-
Notifications
You must be signed in to change notification settings - Fork 0
/
mydetect.py
121 lines (102 loc) · 4.26 KB
/
mydetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# yolo检测的接口函数
# 详细信息请参考 https://blog.csdn.net/qq_20241587/article/details/113349874?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-6.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-6.control
import numpy as np
import cv2
import torch
from numpy import random
# import evaluator
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, scale_coords, \
set_logging
from utils.torch_utils import select_device
def letterbox(img,
new_shape=(640, 640),
color=(114, 114, 114),
auto=True,
scaleFill=False,
scaleup=True):
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[
1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[
0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=color) # add border
return img, ratio, (dw, dh)
weights = r'weights/best.pt'
opt_device = '' # device = 'cpu' or '0' or '0,1,2,3'
imgsz = 640
opt_conf_thres = 0.6
opt_iou_thres = 0.45
# Initialize
set_logging()
device = select_device(opt_device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
def predict(im0s):
# Run inference
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img
) if device.type != 'cpu' else None # run once
# Set Dataloader & Run inference
img = letterbox(im0s, new_shape=imgsz)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
# pred = model(img, augment=opt.augment)[0]
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression(pred, opt_conf_thres, opt_iou_thres)
# Process detections
ret = []
for i, det in enumerate(pred): # detections per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
im0s.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
label = f'{names[int(cls)]}'
prob = round(float(conf) * 100, 2) # round 2
ret_i = [label, prob, xyxy]
ret.append(ret_i)
# 返回信息
# label 标签信息 'face' 'smoke' 'drink' 'phone'
# prob 为对应的置信度
# xyxy 为对应的位置信息(外框)
return ret