diff --git a/README.md b/README.md index 3b92277..efe5404 100644 --- a/README.md +++ b/README.md @@ -311,13 +311,13 @@ Find the book at these links: If you used PyGAD, please consider adding a citation to the following paper about PyGAD: ``` -@misc{gad2021pygad, - title={PyGAD: An Intuitive Genetic Algorithm Python Library}, - author={Ahmed Fawzy Gad}, - year={2021}, - eprint={2106.06158}, - archivePrefix={arXiv}, - primaryClass={cs.NE} +@article{gad2023pygad, + title={Pygad: An intuitive genetic algorithm python library}, + author={Gad, Ahmed Fawzy}, + journal={Multimedia Tools and Applications}, + pages={1--14}, + year={2023}, + publisher={Springer} } ``` diff --git a/docs/source/index.rst b/docs/source/index.rst index 6fda9f4..9b2513d 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -228,13 +228,13 @@ details: .. code:: - @misc{gad2021pygad, - title={PyGAD: An Intuitive Genetic Algorithm Python Library}, - author={Ahmed Fawzy Gad}, - year={2021}, - eprint={2106.06158}, - archivePrefix={arXiv}, - primaryClass={cs.NE} + @article{gad2023pygad, + title={Pygad: An intuitive genetic algorithm python library}, + author={Gad, Ahmed Fawzy}, + journal={Multimedia Tools and Applications}, + pages={1--14}, + year={2023}, + publisher={Springer} } diff --git a/docs/source/pygad.rst b/docs/source/pygad.rst index 174c62e..83c9cfa 100644 --- a/docs/source/pygad.rst +++ b/docs/source/pygad.rst @@ -119,7 +119,7 @@ The ``pygad.GA`` class constructor supports the following parameters: function can be passed starting from `PyGAD 2.16.0 `__. Check the `User-Defined Crossover, Mutation, and Parent Selection - Operators `__ + Operators `__ section for more details about building a user-defined parent selection function. @@ -1037,11 +1037,10 @@ Let's discuss how to do each of these steps. Preparing the ``fitness_func`` Parameter ----------------------------------------- -Even though some steps in the genetic algorithm pipeline can -work the same regardless of the problem being solved, one critical step -is the calculation of the fitness value. There is no unique way of -calculating the fitness value and it changes from one problem to -another. +Even though some steps in the genetic algorithm pipeline can work the +same regardless of the problem being solved, one critical step is the +calculation of the fitness value. There is no unique way of calculating +the fitness value and it changes from one problem to another. PyGAD has a parameter called ``fitness_func`` that allows the user to specify a custom function/method to use when calculating the fitness.