxics0IfKe6zxsKHdy6+kUAblrx7E4X0WNry689DT3cHRAEQRAEQRAEQRAEQRAEQdiZ3PTCIu5ftoKbXljE46tW75Q2n9m0lsUtG3eojm88+y/OuO1a3nL3L3vtG5Ot4+2zD2ffERN488yh9cDvCwnnIgiCIAiCIAiCIAiCIAiCsIdwwqwZ/OqxJxiVy7Hv+HFD3t6dq5bw9n/9Aa0U/3jdO5g7Ysx21bOobT0Ai9s39NqnlOLK/U7doX7uCAZLLCK6IAiCIAiCIAiCIAiCIAjC7s+splHc/d537rT2WosFAIy1tIfBNh/36MblrM23ccbk+ThK87kDzuA3Sx7hhAlzh6qr2414oguCIAiCIAiCIAiCIAiCIAjbxTkz5hNbQ52XYeGYSdt0zPKOzbzl7l9isbQGed486xCm1I4cVm/zLbEnx0QXEV0QBEEQBEEQBEEQBEEQBGEI0UrxhlkDS0DqagdHKSJryTi7voxrKl57Grv+6AuCIAiCIAiCIAiCIAiCILzGmFjTyI0n/QcbCh0cMWbGcHdnq8RpTPRYwrkIgiAIgiAIgiAIgiAIgiAIO4M5DWOZ0zB2uLuxTcS2+7WnoYe7A4IgCIIgCIIgCIIgCIIgCLsqy9qb+fh9N/OnJc8Maz+COOarT93J1566kyCOe+3fXOzkTXf/mIvu+hEbCx07vX97cjgXEdEFQRAEQRAEQRAEQRAEQRD64dtP3cufXnmWK+7/Gx1hcdj6ceuqRfz4hQf40QsPcPuql3rtf3DDKzzbsprnW9dw/4bFO71/BkWMwqB2ettDjYjogiAIgiAIgiAIgiAIgiAI/XDYuKkA7DtqHDWuP2z92HvEWGpcjxrXY96I3iFejho7i0OaprOwaRrHjJ2z0/tnbPdrT0NZa/fA0xIEQRAEQRAEQRAEQRCEbtra2mhsbKS1tZWGhobh7o6wm9FaLFDn+Th6eH2Su6IAYKeI+dv6zJTKPfTceOrqNR3thsP2WbtHPWviiS4IgiAIgiAIgiAIgiAIgrAFGjPZbRbQ1+XbCUzvmOWDQY3rb7eAHlvD8o5mhsqnOk7DucQSzkUQBEEQBEEQBEEQBEEQBGHouW/dKzy8Ydlwd2NA/GbJoxzzt29z/r9+Qmx3rRSbH7j/D5z8j+/z+Sf+PiT1G6vKr4Fy7bXXMmPGDLLZLAsXLuSee+7ZpuPuu+8+XNflgAMOGHCbA0FEdEEQBEEQBEEQBEEQBEEQdinuXPMyb7/3N7zl7l/x+KYVw92dbebp5lUALGnbSD4KB6VOay1/fvUp/rj0yR3yIn+2eQ0AzzSvHpR+9WR7PdF/97vf8ZGPfITPfOYzPPHEExxzzDGcccYZLF++fIvHtba2ctlll3HSSSftSLe3CXfIWxAEQRAEQRAEQRAEQRAEQRgAqurfu094kI/MP54ax+ewMdOo8zKDUudda5fwyYdvAqDRz3HKpL22q55vH/4Gbl7xLBfNOGhQ+tWTGJ2+BsY3v/lNLr/8ct75zncC8O1vf5t//vOf/PCHP+Tqq6/u97h3v/vdXHLJJTiOw4033rj9Hd8GREQXBEEQBEEQBEEQBEEQBGGX4KbnX+SJVWt4zxGHcP3Rb8bXDgc2TR7ubm0zE2oauerAM/rdHxtDS5CnKVu7zXU2ZWrQKCwwegDH9WTh6CksHD1lu4/fGjYN5WIHEM4lCAIee+wxrrzyyqrtp556Kvfff3+/x11//fUsWbKEX//613zpS1/a7j5vKyKiC4IgCIIgCIIgCIIgCIIw7GzuyvPxv/4dC0TG8F+nDX2Yjp2JtZYLbv8lT21aw1ULT+Gtcw/ZpuMWjJrIP894D9bCuJp6OqOA2u1MLjqU9Azn0tbWVrU/k8mQyVR752/cuJE4jhk3blzV9nHjxrF27do+23n55Ze58sorueeee3DdnSNvS0x0QRAEQRAEQRAEQRAEQRCGnbqMz9SRIwBYMH7clgvvhgQm5tnNiTD8yPqBxXmfUd+ExXD0Ld/gmFu+wSvtG8v7vv/CnZz8z29x66rnB7W/AyW2uvwCmDJlCo2NjeXXlkKzKFXtvW6t7bUNII5jLrnkEr7whS8wd+7cwT2BLSCe6IIgCIIgCIIgCIIgCIIgDDu+43DL5ZfSki8wrr5uuLvTL9958j5uXfYyVx12EoeO3/bwKBnH5dtHnss9a5bynvlHDLjdRW3rycdJstKXWtczs340AD956V5CG/PrVx7i1EnzB1zvYGFQGDSGJPnpihUraGhoKO/v6YUOMHr0aBzH6eV1vn79+l7e6QDt7e08+uijPPHEE3zgAx9I2jUGay2u63Lrrbdy4oknDuZpASKiC4IgCIIgCIIgCIIgCIKwi5Bx3V1aQC9EId964j4AfvrcowMS0QHOmjqfs6Zun9B98sR5vGvuUSjgxIndyUXfs9ex/GX5k1w26/Dtqnew6BnOpaGhoUpE7wvf91m4cCG33XYb559/fnn7bbfdxrnnnturfENDA88880zVtmuvvZY77riDP/7xj8yYMWMQzqQ3IqILgiAIgiAIgiAIgiAIgiBsA1nX46I5+3Hb8pe5YPa+O7VtXzt8fN/eceLfO+843jvvuEFrZ3HbBkZn6wYcB7w7nIsd0HEf+9jHuPTSSzn44IM54ogjuO6661i+fDnvec97APjP//xPVq1axa9+9Su01uy7b/W4jx07lmw222v7YCIiuiAIgiAIgiAIgiAIgiAIwjZyzdGnSZ0UwgAAp2ZJREFUcw2nD3c3hoQ/LH2czz5xMyP9Gv585NsGdGwSziV5DYSLLrqITZs28V//9V+sWbOGfffdl7/97W9MmzYNgDVr1rB8+fIB1TnYKGsHODUgCIIgCIIgCIIgCIIgCLsZbW1tNDY20trautUQE4Iw1Fz/0oPcsuI5rlhwEoePnT7c3Snz9Wdv56cv3Y8CbjrqcuaMn7zVZ6b0bP3hqXnU1Dt0tcdcuP+Le9SzJp7ogiAIgiAIgiAIgiAIgiAIW+HZ5tU8vHEZ50/dn5GZmu2ux1jLV5+5ndhafvTivbuUiP7uvY6mxvGZ1ziOsbn6AR27veFcdgdERBcEQRAEQRAEQRAEQRAEQdgCkTFcdvcv6YpDXmxZy1cPOX/rB/WDVooLpx/IzSue4/XT9x/EXu449V6W9+19LJB4mA8Eg05fIqILgiAIgiAIgiAIgiAIgiC8ptBKMSJTQ1dXK03Z2h2u778WnsV/LTxrEHq26xBbVX7taYiILgiCIAiCIAiCIAiCIAiCsAW0UvzphHfxctt6DmqaOtzdGVJuXv4cP3rxPi4cP39Ax8Xo9CWe6IIgCIIgCIIgCIIgCIKw22Ot5aENy2jK1jKnYcxwd0fYDRiZqeHQMdOHuxtDzneeu4tXOzZzbfPmAR1nrE5fe56Iroe7A4IgCIIgCIIgCIIgCIKws7lx2TNcetevOefWn7Cys2W4uyMIZe5Zu4Tzb/8J17/04KDV+cjG5bz+Xz/l2hfu2WrZt8w+mEYvy5tmHTSgNro90fc8yXnPOyNBEARBEARBEARBEARB2ApdUQBAbA2hiYe5N4LQzY9evJfnWtby9Wf+NaDjOsJivxNCP3/pAZ5tWcO3n/83xTjaYj1vnXMoj553Be+Ye/iA2jckcdHNgI7aPZBwLoIgCIIgCIIgCIIgCMJrjotnHUSdl2F8rp4Z9U3D3R1hN2RzsYvPPXEzDV6Wzx9wJr4zOFLrhTMOZFHres6ftv82H9MRFjnlnz9gU7GTbxxyHq+buqBq/3nT9uOxTSs4ecJeZAapnz0x6PJrT0NEdEEQBEEQBEEQBEEQBOE1h6M0505bsPWCgtAPt6x8lttWvwjAGZPnc8y42YNS73nT9uO8afsN6JjWIM+mYicAL7Vt6LX/tEl7c9qkvQelf69FREQXBEEQBEEQBEEQBEEQBEEYAGu72vjVyw/hKM2kmkb2HTFxWPszqXYE3zz0fF5oWce75h45LH2IrS6/9jT2vDMSBEEQBEEQBEEQBEEQBEEYQu5et5jlXc3E1vCJfU9mZKZmuLvE6q5WfvbyfVz9zD+HpX2DKr/2NEREFwRBEARBEARBEARBEARBGAAnT9yLw8dM57hxszly7Mzh7g4At61+EZv+HQ72ZE90CeciCIIgCIIgCIIgCIIgCIIwAEZlavnlMZdttdzfVj7HNU/fygXTD+SD848f0j59asHJ/PSl+zl3apKQ9J+rXuDVjs1cOusQalx/SNsGiNHl156GiOiCIAiCIAiCIAiCIAiCIAhDwA2LH2JdoZ2fvnT/kIvoB4+exsGjpwGwvGMzH3zwjwDExvC+vY8Z0rYBjFXl157GnjctIAiCIAiCIAiCIAiCIAiCsAvwjjlHMq12FO/b+9id2m69l6XeywAwuXZEv+ViYwatTZN6oZs9UHIWT3RBEARBEARBEARBEARBEF5zLO/YzLLOzRw1dhZaDY339CmT5nHKpHnbXP6llg08sWE1r5u+NzXetoVgsdZirMXR3eL1yEwNt576fpqDLmY3jOnzuK8/fQc/fvF+3j3vSK7Y78Rt7mN/GKvLrz2NPe+MBEEQBEEQBEEQBEEQBEEYNu5eu5gfvXgvHWFxuLvSL21BgfPu+BH/cf9v+PnL9w93dwAoxhHn/+3XfOqBf3D14//epmOCOOb823/Ofn/+KvesXVK1rylb26+ADnDLiuex6d/BIEaVX3sa4okuCIIgCIIgCIIgCIIgCMKgsKnQybvu+y0WS2tQ4FP7nQwk3tIAaog8vgdKbA2hiQEoxOEw9yZBofAcDRFknW2TbdfkW3m2eQ0Ad61ZwjHjZ21ze5898DRuePkRLp1zyHb1tyd7sie6iOiCIAiCIAiCIAiCIAiCIAwKOddjhJ+lOcgzqbYRgE3FNt7/2LcITcx3D/ogk2r6947eWYzM1PA/x72DxW0bOGvyvsPdHQB8x+GWs97OC83rOW7SjG06ZmrtSD60z7G80LyWtw5QDD9x4hxOnDhne7raJzElb/Q9DxHRBUEQBEEQBEEQBEEQBEEYFGpcn7+f+j7W5lvZu3E8AC+0LWNDsRWAp1qW7BIiOsCCkZNYMHLScHejikl1DUyqa9hquZfb1qNQzG4Yw4f22blJS/tjT/ZE3/POSBAEQRAEQRAEQRAEQRCEYWNUpob5IyaUQ7ccOmoeZ0w4jJPGHcSxY/ff5noeWL+U//foLbzYsm6oujqkrOxs4e61S4iN6bXv84/9nb3/eDU3vPzogOt9ctNKzr7tx5x12494avOqwehqmQ2FDqI++rstxFaXX3sa4okuCIIgCIIgCIIgCIIgCMKQ4TseV8y7aMDHffiBP9Mc5HmpbQO/P/Ftg9+xCpZ1bOKPyx7n5Al7s/+oyTtcX0dY5Kx/XkdnFPCxfY/nffOPrtr/52XPEJqY/1v2DJfOOXhAdTcHeWzp38WuHe5riZ+99ADXPH07+42cyB9OfMeAj7coDAoriUUFQRAEQRAEQRAEQRAEQXitsaKzmUYvR4Of3WltHtA0mTvXvMxBTTsuam+Nzz7xVx7dtIwblz/Jm2YcyiMbl/GfC05jbuO47aovtoYgTVzaGQW99n/uwFP586tP84H5xwy47uPHz+brh5wHwHHjZ7Op0Mm1L97DPiMm8Prp2+7p35MnNq0E4PmWtYR24N7o4okuCIIgCIIgCIIgCIIgCMJrkr+vfJ4PP/QnRvg5bjvt/TT6uZ3S7o+OeiPr8u2Mz9UPeVuz6sfw6KZlTKkdxfde+DcAv1j8IF9ZeO521dfo5/j9iW/lhZZ1nDttQa/9F8w4gAtmHLBddSulOGdqd50/fvE+blj8CABHjp3B+Jqtx1Tvi08sOImRfg3HjJ+Frx0KAzzeWFV+7WmIiC4IgiAIgiAIgiAIgiAIQr8sbtsAQEuQp7nYtdNEdK0UE7ZTEB4on93/TC6ZeQhTa5t4/4O/5fFNyzll4t47VOeCURNZMGpiv/s3FDr4xjN3MKthNO+ce0Q5hvzA25kAwKSaRkZktv/aTKsbxRcXnrXdx8fo8mtPQ0R0QRAEQRAEQRAEQRAEQRD65e1zDsdYy4z6JqbXNw13d/rk3nVLuHH507xl1iEcsB0xzbXSzGlIQrf89Ki3DHb3+uSXLz/En5c9BcAJE+Ywu2HMdtXzuqkLOHzsDBq8LBln+OTePdkTfc+bFhAEQRAEQRAEQRAEQRAEYdCo8zJ8eJ/jq0KI7Gp88tEbuWnFM3z+ib/t1HaNtfz3U7fz/vv/wLp8+4COPXTMNBylmVo7kok1jTvUjzHZumEV0AEMuvza0xBPdEEQBEEQBEEQBEEQBEEQdmuOHDuTm1Y8w1FjZ+zUdp9rXsPPXnoQgHmN4/jgPsdu87HHjp/NY+d+Al+7uHr3F55jq8qvPQ0R0QVBEARBEARBEARBEARB2GE2dHVyzf13M762ng8degS+4+y0tr928Hn8v/1PZ8ROitdeYmbDaGY3jGZNVxtHj5854ONrXH+H2rfW8t77f8dDG5bxzUPP54SJc3eovh1hTw7nIiK6IAiCIAiCIAiCIAiCIAwBxho+//RfeL51Ff+1/xuY3zhpuLs0pJz351+zZnMHANMbR3DB/H13WttKqZ0uoAP/n737jq+yPv8//rrPOTnZeyckJCHsvbdsBAFxb9yoVWutVq1tba212n5b66h1rzrq3gtFtrL33iM7IXsnZ9y/PwKBkJAdQH7v5+NxHiT3/RnXfUL+uc6V64Ovzc43U2/FpOYg1FOtoLqChZl7APgmbftpTaKbpgW3acE0f/5V9Sc6+55IRERERERERETkDJBRUchX6RvYX5rD56nrT3c4Hc4ETEwMIDnkzDyAtDmWZu3hzb2rqHI5mzXeMIwWJ9BN02RHYRYljsrWhFgrxNOHq5IG0y0gnBu6Dm9wjNPtZnthFtVuV5v2aooLo/Z1tlEluoiIiIiIiIiISAeI8Q5ianRfdhSlM6vTwNMdTof7YPYVfHdgD+PjEukS/PNMoqeVFXLr8ncxgXJnNbf1GNsh+7yyewX/2LKAaO8Afph+Jx4WK1UuJy9uXUWg3YtrewzCaEZiPrO8iA/2b8RhutlWmEWv4Oh6Y3679gu+SNnCmMgkXht7dUc8DgBu82hLlw7b4rRREl1ERERERERERKQDWAwLfxt4+ekO45Tp5B/ITf2GnO4w2sTH5oG31YNyl4NwL/8O2yeltACAw5WlVLmceFisfLx3K//a8CMA3YPDGREV3+Q6Drcbp1mTta5wNlw5v78kF4ADJXntEfpJuY+0c3Gfhe1clEQXERERERERERERAUI8ffl26h0criylT3BMh+3z6z4TiPD2Y1BoHH4engB0CQzFYhh4Wm3E+gY2a514v2D+N2EOGeXFzIjr1eCYfw67gE8ObuK8uN4nXeeNPat4ZtsSbuw2gjt7ndPyBwLcGLWvs42S6CIiIiIiIiIiIiJH+No8CQvy69A9Qjx9+GWvcXWuDY+KY8Wlv8BusRHs1fxDUoeENV6xnuQfxm/6Tmp0zHv711HqrOJ/+9a2OonuMo3a19nm7KutFxERERERERERkTNOqaOKf29fzNepW093KCf1VcpWBn/+D2bPfxlHCw7iXJebwt2rPmJp1p427R/p49+iBHp7ubv3eHoFRTWZbG+M2rmIiIiIiIiIiIiItMHre1bw7M6lAPQNjiHeL+Q0R1TfqsOHMDHZXZxDcXUloV6+zZr3yMZv2FWcw9rcQ/w449569zfnZ7A0ax+XJQ4gwrv1vdZN06TK7cTL6tHsOVnlxewtzmVkRAJWS8MJ7mmdejGtU8PtYJrLjVFzsKjauYiIiIiIiIiIiIi0XKJ/GABBdm+C7D6nOZqG3dZjNNVuJwND45qdQAcYF9WVXcU5nBOVXO+eaZpct+QdSp1VbCvI5PnRl7U6vjtWvs+izN082O9crk0e3uT4KpeTmd+9QkF1BXf0Gs09fce3eu+mmEf6oZtKoouIiIiIiIiIiIi03My4PvQLjiHQ7k2A3et0h9OgWN8g/j50du335c5qfr/uK6rdTh4bPItAe8OtVu7pM4lbuo+pPST0RNE+AewpPkysTyDlzmo8rTasRsvanpimydKsvZjAkqw9XJ44GE9r4+ldt2lS4XIAUOKoatF+LeU2jdrX2UZJdBERERERERERETklzsQWLo1Zlr2Pr9O2ATA+qiuXJg4EoKCqDLvVhq/tWNL8ZAl0wzD4YOL17C3OJaeyhCFf/p0Ev1A+nXhLk0nwE9d5fPBs5mfsxDAt9P74b9zSfST396/pY74iZz/FjiqmxvTAMGoS2d42D96feC2b8jO4oHPfVr0HzXU290Q/+55IRERERERERERETrn/Ll7HOQ+9wNtL15/uUFptd1EOT21bxIGSPAAGh8bR2S+EaO8ARkYkArAm9yDnzPsnE797kpyK4mat6+fhyYDQWNbkHsJlmuwryeVwZWmL45sV35dnRlzK+rx0AH7I2A3A1oIMrv/xbe5a9SFfpdU9uLVPSDRXJw/G18Pe4v1aoi2V6M899xyJiYl4eXkxePBgli1bdtKxn3zyCVOmTCE8PJyAgABGjhzJd99915bQm6QkuoiIiIiIiIiIiNRamZHKv1b/RE55WYvmvb10PQVlFbyzdGPHBHYK3LnyA57ftYyrl7zBjoJswrz8mH/uHSw571d08g0CYGdRFi7TpMRRSWpZQYvWv6nrSC6I78eD/abWrtcajw4+jymx3Xl40DQA7BYbxpFe5F6W5h862p7cR3qit/Rg0ffff5+7776b3//+92zYsIGxY8cyffp0UlJSGhy/dOlSpkyZwjfffMO6deuYMGECs2bNYsOGDe3xGA0yTNM0O2x1ERERERERERGRM0BxcTGBgYEUFRUREBBwusM5Y1W7XPR99RmqXC5md+3J05NnNHvup6u38d9Fa7lp0lBmDelV7365sxovqwcW48ztmX3zT++wLHsfbjck+EQw/7zb6o0pd1Zz+ZIXOVB6mCsTh/L7frNOQ6T1bS/MpNRRxbDwhHZZr7m/M0fHzfjuZjx87TjKqvn63Fea/bs2fPhwBg0axPPPP197rWfPnlxwwQU8/vjjzYq1d+/eXH755fzxj39s1viWUiW6iIiIiIiIiIjIz4TT7eLFPd/z9M6vqTxyYGR7slksRPvVJD4TAoNaNPfCYb357IHrGkygf3FwG/0/eoKL57+By+1uj1A7xHMjLmdEaBfcLgvdAsMbHONptZFWkYfFAj9k7ejwmKpdTl7dvYIvUrY0Oq5XUHS7JdDbQ3FxcZ1XVVX9g02rq6tZt24dU6dOrXN96tSpLF++vFn7uN1uSkpKCAnpuH77OlhURERERERERETkZ2JV3h5e378IgCS/SGZ1GtKu61sMg68umcOh4kJ6hTacRG6pSpeDr1K34cZkc34mJY4qgjy922Xt9ma32nh17JXsK86lS0BYg2OqXU6cLgMT6OYX3S77ppTlsy73EFNieuJwu7EYBoH2mvfo/QMb+PuWHwBI8g+jT3Db9jRNk3tWfMna3FSeGDGLYRHxbY4f6vdEj4uLq3P/T3/6Ew8//HCda7m5ubhcLiIjI+tcj4yMJCsrq1n7PvHEE5SVlXHZZZe1PvgmKIkuIiIiIiIiIiLyM5HoF4mfzQuH20mPgNgO2cPPbqd3WES7rXfT8tfYlJ9BUkAEN3QbecYl0E3TxI2J1ahp2mGzWOgedPLn97bZeXrY5aw6fIDrk0e1y/5XL32VvKoy5qVv46ecQ1gw+HTSLXTxD6vtne5ltRHq6dPm/XIqSvn8UM3hox8f2NJhSfTU1NQ67Vw8PT1POtc4ocWPaZr1rjXk3Xff5eGHH+bzzz8nIqL9/s+eSEl0ERERERERERGRn4kY72C+Gv873KYbH9vJk5JnktSyAiwWk8RgP65KHnS6w6mjoKqcixa+QlF1JW+Pu5ZeQVHNmjcxugcTo3u0Wxy2Iwn8cpcDh9sFwIGSPLr4hzEhuivfTb0dX5udCG9/ACqcDr5P38GA0E509mtZG5MIbz+u6jKQNYdTubLLgHZ7hhOT6AEBAU32RA8LC8NqtdarOs/JyalXnX6i999/n5tuuokPP/yQyZMnty34JiiJLiIiIiIiIiIi8jPiZfU43SG0yHMj5rA4aycXxQ8+3aHUs6soh/TyIgBWHT7Y7CT6yZimSbXbhae1+WlXwzB4b9xcNuanMjK8C2/uW4XNsDAhumvtmET/0DpzHt/8Pe/tX0+ghxcrZt2LzdL8oy8Nw+DRYdObPb65TMBNTZub5rLb7QwePJj58+dz4YUX1l6fP38+s2fPPum8d999lxtvvJF3332XGTOaf/htaymJLiIiIiIiIiIiIh2mT1AsfYI6pvVMWw0Ji+e65GHkVZVxQXy/RseaZt30cEPtRn7x04csyNjNHwdOY07XlvWrnxTdE5vFwp09xzU51nKkct1yJIZN+Wnct+ZT+oV04v+GXIDFMKh2OSl2VBLm5deiOFrrxEr05rrnnnuYM2cOQ4YMYeTIkbz00kukpKRw2223AfDggw+Snp7Om2++CdQk0K+99lqefvppRowYUVvF7u3tTWBgYPs+1BFKoouIiIiIiIiIiAgVTgc/ZOxkQGgn4nyDT/n+G/JSeXr7Is6N7cWVSe17YOrJ2CwWft//3CbHZZUXc+mi13CaLjytVqpcDt4+53q6BBw7fNVtmizK3IsJLMzcXS+JXlRdwW3L36fK7eSFkZfXtmZ5bsdSntmxmCGh8bw97nqyKop5ZOPXxPkG80Dfc2sT5cd7sN8Uhod3pm9wDDaLhU8PbSKlrICUsgLu7jWBCC8/zvvheVLLCvi/IRcwu4EPCI5+KNDQhwHLsvayKeNAk+/L8VqbRL/88svJy8vjkUceITMzkz59+vDNN9/QuXNnADIzM0lJSakd/+KLL+J0Ornjjju44447aq9fd911vPHGGy3au7mURBcREREREREREREe3TSPDw9uJMTuw/KZ9zSYvO1I/9m5lJWHD7Im9xCXJQ6qPejzTLA+P5XsyhLAxHLkbVl5+GCdJLrT7eKhgVP5KfsAd/QaU2+NlYcPsi4vFYBFWXu4PLGmP/yG/JprWwozME2TDw+uY1HWbgDOj+tH7+CYemt5Wm1M79Sr9vuLEwayOvcQ/YJjiPUJ5HBlKallBTXrFmTUS6LvL8nlqsX/xdvmwUcTbiLUy7f2XnZFMbcsfxdneUWL3qPWJtEBbr/9dm6//fYG752YGF+8eHGL128rJdFFREREREREREQEA+PoF6fF9NherMo5wLmxvc6oBDrAhKhuXBjfj2rThZfFSqXLwYy4PrX3K5wOzpv/PBnlRTw1/GL6BEfXW2NkeCLDwzpT5XYyMbpb7fUH+51LzN5VTIzuhmEYjI3sypt7VxHrE0Sif1iz4usbHMM3U44loSO8/fn74NlsKcjg1u4NJPRzDpJfXQ7VsLkgo07/dW+rHT+bnUJOXRL9TGeYJzbzEREREREREREROcsUFxcTGBhIUVERAQEBpzucJi3PPsA/Ni9kZnxvbuo+4pTsWeF0sCBzFwNCOhHm5cu2giz6hsRgt1hPyf5Q02KkofYip0JhdQUfHVzP4NB4BobG1YnpmR1L2F6Qxe/7n8ue4hwe2/Q958f35Ve9xwOQXlbIhHn/BuCGriN4sN+UNsXS0e9DUXUFf9rwDb42O38aMB37CQeh5laWsi87gxEJ3Zv8nTn6uzX68zux+XriLKvip9nP/mx+15pDlegiIiIiIiIiIiJnmBd2/MSWgky2F2ZxY7fhpySx7G3zYOaR6uo5S95kVe4hpsf25OkRl3T43kedrgQ6wD+3zufjQxvwtNhYOfN+vKweAKSWFfCfHcsAiPcLZldhDqllhbyw80ccbicHSvP4Q/9p/GXQDHYWZnNLt1FtjqWj34dAuzdPDb/4pPfDvPywB0e1aE03Ru3rbKMkuoiIiIiIiIiIyBnm4sT+bCnI5Pz4PqclsZxZUVzn3/8fRHjVHPQZbPfBZhyrvo/yCaRvcAx7inMYH9WVYWGdSS0rYHRkEq/sWQ5AF/8w7ukzqd6apY4qfrnqQ8qcVTw7/LLaw0TPRmdzOxcl0UVERERERERERM4wszv3ZXbnvqdt/xdGXc736TuZFd+n6cFniTt7jmdsZDIJfqHYLDU92SucDn616iMAvpnyCzr5BgEwJbYHlS4HWwvTOVSazzlRyQ2uuerwQZbn7AdgfsZOru4ytM79jw+u5+U9P3Jj11FcljAEAJfp5qODGwmye3NubM8WP4dpmvxh/ddsyE/jb4PPp19I/YNJO4JpGrWvs82Z1aFfRERERERERETkLFTpcuBwu5o1NqW0gHO+eZrJ854lt7K0gyNrWHJAOLf3HEucb3Czxq86fJC3962m0uXosJiWZu/msc3fkF5e0Ow5LtPNG3tW8d89q3A3cjRkubOat/etxmW6Cfb0qb2+Pi+VxVl72VKQwXfpO+rM8bJ68MmEuTw57BL8bJ4NrjssvDODQ+PoGRhZ5zDRo17YvZSUsnxe2LW09tqnhzbz0Pqv+eXKj9icn3HSmFPLCrh9+Yf8e/tSjj/2MquimA8PbmBv8WE+OLD+pPPbmyrRRUREREREREREpFU25adz9aK3CLB78uWUWwj18m10/MrDB8k60kZlXV5qq6qRT6XDlaVcv+wt3JjkVpZxd+8J7b6Hw+3irlXv4zBd5FSW8NSwy5s174eMXTy2+XsAYnwCmRLbo8Fxz+5Ywqt7VmA1LCyfcS9Bdm8ABoR2YnhYZ/Kry5kSU3/uxymb+MP6L7EaFr6bcgcLM/ZS6qxibveR2K1W/D28+N+4G04a343Jo3hx9zJuTB5dey30SBLfZlgI8KhJzmeWF/HqnhWMCE9kckx3AP67Zw3z03cxP30Xs+P7Eu9X84FHlHcAs+L6sDE/jYsS+jfrfWoPZ3MlupLoIiIiIiIiIiIiHWh9bhpVbieHK53sLcltMol+bmwPlmbtxW61cU5kw21CziSeFhveNg/KnNVNPltr2QwLyQHh7CjKondQ89uTxPkGYTUsGFDbiqUhIZ41cfva7Ngtx/qh+9rsvDXuWlymm6VZ+3CbbhL8Q2vvH/3rArdpsi43jUc21CTswzx9ubzLwCbjuzJpGFcmDatzbUJ0Nz6bNBc/m514vxAAnty+iM9TNvO//WtYO+sBfGx2xkV14d196+gaEE6UT0DtfMMweGLYhU3u3d7MI1XoSqKLiIiIiIiIiIhIi1yS2J99JbmEevoyNCy+yfGBdm+eHXnpKYisfQTYvfhm8u1kVBQxMKRTh+xhGAb/O+dmcitLifEJava8XkHRLJr+SwwMIhs51POmriMZENKJON9gfGz2evdf2b2CJ7YuxMvqwY/n3U2A3QuAKxIHE2z3Icrbn1BPP7ysNhxuF10Cwlr8jEeZpsm63FTyq8u4tftovKwe9AqK4vOUzST6heFprUnpjo3qwqYLH8BqGKfl8NkTmYBp1vx7tlESXUREREREREREpAP5e3jx6OAZpzuMDhXlE1CnGroj2C22FiXQj4rybjouwzBIKyvgluX/Y2anPjwyaGad+1UuJwAOt5Mnty/kzh7j8LTauGfVJ5Q7HTw14iLCvPxYNuuXONwuDpXm83nKZmbG9cFq1BxLmV1RgtPtIvaEivicihKq3M7a/vMb8tP4y6Z5AITYfZmTPJTrk0cwJaYH4Z5+tesBtQegngncGBgYuDn9Cf32piS6iIiIiIiIiIiInDEKqsr5+5bvCffy4+7eE+skjZvL6Xa3uEL785TNlDur+fjQBvKqyhgVnshnqZvJrCjm+ZFXEOrpyyMbv+F/+9dimjA6IonFWXsBeHDN16zMSuXuvucwKbYLc5a+iQkUV1cxJ3koe4tzmfX9S7jcJu9NvJZBYXEAHCzNY9YPL+Bwu/nv2DkMD08gxjsQX5udCqeDrgHhtfHFtuIDhFPpbO6JfuZ8VCEiIiIiIiIiIvL/MYfbydyVrzHph7+zpTDtdIdz2nxyaCOfpWzm5d3L2ZjX8vdhec5+hnz5OBctfLG2grw5busxlgEhnUj2j+CHzF08snkemwsyOFxZyrLsvVyaMIBY30AAegRGMjS8M32Co0n2D2Pj4QzKnNW8t28DHhZrbeLfx+YB1BwM6nC7cWOSWlZYu2dORQnVbhcmJmlHrkf5BLBk+q9Yet6vGBGRAMC/Ni+m/8f/4K09a1v8fpwq7iM90d1nYRJdlegiIiIiIiIiIiJngENleazJOwDAD5nb6BvUMf3Fz3RDwzrjbfUgyO5Dl+MqsZvrx+y9VLmd7CzOJqO8iMTjDgJtzPDwBN4bfyMfHdzAH9Z/xbCwzsT4BJJZUcSF8f2xW218Pfl28qrKag8p/WTSzTX/HtjCf3ev4bZeo4j1DeKFUZezu/gwF8b3A2BMZBKPDJpOpcvJjLjedZ710YEzKXFWcX5839rrAXYvAvCq/f6dfespPZKkn9N1SIvfk1PBNI+9zjZKoouIiIiIiIiIiJwBkvzCuSR+KHtLsrkobvDpDue06RcSy6pZ92M1jFa1crmmy3DSygvoHhBJgl9Ii+dfkjCQWXF92VmYzSt7lnNF4hCifWoq0A9XlrIkay/TOvUk3Muvds5FiX25KLEmCZ5fVcYdKz+kyuXEbrFybfIwDMPgquT6P1PDMLg0cVCTMf22/0Te2bueO3qPbvHznCpnczsXJdFFRERERERERETOABbDwh/6nl/v+vaCLHYWZTMjrjee1v8/0nl2i7XVc2N8Anlm+OVt2t/TauP/tv7AmtwUlmbtY3qnXgDc9OP/OFSaz/fpO3hr3LW14x1uF+aRuCucDhxuFwBlzuoW722aJvtL8oj1CcTrSDuYS5MGcGnSgDY9U0dTEl1EREREREREREROuZLqSi5d8AZVbif7ivO4r9/E0x1Sk9ymyd82z+dQaT4PD5xeW8X9czMhqitrclM4Jyq59pq/hycAAR7HWq1klhdx4cKXcbhdPDP8En69+lO8LDZu6zGGG7uNrLeuy3TjdLtP+oHIs9t/5KmtS+kaEMa3025p0eGop5PbNDDUE11EREREREREREROJYthwWaxUOXmZ1OFvrMoizf2rgKg14EoftV7/OkNqBHVbhdpZQUk+oXWS1bf3H0UV3UZgrfVo/baG2OvYUNeGsPCO9de216YRUF1OQDzM3ZRWF0BQJR3QL2K+lJHFRcufInsimJeGX01w8IT6sW0p+gwAIdKC3CabjyM1lfln0rqiS4iIiIiIiIiIiKnnK+HnS+m3sy+4jzOiepyusNplkS/MHoGRpJaVsi446q4W+On7P3ct/ozhkck8K9hF7Z7VfZ1S99iXV4qN3YdwW/7Tal338dmr/N9gN2LcdF1n2lsVDLXJw+nyuXi7l7jsRlWXKabc2N71lsvpSyf1LICAFbnHmowif7ggMnE+gYxJjIRjza0tTnVahLohpLoIiIiIiIiIiIicmp19guhcysOyDxdvG0efD75lnZZ69NDm8mtKuPr1G38ccA0gj192mXdo3YX5wCwsyi79trHBzexIvsAd/Y6h2ifANLLC9lRmEWIpy8jIxJrx63KOcjhqlLO69SbB/udW3v9DwOOfX2inoFR3NlzHKllBVyZOKTBMdE+ATzQ/8xv23Mi9UQXERERERERERGRFtuYl06Ipw/xfsGnO5SfpTnJQ9lXfJiREYntnkAHeHTQTNbmpnBt8jCg5iDQB9d8iUlNb/f9ZTnsKMzGpCYx/MXkW+gRGMne4sPMWfoWAOVOB9E+flS7nUyM6tFotbxhGNzZc1y7P8eZwDzudbaxnO4AREREREREREREzkafH9rCJQteZ9q8F8gsL27RXJfpZknWHg6V5ndQdD8P/UNi+XTyXO7vN7nd1/7s0CZ+vfojfsjYQYSXPwDeVg/6hcRiAMPCO7O/JLd2vAWDDw6sZXnOfjwsVqxHkuVZFYXctvId7lr9PguzdrY6HrdpcrAkH6fb3abnOl1UiS4iIiIiIiIiIiItUlBVc8BktdtFhdPRormv7V7Ov7YvwNvqweJp9xBg9+qIEP+/tqu4poVLdmUJxY4KvG0eWAyDDyZeT5mzGn8PT+L8AlmatZd+IZ34Nn0r7x5Yy4cH1/Pjeb/h00lzKaquwNtm48U9SwDwOu4Q0pZ6eP23vLt/PeOjknl57BXt8oyn1Flciq4kuoiIiIiIiIiISAe4OnkwXlYb0T6BJAWEtmhupbsm6e50u3CZP8/K5DPdLd3GYMGgZ1A0kd4BtdcthoG/hycAoyO7MDqy5kDXjPICFmTuJMDDm5Ff/5PeQTG8O+4GbBYL758zl2q3i0Gh8a2OZ1tBJgA7juvP/rNytApdlegiIiIiIiIiIiLSHB4WK1d0GdSqubd2G0ucbwhd/cM7pBe4QLCnD5cmDKLcVd2s8Td3G824qK68vmcln6RsYnNBOvlVZUR4+9MnOLbN8Tw+dBbv7d/ArPjebV7rdDDNY6+zjZLoIiIiIiIiIiIiZxi71cYF8f1PdxhntQMleZw3/wVcppsXR13OhOhujY43DINugZHc1mMsJc4qBoR0IsLbv86YnIoS3j+wntGRSQwKjQPANE3Sy4uI8g7AZjn5EZXdAiP448Bz2/5gp4l6oouIiIiIiIiIiIicRYqqK2pb5eRVljV7Xme/EJ4dcVmD9x7d9B3z0nfwyu4VrJ99P1bDwpNbF/Pcjp8YGhbPuxOvbZfYz0hHW7mchUn0k3/0ISIiIiIiIiIiInKWSisvrP068khF+ZcpW/nd2q9IKS1o9jpu08Q80sMkzjcIgGifACzUJJM359f0Ot9WmNkOUZ+51M5FRERERERERERE5CwS5R2AgYHFMIj0DqDcWc1vVn2OG5NKl4N/Db+wyTU25adz/bK3ifYO4MOJN3Fvn0lM79SbBL8QDKMmif7Hgefy5t41TIntRm5lKR8eXM+I8EQGHmn3Imc+JdFFRERERERERETaUbXbyZ82fEFuVSl/HXgBEd4BLZpfUFXO4ox9jIlKJNzbr4Oi/HmodrvYnJ9O76BovG0e7br2kLB4vpv6C2wWK518g3CbJj2DItlWmMXgZia4l2Xvo8xZzd6SXPYV59IvJIY+wdEApJYV8OcN39I1III/DTwXwzC4d/UnfJ22lZesP7Fm1gON9kj/2TGPe51llEQXERERERERERFpRxvyUvkibTMAX6Vt4cauo1s0/84fP2VFziF6BUfy1bSbOiLEn43713zKt+nbGRoWz9vnXN/u6yf4h9Z+bTEMPpp0I0WOCkI9fZs1/9KEgewozKKTT1Bt8vyod/evY2n2PpZm7+PihP4kB4QT4xMIQLiXPxbjWO/wlNICqt1OkgPC2+GpTg8dLCoiIiIiIiIiIiLN0jsomp6BUeRVlXFOZNcWzz/aBuTsS0W23KHSfADSyopOyX42i6XZCXSo6aX+n5ENHzI6Ibob7+5fR5J/GPG+wQD8uvdEpsT0INE/tDaJvrf4MOf/8BJO080bY69hVERi2x/kOG7TJLeylIgjfd871FlYhQ5KoouIiIiIiIiIiLQrPw8vPhp/W6vnPzv6QhZn1rRz+f9dQUUVbpdBoNXntMbhcLsocVQS0oIE+9CweDbMfqDONYth0C8kts61guoKnKYbgJyKkrYHe4JfrHiXpdl7mNttNPf0ntzu6x+lSnQRERERERERERE5JYI8vbkgoc/pDuOMEOntT1p5ETG+QU2OLayuwMdmx26xtmsMTrebCxa8xN6Swzw26HwuThjQrusPCY3jiaEXUOasZlZ8+//cN+anArA+L7Xd165DPdFFRERERERERESktXYVZbO1IIPzOvVp9wMyz2avnnMlm/MzGBTaqdFx36Xt5JcrPibGJ4Bvz72t0fe4xFHJHcs/pNrt5NmRlxLm1fjhraXOKvaVHAZgQ35qbRI9tawAA+h0pFVLaxmGwaz4vm1aozH/GnYJ89K2MafL8A7bo4Zx3OvsoiS6iIiIiIiIiIhIB6pwOrhyyatUuBzsKs7md/2mne6Qfjb8PDwZFdl0W5sNeWmYmKSXF5FbVUqc7eSJ7eU5B1h5+CAACzJ2c3nSoEbXDrJ787chF7A+N4Vf9BgLwJaCdK5Y/CqGAe+Pn0vvoOhG1zidRkd0YXREl47fSJXoIiIiIiIiIiIi0hoWw8DDYqXC5cDLqnRcR5jbfSQVLgfdAyOIa6IyfER4AoNCO1HpcjI+unkHv14Q348L4vvVfp9dUYIbE0zIqSg+o5Pop4yS6CIiIiIiIiIiIpJfVU5+VRnJAeHNnuNptfHJxFvZXZTD2MjkVu99qDSf/9synwGhnZjbbXSr1zkbhXr58udB05s1NtDuzXsTbmjTfhOju/PwgBkYGIyP6tasOYXVFXxycBPDwzvTO/gsTLqbxrHXWUZJdBERERERERERkWYoqq5g6rz/UOyo5P+GzuaCzv2annRErE8QsT5Bbdr/1T0r+CFzFz9k7uL8uH5Eevu3ab3/X+RVlfL4lnlEeQfw616TsRqWNq9pMQwuTxzSojmPbfyOz1K24GOzs+b83+DRzgegnm6meex1tmn7/xgREREREREREZH/DxQ7Kil2VAKQUlpwyvcfF5mMh2Glf3AsoZ6+p3z/n6tPDm3g2/StvL53OVsL0k9bHKFHDjANsnu1SyL/jKN2LiIiIiIiIiIiIv9/i/MN5tmRl7KvOJdruw4DYPnhvTy/awGz4gZyWedhHbr/pJjubJz9IFbDwDDOvpYZHWV4WCI+Vjuhnr4k+Te/DU9T3KbJTzn7iPUJIsk/rN590zT5Nn0rFU4HF3YewG/6TmRCdFcS/ELYVZRN14AIbJazKJl+FrdzOYt+SiIiIiIiIiIiIh1ramwPftFzDL42OwAv7F7I5sI0ntg275Tsb7NYlEBvoX4hnVhx3gN8O/ku/D282m3dN/et4uaf/scFC14iv6qs3v01uQf5zdqPeWjjF8xL34bVsDAsvDO/W/8FFy58id+t+7zdYjkTGOaxV0s999xzJCYm4uXlxeDBg1m2bFmj45csWcLgwYPx8vIiKSmJF154oZVRN4+S6CIiIiIiIiIiIq10fqeBeFk9uDB+8OkO5Yyyqyib25d/wLv71p3uUACwWazt/uFDlcsJgNN043S7690PsvtgPbJnyHHtdw6W5AGwvyS3XeM57VrZzuX999/n7rvv5ve//z0bNmxg7NixTJ8+nZSUlAbHHzhwgPPOO4+xY8eyYcMGfve733HXXXfx8ccft/kRTsYwzbOx1buIiIiIiIiIiMgxxcXFBAYGUlRUREBAwOkO56z3q5Uf8W3aDgxg4wW/xdvmcbpDancOt4uv07aR6BdC/5BODY45WJqHw+3Ez+bF7qLDjI5MYk9xDh8cWE9aWREjIxK5sduIFu/tMt3ctvxdthVk8tTwSxgWntDGp6mvub8zR8fFPfkXLN5euCsqSf31Q83+XRs+fDiDBg3i+eefr73Ws2dPLrjgAh5//PF64x944AG++OILduzYUXvttttuY9OmTaxYsaKFT9k8qkQXERERERERERHpQLmVpfxyxcc8uXURLrN+xfLZaFxUVywYjIxIxMvaumMZU8rymPbDv7h0yXMUOyraOcK287BYuSC+30kT6AAJfqF09g1l9g8vM/end3lq2yJ6BkUBBkuy9vK3zfPJKi8+6XyH28VLO3/izb2rcR9XC51ZXsSy7H3kV5czL317ez5W651QiV5cXFznVVVVVW9KdXU169atY+rUqXWuT506leXLlze4zYoVK+qNP/fcc1m7di0Oh6M9nqQeHSwqIiIiIiIiIiLSgS5d8Dpp5UUAjIpMYnh459p789N38u/tS7mqy2CuSGpbS5hqt4uU0nyS/MOwnOa+6Rcl9GdmfB88jNb3cF+WvYeMikKogM0FaYyJ6Nq+QZ4ibsza1i8Vrpokr5fVhoFB14AwQrx8Tzr369Rt/HPrQgAS/UIZG9UFgFifIK7rMpzNBelcmTSkg5+gmU5IosfFxdW5/ac//YmHH364zrXc3FxcLheRkZF1rkdGRpKVldXgNllZWQ2Odzqd5ObmEh0d3ZanaJCS6CIiIiIiIiIicsYJCQlh9+7dhIWFERwc3GgiNj8//xRG1nLFjkoAPAwLXfxD69x7dvtSdhZl888tC9ucRL9u6Vusy0vluuRh/L7/uW1a63hF1RXcu/pTrIaFJ4ZdiJ+HZ537pmny4q4f2VuSy319JhHpXdPCw26xtmnfabF9WJK9i0C7F0NCE9q0Vmtklhfzr62L6BEYyU3dG2+58tKuZXyXsYMH+kyt11rFy+rBexOuZ3N+BrPi+5BRXsTre1eAAeOjkxt9nxL8QrAaBjbDSiffoNrrhmHwYDv+jNvFCUn01NTUOu1cPD09G5wG1Pv9Nk2z0d/5hsY3dL29KIkuIiIiIiIiIiJnnCeffBJ/f38AnnrqqdMbTBu9ds5VfJu6nUsTBxLm5Vfn3pVdBvPEloVc3aXt1cR7iw8DsKsop1Xz1+QeIr28iJmd+mCzHOsCvTBzN0uz9wGwOGsPM+P61Jl3oDSPJ7cvAiDS25/7+kxu1f4nCvX046WR17XLWq3x+u5VfHZoC7CFKbHdifcLbnCcw+3iqe0LMYFX9yyvk0RfkLGL3637ionRXXl8yPkAuE2TUE9f8qrK6BoYQZXLSVpZIUn+obVJYKfbzS9++oBthVn8e8SlDAztRGgjFesNKaqu4Nu07YyISCDBL7TpCW1lGsdeQEBAQJM90cPCwrBarfWqznNycupVmx8VFRXV4HibzUZoaMc8p5LoIiIiIiIiIiJyxrnuuusa/PrnqH9ILP1DYhu8d0XSydu45FQUszBrFxOiutdWdzfmhVFXMD9jJ1e2oqI9tayAOUvfxMSkqLqC65KH194bGZFIkl8oVouFEQ0cYBntHUiSXyipZYWMDE9s8d5nqhERCby5dw0JfiFEevufdJyHxcqlCYP5Ln07F3UeUOfeZymbKagu5+NDm3howDR8bHb8PDyZN/UOCqrKifcL4aIfXmVLQSa39RjFvX0nApBeXsjirL0ALM85yOTY7i2O/6H1X/F9xg7CPH35cca9LZ7fUoZ57NVcdrudwYMHM3/+fC688MLa6/Pnz2f27NkNzhk5ciRffvllnWvff/89Q4YMwcOjYw6wVRJdRERERERERETOeC6Xi08//ZQdO3ZgGAY9e/Zk9uzZ2GynL71lmiYv717OnuLD/KbPpEYTra3xy9XvsbUwg48PrefD8bc2OX5wWByDw+KaHNcQD8OKzTBwmCY+Nnude1HeAcw79/aTzvW2efD1lNtxuF14tvIQ0TPRxJiubLjgPuxWK1bD0ujYPw+cyZ8Hzqx3/brk4aSVFTIhulud99Xfwwt/Dy9M02RfSS4AO4/7C4J432Cu6jKYbQVZXJk0qFXx+9g8jvxrb3RcbmUZAGFevqSU5vPvHUsYFtaZc0OTW7bhCe1cmuuee+5hzpw5DBkyhJEjR/LSSy+RkpLCbbfdBsCDDz5Ieno6b775JgC33XYbzz77LPfccw9z585lxYoVvPrqq7z77rst27gFzp7/1SIiIiIiIiIiclbaunUrs2fPJisri+7daypyd+/eTXh4OF988QV9+/Y9LXEdLM2vPfQxwsuP+/q2TxuTo3yPJD+bSoK2hyifAD6ffBs5FSUNVpufzDdp23hm+2KuShrCtcdVr7eU0+3m39uXUOas5p4+E07JMzeHt61tlc1DwuL5dNLck943DIOXRl/Oosy9XJ08uM71Pw+a3ujaT25byIcH1nN/3ylc0Ll/vft/HjiTqbE96R/c6aRr7CjI5sL5rwMGn0+9gTf2ruCL1C18kbqFEec0/cFNe7j88svJy8vjkUceITMzkz59+vDNN9/QuXPNAbyZmZmkpKTUjk9MTOSbb77h17/+Nf/5z3+IiYnhmWee4eKLL+6wGJVEFxERERERERGRM9rNN99M7969Wbt2LcHBNX2pCwoKuP7667nllltYsWLFaYkryjuARL9QUssKGN6CxHNzPTPsClbnHmRoWPuv3ZAu/mF08Q9r0ZwXdv7IgdI8/r1jSW0S/X/71vLvHUu5udtIbuo2slnrLM/Zz/M7fwQg3MuPW3uMbta8Tw5tIrW0gJu7j6r90OHnZnhEAsMjEoCa/upfp24jyT+MfiExjc57c+8qKlwO/rd/bYNJdE+rjYnR9dvAbCnI4L97VzErrg9l1U4cbjcAB0sLGB6RyKcpm+kVFFXvANmmGBxp59KiWTVuv/12br+94b92eOONN+pdGzduHOvXr2/FTq2jJLqIiIiIiIiIiJzRNm3aVCeBDhAcHMxf//pXhg4detri8rZ58M3U26h2uRqtWF6efYB1ualcnTyEEE+fZq/v5+HFxOge7RFqh7k2eRhPbV/ENUnHfg5v7F1FXlUZr+1Z2ewketeAcHysHpS7qvn3jsVc2LkfEU20x9lbfJjfrv0CALvVyi96jG39gxxRWF3B9oIshobH42Gxtnk9qGn74zDd2BtYz+F2sTY3hZ5BUQTZvXll13Ke3LYYq2Fh2Yxf1TuI9nh3957ARwc3cFv3MScds7f4MH9Y/yU9g6L4Y//pGIbBXzZ+y6aCdJZm7WH5jN9wf/8JAEyO6YrVYmFydHd8bHZKS0pa+KB1DxY9mzTezEdEREREREREROQ06969O9nZ2fWu5+TkkJzcwr7N7cxqWBpNoJc5q7lp2bs8s30pT2xZWO9+ZnkRHx7YSEFVebvFtC7vEGtyD7Z6fnZFMZUuR6Nj1uYe4ouULVzYuT8/nncPtx2XwL6j51iS/EL5Zc9xzd4z2ieQO3qNAQMcpotSZ1WTc0I9fQn08AIg2T+82Xsdtb0wi/vXfM6izD1ATbL70gWvcv2yt/nrxu9qx7lNk9WHD5JbWXrStUzTZG1uClnlxfWu3/Djmwz64q98kbK53rzHNn3Pdcve5pKFr2KaJp7Wmv9LNsOCpYk+7Nclj+DLyb9gYszJDx394MB6Nuan8e7+tRwszQdgdGQSUHNgrM1i4daeI7m150islpr9/Dw8sRitSIS3sif6z4Eq0UVERERERERE5Iz22GOPcdddd/Hwww8zYsQIAFauXMkjjzzC3//+d4qLjyUuAwICTleYDbJbrER4+5FRXky8X3C9+9cueYeDpfnMi+zCq+dc2eb91uUdYs6y1wF4ZdQcRkV0adH8Tw5t5MF1XxDrE8S3U25v8KDQlNJ8rln6JiYmxY4KrukyrM792fH9mB3fr8WxX9d1JN42O518gkhqRluZYE8fFkz7JSWOSmJ9g1q836ObvmNtbgoLMnaxbvb9ABRUVwCQd9yHGs/tXMqzO5YQ4unD4ml3Y2/gPXlr3xoe3fQdvjY7S6b/igB7TXK/3FnNqiMfaCzN3sP5R94X0zRxY5JXVXOoZ+GRfa/vOpwu/mHE+QW16K8WTmZap158k7aNHkGRxPnW/P/7Va8JXJ88goAjH0C0GyXRRURERERERERETo+ZM2cCcNlll2EcqZA1zZpM3axZs2q/NwwDl8vVYXE8tetDFuVs5FfdLmFi5MA691LKDhPo4UugvW7i08Ni5aupt5JWVkiPwIh6ax5tGWK3tk/rELd5LIPpMt0tnr+9MAuA9PJCShyVeFrrtxOxWaxYDQOnaeJlbdvBm8ezW6z1EvJNCbB71SasW2pEeAJrc1MYGh4P1Bzm+c74a1mefYDZnY99CJB/JKFe6qjCabppqPP60b8kqHQ5qHI7a6/7enjyh/7TWZGzn1u711TrlzmquHTxy2RVFPPk0EsZGNqJURGJGIaBAYyLbr+/rhgUGsePM+6pdz3Q7t1uexxlmMdeZxsl0UVERERERERE5Iz2+uuvExcXh/WERLPb7SYlJYWEhIQOj8FtuvkqYyUmJvMyV9VJos/L2MDDWz4gwMObj8beR4BH3QSlv4cnPYMiG1z3rXHXsDo3hbFHWmy01dCwBF4ZNQeX6WZsZNcWz7+t+xgshkHf4JiT9uOO8Qnk80m3criyhBHhiW0N+bS5q9c4rukylODjEsrdAyPpHlj3Z3VP74kk+IXQPyQWn5McXnprj9GEevnSLSCC8BPet6uThnF10rEPBw6W5nGgNA+ArYXp3NFzfDs9UduYpklGRRGRXgHYLK3oAq5KdBERERERERERkdPjxhtvJDMzk4iIupXceXl5TJ48uUOrz4+yGBZu6TKTxTkbubLzpDr3UstzASh2VFDqqKiXRG9MqJcv0zv1bNdYW9rC5XhhXn78rt+5TY5LDggnOaDlfcjPNM1pmeJrs3NNl2GN9gn3snpwTZfmHXLbMyiaud1Gk1JWwKWJg5sda0d7cvsCXt79EyPCE3l9zLUtX0BJdBERERERERERkdPjaKuWE5WWluLl1c59nRtxWfwELoufUO/6VQnnYMFCgl8EMT4h7b6vw+3kmZ0LcLhd3N1zSm0LlTJnNR8f3Eif4GgGhca1eN0dhVkE2r2J8Qls75Cbpbi6EofbRaiX72nZvznKnNVctug10ssKeW3s1a16n09kMQzu6T25HaJrX5vz0wHYWpDRqvlq5yIiIiIiIiIiInKK3XNPTS9nwzB46KGH8PE5VjXscrlYtWoVAwYMOE3RHeNr8+Sm5ElND2ylpdm7+e++nwDoFRjD+XEDAHh622Le2LsKD8PCipn31ukNnlZWwJepm5kc05OuAfV7sc9L386vVn2Ep8XGd1PvILoZifT8qnICPbywtqbVxwnSywqZ8cOLVLmcvH3OtQwOa3tyuiMcLMljT/FhAJZl72uXJPqZ6qH+5/H2/tVMjWnlX0aYxrHXWUZJdBEREREREREROSNt2LABqKlE37JlC3b7sX7Udrud/v3785vf/OZ0hXfKdA+MJsDDC6fbTe+gmNrrR1uR+Hp41juY9IF1n7AhP5VPUjYwf+rd9dbMqSgBoMrtpMRRRXQTMby1Zy1/3jCPvsHRfDz5xkZbmzRHalkh5c5qAPYU55yxSfSeQVHc3G0kKaUFXHGGtF55Z99aDpTkcWevcwhq4oBQl+nmh/RddPYLoUdQ5JG+54VEeAXUHmp7VJeAcP40YEbrA1M7FxERERERERERkVNr0aJFANxwww08/fTTBAQEnOaITo9OPsEsnHI/JiaeR1q5ANzSfTSDw+Lp7Btc2+LlqGjvQDaQSrR3wxXmVyQNwWpYiPQOoFtg/Ur1E63LTQFgW0EWVS4n3jaPJmY0bnh4Z37bdwoljkou7Ny/9vrmgjR+v/4T+oXE8eiACxps43O8hRm7mJ+xkxu6jmzWc7SUxTC4v++Z03plf0kuf974LQB+Hnbu7l2/vdDxXtu9kn9sWYCHYWHpjLv5KGU1z+1eSJ/AWN4ec2uT729LqJ2LiIiIiIiIiIjIafL666+f7hBOO7u1fhrPYhgMDYtvcPxjgy/gmi7D6REY1fB6FitXN3EQZm5lKR4WK4F2b37ddzxeNg/GRCa1KoH+yo7VLM7Yx4MDJ9A7JArDMLix24h64z5NWc/BsjwOluVxZ/cJRPsENbrur1d/TJXbSXZlCa+NuabFcf3cRHj5E+Hlz+HKUvoGxzQ94agjyfLtRTX9zneXZOPGxMrZ13qlIyiJLiIiIiIiIiIicoZzud3sLMohOSAMzwYS6ieyW2wMCGlei5RKl4Ml2TvpE9SJWJ9gADbkpXD98tfwtHjw6YTb6ewXwp8HTedXKz7hpZ3LeWbkxST4N+8Q1TJHNX9dvwCA57et5NmxF5x07IXxg1iTe5B+wZ2IOlJF7zZN8qrKCPfyqzd+cFg8y3P2Myysc7NiaQu36eb1vSsodlTwi+7j6lX/nwp+Hp78MO0Oyp3VhHgeO5B1c0Ea/96xiMnRPbk8cQimafJj9n4GhXbi3yMvIcEvhFAvX+7rNZ1o7yDGRnTDarS9t30dauciIiIiIiIiIiIip8vD677jf/s2MDA0lo+mXNeuaz+xfR4fHFpNkIcPC6bcj81iZW9JDm7TpMJVTUZ5IbE+wWwryOSHjN0AfJWyjTt7j23W+j42DybFJrMs8wDT4ro1OrZfcCe+mnRXnWu3r3iPxVl7uLXbaH7dp+4Brq+MvprC6vI6CeWOsib3EE9smw/UtMu5IrHxSv6O4mX1qJfAf27nEn7K2ceKnP1ckjCI+em7uHP5xwB8MeVmugdGAtDJN4Tf9mlD3/PGHG3loiS6iIiIiIiIiIiInGoHSvIBOFRa0KZ1ypzV/GL5e1gNKy+MuhxPqw23WZP1NI/Lfp4f15+cymL8PbwYEpoAQO/gaMZGJpFRXsR5cb2avadhGLwy/lJM02xWD+4tBWn8dHgPF8UPJsIrgPV5qQCsyUupN9ZiGKckgQ4Q5xuMn82TSpejXpuc7IoSHt00jwS/EH7de2KbD15tqSkxPfkpZx9TontgNSy1P1MA96nKap/FleiGaZpn4WOJiIiIiIiIiIgcU1xcTGBgIEVFRT/LA0rTSgt5f/9GpsR2o19oC3phn+CRjfN4e98aAG7tPpp7+0ykwlXNwswd9A3uRLxvaHuF3CqmaTJ63mOUOquYGNWTp4ZeyY/Z+/g2bRtzugyjR1DDPd5PlVJHJU7TTZDdp871Z7Yv5j87lwLw6cS59AqKbvHa+4vz2Fecx4SYZGyWlrdacZtuLEdatJimyaLMvfh7eDI0vOG++U1p7u/M0XFJv38Mq5cXrspK9v/1dz/b37WGqBJdRERERERERETkDNfJL4h7+41v8zpDQuNrk+iDjvRM97bamdGpf5vXbq4DJXk8tW0xw8I7c3WXIfXuR3oHUlqSQ8yRnuhjIrswJrLLKYuvMX4eXg1eHx2ZxGt7VhDrE0hnv8Y/iMivKifY7l2nKr+kupJZ371KpctJlK8vg8NjeWLYhXhYrM2OzXJcj3PDMJgY07XZc9uDYR57nW2URBcRERERERERETmFvkzdxF82f8nUmN48OvDCDt1rYcYelmTu5d6+Ewiwe3FeXC96BkZgtViJ9wvu0L1P5oWdP/Jt2na+TdvOzLjeBNq9a+8ZhsHbY+ayv+Qw0T6BzW4Bc7oNDo1n3fkPYMHAMAy+SNnChrw0busxhkhv/9pxf930Hf/du5oL4vvxf0Nn1153Y9a2YMmuKGFe+g5uKhxJ/5DYDov53YPL+ShlFbd2nczU6L4dts/ZoJ2PYBUREREREREREZHGfJ22mQqXgy9TN+Ey3R22T35VGXOXfsjbezZw3ZJ3aq8nBoS1awJ9XV4Kj26ax+6inGaNHxOZhAWDJP9Qrlj8Cq/s/qnOfV+bJytyd3Huwr8xZ/nzVLudbY7R4XZx04/vMO7bp9hSkNHm9RpiNSwYhkF+VRm/WfMZ7+xfy3M7ltUZszznAAArDx+ocz3Q7s0nU67n/v7jSQgIYnREEj2OHAZ6vL3Fh3lp149klRc3K6Yql5MyR3WD917cs4CDZbm8vm9xs9Zq0lncE11JdBERERERERERkVNobrdzGBQSz319zsVqdFx67vjDLTvyoMu7Vn7EW/tW84f1XzZr/Kz4vmy88AGCPT05WJbPszsW1xuzKm8fANuL0nlmx8I2x3iwNI8fc/aRVVHMN2nb2rxeY/w8vEjwCwGgX0jd/vV/GTSD8+P78rchs+vN6xkcya09R/HDtDt5fezVeFrrNxG5+ad3+Ne2hTyw9rMm48irLOOcL//D4E+fZF1uWr37cxLHEGr348qEUc18ssapnYuIiIiIiIiIiIi0i8GhnfnvmJtaNCe7ooSM8kIGhHRqdnuTILsPb024kqVZ+/hlr3NaE2qz9AqKYmn2XnoHN/8wTS+rB1d3GUb6lkIu6jyg3v1f95jOdT+9gsNlUuVqWSV6tduFBaPO4Zxd/MO5pPNA9hTncEnCwBatB7Awcxf3r/2cUeGJPD38kkZ/BnaLla8m30qRo5JwL7869waFxjEoNK7F+x8V4eVPVkUxEce1iDmZAyX55FaWAbAhN53BYZ3q3L8peQI3JU9odSwNOgsT6KAkuoiIiIiIiIiIyBmt1FHFjPnPUeKs4nf9zuW65OHNnjsqMpFRkYmt3juzIp+v09dxTkRvugXENDjm+ZFXkF5eSLxvy1rEzIzrS5xvEI9s+hqH6eS+PufW3usTFMf7Y+9gS0E602J7114vqqokt7KMLoENH965p+gwly18Ay+rjU+n3ESUdwBQU4n/18GzWhTf8b5O3UaJo5LvMnZQ4qgiwN7wAaNH2a02wq1+jY5pSEFVOXct/xSbxcIzIy/E/4R9Xh87h+2FmfQPqZsQz6goYH9JDiPCkrEdOYx0UFgn7u5zDrmVpVyedAoOjj2L27koiS4iIiIiIiIiInIGq3I5KXPW9LXOqyw9pXs/uvUj1hfs5/P0NXw57ncNjrFZLHQ+0r7kZFLL8vnv3hWMiUxmfFT32uvvHljDzuIsdhZnMbfbWILsPmzOz8DEpH9ILMkBEbVjSx1VTPjsRfKrKvjHqPO4NLlfvX3W5aVS6qyi1FnFdSv+yRODr6dPYFIrn/6Y67uOIL28kDGRXeok0KtdTu5b8zmHK0t5YtgFRPsEAtRWzzfUkqUxC9L3sDznIABLs/YzI75Xnfu+NjtDwzrXuVbhquaKZf+h1FnJ3OQJ/KLbJKDmg4Nf9hnTov3bQu1cRERERERERERE5LQI9fLljbFz2FmUzWUJg5ocv7swh1t/+oAYnwDeGncNFkvr+65HewdDAUR7te0g0ie2zef7jB18eHA9a2f9Do8j1dKz4/qz8vB+hoUnEujhzdrcFK5c9CYA74yfw7DwYwnjkuoq8qsqANhfnN/gPjPjerMqZz9LczdgWspYdnhjuyTR+wbH8N74G+td35CXxrdp2wH4KnUbc7uP4lBJAbO+fgMT+Py860gKaPwDhuONjU6iW2A4NsPCiIjOTU8A3KZZe/hqpavhQ0RPCVWii4iIiIiIiIiIyOkyPDyB4eEJ9a4XVpfja7PjYbFR6qik1FnFnzfMI7WskNSyQr5J287M+D4nXdfldvP39YsJ8fLhtj4j6t3/ba+LuChuBEl+UZimyXdpu/CxeXBOdJcWxd87KIbvM3bQLTAC23GHqY6M6MLiab+p/b7yuP7nlSf0Qo/2DeD5cRews+AwN/Ua2uA+fh6e/Gv4xTy/z2BvSRozotvn0MyT6RMSw8CQTuRWlTIxuhsAW/OzKXZUAbAlL7M2ie42Td7Zv4Yql5Prk0fU6dl+VKS3P99Ou6VFMfjaPPnvqFvZUZTBtJj61fnHc7hdHCjOp0tAKNY2fLjSEFWii4iIiIiIiIiIyBnlu4yt3L/uA2J9gnlt1I1cuPAFih0VXNBpMKsOp2AzLAwNi290jUfXLuD1nesACPfy5eLkvnXu2yxWegXWHIT5beoO7lz+CQAfTbqegWGxzY51brexzOjUl3Av/0YP5RwTmcQLoy/DNE3GRtavIJ/euQfTO/cAYF7qTh5c/Q1TO3Xj78Nn1o4xDIPbky9ucH3TNFmTm0KYpx9JAQ33VW8JX5ud9yfeUOfa5E7J3NhjCG5Mzo3rVnt9WfZeHt00D6g5IPT8+LrvdVt0D4ime0DTB7vOXfIRSzL2c0lSX/4xcmaT41tElegiIiIiIiIiIiJyJtmUn4oJpJUXcKAklyJHTauTeP9ANlzwG7ysHnhYa9qm7CrK4vPUTZwf158egVG1a3jbPGq/9jru64Z4HenvbQD2I+u2RIxPULPGTYrp1vQg4NODWyh2VPLRgc08MmRas/qPf3poM/ev/hIPi4UF0+8gxjewWXu1hKfVxh+HTq53vZNvMHaLFZfpJqGJHvIdZU9hLgC7Cg+3/+JKoouIiIiIiIiIiEhH+zF7Ly/uXsr1XUYxKaZHo2NvTB5DldtJz8BoRkZ04S8Dzie1vIBrkobj6+FZZ+ztK98ls6KIJVl7+HrynbXX7xs4jnBvX4I8fZiR0Ph+E2K68v7Ea/Gy2ugdHNXgmBJHFb42O5ZGqs3by83dh5NdUcrU2G7NPsCz1FHTM9zpdlPldjYxun118Q9j0bRf4TLdRHoH1LnncLtwut11PtToCM+fcxFfHdrBZV0ab/vSGmrnIiIiIiIiIiIiIh3urlXvUel2sik/jc2z/9jo2DAvfx7qN6v2+4tPcuhoalkB6eVFWIyavtzHMwyDG3o23F8coKCygvd3bGFETBwDIqMZEh530rH/27eOP63/liFhcfxv/LWNtm1pD0Mj4vls6g1NDzzOVV0G4+dhJ9onkET/UCpdVWwv3kcP/yR8bF4AVLmczU7Kt1SYl1+9awVV5cxe+DxF1RW8MeY6Boae/D1uq36h0fQLbbrtS6ucxZXo7ds9XkRERERERERERFotwO4NgL+HV7utacWC6TZwuQ088Gx6whGLM3cx7qPn+NuqpVz55ftUu1xATV/xeak7+Sn7QJ3xK3IOArA+N41qt6vd4m+uQ6X5TPrmP1y64HVKjhzseSKbxcJFCf0ZGZEAwN93vsqftz3Ho9tfAODBtV/Q97PHeW7HslMVNgdKczlcWUq128XG/NR6951uN/uL8+p9AHKi3UU5XLXkdf6+eT5mE2M7xFmcRFcluoiIiIiIiIiIyCk2L207f944j2mxPdhTkoGJwcujruHrSXfyXfp2psT2bPZaGWWFzP3pAyK9/Hh5zBVYLXXrZqN9AugbGMfG/HQu6Tyw2ev+adOXVJjVgJ0gT2+sRyrLv0rdzt0rPgPgsyk30jekprL57t7jsFusjI1KqlfJvfLwfnYWZXFpwmB8bZ4dUu29IGM3KWUFpJQVsDk/ndENHEx6olJneZ1/F2TuBuCHjF3c3nNss/d2ut0YBliNuu99pdPJP9csw4LBb4aNbbCX/ICQOO7oMY7cylIu7lz/rwlu+/FDFmXu5fKkgTw29LyTxvD2/jWsy0tlXV4qc5KHEePT/v3eG6N2LiIiIiIiIiIiItJu3juwnryqMv63fx0WiwvDgGd2LOK3fadxUULzE90Af1z/LbuLcthdlMMnhzZzaeKAOvcNw+DDSTdQ6qzG/4Re6X/bNJ8vUrbwi55jmZNct63LgOBOHK7ciZ+vhW+mz6lNzntajqYUTf65ZSH/HXc1AF0Cwnhi+AX14suvKmPu8rdwmSb5VWXklFfy8cFN3NtnArf1HN2iZz2ew+3Cw3IsKX1eXC8WpO8m2NOHIWHxzVrjgR43sSJ3I8NCa3qEPzpoJp8d2syN3UY0O44DJXlcuug1bBYLn0y8mRifQP659Xs+T93ElJD+vLZ5MwD9I6KZ0aV7vfkWw+DOnuNPuv6Owuwj/2Y1Gsd5nXrxXfp2+gXHEOnt3+z4240q0UVERERERERERKS93NR1JIcrS+kdHMVXaRsBGBme2Kq1xkZ2YUnWPgxgcGinBscYhlEvgQ7w2p6VAPxzy4J6SfSnh19Balk+Ud6BdZLVUzt1p19IFFsLM1iTexDTNBvtf+5pteFr86TYUUm4lz/v7NkEwPz0XS1Kou8tPsxLu5YzIbor3xzaxTcpO3lo0GSu714Td5R3AO9MuLbZ6wGEeQYzK3bCsWeL7cHU2MYPWD3Rhrw0ih2VAGwpyCDGJ5D/7luJy3SztTQFPw87JvDmrvUsSN/L46PPbVEV/n9GX8xXKdu5LGlAo+NGhCeyauZ9LYq9PakSXURERERERERERNrN2KgujI3qAsB9vSeCYRDudfLq4eLqSn6z4ksMw+CfI2fVSYhf120YUzv1wM/D3uJe6p19QzhUls+gkxxmGecb0uD1Pw+ezn92LOXc2J5NHiDqa/Pky0l3kFFeSL/gToR5BvL5wc3c1H1kg+NN0+Sl3T+RXVHC3b0mEGCveaYnti5kQcZuvkzZium0YWIyP213bRK9JXYVHubWxR+TEBDMi+MublNrmXM79WR9Xio2i5XxUV0B+FXPiXyRuok7ep/D8HGJ/HfHeh5fuwSywYWb+wadQye/5rVbGRAay4DQ2FbHd8qoEl1EREREREREREQ6Qrh3QJNjFqTv4Yf0PQAsSt/L+Qm969yP9ml6jYbMn34HpY4q/BqoUm9Mv5AYXhx9RbPHh3v5135IML1TT6Z3OnnP980F6Ty5bSEAMT4B3Nytplp9eHgCCzJ2MzC0E5d2HsTXKTu4s3f9SvasimIyyosYGNLppAn+rw5u51BpAYdKC9hdeJi+odHNfpYT+drsPDp4Zp1rN3cbw83dxtR+Pykumde2ryO3oozPD2wnr6qMt6cce/+qXNUUO8oJ9wpqcj+n28WHKSsJ8PDmvJiBTX6IccooiS4iIiIiIiIiIiKny8jIBBL8gzEwGB7RvH7fzdXSBHp7O1xRxm9XfEuYlw/39i2ltPhpgu3TKHUY9A851p7m+q7DuaBzPwI8vLAYBhcm9q23VnF1Jed9/wKlzioe6j+tXouaoy5M6sPijP0k+AfTIziiw54NYHdRDq/uXsljYyfz7w0r2ZiXSWf/4Nr71W4nN635O9mV+dzb/QqmRQ9vdL2v0zfwrx1fA9DJJ5T+wZ07NP7mMo57nW2URBcRERERERERETnDRfn4s3DWL053GAC43G72FuXRJTAU25HDRtvi0/1bWZC2F4BL437A25LKM33fp2fMunoJ/iC7d6NrVbmdlDurgZoDTU8mKSCUL8+7oY2R17Uoezt/3foZ4yN68oe+F9Zef3TD9yzPOcjXqTtYM/se9hTm0jsksvZ+mbOC7Mp8APaWpgGNJ9GjvIMwAJthJcTu167P0CaqRBcREREREREREZEzXbXbRZXTgb+9Zb3RW+LGRR+yJOMAXYNCmD/rljavNy4miRe3rSLU04eYwDsoKH2KML85raqQD/fy442x17C7OIdLEwYCNT3WgZO2PTFNkwWZuzFNk8kx3VvdHuWLtHUUVJfxadpa7u81C/uRPuvDIzqzPOcgQ8Li8LZ50C+sbuuYYLs/D/acw66SQ1wRP7nJfYaHJfPROffgafEg0rt5fdVPBR0sKiIiIiIiIiIiIme0nIoSxn/7DE7TzYN9p3BDtxEdss+G3AwA9hTmUVRdwbqcdL5L3c3NPYfRNSisxet1Dw5n3WV31X4fE3BhI6ObNiIigRERCQDsK87lqsVv4GOz8+HEGwnzql+5vTznALcv/wCAV8ZcyTlRya3a95qEMWRVFDEhsldtAh3gjl5jmRCdTGO5+YmRg5gYOajZe8X7tvx97nBncSV62//eQkRERERERERERNrNU1sX0++Tv/P67lUtmrcuLxWn6Qbg+4ydrdr7wbVfMOjzv/PSrp9OOuaeAWPwsMHw6Bj8bZ7csexTPti3ib+s+4HvMzbx2NZPyawoqDfPdBfiKrgTV+FvMc2qVsXXUqsOH6SguoL08iK2FGQ2OMbL6lH7tfdxX7fU4NBE3h1zJ7d0nVjnemppPlf9+AqXLHmRhZmt+7mcSsXVlTy2eR7v7lvT8slnYQIdlEQXERERERERERE5o7y3fwMVLgcfHNhQ5/obe1Yx/ptn+OTgpgbnTY3pwdCweGJ8AvnjgGl17pU6KjlYmtvk3h8f2kSps5r/7Fh20jHXdx/Knit/y/uTr8NisTAwLBaA/qHR/GHTB3yauoYXdv9Qb55Z+RVm1TzMyo8wq1fUuees3onbXd5obKuyU/gx80CTz3C8GXG9mRHXm8sSBzI6IrHBMYPD4vh44k18NPEmhoY3fkjn+sPpTPjsRe796avaNjGNeWTjt5w7/1kcbhcAOZUlLYq/I2SUFfOfbT+xqzCnwfvv7F/NW/tW8cT2+j/DxpyKdi4FBQXMmTOHwMBAAgMDmTNnDoWFhScd73A4eOCBB+jbty++vr7ExMRw7bXXkpGR0aJ91c5FRERERERERETkDPLb/pN4e+9abusxus71F3b8SH51Oa/sWs5FCf3rzbNaLLwz7rp61ytdDmYu+A85lSX8sf8MrkgcetK9uwdEsKs4h3EtaGny1qQryK8qJ8TLh3Wlm9hTkkXfoLh64wz7SLCEguGD4dG39npxwS+pqvgEsBMatQOLpX4/93WH07hi/jsAvD7hMsbHdmlWbIF2b54cflGT4/qGxDRrvQ/3buZAcQEHigu4d8A5xPgGNDr+y9QtuEyI9wrhhq4jmBLdk0vm/5dKl4NXzrmcKB//Zu3bnu5f9SUrcg7xzt71LJ/9y3r3+wbHYMEgyNOXPS1Z+BS0c7nqqqtIS0tj3rx5ANxyyy3MmTOHL7/8ssHx5eXlrF+/noceeoj+/ftTUFDA3Xffzfnnn8/atWubva+S6CIiIiIiIiIiImeQCzr344LO/epdv63nGP67ZxU3dx/VovXKndUcriwF4EBJ49XoX0659aT30suK2JCbzqTYrnjbjrU9sVoshHvX9Bp/c9QdFDnKCfWsnxw2bF2whq+s+fq4BuHO6qMV99W43XlYLLH15h5f9G2e4p4hDreL4upKQr18uSy5P6uyUxkUHkt0MxLgfxwwnY8ObuDW7mMYFZHEd2m72JCXDsCijL1cmTywo8OvJ9qnJvEf5V2/PzzAmMhkfjzvNzjKK4jkoWav29GV6Dt27GDevHmsXLmS4cOHA/Dyyy8zcuRIdu3aRffu3evNCQwMZP78+XWu/fvf/2bYsGGkpKQQHx/frL2VRBcREREREREREfkZuL7rcK7vOrzF80I8fXlm+OVsLUjnuuSRrdrbbZpc+N0b5FaWcVmX/vxt+IwGx9ks1joJ9PU7U3ns9R8Y0aczv5kzsTZ5Xl5VzeMfLcJiMfjN+f+EsgfxsI/GZjuWQC+qqsTTasPLZmNIRCfenXI1DreLsdENt2XpCE63m/O/f5XdRYd5fOgMLksawMILbmn2/FlxfZkVd6zqflRkAqMjE6h0OZnSqWtHhNykx4adx+VdBtArOPKkY4I9fSiucrZs4Q6uRF+xYgWBgYG1CXSAESNGEBgYyPLlyxtMojekqKgIwzAICgpq9t5KoouIiIiIiIiIiPzMfZu2jX9u/YFpsb24r++UevcnRfdgUnSPNu1xtAe4uxm9wI/69ys/kHK4gJSsAm65aBQBvjWtWhZs2ssXa7YDMLrnDKYOWFRn3vK0FOZ88RHBXt58f+V1hHj7MCKyeVXD7anMWcWeosMArM9N47KkAW1az9/DkzcnXNXieetyU7ll+bsk+YXx9rhr8bS2Pq3rYbEyJLx+u522OrESvbi4uM59T09PPD09W71+VlYWERER9a5HRESQlZXVrDUqKyv57W9/y1VXXUVAQOOteI6ng0VFRERERERERER+5v604WvSy4t4dc+KZh142VIWw+Djc6/jXyPP5+EhU5s1p7rKQepXm7GUVxNvWmoT6AADk2II8fMmPMCXfp2j68xzmU7WZ6fhMk1yK8pJKyk+celaGeVFPLJxHj9k7GrdgzUh0O7NP4efz+VJA7ir99hWr3OwJI8LfniZX674qPaQ0RMtztrF7AXP8fqe5fXuLczcRYmjik0F6RwqzW91HB3qhEr0uLi42gNAAwMDefzxxxuc9vDDD2MYRqOvo/3Lj28DVLutaTZ4/UQOh4MrrrgCt9vNc88916JHUyW6iIiIiIiIiIjIz1zf4Bh+ytlPiN2nWQnF5nK53ZQ4qgjy9CbeL5h4v+Bmz/Ww2xgzJJk1P2zh1qeurXOvU1gQCx65FcOomxgtc+bz3/2/oMyzist6XUtyUBx9w0/eduSJrQv5MnUr7+5fx4bZ9+Nl9TjpWKipoi+qriDY06fZz3FBQl8uSOjb9MBGfJ6yhe2FWWwvzOLJrcHc3Wc8dou1zpiXd//InpIcntmxkBu61u17f0XSYHYW5ZDsH0ZyQHibYjlVUlNT61R7n6wK/c477+SKK65odK2EhAQ2b95MdnZ2vXuHDx8mMvLk/0egJoF+2WWXceDAARYuXNiiKnRQEl1ERERERERERORn79Ux15BWWlh7aGR7cJsmly58nc35mTwyaDpXJQ9m78YD/N/1z9JtcBfuefk2LJaTN7owDIOH374Dl8tNlelgYdZWBgQnEOJZc6ClxVI/2Z9XlUK5qxCrFa7ob2VQyNB6Me04nENicAg+Hh70CY7my9StdPEPw25pOtV53bI3WZ17iPv7TOambi07oLUtZsT15vNDW0gtK+TlXcsJ8fTh5u51+9NfnjiEQ6V5XNS5/mGjcb7BvDqm5W1gTqkTKtEDAgKalawOCwsjLCysyXEjR46kqKiI1atXM2zYMABWrVpFUVERo0ad/Gd5NIG+Z88eFi1aRGhoaHOepg61cxEREREREREREfmZeGj9V1y+6HUyyovq3evkF4S1kaR2S1W6HGzNr+k1vTY3BYB5ry7kwOYUvnt9EVkHcuqMP5RdQF5xWb11rFYLf9r0IQ9s+B+/WP1Kg3s53W6qXU46+fRleOgV9A+aQYWjO7f9+D7z04+1avnH8mXMeu9tLnj/HUzT5IauI1gy/S4+mXQzliMV7SXVVazOTMPhqts2xWW62ZCXBsDq3EOtfFdaJzkgnPcmXI+n1QMwCPPyrTfm/Lj+/Hje/dzTu35P+5+DE3uit7eePXsybdo05s6dy8qVK1m5ciVz585l5syZdQ4V7dGjB59++ikATqeTSy65hLVr1/LOO+/gcrnIysoiKyuL6urqZu+tSnQREREREREREZGfgeXZ+3n/wAYAfrP6U/43/vqTjt2Ql0KkVyAxvoGt3s/HZuefw2fzU/Z+bu81BoBhlw3lx6/WENvXIMX7aUKcv8HLFsqiTfu456Uv8LZ78NmfriciyK/OWg6zJqFd7XbW2ye3spTZP7xMqaOK/42/jrERNwBw/vyX2VGYzYb8dKbE1iRJDxUWApBeXIzbNLEaBtE+dZ/xsi/eY0feYa7o0Ze/jTu39rrVsPDEsItYlLmbm09hFfpREd7+fHfubeRWldE/JPaU79/hTqhE7wjvvPMOd911F1On1vTlP//883n22WfrjNm1axdFRTUfMqWlpfHFF18AMGDAgDrjFi1axPjx45u1r5LoIiIiIiIiIiIiPwMJ/iEY1OQo+wTHnHTcE1t/4JU9P2EAX0++k0T/uu0r/rD2K7YWpvOPoRfSNTCizr0Kp4MtBekMCY3HYrFwfuc+nN+5DwAFVWXcW/E5/q94cFnCj2RUQGBxAj1DbiU9ryZpWVHtoLCsol4S/c/9LmVJ9naGhSXXi3d30WEOV5YCsC4vld7BNQeNTontzo7CbKbEHKsy/vWoUWwrySDY34tSZxWBdu966+WU1ayVdeTf450b25NzY3vWfl9UXcEDq7/EbrHyt2Gz8LHZG35Tgfnpu/hw/yZu7D6cERGdTzquMbG+QcT6BrVq7pnOMM3aV0cJCQnh7bffbnTM8QfrJiQktMtBu0qii4iIiIiIiIiI/AzE+ASx5LxfkVFWxKCwuJOO21qYAdQk2w+W5tZJom/OT+fj1LUYBty/5jM+nXxLnbnj5z1BibOSPkGxfDB+bp17RY5yypxVOFy+uMww7JYSwr1relNfOrYfTpeLyCB/usXWP/gy0O7D+XFDar9/f/96Xt+zklt7jGZWXF/mdhtJoaOS0aFdeGzZYoZ3iuOXvc7hlu6j8LQeS2FuK8okzcgjrRQWZ+xjdkKfenu9NfNSFqUc4JJuvU/+Zh4xP30XP2TsBmB6XC+mx/U86djfr/mGvKpy0suK+Hra3JOO+//WKahEP12URBcREREREREREfmZiPIOIMq78cMa/z74Qu5Z/SGJ/mFMiO5e514n32AsWDBx12spYpomJc5KAA6V5tVbN8EvnL8NvJzUsjxmJDyMl9WKxfAgo7yIp7cvom9SDNO79GjWczy7fSnZlSX8Z/syLuzcn/v6TQbgN99/yyc7t/P6xg1suu1OfDw86swbE5VIj8AIDMNgdFRCg2v3Co2gV2hEg/dONDIigVifQDwsVoY08sEEwNRO3Xl33wbO7XTsPTVNN5jlGBa/k85zul18mbqZCG9/RkfUr8RvrsWZe1iZc5Druw1v8v/A6dDRPdFPJyXRRUREREREREREziIR3v68Pe7GBu+FePqw/Lz7yCgvomdwVJ17hmFwf59z+fTQRu7tPbnB+VOj+9a79srun/g8ZTOfp2xmSkxPIr39AViWvZf71nzGsLDO9AqMxttm59rkoRiGwQ3dRvDyruXc0G1EnbV6hNVUsXcODMTTaq23V5iXX6urwKvdLg6W5JEcEF57CGmsbxBLZv6ydsy/ty3ji0Pb+N2AyUyIqZvwfnTIeTw0cGptZbxpujHzLwfHZgh4DMPn4gb3/ejQev6y+WsAPp9wO8kBzUvwH6/S5eD25R/gNN3kVpXxz2EXNGueaZo8u+1HDpYW8Nv+Ewn3Pnmyv81UiS4iIiIiIiIiIiJng0BPbwI96/cSB7g+eSTXJ49s0XrDwhN4b/86ugSEEezpU3v9i5QtFFSX813GDr5N3QkYdAkIY0xkEjd2G8GNJyTQAW4aOJgpSclE+vlitVhaFEdTblr2DqsOH+KKpEE8MmhGvfumafLvbctwmSav7VpVL4kO1Gktg1lek0DHxKxecdIkur+HFwA2w4K3zaPBMU3xsFiJ9wtmf0ke3QObn4TfVXSYp7YuA6CTbyC/7juuVfs3hyrRRURERERERERE5KySX1nGZ4e2cGFCvzrJ75aaFtuLsecn42W1YTWOJb7ndBnG/pJckvzD+PLQdmyGlU4+QY2uZRgGnYMaH9Na+0pyAdhbfPike9/YbTifH9rK1cmDm1zPsPhBwKOY1asw/O6svb4y5yD/27eWyxIHMiaqCzM69SXGJ5Bguw+xPsG149ymyS9XfsS63BT+NfwiRkUknnQvq2Hhs8lzya4oId43+KTjThTnG0Rnv2Ayy4tbfRhqs53FleiG2R7Hk4qIiIiIiIiIiJzBiouLCQwMpKioiICAM6+f9Okw6NN/UuyoJMzTl5Wzf93seaZpct+6D1mTe5DHB13MqIguTc7JrijBZlgI9fJtS8htsik/ne/TdnBp4kASjjtstb2dO+85DpTmEesTyKLz7jrpuJyKEsZ88xQAlyQM4LHBszokHpfbjdN0162ib4bm/s4cHTf48r9itXvhqq5k3fu/P6t+19r3byJERERERERERETktFlxeDdLs3fQnLrZCpcDgDJndYv2qGnRso386jK+TtvUrDmR3v4dmkCvdDibfOb+IbHc128yCf6hHCrNp7yFz91c46O71vn3ZMK9/Lip60j6BcdwTZchHRILgNViqU2gP7t9GUM++yfv7F3b/hudxZXoauciIiIiIiIiIiJyFtiQf4C71r4BwJ3dzmNhxl4mRffg2uT6vccBXhlzOa/uXsUveoxu0T4hnr7c0GU0q3MPcFXS8LaG3Wavr17PYwuXcG63ZJ69qOlq7rf2rebRTfOI9Qli3tQ7sFvqH2DaFg/2n8Jdvcfha7M3Os4wDB7o1/ABrs1V6qhkXsZWBoV0Jsk/vMnxb+1dQ5Gjknf2rePq5PZP3J+N/dBBSXQREREREREREZGzgoflWKrv+/TtrM/LZE3uIa5IGtpgonh0VBKjo5KAmhYtnx7YSn5lBdd2H4zd2nhi+Z7eU9s3+DZYuHc/AIv2HahzPbsym2JHCcl+XTAMo/b6niM90TPLi6h0OrDb2yeJXuVyYrdYMQyjyQR6e/nb1m/4Im0j/jYvlk77bZ2e9A25p8943tq7ljt6jmn/YEzz2OssoyS6iIiIiIiIiIjIWaBPUByvj/wFTreL1LJithV8yaTo7s2qtN6Ym8G9y78CwMfmwVXdBnZ0uO3m/gljeGHFGqb1ONY+Ja8qn99t+SNO08ktSTczOmxk7b1f9RyPv4cng0LiCLB7tUsM7+1fx5/Wf8vYyCReHnNlnaR9R/K21iTrvaweNGfHy5MGcXnSoA6JxTCPvc42SqKLiIiIiIiIiIicJfoExQEwIARmxfVr9rwwb188rVaqXC5i/QI7KrwO0Tc6iv+c0Mal2l2N03QCUOYsq3Mv1MuX+/q0rY3KiRZn7sXE5Mfs/ThNNx5G+7aIOZn7ek9jTGRXegXGYGmiCr3DqSe6iIiIiIiIiIiInA1Kq6vwsXngwsRmWDAMgzi/IBbP/gUVTgeJASHtut+yw2vYULiNiztNJ9Y7svb6E1sWsDBrD38aMJ1h4Z3bdc9o7yju634PedX5jAkb1eb1nt22jPcPbOC3/SYxI753vfu/6j0Om2FhQkxXPE5S+e90u/n9ui9JLS/k70POJ843uM1x2a02xkV2b/M67cFwH3udbZREFxERERERERER+f/EH5Z/x9u7NuFjs+ERUEZiQCjvnTMXL6sHUT7+7b5ftdvBM3v+ixs3VS4H9/WYC0C5s5oXdy8H4ImtC3lj7DV42zzaZc/dJXv5IXsx48JHMy58bKvXcbrd2Cw11d0v7PyJSpeT13evbjCJ3jMoimdHXdroetsLs/g0ZTMAnxzaxK96jW91bGeks7gS/TTX+IuIiIiIiIiIiEhrZJYX8dKuZew9clDm5vxMXtu1muLqypPOWZRec/hmudNJtdvFnuIcMsuLWrV/TkUJNy97l9+t/QqH29XgGA/DRlf/BAD6BHarve5js3N54iBshoW1h9P59crPWhVDQ1498BY/5a3iuX2vtXqNN/eupvenj3Hv6k8BuLPXWOJ9g7ip+4hWr9ktMJzBoXFEefszJaZHq9c5U6knuoiIiIiIiIiIiJxRHlj7KWvyDvH+gXV8M+VOrlzwFpUuJ3uKDvP4sBkNzvnz8Mn8bvl39A2PJCDATdeACBL8Qlu1/6eHtrAkax8AF3Tu22BLFsMweLTPPZS7KvGz+dS595dBM1iRlcKBknyKGkn8t1SidxfSKjLYnenmp7RDjO7U8lYx36fvxMTk+/SdANzWczS39Rzdpri8rB68O/76Nq1xRjPNY6+zjJLoIiIiIiIiIiIiP0OR3jXtVyK8/bEaFoLs3mRVlBDi6UO1y8mqw4foGxJDkN27ds7k+GQmxye3es/Xdq/k+7SdPDRwGuOjk3l99yrCvHzpGRRVb6zbNPnb5u/ZU5LDIwNn1kuiA7x+zpUszNjD9Lj2q8we5j+Zfy7MwOmysqtTbquS6Pf2mcjzO5cxI65+6xZp2NlciW6Y5ln40YCIiIiIiIiIiMhxiouLCQwMpKioiICAgFO+f2ZFAfesfYvcynJszmCeGDGbXsF1E8+Z5UXsKsphTGSX2l7cjal2u9icn0avoGh8bHbyKsvYW5zLkLA4Hlz3JZ+lbKZrQDhfT7mtwfmVTidjv3mSIkclv+s3heu7Nt6qpMxRzYDP/g+AGO8Alsy8q9Hxe4pzmPnDCwDc1HUk9/edUm+Mw+Xi7S2bCPH2Znb3nk0+81FF1WV8lr6S/kGJDAhOqnPPNE3e2rqRnPIy7hg0HG+P9um1/v+b5v7OHB03fOZfsHl44XRUsuqrh07b71pHUCW6iIiIiIiIiIhIG20sOEipo4LR4T0wDKPe/aXZO9hbmgVASXkVH+zfyMODp9XeL3dUM/m7/+Bwu7g0YSB/HTyzzny3abIk9QDxAUF0CQoBwG6xMiTsWJV1qJcvoV6+ABRWVwA02iZlU346RY6a+x8d3Mj1XUewvySXW358j3BvP14dcxU+NnvteE+rFZthwWm66eQb1OR70tk3hIEhndhXksukmO4Njvlwx1YeWbaoZnxgEAOioptcF+D5vd/wVcYaPAwr347/M15WO6Zpsjknm2g/P67tO7BZ6xyv1FGF0+0myNO76cFnsSqXk18s+ZT9OZktmnc2V6IriS4iIiIiIiIiItIGO4vSuW31iwBcmzCJ27tPrjdmfGRvXt67gPzKSiymjQsS+ta5v6fkcO3hnNsLM1meu5UX9n7GpMjBDAsaxOXf/I/iUheeVisrrr6VEO+6rVGqXU7s1mOpvscHz+LrtG2MiaxbpX28oWFx9AmK5lBpPvf2mQjAD+m7SCkrIKWsgK0FmXX6nNssVpbOuIt1eSnNOhjTbrXx3vgbGx0T4xdwZKyVUO/67V5OJtIrCIAQT39shhWAd7Zu4qHFC/C32/nx+rkEeHo1e730siLO/fJVKp1OPjz3GgaGxzR7blO25maTVVbCxPguWBr4gOVMs6Mgh4Xp+3BXtLBPvXqii4iIiIiIiIiISEOOr/Zen5dKYXU5n6SsY2hoIn2DOwEQ6R1In5Ao1ubvISnIwoDQ2Dpr9AqKYmhoPPtKcvnjgGn8L/VLMivz+N+hHygo8aWkugqw4XS7cZ6QpDz/hxfZVZzNOZHJvDz6KqCmKv3a5GGNxm2xWPhk0s11rs2M78OizD2Ee/nRIzCCTw6tZ0JUd4I9ayrcw739mNapV6vep4aMT0jkh6uvx8duJ9rPv9nzrk+czMiwHsR6h2Gz1CTRs8vKACitrqbC4STAs/lxHCguoNRRDdQkkdsriZ5aUsTsz97CZZr8dcwUru45oF3W7Ui9giOZGteV/dmZpLZgnirRRUREREREREREpEHDwpIYGzKI7UWZ3N3jXP6x7Vu+TNuEl9WDn6Y9iIelJgX3h96XsyBrIyPD6vf+9rBYeWf8dbXfl7vHklGRy6TIwUyJ6MdPWQcxnBZ+O3giET6+debuLs4GYNXhgwB8sHcTT2/5kYuT+nJP/3Na9CwxPoG8O+F6AGYueJpDZfn8faudVTN+36J1WqJLSGiL5xiGQY+AuDrXfjFoKIGennQPDSPSz69F642K6sz9A8dR6qjmoqR2PEzUNDGPffmzYLdaeWn8xTW9zvll8yeax73OMkqii4iIiIiIiIiItIHTdGNU+hHujiHcK4AIr5oWJSF2XyzGsQNCwzwDuLxz85Lao8P7klboZm1mOlMjDD6ceu1Jx16dNJQvU7dwc7dRADy8dj4VLgfPbv2pxUn04+VXlQNQ4XK0eo1TJb+6mF9v+BfVbifTwxs/8LQhFsPg9j4j2z2uuIAgPpt9DZllJUzpnNzu659JVIkuIiIiIiIiIiIiDVqfk8H7e7YA8MnebdzZdxLnRHYjyS8c63FJ9JYoqKzggeXzgJoE799GTuOeFV+wJHM//xgxk0mxXWvHPjRgOg8NmF77fd/QKFbnpBLtE1BnTdM0eWvfSlLK8rmz5wSC7I33IH9uxNU8veMHLk8Y2qpnON6mvAz+tO47RkcmcF//CW1e70S7ig+RU1UAwObCvcR6R1DpcvDbdZ9SVF3O/w25mHCv5reLOcrhdvFj9n56BkUS5R3Q9IQG9AuPol94VKvm/qy4zWOvs4yS6CIiIiIiIiIiIm3QKySCniHhHC4vY0KnJKyGhYEhNQdymqbJjxmHiPD2pXtIOJvzM1iYsYfLEgcQ4xt40jX97Z50Dwpnd+FhhkXGUeas5vND2wD47ODWOkn0E70/5RoySouI8qmbNN5TnMPftn4HQLCnL3f0GN/ocw0Iief10Y0fDHoi0zRZkrWHBP8wEvxCaq//d/catuRnsiU/k7k9RhDk6d2idZsyKLg7UyKHU+WuZmz4AADW5B7k+4ztAMxL38acLiNavO4/tizgjT2rCPH0YdmMu/E40n9dGqB2LiIiIiIiIiIiItKQw5Vl3NhnMDM698DXw17n3od7tnLfsm+xGhaWXDqXG5e8R0F1BRtzM3hj/JUnXdNmsfD1rOvJqSjlm5QdbMrL4K4+Y1iUsY8bujddGR7jVz9BH+UdQISXP3lVpfQLjm1gVtv9ccNXfHhwAwaw4Nxf1X5QcEFCX5ZlHWBkZGcC7V515pQ6Knj70HxivcOYFTuqVft6Wu3c0/2qOtf6B3eid1A0+VXl2K1Q7XJit7YsHVrhrGllU+Vyno254XZlcKSdy+kOpAMoiS4iIiIiIiIiItJKLrebi755k8LqStZmpzIqMpGDRQXM7TcUXw87VS4nAG7TjdPtopNvEAXVFcT7BdVbK7+qjN+t/YogT28eGXgedquNt/as48UdK7BgsPLCu7i7b+t7nAfYvfl+yq+ocDkItLdvJfhR+0tygZpi5OzK4tok+jnRSay58O4G53yStpQPUxcD0DcoiQTf9ml9EmD35t1zbmbawsf5544vSCvP5d5eM1u0xgP9JtMnOJqBoZ2wqwq9caZ57HWWURJdRERERERERESklQzDoNJdkyhPKS3kg+1fAzWV5HcOHMlV3fsTaPci2tefxMAQ3p04hz3Fh+kdVD9R/EXKVhZm7gZgVlwfRkcmEentB9S0d/FqYRV1Q+xWW4ursVviX8Mu5oG1n9ErKJqBoXHNmtPVvxMGBoEevoTaW9d3/GRMTFymG6D235bw8/Dk8qRB7RrT2UoHi4qIiIiIiIiIiEg9lS4HTlslVouBj6eFQLsnRdVVdAmq6QdutVg4v0vP2vHeNg/6hcQ0uNaYyCTCPH0JtHvTOzgagOu6DWFgWCwxPgH4eXh2/AO1UaR3AG+MvbbJcRWuap7e9TlWw8pd3WbxweiH8bba8bbWf0a3aVLiqGxV9fz8HfuwHYxiSo8I7uoxrcEx+RXl5JaX0y00rMXrn2mKHRWsPHyA4WGJHfbXBielnugiIiIiIiIiIiJyIh+bnbndR7Awcw9ze43gyZHRFFVVEh8Q1OK1kgPCWT7rnjrXDMOgf2jDSfeWqnI5+eLQVnoERdI3JLpd1jzqxW2rWJWVyuMjzyXyhANNG7I4ewtfZawBYEhIMhMi+zU4zjRNrlv6FqtyD/Fgvync0LVlh4O+8ONqUnLKKCzM4LGx9nr3i6uqmPjW6xRVVfJ/k87l0l59WrT+meauVe+zJu8gA0PieHvsTad0b8M0a19nG8vpDkBEREREREREROTn7IH+k/lu2i8YGZFIoKdXnQT6sowDPLJ6ASklha1ae1tBJl+lbsXpbnkrkhP9e9syfrvmay5d8F+KqyvbvN5R+4ryeHzdYham72Puok+aNadvUGcCbN7427zZnp9HUXVFg+PcmKzLSwVgZc7BFsd27fCBhPn6cNPIIQ3eL62uoriq5r1IKS4it6KMg8UFLd7nTFF9pLVQtdt16jd3H/c6y6gSXUREREREREREpAO4TZObF3xClctJSkkhr0y6uM79f29fynv713Frj9Fcmzys3vzcylIuXfQaTtNNRp8ibuk+GoADxfm8tWsDU+O6MiIqvna8y+1mXW4aXQPDCPb0qbeet80DALvFisUw2u05A+xeGNR08YhqRhU6QCefMN4d9VtGf/Uvns79kQMlhfxz2IX1xlkNC08Mu5CFmbu5tftosisL+Mu2twmx+/OHXldjt3o0us8lA/pwyYCTV5fH+Afw4ozZ7M7LY1rXZMZ+8iIVTgevTryYSXHJTT7HvJRdVDqdzE7shWEYbMhN54uD27kieQDdg8KbfiPa2dPDLmdx1m7GR3U75XufzZREFxERERERERER6QAG0D0ojM15WfQKiQBgUeYeCqsqOD++D8/uWIIJ/HXT91yeOAjPEw78tBhGTbLbBJthrb3+0Krv+THzEB/u3cKWK++uvf6PzYt5acdKon0CWDrrdqyWuk0obusxij7B0ST5h7Zrf/Vwb1/mnX8jm3MzuTip+e1Q3t6zliqXG8MAawMNMypcVfxj5+tUuqr5ff8bCLL78+6hhWwrOgjA9uJDDAhuOtHdkPScQj5btIVzBndhSnIyU5KS2ZqXTYXTAcChZvzlwKrsFG5b/ClQc5DszISe3LnsMzLKi1l7OI0vp9/QqtjaItzLn0sTBp/yfeHsbueiJLqIiIiIiIiIiEgHMAyDj867hoyyYjr7B7G1IJNbfnwfqGlT0icohs0FGfja7A1Whod4+vLZpLmklBYwPrpr7fVewZH8mHmIHsF1K53zKssAKKyqwGWaWKnLarEwLrpL+z7kEd2DwltceR3nF4xpgqfFg3v6TKx3f1PhLtbkbwNgRd4mpkePYXRYH77OWEmIPYDu/nHN3qvMUc3jaxfjY/PgvsHn8PhrP7BmWwqfL97C98/fToXDQY/gcJ4cM5Os8hKu6j6gyTX9PDxrK/AD7V4A9AyOIKO8mN7Bkc2O7WRSi4u4+osP8LTaeO+Cywn1rvvXBTkVpWzNz2J0VEK9D2BOCx0sKiIiIiIiIiIiIi1lt1pJCAgGag4htRoGLtMk0MOLDybcwKrDh+gaEI6H5cSUd43kgHCSA+ompx8cPJ4ru/Wnk19gneu/HziZ7kERDAuPx26tWc9tmjy6dgH7ivP46/Bp9eacTud37kOPoEhCPL0J8/Krd793QBeS/eKpdFUxOLgXAPG+Ebw98nct3uuLA9t5e9cGAEZGx5MYE8KabSnERwXz0/5DzH3vM2IC/fl87jX42usfQNqQ3iGRfHf+TVS7XPQJjQLgxXMu5lBpAQn+IS2O8UQ/ph0ipbgIgDWZ6UxLOvZBits0ueC718mqKOGa5EE8MnRag2uklOXxn10LGBjSmSsShrc5pkaZ5rHXWUZJdBERERERERERkVMgyT+Ur6beSpmziv4hsQCMikxs8TqGYZAYUD9JG+Tpzc09hpNXWcb9q74kzi+IiVFdeW3nWgDe3bOR+waOa9tDtLNugQ1Xr7tNEz+bD08OvK9d9hkYHouvzQNPq40eweGMuyaJ2RP6Eh8VzH9+XIXT7SaloIiMomK6hoc1P/4Tqu+tFgtJAaHtEvO0pK58v38PnjYb58R1rnPPNE0qXDWtZ8qc1Sdd49W9S5mXsYV5GVs4N6YPwXbfdomtIYZ57HW2URJdRERERERERETkFEkOCGNfUR4HS/LrVCsXVpfjcLsI92rewZyNeWfvOj4+uBmA0ZGJ9AuN4mBxARM7ta5/+Km2pziHKxf/F1+bnY8n3tRglXpL9QgOZ/2Vd2ExjNqq/+S4mgT4nKEDyC4pJTE0mOSw9kmAH7U86yA5FaXM6tyrXo/6pgR7efP6zIsbvGe1WPhw8rWsOZzKjPieJ11jRFgXvkjdQK/AGAI8vFu0f4upEl1ERERERERERETaanVOKld8/zYWw+CL826gV3Ak6eUFzF74HFVuJ2+Mvp7BoZ2bXqgBpY4q0ssLGRoej4fFSqS3H10Dw/nivOvb9yHa2dKsvdy/5nNGhifwr+EXsfpwCsWOSoodlWwvzOKcqPZJ/p+sb3iYny9/O//cdtnjeHuKDnPNwv8BUOFycGXyQACqXE7uW/UlhdXl/HP4+UR4t+6Dk+TAMJIDG6+anx7bj/FRPfC02LAY9ZP4L+1czos7l3N7zzHc1H1Eq+I4ynAfe51tWvbxh4iIiIiIiIiIiLRaTkUpJuAyTfIrywFILy+kwuXAbZo8uXURVS4n7hZW8zrcLmbOf4FZ819ie2EmGy+8lwXn3Y6/h2cHPEX7+iJlC/lV5Xydtp0iRyWz4vpwflwfrk4awoiIlre7OVN4Wm1YjySufWzH+qyvOZzC16nb+Sn7IF+lbAdgc0EaE+b9i1uWv43D7QLgu517eGbJCkoqq9oUh7fV3mACHeDtvWspdlTyzr61bdoDUCW6iIiIiIiIiIiItN158T0oHT4du9VKl4AQxn/7FE63Gx/Dh2JHJSuzU7l8/ltsycllZkIPnj5nVrPWrXI5ya4oBeBgaT5eNo+OfIxaG/JSCbR7k+Tf/D7iJ5qTPIz9JXmMjkgkyF7TcuSfwy5s1VpPb1vMTzn7eWjANPoGx7Q6pvYQ7xfMN+fdREFVBUPD42qv9w+JoU9wFAVVFUyIqamyn5e+jezKYrIrizlUmocfPvzyo6+AI5XrE8fWWbugsoLXt6xjYGQME+KTgJo+6YdKC4jy9m/2z/+evuN5ddcq5vYY2fYHNo97nWWURBcRERERERERETlFLIbBFV0HAPBN2jYyK4oBuLTzID7avxnTbbKr8DAu0+Trgzt5auxMDMNocl0/D09eHn0F6/JSmZM8rCMfoda8tO3cvfojrIaFb6fcTrxf/cNOm6N/SCyfTLq5VXMLqsrZXpjFsPDOlDmr+c/OZQD8d8+qVifij6571Q//o8xRzduTriTeP7hV63Rt4OBUf7sXn0+9qc61izsPYl1eCt0CIkjyD6O82kmIjzf55RUkhdR/X/+15ife2r4Ri2Gw4bo7CPT04tWdq3lswwIS/UP4bsYt2JrRg/2Czv24oHO/2u/3Fubx0e6tzOrSg7gW9lA3TLP2dbZROxcREREREREREZHTYHxUV2bH9WVmpz78tt8UJnfqimkaVLmdxPkH8OiIqQ0m0D/cs4V7l33NoeKCOtfHRHXhV73HE+Lpc0riL3ZUAuAy3VS4HKdkz+OZpsmlC1/jhmXv8OjG7wj08OLc2J4EeHgxM65Pm9ZefzidnYWHSS0rYknm/naK+OS6+Ifz/ri5/GXgbCyGBT9PO9/ffj3zfnEdFw/oXW98YlBNUj/SxxcvW02d9K7CHABSSguocjlrx7pNN1sKd5NfXdRkHHcv/prnN6/mth8+b/lDnIJ2LgUFBcyZM4fAwEACAwOZM2cOhYWFzZ5/6623YhgGTz31VIv2VSW6iIiIiIiIiIhIG+VWleBpseHfgupdH5ud/xtaUy1d7XLyQ+Z2DMMGhsHdA0dzcWK/enOKq6u4/6dvjnTNMPnX2Jnt9QgtdnHCADwsVsI8fekeGHlaYiiqrgBqKscNw+DfIy5pl3VHRSUwPa47Zc5qzovv2ex5VS4HFsPAw3LytGu1y8XXe3fRNSSUPuEnf98CvLwI8PJq8N4NfQYxtlNnonz9aw9M/U3/8QR7+jA8Mh5fj2M92D9K+453U77C3+bLK0P/it1y8lYvXQJD2JKbTVJgK/6qwATcdGg7l6uuuoq0tDTmzZsHwC233MKcOXP48ssvm5z72WefsWrVKmJiWt7mR0l0ERERERERERGRNliTt59frHodb6udj8f9igivgBavYbfaiPEKIt0sxM/iUyeBvrc4h2/StzCzUz86+4bSJzSSrXnZjIiKb8/HaDGrYeHCzv1PyV5Ot5v00iLi/YNqq/MNw+Cd8dexIucAs+L7tut+3jYPnjvnohbN2VOSwS2rn8fLYue/I+8iwiuwwXHPr1/Nk6uX42GxsOr6WwnxbvlfDhiGQdfgun3oI338+d2gSfXGljjKAKhwVeFyu6CRJPoT487jln5D6RoURmVZWcti6uB2Ljt27GDevHmsXLmS4cOHA/Dyyy8zcuRIdu3aRffu3U86Nz09nTvvvJPvvvuOGTNmtHhvJdFFRERERERERETaYF9JNm5MylxVZFYUtiqJXu128f/au/PwqMt77+Pv2TLZ9z0EEggESFjCDoKsKiKIgK1ii2vdWuuxLud4tedptZ7W2mrVx6UHrcdawWpdaq2tfbQsgrLvELZAEkjIvk62STIzv/NHIBqzJxNQns/runINM7/7d9/3zJX885kv3/u3U1ewpyyf2XEpba7dv+stcmrL2FR8jHfmfJ/3r7qR2uYmQuwtVcr5dVW8cGQTkyOHsDzp/ITaXalw1vOnoweYFpfIxJgEr8y56uM/s7XwNLenTeYnU+a2vj4iJJoRIdFeWaO/Dladxuluxulu5mRtUachuo/FArR8CWEx9bzbdqPbxW93fo4JE/dPvqR1nu7cMGQxcX6RpAQOwc/acWX7OVazmbSIlup4Z493dpbB2XYuLU8dDkeby3a7Hbvd3ttZW23dupWQkJDWAB1g2rRphISEsGXLlk5DdI/Hw6pVq3jooYdIS2vfGqcnFKKLiIiIiIiIiIj0wzWJk6hsqiPMJ5CxoYlsLjrJC4c3862hGazoQahtGAYrN7zGgYoCfjh6FsOC21YYJwaEk1NbxuCACAAsZnNrgA7wwpFNvHtqP++d2s/8+BGE+PS8pUyT28Vtn73BqboKfjf9OtLC4np8b2d+sW0j72Zl4muxsv+mH7a2G+mPw+Ut/b4Plhd1O7aysZ5nD29gcGA4t6RM69HBrN6wMC6DkzVFBFjtTA5P6XTcHeMnkRoeSVJoKCGdtGvpyMc5J1i9bycA6ZHRLE4Z2XrNMAxWH97OmbpqHhx3KSH2L34H/Cy+LIqbg8vjpqC+kji/0IH5TL7SEz0xMbHN5Z/97Gc88sgjfZ6+qKiI6Oj2X5hER0dTVNT578UTTzyB1Wrl3nvv7fPaCtFFRERERERERET6wddi4+4RC1qfP3VwA5lVRRx3lPYsRAeOV7eExJmV7cPAZyZfx3FHCSOCO+6fPTlyCO+e2k9qSAyBtt5V+p6oKWV72SkA/t+ZI14J0eMCggCI8PPH2otK666snn8N/8w9zndHZnQ7ds3JHbyZsxuAS6KHtunXXlhfTYRvID7mzqu4d5flUdZYy2XxIzH3Imz2t9p5aPQ17V73GAanaisZHBCKxWzGYjYzL2loj+c9Z1REFP5WGyYTjI5sGyYfqijiiX0bAIj1D+IH6TPa3X/vrlfZVZHNjcmXck/qwg7XOFBeyMM7/s6EiAQeSm0/R5c8gOnsI5CXl0dw8Bf/K6OzKvRHHnmERx99tMupd+5s+fKgo/DfMIxOvxTYvXs3zz77LHv27OnXFwcK0UVERERERERERLxoedI4Thwo49qk8a2vNbldLQFqB6Gy2WTid5d8mw0FWdw0fEq76zazlbTQ9ochGoZBTm05ixJHMz9+BIE2e5ftQf5wbBf7ygp4cNxsBgW2tBoZERzD8iHjyK0tZ8WX9tsf90+ayfwhwxgaEo7F7J0QfVrs4B73gM+ISMRiMhHlG0S8/xctVV7N2sKvD33CyOAY3p13Z4cB+UlHGTds/AMG8MuJS7g2eXy/9/7wjg95N+cgCwel8sLMFX2eJyUsgt03fR8AP1vbvuaJgaFE+wVS7qwnI7LjgzOPOgoAOFyd3+kab57cy9GqEo5WlbAqsXd95r/aEz04OLhNiN6Ze+65h+uvv77LMUlJSRw4cIDi4uJ210pLS4mJ6fgLps2bN1NSUsLgwV/87rjdbh544AGeeeYZcnNzu90fKEQXERERERERERHxqhuHT+bG4ZNbn28rzebOrWuJ9wvhnbl3EmBtX5E7M2YoM2N6V5384tFNPHfkU0YER/PX+Xd2WWlbXF/Do7s+ASDI5sNjU1oqka1mM7+adHWv1u10jYYa/Cw2gn18yYjuOMj1Jo9hdBiEz4wZxrbFD2G32NpUnB+qKgQgq6aUZo+7wzYzZpMJEyYMDCxm77Q8OVTREvxmVrYPgA3D4KWDOymsq+H+iTMJ9un6fxJ8NTw/J9Tux6ald9PkcRPUyf9GeCLjO2woPsS3B0/vdP5lyWPYXJhNRmQCsf5BXe6lna+0c+mpyMhIIiMjux03ffp0qqur2bFjB1OmtHzZtH37dqqrq5kxo+Oq+VWrVrFgwYI2r11xxRWsWrWKW265pcd7VIguIiIiIiIiIiIygHaU5tLscXOqroIzdVWMCOm4ara3shylAOTWluMyPNhMnbcoCbP7kxoaRVZ1GTNik7yy/pd9XpzNrZ+txddi4+MrfkCMXy8D2F565fhWnjy0juuSJ/BIxqJ214Ns7XuN3582nzAfP6ZHDe20T3tyUATvzr+N8sY6ZsUM88pen5y2hD9n72NZUvvK7oNlxfxyx6cAxPgHcve4qe3G9JTdYu2y//zkiGFMjuj6PU2OSmTz0nuA9geDdquPIXpPjRo1ioULF3L77bezevVqAO644w4WL17c5lDRkSNH8vjjj7Ns2TIiIiKIiIhoM4/NZiM2NrbTg0g7ohBdRERERERERERkAK0cOpkz9VUkBUYwPLj9wYh99R9jLiPBP4RLYoZh66LHN4CPxcI/Ft2G092Mv9XHa3s450BFAQbQ4G7mjezd/ChtjtfX+LJ/5GfiNgz+lneowxC9Iwn+ofznuO7HeqMv/JeNDovhkYlXdHhtUFAwkb7+VDY6GRfV+3VLG+p47tBnjA6L4fqU8f3caT8NcIgOsHbtWu69914uv/xyAK6++mqef/75NmOOHTtGdXW1V9dViC4iIiIiIiIiIjKAonyDeGLS8i7HuA0PH+VnEucXwsTI9r2/DcOgoL6aOP+Q1hYmcf4hPDTmsh7vw2wyDUiADrAgYQRPZ27AMMCni4p4b3kwfT6rj33OiiHdH9z6dRbu68/n199Jo9tFiL199Xx3Vh/exuvH9wAwKy6ZhICQbu4YQF85WHQghIeHs2bNmi7HGN2E+D3tg/5lCtFFREREREREREQGQLPHzUvHNmMAd6bO6rJa/M3sXfzXgY8wYeKfl93D4MDwNtd/vPtvvHtqP0sS03lqyrJu1z5dU8marL3MT0hhakzPDuTsj+HB0bx0yUpyaspZOWzCgK83PTqZ6dHJA77O+eBrteJr7VtMOz4yHhOQEBBChN3fuxvrpa8eLHoxUYguIiIiIiIiIiLSBwX11ewtz2de3Aj8rO0PfFxfeIznj7b0ux4WFMWVg9I6netcL2uLyYS1g7B9X8UZAPaffezOT3d+zKeF2fwpay8Hr3ugR/f015y4FObEpfTpXpfHzeHqAoYHxeA3QNXyXzd1riYMwyDw7EGghXUOPjl9gssHDyc2oGc95RcPGcX0mCEE2ny67Id+XpyHdi4XikJ0ERERERERERGRXvIYBteuf4WyxjquHTKeX05a0m5MSlAUdnNL/JYSHNXlfCuGZBDvH0qUbyDx/u1bcjwxaSlv5+7tcfuS1NAoPi3MJiUkskfjL7T/OvQB7+ftIT0kgTUz77rQ2xlwubXlLFv3Eh7gnbm3MTw4mtvXvcehimLeOXmQDxbf1OO5Inz9KXPW8fje9YwJj2PF0PYHmPZEo9vFa1nbifELYumQsb2fwGOAyWh5vMgoRBcREREREREREekDD0abx+IGBys/fRWPYbB29s0MC45i86IHMAwI9um637XJZGJG9NBOr48Nj2dseHyP9/Zwxly+NWwsiYGhPb7nQiqsrwKgyOndAyEvFMMwOFxcwuDQUIJ87e2uZ1WXUu9uBuBodTHDg6MJsLVU4J+rTO+NFw9t4bVjuwGYGZtEjH/PKtm/7M3s3Tx5aD0Aw0OiGWTuZXsYVaKLiIiIiIiIiIjIOWaTibfn3sre8nwWxKcCsLs8jzP1LSHwztJTJAwJJcjW+8Mie2pHySmeP7KZFUnjWDqkbfWxyWT6xlShAzw6bjkf5O/h0uiRF3orXvHC59t5dvNW4oODWHf3rVjN5jbX58QN5+7UWXgMD1fEjwLg9/NXsKM4j6mxib1eb2xEHACDAkIItfv1ac+JAWEA+FlshNv9obm3M5wL0BWii4iIiIiIiIiICC2h47ngEWB27HAWD0rHZXhYED/wYfBdW/5MTXMju8ry2oXo3zSxfiHcMXxul2NOOErYXJLF4kFjifLtfaX1+XSm2gFAaV09zW53uxDdZrZwX1rb9xvkY2d+Yt96yl+TnM4lsUkE+/j2uTf6vPgRfHzF9wm02Yn0DcTR7OjdBKpEFxERERERERERka4EWH14fOLVNHncfWrJ0RuGYVDvbgIMwnz6Vnn8TXPrltcob6xjR1kuv5v2nQu9nS49NHcWCSHBTE5MwM/W/tDZgRDlF9jvOZKCIvp+s+dsFbp6oouIiIiIiIiIiEhHqpoauHrdi1Q21vP7S77L1Khkr6+RV1vF8vUv0exx8x9j5pFZVcTtqTMAaPK4+c/dH1LqrOVXk64mxu/rXa0NcLiqCBMwKjS227Hh9gDKG+uIsPc/LO6tvOpqrBYzcYE9+0zD/f24Z+Y0r61/0lHGwzs+ZGRoDI9OXIjZZGpz/XhVKU/u28SM2CHcPHKS19btFcPzxc9Fxtz9EBEREREREREREenOmbpKSp21uAwP+yryux3/Zu52vvPZf7O19AQApY3V7K08gaeLEPJ3mVuocTlxepo5U1fNk1OWkRoSA8CesjzeP32Az0uy+dvpg955UwNoV9lprvnXyyz918vsLe/+83p95q38z4yb+Om4q7yyfn5dFRsKj+PydB367i48w5zXX2H2a78nq6K8V2sYhsEje//OsnWryawsbH1tc34uWZVlbcZ6DIOaxsYO53nz5F72lJ/hjZN7yKlpv4cXDm7l47wsHtn5LxxNzh7vr9njot7V8Zq9dhG3c1GILiIiIiIiIiIi4gWjQ+O4f/R8rk+exPXJ3VcDP3X4Iw5VnWH18Y043U3cuv033L/3d6zNXdfpPYsSR+NptmDx2Fg5tO0a6WFxpIXGEuMbxJy44f1+PwOtpvmL8La2ufsgN8jmy9SoZHzM/W+u0eBqZtm61dy99U2eP7Kxy7H5Dgcew6DZ46GwtqbbuQsaKvjP/Wt4I/dTChscvJmzmyPVxbyVsxuAN47uZ9VHb7PovdcoqmuZz2MYXPvGn8h4/gXeOtD+C5ArE0cR5RvAzJhkBgeGtbs+b1AKFpOJaTGDe9xKqLKpjoXrnuLSjx9nT8WpHt3TJY/xxc9FRu1cREREREREREREvMBkMnF76swej18xeDIf5O9haWIGLsNNo7sJAIervtN7ZsYnsXvZg/hYLO0OkAy02fnL/Nv7tvkLYE5sCs9MXY7JZGJmzNA2107VFfDm6Q/JCBvN5bE9/0x7yoNBk8cNgNPt6nLs4uGpVDgbsFuszEoc0u3cf8rdxIaSg2woOci8mLEsTBjFvoozLB08tmU9V8t67rPBPEBDczMHioowgO35eVw3tu1BsRMiB7Ft6X2drrk0eTSLhqRiNZkxfaXVS8t7rGVN7o+pdzm4IekxIu2J5NVVUNZYC8D+itNMCO/+vXXpIq5EV4guIiIiIiIiIiJyHmRVl/B2zj6uGpzGuPAEHk6/iofTv2hN8syEH3CsJo+FcZO7nCfIZ2APLT1fTCYTixLTOrz257x/sK1iP9srDuB2heA2TFw1KK3DgLgvAqw+vDXnVjKririqkz2cYzGbuWXchB7PPSViBB+c2c6wwDgi7cE8M/Vbba7flDaBCD9/EoNCSAwKadmPjw9PLLyCLadP88NpfeulbjNbOr1W2HCCYmc2ACdrdhFpTyQ9NIHvj5hHaWMNK4Z4oY+6wdkQvf9Tfd2YDOMi/GpARERERERERETkSxwOByEhIVRXVxMcHHxe1qxqamB94XFmRCcT6xfM8nW/51BlIXF+wXx61b+dlz18U60v3soLJ9Yy2D+Rj3KcgIlnpl7LwoTRF3prPdLkcWEzWdqE/i6Ph2a3Gz+b7bzvx+Vp5sOCZ2lwOViS8CMCbe1bwnxVT/9mzo1bEHsHVrMPLk8T/yp66bz+rQ009UQXEREREREREREZAA/s+AsP7/qAWzavBWDU2QNAa5qdvH5yR7vxv9qzgTnvr2ZTQc553efX0byY6bw5/Wm+l7QK09kIM8j6zanA9zFb2wTotU1NzP3TK4x59Tk+y/dC//FespptXDPoQVYm/bzDAN3paqa4vvt+713yeL74ucgoRBcREREREREREfECR5OT5zI3sa7gOACWsyGq+ezjYxMXMzI0ilp3I08dant4aKPbxX9nbie3ppI/Htt9fjf+NWUz20gLi+f9+Xfw9tzvcUnMsAFd738ydzH69Wd4Zu/nXp87v6aavJpqXB4POwrzvD5/b7Qckupufd7gamb+31cz/a/P8X7uoQu4s68vhegiIiIiIiIiIiJe8OKRz/i/hzdx9+d/ptRZy1NTlvH0lOW8Nuu7QEuYflPKNEJ9/Fg1bEqbe+0WK7eOnERCQDDfGZHR+rrb42Fb8SkqGjs/bPR8eWTvP5jytyf5KP8wABWN9XTVKbrB1cy6M1lUNTb0a93UkBjGhMX3a47uON3N/OHIHuqam3j9yF6vz58aHslDU2bxrdR0bkzP6HTcmpPb+Y9df6GgvtrrewCobnIy+/3/Zuxbz7C3tABoaTtUWO8AILOiqO+T62BRERERERERERER6UpSUDgA4fYAAqw++Ft9Wg+tbHS7eOX4NqJ8A9i++MEOD8j86eQF/HTygjav/ebARl4+uo1YvyA2LfkBFnP/a2Kd7ma2l5wiI2IQFsxsyTvN5IQEQn39qGpwcrysjIkJ8Tyxfz3/yDvCzycuZHb8MP6UvRsDeCd3H4cqC3n5+BauGjSap6eu6HCdB7Z+wD/zjjEqNJq/L/pev/bc5HZhMZuxmLxfE+wxDFasf5lCVwWxAWE8OOFSr69hMpn4wYSpXY4panDwiwP/BCDQZuf/jFvU4/n/cHwHz2Vu4o6RM7hz1IxOx52oLievtiWg31p8ioyoeOL8g3ly2hIyK4u4a/T0Hq/ZjkJ0ERERERERERER6cr1QycwKXIwUb4B+Ft92lx7M3sPTx/aCLRUVo8Nb6ms/qwglx999iFTYxJ57tKr24Xr5yrQq5ucuA0Dixf2+e87PuCj/COMDo0hqi6S9Tk5pEdH8/4N3+GaP64lv9rBzRPH82ppS9/2tSf2MC9hOD9Km8s/84/wvRHT+c3BlnY020o77+9d29zU5rGvdpad4rbP1hLjF8Rf5t1BoM27vdGbPW5O11Zg8fFwaWI83xo+xqvz91S4PYCUoCiya8qYGpnUq3tfP7GT6mYnfzyxs02IXlFbT0VdAykxEQBkRMZzV9o0iupruC5lXOu45cljWJ7cz/ftMQDj7OPFRSG6iIiIiIiIiIiIl6QER3b4enJQBCbAz2Ij2i+w9fW/ZGdS2lDHh7lHeWTKAiL9Atrc95OM+YwKjWZSVCI+Fm9E6C2BPICjuZFAlwuAhuZmDMOgsqHlWnl9A98fPYOP8o5y84jJANw1ciZ3jZzJ4fISLgkfTlJgOMuTWoLYT/NzOFhexI2jJhDs0xJy/3bG1Xx0+iiz44f2a7/bS3Np9Lg4XVfJ6boKRofG9Wu+r7JbrLw443q2leRwY0rX1eIDycds4f35d+F0uwj4ypcw3bkvfTarj2zhlhFf7L+q3smi3/yBGmcjj193BVdPGI3ZZOLhCXO8vPMWhuFp/bnYKEQXEREREREREREZYJfGDmP9onvwt/oQbvdvff3GkRM4VlnK9NjB7QJ0gBAfP25JndLu9d4qbKgkxOaP1WThySlX81H+UWbHDSPA7MvHJ04wOykJi9nM2uuvZdvpPJanpxHu78cDY+e0mae+uYnl76/F6XZxS/pEpkYmUeGs5+ZP3sFjGFQ4G/jp1HkARPoGsGrExH7vfWXyJE7XVTLIP5RRIbH9nq8js2JSmBWTMiBzd8cwDEqcBwiwRhNoi+t1gA6wZHA6Swant3mt1tlIjbMRgPzygemx3oZxtgpd7VxERERERERERESkLwYFhLb+u9Htwm6xMi4yjg+X3Oz1tbJqCthUcpir4iexqyKHnx14h0CLL8W1BvPiUnlx+nWtY28YO7b13+mxMQwKC+ZUbQVhfvGYTCbqXI3cunU1pY01PJ2xCh+LBafbxXtHMnlr30FeXnIN4XY/ypz1JAaGeP29RPgG8OtJ13h93q+L446/sq3k11hMdq5Neg9fa5hX5h0UHsKzq5aQU1rBdy7p/DBTrzHOtnNRiC4iIiIiIiIiIiL98eTBdbx0fAs3pUzhJ+OuGJA1frT7VcqbathXmcPQwEEA1LqdgA8bi7JwG552h3QeqizgeHUJTx7YSImzlvvSZnNP2iyyaoo4UVsMwO6qbP6x4iY+zjnBYxs3YMLE7oIC1q24jTO1DkaHRw/I+7mYNbpbqsTdRhNuo3/9479qQfp5rK73eMDkAbVzERERERERERERkf74pOAYAB+fOeq1EN1teDBjaj2YNMY3hPKmGmJ9w7hl6GwsmPC3+LG3rIgF8SPbBegVjXVcv/F/aPZ4wNPSe72owQFAesggViROocRZzZKECUT5BnPzmAlU1DaQ76hm5ZixhNr9CLX7eeW9/P8mLXQldnMwwT6DCbDFXOjt9J0q0UVERERERERERKQ/DMPgYHkR6REBFDYWMi4ysPubunG0qpg3sreyo3oHYT6BvDTlPoJs/jw/6Q5O1hYxMjgBq9nCvSMXttwwvON5zCYzFpMZl8nDdcPGE+cXysphEwCwmi38OH0pFU1V/Pros1hNFv595A95cMbMfu+/K+/k7OPP2fu4J20Wl8YOG9C1LiSL2YfU0GUXehv9Zng8GCYdLCoiIiIiIiIiIiJ99Ieju3l0578YEltJVFAzxc35fZ7L5fHw9IFNrDm5E5PNQWhAE4XOCnJqixgbNhQ/qw/poYN7PN+ZumruHTWXpKAw5salYj5b0f5lB6oyOVWfB0Cm4xjTIyZ1OefWkmwqmxpYmDC6w/m684t9n1DT3MhvD268qEP0i4Yq0UVERERERERERKQ/iuprACiuCCAuzM3woDF9nuvvpw/zYuZWTGYPFrcPScEBXJ4wmrTQpF7PVdFYz7XrXqXZ4+a+tNnMjx/Zei23roR/Fe7nsrjxTAgby6jgEVhNFsaGjO5yziNVRdz82RoAmia6uGbIuF7v69rk8bxxcjfLk8Z2P/g88RhGn74QON9cHjfri44xLCiKYUFR52dRjwEmhegiIiIiIiIiIiLSRz8cO4Nwuz9/zc3kcEkJp0qzeGyi0drHvDf8rTbAwPDAwiGjeXraMqxmc7f3dcSMCYvJRDO0m+PH+9aQU1fCxpJM1sy4j5+OfrD1WkGdg+f3b2VqbCJLh7YN1X3MFsyY8GDga7X1aV8/GX8ZPxl/WZ/u9TbDMLj9o/fZcDqHX8+9ghWpaRd6S1166fhmXji2EV+LjY1XPECQzXfgFzUMwHNRhuh9+8sSERERERERERGRXgm02bkzfSo/HDODGL9AvjdqSqcBerajgpcPb2+tXj/n8+KT/GT3ByQEBPNv46Zz7fA0fj7xynbhd7ajnNkfPseyT16hprmx0z01ul38aOtfifIJ5tEJC7k9dXqb6/F+4Wcfw9rd+/Tez3jj+D7u2/Q3qhudba4NC47iL/Nu5/VZN7Iwoeuq9W+CRrebdadO4jY8fJJzAoDns97m5u2Psrfy2AXeXXseWoJswzAwOD+htuExWn8uNqpEFxEREREREREROY+uHDKSK4eM7HLMTeveIq+2mnX5J3nz8hswDIOi+lru3/Ee1c0NnHCUEWIN4HRdJVmOYn5z5H0AXpxyG1G+wawvzOJMfTVn6qvZX55PqSuLGlcd305cjK/F3rrOwYpCPi3MBqDC6cTylTD+l+O/S5ajgBHB8e32OCE6nrdPHCQlJIIAm0+76yNDY3v70Xxt+VqtPDprPutys7ln4jTqXE7+XvgZAP8s2kpGWOoF3mFbd464lGFBUaQERRFs86O2uZGjVSWMi4jHZrYMzKKGh5ZKdB0sKiIiIiIiIiIiIgMs3O5PXm01Eb7+ADy2fT2vZO4mIqylcn1IQDjv5R4CYG32NnLrSgHYWX6SRQkZLBmcxqbCE4Tb/Qm0N/Fs9l8BiLJHcGXcnNZ1xoTHMT8+hYJ6B4uHtK8Y9zFbSevkgNKVI8azIHE4oXbfPreS+Sa5MT2DG9MzWp8vjb+UXZVHuCrukgu4q47ZzBauTEhvfb5y/RoOVxbzreRx/GrqVQOypuExMEwGxkXYzkUhuoiIiIiIiIiIXPTOBXsOh+MC76RnXpyyiMyKIsZHJeBwONiWexJPg5PSBg8mHxibHEtFaDWna6u4LiYDV4MDA4NxvvE4HA78gOcnXA1ARVMVNqeFJk8T0e7Qdp/BUxkLW/5h9P7zsQMNzXU0eOE9f9PcEH0ZN0S39Gz/uv9eFZaX4XE6ySsr7vFez43raSjuMhrB8OCiuc/7/LoyGRfjVwMiIiIiIiIiIiJfkp+fT2Ji4oXehsg3Tl5eHoMGDer0utPpJDk5maKiotbXYmNjycnJwdf3PBxoeh4oRBcRERERERERkYuex+OhoKCAoKCgTg/zFJEvGIZBTU0N8fHxmLtp1+N0Omlqamp97uPjc9EE6KAQXURERERERERERESkUxd/x38RERERERERERERkT5SiC4iIiIiIiIiIiIi0gmF6CIiIiIiIiIiIiIinVCILiIiIiIiIiIiIiLSCYXoIiIiIiIiIiIiIiKdUIguIiIiIiIiIiIiItIJhegiIiIiIiIiIiIiIp34X4mn2dp2nfU/AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deepsensor.plot.task(task, task_loader)\n", + "plt.show()" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-11-02T13:43:11.409519462Z", + "start_time": "2023-11-02T13:43:09.885491493Z" + } + } + }, + { + "cell_type": "markdown", + "source": [ + "## Controlling randomness in the TaskLoader\n", + "\n", + "There are two additional arguments in the `TaskLoader` call method for controlling randomness:\n", + "- `datewise_deterministic`: If `True`, the same random seed will be used for a particlar date. Useful for,\n", + "say, generating a reproducible validation set which is the same between Python sessions.\n", + "- `seed_override`: If not `None`, this seed will be used instead of the default seed.\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Saving and loading a TaskLoader\n", + "\n", + "You can save the `TaskLoader` object to a file using the `.save` method.\n", + "\n", + "```{note}\n", + "Currently, saving a `TaskLoader` is only supported it it has been initialised with `str` paths to NetCDF or CSV files,\n", + "allowing the `TaskLoader` to be represented with a configuration file which can then be saved and loaded.\n", + "It would be useful to be able to save `TaskLoader`s initialised with `xarray` or `pandas` objects by saving\n", + "the objects to NetCDF or CSV files under the hood.\n", + "There is an [issue](https://github.com/tom-andersson/deepsensor/issues/84) open about this.\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:44:17.769356861Z", + "start_time": "2023-11-02T13:44:15.817323090Z" + } + }, + "outputs": [], + "source": [ + "data_fpath = \"tmp.nc\"\n", + "era5_ds.to_netcdf(data_fpath)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:44:22.473861168Z", + "start_time": "2023-11-02T13:44:17.773189617Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(1 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind'),)\n", + "Target variable IDs: (('2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind'),)\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(context=data_fpath, target=data_fpath)\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:44:22.865187335Z", + "start_time": "2023-11-02T13:44:22.471267427Z" + } + }, + "outputs": [], + "source": [ + "task_loader.save(\"tmp/\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:44:22.913791291Z", + "start_time": "2023-11-02T13:44:22.871963583Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(1 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind'),)\n", + "Target variable IDs: (('2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind'),)\n" + ] + } + ], + "source": [ + "task_loader_loaded = TaskLoader(\"tmp/\")\n", + "print(task_loader_loaded)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-02T13:44:22.952517095Z", + "start_time": "2023-11-02T13:44:22.909161820Z" + } + }, + "outputs": [], + "source": [ + "import os\n", + "import shutil\n", + "os.remove(data_fpath)\n", + "shutil.rmtree(\"tmp/\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "start_time": "2023-11-02T13:41:12.988076341Z" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/user-guide/training.ipynb b/_sources/user-guide/training.ipynb new file mode 100644 index 00000000..fd2a4a20 --- /dev/null +++ b/_sources/user-guide/training.ipynb @@ -0,0 +1,515 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Training\n", + "\n", + "The `ConvNP` model can be trained using [the `Trainer` class](../reference/train/train.rst), which implements stochastic gradient descent using the Adam optimiser.\n", + "\n", + "\n", + "We will demonstrate training a `ConvNP` model with the following set-up:\n", + "- Goal: spatially interpolate daily-average ERA5 2m temperature over North America.\n", + "- Context data: ERA5 reanalysis data, 100km EarthEnv elevation data, and GLDAS land mask data.\n", + "- Training period: 2010-2018.\n", + "- Validation period: 2019." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-01T20:36:20.304366081Z", + "start_time": "2023-11-01T20:35:57.296442354Z" + } + }, + "outputs": [], + "source": [ + "import logging\n", + "logging.captureWarnings(True)\n", + "\n", + "import deepsensor.torch\n", + "from deepsensor.model import ConvNP\n", + "from deepsensor.train import Trainer, set_gpu_default_device\n", + "from deepsensor.data import DataProcessor, TaskLoader, construct_circ_time_ds\n", + "from deepsensor.data.sources import get_era5_reanalysis_data, get_earthenv_auxiliary_data, get_gldas_land_mask\n", + "\n", + "import xarray as xr\n", + "import cartopy.crs as ccrs\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np\n", + "from tqdm import tqdm_notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-01T20:36:20.344609555Z", + "start_time": "2023-11-01T20:36:20.344158695Z" + } + }, + "outputs": [], + "source": [ + "# Training/data config\n", + "data_range = (\"2010-01-01\", \"2019-12-31\")\n", + "train_range = (\"2010-01-01\", \"2018-12-31\")\n", + "val_range = (\"2019-01-01\", \"2019-12-31\")\n", + "date_subsample_factor = 2\n", + "extent = \"north_america\"\n", + "era5_var_IDs = [\"2m_temperature\"]\n", + "lowres_auxiliary_var_IDs = [\"elevation\"]\n", + "cache_dir = \"../../.datacache\"\n", + "deepsensor_folder = \"../deepsensor_config/\"\n", + "verbose_download = True" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "hide-cell" + ], + "ExecuteTime": { + "end_time": "2023-11-01T21:01:01.365794815Z", + "start_time": "2023-11-01T20:36:20.344501840Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading ERA5 data from Google Cloud Storage... " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████████████████████████████████| 120/120 [24:32<00:00, 12.27s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.41 GB loaded in 1473.80 s\n", + "Downloading EarthEnv data... 0.00 GB loaded in 1.19 s\n", + "Downloading GLDAS land mask from NASA... 0.38 MB loaded in 0.85 s\n" + ] + } + ], + "source": [ + "era5_raw_ds = get_era5_reanalysis_data(era5_var_IDs, extent, date_range=data_range, cache=True, cache_dir=cache_dir, verbose=verbose_download, num_processes=8)\n", + "lowres_aux_raw_ds = get_earthenv_auxiliary_data(lowres_auxiliary_var_IDs, extent, \"100KM\", cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "land_mask_raw_ds = get_gldas_land_mask(extent, cache=True, cache_dir=cache_dir, verbose=verbose_download)\n", + "\n", + "data_processor = DataProcessor(x1_name=\"lat\", x2_name=\"lon\")\n", + "era5_ds = data_processor(era5_raw_ds)\n", + "lowres_aux_ds, land_mask_ds = data_processor([lowres_aux_raw_ds, land_mask_raw_ds], method=\"min_max\")\n", + "\n", + "dates = pd.date_range(era5_ds.time.values.min(), era5_ds.time.values.max(), freq=\"D\")\n", + "doy_ds = construct_circ_time_ds(dates, freq=\"D\")\n", + "lowres_aux_ds[\"cos_D\"] = doy_ds[\"cos_D\"]\n", + "lowres_aux_ds[\"sin_D\"] = doy_ds[\"sin_D\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T21:01:02.301798354Z", + "start_time": "2023-11-01T21:01:02.260757691Z" + } + }, + "outputs": [], + "source": [ + "set_gpu_default_device()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialise TaskLoader and ConvNP model" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T21:01:03.937908531Z", + "start_time": "2023-11-01T21:01:02.306482516Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TaskLoader(3 context sets, 1 target sets)\n", + "Context variable IDs: (('2m_temperature',), ('GLDAS_mask',), ('elevation', 'cos_D', 'sin_D'))\n", + "Target variable IDs: (('2m_temperature',),)\n" + ] + } + ], + "source": [ + "task_loader = TaskLoader(\n", + " context=[era5_ds, land_mask_ds, lowres_aux_ds],\n", + " target=era5_ds,\n", + ")\n", + "task_loader.load_dask()\n", + "print(task_loader)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T21:01:04.849310395Z", + "start_time": "2023-11-01T21:01:03.939225108Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dim_yc inferred from TaskLoader: (1, 1, 3)\n", + "dim_yt inferred from TaskLoader: 1\n", + "dim_aux_t inferred from TaskLoader: 0\n", + "internal_density inferred from TaskLoader: 400\n", + "encoder_scales inferred from TaskLoader: [0.0012499999720603228, 0.0012499999720603228, 0.00416666641831398]\n", + "decoder_scale inferred from TaskLoader: 0.0025\n" + ] + } + ], + "source": [ + "# Set up model\n", + "model = ConvNP(data_processor, task_loader, unet_channels=(32, 32, 32, 32, 32))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define how Tasks are generated\n", + "\n", + "We will generate `Task`s for a set of dates by randomly sampling between 0 and 500 ERA5 grid cells as context points,\n", + "and passing all ERA5 grid cells as target points.\n", + "All auxiliary data will be passed as context points." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T21:01:04.861663076Z", + "start_time": "2023-11-01T21:01:04.855257412Z" + } + }, + "outputs": [], + "source": [ + "def gen_tasks(dates, progress=True):\n", + " tasks = []\n", + " for date in tqdm_notebook(dates, disable=not progress):\n", + " N_c = np.random.randint(0, 500)\n", + " task = task_loader(date, context_sampling=[N_c, \"all\", \"all\"], target_sampling=\"all\")\n", + " tasks.append(task)\n", + " return tasks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate validation tasks for testing generalisation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T21:01:05.733133040Z", + "start_time": "2023-11-01T21:01:04.868160894Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": " 0%| | 0/183 [00:00", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAGHCAYAAADfi1OIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHBklEQVR4nOzdeVhUZfsH8O+ZhWEfNtkEBBfAXcQNV8w1tUzTMs201Fwr29P6pb29vZhZmZVbuVSWWrlkWaaloOYGKoobioLsAgrDPsDM+f2BjBI7zjAwfD/XdS6ZM89z5p6j8sw9zyaIoiiCiIiIiIiIiAxOYuwAiIiIiIiIiJoLJuFEREREREREDYRJOBEREREREVEDYRJORERERERE1ECYhBMRERERERE1ECbhRERERERERA2ESTgRERERERFRA2ESTkRERERERNRAmIQTERERERERNRAm4UR6JghCrY7Q0NAHep2lS5dCEIR61Q0NDdVLDE3ttYmIiMqMGzcOFhYWyMrKqrLMlClTIJfLcevWrVpfVxAELF26VPe4Lu3e9OnT4e3tXevXut/q1auxefPmCufj4uIgCEKlzxla2WeVskMul8PLywuzZs1CampqhfLe3t4QBAHBwcGVXu/bb7+t8nPUn3/+ieHDh8Pd3R0KhQLu7u4IDg7GsmXLKn2Nyo6qXpdI32TGDoDI1Bw/frzc4/fffx+HDh3CwYMHy53v0KHDA73OzJkzMXLkyHrV7d69O44fP/7AMRARETVVM2bMwO7du/HDDz9g3rx5FZ5XqVTYtWsXxowZAxcXl3q/TkO1uatXr4aTkxOmT59e7rybmxuOHz+ONm3aGPT1q7Nv3z4olUrk5uZi//79+Pjjj3Hs2DFERkZCLpeXK2tjY4PDhw/j+vXrFWLeuHEjbG1tkZ2dXe782rVrMXfuXDz++OP44osv4ODggISEBBw7dgw///wz3nrrrXLl+/XrhxUrVlSI09bWVk/vmKh6TMKJ9KxPnz7lHrdo0QISiaTC+X/Lz8+HpaVlrV/Hw8MDHh4e9YrR1ta2xniIiIhM2cMPPwx3d3ds3Lix0iR869atKCgowIwZMx7odYzd5ioUCqO3+YGBgXBycgIADB06FBkZGdi0aROOHj2KwYMHlyvbv39/REVFYePGjfjggw90569fv47Dhw9j5syZ+Oqrr8rVCQkJwcCBA/Hzzz+XOz916lRotdoK8djZ2Rn9nlDzxuHoREYQHByMTp064fDhw+jbty8sLS3x3HPPAQC2b9+O4cOHw83NDRYWFmjfvj3eeust5OXllbtGZcPRvb29MWbMGOzbtw/du3eHhYUF/P39sXHjxnLlKhsaN336dFhbWyMmJgajRo2CtbU1PD098eqrr0KtVpern5iYiAkTJsDGxgZ2dnaYMmUKwsPDH2i42549exAUFARLS0vY2Nhg2LBhFUYVpKen4/nnn4enpycUCgVatGiBfv364a+//tKVOXv2LMaMGQNnZ2fdcLTRo0cjMTGxXnEREZFpkkqlmDZtGk6fPo2oqKgKz2/atAlubm54+OGHkZ6ejnnz5qFDhw6wtraGs7MzHnroIRw5cqTG16lqOPrmzZvh5+cHhUKB9u3b49tvv620/nvvvYfevXvDwcEBtra26N69OzZs2ABRFHVlvL29cfHiRYSFhemGVpcNa69qOPrRo0cxZMgQ2NjYwNLSEn379sXevXsrxCgIAg4dOoS5c+fCyckJjo6OGD9+PJKTk2t871Xp0aMHAFQ6zF8ikeCZZ57BN998Uy6B3rhxIzw9PTF06NAKdW7fvg03N7dKX0siYbpDjQ//VRIZSUpKCp5++mlMnjwZv//+u+5b+GvXrmHUqFHYsGED9u3bh4ULF+LHH3/EI488Uqvrnjt3Dq+++ipefvll/PLLL+jSpQtmzJiBw4cP11i3uLgYjz76KIYMGYJffvkFzz33HD799FN8+OGHujJ5eXkYPHgwDh06hA8//BA//vgjXFxc8OSTT9bvRgD44YcfMHbsWNja2mLr1q3YsGEDMjMzERwcjKNHj+rKTZ06Fbt378a7776L/fv34+uvv8bQoUNx+/ZtXWzDhg3DrVu38OWXX+LAgQNYuXIlvLy8kJOTU+/4iIjIND333HMQBKHCl9WXLl3CqVOnMG3aNEilUty5cwcAsGTJEuzduxebNm1C69atERwcXK81TjZv3oxnn30W7du3x44dO/DOO+/g/fffrzB1DShNomfPno0ff/wRO3fuxPjx4/HCCy/g/fff15XZtWsXWrdujYCAABw/fhzHjx/Hrl27qnz9sLAwPPTQQ1CpVNiwYQO2bt0KGxsbPPLII9i+fXuF8jNnzoRcLscPP/yA5cuXIzQ0FE8//XSd33eZ2NhYAICvr2+lzz/33HNITk7Gn3/+CQDQaDT45ptvMH369EqT6qCgIOzYsQNLly7FuXPnoNFoqn19URRRUlJS4bj/iw0igxKJyKCmTZsmWllZlTs3aNAgEYD4999/V1tXq9WKxcXFYlhYmAhAPHfunO65JUuWiP/+L9yqVSvR3NxcvHnzpu5cQUGB6ODgIM6ePVt37tChQyIA8dChQ+XiBCD++OOP5a45atQo0c/PT/f4yy+/FAGIf/zxR7lys2fPFgGImzZtqvY9/fu1NRqN6O7uLnbu3FnUaDS6cjk5OaKzs7PYt29f3Tlra2tx4cKFVV47IiJCBCDu3r272hiIiIjKDBo0SHRychKLiop051599VURgHj16tVK65SUlIjFxcXikCFDxHHjxpV7DoC4ZMkS3eOq2r3u3buLWq1WVy4uLk6Uy+Viq1atqoxVo9GIxcXF4n/+8x/R0dGxXP2OHTuKgwYNqlAnNja2Qvvcp08f0dnZWczJySn3njp16iR6eHjorrtp0yYRgDhv3rxy11y+fLkIQExJSakyVlG891klNTVVLC4uFjMzM8Uff/xRtLKyEp966qkK5Vu1aiWOHj1aFMXSv5cJEyaIoiiKe/fuFQVBEGNjY8WffvqpwmeYmJgYsVOnTiIAEYBoYWEhDhkyRPziiy/K/b2WvUZZuX8f77//frXvh0hf2BNOZCT29vZ46KGHKpy/ceMGJk+eDFdXV0ilUsjlcgwaNAgAcPny5Rqv261bN3h5eekem5ubw9fXFzdv3qyxriAIFXrcu3TpUq5uWFgYbGxsKiwK99RTT9V4/cpER0cjOTkZU6dOLffttrW1NR5//HGcOHEC+fn5AIBevXph8+bN+O9//4sTJ06guLi43LXatm0Le3t7vPnmm1i7di0uXbpUr5iIiKj5mDFjBjIyMrBnzx4AQElJCbZs2YIBAwagXbt2unJr165F9+7dYW5uDplMBrlcjr///rtWbfP9ytq9yZMnl5tW1qpVK/Tt27dC+YMHD2Lo0KFQKpW6zwXvvvsubt++jbS0tDq/37y8PJw8eRITJkyAtbW17rxUKsXUqVORmJiI6OjocnUeffTRco+7dOkCALX6bAEArq6ukMvlsLe3xxNPPIHAwEB888031dZ57rnnsGfPHty+fRsbNmzA4MGDq1w5vk2bNjh37hzCwsLw3nvvYejQoQgPD8eCBQsQFBSEwsLCcuX79++P8PDwCseDzv8nqi0m4URGUtncpdzcXAwYMAAnT57Ef//7X4SGhiI8PBw7d+4EABQUFNR4XUdHxwrnFApFrepaWlrC3Ny8Qt37G6/bt29XukpsfVeOLRtKXtn9cHd3h1arRWZmJoDS+fLTpk3D119/jaCgIDg4OOCZZ57RbXOiVCoRFhaGbt26YfHixejYsSPc3d2xZMmSCgk7ERERAEyYMAFKpRKbNm0CAPz++++4detWuYTsk08+wdy5c9G7d2/s2LEDJ06cQHh4OEaOHFmr9vV+Ze2eq6trhef+fe7UqVMYPnw4AOCrr77CP//8g/DwcLz99tsAave54N8yMzMhimKV7e79MZb592cLhUJRp9f/66+/EB4ejj///BOPP/44Dh8+jBdeeKHaOhMmTIC5uTk+/fRT/PrrrzUmyBKJBAMHDsS7776LPXv2IDk5GU8++SROnz5dYbqBUqlEjx49KhxVzSsn0jeujk5kJJXt8X3w4EEkJycjNDRU1/sNoNo9TBuao6MjTp06VeF8Zft91vZ6QOkc+X9LTk6GRCKBvb09AMDJyQkrV67EypUrER8fjz179uCtt95CWloa9u3bBwDo3Lkztm3bBlEUcf78eWzevBn/+c9/YGFhUWGLEiIiIgsLCzz11FP46quvkJKSgo0bN8LGxgYTJ07UldmyZQuCg4OxZs2acnXrs95IWbtXWbv573Pbtm2DXC7Hb7/9Vu5L8t27d9f5dcvY29tDIpFU2e4C0K1kri9du3bVXXPYsGEYMWIE1q9fjxkzZqBnz56V1rG0tMSkSZMQEhICW1tbjB8/vk6vaWVlhUWLFmH79u24cOHCA78HIn1iTzhRI1KWmJd9w1xm3bp1xginUoMGDUJOTg7++OOPcue3bdtWr+v5+fmhZcuW+OGHH8otiJKXl4cdO3boVkz/Ny8vLyxYsADDhg3DmTNnKjwvCAK6du2KTz/9FHZ2dpWWISIiAkqHpGs0Gnz00Uf4/fffMWnSpHJtjyAIFdrm8+fPV9jFozb8/Pzg5uaGrVu3lmv3bt68iWPHjpUrKwgCZDIZpFKp7lxBQQG+++67Ctet7ag3Kysr9O7dGzt37ixXXqvVYsuWLfDw8KhywTR9EAQBX375JaRSKd55551qy86dOxePPPII3n333Qoj9e5X2RcKwL1pfGU9/ESNBXvCiRqRvn37wt7eHnPmzMGSJUsgl8vx/fff49y5c8YOTWfatGn49NNP8fTTT+O///0v2rZtiz/++EO3gmldtwKRSCRYvnw5pkyZgjFjxmD27NlQq9X46KOPkJWVhWXLlgEAVCoVBg8ejMmTJ8Pf3x82NjYIDw/Hvn37dN+O//bbb1i9ejUee+wxtG7dGqIoYufOncjKysKwYcP0eyOIiMhk9OjRA126dMHKlSshimKFoc9jxozB+++/jyVLlmDQoEGIjo7Gf/7zH/j4+KCkpKROryWRSPD+++9j5syZGDduHGbNmoWsrCwsXbq0wnD00aNH45NPPsHkyZPx/PPP4/bt21ixYkWFLwSAeyPBtm/fjtatW8Pc3BydO3euNIaQkBAMGzYMgwcPxmuvvQYzMzOsXr0aFy5cwNatWysdradP7dq1w/PPP4/Vq1fj6NGj6N+/f6XlunXrVqte/44dO2LIkCF4+OGH0aZNGxQWFuLkyZP4+OOP4eLiUuHvMysrCydOnKhwHYVCgYCAgHq9J6K6YBJO1Ig4Ojpi7969ePXVV/H000/DysoKY8eOxfbt29G9e3djhweg9Bv0gwcPYuHChXjjjTcgCAKGDx+O1atXY9SoUbCzs6vzNSdPngwrKyuEhITgySefhFQqRZ8+fXDo0CHdIjXm5ubo3bs3vvvuO8TFxaG4uBheXl5488038cYbbwAobdTt7OywfPlyJCcnw8zMDH5+fti8eTOmTZumz9tAREQmZsaMGXjppZfQoUMH9O7du9xzb7/9NvLz87FhwwYsX74cHTp0wNq1a7Fr1656bVFWlhR++OGHGD9+PLy9vbF48WKEhYWVu95DDz2EjRs34sMPP8QjjzyCli1bYtasWXB2dq6QWL733ntISUnBrFmzkJOTg1atWiEuLq7S1x80aBAOHjyIJUuWYPr06dBqtejatSv27NmDMWPG1Pn91MeSJUvw7bff4t133610a7a6WLZsGf7880988MEHSE1NRUlJCTw9PTF58mS8/fbbFeZ6//PPPwgKCqpwnZYtWyIxMfGBYiGqDUEUuSEeET24//3vf3jnnXcQHx8PDw8PY4dDRERERNQosSeciOrsiy++AAD4+/ujuLgYBw8exKpVq/D0008zASciIiIiqgaTcCKqM0tLS3z66aeIi4uDWq3WDQuvaYEVIiIiIqLmjsPRiYiIiIiIiBoItygjIiIiIiIiaiBMwomIiIiIiIgaCJNwIiIiIiIiogZicguzabVaJCcnw8bGBoIgGDscIiIiiKKInJwcuLu7QyLh99/6wPaeiIgak7q09SaXhCcnJ8PT09PYYRAREVWQkJDAbfz0hO09ERE1RrVp600uCbexsQFQ+uZtbW2NHA0RERGQnZ0NT09PXRtFD47tPRERNSZ1aesNloR/8MEH2Lt3LyIjI2FmZoasrKxqyxcXF+Odd97B77//jhs3bkCpVGLo0KFYtmwZ3N3da/26ZUPSbG1t2SgTEVGjwmHT+sP2noiIGqPatPUGm5hWVFSEiRMnYu7cubUqn5+fjzNnzuD//u//cObMGezcuRNXr17Fo48+aqgQiYiIiIiIiBqUwXrC33vvPQDA5s2ba1VeqVTiwIED5c59/vnn6NWrF+Lj4+Hl5aXvEImIiIiIiIgaVKOeE65SqSAIAuzs7Koso1aroVardY+zs7MbIDIiIiIiIiKiumu0+6QUFhbirbfewuTJk6ud6xUSEgKlUqk7uFIqERERERERNVZ1SsKXLl0KQRCqPSIiIh44qOLiYkyaNAlarRarV6+utuyiRYugUql0R0JCwgO/PhEREREREZEh1Gk4+oIFCzBp0qRqy3h7ez9IPCguLsYTTzyB2NhYHDx4sMYVTxUKBRQKxQO9JhEREREREVFDqFMS7uTkBCcnJ0PFokvAr127hkOHDsHR0dFgr0VERERERETU0Aw2Jzw+Ph6RkZGIj4+HRqNBZGQkIiMjkZubqyvj7++PXbt2AQBKSkowYcIERERE4Pvvv4dGo0FqaipSU1NRVFRkqDCJiIiIiIiIGozBVkd/99138c033+geBwQEAAAOHTqE4OBgAEB0dDRUKhUAIDExEXv27AEAdOvWrdy17q9DRERERERE1FQZLAnfvHlzjXuEi6Ko+9nb27vc48YgVVWIqCQVrBUyBLXh0HgiIqLmKCpRhZb2FnCwMjN2KEREZAIa7RZljUHY1TTM+jYC6w5fN3YoRERE1MCyC4vx8vZIPPLFUcz57rSxwyEiIhPBJLwarkoLAKU94kRERFSzkJAQCIKAhQsXVlkmNDS00m1Or1y50nCB1uDkjdt4eOUR7DqbBAC4lJLd6EbsERFR02Sw4eimwE1pDgBIYRJORERUo/DwcKxfvx5dunSpVfno6OhyW5G2aNHCUKHVWlGJFiv/uoo1YdchioCngwUS7hQgV12C7IISKC3lxg6RiIiaOPaEV8P1bhKuKihGflGJkaMhIiJqvHJzczFlyhR89dVXsLe3r1UdZ2dnuLq66g6pVGrgKKsXk5aL8Wv+werQ0gR8YqAH/nhpIJysS+eCJ2blGzU+IiIyDUzCq2FrLoe1onSwAIekExERVW3+/PkYPXo0hg4dWus6AQEBcHNzw5AhQ3Do0KFqy6rVamRnZ5c79EUURXx34ibGfH4EF5KyYWcpx+op3fHRxK6wVsjQ0q50elpSZoHeXpOIiJovDkevgavSHDFpuUhVFaJ1C2tjh0NERNTobNu2DWfOnEF4eHityru5uWH9+vUIDAyEWq3Gd999hyFDhiA0NBQDBw6stE5ISAjee+89fYYNAEjPUePNHedx8EoaAGBAOyd8NKGrbjQcALS0t8C5RBWSspiEExHRg2MSXgO3u0k454UTERFVlJCQgJdeegn79++Hubl5zRUA+Pn5wc/PT/c4KCgICQkJWLFiRZVJ+KJFi/DKK6/oHmdnZ8PT0/PBggdwO0+NozEZMJNJ8NZIf0zv6w2JRChXpqwnPJE94UREpAdMwmvgalv6gSI1m0k4ERHRv50+fRppaWkIDAzUndNoNDh8+DC++OILqNXqWs317tOnD7Zs2VLl8wqFAgqFQi8x38/f1RYfTegCP1cb+LvaVlqGw9GJiEifmITX4N4K6Wx4iYiI/m3IkCGIiooqd+7ZZ5+Fv78/3nzzzVovtnb27Fm4ubkZIsQaje3WstrnW9pbAgCHoxMRkV4wCa9B2V7hKVnsCSciIvo3GxsbdOrUqdw5KysrODo66s4vWrQISUlJ+PbbbwEAK1euhLe3Nzp27IiioiJs2bIFO3bswI4dOxo8/trQ9YQzCSciIj1gEl4D7hVORET0YFJSUhAfH697XFRUhNdeew1JSUmwsLBAx44dsXfvXowaNcqIUVatpX1pEn4nrwj5RSWwNOPHJyIiqj+2IjUoWx2Vc8KJiIhqJzQ0tNzjzZs3l3v8xhtv4I033mi4gB6Q0kIOG3MZcgpLkJxVgLbONsYOiYiImjDuE16Dsp7wO3lFKCzWGDkaIiIiMgaukE5ERPrCJLwGSgs5zOWlt+kWe8OJiIiaJQ97zgsnIiL9YBJeA0EQ4F62OBvnhRMRETVL3KaMiIj0hUl4LejmhTMJJyIiapbKFmfjcHQiInpQTMJrwZUrpBMRETVrLe24VzgREekHk/BacNP1hLPhJSIiao7KesI5HJ2IiB4Uk/BacOWccCIiomatbE74rZxCFJVojRwNERE1ZUzCa8HNlsPRiYiImjMnazMoZBKIIteIISKiB8MkvBY4J5yIiKh5EwTh3uJsWflGjoaIiJoyJuG1UDYnPCNXzSFoREREzRS3KSMiIn1gEl4LDlZmMJOV3qpb2ewNJyIiao48yhZn4wrpRET0AJiE14IgCPdWSGcSTkRE1CyxJ5yIiPSBSXgtuXJxNiIiomZNNyecSTgRET0AJuG1xL3CiYiImreWdpYAOBydiIgejMGS8A8++AB9+/aFpaUl7Ozs6lx/9uzZEAQBK1eu1Hts9cG9womIiJq3sp7wFFUBtFqxVnUyctVY9fc1ZOYVGTI0IiJqQgyWhBcVFWHixImYO3dunevu3r0bJ0+ehLu7uwEiq597PeFMwomIiJojFxsFpBIBxRoRaTnqWtX5/O9r+OTAVby/95KBoyMioqbCYEn4e++9h5dffhmdO3euU72kpCQsWLAA33//PeRyuYGiq7uyvcKTmYQTERE1SzKpRLdGTFIt9wo/E58FANh7PgWq/GJDhUZERE1Io5oTrtVqMXXqVLz++uvo2LFjreqo1WpkZ2eXOwyBc8KJiIioLouzqUs0uJKaffdnLXZHJhk0NiIiahoaVRL+4YcfQiaT4cUXX6x1nZCQECiVSt3h6elpkNjKesLTctQo1mgN8hpERETUuNVlr/DLKTko1tybO771VDxEsXZzyYmIyHTVKQlfunQpBEGo9oiIiKhXIKdPn8Znn32GzZs3QxCEWtdbtGgRVCqV7khISKjX69fEyUoBuVSAKALptZwHRkRERKbFow57hZ9PzAIABHjZQSGT4EpqDiITsgwYHRERNQWyuhResGABJk2aVG0Zb2/vegVy5MgRpKWlwcvLS3dOo9Hg1VdfxcqVKxEXF1dpPYVCAYVCUa/XrAuJRICLrTkSMwuQoiqE+91GmIiIiJqPlnXoCT+XoAIADGjrBB8nK+w8k4Stp+IR4GVv0BiJiKhxq1MS7uTkBCcnJ4MEMnXqVAwdOrTcuREjRmDq1Kl49tlnDfKadeWmLE3CuUI6ERFR81S2V3ht5oSX9YR38bDDQN8W2HkmCb+eS8E7YzrA1rzxLD5LREQNq05JeF3Ex8fjzp07iI+Ph0ajQWRkJACgbdu2sLa2BgD4+/sjJCQE48aNg6OjIxwdHctdQy6Xw9XVFX5+foYKs05K9wrPRAoXZyMiImqWdD3hmQUQRbHKKXS56hLEpOcCALp4KtHCWoF2zta4lpaLXyKTMbVPqwaLmYiIGheDLcz27rvvIiAgAEuWLEFubi4CAgIQEBBQbs54dHQ0VCqVoULQO+4VTkRE1LyVfRYoKNYgs5otxy4kqSCKgLvSHM425hAEAZN6lU6523qSC7QRETVnBusJ37x5MzZv3lxtmZoaoKrmgRtL2d6gKdlMwomIiJojc7kULWwUSM9RIymzAA5WZpWWO3d3AbYuHna6c+MDWuLDfVdwKSUbUUmqcs8REVHz0ai2KGvsyr79TqnFYixERERkmlqWrZCelV9lmfOJpSP9ungqdefsrcwwqpMrgNLtyoiIqHliEl4HrhyOTkRE1OyVzQuvbnG2c3cXZev6r97up+4OSf8lMhm56hKDxEdERI0bk/A6cFOWNrq3ctTQaDmXi4iIqDnyqGGbstu5al2C3qmlstxzvXwc0LqFFfKLNNgTmWzYQImIqFFiEl4HLWwUkEoEaLQiMnLVxg6HiIiIjMDD7t4K6ZU5n1Q6FL21kxWUFuW3IhMEAU/1LO0N3xbOIelERM0Rk/A6kEoEONsoAAApHJJORETULLWsoSf8fMLd+eAeykqffzzQA2ZSCc4nqnAhqensEkNERPrBJLyO7m1TxsXZiIiImqOWdpYAqp4Tfv7ufPCqVj93sDLDCC7QRkTUbDEJr6OyeeHsCSciImqeynrCVQXFFRZXE0UR5+6ujN7V067KazzV0xNA6QJteVygjYioWWESXkdcIZ2IiKh5s1bIdHO9/z0vPEVViIxcNWQSAR3dbau8Rp/WjvB2tESuugR7z6cYNF4iImpcmITXkW6vcCbhREREzVZVe4WXDUX3dbGBuVxaZX2JRMCku9uV/cAh6UREzQqT8DpiTzgRERHpFmf7V094ZELZUPTKF2W734RAD8ilAiITsnA5JVv/QRIRUaPEJLyOynrCk7kwGxERUbNV1hOe+K8V0mtalO1+TtYKPOTvDADYdyFVr/EREVHjxSS8jlzvLsx2K7sQWq1o5GiIiIjIGDwq6QnXakVEJVa/Pdm/DfF3AQCEXU3Xc4RERNRYMQmvI2cbBQQBKNaIuJ1XZOxwiIiIyAg8KtkrPPZ2HnLUJVDIJPB1sanVdQb6tgAAnEvMQiY/VxARNQtMwutILpWghbUCAOeFExERNVdle4Xf3xNeNhS9o7st5NLafcRyVZrD39UGoggcicnQe5xERNT4MAmvBze7sr3COS+ciIioOSpbmC0tRw11iQYAcC6hbCi6XZ2uNehub3hYNIekExE1B0zC68HN9u4K6dnsCSciImqO7C3lsLi7BVlyVunngbKe8G6ednW6li4Jv5rO9WaIiJoBJuH14Mq9womIiJo1QRDKbVNWrNHiYnLpNmO1XZStTKC3PSzNpMjIVeNyKrcqIyIydUzC68GNe4UTERE1e2XblCVl5ePqrRyoS7SwMZfB29GqTtdRyKTo28YRAFdJJyJqDpiE18O9nnDOCSciIrpfSEgIBEHAwoULqy0XFhaGwMBAmJubo3Xr1li7dm3DBKhH9/eEn79vazKJRKjztTgvnIio+WASXg9uyrKF2dgTTkREVCY8PBzr169Hly5dqi0XGxuLUaNGYcCAATh79iwWL16MF198ETt27GigSPWjrCc8MasA5xKyANR9UbYyg3ydAQCnb2Yip7BYH+EREVEjxSS8HtzumxMuilxAhYiIKDc3F1OmTMFXX30Fe3v7asuuXbsWXl5eWLlyJdq3b4+ZM2fiueeew4oVKxooWv3wuK8n/NzdnvCudZwPXsbL0RI+TlYo0Yo4dv223mIkIqLGh0l4PTjblu4TXlSiRWY+v60mIiKaP38+Ro8ejaFDh9ZY9vjx4xg+fHi5cyNGjEBERASKiytvV9VqNbKzs8sdxlaWhN/IyMPVWzkA6t8TDpRfJZ2IiEwXk/B6UMikcLI2A8B54URERNu2bcOZM2cQEhJSq/KpqalwcXEpd87FxQUlJSXIyMiotE5ISAiUSqXu8PT0fOC4H1RLO0sAQHqOGhqtCCdrhW60XH3cPy+cI+2IiEwXk/B6KpsXzhXSiYioOUtISMBLL72ELVu2wNy89gmoIJRfvKws6fz3+TKLFi2CSqXSHQkJCfUPWk+cbRSQS+/F281TWWX8tdG7tQPMZBIkZRXgenqePkIkIqJGiEl4PXGvcCIiIuD06dNIS0tDYGAgZDIZZDIZwsLCsGrVKshkMmg0mgp1XF1dkZqaWu5cWloaZDIZHB0dK30dhUIBW1vbcoexSSSC7kt54MGGogOApZkMvX0cAHBIOhGRKWMSXk/cK5yIiAgYMmQIoqKiEBkZqTt69OiBKVOmIDIyElKptEKdoKAgHDhwoNy5/fv3o0ePHpDL5Q0Vul6UrZAOlG5P9qA4L5yIyPQZLAn/4IMP0LdvX1haWsLOzq7W9S5fvoxHH30USqUSNjY26NOnD+Lj4w0VZr2xJ5yIiAiwsbFBp06dyh1WVlZwdHREp06dAJQOJX/mmWd0debMmYObN2/ilVdeweXLl7Fx40Zs2LABr732mrHeRr2V7RUOPHhPOHAvCT954zYKiyuOIiAioqbPYEl4UVERJk6ciLlz59a6zvXr19G/f3/4+/sjNDQU586dw//93//VaY5ZQ9H1hGdzYTYiIqLqpKSklPtC3cfHB7///jtCQ0PRrVs3vP/++1i1ahUef/xxI0ZZP2U94Z4OFnCwMnvg67V1toa70hzqEi1O3OBWZUREpkhmqAu/9957AIDNmzfXus7bb7+NUaNGYfny5bpzrVu31ndoeuFqW9rosieciIiovNDQ0HKPK/ssMGjQIJw5c6ZhAjKgTi1Lh6D3a+Okl+sJgoBBfs7YeioeYVfTEeznrJfrEhFR49Fo5oRrtVrs3bsXvr6+GDFiBJydndG7d2/s3r272nrG2je0rCc8JauQ24gQERE1U0PbO2P3/H5495EOersm54UTEZm2RpOEp6WlITc3F8uWLcPIkSOxf/9+jBs3DuPHj0dYWFiV9Yy1b2jZnPCCYg2yC0oa5DWJiIiocREEAd087WBppr/BhX3bOkImEXAjPQ8Jd/L1dl0iImoc6pSEL126FIIgVHtERETUKxCtVgsAGDt2LF5++WV069YNb731FsaMGYO1a9dWWc9Y+4aay6WwtyxdwTWF88KJiIhIT2zN5ejeyh4Ae8OJiExRnb62XbBgASZNmlRtGW9v73oF4uTkBJlMhg4dyg/nat++PY4ePVplPYVCAYVCUa/XfFCuSgtk5hcjRVUIf1fj71dKREREpmGQbwucir2DsKvpeLpPK2OHQ0REelSnJNzJyQlOTvpZeOTfzMzM0LNnT0RHR5c7f/XqVbRq1TgbH3elOS6nZHOvcCIiItKrQb4t8NGf0TgWk4GiEi3MZI1mBiERET0gg/1Gj4+PR2RkJOLj46HRaBAZGYnIyEjk5ubqyvj7+2PXrl26x6+//jq2b9+Or776CjExMfjiiy/w66+/Yt68eYYK84GUzQtPzuJwdCIiItKfDm62cLJWIK9Ig9M3M40dDhER6ZHBkvB3330XAQEBWLJkCXJzcxEQEICAgIByc8ajo6OhUql0j8eNG4e1a9di+fLl6Ny5M77++mvs2LED/fv3N1SYD8TXxQYA8HtUCrRarpBORERE+iGRCBjoWzr6kPPCiYhMiyCa2P5a2dnZUCqVUKlUsLU17DztnMJi9F12EDmFJVj7dHeM7ORm0NcjIqKmqSHbpuaiOdzTXyKT8NK2SLR3s8UfLw0wdjhERFSNurRLnGD0AGzM5ZgW5A0AWB16nfuFExERkd4MaNcCggCuP0NEZGKYhD+gZ/t5w1wuwflEFf6JuW3scIiIiMhEOFiZIdCrdKuynWcTjRwNERHpC5PwB+RorcCknl4AgC8PxRg5GiIiIjIlT/b0BABsO5XA9WeIiEwEk3A9mDWwNWQSAcdv3MbZeK5gSkRERPoxpos7bMxliL+Tj6MxGcYOh4iI9IBJuB60tLPAuICWAErnhhMRERHpg4WZFOPvfsbYeireyNEQEZE+MAnXkznBbSAIwIFLtxCdmmPscIiIiMhETO7dCkDpZ4y0HC7QRkTU1DEJ15M2LawxsqMrAGBtGHvDiYiISD/8XG0Q2MoeJVoRP0VwgTYioqaOSbgezQtuCwDYcy4ZCXfyjRwNERERmYqnepUuArv1VDwXaCMiauKYhOtRZw8lBrRzgkYrYt1h9oYTERGRfozp4gZbcxkSMwtwhAu0ERE1aUzC9Wz+4NLe8B8jEjlvi4iIiPTCXC7F+O4eAICtJ7lAGxFRU8YkXM96+zigu5cdikq02HA01tjhEBERkYmY3Lt0SPqBy7eQls0v+omImiqZsQMwNYIgYF5wW8z8NgLfn4jHvOC2UFrIjR0WERERNXG+Ljbo0coeETcz8WNEAhY81K7a8ln5RfjPb5eQlFkAN6U5XJTmcLM1h6vSAq5Kc7gpzeFkrYBUIjTQOyAiIoBJuEE85O8Mf1cbXEnNwXfH42psJImIiIhq46leXoi4mYmtpxIwL7gtJFUk0HnqEjy7ORxn47OqvZ5MImDh0Hb8rEJE1IA4HN0AJBIBc4PbAAA2/hOHgiKNkSMiIiIiUzC6ixuUFnIkZRXg8LX0SsuoSzSYs+U0zsZnQWkhx7LxnbHoYX88288bD3dyRYCXHdyU5pBKBJRoRaw6GMPh7UREDYg94QYyurMbPt5/FfF38vHloRi8NsLP2CERERFRE1e6QFtLbPonDj+cjEewn3O550s0Wry0NRJHrmXA0kyKzc/2RICXfaXX0mhFPLHuOE7fzMTXR2OxeFT7hngLRETNHnvCDUQmleDNkf4AgNWhMQiPu2PkiIiIiMgUTL67Z/jfV9Jw674ebK1WxFs7o7DvYirMpBJ89UyPKhNwAJBKBCy4u6vLlhM3cSevyLCBExERACbhBjW6ixse7+4BrQgs3BaJ7MJiY4dERERETVw7Fxv09LaHRivix/AEAIAoivjv3sv4+XQipBIBn08OQL+2TjVeK9ivBTq62yK/SINN/3BXFyKihsAk3MCWPtoBng4WSMoqwLu7Lxg7HCIiIjIBZduVbQtPgEYrYtXfMdh4N4le/ngXjOjoWqvrCIKAFx4q7Q3ffCyOHQZERA2ASbiB2ZjLsfLJAEglAnZHJmP32SRjh0RERERN3MOd7i3Q9uK2s/j0r6sAgCWPdMDjgR51utbwDq5o52yNnMISfHf8piHCJSKi+zAJbwCBrex13zL/3+4LSLiTb+SIiIiIqCkzl0vxePfSZHvv+RQAwMtDffFsP586X0siETD/7tzwDUdjkV9Uor9AiYioAibhDWTB4Lbo7mWHHHUJXt4eiRKN1tghERERURM2uben7ufn+vngxSFt632tMV3c4OVgiTt5RfjhZLw+wiMioiowCW8gMqkEK58MgLVChoibmVgTet3YIREREVET1tbZBu8/1glvPeyPd0a3hyAI9b6WTCrBvOA2AID1h2+gsFijrzCJiOhfmIQ3IC9HS/xnbEcAwMq/r+FsfKaRIyIiIqKmbGqfVpgzqA0kkvon4GXGd/eAm9IcaTlq/Hw6UQ/RERFRZZiEN7BxAS3xSFd3aLQiFm6PRJ6a866IiIjI+MxkEswe2BoAsCb0Ooo5dY6IyCCYhDcwQRDw38c6oaWdBW7ezsd7v140dkhEREREAIBJvbzgZG2GpKwC7uhCRGQgTMKNQGkhxydPdIUgAD9GJOLj/dEQRdHYYREREVEzZy6XYuaAe73hGi0/nxAR6ZvBkvAPPvgAffv2haWlJezs7GpVJzc3FwsWLICHhwcsLCzQvn17rFmzxlAhGlXv1o54a6Q/AODzgzFYtDOKK6YTERGR0T3dpxWUFnLcyMjD71Epxg6HiMjkGCwJLyoqwsSJEzF37txa13n55Zexb98+bNmyBZcvX8bLL7+MF154Ab/88ouhwjSq2YPa4H/jOkMiANvCEzBnyxkUFHE1UiIiIjIea4UMz93db/zLQzHQsjeciEivDJaEv/fee3j55ZfRuXPnWtc5fvw4pk2bhuDgYHh7e+P5559H165dERERYagwjW5yby+seToQCpkEf12+hac3nERWfpGxwyIiIqJmbHpfb1grZLiSmoO/r6QZOxwiIpPSqOaE9+/fH3v27EFSUhJEUcShQ4dw9epVjBgxoso6arUa2dnZ5Y6mZkRHV2yZ2Ru25jKcvpmJiWuPIzmrwNhhERERUTOltJTj6T6tAAAbj8YaORoiItPSqJLwVatWoUOHDvDw8ICZmRlGjhyJ1atXo3///lXWCQkJgVKp1B2enp4NGLH+9PR2wE9z+sLV1hzX0nLx+JpjuHYrx9hhERERUTM1NagVJAJw/MZt3EjPrXP9q7dysPNMIhefJSL6lzol4UuXLoUgCNUeDzJ0fNWqVThx4gT27NmD06dP4+OPP8a8efPw119/VVln0aJFUKlUuiMhIaHer29sfq422DGvL9q0sEKKqhAT1h5HRNwdY4dFREREzVBLOwsE+zkDALaeiq9T3WKNFtM3nsIrP57DvguphgiPiKjJktWl8IIFCzBp0qRqy3h7e9crkIKCAixevBi7du3C6NGjAQBdunRBZGQkVqxYgaFDh1ZaT6FQQKFQ1Os1G6OWdhb4eU5fPPdNOM7GZ2HK1yfxyRPdMLqLm7FDIyIiomZmSm8vHLyShp9OJ+LV4X4wl0trVe+388lIVhUCALZHJODhzvwcQ0RUpk5JuJOTE5ycnAwSSHFxMYqLiyGRlO+cl0ql0Gqb19Zd9lZm+GFmH7yw9Qz+upyG+T+cQUKmP2YPbA1BEIwdHhERETUTwX7OcFeaI1lViH0XUvFYQMsa64iiiPWH780jP3w1HamqQrgqzQ0ZKhFRk2GwOeHx8fGIjIxEfHw8NBoNIiMjERkZidzce3OK/P39sWvXLgCAra0tBg0ahNdffx2hoaGIjY3F5s2b8e2332LcuHGGCrPRsjCTYt3UHpje1xsAsOyPK1i0MwrF3EuciIiIGohUIuDJnl4AgB9O1m5I+tGYDFxOyYalmRQd3W2hFYEdZxINGSYRUZNisCT83XffRUBAAJYsWYLc3FwEBAQgICCg3Jzx6OhoqFQq3eNt27ahZ8+emDJlCjp06IBly5bhgw8+wJw5cwwVZqMmlQhY+mhHLHmkg24v8Wc3hSO7sNjYoREREQEA1qxZgy5dusDW1ha2trYICgrCH3/8UWX50NDQSteUuXLlSgNGTXXxZE9PSCUCTsXdqdWisesP3wAAPNHDU9eZ8FNEAhdoIyK6q07D0eti8+bN2Lx5c7Vl/v3L2NXVFZs2bTJUSE3Ws/184OVgiRe2nsXRmAw8vvoYNk7vCU8HS2OHRkREzZyHhweWLVuGtm3bAgC++eYbjB07FmfPnkXHjh2rrBcdHQ1bW1vd4xYtWhg8VqofV6U5hvg7Y/+lW/j+ZDyWPlr13+ul5GwcuZYBiQDM6O8DByszLN1zEXG38xEel4lePg4NGDkRUePUqLYoo6oNae+CH2cHwcVWgWtpuRi3+hgiE7KMHRYRETVzjzzyCEaNGgVfX1/4+vrigw8+gLW1NU6cOFFtPWdnZ7i6uuoOqbR2C36RcUzuXTokfeeZRBQWa6os99WR0l7wUZ3d4OlgCSuFTLe47E8RTXcHGyIifWIS3oR0aqnE7vn90N7NFhm5akxafxwbjsbicko2SjhXnIiIjEyj0WDbtm3Iy8tDUFBQtWUDAgLg5uaGIUOG4NChQzVeW61WIzs7u9xBDWdguxbwsLdAdmEJfjufUmmZ5KwC/HouGQDw/MDWuvNP9PAEAOyNSkGeusTwwRIRNXJMwpsYN6UFfpoThMF+LVBYrMX7v13Cw58dQeel+zFx7TH897dL+PVcMhLu5HPuFRERNYioqChYW1tDoVBgzpw52LVrFzp06FBpWTc3N6xfvx47duzAzp074efnhyFDhuDw4cPVvkZISAiUSqXu8PT0NMRboSpIJAKe6lXaG/79yZuVltn0TyxKtCL6tHZAFw873fnAVvZo7WSF/CIN9kZVnsATETUngmhimVp2djaUSiVUKlW5uWampkSjxYajsQi7mo7ziSrkVvLNsoOVGZ7u0wovDWkHqYRbmxERGYupt01FRUWIj49HVlYWduzYga+//hphYWFVJuL/9sgjj0AQBOzZs6fKMmq1Gmq1Wvc4Ozsbnp6eJntPG6O0nEL0DTmIEq2IP14agPZu9+57dmEx+oYcRK66BJum98Rgf+dydVeHxmD5vmj09LbHT3P6NnToREQGV5e2nj3hTZRMKsHsQW3ww6w+OL9kOP56ZSBWTOyKqX1aoYuHEnKpgDt5RVj19zXM/IYrqhMRkeGYmZmhbdu26NGjB0JCQtC1a1d89tlnta7fp08fXLt2rdoyCoVCtwJ72UENy9nGHMM7ugCouF3Z1pPxyFWXoJ2zNQb5Vlxk7/HuHpAIQHhcJm6k51Z4noioOWESbgIkEgFtnW0wIdAD7z/WCXsW9EfU0hFYMbErFDIJDkWn47Ev/2GjR0REDUIUxXK91jU5e/Ys3NzcDBgR6cuU3q0AALvOJunmdxeVaLHpnzgAwKyBrSGpZPSdi625Ljn/+TT3DCei5o1JuIkyl0sxIdADP8/pCzelOW6k52Hsl//gUHSasUMjIiITsnjxYhw5cgRxcXGIiorC22+/jdDQUEyZMgUAsGjRIjzzzDO68itXrsTu3btx7do1XLx4EYsWLcKOHTuwYMECY70FqoOg1o7wdrRErrpEtwjbr+eSkZpdCGcbBcZ2c6+ybtkCbTvOJEKjNanZkEREdcIk3MR19lBiz4L+6NHKHjmFJXhuczjWhl3nom1ERKQXt27dwtSpU3ULrJ08eRL79u3DsGHDAAApKSmIj783dLmoqAivvfYaunTpggEDBuDo0aPYu3cvxo8fb6y3QHVw/wJtP5yKhyiKum3JpvfzhkJW9VZzQ9q7wMHKDLey1Th8Lb1B4iUiaoy4MFszUVSixZI9F7D1VOkenWO7uePDx7vAXM59WYmIDI1tk/7xnhrP7Vw1gkIOokijxesj/PDRn9GwNJPi+FtDoLSUV1v3vV8vYtM/cRjV2RWrpwQ2UMRERIbHhdmoAjOZBP8b1xnvj+0ImUTAL5HJmLj2OOJv5xs7NCIiImpCHK0VGNnJFQDw0Z/RAIBJPb1qTMABYGJg6ZD0A5du4U5ekeGCJCJqxJiENyOCIGBqkDe+m9EbDlZmiEpSYegnYQj54zJXTyciIqJam9zbS/ezVCLguf7etarXwd0WnVsqUawR8UtkkoGiIyJq3JiEN0NBbRzxy/x+6N/WCUUaLdaF3cDgj0Kx5cRNlGi0xg6PiIiIGrnePg5o08IKADC6sxs87C1rXXdiDw8AwPbwBK5RQ0TNEpPwZsrTwRLfzeiFjdN7oE0LK9zOK8I7uy/g4c+OIJQrqBMREVE1BEHAf8Z2wtD2znh9hF+d6j7a1R1mMgmupObgYnK2gSIkImq8mIQ3Y4Ig4CF/F+xbOBDvPdoRdpZyXEvLxfRN4Zi28RSu3soxdohERETUSPVr64Svp/WEp0Pte8EBwM7SDCM6ls4p/ykiwRChERE1akzCCXKpBNP6eiPstcGY2d8HcqmAsKvpGLnyMF75MRKxGXnGDpGIiIhMyMTA0iHpuyOTuS4NETU7TMJJR2kpxztjOuDAy4MwoqMLtCKw80wShnwcipe3R+J6eq6xQyQiIiIT0K+tE7wdLaEqKMbbuy5wbjgRNStMwqkCbycrrJvaA7/M74ch/s7QisCus0kY9kkYXtp2FjFpTMaJiIio/qQSAR8/0Q1SiYBfzyXjp4hEY4dERNRgmIRTlbp62mHD9J74dUF/DG1f2jP+S2Qyhn0ahhe2nsU1zhknIiKiegpsZY9XhvkCAJbsuYiYNH6uIKLmgUk41aizhxJfT+uB317oj+EdXCCKwK/nkjFi5WEs33cFRSXc1oyIiIjqbu6gNujX1hEFxRq8sDUShcUaY4dERGRwTMKp1jq1VGL9Mz2w98XSZFwrAqtDr+OxL/9BdCq/vSYiIqK6kUgEfPpENzhYmeFySjaW/XHF2CERERkck3Cqs47upcn4mindYW8px6WUbDzy+VF8dfgGNFourEJERES152xrjo8ndgUAbD4WhwOXbhk5IiIiw2ISTvX2cGc3/PnyQDzk74wijRYf/H4ZT311Agl38o0dGhERETUhg/2dMaO/DwDg9Z/PIUVVYOSIiIgMh0k4PRBnG3NsmNYDIeM7w9JMilOxd/DwZ0fwY0QCtxshIiKiWntjpB86tbRFVn4xFm6L5Og6IjJZTMLpgQmCgKd6eeGPlwagRyt75KpL8MbP5/Hs5nAcupKGEg0XbiMiIqLqKWRSfP5Ud1iZSXEy9g6+OBhj7JCIiAyCSTjpTStHK2yfHYQ3R/pDLhUQGp2OZzeHo0/IQfzn10u4kKRi7zgRERFVycfJCu8/1gkA8NnfV3Eq9o6RIyIi0j8m4aRXUomAucFt8MdLA/BsP284WpkhI1eNjf/EYsznRzFy5RGsDbuOVFWhsUMlIiKiRmh8dw+MD2gJrQi8tfO8scMhItI7gyThcXFxmDFjBnx8fGBhYYE2bdpgyZIlKCoqqraeKIpYunQp3N3dYWFhgeDgYFy8eNEQIZKBtXW2wZJHOuLE4iHYMK0HRnd2g5lMguhbOVj2xxUELfsbC344gzx1ibFDJSIiokbm/8Z0AADcSM/jZwUiMjkyQ1z0ypUr0Gq1WLduHdq2bYsLFy5g1qxZyMvLw4oVK6qst3z5cnzyySfYvHkzfH198d///hfDhg1DdHQ0bGxsDBEqGZhcKsGQ9i4Y0t4FqoJi/B6Vgp1nEhEel4nfzqcg7nYeNk7rCWdbc2OHSkRERI2EvZUZbM1lyC4sQVJWAXxd+DmQiEyHIDbQJN2PPvoIa9aswY0bNyp9XhRFuLu7Y+HChXjzzTcBAGq1Gi4uLvjwww8xe/bsWr1OdnY2lEolVCoVbG1t9RY/6deZ+EzM+iYCt/OK0NLOApuf7Yl2bGCJyESxbdI/3lPTN+qzI7iUko2N03vgIX8XY4dDRFSturRLDTYnXKVSwcHBocrnY2NjkZqaiuHDh+vOKRQKDBo0CMeOHauynlqtRnZ2drmDGr/uXvbYOa8vfJyskJRVgMfXHMOJG7eNHRYRERE1Eh72FgCAxEzuGU5EpqVBkvDr16/j888/x5w5c6osk5qaCgBwcSn/TaeLi4vuucqEhIRAqVTqDk9PT/0ETQbXytEKO+b2RWAre2QXluCZDafwS2SSscMiIiKiRsDD3hIAk3AiMj11SsKXLl0KQRCqPSIiIsrVSU5OxsiRIzFx4kTMnDmzxtcQBKHcY1EUK5y736JFi6BSqXRHQkJCXd4SGZmDlRm+n9kbD3dyRZFGi5e2RWJN6HVuZUZERNTM3esJzzdyJERE+lWnhdkWLFiASZMmVVvG29tb93NycjIGDx6MoKAgrF+/vtp6rq6uAEp7xN3c3HTn09LSKvSO30+hUEChUNQiemqszOVSfDm5Oz74/TI2HI3Fh/uuICkrH0sf6QiZlLvoERERNUccjk5EpqpOSbiTkxOcnJxqVTYpKQmDBw9GYGAgNm3aBImk+mTKx8cHrq6uOHDgAAICAgAARUVFCAsLw4cffliXMKkJkkgE/N+YDmhpZ4H3917ClhPxyFNr8OmT3YwdGhERERkBh6MTkakySDdjcnIygoOD4enpiRUrViA9PR2pqakV5nb7+/tj165dAEqHoS9cuBD/+9//sGvXLly4cAHTp0+HpaUlJk+ebIgwqRF6rr8P1kzpDplEwK6zSThw6ZaxQyIiIiIjaHm3J/xOXhHyi7hXOBGZDoPsE75//37ExMQgJiYGHh4e5Z67f65vdHQ0VCqV7vEbb7yBgoICzJs3D5mZmejduzf279/PPcKbmZGd3DBzgAprw65jyS8X0LeNI6wUBvmnSkRERI2U0kJ+b6/wzAJuZUpEJsMgPeHTp0+HKIqVHvcTRRHTp0/XPRYEAUuXLkVKSgoKCwsRFhaGTp06GSJEauReGtIOHvYWSFYV4tMDV40dDhERERkBh6QTkSniqlfUKFmYSfH+Y6VfwGz8JxYXklQ11CAiIiJTwxXSicgUMQmnRmuwnzPGdHGDVgQW74qCRstty4iIiJoT9oQTkSliEk6N2rtjOsDGXIbziSp8dzzO2OEQERFRA2rJbcqIyAQxCadGzdnWHG+O9AcArNh/FSkqNsJERETNBYejE5EpYhJOjd7kXl4I8LJDrroE7+25ZOxwiIiIqIF4sCeciEwQk3Bq9CQSASHjO0MmEbDvYir3DiciImomyuaE3+Ze4URkQpiEU5Pg72qLmQNaAwCW/HIBeWo2xERERKZOaSGHjbkMAJDE3nAiMhFMwqnJ4N7hREREzQ9XSCciU8MknJqMf+8dHpXIvcOJiIhMnW5eeBaTcCIyDUzCqUm5f+/wyV+dwI7TiRBF7h9ORERkqrhCOhGZGibh1OT8Z2wnBLayR466BK/+dA7zvj+DO3lFxg6LiIiIDIDD0YnI1DAJpybHwcoM25/vg9dH+EEmEfDHhVSMWHkYodFpxg6NiIiI9IzblBGRqWESTk2STCrB/MFtsXt+P7R1tkZ6jhrTN4Xj/3Zf4BYmREREJqQsCU/icHQiMhFMwqlJ69RSid9e6I9n+3kDAL47cRNjVh1FZEKWUeMiIiIi/fCwKx2OnpFbhIIijZGjISJ6cEzCqckzl0ux5JGO2DKjN1xtzXEjIw+PrzmG3WeTjB0aERERPSBbCxlsFHf3Cs9ibzgRNX1Mwslk9G/nhD8XDsToLm7QaEW8seM8zsZnGjssIiIiegCCIKDl3SHpCZwXTkQmgEk4mRSlpRyfTwrAsA4uKCrRYvZ3p3Eru9DYYRERmaw1a9agS5cusLW1ha2tLYKCgvDHH39UWycsLAyBgYEwNzdH69atsXbt2gaKlpoqrpBORKaESTiZHIlEwKdPdoOvizXSctR4/rvTKCzmHDIiIkPw8PDAsmXLEBERgYiICDz00EMYO3YsLl68WGn52NhYjBo1CgMGDMDZs2exePFivPjii9ixY0cDR05NCfcKJyJTwiScTJK1QoavnukBpYUc5xKysHhXFERRNHZYREQm55FHHsGoUaPg6+sLX19ffPDBB7C2tsaJEycqLb927Vp4eXlh5cqVaN++PWbOnInnnnsOK1asqPZ11Go1srOzyx3UfNxbIZ094UTU9DEJJ5PVytEKX07uDqlEwM4zSdhwNNbYIRERmTSNRoNt27YhLy8PQUFBlZY5fvw4hg8fXu7ciBEjEBERgeLi4iqvHRISAqVSqTs8PT31Gjs1bhyOTkSmhEk4mbT+7Zzw9qj2AID//X4Zh6+mGzkiIiLTExUVBWtraygUCsyZMwe7du1Chw4dKi2bmpoKFxeXcudcXFxQUlKCjIyMKl9j0aJFUKlUuiMhIUGv74Eat3vD0ZmEE1HTxyScTN6z/bwxMdADWhFY8MMZxGbkGTskIiKT4ufnh8jISJw4cQJz587FtGnTcOnSpSrLC4JQ7nHZdKF/n7+fQqHQLf5WdlDz4Wlftle4muu8EFGTxyScTJ4gCPjvuE7o7mWH7MISzPo2AjmFVQ95JCKiujEzM0Pbtm3Ro0cPhISEoGvXrvjss88qLevq6orU1NRy59LS0iCTyeDo6NgQ4VITdP9e4ewNJ6Kmjkk4NQsKmRRrnw6Eq605YtJysXBbJDRaLtRGRGQIoihCrVZX+lxQUBAOHDhQ7tz+/fvRo0cPyOXyhgiPmqD79wrnCulE1NQxCadmw9nWHOumBsJMJsHfV9Lw0Z/Rxg6JiKjJW7x4MY4cOYK4uDhERUXh7bffRmhoKKZMmQKgdC73M888oys/Z84c3Lx5E6+88gouX76MjRs3YsOGDXjttdeM9RaoieC8cCIyFUzCqVnp6mmHjyZ0AQCsDbuOHacTjRwREVHTduvWLUydOhV+fn4YMmQITp48iX379mHYsGEAgJSUFMTHx+vK+/j44Pfff0doaCi6deuG999/H6tWrcLjjz9urLdATQRXSCciUyEzxEXj4uLw/vvv4+DBg0hNTYW7uzuefvppvP322zAzM6u0TnFxMd555x38/vvvuHHjBpRKJYYOHYply5bB3d3dEGFSMzW2W0tcu5WLLw7FYNHOKLRytEQPbwdjh0VE1CRt2LCh2uc3b95c4dygQYNw5swZA0VEpsqDw9GJyEQYpCf8ypUr0Gq1WLduHS5evIhPP/0Ua9euxeLFi6usk5+fjzNnzuD//u//cObMGezcuRNXr17Fo48+aogQqZl7ZZgvRnZ0RZFGi9nfnUbCHTboREREjRmHoxORqRDEsn1BDOyjjz7CmjVrcOPGjVrXCQ8PR69evXDz5k14eXnVqk52djaUSiVUKhW3L6Fq5ReVYOLa47iYnA1/Vxv8PLcvrBUGGRxCRM0c2yb94z1tfi4kqTDm86NoYaNA+NtDjR0OEVE5dWmXGmxOuEqlgoND3Yb8qlQqCIIAOzu7Ksuo1WpkZ2eXO4hqw9JMhq+e6YEWNgpcSc3BS1vPcsV0IiKiRqqsJzw9h3uFE1HT1iBJ+PXr1/H5559jzpw5ta5TWFiIt956C5MnT672m4SQkBAolUrd4enpqY+QqZlwt7PAV8/0gOLuiunL910xdkhERERUCaWFXDdiLSmLQ9KJqOmqUxK+dOlSCIJQ7REREVGuTnJyMkaOHImJEydi5syZtXqd4uJiTJo0CVqtFqtXr6627KJFi6BSqXRHQkJCXd4SEbp52uGjiV0BAOsO38BPEfw3RERE1NgIgsB54URkEuo0AXbBggWYNGlStWW8vb11PycnJ2Pw4MEICgrC+vXra/UaxcXFeOKJJxAbG4uDBw/WOJ5eoVBAoVDU6tpEVXm0qztibuVg1cEYLN4VBW8nK/TkiulERESNioe9Ba6k5nCFdCJq0uqUhDs5OcHJyalWZZOSkjB48GAEBgZi06ZNkEhq7nQvS8CvXbuGQ4cOwdHRsS7hET2QhUN9EZOei9+jUjHzmwi8NtwXT/T0hEImNXZoREREBO4VTkSmwSBzwpOTkxEcHAxPT0+sWLEC6enpSE1NRWpqarly/v7+2LVrFwCgpKQEEyZMQEREBL7//ntoNBpdnaKiIkOESVSORCLg44nd0NXTDqqCYvzfLxfx0IowbD0Vj2KN1tjhERERNXscjk5EpsAg+zHt378fMTExiImJgYeHR7nn7t8RLTo6GiqVCgCQmJiIPXv2AAC6detWrs6hQ4cQHBxsiFCJyrEwk+LH2X3wY3gCvjgUg6SsAizaGYXVoTF48aF2GBfQEjJpg20qQERERPe5l4RzODoRNV0Ntk94Q+G+oaQvhcUa/HAyHqtDryMjVw0A8HGywktD2uGRru6QSgQjR0hETQXbJv3jPW2eohJVeOQL7hVORI1Po9wnnKipMZdL8Vx/Hxx5YzAWj/KHg5UZYjPysHB7JMat/gc5hcXGDpGIiKhZ4V7hRGQKmIQT1cDCTIrnB7bBkTcG4/URfrA1l+F8ogovbz8HrdakBpIQERE1anaWcliZlS6Ymsy9womoiWISTlRLVgoZ5g9ui+9m9IaZTIK/Lt/Cyr+vGTssIiKiZqN0r3CukE5ETRuTcKI66upph/+N6wwAWPX3Ney7kFpDDSIiItIXrpBORE0dk3CiepgQ6IFn+3kDAF79MRJXb+UYNyAiIqJmgiukE1FTxyScqJ7eHtUefds4Iq9Ig1nfRiArn/vZExERGRqHoxNRU8cknKieZFIJvpjcHR72Frh5Ox8vbD2LEo3W2GERERGZNPaEE1FTxySc6AE4WJlh/dQesJBLceRaBpb/GW3skIiIiEwae8KJqKljEk70gDq42+KjiV0AAOsP38AvkUlGjoiIiMh0lfWEp3GvcCJqopiEE+nBmC7umBfcBgDwxs/ncSFJZeSIiIiITBP3Cieipo5JOJGevDrcD8F+LaAu0WLGN+G4eTvP2CERERGZHEEQ0JLblBFRE8YknEhPpBIBn00KgK+LNW5lqzH5q5NI4jf0REREelc2L5ztLBE1RUzCifRIaSHHlpm90drJCklZBZj81Qncyi40dlhEREQmhSukE1FTxiScSM+cbczx/aze8HQo3bps8lcnkJGrNnZYREREJqMsCb96Kxe56hIjR0NEVDcyYwdAZIrclBb4YWYfPLHuOK6n5+Hpr09i2/N9YGdpZuzQiIiImryy4egHLt1CpyV/ws5SjpZ2FqWHvQU87C3RysESA31bwEzGPicialyYhBMZiKeDJX6YVZqIX0nNwdQNp/D9rN6wNZcbOzQiIqImrX87J/Rr64gLSdlQFRQjK7/0uJicXa5cj1b2+HZGL1ia8SMvETUegiiKorGD0Kfs7GwolUqoVCrY2toaOxwiXL2Vg0nrT+BOXhECW9nj2+d6wUpR/sNAQZEGV1KzcTklB0lZ+ZjcuxVa2lkYKWIi0je2TfrHe0plcgqLkZRVgKTMAt2fiZkFOHw1HTnqEvRt44iN03vCXC41dqhEZMLq0i4xCSdqABeTVXhq/QlkF5agT2sHPD+wNS6n5OBSSjYup2QjLiMP2vv+J3bxUGLn3L6QSTmEjsgUsG3SP95TqsnZ+Ew8/fVJ5BVpMNivBdZN7cGh6URkMHVpl/ibiKgBdHRX4tsZvWGtkOHEjTt4bnMEPvozGnvPp+BGemkC7mStwIB2TrAxl+F8ogqb/okzdthERERNVoCX/d0ecAkORafjxa1nUaLRGjssIiL2hBM1pPC4O1i4LRJWCinau9mivZstOtz9s4WNAgCwPTweb+6Igrlcgn0vDYS3k5WRoyaiB8W2Sf94T6m2Dl9Nx8xvIlCk0WJsN3d88kQ3SCWCscMiIhPD4ehslKkJE0URU74+iWPXb6NPawdsndUHgsAPC0RNGdsm/eM9pbr469ItzNlyGiVaEZN6euJ/4zpDwkSciPSIw9GJmjBBELBsfBeYyyU4ceMOtoUnGDskIiKiJm1oBxesnNQNEgHYFp6A//x2CSbWD0VETQiTcKJGyMvREq8N9wMA/G/vZaSqCo0cERERUdM2pos7PprQFQCw+VgcPtwXbZBEvLBYg4XbzmLJLxf0fm0iMg1MwokaqWf7+aCrpx1y1CV4Z3cUv7EnIiJ6QI8HeuCDcZ0AAGvDrmPnmSS9Xl+rFfHy9kjsjkzGN8dvIjYjT6/XJyLTwCScqJGSSgQsf7wL5FIBf11Ow2/nU4wdEhERUZM3pXcrvDikHYDSRFyfX3KH/HEZf1xI1T0Oi07T27WJyHQwCSdqxPxcbTB/cFsAwNI9F3Enr8jIERERETV9Mwf4wMpMimtpuTgak6GXa357PA5fHYkFAPRp7QAACL2arpdrE5FpMUgSHhcXhxkzZsDHxwcWFhZo06YNlixZgqKi2icQs2fPhiAIWLlypSFCJGoy5gW3hZ+LDW7nFeH93y4ZOxwiIqImz9ZcjgmBHgCATf/EPfD1/r58C0v3XAQAvD7CD0sf7QgAOHHjNgqLNQ98fSIyLQZJwq9cuQKtVot169bh4sWL+PTTT7F27VosXry4VvV3796NkydPwt3d3RDhETUpZjIJPpzQBRIB2HU2CYeucGgbERHRg5rezwcAcPBK2gPN3Y5KVGHBD2ehFYFJPT0xL7gN/Fxs4GprjsJiLU7G3tFXyERkIgyShI8cORKbNm3C8OHD0bp1azz66KN47bXXsHPnzhrrJiUlYcGCBfj+++8hl8sNER5Rk9PN0w7P3f2wsHhXFLILi40cERERUdPm42SFh/ydAQDfHIur1zUSM/Px3DfhKCjWYEA7J7z/WCcIggBBEDDItwUAICyaQ9KJqLwGmxOuUqng4OBQbRmtVoupU6fi9ddfR8eOHWt1XbVajezs7HIHkSl6ZbgvvBwskaIqxOSvTiAtm9uWERERPYhn+3kDAH6KSKjzF9yqgmI8uykc6Tlq+LvaYPWU7pBL7320DvYrTcJDr3IEGxGV1yBJ+PXr1/H5559jzpw51Zb78MMPIZPJ8OKLL9b62iEhIVAqlbrD09PzQcMlapQszWT4cnJ3OFiZ4UJSNsatPoZrt3KMHRYREVGT1b+tE9o5WyOvSIOfIhJrXa+oRIu5W07jWlouXGwV2PRsT9iYlx/B2betE6QSATfS85BwJ1/foRNRE1anJHzp0qW6ITZVHREREeXqJCcnY+TIkZg4cSJmzpxZ5bVPnz6Nzz77DJs3b4YgCLWOadGiRVCpVLojISGhLm+JqEnp7KHErnl94eNkhaSsAoxfcwzHrutnVVciIqLmRhAETL/bG775WCw02pq3KxNFEYt3ReHY9duwMpNi4/SecFNaVCintJAj0MseAFdJJ6Ly6pSEL1iwAJcvX6726NSpk658cnIyBg8ejKCgIKxfv77aax85cgRpaWnw8vKCTCaDTCbDzZs38eqrr8Lb27vKegqFAra2tuUOIlPWytEKO+b2RWAre+QUlmDaxlPYdbb2394TERHRPeMDPKC0kCPhTgH+vnyrxvKb/onDz6cTIZUI+GJKd3R0V1ZZdpAf54UTUUV1SsKdnJzg7+9f7WFubg6gdIG14OBgdO/eHZs2bYJEUv1LTZ06FefPn0dkZKTucHd3x+uvv44///yz/u+QyAQ5WJnh+5m9MaqzK4o1Il7efg5fHLwGUaz5G3wiIn0KCQlBz549YWNjA2dnZzz22GOIjo6utk5oaGilo+muXLnSQFET3WNhJsVTvbwA1Lxd2bGYDHzw+2UAwNuj2mOwn3O15csWZzt2PQPqEm5VRkSlDDInPDk5GcHBwfD09MSKFSuQnp6O1NRUpKamlivn7++PXbt2AQAcHR3RqVOncodcLoerqyv8/PwMESZRk2Yul+KLp7rj+YGtAQAr9l/Fop1RKNZojRwZETUnYWFhmD9/Pk6cOIEDBw6gpKQEw4cPR15ezVs+RUdHIyUlRXe0a9euASImquiZoFaQSgQcv3Ebl1MqX+Q34U4+5v9wBhqtiPHdW+oWdatOBzdbOFkrkF+kwem4TD1HTURNlcwQF92/fz9iYmIQExMDDw+Pcs/d31MXHR0NlUpliBCImgWJRMDiUe3hYW+BpXsuYlt4ApJVhVj3dCAszKTGDo+ImoF9+/aVe7xp0yY4Ozvj9OnTGDhwYLV1nZ2dYWdnZ8DoiGrH3c4CIzu6Ym9UCjb/E4cPJ3Qp93xBkQbPf3camfnF6NxSif+N61yrNYwkEgEDfZ2w80wSwq6mo29bJ0O9BSJqQgzSEz59+nSIoljpcT9RFDF9+vQqrxMXF4eFCxcaIkQik/JMkDfWTe0Bc7kEh6+m49WfIqGtxeIyRET6Vvblek3bkgJAQEAA3NzcMGTIEBw6dKjastySlAytrGd7V2QSbueqdedFUcQbO87jcko2HK3MsG5qIMzltf+iO/jukPVQzgsnorsabJ9wIjKsYR1csPnZXpBLBfwelYoV+6ufk0lEpG+iKOKVV15B//79yy3U+m9ubm5Yv349duzYgZ07d8LPzw9DhgzB4cOHq6zDLUnJ0AJb2aOLhxJFJVpsPRWvO7/+8A38ei4ZMomA1VO6w92u4kro1RnQ1gkSAYi+lYMUVYG+wyaiJohJOJEJ6dPaESHjS4fQrQ69jh8juGUfETWcBQsW4Pz589i6dWu15fz8/DBr1ix0794dQUFBWL16NUaPHo0VK1ZUWYdbkpKhCYKg6w3/7sRNFGu0OHw1HR/uK10wcMkjHdC7tWOdr2tvZYaunnYAuEo6EZViEk5kYiYEemDB4LYAgMU7o7iPOBE1iBdeeAF79uzBoUOHKqwHUxt9+vTBtWvXqnyeW5JSQxjd2R0tbBS4la3G2tDreGHrWWhF4Mkenni6T6t6X7dslfQw7hdORGASTmSSXhnmi9Fd3FCiFTF3yxlcT881dkhEZKJEUcSCBQuwc+dOHDx4ED4+PvW6ztmzZ+Hm5qbn6IjqxkwmwdO9S5Ptjw9chaqgGAFedvjPYx1rtRBbVcrmhR+9lsFdTIiISTiRKZJIBHw8sSu6edpBVVCM5zaH405ekbHDIiITNH/+fGzZsgU//PADbGxsdFuSFhTcm/u6aNEiPPPMM7rHK1euxO7du3Ht2jVcvHgRixYtwo4dO7BgwQJjvAWicib39oKZtPQjcgsbBdY+HQiF7MF2HOncUgl7Szly1CU4G5+lhyiJqCljEk5koszlUnz1TA942Fvg5u18zPnuNNQlGmOHRUQmZs2aNVCpVAgODoabm5vu2L59u65MSkoK4uPvLXRVVFSE1157DV26dMGAAQNw9OhR7N27F+PHjzfGWyAqp4WNAs8PbA3nuwm4i635A19TKhEw8O6Q9NDotAe+HhE1bYL4733Dmrjs7GwolUqoVCrOFyMCcPVWDh5ffQw56hKMD2iJj5/o+kBD6oio7tg26R/vKTU1O88k4pUfz6Gjuy32vjjA2OEQkZ7VpV1iTziRifN1scGXU7pDKhGw82wSPv3rGkzsuzciIqJGr6wn/GJyNtJyCo0cDREZE5NwomZgoG8L/GdsRwDAqr+vYfyaY4iIu2PkqIiIiJoPJ2sFOrdUAgAOX+XOJUTNGZNwomZiSu9WeGd0e1iaSXE2PgsT1h7H7O8icIMrpxMRETWIQZwXTkRgEk7UrMwc0BqhrwXjqV5ekAjAnxdvYfinh7Hklwu4nas2dnhEREQmLdivNAk/ci0DGi2nhhE1V0zCiZoZZ1tzhIzvjH0LB+Ihf2eUaEV8c/wmgj8KxerQGBQWcwV1IiIiQ+jmaQdbcxlUBcWITMgydjhEZCRMwomaKV8XG2yc3hM/zOyNju62yFGXYPm+aAz7NAxHr3GuGhERkb7JpBIMaFfaGx52Nd3I0RCRsTAJJ2rm+rZ1wq8L+uPTJ7vCXWmOhDsFeHrDSbzx8zmo8ouNHR4REZFJKZsXfuDSLe5WQtRMMQknIkgkAsYFeGD/K4MwLagVBAH4MSIRQz8Nw74LqcYOj4iIyGQMae8Mc7kEl1OyEcrecKJmiUk4EelYK2R4b2wn/Dg7CK1bWCE9R405W05j/vdnkJ7DhduIiIgelKO1AlP7tAIArPzrGnvDiZohJuFEVEFPbwf8/uIAzB/cBlKJgL1RKRj6SRh2nE7khwUiIqIH9PzANjCXS3AuIQuh0ewNJ2pumIQTUaXM5VK8PsIfexb0Q0d3W6gKivHqT+cw6KNQvLI9EltO3MTllGxusUJERFRHLWzu7w2/yi+4iZoZmbEDIKLGraO7Ervn98NXR27gs7+uIf5OPuLv5GPn2SQApUPYu3naoXsrewS2skd7Vxu0sFFAEAQjR05ERNR4zR7UBt+duIlziSqERqdjsL+zsUMiogbCJJyIaiSXSjAvuC2e7tMKZ+OzcPpmJs7czMTZ+EzkqktwNCYDR2PubWtmo5ChtbM12rSwQltna7RpUXq0crSEXMoBOERERE7WCjwT5I31h2/g07+uItivBb/AJmommIQTUa3ZmssxyLeFbnsVjVZEdGoOzsTfTcoTsnDzdh5y1CU4l5CFcwlZ5eqbSSUIauOIER1dMbSDM5xtzI3wLoiIiBqH5we2xnfHb+J8ogqHotPwkL+LsUMiogYgiCY2CSU7OxtKpRIqlQq2trbGDoeo2VGXaHDzdj6up+UiJi0X19NzcT09D9fTc5FfpNGVEwSgu5c9hndwwfCOrvBxsjJi1ESGxbZJ/3hPyVSE/H4Z6w7fQBcPJX6Z369R94Zn5Krx5Lrj6OCuxOdPBRg7HKJGpS7tEnvCiUivFDIpfF1s4OtiU+68KIqIScvF/ku3sP/SLZxLKB3WfvpmJkL+uAJfF2sM7+CKhzu7ooObbaP+EEJERKQvswa2xrd3e8MPXknDkPZV94aLoojPD8Zg/eEb6NPaAU/18kKwnzOkkoZpM1f+dfXuF+t5WDi0Hdq0sG6Q1yUyNewJJyKjSFUV4sClVOy/dAvHr99GyX2rrHs7WmJUZzeM6uyGju7VJ+QFRRpcSlHhYnI2vBwsEezHhW2o8WHbpH+8p2RKQv64jHVhN9C5pRJ7FlTeG15QpMFrP5/D3vMp5c67Kc3xRA9PPNnTE+52FgaLMSYtFyNWHtbtivLiQ23xynA/g70eUVNTl3aJSTgRGZ2qoBiHrqRh34VUHIpOg7pEq3vO29ESD3d2w+jObmjdwgqXU7IRlahCVFI2opKyEJOWi/t3SftsUjeM7dbSCO+CqGpsm/SP95RMye1cNfp/eAgFxRpsmNajQm94iqoAs76NwIWkbMilAt4c6Y9b2YX4+XQiMvOLAQASAQj2c8bkXl4I9msBmVQCURSRX6RBnroEueoS5Kk1yFWXwMHKDH6uNpWFUqWZ30Tgr8u34GStQEauGl4Olgh7PZgj14juYhLORpmoycpTl+DvK2n4/XxKhYS8Ki1sFHCxVeBCUjZkEgEbpvfULR5H1BiwbdI/3lMyNVX1hkcmZOH5byOQlqOGg5UZ1j4diF4+DgBK12H58+It/HDyJk7cuKO7lrVCVpqAF2tQ2Sd9QQC+mtoDQzvUbiG4EzduY9L6E5BKBOye1w9Prj+O/CINdszti8BW9g/+5olMQF3aJYPsFRQXF4cZM2bAx8cHFhYWaNOmDZYsWYKioqIa616+fBmPPvoolEolbGxs0KdPH8THxxsiTCJqhKwUMjza1R1rpwbizP8Nw+dPBeDhTq4wl5f+umpho8BD/s54cUg7fPVMD5xcPAThbw/Fnvn98WhXd5RoRcz57jTOxmca+Z0QERHV3vMDWsPSTIqoJBX+vpwGAPglMglPrDuOtBw1/Fxs8Mv8froEHChdh+XRru7Y9nwQDr46CM8PbA0HK7PSXu+iewm4RCjdPtTV1hxuSnOIIvDqT+eQlFVQY1xarYj//X4ZAPBUL0909lBiZEdXAMDus0l6vgtEzYNBFma7cuUKtFot1q1bh7Zt2+LChQuYNWsW8vLysGLFiirrXb9+Hf3798eMGTPw3nvvQalU4vLlyzA35zZGRM2RlUKGR7q645Gu7igoKh1C18JGUWlZiUTAioldkZlfhCPXMvDs5nD8PCcIbZ3rNtyOiIjIGBzv7hu+Nuw6Vv59FZEJWfjiUAwAYGh7Z6ycFABrRdUf3Vu3sMbiUe3x6nBfxGbkwVwmhZVCBmuFDOZyia5nvahEi4lrj+FcogoLfjiDH2cHQS6tul/u1/PJOJ+ogrVChoVDfQEAYwNaYufZJPx2PhnvPtKh2vpEVFGDDUf/6KOPsGbNGty4caPKMpMmTYJcLsd3331X79fh8DSi5i1PXYLJX5/EuYQsuCnNsWNuX4MuVENUG2yb9I/3lEzRnbwi9P/wYLktPecGt8Frw/30ugJ6wp18jFp1BDmFJZg1wAdvj+5QabnCYg2GfByGpKwCvDbcFwseagcAKNFo0SfkIDJy1ZXOYSdqjow+HL0yKpUKDg4OVT6v1Wqxd+9e+Pr6YsSIEXB2dkbv3r2xe/fuaq+rVquRnZ1d7iCi5stKIcOm6T3RpoUVUlSFmLrhJO7k1TwVhoiIyNgcrMwwra83AMBMKsEnT3TFmyP99b4FmaeDJT6a0BUA8NWRWBy4dKvSct8ci0NSVgFcbc0xo39r3XmZVIJHu7oDAHZxSDpRnTVIEn79+nV8/vnnmDNnTpVl0tLSkJubi2XLlmHkyJHYv38/xo0bh/HjxyMsLKzKeiEhIVAqlbrD09PTEG+BiJoQByszfDejN9yU5rienodnN4cjT11Sadn8ohKcvnkHP0Yk4FZ2YQNHSkREVN5LQ9rhndHtsXNeX4zv7mGw1xnZyRXP9fMBALz20zkkZuaXez4zr0g3HP61EX6wMJOWe/6xgNIk/MClW8gpLDZYnESmqE7D0ZcuXYr33nuv2jLh4eHo0aOH7nFycjIGDRqEQYMG4euvv66yXnJyMlq2bImnnnoKP/zwg+78o48+CisrK2zdurXSemq1Gmq1Wvc4Ozsbnp6eHJ5GRIhJy8GEtceRlV+MAe2c8PHErrh6KxcXk1W4kJyNi8kqxGbk6Rau8bC3wE9zguCm5PB10i8OndY/3lOiB3f//PBunnb4cXYQzGSlfXTv/XoRm/6JQ3s3W/z2Qv8KvfGiKGLIJ2G4kZ6HFRO7YkKg4b4wIGoK6tIu1WlhtgULFmDSpEnVlvH29tb9nJycjMGDByMoKAjr16+vtp6TkxNkMhk6dCg/J6V9+/Y4evRolfUUCgUUisoXaiKi5q2tsw02Te+JyV+dxJFrGej1v78rLedso4BWBBIzC/D01yexfXYQnKz5e4WIiEybmUyCLyZ3x+hVRxCZkIXl+67gnTEdEJeRhy0nbgIA3h7VvtLh8IIgYFy3lvj4wFXsPpvEJJyoDuqUhDs5OcHJyalWZZOSkjB48GAEBgZi06ZNkEiqH/luZmaGnj17Ijo6utz5q1evolWrVnUJk4hIJ8DLHmunBmLWtxEoKtGilaMlOrkr0cHdFh3dbdHRXYkWNgokZRVg4ppjuJ6eh2c2nMLW5/tAaSE3dvhEREQG5elgiY8mdsXs707j66Ox6OXjgN2RSSjWiBjk2wL921X92X/s3ST82PUM3MouhIstdzQiqg2DbFGWnJyM4OBgeHl5YcWKFUhPT9c95+rqqvvZ398fISEhGDduHADg9ddfx5NPPomBAwdi8ODB2LdvH3799VeEhoYaIkwiaiYG+bbAyUVDIJUKsDWvPLFuaWeBLTN744l1x3EpJRvPbQ7HdzN6wdLMIL8miYiIGo0RHV0xo78PNhyNxcvbI5FXpIFEABaPal9tPS9HSwS2ssfpm5n49VwyZg5oXW15IiplkIXZ9u/fj5iYGBw8eBAeHh5wc3PTHfeLjo6GSqXSPR43bhzWrl2L5cuXo3Pnzvj666+xY8cO9O/f3xBhElEzYm9lVmUCXqZ1C2t8N6M3bM1lOH0zE89/exqFxZpq66SqCvHf3y5h3Op/8ObP57E9PB5Xb+VAq22Q3R+JiIj04s2R/ujqaYe8u9ujTQz0hJ+rTY31HgtoCYCrpBPVRYPtE95QuFALET2os/GZmPL1SeQXaTCsgwtWT+kOubT8d5axGXlYF3YdO84kolhT8deojbkM3TztEOBlj+5edujeyr7GLwHIdLFt0j/eUyL9S7iTj0e/OAqNVsSBVwbVanj5nbwi9PrgL5RoRRx4eSDaudScuBOZorq0S0zCiYgqcex6BqZvCkdRiRaPdXPHJ090g0Qi4GKyCmtCr+P3qBSUdXb38nHAhO4eiL2dh7PxmTiXoELBv3rQrcykWDkpAMM6uBjh3ZCxsW3SP95TIsO4nauGRhThbFP7+d0zvwnHX5fTMH9wG7w+wt+A0RE1XgZbHZ2IqLno28YJqyd3x5wtp7E7MhkigOyCYhyKvrfGxRB/Z8wb3AaBrRzK1S3RaHElNQdnE7Jw9mYmTsXdQWJmAWZ/F4H/PtYZk3t7NfC7ISIiqh3HeuwOMrZbS/x1OQ27zybj1WF+kFSymjoR3cMknIioCkM7uOCTJ7vhpW1n8UtkMgBAIgBjurhjbnAbtHer/FtOmVSCTi2V6NRSial9WqFYo8Xbu6LwY0QiFu+KQqqqAC8P84Ug8EMKERE1fUPbu8BaIUNSVgEibmail49DzZWImjEm4URE1Xi0qzvUxRp8vP8qBvs7Y/bA1vB2sqrTNeRSCT58vAtcbc2x6mAMVh2MQWp2IT4Y17nCXHMiIqKmxsJMipGdXPHz6UTsjkxiEk5UAybhREQ1mNjDExN7eD7QNQRBwCvD/eCqtMA7u0t7xdNy1PhycndYKfirmIiImrbHurXEz6cTsfd8CpY80gEKmbRO9UVRxJ8Xb+Hvy7fQxtkaPb0d0LmlEmYyfllNpoef/IiIGtDk3l5wtlFgwdYzCI1Ox1NfncDG6T3hVI85eACQll2IozEZKCrRQiGXwFwmhblcCoVMAoVcCnO5BNYKGbwcLDn8nYiIDCaojSOcbRRIy1EjNDodIzq61rpuYmY+lvxyEX9fSSt33lwuQYCnPXr6OKCXtwO6t7KDpRnTl6ZEFEW8/vN5qAqKsWpSACzM6vbljKni6uhEREZwJj4TMzaHIzO/GK0cLbFxek+0aWFdq7oxabk4cOkW9l9Kxdn4rFrV6epphzdH+qFvG6cHiJrqi22T/vGeEjU+H+y9hK+OxMJNaY5n+3njiR6esLM0q7J8sUaLjUdjsfKvaygo1kAuFfBkT0+k56gRHpeJO3lF5crLJAK6e9njxSHt0L9d02nPtFoRx67fxo2MXAz2c4ang6WxQ2owf15MxezvTgMAxge0xMdPdDXZTgFuUcZGmYiagBvpuZi26RQS7hQAAByszODtaAkfJ2v4OJX+6e1kiVaOVrh6Kwf7L5Ym3jfS88pdp4uHEs42ChQWa1FYrIG6pPyfmflFur3MB/q2wJsj/dDRXdng77c5Y9ukf7ynRI1Pwp18jF9zDOk5agCAQibB2G7ueCbIG51alm93Tt/MxNu7onAlNQdA6Xaf/xvXCW2dS/cZF0UR19NzcSo2E6dib+NU7B0kqwp19Qf7tcDiUe0b9b7kmXlF+Pl0Ir4/eRNxt/MBAIIA9G/rhKd6eWFoexeTHm6v1Yp4+LMjiL6Vozv3/mOdMLVPKyNGZThMwtkoE1ETkZZTiBd+OIuTsXdqXUcuFRDUxgnDO7hgWAcXuNhWv5drWk4hPv87BltPxaPk7ubmY7u549VhfvBybD7fxhsT2yb94z0lapwKijT4JTIJ3x6/iUsp2brz3b3sMK2vN/q2ccKnf13F1lPxEEXA3lKOxaPaY0KgR409pAl38rHhaCy2nLiJEq0IqUTAU708sXCob72ndembKIqITMjClhPx+PV8MopKtAAAG4UMvq42OH0zU1fW0coMjwd6YFJPT7Su5Wi4puSXyCS8tC0SNuYyTAvyxheHYiCXCvhpTl9087Qzdnh6xyScjTIRNTF56hLE3c5DbEYe4jLycOPun3G383Enrwg2ChkG+ztjWAcXBPu1gI25vM6vEZeRh48PXMWv50q3W5NLBUzu5YUFD7VDC5vG8eHFVLFt0j/eU6LGTRRFnL6ZiW+P38QfF1J0I7LuNyHQA4tHtYeDVdVD1itzIz0Xy/64gv2XbgEArBUyzBvcBs/184G5XL9zjlNUBQiNTsehK2kIj7sDhUwKR2szOFor4GRlpvvZ0coMhcUabAtPwMXke18+dHCzxdSgVni0qzusFDLE387H9oh4/HR3gdYyvXwcMDHQAwN9W9T45fq/lWi0uJaWC3c7Cygt6v75wBBKNFoM+/QwYjPy8NpwX8wf3BZzt5zBvoupcFea47cXB9T5772xYxLORpmITEh2YTEs5FK9bWd2IUmFD/ddwZFrGQAAM6kELkoFHCzN4GBlBnsrs9KfrUv/bGlvgV4+DnVe6ZbuYdukf7ynRE1HWk4htp1KwA8n45GaXYjWLazwwWOdEdTG8YGue+LGbfx37yVcSCpNelvaWeCloe0wqrMbrOu580ixRovTNzNxKDoNYdHpuuHydWEmk2BMFzc83acVAjztKu3hL9FocfBKGraFJyA0Og3a+zKyNi2s0LeNE/q1dUSf1o4V5tUXFmtwNj4L4XF3EB53B6dvZiK/SANPBwvsnNuvUXyx/mN4At7YcR4OVmY4/MZgWCtkyCksxtgv/sGNjDz0b+uEb57rBanEdOaHMwlno0xEVKNjMRlYtu8KzieqaixrYy7DsPYuGNXZDQN8nZiQ1xHbJv3jPSVqeoo1WlxKzoa/m43e2hGtVsTuyCR89Gc0Uu7OGTeTSTDItwVGd3bDkPbO1Y4e02hFXE7JxqnYOzgZexvHYm4jR12ie14iAN087TDYzxn92zlBKhFwO7cIGblq3M4rwu1cNW7nFuF2XhEKijUY2t4ZEwM9YV+HXt4UVQF+ikjEX5dvISpJhfuzM0EAOrrbom8bJwgCEB57B1FJqkpHFgClC7Fum9XHqKuQq0s0eGhFGJKyCvD2qPaYNbC17rmrt3Iw9ot/UFCswYLBbfHaCD+jxalvTMLZKBMR1Yooioi/k4+MXDXu5BUjM6/0g0RmfhHu5JUeF5NVuJV9b8icjUKGoR3uJuTtnGoc+pdfVILkrEKkqAqQnFWg+zlFVYj0HDUCW9lj4VDfRvHNvaGwbdI/3lMiul9BkQabjsXip4hExGbcW8DUTCrBQF8njOrshqEdXGAmleB8ogrhcXdwMvYOztzMRO59STdQulBqsG8LDPJrgYHtWtQpoX5QqvxinIi9jePXb+OfmAxcS8uttJyLrQK9fBzRy7t0CzeZRIIJa48hK78YIzu6YvWU7pAYqZf52+NxePeXi3C2UeDwG4MrfE4omysOAF8/0wNDO7gYIcp7ijVavYw2ZBLORpmISG+0WhGn4zOx93wK9l1IRWr2vdVprRUydHS3RYlWhLpEA3WxFuoSbenPJVqoi7UoKNbU+BrWChnmD26LZ/t5630+X2Ngym1TSEgIdu7ciStXrsDCwgJ9+/bFhx9+CD+/6ns3wsLC8Morr+DixYtwd3fHG2+8gTlz5tT6dU35nhJR/YmiiCupOfg9KgV7o1LK7ShidjfRKtJoy9WxUcgQ6G2Pnt4O6NfWCV1aKo2WwP5bWk4hjl+/jRM3bkMUgR7epXumezpYVBjmfir2Dp7++iSKNFrMGuCDt0d3aPB4C4o0GPjRIaTnqPH+2I6YGuRdabklv1zAN8dvwsZcht9e6I9WjlYNG+hd28PjsfnYTWyd1bva7fRqg0k4G2UiIoPQakWcTcjE3vOp+ONCim7oX01sFDK42ZnDTWkB97t/uinNYWkmw7rD13VD4j0dLPD2qPYY0dHVpPYRNeW2aeTIkZg0aRJ69uyJkpISvP3224iKisKlS5dgZVX5h6rY2Fh06tQJs2bNwuzZs/HPP/9g3rx52Lp1Kx5//PFava4p31Mi0g9RFHH1Vi72RqXg96gUxNztVXayVqC3jwN63u1F9ne1NZm5yff3MhtjO7CvDt/AB79fRks7Cxx6LbjKLdiKSrSYtP44zsRnob2bLXbO7dvgQ+i/PnID/917GQDw1sP+mDOozQNdj0k4G2UiIoPTakVEJmYh4U4+zOVSKGQSKGRSKOQSmEklMJeXPlZaymFbzXw8rVbErrNJWP7nFd2w994+Dvi/MR0q7Ct7P41WRE5hMdQlWhSVaFGk0aJYU/pzsaa0R95MKkEHd1tYmtVvgR59aU5tU3p6OpydnREWFoaBAwdWWubNN9/Enj17cPnyZd25OXPm4Ny5czh+/HitXqc53VMi0o/YjDwIAFo5WprUF73/9sXBa1ix/yokArBhWk8M9ndukNfNVZdg4PJDuJNXhOUTuuCJHp7Vlk9RFWDMqqO4nVcED3sLWJpJUaIRUazVlv6pEVGi1UKjFeHnYoMh7V0wpL0z2jlbP9DfnyiKWPnXNXz29zUAwPMDW2PRw/4P/G+CSTgbZSKiJidPXYJ1Ydex7vANqEu0EARgQncP+LSwQkZOEW7nqXWL4WTkFuFOnrrcarJVkUoE+LvaIMDLDt297NHdy77BP4A1p7YpJiYG7dq1Q1RUFDp16lRpmYEDByIgIACfffaZ7tyuXbvwxBNPID8/H3J5xS9t1Go11Op7axNkZ2fD09OzWdxTIqK6EEURb+44jx8jEmFpJsWPs4Oq/VJbXz7/+xo+PnAVrZ2ssP/lgZDVYp71sesZeGbDKZTUpkG/y9PBAkP8XfCQvzN6t67b7i2iKOL93y5j4z+xAIBXh/liwUNt9fKZgEl4M/mgQ0RkipKyCrB83xX8Eplcq/JSiQC5VICZVAIzWWkvvPzunzmFJeXmsJdxtDJDgJcd+rR2xGMBLeFkbdhF4ZpL2ySKIsaOHYvMzEwcOXKkynK+vr6YPn06Fi9erDt37Ngx9OvXD8nJyXBzc6tQZ+nSpXjvvfcqnDf1e0pEVB/FGi2mbzqFf2Juw8VWgd3z+8FNaVFp2YIiDW5lF0IqEaCQS6CQ3hvVVtu58ar8YvRffhA5hSVY9VQAHu3qXutYk7IKEJOWC7lEgEwqgUwqQC65+6dUgEYLnIq9jb+vpOHY9dsoKrk3p9/KTIoB7VpgfPeWGNLepdppBRqtiEU7S7+cAIClj3TA9H4+tY6zJkzCm8EHHSIiU3f6Zia+P3ETEokAR2sztLBWwNHaDI5WCt1jO0uzKueblUlVFeJMfCbO3MzEmfhMXEjKLrcoj1wq4OFOpfu59vS2N0gPeXNpm+bPn4+9e/fi6NGj8PDwqLKcr68vnn32WSxatEh37p9//kH//v2RkpICV1fXCnXYE05EVDeqgmJMWHMM19Jy4e9qgzdG+iEpqxCJmflIzCxAYmYBkjLzkZFbVOU1yr7gtjWXoXdrRwz0dcKAdi0qfHn90Z9X8OWh6/B3tcHvLw4w2MJ2+UUlOHotAwevpOHvK2lIz7nXLrS0s8CUPl54socnHP8VX1GJFi9vj8TeqBRIBGD5hK6YEFh1O1UfTMKbwQcdIiKqH3WJBheTs3HmZiZ+PZeMc/ftk+7rYo0pvVthXPeW1c5jr6vm0Da98MIL2L17Nw4fPgwfn+p7FuozHP3fmsM9JSJ6UImZ+Ri3+li5ZLUyFnIpRIhQl2hRm+ywU0tbDGzXAgN9W8Db0QoPfRyK/CIN1k8NxPCOFb9INQStVsSFZBX2nk/B9ogEZOUXAyj94mBMFzc809cb3TztUFCkwdzvTyM0Oh1yqYDPnwrAyE4VR1w9KCbhbJSJiKiWohJV2HLiJn45l4TC4tIecgu5FGO7uePpPq30Mo/OlNsmURTxwgsvYNeuXQgNDUW7du1qrPPmm2/i119/xaVLl3Tn5s6di8jISC7MRkSkZ1GJKrz8YyTkUgk87C3uHpblflZalH75KYri3W1HtVAXa3SLnyarCnDkWgYOX03HxeTscteXCIBWBLp6KLF7fj+jLHpXWKzBr+eS8d2Jm7odVwCgi4cSEkFAZEIWzOUSrJ/aAwN9WxgkBibhbJSJiKiOVAXF2HUmEd+fjMe1u9vYAMD+lwfC18Xmga5tym3TvHnz8MMPP+CXX34ptze4UqmEhUXp/MNFixYhKSkJ3377LYB7W5TNnj0bs2bNwvHjxzFnzhxuUUZE1ASk56hx5Fo6Dl9Nx+FrGbiTVzqc/bsZvTCgnWES3LqITMjCt8fi8Nv5FN30MxuFDJue7Yke3g4Ge10m4WyUiYionkRRxKnYO9hyMh4pWQX4eW7fB76mKbdNVfV4bNq0CdOnTwcATJ8+HXFxcQgNDdU9HxYWhpdffhkXL16Eu7s73nzzTcyZM6fWr2vK95SIqKnQakVcTM5GiVaLAC97Y4dTzu1cNbZHJOBsfBZeGtLO4CvEMwlno0xERHqg0YrVrrRaW2yb9I/3lIiIGpO6tEs1b95GRETUTOkjASciIiK6H5NwIiIiIiIiogZikCQ8Li4OM2bMgI+PDywsLNCmTRssWbIERUVV70EHALm5uViwYAE8PDxgYWGB9u3bY82aNYYIkYiIiIiIiKjByQxx0StXrkCr1WLdunVo27YtLly4gFmzZiEvLw8rVqyost7LL7+MQ4cOYcuWLfD29sb+/fsxb948uLu7Y+zYsYYIlYiIiIiIiKjBGCQJHzlyJEaOHKl73Lp1a0RHR2PNmjXVJuHHjx/HtGnTEBwcDAB4/vnnsW7dOkRERDAJJyIiIiIioiavweaEq1QqODhUvy9b//79sWfPHiQlJUEURRw6dAhXr17FiBEjqqyjVquRnZ1d7iAiIiIiIiJqjBokCb9+/To+//zzGvf/XLVqFTp06AAPDw+YmZlh5MiRWL16Nfr3719lnZCQECiVSt3h6emp7/CJiIiIiIiI9KJOSfjSpUshCEK1R0RERLk6ycnJGDlyJCZOnIiZM2dWe/1Vq1bhxIkT2LNnD06fPo2PP/4Y8+bNw19//VVlnUWLFkGlUumOhISEurwlIiIiIiIiogYjiKIo1rZwRkYGMjIyqi3j7e0Nc3NzAKUJ+ODBg9G7d29s3rwZEknVOX9BQQGUSiV27dqF0aNH687PnDkTiYmJ2LdvX61irMsm6URERA2BbZP+8Z4SEVFjUpd2qU4Lszk5OcHJyalWZZOSkjB48GAEBgZi06ZN1SbgAFBcXIzi4uIK5aRSKbRabV3CJCIiIiIiImqUDDInPDk5GcHBwfD09MSKFSuQnp6O1NRUpKamlivn7++PXbt2AQBsbW0xaNAgvP766wgNDUVsbCw2b96Mb7/9FuPGjTNEmEREREREREQNyiBblO3fvx8xMTGIiYmBh4dHuefuH/0eHR0NlUqle7xt2zYsWrQIU6ZMwZ07d9CqVSt88MEHNS7oVtn1uUo6ERE1FmVtUh1mgFEN2N4TEVFjUpe2vk5zwpuCxMRErpBORESNUkJCQoUvp6l+2N4TEVFjVJu23uSScK1Wi+TkZNjY2EAQhAe+XnZ2Njw9PZGQkMCFX+qA963+eO/qh/etfnjf6q8u904UReTk5MDd3b3GNVKodvTZ3vP/Qf3wvtUf71398L7VH+9d/RiqrTfIcHRjkkgkBullsLW15T/YeuB9qz/eu/rhfasf3rf6q+29UyqVDRBN82GI9p7/D+qH963+eO/qh/et/njv6kffbT2/jiciIiIiIiJqIEzCiYiIiIiIiBoIk/AaKBQKLFmyBAqFwtihNCm8b/XHe1c/vG/1w/tWf7x3poN/l/XD+1Z/vHf1w/tWf7x39WOo+2ZyC7MRERERERERNVbsCSciIiIiIiJqIEzCiYiIiIiIiBoIk3AiIiIiIiKiBsIknIiIiIiIiKiBMAmvxurVq+Hj4wNzc3MEBgbiyJEjxg6p0Tl8+DAeeeQRuLu7QxAE7N69u9zzoihi6dKlcHd3h4WFBYKDg3Hx4kXjBNuIhISEoGfPnrCxsYGzszMee+wxREdHlyvDe1fRmjVr0KVLF9ja2sLW1hZBQUH4448/dM/zntVOSEgIBEHAwoULded47yq3dOlSCIJQ7nB1ddU9z/vW9LGtrxnb+vphW18/bOv1g2197RmjrWcSXoXt27dj4cKFePvtt3H27FkMGDAADz/8MOLj440dWqOSl5eHrl274osvvqj0+eXLl+OTTz7BF198gfDwcLi6umLYsGHIyclp4Egbl7CwMMyfPx8nTpzAgQMHUFJSguHDhyMvL09XhveuIg8PDyxbtgwRERGIiIjAQw89hLFjx+p+EfKe1Sw8PBzr169Hly5dyp3nvatax44dkZKSojuioqJ0z/G+NW1s62uHbX39sK2vH7b1D45tfd01eFsvUqV69eolzpkzp9w5f39/8a233jJSRI0fAHHXrl26x1qtVnR1dRWXLVumO1dYWCgqlUpx7dq1Roiw8UpLSxMBiGFhYaIo8t7Vhb29vfj111/zntVCTk6O2K5dO/HAgQPioEGDxJdeekkURf57q86SJUvErl27Vvoc71vTx7a+7tjW1x/b+vpjW197bOvrzhhtPXvCK1FUVITTp09j+PDh5c4PHz4cx44dM1JUTU9sbCxSU1PL3UeFQoFBgwbxPv6LSqUCADg4OADgvasNjUaDbdu2IS8vD0FBQbxntTB//nyMHj0aQ4cOLXee9656165dg7u7O3x8fDBp0iTcuHEDAO9bU8e2Xj/4/6D22NbXHdv6umNbXz8N3dbLHjhiE5SRkQGNRgMXF5dy511cXJCammqkqJqesntV2X28efOmMUJqlERRxCuvvIL+/fujU6dOAHjvqhMVFYWgoCAUFhbC2toau3btQocOHXS/CHnPKrdt2zacOXMG4eHhFZ7jv7eq9e7dG99++y18fX1x69Yt/Pe//0Xfvn1x8eJF3rcmjm29fvD/Qe2wra8btvX1w7a+fozR1jMJr4YgCOUei6JY4RzVjPexegsWLMD58+dx9OjRCs/x3lXk5+eHyMhIZGVlYceOHZg2bRrCwsJ0z/OeVZSQkICXXnoJ+/fvh7m5eZXleO8qevjhh3U/d+7cGUFBQWjTpg2++eYb9OnTBwDvW1PHvz/94H2sHtv6umFbX3ds6+vPGG09h6NXwsnJCVKptMI34WlpaRW+BaGqla0qyPtYtRdeeAF79uzBoUOH4OHhoTvPe1c1MzMztG3bFj169EBISAi6du2Kzz77jPesGqdPn0ZaWhoCAwMhk8kgk8kQFhaGVatWQSaT6e4P713NrKys0LlzZ1y7do3/5po4tvX6wf8HNWNbX3ds6+uObb3+NERbzyS8EmZmZggMDMSBAwfKnT9w4AD69u1rpKiaHh8fH7i6upa7j0VFRQgLC2v291EURSxYsAA7d+7EwYMH4ePjU+553rvaE0URarWa96waQ4YMQVRUFCIjI3VHjx49MGXKFERGRqJ169a8d7WkVqtx+fJluLm58d9cE8e2Xj/4/6BqbOv1h219zdjW60+DtPX1XtLNxG3btk2Uy+Xihg0bxEuXLokLFy4UraysxLi4OGOH1qjk5OSIZ8+eFc+ePSsCED/55BPx7Nmz4s2bN0VRFMVly5aJSqVS3LlzpxgVFSU+9dRTopubm5idnW3kyI1r7ty5olKpFENDQ8WUlBTdkZ+fryvDe1fRokWLxMOHD4uxsbHi+fPnxcWLF4sSiUTcv3+/KIq8Z3Vx/4qposh7V5VXX31VDA0NFW/cuCGeOHFCHDNmjGhjY6NrC3jfmja29bXDtr5+2NbXD9t6/WFbXzvGaOuZhFfjyy+/FFu1aiWamZmJ3bt3120pQfccOnRIBFDhmDZtmiiKpcv6L1myRHR1dRUVCoU4cOBAMSoqyrhBNwKV3TMA4qZNm3RleO8qeu6553T/J1u0aCEOGTJE1yiLIu9ZXfy7Yea9q9yTTz4purm5iXK5XHR3dxfHjx8vXrx4Ufc871vTx7a+Zmzr64dtff2wrdcftvW1Y4y2XhBFUax/PzoRERERERER1RbnhBMRERERERE1ECbhRERERERERA2ESTgRERERERFRA2ESTkRERERERNRAmIQTERERERERNRAm4UREREREREQNhEk4ERERERERUQNhEk5ERET/387dvELXx3Ec/xwPTTOTxSBPK8pTFBuS2GAzrGikNDRW8piNHfLwB7CcUlgpNQtSQrFUYuNhMfwDErIxxMbvXlw13SfXfd/XfcVxzcz7VafO+f3OOfP9rb59OucMAABwCCEcwKezLEtbW1vfXQYAAPgi9Hrg9xHCgSQzMDAgy7I+bH6//7tLAwAAn4BeDyS2jO8uAMDn8/v9Wltbs425XK5vqgYAAHw2ej2QuHgSDiQhl8ulgoIC2+bz+ST9eH0sHA6rvb1dbrdbJSUlikQitusvLy/V2toqt9utnJwcDQ4OKhaL2c5ZXV1VdXW1XC6XCgsLNTY2Zpt/eHhQV1eXPB6PysrKtL29/bWLBgAghdDrgcRFCAdS0MzMjAKBgM7Pz9XX16fe3l5Fo1FJ0svLi/x+v3w+n05PTxWJRHRwcGBrvOFwWKOjoxocHNTl5aW2t7dVWlpq+435+Xn19PTo4uJCHR0dCgaDenx8dHSdAACkKno98AczAJJKKBQy6enpxuv12raFhQVjjDGSzNDQkO2ahoYGMzw8bIwxZnl52fh8PhOLxeLzOzs7Ji0tzdze3hpjjCkqKjJTU1P/WIMkMz09HT+OxWLGsiyzu7v7aesEACBV0euBxMY34UASamlpUTgcto1lZ2fH9xsbG21zjY2NOjs7kyRFo1HV1tbK6/XG55uamvT+/q7r62tZlqWbmxu1tbX9aw01NTXxfa/Xq6ysLN3d3f3ukgAAwN/Q64HERQgHkpDX6/3wyth/sSxLkmSMie//7By32/1L98vMzPxw7fv7+/+qCQAA/By9HkhcfBMOpKDj4+MPx5WVlZKkqqoqnZ2d6fn5OT5/dHSktLQ0lZeXKysrS8XFxTo8PHS0ZgAA8Ovo9cCfiyfhQBJ6e3vT7e2tbSwjI0O5ubmSpEgkorq6OjU3N2t9fV0nJydaWVmRJAWDQc3OzioUCmlubk739/caHx9Xf3+/8vPzJUlzc3MaGhpSXl6e2tvb9fT0pKOjI42Pjzu7UAAAUhS9HkhchHAgCe3t7amwsNA2VlFRoaurK0k//s10Y2NDIyMjKigo0Pr6uqqqqiRJHo9H+/v7mpiYUH19vTwejwKBgBYXF+P3CoVCen191dLSkiYnJ5Wbm6vu7m7nFggAQIqj1wOJyzLGmO8uAoBzLMvS5uamOjs7v7sUAADwBej1wJ+Nb8IBAAAAAHAIIRwAAAAAAIfwOjoAAAAAAA7hSTgAAAAAAA4hhAMAAAAA4BBCOAAAAAAADiGEAwAAAADgEEI4AAAAAAAOIYQDAAAAAOAQQjgAAAAAAA4hhAMAAAAA4JC/AMzLebPOEvupAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 2, figsize=(12, 4))\n", + "axes[0].plot(losses)\n", + "axes[1].plot(val_rmses)\n", + "_ = axes[0].set_xlabel(\"Epoch\")\n", + "_ = axes[1].set_xlabel(\"Epoch\")\n", + "_ = axes[0].set_title(\"Training loss\")\n", + "_ = axes[1].set_title(\"Validation RMSE\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualise trained model predictions \n", + "\n", + "We will use the high-level `model.predict` method to verify that the trained model is predicting sensible values.\n", + "See the [](./prediction.ipynb) page for more details on `model.predict`." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T23:30:42.616868546Z", + "start_time": "2023-11-01T23:30:42.606548555Z" + } + }, + "outputs": [], + "source": [ + "date = \"2019-06-25\"\n", + "test_task = task_loader(date, [200, \"all\", \"all\"], seed_override=42)\n", + "pred = model.predict(test_task, X_t=era5_raw_ds, resolution_factor=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T23:30:43.937886960Z", + "start_time": "2023-11-01T23:30:42.619297390Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAD/CAYAAAAg902IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3gc1dn3/5mZ7UUrrXqXbNmSC+4FXHABApieUEMJkDcvIY0fhDx50+EhJA8hJCHJk0IKLQQSmoPpHRtsgwvuvUhWsXrdvjtzfn/szmh2LRmbOCQk+70uXaudnTlzzpkzM/f3fO/7PpIQQpBFFllkkUUWWWSRRRZZZJFFGuR/dgWyyCKLLLLIIossssgiiyz+FZElS1lkkUUWWWSRRRZZZJFFFiMgS5ayyCKLLLLIIossssgiiyxGQJYsZZFFFllkkUUWWWSRRRZZjIAsWcoiiyyyyCKLLLLIIossshgBWbKURRZZZJFFFllkkUUWWWQxArJkKYssssgiiyyyyCKLLLLIYgRkyVIWWWSRRRZZZJFFFllkkcUIyJKlLLLIIossssgiiyyyyCKLEZAlSycQr7/+Otdffz0NDQ243W7Ky8u54IIL2LBhw0del7a2Nm677TY2bdr0kZ/7Xx2hUIjbbruNN998859dlSyyyCKLfxtk34EfD3zc34Ef5tpee+211NTU/MPqlMW/N7Jk6QTi17/+NY2Njdx00008//zz3HvvvXR2dnLyySfz+uuvf6R1aWtr4/bbb8++KEZAKBTi9ttv/9i+KLLIIoss/hWRfQd+PPBxfwdmr20WHzUs/+wK/Dvhf//3fykqKkrbdtZZZ1FXV8cPfvADli5d+k+q2b834vE4kiRhsfxzh7MQgkgkgtPp/KfWI4ssssjin4HsO/Cfg+w7MIss/rHIKksnEJkvCQCPx8PEiRNpbm5O215TU8O5557Ls88+y/Tp03E6nUyYMIFnn30WgAceeIAJEybgdruZM2cO69evP+Z6vPnmm8yePRuA6667DkmSkCSJ2267zdhn/fr1nH/++fj9fhwOB9OnT+evf/1rWjkPPPAAkiTx+uuv87nPfY78/HxycnK45pprCAaDtLe3c+mll5Kbm0tpaSm33nor8XjcOL6xsRFJkvjRj37EnXfeSVVVFQ6Hg1mzZvHaa68dUe+9e/fy6U9/mqKiIux2OxMmTOB///d/j2ibJEk8/PDDfPWrX6W8vBy73c6+ffvo6uriC1/4AhMnTsTj8VBUVMTSpUtZtWpVWp0KCwsBuP32242+ufbaa4HRpfrbbrsNSZLStkmSxJe+9CV+85vfMGHCBOx2Ow8++OAxt2U06OXef//91NfX43Q6mTVrFmvXrkUIwd13301tbS0ej4elS5eyb9++I8p49dVXOe2008jJycHlcjF//vwj+nzfvn1cd911jBs3DpfLRXl5Oeeddx5bt24dsc8fffRRvvWtb1FWVkZOTg6nn346u3fvPqY2ZZFFFv/+yL4Ds+/AE/EOfPzxx5k7dy4+nw+Xy8WYMWO4/vrrjfZ/0LV94IEHqK+vN8770EMPHdN5s8hiVIgs/qHo7+8XPp9PXHTRRWnbq6urRUVFhZg8ebJ49NFHxfPPPy/mzp0rrFar+O53vyvmz58vnnrqKfH000+L8ePHi+LiYhEKhY7pnAMDA+L+++8XgPj2t78t1qxZI9asWSOam5uFEEK8/vrrwmaziYULF4q//OUv4sUXXxTXXnutAMT9999vlKOXUVtbK7761a+Kl19+Wdx1111CURRxxRVXiBkzZojvf//74pVXXhFf//rXBSDuuece4/iDBw8KQFRWVooFCxaIJ598Ujz++ONi9uzZwmq1itWrVxv7bt++Xfh8PnHSSSeJhx56SLz88sviq1/9qpBlWdx2223Gfm+88YYARHl5ubj44ovFM888I5599lnR09Mjdu3aJW688Ubx2GOPiTfffFM8++yz4rOf/ayQZVm88cYbQgghIpGIePHFFwUgPvvZzxp9s2/fPiGEEJ/5zGdEdXX1EX36ve99T2TeLno9pkyZIv785z+L119/XWzbtu2Y2zIaAFFdXS3mzZuXNgb8fr+4+eabxQUXXCCeffZZ8cgjj4ji4mIxZcoUoWmacfzDDz8sJEkSF154oXjqqafEihUrxLnnnisURRGvvvqqsd9bb70lvvrVr4onnnhCvPXWW+Lpp58WF154oXA6nWLXrl1H9HlNTY248sorxXPPPSceffRRUVVVJcaNGycSicQHtimLLLL4z0T2HZh9Bx7PO3D16tVCkiRx+eWXi+eff168/vrr4v777xdXX331MV1b/bcLLrhArFixQvzpT38SdXV1orKycsR2ZZHFsSBLlv7BuPLKK4XFYhHr169P215dXS2cTqdoaWkxtm3atEkAorS0VASDQWP78uXLBSCeeeaZYz7vunXrjnjw62hoaBDTp08X8Xg8bfu5554rSktLhaqqQojhh86Xv/zltP0uvPBCAYif/OQnadunTZsmZsyYYXzXXxRlZWUiHA4b2wcHB4Xf7xenn366se3MM88UFRUVYmBgIK3ML33pS8LhcIje3l4hxPCL4tRTT/3APkgkEiIej4vTTjst7UXd1dUlAPG9733viGOO90Xh8/mMuh1vW0YDIEpKSkQgEDC26WNg2rRpacToZz/7mQDEli1bhBBCBINB4ff7xXnnnZdWpqqqYurUqWLOnDmjnjeRSIhYLCbGjRsnbr75ZmO73ufLli1L2/+vf/2rAMSaNWuO2p4sssjiPxfZd2D2HThaW0bCj3/8YwGI/v7+UfcZ7dqqqirKysrEjBkz0t6TjY2Nwmq1ZslSFh8aWTe8fyC+853v8Mgjj/DTn/6UmTNnHvH7tGnTKC8vN75PmDABgMWLF+NyuY7Y3tTU9HfXad++fezatYsrr7wSgEQiYfwtW7aMw4cPH+Fade6556Z91+tzzjnnHLF9pDp+8pOfxOFwGN+9Xi/nnXceK1euRFVVIpEIr732GhdddBEul+uIOkUiEdauXZtW5qc+9akR2/eb3/yGGTNm4HA4sFgsWK1WXnvtNXbu3HmMPXR8WLp0KXl5ecb3D9OWkbBkyRLcbrfxXe/zs88+O80VInNsrF69mt7eXj7zmc+knVvTNM466yzWrVtHMBgEktf+Bz/4ARMnTsRms2GxWLDZbOzdu3fE/jr//PPTvk+ZMiXt3FlkkUUWZmTfgUlk34HH/g7UXewuvfRS/vrXv9La2nrMddm9ezdtbW18+tOfTntPVldXM2/evA/RuiyySCJLlv5BuP322/n+97/PnXfeyZe+9KUR9/H7/WnfbTbbUbdHIpG/u14dHR0A3HrrrVit1rS/L3zhCwB0d3d/6HqOVMeSkpIRt8ViMQKBAD09PSQSCX7xi18cUadly5aNWKfS0tIjyvzJT37CjTfeyNy5c3nyySdZu3Yt69at46yzziIcDh+1Xz4sMuvxYdoyEj7s2NCv78UXX3zE+e+66y6EEPT29gJwyy238J3vfIcLL7yQFStW8O6777Ju3TqmTp06Yn/l5+enfbfb7QD/sL7NIossPr7IvgOHkX0HHvs78NRTT2X58uUkEgmuueYaKioqmDx5Mo8++ugH1qWnpwcYvb+zyOLDIpsN7x+A22+/ndtuu43bbruNb37zm//s6qShoKAAgG984xt88pOfHHGf+vr6E3rO9vb2EbfZbDY8Hg9WqxVFUbj66qv54he/OGIZtbW1ad8zA00B/vSnP7F48WJ+/etfp20fGho65ro6HA6i0egR20d7uGfWIy8v77jbciKhX99f/OIXnHzyySPuU1xcDCT765prruEHP/hB2u/d3d3k5ub+w+qYRRZZ/Hsj+w5MR/YdmI4PegdecMEFXHDBBUSjUdauXcsPf/hDPv3pT1NTU8Mpp5wy6nH6hN5o/Z1FFh8WWbJ0gnHHHXdw22238e1vf5vvfe97/7R6jDbrX19fz7hx49i8efMRRvI/Ck899RR333234YYwNDTEihUrWLhwIYqi4HK5WLJkCe+//z5TpkwxZu2OF5IkGe3WsWXLFtasWUNlZaWx7WiKSE1NDZ2dnXR0dBikIhaL8dJLLx1THU5UWz4s5s+fT25uLjt27Bh1NlfHSP313HPP0draSl1d3T+ymllkkcW/KbLvwCORfQd+ONjtdhYtWkRubi4vvfQS77//PqeccspRr21paSmPPvoot9xyi0HkmpqaWL16NWVlZR+6Lln8ZyNLlk4g7rnnHr773e9y1llncc455xzhlzvaTP8/AmPHjsXpdPLII48wYcIEPB4PZWVllJWV8dvf/pazzz6bM888k2uvvZby8nJ6e3vZuXMnGzdu5PHHHz+hdVEUhTPOOINbbrkFTdO46667GBwc5Pbbbzf2uffee1mwYAELFy7kxhtvpKamhqGhIfbt28eKFSuOaUHDc889lzvuuIPvfe97LFq0iN27d/Pf//3f1NbWkkgkjP28Xi/V1dX87W9/47TTTsPv91NQUEBNTQ2XXXYZ3/3ud7n88sv52te+RiQS4ec//zmqqh5ze09EWz4sPB4Pv/jFL/jMZz5Db28vF198MUVFRXR1dbF582a6urqMWcdzzz2XBx54gIaGBqZMmcKGDRu4++67qaio+IfVL4sssvj3RfYdODKy78Bjb8t3v/tdWlpaOO2006ioqKC/v597770Xq9XKokWLgKNf2zvuuIP/83/+DxdddBGf+9zn6O/v57bbbsu64WXx9+GfnWHi3wmLFi0SwKh/ZlRXV4tzzjnniDIA8cUvfjFtm55R5+677z6u+jz66KOioaFBWK3WIzLfbN68WVx66aWiqKhIWK1WUVJSIpYuXSp+85vfGPvomYDWrVuXVq6eFaerqytt+2c+8xnhdruPqPddd90lbr/9dlFRUSFsNpuYPn26eOmll46o78GDB8X1118vysvLhdVqFYWFhWLevHni+9//vrGPngno8ccfP+L4aDQqbr31VlFeXi4cDoeYMWOGWL58+YjZfV599VUxffp0YbfbBSA+85nPGL89//zzYtq0acLpdIoxY8aIX/7yl6NmAsq8VsfTltFwPGNgtP546623xDnnnCP8fr+wWq2ivLxcnHPOOWn79fX1ic9+9rOiqKhIuFwusWDBArFq1SqxaNEisWjRog88h16nkbJNZZFFFv95yL4Ds+/A42nLSHj22WfF2WefLcrLy4XNZhNFRUVi2bJlYtWqVWn7He3a/v73vxfjxo0TNptNjB8/Xvzxj38cNctfFlkcCyQhhPjHUbEs/pPR2NhIbW0td999N7feeus/uzpZZJFFFllk8ZEh+w7MIot/D2Sz4WWRRRZZZJFFFllkkUUWWYyAbMzSxwxCiA/0HVYUZcRMOVlkkcW/NyKRCLFY7ISVZ7PZ0taHySKLfzay78Assvj44eP+bsq64X3M8Oabb7JkyZKj7nP//fdz7bXXfjQVyiKLLP4lEIlEqK320N557IHYH4SSkhIOHjyYJUxZ/Msg+w7MIouPFyKRCE6n84SW+VG/m7Jk6WOGoaGhI1YXz0Rtbe0RC4hmkUUW/94YHBzE5/NxcEM1Od6/38N6cEijdmYTAwMD5OTknIAaZpHF34/sOzCLLD5e0N9NJxof5bsp64b3MYPX62XWrFn/7GpkkUUW/6JwegROz98/BxbPzqNl8S+I7Dswiyw+npBl+YS4xwoh0DTtBNTo2JElS1lkkUUW/0bQ0DgRr5ETU0oWWWSRRRZZ/IeQpRMdnJVFFllk8Z+EjyogVRUC9QSoQieijH91ZN9rWWSRRRYfHsfzXpMk6WObeOWYyFIkEiHXk09UDf2j65NFFllk8W+JjyogVUOg8fcTnRNRxr8yIpEI5eXl9Pb2/rOrkkUWWWTxscTxvNf+7clSLBYjqoZYXHIdFskGsgRCcMzvUn2G8ng66XhmNUcrV+LY66jv+0FVHO1cQiCEYHv/G7iseVS6J2GV7cTUKC3hHYTifUzyL0GSZNBE2nFGmbKp7JHOI/0dQdt62fq5ZYlIIsChgU0k1AgqCRKoaFocVYuR0GKoWiL5KeKABkjIKLhsuTitubitPhyKD0XIyEJCSv0uyQpxLYJA4JA9HBjawMyCc5L9K0tgsYCit0Vie9fLjCs8FZvFTUKLsXLfb9GIo0i2ZD8IgUBDEwnjGJfdj9tZiMdRgNtRiMeaj8uWiyTJhOIDdA7sQVWjeB2FFOTUISOnxmyq/SkFVxplnIlRrrNkLgOM+qHqkrCARKqeipLsb6Gl3wOSbFyPaCzAYLSDwUQnkXiAhIijijhxNUIkHsCi2HFacrBZnJTnTCHPUYqmJYjGBonEBgknBomoQ0TUAGE1QEQNEEkMITgyI5pFdiBJMhIyAi3Vrxj/qyIx3DGjQJYspuuQ0TcouBx5OO1+8rxVlOadhAUbki6Xp/pOUsWRz4TM66Adw437YZSP431Qfyh1RT9GSo5zTZCQ4ry573+JxWIfCVlSs2TpAxGLxejt7eWFF14gNzcXu92OoihG2mn9pf5hXu7Hcox5H/P/5pxLIvVeOd5zHGudR9rP3G5JkhBC8M1vfpPS0lKuueYa/H4/g4ODPPbYY2zZsoV77rkHiyVpSuiuMcfqJqO3LfPzWI7J/F/TNDRNo729nYcffpienh4CgQBDQ0OEw+GkHRONGp/RaBRVVZFlGUVRKC0tpby8nMrKSiorK3G5XNhsNqxWK5IkYbVaGRoaIh6PU15ezh//+Ed++9vfGmNGURSjLqqqcscdd3D11VdTUFBAMBjkoosuYnBwELfbjSRJqKqKqqqGsilJEqWlpVRWVlJdXU1NTQ21tbWUlpaiKAo9PT288847BINBamtrWbBgATabzbhGZuh9r19DSZKQZTntL3N862NN0zQSiQSapiGEMH7X+9dctsViMe4Xc5n9/f1s376d7du309HRQSgUIhQKEQwG6erqwuFwUFZWhs/nY9myZUydOhVN0+jp6aG1tZXOzk46OjqO+BxJBXa73SiKgizLRv3NbYnH4yQSI7+zdNjtdqLR6Ii/WSwWiouLKS0tZdq0aXziE5/A5/Ol3TvmPtD7ZqT+1j8/LGE4luM+bM62DyrbXG48Hicej9PT08MFF1xwzO+1f3uyNLyzFYtQQLKkyMUHXBTDIEp9H6mTzGRhtOOPB+ayMss9WnnHewHN+wsBEjQNbcZvr6DKO8U4l8ViY3zuKRwa2sLh0B6q3FPAIh1pDOpk5lhJkvwhB5ypqHiim5bBLWioWGUHud4qLBY3FosdRbKiKDYssg1FtqIodgBiiRChSDehcA+Hg3uJxgeP6bTv9iyn2DOOYs84vHZfsn9SD7VYPIgTN5KmYMHJtKJlDEY6kJCSxr2cfBDZFDdeRxFuez6yxZrWV0KSEAh2t79OTA1Rmj8Fm8VFX+AQm5qeYHz5GficZelkR9OShjvD5EgSIvm/zDARyoQ2vJ9OtoSS/JQAFJ2JScnrZL6mCXV4zAuBxWbDZc2jUKknpA7QHWqkK7CPQKwbgUYiESaqDiFFJToCe5ElGYtsx25x47T4cFl9OG0+8pQKnJYcXHIOEjIxIsTVMDEtTFyLEFPDxEUMTVIB/YGVJLhI+oPcikWxYZHtWCRr8n6X7ShWJ0pqTEiShFDjRNUgETVELBFAUWy47Pk4rN5kuZKU7NtEqq+l1GPG6MsUgUzVIW3s6/sM2x2pPv8nGe4f5hmURqblZFsSH13940IjfgJOFxf/GTFLHo8Ht9uNzWZLM/6Oh4yMRnxG+v9ox45ElE5EwtoPMlAy22s2sB977DFOOukkvvjFLxq/+3w+br31Vv7yl7/w6KOP8sUvfjGNIB2NLI1EdkZqY+a20frB3E/xeJyBgQGeeuopotEoTqeT8vJyhBA4HA68Xi82m80gQVarFUVRiMViDA4O0tHRwa5du+jr6ztqf+m4+OKLWbJkCUuWLGHKlCnY7XYkSUJRFFpbW6msrERRFNxuN3fddRebN282DGrdwPf5fIwZM4aqqirsdvuI7fvtb39LW1sby5Ytw+/3s337dr71rW/xuc99jsmTJxvESycKevnmP6vVeoTxbiZKiUQCVVXTiJKZZMRiMRKJBLFYzFjnym63Y7fbcTqdRp8qioLL5aKwsJAZM2bQ3NzMunXreO+999i3bx+JRAJZlunq6kKWZd566y1kWcbj8eD3+ykuLqakpITS0lImTpxIRUUFY8aMwWaz0d/fT09PD729vfT29tLf309fX59R55GIoc1mw+v1Gve5y+Uy/hwOB3a7HVmWicfjRrm9vb04nU4qKyspKChI6zN9rCUSCaOv9eeGTrzN5EjflkmWjmdCJXMC42j3gfn/zG0fVPbRYC7PYrFgtVpHJZij4UTGLH1Y/PCHP+Sb3/wmN910Ez/72c+O+bh/XIKHkRozWgOPMsuc0GL0RJtRRYIcayEeq//YzqsbXqMZvMdSt6Nd1Mz9haAzfICZBeeBeSZdShKjCtdENnT9LUmWdMPPXFdNDCt2mefWjRYzafp7jEc5eb48ewnzy69me89r9EaaURQbE+s+mSQimW00TZYjhhUWkUggNBUtkaB3YB+tvZsZX7QUWZLRJBWBYG/HSvqCTRzse499PW+T4yihwjeFUlcDPaFG8hxlSLoCAxS5xlBkr0mvr94fkgyk1DlFMgiLJAT7u1bjtvmpLzoTlOT+Oa5SyvxT2XzgcaZUXYTd6iYmxQhEulCFiiZUNC2BJEnkOcuxS05IaEmBRR69j4UkgUUmlBiipXcjrT3vk1DjeJ1FeBxFeB2FKBY7MS1KXA0RVyMk4iHisRBFnnFU580gGh3iQN8ahqJdBBP9ROODSMhYLS7K8qeR6yxFJFSEmkCIpHPV4aFd5NiLAAgnBmkP7iUSH0yqQ0CZu4Ep/jOx48RucRrXGlkiIeJEiRBRA0TVINFEUomKJgJEEgFiiQDji5ZQ7B0/rJYJAbIMSMTVCIFoN4FYD8FYD+H4ACV5kyj01hovkcautQyE2oglQiiyFYtkRZFtKIoNRU4RMdmKW84lz1mBLMkgjjJRYHS4GPl/KeNYvb2jHWs+7mjPhb/XQDVPAomkfvdRQeOD9MFjL+c/Abrxap41N88QZ8I8k282Ns2/m1WZkQhTOBxm5cqVBINBJk6cyMSJE419jpVMjIaR6nysx4907PLly3nooYeM381KwyWXXMInP/nJNCKVSfCORnqO57fM7Zmfmqahqip1dXU88MAD3HXXXWzatAlZlpk3bx7xeDzNcNWPMxu2drvdMKR1ktHe3s4bb7zB9ddfj81mI5FIEI/Hefrpp1m/fj2PPvoof/jDH6itreW8885j2bJl7N27l7Fjx6YZ1bNnz2bGjBkGqTlan5tJ5xNPPEFubi6f//znjd/HjRvHGWecwbe//W1uvvlmfD4fXV1d7Nmzh3A4TDweR9M0bDYbU6ZMoaysDI/HY5AZIYQxxs1EM5FIEI1GaWxs5Pnnn+f1118nGAxSVlZGSUkJJSUl2Gw2AoEAwWDQUOii0Sgnn3wyV199NbFYjPvvv5/du3fT2tpKR0cHsiyTm5vLkiVLmDlzpkHu9GNXrVpFcXExiqLQ2dnJ3r176e7uNkjZokWLuOeee8jJycHtdlNWVmYQu6GhITo7O+nu7jb+urq60gjVVVddxdy5c9Out07oBwYGaGpq4uDBgxw6dIj29nbmz5/PjBkzUBSFeDzO3/72N3bs2EFvby92ux2Hw4HFYsFms2G32/F4PHg8Hmpra5k5cyYOhyOtryFJXs2E7mjEx/xcMT+LPohkjUSWzGNptPOMRJjM90gm+dLH8PEmWfhnk6V169Zx3333MWXKlOM+9vjJkj4zP5pKdDwwd7Qspx0vVJXG0CZ6oq0U2WuwynaagluIaSEm+BbhUNwjl2Mu71iJ0mg4jmOFEMiSgiwpw8fqs+ym34SqIsmy+cDh//VmyKPV+0OaL6O570kybkcBE4s/wbstf6azfzdjRQiHkpuyXzNmQA1hQICWqqNsQwIUVaW58X2mj7kcRbYOH6RITPd9mnW77scqO/C5y2nsWsOOjpfZwSu4rX6mFJ+NJoOsjyktNRs/Wv+nFBtdDRKShJaI0RdqYmbNFWn7CVnGoripKZlHS/8movFBmrvWj9ZR+DzljCs8lXxnTVp3GwpS6pxDsU72tq6ka2AvimKlpHg6dmcewUA7/YFWWns3IYSaJAhWJ1ZL8i8S72dn+0tYLHZaezdTV3QqfR2vEFfDTKq9CIRgb8srNJSfiQUFKa4mSYuWJC7FjrEcGHiPySVngyITTgyxq/NVOgZ3k+esYEzuyWkEKS5iHA7voWVoC4PRzrTWWmQ7dlsOmpYgHOvDbvHgsfhB1YgkhugM7jPIUSDWTSwRNI512vKwWhxsbnqS/JyxNFQtQ5Es7G5/jRxHCS67H1WLE9VCJBIDqFps2L1TjSIQWBUnRZ5xFLvHke+qQTlCgTrK/+ZtZsJkmoiIJIYIxwawWzy4rL4jjztauR8GJ+KZeAKgniA3vBNRxscBulGgG2ZmA+eDlKHRVCKdJOmuQeb9/vjHP/Lqq69y5plnkpeXx8MPP0xLSws//OEPqaioOMIwORZ1KfO8x9puc/sz+0P/XVEUnE7nEcaabsT5/X5CoRBOp/OY6n20bcdLkMzn0F3aotEoOTk5XH755Rw4cID9+/czZcoUXC6XMdNvPla/7pnEVzeKX3vtNW699VaKi4sNVyNVVZkwYQLf/va3icfjNDQ08MILL/Dzn/+cX/7yl5SWlvKNb3yDnp6etGMy3djMrlsjGbiapvH222/z05/+1FB7dNcyIQSf+tSneOKJJwiHw7zwwgsj9h1AdXU1119/PUuXLk1TT839mEgk2Lt3L7/73e9Ys2YNiqIwadIk8vLyaG9vZ+/evbz33nuoqorFYjEUJZfLRTAY5A9/+ANOp5PVq1fzmc98hi1bttDb28v111+PxWLh0Ucf5YYbbqCystJwbYxEIoTDYebNm8d9993HddddRywWo7+/n7/97W+sX7+e8ePHc9111xltjkajDA4O8uqrr/L888+zf//+tLY6HA58Ph+aptHV1YXX66WwsJD+/n4GBgZ47733aG5uprm5mUOHDhkqoiRJ5Ofn4/F4uPvuu3n22We59tprKSoq4pe//CU1NTUUFxcTDofp6+sjFAoZCWLi8TjRaBRN03C73cyaNYslS5Ywb948vF4vVqsVTdMM1ck83kZ6hmROuJgVqc7OTlpaWigsLKSqqmrUCQfzeDFvzzzXSN8z74WR3F3NKuax4p/phhcIBLjyyiv53e9+x/e///3jPv74yJIsAUq6cTLSLO+xdKBZfdG/y7JhFDYFN6OhMjPvnKTJLgSljjoCYpAtfS8zM3dZulGeeU69vBOBYzCCJEDT40R0kmTuDyHQhJocKB9kqI3EiUYjUMc78HSVRpFAlmkL72F763PY7TlMO+lKrL58NJFyRdOrr1/u1AS57rpmVEEIAkNduHNKkTwuRDzVABliaoSewX3Y7Tl09G6na2iPfhQAwXgPa1r+hCxZ8DgK8buqGF9wKrKmGIZw8rQCOeUTLmQ5Wf8UGUKG/sHD+DxVYLca27tDB2nv20Yg2EEo2ImmqdjsXqPevqI6KiacgcdbQjwwwLY1v2cg0EIwb4B8OXUdUp+Ga54sI2SZls4tdA3swWHzMWvi9dhyCxEWCSFLCAlEQkUSGpKSHKPhgcMcOPAq4YGDuOx+Oob2Ul9+BigKg+F2po27kqKcOgaCreR5a2juWU+tf05SOdPju+IJXPY8oloIVdJo7F7LgZ41WGQbU4qXUeqZmOxVTaBJKrv63qJ1cBuqSFCYO55J5fNx2HOx27w4rF4UxUY43Mfa7b/BbS9gVsmncNp89Cc62HjoceJqGJc9H7ezkPK8GtyOQrz2Alx2P4piQ0gSXYO72d34Aqu3/4qy4plISMS0MCX+WsrKZqMoVhACSR/TmoB4gqFAK539u+jo20nrwBYU2Uaheyz1RUtwKt7hSZm0yQTzfaMNTwLot3lqvITi/ezuegNFsuK2+QnF+4mpYcb7F+C1Fx55T5jL/bDurfr5R8VH94JQRfLvRJTznwBdkUgkEkfELI00C/xBBMps2JhJkyRJ/PnPf6ajo4O//OUvhtH0qU99ioMHD3LTTTfx0EMPpZEOc/zFicBoRM9ssJvrrmma4XaVGXehIxAIYLPZjsmI+iDXutGUpcz/M0mSTiCCwSADAwO88sor/Pa3v8Vms/GJT3wCm82W1k79epvL1a+9pmnIsozD4SAWixmxTG63G7fbjcVioa+vjw0bNlBcXMwrr7zCtm3b0urX2trKl770JRRFoaSkhDFjxvCpT33KIGySlIz3sVgsOJ1OLBaL0YZYLEYkEkFVVVpbWykvL2dwcNCo28aNG3n55Zdpbm6mo6ODeDyOx+Mxzl9SUsKMGTOMWKmXX36ZpqYm9u/fz7x587DZbAaJTyQSxp+qqqxYsYJ33nmH3NxcvvzlL+N0OgmFQgwMDBAIBAxlTr9HQqEQ7777LocOHSI/P5+NGzdy5ZVXkpuby/bt2/nqV7/KpEmT2L9/PxMnTmTFihXccsstOBwOJEky1JeamhpisRiyLLNq1SqeeeYZrFYrN910E+eddx6KohAKhQgEAvz617/mjTfeIBaLUVNTw+mnn47P58Pr9eJyuXA6nYTDYR544AH8fj/XX389DoeDNWvW8Nvf/pZAIIDf78fv9zNhwgQKCwvJy8sjJyfHcM1samripZde4hvf+AZz5sxBURR6e3sNFViSJPr6+ggEAmiaZlzDoaEhGhsb2bZtG2+99RY2m42pU6fyxS9+kbFjxxpxkWaSnOliZ56MMD+L2tvbufPOO7FYLIwbN47W1lba29u55ZZbmDx5chrB0Z9px/IM+SB3PDNhMrshfhicaLI0OJgeBqK7hY6EL37xi5xzzjmcfvrpHwFZkiSMl/7xqDajSXUjERxA0xJ0RQ8xK+9cgyglZ8rBI/sotdfREdlPmbP+g8s7EYTpGMmfW/ExFOvCaytM7x8hGIx347bkHX12PPMzrfxRDLrRVL6RYD5Olmke3ML29hcozj+J+oaLkF2uZJEpoiQkEGnnAkkTCCWdSElCIkYUmyMHTRYEw2109+2ls38XQ8G21Oks6K5IimzD560iN6eSnNwaJFmhu3sHza2rGQq343DkEY4NEI73EYr1EY70IRAU5U2gNH8q+c7qpPuWJBGM9XOo/V1aO9ejKDZw2in1n4TT5qe1aQOdnVvxl02iZMxkuve9hyu3DHplosEeBjr3MdC5D09eJYlIEC0RY8q4yyh1jkuNHVLEMvnZ1LOeQLwHxe7E6szB4ygiEOnk7U0/paLsFOrqz0NY5GSfWBRAMZSojZv+QDwWwGpxUll6Ch3d2/F6yxgMtwMgpUiY7HBjsbroGTpIbcHJgIYQMBhqp2NoD4FYF73hZl7dcw8A1bkzqcs7BYucekBIEkKR2NH5Cq1D2xhTciqlZbNxOHxHTGwIAKsFRbERV8OECTIY72PzoafxuEuYO+lq7IorRVqSpFhKpN/LhXkN5OWN4+DhlRxqXoXV6sHh9LPn4PMcbHmT4uKpeF3FRML9RCL9RCP9aGqchBZHlpPJQhCCUKyX9qGdWBQ7k4vOTB+3mSQp839NNghTJD7Ito4XOKnobJzWHOP4mAizueM5JviX4rH5j0x4Yj7XSIRptO3/gsi64R0fMo183VjOJAYjkabRyIfZGAIMBWP58uU8+eSThhGko7a2lmuuuYYnn3ySq666Ks0gOR5XvA+aPTYrRpnESN8383yTJk1i3bp1zJ49+whDZ8+ePRQXFyNJwwkLRqpzZh2OVvcPIlCZqpKekEAnGq+88go///nPGTduHHPmzCEajaZdS/1a60rFSC5pkCRPiUSCoqIi7HY7jY2NrF+/njfeeIMtW7agaRp2u91os81mo7KyksLCQnJzc7FYLDQ1NbF161ZaW1sNg1+PsxkYGEDTNCZOnMjJJ5/M5MmTgWTwfFtbG2+//TYbN240iNTixYspKSnhpZde4p133qG6upq6ujoOHDiA2+1GCMHg4CDt7e08//zzFBUVEY/HiUQiXHXVVVx44YVGG/U+CIfDPPPMM+zduxdFUbDb7VRWVtLc3Mwdd9zBKaecwoUXXmiQO7MKK0kSy5cvp7+/H7vdzuLFi9myZQv19fV0dnYafeJyuSgqKsLlcrFt2zbj3IqisHv3bl588UX27NnDjh07+PznP48QgrPPPpvrrruOwsLk5FYsFiMcDvOrX/2KV155hVNOOYUxY8YQj8cBcLlcRj/piTusVivhcJju7m46Ozt57LHHyMnJ4dJLL8Xj8Rj3ud4uPSZLVVXKysq4/vrrWbduHatXr8bpdFJcXMyLL77Im2++yeTJk8nPz6evr4/BwUECgYARzyXLMk6nk7y8PPr6+li3bh2/+93v+Na3vmX042gueSO5/0qSRG9vL7feeis/+tGPqKmpMX7r7e3lK1/5Cv/v//0/6usz7GHTeM4kOCM9B8yfo91/5jp9GNJzoslSZWVl2vfvfe973HbbbUfs99hjj7Fx40bWrVv3oc91/MqSLjNkzvqOqJAc5XWbub/J6O+Lt5NvLU+fizXFrZQ6xrF18DXKHOOPVLMyjZoTsXDV0QiXqfxa93S2DrzOSXlnJA21VB+F1SF29a/ipLzT0glcphtiJmHKhGQy8I7VcDNm300kV5ZpC+5ie/sLVBbOZnzdeQiLkn4z6QaBGL7kye0kiZIkIeRUuQkBmkZr67s0H3qbWDyAJCno5Mhhz8XjKSURC1Ffey5uX8lwH6Tqte/Ai8nyEexufRm7IxenOx9PYS0F7pkINUFny/u079mCzeahpGAKkegAnT07sFqdlNXOp6NlI43Nb3Kg8RWqa5cyZtzZ9PTswWJx4iyqIN8iUzZ5KXIcYoE+eg6sp2PvGgJ9zVisTuac9Hk85EBMz2ZnUgeBAx2riCWC2Ow5SYM/ETF+a2lbw5ipFyIsUrLP9L5L9dGUOf+Xnvat9HXuZnfj84Bg9c7fMKH2PHLc5exueh7flBtxeQsJx/qSL3WbBRGPcaD1LQ50rcamuLAqDnKd5RR768l3VeFWcofHUeraHux7l5bBLUyuuZCS0plJxQuQtOQ1E/q9JIHN6mfulBvZuusx1jX9GYGgMH8CEyddhiJbEZoglRMiOSQtw+6ySVVPQrIo1I79BEWVM9m97Un6+w8yc8rnaG5bS2fHFlriAWxWD3arF6GphKN9qQyLABIW2Y7T6gMknLa8ZAY5PV5KHyOmmLZRoQka+9ZR7z91mCilYFNcTCo8g309q5lSeGaSYBmDOiMm0Hx/mcnUiVKg/sFICIm4+PvrlzgBZXwcoM/CmjOj6YaMWSXKVFRGIk66MS7LsvEJSYNj27ZtzJ49e9Qg73PPPZfrrruOq666yjhmJHcz/fuxInPfTBefTGTOHt9www3ceOON/OQnP6GmpsZw62lvb+drX/saP/rRj9KSCxyr691Iv2e6A2buM5J7kK4S6UTpF7/4BbNnz2bBggUMDAwApMWPqKpKPB4/InbIfB69LbIs8/rrr/Pyyy/T3d2N1Wo1fi8uLmbcuHF0dHRw/fXX4/f76enpoa+vj97eXiKRCO3t7Ua5b731VlpigYKCAhRF4dChQ2zZsgWn00lDQwPhcJjdu3djtVoZM2YMhw4d4uWXX+a5555j4cKFLF26lA0bNhjt8vl81NfXU15ejiRJNDY2smXLFjo7O7Hb7dx6661MmDAhTdUw9+3y5cvp6OjA6/Ua7mQ61qxZw0UXXWTE6OhKo658nX/++TQ2NtLY2MjTTz+Npml8/vOf5//7//4/pk6dyh/+8Ad++ctfMmbMGEOZ0mOqHnroIX7zm9/g9XrJy8tjwoQJLF26lKlTpzJmzBijnnps05NPPslLL73E2WefTU1NDYODg8RiMSwWS9q400nsNddcw/PPP8+DDz6IJElUVFQwb948ILlsQKZyY77PdYVp6dKlzJ49m2eeeYY9e/bw5S9/mdWrV7N7924GBgbweDzk5uaiqio9PT1p2fpsNhsejweLxUJOTo4Rg2XOspipMo2Ghx56iJtuuomxY8ca94YQgoKCAn784x9z++2388tf/vJDZaA81v318+qfH4b4nOiYpebmZnJyht/1I6lKzc3N3HTTTbz88st/Vyba4yRLSjJWxQy9IzM7QIh0kpF5ETMJQcrQA9AkkXTf0Y+XpGQaZn3GR7KhmQ0nM2HKzD521PZ8SNUp7XzDZThlH5PylrJr8O1kim2Lj1CiH01oTM5bmnQvGu38Uka9R2rDKKnFI2qQQ4ObGYp1AhIem59K77RknIZhGEtgURBKMqva1tYVlBRNo27CBQhZTqpF5i7VBJKcMvbNVZGkYcIkQB0coHHvK7QdXo8sK+TnjGUg1EY0FqC8ci5VNYux27zs2vYEY6qX4s4pR7PKxvGQPEfd5AtJJMI43PnYPXkIazLjouHWpkDJtDMI9rXQs38Dh5vfR7E6GTPtIgpqZ4HbDjvcoFgQkTBNW1/B4SlgfN257Nz9JEODrdSdeyOakhx31pw8SqeeQemUM+g7sIm9qx9mINiCxztxOD4J03UWAo+9gN5EEDURxZ83jvziCeT4a5Nj0yIhrKm6knqomPyYXP4SXP4SqutOJxLoY+N7vyQQ7mRn43MospVwtI9djStomHQplVUL2bHzcfrih9m9928Egh2My19AnqOcA33vMqP0k8OxcRljpyt8gD1dbzKmfBHFVbPRJN19MqkIClkaVgtTLoZWp5cZE6/lwKHXkQSMqTkNTbai2lOzXEk/yJSyZDLY5KSKJZRkux2uIjy5FQwOHGLPgRewWB0oVicWoYIkMRQ6jCxZKC44iYqiWUgJlf7BJgYGD9EXaSWmhtjb+QZt/Vvwu6oo8TTgd5QnM/bJAMroWSQBhMZQrJsGW9GR9w7gsuUR08IIoSHp6ds1QVpMXyYJOh5SlHnP6tflQ7osfFioSKgnwO3vRJTxcYBubOtkSZ/1zlRc9M9M8pRJoMwppM3xBnp2Nt2wyzxWj2swk47MGBZzuebPkX4z1ynz/5HOnwn9nPn5+fzkJz/hzjvvBDAM+FAoxB133EF5ebnh0jaSsTbaOUaawTb3b1dXF3/+85+NDHLV1dVcddVVVFdXpxnGukq0cuVKfvzjHzNx4kQWL15Mf38/Qgg8Ho9BlHQjX1eiMmMxdHVFlmVeeuklVq1ahdVqZdasWezfv5/29naWLVvGJZdcgt/v5xe/+AUXXnghLpeL/v5+wuEwkLyWqqoybdo0BgYGsNvtuN1uZFk2iLk+Tvx+P0NDQ3R1dbF9+3YURWHcuHEUFRWhqirhcBhN03C5XKxatQpN01i4cCGvvPIKfX19zJkzB7/fj8fjMbL/zZ8/n127drF8+XIOHDjApEmTjOtgzhTndrupra010nJPmDCBCRMmUFdXh6IohmqmEwj9OmmaRiQSwefzMXv2bBYuXIgkSfz85z+npaWFn//85/h8Pvr6+vjZz37G//t//49PfvKT/PCHP2Tjxo386le/YteuXVx//fXMnz+f++67j5/+9Ke4XK60ca8nnVi/fj0PPfQQCxYsoKKigoGBARKJBG632yA2+n2muxXa7XauuOIK1qxZQygUYubMmYRCIWKxmJEdUCcsZtdIPUOey+XCarWSn5/PuHHj2LdvH8888wxerxe32008HkdRFFpaWlAUhSlTptDQ0EAsFqO5uZnDhw/T3d1NIBDghRdeYO3atYwdO5a5c+cye/ZsQ22zWq2G2mR229XvHUVR2LRpE1//+tePSPsuhKC8vNxQEHV32JFgVo8y77/RVCXzfqM9A48HH+aYkaC3MScnJ40sjYQNGzbQ2dnJzJkzjW2qqrJy5Up++ctfEo1G057Zo+FDxCxlzLiO9CAcyTjQ45GOAT5rIS2hHVS7pwwrLqZzdUeaybUVpxOMkQyVvxcfVMYIv7stuUzPX0ZUDRFVA9gVD3bZmfzxaGrR0bYdJa14f7Sdvf2rGZt3CuPyFwAwEG1nR+9r1ObOJt9ZZRwrJImOwd1sPvQ0hXn1TBh/UdL9K5VVTk/XfMTaQzpBMr6DUFXa9q2iqfF1AMaVn4bTmsuWpiexWT3MPPlLeHLLiQR72L3jaTyeEjw55QiLhGaR0sgSEngKqoZd/xSdkKWfV5Il3AWVuAurqJybdA0QpiFZMnkJzRufIxbow1cynj3bnqC0bDaSbEGNhbE6k37dQiZN/cmvnkpf4xb2ND5PwUljcCiW4bWA9AeFKphdcTlD0U46wwfoHNrLru2PAxK+nCoKCifgL5mIw1sEVnk4GQapNqXqqMoa+/c9h93uIx4LMGn8xXjthew99DJNh9+hvXOzftFZv+k3KLKdsrwp9EfaiMSHmFZyfjpRysBgpANZslBbvmi4DxFISMNulXo8lun6SoqFusrTkYRAs1jQbDKqI/lQk1VAE0iahCRnkCWLhJZyU9Q0lc62jQihMhRoQZItOF1+cvKqCQe7qS6ZSWXFPGxWN3JMQ44lyLOVIrlnIBIqYTFIX+Qw/ZFWugL7ae5/H7viocRTT6mnAZ+jFMmsMkkyqHqcYKqukoUjEpqYCI9FtqIJFQWLKRmESVkaSbUdKfPkv7CylCVLx4eR1o/R3YxGWq/GrMpkbtPLA9LWfZEkifr6en71q1+NqsC8++67TJw4MU3ZGGm/kdzzjqY6ZZIis8F0LLO8ukH2q1/9iq6uLtrb2ykoKKCoKDkpocdGfFhVKROSJLFz507uvPNOvvKVr/DVr34VgM2bN3PnnXdy9dVXs3DhwrT6v/vuu3zve99j4sSJXH/99QSDwTS3KMBIL21WwXQyYFYBd+zYwerVq9E0jSuuuIJJkybxne98B4/Hw5133klpaSkdHR088MADeDweiouLCQQCRKNRQqEQ0WjUUK58Pp8RI6SviWQ2NIUQRpIEt9tNRUWFoeBAcqZ8zJgx7N+/n66uLnw+H++88w5jx45FURSi0aiRoc6cBjsajVJeXs7EiRNZvny5keBCj5PSDW5FUbjnnns4cOAAb731FqtXr+axxx4DoL6+nmnTpjFx4kRyc3MNNzX9OLvdbpALq9XKk08+SWFhIYODg3zhC19g2rRpPPLIIzz88MOcf/75Rru/9KUv4XQ6OfPMM9m3bx+9vb38+Mc/xuPxpBns+rUBaGpqAmDx4sW0tSVd+/U2Z5IH/U8n8EuXLiWRSDA4OGgQZD2Tnd4f5rTfej86nU6jP9esWYOmaTQ1NWGxWCgqKmL8+PF0dnYyf/58li5diqZpdHR0EIlEyM3Npba2FlVVjbWl+vr62LNnD+vXr8fj8TBnzhxOO+00ZsyYYawVZXbRg+FniK5oZt4n+j4+n88gS5mKt/6ZSYiO9d4f7R79Z7rhHU8Zp512Glu3bk3bdt1119HQ0MDXv/71YyJK8GFilmRlZLcYIVLbRiBR+uxqJqPUyVOGwmKzerAqDnribcPGvn4DodIY3MSUnNPS1Ki0Mkc7j45MRWekdo6CwVgXbaHdJEQUt9VPubMBm+I8Yj+74krGexxL2eZtR1uYNsMI1LQEe/reZnrpRVgtKXlRCHKdZUx3XMiG1ifILS1LqnSApGl09u9CoNHZt4vw+l+T663El1NNbm41Vq8fYVPQFNkgIUZ8kmA4sYOAnkOb2L//BSr9M6krWUR/5DCbDz6O21FAcdFUGve8BJKE1eqkvHQuPl/VCO1Ob7OhIskpdzGFI0mTQTxSiR/MypeQqZx9HpHIAH37NxEe6qKt9V0k2ULFrHOT+wKSmixD1jDcDGtmXcimF+5m9+FXmVJ6LsRVQxnS06R3Du6mZWArSGDFRrlvCm5bHn3hNg4eeJX9+1/E6ypl7NizyCscj2ZLzQ6pGkpUQ9IETa3vYJMcCIuLABKRSD92xUNcjQw3EIHOZlQtylC0k9rc2ZS464dj+PTxof+fct8s9NSxt2slfYON5LoaUn1j6leLSVVKfWrJJXv1QZUsOiGQVdAUkuRWJPtKSinLyfKSv4lUmvaepm0U155MTn4tTk8hDocPSZKRNNBiUXasfwjF5U1y5IQYvn8tChLgUn24XD7KXQ2IvKUMRNo4HNpNe2AXTQMbGJe/kLF5JydTxidEMuW5NkRci5LvqkbWZAQClQQKpuQvKQIkhEZcjSCjDJOtkVz7MgnTSOnIj+YKmzmBY57U+QigCQntBLjQnYgyPg7QjWp9/ZdMZQgwZp3Ns9CZKpJ5TRXd+DZnX3O5XFRUVPDiiy9y+umnGyoDQDQa5ac//Sk/+MEP0oz50dzE9M+jxSTo9dY/M0md2eDYs2cPTz/9NL29vYwdO5ZLLrmEgoKCI86Vm5tLbm5umjEKjDqbfbzQlb0f/OAH3HfffeTn5xv1nDlzJvfddx9XX301s2bNwuFwGIbv22+/TTweZ+vWrfz85z+nvr6e6upqysvLURTFWJxWd8HTVQHdKNZjV7q7u3n11VdZvHgx1113He3t7dx2222UlJSwZMkSHn30UcPNa968eYwZM8ZIgKHP7ofDYQKBgOHSlkgkDFVGN4h1JQTA6XSiqio5OTlp/amPOYvFQklJCa2trRw4cIBQKMT+/fuRJMmIc9L7SB87unI2ZcoUDh48yEMPPcRXv/pVo0yd6FgsFlauXMlTTz2Fqqrk5uZy/vnnU11dzdatW/nb3/7GY489Rk1NDZdddpnhHqenJdcVrVWrVpGfn4/dbmf//v0Eg0EikQg9PT1G/cxjNBwOs2/fPq666iqWLVtmuE+Z229WYE855RTuv/9+Wltb8Xg8aURHVxbN94wQwlg7S1VVg1jpcWi6cpx5PfQxYbPZcLvdOJ1OtmzZwhlnnMHcuXONRYIh6coXCoX4xje+QUFBAQMDAwbpkaRkDFQsFsPlcpGfn4/X62Xs2LFEo1Ha29t57733eP311znjjDO4+uqrcTqdOBwOBgYG6OnpIRwOM3fuXHw+HwBdXV3k5+cb9dSJlJ4IxOv1HlOWuuMhSZlqU+bz48MoSx81WfJ6vcZ9osPtdpOfn3/E9qOeUxzDtM/g4CA+n4/Tx3wlGUiuV1R/QKaIkyZUesKH6AgfQEHGqfhwW3w4Lbm4FC9ymkxwFCVIkkhocbb0vojXVki5eyJWyUZPpJlDgS2M9c4m315hGIgfiKMpOkerhyluQQiN7X1vIMsKFZ5J2BU3A9EOmoY2UeWdQrGrbrgvjhWZxtYHkKPM/TsD+wjG+6j1zxmxH1oGNiMhU54zOWmUysmBH4x00xduoT/aRl+4lVCsFwC7NQefr5qautNw+EuThrXQDWdBIjBEcOgwgcBhurq3MxBo5ROTvg6SxPrGR+kZOgAkEzi4nAWpv3xkxQpCIxodZCjUTiwRYtKMa3B5i5PGfIocaYpOkqQkUdJJk5ROipJJJYb/1931dOjbEuEAbe88Q9H4ebjKqo195EQyO5ukDRNASUDHjlUc3LKChdNuxqW5kqpFagHaPZ1vgRDU5s4xiOlApJ093W8yofgMnFYfPaEmDvSupT/UQp63Bre3BKvNg1WyExxsoz9wiGA0+fJwWHMozptMKN5Ld38yQ6DTmY8Aps39PFI8TnSol9BQB60d6xkMtuKy5THWP49y76Qjx7Q+syZLvHXgN+R6q6iomp/6KUmW3J4SJIedTBs4SYKSLnZyXEv2uUVGtStoNon0JB9HuuFpqSmXPasepG7WZSi2ZP9IWqqfU+Uf2PoMpeVzcHuKkRMaclRFjmtIsUTyz5w8wjTxImTYcvhZeoKNeBxFROIDhOODCDE88+iy+ZlYeAax+BCRxBBj8uYOT+ikymkJ7CChRanJmZ4iMBlkKTO+71iROTFk/j9FtBJqlFf3/4yBgYEPdBv4sNCf069vq8Tj/ftdHQJDGksnN/9D6/zPhN5fy5cvN4yuzDVYdCK1bds21q9fj8ViobKykoqKCiorK6msrDTSauvEyUySzARKN9RuueUWamtrueyyy/D7/axbt44//vGPfO5zn2PRokVHGDwjkaCRiNIHGUiZqobe1jvuuIN4PM6VV15JWVkZW7Zs4f777+eiiy7iwgsvHNUl0EyQjkc9yiRy5u+KovDee++xceNGvva1r6WpBvr1eOqpp+jv7+fyyy83YmgSiQT79+9n48aNbN68mS1btnDo0CEAcnNzqa6uNtbZiUajhqLjdDpRFIWenh5jfZ+9e/fy9NNP43a7uf3223nnnXeAZErqoqIiioqKyM/PN1ye+vr6aG1tZWBggDPOOAO73c7AwADRaJRwOGwY53qmLt0Y1w1ec1yb/t3cJzo5GRwcZGBggO7ubg4dOkR5eTkVFRXG2kO6u6GujMbjcUKhEHv37mX16tV861vfYurUqYbhbrVauf/++xkYGODGG28kNzcXgN27d3PXXXdxyy23UFVVxZo1a3jwwQfZuHEjEyZMoKysDK/Xa6zttGPHDhobGwEoLCxkyZIldHd3s3LlSjRNo6ioCCEEn/70p7FarSQSCfr7+3nnnXfYvXs3JSUlXHvttVxyySWGK5pZHdJJ57XXXkthYSGzZs0yJjYA8vLyjP10tz39eF1B0olS5mSIoihp10L/rscbOZ1OfvGLX/Bf//VflJaWGiRTVVUikQjRaJRf/vKXTJgwAb/fT19fH+FwmFAoxNDQkJFWfGhoyEg8odcrPz+fDRs20NTURGlpqXF9zQsBFxUVceONN+JwODh48CC33nqr8SzR279ixQr279/Pl7/85SPUU7NifjT33MzfR5t4Mbsna5pGf38/S5Ys+cB3hP6sLSwsPGFueF1dXR/63bR48WKmTZv2j1yUNumuFdciWLAk1w0SGr3RFg4Hd9ER2E1cjeCy+5GQCce2ohkGjUSJcxwNOfNxWDwktDiapKGgIEuW4Rnz1AW0yFam559Lb6yVg4MbULUYOdYipvuXYU1l/hJAT+QQraGdJEQMi2SjzD2BAntVciCYB8dIBk0mwRhN1ZHhQN96ch2lVHiHmWiRxUOBq4bNXc/jtvqTC+b+PYZW2vYRBlTGbHYg1k2es3K4DL3/Ukaaz1FG2+D29GIFeOwFeGz5VErTQJaIqWH6Iq30hVvoHNrDhnW/pr7+ApAlAgOHkwQp2E40PpTsjlSa7zEFp6Av3jqj9nJCsX6CsR4C0S7aerbQ0b1l1GYHBlpx5RQbypUR/yKTNL6ldKJkJCaA5P6mssyueMkNyT+Lw0PN4iuSaas1UgvfYjLgMa0dBUU1szm0/SX2tb1Bfclp2CUbIBgItRFXQ0wqOjOt/32uUqaUnce2wy8ws/ISijx1FLrH0h7cS0v/Jvp7DxBLBIknwrjt+fgdlciShek1l+K05nB4aBdNjaspLp5G3fhlWB057NnxFFIsjsOag9PnJTenivKSWQz0NXGo7R22tj/HQLiNhoIlI7rjSQJKvA009r5Le2+69FxTsYgx485Es8iGK6LRZXIy5iqZAz+pEkuqQEqAsDI6hBhOHKElUOyOVHmkxiJJhU4Cm91LPBFCsyZTuyeVLg1ZlpCsyjBZEmLYDTL1oK8qnEM4MYjV4sDrLMZpzcFp8eGw+hCSxu7Dr7G+9S+UeBqQgF3db1GTMwMHDmKJEM2hbQTivZzk/wT6gsaj4mOU+W4kiBOkLIn/EGVpaGgIi8VCIBAwgq8jkQg7duzgnXfeYePGjQQCAfLz87FYLLz00ktGFi5Jkpg/fz5f+cpXKC8vN2aTHQ6H4fakK026MXzvvfeyYcMG7rvvPoLBIJMmTeLee+8lLy/PIARr167l8ccfZ2hoCKfTyfnnn8+pp556hDE5kqI0mlE0UjzEgw8+SF1dHZ/97GeN/YqLi1myZAlf+tKXqKurY9KkSWkz9mbjK/N8I834jkakMsmgbozt2bOH6dOnH7G/Xva0adP43e9+l3ZuWZYZM2YM1dXVnH/++WiaRnd3N1u2bGHjxo2sWbOGBx54gHPOOQeAzs5Oenp6aG9vp7+/HwCLxUJVVRWf+tSnyMnJQZIkbrvtNlpbW2lqauLAgQO89tprrF8/2jp9GKm+9SQG+qKruoGsEyW73W60Vzfk9bWHMmfv9TbabDZycnKwWCz4/X6sVqvhdgXD5FX/rhv+Y8eOZePGjaxYsYLS0lI8Hg9ut5uDBw/S2NjIj3/847RzTpo0iZ/97Gfccsst/O53v+O0005j0aJFvPbaazz++OMcPHjQWLOosrKS6dOnY7PZuPvuuyktLeWtt97ia1/7GgsXLuTSSy/FarXyyCOPEAwGKSgowOfzUVxczEknnUR3dzdvvvkm//M//8PWrVv5+te/bqQVN193i8XCkiVLeOihh9i4cWNan8+bN4/FixcbpFJ3FdS/R6NRIxGEToJ0oz8z0YLe3+bkH+FwGL/fbyhZuhujPv4KCwsJh8PG9dBj4vR09ZIkGaRcHxexWIyBgQHKysro7u4mkUhQWlpKQ0ODEYdjs9l45513uP322424tO9973tcf/31lJeXEwwGeeKJJ9i8eTM/+clP0pKW6G0Y6d47XhfckfbPHKfHin+GsjQS3nzzzeM+5rjI0ubeFxkIthFLGc2KbEWSZBJqFIc9l7LyuRSVTsXlLUVRBXIoRizUTyjUw1C4nQMd7/B215/Jd1bTGdyPYHhmWJYUNKHitOSwoPhqFDlJoPJt5eTbyo+YSRdCsH3gDWyKi4bchdgVN1E1xKHAFjpCe5mUu3S4Q3UCoc/0Hq2jzbPL+kMoHqU31sqsvE8mg/nBUJBkRaEubx6HBjczMX/pB3fiaAvEjoTRlCedUFqcRLVQMnuYrmgpwzFeURHGKjtMsTfDM91GXwA2xUmxZxzFnnGMzZ/Plra/sWPHXwFwWL14HcWU5Z6E11GE11GE2+ZHMjKHpapKcoFbt7uQofZOQpFuANyeYlyeEtyeYtzeEtzeEuyuPCSLkiQ5mkCLxxGJOJoWR7E5sNgdKcVCQrUllSY1pSzpClPa2k8pmBUnnRTpxMkgRrqKkvofMNYAkmwOKsYvoWnHCxzueJ9cdwWF3joGQ4cZl78wpYANp6kGsMk5OKw5BGO9uO35SECps45SZ51BXoVIpYqQJNa3PZGMYVMFwVgvNpuHhulX6FUmGh3CqjiG2ygllZ2cwlomF9Tgb3mXXQefI5DoY1rxedjkYfdL/XO8fwGF7jFsbnuGmBrEYfNRVXIyZaWzk7voxFOQIjukLboryRhul7KUqpiUPh6FEAQDrcTiQey+QuyefGxOH+HBTpw5RcN9z7Ar59BQG4U1s1FtEpJIutJpioSiSMnEEbrRpLt8CoGkakhxlVy5grljPzPcVg0kTTPG/Zyyy2gL7GB31xvE1BCypNAytBVFtqQWv61jrP9UUOwpL0f94pvUpaO5wH4QRpqM0Z8hMpgedf9wZGOWjg933HEHbW1tBAIBYDhzWiQSweVyUVVVRWlpqbGWiu4uFY1G6e/vZ+3atVx11VVMnTqVTZs2GUQKkgZuLBajqKiIRx99FJ/PhyzLNDQ0MHHixDTiEg6HkSSJH/zgB1gsFm666SaKioro6enh8ccfZ8WKFdx5551HBNpnxkCZ/zcbzplESZIkXn31VR5//HEjfbJuLMqyzNe//nXuvfdefvSjH6WpSpkxSplGlBlHi6UaidTJsozH4+Hw4cPEYrG0OulKQ1tbGx6Px3C9ynQ70uuQl5fHwoULOeWUU7j22mu56667ePrpp43fqqqqOPXUUxkzZgxjx46lqqoKl8t1xMKh5eXlFBUV0dTUREtLC5AklLrClJeXR15eHm6323DN8nq9CCHIyclJc/vSjflgMGhkTtMJlMPhMLLOZapuOqxWq5GWPDOzmK626C6FejmKojB9+nTWrFnDl7/8ZWpra1m4cCHt7e189rOfNRJbmNPZFxYWUl9fz549e5g4cSIWi4UzzzyT008/PU250VWam2++GY/HQzQaZf/+/TgcDj772c8yNDREKBSir6/PSG8eCoXSyPfixYspLy/nqaee4sCBA9x5550UFxenpe+3WCxcd911zJ49m9tvv53u7m78fj/z589nxowZaQlGzIa8Thri8Ti6a5weZ6XHWpnvJ1VVaW5uJhgMUl5eTk1NDUVFRWzdupWpU6eiaZqRfU9XnXfs2MHZZ59tqDqZ41mvv97P+j56Zry5c+caxM18DYQQLFy4kNraWt59910CgQCKovDMM89gt9vxer2ccsopXHHFFXR1daUlq8i8z0e7PzN/O9r9eiJgrtvHDcdFlqIiTHHlTDy+MrR4nEQshKbG8RWMxeuvRkrFuggBCVWgKHYsziJy/IXk0EBx9Rz273+R/sFD1JWcisuah6YmUImjiQRN3esJx/t4pfV/k7PGFg92ixeb4iCmhokmAkTVYJIAIGGVHeR7xxC1qigWCbuUyzjHQpr6N9Ac3kGVezKqFkcTKhbZfvxsNLV/SBskx16EJKcW5BUiSUpS+3idxYR7h46NCB1Ptr4jjpXTDLqSnAa2tb9ISe6EFAlKrjOzs+s17FYv/cEWJhaefmSSDMWkuplm0YUkYVHsTK+4mKFYFw6rF5vVndYXR0DKuKGEoKpgNkPhDjp7dxCLBojHDjDY15gkWJKMEAlUNY6mJglSJqwWJ3ZHLnZnHpLVikDgr5tJTt1khCQNxzKBQYZGrlt6NZMG/LALnnG83gwhqKhfSknJDPoO76SvYycHOt9B1WIMhA+T760l31OL3zcGm82TVEIkDbezgHB8ALc9f5iUm8iLedwVecZxeGAH5f6pSYXW6jLiiIID7VhtLiS7A40kYUjGS6VIIhKl1afgchexZeefWdvyJ2aUX5xUNE0PNlmy4LHmY7e4ialBZNlCQsTp7N+FJZ6DxZmDzeHBanUjk1L2kJLnkkFoUioiDINcGqRPQF/3Xg4dfBNPbjlWdy5dbZtJxMMU1cyhddfrjJ112fADP0VggwOHkSQZq8ubdLdMXTdZgFAlsJCKJUv2XTI7o0BSpGRsmSogY40nIctIqfEnyRLleVMoymugP9RKINZNINpDMNpFINLNgZ41HOhZgyQp+Byl1PhmUuyuS45JYbo3jAFzlHs08yUymlJtxkeoVKlCRhV//wvpP2VR2o6ODnw+H2PGjMFmsxlGkM/nM1zn9FgUTdPo7e014hlcLheLFi1i7969xqKf+tofelautWvX0tLSwmmnnUZRUREFBQXGWjwDAwP09vbS29trxGI4HA4++clPGqmfc3JyuO6661ixYgUPPfQQ11xzjZG+WQ9wH81Vz2wsZbp3dXZ2Mnbs2CMMK/24mpoaI+ZEJyUjraVkxtEMLLOBfLQZ71NPPZX/+q//4oILLjAIRldXF7fffju5ubns3LmTL3zhC4ZiY3YLNBvyZjXP4/Hwne98h507d+Lz+dLUBZ146J+Z0N2zzjrrLPbv389bb71FMBikqamJQ4cOGf2mqqrhEmh2pdKhZ8RzuVxGnE1BQQEul8tIjy2EMNQinZSajW6zMawTFTORNCskZgI0ffp0GhoaaG9vp6mpib/85S9EIhE2btzIySefzIIFC1i4cCElJSUGSamvr6etrY1JkyYd4S6YqSouXbqUFStWcP755xtjub+/n0AgYIwhPdOdrn7oJEYIQUVFBZ/73Od45JFHuOGGG/j+979PQ0MDFsuwiWqz2RgzZgz5+fl0d3cbiTP2799vEAWLxWLEDekTGuYxrW+H4fgxncDs37+fl19+mZKSEnJzc9m8eTOhUIizzjqLhx56iNtuu80gXfr4OnjwIIFAAJ/PRyAQSMusmZlOP1NBNbvCZrrW6f0cjUYpLCzk4osvZmBggKGhIfr6+gy30ccee4zHHnsMRVGora3l4osv5vTTTzeUrMwYS/Mz4Wgqj3kS5ESSpn8VZelDnVMcQ0/o/oazL/o+ssuJpAnkOMMB/3CEG5Q+OyypYtgwBSM2QlI1ZH02WVdw1Di9fXuJRAaIRvuJxIaIxAaIq+HkOi0WDzarm3giTGffTiRJJq6GjbIdVi82iwdFsjIU6TAW6lSwoKGSZy+j1jcHRbYQTgwQTgwSjg8Q1yK4rX58tmK89iIUiy1NjQpGemjq38DEotOHG5IxqDe2PsHM0k+mGikdaVDp282f5n2O9lvqHFHCBGO9BOO9BKM9hGJ9aFqCXEcZdYULkCSZ7R0v0zawDUWxEosnZ9ir8mcxxn8yNsWZVA5MZccTYZoHNpPjLCU/pzb93KMZj+b/Rxk+miTRNbSboWg3Ao1oIsBQuJNwuId4PDjiMR+EWdfeg2pPxcjo3WUiPYZaZFKMJC2ZqEBOMOyGp5oVKJFOpPT/VZEcn7EYmzc/iMPmY3ComWC4CwCPq5h8by1+Vw09g/upzJmC1144XNnUOkFCCLpC+xmMduJ3VpLjKmVz+7OU+6fSHtxLINbN1EVfIjjUzsFtz9Jw0mU47L4kydBjflL3me6mKKuCaF8X72/9I/FEmFNqPpNcbykDQgj6Iq00Db1PT+AACTWa9ruEjN3hw+nw43Tl43Tl43L4cTrzcTr8yUV+JYazJUrQ39dIS9Mq6qdfgeSwJZM/ANFAL3s3/pWcojpioX4q6pfi8OSjCpXexo0073yFopKplNUswOpJEiYjViqejImTtGF1CzBSlSdjm1SkaHzYgrfIo94rxvdUpkdNlolpQYLhLgLBDjp7d9IXaMRly6OucBFlORPS13X6IBwrWdInRkQqZmnvTz+SmKXntozB7T22DD9HQ3BI5ZwpB/7tY5bKysoIBALk5OTg9/vT1urQiYE5mBwwXG70VMQ2mw2fz4fT6SQnJ8dY00Y3kjo6OojH4wQCAQKBAAMDA4RCITweD3l5efj9fqLRKO+99x4Wi8VwDYPkLL/f78fpdLJv3z7c7uQElsPhIBaLMWnSJK6++mocDgcdHR20t7dz+PBhBgYGqKqqoqGhgYaGBtxut0EO9HPce++9/PSnPzWIgjmDXywW4+qrr+b+++83XHzMBqAOs+FyNJe70VSwnp4eg3g0NzfT3NxMPB6nrq6Om266CU3T+MlPfsLTTz+N0+mkv78fRVG44IIL+MxnPoPf7zeMcP16hUIhnn/+eWpqapg9O6mo625xeqZD86y/2Wgdqe66AZxIJFi9ejV79uwhHo/T09NDS0sLPT09BIMf7r12xhlnGORKT1ygn8ts5OuJCHR3sswFTPV9dMKtEwhzAgRIjl23283jjz+O3+/n0KFDRsxRXV0d8+bNY968eWzatImlS5cyffp0g4iay3rnnXfYtm0b06ZNo6Ghgf/+7/9m3rx5rF+/nq1bt3LjjTfS2NjIa6+9xrJly8jNzU0j3ObYGt1VLZFI8Nhjj9Hf38/PfvYzJkyYkEYi9Ou8ZcsWnnzySdavX28owjokSSI3N9eIzXK73cZaToWFhfh8PhwOB26324hB2r9/P8899xzXX3992jprQ0NDPPzww8ycOZP29nauueYaSktLiUQirFy5kj/96U+cfPLJnHbaadjt9rT7e3Bw0CDOeqIPffzp18ucWEJvpzkzo37f6ddTH7O6IhaNRo1Yp3379rF3714KCwu54ooruOCCC4wYucyU4/r4H81tdqQ/8z1jjllavHjxMccslZWVnbCYpba2to/03XRcZGnKtT9AcThQoimylJnMIMN4MYLoTYaoeSZfTghQhZGRLM2AzXANSlUWSRUIVWPr1j8xffwVxBMhgqEeQtEegtEe4vEQ4Wg/fYMHyXGXITQVVY0SS4TSiJUOu9WLIlkJxfqMytmtXvLcVXgchTgtPpySh71dbzKr7FIUPU7ERKa6gwcZiLQx1j9v+LeRiJAOk+pgfMqy4UKntzcaG6AzuJ+uwH76godIaEljV0ot3um0+egNNGG1OJBlK6qWIJ4I4nD4KRszj+KyWRzet5LmQ28jSRK1hadQlT8bi2wjIeI09a6nsWM1CTVCfk4dM+s+nSxfFWhqgsbutUTUAIpsw6LYkBU7Hmchud5qLHqecSGMJAjofzpkGc1mYf2eB+kbOGBsttq92Fw+bK5c7E4fFpsLoSbQ1ASaGkfV4ig2O3ZvAQ63H4cnH0tePsLjQLPqKsswORomOwy73zFMlHTCYeyvkyWR/N34NPYZJvCSJujv3k9f127GVX2CaHSQ3oH99PUfoHdgP5HYIC6bn4W1n0t/8GiCUKyfnV2v0hXcjyJZUUUcRbaS60rG1A2G24klkgv4Oj2F1DR8grzSiUiykk6WBMMkQUoSk8ZdL9HRuQmPvZCZVZfhlNxp9U5eF21YOZRlVEkjqoWJagFiapBodIhwrJ9Qop9QrJ9QrA9VG15UT0JGli0oii2pEludRCK95PvrsTp9WG0uLBYHFosDq+xgaLCFoWA7DoePvp59JBJRNJFATUQQQktWXgiK8yfh8pagONxYnB7yShpQ5BFE7lT75ZiWSgiRMNzzhCwPxx2ZDTc12W4pYSI/UipGyqogLEl1dnDgEAdb3qKrfzcNVcuozpsJ0TjBaDeJRBS3zZ90hzSqohKOD6BIFhyWjPXSUuc4AopsTE4k1Civ7vnJR0KWnt487oSRpYum7v23J0sej4dQKER5eTmFhYUGWTIbFJmqgz7jHYvF0pQNIZJpfnWXPf31qpMr/Tfd8HE4HNhsNmOx0gceeIDvf//7QFLxam1t5eDBg3R1dXH48GG2bNlirDMUiUQYGhpiaGjoiLbpxK2zs9OoX25uLieddBJ1dXVUVFRQU1PDr3/9a+677z5ycnLSXPWEEKxbt45XXnmFW265xQicNweM6zCrOPrMsTmmwxw/oaoqHR0drF69mvfee4/Nmzcbxq4syxQXF1NSUsK2bduM7GDRaJSBgQFj4dIJEyawa9cuNmzYgBCC8847j3PPPRe73U5/fz+vvfYaL774IoFAgPHjx/P973/fUKii0SgvvPACnZ2dRoIHp9NJVVUVU6ZMIScnJy3Jh5nU6YRB7/ef/vSnbNu2zegHu91upJ02r5tj7h+r1YrL5TL21RMtmN3H9GurkxJ9/JkzwOlkyWwE62PMZrMZaa8z4390yLJMa2srmzZt4lOf+hSQXGR4x44dvP/++xw+fNjI3Ki3Xzfcm5qauPfee1m1ahUOh4NIJILdbmfixIlYrVYjHbgsy/j9fhYsWEBDQ0Nalj69LHPdwuEwGzduZMeOHRQVFfGNb3yDsWPHGveNWZUwX5tYLGYsBNzd3U1vby9tbW20trbS2tpqpPPWoZMUPROi1+ulq6uLKVOmUFxcbMR06encW1pa2LFjBzU1Naxfv95IQa5PlFgsFhKJBPPmzTMWBobkGkDxeJxwOMzQ0JDhnjuSmmRWDc3PE51Mmq+zTvDNapo+RoLBIGvXrmXHjh1ceumlXHvtteTl5dHa2ko4HKa6upq8vDyjnEQiweHDh7HZbBQXF6f1rXmCwzxuzDFyx0uWKioqThhZamlp+UjfTcflhicsyVTCkpIMZJBUfUY1c0ed3DA8458ylKSUsYpIlaVJBkkaJl/S8HFmQiYkZDnpmqOhotktWBQPuVY3Prk6abBogvd3PEiut4pZE65Nc9+JqkH2tL6C21lEccFE7I48egb209r+HhPGXYSsWBkMttDZvYOuoX10Bw6QSAwTrFcO/AyXLQ+XNRenPRenLRer4qK1dzPTyy88Un0ZYX0koWmEEgP0hproCTURiHZjlR3YFCc2ixur1YVA0D20n6FIBxISuZ4qakrm4XEU4XYW4LSn3NMUmaFoN3v2r2Aw0IYvtxpfUR2lY+eDzYokoPKksyitmUfz3tfZ17aKpu51FPsn0967lYQapaxyLlo8Tk/3TnojrYQjvYSjfXT17yEQ6sDlzCcaG0JVYymDVyBJCnm5teTn1FHgGYPHXgBIaQuWJi9Xst3lRbMYCrahCZXaGZ8kf9zsZPrn0ZRUibSFbyGVvlonSToZMsj18J8xlgwiatpuGl7mfdEEfd376Gx5HzUeweUuorRiDg5nLgC5ebW0NK5i885HcDsL0dQYkgYeexGR2CAVedOSDxBJIqFG6Rjaw+HB7fQEG7FZPEytuYTC4kkMRjro7dtHb/8+eoeakJDx54zF6fTT3b+HHesewu0tZezE8/AV1yXd1XRubloM+v33fkMsMpDcLivs7HwVh8WLQ/FQ7KrDbfMPk3n9uSQECjIu2YNLN/btJmVXkdFkWLnnf9GEhqLYULUYqhYnnggTiwcg9b5p73g/1Y0ygnTDCUi62ylOrBYXDqsHt6+IsSULkTWFtp73ae3bQlff7pTSJXA6/YxtOI+8sokIq2yKR5OQNIGQZIQlGbslpRJPgIk063khZNPETFxDMmUzlDQtGTekSAgkcnIqmVr/afY0vciuQ88zFOogEunFbSvAJjs40LcWm8XN+MJFNPWupz/cisdeQEKLEY0PUZM3mwJ3bXrDR3G1EyMYK/9IaEhoJyDe6ESU8XGAbmjqM9B6SmqzkWB2eTJDN+L03/W4BHNqaPPMsRkjZcvTSYXH42HixImcdNJJRozLt771LSZMmMCtt95qkJFYLEZXVxd/+9vf8Hg8TJ8+ndzcXA4dOsRbb73FJZdcgtfrpampiffff59169bx/vvvp83Gz5o1i/LyciO7WkVFBYWFhTz99NP88Ic/JBKJGETJTHwy45ja2trYuHEjmzZt4uDBg4Zq5vP58Hq9xONx1q9fz4EDB5Akibq6Os444wwqKiooKyujuLgYPa6ktbXVSCZQVVXFnDlzmDRpEn19fUQiEerq6mhoaGDbtm0sX76cF154gRkzZvD+++8TCoWYOnUqsiyzfft23nvvPfr6+ujs7GTr1q0cOnSIoqIiBgcHiUajRrsURaGhoYHp06czc+ZMI022+dqbs43NnTuXAwcOEIlEmDp1qhHoH41GiUQiRkpxXUnQyZ8eI6OPHX0M6ufRk4Tox5vTjutjJJFIGIRdP1Y3/nVyIcsyTU1NbN68mXA4TGFhISeffDLFxcUoisKECRNYs2YN999/P1VVVYZyOmbMGA4fPsyZZ55pXOtAIMCrr77KSy+9xHvvvYfH4+GGG26gvr6e5uZm9u3bx759+4z1bCZNmkRhYSFbtmxh+fLlFBcXc9ZZZ1FZWcnQ0JAxjsxKxYoVKwxFVVEU/vjHPxouq/PmzaO6uvqINN+yLBuZAKuqqozrpBOzQCDA4OAgt956K8FgELvdbqyDFQwGGRgYoL29HYCVK1ca5zav8aRj7dq1+Hw+cnJyKCgooKqqiquuugqPx8MLL7zACy+8wMaNGwkGgwiRTLO/ePFiSktLDeXQHM+Y+UzIjL8baWLCPIGj72f+npeXx3nnnUdhYSF//etf6e3tZWhoiJqaGgoLC3nwwQfJycnh1ltv5fHHH+fdd99l3LhxhMNh2trauPLKK1m8eHFaspDMWKa/B/8xbngn/Z8foFgdSVUp003MVHk9ziLNmCWDPOkuOBluU5kxJOnHDLsl7d36NBUVp+BxFqXcq5JuU6GBdg60volFsjKp7Oz0QHBFJqIG2d3xGlOqLiQqomw99DTTxn0ayWYDObVgqiwRivSxd++zTDjpcvbveZ6uzq3k+esYHDiExeIgkYgQiw4hhIqETF5ODYW+8RS763BacoazeUnJLG9RNcShnnW09W8lEhtEQsbrq8DrLkWNhYnFg8RjQWKJICDIyx1LQX4D/rxxWByuZP+mjEMhS6h2Gc0qGQa1EAJJHiYguqKnG5CSBvG+bg7teoXujm0UVkynfOLpWHNy6T24mT3vPmxcP6vdi9NbROm4BRze9zbl9UvJLR6HkCUGOvbQvO1F1HiUaLAXTUtgsThwuQpxOQvwOArwWPy47fk47XlGxraoGmRn60t0dm/DX9SAv/wkIpE+oqE+FKsDd14F7rwKnLlFCJsFzUL64rUS6WsqYSJUZI6rYVVGTiQVTCUq0KJRYqF+tHAYEYuSSERAlmlreRePt5zSqrlYHR6G+pppOfgWhSVTKKqYgSRg75YnaWt7D0jGBMmSgiwp5NhLmFZxIRbFjpAk3mt8mL5QMwAl+VOor78AyeNGdcjDxn5CoEbCdDSvo6nxDYSmUVdxOm6bn31trzMQbKGwYBI1k8/FlleQ1geaIhHsaSbc00Is0E80MkA0Mkgs3E8o3EOpbyJTSs4BSWIg3knn4B5KfZNwW/3J+1IdZT2UVPKK1/f8jKrSeVSPXZqsr0jGDyW0OEP9zbQ0r6aodCrhUA+d7ZsJBtqxWtwU5tVT6p9CY9sqZlZdiqylngmKKYYrQ20VQhCIdrH78Gv0BA6Q7xvH+PHnYc8tSvZXyu0Qkve8of5pJuU59Smk4fWeAOSEllQT4xpyXIWEltzPklKYFBlJ1SCWYPOBv9LZv4vxZWdQmz/HUEt7g81saXmK8cVLKcuZBLKcVIm0GNsPv0iJp55izzij/wzoap5eJw3UROQjU5Ye39yA6wQoS6EhlUum7vq3V5b0IPy6ujqKiopwOpPr5mUaLpmxNrqRmhkfYnYb0reb/3SFQM+EpisBTqeTFStWsHjxYqZMmWK48iUSCZqbm/n973+P1WrllltuMZSuSCRCMBiktbWVRx55hE9/+tPE43EefvhhvvKVr1BQUGCkuA6Hw7S0tPDggw9y6aWX8uqrr7JhwwYmTpxIY2OjoeLoa9PoiSjmzp3L/PnzqaqqSksdrLuh/e1vf+P111+nu7sbPSFCeXk5iUSCcDhMMBg0XJLq6uqor69nwoQJeDwewyjV43QikYiRkjkz7bGehlm/HpFIxHAX3Lx5M/v27WPcuHHMmDEDq9VKc3Mzr776qnG9PB4PBQUFLFy4kDVr1nD66aczdepUILkQ7YoVKwwDOhaLYbfbKS4uNtSukpISSktLKSwsNIzx3t5eli9fzvbt26moqKC6uprBwUEjGD83Nxe3223EwunKir6AqO4iZQ761901ddVSd7tyuVxGlkWfz5emjiQSCSPDnq5Gvf322xQUFDBz5kzcbjcdHR2sWrWKSZMmsWjRIiRJ4oknnjD6SC/PYrEwfvx4/ud//oecnBxUVeWmm25i7dq1AEydOpUzzzyTWCxGd3c3kUgERVHweDxYLBaampp45513iMViXHzxxdTW1vLEE0+wa9cuJk2axMKFC5EkiWg0mmbod3V10dvba4xpPTlEf38/DQ0NXHPNNTgcDrq7u3n//feZP38+J510kqHUmdUXndAODQ0RDAa54YYbmD59OqeeeirRaBS73Y7H4zHO+9xzz3HaaafR29vL6tWr2bt3Lzk5OZx66qmcffbZ/PnPf+bXv/61ca0yY5PMMT56kotf//rXbNy4kXHjxrFo0SJsNpuRUt6cjMMMM7nW70F9MidTXdIJozlRhZ4sxOPx8Mwzz/D2229zww038OUvf9l45mzbto3Pf/7z3HzzzVxxxRVG/4fDYb7zne9wyimncM4554yYftxMdj6MslRdXX3ClKWmpqZ/XWVJUlM2gJFJKvmhxzPohnoyWDzFFUzESeiHGDP8EgJhXlM0uVlLueVpqd/NBApAlqiqXcTubU8ycdIlOCzeVHpoQXConcFgK7PKLkWKqaYFdJOGogMniUQEKa7S1reRav8sFElBk4bPD+B0+rE7fESifVhdXmTFSv3JV5EQCfo7dhGPh3F6CrE5fAwc3knv4R3saXmF3eJFPK5ivI4ibIoLm8VNJD5Ea+/7SMiUlkwnr6ABb+lYZIcj6Y4YSxqASkQ10idrNgXNmkzxnFDSDUEkUK3DqbaRkoM4bQFXCYQsklnPUofK9kJqi66gViTjUDQFVAl8dScxwXUDVocXu8ePbEu6oex5637GnnwZdrc/lSIcfGX15JSOZ9+aR6ibfxWJUIBQTwvhoQ4CgS66eneixiOpyysn42GcfhyOPLy+CuxuP4fbNtDbuQuL1YnF6kQIjfZ9ybUsZNmKx19B1cmfwlZahmpLv/bmxWn172mxSgKEJkgM9RLpaiPSfZhwbxuh/jbCwR7T4EtHf+8Bejt34HIX4XYVUpjXwOHmtUiSTE5eNXXjzsFl97Pv4IsUeMcyrewC5LiWUg2HB86EkjNp6d9Ex9Bu2nu20LvhIL6COuLxIJFgL0JoePOqyPFXk1Myhullk9m05tfsanqWKWMuYfaEz9Let5W9za+wYeU9zDjta9g9fqOtQgF3QSUef6VBGiDpqrb5nV8hFImIJcG+jjdp6dqAJEkc6HqH8qKZjC1aiENyJCcPRoGqRrEotlRSh+FJEEWxkZNXg9r4JgWlU5AkiaqxSwj1t9HesoH2jvcZCLTgtRemHqapflZFMotDxiklkdQtciwFTCg6jbcDB+gZ2Mv+3c8zbdxlqC4rqsOCZpdRbcmxrirJTkhbvykhUuqTaewDQpaTcVBycvJDsqQMX0lCkyAQ7qC/9wB9ffvpGkyuc3W4bws1Rack+0cSCEnF4yhGkmQjRkogoQg7k8vPZUPTYxR5U0kizBhBYfoo1aUTl+DhxMwm/qvDHD+hG6sjvdBHyiqV6XJmdt/KdBvSoc98S5JkxKXoZcyfP58HH3yQG264wVj8UlVVdu7cyf79+7n55pvTDGi9PL/fj6YlF0vduHEjS5Yswe/3p8VghUIh7HY7FRUVdHV1GQRl8eLFxGIxDh48SDgcxufz4fP5aGtrMxY0vf/++ykpKaG6utpYmHZgYIA33ngDTdOYMWMGp512mpHFTDcGdVcmPdOXrsyM5EJmJpg2my1NtdKVFN1o09NDx2IxZFnm5JNPZt68ecaaV9FolOrqai666CIKCgooLi42FIiHHnqIL3zhC9TX1xvr/hQXFzN79mx+9atfMWvWLAKBAIcOHaK7u5vW1la2bNlCNBo1rrneB16vl9zcXGbNmsWOHTtoaWkxYoYA9u3bZ7TJ7/czZcoUI9ZNX7jV7G6lp5XWkz3orpp6wgdVVQkEAvT29hrJQfr7+0ed+bdarezevdsgfdOmTWPdunVYrVbGjRvHsmXLKCgo4LHHHmPy5Mn88Ic/xOv1GqRYd5e74YYbKC4u5u2332bz5s3s3buX0tJSI0ZHCEFBQQFFRUWUlpZy4YUX8swzz/DII4/wf//v/+Vb3/oWK1eu5IknnuC+++7j8ssvx+VyAcMTEXrsnjmpCsCqVasIh8M0NTXx7rvvsnHjRiRJ4rnnnuPkk0/mqquuYvz48Wnuj/p9ofeZ7iqoE3hd6bFareTn5xOJRBg/fjxOp5NzzjmHzs5O3n77bV5++WU2bdpEfX19GlExx/DoY1L/3W63U1dXxw033MANN9zA3r17kSSJyy+/HKvVSjgcJhwOp117vR/MGfX0Z4R5AVp9/Om/6ZMW+vZwOEx7ezstLS1s2rQJgBdffJGbb77Z6Bs9eYc5Xb2maXg8Hv7nf/6Hq6++mjPPPDMtGcaJUpc+zsrScZElOSGQEQaZyZzpB9KM2GSK3lRmLT1+aSSlyKQoGcXoypNJJTDHlDjtedTXncueHcuxKg5cjnzCwW6ikX481gJcijfF1uTh7G+aIBTrwya7QNUYCndQkT/dmJUWijy8lo8MvtwagoEOo52aRUKSbeRVTTHcowAK8xdQOGkBajTCYOsu+g7vJBToZSDYTiwWQJIkqitPpaJiHha7O6kI2ZPxDEIC1SGl4jAk5IQGGsm1aFJkSaQUIyE0BrsOEA52YXF6yS1tQLZYh69Dqjwh691pIrEGI5WMGDH9N0lW8FSNN9qjShDr68Zid2Pz+pMcxBQnJCFRNmEJXQfXUzPjfHzlyWNVq4QmCdTgENG+DiIDnYQHOokGeugLHiLauQk1MZxkIBEPk4gn3Ryd7gJy88Zgs3vp6tzOzhd/QfWCy5DyclATEbR4FDUeQYtFUaMRtFgYNRpBjYbRIpHhbbEIajyC0JIPIEm2JEmZ4sDjKQVJJhEPEYsNJVOVyzaKfA047DnE1TDBUDetvftTCh8M9DcNj3/JgiJbqc0/BdnkFqerJhKQYy9kYvEZNJR9gl466ejfSf/gIaxOD57ccgAioV56Dm8drqOkUFU+n4L8eiRZprRgKgPBNtp7tmCXXMiqQLXJqXgtCSGnrq4mGfeOvm5Rf6iVt3f9L0JojJlwDsW1c2g/uJbmva/T1rWJ2qJ5jM2fh2wmLykSEYz3GJkjk0MlXS1WhIzPV0n34a0Ulk0BwOMtZfzYZVhlBweb32BCySfSjgEgZjqZIhv3ok4qmnuH183oHNzF2u2/xeMsxOUuxp1TgqtsLIrbnZw8kDAGs6QJZItkxKOljXMtORal1ISBlBrAXV072LV7OfF4AEhmssxxljKufCk+T1VSYSOpIB0e2E592ens63iLUv9kDHdaSUKWJPLcVfSFW/G7MtY6+ydDQ0bjBMzejZpm8t8LOmHRjXKr1ZpmDI0W+A8cQaoyM1+Z3XnMs7NmQ06WZeLxuDE7fM455/CHP/wBu91upA7v7+8nLy8Pu91OX18fHo/HmE2XJIlAIGC4YLW3t7NgwQJDrdIVB91YmjhxIocPHzYMDj37X1FRkfG/nuFr5syZTJ06ld7eXtrb22ltbWXfvn0Eg0EkSeKUU07h5JNPNlyXdKNeV3z0dno8HkNFEyK55pDH4zGMtb1799LW1obL5WLixInGfnpQvO6WZp7NVxTFMOb1a+F0Og2yBlBWVmYoD3o/uN1uZs6caaQJ1+saDoe57LLLePrpp1m2bBnV1dVEIhEGBwcNdUxXPPr6+hgaGqK3t5dQKJTmXqXXFZJxYpWVlbhcLg4cOMBbb73FtGnTCAaDhMNhg5yPpFTo11ZX+sxr/+iKgq5+WSwWI7ZLV8Xmz59PYWEhgUCA5uZm1qxZQ19fHwC7du0y6quPu8svvzyNpJrHaEVFBddddx2f/OQnWbduHevXrzfUSD1xSCAQ4P333zfWoZIkiVNPPZWZM2cihGDq1Kns37+ft99+G5/PZ5Axc7ybOXsbDCc46Ozs5I9//COqqjJ58mRKS0tpb283XEvPPvtsPvvZzxrJVfR7Lx6P09LSQigUQpZlwwVPH4N6W+vq6li5ciXz5s1DVVVyc3O58soryc/P51e/+hX/9V//NeL9rbdTH3868VAUhTfeeMPYZ8+ePfzhD38wkrV4vV68Xq+hpurrcenZ+8wkTH/26JMb5vPp16e1tZVVq1YRCoUAqK6upra2lq985SuccsopaRMTy5cv55vf/Cb33HMPV111ldHvekzd4sWLWbt2LQsXLjRImbmtfw9x+o8hS7pbE4LkZLqUMsoz653qR1nV3eaSREv//8hEDqZDDaVg2O1GVlMZ9FJGlv67V8lnet3lREJ9RGODONwTcOFh46EniGhB7PY8hM2Slir74KH3qSieheZ2oNhdRG0qDqcF1a4kCUoqSxeaICbC2J15iESSdCSc8pEE0RwHY3eS452Or376MMkzub4mBGiqSBGaYRezpFKXdAGUhJwWg6HPlA/1HuLQthfIKRyLO7ecaKSfXavvp6B2JvljZyX3N6XU1smNWVlKq3OGrS/JIs0FMhzowlVQMewKh17XZH1duWVEh15Cjg+fT7KQTPWc58Ph9+GQxpNrPq0mUGNh4uFBZIsNi92JBSuB5n307HmP9pYNCE2joGACDlsOB958KKPiEorVjmKxo1gdSRJkcWC3uLG48rF4HVhkOxbZxsBAE13dO5EkBYczF1m2IitWFNmK1VmFw5mHGg3RfXgrnQO7ULUYZf6pnFRxPi7JgxaPEVNDbD68grH+U4hqIWKJIH5HJT7yQTeC9IeGqg0bzCTXnfLbywhZuumJ72ZosMUYLJKs4M4pw+HMQ5FtlJXPId9ahhRTkVRBPBGmrXMjlZXzUSw2ElaJhGM4fiktJjAFTZPAohAO91JSPpOahrORc3NAkiidtJSisXPZ+96j7G9fSVXRXGyyaaVZIYhpETYeehy3s5D80sloNtnIWGeMcQWqxi5l59a/EA50Ul4yGwsO9u5/gUMda3HafPgdlcMqkk6KRlKyUq5uyBINhadR45tNf7QtGTcX7yMQ6aFjYDdqSwxph0Sebwz5pZPxV0zGkpOb7A9ZThKmhGSMS2OkaMn6JuOehrtNTuTi9pUy0HMAIVSiiSEctlyiUoyEJWmgYAGhQVxEcbuKEEJNKmQWybjGQpZx2LzpSWP0sWCsefbRP9ABYkLBIv5+N7zYfwZXSkvEoKd/1g0InWBkrkOTGbifuSCoOZ5ANzh0RUVXRcwwEzNZlpk/fz7BYJBQKMSECRMoKCjgueeeY/fu3ZSVlRnrxLjdbiwWC6+88gqnnnqqsU1fy0ZPJ63XXc+glZOTw+DgYNo2vd664W7OAAekBWfrSQYkSWL//v243W4cDofhHqYHn+skSu8DfbFNu91uxFb95je/YerUqdTX19PZ2cnvf/97Fi5cyJlnnmnElugz8eFw2Ijl0Rf9NMev6HXSjWF9TR1d7WlqamLSpEnk5OTgdruNGft4PI7T6WTGjBn8+c9/pqysjFAoRDgcTkst7vP5AAxXKnMMU+YaPp2dnRw4cIAdO3agqirV1dV4PJ4RF7U1B/vr/aMn/fB6vUa8U2trK3v37gXA7XYbrld2u53KykoKCgpQVZUNGzawZs0awuEwp59+Ot/5zneorKwkHo/T29vLd7/7Xa666iq6u7vp6+tj8uTJTJo0CcAgevr9YF5by263G2SvsbGRQ4cOpY31kpISY8HcGTNmGC6R+nVcs2YNM2bMwOv1GtfRnMTCnGTE7KoXCAQYM2YM06ZNY3BwkHA4TElJCfX19axfv54VK1YwZ84co4/1+669vZ27776bnJwc8vLyaGtrS3Nd1Mf7nDlzWL58Od3d3Zx11lmUlpby0EMP8eSTT1JQUMApp5xipA0fLR24mVwmEgk+/elPs3jxYrZu3crWrVvp6uqir6+PXbt2EYlEkCSJyspKxowZQ0lJCQ6Hg66uLkNhMk8CmCdyMtOO6/Xx+XxGtr2enh7y8/Npbm6mrq7OGFc2m43e3l5KS0uN62p2hZQkieLiYgYGBox2nUhiol/bvxcnKobqeHBcZElTJDQ5aaRpij7LzRHkwUjZnCCZtjkuhsmS7jKDSWVSk7PMwuTRZChJ2vDfEbO2UtJosXvysZOPpGloqmB87VlsbnqWusrTyHFVI2wKiUSEQ82rkJxO3BXjSEhQoEynuW8zNRVnJ1URq2TE+AhN0N29k/qJ19G/uxUhSSScpjV+dKIjSMVNJL/LasoI1ONsLKQpPnpnGe5zKig64cjoFx3RwR4O7XiJcQs/g8XmNBShwvpTOLjuCWSnm9zKCcPkSnefMql/R3NfS7pMSpjJkuJ0Ee1uRNNtar2tKQUrHh5EsTmTabxT7UmOiRHOqZ9XkVCsLhS3yyhTHQwSH+ojHh5CaBqSrGBV7EwcezlD4Q4kixWL1YFscaBYrUe4PAlJIh4dIjTYQY6nHItsIxLpZ/+BlxAigd8/jqoxS/DmJlUDFAnVmqxYZLCThBqlbtwyOhrf5WDT67T3bac8fzo2yU4sHiIU76d1aBt5jgoK3WOTKbqlYaM52TbTd9OaVcjQF2gkHg9RP/liXPnlqLJGoPcQQ71NDPUcIhLqYaj/EFPGXkJjyypQJKLxIQQaxfULiLsVVHv62lKGeGLuCgWq5l6EEk7g9ZajKaDZUqQqAYrdRSw6RL5/PBa7G2KJZB0tMpqWYNPep4irEWaf9Pmka6Q+Ds0nJKnUTZh6Bf0de9i791n6BxqJxgYpy53CpLKzkXWioBOljDiltP9lCWGRORTYwr7Db6QRD6vVRUnxNEpzJxMIHKZzYDf7dq9A7PobXl8lZfWLyRszNemeZ8MgTUbx2vCYlUzkzZtfzaSF/xcRjTLYuZ+ew9vpbN/M1j1/ASR83gpyvVU4HflIioVD3etwWH2mAaffJBKDkQ6qfTNT97eUcjEW6ftqOrH96B7umpDRToAbnvYvoJJ9FNAD5c3uLvqfOa4gM7haNy50lUPHSFnUzMaI2fgY6aVvnjn2+XzYbDZUVeXUU0/lhRdeYNGiRdTW1houRatXryYajTJhwgRkWWbu3Lm8+eab1NTUGLEvesa1WCzGu+++y7XXXktra6tRn8x4CLMLTqbLkZ6CW0+Vrc/Y6zErdrs9LeufbszpJECPuwmHw9x33338+Mc/pqCgAEgqCZdccgk//vGPjdlts8qiG5C6q6T+m25om5Me6KRNNxJ1gtbT03OEAai3PxQKGbFBOgHWFQC3220Yw+b1lHQyqRvLgJF5T4+9kmUZu93OWWedRXd3tzFm9Dqbs83ppAQgGAwyduxYvF4v4XCYe+65h0QiQU1NDTNnzqSiosJwm9PbPjg4SGdnJ1deeSXbtm3j6aef5oorrmDZsmXk5eUxMDBAc3Mzzz33HBMnTmTmzJnU1NSkJe7Q22AmBmal4+DBg/T393PZZZdRUlJixNU1Nzcb7ouNjY0UFhby6quvIoSgv7+fSCTCSSedZLigmV0wzfFwgKFyzZo1y3CV1MeeTiRdLheRSITq6mpsNht9fX0MDAwY/f/73/+evr4+Lr74YuN+0YlDLBYzyLwsy5xzzjm0tLTw2GOPcfDgQbq7u1m0aBHf/e53gXSV2DxRokMnOfq9sWLFCh577LG0lPIOh4MJEyZw0kknMTAwwI4dO1i5ciWaplFQUMCYMWMoKCgwJkrMMX36GDbHRurXw2q1Mn36dGw2G8FgkI6ODnbt2sWPfvQj7r77bsaNG8fUqVOpra1FVVUeeughcnJyCIfDaZkGNU1j69atnHPOOUc8x04ERorT+jD4lydLCWdSOdAXyRQKI6gOIMWSJEmJC+RYkijJcWEQCCMRgWQyyDSRzFQlDxv5sgRoEqoskOWMztFtMpmUC53Z5cxNXfmVtB1Yxd79K5FkC0gShWNmkVc+mVDq/Nby8QytWktbbA/esolJYiCB0DTaVz+Pd9xJxPPsybgZCeJujDV+hEy6MaaBrIEcl5DjJNOrq0lDVRIimbDAKpGwS0bf6cRMTUipsoTRjzBMZtoOvEPFjHOQ3a7hSfsUaak4+QL2v/EQvuoJyWQP+jhM9a9OYPTvw8earpuZnKW+O8qrCLz/AglJRVZSLyDDABV0HFxL3viZxDyy0e/6eDBUrcwJCUPtSp1O09j15P+QiCQfJpKkUFA6Gbu3hJbwDgDUaAw1GENTY6imP02Nk0hECQ11EAslXQusdg81E5dRWjiNeQu+TuuhtRxsfI2erp3UNiyjbOISI/5FSKA4ighu6yKWY6Fw0kL842bTtnclbU3JxUtlSUa22giJAO3dryGEhs3iwe+pJt9Ti9tZSEwNEokPEY0PEY0Hku57koQkKUiKQjDciarFKKydibAoCBk8+VUUywuQVMGhLc/T3vgu7+/+E0gSdo8fVY5TOvUTqOW56Pa/OVmK2YXSDEdhKXIC4iY3WUkDSRJE+rsIDLSSX7Uo2f+W5MUIaoNs3/8UA4Fmpk/7Pzg8SaNF0km/cS1TBlwqO52/qIH8/HpaGlex98ALRNUgiUQURdjSK5VJHpIXOplW2yLTG2tjV8uLFJZMIb9kEi5PIZqk0dWymbZDa5BkhYkln6Cy5GSiSoye7l0c7tzE7vceZmxvD2UTFxPzpNZTktLPK6UmACQ1pfKmMm9KAmTFhr+wgYK8ejQ1TlHRFGLRQXp799DRu5NIpA8QdLANSZLpi7Qyvuw0CjxjkTSNSKSPSGwQjz0/dX1Gf3h/lEQJQEVGPQFueOp/iBue7kakr7uiuwfp0A0Tc+pmHZkZrGDYaDa7TpljE/QyMw0ts5GqEwB9X5vNhtfr5YILLmDDhg288847huIxZ84czjrrLMOAq6qq4qWXXmLlypXMnDkzzbBavny5MdOcaQiZSdNIddaNZbMCYD5GX1hVJ1R6SmNd/dAD0fX/n3zySb785S9TUVFhGGz6DPo3v/lNPv/5z3P66acbREOPe9JJiFn5MsebZaqAev1isRjl5eXs27ePnp4eg7CY1bTly5ezYMGCNJc3c+IEfV89lbp+nNlQVlU1zUiWpOQCv16vl02bNhmKn3mM6OXpn7qbHySz6H3iE59g/vz5fPvb32bNmjW8+OKLNDY2MmfOHObOnZvmwmaxWOjt7eXw4cPU1NRw8803s2bNGt544w1DwQFoampi1apVqKqK1+tl/Pjx1NfXU1paarga6usFDQ0NpRHpzs5OY40vPU3+2LFjjZirN998k5UrV/K73/2OWCxmKElTp041YpL0eCzzWDev46VfQz2ltX5d/X6/QRzC4TCHDx9m7ty5CJFcxDUcDtPa2sqzzz7L4cOHOfvss7FYLIYrHmC44pmhaRpOp5MFCxZQWlrKihUr6Onpoa+vz1jk1YxMdzx9bESjUTZv3swDDzxAVVUVhYWFxjOmtbWVbdu2EYlEuOKKK5g1axaDg4Ps2rXLyNw4Y8YMqqurGRgYMOKr9Htdn4gwq0vm+usK6tixYxkaGjIWGW5vb+eVV15hcHAQTdN47rnnkGWZjRs3cuONN3LaaacZZHPXrl3cfPPNaS6SZvXw78F/jBueagPJhkGWzPEwBlHSn63SsFKBlIyziIeHUEUCm8MHFn2dnmFDUMipWB3dQDRlNJPMa+BgLjcZS6RZMpQuXx6lZeen1Jbhjo2DYdALBSrOvpLDa5+jY+9qXOU1qIkY4bYmchtm4p8wB9Voq5QiPKQTD12d0ZKuO5oMspI6iQQKAsyLeadIhWYBUqRBs6RIlyqlzYjrxCQ81ImzuOKIJM1CBsnqwOJwE48FkD1eg+z1N22nf+9GVC2BYnfinzQHV8XY5CDLUHx0I9PYrIGQZApnLKbxzT9TtfhSZLsjpUAJBvZvJjTUSeHJn0C1ZJAvU0Fpa2dhIkm6+oRM5VlXEz3cQnyoj1igj0Cgk96u3aixsFGYbLUhW2zJT6sNxWJHstqQHRZkzYXD7cKRX0qo7QB73/8rh7yvU1A5lc7D7wJQWDKFvNqpxDyyQXYlDSRFpqh+Pvs3PUXd9IuRLE4qppxJ5aRPEA30smfT40yacTVWxYkWCTPQ10R/3376+g7Q3vIc+gCXJAWb3YvNnoPN5k6OFaGhaVEsdi/5uWXJdYGk1BhVkgRfUgBZIhEPIdk8zFjwFSjJR7Wl7gVpeAFhoxsz+5r08ZKmzhr3lYQtJ5/Cqhn8/+z9d5gc1bX9D3+qOofpyTloZqSRNMpZiCSEQEQhoggm+AvG2MbggLOxsQ1OOHB9uQZjG0ww2ZggMkJCSIASyjmMRtJIk3PoXPX+UXVOn26NuMbm2u/9+Z7naXVPd9Wpk6q011l7r33w0ArCg52Mqzmf9q5d7Dr4Gk6Xj0kzP0NWbg2mDZKkgW8DprS/7fYbTo2y0XPxB4rYsfMZNhx+hjkVVw8PkKyBst4VAYTtjS+RlVXG2PGXgduJYGw9FX6aDryLmUhYDHMyiUd3U54zkXJ/PXuOLmX/vlfJDlbgq60j4UWCYKuOlAuhplvAydq4sNqkC4bXhFFjzmfH1icpLp7CuPrF6E43/YPNNOx/i2QyipG03C827HuckoLJFGWP5nDrOiaUn3tsH1U2zQaqmMOw4v+DxSLl//H/TI4vA/L/rSIMNuHqBCmjQBgnKlOiJgQ1TVPGrAQCgTRpZ5FjRbjdqfLbahlu916AD9XtTcQUnHTSSdJwFCBCVdgCuPzyy1myZIlkmBKJBI2NjUyZMoXZs2czNDQkGZHMdqmuhKpbkSgCBKmqfsJ4FaBCgAe1TaqhpGkau3fv5rbbbpPGsspuBYNBKisr6ezspKCgQP724Ycf8vbbbxMOh/F4PMyePVvulov8PaI+waQJwQS32008HmfRokXcfvvtfPvb3yYrK0uO+6pVq9i4cSM333wzfX19kj0SLIhahOGsgktVhOGkk06is7OToaEhGdskku2q4yjcGdU8XEL5zufzUVxczJEjR3jxxRd59913mTJlCuvXr5cS3zU1NQwMDEhDXwDS2bNn8+qrr7Jo0SLcbjczZ85k2rRp9PT0sGTJEi644AK8Xi+JRIKWlhYOHjxIY2MjGzZsSDOMhSiG6rJomiZer5fx48enjYMaAyfA6dDQEDfccAOaptHT0yP7qbq4qmMo3sXaE+AuE/iKsQsEAowfP541a9bQ09PDRRddxJ49eyQYmD17tmSfhPiCuIYQ0RBFrINoNEpZWRmf/vSnee655/jqV7/K448/fkw/M+8Vsb5dLhcPP/wwhYWFnH322VIAQ9M0ioqK2L9/Pw6HQyaXdjgcTJkyhXHjxrFixQpWr15Nbm4uOTk5mKYpZehF29Tkw+rGjQpkEokEI0aMYMuWLZSXl1NfX4/P5yMej7Np0ya5tg3D4Fvf+hYnnHACp59+Om+88Qbf+MY3CIfDx/RRnYPhYrf+lvLvA5Z8gJ3cXBolKkORtF6mwwJVhksjkdAYOLSb1q0rcHmD6G4Pkd42guV1FE85HV0gBmxjWhjfYBk4dp16wmZqkunGlwWWSEloq25gglXJKCakAJPuouisC0nGIkQ6m9GcTgpOOxsdnaSd0FStDyWOCLseTTBt9ogaSasfRtRy+XJGTcm8GC7R3lRdqSSqHAuWDGsXPunW0hL1WuNluw26nCQ1E80BhpHk4LLH8RdVUHb6ZTgCfuL9PXRsWEFfw3ZKT77A2tVUGSjRJzEPgKZDcFQ9uJ00Ln0Mhy+Aw+Mj2tWKv7SainOusgUxUgBIZafU8Tnmb3kR8I8aTaB2NJmb2MlY1FIy87iOif3QDDCSCQ6/8CeKT7+AQHWdrHPgwB6aXnqEo7veIX/0bMrrTsXvK8BwacTdGoYL6TqpJ01yaiZiGAm2r/o92cV1uN1ZDHQdIh7uY9SMy9F9AZKmieb2kx2qJ3tEPVW6RjwRJhruxu0N4fD4LfdA8eDMAPvWXNnzJdaqjtU/hwNN0xk3/RqcoVziurr+zRTQF0Ogqb/bawRTrhntOM8u3eFk5IlXkV9Yz77Nf+XdDb/CMOKUlEyndsJCnG6frcdi5zYazthW1oqV98jCAKHCkfgPFuLCNcw5Ga53mmaLOwBJk2xfKV2Dh2g/tJ6kmSBhxBgcaKatbRsBbz4VuZOtfEkAUWTy45GFJ9HUvYmGhjeZMGIUmmm5CAv34LT0BTZw0pziXtMwklaeON1lonmyGDfz03Qc3sj2HU9hAl5XFqOq5pMVLKV3oIlDzatJGjFaO7fS1rWDuuqz8WQVYcaTVkxW0o6ptPt1TMlM4P0/WD45gYd/vI7/DSUry8o7JgQRIBVMrbpxCebJ6/XidDo5dOgQq1atkkZqR0cHVVVVMkhcxLsIgQJhWIhdbWEQqvK8wmBT3aqEoS7c6VRjUxVAUHeaDcPgtNNOY3BwkJaWFnRdZ+bMmTgcDnp6euQOuGmaMnYkk2HKzP2U6YakxtmoKmSqS48AL8P1UzW61POEQSpc4QRQ/NWvfkVZWRlf+9rXCAQCHD16lBdffJGtW7eyePFiIpGIDHAXAE91IXQ6nfT19ZGXl8epp57KHXfcgc/nw+/3c+TIEaqqqrj88svp7OyUYyLGVzWGMw1sUdTYtuLiYoqKigCkqIBwITNNE7/fTygUku9er1eKUzz++OOceeaZjB8/Xs7Drl27+MMf/sCKFSuYNGkSkyZNIisrCyEJL5gqMZ61tbUkEgmeeOIJqqurCQaDHDlyhN7eXk4//XSEIINhGOTk5JCdnc2ECROkbLkAa+o6cLlcOJ1OOWaqEIoAeWLMBSt09dVXU1ZWJkUqRD4z8btq7GfGRwnWT2VAVWAtDObTTjuN6upqli1bxi9/+UsSiQQjR45k4sSJEryKNoo6j5dgWdyf8Xic3NxcSkpKpAiIur7Vd9E2EScHUF9fz8qVK+np6ZGusG1tbWzZsoXc3FzOOecccnNzJRMq1sbkyZPZsmULmzdv5pRTTgGQ4iJCCEJcW2WZxPoT9754FowfP57Ozk7WrrXSnvj9fmpqaqSapXCVXLt2LevXr+fyyy/H6XTS2dkp72k1/lAtfw9Y+rdxw0v6wPBnfKloOgtjP5kQri8wsGsbfYc2UXbZdehej21cm/RuXc+BNU9Teu4V6Chy1450Y1AzQEvY7m32u8pECbAkwIipI5kL+fcwdt8xbEjAiye3BrA3h41UH9KAhaGcJhgU5Vri2GQS9DjoUUhGNKkgmHTbgFBtW4YLnNWIFFPnCPgJx7osCWkluN/UwSBJdKALLTdI0gFt65YTqptA9thpoFtMlzMnh9LTFtH63uv07dtK9qhJ0ohX44zk8hPeUiYEqusIjKgjPtiHGYvhCubgwIkjBlrEboPb6peRsZqkfLwQ9TDt7prHTkkaptLA4fZYrJc6Rvb4mBr07dtCoG4c/lF1FjNmV+gfM5pRX/w+TX/5E8XnXAJxjUjcOtew26glLTdRQ9PANMkdNZW8EZPobz1AIhamuORU/MEiay2LNaiwNKYGusuPz5e6GdKYHzGFLi0NLAlFRVWxsGD8iYQq6/HlVRF3aiQFcynmADNdml95zpj2OhFy2sc0Jg1UWYOeWzuVycU1HN7+JnnFYykom4hp4xfLdY0UKyMU60TdNjhPKTMeoP3gh3S0biORjDCx4gJlQrXh2RTxXdJESxqMyj6B93p3sXPv8+iaA4fuxu0MMKbkdMpzpuDU3RJ8aKa1u90f62Tzob9imgZltSeR8OsyDs3Kq2XYcZWadH+VbrNSCEKMqW6DWh85+XPIj56AM2ri6ovjGIqjdQ+R5ygkt+pCEgE3EWOAfbuXsLthCUfa1+NxZVn3g+bCiROPI0Bt7mx06Uf8zy/xT0jgIf4v+A/pX1EKCgrQNEsO2u/3S4NYZW68Xq9UdAsEAuzdu5ctW7Zw++23k5OTIwHBihUrWLp0Kddddx3hcJju7m4GBgYkwyDctFTGRnXpUo174a4kpIaFQSp21QVgUuM91JgqSLnmALS3twOpHfRwOCx3roXhpxqxov8C+KnxOcMZipmsmepiJtyzIpEIum7Jnufl5bFz507q6+tl28V58Xicffv2UV5ejsPh4Nlnn2XmzJlceumlEojl5uYyatQoHn74YXbu3MmsWbNkotloNCqNVLErr6roORwOzjzzTLlrP3nyZGkkivETLl0CVAhXN8GkifFXVQkF+ygYSgEYVVe9ZDKJ1+slKyuLUCgk3bSCwSCbNm1i1qxZLF68OA2AjhkzhhNPPJE77riDT3/607S3t6dJT4t1I65nGAY1NTVUV1dz5MgRwuEw06ZNo6CgQM6XiItS14vD4aCsrCxtHQgDVxjNaixYpkuYYRhSUW3MmDGS9dN1nWAwmCZXnSmWogJqdU2p3wnGUJwrxlTE+qxZs4bi4mIqKyulUEWmq5pYw6rLn+if2+2mv7+f/fv3s3v3boaGhrjlllvkfSfaPRyzodZz4403snz5cp588knJSufk5HDDDTdw7rnnyusMDg5KANTW1saLL75IJBKhrq6OoaEh+ezJz8+XIhlqHjJICXKIuVI3NRwOB/n5+ZSVlclNH8GABoNBpkyZgq5bapxbtmzh8ccf5/XXXyc7O1tuHgWDQQoLC7n66qspLCxME1H5uKBlOND1v6V8PIEHp4nuPM7gmKYdI6FZJIMDzKRB54crqbjmsxhOB0lp7GkEZ88k0t3CYEcjvioLpKSxVabCstjgwkiA7iTFgIgYGdXgFyyQ8vlvAksKQBBuhppuM2WamW54ZtQhry3c6zQLbKngSbgnGi67vYJBE/exmWoDpFgmzYDcaSfTvPpVKs6+ymYwxEHQsX4lobGTMTw6hmYw0LSXEZfdZDFXtoGt2YAlf8Zcml5/gqyxk1IEjwJOM8cg5QIJLkLomoneZ7N8tlRW0qsRt10URZukFLymAE1VHj7jemkftYz3jO9FW/t2b6Z00VWSoZPFAIfHg7egiEhfG76cYst10kzNlwBx1jxbi01zOsgqGyX7bwimxjAtLXURB5TBVmYmXs5ss2qzSvZOYSOdgRAuf4gkYr2kXO+OV1TSR7PZnTQGVZ1HTVxSk4DJHcxh5KzFNoMk5sukr7ORwf4WcovG4PXnphg9h8ibZiV9bmvaSPuRjUQjvfg8uVTlz6A0exxZjjxIHJv5/PgdMQk4czij9hbQHOi6Ix1gaFqKtdQ0TIeDI71b2HnwFXz+fCaf9CXchcWWMp5mCaU4wybOiIEeNSxXQbdGPKCT8Gp2vBoyZ5mMu7TBYdKjoftMEjF7bpw6zkFNstl6wsDrDDJ+4lV0lEylvWULyXiUeDJGND7AULiDeGKIioLpePD902OVRPnk8iz9ezBLwWBQMhmq4etwOGSwv8fjkcxSKBTirbfe4sc//jE5OTnSWEwmkyxatIjW1laOHDlCbW1tmmEngJJgayDFGg3nDgSkGSUiDsjpdB4TFC8MQnXHPZMFUesW9YFlNKqGoCojLAxVl8uVJnMN6UxKpuGb+RJGvZpHaOHChfz2t7/lpz/9qWy7qOPJJ5+UkseaprFy5UoeeOABmUdJGM66rnPFFVfwne98h3nz5knFMnFdAdBUt0DRT2EMBgKBY1y/hAtZX18fra2tUgxAKNOpzIq6ZlR2QfytKgsKYOP1egmFQmRlZZGbm0swGCQYDLJmzRq+/vWvS1VBwb4JafmJEycyODhIdnY2DodDjqVg4ARgEnMkXL9UgQ4VBAngIsZfrC2VvckE0CpYF6BRZTTFvVRcXCwTCYs1NRyzkAm2h3tX108mGFDd+U4//XTJbon8VO3t7bS1tVFeXi5d0dRzdV1ncHCQ/fv3s3fvXsk+nnPOOZx77rnU19dL19tMV9Lj3VuVlZW89dZbQMqFVvwuXDtjsRiDg4MMDg6ybt063njjDdxuNxMnTgSgq6tLbs6EQiF0XaewsFDK+w8NDUlpezHGasmU/VbbKeZBFUmZMmUK5eXlHDp0SK6r7u5umWR59uzZkoVXc7x9nPJv44YHKeP7mO/EH5qJYRsj4cMN+OpGYfgdtuGoUAoGZJ14Ij3vLMMzsibdAFSAg2B2DBeWm5kSPy5ZpAzgI0DIsIHw0hg3U8em/ky5H5kW+5Ay+LU0l7k0UOZMGV6ijyJWShjIgl2RwE4xujPbYLUjBTo81VUE+utpfOmP5E0/GU9xOYn+bro3foDDH6Dw5IUkdUgOhXFk52B69FS9wlh2gKb7MDXTam8m+yBcAG3mTDB6jqgl1OGImTiiJlrSlnQ3TEynhuHSLYCcIAVyBSPnwIolsaWY5bym0UipdqQxikkkYFNBpzzWMNC8nvT5Ny1CAw0cgRDJyJAF4szUvIHVFilcYACalZMnpQxIKomyoaFpdm4xR4pZSWu6wnoNy6bIAxVWUBmD4wk2DFsEO6eARw2LRdE0bLlsM63Pwu0QGzCJudFsSklPmCTCg+xc+wjxmBWU7A+WkFM4kmQiSjTcSzTcQzTSi5GM4XL6Kc6fQNmICeS4S63cYKaZYqCk66BoZMaYZDzodJzHfIemSUVBdB3D5WBH82scObqW4qqZVM2+CM3rIaGCV9MG8lED52Dcmle3jqk5MRwOkh7lntOha/d6Bo82kBjsJzHYR3yoH5c/i/ITLyQ7rxqnX8c94ECPGTJ1gWaaaHGTopwxFOaOtcfXhESSNet+Q25wBG53FiQSkLSeAf97BR7+PcCS1+uVhp+6Uy5c7wRYEsCppaWFcePGkZeXh9/vl0aqUEm75JJL+M///E8mTpyYxiSJOCGn05kGllSBBBUoAWkGvCgqC5QZZ6R+Hs6wUw061dBRBQJUo1BlIVRGTD1XddVSjbBM9kkVYNB1naKiIk455RRuvfVWLr30Uuky9MILL+B0Orntttsk4BH5c1TDXNQfCoUkmyNcx0SbBbMkmEJVvEKweirQEYa2YJWEVLnKvIg61HxImTvm6hgKtke4X+q6LpXcAoGA/Ozz+YjFYpSUlMgEq+JawuAuKSlB0zQKCgpkclsBwMU1M0VHVBAs+iDamMkcqayRCsbVvqugSQA6dQzVuL1oNEokEpFg8b8zclWWKRNoCxl8kZ9KjKVom2izAIBiHTz11FNSLCM3N5fS0lISiQRDQ0MMDQ1JBtLn8zFjxgzOOOMMZs2aJZUoVUGT/66o4E6wi2q/BOsXi8Xo6emho6ODl156iY0bN1JeXk5lZaVcc8I9LxKJyMTOwjVVSN0LoCwk1oX4Rn9/fxpz7fF4mDx5Mn6/f9j7V4xjcXExeXl5aWt0yZIlck3GYjHcbrd8Rg3nxvhR5d8GLGlJ2yhWrFoVKEljX7e+T0QG0fNCGG7hxmP/bhvMjrwQyfAghlNYgJZxqirrqSySFEUQBqtQyDO04Xf4jzeeWkq+PJOxUCswdKzddQWMSaNbs4QRjgE/yrGmw8QgZSCrzMoxMV8g2Q7JCOg2y6FB1pTp+OrG0Ld5HX37t+EMZpE7dz7uwiI71gQMzUUyNkTSg3T7U10WwcQ0kpJpkW1SjXYHlmFtA07NtCXgbVVDLW5KVgTT2sl3xAxbYCMFBAynRjygYQYssAQKAMqcq4zxME2bTEim/6bmkHKEsoj2tOPOL5R1qWAz0naE3MknHPO9BCo282bY5+pJTY6FzJFlHytvTAmcU+2XoMqEWLiPtj3vM9B5CE134PT4KR59EsG8SjnBms1maWKMRb/EPoLqTqcdey25tkyDvqZd9B7chmkYBEtryK2diu5yY4rEw/b8mTaItLBHKl9TUjdxxDToj7F/6/MYiThzpt7KwFAbHd276W7Zhcvpw+vKJhQciTc3RNCVj8cZZCDcSmywF4NcdM3aZYolwxzsWkdP5Ci67sQ0DYqDo6kITURKvn/UQ07X5O+mptn3niUvfqR3C0eOrqV65iUUjD/RdgW0gXXCcic1XBAPWHF0SZ+O4bTYpKRHs5kl5HPGSMQ4/PZTeIJ5+IKFhHyluEN1dHXuZe+L91IwchYVM84jmR9ESzpwxFKMlUgPIMBzLDzAvp3PMxjpYHzF+WiGIdUR/hXskmFqGJ+EwMMnUMf/hiJiKEQCV2EQejwe6XonwJLH46GpqYmysjLJTKjuY5qmUVJSQjQaJRAIpOWsiUQiAGnuRMLYUIGS6pKXyeIIEKcax8czHITBqBqyYrdZuG0B0jhWjWCVMVLPVUGCCrpEfZkGtfhbABERCyTAw9ixY6murub9999n+fLl5OTkcP7551NTU5MWzD44OHiMm58aU5ZMJvH5fGksmZo7SjAcIn5I7JzHYjE5v2qMmABNPp+PESNGHAMYVGNdtEF10VLnR7B0wsgXjKUASCpIr6ysZO/evUyePDltfsV19u3bx9y5cyXjMDBgJb0fHBxMC9ofDiypIgrq/AkjWygVut1u6U7ocrno7+/n1VdfZdeuXTgcDoLBIIsWLWLChAlpdavARYyhGBthtA8H0NWYMsMw2Lx5M2vWrCEWi1FXV8eJJ56IrutpCZMFkBXgQ61TXYtCDOSWW26hq6uL3bt309jYiM/nIz8/n9GjR1NUVERtbS2VlZUcPnxYCmyEQiG59h5++GHWrVsn+zJ//nwuu+wyybCo6yazLeI+FnGCAwMD9PT00Nvby5o1a9i4cSOVlZXk5eXhdDrJy8uT60eA/ba2NnJycuQ4RiIRCQpzc3MlSI1EIqxduxa32012djb5+flkZWXR3NzMihUrqKurY9q0aQBSxEHMu+iLKmG/cuVKWltbueKKK4Z1wfu/mKXjFEtsQVAVttGHeVwGx1VYSP+aNSmjL20HHiJHjuAqLEwJHZhgyspJGZQIcGTHJ+lmmtCClrQtVkNDN9KvBYrNKdupyaS6qiWdxlAJsIKZ3i/F0JfuXAzzuyi6xcCkuaGJ+rXUWBwr7KBcw76+yxck/4R5aeejxFTpLjea00Wsrwd3KCfVJ7uEDzbgqaiULnOach2TFNjTDNDilgue4dBsN0Q77sOFdEmzjrUfyLqVp8qwwWzCq5Hwg+EhxcipY6YY/ulzgzXPgJYRB6bOTc70OXStfJviRZcfYyyE246iOZ04gkGrrcqpKgtlYuN3G5BqaXNkW+MqQMkkP0Q3TIj0tNK47q+UTTyTsilnga7R17yPhg+eRne6yCqoprBmBv68cgmw0kBiZv1inaoXstuaiAzQ+M7jBMvrKJl2Jjid9B/axf7X/0DFnIvw55ZZDIhyL6SD5tRgJONhdm18lO6ufWQFy9nXtAyPN5uysplM8F5kxRbFk2iGQTTWz46jr+N2+Mj3jSBmDLCp6Xny/FWUhSaw5ehLjMybw6j8k9F0naSRoKlvC1tbX2Ni8TkpwKTGQQ1TZL/FzZUw2HPgNbILRlEyao6lUKnMoxijpMtyB026rYAwwykENVLrSIxDuK0JDINAcS3J/h5ikX7iAz1UFs4kWTiVhgNv0XNoG5XTzqOgbpZdp45D1zATVpJs0zBoP7qJvTtfQtN0JlVfSq6/AgxDClF8JDj8HyoJ00nc/NhOA8PU8wk05n9BUeOAVPekzDw94jVixAjef//9Y4wGEQOxf/9+SktLpWKVmltIdWtTwZJahxrfIgxMNY5JNcQzWRbxWTW01eNUI1mV9lYBmDDcMyXCxfkqWMpkqTKvqcaWgOWKKJg14VrmdDo55ZRT0hS+BgcH09S+cnNz2bdvH3V1dceAmu3bt1NTU5MG0sRYCfZDHc9IJCLjhgRwEEBXHCOAlGB1IKXyJhg9IfShBtmr45/JrqksjOrKps7NxRdfzB//+Ed+/etfy/MEQN2/f79knoaGhvB4PJI1UN38MgG0OifDfa+2WQVNXq+Xzs5OfvnLX3Lttddy00034XA42Lx5M7/+9a/RdZ2JEydy9tlny7gzSDFXw4k4iLUswIya8DcWi/Gzn/2MCRMm8OlPfxqv18u6dev49a9/zXXXXUd1dbVM/CvGfGBgQAJvtS/JZJJXX32VvXv3UlFRwVtvvUV2djaTJ0/mmmuukTGIgp353e9+RzAYZPbs2YTDYb73ve8xZcoUrr32Wm699VY+85nPcMstt0gA89xzz/G1r32Ne+6555ik1uKeVWOixH09MDAgkywLMFJUVMSMGTMIh8PyGSPWZTQaldLtgpkSgF+wkkKpULBuIp7PMAzp7jdx4kQmT57MO++8w8GDB5k+fTqlpaVyQ0HMu9g4aGho4P3338c0TT772c9y2mmnSXZLXa//F7N0nGIJLVifTc06W40bSgMfpoa7vJR4RwfJ7l6coWwFDGiYGPS+8w55C89X3OYsK8g0LGU3087pZF3cqlseK8AOWMcIEQHb3Uu4gmkZIEUa39IIT1eGs2JgzGOk0dPYJfs6JGUIluXORWq32TrfTL+mbESqbZoBeswOTI9b9eq2O5xoU2YiXDUeSMY/2dcoOOUM2l54mtJLr0YPBGS7Y92ddKx4neIrriXpzegHKVAmxs6RIM3ItoxQzZLAJgWS0Kwd+7hfIx5AgljTdpkUuX4EE5UJmFOLK70dagyUeowYB09FJe7GYtqWPEveqWfgysnDTCTo37mV3g2rKb3kGovREmBQJWyMlB0r8bgKXrH7YTOWJhltxWIMBFBCg4MbXqJm7qdwZoVIODTatq5gsOUgVSdfSsumtwlV1NO6fzXaAScjpi/C2mZI75MqcZ+2+aCAAs2EQ+89R+ns8/EXlstz88fMJLtyHAfefJi6BTfi0Fyp/EISXCixZSYYPT3sWvEgkcFOqkecxoHGZYS8bnrbD9Hauon6MZcS7m+lOFSP1+FnS9NLjK08m6Cv0LrPkkkqc6bS0PE+G4/8lfElZxHylQDQNrCfpp5NmKbBYLSL9UeeZXzxWfjduZhJg67wIeJGRCo6mvYkmZgkjThxM0IiGSVuWC/DTNLbsY+e1r0ER4w+VuXSXk+mDZrk/aE8JzI3JNB1uhs2UDxpHhWjTsPbY9Da8AEDfc3MmXQzew+/xYE1z9KxZw1Fo+aQUz0Rl8+LltQwunvYv/E5Ojp2Upw/gfqKc/AYbksZbzjPhH+i2EMSjeRxafWPV8+/QxFGujB+1cB9YTx4vV7JAFRUVNDT08Phw4epqqoCUgZtIpHgscce4/LLL5fAw+PxSGNdgCexeztcfIZq+AqDXWVvhouZGA4gHQ+4iO/EzrRqBKlGs8oOZbJMqsvacHFRmX0ScSJqWzJBjQpuhOEm1NcuvfRSfvSjH/HDH/6QwsJC2ZeWlhbuuecebr/99jRGQbAD4poCpKmCF2KXfHBwkN7e3rTcSoAcf5HIVNQphC8E2yjqE30fjmESfQLLYBTunSogNAyDyspKpkyZwje/+U1uuukmKisriUajvPPOOzz77LN873vfk21Ux06dKzEfmQBWBWtqXJI4T70PsrKycLvd/OQnP+FnP/sZlZWVOJ1Onn76ad59911+8IMf8Kc//Yl58+axdOlSXnnlFb71rW/J66puWoLNFOtNdXVV5/3OO+/ki1/8IlOnTpXzO3LkSBYsWMBXv/pV7rrrLoLBoGyjUKEU4inCTc8wDJ5++mlaWlqYP38+S5cupaysjKamJjZu3MiVV15Jb28vp512GrW1tfz0pz/lS1/6EvX19XIsP/WpT/HnP/+ZG2+8ke9973syl9W7777LI488QiwW49ChQ1x77bX85Cc/oaqqing8zvvvv09bWxvhcFi2SawlIfjS399Pf3+/dP8Tog0jRoxIY16ECyOQ1jfhchgKhSQzKcZT5JJqbW2lvr6emTNnSiGVpqYmbrnlFt5++20++OADCgsLGTNmDOXl5fJeMAxLQn/nzp1MnjyZG2+8kbq6ujT28x9hlv593PBsdTbAyrWSaeymubdZSSDzFl1A2xNPkDd/Ad6akYBGvKeb7qWv46urw5WfbxtypnzXbMPR1E0Ve2VcixQY0TT5nSa3+0kZ5gpgSos5sutKufVhS59rEjSpRQaEi+epHd+jmymjTAo7OOw+JBLEujrQHA6ctuqSHEvDAkiOiAWWHDFSUulJ0Tdrh1xl32RbBNNmuyGZDvDlllE09zxannsSZyiEMzeXWHsrppGk8PKrcGRnpdzZTNBUEIPVfk2Mr11/wmu5jYl2WH23dxqdlhJe0oMFwkw71otUneq8qVMjpzSTaTKVjwpgyIxNyzt5HuFDjXQuf4PkkBVrE6irp/yK69FdHmk8o4Ig9ToCpNjfaQKb66k2mMp5aTFl2LEoGgx2NuHNLcKZFcJwaPQ17yHa10H1mdfgSELJhHn0N+9jxJxLad2+grZ9H1Bcd+Kx7YFjQYAydpgQ7mnF4fXjLyhXQJb17vQFyB81ne4DmykYOSOd1NBSIN7UwIxE2LHsPoxEnOlTPkvDwbcJZpczYe7nCfe1sfHNu9my9RE0TWef+SbBQDEhXxmeQC6Gy2W5miWsB19V7nQau9cR8BRgahoNHe8TSw4yvuJ83JqXZHSQDUf/yva2NxlTdBrNfbs40LX6OB0FTXPgdHpxurw4nT4cbh95JfXoXj/uYG7aegX7PjLAGTUt0QrNWrOGW0tfggpQ6t65ntoLbqL/0C5aNy+nY9dqykaeTHHFRIxDSXr6DjKx+mLKC6ez/8hy9q97Bu3D58grHkswp4Ije99B15xMqV1MUWistRZEULVglf5FxTB1jE9AnOGTqON/Q1GD2oVBl8lQqP/JG4bBrbfeyh133MH111/PrFmzME2TlpYW/vSnPzFy5Eiqq6vTcv4I8AVIl6JMOW0VcInfhJtRpsubCkiOV1RDJpOdEu3SNE3GbGUa+KoRrTIggEycqus6BQUFcrd4uH6I66u772IcRL1irFwul2QPhFR6LBYjGAxy7bXXctddd5GTkyON30gkwle/+lVyc3MlqyKMSREzosa2COZIjRkTbJNQ6hMGvcr8OZ1OmW9IvYaaAygTKGW67gmjVgBodb2JtiSTSS688ELq6+v5/e9/T3d3N4ZhMHPmTH784x/j8/nSFBQFYBVFZb6OB9zUcVdfqniI0+mkubmZ4uJiamtrcTqdbN68mW3btvGnP/0J0zTJysrixRdf5Pvf/z5PPfUUTz31FFdddZVsS2YMngpkVUZJ13Xa29txuVzMmDEjjb0QcuOXXXYZy5cv57zzzpPMisr8OhwOOS6PP/44Q0NDfOELX2DFihUUFBSwaNEi+vr6eOKJJ3jkkUfQdZ0XX3yR6upqampqZOJbdWw+9alPcd999zFu3Dh0XefBBx9k3759/OIXvyAvL4+BgQGuvvpqfvSjH/H5z3+eVatW8dvf/va496NYA2r/CwoKpMiIcH8U7pKCkRIAUY1J03VdnqOKszQ2NnLBBRdw9OhRNmzYQENDAzNmzGDSpEnouk5DQwOXX345J5xwAq+//jqrVq1C13VqamooKSlh48aNaJrG5z73OebNm0cwGJSxggIkqc+WvwcsfRJueB83VuqTKB8fLGVKaavvx5xg4i4povCaT9G/6n2631mGpuvoPh+hk07EU1N9rAufNP7syfio+pXroGugm1ackaFZOZlso1dXWRKVeRKiC6INdtyDaTM7plMINNhtsQGiFCuwGyjqksc4IJk06F65lHBjA56ycoxEnFhbK9kzTyBr0lQpoKAlLHAhmCUhoGC1WbmuEu9lySLb7XVauYN0R0pmO5hTgf+SzxDt6yQW6yc0dRbOnGypkJcGam2mT7oJOmy2xWWDMYc976aSLNgeMyluoagAirgklY0TcW2SZSKNLBkWGP2txTuiGm91dTqYESyDkYa/ZNXS5VOAa5Qf7XcJmpQxT3suiO+ASF87vsJKmeurY8cHVMy9xIq5SZoE8ito3/0+aFA47mT2vvUHCuvmSAAjG6gp11QbLf80GWg7QKhqzDGsificVTWWlg/fpGDkDGtOhKKdAqqMZIJDq58nFuln5glfwoWbzs5d1Ey8AFMDX1YhE078LB49gM+dQ2vTeg40LKV/sJnmrs3k5YyiIG8M+aFRBFxBYpEIAXc+3ZEjeNxBBqLtTKy4AM02oJymH4fDw8Sy81nd+BhDsU7qys+grGwWuBwYbgemUweHeNfBqVugJxZGczjQ3R77PtAwE6CqOFqbDibOsIEeN21212H136mMkz1fRixKYqifUFkdWeV1FEw4iZa1b9C0620OJV4jkF2GGU+QnTOCvFA1eVmfJhLtpaVnJy0dWzjYvI2SwsnUl5+FW7BJYhd3OKD0T94FS/LJsEIfQ9fwf3XJNOIEWBKGkygqQCkqKuLOO+/k+eef589//rMMiF64cCETJ048JjZD7NqrsSMqWFJzzKjfqzEoqgEljhkuRkU1lNXYJNEWtX+QSo6ayUKpbokCMJmmyVtvvcXOnTupqqoikUhw9OhR5syZw5w5c9JAkuqOprZZtFN8Vq8rZKaF8SsU35xOJ6FQiFtuuYXu7m56e3s5+eSTKS4uxuVySbAlgJEYb0gZ7clkErfbLcdHAA4xBgKIqHMmvnc6nTLGSF0zqgEpvs80BlVmR2XO1DlQ3Rt1XWfUqFF885vfPMbdUYglCPlokYw403jMZBWHew3HPqpM1ZEjR5g4caJs82OPPcYdd9yB1+vFNE1mzJjBvffei8fj4corr+TTn/40V1xxxTHsowB0gkHLdEHUdZ1t27Zx0kknpf0GKYXEuXPncuedd7Jo0aI0YK72N5lMsnz5crq6uvjyl79Mbm4u27dvZ+7cubjdbgoKCli8eDF+v5+cnBx27drFu+++y4EDB1i5ciXTp09n3rx5zJ07l5qaGnp7e6murmbVqlVMmjSJ1atX89BDD8n5CgQCZGVl8atf/YqLL76YhoYGrrzySmbNmkVLSwuNjY2Ew2E5HmLOhCsdIOXjQ6EQkHJTE7FtAiSJuEpxz2uadozgiWEYdHd3c9555zF16lTmzp3L22+/zZo1a6S7n0hWW1VVxRe+8AX6+vrYsmULGzdu5L333mPq1KnccMMNVFVVyfg1dbzFPaY+Zz5O+fdhllRWQ0u9ANvCthW5bGNcgB5HbhY5C886xghOG2hp9JkpQ9v+rIIn7OB1aeTb1zZNE5ypxK2GDQAsNkyTbnlCCluPWyBFSyBjo0wHGHHL8NdtxkQ1skwHJB2kAS9dACXhzmaDhbbXnsVfVUv+p26yko9qYCaTtL35IuZQlNwpJ8j8PdLtzLSEBqx0MlbSTM1WKxOgT0umBBYEUBK5eVJKX5a7ldOZjzcn38o1EwXcSINTuBqaIPPOSEEFJySka5+Se0cAKmXej3F1tMGWlFJ3kGL7BIMjbEsFcGSWYRUMUa6Tea+oa1FlqsS8DBMzJpgnlb1MA3UqBaa0VzZFt1CVwxcg0nVExsGZiTgub9CuQyMW6cXpCVj1Ox2WVHg8jO7yy34I+W7TTAEoca3BtoO0bVmBEY8SG+qzjtMhNGrSMf1JGnE0h1Mym/JnwwLhvY3bOfThS0QGuxgz7mL8njzae3ZjmgY5leMs4B3XyCmqs1Tgkibl1SfR1b2f2rqz6erYTUfbdnbtewkw8fsKyA1UEUuGMbQkR7o2U503O7XbqusknUnQYMjoYyjWScBbSGn1iWh+vy3Rr6HZbK5mmJjJBPFohGQiwsZ3foORjJFfOpH8iklkl9Qx2NdMnBi+/DI8WXlp82o6rUTQhov0fGbKGkgMDeDOypP3vSeYR9X8KzFOuZj+fTvo3b+J7kPbWLX+V1SMOIlRFfPxGtnUZs+gNnsGSSOOQ3dB0rBecoyP3e2Sanj/xIf7/zFLH6+oBqwKaFTWAJCGqzD6/X4/V1999TFGw3DB806nMy3GRfwuDMnM+IbjsUiqkS+ECkTMRiYgURmc4YL9hbEvDKLhmCfVNc7pdPLYY48xYsQIfvzjH+PxeKSR+sgjj7BmzRoWLFiQloBVACfRvkzwp46ZaLtg3kSMUCQSke0TxmRBQQFOp5P+/n4ZnC4Mb+H2JYzJzLnx+/2STRJATMjHizFSA/cz5dJVN0LBTKnubcOxS6qLY6bBqCbPzXSZVAGHOs/hcFgq9qlqcyqLI9qbOa+ZrJI6NirQzsvLY//+/fKc/v5+KioqZN3Nzc3k5eVJCfWqqio6OjrIyclJixETAFQdIyFW8dhjj0nBg2g0itfr5ZJLLjkG4EciEQm2xFpRZdObm5t5+eWXaW9v5/LLL6euro4dO3ZIEREh+y8AQzgcZuzYsTQ2NnLqqafS3t7Ozp07+fnPf85Pf/pTysvLmT17Nl1dXQwODvLEE09w/fXXSzc4lR1uaWnhwIEDlJWVsWDBAnp7e6UQhqocl5WVJe/jF198kXA4TF1dnQRLra2tNDU1UVBQQDAYTMufpcrCq4BWrHfDMBgaGiIYDMpnWnFxMZdffjnz589n+/bt7Nixg4MHD/LrX/+aCRMmcO6551JSUsKFF17IlVdeiWEYUrJeBfIqq60C7f8DSx9RBJsgY5RUMAOK0aIIP4ifRAzPcIZv6rR0kKS6wdmVpQElwRQJBT0TW6KO1LFq3SgGsX2YltkeYfzb7I4lsWz3SGVLTOu4pCOduTI1CLc2obldZE2fae3kC4NYd1B4zoUceez3hCZMw+F0S1Ap5JyTNgAzY1qKdYqn3PJk7h+s/C+60jlV0c+wDUXN0EgqsuVp82GfasUTmeniHQ4z5bZl15kGKgQIFeMlxlTDctHUleMUkJ0GDoZbA8MVAViGKcOBrTSRDFGFAoqGu65YCybKceo6UoGSoX5nklUykpYtyyiaNBfN4bBkzRVw1r57Nfkjp8s6jXgMTXemYsbMlOuiZtjS+3Z/ew/vpHP3GipOvhhnVoh4dIDDy55hoKWRSG87xVPnp/W7e98GskdMIJmMY8QiGLEYRjxKMjxE69bl9DTvIid/FBMmXk3IWwSGydBgGw6nB1cw12JunCaGAbgsEKMlTbLyqgjHeyiomELhiOloTge9rfvoadtDa8sWjGQcp8PPQKyTgDc/dWPpcLRzG0WhMXhdIbK8JfRHWnjvg5+RnT2CpBEnkYySTEZJJCIkE1FMM53T0HUnsf4u9qx7HNDwB4vIKqimu2EThmZSPfMiXJ4ACZ9uudCK+DpNmStl/Ti9fuKDvWlunZoBLjwUVE8hv2wCe5c9SHZxHUe2vEEk0sPk0VegJZNoSRMHDskmSbW74f7T+Bc80AESpoP4J5CUNmEeC/7+v1gyAYFqtIqiAiV1tz6TWVCLaqQKUQdRt6gLSDOKhEGS6eaixv+InWdhPGa2QTVs1LYMZ8RnMg9q0L0wagXr1tbWhmEYXHzxxTKWS1z7lltu4Rvf+AZnnXWWBCNOp1MalEJCXRj+qqqeyp6oJTP2RVxLHJvJPqiB9uJ74fok5lko54k2CVAnmA8VTAijXMSUiPgxVfRBnUc1tksd88z4reP1VWXXMsGSGtgvPgumInNM1f5nzn0moyTAqQB9Qn0tmUxSX1/P/fffL8GquI4Y90ceeYRLL71UXi8cDsv4PAHcBPAU7p7CbWzTpk089dRT3H777ZSWljI0NMRtt90m3dyEbLxYM0uWLOGUU05hYGCAzs5OOjs76e7upqurixUrVrBt2zbq6uq49dZbGTlyJIlEgvb2dnRdJy8vD9M00+5vsfbKy8tpb29n3LhxnHDCCeTk5LBv3z62bdvGsmXLZDLoPXv2cM0110jpbF3Xefnllzn99NMpKSlh4sSJbN26lc997nOMHj2acDiclkBWrP/MYpomL730Eppm5cMqLy9nz549RCIRZs+eLV13xZgL5lXd7FA3Zvr7+xkaGkq7t/1+P2PHjqW4uJglS5ZQXFzMzp076evr48Ybb5SA1+v1StET9Tmi3lNqvNzfUz4pgYePC9I+ifLxwJJ0/Up9FrE+1gHHP9cyau3tbwV0SCPGBkaCWdIEqLGNchKaBEWiPgGMLMZFS4+pUq8tDFczxYQI8GDYxn1aQLgqyJBhL6SOMSXiMlzqxaBn1wayTppNIpASihDGtpbQCYyfyMDB3QTrJx7rzmf3wXBZ73pCkwIQDkeqr3I+lDWr5vlxxDUMw/JoEu5dmmDKBHCwAZr43XQojIpok1RAIB0sYl3LFIa9wjiZpM5JY+5cym8Ke/M3mZQqWEktg1RfMo9Vcj2l+fyJ6w/DXA1HAKTnUFK+U66l46Bw9BwOv/M0VSdegjergKH2I/jyyujes45EdIhAgRUIngxbsVUOp9seQ+GGaYNhQ0NzmpYUNgZtW96h9pwb0dxOTA0c/iDunAK8ecX0H9xNvLcLT8BiV4ZaD9J3cAd9B7Yz1Nl0zBB6/LlMmHQ1hbm2cpEJXb0HaG5aiy+rGE1PxfiYDg1Ds3YFNEMjr3wC29//I7FoP06Xl/rpV5NfPpGCkgnEowO0t29n7f4/AfDBgYcZVXwqhdlj6ejZRXvvbqZUXoSuOykK1VFbfDL90Tb6I614nCEcXi9Ohyf10jw4HB6cLuvvLHcRzZ2b6XYVEPDk09q3k9bGNegON9n5texa+jvGnfEFtIDfZjNtY8VQ1p6WWgua14vmcBAZ6sKdnSfnQEuaaEno2r+B/MpJFNXNwevPY+/7j9FcupMy/1j0aAItgQWWhiv2mKUtR01LF+/4Hy7/l5T24xVVCU8FS6rhqwaqq7EYmaBDLSpYEserfwvDGNINk0xDYDjFORXYCOCgGk2qC54aryIAgcpeQHquJDEOwrAV8VZr1qzhvPPOkzvmQmbdMKy8MWeeeSYbN27klFNOkUBLgCWhgCfkrTNjszJdCYcDdpnjJJgnFVyo8yf+Nk1TAj7BcqjxYOJ9uNg0NRHw4OCgDMpXgZo6nmIMM90NxboR9avzrq4htajumvF4nKGhIQlkRLJdwdyorJ2oSwWUH1XE2lTzSfn9fnRd55prruErX/kKd999N2PHjuWDDz5g5syZvPTSSzQ0NPClL32JZDJJX18fvb29hEIhhoaGZP9VZksVCXjooYf43e9+R1ZWlmQBJ02aRH5+Plu2bGHHjh3U1tZKtcPXX38dTdPYsWPHMe3Py8vjy1/+MnPnzsXhsHIT7dq1i3feeYeioiLpeqnOjWBTJ02axIMPPsiSJUtwu93ceuut1NfXM3r0aPr7+1m5ciU333wzpmmyfft2br31Vi688EJWr17N008/zR/+8AecTicLFizgyiuvZP/+/Wzfvp28vLw0EQoRl5SVlSVj30aPHs3q1at57733qKmp4d1332XDhg24XC6qqqp47bXXOO+882RskjqmYk2qoNvhcOD1emlubqakpERuAIh10NTUREVFBdXV1fh8PtavX8/KlStZuHBhmgDJcIyvKJkbEh+3ZLKZ/0g9/+zyscCS4QTTbbEOwrhW418yjVbNUG5+zYZKur3jq5sgE7iaaHadmqAKTA0zrqNFdfSYhjOspWKDBPCwY4scNpgQan2qgaRKjIsYG0MIMIgYJQE6VJCkGufiAS7wkcO0DH9dWVQCQOmQMAYxKwIkshMItWTTBndaXIPCIPHBIRLBFC2SiqOy+ml47L8TglnS7JimlEthWg4XadBraQa+I2baYhlWPYZ9rG4KZTQz1X+nKd3jjlvsHFqaZhmBhm6mdu9BQUupOdITYpxTgEC6wGnDX06yUeJzJrsk1t/xipYO6AVJqTKLgnFQqzbN1GfVxVC0RzNMCcgla2ZCQcVkXLhpeOthdJebhtcfxBPMI7t8LDUnLEY3NMxYgoMf/IWS+rkpMDlc5+1x62/aTXb5WByaE9NMjUXZCefTsvoVEgO9HFn5Ank1U+g9uJ3+5n3EI/1k5Y1g9JTFuHQfDocbp+bGiQu/Nw+HqYNhEkn0s2ffEtrbtwOQ5axk/7uPUznmdHzZJTbI14iFe2lrWMuRfSswDQOPO4RDd7F19R/Iy60jacaIRgfIKxhDVqCE9tbtDEba2XzwOdzOABUF05k84mJ0zUnSTNA91MTIkrmUMDYFKlQjQQALh1gcJmY8QXPHZmaWXY4GjAzNZMDopaV/F8292xmKtLPh+R8xft7n8VaMsBLzGgIwi00YS0a8a8+HHFz2OADh9qOMOPNT+AsrJEvc27STzsNbGHPStWhJk7yqSeQdmsienS+QM+er+DUPeiSOFjdT6ykTZauASWd4dbz/wfJ/eZY+XhGGvzAYMl2YIJ3lEH9nukwBaedmujWpRrgae5SZ6FW9jsqsZLJM4joCiEB6gL/aPtUFS3W7E+eo4EuID6giBF6vl2g0Snl5uVSAE4yNaGNRURENDQ34fD4JZoSxL0BSpkuZauhnxt5kgtZMhkTMg9htF7EcwwEZcaxaVHZL/K6yQAKkqHUIpkDN+yTYE1WwQdO0NLVAFQSK90y3SzUOLTOBqxhD9RjBVmTGuqlrcjjAqa5h9Rh1HgTAmDJlCpqm8fnPfx6/389NN91ERUUFc+bM4c4775Tsye23387ll18umSnhIifmRo1927p1K7NnzyY7OzvNte6WW27hP/7jPzh48CA/+tGPOPfcc/nggw9Ys2YNnZ2djB07lm9/+9uEQiHJbHo8HioqKvB4PJimSWdnJ//5n//Ju+++C0BNTQ2vvPIKCxYsoLCwUALdwcFBNm3axJtvvkksFiMnJ4esrCx+9rOfMW3aNCKRCJ2dnUyaNImRI0eyefNmGhoauO222/jxj3/MFVdcwX/913+h6zqDg4OsXLmS3/zmN5x88slp7pCZYDgTVL/22mv89re/xel08rnPfY4DBw7wxhtvsHTpUrq7u3nqqae4/vrryc3NlSIkw23MNDQ08NprrwHQ3t7OOeecQ0lJiQT8jY2N7Nixg1NOOQXDMCgrK6OyspJ33nmHuro6Ro4cKdeh+mxQ+zAcQPm47nD/Nm54OBSglDFuacZyZtHM9J+EO542zOGmBjaTpEd09KiGI6pJxbg0F6ikpYKlx2xAkTBxxJGKWEKWWGWNkm4NnLb3kwOrLyI+R2XJQAo5DGszKLLgAiSZDgv0ucoLiR0+iL+g3gKJmmmzYFZDoocPEZg4QYIHqyILfGiaKXf9dWXMBKCRRmASNBuYpFwTU03TE6YVoW1/NhNaSvbdsPpvaWFYqMHMBIri/ywxR1r6ZxNssKswSyZ2jJUC6FI52oYdwmQkTN/mdQw17gM0AqPGEpowDd3tsZaJAvwEK6W6Tw2XJFaN31KmKnWuYdu2x7vfBJBJA0smgsV0xE17DlKy3IZLI7dkLHlFY4nEehnoPkLL7pUY0TBdBzYS6++ir2UfpfVzCRXWHANKTVtaWo2viQ/24A0VWuvZsOIBo73t9OzdjGZoZFeMp69pJyQMQnnVdB3YSP3UT1FUMAHNdtPUTNPOQ2blBrI6o9HRvpP29h04nT5cLh8YJr3t+4j2dzBx1o10dmyntWkDPR370HUHZaWzqC07FUfM5Ej7Bo52b6G//wiG7UYXHmqnq2MPAnoGvYWMrTyHvMAINNMkGh9kx5FXqCk9GdxOy1XRbtfximEkiScGGRxoIzdQheYUfqoaQUcuI/NPpKbwBN7Z+RviyTDm4GBKgEYT94gYZxOSGjllYzlo1x/taWXPs7/G6QngySoAh05WcS21p1+Lqbkx7Pmvnn4Rm1/9BYcaljG28hx7zacAkYxLSltD/1w2SS1JdJIc+x/b31PPv0NRE7J+1I7lcOzP8VzbhjtvOHCUaURDCmip5wu3sEw3PdXgFgZNpvqYyhqpsUiir8MF/Ivv1ID76upqdu3axahRoyRzpbZhx44dUjlM7GoDMlhdGOLCKBcASgAnsQueCWpU4z9zflTXNtWtTDVMM2PPMudyOECq5izyeDzS/crn88k6VdZEZSVN02RgYIA1a9awa9cuAMaMGcMJJ5xAKBSS7VSBpHipbnaQYj0zXSrFWHxUDNhHGZRinNQ6RX/U5KSRSIQJEyZw991309vby969e/nzn/9Md3c3zz//PK2traxevZrLLruMyZMnyz6IdmUypZqm0dbWRk1NTVp7Dh8+zAsvvEA0GuXkk09m6dKl9Pf3U19fz6uvvsp3v/tdzj333GPiuTI3MzZu3MiqVasIBoNS/nzv3r20tLRw55138sEHH7Bq1Sq2bt2KruuSEQoEArz99tu88cYbHDhwQCa/bWlpYcuWLXKeR4wYwfe+9z1OOukkNE2jtbWVO+64g8WLFxOLxaQLnBrblslSJ5NJent7aW9vp76+Ps31bcyYMdTU1HDttdeyaNEiuru75RqMRCLDrs9kMklpaakcy66uLh5//HF8Pp9MWJufn8+JJ54o7z3TNJk0aRJLly7l3XffpbKyUgJcdW2r6y0zHu7vKf82YMl0mGgKUyMYIM3+nCbzbYsDpBge2/rXzZSIA1hsS0KHGJiGSWTzTgZXfwixJCQMsmrGkjNxFrrHY9XjtHf/bUNGVWVL2sIGmg08jmGXtJSKXGbslGajB5MUsJKAyGYnkh5kQlxRLHZLkwkvTSB40gw6/vAkvkl16G4dTbMC9zEh2dtP7PARchaem7q2wghp6jjqVjMNl123EykmoScUIJEhXmAJQGjocQs86gkgYjFMRsJiCDUj5T5omJrFKrkyVPLERwlyOTaOTDPluGkmmIblNqglUrFcQoo7FbxlnRppPULHay+SM+skyi67DtMwGNixhaan/kjJwsW48wqF7W2BScWlUYhriGYIMHkMM6iOpy3OkelWqKlfZ9ruAigpY+sMm+hRwwIxuobp0tLcKf16CF9BiPzCega6DxMJd5JVWE15/elomsXsCKGLtDkTBr79nc+dw2BXC3r5eEgmObT2BcxYjIKaGbg8Qdr2vE+stx2GokQ6j6JpDkpC42zWQ3TaBkpJU7YPTCqLZlBRNB0cuhSXaO/YyeY9T/D+0jswMckJjaB+5AUU547DpXnBMOiNHiErq4Kx2ZWW256m48JLMj7IYKQDXXdSEKqjpXMbDc0raHL4SZoJdM1BTdFJ5PjLMVUXNtMENTZE00gQp+HISvqGmvG5s+kfasMwYhTnjCPLU2ABEadui8qYVBbN4kDLKratfpDQvhry6+eQNXI8Do+PpJ0QWqwFp9vPrKt/xcDBPex6/yGMZJxEdJBEdBDQ0JMaXY4PyCoZhT+nxJKZBIxkHLfuQ7OfS9Jn02ZWP7KI9f9PKv8qZun+++/n/vvvp7GxEYDx48fz/e9/n3POOQewDJof/vCHUhJ59uzZ/Pa3v2X8+PGyjmg0yte+9jWefPJJwuEw8+fP57777qOiouIf7s/xiio/rBpf4l01qjNZpEw3N/F95nnr1q1j6dKlEiDU19dz0kknyRgPwYZkgjF1h1oUFXypylmZQEwY9Zk7+2pMkjCOM43QzBgb0zSZP38+d9xxB/Pnz8c0TZl8U+zor1+/niuvvFKOgToewg1OZUJU0QfhCjecut9wRfRP1KW6HqpAQABF8Vktx4uREu8iPkcV0xAiHcFgUBqVIuGwEJQ4dOgQjz/+OCeccIIcj+3bt3P//fezePFiKioqpMubyLMTDocZGBiQMUgCbLrdbgKBgGT3VLW0TAB+vLWrrtfMtauCcFXoRIg2DA4OSjbS7/czefJkJkyYwO7duzly5AjV1dVSoW5oaEgCJQHqM2PAEokEBQUFbNiwQc75z3/+c9ra2rjgggsIBoM8//zzNDc309HRQVdXFwDnn3++jJH7KJbskksu4eKLL04DKmvWrOGzn/0s1113HclkkokTJ/L1r3+defPmkZWVRSwWY8uWLVRUVPCZz3xGxlYVFhYyODjI4cOHcTqdnHbaaSxbtow//OEPPPPMM5LlufLKKxk9erTM9yTuLfFMEfMVjUb585//zPbt2ykpKeHIkSP09fUxf/58Jk2aJO9LEad02WWX8ac//YkHHniA6upqJk+eTFFRkXQ9FfMm2M5LLrmEoaEhli1bJsU/wuGwHKPDhw+Tl5eH3+9Pe4bk5ORIyfJM91CVqVVdOo+3MfTflX8bNzwAEXJ0zH/+QnXMNo5N1SB1mOAwU6DJLjIWKaFBHLqffwmn00vpWZfh0QLoQ0l692/h8F//RNll16EHfTK5qTDEhQhDUhEssHZ1STEgx2ER0tgPG3QJtzzDaYGTNFZFuA1qVsfS8jdpQNIKZXB4sgieegLt//UkORefibuqGDNpEt6yj/5XV5B3+UXoduM0Q5MASHyWMVWJJN1rVzG4d6elcJZI4C2pIH/WabjcwTRxBdVYz+yzZgMLRywFxkzdtuF00DWLYTKddkUq46eCCxXkSnSUGlhTA003SXrsOXCmA1qVESSepP3VF6i47NM4fJZSnK47yJ4wHV/NSFpeeIqKa24Ch5aS7bZRjWQSBVjSLeVCw20DQC2j6Uofho1fUoCVODGVNNhM62aaAqSmgUOTrJA4XgA7zaERyqkklFslgZBcT6oLobge6d/lFNRxdOdySkedRMuu5QSzyympnIUxNMSBrUtoO7QOgAMbngMgJ7sa3VDmT0u1y3pXAZN9Pds4aGhazsBQK6V5k9A0By6Hl/5wC9neclyal4FoOzsPvExPfyOZJSdrBLPqriPHlzJoq/KmUpk9iWQihu50ojtc1iQaBhq6ZF1M03bP1TTQIUmSLQ1/obJ0DjUjF3C0dT2DsU4iQ0Osa3iMkK+EUaWnk51VbrnboZEfqsUwEwRDFTS1r+PAyidglU6gsIpQ2WhC5aMJFlSBwyHXfqiijpkX3knLjnc4vHsppmkSyqtG15wc2vwK5sYkusNFMMfqk647qCyejZYw0uXB/zugpDBQ/6wSNx3on4DAQ/xjCjxUVFTws5/9jFGjRgFWAPiiRYvYuHEj48eP5+677+bXv/41Dz/8MKNHj+auu+7izDPPZPfu3WRlZQHw5S9/mSVLlvDUU0+Rn5/Pbbfdxvnnn8+HH374iQQGD1dUNTUR0/BxynC7/mp59NFHicfj3HjjjWRlZRGJRFi3bh0PPPAAn/3sZ8nKykq7ZqZLVWbdwtBRFeI0TZMuYyrro54rjHtVOU49P9NlTQ0mNwwDn8/H4sWL+eY3v8mNN97I2LFjMQyDDz/8kEceeYQvfvGLx712Jhvyyiuv8N577+F0OonH41RVVbFw4UKysrLSWInh2ImPAgHqfKjskmo8q8cdj8FTwYcwfFXXQ9VNUc2dY5qmdJ3y+/0SaNXX11NVVcXTTz/NDTfcIFm3WCxGT09PmrKbek1xjcy5E0BR5KP6W4sKkjLZD/V7lf0SmwSqyEBtbS21tbXyO5UhzBQBUBlPIRzx+9//nq6uLp577jkKCwv58pe/TE9PD/fccw9//etfMU1TynTX19fL2KbM+cqce7Ufmqbx+9//nk2bNnHxxRdjmia5ubls27aNadOmUVxczP79+/nZz37G+vXrjxmr+vp6nnrqKWbMmCH7eeGFF3L++eczMDAg70FVwERsIgjQKGK0TNPkrrvuYv78+Vx88cUsW7aMpqYmenp6+NKXvkRtbS1f+MIXmD59uuzTrFmzaGtro76+niVLlvDiiy+iaRrFxcVUVlZSWVlJgZ27U7CRTqeTs88+m8bGRrZv345hGJSXl+PxeFi3bp3cWClQcn7OmzdPJrfNBDPqHGaO8d9T/m0EHmRRgv5FGTb2QkMa3/KrpGYxDAZoCQ3NjsUZ2rYDp8NLwbxz0ONgxsF0OwiNn4pWmEPbylcpuPgSu46U0a+KOqSSwSosg2SJkIa6bosOOOIpQ1KcIwzupNtyrZJsBKnj0tzOkqRiszQgaamJBSZMwl1cRN+yD0h2doEJ7toRFFz/KRyBLKv/QpQinhKnkCxIIknzXx4jOHY8ZdfciOZ0WMxb4wGOvPAo5YuuweXNSjP+M+NrRGLf1O+mBGR6wpoG8a5pSN88U4Pk4AADq9cRbWhEczjxTx6Pf9pENLc9wDajliZ6YDNNpguSIpbJ7mNa+wwY2L6N7LpJuPQAWkQZXwe4Qjl4q6oZOrgPf22dor5HWhJfK1GuMs9KjJIEnMLfkPSxOQY0id/VdibNVFySnmo7YIEkwxJikBLjySQkTDR0cGoKYDUtEAN2wmMtva7MNtjHauhUjJnP3lWPkYiHmXDq5+lr2Mberc8Rjw+RnzuaqtI5hGM9RCI9jKycbzFImt1ejRSzZNgGvvS/RDJmB1tX49DcTB5lKb4JABAzw2xp+Asjq85g3fY/4PPlM3HyNfT0HKS1eROxWJ91XHyA7sHD5AarwGawDEyae7eSSEbJCVSSHShHuKYNJro40rOVto5thKM9+H0FBPwFBLyFROP9BLMr8ReOYFfDK/izipgw+7Ps3PQ4DtNBX/9hdje/Sa0+j/ysWgwjyYGWVdRXnovPnU1p9jgG6aN9sIGurr20b19J86Y3cTi9ZBeNJFQ6mmB+FZ5QAU6Pj7KJZ5A/YioHt7xC59EthHKqmDz1evQE9PUdpq+/ib6BI1RXnmblVEomU+BHuFAN8+AW4O9fUT5pZqmvry/texErkFkWLlyY9vePf/xj7r//flavXs24ceP4j//4D7773e9y8cUXAxaYKi4u5oknnuCmm26it7eXBx98kMcee4wzzjgDgD//+c9UVlaydOlSzjrrrH+4T8MV8R+4ChpUdy7VAFNLJsOjKraBZVRu3ryZRCLBZz/7WWkkxGIxTjvtNMrKyvjrX//KDTfccEydmSpw6k6uylwJ17VMsKXKUatG8XDGTyaQUF3aBGiIxy0f7mnTplFWVsZLL73EAw88gGEYjBs3ju985zvk5eUdE3Oktlm4DN19991MmTKFX/3qVxKcbN68mXvvvZcvfelL5OTkpAGmTNW8TLA0HKDMdI8Ufe/v7+fVV19l8+bNOBwOTjzxRE4//XS5nlVGS9QrWBXVGNY0TbpvCgZB13U2b97MuHHjpAKbKi8OUFlZybp166itrQUskDE4OJjGjqlARgW0qqSzAHaqm6W6bsRaEu+ZgFFVPRRAWiTyFf1Rx1+AIXFtdY2IvwVIUFkJMReCSRTnffrTn+a2225jaGiIBx98kJUrV/LDH/6Qjo4OZsyYwVVXXUVfXx+7d+/mO9/5jnQNFO3JnG91rMT7008/jWEYPPjgg2lj0d3dzS233MItt9zClVdeSWlpKd/4xjfYtWsXq1atkmxWf38/a9eu5cQTT5T3WDweZ8mSJXR3dzN69Gjq6+ulFPnBgwd58803WbduHe3t7RQWFlJaWkp5eTmRSISCggKqq6t56KGHCIVC/OAHP+Dee+/FMAx27tzJb37zG66++mpOOeUUkskkjz76KNdffz1FRUVMmzaNI0eOsGbNGrZt28a2bdtYt24dbreb8vJySkpK0lw8KyoqKC0tZefOnRw8eJCioiIuu+wyvF4vR44coampiebmZubMmUNhYSFer1cCO/WeOd499feWfxs3PBG8n7YLL75WmB3LJUpx6TKAhG7FF0U1HDFbrCCRMl5b162j6MLLSPhNRaHNrqNmBLFNbxHzhnGaXhy22IMzbLlEOSOAablECZAj8g+ZToj2dRLtacPpD+LLq0BLajjD4O02cEYM9Jgd4+TSiPt1kh6NhFcj4beMcd1mZBxRDcNlprt6JTVpuIOGrgG6RtJtomeXUXDRxZgu01bPw4rHMhSgl9AsxkcFfRr0blqHf9RogjNmWlLOmgV0vHW1FPgW0bbqNUrPXWwBCNMeS4WVwrTmIaEmJdUtN0RhxEkBCTFNScAB4X0N9L72JllnnErozJMxEnEG122k7b4HKfjsFejBkAW6bGZMFXiQ7o/CWLdjZCSjZP8WbjlMzrgZOOLgiFogCNMCqzEDguWjCB8+RKCqzvL0i9rg1mYBky7r2ISftKS4aKZUCwSrr6YAtnZzpKiDer8NBzgVNkmCtYTCNNmsV0/LHpoPvC/dyzRNp7TmRHKK61LCEGbq2lqmlrVSLECbupdyC+uID/ZyZM87fPjKXcSifbgcfsaXn0t53mRMp47hr2bT3ietODUFLIItbW3HLgngJN0hTRMjmaSjezfT665OA0oAbleAqtI5NLVZu25Oh4c9O18knghjmklKi6cyouIUPHqQnQ0vkiBOQe5okkaczXufpbN7L7puSalPrLuM4rxxmA6dTVv+QiTaQ+6ISeTnlBLtayfc20Z3x4fEI/0ANB5cBpqOO5jDoaZVxPu7QdPRgEi0h417HqewZBKxcC9V5SfgDeShRRJo8RhZeMlyTaC2eAJmkUHvUDOdQwfo6D/AweYXMW3GxOUO4gsW4AsWEsytwO3NornhfTZ9+AdmT76ZmoI5aLnKf8yxhJQMV8vfFJv0T3y4m59QniXTrqOysjLt+zvuuIMf/OAHH3luMpnk2WefZXBwkDlz5nDgwAFaWlpYsGCBPMbj8TB37lzef/99brrpJj788EPi8XjaMWVlZUyYMIH333//fwwsiV18UVTjUsShqIBDHCPcioSBorqBifLGG29w0003EQwGpdubUDIbN24cL7zwAvF4XOZgUQP5RfwHkOZKJ9rQ2dlJS0sLHo9Hql8JVTM1N5BwtXO73WkuXsdj0EQ7hOGrggSn00l+fj6f+cxn0lzdxBhk1pO50//OO+8wfvx4Lr/88rTcMSeccAIFBQX86U9/4itf+Uqa7LgAr5lgVPQt081QBb+Qih/ZuXMnv/vd77j88su54ooriMViLF26lG984xvccccdFBUVSeM/EzCLeKWcnBwJHtSxMgyDaDQqY7qGhoYkMyTa3N/fT0FBAfv27ZOCBJqmSdc+1dhX51kFMmINqQygYLRUIKkCdgFw1LoFWFIBXzAYlCwrwObNm+X6FNe74IILmD17tgRTAlCLGDQVuIs+CMAdi8Uks1hdXc2ZZ57JI488wrnnnktbWxvZ2dncfvvtMuePYRh84QtfkLnPRL8yjfdMoCT6+8orr/D000+nxZKZponH4+HWW2/l6aefBqz8R4888gh9fX1Eo1HOOeccPvOZz1BRUcFdd93F0NAQ8+bNY2BggG9/+9usWLECt9tNPB7n5ptv5tRTT6Wvr49f/vKXHD16lNraWpnUtq2tjT179jA4aKngLlmyBE3TKCwsZPny5TQ3N8u2t7e3893vfpfZs2fT19fH2WefTWFhIclkEpfLRXV1NeXl5VxwwQXEYjEOHDjA1q1b2bp1K2vXrpX3u9/vJy8vj2AwKGXBGxoaeOqpp7jxxhs588wz5XoSDKmYdzFOmeD6eEDp44KWfyOwREqyWxQNNMw0gYRUYlnhqqJZQf9xcA5ZQEUYv2AbuvEEDn+AhNvA8JiYLgPdnUSzJbqdZfkkh7pxBErAtHIQOaLgGjJxDRrS3Sumx2lv3Uo43IXpcTDYdgBHVjaekjLC/ftpP/oyRVNPJz9vNK6BJK7+OI6hOGgahtuBI+DC8OgkPBrxoE7SreGIWsancxCSHk0yGVbjbXcwFTBYygkYScugl8IRqsuXABlJhe0SbloOGNi5lZIrP50CHtjjioa7opxEfx9JI4bD4ZZ2d8p1LHVNI0MWXXUrtIQgbKLQzieVDIfpefUNij5/PbrPDbqJ7tbJOu0EfGNr6HzseQq/cK0EzpkCE2kxbWI9aBYAEHFbaKC5XSTiYdluPWFaLpUx0GMakY4InqgHT7d9vA1iTAckfHb8mNN2m1T6L5DQsLmSxFda+t+Z/Uj7TUv/PTPOqOXQevq6Ghk98VJcTj8A8fgQDbtfJRbppbhyBsItzgJrppV42BCy8sq9ZCpMlt0uzTDxOLJIRAdJGnHGV15AefYE62FhWrFImt1AzbTUDCXTIdgjCZKsv1XSYWCohdxAhRQLySwFoToOt65jVOWZdPcfJJGIUlEykcrSE/B5c6XoyIS6S9m08zHy8kfT3LmNzu49VNXMwx8oYNe2Z0nqBqauYzp1fIEC9ECAyvlXpMbXHqP9Lz9A8ayzaFn7Ov7iKkzNJGkmCI4YTVbRSA69+ihGeIhwdwttzZvQNJ2OUDGBUBlZTr8Vr2UYELcNRR1yvCXk+EqpLTqFhBZnMN7FYLSLoUgHQ9EuBrub6Ty6lUQiRXEebV1PdoUi5gCWKMWxQ2SvBfP4oOmf/GBPopE8bks/Xj1g+bqLDPPAsKySKFu3bmXOnDlEIhEZfzBu3Djef/99AIqLi9OOLy4u5uDBgwC0tLTgdrvJzc095piWlpZ/uD/HK5muIcLwzNzdV/+DVmNmVKCgGotCdauwsFAap+J7UWdFRQUdHR1pu8KABCsiqNs0TXbu3El3d7eMi/H7/ZSVldHX18fLL7/MrFmzqKmpSUtemhnbI8CSkNFWQZAKRDRNS4s9EX0TwEAVNBB9+u+KpmksXbqUu+66S7qXCVCiaRp1dXUyf5AwkDPrzTSWVSGKzBgZ9fd4PM59993HPffcI9eyz+fjoosuYubMmdx99938x3/8RxooU9smAIWQcFaT7YbDYWKxGOFwmGQySWdnJ/n5+fh8Pnw+nxw7sEQTPB6PVAzUdV2CINEnp9OJz+eTTJJQHxRS7eqaFeBQBZUqi6K+q/MgXqqLoWiXw+Fg2bJlfPDBB3znO98hJycHsBjmBx54gI6ODhYuXJgGQERR13+myxwg2+hyucjJyWFgYIChoSG+/e1vc80116SBQVVQYDi3K9WgzzTsGxoamDBhQprboqgnmUxy6qmn8sADD/C9732P1atXs2vXLi677DKuvfZaamtr5T1z9913c/3113PqqaeyfPlyVqxYwYIFC6iurub3v/99WpxWQUEB0WiUU089VQJMwQi++uqrnHnmmaxevZqamhq5OXLCCScwdepUvvOd79Dc3ExTUxMffPABmqaRm5tLcXExFRUVaW7CYr2PHz+ecePGcemllzI0NMTRo0clY9Ta2kpzczONjY1EIqn/1zZs2MDEiRPTXDwz3Ugz14mYN/X7v7eoQP8fKf9/D5bURKSiWEa4ZbihiiJo1j9qnIqUvU5Y8TOuQWuXPunSLPedWALQQTfRnAYub8IyogwNo68fPeSzFN4y25UwccQMOlp3cPjIBxRVTSMnu5oDW17C6QsSqCynYMzJABjxGIffegL3GCd+xwjQNExdl1LFetxAjxs4B8HdZyW59PRZCm9Zh0wSPk3Gx6QBELUI1ToTywiVbJsYNHtMhEucyrIJIKbr6C6XZUeK8TY0iCfo+3A90dZmmp58CN3hJDR6Enl109HV/1g0W8wiQyo9JayBnVvGtgftce1fv4GsU+eg+9yEd+6m/93VmImEZeQH/WiaRry5FXdBqb3BbqYbg1q6MS6S+lpqbqZ0u8wePZnuNSvJn1ODI2LiiJk4bNdrZ8Skd+cGKmdegBa1+pD0WK6RSY8lq56WC0oFMbbRnQmIxN/D5nUSANLMeKW6JOORBDunm5aSX/uRTUyc/v9ICTdouJ1+Ro+/mG3r/0RBwXicbi+aiGtKWg02HZr1ShPMQMZIYc97MjzEwZ2vEY8PMbv+RrJdhfaxqXHv6N1LbqDKAk8JtT4zHTAp3VVjhqS+PaRLXdvX0NCoKTuZaGMvY0acRcBXqChNWq6qmsNNTk4tXYOHKCqZzNG2DRw6sByA4qLJFBdOkvWGQpU0HliGmTQwvXoqvlAHzePGVVSE5nZTeNJZaE6HFYdms6c4NKovuonevRtBdxDv7aJ1y0qaD62mpHgq9RVn40w40eydXwl2xC6t6SLbXUy2sxgCKZBjaibxxBCD4U7C0U6yA5WWkINTx3DZAeIqKyfGR66vjwBK/2T/asP8ZGS/RYibyDD/t5QxY8awadMmenp6eO6557juuutYsWKF/D3zP7nh4g4yy99yzCdRMo2D4Xb51f/oVWNU3WVXGR3TNOnr6yMUCsnjwuEwQ0NDhMNhOjo6ZE4btX7BWkUiEfbu3cvatWupq6sjJyeHd999F7/fT25uLlVVVRiGwahRo1ixYgUDAwOUlpZKUCPGTjXewuEwTqeTcDgs3ZKEOIEKPFS3RGFMCZlyl8slAaUqVa4WtS9iPAzDIBQKSUNfAKJYLMZrr73G/v37ufPOO3G5XMyaNYvTTz9dCkNkJvVUXdZEfZlGpfjtzTffZNGiRRQUFLB+/XqeeOIJ2f+srCyysrLYs2cPY8aMkcyEmC/V9UwYlAKQAtJgDofD1NbWsmrVKmpra2VeJEAKN+zdu5eZM2eSnZ0t15bq+iZ2+n0+3zEAUAUnqmT8cLFHw8V0DRf3pTJzwmhOJBK89tpr3HfffVJUQtM0srOz+f73v8+tt97K/PnzpcEvXmK+VRdQSLk2irEUiYEfeughuru7eeihh5g8ebI8VtSzdu1aJkyYcAxbpvY1k1WClJpkZoLpTLcyXdf5/Oc/T2dnJ1/5yleYNGnSMap1LpeL+fPns27dOs4991xefPFF3nzzTcCKKTrvvPPkvVVbW8umTZvIz88HLMba4/HgdrvJz8+nvr6eXbt28ZnPfIaSkhKys7Ml0HU6nXz/+9/n9ddfp6Ojg56eHtauXcvKlSuZOHEi1113nczdpN474v7JysqiuLiYiRMnpo1XIpGgu7ubo0eP0tLSwogRI2SMpHhGqOI26lo5njveP1L+bZglzc5llPoiZaQK4QVhlWbuwIvjTSGcIAx3A/SkSai6nsFtW/CeNBWcGqZDJzroIrJtL/1vfUCitx+HMwstlgJrhgsSXg0t4aBv8AjN7ZsYd9L14HZxaM9bjJixiGB5HYfXvcjAji3kVk0EzUX1SYs58M4T5J1wPabuQgs4waFh2PlZHFEDPZrE1R9DSxg47fesg2GSPidJr04saLnrJV2axXKIWCkHEuCoMt+WsWamj8lwbIYw9o0kZjyBpgv/MjCjCVqefpTAqHrcRSWUXX4daNC/fj2HXn2MqrOvxqE70+ZEqP+JeC7JQoGURldVDKOHDpM7+3z633mf2NFm8q+5BEcwAEC8s4v23z3GwKr15F20UIp2HOPxo1QoFAI1zQKHetwCh96cEogn6d27mYLSSVLy2XBC68G16NnZGBU5JLxWuw13CvxJIKQwEuqaTPud9PEdNrZOOVd9iU0ASZIKUKZZiKv96GaKK2ZYQEn8RyQMA12nuHw6HS1bKKmcZf2WtGOHNM12D7RcK1PtTW9cMhZl2/qHCYc7qSycQXfvAbILCtOuFUuGOdi6mknVl6a+l6If6SBJBViCfcryFrGv5Z3Uf27KuaYJ3f0HCAXKAIjGB/F4ci2gZG8uqGIXHl8O8fgADoebqZOup7fvEOGhDooLJ6GLTQNdIyu7AiMRJdzXgiurLA295oybTseWVbiz84h0t+AtLpfzGG49jNOfhcPrIdLVSu64GeSNn0nhlNPo2bKao+tfJWnGqSqahTOp49BcOHDh1F3oDg+6PvwDVrMZI4/mw+MrB2+ZNU6GgWm7qZoOe0Pnnwx8/p6S+IQEHhJ/Rx1ut1sKPMyYMYN169bxm9/8hm9+85uAxR6pMrdtbW2SbSopKSEWi9Hd3Z3GLrW1tXHiiSf+I135yKIyMOp/wsP9xz5c8HomaFKNxRkzZvDGG29I2eN4PE5/fz9btmzh7bffpr29nZKSEsk6qayGw+Ggq6uLTZs2cfbZZ8sYqDFjxpCXl8f27dt57733KC8vx+l0MmnSJFavXp02dpkMmJDvFgDFNC2Z63g8LoGFCPRWJcZVZkrUK9qrsnDDAabM2JmhoSEJHsGK4frmN7/J1KlTGTVqFN/61rfQdZ0333yTX/ziF3zzm99My3+lGufqWA33Wfy9c+dOPvOZz/DSSy/x4Ycfcuedd5Kfn49hGBw5coSvfOUrvPjii3zrW99Kc/fLdCUTfRZ1ZxruIv5j9+7dTJkyJU31b/fu3TidTnJzc3E4HNKQFklHhSuUYHoymT5VJVC9/vHA0kft4qvgIzNGa8WKFZxzzjkyl5EwzMW6ueiii3jrrbdk7GFmvepmgRpvJj4bhsF9993Hvn37uOqqq1i3bh3Tpk1LY6T6+/u5//77+elPf3qMe2dm7NVwbmKjRo1iy5Ytw7pumqbJxo0bGTNmDJqm0dnZSVVV1TFuruLY8vJyurq68Hg83Hfffaxbt46GhgZOPvlkCVhN06S6ulom6C0vL8fr9cqEtAsWLGDlypVUVVVx9OhRysvLZdv27NmDx+OhoKCAzs5OSktLqa2tpaqqisbGRjZv3szvfvc75s6dS25uLtnZ2YRCIZngVmV5VaAPqXi78vJyAMmCCXXH4UCRmDu1fFLg5JMSePi4IjyfRPl4YMl2F1MFEwRI0gzL4jNJsSlA+k69HashE8I6NHTbLSivfhYHXvsTWlEOzppyBt/9kJ433iLZ0yuvH9vehL+sWrqsGZpBV9se+hp30H94NwV1M2mPHyLW20N3+z4KTjiL6GAvuSMmcXTDGxQWTbB2r50+HC4vEXMQT8ACAobDarMjaj84Ygb6UAwtHEMbjKDFk7gaWnF5PZh+D+5cPwm/k4RPJ5alk/BqGG6b+BKbyTZg0mPC7UpL5dFJks7QKbvrpg7BMRPo37KB7GmzJOvTtepdssdOxVNUSqTpILrtZ58z60R0l4uOre9ROG2udV0x7ApQkuIHom3q+refJbrbRbytnfCO3RR+/tMW6WAChoYrJ5/gnBkW27TwXDSHw3ZHzDAghwMqNtDQ7TWkJ6Fi3mW0vPsynXvWESobjYFJ/9HdeMoqyT9/IRGf7aKJsuZsekiKKtjfpe3sH+/6yntabioz4zz1OzEnWvp4mRpEI73kF1XYbJUNrMwUePP58+lq24VmKiIa9rkpZswcFsgZRoId6x9hoP8o08ZcS46vjH1HlrHp4HOUZo/H7fTRPdRE58ABxpaeicfhk+IKmcAtbWpMk5ae7Rzt3oqGhmEmiSfDHGx7n5qiE9POS8TjNDavYlztRQD4vXkMhFvIDlUdUy8aDA62Ulw0CQBdd5IXqoFQjRxaATKzsitA0xhsP0Souiwlra2Bf9xE+l7fhe50075uORUXXI2JwcC+nXSte5fK864hFh20gFRRuUX0BD3kzZqLyxPgwLtP0ta65ZjmOXQ3J4+/BY8rcGzbj+mLmCjTYqgMHXQdTY1XyvzPRBge/4Idr8ySNDWSnwCz9EnUYZom0WiUmpoaSkpKeOutt5g6dSpgGckrVqzg5z//OQDTp0/H5XLx1ltvsXjxYgCam5vZtm0bd9999z/clo9qo6r8JspwRoQ4XnW1E0aKMBIFsDBNk6lTp/Jf//Vf5OXlMWrUKN59912WLFlCR0eHrG/nzp1MmzYtzcjcv38/mzZtYvfu3YwfP56BgQHa29s5cuQI06dPp6mpCcMw2L17N4ODgxQUFBAKhXC73XR1dUm3PpXdyRRuEG0Mh8PSEHY4HNItT2VpBOOg5k4STItgnjLd31RjXLzmz5/P888/z9VXXy3H9sknn2TOnDnMnDmTjRs3UlhYSCKR4MILLyQ7O5uXXnqJyy+/PC02ajgBDjWXVCaI8Pl8tLa28vrrr/PQQw+lxUtVVFSwePFi/vCHPxCPx6VstgqYRJ9Fv0TMjioMIoDmeeedx4oVK3jssceorq4mkUjQ2NhIYWEh559/PsL9ze/34/P5ZDybGEPVvVF1qxOATWW91HkT/R7OkFTZFXUtiJcAwg6Hg7a2NqZNm3bMeaLPVVVVbNiwIQ1AZyoYiqJ+J9bcgw8+yI4dO/j1r3/NKaecwh//+Ee+/OUvs3DhQvLz89m6dSvvvvsut912G0VFRccY9Jmsr/j7tddek3FIyWSSwcFB7r777jQADDA4OMgvfvELfvKTnwAwYsQIdu3axSmnnHLMmGmaxu7du5k9eza6bsl6z5gxgylTpsjYQ8FkFRcX43Q6OXjwIBUVFTLOzefzMWvWLHbs2EEkEuHxxx9n+vTpRCIRVq9ezUMPPcR3v/tdBgYGOHjwIKeccgpdXV04nU6Ki4sZN24cW7ZsYe/evcfMq9vt5t5776W8vHzY+R8OBAlwJeIWBXhRnxdqHR/lgjece+RHlcxn7N9bPok6Pm75WGDJOWR76bhSxrfq/gSaTAgrijQADcV9z2YbrHpsAOFzU3bJtRx95UkG/7DTVhuwr5uTi79uDP5QCe5+cAwBPQM0vvUEgbJa8DqJDfVw5MNX09q75bHbcecUEiirITLYwc41j1Ix50Lc3hwcHh9mPAa28SR2/LWkiR430WNJtEgcwhHMaBQzmSRxtBnN4UD3+3EN5OEMeDB8Hly5HmJZDmJZOma2ZtmspgUITMMSiLBouBR4kSBAs1gTKX5g/x6aPovmpx9B93jIGjMR3dQZ2rebwNxzaX39OYoXfyqlBAcEZkzj6MN/IOeUuWlxL5kgTIw/yia5dNHTwT9lEr1L3iR05lwL9IppsOcvsnUPwWnTiGzdg3/COLt+Mw0ca7ZKXmZ8m+FMAR3dBZrbQcH5i0jEwwy1NGI6dQrPOgH8HmIOlfIixfjILzKKcF8Trp+iLcK2VYUblNPT1PGwwVycjP6kX0oAJ3cgh6FIO4GCCnvMNUw7US0aDA224/Xlptw1dQ3NBuXpbJimTIb11npgHd1d+5k+9jpyglaAfV3lGUSjfbR17WQo1kWWr4SawhOtB5jKImUa9MoDbs/RpTgcbiaPuBinboHtvkgrGw48Rc9gE9WFJ+By+ugZbOJo91ZGlc/D58rCNKC8cCr7mpYxIViRlhsJTSMWG2RgsIWRwbPls+BYxtFipBxOL77sEgaO7iPLeYKSGw3QNYoWXUb/tk0MvPMGex/4Ma6cPAK1oym/9NNEe7tpe/sliuYvJOFLzZ/hBv+sGdTXj8HoG4RwHDMahWiMSFMjh/YsJWnGU+Nhuz+ahqYsKzNtrFJMnTGs4p2s55+/yfWRxfiEBB4+bh3f+c53OOecc6isrKS/v5+nnnqKd955h9dffx1N0/jyl7/MT37yE+rq6qirq+MnP/kJfr+fq666CoDs7GxuuOEGbrvtNvLz88nLy+NrX/saEydOlOp4/xNFJBxVXVsyXXcEoBJGnyiqYauqhgkD0jRNrr32Wh5//HE2b96cdm5ubi6TJk1i5MiRkoHo7u7mt7/9LVVVVQQCAXp6eli+fHlae5ctW0YwGJTuPl1dXYwYMYJQKCRjZAQTk2l0qy/xXTQaTROSUF3uxEswDCLvUGbMjHDlEeMovgfSlAJPP/107rjjDoLBIGeffTYul4u3336bL33pS/zgBz/grrvuwufzSaGKBQsW8MUvflHGswhQqrKBmbFlw7nhnXXWWdx7771cc801xwA6TdNYtmwZl1xyCe+88w5nnnnmsLvsw72La3i9Xjmubrebc845h3A4TENDA8lkkjlz5lBUVCTHR7A26riqRYCP4eZOBVBiDsRL/V0FyioTqDJmKtgTayAvL4+9e/cyceJEua7FWMXjcfbv309+fr5cNypbobZbuIGpBvWWLVvYuHEjv/jFLzjppJNwuVx84QtfoLu7mzfeeINDhw4xcuRIfv/736etG/WeHC4m7Ve/+hWxWIz77rtPugzv2bOHq666is2bN3PzzTdTWFjIhx9+yDPPPMOXv/xlysvLSSaTXHrppdx+++2ceOKJafNuGAbd3d2sW7eOL3zhC8cAQjWmSrSltLSUvXv3MnnyZDm/Ymyuu+461q9fz/r16zn//PMpKytj2rRpfPe736W5uZkHHniACy+8EK/XSyAQIBAIEIvFyMnJYdy4cYTDYblxIfIirVu3jiNHjsiNEhVEqC6Fw4EcMf9ijjOB8ccFQn9L+bdxw3PEQHiFGVpqt99yTYKUv1XqnDTDVcTICObDPt9wWK/I4UMM7d2Nt6ScyNFDBMdOoODsRbjy8y33uJglsuCMwIFlz1I59Tw8xeXsefN3YJqUnXsFrkAOLe++TKy7HU9hKeEjjURam6yktl4ne994gIrzriY80I6enY2Z1FJxIoZpiTXYRpPpdqAl3WhOJ4lYnMN6A7ruwkWAXNOD1/CgxxI4B3RMXcNwacQDmiWWYCBFH3RF9c9wWCARL8dIXoti5ehxUnL5tfS+t4Kmxx5Ad3mIth2lb8cGyi6+Bi0nZLvYWUDFdOrgdpJ0m2hKrFhqIpT6Ua6rkcY6eUePouOJZzDC0RTA1cA0THrfegfviGrcpeUkOrst6XcBxtQ5F+IVhlgT9ksHw23F6xjKb6buw1My1gIUpmxhWttT6npqJ8hgirRhcVSmyMOwQg7KGKXiWNIvaa3f1EkF5VPYte4x8qumoOm6NdcACRMzmaT16AbGz7jWcuFS+5IJlDKbG0/QtH85xfnjycuqSfvN4wpSWThzeBc71Q1P5xjjv2ewiaQRZ0zZGWnXzvKXcsLoz7Kl8Vm6BhpJGDGCvmKmjfwUDqeVBVoD/O58coKV7GpYQk31fDweKzdOX18T+xveoG7UuTZwO07fNOS4FtZM5/Dm1yjoOQ9HYW4K1GvWeaGJUwlNnEr/3h30friaoaYDDB7chzu/kKILLsOdm48t+CfnU9dAy87CFciS7LMet1hi9oDucA873nL8MosCNvsirXT1H2BE/kw0jlMHqbVzTD3/xIe7wSckHf4xRSJaW1u55ppraG5uJjs7m0mTJvH6669z5plnAvCNb3yDcDgsjaPZs2fz5ptvyhxLAPfccw9Op5PFixfLpLQPP/zwJ+K6cbwiQBCkdl4zXZoywZIwAlW3EgF4hHEkjj9w4ADbt2+ntLSUpqYm6uvrWbx4MeXl5YRCIcnaxONxHn74YRYsWEBlZSUPPfQQyWSSm2++mfLych566CGOHj1KZWUl+/bto7OzE6/XS2FhIZs2bWLhwoVEo1FGjhyZplYGKXe5TAGKRCLBzp07pdtdcXGxVHwTL+F6J5gkIM1o1XWdaDQqFd7UWCl1XMEClz/4wQ949tlnufnmmwkEAuzcuZO//vWv/OQnP5HJh9U6hMueMBQzd9CHc4dTDWlN05g4cSLNzc309PQcw3488sgjjBo1igkTJrB58+aPXCuq8SmAihBFUAUgwFJZE4DW7XaTnZ0t44LU3F6iqOtMrCdVHVFIb6subWJuMt3yPqqoRnCm+l8sFmPq1KkyB5qYM2F4x2Ixnn/+eb761a/K3EJq/IsKJoYDdq+//jpz5szhtNNOSzPmc3NzWbx48XEN9Mw5VoHTrl27OHLkCP/5n/+ZNkf19fUsW7aMa665hrVr19Lb28uYMWN49NFH08BtSUkJ8+fP5ytf+Qpf//rXKSkpASyxmp/+9Kd87WtfO4YdUwGoeGY4HA4mT57MK6+8QnNzs0wmLMZc13UmT57M9OnT2bJlC2+88QabN29m48aN5Ofnc/XVVxMIBBgcHETTUgqMubm5Mn5K5OKKx+NSeCOZTEpxEXF/CvZSBSe6rqe54MXjcY4ePcrWrVu54IILCAQCx4xz5rr/R8u/DVgSggAou/SWew0pty71JY7RUgatABFg77YDSRL0bFhL8/IXCIyoI1A5ikhzE0VnXYgzN89S0QvbOXaiEGlrxuXLwlNQQmSwE3d2HgOH9+IrrMRXUEqrppMzfhYYSSoXXkff7k10rH6b8NFG4r1dNDz6KxxePwfWPos3VIgRi5KMhklGwxjRCG53FlmhcnICZWTnFBGM18CR3ewztpJMJiBmQt8yAr4iCkKjqCidhcdThCOq44ilAx/NtJglC4RZvyVtlVrDnWKSrAHJGG+Xi7xTzyD/xDPQYkkOPfl7SudfZCnCqXayHf9iJuOYbttGFnOkMipqsUEqAijZ8UyaphGcPZ2BD9Yx9OFmvHWjMGMxIrv24Bs1muzT5tP33iqcObmp+DXNAk1pLn5KDibpKmcDHtNhprMOwibNEGlI+12RordcPtPHywI2FvoS+Ey6iKr9VkBWGmukjJW8rMLOSbvZXs+mBrrXS2H1DPZueIYRk87H7Q6CCYmhfhp2vULxiJloHk+qSk3DlMgt1SpVfEI3oP3IZiKRHqaOvMpy/dI0G2QMY6arbJLKcAjApBzX1LWJ2oI51rFi19Fuh8cVIOgtoji7nqCvMGXwC0TisMaxquQEuvoOsGffyxhmHMM0CASKGDvmInze3HTQIQeNtGtphklp1Qkc2bGMrveXU3T+xSnmU8yrPYnBMeMIjBt3zNxl4kTN7r6WTDVZtzA7ScniGqkTRBMFyBy23RqGpnGwczV7jyzDNJMMJXqpL1kwPNOk1gmYn4Ai3d9TkqZO4hNglpIfs44HH3zwI3/XNI0f/OAH/OAjZMe9Xi/33nsv995778e69j9ShKGX6cqVycwIt6dEIiF31YVRIo4XEsoiSeSGDRt44YUXGDFiBJMnT6apqYnFixdTVlZ2zO5te3s7breburo6Ojo6pGxwXV0dM2fO5Nlnn+Wss84iHA7z85//nOXLl/Poo4/S09NDZ2cnDz/8MD6fj/Xr11NYWEg4HE4TkwgEApSVlVFSUkJhYSHV1dXs2LGDDz/8MI0ByMnJoaKignHjxlFQUJDmqpO5my5eQpZcBIyr7IJqFINltF1xxRVcccUVJJNJbrvtNr7+9a9LIQcBUEXdQ0NDEoip8TqZQGE4xkFt4yWXXMLrr7/OihUrOOmkk4jH46xYsYJp06bxxS9+keeee46CgoL/dr2o7koitsjj8RCPx6XKneqCKNg6oXAngOlwzKXqyinW0MDAANFoNC1prdo/lSVQf1dBobqWVZZKgGE1Nss0Tc466yx+9KMfccstt1BUVITD4aC3t5f77rtPuqSFw2FZn7gvhEqgyoaJNuzcuZPm5mZ+9KMfpbVdbZP4fDxDfThD/oknnuBzn/tcWhyhKHl5ecyYMYP58+dL8YPM9gFcccUVjBw5kh/96EcMDg6SSCSoqanhRz/6EeXl5RKwZp4HKQZH06wYxXfeeYf169dLZUoxrmoc4MiRI/nCF75wDCs9NDQk50DXU2IYubm5BAIBIpGIdJuNRqMAhMNh+Vltk5q7S1xjaGhIPg/efvttXnvtNRKJBIcPH+aWW245RhxDLer4qnP3ccq/jRue4QBdFQwQktbHsQlEklVdNUJNQLfy5GAk6N62ho61bxPv7yW3fgYVcy9l9xM/J3v0ZLy+PBiymBlHFIxIhM6GLXTuXEMyPMCmP38XI26pzWgOJ60rllB53rU4nG5008SVXUDrspcs1mnuxQTKamjdsIzubWvIHjuVoaON9DVuR/d4cXh8OLw+dJ+X/r4jtB9cb7nf6A68+aWERk8hkF+Bv6ASpz/EUHMDfYd2crRpC4fb11I1cj5lwbk4wzp6wlb4U0BQIjpEb+N2Bo7uJWf0dAJ1YzDitnCBraynMjGqyp5mgG468OWXEjl4EH/ZCJlLx3RYuZ/CjY24yytsg9M2yU1S6oWZMVKZrJLTtEGMSfDEWcRb2si9dBHxg0csxb05J+NwuDDjCYa2b6P0/302BYhsMKSJxaCAM+Gmp+bc0pKalFu3OogESKZutUWT50KmzWnEowxs2ET04CF0pxP/pEn4qmst0GbYTJu4uA3kZa4kI51wMRypMTYlmLWNerEToJkkHZaxL1hCAXDyR07DlZVNw6bnMRIxC1c43JSNPJmsohrLgE97pqR3RhVIsECAydBgG15PDlm+ImnES+Ncy0CJ/11RHmixxAB+b57sfFriVE0j4C0gkugjoBWlXdPUNCseSrcS7uYFa8jLrrUEMDTF3c52ZRXskGCSLPl4Tc4xmobbdJNTOpauraspXLAQzeNSQOWx6zO9T8qYmulzKlldW5xQj4Ov1HJj7B48jC97PJiW5LoESZlASbOVCoEtB5+ntXMblVUn43Nns2ffy/h8edTkzLQkyuU8ah8JoP6Z5V/lhve/tajJNCHFmqhGvurGFA6HpSGbaTSDpXy2evVqli1bRldXF9OnT+eGG27gxz/+MVOnTqWmpkbG3Ah258MPP+Stt96io6ODr371qwwNDQGWO91jjz0mg8l1XWf27Nk88MADeDwevv71r3PCCSfw5z//mWeeeYbzzz+fLVu2sHPnTunKk5WVRUFBAe3t7dI4cjgcjBgxgpNOOonq6moqKioIBoPs3LmTzZs3s2vXLnbs2MHUqVNl/IowqkVuKU3TiEQi7N+/n8bGRiZNmsTkyZMlc6LKXwu1vczEl2ApKH7wwQdMnz49bRxN02T37t1UVFTI49X4ikygoLJK6kvUdcEFF7Bhwwa+973vsXXrVpxOJ7/85S/x+XxEo1FeffVV7rnnnmPmPNMoFAaf+F7EOGUyKaIMJ0E/HBiPRqMsXbqULVu2kEwmGT9+PJWVlbS3tzMwMMDg4KAEriLeyefzybEVrpAqYBHgU4xVJgsUi8Uk2yDAqmEYTJgwAb/fzz333EMkEpGbAmeccQY1NTVSwl7UqzJfx3NXO3r0KFlZWdTX18vjhiuZ4EgdO1FUQNXU1MTo0aPl8Zn9rauro6mpiQkTJgzLfom6pk2bxvTp049xeVTdajPBUuY8er1exo0bx/r161m0aJHMs6Um61UBgxojJJ4tYrMlE2gL9zwBdsT47927V+bCE8+U4RjIaDQqlfZeeOEFduzYwYgRI8jPz+f9998nFApxzTXXSFdesW4z5+R4c/W3lH8bZslwWGeYiirZcTdPbYMm2TtA34Y1RJub0NxussZNJlA9mp6NH9D5wTISg31kj5lK8fQz8GeXYCQSxAZ6KCiZix6DxOAAQy2H6d29kZ59mzGTCZyBEO7sfHInzMaXulZ8KwABAABJREFUX4Y7Jx9nVg4DB3dz8IU/YkTDJMNDBMpH0rd/Gxoa3TvX0rd/CznjZxLraqN83iVpxpl4F30yEnEibUcJtx0m3HKYgeYDdO5abRlaDgeB6jEUnbCAksDFdKx6g8adb9HWtpW6k67Gl11k5S9yQF/rPpq3LaP/yF4wDFzBHLr3bWTE2dcSGjVRuiWKuA3BCBgupCEr3IwKZ5zO4Vf/TPlpF+MqKbF20V0QO9JM92uvU3zVNWhJW45aFUSw0YPKnAgmKQWU7ONNDWduHu6qCvqXrST3rDPRXV5LxrpvgM4Xnif7xFPRXA5SSImU1W+m/4luprnQCZEHNYmuBIdC+MMG4mmwwLTYq+jhQ3S9+DLB2TPIOftMzEiUwfUb6Vv2LqWXXoXD6U01S3Rds8ZSYh8jA4jZx0nsZgMhkuIY+z80pylBjZwrIKtkFFkloyx3TkXd1rT7a2aCmwxWyarcBnmmRsKI4XB6MB1aqj6VQZJfmSSSYUDDpQ+T+0Z1xwNcDj/hWC8+T449N8qxpslQrJu8wIhjqpGuZTby0+wqxThaS8w2MHQTDUUlT72EhiVygknjnqV0Nm4gb9JJ4HKmsWvHxNll0qL2OEnWUL1/xQaOw+q/4QRXKBtfqJiuvgbKssfbYzNMoJEASvb73qNv09q5jXGTrqKwdCKaAdFYP3sOvYFXD1IaqrfkxY9XMtm9f1IxzE/IDe8TqON/QxFuKbFYTBrjIkmtqjIldnnFrvrKlSs5ePAgHo+HmTNnMn36dN577z1eeuklOjs7mTJlCjfffDN1dXW4XC46OzuZN28eWVlZ9PT00NDQwOrVq3n33XeJRqMUFhZSXFzMRRddRF1dHRUVFZSWlrJ582Y+//nP093dTX5+PmVlZfT29hKPx1m6dCkffPABixYtoqGhgbvuugs4fpxLLBZj9+7dbNu2jW3btrFjxw6WL18uJainTJnC+eefz6c+9Smef/55Vq1axYEDBzj77LMpKCiQdTQ3N7NmzRoaGxtJJpNkZ2ezZcsWotEoM2fOlMZkIpGQMuMCVKisimmaXHjhhTL30tixY+V4Hzp0iF/96ld8//vfTwMg4ry/Na5CjEFeXh5z5szhvvvu40tf+pJkgbq6uvjFL37BhRdeiN/vP+ZcFeCI70Q7hrtWZskEcGo/xHtDQwO/+MUvWLBgAddeey3t7e0sXbqUV155hbPOOitNoECcozJqwrAVQFaNMRJ9yGSaBGARvwl2URxXUVHBjTfemNZWwX6Ifgn3PVXUJNNVTay9cDiM1+uVoDuzL+oY9fX1YZomubm5aeOkjrEYk5KSEhoaGhgzZozchFBLY2OjTHSttkkFtpnzph6jHpu5DkURgigrV65k7dq1TJ06VbpnirFWAVCmip+a2Few1mr7MteaYCBzc3PZv38/8+bNS+ufOtcCKA0MDNDT08Nbb73Fjh07GDVqlKx3woQJvP766xQVFXHWWWelufMNB1b/3vJvA5akMSsEHoShlGnL2EbPwL5d9Kx6h/yZc8mbcQqJeJjerevpeG8pkcONaE43IxffQqAopXDn0J34C6toX/827euXER/sBcCdXUDR7DPJGTcDgJZ3l1Aw83SLtbIN7uyaCQTLR7Hr4R/jyS8jER5kxAX/D6c3kAJviSidvJsytEgxLmnuVrgIFI0gUDwCc7JVvxGLEmlvZqjlEN2b3qfh8f8gUDeOohPPYuTU6TS9+hhb3/wPqmdcTKighoObX6b78FZ8xZWUzruI4OgJuLxBml7+M42vPULx1NMpnn4Gmum2GDvFYARkQlmRE8npC1G14CpaVr9OIjKIKyuH2EAPzmCQioVXozuyIIwdP2XVI3Mp2eycBDNOW2RCs2MTTAsxaLZhmnv66Qxu2kLbnx5DczghaaA5nWSfcire2hrFGDZlnTJ2jXSDV03gK102jVTbTA00HRIYDO7dxWDjXnBo+MbV4xljJYjTTItZ7HrxZQo/82kcfp+Vp8oHvnnnEN3TQMcLz1N+9pVp7nyGM8XeoYOpGLCmngGMsFXrSLGhcj5spGXYvqeaQVp6ImvuFCBlv2uGVUGmSIS4vhwvSSNiJRt2ejCdDqthhgVYhNqdZpq09OygqXMjbocPE4gnw1TmTaU4NCaF+nTSDPaK7Ekc6ljPmLL5VseNFBCKJyIMRjrI8hUNy1tJwCT+szA0m2kC8W+KsbLnPpNV0jWSLpO9W/9K24G1FJ94LrmnzrdAoWnNjWa3O81Ol2MzDGiy3zMTCatgO+mGrLLRdDZuJVHnwJHQ7TVoU1IZYhU4NA51b6SxeRW19eeTXz3ZWjcJk+oxZxGJ9bK18XnMWp2y4BhIGGks3L+aYTLQPna80fHq+XcpkUiErq4ufD6fjCtxuVwEg8G03CY+n4/Nmzfz+OOPc8YZZ7BgwQLC4TCrV6/mrrvuYu/evTidTr797W8zbtw4GZvicrmYMGECr776Km+99Ratra0AlJeXc/3113PppZcSCARkHhtIGXDz589n7ty5nHzyyXg8Hjo7O3nggQfIy8uTx8RiMR577DH8fv+wYg7i5ff7mTVrlgQ0wojduXMnW7Zs4dlnn+WHP/whs2bNYvHixZx//vn85je/4ZlnnmHBggXU1tby5ptvsmPHDoqLi5k3bx719fXk5OSwZMkSnnnmGZqamjjzzDMJhUIyf08sFpOMkzAshcHjdrv50pe+xJNPPkl3dzeFhYV0dnYSCoW47bbbCIVCMl+RWlSjWRjIgjVTjVphOGqaxuLFi1mxYgVf+9rX5A680+nkyiuvZNasWWmGtqhXGLjDAaH/bsddGMpr165lzZo1AMyePZtZs2ZJkBIOh/nFL37B3XffTW5uLoZhUFBQQFlZGR9++CFLlizh0ksvlQIMgkXKFOIQ/RdGt9p+MQ6if8lkUrr1CZClgsHM8VbPE4Z85viqn9XfBXAaGhrC7XZLsKUCUdO0EiUvX76cZ555Ruah6uzs5LLLLmPhwoVp11P7JJQMf/aznx0DSgcGBti4cSNf//rXJYjLBECZZThAdbzjBMhJJpM888wzLF++nHnz5jF//nyZP0vXdRnDqLJvmcyiiE8T9alASQVcwiUzGo0SDAY5cOAA3d3dkqlTGSHDMKTr3sDAAB988AHr1q2jtrZWJr12OBwUFRVRW1vLo48+SiQSYeHChVL6XGwcZbrT/j3l3wYsNb3yKKXnXI7uzSbR00e8pwtvxQjiXV0MNexh6MBeXDm5FJy1kGR/Hz3vr6D8is/g0K3LuDxuCubMJ1BSQ9vyV4h2NHPw5YcZed5n8eeWyR3+wgkn0bX3Q3z5ZfgKK/AVlePKKUBTpLcdXj+9ezaRUzfFstFsyyja2YrTGyA0op7c+mnS0BUGbOemVeSMmfbR+XZEUW00ExwOD4GSagIl1eRPPZnePRtpf+9NDjxyD8G68ZScs5i+jWtoWP0UaDouXxYjTv8UganTMHy2ZHoCyi+8Gu+qpbStfZuuvR9ScuK5hMZORXPoKZvTIAXclBgvZ3YO5WddgZGIkogM4fQF0F3WYjbDKYZGS9oGo2kBJRHvJdgl02mLTdjslOHULPEFMcY6BCZPJjB5MmbColg0Gedij43qa2emrpd2jBprZFu3pqUZYGEnez5j/d00L3kK3+gxBE+ajUmSoc1b6XlnOYXXXInTH2Bg3QayTp6DI+BLTYxmtddXU0vPuveIRntwZeUg3frURLz2nJqi6YJxEiyJiHHSJRawwJPqHimAj2ameW8JvCnj+ASgsoGeuuAyBR7UBLqGZpI04gwMNLN+24N43dl43SG8rhDFodF49CCN7auJxvuZWn0ZDt0KIE2aCfY0LyOaGKAqb3qqfgUH5AQrOdq3nYMd66jMn47mdGFqGuFYDzsOv0JdyWmpZv29Bv9wu622EmDSkWT7+kfpad5DxVlXEpoyE8OlgEsg87JpcZGZuwlpB6be5fE2GE16IFA7mrZdK1m3/Q8EAsVku4spz56Ey3DIi5q6jqlDW/9udh94mbIRJ1Iy9lQMTUNPmOiGCeiMGX8ZmLC14S9QfSFlofGYieMo5v0Lyv8xSx+vPP7441x66aU4HA46Ozvp6emhrq6O5uZmGhsb2b59O7m5udI97plnnpFxV7FYDK/XyxlnnEFdXR1PP/00zc3N/Pa3v+Wb3/wmEydOlOpnl1xyCUuWLGH06NGMGzeO+vp6Ro0alSa7PWLECF566SUuueSSNBeh/fv3k5OTw8knn8w111wj2y5+f/TRRzn//PNlPZm7y5m76OorEAgwY8YMZsyYwXXXXcerr77Kb3/7W772ta8xe/ZsvvzlL/P666/z6quvous6gUCAiy66iIkTJ6a5v1166aUUFRWxfPlytm7dyoIFC5g9e7a8pjBUhbuXGgcVCAS44YYbiMVi9Pf3yxwymqYRDofT3LEAaWCLutWYM8E6id8yd/FPOeUUTjnllLSYM9WIU937MpmE4zFDmUUc29HRwR133MH06dO59NJLAXjrrbd4/PHHueOOOygoKODtt99m4cKFlJSUyGuK606fPp1ly5YRjUbJy8sD0sU1BFASDI/KvojcWZkGv+qeJ0CSAGDq9Ydj89S4quO5HqqCKer8DA0N0draym233UZxcTElJSVUVFRw6qmnUl5ezrPPPsu+ffv47W9/K+c+Go1yzz330NLSwmc/+9m0tom+1tfX43K5uPfee7nhhhvwer2AldPtm9/8JrfeemtajieV9foosHQ81imzX/F4nHvvvZcNGzawaNEiZs+enZZHS4y5kOXPzOsmgNBwwhHquldBXjweZ3BwULLc999/P0VFRYwYMYI5c+YQDAbldSORCENDQ2zbto0VK1ZQXl5OdnY2ra2tuN1uvF4vhmFIYZhnnnkGTdM4++yz5XoTa2y4Mfg45V8Flu6//37uv/9+GhsbARg/fjzf//73Oeecc/7mOj4WWBpo3EPDn35F3rST6Fy3AiMaweELkAwPymPyTp6PnoS+tR+Qf8LpOHFa8TJJsdMOoaJaulwejGAOsZ52klFrp0EYuLmjp5M7err8Dmx7RmEMyk69kOaVL9K3ZwvZIyeiORz0HdiJGY8x8qKbOfLuX0kM9ZM3fjYOj5fEUD8dm1eRjAxSOO10ZBC5UgToEgyTKQzqzPWggabp5IydTmjMVHp3baDjvbc4+MR/ERw5noLpp+M0XRRPOg3DqzHQfRQj5sRVXGTtojscFMw9i+yx02hZ/iKH33gcz9q3KJx1BjljpqLpDiuflcrYKEajpZbnwe32WKxTnBQLYrsuGS7ScjrpCUtF0HJ9S4GiZNQ6NumBpKFZcuTCNc8eDy1TXUfDcvWTf6dku+W9Y4MpU8s4x9QwHSYGmszhZJoGzS8/TcFll+Esysd0Wpazu7yU2JGjdD7xDCXXXU9kXwMFl1+muPiB6TYt1sOp4a0fzUDHQbJKclJtU4DycEIXIqxJAr1hwJN01xNrQceSnM5cQ6q1r35vAPrwrmkS1MnzNUrGn4bHl01soIehcA/d/QeIRfs54v+QabVX0TVwkCk1l1v/gWEBG113M7ZsARsPPEVp9nhcDu+xl9J1xpWfQ1P3JjY0PoXD4cUw4ricfsaUnUmWt9Cezn/Q6BeubJJVstiaaGyA3pa9uPxBHKFszP/m6ZMOlFLjA8jxVedTBZ0qaDI84BszlrKeC4i0HaGv6yitRzZwJPAhU2qvwO8KEUsMcbR7K0c7NjIw2Ep+yXhGTF+E4dbt+8dmFJMmDnTqJ1yGpulsbXwBY4RBRWgCJMxjx85MMW7/rJIwdDTjH/f/S3wCdfxvKHv27OGee+5h3rx5LFu2jMHBQYLBIAMDA/KYiy++GF3Xef3111m8eDF5eXlEIhFplMbjcQoLCwkEAuTl5XH06FHC4bA0mISc9MKFC6VxLowQYeQD3H777fz4xz/m85//vEwMumLFCrq6uvjLX/7CD3/4Q3p7e7nmmmvIycmhu7ubRx55hIMHD/Kb3/xGGlWqQakyL5lASXwniq7rXHDBBZx33nm8+uqr3HvvvXz9619n9uzZLF68mFgsxsknn0w0GuXo0aO43W5KS0tln8466yymTp3Kyy+/zF/+8heWLVvGmWeeyZw5c6QymDAMM3fAxfWzs7MBZKyM6maWKeKgGuWiL8OxQJkKcQIkqX8fr6igaTiwJD6rhqBo45133sl3v/td6urq5G9jxoxh79693HnnnfzmN79h06ZN3HrrrZKFUOfO4XBw4okn0tnZKeNyMtumusiJMRDjKwDUcEwbpNy5xFiqyo7iWFGGY1lUpka0Z7jjDMNg0qRJ+Hw+IpEIhw8fZuvWrfT09PDUU0/xxz/+kaVLl/LQQw/JcRDz/e1vf5ubbrqJjo4OmUg40xXv29/+Ns899xzXXXcdwWCQaDRKKBTiq1/9KuPGjTuua+DxyvFA8nDrZHBwkK1btxIIBKRsuWBPhZy7eq6YH9X9cLjrqQypGF8195n4rqKigng8TlNTE7t27WLNmjVceumlFBQUMDQ0xKZNm9i6dSudnZ3k5eVRWlpKf3+/zPXl9/tlrJtYp08//TTJ5P+PvfeOl6o69//fe0+fM6f3Ru+9I4giSBElGgW7sWCPGktiiSYx5sabqNHEaOy9g4hILGBBQFBBqkjv9XB6P2fq3r8/9qw9a+8z5wDGm/u7X7NeL5iZvddefeY8n/V5ns+KMX36dPN7oiiKyWB+3/S/dShtSUkJf/7zn80D019++WXOOuss1q1bR//+/Y+pDEU/BmjY0NBAeno6/WbcwYEv59FYtpPMniPI6DqQ5vJ9uFPSOfjVfFK796d45uXgUjn41vOUnn0FavwPrgBLaDoNu79j/8LXcLi9dD3jKvz5RnCa3YVJJDk2ShY+AIg0N9C0bxu6HiNQ2A1PhhGcHgsHqd2xlsa9WwAd1ekms+9IUjv1MWSyzAGQ6gDTKLbUiXQP6b70XidG/ZZ1VK34hHBNJSgqDp8fRVFxZeegOFQiTQ14u/XAX9oVB06cLh8Olx+tqYma9Sto3L2JtC796Tr1cnA6Ekp5oh1KAgwpOmbMjxqhjWCCKcKhJPIa+Yy4GlMiHdBcClGvQjjVMCxjbsnVUtUt/bbPR3sAxLwvMUvGOojH4Qhwp0DL9q2EDh0kY+qp1rw6oClUvzOf9EEjqftyGVlnTUfJDiREBeJnPCkxhcalX+EMpBHoO9As34yLkoxruX2yaqCZV0uctyTcQxNnJUnVykqD8hhIIFeMt0XpzZ7kcUWaLyn+qfHQDjYveYqigpHkpvYgP713/CHdQseUV39HJBqkNHNIciNdgBcgpmsoSsIXuY0cucgPCXU8h2IBQwazF78WZ5BQ4wIJkvudwXgqNIQr2b1+Ho3lu0jvM4z8yWehZKZaGLA233eHdM2K0c1x7kjZUF7/Yo4jBw6zZ+ELxCIh0rO6UlO+BYDMkv7k9BhFelFvQw5eAzWs4whrOIIaakw3BEMcCjoaO757l8Nlq+nXeTqlaYMglgBMuqKAM+4eFAvx2aaHqK+vN/+g/tBJ/E5P/vBaXCnuf7m8SHOYT05/+n+0zf+bSYzXq6++ymOPPcaqVasYO3Ys48ePZ+PGjWRmZvLGG28wZMgQHnjgAfx+P7/97W+55557cDqdBINB6uvraWxspKmpic2bN/Piiy/icrm45557TOPQ4/Hg9XoJBAKmO1+ywHXZEKusrOTzzz8nEokwfPhwevfubbIs8+fP55NPPiEajeLz+Tj33HOZOnVqG0BkVySzG8zt7azLKRaL8cEHH/Doo4+yc+dOVFU1pbyzs7NNlbTevXvTp08fy456Q0MDX375JRs3bqRXr15cffXVFulvAbDs7j32NskgSVaTS+YWJIMWYazKzJ1dIML+jGzQykIAcrtkVsP+rAzk1q9fz/Lly7n99tstrJgQVvjLX/7C6NGjWbhwIVdffbW5sy/GXbhlzZ07F0VROOWUU0wXLsFQCNcuIR8t7olrQpRAgBrZVQswWQdN0/D7/RZAa2eZ7IyOGAvRDpklsTMkYhzlDQKAuro6nn/+eaZMmcK4ceOYMWMGfr/f/I6I5z755BP27NnDZZdd1gag2edBiFXI3wc5v70fydaQHejJghmyS51wmdu3bx9PPPEEGzduZPDgwcyYMYO8vDyzD8Fg0HShs58TJq8LUZ5cj/xeuNQ1NjaarneCIRTCM+Xl5cRiMXJycqioqEDXdTIyMsjMzDTlxjVNM8/6EofTAuZ3Zs+ePWzZsoUzzzyTmTNnmmIiKSkpFpaprq6OM84446h/I8Rv7XnnnWeybf9KCofDzJkzhwMHDljqFWdbHUvKysrioYce4sorrzym/McFE72udHpPuobWpiq8WflGhSUDqNj2FaBQdMZFhquWBorqQA9GUFweNHQa92ymbtM3tJTtI9pUjyczj6y+o2ku30Pt7nU4fQF8OcWklfSOB8W3n2RPHLc/jaw+I8170eYGjqxaSKSpHlcgHS0aRguHcKVm0bR/By5/Gr7c4sQG9Q+x6auAojjI6D+C9H7Dady1lcP/fBUALRKm9cAe0wiNVFbQuPJL6+MOB50vvpGsgWPYt+AFDi99l04nnIPuUo2YmzjbI7sFioNnLbEwkjEplN/kpKugKQpKnBVyRMAR0tHDhhGpORMH6gLoMQzDV5WMVaF6ByYlYpf8VgRAUkFHMT9b5MTF4w5o3b2LwPChIM6HAguASenTn9Y9O0np25+m9etJPXWclE8xXS1bN20m/4KfJQcxdqAi1ZOMZbQb7AJEyy6RupOEEluyjQ4x3qZV37Ye87q9aQ7M83x1BfydehDI6UxV3XaKC0eiuR0oMQ00xWKce7wZNNft6pjNiLMdqprY4Wn30FUkoCQTDQIoKTagJK61qROUmE6qN5cBJ17LkSNr2b/mnzQ982dKL7wOT+fShOqdNB+G4qM0RtIYWpikZEkebyUBdHUVXKVF9Dj/Fg59MpvW5jpKRkwnq+cwnD7DfUEX4Ux6HKw5FOP7qCQApa466DHoHBSHg837/omji5Oi1H4JXf//JWJG54eJN/oX+cX/M6mgoIAHH3yQHTt2UFhYSCQSoV+/fnzxxRfEYjFuu+02c0fU6/USiUTMWKTNmzfz0UcfsWPHDqqrqyksLGTChAns3LmT9evXk5qaSp8+fZg0aZJZRjJ1NHvKy8vj/PPPNz9XV1fz0EMPsX//fgoLC2lubqahoYFOnTqxYsUKioqKGDJkiKUMmWWSQQC0NRDt8RHin9Pp5Oyzz2b69OmsWLGCG2+8EV03xAD27NljPldRUcEXX3zRpv7rr7+ecePG8cwzz/DWW29x7rnnWlQAZQZBjl+R2yTGSezSi1fZlUl2ERLXZdZENoxl5sleX3sAQW5Pe2Moj5+qGgeGTpw40dJHuU8TJ07kiy++YMKECSxcuJAbb7zRLEOAGZfLxfLly7n77rvx+/0WECWAkXDLko36ZPMpPsssHiRkq8PhsDm37bGR4jn5syy9L4Ml+5iINgjgEo1GcbvddOnSha+//prTTz+dlpYWE7CJedM0jcLCQlauXGkBgB0BpnA4nBT4drTW7esvWWqPgSwtLeW+++7j888/5+WXX+a///u/ufHGG80Dp+1jrqqquT7t7ngiyWwdYK4fmW0V4CoUCpksd25uLrW1tdTV1ZGXl2ee92Q/BFl2u7T3r2/fvjgcDhYsWIDP5zNd8jweTxs1yONJP7QbnlABFOnee+81XaTbS7FYjLfffpvm5mbGjBlzzHUeH6emAA4Hvox8k8XQFWiq2Is3rwjVbyiROUKQ0WUgdWu/QtciVK1bRizYAih4svNB0wnVVVL25T9RnC4cbi9aNIIWDpLZZyQlp5xrxjm19xdbNqrF50hLI/s+eY2isWfhzymmZscaIk31pPceSN3OdeT0H0P1pq8AKB5/DopitWZM4KTb7Cxh4+u0MWwtxrYCkfpaKr/4kPR+wyicOtM06CINdRx8/3XyzjqP8vffpnDmJeiRCFqwhSPvvsWRz+bT/fxfUHryTA4snYPPk0lh/wkm66O54gp5sbjdLjEhMlgx26eJezoi2F53GkpzoJjiEY6QjhrRcMUUUFSiYYWoD5SoAQZkdktXwTIAepx5kQFEnEFIuAPqBpOnSm2OKQkwouqgqOjRmMk4GUBJMd0H1WAMBZWUfgM4/PIzePv2wlWUZzJPCtD4xZd4ikpwuL0WoGQBX/Fr4swrcy21A660+HgpJJgJR1g3lAHdCjEvpuqazDjJS8PAEpLAg8SMtmvo6wnAJNqiKwoFQyez85PnOFzzLaldS1BDoKCZ4hQATcFKfO7MdgrGBEpG/XaE2MGPn2p2xgRDCeYocc+MAxPv4+UqGC6DalhHVaAkexh5E3vz3dcvcGjuS3S79FbID1jXMCTU8eLjIqdk4jLtzbmuYIyngqmSp2QE6HT2lajRRF5NrBvFGB9dN4CT5lBQnMRdRxVzYwDFSZdhZxPVI3y37z0cvVLId3c2xTiMH49/L+z4T8zS8SVhyHbq1MkMjHe73ezZs4eSkhIyM43vk6IonHrqqbz33numpHddXR1guHnouk55eTlvvPGGKRShaRqNjY1MmzaNhx9+mEAgkDT+pj3DG4zd2+uuu47f/OY3DB8+nPfff5+XX36Ziy66iHfeeYcrrriC2bNn89xzz/G3v/2tjauM3V3Nbiza2QKZIRH/qqqqeOihhzj11FN54IEHiEQiNDQ0sHfvXv7whz8wc+ZM3nnnHW6++WY0TaOhoYGnnnqKBQsW8Nvf/pYLL7yQ1157jdTUVCZOnGgafHaWKBnDJMZKVlsTfbTLG8vPCwNesB7yWMiGdDI3NfEqM0tHS/JY6rpuxqjYyxV5RfzW+PHjeeutt9i0aRMDBgww267rOu+99x6lpaXk5+ebYEgoMkajUZMVEADK3g7RXzuYjEQi5jU5ZisUCtHS0mKqGMrA1M6EiLERAEYGova+yqp9shtWKBSiX79+fPjhh8yePZuioiKKioosrAfAd999R0FBgXn4antnHtmBoX0+7fnsYLs9ltHOlNnvC8bu5JNPZsiQITz44IM888wz3HnnnaSkpJjtlYGGXRFQdo20xykJgChk+AXTI1jEcDhMamoqjY2NhEIhsrOzLd9jt9uNx+MxWTu7Sp+8FgQo6927t8ngCGbTDpaO1x3uhwZLyZil9tLGjRsZM2YMwWCQQCDAu+++Sz9xhuMxpONTw5MNGR2aqvZTtvFT6vdtInfUpITh3hqmdvM3NB3YDoAvr5SMEaeC00nZkndBUXD6U8nsNYLCE6ahOBw0HtrBvoWvUrv1G3IGjiMlN44YbYaTtUHxLPHXinWLKTjhdPy5xbRUHqRh32a6nn4lOFR82UU07NtMySkzqf7uSyrXLyNv6Ckd9ldmsCykgABTNsMOHapXLsaTmUvWiPHGtbgCmys1g8JJZ1Pz5VJSe/UncuAggZ790NOyyZ/yUw68+iR1O9aRPegEInU17N/wAa6UdLJ6DDcAhhr/F2+IBSjJ7InMLul6wqBUdHTNAC26CjiNGKWYW8ERJg5y9bhxaohRaJoB0BRh4KvWOhQNUwIc4nahI25wxpXFlbhUtMmGiXOfhJGtQUqfvjSv24C3sNQASQLoxfvYtOlbMk+eiOJwkHfhxVTOn4sjLRVf797orSGaN27EnZdP1qREsF57rINoszleYj7tuEGMU9y4dgBEEmMru+TZ8KM1RkqR+ireK7a84oN5MVGuCVQVCHTrS1pBTw4f+JquXSbgcXrQYhCM1NMarMHtCnC4eiPDu12UKKQ9Q10CTYnBse02i892oKRKec3rop2KFShJ9ZmS4jooUR2P4qf/iJ+x9ou/c/C9lym+4jpwxwOzxfNijJN0Q8Sb2ePGLOOa7BkpFk13xIVGBEMo5i4el2agJYO90zRQpY4Jt1hFVek+4lyiX7Xy7Y7ZDO/5M7I8Rckb8G9I/wFLx5eEAS7canbu3Mm7777LypUrmT59umkohcNh5s+fz7JlywAj9uSiiy4iEAjw4IMPoigK6enpnHTSSdxwww24XC62b9/Ob3/7Wz766COuuOIKxo4da2E6ZCMtWVIUhaeeeopbbrmFESNGsH37dt5++23mzJmD0+lk5MiRvP766zzwwAPMmTOHRx55hDvuuMPy/LGwSe3VLe4988wz9OjRg+uuuw6v12saVW63m7vuuotnnnmGkSNHsnPnTiZOnIiu61x77bXccccdrF69mtGjR1NRUcHHH39sCkoI41s2IpNJFNtZDPGMvDMv4m3kZ+0AAWgDHNpjEpIpCsrP2McpGRt10kkn8c4773DCCSdY+iHK+uijj5g5cyYul4u//OUv3HvvvaSnpzN+/HhaW1v5+OOPKSoq4rbbbrMY9QKIibKEYIZ8wKxsyMriASIJty5x2KoAUKFQyJTt9vv9SUGkDPRFGeFw2HI9GViyx5yJ711WVhadOnVi1apVbN68mUgkgtfrpbGx0YyzmT17Nn/+859pbW21gFg7iybPux0sye2xg6pkGwQdlSGPiWiHGH+Xy8V1113HfffdxzPPPMP1119vAZry2MngWm63zETJLpEy8FQUxQQ+sgiDYJvkdS7cf8VZXPIaljccZOYbYNCgQYTDYd5++20CgQCTJk0y6+xoXNpLPzRYSktLO2YX8d69e7N+/Xrq6urM+LalS5ceM2A6LrAkDJBoLETZuk8o3/g5now8SiZdQEa/4RAGNI2KVZ/SfGgXgc59iAVb8Gbl4/D4DfCk6+QMn0DhCaeze95TNOzeRNXmr2g6sA1/ficKp12OP6+0jXGkKxBpqqN609e0Vh1EUR2kdelPRs8hOByGD2RrdRnFJ54FQNXG5RSOmgYOY9JTCrtyZPXHAGQOOIE9858md/BJKJIrUrspblgpxG3PZHMdNwLDtVU4UwI4A6mJmKH4qzeviEhNFf6SbuhNrahhw9gKlPQk0GsARz6bj2Oqh7xx04i0NrDrq7dQAwHSSnsbB7lKhraIUUqAIRLslzRXZuxO/KIWN2yFCETMY3RMiESoUR01pNF8eCd1+zei6TF8JV1IGzAUxeO29N0ENVqiPl2wTHp8914jblDrBgsUjwkyi1EUvCVdqFu8mPCe/XhLOlvYsqbd29C0GK7cXDQVHGmp5M+6gvCRw4T27kdxuMideR5Ob8AS3G+OiQBN4lp8PNqNIZIAsJlHBT2K6WqmK3HXSAnUtFkvegJEGhOGeQCuHVwlZUNIALIEs6fQ6cSZbJr3AF+teAiny0s42IAuBh1DsXHDwXlkppSS6Ssh3VOAqiQU38zJaQ8YyckEg0ry/PF1ZAAlCUiRZGPDnuL3Pd4Mep34MzYvfpr6VV+SfuJJFrAItCuAl2hLYvPCnGsJCIsyRJm63Lc4sBdxgLqYu7gapa7H/e11g+nU4sBf1GucGwWK6qTnmEvYsvw51u16g5E9LyfVk2cwqjHaAtP/wRTVVEEh/+vl/AiSMCzC4TCzZ89m9uzZ5Ofnc9111zF58mTTOHjzzTdZvnw5EydOpKqqii5dulBUVMTq1avRNI2zzjqLG2+8kTvvvJO1a9fywQcfsHz5cvr168df//pXxowZ08ZAUxSF8vJyXnvtNdauXYvD4eDUU0/l3HPPNRWt1qxZwz333IOiKDz//PPcc889pt//0KFDue+++wA499xzOeeccwiFQuYOq53t6IhRESkZGNi8eTOlpaUUFBSYQEnc69+/Py0tLWRnZxMMBk33nhEjRjBx4kTeeOMNLr74YiZOnEhdXR0ffvghqamp9OrVy2Io2t0SZcNSJLuhnMyNSHZ1srv3rVmzhiVLlhAKhRgwYACnnXYaKSkpbeqQ67KzCvYxS+a+B9CrVy+qq6v5+uuvLaqAAKtWraK6uto01LKysnj88cfZtWsXa9aswel08vvf/56MjIykbm2yS59gMAVglON9xPoWDJcYC3EtFAqZrJBgBOvq6kxm1A4sZZADmO57wu0tmWKaeC4ZeyhcCfv378+hQ4e4//77SUlJobGx0awDDMbgzjvvpF+/fgwcOJDevXvj8/mSzv/RJK7t7JH4J7sS2tkm+9oQ7+2MrWB5XC4XV1xxBX//+9/5/PPPGTduXJu5sa8rSLge2gGl3E/5eyGrUYo5sLM94rMMguSxkJloezyhpmmMGDGCSCTCK6+8QkFBASNGjDAVB+U5OpaU7Dv9fdL3KcPtdpsCDyNGjOCbb77h0Ucf5emnnz6m548LLLUGa6n+bjXV21YSiwQpHDOdnGGngAKth/ZRv2MDdbu+JdJcR+7wiQSryug54xdE6mtoqT5EereBNO7dSu3Gr4g1NtBSsY+9i3biyyul85RLyeg+2Fg0ScBqw/6tVG1YRt6wieSPnooei1C3fT173n+ezpMuxukLmBLaANHWJjzpOUZRCqAqqHFKWVFVPFn5RJrqcadlJcCQTiK/fE36DCQMMOmyTvxH0+nCk1NAy+G9BHr0MYxJEq5fisNF8MBesvqNRo1gBrAXnD6TsvffYv+7z1PbaxBFJ51JONTArs9fptf0G0jJKjYMN8mAVDTpi4sixRIRD9aXPmvgEG55umIKOES9hsuc6jCAUizUyq4lr+Mv6ErBgAloAReNB7Zx4K1nyZt8Fr7CkuSGqzAywcI0qebmvGIBV6YKtGaMZMFPL6Jiwds4vD5S+vQHTadpy7foQO7ZM+PqfkYFigbu/CI8eUVx1z3Jza2DJFyxLGFekuFrTqq9f4oE/OKfdScWZsk01AVIiufRBFh2SPntgFsGS1qiXfJZVYLZU0tyKRk/k9pta4gGm/F4vSguF+5AJmnFvYg11NN0ZA+7Di9Bi0VQVCdZ6V0pyhlKfqAnjpiYENtum2WcjmLYy6ySeBWg0s4qKYoJzuS1K75nig4ZGd3wZxUROnI4oUIog0T7nLQDLtuwSsmAsASmxHoQjJIurWFxILGui/gfY0LE2WAyM2X2y+Wm57jLWfvPP7C7YjmDu86MN0MzWKp/UzIA3r9e3w9Rxv+FdPDgQT7++GM+/PBDmpqa+NnPfsZ5552Hx+Nh9+7dLFu2jM8//5yysjJ+9rOfUVZWxrvvvktlZSUbNmxg6tSpLF26lM8++4xYLMbWrVv59a9/Td++fXn44Yc555xzkoo6qKrKl19+ySOPPMJNN93EbbfdRiQS4Z///CcXX3wx//jHPygtLTVdX8BwOxGuWiKlp6cTCoXwer0MGTKE3bt307dvX4vRZwcW7RmA9nsiud1u+vbty9q1a5k+fbrFgA8EAmRmZnLw4EFOOeUUU11L13Vuv/127r//fp5++mkGDx7MWWedRTAYZO7cuVx66aWUlJRYZJ3tu/ui/QKwyuMo2i76Jo+vfJiww+EgGAxy3333WdjAb775httuu40bb7yRQYMGmeXZDXD7+/YYOrCqdKmqyu9//3v+8Ic/MG/ePE499VQUReHTTz8lFApx//33W8Zb13W6du1K165dk7qY2T8LQ1mATXHgqxx/JAtCiPETbFIoFLKU3draSl1dHY2NjXg8njbsnRhTwaDIbFQoFOoQLMnX5bUjgFYoFKJHjx5UVFQQjUZNY9zj8ZCTk4OiKBw+fJiNGzfy2muv4XA46Nq1KyeffDJjx44lNTU16fcr2VoS1+1iH8n+2dsvA/Vk8VJguBY2NzeTlpZGcXExBw4cMJUxvV6vyf6IuDNFUSzCJTLzJLNWAjQJJTzhmiqec7lcbQ6zldm3o7khykBTfN903YgRnDBhAnPmzOHdd99lwIABlvOjjif90MzSv5J0Xbd8B46WjgssbXn3Lzg8PrL7n0DOgBNx+FM5suJ96nasJdLcgNOfRka3QWR0H4S/uBt7PngBRVFxZ+TgzsgBBVLyOlOxdjGN+7fhzSokb8gpZHYfkogtEJVJYxFtbaJy3RK6Tr/KADwK6DGdjF5D8Bd04eCyd+h62hVo4RB6XOFL1zVjF1iJx8/ENLRY/LRqQIuGE6zSvzDuwqg12BsFPRohvf9wDi98m5SuPVGUeB066LEosWALYU3Hm1+ceB5wpqZRfNHVNG1cT/nH89nx6kPkjJ1KNNjMjo+eJm/ASWT1GIEnNcus24wdkY3LODAiLqag6LppHIp7asyQ2hYMCSjoqiEnvufreRQNmoq/oBMxjxG/lNlvJIFe/Tkw/0VKzr8K1eNJAEiZLZF39e3GbfxV3umXWRWn10fReZcSqjhCy54doKpkTZiCMyfbagRLhrGQKzdd46R6FQ00XSd0YB8tWzejx2L4unQjpUdf44dBlJWEHUpqIzqsbJI4oFk8a46HZHTrcddJ2XWvXfcwMS6q9bPJhMT7pqmQPvQEMgefYDlwVtStRiE/BkRjhI4counIbmr3bmDjjjlscfooyhlM97yTcCveNoCpTRLlm42TBsYcNwW7+12CaRL55MGNPyZ91xUdXJ4A0fq6RJ/tbo42gHlUcQdbksGw+Z2VyrXshegkGDJVDIWRWVcVVGlMDFGLxHMV+1ahaTFKS05Ed8T/2KL+W8Ue/nMo7fGlq666ygxinjFjBoWFhbz44ot8/PHHlJeXk5WVxdSpUznjjDMYM2YM11xzDR6Ph86dO9O5c2disRjDhw/nySef5NNPP6VXr15ccMEFnH/++aaxDliMN1VVaWxs5KGHHuLNN9/E7/cDhqF1xhlnMGrUKH71q18xZ84cwuEwkUjEwiDIxltNTY3JJAmjzA6MZGZJvpfM+BdJvq5pGtOnT+emm25iypQpFjCiKAo1NTU0NTUxevRos8+6rlNQUMAjjzzCBx98wGOPPcYDDzzAtGnTaGpq4o033uCEE05g8ODB5hlCyeJChGuQMCSTqefJRqxs8Anj+NFHH+XSSy9l5MiR5v0zzzyTiRMncvPNN/PQQw+RmpraxqA8GnhKlmTZba/Xy5///Gf27dvHV18Z8dKzZs2iW7duSV3W5P7Y65P7uWXLFlMtceDAgYwdO9Y0ugUw0nXdPKRXjlsTBrAckyRAla7ruN1uk22QRQbkWCkBxuRDWeUx62gtied0XTeBkjivrGfPnrjdbjN2Sjb8xUG9mmacHVRdXc0LL7zA66+/zsiRIznrrLPIzc3F6/UmBQJy3JRgd+T79nUn/5P7JOKHhNuuDJoEYxcMBmlqasLr9VJXV2ce/irm0D5uMliRfy/sgFVuh6wqKANFefNBvNrPcJKfkQVnZNVImbXavHkz4XCYCRMmmP2UGctjTf9bYOnuu+9m2rRplJaW0tjYyFtvvcWSJUtYuHDhMZdxXGCpdORZZPU7AcVv/DAf/vp9qr79gpx+Y8noNpiU/C4oimqeVePNyKOlfD/+/E6mQeH2Z1B64jloJ+rsfv9p0rsMOKrRU7P1G3KHnIzqdFK7cz01m1ficPtAi6HHYui6RrC2gtSSntTv+paM7kPwZRfTUrYXf2Fn6vd8R8XqxWjhEPs/fZPM3sOJxtXykib7zr+UhH1lySe1P63nIBp3bCZz0GgOvfMyOSdNxVtYjK5pHPn0XaLNTRRMnkFMiaGoDov8saoopPcbSqBLbyqWvE/FkgUUTD+f4J7dlG9YTNnqhQSKepLdayTpXQficHlM1kOXXInQEsILGoYam4rUTsF+YDyjOQFFIdhYDS4n/oJOFgUyXTEOAU4fMpqGTWtJHzHG3HU3h0JNGKEmi2KLN2mz46/YringySvAnV+Q2P0XWTUx+vH2J5mfBBujEwuHqJj9Bu7sXAIDhqI4nLRs30ztl8so+Ml5uDOzTYarvSQb5LpDOqBWum9x24v/p0n90c0biX4mq9Osxz5Wcl1iCJQEY2WOh9ROFMDhwNOpE56STuQOGU+4qpyabd9waNdXHKn+jr6dp5Mf6JVULlzR9QS7lAww6QJtSO2S3e/EBoXDmseIF2v7Za89spX6w9vIO/l0a37B9MTj8mR2rs1vRnufdWldxMdPj3fDwghidkkaCAmwkfgu6SqoscRGhdy/sm3LcDg9NLQcJuDNxenwGBVE/33A4z8xS8eXLr30UqZPn052djYej4dXXnmF119/nXPPPZczzjiD0aNHm77+qqoyaNAgVq5cyYknnggYRkdBQQG/+93v+O1vf8vll1/OWWedZbqyQFsjDGDu3LlcdtllpKSk8OGHH/LCCy+YBrtQBRPM1Zw5c7j44osZPXo0ixcvZsKECSxatIi//vWvVFVVcf3113P++eezdetWunfvbvZNNvhFkj8nY5iSGSLnnHMO77zzDtdddx2XXXYZt99+OwMGDEDXdR588EGqqqr429/+htvtNvstYmtUVWXKlCkMHz6cp556ivnz53PhhReyZ88evvrqK5YsWUKXLl0YOnQoAwYMMFkFmSUSO93yGVV2w0t2U5KN45qaGsLhMCNHjrTIiMdiMdLS0rjoootMNs8OkJKNX7IkDNFkLl0AnTp1onPnzhYWqSOWKhlAE+vi3nvvJT8/n2nTpuHz+fj666+59dZbufPOOyktLbW4cMlAQAZLbrfbVKMDzFgnn89njrf8jHhOGPD2WB3ZJc3unibmRCSZmRGxUzLzKd6LDQBZ/U8AK1VVyc7OplOnTjQ2NvLNN9+wdu1azjnnHMaNG2cyH4KxScZS2q/L4DwZ0BJtF6xcKBSyiIWI60Lee9euXezYsYNhw4ZZQJU8PrKrn535SgbWZDZMPC/WsgA4MiMlgJkQArEznzKLJL5f8vdO1Llx40ZcLheHDx+mubkZr9drgvHjSf9bYKm8vNz0CkhPT2fQoEEsXLiQyZMnH3ud+tG2SUhopA8/734Uj4uaqu3U7FhD3a71FI6YRuGQSUZGYSAqUH9gCxXfLiFYU4Y3pwhPWg65Q8bjychF0Q0AFG6soWDE1HZalni795NXKTnlXKq/W0E01ErBqCmoTrehShZsZfdHz+PNLqR4zJns/eQV0rsOJFDQnf1LZ6M6naguD1okTNdpVxBpqmf3R8/hzcyny7TLE+2W6rS4/cgGoZzH3lbTttQ4vGg2rvQsUrr0pmHrOkI15YTratAiYdwZ2bjSMom1tuBKyyB37GRcqZnGw5LrkeaCvU8/gjszm5KzLkNvCdG05VtqN62i+dAuVJeHvKETyR852XSp05xGw9RY4nwgNYoZ22S44MXbryqJZzAMvdrta0BRyOoxzOiLI3G4reaESLiZisULKDzrQqtLWZKxaOM6Fc8rwJzlvCNbPqtUOSZrYgdW5lwBoSOHadltCIr4e/Siduli0k84EV+nrpayI3W1lM97i5KfXWMwi5Kha4lpsq0Bs17RDpn5sRv38v32vl1yn6U87Qo+yGvUnl9v/1UuS42BVl3HgS/mUnt4Mz5/DulpncjwF5ORUkLAk4eqCbQXTzIjohh0jKGsqIKqoDkVdIcqKSDGAZIASnHpeeLrTw3rpvuo7lBoDFbw7fInSCnqSsGls9DdAg3FwYsGatjoT8yN4f6oSGdQ2UCR+V4IoLQ3V5JAikUkRTxP4rp4NeME4+xssjlpOLSDw6s/oKn2IKrqpLBwOJ2KxuDBz5Jv7v+3nLM06t2bcaYc21kTHaVoc4hVZz/6//w5Sx988AGBQIANGzawaNEiFi1axFVXXcUdd9xhYScUReGLL77g6aefZv369QwcOJDi4mKuvfZaevbsCcD777/P+vXr+e1vfwtYjV+7AXbLLbdwzz33sGDBAnbv3s3vfvc7M36moaGByy+/nNzcXB5//HFmzZrFxIkTmTJlCtdccw3p6ek4nU4aGxt5/fXXqa6u5qKLLiIvL4+3337bNLBkdxw5HcOf/TbpjjvuIDMzk8mTJ7NgwQK2bNnCgQMHaGhooEuXLpSUlFBXV0dubi6/+MUvKCkpMV3AmpubzTN9br31VtxuNzfffLNp6H799dfs2LEDp9PJuHHjOO2000zmw+v1mmyHrNxmj6dRVdVU/ZLPV1q+fDl1dXWcf/75ljgcYTw2Nzdz11138dBDD1mAgPzaEVuSzHCzG+J2I9huENuTqG/nzp0sW7YMTdMYOXIkb775JmeccQZjx461MAsVFRXceuutPP744zgcDtOQF+yHcJcTbm8NDQ0Eg0EaGhrMOBtxrT22QIybLN0dCoUs5wHJY9ZeksdUVrWTQbHslimzXoK1kfulaZpFECItLY2ioiI6d+5M79696dq1KykpKRbWRAbTMgspK/bJwEFeM7LroOhnMBikubmZ6upqGhsb2b9/P3PnziUzM5MpU6aQnp5OdnY26enppvtXJBJpw6AKNz3BfNnd8OxjbWcd5fO0ZFBq/yd/Z8T3TByeLbNKos979uzhs88+4+DBg+Z3dNq0aWRkZHDNNdcc8zlLl1122Q92ztLLL7/8b/3bdFzM0p7V82go2060tRFvZgHFo35CXv+TEgZd/Dtfvn4xkZZ6uk66lJbK/ZRvWIInPYcDi2eT1W80LUf2ga5RctLM5BXZfjscLg/B2iO0VByg89TLDIW1eH0Or4/0boOo2bYK0Oky9TJqNq/k4Ip3CDdUEwu1kFLQlaw+I6ja9CUNezeTP+xUgrXl1O/ZRHrX/m2NerAY5MeUhEGqqBRNPZ+mPVupWbMMLRJGdXlxeHzkTzyT1B79UeLb28GqIxz64E2Kp16AOz0r4eIVBwuBfoOoWfYp0UgrzoCPtCEjyeg/kmhNNYc+f4earavIO2GyKdhgsg7x9qjYlb6UhPEXz2MRO3A5iEVDxNxY4oqEe5fSEkbBgRoRbFRbxiMpSEoyTuigxutoI7ag2DCBZAjb1f9ioVbKF8zBkRIg0HcgClCzdDHB/XvJ/ckMy6G+6ODMyiSlb38at39H6oDBVuM5PjYmG5SsP7r0D+s9XU9y/xiTyW7YxuhoSY8/K+pOJpkuytGcoBZk0OmsK8ncvZmmvVtoqNjHkfL1oGu4PakU5Q2nJHsofme6IYdoNjC+I6oobV3KzLWn0NpSxcE9ywgG6yB+4G1el5FkF0oMsqIQU6Ls2/05B7d/jicjl8KzLjYAmNxvsabiyoqy7Hob4Y6OBigJGE02PiYDivUZU0BClbC77Xuk6zpHvv2Mpsp95PUZR35Uo2LX1xw+/A2HD6+itOTEDhr5w6aYpqL8AOIMsR+JwMOTTz7JypUrqayspGvXrtxyyy1cc801prEtjJkXXniBrVu38thjj7FlyxYeeeQRevbsyd13382MGTPYtGkTDQ0NPPLII20MYLthrSgKKSkp7N27l8WLFzN79mzLM2lpaZx11lk8++yztLS08MILL/DGG29wyy23cOjQIdavX8+IESO45JJLeP311/nggw+46qqrqKioYN68ecyYMcOyI21nKr7P7u6DDz7IkiVLePbZZ2lqaiI1NZWMjAx+/etf85Of/MSsY+fOndx5553cf//9dOrUqU1sx0knncRzzz2Hpmnk5OQwceJExo4dS0VFBW+//TarV6/mjDPOsNQt9yOZUIB99192WRPgQWYt5HJbW1vbSGTLdbZn+Cdzn5OTaFN7YKuj51paWkzwPGXKFFRVZfbs2Xz11Vfccccdpqul6HNBQQFnnnkmn376KdOmTWv38F05gF8ot4kxEq6OApTY2S/ZIJfV9+TP4n57fUsmNS36kCzeyV42YAIqUU8wGKS2thaXy0Vubi6xWIwDBw6wbds2Fi1ahM/nY+jQoYwZM4bi4mITHMjgSDCiMvsjs3JHjhzhrbfe4sCBA2bM0Pjx4xk1ahSRSISmpibz7LMlS5awatUq/H4/J598sgmCBBARsUcyEJOZLnnc7JsCMkiSXU5lYCPPg116XAan8gaD6L/P5zPXgSj3888/Z/v27YwbNw6Xy8WXX37JsmXLWLp0KRMnTmx3XSdLMvD8V9IPUcbxpuNiljwZeaQX9yG7x3B8WcVx0CKsTeMlWF9J2ZqFdJ54CUp8lzkWbKVmxxpaqg/SdHAnXafNwpdzFGld6be88cB2ytcvJm/oBFJLe1t3+jWd3e8/Q1rX/jg9KWT2GGrc0mLsev8Zuk2/ltaK/QTrK3D6UgiU9kZ1OokGmzm4eA5dTr8iUZZs+NpYj/aUzyyDl4yNUqBm3QoUj5uMAYnDc4WhFaqppOqrTyiZdpHJ4Ah3o0h1FXueehBUldS+A0kfMIJAaS9UTaFi2UfUbvyavtfcJ51vJDXFfgaTVK8SSwhO6I6ESls03MKBT9+i85mzzPtqLFFG+frFeLILSO3ez2yn5sRkxCxy20kGybKbH39vVXuTxs9WlqKBHjNQn6HuZtw79PZLZI05BW9pF3O+6tZ+TbSlmeDh/RRcdgW6KiTUDbAYramhbunn5P50hsl6mIH77SS7R1JHZyS1OQw3yVh0dK1dgQJLJmueZEySpY0y6yIYl7gqoRYO01q2n4btG6jdtoZYJERGTne8ngwcqgtVdaE6jFeHy4PLE8DtDuB1BvD5skFV0VVoaDrMnu0L6TbgJ/gyC9BVhWgkyKGtn6GqTjr3mgyKQk31Dnatn0e4uZackRPJGn8qeN3m+hUA3nS5EwqLcTGFZOta7qciMUsyS6bYxsDyans+GZspM1VG+bp5rXzTMrRohMLBp1ryh2or2br4aUKt9YD2b2GWhs29DccPwCzFmkOsnfnI//PMUrdu3TjxxBOZMWMGQ4YMsfjwiz/Khw8f5p577uHll182DZOmpibmzp3L+vXrWbJkCS+//DKDBw8GaGN4g5VtUBSFb775hj/96U9cffXVJtgQz4Khbjd9+nTAcBUU984880zmz5/Phg0b2Lp1KxkZGZx66qnm7vqsWbOYPXu2pR0iHYtLWbKUzEyYPXs2LS0tzJo1y9J2TdM4ePAgv/3tb3niiSeIRCLU1tZSX19PXV0ddXV1/PznP0fXdU488UQmTJhA3759CQaDzJs3jw8++IAHH3zQbKs4AFgYdXK8lH1MZaNfMAORSIRf//rXPP7445YAemE0vvnmm6Snp5suOfKO/tFYpfbGSG6fzGjIwEA2cDVNs7Bmv/rVrzjvvPPMWCSA9957jwMHDrBu3TpefPFFswxhAJeXl/OnP/2J++67z3Jorax8J1ik5uZmWltbTTYpFAqZZ/QI1kQGPfL8ygBJMD7JwJKd1RR5RP/tBzTLKZmbXjKgJQQtxPlLIp5JnB0kQKG4n5ubS2ZmprmWBBMpgH92djaFhYV06dKFtLQ0vF4vBw8e5LHHHuOWW26hd+/eRKNR6uvreeWVV2hqamLGjBlUVVXx7bff8t5771FXV0efPn0YPnw4KSkp+Hw+8vPzCQQCZtyhAKMdyd3blebEc+KfiEeTxU/kM6zE+pVZOPFeuM8JoCgOrPX7/eZnl8vF0qVLqa2t5bLLLsPlcqHrOs3NzWzZsoW//e1v1NbWEovFjplZmjVr1g/GLL3wwgv//2WW+k6/GafLa342fxqk343qbSvJHTjeWABxw8Lh9pHbfxwocHjV++jRiMWQs6hkyUZg/H2gpCcHlr5NtLnRoqSl6zrlKz8irXM/vBl5tFaXmc9EQ82407JQHSopBV1IKexiYQmc3hR0y8552/bY25Es2RkQ84LUj8bdmyk9+4qkxq8nM5dYKEgsFMLh8aBG4/adAu7MHLpddxcNG9dQ/91qGr5dQ6Bnf1J7DaRqzRICpT0Shp0dFInrSmK8RN/UOPtkV1xz+P14swuo2fgV2QPGJMBNDForD9J0YAcFfcejB0GJu/4pWhxsOUispvbAkgBK0YThaari2fPrCTDVumcntV8vQ4/FxTu0GBnDxuJKTceZloGvpIuFDUJVcGXnEGtpIHToIJ6SYsuE6bFYXKZPMpbt4C3JRFviW+zGtJxPHgMbqBFxWhaBgmQA3MaItJvk8m0gKek2iFgTOglxDpcbb48e+Lr3IO+U6TRu3kDd9nU0BCvQYxHjwOiY8S8WDoIkVd5z0EyKCkegA3u3L6T3yItx+PzEXEbDHKqX4kFT2fbFC2xdP5um2v0EGyrxl3Sn23lX4i7IN8G6UBG0uEbKKQ7uFGneQNok0JM80w4raHG7FPfE2Mlzax/TOMtkcb2NRqk7uJnek661xkap4MnKpdPQM2iqPEDZjqVJJuSHTzrtzP33KOfHkN555x0yMjIsu7v2oO/Zs2dzzTXXWIyRtLQ0Zs2aBcBf/vIXGhsbTbehjgCJuDdy5EjKysooKysDEsalrus8/PDDjB49mn79+vH555+bzzY1NZGXl4fT6WTEiBGMGDHC8mwgEGgT55Cs7o7e29uS7D7AP//5T5577jlLjAwYBl9JSQmqqlJXV0dqaqolqD4nJ4cXX3yRpUuXsnDhQhYvXszw4cMZP348H374IZ07d8bhcFgMcSEs4HQ6zfgMOziRXdxksOrxeBg0aBCvvfaaGZcECfeixYsX87e//a1NTElHjNCxuDHKbUiWf926dbz88suEQiEcDgfhcJhzzz2X3r174/f7OfHEE01QAcaBocXFxYTDYdasWcOoUaMs5Ym4o/bmK9lYJfsnxsYuLiBiY2R2Qi7THpck1oSYKzuIAixxRckYPXku7eULMO10Ok2BFBGPJSTRRXsFq9PY2EhTU1ObcuxCDeeddx6XXHIJAE899RR//OMfyc/PN8cnEAhw4YUXct999/HEE0+we/duKioqyM3NZerUqWRnZxMIBPD5fKSkpFgULVVVxePxtJG1l4GkPMay6qHIL74Tov8ej8cEf/L30Q6wWltbTTdCocQnr09RVkpKCi6Xi1WrVvHoo4+a7dV14/ytSCTCRRddxLfffsuSJUvaXWvtrb1/Nf0QZRxvOi6w1MbtSkpm7EhjDb6sAiOLZGAI48KbWUC4oYaU/M6JYqXfEcszccNOURSy+4+hdvta6ndvJKWoG1o0RNOhXWR0G0xO/7FUblyGW1KKU51uYuFWyxkslvbqOrrWQXCarZ+6FqN+x7fUb1+HrmmoThfp/UaQ2rVf0omTgZ+iqCiOJEMd76srkE4s2ILT5cF0n4s/607LInfMZHLGTKJx13cc/nAOTbu2ktq9H52mXmwBFZZdcrshLhn7GgbYEWOtCTU9BXLGn0bFsg/Z+/4LpHUbgFN107R3G7FQkO7jLsYRU0HT0aKgOeNy4K74AbZgyGQnAxsSIEnKDEjGp5waN66nefsmCn5yPg6f4c+vBYNULfmIcE0VWeNOtZYB+Lv3ouqTD0gbM5aWbVvxFJdYjOvmbzeQ0rOvCdLatEdGwPFxE33SkdgFXTJKdevjbVISMN5u/LzMdNhAmj2f5a0dmNnfi0sOLIyJBVS7PKSOGkXa8FFWAQwBDNDRWluIHCpj97tPoKSkoLtUmmoP4k8rwOHzm/FLzTUHObTpM+qPbEeLhFCdbtL7DCW315n4+/UDVYm7h1p/I8yxtvU76Rgotvu2TRgLsEoCiOQxShbfJMbAvByfc0XBOPtM12muPUhqQXcw47QSbdAUSO8ykIq9q5M0/n8maSgoyVfhcZfzY0h2JimZC93+/fu54oor2vyxF0ZGnz592L9/v5nf7r6UzEhQFIVrr72W999/n8WLFzNu3DiCwSDLli3jtNNO49prr+XVV1+lc+fE30rBHrWXdN1QGOsoySAwFovx/vvvM3fuXMLhMB6PxxS2kI3TZMa+ruukpKS0cTEU/S0pKaG2tpa0tDRcLhder5e0tDRUVSUrK4urrrqKq666ihUrVvCHP/zBjAO77rrrTAMWEq5FAjCJOkQAunxOjL19wgi99NJLef7557n55ps55ZRTCAQCrFy5ktraWu69916LcEEyNk7uX0dj314+OzBdsmQJ//znP/n9739Pbm4uAC0tLTz++OO8++67XH755Rb2BeDkk0/mzjvv5Oabb+b9999n5MiRljiUDz/8kJNPPjlpm+S65c0AO8iU51AIFgi3MXFdxBKJa7KwAGABPnIck7zRIPdNMCJynJidLZTBg6hfdkcTZ3uBITcu2BMhuNDc3EwsFsPlcpkxbT6fD6/Xi9/vN2MAY7EYn332GWC491VWVpKXl0d+fr65zrZu3crTTz/NypUraW5uxuVyMWDAAEaNGkV2djaAud69Xq/pMinGQrCbot/i90IGbHI8mnw2k4hzEt9zh8OB3+83+yIzr4DpgicYRbfbbQpQNDU1md8nAbrEfHq9XsrKyujXr5/JiAmw5HK5yM7OZuzYseZYHWv68YAlkUxjT/oBiH8n3f40Qg3V+LIK43kS+dEhVF9NalGPNkyIvWy73ZfdZzRNh3ZSfMpMgtVlqC4XeUNPRVUdaJEw9bu/o/v0a81iHG4voBBpacTlT02UHy+w6cAO/PldEmyEuJ1kDmJalAMfvUpKSXeKT7sIh9tLtLWJ6vXLady9iaJTz01MnihPtxSLFg6heiTXGMlAizTW4vSlmAa4cCOSDXVFUUjrPhBOg4PzXqTwlLNxKG6UWNz4jZepRBNKeOLgWVSDDBCH4ypqAoyZxp0AwopK3qTpxFqbadq1nWgoQs6oCfgCeThadZSIcR6TMwa6UyfmVoi5FHRnPABfuPUpWAxgsIIl0X81Fl8KspqaOWZh6td8Rckl11gOD1Z9XnJP+yl7n3gALRw0mQXxrCs9E8XtJrhvH0Q1S72hiiO07tlF1okTE3FKdnAh1mZ8bHSHbmWV4pUJQ78N+2CbY1GWec0OEGx5TawmwINivW9nqawPdQDCpAra3ReV2mfOk6U8BdWdQrTMCAL25hWj69AaqsOXlm8AJQegKNSVbaf2wEZc/jQ6n3sNFasXk3ve+eYYm+51CglXThtoNsGpbYzM+RDlKNZ1JcbGFDkRYyMBGfM7I5VvgiP5XC2RX/psKvMpCjFVA5cjLi2vtHEfBQf6v5Gn+c85S8eXkoEkuyFZUFDA3r17yc/Ptzwrntm3bx99+vRpA6TsxoH9j/y5557LggUL+Pvf/86mTZtwu93ceOONuN1uwuEwc+fOZfbs2abx6XK5SE9PZ//+/XTq1MlSF8Dq1atNlTq5Thm8iddYLMa1117L4MGDeeKJJ0hPT6e2tpbnn3+eG264wRQLsNchksvloq6ujszMzDZjqigKe/fupbCw0AyWT0lJMQ05OYB+ypQpeDwerrvuOm688UbS0tJM4QEZ8Mi76sKwk+ctmSuXHJsxa9YsmpubWblyJU1NTZx33nnmmUYy62EHSx0ZZna3RnmMkzGUYtxfffVVXnjhBTOgHwym8q677mL69OnU1ta2WZPCRWzZsmUmUyDavnv3bhYvXsw//vEPSwC/zErJfXS5XKZro+wGKNzXxPi1tLSY4FsY6OJ54bolXLlkdkkWJRDvBRiQ50kAF/v3xh53Jtou+mYX4Eg2LwIoyFLnAhQINsrn85muZ7quU11dDRiHBAeDQQ4ePEhpaamljtWrV7N48WLS09O56667WLBgATNmzDBZG1mwAgzGLxgMmgBJMF2A2RbBJglxDZnlll31hIuk+G6IfghQJotSyOySEKZobm42Y6t0PXHOkABDYk2IdSkOJ5aFURTFiLeUmcxjTT8esGRbkxaJ4fj9rJ4jqfpuOZ1OOjeeR9rAjYRpLttN4dDJSd3wzDqUxKswKp3eFDJ7DqPsy39SOOYMXCnpAITqqji0YgH5w05FkX7YAfKHT+LAZ2/SefLPcHp8Zj3hukoq1nxK56mXdtzfeP6qtUtI7zWU9N5DTAPW6Q+QP/Y0Kr9ZTN2WNWT1G5HcHQ9I7zWYum9XkjXiZHsNtB45gCs1A9XtJtzQwMGPXsWbU4jq9YOuE21twpmRSe7YSSgxcAeMP0xln75N8biz8aTlmMavgmwg6qYymXCT0zVjR9xihEtgSb6mBFJIGzgUNYxxeK44QDeeN9LSQEPVbnQVAgXdcAXS48IPiQNvdbsBbNv5tye76mDT9k2k9h9iAUoJdlMhbfgJ1Hy5hJQ+/dqUlXvGORx46q8409Jp3rwJ1emiedtmIjXVFJxzEYqqItguCxsgg0hHHCgJMCkDo/iI6xhCFaYbnxIHqNBGOt0E0TIjpdhesdZjgkgJxLQB9/ayjpaOli9el11W23xWgXBjDaDgCqSjNyu4fWk0lh+Untcp7jsBh9PN/nX/5PAnc/F06mKR526PpU7q3iiy2gGoGM94eXLZAgxFw62gKDg8XnQFQtXlVK/8nGhTA4piTG52/xNI69a/TcydohnzS1wBzwRD0rr25RZT/u3n5MWZJZmB11VoOrwTf04JDYe3HWXgf5gU0xRpN+RfLOdHkOyMSLJ7F1xwgekaZ0/hcJhPPvmE66+//rjrDgQCXHHFFdxxxx384Q9/oKSkBF3X2bdvH7/73e+47rrr8Pl8Zn5d1/nVr37FL37xC55//nmys7NNQ27//v3cd999PPPMM+32Uf787LPPMnHiRC655BLzfmZmJr/61a947rnnePnll003Q/GMbDSed955PP/88/zqV78y2ybub9myhUAgQFpaGhUVFVx99dV06dLFVAOrq6sjJyeHW265BYDiYsNV+sknn+Tyyy8nJSXF3E2XQYbsNiQMX5lpACwqavIOu6qq+P1+83DYZK6H1dXVrF27Fk3TGDBgAHl5eW1czOxJZpREu+RX+7ivWLGCiRMn4vV6LXFMor2XXXYZL730Emeffbal/Fgsxl133cWMGTNISUlh4cKFeL1evvjiC3bu3Ml//dd/mcY4JDYBZJlqma2RY12EkS0Mc+G+JcZNxH4JVkIY1BkZGRYFNZkpEWBFBgF2hkkGC3JK5hIprssgyn5ffBbvBZATYy3czGSQIYBANBo1XWL9fj/BYJCUlBTWrVtngi1VVTnvvPNwOBw88sgjvPrqqxQXF5tua4LBEbFBQvZcjK0snCDGVZbFl+N5ZNU+MXdCnCIcDptnN6WlpeF2uzly5AizZ8+mvLzcBGrTp09nwoQJpgurKEfMjRA+EXFKAhyJQ3+fffZZE+jK7pSaprFp0yby8/PZuHFju98Ne/q/LPBwXGCpo6B2kfzZxahON0c2LCavv3E2kqJDpLWR/cvnkj94YtxASV6u7H5nB0xZvUfgTsvm8PL30CJhdF3D5U+jcNRp+LKLEm2JP+vPKaZg5FT2f/IarkAG7tRMgjVH0DWN0kkX4fQF2ulo4q2GRtP+HXSZMdFiCIks2UPGsf/9l8nsN8LivSWn9D7DOLjwDWrXriBj4ChUpwtd02neu42qbz6n9IyfAdB8YAfNB3cRaW4g2tKE6vaghVpx+FLIHWvIs/tzSyg983KOfD6fbW88SN6wieScMBHF4TYNcEPaGHRNR3copioeDomxsI+/jtVQlECVmBfNoaBHIuxbs4BYcyNZ+X0BOLDqPZxuP52HnQkeF1GvYoImzRUvQzIu5TaY5zHZGAWAaEM93sJi2qR4vpRe/ahbtZxg+WE8BUWWdRStqsSVnknu6T+leccWdE0jdchwvEWlVjZGbpeoPw7yNKduUWCzYHoF0PU48FFwBA2Ja4vYRpypkAUKNKcBfOSYrfb6J7+3sDAyC9WG+Tl6SiaF3yaPjsFEJntWAW/XroBOfeVOvCm9CGSWsm/rIrRQENXtjbM8CkXdx+HJK2L7R0+QNmRUGyZMgHtdAd2dWIsWEKtYnzHdBhUD/OuQAJVChAGo37qB+rVf4/Aa/uyxUCsppd1pObCLggln4003jjHQWlspX/UJrTVl5I+cZLrdabEwdds2Eq2vxeVLJbPLIBwug7GWNxpUnxdvZh51+74lo+sgc4NAV43Dr498+zmlY87myLfH57LwfdN/mKUfPnXv3p2SkhIeeOABbr75ZvMsoOrqam6//Xauu+46U0kMrABMpPZ2Vc8880yKi4u57777qK+vR9d1srKyuPXWWxk8eHAbENerVy/uu+8+rr/+evLy8ujSpQvbt2+nubmZxx57jMLCQkvdyVglgEWLFvHOO+8kdS289NJLOe+887jyyiuT7twDnH766SxcuNCUNvf5fGiaxvLly3nooYd46qmnAFi1ahVff/01Bw8epKmpCY/HQ0tLC263m9tuu83s0+OPP87999/PrbfeypQpU5g6dSoej8diKMuGsdhdl92V5KB4GWzJQM4+FoqiEI1G+cc//kFZWRmjR49GURSefPJJvF4vv/jFL/D5fBbQlGwe2wNKMlul6zrl5eV06dLFYgjL+caPH8/jjz/Ohg0bGDhwoHlPxFilpaVx7733snTpUkKhEKeeeio333yzpU55TpO52wnjXCjAyca0zHII9sIjecWIeRCxNwJ8yP+EUR0Oh80YM1Gu7DYpi1qIJDNiou/y+Ig2yEBJzLtdvlxmHQUoFGdJCaDkcrnMuoRL5I4dO+jatSt5eXns27ePiooKsrKyTMAwffp0CgsLufnmmxk9erTJmgrXOLk/ArCKsRF1yoBVdiMUfZTBq/jncrlYs2YNCxYsIBAI4HA4aGpqYsSIEaxdu5a77rqL7t27oygKzc3NPP/88+zcuZPrr7/eBOPhcJgNGzawd+9efD4fQ4YMMYGjAEtgsE39+/dnwYIFpgCNYPnq6+t5/fXXOeOMM/j000/bfBc6Sv8brNAPkY7bDc8ejK8k+SEtGfUTqrevYteiZ3F6UtBiERSHk4JBE0nJ69whu2DuDCe7rkOgoCuBgq7tts3ysA6B3M4ETr+aYEMl0dZmsvqMwpWSZt5vd2c+/l4Lh3GmpBpMhL0eQHW7URS1rc0pGbGKolJy2kXUfreSA+++iKKqaLEoKcXd6PSTywxjTgdXqsGWFU2cib9nT3QH7H7mQXwFnQzjMW4opvcYRGrn3lR8/SkVaz6jZvsaul98C05fiuWATAXQIzqarqDG2QxdACY9MaZyrIjF0NcT5Ygx2ffVXDJLBpBT0B81rOMM6RRnD6W6fAv7Vsyhz6DzifodRL0KMY9C1KuYrnlCzcwCUOSDRuUYGQx3ulBlBf6uPa3zE29zpLqC9KGjqPrkA7yFJQT6GX9YmjZtJFR2kPyfXoAzkIp79EnGYxLwM6dJuAy2UeKzAaVkrJgqjaUWB0vxeCAlCs4WcITiYECFmBfC6cTd+hSIJepss3zs1yQwadlckNvUwffKUo70mrQeW9l2UKer4CwuxJWeRd3BTeT17YWiqBT3ncT2la/TfcgMPH5jLceI0Vy+D4fHR7jssLUqzWAtxfjoTmOdCNdIC/MpXbPcc5A03qz2q6VEGusoPu8KHE7jxz8WDLL7mQfIGjkeT1YuGOKKqD4fhSefyf6PXiNYV4knM5eGnd9SvWEFmT2H4e/cg1BDFTuXvkJmr2Fk9RnZxoUyf+zpHPxsNo1lu8jsNxKHL4WmI7up+e5r8sechpL971OT+w9YOr4kx0HIbkL2P+p33303c+bM4aKLLiI9Pd3c2b3hhhsYM2ZMm3LbY6mSpeHDhydlhOQ2ymUMHDiQt956yzTkzj//fJOdkfMnAzoCHIjd8GRuZML1Rr6ejCX5+9//zuzZs/nZz35mSnSPGDGCF154gaysLDRNo6jI2Mi85557GDlyJLFYjCuvvNJ0IxQG4aRJk+jfvz/PP/88s2fPZuXKldx7770EAgGLK5e9f3bDVFy3S5bL+ezS2o8++ihDhgzhpptuMo38U045hXXr1vGnP/2J3/zmNxbj1b6znYylggSjJcfiFBQUsHPnTiZNmmRxjRMgZPv27fzkJz/h0UcfpVu3bkydOhVFUVi8eDHr1q3jvvvuIzc3lxkzZnQ436KdAmTIIEWMp8fjMcGSAE+CRRJKdGK9hEIhPB4PeXl5pKammsa1qEOINYh1I4CRLLJgb6cd1Mntbi/JzFEylimZCIUAYHJ8osyAiXggl8tFWloaW7ZsMdfqtGnT+O1vf8tNN91EQUEBiqIQiUTYvHkzqampHD582HI+kqjD7poogJoAa7Iin8w4yeyfnYWaP38+27Zt469//StpaWkmQPvJT37Cueeea6pxKoqC3+/njjvu4Ne//jUHDhygR48efPXVV7z88suMHz+esWPHUlZWxptvvsmoUaOYPn26he3UNI1LLrmEhx9+mLVr13L66aeTnp7Oxo0bmTdvHqeeeup/3PDaTWLX92j5FIWcXqPJ7jkKLRpGcThQhcBBO7tUuq3zpkEks0wcQ912N5148qbloqfntm1qe7v7GNdVp4tYqLX9HXhNR48d/RRjRVHJGjiGrEHWP6piF1sB/MXd8eYWs//9l8gffwYpfQYQqjxCzuhJ1j7poLo95I8/g4y+Q9n5yl9o2red9L5DDQNeABDJ2CUewyQUxeyMBYoh9KAY+g0JpTQpBesrQFHJ6DwAPawb2/rxSnKzelNTsZlgTRketQhQE2yIarBSmstgVjSnUb6u2MZetzIlgZ79OfjmM6QPHY3qclpAra5p1H/zFQXnXEjmKZMJ7ttN46ZvjXHs0ZvsU08zvlBJUbf1vSzgYBjnHSxyO5MjsXJ24OcIgSMYZ0niDIkSFXLrtoWntFO+uCzKlR+TAbn8XHugyQ6QZACUrL9SeW3YKJdCoPcA6r5bT3jImaiqC3+XHhT7vezd9D6xcAjV4SIabSWz6xBy+o+jctNycrUouJ2Gq6iOKaxnjl0cgJrneNl/i8W19uZHgUhrEy17d1J8/qz4H0TjVqiijLQBI2neu53MAaNxuXzITGf2sJOo2bSS9J4Dqdu2ni7nxGPldPDShbR+wzj86RycqemkduplOZhZUZyUTr2YlsqD1O5YhxYN48kvotO5V6E6PegtwXYa/MMnTVeMM9V+gHJ+TCkZMyC/V1WV888/nwsuuICWlpY2O+7tAZP/ydS5c2eLAITcjvYYITDAQktLS5vr8jMinqGjpCgKF1xwARdccIGlDLmcYcOGMWLECG6//XZ+/vOfM3XqVDZv3sz5559vjo8AL1lZWWaeyy67jC1btjB27FgLSJLd0uTdbmHUC2bDPvbyYaeyEVpZWUlzczOnnXaa6SYm8g0ZMoRVq1axadMmevXqZXFXE/23v8rAUmZhRL0nnHACL730Ej/72c/w+/1tDP1XXnmFe+65h9zcXNavX8/HH39MLBZj5MiRplukYFDkeu3zbp8Hec4g4RIlGBfh4iULLwijXcS3qKpKZmamqXAoypLFCWRAKb434p8MbkQbkrVL/iy/l/sjgyWZUZJjg5KBRzEvQjRE5BMAMT8/n3379nH48GGamprw+XycdtppPPvss7S2tuL1emlqamLkyJGcfvrpvPvuuzQ2NpprQ2bGZIAmn7ckxlt+RgZxdsEZVVVpbW1l6dKlPPnkk5azovbt22d+p+rr68nNzbWAwFmzZvHGG28wc+ZM5s+fz5NPPmkCYk3TmD59Oo8++ijffvstJ510kmVsFUXhtttuY+fOnXz22Wc0NjZSWlrKNddcQygUory8vM366ij9aMCSueN7tHzmq4Liiv8xSfaQbCvq8d12ySC2AKbvk2zAqU15xzDeisOB0xcgVFuFJzOnTfkth3bjyy/tuP4OwJj8XlEVus64liNfvE/Zx3PxrF0OgDenwCzHPh6e/CLcGdm0lO0lvd9QIz7JAyiK9dwgXbjmJcoRsuAAqKA4Ezv1eixhqOoq4IT6fZvI7D40EfyPEaOkKyq6QyGvYDAV1VvonFEAQVCjCs6gACMKUZ/BNkX8ibgmWWjC7gKoOpxkjR7PkXmvkXvaT3GlZwAQa2qi8rMPCPQbiBoIgAK+rt3xde1uHV8J87SJz7KNv1GnbaHpWNjKpOcf6YoxrnGWQ7BMApxqrkTokhIzmBTNraC5deP8p1jHgN1sni5VbVJkiXtt4v5En9oBX2Yx5pi3/yUzuy3yxgVCUseOoXb1Cvbv+JTC0acD4HGV0CPzEpyNEXRNQ3G5iPpU6kNllK/9hJZd2+NKeIkzxUy3OgngW9wi9Q6aZ7+uQ+N360gfMhqLIpxixFl58/Lx5hfSsG29sXEh6lbAlZdPZP0yqtYvo2DimeByWOIQFUWl8OSzOLjoDQKdeyXcSSUFSG9RCQXFJcYjEkv778QdmgbKDxBvlORYk/8nk2xUtmeM2UGULFX8/8fUUbtEP7p27crmzZvp169fm/tr166lb9++lmvH0ld7PmHUvPrqq/zpT3/ioYceYt68eWiaRu/evS1uYQ6Hg9TUVHw+H2lpaXTr1o39+/dz+umnEwwGzUB5+bwe2V3MHqtiBzDCOAarYtuKFSuYPHmyCQ7E+AiDcvz48Xz55Zd06dLFDGpPFk9iV4gT1+RnBBi78soruemmm7j77rspLi5G13Vqa2t57LHHGD58OJmZmUQiEfr160efPn3MftnPGrK7/IkkwIBsNMtJdusSeeVzh4SLlxizSCRiSnLrekIgQgAMMS+6rpvshOx6Z2d7krVHblcyEGrvt7zeZFVAuS55Tcjl28UzZFBXUFDA7t27+eKLLxg+fDjRaJSMjAymTJlCIBAwwRhAVVUV4XCYVatWMXLkSLxer+VwW9ndUbjbyQfiyu/ldtmvOZ1OFi5cyNlnn226/In7FRUV9O3bl/Hjx7NgwQKuueYay7ro1asXZWVlvPrqq9xzzz1kZWWZfRYs6h133MHtt99usp0CSAlGMTc3l3POOceMySovL6euro6amhqOJ/1oYpbklMx4sex4gwlQkuax5TPKlAQjdOvzbco+5oZKzynHZpiK/Eq83rxRkzj06duUTLvIFJYACFVXUPHVIjqdnhCKSNa9dpuWZMfe4QtQMuUC3Bk5lK/4EIAD81+k88zrcGdmW/sVZzX8xd2o3biSWLCF9J6DCXTqDS4XDjDd91RNhxjG+EpjYgStG2DGVMuTGm6KOuig6VHUOMVugiWHAfJ0FRSfj1hDDF1RUGK68U/XjYApFdSog2jEOMA0phmAyRIrJf3TVeNtoGd/HIE0Kj99Hy3UCigoTgcZo8fh79bTeN4yqG3H2c6kJBUWkDqd1OUu2aKJ7x5oDgXFGTdSBXByQdQPagicSgKUqnG1Ql0cPgztK0PK1cttM/3RMA3xNsIHtvd6srVvA0odfi+kMROulM7iPLLHT6Ji6SdkdBtMSmaxocQYBUVxoKoOw80tCimBQjwZuTRt/NYQ5LC1NxkwMqXdbSBV3rBpo2SoQ6yxkZTibm0UB11p6bTs3UVK9z60VG835fZFnnB9Fc5AOqHqcpxpGYm6pd8p1eszqonFwOlItN2y8WNtT4dg738g/ccN7/hSe4BIGFN2Ba9kxun3rfdYd0iPNV977UpW1y233MKNN97Ik08+SWlpqZlvz549/O53v+Ppp58+pjrlOuxgU7Q9KyuLBx54gK5du3LfffcBcPPNN/Pqq6/Su3dvy/gKQ3HkyJHMmzeP1tZWxo0bx8CBA/H5fKbBJs5hEkYdJA7ylI1fO2Mht03XDYU3IaIhjGkhHKFpmlmnMMIFAJLzCjZBtF0GZgKoife6rjNs2DBSU1N59NFHTeU7VVWZOXMmY8aMMfsDtAEYdsZFnlt7TE8yVzX5WTl+SQAlIXkdi8VobW01179QaBRiBwIwiPeykS27vQngkgzUyv1JxiwdK1iSgaEQIxDv7etSBueyKIWIKUpLS2PAgAFs2LCBHj16mO6kou8CJMZiMXw+H4WFhaxbt46RI0fi8/ksrq1y2QIcyWMvg0P7Z/u9qqoqxowZ04Z1KiwsZPXq1YwYMYLVq1e3GZt9+/ZRUFDAoUOH6Natm4X9FO0TQhEtLS14vV7zWaEkKFT4BHhqaWkxlfWOJ/1omKWjueElFWqApIZEUgU8kgMme9lHbWY7ZbcBTB3susvJk5lL4SlnU7b4XRSHE3daFqHaShSHg5LTLsLpb0coooM2iJTsUFN0yB1xKuG6amo3rSRcV82O5+6n+yW34i0obdPm/PE/wZWeRcP2DdRvXoPq9pDeawilJ5+LM6aiaDpqTBjsemIXX6rT/tlsunTdX9SFhgPbSM3pjBaXVlY0QxEOh0JV/Q7S8rqgORXUmI4S1VGjGkos3kkNlJiO7nSgxBJqW2YskyxAIa0dX1EpRedc0tZgtwFqpMfMzxIbYrrbKW0HXk82Jxbqz1awDLwcOjGPEfSvxgwgpLl0dKeCGncnc8a9sNSIEdukORV0pxZ3R1QsQKCjZBrw7aD+jtzp2sYn2UBSB8+2yafo6C6F9Emn0vTdBg4snk3f6b/AEVJxRHQbiNFxRMDh8hGtqzUBZdsyjX8Wey8JCLQAKHFBAiTuzBxCFWV484sTYBzwdepG1bJPcPhTcGVlWUEaULtmOdkjT6F8yfvWNSj1X1HiP9QdjVVHG0n/hpQM63/fcn5MKZn7UjIQBT/cH+uOANP/hEEg96NTp0787W9/45577kFVVbp27cru3bsBePzxxykqKjpmNkl+tb+HhHF47bXXsn//fl588UXKysqYNGkS8+fPN1UGZePtzjvvJD8/nw8++IA//OEP+Hw+xowZw1VXXYXL5TJdv+S4INl9UjZMkxnb4t+AAQNYsmSJRelQFgjYsGGDye7IrJYoOxKJtDkvSGaSBHATSRi63bp143e/+12b8RNAzN5O+3jKr+31rb25kVkxAQzdbrd5Jo/X6zVlt0Wb09LSTOZGgAUBomRGRNQlgIgAM7LLWzL2UQYG8udj6aPMJCmK1TVTlh63M5kyAyaPU+/evTl8+DDLli3jwgsvxOfzmfMp1O6Eyp3P56O+vh63243f77ccOCvXmawfxwoedF2ntLSUrVu3MmrUKMsYDho0iP/+7/+me/fulJaWWoAjwIsvvsiMGTN49NFH2x1vu5ukAEoCLAWDQXODQvRdKCMeT/pRMksd/iWVDNg2bnQS+GmPZRKiERa3vHbqSXrZDsiSgDZ7fjmQXzbYRfN9WQV0nn65qVTnCqQbZyN9n9RRe+JdVlSF4snn4S/oxKHP3gbg4MK36HnZ7Wb7hBHo9AfIGzuVvLFTCdYcoXzZB9Ru/oaiU87Boag4YuAI6TiDOopmMEmaU0F3KMTcxhlJZnkCVMjtibsTebv1oHz1Z7RE6/D7MixKb+HmOupqdlEweCLRsIIjoqOGjfqUmA6ajqM1ihpRUKM6UZ9KzKMSTjVc8zQXxJLEoljYBcnAVoRh3Xb4EsMsG+BCrEHt+I+/wSQkmRj7WhKToMTBp0NHcysQNYCS5tHRFR3FpxDzKsRa4uf9iOIEA6WCouqmepyexNI1+24BCLY//m2AkHiw/dQGqCQryw6k5HlQdfRUlewLzufw439nx5KX6DZ8Bn53uk2IQaGubAstlfvpdPLVhKurqVu9nHBVBeg67vwC0seMw5WZlXQzQYxJm+6I60IBL/4vrfdgDs59gbS+Q1GcjkR7HSqZJ57CkXffoNMVtxhjr4MWCVO96nMcgVQ8uQWoLjfRxgacgTRLOwBi4SC6roFQa9IT82OuU9Eu1Qb8/k3pP8zS8SX7rn1H7nd2o6ojo/VYkv25YymnvV12uf3Hmrp168ZLL71EZWUl5eXlFBQUkJOTYyk3mbHe0ef2DGEwjJw///nPDB06lF/84hcA3HDDDaxdu9ay263rOrm5udx6663ccMMNbNu2jb/97W98+umnXHPNNebhmkKeWXZ5EzE4QgJZ1G8XWxCGdd++fXnuuefYt28fpaWlFsnrqqoqvvzyS/7rv/7LfEYYjPIaEGBJ/iezNnaDuaN5thvQRwMX8nX7PMjrWI4hEuMigI5omxAe0HUdn89HSoph4zgcDrKzs8nKyjJlwIPBRBymAE2CQRJ9ludAACy7K6HdaLcrwLU3FjJIkl3vhAKfEARJBnBFe+W50nXdjCmKRCKMHDmSjz76iPnz5zNt2jTy8/PNc5QEw1JZWcnu3bv5+c9/TjQaZfbs2ezduxdFUejUqRMzZsww1xS0ZfzkPon1KeZRjnXTNI0JEybw85//nJkzZ5qxbqI/N954I9deey2zZ8822b1gMMgrr7yCqqoMGDCAjIwMc43Lv3OxWIzm5mbq6urM85PEGg+FQrS2thIKhcy+C9dLAaSOJ/14mCUkMEFyW8zOKCUFLhIwsdzD/qz0xU82OO38TdCiESKtDTg8Ppwef7vtamMLyIaaZKDKl1z+NFz+tKT5RNlJU7L77T1jggCFzEFjSOnam3BdFe50ww3PBBBgAXno4M0uQHV78OWXoLpcEMWMT1KjBtsD8cNgnVKFiiEzrukY8UuiDfEYJxTAoVA05Vz2L3yTzG5DyOg6EDSF+r0bqd25ji7jzkV3O9BEx3RQtLiPeERDiWkoET2OFIw2aS6HKfSgCGU6+3BIAEXyPms7nOJGsqUiQJNt7bWpR1bcSJZsoMXi6qXIrKgCqo7u0In5DSClhpXEAamifDV+XKmuoNgrtoAjEoa5nmSQ7G1sJyUHVUnu2UGSknyx6iq4e5WSd8XlVM+Zy8YFD1I8YjpFnUajxoy5j7l09m/8iJSCruheJxUfzSNr8ml4SkvR0Qkd3E/F/LlkTpyEv3M3KyCTatSxrgUTKGnS2AAOl4fMYeM49N5r5E2cjjsrG101zmSrX/c1WeMnU7XkQ7RgENXhRAuHSR8wnPT+w0GBrBEnUb70fYpPuwAU1SxfR6f8iw/IGjQ2sQ7ktUCibQo2oPTv/G1PAri/dzk/giQbLnaWor3PkDBO7a5Q7aXve19cD4VCHDlyhNTUVDPuQG7HsfTTbniK53Nzc03Z5I4YovbKPZYkG78XXXQRJ598Mrt27aK4uDjpmIrPYEiLp6en07VrV9LS0mhqajLrlgP5hQKbYJ1kWWhZjlqwBKL8O+64gz/+8Y+cfPLJTJw4EUVRWLZsGYsWLeIXv/iFyWTJ4ye7tdkPYBWxScLQlWNMjnWc2hvfZG5a9iTPrTymAijI5x3JZQiwIoBDU1OTRfQiJSWFcDiMohhiGs3NzeZnuR4RtyOAq7hmB0t2QQO7Wl2ycZDBhqySKF5ll0DZfVIGF8mELQCTFQqFQmRmZnLiiSeyZs0aXn75ZUaPHs2IESNMURePx8MXX3xBSUkJBQUFPPfcc1x//fUMHToUp9PJli1beOyxx7jwwgtNZT157djXrR34yt9rXTfixGbNmsXNN9/MnXfeSdeuXQE4ePAgL7/8Mtdddx2PP/449fX1eDwempubOf3005k1axa6bhwH8MADD/CXv/zFnB8B/P7+979z5plnWtavDOzktsoiFrJi5rGkHw1Ykg3Mjg6NbA8YJbve5h7t5WlboR1AxSIhytYsJFhXjicth0iwCXSNgmFTEucwHUNKqsRnB352Q/aHTvJuv6IQqi6ntfwgvsJOpJR0N9BMvK3yrraiGQp+4foaosFmVGcKeOJ5YwoOBQMwxXRUTU+IMKhKXN5bMRTrXAoxl4LiwxRjAHBnZNP5nGto3P4th1a9D0CgtBddzr4Gp+4kGmdMHKpiSGQ7FFS3ihLRDNe8mIH01KgGIXC2xgUiVAXNbRiYFkYoiQGf9L6MMSxjR1LXu6TPQQKwKLolFsjipiiDFlGH0+grrvgDIsg+fl6T7tPQfKCEFdSIIb6hxIwxIn74LZqCorVFam0xfDtoLsmX8qhxSErb8ZLLas91T/6oqzq+Ef0o6nMH9XM/4MCX71C9Zw2dxp9HJNRExdpltNYcpuTS66hc/jEFV16F6najx1GFp0sn8i+9lCMvPI9v1nVtDpcWANmCkJNtMEjXUvsMxJWeSdXyj4m2NgE6jtQ0sk6ZgregGGUU6JpmgHjFmSgD8HXqSqShhn3vPEvWgNF4MvMI11VRu2kVga59Se3er21sn9QmE0cla+e/IemagvYDCDzoP5JDae3Mkt2oEi5EsouPbMy35yKVrJ72XHE6utba2sqf/vQnNm7cSI8ePaiuriYUCvHLX/6SYcOGJa2rIwBlZ8WOlu9YWaSj9ccOgFwuFzt37mTDhg0MHjyYk046qQ37IpcVCASoqqoyFckE+BC73ALICkPY4/GYcTiy+phggeRg+6ysLB566CG++OILnnjiCWKxGEOGDOFPf/pTUtc6wa7YjXAh5iBUzuQDX0VsU3vzI9abPEbJgLgwVOVnjtUIFevYfpivYOKE8ez3+wmHw7S0tFhYETHO0WiU1tZWqqqqaGlpMZkIYVS7XC6TdRDjL8qQ158MkMRcyDLacpI3NJJJhQtGJBQKmZ/Fe8GKyAa/zCwJmW9FUUxA6PV68fv9FBUVsXbtWlasWMH27ds5/fTT0XWddevWceDAAe68807mzZvHww8/TGFhoQkOR4wYweOPP84111zDsGHDzOt2lsnuMihcA+U5E+M6ZswYcnJyePLJJ6msrERVVTIyMrjiiivMM7lEf8WYC1fK3r17M2XKFGbNmsVZZ51F9+7dOXToEPPnz2fIkCGcfPLJ5ndJgE/ZHVUGtiKOLz09/ahrzr7+/q+64Sn6MWwLNTQ0kJ6ezvDz78fh9iZu2FkVaGu02q4n3b22paS730dJWjTCrs9eIm/gKaQV9zKfibQ0sHfpmxSNmo4/pzj5TrrdCO+oncnut9PWow5sR2Ohg67HKPv8PWKhFtJ7D0X1eGnev4OWw3spmjwTd0aOFVDGxRwiLQ3seOnPpPccTMnk880zgNyNOo6Qjho1/ikxPb4zbzBOimYYr5pTJeZViXrjbnLeuOy3I9G2ZESDEjUYKzWM4YYXBTWsmyBJiccsifcAMZ9KxK8S9SmEU+NAzU0ijinJ3HQIksQ123MGYNLb5rOPvXSoqaVcuX6Z5QHzjCBduPgpxBXxDCtfd+jobg3doaNEVQMwhRUUDWJeHd2pm9Z1wqVMaQPIhQR8UkZX14nW1aGj48zIQLUd/Jx0varSPfNfOyCpvaSQkFpXQIkqhDftpvLtt4lUVwLgyskjc/wEcDvRomHSRp/QZjMEHRqWL8cZSCMwYLDlOmAySEJp0Kw+vkFgb6989pJ5fpgTWg/so37N18SaGo3YvgHDCXTrg4JqmV9Fg1hrKw2b1xFpqMWZkkZ6v2EJ11vbb54QvQDMOTKv6cYZT9sevZv6+nrS0v5nzlwSv9NdXvgNqt979AeOkrSWIHtn/fF/tM3/m0mM17p160hNTQWwGJ52Q1RWUgMs+UQ6mpuV/frRgFIkEuHSSy/liiuuYMqUKea96upqrr32Wu68805GjBgBJAcxydy3Oqq7vXKO536y/tgZgnvvvZdDhw4xc+ZMMjIyWLFiBcuXL+fPf/4zvXr1sjwvDLjy8nImT57MiBEjuOuuuzhy5AhNTU00NjaabkLCjU/segsQINgDGTSJw1STHYzanqtXKBQyYzZEu2TAJLuziXbIAK0jUNORsIHM/MhMjH2dynnlvrTHEtj7Kp85JLu06bpujrEAIi0tLdTW1tLS0kIwGCQYDJoueMKFLz8/n7S0NLxebxuAaAdLdlApxqOqqopoNEpubi6KoliYIiHgIDNLoo1inuxgSXZFFOvCzvyJuW5tbaWlpYXGxkbKy8v58ssvTQW43NxcfvKTn1BSUkJjYyOzZs0iJSXFLEe0cc6cOWiaxhlnnGGCTRncCfAt2Dc7wya7JiZj3hRFYfPmzcyZM4fy8nK8Xi+nn34648ePNxlBee4bGxv5+OOPOXDgAFlZWZx66qmkp6db4tFaW1tNYQcBhsV3S9M0amtraWxspKamhmefffaofyPEb+0vf/lLy3EL3zeFQiEefvjhf+vfpuOPWUpi5LR3Pxlj1IZhMm+0k0fO14EBV7NrDZndhliAEhhuc50nXMyBL+bQbcqs5H1I0v6jqeYldSG057E1v7262mtT+fKP8Bd2Ir3/CBOUppR2J9JYx6EP36DTOVeZ6nQiNe/fgeJwkDf2NI58Ph9XRhYpnXrizy5B9TnRnIaktyNsACZHWEcJG0IM4dpKDlasprG1HBwOMvJ6ktl3FEqGn5hXAY+NYRF9E+12xJkhNQ6sdMAFKAqKqoCuo2hx8YeIbopAOMI6mstwUTOlpEX5omzpgFj7OLULkpI1VNGtcysBL0tskFSAgp6QUVfamVcNFBQjjkcx+qHIwEP8U3VMVjCqoEZErFYCaLXHHunGULbpW+OaNTSt/gZndg6KohCurCAwaAhpo08wQIDowzECoA43NJKBBPm2S8c1oBvFXX5J0+rVOHOy8fbuiaIr1Hz4ESmDB9k6lPjoKelE6/btlvuWGCDNAOSKhnkukw4JkBJvu9LO97vqs4+ItTSTddIkPJnZRJubqF/9FfXfrqborItRVEeCqVXA4fWROXSstb+iXUjzKu6p5lvDBc9cS8nb8z+W9CQT833L+ZEk2Z1OJPvnZEICcl57OR3t9B8rw7RgwQImTJhgHkwqUnZ2Ns8//zxXXnklb7/9dpv2HksbOgI6xxP3dDxJURQeeughunfvzh//+Efz+tixY7n00ku5+uqreeWVV0wDSPRh5cqVRCIRbrnlFu69916Kioro168fubm55sGqwsgXzwm3p/r6er7++msOHjyIohgxShMmTCAnJ8d8Vo6TsY+DDCJEH8SrXbRAgKZYLGaRzhauYXZQY58jO0tkB+xyfmG8QmJttreuBKMEifOm5L7Yk1DDk+W45dgVEbMViUQscTYChApFPVmOPBnwkwUWBFAQr8uWLeP999+noKAAl8vFvn37GDt2LNOmTbPEy4gxkedQZmiEa54sL24XeZDPOxLt83g8+P1+AoEAKSkp5ObmMmjQIHbt2kVubi4nnngiWVlZvPvuu4wdO9YE3zIrBDB48GDmzZvXRgRDFlWwr1l5vu3xTTIwB8x4u6uuuopu3bpRW1vL22+/zS9/+Uv+/Oc/t1EkVFWVSZMmWVzumpqa0HXdnFsBfGX1Q/sa/D4s0bEyoMdSzr87fX+Bh+NNRwFRx2RQdJCnbv9muk68NGk+ly+A6vQQaWnAlZLWcT3tGdvJmvNDzJcMBKV2x8KthGrKyT9lulmXEs/vSs0gvf8I6reuJ3PgKPPZUGMNe9550ixa9fioWLEIln+E4nDiyy8lpagr/sIuBEp64lQ9uJp1nEGVpj07KTu4jG55J9Iz/xQ0J5Q37WTHspfoNvJcXHm5gELMhZWRkM6YIQ6UdAdopt+iEmdadMPtTBzOqgCx+I+nZghQqB7DFRCB/0T5caM0qVuTPF/J5kMY2uZQi3a1fc4C/HS9DSA2X6X+auEI4YMHQAV3aQmKx4UQfTCZohhoMcWMYcKpo0eVuOsecQBl1KnLrJJsjJksloIMWOqXLiNW30DB1Veb7mt6NEbdks+p+WQR2VNOS7RZkcCEnpivdkFmMpu7zWfRMCztwu8kddwYy31Hip9YYwMUFSfdQYg1NqD6/W1c3GTQZErZyzL3MWvbZUZHtLlp+2aIRCk4Y6Y5vM6UANnjJ9OwcS3VXy8me/xkgwzUE/VaWFSpLWYWeW3Gh0M+QFiwrfrRz63+wZKuW5bOv1TOjyHJBom8uy+DI3Hdfu37AKZjuSY+v/vuuzz99NMWI0PUmZ6eTnFxMfv27TMPprUDpvb6eyzXjvXZjpLd8G9tbWXVqlXMmzevTd78/HyuuOIK5syZw9VXX23WV1VVxcyZM80yUlNTee2110wQ0rlzZ7p27Urnzp3p0aOHhcXYsWMHn376KRMnTuTUU09F13W2bdvGX//6Vy6//HK6du1qihDYwYY83sKQFQyGHRzJ7lT2eCGZuZBlxu31yM/YmQP7uU7yGpMlvJOVKT7Lamci2esRz0UiEXbs2IGuG+f0eL1e03BuaGggFAqZjJ0MigBSUlJM4BAIBPD5fGYskKhTZkrs5w05nU4WLFjA7t27efzxx/F6vWab3njjDV555RUuvfRSWltbqaurM4GpLOwBmEINYt6SSbAni5VKBpyF663b7Tbjlvx+P16vl5ycHOrq6kzAJQMbXdcpLy8nPT3dMgeiTAFc5bGR51L+bbL/JgGsXr2a8vJyHnjgAbO92dnZXH311SxatIh//OMfXHXVVebciRgzwWrJwAcwVe9EPrH5IMZWgF75e3A86ccJlmxj1CaeJxkwOg7AlOx+uLmOqu0rCdZV4PSmkN1zBCm5ncz7qtNFe8mVkkY01GKApaP1S2mnfbZ0LHnAioOOyjLFM7Qc3ENKl96WuuTC0noN4vCiOQZYMm8ZKCSltCfpvQbTeuQAzYf2EK4tR49FaTm8h5ayvaDrOFIC5E85m8zOQ1DrQ+zft5RBIy/DHVLQ4iIQeSkD8Bd0Yfu6d+k98WqDCVEwXeRMlqMdEKPH45aMY5biZy+JMXMoxNREv4QAhRpLgIE27E87mxjJWSTruFmHVzGZFov6oW3t2udKFnPQNY26Tz8ltGcv3m7d0BWo++RTPF06k3b6qShOVQK4CoZyBiiq4XanuXQznilxai1xFzMdHcUExySGxGCcBKBuaaF1xw7yZ80SuY08DgeZp06i/NVXidbW40zPMNzSFNBdugV4y4a/ZQ6TASX7YJjjrSQuCXChxRutKOa4pgwdQs3890jp3Tcx1lIxjWtWk3v2udZ6ZLBiAybifrIm2ftTv34lBWeeZy06Xl5g4FAOvfIUmZxK6PAhGtauItbaQqy1BS3YasydYhQovmMOrx9nIBVnIA1narrxmpKKy5+GrunEmhqINjUQa2wk1thAy5H9HQzmD5zswPVfKedHmGTjJNlrsmsifR+G6ciRI7z66qts3bqVjIwMzj//fEaNGmUaJampqe2WUVRURHV1NV26dGnDKnVU5/G60h1PPrkeGSgpisKaNWs4+eSTkzI4iqIwffp0LrvsMhMsCQPW7XYzaNAgfvrTn7Ju3TrWr1/Prl27iEaj7Nq1i927d6PrhgDBxRdfzIknnkhLSwuffvopV1xxhamUp+s6PXv2pFOnTrz66qvccccdFiZC7qfcRgGW7IerglXhzA6YgDbCA7IanZ1tkV9lQCGzIbKBK+psD7jb12MyYCYDMjAOEP7mm28YPnw4DoeD119/nZ49e3LllVea4hnCXc7u2gjg9/tN4CDilWQAIgNHAZJkwBKNRlm2bBlPPvmk+SwYsTeXXXYZd999N2VlZXi9XlpaWsz4HAGSfT6f5bsng5JkYDaZ25vs6ibHVIl6REycy+ViypQp3HfffZxxxhkmMySvg7lz53LLLbcknV8Bdu2/LckAbLI0Z84cU/rfvply0kkn8frrr9PY2MjOnTv54IMPqKuro6mpiebmZjNOSgbn4kDolJQUk1ULBAJkZGTgcrlM97vKykqqq6vZv//4/q79OMGSlJKKPRwNGHVw3V6urkDVjlXU7d1I/oDx5A8YT6SlnsqtX1O59Ss6jTsP1ekiEmzE5U217qDHywnVVeJOyWi3rmNmiWTD7Rj6YPbF9movrk01uo4ixZ1YXMXAuKfFqN24iobt60FR0WNRUkp70Lx/O05fCt7cQtK69ceTkUu4oYZwUx3hplrqNq8m1tLI4Xdfpa7LV3hzi8kcMpZohhelRYvHLwG6jtudhS89n6aaA3j8nVAEGwRx2WtMxTzTuJfaLB/8KQ63RVES92LERQ1IxKXYd+6lgbOPg2lMy0jUxgSIttkBk9g6t4NYE0zYJisBDHVqFizAVZBP/vVXm+3TlVNp+molte8sIOuCn4JTN5iK+KG8gilTnIZeoBaLL1ITOChmWSgSy0RibOW11vztRgIjhhmHAidhQNKGj6Z57Vqyxk40wVKUuKhEO0kWN1HgmL8XSYGSJQM4M9Jx5eVRt3gx6eNPMde3rhvA01NSgiM1YD7bbuwYUl0kWRNJkh6L4fCmmP0Szwng7szIomH1KioWzsPpT8WVkY3D68OdlW60U4dwfTWR+hpUl4doNEakvpZoazOxFkNIJvnAqLh8qcbv0r8p6bryg4gz/Fikw+V0vCCpI3B0LEBp7ty5zJ49m5///Odcf/31lJeX88orr/DMM8/w1FNPkZGRwcGDBykpKbG0Q6QtW7Zw5ZVXmuW1xyrZgc7RAFWycTmWax31VTxjV76T3wuj/+2332bu3Lmoqko4HObEE0/k888/Jzc3l549ezJ27FhycnLYv38/Bw4coLKykhUrVlBbW8szzzzD8uXL6dOnD5MmTTLV84TUuNPpxOfz0bVrV7Zu3cqgQYZrsJ15sLdbdluygyb5vh1MyecRifeyS5Zcj/xqj1kRrnQCPLQHuOxzk8zoFu/tMVBPPPEE2dnZPPfccxYjfsGCBTz88MP8+te/xu/343A4iEQiJqMkXO3AcOET5QohDjEOMgCUxS9kULJ06VJOO+00k52yM2lnnnkmn3/+OVOmTDEZEzEegmWTx1UWaJFjeMQYyKyi/F5mAQVok0VCRB3p6ekMHjyYRx55hJtuusl0+YtGo7zwwgsUFRVRWFjYRhhGZrFk1u9ovxvyGm1ubiYvL89yT9QdjUYpLS3lww8/5OmnnyYlJYW8vDxTtEK0v6amhoqKCjweD9Fo1ARUDQ0NFgU/Oamqce5WIHCUM0aTPPd/VeDh+4MlycJs4zZzjKmjv8UWo7DqAI2Hd9B98hWgGl88j8dHyZifUr19FeUbPyer50gqNi6leJThtia3p6XyAE5vikWcor34l2OKLfgXbQgJR8q2n+WGv6gLhxa9ia7HaN63HXTwd+pORv+ROH0pNOzYSKSpAS0SpPSsy1HiZyM0791BuK6KcH01jXu3oIWCOFPS6HHp7aS5jYP1cgaMZfe8J4m2NBJpqKVl706CXQ/jHJNFakkpStQQaEA3zmPytnansbUMt6MzYJwXpGi64RKmGBLkupIAOiiYsUdafKEoYmde1ROKew4FRdeNs5diJGUb5DFvs17k83WkfMnG22Jki6GO+1wJlkwGZG0O6ZXijyJ1tUSbm8gcfya6adkbL4GTRlH14ptEq6tx5mYZ7mLo6Gp8DAR4c2rG+IkG6kpc8VEx3cpwxG/qcVtcVyz91ZqacXXLMztk/x4609MJ7tiBI2QchitiyTSPbSwtizDBulmAqMjSztoXAFMHFNWG6pRE4zKmTaVxxVeUPfsM7oICAMJHjhAYMoTUUaMNTk3HMPYloJ0sDilcV0O4uhzV68dbXIqiJmS+27RPi6Ercb5OKkt3gh7TCB7cR8PalaT3HkrJ5AtwKC4rANRhw7N3okcjlnIdHh+pnfuQ2XUI/rQ8Ys1NqFEFtzcVjzsVpzsFVVeIxEJ8M/83yQfvB07/OWfp+FNH7FCynXv5DBRhiLbnBpXM+FEUhS1btvDPf/6T2bNnm0ZeWloaf/jDH5g3bx5//vOfufzyy/nb3/7GX/7yF4uRpOs6W7duxel0muci2dtury9ZX49lPL5PsrNKIg0bNoxHH32U1NRUPvnkEzRN44QTTuCSSy4hOzubRYsWUV1dzZEjR3jppZdISUlB0zS+/PJLdu/ezZEjR1ixYgUNDQ1kZGTw0ksvMWDAAEKhENOmTeO///u/qayspLGxkXnz5tG/f3+KiorIzMwkGAzS3NxsxtP07NmTgwcPMmjQIJMFsLsX2cdTZg7keB45YF92+xKgSVZfE4a23d2rPdZHZnEEIJAV7SABnOwxUXbjXC5TzqOqKg0NDaa6mwxidF1n5syZrF69mrKyMgoLCy3KebISnmiDvFZlRk7XdfNsJztYktvRtWtXSzyTzNRkZmZSU1NDQ0MDwWCwzUG3gv2RQakMaJN9N+wCCnawJAt2iCTaBHDppZfy3nvvcfnll9OtWzcURWHnzp1MmDCBG264wcxndwG0/27EYjHKysrYs2cPKSkpDBw40CI8IbOZYp0Fg0Hz90PEcrW2tlJTU8O6deuYN28eAwcOZNasWSbQlV1Cb775Zqqqqixj4vP56NevHyeccALdu3enqakJVVXJyckhMzMTn8+Hrus0NDSYmzXHkuS196+k/7PMkkjH+7f1WFmZyi0rKBp2mgmU5JTVcyQ7P3qKvAHjaTi4lZ2LnkfXYiiqitOTgjcjj8ZD2+l66qVt26vFqN+zkcayXSiKSlqX/gRKe7adiCSG2v9YitcVbWmiteIQ7ux8Ss+8HBRo3LWFAwteJveESVSt/IzU3oPJHn6yueOuoBDo2otO51xJ9ZpldPnZzYRrKtjz2qNsf/5+MvoMI6v/CaRkl9D97J+ze/5ThBtqcKZnEqqqYNcbfyXQsz+5J04lJbsEESMSohmn32uIFsTi5zXFMMQMHPE4JGlq7PFDGgoqBlOiO4y4JM1lACZFN1gmIgkBAqF4pqiS3avbpiBuxJrGcRIE2q6LoAQCdDUODqSxl8uJtTTRtPIbgnv3oTid+AcPIFJbQ2D0sESskS2lnDCM5rUbSZ8yPtEeCXCJpCgmuQVArL6R6lfnEautRw0EUBwGAvEN7k9g1DAUh8vyhXHm5xE+eBBf126Wvon+BcsO4MzLNdQFRSyZKwEEFc06vlLLDHc/MYa6fEdkb5/OMYCT7Xo8n6JC2kljSD1xNNGqGkDBmZWFoqiJuKT42JgAUOCb+OdofR2VH85H9XjwlHQi2rSXqsUfkjH2JAK9BlgOSwajv96STrTs34W/Sw9j3nWd0JHDNH63lsYNa4k21JM7ejL5Y6aioKLpGlowSKy1FT0cxJORT5+L7qJ89SfUbF0FmoYrNQPV7aG14gCNezfjCmSS23csxb1OwSGxa3oMi4Lf/3hqb8Ph+5TzI0ztAadk144GijraJX722Wf59a9/bRo6cvlnn302r7zyCrfffjuLFi1i5syZ5s54RkYGffv25bPPPuOFF15oU240GmXhwoUsWbIEVVWZPHkyEydObMPotMcu/RBASX4vG+yVlZVs376dzZs389JLL+F0Ok1XuVtvvZU//elPTJgwwXRbAgMIjBs3jrlz5/Lf//3ffPDBB+zcuZOzzjqLiy66iAkTJjBp0iS6devGH//4R37/+99z4MABCgsLqaio4De/+Q0DBw5k/PjxeDwe04hubW011csEUJIBj0iyOII8PsL4bu9sGgEmZGZDBj3txQvZgYxww5MBgfyMLF0unpfXnQxERJ1NTU28//77rF+/HqfTyYQJE2hqamL69OkW9zi5/BkzZvDJJ59w5ZVXWpgaAXrkMYIESGpubuavf/0rlZWVpKenmzLd48aN46c//anpNifa3qVLFzZv3sz48eNN1zkByMLhMN999x3Z2dk0NzfT2tpqnn8l5MrFeIn4JTvw7AgsyYxPslf5u2936zvjjDM4/fTTOXToEJqmUVJSYjnPK9mGiXyturqaBx98EKfTycCBA6mtreXZZ5/lnHPOYerUqRbmSayvoUOH8tlnnzFu3Djjb1ooxNatW1m4cCGff/45VVVVnHLKKfz0pz81VR9lJcfOnTvz6KOPMnv2bD788EOi0SjZ2dl4PB4OHDjAxo0byczMZPLkyZx//vl4PB50XTfVBe1zfrSUbBy+T/r/PVhqE8xs3mhnp1p+rr3y5KQkvx4NNuNOz2mTD4xB82bmE6yvIFhXgTc9h3BLPbqmEWqqJlhfTlppXxy+FNNo1RUI1ldwYOnbZHQbRO7QU9C0GPU71lO5YQmlUy7G6U1J3p9j7JslzzFeM+/pGmWfz6PrRb+gYsVHlC1+l/R+w3FlZpHSuRcH3nsJT14J2SNPtgKT+Ksnv4hYsAUtEsKTk0+3K35F3Yavqdu4ippvvyRn+CkUnnwmXc+7gap1S6lZvwIt2IorN49gZRl7XnqElL4DcOfm40xJpX79l2T2HU3Fd1+YQEmNGkZozKMkDPAkrlcmqIkl7GpNCtCHOAATktBKwqDXHQYTIgL6LWOvS6+ya5U0DuZatQOmJOBKV3Tr+lMgUl1F6+ZteHt0w9OtC3osStPa9YR27MI/YpApjW2f0GhNHZFDR1CcEoJUMcCVTG0JliOuOBA5XEnrt5sASJ98KhnnnIYeC9P8zXoqn3mFnGsuQXV6zGf8A/pS/o9nCJwwCofLa2mDFovSuPobCq6YRdSVuKFL42gRd5AHULTJZHSsSnptv7dx4wHFOg8dJYeKMz8n8XgSRqiNO6QOWmsrR955g7yzDNERPX5Gla7FqJw9G93pILV7X4uLnq5C+phxHJn9Ks6zswgd3E/1ZwsJV1fg8PpRXB4KTvoJOjo7Xn+YSGMdWjBoaZArI5uCk6ZTNOVcck84lao1S2k6sINQdbmZJ9JUy+FvPiAlo5CMwr6W30ot9O/8cU+2Q/B9y/lxp/YAkEjJXMnkex2lw4cP069fP0teuawhQ4awadMmNm/eTKdOnSgrKyMajXLw4EF2797NmDFjyMvLs9Szb98+brjhBqZNm8aNN95INBrlvffe4x//+AfPPPOMefBsR/1N9j5Zaq9/ya6LsfnlL3/JBx98wCOPPMIvf/lLLrzwQkpLS5kyZQqXXXYZQ4cO5dZbb7UYVaIdPXv2NHeze/fuzaJFi3jttdeYM2cOH3zwAeeccw633norf//733nrrbd47733qK+vp6ioiCNHjvD444/Ts2dPCgsLycnJ4ZtvvuGkk07i448/tpzLIxuB7fXFzlbI/2QjWgZeyeJhkv2T603GeghWRnbRk9252nsV/8rKyli6dCkjRoxg+PDhxGIxlixZwtdff82kSZOoqalpw6DouiFUsHbtWgKBgOWMoGTuiyLFYjEOHTrEypUrATj77LP51a9+haIofP7559xxxx385S9/McsEGDVqFM8//zznnXceaWlp6LpOMBgkFArR1NTE/PnzOffcc012SYy1AEzBYBCv12vG33i9XhMk25Xq5PmUxzCZa57MiIi+i3Ugu9gVxD0mxHW5DvvcinURDAa55557uPvuu+nVq5dZbiQS4fe//z1ut5uJEye2Ofz4tNNO45577iEQCLBr1y5effVVDhw4gM/nw+fzMX36dDweDw8//DDV1dW0trZa5ik3N5drrrmG2267jZ/97GfMmTOH1atXs2fPHjNPbW0tc+bMoXPnzhYAaz9g+FjS/2WwdFznLA27wHrO0tFc7zpS0jomoBR/v2PRs3SferUxQEnGaN/St9A0jZx+JxAo6IbdYtu/bA7ZvUeRUtDFMMK1GLvef5pOky/GmZpuUc5qrThIxerP6Hz6ZckZpY76YL+f5PaxpKb922gp30/uCZNBgdbqIzRu/xYtEsZX2IlIfS31m9fQ7Yrb2j4cb/ORz94jc+hYPFmJP456LEbNqqWUL32f1B4DCHTrS6B7Hxzpqex9/Qki1ZU40jPIGHkiVZ+8j9baYlABCiiqaulQG1bwaGs3GZBq7157+f4dSVo7eixmKMzZAbKmQUxDcUl7DYL+wFhfKApmzNkx9kHXNBSnE2+3roTLjpBx/um4crJQ0wKED5UT2rqHrLPPkAANBHfupWHhp2SeMQ1PcSmKBuHDZdQs/Ii0E8bg79sXJaqYLJwiK8fF/2kuHc3ZQTsVLGdIJVxYk0ycLPZgXuu43yLOSWYJlTgzI7OHiga1Xy7FmZFJYMAgw/3ToZuKjFokQsVzL1B02bU44rF1cj8j1TUcfv15wuVluLPzcadnE21qQPV6aTm4B0WBQO9BeAqLcPj8OHw+VL8fFIXaL5fSvH0zvqIudPrJ5bh9aSg6RFsaaT60h+ZDu4i0NOF0eSkaNBmPNz0+bkYfY6Eg61+7599yzlLpk79H9f0A5yy1Bjlw/e//nz9nae3ataSkGJtjHRmwwliSd5jt7+1liM/Jyj733HNNFzwZaInX22+/nZaWFs455xwmTZrUpv133XUXp512GqeccgpgGLU//elPefzxx011PFHWli1buPfee5k9e7alHrtrn/zaUWoPRNg/y31fuXIlixYt4ve//z0AO3bsYP78+TQ1NTF48GDq6+t59tlnWbFiRRvGTvz74x//yBlnnEH//v1NgNPa2sqrr77Kf/3XfzFu3DjGjRvHyJEjSU1N5Ve/+hX79u3D7/czceJEFixYQGNjo8UQtvf5ePp/tLwd3T9eg+94wGlHecLhsKkYJydhAMv35OcE6JMBx7GMlWCghg0bxrZt2/jlL39Jly5dyM3N5ciRI3z00UfcfffdFuN706ZNPP7441x33XX06dOHYDDItm3beOGFFxg4cCClpaWm8W8HMuIwYrfbTWpqqnnmk3wIsf27mQyQytfk/PLvgLhmZ1Pl6/Iz7bF97777Ll6vlxkzZlgYPcEWXXnllTz55JMW5lPEax08eJD777+fPXv2kJ+fT15eHnV1daSkpLBz5050XWfo0KF06dIFv99PSkoKqampeDweFi1axKpVq+jVqxd//OMfKSwsRNd1ampq2LhxI+vWraOyshKv18v5559PXl6eyfBFo1EaGhq44YYbjvmcpd/85jemuuG/koLBIH/847/3DMDjc8OzMRjia5I0ELu9Z9u730H+lJxSmsp2kVrUo002LRom3FyH4nAlgJKt/IJhkyhbvYiUwi4A1O/9jvTuAw2gZOuTL68Ehy+FYPURvNkFx9DQ5G3+XkAp/nxr+UH8Jd3Nz96cArw5BWaeYOVhatYtR4uEUeQfNpndaKzD6ZfYMUBxOMg+YSKK20P9pjWUfTIXPtZxBtJJ6doTPRQmVHaIpg1ryRh8AjWrluDv1ovSi6/B2QzuRnAG4wfbRnQ0t0IwQyWSAjGvxBDEY2N0Bwn55GjCUAfrGhBGvCOCJeZEd0DMY5Qd82CerWM+r0que7pUqKInpLJN9kQ3GRxDVEIqR+SLn3ekK9Cw9AvUzDRShgyWGmqwQjoaB+/6L3JvuhxPt1LjnmYAklhzC5VPvkL+rZKUtwKKQweHjuLQUBQdMwhfT3yZKv72CjlXXEC0oZHql2ZT/dQbibqdThSHSqyiCnfXzviHDMSVnY2vW1ec555D49IV1H6wCABXZiZZZ5yBOzcfNaLgbAEiOko4hlOXvvK60e+oX4mPcVzKPL7O2gPHCREIhTZf/vhNy/xK9SVN8XmRXQjlNspuZS27d1B04RVJygDV5cKZlU20tgZHWralAbqu0/DN14TLy0jtMwjV46N59zaijXW4c/PJnTKd9EEjEgw0mEynroLDl0Lo8EGC5QeJNNfj8hs/0E5fKhndBpHZZVAC3EVBj4uWiLg0Mz7t35E0xfj3Q5Tzn3TMqT23vPbYqbFjx/LJJ58wbdq0NkAlHA6zZcsW3G63CZTsBvptt93GHXfcYYKlTz/9lAkTJphASTyj6zp9+/alR48erFmzhmHDhv1L/UxmGCbLY7+3fv16xo0bZ97v1asXd9xxhwmE9uzZw1//+lcaGxvbNYAOHDhAbm6uxQ3M6/Vy5ZVX4vf7mTt3Lg899BCxWIzc3FwGDx5MY2Mje/bs4euvv+bEE0/kk08+oUePHvzpT38y5aVDoRAtLS2WOJhk/ZCZHMDc/ZfPsZHjmETZ4r7MYtjPF7Ib6vb38gGq8pk+8nXxjBAhELLoIt+CBQtwu92ce+65FkZKGOZjxozhL3/5i+nWJdiRhoYGrrnmGp555hnTtUx2PUx2DpV49je/+Q233HILmqbxxz/+kbvvvtscT+Eqd+TIEQYOHMgpp5xCaWkpvXv35q677mL27Nk88cQTxGIxUlNTmThxIn6/n+bmZvN5h8OBz+cz65TBk+wuJtgW4Zonu97JQElsXgj3WDvoP1amOdn9ZHFKiqKwdOlSHnvssTbuj5qm4fF46NOnDzt37qRTp06me2drayutra0sXLiQPXv2MHjwYFJTU9m8eTM1NTXk5+czc+ZMJk6cSHZ2NpqmmcypSD6fjz179rB7927KysrIz88HICsri5NPPplx48aZLnuappkufOJaNHp8Z2L8aAQe2nPDM+MaOvjb2hHL1Oa+yTIZb3L6ncjeJa/jzcwzjRQwdvD3r3iHtC4DiLY0tAFk4qM7LYtoqNlsf9PhXeQMGZ+8oQqkdelL8+HdbcGS2a72+5LUHjxWmyOeT3W7iYVb2xwAK1Is2Io3r4j6TWvIGDYmAS7EDnp9DSgqqs/ftj0KZA0/kayhJ6K1tnBkyT+p27iS+o2rAXB4/TjcPvxFndGHj6V+0zqiRFE9TvTmuF3rUIg6FWIeiKRANAAxt1G2yVzE3aPQFdNtT4lJQEWX8Etc8V2LGkIEjpBxNo0SxnSjinkEANMTLnxqgvGQzw4S4MgUapAk3oQynSV4XXIzE/lDB/aTdeLZ4NClXYF4HxWF1FPHUf3iHDJmTMM3yBDOaP1uGw0ff0HmBdPBpVrFH+IueIqix8k6Pa4SridAk66jpHhwp3oo+N11aA0NxGqbidU1ETlSReOSlUQbGmn95yLq5n2Aq7gIT6dSolVVRI5UgNOJp1Mpjuwsok1NODUPsUPV1G/cSP2e74gEG8nsNJDcHqNJy++OgmqCpXAAoikKUT/G+U+qMdbGOUaG8a2oumUoTMBkTgDW92JMBZC1Yyt5t6W93VFp80MXn52OxHldOuiaGF4Fp8cPrSFIlZ7TNCrem0vD6q/xFBTTtHMzACmDh5A2ajTezt1QMNapZmufokHdV8uo/OSfuLLzKL3wWryZhRDBAsaFwAma0RUTJMlg/N+UdB2OYcP3mMr5MaeOwA/Q5r2cz34tWZmXXXYZl156KQMHDqS4uNjMo2kad955J2eeeabpDpOsrLy8PFpaWszPK1as4Lzzzmu3zVOnTuXLL79k2LBhSdmk441VSsYkdXQ9EAhQV1dnuSfXWVdXx4ABA3j55Ze56aabLO0SbmDNzc3m7rfYmRdCB5dccgkXXnghdXV1PPLII7zyyit8+umngHH2TyAQoGfPnng8Hj7++GN0XbeIJMgCALJbVTL2TXbFk/tijysScuEyqAAsQEioxMmgSRj9MiiTDURZCU8Yz/K4J1N+UxSF7777jptuuskiWiDKicViXHvttfz2t7/ltttuY+LEiQB88cUXvPTSS9x8882WA07tbnjyfMvjE4vFKCkpwev18uabb1JfX09lZSWVlZXs3r2b2bNnU11dzdNPP82jjz5Kt27d6Nu3L4cOHWLfvn2AIZGflpbG1q1b8fl8NDQ0sH//fvbu3UtzczM9evRg8ODBdOnSxey/aFNrayvNzc0mq5KWlmaCSBm42sGS3VXSvm6TrY/28oj1JIRhRPnympFFKezlpKam0tTUZDkotqmpiRdeeIFFixZRWlrK1q1bicVijBw5ksmTJzN8+HCcTqfJFAowLyT0Fy1axAsvvEBeXh6PPvooffr0MUGRaIN8tphwUxVtEJsBx5P+L7vhHTezpNuNF+nesZZhT0dz53L50ygZew77lr6JN7MAf04JkeZ66g9tI6fPGFLyOnFk3adtwIzY+NZiUUv7FYcDTYuahpgd/Gha1HA7O862fq/xkPKKslN7DuTI0n+S2rN/0uz1360md9xpVCz7ENWfQmqvgebiCVVXcGTROxROm9luG3RAUUH1+/HmF8FGyBkzGS0UpPXwPhp3baJp9xbyzzoP7ZvlBKsP4cjtHHd7MgzKmEsh6oOoH6Je0Dx6AizFAYthIMbFIBwKajheb5xB0sFkoRAy5CRYH1UzQJMmGClVHOJKAuBIa1E+g8gESqYIgwF6DEwilOekcZcNfAUUlwst1Irq90nXE3lUv4+0004hWl5F5eOvAODt1ZWc6y7GkSpcemxzrFjLURQMoQTR5mgMPaajqMZ5Po70dBxpGVAKvgF9CG7dTc7lF4Cm0PrdNlrXf0do/wFcuTmkjhmNHo4S2r+fuoUfo0fCZtUufzqZpQNw+dOo3rWabXvW4Qlkkdt9NDndR+J0pONS4qA2YsShxTwQ80tKgToJwBT/LCvU6fbFJrntGa/x8Y9faCP3LuXVpaEW86PE7zsCqYRqK+OHJBs3haCDGoXwoUO4x0421pfD+O6Xv/0aTZu+NZ49cojAsBFk//QsHH6/JASho4kJkwKetJp6KhbOJ3XQMAp+cj5OXCiJoU2a5I2a/5WwH4mJ+5fL+U9Kygwlu9dRvmTPZGZm8ve//52bb76Zbt26MXz4cCoqKvjkk0+44IILmDJlCnfddVe75cgKZIAZ4J6sPuHOI4tJHC84klN7bkft5QGYNm0av/jFL5g5c2ZSt7c33niDX/3qV/z1r3/l7bff5pxzzjHL2Lt3L7fccgv3339/G+PUbnhmZGSYsWCXXnopTU1NbNy4ke+++84EC62trWzfvp1hw4YlbXeyYH75fbLPycCSDIqEYSkARjIhBpnNsCdxLo5gdVRVNV/FdfFsey6WHo+HpqampG3XNI2UlBSuuOIKDh06xM9//nN0XWfQoEHcf//9ZGVltZFLTzYX9vET+QUgycnJIScnhz59+jB27FjWrFnD7bffjsPhYPny5SxevJhNmzaRm5vLyJEjaW1tZc+ePWzfvt1inAv594yMDLZt28acOXNIS0ujf//+DBgwgIyMDAtgExsLAkTaZcvtoKkj9iLZd76jDQcZWMtzL94XFxezefNmBg0aZM6jzFBu2LCBs846ywQtLS0tPPbYYyxfvpz09HQOHDjA6NGjuf7668nKymrDKoryRFsaGxt56qmnGDt2LHfeeSd+v9/CFsprwi6Xn0we/1jTjwYs2Zkl2RA4Hunwo7npGXkUyz1fZj49pl1LS9VBWusr8OYUkztovOnqFG6uIxYO4nB7ZaViAOp2bSCtcz+z/ald+lG/Yz3enKlJ21e/81uKxv2k/Tb/KyCpPQAjjakrLQNnII3a9V+ROWSMtW2b14Gi4M0rpOSnl1K1cjG1a1fg9KcSC7bgDKRRePp5uDOz22+LYuwaKxpkDh5L7YavaT28l84XXI+iQTQSZNeLD1H/3RpQVYLlB/EVdzblvnUFoikGqxRJ04l5dXD/f+ydd5gcxbX2f9Vhwuao3VXOAeUACIGyhMgiY7JksC8Ggwn2BXOxMWAwxgQTjDE5g8kCTAYRJYIEAklISIAQymG1eSd21/dHd/X09M6sJMC+93vsep7RznSorjSj89Z7zntcq9MW2cpfEoQlvDw/WlIgXXbJy6fkxpxILQNydMUcBAP/VZ8CMtrqWUFA4rE6eZikXGMDUDBmOG0ffELpQdMy9frAQezTz6n6r5PQImFK9p/kHRfBZ3t/XVYpuI58fYgM6Uds2QoKxwaStkpBqr4RYRiIaBhhQ+GYERSNGOkxP3pCoKVwAGnCIrV5C3ZDEyGzmIKyOnBjr7qMmUH7pq/Z/sUHbFz2Gus/e5mybkPoMnAfSroPQpoaVliQKoB4lYYdtbPbYousPvrJIX+fpZ9pzhpr31wEfjP8IENqGQlxfzLgkgn7smP+K3T50fHOD6YtPNayfcXnhCtrMUQIW0K6uYmNf7+X+Lq1AFitLVQcdAilU6dk/oPzg1iyAbiwJVpJCUZZOXo46gCltNtuzf0OSRw2ySebj4aXdsljlP6Vv+0yxw7Qd63n37zkc6FTJRfTlM+QyvUffJ8+fXj88cdZtmwZK1euZPDgwfz0pz/1doNbW1upr6+nsrKyw7NfeuklzwUP4IADDuDJJ5/McrPzG3BPP/00F1xwwS6xSsE++ksQHO2KWx5AZWUlgwcP5i9/+Qtnnnlm1rnnn3+exsZGRo0axR133MHNN9/M7Nmz6dKlC01NTVRUVHDNNdfQt2/fnHUHmZ6jjz6ahx9+mE8++YQbb7yRpqYmtm/fzm9+8xteffVVQqEQq1evZsSIER1civxiCEAWM6TGRgGXYPEDCHXeD5j8Rqh6H1QpVIZ0UGDAz+LkW5PBuDq/y5xlWUyfPp1nnnmGAQMGZMlxq7pfeuklLr/8coqKijj22GOzDGI1PkGAlY9VUu2YOHEir7/+umfs+6W+t27dSiwWo7i4mHg8zt57703//v1paGigsbGRxsZGYrEYQ4cOJZlMUl9fT2trKwUFBXTp0sWTIR8zZgxbt27l888/Z9GiRbz//vv06NGDYcOG0aNHD49pC4fDxONxSkpK0DSNwsLCLFnwYK6mIEsWfAW/37m+W/5xCY6fGtdjjjmGW265hZtuuikrga5lWbz//vtUV1dTUFBAPB6noaGBK664gmXLlgHQ1NTE8ccfz4knnkg4HO4gTa+eqeYqlUqhaRrdu3f3AGMqlcq6Rq15xTQBHdbfdwEs/zZgSbEFCsh02J0Pls4AVF7QIPJeIwVEq7sTre6efV5A7ejprJ3/CD2nn4Buhr3r27eto37VR/Q98Mce0Cvs3p9tS96ifcs6orU9supqWv2ZYxgVl+V0YcvbtU7AlL/YqST1n75H6zdfIHQDaVsU9xlM+agJaIbpjWPN1EPZvuBV1j72Nwp7DUAIjba1qwl3qaNu1lGOYWmaVO83Cylt7FQSzTA98JjTZdD/Xtnzhk7lXlPY+I9HSLTvwCytQEQiVB5wMFv+/iAIQWrjZsTIzO6+1B23O8tllGTEQpgZsCSVbLK76y8F4LJLtuEYttIDAnhxTuDULSXYrvEpbPCH2fiD/T1RAGUbuqyH1HFZG1+fPQSdZ44CaD+yxwBa5r9H4qu1hPv1ctrmtrH5pfmEB/RBi4Sz7vNAhM/49s5p0sk/JBzQpG7wt7F42t5su+VBjMpiwn0ybjnppiZ23PM4FScc5vVRgOMeZwknT1USDyxplo5Z3hWtqCvCBstwxlBqoKUEBT370atrP3q0HU7Dlx+zbfX7rHrjTsJFlVQPHE/FHnuj60XoSbBDwpsbf7FTKdo++ZTEuvUI06Bw1AjCvXs649RhbMkCmlmAyb1e5WaS7mlhu2DEd60UEO7enUjfPmx56H7Kpk0j1LU7dqyd5g8/ILHuW+qOPAnbgNiGb9jw93uwWlucJpgmMp0m9uUq7ESM2FdfohcVUzl7NmZFReb7EGi/0ASFA/egbdUK5HRH70+6WieeRLk73wqjeIKDeQHjP7cEpdO/Tz3/KZniN3x25dogeOqsDBs2jGHDhnU4/stf/pIzzjiDO+64g9LSUu/48uXL+dvf/sZDDz3ktWvMmDHccMMNLFy4kPHjx2e1+ZVXXgGgb9++OZmRYB9z9SVX8TwaEgnuueceXnnlFUKhEIlEgqlTp3L66ad74hlSSi655BJuuOEGDj/8cCZNmkQoFOLtt9+mX79+3HLLLQCEQiHOP/98zjvvPFpaWohEIp4B25nymmqnitn5yU9+wtlnn83GjRupqKigrKyME088keuuuw4hBN988w3JZJJEIuEFrEN2klJwjGbl5taZm14+Y9pv/OaSkfbv4PsNVj/YCaq45RIpUNerPvhZKPV+xIgRPPjgg7z33nuMHz/eW6O2bfPggw/Sr18/CgsLPVetXGpn+Vil4DnVrtmzZ3PBBRfQo0cPRo8e7dW5fft2Lr74Ys4++2zPEFd5g9rb2z0FPMUmmaZJTU0NtbW1Xt3KmDdNk9raWurq6hg/fjwrV65kxYoVvPDCCxQUFDBgwAAGDx5MWVmZBygLCwu9eC81xslkkvnz57N8+XJCoRBTpkxh5MiRWZLjQeZFjX1nLEuuDRb/2Pbs2ZPJkydz5plncvrppzN8+HAaGxt56qmn+Oijj/j9738PwKpVq/jNb37Dtm3bvDGxLIvly5fz8MMP89lnn1FcXMzZZ59Njx49OrTZzxKNGjWKt99+m1QqlcXAqeuD69HPhKkxM00zb59zlWCuqu9afog6drfslhreyFOuctTwdhcYkQ2sOtwa/CH2g5Jchleez80bv2TrJ28QKqnAjBYTq9+IHo7SdcKhXuC22jlOJ9rY8MYTaOEoJX32QNppmr5cih6OUjf5cDQjN47cKYvUSdvtZIJ1z91H2bC9KBk4AnQNaVs0r1xC4/LFFPUZTNs3q0CAUVDkqNlV1RLb6OyMR+p6oIcjOZm9XMByZ+1RwgoykeCLmy+lYtJ0KqbMBCAdttn4l5tJrF9P19POoLiuH+EGJ55I6pAog2QJpCrTaJE0muH+52uDbSmKCKQlEJaAtGPUi5RAjztsgJYiIwjhuvgpQ1lLg3Dd9WzTcfezTac/WfFPrheKbbpAS3fU3aSrlCZN6TJLeG3KGpdOFN3sWJwdf38GaVlEBvfDTqaIL19JZHA/imdNdn6wFQvhr88PltR5Fyxpuu1da1taZrxc9TarpY3GJ17Cam7FrK0i3dAMlkXpETMJda3JtC8tEHHNAUoJgZ7EEdJIqaTBeJjEiuCJbXigyo0N01MSLWHTun0tW75cSP23n4KAsv6jKJs2A61PtTPuvnFLrFvHjmefpWjcWMKD+iPjCVo/Wky6qZHKk45DC5mZMfbGggw4VkA6yAxmrU3hMDYWDjOpMJPmxFMld2yjeeFC0lu3IcJhikePpaDfYDQ0mj9cyNbnngKl3lRUjNXWSsGQIcS//RaAaP9+xL/5BjsWp8dFF2EUlWS871yW0xFrEMSWrWDjA3fQ58e/IrFxHcI0KRk4HB0DTTFNim0SeHF5QsLWpe+ghyOU9RrO0rsu/teo4d1wxQ+nhnfeb/5t1fB29rmzV657d6aela98+OGH/OlPf6Jr167U1dXx+eefE41GufLKKztIgTc3N3PeeecRiUQ48MADsSyL5557jnA4zLXXXuvlSckFloJ//W3ztzGoBpZIJJg7dy5HHHEERx11lBen8/zzz3P33Xdz4IEH8sYbbwBO4PjcuXMZOXIkH330kWe0KSCYz/j2v8/38l9j2zYtLS3ss88+HHHEEZx66qm0t7fT3t7O5ZdfzooVK7jooosYMWIE7e3tJBIJT4hBucOpefK7HqkdeP+Y+JkZFcsRBEWWZXmgLJjANVeMjF9eXF2jGBCl9KbcrJTKm2IJVJyKaZqeEIQ6rwDBddddR1tbG+PHjyeRSPDuu+8yYsQI5s6dm+Uilg+U5lo/qu25ZLfb2tq48cYb2bx5M7169WL79u3EYjF+8pOfMHDgQCzL8pIGb9682ZMFb2try2L8/K59SuRAuZdGo1EMw/BENWKxGJs3b2bNmjWsX78eKSV9+vRh/Pjx9OjRg+rqaoqLiykuLqaoqIgNGzZw2223MX36dPbaay+SySSvvvoq3377LZdffjkFBQUd1pgf9OT6LgVL8PfBvwaUrPuTTz7J119/TSQS4YADDmDfffcFHPb16quv9lxtS0tLaWlpYezYsXz99dek02lGjRrFqlWr2LFjB/fff78X36faqhLWJhIJli9fzhVXXME111zDhg0bEEIwbtw4L++VAk9KtEQBaE3TePPNN5FSstdee+2WGt6VV175g6nh/c///HPVZYNlt8DSiDlXYZiR3GxFjlp2xzXPXzp108txLnh9omkbViJGqLTSAUnufTJovAGxhi20rf8KoesU9x6EWVSWXfdutKNDWwJjs3XBy0Rqu1Pcf2jWbn26rYW1j/yVcHUd3Q45HqEbJBu2sW3Ba0Rru1MxdmJ23TsDQrtwXO32K8CxYd4DJBq30/2c80CT2GFJuqUFua2NgoquGDEwWx0j0ApBogKSZTaUJzGjaUzD+fG3LI1USsdOa0hLgOX8FTaOgW8JtGS225hf/S7jAoUX/ySNjBoe+ECB+5Kay3KFHNBkhyTSkE4slGlnJWHNKUgQLFJk8v4ISDc2kVy3DmEahAb1Ro+GMnUE14FiE1ywJNyYKSXsoLlqeAC2LVzAJJBpnzS7ADuewGpqQi+OohcXIv1AD4dRIqahpTRnDlMiA5Lc4sWYmdJzF9OTDgulx8CIZwx7qTnjnEy20rD8Q+o/eRctHKLrz36OKM/kKEvH29l2171UnzYHXcVzuaX9i5W0L11O5QlHZgBEvo0V1Zc8rl4KbIi0cNeBa5jorviEIR2xD993TFiC5Lfr2XjtnwHQS0owq6qIr1lD0V57Un30MW4dAgxIrN/ApmtuoOs55xDp0csBaO68eiqKNtCeZu3VlxOqqCK2wdm4qBw7mdr9DnGYXN9SEm7bpYD6pQvY+PoTFHbrR5+DT2PZ7f8isHT9DwiWzv/3AEtFRUVAR2Mm1+59PmCUT1L4+4IlVdasWcOOHTvo3bu355aXr3z11Ve8/fbb6LrOlCmOwhjkZwXysTX+Nvr74e/bTTfdRLdu3Tj66KOz+tLQ0MAhhxxCjx49uPfeewmHw6xdu5brr7+e3r17c9555+U0LnOBt1yASX3OxTYpd6MLL7yQRYsWcd9999Ha2kpLS4snMNCjRw9SqZSX2FTF/yh3LbV7rRKi7iwPkzIo/a5mfuM+l4qYH5j5x9n/8ivwKTcxJY+tgFAQLClgFIlEOijjqTp37NjBsmXL0HWdUaNGUVBQ0IHxyvU+35oJxv/4wZICYG1tbWzZsoWioiLKysq8+4NgqampyVMllFJ69aiYHTUnClAlEgmPJRLCSbza1tbGhg0baGpq8kBqfX09uq5zzDHHUF1d7cmKR6NRbr31Vs4//3xqa2s9sKlpGsuWLePFF1/kd7/7XU6AvLP16f8OBd8Hfz+CjKF6//XXX3PssccCzoZD9+7dWbZsGVOmTOHXv/51FrBev349J510Etdeey1jx47Nmq90Ok0ymaS9vZ22tjbOP/98qqqqWL16NQBTpkzhhBNO8BLYqu+RAkxCCBYtWsS9995Lnz59uPTSS5kzZ84ug6WrrrrqBwNLF1/8z/3/NFi+kxverrqUZNlBuwucdsYoBev3XRMuq+4ALIJASZ2PVNQQqazxmpgXHAU+7yzmJdex9vVfU7Xf/h3q2PzGPLoediJb33gOTAMJmBXV1B38IzY+9xDRnv2IdOmaXX+uduQCSZ2cF7g76DaEu3Sl9esVjnqDu0OulxRjaKWIOKAC5g3lgieRIYkRsjANi7CZRghJKq1j2wJpCaR0mBMvlkMHKZQKnNsg28eEWGRAnGvcA15MSEYBzzHspXTVy9zPtuHmDDJdQ9pVz1PCEdIFMFkBbb7B6sB0uONllJViVJa461+Sz9Wuw+S71yig5LngKZtcOODJRnPq9ZQTQC800YuqXGAlyQIfUiIRyJDA1mxnfEyBreLFBBmXRAUU3fvtsERLCUfEIYnH7EnF7hmFFPWahrFHXzbcdhPfXPFbhGnQ7cJfYlZV0/bhIoon7YdeGM2AFXcIosMH0bLwfdLtLRiFRXhMXmff5VwGmsQRglDumRJvXJRKnzSko1ToA0tSgNGjjtpzf06osgqtsIgNV19DdPBgqo8+xhFtcZ8vkVnS7t7c+uZNumtWixqU7DmexvfeAkALR6hf/BY7lrxLqKrWYXtTKWTaomLkPlSMmEDT18vY+MaTaJEoqfZmrN37pf1+pRPGbrfr+U/Jya780HXvSunTpw99+vTZpWv79euXFd+zK2xSZ7vhnZXXX3+dp59+Osu4Uy53N954I5dddplnIPXq1Ysbb7yRc845hw8//JA999wzq67dBXE728kfOHAgzzzzTBbYMU2Turo64vG4Zwj6hTKCYDBoxAbHzw+C88Ul+dkXf/yS/xnqfD7A7n+2XwHP7yboV7cDPCZMMRd+Nbbi4mL22ScTE61YtVzznYvx8/9VhnUQEPjHDKCgoIDevXtnsVb+cfDLgBcUFHhudsrtSwElZcQrl8uWlhYPCCSTSeLxOI2NjWzatMnLx1RSUkJNTQ3ffPMN99xzD5qmceyxx9KzZ0++/PJLRo8ejWVZNDY2emDJMAz69+9PPB5n/fr11NXV5XUBy7V2c42Z32UvCKj9n/1rrnv37tx+++3U1NRQWVnJaaedxogRI7j44os7xLzlal9wc0GB90mTJvHcc88BUFxczJtvvsnbb79NTU0N0WjUG+9x48YxadIkVq9ezf33309BQUEHZctdKfnW13ep519ddk/gwSeT6xWfseId2p3/ZH276flKOtHO1s/eon3LWoRhItMpinsOpmr4fmi60eFeP1DYqTuaAh10vC54Tb57cz47eNyy0MJhhF9SGEi3NYOUROq6IYzsvgghqJowg4bF71F7wFEd29wZUNpZv93Pwr02VFaJHY8j29oRxYWoEfEH7jsCD5lYJUI2umFj6Ba6cNzLpO4GA1oaMi0QKV9iVpdlkRKkKbDtDDPkxVkooCTJ5EJy2SWhyBfNJX4EaK6hb4VcRsnMGNJSKewJxe6ojqs+ORa2lAqM+AefDqXDuPrjj8AJ6hcir5EpAl8MoUlPYc6J2cmwUME2ZCn94dzjsGbCFdVwJcht331B9kY4QMPSJbYpsPx99oleCCkJD+hFl5NPoeXDD4h98QVbbr+bSM8+WK0t1J04BzstXEAqs77DkSH9SX7zLfqIIV5cWc7vuOYbNz929drkzo3uQ1uuC57fvVK460nFrwldJ9K3N8IWxL9aQ2rrViqPOALhLp4s8Jg1GXneaw5bWTxpAg3vzkcLhbFdpUFpWSS2bECYIWQqiTAMjNJyWrd+w/rn76do8HAKBwxmy7OPse7lB/mXlf8lsPSHP/yBp556ypP3nTBhAn/84x8ZNGiQd82WLVu48MILeeWVV2hsbGTSpEncfPPNDBgwwLsmkUjwy1/+kkceeYRYLMb06dO59dZb6d69+w/Qqc5LPhe64Pkf4hnNzc389a9/ZeHChUSjUWKxGJMnT+aMM87wXH6+S9ldliZ4T676Ouu3P6ZIlcbGRhoaGthzzz0pKSkhlUpl7Vaff/75XHPNNTnBkir+mI5dZaD856SUHnu0detWdF0nFot59SqQpACF333Mr4SWCyz5Fe0gs14Us6PaEgRM+ZijXDLVQdc89Qqyg35ZalX8dai2+IUmcrEcueKgcpV8LFNnLKy/qH752+tn9EpLS4lGo1lujQpc+oFtKpUiEolQVFREJBKhtbWVtrY2GhsbaWpqoqWlBSEEBQUFaJpGKBQiEokwfvx41q9fz/r163nxxRc92f4jjzzSc/tT4NI0TSKRCMOHD+ejjz5i1qxZnqhEcB7yfZ929v3Jd73flVPTNIYPH46Uki+++IIvvviC3//+9964+OvIB9KCrFw8HmfMmDH84x//wDRNTy3Qtm02bdpEKBQimUyi6zrl5eVs3LiRe++9l0GDBjFq1CgeeeQRrr322k77FSz/VmBJKZYBgR3iPO/zHAuqZ+Ur6Xgba169n5oxM6jd6wCEJpC2TeNXS/jm1fvpvf8pDsjwKnYfF2xjnuMdQFIucJEPjAXv7azoGnYygS2yvzjJHduI1HbDRmJb6Q7PDNXUkmpuyN2Hztq7k2uD/TErqgBIb99BqLAw6xzCAStp03F1syISO2KDoVRSNFKu0ZpK66STOjKpIeI6Wipj6Nq6+yPq5qPxgurVX594gyfu4NrNmqsYarsGrz++pEO/3HWKJl384VrjrpQ5frpDZlTXMvoPMve6cY1zVY/wQFgG3CgVNAQeCBLeoxyAKNQ5t026C7rspE3bhytIfLUOETIo3Gso4T5dUUlsvYZIFxh5jJUP+CpGRsUEqVuCa1gjo+JmgbAFIu248qlSOngUJUNGkVi7lq3PPknLog8wS8rRt6fQbYN0gYYMSbAcVzkhQbRJRImBsIWjaAeOy6B/2FV7giAWF/hIlyZy83SpBK+oOdWkk+RXgTtbIF3g66wbASmbxldfw6ioINqvf6bP3oNExu3OHSPhe4/bPNwNZ6OsjO5n/oLmBe/RvPQTsG30giKseLsDlMwQoYoqNr85j1TjDiLde1J79IkIXSe9o4H6d1/lX1WEnd2371PP7pS33nqLs846iz333JN0Os3//M//sP/++/P5559TWFiIlJLDDz8c0zSZN28eJSUlXH/99cyYMcO7BuDcc8/lueee49FHH6WyspILLriAQw45hMWLF/9TA3tzudTlMwBznVNFGTu5jCT1uampiTlz5vDzn/+ciy66yDOOnn/+eU499VRv97YzEJOr5GNlOnMVCt6Xq725dsXV+3g83qGva9as8QQrWlpasoASQO/evdm+fXtW3TtjvvK1M5exqo4rQ3jt2rXU1NTQ1tbmXedX+goCEX/eIr98snqvkp1CdqJavyumfx3kYpmCbfezK/kEHFTxCyIEgY8/p5N6tmq/AgH+hKyqzUFWw1/nztahvw1+NUHFes2fP58lS5ZgmibTp09n6NChHluk2uiPvZIyowbnb4NfSS+VSnlxaCpRbWtrK6FQiPLyclKplDeWfpGIaDTK6NGjaW5u5q233uLzzz+npKTEu9efuFXFhm3fvp3S0lK2bNlCWVmZ59Lon49d+a52BhaC36tc3znbtrn33nupqKhg/PjxO93k8I9jKpWitbWV9vZ2WltbaW5uxrIs5syZw+LFi1m+fLmX/Le9vZ1kMolpmnTp0oWXX36Z+vp6unXrxhlnnAFAW1sbzz777E77HOx/Z5Lsu1PPv7p8RzW8zGev+AzfzpTx/Aac/3i+smnxK9SOP5DC2t7O8wGERtnAMdi2Rf3nC6kaMTEnGLKtNHYqjh6KghFQifP1Ket4Z6Ap2Odcn3PdAwgpiNR0I7Z+DQU9+3qGoxaJkm5vpf2bVUR79O7gNmXFYx7jtLttywf2OrRfOMwSQLJhO2afHt7zPNEE4bBKdshVwDMkmuYY7cm0Dmkd29Kw0hp2wkAkXfGBpPCeI9QUWHiGuUjjASfPYFW2tUp15bpiKeEHp3N4bJTnvWa7bInhgAjpshRSXa9J0NyLc9EdwnFvy6wJn0Eu/J+lN25CJcUVuA8kM7e6JEhhSNVYWyB0iebWmVi7ma13v0DR+GGUzhyLjCdoeftjmp5/h5ozD0d3RRMcwOXId3shWBKP0HIe5wIqfxc1Mm2xXIGNmOYk/7V88+KOp3JrBAj36kXXE+ay/u6/kmrYztd3/4kuUw6iaORoCOkZoQ0B8eVfUDN6PDKhQciJF+vA6PmXnwtCySwTNVCZe6RwQK87B96acM9LBZBcdslqbqXxldeIrVxJ7dzTMjnThP8BoBUWgKbR+OqrdDnlZLRQ2Jt2pLtGU87n+IZvafrgXaxYO9FevZ0pjMeQTQI9WoBRXOK8CoswikspGbM3dksr9W++TNOnH2EUlZFubew4AP+M4l/e37ee3SgvvfRS1ud77rmHLl26sHjxYs+F4/3332fZsmUMHerkkLv11lvp0qULjzzyCKeffjpNTU3cddddPPDAA8yYMQOABx98kB49evDaa68xa1budA/fp+Ta7fcfV++Dx4J17E658cYbOffcc5k6dap3r67rHHbYYUgp+dvf/sZ5552X01BVsRolJSV51ah2FyjlMrr8gM9vuPnvE0Iwfvx4XnvtNWbOnOldV1paytatW3n//fcZPnx4BwOwvb09y2jqbHc+n0GYr4/qs23bdO3aFSEE69ato6ysjGQymQWIVB+C6nHBZwRFHhTDoRgp/yvXnHXGQvjH0j/2wfXo76sCQ0KIrPYGn+2vU12njHwFZpT7nX8+/Gp//jburPjBlqZpfPPNN1x++eVMnz6dY489llgsxgsvvMBdd93FVVdd5eX3CfZbjWu+eVVKbOpzOBz2mD6V08o/R343RTXHVVVVzJ49m8cee4xt27Zx5513MmPGDEaNGuUBUSUesXjxYk488UTq6+sBvDin4PzkGvt8TFtnLFTweyalpLm5mYcffpi33nqL3/3ud1kKff5nFhUVYZomjzzyCAMGDPDyryUSCZqbmz2BB4Bt27axePFiWltb6dGjhwcshRAUFhZSWlpKaWkpJSUllJeXM3XqVCzL4plnnmH+/PmUlZXtljvevxezpOcGQx4Iyvd9koG/6n0nfZaWRaJpK4V1vZ3PPuNfSCgbOJpv/nEXlaMmescBUm1NbPngZZKtjRjRYtLtzYQraugyfn/0SEHWtUEQkhN85GhjpyIUufoioGLCNDY88wBdphxItJvTp3CXOtrXfkVs0zq6HffjrOsF0LT0I4r3GJXtApbr+bsA+jov7g+WJtzkrw7rIXWJ1B25ZCvsCD9I03V/sgSpuOG6fwlIapDS0NICkcZRMXMNcIWAhHST0qYzqnaqnV6eJT1jsGa5TqXd+9MZoKTulwZYJqQLBNLQsDXb6bpyTZPCMbB1CYbMGOiuMZ6l0KbGXwEMj5Fy2ukxSsp9DveYdECMMuz9Yg6WqxAobZBCud4JhzWKx9l2zwt0/eVxXkJbBET6dyO2ZDX1979Il5+6eb+kw0RJRSW5QEJawvFJ1HCYmEBf8KTLIb2pFbm1lXC4HCNSnBHZEI6QhsceqtxZUiCKSulx4a9JLlnJxmceYuNzD1O9bRs1Ew703CXrly2goLYnIRkm3Y4DXJUaYWAhZm2quABU+EGT38VOuiDT99dD1HZGbTG9bjNb732A1NatIAQVBx5C4ZA9POCdBYKlwCgpoeYnp7H13vvZcO11FA4bgd3cSrqxEaulGZlKg2VhJePIdAphmHQ55EiKxo0jtnUdO158gZpjjiTao5ezxtJgbdlO/ItVbHnyEdq+WoEWctQ1SweOZuXtv83/9fs/XJqbm7M+h8NhwuHwTu9ramoCnIBkwPsP2h/gqwLP3333XU4//XQWL15MKpVi//33967p2rUrw4YNY8GCBf8UsAR4xmIu4JTLZSnf510pUkoWL17MpZde2sF4EkJwyCGHcOSRR3LeeedlPWP79u384Q9/YM2aNdTU1LBlyxb69u3LhRdeSFVVVVb9/p1o/7F84EId8/cr1+dcBvPPfvYzTj31VCKRCPvttx/gxFd99tlnrFy5kgcffLDDfY8//jiHHHJIpwxSZ8xXPnbGf065cflZiFgs5l2jwJLfbS6o/AWZPEuKUVJuTH5DXBnp/kSn+Qx9/99cfVJ15YuT8rNVqvjjXfxqdv57FRjcFQCci9XorAS/L8rovvzyy7nhhhuoqanxnjNq1Cg++OAD/vCHP3DllVfmrdMPBvxzrOpXAEhKh93cvHkz27dv9xTuNE3zWCLFECl3MzWf4XCY0047jU2bNvH444/zzDPPsH37dqZPn+6tmc8//5zi4mJSqRRNTU2YpumNo180wz/HQFb8WJDF8/fJzzrm2qBZv349v/nNb/jmm28AJ9HyxIkTPZGQYIlEIlx55ZVcfvnl/PSnP2XChAk0Njaybds2duzY4a3deDxOMpnEMAxmz57NxIkTqa+v56mnnuKUU05hjz32QAhHgGTr1q0sXbqUBx98kEWLFhEKhZg7dy4TJ07k1FNP3en6CK6T71v+/wBLAaPdO6feCDqyR+QAUzL72lzFSsUxCkryxhgJ0wBNzwIKyfZm1r38EHVTZhOp7uada9vwNd/+4356HnoqejiaE1TsUqzPboIkfzEKi+h2xMlsf/dVtr71EkZBEen2VoySMqeagItJ2zeraft6Fd2PmdsRyOV6/k6AUke2K9PnRJOzY2JUVboubJk6PMZHGZzKvc3SsNM4BmtaoCU0R+7bJ/UsdZwYIpydeuECHSUdrhgJqQL5A251Hfqidv1lph4k4DJUUiejoqfabTuy5UhAV4DPdly5UAa5yFLLE24Mj8OGOW5ffnc7IUBoTpyWOi6l+58N6rxzj5QCTZPYPtCoclFJAU1vL6Vs5hiM0gIXaGW+FIWj+9P0+iKsplaM0iKEkNg4IEuBJinBxgn8kmgOyPOp4gl3spMbNtP45CtooShmSQXNm7chpKBm8iGYpeXYJlhRJ8mwJ7kOSN12nqNpRIcOoU/1Bay950Z2fPY+BXW9seNxmlYvIVRRTeXMgzIudqq7ym1RAWCB40rnutX5d1AUELWam2l+cSEtb3+C1dKORw9KNWE5ipQYZeVUH3UshUOGOiqC7gYP/jZ510PhgMF0+9nP2XjHbTS98zaRrj0wi8uIltciLEnjF59gJ+IAFAwcQrifEzQfqelBzY9OYdM9d1I2fl9iX66m/ctVpJsaQNMoqOtNlwkHUjliAroZwY7Hc7f5n1BydfW71gN4SmqqXHrppfzud7/r9F4pnbiU/fbbz3PHGjx4ML169eLXv/41f/vb3ygsLOT6669n8+bNbNq0CYDNmzd7bjT+UlNTw+bNm79/p3IUP1AKJvXcGaOUy+AMng8ao8lkkrKysg7HVVGxG/5SX1/P3Llz+d3vfpelcLVo0SLmzp3Lfffd12HM8rFJu8osqX4FDefg35KSEu69916uvfZarrnmGqqrq9m+fTu1tbUkEglCoVBW/e+//z7PPPMMDz/8cN725jqeq+QCSZBxnVu/fj0AZWVlnqCDutbPyKj+KUARHDe/0l0Q6AQV0YLGs9+FLx9QysVqKnYmVyySv15/W4MxSbquZ0lv++vx5xdS/Qi6SAXX764U1Y9XXnmFww47jNraWq8v6jl77703f//739m0aRM1NTXes3KVfMBezck333zDgw86MaFFRUU0NzcjpWTy5MkUFBRkCVcohUA/ixiPx+nWrRtnnnkmd9xxB4sXL6Znz560trayYsUKCgoKmDhxohcjpdhFtfnjVzP0uwmq+DU/k9fQ0MDjjz/Oiy++SENDQ16gH+xrRUUF5557LuPHj6esrCxvHix1/9ChQ7n++uu56KKLePbZZxkwYAAVFRXU1dVh2zaLFi3yNg4GDx7MiBEjKC0tpba2lkGDBnH55Zdz2GGHsWzZMj7++GM2bdqEpmkMGTKEk08+mUMOOYRIJOJtiO3u2vi+5f8+WCIAKNSGsQI+6nAuMOW/zndf1rWBdaKFI6RjLTmTYgJI20LaVhaQ2Prhq9ROPoxIl24ZQ19CYfe+VI2dRP2Sd+kyfmZ+EYjOAEc+ALUbRS8sombWEXiJZM0QQtNo/foLNjx2D2ZZJXpBAYnNGzHLKuh61Mlg6B09YoLP302gpI6puUg2KrBU5RqXCu3QMTmldEAP4Lg/WQLNAi0hPPAiXRbHDrsS3kI6suEpd5D9Kng4f22DDGDyFdvHaArp4gDL9c6zXMBkg57CAW9uHUKXzls3F5GWAjRBStgeg+YNn8tSKLbCW88uu+R3qRNCZoGhzNdBZpgPAZobiyTdPjhDKrx1btsCTUD7sjV0Pesw71o/WBJCUjSmP/GV31I8fgiqSYpc8QQxsJFCw8b24pkyRZDauI2Gh5+nau7xGOFSb0zSm7excd7D1B53CqK0mHShDabMWi8Ow2aDBDssMCrLqdp3fza/8iRbFr5MqqURo6AQW4eWdV9QMGQIdsgBydLIgFJ/pSpBr8fUecegdcFn1N/zLEhJ0X6jMWqryXyZ/T9A7kBYwo25gkiP3oTr6hx1PxckSS372+O52VlgbdlB68IPkIkkRmEJfU88Bysep2HRu9Qvfhsr3k60dz+qDzsKs3sNUoAVT9D28RKaP3qfxPq1bFm7hlBVDSX9h1HYexBFXfuhG2E19A6Y/Vfm0MsVpPZd6wHWrVuXJc+6K6zSz3/+cz777DPeffdd75hpmjz55JOcdtppVFRUoOs6M2bM4MADD9x5U76D0barxQ+UcgEmVXKBm10BSUGAEQ6HaWpq6rCLr661bdszxFT585//zMUXX8y4ceOyjo8bN46LLrqIm266iUsvvTSrbX5DLBdQ2pmRlg8c5TpWVlbG73//eyzLoq2tjaKiInRd57333mPOnDl069aN6upqli9fTk1NDffcc4+3jvIZiDsrufrnP27btrcbX1hYSCwW81yMgCw1OX/8T5DN8YMdBXT8cT7+MVTX+s8HJaaDDIM/3in4HsgCGeq9MspVP/zXq3uEEJ5YgbrG/0zlahdcy/61uyvfuXzXfPjhh/zqV7/KYsr8czR16lQWLVrEwQcfnHXcP66dvQA2bdrEfffdx0EHHYRySYxGozQ3N/Pcc88xa9YsL7eY2oSIRCKeoEpbWxtxdyOroKCAqVOn8swzz/Dmm2/S1NREJBIhmUyyatUqRowY4Y2NAkyA91etITXfKv5KiUS8//77XHfddSQSCWbNmkWvXr069DsovqHODRw4kH79+iGlzAuU1FxomkZ9fT2vvPIKsViM4uJibr31Vpqbm3nyySd57rnnaG5upk+fPhx33HH079+fSCSCrut88MEHvPzyy6xYsYIVK1bQs2dP9t13X/baay9GjRpFNBr13FHzMVudFT9o/j7lh6hjd8vuxSy5jIPfyAaQ2NjJJJoRysjz+osPKGXt+EMWQAruhgpNJ1RaSfvWdURrsnc3BdD45acU9x7s7B4D0rZJNm4nUtc9Y0ySsRsK+w1m+8dvI8XMnCCpA2sWBCBkn/9+9oiGZjjuKBIo7D+Iwv6DSDbUYyfiVO47DS28i3r0udrpKzttp4BUQz1aJIpWFMFWwfM2Xp4bIcFOCcdw9g2ucAGG527nqrFJN77JKrLQQhaaIZE2WCkdaRhITcu45FkZA1bqLhhyGQlpuLmT3KSzSNBMBxRpKcejTkjQktJJfJt22yQk6LYjCJJykrbqMbcfhkbakGBmxg6vH65blxTYUiJ1C024yWT94EpIDwxljbUUSCkyAEBdY2uOlLl0vgBSgrQ1pCPhhp220XyslqoLQKYthC6yjnlL1ydjLoWjtS1VEl7VNUuj6dk3qDjpaIxIaSbOCwhVVVMx8wDqP36bssMPdICSyg3lc1WUto8tFCCxQEq0UJjaQ44h1d5E87KP2bHoHVo3f0nZMQciDDuzXgQo38n2j5bT9u7HTpvTacK9aimetS9C16m/9zna3l9K4d7DqJgzG62gyMlBZWfcCpEOEBMCR5o+pSFSDrsppDuVhvR9p6UreuCsZ9mWIvb5Clo//ZjWlcvQIwWUDh4FCDY+9yiJ+s3Et22gZPTeWIkYVQceillaRrKphcb5r9Hy8UfY8QSF/QZTMW4SRrSY6r2nZwtq+Nawuzfwryvqe/hD1AOUlJTsVi6Ls88+m2effZa33367g4Ld2LFjWbJkiZf7pLq6mr333tsDAbW1tSSTSRoaGrKYkq1btzJhwoTv36ccxR+M7gdNALFYrIPaWxAI5dr1DsYlBMuIESNYsGCBl3DSf++LL77oubOp8tlnn3HFFVfkBGwTJkzgmmuu6VCPv325QNKuMDZ+o9mvuuZ39/KzMZqmeWtFSsmECROYMGECa9eupampibPPPjvrfD62q7OSb8z955QL3vr16z2DtbW1NUuVz59zKAg2OmM5FCujxiUXqAqyVmpsgkBcsQ/BXEpBdkoZ++qYAnh+IKbaEwRyqi3KyPbPq19OXI1b0BDNZbwHGddcLquK1QquWfVS0t9BQBkUwwiuEzW+6XSaJ554gmOPPdZTOlSudmVlZUyfPp0lS5Ywc+ZMwuEwJSUlXi4py7JoaWnpEKelnqNpmqeO9/HHH/PVV1/R0tLCj370I4+Ra29v99Z+PB5nyZIlLFiwwAMTNTU1zJw5k6qqKp544gnmz5/PhAkT+NWvfkVlZWWWG6f/O6Wer4paV8pF1B8/J4TANE1CoRBCCD7++GNef/113nrrLQoLC5k+fTq6rvPnP/+ZtWvXsnz5cqZNm0YqleKggw6iZ8+eWJbFU089xauvvkpzczN77bUXp5xyCqFQiLPOOitrbNR8qu97rnXeWfm3AUtKDQ/cDd1kgu0fvE5s87cY0UKseDtmWRXV42diFgX+c3W/L/60Mf6YJYHPqPf9TnUZvz/fvvgANRMOorBrb+e0lDR/vZzGLxbT85BTPcPEtlJo0YL84EFoaIbZERj5PwfvzQeOdgUoKZDY2flACVV0kmwwmyzYrXp3dk2ysR6zstJhcDT3R609jowZCBnxYoUc1kngZ54AN0+PE4cjNemAnJCNMG3MSBrTtJASUimDZEpzFdQEesIlkvzfOU3lTCI70axwCY6kQH1X7CQIXRFA0gvy9xC5kGBIbAN0JfrgAxgodUI3rkZKmYmx8o2Vptt5h9X/f4mXF0l1xQNNtgPidIdR8i+mgjEDaH7vc8r2H9eBVRICWhd/Sd0vjszxXN+17rgJaWcvVCkgmcJuj2FWVSCToNwI1bo3B/Yh8e6rYEjveyAEvrgu19p31dESDdvY/t7riFCYgj79KBgxFCskKZiyN9uffJzU1q0kvlxNZGjfLGANNg2PvIgWMeny86MxisKATfuKjWy55n7SO5rAlnQ5+zgK9h4O0k1s7ANqzqC6CoPCWW9OjJ3bXTL98phDW2C1tJFYtor2pZ/TtnI5MpUk0qUbtVNn07p2NWZhGWV7jEOLRvl23j0IM0TxqDG0ffUFqcYGYl+uZtuLzwCC8rH7Uj58PKGSSho+fg+joDgbKPldWDXf339RERkS9HvXsztFSsnZZ5/N008/zZtvvtlpTqDS0lIAVq9ezaJFi7jiiisAB0yZpsmrr77qJWHctGkTy5Yt6wAIfqgSZJXi8Ti33norH3zwAdXV1TQ1NdGtWzcuuOACunXrlmXA5QNFfuM1+F4IwS9+8Qvmzp3LhRdeyL777uude/3117nzzju5//77swxEFUyer/2RSKQDu5Lv784YJX+9/vNBNslvZPvP+8dFHc+1i56rvbtTOgM0yqhct24dlZWVXsA/QDKZRNM0zx1LJXUN7urnY65Un/zrRo2Figfxxwb5XcCCAMn/CirUBcfTb2j66/UDxFxj4j+vgIJfIc/f/mDJtebyAaXg8yZOnMiLL77I6aefnjUv6vX6669z8cUXdwBKuZQDg2BJgcCtW7dSV1fH5s2bs5QNFVh5++23KSws9OKYIpGIBzxU7i0hhCea8vrrrxONRunXrx9TpkzBNE0OPPBAHnzwQVpbW/n2228ZNWpUlktmMplk3rx5pFIpDj/8cC+eauvWrdxxxx00NzeTTqc5//zzOfTQQz1QvisbBP6+qnYrcCWlJBaLsWrVKhYtWsSCBQtob2+nf//+nH/++XzyySfU1dVxxBFHUFRUxK9+9SvC4TBTp07l888/p7W1lY8//pjbb7+ddDrNoYceypFHHkmfPn146aWXvDWr2qiAkQJNagx2p/xvueHtSlqLnZXvFrME2KkE65+9l8pxk6medGBmJ27Letb/4wG6HXISZnFp1v2ewSMzn52KfealD0AB6IXF9Dj4FLZ99DpbFr6EHgpjJeIUdu9Hj4NPRZihDOAKh7DaW7Fxf6wD4yktC9tOZxsz+UATuQFTLotZXZdTCdBvSO/i/wcecxcsedZHZyCuw7kc9UoBqR3bMSorkbqk7ZOPaV34EVpBIVpcIuNJKsbuR3ToEId10RzRByAT1yJwmBOkq6YmkSEbI2RhuElrdWGTNCyslIZtCay0Rjoh0AVoVsbQtMKu0IAJVoHENm2HQpIC0g5AE1I4iWkNkCqZLXixTEphTzNsJ6dQRHqxVLaJI/SgjGllbLuiCzZuHW5CW6FlWCTFHGWNn3TAhSaC/6FmmCchBZpw7xXOTYqBKho/lI1XPUDByH5E6kp990Pj/E8J96xGL4w4zw5MnFe/23lNAUJ8wDCdQiuIuAl6ZQZIgoMyTYEwdSeOSwFM141RCImd1jxAKUOS+gWvE6qpQWg67RvXUFxkew0uP+ZQtv7tXlrf/ojosD6o5LLSsmh48kViH68k3KcrjS99gFldDhLslE1qawNC1+h2zTmYlcVIy02y6wMhwq8u6E2BM3dCkHEfBbCdFAPNr75D7OPPSKxbB1ISru1G1YQZlAwcSbi8mk0vPUbl2EkU9xjgfffDVTVYsVa2v/gsJeP3Y/Mj92G1NFMybAw1Mw7HjBQ568uyaV69lJ5HnObd6990kV6b/rVg6X9LDe+ss87i4YcfZt68eRQXF3sxRipvCjiB/dXV1fTs2ZOlS5fyi1/8gsMPP9wTdCgtLeW0007jggsuoLKykoqKCn75y18yfPhwTx3vhy5+AzWZTPJf//VfnHLKKVx44YWeAblixQrOOussbr755qwYrp2xM6p+v9Fr2zZlZWXcc8893HTTTfzpT3+iqKiIlpYW9tprL+69916Kioqy2qeC0oNGtDKk4vG4V/fuAKV87c/FYPn74gdMQfetXK6FnZVc53OBzF29FzIuURs2bKCiooJEIsGqVatYsWKFtxYTiQR77bUXw4YN89zE/C5vwfHJBQKVQakYmlzARdWrAFnwfVBYJNdY+OtRBqzfaLYsK6dAif9+fz/U9blYQn/fcgGhYP+Dz1H9nzRpEj/72c+YPHky/fr1yzr3wgsvUF1dTVlZWYeYLnWN/5m51nAymfRU8BRosSzLU4hUYxwOhykuLqawsJBQKOT1XeVdUs/74IMPKCkpoaKigo0bN9KjRw8Mw8CyLM4991x++9vfsmDBAsaPH++NfTKZ5LnnnuOTTz6hZ8+eLFq0iNLSUu+8iku6+eab6dmzpzfnwbEOulwG16BazwqgvPTSSyxcuJAvv/wS27bp27cvJ598MgcddBADBw7kj3/8Iz/60Y+YPn26d//gwYNZu3YtDz30EIceeih/+ctfqK+vZ+rUqVxwwQV06dLFA+wvvvgi119/fYeYOTXWqh2764r3v8Us7Sytxa6U76SGJyQ0fLqQslF7UzBgsHPONcSjdd2pmXk42xe+Qt0Bx2QDCcj8B+x+zrIv8/ym6kVF1E6d7STZse0sIQQ/uBEIol170fbNSor6Dcm+BmhctpiiAUOzwFLQHS+XyENnAChrfHYCdnOez9Pn7+Tit7N7As9S8UJWWyvxdd9QfsCBNL76BnYqTvXP56ARwmzSEY1xtr08j1SileJxe2ILlz3y5bqRmstKaDhxKobjuqYbGREEQ7fRNUmqIElcQFozkZqOnhCeKAPCVWILS+yQJN22nZZXF5JavwUQGJVVlO49kXBpNcIiI22uK0YJT5pcqjwxusQusEkZTmyLHXbAl+fuJkQmrgbpJXp18vlk3O8UULJlZmGomCVPEEJkYpUUMwTZjJMtHSCgwI8e1qk56wi23P4skV41FI3qix1P0PzucozyIrqcur93rR+oKfCW5QooMoyTcOdcLzKwmpsRRsrJ3pvOxJxJDexUHIlEmBn1PodNc8CJJmx3vgV2yCa5YwvRAQOwm9poX7kCq8BGpIUTuxaKoJcUYbW0ueMviC1dxdbr7/aamN68HRZmr0WzRy3hntUYehLDtEijIxSgdNshDNsD/KpuAKF8Mb1gMAFxncanXqT59TcpGjaK8sMmUNh7EKHCUg9MW22tWPF2inoNyPpqhEoqadzxPgDxJx9GC4UpHbEndQcdixC6A/DSCTa//gylw8chImZ2PKfvd0TF2sl/acwSeX9Xdrue3Sh//etfAZgyZUrW8XvuuYc5c+YADkt0/vnns2XLFurq6jjllFP4zW9+k3X9DTfcgGEYntTw9OnTuffee/9pOZb8u/qPP/44hx12GAcffHCWIThs2DCuv/56/vjHP/KXv/wFyOxg+435XMBCFb+rGjjA8Le//a23s+2XAffvkgNMmjSJefPmcfjhh3cwHJ999lmmTJnSYUc+n/G+K2DJX3KBlSCr5gdJQeN8V3aBg+Ao13PzsXe5jtu2TWtrK5999hmTJk3io48+oqGhgVNPPTVLKe0f//gHlmUxceLEDqBAGYb+dRCMX4KMS11Qklu1yzRNTylPMUrNzc18+OGHbNy4EU3TKC8vZ7/99qO2thbIzL8fjCrjX4ElZcj725DLpdT/8vfPzw6qErwvF4ALzpN67/+shCOuuuoqfve739G7d2/2228/YrEYL7/8MoWFhfzyl7/0EgIHWSV/G4NFPcs0TS8OLZlMegIeKl+TP0+TAkbquG3bnvuaAl5btmyhpqaGiooKPvroI2pqajwZ8oKCAnr06MHGjRs9wLNixQouueQSr10qb5i/1NbWMmTIEA+0KTEIP1uTa537v7v+ZLJSSp5++mkee+wx9t13X2bPns2UKVM8YBcKhWhra2P9+vUccMAB3jq0LIvevXuzefNmNm/ezPLlyykoKGDWrFlcddVVhEIhwNlAuO6665gxYwZFRUU558bPTO7K70euufu+RdWxq0qtO0trsStl92OW3M3e1m++oMdxP/GC8RUbIoFIXTeSLQ3YpBGa8whvTJVdo+zNXQBLmecLhMyIHeRiVKr2mc66efdhpRIUDxqO0HXsdJrmZYto/Wol3Q4/OavN6t5dccPLV4LMkt8lZ6ds0q6sm11Zj7tSj59Z8rF7TZ98CEIQHTiIhvmvUvVfJzkrw8JhI8IG0X4D2fb68yR2bKVwzGjMXnVONcpVS+AwD5pjvArdRnNV8GxbkEq7/5EgMQ0LO5wmCaQ1iaXc8lS8k+kIAyTXfkPTM69SfuwMQn32R1oGyVWbqH96HmX7TKSo9yAvkL91x1rql79PKtYCRSEK9hlNaK+BCMP9D92wQWqOrLZrfGcxRCIzKMLAiddyk59qWuZaW2ZAmCPIIAKaFDJrLjJueJlJ1CRITWDZGlI6ACjcpZTu/3MSyS/XEVu1Hj1sUPfj/dErStwxlN70qZpEsG4XOGUtFwG6KSgY0ZfYoqVERox1vOuUt54maXrnPQr3Hu1dL4RKdusCPt0FkNKRPtdCOqmG7cQ+XUHxfuMRhlLhk66SonCYKTcPV/NL7wCgl5fQ/dpzEZpAD1nEv9pEw9PvUHPesZhRnebn30U07MCoLXHVAgU2tleX5gJv2xbYKc1JACzIJP91WTU7pdH85ns0v/4mVQfPpnLcZE9q3ouZFBDbvI6CHv0zv13qN2SvaZTtMZZUayOb58+jx7E/pXnlJ3z7yO2YZRVIK40Va6N87H4U998jKz6pQxykksP/N3HD21k555xzOOecczq9JhKJcPPNN3PzzTfvXgO+Y/G7Nr388ss88MADHcQdpJQMGDCAlpYW2travCS7uYCS/3guV7agAS6lzAq49xd17xlnnMHcuXOJxWIcddRRGIZBKpXiiSeeYN68edx9990dgJK6Px+btCusmL/dnQHBXP3Od506vrNjuerLB5j8n9Xr5ZdfJpFIMGLECJ599llOOukkysvLiUQinqvU8OHDeeyxx2hsbGTcuHGeu6AyCi3LypobP6unzgFZLnR+dz4hMm5+Ciht3LiRF154gRkzZjBr1iwMw2Dz5s288MIL7L333gwbNsy7f9OmTSxcuJCmpiZCoRBjx45lxIgRWTmIgip3QaYnH0uUa/z9LGvwnlwgKd9cqvVXUVHBzTffzPLly/nkk08wDIOzzjqLLl26eNflAvfBuc3FXhmGwbhx4/jwww+pra31XNQU0Fu2bBmDBw/uIISg5iQcDnvv0+m0F9e2atUqpk2blrWeFFBJJpOegf7UU08BTkznXXfdRTQaRdM0vvrqK+6++25++ctfUlBQwOuvv059fT2DBg3KUh4Mxoqp5wWBkp9Vmj9/Po899hgnnngip512GtFo1MurpID0qlWr2GuvvbKkywHmzp3LjBkz2LhxI7///e+57bbbmD9/PmeddRZdu3bFsiy2bdvGcccdx4wZM/L+PgTXye6UHxosfRelVuiY1mJXyneKWRISh90xNRXG4Jz3XasXFWOlEuimkXVBB4Yp6wG70Ab3bz6XNxEN0/3oOTR8vJB1j98Jug62TdHAYY6ynK53VPULMkrqWbsBmPzXB0NGOu2Iv/n5+v8d1tbOWCwvdsy2aVq0gOJho4h9sZKSfcYjLA1pOnJzse0b2PHEPIqGjqRkz72RUtL84QLs9xJUnHAMwswk+5VKCtoFGUJzlNlSlk4qpaPpEl2zMQ2LkJkmZKaRhcJjWmzl4iZBWhbbnnqJml+ehBaJYLvMRahbd7rMOYUtt91Bwcl9sM0Q2955Gau5mcoJ0whVVxMz2mj4dCEtty2m6sxjEbq7Bt3cUQDSEghlJQfWgtBspObkQtL0DBskbZcRUmBJy7BHtsBx2ZMCsNE1B3TYUniASUOiaRYq+smQttd3y3YaFhrSjeI9umZYL+nuXgrFaElvg8H/m+OwTC4T4zsGkGpoI1xbSsM/3iOxYQcl+07ECBViNTfT9M672LE2Sg6eDNL28hsJzS9Xm2HGpAZ6eSGx5V+CZVF6xAS0sOWIglgCmbRIrt1A6aGTAUh8sx4RNRFhE6SNqcUwywowdEF4RHdiiysRWzYRHVLHjm07CO87EF2zsTQNTAtNdwCgpjkgGyBtaSSlia2S6WoS3bDRXInz9m830/D4s5ROmkT5hMmQ8oEVFyja6RStX6+gde0XtH6zEoCSQSMoHTYWoeuYxWVokShGcRlGOErFqAmUjRlPuq0VdA2j0HGT8hFc2bmc3M+KWbJ3z7X7+xWV9+yHqOffoPh30v3SwrmMxNraWhobG/O6bgTBSS4jT33OZ3Tmcp8Kh8Pcc8893H///Rx33HGegTdz5kzuvvtub4fcb3jlciXzt3NnJQj2gsAwCCY7c9cK9tnPRuUr6lzQJWtnbVZj8NRTTzF+/HjWrl3LhAkTKCsro6ysjGg0ypYtW/jrX//K+PHjOfjgg2loaGDRokW89tprnHbaaZ6Agx/A+tuu3KxSqVSWa50CRH7RBvVeJVF98cUXOfXUUykocHI+6rpO9+7dmTt3Ln/7298YMGAAkUiEN954g82bN7P//vvTrVs32tvbWbBgAffccw+nnXaat279DFNwTIOiJQrM+Y+rNgbjqHIZw8H1lAtA+eOg1NwNGDCA/v37Z4EP//2d1Rt8qc2FlpYWampqePrpp6mqqmLIkCFEIhHa29v55JNPaG9v56ijjsqqL9g/xUqlUinKy8tZvXo1sViMadOmsWHDBnRdx7Ismpub+fTTT9l3331paWlhx44dSCkpLCz04t969eqFpmn06NGDpUuXsmPHDvr06cOOHTuYMGGCB87847OzMfCP19q1a7n77ruZMWMGJ598MoWFhYTDYS/Xk9oAmD9/Pi+++CIfffQRUkpmzZrFMcccg67rdO3alfLycqqrq6msrOSYY47hqKOOYtu2bei6Tnl5eYfvsRpvBcwVSyqEyMqZtyvlh3bD+y5KrVJ2TGuxK2X3wJIyiKVjxFl2Gs10ErqJgEWfbm1GRCNZRkrW1njgN1LkONZpWzzUlN0+ABEKUbHPZCr2mdyBfZJk3xcESbnc8Px1B8tu7b76rxUdj2cRHT/AznC+4nlaSbBTKVJNjZR2qSPV0oRZWoFmgW0J7FiMHU/No8vcORjRAmKrV5PYvJHKg/en7fNlNMx7norjZnt9yQLCEqStYUsHmEjpgA/LcAxaXbcxdMszgAEsW8O2BWlLo2nRKgrHDkaLhslaMAK0kEnxnuNo/vxTzGgRlhWny+HHAJDWQUQLKJs5jdZlS2h67i1KD52RPbi28BTzpCsQIFz1tAwAklnvkQ6jofoipST5xbckv9mAFjYo2msQRlmRN7i2dMBYUC0PHNAkBI7rm3BimZRLHYDffc9ju4R0gRgEY6a8bqHqce9Mpdl690ukW2IUjelP2fSR7HjlU9re/RijSzVaOELR3nsSGTLQjc/KAKUgEMtoNAj0aBi7sRWzRy1uRxy3xbTGjnufAKER6t6bhifn0/Lqu9htMYyaSkomDafxlcVUHTOJVFpHSkHh2EE0L1xBpGsJya3NhLpWYttuf8Fh9lwXTrVWhJBOkl/h0DZOezPMW/LbzWDblM86IOs3CxRQSrLh6fsoHjiC+I6t9Dj6NGQ6RePSj9jw7EN0O/REhNBpXvkJxf2HZjZTNA2jpMRTBLRi7bSsXo6diBOu7Uqkd19HcMK3+SJ1B2BK85/4hQ6U/y1m6f/XEtxBb29v91xQgsb8unXrqKioyMus5GM+gmyL/1wQQOQDVKFQiNNPP52f/OQnnTIq/ro76/PuAKZ8x4Lv8/UzF+MUdOPKNTbKQMvFuvnb4/+rnrVhwwYmTJhAQ0MDffr08QCBbdv87W9/47LLLqOiooLPPvuMDz/8kJNPPplFixbx8MMPc+KJJ3YQQsjliqTO+2M7/CyTH5AIIVi1ahX9+/f3wLYCL+q+/fbbj8WLF9O1a1fq6+s5+eSTCYfDmKZJNBrl4IMPZsmSJTz//PMceuihHUBnLiW7XK9cUuUKQKxcuZIVK1YQDoeZOHEi1dXVWeMbHOvgueA6UeeCbGewrmC7/e33i2OkUiluuukmtm7dytixY5k+fTovvPACK1asoKysDF3XGThwIIMGDfLGLhfLptxe1doqKCigpaWF6upqWltbWb9+vTc2DzzwAJZlMXjwYObPn89rr71Gc3MztbW1HHLIITzzzDNejKNt20yfPp2nn36a4cOH8/XXXzN06NAsoOTvZ67vrJ9hUqzSunXrSKfTnHTSSUSjUW89q/qSySTnnHMO06ZNo66ujvvvv59UKsXjjz/OGWecwS233IKmabzyyitMnjw565lqjoUQtLa28sYbb9Dc3Ez//v3Zc889s9pk27bnEupXCd2V8kODpd1VaoXcaS12pexeT5UBAER79WP9w3cgNA2hG8h0iqIhwykdtw+xdd8Q6lILpp7FBCkXmJwiA3z//5xzCh3kYHuyzqtz+a7PA5j8rnaZCzpv3+7s03ZWlZ1KISwb4cpFdrh3Vx7kPkALhSkePJzmjz+geMIEkhs3Y1ZXQ1rQuvATiidOQC+JIpEktm9C71KBHbKJjtqDlg8+xGprRy8s6NA5KQXYjhuWtDUnyN8WWO5utccm2Zk4GSmd82lLJ7FuO6H+vR0GqMOOvSTUqyetHy2ifXs9VUcdRarI90NjOAZywZjhbLnxfUoOtDx3UK/vEkBkAB7SY5Kyks0K3z1uSW3ZQf298wj36Up0WB+Ixdh2x/OYXSuoPmF63rxgkGGDNLduHekyRg6wVOdySZLjXev/Uc1co3nXOWXdjfMomzyM4rEDvDqKp+1N49sriC39msoTjnK+k5pEhCw000bXO2pOa5pEc5mmlpUbaH5tEQXj9iDd2MqW6x5EFBZgN7WS2rgZITTQBJt+ey0iHMKsq6b46DGUzNobTbPYesuTNLzxKZEB3djx5NuktzVgt8ZoePUTyvYZAMkkwgw5bJLbZvV8Q7O9sUml9czmi8gW15DuQNqJOO0b11HQox+a0DzQtH3hG5SPmUBx36FY8Xa2f/AGVXtPJVReRdPyj1lz/40U9OhHbNO39Dr+jEwsnueGLKl/9zXiG76laNgozC5daFuzivq3X6XqsCMI1dQ4QFzgCoeAtP6FyMNb3z9APf9mZdq0aZ48cDgcJh6PM2vWLE4//XSWL19OXV2dxwjkK/mMv3zAKZebWWfgIpehmWtHOl/x170rgCnYrs76mOtcsC+57hFCkEgkSCaTFBUVddjdzjdOwfapYpomM2fO5NVXX2XWrFlewH4ymeSDDz5g+vTpVFVVoes669evp3v37oTDYUaMGMEbb7zB9u3bKSwszJJp9ge1+0GUar/fkPQXv3G4efNmevTo4YFAP5iSUtK7d29ee+011qxZw6GHHooQwsvXI4QTIzdq1Chee+01EolE1o5/EPSrcfHPXfCZftC0fft2rrvuOvr27cv48eNpb2/nz3/+M1VVVZx77rk5wW8u1tF/TS6A1NmaCzKSQbCpaRpXXXUV++23H9OnTycej9PW1sbo0aNZsGABS5YsYdasWUgpiUQiFBQUZDEv/vHx9+fbb79lwYIFDBw4kFgsxh133EFhYSHt7e1s3LgRcMDsFVdcQSgUomfPnhx33HGcfPLJRKNR/vCHP/D3v/+d/fbbj1tuuYV169axdetWXnrpJfbdd18SiYQnLOLf2Ai+/EqKfvc75WIITl6nTz/9lPHjx2eN3T333MNhhx3G4YcfDsCf/vQn/vu//5s+ffrQ0tLCYYcdxj777MMnn3zCXXfdlfVcNS733nsv77//PgcffDD9+/fnk08+4bbbbuPCCy+kf//+3saAWncq1mlXy87Y5N2p57uUztJa7Kx8J2YpvWMHbV+tBE1QPHw0JSOdjOJNH3/A+vv+CkKj649Ozc/M5PuufI//nHMCpZ2dzwGMcl+XY9ckWHE+tixXGwLHc057jvGKffM1DQveck7rOnZ7O8Ujx1I8atwuLZ6cYFRC2Z77su6+WzHLq2he8A6Fg4c5AbArv6L41BOwdWc3vm3ZMrqce7qjmpbWiA4ZQOKrtRQMG+K01wcSpJvYVSpFMzfeRdgCyxJYOcCov68yXExqeyvhAQ4DJJSghOYwLFZLE1pxAfa2zVBbQFp3WQcbsITLEgnM6gqs5jbM0lKPARGuop73fAmEcN25LDSt40Ap1sZKpKi/8ymqfno0Zk0pmm6jaZKS/fag8aUP2fHk21QfNynLeLelQHMejU5GWc+LZ/IYIzwXPcU++SdPSlAihPmFzB2AEftmK2ZRmIq9+6Jc+WwpMAyLsklDiC1ZSbplO2aXMnTTxjAtdE2572jZJKjLdEkJ9Y/NRy8rpvqcE0hta6HhweeIf/4lMpHE7FpDqE8PzG5VhLpXUjSqD+lNW2l9bynhSBopBbXnHM72B19j270vUji0F1ZjK+GaUvpddBjpbU2s/eNT9Pr10eiahmX72wC6ZqO7LJIVSmNZGpadyWslXcqnYORAtMICttx7L4lvv0UYBn3/5/foeggpJLH1a6jebxYSqBg/he3vvsKqWy4j2rUnJUNHsX3hG8Q2foMwDFq+XUXR4KEeWJICGj94F2kIauec5omcRIYNJN3SzNaHHqLLj09FLyhwmUsHjNr29/hx293yAzFL/y5gSf0HvnnzZp577jlCoRCHHHIIJ510Erqu89hjj3HYYYdhGAb33HNP3nryARf1DP/zch33f/a7HPk/d/bcfJ9zsUCdAa987Q7WETRsg4Ao+DnX7r4QgkWLFnHTTTdhWRaRSIT6+nqOOOIITjnllJzjk8/YVs9TrmnHHXcc//jHPyguLubVV19l4MCBJBIJFi1axNy5c2lvb0fXdV577TWuvPJKDwTtsccerFy5kqFDh3rJR/1KZLmMXPV8ZeRCJi4F8OKbwuEwO3bs8AxfPxgwTZO2tjaKi4vZsWOHx2AGGQQli93Q0EBlZWUHVzv/GAfn0+92pwQnTNPEsiz+8Ic/cMkll9C7d28PnB100EE888wz3HbbbZx11lkeMxIE27mA0u4wncE1ot77wZxhGKxfvx4hhAcko9EoBQUFSCkpKSlhzZo1aJpGbW2tx8YZhkEkEvH6q8bQD0heeuklwuEwc+bMIR6PM2/ePFauXEkikaCmpoZevXpRW1tLjx492GuvvWhra+Oll17CNE00TeOKK67g1ltvZfbs2ey1117U19dTXV3N9ddfz44dO7jgggu44YYbsmLN/GtEAXIlPe93D1RxUnV1dZSUlHDNNdewevVqAN577z1vnbz77rs8/PDD6LrOnDlz+Otf/8qIESMYOXIkBx98MDfffDMff/wx4XCYt956KysuSQjBM888Q3NzM3fffbfHdk6dOpVt27ZxzjnncPXVV1NcXJy1IeAXpdnV8kOApd0tUu56Wot85TsxS9te/wc1h/8Is6yMxsUL2fDQnQhNR1pphGFQNHIsWmGBD1D4qsgBKrzLfoAxzAuacgG3fCySf5c6FyOVZUnKTJ+ygpU63utVGwBCufrtj8kSQOuKZbR8+jE1RxyLXuBQ+HYqTeM786l/7QWqZh7csZJcz85xvKBbb6e+9naKR49j698fpuKQgwCBxCZdv5WGp56n9JBpaGHNu1Ha0nM7cmKW3Fgl3fefqOa6hQm8/EfSTfrq5UNSDXHBqtAlBeP2YMddT1A2ZbD7w+u6wOGIQbQs/JCK2YcQW70aiY3QVZsyDqFSgB2Lo0XcL7QtvPxO2O4YuzElfvAUTAoLzjFNg7b3P6VoypgsoKSkxSsO3JN1VzyITKYQUd1hRHwiDH4I4gdMWe51GRXurHuV5LhS4lOcbc7/g4SkeeFKqqcNQff5ZEnpsG4AJRP3ILF0GQWHjMfQLXTX5dCyNTTN7tB3VcL9uhP77Cs2XPhn7OY27FiCwr1GUHLQJMJ9atFDlhebpmkSrbSWhiffJLV2I+E+dWiaIL2tkQE3/hSroZktj7zDoCuOQddAH1BFqqGVpreWUjJtNIptUyDJ1C104bBLUgpSmkba0rDdeK+0JbATFlZLjOKpE2h6/jWn3+k0MpUEPYSdSqIXFDmo03Z+uK1YK7UHH4O0LGQySbi8il4nn4VtW6x/4h5C3eowyysc1UVp0bpyObU//annYqcWnF5RTMmU/Wj56CNKpk9CSbCjS6TdkbH7p5UfOCntv0MRQnDllVfypz/9iYEDB/LAAw9wwgknYBgGiUSCoqIiDjjgAKqqqjoEjO8Kq5MPiORimdQ1+Qze3e1XZ23JB+J2p+QDZztrkxCC+fPnc9ddd3HjjTdSVVUFODvnt912GxdffDF/+MMfOmWmcj1bXT98+HB0Xae5uZk999yThx56iJkzZ5JKpWhoaCCVSvHII49wxBFHeDLQsViMRCLhqeX5maRgDFhwfvwg0u+y5M9P079/f/7+978zcuRI7z5/zNM777zDrFmzWLNmDel02otNU4BBGdVtbW2eoaqAUlCUBOjg9uVvtx+MKONZASXFGFiWxRFHHMFZZ51FS0uLJ2mfb610Btw7YyNzHfe/VN/efPNNb+PC755ZVFSEZVlMmzaNpUuXMmjQIA8c6bruJatV7faPlZSSXr168dlnn3HDDTfQ3t5Oe3s7o0aNYtq0afTs2RMhBKFQiIKCAsrKyqirq6O1tZXPP/+c0aNHI4Rg3bp1PP3007S1tXH11VfzwAMPeGxRfX09Tz31FEcffXTWGlHrRAFyP0BSSn+pVIq2tjYaGhqYNm0azzzzjDdODQ0NlJaWesBRMXC6rlNfX8/VV1+Npmm0tLTQu3dvHn30UZLJJGeeeSZ9+/b1BE2EEDz//PPcf//9HuOo2llVVcV//dd/8eSTT/LjH/84y5VudxVK/XV/n7K7dexKWoudld0WeEi3tyKRmFWVIKBsn/0o2yeTbTwdj7H1qUcpGTuuw/0Zl6fvXjoFVIFznbJNyoDsAJR2/vwOjJHMftMBECpjOBezlKO+YNtt26Jx4Tt0nfMThGF4t2umQcW0mWx+4hGS9VsJVXUJVJKvE3hukcICYekgNGQySfGECRjVlex44R+ktm1j83U3E+7Xg7Lj9ifUrdalPxzDPb7iC4omjkWarmqc6bhyGaaV5b0mlTiC5SiY2WnNzYMjMoMnQJg2hmmjmxZmhY49so74My/R9cSJxKwwMUIk4oKW198mVFZJOFJBtHtvkku+JjyivxN3A177rJZWpG2hF0eQKQesaSmBlhBeXifblGjCTRSbNacBoCQkUgjin35B3S+OQgunvXNCSHSXjSoe1ZvEqm+IjumDLmwP9CjA4QdJuqvdrrvX2FIghIY/dsljqNy/OhnAFGyvX0yCVIpQoY6pW95xdZ+h21hlgpaNcQoiSe8e2xWnUPX51fbU/2k1J02hcFhPWt5fgV4UpWz/cYRrStE0ia7Fstqk7u957iGs+/NzRHpVUzyyFyLRTtsbH9G+ejPDLjqAcDjp3VO3/2BWXPE81fuPQGUqNnULU3OYL01INClJpW3alm8hVt9OfHuM5LZmYqs3kvhyPQRyP5ROmIhWXOQwmyETK9HuuGpKJ+4o1dZE4dBhbr8lTcsXY5sghU751Ok0Ll5AxUGHIHVJfP16wn17ISMgRbZ8PgIiYwbRfNv9FB+0n8uI4rCh/0Kw9J+Ypd0vra2tNDY2MmTIEIQQ/PjHP+bHP/6xZ+C1tbUxd+5cfvzjHwPZLFK+HfRdcYVT1+UDTkGGpzNXtnyfdwV45XOdy3ftzhin4Pugi5hy0brhhht4/PHHswyWUCjE2Wefzfnnn8/SpUsZPnx4XsAUBFR0UL4AAQAASURBVCvqszLoIpEIsViMvn370trayssvv0xDQwPXX389ffr0YebMmXTr1o0NGzaQTCZpa2vj008/5cADD/RyW+Uam3wCCEHQ4mea1Ll+/frx/PPPM3XqVEzT9HIFvfHGG0QiEaqqqujfvz/Lli1j+PDhtLe3k0gkADyg1NraSnFxsVevMkL97FPQvStoYPrnZOHChVx44YWYppnFwKg+TJw40ZNZDjKeuwqa8q2xXHPoB0l+8RXlpulnnBRY0nWdHj16sHr1arp27Zo1J4oBCs6HevaMGTPo2bMnn3zyCeFwmAkTJnjS4Yr1C4fDFBQUEIlECIVCXHTRRVx11VW89dZbTJ06lc2bNzNv3jyWLFnC9ddf76ko2rbNrFmz+PnPf86RRx6ZBZIUi9Te3k4ymaS9vZ3Vq1fT0NBAY2Mj9fX1rF27ljVr1nhJlVU5+OCDqaioIJl0/v/0r9eWlhZWrlzJ5Zdf7q2Hxx9/3Buzs846i0cffZRf/vKX2LbN2rVrGTx4cN4YpH322Ye777476/uVa/3vrHTGkO9uPbtTdiWtxc7KbkuHp9uaMSsrM3lDAm3WC6LODm2GgPDK92GO8t6b63g+ZkgxCDtjnPLVK3O3JXhpgHjKtMdPFeUYl3xue21fraJg0BAwDY+JEhIvBqNs7wk0f7KIqpkH5Wh0niLJyClbIHQNmUphm5LQwJ5UDToRy06w9ba7KD96CkZlGXYKhxWyBW3vfoTZoyuiIIzQbdAlesjCMGxCZjqLnVGxSJauYVsannuectETDgNlhtOEQ45KnqnZVJ44lvpXPmXVJY8S6l5NyjaJrdlO4aDhVIyfipaC8tH7semJ+6msrkCvrfBcAe1EjPr7HqPs8KkZ9i8taV+ylLZFnyBTKfSCQorGjyc8uHdmvnzAJhswOQyHwCYcsUG3OlwvhCOrrePE1yi3tmAMkuayTNlJbG1AQwq50w39YPJbBYL8x4uGdKVx8VoK+3bJCqESAjQpafn4a4pG98tKtqv64//rf6YQknAIQnv2pmLP3h6I0kSqw5hlMWllYfpdejSxletpmL8MGUtQt3c3yk7fE10DDec/gaStQ0RHIAkZaQ9QhnTL69uGl1aw9A+v5hyX6JhhlB9xIKGuXSFpYxSXEqqsQcMXO2lqmBWVxLduJFzblfi2TUR69PZ+r9q+XEWkVx9sN9Yo1Kc3O9553UmyrIMUFoR0pCsIIlWOJ09Z0c29ZSqKUMXC/RvRNP8flvr6+g4ytH6wsCtxSrlA0+6yLp3VHzRMO3Ovy8cY7cz9LxjHsLP2dNbOnQG7hQsXst9+++Xd2f3JT37Cvffey9VXX91pPZ2dMwyDtrY2mpqa0HWdMWPGUFhYyCuvvMI+++xDUVERO3bs8IzaxYsXU1paSjgc9tzu8hmI+ZiSoEucKsqQHTt2LEuXLuXRRx+lqqqKSCTC1q1bGTlyJMcccwy2bTN+/HjuvvtuunTpQm1trXdvIpHgwQcfZMqUKVnP+fzzz/nwww9JJpMUFBSwzz770K9fv11abwq4+pkqf5FSesIYnc3B92U+/Ws3CKzV+1GjRvHuu+9miQ4AntLgkiVLGDt2rCfQkkumH/Bku5UbYjQaZdiwYeyxxx4e0FTAUdd1otEo4XCYaDTqHSspKeHaa69l5cqVvPzyy7S1tbHnnnty7rnndgARiuHyt0GB2GQyyRtvvMEtt9ySc4zGjh3Lj370I/r374+maVRWVtK3b19CoRCpVMp71oABA/jwww/Za6+9WLVqFSNHjvTm7IMPPmDYsGHeOh88eDDr16/3PqdSKW+O/a6CucbQ/x3Y3d+z/y2w9F3WZrDsthueXlJCqqE+O7EreMa/FY85suLu8e/lWpdnazNnnZ0AnV1lo6xYjMTatQBE+vR2lNiyVB1UhYH6cz+2w6UinxxeHhCmLrOamzEqKvDU/BTGcO8zKiqxWpo7gLCcxccqOTE8kNy2BZlOE6qpdYxCUyINiWbq1J41m213PkWkf3fM/gOxW5K0ffgpemkRZccdjDCdnEq6aREKpR1ZcN3ymAhLCte1y2GxLBxD2lbCD6qbmk04lKYwnCRiOMa3odl0P2gPqmcOo3FdO61xk3RhLdqOKMQEpMAsKKLmyOPZ+uwziGgIs0cNVkMTqU1bKT18GpEB3ZG244q1/Z5HiXTtSe1Bx2CEC0g17WD7ojdp+/Jzyk6aiW7YGK5Kn5SZPEgeUBKS4mE9aP9kFWX7DPTYF797XfunX1Mz/WDPdcwvG+71NQCcMsXJKYSd/UObS1HPm07FGpENVMr36sfKixdRPX0IoYoi7zopJLEtTbSu2kTNSVOynqGROxZKykzcla5JbOljyAKxVZo7Tn6AaNkauhSEh3WlvF8ZX177AjWjatGEAzgNJVOeBqs1hh7SiBopDM3GcMGSnbJY8ucFfPPMsrxjUX7kwZiVVY57ne26edrCEXxwQbkUgvJpM9jy2MN0OfQoRNjATieQOsTXraXh3TeoPWEOtulcb8sU6MJhonSJ0auO+CuvUmI6XyThMUtOX+MrvyLUp6uzgQBe/idb//4/1rtc1Hf7h6jn36BIKamoqGDdunV5GZf29nbvc2cv/zW7WvK5c+Vqp//8rgAScFgzJSM8ZswYSktLO61bgR2/eMGu9GdnACvYxi1btmS5AfnbAdCrVy+2bNmS8958INT//PXr19PU1ER5eTlNTU2eaIOmaUycOJFnn32Wuro6Bg4cSDKZZNmyZZimyYwZMzx3N/9z/OOhDMpc7c7F4gVlogcPHkz//v1pb28nGo1SV1dHNBr1nllQUMCJJ57Is88+i6ZpdO/encbGRjZt2sS0adM8ICSl5IEHHqCuro7jjz+e0tJSGhoaeOWVV/j00089t6/OipSS0aNH89ZbbzF79mzPbRDwXBAXLFjAeeedl3MOdnV9BO/Jd00uJlKV8ePHc/vtt7NhwwaPPVLzUF9fz4cffsjcuXOzXCCD30dl7CtwoDZC/HLwCiCqVyQS8RglxWapeR08eDADBw7kggsuYO+9984ClQrkqt8PdUy1LZlMcscdd/Dss8/mHbfjjz+evn37eq6HQjhCH/F43GOCpJScdNJJXHLJJVxyySWEw2FaWlpIpVIsX76cP/zhD9x6662egEQ8Hvf6ats23bt3Z9myZd7mgB8wWZbFkiVL6N279y4x3Z2V/y2w9EOU3XPD0yVaQRESSDVux6yodI772t380UIKR4/OJCv1lx+SWerscycgK0jyAEjLouG5F0ht3Ua4bx8SX69h20MPo0WihLrVUTxhPNEhgzJVi2CleIyPx5TkaMIuAaccxaysILZmDYwY7rtUeCRZYttmB0z5q1InO/kNU21s/XYVQteJ9O6DZUgosDDCaSKRFNXdNfpefyibP97K5k/WI4hQfvihGF2KIWwRKkwSdnMmKQbAz1RotoaGxJIa4JxPWxpCc4xY5f7mKZ7pFlEzQzenbQ1b6ES6lmMnTdraBFbIRtgaUhfOzn5lKdUXnACt9djb69FK+hDqVoOUrkJRWqPxpfkUjh5JyeDR6G0gUhAqrqDLIUeydf7zxJZ+TvGk3hRFEoT1NGmpkUgZ2GQEBDQkNbOG8dWVT1E1phtGYTgTQ6TZ7Fj4JdHaYooqDDTS+N3ogmyQ/5jfDS5tO2yKlKIDcMnlfue597kTqq4Rukafn8/ki6uep3rGMMr3GYi0bXa8u4r6t1bQ57yDMbSMVa0ELHKR6sF2KMbHYZWkByTVcc3Xb1sKUkL3cmiFik3M4jCxNVupHphttBmmzZp5H9P3wAGUheIYmoXhuiq+cdHrbHznm0y/DY1w71rCA3oQ6tOTUL9eGJXlYNtOslpX4h1LIixX9dB1+9SqS6k+4UfUv/wyVksryY0baN/4LaHKSrqcchIUR7A1Bwy1LvqUyIgh2GEbaUiEMAj16Ur74sUUThjlycsjQCaTNL8wn5ozj0APKebRnSPjP254/5dLQUEBJSUlrFy5ksGDBwPZO8APP/ywJ9Xs33HNBZLyGY65dst35kLnb4f/c2c78uq9ZVn88Y9/ZPny5eyzzz4sXryYs88+m8LCQoYOHcoJJ5zAjBkzchr3gOe2tDsgKFf7co0DOGDoueeey9vfFStW0LNnz07r8YO7YPnwww/RNI2uXbuycuVKGhoaaGtrI51OU1FRwf77709DQwNr167FNE0mTZrkMRJB18XOJLn97c4FaBWL4c+/pAx2JTyg3Oz8cTVlZWWceuqpHtAbNGgQNTU1Xv2apjF//nwGDRrEvvvu6815cXExRx55JC+++CKLFi1ir7326rA2AE/cQAjB9OnT+fWvf8348eM90Qhw3Lfef/99CgsLvZiynZV8jFu+dRscz3yASdV7xRVXcN5553HYYYcxa9YsAF5++WXmzZvHZZddRigU8sCuYs0UaFLjpupSsUzqHjUm/napmCclsuH/7ivWJRQKUVdXx0cffeTFMKkxtm2bRx99lJkzZ3pspYpLuvbaa5k/f773POVK2L9/fwYOHMjgwYOpq6vLEqRQRa2jZDLp9eGSSy7h7rvvZvv27axatYovvviCuro6rr32WqLRKO3t7aRSKV555RXGjBlDPB5HSieP0siRI3nooYe8PG5qzNvb27n55pu56KKLOjz//xc3vB+ifAc1PEnFQQex9fHHqDxsNuFuLrq3LFoWLyKxcQOlUyZnkn/+UICpEzC0O+xVrmvrH3+K6OCBlE6fwrb7HqJkykS6/GQOrYs/Ib7qS2JfrCK+Zg3lBx+QLYWe/SYLoHjAzA9Y8oGXXAjOdy7Spx8Nr7+GHZ+IFolkXWcjaXrvbaoOOSJnPFVWE/OUZMM2NDOE1dYKNaUgJIZpURhOUlPQSkhLE92rklSvISSbwmhxzdmtF2DoToLZiJEmYjggx5YCS2pO3iT3vZdwFtd49IsaSIElJWlLd1gonwGvjH+legaA5sQaCUNihyVELCKFSSIVEczetaRsHctKu7l8NGTaIrH6G8qm7w9xMu6HOGxX6ZSpbH/mEeqm9iSsp4maKZJuWyxbw59PNFQSofdPJrPyd09RPW0IpSN7km5NUP/6MlLNMQb/cn8MzcoCR35QlAvw+K/zQAZOft/MPO8u7SwId69m0OXHUv/WCtb85TWEBqXj+jLoimPBNNkdZjooVKEEIbw4Inzvs2KgHFbNA2NCMuS/9mHp5S8y7JThdNu7K0ITpGIpVj+xksS2FnrOHY2ppzGEjalZpGydaBcnsLjbqZMpnjgMrbQUaZjYbm4uy9Ic919bOMychidAIoUDlDxXQUCvLqP6pOOwk0ma31uI1dBIxRGHOf8ZCke4IbV1K60ffkT1z+c4CpBuUuOyo6ez496nSaxeQ/HUMRglUeJfrKXlzY+pOHYqoeoiwCZn7Nm/oriM8Q9Sz79BUQbAr3/9a8466ywuu+wyxowZAzjG4pNPPsmbb77JnXfemRMo7YxJygWQ8gGcYMnlfuevN189Qgh++9vfMmLECM4880x+8pOfMGfOHO666y5efPFFnn/+eRYtWsS7777LZZddttNd/x/CjSVYxowZwxVXXEFDQwPl5eVZz5FScuutt3LRRRfttJ584/Ptt98SDodJJpOEQiE0TaO9vZ1QKOTFn1RUVNC1a1cvpiVoDKr6c4HafGAp6BapXsp9SxmZfgYHMoZ1sF6VTDcXOP/88885++yzPUCmmAApJZMnT+aee+7xXNaCsVRqHdu2TTgc5he/+AX//d//zcyZM9l7771pb2/npZdeYsuWLVx66aW7DZhzzVO+Y7sKlhQLcuedd/Lyyy9zxRVXIKVkwoQJ3HHHHZ6y384Alzqm4ooUWFLud7lAib8Nqg417qlUip/+9KdcfPHFnHTSSUyePNlbb0888QQrV67kt7/9rQeU1Kuy0iEcDj/8cKZPn055eTnhcDhr/NQzg0yn6oMffEUiEX7xi19g2zavvPIKq1at4qKLLkIIJ39SOp3m22+/5dFHH+XSSy8lkUh4LpjHHXccf/nLX7jkkks48sgjqaysZOnSpTzxxBPMnTuXurq6rI2U7wJ8/rcEHn6IstsxSwgwqyrpcvyPaHzjDXZs344wTWQyScEee1B9wvGga52o0u3+j+53FnXYhZLasg2QFIwdwfZ7H6H8mNmE6upASIrGjyG+8guKp+5L82tvEft6DVFXcjDLO096/+QHTJA5R4Bl6gC8Al3UBRX7H8CWhx6g8pDZhLo4u0vp1hYaXn2JaP+BmGXlXrt2aYiFe62Aqr2m0bJmBRvv/CtdLvgZRrQQTUhM3aLUjFFoJNCEZF0kSSpmIJX0tmJVhCRipCgJObtjccsgnjaw0Fw3POEYtX6ApP5KR1Ic4eRdslwXNEOznVxMmgOYlIACQjrqYgpvRS2MSIpwKEXESDsshwUJCZomkFLHam7HqChHk5oj8pB2XlI4YMkoKECm7Q4iDx2GzD1dPKiW4X84ivq3v2DLsx+jR016HDSEkgFOYjdNWGgBSzMj1JABEX6ZcFW8fssMULSlcICT+/zOAJd/fG0pIBSicuZIKmeO7ABiVH+kzAY0waKRHyT5mSTv5dblb6c6bmg2kcoIk66ezpdPLmflo0sxDGcE+uzfl2EnDUNiYWgWprDRhI0lBKUDqkATVB0wCq2kyF1TEiGcWC+EjS2UaqLEFpqjMqjsESmdeDtwvpvuXGCalOw/iZZ3FrL5ttuJDh2MVlRA4qs12G3tVPzkOLQiwxFp0GwQoJmCmjMPJ7V+M60LlmHH4kR619Ljf05Aj5r4RTIyA/CvQx7/YZZ2ryhjpK6ujttuu41bbrmFK664wtuJnTZtGrfffrvnmuI3WoMGbLAE2Yl8LkZ+o7GznfngsVz3CyFYv349O3bs4Pjjj+fcc8/lt7/9LaNHjwZg9uzZzJ8/n+OOO46HH36YN998k2nTpmWNRy4m4LsCpnz1CCG47LLLmDt3LldddRVDhgwBYMeOHVxzzTWMGDGC/v37dwClQYMx1/gIITj11FN5/fXXeeCBB5g+fbqXNycWixGPx4nH4954KTnkoFHtz88TbLv/WbnYNH/b/EIFwdgn/xpKp9NZSW2Dz/L3PxaLeep06pg/ea5ar/6kuX620M++APTp04frr7+et956i8cee4xwOMyMGTMYOnRo3n51pgy5qyUfsMkHSJVxf+ihh+6U7fU/I+g2GPyrxis45qr4hSH89SrQW1BQwB//+EeeeuopHnnkEQ90zZgxg//5n//x3O7UKx6P061bN8ARa6itrfXmRTFcnfXLP05KMVEpKJqmyf7774+maZx++unsvffelJWVsXTpUrZv3855552HruvE43FvTZimybnnnsv69euzktJee+21Xs6xfHO1u3P9fcv/fWZJxxN20CvLqTz2KOe4bSPUAnIDYnZZkCH43coHfnJSJrtQf7AEqmn/9DMK9x6D1daKtNKO4hvSq6dwz9G0f7qMkv0n0/jsy0T69cnE/ATaKNR9vs5n4aAgaMpBKOUzUCJ9elN56Gya3n6LVGOjkwzYMCgZP4HCfgNz9m1nfZeaM59GWTm9jz2Trx+8gdZX36X0xIOwLI2U5Ux2gZYkHEmzvbSQ9ULSYkSxW01kUiORMDENi+IwFBkJDM2iPR32XO/SlkYyZTggyO23ctPLEgWQTmxL2gVLIZedicg0SV3HkhrxtIGu21imjdQFwpCECpKYpiN9bdkCW+pYLotl25qT1NYIY7fFEGnQkqAlHLCEcPpv6SBTNvGESYsRJu2yYopdAsfYl+78SinQQwa1M4fQfdYgNCExhI0mnNgaLAsz6ibRC8Q0KYDkuNzloLDdMQqyUGlbQ8cZo3ygyc/eZYBpBhQpVbxg3eq8jsy6PsiGKJBkiEw8lqHZnlhFtjuhM5cpW88Saigyk4S0NJEynbGnD0djGIZmueDQcdWUVoJvX/uGfpO7okdCNDclWP3op5QM7UakPIotbQwNpLScNaa5LKYLrKUhsNJuQmTdeTnSh6IDm+YB4Jl7UzR1DPGVX2EnkpQcOhGztgqhSRC2J9IgBE4+Ls0m1LeKkv6TvbFx/iqZYB8TCtj/SoGHwO/T96rn36D4E4xWVVV5TEtQQSwXm7QrRrwyjP1/czFCwRJkEfIBplxG5ksvvcRRRx1FS0sL27dvZ8yYMVnPOfbYY3nuuef42c9+xsUXX8z06dOz6pdSZkkzB9uVq3RmwORiXQBGjhzJddddx1/+8hfWrFnjsS9z58718sD42xR8Xj7jVghB165dueOOOzjuuONYu3Ytffv2pbm5GSmlJ9GsDEUV4B7yJXr3u84F2Ylc892ZoR0cC8VqqOf42QM15v7kn/7nKuNc0zTi8bgHhiDjWqfiblRMir/NyuhVa9E/L5qmMXXqVM89UwE3lWfKL3Si1khwTPwAamdrRd3v/174vyv5NhiC45/v++cf3yDg3RkbnK9+fzJiP5BWDNXxxx/P8ccf792rYoNSqRSvv/46I0aMQNM0mpubmTdvHv369aN3794AnrJd8Puea83536s5TaVS3pyZpsmee+7J2LFjWb58Oa2trcyYMYPu3btjWRaxmKNeq1zu1P1du3Zlzpw5WaDdvz78c7K7DM+/DVhy8ob4Jku1VxOOIZl1LR2vy1lnjmfkOr87wKgzt7ZAkakkWkGEdP0OzK61Hc5rBRFkMolRUY7d3g5CIhGZRwdAUwewE2SZfMdyueXlU8YDCHXpQvVRx/ou7tiG7Mo6HsrZPgGhUkeGO7VxMyIpsNI6ibROUypKoZEgrKUpC8doiYZJJE1i7aZzXcygXQvTYliko62ERZqQlsbQDIdhsDUneWha9xqgG06Mi0QgNBshNcewtV0WCseoD2lph6HwT7TAkQjXJbppe+p5is1QdVhuYlUpheO6iMBqbMXUitEs0F21aqlDfOOXhHv3Ip3UiZumV5cSePCeiwME/D8PCii1rtrMlw9/jJVIY0QMks1xekzvR7/DBmdYMcB2XRIVIFJ1+ot6vh/UZKTFJZrMdsuTOUCTczx7qoPgJ5drmHouuGyS7xpds9GFo/TnB0mGT8hCMWJJSydpGaQs3QFWuvTmNOSyRk4bMoqBDd82U1RTiN3czisXLwBgyqX78NnjX5JoiDHiN7M98Q1wgaNtg+601RbO2Nq2AMNxvbNtgVSMky3c9e/ftXCLAGHoFIwekPksbEf6243DU31wcm5lYrX8v9uZccj+z0z+C2ma/zBLu1fUDrvfqPIzDv4SNFry7WLnYpPyASZ1T/A5fmMpl9hCZzvw7e3tlJWVsXHjRgYOHJh1rZSS0tJSYrEYXbp0yQo+D+7iB1mTXEZn8L6dgabgWPXp04drr70257VBw3Z3WDchBHV1dYwcOZJ169Z5Snh+FkHF7PhZFqVcFpSt9gMDJQaQawxyMWl+IJGPWVLXBlkhv4qafz0qlbbGxkYqKys9ozyZTJJOp7NEEHK1RdXnT4rq74cQgi+//JL777+f9vZ2CgoKaGxsZOrUqRxzzDEd1mJwXe4MKOViKXYVLHVW/N89NbZBoBUcj1zjGxw3yMyVP9mwP3Yn2EYpJRs3bqS0tJTW1lZP2fFnP/sZb775Jtu2beOGG27wWCj/GKh5z7VhkWt81We1phWYFUJ4rK0C0LnGP99Y+ufDz76qMd6d8l3inPLV868uux+z5BrX6nOHIrINkJzvOytZ9zh1Jb5eS+t7H2I1t6JFIxSOH0t46IBd+OLIDk3KAhBSEOrdnfiqL4mOHIrV2NQBnMVXfUWodw/sRBx8KDrDJmXX69jBPhrJB4ryAqYcbQuObQdXPZ+wRM7r8nwOAjopcPysJIQra2la/hEiDlZKI5402dRejC0F5aF2onqKykg7KUsn3hqCpIFoMUilNOptQWEoQZdomwuWbM+YBNdwl6AZjpFpGhZCOHFKaUvDSmvOLj50AAhJSyeWNEmmdKQt0EMWum4TCaeoLGwjYqRJWjopWyeZNkiiI6XjVqcZNpalUbr/dLY9/ghdZ5+M1KMeQxpv3s6Od16l4owTvWfqmkQnmxFS7meakJia0/aI4cTVNCxZx9ePfcro/55MpLIADYlMp/n6ic/47MZ32fP8fRwQgsR2+2RLJ64ml0udozwns4BL1nnw3PIUgMKdRtcpzZ18948vZiqzLnJ/d0zN9u5RrJi6X4EkQ2T+OoySm7FeasRtg7hlEEuFHFdMSyNkOu6RGg6wDGtpwlrabZONqdk0bEnw2JHzGHP6cCadtQehIpNka4o3L1sIwMQ7jyPar5S07dxn2Rq6ZrtxZRJbE1jSFcaQTgyTAk6K1bRV3JvMzzCpL4cCQUq8QbFqQpBJuCsCkvBZioeBne7/MEv/Z4syFINuNvkAQC7DPZfRHARHQResJUuWcN9997F582YKCws59thjmTlzZlYAujLm/OpU/pKLVQJHYvmdd97h5JNPZvPmzR3a+s477zBq1Cji8XiH8cgHjPy7zPlKPqNOAc+gkZOLjQnWH1SSy9f34DUqv86gQYNYtGgRlZWVdOvWjUQi4e2aK2UwdT1AJBLJAkd+VTTAAxX+ZLW5StDAVnX5GSPVBrUGlfHt71cwtsk/1zNmzODRRx9l7ty5RKNRb40oRbyTTz45qy5lePsT5SqQGBzf5cuXc88993DppZd6oCudTvPYY49x5ZVXcskll+wUJOU6H5w7P0Dw504KgqVgHf5nqef4x1zd7wchuZgaNQb5ALkCR0H2T82fYRhZQNPfxsbGRn70ox9x+OGHc9ppp1FdXc22bdu8vD9/+9vfGD58uAd0VeycPwGxAuf+dqg+5iq5fr/84+RnjFQMkXLdU8yuaod/oyAXk/QfgYc8RWoqY30eQLQrn/MVX0yHKjaSpqdedNxiDp6GUV2B1dRCy5vv0/rhx1T++BjH/W8n/6lLX6VZ4EZIosMHs+XGOyncewzpxkbseAwtGgUhSTc1E//iS0pmTaXlrYUUjhmJJxOsdu8V+AgCF5G5xntwPsC0C2WXY5F2UrLqUMDXBUvF/fag/oP51D/6BGX/dQQpw6A5HkEXNjaCIiNBSLOIGCmMSJp0QnfFHnQsQtQXOLFOVZF2Lz7FNCySKcMBQlKgaZKQmSZsOElG05ZFIm2QxPAMVFsK0lIjaevELZPWVIi2RIhk0sC2NHTDxnQFKCoiMSJ6irhl0p52WCHLFlhCuAp7EktIwj26UT59FpueeoBQYQWhonLi9ZuwsehyzPHIikI0I+FInxsOU5WW2T8ECmzoPtBgamlW3/cR+/3pALRwCBuXnTEMBp0wko+vfZftK+upGFy12yINu1I6iCmIjIy4HySlGltpWVuPHjUpGlCLJrQO90FHkBSMR1JAyXGTtD21OidGycmVlHBj1pIpHdvW0DQbaWQYQs2NRQIHnIVFii/mrQagbVMrprA46Op9eObnbwMw5bbDKRlURdp2GCov5koKJ1zJdevUlfulFKQVKLUFmqu6KDQFljJsnP//RfX7K3y/RUI4vx6aZmcAs8sqAR2l09U4+jckJB2Z939i8QuYfN96/h2KMoDyMQMdgG8ewBDccQ0afH4j5U9/+hMbN27knHPOoV+/ftTX13Pffffx97//ndtvv93LG6PqzbW7nMuIVH8nT57MTTfdxIknnkhLSwvbtm2jqqoKKSX19fW88MILPPHEEzz22GMcdNBBOfuUi1XKdTxXyWXUdjZuuY7nAoedsXjBNqmdcCV08Morr3jCBalUKgvsKCNUHQvu8Cs1NCCLVfIDOT9IDrZXPUPFlPhjh/zn1LX5+qyeodZS165dOfzww3nggQcoKSmhvLycTZs2EY/HOfrooykvL89yFctl3AYNWPX5jjvu4LrrrqOsrCyLZTvhhBO49tprWbJkCSNHjsxZn7/tudZtrud3FteVa60rULhq1SrC4TDDhg3r4DbbmXG+M9c2/+dcgEmNZzBGzH/vyy+/DMDGjRtJJpOcccYZXHnlldi2zS233OIJySj3Of/GiAJlil1Un/NtHuQa31xgM8iY+gGaSkis2FX1u+WfD/+Y/YdZylcE2YHKfhYmyJJ0BqhylFyxSbGPl4GhUXnsbO+cUV5M+REzaX3nI1pfe5eSWZPy1p9ZS74FjMiKHxKGTsXxs9l2+4NEBvdn250PUXnS0SRWr6Hl3Q+oPOFI4itWEV+xiuqfnpK37UG25rsAos6uzWbHfKyVr4veNbuxs+wxhRoUdO9D3SHHsem5RxClBZT96ADazRCAI/0ddYzDiJEmFEqTDpvQrKPHBMLSaSmIQipJ/Uefsu39b7DSkvCQ3hRNGQ2RUsdw1SSGbhMy0o7SmaZ7xqbKBZS2nfiktKbRmgrRnIiQSJhYSeeH0MmH5IC2Aj1JVHdo5bStkdR0ry7L0rBSGqQ1REpQUNeLkuN+SnLLNqx4K8VjxyGqS7GiEstMoRtOXE3USHnt8DM/KubHn/9n+6J16CGNJX9+Dz1sUjelH6XDu6FrAk1KBhy9B6ueWEHZoGqPKVOueH4Rh86K/1p/XJI6l2qOseWlZbSs2IgwDcr3GUjFvv3RTY10a5yv//o6diJF8R5dSTfHWXvX29QdPILKyUMCCWt3DSg5f62sxLp+97uUpTvMjp0tc9ExEa9TGte3orlf1sa1Tdho9Nuvln5Tu9PamKJqeC02duY5CI+V06T0xkSJSni5p6TA0hywJCWkLd0BLu41Egi6MHqxRyh2SSXedaTtPWaJzHH/feDmoPLHLUrxL3XD+w+ztHvFb/T6gUkuIJIPVAQ/59o1V+/nz59PU1MTN910k3d9VVUVF1xwAU899RR//vOf+dWvftUBBOwKiFNF0zSuvfZazjjjDCZNmsRPfvITbrrpJhYtWsQ999zDVVddxcKFC5k3bx733XffLo3TzliEfO3yl3ygqDNmaWcueOpvcG7UuI8aNYrLLruMSy65hEgkwpQpU2hpaaGlpcULtFf3Bt22VB2WZfHpp5+ydOlSUqkU3bt3Z+TIkYRCoaz2+YGJKn6XLch2k1Isj58x2Jlxr+5VBmO3bt0444wz2LJlC42NjYwePZri4uIOroRBgznXWKrXF198AcANN9xAJBJh//33Z/z48Z563AknnMAtt9zCiBEjcrbVX2e+dduZEa9pGi0tLTz99NMsWrQI0zSZPn06BxxwAJFIhNbWVn7/+9/T2NjImDFjaGlp4frrr+fII49k9uzZWfORaz0FWaigO15w/nIxUMF2++sHByApALx+/XrS6TQDBw5k4sSJbNq0yRtP/7wGBTj8IN7/2f+blavkA5n+DRvlUrczsBSMK/M/+z8xS/mKLp2XKjnam2V75DIQ8vTR67vvnrYFi6j6r+N8z5Ten8KJY9h67d0UH7ifP4LI1xBfnVm7yK74hK+hoa61dDlrDm3vf4xMpdl09c0YZaWEenZjx2PzCHXvStVpJznJdj2glY2OlFdcTnbJDyZzsUv++4KffV3YJXtrZyxbsB6ByxY6H8uH7ond3s6W1+ahWRolx80kVWSQKHCWSmkoTkizqChqR0pBrMVATwiMVkGsuZ1Vjz1OtwMHM/TXswiHYOPCdXx97eN0mzOFUP+e2FIQ0i1MzUleq947LJOGEJCyddpSDrvUEg8Ti4ewYoYr1iAxDIuCkKO+F9VTPjcw4QkzxJMmqZgBjSGMNo1QM+gJwIZwVTVWuBo7BFZEYpsSVNC+kabITGYpugWBjXJHa1m2jk9vfI/qETUMPX0ciZY0a19axZd//4xxl07HjhgUdCslVt9OsHQQfpA5XO4kHWKXgqCgeek6vn1gAbWHj6PLoeOw4inq5y/ni988wcBfzeLL616m15x9KR1cmzHobYtVf34dTUgqJw/JCD90ApL8INGf/whwWEDLcb9L2bo7jw6DqGmSwlCSolCCIjNJVE8S1tJenxJxm1sPftWra8uyHTx3yWJ671PDV/PXM+rMcd45v1IgtrNm/ap7/jmybM0758SeCSzd8vJmKSl6KbMBaxD8KHc7oENuKXVdLgCo/gvx5k37jxve/9Wigtf9Rl0uwBM0PPwGehCoqL9BVyJN07j//vu54YYbchoORx55JIcddhjnn3++Z6z4S76d+lzGQ79+/XjkkUd44oknkFIya9YsunTpwpgxY7jsssvo378/d911F9FotMO9/n7l+uu/bldKLnepzoCf/57g+2BRu/v+GBVVp67rhMNhDj/8cNra2rjyyispKSnhwAMPZOPGjTQ2NmJZlscW+WN31Nw1NTXxxBNPMHbsWI4//niEECxdupTHH3+cfffdl+7du3vPC64LBbxzGdtqfv05gJRbVFA4IAjkFMNgGIZ3rKKigvLy8g7jm8tVUDEh/n6q537xxRdcffXVDBkyhPPOO49kMsmzzz7L/fffz5/+9CfC4TB1dXU0NjZ2Oue7ApSCoFS147PPPuPaa6/l1FNP5aSTTiKZTPLcc89x+umnc91113HxxRdz5plnsvfee3v9sSyLK664AsuyOPLII73x9q8hP5MXBCS5GJvgvPnnzj9mQcBkWRYnnXSS93njxo389a9/ZeLEibzzzjvMmTOHSCTijZECoX4g52c9/SyTalcwZi449mpug79NQWZJueEFWSb/75h/zoJrcXdKPqC+u+X/PFiSmmtY+0s+C97Xl7z9EgHk4GeqnCeiFYYdlOM7BiB0gV5ahIzFEQUdf+zxX+4+Rwj3bt8xVbRohOIpEyieMgEAq7UNO5bEKC1BmEZHw2F3GKNdKTupL8MaZbNKohPDaHfAlRTOPEkNKvaajJQWW9/4B8nNG6n6xRzihGgOOS55JaEExaEEyahBrDCCFTcxU4L6R56k6vjjMEZEaNdaCesxek/uQd24Whb+94sM/v3REApn5eMJuYa3odkkLMMzLlO2w1AkU4YjDqH67brxFZhJIrrrtuAa60lbJy0dRsO2BHZSx2zTCLWA2eLKhetgRZy/timdpLYueLbdvEqQATM2gjS+Y+7Lamrjszs+Zs//3o8N76wlXFFEuAJGnjGOLYs2sPSm99jzwkk0fd1AYV3xTqchmJcpyGgpoz8tNc/AT7Uk+Pb+9+j/u2PQwiEkoBWZdDlsT0pH9mTlZfOomTWM4sF1CH+yWE2wx3lTWfzfz1A1cRCGpv4DcwBRVl99SnfOe7sDyItbJvG0C5ZcBUXTsNCFIz9fEo5TZCSJ6ClXDlyiq/6GDA754z48f+FCr85Vz3/Fque/osfkXgw6cVRWnis1Tgo4qTkCsJVx4GOW/O+FyIyd7gKtIFjyP0fJpTtjg7dus5INI2lZtYUN8z4h1RRDWjbF/bvQbfZIwtXFaK5ASS5J9n9WEXIXv/u7UM+/Q/EbS7nYpKALin+3Oh+7EzQQ/YAmkUhQVVWV8z98IRzBg23btmXlNfHX2RlwCF5XWFjIqaeeyimnOF4RDQ0NNDc3U1NTQyQS2Wk9nQGjnbUjWIJ1BY3S3ak/yLr5Y1P89yoAYpomJ554Islkkuuuu45169Zx8sknk0qlaG9v94xQfz4b5cb3xBNPMHv2bOrq6jx3ud69e1NbW8tjjz3GEUcc4Rm+6pl+YzXYnmA//Tv4fiM8aMDnYr38YCw4NsHjOytCCBKJBLfeeiuXXXYZzz33HN26dUPTNM4//3w++ugjrrjiCn7/+9+zZs0aqqur886Lf246uyZ4TNM0EokEf/rTn7jjjjsoKyvz+jpnzhwmTZrEGWecwSGHHMI+++yTNQ6apvHb3/6Wk046icMOOyznWPvZIz9Q8oMQ/7V+0KJKECQpwBEEJZdddhmXXnqpd+zNN9/kzTffZMKECfziF7/ANE3vOcE4RciOpfS74AWZpc6Y7nwbPv52+wGSv18rV67k3nvvZdu2bdi2zaBBg/jxj39M165ds753u1P+fZglzdmB32k7g//L5ro+AH4y1r/7R0ikZYFwfwB9jIuKQbITCUTIyDwvizEJPlS514gspzyPFfIYI+ewXlSIXlSYuTXADnlt/Y4Gxe7EIHUASsHj6n1gKDuvtON10o1dEhIq955Guq2VHR+8iWi0kJpBqxkGHEO1KtJGRHeEFZqMApo3byFcVUOBUU2iOUmTYRHW05SFYlRXJBg5uwfx9z+m7sBhxNOGx1SUmHFM16UrYTuApz0dckQC0iaJtI7nKiUkoVAS86uVNG3aiqjUKN63DkIhD3il9TQRM0Xa0kibNtKU2IbANhyAJDWwQ2CbeCIPSJApjVTSoC0ZotkME9HTWS5mfqAU0tKsfGElQ340lJqRXVh+98dYLW2ESyPYUlAzrhurn1pBurGVVX9fyh6njPTYmTSaIzEuBZoy5ANfEH8epixmy2fcSynY/toyqg8Zix4JefcqY764XyXJhnZKBtd1ULBz3NgEZXvU0r56EyVDarNACGTECvwgzmmPRtodM1s64K01FSKWNkmmDVJuUuGomSJqpCgyk5SYcY9RMjUbTWVMddXr+u/fk3Nm9uLROa+z9bNt3vP2vHgywnVn1PABSJFbSTDIMGXGzwFWlorTIpPPK+jWmPUV8YGiXC6KAJte+ZwdH62l79x9KOxWipSSpmWb+OKalxh41mQK+lQjpMhi4v7p5T/M0m4Vv+EEHY3doOtT0Cjf2Q66v04hhCfrnO8//Obm5iy2Z3eN3s7c1RT7sDsllzHub//3bVuuZ+xqu1SdQcDkZwGU0IOmacydO5empiZuv/12IpEIpaWlNDQ0AHguU0pWXErJ9u3bKSoqory8nFgs5rGQ8Xgc27YZOXIky5YtY9y4DAPuZ4nylVw7/OvXr2fLli0UFBQwdOhQL8FqLjexIIgKutlBtoKiYi78z1diEqqdQghefvlljjrqKEaOHMntt9/O9u3bqalx8jqOGTOGe++9l40bN3L//fdz+OGH73RuOjufj2V6/vnnOe644ygvL++Q+2rAgAG0tLQwevToLICi/hqGwYQJE1i8eDHjxo3LYmqCbnd+YBwUTggyPGrMhBBZLIx/7FQb1ecJEybw+uuvc+GFF7Jo0SKv79dffz1FRUU5vz/BOQ4CJT8z2VnsUi7g7mfv/IBPjbH/3D/+8Q+ee+45Lr74Yvr164eUkk8++YRf/epXXHTRRZ4oxXdhlv5/BUu7BQuFJt28I9IDTjlfAjzhAOXipbY7vW3PwGfh1i/UMyDcs4bk1+syx9V1QmI1NKKFTLSQnnXOewXAV16myzV6st0Hs6/Pz3wFzvvKLoSi7HYC3cyN3/E+RUr5++FrgxQ+9lBA2ci9QdNoeeMdRFwjHTeIJUxiaZOQZlEdbqVP2Q6qq1pI7lhDeFA/p6KETiLluGRF9RRlZowx+0aJr95ATaSZsnCMIjNBkZGgzGynLtxEn4JtDCzcQt+C7XQraKRLpJXKSDvl0RhlhTGKi2OEtq1h8xX3El/6NVVdBOkdbbx8/ny++scqInqKIjNBWThORUE7ZYUxCkviWBUpElU28S4Qr4RkmcMs2aYrViIFwhaItHAUABMmrckwTckIzckwramQw1i58UuKaalfuoXu+3RDCMHos/ZkwW/eoOXreg9QdRlWxaJr3qGsVzHV/YoJ606MliH8kttWxs0toL6nSq44JXC+A22rNlI+pqf3TFO3MHTLY0DM4jDx9duzmCFP8htJpDSMTCQyKnfKzS6QaNbfFkd4w3BfOvG0kQWUnLZBWE9TYKQoMhKUGHGieoqwlsYQ2cpOAGlbx5YaRtT0jk3/y0FESkPeOKlXcLz87VUS5t5f4VPu02xMd2x0YXuun7rmxL+pccv1Wc2bukfVn9rRyrY3v2DE/+xPcfcS1z0PKkbUMerSWaz+69sIMmzUv6oogYcf4vXvUPzGUzDgf2e7uTtjP3L9p77nnnvy9ttve5/9ddTX15NKpSgrK8t5XtWb6/2ullz3fFeg8l3b4Dde/Z+/SzuCbo6d7aYbhsFRRx1FOBzmrbfeoqSkhHA47IFilaNIueVt2LCB/v37ewAsuEa6du3K5s2b846LMqpDoRChUMhTHFOvUChEQ0MDd955J1988QVVVVWkUinuvPNOFixYkMVqBoP1/Qa/imnxH8sVa+O/PrjWpZR89tln7LvvvgBceOGF/OIXv2DZsmXevePGjePqq6+muLiYIUOGZM1Zrg2C3S1COC6O+/0/9t47PIp6/f9+zcy29F4hCb1D6CAdpIsFUVFBARV77yL23j2C/aCo2EEFLIiCUhSkSJEuPUBCes/WmeeP3ZnMTmZTEM/5/h7PfV2T3Z359Pns5n7P+y6DBpkGexAEgejoaA4ePBhyH8fGxlJVVRUEgsy+y/rz+miE6vqohx5IqSDD6NNj3HdQyxjqH3y8/fbbpKSkaPXVttRDBWDqdTX3l3pdv4/0r8ZDf119b7fb6+xBfT/qeMrKyvj444958803adOmjTbn3r178/bbb/P4449rD46ayiypfZyO4z8tTWSWqAskgLqUi0GCgEr9ZfTXo8cOoOCNhSRdcwGWhBjtuq/aRdE7XxI3eUxQt2pULK09RbtQO8QAm6Se0pvkmfnzhDS/a4BVaoxu9Ff0p1q2qYntBMZdx29K14ZqkmdPSCG+71BKVv5IVPdeYIvBLSlU2u3IikCExUW01UmkxUVpooeSompku4LgEfC6/WZ0dtFLvKWK6ppS4iM8pNrKkVCokf2R6+Ks1SRby4mV/H491bKNSG8UJVIEpZ5wLIKM02ehNLeGnPnLGfDEKDKS3Vro6fbnt2PN0xuwRh4kc2gWDsXjT3oqeXFYPBSJMjURNjxRVnCL4BEQfIEgH4qAprv7BPCKeDwSVS4bFknWwp9bJT9LpmeBBEnA5/YhhUnEt0/kjHv7s+ejnZQdq0C0iFScqKDN6Bb0uqoz+LkYv4jgU1SGRg327b9gNB9TE7vq/ZT0ItotKDUuhEi/OY0g+MOaq5HwbDFhuAsr6pj4qZ9Ld+WROrKDxnoYwZG+jipqIl1vwCTQ7ZM0oOSTRayiD6vkwyF5Cbf4g2/YJT9IkpDxobI7orYOvsCaWiP8YCm1X3NSetXmByn7s5C9n++iuqgGxacQ3zGJNud3wp4Qqdu0ur1MrZmeeq2W1atdXyFgjhf0m6EToz+SZnqnskrLdtDiwu6BjALB62aLDSe6fRIVu3OJ7pRuuq5/m/yPWWqSmNn/G81MVMXKjEVqqsycOZMZM2aQlZWlJaMEqKys5Prrr+euu+4KWfd09N8UqY9FMjI7xuuNETNzxvrmF0pBbsx6qGCpZcuWXHHFFbz99tv079+f6OhoqqqqqKmpCVKW1VDOTqezjumlerhcrqAn83pGUu80bwTOavmqqiq+/PJLrrnmGpKSkrSIe8OGDeOjjz5i69atdOnSpc566ecciunU1zEDoj6fTwt7re5/i8WihVJv3bo1zzzzDPPmzePgwYNIksTx48cZMGAAN9xwg+m9a2h/NuZeORwOKioqTOesKAopKSnk5OTUYRHVOWzcuJGbb765zkMPfRtmEQeNwFIvehbGGABBv/bGsQqCQESE30KpR48ejBw5Uqu3d+9e5s+fT25uLrIs07lzZy6//HLN3FNtR++b1lAwCv19UF/NHhoYmST9tS+++IIZM2ZoCZr184uNjWXQoEH8+uuvGqhuivy/zCz9paS0oAc3DQOl4PLmZfRrYE2MIemq8yh6fyliZDi2Zsl4C0rw5BURd8GZ2LNSAUUzy/M3pfuRQIeIghY38CU3muSpdXTTrWMuqA/Y8HfK39lHrQ7pZ+pMwJ8s+Zcs6YxRlO/YTNGSxSRdNw2fVaKq2k6+M5Ioq5P24Xk0s5UQPT6cBff9jmdAd8QqCdlpodJpx6OIREpO1i3JYezZcaTY87GKXsq84ciKQIxUQ6qllCSpApvgo1Su63/mki0c+HozPa/pQXKirAEll2yhUnbQ7ZaBrL77B9IHZ2ERFRySB4sgBxR2D9URVsojHdS4rLjdFrzVVhS3iOAWQRa0p+iyDIpP8PtJyTI+yYdFCgRekIJNvjIGZ3LkhwO0O68dsiIS3Tyagff4nU1FQeabm1bQ47IOfrahzo2UABkL6JLuyogCuGWLxuB4fFKQj5K/7VoFPmlwWwpX7qDFpf20PE5q1DaLKIPPR9n2Y1gnZyOp88APJEr25CPZJaIS7YgmbI/Wl+azJPt9wwIsm9NnweWzBPIc+fuWJB/hVjcRVjfx9mqirE7CJQ9hohtJpSlkQBBBkf2vog9kCR8C3a/oSnWhk4qjpSiKgiTAkeX7Obr6KD2u6Ul0pt/M7eSWPH57ZCU9bx9AdMv4wFj9ZoGauZ5AEDACtMh5ZoEhQs3f7L0q1TklZJ7btbaM4T7HtUui5lgJ0Z3SjVX/VjF9nnWK7fwTRK8omSmaxjL6a01VDhVFITExkVdffZX777+fyMhIunTpQk5ODnv37uWuu+6iV69eQX2fbjGbX31S39xCXT8V0FSfAlQfa2F2j/RKsbGOoihcffXVLF68mE8++YRJkyZRVlZGdXU1FRUVKIpCTU0NVquVZs2a8fXXX9O3b18URdFM9FSTvV27dtG+fXutfaOSavRvUc+r51auXMmECRNISkrC4XBoSrHP52Py5Mm88MILdO3aNSgxrdkBaOHv9Qqx/j7ow+Or19XIfCqLMmDAAL777jsuv/xyfD4f8fHx3H333dqYbrzxRqZNm2aawFZ/r+oDwUbAbZzL6NGj+eKLL7j33nu1ddbXqampYcuWLbhcLg3EqiBiz549OJ1OkpOTg4J2mLFoRpbJGJpbf/9sNpsGfPU+Pmb72Ph7MnXqVIqLizlw4IBWb9myZSxcuJB77rmH9u3bayDvzjvvZNasWXTp0iUocIkZUKpP9OtuNNE0A036awcPHuScc86pwxqpbXTr1o2DBw8yaNCg/wpo+W9J08zwhFozuVqTPEwPrYyhTu113SHUHkZzPWtaPKl3TCVu4jDsLdOJHt2P1HunY2+TUduWUNtPXRM69Y1ick6HobSx1/atCAaTNTCncRqypwuxt+tUC9GMWfP6c6HaadDMz1jOpB3R4SD5zHOp3PMH1Tv2IngFvC6JMmcYJe5wZEUkRqqmTXI1qe2icP76M4rD/2Pj8lio8trZvrqU4pNu+nSHBEsl8VIVMZZqvw+L4MUq+IgQ3TgC78Gv+Pq9W/yDKt1fTEKXZGRFxKNI1PhsVHntVHttuKRw7ElRFOX5qPFZccsWLUeSRfSH+HZYvNisPqxWH6LdB3YZxS6jWBS/L5OkIFgURIs/N5TfFMufMFXSmamp0uLMFhxafoiyI2WA35TMJVvwKCJbP9hNeu80RLsVMxGpDXCgBySqaMySIuINhOLWm+GpCVIT+2RSues4lbuP+c38JJ+WA+nwx5tI6ptJ+pnt2PLwd1Tsy/ODhxo3R776g91vrqfbzQODzdUC5mz6cao+WjbR5082HCijmgb6k8Mq2Cw+ImwuYuxOYu01xFpriJRchIlurIJPM5vzg0fVL0pG0oCYQFy7RDpe0oWq3ErcxdW4iys4uGw/Ix4fREKLSETBn+sovVcKgx8bxpaX12lmbiqgE1UTQvRATxfZT6y9HhTlz+QIqkvdwxYThrugwtR8EsBZUIk1pn4n+r9FlNN4/AOkMU9q66vbmGtGJSczM5MPPviA++67j65duzJt2jS++OILBgwYEFS3PuXIaPbT1PE2NFfjE2njOaNZmHpdX66x0hBQamgsRnMoM0VQFVEUiYiI4K677uL3339n3759mvkSoPkkOZ1OvF4vGRkZrFixAo/HowElRVE4duwYBQUFZGZmBo0h1DqrIEnPThw6dIhu3brVMc9TTbLS09MpKKj14zRbV1WRNprfma2rESjozfO8Xi/9+/fnl19+Yc+ePbjdbmpqaqipqcHpdPLRRx/Rrl27oOS3Dd2zxl5T25JlmV69erF//35++eWXOuZx77zzDt26dWPKlClcccUVbNy4Ea/XS2VlJR9//DGPPvoo9913nwb+9EESzACTfi2MLJTKJOnN2PSma0a/M+M+VIFRu3btmDlzJkVFRRw7dozy8nLee+893nzzTTp06KCV69+/P2+99RaPP/54HVCtB276QAxm5mlGEz99Wf01Y0AHtZ+EhARyc3ND/r7k5uYSHx9/SiyR2Xf5VI//tDSJWdL7DNVf0FhP/6GhH+jg60rAXsyaEoc1JS4IATT0fy3ILM9fwz8YjTHy26MJgq4tE0anMcEYBDPlwohWTlH5MCXjzNo6lbHrWKYghkldJhGiO3andNt6Cj/5hNSU65FaxlPhtFPsCKfMF0aUVEOUVMOom9ry3etHyX31bRyd22AJE1mxbxeZzWXueDYLh1CBiEysVI1TsSLXCa3oz+fklK04ZSvVPisuXwD4iCI+xYJb9oHXjlcRtUS0AIrVSmWNBO5g5dSr1OZKkgJJcn02EZ8APkFB8QWYQquCEEh2G2bzaOGh9T4r+nDfis3GGQ8NZcOzvxKeEkFKr3TcVR6O/XSIpM5JdL0iG68i+9kMHQjxg8CGv+ha7iBFQFECIcTx3yR1HJIEXWePZd+cnznx1RbiezZHcXoo3HCEhB7NaHlpL/+PX+ckji7ewd53NyJZRJoNa8WA58YjWiXQATWzvE+iznFFX04dmygoWAJmipFWN7G2GiIsLiIsLioOFbN7cyEWC7QakEJMai1raK21fwTRiqzIeAWFmKxoAKqOl5O/LZcuF3fEIgU2peA3YQSISLAT3yGBkp35JHZJDlpT/5gDeyuIHdbPS6mNpmfyVKFkRy45X+/EXVqDFGYlfVR7kvu3QBBry6aP7kDO0h10vnVYnfqC7CN//RF6Pp2t3bP/lPwvKe3plYYUPzPRP0U3A2JqvczMTDIzM+vUbWg8/w0x61fPrOmfpoM5k9DUfswAklkZtT8IDsphHKMKZiRJYuTIkQwaNIhFixYxZcoUIiIiqKys1ICSqlh269aNbdu28cEHH2jR4Y4fP47D4WD8+PF1Qn3rwYteAVfLGBVVPWuhMkv6SGUqO2bG2OjXWO3DbD3r2zN6nx1Jkrjvvvt45ZVXiI2N1ZL4rl69mhYtWjBz5syg8agSihk0O2c2Bz0LqCgKzz33HE888QQffPABAwcOxOVysWrVKrp3785NN92EKIq0b9+ejz/+mLlz5yJJEiNGjGDu3LmIohjEKunvh36+xld1HPpADmb+PcePH+f3339HFEX69u1LWlpa0Nz0hwpCWrZsCcDhw4f56aefmDZtGna7vc7axMXFMXDgQNatW8fAgQOD7qnx+2UmDX13tm3bxoIFCygoKCAsLIyJEycybtw4zfwT4MILL+SVV16hb9++QfdLXbuvv/6aefPmhRxDfXIqfk6h2vlPS9PAkhhgjBpkLEKZ6unPNbZXxfxTAOQYS6iGdaoJniDozPTMTPIEJaCH6b74xndBflCNHXfjxNRPSu26DpBRtLEERfBrADgphumailDbTBC8FP1r0+zcqRz58FVOznmTlFuvp9oeyUlLFIfCEgGIkWqIs9Uw/No27D3Zi/xt+ShemXaThtGjeQnYjuIQvDgEL9VSFVWyHY8i4cPPFDkVCxIKTsVKheyg3Ougymun0mvHK4tIMREUHq4kNivaHxAAv0+PQ/Li80HFkRKkxBiqvRIe2U+PywY2xmHxR2OzWnx4fSJujwWXRUb2iohWmbBwN9FhTmIdNUFsgcrWGCOwOZIiGfLcaEr+LKJkTyFWh8TAR4Zhi/SH8fbIAlbRh6xIWtJVGUHz1dG3JQbAgIiCLZAPyCeLQYBf9UkCNEaESBvdZo3CU1hO2Z58rPZwWp07BtFuQw7s98jmsXS5cWAQ2FN3lsrIEBiFFgUvcE1WRJy69Xb6LJrfkl3yIggKkVY34RYPUVYnsdYaqKjkm8d+JyLWSochSXg8Cj++vIuwSAvj7u2MYLEEA0YZRMnPCqVk+p/uVh4ro+xQGR3PaxuYrwyKGOQ3ltQhgYqjpSR3TTIBRcFz0vzBqPUL07+q90JRFPa8uQ7Z5aHDjN6Ep0XjLHFydOkOtv24l+73j6T6eDk5y/fiLq2h4kARBz75nRYX9UQW/eDL5/Sw81+ryRjfEYtVxPvfYGj+IazQ6RKjAmLmWK9XiPV1GgIvTQUNTWG5GgOczMyemiL1zdNoimg0QQo1job6Ut+HYpTMxmNmmmbG0KmMgcPh4Omnn2batGl88sknXHnllciyTElJCZWVlVRWVuLz+XC5XGRkZJCWlsbJkyeRZZn+/fsTGxurAR1VeVNBh96sSwU/+v2k+jklJSVx9OhR2rRpo7E7eubj6NGjjB49WqurN6VT52IEgvo9a1wXI7BUgYTP59MiAIaFhTF79mxycnLYvXs3DoeDO++8k5iYmKC6RvDWWEU+1D7S+xFZrVYeffRRCgoK2LZtG1arleeff56wsDDcbjcAiYmJ3HjjjXXW2u12BwEkI/OmMk76AA7GXFfGoBw2mw2n08kTTzxBWFgYQ4YMwefz8fbbb2OxWLjrrru0UPx6YKaC3rS0NKxWK4cPH+bPP/9k3LhxQQBY/93Izs5m//79WpALI1ipb22N66z/3rz44ovk5eVx880307p1a0pLS1mwYAFXXXUVb731FsePH+fTTz8lPz+fgwcP8txzz3H77bdr+8rpdPLggw9y7rnnEhER0eD9DjXO0/Gw5/88s0TAnC7olKB+6ermEjGbT2OjQtUqiOrn2vqKHmHoQZOuaT1IElDrUAuY1Mb1LJOxveDTf1veEV1k7HrLaNfrY5BMwJb22diOUUxYJpX8sURGkTHlOo6+P5eTc94g+Z5rqbKFcaI6GlGQSbBVIyJjE72kxrmJHpSEjEBSWDlWwac58ksoWAUfDtGDVfYr/h7Fgkex4EPGo0h4ZIsWlloNJNBsYnd2//s3ej84CovNr8w7JC8W0cfer3aRPigLu1XB7UcIeHxSIBkpATMxL9ZAkAaPzw+o3JIPQVDwySIWSdaAUrTVBeiATBCgIHCtNjhDXNsEEtrGa2XVxRYFWWNC1CAGRpCktRe4bhF9IKPlkFKj8Kmi91nSg5+wpEgikiN0DIZiWqd2jOp7vemdrP0gqPP1yhLVXquWcFYNuW0Vfdgt/kAa0VYnERZ/gmCH4OKzWZsYfVMbmnWO0ebcaVQ6e1ecYNnTOzjnwS7+e4y6NrVPiaryqxEtIu5yJ2GxdqoLa4iMswaNiQA7V1NYRWSz6No5KcFrqdaRldrADhpYNPw2qaApd+1BREmg622DtXV0xDlod3lvcr7fy7pbviQyI47MczpjT4qibG8+e17/hePf7SahRzN8Ti+uoiqyzu9G6oAWyErowBl/l6iWxKejnX+CmCnoRoDUVDMQo9JufOpfn6LRFFBxuoFaU/uo75qZIm02jlCMRCig1FiWzxjmXR2Tel8tFgvJycm88cYbXHXVVbz77rtMnjyZ6Ohoqqur8Xq9WrhwVekOCwvTGAa9gq32oVfK9eBFf02/N0aNGsVnn33GbbfdFqQ8+3w+1qxZQ/v27bHZbFpfqp+MXmk2AkNV4deviVEhN66JCtT055s1a0ZGRoapb05j7kdTxcgu+Xw+YmNjGTp0qDZ+1QRSz0ap62FkkEKZ2ennawzHrTdt00eOkySJxx9/nMsvv5w+ffpoYx4zZgxr1qzh2Wef5ZFHHqnjF6YCr6KiIiRJorS0lISEBE6ePKkxykaW8OTJk5qZm35/qUxVQ2L2nVm9ejVlZWW88MILWhsJCQnccsstfPPNN0ycOJGsrCxmzJhBZmYmO3fu5MEHH2TRokUMHjwYl8vF8ePHmT59OuPHjw8J2ho7tr8q/+fBkigqiKL5j64KghoK4NBYCQq9YABEwVHvatkWFfv4C5qPz5Rl0jM0uvZqK5uc+z8oRkCl+HxU7NhK5fat/oUTRaK69iCyczaCGV2vr1v7VgNMtsgYMqdcx5EPXqXghXmkPXw7h0mguCacWEcNiY5qbKI/Clq4xY0oyERbnHgUiQJvlN9cT/BH2nEIbqJEJzICVqE2WpwkKDjEQAQ1r993pDqvioJ1h3GVOlk55UPaX96DrIHN8BWVsX/xHiSbhW63DMSleMELLp8FRY0m5xMRRYUImz+suE304pUlnD5/ElWbxYdPFnFYPETZXERaXURY/E+uPLKk5etRRQ6wQn4AI6ImabWIvtpEqwFRgZJaXkueWs9eUsGUmjdKjVRX1zyufjAkK0KQj5Uxb5Jo4p+EABbBGxTQAcAtO3B6rbi9fobJKspE2lxEW13E2Pz+SXbBg1X0cfi3App1jSWtUxwqmPQpIpIg02VkCn8sz6UirwZHchQ+dV0UARmRqmI339zyM9HNo+hwdmvKTlSx98t9JN9dm8NEWyefTM7aY5z54kjTdQzOkVXLMmmi2+B6dinnuz30nDXCUF8JJAF24i6pofvc8xFE/7jDk1qSekYWmx/9gcQ+WcR1SMSRGBl8jxTzABF/m9Ti9b/ezj9A9E/ljWAJCAJMRj8dM58YVYwKqt58qTFP4kON1VinPtBlxr40BjwZ+6lPyTFrUxCEOr4z9c23IUZJr/jJssySJUtYuHChpuCfd955TJo0SWNs9GZp+nHpP6tls7KymDdvHtOnT2fhwoVcddVVVFVVUVFRgcfjoaqqCpfLhdfrRZIkLQGtqgyr5lRGZk1V+D0eDwAejydoPiUlJfz222/U1NRw6623ctZZZ9GvXz9KS0s1H6kpU6YEBW5Q11u/Zvr9pL8nRoZNbwoItQBe3ZeyLAflAFMUBavVGqSwmz1IMN6/UNKUBwxGMGc2HyMQMitrBEnGdtQ9ob7qw3OrYEmSJPbu3UtWVhZ9+/bVAjyAn0kcPnw4P/zwA8ePHyc9PR1ZloMAl9vt5qqrriIlJYXp06dTVlbG3Llz65i5qXNesmQJ77zzTtCeUvdtqO+tGbOk/2366KOPeOqpp4LM4NRyZWVl5Ofns3TpUs1vLz09nREjRnDjjTcyaNAg+vTpQ2pqqrZPTlX+MWAJ0SRfSD1jNjW/I5j0CPWTrQc1wexVLWBSz5kDnFrApei1f+NAGgJMJixOo6WJIKsOe4RJ3w2Y4mndeX3kff4hjswWpF40FdFuR3Y5Kdv0G3kLPyT1gksRxOAnRiHZKx3DZI2NJ/XsyRxb8Aa+IwV4HEmUygJOtxWPLBFhdRNtdWETvYgC1PhsGlhwiB7ipUpKDpWx/qdcXD6Jbv0jaNsdYsUawB9SOt5S6TfRUwT2fL6L4xvzaHZed5qN70zJnnwOzP+Vw1/tJL1vOh0mdyG2VSxuWUD01frzaHNS/BOp2pXDwSVbkKtdeL0Q1TaJjInZOGLj8MkiYVYP4RZPIJKez9Sfqi7Do+bx8WEXvUEKsZ/FUP2TZGSlrmlgbdla9sgYIry+iGzGUNZgBoqCWTHtPEaAFTAbENTACGodGw7JizdgEigGTAFVoBRlcRIpOTUfpD9X59F7UoY/qIPahljbR9eRyez7pZBuE6O0vquLXRxcl8+mBX/irnQz8d2xhMVYsUfHs3eRjz1f7aftOW21H0i3S2b9Cxtoc1ZrJJsUWN9g9kgFpuo5tX89GNWYJqH2niErOKJtQW0ACIpM3tpDxHdJxVtRgzUmvBZQSSIdr+nPn/M30mxwFkZWD07pedEpy/+YpaaJUYEIdRiVDDMFxUzqAyaNNV1q6jX99VAAqbFMT0MKTiigaFTuGyOhQJJ6zefzcd1119GlSxdef/11Lez3Rx99xIwZM3jnnXewWq1B8zOug3pNVWqtViuZmZk8+eSTXH755SiKQlJSEpIkUV1drQU5UKOvOZ3OILbFarXicDgoKyvjzz//xOfz0bx5c5o1axbUt8piCILAr7/+yo4dOxg+fDj9+vXj+PHjLF68mBUrVtClSxcGDx5M8+bNg6LOmbEKR48eZc2aNVRVVWl5n4YNG0ZMTIzGshjHYGQ49QEN1DU2Mzmt7740Rhq7D8z2qxH0hQI/oc4bQZUgCFrYdHXueibIGBhh7dq1jB07Nui8fnxjx45l7dq1XHzxxdp6VFVV8fPPP7NgwQJOnjzJN998Q1JSEsnJyURFRfHvf/+bK664Qrsfbrebhx9+mLPOOovIyMgglq2htQ71AEW9VzU1NSQlJZnuoYULFzJ8+HDy8vKC/CdFUeSBBx5g9uzZnHPOOQ3et8bIPwYsaQlj0ZvJhUC69bWhP2GiPCq6do2gSQ+Y1Pb0gEl/rc6AFMDnwZ1bhCBJWJITAgxLADAFDUBBQAhqqymmeN6SUio3bsJbUoYlLo7IPr2xxMQ0CLzqmOTpQFNjTOjU9kvWryG8fUeie/bRTot2B3EDh1K2aT1lG38ltv/g4DaMfRgZJsH/GtY8C0SRkiXfEd6nG2JSFM7UKLwto4gI8+AOkwi3eLBJPk15L5bCcVd7WfXkPhIiPQwfF47FKvD7tyf59lUX/3ohhtgEEatQRZW1BBGFQ+tO4jxSwrjnBlPuDafSY8Ma34rEM1pzeN4aHK3isWSkUu31K77uABNklMJvN8PhI/S/sTdpzSQqvFZytpSy9YkfaXvTCMIyE7RobyrokZXaJKx64KRnISyCrOUQ0oMllSnxAAGnL+SAmZgxuINmlhcASfpDL/Xl+zECn9pych3wqK+n+T/pwJEa6lwPsKJtIjbJh1cW/eskeYkJRLsLl9zYRU/tfLwyFlswCNeHTrfYRLxev0/WvtUnWfPGHnJ3loACSR3imPDSUGIzIvHvPJnB9/Vh+we7+e7GH4lrFYvX6aU8t5JOF3Yga2gmoOALsEf1Aabae6cydXXLioKC7A2YZAg6vy0EqoqqiGwWg6ukBslhMYAwhahm0XjKahq8Z/8J+V+Ah6aJGbNUH7OhLxfqnCp6xa8xgKUhUBLqSb7X62X//v2Iokjbtm2DlLlQoKE+5TXUnHJzc/nkk0/IyckhPT2diy++mObNm5v2E2odQvUVao76c++//z59+/Zl5syZ2rXIyEhmzpxJXFwcr776KrfeemvQWIzrr3/yriiK5tzes2dP7HY7K1asoEOHDkiSRHh4OC6Xi/Lyclwul5abSPUfUk3jfvjhBywWC926dcNisbBv3z7WrVvH2WefTWxsrNa3z+fj0KFDHDhwgJkzZ2o5mKKjo2nbti3Lly8nNjaWtLS0Ovl+jOvy22+/sXfvXs4//3ySkpJQFIUDBw6wYMECJk6cSHp6ep26EGwSqgZ10LMwocByfd8LMzH7LtQnZuBI/znUoS9vZF+M7ahMmj5vkv5hiAqWjBHiZFnWGEWz/Wmz2fB6vVgsFn777TfmzJnD9u3bkWWZTp068f7779O+fXutzmOPPcabb77JBRdcQIcOHXC73Rw6dIjLLruMc889t859N3v4YLb2xu+Meqgh2I31ysrKSE5Opry8nKioqDrf0bS0NKqrq+vcB7O2GiP/GLAkibVKmaZE16MENMY/SV9GM61TmRPddb3/Eeq7EKyLuo61xJGC7FMoW7oK565D2Fqmo3h8eHLyiBjci8gBPdTe6hmoUosWVFQRQsp+/AnX0RyiBw0gsncinvx8ihYuIqxdO6IHDQrRPuh1WtPAD9rUA2M1A1CBYVXv3U36jGuCulCHHN2jDyfef5vYM3RgScdQmTFcCqjpgRDtdtImXkr+8iVU796pNRHWtSOxF4+monkYUYnhhFn9pllqDqBfnl9Fv4ntmXxmBamWMqJENxcPjuDInjDuurWchQsSsYpePFIZEYKbtz7P59KHuyJEFFDmDaPEG06RK5JCZzjplw5g9yOLSRzmT6qq5v/xyP4kqT5FwCcLuE+WULn1ED0fG4s1vAqPUoMgCCR2S6XHA6PZ/MRKOj91AeD3FwqT/Iq/V/bnOFLzHqmi+sboQ0pbhdrcTwCyIOJTFHxyMKukFyMAU1+9shhkrqc35fKPUZdAVscimZnVqeeN5oG11+UgcKTW97NL/n6son9ufnDhf28XvYRLriAQpPpkteidwL41eaRNzahzDUVk96pC+k1pwcbPj/Ld41vJ6J3M2Ef6knFGKvZoG/t+OMa2D3fj8yqk9kimw9mt6D69M12mdKYitxLJKhKREhH4sVTqgE91PfT+SfWxTMay8e0TKd6WS1L32ghHIgqSVcBT4UK0itjCLAR9WVVRQvsm/c8M7/+umIX+hdBKvNFET389FJiBYMBgZDn0Zczqh2pbURTmzp3Ljz/+SHZ2Nj6fjz/++IMLLriAadOm1enXDJwZP4cCSm+//TY///wzV111FRdddBEHDx7k/vvvp1evXtx8881B7dUHjEIBgMYo419//TUff/yx6fqcf/75nHfeedx666115mO2xnrzK1VJfvnll3n00UfZtGmTVr5ly5Z07tyZ0tJSCgoKcLvdlJeXa/4z27dvp2PHjvTs2ZPo6GhEUaRjx47k5eWxePFipk2bFtT/r7/+yqRJk7DZbJqyLssybreboUOH8uabb9K3b1+tjt6cUd2r5eXlbNmyhRtuuEFrRxRF2rVrx/XXX89rr73GTTfdVGc/6ZkWvWmXHijp96jZOtb3AMF4T/R9mu2JUAAqFAiqDyTpy5m1rY5HBcf6eRgDcOjfi6JI7969WbVqFR07dgzyS1LvzerVqznrrLNYtmwZ9957Lz169ODZZ5/lzDPPJDExkWXLlnH11Vfjdrvp1asXU6dO5frrr+faa6/l8OHDWk6vhh5i1LfOZu/Vz/3792flypWMGjUqqK7FYqGyshJBEIiPjzddT5V9a8xYGpJ/DFgSBL/fkt4MzqxMfaJXWOqKoU0DaDLmmtHTKUqoNgMAoHj+YmytM0m5d0btl9jro+Sz5VSscBJ15hkEMUxK7XwU3Wdju0ap2vYHvspKkqdfVvvljIvD0a4dRYu+oHrvHsI7dAg9Vt1ShDKz85+rnb9+GIrTic/pQrDaECRd+GR9+1YJAiFKtU2n9mEGmHTXFdF/PrprT6K69UR2u/FWllGTe5SCr78k9/5/AZA88yzSzu1BmNUfhrvqRDGKKJHeNx2rsCsQGU9GBLp1stO/VxhrfnHTe6CEQ/ARJTqRvB46pZThUSqpsIZR4I0iUnIhCjJOm5WDYSI22YUsWfH4JJxeK56An5Ki+MNbFy/fQsJ5Z9T+uCmiltsnLCGMsIx4yv/MJ65LVBDocYn+r4beTKshMe5tSWUsNKZGH5mtrkmYCoS0NoTgtvUArfacXOecKlbRFwSKjKIHSVreJ/QMk4woeLELQqCMjF30YBV8WtAOAI8iIaHgQ6DziCTmX72RPmMSiEm2+/NiAR7Zwq5VuRzYVEJZkZfdK/LoPrkNw+/ujiiJlJ2sYclNq2k7JpORD/ZBtEkc/iWX5Xevoc8N3UnukkRcZmRg5IZ1FoLZpTr3RQeajCyTCphUaXNhVzY89COR9w8jLDW6tg2LRMGW4wx4ZmzQPVHbKt1zkuiWcXWu/Vfkf2CpSaL6F0BdHyQz5aMh5dBYXi9mzEtDpnihRBAE7rvvPtq0acOSJUu0Nnw+H0899RQvv/xyEMuir9cU0ziAFStWsHfvXj788ENtjTIyMhg8eDCzZ8/m66+/ZsKECSGffjflabTZ9crKSqqrq7FaraYhl1W/jtjYWFwuF3a73XSeoe6r+nr22Wczbtw4SkpKyMnJYdu2bTz//PN8/fXXgD8hZ1paGiUlJQiCQHV1NW63mxYtWmhMhQqAkpOTadeuHfv27aNjx47afnC5XCQnJweBJdW3SRAEYmJiqK6uJjw8XAMxxuS6v/76KyNGjAhS6FWGKDIyklatWnHw4EFatGgRNE+jOZsK1NRXI4BqrOIe6nth7LO+z+o546sZYDJe09cxE7NgH/ogGA35YQ0YMID33nuP8ePH07x5c60swPr161m1ahX5+fl8++23TJ48meeeew673U5hYSFTp07lrLPO4vnnnyciIoKff/6ZmTNncueddzJw4EBat27dqLU2SiiQZPZ5xowZzJgxg5YtW9K6deug65s2beLtt9/WPuvXd8+ePRpzrL9m1kdjx/yPAEtSIFGj6hQNTVcKBEExzYQrG/yR1Oh6iiLU6vGCYu5/RG0dMz8h99E8EAWih/UMnAk0IEnEXTyWk8+/R8TgXogB5zZ/g4Fy9fkcGUEMULnuN5JmXAaioLk/+ccnEDduHIWffBoaLJmIWZQ7M3M8Z84RSn9eCYKAYLfjPHKI4lUriB08DFE0yTTt9YJoWMvGACa1SOC8aLNhS0jCmpREWMcOOAtPULZ2FfnvLKN87Q6aXTaY+B4ZlG4+TPNhLbGLXhyCxw8kFPAICj5FYeKECOZ9Ukr2AL9CbBVkBFmmmaXUPz/FQpKlnHipikjJRaXPzlbFSazdiROo8NjxyCIer6SBJQDXiWLCW6cALm0a+oSkkW2SqTleCl2iEAUZq+BDEmRcogWLICMLtf5ERnM2NWiDD7/ZHUrj7ZZMQ4dDUFCGIGZJV8YYpCEUi6QCJWsgWatRVJCkAqSg8/jzSykeH/t/yuX4jhKsNpHuoxJp2TncX1AIZsikAAMz6eGOLLh7J13OTKb90CQqnRZWvLqPvStysYZbsMd4OPPubHpc0gZF8Ndf+eRmRt7fi7gsvy+TTxFoO7wZGX1SWHrrGsb9azjWMItuXQJAJwBIjYDJ6D+mroeRZTICrPCEMHrPGsrWOeuwOKxEt4qjKreCqtwK2k/twZFv9pLQMRlF57PgrXSy660N9Lxn6P8JZul/PktNEzOfJVVCKYOh2JdQ54zt1SdmZcye4h88eJDS0lJmzpxZRwm8//77mTx5MtOmTSMuLk6r0xCrFEreffddLYeNXkRR5L777mPGjBlMmDChzpgbqwCaAVFBENi+fTsvvPACPp+PuLg4fvvtN5555hluv/127HZ7nfYrKio0J3Vj+xAMTPWvKthSP8fFxREVFUXr1q3p168f27ZtY9GiRWzYsIHU1FRat25NREQEOTk5NG/eXGtXDUmumvd17dqVVatW0blzZ80XBtCSnKqf1ehskiQhy7JmnheKScnPz2fIkCEaeFSZJbVMZmYm+fn5GlgyzrUhaQq7UR/rpG+vMexPqOuh1qG+sRrHoPczk2WZX375hZ07d2K1Whk8eDCdOnUKGr8ROD388MPMnj2bIUOGaED1tdde45tvvsHhcJCYmMjs2bO54YYbNKbqvvvu4/HHH6dTp05aO6NHj2bQoEFceumldOnSRQvJXp805ffE7FxcXByvvfYas2fPxmaz0blzZ44fP86BAwe49dZb+eijjxg4cGCQSWZFRQUPPfQQjz/+eMh1PlXA9P+inEI0vICDnMFnySx0eCgxM72TNLCjAicl2MxOEYIBE2ghwY0gy+i/VLluG1HDetdhgwTRXy6iT2dqtu4hol+3ILBQd+Am4EkHqhSfD0QJUffkyz8lf2NSZJi/jB6UNCRG0KIHLIF2aw4epHT1zyRfMBkpwg82Cr5ahOL1kr/wE5IvuhQRQRu66+hRbClp2vj00zOOKQgr6cagnQ+Urz64n9J1q1EUGZCxJibiLa7mwAMfU3nDRCS3BILfF6dCdmATfISLbqyKC48g4xVkPIqMU1Fw42cqkhMF3MedtM6yAj6cSg0tLCUU2fI4Vmjh5/Aa2kYXUeCOwh3IrVSDFUGQkAMht60x4cjFpTgSrdgCgRgsos8fohtwFVRga5+F0+cPV24VfFhFL+GihF3y+pVrA87QQIqOWfDIIqLGXglaqHQ1Ca0+iIMq+qAOEAA3Ov8jUTQHX0ZfJT0g0ivlKnNkVU33jBOhFhip4kMMMEoKBX+W8e1TO8gelcyASWl4qj1sWZzDL/PdTH+iDaLdgStgnlc7J5GErCiufKsXf6wo5Of3cqgu97F7+QnajWrOmAd64oiuVWYEZPL3lhKbHk5CVgQgIyNq4McWYaXjOa04+P1h2p/XRhuzGdDR3x/9+SA2ycAyGf2YACLToxn45GiqT1ZSlVtB+uCWRGXGAnBk2T7W3P4NaUNbEZ4cSem+Qgq3nqDLdf0JT43S7kuQ/Kf/N/yPWWqS6BWjUOAn1KuZ0qgvY1avvveN7Rdg0aJFXHbZZSHHe+GFF/L1119z2WWXNTj/hhQhj8dDfHx80Hm1TmRkJBaLRfPZaEof6jXjmgqCwObNm3n66ad59dVXSUlJAfzhjgFmzpzJO++8E6QA7969m8zMzKDcQ0ZwVJ+ZI9T6MYmiiNVqZdu2bbz99tvU1NRgs9nIzMzE5/Pxyy+/MG7cOJKTk4MCDtjtdi3fjsfj0XxjHA6HFl0tJSVFAzJ6EKBGTvN6vURHR2uhrY2skiiKREVFUV5eTkpKipbrCdBCmpeUlGhmVfq5mQUNUMXM/LQ+szcjqDBGitTvEyOjpW+/vr4awzAZ22noe5aTk8MLL7zAwIEDGT9+PDU1NaxYsYKPPvqI+++/X/Pd0Y/f4/GQlJTEK6+8wi+//MIHH3xATU0NS5Ys4cwzz+Tll18mMTEx6MHLgQMHiI6O1kCYXsLDw7nyyiv55JNPuOaaYHcJo5jdr4ZAkvG3SVEU0tPTeffdd8nNzeXw4cOMGTNG86P66quvmDRpEmPHjiUrK4udO3eyatUqjbluTP+NkX8WsyQqGpjRS2OBUl0x+dJSyzQFXdcDpgCwagxgkqucSDGRte3oWBpBUJBio/AVl+nGI+gUnECgh8AlvdtS8AIoKKIAsg4MmU5XpZoaWBYzlqd2SBpgURSFkpXLSZ02A9Hq0KrHDzuTvM8+wpaSQs2BP4lo3Q4Ad0E+hcu+JnXy1PqBkdnQAW9lBRW/b8RdcBIxLIzobr3wlBRRuXcnKRMnI0ZGoIjg89RQtOxbXI6jnHxlIQmXjOTo6uNkj8imSrYTJToJpzaY85JlVQwYZNNyMQHMvDqchx8qZ/7ricSEWwkXZByCF9FTyWOPlHPJVcnYrRVIgoxHEYm0uqj02Cl32/HIEl6fhG9UZ0qWbaJTp95EWFxEW2qwij6cshWPW6Z0Ww4tzx+M2+fGEwA2fsDkD/jgkSUQ6wZ2AL2ZW60y7n9VgVLom6ya5RmDEeivmwZt0LFLaoAGi+AL8j2qNe9TmSedP1IowKQGeFD8793VXr59ageXvNgTd0EFm786Rk2Fl6x2DpL6hvH50we56KEOqMliVfEE5iFZLHQbk4otysrix3cTlRLGhCf7YrXVfjnU9cnbWUJmnySdf1YtYALI7JfMb2/totN5rQGdD5RuTfTsUu36Ugc0GVkmox+TKrIiEp4SSXhKrekfQMtxbWk+vBV563NwFVWR1D2VTjN6Bn68g+/Xfyt0uCArCPJf7+90tPH/gqgmTNAwK1Qf86R/DXW9vrINXTNKaWmpBiLMJCUlha1btzbYTmNEH0VML6oS5fV6G5UDpj4xtv3UU08xb948jRkDuPHGG7niiivo1q0b33//PePHjwfg8OHD3HXXXbz22mtaW0bzRuNn/VoXFxfz8ccfs3PnTqKjozn33HMpLCxk0aJFPP3008TFxeH1eikuLmbOnDmsX7+eb775hmHDhnH8+HHat29PVVUVVVVVCIKghTTfs2cPHTp00BggSZIYN24cH330EbfccgthYWHaGvp8Pj744APGjBmDIAh1TEP17/v378+qVato06aN5lOiAiuv18v27du57rrr6qyxmTmamelZKGbIDICqr3rwZLwHerO/UGDNDDiFel8fM2Ucv35sbrebF154gYcffpiysjK+//57SktLyczMJDs7m5deeokHH3yw3qS+Q4YMITY2lqeeeoq4uDhef/11DWDp79W2bdsYPHhwHeClytChQ7nrrruCxttYlqyh+aptGfc/QGpqqhYGXD1/7rnnMm7cOH788Ufy8vLo2bMnt9xyS4Mhy5sqejD5V9v5T0vTwFJAGfurqC7Iv0jQh1PWmxD5RQ4EctDAmC5cXGMBk615Mu6Dx7AmxtTBMIoi4NqfQ1jXNvqzmMIFvT5kpGEUEEQRwWbDV1GBFFkbGlkdiqe4GDEivJahqk+BCkJHulEZunWfOIEtLR3Bbq8FYoAUF0vyRRdTuHQx+Qs/JbJrNt7iIgSbjeSLLkGKiQ6eCrp2dQSafggVO7dRvmk9sf0HE92nH97yCso2/kLlrj9ocessRLtNe6ptsYSRdPb55L4/D0enDpT9vA1vZiybvz6Jo62H2KpKxNJKXCU+9u31suYXF0uXJ6DqZxIKbTrauPKqCC6aVsCZw8Jo18bC/sMelv3oZPIVUXTpbee4pwbJIhMZ4c/n5JKtFHoiqfA6qPA4iO4Rw+4V1Zz8bhudLkwkyVaJQ/RQUG5lyaP7aXVBNpJFwKeIOH3+8OeSpBAuuomUXMiKgEu24A0wVypIMfoCGQGSrIh4NFO7uollaxkNsQ7D5L8x/qS3Fp0Crw8DrmeSjAEaRMHcIVOiLgDTQFJgN1gDke22fptD7/PT+fHl3YTbZQZfkEx0opWjW0tY8fFJ3C6FqmIntjhJa8Oj+Nk5nyJSllvG0mf3suvHk2T0SmDsrO4BoOQfh4/a4AoWu4SryhsESEUdw+SpdGN1GMx/DP5hesAEhARNoQCTv4z+HpklIfaL1SGRMayFYXXr/2dSh236G+V/ZnhNE/XpP5g/XVelscDor9av7wmxvkyHDh3YvHkz7dq1C2pHVWw2btxIt27dTGbcsBjHFhcXR05ODhkZtYFb9CZhYWFhp6TAhGKVDhw4QGZmJnFxcUFKXXJyMm+99RazZs3i9ttv55dffiEnJwdJkpgzZ05Q6GPjPEKt9/Lly3n99deZOXMml1xyCYWFhbz//vt8/vnnbNq0iYiICE3Zt9vtPPTQQ1xzzTUkJSWxfft2oqOj2bp1K/Hx8Rw4cEDLV5Sfn8+ePXu4++67NTM5QRBITU3lrLPO4tlnn6Vjx45kZGRQWFjI77//ztChQ2nfvn0QA2axWDR/IrUNlUH7/vvvGTdunKYYO51O3nnnHYYMGaJFaINaJVVRFM3UysgGqQ8NjAFP9GJkcNR6+rqhgBbUTaZbn4+SWRkzVsnsnhr3lDrGFStWMHbsWD744AM8Hg8TJkwgNjaWnTt3smjRIrxeLydPnqwT9l1tKz8/nzlz5rBs2TJ69OjB3LlziYyMNP2ehoWFcfLkyTqh2lUpLy8nPDw8JHhsjDT0m2OU+swXLRYLY8eODbreEFD6bzA8/y1peuhwwa/I6tdPBSkNiaoMGs3wNGXFCIxQVcbg86ofkwaYqAVIZoApcnB38l/+mPCe7UEKnrJcXoHrwFFiLxjpB12ajZkC2kbQhREPmAHWUSQCdFPUiCEUff4VSZddgqAzSfB5PBR/uYSYMYFoJA1pImYmfwRhRRDAV1mBJT5OY5pqh6NgjY8j7fIZnJj3JtF9+yNFRiGFhdWOty7+1M2FINDkOXmSim2/k37ZVQgq5R8RQViLVigeDyW//ETCiDH+6rK/nohATL+BVO7cinPXHspyC9jw259s0I3T4QCnP08t119TxpQrIxkwxEG4w38jew2w8W6/ONatdXP0uIf0liJz3k/EKdmpCAAYNeAAgCz5maFw0U2Y6MEi+kiY1Z9jn2/mw6t/IbOVFXeVl/Jymb5TO1DVsTmFTpdmVucLwHSr4CNcciMjIvoUgoNC+6WWrVGC2A5vIEeU3i/JyBwJisyxtTkc/n4/PpcPKcJO1lntSemZru07s1xJ+jxIRtM7I1DQn9OLJMhaolioVeSlQHsSCoc2FJDQzEHbPrEMPC9RY6R6jLHRe0QsD0zaye/Li+g/OcLfJ36w6FNEtiw5xtePbiMsxsZ5T/em49jmgR9Vc7PCVoNT+e7BjXQ5O8sAgPyAac+3R2gzMsO0bihTPDPQVB9g0q83mCUBrjt2s37N6/yHn4IFHliclnb+AaJXDiG0AtJUcBSqzKkwSmbnJ02axEUXXcR5551HWOB3XVVsSkpKWLlyZVBkuKaI8an0jTfeyD333MM777yj+eSAPzfM3XffzQ033KDVa+ipf2OksLDQFPio5kTz589n4sSJTJ8+nYSEhKBIXkapb70PHz7MO++8w2effab5OiUkJDB48GDKy8t5/vnnefTRRzXTPLWPyy+/nE8++YTi4mKKi4s5fPhwUPuqWSLAm2++ydixY+nWrZt2nzIyMrj++uvZt28f+fn5REVFce2112KxWHC73XUYGLPEyJdeeik//fQTTz75JGlpaVqUvjFjxtC5c2c8Hk8QI6hvU52/mflpfeySWRm9GR7AmjVr+PLLL6mqqiIiIoKJEycycOBAU5ZDfV+fCV5jxQiQ9ONTgdymTZu0wBsTJ07U2Ljk5GQGDRrEDTfcwPfff88VV1xRZ41++OEHHnzwQSIiInj++ee56KKLNN8yMxk6dChXXHEFV111VZ0xAnz22Wece+65dRi4UOtU33xDibG9hqQhn7C/Co7MAPiptvOfliaDJT2wCVIuGmGYbwRZALL6MD0AmmSdpq76QYUCTOqYVIATCjBJEWFEjxvAyZc/JnbSmdhbpKPIMs4dBylduoqEywNRfPRgoaHvaQAcoWcDBHC0zkKurOLk628T3rULlqREPCfzqdm5i5iRI7BnNGuUDiJoNJLWWa3oQIw1MZGqP/7wF9EDoEB1d0Ee1oQEbMnJIeZQt83a/ms/l/62lviRY8EiBY3fW15GRPeelK5eiSx7ESwW7cm2AtjiExGtdsSoSGyZybSccQZpzqN49h0hNbySc4YodM+28Pob1Sz7zsUtVxUTHiEwYHgYZ44LY+gwGzFRIj2HhJEdYG6qFCtVsp0q2Y5HsfijsanBGYBIyRnw1an1TWp/ZRbxV8XhzS1mz/oSCgsUyo+WEtWikOTwBLyKiC0QCc8PGGR/O9QGQFDZJbUMBAMlWQeQ1M9gklvJK7Pu0VXEto6j910Dscc4qDjpZP/n2zm55iDdbx2oLb4+cEOocN9mgEgVnyKAEAg+IYiI+PAFxqgHTJJuPn7TOoWcP0qZeHsLbIJXKy8jINmsdBsSy861JfSfnBmYq0jJiRoW3LWRo1tKiEkPY8h1HWg/shmyIGlgSwUqenbJEW0jqV0smz/6k16Xtg0a/9ENJyk+XE7/G7pp+05dc6Pvkp69UdfcaJoXCjAZ75ORgTMzqTQDUP8X5H/MUtNEryzW98/8VABNY9kms+sNKRYRERHceeedTJ06lVmzZtGzZ08URWHt2rU899xzPPHEE01ie+ozW8vOzuaKK67Q/BratWvH/v37+e6777j22mvp27dvkxXc+uaWmZnJO++8U2d8qhw9epTU1FTatm1rrBrUfigfJVXeffdd7r777joR9vLy8pgwYQLz5s2jpqaG8PBwLT+Poii0bt0ah8NBUlISFouFli1bUlBQgMfjITw8nA4dOtCmTRs2btzI7t27efvtt7HZbHTq1Ins7GzatWuH1WolPT2d9PR0RFHUfJT0AEQ/dr0/mFpm1KhRjBkzhpKSEnbt2kVxcTH5+flkZmYSHh5eh0VSRWWqjMyL/n1jRA8oZFlm9uzZNG/enIceeoiEhAQKCgr44IMPWLZsGY888kijgICZom7mM2O8t2ZgycyfatOmTbz33nt1EvRKksSwYcPYtGmTBpZEUaSgoID777+f3377jdTUVG6++WYmTpwYEiip/URFRTF48GBefPFFbrvttqBxrV+/no0bN3L77bfXmY/Z+jbGJyuUNPY7aSzXkKlkY/s3lv9HgCVRUJBE2a/s1DHnCWaLQopgMHdR6dnAKb35XUOASfVhUtsNCt6gB0xARM8OWNMSKV++npLPfwRZwd4uk+QbJgf8mRTNO0k17ws0oM6q1ndJKwtmgCk8uxNhnTvg3LkHb0kJ1pQkooderTEyjZFgS0UdaNKDGAUsSYn4KirwlpZiiY2tXYvAcEpX/0z0gEGN0HwMT5EMVz2lJdjS0+qct8TH4SkqwN68Oa7iAuypaX7gKvu79OSfxBaXSOzQ4RR/9y3O6POx9Umg7dgsOkbk0j58P+5KJ5ExInM+SKK8SmDFd05Wf1/FfTcUYbFC7wEOhowKZ8DICKJSwqiS7VQHwFKF7NBCV1sFr6YEWwUfEb4q9n5/EK9bJl/wUnignD9WldA2O4KW3aOxxYuseWINzXok0XGK31xFVgQ8ioRV9BElOLWAD6Kg4JItmkme37QOvAQr4TKCxirp8yVBrQK+55MdpPVvTuZYf1REryxgT4ok+4b+7H5vM8d+/JOs0W1MGSR9wlgjUPKF+N7pAZMHyeC3JAaowFrgBJDeLpKcbR4iJA9Wwetn2AIsjEeROLbfhcvtZ+I8isQfKwr47sV9FByqYuitXeg2qRV7vjvKZzeu47xn+xAWY6vXb2fgdZ34bd4ePr9+DS36p1B8uJwDa04iSgIpneM58msuGWc0q/MjGSrYgx4A6VkmY1LaoPtj4jum70cV1VywPp+0+ur/7fI/ZqlJog8d3hiwZHxv9rk+aSyAakybw4cPp0WLFrz99ts88cQTgD+56ptvvklaWlq9ZjeNYYD0T7xHjBjBkCFDWLFiBUePHiUrK4tFixZhtVpNzafM5mWmbJmteVpaGk6nk0OHDtGyZcs6Y5ozZw6XX355g4pgQ2u4Z88eHn300SClVBAEMjIy2LVrF3379mX37t306tUrCFgcOXKErKwsWrduzfPPP0+fPn0oLy/H7XbjcDgIDw+noqICURS5+OKLkWWZXbt2sXv3bt577z1EUSQrK4s2bdrQtm1b4uPjNZ8mY0JUPXixBFJ+bNy4UWOu8vPz2bx5M61bt6Z9+/YkJCTw3nvvkZGRwYQJE0zXyBg228gw1XfeCEpU5ubjjz8mOzub6dOna9dSU1O54447mDdvHl988QXnn39+nXvZGJCt77Mhhd1sDup3XI0CZwSDagj3vXv3Bq3L+vXreeaZZzh48CC33nor1157LUuWLGH69Om89tprJAceQodi5m6++Wbmzp3LpEmTGDZsGIcPH+b7778HoEePHnz//feaj5p+fqEeWoSad6h93hgAVN95sz4begDRUP1/BFhSQUp9//jNgj+oohiUxtogDn7QJFMbLryWZVKC6qmASRsTYPRf0vdVW1DBlp5A4rTa8KZaO4bhGnM66dswBUwGAIMAgkUkrFtntZrJYhjbNjmnFhX0TFMwMAOIP+cc8j/+mPgxY7C3bImAgK+qktIVK7HExWNv1gg2S/ZRvXcPrmPHEG12Irp2wxoXHzRgRZERJN26KALhHTuT++7bWJOTESySNl5EUHwyZRvWkXLBJWCzUPLjDxR9uZ6K28+gxBpBvjWaPFs037xTypsvVPDiMxX0Guw365pxZyItWlnYsKKCtT9U8cJDxTw7u5i2XR30HBlHlxFJxLWJoFq2aVHsoDbim6yIHNhYwCf37qgz1dxDLlZ/VcyFs1ozc25XFr94kJzl+2gzrhXgzxskKwI2UcaBB0TwiLVfFbkOGJJMfVK0c0LtZ0VRyFt/jDNfGYtPU9wlrd12F3Xh1wdW+sFSPaxRqGvmCWhrwZVpWyiaCZ4qHQcn8tvnxyg85iQlw4ZHkTRGav3ikyS2iuDEnzV4FIniXDcr3jxI4ZEqBl3djv4z2iMrAn0mtySzWyzLn97OuU/1Dhq7EWgIgkD/qzqSXeHmq1t+JTYzksnzhhGdEU11sZOtH//JoVUnGHJvHwShNgiIkWFSRWOQdABIzzIZ19IsPHxDwMlsPZsCoP4uEWT/cTra+SdIKEVHf93sfVP7qO/zX+mnZcuWPPnkk3XOhwJDDYEjtX8z0yCLxcKYMWPqtF+fn0ljxEwhfOKJJ7juuuu45557GDzYn0C9pKSEV155hfDwcPr3799gu7Iss3LlSn7//XccDgcTJkygVatW2nVB8AdjsFqtQfMePnw4//rXv8jOztYYHf2c3nvvPR544AFEUeSNN97g4MGDxMbGkp+fz8mTJ0lOTubAgQOsW7eOn376SWPAhg4dSnJyMrt372bv3r2sWLGCH374geTkZDp06EDHjh1JT08P8v9RwahqBnjo0CHefPPNOnM9ceIEa9asYerUqdx+++0sWrSINWvWMGTIEFOAEQoIGYGGWt6o6Brv1/LlyzUgqA9jrigKU6ZMYebMmXXAkr6tpgDsUJ/N5qCfy6BBg5g3bx5HjhwhIyMjKJLhihUrSEpKwu12oyb+nTNnDkePHuXKK6/knnvuQRAEpk2bRv/+/Zk1axb//ve/6/RtHNtNN93EFVdcwSWXXEKzZs348ssvad++PcXFxcybN4+lS5cyd+5cU4Ck/140BjQ1Vf6KqeypyD8mwIOeWTITvf+RqRiUJEkHSmSEIJbJCJjU9kEle4zn6k9aq5XV+QKpe0wJ/Klj0odGT+lnWRcwiQGbM1RGqna+QeZthsAW6IsJRm4naOi6gAs6likg1uREkqZOoXztWkp+/BEkCUGSiO7fvzanUz23xZ2bS+FXXxHeoQNhHTog11RTvPw7xLAwEs8+F0EUcbRoQc3+vYTpc0QJCoJNInrgIAoWfU7s0BHaJW9VJcXLviGiS1ekyEgUAWKGD6N0+Q/kntUd2kcjCjLJtnJW/XyQ7AERdB4cz5bV5dRU+rhv+nG6Dojk/mcSueSKKKrKvPy00s3Py50sfuskn76UiyjpmEX1S6/oQHBAnl93Bt++coBRl6XQrE04PkXgk+dy+PzJA+zZWMG4Ozrw+SO7aTs2C1mQqPbZAwxOIN+Q4CNcciEJMhI2LeiDR7YERZ5TRRIUJMFnqpj7qt2EJ9ixWmQUOfC0UKxN8CqGWxGEWvO7ppje6RPLWk2CPOjDgsuK4PfPUmRkQUDlPFWfpYxOEcSm2nn/oQO06BROhwFx1FTJbPi2iMh4Gxn9kpGiq/EoEusXHsdZ4SWzVyKDru2ERfBp2zOtUyyKolBxsoaYVH+0RvU3QDXF08v2zw/S/cJWdBwXMO9DISrBzoAburLx3T38+d0h2o2vVXb0Jnn6toMYJBOWSe8/ZcYy+dfRBAw1YG5s/vv3n0cd/xQTutMhoZ6am5VrbHtN6buhembnQz3dbYg9aoxyZARMTanXkAlVqLkYlWJBEGjevDnvvvsu//73v3nppZe0PEVTp05l3LhxDY5n//793HbbbQwbNowRI0ZoPkhWq1V7HTZsGN999x3nnHNO0FglSeK2225j5syZXHHFFZpSXVJSwpNPPsmgQYPIyMjA5XIxdepU3njjDS666CIKCgrIz8/nyJEjlJSU0Lx5cwYPHswff/yB0+nko48+onXr1px11ll0796dkpISDh48yJEjR1i/fj2rV69uNEswd+5cvv/+ewYPHkyHDh0QRZFPPvmEBQsWsGvXLqZNm8Zbb73FkCFD6rSpj7SnPywWS50gD8agDWbj8/l8hIWFaeyYvqwgCDgcDg30Ga+Z3Xv93tGDBaPU910zMmAAWVlZNGvWjKeffpqWLVvSr18/LXR4eHg4Z555Jlu3bkWSJJYuXYrH46Fr16488sgj2rwURaF9+/ZERkZy6NAhWrVqVUd5N47rww8/5IILLmDatGnatfj4eO666y7efvtt3nvvPaZPnx5UtyGg1JjfmVAg9K/IXwFn/xhmyZgU02iOUl/4cDNWSa2jB0aKEngaLASzQxqrRbBCI+gDIejAjl4EDfPoouRBXfCihHofAExm0xMMJnmhUI/GDKmfhTpv6/gMGceiKyMEDUbAEhNN/Fnjg/szTMNMfDU1FC7+ipTLL/PnaAr0F96+AxUbN1D843Lix4wlum9/8j78AGt6OpboaK1RWZapObCPmMGDKf7+G+TqahBEBIuFmDMGEtamrTaG2CHDqPjtN3Ln/UjEIxdSaIkg1x1LVo9Yfl2Ux7VvZdBjWiRuWWT/qjw+vucPPnu/grvvjyIuRmD8eREMOieBE9WRbF7nJOeITLViAwTCLG5sgj9cq0exaEp4XKIFe6yDwhNu0tpEIgNeJM66vS3JHeL58qm9vHLhr6R0jKWi0E1YYjgu2QL4FXsj6PBHw5ORFRmv4E+s62eaJJ2iLAcAU/CGEVGQ7CKeKrd2Tt3LfsAkICCjeH1YTMzv1P71oMhvHlc3qWyd+xxYDx8iPkXXtyBiDfgx6QGfKAoMvCCNvENVdBkWx+E/KrDZRSbd3RIXdt67excXPudP8nx8RynFx6rpM7Utdqu/DZWFkgSZrJ4JnNxXRlRKmOmYVFEUhcPrT3LRG0PqjB+g2+S2fHfPL3Q4q0XI4ApNNY8zqw//NxiiUxbF5InBqbbzDxDjE3RVTgejFEqa0nZ9SlNjWKKmsjxmZRujwJ+KUmamBOrBWmJiIvfee2+D4zOOsaqqiltvvZV58+aRmpqqnT/zzDP54osveOSRR3jiiSeYMmUKU6ZMoUePHnUi/a1atYqZM2fy3HPPUVBQoIGJadOmMWTIEC2J7GWXXcaSJUvYtGkTrVq1orKykrKyMiIiIjh69CijRo3ikksuAWDDhg28/PLLbNy4keHDh2Oz2WjVqhVt2rRBkiTy8vIoKysLMh+zWCwaUFSP2NhYkpKSOHHiBO3atUMQ/FHzLr/8clq2bMmrr77K3XffTdu2bSkoKCApKcl03fWgSA+U1PdmjJIe3KqHJEm4XC7ts/G6ovhzFZkp/KEYE31/RnM9tY4ebOmBgfp91idZVeXSSy9ly5YtnHnmmWzbtg2LxcL1119PeHg4s2bN0nz9tm/fzpEjR7jnnnu03Fn6+Q0YMIAdO3bQpk0bbS6h5vHtt9+yaNEi0+vTpk1j8uTJzJgxo8766tdJvab/3FT5O8BTU/v/R4AlIeBkXnvC/2LmDG1UWoxAStSVNQNMtf1Rx/TOyDh5iyso/20Pco0LW8t0wru28ofx1jFKdQATaJSOek014zOGJDfON4hdCoCgYB+moMK1H4OWIMSGDfQXoltjsVrzPMFQydhsiPMVmzYSPWgQYlRknZFH9e1L7r/fRna7EKMiSTx/EgWffoItLQ17Zia+igqqd+0kIrs70X37hXiaXXtSkqwkTDib/Pffp3D9UeyD0il2R9BicDO+//dxcg56CW9lxSlbaTa4BdHJf1JaouBUrBpokQSZcIdMtyGxZPrCKfH4zfbirFU4BH/Y62JvJC7ZD5gcoodq2R/VDvxKvFux4MVKl3HNaDEwha8e3sEf3+ex7s2dDJvVlxrZpvknqTmXrIJPC4hgFzwgBUzAUPAoYsCPSV05/67VB2VQRbSCI9qGM7ccW2osXh1gsAgyRTtOktAuTgtOYfRR0swNNcDk09gi1efIFwhV7lFqw52rLI4xhLmErJnhAUG+X/3OT2fl+8dY8vpxeo9JICbBws8f5XLoj0rOmtWNiDg7Eh58XhnFp5DcKc50j9WUu4lvFW16TS+eai8RCQ4E0XwfW8Ms2jW9j5LeJE+dl55hasgkL1ROJlUaYpugcQFu/lPyvwAPTRMz86K/859xY4FSQUEBS5cupby8nE6dOjFy5Migp/ahpD5251QBU32gpr66p9JfQ6ZXoZgq/RjVhL16oKTK+eefz2effUZpaSmxsbHMnTuX2267jTZt2tC3b1+Kior49ttvGTt2LFdddZXWn8ou6RPFSpJEVFQUt9xyC3fffTdZWVkkJCRw4sQJYmNj8Xg85OTkkJqaitVq5YwzzuDjjz/G6XRq81RzVImiSLNmzcjMzNTAisVi0RLahoWFYbPZsNlsOBwOba5GH6dBgwbRvn173nzzTdasWcMXX3zB1VdfHbQGZsENjIcZ42q8X/qjWbNm7Nu3j/bt22vX1bXatWsXmZmZ2mcz8FMfOFDbUl/1ZnbGfaBfC7W+z+dDNWUcM2YM5eXlvPHGG4wYMYKkpCSWLl3Ktm3buP322zU/JJ/Ph9PpJDs723QvlpeXk5iYWGddjOLz+YiIiAgK0KGfq5qs2GzPN/ahRX1SH0D6T4OnfwxYsogyos4MTx8XTTEoYfpXMFEmAgqNaoqnD7KrmuTpQ/rKBrQh4t9wee+vwJ1fRvTgrogRKVTvPkLJV2tIvnI8tub+hH160zUVMGljNgIm9AxUADARdFGdsR8eaZcUP1ZRhFoAEwBgQUmLGtyXdQso1NbXltSEHENQDIyUCeIyNO/cv5/kGdMCC6prM/De0aYNrmM5hLVpgy01mdSrZ+I+dgx3Xh6WuFhSZlyBaLWiX6JQ0xEUiOjSDXvrlhTOX0ZE9rXkRkaTmJwOwNGjMi1aWLX91WF0M9a+t5+j96bROtHrV+TxESG6tHw+noCflEPwYBV8OBUrLtlCuTeMGtmKiEKY5MaRHMXuvZDZ1hqk/EbHiEx9uhPP7C5n+8KDtBzSjMQzWuHyWfAqIhZBxi55iZBchEkeHKIHu+jFjhe74KHaLVHplvBZwrU8Q342yB9dTw1Jrlfoe13RmbVP/sqIJwYRFhOhjaXqRAVb39jEiMcGYRO92EVvAHDpAjroQI9mJhgAc3ql3y2LnNhRwt4VJyjPq6G62IkiK8SkRxCTHo5ol6jIq6HiZDVV+dUkZoXTb1Jz2veLwacGg1AsDLisJb3Oz2Dv6gJOnnTTaUgCY29pgxcL4MIheOgxJokD64ooy63G1zUm+PbLCkc2FNBvWnAuGDORbBKuCo/5NcH/z9Tn0eedMg8brq5VY03yjKBJLatvq/a8+Y+0aUQ9nc/afzJynuAD4TSYdIdI1/X/SzGa39UHaP6qctEYJumpp55i9+7dXHjhhXTo0IGNGzcyZ84cnnzySS13Un0Mk9kY/+q4GwOOTqU/I0hqCjDTMwz6zytWrAhKUGtsY8SIEfz666+MGzeOrKwsPv/8c7Zt28bOnTtJTU1lwYIFQQljzcCfyvw4HA7GjBnDwoUL2bp1K6NGjaK6ulrzg8rNzQX8gMRqtTJw4EA++ugjhg0b5v9N8/nw+Xx1FP7GAOP09HQNoHg8Hg1M2Gw2rr32Wvbv38+6devo0aMHffr0qTMHlVGyWq2a0q4HcXa73fRe6EGIKldddRUPPvggL774IsnJydpYcnNzefzxx3n44YfxeDxa1D8jYFLHY+aPoq6HIAj8+eefrFy5kry8PEpKSpBlWYsq6HA4NL+xvLw80tPTOe+88+jdu3dQGPXzzjuPcePGsXbtWoqKiujfvz/XX3990F6ZMGECP/zwAzk5Oab3/8cff2TBggUNfp9FUaSmpjb5iFlbarj4vwu46Nv+b7JL/xiwpMqpmKqYOU6rCo3GIBkCOYhKXXM8VQRBIX/RWkSbhZhh3ZCiI3C0aUZYpyxiRvYk98WFpN11MVJEWFAdFTCFlABQ0DNQel8mrQygmd3p6gXlYTJSQvWZ6On7N57XmQ3quzOrX4dxqnPBpH/1UbRgKItf6VL0pwQBW2YGtkydyYLJ0M3Ej00FEs45lxMvvUzxt1sontKBiOhELA6JPb+W0GxwFuD3Z+l1cWvWzd/PkvdLuO12O6KgYMOHAw8e0UK44sKp+P8hOQLJVCVFDiSntVDjs+L2WagQ7bS6sCuLXtjMZS92Jcqh+rnIiIrM968fYsR1rdnydR4/PbWZixY1B9Ef9c6LhDegZKvgJNLi5MT2En569zBuF2CzUlXmJWt0GzLHtzddCU1ZVkTiWsYw6NYerHp0HWFxDqKbRVJ6qAyf28ewB/oTnez3mZIExe//ExB9FDuNFdIeTMgaIJMEH5u/PMKXD+3AHmkhuV0MkQl2EKDwQBn7V+fhdfuISgkjOiWMpDbR5GwtZts3G2nVJ54Zr3bHEWkFj49ty0+y+es8MjpFM+Di5kQn2RGEQOAL/GaKg85PYfHT+9i7LIfOo9J120rm+xd20WlccyRrw9q7ZBUJi7VTeqyS2OaR/nkFTA0BTmwtJLmDOXvlX5/gfFeNNckzC/xQHxCrT+qLqPcfE4VGPJRpZDv/AGkqs/R3/6N+4403cDqdXHrppcTFxdG7d2/OOOMMLr/8cqZPn868efNISkqqF0DU97khOR2K1F81yQsFmvTSkGlSfYyI2fns7OygJL6NmYMKNux2O7fffjuXXnopJ06cIDExUUtiu23bNsaMGaOxQePHj+ezzz5jw4YNZGdn4/X6zcdVAAHBIa/NksSqzNDo0aO18Odq/iuVvVm8eDFjx47ljz/+4MMPPyQ7OxubzVaHMVL7sVqtHDx4kI8//hiXy4Xdbqe8vJxhw4Zx3nnn1VlD9VUdS3p6OrNnz+b+++8nJiaGrKwsDh48SEVFBbNmzSIpKQmv14vX663DKBlBr6rQqwBHZdqWL1/OrFmzsNvtdOnShcTERCRJ4tChQ6xduxan00laWhqpqam0a9eObdu2cd1119GtWzdeeeUVIiMj8fl8rFq1im+++Ya2bdty4YUXamaKevA2atQoIiMj+fLLL7n44ouD9szTTz/N6NGjNfM8dcyh9khWVha7d++mY8eOdfbWtm3btAAgZuZ3fwewOR3g6VRZrn8EWFKfkiuKQsm2Y5z8eT8+p4fodikkj+yEJdLecCOAaAIOZFRWCc0kz6cDKyrjpP4HrzmST9GS34g+oz1SYTk1e3Io+HAF8ecOIrx7G2LH9aXi5y3ETTijjh9THZM8E3M8o/9SUMAHHdOjMUxqFR1gApoGmvQSVM9QHx3bZCxmxjihZ9eCxdG2NdU7dxOe3UU33trOa/7cT9SAAQ2PN2h0+n5N+myWQWS/PpQu/JHike2wpUfT5cqebHp1Iwnt4+l+nt+5PyLezsBLMlj85lHOPqs5HTv4o95F4NbsOGX8DJMKlqDWz8grS1R6/QEZwtMzyZro5u2rt9LznHSad4ik8mQVv391jBbdYxlwbiotukTx/Nm/cuLHfbQ6qz3lOrApKD5+efUPSv4soaawirI8J2fd2Z4uEzKoke2UVNvY/OFedr22jl43+5/g2UVvncSx4A/Tndw+hnNfHkz5iUpqimqIOjeL8KTwgIKuIAleCvaVcnR9HiVHyqk4WUNkUhjtRqTToncCVQU1lOZUICgK7YbU5tBSQVnrnn6ztxG3dqbXRS2162pCWvA/nKgpd7NjyRFqyt1ExNvI+aOUN2ZsosuZKfz2eQ6luU4yu8Ww6r0jbFx8gusW9Ccx1YpV9Jv/SYKMwybS+5w0Ni7O5Ys7fiOjVyKuSg9HNxXSZXxzuk/MQlZCP2TRg5r+Mzvw/WO/c9YTfQlPDNfKFB2pZN1rOxj39BmGusGgpj6TvKB6BlBjltC3IfM8VerM57+MMv5nhndqoigKGzZs4IsvvqCyspKuXbtqgMVY7nSJUeE/ePAgzz//PGPHjuXEiRP8/vvvPPXUU1x99dWMHz+em2++mffee48777wz5BzMPv+drNLpELP2G6vEmSlOw4cP5+uvv2by5MlB7aivK1eu5NVXXw05hlDrZvSxUYGGxWKhc+fOTJgwge+//56xY8dSU1NDp06dWLduHV988QUXX3wxkiQRERHBqFGj+Oabb2jWrJkGhvSKujHktcqqqGNSgURSUhJnn302jz32GIMGDaJNmzYUFRXx008/kZ6ezvDhw+nSpQt33nknv/zyCyNGjNDaVxXXhQsXcuDAAcrKysjLy+Paa69l0qRJALhcLj7//HNefPFF7rjjjjrrrI5FZcaysrKYM2cOx48fJz8/n7Fjx5KSkqIBOFmWOXz4MBs2bODw4cOcPHmSuLg4hgwZQs+ePSktLeX48eN4PB4GDBiggSU1x1X37t0BuO2227jmmms0FkrPRgmCQHl5OQsXLqSiooL4+Hh27NjBzJkzOeuss1i0aBE5OTl07dqVzZs3s3jxYt59992gUPuK4vfDuuiii/jggw+YPn06gwYNoqqqirVr1zJhwgSuvPLKevegXm677TZuvPFG3njjDdLTax8oHj16lNmzZ/PGG2+Y7rfTKX/VHO90MOz/KLCkuNz88cT3RLZMIOvCHogRDkq35rDjoSW0vLwfcd0zGm5IHyBCB0qMgEkQCDLHAz/Q8ZRUcuylxcSPyiZ12ki8PtEPerwejr/0BYLVQlSf9px47lPiJpyhte9/MU9cG8p/CdDAVnCEPH2jiv+6wSxPq0vQELTy1L3SeNG1ERRtT88sqaIjwIwS0a83BfPew96mJZbwCF0zChUbNmFr3hzRYQKCG2Kt9GMzAcfxE86iavsfHJz9EWUXDSV13EhaHavg+4c3Irqc9L3Er+APvaEje9cU8tDN+by3OIWYMAWH6CYcDxGCG4fgxq3UbmOV+an02Slxh1PqDMPltSAJMmGdu9H1qVaU/LqTvB+KiU2QOOfhriQmSNhFD23aWug2PI41/9pOjN1N23EtkPH7Iq16cy8b/72LloNSKTnhJD4jgk/v+4NNi08w7v5sojPjGHpVG5Y9+jvew7mktItBRK6jXOsVaxmRhObhiM3Vp1NevD5Y9/Zu/lh4gKpCJxaHRHzLaKJTHORsLmT7l4fr3Iq2g5I557HuxCVZseIHCrb4CCSrSHWJy/zGA7l/FLHyX7s4Y0oLBl7aE59bZs28A6x59wC5eyrIPiuNQdNaktYhmorcal6f+hv/vmojM9/vT0K8FWsgWa1V8DF8ShrrPjtOmyEpRCaGYQuXGHRlW0RLbRJYo+ij4amgJj4rijPvyuaHJ37HFmElOj2CkiMVKAiMeawfEQkO4NSCONSXi0kbUyNBU3C7fy2oxGkXRQlhE3sK7fwDRBAE3G431113HS1atODqq68mISGBdevWMW3aNG6++WZGjhwZVL6p0pDvgSAIFBcXc+WVVzJx4kSef/557Zrb7eb666/HbrczYsQI3nrrrUb1cTrkP22u05CfFJgzSsayF154IZMnT2bYsGGkpKQElV+8eDFZWVnExsY2moUzmsipSrzRXO72229n1apVbNiwgTPOOIO2bdsiyzIffPABFRUVTJo0CavVytlnn82WLVv48ccfGT16dFAwB/VQzeLUV5VdATRTNlEU6dChA/fddx8bN25k/fr1REREcPnllxMdHY2iKCQlJdG3b1+++OIL7HY7gwcPxmq1Iooi3377LR999BG9e/fm5MmTZGVl8fTTT/PDDz/w4IMPkpWVxWWXXcbzzz/Pnj176NKlSx2FV29SpzJkcXFx2vqqgR0++OADPv30U/Ly8rDb7bRu3ZqUlBT27NnDN998U2fN+/bty+zZs0lKSsJms2G320lMTCQ6OpqysjLNZNDISO3cuZMHHniAK664gjfffBOfz8ebb77Jv/71L+bMmcNZZ53F66+/TnZ2Nnl5eUyaNIlrr72W+fPnExsbq/k3KYrCpEmTeOeddxgyZAgtW7YkLCyMG2+80dQ8sT7JysripZde4t5778XhcJCVlcXhw4fxeDzMmTOHZs2ahax7Otml+hilpvbzT2OWBKURq1NeXk5MTAwjv72GvW/8QvKwdiT0zNAUBFkRUFxuts1eSpf7x2KLCzdtR/bJOE9WINkkrAlRWl3wgyMZwd+WEvzq070HyPtwFVKEA9njI/H8QfgCGW0lUcFd4eL4y1/R7O6LOf7sJzS771Ktff8bgj779Qrdwis6Mz1D2aDP2qrp3uvs1YxtaOHKjasdBGpCbIBQd6iRbdXbJ+A+foLiRYsJ69IJR5vWyDXVVG3YjGC3kzDpPIQQMe31gQXrXGho7ALUHD5EyTff4PrzEGHZben1+FiKPlrJ7o93cuaN7Rh0TQdEFEr3FzJn8npm3h7HVddFEBFQ0t2IlPoceJD8eYAQqfCFcdCdRJ4rhmM1cRwui6PaaUMQFGxWH5F2F2nhFcTYaoiyOEm0VhIuugkX/aHBy/NdfPj4IX7/vpCkFuH0OLsZkcl2vnhwBwOu7Uxqj2RObitgyMw2HP81h2+e2o2swJWfDscWaePk3jJ2fH2EUXd29ecuCjAYPoOibQzAYBV8VJd7+fLezRz+NY9uF7am7fBmNOuRiMUu4c/qJFN4oIL8nUVEp4aT0CKcgj/LWfrgFhRZodPINOzhInl/VnLg1wIAJJvIXb+ehcXm70tlljw1Xj69cR0Xv9KXyKjgsRUdKmfp07uZ/ma/oKh2xUcqePOy9cSlh3Hd/F5ERASS/4ounLKVJy7cii3aziWvDwxisMxE/S4bI+LpQUdlfg1VxU4ikiMIj3cEAZgg0GnSj94czwzI6OuEMpszC/1en2leKMAkI+Cq9LBo5HuUlZURHd1wsItTEfV3ut/Zj2GxOhqu0IB4PU5+W/rA3zrm/6ao63X06FGeeuophg0bFpQgEvxA5dJLL+Vf//oXzZs3B+oq1D6fj5ycHKxWK+np6af8j/zll1/GarVSUlLC/fffH9ROVVUVl112GQsXLuTiiy/ms88+q1O/PsW/Pp+ihgBDYxWoxvhi/RUxA5hAkJO/Xmnet28fd9xxByNGjGDYsGGUl5fz2WefIQgCL774ouZTVN/YjOf1TIee4ZFlGZ/PR01NDRs3buTFF19ky5YttG7dmpEjR7Jhwwa2bNnC8OHDufjii7FarRw6dIinn36azp07061bN8LDw7VgDna7XQNJamAHFeAY18BisWhgSz8e/djLy8v58MMPWbduHSkpKQwaNIi0tDRee+01Jk6cyIgRI1i/fj233XYbGzdu5JlnnqGqqopFixYRERHB4cOHef/997nvvvuC1j6UmaPP59MCMXg8Hh555BFWrFjBxRdfzJgxY+jfv79mNqgoCgcOHGDLli2kpaXRokULDh06xN13301NTQ1jxowhMjKSw4cP89NPP2n97N27l+jo6KD77na7mTx5MvPnzyc+Pj5oPQ4fPsxdd92l7QH1Ph46dIjzzz+fmJgY5s2bh91ux+fzaYBVDY6xZMmSoPxX9Ul965OXl8fJkydJS0vTgkkY95e6jmbvG9NvQ3Xqa7sxDwzUz2VlZbRp06bB/xHqb+3mzZuJjIysdw6NkcrKSnr16tXo/02rV6/mueeeY/PmzeTm5vLll1/WMS1tSJpklO8tq8FdWkNSr+ZBT4pFQUFyWGlxUQ9OfLdDM9fTnNsVL0c/3sC2e77k2KLfOfDOr2y75wuKfzuolVEj7WnvA6/+QdaeA6jee5yEsdlU7TiCIChIooJF8gefsEQ6kMJsVK7fQXjHDAT8ZIagthc4obYtCLprAIISOEdQ2Tp11esEbF7Uz6L/syAG2hGDzyuiPxCEeqA/RLUtwyHqjqDygcPss1Y+0Keo61usPRDA1jydlBuvxpqUSPWOnbiPnSBm/GgSLjofJDFovEFjx/y82lfIsQeuOVq1IO3mG0i+/kqce46w6Y7FhJ8/in7XdWPF3H1s+PAgkiCT2i6GNt0j+Wl5DaVOK1WKBTciEgrRooso0aVFq3MqViq9Dsq9DpxeC26PBa9Xwu224HRZqXTZKffYqfFZ8coSoiBrDIlbsWBLjGTqSz24/oM+ZHSL5ed/H+SLB3bQblga3a7IpjDPhy01lhrFTsvBzbjy7d7UlLpZ/vjvREg1ZLUQcRVWE2OpJkaqIUpyEik5iQocDtETSACrBIIy+H2Pig+WMX/qz5zYWsikuQMZfV93Wp+RiMMBFsEfwMEiKKS3jaD7eZm06p9ITGo4bQanct2iYbQZlMzxHaXsWVVATbmXMfd1o9s5GZz1UHfsdsGfI0qNeCfI7P7+GD3OyyAySg1IUXsktYokqWUkx3ZVaOUB4rOimPZmX/L2VbD2vcP+xLyKHwhaBR9nTm/OgV8K+HNVXr1ASf3NAD+7ZPTFUo/I5DBSOsQRGW8LjEMXNj3o9yc4oa6/3eBw6/XlfxNRtCOoDcEk/LtunczmFDLx73/Qpk1NSns6jqbIU089RZ8+fYiKiiI5OZnzzjuPvXv3BpWprKzkxhtvpHnz5oSFhdGxY0def/31oDIul4ubbrqJxMREIiIiOOecczh27NhfXZaQUlFRwcGDBxk7dmyQkiMIAna7nTvuuIN33nlHK69eUxSFV199lfPOO4+5c+fyzDPPMHHiRL755ps6T7xDib7M2rVrmTFjBhs3bqxTLjw8XEtoqZoi6eWvAJFQIKS+z2ZHY/qpr5zef8V4GK8b65m11a5dO7766is6d+7MsmXL2LJlC7fddhtz5szRoo+pyrRZf8a5Ql1fIvW9PnLdGWecwfz585kzZw55eXl8++239O7dm+zsbH766Sc+//xzfD4fLVq0oG3btuTm5hIZGanlIlKZJbOksap4vV48Hg9utxu3260FTtCzInrTt8jISK677joeeugh2rdvz7fffsvcuXPp2rUr06ZNo7CwkGbNmiEIAoMHD+b999/H7XbzwAMPIEkSmZmZFBUV1dkP+r7UQBWqCZvNZqOgoIArr7yS9evX8+abb/LMM88wcuRIIiMjsVqt2tGhQwcuueQShg0bRsuWLRk+fDjLly9n7Nix7NmzhzVr1lBUVMSjjz7KxRdfzPPPP09MTEyd+7Fs2TImTpxIYmJiHbauVatW9O7dm02bNmmmjer5BQsWcPz4cebPn6+BPXVNp02bxoYNG1i8eHGDe9y4J832ZmpqKtnZ2UFAyWxf17e/zfZnQ99T47X62myM/BUzvNNxNEWqqqrIzs5m7ty5TR6zKk0ywyvfX0BC92Z17P1VRSChdyY5i7fXUQx2vLCSuC5p9H3hXD9Ni4DP6WHnSz/jq/GQNKx9yD61SHhK7WfBIiI6HIS1SqV01R/EDu0aVF6wSZR8u4Fm916MamYn4G+iTqS7RprkmQZ9UM3eVLM7ITBOrTPzdvSJcYMCMhAoY5QgMzazDdqUjaOrrwsYgUUivFtnwrt1rlu8vubr+b6E8psKOq9AWKeOpNx6Dflz5/HHHR8z4f1z6Hyigu+e3kFYlETv89IZeW0r3rhmOw/cUsjjcxIJt/oTr/qVYn9wAxkRp2yl3BtGpcdBlceG1yciy34UJ8sKsizglf2hvgEt+awPEZdsxalYcMlW4rMjOLt7GmPu93J4YyHxPTOoUmxYUuLIX3fYH5pcEYnNiGDSI5348I7tZJ+ZSHyzMBKa2QJjC5hqICIH5q6ySeD/sTm6qYBNH+5n/6oTxGVGMvXDESS2iITAvPQSHOGtduEjEuxMfNKf80gPUlSQozc3U9+f2FHCsJmttcAQKhOjMiet+ydyfEcpaR1jtPZ8ikhKhzj6XZTBT/OPMviyLIi0IAeCPfQcl8zaRfl89+Q2svokYgs/pfgx9YrK9hhZHCPj42vgOxEqgMPpDNDwXzPP+y+Z4a1atYobbriBPn364PV6uf/++xk9ejS7du0iIsJv4nvbbbfx008/sWDBAlq0aMHy5cu5/vrrSU9P59xzzwXg1ltvZenSpXzyySckJCRwxx13MGHCBDZv3tyoCGFNlT179tC/f3/AXFE444wzePnll+uYqdxzzz20a9eOJUuWaE/8nU4n9913H2VlZUyZMkVrM5RPjv69JEmEh4czaNAg5s+fz4wZM4LqhYWF8dZbb/Huu++elnk3xYehsWDIKPXNO5Q/UGPFaHpnZrYnSRKjR49m1KhRjW7XbKyhxmc0ybNYLAiCQFhYGEOHDuW1117j5ptv5ssvv2TIkCFUVlby448/kpCQwIQJEzj//PN55plnWLlypeYnZARjerMp9bMKUADNX0hlcuqT1q1b07ZtW6688kp2795Nt27dEEWR5ORkfvrpJw3wJCcn8/TTT3PNNdfw5Zdf0qlTJ9LS0uqssxHMqgBlx44dfPTRR/z44480a9aMr776io4dO5qOL9S5hIQEXnzxRW1tjWyNmQK9detWLr/88iAGTh/mfciQIWzbto0BAwYErWv79u2ZNm0a8+fP58ILLyQ8PFy7t4MGDWLMmDHMnj2bESNGEB8fX+8aGyWUOal6Tf9qPF+fGPdmY8fy35bTaUJXXl4e9Nlut2O313UbGTduXKMSWdcnTWKWBIuEz+WtrWx4kqp4vJqPgiplu09iCbeRMb4Tkhiog5+J6nTnSI4t/QN83pDskumgHTZ8xeWkTh1K9c6jHJuzlKqdh6k5XEDht5uoWL+H5Omjscb4zQE1Fkmdh95xX8cwBV0znEd/vU5ZbQWCmR8hRDvqeZ0nthlrUzvIEId2PbitkOWNdQ0Mlil7FIJVMmXGBHDn5lL85RLy571H0aLFuE/kasOsMzchwG4B9sxM4i8/H/fRkxw/JtPv/sHEpIfzxf3bOLKtjNS+zbns5Wx++7GCe6/Jp6jaQpVsw41Umxso4APjUUScPgsunwWfLKL4BBQZZFnAJ6s+MsEMgWoWV+2zU+2zUSPbqPbZkB1hNB+UiWx34JUlojqlk7+jkJoKP0MkodBrXArdRiax5Nm9rHr3IAMnpfrzM+mYI3/uolrwU3ykkncv+ZmPr1pN8ZFKRs7qyeUfjyQy3kbBn2VUFtRglGDTs9r39bE4erZEfS8JMvYwEVdV7XdZnwZAFGRclW6sjrqKqYxAs27xOCu8VFf5gvqXRDh7VkfKc2s0M8DGihEY/lWR6kPxAQnJEJkwTKcq/0lGSRUzcvpUj6bIsmXLmD59Op07dyY7O5t3332Xo0ePsnnzZq2M6gc0bNgwzT8oOzubTZs2AVBWVsa8efN44YUXGDlyJD169GDBggX88ccf/Pjjj6dzmTSx2WzU1NSE/Cfu8Xjq5HPZvXs3LpeLmTNnBilmDoeDF154gc8++ywoXHBjnuwmJCRw+PBh7rjjDvbs2cO1117L6tWr2bVrF/Pnz+fTTz9l1qxZQQ7i9cmpKFNNkcY86a3velPGdComRaGYqIbaNTOh2rdvHw888ADTpk3j3nvvZfv27abKugoWVF+jLl26cPvtt1NYWIgsy7Rp04aYmBg+/fRTdu7cSXZ2Nvfccw8HDhxg4cKFmrKnBweh2DSfz6exSWasknEdVNM4RVGw2Wz07NkTh8OB1+slMzOTQ4cOUVBQgMvlwu12M2jQICZMmMDLL7/MO++8oz3MMGOuVDYpPz+fK664gmnTprF3714efPBBfvjhBzIzM9m3bx8nT54MivBnjPQXak1DMQt6ZkkFqZWVlXXKqNcrKioICwvT7q8emPbo0YOamhpKS0uD5iXLMrNnz6agoIDly5eH3Ev17a2GGNP66pnJqXy3jd/Dv+M3obFjOF3MUkZGBjExMdrx1FNP/W1jbxJYiuuUQtHmHIRAIkujud3JlXtJGdgyyKzlxPLdtDincxCwEgUFiyBjs0Jyv0xKt+aENMdTQZPfJEZGEBQSx/ck75O1iBI0v3E8yZPOoGpnDqWr/sCdU0DC2f2I6OC3L68FQ4H28Ov1YsBUTm9mpwdMgk5bCAmYBH1Z9bpCHdBkNM0zA1SNAC51zd2CzemCzO9CmcGJhsM4TkN9JZRpoFB7XT1KvvmOsp9WE9G/F4kzLiVyQF/KV6+leOm3yIISPE4VOIkKiuLF53RSseJXEAQKNuZQViFywTtnArBzeR7VPhvNBrdg6qt92La+mlsvOcEn71Wyc6cPNxIRgocEqZIkSzmRFjc2ya/Iyz4B2Scie0X/a8C/TRQUrKIcxAD5Aj5z/gh7/lev4veH8sqSPzePCN2v68XK+9ZQcaiYcNFFuOji3BuaUVHkJv9QNcnptbbwal9+lsH/dTu+tYh3L1uNu8bLJW8M5MovRtJ2RDorn/qdZQ9vYt+yI6z513YW3bqOgn2ldb5n9Zl7qeZ2qr+U8ZwUAAhdRqWwbemxIFbJDzr9bN3OH07SYWiixk6p4lNEdv+cT1r7KKKSw4MYHAmZ+BT/Ux13tZeGxDiHUICpNqFw6B93M9CjN8Uz6w/AU+OlMq8KrzN4vEazvKaY5Bnvz388Op5yGg/8T+/0h8sVOmiIXsrKygCCnsQOGjSIJUuWcPz4cRRF4aeffmLfvn2MGTMGgM2bN+PxeBg9erRWJz09nS5duvDrr7+e0nI0JF26dGHDhg2mCib4fRWMzMSnn37K9OnTTduTJImzzz67DrgzU8L1MnPmTJ5++mlEUeSZZ57hnnvuYdOmTXz22Wfs27ePyy+/nGHDhtULTozSkHJU35iaYgbTGDOZ+urVV8ZsfKfqV9VQu8bxC4Lfv+n555/nggsu4O233+bKK69kwYIFml+ZmTKvshJOp5OlS5cCcOLECcrKymjfvj2iKLJ27VpEUWTEiBE888wz5OTk8M4777Bnzx5KS0ux2+1BUfD049IDFn3eIj3LZfRvMoIm1XROlmXcbjfTpk1j9uzZ7Ny5k5qaGpxOJzNmzKCiooIdO3bQvHnzoHp6sztBEDhw4ADTp0+npKSEd999l9WrV3PhhRfy2GOPccstt/DVV1/xzDPPMG3aNLZv364By1DAySxkuv7VCJREUeTcc8/l008/rXN/1Ta++uorxo8fX+e8KIqsXLmSzMxMMjIytP2kzldNPltRURFyr5hJfaalDZmUNgSUQn13BEGgpqaGEydOaMmPQ9XRt/f/ouTk5FBWVqYdqk/d3yFNAkuSTSK5fxYHPtxc51pVTgknftxH2vC2QefdZU7siRFBQEkv9sRIPGV1n6JrAxR0/kQBie6WiT09niPPL6Hm4Els6fHEj+wGooivyknyRYODyut9koxt+U/qyxmv1QOY6vmsaRqGenXaU6+Z9duEx76mrJQeCOnbNF77K0dAqrZsA0Eg8fKLsGWkI9gs2JqnkjDlAgSrRPXvW+qAQAQFX1k5ObfP5tgdD+Dad5CYCYPBamX1vSvY/1sJ3Se1YMuSYxT+WYqsCLQYkMrMeX2pdgm8+UQ+M889xtFcETcSVkEmWqwhwVpBtLUGh8WDqIZbVAQUn59Z8smiFjhEVkR8iEFR2UT8IEpNBisHgo8AWASZ9K7xnHlvd3794BCvz9zKq9f+wdK5Rxl/TQb5h2t465ZdeFw+LXmsKqIg4yxz8sF1v5HYKopp7w+l5RnJeCvdfHPvb5xxeUsufbk3o27pwKQne3DOQ91Y+dIOivaXAnVBj/4wSigFXVXsM7vHUpJTxZ/rCoMAhQ+BXz48QkqbSMJjbHXqS4JM8dEqEjLMg7iEh0Nquyj2rjiOTwZXpade4KT/PdAHezhd5muhzPEqciv56aFfWXH/WrbO/4Mf713FL8+sx1nqPC39/jfldDNLp/L0TlEUbr/9dgYNGkSXLl2086+88gqdOnWiefPm2Gw2xo4dy2uvvcagQYMAv/OzzWarE647JSWFvLy807dIOrFYLEycOJHHH3+8joJy5MgR5s+fz+TJk7VzgiBQVFSk+XiYKSBpaWkUFRU1WjERBIFevXrRr18/pk+fzpYtW2jRogVTp04lIiKC48eP8+CDD57S/JoCmJqiODX1KbCxXqgxmrVd35yMYmbe15h5mymfy5cvp6ioiH//+9/06NFD87N78cUXadasGR988IEpYCorK6N///4MHDiQTZs2MWDAAFwuFzt27CAvL4+OHTuyefNmdu3aBUCfPn2YO3cuVquVTz/9lBdeeIHKykoNLDWUd0mveJsBCf3aGA8VMGVlZXHTTTfx5ZdfcuONN3LzzTfz8ssvM336dPLz87nzzjuprq4O8vNS+6upqeG6664jPT2dr776itGjR+PxeLj22mu57LLLWLBgAQ8++CCvvvoqc+fO5dlnnw1i54xmdqFAQKj7pb527dqVsrIyvvvuuzr3esGCBaSnp5Oammra3uHDh8nMzAwK1S4ItfmeevTowTfffIMsy5SXl1NZWWk6xlMBH0bg1BTwr+8zNzeXm266iSuuuIIXX3yRGTNmcOutt1JQUHDK3/PTKU35zWjMb0p0dHTQYWaCd7qkyaHDW16YzYGPfmfTPUtIHtQKa6Sdoq3HcRVWkn3/qIDpTu2NjsqKpfzPApJ6pAcpRrLiz6VU8Wc+qWeG9lnS960lqkUg5fy+1BwpomDZFly5JViiwogdnk14lxb+xdT5Hqj7TvNfEurzPfIDmSb5MIX4rDn8CLVvjb5M+vGFdJUI9b0xA356PyR9saBz+nr1fGl0axJyTIHqVes3kXjVZcHNBepHjx5GwVvvEdGnR/CYFfDkF+CPggGx548nduIgouKqyRjdlsMvf0fHwWnk7ixhwcxfuHbxSMRYGwldkrlh0RCkigpmD/mF75dUMWVmDFbBi0PwkmSpoMQWQak9nHyrD69HQvZIKIqA7BPwyBJu2YJLtlAtBwMCSZCxi7XKvUu24Pc68rOhiP78SbEtwsl+tAMRoivIJ6h1j2hevX4XP7+Xw5kzW/rPB/a6hMza944i+xTOe+EMbDF2QOb3zw4y4PKWpLePDgI+kQl2znusO8ue3ckFz/cOfZ90EsyG6AMnBAMqiwAXPdmNb57dzfpPc2jTPwGvS2bvL4W07BnH6BvboJiAMFmR6DAyjVWv76U0t4ak9OD1s4k+zri4GV8+tocFM1YTnRqOzyPj88iccVlLWvZLwqeIDUbL0/pr2vOcBkUUFCpyq/j5kXUMvq8fsVm1kXTydxSy8v7VnPn0MOxR/nmZ5WOqj+H6PyG+ADN8OtrB//ROH3GoMf+QbrzxRrZv387atWuDzr/yyiusX7+eJUuWkJWVxerVq7n++utJS0sLCs9tlPrs/k+HTJ8+nddff51JkyYxfvx44uPjWb9+PYcPH+a1114jMjJSG4MaPGDr1q2MHTvWtL1t27YxdOjQJo/jyiuvZOjQobz77rs888wzxMTEMHnyZO666646TEFTRB336RCjgtpQOb0Y/aDq+3w6xAwoNsYXSz3/3nvvafmYjPWvueYaLrzwQi677LI69Q8fPqyxPOeffz7t27dn+fLlJCUlUV5eTlpaGrGxsTzxxBPMmzePjIwMOnTowLvvvktFRQXnn38+W7duZfjw4dq+04Mki8WCovjDckNwFDWzuRnBlAoA1D2lskVJSUlamHo9q5Wdnc2dd97Je++9x9VXX10HmC1cuJCqqireeust0tLSEASBTz75hKlTp9KrV68gBTc+Pp7XX3+dW2+9lffeey/ovpvtgYbAtvH9nDlzeOCBB1iwYAHDhg3D5/OxYsUKunXrxiOPPBLyfo8bN47HHnuMvLw8LfiC/p5feuml3HXXXUyYMIFmzZrh8/morq7m6quvrve3qyH5qyypOsaTJ09yzTXX8Oyzz2rJbwG2b9/OlVdeybvvvlvH3+rv+M7VJ2aM56m285+WJoMlSYR2U3vintiVgg1H8Tm9tJzYhaiWCXXKAmSd1ZE/XlpFcvdUMGx6V3E1FYeKaN8+GVl3w2QC/+uF4NxLamJaCQVFgbCsBDKuHqULP64CjwCLpbWn77cWMBmjK/jTyxqRi6L7C4IKwLTPtXXNPuuQWvBiCkoQOAsZNjzQlx5YGd8H7XUDGEFtWt++ftqmgIs6ZWsbqnteCQxEDLPWgkFVZAHRYUOwWFAU2R+GXFe3Ys16Uu65kaJ3P6F82U/IHhfekT1wZ8aQfMVotv9rKWNfOZNPzl/Ckvs2+kFDhB2XbMUaGUOXYQks/qCUAeNiaNbMjiTIpFtLNFPOSo+NAkskFZUOzRSvwmlHEmVkxb+Xoi01GkASUbBLLo1tsQrWIBM6O36wJOEPEOBWLNgEr2a21WNoNN3PjGPb8gLGXp2psUsSMggix3eW0fKMZMLj7UiBPEw5mwsYemUrzURObxoXnexAkRXclW4ckcHmffVJKKCkZ5Ec4QKTHu5EZbGbo9vLkCwC/S7qgS1M9VVS6jAzIgp9L8ritwUHWfrsXi57qTtOxYoDj9Zn+YkaJItAi97xjLy5IzICznIP3z31B9WlHjqPSUdRFHL/KCKta4IWCEGfd+l0iWQyh83zdjD47t7Et4gKMsFM7ZpA98s6suuzXfS6qpt2z081ge1/SwKk7WlpB2qf3jVWbrrpJpYsWcLq1au1cNsANTU1zJo1iy+//JKzzjoLgG7durF161aef/55Ro4cSWpqKm63m5KSkiB2KT8/nwEDBvz1SdUj1113HZdffjkrV66ksrKSqVOn0rVr1zpKJ8Cll17KzJkzGTVqlBayWZWioiLWr1/PrFmzTkkRadOmDU888URQfw1JQ8DErIwZaGgIlJopqU1heerr1+xzQ2Oo73pDQMisH+P8vF6vqUO/IPgjJSYkJFBVVUVERISWWFZlMT7++GNmz57NsmXLqKysJD09nejoaGRZZu/evYwaNYqFCxfy2GOP8cgjj9C8eXMkSSI2NpahQ4eyatUqhgwZooXH1rNJ+hxDXq8XURS1QA9G1smY8NbMDExVmn0+n/ZZHyY7Ozub4cOH8/PPP3PVVVcFrYMkSVqQlKysLA1k/fzzzyxYsCBoPGoQiISEBMLDwyksLCQpKQlBEDS2qr77ZsYmGe+d3W7nueeeo6ioiI0bNyJJElOmTNFCVhuBpbpml156KW+99RbPP/88L730kgYmVcX8xIkT2O12unXrxtNPP40gCFRWVjJ79mwKCwu5+OKLAdi4caMGEBuSUwVKZmvw0ksv8cgjj9CpU6egstnZ2dx3333MnTuXhx56KOihT1PEWO+/xU79t6TJ/9lVEGSLsJI2rA2Z49oT0ypeu2a01w9LjiR1cCs2PbaCiuPlgfxJCkVbj/P7o8vpdMNg035ChRI3mvHpzwmC/7PR5M6sTtCr/rxgLGMcmOG8oXyjzPL0dbX3OruXOmtR/3v/vGuP2gL6Q6nTh9EHyudyUrF2A6VLl1Ox9jfkGoN5ZAgTQEEQUNQfIOO8VWDn84EoGJgnBV9JCeXLViBGhiM47JR/8xPHbn2BA7e9Te6WQlwegZqwOM55th8520qYN2UNpUf9EVB8isiYW9shKyK3nHuITb/W4FNEHIKHJEs5zW3FpIZVEOuowWr1IYgKiizgdFkprQ4jvzqSfFcURZ4IqmUbLtmigXGr4MMuenAEDovowy56sYiBoAaIWuQ8p2wNinLXd1Qsh3ZUUXy0UgNE4PfJkX0KklXUzkuCjGQREUVBA0r+soFXQSYi1oq7qmEfoFOVyHgbnYYl0X5Qog4o1RUVEDiirIy9qzM7luexc01REKgoP1ZB2UknPc7L4I9vj2u+U9Vlbo7vLOWLezbz/LDvebzH18ybsoZ3Lv2ZwkMV/7FACLJXpvJkFfGtY4POq+ud0T+NvK0FQfNV59YYMfOd+o+L+tTodBxN6lbhxhtv5IsvvmDlypW0bNky6LrH4wkKlqCKJEmaAtOrVy+sVis//PCDdj03N5cdO3b87WAJICIigrPPPptLLrmErl39UVbNfAsSEhKYMmUKM2bMYN++fVq59evXM2PGDJ544okmKRN/x9PdUGZBDYEhs+tmZktmT/hDsQBmdevrtzHth3pvlKqqKj766COefPJJ3nnnHUpLS037MWvP663/d7empqZOglJB8Jt0zZs3j8jISGJiYlixYgVLly5lx44dREREEBERgcPhYPz48Rw9epSbbrqJvXv3agr6NddcQ1hYGLNnz+bAgQOEh4driqoaTEENIqFG4FPZItWPKNQcG9oP+nb0QRwGDx7MkSNH2L9/vzYOtT1ZlrHZbEHslxo+PFQku+TkZMrLy+vsDTNp6JrZ54SEBMaOHcvIkSOJioqq9z4CREZG8uijj/LLL7+wZs0aLXy7KIrk5+eza9cupkyZwhdffKHNvaKigt9++42bbrqJdu3akZKSwujRoxkwYIBmYnk6pb7vw969e+nVq5dpvQEDBrB169b/OsAx24unejRFKisr2bp1K1u3bgXg0KFDbN26laNHjza6jSaBJb3fUR0n5nqUnczxHWl9UTb75m/it3u+4be7v6Zw8zF6zB5FZIt402ARtQM0B0yCUOuELejqqYBBFAPnRdn0uhlgEtTPgQ/15WKqPU9Q+UYFfzCNmhc49MEZ6jtEw6vuEMTgYBKCQG2+J30fuqNqw+8UvvEBgsNKWI9OCGF2Cv79IRXrNgUFktCCNBgCQUjRkXgKi7Q+1AAUCAre4mKkyIjAGGrHWbNzL56CImIvmkDq7VfT/OlZpD87C0t6Mu7DJzj2xMeU7Stk31EH1p4dmbrgTBSfzFf3btaU18jMOK75ZCDJbSKZNfUIt158jEN7XUSLTrJshbSNyCcjspSIMBeSRUbxCbgrbZSXhJNXHM2R8jiOV8dS6I6k3BtGtc+GDyFg0uchUnISI9UQY6khwuIiXPIgCgpeRaLS66DC56BCduBRJI196DsyhvgUKwufPohNceMQPP7ACYKMKAKyjFUMRMtDQRTBXVHrNK8PHCDgo+R4tZ+JCuGfVJ8PU0PKe+HRavavLyL/UJXpdWNUObX9LuPSadkvka+f2IkScPiXBJn1i08y+OI0opLD8Dr9c7CKXr55ZCtFhyqRfQpVRS7kgInXiR2lvHHuCopyqk37F0MEfTALclFfDiRVvE4fjhi76dwABFFAstX+LNYHmNSgD03JxfSfkIZ+OppyNEVuuOEGFixYwEcffURUVBR5eXnk5eVpUeGio6MZOnQod911Fz///DOHDh1i/vz5vP/++0ycOBGAmJgYrrzySu644w5WrFjBli1bNIbnr5i6NEYaAixG0DRp0iTuvPNOXnnlFS688EIuuOACvv/+e1577TW6du1q+tTYDHiZXa+vnCpNUSIaAjENtd1Qn/WV0Z/Tj6UhUFbfObO5mfWxdOlSpkyZgiiKjB8/noSEBK6++mrmzZsXsl39uaysLFOlV1EU8vPzg0IVC4KfoVi3bh0HDx5k9uzZfPbZZ/z666+sXbuWDh06UFBQwLfffktxcTHJycl069aNKVOmoCgKDzzwABUVFXi9XjIyMnj//ffp3Lkzjz/+OA8//DA5OTkakFGBiJrEVg0ooeZeUqPjqePSB1JQx6l/1YfkVxkmNcqe2lavXr1IS0tj7ty5uN3uOoBMBZZquw6Hg4KCgjprqq77/v376/j9NbS/GgLd6vgPHz7MqlWr2LNnT8i9ox+/ujbjx4/nzDPP5LnnnsPn82kM3tdff81FF11Eeno6TqdTq3/fffexd+9evF4vBQUFuN1uwA9cBg0axO7du0371q9FfZ8bI4Ig4PP5iIiIMF0XFdjp9+l/S/5bYGnTpk306NGDHj16AHD77bfTo0ePJvmBnhKzZARNjZHYDsn0mHUm/Z45i/7PnU37K/vhSIyotx9jMAYzwKSCJn3kPD3TpK8bxEzJMorLFdhIdftRQY4+Ul4QaNJpE1o/jWCZ3Dm5lC5eQcnC76neusfPyOjBErq26jswvJoeBhClB0+6w7XvIM6d+0i+7Qoi+3fH3rIZEf2ySbplBq79h3Du3hc03zrBJASIHjOM4o+/Qq4JdpCXXU6KP/6S6DFDg8amyD7Kvv8Ze5ssBFHS2rJGR5P60K04unUg5vyxeMuq2X7tu2xenIs7NZ3ht3Ti2I4ySo+Uan2ExTqY/u/+THupG7s2VLL2h2pEZCJEF4nWChLtlYRZPYiS7O/cKUG1BW+VlbJqByWuMCo8DmpkKzU+Gy7ZikexIAkyNsGLXfQQLrpxiB5NeffIItWyjXJfmB80yQ6cstXPbIVLTJ/dnN9XlnLn8N9ZOucwxcer8SkiUYl2Kk7W+MPnB4BHz3Ob8+sHh2rXTBGRFX/S3T/XFpLeMRqLNTh/Un3BHRojJw9U8s71v7Nq3iGO76lg7QdHmHfN7xzfXW5aXh2TKoIgMOH+rpTlOVn2Vk4gZLtEUb6PmPQI3NVebOG1/4A7DEshKtlBcpsoMnrEM/L2Tkx4oDY/Wli038RQy01l8rtiFsK7Mb8/+qh41nAL1UVORMV83XxuH7I39JqaJa+tT/4rgEk5jUcT5PXXX6esrIxhw4aRlpamHfroVJ988gl9+vRhypQpdOrUiaeffponnniCa6+9Vivz0ksvcd5553HRRRcxcOBAwsPDWbp06d+SY0kVvYlSY8qq5bp27cqcOXP4/PPPWbRoEQ899BDNmjVrdH+nW7xeL9XV/gcPjVXEGqN4hFJa1fd79+7lueee47HHHuPbb7/VTML0ZRsLmIxlGxpzqHn+/vvvfPHFFyxatIhLL72Unj17MnHiRD7//HP27t3Lt99+G3Jcqtx0003MmjWLkpISoPa+VVdXc9ttt3HzzTcHtaEoCi+++CKDBg3S8i7Z7XbS09NZvHgxo0aN4qabbqKiooKXX36ZQ4cOkZSUxODBgzl+/Dhbt27V/JBiY2OZM2cOzz77LHv37uW3337T2B5BELRkq2oiW6BOlDv92PSJWPWv+mAG6hzVNvShySVJ4qabbmLz5s1MnjyZf//73+Tk5ACQmJhIbm5u0PpddtllzJkzJ2jdVPnll19o0aIF4eHBgYIaA7Lr2w8HDx7k0ksv5bnnnuOPP/5g3rx5TJw4UUtNUJ+oIO/xxx+ntLSUN954QwOTRUVFNG/enOrqag2UAAwbNozU1FQ6depEz549efDBB4MSn6qmxI3dyw2VDSUWi4WKigpT3zVAA9GNHcP/32TYsGGmD6Pmz5/f6DZOS9bI05180dieGGBi9Ak5NR+mQKAEMfBlDESGDrqm+ikBOI8WULBwLb5KJ4LDhq+imsje7Ykb1xdEqW5Mg8CJ2uAQqq9Qw8Ef/D0LoIDicVP47y+QIsIIP6M7otVKzY4/qfh+DfHTz8OaklTb398hCuaPihWBihW/En/ZuQhS7ewFBBBFYi8cT/H8hTg6tw1uw5BU19oshdizRpL/xvvYW2RgSU3Ce7IQ98GjxJw9CmtGmj62BTW7/ySsWwdsLZtTuugb4qdfAIIEgoIkCUSPHULpZ9+SeOUFVG/bzd6nvkGURzPgnLY4oray9esTDLshVgsWgCgR38IPvtv2/P/YO+/wKsqt7f9mdstOryQhCYQUeui9dxGQJiIiTUWlK+ixIIK967EDgqIooiJVsQHSe0d6J/QA6W23me+PnZnMbimA57zv57uuK9mzZ54+z8xe93OvtZ5AimUDOkEimAIyd5wj58wNrAGxyAm1Ee16BIcz2IPFbCDfaKLQZHAqtnoolgz4i84Xi4iyT1Lpvkl2hw6b7Awr7pAFdIKMRTaAAQyCczWv1Z1hvL7UyKrvbvDbvMss+/gicbUDCIg0c+FANhcPZVOtvtMPpE7XaM7susHv7x+j7fBEAiNMWIsc7PvpIkfXZTD4naY3DYq8SebFQla8doShb9UnKLLUWb8w28Y3Tx6g77N1qJIUWGYZEgLhNYJo+2AKf845Qa02EaQ0CyE4PogLJ4oozLJiDjWqAKvlsGRaDktm49wTxNQNJbF1DEdXXwIgMNKEf4gB6Sb1R2/vH2+bzuqQcYgCsWkRnNt8iYR28ep5RY6uOEVS52rlluUu5QV+ECqLPG5BBIfnAtDNllMZqQgAiImJKXdTVT8/Pz766CNV0fqfKv+TbPdPnDjBu+++y7Vr1wgKCuLGjRt069aNcePGYTAYvDrQ+zr2Jd6AjtVq5bHHHsNkMjF48GCCgoJYv349/fv355133qF27douvg5ahVx7rrwwyRUR97QzZ87k1VdfVdkBrbzwwguMHDmSXr16lVlXUlISM2bMYOTIkTRo0IDatWtz9uxZtm3bxpQpU2jatKlLH7Zv306bNm3o2rUrL730ErNmzXIJlDBu3DimT5/Oc889x/bt2/nyyy8ZMGAASUlJ+Pv7s3r1apo0aaLWbzAYSElJweFwkJKSgtVqVc1WDx48yLVr1wgJCSE1NVVllxwOh1cWSStK2G6FcdKKVuEWBMEFnDVv3pw5c+bw888/s2TJEr7++muSk5NJSEjg2LFjbN26VY1s2aVLFzZv3sxzzz3HxIkTiYmJobi4mMWLF7NkyZJy3wO+ALEvAHX58mUmTZrE7NmzXXwls7OzGT16NNOmTXMxrVXE/RlITExk8uTJvPXWW7Rt25aWLVsSHx/PyZMnyczMdPFhGzVqFKNGjVIDW9x1112sWbNGHWNlI19tWyvyniwrra9nolOnTixfvpwBAwZ4LP78+OOP6vYHFa3/71jQ+ecEeFADJ8iqUq8FMGWJLzClVXSUMpToYYBqhKMN+OBsg/NYJ5RGoJNkwQU0uQZ4kCk8eZkr89cRN74XhqgwZ0hou0T2mr1c+XQ5MRP6Oyeil8APoFV4lL7Imv94BH9Q8sgIZH7zM0HtG2NOq6kCKmNiVQLaNOL67B+IfuIBBMNNYFdtU9yRnqA50A6/SxoZ2WpFFxqIa/dkBAn0wWaQHIADQXSl6t3LMqZWo8qU0VjPnMeRmY25YW1CBvQoebhLWSkAR1Y2+phI/Gol4biRzbUP5xHYoRmG2CrYr90gd/VWBIMe/5ZNCGjVhKu5eVz48ywXe9WmVrc4di2+QMvhqZiCjVACmKzFzjp2bLKQkBbM2T3ZLJp1hNS2EURHJVJw7CTXf9hE4J098E9IRZBAsolYrHrybUaVlSxyGCgUjfhLBhX8KGZVOiRsskiB3USmxZ9CuwGbpCPIaCHB3w+dv0y4Ph+j4KBmmpmaafGMmhrHtnVF7FyVxdHtOQDkZRQDwU6AJkCfZ2pzYtN1fnr9CPZCO4IoULdbNEPfb4zeKNwUkPDFamz88gx3PV2ToEiTC1DwDzUwYHo91sw8yeDXGnjNq4BTJehB64dqcWrrNT4evose/6pH077VWPr8Aa6nFxHXIAyHLKr+XI4iK6e2XqP1A6nIQEqHaFoOT6ZqHdfgAUqgB+XdoIZwR/QaXMHZ19J+lL5PPIMu6JBp+kA9fnt6E5ZcKzW6VweDDluRnSPLTnL1r+t0fbmN54KNW1ladkkxv6xI2/4TIsgywm34obsdZfz/IJUJlODtuva8u5J2q0BLEAQOHz7MM888w/vvv09SUhIADoeDH374gUceeYS5c+d6BKHw1iZvCpIvJkj5nDZtGn369KFPnz5qngYNGjBkyBBGjhzJ999/7xFJ0Fv9N6ucldW+7Oxs4uPjva7cBwYG4u/vT1FRkbpJqS9p1KgRy5YtY+/evaSnp9O1a1emTp3qtQ+XL18mJSWFpk2b0q9fP+69916GDh1KzZo1SU9PZ/78+ciyzLBhwxg0aBC5ubkcP36c5s2bU7NmTbZs2cKFCxcIDg5WFUuFaTp+/DhJSUmcOHGClStXUr9+fapWrcqJEydYunQpPXv2pGbNmuq+S0rABF+bv2rPKSvtir+TpcTqRumfEn1Pr9eTlJTEY489xtixY9m7dy+bN29m586dAB7s0vTp01m/fj3Tpk1T9yjq3bs333zzDX5+fl7NTd3nZHn3XpGZM2cyffp0F6AkyzIhISF88MEHPPfcc3z++edl3mtFCR87dixr165l9OjRPPbYY9x777089dRTZGdnk5KS4tLu4uJiVq5cyaJFiwDo0KEDkyZNIjk52aWNZQUx8TX/K/J+UObe+PHj1X2xBg8ejNFopLi4mIULF7J27Vo+//zzSjHof4fcjAmdr3L+01Ip7VyyS1xZe4oLa07isDrwiwggsW9dQmtXueWGuEecUs9rwZSGYXIGgChpFyCXACwJAVkuKU+A0hDhcPWbdVR7qj+6AH+gJL9eJKxHU+zXcyncf5qARsmlLBIlGEQDyCrFMpWIIzsHudiCf8PU0vQlkff04SEEtGpI4a6DBLRpdPMDKLh9KiKr/0oTuKcpAUeoE1D2ka6UVVKSuj9ygiBgSq4GydUoS/SRoVgvXEEQILBtE/yb1KZg+34Ktu9DFxpMcPfWWM9fUcfSVCuJ/D+3UWzX02R0A47+cZHf3z5I35edq3AOWSQ2LYKuY5L46bPTrPrmKmHRBl74NhVDaCDHi8KJ7hRB+t1N2TN9FWJ/f0xVqjrzSiJWhx6rZMcu6ZwhxR1GCkUTJtGmRr6zSXpssvN6scNAjtWPfIuJYouBXIMfAKGGQuKNmfgJNhCcm9v6BehocWcEjXtWYda/TnFo7TW2LzjN3sVnsVslajQJo/XwRGq2j6Jm+ygVwGijuGmBz61GXLt+roiqtYI8fHYkWSQiwZ+861YkSUYUvb+QtCG//cwCw7/syM8v7GXT5ydpeEc0EdXMHN1wne6PlW4JcP1MHqvfOUjHcbW5cbGY4lwrVeuF0WVCLQ7+epFVbx3AGGig7p0JRCSWOuPeDGtdXh6DWc+db7XjyE9n+P2JDQiic0EkuXs1J1DSle655RyXsuv3FS0Pyt5I92+TmzCh81nOP0AcDgcrV67kxx9/pLCwkKioKEaNGkXz5s0B7yBHOV9Z8aY83Yxoy3nxxReZO3euGu4YnEEz7rvvPq5cucKvv/5Knz59bprJ8QVIMjMzuXjxolq2VqKiohg5ciQ//vgjo0aN8qoAl6Uk34qUZaKnrddbXb7urSAINGnSxIX1cS9DEATi4uJYv349giDQr18/OnfuzJIlS1i2bBmRkZGMHj2aTZs2qeZzzZs3Z9asWZjNZpo1a8axY8eYOXMm//73v1UzuTp16jB+/Hhmz57NqlWrCAkJ4fnnnyc4OBibzUbDhg3p1q0bs2bNwt/fn/j4eI++aZkkX8yMdly0m90qjJW7OZ/ZbKZ79+7cddddvPbaayxfvpxvv/2WpUuXUlxcTPPmzRk/fjwdO3b0CKPvDpIquuDg694AHDx4kJdeeslrntjYWIqKiigqKsLPz89nvUp5RqORH374galTp/LFF1/Qr18/GjduzEcffcSjjz6qpj19+jQzZszgscce48qVK2RkZNCsWTOefvppli1bxjPPPENgYCB33303derUua0gxX2Rw2Qy8eWXX7JgwQKGDRumjkufPn34/PPPVcDrS9yfP2/f/8lSKbC08+U/iWoWT9OnO6IP8iP3XA4nvt1DYEIoqfc7XyK+FBXPlVpXRsnbNZdPSoGPct59vyQoDS8OqMBGBIov3sAUHYI+0IxWC1CYqfBezbky7w8CGiWr5SmAyXni5lmm4qNnMTeqWYI/lAkuq+AroFkdsr77jcC2Dcu+ATcjGsDobJCXl4PBgCM3H12w1vTKCZ4c+QWgExF0GgVdkNWO+nx+ylISBRm/esnk/LqOoG6tEY0GRH8zQV1blTRR4von3xJ2Xx8QZHUsBb2OIpsRsUo4XZ+ozy8v7SOtXyLVmkY6zdRkkc4T6tBkYAJfPLSDq+nFvDUunYnzGmIS7cT65WKsYid3fEfOfrMO0wODAXDYdORbjCgRGPWiQwUk/jorBsGBQ3b6KBU5jBQ7DOTbjRRajRQWGbEWGigWjMiyQKDeSqLfdQyCXWVIJFnEIYtcvWRnz0+XqXdHVe55oyEGA4iyxIlNGXw7eS/D3muEMdhzI9jbLTq9czwdJZH/lGNFjGYdNjuYjM7zvsCZAhJEnUCLEakc/f08b3f7E4DIxAAO/HqJ3UsvIEkQHGPmjifrknfdwqe9nZHOOk6ozbkd12ncP4Gm9yVTcKOY7V+eQGcU6fFMQyTRt4+KLxbHazu9MEx6Pz1p96SSdk+qlxyyG1CVXdgqb+Pha7HnvyKy7PU5v6ly/gEybtw4WrRowXvvvUd4eDhnzpzho48+4o8//uC5554DvCvyt8oM3SrYArhw4QJhYWFER0d7tA2cZkKTJk1yYX68lXkzZnDbt2+na9euPgFWnz59GDt2LA888ECFlbTKgMny/FnCwsJIT0+nWrXShTulzPz8fA9W6WYAsbt5YevWrXnzzTfJz88nMDCQoKAgRowYoYKDcePG8fjjj6PX69VADQaDAYPBgL+/P127duXnn39mw4YNdOnSRfUtGjt2LP369ePRRx/l4sWLfPDBB7zyyisAWK1WDAYDI0aMYOHChTzyyCMe7BKgRnfTmgW6M0qKGZ/i42Kz2VyYJVmWXcz39Ho9+fn5fP/993Tt2pX58+djNBqRZZlNmzYxcuRIvvjiCyIjI13GVgvMKgMgygLC3swttfcyODgYi8XiApbc0yj5RVHEaDQyduxYlixZQpcuXQCoVq0aa9euZcWKFciyTHR0NM888wxFRUU0atQIgGeeeYZNmzZx33338fDDD5OZmclnn32G3W7nvffeU/3LvPWtoj6T7gsOSl6DwaCaBrr3rSJj7gsw3S6g9I9hlmr0qUlcp5SSbzLB1UNo+mxn9r6zgcz9F4ls5Fyp92YSo5zXfheQsBc7EI16Vev2CpQ0gEnda9Ebw+QGptTNQgWw3cjHGBPmwvpowZYxPACp0II3W/+bZplwgiZBBBzOLrqUrhA1cgmrI3heu2X9S8alT7KXAoPuaEPWd78Q8fAgBKF0HyTZ4SDr+18J6ta6Yu1wIbA0D6hNAn3JC1oJnKHXEdKnM9dnLyT8/r7oI0IBkAqLyF66GlNKNfQRISozJltsSFYb149kktXCn+S+tYhdfJZ1s44zcFYc/qIVg+gAWSQoOoCIGkH0e6UxXz60laXvnqHDuNrsnHeCM3uyKRLNFBy8gi5qFYHdOgAmiixG9DpnlDqjzoFd0lGUa0VXWEx4FSN6k05llayS3nVBQABkAatdR67NRI7DTIBocbJLGln23hlkoPdzaej0TlivE2Vqd4jC4G9gzaxT9HmqdrnDXFmWyZ1BkmUZa5EDo1nnAphEQcJmhaJ8O3qjiKPckp0gwSA6qFozkIm/38GFPdeQbRI1u8SWbFDtKlu/OkVwFT/MYUZ2fHOaKau7YzSJSAhEVTOT2DiMXYvT2fLFcdqOruVhjue+Sa0vFscbK1SZcXPfn8kdMHkrQ7s5sbZ9N+uLdbMiSDLCbaj0dpTxv0Huuusuhg4dqv4AJyUl8d577zFt2jRWr15d6Sh8siyrK9i307bem4KQkZFB9erVPepXJCwsjOLi4ltmbXwBIl8O5Yri7Y0FKM8c0L3OmzVPGjduHM899xxffPGFi4IqyzIzZsxw2S/I19j4UhRlWcZqtWI0Gl3artPpeOaZZxg9ejRvvfUW1apVQ5Zl8vPz+fe//01ycjKpqalqwASr1YrD4SA7O5uwsDAaNmzI4cOHmT9/Pp07l25IKwgCCQkJxMXF8frrrzN8+HC++eYbHnzwQb777jsOHjyIXq/nxIkTLFu2jK5du+Lv768GZ1D2WhJFkYKCAgoKCggLC1OBDZT6Kin3TomuB072VQFbSh6FZfroo49wOBy8/fbb6ngIgqDuEfXaa6/x3nvvlXu/Kivu90an05GTk0NISIh6Xembw+Hg8uXLXkOI+2K4BEEgOTmZnTt3sn37doqKiujTpw8BAQEu6WVZZurUqYSHh1OjRg0+/fRT/vrrL4KCghAEgaSkJJo1a8bixYt5/fXXef75533252bHoSxAUxaD503+TkbpH+OzFNMiQT3WKg91RzbmwKfbVbCkFW+ska3Ywclv93Jj30WMIX5Y86wExIeQPKw5xqigcgGTrAChkmJdzfBK6gHVJA/AFB1M1tq/VFM9cAVNlqs56IPNXsFUZczynFIKwhBkzHWTuD7vJ4I6NC4p13XRtmjnQfwbua1wl0XMVNAHQm1jabM88sqygF+tGjiycsl4Zx4BbZtgiHUGZ8jfuIeA1o0w10vBpymf22lFpEILOb+sw3r6PKK/H1JhMcaEWIL7dEIX5HzZmNNSEYP8yfrxN6T8QgRRAEEgsHML/BvXQSvmJnUp3H2QU5M/I697XVpNaUl0iwSO/3SS9P3ZVK0TRICf6AzC4JAQDDqqNq5Czyfq8Mubh9n7x3V6PVufFo/U43RhFdZM/h3/5BiufbSAqLHDsYl6CkUjOkGm8HQGZ7/ehkEvExBuovBSDuE1gmjySGMkPz12ScQulZhqiTI6g4TkcHa+yG4gwxqMn2AnUp+rKvMSAsd3ZBOdGkxQmN5lTyVJFqnRNJw1s04hOWRE3d+7atK4dyybvj5Hl0dK/BtKbpwki2xfdI563aPLyu5MW5JHAQg6QSI4wkDd7p7vAK1c/CsL0SCi99NRlG0l52IBMckBSIpfkyzSaEB1Fjy6hZYjUtAbcdmo1htgKkt8M92eSl5lzRsrEvhBTfufDPAgOf9uRzn/BPFmRiYIApMnT+bxxx/3CZbc81gsFj7++GPWr19PeHg4OTk5VKtWjSeffNKF3aislKWsxMfHc+LECZ/XMzIyXBTEyoCVstoiCAKtW7dmzJgxPPLIIy5plHKU6G9llXMrfhtlsUoATZo04Z577qF///4MGTKEunXrcvbsWRYsWECvXr3o2bOnRxu8iVYRLSws5P3332fr1q2EhoaSm5tL7dq1eeKJJ6hSpQqyLNO2bVtCQkJ44403uHbtGnq9HofDwf3330/v3r1V0KLX6+nevTs///wz06ZNo2XLlgwYMIC0tDRWr17NgQMHqFevnsqYiKKIwWCgadOmzJgxg2nTprF9+3YmTJjAgw8+SH5+Pq+88gp16tThs88+Y8yYMeh0OhWYnT17lh9++AGA8PBwrly5QkxMDCNGjFDZFi3A0O6x5HA4VDbJz8/PxSxv/fr1VK9enYSEBA9msFGjRrz++usqi3crrFJ5MnToUD744AOmT5/uUe53331Ht27dKq1kC4JAZGSkuom2AjoVUfqwd+9eTCYTfn5+5ObmcuLECZo0aeKSduDAgSxcuFDdxPhWxBs4quhYVsT89WbZ5v+f5aai4bnvgxRQJQB7gdVDIVAVKo3C4rA62DX9N6r3qUPtB5oqnkNkHb/O/lf/oMHUHpiqVBwwSXiCJGfdpYBJlGXMMSHYcwuxZeZijAhClgUkFCAEN1ZsI7xHI6DUtEz2Ai7KC/5QCpo0pn6hAehCAijYdYiAZvXUOmTAfu0GBbsOEfP0qAqDoIqyTYLGXE7JJ8vuSoEzTWDrBvg3qkXBjr8o3n8UMTyEqIlDEc2elDVoynUprkTpLrZw7dNvCO7ZntBBJQEeZCg+fpbrM78lcvxQdIHOkKGmxKpEjbm3pG0aelmSkG12BIMeQRTxS02k6utPkL9pF9e//5Vfdp8nvHE8hdeLWDLqd+IahHHvZx3ArEenE7AVSxQWQcP7anJkwzXObr/G5i9P06duFUQpH4MeqrSrga1YR+5vmwjt041ioPjMZa5/s4WEyX0JiDRjNtoIMFgp3H+G357eRMvXelIoGLA4nOySQe/kX5S5WWA1kl4Y7rxmthOkK0ZEwirrseTbqdkxxgMoKRIYYaKwwIE52OB1DyBv4ovl0IqWPQJo2LsqP795hBVvHqPtsEQi4kxkX7Wy5dt08jKt9H+hvvdyZC1ocT57yjOuvVZW5L67327G94/vIONYLoIIp3feICopyCWvA5G4+mHcOJNPdK2Qkn7efMTNCvseuYGfstglbR5n2a5jo4jz/fQfRh3/Z4ZXKXGPFqYoCREREerKOvg2FwNnaN7Ro0czYMAApkyZoiplR48eZdy4cXz88cckJiZWqD0VUUaUNNHR0djtds6ePeu1/FmzZjF06FAPU5zbIaGhoaSkpPDDDz8wePBgl/IvXrzIt99+y+LFi2/azOpWVtqVe3XXXXfRpUsXli9fzu+//050dDRz584lNDTUo47y/GaKiooYMWIEDz30EFOnTlWv79q1iwcffJDPP/+c6OhoZFmmfv36zJo1S2VplPIlSaKwsBA/Pz90Oh1Nmzbl999/Z8mSJbzxxhu88cYbNG3alIKCAh599FGSk5OZPXs2ERER6jwtLCxk+PDhbNy4kdWrV/Pjjz/Spk0bgoKCEEWRNm3aYDAY+O233+jXrx92u50LFy7w/fffM3HiRGJjYzGZTOh0Og4dOsSrr77K888/r0bZU0CQAgyU8OEKMNDuLaXT6cjNzaVHjx5qPncQFBcXR1ZWllfzt9shyv3u3bs3u3fvZsqUKUyYMIHExESuXr3KvHnzOH36NJ988oma3ptJbUXEPVKgIh999BEPPvggu3fvxmQysWnTJhf/NqWNrVu35uDBg7Rs2fKm6v+78lSW2b1Z+ceY4TkjgsmqUqGanTgkvNmaaO34FUXj/C9HiO+cRHzHGk4zOpznQ1KjqD+5Iye+2EaDZ7qVgqByAJPgcHB9x1murz+Gw2IjMDWGKj3TMIQG4nAL+pDwYGfOvbOCuAe7YE6p6mS5Cm1cW7YdQSfgXycB3BQd8ARNPlkmSkETbnkjRtzJ9S9+omD3UQJbNUA0GSg8cALLqYtEPXo3okFXKd2konPFvUj3EMbatov+JoI6NXPL6Nkob4yV9iDvj80EdWuNOS219Lwg4FcrEQZ0J/endYTd18sD9AmCgKOgiNwVa7GmX0YM9EfKL8RYLYbgu7qgCzAT1KkFAU1TufH5UjLWHCHlnjTqdwxj5b82s/LZ7Qx8rxUOUUe9u6qz7fOjdBpfB1mCIXM7sOKp7Xw1ZDVVGsWS3L8egt5OQPNUcn/bBg4B2SZybeEGYiYOQgoIoNjmQBCc8ziwYSLRlws5+espIu9ojN2hU++tQe/AURKz3mrTc6PIHz+djThTNv6iVVWWHTaZgDBXnyStIl2QZXHZm6gyUhGWQwFNgiDQ5+k6nN2TzepPT1KQZcEcbKBpv3iSW4YjaSaX5AaCFFDk7p9TFkDSgofo5ED6vdCQL0ZtKWmU7JJGQkAnSMgOB8q2OorvV2l53tmlyvgxVVS8ASbwBF4VAa3/MZHx9tjeXDn/MHFXnt33JvH1I7148WI6duzI3Xff7ZKuTp06fPLJJ7z44ot88cUXZdatLVuSJNasWcOPP/5Ifn4+DRo0YOTIkcTExHi04ZVXXmHs2LHMmDGDFi1aAE4GZPbs2WRmZtK1a9cK9r580QIRQRB44YUXeOqpp1i1ahWDBg0iKCiIdevWsXXrVj7++GOVTSirzxVZwS4PyJTVXn9/f+677z6v17yV7UvmzZvHfffd5xJuHKBZs2a89tprvPHGG/z73//2ANWCIJCbm8u///1v9u7dS3h4OFlZWdSsWZNJkyYREhLCvffeS9u2bZkxYwZr1qyhR48eNGzYkI8//ph//etfvP/+++j1egYNGqSyJ0VFRSxdupQxY8YwaNAg2rRpQ79+/QgICKBJkyYsX75cBQbLli1j1KhRBAUFqeHHZVmmTp069OrVi99//53evXu7+DRpFxEkSVLzKRvWKv2z2Wwu4bTdx/Py5csqOL0dop2DShuU4xkzZrBz507ee+89rl69SnBwMEOGDOHJJ590YZV8+SAq17Sf3tJo26GY633wwQfccccdgKtJozaPzWbzyU5ppbz5/XewPhVldm/VnPcfAZas+VbM/s7VAadypkMUZC5tOUuVplW9+wm4AabLm87S+o2eLuUqICgoMRxbThGOYhs6P4NXwKQVR2Exh19ZSWjDaiQ/2gExwI+sfRc48cZKqg5qTnDTZEoDQIA5IYIaT/ThypKdFM9fDzodyDKhndMIaVe3xDxOY0JXIu5mc97M8kADItxM82QZRIOOqEcGYLtyg8I9x5BtdsxpKYTd003zcFbmbngRLyyYe5my2xdfPlpe2SuNeaLPtDIUHz1N8F0d3c7LgIBfzerkLFuNEg9QW5Y9v5jrHy0gZEBXJ5gqEcvx01z/ZAFRE4eiCzCjCw0l+qkR5C5exclFG8BemwFvNGPR49vZ8OlhWo1vRM2eiWz59C+WPbsLu00mIimEO55rzK8v7CZ9w3nqP9QEq18Ruf5+CCYdMjKOzHwEown8g53RgBwiFrsOUXBumBrasS4HX1hJYNdmZP51icyNx5CtdvxrxRLarh6SwQ+7QyTPaiLX6tyk1ibrVCAhA9mXi5wKtYZdArhwKJeIhIASXybXgAu3Q5Ty1HIFgRpNw6jRNMynoq98d7ifR1DPacOIa9NqwZOE4AKYqjUJJyTWj9yrFiITXfdzEpGxO+Dy4Rw6TfK0L/+fImWZ97mzTLf7XpYn/xc6vHJy/fp1goODPZSA9evXe6wAexNBEFi+fLkKhtx/yBMTE7Hb7WRnZ1dIaSwoKODBBx+kWbNmvPDCC4SHh7N161bGjRvHAw88QN++fV3SV69enS+++IKPP/6Y1157DaPRiMPhYNCgQTz++OOVMrGrrO+OXq/nvffeIz09nZ9//pmioiLatGnDM888U269WtBVXvsqojy6g6uK+HBURlatWsWPP/7o0h6lrIYNG5Kenq76MSlpFH+lBx54gAkTJrj4q+zcuZMxY8Ywc+ZMwsLCiIuL49NPP+WTTz7h448/Jj8/n6FDhzJv3jzee+89pk+fTocOHTh16hQTJkygsLCQlJQU3n33XSZOnMgff/yhAiJJklTzy6KiIux2O4GBgVgsFgRBUNsI0LZtW55//nl69+7NyZMn2bhxIwUFBSQkJNCgQQPVjFC7Ua2i4MuyM+DD+fPnvSr9x44dIyIiAn9//1tmKCqiIMuyTLNmzWjWrJlPMKxlv5Q/d987Ran3BRS8+fQ0atSI5ORkTp8+TWpqqsd4yLLMtm3bmDx5skd53vpxM3KrvkaVYZP+aeZ4lQJLu9/eRLtXuoCf80ETBZncs1kc/+EQ7d4otU12B03aVWNBJyAadGo696AMflEB2POL0fkZXM3stHsvlRyf+nQdNYa3JKiuc8d0WRaIaJFIWKN4Dk1fhn+NKhgjAhFkQQVApqhgqj3SVW2Pkq9U8SmdJFoVsXQl3btZngtoUkzzSkzcBEExz5MxxoZj7N1aW4BLme5ArTwp03TPHdRQAshUU0LvljZqme5d9aL0eWy2KYBg1Jf43cgu5xUmRgzwA7sNwWhw8X3K+3UDIX07Ya6dqOaVZQFTzSRC+krk/rqB8ME9StKLhAzqgTE6hJOf/ERsi640GJzC5jnHqTmoHgGRZpqPaUhOei5Lx61j9TsHCIkNYMBnXfjjuW2snfwb/eb1RA6VSZeLEYPs2DIL0IUGO8dHcLbV7tBRKAtYHTr0ohG7HY6+tAJ9bARh3RtjCjJQdOAU6S9/S8JDXTCnxGMQS1+8TjAhIUkyDqvE5cPZHNuQQc32UUiCiIjA+QPZ/P7v49z7diOft7Ii4q6oq3sC+WB9FKZJm0frv+SNRRKRkWwO0ndnsOPbs2RdKCAwwkBqu2hC4gNBp8MUZKB6wxBknV4dAy1gEgSB0d+0Z8mzu4mrG6TWISLjkGH9rGPU6xmnziFJFtAhgSBq3imley+5S3kbxFZW3NkldSzKYZmc18q+B3+LSLLK2N1yOf8AmTJlCl999ZWLb8/p06d55513+OqrrypUhiRJHn4I2pXqhIQErl275hMsaRWPadOmMX78eDp06KCe79y5M+3bt2fo0KGkpaVRo0YNl/zR0dG8/PLLHuW6+4hoP72lLUvcWSUtIKlWrRrjxo2rUHneWIGKArqy2qWtsyLleWMWvCmAyjmj0Yher/epUFapUoX8/HzCw8Nd+jV37lxGjx5Nly5dXO5B8+bNef755/noo4/UkNeiKDJp0iSqVKnC9OnTqVWrFp06OTcbHTZsGElJSYwcOZKMjAweeOABdV+hH3/8kccee4xx48bx/fffExQUhMViITg4mJycHIKDg12i4zkcDo97+NZbbxEZGUnnzp3x8/PjwIEDzJ49mz59+lCtWjU1Mp7SfuXP4XBw+vRpfv75Z3r16qWmOXjwINOmTWPWrFk+x7w8qQhI9nbfyqpHC5CU8VCCWezatYt58+Zx6tQpIiIi6NKlC8nJyRgMBoKDg2nevLkL0HRno3777TdGjRrl4a8ETlO9Hj16qPm9gcvbKd7GpaJgqKx0t/Ks/mMCPNQcUIsNT68mODEU/0h/Mk9kAtD2xU4YA40oW8aWKgheQJPsjGymM5VULbhGsSu6mo8x2NO21R1YFd0oxFFsI6ReVRSFShBkZ7Q8o574wc25+ut+qg1vU8KwaMOMe4KE0nDk4I4S1OARblHvXBN5AU1ezPOUuesbFFV+ElYM4GuBi+tYeAvzXUIEudbjzSTPixIp2+zIsoTgNqGdG/TKSAVFiCadK0OFgOX0ecIGd/PIA2CuV4OcFeuckQVL+gAQ1KUZOWv3sfXVTej9dATGBSEHBmCTQUQgKCGUWncmEte0CtVaxSDJInd+0JklD/zO74/9SZ2RjYluHI05qBihqj85VzJcQKYkCUiSDlkWsOQVUnQhk6rj78JcPwkhN5vMn7ZRfOYKepPI8ee/J2VsR6rcWZNQYxFBumL8RSs6JOyFTt+Hdg8kc/5AFpu/Oo1/qJHiXCtVkgO59+1GBEWaPMayslKZoANQcQYr40Que5ec4+ifV8i+XKROp8AIE9fP5nNqW6ZL+sBIE/XvjCOtb3XV74gSFgogLNpI76fr8f2Te6jRIoK4tHAKblj467dLVGsSTtNB1QHJg9XyCBhTyYAP5Ykvls1biHVtm5x5vI+lrqwFjb9B/o9ZqpxMnDiRUaNGUaNGDeLj4zl8+DDFxcXMnDmTiIiIMvMqSoVeryc3N5fgYOcGy+4rymfPnvUI7+1NsrKyuHz5sgtQUkSv1/Pkk0/yxRdfqMCoPKXQ23FlxBeA8GYKdbP13Iry5a1N2nZURImuaN12u92FOXKXq1eveo22tnHjRpXhcxfFhA9KFUlRFOnXrx8rV65k4cKFBAYGEhkZSWhoqKrUx8TEcM8991CrVi369u2LTqdTA1c8/PDDTJgwgVq1amE2m4mIiCAzM1OtXzGjU8arqKiI8+fP8/DDD9OsWTOys7P56aefOH78OAaDgVmzZtGvXz9atWql7v2klGWz2SgqKuLBBx/k8OHDzJkzRw1ukpyczKxZs4iLi6vQ+GrlZpjEiooWKB07doyFCxfyyy+/cOHCBbWciIgIzpw5w5YtW1zyRkREMGDAAIYMGULjxo1dlHZZlgkPD+edd95h3LhxNG/enFatWpGZmcmyZctIS0tj0qRJatqyns+KsmgVTesuFR27iprmVabef4QZXlTjqkS3SaTgXCbWHAtJvVLwj/QvWXn2HVpXq0zEd0ri7MqjJA8sdSJXrmcevYY5OrAESJWG/3ZZ2S5RlgpOZRDWIM6nmV54owQuLd3jkkcJM66AHrFkEiib16rt1NAd2mh47tcV0KSkcZ70BE3O724I3wcoKh9Muaev2EvCvVwlsIXzi3fTQ2cGzUNVwfrNaSkU7TpIQMs0t8RQfPAkpuR4Z+Q7F5EQjQawWMhdv4fiQ6dABr/aiQR2bIo+2B/Rz4AsOxB1gkt/wvu15cLr3+EXF0PT1/qQjx673YZJZ0cvOEgbXo9VT29EkgWqt6pCWKwffT/swKIHVrPr3a3cs3gAN8RMrpkCyQz3x3b2PPrUqirjqIxNxsJN6COCMddPwnI5i6szVxA3siOJD3cgxM/CjVV/cWH1QYyXztP0yVqE6/MJEC0AXDvntPEOqxZIw77VEHFgt0gYTPjc/LUyUhZAulk/Gp0gcf18MSvfOMSJ9VcICDcSWzuYnMtFyEBIrJmcy0XU6RZL/5cbsmnOMSKqmoirF8qun69y4OcLbPv6NB0n1KHtQzXJvWYh/2oBIbFmQqP9iKoZyvDPWnN2x3WunczFFGRk4GuNMQcb0PIwNxPcoTLsUnGulWO/nCX7fD7+YSZq9UokMLbyJoC3EoTitoqMd8r4Zsr5B0jTpk1ZvHgxx48f5/r169xzzz0VVvAUpW3QoEF88cUXPPbYYx5pjh49SmBgoAqkypLDhw/TqlUrr0q+IAg0b96ct99+u8z2lHXuZlgldxByMyyOu/hyKL9V0FRRJfpmzP7uvPNOfvjhB4YNG+ZRzvbt21UGwr18o9FIQUEBP/zwA6tXr0aSJFq0aMGwYcOIjIwkPDzcJdS8TqfDaDTywAMPMGbMGOLj43nrrbcIDAxUQY7VamXIkCE88cQTGAwGunfvTkREBN988w29evXihRde4Mcff1SV8ri4OM6cOUOtWrWQJIni4mIVmC1atIjAwEDS0tK4dOkSn376Kffee68atGP79u2sWrWKq1evMmLECBeG7cKFC4CTWXzooYd44okn1L2MFJ+nyijjvpgQb/fuZuaKApQuXLjAc889x6+//kpoaKjad4fDQUxMDNeuXaNly5a88cYbfPvttwQEBNCqVSt+/fVXli9fzty5c5k0aRJTp07l2rVrXLhwgbi4OOLj46lVqxZLlixh8+bNHDx4kMDAQD744APVr6s8oFTRvvlasFAkLy+PH3/8kRMnThAREcHdd99NUlJSmeV5k7IWHP5JpniVAkuXtl0gvE4VwpNCNWdlkFHN5QAX0ORivy/IJPZMZfuLaxANOhLurIWodzoaXtt1kWNf76bpjDu8rB57muPpjHrshRaX9oklCpKIjL3Iis6gK92fqSSN67Ez8IOIjKRRvivDMqljQKmpnfOLOy3jVk45K/q+wJSXhN5PewFAyvlS3yMf4Elpoyy4tFuoIAsR0rMVGe8vBAH8m9dDEEVkSaJo/3FyfttKzOP3ebBhgiDgyCvgyrtfE3xHa2KmDEHQCeTvPkHGBwsJv78HssWKTl8yxiX5RUEmuGUtGix6EnOgiGC0Y5UsJYFIZBDBEGii+5vtOfD1YfZ+dRiDWYetyEH1VrGcWnuBazvTiexgxi6L1Hi4AydeW0FIj2aEtKqFXidiyyni+s9bsV3LJqyTE+RnfLWKqPF3o4sOpNhux+ywU7VLChlbTiPabWTsv0K91g6V+bh8qhCAsIQAjqy5zJFVl7AVO4irF0yzgQkERd06q1SeVDRinSKSJLP42T1kXy6m8xMNiKkTyo8TN6Mz6Wg2MIEDKy8CcGT1ZXpPa0DnsTX57vHdtLivBlXqR9FlShqb5x5n/cdH2DDzKHKJaZjBrKPb43Vpfl8iOlEgqVUUSa2iXAJIlCXe2CXwNMmrCGA6sSqdg0tPkXZ3CtXbxpJ3pZAtH+8nNCGI5o828Pgx0PqZVYRlUnw7/6Miy7cJLP0z0NLatWtJS0sjNTWVmjVrlpnWF9PSv39/xowZw5w5cxgxYgQmkwlZltm6dSuvvfYac+bMqVBbzGYzubm5HnUqnxaLBV1J5JNbBUE3k8YXm1QRpcmbYnwrgEtbjre2licVUfq050eOHMnIkSPVQAtKkIS1a9fy73//my+//NJrGTk5OQwZMoQHH3yQr776Cr1ez+rVq3nkkUd49tlnyczMxN/f38VvRhRF2rZty8aNG9U9orSmb8p+R++++y7ffPMNn3/+OQEBARQWFtK+fXt+/fVXtmzZQvv27TEajQwZMoR3332XnJwcmjVrpoa4XrVqFWfOnKF169bY7Xa++eYbHnnkEapVq6aaqLVo0YL169cTGBjIkSNHaNmypQqETp48CTj98n7//XeWL19Ofn4+9evXZ/jw4cTFxVVYodamK8/frDwAVpZIksTjjz/OkSNHeOaZZ2jYsCEPP/wwer2e+++/n9WrV+NwONiyZQs2m40HH3yQCRMmMGzYMCZPnsyUKVOYP38+b731Fp988oka7MJkMjF16lQmTJiAKIq0a9eOdu3aVbjdvtilm1nI+O233/jss88YMWIEjzzyCJcvX+btt98mKiqKF1980edYV+YZvBV26X+jCHIFRic3N1fd6EvQCQxZMwyD2aBed19NVZgX5byH47jdwanlR7m06RyCXkSyOgirF0Py4AYYg/2QND5E2rK15Uo2B3ueWUHjtwe4DL5dEpFlgUs/7UMf6Edk5zpqGa6+Sa7flVHw5sekXJM15Xjru3s6bT3u4j7ojvwiLKcvg06HX2o8gqFiOFZwATO+RVufS3tkH+fx1JUq408lWW3k/r6NogOnEAx6ZKsNvzqJhPRqg2j2AgxkB+mPv0/4oE6EdGqsdkaWBOz5RVyaMZfA1nWJuKeL6k8kADqdhE6UMOidm8madHYCDFb89HaMoh2j6MAgOtALDifIRkaUbSDqcEgCK8b9iSzJ3DW7Ozk2MxlFgVy5ZuD67/vJ33fayYDp9IR1bYCgA9vVbMxN6pCxcD1RY+5Gb3DgZ7QR5GchwJrF8Q/+pMtjddnz2X6mvF2VANGCA5EDR3W80mcnMXVDadArjkZ94wgI0nFu93U2zTtD62HVqdWhSoXH12WsNYEYtCDIW2AGRbQBF7wBp7N7Mln6/AFunCugRttozmy+CoApUM+DCzoSl+xH9pksFjxxgMvH8wEwmnUgQrVGYbQalkxyu2gcssixdVfIvVpESKw/ITF+7PvxDDu/O0tqh2j6vdyIoHBXsxZtO1W/Kc3cUyLjeb53PIGWw8ezCpBxJJPdXx7hjldbI+pd8+6cewj/SDP1+ieV5C0/0qC7aN9/xfk2vu68UPUf+DtEeU93SXsave7WwbfdYeHPv978W9v83xTt7xrAmTNnCAsLK1dRU8Rd4XA4HHz99desWLECvV6P1WqlcePGjBs3jqioqDLbojWR6tevHz/99JNH1CyAhQsXYrPZGDlyZJlgqTKr1RVJ60u5Ko8JyMnJYd++feh0Opo1a6aGnPZWjy+F8nYqV+Wtnvv6VI6tVitz5szhjz/+wGQyUVxcTIsWLRg3bhxhYWFe+9K8eXNGjx7NmDFj1HOyLJOXl0evXr3o0KEDL7zwghqiWzH3U/5sNpvKKCnt0Ov16PV6DAYDJpNJZXqU8N8PPvggGRkZfPrppxQVFVFQUEB2djbr1q1j//79KoPVtm1bAgMDOXXqFB06dODrr79mypQp6l5KSqjzDz74gIcffpivvvqKZ599FrPZjJ+fH/n5+dxxxx2kpaXRr18/7rvvPiIiIti2bRuffPIJw4YN46677irzXriD75sFSu75vT0Te/bsYcKECRw/fpyOHTuyYcMGZFkmICCAFStWqHtxPfLII/z111+AcwFDp9NRr1497r//frp06QI4Gbf09HSqVatGQkICS5cuZdasWXTo0IHZs2erZrfadpf1nN7Mwoa3+Xr8+HFeeeUV5s6d62EyOnv2bERR5NFHHy2z/IqAOkEQVHPL8n4jlHft2bNnb8tvSW5uLomJif/R36ZK77Nk8Dew+8PtFF4txGFz4BdmJqlnCrGtE3zm8WCY9DqSB9ZXTfFcQJCHs7S3vU1kMOiI7pDM6c83k/RQW5cHrOB0Btc3nqD+qwPVzWu1ZniKuLNM4Gqa537Nm12KmsYL01SmlLTHUWzn2vw/sGfmYq5bHdlmJ3PxegKapBLa29McQxHtWW+mcN5Cnbu3TtYUpLJimqK0zFOF+1UiolFHWN92hPVt57NtTjNG57nCA6cI7tiQ/C0H0ZuNBLaojaATccgSxQdPIcsyxphwBNEJkgRBRhBkdKKEKMqIyOqqvl0WsTrcVvPFknsrOhBFXUk7BGq0i2XzxwewXMgkKC4Cq1FPYagR3YAWhPZuU5pdlKG4iPO/7MZQLRZjXBSyQ8CODqsgY9E5yFh1hrBWKUhRkeRkObhqD1F9liKS9JgC9eh00GZEDfSijEMWSWkdSXLTML6auIfY2sEEV6ncXhTKc2UrYS+8sRgKMHI3aXXIJS9ZL0Dg63E7seTbATiz+SpN+sfTrG8sf849TZWkAIolkaDECCb92JZLR3K5dtFC1qVitn97huI8B9+M3U58g1CS2sWQ1DaG6NQgbAVWopP8qfpcA1LaR7N82l5mD1rHgNebUKNllKZdrqDPl2mbdr83p8lu5fyX9n93nDYTG3oAJYAmI+uwbOxairKLubjrmjMwjV6kzl1JJHbwXC315tP03zLLEyQJ4TYElBCk/2BQiv+yBAQE8Oqrr5Keno7NZiM0NJTBgwdz5513eqT1Zv6irPYr7INWynOW1opOp2PYsGE8++yzvP766y7Xjx07xoIFC1i0aNFtAUo3A6h8sUHu/bBarcyYMYPTp0/Tvn17rFYr77zzDh07duTxxx936b97eWUFWShPKqt8VkZkWUav1zNu3DiPYBa+6tyxYwe9evVi/fr1qr+Lwkht2rQJu91OjRo1PHw5tCySEolO2QNJFEWXzWLtdrsKoBR2qmPHjrz88sucOnWK6OhoBEEgMDCQnj170r17dxcWy263q0AhJiYGm83mch+2bt1K48aNCQsLw2KxuAS5iI2NJTw8HJvNxvjx41V/pnbt2tGqVStGjRpF/fr1PQKSVBYQuwMOb0DLPTS4t+du9OjRpKenA85olwMGDOD+++/nww8/JC0tDUEQSE1NZc2aNRw4cID09HTS09P58ssvsdvtTJo0ifr169OpUyc6dOhAp06dyM3NJS4ujqeeeor27dvz+OOP065dOz799FN1Q2tv7E1l5mpZz6X72M2ZM4epU6d6ACVZlnn44Yfp378/NpuN9evXqz5o99xzD3379q0Qy3Qrixf/GJ+lls+04fyGc9QbVIvw1HA2vrSJ4z+d4szvp2k1tR0pfWupacvbh8R36F3focLdw5An9GtA+tL97H1qKRHNq6MP9CNr/wUkm4N6z/dCZxSBkqAPJUUprwjVnE4tW7nuaZrnCzRpze68R87DJb27yLLMlY+XENK1CYGNU9Qywwe0J3PxBrKWbSJiQHuPfC5sksux12pcwInLeTRgSCnHDSC5mgOWPUFt17PJXrEJ2+XroNMjOxwEtaxLUJemarAHX+21nLlMQIMkIvq3JevXHVx87RsEvQ7J5sC/QRKxE/uTv/0oYglIEgTUY7Hku1YU4C3JInZZRpQldU5JiOhFByBRd0Ayfy0+yYp/baXf/D4AGEQnS+XQier+SaIgI/ib8K9ZlaK/TuPIKnKOqUPAZtORezWHq+tOEvt6P65ezUU2mbhuCyJIV4xJtJF7zUJ0zWDS92Ry5PfzNOxVtaSdIqIR2j+QxM4fz9N1XCo3K1oWRpAlsk5lc/GvTC4cyOLSwRwckozBT4feKJKbUUzuVQvN70uk55N1PV4+45d24vTWa1gKHcSnhZKQFowoCgT/dJnc87mEJgQ5I/2JArH1Q4muJ5J3vZgLf2Uz5J1GbP7yFHtXXGTz3ONs+PSoWm638Sl0GluL2h2qUPXHjix5dg9fP7yVtqNT6TS2FjqD93DlWmCE7Nx3Sbv/kvrecDPJK8sUryjLSkh8oNd3jSXPSnZ6HnUjkrjrg/Yg6inOtbLvmyNc3J1B28mNvb6wfUXO+4/K/5nhVUo+++wzFi5cyLBhw2jUqBFPPfUUn332GUuXLuX1119n7NixgKfCpvzw+wIMilRWaR8yZAhWq5W+ffvSpUsXIiIi2Lp1K3l5eXz++edlhmG+FYBwM+Z4vvo8YcIE+vbtqwI+WZaZPHkyn376Ka+++irTpk2rUH3/E0x2Ll++zAcffMDRo0cxGo1YLBZ69erFQw89hF6vL7Mf+/bto0OHDjz33HPMnTuXe+65Ry2jbdu2zJkzh6+//hpwBQLeWAhvabTR3CRJUoFYv379WLBgATNmzOCDDz5Qo98p16F0LyCj0Uj9+vXZvXs3mZmZ2Gw2dTPmzMxM1q5dy5QpUygoKECv16u+ToIgkJ2dTWJiInv27FGfIaVsnU7H5MmTmTdvnofpl7Y/yqe7Iq3MG+2f3W7n+PHj7Nq1i927d7N//35sNhtmsxmTyURGRgaXLl3i/vvv56233vIwWV25ciXr168nJyeHxo0b06RJE3Q6Hb/99htHjhyhXr166jg1atSIRo0akZWVxbZt25g3bx5z587l22+/Zc6cOXz88cdqWx9++GGeeuopWrRowcqVK/nXv/7F4MGDGTNmDM8//zxms1ntk7a/vu71zZrGAVy4cIHatWt7jK8sy+Tk5HDu3DlMJhMLFy5UA9PMmTOHJ598knfZ6CaBAABTmUlEQVTeeedvfeb+N4OlSpnhxTaNpufHPdDrnbvSX9p1hZ/GrAbAEGTElufcwK/Th70IqxONKdA7FpPcTGs8zfZcPz2O3dNb7WTuv4ij2EZgShXMMSEuZchuebVmee7ll2ea55q2tE/asnyZ6ZVed34WHU0nb9dxqgxTVh8UPcf5EF149VuqPjEIXYnZmi+gIXoBT/n7T5H5xz4kiw3ZIRPYIJGw7k0Q/M0ubfDVbtnLOddO4IKdrJdvkDF7BVGj7sSUGONMYrOTs3o3xacvET22n1fApEj2r9sxRAYT1KK2Sxql/qLDZyk8kk7UPe01gElGJ8roBAmdKKPXOdALEgadA70ooRckjCXnjKIdvejAIEiYSo7BeX/OrDnHT//ayoCfh2IJiiDPZsIhiRTb9Tgk0YUBkyWZK1+v48Yf+wgf3AUxOISiv05hv5FF9KN98IsKIHvxWkJrVyG1YzTBhmIiTflkbjtN5oVCDq+5ggCM+aIpNlnnBEuChCBJzJ+0l+EfN/U+3l5Ea35nkfQ4ECnKyGfv4rMcWJ5OzuUiRJ1A1ZoBJKQFozfpsRY7sBTLmCP8KSpwsG/RGcYv70yVJOd+R+pihBvAV85fO5XHqncOMeTdxpgDRbUdNouDRU/vpe3wRHYuOo8pUE+DO2MRdbBr6SUuH8kmNNqP9L9ymfj7HRiNOFk3yc4fc9NZ/fEJDGYd/qFGanWJoX7fGlRJdaXXDaIDERmbrFOZNNfxcJ2rCmByN8VTnpdlEzbQ/+MO6rXMs7mcXHMBu0Xi8v5riAaRHi+1xhxmcmHGt3y4l/jmMVRrHeszep4WMEmyQHGena86f/cfMcPrWueJ22aGt+bIu//fm+G1adOGZcuWqSZiu3btUjdyDQwMJD/faWb63Xff0bJlS5eIZ6L6TvO+L0tFxJf5kdVqZcuWLeTl5VG/fn3VOdvXivStmNlVViEry2xt//79fPPNN7zzzjte6x06dCgfffSRi8O7ezt8jePmzZv58ssvycvLw26306ZNGx544AGfJnC32p8LFy4wduxYXnrpJZo0aQI4I8AtXLiQdevWMWfOHK9hjJW6FyxYgJ+fH4MGDfJolyzL7Nu3j59++olnn30Wu92umtxZLBbVBM9qtaqASJljihmdEgxCMclTwJDFYmH16tVMnDiRDz/8kIiICNX3SWGktG2RJInly5ezevVq+vTpQ1hYGMeOHePy5cvcf//9REdHs27dOmJjY7njjjswGAwYDAYOHz7M4cOH2b9/P1lZWfzyyy8e4zps2DAWLlzoc4y0ad3vu9LWS5cusWDBAn744QfS09MRRZHU1FTq16+PyWTCYrFgsVioUqUKsiwzb948Vq1aRePGjcu91+A0wVUiTWojWlqtVsaNG8fw4cNZvHgxOp2Ou+++Gz8/P77//nt27txJYmIiGzduZOvWraoZpCzLzJ8/n3fffReTyURoaCg9e/bk/vvvp0GDUl9YBbAqedzb6GusvI2bkmfIkCHqeMuyzJkzZ/jpp58oKChg3759+Pn58frrr1O9enWXet58803q1q1L79691bzlPUO5ubkkJSVV2AwvPT39tpnhVatW7X+uGV6dASkqUAKo2iyGIT8PIvtCPkcXHebsGie9uW6S84Gp0acWLaa297jxFQ1v7G0fJvAS8MGoJ7J5dQCP9Fr2SNZcAy8sk5upngvLhGtUPK3ZnVOZ9mSbnG0tFaVtSr7czYeIuLOZC/ARhNJgC0GtalO49wTBbeu55NP2wXne9fjKt+uRCi3EPdIDQ1ggskMiZ8cJzr/xA/FPDEAfGlSmaaGL2Z6PaHuy24ayNxasImbiAIyRIWqZslFHWK8W3PhhHYV7jxPYrJbXNXdBkAlqVZuMeb8T3LKWS1+VOnLX7Sfq7tboRMmDWVLGzJs4maSSP1lEEpwr/6LGn2T/4jOYQoxI/gEU2g3YHDqXuaJlCgVRIHp4F/zqJ3Hli98JateQoC5NMFarCrLE9VV7KT6XTXD/TlzIsxNk9KPQYcSgv0xRfh6p7aJZ89FR8otEDKbS2VFU6ChhQismLvspIWCTdVjybHxx3zqshXYa3BlLiz5RVG8QgsFscNk/qVAyUiwZOLn+MvsWnfGoVwuU3FnSqOQgOjySyoJJu0lsGkZUUiDX04s4vf06HR9KYu+KizTuW5XUtlFqG6s2rEL2pUJ+eHI3BVlWfpyyg1YjU6gSIxJbzUj3RxNJaRPJ8U3Xyc6wsn/5ebbNP82I+R3wDzMRUi1YaUyFTNvKSqN9bkLiA7h+IpuwxGD+fG0XgiBQq1d1ZBlOrjlP4Y1iCrOKMYWa1TwOBBrdX5uN7+6hWuvYMtvxXxOJ8kjgipfzD5AhQ4bg51dq/tqsWTOOHj3KqVOn+Oabb1TFY8iQIQAMHDiQmTNnquZQWuWrLLalPHHPazQa6dSpk1q2kuZ2y82UWVY/ly1bxtChQ33mHThwIL/99puapiLsHMCHH37IuXPneOmll6hatSqSJLFmzRpGjBjB7NmzqVq1qkd5t9qfF198kffff5+UlBT1nMFgYMSIEeTk5LB06VLuvvtutQx3ufPOO5k4caKaRlsfOAH4fffd59O0TGt2VxFgrm3DkiVLMJvNmM1mrFbnQrYvYCcIAnfddRe1atVi/vz5NG/enObNm1OtWjVkWWb79u0cP36c/v37u8xFk8lEXl4eHTt25IUXXlCVVyVNcXGxCuBuhi1xOBzk5eXRp08fMjMzueOOO3j22Wdp2LCh2i+FNTMYDBiNRg4ePMi8efPUyITexH3satSowbRp0xg1ahTNmjWjbt26nDt3jrVr1zJmzBh+//13evXq5bKPVIsWLbh06RIjR46ksLCQMWPG8OijjxIVFUXVqlUZOnQojRs3ZsuWLWRlZbFkyRLmzp3Lzz//TGRkJCkpKepcVfwTvTHW5Y2Ve1/q1KnD7t27ady4Mc888wxFRUXcfffd+Pv78/PPP3Pt2jWys7OpXr26S75HH32UCRMm0KdPHw8G+XbJ/2ZmqVJgKbJ2uMfmiiExfoTE+CHlJxPXIo7o5rEsGbgEgDM/H6PBhFaYQ4ye/gWC02OorPDgZR67ASZt3tI6XE361H2YFCnJpjXFk2RX0zpvvkzKNdT0zmMtaHJ+9w2cAKRiK7pAP1cTI+UaAvogM1JhsVp+WQBJkcKj55FyC0kY17PkvIQsCIS3qYkpNowr81aRMGWAF9NCUECOSyQ9H0qntk57Vh6iSY8pKhgt+BJKxiC0Z3My5qwkuHlNj7yKGCOCMEQGk/X7LsJ7NlP7Kggy2esPIujAnBAOyCpIEikFTWr0O+0YlqFUK4r89TO5pG+/Qt2haRSJ/hQUmVR/p7LeEcGNaqCfPJDrizdRfCwdwc+EI7sAc8NUIh4ZhNWqw+4wUGgwUmw3kFQ7iRNzj9LzidrYLRJ7fsmgWf/S8MT7frpE/R4xVGQTU18LDUd+PUdRtpWJv3YjMtZIoK4YAItUysLYZB0OWaTgagGrXttLldRgQmJKwUBZQEmR+MYRjJjTinO7M8m5XER8gzA6PpRE3rVirMUSqW2jnD48mj6EVvWnYZ94EltEseuHM5xYfwWA2FpBDHw5jei6EUTVjcQm6ZBFHbsXnmL+iA0A1GgbTafH06hSM8Rlr1WtGZ7r+Aguvku+TPEa3VeTDW/vISgukOptq5LS1el3ee14FnqjSIcnGrHujd30/ndHjP6lP7z+EWZshTaXe+TOMJW1L9PfLf+3z1LlpHHjxh4Ke2xsLLGxsdjtdurXr0+/fv1o3LgxNpuNJUuW8OKLL1KlShVVmb2VH2+tIulLab9ZhaU8VunvAF/5+fkuTI97PaGhoZw6darCipggCPz1118cPXqUTz/9VB0fURTp3r07SUlJPPvss8yfP/+29icrKwuLxeIClLT9GTFiBGPHjuXuu+/2WW94eDj16tXj448/Zvz48WpegJ9//pns7Gzq16/vwSwo/VYYJEEQVBZCO+e8KZ+yLHPu3Dk2b95M9+7d0ev1FBcXq+Zl2jYALqZ8ycnJjBkzhpUrV3Lq1Cn8/f3JycmhTp06apQ3relYamoqH374IQMGDMDhcLBo0SIeeOABtY3Lly+nZ8+eHnX6Eu38V0wLly9fzqVLl1ixYoXKHImiiNVqxW63q3kkSeLGjRs8++yzJCUlUaNGjTKfJ/fzjRs3ZsmSJezYsYNz587RsGFDJkyYQHZ2Nt999x19+vTxKKdq1aqMGjWK48eP880333D//fcDkJKSwvTp06lbt64aUt5kMjFnzhy1nHbt2vHCCy/QqFEj9b6WByZ8metp8zz00ENMnjyZunXr0rx5c+655x4Azp49i5+fHy+88ALTp0/nyy+/JDw8XB2L0NBQ1fxSKfPveD/8b5VKgaWizCJCqod5VeSKMgsxhfgRlhBEnwUDOPHzSRyI7Hx3Kwl96lOtWSQGneQScMFdKgSSfAV8KBGvzJLG9MZl/xYlmwY06TRAobwAEHikd+9T2RPNPyWWgkNnCW2nMEel7JQIFB48S1j3Ri7AQfvpPHYdh8zf9xJ3f1v0olRSFio7FFAjCuwOHLn56IKdZlcuqqbLffECnHyIIysHY2yYMwgCroBVlmVMYWZkq029rm1vaT9kqj7QlYwfNpL+4tcEplUHnUjBgbP4J0VTfcId6EpM5xSApOQTlUAPyOUyTA7Fl6nkXq17dQeiTsScGInFrscuiRRbDOqd07JXsgySJKKYAJqqR1N18iAcVgf2YglMfsgOHbJNRLIISJKAXS9TXGjE6tAR0r4ue3+9TL1e8fzy0j6CqwZQvVkkGceyOLjmGvd/0kINbqCY53n2QxuKv5ShNQgOCi/nERxjJizGD2Wm65AwCM5xcyAgIqCzFbNo/GYEAe6f2RK93vP++gJKisiCSGIz54adSjCGMztvULODE/DpBIcKGKSSNGndo1jz6Ume/rMbuVcKSN+bxZLpB/lh2iHu/76nunlrpycb0WJUTQrzJC4fy2PH7L+Yd89quk6uR+sHUkvMFwUkdEiIXkOHV2SPpcjEQBrdl8qv07YTEhfAhe2XybtayKEVZxGNOmr3SULQiZz87Qz17y5RmGQRR7HVyz5hZUtZ4Pe2i0PittBCjn8GtXT1qjPSozfAkpGRQXh4OAkJCWzevJl58+YhCALPP/88Q4YMoUOHDqp50+1aNb0VdspdylJ4/i5FqFGjRmzatMnDqV+RzZs307Nnz3JXzrVjMG/ePCZPnux1XJKTkzGbzepeN9q8t9LHjIwMl9V397KCg4NVZd1XGoBnnnmGjz76iIEDB9K2bVsMBgObN28mOTmZ999/XwUFWnZJmUsKK+MtMqLiO6TtryKvvPIKDoeD+Ph4iouLsVqt6HQ6da66t1eWZTXiXlRUFKNGjVKj8pnNZpWlsdlsFBcXYzQa1fR33nknX375JYMGDWLGjBkkJCTQpUsXjh8/zg8//MC3335bofF29+NRTPAuXLhAeHg4VapUwWazuSxOKOOj+FJNnDiR4uJifvrpJ9VPqLz6tCIIAq1ataJVq1bque3bt9O9e3evc09h5J588kkOHDjA+fPn2b17N5MmTeK5557jp59+wm63Y7fbGTduHEOGDKG4uJhTp07x0Ucf0a1bN/71r3/x9NNPe5RbUcbVPV9CQgKPP/44o0aNYuLEiWzcuJErV67w/fffA84Q+FFRUSxcuJDx48erZSvmnn8nSPrHMEvHfj5DTOOqLqvfkiwi4ODMn+n0eKcjIjKRqSGEPtaCn0b9RM7RDC6tOs6xBnG0f7kzIdFl29JXBiQpYs0u4sIvh8k+dBnRoCeqXRLRHVKg5MXgqxzVrM6NpXIxt1PaVfKpNc1TvnsN8uASHc876xTaKY1zr/5ASPNURL/SlWtBkLFeycKWkYV/UjRa4OL8dB0vbT57biGm6FDNudK0OiTMiVFYr2bjHxLgdSzdwaF7u72JISII25UsD1CnMHNSXgGiSe+VGXNh3vQQO7Q9ksVG0YmLIMlE92mMwWzwAEhK3xWwpAAlXyydy2cJEJFkkdQ7k7iyL4OwmpHYBbkkaIGEJJX6Vylj6JBEHHYRWRIRSqLwAUiCDgwiklVEtosIFhHRUTJ+dhnJIZAt+hPYoT32DevIPnicoBgz34/bTGKrKhj99fR/szmiQQfILoDJ2U/XY5f7JUgg6zCIDgpvFBFSxYif6GQ9dCWzV5tfh8zRNZe5eiKPsT92IDS6ctH33MdV1LRXK1pGRb1e8gI2mnXYrbD6E+ceHf6RZv58bRe2PCumAB0hsWb8/EUKsm3kZFgx+JX4HhXb0AkSudcs7Fp0Dr1RxC/cj8jkEKJSgkjfkUHG0Sz0Bh3GcDMpXeIxBRldnn2XNsoCSDKtH61HcFwgN07nYg4zMeDjDvw6dRuFWcUkdYpn9YxtNBiUrPb68C9nSekaf9Pj9reLLN+e4Az/kFXF77//njvuuAPwZF1+/PFH5syZgyA4o2S99NJL9O3bl61bt7Js2TIaN27M7NmzXVaxbwbseDNTyszM5Ntvv2Xr1q3o9XruvPNOBgwY4GIyqJXbpeR4K6My/Rk4cCB33303/fv3JzAw0OXaxYsX2bt3L9OnT69Umy5evFjmHlhpaWmcOnWK+Pj42zYGUVFRauQ093khCAJ5eXkqU6Oc91X3xIkTeeSRR9i9ezcOh4MRI0YQGBioghRvYEkBQgogqIiPj9K2fv36sWnTJpKSklzAhRYcaevUftcyWv7+/ipro0Td0+l0OBwOdDoddrudjh07YrVaWbVqFfHx8YwePZoOHTpgNpuZOXNmmaDF3U/HvX0Oh4OrV68SGRmpMmuKr5Y2v16vVzeB/emnn1R/nPLmbVlgxP15LM+MUBmrt99+G1mW1c2Ec3NzMZvNVK1alaCgIHJycsjIyFCf44KCAgCuXbvGvHnzMBqNREREUKtWLWrXrs327dvZs2cPRqOR8PBw7rrrLtXfz1t7lX5PnDiRtLQ0jh49Snh4OPPnz+exxx7j0qVL9OjRg+HDh6tsJzjNZ5X34N8l/xiwJEsyx1acoOZdTltLSRaR7BI7PtpNYqcETGYdkiyhQyDrfC45RzMI7tYcU/16ZH29mA3PrKL3nF6IetElqp27KZ47uAHvZnUiMjf2XeTk/J3UGNyIpMENsRU7uLz6GHufWU795+7AEBbotRzlWFW8vbBM7r5MpQBKY/anpbO1IMZt7LyxTvoAI9H3tePsqz8QNaAVgY2SwOEge+NhMtfsJ+Hxvl5ZJF/meCKyc2yLLBgC3PauKRlP+408TKF+GhDl/eWutt8HC6hthy4iELnYij0zB0NEsAsQEmSBG7/vIqxT/TKZMQX4AOjMOkwNEtTr2mvux+4gSRRk9CUsk3pOa1omi6p5mChI1OmbyMHvjrBj+u+0/2wwmJz+MbYS0zWlPrtDxOFwAiWHVQREBFEusTUE2S6CVUS0iOiKBZAFZJ2MrBeQHTKSZCDXoiOgXRdqdW8IBw6z460tSDaJgW82U8GGNwDibnZ35UQeB365jCXPRlRKMHV7V8PPX+TiwRxqNAjEJNpwFyeocvZ995ILVGscRkytEK/3tTxWyT2t0t6kFpH89u4RGvWOdWHGlH4cWn2V1LbOEOF7ll0g92oxxkA92WdzsWQW4RdsIPucjRNrL2EtcuAfYiAg3ERC3SBa3FONJgMTkGWZr0dtIOu88wdGGX9FTIF6RJ0zoMK6t/aS0qkqwQlBtHikvsvG2S59FQRqtK/qcr7VmHr8MW0b3ac2ViepLMuc23KF0+sv0eudtl7Ho6L+mH+v3CawVImtAv43S2hoKJ999hmjR49Wf4TtdjuvvfYaHTp0IDQ0FHDe/0uXLrF161b69u1Lnz59eOmllxgxYgS//fYbQUFBtwSYtLJjxw5efvllxo4dyyOPPILVamXJkiUMGjSI2bNnqwzK7ZSyQEZ55kzaT7PZzIwZMxg6dCjjx4+nW7duanjqr776ig8//LDSwM7f35/MzEwiIiJcFGqlTZcvX6Zjx46V7HHZEh4ejl6v59SpUx7BNWTZ6cA/YMAA9Xt5DJPRaKR169Yu4ESb1x04KGySN7DkTXnXnrvrrrv44osveP/993nppZcICAhw8VfSBhbQgjWlbnD1b9IyT1omRwFVrVu3plOnThw4cID33nuP7OxsvvzySwwGg9e5441VPH78OIsXLyYrK4uUlBT69++P2Wxm3759xMfHq/6BilmiVvR6PUuXLqVu3bq0aNHilk1jtdKmTRsee+wxHnjgAY82A6xYsYKuXbsiCAKLFi0iPT2dwMBA0tPTyc3NJTg4mMLCQtauXauaqEZERFCnTh2GDBnCsGHDkCSJ++67j3379qn3QFtPYGAgBoOBnJwcpk2bRs+ePalWrRrTpk3z2VdRFOnWrZsavlyWZZ566inGjRvHBx984JJ248aNfP/993z99deVei7/G6DlvyWVAkutJjfjyOIT/DphNRG1wnFYHWSdzqZOv2RSetZAKhljhyygCzQiGHSIweGY41MpTIwlZ/dxruy+RHyruBIF1m3/JTfABGWb1VlyrZz8agct3uiNroSZEfU6EvunEdYwjiPvr6PRS70r1DeVQdKAJndWCRWkafOVD5zA1VxPKR8gpGF1/BIiyfx9Lzd+3gU6keAWKSRNH4LoZ/BQ7gQvAKD0GoS3r82NNX8R26+JyzURsBVYsWTkYIoNUx8Id8VYCS6hNQnUCeU/PLGjOnPh38up+sgdmBOdCrFsd5C1ah/WSzeIHtzWCS7wDvYU/yNv17UMUmlaVz8l0e26Lz8mlzERZAxG6P/vNiy4fxWHX1lJqxmdyAmIpNBuQPE5EwWZYruT3ZIByW5AlgT1uiDKzrthF9AViegLnAPuMAlIsozgEKBYhyDpKcoxcCrUTFS9IFo+nM2fb+yh+GouQTEBJWaCIg5KAIbCBpWADZtd4OeXD6HTQbOBcZjC/Dm7P4eFk3ZSp00oGacLGD6jhmp2pzw7BsHhPBYAWcQUqOfs3msUFzow+utdWFJF3EN3exN3gBdQxR+Dv55jGzKo1aEKNkmPTpBwyCJZFwo5/GcGw2a2wiGL9PhXPbpOqaeaALrPQ5ESlk9jkmiTdFjsIpGJASpY6vNSEyJSQjn0y3l2fX2Cwd/0ICQhlNxrRRxedJwzGy5y5Jd0LHk2TMFG0u5OwT/C6SeoE2TiG0Xw25JTNBmSopru6QSZ2NqhdJrcgJXPbkdyyKx9bRdZFwqIqhlK77daYzCJSLLne8pjjErMjv+j8n/MUqVk+vTpzJ8/n379+pGWlobdbufIkSPce++9qg+CIv7+/gQEBFClShWSk5NJS0vj119/5Y8//mDgwIEuimFlAJM2XUFBAS+++CLfffcdQUFBCIKAyWRi5MiRtGvXjscff5xFixap+dyVbKVub+LL9K08Rd+bSZA3oKR8tmjRgi+++IKvv/6aL774QlXcFi5cqDIqlVHKBg8ezPz58132aFKksLCQgwcPUr9+/XL7UZZ469/zzz/PhAkTePXVV2nYsCHgBNLff/89u3bt4rPPPnPpS1n9ck/jKxKa0gZFCdZe93b/tO1V7oHRaOTTTz9lwIABzJ49W913R/Hzcd/sVvnUMlqCILiY7SnmgpIkqeZw2r4YjUaSk5MZPXo0L7/8MkePHqVu3boAPtktpe7nn3+eoqIihg4dSmRkJHv37uWRRx6hZcuWHD58mFGjRqlslrbPyrFOpyMoKIj169eTlZVFZGSk13vg7flwX9xwf24jIiJISEhg2bJl9OvXzyXvxYsX+eGHH1i0aBGCIPDcc8/x1FNPqSHlfT3/7kDX4XAQFxengqUZM2ZQp04dVq1axdy5c5k7dy61atUiMzOTJUuWsHbtWpYuXUpOTg5RUVGMGDGC+PhSa4dmzZrx4Ycf8vjjj7vMydq1a/Pmm28yZswY8vPzeeKJJzh37hypqal8+eWXZW5LcDvkH8MsiaJI4wfSaDS8Nrnn80CnJ7RagEvDnf4KMoHhJgJTo8le8ju5f2xALraSdG9DYps4w0r7ZJK8BHtwluvJLF364wiJA9JUoKQtK6hGBMYgE0UXMglICPPoizvDpPVpUkzzytubydleTZk+gJN63cf9NYUHEHuf5+atePHBURRbb3NFFGQi2tfixMtLMceFEtosSb1mzyvi1NsrqTq0rdc9pFza6XULW98iCOAXH0HCY33I+HEL1itZiEY9ksVOSOuaVH+8D4LOtT/e+uHuh6Q9Lk3vCoTcAZJSjlfgpAEFIqVO+OHVg+j7RguW/2s7S/r/SL3hacTf3YRCXSkr6W+wYhAdmA02Co0G1XdJMcUrthgo1hmxA8g6EMBhlpD1Msgg2kSwyYhWkAp05Bb50aRnMjs+O8TiZ/YyfE4b5x5DXnxbFOCydvYJqjaOokm/OAyCA5uso0Z4CBlnCvn9g8PE1/SnTstgZMGOVS41QdUhgSDikJ3mcaZAPSGxZgxmncf9rghI0qZ1B0x3PlOfn1/az+E1V6l/ZxwGPx0nNmVw4UAW/V5upO6jJAgCot6NFtLWXwIW3dtj0MsM+7QlssXCiy3+oPBKPvX61oBAf3Z9fYL00xJRUcGIwUHUfjiceo/YWfvEag4tP42twE72uTzq31OTuEZOfyu/YCNh1YM49uvZkgWfUsBkDjVh8NPR+/UWOBwCAREm1bRXGVtv8l9nlxwOkB23Xo50G8r4XyCKr8OYMWM4ffo0oiiSnJzssbKuOEE3adKEuXPnsnjxYvLy8hg+fDidO3e+bUrG4sWLGTZsmEuIckWSk5OpUaMGBw4coEGDBjdVvi+gVB6zBOUrltrvERERXsFNWW3wVVaPHj1YsGABK1eudIlIlpOTw/jx41V/prL64gsEekunnK9evTqzZs3i/fffZ8aMGfj5+VFUVESPHj347LPPXPYtcgdN7nW6p/P2p7RJ2y5lHpZVj7YOWXb6OFWrVo3333+f8ePHM2zYMIYMGcLAgQPx8/MjPz9fZa0cDocKfLQmeFqfKF/9kWVZDXleXFyshnOPiYlh8uTJLFmyhMDAQI8+aYHizJkzSUlJYdSoUYDTdyYsLIzTp0/z7rvvEh8fT7NmzVzulzu7KIoiQUFBREVFeQQX8XZ/vd3vssDNSy+9xBNPPMEff/zBoEGDCAwMZO3atWzatImPPvoIs9nsAlS15VZERFHkiy++ICcnh0aNGpGenk7v3r3p378/c+fO5eTJk8TFxWEymRgxYgQPP/wwzz77LMuXLycrK4sjR47w6KOP0q5dOwRBwN/fn6ZNmzJ//nx17ytFwsPDMRgMLFy4EEEQiIqKUrdNKGtu3Q7554ClkpVeDDrCkkKRZKf66T6mIjIm0U5i62j+OnyJKo2iaTqlDSFV/V18G5zKhrJy7AqYPETwBEzZRzNI61nTKwuFDFFNqpJ79Cqy1c65xfspvlGALENAQhjVBzbAr2qYC1AqraukDg3LBF6YJs05cGOPlDyaFWdFOfeYgxVgbsC3r1LpdRmdQSR1al8ufL2Jy0t2YU4Ix55bhKPIRvzQNgTWrupcEVcaoYJETTu99EPpiy8FURBkzLHBVJ9Y4rgryQi6Ej+bEhbRnTnSmtN5+64N2OAOkJQ54s4uqedcrksex6AEPHAyoYmtoun2ZH12fnOKvbP2cHD+AVo93YbgTg0otBvQixIR5kL8dVYC9BYMgoRedKATZEQkcu1+XLMEcaUgiBt5Tn+wYD8relHC6tCRX2DCXqxHtuoQDBJ6nYRfoI4H3q/Px6P28PmwjaS0q0L1ZpEkNAzD6K93uS92i4Pz+27QcUwK2WdzSN9zg2Nbsziz7RrFuVZa9IkiJMJpnqC9Q5IsoBOc/moSAkVWgcN/XqXFfUkeL5zKACVvIiGgM+kZ8GoTrp3O49i6qzhsEjWaR9BxXC0EQcCmDXleMp+Ud4K2fku+jcyz+RjMOsIT/Dm2/QbBVfyITjRjMAtg1tG4bxxrZx5HiImksLgkb2Q4mRYzNkmHWW8j1FhM3w86opcsLBz5J6fXXeTYr+do/mAd2o2rh0Ono82EBqx9cw8nN2dQ847q+AXpubjzKud3ZdDj+SYERZlL+ufc5Bo8A0h4RuX8LwKm/2OWKiVa0yKtX4yv1f6OHTuyceNG0tLSePXVV6lRo4ZX0yBvZWjL8nYMsGfPHv71r395lKGk69ixI7t378ZoNDJr1izOnz+PLMtUr16dsWPHkpqa6sEE3QrTVJavhlJ2ZRRDX/WVxV7pdDo+//xz3nzzTebOnUvNmjXJzs4mOzubxx57jDZt2vhkd7wdl8UwuPcvLi6Ot99+G0BlN3wBHa1pnXud3sCSt/Zq2+feJl+AS6lby/aIokibNm2YPn06c+fO5csvv2ThwoU88cQTdOzYkdzcXOx2uxqaXJnDyp92sUDLQCnt0uv1LumKi4uxWCwUFRXx4osvMnHiRPr06UOXLl1o27YtrVu3Vn3YFDbKarXy559/smDBAk6ePMmOHTvYsGEDmzZtIjMzkx49emAymVz2lXKfG0o7fvvtNwYOHOg1PLq3ueB+3p0d1d4Hg8HAhx9+yOnTp1m5ciVFRUU0b96cJ554QmX/lHugvXfaT3CyxsePH8dkMpGSksK6deuIjIykRo0a+Pn5YTKZGDhwIPPmzaNKlSoqiAkNDaWwsBBBcIZIV8yEjUYjw4cPZ+3atfz888+MGTOGF154AaPRyJNPPsm0adN4+OGHGTRoEGFhYWzZsoW1a9fy5ptvkpCQ4HVeefv8P6kkWCrrx9+FVcGplLYak0a9AckYI/xB1CP5GPhSU5vS69knb5B1MhODv5HoFvEIJoOHQqL302EvsGIM8ispx9XXyVZgpehqHlc3nKT2I63xTwhHQiD3eAaH319PjeEtCEurWtI3L+Z+lLJMWn8Hn8ySW6hw2Qu4cA/8oBX34XFP58skz110fgaqP9wZyWrHej0Pnb8JvVtAB6VspU73kNHum8Jq6y8r4IPKyOlKWQNvIKkyAEl77AskacfGHShp8ynXnfPNgSSLFGTksWr6Nup0q8qoL9uSn1HEihn72TB9A62eshLauwXFdj12nYiolwnWF+OvsxKoK0ZXMtfDDEYC9VbneaMFUZAJ1FvRiw4K7UYu64IpMBmxWPSIooy/0YpJtFOzuZnJM2uy5sdMdi06x/rPTqL30zHo7abU6RRN9vl8jq+9zJmd18k6m8e/O/9OfqYNQYTYOiE0uSeR5r2iaFjXwfuPHgWcoEOSBWyyHlGQMOBg8btn2L7sKrnXnPtt1OkeWyY4qsheRkpdgMsiiIRAVFIQUUlB6ndFCrMsrHr3EFeP5aAz6ghLCCAs3p8arauQ0DgCW5GDte8fIvdKIbH1QrHkWjm9JYNrp50bgyJAcLSZ4BgzAREmZBn2fXOUG8cyAfBPCKcwr4grq44T3TgafYCd8+uPEBiiJ6VTLCEP1OXspivs/OII0bVCqXVHArIkUZxj5erhTM5tvozOIBIU609ypzhCEoI9TAQrEmnvvyqSTEUY4YqV8/+/uK9SlyWK4/TAgQOJiIjAaDR6KJZlydGjR9m/fz8BAQF06dKFgADPQDtms5m8vDyfJnW5ubmcPn2a3377jRdeeIE6deogyzKHDh3iueeeY9y4cXTq1Mmnou2t397Oe/vuq03urE5Z41gecPPFXplMJqZPn47FYuHSpUsEBAQQFRXl0ZeKKHy+2u+LuVBEARbacrRgpTLMkvuxti2+RLmmKOXujJS2zOvXrzNlyhS6devGd999x40bN3j66ad55ZVXyMrKol+/fqo5HngGTtBG6VPq1LZDG9ZcuS6KIna7ncTERN566y1+/fVXFi1axMyZMzGZTLz//vvcddddXLhwgd9++41t27Zx6tQpmjVrxvXr1xEEgbp163L33XfTvXt3EhISmDx5sgfTpcjnn3/O4sWL1YiWSlhu9zGpiLjfa29lJCUlMXHiRJc0siyTnZ3N888/z/79+zEYDNSoUYPExETat29P+/btsVqtvPLKK5w8eZImTZqQl5fHn3/+yZEjR9SylO0KoqKiEEWR7777josXLwJQs2ZNiouLWbt2LfXq1SM8PJy1a9cSFhZGp06dGD16NDt27GDWrFnUrVuXoUOHYrPZuHHjBjt37mT9+vUYDAZiY2O58847SU5Odrmf7uOg/byd8o9ilhTxBZwcGt8ICYGA6ICS89pA3L6l4HIee97bREBsMFENYyjMyGfLM79RtUMNagyoX9IO502M65zMhV+PUnNEE0S9zoV5kmWZy+tPgyTR8t2+iHpnpDERmdCaUTR5sSe7pq6k6TsDEHSlQM2dPfHwZQJXtkU7Pu6dcQN34MV3SSPu/loexbmb5JXDSIkmHfq40JI2lIIf1/55tsXFhNCNefLK+rm00a0sL6DIG0BS0pTnh+Rx3q0Ml3NuLKYoSKr/lXJNlmVWv7yLHs83pUo1M6IgExBu4tFv27Bg4k62vbWNqN9OE9k2BX2HRIIS/bBIeiREbJIzCp2IXLJ/kYBJZyfYYAEg0FCs1h9kKnZpi1HvQMJpZta8UxBpHcPJdxg5cdzBHx+eZNHknUTWCOTqiTwMJpHoRD/8/QXa3B1B7cb+VG8cRp5fOA4E/EUrJoq96scOu8Rf27JZNee8y/nomsFeg0uXB5K06bTzyD0inifAcD4d2+af5K8V6SS1i8EU5kf2+XzObstg82fHiK0fhtFfR9vRtUlsGVU6Xu8f5NrpE4RUD0KyOMi9UkjulSJNYySi6kdx7dA17Nez2TZmCZYbhZwLNiLZJARZxm6T8AsyUJTtBIuxDSJI6hCLiMSlvRmcWHWepO7V8Qs1Yc+zkHu5gE0fHEAQBZqOqF0hv73/MfJ/zFKlpTIKgk6nU6Ou+VqJd5dLly7x5JNPUrVqVdq0acPVq1cZMWIEXbp0Ydy4cS55+/fvz7fffsvzzz/vsrGmUt+SJUvIzc1lxYoV6sqzIAjUq1ePr776invuuYfWrVur17z109v3yoxBWaCpomX4Em9mUdryjEYjiYmJXvOVBULKq1NbN5TdF291lcVs+QJPvtrojXnUptWGEvdlQjZt2jReeuklatasiSiKxMbGsnz5ch599FE++eQT1q5dS8uWLWnWrBlVq1ZFp9O5+CQ5HA41+IPdbndhlbRtV0CTwWBQr9lsNho0aEDLli3R6/VcuHCBOXPmMGHCBD788EOOHDmiggqj0Ujfvn1p3LgxTZo0ITg4WGWxCgoKkGXZhVWSZafp319//cWnn37q0mfFXO9mxRfz6Is1Vq5/9tlnLFiwgHbt2hETE0N6ejqbNm3ivffeIy0tjYiICMaOHctrr72m5n3rrbc4cuQI1apVQxAEzp07x+XLl9XylWd63759ZGZm8thjj3H16lWXKIo2m43g4GCysrIAaNCgAXfddReyLLNnzx5+/PFHunXrRkxMDHl5eVy5coVXX30Vq9XKM88847Wv7sf/J06pFFjyJopSpF1ttUk6DzOU8leqJWwFVna+tpaWz3UkILbUXjv17roc+GQb6SuPUK13HQCu77vEmaUHyfzrCtd2X0BvNlD9rrrEdEhGQOLUgj0Y/PXEdUtFbyg1n3HWJSMGGKjSujpZO88Q2TpJbaNPAKJlrTRJnAyUoKZx76tWySo1bfNkm9zTKmV7bUolFDdPcOQqSp3egk94MyEsr32+AJ17gAaPc+7HGnbI23VtOS6skkdobblMgHf14A2iUkOIqBaAQRtFTqdn5IdN+H7aQa6fLeTEF9s4MnMLBn89wbH+tHysCf5Na1NoN2AvYXKUP4csIiKTaTGr3wusRqw2PXaHiAAUWI1cLArBLFqxGXT4iTb0gkxKTQPV/l2HZW8bKcq2MGBiHE07BBJkdvDqqBOMfDwcgyjjoJg8h/MFKVgszHnxIg6bxIqP05EQkQQRByIbv06nIMtGUtNQbHaZ7MsWhs5q43xBlgxLRQGSu7hHrKyIGV9y22j2L03nwt7rNLi3JrXvSub81kvsW3icywezCI0PIKFlNMpMdSDSZmw9dH56Ns8+gsFPT70743FY7BTcsBAcY8ZmlTi74zoAp+dsRC62MXh2e46uPEdoQgCNBifjF+JkAC4dyOTk+ks0H1ETk1lEQsQ/0h+AM2vSkd3YlNh6YSV9E3xubquIO/P9XxOZ2wSWbr2I/w1SWZCgrHB7Y1y8KbmFhYU8+uijvP/++yQnJ6vXH3zwQd544w3mzp3Lww8/jCAI7Ny5k48//pht27axbds2AgICuP/++xk0aBAAn376KTqdjmHDhnkFQ2azmQEDBrBy5UoGDhxYZp/LYz3KEl/sUUWVLF8rw2UBFPc85bE3lW2TUkdF5kN5LFF57FZF+lfW9fLu1/Hjx4mNjaVWrVoe+zHNnDmTp556ikOHDvHdd98xb948zGYz0dHRPPLIIzRv3pwbN25gs9mwWCwqYFKYCIVdczgcagAId4bNZrNhs9nU8OKRkZE8/fTThIWFkZGRwf3330+rVq3w8/PjscceY/jw4WrEPoXpKioq4t1338VqtfLVV1+pdQuCwA8//MD169epW7cuoaGhHD58mMWLF7uEcr9Z8cXUlTX/OnTowJdffsnu3bsZPnw4/fr1Y+fOncybN4+//vqLKlWq0KNHD5cyJk6ciMFg4NVXX8VoNNKvXz9sNhsZGRlER0djt9vZunUrAPPnzycnJ4f58+ezYsUKEhISeOCBB1QW6sCBA6xcuZJHH31U9XWMjo4G4M8///RgkZo2bXpbGKTK5v3fzCwJcgV6m5ubS0hICA+sG4wx0Om8Jskiro7hgnpeEa3i4CscsTbN8UUHMUcGkNC5BuBUPmRZJu9SPtYCB3vf30KH9/twYeM5Lq47RcPH2yEadOz/YDPWPAuOQhuCQYdsl6jSohpF1/JJGlAP//gwD78mSRa4vvsCOSevU31wE69tcmm/l3PgBjIq2E938cU0VQQUlcUuaev0yWb5OF/eRrTgvX3a9pTHICnX/g6Q5J5eyywpZqKiIPPXt0eISgmmZpsIDILDGTmuJFiBQbRz5UQuqz48SWLLKIpybOj9dJzanEH63kzqPdSUsH6tKJACsdj1KHsy6Uo2BC66kEXu/nNI6DDVTUGMiEAu2X9Jb3QQE5ZLXEAOceYcYozZ+Ak2j3nqJ9owCA5EJDYsusr1i1bufTwWQRCwyjqMgoNdv2TwzmPpBIXpEfUCMgKS5GRTkAViawbS79nafHjvdjqMrU27R2q51KGIoxzmV4eEA1Hdv8nXeJcnhTk21n9yhEO/nKc414YxQE9cowiuHs6i8ZBk2o2p61KXUu7q9w6S3DaalFYRHmajmecL+PiuP5EdMl2fqE/LEalqn3zNcWUTW1mW+WvJaex2GaO/AUEEWYKo2qFEpoRWqE/gOZ7Ku9CBQHGejXmdfiAnJ4fg4OAKl1kZUd7T3aqMRi8ay89QjtglK6sz5v6tbf5vijJe6enpathvKPuHuKyfS60ioC3jm2++QRAEhg4d6pI+PT2d/Px8nnnmGZYsWcK6dev4+uuveffddwkMDGTq1KlkZGSoCqvig1JcXEy/fv1cAjxo27Vr1y7+/PNPnnrqqTKV+YqwH2X11duxt+8VkYqU4UtZ1X6/WaasvLq91VvZz4qUUZF6fX3XynfffUdUVBS9e/f2CFQiyzJnzpzhueeeo1OnTmRlZWEymdi8eTPbtm1j1KhRdO/eHYvFQl5enou/kiRJZGZmcvLkSURRpG7dulSpUgVAnaN+fn74+/urkSMVgKP8aZk4WZb5888/OX78OFOmTHExBdy4cSOTJk0iODhYDZqgZb6Sk5N5/vnnGTp0KI8++ijPP/+8hzJ+s0q1t+fYl8iy02QxNzeXN998k0WLFpGVlYXZbKZVq1YcPHiQwYMH8+qrr7oAMMXE8a233iItLU3dqFm5ZrfbuXTpEm3btsVmszFlyhSmTJnismDj/s5xL3/hwoUUFBQQGBioLvDUrVuXtLS0SvXRl+Tm5pKUlFTub4Tyrr169ept+S3Jzc0lOjr6P/rbdMvMkruU59hcVrS7K9sv0uHNbuq5i1vOc+z7gwRWDULnb6Lwch47X11L0bUC2v67T4lpHTSb2pnC60VkHbnKiW/30XhqV4Ligzn61W6KrhUQmBDqpZ0yxdfyMYX6+WyTImUxTu5qo+jj/eXCQLnLLZj4eGNNvJnzeVdvyzCMLGeVvCz/KW/+Q2X5ISnpvAVqcPksByR5u0daoOQtj96ow1pkB5z3WVLsrxE4tCaDdbNP4hdsIDTWjLXQwclNGXQYncLxDVfZMWcX5mVHqP5QR4wtGiChQ5bBXmDl/Ce/gV6Pf7PayHaBawvXgagjfGh/BIMByS6SIQZhc+godhggEML0BeoeSTZZhw5Z9TuSZJHU/mFc/PIc0x86T1rPWMIiHOxeep4jG5z+Oi8vTyMo2p9i2YBFMpBdoOOl5r/RbHAiYclhSA4ZUS+o81lhQsoDSYqUl64irIooyPgFG7lzagPueKo+V47lEBLrjznMjx8mbaPto3U86lLM+0Ji/ZHszlDk2qiBDlkkPCGAEfPacWL9VVoMTfIJkiQvfRAEgQZ3l674+2KPymOW/seILP+fGV4l5VZNUHwBJYBff/2VuXPnqufXrVvHhx9+SHx8PGFhYVy8eJHRo0dz7do1li1bhslkQhAEPvjgA65du8auXbv45JNPeO2116hXrx4zZ87k4sWLPqPhXbx4kYiIiAr19Wb77m4CVlHxpZi5s3TegKuveirCMFWmjd4YQ19llAfQyqvXW1CBstKW9V0rZrOZoqIij/OCIPDnn3/yzjvvoNfrqVatGjabjbVr1zJ69Gjq1q3LvHnzWL58Offffz/169dXQ40XFhayZMkSJEmidu3aCILAihUrkGWZQYMGqYBGAVfgNFn18/PziKynpJEkiU6dOpGbm8ukSZPo1q0b0dHR/PLLL2zYsAGAL7/8kho1aqh5JUmiWbNm3HXXXdSuXRtZll1CnGulvLGtCDCuyOKJIAgEBwfz8ssvM2PGDA4dOkTVqlWJiYnhgQceYPr06T7vX3x8vBpoQ8tiCYJAQkICy5cvZ+XKlYwfP94jCEdZgEcURe677z6PvrsDyoosEvmSyub538ws3XawpBWXgAvl2HSo5lo6Z/rz685yft1Z2rzRE73JqTAaA/Tkpmdjy7egEwWUuF8SAv6RZvzbJ2Iw67my9gQhI5pQ7Y6aHJ61jagmnhv4ybLMpTXHafJiT2fd3pp3M/fDiymeIlpTtoowNz6rKAdclUbd8wJK3TtVVntvgtnyBo7cP70BJI9rlfBFcq/bV/sUVkk5r0OmRodYtnywj7pdYkAQQXJeS999nf2/XiG+UTgN+yYQWzeU5E4iTe9LZulTO+kxpQ4tB1fjl7ePcPiVlQTErCOpXx3ietVn94ebiBvQAkOtGtjsOuwOkYDmdcnfdYrMr5YSOWII2ESKHSJXLXoKLM4fmSiTHwF6S0lwBp0LSM+xmcm3mbDcWYcq7Wwc2XYKw/V8sgrNWIpKxiM0CAmpBAAJWB3OH6d82czFElPowCg/lwUKdwDkHujE2z12ATLlsE3u6ZGVjXYF0OmIqRteUhdEJAaQcSiTqvXDXO6fYt538a8sUjvFlpg76jzSxDWMJK5hpAdQ8gaQtHsquYs3UFTRZ8FXRDzxP/lu/z+wVCm5Vfv88n64HQ4Hfn7OIESrV69mwYIFLFiwgICAAGRZpkqVKhw6dIijR496RNWLjIykZ8+ehIeHs3jxYurVq8fAgQOZPHkyPXv29NqXhQsX8sknn3icr4hZWVnXbsXszpfcapm+gF95YKWiwKQsIHmzdWvLdz93s8DT/bhr1648/fTT3HPPPS559u7dyzfffEPbtm3p1q0brVq1AuChhx5i7NixTJgwgSFDhvDqq6/y/vvvq/OvY8eOLFiwgObNmxMREYHdbkcQBFJTU7l48SLffvst9957L5IkUVhYSEFBAQUFBaq5njL/tX1UouHJskyPHj3o3LkzO3fu5PTp0yo4A+czoGWltL5TOTk52O12YmJiyh0fb6ChvHEFT8Dk674LgqAyY02aNFGZn7p167Jz507at2/vUY8gCOzevZvx48e7AB+lTlEUadasGU2bNi0XtPnqY0WBhS9g6G1O/jfAyn9b/vbYthU1zQEISQzhxuFrSA6J4z8eptW0Dhj9Spt4/WAGIclRBNcI5+ruS6V1lARuEJEJigui+Lpzw8rA2EAC4oI48fVuJLtmJdpi5+CHm4hpVwNjQKkDrUfby4i8VtZfeemAEpOtm/urqHjLox0rdyBys33RlqfUV+YYKenLqM/3+HsCpbL6ouTxpewGRfvjF2Lk8C/pKniQZIFtX5+iVveq5F23UqVOODbJCV6M/nru+Fc9tsw/TXiNYEbObM4j37UnpVUkR77ay+8Dv6Lo1BVsB45j3XWAACGPILMFf7OV4JZJCAYB6/UMEGRkCSSbiMWmJ9dqosBhxCLpsUh6ihwG8ux+5NjMZFn9ybaYuVHsz/WCADKlCGjRAlOPdtR+oT+pdzvZmE/GHKLAIpb0QcRa6GTMRJOR4pL4EoGRfqpvVUWlrLQKEHL/VI4rylqJgkzTexLZ9sUxBFkbSMZZd8apPBxWCf9wE6e3X+f4xqvk3rCq90u5d+p3RPVPbY8sqH8VFZ0gVyq4g8figSB59ff7W0WSb9/fP0jKAxQ3K40bN2bjxo0AfPTRR8yePZuAgABVkdmyZQsNGzakSZMm/P77717LSEpK4vLlyyq4atKkCa+88go2m01tt8Vi4YUXXqBt27ZERETcNDjSpvFlqleRfNo/b9e8fa9IWb7ylAdWyitL+6fdgFUbFa6sPpVVd1nirtTfzB+gsjeiKKrhqBcsWOBS18yZM7nnnns4efIkbdq0URV6f39/Xn75ZebOnUtSUhKzZs1i6dKldOrUicWLF/Poo49y6tQprl69ysWLFzGbzQQHB2M2m6lZsybBwcFcvnwZh8NBcXExBQUF5Ofnk5ubS35+PkVFRdhsNjVQhPKpBCmwWCxIkkTLli258847mTp1KkOGDAHg8ccfd2HJlGN/f3+KS37YlKiI5Y2z+5iVdS+0Ut59dy9DuwnvyJEj+eijj1SQp81z5swZMjIyqF69Ops2bWLVqlVcvnzZBThpTe58tcu9jRVZHPH1DPl6Xm/H+/Fm57evOf+flJtmlsSSTSN9mpa5pHVbcdUwQlpJvbsuu97dQu370qjSKAZRrwRmkLi48RzB1UMJqhaCvcjG+d+PUbVFadhvpY7cs9n4xwSqpnV1H27B2RVH2PLETwTGhSDZJYqu5ZPYtx5xnZOdew5pTJI82o7nCrsvkz1fK/EVvX67xaU/XtoJ3gM3eGOktFJWVL6yTOhup5mdN8bJPT2UMgKlZUsqq6Sk7fhkY7Z+tJ9jf1wgpWMMgixx6a8s/EON9H6xiSsDI0tEJAaSd7UYCSfDEVsvjP4vh3HHk3X48ak9FOfZOL/iLwozd2EO96P+sHok9G5Cnn8I1i61KDhxEFON9uAQEPXO9hh1DoyinWB9MZJDxiHqKJBMWCQ9VkmPUecgwGDF7nAyKja7DotdR64QQPKk7iS3j+a3yeuYNe4Qj3zm9MErznWa9PkHCez/9hiiXiC2frg6NlpgIaJsLlvaT62UGfxEO94ahkl7rAVT7iyUMh/DqwWS2imGpc/sou3DtYlKCcZudXBszSX2LTlLYvNIFk3aSmLLKhj99RxccQ6Tv55uT6WhDzC5lOW1bZV47nyl1Z73xT45wZvCKPlm3P4ukWUJWb71em9HGf8bpCxFoKI+C2WlGzlyJGPHjsVsNtOwYUN1lV2WZdauXUtMTAy1a9fm2rVrLFq0yCP8MTgd9uPj49XvTzzxBAsWLGDgwIFUr14dWZY5f/48999/P4MHD/YJRnwp9uUBj4pKRczstOfcV+xvRgkqj/25WXapMvXeanm3YirmzRRLEASee+453nzzTYYPH0737t0xmUxs27YNPz8/Pv30Uw/2LD4+nuzsbERRRK/X07BhQ9LS0pg6dSr/+te/uHr1Kps3b+batWuEhIQwaNAgevTogV6vp0uXLuzevZvY2FgKCwtxOBxYrVaVKdXpdGqYfUFw7ktUXFyM1Wp1CT6gROEzGo08/PDDtG7dmilTpjB+/HjmzJmDTqcjNzcXgODgYBYsWIAgCLRo0cJjXLzNp/IU7fLuYWXusVJ/1apVuffeexk5ciRPPfUUaWlp2Gw2fvnlF+bOnUvnzp0ZPHgwHTt2JCgoiO+//x6DwcDrr7/u1R+nIs9SZURbnvuccH9/KPPUF3j7/1luGiz9HRsuBlYNInVAHfZ8sI3IBjFYcy0UZxdz6qfj5F/Kp8XznRFEOP7dAfTmUkZIZWuQOL30EE2f6aheEwSBGv3qknhXHYquFyCIAn4R/siIal5fIMYnuPHxvPg0dXO77q2Ov0O05lYVOa9KBZVKbyBJe+wtWIPyeTNmdu7pfeUBV6XWHSh59EMv0mFKIyw5xVzYlYGj2EZ0nVDumKGEIfVUGhVzUa2YQ4zE1A2lZvcEomuHknc+hy3zTrL70z0YvzpItW5J6IKCMdj1+AdasFr1CKKMyWiHq9fZvWgHF7ddIudyEX7BBlI7VyWpSwIRTROQdE6wYhQd5NuMFFhNXN9wlCv7zpAuOPA3WEGGkzuzKJb1SLJIfraTWdryyV9c3HuD9o+lIQb44UBGh1SyUa0TfBVmWbiwO4Ow6sGEJgRyds8NQhMCCU0ILBlDjfmcl/sCpYBIAUMKMHJnl3yZ7UmyQMN+1YmtG8buH06Te7kQBIGU9tEktaqCwy6VRvIDmg+pQfqeG6x4dhcD3m+DLFT+nSQieYBF5dzNiiSLOBBcFiL+o+ySJHmA3ZuSfwhYAu8Kt7sCW1HfBXfFJSYmhkmTJjFlyhTS0tLIysoiKyuLb7/9lsOHDzNnzhz8/Px499131Qh37srKzJkzeeWVV1zaM3ToUO677z413HBsbKxHm30BJW/X3eutyFhppSJmZN5MnNy/V1YJ86U8+iq/rHy3Uuetyu1SPhVAoNPpmDp1Krm5uWzatAmLxUKtWrX45JNP1Hvl/qeAG8V/RhAEQkNDadSoES1btqR58+acO3eOuXPnMn/+fH744Qe6detGRESEmtZisWC1WhFFkfz8fFavXs3BgwfJyMggICCA9u3b07ZtW+rVq+fy3Cj937FjB3v37kUQBNUXac+ePereUnl5eYAzQtyOHTt47LHHiIyM9BgHWZbJyspiw4YN1KhRg9TUVHbu3El8fLy6cbOSTjt2Zc2n8s5r82uPBw4cSFpaGnPnzuXs2bMAdO3alV69enH16lWWLVumpn/ooYfYvXs3Dz/8MAsWLPDpj1XRNnrrp/Z8WWV4W0i6lXl6u1ih//HMkiSLHiDJPTgClCqu2rReGRgveePaVcMYamb3e1vY9e+tGAOMVO+eRHhaDHKJYhfXoQYnlxyk4HKeGmLckl3EX7N3UrVtNfzC/dXyoWSTVVHAv0qgWo9QhvJSHgNUHtjw5Z/llbm6TSyTEsHN675JPlil8hgwX2V4O+cd9Lieux1+SN7MnBTxCL3uUo+W8fAO8swhRmp1c/q3/fXzeewWB3qTriRPaf7cGzZ0BtFjbyGA6s0iObXxClG1wghKCOGO6U1pObouu745zumN58lKz0cQBeynLxDaOQ3ZJnF190kOrD+BOcRAw95ViageQPalIg6vvsK+xWepUjuUZs90ILBmLPoSJir/bCZn3lqOKSYUnb+RQp1EZL1I4usGU+hwKlyWQiftf3HvDQAu7LnG/FUXyE7Pw+ivJ7pWCMFVAyjKtXFm8xWVidJKSHwA9Qck03xEKjqDrmRcpTKZJndTvMqIJAtUSQ3mzucaqueshXaWPLGDoTNblrCapX5M1ZpEcG7XDc5uy6BGm+iKBZlwA0ii5t5qz1UWMDlUc0DBhbkUBQnhP8kwSZJLAIybln8QWAJP3xxvzIf2uq8yvAGmzp07M3v2bMaOHcvTTz9NQEAAAwYMYOrUqWq6IUOG8Prrr3Pq1CmSkpJUZe/111+nZcuWVKtWzWt7Y2NjPc4px76Aki+zIvcyKiMVAUo3o7DdTBt8gaJb7eP/BnGfe8HBwfTu3RuAxYsXk5eXp4aX1o5Hbm6uTzOnVq1asW7dOlq3bk1qaipvvfUWjz/+OLNnz2bNmjWcPn0aQRC4dOkSDRs2xGq1cuzYMfbt24e/vz89evQgJSWF69evs2bNGn7++Wdq1KjB2LFj1XD6giBw5coV3nnnHaKiotQIbrVq1SIpKUkNEKGY4e3YsQOA/fv306tXL06ePElAQAB169alWrVq5Obmsm7dOjIzMz3GKCEhgfvvv59Jkybh5+fnAXLcx8bXOJd1D5SylOPU1FTefPNNNY3VamXw4MEqUNJKkyZN6NKlC7///ju9e/eu0EJERdpys6JlL729EytTzv9WsFTp0OH6AD+vYMhbGHF38cZGqSG53ZT8DU+totnjLQmsGuRatgSbp66mRq+apP95BmtOMYgCokFHysB6RDfzDObgO3Swd4BxK/vO+DLnuxXRKqY3U3ZZecoCWYqUFzih8gyTd78jb2W4p1ekLGDkqw4drvVr63EGfyg9f2hlOtnn8ugwro4LEyLLMn+8upd6d1SlRksvdtKSxNePbqPPjIaExQeoSr1BcHDtdB6/vPYXdbrFsu+ni1w8kAVAZHIQbe5LoMWAODAZ1TyyLHNp/w1WvHKIqyfy6DCtNVF3NOBGsR87pyyj+EouVV+dgmDUYQ60EBpQRExAHn46G0bRgcFWyOnfTnNx91WO/3oOBAiOCyS5WzUKbxRTcN1C/rVCDP5GqjSsQnKvFIoyiyi6mk9IYgiW6wVc2HyeYz+fJqZeGHdOb0JUaoizm25zsrKgv6yAEO737fi6y+ReKaLlfYnqNe2eTtmXi9j42TF6Tm/qGb7bC+BxB0vu6SsKlNz3XlKOFTM87RwsznPwWcdF/5HQ4V0Dh6IXbkPocNnKmvxv/78PHX7mzBk1dLi7KZO3Y1/iyxxKKw888ABTp06lZs2agKuyMXr0aPr378+vv/7KlStX0Ov16HQ6HnzwQbp166amq4iCUp6pnTdzPG/5bpd4G7/brfCUxyb9N4HS36XceZtrWoXU/dwvv/zCtm3bePHFF1VzOFl2+mhNnz6ddu3a0b17d9U0TvmUZZlRo0bxwgsvqJvcKtdPnTrFlClT6N27N0uXLmXfvn2A06xv4MCBDBo0iPDwcDXKI8C+fft44YUXOHToEI899hh33nknFouFV155hdOnTzNr1iwCAwMxmUwYDAaMRiM6nQ5RFHE4HPzyyy/s2rWLFStWABAXF0efPn24fv06N27c4NKlSwQGBtKgQQMGDBhAdnY2ly5dIjk5maysLNavX8+iRYuoXbs2H3zwAY0aNfLJwLifq8j88TX+WtmwYQN79+5l8uTJXs3esrKyePrpp5k9e3al5/Dtmm/e2Ght2bm5uaSkpFQ4dPiNGzduW+jwiIiI/9mhw/WiQ8O8aJSNEuVFQvBp169NX2rT7wQX7vumNJ3Smq0vr6fOkPrEtElA1Inkpufw1xd7iWuTQFz76sS1r+6lhd7rKD3n6TtVXuhw93y+xBujUhFxB1kePl4+wIivsny1y1sa7RhURMryT/I49gGSykqjTadIZYCRt3bofDBM7uWrirIsULdXAltmHWb5sztpNDiZiAR/rp3KZffC06S0ifQASmqbRIEBL6WxdPo+ararQp0u0ciSzKFVVzi9M5OBbzQhKNKP1vdVJ/dKAQFBevwCSx9Dm1waKhsBEpuEMumHVix5+QjrX9pCyyIH1qiq5O8/S+Toofy/9u43Jor0jgP4d5ad2fVcOKHb7Nq4KuitNXhVQV+AIQZfkGBDaUhPEpVXrMQX5ookTTRpotUXvoDoVhOIvKBvaIzWxJg22obGe3GHl/NiYtvUNrUUwwUhCnUP7ljYZebpC5m53dnZdXZZ0K7fT7LJ7mTm2dlhhpnf83v+OObcwBwQVSWoqgNCSFgjx/CeM473nArg82LyH/+CQ3Zg76k6lB8MYlErwqJwYF51Jp1zMQDyDwTW/EiD06Hhe5ULKK/fiA9btuBPp4cx8LM/48OmAH78q2o4TJP/JZ7Dds5/q4xTur5MsagGxaMsTXadXGngkATWFDsRj6q2KxL0QChdQJQpUDKPomfVb8lqviXVRnCYL0LTIPKQWXpX+izp0j145rJdOhcuXEBHRweOHTuGxsZGOJ1OPH36FD09Pdi7dy+amprQ1NQEIPc+MXaayZmzZ+lqn7MJLLI9VstZ12q/EjN6Vk2rzBm/1QgIMy3PV/mvWydx2cGDBzEyMoJQKIT29nZUVFTgyZMnGBgYQFVVFRoaGoxthBBJczT19PTg5MmTqKurM7Idd+/exb1793D58mV4vV60trZibGwMLpcLxcXFkGUZsiwbgb/evK+qqgo3b97E+fPnEQ6HsbCwgIqKCjx48AChUAiaphmj6en7oW/rdDoRCAQwODgIp9OJ06dP49ChQwBSKwf07Tds2ICdO3ca5ezfvx9HjhzBiRMncODAATQ3N6O/vx+ybD3gl/kaTxc8ZfpfYK6MiUajSQ/65mxvSUkJotGoZaZ7tTIrmZol5nL9/D9nlrIKlua/UZM+68Ph6oMmmTNH5mxFNhknV7GMml/WYfSPI/jn7/4OSZLgLnXjg+YfoixYBm1u3lhX5DARbLrvzTZzo2dmEt/bGfTCTE3zPuN3Z5HJyle2SyQ8COvvBVKXvXqvJS3TjPUSLjI9S7n0sUgSSb/fAYFF0z6YAx6rYZkTAyQVSGoGZX6YT+7f9N16e9qCiIx/i8d3v8Jfp+dRsn4N6j+uRInPhYVvXjVZs2rOqRS78FF3NUY/f4FPf/MfSBKwpcaL6kObITkkzC9tq3gUqNAwO7vUx0e8OnuMQwOBIkmDQ9Lwk19shVsR+Kz7C2xt3vrqmIkY1FgUkipBk1TE1EV8K1QIWQXkRUSn/4tPfn4H72/9Pmp+/VOs21KG6KyKRSEQU4uwsHSglSLV+BUqAFUSmB2fxszc19hQuQ6SQ2DX4SCGr/wFf/v9V/AG12FnS3nqQV+mdNmmsk0efPnbf+OD/d8NDxtfGjrcIQmMfPoc3i0lxt/EbDn9j8zsjqRnvja1Oet9WxFCIG3HyqzLKXzT09OIx+PGg6FVzXw2Mj2w6p3rb9y4gYGBATgcDpSWluLo0aPYvXs3IpGIsU2mWuRsHlQy1UrbbbaWi9cdu3w+8Lzud6Rbx+qzXdkER6vxcGd+UE/3ua2tDfX19bh16xYGBwfh9/vR1dWF9evXG+efVTNNl8uFK1euYHh42Biavra21ugDNTs7CyEEysrKjDL0EfASh8TXy9Q0DZ2dnZBlGX19fUb29MWLF3j06BGEEPB4PPB4PPD5fFi7di1kWcbMzAxCoRA2b96McDiMYDCI8fHxpODI/DfVg7Vnz55hamoKu3btQiQSweHDh3Hp0iXcvn0b27ZtQ0dHh+3BC7LJMFkt37hxI65du4aWlhbL4z08PIxgMIhIJJK3azJf9H3Q+4+9C2w1w5ufn0d5eTkmJydXY5+IiAqO3+/H6OioMRpavulNHQ4oH8EppZ8Swa5FEce92Mo2HXyTeF8jIloeO/c1/d708uXLvDXDKy0tffua4bndboyOjiIWi630/hARFSRFUVYsUEokNJGU4c25nLegBnMl8b5GRLQ82dzX3nQzvN7eXnR3d2NiYgKVlZUIh8MpkwWnY7sZntvtXpUbPRERLYPQYDXcfW7lFDbe14iICt/169fR2dmJ3t5e7Nu3D1evXkVjYyMeP36cMtKolfxPlkRERG9MXIshrubhpTHjQkRE+ZE4NP1yX9m6ePEi2tvbEQqFsH37doTDYQQCAfT19dnaPudJaYmI6O2hKAr8fj8+m/xD3sr0+/1QlOUPQ05ERO+2mZmZvJZjLs/lchkTeyeKxWJ4+PAhTp06lbS8oaEB9+/ft/WdDJaIiArASvTBWa1+VkREVJj0irxAIJC3Mj0eT0p5Z86cwdmzZ1PWnZqagqqq8Pl8Sct9Pp/tAX4YLBERFQj2wSEiorfJSlTkmeetAmCZVUr0urmvMmGwREREREREK+JNVuR5vV4UFRWlZJGeP3+ekm1KhwM8EBERERFRwVEUBdXV1RgaGkpaPjQ0hNraWltlMLNEREREREQFqaurC21tbdizZw9qamrQ39+PsbExHD9+3Nb2DJaIiIiIiKggtba2Ynp6GufOncPExAR27NiBO3fuYNOmTba2l0ShT9NORERERESUA/ZZIiIiIiIissBgiYiIiIiIyAKDJSIiIiIiIgsMloiIiIiIiCwwWCIiIiIiIrLAYImIiIiIiMgCgyUiIiIiIiILDJaIiIiIiIgsMFgiIiIiIiKywGCJiIiIiIjIAoMlIiIiIiIiC/8DP/r0Wg/WmmMAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = deepsensor.plot.prediction(pred, date, data_processor, task_loader, test_task, crs=ccrs.PlateCarree())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks good!" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "ExecuteTime": { + "end_time": "2023-11-01T23:30:43.938042536Z", + "start_time": "2023-11-01T23:30:43.937607282Z" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Edit Metadata", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css b/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css new file mode 100644 index 00000000..3225661c --- /dev/null +++ b/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css @@ -0,0 +1 @@ +.sd-bg-primary{background-color:var(--sd-color-primary) !important}.sd-bg-text-primary{color:var(--sd-color-primary-text) !important}button.sd-bg-primary:focus,button.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}a.sd-bg-primary:focus,a.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}.sd-bg-secondary{background-color:var(--sd-color-secondary) !important}.sd-bg-text-secondary{color:var(--sd-color-secondary-text) !important}button.sd-bg-secondary:focus,button.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}a.sd-bg-secondary:focus,a.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}.sd-bg-success{background-color:var(--sd-color-success) !important}.sd-bg-text-success{color:var(--sd-color-success-text) !important}button.sd-bg-success:focus,button.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}a.sd-bg-success:focus,a.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}.sd-bg-info{background-color:var(--sd-color-info) !important}.sd-bg-text-info{color:var(--sd-color-info-text) !important}button.sd-bg-info:focus,button.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}a.sd-bg-info:focus,a.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}.sd-bg-warning{background-color:var(--sd-color-warning) !important}.sd-bg-text-warning{color:var(--sd-color-warning-text) !important}button.sd-bg-warning:focus,button.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}a.sd-bg-warning:focus,a.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}.sd-bg-danger{background-color:var(--sd-color-danger) !important}.sd-bg-text-danger{color:var(--sd-color-danger-text) !important}button.sd-bg-danger:focus,button.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}a.sd-bg-danger:focus,a.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}.sd-bg-light{background-color:var(--sd-color-light) !important}.sd-bg-text-light{color:var(--sd-color-light-text) !important}button.sd-bg-light:focus,button.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}a.sd-bg-light:focus,a.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}.sd-bg-muted{background-color:var(--sd-color-muted) !important}.sd-bg-text-muted{color:var(--sd-color-muted-text) !important}button.sd-bg-muted:focus,button.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}a.sd-bg-muted:focus,a.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}.sd-bg-dark{background-color:var(--sd-color-dark) !important}.sd-bg-text-dark{color:var(--sd-color-dark-text) !important}button.sd-bg-dark:focus,button.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}a.sd-bg-dark:focus,a.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}.sd-bg-black{background-color:var(--sd-color-black) !important}.sd-bg-text-black{color:var(--sd-color-black-text) !important}button.sd-bg-black:focus,button.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}a.sd-bg-black:focus,a.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}.sd-bg-white{background-color:var(--sd-color-white) !important}.sd-bg-text-white{color:var(--sd-color-white-text) !important}button.sd-bg-white:focus,button.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}a.sd-bg-white:focus,a.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}.sd-text-primary,.sd-text-primary>p{color:var(--sd-color-primary) !important}a.sd-text-primary:focus,a.sd-text-primary:hover{color:var(--sd-color-primary-highlight) !important}.sd-text-secondary,.sd-text-secondary>p{color:var(--sd-color-secondary) !important}a.sd-text-secondary:focus,a.sd-text-secondary:hover{color:var(--sd-color-secondary-highlight) !important}.sd-text-success,.sd-text-success>p{color:var(--sd-color-success) !important}a.sd-text-success:focus,a.sd-text-success:hover{color:var(--sd-color-success-highlight) !important}.sd-text-info,.sd-text-info>p{color:var(--sd-color-info) !important}a.sd-text-info:focus,a.sd-text-info:hover{color:var(--sd-color-info-highlight) !important}.sd-text-warning,.sd-text-warning>p{color:var(--sd-color-warning) !important}a.sd-text-warning:focus,a.sd-text-warning:hover{color:var(--sd-color-warning-highlight) !important}.sd-text-danger,.sd-text-danger>p{color:var(--sd-color-danger) !important}a.sd-text-danger:focus,a.sd-text-danger:hover{color:var(--sd-color-danger-highlight) !important}.sd-text-light,.sd-text-light>p{color:var(--sd-color-light) !important}a.sd-text-light:focus,a.sd-text-light:hover{color:var(--sd-color-light-highlight) !important}.sd-text-muted,.sd-text-muted>p{color:var(--sd-color-muted) !important}a.sd-text-muted:focus,a.sd-text-muted:hover{color:var(--sd-color-muted-highlight) !important}.sd-text-dark,.sd-text-dark>p{color:var(--sd-color-dark) !important}a.sd-text-dark:focus,a.sd-text-dark:hover{color:var(--sd-color-dark-highlight) !important}.sd-text-black,.sd-text-black>p{color:var(--sd-color-black) !important}a.sd-text-black:focus,a.sd-text-black:hover{color:var(--sd-color-black-highlight) !important}.sd-text-white,.sd-text-white>p{color:var(--sd-color-white) !important}a.sd-text-white:focus,a.sd-text-white:hover{color:var(--sd-color-white-highlight) !important}.sd-outline-primary{border-color:var(--sd-color-primary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-primary:focus,a.sd-outline-primary:hover{border-color:var(--sd-color-primary-highlight) !important}.sd-outline-secondary{border-color:var(--sd-color-secondary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-secondary:focus,a.sd-outline-secondary:hover{border-color:var(--sd-color-secondary-highlight) !important}.sd-outline-success{border-color:var(--sd-color-success) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-success:focus,a.sd-outline-success:hover{border-color:var(--sd-color-success-highlight) !important}.sd-outline-info{border-color:var(--sd-color-info) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-info:focus,a.sd-outline-info:hover{border-color:var(--sd-color-info-highlight) !important}.sd-outline-warning{border-color:var(--sd-color-warning) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-warning:focus,a.sd-outline-warning:hover{border-color:var(--sd-color-warning-highlight) !important}.sd-outline-danger{border-color:var(--sd-color-danger) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-danger:focus,a.sd-outline-danger:hover{border-color:var(--sd-color-danger-highlight) !important}.sd-outline-light{border-color:var(--sd-color-light) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-light:focus,a.sd-outline-light:hover{border-color:var(--sd-color-light-highlight) !important}.sd-outline-muted{border-color:var(--sd-color-muted) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-muted:focus,a.sd-outline-muted:hover{border-color:var(--sd-color-muted-highlight) !important}.sd-outline-dark{border-color:var(--sd-color-dark) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-dark:focus,a.sd-outline-dark:hover{border-color:var(--sd-color-dark-highlight) !important}.sd-outline-black{border-color:var(--sd-color-black) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-black:focus,a.sd-outline-black:hover{border-color:var(--sd-color-black-highlight) !important}.sd-outline-white{border-color:var(--sd-color-white) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-white:focus,a.sd-outline-white:hover{border-color:var(--sd-color-white-highlight) !important}.sd-bg-transparent{background-color:transparent !important}.sd-outline-transparent{border-color:transparent !important}.sd-text-transparent{color:transparent !important}.sd-p-0{padding:0 !important}.sd-pt-0,.sd-py-0{padding-top:0 !important}.sd-pr-0,.sd-px-0{padding-right:0 !important}.sd-pb-0,.sd-py-0{padding-bottom:0 !important}.sd-pl-0,.sd-px-0{padding-left:0 !important}.sd-p-1{padding:.25rem !important}.sd-pt-1,.sd-py-1{padding-top:.25rem !important}.sd-pr-1,.sd-px-1{padding-right:.25rem !important}.sd-pb-1,.sd-py-1{padding-bottom:.25rem !important}.sd-pl-1,.sd-px-1{padding-left:.25rem !important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem !important}.sd-pr-2,.sd-px-2{padding-right:.5rem !important}.sd-pb-2,.sd-py-2{padding-bottom:.5rem !important}.sd-pl-2,.sd-px-2{padding-left:.5rem !important}.sd-p-3{padding:1rem !important}.sd-pt-3,.sd-py-3{padding-top:1rem !important}.sd-pr-3,.sd-px-3{padding-right:1rem !important}.sd-pb-3,.sd-py-3{padding-bottom:1rem !important}.sd-pl-3,.sd-px-3{padding-left:1rem !important}.sd-p-4{padding:1.5rem !important}.sd-pt-4,.sd-py-4{padding-top:1.5rem !important}.sd-pr-4,.sd-px-4{padding-right:1.5rem !important}.sd-pb-4,.sd-py-4{padding-bottom:1.5rem !important}.sd-pl-4,.sd-px-4{padding-left:1.5rem !important}.sd-p-5{padding:3rem !important}.sd-pt-5,.sd-py-5{padding-top:3rem !important}.sd-pr-5,.sd-px-5{padding-right:3rem !important}.sd-pb-5,.sd-py-5{padding-bottom:3rem !important}.sd-pl-5,.sd-px-5{padding-left:3rem !important}.sd-m-auto{margin:auto !important}.sd-mt-auto,.sd-my-auto{margin-top:auto !important}.sd-mr-auto,.sd-mx-auto{margin-right:auto !important}.sd-mb-auto,.sd-my-auto{margin-bottom:auto !important}.sd-ml-auto,.sd-mx-auto{margin-left:auto !important}.sd-m-0{margin:0 !important}.sd-mt-0,.sd-my-0{margin-top:0 !important}.sd-mr-0,.sd-mx-0{margin-right:0 !important}.sd-mb-0,.sd-my-0{margin-bottom:0 !important}.sd-ml-0,.sd-mx-0{margin-left:0 !important}.sd-m-1{margin:.25rem !important}.sd-mt-1,.sd-my-1{margin-top:.25rem !important}.sd-mr-1,.sd-mx-1{margin-right:.25rem !important}.sd-mb-1,.sd-my-1{margin-bottom:.25rem !important}.sd-ml-1,.sd-mx-1{margin-left:.25rem !important}.sd-m-2{margin:.5rem !important}.sd-mt-2,.sd-my-2{margin-top:.5rem !important}.sd-mr-2,.sd-mx-2{margin-right:.5rem !important}.sd-mb-2,.sd-my-2{margin-bottom:.5rem !important}.sd-ml-2,.sd-mx-2{margin-left:.5rem !important}.sd-m-3{margin:1rem !important}.sd-mt-3,.sd-my-3{margin-top:1rem !important}.sd-mr-3,.sd-mx-3{margin-right:1rem !important}.sd-mb-3,.sd-my-3{margin-bottom:1rem !important}.sd-ml-3,.sd-mx-3{margin-left:1rem !important}.sd-m-4{margin:1.5rem !important}.sd-mt-4,.sd-my-4{margin-top:1.5rem !important}.sd-mr-4,.sd-mx-4{margin-right:1.5rem !important}.sd-mb-4,.sd-my-4{margin-bottom:1.5rem !important}.sd-ml-4,.sd-mx-4{margin-left:1.5rem !important}.sd-m-5{margin:3rem !important}.sd-mt-5,.sd-my-5{margin-top:3rem !important}.sd-mr-5,.sd-mx-5{margin-right:3rem !important}.sd-mb-5,.sd-my-5{margin-bottom:3rem !important}.sd-ml-5,.sd-mx-5{margin-left:3rem !important}.sd-w-25{width:25% !important}.sd-w-50{width:50% !important}.sd-w-75{width:75% !important}.sd-w-100{width:100% !important}.sd-w-auto{width:auto !important}.sd-h-25{height:25% !important}.sd-h-50{height:50% !important}.sd-h-75{height:75% !important}.sd-h-100{height:100% !important}.sd-h-auto{height:auto !important}.sd-d-none{display:none !important}.sd-d-inline{display:inline !important}.sd-d-inline-block{display:inline-block !important}.sd-d-block{display:block !important}.sd-d-grid{display:grid !important}.sd-d-flex-row{display:-ms-flexbox !important;display:flex !important;flex-direction:row !important}.sd-d-flex-column{display:-ms-flexbox !important;display:flex !important;flex-direction:column !important}.sd-d-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}@media(min-width: 576px){.sd-d-sm-none{display:none !important}.sd-d-sm-inline{display:inline !important}.sd-d-sm-inline-block{display:inline-block !important}.sd-d-sm-block{display:block !important}.sd-d-sm-grid{display:grid !important}.sd-d-sm-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-sm-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 768px){.sd-d-md-none{display:none !important}.sd-d-md-inline{display:inline !important}.sd-d-md-inline-block{display:inline-block !important}.sd-d-md-block{display:block !important}.sd-d-md-grid{display:grid !important}.sd-d-md-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-md-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 992px){.sd-d-lg-none{display:none !important}.sd-d-lg-inline{display:inline !important}.sd-d-lg-inline-block{display:inline-block !important}.sd-d-lg-block{display:block !important}.sd-d-lg-grid{display:grid !important}.sd-d-lg-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-lg-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 1200px){.sd-d-xl-none{display:none !important}.sd-d-xl-inline{display:inline !important}.sd-d-xl-inline-block{display:inline-block !important}.sd-d-xl-block{display:block !important}.sd-d-xl-grid{display:grid !important}.sd-d-xl-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-xl-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}.sd-align-major-start{justify-content:flex-start !important}.sd-align-major-end{justify-content:flex-end !important}.sd-align-major-center{justify-content:center !important}.sd-align-major-justify{justify-content:space-between !important}.sd-align-major-spaced{justify-content:space-evenly !important}.sd-align-minor-start{align-items:flex-start !important}.sd-align-minor-end{align-items:flex-end !important}.sd-align-minor-center{align-items:center !important}.sd-align-minor-stretch{align-items:stretch !important}.sd-text-justify{text-align:justify !important}.sd-text-left{text-align:left !important}.sd-text-right{text-align:right !important}.sd-text-center{text-align:center !important}.sd-font-weight-light{font-weight:300 !important}.sd-font-weight-lighter{font-weight:lighter !important}.sd-font-weight-normal{font-weight:400 !important}.sd-font-weight-bold{font-weight:700 !important}.sd-font-weight-bolder{font-weight:bolder !important}.sd-font-italic{font-style:italic !important}.sd-text-decoration-none{text-decoration:none !important}.sd-text-lowercase{text-transform:lowercase !important}.sd-text-uppercase{text-transform:uppercase !important}.sd-text-capitalize{text-transform:capitalize !important}.sd-text-wrap{white-space:normal !important}.sd-text-nowrap{white-space:nowrap !important}.sd-text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.sd-fs-1,.sd-fs-1>p{font-size:calc(1.375rem + 1.5vw) !important;line-height:unset !important}.sd-fs-2,.sd-fs-2>p{font-size:calc(1.325rem + 0.9vw) !important;line-height:unset !important}.sd-fs-3,.sd-fs-3>p{font-size:calc(1.3rem + 0.6vw) !important;line-height:unset !important}.sd-fs-4,.sd-fs-4>p{font-size:calc(1.275rem + 0.3vw) !important;line-height:unset !important}.sd-fs-5,.sd-fs-5>p{font-size:1.25rem !important;line-height:unset !important}.sd-fs-6,.sd-fs-6>p{font-size:1rem !important;line-height:unset !important}.sd-border-0{border:0 solid !important}.sd-border-top-0{border-top:0 solid !important}.sd-border-bottom-0{border-bottom:0 solid !important}.sd-border-right-0{border-right:0 solid !important}.sd-border-left-0{border-left:0 solid !important}.sd-border-1{border:1px solid !important}.sd-border-top-1{border-top:1px solid !important}.sd-border-bottom-1{border-bottom:1px solid !important}.sd-border-right-1{border-right:1px solid !important}.sd-border-left-1{border-left:1px solid !important}.sd-border-2{border:2px solid !important}.sd-border-top-2{border-top:2px solid !important}.sd-border-bottom-2{border-bottom:2px solid !important}.sd-border-right-2{border-right:2px solid !important}.sd-border-left-2{border-left:2px solid !important}.sd-border-3{border:3px solid !important}.sd-border-top-3{border-top:3px solid !important}.sd-border-bottom-3{border-bottom:3px solid !important}.sd-border-right-3{border-right:3px solid !important}.sd-border-left-3{border-left:3px solid !important}.sd-border-4{border:4px solid !important}.sd-border-top-4{border-top:4px solid !important}.sd-border-bottom-4{border-bottom:4px solid !important}.sd-border-right-4{border-right:4px solid !important}.sd-border-left-4{border-left:4px solid !important}.sd-border-5{border:5px solid !important}.sd-border-top-5{border-top:5px solid !important}.sd-border-bottom-5{border-bottom:5px solid !important}.sd-border-right-5{border-right:5px solid !important}.sd-border-left-5{border-left:5px solid !important}.sd-rounded-0{border-radius:0 !important}.sd-rounded-1{border-radius:.2rem !important}.sd-rounded-2{border-radius:.3rem !important}.sd-rounded-3{border-radius:.5rem !important}.sd-rounded-pill{border-radius:50rem !important}.sd-rounded-circle{border-radius:50% !important}.shadow-none{box-shadow:none !important}.sd-shadow-sm{box-shadow:0 .125rem .25rem var(--sd-color-shadow) !important}.sd-shadow-md{box-shadow:0 .5rem 1rem var(--sd-color-shadow) !important}.sd-shadow-lg{box-shadow:0 1rem 3rem var(--sd-color-shadow) !important}@keyframes sd-slide-from-left{0%{transform:translateX(-100%)}100%{transform:translateX(0)}}@keyframes sd-slide-from-right{0%{transform:translateX(200%)}100%{transform:translateX(0)}}@keyframes sd-grow100{0%{transform:scale(0);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50{0%{transform:scale(0.5);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50-rot20{0%{transform:scale(0.5) rotateZ(-20deg);opacity:.5}75%{transform:scale(1) rotateZ(5deg);opacity:1}95%{transform:scale(1) rotateZ(-1deg);opacity:1}100%{transform:scale(1) rotateZ(0);opacity:1}}.sd-animate-slide-from-left{animation:1s ease-out 0s 1 normal none running sd-slide-from-left}.sd-animate-slide-from-right{animation:1s ease-out 0s 1 normal none running sd-slide-from-right}.sd-animate-grow100{animation:1s ease-out 0s 1 normal none running sd-grow100}.sd-animate-grow50{animation:1s ease-out 0s 1 normal none running sd-grow50}.sd-animate-grow50-rot20{animation:1s ease-out 0s 1 normal none running sd-grow50-rot20}.sd-badge{display:inline-block;padding:.35em .65em;font-size:.75em;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem}.sd-badge:empty{display:none}a.sd-badge{text-decoration:none}.sd-btn .sd-badge{position:relative;top:-1px}.sd-btn{background-color:transparent;border:1px solid transparent;border-radius:.25rem;cursor:pointer;display:inline-block;font-weight:400;font-size:1rem;line-height:1.5;padding:.375rem .75rem;text-align:center;text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;vertical-align:middle;user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none}.sd-btn:hover{text-decoration:none}@media(prefers-reduced-motion: reduce){.sd-btn{transition:none}}.sd-btn-primary,.sd-btn-outline-primary:hover,.sd-btn-outline-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-primary:hover,.sd-btn-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary-highlight) !important;border-color:var(--sd-color-primary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-primary{color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary,.sd-btn-outline-secondary:hover,.sd-btn-outline-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary:hover,.sd-btn-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary-highlight) !important;border-color:var(--sd-color-secondary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-secondary{color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success,.sd-btn-outline-success:hover,.sd-btn-outline-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success:hover,.sd-btn-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success-highlight) !important;border-color:var(--sd-color-success-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-success{color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info,.sd-btn-outline-info:hover,.sd-btn-outline-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info:hover,.sd-btn-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info-highlight) !important;border-color:var(--sd-color-info-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-info{color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning,.sd-btn-outline-warning:hover,.sd-btn-outline-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning:hover,.sd-btn-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning-highlight) !important;border-color:var(--sd-color-warning-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-warning{color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger,.sd-btn-outline-danger:hover,.sd-btn-outline-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger:hover,.sd-btn-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger-highlight) !important;border-color:var(--sd-color-danger-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-danger{color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light,.sd-btn-outline-light:hover,.sd-btn-outline-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light:hover,.sd-btn-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light-highlight) !important;border-color:var(--sd-color-light-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-light{color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted,.sd-btn-outline-muted:hover,.sd-btn-outline-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted:hover,.sd-btn-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted-highlight) !important;border-color:var(--sd-color-muted-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-muted{color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark,.sd-btn-outline-dark:hover,.sd-btn-outline-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark:hover,.sd-btn-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark-highlight) !important;border-color:var(--sd-color-dark-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-dark{color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black,.sd-btn-outline-black:hover,.sd-btn-outline-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black:hover,.sd-btn-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black-highlight) !important;border-color:var(--sd-color-black-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-black{color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white,.sd-btn-outline-white:hover,.sd-btn-outline-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white:hover,.sd-btn-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white-highlight) !important;border-color:var(--sd-color-white-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-white{color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.sd-hide-link-text{font-size:0}.sd-octicon,.sd-material-icon{display:inline-block;fill:currentColor;vertical-align:middle}.sd-avatar-xs{border-radius:50%;object-fit:cover;object-position:center;width:1rem;height:1rem}.sd-avatar-sm{border-radius:50%;object-fit:cover;object-position:center;width:3rem;height:3rem}.sd-avatar-md{border-radius:50%;object-fit:cover;object-position:center;width:5rem;height:5rem}.sd-avatar-lg{border-radius:50%;object-fit:cover;object-position:center;width:7rem;height:7rem}.sd-avatar-xl{border-radius:50%;object-fit:cover;object-position:center;width:10rem;height:10rem}.sd-avatar-inherit{border-radius:50%;object-fit:cover;object-position:center;width:inherit;height:inherit}.sd-avatar-initial{border-radius:50%;object-fit:cover;object-position:center;width:initial;height:initial}.sd-card{background-clip:border-box;background-color:var(--sd-color-card-background);border:1px solid var(--sd-color-card-border);border-radius:.25rem;color:var(--sd-color-card-text);display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;position:relative;word-wrap:break-word}.sd-card>hr{margin-left:0;margin-right:0}.sd-card-hover:hover{border-color:var(--sd-color-card-border-hover);transform:scale(1.01)}.sd-card-body{-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem 1rem}.sd-card-title{margin-bottom:.5rem}.sd-card-subtitle{margin-top:-0.25rem;margin-bottom:0}.sd-card-text:last-child{margin-bottom:0}.sd-card-link:hover{text-decoration:none}.sd-card-link+.card-link{margin-left:1rem}.sd-card-header{padding:.5rem 1rem;margin-bottom:0;background-color:var(--sd-color-card-header);border-bottom:1px solid var(--sd-color-card-border)}.sd-card-header:first-child{border-radius:calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0}.sd-card-footer{padding:.5rem 1rem;background-color:var(--sd-color-card-footer);border-top:1px solid var(--sd-color-card-border)}.sd-card-footer:last-child{border-radius:0 0 calc(0.25rem - 1px) calc(0.25rem - 1px)}.sd-card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.sd-card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.sd-card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem;border-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom,.sd-card-img-top{width:100%}.sd-card-img,.sd-card-img-top{border-top-left-radius:calc(0.25rem - 1px);border-top-right-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom{border-bottom-left-radius:calc(0.25rem - 1px);border-bottom-right-radius:calc(0.25rem - 1px)}.sd-cards-carousel{width:100%;display:flex;flex-wrap:nowrap;-ms-flex-direction:row;flex-direction:row;overflow-x:hidden;scroll-snap-type:x mandatory}.sd-cards-carousel.sd-show-scrollbar{overflow-x:auto}.sd-cards-carousel:hover,.sd-cards-carousel:focus{overflow-x:auto}.sd-cards-carousel>.sd-card{flex-shrink:0;scroll-snap-align:start}.sd-cards-carousel>.sd-card:not(:last-child){margin-right:3px}.sd-card-cols-1>.sd-card{width:90%}.sd-card-cols-2>.sd-card{width:45%}.sd-card-cols-3>.sd-card{width:30%}.sd-card-cols-4>.sd-card{width:22.5%}.sd-card-cols-5>.sd-card{width:18%}.sd-card-cols-6>.sd-card{width:15%}.sd-card-cols-7>.sd-card{width:12.8571428571%}.sd-card-cols-8>.sd-card{width:11.25%}.sd-card-cols-9>.sd-card{width:10%}.sd-card-cols-10>.sd-card{width:9%}.sd-card-cols-11>.sd-card{width:8.1818181818%}.sd-card-cols-12>.sd-card{width:7.5%}.sd-container,.sd-container-fluid,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container-xl{margin-left:auto;margin-right:auto;padding-left:var(--sd-gutter-x, 0.75rem);padding-right:var(--sd-gutter-x, 0.75rem);width:100%}@media(min-width: 576px){.sd-container-sm,.sd-container{max-width:540px}}@media(min-width: 768px){.sd-container-md,.sd-container-sm,.sd-container{max-width:720px}}@media(min-width: 992px){.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:960px}}@media(min-width: 1200px){.sd-container-xl,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:1140px}}.sd-row{--sd-gutter-x: 1.5rem;--sd-gutter-y: 0;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-top:calc(var(--sd-gutter-y) * -1);margin-right:calc(var(--sd-gutter-x) * -0.5);margin-left:calc(var(--sd-gutter-x) * -0.5)}.sd-row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--sd-gutter-x) * 0.5);padding-left:calc(var(--sd-gutter-x) * 0.5);margin-top:var(--sd-gutter-y)}.sd-col{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-auto>*{flex:0 0 auto;width:auto}.sd-row-cols-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}@media(min-width: 576px){.sd-col-sm{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-sm-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-sm-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-sm-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-sm-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-sm-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-sm-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-sm-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-sm-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-sm-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-sm-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-sm-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-sm-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-sm-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 768px){.sd-col-md{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-md-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-md-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-md-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-md-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-md-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-md-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-md-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-md-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-md-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-md-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-md-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-md-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-md-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 992px){.sd-col-lg{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-lg-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-lg-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-lg-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-lg-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-lg-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-lg-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-lg-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-lg-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-lg-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-lg-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-lg-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-lg-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-lg-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 1200px){.sd-col-xl{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-xl-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-xl-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-xl-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-xl-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-xl-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-xl-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-xl-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-xl-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-xl-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-xl-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-xl-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-xl-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-xl-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}.sd-col-auto{flex:0 0 auto;-ms-flex:0 0 auto;width:auto}.sd-col-1{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}.sd-col-2{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-col-3{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-col-4{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-col-5{flex:0 0 auto;-ms-flex:0 0 auto;width:41.6666666667%}.sd-col-6{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-col-7{flex:0 0 auto;-ms-flex:0 0 auto;width:58.3333333333%}.sd-col-8{flex:0 0 auto;-ms-flex:0 0 auto;width:66.6666666667%}.sd-col-9{flex:0 0 auto;-ms-flex:0 0 auto;width:75%}.sd-col-10{flex:0 0 auto;-ms-flex:0 0 auto;width:83.3333333333%}.sd-col-11{flex:0 0 auto;-ms-flex:0 0 auto;width:91.6666666667%}.sd-col-12{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-g-0,.sd-gy-0{--sd-gutter-y: 0}.sd-g-0,.sd-gx-0{--sd-gutter-x: 0}.sd-g-1,.sd-gy-1{--sd-gutter-y: 0.25rem}.sd-g-1,.sd-gx-1{--sd-gutter-x: 0.25rem}.sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x: 0.5rem}.sd-g-3,.sd-gy-3{--sd-gutter-y: 1rem}.sd-g-3,.sd-gx-3{--sd-gutter-x: 1rem}.sd-g-4,.sd-gy-4{--sd-gutter-y: 1.5rem}.sd-g-4,.sd-gx-4{--sd-gutter-x: 1.5rem}.sd-g-5,.sd-gy-5{--sd-gutter-y: 3rem}.sd-g-5,.sd-gx-5{--sd-gutter-x: 3rem}@media(min-width: 576px){.sd-col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-sm-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-sm-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-sm-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-sm-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-sm-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-sm-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-sm-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-sm-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-sm-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-sm-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-sm-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-sm-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-sm-0,.sd-gy-sm-0{--sd-gutter-y: 0}.sd-g-sm-0,.sd-gx-sm-0{--sd-gutter-x: 0}.sd-g-sm-1,.sd-gy-sm-1{--sd-gutter-y: 0.25rem}.sd-g-sm-1,.sd-gx-sm-1{--sd-gutter-x: 0.25rem}.sd-g-sm-2,.sd-gy-sm-2{--sd-gutter-y: 0.5rem}.sd-g-sm-2,.sd-gx-sm-2{--sd-gutter-x: 0.5rem}.sd-g-sm-3,.sd-gy-sm-3{--sd-gutter-y: 1rem}.sd-g-sm-3,.sd-gx-sm-3{--sd-gutter-x: 1rem}.sd-g-sm-4,.sd-gy-sm-4{--sd-gutter-y: 1.5rem}.sd-g-sm-4,.sd-gx-sm-4{--sd-gutter-x: 1.5rem}.sd-g-sm-5,.sd-gy-sm-5{--sd-gutter-y: 3rem}.sd-g-sm-5,.sd-gx-sm-5{--sd-gutter-x: 3rem}}@media(min-width: 768px){.sd-col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-md-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-md-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-md-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-md-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-md-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-md-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-md-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-md-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-md-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-md-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-md-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-md-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-md-0,.sd-gy-md-0{--sd-gutter-y: 0}.sd-g-md-0,.sd-gx-md-0{--sd-gutter-x: 0}.sd-g-md-1,.sd-gy-md-1{--sd-gutter-y: 0.25rem}.sd-g-md-1,.sd-gx-md-1{--sd-gutter-x: 0.25rem}.sd-g-md-2,.sd-gy-md-2{--sd-gutter-y: 0.5rem}.sd-g-md-2,.sd-gx-md-2{--sd-gutter-x: 0.5rem}.sd-g-md-3,.sd-gy-md-3{--sd-gutter-y: 1rem}.sd-g-md-3,.sd-gx-md-3{--sd-gutter-x: 1rem}.sd-g-md-4,.sd-gy-md-4{--sd-gutter-y: 1.5rem}.sd-g-md-4,.sd-gx-md-4{--sd-gutter-x: 1.5rem}.sd-g-md-5,.sd-gy-md-5{--sd-gutter-y: 3rem}.sd-g-md-5,.sd-gx-md-5{--sd-gutter-x: 3rem}}@media(min-width: 992px){.sd-col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-lg-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-lg-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-lg-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-lg-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-lg-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-lg-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-lg-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-lg-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-lg-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-lg-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-lg-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-lg-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-lg-0,.sd-gy-lg-0{--sd-gutter-y: 0}.sd-g-lg-0,.sd-gx-lg-0{--sd-gutter-x: 0}.sd-g-lg-1,.sd-gy-lg-1{--sd-gutter-y: 0.25rem}.sd-g-lg-1,.sd-gx-lg-1{--sd-gutter-x: 0.25rem}.sd-g-lg-2,.sd-gy-lg-2{--sd-gutter-y: 0.5rem}.sd-g-lg-2,.sd-gx-lg-2{--sd-gutter-x: 0.5rem}.sd-g-lg-3,.sd-gy-lg-3{--sd-gutter-y: 1rem}.sd-g-lg-3,.sd-gx-lg-3{--sd-gutter-x: 1rem}.sd-g-lg-4,.sd-gy-lg-4{--sd-gutter-y: 1.5rem}.sd-g-lg-4,.sd-gx-lg-4{--sd-gutter-x: 1.5rem}.sd-g-lg-5,.sd-gy-lg-5{--sd-gutter-y: 3rem}.sd-g-lg-5,.sd-gx-lg-5{--sd-gutter-x: 3rem}}@media(min-width: 1200px){.sd-col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-xl-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-xl-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-xl-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-xl-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-xl-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-xl-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-xl-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-xl-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-xl-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-xl-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-xl-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-xl-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-xl-0,.sd-gy-xl-0{--sd-gutter-y: 0}.sd-g-xl-0,.sd-gx-xl-0{--sd-gutter-x: 0}.sd-g-xl-1,.sd-gy-xl-1{--sd-gutter-y: 0.25rem}.sd-g-xl-1,.sd-gx-xl-1{--sd-gutter-x: 0.25rem}.sd-g-xl-2,.sd-gy-xl-2{--sd-gutter-y: 0.5rem}.sd-g-xl-2,.sd-gx-xl-2{--sd-gutter-x: 0.5rem}.sd-g-xl-3,.sd-gy-xl-3{--sd-gutter-y: 1rem}.sd-g-xl-3,.sd-gx-xl-3{--sd-gutter-x: 1rem}.sd-g-xl-4,.sd-gy-xl-4{--sd-gutter-y: 1.5rem}.sd-g-xl-4,.sd-gx-xl-4{--sd-gutter-x: 1.5rem}.sd-g-xl-5,.sd-gy-xl-5{--sd-gutter-y: 3rem}.sd-g-xl-5,.sd-gx-xl-5{--sd-gutter-x: 3rem}}.sd-flex-row-reverse{flex-direction:row-reverse !important}details.sd-dropdown{position:relative}details.sd-dropdown .sd-summary-title{font-weight:700;padding-right:3em !important;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}details.sd-dropdown:hover{cursor:pointer}details.sd-dropdown .sd-summary-content{cursor:default}details.sd-dropdown summary{list-style:none;padding:1em}details.sd-dropdown summary .sd-octicon.no-title{vertical-align:middle}details.sd-dropdown[open] summary .sd-octicon.no-title{visibility:hidden}details.sd-dropdown summary::-webkit-details-marker{display:none}details.sd-dropdown summary:focus{outline:none}details.sd-dropdown .sd-summary-icon{margin-right:.5em}details.sd-dropdown .sd-summary-icon svg{opacity:.8}details.sd-dropdown summary:hover .sd-summary-up svg,details.sd-dropdown summary:hover .sd-summary-down svg{opacity:1;transform:scale(1.1)}details.sd-dropdown .sd-summary-up svg,details.sd-dropdown .sd-summary-down svg{display:block;opacity:.6}details.sd-dropdown .sd-summary-up,details.sd-dropdown .sd-summary-down{pointer-events:none;position:absolute;right:1em;top:1em}details.sd-dropdown[open]>.sd-summary-title .sd-summary-down{visibility:hidden}details.sd-dropdown:not([open])>.sd-summary-title .sd-summary-up{visibility:hidden}details.sd-dropdown:not([open]).sd-card{border:none}details.sd-dropdown:not([open])>.sd-card-header{border:1px solid var(--sd-color-card-border);border-radius:.25rem}details.sd-dropdown.sd-fade-in[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out;animation:sd-fade-in .5s ease-in-out}details.sd-dropdown.sd-fade-in-slide-down[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out}.sd-col>.sd-dropdown{width:100%}.sd-summary-content>.sd-tab-set:first-child{margin-top:0}@keyframes sd-fade-in{0%{opacity:0}100%{opacity:1}}@keyframes sd-slide-down{0%{transform:translate(0, -10px)}100%{transform:translate(0, 0)}}.sd-tab-set{border-radius:.125rem;display:flex;flex-wrap:wrap;margin:1em 0;position:relative}.sd-tab-set>input{opacity:0;position:absolute}.sd-tab-set>input:checked+label{border-color:var(--sd-color-tabs-underline-active);color:var(--sd-color-tabs-label-active)}.sd-tab-set>input:checked+label+.sd-tab-content{display:block}.sd-tab-set>input:not(:checked)+label:hover{color:var(--sd-color-tabs-label-hover);border-color:var(--sd-color-tabs-underline-hover)}.sd-tab-set>input:focus+label{outline-style:auto}.sd-tab-set>input:not(.focus-visible)+label{outline:none;-webkit-tap-highlight-color:transparent}.sd-tab-set>label{border-bottom:.125rem solid transparent;margin-bottom:0;color:var(--sd-color-tabs-label-inactive);border-color:var(--sd-color-tabs-underline-inactive);cursor:pointer;font-size:var(--sd-fontsize-tabs-label);font-weight:700;padding:1em 1.25em .5em;transition:color 250ms;width:auto;z-index:1}html .sd-tab-set>label:hover{color:var(--sd-color-tabs-label-active)}.sd-col>.sd-tab-set{width:100%}.sd-tab-content{box-shadow:0 -0.0625rem var(--sd-color-tabs-overline),0 .0625rem var(--sd-color-tabs-underline);display:none;order:99;padding-bottom:.75rem;padding-top:.75rem;width:100%}.sd-tab-content>:first-child{margin-top:0 !important}.sd-tab-content>:last-child{margin-bottom:0 !important}.sd-tab-content>.sd-tab-set{margin:0}.sd-sphinx-override,.sd-sphinx-override *{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sd-sphinx-override p{margin-top:0}:root{--sd-color-primary: #007bff;--sd-color-secondary: #6c757d;--sd-color-success: #28a745;--sd-color-info: #17a2b8;--sd-color-warning: #f0b37e;--sd-color-danger: #dc3545;--sd-color-light: #f8f9fa;--sd-color-muted: #6c757d;--sd-color-dark: #212529;--sd-color-black: black;--sd-color-white: white;--sd-color-primary-highlight: #0069d9;--sd-color-secondary-highlight: #5c636a;--sd-color-success-highlight: #228e3b;--sd-color-info-highlight: #148a9c;--sd-color-warning-highlight: #cc986b;--sd-color-danger-highlight: #bb2d3b;--sd-color-light-highlight: #d3d4d5;--sd-color-muted-highlight: #5c636a;--sd-color-dark-highlight: #1c1f23;--sd-color-black-highlight: black;--sd-color-white-highlight: #d9d9d9;--sd-color-primary-text: #fff;--sd-color-secondary-text: #fff;--sd-color-success-text: #fff;--sd-color-info-text: #fff;--sd-color-warning-text: #212529;--sd-color-danger-text: #fff;--sd-color-light-text: #212529;--sd-color-muted-text: #fff;--sd-color-dark-text: #fff;--sd-color-black-text: #fff;--sd-color-white-text: #212529;--sd-color-shadow: rgba(0, 0, 0, 0.15);--sd-color-card-border: rgba(0, 0, 0, 0.125);--sd-color-card-border-hover: hsla(231, 99%, 66%, 1);--sd-color-card-background: transparent;--sd-color-card-text: inherit;--sd-color-card-header: transparent;--sd-color-card-footer: transparent;--sd-color-tabs-label-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-hover: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-inactive: hsl(0, 0%, 66%);--sd-color-tabs-underline-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-underline-hover: rgba(178, 206, 245, 0.62);--sd-color-tabs-underline-inactive: transparent;--sd-color-tabs-overline: rgb(222, 222, 222);--sd-color-tabs-underline: rgb(222, 222, 222);--sd-fontsize-tabs-label: 1rem} diff --git a/_sphinx_design_static/design-tabs.js b/_sphinx_design_static/design-tabs.js new file mode 100644 index 00000000..36b38cf0 --- /dev/null +++ b/_sphinx_design_static/design-tabs.js @@ -0,0 +1,27 @@ +var sd_labels_by_text = {}; + +function ready() { + const li = document.getElementsByClassName("sd-tab-label"); + for (const label of li) { + syncId = label.getAttribute("data-sync-id"); + if (syncId) { + label.onclick = onLabelClick; + if (!sd_labels_by_text[syncId]) { + sd_labels_by_text[syncId] = []; + } + sd_labels_by_text[syncId].push(label); + } + } +} + +function onLabelClick() { + // Activate other inputs with the same sync id. + syncId = this.getAttribute("data-sync-id"); + for (label of sd_labels_by_text[syncId]) { + if (label === this) continue; + label.previousElementSibling.checked = true; + } + window.localStorage.setItem("sphinx-design-last-tab", syncId); +} + +document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_static/DeepSensorLogo2.png b/_static/DeepSensorLogo2.png new file mode 100644 index 00000000..69abd733 Binary files /dev/null and b/_static/DeepSensorLogo2.png differ diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 00000000..8549469d --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,134 @@ +/* + * _sphinx_javascript_frameworks_compat.js + * ~~~~~~~~~~ + * + * Compatability shim for jQuery and underscores.js. + * + * WILL BE REMOVED IN Sphinx 6.0 + * xref RemovedInSphinx60Warning + * + */ + +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 00000000..9e364ed3 --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,930 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 270px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} +nav.contents, +aside.topic, + +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ +nav.contents, +aside.topic, + +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, + +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, + +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +/* Docutils 0.17 and older (footnotes & citations) */ +dl.footnote > dt, +dl.citation > dt { + float: left; + margin-right: 0.5em; +} + +dl.footnote > dd, +dl.citation > dd { + margin-bottom: 0em; +} + +dl.footnote > dd:after, +dl.citation > dd:after { + content: ""; + clear: both; +} + +/* Docutils 0.18+ (footnotes & citations) */ +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +/* Footnotes & citations ends */ + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dt:after { + content: ":"; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/check-solid.svg b/_static/check-solid.svg new file mode 100644 index 00000000..92fad4b5 --- /dev/null +++ b/_static/check-solid.svg @@ -0,0 +1,4 @@ + + + + diff --git a/_static/clipboard.min.js b/_static/clipboard.min.js new file mode 100644 index 00000000..54b3c463 --- /dev/null +++ b/_static/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.8 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 + + + + diff --git a/_static/copybutton.css b/_static/copybutton.css new file mode 100644 index 00000000..f1916ec7 --- /dev/null +++ b/_static/copybutton.css @@ -0,0 +1,94 @@ +/* Copy buttons */ +button.copybtn { + position: absolute; + display: flex; + top: .3em; + right: .3em; + width: 1.7em; + height: 1.7em; + opacity: 0; + transition: opacity 0.3s, border .3s, background-color .3s; + user-select: none; + padding: 0; + border: none; + outline: none; + border-radius: 0.4em; + /* The colors that GitHub uses */ + border: #1b1f2426 1px solid; + background-color: #f6f8fa; + color: #57606a; +} + +button.copybtn.success { + border-color: #22863a; + color: #22863a; +} + +button.copybtn svg { + stroke: currentColor; + width: 1.5em; + height: 1.5em; + padding: 0.1em; +} + +div.highlight { + position: relative; +} + +/* Show the copybutton */ +.highlight:hover button.copybtn, button.copybtn.success { + opacity: 1; +} + +.highlight button.copybtn:hover { + background-color: rgb(235, 235, 235); +} + +.highlight button.copybtn:active { + background-color: rgb(187, 187, 187); +} + +/** + * A minimal CSS-only tooltip copied from: + * https://codepen.io/mildrenben/pen/rVBrpK + * + * To use, write HTML like the following: + * + *

Short

+ */ + .o-tooltip--left { + position: relative; + } + + .o-tooltip--left:after { + opacity: 0; + visibility: hidden; + position: absolute; + content: attr(data-tooltip); + padding: .2em; + font-size: .8em; + left: -.2em; + background: grey; + color: white; + white-space: nowrap; + z-index: 2; + border-radius: 2px; + transform: translateX(-102%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); +} + +.o-tooltip--left:hover:after { + display: block; + opacity: 1; + visibility: visible; + transform: translateX(-100%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); + transition-delay: .5s; +} + +/* By default the copy button shouldn't show up when printing a page */ +@media print { + button.copybtn { + display: none; + } +} diff --git a/_static/copybutton.js b/_static/copybutton.js new file mode 100644 index 00000000..10485a9d --- /dev/null +++ b/_static/copybutton.js @@ -0,0 +1,248 @@ +// Localization support +const messages = { + 'en': { + 'copy': 'Copy', + 'copy_to_clipboard': 'Copy to clipboard', + 'copy_success': 'Copied!', + 'copy_failure': 'Failed to copy', + }, + 'es' : { + 'copy': 'Copiar', + 'copy_to_clipboard': 'Copiar al portapapeles', + 'copy_success': '¡Copiado!', + 'copy_failure': 'Error al copiar', + }, + 'de' : { + 'copy': 'Kopieren', + 'copy_to_clipboard': 'In die Zwischenablage kopieren', + 'copy_success': 'Kopiert!', + 'copy_failure': 'Fehler beim Kopieren', + }, + 'fr' : { + 'copy': 'Copier', + 'copy_to_clipboard': 'Copier dans le presse-papier', + 'copy_success': 'Copié !', + 'copy_failure': 'Échec de la copie', + }, + 'ru': { + 'copy': 'Скопировать', + 'copy_to_clipboard': 'Скопировать в буфер', + 'copy_success': 'Скопировано!', + 'copy_failure': 'Не удалось скопировать', + }, + 'zh-CN': { + 'copy': '复制', + 'copy_to_clipboard': '复制到剪贴板', + 'copy_success': '复制成功!', + 'copy_failure': '复制失败', + }, + 'it' : { + 'copy': 'Copiare', + 'copy_to_clipboard': 'Copiato negli appunti', + 'copy_success': 'Copiato!', + 'copy_failure': 'Errore durante la copia', + } +} + +let locale = 'en' +if( document.documentElement.lang !== undefined + && messages[document.documentElement.lang] !== undefined ) { + locale = document.documentElement.lang +} + +let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; +if (doc_url_root == '#') { + doc_url_root = ''; +} + +/** + * SVG files for our copy buttons + */ +let iconCheck = ` + ${messages[locale]['copy_success']} + + +` + +// If the user specified their own SVG use that, otherwise use the default +let iconCopy = ``; +if (!iconCopy) { + iconCopy = ` + ${messages[locale]['copy_to_clipboard']} + + + +` +} + +/** + * Set up copy/paste for code blocks + */ + +const runWhenDOMLoaded = cb => { + if (document.readyState != 'loading') { + cb() + } else if (document.addEventListener) { + document.addEventListener('DOMContentLoaded', cb) + } else { + document.attachEvent('onreadystatechange', function() { + if (document.readyState == 'complete') cb() + }) + } +} + +const codeCellId = index => `codecell${index}` + +// Clears selected text since ClipboardJS will select the text when copying +const clearSelection = () => { + if (window.getSelection) { + window.getSelection().removeAllRanges() + } else if (document.selection) { + document.selection.empty() + } +} + +// Changes tooltip text for a moment, then changes it back +// We want the timeout of our `success` class to be a bit shorter than the +// tooltip and icon change, so that we can hide the icon before changing back. +var timeoutIcon = 2000; +var timeoutSuccessClass = 1500; + +const temporarilyChangeTooltip = (el, oldText, newText) => { + el.setAttribute('data-tooltip', newText) + el.classList.add('success') + // Remove success a little bit sooner than we change the tooltip + // So that we can use CSS to hide the copybutton first + setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) + setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) +} + +// Changes the copy button icon for two seconds, then changes it back +const temporarilyChangeIcon = (el) => { + el.innerHTML = iconCheck; + setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) +} + +const addCopyButtonToCodeCells = () => { + // If ClipboardJS hasn't loaded, wait a bit and try again. This + // happens because we load ClipboardJS asynchronously. + if (window.ClipboardJS === undefined) { + setTimeout(addCopyButtonToCodeCells, 250) + return + } + + // Add copybuttons to all of our code cells + const COPYBUTTON_SELECTOR = 'div.highlight pre'; + const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) + codeCells.forEach((codeCell, index) => { + const id = codeCellId(index) + codeCell.setAttribute('id', id) + + const clipboardButton = id => + `` + codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) + }) + +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} + + +var copyTargetText = (trigger) => { + var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); + + // get filtered text + let exclude = '.linenos'; + + let text = filterText(target, exclude); + return formatCopyText(text, '$', false, true, true, true, '', '') +} + + // Initialize with a callback so we can modify the text before copy + const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) + + // Update UI with error/success messages + clipboard.on('success', event => { + clearSelection() + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) + temporarilyChangeIcon(event.trigger) + }) + + clipboard.on('error', event => { + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) + }) +} + +runWhenDOMLoaded(addCopyButtonToCodeCells) \ No newline at end of file diff --git a/_static/copybutton_funcs.js b/_static/copybutton_funcs.js new file mode 100644 index 00000000..dbe1aaad --- /dev/null +++ b/_static/copybutton_funcs.js @@ -0,0 +1,73 @@ +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +export function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} diff --git a/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css b/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css new file mode 100644 index 00000000..3225661c --- /dev/null +++ b/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css @@ -0,0 +1 @@ +.sd-bg-primary{background-color:var(--sd-color-primary) !important}.sd-bg-text-primary{color:var(--sd-color-primary-text) !important}button.sd-bg-primary:focus,button.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}a.sd-bg-primary:focus,a.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}.sd-bg-secondary{background-color:var(--sd-color-secondary) !important}.sd-bg-text-secondary{color:var(--sd-color-secondary-text) !important}button.sd-bg-secondary:focus,button.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}a.sd-bg-secondary:focus,a.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}.sd-bg-success{background-color:var(--sd-color-success) !important}.sd-bg-text-success{color:var(--sd-color-success-text) !important}button.sd-bg-success:focus,button.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}a.sd-bg-success:focus,a.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}.sd-bg-info{background-color:var(--sd-color-info) !important}.sd-bg-text-info{color:var(--sd-color-info-text) !important}button.sd-bg-info:focus,button.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}a.sd-bg-info:focus,a.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}.sd-bg-warning{background-color:var(--sd-color-warning) !important}.sd-bg-text-warning{color:var(--sd-color-warning-text) !important}button.sd-bg-warning:focus,button.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}a.sd-bg-warning:focus,a.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}.sd-bg-danger{background-color:var(--sd-color-danger) !important}.sd-bg-text-danger{color:var(--sd-color-danger-text) !important}button.sd-bg-danger:focus,button.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}a.sd-bg-danger:focus,a.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}.sd-bg-light{background-color:var(--sd-color-light) !important}.sd-bg-text-light{color:var(--sd-color-light-text) !important}button.sd-bg-light:focus,button.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}a.sd-bg-light:focus,a.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}.sd-bg-muted{background-color:var(--sd-color-muted) !important}.sd-bg-text-muted{color:var(--sd-color-muted-text) !important}button.sd-bg-muted:focus,button.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}a.sd-bg-muted:focus,a.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}.sd-bg-dark{background-color:var(--sd-color-dark) !important}.sd-bg-text-dark{color:var(--sd-color-dark-text) !important}button.sd-bg-dark:focus,button.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}a.sd-bg-dark:focus,a.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}.sd-bg-black{background-color:var(--sd-color-black) !important}.sd-bg-text-black{color:var(--sd-color-black-text) !important}button.sd-bg-black:focus,button.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}a.sd-bg-black:focus,a.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}.sd-bg-white{background-color:var(--sd-color-white) !important}.sd-bg-text-white{color:var(--sd-color-white-text) !important}button.sd-bg-white:focus,button.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}a.sd-bg-white:focus,a.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}.sd-text-primary,.sd-text-primary>p{color:var(--sd-color-primary) !important}a.sd-text-primary:focus,a.sd-text-primary:hover{color:var(--sd-color-primary-highlight) !important}.sd-text-secondary,.sd-text-secondary>p{color:var(--sd-color-secondary) !important}a.sd-text-secondary:focus,a.sd-text-secondary:hover{color:var(--sd-color-secondary-highlight) !important}.sd-text-success,.sd-text-success>p{color:var(--sd-color-success) !important}a.sd-text-success:focus,a.sd-text-success:hover{color:var(--sd-color-success-highlight) !important}.sd-text-info,.sd-text-info>p{color:var(--sd-color-info) !important}a.sd-text-info:focus,a.sd-text-info:hover{color:var(--sd-color-info-highlight) !important}.sd-text-warning,.sd-text-warning>p{color:var(--sd-color-warning) !important}a.sd-text-warning:focus,a.sd-text-warning:hover{color:var(--sd-color-warning-highlight) !important}.sd-text-danger,.sd-text-danger>p{color:var(--sd-color-danger) !important}a.sd-text-danger:focus,a.sd-text-danger:hover{color:var(--sd-color-danger-highlight) !important}.sd-text-light,.sd-text-light>p{color:var(--sd-color-light) !important}a.sd-text-light:focus,a.sd-text-light:hover{color:var(--sd-color-light-highlight) !important}.sd-text-muted,.sd-text-muted>p{color:var(--sd-color-muted) !important}a.sd-text-muted:focus,a.sd-text-muted:hover{color:var(--sd-color-muted-highlight) !important}.sd-text-dark,.sd-text-dark>p{color:var(--sd-color-dark) !important}a.sd-text-dark:focus,a.sd-text-dark:hover{color:var(--sd-color-dark-highlight) !important}.sd-text-black,.sd-text-black>p{color:var(--sd-color-black) !important}a.sd-text-black:focus,a.sd-text-black:hover{color:var(--sd-color-black-highlight) !important}.sd-text-white,.sd-text-white>p{color:var(--sd-color-white) !important}a.sd-text-white:focus,a.sd-text-white:hover{color:var(--sd-color-white-highlight) !important}.sd-outline-primary{border-color:var(--sd-color-primary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-primary:focus,a.sd-outline-primary:hover{border-color:var(--sd-color-primary-highlight) !important}.sd-outline-secondary{border-color:var(--sd-color-secondary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-secondary:focus,a.sd-outline-secondary:hover{border-color:var(--sd-color-secondary-highlight) !important}.sd-outline-success{border-color:var(--sd-color-success) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-success:focus,a.sd-outline-success:hover{border-color:var(--sd-color-success-highlight) !important}.sd-outline-info{border-color:var(--sd-color-info) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-info:focus,a.sd-outline-info:hover{border-color:var(--sd-color-info-highlight) !important}.sd-outline-warning{border-color:var(--sd-color-warning) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-warning:focus,a.sd-outline-warning:hover{border-color:var(--sd-color-warning-highlight) !important}.sd-outline-danger{border-color:var(--sd-color-danger) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-danger:focus,a.sd-outline-danger:hover{border-color:var(--sd-color-danger-highlight) !important}.sd-outline-light{border-color:var(--sd-color-light) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-light:focus,a.sd-outline-light:hover{border-color:var(--sd-color-light-highlight) !important}.sd-outline-muted{border-color:var(--sd-color-muted) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-muted:focus,a.sd-outline-muted:hover{border-color:var(--sd-color-muted-highlight) !important}.sd-outline-dark{border-color:var(--sd-color-dark) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-dark:focus,a.sd-outline-dark:hover{border-color:var(--sd-color-dark-highlight) !important}.sd-outline-black{border-color:var(--sd-color-black) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-black:focus,a.sd-outline-black:hover{border-color:var(--sd-color-black-highlight) !important}.sd-outline-white{border-color:var(--sd-color-white) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-white:focus,a.sd-outline-white:hover{border-color:var(--sd-color-white-highlight) !important}.sd-bg-transparent{background-color:transparent !important}.sd-outline-transparent{border-color:transparent !important}.sd-text-transparent{color:transparent !important}.sd-p-0{padding:0 !important}.sd-pt-0,.sd-py-0{padding-top:0 !important}.sd-pr-0,.sd-px-0{padding-right:0 !important}.sd-pb-0,.sd-py-0{padding-bottom:0 !important}.sd-pl-0,.sd-px-0{padding-left:0 !important}.sd-p-1{padding:.25rem !important}.sd-pt-1,.sd-py-1{padding-top:.25rem !important}.sd-pr-1,.sd-px-1{padding-right:.25rem !important}.sd-pb-1,.sd-py-1{padding-bottom:.25rem !important}.sd-pl-1,.sd-px-1{padding-left:.25rem !important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem !important}.sd-pr-2,.sd-px-2{padding-right:.5rem !important}.sd-pb-2,.sd-py-2{padding-bottom:.5rem !important}.sd-pl-2,.sd-px-2{padding-left:.5rem !important}.sd-p-3{padding:1rem !important}.sd-pt-3,.sd-py-3{padding-top:1rem !important}.sd-pr-3,.sd-px-3{padding-right:1rem !important}.sd-pb-3,.sd-py-3{padding-bottom:1rem !important}.sd-pl-3,.sd-px-3{padding-left:1rem !important}.sd-p-4{padding:1.5rem !important}.sd-pt-4,.sd-py-4{padding-top:1.5rem !important}.sd-pr-4,.sd-px-4{padding-right:1.5rem !important}.sd-pb-4,.sd-py-4{padding-bottom:1.5rem !important}.sd-pl-4,.sd-px-4{padding-left:1.5rem !important}.sd-p-5{padding:3rem !important}.sd-pt-5,.sd-py-5{padding-top:3rem !important}.sd-pr-5,.sd-px-5{padding-right:3rem !important}.sd-pb-5,.sd-py-5{padding-bottom:3rem !important}.sd-pl-5,.sd-px-5{padding-left:3rem !important}.sd-m-auto{margin:auto !important}.sd-mt-auto,.sd-my-auto{margin-top:auto !important}.sd-mr-auto,.sd-mx-auto{margin-right:auto !important}.sd-mb-auto,.sd-my-auto{margin-bottom:auto !important}.sd-ml-auto,.sd-mx-auto{margin-left:auto !important}.sd-m-0{margin:0 !important}.sd-mt-0,.sd-my-0{margin-top:0 !important}.sd-mr-0,.sd-mx-0{margin-right:0 !important}.sd-mb-0,.sd-my-0{margin-bottom:0 !important}.sd-ml-0,.sd-mx-0{margin-left:0 !important}.sd-m-1{margin:.25rem !important}.sd-mt-1,.sd-my-1{margin-top:.25rem !important}.sd-mr-1,.sd-mx-1{margin-right:.25rem !important}.sd-mb-1,.sd-my-1{margin-bottom:.25rem !important}.sd-ml-1,.sd-mx-1{margin-left:.25rem !important}.sd-m-2{margin:.5rem !important}.sd-mt-2,.sd-my-2{margin-top:.5rem !important}.sd-mr-2,.sd-mx-2{margin-right:.5rem !important}.sd-mb-2,.sd-my-2{margin-bottom:.5rem !important}.sd-ml-2,.sd-mx-2{margin-left:.5rem !important}.sd-m-3{margin:1rem !important}.sd-mt-3,.sd-my-3{margin-top:1rem !important}.sd-mr-3,.sd-mx-3{margin-right:1rem !important}.sd-mb-3,.sd-my-3{margin-bottom:1rem !important}.sd-ml-3,.sd-mx-3{margin-left:1rem !important}.sd-m-4{margin:1.5rem !important}.sd-mt-4,.sd-my-4{margin-top:1.5rem !important}.sd-mr-4,.sd-mx-4{margin-right:1.5rem !important}.sd-mb-4,.sd-my-4{margin-bottom:1.5rem !important}.sd-ml-4,.sd-mx-4{margin-left:1.5rem !important}.sd-m-5{margin:3rem !important}.sd-mt-5,.sd-my-5{margin-top:3rem !important}.sd-mr-5,.sd-mx-5{margin-right:3rem !important}.sd-mb-5,.sd-my-5{margin-bottom:3rem !important}.sd-ml-5,.sd-mx-5{margin-left:3rem !important}.sd-w-25{width:25% !important}.sd-w-50{width:50% !important}.sd-w-75{width:75% !important}.sd-w-100{width:100% !important}.sd-w-auto{width:auto !important}.sd-h-25{height:25% !important}.sd-h-50{height:50% !important}.sd-h-75{height:75% !important}.sd-h-100{height:100% !important}.sd-h-auto{height:auto !important}.sd-d-none{display:none !important}.sd-d-inline{display:inline !important}.sd-d-inline-block{display:inline-block !important}.sd-d-block{display:block !important}.sd-d-grid{display:grid !important}.sd-d-flex-row{display:-ms-flexbox !important;display:flex !important;flex-direction:row !important}.sd-d-flex-column{display:-ms-flexbox !important;display:flex !important;flex-direction:column !important}.sd-d-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}@media(min-width: 576px){.sd-d-sm-none{display:none !important}.sd-d-sm-inline{display:inline !important}.sd-d-sm-inline-block{display:inline-block !important}.sd-d-sm-block{display:block !important}.sd-d-sm-grid{display:grid !important}.sd-d-sm-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-sm-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 768px){.sd-d-md-none{display:none !important}.sd-d-md-inline{display:inline !important}.sd-d-md-inline-block{display:inline-block !important}.sd-d-md-block{display:block !important}.sd-d-md-grid{display:grid !important}.sd-d-md-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-md-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 992px){.sd-d-lg-none{display:none !important}.sd-d-lg-inline{display:inline !important}.sd-d-lg-inline-block{display:inline-block !important}.sd-d-lg-block{display:block !important}.sd-d-lg-grid{display:grid !important}.sd-d-lg-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-lg-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 1200px){.sd-d-xl-none{display:none !important}.sd-d-xl-inline{display:inline !important}.sd-d-xl-inline-block{display:inline-block !important}.sd-d-xl-block{display:block !important}.sd-d-xl-grid{display:grid !important}.sd-d-xl-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-xl-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}.sd-align-major-start{justify-content:flex-start !important}.sd-align-major-end{justify-content:flex-end !important}.sd-align-major-center{justify-content:center !important}.sd-align-major-justify{justify-content:space-between !important}.sd-align-major-spaced{justify-content:space-evenly !important}.sd-align-minor-start{align-items:flex-start !important}.sd-align-minor-end{align-items:flex-end !important}.sd-align-minor-center{align-items:center !important}.sd-align-minor-stretch{align-items:stretch !important}.sd-text-justify{text-align:justify !important}.sd-text-left{text-align:left !important}.sd-text-right{text-align:right !important}.sd-text-center{text-align:center !important}.sd-font-weight-light{font-weight:300 !important}.sd-font-weight-lighter{font-weight:lighter !important}.sd-font-weight-normal{font-weight:400 !important}.sd-font-weight-bold{font-weight:700 !important}.sd-font-weight-bolder{font-weight:bolder !important}.sd-font-italic{font-style:italic !important}.sd-text-decoration-none{text-decoration:none !important}.sd-text-lowercase{text-transform:lowercase !important}.sd-text-uppercase{text-transform:uppercase !important}.sd-text-capitalize{text-transform:capitalize !important}.sd-text-wrap{white-space:normal !important}.sd-text-nowrap{white-space:nowrap !important}.sd-text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.sd-fs-1,.sd-fs-1>p{font-size:calc(1.375rem + 1.5vw) !important;line-height:unset !important}.sd-fs-2,.sd-fs-2>p{font-size:calc(1.325rem + 0.9vw) !important;line-height:unset !important}.sd-fs-3,.sd-fs-3>p{font-size:calc(1.3rem + 0.6vw) !important;line-height:unset !important}.sd-fs-4,.sd-fs-4>p{font-size:calc(1.275rem + 0.3vw) !important;line-height:unset !important}.sd-fs-5,.sd-fs-5>p{font-size:1.25rem !important;line-height:unset !important}.sd-fs-6,.sd-fs-6>p{font-size:1rem !important;line-height:unset !important}.sd-border-0{border:0 solid !important}.sd-border-top-0{border-top:0 solid !important}.sd-border-bottom-0{border-bottom:0 solid !important}.sd-border-right-0{border-right:0 solid !important}.sd-border-left-0{border-left:0 solid !important}.sd-border-1{border:1px solid !important}.sd-border-top-1{border-top:1px solid !important}.sd-border-bottom-1{border-bottom:1px solid !important}.sd-border-right-1{border-right:1px solid !important}.sd-border-left-1{border-left:1px solid !important}.sd-border-2{border:2px solid !important}.sd-border-top-2{border-top:2px solid !important}.sd-border-bottom-2{border-bottom:2px solid !important}.sd-border-right-2{border-right:2px solid !important}.sd-border-left-2{border-left:2px solid !important}.sd-border-3{border:3px solid !important}.sd-border-top-3{border-top:3px solid !important}.sd-border-bottom-3{border-bottom:3px solid !important}.sd-border-right-3{border-right:3px solid !important}.sd-border-left-3{border-left:3px solid !important}.sd-border-4{border:4px solid !important}.sd-border-top-4{border-top:4px solid !important}.sd-border-bottom-4{border-bottom:4px solid !important}.sd-border-right-4{border-right:4px solid !important}.sd-border-left-4{border-left:4px solid !important}.sd-border-5{border:5px solid !important}.sd-border-top-5{border-top:5px solid !important}.sd-border-bottom-5{border-bottom:5px solid !important}.sd-border-right-5{border-right:5px solid !important}.sd-border-left-5{border-left:5px solid !important}.sd-rounded-0{border-radius:0 !important}.sd-rounded-1{border-radius:.2rem !important}.sd-rounded-2{border-radius:.3rem !important}.sd-rounded-3{border-radius:.5rem !important}.sd-rounded-pill{border-radius:50rem !important}.sd-rounded-circle{border-radius:50% !important}.shadow-none{box-shadow:none !important}.sd-shadow-sm{box-shadow:0 .125rem .25rem var(--sd-color-shadow) !important}.sd-shadow-md{box-shadow:0 .5rem 1rem var(--sd-color-shadow) !important}.sd-shadow-lg{box-shadow:0 1rem 3rem var(--sd-color-shadow) !important}@keyframes sd-slide-from-left{0%{transform:translateX(-100%)}100%{transform:translateX(0)}}@keyframes sd-slide-from-right{0%{transform:translateX(200%)}100%{transform:translateX(0)}}@keyframes sd-grow100{0%{transform:scale(0);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50{0%{transform:scale(0.5);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50-rot20{0%{transform:scale(0.5) rotateZ(-20deg);opacity:.5}75%{transform:scale(1) rotateZ(5deg);opacity:1}95%{transform:scale(1) rotateZ(-1deg);opacity:1}100%{transform:scale(1) rotateZ(0);opacity:1}}.sd-animate-slide-from-left{animation:1s ease-out 0s 1 normal none running sd-slide-from-left}.sd-animate-slide-from-right{animation:1s ease-out 0s 1 normal none running sd-slide-from-right}.sd-animate-grow100{animation:1s ease-out 0s 1 normal none running sd-grow100}.sd-animate-grow50{animation:1s ease-out 0s 1 normal none running sd-grow50}.sd-animate-grow50-rot20{animation:1s ease-out 0s 1 normal none running sd-grow50-rot20}.sd-badge{display:inline-block;padding:.35em .65em;font-size:.75em;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem}.sd-badge:empty{display:none}a.sd-badge{text-decoration:none}.sd-btn .sd-badge{position:relative;top:-1px}.sd-btn{background-color:transparent;border:1px solid transparent;border-radius:.25rem;cursor:pointer;display:inline-block;font-weight:400;font-size:1rem;line-height:1.5;padding:.375rem .75rem;text-align:center;text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;vertical-align:middle;user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none}.sd-btn:hover{text-decoration:none}@media(prefers-reduced-motion: reduce){.sd-btn{transition:none}}.sd-btn-primary,.sd-btn-outline-primary:hover,.sd-btn-outline-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-primary:hover,.sd-btn-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary-highlight) !important;border-color:var(--sd-color-primary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-primary{color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary,.sd-btn-outline-secondary:hover,.sd-btn-outline-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary:hover,.sd-btn-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary-highlight) !important;border-color:var(--sd-color-secondary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-secondary{color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success,.sd-btn-outline-success:hover,.sd-btn-outline-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success:hover,.sd-btn-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success-highlight) !important;border-color:var(--sd-color-success-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-success{color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info,.sd-btn-outline-info:hover,.sd-btn-outline-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info:hover,.sd-btn-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info-highlight) !important;border-color:var(--sd-color-info-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-info{color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning,.sd-btn-outline-warning:hover,.sd-btn-outline-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning:hover,.sd-btn-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning-highlight) !important;border-color:var(--sd-color-warning-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-warning{color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger,.sd-btn-outline-danger:hover,.sd-btn-outline-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger:hover,.sd-btn-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger-highlight) !important;border-color:var(--sd-color-danger-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-danger{color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light,.sd-btn-outline-light:hover,.sd-btn-outline-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light:hover,.sd-btn-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light-highlight) !important;border-color:var(--sd-color-light-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-light{color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted,.sd-btn-outline-muted:hover,.sd-btn-outline-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted:hover,.sd-btn-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted-highlight) !important;border-color:var(--sd-color-muted-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-muted{color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark,.sd-btn-outline-dark:hover,.sd-btn-outline-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark:hover,.sd-btn-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark-highlight) !important;border-color:var(--sd-color-dark-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-dark{color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black,.sd-btn-outline-black:hover,.sd-btn-outline-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black:hover,.sd-btn-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black-highlight) !important;border-color:var(--sd-color-black-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-black{color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white,.sd-btn-outline-white:hover,.sd-btn-outline-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white:hover,.sd-btn-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white-highlight) !important;border-color:var(--sd-color-white-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-white{color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.sd-hide-link-text{font-size:0}.sd-octicon,.sd-material-icon{display:inline-block;fill:currentColor;vertical-align:middle}.sd-avatar-xs{border-radius:50%;object-fit:cover;object-position:center;width:1rem;height:1rem}.sd-avatar-sm{border-radius:50%;object-fit:cover;object-position:center;width:3rem;height:3rem}.sd-avatar-md{border-radius:50%;object-fit:cover;object-position:center;width:5rem;height:5rem}.sd-avatar-lg{border-radius:50%;object-fit:cover;object-position:center;width:7rem;height:7rem}.sd-avatar-xl{border-radius:50%;object-fit:cover;object-position:center;width:10rem;height:10rem}.sd-avatar-inherit{border-radius:50%;object-fit:cover;object-position:center;width:inherit;height:inherit}.sd-avatar-initial{border-radius:50%;object-fit:cover;object-position:center;width:initial;height:initial}.sd-card{background-clip:border-box;background-color:var(--sd-color-card-background);border:1px solid var(--sd-color-card-border);border-radius:.25rem;color:var(--sd-color-card-text);display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;position:relative;word-wrap:break-word}.sd-card>hr{margin-left:0;margin-right:0}.sd-card-hover:hover{border-color:var(--sd-color-card-border-hover);transform:scale(1.01)}.sd-card-body{-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem 1rem}.sd-card-title{margin-bottom:.5rem}.sd-card-subtitle{margin-top:-0.25rem;margin-bottom:0}.sd-card-text:last-child{margin-bottom:0}.sd-card-link:hover{text-decoration:none}.sd-card-link+.card-link{margin-left:1rem}.sd-card-header{padding:.5rem 1rem;margin-bottom:0;background-color:var(--sd-color-card-header);border-bottom:1px solid var(--sd-color-card-border)}.sd-card-header:first-child{border-radius:calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0}.sd-card-footer{padding:.5rem 1rem;background-color:var(--sd-color-card-footer);border-top:1px solid var(--sd-color-card-border)}.sd-card-footer:last-child{border-radius:0 0 calc(0.25rem - 1px) calc(0.25rem - 1px)}.sd-card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.sd-card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.sd-card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem;border-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom,.sd-card-img-top{width:100%}.sd-card-img,.sd-card-img-top{border-top-left-radius:calc(0.25rem - 1px);border-top-right-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom{border-bottom-left-radius:calc(0.25rem - 1px);border-bottom-right-radius:calc(0.25rem - 1px)}.sd-cards-carousel{width:100%;display:flex;flex-wrap:nowrap;-ms-flex-direction:row;flex-direction:row;overflow-x:hidden;scroll-snap-type:x mandatory}.sd-cards-carousel.sd-show-scrollbar{overflow-x:auto}.sd-cards-carousel:hover,.sd-cards-carousel:focus{overflow-x:auto}.sd-cards-carousel>.sd-card{flex-shrink:0;scroll-snap-align:start}.sd-cards-carousel>.sd-card:not(:last-child){margin-right:3px}.sd-card-cols-1>.sd-card{width:90%}.sd-card-cols-2>.sd-card{width:45%}.sd-card-cols-3>.sd-card{width:30%}.sd-card-cols-4>.sd-card{width:22.5%}.sd-card-cols-5>.sd-card{width:18%}.sd-card-cols-6>.sd-card{width:15%}.sd-card-cols-7>.sd-card{width:12.8571428571%}.sd-card-cols-8>.sd-card{width:11.25%}.sd-card-cols-9>.sd-card{width:10%}.sd-card-cols-10>.sd-card{width:9%}.sd-card-cols-11>.sd-card{width:8.1818181818%}.sd-card-cols-12>.sd-card{width:7.5%}.sd-container,.sd-container-fluid,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container-xl{margin-left:auto;margin-right:auto;padding-left:var(--sd-gutter-x, 0.75rem);padding-right:var(--sd-gutter-x, 0.75rem);width:100%}@media(min-width: 576px){.sd-container-sm,.sd-container{max-width:540px}}@media(min-width: 768px){.sd-container-md,.sd-container-sm,.sd-container{max-width:720px}}@media(min-width: 992px){.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:960px}}@media(min-width: 1200px){.sd-container-xl,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:1140px}}.sd-row{--sd-gutter-x: 1.5rem;--sd-gutter-y: 0;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-top:calc(var(--sd-gutter-y) * -1);margin-right:calc(var(--sd-gutter-x) * -0.5);margin-left:calc(var(--sd-gutter-x) * -0.5)}.sd-row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--sd-gutter-x) * 0.5);padding-left:calc(var(--sd-gutter-x) * 0.5);margin-top:var(--sd-gutter-y)}.sd-col{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-auto>*{flex:0 0 auto;width:auto}.sd-row-cols-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}@media(min-width: 576px){.sd-col-sm{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-sm-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-sm-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-sm-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-sm-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-sm-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-sm-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-sm-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-sm-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-sm-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-sm-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-sm-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-sm-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-sm-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 768px){.sd-col-md{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-md-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-md-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-md-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-md-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-md-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-md-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-md-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-md-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-md-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-md-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-md-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-md-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-md-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 992px){.sd-col-lg{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-lg-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-lg-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-lg-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-lg-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-lg-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-lg-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-lg-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-lg-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-lg-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-lg-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-lg-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-lg-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-lg-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 1200px){.sd-col-xl{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-xl-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-xl-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-xl-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-xl-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-xl-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-xl-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-xl-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-xl-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-xl-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-xl-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-xl-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-xl-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-xl-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}.sd-col-auto{flex:0 0 auto;-ms-flex:0 0 auto;width:auto}.sd-col-1{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}.sd-col-2{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-col-3{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-col-4{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-col-5{flex:0 0 auto;-ms-flex:0 0 auto;width:41.6666666667%}.sd-col-6{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-col-7{flex:0 0 auto;-ms-flex:0 0 auto;width:58.3333333333%}.sd-col-8{flex:0 0 auto;-ms-flex:0 0 auto;width:66.6666666667%}.sd-col-9{flex:0 0 auto;-ms-flex:0 0 auto;width:75%}.sd-col-10{flex:0 0 auto;-ms-flex:0 0 auto;width:83.3333333333%}.sd-col-11{flex:0 0 auto;-ms-flex:0 0 auto;width:91.6666666667%}.sd-col-12{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-g-0,.sd-gy-0{--sd-gutter-y: 0}.sd-g-0,.sd-gx-0{--sd-gutter-x: 0}.sd-g-1,.sd-gy-1{--sd-gutter-y: 0.25rem}.sd-g-1,.sd-gx-1{--sd-gutter-x: 0.25rem}.sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x: 0.5rem}.sd-g-3,.sd-gy-3{--sd-gutter-y: 1rem}.sd-g-3,.sd-gx-3{--sd-gutter-x: 1rem}.sd-g-4,.sd-gy-4{--sd-gutter-y: 1.5rem}.sd-g-4,.sd-gx-4{--sd-gutter-x: 1.5rem}.sd-g-5,.sd-gy-5{--sd-gutter-y: 3rem}.sd-g-5,.sd-gx-5{--sd-gutter-x: 3rem}@media(min-width: 576px){.sd-col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-sm-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-sm-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-sm-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-sm-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-sm-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-sm-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-sm-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-sm-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-sm-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-sm-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-sm-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-sm-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-sm-0,.sd-gy-sm-0{--sd-gutter-y: 0}.sd-g-sm-0,.sd-gx-sm-0{--sd-gutter-x: 0}.sd-g-sm-1,.sd-gy-sm-1{--sd-gutter-y: 0.25rem}.sd-g-sm-1,.sd-gx-sm-1{--sd-gutter-x: 0.25rem}.sd-g-sm-2,.sd-gy-sm-2{--sd-gutter-y: 0.5rem}.sd-g-sm-2,.sd-gx-sm-2{--sd-gutter-x: 0.5rem}.sd-g-sm-3,.sd-gy-sm-3{--sd-gutter-y: 1rem}.sd-g-sm-3,.sd-gx-sm-3{--sd-gutter-x: 1rem}.sd-g-sm-4,.sd-gy-sm-4{--sd-gutter-y: 1.5rem}.sd-g-sm-4,.sd-gx-sm-4{--sd-gutter-x: 1.5rem}.sd-g-sm-5,.sd-gy-sm-5{--sd-gutter-y: 3rem}.sd-g-sm-5,.sd-gx-sm-5{--sd-gutter-x: 3rem}}@media(min-width: 768px){.sd-col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-md-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-md-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-md-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-md-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-md-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-md-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-md-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-md-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-md-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-md-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-md-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-md-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-md-0,.sd-gy-md-0{--sd-gutter-y: 0}.sd-g-md-0,.sd-gx-md-0{--sd-gutter-x: 0}.sd-g-md-1,.sd-gy-md-1{--sd-gutter-y: 0.25rem}.sd-g-md-1,.sd-gx-md-1{--sd-gutter-x: 0.25rem}.sd-g-md-2,.sd-gy-md-2{--sd-gutter-y: 0.5rem}.sd-g-md-2,.sd-gx-md-2{--sd-gutter-x: 0.5rem}.sd-g-md-3,.sd-gy-md-3{--sd-gutter-y: 1rem}.sd-g-md-3,.sd-gx-md-3{--sd-gutter-x: 1rem}.sd-g-md-4,.sd-gy-md-4{--sd-gutter-y: 1.5rem}.sd-g-md-4,.sd-gx-md-4{--sd-gutter-x: 1.5rem}.sd-g-md-5,.sd-gy-md-5{--sd-gutter-y: 3rem}.sd-g-md-5,.sd-gx-md-5{--sd-gutter-x: 3rem}}@media(min-width: 992px){.sd-col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-lg-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-lg-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-lg-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-lg-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-lg-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-lg-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-lg-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-lg-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-lg-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-lg-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-lg-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-lg-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-lg-0,.sd-gy-lg-0{--sd-gutter-y: 0}.sd-g-lg-0,.sd-gx-lg-0{--sd-gutter-x: 0}.sd-g-lg-1,.sd-gy-lg-1{--sd-gutter-y: 0.25rem}.sd-g-lg-1,.sd-gx-lg-1{--sd-gutter-x: 0.25rem}.sd-g-lg-2,.sd-gy-lg-2{--sd-gutter-y: 0.5rem}.sd-g-lg-2,.sd-gx-lg-2{--sd-gutter-x: 0.5rem}.sd-g-lg-3,.sd-gy-lg-3{--sd-gutter-y: 1rem}.sd-g-lg-3,.sd-gx-lg-3{--sd-gutter-x: 1rem}.sd-g-lg-4,.sd-gy-lg-4{--sd-gutter-y: 1.5rem}.sd-g-lg-4,.sd-gx-lg-4{--sd-gutter-x: 1.5rem}.sd-g-lg-5,.sd-gy-lg-5{--sd-gutter-y: 3rem}.sd-g-lg-5,.sd-gx-lg-5{--sd-gutter-x: 3rem}}@media(min-width: 1200px){.sd-col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-xl-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-xl-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-xl-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-xl-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-xl-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-xl-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-xl-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-xl-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-xl-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-xl-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-xl-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-xl-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-xl-0,.sd-gy-xl-0{--sd-gutter-y: 0}.sd-g-xl-0,.sd-gx-xl-0{--sd-gutter-x: 0}.sd-g-xl-1,.sd-gy-xl-1{--sd-gutter-y: 0.25rem}.sd-g-xl-1,.sd-gx-xl-1{--sd-gutter-x: 0.25rem}.sd-g-xl-2,.sd-gy-xl-2{--sd-gutter-y: 0.5rem}.sd-g-xl-2,.sd-gx-xl-2{--sd-gutter-x: 0.5rem}.sd-g-xl-3,.sd-gy-xl-3{--sd-gutter-y: 1rem}.sd-g-xl-3,.sd-gx-xl-3{--sd-gutter-x: 1rem}.sd-g-xl-4,.sd-gy-xl-4{--sd-gutter-y: 1.5rem}.sd-g-xl-4,.sd-gx-xl-4{--sd-gutter-x: 1.5rem}.sd-g-xl-5,.sd-gy-xl-5{--sd-gutter-y: 3rem}.sd-g-xl-5,.sd-gx-xl-5{--sd-gutter-x: 3rem}}.sd-flex-row-reverse{flex-direction:row-reverse !important}details.sd-dropdown{position:relative}details.sd-dropdown .sd-summary-title{font-weight:700;padding-right:3em !important;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}details.sd-dropdown:hover{cursor:pointer}details.sd-dropdown .sd-summary-content{cursor:default}details.sd-dropdown summary{list-style:none;padding:1em}details.sd-dropdown summary .sd-octicon.no-title{vertical-align:middle}details.sd-dropdown[open] summary .sd-octicon.no-title{visibility:hidden}details.sd-dropdown summary::-webkit-details-marker{display:none}details.sd-dropdown summary:focus{outline:none}details.sd-dropdown .sd-summary-icon{margin-right:.5em}details.sd-dropdown .sd-summary-icon svg{opacity:.8}details.sd-dropdown summary:hover .sd-summary-up svg,details.sd-dropdown summary:hover .sd-summary-down svg{opacity:1;transform:scale(1.1)}details.sd-dropdown .sd-summary-up svg,details.sd-dropdown .sd-summary-down svg{display:block;opacity:.6}details.sd-dropdown .sd-summary-up,details.sd-dropdown .sd-summary-down{pointer-events:none;position:absolute;right:1em;top:1em}details.sd-dropdown[open]>.sd-summary-title .sd-summary-down{visibility:hidden}details.sd-dropdown:not([open])>.sd-summary-title .sd-summary-up{visibility:hidden}details.sd-dropdown:not([open]).sd-card{border:none}details.sd-dropdown:not([open])>.sd-card-header{border:1px solid var(--sd-color-card-border);border-radius:.25rem}details.sd-dropdown.sd-fade-in[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out;animation:sd-fade-in .5s ease-in-out}details.sd-dropdown.sd-fade-in-slide-down[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out}.sd-col>.sd-dropdown{width:100%}.sd-summary-content>.sd-tab-set:first-child{margin-top:0}@keyframes sd-fade-in{0%{opacity:0}100%{opacity:1}}@keyframes sd-slide-down{0%{transform:translate(0, -10px)}100%{transform:translate(0, 0)}}.sd-tab-set{border-radius:.125rem;display:flex;flex-wrap:wrap;margin:1em 0;position:relative}.sd-tab-set>input{opacity:0;position:absolute}.sd-tab-set>input:checked+label{border-color:var(--sd-color-tabs-underline-active);color:var(--sd-color-tabs-label-active)}.sd-tab-set>input:checked+label+.sd-tab-content{display:block}.sd-tab-set>input:not(:checked)+label:hover{color:var(--sd-color-tabs-label-hover);border-color:var(--sd-color-tabs-underline-hover)}.sd-tab-set>input:focus+label{outline-style:auto}.sd-tab-set>input:not(.focus-visible)+label{outline:none;-webkit-tap-highlight-color:transparent}.sd-tab-set>label{border-bottom:.125rem solid transparent;margin-bottom:0;color:var(--sd-color-tabs-label-inactive);border-color:var(--sd-color-tabs-underline-inactive);cursor:pointer;font-size:var(--sd-fontsize-tabs-label);font-weight:700;padding:1em 1.25em .5em;transition:color 250ms;width:auto;z-index:1}html .sd-tab-set>label:hover{color:var(--sd-color-tabs-label-active)}.sd-col>.sd-tab-set{width:100%}.sd-tab-content{box-shadow:0 -0.0625rem var(--sd-color-tabs-overline),0 .0625rem var(--sd-color-tabs-underline);display:none;order:99;padding-bottom:.75rem;padding-top:.75rem;width:100%}.sd-tab-content>:first-child{margin-top:0 !important}.sd-tab-content>:last-child{margin-bottom:0 !important}.sd-tab-content>.sd-tab-set{margin:0}.sd-sphinx-override,.sd-sphinx-override *{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sd-sphinx-override p{margin-top:0}:root{--sd-color-primary: #007bff;--sd-color-secondary: #6c757d;--sd-color-success: #28a745;--sd-color-info: #17a2b8;--sd-color-warning: #f0b37e;--sd-color-danger: #dc3545;--sd-color-light: #f8f9fa;--sd-color-muted: #6c757d;--sd-color-dark: #212529;--sd-color-black: black;--sd-color-white: white;--sd-color-primary-highlight: #0069d9;--sd-color-secondary-highlight: #5c636a;--sd-color-success-highlight: #228e3b;--sd-color-info-highlight: #148a9c;--sd-color-warning-highlight: #cc986b;--sd-color-danger-highlight: #bb2d3b;--sd-color-light-highlight: #d3d4d5;--sd-color-muted-highlight: #5c636a;--sd-color-dark-highlight: #1c1f23;--sd-color-black-highlight: black;--sd-color-white-highlight: #d9d9d9;--sd-color-primary-text: #fff;--sd-color-secondary-text: #fff;--sd-color-success-text: #fff;--sd-color-info-text: #fff;--sd-color-warning-text: #212529;--sd-color-danger-text: #fff;--sd-color-light-text: #212529;--sd-color-muted-text: #fff;--sd-color-dark-text: #fff;--sd-color-black-text: #fff;--sd-color-white-text: #212529;--sd-color-shadow: rgba(0, 0, 0, 0.15);--sd-color-card-border: rgba(0, 0, 0, 0.125);--sd-color-card-border-hover: hsla(231, 99%, 66%, 1);--sd-color-card-background: transparent;--sd-color-card-text: inherit;--sd-color-card-header: transparent;--sd-color-card-footer: transparent;--sd-color-tabs-label-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-hover: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-inactive: hsl(0, 0%, 66%);--sd-color-tabs-underline-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-underline-hover: rgba(178, 206, 245, 0.62);--sd-color-tabs-underline-inactive: transparent;--sd-color-tabs-overline: rgb(222, 222, 222);--sd-color-tabs-underline: rgb(222, 222, 222);--sd-fontsize-tabs-label: 1rem} diff --git a/_static/design-tabs.js b/_static/design-tabs.js new file mode 100644 index 00000000..36b38cf0 --- /dev/null +++ b/_static/design-tabs.js @@ -0,0 +1,27 @@ +var sd_labels_by_text = {}; + +function ready() { + const li = document.getElementsByClassName("sd-tab-label"); + for (const label of li) { + syncId = label.getAttribute("data-sync-id"); + if (syncId) { + label.onclick = onLabelClick; + if (!sd_labels_by_text[syncId]) { + sd_labels_by_text[syncId] = []; + } + sd_labels_by_text[syncId].push(label); + } + } +} + +function onLabelClick() { + // Activate other inputs with the same sync id. + syncId = this.getAttribute("data-sync-id"); + for (label of sd_labels_by_text[syncId]) { + if (label === this) continue; + label.previousElementSibling.checked = true; + } + window.localStorage.setItem("sphinx-design-last-tab", syncId); +} + +document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 00000000..c3db08d1 --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,264 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + parent.insertBefore( + span, + parent.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.highlightSearchWords(); + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * highlight the search words provided in the url in the text + */ + highlightSearchWords: () => { + const highlight = + new URLSearchParams(window.location.search).get("highlight") || ""; + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + const url = new URL(window.location); + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + const blacklistedElements = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", + ]); + document.addEventListener("keydown", (event) => { + if (blacklistedElements.has(document.activeElement.tagName)) return; // bail for input elements + if (event.altKey || event.ctrlKey || event.metaKey) return; // bail with special keys + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + case "Escape": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.hideSearchWords(); + event.preventDefault(); + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 00000000..162a6ba8 --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,14 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: '', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: false, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 00000000..a858a410 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/images/logo_binder.svg b/_static/images/logo_binder.svg new file mode 100644 index 00000000..45fecf75 --- /dev/null +++ b/_static/images/logo_binder.svg @@ -0,0 +1,19 @@ + + + + +logo + + + + + + + + diff --git a/_static/images/logo_colab.png b/_static/images/logo_colab.png new file mode 100644 index 00000000..b7560ec2 Binary files /dev/null and b/_static/images/logo_colab.png differ diff --git a/_static/images/logo_deepnote.svg b/_static/images/logo_deepnote.svg new file mode 100644 index 00000000..fa77ebfc --- /dev/null +++ b/_static/images/logo_deepnote.svg @@ -0,0 +1 @@ + diff --git a/_static/images/logo_jupyterhub.svg b/_static/images/logo_jupyterhub.svg new file mode 100644 index 00000000..60cfe9f2 --- /dev/null +++ b/_static/images/logo_jupyterhub.svg @@ -0,0 +1 @@ +logo_jupyterhubHub diff --git a/_static/index_api.svg b/_static/index_api.svg new file mode 100644 index 00000000..87013d24 --- /dev/null +++ b/_static/index_api.svg @@ -0,0 +1,97 @@ + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + diff --git a/_static/index_community.svg b/_static/index_community.svg new file mode 100644 index 00000000..770c7c04 --- /dev/null +++ b/_static/index_community.svg @@ -0,0 +1,58 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_static/index_community2.pdf b/_static/index_community2.pdf new file mode 100644 index 00000000..8d877212 Binary files /dev/null and b/_static/index_community2.pdf differ diff --git a/_static/index_community2.png b/_static/index_community2.png new file mode 100644 index 00000000..962e3912 Binary files /dev/null and b/_static/index_community2.png differ diff --git a/_static/index_contribute.svg b/_static/index_contribute.svg new file mode 100644 index 00000000..399f1d76 --- /dev/null +++ b/_static/index_contribute.svg @@ -0,0 +1,76 @@ + + + + + + + + + + image/svg+xml + + + + + + + + + + + + diff --git a/_static/index_getting_started.svg b/_static/index_getting_started.svg new file mode 100644 index 00000000..d1c7b08a --- /dev/null +++ b/_static/index_getting_started.svg @@ -0,0 +1,66 @@ + + + + + + + + + + image/svg+xml + + + + + + + + + diff --git a/_static/index_user_guide.svg b/_static/index_user_guide.svg new file mode 100644 index 00000000..bff24824 --- /dev/null +++ b/_static/index_user_guide.svg @@ -0,0 +1,67 @@ + + + + + + + + + + image/svg+xml + + + + + + + + + diff --git a/_static/jquery-3.6.0.js b/_static/jquery-3.6.0.js new file mode 100644 index 00000000..fc6c299b --- /dev/null +++ b/_static/jquery-3.6.0.js @@ -0,0 +1,10881 @@ +/*! + * jQuery JavaScript Library v3.6.0 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright OpenJS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2021-03-02T17:08Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var flat = arr.flat ? function( array ) { + return arr.flat.call( array ); +} : function( array ) { + return arr.concat.apply( [], array ); +}; + + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + +var isFunction = function isFunction( obj ) { + + // Support: Chrome <=57, Firefox <=52 + // In some browsers, typeof returns "function" for HTML elements + // (i.e., `typeof document.createElement( "object" ) === "function"`). + // We don't want to classify *any* DOM node as a function. + // Support: QtWeb <=3.8.5, WebKit <=534.34, wkhtmltopdf tool <=0.12.5 + // Plus for old WebKit, typeof returns "function" for HTML collections + // (e.g., `typeof document.getElementsByTagName("div") === "function"`). (gh-4756) + return typeof obj === "function" && typeof obj.nodeType !== "number" && + typeof obj.item !== "function"; + }; + + +var isWindow = function isWindow( obj ) { + return obj != null && obj === obj.window; + }; + + +var document = window.document; + + + + var preservedScriptAttributes = { + type: true, + src: true, + nonce: true, + noModule: true + }; + + function DOMEval( code, node, doc ) { + doc = doc || document; + + var i, val, + script = doc.createElement( "script" ); + + script.text = code; + if ( node ) { + for ( i in preservedScriptAttributes ) { + + // Support: Firefox 64+, Edge 18+ + // Some browsers don't support the "nonce" property on scripts. + // On the other hand, just using `getAttribute` is not enough as + // the `nonce` attribute is reset to an empty string whenever it + // becomes browsing-context connected. + // See https://github.com/whatwg/html/issues/2369 + // See https://html.spec.whatwg.org/#nonce-attributes + // The `node.getAttribute` check was added for the sake of + // `jQuery.globalEval` so that it can fake a nonce-containing node + // via an object. + val = node[ i ] || node.getAttribute && node.getAttribute( i ); + if ( val ) { + script.setAttribute( i, val ); + } + } + } + doc.head.appendChild( script ).parentNode.removeChild( script ); + } + + +function toType( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; +} +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.6.0", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + even: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return ( i + 1 ) % 2; + } ) ); + }, + + odd: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return i % 2; + } ) ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + copy = options[ name ]; + + // Prevent Object.prototype pollution + // Prevent never-ending loop + if ( name === "__proto__" || target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + src = target[ name ]; + + // Ensure proper type for the source value + if ( copyIsArray && !Array.isArray( src ) ) { + clone = []; + } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { + clone = {}; + } else { + clone = src; + } + copyIsArray = false; + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + // Evaluates a script in a provided context; falls back to the global one + // if not specified. + globalEval: function( code, options, doc ) { + DOMEval( code, { nonce: options && options.nonce }, doc ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return flat( ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), + function( _i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); + } ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = toType( obj ); + + if ( isFunction( obj ) || isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.6 + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://js.foundation/ + * + * Date: 2021-02-16 + */ +( function( window ) { +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + nonnativeSelectorCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ( {} ).hasOwnProperty, + arr = [], + pop = arr.pop, + pushNative = arr.push, + push = arr.push, + slice = arr.slice, + + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[ i ] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + + "ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram + identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + + "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + + // "Attribute values must be CSS identifiers [capture 5] + // or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + + whitespace + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + + "*" ), + rdescend = new RegExp( whitespace + "|>" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + + whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + + whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rhtml = /HTML$/i, + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), + funescape = function( escape, nonHex ) { + var high = "0x" + escape.slice( 1 ) - 0x10000; + + return nonHex ? + + // Strip the backslash prefix from a non-hex escape sequence + nonHex : + + // Replace a hexadecimal escape sequence with the encoded Unicode code point + // Support: IE <=11+ + // For values outside the Basic Multilingual Plane (BMP), manually construct a + // surrogate pair + high < 0 ? + String.fromCharCode( high + 0x10000 ) : + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + inDisabledFieldset = addCombinator( + function( elem ) { + return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + ( arr = slice.call( preferredDoc.childNodes ) ), + preferredDoc.childNodes + ); + + // Support: Android<4.0 + // Detect silently failing push.apply + // eslint-disable-next-line no-unused-expressions + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + pushNative.apply( target, slice.call( els ) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + + // Can't trust NodeList.length + while ( ( target[ j++ ] = els[ i++ ] ) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + setDocument( context ); + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { + + // ID selector + if ( ( m = match[ 1 ] ) ) { + + // Document context + if ( nodeType === 9 ) { + if ( ( elem = context.getElementById( m ) ) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && ( elem = newContext.getElementById( m ) ) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[ 2 ] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !nonnativeSelectorCache[ selector + " " ] && + ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && + + // Support: IE 8 only + // Exclude object elements + ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { + + newSelector = selector; + newContext = context; + + // qSA considers elements outside a scoping root when evaluating child or + // descendant combinators, which is not what we want. + // In such cases, we work around the behavior by prefixing every selector in the + // list with an ID selector referencing the scope context. + // The technique has to be used as well when a leading combinator is used + // as such selectors are not recognized by querySelectorAll. + // Thanks to Andrew Dupont for this technique. + if ( nodeType === 1 && + ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + + // We can use :scope instead of the ID hack if the browser + // supports it & if we're not changing the context. + if ( newContext !== context || !support.scope ) { + + // Capture the context ID, setting it first if necessary + if ( ( nid = context.getAttribute( "id" ) ) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", ( nid = expando ) ); + } + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + + toSelector( groups[ i ] ); + } + newSelector = groups.join( "," ); + } + + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + nonnativeSelectorCache( selector, true ); + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return ( cache[ key + " " ] = value ); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement( "fieldset" ); + + try { + return !!fn( el ); + } catch ( e ) { + return false; + } finally { + + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split( "|" ), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[ i ] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( ( cur = cur.nextSibling ) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return ( name === "input" || name === "button" ) && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + inDisabledFieldset( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction( function( argument ) { + argument = +argument; + return markFunction( function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ ( j = matchIndexes[ i ] ) ] ) { + seed[ j ] = !( matches[ j ] = seed[ j ] ); + } + } + } ); + } ); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + var namespace = elem && elem.namespaceURI, + docElem = elem && ( elem.ownerDocument || elem ).documentElement; + + // Support: IE <=8 + // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes + // https://bugs.jquery.com/ticket/4833 + return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9 - 11+, Edge 12 - 18+ + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( preferredDoc != document && + ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, + // Safari 4 - 5 only, Opera <=11.6 - 12.x only + // IE/Edge & older browsers don't support the :scope pseudo-class. + // Support: Safari 6.0 only + // Safari 6.0 supports :scope but it's an alias of :root there. + support.scope = assert( function( el ) { + docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); + return typeof el.querySelectorAll !== "undefined" && + !el.querySelectorAll( ":scope fieldset div" ).length; + } ); + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert( function( el ) { + el.className = "i"; + return !el.getAttribute( "className" ); + } ); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert( function( el ) { + el.appendChild( document.createComment( "" ) ); + return !el.getElementsByTagName( "*" ).length; + } ); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert( function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + } ); + + // ID filter and find + if ( support.getById ) { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute( "id" ) === attrId; + }; + }; + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode( "id" ); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( ( elem = elems[ i++ ] ) ) { + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find[ "TAG" ] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { + + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert( function( el ) { + + var input; + + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll( "[selected]" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push( "~=" ); + } + + // Support: IE 11+, Edge 15 - 18+ + // IE 11/Edge don't find elements on a `[name='']` query in some cases. + // Adding a temporary attribute to the document before the selection works + // around the issue. + // Interestingly, IE 10 & older don't seem to have the issue. + input = document.createElement( "input" ); + input.setAttribute( "name", "" ); + el.appendChild( input ); + if ( !el.querySelectorAll( "[name='']" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + + whitespace + "*(?:''|\"\")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll( ":checked" ).length ) { + rbuggyQSA.push( ":checked" ); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push( ".#.+[+~]" ); + } + + // Support: Firefox <=3.6 - 5 only + // Old Firefox doesn't throw on a badly-escaped identifier. + el.querySelectorAll( "\\\f" ); + rbuggyQSA.push( "[\\r\\n\\f]" ); + } ); + + assert( function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement( "input" ); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll( "[name=d]" ).length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: Opera 10 - 11 only + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll( "*,:x" ); + rbuggyQSA.push( ",.*:" ); + } ); + } + + if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector ) ) ) ) { + + assert( function( el ) { + + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + } ); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + ) ); + } : + function( a, b ) { + if ( b ) { + while ( ( b = b.parentNode ) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { + + // Choose the first element that is related to our preferred document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( a == document || a.ownerDocument == preferredDoc && + contains( preferredDoc, a ) ) { + return -1; + } + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( b == document || b.ownerDocument == preferredDoc && + contains( preferredDoc, b ) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + return a == document ? -1 : + b == document ? 1 : + /* eslint-enable eqeqeq */ + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( ( cur = cur.parentNode ) ) { + ap.unshift( cur ); + } + cur = b; + while ( ( cur = cur.parentNode ) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[ i ] === bp[ i ] ) { + i++; + } + + return i ? + + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[ i ], bp[ i ] ) : + + // Otherwise nodes in our document sort first + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + ap[ i ] == preferredDoc ? -1 : + bp[ i ] == preferredDoc ? 1 : + /* eslint-enable eqeqeq */ + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + setDocument( elem ); + + if ( support.matchesSelector && documentIsHTML && + !nonnativeSelectorCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch ( e ) { + nonnativeSelectorCache( expr, true ); + } + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( context.ownerDocument || context ) != document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( elem.ownerDocument || elem ) != document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return ( sel + "" ).replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + + // If no nodeType, this is expected to be an array + while ( ( node = elem[ i++ ] ) ) { + + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[ 1 ] = match[ 1 ].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[ 3 ] = ( match[ 3 ] || match[ 4 ] || + match[ 5 ] || "" ).replace( runescape, funescape ); + + if ( match[ 2 ] === "~=" ) { + match[ 3 ] = " " + match[ 3 ] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[ 1 ] = match[ 1 ].toLowerCase(); + + if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { + + // nth-* requires argument + if ( !match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[ 4 ] = +( match[ 4 ] ? + match[ 5 ] + ( match[ 6 ] || 1 ) : + 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); + match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); + + // other types prohibit arguments + } else if ( match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[ 6 ] && match[ 2 ]; + + if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[ 3 ] ) { + match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + + // Get excess from tokenize (recursively) + ( excess = tokenize( unquoted, true ) ) && + + // advance to the next closing parenthesis + ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { + + // excess is a negative index + match[ 0 ] = match[ 0 ].slice( 0, excess ); + match[ 2 ] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { + return true; + } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + ( pattern = new RegExp( "(^|" + whitespace + + ")" + className + "(" + whitespace + "|$)" ) ) && classCache( + className, function( elem ) { + return pattern.test( + typeof elem.className === "string" && elem.className || + typeof elem.getAttribute !== "undefined" && + elem.getAttribute( "class" ) || + "" + ); + } ); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + /* eslint-disable max-len */ + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + /* eslint-enable max-len */ + + }; + }, + + "CHILD": function( type, what, _argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, _context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( ( node = node[ dir ] ) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( ( node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + + // Use previously-cached element index if available + if ( useCache ) { + + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + + // Use the same loop as above to seek `elem` from the start + while ( ( node = ++nodeIndex && node && node[ dir ] || + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || + ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction( function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[ i ] ); + seed[ idx ] = !( matches[ idx ] = matched[ i ] ); + } + } ) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + + // Potentially complex pseudos + "not": markFunction( function( selector ) { + + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction( function( seed, matches, _context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( ( elem = unmatched[ i ] ) ) { + seed[ i ] = !( matches[ i ] = elem ); + } + } + } ) : + function( elem, _context, xml ) { + input[ 0 ] = elem; + matcher( input, null, xml, results ); + + // Don't keep the element (issue #299) + input[ 0 ] = null; + return !results.pop(); + }; + } ), + + "has": markFunction( function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + } ), + + "contains": markFunction( function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; + }; + } ), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + + // lang value must be a valid identifier + if ( !ridentifier.test( lang || "" ) ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( ( elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); + return false; + }; + } ), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && + ( !document.hasFocus || document.hasFocus() ) && + !!( elem.type || elem.href || ~elem.tabIndex ); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return ( nodeName === "input" && !!elem.checked ) || + ( nodeName === "option" && !!elem.selected ); + }, + + "selected": function( elem ) { + + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + // eslint-disable-next-line no-unused-expressions + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos[ "empty" ]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( ( attr = elem.getAttribute( "type" ) ) == null || + attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo( function() { + return [ 0 ]; + } ), + + "last": createPositionalPseudo( function( _matchIndexes, length ) { + return [ length - 1 ]; + } ), + + "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + } ), + + "even": createPositionalPseudo( function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "odd": createPositionalPseudo( function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? + argument + length : + argument > length ? + length : + argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ) + } +}; + +Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || ( match = rcomma.exec( soFar ) ) ) { + if ( match ) { + + // Don't consume trailing commas as valid + soFar = soFar.slice( match[ 0 ].length ) || soFar; + } + groups.push( ( tokens = [] ) ); + } + + matched = false; + + // Combinators + if ( ( match = rcombinators.exec( soFar ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + + // Cast descendant combinators to space + type: match[ 0 ].replace( rtrim, " " ) + } ); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || + ( match = preFilters[ type ]( match ) ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + type: type, + matches: match + } ); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[ i ].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || ( elem[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || + ( outerCache[ elem.uniqueID ] = {} ); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( ( oldCache = uniqueCache[ key ] ) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return ( newCache[ 2 ] = oldCache[ 2 ] ); + } else { + + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[ i ]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[ 0 ]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[ i ], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( ( elem = unmatched[ i ] ) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction( function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( + selector || "*", + context.nodeType ? [ context ] : context, + [] + ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( ( elem = temp[ i ] ) ) { + matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) ) { + + // Restore matcherIn since elem is not yet a final match + temp.push( ( matcherIn[ i ] = elem ) ); + } + } + postFinder( null, ( matcherOut = [] ), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) && + ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { + + seed[ temp ] = !( results[ temp ] = elem ); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + } ); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[ 0 ].type ], + implicitRelative = leadingRelative || Expr.relative[ " " ], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + ( checkContext = context ).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { + matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; + } else { + matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[ j ].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens + .slice( 0, i - 1 ) + .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), + + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), + len = elems.length; + + if ( outermost ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + outermostContext = context == document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( !context && elem.ownerDocument != document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( ( matcher = elementMatchers[ j++ ] ) ) { + if ( matcher( elem, context || document, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + + // They will have gone through all possible matchers + if ( ( elem = !matcher && elem ) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( ( matcher = setMatchers[ j++ ] ) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !( unmatched[ i ] || setMatched[ i ] ) ) { + setMatched[ i ] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[ i ] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( + selector, + matcherFromGroupMatchers( elementMatchers, setMatchers ) + ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( ( selector = compiled.selector || selector ) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[ 0 ] = match[ 0 ].slice( 0 ); + if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { + + context = ( Expr.find[ "ID" ]( token.matches[ 0 ] + .replace( runescape, funescape ), context ) || [] )[ 0 ]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[ i ]; + + // Abort if we hit a combinator + if ( Expr.relative[ ( type = token.type ) ] ) { + break; + } + if ( ( find = Expr.find[ type ] ) ) { + + // Search, expanding context for leading sibling combinators + if ( ( seed = find( + token.matches[ 0 ].replace( runescape, funescape ), + rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || + context + ) ) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert( function( el ) { + + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; +} ); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert( function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute( "href" ) === "#"; +} ) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + } ); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert( function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +} ) ) { + addHandle( "value", function( elem, _name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + } ); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert( function( el ) { + return el.getAttribute( "disabled" ) == null; +} ) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; + } + } ); +} + +return Sizzle; + +} )( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +} +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Filtered directly for both simple and complex selectors + return jQuery.filter( qualifier, elements, not ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, _i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, _i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, _i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( elem.contentDocument != null && + + // Support: IE 11+ + // elements with no `data` attribute has an object + // `contentDocument` with a `null` prototype. + getProto( elem.contentDocument ) ) { + + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && toType( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( _i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // rejected_handlers.disable + // fulfilled_handlers.disable + tuples[ 3 - i ][ 3 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock, + + // progress_handlers.lock + tuples[ 0 ][ 3 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the primary Deferred + primary = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + primary.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, primary.done( updateFunc( i ) ).resolve, primary.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( primary.state() === "pending" || + isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return primary.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), primary.reject ); + } + + return primary.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( toType( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, _key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; + + +// Matches dashed string for camelizing +var rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g; + +// Used by camelCase as callback to replace() +function fcamelCase( _all, letter ) { + return letter.toUpperCase(); +} + +// Convert dashed to camelCase; used by the css and data modules +// Support: IE <=9 - 11, Edge 12 - 15 +// Microsoft forgot to hump their vendor prefix (#9572) +function camelCase( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); +} +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( camelCase ); + } else { + key = camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var documentElement = document.documentElement; + + + + var isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ); + }, + composed = { composed: true }; + + // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only + // Check attachment across shadow DOM boundaries when possible (gh-3504) + // Support: iOS 10.0-10.2 only + // Early iOS 10 versions support `attachShadow` but not `getRootNode`, + // leading to errors. We need to check for `getRootNode`. + if ( documentElement.getRootNode ) { + isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ) || + elem.getRootNode( composed ) === elem.ownerDocument; + }; + } +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + isAttached( elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, scale, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = elem.nodeType && + ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Support: Firefox <=54 + // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) + initial = initial / 2; + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + while ( maxIterations-- ) { + + // Evaluate and update our best guess (doubling guesses that zero out). + // Finish if the scale equals or crosses 1 (making the old*new product non-positive). + jQuery.style( elem, prop, initialInUnit + unit ); + if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { + maxIterations = 0; + } + initialInUnit = initialInUnit / scale; + + } + + initialInUnit = initialInUnit * 2; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); + +var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); + + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // Support: IE <=9 only + // IE <=9 replaces "; + support.option = !!div.lastChild; +} )(); + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
" ], + col: [ 2, "", "
" ], + tr: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + _default: [ 0, "", "" ] +}; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +// Support: IE <=9 only +if ( !support.option ) { + wrapMap.optgroup = wrapMap.option = [ 1, "" ]; +} + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, attached, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( toType( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + attached = isAttached( elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( attached ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +var rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 - 11+ +// focus() and blur() are asynchronous, except when they are no-op. +// So expect focus to be synchronous when the element is already active, +// and blur to be synchronous when the element is not already active. +// (focus and blur are always synchronous in other supported browsers, +// this just defines when we can count on it). +function expectSync( elem, type ) { + return ( elem === safeActiveElement() ) === ( type === "focus" ); +} + +// Support: IE <=9 only +// Accessing document.activeElement can throw unexpectedly +// https://bugs.jquery.com/ticket/13393 +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Only attach events to objects that accept data + if ( !acceptData( elem ) ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = Object.create( null ); + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( nativeEvent ), + + handlers = ( + dataPriv.get( this, "events" ) || Object.create( null ) + )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // If the event is namespaced, then each handler is only invoked if it is + // specially universal or its namespaces are a superset of the event's. + if ( !event.rnamespace || handleObj.namespace === false || + event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + click: { + + // Utilize native event to ensure correct state for checkable inputs + setup: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Claim the first handler + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + // dataPriv.set( el, "click", ... ) + leverageNative( el, "click", returnTrue ); + } + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Force setup before triggering a click + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + leverageNative( el, "click" ); + } + + // Return non-false to allow normal event-path propagation + return true; + }, + + // For cross-browser consistency, suppress native .click() on links + // Also prevent it if we're currently inside a leveraged native-event stack + _default: function( event ) { + var target = event.target; + return rcheckableType.test( target.type ) && + target.click && nodeName( target, "input" ) && + dataPriv.get( target, "click" ) || + nodeName( target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +// Ensure the presence of an event listener that handles manually-triggered +// synthetic events by interrupting progress until reinvoked in response to +// *native* events that it fires directly, ensuring that state changes have +// already occurred before other listeners are invoked. +function leverageNative( el, type, expectSync ) { + + // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add + if ( !expectSync ) { + if ( dataPriv.get( el, type ) === undefined ) { + jQuery.event.add( el, type, returnTrue ); + } + return; + } + + // Register the controller as a special universal handler for all event namespaces + dataPriv.set( el, type, false ); + jQuery.event.add( el, type, { + namespace: false, + handler: function( event ) { + var notAsync, result, + saved = dataPriv.get( this, type ); + + if ( ( event.isTrigger & 1 ) && this[ type ] ) { + + // Interrupt processing of the outer synthetic .trigger()ed event + // Saved data should be false in such cases, but might be a leftover capture object + // from an async native handler (gh-4350) + if ( !saved.length ) { + + // Store arguments for use when handling the inner native event + // There will always be at least one argument (an event object), so this array + // will not be confused with a leftover capture object. + saved = slice.call( arguments ); + dataPriv.set( this, type, saved ); + + // Trigger the native event and capture its result + // Support: IE <=9 - 11+ + // focus() and blur() are asynchronous + notAsync = expectSync( this, type ); + this[ type ](); + result = dataPriv.get( this, type ); + if ( saved !== result || notAsync ) { + dataPriv.set( this, type, false ); + } else { + result = {}; + } + if ( saved !== result ) { + + // Cancel the outer synthetic event + event.stopImmediatePropagation(); + event.preventDefault(); + + // Support: Chrome 86+ + // In Chrome, if an element having a focusout handler is blurred by + // clicking outside of it, it invokes the handler synchronously. If + // that handler calls `.remove()` on the element, the data is cleared, + // leaving `result` undefined. We need to guard against this. + return result && result.value; + } + + // If this is an inner synthetic event for an event with a bubbling surrogate + // (focus or blur), assume that the surrogate already propagated from triggering the + // native event and prevent that from happening again here. + // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the + // bubbling surrogate propagates *after* the non-bubbling base), but that seems + // less bad than duplication. + } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { + event.stopPropagation(); + } + + // If this is a native event triggered above, everything is now in order + // Fire an inner synthetic event with the original arguments + } else if ( saved.length ) { + + // ...and capture the result + dataPriv.set( this, type, { + value: jQuery.event.trigger( + + // Support: IE <=9 - 11+ + // Extend with the prototype to reset the above stopImmediatePropagation() + jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), + saved.slice( 1 ), + this + ) + } ); + + // Abort handling of the native event + event.stopImmediatePropagation(); + } + } + } ); +} + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || Date.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + code: true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + which: true +}, jQuery.event.addProp ); + +jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { + jQuery.event.special[ type ] = { + + // Utilize native event if possible so blur/focus sequence is correct + setup: function() { + + // Claim the first handler + // dataPriv.set( this, "focus", ... ) + // dataPriv.set( this, "blur", ... ) + leverageNative( this, type, expectSync ); + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function() { + + // Force setup before trigger + leverageNative( this, type ); + + // Return non-false to allow normal event-path propagation + return true; + }, + + // Suppress native focus or blur as it's already being fired + // in leverageNative. + _default: function() { + return true; + }, + + delegateType: delegateType + }; +} ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + // Support: IE <=10 - 11, Edge 12 - 13 only + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( elem ).children( "tbody" )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { + elem.type = elem.type.slice( 5 ); + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.get( src ); + events = pdataOld.events; + + if ( events ) { + dataPriv.remove( dest, "handle events" ); + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = flat( args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + valueIsFunction = isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( valueIsFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( valueIsFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl && !node.noModule ) { + jQuery._evalUrl( node.src, { + nonce: node.nonce || node.getAttribute( "nonce" ) + }, doc ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && isAttached( node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html; + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = isAttached( elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + +var swap = function( elem, options, callback ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.call( elem ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + +var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + container.style.cssText = "position:absolute;left:-11111px;width:60px;" + + "margin-top:1px;padding:0;border:0"; + div.style.cssText = + "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + + "margin:auto;border:1px;padding:1px;" + + "width:60%;top:1%"; + documentElement.appendChild( container ).appendChild( div ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; + + // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 + // Some styles come back with percentage values, even though they shouldn't + div.style.right = "60%"; + pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; + + // Support: IE 9 - 11 only + // Detect misreporting of content dimensions for box-sizing:border-box elements + boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; + + // Support: IE 9 only + // Detect overflow:scroll screwiness (gh-3699) + // Support: Chrome <=64 + // Don't get tricked when zoom affects offsetWidth (gh-4029) + div.style.position = "absolute"; + scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + function roundPixelMeasures( measure ) { + return Math.round( parseFloat( measure ) ); + } + + var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, + reliableTrDimensionsVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + jQuery.extend( support, { + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelBoxStyles: function() { + computeStyleTests(); + return pixelBoxStylesVal; + }, + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + }, + scrollboxSize: function() { + computeStyleTests(); + return scrollboxSizeVal; + }, + + // Support: IE 9 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Behavior in IE 9 is more subtle than in newer versions & it passes + // some versions of this test; make sure not to make it pass there! + // + // Support: Firefox 70+ + // Only Firefox includes border widths + // in computed dimensions. (gh-4529) + reliableTrDimensions: function() { + var table, tr, trChild, trStyle; + if ( reliableTrDimensionsVal == null ) { + table = document.createElement( "table" ); + tr = document.createElement( "tr" ); + trChild = document.createElement( "div" ); + + table.style.cssText = "position:absolute;left:-11111px;border-collapse:separate"; + tr.style.cssText = "border:1px solid"; + + // Support: Chrome 86+ + // Height set through cssText does not get applied. + // Computed height then comes back as 0. + tr.style.height = "1px"; + trChild.style.height = "9px"; + + // Support: Android 8 Chrome 86+ + // In our bodyBackground.html iframe, + // display for all div elements is set to "inline", + // which causes a problem only in Android 8 Chrome 86. + // Ensuring the div is display: block + // gets around this issue. + trChild.style.display = "block"; + + documentElement + .appendChild( table ) + .appendChild( tr ) + .appendChild( trChild ); + + trStyle = window.getComputedStyle( tr ); + reliableTrDimensionsVal = ( parseInt( trStyle.height, 10 ) + + parseInt( trStyle.borderTopWidth, 10 ) + + parseInt( trStyle.borderBottomWidth, 10 ) ) === tr.offsetHeight; + + documentElement.removeChild( table ); + } + return reliableTrDimensionsVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !isAttached( elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style, + vendorProps = {}; + +// Return a vendor-prefixed property or undefined +function vendorPropName( name ) { + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a potentially-mapped jQuery.cssProps or vendor prefixed property +function finalPropName( name ) { + var final = jQuery.cssProps[ name ] || vendorProps[ name ]; + + if ( final ) { + return final; + } + if ( name in emptyStyle ) { + return name; + } + return vendorProps[ name ] = vendorPropName( name ) || name; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }; + +function setPositiveNumber( _elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { + var i = dimension === "width" ? 1 : 0, + extra = 0, + delta = 0; + + // Adjustment may not be necessary + if ( box === ( isBorderBox ? "border" : "content" ) ) { + return 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin + if ( box === "margin" ) { + delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); + } + + // If we get here with a content-box, we're seeking "padding" or "border" or "margin" + if ( !isBorderBox ) { + + // Add padding + delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // For "border" or "margin", add border + if ( box !== "padding" ) { + delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + + // But still keep track of it otherwise + } else { + extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + + // If we get here with a border-box (content + padding + border), we're seeking "content" or + // "padding" or "margin" + } else { + + // For "content", subtract padding + if ( box === "content" ) { + delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // For "content" or "padding", subtract border + if ( box !== "margin" ) { + delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + // Account for positive content-box scroll gutter when requested by providing computedVal + if ( !isBorderBox && computedVal >= 0 ) { + + // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border + // Assuming integer scroll gutter, subtract the rest and round down + delta += Math.max( 0, Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + computedVal - + delta - + extra - + 0.5 + + // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter + // Use an explicit zero to avoid NaN (gh-3964) + ) ) || 0; + } + + return delta; +} + +function getWidthOrHeight( elem, dimension, extra ) { + + // Start with computed style + var styles = getStyles( elem ), + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). + // Fake content-box until we know it's needed to know the true value. + boxSizingNeeded = !support.boxSizingReliable() || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + valueIsBorderBox = isBorderBox, + + val = curCSS( elem, dimension, styles ), + offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); + + // Support: Firefox <=54 + // Return a confounding non-pixel value or feign ignorance, as appropriate. + if ( rnumnonpx.test( val ) ) { + if ( !extra ) { + return val; + } + val = "auto"; + } + + + // Support: IE 9 - 11 only + // Use offsetWidth/offsetHeight for when box sizing is unreliable. + // In those cases, the computed value can be trusted to be border-box. + if ( ( !support.boxSizingReliable() && isBorderBox || + + // Support: IE 10 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Interestingly, in some cases IE 9 doesn't suffer from this issue. + !support.reliableTrDimensions() && nodeName( elem, "tr" ) || + + // Fall back to offsetWidth/offsetHeight when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + val === "auto" || + + // Support: Android <=4.1 - 4.3 only + // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) + !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && + + // Make sure the element is visible & connected + elem.getClientRects().length ) { + + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Where available, offsetWidth/offsetHeight approximate border box dimensions. + // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the + // retrieved value as a content box dimension. + valueIsBorderBox = offsetProp in elem; + if ( valueIsBorderBox ) { + val = elem[ offsetProp ]; + } + } + + // Normalize "" and auto + val = parseFloat( val ) || 0; + + // Adjust for the element's box model + return ( val + + boxModelAdjustment( + elem, + dimension, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles, + + // Provide the current computed size to request scroll gutter calculation (gh-3589) + val + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "gridArea": true, + "gridColumn": true, + "gridColumnEnd": true, + "gridColumnStart": true, + "gridRow": true, + "gridRowEnd": true, + "gridRowStart": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: {}, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append + // "px" to a few hardcoded values. + if ( type === "number" && !isCustomProp ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( _i, dimension ) { + jQuery.cssHooks[ dimension ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, dimension, extra ); + } ) : + getWidthOrHeight( elem, dimension, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = getStyles( elem ), + + // Only read styles.position if the test has a chance to fail + // to avoid forcing a reflow. + scrollboxSizeBuggy = !support.scrollboxSize() && + styles.position === "absolute", + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) + boxSizingNeeded = scrollboxSizeBuggy || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + subtract = extra ? + boxModelAdjustment( + elem, + dimension, + extra, + isBorderBox, + styles + ) : + 0; + + // Account for unreliable border-box dimensions by comparing offset* to computed and + // faking a content-box to get border and padding (gh-3699) + if ( isBorderBox && scrollboxSizeBuggy ) { + subtract -= Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + parseFloat( styles[ dimension ] ) - + boxModelAdjustment( elem, dimension, "border", false, styles ) - + 0.5 + ); + } + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ dimension ] = value; + value = jQuery.css( elem, dimension ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( prefix !== "margin" ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && ( + jQuery.cssHooks[ tween.prop ] || + tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = Date.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 15 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY and Edge just mirrors + // the overflowX value there. + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + result.stop.bind( result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = Date.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +function classesToArray( value ) { + if ( Array.isArray( value ) ) { + return value; + } + if ( typeof value === "string" ) { + return value.match( rnothtmlwhite ) || []; + } + return []; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value, + isValidValue = type === "string" || Array.isArray( value ); + + if ( typeof stateVal === "boolean" && isValidValue ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( isValidValue ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = classesToArray( value ); + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, valueIsFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + valueIsFunction = isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( valueIsFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +support.focusin = "onfocusin" in window; + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + stopPropagationCallback = function( e ) { + e.stopPropagation(); + }; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = lastElement = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + lastElement = cur; + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( dataPriv.get( cur, "events" ) || Object.create( null ) )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + + if ( event.isPropagationStopped() ) { + lastElement.addEventListener( type, stopPropagationCallback ); + } + + elem[ type ](); + + if ( event.isPropagationStopped() ) { + lastElement.removeEventListener( type, stopPropagationCallback ); + } + + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + + // Handle: regular nodes (via `this.ownerDocument`), window + // (via `this.document`) & document (via `this`). + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = { guid: Date.now() }; + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml, parserErrorElem; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) {} + + parserErrorElem = xml && xml.getElementsByTagName( "parsererror" )[ 0 ]; + if ( !xml || parserErrorElem ) { + jQuery.error( "Invalid XML: " + ( + parserErrorElem ? + jQuery.map( parserErrorElem.childNodes, function( el ) { + return el.textContent; + } ).join( "\n" ) : + data + ) ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && toType( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + if ( a == null ) { + return ""; + } + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ).filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ).map( function( _i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + +originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() + " " ] = + ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) + .concat( match[ 2 ] ); + } + } + match = responseHeaders[ key.toLowerCase() + " " ]; + } + return match == null ? null : match.join( ", " ); + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 15 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available and should be processed, append data to url + if ( s.data && ( s.processData || typeof s.data === "string" ) ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Use a noop converter for missing script but not if jsonp + if ( !isSuccess && + jQuery.inArray( "script", s.dataTypes ) > -1 && + jQuery.inArray( "json", s.dataTypes ) < 0 ) { + s.converters[ "text script" ] = function() {}; + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( _i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + +jQuery.ajaxPrefilter( function( s ) { + var i; + for ( i in s.headers ) { + if ( i.toLowerCase() === "content-type" ) { + s.contentType = s.headers[ i ] || ""; + } + } +} ); + + +jQuery._evalUrl = function( url, options, doc ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + + // Only evaluate the response if it is successful (gh-4126) + // dataFilter is not invoked for failure responses, so using it instead + // of the default converter is kludgy but it works. + converters: { + "text script": function() {} + }, + dataFilter: function( response ) { + jQuery.globalEval( response, options, doc ); + } + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var htmlIsFunction = isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.ontimeout = + xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain or forced-by-attrs requests + if ( s.crossDomain || s.scriptAttrs ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( " +{% endmacro %} diff --git a/_static/scripts/bootstrap.js b/_static/scripts/bootstrap.js new file mode 100644 index 00000000..c8178deb --- /dev/null +++ b/_static/scripts/bootstrap.js @@ -0,0 +1,3 @@ +/*! For license information please see bootstrap.js.LICENSE.txt */ +(()=>{"use strict";var t={d:(e,i)=>{for(var n in i)t.o(i,n)&&!t.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:i[n]})},o:(t,e)=>Object.prototype.hasOwnProperty.call(t,e),r:t=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(t,"__esModule",{value:!0})}},e={};t.r(e),t.d(e,{afterMain:()=>E,afterRead:()=>v,afterWrite:()=>C,applyStyles:()=>$,arrow:()=>J,auto:()=>a,basePlacements:()=>l,beforeMain:()=>y,beforeRead:()=>_,beforeWrite:()=>A,bottom:()=>s,clippingParents:()=>d,computeStyles:()=>it,createPopper:()=>Dt,createPopperBase:()=>St,createPopperLite:()=>$t,detectOverflow:()=>_t,end:()=>h,eventListeners:()=>st,flip:()=>bt,hide:()=>wt,left:()=>r,main:()=>w,modifierPhases:()=>O,offset:()=>Et,placements:()=>g,popper:()=>f,popperGenerator:()=>Lt,popperOffsets:()=>At,preventOverflow:()=>Tt,read:()=>b,reference:()=>p,right:()=>o,start:()=>c,top:()=>n,variationPlacements:()=>m,viewport:()=>u,write:()=>T});var i={};t.r(i),t.d(i,{Alert:()=>Oe,Button:()=>ke,Carousel:()=>li,Collapse:()=>Ei,Dropdown:()=>Ki,Modal:()=>Ln,Offcanvas:()=>Kn,Popover:()=>bs,ScrollSpy:()=>Ls,Tab:()=>Js,Toast:()=>po,Tooltip:()=>fs});var n="top",s="bottom",o="right",r="left",a="auto",l=[n,s,o,r],c="start",h="end",d="clippingParents",u="viewport",f="popper",p="reference",m=l.reduce((function(t,e){return t.concat([e+"-"+c,e+"-"+h])}),[]),g=[].concat(l,[a]).reduce((function(t,e){return t.concat([e,e+"-"+c,e+"-"+h])}),[]),_="beforeRead",b="read",v="afterRead",y="beforeMain",w="main",E="afterMain",A="beforeWrite",T="write",C="afterWrite",O=[_,b,v,y,w,E,A,T,C];function x(t){return t?(t.nodeName||"").toLowerCase():null}function k(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function L(t){return t instanceof k(t).Element||t instanceof Element}function S(t){return t instanceof k(t).HTMLElement||t instanceof HTMLElement}function D(t){return"undefined"!=typeof ShadowRoot&&(t instanceof k(t).ShadowRoot||t instanceof ShadowRoot)}const $={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];S(s)&&x(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});S(n)&&x(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function I(t){return t.split("-")[0]}var N=Math.max,P=Math.min,M=Math.round;function j(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function F(){return!/^((?!chrome|android).)*safari/i.test(j())}function H(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&S(t)&&(s=t.offsetWidth>0&&M(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&M(n.height)/t.offsetHeight||1);var r=(L(t)?k(t):window).visualViewport,a=!F()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function B(t){var e=H(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function W(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&D(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function z(t){return k(t).getComputedStyle(t)}function R(t){return["table","td","th"].indexOf(x(t))>=0}function q(t){return((L(t)?t.ownerDocument:t.document)||window.document).documentElement}function V(t){return"html"===x(t)?t:t.assignedSlot||t.parentNode||(D(t)?t.host:null)||q(t)}function Y(t){return S(t)&&"fixed"!==z(t).position?t.offsetParent:null}function K(t){for(var e=k(t),i=Y(t);i&&R(i)&&"static"===z(i).position;)i=Y(i);return i&&("html"===x(i)||"body"===x(i)&&"static"===z(i).position)?e:i||function(t){var e=/firefox/i.test(j());if(/Trident/i.test(j())&&S(t)&&"fixed"===z(t).position)return null;var i=V(t);for(D(i)&&(i=i.host);S(i)&&["html","body"].indexOf(x(i))<0;){var n=z(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Q(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function X(t,e,i){return N(t,P(e,i))}function U(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function G(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const J={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,a=t.name,c=t.options,h=i.elements.arrow,d=i.modifiersData.popperOffsets,u=I(i.placement),f=Q(u),p=[r,o].indexOf(u)>=0?"height":"width";if(h&&d){var m=function(t,e){return U("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:G(t,l))}(c.padding,i),g=B(h),_="y"===f?n:r,b="y"===f?s:o,v=i.rects.reference[p]+i.rects.reference[f]-d[f]-i.rects.popper[p],y=d[f]-i.rects.reference[f],w=K(h),E=w?"y"===f?w.clientHeight||0:w.clientWidth||0:0,A=v/2-y/2,T=m[_],C=E-g[p]-m[b],O=E/2-g[p]/2+A,x=X(T,O,C),k=f;i.modifiersData[a]=((e={})[k]=x,e.centerOffset=x-O,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&W(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Z(t){return t.split("-")[1]}var tt={top:"auto",right:"auto",bottom:"auto",left:"auto"};function et(t){var e,i=t.popper,a=t.popperRect,l=t.placement,c=t.variation,d=t.offsets,u=t.position,f=t.gpuAcceleration,p=t.adaptive,m=t.roundOffsets,g=t.isFixed,_=d.x,b=void 0===_?0:_,v=d.y,y=void 0===v?0:v,w="function"==typeof m?m({x:b,y}):{x:b,y};b=w.x,y=w.y;var E=d.hasOwnProperty("x"),A=d.hasOwnProperty("y"),T=r,C=n,O=window;if(p){var x=K(i),L="clientHeight",S="clientWidth";x===k(i)&&"static"!==z(x=q(i)).position&&"absolute"===u&&(L="scrollHeight",S="scrollWidth"),(l===n||(l===r||l===o)&&c===h)&&(C=s,y-=(g&&x===O&&O.visualViewport?O.visualViewport.height:x[L])-a.height,y*=f?1:-1),l!==r&&(l!==n&&l!==s||c!==h)||(T=o,b-=(g&&x===O&&O.visualViewport?O.visualViewport.width:x[S])-a.width,b*=f?1:-1)}var D,$=Object.assign({position:u},p&&tt),I=!0===m?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:M(i*s)/s||0,y:M(n*s)/s||0}}({x:b,y},k(i)):{x:b,y};return b=I.x,y=I.y,f?Object.assign({},$,((D={})[C]=A?"0":"",D[T]=E?"0":"",D.transform=(O.devicePixelRatio||1)<=1?"translate("+b+"px, "+y+"px)":"translate3d("+b+"px, "+y+"px, 0)",D)):Object.assign({},$,((e={})[C]=A?y+"px":"",e[T]=E?b+"px":"",e.transform="",e))}const it={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:I(e.placement),variation:Z(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,et(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,et(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var nt={passive:!0};const st={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=k(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,nt)})),a&&l.addEventListener("resize",i.update,nt),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,nt)})),a&&l.removeEventListener("resize",i.update,nt)}},data:{}};var ot={left:"right",right:"left",bottom:"top",top:"bottom"};function rt(t){return t.replace(/left|right|bottom|top/g,(function(t){return ot[t]}))}var at={start:"end",end:"start"};function lt(t){return t.replace(/start|end/g,(function(t){return at[t]}))}function ct(t){var e=k(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function ht(t){return H(q(t)).left+ct(t).scrollLeft}function dt(t){var e=z(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function ut(t){return["html","body","#document"].indexOf(x(t))>=0?t.ownerDocument.body:S(t)&&dt(t)?t:ut(V(t))}function ft(t,e){var i;void 0===e&&(e=[]);var n=ut(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=k(n),r=s?[o].concat(o.visualViewport||[],dt(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(ft(V(r)))}function pt(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function mt(t,e,i){return e===u?pt(function(t,e){var i=k(t),n=q(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=F();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+ht(t),y:l}}(t,i)):L(e)?function(t,e){var i=H(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):pt(function(t){var e,i=q(t),n=ct(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=N(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=N(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+ht(t),l=-n.scrollTop;return"rtl"===z(s||i).direction&&(a+=N(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(q(t)))}function gt(t){var e,i=t.reference,a=t.element,l=t.placement,d=l?I(l):null,u=l?Z(l):null,f=i.x+i.width/2-a.width/2,p=i.y+i.height/2-a.height/2;switch(d){case n:e={x:f,y:i.y-a.height};break;case s:e={x:f,y:i.y+i.height};break;case o:e={x:i.x+i.width,y:p};break;case r:e={x:i.x-a.width,y:p};break;default:e={x:i.x,y:i.y}}var m=d?Q(d):null;if(null!=m){var g="y"===m?"height":"width";switch(u){case c:e[m]=e[m]-(i[g]/2-a[g]/2);break;case h:e[m]=e[m]+(i[g]/2-a[g]/2)}}return e}function _t(t,e){void 0===e&&(e={});var i=e,r=i.placement,a=void 0===r?t.placement:r,c=i.strategy,h=void 0===c?t.strategy:c,m=i.boundary,g=void 0===m?d:m,_=i.rootBoundary,b=void 0===_?u:_,v=i.elementContext,y=void 0===v?f:v,w=i.altBoundary,E=void 0!==w&&w,A=i.padding,T=void 0===A?0:A,C=U("number"!=typeof T?T:G(T,l)),O=y===f?p:f,k=t.rects.popper,D=t.elements[E?O:y],$=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=ft(V(t)),i=["absolute","fixed"].indexOf(z(t).position)>=0&&S(t)?K(t):t;return L(i)?e.filter((function(t){return L(t)&&W(t,i)&&"body"!==x(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=mt(t,i,n);return e.top=N(s.top,e.top),e.right=P(s.right,e.right),e.bottom=P(s.bottom,e.bottom),e.left=N(s.left,e.left),e}),mt(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(L(D)?D:D.contextElement||q(t.elements.popper),g,b,h),I=H(t.elements.reference),M=gt({reference:I,element:k,strategy:"absolute",placement:a}),j=pt(Object.assign({},k,M)),F=y===f?j:I,B={top:$.top-F.top+C.top,bottom:F.bottom-$.bottom+C.bottom,left:$.left-F.left+C.left,right:F.right-$.right+C.right},R=t.modifiersData.offset;if(y===f&&R){var Y=R[a];Object.keys(B).forEach((function(t){var e=[o,s].indexOf(t)>=0?1:-1,i=[n,s].indexOf(t)>=0?"y":"x";B[t]+=Y[i]*e}))}return B}const bt={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,h=t.name;if(!e.modifiersData[h]._skip){for(var d=i.mainAxis,u=void 0===d||d,f=i.altAxis,p=void 0===f||f,_=i.fallbackPlacements,b=i.padding,v=i.boundary,y=i.rootBoundary,w=i.altBoundary,E=i.flipVariations,A=void 0===E||E,T=i.allowedAutoPlacements,C=e.options.placement,O=I(C),x=_||(O!==C&&A?function(t){if(I(t)===a)return[];var e=rt(t);return[lt(t),e,lt(e)]}(C):[rt(C)]),k=[C].concat(x).reduce((function(t,i){return t.concat(I(i)===a?function(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,c=i.allowedAutoPlacements,h=void 0===c?g:c,d=Z(n),u=d?a?m:m.filter((function(t){return Z(t)===d})):l,f=u.filter((function(t){return h.indexOf(t)>=0}));0===f.length&&(f=u);var p=f.reduce((function(e,i){return e[i]=_t(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[I(i)],e}),{});return Object.keys(p).sort((function(t,e){return p[t]-p[e]}))}(e,{placement:i,boundary:v,rootBoundary:y,padding:b,flipVariations:A,allowedAutoPlacements:T}):i)}),[]),L=e.rects.reference,S=e.rects.popper,D=new Map,$=!0,N=k[0],P=0;P=0,B=H?"width":"height",W=_t(e,{placement:M,boundary:v,rootBoundary:y,altBoundary:w,padding:b}),z=H?F?o:r:F?s:n;L[B]>S[B]&&(z=rt(z));var R=rt(z),q=[];if(u&&q.push(W[j]<=0),p&&q.push(W[z]<=0,W[R]<=0),q.every((function(t){return t}))){N=M,$=!1;break}D.set(M,q)}if($)for(var V=function(t){var e=k.find((function(e){var i=D.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return N=e,"break"},Y=A?3:1;Y>0&&"break"!==V(Y);Y--);e.placement!==N&&(e.modifiersData[h]._skip=!0,e.placement=N,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function vt(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function yt(t){return[n,o,s,r].some((function(e){return t[e]>=0}))}const wt={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=_t(e,{elementContext:"reference"}),a=_t(e,{altBoundary:!0}),l=vt(r,n),c=vt(a,s,o),h=yt(l),d=yt(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},Et={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,s=t.name,a=i.offset,l=void 0===a?[0,0]:a,c=g.reduce((function(t,i){return t[i]=function(t,e,i){var s=I(t),a=[r,n].indexOf(s)>=0?-1:1,l="function"==typeof i?i(Object.assign({},e,{placement:t})):i,c=l[0],h=l[1];return c=c||0,h=(h||0)*a,[r,o].indexOf(s)>=0?{x:h,y:c}:{x:c,y:h}}(i,e.rects,l),t}),{}),h=c[e.placement],d=h.x,u=h.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=d,e.modifiersData.popperOffsets.y+=u),e.modifiersData[s]=c}},At={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=gt({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},Tt={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,a=t.name,l=i.mainAxis,h=void 0===l||l,d=i.altAxis,u=void 0!==d&&d,f=i.boundary,p=i.rootBoundary,m=i.altBoundary,g=i.padding,_=i.tether,b=void 0===_||_,v=i.tetherOffset,y=void 0===v?0:v,w=_t(e,{boundary:f,rootBoundary:p,padding:g,altBoundary:m}),E=I(e.placement),A=Z(e.placement),T=!A,C=Q(E),O="x"===C?"y":"x",x=e.modifiersData.popperOffsets,k=e.rects.reference,L=e.rects.popper,S="function"==typeof y?y(Object.assign({},e.rects,{placement:e.placement})):y,D="number"==typeof S?{mainAxis:S,altAxis:S}:Object.assign({mainAxis:0,altAxis:0},S),$=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,M={x:0,y:0};if(x){if(h){var j,F="y"===C?n:r,H="y"===C?s:o,W="y"===C?"height":"width",z=x[C],R=z+w[F],q=z-w[H],V=b?-L[W]/2:0,Y=A===c?k[W]:L[W],U=A===c?-L[W]:-k[W],G=e.elements.arrow,J=b&&G?B(G):{width:0,height:0},tt=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},et=tt[F],it=tt[H],nt=X(0,k[W],J[W]),st=T?k[W]/2-V-nt-et-D.mainAxis:Y-nt-et-D.mainAxis,ot=T?-k[W]/2+V+nt+it+D.mainAxis:U+nt+it+D.mainAxis,rt=e.elements.arrow&&K(e.elements.arrow),at=rt?"y"===C?rt.clientTop||0:rt.clientLeft||0:0,lt=null!=(j=null==$?void 0:$[C])?j:0,ct=z+ot-lt,ht=X(b?P(R,z+st-lt-at):R,z,b?N(q,ct):q);x[C]=ht,M[C]=ht-z}if(u){var dt,ut="x"===C?n:r,ft="x"===C?s:o,pt=x[O],mt="y"===O?"height":"width",gt=pt+w[ut],bt=pt-w[ft],vt=-1!==[n,r].indexOf(E),yt=null!=(dt=null==$?void 0:$[O])?dt:0,wt=vt?gt:pt-k[mt]-L[mt]-yt+D.altAxis,Et=vt?pt+k[mt]+L[mt]-yt-D.altAxis:bt,At=b&&vt?function(t,e,i){var n=X(t,e,i);return n>i?i:n}(wt,pt,Et):X(b?wt:gt,pt,b?Et:bt);x[O]=At,M[O]=At-pt}e.modifiersData[a]=M}},requiresIfExists:["offset"]};function Ct(t,e,i){void 0===i&&(i=!1);var n,s,o=S(e),r=S(e)&&function(t){var e=t.getBoundingClientRect(),i=M(e.width)/t.offsetWidth||1,n=M(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=q(e),l=H(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==x(e)||dt(a))&&(c=(n=e)!==k(n)&&S(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:ct(n)),S(e)?((h=H(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=ht(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function Ot(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var xt={placement:"bottom",modifiers:[],strategy:"absolute"};function kt(){for(var t=arguments.length,e=new Array(t),i=0;iIt.has(t)&&It.get(t).get(e)||null,remove(t,e){if(!It.has(t))return;const i=It.get(t);i.delete(e),0===i.size&&It.delete(t)}},Pt="transitionend",Mt=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),jt=t=>{t.dispatchEvent(new Event(Pt))},Ft=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),Ht=t=>Ft(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(Mt(t)):null,Bt=t=>{if(!Ft(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},Wt=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),zt=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?zt(t.parentNode):null},Rt=()=>{},qt=t=>{t.offsetHeight},Vt=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,Yt=[],Kt=()=>"rtl"===document.documentElement.dir,Qt=t=>{var e;e=()=>{const e=Vt();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(Yt.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of Yt)t()})),Yt.push(e)):e()},Xt=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,Ut=(t,e,i=!0)=>{if(!i)return void Xt(t);const n=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let s=!1;const o=({target:i})=>{i===e&&(s=!0,e.removeEventListener(Pt,o),Xt(t))};e.addEventListener(Pt,o),setTimeout((()=>{s||jt(e)}),n)},Gt=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},Jt=/[^.]*(?=\..*)\.|.*/,Zt=/\..*/,te=/::\d+$/,ee={};let ie=1;const ne={mouseenter:"mouseover",mouseleave:"mouseout"},se=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function oe(t,e){return e&&`${e}::${ie++}`||t.uidEvent||ie++}function re(t){const e=oe(t);return t.uidEvent=e,ee[e]=ee[e]||{},ee[e]}function ae(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function le(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=ue(t);return se.has(o)||(o=t),[n,s,o]}function ce(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=le(e,i,n);if(e in ne){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=re(t),c=l[a]||(l[a]={}),h=ae(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=oe(r,e.replace(Jt,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return pe(s,{delegateTarget:r}),n.oneOff&&fe.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return pe(n,{delegateTarget:t}),i.oneOff&&fe.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function he(t,e,i,n,s){const o=ae(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function de(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&he(t,e,i,r.callable,r.delegationSelector)}function ue(t){return t=t.replace(Zt,""),ne[t]||t}const fe={on(t,e,i,n){ce(t,e,i,n,!1)},one(t,e,i,n){ce(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=le(e,i,n),a=r!==e,l=re(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))de(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(te,"");a&&!e.includes(s)||he(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;he(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=Vt();let s=null,o=!0,r=!0,a=!1;e!==ue(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=pe(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function pe(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function me(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function ge(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const _e={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${ge(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${ge(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=me(t.dataset[n])}return e},getDataAttribute:(t,e)=>me(t.getAttribute(`data-bs-${ge(e)}`))};class be{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=Ft(e)?_e.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...Ft(e)?_e.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],o=Ft(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(o))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${o}" but expected type "${s}".`)}var i}}class ve extends be{constructor(t,e){super(),(t=Ht(t))&&(this._element=t,this._config=this._getConfig(e),Nt.set(this._element,this.constructor.DATA_KEY,this))}dispose(){Nt.remove(this._element,this.constructor.DATA_KEY),fe.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){Ut(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return Nt.get(Ht(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.3"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const ye=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return e?e.split(",").map((t=>Mt(t))).join(","):null},we={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!Wt(t)&&Bt(t)))},getSelectorFromElement(t){const e=ye(t);return e&&we.findOne(e)?e:null},getElementFromSelector(t){const e=ye(t);return e?we.findOne(e):null},getMultipleElementsFromSelector(t){const e=ye(t);return e?we.find(e):[]}},Ee=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;fe.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),Wt(this))return;const s=we.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},Ae=".bs.alert",Te=`close${Ae}`,Ce=`closed${Ae}`;class Oe extends ve{static get NAME(){return"alert"}close(){if(fe.trigger(this._element,Te).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),fe.trigger(this._element,Ce),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Oe.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}Ee(Oe,"close"),Qt(Oe);const xe='[data-bs-toggle="button"]';class ke extends ve{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=ke.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}fe.on(document,"click.bs.button.data-api",xe,(t=>{t.preventDefault();const e=t.target.closest(xe);ke.getOrCreateInstance(e).toggle()})),Qt(ke);const Le=".bs.swipe",Se=`touchstart${Le}`,De=`touchmove${Le}`,$e=`touchend${Le}`,Ie=`pointerdown${Le}`,Ne=`pointerup${Le}`,Pe={endCallback:null,leftCallback:null,rightCallback:null},Me={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class je extends be{constructor(t,e){super(),this._element=t,t&&je.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return Pe}static get DefaultType(){return Me}static get NAME(){return"swipe"}dispose(){fe.off(this._element,Le)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),Xt(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&Xt(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(fe.on(this._element,Ie,(t=>this._start(t))),fe.on(this._element,Ne,(t=>this._end(t))),this._element.classList.add("pointer-event")):(fe.on(this._element,Se,(t=>this._start(t))),fe.on(this._element,De,(t=>this._move(t))),fe.on(this._element,$e,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const Fe=".bs.carousel",He=".data-api",Be="ArrowLeft",We="ArrowRight",ze="next",Re="prev",qe="left",Ve="right",Ye=`slide${Fe}`,Ke=`slid${Fe}`,Qe=`keydown${Fe}`,Xe=`mouseenter${Fe}`,Ue=`mouseleave${Fe}`,Ge=`dragstart${Fe}`,Je=`load${Fe}${He}`,Ze=`click${Fe}${He}`,ti="carousel",ei="active",ii=".active",ni=".carousel-item",si=ii+ni,oi={[Be]:Ve,[We]:qe},ri={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},ai={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class li extends ve{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=we.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===ti&&this.cycle()}static get Default(){return ri}static get DefaultType(){return ai}static get NAME(){return"carousel"}next(){this._slide(ze)}nextWhenVisible(){!document.hidden&&Bt(this._element)&&this.next()}prev(){this._slide(Re)}pause(){this._isSliding&&jt(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?fe.one(this._element,Ke,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void fe.one(this._element,Ke,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?ze:Re;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&fe.on(this._element,Qe,(t=>this._keydown(t))),"hover"===this._config.pause&&(fe.on(this._element,Xe,(()=>this.pause())),fe.on(this._element,Ue,(()=>this._maybeEnableCycle()))),this._config.touch&&je.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of we.find(".carousel-item img",this._element))fe.on(t,Ge,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(qe)),rightCallback:()=>this._slide(this._directionToOrder(Ve)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new je(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=oi[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=we.findOne(ii,this._indicatorsElement);e.classList.remove(ei),e.removeAttribute("aria-current");const i=we.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(ei),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===ze,s=e||Gt(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>fe.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(Ye).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),qt(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(ei),i.classList.remove(ei,c,l),this._isSliding=!1,r(Ke)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return we.findOne(si,this._element)}_getItems(){return we.find(ni,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return Kt()?t===qe?Re:ze:t===qe?ze:Re}_orderToDirection(t){return Kt()?t===Re?qe:Ve:t===Re?Ve:qe}static jQueryInterface(t){return this.each((function(){const e=li.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}fe.on(document,Ze,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=we.getElementFromSelector(this);if(!e||!e.classList.contains(ti))return;t.preventDefault();const i=li.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===_e.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),fe.on(window,Je,(()=>{const t=we.find('[data-bs-ride="carousel"]');for(const e of t)li.getOrCreateInstance(e)})),Qt(li);const ci=".bs.collapse",hi=`show${ci}`,di=`shown${ci}`,ui=`hide${ci}`,fi=`hidden${ci}`,pi=`click${ci}.data-api`,mi="show",gi="collapse",_i="collapsing",bi=`:scope .${gi} .${gi}`,vi='[data-bs-toggle="collapse"]',yi={parent:null,toggle:!0},wi={parent:"(null|element)",toggle:"boolean"};class Ei extends ve{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=we.find(vi);for(const t of i){const e=we.getSelectorFromElement(t),i=we.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return yi}static get DefaultType(){return wi}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Ei.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(fe.trigger(this._element,hi).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(gi),this._element.classList.add(_i),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi,mi),this._element.style[e]="",fe.trigger(this._element,di)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(fe.trigger(this._element,ui).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,qt(this._element),this._element.classList.add(_i),this._element.classList.remove(gi,mi);for(const t of this._triggerArray){const e=we.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi),fe.trigger(this._element,fi)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(mi)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=Ht(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(vi);for(const e of t){const t=we.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=we.find(bi,this._config.parent);return we.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Ei.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}fe.on(document,pi,vi,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of we.getMultipleElementsFromSelector(this))Ei.getOrCreateInstance(t,{toggle:!1}).toggle()})),Qt(Ei);const Ai="dropdown",Ti=".bs.dropdown",Ci=".data-api",Oi="ArrowUp",xi="ArrowDown",ki=`hide${Ti}`,Li=`hidden${Ti}`,Si=`show${Ti}`,Di=`shown${Ti}`,$i=`click${Ti}${Ci}`,Ii=`keydown${Ti}${Ci}`,Ni=`keyup${Ti}${Ci}`,Pi="show",Mi='[data-bs-toggle="dropdown"]:not(.disabled):not(:disabled)',ji=`${Mi}.${Pi}`,Fi=".dropdown-menu",Hi=Kt()?"top-end":"top-start",Bi=Kt()?"top-start":"top-end",Wi=Kt()?"bottom-end":"bottom-start",zi=Kt()?"bottom-start":"bottom-end",Ri=Kt()?"left-start":"right-start",qi=Kt()?"right-start":"left-start",Vi={autoClose:!0,boundary:"clippingParents",display:"dynamic",offset:[0,2],popperConfig:null,reference:"toggle"},Yi={autoClose:"(boolean|string)",boundary:"(string|element)",display:"string",offset:"(array|string|function)",popperConfig:"(null|object|function)",reference:"(string|element|object)"};class Ki extends ve{constructor(t,e){super(t,e),this._popper=null,this._parent=this._element.parentNode,this._menu=we.next(this._element,Fi)[0]||we.prev(this._element,Fi)[0]||we.findOne(Fi,this._parent),this._inNavbar=this._detectNavbar()}static get Default(){return Vi}static get DefaultType(){return Yi}static get NAME(){return Ai}toggle(){return this._isShown()?this.hide():this.show()}show(){if(Wt(this._element)||this._isShown())return;const t={relatedTarget:this._element};if(!fe.trigger(this._element,Si,t).defaultPrevented){if(this._createPopper(),"ontouchstart"in document.documentElement&&!this._parent.closest(".navbar-nav"))for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._element.focus(),this._element.setAttribute("aria-expanded",!0),this._menu.classList.add(Pi),this._element.classList.add(Pi),fe.trigger(this._element,Di,t)}}hide(){if(Wt(this._element)||!this._isShown())return;const t={relatedTarget:this._element};this._completeHide(t)}dispose(){this._popper&&this._popper.destroy(),super.dispose()}update(){this._inNavbar=this._detectNavbar(),this._popper&&this._popper.update()}_completeHide(t){if(!fe.trigger(this._element,ki,t).defaultPrevented){if("ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._popper&&this._popper.destroy(),this._menu.classList.remove(Pi),this._element.classList.remove(Pi),this._element.setAttribute("aria-expanded","false"),_e.removeDataAttribute(this._menu,"popper"),fe.trigger(this._element,Li,t)}}_getConfig(t){if("object"==typeof(t=super._getConfig(t)).reference&&!Ft(t.reference)&&"function"!=typeof t.reference.getBoundingClientRect)throw new TypeError(`${Ai.toUpperCase()}: Option "reference" provided type "object" without a required "getBoundingClientRect" method.`);return t}_createPopper(){if(void 0===e)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");let t=this._element;"parent"===this._config.reference?t=this._parent:Ft(this._config.reference)?t=Ht(this._config.reference):"object"==typeof this._config.reference&&(t=this._config.reference);const i=this._getPopperConfig();this._popper=Dt(t,this._menu,i)}_isShown(){return this._menu.classList.contains(Pi)}_getPlacement(){const t=this._parent;if(t.classList.contains("dropend"))return Ri;if(t.classList.contains("dropstart"))return qi;if(t.classList.contains("dropup-center"))return"top";if(t.classList.contains("dropdown-center"))return"bottom";const e="end"===getComputedStyle(this._menu).getPropertyValue("--bs-position").trim();return t.classList.contains("dropup")?e?Bi:Hi:e?zi:Wi}_detectNavbar(){return null!==this._element.closest(".navbar")}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(_e.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...Xt(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=we.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>Bt(t)));i.length&&Gt(i,e,t===xi,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=Ki.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=we.find(ji);for(const i of e){const e=Ki.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Oi,xi].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Mi)?this:we.prev(this,Mi)[0]||we.next(this,Mi)[0]||we.findOne(Mi,t.delegateTarget.parentNode),o=Ki.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}fe.on(document,Ii,Mi,Ki.dataApiKeydownHandler),fe.on(document,Ii,Fi,Ki.dataApiKeydownHandler),fe.on(document,$i,Ki.clearMenus),fe.on(document,Ni,Ki.clearMenus),fe.on(document,$i,Mi,(function(t){t.preventDefault(),Ki.getOrCreateInstance(this).toggle()})),Qt(Ki);const Qi="backdrop",Xi="show",Ui=`mousedown.bs.${Qi}`,Gi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Ji={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Zi extends be{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Gi}static get DefaultType(){return Ji}static get NAME(){return Qi}show(t){if(!this._config.isVisible)return void Xt(t);this._append();const e=this._getElement();this._config.isAnimated&&qt(e),e.classList.add(Xi),this._emulateAnimation((()=>{Xt(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Xi),this._emulateAnimation((()=>{this.dispose(),Xt(t)}))):Xt(t)}dispose(){this._isAppended&&(fe.off(this._element,Ui),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=Ht(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),fe.on(t,Ui,(()=>{Xt(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){Ut(t,this._getElement(),this._config.isAnimated)}}const tn=".bs.focustrap",en=`focusin${tn}`,nn=`keydown.tab${tn}`,sn="backward",on={autofocus:!0,trapElement:null},rn={autofocus:"boolean",trapElement:"element"};class an extends be{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return on}static get DefaultType(){return rn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),fe.off(document,tn),fe.on(document,en,(t=>this._handleFocusin(t))),fe.on(document,nn,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,fe.off(document,tn))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=we.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===sn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?sn:"forward")}}const ln=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",cn=".sticky-top",hn="padding-right",dn="margin-right";class un{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,hn,(e=>e+t)),this._setElementAttributes(ln,hn,(e=>e+t)),this._setElementAttributes(cn,dn,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,hn),this._resetElementAttributes(ln,hn),this._resetElementAttributes(cn,dn)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&_e.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=_e.getDataAttribute(t,e);null!==i?(_e.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(Ft(t))e(t);else for(const i of we.find(t,this._element))e(i)}}const fn=".bs.modal",pn=`hide${fn}`,mn=`hidePrevented${fn}`,gn=`hidden${fn}`,_n=`show${fn}`,bn=`shown${fn}`,vn=`resize${fn}`,yn=`click.dismiss${fn}`,wn=`mousedown.dismiss${fn}`,En=`keydown.dismiss${fn}`,An=`click${fn}.data-api`,Tn="modal-open",Cn="show",On="modal-static",xn={backdrop:!0,focus:!0,keyboard:!0},kn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class Ln extends ve{constructor(t,e){super(t,e),this._dialog=we.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new un,this._addEventListeners()}static get Default(){return xn}static get DefaultType(){return kn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||fe.trigger(this._element,_n,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(Tn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(fe.trigger(this._element,pn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(Cn),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){fe.off(window,fn),fe.off(this._dialog,fn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Zi({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new an({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=we.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),qt(this._element),this._element.classList.add(Cn),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,fe.trigger(this._element,bn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){fe.on(this._element,En,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),fe.on(window,vn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),fe.on(this._element,wn,(t=>{fe.one(this._element,yn,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(Tn),this._resetAdjustments(),this._scrollBar.reset(),fe.trigger(this._element,gn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(fe.trigger(this._element,mn).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(On)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(On),this._queueCallback((()=>{this._element.classList.remove(On),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=Kt()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=Kt()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=Ln.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}fe.on(document,An,'[data-bs-toggle="modal"]',(function(t){const e=we.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),fe.one(e,_n,(t=>{t.defaultPrevented||fe.one(e,gn,(()=>{Bt(this)&&this.focus()}))}));const i=we.findOne(".modal.show");i&&Ln.getInstance(i).hide(),Ln.getOrCreateInstance(e).toggle(this)})),Ee(Ln),Qt(Ln);const Sn=".bs.offcanvas",Dn=".data-api",$n=`load${Sn}${Dn}`,In="show",Nn="showing",Pn="hiding",Mn=".offcanvas.show",jn=`show${Sn}`,Fn=`shown${Sn}`,Hn=`hide${Sn}`,Bn=`hidePrevented${Sn}`,Wn=`hidden${Sn}`,zn=`resize${Sn}`,Rn=`click${Sn}${Dn}`,qn=`keydown.dismiss${Sn}`,Vn={backdrop:!0,keyboard:!0,scroll:!1},Yn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class Kn extends ve{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return Vn}static get DefaultType(){return Yn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||fe.trigger(this._element,jn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new un).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Nn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(In),this._element.classList.remove(Nn),fe.trigger(this._element,Fn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(fe.trigger(this._element,Hn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add(Pn),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(In,Pn),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new un).reset(),fe.trigger(this._element,Wn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Zi({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():fe.trigger(this._element,Bn)}:null})}_initializeFocusTrap(){return new an({trapElement:this._element})}_addEventListeners(){fe.on(this._element,qn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():fe.trigger(this._element,Bn))}))}static jQueryInterface(t){return this.each((function(){const e=Kn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}fe.on(document,Rn,'[data-bs-toggle="offcanvas"]',(function(t){const e=we.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this))return;fe.one(e,Wn,(()=>{Bt(this)&&this.focus()}));const i=we.findOne(Mn);i&&i!==e&&Kn.getInstance(i).hide(),Kn.getOrCreateInstance(e).toggle(this)})),fe.on(window,$n,(()=>{for(const t of we.find(Mn))Kn.getOrCreateInstance(t).show()})),fe.on(window,zn,(()=>{for(const t of we.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&Kn.getOrCreateInstance(t).hide()})),Ee(Kn),Qt(Kn);const Qn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],dd:[],div:[],dl:[],dt:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Xn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Un=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Gn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Xn.has(i)||Boolean(Un.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Jn={allowList:Qn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Zn={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},ts={entry:"(string|element|function|null)",selector:"(string|element)"};class es extends be{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Jn}static get DefaultType(){return Zn}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},ts)}_setContent(t,e,i){const n=we.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?Ft(e)?this._putElementInTemplate(Ht(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Gn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return Xt(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const is=new Set(["sanitize","allowList","sanitizeFn"]),ns="fade",ss="show",os=".tooltip-inner",rs=".modal",as="hide.bs.modal",ls="hover",cs="focus",hs={AUTO:"auto",TOP:"top",RIGHT:Kt()?"left":"right",BOTTOM:"bottom",LEFT:Kt()?"right":"left"},ds={allowList:Qn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},us={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class fs extends ve{constructor(t,i){if(void 0===e)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,i),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return ds}static get DefaultType(){return us}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),fe.off(this._element.closest(rs),as,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=fe.trigger(this._element,this.constructor.eventName("show")),e=(zt(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),fe.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._queueCallback((()=>{fe.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!fe.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._activeTrigger.click=!1,this._activeTrigger[cs]=!1,this._activeTrigger[ls]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),fe.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ns,ss),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ns),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new es({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{[os]:this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ns)}_isShown(){return this.tip&&this.tip.classList.contains(ss)}_createPopper(t){const e=Xt(this._config.placement,[this,t,this._element]),i=hs[e.toUpperCase()];return Dt(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return Xt(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...Xt(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)fe.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ls?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ls?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");fe.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?cs:ls]=!0,e._enter()})),fe.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?cs:ls]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},fe.on(this._element.closest(rs),as,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=_e.getDataAttributes(this._element);for(const t of Object.keys(e))is.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:Ht(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=fs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(fs);const ps=".popover-header",ms=".popover-body",gs={...fs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},_s={...fs.DefaultType,content:"(null|string|element|function)"};class bs extends fs{static get Default(){return gs}static get DefaultType(){return _s}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{[ps]:this._getTitle(),[ms]:this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=bs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(bs);const vs=".bs.scrollspy",ys=`activate${vs}`,ws=`click${vs}`,Es=`load${vs}.data-api`,As="active",Ts="[href]",Cs=".nav-link",Os=`${Cs}, .nav-item > ${Cs}, .list-group-item`,xs={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},ks={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Ls extends ve{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return xs}static get DefaultType(){return ks}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=Ht(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(fe.off(this._config.target,ws),fe.on(this._config.target,ws,Ts,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=we.find(Ts,this._config.target);for(const e of t){if(!e.hash||Wt(e))continue;const t=we.findOne(decodeURI(e.hash),this._element);Bt(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(As),this._activateParents(t),fe.trigger(this._element,ys,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))we.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(As);else for(const e of we.parents(t,".nav, .list-group"))for(const t of we.prev(e,Os))t.classList.add(As)}_clearActiveClass(t){t.classList.remove(As);const e=we.find(`${Ts}.${As}`,t);for(const t of e)t.classList.remove(As)}static jQueryInterface(t){return this.each((function(){const e=Ls.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(window,Es,(()=>{for(const t of we.find('[data-bs-spy="scroll"]'))Ls.getOrCreateInstance(t)})),Qt(Ls);const Ss=".bs.tab",Ds=`hide${Ss}`,$s=`hidden${Ss}`,Is=`show${Ss}`,Ns=`shown${Ss}`,Ps=`click${Ss}`,Ms=`keydown${Ss}`,js=`load${Ss}`,Fs="ArrowLeft",Hs="ArrowRight",Bs="ArrowUp",Ws="ArrowDown",zs="Home",Rs="End",qs="active",Vs="fade",Ys="show",Ks=".dropdown-toggle",Qs=`:not(${Ks})`,Xs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Us=`.nav-link${Qs}, .list-group-item${Qs}, [role="tab"]${Qs}, ${Xs}`,Gs=`.${qs}[data-bs-toggle="tab"], .${qs}[data-bs-toggle="pill"], .${qs}[data-bs-toggle="list"]`;class Js extends ve{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),fe.on(this._element,Ms,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?fe.trigger(e,Ds,{relatedTarget:t}):null;fe.trigger(t,Is,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(qs),this._activate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),fe.trigger(t,Ns,{relatedTarget:e})):t.classList.add(Ys)}),t,t.classList.contains(Vs)))}_deactivate(t,e){t&&(t.classList.remove(qs),t.blur(),this._deactivate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),fe.trigger(t,$s,{relatedTarget:e})):t.classList.remove(Ys)}),t,t.classList.contains(Vs)))}_keydown(t){if(![Fs,Hs,Bs,Ws,zs,Rs].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!Wt(t)));let i;if([zs,Rs].includes(t.key))i=e[t.key===zs?0:e.length-1];else{const n=[Hs,Ws].includes(t.key);i=Gt(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Js.getOrCreateInstance(i).show())}_getChildren(){return we.find(Us,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=we.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=we.findOne(t,i);s&&s.classList.toggle(n,e)};n(Ks,qs),n(".dropdown-menu",Ys),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(qs)}_getInnerElement(t){return t.matches(Us)?t:we.findOne(Us,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Js.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(document,Ps,Xs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this)||Js.getOrCreateInstance(this).show()})),fe.on(window,js,(()=>{for(const t of we.find(Gs))Js.getOrCreateInstance(t)})),Qt(Js);const Zs=".bs.toast",to=`mouseover${Zs}`,eo=`mouseout${Zs}`,io=`focusin${Zs}`,no=`focusout${Zs}`,so=`hide${Zs}`,oo=`hidden${Zs}`,ro=`show${Zs}`,ao=`shown${Zs}`,lo="hide",co="show",ho="showing",uo={animation:"boolean",autohide:"boolean",delay:"number"},fo={animation:!0,autohide:!0,delay:5e3};class po extends ve{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return fo}static get DefaultType(){return uo}static get NAME(){return"toast"}show(){fe.trigger(this._element,ro).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(lo),qt(this._element),this._element.classList.add(co,ho),this._queueCallback((()=>{this._element.classList.remove(ho),fe.trigger(this._element,ao),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(fe.trigger(this._element,so).defaultPrevented||(this._element.classList.add(ho),this._queueCallback((()=>{this._element.classList.add(lo),this._element.classList.remove(ho,co),fe.trigger(this._element,oo)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(co),super.dispose()}isShown(){return this._element.classList.contains(co)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){fe.on(this._element,to,(t=>this._onInteraction(t,!0))),fe.on(this._element,eo,(t=>this._onInteraction(t,!1))),fe.on(this._element,io,(t=>this._onInteraction(t,!0))),fe.on(this._element,no,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=po.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}function mo(t){"loading"!=document.readyState?t():document.addEventListener("DOMContentLoaded",t)}Ee(po),Qt(po),mo((function(){[].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]')).map((function(t){return new fs(t,{delay:{show:500,hide:100}})}))})),mo((function(){document.getElementById("pst-back-to-top").addEventListener("click",(function(){document.body.scrollTop=0,document.documentElement.scrollTop=0}))})),mo((function(){var t=document.getElementById("pst-back-to-top"),e=document.getElementsByClassName("bd-header")[0].getBoundingClientRect();window.addEventListener("scroll",(function(){this.oldScroll>this.scrollY&&this.scrollY>e.bottom?t.style.display="block":t.style.display="none",this.oldScroll=this.scrollY}))})),window.bootstrap=i})(); +//# sourceMappingURL=bootstrap.js.map \ No newline at end of file diff --git a/_static/scripts/bootstrap.js.LICENSE.txt b/_static/scripts/bootstrap.js.LICENSE.txt new file mode 100644 index 00000000..28755c2c --- /dev/null +++ b/_static/scripts/bootstrap.js.LICENSE.txt @@ -0,0 +1,5 @@ +/*! + * Bootstrap v5.3.3 (https://getbootstrap.com/) + * Copyright 2011-2024 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */ diff --git a/_static/scripts/bootstrap.js.map b/_static/scripts/bootstrap.js.map new file mode 100644 index 00000000..e9e81589 --- /dev/null +++ b/_static/scripts/bootstrap.js.map @@ -0,0 +1 @@ +{"version":3,"file":"scripts/bootstrap.js","mappings":";mBACA,IAAIA,EAAsB,CCA1BA,EAAwB,CAACC,EAASC,KACjC,IAAI,IAAIC,KAAOD,EACXF,EAAoBI,EAAEF,EAAYC,KAASH,EAAoBI,EAAEH,EAASE,IAC5EE,OAAOC,eAAeL,EAASE,EAAK,CAAEI,YAAY,EAAMC,IAAKN,EAAWC,IAE1E,ECNDH,EAAwB,CAACS,EAAKC,IAAUL,OAAOM,UAAUC,eAAeC,KAAKJ,EAAKC,GCClFV,EAAyBC,IACH,oBAAXa,QAA0BA,OAAOC,aAC1CV,OAAOC,eAAeL,EAASa,OAAOC,YAAa,CAAEC,MAAO,WAE7DX,OAAOC,eAAeL,EAAS,aAAc,CAAEe,OAAO,GAAO,01BCLvD,IAAI,EAAM,MACNC,EAAS,SACTC,EAAQ,QACRC,EAAO,OACPC,EAAO,OACPC,EAAiB,CAAC,EAAKJ,EAAQC,EAAOC,GACtCG,EAAQ,QACRC,EAAM,MACNC,EAAkB,kBAClBC,EAAW,WACXC,EAAS,SACTC,EAAY,YACZC,EAAmCP,EAAeQ,QAAO,SAAUC,EAAKC,GACjF,OAAOD,EAAIE,OAAO,CAACD,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAChE,GAAG,IACQ,EAA0B,GAAGS,OAAOX,EAAgB,CAACD,IAAOS,QAAO,SAAUC,EAAKC,GAC3F,OAAOD,EAAIE,OAAO,CAACD,EAAWA,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAC3E,GAAG,IAEQU,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAc,cACdC,EAAQ,QACRC,EAAa,aACbC,EAAiB,CAACT,EAAYC,EAAMC,EAAWC,EAAYC,EAAMC,EAAWC,EAAaC,EAAOC,GC9B5F,SAASE,EAAYC,GAClC,OAAOA,GAAWA,EAAQC,UAAY,IAAIC,cAAgB,IAC5D,CCFe,SAASC,EAAUC,GAChC,GAAY,MAARA,EACF,OAAOC,OAGT,GAAwB,oBAApBD,EAAKE,WAAkC,CACzC,IAAIC,EAAgBH,EAAKG,cACzB,OAAOA,GAAgBA,EAAcC,aAAwBH,MAC/D,CAEA,OAAOD,CACT,CCTA,SAASK,EAAUL,GAEjB,OAAOA,aADUD,EAAUC,GAAMM,SACIN,aAAgBM,OACvD,CAEA,SAASC,EAAcP,GAErB,OAAOA,aADUD,EAAUC,GAAMQ,aACIR,aAAgBQ,WACvD,CAEA,SAASC,EAAaT,GAEpB,MAA0B,oBAAfU,aAKJV,aADUD,EAAUC,GAAMU,YACIV,aAAgBU,WACvD,CCwDA,SACEC,KAAM,cACNC,SAAS,EACTC,MAAO,QACPC,GA5EF,SAAqBC,GACnB,IAAIC,EAAQD,EAAKC,MACjB3D,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIS,EAAQJ,EAAMK,OAAOV,IAAS,CAAC,EAC/BW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EACxCf,EAAUoB,EAAME,SAASP,GAExBJ,EAAcX,IAAaD,EAAYC,KAO5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUR,GACxC,IAAI3C,EAAQsD,EAAWX,IAET,IAAV3C,EACF4B,EAAQ4B,gBAAgBb,GAExBf,EAAQ6B,aAAad,GAAgB,IAAV3C,EAAiB,GAAKA,EAErD,IACF,GACF,EAoDE0D,OAlDF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MACdY,EAAgB,CAClBlD,OAAQ,CACNmD,SAAUb,EAAMc,QAAQC,SACxB5D,KAAM,IACN6D,IAAK,IACLC,OAAQ,KAEVC,MAAO,CACLL,SAAU,YAEZlD,UAAW,CAAC,GASd,OAPAtB,OAAOkE,OAAOP,EAAME,SAASxC,OAAO0C,MAAOQ,EAAclD,QACzDsC,EAAMK,OAASO,EAEXZ,EAAME,SAASgB,OACjB7E,OAAOkE,OAAOP,EAAME,SAASgB,MAAMd,MAAOQ,EAAcM,OAGnD,WACL7E,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIf,EAAUoB,EAAME,SAASP,GACzBW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EAGxCS,EAFkB/D,OAAO4D,KAAKD,EAAMK,OAAOzD,eAAe+C,GAAQK,EAAMK,OAAOV,GAAQiB,EAAcjB,IAE7E9B,QAAO,SAAUuC,EAAOe,GAElD,OADAf,EAAMe,GAAY,GACXf,CACT,GAAG,CAAC,GAECb,EAAcX,IAAaD,EAAYC,KAI5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUiB,GACxCxC,EAAQ4B,gBAAgBY,EAC1B,IACF,GACF,CACF,EASEC,SAAU,CAAC,kBCjFE,SAASC,EAAiBvD,GACvC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCHO,IAAI,EAAMC,KAAKC,IACX,EAAMD,KAAKE,IACXC,EAAQH,KAAKG,MCFT,SAASC,IACtB,IAAIC,EAASC,UAAUC,cAEvB,OAAc,MAAVF,GAAkBA,EAAOG,QAAUC,MAAMC,QAAQL,EAAOG,QACnDH,EAAOG,OAAOG,KAAI,SAAUC,GACjC,OAAOA,EAAKC,MAAQ,IAAMD,EAAKE,OACjC,IAAGC,KAAK,KAGHT,UAAUU,SACnB,CCTe,SAASC,IACtB,OAAQ,iCAAiCC,KAAKd,IAChD,CCCe,SAASe,EAAsB/D,EAASgE,EAAcC,QAC9C,IAAjBD,IACFA,GAAe,QAGO,IAApBC,IACFA,GAAkB,GAGpB,IAAIC,EAAalE,EAAQ+D,wBACrBI,EAAS,EACTC,EAAS,EAETJ,GAAgBrD,EAAcX,KAChCmE,EAASnE,EAAQqE,YAAc,GAAItB,EAAMmB,EAAWI,OAAStE,EAAQqE,aAAmB,EACxFD,EAASpE,EAAQuE,aAAe,GAAIxB,EAAMmB,EAAWM,QAAUxE,EAAQuE,cAAoB,GAG7F,IACIE,GADOhE,EAAUT,GAAWG,EAAUH,GAAWK,QAC3BoE,eAEtBC,GAAoBb,KAAsBI,EAC1CU,GAAKT,EAAW3F,MAAQmG,GAAoBD,EAAiBA,EAAeG,WAAa,IAAMT,EAC/FU,GAAKX,EAAW9B,KAAOsC,GAAoBD,EAAiBA,EAAeK,UAAY,IAAMV,EAC7FE,EAAQJ,EAAWI,MAAQH,EAC3BK,EAASN,EAAWM,OAASJ,EACjC,MAAO,CACLE,MAAOA,EACPE,OAAQA,EACRpC,IAAKyC,EACLvG,MAAOqG,EAAIL,EACXjG,OAAQwG,EAAIL,EACZjG,KAAMoG,EACNA,EAAGA,EACHE,EAAGA,EAEP,CCrCe,SAASE,EAAc/E,GACpC,IAAIkE,EAAaH,EAAsB/D,GAGnCsE,EAAQtE,EAAQqE,YAChBG,EAASxE,EAAQuE,aAUrB,OARI3B,KAAKoC,IAAId,EAAWI,MAAQA,IAAU,IACxCA,EAAQJ,EAAWI,OAGjB1B,KAAKoC,IAAId,EAAWM,OAASA,IAAW,IAC1CA,EAASN,EAAWM,QAGf,CACLG,EAAG3E,EAAQ4E,WACXC,EAAG7E,EAAQ8E,UACXR,MAAOA,EACPE,OAAQA,EAEZ,CCvBe,SAASS,EAASC,EAAQC,GACvC,IAAIC,EAAWD,EAAME,aAAeF,EAAME,cAE1C,GAAIH,EAAOD,SAASE,GAClB,OAAO,EAEJ,GAAIC,GAAYvE,EAAauE,GAAW,CACzC,IAAIE,EAAOH,EAEX,EAAG,CACD,GAAIG,GAAQJ,EAAOK,WAAWD,GAC5B,OAAO,EAITA,EAAOA,EAAKE,YAAcF,EAAKG,IACjC,OAASH,EACX,CAGF,OAAO,CACT,CCrBe,SAAS,EAAiBtF,GACvC,OAAOG,EAAUH,GAAS0F,iBAAiB1F,EAC7C,CCFe,SAAS2F,EAAe3F,GACrC,MAAO,CAAC,QAAS,KAAM,MAAM4F,QAAQ7F,EAAYC,KAAa,CAChE,CCFe,SAAS6F,EAAmB7F,GAEzC,QAASS,EAAUT,GAAWA,EAAQO,cACtCP,EAAQ8F,WAAazF,OAAOyF,UAAUC,eACxC,CCFe,SAASC,EAAchG,GACpC,MAA6B,SAAzBD,EAAYC,GACPA,EAMPA,EAAQiG,cACRjG,EAAQwF,aACR3E,EAAab,GAAWA,EAAQyF,KAAO,OAEvCI,EAAmB7F,EAGvB,CCVA,SAASkG,EAAoBlG,GAC3B,OAAKW,EAAcX,IACoB,UAAvC,EAAiBA,GAASiC,SAInBjC,EAAQmG,aAHN,IAIX,CAwCe,SAASC,EAAgBpG,GAItC,IAHA,IAAIK,EAASF,EAAUH,GACnBmG,EAAeD,EAAoBlG,GAEhCmG,GAAgBR,EAAeQ,IAA6D,WAA5C,EAAiBA,GAAclE,UACpFkE,EAAeD,EAAoBC,GAGrC,OAAIA,IAA+C,SAA9BpG,EAAYoG,IAA0D,SAA9BpG,EAAYoG,IAAwE,WAA5C,EAAiBA,GAAclE,UAC3H5B,EAGF8F,GAhDT,SAA4BnG,GAC1B,IAAIqG,EAAY,WAAWvC,KAAKd,KAGhC,GAFW,WAAWc,KAAKd,MAEfrC,EAAcX,IAII,UAFX,EAAiBA,GAEnBiC,SACb,OAAO,KAIX,IAAIqE,EAAcN,EAAchG,GAMhC,IAJIa,EAAayF,KACfA,EAAcA,EAAYb,MAGrB9E,EAAc2F,IAAgB,CAAC,OAAQ,QAAQV,QAAQ7F,EAAYuG,IAAgB,GAAG,CAC3F,IAAIC,EAAM,EAAiBD,GAI3B,GAAsB,SAAlBC,EAAIC,WAA4C,SAApBD,EAAIE,aAA0C,UAAhBF,EAAIG,UAAiF,IAA1D,CAAC,YAAa,eAAed,QAAQW,EAAII,aAAsBN,GAAgC,WAAnBE,EAAII,YAA2BN,GAAaE,EAAIK,QAAyB,SAAfL,EAAIK,OACjO,OAAON,EAEPA,EAAcA,EAAYd,UAE9B,CAEA,OAAO,IACT,CAgByBqB,CAAmB7G,IAAYK,CACxD,CCpEe,SAASyG,EAAyB3H,GAC/C,MAAO,CAAC,MAAO,UAAUyG,QAAQzG,IAAc,EAAI,IAAM,GAC3D,CCDO,SAAS4H,EAAOjE,EAAK1E,EAAOyE,GACjC,OAAO,EAAQC,EAAK,EAAQ1E,EAAOyE,GACrC,CCFe,SAASmE,EAAmBC,GACzC,OAAOxJ,OAAOkE,OAAO,CAAC,ECDf,CACLS,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GDHuC0I,EACjD,CEHe,SAASC,EAAgB9I,EAAOiD,GAC7C,OAAOA,EAAKpC,QAAO,SAAUkI,EAAS5J,GAEpC,OADA4J,EAAQ5J,GAAOa,EACR+I,CACT,GAAG,CAAC,EACN,CC4EA,SACEpG,KAAM,QACNC,SAAS,EACTC,MAAO,OACPC,GApEF,SAAeC,GACb,IAAIiG,EAEAhG,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZmB,EAAUf,EAAKe,QACfmF,EAAejG,EAAME,SAASgB,MAC9BgF,EAAgBlG,EAAMmG,cAAcD,cACpCE,EAAgB9E,EAAiBtB,EAAMjC,WACvCsI,EAAOX,EAAyBU,GAEhCE,EADa,CAACnJ,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAClC,SAAW,QAElC,GAAKH,GAAiBC,EAAtB,CAIA,IAAIL,EAxBgB,SAAyBU,EAASvG,GAItD,OAAO4F,EAAsC,iBAH7CW,EAA6B,mBAAZA,EAAyBA,EAAQlK,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CAC/EzI,UAAWiC,EAAMjC,aACbwI,GACkDA,EAAUT,EAAgBS,EAASlJ,GAC7F,CAmBsBoJ,CAAgB3F,EAAQyF,QAASvG,GACjD0G,EAAY/C,EAAcsC,GAC1BU,EAAmB,MAATN,EAAe,EAAMlJ,EAC/ByJ,EAAmB,MAATP,EAAepJ,EAASC,EAClC2J,EAAU7G,EAAMwG,MAAM7I,UAAU2I,GAAOtG,EAAMwG,MAAM7I,UAAU0I,GAAQH,EAAcG,GAAQrG,EAAMwG,MAAM9I,OAAO4I,GAC9GQ,EAAYZ,EAAcG,GAAQrG,EAAMwG,MAAM7I,UAAU0I,GACxDU,EAAoB/B,EAAgBiB,GACpCe,EAAaD,EAA6B,MAATV,EAAeU,EAAkBE,cAAgB,EAAIF,EAAkBG,aAAe,EAAI,EAC3HC,EAAoBN,EAAU,EAAIC,EAAY,EAG9CpF,EAAMmE,EAAcc,GACpBlF,EAAMuF,EAAaN,EAAUJ,GAAOT,EAAce,GAClDQ,EAASJ,EAAa,EAAIN,EAAUJ,GAAO,EAAIa,EAC/CE,EAAS1B,EAAOjE,EAAK0F,EAAQ3F,GAE7B6F,EAAWjB,EACfrG,EAAMmG,cAAcxG,KAASqG,EAAwB,CAAC,GAAyBsB,GAAYD,EAAQrB,EAAsBuB,aAAeF,EAASD,EAAQpB,EAnBzJ,CAoBF,EAkCEtF,OAhCF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MAEdwH,EADU7G,EAAMG,QACWlC,QAC3BqH,OAAoC,IAArBuB,EAA8B,sBAAwBA,EAErD,MAAhBvB,IAKwB,iBAAjBA,IACTA,EAAejG,EAAME,SAASxC,OAAO+J,cAAcxB,MAOhDpC,EAAS7D,EAAME,SAASxC,OAAQuI,KAIrCjG,EAAME,SAASgB,MAAQ+E,EACzB,EASE5E,SAAU,CAAC,iBACXqG,iBAAkB,CAAC,oBCxFN,SAASC,EAAa5J,GACnC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCOA,IAAIqG,GAAa,CACf5G,IAAK,OACL9D,MAAO,OACPD,OAAQ,OACRE,KAAM,QAeD,SAAS0K,GAAYlH,GAC1B,IAAImH,EAEApK,EAASiD,EAAMjD,OACfqK,EAAapH,EAAMoH,WACnBhK,EAAY4C,EAAM5C,UAClBiK,EAAYrH,EAAMqH,UAClBC,EAAUtH,EAAMsH,QAChBpH,EAAWF,EAAME,SACjBqH,EAAkBvH,EAAMuH,gBACxBC,EAAWxH,EAAMwH,SACjBC,EAAezH,EAAMyH,aACrBC,EAAU1H,EAAM0H,QAChBC,EAAaL,EAAQ1E,EACrBA,OAAmB,IAAf+E,EAAwB,EAAIA,EAChCC,EAAaN,EAAQxE,EACrBA,OAAmB,IAAf8E,EAAwB,EAAIA,EAEhCC,EAAgC,mBAAjBJ,EAA8BA,EAAa,CAC5D7E,EAAGA,EACHE,IACG,CACHF,EAAGA,EACHE,GAGFF,EAAIiF,EAAMjF,EACVE,EAAI+E,EAAM/E,EACV,IAAIgF,EAAOR,EAAQrL,eAAe,KAC9B8L,EAAOT,EAAQrL,eAAe,KAC9B+L,EAAQxL,EACRyL,EAAQ,EACRC,EAAM5J,OAEV,GAAIkJ,EAAU,CACZ,IAAIpD,EAAeC,EAAgBtH,GAC/BoL,EAAa,eACbC,EAAY,cAEZhE,IAAiBhG,EAAUrB,IAGmB,WAA5C,EAFJqH,EAAeN,EAAmB/G,IAECmD,UAAsC,aAAbA,IAC1DiI,EAAa,eACbC,EAAY,gBAOZhL,IAAc,IAAQA,IAAcZ,GAAQY,IAAcb,IAAU8K,IAAczK,KACpFqL,EAAQ3L,EAGRwG,IAFc4E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeD,OACzF2B,EAAa+D,IACEf,EAAW3E,OAC1BK,GAAKyE,EAAkB,GAAK,GAG1BnK,IAAcZ,IAASY,IAAc,GAAOA,IAAcd,GAAW+K,IAAczK,KACrFoL,EAAQzL,EAGRqG,IAFc8E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeH,MACzF6B,EAAagE,IACEhB,EAAW7E,MAC1BK,GAAK2E,EAAkB,GAAK,EAEhC,CAEA,IAgBMc,EAhBFC,EAAe5M,OAAOkE,OAAO,CAC/BM,SAAUA,GACTsH,GAAYP,IAEXsB,GAAyB,IAAjBd,EAlFd,SAA2BrI,EAAM8I,GAC/B,IAAItF,EAAIxD,EAAKwD,EACTE,EAAI1D,EAAK0D,EACT0F,EAAMN,EAAIO,kBAAoB,EAClC,MAAO,CACL7F,EAAG5B,EAAM4B,EAAI4F,GAAOA,GAAO,EAC3B1F,EAAG9B,EAAM8B,EAAI0F,GAAOA,GAAO,EAE/B,CA0EsCE,CAAkB,CACpD9F,EAAGA,EACHE,GACC1E,EAAUrB,IAAW,CACtB6F,EAAGA,EACHE,GAMF,OAHAF,EAAI2F,EAAM3F,EACVE,EAAIyF,EAAMzF,EAENyE,EAGK7L,OAAOkE,OAAO,CAAC,EAAG0I,IAAeD,EAAiB,CAAC,GAAkBJ,GAASF,EAAO,IAAM,GAAIM,EAAeL,GAASF,EAAO,IAAM,GAAIO,EAAe5D,WAAayD,EAAIO,kBAAoB,IAAM,EAAI,aAAe7F,EAAI,OAASE,EAAI,MAAQ,eAAiBF,EAAI,OAASE,EAAI,SAAUuF,IAG5R3M,OAAOkE,OAAO,CAAC,EAAG0I,IAAenB,EAAkB,CAAC,GAAmBc,GAASF,EAAOjF,EAAI,KAAO,GAAIqE,EAAgBa,GAASF,EAAOlF,EAAI,KAAO,GAAIuE,EAAgB1C,UAAY,GAAI0C,GAC9L,CA4CA,UACEnI,KAAM,gBACNC,SAAS,EACTC,MAAO,cACPC,GA9CF,SAAuBwJ,GACrB,IAAItJ,EAAQsJ,EAAMtJ,MACdc,EAAUwI,EAAMxI,QAChByI,EAAwBzI,EAAQoH,gBAChCA,OAA4C,IAA1BqB,GAA0CA,EAC5DC,EAAoB1I,EAAQqH,SAC5BA,OAAiC,IAAtBqB,GAAsCA,EACjDC,EAAwB3I,EAAQsH,aAChCA,OAAyC,IAA1BqB,GAA0CA,EACzDR,EAAe,CACjBlL,UAAWuD,EAAiBtB,EAAMjC,WAClCiK,UAAWL,EAAa3H,EAAMjC,WAC9BL,OAAQsC,EAAME,SAASxC,OACvBqK,WAAY/H,EAAMwG,MAAM9I,OACxBwK,gBAAiBA,EACjBG,QAAoC,UAA3BrI,EAAMc,QAAQC,UAGgB,MAArCf,EAAMmG,cAAcD,gBACtBlG,EAAMK,OAAO3C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAO3C,OAAQmK,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACvGhB,QAASjI,EAAMmG,cAAcD,cAC7BrF,SAAUb,EAAMc,QAAQC,SACxBoH,SAAUA,EACVC,aAAcA,OAIe,MAA7BpI,EAAMmG,cAAcjF,QACtBlB,EAAMK,OAAOa,MAAQ7E,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAOa,MAAO2G,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACrGhB,QAASjI,EAAMmG,cAAcjF,MAC7BL,SAAU,WACVsH,UAAU,EACVC,aAAcA,OAIlBpI,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,wBAAyBsC,EAAMjC,WAEnC,EAQE2L,KAAM,CAAC,GCrKT,IAAIC,GAAU,CACZA,SAAS,GAsCX,UACEhK,KAAM,iBACNC,SAAS,EACTC,MAAO,QACPC,GAAI,WAAe,EACnBY,OAxCF,SAAgBX,GACd,IAAIC,EAAQD,EAAKC,MACb4J,EAAW7J,EAAK6J,SAChB9I,EAAUf,EAAKe,QACf+I,EAAkB/I,EAAQgJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAkBjJ,EAAQkJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7C9K,EAASF,EAAUiB,EAAME,SAASxC,QAClCuM,EAAgB,GAAGjM,OAAOgC,EAAMiK,cAActM,UAAWqC,EAAMiK,cAAcvM,QAYjF,OAVIoM,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaC,iBAAiB,SAAUP,EAASQ,OAAQT,GAC3D,IAGEK,GACF/K,EAAOkL,iBAAiB,SAAUP,EAASQ,OAAQT,IAG9C,WACDG,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaG,oBAAoB,SAAUT,EAASQ,OAAQT,GAC9D,IAGEK,GACF/K,EAAOoL,oBAAoB,SAAUT,EAASQ,OAAQT,GAE1D,CACF,EASED,KAAM,CAAC,GC/CT,IAAIY,GAAO,CACTnN,KAAM,QACND,MAAO,OACPD,OAAQ,MACR+D,IAAK,UAEQ,SAASuJ,GAAqBxM,GAC3C,OAAOA,EAAUyM,QAAQ,0BAA0B,SAAUC,GAC3D,OAAOH,GAAKG,EACd,GACF,CCVA,IAAI,GAAO,CACTnN,MAAO,MACPC,IAAK,SAEQ,SAASmN,GAA8B3M,GACpD,OAAOA,EAAUyM,QAAQ,cAAc,SAAUC,GAC/C,OAAO,GAAKA,EACd,GACF,CCPe,SAASE,GAAgB3L,GACtC,IAAI6J,EAAM9J,EAAUC,GAGpB,MAAO,CACL4L,WAHe/B,EAAIgC,YAInBC,UAHcjC,EAAIkC,YAKtB,CCNe,SAASC,GAAoBpM,GAQ1C,OAAO+D,EAAsB8B,EAAmB7F,IAAUzB,KAAOwN,GAAgB/L,GAASgM,UAC5F,CCXe,SAASK,GAAerM,GAErC,IAAIsM,EAAoB,EAAiBtM,GACrCuM,EAAWD,EAAkBC,SAC7BC,EAAYF,EAAkBE,UAC9BC,EAAYH,EAAkBG,UAElC,MAAO,6BAA6B3I,KAAKyI,EAAWE,EAAYD,EAClE,CCLe,SAASE,GAAgBtM,GACtC,MAAI,CAAC,OAAQ,OAAQ,aAAawF,QAAQ7F,EAAYK,KAAU,EAEvDA,EAAKG,cAAcoM,KAGxBhM,EAAcP,IAASiM,GAAejM,GACjCA,EAGFsM,GAAgB1G,EAAc5F,GACvC,CCJe,SAASwM,GAAkB5M,EAAS6M,GACjD,IAAIC,OAES,IAATD,IACFA,EAAO,IAGT,IAAIvB,EAAeoB,GAAgB1M,GAC/B+M,EAASzB,KAAqE,OAAlDwB,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,MACpH1C,EAAM9J,EAAUmL,GAChB0B,EAASD,EAAS,CAAC9C,GAAK7K,OAAO6K,EAAIxF,gBAAkB,GAAI4H,GAAef,GAAgBA,EAAe,IAAMA,EAC7G2B,EAAcJ,EAAKzN,OAAO4N,GAC9B,OAAOD,EAASE,EAChBA,EAAY7N,OAAOwN,GAAkB5G,EAAcgH,IACrD,CCzBe,SAASE,GAAiBC,GACvC,OAAO1P,OAAOkE,OAAO,CAAC,EAAGwL,EAAM,CAC7B5O,KAAM4O,EAAKxI,EACXvC,IAAK+K,EAAKtI,EACVvG,MAAO6O,EAAKxI,EAAIwI,EAAK7I,MACrBjG,OAAQ8O,EAAKtI,EAAIsI,EAAK3I,QAE1B,CCqBA,SAAS4I,GAA2BpN,EAASqN,EAAgBlL,GAC3D,OAAOkL,IAAmBxO,EAAWqO,GCzBxB,SAAyBlN,EAASmC,GAC/C,IAAI8H,EAAM9J,EAAUH,GAChBsN,EAAOzH,EAAmB7F,GAC1ByE,EAAiBwF,EAAIxF,eACrBH,EAAQgJ,EAAKhF,YACb9D,EAAS8I,EAAKjF,aACd1D,EAAI,EACJE,EAAI,EAER,GAAIJ,EAAgB,CAClBH,EAAQG,EAAeH,MACvBE,EAASC,EAAeD,OACxB,IAAI+I,EAAiB1J,KAEjB0J,IAAmBA,GAA+B,UAAbpL,KACvCwC,EAAIF,EAAeG,WACnBC,EAAIJ,EAAeK,UAEvB,CAEA,MAAO,CACLR,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EAAIyH,GAAoBpM,GAC3B6E,EAAGA,EAEP,CDDwD2I,CAAgBxN,EAASmC,IAAa1B,EAAU4M,GAdxG,SAAoCrN,EAASmC,GAC3C,IAAIgL,EAAOpJ,EAAsB/D,GAAS,EAAoB,UAAbmC,GASjD,OARAgL,EAAK/K,IAAM+K,EAAK/K,IAAMpC,EAAQyN,UAC9BN,EAAK5O,KAAO4O,EAAK5O,KAAOyB,EAAQ0N,WAChCP,EAAK9O,OAAS8O,EAAK/K,IAAMpC,EAAQqI,aACjC8E,EAAK7O,MAAQ6O,EAAK5O,KAAOyB,EAAQsI,YACjC6E,EAAK7I,MAAQtE,EAAQsI,YACrB6E,EAAK3I,OAASxE,EAAQqI,aACtB8E,EAAKxI,EAAIwI,EAAK5O,KACd4O,EAAKtI,EAAIsI,EAAK/K,IACP+K,CACT,CAG0HQ,CAA2BN,EAAgBlL,GAAY+K,GEtBlK,SAAyBlN,GACtC,IAAI8M,EAEAQ,EAAOzH,EAAmB7F,GAC1B4N,EAAY7B,GAAgB/L,GAC5B2M,EAA0D,OAAlDG,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,KAChGrI,EAAQ,EAAIgJ,EAAKO,YAAaP,EAAKhF,YAAaqE,EAAOA,EAAKkB,YAAc,EAAGlB,EAAOA,EAAKrE,YAAc,GACvG9D,EAAS,EAAI8I,EAAKQ,aAAcR,EAAKjF,aAAcsE,EAAOA,EAAKmB,aAAe,EAAGnB,EAAOA,EAAKtE,aAAe,GAC5G1D,GAAKiJ,EAAU5B,WAAaI,GAAoBpM,GAChD6E,GAAK+I,EAAU1B,UAMnB,MAJiD,QAA7C,EAAiBS,GAAQW,GAAMS,YACjCpJ,GAAK,EAAI2I,EAAKhF,YAAaqE,EAAOA,EAAKrE,YAAc,GAAKhE,GAGrD,CACLA,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EACHE,EAAGA,EAEP,CFCkMmJ,CAAgBnI,EAAmB7F,IACrO,CG1Be,SAASiO,GAAe9M,GACrC,IAOIkI,EAPAtK,EAAYoC,EAAKpC,UACjBiB,EAAUmB,EAAKnB,QACfb,EAAYgC,EAAKhC,UACjBqI,EAAgBrI,EAAYuD,EAAiBvD,GAAa,KAC1DiK,EAAYjK,EAAY4J,EAAa5J,GAAa,KAClD+O,EAAUnP,EAAU4F,EAAI5F,EAAUuF,MAAQ,EAAItE,EAAQsE,MAAQ,EAC9D6J,EAAUpP,EAAU8F,EAAI9F,EAAUyF,OAAS,EAAIxE,EAAQwE,OAAS,EAGpE,OAAQgD,GACN,KAAK,EACH6B,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI7E,EAAQwE,QAE3B,MAEF,KAAKnG,EACHgL,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI9F,EAAUyF,QAE7B,MAEF,KAAKlG,EACH+K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI5F,EAAUuF,MAC3BO,EAAGsJ,GAEL,MAEF,KAAK5P,EACH8K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI3E,EAAQsE,MACzBO,EAAGsJ,GAEL,MAEF,QACE9E,EAAU,CACR1E,EAAG5F,EAAU4F,EACbE,EAAG9F,EAAU8F,GAInB,IAAIuJ,EAAW5G,EAAgBV,EAAyBU,GAAiB,KAEzE,GAAgB,MAAZ4G,EAAkB,CACpB,IAAI1G,EAAmB,MAAb0G,EAAmB,SAAW,QAExC,OAAQhF,GACN,KAAK1K,EACH2K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAC7E,MAEF,KAAK/I,EACH0K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAKnF,CAEA,OAAO2B,CACT,CC3De,SAASgF,GAAejN,EAAOc,QAC5B,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACXqM,EAAqBD,EAASnP,UAC9BA,OAAmC,IAAvBoP,EAAgCnN,EAAMjC,UAAYoP,EAC9DC,EAAoBF,EAASnM,SAC7BA,OAAiC,IAAtBqM,EAA+BpN,EAAMe,SAAWqM,EAC3DC,EAAoBH,EAASI,SAC7BA,OAAiC,IAAtBD,EAA+B7P,EAAkB6P,EAC5DE,EAAwBL,EAASM,aACjCA,OAAyC,IAA1BD,EAAmC9P,EAAW8P,EAC7DE,EAAwBP,EAASQ,eACjCA,OAA2C,IAA1BD,EAAmC/P,EAAS+P,EAC7DE,EAAuBT,EAASU,YAChCA,OAAuC,IAAzBD,GAA0CA,EACxDE,EAAmBX,EAAS3G,QAC5BA,OAA+B,IAArBsH,EAA8B,EAAIA,EAC5ChI,EAAgBD,EAAsC,iBAAZW,EAAuBA,EAAUT,EAAgBS,EAASlJ,IACpGyQ,EAAaJ,IAAmBhQ,EAASC,EAAYD,EACrDqK,EAAa/H,EAAMwG,MAAM9I,OACzBkB,EAAUoB,EAAME,SAAS0N,EAAcE,EAAaJ,GACpDK,EJkBS,SAAyBnP,EAAS0O,EAAUE,EAAczM,GACvE,IAAIiN,EAAmC,oBAAbV,EAlB5B,SAA4B1O,GAC1B,IAAIpB,EAAkBgO,GAAkB5G,EAAchG,IAElDqP,EADoB,CAAC,WAAY,SAASzJ,QAAQ,EAAiB5F,GAASiC,WAAa,GACnDtB,EAAcX,GAAWoG,EAAgBpG,GAAWA,EAE9F,OAAKS,EAAU4O,GAKRzQ,EAAgBgI,QAAO,SAAUyG,GACtC,OAAO5M,EAAU4M,IAAmBpI,EAASoI,EAAgBgC,IAAmD,SAAhCtP,EAAYsN,EAC9F,IANS,EAOX,CAK6DiC,CAAmBtP,GAAW,GAAGZ,OAAOsP,GAC/F9P,EAAkB,GAAGQ,OAAOgQ,EAAqB,CAACR,IAClDW,EAAsB3Q,EAAgB,GACtC4Q,EAAe5Q,EAAgBK,QAAO,SAAUwQ,EAASpC,GAC3D,IAAIF,EAAOC,GAA2BpN,EAASqN,EAAgBlL,GAK/D,OAJAsN,EAAQrN,IAAM,EAAI+K,EAAK/K,IAAKqN,EAAQrN,KACpCqN,EAAQnR,MAAQ,EAAI6O,EAAK7O,MAAOmR,EAAQnR,OACxCmR,EAAQpR,OAAS,EAAI8O,EAAK9O,OAAQoR,EAAQpR,QAC1CoR,EAAQlR,KAAO,EAAI4O,EAAK5O,KAAMkR,EAAQlR,MAC/BkR,CACT,GAAGrC,GAA2BpN,EAASuP,EAAqBpN,IAK5D,OAJAqN,EAAalL,MAAQkL,EAAalR,MAAQkR,EAAajR,KACvDiR,EAAahL,OAASgL,EAAanR,OAASmR,EAAapN,IACzDoN,EAAa7K,EAAI6K,EAAajR,KAC9BiR,EAAa3K,EAAI2K,EAAapN,IACvBoN,CACT,CInC2BE,CAAgBjP,EAAUT,GAAWA,EAAUA,EAAQ2P,gBAAkB9J,EAAmBzE,EAAME,SAASxC,QAAS4P,EAAUE,EAAczM,GACjKyN,EAAsB7L,EAAsB3C,EAAME,SAASvC,WAC3DuI,EAAgB2G,GAAe,CACjClP,UAAW6Q,EACX5P,QAASmJ,EACThH,SAAU,WACVhD,UAAWA,IAET0Q,EAAmB3C,GAAiBzP,OAAOkE,OAAO,CAAC,EAAGwH,EAAY7B,IAClEwI,EAAoBhB,IAAmBhQ,EAAS+Q,EAAmBD,EAGnEG,EAAkB,CACpB3N,IAAK+M,EAAmB/M,IAAM0N,EAAkB1N,IAAM6E,EAAc7E,IACpE/D,OAAQyR,EAAkBzR,OAAS8Q,EAAmB9Q,OAAS4I,EAAc5I,OAC7EE,KAAM4Q,EAAmB5Q,KAAOuR,EAAkBvR,KAAO0I,EAAc1I,KACvED,MAAOwR,EAAkBxR,MAAQ6Q,EAAmB7Q,MAAQ2I,EAAc3I,OAExE0R,EAAa5O,EAAMmG,cAAckB,OAErC,GAAIqG,IAAmBhQ,GAAUkR,EAAY,CAC3C,IAAIvH,EAASuH,EAAW7Q,GACxB1B,OAAO4D,KAAK0O,GAAiBxO,SAAQ,SAAUhE,GAC7C,IAAI0S,EAAW,CAAC3R,EAAOD,GAAQuH,QAAQrI,IAAQ,EAAI,GAAK,EACpDkK,EAAO,CAAC,EAAKpJ,GAAQuH,QAAQrI,IAAQ,EAAI,IAAM,IACnDwS,EAAgBxS,IAAQkL,EAAOhB,GAAQwI,CACzC,GACF,CAEA,OAAOF,CACT,CCyEA,UACEhP,KAAM,OACNC,SAAS,EACTC,MAAO,OACPC,GA5HF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KAEhB,IAAIK,EAAMmG,cAAcxG,GAAMmP,MAA9B,CAoCA,IAhCA,IAAIC,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAqCA,EACpDG,EAA8BtO,EAAQuO,mBACtC9I,EAAUzF,EAAQyF,QAClB+G,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtB0B,EAAwBxO,EAAQyO,eAChCA,OAA2C,IAA1BD,GAA0CA,EAC3DE,EAAwB1O,EAAQ0O,sBAChCC,EAAqBzP,EAAMc,QAAQ/C,UACnCqI,EAAgB9E,EAAiBmO,GAEjCJ,EAAqBD,IADHhJ,IAAkBqJ,GACqCF,EAjC/E,SAAuCxR,GACrC,GAAIuD,EAAiBvD,KAAeX,EAClC,MAAO,GAGT,IAAIsS,EAAoBnF,GAAqBxM,GAC7C,MAAO,CAAC2M,GAA8B3M,GAAY2R,EAAmBhF,GAA8BgF,GACrG,CA0B6IC,CAA8BF,GAA3E,CAAClF,GAAqBkF,KAChHG,EAAa,CAACH,GAAoBzR,OAAOqR,GAAoBxR,QAAO,SAAUC,EAAKC,GACrF,OAAOD,EAAIE,OAAOsD,EAAiBvD,KAAeX,ECvCvC,SAA8B4C,EAAOc,QAClC,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACX/C,EAAYmP,EAASnP,UACrBuP,EAAWJ,EAASI,SACpBE,EAAeN,EAASM,aACxBjH,EAAU2G,EAAS3G,QACnBgJ,EAAiBrC,EAASqC,eAC1BM,EAAwB3C,EAASsC,sBACjCA,OAAkD,IAA1BK,EAAmC,EAAgBA,EAC3E7H,EAAYL,EAAa5J,GACzB6R,EAAa5H,EAAYuH,EAAiB3R,EAAsBA,EAAoB4H,QAAO,SAAUzH,GACvG,OAAO4J,EAAa5J,KAAeiK,CACrC,IAAK3K,EACDyS,EAAoBF,EAAWpK,QAAO,SAAUzH,GAClD,OAAOyR,EAAsBhL,QAAQzG,IAAc,CACrD,IAEiC,IAA7B+R,EAAkBC,SACpBD,EAAoBF,GAItB,IAAII,EAAYF,EAAkBjS,QAAO,SAAUC,EAAKC,GAOtD,OANAD,EAAIC,GAAakP,GAAejN,EAAO,CACrCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,IACRjF,EAAiBvD,IACbD,CACT,GAAG,CAAC,GACJ,OAAOzB,OAAO4D,KAAK+P,GAAWC,MAAK,SAAUC,EAAGC,GAC9C,OAAOH,EAAUE,GAAKF,EAAUG,EAClC,GACF,CDC6DC,CAAqBpQ,EAAO,CACnFjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTgJ,eAAgBA,EAChBC,sBAAuBA,IACpBzR,EACP,GAAG,IACCsS,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzB4S,EAAY,IAAIC,IAChBC,GAAqB,EACrBC,EAAwBb,EAAW,GAE9Bc,EAAI,EAAGA,EAAId,EAAWG,OAAQW,IAAK,CAC1C,IAAI3S,EAAY6R,EAAWc,GAEvBC,EAAiBrP,EAAiBvD,GAElC6S,EAAmBjJ,EAAa5J,KAAeT,EAC/CuT,EAAa,CAAC,EAAK5T,GAAQuH,QAAQmM,IAAmB,EACtDrK,EAAMuK,EAAa,QAAU,SAC7B1F,EAAW8B,GAAejN,EAAO,CACnCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdI,YAAaA,EACbrH,QAASA,IAEPuK,EAAoBD,EAAaD,EAAmB1T,EAAQC,EAAOyT,EAAmB3T,EAAS,EAE/FoT,EAAc/J,GAAOyB,EAAWzB,KAClCwK,EAAoBvG,GAAqBuG,IAG3C,IAAIC,EAAmBxG,GAAqBuG,GACxCE,EAAS,GAUb,GARIhC,GACFgC,EAAOC,KAAK9F,EAASwF,IAAmB,GAGtCxB,GACF6B,EAAOC,KAAK9F,EAAS2F,IAAsB,EAAG3F,EAAS4F,IAAqB,GAG1EC,EAAOE,OAAM,SAAUC,GACzB,OAAOA,CACT,IAAI,CACFV,EAAwB1S,EACxByS,GAAqB,EACrB,KACF,CAEAF,EAAUc,IAAIrT,EAAWiT,EAC3B,CAEA,GAAIR,EAqBF,IAnBA,IAEIa,EAAQ,SAAeC,GACzB,IAAIC,EAAmB3B,EAAW4B,MAAK,SAAUzT,GAC/C,IAAIiT,EAASV,EAAU9T,IAAIuB,GAE3B,GAAIiT,EACF,OAAOA,EAAOS,MAAM,EAAGH,GAAIJ,OAAM,SAAUC,GACzC,OAAOA,CACT,GAEJ,IAEA,GAAII,EAEF,OADAd,EAAwBc,EACjB,OAEX,EAESD,EAnBY/B,EAAiB,EAAI,EAmBZ+B,EAAK,GAGpB,UAFFD,EAAMC,GADmBA,KAOpCtR,EAAMjC,YAAc0S,IACtBzQ,EAAMmG,cAAcxG,GAAMmP,OAAQ,EAClC9O,EAAMjC,UAAY0S,EAClBzQ,EAAM0R,OAAQ,EA5GhB,CA8GF,EAQEhK,iBAAkB,CAAC,UACnBgC,KAAM,CACJoF,OAAO,IE7IX,SAAS6C,GAAexG,EAAUY,EAAM6F,GAQtC,YAPyB,IAArBA,IACFA,EAAmB,CACjBrO,EAAG,EACHE,EAAG,IAIA,CACLzC,IAAKmK,EAASnK,IAAM+K,EAAK3I,OAASwO,EAAiBnO,EACnDvG,MAAOiO,EAASjO,MAAQ6O,EAAK7I,MAAQ0O,EAAiBrO,EACtDtG,OAAQkO,EAASlO,OAAS8O,EAAK3I,OAASwO,EAAiBnO,EACzDtG,KAAMgO,EAAShO,KAAO4O,EAAK7I,MAAQ0O,EAAiBrO,EAExD,CAEA,SAASsO,GAAsB1G,GAC7B,MAAO,CAAC,EAAKjO,EAAOD,EAAQE,GAAM2U,MAAK,SAAUC,GAC/C,OAAO5G,EAAS4G,IAAS,CAC3B,GACF,CA+BA,UACEpS,KAAM,OACNC,SAAS,EACTC,MAAO,OACP6H,iBAAkB,CAAC,mBACnB5H,GAlCF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZ0Q,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBkU,EAAmB5R,EAAMmG,cAAc6L,gBACvCC,EAAoBhF,GAAejN,EAAO,CAC5C0N,eAAgB,cAEdwE,EAAoBjF,GAAejN,EAAO,CAC5C4N,aAAa,IAEXuE,EAA2BR,GAAeM,EAAmB5B,GAC7D+B,EAAsBT,GAAeO,EAAmBnK,EAAY6J,GACpES,EAAoBR,GAAsBM,GAC1CG,EAAmBT,GAAsBO,GAC7CpS,EAAMmG,cAAcxG,GAAQ,CAC1BwS,yBAA0BA,EAC1BC,oBAAqBA,EACrBC,kBAAmBA,EACnBC,iBAAkBA,GAEpBtS,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,+BAAgC2U,EAChC,sBAAuBC,GAE3B,GCJA,IACE3S,KAAM,SACNC,SAAS,EACTC,MAAO,OACPwB,SAAU,CAAC,iBACXvB,GA5BF,SAAgBa,GACd,IAAIX,EAAQW,EAAMX,MACdc,EAAUH,EAAMG,QAChBnB,EAAOgB,EAAMhB,KACb4S,EAAkBzR,EAAQuG,OAC1BA,OAA6B,IAApBkL,EAA6B,CAAC,EAAG,GAAKA,EAC/C7I,EAAO,EAAW7L,QAAO,SAAUC,EAAKC,GAE1C,OADAD,EAAIC,GA5BD,SAAiCA,EAAWyI,EAAOa,GACxD,IAAIjB,EAAgB9E,EAAiBvD,GACjCyU,EAAiB,CAACrV,EAAM,GAAKqH,QAAQ4B,IAAkB,GAAK,EAAI,EAEhErG,EAAyB,mBAAXsH,EAAwBA,EAAOhL,OAAOkE,OAAO,CAAC,EAAGiG,EAAO,CACxEzI,UAAWA,KACPsJ,EACFoL,EAAW1S,EAAK,GAChB2S,EAAW3S,EAAK,GAIpB,OAFA0S,EAAWA,GAAY,EACvBC,GAAYA,GAAY,GAAKF,EACtB,CAACrV,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAAI,CACjD7C,EAAGmP,EACHjP,EAAGgP,GACD,CACFlP,EAAGkP,EACHhP,EAAGiP,EAEP,CASqBC,CAAwB5U,EAAWiC,EAAMwG,MAAOa,GAC1DvJ,CACT,GAAG,CAAC,GACA8U,EAAwBlJ,EAAK1J,EAAMjC,WACnCwF,EAAIqP,EAAsBrP,EAC1BE,EAAImP,EAAsBnP,EAEW,MAArCzD,EAAMmG,cAAcD,gBACtBlG,EAAMmG,cAAcD,cAAc3C,GAAKA,EACvCvD,EAAMmG,cAAcD,cAAczC,GAAKA,GAGzCzD,EAAMmG,cAAcxG,GAAQ+J,CAC9B,GC1BA,IACE/J,KAAM,gBACNC,SAAS,EACTC,MAAO,OACPC,GApBF,SAAuBC,GACrB,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KAKhBK,EAAMmG,cAAcxG,GAAQkN,GAAe,CACzClP,UAAWqC,EAAMwG,MAAM7I,UACvBiB,QAASoB,EAAMwG,MAAM9I,OACrBqD,SAAU,WACVhD,UAAWiC,EAAMjC,WAErB,EAQE2L,KAAM,CAAC,GCgHT,IACE/J,KAAM,kBACNC,SAAS,EACTC,MAAO,OACPC,GA/HF,SAAyBC,GACvB,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KACZoP,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAsCA,EACrD3B,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtBrH,EAAUzF,EAAQyF,QAClBsM,EAAkB/R,EAAQgS,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAwBjS,EAAQkS,aAChCA,OAAyC,IAA1BD,EAAmC,EAAIA,EACtD5H,EAAW8B,GAAejN,EAAO,CACnCsN,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTqH,YAAaA,IAEXxH,EAAgB9E,EAAiBtB,EAAMjC,WACvCiK,EAAYL,EAAa3H,EAAMjC,WAC/BkV,GAAmBjL,EACnBgF,EAAWtH,EAAyBU,GACpC8I,ECrCY,MDqCSlC,ECrCH,IAAM,IDsCxB9G,EAAgBlG,EAAMmG,cAAcD,cACpCmK,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBwV,EAA4C,mBAAjBF,EAA8BA,EAAa3W,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CACvGzI,UAAWiC,EAAMjC,aACbiV,EACFG,EAA2D,iBAAtBD,EAAiC,CACxElG,SAAUkG,EACVhE,QAASgE,GACP7W,OAAOkE,OAAO,CAChByM,SAAU,EACVkC,QAAS,GACRgE,GACCE,EAAsBpT,EAAMmG,cAAckB,OAASrH,EAAMmG,cAAckB,OAAOrH,EAAMjC,WAAa,KACjG2L,EAAO,CACTnG,EAAG,EACHE,EAAG,GAGL,GAAKyC,EAAL,CAIA,GAAI8I,EAAe,CACjB,IAAIqE,EAEAC,EAAwB,MAAbtG,EAAmB,EAAM7P,EACpCoW,EAAuB,MAAbvG,EAAmB/P,EAASC,EACtCoJ,EAAmB,MAAb0G,EAAmB,SAAW,QACpC3F,EAASnB,EAAc8G,GACvBtL,EAAM2F,EAAS8D,EAASmI,GACxB7R,EAAM4F,EAAS8D,EAASoI,GACxBC,EAAWV,GAAU/K,EAAWzB,GAAO,EAAI,EAC3CmN,EAASzL,IAAc1K,EAAQ+S,EAAc/J,GAAOyB,EAAWzB,GAC/DoN,EAAS1L,IAAc1K,GAASyK,EAAWzB,IAAQ+J,EAAc/J,GAGjEL,EAAejG,EAAME,SAASgB,MAC9BwF,EAAYoM,GAAU7M,EAAetC,EAAcsC,GAAgB,CACrE/C,MAAO,EACPE,OAAQ,GAENuQ,GAAqB3T,EAAMmG,cAAc,oBAAsBnG,EAAMmG,cAAc,oBAAoBI,QxBhFtG,CACLvF,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GwB6EFyW,GAAkBD,GAAmBL,GACrCO,GAAkBF,GAAmBJ,GAMrCO,GAAWnO,EAAO,EAAG0K,EAAc/J,GAAMI,EAAUJ,IACnDyN,GAAYd,EAAkB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWF,GAAkBT,EAA4BnG,SAAWyG,EAASK,GAAWF,GAAkBT,EAA4BnG,SACxMgH,GAAYf,GAAmB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWD,GAAkBV,EAA4BnG,SAAW0G,EAASI,GAAWD,GAAkBV,EAA4BnG,SACzMjG,GAAoB/G,EAAME,SAASgB,OAAS8D,EAAgBhF,EAAME,SAASgB,OAC3E+S,GAAelN,GAAiC,MAAbiG,EAAmBjG,GAAkBsF,WAAa,EAAItF,GAAkBuF,YAAc,EAAI,EAC7H4H,GAAwH,OAAjGb,EAA+C,MAAvBD,OAA8B,EAASA,EAAoBpG,IAAqBqG,EAAwB,EAEvJc,GAAY9M,EAAS2M,GAAYE,GACjCE,GAAkBzO,EAAOmN,EAAS,EAAQpR,EAF9B2F,EAAS0M,GAAYG,GAAsBD,IAEKvS,EAAK2F,EAAQyL,EAAS,EAAQrR,EAAK0S,IAAa1S,GAChHyE,EAAc8G,GAAYoH,GAC1B1K,EAAKsD,GAAYoH,GAAkB/M,CACrC,CAEA,GAAI8H,EAAc,CAChB,IAAIkF,GAEAC,GAAyB,MAAbtH,EAAmB,EAAM7P,EAErCoX,GAAwB,MAAbvH,EAAmB/P,EAASC,EAEvCsX,GAAUtO,EAAcgJ,GAExBuF,GAAmB,MAAZvF,EAAkB,SAAW,QAEpCwF,GAAOF,GAAUrJ,EAASmJ,IAE1BK,GAAOH,GAAUrJ,EAASoJ,IAE1BK,IAAuD,IAAxC,CAAC,EAAKzX,GAAMqH,QAAQ4B,GAEnCyO,GAAyH,OAAjGR,GAAgD,MAAvBjB,OAA8B,EAASA,EAAoBlE,IAAoBmF,GAAyB,EAEzJS,GAAaF,GAAeF,GAAOF,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAEzI6F,GAAaH,GAAeJ,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAAUyF,GAE5IK,GAAmBlC,GAAU8B,G1BzH9B,SAAwBlT,EAAK1E,EAAOyE,GACzC,IAAIwT,EAAItP,EAAOjE,EAAK1E,EAAOyE,GAC3B,OAAOwT,EAAIxT,EAAMA,EAAMwT,CACzB,C0BsHoDC,CAAeJ,GAAYN,GAASO,IAAcpP,EAAOmN,EAASgC,GAAaJ,GAAMF,GAAS1B,EAASiC,GAAaJ,IAEpKzO,EAAcgJ,GAAW8F,GACzBtL,EAAKwF,GAAW8F,GAAmBR,EACrC,CAEAxU,EAAMmG,cAAcxG,GAAQ+J,CAvE5B,CAwEF,EAQEhC,iBAAkB,CAAC,WE1HN,SAASyN,GAAiBC,EAAyBrQ,EAAcsD,QAC9D,IAAZA,IACFA,GAAU,GAGZ,ICnBoCrJ,ECJOJ,EFuBvCyW,EAA0B9V,EAAcwF,GACxCuQ,EAAuB/V,EAAcwF,IAf3C,SAAyBnG,GACvB,IAAImN,EAAOnN,EAAQ+D,wBACfI,EAASpB,EAAMoK,EAAK7I,OAAStE,EAAQqE,aAAe,EACpDD,EAASrB,EAAMoK,EAAK3I,QAAUxE,EAAQuE,cAAgB,EAC1D,OAAkB,IAAXJ,GAA2B,IAAXC,CACzB,CAU4DuS,CAAgBxQ,GACtEJ,EAAkBF,EAAmBM,GACrCgH,EAAOpJ,EAAsByS,EAAyBE,EAAsBjN,GAC5EyB,EAAS,CACXc,WAAY,EACZE,UAAW,GAET7C,EAAU,CACZ1E,EAAG,EACHE,EAAG,GAkBL,OAfI4R,IAA4BA,IAA4BhN,MACxB,SAA9B1J,EAAYoG,IAChBkG,GAAetG,MACbmF,GCnCgC9K,EDmCT+F,KClCdhG,EAAUC,IAAUO,EAAcP,GCJxC,CACL4L,YAFyChM,EDQbI,GCNR4L,WACpBE,UAAWlM,EAAQkM,WDGZH,GAAgB3L,IDoCnBO,EAAcwF,KAChBkD,EAAUtF,EAAsBoC,GAAc,IACtCxB,GAAKwB,EAAauH,WAC1BrE,EAAQxE,GAAKsB,EAAasH,WACjB1H,IACTsD,EAAQ1E,EAAIyH,GAAoBrG,KAI7B,CACLpB,EAAGwI,EAAK5O,KAAO2M,EAAOc,WAAa3C,EAAQ1E,EAC3CE,EAAGsI,EAAK/K,IAAM8I,EAAOgB,UAAY7C,EAAQxE,EACzCP,MAAO6I,EAAK7I,MACZE,OAAQ2I,EAAK3I,OAEjB,CGvDA,SAASoS,GAAMC,GACb,IAAItT,EAAM,IAAIoO,IACVmF,EAAU,IAAIC,IACdC,EAAS,GAKb,SAAS3F,EAAK4F,GACZH,EAAQI,IAAID,EAASlW,MACN,GAAG3B,OAAO6X,EAASxU,UAAY,GAAIwU,EAASnO,kBAAoB,IACtEvH,SAAQ,SAAU4V,GACzB,IAAKL,EAAQM,IAAID,GAAM,CACrB,IAAIE,EAAc9T,EAAI3F,IAAIuZ,GAEtBE,GACFhG,EAAKgG,EAET,CACF,IACAL,EAAO3E,KAAK4E,EACd,CAQA,OAzBAJ,EAAUtV,SAAQ,SAAU0V,GAC1B1T,EAAIiP,IAAIyE,EAASlW,KAAMkW,EACzB,IAiBAJ,EAAUtV,SAAQ,SAAU0V,GACrBH,EAAQM,IAAIH,EAASlW,OAExBsQ,EAAK4F,EAET,IACOD,CACT,CCvBA,IAAIM,GAAkB,CACpBnY,UAAW,SACX0X,UAAW,GACX1U,SAAU,YAGZ,SAASoV,KACP,IAAK,IAAI1B,EAAO2B,UAAUrG,OAAQsG,EAAO,IAAIpU,MAAMwS,GAAO6B,EAAO,EAAGA,EAAO7B,EAAM6B,IAC/ED,EAAKC,GAAQF,UAAUE,GAGzB,OAAQD,EAAKvE,MAAK,SAAUlT,GAC1B,QAASA,GAAoD,mBAAlCA,EAAQ+D,sBACrC,GACF,CAEO,SAAS4T,GAAgBC,QACL,IAArBA,IACFA,EAAmB,CAAC,GAGtB,IAAIC,EAAoBD,EACpBE,EAAwBD,EAAkBE,iBAC1CA,OAA6C,IAA1BD,EAAmC,GAAKA,EAC3DE,EAAyBH,EAAkBI,eAC3CA,OAA4C,IAA3BD,EAAoCV,GAAkBU,EAC3E,OAAO,SAAsBjZ,EAAWD,EAAQoD,QAC9B,IAAZA,IACFA,EAAU+V,GAGZ,ICxC6B/W,EAC3BgX,EDuCE9W,EAAQ,CACVjC,UAAW,SACXgZ,iBAAkB,GAClBjW,QAASzE,OAAOkE,OAAO,CAAC,EAAG2V,GAAiBW,GAC5C1Q,cAAe,CAAC,EAChBjG,SAAU,CACRvC,UAAWA,EACXD,OAAQA,GAEV4C,WAAY,CAAC,EACbD,OAAQ,CAAC,GAEP2W,EAAmB,GACnBC,GAAc,EACdrN,EAAW,CACb5J,MAAOA,EACPkX,WAAY,SAAoBC,GAC9B,IAAIrW,EAAsC,mBAArBqW,EAAkCA,EAAiBnX,EAAMc,SAAWqW,EACzFC,IACApX,EAAMc,QAAUzE,OAAOkE,OAAO,CAAC,EAAGsW,EAAgB7W,EAAMc,QAASA,GACjEd,EAAMiK,cAAgB,CACpBtM,UAAW0B,EAAU1B,GAAa6N,GAAkB7N,GAAaA,EAAU4Q,eAAiB/C,GAAkB7N,EAAU4Q,gBAAkB,GAC1I7Q,OAAQ8N,GAAkB9N,IAI5B,IElE4B+X,EAC9B4B,EFiEMN,EDhCG,SAAwBtB,GAErC,IAAIsB,EAAmBvB,GAAMC,GAE7B,OAAO/W,EAAeb,QAAO,SAAUC,EAAK+B,GAC1C,OAAO/B,EAAIE,OAAO+Y,EAAiBvR,QAAO,SAAUqQ,GAClD,OAAOA,EAAShW,QAAUA,CAC5B,IACF,GAAG,GACL,CCuB+ByX,EElEK7B,EFkEsB,GAAGzX,OAAO2Y,EAAkB3W,EAAMc,QAAQ2U,WEjE9F4B,EAAS5B,EAAU5X,QAAO,SAAUwZ,EAAQE,GAC9C,IAAIC,EAAWH,EAAOE,EAAQ5X,MAK9B,OAJA0X,EAAOE,EAAQ5X,MAAQ6X,EAAWnb,OAAOkE,OAAO,CAAC,EAAGiX,EAAUD,EAAS,CACrEzW,QAASzE,OAAOkE,OAAO,CAAC,EAAGiX,EAAS1W,QAASyW,EAAQzW,SACrD4I,KAAMrN,OAAOkE,OAAO,CAAC,EAAGiX,EAAS9N,KAAM6N,EAAQ7N,QAC5C6N,EACEF,CACT,GAAG,CAAC,GAEGhb,OAAO4D,KAAKoX,GAAQlV,KAAI,SAAUhG,GACvC,OAAOkb,EAAOlb,EAChB,MF4DM,OAJA6D,EAAM+W,iBAAmBA,EAAiBvR,QAAO,SAAUiS,GACzD,OAAOA,EAAE7X,OACX,IA+FFI,EAAM+W,iBAAiB5W,SAAQ,SAAUJ,GACvC,IAAIJ,EAAOI,EAAKJ,KACZ+X,EAAe3X,EAAKe,QACpBA,OAA2B,IAAjB4W,EAA0B,CAAC,EAAIA,EACzChX,EAASX,EAAKW,OAElB,GAAsB,mBAAXA,EAAuB,CAChC,IAAIiX,EAAYjX,EAAO,CACrBV,MAAOA,EACPL,KAAMA,EACNiK,SAAUA,EACV9I,QAASA,IAKXkW,EAAiB/F,KAAK0G,GAFT,WAAmB,EAGlC,CACF,IA/GS/N,EAASQ,QAClB,EAMAwN,YAAa,WACX,IAAIX,EAAJ,CAIA,IAAIY,EAAkB7X,EAAME,SACxBvC,EAAYka,EAAgBla,UAC5BD,EAASma,EAAgBna,OAG7B,GAAKyY,GAAiBxY,EAAWD,GAAjC,CAKAsC,EAAMwG,MAAQ,CACZ7I,UAAWwX,GAAiBxX,EAAWqH,EAAgBtH,GAAoC,UAA3BsC,EAAMc,QAAQC,UAC9ErD,OAAQiG,EAAcjG,IAOxBsC,EAAM0R,OAAQ,EACd1R,EAAMjC,UAAYiC,EAAMc,QAAQ/C,UAKhCiC,EAAM+W,iBAAiB5W,SAAQ,SAAU0V,GACvC,OAAO7V,EAAMmG,cAAc0P,EAASlW,MAAQtD,OAAOkE,OAAO,CAAC,EAAGsV,EAASnM,KACzE,IAEA,IAAK,IAAIoO,EAAQ,EAAGA,EAAQ9X,EAAM+W,iBAAiBhH,OAAQ+H,IACzD,IAAoB,IAAhB9X,EAAM0R,MAAV,CAMA,IAAIqG,EAAwB/X,EAAM+W,iBAAiBe,GAC/ChY,EAAKiY,EAAsBjY,GAC3BkY,EAAyBD,EAAsBjX,QAC/CoM,OAAsC,IAA3B8K,EAAoC,CAAC,EAAIA,EACpDrY,EAAOoY,EAAsBpY,KAEf,mBAAPG,IACTE,EAAQF,EAAG,CACTE,MAAOA,EACPc,QAASoM,EACTvN,KAAMA,EACNiK,SAAUA,KACN5J,EAdR,MAHEA,EAAM0R,OAAQ,EACdoG,GAAS,CAzBb,CATA,CAqDF,EAGA1N,QC1I2BtK,ED0IV,WACf,OAAO,IAAImY,SAAQ,SAAUC,GAC3BtO,EAASgO,cACTM,EAAQlY,EACV,GACF,EC7IG,WAUL,OATK8W,IACHA,EAAU,IAAImB,SAAQ,SAAUC,GAC9BD,QAAQC,UAAUC,MAAK,WACrBrB,OAAUsB,EACVF,EAAQpY,IACV,GACF,KAGKgX,CACT,GDmIIuB,QAAS,WACPjB,IACAH,GAAc,CAChB,GAGF,IAAKd,GAAiBxY,EAAWD,GAC/B,OAAOkM,EAmCT,SAASwN,IACPJ,EAAiB7W,SAAQ,SAAUL,GACjC,OAAOA,GACT,IACAkX,EAAmB,EACrB,CAEA,OAvCApN,EAASsN,WAAWpW,GAASqX,MAAK,SAAUnY,IACrCiX,GAAenW,EAAQwX,eAC1BxX,EAAQwX,cAActY,EAE1B,IAmCO4J,CACT,CACF,CACO,IAAI2O,GAA4BhC,KGzLnC,GAA4BA,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,EAAa,GAAQ,GAAM,GAAiB,EAAO,MCJrH,GAA4BjC,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,KCatE,MAAMC,GAAa,IAAIlI,IACjBmI,GAAO,CACX,GAAAtH,CAAIxS,EAASzC,EAAKyN,GACX6O,GAAWzC,IAAIpX,IAClB6Z,GAAWrH,IAAIxS,EAAS,IAAI2R,KAE9B,MAAMoI,EAAcF,GAAWjc,IAAIoC,GAI9B+Z,EAAY3C,IAAI7Z,IAA6B,IAArBwc,EAAYC,KAKzCD,EAAYvH,IAAIjV,EAAKyN,GAHnBiP,QAAQC,MAAM,+EAA+E7W,MAAM8W,KAAKJ,EAAY1Y,QAAQ,MAIhI,EACAzD,IAAG,CAACoC,EAASzC,IACPsc,GAAWzC,IAAIpX,IACV6Z,GAAWjc,IAAIoC,GAASpC,IAAIL,IAE9B,KAET,MAAA6c,CAAOpa,EAASzC,GACd,IAAKsc,GAAWzC,IAAIpX,GAClB,OAEF,MAAM+Z,EAAcF,GAAWjc,IAAIoC,GACnC+Z,EAAYM,OAAO9c,GAGM,IAArBwc,EAAYC,MACdH,GAAWQ,OAAOra,EAEtB,GAYIsa,GAAiB,gBAOjBC,GAAgBC,IAChBA,GAAYna,OAAOoa,KAAOpa,OAAOoa,IAAIC,SAEvCF,EAAWA,EAAS5O,QAAQ,iBAAiB,CAAC+O,EAAOC,IAAO,IAAIH,IAAIC,OAAOE,QAEtEJ,GA4CHK,GAAuB7a,IAC3BA,EAAQ8a,cAAc,IAAIC,MAAMT,IAAgB,EAE5C,GAAYU,MACXA,GAA4B,iBAAXA,UAGO,IAAlBA,EAAOC,SAChBD,EAASA,EAAO,SAEgB,IAApBA,EAAOE,UAEjBC,GAAaH,GAEb,GAAUA,GACLA,EAAOC,OAASD,EAAO,GAAKA,EAEf,iBAAXA,GAAuBA,EAAO7J,OAAS,EACzCrL,SAAS+C,cAAc0R,GAAcS,IAEvC,KAEHI,GAAYpb,IAChB,IAAK,GAAUA,IAAgD,IAApCA,EAAQqb,iBAAiBlK,OAClD,OAAO,EAET,MAAMmK,EAAgF,YAA7D5V,iBAAiB1F,GAASub,iBAAiB,cAE9DC,EAAgBxb,EAAQyb,QAAQ,uBACtC,IAAKD,EACH,OAAOF,EAET,GAAIE,IAAkBxb,EAAS,CAC7B,MAAM0b,EAAU1b,EAAQyb,QAAQ,WAChC,GAAIC,GAAWA,EAAQlW,aAAegW,EACpC,OAAO,EAET,GAAgB,OAAZE,EACF,OAAO,CAEX,CACA,OAAOJ,CAAgB,EAEnBK,GAAa3b,IACZA,GAAWA,EAAQkb,WAAaU,KAAKC,gBAGtC7b,EAAQ8b,UAAU7W,SAAS,mBAGC,IAArBjF,EAAQ+b,SACV/b,EAAQ+b,SAEV/b,EAAQgc,aAAa,aAAoD,UAArChc,EAAQic,aAAa,aAE5DC,GAAiBlc,IACrB,IAAK8F,SAASC,gBAAgBoW,aAC5B,OAAO,KAIT,GAAmC,mBAAxBnc,EAAQqF,YAA4B,CAC7C,MAAM+W,EAAOpc,EAAQqF,cACrB,OAAO+W,aAAgBtb,WAAasb,EAAO,IAC7C,CACA,OAAIpc,aAAmBc,WACdd,EAIJA,EAAQwF,WAGN0W,GAAelc,EAAQwF,YAFrB,IAEgC,EAErC6W,GAAO,OAUPC,GAAStc,IACbA,EAAQuE,YAAY,EAEhBgY,GAAY,IACZlc,OAAOmc,SAAW1W,SAAS6G,KAAKqP,aAAa,qBACxC3b,OAAOmc,OAET,KAEHC,GAA4B,GAgB5BC,GAAQ,IAAuC,QAAjC5W,SAASC,gBAAgB4W,IACvCC,GAAqBC,IAhBAC,QAiBN,KACjB,MAAMC,EAAIR,KAEV,GAAIQ,EAAG,CACL,MAAMhc,EAAO8b,EAAOG,KACdC,EAAqBF,EAAE7b,GAAGH,GAChCgc,EAAE7b,GAAGH,GAAQ8b,EAAOK,gBACpBH,EAAE7b,GAAGH,GAAMoc,YAAcN,EACzBE,EAAE7b,GAAGH,GAAMqc,WAAa,KACtBL,EAAE7b,GAAGH,GAAQkc,EACNJ,EAAOK,gBAElB,GA5B0B,YAAxBpX,SAASuX,YAENZ,GAA0BtL,QAC7BrL,SAASyF,iBAAiB,oBAAoB,KAC5C,IAAK,MAAMuR,KAAYL,GACrBK,GACF,IAGJL,GAA0BpK,KAAKyK,IAE/BA,GAkBA,EAEEQ,GAAU,CAACC,EAAkB9F,EAAO,GAAI+F,EAAeD,IACxB,mBAArBA,EAAkCA,KAAoB9F,GAAQ+F,EAExEC,GAAyB,CAACX,EAAUY,EAAmBC,GAAoB,KAC/E,IAAKA,EAEH,YADAL,GAAQR,GAGV,MACMc,EA/JiC5d,KACvC,IAAKA,EACH,OAAO,EAIT,IAAI,mBACF6d,EAAkB,gBAClBC,GACEzd,OAAOqF,iBAAiB1F,GAC5B,MAAM+d,EAA0BC,OAAOC,WAAWJ,GAC5CK,EAAuBF,OAAOC,WAAWH,GAG/C,OAAKC,GAA4BG,GAKjCL,EAAqBA,EAAmBlb,MAAM,KAAK,GACnDmb,EAAkBA,EAAgBnb,MAAM,KAAK,GAtDf,KAuDtBqb,OAAOC,WAAWJ,GAAsBG,OAAOC,WAAWH,KANzD,CAMoG,EA0IpFK,CAAiCT,GADlC,EAExB,IAAIU,GAAS,EACb,MAAMC,EAAU,EACdrR,aAEIA,IAAW0Q,IAGfU,GAAS,EACTV,EAAkBjS,oBAAoB6O,GAAgB+D,GACtDf,GAAQR,GAAS,EAEnBY,EAAkBnS,iBAAiB+O,GAAgB+D,GACnDC,YAAW,KACJF,GACHvD,GAAqB6C,EACvB,GACCE,EAAiB,EAYhBW,GAAuB,CAAC1R,EAAM2R,EAAeC,EAAeC,KAChE,MAAMC,EAAa9R,EAAKsE,OACxB,IAAI+H,EAAQrM,EAAKjH,QAAQ4Y,GAIzB,OAAe,IAAXtF,GACMuF,GAAiBC,EAAiB7R,EAAK8R,EAAa,GAAK9R,EAAK,IAExEqM,GAASuF,EAAgB,GAAK,EAC1BC,IACFxF,GAASA,EAAQyF,GAAcA,GAE1B9R,EAAKjK,KAAKC,IAAI,EAAGD,KAAKE,IAAIoW,EAAOyF,EAAa,KAAI,EAerDC,GAAiB,qBACjBC,GAAiB,OACjBC,GAAgB,SAChBC,GAAgB,CAAC,EACvB,IAAIC,GAAW,EACf,MAAMC,GAAe,CACnBC,WAAY,YACZC,WAAY,YAERC,GAAe,IAAIrI,IAAI,CAAC,QAAS,WAAY,UAAW,YAAa,cAAe,aAAc,iBAAkB,YAAa,WAAY,YAAa,cAAe,YAAa,UAAW,WAAY,QAAS,oBAAqB,aAAc,YAAa,WAAY,cAAe,cAAe,cAAe,YAAa,eAAgB,gBAAiB,eAAgB,gBAAiB,aAAc,QAAS,OAAQ,SAAU,QAAS,SAAU,SAAU,UAAW,WAAY,OAAQ,SAAU,eAAgB,SAAU,OAAQ,mBAAoB,mBAAoB,QAAS,QAAS,WAM/lB,SAASsI,GAAarf,EAASsf,GAC7B,OAAOA,GAAO,GAAGA,MAAQN,QAAgBhf,EAAQgf,UAAYA,IAC/D,CACA,SAASO,GAAiBvf,GACxB,MAAMsf,EAAMD,GAAarf,GAGzB,OAFAA,EAAQgf,SAAWM,EACnBP,GAAcO,GAAOP,GAAcO,IAAQ,CAAC,EACrCP,GAAcO,EACvB,CAiCA,SAASE,GAAYC,EAAQC,EAAUC,EAAqB,MAC1D,OAAOliB,OAAOmiB,OAAOH,GAAQ7M,MAAKiN,GAASA,EAAMH,WAAaA,GAAYG,EAAMF,qBAAuBA,GACzG,CACA,SAASG,GAAoBC,EAAmB1B,EAAS2B,GACvD,MAAMC,EAAiC,iBAAZ5B,EAErBqB,EAAWO,EAAcD,EAAqB3B,GAAW2B,EAC/D,IAAIE,EAAYC,GAAaJ,GAI7B,OAHKX,GAAahI,IAAI8I,KACpBA,EAAYH,GAEP,CAACE,EAAaP,EAAUQ,EACjC,CACA,SAASE,GAAWpgB,EAAS+f,EAAmB1B,EAAS2B,EAAoBK,GAC3E,GAAiC,iBAAtBN,IAAmC/f,EAC5C,OAEF,IAAKigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GAIzF,GAAID,KAAqBd,GAAc,CACrC,MAAMqB,EAAepf,GACZ,SAAU2e,GACf,IAAKA,EAAMU,eAAiBV,EAAMU,gBAAkBV,EAAMW,iBAAmBX,EAAMW,eAAevb,SAAS4a,EAAMU,eAC/G,OAAOrf,EAAGjD,KAAKwiB,KAAMZ,EAEzB,EAEFH,EAAWY,EAAaZ,EAC1B,CACA,MAAMD,EAASF,GAAiBvf,GAC1B0gB,EAAWjB,EAAOS,KAAeT,EAAOS,GAAa,CAAC,GACtDS,EAAmBnB,GAAYkB,EAAUhB,EAAUO,EAAc5B,EAAU,MACjF,GAAIsC,EAEF,YADAA,EAAiBN,OAASM,EAAiBN,QAAUA,GAGvD,MAAMf,EAAMD,GAAaK,EAAUK,EAAkBnU,QAAQgT,GAAgB,KACvE1d,EAAK+e,EA5Db,SAAoCjgB,EAASwa,EAAUtZ,GACrD,OAAO,SAASmd,EAAQwB,GACtB,MAAMe,EAAc5gB,EAAQ6gB,iBAAiBrG,GAC7C,IAAK,IAAI,OACPxN,GACE6S,EAAO7S,GAAUA,IAAWyT,KAAMzT,EAASA,EAAOxH,WACpD,IAAK,MAAMsb,KAAcF,EACvB,GAAIE,IAAe9T,EASnB,OANA+T,GAAWlB,EAAO,CAChBW,eAAgBxT,IAEdqR,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAM1G,EAAUtZ,GAE3CA,EAAGigB,MAAMnU,EAAQ,CAAC6S,GAG/B,CACF,CAwC2BuB,CAA2BphB,EAASqe,EAASqB,GAvExE,SAA0B1f,EAASkB,GACjC,OAAO,SAASmd,EAAQwB,GAOtB,OANAkB,GAAWlB,EAAO,CAChBW,eAAgBxgB,IAEdqe,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAMhgB,GAEjCA,EAAGigB,MAAMnhB,EAAS,CAAC6f,GAC5B,CACF,CA6DoFwB,CAAiBrhB,EAAS0f,GAC5Gxe,EAAGye,mBAAqBM,EAAc5B,EAAU,KAChDnd,EAAGwe,SAAWA,EACdxe,EAAGmf,OAASA,EACZnf,EAAG8d,SAAWM,EACdoB,EAASpB,GAAOpe,EAChBlB,EAAQuL,iBAAiB2U,EAAWhf,EAAI+e,EAC1C,CACA,SAASqB,GAActhB,EAASyf,EAAQS,EAAW7B,EAASsB,GAC1D,MAAMze,EAAKse,GAAYC,EAAOS,GAAY7B,EAASsB,GAC9Cze,IAGLlB,EAAQyL,oBAAoByU,EAAWhf,EAAIqgB,QAAQ5B,WAC5CF,EAAOS,GAAWhf,EAAG8d,UAC9B,CACA,SAASwC,GAAyBxhB,EAASyf,EAAQS,EAAWuB,GAC5D,MAAMC,EAAoBjC,EAAOS,IAAc,CAAC,EAChD,IAAK,MAAOyB,EAAY9B,KAAUpiB,OAAOmkB,QAAQF,GAC3CC,EAAWE,SAASJ,IACtBH,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAGtE,CACA,SAASQ,GAAaN,GAGpB,OADAA,EAAQA,EAAMjU,QAAQiT,GAAgB,IAC/BI,GAAaY,IAAUA,CAChC,CACA,MAAMmB,GAAe,CACnB,EAAAc,CAAG9hB,EAAS6f,EAAOxB,EAAS2B,GAC1BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAA+B,CAAI/hB,EAAS6f,EAAOxB,EAAS2B,GAC3BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAAiB,CAAIjhB,EAAS+f,EAAmB1B,EAAS2B,GACvC,GAAiC,iBAAtBD,IAAmC/f,EAC5C,OAEF,MAAOigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GACrFgC,EAAc9B,IAAcH,EAC5BN,EAASF,GAAiBvf,GAC1B0hB,EAAoBjC,EAAOS,IAAc,CAAC,EAC1C+B,EAAclC,EAAkBmC,WAAW,KACjD,QAAwB,IAAbxC,EAAX,CAQA,GAAIuC,EACF,IAAK,MAAME,KAAgB1kB,OAAO4D,KAAKoe,GACrC+B,GAAyBxhB,EAASyf,EAAQ0C,EAAcpC,EAAkBlN,MAAM,IAGpF,IAAK,MAAOuP,EAAavC,KAAUpiB,OAAOmkB,QAAQF,GAAoB,CACpE,MAAMC,EAAaS,EAAYxW,QAAQkT,GAAe,IACjDkD,IAAejC,EAAkB8B,SAASF,IAC7CL,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAEpE,CAXA,KAPA,CAEE,IAAKliB,OAAO4D,KAAKqgB,GAAmBvQ,OAClC,OAEFmQ,GAActhB,EAASyf,EAAQS,EAAWR,EAAUO,EAAc5B,EAAU,KAE9E,CAYF,EACA,OAAAgE,CAAQriB,EAAS6f,EAAOpI,GACtB,GAAqB,iBAAVoI,IAAuB7f,EAChC,OAAO,KAET,MAAM+c,EAAIR,KAGV,IAAI+F,EAAc,KACdC,GAAU,EACVC,GAAiB,EACjBC,GAAmB,EAJH5C,IADFM,GAAaN,IAMZ9C,IACjBuF,EAAcvF,EAAEhC,MAAM8E,EAAOpI,GAC7BsF,EAAE/c,GAASqiB,QAAQC,GACnBC,GAAWD,EAAYI,uBACvBF,GAAkBF,EAAYK,gCAC9BF,EAAmBH,EAAYM,sBAEjC,MAAMC,EAAM9B,GAAW,IAAIhG,MAAM8E,EAAO,CACtC0C,UACAO,YAAY,IACVrL,GAUJ,OATIgL,GACFI,EAAIE,iBAEFP,GACFxiB,EAAQ8a,cAAc+H,GAEpBA,EAAIJ,kBAAoBH,GAC1BA,EAAYS,iBAEPF,CACT,GAEF,SAAS9B,GAAWljB,EAAKmlB,EAAO,CAAC,GAC/B,IAAK,MAAOzlB,EAAKa,KAAUX,OAAOmkB,QAAQoB,GACxC,IACEnlB,EAAIN,GAAOa,CACb,CAAE,MAAO6kB,GACPxlB,OAAOC,eAAeG,EAAKN,EAAK,CAC9B2lB,cAAc,EACdtlB,IAAG,IACMQ,GAGb,CAEF,OAAOP,CACT,CASA,SAASslB,GAAc/kB,GACrB,GAAc,SAAVA,EACF,OAAO,EAET,GAAc,UAAVA,EACF,OAAO,EAET,GAAIA,IAAU4f,OAAO5f,GAAOkC,WAC1B,OAAO0d,OAAO5f,GAEhB,GAAc,KAAVA,GAA0B,SAAVA,EAClB,OAAO,KAET,GAAqB,iBAAVA,EACT,OAAOA,EAET,IACE,OAAOglB,KAAKC,MAAMC,mBAAmBllB,GACvC,CAAE,MAAO6kB,GACP,OAAO7kB,CACT,CACF,CACA,SAASmlB,GAAiBhmB,GACxB,OAAOA,EAAIqO,QAAQ,UAAU4X,GAAO,IAAIA,EAAItjB,iBAC9C,CACA,MAAMujB,GAAc,CAClB,gBAAAC,CAAiB1jB,EAASzC,EAAKa,GAC7B4B,EAAQ6B,aAAa,WAAW0hB,GAAiBhmB,KAAQa,EAC3D,EACA,mBAAAulB,CAAoB3jB,EAASzC,GAC3ByC,EAAQ4B,gBAAgB,WAAW2hB,GAAiBhmB,KACtD,EACA,iBAAAqmB,CAAkB5jB,GAChB,IAAKA,EACH,MAAO,CAAC,EAEV,MAAM0B,EAAa,CAAC,EACdmiB,EAASpmB,OAAO4D,KAAKrB,EAAQ8jB,SAASld,QAAOrJ,GAAOA,EAAI2kB,WAAW,QAAU3kB,EAAI2kB,WAAW,cAClG,IAAK,MAAM3kB,KAAOsmB,EAAQ,CACxB,IAAIE,EAAUxmB,EAAIqO,QAAQ,MAAO,IACjCmY,EAAUA,EAAQC,OAAO,GAAG9jB,cAAgB6jB,EAAQlR,MAAM,EAAGkR,EAAQ5S,QACrEzP,EAAWqiB,GAAWZ,GAAcnjB,EAAQ8jB,QAAQvmB,GACtD,CACA,OAAOmE,CACT,EACAuiB,iBAAgB,CAACjkB,EAASzC,IACjB4lB,GAAcnjB,EAAQic,aAAa,WAAWsH,GAAiBhmB,QAgB1E,MAAM2mB,GAEJ,kBAAWC,GACT,MAAO,CAAC,CACV,CACA,sBAAWC,GACT,MAAO,CAAC,CACV,CACA,eAAWpH,GACT,MAAM,IAAIqH,MAAM,sEAClB,CACA,UAAAC,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAChB,OAAOA,CACT,CACA,eAAAC,CAAgBD,EAAQvkB,GACtB,MAAM2kB,EAAa,GAAU3kB,GAAWyjB,GAAYQ,iBAAiBjkB,EAAS,UAAY,CAAC,EAE3F,MAAO,IACFygB,KAAKmE,YAAYT,WACM,iBAAfQ,EAA0BA,EAAa,CAAC,KAC/C,GAAU3kB,GAAWyjB,GAAYG,kBAAkB5jB,GAAW,CAAC,KAC7C,iBAAXukB,EAAsBA,EAAS,CAAC,EAE/C,CACA,gBAAAG,CAAiBH,EAAQM,EAAcpE,KAAKmE,YAAYR,aACtD,IAAK,MAAO7hB,EAAUuiB,KAAkBrnB,OAAOmkB,QAAQiD,GAAc,CACnE,MAAMzmB,EAAQmmB,EAAOhiB,GACfwiB,EAAY,GAAU3mB,GAAS,UAhiBrC4c,OADSA,EAiiB+C5c,GA/hBnD,GAAG4c,IAELvd,OAAOM,UAAUuC,SAASrC,KAAK+c,GAAQL,MAAM,eAAe,GAAGza,cA8hBlE,IAAK,IAAI8kB,OAAOF,GAAehhB,KAAKihB,GAClC,MAAM,IAAIE,UAAU,GAAGxE,KAAKmE,YAAY5H,KAAKkI,0BAA0B3iB,qBAA4BwiB,yBAAiCD,MAExI,CAriBW9J,KAsiBb,EAqBF,MAAMmK,WAAsBjB,GAC1B,WAAAU,CAAY5kB,EAASukB,GACnBa,SACAplB,EAAUmb,GAAWnb,MAIrBygB,KAAK4E,SAAWrlB,EAChBygB,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/BzK,GAAKtH,IAAIiO,KAAK4E,SAAU5E,KAAKmE,YAAYW,SAAU9E,MACrD,CAGA,OAAA+E,GACE1L,GAAKM,OAAOqG,KAAK4E,SAAU5E,KAAKmE,YAAYW,UAC5CvE,GAAaC,IAAIR,KAAK4E,SAAU5E,KAAKmE,YAAYa,WACjD,IAAK,MAAMC,KAAgBjoB,OAAOkoB,oBAAoBlF,MACpDA,KAAKiF,GAAgB,IAEzB,CACA,cAAAE,CAAe9I,EAAU9c,EAAS6lB,GAAa,GAC7CpI,GAAuBX,EAAU9c,EAAS6lB,EAC5C,CACA,UAAAvB,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,EAAQ9D,KAAK4E,UAC3Cd,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CAGA,kBAAOuB,CAAY9lB,GACjB,OAAO8Z,GAAKlc,IAAIud,GAAWnb,GAAUygB,KAAK8E,SAC5C,CACA,0BAAOQ,CAAoB/lB,EAASukB,EAAS,CAAC,GAC5C,OAAO9D,KAAKqF,YAAY9lB,IAAY,IAAIygB,KAAKzgB,EAA2B,iBAAXukB,EAAsBA,EAAS,KAC9F,CACA,kBAAWyB,GACT,MA5CY,OA6Cd,CACA,mBAAWT,GACT,MAAO,MAAM9E,KAAKzD,MACpB,CACA,oBAAWyI,GACT,MAAO,IAAIhF,KAAK8E,UAClB,CACA,gBAAOU,CAAUllB,GACf,MAAO,GAAGA,IAAO0f,KAAKgF,WACxB,EAUF,MAAMS,GAAclmB,IAClB,IAAIwa,EAAWxa,EAAQic,aAAa,kBACpC,IAAKzB,GAAyB,MAAbA,EAAkB,CACjC,IAAI2L,EAAgBnmB,EAAQic,aAAa,QAMzC,IAAKkK,IAAkBA,EAActE,SAAS,OAASsE,EAAcjE,WAAW,KAC9E,OAAO,KAILiE,EAActE,SAAS,OAASsE,EAAcjE,WAAW,OAC3DiE,EAAgB,IAAIA,EAAcxjB,MAAM,KAAK,MAE/C6X,EAAW2L,GAAmC,MAAlBA,EAAwBA,EAAcC,OAAS,IAC7E,CACA,OAAO5L,EAAWA,EAAS7X,MAAM,KAAKY,KAAI8iB,GAAO9L,GAAc8L,KAAM1iB,KAAK,KAAO,IAAI,EAEjF2iB,GAAiB,CACrB1T,KAAI,CAAC4H,EAAUxa,EAAU8F,SAASC,kBACzB,GAAG3G,UAAUsB,QAAQ3C,UAAU8iB,iBAAiB5iB,KAAK+B,EAASwa,IAEvE+L,QAAO,CAAC/L,EAAUxa,EAAU8F,SAASC,kBAC5BrF,QAAQ3C,UAAU8K,cAAc5K,KAAK+B,EAASwa,GAEvDgM,SAAQ,CAACxmB,EAASwa,IACT,GAAGpb,UAAUY,EAAQwmB,UAAU5f,QAAOzB,GAASA,EAAMshB,QAAQjM,KAEtE,OAAAkM,CAAQ1mB,EAASwa,GACf,MAAMkM,EAAU,GAChB,IAAIC,EAAW3mB,EAAQwF,WAAWiW,QAAQjB,GAC1C,KAAOmM,GACLD,EAAQrU,KAAKsU,GACbA,EAAWA,EAASnhB,WAAWiW,QAAQjB,GAEzC,OAAOkM,CACT,EACA,IAAAE,CAAK5mB,EAASwa,GACZ,IAAIqM,EAAW7mB,EAAQ8mB,uBACvB,KAAOD,GAAU,CACf,GAAIA,EAASJ,QAAQjM,GACnB,MAAO,CAACqM,GAEVA,EAAWA,EAASC,sBACtB,CACA,MAAO,EACT,EAEA,IAAAxhB,CAAKtF,EAASwa,GACZ,IAAIlV,EAAOtF,EAAQ+mB,mBACnB,KAAOzhB,GAAM,CACX,GAAIA,EAAKmhB,QAAQjM,GACf,MAAO,CAAClV,GAEVA,EAAOA,EAAKyhB,kBACd,CACA,MAAO,EACT,EACA,iBAAAC,CAAkBhnB,GAChB,MAAMinB,EAAa,CAAC,IAAK,SAAU,QAAS,WAAY,SAAU,UAAW,aAAc,4BAA4B1jB,KAAIiX,GAAY,GAAGA,2BAAiC7W,KAAK,KAChL,OAAO8c,KAAK7N,KAAKqU,EAAYjnB,GAAS4G,QAAOsgB,IAAOvL,GAAWuL,IAAO9L,GAAU8L,IAClF,EACA,sBAAAC,CAAuBnnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAIwa,GACK8L,GAAeC,QAAQ/L,GAAYA,EAErC,IACT,EACA,sBAAA4M,CAAuBpnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAeC,QAAQ/L,GAAY,IACvD,EACA,+BAAA6M,CAAgCrnB,GAC9B,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAe1T,KAAK4H,GAAY,EACpD,GAUI8M,GAAuB,CAACC,EAAWC,EAAS,UAChD,MAAMC,EAAa,gBAAgBF,EAAU9B,YACvC1kB,EAAOwmB,EAAUvK,KACvBgE,GAAac,GAAGhc,SAAU2hB,EAAY,qBAAqB1mB,OAAU,SAAU8e,GAI7E,GAHI,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEF,MAAMzT,EAASsZ,GAAec,uBAAuB3G,OAASA,KAAKhF,QAAQ,IAAI1a,KAC9DwmB,EAAUxB,oBAAoB/Y,GAGtCwa,IACX,GAAE,EAiBEG,GAAc,YACdC,GAAc,QAAQD,KACtBE,GAAe,SAASF,KAQ9B,MAAMG,WAAc3C,GAElB,eAAWnI,GACT,MAfW,OAgBb,CAGA,KAAA+K,GAEE,GADmB/G,GAAaqB,QAAQ5B,KAAK4E,SAAUuC,IACxCnF,iBACb,OAEFhC,KAAK4E,SAASvJ,UAAU1B,OAlBF,QAmBtB,MAAMyL,EAAapF,KAAK4E,SAASvJ,UAAU7W,SApBrB,QAqBtBwb,KAAKmF,gBAAe,IAAMnF,KAAKuH,mBAAmBvH,KAAK4E,SAAUQ,EACnE,CAGA,eAAAmC,GACEvH,KAAK4E,SAASjL,SACd4G,GAAaqB,QAAQ5B,KAAK4E,SAAUwC,IACpCpH,KAAK+E,SACP,CAGA,sBAAOtI,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOgd,GAAM/B,oBAAoBtF,MACvC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOF6G,GAAqBQ,GAAO,SAM5BlL,GAAmBkL,IAcnB,MAKMI,GAAyB,4BAO/B,MAAMC,WAAehD,GAEnB,eAAWnI,GACT,MAfW,QAgBb,CAGA,MAAAoL,GAEE3H,KAAK4E,SAASxjB,aAAa,eAAgB4e,KAAK4E,SAASvJ,UAAUsM,OAjB3C,UAkB1B,CAGA,sBAAOlL,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOqd,GAAOpC,oBAAoBtF,MACzB,WAAX8D,GACFzZ,EAAKyZ,IAET,GACF,EAOFvD,GAAac,GAAGhc,SAjCe,2BAiCmBoiB,IAAwBrI,IACxEA,EAAMkD,iBACN,MAAMsF,EAASxI,EAAM7S,OAAOyO,QAAQyM,IACvBC,GAAOpC,oBAAoBsC,GACnCD,QAAQ,IAOfxL,GAAmBuL,IAcnB,MACMG,GAAc,YACdC,GAAmB,aAAaD,KAChCE,GAAkB,YAAYF,KAC9BG,GAAiB,WAAWH,KAC5BI,GAAoB,cAAcJ,KAClCK,GAAkB,YAAYL,KAK9BM,GAAY,CAChBC,YAAa,KACbC,aAAc,KACdC,cAAe,MAEXC,GAAgB,CACpBH,YAAa,kBACbC,aAAc,kBACdC,cAAe,mBAOjB,MAAME,WAAc/E,GAClB,WAAAU,CAAY5kB,EAASukB,GACnBa,QACA3E,KAAK4E,SAAWrlB,EACXA,GAAYipB,GAAMC,gBAGvBzI,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAK0I,QAAU,EACf1I,KAAK2I,sBAAwB7H,QAAQlhB,OAAOgpB,cAC5C5I,KAAK6I,cACP,CAGA,kBAAWnF,GACT,OAAOyE,EACT,CACA,sBAAWxE,GACT,OAAO4E,EACT,CACA,eAAWhM,GACT,MA/CW,OAgDb,CAGA,OAAAwI,GACExE,GAAaC,IAAIR,KAAK4E,SAAUiD,GAClC,CAGA,MAAAiB,CAAO1J,GACAY,KAAK2I,sBAIN3I,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,SAJrBhJ,KAAK0I,QAAUtJ,EAAM6J,QAAQ,GAAGD,OAMpC,CACA,IAAAE,CAAK9J,GACCY,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,QAAUhJ,KAAK0I,SAEtC1I,KAAKmJ,eACLtM,GAAQmD,KAAK6E,QAAQuD,YACvB,CACA,KAAAgB,CAAMhK,GACJY,KAAK0I,QAAUtJ,EAAM6J,SAAW7J,EAAM6J,QAAQvY,OAAS,EAAI,EAAI0O,EAAM6J,QAAQ,GAAGD,QAAUhJ,KAAK0I,OACjG,CACA,YAAAS,GACE,MAAME,EAAYlnB,KAAKoC,IAAIyb,KAAK0I,SAChC,GAAIW,GAnEgB,GAoElB,OAEF,MAAM/b,EAAY+b,EAAYrJ,KAAK0I,QACnC1I,KAAK0I,QAAU,EACVpb,GAGLuP,GAAQvP,EAAY,EAAI0S,KAAK6E,QAAQyD,cAAgBtI,KAAK6E,QAAQwD,aACpE,CACA,WAAAQ,GACM7I,KAAK2I,uBACPpI,GAAac,GAAGrB,KAAK4E,SAAUqD,IAAmB7I,GAASY,KAAK8I,OAAO1J,KACvEmB,GAAac,GAAGrB,KAAK4E,SAAUsD,IAAiB9I,GAASY,KAAKkJ,KAAK9J,KACnEY,KAAK4E,SAASvJ,UAAU5E,IAlFG,mBAoF3B8J,GAAac,GAAGrB,KAAK4E,SAAUkD,IAAkB1I,GAASY,KAAK8I,OAAO1J,KACtEmB,GAAac,GAAGrB,KAAK4E,SAAUmD,IAAiB3I,GAASY,KAAKoJ,MAAMhK,KACpEmB,GAAac,GAAGrB,KAAK4E,SAAUoD,IAAgB5I,GAASY,KAAKkJ,KAAK9J,KAEtE,CACA,uBAAA2J,CAAwB3J,GACtB,OAAOY,KAAK2I,wBA3FS,QA2FiBvJ,EAAMkK,aA5FrB,UA4FyDlK,EAAMkK,YACxF,CAGA,kBAAOb,GACL,MAAO,iBAAkBpjB,SAASC,iBAAmB7C,UAAU8mB,eAAiB,CAClF,EAeF,MAEMC,GAAc,eACdC,GAAiB,YACjBC,GAAmB,YACnBC,GAAoB,aAGpBC,GAAa,OACbC,GAAa,OACbC,GAAiB,OACjBC,GAAkB,QAClBC,GAAc,QAAQR,KACtBS,GAAa,OAAOT,KACpBU,GAAkB,UAAUV,KAC5BW,GAAqB,aAAaX,KAClCY,GAAqB,aAAaZ,KAClCa,GAAmB,YAAYb,KAC/Bc,GAAwB,OAAOd,KAAcC,KAC7Cc,GAAyB,QAAQf,KAAcC,KAC/Ce,GAAsB,WACtBC,GAAsB,SAMtBC,GAAkB,UAClBC,GAAgB,iBAChBC,GAAuBF,GAAkBC,GAKzCE,GAAmB,CACvB,CAACnB,IAAmBK,GACpB,CAACJ,IAAoBG,IAEjBgB,GAAY,CAChBC,SAAU,IACVC,UAAU,EACVC,MAAO,QACPC,MAAM,EACNC,OAAO,EACPC,MAAM,GAEFC,GAAgB,CACpBN,SAAU,mBAEVC,SAAU,UACVC,MAAO,mBACPC,KAAM,mBACNC,MAAO,UACPC,KAAM,WAOR,MAAME,WAAiB5G,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKuL,UAAY,KACjBvL,KAAKwL,eAAiB,KACtBxL,KAAKyL,YAAa,EAClBzL,KAAK0L,aAAe,KACpB1L,KAAK2L,aAAe,KACpB3L,KAAK4L,mBAAqB/F,GAAeC,QArCjB,uBAqC8C9F,KAAK4E,UAC3E5E,KAAK6L,qBACD7L,KAAK6E,QAAQqG,OAASV,IACxBxK,KAAK8L,OAET,CAGA,kBAAWpI,GACT,OAAOoH,EACT,CACA,sBAAWnH,GACT,OAAO0H,EACT,CACA,eAAW9O,GACT,MAnFW,UAoFb,CAGA,IAAA1X,GACEmb,KAAK+L,OAAOnC,GACd,CACA,eAAAoC,IAIO3mB,SAAS4mB,QAAUtR,GAAUqF,KAAK4E,WACrC5E,KAAKnb,MAET,CACA,IAAAshB,GACEnG,KAAK+L,OAAOlC,GACd,CACA,KAAAoB,GACMjL,KAAKyL,YACPrR,GAAqB4F,KAAK4E,UAE5B5E,KAAKkM,gBACP,CACA,KAAAJ,GACE9L,KAAKkM,iBACLlM,KAAKmM,kBACLnM,KAAKuL,UAAYa,aAAY,IAAMpM,KAAKgM,mBAAmBhM,KAAK6E,QAAQkG,SAC1E,CACA,iBAAAsB,GACOrM,KAAK6E,QAAQqG,OAGdlL,KAAKyL,WACPlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAK8L,UAGzD9L,KAAK8L,QACP,CACA,EAAAQ,CAAG7T,GACD,MAAM8T,EAAQvM,KAAKwM,YACnB,GAAI/T,EAAQ8T,EAAM7b,OAAS,GAAK+H,EAAQ,EACtC,OAEF,GAAIuH,KAAKyL,WAEP,YADAlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAKsM,GAAG7T,KAG5D,MAAMgU,EAAczM,KAAK0M,cAAc1M,KAAK2M,cAC5C,GAAIF,IAAgBhU,EAClB,OAEF,MAAMtC,EAAQsC,EAAQgU,EAAc7C,GAAaC,GACjD7J,KAAK+L,OAAO5V,EAAOoW,EAAM9T,GAC3B,CACA,OAAAsM,GACM/E,KAAK2L,cACP3L,KAAK2L,aAAa5G,UAEpBJ,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAEhB,OADAA,EAAO8I,gBAAkB9I,EAAOiH,SACzBjH,CACT,CACA,kBAAA+H,GACM7L,KAAK6E,QAAQmG,UACfzK,GAAac,GAAGrB,KAAK4E,SAAUsF,IAAiB9K,GAASY,KAAK6M,SAASzN,KAE9C,UAAvBY,KAAK6E,QAAQoG,QACf1K,GAAac,GAAGrB,KAAK4E,SAAUuF,IAAoB,IAAMnK,KAAKiL,UAC9D1K,GAAac,GAAGrB,KAAK4E,SAAUwF,IAAoB,IAAMpK,KAAKqM,uBAE5DrM,KAAK6E,QAAQsG,OAAS3C,GAAMC,eAC9BzI,KAAK8M,yBAET,CACA,uBAAAA,GACE,IAAK,MAAMC,KAAOlH,GAAe1T,KArIX,qBAqImC6N,KAAK4E,UAC5DrE,GAAac,GAAG0L,EAAK1C,IAAkBjL,GAASA,EAAMkD,mBAExD,MAmBM0K,EAAc,CAClB3E,aAAc,IAAMrI,KAAK+L,OAAO/L,KAAKiN,kBAAkBnD,KACvDxB,cAAe,IAAMtI,KAAK+L,OAAO/L,KAAKiN,kBAAkBlD,KACxD3B,YAtBkB,KACS,UAAvBpI,KAAK6E,QAAQoG,QAYjBjL,KAAKiL,QACDjL,KAAK0L,cACPwB,aAAalN,KAAK0L,cAEpB1L,KAAK0L,aAAe7N,YAAW,IAAMmC,KAAKqM,qBAjLjB,IAiL+DrM,KAAK6E,QAAQkG,UAAS,GAOhH/K,KAAK2L,aAAe,IAAInD,GAAMxI,KAAK4E,SAAUoI,EAC/C,CACA,QAAAH,CAASzN,GACP,GAAI,kBAAkB/b,KAAK+b,EAAM7S,OAAO0a,SACtC,OAEF,MAAM3Z,EAAYud,GAAiBzL,EAAMtiB,KACrCwQ,IACF8R,EAAMkD,iBACNtC,KAAK+L,OAAO/L,KAAKiN,kBAAkB3f,IAEvC,CACA,aAAAof,CAAcntB,GACZ,OAAOygB,KAAKwM,YAAYrnB,QAAQ5F,EAClC,CACA,0BAAA4tB,CAA2B1U,GACzB,IAAKuH,KAAK4L,mBACR,OAEF,MAAMwB,EAAkBvH,GAAeC,QAAQ4E,GAAiB1K,KAAK4L,oBACrEwB,EAAgB/R,UAAU1B,OAAO8Q,IACjC2C,EAAgBjsB,gBAAgB,gBAChC,MAAMksB,EAAqBxH,GAAeC,QAAQ,sBAAsBrN,MAAWuH,KAAK4L,oBACpFyB,IACFA,EAAmBhS,UAAU5E,IAAIgU,IACjC4C,EAAmBjsB,aAAa,eAAgB,QAEpD,CACA,eAAA+qB,GACE,MAAM5sB,EAAUygB,KAAKwL,gBAAkBxL,KAAK2M,aAC5C,IAAKptB,EACH,OAEF,MAAM+tB,EAAkB/P,OAAOgQ,SAAShuB,EAAQic,aAAa,oBAAqB,IAClFwE,KAAK6E,QAAQkG,SAAWuC,GAAmBtN,KAAK6E,QAAQ+H,eAC1D,CACA,MAAAb,CAAO5V,EAAO5W,EAAU,MACtB,GAAIygB,KAAKyL,WACP,OAEF,MAAM1N,EAAgBiC,KAAK2M,aACrBa,EAASrX,IAAUyT,GACnB6D,EAAcluB,GAAWue,GAAqBkC,KAAKwM,YAAazO,EAAeyP,EAAQxN,KAAK6E,QAAQuG,MAC1G,GAAIqC,IAAgB1P,EAClB,OAEF,MAAM2P,EAAmB1N,KAAK0M,cAAce,GACtCE,EAAenI,GACZjF,GAAaqB,QAAQ5B,KAAK4E,SAAUY,EAAW,CACpD1F,cAAe2N,EACfngB,UAAW0S,KAAK4N,kBAAkBzX,GAClCuD,KAAMsG,KAAK0M,cAAc3O,GACzBuO,GAAIoB,IAIR,GADmBC,EAAa3D,IACjBhI,iBACb,OAEF,IAAKjE,IAAkB0P,EAGrB,OAEF,MAAMI,EAAY/M,QAAQd,KAAKuL,WAC/BvL,KAAKiL,QACLjL,KAAKyL,YAAa,EAClBzL,KAAKmN,2BAA2BO,GAChC1N,KAAKwL,eAAiBiC,EACtB,MAAMK,EAAuBN,EA3OR,sBADF,oBA6ObO,EAAiBP,EA3OH,qBACA,qBA2OpBC,EAAYpS,UAAU5E,IAAIsX,GAC1BlS,GAAO4R,GACP1P,EAAc1C,UAAU5E,IAAIqX,GAC5BL,EAAYpS,UAAU5E,IAAIqX,GAQ1B9N,KAAKmF,gBAPoB,KACvBsI,EAAYpS,UAAU1B,OAAOmU,EAAsBC,GACnDN,EAAYpS,UAAU5E,IAAIgU,IAC1B1M,EAAc1C,UAAU1B,OAAO8Q,GAAqBsD,EAAgBD,GACpE9N,KAAKyL,YAAa,EAClBkC,EAAa1D,GAAW,GAEYlM,EAAeiC,KAAKgO,eACtDH,GACF7N,KAAK8L,OAET,CACA,WAAAkC,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAhQV,QAiQvB,CACA,UAAAmoB,GACE,OAAO9G,GAAeC,QAAQ8E,GAAsB5K,KAAK4E,SAC3D,CACA,SAAA4H,GACE,OAAO3G,GAAe1T,KAAKwY,GAAe3K,KAAK4E,SACjD,CACA,cAAAsH,GACMlM,KAAKuL,YACP0C,cAAcjO,KAAKuL,WACnBvL,KAAKuL,UAAY,KAErB,CACA,iBAAA0B,CAAkB3f,GAChB,OAAI2O,KACK3O,IAAcwc,GAAiBD,GAAaD,GAE9Ctc,IAAcwc,GAAiBF,GAAaC,EACrD,CACA,iBAAA+D,CAAkBzX,GAChB,OAAI8F,KACK9F,IAAU0T,GAAaC,GAAiBC,GAE1C5T,IAAU0T,GAAaE,GAAkBD,EAClD,CAGA,sBAAOrN,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOihB,GAAShG,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,GAIX,GAAsB,iBAAXA,EAAqB,CAC9B,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,OAREzZ,EAAKiiB,GAAGxI,EASZ,GACF,EAOFvD,GAAac,GAAGhc,SAAUklB,GAvSE,uCAuS2C,SAAUnL,GAC/E,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACrD,IAAKzT,IAAWA,EAAO8O,UAAU7W,SAASgmB,IACxC,OAEFpL,EAAMkD,iBACN,MAAM4L,EAAW5C,GAAShG,oBAAoB/Y,GACxC4hB,EAAanO,KAAKxE,aAAa,oBACrC,OAAI2S,GACFD,EAAS5B,GAAG6B,QACZD,EAAS7B,qBAGyC,SAAhDrJ,GAAYQ,iBAAiBxD,KAAM,UACrCkO,EAASrpB,YACTqpB,EAAS7B,sBAGX6B,EAAS/H,YACT+H,EAAS7B,oBACX,IACA9L,GAAac,GAAGzhB,OAAQ0qB,IAAuB,KAC7C,MAAM8D,EAAYvI,GAAe1T,KA5TR,6BA6TzB,IAAK,MAAM+b,KAAYE,EACrB9C,GAAShG,oBAAoB4I,EAC/B,IAOF/R,GAAmBmP,IAcnB,MAEM+C,GAAc,eAEdC,GAAe,OAAOD,KACtBE,GAAgB,QAAQF,KACxBG,GAAe,OAAOH,KACtBI,GAAiB,SAASJ,KAC1BK,GAAyB,QAAQL,cACjCM,GAAoB,OACpBC,GAAsB,WACtBC,GAAwB,aAExBC,GAA6B,WAAWF,OAAwBA,KAKhEG,GAAyB,8BACzBC,GAAY,CAChBvqB,OAAQ,KACRkjB,QAAQ,GAEJsH,GAAgB,CACpBxqB,OAAQ,iBACRkjB,OAAQ,WAOV,MAAMuH,WAAiBxK,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmP,kBAAmB,EACxBnP,KAAKoP,cAAgB,GACrB,MAAMC,EAAaxJ,GAAe1T,KAAK4c,IACvC,IAAK,MAAMO,KAAQD,EAAY,CAC7B,MAAMtV,EAAW8L,GAAea,uBAAuB4I,GACjDC,EAAgB1J,GAAe1T,KAAK4H,GAAU5T,QAAOqpB,GAAgBA,IAAiBxP,KAAK4E,WAChF,OAAb7K,GAAqBwV,EAAc7e,QACrCsP,KAAKoP,cAAcxd,KAAK0d,EAE5B,CACAtP,KAAKyP,sBACAzP,KAAK6E,QAAQpgB,QAChBub,KAAK0P,0BAA0B1P,KAAKoP,cAAepP,KAAK2P,YAEtD3P,KAAK6E,QAAQ8C,QACf3H,KAAK2H,QAET,CAGA,kBAAWjE,GACT,OAAOsL,EACT,CACA,sBAAWrL,GACT,OAAOsL,EACT,CACA,eAAW1S,GACT,MA9DW,UA+Db,CAGA,MAAAoL,GACM3H,KAAK2P,WACP3P,KAAK4P,OAEL5P,KAAK6P,MAET,CACA,IAAAA,GACE,GAAI7P,KAAKmP,kBAAoBnP,KAAK2P,WAChC,OAEF,IAAIG,EAAiB,GAQrB,GALI9P,KAAK6E,QAAQpgB,SACfqrB,EAAiB9P,KAAK+P,uBAhEH,wCAgE4C5pB,QAAO5G,GAAWA,IAAYygB,KAAK4E,WAAU9hB,KAAIvD,GAAW2vB,GAAS5J,oBAAoB/lB,EAAS,CAC/JooB,QAAQ,OAGRmI,EAAepf,QAAUof,EAAe,GAAGX,iBAC7C,OAGF,GADmB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU0J,IACxCtM,iBACb,OAEF,IAAK,MAAMgO,KAAkBF,EAC3BE,EAAeJ,OAEjB,MAAMK,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAASvJ,UAAU1B,OAAOiV,IAC/B5O,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,EACjCjQ,KAAK0P,0BAA0B1P,KAAKoP,eAAe,GACnDpP,KAAKmP,kBAAmB,EACxB,MAQMgB,EAAa,SADUF,EAAU,GAAGxL,cAAgBwL,EAAU7d,MAAM,KAE1E4N,KAAKmF,gBATY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,GAAqBD,IACjD3O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjC1P,GAAaqB,QAAQ5B,KAAK4E,SAAU2J,GAAc,GAItBvO,KAAK4E,UAAU,GAC7C5E,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASuL,MACpD,CACA,IAAAP,GACE,GAAI5P,KAAKmP,mBAAqBnP,KAAK2P,WACjC,OAGF,GADmBpP,GAAaqB,QAAQ5B,KAAK4E,SAAU4J,IACxCxM,iBACb,OAEF,MAAMiO,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASthB,wBAAwB2sB,OAC1EpU,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAASvJ,UAAU1B,OAAOiV,GAAqBD,IACpD,IAAK,MAAM/M,KAAW5B,KAAKoP,cAAe,CACxC,MAAM7vB,EAAUsmB,GAAec,uBAAuB/E,GAClDriB,IAAYygB,KAAK2P,SAASpwB,IAC5BygB,KAAK0P,0BAA0B,CAAC9N,IAAU,EAE9C,CACA5B,KAAKmP,kBAAmB,EAOxBnP,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjCjQ,KAAKmF,gBAPY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,IAC5BrO,GAAaqB,QAAQ5B,KAAK4E,SAAU6J,GAAe,GAGvBzO,KAAK4E,UAAU,EAC/C,CACA,QAAA+K,CAASpwB,EAAUygB,KAAK4E,UACtB,OAAOrlB,EAAQ8b,UAAU7W,SAASmqB,GACpC,CAGA,iBAAA3K,CAAkBF,GAGhB,OAFAA,EAAO6D,OAAS7G,QAAQgD,EAAO6D,QAC/B7D,EAAOrf,OAASiW,GAAWoJ,EAAOrf,QAC3Bqf,CACT,CACA,aAAAoM,GACE,OAAOlQ,KAAK4E,SAASvJ,UAAU7W,SA3IL,uBAChB,QACC,QA0Ib,CACA,mBAAAirB,GACE,IAAKzP,KAAK6E,QAAQpgB,OAChB,OAEF,MAAMshB,EAAW/F,KAAK+P,uBAAuBhB,IAC7C,IAAK,MAAMxvB,KAAWwmB,EAAU,CAC9B,MAAMqK,EAAWvK,GAAec,uBAAuBpnB,GACnD6wB,GACFpQ,KAAK0P,0BAA0B,CAACnwB,GAAUygB,KAAK2P,SAASS,GAE5D,CACF,CACA,sBAAAL,CAAuBhW,GACrB,MAAMgM,EAAWF,GAAe1T,KAAK2c,GAA4B9O,KAAK6E,QAAQpgB,QAE9E,OAAOohB,GAAe1T,KAAK4H,EAAUiG,KAAK6E,QAAQpgB,QAAQ0B,QAAO5G,IAAYwmB,EAAS3E,SAAS7hB,IACjG,CACA,yBAAAmwB,CAA0BW,EAAcC,GACtC,GAAKD,EAAa3f,OAGlB,IAAK,MAAMnR,KAAW8wB,EACpB9wB,EAAQ8b,UAAUsM,OArKK,aAqKyB2I,GAChD/wB,EAAQ6B,aAAa,gBAAiBkvB,EAE1C,CAGA,sBAAO7T,CAAgBqH,GACrB,MAAMe,EAAU,CAAC,EAIjB,MAHsB,iBAAXf,GAAuB,YAAYzgB,KAAKygB,KACjDe,EAAQ8C,QAAS,GAEZ3H,KAAKwH,MAAK,WACf,MAAMnd,EAAO6kB,GAAS5J,oBAAoBtF,KAAM6E,GAChD,GAAsB,iBAAXf,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,CACF,GACF,EAOFvD,GAAac,GAAGhc,SAAUqpB,GAAwBK,IAAwB,SAAU3P,IAErD,MAAzBA,EAAM7S,OAAO0a,SAAmB7H,EAAMW,gBAAmD,MAAjCX,EAAMW,eAAekH,UAC/E7H,EAAMkD,iBAER,IAAK,MAAM/iB,KAAWsmB,GAAee,gCAAgC5G,MACnEkP,GAAS5J,oBAAoB/lB,EAAS,CACpCooB,QAAQ,IACPA,QAEP,IAMAxL,GAAmB+S,IAcnB,MAAMqB,GAAS,WAETC,GAAc,eACdC,GAAiB,YAGjBC,GAAiB,UACjBC,GAAmB,YAGnBC,GAAe,OAAOJ,KACtBK,GAAiB,SAASL,KAC1BM,GAAe,OAAON,KACtBO,GAAgB,QAAQP,KACxBQ,GAAyB,QAAQR,KAAcC,KAC/CQ,GAAyB,UAAUT,KAAcC,KACjDS,GAAuB,QAAQV,KAAcC,KAC7CU,GAAoB,OAMpBC,GAAyB,4DACzBC,GAA6B,GAAGD,MAA0BD,KAC1DG,GAAgB,iBAIhBC,GAAgBtV,KAAU,UAAY,YACtCuV,GAAmBvV,KAAU,YAAc,UAC3CwV,GAAmBxV,KAAU,aAAe,eAC5CyV,GAAsBzV,KAAU,eAAiB,aACjD0V,GAAkB1V,KAAU,aAAe,cAC3C2V,GAAiB3V,KAAU,cAAgB,aAG3C4V,GAAY,CAChBC,WAAW,EACX7jB,SAAU,kBACV8jB,QAAS,UACT/pB,OAAQ,CAAC,EAAG,GACZgqB,aAAc,KACd1zB,UAAW,UAEP2zB,GAAgB,CACpBH,UAAW,mBACX7jB,SAAU,mBACV8jB,QAAS,SACT/pB,OAAQ,0BACRgqB,aAAc,yBACd1zB,UAAW,2BAOb,MAAM4zB,WAAiBxN,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmS,QAAU,KACfnS,KAAKoS,QAAUpS,KAAK4E,SAAS7f,WAE7Bib,KAAKqS,MAAQxM,GAAehhB,KAAKmb,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeM,KAAKnG,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeC,QAAQwL,GAAetR,KAAKoS,SACxKpS,KAAKsS,UAAYtS,KAAKuS,eACxB,CAGA,kBAAW7O,GACT,OAAOmO,EACT,CACA,sBAAWlO,GACT,OAAOsO,EACT,CACA,eAAW1V,GACT,OAAOgU,EACT,CAGA,MAAA5I,GACE,OAAO3H,KAAK2P,WAAa3P,KAAK4P,OAAS5P,KAAK6P,MAC9C,CACA,IAAAA,GACE,GAAI3U,GAAW8E,KAAK4E,WAAa5E,KAAK2P,WACpC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAGtB,IADkBrE,GAAaqB,QAAQ5B,KAAK4E,SAAUkM,GAAchR,GACtDkC,iBAAd,CASA,GANAhC,KAAKwS,gBAMD,iBAAkBntB,SAASC,kBAAoB0a,KAAKoS,QAAQpX,QAzExC,eA0EtB,IAAK,MAAMzb,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAG1CoE,KAAK4E,SAAS6N,QACdzS,KAAK4E,SAASxjB,aAAa,iBAAiB,GAC5C4e,KAAKqS,MAAMhX,UAAU5E,IAAI0a,IACzBnR,KAAK4E,SAASvJ,UAAU5E,IAAI0a,IAC5B5Q,GAAaqB,QAAQ5B,KAAK4E,SAAUmM,GAAejR,EAhBnD,CAiBF,CACA,IAAA8P,GACE,GAAI1U,GAAW8E,KAAK4E,YAAc5E,KAAK2P,WACrC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAEtB5E,KAAK0S,cAAc5S,EACrB,CACA,OAAAiF,GACM/E,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEf2L,MAAMI,SACR,CACA,MAAAha,GACEiV,KAAKsS,UAAYtS,KAAKuS,gBAClBvS,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,aAAA2nB,CAAc5S,GAEZ,IADkBS,GAAaqB,QAAQ5B,KAAK4E,SAAUgM,GAAc9Q,GACtDkC,iBAAd,CAMA,GAAI,iBAAkB3c,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAGvCoE,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEfgH,KAAKqS,MAAMhX,UAAU1B,OAAOwX,IAC5BnR,KAAK4E,SAASvJ,UAAU1B,OAAOwX,IAC/BnR,KAAK4E,SAASxjB,aAAa,gBAAiB,SAC5C4hB,GAAYE,oBAAoBlD,KAAKqS,MAAO,UAC5C9R,GAAaqB,QAAQ5B,KAAK4E,SAAUiM,GAAgB/Q,EAhBpD,CAiBF,CACA,UAAA+D,CAAWC,GAET,GAAgC,iBADhCA,EAASa,MAAMd,WAAWC,IACRxlB,YAA2B,GAAUwlB,EAAOxlB,YAAgE,mBAA3CwlB,EAAOxlB,UAAUgF,sBAElG,MAAM,IAAIkhB,UAAU,GAAG+L,GAAO9L,+GAEhC,OAAOX,CACT,CACA,aAAA0O,GACE,QAAsB,IAAX,EACT,MAAM,IAAIhO,UAAU,gEAEtB,IAAImO,EAAmB3S,KAAK4E,SACG,WAA3B5E,KAAK6E,QAAQvmB,UACfq0B,EAAmB3S,KAAKoS,QACf,GAAUpS,KAAK6E,QAAQvmB,WAChCq0B,EAAmBjY,GAAWsF,KAAK6E,QAAQvmB,WACA,iBAA3B0hB,KAAK6E,QAAQvmB,YAC7Bq0B,EAAmB3S,KAAK6E,QAAQvmB,WAElC,MAAM0zB,EAAehS,KAAK4S,mBAC1B5S,KAAKmS,QAAU,GAAoBQ,EAAkB3S,KAAKqS,MAAOL,EACnE,CACA,QAAArC,GACE,OAAO3P,KAAKqS,MAAMhX,UAAU7W,SAAS2sB,GACvC,CACA,aAAA0B,GACE,MAAMC,EAAiB9S,KAAKoS,QAC5B,GAAIU,EAAezX,UAAU7W,SArKN,WAsKrB,OAAOmtB,GAET,GAAImB,EAAezX,UAAU7W,SAvKJ,aAwKvB,OAAOotB,GAET,GAAIkB,EAAezX,UAAU7W,SAzKA,iBA0K3B,MA5JsB,MA8JxB,GAAIsuB,EAAezX,UAAU7W,SA3KE,mBA4K7B,MA9JyB,SAkK3B,MAAMuuB,EAAkF,QAA1E9tB,iBAAiB+a,KAAKqS,OAAOvX,iBAAiB,iBAAiB6K,OAC7E,OAAImN,EAAezX,UAAU7W,SArLP,UAsLbuuB,EAAQvB,GAAmBD,GAE7BwB,EAAQrB,GAAsBD,EACvC,CACA,aAAAc,GACE,OAAkD,OAA3CvS,KAAK4E,SAAS5J,QAnLD,UAoLtB,CACA,UAAAgY,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,gBAAA4qB,GACE,MAAMM,EAAwB,CAC5Bx0B,UAAWshB,KAAK6S,gBAChBzc,UAAW,CAAC,CACV9V,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,iBAanB,OAPIhT,KAAKsS,WAAsC,WAAzBtS,KAAK6E,QAAQkN,WACjC/O,GAAYC,iBAAiBjD,KAAKqS,MAAO,SAAU,UACnDa,EAAsB9c,UAAY,CAAC,CACjC9V,KAAM,cACNC,SAAS,KAGN,IACF2yB,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,eAAAC,EAAgB,IACdr2B,EAAG,OACHyP,IAEA,MAAMggB,EAAQ1G,GAAe1T,KAhOF,8DAgO+B6N,KAAKqS,OAAOlsB,QAAO5G,GAAWob,GAAUpb,KAC7FgtB,EAAM7b,QAMXoN,GAAqByO,EAAOhgB,EAAQzP,IAAQ6zB,IAAmBpE,EAAMnL,SAAS7U,IAASkmB,OACzF,CAGA,sBAAOhW,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6nB,GAAS5M,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,CACA,iBAAOsP,CAAWhU,GAChB,GA5QuB,IA4QnBA,EAAMwI,QAAgD,UAAfxI,EAAMqB,MA/QnC,QA+QuDrB,EAAMtiB,IACzE,OAEF,MAAMu2B,EAAcxN,GAAe1T,KAAKkf,IACxC,IAAK,MAAM1J,KAAU0L,EAAa,CAChC,MAAMC,EAAUpB,GAAS7M,YAAYsC,GACrC,IAAK2L,IAAyC,IAA9BA,EAAQzO,QAAQiN,UAC9B,SAEF,MAAMyB,EAAenU,EAAMmU,eACrBC,EAAeD,EAAanS,SAASkS,EAAQjB,OACnD,GAAIkB,EAAanS,SAASkS,EAAQ1O,WAA2C,WAA9B0O,EAAQzO,QAAQiN,YAA2B0B,GAA8C,YAA9BF,EAAQzO,QAAQiN,WAA2B0B,EACnJ,SAIF,GAAIF,EAAQjB,MAAM7tB,SAAS4a,EAAM7S,UAA2B,UAAf6S,EAAMqB,MA/RvC,QA+R2DrB,EAAMtiB,KAAqB,qCAAqCuG,KAAK+b,EAAM7S,OAAO0a,UACvJ,SAEF,MAAMnH,EAAgB,CACpBA,cAAewT,EAAQ1O,UAEN,UAAfxF,EAAMqB,OACRX,EAAckH,WAAa5H,GAE7BkU,EAAQZ,cAAc5S,EACxB,CACF,CACA,4BAAO2T,CAAsBrU,GAI3B,MAAMsU,EAAU,kBAAkBrwB,KAAK+b,EAAM7S,OAAO0a,SAC9C0M,EAjTW,WAiTKvU,EAAMtiB,IACtB82B,EAAkB,CAAClD,GAAgBC,IAAkBvP,SAAShC,EAAMtiB,KAC1E,IAAK82B,IAAoBD,EACvB,OAEF,GAAID,IAAYC,EACd,OAEFvU,EAAMkD,iBAGN,MAAMuR,EAAkB7T,KAAKgG,QAAQoL,IAA0BpR,KAAO6F,GAAeM,KAAKnG,KAAMoR,IAAwB,IAAMvL,GAAehhB,KAAKmb,KAAMoR,IAAwB,IAAMvL,GAAeC,QAAQsL,GAAwBhS,EAAMW,eAAehb,YACpPwF,EAAW2nB,GAAS5M,oBAAoBuO,GAC9C,GAAID,EAIF,OAHAxU,EAAM0U,kBACNvpB,EAASslB,YACTtlB,EAAS4oB,gBAAgB/T,GAGvB7U,EAASolB,aAEXvQ,EAAM0U,kBACNvpB,EAASqlB,OACTiE,EAAgBpB,QAEpB,EAOFlS,GAAac,GAAGhc,SAAU4rB,GAAwBG,GAAwBc,GAASuB,uBACnFlT,GAAac,GAAGhc,SAAU4rB,GAAwBK,GAAeY,GAASuB,uBAC1ElT,GAAac,GAAGhc,SAAU2rB,GAAwBkB,GAASkB,YAC3D7S,GAAac,GAAGhc,SAAU6rB,GAAsBgB,GAASkB,YACzD7S,GAAac,GAAGhc,SAAU2rB,GAAwBI,IAAwB,SAAUhS,GAClFA,EAAMkD,iBACN4P,GAAS5M,oBAAoBtF,MAAM2H,QACrC,IAMAxL,GAAmB+V,IAcnB,MAAM6B,GAAS,WAETC,GAAoB,OACpBC,GAAkB,gBAAgBF,KAClCG,GAAY,CAChBC,UAAW,iBACXC,cAAe,KACfhP,YAAY,EACZzK,WAAW,EAEX0Z,YAAa,QAETC,GAAgB,CACpBH,UAAW,SACXC,cAAe,kBACfhP,WAAY,UACZzK,UAAW,UACX0Z,YAAa,oBAOf,MAAME,WAAiB9Q,GACrB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwU,aAAc,EACnBxU,KAAK4E,SAAW,IAClB,CAGA,kBAAWlB,GACT,OAAOwQ,EACT,CACA,sBAAWvQ,GACT,OAAO2Q,EACT,CACA,eAAW/X,GACT,OAAOwX,EACT,CAGA,IAAAlE,CAAKxT,GACH,IAAK2D,KAAK6E,QAAQlK,UAEhB,YADAkC,GAAQR,GAGV2D,KAAKyU,UACL,MAAMl1B,EAAUygB,KAAK0U,cACjB1U,KAAK6E,QAAQO,YACfvJ,GAAOtc,GAETA,EAAQ8b,UAAU5E,IAAIud,IACtBhU,KAAK2U,mBAAkB,KACrB9X,GAAQR,EAAS,GAErB,CACA,IAAAuT,CAAKvT,GACE2D,KAAK6E,QAAQlK,WAIlBqF,KAAK0U,cAAcrZ,UAAU1B,OAAOqa,IACpChU,KAAK2U,mBAAkB,KACrB3U,KAAK+E,UACLlI,GAAQR,EAAS,KANjBQ,GAAQR,EAQZ,CACA,OAAA0I,GACO/E,KAAKwU,cAGVjU,GAAaC,IAAIR,KAAK4E,SAAUqP,IAChCjU,KAAK4E,SAASjL,SACdqG,KAAKwU,aAAc,EACrB,CAGA,WAAAE,GACE,IAAK1U,KAAK4E,SAAU,CAClB,MAAMgQ,EAAWvvB,SAASwvB,cAAc,OACxCD,EAAST,UAAYnU,KAAK6E,QAAQsP,UAC9BnU,KAAK6E,QAAQO,YACfwP,EAASvZ,UAAU5E,IApFD,QAsFpBuJ,KAAK4E,SAAWgQ,CAClB,CACA,OAAO5U,KAAK4E,QACd,CACA,iBAAAZ,CAAkBF,GAGhB,OADAA,EAAOuQ,YAAc3Z,GAAWoJ,EAAOuQ,aAChCvQ,CACT,CACA,OAAA2Q,GACE,GAAIzU,KAAKwU,YACP,OAEF,MAAMj1B,EAAUygB,KAAK0U,cACrB1U,KAAK6E,QAAQwP,YAAYS,OAAOv1B,GAChCghB,GAAac,GAAG9hB,EAAS00B,IAAiB,KACxCpX,GAAQmD,KAAK6E,QAAQuP,cAAc,IAErCpU,KAAKwU,aAAc,CACrB,CACA,iBAAAG,CAAkBtY,GAChBW,GAAuBX,EAAU2D,KAAK0U,cAAe1U,KAAK6E,QAAQO,WACpE,EAeF,MAEM2P,GAAc,gBACdC,GAAkB,UAAUD,KAC5BE,GAAoB,cAAcF,KAGlCG,GAAmB,WACnBC,GAAY,CAChBC,WAAW,EACXC,YAAa,MAETC,GAAgB,CACpBF,UAAW,UACXC,YAAa,WAOf,MAAME,WAAkB9R,GACtB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwV,WAAY,EACjBxV,KAAKyV,qBAAuB,IAC9B,CAGA,kBAAW/R,GACT,OAAOyR,EACT,CACA,sBAAWxR,GACT,OAAO2R,EACT,CACA,eAAW/Y,GACT,MArCW,WAsCb,CAGA,QAAAmZ,GACM1V,KAAKwV,YAGLxV,KAAK6E,QAAQuQ,WACfpV,KAAK6E,QAAQwQ,YAAY5C,QAE3BlS,GAAaC,IAAInb,SAAU0vB,IAC3BxU,GAAac,GAAGhc,SAAU2vB,IAAiB5V,GAASY,KAAK2V,eAAevW,KACxEmB,GAAac,GAAGhc,SAAU4vB,IAAmB7V,GAASY,KAAK4V,eAAexW,KAC1EY,KAAKwV,WAAY,EACnB,CACA,UAAAK,GACO7V,KAAKwV,YAGVxV,KAAKwV,WAAY,EACjBjV,GAAaC,IAAInb,SAAU0vB,IAC7B,CAGA,cAAAY,CAAevW,GACb,MAAM,YACJiW,GACErV,KAAK6E,QACT,GAAIzF,EAAM7S,SAAWlH,UAAY+Z,EAAM7S,SAAW8oB,GAAeA,EAAY7wB,SAAS4a,EAAM7S,QAC1F,OAEF,MAAM1L,EAAWglB,GAAeU,kBAAkB8O,GAC1B,IAApBx0B,EAAS6P,OACX2kB,EAAY5C,QACHzS,KAAKyV,uBAAyBP,GACvCr0B,EAASA,EAAS6P,OAAS,GAAG+hB,QAE9B5xB,EAAS,GAAG4xB,OAEhB,CACA,cAAAmD,CAAexW,GAzED,QA0ERA,EAAMtiB,MAGVkjB,KAAKyV,qBAAuBrW,EAAM0W,SAAWZ,GA5EzB,UA6EtB,EAeF,MAAMa,GAAyB,oDACzBC,GAA0B,cAC1BC,GAAmB,gBACnBC,GAAkB,eAMxB,MAAMC,GACJ,WAAAhS,GACEnE,KAAK4E,SAAWvf,SAAS6G,IAC3B,CAGA,QAAAkqB,GAEE,MAAMC,EAAgBhxB,SAASC,gBAAgBuC,YAC/C,OAAO1F,KAAKoC,IAAI3E,OAAO02B,WAAaD,EACtC,CACA,IAAAzG,GACE,MAAM/rB,EAAQmc,KAAKoW,WACnBpW,KAAKuW,mBAELvW,KAAKwW,sBAAsBxW,KAAK4E,SAAUqR,IAAkBQ,GAAmBA,EAAkB5yB,IAEjGmc,KAAKwW,sBAAsBT,GAAwBE,IAAkBQ,GAAmBA,EAAkB5yB,IAC1Gmc,KAAKwW,sBAAsBR,GAAyBE,IAAiBO,GAAmBA,EAAkB5yB,GAC5G,CACA,KAAAwO,GACE2N,KAAK0W,wBAAwB1W,KAAK4E,SAAU,YAC5C5E,KAAK0W,wBAAwB1W,KAAK4E,SAAUqR,IAC5CjW,KAAK0W,wBAAwBX,GAAwBE,IACrDjW,KAAK0W,wBAAwBV,GAAyBE,GACxD,CACA,aAAAS,GACE,OAAO3W,KAAKoW,WAAa,CAC3B,CAGA,gBAAAG,GACEvW,KAAK4W,sBAAsB5W,KAAK4E,SAAU,YAC1C5E,KAAK4E,SAAS7jB,MAAM+K,SAAW,QACjC,CACA,qBAAA0qB,CAAsBzc,EAAU8c,EAAexa,GAC7C,MAAMya,EAAiB9W,KAAKoW,WAS5BpW,KAAK+W,2BAA2Bhd,GARHxa,IAC3B,GAAIA,IAAYygB,KAAK4E,UAAYhlB,OAAO02B,WAAa/2B,EAAQsI,YAAcivB,EACzE,OAEF9W,KAAK4W,sBAAsBr3B,EAASs3B,GACpC,MAAMJ,EAAkB72B,OAAOqF,iBAAiB1F,GAASub,iBAAiB+b,GAC1Et3B,EAAQwB,MAAMi2B,YAAYH,EAAe,GAAGxa,EAASkB,OAAOC,WAAWiZ,QAAsB,GAGjG,CACA,qBAAAG,CAAsBr3B,EAASs3B,GAC7B,MAAMI,EAAc13B,EAAQwB,MAAM+Z,iBAAiB+b,GAC/CI,GACFjU,GAAYC,iBAAiB1jB,EAASs3B,EAAeI,EAEzD,CACA,uBAAAP,CAAwB3c,EAAU8c,GAWhC7W,KAAK+W,2BAA2Bhd,GAVHxa,IAC3B,MAAM5B,EAAQqlB,GAAYQ,iBAAiBjkB,EAASs3B,GAEtC,OAAVl5B,GAIJqlB,GAAYE,oBAAoB3jB,EAASs3B,GACzCt3B,EAAQwB,MAAMi2B,YAAYH,EAAel5B,IAJvC4B,EAAQwB,MAAMm2B,eAAeL,EAIgB,GAGnD,CACA,0BAAAE,CAA2Bhd,EAAUod,GACnC,GAAI,GAAUpd,GACZod,EAASpd,QAGX,IAAK,MAAM6L,KAAOC,GAAe1T,KAAK4H,EAAUiG,KAAK4E,UACnDuS,EAASvR,EAEb,EAeF,MAEMwR,GAAc,YAGdC,GAAe,OAAOD,KACtBE,GAAyB,gBAAgBF,KACzCG,GAAiB,SAASH,KAC1BI,GAAe,OAAOJ,KACtBK,GAAgB,QAAQL,KACxBM,GAAiB,SAASN,KAC1BO,GAAsB,gBAAgBP,KACtCQ,GAA0B,oBAAoBR,KAC9CS,GAA0B,kBAAkBT,KAC5CU,GAAyB,QAAQV,cACjCW,GAAkB,aAElBC,GAAoB,OACpBC,GAAoB,eAKpBC,GAAY,CAChBtD,UAAU,EACVnC,OAAO,EACPzH,UAAU,GAENmN,GAAgB,CACpBvD,SAAU,mBACVnC,MAAO,UACPzH,SAAU,WAOZ,MAAMoN,WAAc1T,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKqY,QAAUxS,GAAeC,QArBV,gBAqBmC9F,KAAK4E,UAC5D5E,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAa,IAAIvC,GACtBnW,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAOwU,EACT,CACA,sBAAWvU,GACT,OAAOwU,EACT,CACA,eAAW5b,GACT,MA1DW,OA2Db,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAAY3P,KAAKmP,kBAGR5O,GAAaqB,QAAQ5B,KAAK4E,SAAU4S,GAAc,CAClE1X,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAW9I,OAChBvqB,SAAS6G,KAAKmP,UAAU5E,IAAIshB,IAC5B/X,KAAK2Y,gBACL3Y,KAAKsY,UAAUzI,MAAK,IAAM7P,KAAK4Y,aAAa9Y,KAC9C,CACA,IAAA8P,GACO5P,KAAK2P,WAAY3P,KAAKmP,mBAGT5O,GAAaqB,QAAQ5B,KAAK4E,SAAUyS,IACxCrV,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASvJ,UAAU1B,OAAOqe,IAC/BhY,KAAKmF,gBAAe,IAAMnF,KAAK6Y,cAAc7Y,KAAK4E,SAAU5E,KAAKgO,gBACnE,CACA,OAAAjJ,GACExE,GAAaC,IAAI5gB,OAAQw3B,IACzB7W,GAAaC,IAAIR,KAAKqY,QAASjB,IAC/BpX,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CACA,YAAA+T,GACE9Y,KAAK2Y,eACP,CAGA,mBAAAJ,GACE,OAAO,IAAIhE,GAAS,CAClB5Z,UAAWmG,QAAQd,KAAK6E,QAAQ+P,UAEhCxP,WAAYpF,KAAKgO,eAErB,CACA,oBAAAyK,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,YAAAgU,CAAa9Y,GAENza,SAAS6G,KAAK1H,SAASwb,KAAK4E,WAC/Bvf,SAAS6G,KAAK4oB,OAAO9U,KAAK4E,UAE5B5E,KAAK4E,SAAS7jB,MAAMgxB,QAAU,QAC9B/R,KAAK4E,SAASzjB,gBAAgB,eAC9B6e,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASnZ,UAAY,EAC1B,MAAMstB,EAAYlT,GAAeC,QA7GT,cA6GsC9F,KAAKqY,SAC/DU,IACFA,EAAUttB,UAAY,GAExBoQ,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIuhB,IAU5BhY,KAAKmF,gBATsB,KACrBnF,KAAK6E,QAAQ4N,OACfzS,KAAKwY,WAAW9C,WAElB1V,KAAKmP,kBAAmB,EACxB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU6S,GAAe,CACjD3X,iBACA,GAEoCE,KAAKqY,QAASrY,KAAKgO,cAC7D,CACA,kBAAAnC,GACEtL,GAAac,GAAGrB,KAAK4E,SAAUiT,IAAyBzY,IAhJvC,WAiJXA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGP5P,KAAKgZ,6BAA4B,IAEnCzY,GAAac,GAAGzhB,OAAQ83B,IAAgB,KAClC1X,KAAK2P,WAAa3P,KAAKmP,kBACzBnP,KAAK2Y,eACP,IAEFpY,GAAac,GAAGrB,KAAK4E,SAAUgT,IAAyBxY,IAEtDmB,GAAae,IAAItB,KAAK4E,SAAU+S,IAAqBsB,IAC/CjZ,KAAK4E,WAAaxF,EAAM7S,QAAUyT,KAAK4E,WAAaqU,EAAO1sB,SAGjC,WAA1ByT,KAAK6E,QAAQ+P,SAIb5U,KAAK6E,QAAQ+P,UACf5U,KAAK4P,OAJL5P,KAAKgZ,6BAKP,GACA,GAEN,CACA,UAAAH,GACE7Y,KAAK4E,SAAS7jB,MAAMgxB,QAAU,OAC9B/R,KAAK4E,SAASxjB,aAAa,eAAe,GAC1C4e,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QAC9B6e,KAAKmP,kBAAmB,EACxBnP,KAAKsY,UAAU1I,MAAK,KAClBvqB,SAAS6G,KAAKmP,UAAU1B,OAAOoe,IAC/B/X,KAAKkZ,oBACLlZ,KAAK0Y,WAAWrmB,QAChBkO,GAAaqB,QAAQ5B,KAAK4E,SAAU2S,GAAe,GAEvD,CACA,WAAAvJ,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAjLT,OAkLxB,CACA,0BAAAw0B,GAEE,GADkBzY,GAAaqB,QAAQ5B,KAAK4E,SAAU0S,IACxCtV,iBACZ,OAEF,MAAMmX,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EwxB,EAAmBpZ,KAAK4E,SAAS7jB,MAAMiL,UAEpB,WAArBotB,GAAiCpZ,KAAK4E,SAASvJ,UAAU7W,SAASyzB,MAGjEkB,IACHnZ,KAAK4E,SAAS7jB,MAAMiL,UAAY,UAElCgU,KAAK4E,SAASvJ,UAAU5E,IAAIwhB,IAC5BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAASvJ,UAAU1B,OAAOse,IAC/BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAAS7jB,MAAMiL,UAAYotB,CAAgB,GAC/CpZ,KAAKqY,QAAQ,GACfrY,KAAKqY,SACRrY,KAAK4E,SAAS6N,QAChB,CAMA,aAAAkG,GACE,MAAMQ,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EkvB,EAAiB9W,KAAK0Y,WAAWtC,WACjCiD,EAAoBvC,EAAiB,EAC3C,GAAIuC,IAAsBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,cAAgB,eAC3C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACA,IAAKuC,GAAqBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,eAAiB,cAC5C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACF,CACA,iBAAAoC,GACElZ,KAAK4E,SAAS7jB,MAAMu4B,YAAc,GAClCtZ,KAAK4E,SAAS7jB,MAAMw4B,aAAe,EACrC,CAGA,sBAAO9c,CAAgBqH,EAAQhE,GAC7B,OAAOE,KAAKwH,MAAK,WACf,MAAMnd,EAAO+tB,GAAM9S,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQhE,EAJb,CAKF,GACF,EAOFS,GAAac,GAAGhc,SAAUyyB,GA9OK,4BA8O2C,SAAU1Y,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACjD,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAER/B,GAAae,IAAI/U,EAAQirB,IAAcgC,IACjCA,EAAUxX,kBAIdzB,GAAae,IAAI/U,EAAQgrB,IAAgB,KACnC5c,GAAUqF,OACZA,KAAKyS,OACP,GACA,IAIJ,MAAMgH,EAAc5T,GAAeC,QAnQb,eAoQlB2T,GACFrB,GAAM/S,YAAYoU,GAAa7J,OAEpBwI,GAAM9S,oBAAoB/Y,GAClCob,OAAO3H,KACd,IACA6G,GAAqBuR,IAMrBjc,GAAmBic,IAcnB,MAEMsB,GAAc,gBACdC,GAAiB,YACjBC,GAAwB,OAAOF,KAAcC,KAE7CE,GAAoB,OACpBC,GAAuB,UACvBC,GAAoB,SAEpBC,GAAgB,kBAChBC,GAAe,OAAOP,KACtBQ,GAAgB,QAAQR,KACxBS,GAAe,OAAOT,KACtBU,GAAuB,gBAAgBV,KACvCW,GAAiB,SAASX,KAC1BY,GAAe,SAASZ,KACxBa,GAAyB,QAAQb,KAAcC,KAC/Ca,GAAwB,kBAAkBd,KAE1Ce,GAAY,CAChB7F,UAAU,EACV5J,UAAU,EACVvgB,QAAQ,GAEJiwB,GAAgB,CACpB9F,SAAU,mBACV5J,SAAU,UACVvgB,OAAQ,WAOV,MAAMkwB,WAAkBjW,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAO+W,EACT,CACA,sBAAW9W,GACT,OAAO+W,EACT,CACA,eAAWne,GACT,MApDW,WAqDb,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAGSpP,GAAaqB,QAAQ5B,KAAK4E,SAAUqV,GAAc,CAClEna,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAUzI,OACV7P,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkBvG,OAExB5P,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASvJ,UAAU5E,IAAIqjB,IAW5B9Z,KAAKmF,gBAVoB,KAClBnF,KAAK6E,QAAQpa,SAAUuV,KAAK6E,QAAQ+P,UACvC5U,KAAKwY,WAAW9C,WAElB1V,KAAK4E,SAASvJ,UAAU5E,IAAIojB,IAC5B7Z,KAAK4E,SAASvJ,UAAU1B,OAAOmgB,IAC/BvZ,GAAaqB,QAAQ5B,KAAK4E,SAAUsV,GAAe,CACjDpa,iBACA,GAEkCE,KAAK4E,UAAU,GACvD,CACA,IAAAgL,GACO5P,KAAK2P,WAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAUuV,IACxCnY,mBAGdhC,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASgW,OACd5a,KAAK2P,UAAW,EAChB3P,KAAK4E,SAASvJ,UAAU5E,IAAIsjB,IAC5B/Z,KAAKsY,UAAU1I,OAUf5P,KAAKmF,gBAToB,KACvBnF,KAAK4E,SAASvJ,UAAU1B,OAAOkgB,GAAmBE,IAClD/Z,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QACzB6e,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkB9jB,QAExBkO,GAAaqB,QAAQ5B,KAAK4E,SAAUyV,GAAe,GAEfra,KAAK4E,UAAU,IACvD,CACA,OAAAG,GACE/E,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CAGA,mBAAAwT,GACE,MASM5d,EAAYmG,QAAQd,KAAK6E,QAAQ+P,UACvC,OAAO,IAAIL,GAAS,CAClBJ,UA3HsB,qBA4HtBxZ,YACAyK,YAAY,EACZiP,YAAarU,KAAK4E,SAAS7f,WAC3BqvB,cAAezZ,EAfK,KACU,WAA1BqF,KAAK6E,QAAQ+P,SAIjB5U,KAAK4P,OAHHrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,GAG3B,EAUgC,MAE/C,CACA,oBAAA3B,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,kBAAAiH,GACEtL,GAAac,GAAGrB,KAAK4E,SAAU4V,IAAuBpb,IA5IvC,WA6ITA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGPrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,IAAqB,GAE7D,CAGA,sBAAO3d,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOswB,GAAUrV,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOFO,GAAac,GAAGhc,SAAUk1B,GA7JK,gCA6J2C,SAAUnb,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MAIrD,GAHI,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEFO,GAAae,IAAI/U,EAAQ8tB,IAAgB,KAEnC1f,GAAUqF,OACZA,KAAKyS,OACP,IAIF,MAAMgH,EAAc5T,GAAeC,QAAQkU,IACvCP,GAAeA,IAAgBltB,GACjCouB,GAAUtV,YAAYoU,GAAa7J,OAExB+K,GAAUrV,oBAAoB/Y,GACtCob,OAAO3H,KACd,IACAO,GAAac,GAAGzhB,OAAQg6B,IAAuB,KAC7C,IAAK,MAAM7f,KAAY8L,GAAe1T,KAAK6nB,IACzCW,GAAUrV,oBAAoBvL,GAAU8V,MAC1C,IAEFtP,GAAac,GAAGzhB,OAAQ06B,IAAc,KACpC,IAAK,MAAM/6B,KAAWsmB,GAAe1T,KAAK,gDACG,UAAvClN,iBAAiB1F,GAASiC,UAC5Bm5B,GAAUrV,oBAAoB/lB,GAASqwB,MAE3C,IAEF/I,GAAqB8T,IAMrBxe,GAAmBwe,IAUnB,MACME,GAAmB,CAEvB,IAAK,CAAC,QAAS,MAAO,KAAM,OAAQ,OAHP,kBAI7BhqB,EAAG,CAAC,SAAU,OAAQ,QAAS,OAC/BiqB,KAAM,GACNhqB,EAAG,GACHiqB,GAAI,GACJC,IAAK,GACLC,KAAM,GACNC,GAAI,GACJC,IAAK,GACLC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJxqB,EAAG,GACH0b,IAAK,CAAC,MAAO,SAAU,MAAO,QAAS,QAAS,UAChD+O,GAAI,GACJC,GAAI,GACJC,EAAG,GACHC,IAAK,GACLC,EAAG,GACHC,MAAO,GACPC,KAAM,GACNC,IAAK,GACLC,IAAK,GACLC,OAAQ,GACRC,EAAG,GACHC,GAAI,IAIAC,GAAgB,IAAIpmB,IAAI,CAAC,aAAc,OAAQ,OAAQ,WAAY,WAAY,SAAU,MAAO,eAShGqmB,GAAmB,0DACnBC,GAAmB,CAAC76B,EAAW86B,KACnC,MAAMC,EAAgB/6B,EAAUvC,SAASC,cACzC,OAAIo9B,EAAqBzb,SAAS0b,IAC5BJ,GAAc/lB,IAAImmB,IACbhc,QAAQ6b,GAAiBt5B,KAAKtB,EAAUg7B,YAM5CF,EAAqB12B,QAAO62B,GAAkBA,aAA0BzY,SAAQ9R,MAAKwqB,GAASA,EAAM55B,KAAKy5B,IAAe,EA0C3HI,GAAY,CAChBC,UAAWtC,GACXuC,QAAS,CAAC,EAEVC,WAAY,GACZxwB,MAAM,EACNywB,UAAU,EACVC,WAAY,KACZC,SAAU,eAENC,GAAgB,CACpBN,UAAW,SACXC,QAAS,SACTC,WAAY,oBACZxwB,KAAM,UACNywB,SAAU,UACVC,WAAY,kBACZC,SAAU,UAENE,GAAqB,CACzBC,MAAO,iCACP5jB,SAAU,oBAOZ,MAAM6jB,WAAwBna,GAC5B,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,EACjC,CAGA,kBAAWJ,GACT,OAAOwZ,EACT,CACA,sBAAWvZ,GACT,OAAO8Z,EACT,CACA,eAAWlhB,GACT,MA3CW,iBA4Cb,CAGA,UAAAshB,GACE,OAAO7gC,OAAOmiB,OAAOa,KAAK6E,QAAQuY,SAASt6B,KAAIghB,GAAU9D,KAAK8d,yBAAyBha,KAAS3d,OAAO2a,QACzG,CACA,UAAAid,GACE,OAAO/d,KAAK6d,aAAantB,OAAS,CACpC,CACA,aAAAstB,CAAcZ,GAMZ,OALApd,KAAKie,cAAcb,GACnBpd,KAAK6E,QAAQuY,QAAU,IAClBpd,KAAK6E,QAAQuY,WACbA,GAEEpd,IACT,CACA,MAAAke,GACE,MAAMC,EAAkB94B,SAASwvB,cAAc,OAC/CsJ,EAAgBC,UAAYpe,KAAKqe,eAAere,KAAK6E,QAAQ2Y,UAC7D,IAAK,MAAOzjB,EAAUukB,KAASthC,OAAOmkB,QAAQnB,KAAK6E,QAAQuY,SACzDpd,KAAKue,YAAYJ,EAAiBG,EAAMvkB,GAE1C,MAAMyjB,EAAWW,EAAgBpY,SAAS,GACpCsX,EAAard,KAAK8d,yBAAyB9d,KAAK6E,QAAQwY,YAI9D,OAHIA,GACFG,EAASniB,UAAU5E,OAAO4mB,EAAWn7B,MAAM,MAEtCs7B,CACT,CAGA,gBAAAvZ,CAAiBH,GACfa,MAAMV,iBAAiBH,GACvB9D,KAAKie,cAAcna,EAAOsZ,QAC5B,CACA,aAAAa,CAAcO,GACZ,IAAK,MAAOzkB,EAAUqjB,KAAYpgC,OAAOmkB,QAAQqd,GAC/C7Z,MAAMV,iBAAiB,CACrBlK,WACA4jB,MAAOP,GACNM,GAEP,CACA,WAAAa,CAAYf,EAAUJ,EAASrjB,GAC7B,MAAM0kB,EAAkB5Y,GAAeC,QAAQ/L,EAAUyjB,GACpDiB,KAGLrB,EAAUpd,KAAK8d,yBAAyBV,IAKpC,GAAUA,GACZpd,KAAK0e,sBAAsBhkB,GAAW0iB,GAAUqB,GAG9Cze,KAAK6E,QAAQhY,KACf4xB,EAAgBL,UAAYpe,KAAKqe,eAAejB,GAGlDqB,EAAgBE,YAAcvB,EAX5BqB,EAAgB9kB,SAYpB,CACA,cAAA0kB,CAAeG,GACb,OAAOxe,KAAK6E,QAAQyY,SApJxB,SAAsBsB,EAAYzB,EAAW0B,GAC3C,IAAKD,EAAWluB,OACd,OAAOkuB,EAET,GAAIC,GAAgD,mBAArBA,EAC7B,OAAOA,EAAiBD,GAE1B,MACME,GADY,IAAIl/B,OAAOm/B,WACKC,gBAAgBJ,EAAY,aACxD/9B,EAAW,GAAGlC,UAAUmgC,EAAgB5yB,KAAKkU,iBAAiB,MACpE,IAAK,MAAM7gB,KAAWsB,EAAU,CAC9B,MAAMo+B,EAAc1/B,EAAQC,SAASC,cACrC,IAAKzC,OAAO4D,KAAKu8B,GAAW/b,SAAS6d,GAAc,CACjD1/B,EAAQoa,SACR,QACF,CACA,MAAMulB,EAAgB,GAAGvgC,UAAUY,EAAQ0B,YACrCk+B,EAAoB,GAAGxgC,OAAOw+B,EAAU,MAAQ,GAAIA,EAAU8B,IAAgB,IACpF,IAAK,MAAMl9B,KAAam9B,EACjBtC,GAAiB76B,EAAWo9B,IAC/B5/B,EAAQ4B,gBAAgBY,EAAUvC,SAGxC,CACA,OAAOs/B,EAAgB5yB,KAAKkyB,SAC9B,CA2HmCgB,CAAaZ,EAAKxe,KAAK6E,QAAQsY,UAAWnd,KAAK6E,QAAQ0Y,YAAciB,CACtG,CACA,wBAAAV,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,MACvB,CACA,qBAAA0e,CAAsBn/B,EAASk/B,GAC7B,GAAIze,KAAK6E,QAAQhY,KAGf,OAFA4xB,EAAgBL,UAAY,QAC5BK,EAAgB3J,OAAOv1B,GAGzBk/B,EAAgBE,YAAcp/B,EAAQo/B,WACxC,EAeF,MACMU,GAAwB,IAAI/oB,IAAI,CAAC,WAAY,YAAa,eAC1DgpB,GAAoB,OAEpBC,GAAoB,OACpBC,GAAyB,iBACzBC,GAAiB,SACjBC,GAAmB,gBACnBC,GAAgB,QAChBC,GAAgB,QAahBC,GAAgB,CACpBC,KAAM,OACNC,IAAK,MACLC,MAAO/jB,KAAU,OAAS,QAC1BgkB,OAAQ,SACRC,KAAMjkB,KAAU,QAAU,QAEtBkkB,GAAY,CAChBhD,UAAWtC,GACXuF,WAAW,EACXnyB,SAAU,kBACVoyB,WAAW,EACXC,YAAa,GACbC,MAAO,EACPvwB,mBAAoB,CAAC,MAAO,QAAS,SAAU,QAC/CnD,MAAM,EACN7E,OAAQ,CAAC,EAAG,GACZtJ,UAAW,MACXszB,aAAc,KACdsL,UAAU,EACVC,WAAY,KACZxjB,UAAU,EACVyjB,SAAU,+GACVgD,MAAO,GACP5e,QAAS,eAEL6e,GAAgB,CACpBtD,UAAW,SACXiD,UAAW,UACXnyB,SAAU,mBACVoyB,UAAW,2BACXC,YAAa,oBACbC,MAAO,kBACPvwB,mBAAoB,QACpBnD,KAAM,UACN7E,OAAQ,0BACRtJ,UAAW,oBACXszB,aAAc,yBACdsL,SAAU,UACVC,WAAY,kBACZxjB,SAAU,mBACVyjB,SAAU,SACVgD,MAAO,4BACP5e,QAAS,UAOX,MAAM8e,WAAgBhc,GACpB,WAAAP,CAAY5kB,EAASukB,GACnB,QAAsB,IAAX,EACT,MAAM,IAAIU,UAAU,+DAEtBG,MAAMplB,EAASukB,GAGf9D,KAAK2gB,YAAa,EAClB3gB,KAAK4gB,SAAW,EAChB5gB,KAAK6gB,WAAa,KAClB7gB,KAAK8gB,eAAiB,CAAC,EACvB9gB,KAAKmS,QAAU,KACfnS,KAAK+gB,iBAAmB,KACxB/gB,KAAKghB,YAAc,KAGnBhhB,KAAKihB,IAAM,KACXjhB,KAAKkhB,gBACAlhB,KAAK6E,QAAQ9K,UAChBiG,KAAKmhB,WAET,CAGA,kBAAWzd,GACT,OAAOyc,EACT,CACA,sBAAWxc,GACT,OAAO8c,EACT,CACA,eAAWlkB,GACT,MAxGW,SAyGb,CAGA,MAAA6kB,GACEphB,KAAK2gB,YAAa,CACpB,CACA,OAAAU,GACErhB,KAAK2gB,YAAa,CACpB,CACA,aAAAW,GACEthB,KAAK2gB,YAAc3gB,KAAK2gB,UAC1B,CACA,MAAAhZ,GACO3H,KAAK2gB,aAGV3gB,KAAK8gB,eAAeS,OAASvhB,KAAK8gB,eAAeS,MAC7CvhB,KAAK2P,WACP3P,KAAKwhB,SAGPxhB,KAAKyhB,SACP,CACA,OAAA1c,GACEmI,aAAalN,KAAK4gB,UAClBrgB,GAAaC,IAAIR,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,mBAC3E1hB,KAAK4E,SAASpJ,aAAa,2BAC7BwE,KAAK4E,SAASxjB,aAAa,QAAS4e,KAAK4E,SAASpJ,aAAa,2BAEjEwE,KAAK2hB,iBACLhd,MAAMI,SACR,CACA,IAAA8K,GACE,GAAoC,SAAhC7P,KAAK4E,SAAS7jB,MAAMgxB,QACtB,MAAM,IAAInO,MAAM,uCAElB,IAAM5D,KAAK4hB,mBAAoB5hB,KAAK2gB,WAClC,OAEF,MAAMnH,EAAYjZ,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAlItD,SAoIXqc,GADapmB,GAAeuE,KAAK4E,WACL5E,KAAK4E,SAAS9kB,cAAcwF,iBAAiBd,SAASwb,KAAK4E,UAC7F,GAAI4U,EAAUxX,mBAAqB6f,EACjC,OAIF7hB,KAAK2hB,iBACL,MAAMV,EAAMjhB,KAAK8hB,iBACjB9hB,KAAK4E,SAASxjB,aAAa,mBAAoB6/B,EAAIzlB,aAAa,OAChE,MAAM,UACJ6kB,GACErgB,KAAK6E,QAYT,GAXK7E,KAAK4E,SAAS9kB,cAAcwF,gBAAgBd,SAASwb,KAAKihB,OAC7DZ,EAAUvL,OAAOmM,GACjB1gB,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhJpC,cAkJnBxF,KAAKmS,QAAUnS,KAAKwS,cAAcyO,GAClCA,EAAI5lB,UAAU5E,IAAI8oB,IAMd,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAU1CoE,KAAKmF,gBAPY,KACf5E,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhKrC,WAiKQ,IAApBxF,KAAK6gB,YACP7gB,KAAKwhB,SAEPxhB,KAAK6gB,YAAa,CAAK,GAEK7gB,KAAKihB,IAAKjhB,KAAKgO,cAC/C,CACA,IAAA4B,GACE,GAAK5P,KAAK2P,aAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UA/KtD,SAgLHxD,iBAAd,CAQA,GALYhC,KAAK8hB,iBACbzmB,UAAU1B,OAAO4lB,IAIjB,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAG3CoE,KAAK8gB,eAA4B,OAAI,EACrC9gB,KAAK8gB,eAAelB,KAAiB,EACrC5f,KAAK8gB,eAAenB,KAAiB,EACrC3f,KAAK6gB,WAAa,KAYlB7gB,KAAKmF,gBAVY,KACXnF,KAAK+hB,yBAGJ/hB,KAAK6gB,YACR7gB,KAAK2hB,iBAEP3hB,KAAK4E,SAASzjB,gBAAgB,oBAC9Bof,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAzMpC,WAyM8D,GAEnDxF,KAAKihB,IAAKjhB,KAAKgO,cA1B7C,CA2BF,CACA,MAAAjjB,GACMiV,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,cAAA62B,GACE,OAAO9gB,QAAQd,KAAKgiB,YACtB,CACA,cAAAF,GAIE,OAHK9hB,KAAKihB,MACRjhB,KAAKihB,IAAMjhB,KAAKiiB,kBAAkBjiB,KAAKghB,aAAehhB,KAAKkiB,2BAEtDliB,KAAKihB,GACd,CACA,iBAAAgB,CAAkB7E,GAChB,MAAM6D,EAAMjhB,KAAKmiB,oBAAoB/E,GAASc,SAG9C,IAAK+C,EACH,OAAO,KAETA,EAAI5lB,UAAU1B,OAAO2lB,GAAmBC,IAExC0B,EAAI5lB,UAAU5E,IAAI,MAAMuJ,KAAKmE,YAAY5H,aACzC,MAAM6lB,EAvuGKC,KACb,GACEA,GAAUlgC,KAAKmgC,MA/BH,IA+BSngC,KAAKogC,gBACnBl9B,SAASm9B,eAAeH,IACjC,OAAOA,CAAM,EAmuGGI,CAAOziB,KAAKmE,YAAY5H,MAAM1c,WAK5C,OAJAohC,EAAI7/B,aAAa,KAAMghC,GACnBpiB,KAAKgO,eACPiT,EAAI5lB,UAAU5E,IAAI6oB,IAEb2B,CACT,CACA,UAAAyB,CAAWtF,GACTpd,KAAKghB,YAAc5D,EACfpd,KAAK2P,aACP3P,KAAK2hB,iBACL3hB,KAAK6P,OAET,CACA,mBAAAsS,CAAoB/E,GAYlB,OAXIpd,KAAK+gB,iBACP/gB,KAAK+gB,iBAAiB/C,cAAcZ,GAEpCpd,KAAK+gB,iBAAmB,IAAInD,GAAgB,IACvC5d,KAAK6E,QAGRuY,UACAC,WAAYrd,KAAK8d,yBAAyB9d,KAAK6E,QAAQyb,eAGpDtgB,KAAK+gB,gBACd,CACA,sBAAAmB,GACE,MAAO,CACL,CAAC1C,IAAyBxf,KAAKgiB,YAEnC,CACA,SAAAA,GACE,OAAOhiB,KAAK8d,yBAAyB9d,KAAK6E,QAAQ2b,QAAUxgB,KAAK4E,SAASpJ,aAAa,yBACzF,CAGA,4BAAAmnB,CAA6BvjB,GAC3B,OAAOY,KAAKmE,YAAYmB,oBAAoBlG,EAAMW,eAAgBC,KAAK4iB,qBACzE,CACA,WAAA5U,GACE,OAAOhO,KAAK6E,QAAQub,WAAapgB,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS86B,GAC3E,CACA,QAAA3P,GACE,OAAO3P,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS+6B,GACjD,CACA,aAAA/M,CAAcyO,GACZ,MAAMviC,EAAYme,GAAQmD,KAAK6E,QAAQnmB,UAAW,CAACshB,KAAMihB,EAAKjhB,KAAK4E,WAC7Die,EAAahD,GAAcnhC,EAAU+lB,eAC3C,OAAO,GAAoBzE,KAAK4E,SAAUqc,EAAKjhB,KAAK4S,iBAAiBiQ,GACvE,CACA,UAAA7P,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,wBAAA81B,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,KAAK4E,UAC5B,CACA,gBAAAgO,CAAiBiQ,GACf,MAAM3P,EAAwB,CAC5Bx0B,UAAWmkC,EACXzsB,UAAW,CAAC,CACV9V,KAAM,OACNmB,QAAS,CACPuO,mBAAoBgQ,KAAK6E,QAAQ7U,qBAElC,CACD1P,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,eAEd,CACD1yB,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,QACNmB,QAAS,CACPlC,QAAS,IAAIygB,KAAKmE,YAAY5H,eAE/B,CACDjc,KAAM,kBACNC,SAAS,EACTC,MAAO,aACPC,GAAI4J,IAGF2V,KAAK8hB,iBAAiB1gC,aAAa,wBAAyBiJ,EAAK1J,MAAMjC,UAAU,KAIvF,MAAO,IACFw0B,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,aAAAgO,GACE,MAAM4B,EAAW9iB,KAAK6E,QAAQjD,QAAQ1f,MAAM,KAC5C,IAAK,MAAM0f,KAAWkhB,EACpB,GAAgB,UAAZlhB,EACFrB,GAAac,GAAGrB,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAjVlC,SAiV4DxF,KAAK6E,QAAQ9K,UAAUqF,IAC/EY,KAAK2iB,6BAA6BvjB,GAC1CuI,QAAQ,SAEb,GA3VU,WA2VN/F,EAA4B,CACrC,MAAMmhB,EAAUnhB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV5C,cAmV0ExF,KAAKmE,YAAYqB,UArV5F,WAsVVwd,EAAWphB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV7C,cAmV2ExF,KAAKmE,YAAYqB,UArV5F,YAsVjBjF,GAAac,GAAGrB,KAAK4E,SAAUme,EAAS/iB,KAAK6E,QAAQ9K,UAAUqF,IAC7D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,YAAf1hB,EAAMqB,KAAqBmf,GAAgBD,KAAiB,EACnFrM,EAAQmO,QAAQ,IAElBlhB,GAAac,GAAGrB,KAAK4E,SAAUoe,EAAUhjB,KAAK6E,QAAQ9K,UAAUqF,IAC9D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,aAAf1hB,EAAMqB,KAAsBmf,GAAgBD,IAAiBrM,EAAQ1O,SAASpgB,SAAS4a,EAAMU,eACpHwT,EAAQkO,QAAQ,GAEpB,CAEFxhB,KAAK0hB,kBAAoB,KACnB1hB,KAAK4E,UACP5E,KAAK4P,MACP,EAEFrP,GAAac,GAAGrB,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,kBAChF,CACA,SAAAP,GACE,MAAMX,EAAQxgB,KAAK4E,SAASpJ,aAAa,SACpCglB,IAGAxgB,KAAK4E,SAASpJ,aAAa,eAAkBwE,KAAK4E,SAAS+Z,YAAYhZ,QAC1E3F,KAAK4E,SAASxjB,aAAa,aAAco/B,GAE3CxgB,KAAK4E,SAASxjB,aAAa,yBAA0Bo/B,GACrDxgB,KAAK4E,SAASzjB,gBAAgB,SAChC,CACA,MAAAsgC,GACMzhB,KAAK2P,YAAc3P,KAAK6gB,WAC1B7gB,KAAK6gB,YAAa,GAGpB7gB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACXjjB,KAAK6gB,YACP7gB,KAAK6P,MACP,GACC7P,KAAK6E,QAAQ0b,MAAM1Q,MACxB,CACA,MAAA2R,GACMxhB,KAAK+hB,yBAGT/hB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACVjjB,KAAK6gB,YACR7gB,KAAK4P,MACP,GACC5P,KAAK6E,QAAQ0b,MAAM3Q,MACxB,CACA,WAAAqT,CAAYrlB,EAASslB,GACnBhW,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW/iB,WAAWD,EAASslB,EACtC,CACA,oBAAAnB,GACE,OAAO/kC,OAAOmiB,OAAOa,KAAK8gB,gBAAgB1f,UAAS,EACrD,CACA,UAAAyC,CAAWC,GACT,MAAMqf,EAAiBngB,GAAYG,kBAAkBnD,KAAK4E,UAC1D,IAAK,MAAMwe,KAAiBpmC,OAAO4D,KAAKuiC,GAClC9D,GAAsB1oB,IAAIysB,WACrBD,EAAeC,GAU1B,OAPAtf,EAAS,IACJqf,KACmB,iBAAXrf,GAAuBA,EAASA,EAAS,CAAC,GAEvDA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAchB,OAbAA,EAAOuc,WAAiC,IAArBvc,EAAOuc,UAAsBh7B,SAAS6G,KAAOwO,GAAWoJ,EAAOuc,WACtD,iBAAjBvc,EAAOyc,QAChBzc,EAAOyc,MAAQ,CACb1Q,KAAM/L,EAAOyc,MACb3Q,KAAM9L,EAAOyc,QAGW,iBAAjBzc,EAAO0c,QAChB1c,EAAO0c,MAAQ1c,EAAO0c,MAAM3gC,YAEA,iBAAnBikB,EAAOsZ,UAChBtZ,EAAOsZ,QAAUtZ,EAAOsZ,QAAQv9B,YAE3BikB,CACT,CACA,kBAAA8e,GACE,MAAM9e,EAAS,CAAC,EAChB,IAAK,MAAOhnB,EAAKa,KAAUX,OAAOmkB,QAAQnB,KAAK6E,SACzC7E,KAAKmE,YAAYT,QAAQ5mB,KAASa,IACpCmmB,EAAOhnB,GAAOa,GASlB,OANAmmB,EAAO/J,UAAW,EAClB+J,EAAOlC,QAAU,SAKVkC,CACT,CACA,cAAA6d,GACM3hB,KAAKmS,UACPnS,KAAKmS,QAAQnZ,UACbgH,KAAKmS,QAAU,MAEbnS,KAAKihB,MACPjhB,KAAKihB,IAAItnB,SACTqG,KAAKihB,IAAM,KAEf,CAGA,sBAAOxkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOq2B,GAAQpb,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBukB,IAcnB,MACM2C,GAAiB,kBACjBC,GAAmB,gBACnBC,GAAY,IACb7C,GAAQhd,QACX0Z,QAAS,GACTp1B,OAAQ,CAAC,EAAG,GACZtJ,UAAW,QACX8+B,SAAU,8IACV5b,QAAS,SAEL4hB,GAAgB,IACjB9C,GAAQ/c,YACXyZ,QAAS,kCAOX,MAAMqG,WAAgB/C,GAEpB,kBAAWhd,GACT,OAAO6f,EACT,CACA,sBAAW5f,GACT,OAAO6f,EACT,CACA,eAAWjnB,GACT,MA7BW,SA8Bb,CAGA,cAAAqlB,GACE,OAAO5hB,KAAKgiB,aAAehiB,KAAK0jB,aAClC,CAGA,sBAAAxB,GACE,MAAO,CACL,CAACmB,IAAiBrjB,KAAKgiB,YACvB,CAACsB,IAAmBtjB,KAAK0jB,cAE7B,CACA,WAAAA,GACE,OAAO1jB,KAAK8d,yBAAyB9d,KAAK6E,QAAQuY,QACpD,CAGA,sBAAO3gB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOo5B,GAAQne,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBsnB,IAcnB,MAEME,GAAc,gBAEdC,GAAiB,WAAWD,KAC5BE,GAAc,QAAQF,KACtBG,GAAwB,OAAOH,cAE/BI,GAAsB,SAEtBC,GAAwB,SAExBC,GAAqB,YAGrBC,GAAsB,GAAGD,mBAA+CA,uBAGxEE,GAAY,CAChBn8B,OAAQ,KAERo8B,WAAY,eACZC,cAAc,EACd93B,OAAQ,KACR+3B,UAAW,CAAC,GAAK,GAAK,IAElBC,GAAgB,CACpBv8B,OAAQ,gBAERo8B,WAAY,SACZC,aAAc,UACd93B,OAAQ,UACR+3B,UAAW,SAOb,MAAME,WAAkB9f,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GAGf9D,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B8O,KAAK2kB,aAA6D,YAA9C1/B,iBAAiB+a,KAAK4E,UAAU5Y,UAA0B,KAAOgU,KAAK4E,SAC1F5E,KAAK4kB,cAAgB,KACrB5kB,KAAK6kB,UAAY,KACjB7kB,KAAK8kB,oBAAsB,CACzBC,gBAAiB,EACjBC,gBAAiB,GAEnBhlB,KAAKilB,SACP,CAGA,kBAAWvhB,GACT,OAAOygB,EACT,CACA,sBAAWxgB,GACT,OAAO4gB,EACT,CACA,eAAWhoB,GACT,MAhEW,WAiEb,CAGA,OAAA0oB,GACEjlB,KAAKklB,mCACLllB,KAAKmlB,2BACDnlB,KAAK6kB,UACP7kB,KAAK6kB,UAAUO,aAEfplB,KAAK6kB,UAAY7kB,KAAKqlB,kBAExB,IAAK,MAAMC,KAAWtlB,KAAK0kB,oBAAoBvlB,SAC7Ca,KAAK6kB,UAAUU,QAAQD,EAE3B,CACA,OAAAvgB,GACE/E,KAAK6kB,UAAUO,aACfzgB,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAShB,OAPAA,EAAOvX,OAASmO,GAAWoJ,EAAOvX,SAAWlH,SAAS6G,KAGtD4X,EAAOsgB,WAAatgB,EAAO9b,OAAS,GAAG8b,EAAO9b,oBAAsB8b,EAAOsgB,WAC3C,iBAArBtgB,EAAOwgB,YAChBxgB,EAAOwgB,UAAYxgB,EAAOwgB,UAAUpiC,MAAM,KAAKY,KAAInF,GAAS4f,OAAOC,WAAW7f,MAEzEmmB,CACT,CACA,wBAAAqhB,GACOnlB,KAAK6E,QAAQwf,eAKlB9jB,GAAaC,IAAIR,KAAK6E,QAAQtY,OAAQs3B,IACtCtjB,GAAac,GAAGrB,KAAK6E,QAAQtY,OAAQs3B,GAAaG,IAAuB5kB,IACvE,MAAMomB,EAAoBxlB,KAAK0kB,oBAAoBvnC,IAAIiiB,EAAM7S,OAAOtB,MACpE,GAAIu6B,EAAmB,CACrBpmB,EAAMkD,iBACN,MAAM3G,EAAOqE,KAAK2kB,cAAgB/kC,OAC5BmE,EAASyhC,EAAkBnhC,UAAY2b,KAAK4E,SAASvgB,UAC3D,GAAIsX,EAAK8pB,SAKP,YAJA9pB,EAAK8pB,SAAS,CACZ9jC,IAAKoC,EACL2hC,SAAU,WAMd/pB,EAAKlQ,UAAY1H,CACnB,KAEJ,CACA,eAAAshC,GACE,MAAM5jC,EAAU,CACdka,KAAMqE,KAAK2kB,aACXL,UAAWtkB,KAAK6E,QAAQyf,UACxBF,WAAYpkB,KAAK6E,QAAQuf,YAE3B,OAAO,IAAIuB,sBAAqBxkB,GAAWnB,KAAK4lB,kBAAkBzkB,IAAU1f,EAC9E,CAGA,iBAAAmkC,CAAkBzkB,GAChB,MAAM0kB,EAAgBlI,GAAS3d,KAAKykB,aAAatnC,IAAI,IAAIwgC,EAAMpxB,OAAO4N,MAChEub,EAAWiI,IACf3d,KAAK8kB,oBAAoBC,gBAAkBpH,EAAMpxB,OAAOlI,UACxD2b,KAAK8lB,SAASD,EAAclI,GAAO,EAE/BqH,GAAmBhlB,KAAK2kB,cAAgBt/B,SAASC,iBAAiBmG,UAClEs6B,EAAkBf,GAAmBhlB,KAAK8kB,oBAAoBE,gBACpEhlB,KAAK8kB,oBAAoBE,gBAAkBA,EAC3C,IAAK,MAAMrH,KAASxc,EAAS,CAC3B,IAAKwc,EAAMqI,eAAgB,CACzBhmB,KAAK4kB,cAAgB,KACrB5kB,KAAKimB,kBAAkBJ,EAAclI,IACrC,QACF,CACA,MAAMuI,EAA2BvI,EAAMpxB,OAAOlI,WAAa2b,KAAK8kB,oBAAoBC,gBAEpF,GAAIgB,GAAmBG,GAGrB,GAFAxQ,EAASiI,IAEJqH,EACH,YAMCe,GAAoBG,GACvBxQ,EAASiI,EAEb,CACF,CACA,gCAAAuH,GACEllB,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B,MAAMi1B,EAActgB,GAAe1T,KAAK6xB,GAAuBhkB,KAAK6E,QAAQtY,QAC5E,IAAK,MAAM65B,KAAUD,EAAa,CAEhC,IAAKC,EAAOn7B,MAAQiQ,GAAWkrB,GAC7B,SAEF,MAAMZ,EAAoB3f,GAAeC,QAAQugB,UAAUD,EAAOn7B,MAAO+U,KAAK4E,UAG1EjK,GAAU6qB,KACZxlB,KAAKykB,aAAa1yB,IAAIs0B,UAAUD,EAAOn7B,MAAOm7B,GAC9CpmB,KAAK0kB,oBAAoB3yB,IAAIq0B,EAAOn7B,KAAMu6B,GAE9C,CACF,CACA,QAAAM,CAASv5B,GACHyT,KAAK4kB,gBAAkBr4B,IAG3ByT,KAAKimB,kBAAkBjmB,KAAK6E,QAAQtY,QACpCyT,KAAK4kB,cAAgBr4B,EACrBA,EAAO8O,UAAU5E,IAAIstB,IACrB/jB,KAAKsmB,iBAAiB/5B,GACtBgU,GAAaqB,QAAQ5B,KAAK4E,SAAUgf,GAAgB,CAClD9jB,cAAevT,IAEnB,CACA,gBAAA+5B,CAAiB/5B,GAEf,GAAIA,EAAO8O,UAAU7W,SA9LQ,iBA+L3BqhB,GAAeC,QArLc,mBAqLsBvZ,EAAOyO,QAtLtC,cAsLkEK,UAAU5E,IAAIstB,SAGtG,IAAK,MAAMwC,KAAa1gB,GAAeI,QAAQ1Z,EA9LnB,qBAiM1B,IAAK,MAAMxJ,KAAQ8iB,GAAeM,KAAKogB,EAAWrC,IAChDnhC,EAAKsY,UAAU5E,IAAIstB,GAGzB,CACA,iBAAAkC,CAAkBxhC,GAChBA,EAAO4W,UAAU1B,OAAOoqB,IACxB,MAAMyC,EAAc3gB,GAAe1T,KAAK,GAAG6xB,MAAyBD,KAAuBt/B,GAC3F,IAAK,MAAM9E,KAAQ6mC,EACjB7mC,EAAK0b,UAAU1B,OAAOoqB,GAE1B,CAGA,sBAAOtnB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOm6B,GAAUlf,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGzhB,OAAQkkC,IAAuB,KAC7C,IAAK,MAAM2C,KAAO5gB,GAAe1T,KApOT,0BAqOtBqyB,GAAUlf,oBAAoBmhB,EAChC,IAOFtqB,GAAmBqoB,IAcnB,MAEMkC,GAAc,UACdC,GAAe,OAAOD,KACtBE,GAAiB,SAASF,KAC1BG,GAAe,OAAOH,KACtBI,GAAgB,QAAQJ,KACxBK,GAAuB,QAAQL,KAC/BM,GAAgB,UAAUN,KAC1BO,GAAsB,OAAOP,KAC7BQ,GAAiB,YACjBC,GAAkB,aAClBC,GAAe,UACfC,GAAiB,YACjBC,GAAW,OACXC,GAAU,MACVC,GAAoB,SACpBC,GAAoB,OACpBC,GAAoB,OAEpBC,GAA2B,mBAE3BC,GAA+B,QAAQD,MAIvCE,GAAuB,2EACvBC,GAAsB,YAFOF,uBAAiDA,mBAA6CA,OAE/EC,KAC5CE,GAA8B,IAAIP,8BAA6CA,+BAA8CA,4BAMnI,MAAMQ,WAAYtjB,GAChB,WAAAP,CAAY5kB,GACVolB,MAAMplB,GACNygB,KAAKoS,QAAUpS,KAAK4E,SAAS5J,QAdN,uCAelBgF,KAAKoS,UAOVpS,KAAKioB,sBAAsBjoB,KAAKoS,QAASpS,KAAKkoB,gBAC9C3nB,GAAac,GAAGrB,KAAK4E,SAAUoiB,IAAe5nB,GAASY,KAAK6M,SAASzN,KACvE,CAGA,eAAW7C,GACT,MAnDW,KAoDb,CAGA,IAAAsT,GAEE,MAAMsY,EAAYnoB,KAAK4E,SACvB,GAAI5E,KAAKooB,cAAcD,GACrB,OAIF,MAAME,EAASroB,KAAKsoB,iBACdC,EAAYF,EAAS9nB,GAAaqB,QAAQymB,EAAQ1B,GAAc,CACpE7mB,cAAeqoB,IACZ,KACa5nB,GAAaqB,QAAQumB,EAAWtB,GAAc,CAC9D/mB,cAAeuoB,IAEHrmB,kBAAoBumB,GAAaA,EAAUvmB,mBAGzDhC,KAAKwoB,YAAYH,EAAQF,GACzBnoB,KAAKyoB,UAAUN,EAAWE,GAC5B,CAGA,SAAAI,CAAUlpC,EAASmpC,GACZnpC,IAGLA,EAAQ8b,UAAU5E,IAAI+wB,IACtBxnB,KAAKyoB,UAAU5iB,GAAec,uBAAuBpnB,IAcrDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ4B,gBAAgB,YACxB5B,EAAQ6B,aAAa,iBAAiB,GACtC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASunC,GAAe,CAC3ChnB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU5E,IAAIixB,GAQtB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,WAAAe,CAAYjpC,EAASmpC,GACdnpC,IAGLA,EAAQ8b,UAAU1B,OAAO6tB,IACzBjoC,EAAQq7B,OACR5a,KAAKwoB,YAAY3iB,GAAec,uBAAuBpnB,IAcvDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ6B,aAAa,iBAAiB,GACtC7B,EAAQ6B,aAAa,WAAY,MACjC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASqnC,GAAgB,CAC5C9mB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU1B,OAAO+tB,GAQzB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,QAAA5a,CAASzN,GACP,IAAK,CAAC8nB,GAAgBC,GAAiBC,GAAcC,GAAgBC,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrG,OAEFsiB,EAAM0U,kBACN1U,EAAMkD,iBACN,MAAMyD,EAAW/F,KAAKkoB,eAAe/hC,QAAO5G,IAAY2b,GAAW3b,KACnE,IAAIqpC,EACJ,GAAI,CAACtB,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrC8rC,EAAoB7iB,EAAS3G,EAAMtiB,MAAQwqC,GAAW,EAAIvhB,EAASrV,OAAS,OACvE,CACL,MAAM8c,EAAS,CAAC2Z,GAAiBE,IAAgBjmB,SAAShC,EAAMtiB,KAChE8rC,EAAoB9qB,GAAqBiI,EAAU3G,EAAM7S,OAAQihB,GAAQ,EAC3E,CACIob,IACFA,EAAkBnW,MAAM,CACtBoW,eAAe,IAEjBb,GAAI1iB,oBAAoBsjB,GAAmB/Y,OAE/C,CACA,YAAAqY,GAEE,OAAOriB,GAAe1T,KAAK21B,GAAqB9nB,KAAKoS,QACvD,CACA,cAAAkW,GACE,OAAOtoB,KAAKkoB,eAAe/1B,MAAKzN,GAASsb,KAAKooB,cAAc1jC,MAAW,IACzE,CACA,qBAAAujC,CAAsBxjC,EAAQshB,GAC5B/F,KAAK8oB,yBAAyBrkC,EAAQ,OAAQ,WAC9C,IAAK,MAAMC,KAASqhB,EAClB/F,KAAK+oB,6BAA6BrkC,EAEtC,CACA,4BAAAqkC,CAA6BrkC,GAC3BA,EAAQsb,KAAKgpB,iBAAiBtkC,GAC9B,MAAMukC,EAAWjpB,KAAKooB,cAAc1jC,GAC9BwkC,EAAYlpB,KAAKmpB,iBAAiBzkC,GACxCA,EAAMtD,aAAa,gBAAiB6nC,GAChCC,IAAcxkC,GAChBsb,KAAK8oB,yBAAyBI,EAAW,OAAQ,gBAE9CD,GACHvkC,EAAMtD,aAAa,WAAY,MAEjC4e,KAAK8oB,yBAAyBpkC,EAAO,OAAQ,OAG7Csb,KAAKopB,mCAAmC1kC,EAC1C,CACA,kCAAA0kC,CAAmC1kC,GACjC,MAAM6H,EAASsZ,GAAec,uBAAuBjiB,GAChD6H,IAGLyT,KAAK8oB,yBAAyBv8B,EAAQ,OAAQ,YAC1C7H,EAAMyV,IACR6F,KAAK8oB,yBAAyBv8B,EAAQ,kBAAmB,GAAG7H,EAAMyV,MAEtE,CACA,eAAAwuB,CAAgBppC,EAAS8pC,GACvB,MAAMH,EAAYlpB,KAAKmpB,iBAAiB5pC,GACxC,IAAK2pC,EAAU7tB,UAAU7W,SApKN,YAqKjB,OAEF,MAAMmjB,EAAS,CAAC5N,EAAUoa,KACxB,MAAM50B,EAAUsmB,GAAeC,QAAQ/L,EAAUmvB,GAC7C3pC,GACFA,EAAQ8b,UAAUsM,OAAOwM,EAAWkV,EACtC,EAEF1hB,EAAOggB,GAA0BH,IACjC7f,EA5K2B,iBA4KI+f,IAC/BwB,EAAU9nC,aAAa,gBAAiBioC,EAC1C,CACA,wBAAAP,CAAyBvpC,EAASwC,EAAWpE,GACtC4B,EAAQgc,aAAaxZ,IACxBxC,EAAQ6B,aAAaW,EAAWpE,EAEpC,CACA,aAAAyqC,CAAc9Y,GACZ,OAAOA,EAAKjU,UAAU7W,SAASgjC,GACjC,CAGA,gBAAAwB,CAAiB1Z,GACf,OAAOA,EAAKtJ,QAAQ8hB,IAAuBxY,EAAOzJ,GAAeC,QAAQgiB,GAAqBxY,EAChG,CAGA,gBAAA6Z,CAAiB7Z,GACf,OAAOA,EAAKtU,QA5LO,gCA4LoBsU,CACzC,CAGA,sBAAO7S,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO29B,GAAI1iB,oBAAoBtF,MACrC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGhc,SAAU0hC,GAAsBc,IAAsB,SAAUzoB,GAC1E,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,OAGfgoB,GAAI1iB,oBAAoBtF,MAAM6P,MAChC,IAKAtP,GAAac,GAAGzhB,OAAQqnC,IAAqB,KAC3C,IAAK,MAAM1nC,KAAWsmB,GAAe1T,KAAK41B,IACxCC,GAAI1iB,oBAAoB/lB,EAC1B,IAMF4c,GAAmB6rB,IAcnB,MAEMhjB,GAAY,YACZskB,GAAkB,YAAYtkB,KAC9BukB,GAAiB,WAAWvkB,KAC5BwkB,GAAgB,UAAUxkB,KAC1BykB,GAAiB,WAAWzkB,KAC5B0kB,GAAa,OAAO1kB,KACpB2kB,GAAe,SAAS3kB,KACxB4kB,GAAa,OAAO5kB,KACpB6kB,GAAc,QAAQ7kB,KAEtB8kB,GAAkB,OAClBC,GAAkB,OAClBC,GAAqB,UACrBrmB,GAAc,CAClByc,UAAW,UACX6J,SAAU,UACV1J,MAAO,UAEH7c,GAAU,CACd0c,WAAW,EACX6J,UAAU,EACV1J,MAAO,KAOT,MAAM2J,WAAcxlB,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK4gB,SAAW,KAChB5gB,KAAKmqB,sBAAuB,EAC5BnqB,KAAKoqB,yBAA0B,EAC/BpqB,KAAKkhB,eACP,CAGA,kBAAWxd,GACT,OAAOA,EACT,CACA,sBAAWC,GACT,OAAOA,EACT,CACA,eAAWpH,GACT,MA/CS,OAgDX,CAGA,IAAAsT,GACoBtP,GAAaqB,QAAQ5B,KAAK4E,SAAUglB,IACxC5nB,mBAGdhC,KAAKqqB,gBACDrqB,KAAK6E,QAAQub,WACfpgB,KAAK4E,SAASvJ,UAAU5E,IA/CN,QAsDpBuJ,KAAK4E,SAASvJ,UAAU1B,OAAOmwB,IAC/BjuB,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIszB,GAAiBC,IAC7ChqB,KAAKmF,gBARY,KACfnF,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,IAC/BzpB,GAAaqB,QAAQ5B,KAAK4E,SAAUilB,IACpC7pB,KAAKsqB,oBAAoB,GAKGtqB,KAAK4E,SAAU5E,KAAK6E,QAAQub,WAC5D,CACA,IAAAxQ,GACO5P,KAAKuqB,YAGQhqB,GAAaqB,QAAQ5B,KAAK4E,SAAU8kB,IACxC1nB,mBAQdhC,KAAK4E,SAASvJ,UAAU5E,IAAIuzB,IAC5BhqB,KAAKmF,gBANY,KACfnF,KAAK4E,SAASvJ,UAAU5E,IAAIqzB,IAC5B9pB,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,GAAoBD,IACnDxpB,GAAaqB,QAAQ5B,KAAK4E,SAAU+kB,GAAa,GAGrB3pB,KAAK4E,SAAU5E,KAAK6E,QAAQub,YAC5D,CACA,OAAArb,GACE/E,KAAKqqB,gBACDrqB,KAAKuqB,WACPvqB,KAAK4E,SAASvJ,UAAU1B,OAAOowB,IAEjCplB,MAAMI,SACR,CACA,OAAAwlB,GACE,OAAOvqB,KAAK4E,SAASvJ,UAAU7W,SAASulC,GAC1C,CAIA,kBAAAO,GACOtqB,KAAK6E,QAAQolB,WAGdjqB,KAAKmqB,sBAAwBnqB,KAAKoqB,0BAGtCpqB,KAAK4gB,SAAW/iB,YAAW,KACzBmC,KAAK4P,MAAM,GACV5P,KAAK6E,QAAQ0b,QAClB,CACA,cAAAiK,CAAeprB,EAAOqrB,GACpB,OAAQrrB,EAAMqB,MACZ,IAAK,YACL,IAAK,WAEDT,KAAKmqB,qBAAuBM,EAC5B,MAEJ,IAAK,UACL,IAAK,WAEDzqB,KAAKoqB,wBAA0BK,EAIrC,GAAIA,EAEF,YADAzqB,KAAKqqB,gBAGP,MAAM5c,EAAcrO,EAAMU,cACtBE,KAAK4E,WAAa6I,GAAezN,KAAK4E,SAASpgB,SAASipB,IAG5DzN,KAAKsqB,oBACP,CACA,aAAApJ,GACE3gB,GAAac,GAAGrB,KAAK4E,SAAU0kB,IAAiBlqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACpFmB,GAAac,GAAGrB,KAAK4E,SAAU2kB,IAAgBnqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACnFmB,GAAac,GAAGrB,KAAK4E,SAAU4kB,IAAepqB,GAASY,KAAKwqB,eAAeprB,GAAO,KAClFmB,GAAac,GAAGrB,KAAK4E,SAAU6kB,IAAgBrqB,GAASY,KAAKwqB,eAAeprB,GAAO,IACrF,CACA,aAAAirB,GACEnd,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW,IAClB,CAGA,sBAAOnkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6/B,GAAM5kB,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KACf,CACF,GACF,ECr0IK,SAAS0qB,GAAcruB,GACD,WAAvBhX,SAASuX,WAAyBP,IACjChX,SAASyF,iBAAiB,mBAAoBuR,EACrD,CDy0IAwK,GAAqBqjB,IAMrB/tB,GAAmB+tB,IEpyInBQ,IAzCA,WAC2B,GAAGt4B,MAAM5U,KAChC6H,SAAS+a,iBAAiB,+BAETtd,KAAI,SAAU6nC,GAC/B,OAAO,IAAI,GAAkBA,EAAkB,CAC7CpK,MAAO,CAAE1Q,KAAM,IAAKD,KAAM,MAE9B,GACF,IAiCA8a,IA5BA,WACYrlC,SAASm9B,eAAe,mBAC9B13B,iBAAiB,SAAS,WAC5BzF,SAAS6G,KAAKT,UAAY,EAC1BpG,SAASC,gBAAgBmG,UAAY,CACvC,GACF,IAuBAi/B,IArBA,WACE,IAAIE,EAAMvlC,SAASm9B,eAAe,mBAC9BqI,EAASxlC,SACVylC,uBAAuB,aAAa,GACpCxnC,wBACH1D,OAAOkL,iBAAiB,UAAU,WAC5BkV,KAAK+qB,UAAY/qB,KAAKgrB,SAAWhrB,KAAKgrB,QAAUH,EAAOjtC,OACzDgtC,EAAI7pC,MAAMgxB,QAAU,QAEpB6Y,EAAI7pC,MAAMgxB,QAAU,OAEtB/R,KAAK+qB,UAAY/qB,KAAKgrB,OACxB,GACF,IAUAprC,OAAOqrC,UAAY","sources":["webpack://pydata_sphinx_theme/webpack/bootstrap","webpack://pydata_sphinx_theme/webpack/runtime/define property getters","webpack://pydata_sphinx_theme/webpack/runtime/hasOwnProperty shorthand","webpack://pydata_sphinx_theme/webpack/runtime/make namespace object","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/enums.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/instanceOf.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/applyStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getBasePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/math.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/userAgent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isLayoutViewport.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getBoundingClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getLayoutRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/contains.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getComputedStyle.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isTableElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getParentNode.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getOffsetParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getMainAxisFromPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/within.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergePaddingObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getFreshSideObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/expandToHashMap.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/arrow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getVariation.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/computeStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/eventListeners.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositeVariationPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScrollBarX.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/listScrollParents.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/rectToClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getClippingRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getViewportRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/detectOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/flip.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeAutoPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/hide.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/offset.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/popperOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/preventOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getAltAxis.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getCompositeRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getHTMLElementScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/orderModifiers.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/createPopper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/debounce.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergeByName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper-lite.js","webpack://pydata_sphinx_theme/./node_modules/bootstrap/dist/js/bootstrap.esm.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/mixin.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/bootstrap.js"],"sourcesContent":["// The require scope\nvar __webpack_require__ = {};\n\n","// define getter functions for harmony exports\n__webpack_require__.d = (exports, definition) => {\n\tfor(var key in definition) {\n\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n\t\t}\n\t}\n};","__webpack_require__.o = (obj, prop) => (Object.prototype.hasOwnProperty.call(obj, prop))","// define __esModule on exports\n__webpack_require__.r = (exports) => {\n\tif(typeof Symbol !== 'undefined' && Symbol.toStringTag) {\n\t\tObject.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });\n\t}\n\tObject.defineProperty(exports, '__esModule', { value: true });\n};","export var top = 'top';\nexport var bottom = 'bottom';\nexport var right = 'right';\nexport var left = 'left';\nexport var auto = 'auto';\nexport var basePlacements = [top, bottom, right, left];\nexport var start = 'start';\nexport var end = 'end';\nexport var clippingParents = 'clippingParents';\nexport var viewport = 'viewport';\nexport var popper = 'popper';\nexport var reference = 'reference';\nexport var variationPlacements = /*#__PURE__*/basePlacements.reduce(function (acc, placement) {\n return acc.concat([placement + \"-\" + start, placement + \"-\" + end]);\n}, []);\nexport var placements = /*#__PURE__*/[].concat(basePlacements, [auto]).reduce(function (acc, placement) {\n return acc.concat([placement, placement + \"-\" + start, placement + \"-\" + end]);\n}, []); // modifiers that need to read the DOM\n\nexport var beforeRead = 'beforeRead';\nexport var read = 'read';\nexport var afterRead = 'afterRead'; // pure-logic modifiers\n\nexport var beforeMain = 'beforeMain';\nexport var main = 'main';\nexport var afterMain = 'afterMain'; // modifier with the purpose to write to the DOM (or write into a framework state)\n\nexport var beforeWrite = 'beforeWrite';\nexport var write = 'write';\nexport var afterWrite = 'afterWrite';\nexport var modifierPhases = [beforeRead, read, afterRead, beforeMain, main, afterMain, beforeWrite, write, afterWrite];","export default function getNodeName(element) {\n return element ? (element.nodeName || '').toLowerCase() : null;\n}","export default function getWindow(node) {\n if (node == null) {\n return window;\n }\n\n if (node.toString() !== '[object Window]') {\n var ownerDocument = node.ownerDocument;\n return ownerDocument ? ownerDocument.defaultView || window : window;\n }\n\n return node;\n}","import getWindow from \"./getWindow.js\";\n\nfunction isElement(node) {\n var OwnElement = getWindow(node).Element;\n return node instanceof OwnElement || node instanceof Element;\n}\n\nfunction isHTMLElement(node) {\n var OwnElement = getWindow(node).HTMLElement;\n return node instanceof OwnElement || node instanceof HTMLElement;\n}\n\nfunction isShadowRoot(node) {\n // IE 11 has no ShadowRoot\n if (typeof ShadowRoot === 'undefined') {\n return false;\n }\n\n var OwnElement = getWindow(node).ShadowRoot;\n return node instanceof OwnElement || node instanceof ShadowRoot;\n}\n\nexport { isElement, isHTMLElement, isShadowRoot };","import getNodeName from \"../dom-utils/getNodeName.js\";\nimport { isHTMLElement } from \"../dom-utils/instanceOf.js\"; // This modifier takes the styles prepared by the `computeStyles` modifier\n// and applies them to the HTMLElements such as popper and arrow\n\nfunction applyStyles(_ref) {\n var state = _ref.state;\n Object.keys(state.elements).forEach(function (name) {\n var style = state.styles[name] || {};\n var attributes = state.attributes[name] || {};\n var element = state.elements[name]; // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n } // Flow doesn't support to extend this property, but it's the most\n // effective way to apply styles to an HTMLElement\n // $FlowFixMe[cannot-write]\n\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (name) {\n var value = attributes[name];\n\n if (value === false) {\n element.removeAttribute(name);\n } else {\n element.setAttribute(name, value === true ? '' : value);\n }\n });\n });\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state;\n var initialStyles = {\n popper: {\n position: state.options.strategy,\n left: '0',\n top: '0',\n margin: '0'\n },\n arrow: {\n position: 'absolute'\n },\n reference: {}\n };\n Object.assign(state.elements.popper.style, initialStyles.popper);\n state.styles = initialStyles;\n\n if (state.elements.arrow) {\n Object.assign(state.elements.arrow.style, initialStyles.arrow);\n }\n\n return function () {\n Object.keys(state.elements).forEach(function (name) {\n var element = state.elements[name];\n var attributes = state.attributes[name] || {};\n var styleProperties = Object.keys(state.styles.hasOwnProperty(name) ? state.styles[name] : initialStyles[name]); // Set all values to an empty string to unset them\n\n var style = styleProperties.reduce(function (style, property) {\n style[property] = '';\n return style;\n }, {}); // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n }\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (attribute) {\n element.removeAttribute(attribute);\n });\n });\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'applyStyles',\n enabled: true,\n phase: 'write',\n fn: applyStyles,\n effect: effect,\n requires: ['computeStyles']\n};","import { auto } from \"../enums.js\";\nexport default function getBasePlacement(placement) {\n return placement.split('-')[0];\n}","export var max = Math.max;\nexport var min = Math.min;\nexport var round = Math.round;","export default function getUAString() {\n var uaData = navigator.userAgentData;\n\n if (uaData != null && uaData.brands && Array.isArray(uaData.brands)) {\n return uaData.brands.map(function (item) {\n return item.brand + \"/\" + item.version;\n }).join(' ');\n }\n\n return navigator.userAgent;\n}","import getUAString from \"../utils/userAgent.js\";\nexport default function isLayoutViewport() {\n return !/^((?!chrome|android).)*safari/i.test(getUAString());\n}","import { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport { round } from \"../utils/math.js\";\nimport getWindow from \"./getWindow.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getBoundingClientRect(element, includeScale, isFixedStrategy) {\n if (includeScale === void 0) {\n includeScale = false;\n }\n\n if (isFixedStrategy === void 0) {\n isFixedStrategy = false;\n }\n\n var clientRect = element.getBoundingClientRect();\n var scaleX = 1;\n var scaleY = 1;\n\n if (includeScale && isHTMLElement(element)) {\n scaleX = element.offsetWidth > 0 ? round(clientRect.width) / element.offsetWidth || 1 : 1;\n scaleY = element.offsetHeight > 0 ? round(clientRect.height) / element.offsetHeight || 1 : 1;\n }\n\n var _ref = isElement(element) ? getWindow(element) : window,\n visualViewport = _ref.visualViewport;\n\n var addVisualOffsets = !isLayoutViewport() && isFixedStrategy;\n var x = (clientRect.left + (addVisualOffsets && visualViewport ? visualViewport.offsetLeft : 0)) / scaleX;\n var y = (clientRect.top + (addVisualOffsets && visualViewport ? visualViewport.offsetTop : 0)) / scaleY;\n var width = clientRect.width / scaleX;\n var height = clientRect.height / scaleY;\n return {\n width: width,\n height: height,\n top: y,\n right: x + width,\n bottom: y + height,\n left: x,\n x: x,\n y: y\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\"; // Returns the layout rect of an element relative to its offsetParent. Layout\n// means it doesn't take into account transforms.\n\nexport default function getLayoutRect(element) {\n var clientRect = getBoundingClientRect(element); // Use the clientRect sizes if it's not been transformed.\n // Fixes https://github.com/popperjs/popper-core/issues/1223\n\n var width = element.offsetWidth;\n var height = element.offsetHeight;\n\n if (Math.abs(clientRect.width - width) <= 1) {\n width = clientRect.width;\n }\n\n if (Math.abs(clientRect.height - height) <= 1) {\n height = clientRect.height;\n }\n\n return {\n x: element.offsetLeft,\n y: element.offsetTop,\n width: width,\n height: height\n };\n}","import { isShadowRoot } from \"./instanceOf.js\";\nexport default function contains(parent, child) {\n var rootNode = child.getRootNode && child.getRootNode(); // First, attempt with faster native method\n\n if (parent.contains(child)) {\n return true;\n } // then fallback to custom implementation with Shadow DOM support\n else if (rootNode && isShadowRoot(rootNode)) {\n var next = child;\n\n do {\n if (next && parent.isSameNode(next)) {\n return true;\n } // $FlowFixMe[prop-missing]: need a better way to handle this...\n\n\n next = next.parentNode || next.host;\n } while (next);\n } // Give up, the result is false\n\n\n return false;\n}","import getWindow from \"./getWindow.js\";\nexport default function getComputedStyle(element) {\n return getWindow(element).getComputedStyle(element);\n}","import getNodeName from \"./getNodeName.js\";\nexport default function isTableElement(element) {\n return ['table', 'td', 'th'].indexOf(getNodeName(element)) >= 0;\n}","import { isElement } from \"./instanceOf.js\";\nexport default function getDocumentElement(element) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return ((isElement(element) ? element.ownerDocument : // $FlowFixMe[prop-missing]\n element.document) || window.document).documentElement;\n}","import getNodeName from \"./getNodeName.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport { isShadowRoot } from \"./instanceOf.js\";\nexport default function getParentNode(element) {\n if (getNodeName(element) === 'html') {\n return element;\n }\n\n return (// this is a quicker (but less type safe) way to save quite some bytes from the bundle\n // $FlowFixMe[incompatible-return]\n // $FlowFixMe[prop-missing]\n element.assignedSlot || // step into the shadow DOM of the parent of a slotted node\n element.parentNode || ( // DOM Element detected\n isShadowRoot(element) ? element.host : null) || // ShadowRoot detected\n // $FlowFixMe[incompatible-call]: HTMLElement is a Node\n getDocumentElement(element) // fallback\n\n );\n}","import getWindow from \"./getWindow.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isHTMLElement, isShadowRoot } from \"./instanceOf.js\";\nimport isTableElement from \"./isTableElement.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getUAString from \"../utils/userAgent.js\";\n\nfunction getTrueOffsetParent(element) {\n if (!isHTMLElement(element) || // https://github.com/popperjs/popper-core/issues/837\n getComputedStyle(element).position === 'fixed') {\n return null;\n }\n\n return element.offsetParent;\n} // `.offsetParent` reports `null` for fixed elements, while absolute elements\n// return the containing block\n\n\nfunction getContainingBlock(element) {\n var isFirefox = /firefox/i.test(getUAString());\n var isIE = /Trident/i.test(getUAString());\n\n if (isIE && isHTMLElement(element)) {\n // In IE 9, 10 and 11 fixed elements containing block is always established by the viewport\n var elementCss = getComputedStyle(element);\n\n if (elementCss.position === 'fixed') {\n return null;\n }\n }\n\n var currentNode = getParentNode(element);\n\n if (isShadowRoot(currentNode)) {\n currentNode = currentNode.host;\n }\n\n while (isHTMLElement(currentNode) && ['html', 'body'].indexOf(getNodeName(currentNode)) < 0) {\n var css = getComputedStyle(currentNode); // This is non-exhaustive but covers the most common CSS properties that\n // create a containing block.\n // https://developer.mozilla.org/en-US/docs/Web/CSS/Containing_block#identifying_the_containing_block\n\n if (css.transform !== 'none' || css.perspective !== 'none' || css.contain === 'paint' || ['transform', 'perspective'].indexOf(css.willChange) !== -1 || isFirefox && css.willChange === 'filter' || isFirefox && css.filter && css.filter !== 'none') {\n return currentNode;\n } else {\n currentNode = currentNode.parentNode;\n }\n }\n\n return null;\n} // Gets the closest ancestor positioned element. Handles some edge cases,\n// such as table ancestors and cross browser bugs.\n\n\nexport default function getOffsetParent(element) {\n var window = getWindow(element);\n var offsetParent = getTrueOffsetParent(element);\n\n while (offsetParent && isTableElement(offsetParent) && getComputedStyle(offsetParent).position === 'static') {\n offsetParent = getTrueOffsetParent(offsetParent);\n }\n\n if (offsetParent && (getNodeName(offsetParent) === 'html' || getNodeName(offsetParent) === 'body' && getComputedStyle(offsetParent).position === 'static')) {\n return window;\n }\n\n return offsetParent || getContainingBlock(element) || window;\n}","export default function getMainAxisFromPlacement(placement) {\n return ['top', 'bottom'].indexOf(placement) >= 0 ? 'x' : 'y';\n}","import { max as mathMax, min as mathMin } from \"./math.js\";\nexport function within(min, value, max) {\n return mathMax(min, mathMin(value, max));\n}\nexport function withinMaxClamp(min, value, max) {\n var v = within(min, value, max);\n return v > max ? max : v;\n}","import getFreshSideObject from \"./getFreshSideObject.js\";\nexport default function mergePaddingObject(paddingObject) {\n return Object.assign({}, getFreshSideObject(), paddingObject);\n}","export default function getFreshSideObject() {\n return {\n top: 0,\n right: 0,\n bottom: 0,\n left: 0\n };\n}","export default function expandToHashMap(value, keys) {\n return keys.reduce(function (hashMap, key) {\n hashMap[key] = value;\n return hashMap;\n }, {});\n}","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport contains from \"../dom-utils/contains.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport { within } from \"../utils/within.js\";\nimport mergePaddingObject from \"../utils/mergePaddingObject.js\";\nimport expandToHashMap from \"../utils/expandToHashMap.js\";\nimport { left, right, basePlacements, top, bottom } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar toPaddingObject = function toPaddingObject(padding, state) {\n padding = typeof padding === 'function' ? padding(Object.assign({}, state.rects, {\n placement: state.placement\n })) : padding;\n return mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n};\n\nfunction arrow(_ref) {\n var _state$modifiersData$;\n\n var state = _ref.state,\n name = _ref.name,\n options = _ref.options;\n var arrowElement = state.elements.arrow;\n var popperOffsets = state.modifiersData.popperOffsets;\n var basePlacement = getBasePlacement(state.placement);\n var axis = getMainAxisFromPlacement(basePlacement);\n var isVertical = [left, right].indexOf(basePlacement) >= 0;\n var len = isVertical ? 'height' : 'width';\n\n if (!arrowElement || !popperOffsets) {\n return;\n }\n\n var paddingObject = toPaddingObject(options.padding, state);\n var arrowRect = getLayoutRect(arrowElement);\n var minProp = axis === 'y' ? top : left;\n var maxProp = axis === 'y' ? bottom : right;\n var endDiff = state.rects.reference[len] + state.rects.reference[axis] - popperOffsets[axis] - state.rects.popper[len];\n var startDiff = popperOffsets[axis] - state.rects.reference[axis];\n var arrowOffsetParent = getOffsetParent(arrowElement);\n var clientSize = arrowOffsetParent ? axis === 'y' ? arrowOffsetParent.clientHeight || 0 : arrowOffsetParent.clientWidth || 0 : 0;\n var centerToReference = endDiff / 2 - startDiff / 2; // Make sure the arrow doesn't overflow the popper if the center point is\n // outside of the popper bounds\n\n var min = paddingObject[minProp];\n var max = clientSize - arrowRect[len] - paddingObject[maxProp];\n var center = clientSize / 2 - arrowRect[len] / 2 + centerToReference;\n var offset = within(min, center, max); // Prevents breaking syntax highlighting...\n\n var axisProp = axis;\n state.modifiersData[name] = (_state$modifiersData$ = {}, _state$modifiersData$[axisProp] = offset, _state$modifiersData$.centerOffset = offset - center, _state$modifiersData$);\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state,\n options = _ref2.options;\n var _options$element = options.element,\n arrowElement = _options$element === void 0 ? '[data-popper-arrow]' : _options$element;\n\n if (arrowElement == null) {\n return;\n } // CSS selector\n\n\n if (typeof arrowElement === 'string') {\n arrowElement = state.elements.popper.querySelector(arrowElement);\n\n if (!arrowElement) {\n return;\n }\n }\n\n if (!contains(state.elements.popper, arrowElement)) {\n return;\n }\n\n state.elements.arrow = arrowElement;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'arrow',\n enabled: true,\n phase: 'main',\n fn: arrow,\n effect: effect,\n requires: ['popperOffsets'],\n requiresIfExists: ['preventOverflow']\n};","export default function getVariation(placement) {\n return placement.split('-')[1];\n}","import { top, left, right, bottom, end } from \"../enums.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getWindow from \"../dom-utils/getWindow.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getComputedStyle from \"../dom-utils/getComputedStyle.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport { round } from \"../utils/math.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar unsetSides = {\n top: 'auto',\n right: 'auto',\n bottom: 'auto',\n left: 'auto'\n}; // Round the offsets to the nearest suitable subpixel based on the DPR.\n// Zooming can change the DPR, but it seems to report a value that will\n// cleanly divide the values into the appropriate subpixels.\n\nfunction roundOffsetsByDPR(_ref, win) {\n var x = _ref.x,\n y = _ref.y;\n var dpr = win.devicePixelRatio || 1;\n return {\n x: round(x * dpr) / dpr || 0,\n y: round(y * dpr) / dpr || 0\n };\n}\n\nexport function mapToStyles(_ref2) {\n var _Object$assign2;\n\n var popper = _ref2.popper,\n popperRect = _ref2.popperRect,\n placement = _ref2.placement,\n variation = _ref2.variation,\n offsets = _ref2.offsets,\n position = _ref2.position,\n gpuAcceleration = _ref2.gpuAcceleration,\n adaptive = _ref2.adaptive,\n roundOffsets = _ref2.roundOffsets,\n isFixed = _ref2.isFixed;\n var _offsets$x = offsets.x,\n x = _offsets$x === void 0 ? 0 : _offsets$x,\n _offsets$y = offsets.y,\n y = _offsets$y === void 0 ? 0 : _offsets$y;\n\n var _ref3 = typeof roundOffsets === 'function' ? roundOffsets({\n x: x,\n y: y\n }) : {\n x: x,\n y: y\n };\n\n x = _ref3.x;\n y = _ref3.y;\n var hasX = offsets.hasOwnProperty('x');\n var hasY = offsets.hasOwnProperty('y');\n var sideX = left;\n var sideY = top;\n var win = window;\n\n if (adaptive) {\n var offsetParent = getOffsetParent(popper);\n var heightProp = 'clientHeight';\n var widthProp = 'clientWidth';\n\n if (offsetParent === getWindow(popper)) {\n offsetParent = getDocumentElement(popper);\n\n if (getComputedStyle(offsetParent).position !== 'static' && position === 'absolute') {\n heightProp = 'scrollHeight';\n widthProp = 'scrollWidth';\n }\n } // $FlowFixMe[incompatible-cast]: force type refinement, we compare offsetParent with window above, but Flow doesn't detect it\n\n\n offsetParent = offsetParent;\n\n if (placement === top || (placement === left || placement === right) && variation === end) {\n sideY = bottom;\n var offsetY = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.height : // $FlowFixMe[prop-missing]\n offsetParent[heightProp];\n y -= offsetY - popperRect.height;\n y *= gpuAcceleration ? 1 : -1;\n }\n\n if (placement === left || (placement === top || placement === bottom) && variation === end) {\n sideX = right;\n var offsetX = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.width : // $FlowFixMe[prop-missing]\n offsetParent[widthProp];\n x -= offsetX - popperRect.width;\n x *= gpuAcceleration ? 1 : -1;\n }\n }\n\n var commonStyles = Object.assign({\n position: position\n }, adaptive && unsetSides);\n\n var _ref4 = roundOffsets === true ? roundOffsetsByDPR({\n x: x,\n y: y\n }, getWindow(popper)) : {\n x: x,\n y: y\n };\n\n x = _ref4.x;\n y = _ref4.y;\n\n if (gpuAcceleration) {\n var _Object$assign;\n\n return Object.assign({}, commonStyles, (_Object$assign = {}, _Object$assign[sideY] = hasY ? '0' : '', _Object$assign[sideX] = hasX ? '0' : '', _Object$assign.transform = (win.devicePixelRatio || 1) <= 1 ? \"translate(\" + x + \"px, \" + y + \"px)\" : \"translate3d(\" + x + \"px, \" + y + \"px, 0)\", _Object$assign));\n }\n\n return Object.assign({}, commonStyles, (_Object$assign2 = {}, _Object$assign2[sideY] = hasY ? y + \"px\" : '', _Object$assign2[sideX] = hasX ? x + \"px\" : '', _Object$assign2.transform = '', _Object$assign2));\n}\n\nfunction computeStyles(_ref5) {\n var state = _ref5.state,\n options = _ref5.options;\n var _options$gpuAccelerat = options.gpuAcceleration,\n gpuAcceleration = _options$gpuAccelerat === void 0 ? true : _options$gpuAccelerat,\n _options$adaptive = options.adaptive,\n adaptive = _options$adaptive === void 0 ? true : _options$adaptive,\n _options$roundOffsets = options.roundOffsets,\n roundOffsets = _options$roundOffsets === void 0 ? true : _options$roundOffsets;\n var commonStyles = {\n placement: getBasePlacement(state.placement),\n variation: getVariation(state.placement),\n popper: state.elements.popper,\n popperRect: state.rects.popper,\n gpuAcceleration: gpuAcceleration,\n isFixed: state.options.strategy === 'fixed'\n };\n\n if (state.modifiersData.popperOffsets != null) {\n state.styles.popper = Object.assign({}, state.styles.popper, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.popperOffsets,\n position: state.options.strategy,\n adaptive: adaptive,\n roundOffsets: roundOffsets\n })));\n }\n\n if (state.modifiersData.arrow != null) {\n state.styles.arrow = Object.assign({}, state.styles.arrow, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.arrow,\n position: 'absolute',\n adaptive: false,\n roundOffsets: roundOffsets\n })));\n }\n\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-placement': state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'computeStyles',\n enabled: true,\n phase: 'beforeWrite',\n fn: computeStyles,\n data: {}\n};","import getWindow from \"../dom-utils/getWindow.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar passive = {\n passive: true\n};\n\nfunction effect(_ref) {\n var state = _ref.state,\n instance = _ref.instance,\n options = _ref.options;\n var _options$scroll = options.scroll,\n scroll = _options$scroll === void 0 ? true : _options$scroll,\n _options$resize = options.resize,\n resize = _options$resize === void 0 ? true : _options$resize;\n var window = getWindow(state.elements.popper);\n var scrollParents = [].concat(state.scrollParents.reference, state.scrollParents.popper);\n\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.addEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.addEventListener('resize', instance.update, passive);\n }\n\n return function () {\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.removeEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.removeEventListener('resize', instance.update, passive);\n }\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'eventListeners',\n enabled: true,\n phase: 'write',\n fn: function fn() {},\n effect: effect,\n data: {}\n};","var hash = {\n left: 'right',\n right: 'left',\n bottom: 'top',\n top: 'bottom'\n};\nexport default function getOppositePlacement(placement) {\n return placement.replace(/left|right|bottom|top/g, function (matched) {\n return hash[matched];\n });\n}","var hash = {\n start: 'end',\n end: 'start'\n};\nexport default function getOppositeVariationPlacement(placement) {\n return placement.replace(/start|end/g, function (matched) {\n return hash[matched];\n });\n}","import getWindow from \"./getWindow.js\";\nexport default function getWindowScroll(node) {\n var win = getWindow(node);\n var scrollLeft = win.pageXOffset;\n var scrollTop = win.pageYOffset;\n return {\n scrollLeft: scrollLeft,\n scrollTop: scrollTop\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nexport default function getWindowScrollBarX(element) {\n // If has a CSS width greater than the viewport, then this will be\n // incorrect for RTL.\n // Popper 1 is broken in this case and never had a bug report so let's assume\n // it's not an issue. I don't think anyone ever specifies width on \n // anyway.\n // Browsers where the left scrollbar doesn't cause an issue report `0` for\n // this (e.g. Edge 2019, IE11, Safari)\n return getBoundingClientRect(getDocumentElement(element)).left + getWindowScroll(element).scrollLeft;\n}","import getComputedStyle from \"./getComputedStyle.js\";\nexport default function isScrollParent(element) {\n // Firefox wants us to check `-x` and `-y` variations as well\n var _getComputedStyle = getComputedStyle(element),\n overflow = _getComputedStyle.overflow,\n overflowX = _getComputedStyle.overflowX,\n overflowY = _getComputedStyle.overflowY;\n\n return /auto|scroll|overlay|hidden/.test(overflow + overflowY + overflowX);\n}","import getParentNode from \"./getParentNode.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nexport default function getScrollParent(node) {\n if (['html', 'body', '#document'].indexOf(getNodeName(node)) >= 0) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return node.ownerDocument.body;\n }\n\n if (isHTMLElement(node) && isScrollParent(node)) {\n return node;\n }\n\n return getScrollParent(getParentNode(node));\n}","import getScrollParent from \"./getScrollParent.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getWindow from \"./getWindow.js\";\nimport isScrollParent from \"./isScrollParent.js\";\n/*\ngiven a DOM element, return the list of all scroll parents, up the list of ancesors\nuntil we get to the top window object. This list is what we attach scroll listeners\nto, because if any of these parent elements scroll, we'll need to re-calculate the\nreference element's position.\n*/\n\nexport default function listScrollParents(element, list) {\n var _element$ownerDocumen;\n\n if (list === void 0) {\n list = [];\n }\n\n var scrollParent = getScrollParent(element);\n var isBody = scrollParent === ((_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body);\n var win = getWindow(scrollParent);\n var target = isBody ? [win].concat(win.visualViewport || [], isScrollParent(scrollParent) ? scrollParent : []) : scrollParent;\n var updatedList = list.concat(target);\n return isBody ? updatedList : // $FlowFixMe[incompatible-call]: isBody tells us target will be an HTMLElement here\n updatedList.concat(listScrollParents(getParentNode(target)));\n}","export default function rectToClientRect(rect) {\n return Object.assign({}, rect, {\n left: rect.x,\n top: rect.y,\n right: rect.x + rect.width,\n bottom: rect.y + rect.height\n });\n}","import { viewport } from \"../enums.js\";\nimport getViewportRect from \"./getViewportRect.js\";\nimport getDocumentRect from \"./getDocumentRect.js\";\nimport listScrollParents from \"./listScrollParents.js\";\nimport getOffsetParent from \"./getOffsetParent.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport contains from \"./contains.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport rectToClientRect from \"../utils/rectToClientRect.js\";\nimport { max, min } from \"../utils/math.js\";\n\nfunction getInnerBoundingClientRect(element, strategy) {\n var rect = getBoundingClientRect(element, false, strategy === 'fixed');\n rect.top = rect.top + element.clientTop;\n rect.left = rect.left + element.clientLeft;\n rect.bottom = rect.top + element.clientHeight;\n rect.right = rect.left + element.clientWidth;\n rect.width = element.clientWidth;\n rect.height = element.clientHeight;\n rect.x = rect.left;\n rect.y = rect.top;\n return rect;\n}\n\nfunction getClientRectFromMixedType(element, clippingParent, strategy) {\n return clippingParent === viewport ? rectToClientRect(getViewportRect(element, strategy)) : isElement(clippingParent) ? getInnerBoundingClientRect(clippingParent, strategy) : rectToClientRect(getDocumentRect(getDocumentElement(element)));\n} // A \"clipping parent\" is an overflowable container with the characteristic of\n// clipping (or hiding) overflowing elements with a position different from\n// `initial`\n\n\nfunction getClippingParents(element) {\n var clippingParents = listScrollParents(getParentNode(element));\n var canEscapeClipping = ['absolute', 'fixed'].indexOf(getComputedStyle(element).position) >= 0;\n var clipperElement = canEscapeClipping && isHTMLElement(element) ? getOffsetParent(element) : element;\n\n if (!isElement(clipperElement)) {\n return [];\n } // $FlowFixMe[incompatible-return]: https://github.com/facebook/flow/issues/1414\n\n\n return clippingParents.filter(function (clippingParent) {\n return isElement(clippingParent) && contains(clippingParent, clipperElement) && getNodeName(clippingParent) !== 'body';\n });\n} // Gets the maximum area that the element is visible in due to any number of\n// clipping parents\n\n\nexport default function getClippingRect(element, boundary, rootBoundary, strategy) {\n var mainClippingParents = boundary === 'clippingParents' ? getClippingParents(element) : [].concat(boundary);\n var clippingParents = [].concat(mainClippingParents, [rootBoundary]);\n var firstClippingParent = clippingParents[0];\n var clippingRect = clippingParents.reduce(function (accRect, clippingParent) {\n var rect = getClientRectFromMixedType(element, clippingParent, strategy);\n accRect.top = max(rect.top, accRect.top);\n accRect.right = min(rect.right, accRect.right);\n accRect.bottom = min(rect.bottom, accRect.bottom);\n accRect.left = max(rect.left, accRect.left);\n return accRect;\n }, getClientRectFromMixedType(element, firstClippingParent, strategy));\n clippingRect.width = clippingRect.right - clippingRect.left;\n clippingRect.height = clippingRect.bottom - clippingRect.top;\n clippingRect.x = clippingRect.left;\n clippingRect.y = clippingRect.top;\n return clippingRect;\n}","import getWindow from \"./getWindow.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getViewportRect(element, strategy) {\n var win = getWindow(element);\n var html = getDocumentElement(element);\n var visualViewport = win.visualViewport;\n var width = html.clientWidth;\n var height = html.clientHeight;\n var x = 0;\n var y = 0;\n\n if (visualViewport) {\n width = visualViewport.width;\n height = visualViewport.height;\n var layoutViewport = isLayoutViewport();\n\n if (layoutViewport || !layoutViewport && strategy === 'fixed') {\n x = visualViewport.offsetLeft;\n y = visualViewport.offsetTop;\n }\n }\n\n return {\n width: width,\n height: height,\n x: x + getWindowScrollBarX(element),\n y: y\n };\n}","import getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nimport { max } from \"../utils/math.js\"; // Gets the entire size of the scrollable document area, even extending outside\n// of the `` and `` rect bounds if horizontally scrollable\n\nexport default function getDocumentRect(element) {\n var _element$ownerDocumen;\n\n var html = getDocumentElement(element);\n var winScroll = getWindowScroll(element);\n var body = (_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body;\n var width = max(html.scrollWidth, html.clientWidth, body ? body.scrollWidth : 0, body ? body.clientWidth : 0);\n var height = max(html.scrollHeight, html.clientHeight, body ? body.scrollHeight : 0, body ? body.clientHeight : 0);\n var x = -winScroll.scrollLeft + getWindowScrollBarX(element);\n var y = -winScroll.scrollTop;\n\n if (getComputedStyle(body || html).direction === 'rtl') {\n x += max(html.clientWidth, body ? body.clientWidth : 0) - width;\n }\n\n return {\n width: width,\n height: height,\n x: x,\n y: y\n };\n}","import getBasePlacement from \"./getBasePlacement.js\";\nimport getVariation from \"./getVariation.js\";\nimport getMainAxisFromPlacement from \"./getMainAxisFromPlacement.js\";\nimport { top, right, bottom, left, start, end } from \"../enums.js\";\nexport default function computeOffsets(_ref) {\n var reference = _ref.reference,\n element = _ref.element,\n placement = _ref.placement;\n var basePlacement = placement ? getBasePlacement(placement) : null;\n var variation = placement ? getVariation(placement) : null;\n var commonX = reference.x + reference.width / 2 - element.width / 2;\n var commonY = reference.y + reference.height / 2 - element.height / 2;\n var offsets;\n\n switch (basePlacement) {\n case top:\n offsets = {\n x: commonX,\n y: reference.y - element.height\n };\n break;\n\n case bottom:\n offsets = {\n x: commonX,\n y: reference.y + reference.height\n };\n break;\n\n case right:\n offsets = {\n x: reference.x + reference.width,\n y: commonY\n };\n break;\n\n case left:\n offsets = {\n x: reference.x - element.width,\n y: commonY\n };\n break;\n\n default:\n offsets = {\n x: reference.x,\n y: reference.y\n };\n }\n\n var mainAxis = basePlacement ? getMainAxisFromPlacement(basePlacement) : null;\n\n if (mainAxis != null) {\n var len = mainAxis === 'y' ? 'height' : 'width';\n\n switch (variation) {\n case start:\n offsets[mainAxis] = offsets[mainAxis] - (reference[len] / 2 - element[len] / 2);\n break;\n\n case end:\n offsets[mainAxis] = offsets[mainAxis] + (reference[len] / 2 - element[len] / 2);\n break;\n\n default:\n }\n }\n\n return offsets;\n}","import getClippingRect from \"../dom-utils/getClippingRect.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getBoundingClientRect from \"../dom-utils/getBoundingClientRect.js\";\nimport computeOffsets from \"./computeOffsets.js\";\nimport rectToClientRect from \"./rectToClientRect.js\";\nimport { clippingParents, reference, popper, bottom, top, right, basePlacements, viewport } from \"../enums.js\";\nimport { isElement } from \"../dom-utils/instanceOf.js\";\nimport mergePaddingObject from \"./mergePaddingObject.js\";\nimport expandToHashMap from \"./expandToHashMap.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport default function detectOverflow(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n _options$placement = _options.placement,\n placement = _options$placement === void 0 ? state.placement : _options$placement,\n _options$strategy = _options.strategy,\n strategy = _options$strategy === void 0 ? state.strategy : _options$strategy,\n _options$boundary = _options.boundary,\n boundary = _options$boundary === void 0 ? clippingParents : _options$boundary,\n _options$rootBoundary = _options.rootBoundary,\n rootBoundary = _options$rootBoundary === void 0 ? viewport : _options$rootBoundary,\n _options$elementConte = _options.elementContext,\n elementContext = _options$elementConte === void 0 ? popper : _options$elementConte,\n _options$altBoundary = _options.altBoundary,\n altBoundary = _options$altBoundary === void 0 ? false : _options$altBoundary,\n _options$padding = _options.padding,\n padding = _options$padding === void 0 ? 0 : _options$padding;\n var paddingObject = mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n var altContext = elementContext === popper ? reference : popper;\n var popperRect = state.rects.popper;\n var element = state.elements[altBoundary ? altContext : elementContext];\n var clippingClientRect = getClippingRect(isElement(element) ? element : element.contextElement || getDocumentElement(state.elements.popper), boundary, rootBoundary, strategy);\n var referenceClientRect = getBoundingClientRect(state.elements.reference);\n var popperOffsets = computeOffsets({\n reference: referenceClientRect,\n element: popperRect,\n strategy: 'absolute',\n placement: placement\n });\n var popperClientRect = rectToClientRect(Object.assign({}, popperRect, popperOffsets));\n var elementClientRect = elementContext === popper ? popperClientRect : referenceClientRect; // positive = overflowing the clipping rect\n // 0 or negative = within the clipping rect\n\n var overflowOffsets = {\n top: clippingClientRect.top - elementClientRect.top + paddingObject.top,\n bottom: elementClientRect.bottom - clippingClientRect.bottom + paddingObject.bottom,\n left: clippingClientRect.left - elementClientRect.left + paddingObject.left,\n right: elementClientRect.right - clippingClientRect.right + paddingObject.right\n };\n var offsetData = state.modifiersData.offset; // Offsets can be applied only to the popper element\n\n if (elementContext === popper && offsetData) {\n var offset = offsetData[placement];\n Object.keys(overflowOffsets).forEach(function (key) {\n var multiply = [right, bottom].indexOf(key) >= 0 ? 1 : -1;\n var axis = [top, bottom].indexOf(key) >= 0 ? 'y' : 'x';\n overflowOffsets[key] += offset[axis] * multiply;\n });\n }\n\n return overflowOffsets;\n}","import getOppositePlacement from \"../utils/getOppositePlacement.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getOppositeVariationPlacement from \"../utils/getOppositeVariationPlacement.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport computeAutoPlacement from \"../utils/computeAutoPlacement.js\";\nimport { bottom, top, start, right, left, auto } from \"../enums.js\";\nimport getVariation from \"../utils/getVariation.js\"; // eslint-disable-next-line import/no-unused-modules\n\nfunction getExpandedFallbackPlacements(placement) {\n if (getBasePlacement(placement) === auto) {\n return [];\n }\n\n var oppositePlacement = getOppositePlacement(placement);\n return [getOppositeVariationPlacement(placement), oppositePlacement, getOppositeVariationPlacement(oppositePlacement)];\n}\n\nfunction flip(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n\n if (state.modifiersData[name]._skip) {\n return;\n }\n\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? true : _options$altAxis,\n specifiedFallbackPlacements = options.fallbackPlacements,\n padding = options.padding,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n _options$flipVariatio = options.flipVariations,\n flipVariations = _options$flipVariatio === void 0 ? true : _options$flipVariatio,\n allowedAutoPlacements = options.allowedAutoPlacements;\n var preferredPlacement = state.options.placement;\n var basePlacement = getBasePlacement(preferredPlacement);\n var isBasePlacement = basePlacement === preferredPlacement;\n var fallbackPlacements = specifiedFallbackPlacements || (isBasePlacement || !flipVariations ? [getOppositePlacement(preferredPlacement)] : getExpandedFallbackPlacements(preferredPlacement));\n var placements = [preferredPlacement].concat(fallbackPlacements).reduce(function (acc, placement) {\n return acc.concat(getBasePlacement(placement) === auto ? computeAutoPlacement(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n flipVariations: flipVariations,\n allowedAutoPlacements: allowedAutoPlacements\n }) : placement);\n }, []);\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var checksMap = new Map();\n var makeFallbackChecks = true;\n var firstFittingPlacement = placements[0];\n\n for (var i = 0; i < placements.length; i++) {\n var placement = placements[i];\n\n var _basePlacement = getBasePlacement(placement);\n\n var isStartVariation = getVariation(placement) === start;\n var isVertical = [top, bottom].indexOf(_basePlacement) >= 0;\n var len = isVertical ? 'width' : 'height';\n var overflow = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n altBoundary: altBoundary,\n padding: padding\n });\n var mainVariationSide = isVertical ? isStartVariation ? right : left : isStartVariation ? bottom : top;\n\n if (referenceRect[len] > popperRect[len]) {\n mainVariationSide = getOppositePlacement(mainVariationSide);\n }\n\n var altVariationSide = getOppositePlacement(mainVariationSide);\n var checks = [];\n\n if (checkMainAxis) {\n checks.push(overflow[_basePlacement] <= 0);\n }\n\n if (checkAltAxis) {\n checks.push(overflow[mainVariationSide] <= 0, overflow[altVariationSide] <= 0);\n }\n\n if (checks.every(function (check) {\n return check;\n })) {\n firstFittingPlacement = placement;\n makeFallbackChecks = false;\n break;\n }\n\n checksMap.set(placement, checks);\n }\n\n if (makeFallbackChecks) {\n // `2` may be desired in some cases – research later\n var numberOfChecks = flipVariations ? 3 : 1;\n\n var _loop = function _loop(_i) {\n var fittingPlacement = placements.find(function (placement) {\n var checks = checksMap.get(placement);\n\n if (checks) {\n return checks.slice(0, _i).every(function (check) {\n return check;\n });\n }\n });\n\n if (fittingPlacement) {\n firstFittingPlacement = fittingPlacement;\n return \"break\";\n }\n };\n\n for (var _i = numberOfChecks; _i > 0; _i--) {\n var _ret = _loop(_i);\n\n if (_ret === \"break\") break;\n }\n }\n\n if (state.placement !== firstFittingPlacement) {\n state.modifiersData[name]._skip = true;\n state.placement = firstFittingPlacement;\n state.reset = true;\n }\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'flip',\n enabled: true,\n phase: 'main',\n fn: flip,\n requiresIfExists: ['offset'],\n data: {\n _skip: false\n }\n};","import getVariation from \"./getVariation.js\";\nimport { variationPlacements, basePlacements, placements as allPlacements } from \"../enums.js\";\nimport detectOverflow from \"./detectOverflow.js\";\nimport getBasePlacement from \"./getBasePlacement.js\";\nexport default function computeAutoPlacement(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n placement = _options.placement,\n boundary = _options.boundary,\n rootBoundary = _options.rootBoundary,\n padding = _options.padding,\n flipVariations = _options.flipVariations,\n _options$allowedAutoP = _options.allowedAutoPlacements,\n allowedAutoPlacements = _options$allowedAutoP === void 0 ? allPlacements : _options$allowedAutoP;\n var variation = getVariation(placement);\n var placements = variation ? flipVariations ? variationPlacements : variationPlacements.filter(function (placement) {\n return getVariation(placement) === variation;\n }) : basePlacements;\n var allowedPlacements = placements.filter(function (placement) {\n return allowedAutoPlacements.indexOf(placement) >= 0;\n });\n\n if (allowedPlacements.length === 0) {\n allowedPlacements = placements;\n } // $FlowFixMe[incompatible-type]: Flow seems to have problems with two array unions...\n\n\n var overflows = allowedPlacements.reduce(function (acc, placement) {\n acc[placement] = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding\n })[getBasePlacement(placement)];\n return acc;\n }, {});\n return Object.keys(overflows).sort(function (a, b) {\n return overflows[a] - overflows[b];\n });\n}","import { top, bottom, left, right } from \"../enums.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\n\nfunction getSideOffsets(overflow, rect, preventedOffsets) {\n if (preventedOffsets === void 0) {\n preventedOffsets = {\n x: 0,\n y: 0\n };\n }\n\n return {\n top: overflow.top - rect.height - preventedOffsets.y,\n right: overflow.right - rect.width + preventedOffsets.x,\n bottom: overflow.bottom - rect.height + preventedOffsets.y,\n left: overflow.left - rect.width - preventedOffsets.x\n };\n}\n\nfunction isAnySideFullyClipped(overflow) {\n return [top, right, bottom, left].some(function (side) {\n return overflow[side] >= 0;\n });\n}\n\nfunction hide(_ref) {\n var state = _ref.state,\n name = _ref.name;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var preventedOffsets = state.modifiersData.preventOverflow;\n var referenceOverflow = detectOverflow(state, {\n elementContext: 'reference'\n });\n var popperAltOverflow = detectOverflow(state, {\n altBoundary: true\n });\n var referenceClippingOffsets = getSideOffsets(referenceOverflow, referenceRect);\n var popperEscapeOffsets = getSideOffsets(popperAltOverflow, popperRect, preventedOffsets);\n var isReferenceHidden = isAnySideFullyClipped(referenceClippingOffsets);\n var hasPopperEscaped = isAnySideFullyClipped(popperEscapeOffsets);\n state.modifiersData[name] = {\n referenceClippingOffsets: referenceClippingOffsets,\n popperEscapeOffsets: popperEscapeOffsets,\n isReferenceHidden: isReferenceHidden,\n hasPopperEscaped: hasPopperEscaped\n };\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-reference-hidden': isReferenceHidden,\n 'data-popper-escaped': hasPopperEscaped\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'hide',\n enabled: true,\n phase: 'main',\n requiresIfExists: ['preventOverflow'],\n fn: hide\n};","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport { top, left, right, placements } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport function distanceAndSkiddingToXY(placement, rects, offset) {\n var basePlacement = getBasePlacement(placement);\n var invertDistance = [left, top].indexOf(basePlacement) >= 0 ? -1 : 1;\n\n var _ref = typeof offset === 'function' ? offset(Object.assign({}, rects, {\n placement: placement\n })) : offset,\n skidding = _ref[0],\n distance = _ref[1];\n\n skidding = skidding || 0;\n distance = (distance || 0) * invertDistance;\n return [left, right].indexOf(basePlacement) >= 0 ? {\n x: distance,\n y: skidding\n } : {\n x: skidding,\n y: distance\n };\n}\n\nfunction offset(_ref2) {\n var state = _ref2.state,\n options = _ref2.options,\n name = _ref2.name;\n var _options$offset = options.offset,\n offset = _options$offset === void 0 ? [0, 0] : _options$offset;\n var data = placements.reduce(function (acc, placement) {\n acc[placement] = distanceAndSkiddingToXY(placement, state.rects, offset);\n return acc;\n }, {});\n var _data$state$placement = data[state.placement],\n x = _data$state$placement.x,\n y = _data$state$placement.y;\n\n if (state.modifiersData.popperOffsets != null) {\n state.modifiersData.popperOffsets.x += x;\n state.modifiersData.popperOffsets.y += y;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'offset',\n enabled: true,\n phase: 'main',\n requires: ['popperOffsets'],\n fn: offset\n};","import computeOffsets from \"../utils/computeOffsets.js\";\n\nfunction popperOffsets(_ref) {\n var state = _ref.state,\n name = _ref.name;\n // Offsets are the actual position the popper needs to have to be\n // properly positioned near its reference element\n // This is the most basic placement, and will be adjusted by\n // the modifiers in the next step\n state.modifiersData[name] = computeOffsets({\n reference: state.rects.reference,\n element: state.rects.popper,\n strategy: 'absolute',\n placement: state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'popperOffsets',\n enabled: true,\n phase: 'read',\n fn: popperOffsets,\n data: {}\n};","import { top, left, right, bottom, start } from \"../enums.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport getAltAxis from \"../utils/getAltAxis.js\";\nimport { within, withinMaxClamp } from \"../utils/within.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport getFreshSideObject from \"../utils/getFreshSideObject.js\";\nimport { min as mathMin, max as mathMax } from \"../utils/math.js\";\n\nfunction preventOverflow(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? false : _options$altAxis,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n padding = options.padding,\n _options$tether = options.tether,\n tether = _options$tether === void 0 ? true : _options$tether,\n _options$tetherOffset = options.tetherOffset,\n tetherOffset = _options$tetherOffset === void 0 ? 0 : _options$tetherOffset;\n var overflow = detectOverflow(state, {\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n altBoundary: altBoundary\n });\n var basePlacement = getBasePlacement(state.placement);\n var variation = getVariation(state.placement);\n var isBasePlacement = !variation;\n var mainAxis = getMainAxisFromPlacement(basePlacement);\n var altAxis = getAltAxis(mainAxis);\n var popperOffsets = state.modifiersData.popperOffsets;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var tetherOffsetValue = typeof tetherOffset === 'function' ? tetherOffset(Object.assign({}, state.rects, {\n placement: state.placement\n })) : tetherOffset;\n var normalizedTetherOffsetValue = typeof tetherOffsetValue === 'number' ? {\n mainAxis: tetherOffsetValue,\n altAxis: tetherOffsetValue\n } : Object.assign({\n mainAxis: 0,\n altAxis: 0\n }, tetherOffsetValue);\n var offsetModifierState = state.modifiersData.offset ? state.modifiersData.offset[state.placement] : null;\n var data = {\n x: 0,\n y: 0\n };\n\n if (!popperOffsets) {\n return;\n }\n\n if (checkMainAxis) {\n var _offsetModifierState$;\n\n var mainSide = mainAxis === 'y' ? top : left;\n var altSide = mainAxis === 'y' ? bottom : right;\n var len = mainAxis === 'y' ? 'height' : 'width';\n var offset = popperOffsets[mainAxis];\n var min = offset + overflow[mainSide];\n var max = offset - overflow[altSide];\n var additive = tether ? -popperRect[len] / 2 : 0;\n var minLen = variation === start ? referenceRect[len] : popperRect[len];\n var maxLen = variation === start ? -popperRect[len] : -referenceRect[len]; // We need to include the arrow in the calculation so the arrow doesn't go\n // outside the reference bounds\n\n var arrowElement = state.elements.arrow;\n var arrowRect = tether && arrowElement ? getLayoutRect(arrowElement) : {\n width: 0,\n height: 0\n };\n var arrowPaddingObject = state.modifiersData['arrow#persistent'] ? state.modifiersData['arrow#persistent'].padding : getFreshSideObject();\n var arrowPaddingMin = arrowPaddingObject[mainSide];\n var arrowPaddingMax = arrowPaddingObject[altSide]; // If the reference length is smaller than the arrow length, we don't want\n // to include its full size in the calculation. If the reference is small\n // and near the edge of a boundary, the popper can overflow even if the\n // reference is not overflowing as well (e.g. virtual elements with no\n // width or height)\n\n var arrowLen = within(0, referenceRect[len], arrowRect[len]);\n var minOffset = isBasePlacement ? referenceRect[len] / 2 - additive - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis : minLen - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis;\n var maxOffset = isBasePlacement ? -referenceRect[len] / 2 + additive + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis : maxLen + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis;\n var arrowOffsetParent = state.elements.arrow && getOffsetParent(state.elements.arrow);\n var clientOffset = arrowOffsetParent ? mainAxis === 'y' ? arrowOffsetParent.clientTop || 0 : arrowOffsetParent.clientLeft || 0 : 0;\n var offsetModifierValue = (_offsetModifierState$ = offsetModifierState == null ? void 0 : offsetModifierState[mainAxis]) != null ? _offsetModifierState$ : 0;\n var tetherMin = offset + minOffset - offsetModifierValue - clientOffset;\n var tetherMax = offset + maxOffset - offsetModifierValue;\n var preventedOffset = within(tether ? mathMin(min, tetherMin) : min, offset, tether ? mathMax(max, tetherMax) : max);\n popperOffsets[mainAxis] = preventedOffset;\n data[mainAxis] = preventedOffset - offset;\n }\n\n if (checkAltAxis) {\n var _offsetModifierState$2;\n\n var _mainSide = mainAxis === 'x' ? top : left;\n\n var _altSide = mainAxis === 'x' ? bottom : right;\n\n var _offset = popperOffsets[altAxis];\n\n var _len = altAxis === 'y' ? 'height' : 'width';\n\n var _min = _offset + overflow[_mainSide];\n\n var _max = _offset - overflow[_altSide];\n\n var isOriginSide = [top, left].indexOf(basePlacement) !== -1;\n\n var _offsetModifierValue = (_offsetModifierState$2 = offsetModifierState == null ? void 0 : offsetModifierState[altAxis]) != null ? _offsetModifierState$2 : 0;\n\n var _tetherMin = isOriginSide ? _min : _offset - referenceRect[_len] - popperRect[_len] - _offsetModifierValue + normalizedTetherOffsetValue.altAxis;\n\n var _tetherMax = isOriginSide ? _offset + referenceRect[_len] + popperRect[_len] - _offsetModifierValue - normalizedTetherOffsetValue.altAxis : _max;\n\n var _preventedOffset = tether && isOriginSide ? withinMaxClamp(_tetherMin, _offset, _tetherMax) : within(tether ? _tetherMin : _min, _offset, tether ? _tetherMax : _max);\n\n popperOffsets[altAxis] = _preventedOffset;\n data[altAxis] = _preventedOffset - _offset;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'preventOverflow',\n enabled: true,\n phase: 'main',\n fn: preventOverflow,\n requiresIfExists: ['offset']\n};","export default function getAltAxis(axis) {\n return axis === 'x' ? 'y' : 'x';\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getNodeScroll from \"./getNodeScroll.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport { round } from \"../utils/math.js\";\n\nfunction isElementScaled(element) {\n var rect = element.getBoundingClientRect();\n var scaleX = round(rect.width) / element.offsetWidth || 1;\n var scaleY = round(rect.height) / element.offsetHeight || 1;\n return scaleX !== 1 || scaleY !== 1;\n} // Returns the composite rect of an element relative to its offsetParent.\n// Composite means it takes into account transforms as well as layout.\n\n\nexport default function getCompositeRect(elementOrVirtualElement, offsetParent, isFixed) {\n if (isFixed === void 0) {\n isFixed = false;\n }\n\n var isOffsetParentAnElement = isHTMLElement(offsetParent);\n var offsetParentIsScaled = isHTMLElement(offsetParent) && isElementScaled(offsetParent);\n var documentElement = getDocumentElement(offsetParent);\n var rect = getBoundingClientRect(elementOrVirtualElement, offsetParentIsScaled, isFixed);\n var scroll = {\n scrollLeft: 0,\n scrollTop: 0\n };\n var offsets = {\n x: 0,\n y: 0\n };\n\n if (isOffsetParentAnElement || !isOffsetParentAnElement && !isFixed) {\n if (getNodeName(offsetParent) !== 'body' || // https://github.com/popperjs/popper-core/issues/1078\n isScrollParent(documentElement)) {\n scroll = getNodeScroll(offsetParent);\n }\n\n if (isHTMLElement(offsetParent)) {\n offsets = getBoundingClientRect(offsetParent, true);\n offsets.x += offsetParent.clientLeft;\n offsets.y += offsetParent.clientTop;\n } else if (documentElement) {\n offsets.x = getWindowScrollBarX(documentElement);\n }\n }\n\n return {\n x: rect.left + scroll.scrollLeft - offsets.x,\n y: rect.top + scroll.scrollTop - offsets.y,\n width: rect.width,\n height: rect.height\n };\n}","import getWindowScroll from \"./getWindowScroll.js\";\nimport getWindow from \"./getWindow.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getHTMLElementScroll from \"./getHTMLElementScroll.js\";\nexport default function getNodeScroll(node) {\n if (node === getWindow(node) || !isHTMLElement(node)) {\n return getWindowScroll(node);\n } else {\n return getHTMLElementScroll(node);\n }\n}","export default function getHTMLElementScroll(element) {\n return {\n scrollLeft: element.scrollLeft,\n scrollTop: element.scrollTop\n };\n}","import { modifierPhases } from \"../enums.js\"; // source: https://stackoverflow.com/questions/49875255\n\nfunction order(modifiers) {\n var map = new Map();\n var visited = new Set();\n var result = [];\n modifiers.forEach(function (modifier) {\n map.set(modifier.name, modifier);\n }); // On visiting object, check for its dependencies and visit them recursively\n\n function sort(modifier) {\n visited.add(modifier.name);\n var requires = [].concat(modifier.requires || [], modifier.requiresIfExists || []);\n requires.forEach(function (dep) {\n if (!visited.has(dep)) {\n var depModifier = map.get(dep);\n\n if (depModifier) {\n sort(depModifier);\n }\n }\n });\n result.push(modifier);\n }\n\n modifiers.forEach(function (modifier) {\n if (!visited.has(modifier.name)) {\n // check for visited object\n sort(modifier);\n }\n });\n return result;\n}\n\nexport default function orderModifiers(modifiers) {\n // order based on dependencies\n var orderedModifiers = order(modifiers); // order based on phase\n\n return modifierPhases.reduce(function (acc, phase) {\n return acc.concat(orderedModifiers.filter(function (modifier) {\n return modifier.phase === phase;\n }));\n }, []);\n}","import getCompositeRect from \"./dom-utils/getCompositeRect.js\";\nimport getLayoutRect from \"./dom-utils/getLayoutRect.js\";\nimport listScrollParents from \"./dom-utils/listScrollParents.js\";\nimport getOffsetParent from \"./dom-utils/getOffsetParent.js\";\nimport orderModifiers from \"./utils/orderModifiers.js\";\nimport debounce from \"./utils/debounce.js\";\nimport mergeByName from \"./utils/mergeByName.js\";\nimport detectOverflow from \"./utils/detectOverflow.js\";\nimport { isElement } from \"./dom-utils/instanceOf.js\";\nvar DEFAULT_OPTIONS = {\n placement: 'bottom',\n modifiers: [],\n strategy: 'absolute'\n};\n\nfunction areValidElements() {\n for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {\n args[_key] = arguments[_key];\n }\n\n return !args.some(function (element) {\n return !(element && typeof element.getBoundingClientRect === 'function');\n });\n}\n\nexport function popperGenerator(generatorOptions) {\n if (generatorOptions === void 0) {\n generatorOptions = {};\n }\n\n var _generatorOptions = generatorOptions,\n _generatorOptions$def = _generatorOptions.defaultModifiers,\n defaultModifiers = _generatorOptions$def === void 0 ? [] : _generatorOptions$def,\n _generatorOptions$def2 = _generatorOptions.defaultOptions,\n defaultOptions = _generatorOptions$def2 === void 0 ? DEFAULT_OPTIONS : _generatorOptions$def2;\n return function createPopper(reference, popper, options) {\n if (options === void 0) {\n options = defaultOptions;\n }\n\n var state = {\n placement: 'bottom',\n orderedModifiers: [],\n options: Object.assign({}, DEFAULT_OPTIONS, defaultOptions),\n modifiersData: {},\n elements: {\n reference: reference,\n popper: popper\n },\n attributes: {},\n styles: {}\n };\n var effectCleanupFns = [];\n var isDestroyed = false;\n var instance = {\n state: state,\n setOptions: function setOptions(setOptionsAction) {\n var options = typeof setOptionsAction === 'function' ? setOptionsAction(state.options) : setOptionsAction;\n cleanupModifierEffects();\n state.options = Object.assign({}, defaultOptions, state.options, options);\n state.scrollParents = {\n reference: isElement(reference) ? listScrollParents(reference) : reference.contextElement ? listScrollParents(reference.contextElement) : [],\n popper: listScrollParents(popper)\n }; // Orders the modifiers based on their dependencies and `phase`\n // properties\n\n var orderedModifiers = orderModifiers(mergeByName([].concat(defaultModifiers, state.options.modifiers))); // Strip out disabled modifiers\n\n state.orderedModifiers = orderedModifiers.filter(function (m) {\n return m.enabled;\n });\n runModifierEffects();\n return instance.update();\n },\n // Sync update – it will always be executed, even if not necessary. This\n // is useful for low frequency updates where sync behavior simplifies the\n // logic.\n // For high frequency updates (e.g. `resize` and `scroll` events), always\n // prefer the async Popper#update method\n forceUpdate: function forceUpdate() {\n if (isDestroyed) {\n return;\n }\n\n var _state$elements = state.elements,\n reference = _state$elements.reference,\n popper = _state$elements.popper; // Don't proceed if `reference` or `popper` are not valid elements\n // anymore\n\n if (!areValidElements(reference, popper)) {\n return;\n } // Store the reference and popper rects to be read by modifiers\n\n\n state.rects = {\n reference: getCompositeRect(reference, getOffsetParent(popper), state.options.strategy === 'fixed'),\n popper: getLayoutRect(popper)\n }; // Modifiers have the ability to reset the current update cycle. The\n // most common use case for this is the `flip` modifier changing the\n // placement, which then needs to re-run all the modifiers, because the\n // logic was previously ran for the previous placement and is therefore\n // stale/incorrect\n\n state.reset = false;\n state.placement = state.options.placement; // On each update cycle, the `modifiersData` property for each modifier\n // is filled with the initial data specified by the modifier. This means\n // it doesn't persist and is fresh on each update.\n // To ensure persistent data, use `${name}#persistent`\n\n state.orderedModifiers.forEach(function (modifier) {\n return state.modifiersData[modifier.name] = Object.assign({}, modifier.data);\n });\n\n for (var index = 0; index < state.orderedModifiers.length; index++) {\n if (state.reset === true) {\n state.reset = false;\n index = -1;\n continue;\n }\n\n var _state$orderedModifie = state.orderedModifiers[index],\n fn = _state$orderedModifie.fn,\n _state$orderedModifie2 = _state$orderedModifie.options,\n _options = _state$orderedModifie2 === void 0 ? {} : _state$orderedModifie2,\n name = _state$orderedModifie.name;\n\n if (typeof fn === 'function') {\n state = fn({\n state: state,\n options: _options,\n name: name,\n instance: instance\n }) || state;\n }\n }\n },\n // Async and optimistically optimized update – it will not be executed if\n // not necessary (debounced to run at most once-per-tick)\n update: debounce(function () {\n return new Promise(function (resolve) {\n instance.forceUpdate();\n resolve(state);\n });\n }),\n destroy: function destroy() {\n cleanupModifierEffects();\n isDestroyed = true;\n }\n };\n\n if (!areValidElements(reference, popper)) {\n return instance;\n }\n\n instance.setOptions(options).then(function (state) {\n if (!isDestroyed && options.onFirstUpdate) {\n options.onFirstUpdate(state);\n }\n }); // Modifiers have the ability to execute arbitrary code before the first\n // update cycle runs. They will be executed in the same order as the update\n // cycle. This is useful when a modifier adds some persistent data that\n // other modifiers need to use, but the modifier is run after the dependent\n // one.\n\n function runModifierEffects() {\n state.orderedModifiers.forEach(function (_ref) {\n var name = _ref.name,\n _ref$options = _ref.options,\n options = _ref$options === void 0 ? {} : _ref$options,\n effect = _ref.effect;\n\n if (typeof effect === 'function') {\n var cleanupFn = effect({\n state: state,\n name: name,\n instance: instance,\n options: options\n });\n\n var noopFn = function noopFn() {};\n\n effectCleanupFns.push(cleanupFn || noopFn);\n }\n });\n }\n\n function cleanupModifierEffects() {\n effectCleanupFns.forEach(function (fn) {\n return fn();\n });\n effectCleanupFns = [];\n }\n\n return instance;\n };\n}\nexport var createPopper = /*#__PURE__*/popperGenerator(); // eslint-disable-next-line import/no-unused-modules\n\nexport { detectOverflow };","export default function debounce(fn) {\n var pending;\n return function () {\n if (!pending) {\n pending = new Promise(function (resolve) {\n Promise.resolve().then(function () {\n pending = undefined;\n resolve(fn());\n });\n });\n }\n\n return pending;\n };\n}","export default function mergeByName(modifiers) {\n var merged = modifiers.reduce(function (merged, current) {\n var existing = merged[current.name];\n merged[current.name] = existing ? Object.assign({}, existing, current, {\n options: Object.assign({}, existing.options, current.options),\n data: Object.assign({}, existing.data, current.data)\n }) : current;\n return merged;\n }, {}); // IE11 does not support Object.values\n\n return Object.keys(merged).map(function (key) {\n return merged[key];\n });\n}","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nimport offset from \"./modifiers/offset.js\";\nimport flip from \"./modifiers/flip.js\";\nimport preventOverflow from \"./modifiers/preventOverflow.js\";\nimport arrow from \"./modifiers/arrow.js\";\nimport hide from \"./modifiers/hide.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles, offset, flip, preventOverflow, arrow, hide];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow }; // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper as createPopperLite } from \"./popper-lite.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport * from \"./modifiers/index.js\";","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow };","/*!\n * Bootstrap v5.3.3 (https://getbootstrap.com/)\n * Copyright 2011-2024 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n */\nimport * as Popper from '@popperjs/core';\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/data.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n/**\n * Constants\n */\n\nconst elementMap = new Map();\nconst Data = {\n set(element, key, instance) {\n if (!elementMap.has(element)) {\n elementMap.set(element, new Map());\n }\n const instanceMap = elementMap.get(element);\n\n // make it clear we only want one instance per element\n // can be removed later when multiple key/instances are fine to be used\n if (!instanceMap.has(key) && instanceMap.size !== 0) {\n // eslint-disable-next-line no-console\n console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(instanceMap.keys())[0]}.`);\n return;\n }\n instanceMap.set(key, instance);\n },\n get(element, key) {\n if (elementMap.has(element)) {\n return elementMap.get(element).get(key) || null;\n }\n return null;\n },\n remove(element, key) {\n if (!elementMap.has(element)) {\n return;\n }\n const instanceMap = elementMap.get(element);\n instanceMap.delete(key);\n\n // free up element references if there are no instances left for an element\n if (instanceMap.size === 0) {\n elementMap.delete(element);\n }\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/index.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst MAX_UID = 1000000;\nconst MILLISECONDS_MULTIPLIER = 1000;\nconst TRANSITION_END = 'transitionend';\n\n/**\n * Properly escape IDs selectors to handle weird IDs\n * @param {string} selector\n * @returns {string}\n */\nconst parseSelector = selector => {\n if (selector && window.CSS && window.CSS.escape) {\n // document.querySelector needs escaping to handle IDs (html5+) containing for instance /\n selector = selector.replace(/#([^\\s\"#']+)/g, (match, id) => `#${CSS.escape(id)}`);\n }\n return selector;\n};\n\n// Shout-out Angus Croll (https://goo.gl/pxwQGp)\nconst toType = object => {\n if (object === null || object === undefined) {\n return `${object}`;\n }\n return Object.prototype.toString.call(object).match(/\\s([a-z]+)/i)[1].toLowerCase();\n};\n\n/**\n * Public Util API\n */\n\nconst getUID = prefix => {\n do {\n prefix += Math.floor(Math.random() * MAX_UID);\n } while (document.getElementById(prefix));\n return prefix;\n};\nconst getTransitionDurationFromElement = element => {\n if (!element) {\n return 0;\n }\n\n // Get transition-duration of the element\n let {\n transitionDuration,\n transitionDelay\n } = window.getComputedStyle(element);\n const floatTransitionDuration = Number.parseFloat(transitionDuration);\n const floatTransitionDelay = Number.parseFloat(transitionDelay);\n\n // Return 0 if element or transition duration is not found\n if (!floatTransitionDuration && !floatTransitionDelay) {\n return 0;\n }\n\n // If multiple durations are defined, take the first\n transitionDuration = transitionDuration.split(',')[0];\n transitionDelay = transitionDelay.split(',')[0];\n return (Number.parseFloat(transitionDuration) + Number.parseFloat(transitionDelay)) * MILLISECONDS_MULTIPLIER;\n};\nconst triggerTransitionEnd = element => {\n element.dispatchEvent(new Event(TRANSITION_END));\n};\nconst isElement = object => {\n if (!object || typeof object !== 'object') {\n return false;\n }\n if (typeof object.jquery !== 'undefined') {\n object = object[0];\n }\n return typeof object.nodeType !== 'undefined';\n};\nconst getElement = object => {\n // it's a jQuery object or a node element\n if (isElement(object)) {\n return object.jquery ? object[0] : object;\n }\n if (typeof object === 'string' && object.length > 0) {\n return document.querySelector(parseSelector(object));\n }\n return null;\n};\nconst isVisible = element => {\n if (!isElement(element) || element.getClientRects().length === 0) {\n return false;\n }\n const elementIsVisible = getComputedStyle(element).getPropertyValue('visibility') === 'visible';\n // Handle `details` element as its content may falsie appear visible when it is closed\n const closedDetails = element.closest('details:not([open])');\n if (!closedDetails) {\n return elementIsVisible;\n }\n if (closedDetails !== element) {\n const summary = element.closest('summary');\n if (summary && summary.parentNode !== closedDetails) {\n return false;\n }\n if (summary === null) {\n return false;\n }\n }\n return elementIsVisible;\n};\nconst isDisabled = element => {\n if (!element || element.nodeType !== Node.ELEMENT_NODE) {\n return true;\n }\n if (element.classList.contains('disabled')) {\n return true;\n }\n if (typeof element.disabled !== 'undefined') {\n return element.disabled;\n }\n return element.hasAttribute('disabled') && element.getAttribute('disabled') !== 'false';\n};\nconst findShadowRoot = element => {\n if (!document.documentElement.attachShadow) {\n return null;\n }\n\n // Can find the shadow root otherwise it'll return the document\n if (typeof element.getRootNode === 'function') {\n const root = element.getRootNode();\n return root instanceof ShadowRoot ? root : null;\n }\n if (element instanceof ShadowRoot) {\n return element;\n }\n\n // when we don't find a shadow root\n if (!element.parentNode) {\n return null;\n }\n return findShadowRoot(element.parentNode);\n};\nconst noop = () => {};\n\n/**\n * Trick to restart an element's animation\n *\n * @param {HTMLElement} element\n * @return void\n *\n * @see https://www.charistheo.io/blog/2021/02/restart-a-css-animation-with-javascript/#restarting-a-css-animation\n */\nconst reflow = element => {\n element.offsetHeight; // eslint-disable-line no-unused-expressions\n};\nconst getjQuery = () => {\n if (window.jQuery && !document.body.hasAttribute('data-bs-no-jquery')) {\n return window.jQuery;\n }\n return null;\n};\nconst DOMContentLoadedCallbacks = [];\nconst onDOMContentLoaded = callback => {\n if (document.readyState === 'loading') {\n // add listener on the first call when the document is in loading state\n if (!DOMContentLoadedCallbacks.length) {\n document.addEventListener('DOMContentLoaded', () => {\n for (const callback of DOMContentLoadedCallbacks) {\n callback();\n }\n });\n }\n DOMContentLoadedCallbacks.push(callback);\n } else {\n callback();\n }\n};\nconst isRTL = () => document.documentElement.dir === 'rtl';\nconst defineJQueryPlugin = plugin => {\n onDOMContentLoaded(() => {\n const $ = getjQuery();\n /* istanbul ignore if */\n if ($) {\n const name = plugin.NAME;\n const JQUERY_NO_CONFLICT = $.fn[name];\n $.fn[name] = plugin.jQueryInterface;\n $.fn[name].Constructor = plugin;\n $.fn[name].noConflict = () => {\n $.fn[name] = JQUERY_NO_CONFLICT;\n return plugin.jQueryInterface;\n };\n }\n });\n};\nconst execute = (possibleCallback, args = [], defaultValue = possibleCallback) => {\n return typeof possibleCallback === 'function' ? possibleCallback(...args) : defaultValue;\n};\nconst executeAfterTransition = (callback, transitionElement, waitForTransition = true) => {\n if (!waitForTransition) {\n execute(callback);\n return;\n }\n const durationPadding = 5;\n const emulatedDuration = getTransitionDurationFromElement(transitionElement) + durationPadding;\n let called = false;\n const handler = ({\n target\n }) => {\n if (target !== transitionElement) {\n return;\n }\n called = true;\n transitionElement.removeEventListener(TRANSITION_END, handler);\n execute(callback);\n };\n transitionElement.addEventListener(TRANSITION_END, handler);\n setTimeout(() => {\n if (!called) {\n triggerTransitionEnd(transitionElement);\n }\n }, emulatedDuration);\n};\n\n/**\n * Return the previous/next element of a list.\n *\n * @param {array} list The list of elements\n * @param activeElement The active element\n * @param shouldGetNext Choose to get next or previous element\n * @param isCycleAllowed\n * @return {Element|elem} The proper element\n */\nconst getNextActiveElement = (list, activeElement, shouldGetNext, isCycleAllowed) => {\n const listLength = list.length;\n let index = list.indexOf(activeElement);\n\n // if the element does not exist in the list return an element\n // depending on the direction and if cycle is allowed\n if (index === -1) {\n return !shouldGetNext && isCycleAllowed ? list[listLength - 1] : list[0];\n }\n index += shouldGetNext ? 1 : -1;\n if (isCycleAllowed) {\n index = (index + listLength) % listLength;\n }\n return list[Math.max(0, Math.min(index, listLength - 1))];\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/event-handler.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst namespaceRegex = /[^.]*(?=\\..*)\\.|.*/;\nconst stripNameRegex = /\\..*/;\nconst stripUidRegex = /::\\d+$/;\nconst eventRegistry = {}; // Events storage\nlet uidEvent = 1;\nconst customEvents = {\n mouseenter: 'mouseover',\n mouseleave: 'mouseout'\n};\nconst nativeEvents = new Set(['click', 'dblclick', 'mouseup', 'mousedown', 'contextmenu', 'mousewheel', 'DOMMouseScroll', 'mouseover', 'mouseout', 'mousemove', 'selectstart', 'selectend', 'keydown', 'keypress', 'keyup', 'orientationchange', 'touchstart', 'touchmove', 'touchend', 'touchcancel', 'pointerdown', 'pointermove', 'pointerup', 'pointerleave', 'pointercancel', 'gesturestart', 'gesturechange', 'gestureend', 'focus', 'blur', 'change', 'reset', 'select', 'submit', 'focusin', 'focusout', 'load', 'unload', 'beforeunload', 'resize', 'move', 'DOMContentLoaded', 'readystatechange', 'error', 'abort', 'scroll']);\n\n/**\n * Private methods\n */\n\nfunction makeEventUid(element, uid) {\n return uid && `${uid}::${uidEvent++}` || element.uidEvent || uidEvent++;\n}\nfunction getElementEvents(element) {\n const uid = makeEventUid(element);\n element.uidEvent = uid;\n eventRegistry[uid] = eventRegistry[uid] || {};\n return eventRegistry[uid];\n}\nfunction bootstrapHandler(element, fn) {\n return function handler(event) {\n hydrateObj(event, {\n delegateTarget: element\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, fn);\n }\n return fn.apply(element, [event]);\n };\n}\nfunction bootstrapDelegationHandler(element, selector, fn) {\n return function handler(event) {\n const domElements = element.querySelectorAll(selector);\n for (let {\n target\n } = event; target && target !== this; target = target.parentNode) {\n for (const domElement of domElements) {\n if (domElement !== target) {\n continue;\n }\n hydrateObj(event, {\n delegateTarget: target\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, selector, fn);\n }\n return fn.apply(target, [event]);\n }\n }\n };\n}\nfunction findHandler(events, callable, delegationSelector = null) {\n return Object.values(events).find(event => event.callable === callable && event.delegationSelector === delegationSelector);\n}\nfunction normalizeParameters(originalTypeEvent, handler, delegationFunction) {\n const isDelegated = typeof handler === 'string';\n // TODO: tooltip passes `false` instead of selector, so we need to check\n const callable = isDelegated ? delegationFunction : handler || delegationFunction;\n let typeEvent = getTypeEvent(originalTypeEvent);\n if (!nativeEvents.has(typeEvent)) {\n typeEvent = originalTypeEvent;\n }\n return [isDelegated, callable, typeEvent];\n}\nfunction addHandler(element, originalTypeEvent, handler, delegationFunction, oneOff) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n let [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n\n // in case of mouseenter or mouseleave wrap the handler within a function that checks for its DOM position\n // this prevents the handler from being dispatched the same way as mouseover or mouseout does\n if (originalTypeEvent in customEvents) {\n const wrapFunction = fn => {\n return function (event) {\n if (!event.relatedTarget || event.relatedTarget !== event.delegateTarget && !event.delegateTarget.contains(event.relatedTarget)) {\n return fn.call(this, event);\n }\n };\n };\n callable = wrapFunction(callable);\n }\n const events = getElementEvents(element);\n const handlers = events[typeEvent] || (events[typeEvent] = {});\n const previousFunction = findHandler(handlers, callable, isDelegated ? handler : null);\n if (previousFunction) {\n previousFunction.oneOff = previousFunction.oneOff && oneOff;\n return;\n }\n const uid = makeEventUid(callable, originalTypeEvent.replace(namespaceRegex, ''));\n const fn = isDelegated ? bootstrapDelegationHandler(element, handler, callable) : bootstrapHandler(element, callable);\n fn.delegationSelector = isDelegated ? handler : null;\n fn.callable = callable;\n fn.oneOff = oneOff;\n fn.uidEvent = uid;\n handlers[uid] = fn;\n element.addEventListener(typeEvent, fn, isDelegated);\n}\nfunction removeHandler(element, events, typeEvent, handler, delegationSelector) {\n const fn = findHandler(events[typeEvent], handler, delegationSelector);\n if (!fn) {\n return;\n }\n element.removeEventListener(typeEvent, fn, Boolean(delegationSelector));\n delete events[typeEvent][fn.uidEvent];\n}\nfunction removeNamespacedHandlers(element, events, typeEvent, namespace) {\n const storeElementEvent = events[typeEvent] || {};\n for (const [handlerKey, event] of Object.entries(storeElementEvent)) {\n if (handlerKey.includes(namespace)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n}\nfunction getTypeEvent(event) {\n // allow to get the native events from namespaced events ('click.bs.button' --> 'click')\n event = event.replace(stripNameRegex, '');\n return customEvents[event] || event;\n}\nconst EventHandler = {\n on(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, false);\n },\n one(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, true);\n },\n off(element, originalTypeEvent, handler, delegationFunction) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n const [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n const inNamespace = typeEvent !== originalTypeEvent;\n const events = getElementEvents(element);\n const storeElementEvent = events[typeEvent] || {};\n const isNamespace = originalTypeEvent.startsWith('.');\n if (typeof callable !== 'undefined') {\n // Simplest case: handler is passed, remove that listener ONLY.\n if (!Object.keys(storeElementEvent).length) {\n return;\n }\n removeHandler(element, events, typeEvent, callable, isDelegated ? handler : null);\n return;\n }\n if (isNamespace) {\n for (const elementEvent of Object.keys(events)) {\n removeNamespacedHandlers(element, events, elementEvent, originalTypeEvent.slice(1));\n }\n }\n for (const [keyHandlers, event] of Object.entries(storeElementEvent)) {\n const handlerKey = keyHandlers.replace(stripUidRegex, '');\n if (!inNamespace || originalTypeEvent.includes(handlerKey)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n },\n trigger(element, event, args) {\n if (typeof event !== 'string' || !element) {\n return null;\n }\n const $ = getjQuery();\n const typeEvent = getTypeEvent(event);\n const inNamespace = event !== typeEvent;\n let jQueryEvent = null;\n let bubbles = true;\n let nativeDispatch = true;\n let defaultPrevented = false;\n if (inNamespace && $) {\n jQueryEvent = $.Event(event, args);\n $(element).trigger(jQueryEvent);\n bubbles = !jQueryEvent.isPropagationStopped();\n nativeDispatch = !jQueryEvent.isImmediatePropagationStopped();\n defaultPrevented = jQueryEvent.isDefaultPrevented();\n }\n const evt = hydrateObj(new Event(event, {\n bubbles,\n cancelable: true\n }), args);\n if (defaultPrevented) {\n evt.preventDefault();\n }\n if (nativeDispatch) {\n element.dispatchEvent(evt);\n }\n if (evt.defaultPrevented && jQueryEvent) {\n jQueryEvent.preventDefault();\n }\n return evt;\n }\n};\nfunction hydrateObj(obj, meta = {}) {\n for (const [key, value] of Object.entries(meta)) {\n try {\n obj[key] = value;\n } catch (_unused) {\n Object.defineProperty(obj, key, {\n configurable: true,\n get() {\n return value;\n }\n });\n }\n }\n return obj;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/manipulator.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nfunction normalizeData(value) {\n if (value === 'true') {\n return true;\n }\n if (value === 'false') {\n return false;\n }\n if (value === Number(value).toString()) {\n return Number(value);\n }\n if (value === '' || value === 'null') {\n return null;\n }\n if (typeof value !== 'string') {\n return value;\n }\n try {\n return JSON.parse(decodeURIComponent(value));\n } catch (_unused) {\n return value;\n }\n}\nfunction normalizeDataKey(key) {\n return key.replace(/[A-Z]/g, chr => `-${chr.toLowerCase()}`);\n}\nconst Manipulator = {\n setDataAttribute(element, key, value) {\n element.setAttribute(`data-bs-${normalizeDataKey(key)}`, value);\n },\n removeDataAttribute(element, key) {\n element.removeAttribute(`data-bs-${normalizeDataKey(key)}`);\n },\n getDataAttributes(element) {\n if (!element) {\n return {};\n }\n const attributes = {};\n const bsKeys = Object.keys(element.dataset).filter(key => key.startsWith('bs') && !key.startsWith('bsConfig'));\n for (const key of bsKeys) {\n let pureKey = key.replace(/^bs/, '');\n pureKey = pureKey.charAt(0).toLowerCase() + pureKey.slice(1, pureKey.length);\n attributes[pureKey] = normalizeData(element.dataset[key]);\n }\n return attributes;\n },\n getDataAttribute(element, key) {\n return normalizeData(element.getAttribute(`data-bs-${normalizeDataKey(key)}`));\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/config.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Class definition\n */\n\nclass Config {\n // Getters\n static get Default() {\n return {};\n }\n static get DefaultType() {\n return {};\n }\n static get NAME() {\n throw new Error('You have to implement the static method \"NAME\", for each component!');\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n return config;\n }\n _mergeConfigObj(config, element) {\n const jsonConfig = isElement(element) ? Manipulator.getDataAttribute(element, 'config') : {}; // try to parse\n\n return {\n ...this.constructor.Default,\n ...(typeof jsonConfig === 'object' ? jsonConfig : {}),\n ...(isElement(element) ? Manipulator.getDataAttributes(element) : {}),\n ...(typeof config === 'object' ? config : {})\n };\n }\n _typeCheckConfig(config, configTypes = this.constructor.DefaultType) {\n for (const [property, expectedTypes] of Object.entries(configTypes)) {\n const value = config[property];\n const valueType = isElement(value) ? 'element' : toType(value);\n if (!new RegExp(expectedTypes).test(valueType)) {\n throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option \"${property}\" provided type \"${valueType}\" but expected type \"${expectedTypes}\".`);\n }\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap base-component.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst VERSION = '5.3.3';\n\n/**\n * Class definition\n */\n\nclass BaseComponent extends Config {\n constructor(element, config) {\n super();\n element = getElement(element);\n if (!element) {\n return;\n }\n this._element = element;\n this._config = this._getConfig(config);\n Data.set(this._element, this.constructor.DATA_KEY, this);\n }\n\n // Public\n dispose() {\n Data.remove(this._element, this.constructor.DATA_KEY);\n EventHandler.off(this._element, this.constructor.EVENT_KEY);\n for (const propertyName of Object.getOwnPropertyNames(this)) {\n this[propertyName] = null;\n }\n }\n _queueCallback(callback, element, isAnimated = true) {\n executeAfterTransition(callback, element, isAnimated);\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config, this._element);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n\n // Static\n static getInstance(element) {\n return Data.get(getElement(element), this.DATA_KEY);\n }\n static getOrCreateInstance(element, config = {}) {\n return this.getInstance(element) || new this(element, typeof config === 'object' ? config : null);\n }\n static get VERSION() {\n return VERSION;\n }\n static get DATA_KEY() {\n return `bs.${this.NAME}`;\n }\n static get EVENT_KEY() {\n return `.${this.DATA_KEY}`;\n }\n static eventName(name) {\n return `${name}${this.EVENT_KEY}`;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/selector-engine.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst getSelector = element => {\n let selector = element.getAttribute('data-bs-target');\n if (!selector || selector === '#') {\n let hrefAttribute = element.getAttribute('href');\n\n // The only valid content that could double as a selector are IDs or classes,\n // so everything starting with `#` or `.`. If a \"real\" URL is used as the selector,\n // `document.querySelector` will rightfully complain it is invalid.\n // See https://github.com/twbs/bootstrap/issues/32273\n if (!hrefAttribute || !hrefAttribute.includes('#') && !hrefAttribute.startsWith('.')) {\n return null;\n }\n\n // Just in case some CMS puts out a full URL with the anchor appended\n if (hrefAttribute.includes('#') && !hrefAttribute.startsWith('#')) {\n hrefAttribute = `#${hrefAttribute.split('#')[1]}`;\n }\n selector = hrefAttribute && hrefAttribute !== '#' ? hrefAttribute.trim() : null;\n }\n return selector ? selector.split(',').map(sel => parseSelector(sel)).join(',') : null;\n};\nconst SelectorEngine = {\n find(selector, element = document.documentElement) {\n return [].concat(...Element.prototype.querySelectorAll.call(element, selector));\n },\n findOne(selector, element = document.documentElement) {\n return Element.prototype.querySelector.call(element, selector);\n },\n children(element, selector) {\n return [].concat(...element.children).filter(child => child.matches(selector));\n },\n parents(element, selector) {\n const parents = [];\n let ancestor = element.parentNode.closest(selector);\n while (ancestor) {\n parents.push(ancestor);\n ancestor = ancestor.parentNode.closest(selector);\n }\n return parents;\n },\n prev(element, selector) {\n let previous = element.previousElementSibling;\n while (previous) {\n if (previous.matches(selector)) {\n return [previous];\n }\n previous = previous.previousElementSibling;\n }\n return [];\n },\n // TODO: this is now unused; remove later along with prev()\n next(element, selector) {\n let next = element.nextElementSibling;\n while (next) {\n if (next.matches(selector)) {\n return [next];\n }\n next = next.nextElementSibling;\n }\n return [];\n },\n focusableChildren(element) {\n const focusables = ['a', 'button', 'input', 'textarea', 'select', 'details', '[tabindex]', '[contenteditable=\"true\"]'].map(selector => `${selector}:not([tabindex^=\"-\"])`).join(',');\n return this.find(focusables, element).filter(el => !isDisabled(el) && isVisible(el));\n },\n getSelectorFromElement(element) {\n const selector = getSelector(element);\n if (selector) {\n return SelectorEngine.findOne(selector) ? selector : null;\n }\n return null;\n },\n getElementFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.findOne(selector) : null;\n },\n getMultipleElementsFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.find(selector) : [];\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/component-functions.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst enableDismissTrigger = (component, method = 'hide') => {\n const clickEvent = `click.dismiss${component.EVENT_KEY}`;\n const name = component.NAME;\n EventHandler.on(document, clickEvent, `[data-bs-dismiss=\"${name}\"]`, function (event) {\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n const target = SelectorEngine.getElementFromSelector(this) || this.closest(`.${name}`);\n const instance = component.getOrCreateInstance(target);\n\n // Method argument is left, for Alert and only, as it doesn't implement the 'hide' method\n instance[method]();\n });\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap alert.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$f = 'alert';\nconst DATA_KEY$a = 'bs.alert';\nconst EVENT_KEY$b = `.${DATA_KEY$a}`;\nconst EVENT_CLOSE = `close${EVENT_KEY$b}`;\nconst EVENT_CLOSED = `closed${EVENT_KEY$b}`;\nconst CLASS_NAME_FADE$5 = 'fade';\nconst CLASS_NAME_SHOW$8 = 'show';\n\n/**\n * Class definition\n */\n\nclass Alert extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$f;\n }\n\n // Public\n close() {\n const closeEvent = EventHandler.trigger(this._element, EVENT_CLOSE);\n if (closeEvent.defaultPrevented) {\n return;\n }\n this._element.classList.remove(CLASS_NAME_SHOW$8);\n const isAnimated = this._element.classList.contains(CLASS_NAME_FADE$5);\n this._queueCallback(() => this._destroyElement(), this._element, isAnimated);\n }\n\n // Private\n _destroyElement() {\n this._element.remove();\n EventHandler.trigger(this._element, EVENT_CLOSED);\n this.dispose();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Alert.getOrCreateInstance(this);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nenableDismissTrigger(Alert, 'close');\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Alert);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap button.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$e = 'button';\nconst DATA_KEY$9 = 'bs.button';\nconst EVENT_KEY$a = `.${DATA_KEY$9}`;\nconst DATA_API_KEY$6 = '.data-api';\nconst CLASS_NAME_ACTIVE$3 = 'active';\nconst SELECTOR_DATA_TOGGLE$5 = '[data-bs-toggle=\"button\"]';\nconst EVENT_CLICK_DATA_API$6 = `click${EVENT_KEY$a}${DATA_API_KEY$6}`;\n\n/**\n * Class definition\n */\n\nclass Button extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$e;\n }\n\n // Public\n toggle() {\n // Toggle class and sync the `aria-pressed` attribute with the return value of the `.toggle()` method\n this._element.setAttribute('aria-pressed', this._element.classList.toggle(CLASS_NAME_ACTIVE$3));\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Button.getOrCreateInstance(this);\n if (config === 'toggle') {\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$6, SELECTOR_DATA_TOGGLE$5, event => {\n event.preventDefault();\n const button = event.target.closest(SELECTOR_DATA_TOGGLE$5);\n const data = Button.getOrCreateInstance(button);\n data.toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Button);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/swipe.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$d = 'swipe';\nconst EVENT_KEY$9 = '.bs.swipe';\nconst EVENT_TOUCHSTART = `touchstart${EVENT_KEY$9}`;\nconst EVENT_TOUCHMOVE = `touchmove${EVENT_KEY$9}`;\nconst EVENT_TOUCHEND = `touchend${EVENT_KEY$9}`;\nconst EVENT_POINTERDOWN = `pointerdown${EVENT_KEY$9}`;\nconst EVENT_POINTERUP = `pointerup${EVENT_KEY$9}`;\nconst POINTER_TYPE_TOUCH = 'touch';\nconst POINTER_TYPE_PEN = 'pen';\nconst CLASS_NAME_POINTER_EVENT = 'pointer-event';\nconst SWIPE_THRESHOLD = 40;\nconst Default$c = {\n endCallback: null,\n leftCallback: null,\n rightCallback: null\n};\nconst DefaultType$c = {\n endCallback: '(function|null)',\n leftCallback: '(function|null)',\n rightCallback: '(function|null)'\n};\n\n/**\n * Class definition\n */\n\nclass Swipe extends Config {\n constructor(element, config) {\n super();\n this._element = element;\n if (!element || !Swipe.isSupported()) {\n return;\n }\n this._config = this._getConfig(config);\n this._deltaX = 0;\n this._supportPointerEvents = Boolean(window.PointerEvent);\n this._initEvents();\n }\n\n // Getters\n static get Default() {\n return Default$c;\n }\n static get DefaultType() {\n return DefaultType$c;\n }\n static get NAME() {\n return NAME$d;\n }\n\n // Public\n dispose() {\n EventHandler.off(this._element, EVENT_KEY$9);\n }\n\n // Private\n _start(event) {\n if (!this._supportPointerEvents) {\n this._deltaX = event.touches[0].clientX;\n return;\n }\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX;\n }\n }\n _end(event) {\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX - this._deltaX;\n }\n this._handleSwipe();\n execute(this._config.endCallback);\n }\n _move(event) {\n this._deltaX = event.touches && event.touches.length > 1 ? 0 : event.touches[0].clientX - this._deltaX;\n }\n _handleSwipe() {\n const absDeltaX = Math.abs(this._deltaX);\n if (absDeltaX <= SWIPE_THRESHOLD) {\n return;\n }\n const direction = absDeltaX / this._deltaX;\n this._deltaX = 0;\n if (!direction) {\n return;\n }\n execute(direction > 0 ? this._config.rightCallback : this._config.leftCallback);\n }\n _initEvents() {\n if (this._supportPointerEvents) {\n EventHandler.on(this._element, EVENT_POINTERDOWN, event => this._start(event));\n EventHandler.on(this._element, EVENT_POINTERUP, event => this._end(event));\n this._element.classList.add(CLASS_NAME_POINTER_EVENT);\n } else {\n EventHandler.on(this._element, EVENT_TOUCHSTART, event => this._start(event));\n EventHandler.on(this._element, EVENT_TOUCHMOVE, event => this._move(event));\n EventHandler.on(this._element, EVENT_TOUCHEND, event => this._end(event));\n }\n }\n _eventIsPointerPenTouch(event) {\n return this._supportPointerEvents && (event.pointerType === POINTER_TYPE_PEN || event.pointerType === POINTER_TYPE_TOUCH);\n }\n\n // Static\n static isSupported() {\n return 'ontouchstart' in document.documentElement || navigator.maxTouchPoints > 0;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap carousel.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$c = 'carousel';\nconst DATA_KEY$8 = 'bs.carousel';\nconst EVENT_KEY$8 = `.${DATA_KEY$8}`;\nconst DATA_API_KEY$5 = '.data-api';\nconst ARROW_LEFT_KEY$1 = 'ArrowLeft';\nconst ARROW_RIGHT_KEY$1 = 'ArrowRight';\nconst TOUCHEVENT_COMPAT_WAIT = 500; // Time for mouse compat events to fire after touch\n\nconst ORDER_NEXT = 'next';\nconst ORDER_PREV = 'prev';\nconst DIRECTION_LEFT = 'left';\nconst DIRECTION_RIGHT = 'right';\nconst EVENT_SLIDE = `slide${EVENT_KEY$8}`;\nconst EVENT_SLID = `slid${EVENT_KEY$8}`;\nconst EVENT_KEYDOWN$1 = `keydown${EVENT_KEY$8}`;\nconst EVENT_MOUSEENTER$1 = `mouseenter${EVENT_KEY$8}`;\nconst EVENT_MOUSELEAVE$1 = `mouseleave${EVENT_KEY$8}`;\nconst EVENT_DRAG_START = `dragstart${EVENT_KEY$8}`;\nconst EVENT_LOAD_DATA_API$3 = `load${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst EVENT_CLICK_DATA_API$5 = `click${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst CLASS_NAME_CAROUSEL = 'carousel';\nconst CLASS_NAME_ACTIVE$2 = 'active';\nconst CLASS_NAME_SLIDE = 'slide';\nconst CLASS_NAME_END = 'carousel-item-end';\nconst CLASS_NAME_START = 'carousel-item-start';\nconst CLASS_NAME_NEXT = 'carousel-item-next';\nconst CLASS_NAME_PREV = 'carousel-item-prev';\nconst SELECTOR_ACTIVE = '.active';\nconst SELECTOR_ITEM = '.carousel-item';\nconst SELECTOR_ACTIVE_ITEM = SELECTOR_ACTIVE + SELECTOR_ITEM;\nconst SELECTOR_ITEM_IMG = '.carousel-item img';\nconst SELECTOR_INDICATORS = '.carousel-indicators';\nconst SELECTOR_DATA_SLIDE = '[data-bs-slide], [data-bs-slide-to]';\nconst SELECTOR_DATA_RIDE = '[data-bs-ride=\"carousel\"]';\nconst KEY_TO_DIRECTION = {\n [ARROW_LEFT_KEY$1]: DIRECTION_RIGHT,\n [ARROW_RIGHT_KEY$1]: DIRECTION_LEFT\n};\nconst Default$b = {\n interval: 5000,\n keyboard: true,\n pause: 'hover',\n ride: false,\n touch: true,\n wrap: true\n};\nconst DefaultType$b = {\n interval: '(number|boolean)',\n // TODO:v6 remove boolean support\n keyboard: 'boolean',\n pause: '(string|boolean)',\n ride: '(boolean|string)',\n touch: 'boolean',\n wrap: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Carousel extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._interval = null;\n this._activeElement = null;\n this._isSliding = false;\n this.touchTimeout = null;\n this._swipeHelper = null;\n this._indicatorsElement = SelectorEngine.findOne(SELECTOR_INDICATORS, this._element);\n this._addEventListeners();\n if (this._config.ride === CLASS_NAME_CAROUSEL) {\n this.cycle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$b;\n }\n static get DefaultType() {\n return DefaultType$b;\n }\n static get NAME() {\n return NAME$c;\n }\n\n // Public\n next() {\n this._slide(ORDER_NEXT);\n }\n nextWhenVisible() {\n // FIXME TODO use `document.visibilityState`\n // Don't call next when the page isn't visible\n // or the carousel or its parent isn't visible\n if (!document.hidden && isVisible(this._element)) {\n this.next();\n }\n }\n prev() {\n this._slide(ORDER_PREV);\n }\n pause() {\n if (this._isSliding) {\n triggerTransitionEnd(this._element);\n }\n this._clearInterval();\n }\n cycle() {\n this._clearInterval();\n this._updateInterval();\n this._interval = setInterval(() => this.nextWhenVisible(), this._config.interval);\n }\n _maybeEnableCycle() {\n if (!this._config.ride) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.cycle());\n return;\n }\n this.cycle();\n }\n to(index) {\n const items = this._getItems();\n if (index > items.length - 1 || index < 0) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.to(index));\n return;\n }\n const activeIndex = this._getItemIndex(this._getActive());\n if (activeIndex === index) {\n return;\n }\n const order = index > activeIndex ? ORDER_NEXT : ORDER_PREV;\n this._slide(order, items[index]);\n }\n dispose() {\n if (this._swipeHelper) {\n this._swipeHelper.dispose();\n }\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n config.defaultInterval = config.interval;\n return config;\n }\n _addEventListeners() {\n if (this._config.keyboard) {\n EventHandler.on(this._element, EVENT_KEYDOWN$1, event => this._keydown(event));\n }\n if (this._config.pause === 'hover') {\n EventHandler.on(this._element, EVENT_MOUSEENTER$1, () => this.pause());\n EventHandler.on(this._element, EVENT_MOUSELEAVE$1, () => this._maybeEnableCycle());\n }\n if (this._config.touch && Swipe.isSupported()) {\n this._addTouchEventListeners();\n }\n }\n _addTouchEventListeners() {\n for (const img of SelectorEngine.find(SELECTOR_ITEM_IMG, this._element)) {\n EventHandler.on(img, EVENT_DRAG_START, event => event.preventDefault());\n }\n const endCallBack = () => {\n if (this._config.pause !== 'hover') {\n return;\n }\n\n // If it's a touch-enabled device, mouseenter/leave are fired as\n // part of the mouse compatibility events on first tap - the carousel\n // would stop cycling until user tapped out of it;\n // here, we listen for touchend, explicitly pause the carousel\n // (as if it's the second time we tap on it, mouseenter compat event\n // is NOT fired) and after a timeout (to allow for mouse compatibility\n // events to fire) we explicitly restart cycling\n\n this.pause();\n if (this.touchTimeout) {\n clearTimeout(this.touchTimeout);\n }\n this.touchTimeout = setTimeout(() => this._maybeEnableCycle(), TOUCHEVENT_COMPAT_WAIT + this._config.interval);\n };\n const swipeConfig = {\n leftCallback: () => this._slide(this._directionToOrder(DIRECTION_LEFT)),\n rightCallback: () => this._slide(this._directionToOrder(DIRECTION_RIGHT)),\n endCallback: endCallBack\n };\n this._swipeHelper = new Swipe(this._element, swipeConfig);\n }\n _keydown(event) {\n if (/input|textarea/i.test(event.target.tagName)) {\n return;\n }\n const direction = KEY_TO_DIRECTION[event.key];\n if (direction) {\n event.preventDefault();\n this._slide(this._directionToOrder(direction));\n }\n }\n _getItemIndex(element) {\n return this._getItems().indexOf(element);\n }\n _setActiveIndicatorElement(index) {\n if (!this._indicatorsElement) {\n return;\n }\n const activeIndicator = SelectorEngine.findOne(SELECTOR_ACTIVE, this._indicatorsElement);\n activeIndicator.classList.remove(CLASS_NAME_ACTIVE$2);\n activeIndicator.removeAttribute('aria-current');\n const newActiveIndicator = SelectorEngine.findOne(`[data-bs-slide-to=\"${index}\"]`, this._indicatorsElement);\n if (newActiveIndicator) {\n newActiveIndicator.classList.add(CLASS_NAME_ACTIVE$2);\n newActiveIndicator.setAttribute('aria-current', 'true');\n }\n }\n _updateInterval() {\n const element = this._activeElement || this._getActive();\n if (!element) {\n return;\n }\n const elementInterval = Number.parseInt(element.getAttribute('data-bs-interval'), 10);\n this._config.interval = elementInterval || this._config.defaultInterval;\n }\n _slide(order, element = null) {\n if (this._isSliding) {\n return;\n }\n const activeElement = this._getActive();\n const isNext = order === ORDER_NEXT;\n const nextElement = element || getNextActiveElement(this._getItems(), activeElement, isNext, this._config.wrap);\n if (nextElement === activeElement) {\n return;\n }\n const nextElementIndex = this._getItemIndex(nextElement);\n const triggerEvent = eventName => {\n return EventHandler.trigger(this._element, eventName, {\n relatedTarget: nextElement,\n direction: this._orderToDirection(order),\n from: this._getItemIndex(activeElement),\n to: nextElementIndex\n });\n };\n const slideEvent = triggerEvent(EVENT_SLIDE);\n if (slideEvent.defaultPrevented) {\n return;\n }\n if (!activeElement || !nextElement) {\n // Some weirdness is happening, so we bail\n // TODO: change tests that use empty divs to avoid this check\n return;\n }\n const isCycling = Boolean(this._interval);\n this.pause();\n this._isSliding = true;\n this._setActiveIndicatorElement(nextElementIndex);\n this._activeElement = nextElement;\n const directionalClassName = isNext ? CLASS_NAME_START : CLASS_NAME_END;\n const orderClassName = isNext ? CLASS_NAME_NEXT : CLASS_NAME_PREV;\n nextElement.classList.add(orderClassName);\n reflow(nextElement);\n activeElement.classList.add(directionalClassName);\n nextElement.classList.add(directionalClassName);\n const completeCallBack = () => {\n nextElement.classList.remove(directionalClassName, orderClassName);\n nextElement.classList.add(CLASS_NAME_ACTIVE$2);\n activeElement.classList.remove(CLASS_NAME_ACTIVE$2, orderClassName, directionalClassName);\n this._isSliding = false;\n triggerEvent(EVENT_SLID);\n };\n this._queueCallback(completeCallBack, activeElement, this._isAnimated());\n if (isCycling) {\n this.cycle();\n }\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_SLIDE);\n }\n _getActive() {\n return SelectorEngine.findOne(SELECTOR_ACTIVE_ITEM, this._element);\n }\n _getItems() {\n return SelectorEngine.find(SELECTOR_ITEM, this._element);\n }\n _clearInterval() {\n if (this._interval) {\n clearInterval(this._interval);\n this._interval = null;\n }\n }\n _directionToOrder(direction) {\n if (isRTL()) {\n return direction === DIRECTION_LEFT ? ORDER_PREV : ORDER_NEXT;\n }\n return direction === DIRECTION_LEFT ? ORDER_NEXT : ORDER_PREV;\n }\n _orderToDirection(order) {\n if (isRTL()) {\n return order === ORDER_PREV ? DIRECTION_LEFT : DIRECTION_RIGHT;\n }\n return order === ORDER_PREV ? DIRECTION_RIGHT : DIRECTION_LEFT;\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Carousel.getOrCreateInstance(this, config);\n if (typeof config === 'number') {\n data.to(config);\n return;\n }\n if (typeof config === 'string') {\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$5, SELECTOR_DATA_SLIDE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (!target || !target.classList.contains(CLASS_NAME_CAROUSEL)) {\n return;\n }\n event.preventDefault();\n const carousel = Carousel.getOrCreateInstance(target);\n const slideIndex = this.getAttribute('data-bs-slide-to');\n if (slideIndex) {\n carousel.to(slideIndex);\n carousel._maybeEnableCycle();\n return;\n }\n if (Manipulator.getDataAttribute(this, 'slide') === 'next') {\n carousel.next();\n carousel._maybeEnableCycle();\n return;\n }\n carousel.prev();\n carousel._maybeEnableCycle();\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$3, () => {\n const carousels = SelectorEngine.find(SELECTOR_DATA_RIDE);\n for (const carousel of carousels) {\n Carousel.getOrCreateInstance(carousel);\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Carousel);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap collapse.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$b = 'collapse';\nconst DATA_KEY$7 = 'bs.collapse';\nconst EVENT_KEY$7 = `.${DATA_KEY$7}`;\nconst DATA_API_KEY$4 = '.data-api';\nconst EVENT_SHOW$6 = `show${EVENT_KEY$7}`;\nconst EVENT_SHOWN$6 = `shown${EVENT_KEY$7}`;\nconst EVENT_HIDE$6 = `hide${EVENT_KEY$7}`;\nconst EVENT_HIDDEN$6 = `hidden${EVENT_KEY$7}`;\nconst EVENT_CLICK_DATA_API$4 = `click${EVENT_KEY$7}${DATA_API_KEY$4}`;\nconst CLASS_NAME_SHOW$7 = 'show';\nconst CLASS_NAME_COLLAPSE = 'collapse';\nconst CLASS_NAME_COLLAPSING = 'collapsing';\nconst CLASS_NAME_COLLAPSED = 'collapsed';\nconst CLASS_NAME_DEEPER_CHILDREN = `:scope .${CLASS_NAME_COLLAPSE} .${CLASS_NAME_COLLAPSE}`;\nconst CLASS_NAME_HORIZONTAL = 'collapse-horizontal';\nconst WIDTH = 'width';\nconst HEIGHT = 'height';\nconst SELECTOR_ACTIVES = '.collapse.show, .collapse.collapsing';\nconst SELECTOR_DATA_TOGGLE$4 = '[data-bs-toggle=\"collapse\"]';\nconst Default$a = {\n parent: null,\n toggle: true\n};\nconst DefaultType$a = {\n parent: '(null|element)',\n toggle: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Collapse extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isTransitioning = false;\n this._triggerArray = [];\n const toggleList = SelectorEngine.find(SELECTOR_DATA_TOGGLE$4);\n for (const elem of toggleList) {\n const selector = SelectorEngine.getSelectorFromElement(elem);\n const filterElement = SelectorEngine.find(selector).filter(foundElement => foundElement === this._element);\n if (selector !== null && filterElement.length) {\n this._triggerArray.push(elem);\n }\n }\n this._initializeChildren();\n if (!this._config.parent) {\n this._addAriaAndCollapsedClass(this._triggerArray, this._isShown());\n }\n if (this._config.toggle) {\n this.toggle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$a;\n }\n static get DefaultType() {\n return DefaultType$a;\n }\n static get NAME() {\n return NAME$b;\n }\n\n // Public\n toggle() {\n if (this._isShown()) {\n this.hide();\n } else {\n this.show();\n }\n }\n show() {\n if (this._isTransitioning || this._isShown()) {\n return;\n }\n let activeChildren = [];\n\n // find active children\n if (this._config.parent) {\n activeChildren = this._getFirstLevelChildren(SELECTOR_ACTIVES).filter(element => element !== this._element).map(element => Collapse.getOrCreateInstance(element, {\n toggle: false\n }));\n }\n if (activeChildren.length && activeChildren[0]._isTransitioning) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_SHOW$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n for (const activeInstance of activeChildren) {\n activeInstance.hide();\n }\n const dimension = this._getDimension();\n this._element.classList.remove(CLASS_NAME_COLLAPSE);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.style[dimension] = 0;\n this._addAriaAndCollapsedClass(this._triggerArray, true);\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n this._element.style[dimension] = '';\n EventHandler.trigger(this._element, EVENT_SHOWN$6);\n };\n const capitalizedDimension = dimension[0].toUpperCase() + dimension.slice(1);\n const scrollSize = `scroll${capitalizedDimension}`;\n this._queueCallback(complete, this._element, true);\n this._element.style[dimension] = `${this._element[scrollSize]}px`;\n }\n hide() {\n if (this._isTransitioning || !this._isShown()) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_HIDE$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n const dimension = this._getDimension();\n this._element.style[dimension] = `${this._element.getBoundingClientRect()[dimension]}px`;\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.classList.remove(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n for (const trigger of this._triggerArray) {\n const element = SelectorEngine.getElementFromSelector(trigger);\n if (element && !this._isShown(element)) {\n this._addAriaAndCollapsedClass([trigger], false);\n }\n }\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE);\n EventHandler.trigger(this._element, EVENT_HIDDEN$6);\n };\n this._element.style[dimension] = '';\n this._queueCallback(complete, this._element, true);\n }\n _isShown(element = this._element) {\n return element.classList.contains(CLASS_NAME_SHOW$7);\n }\n\n // Private\n _configAfterMerge(config) {\n config.toggle = Boolean(config.toggle); // Coerce string values\n config.parent = getElement(config.parent);\n return config;\n }\n _getDimension() {\n return this._element.classList.contains(CLASS_NAME_HORIZONTAL) ? WIDTH : HEIGHT;\n }\n _initializeChildren() {\n if (!this._config.parent) {\n return;\n }\n const children = this._getFirstLevelChildren(SELECTOR_DATA_TOGGLE$4);\n for (const element of children) {\n const selected = SelectorEngine.getElementFromSelector(element);\n if (selected) {\n this._addAriaAndCollapsedClass([element], this._isShown(selected));\n }\n }\n }\n _getFirstLevelChildren(selector) {\n const children = SelectorEngine.find(CLASS_NAME_DEEPER_CHILDREN, this._config.parent);\n // remove children if greater depth\n return SelectorEngine.find(selector, this._config.parent).filter(element => !children.includes(element));\n }\n _addAriaAndCollapsedClass(triggerArray, isOpen) {\n if (!triggerArray.length) {\n return;\n }\n for (const element of triggerArray) {\n element.classList.toggle(CLASS_NAME_COLLAPSED, !isOpen);\n element.setAttribute('aria-expanded', isOpen);\n }\n }\n\n // Static\n static jQueryInterface(config) {\n const _config = {};\n if (typeof config === 'string' && /show|hide/.test(config)) {\n _config.toggle = false;\n }\n return this.each(function () {\n const data = Collapse.getOrCreateInstance(this, _config);\n if (typeof config === 'string') {\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$4, SELECTOR_DATA_TOGGLE$4, function (event) {\n // preventDefault only for elements (which change the URL) not inside the collapsible element\n if (event.target.tagName === 'A' || event.delegateTarget && event.delegateTarget.tagName === 'A') {\n event.preventDefault();\n }\n for (const element of SelectorEngine.getMultipleElementsFromSelector(this)) {\n Collapse.getOrCreateInstance(element, {\n toggle: false\n }).toggle();\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Collapse);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dropdown.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$a = 'dropdown';\nconst DATA_KEY$6 = 'bs.dropdown';\nconst EVENT_KEY$6 = `.${DATA_KEY$6}`;\nconst DATA_API_KEY$3 = '.data-api';\nconst ESCAPE_KEY$2 = 'Escape';\nconst TAB_KEY$1 = 'Tab';\nconst ARROW_UP_KEY$1 = 'ArrowUp';\nconst ARROW_DOWN_KEY$1 = 'ArrowDown';\nconst RIGHT_MOUSE_BUTTON = 2; // MouseEvent.button value for the secondary button, usually the right button\n\nconst EVENT_HIDE$5 = `hide${EVENT_KEY$6}`;\nconst EVENT_HIDDEN$5 = `hidden${EVENT_KEY$6}`;\nconst EVENT_SHOW$5 = `show${EVENT_KEY$6}`;\nconst EVENT_SHOWN$5 = `shown${EVENT_KEY$6}`;\nconst EVENT_CLICK_DATA_API$3 = `click${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYDOWN_DATA_API = `keydown${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYUP_DATA_API = `keyup${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst CLASS_NAME_SHOW$6 = 'show';\nconst CLASS_NAME_DROPUP = 'dropup';\nconst CLASS_NAME_DROPEND = 'dropend';\nconst CLASS_NAME_DROPSTART = 'dropstart';\nconst CLASS_NAME_DROPUP_CENTER = 'dropup-center';\nconst CLASS_NAME_DROPDOWN_CENTER = 'dropdown-center';\nconst SELECTOR_DATA_TOGGLE$3 = '[data-bs-toggle=\"dropdown\"]:not(.disabled):not(:disabled)';\nconst SELECTOR_DATA_TOGGLE_SHOWN = `${SELECTOR_DATA_TOGGLE$3}.${CLASS_NAME_SHOW$6}`;\nconst SELECTOR_MENU = '.dropdown-menu';\nconst SELECTOR_NAVBAR = '.navbar';\nconst SELECTOR_NAVBAR_NAV = '.navbar-nav';\nconst SELECTOR_VISIBLE_ITEMS = '.dropdown-menu .dropdown-item:not(.disabled):not(:disabled)';\nconst PLACEMENT_TOP = isRTL() ? 'top-end' : 'top-start';\nconst PLACEMENT_TOPEND = isRTL() ? 'top-start' : 'top-end';\nconst PLACEMENT_BOTTOM = isRTL() ? 'bottom-end' : 'bottom-start';\nconst PLACEMENT_BOTTOMEND = isRTL() ? 'bottom-start' : 'bottom-end';\nconst PLACEMENT_RIGHT = isRTL() ? 'left-start' : 'right-start';\nconst PLACEMENT_LEFT = isRTL() ? 'right-start' : 'left-start';\nconst PLACEMENT_TOPCENTER = 'top';\nconst PLACEMENT_BOTTOMCENTER = 'bottom';\nconst Default$9 = {\n autoClose: true,\n boundary: 'clippingParents',\n display: 'dynamic',\n offset: [0, 2],\n popperConfig: null,\n reference: 'toggle'\n};\nconst DefaultType$9 = {\n autoClose: '(boolean|string)',\n boundary: '(string|element)',\n display: 'string',\n offset: '(array|string|function)',\n popperConfig: '(null|object|function)',\n reference: '(string|element|object)'\n};\n\n/**\n * Class definition\n */\n\nclass Dropdown extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._popper = null;\n this._parent = this._element.parentNode; // dropdown wrapper\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n this._menu = SelectorEngine.next(this._element, SELECTOR_MENU)[0] || SelectorEngine.prev(this._element, SELECTOR_MENU)[0] || SelectorEngine.findOne(SELECTOR_MENU, this._parent);\n this._inNavbar = this._detectNavbar();\n }\n\n // Getters\n static get Default() {\n return Default$9;\n }\n static get DefaultType() {\n return DefaultType$9;\n }\n static get NAME() {\n return NAME$a;\n }\n\n // Public\n toggle() {\n return this._isShown() ? this.hide() : this.show();\n }\n show() {\n if (isDisabled(this._element) || this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$5, relatedTarget);\n if (showEvent.defaultPrevented) {\n return;\n }\n this._createPopper();\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement && !this._parent.closest(SELECTOR_NAVBAR_NAV)) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n this._element.focus();\n this._element.setAttribute('aria-expanded', true);\n this._menu.classList.add(CLASS_NAME_SHOW$6);\n this._element.classList.add(CLASS_NAME_SHOW$6);\n EventHandler.trigger(this._element, EVENT_SHOWN$5, relatedTarget);\n }\n hide() {\n if (isDisabled(this._element) || !this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n this._completeHide(relatedTarget);\n }\n dispose() {\n if (this._popper) {\n this._popper.destroy();\n }\n super.dispose();\n }\n update() {\n this._inNavbar = this._detectNavbar();\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Private\n _completeHide(relatedTarget) {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$5, relatedTarget);\n if (hideEvent.defaultPrevented) {\n return;\n }\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n if (this._popper) {\n this._popper.destroy();\n }\n this._menu.classList.remove(CLASS_NAME_SHOW$6);\n this._element.classList.remove(CLASS_NAME_SHOW$6);\n this._element.setAttribute('aria-expanded', 'false');\n Manipulator.removeDataAttribute(this._menu, 'popper');\n EventHandler.trigger(this._element, EVENT_HIDDEN$5, relatedTarget);\n }\n _getConfig(config) {\n config = super._getConfig(config);\n if (typeof config.reference === 'object' && !isElement(config.reference) && typeof config.reference.getBoundingClientRect !== 'function') {\n // Popper virtual elements require a getBoundingClientRect method\n throw new TypeError(`${NAME$a.toUpperCase()}: Option \"reference\" provided type \"object\" without a required \"getBoundingClientRect\" method.`);\n }\n return config;\n }\n _createPopper() {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s dropdowns require Popper (https://popper.js.org)');\n }\n let referenceElement = this._element;\n if (this._config.reference === 'parent') {\n referenceElement = this._parent;\n } else if (isElement(this._config.reference)) {\n referenceElement = getElement(this._config.reference);\n } else if (typeof this._config.reference === 'object') {\n referenceElement = this._config.reference;\n }\n const popperConfig = this._getPopperConfig();\n this._popper = Popper.createPopper(referenceElement, this._menu, popperConfig);\n }\n _isShown() {\n return this._menu.classList.contains(CLASS_NAME_SHOW$6);\n }\n _getPlacement() {\n const parentDropdown = this._parent;\n if (parentDropdown.classList.contains(CLASS_NAME_DROPEND)) {\n return PLACEMENT_RIGHT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPSTART)) {\n return PLACEMENT_LEFT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP_CENTER)) {\n return PLACEMENT_TOPCENTER;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPDOWN_CENTER)) {\n return PLACEMENT_BOTTOMCENTER;\n }\n\n // We need to trim the value because custom properties can also include spaces\n const isEnd = getComputedStyle(this._menu).getPropertyValue('--bs-position').trim() === 'end';\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP)) {\n return isEnd ? PLACEMENT_TOPEND : PLACEMENT_TOP;\n }\n return isEnd ? PLACEMENT_BOTTOMEND : PLACEMENT_BOTTOM;\n }\n _detectNavbar() {\n return this._element.closest(SELECTOR_NAVBAR) !== null;\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _getPopperConfig() {\n const defaultBsPopperConfig = {\n placement: this._getPlacement(),\n modifiers: [{\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }]\n };\n\n // Disable Popper if we have a static display or Dropdown is in Navbar\n if (this._inNavbar || this._config.display === 'static') {\n Manipulator.setDataAttribute(this._menu, 'popper', 'static'); // TODO: v6 remove\n defaultBsPopperConfig.modifiers = [{\n name: 'applyStyles',\n enabled: false\n }];\n }\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _selectMenuItem({\n key,\n target\n }) {\n const items = SelectorEngine.find(SELECTOR_VISIBLE_ITEMS, this._menu).filter(element => isVisible(element));\n if (!items.length) {\n return;\n }\n\n // if target isn't included in items (e.g. when expanding the dropdown)\n // allow cycling to get the last item in case key equals ARROW_UP_KEY\n getNextActiveElement(items, target, key === ARROW_DOWN_KEY$1, !items.includes(target)).focus();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Dropdown.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n static clearMenus(event) {\n if (event.button === RIGHT_MOUSE_BUTTON || event.type === 'keyup' && event.key !== TAB_KEY$1) {\n return;\n }\n const openToggles = SelectorEngine.find(SELECTOR_DATA_TOGGLE_SHOWN);\n for (const toggle of openToggles) {\n const context = Dropdown.getInstance(toggle);\n if (!context || context._config.autoClose === false) {\n continue;\n }\n const composedPath = event.composedPath();\n const isMenuTarget = composedPath.includes(context._menu);\n if (composedPath.includes(context._element) || context._config.autoClose === 'inside' && !isMenuTarget || context._config.autoClose === 'outside' && isMenuTarget) {\n continue;\n }\n\n // Tab navigation through the dropdown menu or events from contained inputs shouldn't close the menu\n if (context._menu.contains(event.target) && (event.type === 'keyup' && event.key === TAB_KEY$1 || /input|select|option|textarea|form/i.test(event.target.tagName))) {\n continue;\n }\n const relatedTarget = {\n relatedTarget: context._element\n };\n if (event.type === 'click') {\n relatedTarget.clickEvent = event;\n }\n context._completeHide(relatedTarget);\n }\n }\n static dataApiKeydownHandler(event) {\n // If not an UP | DOWN | ESCAPE key => not a dropdown command\n // If input/textarea && if key is other than ESCAPE => not a dropdown command\n\n const isInput = /input|textarea/i.test(event.target.tagName);\n const isEscapeEvent = event.key === ESCAPE_KEY$2;\n const isUpOrDownEvent = [ARROW_UP_KEY$1, ARROW_DOWN_KEY$1].includes(event.key);\n if (!isUpOrDownEvent && !isEscapeEvent) {\n return;\n }\n if (isInput && !isEscapeEvent) {\n return;\n }\n event.preventDefault();\n\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n const getToggleButton = this.matches(SELECTOR_DATA_TOGGLE$3) ? this : SelectorEngine.prev(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.next(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.findOne(SELECTOR_DATA_TOGGLE$3, event.delegateTarget.parentNode);\n const instance = Dropdown.getOrCreateInstance(getToggleButton);\n if (isUpOrDownEvent) {\n event.stopPropagation();\n instance.show();\n instance._selectMenuItem(event);\n return;\n }\n if (instance._isShown()) {\n // else is escape and we check if it is shown\n event.stopPropagation();\n instance.hide();\n getToggleButton.focus();\n }\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_DATA_TOGGLE$3, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_MENU, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_KEYUP_DATA_API, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, SELECTOR_DATA_TOGGLE$3, function (event) {\n event.preventDefault();\n Dropdown.getOrCreateInstance(this).toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Dropdown);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/backdrop.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$9 = 'backdrop';\nconst CLASS_NAME_FADE$4 = 'fade';\nconst CLASS_NAME_SHOW$5 = 'show';\nconst EVENT_MOUSEDOWN = `mousedown.bs.${NAME$9}`;\nconst Default$8 = {\n className: 'modal-backdrop',\n clickCallback: null,\n isAnimated: false,\n isVisible: true,\n // if false, we use the backdrop helper without adding any element to the dom\n rootElement: 'body' // give the choice to place backdrop under different elements\n};\nconst DefaultType$8 = {\n className: 'string',\n clickCallback: '(function|null)',\n isAnimated: 'boolean',\n isVisible: 'boolean',\n rootElement: '(element|string)'\n};\n\n/**\n * Class definition\n */\n\nclass Backdrop extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isAppended = false;\n this._element = null;\n }\n\n // Getters\n static get Default() {\n return Default$8;\n }\n static get DefaultType() {\n return DefaultType$8;\n }\n static get NAME() {\n return NAME$9;\n }\n\n // Public\n show(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._append();\n const element = this._getElement();\n if (this._config.isAnimated) {\n reflow(element);\n }\n element.classList.add(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n execute(callback);\n });\n }\n hide(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._getElement().classList.remove(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n this.dispose();\n execute(callback);\n });\n }\n dispose() {\n if (!this._isAppended) {\n return;\n }\n EventHandler.off(this._element, EVENT_MOUSEDOWN);\n this._element.remove();\n this._isAppended = false;\n }\n\n // Private\n _getElement() {\n if (!this._element) {\n const backdrop = document.createElement('div');\n backdrop.className = this._config.className;\n if (this._config.isAnimated) {\n backdrop.classList.add(CLASS_NAME_FADE$4);\n }\n this._element = backdrop;\n }\n return this._element;\n }\n _configAfterMerge(config) {\n // use getElement() with the default \"body\" to get a fresh Element on each instantiation\n config.rootElement = getElement(config.rootElement);\n return config;\n }\n _append() {\n if (this._isAppended) {\n return;\n }\n const element = this._getElement();\n this._config.rootElement.append(element);\n EventHandler.on(element, EVENT_MOUSEDOWN, () => {\n execute(this._config.clickCallback);\n });\n this._isAppended = true;\n }\n _emulateAnimation(callback) {\n executeAfterTransition(callback, this._getElement(), this._config.isAnimated);\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/focustrap.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$8 = 'focustrap';\nconst DATA_KEY$5 = 'bs.focustrap';\nconst EVENT_KEY$5 = `.${DATA_KEY$5}`;\nconst EVENT_FOCUSIN$2 = `focusin${EVENT_KEY$5}`;\nconst EVENT_KEYDOWN_TAB = `keydown.tab${EVENT_KEY$5}`;\nconst TAB_KEY = 'Tab';\nconst TAB_NAV_FORWARD = 'forward';\nconst TAB_NAV_BACKWARD = 'backward';\nconst Default$7 = {\n autofocus: true,\n trapElement: null // The element to trap focus inside of\n};\nconst DefaultType$7 = {\n autofocus: 'boolean',\n trapElement: 'element'\n};\n\n/**\n * Class definition\n */\n\nclass FocusTrap extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isActive = false;\n this._lastTabNavDirection = null;\n }\n\n // Getters\n static get Default() {\n return Default$7;\n }\n static get DefaultType() {\n return DefaultType$7;\n }\n static get NAME() {\n return NAME$8;\n }\n\n // Public\n activate() {\n if (this._isActive) {\n return;\n }\n if (this._config.autofocus) {\n this._config.trapElement.focus();\n }\n EventHandler.off(document, EVENT_KEY$5); // guard against infinite focus loop\n EventHandler.on(document, EVENT_FOCUSIN$2, event => this._handleFocusin(event));\n EventHandler.on(document, EVENT_KEYDOWN_TAB, event => this._handleKeydown(event));\n this._isActive = true;\n }\n deactivate() {\n if (!this._isActive) {\n return;\n }\n this._isActive = false;\n EventHandler.off(document, EVENT_KEY$5);\n }\n\n // Private\n _handleFocusin(event) {\n const {\n trapElement\n } = this._config;\n if (event.target === document || event.target === trapElement || trapElement.contains(event.target)) {\n return;\n }\n const elements = SelectorEngine.focusableChildren(trapElement);\n if (elements.length === 0) {\n trapElement.focus();\n } else if (this._lastTabNavDirection === TAB_NAV_BACKWARD) {\n elements[elements.length - 1].focus();\n } else {\n elements[0].focus();\n }\n }\n _handleKeydown(event) {\n if (event.key !== TAB_KEY) {\n return;\n }\n this._lastTabNavDirection = event.shiftKey ? TAB_NAV_BACKWARD : TAB_NAV_FORWARD;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/scrollBar.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst SELECTOR_FIXED_CONTENT = '.fixed-top, .fixed-bottom, .is-fixed, .sticky-top';\nconst SELECTOR_STICKY_CONTENT = '.sticky-top';\nconst PROPERTY_PADDING = 'padding-right';\nconst PROPERTY_MARGIN = 'margin-right';\n\n/**\n * Class definition\n */\n\nclass ScrollBarHelper {\n constructor() {\n this._element = document.body;\n }\n\n // Public\n getWidth() {\n // https://developer.mozilla.org/en-US/docs/Web/API/Window/innerWidth#usage_notes\n const documentWidth = document.documentElement.clientWidth;\n return Math.abs(window.innerWidth - documentWidth);\n }\n hide() {\n const width = this.getWidth();\n this._disableOverFlow();\n // give padding to element to balance the hidden scrollbar width\n this._setElementAttributes(this._element, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n // trick: We adjust positive paddingRight and negative marginRight to sticky-top elements to keep showing fullwidth\n this._setElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n this._setElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN, calculatedValue => calculatedValue - width);\n }\n reset() {\n this._resetElementAttributes(this._element, 'overflow');\n this._resetElementAttributes(this._element, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN);\n }\n isOverflowing() {\n return this.getWidth() > 0;\n }\n\n // Private\n _disableOverFlow() {\n this._saveInitialAttribute(this._element, 'overflow');\n this._element.style.overflow = 'hidden';\n }\n _setElementAttributes(selector, styleProperty, callback) {\n const scrollbarWidth = this.getWidth();\n const manipulationCallBack = element => {\n if (element !== this._element && window.innerWidth > element.clientWidth + scrollbarWidth) {\n return;\n }\n this._saveInitialAttribute(element, styleProperty);\n const calculatedValue = window.getComputedStyle(element).getPropertyValue(styleProperty);\n element.style.setProperty(styleProperty, `${callback(Number.parseFloat(calculatedValue))}px`);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _saveInitialAttribute(element, styleProperty) {\n const actualValue = element.style.getPropertyValue(styleProperty);\n if (actualValue) {\n Manipulator.setDataAttribute(element, styleProperty, actualValue);\n }\n }\n _resetElementAttributes(selector, styleProperty) {\n const manipulationCallBack = element => {\n const value = Manipulator.getDataAttribute(element, styleProperty);\n // We only want to remove the property if the value is `null`; the value can also be zero\n if (value === null) {\n element.style.removeProperty(styleProperty);\n return;\n }\n Manipulator.removeDataAttribute(element, styleProperty);\n element.style.setProperty(styleProperty, value);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _applyManipulationCallback(selector, callBack) {\n if (isElement(selector)) {\n callBack(selector);\n return;\n }\n for (const sel of SelectorEngine.find(selector, this._element)) {\n callBack(sel);\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap modal.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$7 = 'modal';\nconst DATA_KEY$4 = 'bs.modal';\nconst EVENT_KEY$4 = `.${DATA_KEY$4}`;\nconst DATA_API_KEY$2 = '.data-api';\nconst ESCAPE_KEY$1 = 'Escape';\nconst EVENT_HIDE$4 = `hide${EVENT_KEY$4}`;\nconst EVENT_HIDE_PREVENTED$1 = `hidePrevented${EVENT_KEY$4}`;\nconst EVENT_HIDDEN$4 = `hidden${EVENT_KEY$4}`;\nconst EVENT_SHOW$4 = `show${EVENT_KEY$4}`;\nconst EVENT_SHOWN$4 = `shown${EVENT_KEY$4}`;\nconst EVENT_RESIZE$1 = `resize${EVENT_KEY$4}`;\nconst EVENT_CLICK_DISMISS = `click.dismiss${EVENT_KEY$4}`;\nconst EVENT_MOUSEDOWN_DISMISS = `mousedown.dismiss${EVENT_KEY$4}`;\nconst EVENT_KEYDOWN_DISMISS$1 = `keydown.dismiss${EVENT_KEY$4}`;\nconst EVENT_CLICK_DATA_API$2 = `click${EVENT_KEY$4}${DATA_API_KEY$2}`;\nconst CLASS_NAME_OPEN = 'modal-open';\nconst CLASS_NAME_FADE$3 = 'fade';\nconst CLASS_NAME_SHOW$4 = 'show';\nconst CLASS_NAME_STATIC = 'modal-static';\nconst OPEN_SELECTOR$1 = '.modal.show';\nconst SELECTOR_DIALOG = '.modal-dialog';\nconst SELECTOR_MODAL_BODY = '.modal-body';\nconst SELECTOR_DATA_TOGGLE$2 = '[data-bs-toggle=\"modal\"]';\nconst Default$6 = {\n backdrop: true,\n focus: true,\n keyboard: true\n};\nconst DefaultType$6 = {\n backdrop: '(boolean|string)',\n focus: 'boolean',\n keyboard: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Modal extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._dialog = SelectorEngine.findOne(SELECTOR_DIALOG, this._element);\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._isShown = false;\n this._isTransitioning = false;\n this._scrollBar = new ScrollBarHelper();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$6;\n }\n static get DefaultType() {\n return DefaultType$6;\n }\n static get NAME() {\n return NAME$7;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown || this._isTransitioning) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$4, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._isTransitioning = true;\n this._scrollBar.hide();\n document.body.classList.add(CLASS_NAME_OPEN);\n this._adjustDialog();\n this._backdrop.show(() => this._showElement(relatedTarget));\n }\n hide() {\n if (!this._isShown || this._isTransitioning) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$4);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._isShown = false;\n this._isTransitioning = true;\n this._focustrap.deactivate();\n this._element.classList.remove(CLASS_NAME_SHOW$4);\n this._queueCallback(() => this._hideModal(), this._element, this._isAnimated());\n }\n dispose() {\n EventHandler.off(window, EVENT_KEY$4);\n EventHandler.off(this._dialog, EVENT_KEY$4);\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n handleUpdate() {\n this._adjustDialog();\n }\n\n // Private\n _initializeBackDrop() {\n return new Backdrop({\n isVisible: Boolean(this._config.backdrop),\n // 'static' option will be translated to true, and booleans will keep their value,\n isAnimated: this._isAnimated()\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _showElement(relatedTarget) {\n // try to append dynamic modal\n if (!document.body.contains(this._element)) {\n document.body.append(this._element);\n }\n this._element.style.display = 'block';\n this._element.removeAttribute('aria-hidden');\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.scrollTop = 0;\n const modalBody = SelectorEngine.findOne(SELECTOR_MODAL_BODY, this._dialog);\n if (modalBody) {\n modalBody.scrollTop = 0;\n }\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_SHOW$4);\n const transitionComplete = () => {\n if (this._config.focus) {\n this._focustrap.activate();\n }\n this._isTransitioning = false;\n EventHandler.trigger(this._element, EVENT_SHOWN$4, {\n relatedTarget\n });\n };\n this._queueCallback(transitionComplete, this._dialog, this._isAnimated());\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS$1, event => {\n if (event.key !== ESCAPE_KEY$1) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n this._triggerBackdropTransition();\n });\n EventHandler.on(window, EVENT_RESIZE$1, () => {\n if (this._isShown && !this._isTransitioning) {\n this._adjustDialog();\n }\n });\n EventHandler.on(this._element, EVENT_MOUSEDOWN_DISMISS, event => {\n // a bad trick to segregate clicks that may start inside dialog but end outside, and avoid listen to scrollbar clicks\n EventHandler.one(this._element, EVENT_CLICK_DISMISS, event2 => {\n if (this._element !== event.target || this._element !== event2.target) {\n return;\n }\n if (this._config.backdrop === 'static') {\n this._triggerBackdropTransition();\n return;\n }\n if (this._config.backdrop) {\n this.hide();\n }\n });\n });\n }\n _hideModal() {\n this._element.style.display = 'none';\n this._element.setAttribute('aria-hidden', true);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n this._isTransitioning = false;\n this._backdrop.hide(() => {\n document.body.classList.remove(CLASS_NAME_OPEN);\n this._resetAdjustments();\n this._scrollBar.reset();\n EventHandler.trigger(this._element, EVENT_HIDDEN$4);\n });\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_FADE$3);\n }\n _triggerBackdropTransition() {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED$1);\n if (hideEvent.defaultPrevented) {\n return;\n }\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const initialOverflowY = this._element.style.overflowY;\n // return if the following background transition hasn't yet completed\n if (initialOverflowY === 'hidden' || this._element.classList.contains(CLASS_NAME_STATIC)) {\n return;\n }\n if (!isModalOverflowing) {\n this._element.style.overflowY = 'hidden';\n }\n this._element.classList.add(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.classList.remove(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.style.overflowY = initialOverflowY;\n }, this._dialog);\n }, this._dialog);\n this._element.focus();\n }\n\n /**\n * The following methods are used to handle overflowing modals\n */\n\n _adjustDialog() {\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const scrollbarWidth = this._scrollBar.getWidth();\n const isBodyOverflowing = scrollbarWidth > 0;\n if (isBodyOverflowing && !isModalOverflowing) {\n const property = isRTL() ? 'paddingLeft' : 'paddingRight';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n if (!isBodyOverflowing && isModalOverflowing) {\n const property = isRTL() ? 'paddingRight' : 'paddingLeft';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n }\n _resetAdjustments() {\n this._element.style.paddingLeft = '';\n this._element.style.paddingRight = '';\n }\n\n // Static\n static jQueryInterface(config, relatedTarget) {\n return this.each(function () {\n const data = Modal.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](relatedTarget);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$2, SELECTOR_DATA_TOGGLE$2, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n EventHandler.one(target, EVENT_SHOW$4, showEvent => {\n if (showEvent.defaultPrevented) {\n // only register focus restorer if modal will actually get shown\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$4, () => {\n if (isVisible(this)) {\n this.focus();\n }\n });\n });\n\n // avoid conflict when clicking modal toggler while another one is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR$1);\n if (alreadyOpen) {\n Modal.getInstance(alreadyOpen).hide();\n }\n const data = Modal.getOrCreateInstance(target);\n data.toggle(this);\n});\nenableDismissTrigger(Modal);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Modal);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap offcanvas.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$6 = 'offcanvas';\nconst DATA_KEY$3 = 'bs.offcanvas';\nconst EVENT_KEY$3 = `.${DATA_KEY$3}`;\nconst DATA_API_KEY$1 = '.data-api';\nconst EVENT_LOAD_DATA_API$2 = `load${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst ESCAPE_KEY = 'Escape';\nconst CLASS_NAME_SHOW$3 = 'show';\nconst CLASS_NAME_SHOWING$1 = 'showing';\nconst CLASS_NAME_HIDING = 'hiding';\nconst CLASS_NAME_BACKDROP = 'offcanvas-backdrop';\nconst OPEN_SELECTOR = '.offcanvas.show';\nconst EVENT_SHOW$3 = `show${EVENT_KEY$3}`;\nconst EVENT_SHOWN$3 = `shown${EVENT_KEY$3}`;\nconst EVENT_HIDE$3 = `hide${EVENT_KEY$3}`;\nconst EVENT_HIDE_PREVENTED = `hidePrevented${EVENT_KEY$3}`;\nconst EVENT_HIDDEN$3 = `hidden${EVENT_KEY$3}`;\nconst EVENT_RESIZE = `resize${EVENT_KEY$3}`;\nconst EVENT_CLICK_DATA_API$1 = `click${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst EVENT_KEYDOWN_DISMISS = `keydown.dismiss${EVENT_KEY$3}`;\nconst SELECTOR_DATA_TOGGLE$1 = '[data-bs-toggle=\"offcanvas\"]';\nconst Default$5 = {\n backdrop: true,\n keyboard: true,\n scroll: false\n};\nconst DefaultType$5 = {\n backdrop: '(boolean|string)',\n keyboard: 'boolean',\n scroll: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Offcanvas extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isShown = false;\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$5;\n }\n static get DefaultType() {\n return DefaultType$5;\n }\n static get NAME() {\n return NAME$6;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$3, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._backdrop.show();\n if (!this._config.scroll) {\n new ScrollBarHelper().hide();\n }\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.classList.add(CLASS_NAME_SHOWING$1);\n const completeCallBack = () => {\n if (!this._config.scroll || this._config.backdrop) {\n this._focustrap.activate();\n }\n this._element.classList.add(CLASS_NAME_SHOW$3);\n this._element.classList.remove(CLASS_NAME_SHOWING$1);\n EventHandler.trigger(this._element, EVENT_SHOWN$3, {\n relatedTarget\n });\n };\n this._queueCallback(completeCallBack, this._element, true);\n }\n hide() {\n if (!this._isShown) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$3);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._focustrap.deactivate();\n this._element.blur();\n this._isShown = false;\n this._element.classList.add(CLASS_NAME_HIDING);\n this._backdrop.hide();\n const completeCallback = () => {\n this._element.classList.remove(CLASS_NAME_SHOW$3, CLASS_NAME_HIDING);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n if (!this._config.scroll) {\n new ScrollBarHelper().reset();\n }\n EventHandler.trigger(this._element, EVENT_HIDDEN$3);\n };\n this._queueCallback(completeCallback, this._element, true);\n }\n dispose() {\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n\n // Private\n _initializeBackDrop() {\n const clickCallback = () => {\n if (this._config.backdrop === 'static') {\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n return;\n }\n this.hide();\n };\n\n // 'static' option will be translated to true, and booleans will keep their value\n const isVisible = Boolean(this._config.backdrop);\n return new Backdrop({\n className: CLASS_NAME_BACKDROP,\n isVisible,\n isAnimated: true,\n rootElement: this._element.parentNode,\n clickCallback: isVisible ? clickCallback : null\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS, event => {\n if (event.key !== ESCAPE_KEY) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n });\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Offcanvas.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$1, SELECTOR_DATA_TOGGLE$1, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$3, () => {\n // focus on trigger when it is closed\n if (isVisible(this)) {\n this.focus();\n }\n });\n\n // avoid conflict when clicking a toggler of an offcanvas, while another is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR);\n if (alreadyOpen && alreadyOpen !== target) {\n Offcanvas.getInstance(alreadyOpen).hide();\n }\n const data = Offcanvas.getOrCreateInstance(target);\n data.toggle(this);\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$2, () => {\n for (const selector of SelectorEngine.find(OPEN_SELECTOR)) {\n Offcanvas.getOrCreateInstance(selector).show();\n }\n});\nEventHandler.on(window, EVENT_RESIZE, () => {\n for (const element of SelectorEngine.find('[aria-modal][class*=show][class*=offcanvas-]')) {\n if (getComputedStyle(element).position !== 'fixed') {\n Offcanvas.getOrCreateInstance(element).hide();\n }\n }\n});\nenableDismissTrigger(Offcanvas);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Offcanvas);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/sanitizer.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n// js-docs-start allow-list\nconst ARIA_ATTRIBUTE_PATTERN = /^aria-[\\w-]*$/i;\nconst DefaultAllowlist = {\n // Global attributes allowed on any supplied element below.\n '*': ['class', 'dir', 'id', 'lang', 'role', ARIA_ATTRIBUTE_PATTERN],\n a: ['target', 'href', 'title', 'rel'],\n area: [],\n b: [],\n br: [],\n col: [],\n code: [],\n dd: [],\n div: [],\n dl: [],\n dt: [],\n em: [],\n hr: [],\n h1: [],\n h2: [],\n h3: [],\n h4: [],\n h5: [],\n h6: [],\n i: [],\n img: ['src', 'srcset', 'alt', 'title', 'width', 'height'],\n li: [],\n ol: [],\n p: [],\n pre: [],\n s: [],\n small: [],\n span: [],\n sub: [],\n sup: [],\n strong: [],\n u: [],\n ul: []\n};\n// js-docs-end allow-list\n\nconst uriAttributes = new Set(['background', 'cite', 'href', 'itemtype', 'longdesc', 'poster', 'src', 'xlink:href']);\n\n/**\n * A pattern that recognizes URLs that are safe wrt. XSS in URL navigation\n * contexts.\n *\n * Shout-out to Angular https://github.com/angular/angular/blob/15.2.8/packages/core/src/sanitization/url_sanitizer.ts#L38\n */\n// eslint-disable-next-line unicorn/better-regex\nconst SAFE_URL_PATTERN = /^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i;\nconst allowedAttribute = (attribute, allowedAttributeList) => {\n const attributeName = attribute.nodeName.toLowerCase();\n if (allowedAttributeList.includes(attributeName)) {\n if (uriAttributes.has(attributeName)) {\n return Boolean(SAFE_URL_PATTERN.test(attribute.nodeValue));\n }\n return true;\n }\n\n // Check if a regular expression validates the attribute.\n return allowedAttributeList.filter(attributeRegex => attributeRegex instanceof RegExp).some(regex => regex.test(attributeName));\n};\nfunction sanitizeHtml(unsafeHtml, allowList, sanitizeFunction) {\n if (!unsafeHtml.length) {\n return unsafeHtml;\n }\n if (sanitizeFunction && typeof sanitizeFunction === 'function') {\n return sanitizeFunction(unsafeHtml);\n }\n const domParser = new window.DOMParser();\n const createdDocument = domParser.parseFromString(unsafeHtml, 'text/html');\n const elements = [].concat(...createdDocument.body.querySelectorAll('*'));\n for (const element of elements) {\n const elementName = element.nodeName.toLowerCase();\n if (!Object.keys(allowList).includes(elementName)) {\n element.remove();\n continue;\n }\n const attributeList = [].concat(...element.attributes);\n const allowedAttributes = [].concat(allowList['*'] || [], allowList[elementName] || []);\n for (const attribute of attributeList) {\n if (!allowedAttribute(attribute, allowedAttributes)) {\n element.removeAttribute(attribute.nodeName);\n }\n }\n }\n return createdDocument.body.innerHTML;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/template-factory.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$5 = 'TemplateFactory';\nconst Default$4 = {\n allowList: DefaultAllowlist,\n content: {},\n // { selector : text , selector2 : text2 , }\n extraClass: '',\n html: false,\n sanitize: true,\n sanitizeFn: null,\n template: '
'\n};\nconst DefaultType$4 = {\n allowList: 'object',\n content: 'object',\n extraClass: '(string|function)',\n html: 'boolean',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n template: 'string'\n};\nconst DefaultContentType = {\n entry: '(string|element|function|null)',\n selector: '(string|element)'\n};\n\n/**\n * Class definition\n */\n\nclass TemplateFactory extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n }\n\n // Getters\n static get Default() {\n return Default$4;\n }\n static get DefaultType() {\n return DefaultType$4;\n }\n static get NAME() {\n return NAME$5;\n }\n\n // Public\n getContent() {\n return Object.values(this._config.content).map(config => this._resolvePossibleFunction(config)).filter(Boolean);\n }\n hasContent() {\n return this.getContent().length > 0;\n }\n changeContent(content) {\n this._checkContent(content);\n this._config.content = {\n ...this._config.content,\n ...content\n };\n return this;\n }\n toHtml() {\n const templateWrapper = document.createElement('div');\n templateWrapper.innerHTML = this._maybeSanitize(this._config.template);\n for (const [selector, text] of Object.entries(this._config.content)) {\n this._setContent(templateWrapper, text, selector);\n }\n const template = templateWrapper.children[0];\n const extraClass = this._resolvePossibleFunction(this._config.extraClass);\n if (extraClass) {\n template.classList.add(...extraClass.split(' '));\n }\n return template;\n }\n\n // Private\n _typeCheckConfig(config) {\n super._typeCheckConfig(config);\n this._checkContent(config.content);\n }\n _checkContent(arg) {\n for (const [selector, content] of Object.entries(arg)) {\n super._typeCheckConfig({\n selector,\n entry: content\n }, DefaultContentType);\n }\n }\n _setContent(template, content, selector) {\n const templateElement = SelectorEngine.findOne(selector, template);\n if (!templateElement) {\n return;\n }\n content = this._resolvePossibleFunction(content);\n if (!content) {\n templateElement.remove();\n return;\n }\n if (isElement(content)) {\n this._putElementInTemplate(getElement(content), templateElement);\n return;\n }\n if (this._config.html) {\n templateElement.innerHTML = this._maybeSanitize(content);\n return;\n }\n templateElement.textContent = content;\n }\n _maybeSanitize(arg) {\n return this._config.sanitize ? sanitizeHtml(arg, this._config.allowList, this._config.sanitizeFn) : arg;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this]);\n }\n _putElementInTemplate(element, templateElement) {\n if (this._config.html) {\n templateElement.innerHTML = '';\n templateElement.append(element);\n return;\n }\n templateElement.textContent = element.textContent;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap tooltip.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$4 = 'tooltip';\nconst DISALLOWED_ATTRIBUTES = new Set(['sanitize', 'allowList', 'sanitizeFn']);\nconst CLASS_NAME_FADE$2 = 'fade';\nconst CLASS_NAME_MODAL = 'modal';\nconst CLASS_NAME_SHOW$2 = 'show';\nconst SELECTOR_TOOLTIP_INNER = '.tooltip-inner';\nconst SELECTOR_MODAL = `.${CLASS_NAME_MODAL}`;\nconst EVENT_MODAL_HIDE = 'hide.bs.modal';\nconst TRIGGER_HOVER = 'hover';\nconst TRIGGER_FOCUS = 'focus';\nconst TRIGGER_CLICK = 'click';\nconst TRIGGER_MANUAL = 'manual';\nconst EVENT_HIDE$2 = 'hide';\nconst EVENT_HIDDEN$2 = 'hidden';\nconst EVENT_SHOW$2 = 'show';\nconst EVENT_SHOWN$2 = 'shown';\nconst EVENT_INSERTED = 'inserted';\nconst EVENT_CLICK$1 = 'click';\nconst EVENT_FOCUSIN$1 = 'focusin';\nconst EVENT_FOCUSOUT$1 = 'focusout';\nconst EVENT_MOUSEENTER = 'mouseenter';\nconst EVENT_MOUSELEAVE = 'mouseleave';\nconst AttachmentMap = {\n AUTO: 'auto',\n TOP: 'top',\n RIGHT: isRTL() ? 'left' : 'right',\n BOTTOM: 'bottom',\n LEFT: isRTL() ? 'right' : 'left'\n};\nconst Default$3 = {\n allowList: DefaultAllowlist,\n animation: true,\n boundary: 'clippingParents',\n container: false,\n customClass: '',\n delay: 0,\n fallbackPlacements: ['top', 'right', 'bottom', 'left'],\n html: false,\n offset: [0, 6],\n placement: 'top',\n popperConfig: null,\n sanitize: true,\n sanitizeFn: null,\n selector: false,\n template: '
' + '
' + '
' + '
',\n title: '',\n trigger: 'hover focus'\n};\nconst DefaultType$3 = {\n allowList: 'object',\n animation: 'boolean',\n boundary: '(string|element)',\n container: '(string|element|boolean)',\n customClass: '(string|function)',\n delay: '(number|object)',\n fallbackPlacements: 'array',\n html: 'boolean',\n offset: '(array|string|function)',\n placement: '(string|function)',\n popperConfig: '(null|object|function)',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n selector: '(string|boolean)',\n template: 'string',\n title: '(string|element|function)',\n trigger: 'string'\n};\n\n/**\n * Class definition\n */\n\nclass Tooltip extends BaseComponent {\n constructor(element, config) {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s tooltips require Popper (https://popper.js.org)');\n }\n super(element, config);\n\n // Private\n this._isEnabled = true;\n this._timeout = 0;\n this._isHovered = null;\n this._activeTrigger = {};\n this._popper = null;\n this._templateFactory = null;\n this._newContent = null;\n\n // Protected\n this.tip = null;\n this._setListeners();\n if (!this._config.selector) {\n this._fixTitle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$3;\n }\n static get DefaultType() {\n return DefaultType$3;\n }\n static get NAME() {\n return NAME$4;\n }\n\n // Public\n enable() {\n this._isEnabled = true;\n }\n disable() {\n this._isEnabled = false;\n }\n toggleEnabled() {\n this._isEnabled = !this._isEnabled;\n }\n toggle() {\n if (!this._isEnabled) {\n return;\n }\n this._activeTrigger.click = !this._activeTrigger.click;\n if (this._isShown()) {\n this._leave();\n return;\n }\n this._enter();\n }\n dispose() {\n clearTimeout(this._timeout);\n EventHandler.off(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n if (this._element.getAttribute('data-bs-original-title')) {\n this._element.setAttribute('title', this._element.getAttribute('data-bs-original-title'));\n }\n this._disposePopper();\n super.dispose();\n }\n show() {\n if (this._element.style.display === 'none') {\n throw new Error('Please use show on visible elements');\n }\n if (!(this._isWithContent() && this._isEnabled)) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOW$2));\n const shadowRoot = findShadowRoot(this._element);\n const isInTheDom = (shadowRoot || this._element.ownerDocument.documentElement).contains(this._element);\n if (showEvent.defaultPrevented || !isInTheDom) {\n return;\n }\n\n // TODO: v6 remove this or make it optional\n this._disposePopper();\n const tip = this._getTipElement();\n this._element.setAttribute('aria-describedby', tip.getAttribute('id'));\n const {\n container\n } = this._config;\n if (!this._element.ownerDocument.documentElement.contains(this.tip)) {\n container.append(tip);\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_INSERTED));\n }\n this._popper = this._createPopper(tip);\n tip.classList.add(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n const complete = () => {\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOWN$2));\n if (this._isHovered === false) {\n this._leave();\n }\n this._isHovered = false;\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n hide() {\n if (!this._isShown()) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDE$2));\n if (hideEvent.defaultPrevented) {\n return;\n }\n const tip = this._getTipElement();\n tip.classList.remove(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n this._activeTrigger[TRIGGER_CLICK] = false;\n this._activeTrigger[TRIGGER_FOCUS] = false;\n this._activeTrigger[TRIGGER_HOVER] = false;\n this._isHovered = null; // it is a trick to support manual triggering\n\n const complete = () => {\n if (this._isWithActiveTrigger()) {\n return;\n }\n if (!this._isHovered) {\n this._disposePopper();\n }\n this._element.removeAttribute('aria-describedby');\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDDEN$2));\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n update() {\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Protected\n _isWithContent() {\n return Boolean(this._getTitle());\n }\n _getTipElement() {\n if (!this.tip) {\n this.tip = this._createTipElement(this._newContent || this._getContentForTemplate());\n }\n return this.tip;\n }\n _createTipElement(content) {\n const tip = this._getTemplateFactory(content).toHtml();\n\n // TODO: remove this check in v6\n if (!tip) {\n return null;\n }\n tip.classList.remove(CLASS_NAME_FADE$2, CLASS_NAME_SHOW$2);\n // TODO: v6 the following can be achieved with CSS only\n tip.classList.add(`bs-${this.constructor.NAME}-auto`);\n const tipId = getUID(this.constructor.NAME).toString();\n tip.setAttribute('id', tipId);\n if (this._isAnimated()) {\n tip.classList.add(CLASS_NAME_FADE$2);\n }\n return tip;\n }\n setContent(content) {\n this._newContent = content;\n if (this._isShown()) {\n this._disposePopper();\n this.show();\n }\n }\n _getTemplateFactory(content) {\n if (this._templateFactory) {\n this._templateFactory.changeContent(content);\n } else {\n this._templateFactory = new TemplateFactory({\n ...this._config,\n // the `content` var has to be after `this._config`\n // to override config.content in case of popover\n content,\n extraClass: this._resolvePossibleFunction(this._config.customClass)\n });\n }\n return this._templateFactory;\n }\n _getContentForTemplate() {\n return {\n [SELECTOR_TOOLTIP_INNER]: this._getTitle()\n };\n }\n _getTitle() {\n return this._resolvePossibleFunction(this._config.title) || this._element.getAttribute('data-bs-original-title');\n }\n\n // Private\n _initializeOnDelegatedTarget(event) {\n return this.constructor.getOrCreateInstance(event.delegateTarget, this._getDelegateConfig());\n }\n _isAnimated() {\n return this._config.animation || this.tip && this.tip.classList.contains(CLASS_NAME_FADE$2);\n }\n _isShown() {\n return this.tip && this.tip.classList.contains(CLASS_NAME_SHOW$2);\n }\n _createPopper(tip) {\n const placement = execute(this._config.placement, [this, tip, this._element]);\n const attachment = AttachmentMap[placement.toUpperCase()];\n return Popper.createPopper(this._element, tip, this._getPopperConfig(attachment));\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this._element]);\n }\n _getPopperConfig(attachment) {\n const defaultBsPopperConfig = {\n placement: attachment,\n modifiers: [{\n name: 'flip',\n options: {\n fallbackPlacements: this._config.fallbackPlacements\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }, {\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'arrow',\n options: {\n element: `.${this.constructor.NAME}-arrow`\n }\n }, {\n name: 'preSetPlacement',\n enabled: true,\n phase: 'beforeMain',\n fn: data => {\n // Pre-set Popper's placement attribute in order to read the arrow sizes properly.\n // Otherwise, Popper mixes up the width and height dimensions since the initial arrow style is for top placement\n this._getTipElement().setAttribute('data-popper-placement', data.state.placement);\n }\n }]\n };\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _setListeners() {\n const triggers = this._config.trigger.split(' ');\n for (const trigger of triggers) {\n if (trigger === 'click') {\n EventHandler.on(this._element, this.constructor.eventName(EVENT_CLICK$1), this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context.toggle();\n });\n } else if (trigger !== TRIGGER_MANUAL) {\n const eventIn = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSEENTER) : this.constructor.eventName(EVENT_FOCUSIN$1);\n const eventOut = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSELEAVE) : this.constructor.eventName(EVENT_FOCUSOUT$1);\n EventHandler.on(this._element, eventIn, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusin' ? TRIGGER_FOCUS : TRIGGER_HOVER] = true;\n context._enter();\n });\n EventHandler.on(this._element, eventOut, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusout' ? TRIGGER_FOCUS : TRIGGER_HOVER] = context._element.contains(event.relatedTarget);\n context._leave();\n });\n }\n }\n this._hideModalHandler = () => {\n if (this._element) {\n this.hide();\n }\n };\n EventHandler.on(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n }\n _fixTitle() {\n const title = this._element.getAttribute('title');\n if (!title) {\n return;\n }\n if (!this._element.getAttribute('aria-label') && !this._element.textContent.trim()) {\n this._element.setAttribute('aria-label', title);\n }\n this._element.setAttribute('data-bs-original-title', title); // DO NOT USE IT. Is only for backwards compatibility\n this._element.removeAttribute('title');\n }\n _enter() {\n if (this._isShown() || this._isHovered) {\n this._isHovered = true;\n return;\n }\n this._isHovered = true;\n this._setTimeout(() => {\n if (this._isHovered) {\n this.show();\n }\n }, this._config.delay.show);\n }\n _leave() {\n if (this._isWithActiveTrigger()) {\n return;\n }\n this._isHovered = false;\n this._setTimeout(() => {\n if (!this._isHovered) {\n this.hide();\n }\n }, this._config.delay.hide);\n }\n _setTimeout(handler, timeout) {\n clearTimeout(this._timeout);\n this._timeout = setTimeout(handler, timeout);\n }\n _isWithActiveTrigger() {\n return Object.values(this._activeTrigger).includes(true);\n }\n _getConfig(config) {\n const dataAttributes = Manipulator.getDataAttributes(this._element);\n for (const dataAttribute of Object.keys(dataAttributes)) {\n if (DISALLOWED_ATTRIBUTES.has(dataAttribute)) {\n delete dataAttributes[dataAttribute];\n }\n }\n config = {\n ...dataAttributes,\n ...(typeof config === 'object' && config ? config : {})\n };\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n config.container = config.container === false ? document.body : getElement(config.container);\n if (typeof config.delay === 'number') {\n config.delay = {\n show: config.delay,\n hide: config.delay\n };\n }\n if (typeof config.title === 'number') {\n config.title = config.title.toString();\n }\n if (typeof config.content === 'number') {\n config.content = config.content.toString();\n }\n return config;\n }\n _getDelegateConfig() {\n const config = {};\n for (const [key, value] of Object.entries(this._config)) {\n if (this.constructor.Default[key] !== value) {\n config[key] = value;\n }\n }\n config.selector = false;\n config.trigger = 'manual';\n\n // In the future can be replaced with:\n // const keysWithDifferentValues = Object.entries(this._config).filter(entry => this.constructor.Default[entry[0]] !== this._config[entry[0]])\n // `Object.fromEntries(keysWithDifferentValues)`\n return config;\n }\n _disposePopper() {\n if (this._popper) {\n this._popper.destroy();\n this._popper = null;\n }\n if (this.tip) {\n this.tip.remove();\n this.tip = null;\n }\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Tooltip.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Tooltip);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap popover.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$3 = 'popover';\nconst SELECTOR_TITLE = '.popover-header';\nconst SELECTOR_CONTENT = '.popover-body';\nconst Default$2 = {\n ...Tooltip.Default,\n content: '',\n offset: [0, 8],\n placement: 'right',\n template: '
' + '
' + '

' + '
' + '
',\n trigger: 'click'\n};\nconst DefaultType$2 = {\n ...Tooltip.DefaultType,\n content: '(null|string|element|function)'\n};\n\n/**\n * Class definition\n */\n\nclass Popover extends Tooltip {\n // Getters\n static get Default() {\n return Default$2;\n }\n static get DefaultType() {\n return DefaultType$2;\n }\n static get NAME() {\n return NAME$3;\n }\n\n // Overrides\n _isWithContent() {\n return this._getTitle() || this._getContent();\n }\n\n // Private\n _getContentForTemplate() {\n return {\n [SELECTOR_TITLE]: this._getTitle(),\n [SELECTOR_CONTENT]: this._getContent()\n };\n }\n _getContent() {\n return this._resolvePossibleFunction(this._config.content);\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Popover.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Popover);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap scrollspy.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$2 = 'scrollspy';\nconst DATA_KEY$2 = 'bs.scrollspy';\nconst EVENT_KEY$2 = `.${DATA_KEY$2}`;\nconst DATA_API_KEY = '.data-api';\nconst EVENT_ACTIVATE = `activate${EVENT_KEY$2}`;\nconst EVENT_CLICK = `click${EVENT_KEY$2}`;\nconst EVENT_LOAD_DATA_API$1 = `load${EVENT_KEY$2}${DATA_API_KEY}`;\nconst CLASS_NAME_DROPDOWN_ITEM = 'dropdown-item';\nconst CLASS_NAME_ACTIVE$1 = 'active';\nconst SELECTOR_DATA_SPY = '[data-bs-spy=\"scroll\"]';\nconst SELECTOR_TARGET_LINKS = '[href]';\nconst SELECTOR_NAV_LIST_GROUP = '.nav, .list-group';\nconst SELECTOR_NAV_LINKS = '.nav-link';\nconst SELECTOR_NAV_ITEMS = '.nav-item';\nconst SELECTOR_LIST_ITEMS = '.list-group-item';\nconst SELECTOR_LINK_ITEMS = `${SELECTOR_NAV_LINKS}, ${SELECTOR_NAV_ITEMS} > ${SELECTOR_NAV_LINKS}, ${SELECTOR_LIST_ITEMS}`;\nconst SELECTOR_DROPDOWN = '.dropdown';\nconst SELECTOR_DROPDOWN_TOGGLE$1 = '.dropdown-toggle';\nconst Default$1 = {\n offset: null,\n // TODO: v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: '0px 0px -25%',\n smoothScroll: false,\n target: null,\n threshold: [0.1, 0.5, 1]\n};\nconst DefaultType$1 = {\n offset: '(number|null)',\n // TODO v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: 'string',\n smoothScroll: 'boolean',\n target: 'element',\n threshold: 'array'\n};\n\n/**\n * Class definition\n */\n\nclass ScrollSpy extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n\n // this._element is the observablesContainer and config.target the menu links wrapper\n this._targetLinks = new Map();\n this._observableSections = new Map();\n this._rootElement = getComputedStyle(this._element).overflowY === 'visible' ? null : this._element;\n this._activeTarget = null;\n this._observer = null;\n this._previousScrollData = {\n visibleEntryTop: 0,\n parentScrollTop: 0\n };\n this.refresh(); // initialize\n }\n\n // Getters\n static get Default() {\n return Default$1;\n }\n static get DefaultType() {\n return DefaultType$1;\n }\n static get NAME() {\n return NAME$2;\n }\n\n // Public\n refresh() {\n this._initializeTargetsAndObservables();\n this._maybeEnableSmoothScroll();\n if (this._observer) {\n this._observer.disconnect();\n } else {\n this._observer = this._getNewObserver();\n }\n for (const section of this._observableSections.values()) {\n this._observer.observe(section);\n }\n }\n dispose() {\n this._observer.disconnect();\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n // TODO: on v6 target should be given explicitly & remove the {target: 'ss-target'} case\n config.target = getElement(config.target) || document.body;\n\n // TODO: v6 Only for backwards compatibility reasons. Use rootMargin only\n config.rootMargin = config.offset ? `${config.offset}px 0px -30%` : config.rootMargin;\n if (typeof config.threshold === 'string') {\n config.threshold = config.threshold.split(',').map(value => Number.parseFloat(value));\n }\n return config;\n }\n _maybeEnableSmoothScroll() {\n if (!this._config.smoothScroll) {\n return;\n }\n\n // unregister any previous listeners\n EventHandler.off(this._config.target, EVENT_CLICK);\n EventHandler.on(this._config.target, EVENT_CLICK, SELECTOR_TARGET_LINKS, event => {\n const observableSection = this._observableSections.get(event.target.hash);\n if (observableSection) {\n event.preventDefault();\n const root = this._rootElement || window;\n const height = observableSection.offsetTop - this._element.offsetTop;\n if (root.scrollTo) {\n root.scrollTo({\n top: height,\n behavior: 'smooth'\n });\n return;\n }\n\n // Chrome 60 doesn't support `scrollTo`\n root.scrollTop = height;\n }\n });\n }\n _getNewObserver() {\n const options = {\n root: this._rootElement,\n threshold: this._config.threshold,\n rootMargin: this._config.rootMargin\n };\n return new IntersectionObserver(entries => this._observerCallback(entries), options);\n }\n\n // The logic of selection\n _observerCallback(entries) {\n const targetElement = entry => this._targetLinks.get(`#${entry.target.id}`);\n const activate = entry => {\n this._previousScrollData.visibleEntryTop = entry.target.offsetTop;\n this._process(targetElement(entry));\n };\n const parentScrollTop = (this._rootElement || document.documentElement).scrollTop;\n const userScrollsDown = parentScrollTop >= this._previousScrollData.parentScrollTop;\n this._previousScrollData.parentScrollTop = parentScrollTop;\n for (const entry of entries) {\n if (!entry.isIntersecting) {\n this._activeTarget = null;\n this._clearActiveClass(targetElement(entry));\n continue;\n }\n const entryIsLowerThanPrevious = entry.target.offsetTop >= this._previousScrollData.visibleEntryTop;\n // if we are scrolling down, pick the bigger offsetTop\n if (userScrollsDown && entryIsLowerThanPrevious) {\n activate(entry);\n // if parent isn't scrolled, let's keep the first visible item, breaking the iteration\n if (!parentScrollTop) {\n return;\n }\n continue;\n }\n\n // if we are scrolling up, pick the smallest offsetTop\n if (!userScrollsDown && !entryIsLowerThanPrevious) {\n activate(entry);\n }\n }\n }\n _initializeTargetsAndObservables() {\n this._targetLinks = new Map();\n this._observableSections = new Map();\n const targetLinks = SelectorEngine.find(SELECTOR_TARGET_LINKS, this._config.target);\n for (const anchor of targetLinks) {\n // ensure that the anchor has an id and is not disabled\n if (!anchor.hash || isDisabled(anchor)) {\n continue;\n }\n const observableSection = SelectorEngine.findOne(decodeURI(anchor.hash), this._element);\n\n // ensure that the observableSection exists & is visible\n if (isVisible(observableSection)) {\n this._targetLinks.set(decodeURI(anchor.hash), anchor);\n this._observableSections.set(anchor.hash, observableSection);\n }\n }\n }\n _process(target) {\n if (this._activeTarget === target) {\n return;\n }\n this._clearActiveClass(this._config.target);\n this._activeTarget = target;\n target.classList.add(CLASS_NAME_ACTIVE$1);\n this._activateParents(target);\n EventHandler.trigger(this._element, EVENT_ACTIVATE, {\n relatedTarget: target\n });\n }\n _activateParents(target) {\n // Activate dropdown parents\n if (target.classList.contains(CLASS_NAME_DROPDOWN_ITEM)) {\n SelectorEngine.findOne(SELECTOR_DROPDOWN_TOGGLE$1, target.closest(SELECTOR_DROPDOWN)).classList.add(CLASS_NAME_ACTIVE$1);\n return;\n }\n for (const listGroup of SelectorEngine.parents(target, SELECTOR_NAV_LIST_GROUP)) {\n // Set triggered links parents as active\n // With both