From f27aa2c5e399c65d3073b929489a45e88e6df909 Mon Sep 17 00:00:00 2001
From: Pradyot Ranjan <99216956+pradyotRanjan@users.noreply.github.com>
Date: Thu, 14 Dec 2023 22:49:53 +0530
Subject: [PATCH 1/7] Changing pyproject config
---
pyproject.toml | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/pyproject.toml b/pyproject.toml
index 7d25c8e140..31e0b3e9bf 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -196,7 +196,7 @@ extend-select = [
"RUF", # Ruff-specific
# "SIM", # flake8-simplify
# "T20", # flake8-print
- # "UP", # pyupgrade
+ "UP", # pyupgrade
"YTT", # flake8-2020
]
ignore = [
@@ -214,6 +214,7 @@ ignore = [
"RET506", # Unnecessary `elif`
"B018", # Found useless expression
"RUF002", # Docstring contains ambiguous
+ "UP007", # For pyupgrade
]
[tool.ruff.lint.per-file-ignores]
From ff6d81c01331c7d269303b4a8321d9881bdf98fa Mon Sep 17 00:00:00 2001
From: Pradyot Ranjan <99216956+pradyotRanjan@users.noreply.github.com>
Date: Thu, 14 Dec 2023 22:56:39 +0530
Subject: [PATCH 2/7] changed string formatting using pyupgrade
Signed-off-by: Pradyot Ranjan <99216956+pradyotRanjan@users.noreply.github.com>
---
.../work_precision_sets/time_vs_abstols.py | 2 +-
.../work_precision_sets/time_vs_dt_max.py | 2 +-
.../work_precision_sets/time_vs_mesh_size.py | 2 +-
.../time_vs_no_of_states.py | 2 +-
.../work_precision_sets/time_vs_reltols.py | 2 +-
docs/conf.py | 3 +-
.../3-negative-particle-problem.ipynb | 2 +-
.../tutorial-8-solver-options.ipynb | 4 +-
.../compare-comsol-discharge-curve.ipynb | 4 +-
.../models/compare-lithium-ion.ipynb | 2 +-
.../compare-particle-diffusion-models.ipynb | 4 +-
.../examples/notebooks/models/lead-acid.ipynb | 2 +-
.../notebooks/models/pouch-cell-model.ipynb | 1754 ++++++++---------
.../notebooks/models/rate-capability.ipynb | 4 +-
.../models/unsteady-heat-equation.ipynb | 2 +-
.../change-input-current.ipynb | 2 +-
.../parameterization/parameter-values.ipynb | 10 +-
.../parameterization/parameterization.ipynb | 2 +-
.../callbacks.ipynb | 2 +-
.../notebooks/solvers/speed-up-solver.ipynb | 6 +-
.../spatial_methods/finite-volumes.ipynb | 30 +-
.../compare_comsol/compare_comsol_DFN.py | 2 +-
.../scripts/compare_comsol/discharge_curve.py | 4 +-
examples/scripts/compare_particle_models.py | 4 +-
.../scripts/experimental_protocols/cccv.py | 2 +-
examples/scripts/heat_equation.py | 2 +-
examples/scripts/rate_capability.py | 4 +-
pybamm/callbacks.py | 2 +-
pybamm/citations.py | 4 +-
pybamm/discretisations/discretisation.py | 58 +-
pybamm/experiment/experiment.py | 2 +-
pybamm/expression_tree/array.py | 2 +-
pybamm/expression_tree/averages.py | 12 +-
pybamm/expression_tree/binary_operators.py | 32 +-
pybamm/expression_tree/concatenations.py | 6 +-
pybamm/expression_tree/functions.py | 8 +-
.../expression_tree/independent_variable.py | 2 +-
pybamm/expression_tree/input_parameter.py | 6 +-
pybamm/expression_tree/interpolant.py | 6 +-
pybamm/expression_tree/matrix.py | 2 +-
.../operations/convert_to_casadi.py | 8 +-
.../operations/evaluate_python.py | 68 +-
pybamm/expression_tree/operations/jacobian.py | 6 +-
.../expression_tree/operations/serialise.py | 2 +-
.../operations/unpack_symbols.py | 2 +-
pybamm/expression_tree/state_vector.py | 12 +-
pybamm/expression_tree/symbol.py | 20 +-
pybamm/expression_tree/unary_operators.py | 42 +-
pybamm/expression_tree/vector.py | 2 +-
pybamm/geometry/battery_geometry.py | 4 +-
pybamm/install_odes.py | 20 +-
pybamm/meshes/meshes.py | 6 +-
pybamm/meshes/scikit_fem_submeshes.py | 10 +-
pybamm/models/base_model.py | 50 +-
.../full_battery_models/base_battery_model.py | 30 +-
.../equivalent_circuit/thevenin.py | 2 +-
pybamm/models/submodels/base_submodel.py | 4 +-
pybamm/parameters/parameter_sets.py | 2 +-
pybamm/parameters/parameter_values.py | 34 +-
pybamm/parameters/process_parameter_data.py | 2 +-
pybamm/plotting/quick_plot.py | 22 +-
pybamm/settings.py | 2 +-
pybamm/solvers/algebraic_solver.py | 8 +-
pybamm/solvers/base_solver.py | 46 +-
pybamm/solvers/casadi_algebraic_solver.py | 4 +-
pybamm/solvers/casadi_solver.py | 8 +-
pybamm/solvers/jax_solver.py | 8 +-
pybamm/solvers/processed_variable.py | 6 +-
pybamm/solvers/processed_variable_computed.py | 4 +-
pybamm/solvers/scikits_dae_solver.py | 2 +-
pybamm/solvers/scikits_ode_solver.py | 2 +-
pybamm/solvers/scipy_solver.py | 2 +-
pybamm/solvers/solution.py | 11 +-
pybamm/spatial_methods/finite_volume.py | 28 +-
.../spatial_methods/scikit_finite_element.py | 12 +-
pybamm/spatial_methods/spectral_volume.py | 8 +-
pybamm/util.py | 14 +-
run-tests.py | 4 +-
scripts/install_KLU_Sundials.py | 12 +-
setup.py | 20 +-
.../test_models/standard_model_tests.py | 4 +-
.../test_models/standard_output_comparison.py | 4 +-
.../test_models/standard_output_tests.py | 4 +-
.../test_asymptotics_convergence.py | 2 +-
tests/unit/test_callbacks.py | 12 +-
tests/unit/test_citations.py | 4 +-
.../test_expression_tree/test_functions.py | 2 +-
.../test_operations/test_evaluate_python.py | 24 +-
.../test_parameters/test_current_functions.py | 2 +-
.../test_serialisation/test_serialisation.py | 2 +-
tests/unit/test_simulation.py | 2 +-
.../test_solvers/test_processed_variable.py | 2 +-
.../test_processed_variable_computed.py | 2 +-
tests/unit/test_timer.py | 2 +-
94 files changed, 1260 insertions(+), 1360 deletions(-)
diff --git a/benchmarks/work_precision_sets/time_vs_abstols.py b/benchmarks/work_precision_sets/time_vs_abstols.py
index 9a96f07514..d680766c43 100644
--- a/benchmarks/work_precision_sets/time_vs_abstols.py
+++ b/benchmarks/work_precision_sets/time_vs_abstols.py
@@ -98,7 +98,7 @@
content = f"# PyBaMM {pybamm.__version__}\n## Solve Time vs Abstols\n\n"
-with open("./benchmarks/release_work_precision_sets.md", "r") as original:
+with open("./benchmarks/release_work_precision_sets.md") as original:
data = original.read()
with open("./benchmarks/release_work_precision_sets.md", "w") as modified:
modified.write(f"{content}\n{data}")
diff --git a/benchmarks/work_precision_sets/time_vs_dt_max.py b/benchmarks/work_precision_sets/time_vs_dt_max.py
index 3e428b702c..a1f8ca06bc 100644
--- a/benchmarks/work_precision_sets/time_vs_dt_max.py
+++ b/benchmarks/work_precision_sets/time_vs_dt_max.py
@@ -100,7 +100,7 @@
content = f"## Solve Time vs dt_max\n\n"
-with open("./benchmarks/release_work_precision_sets.md", "r") as original:
+with open("./benchmarks/release_work_precision_sets.md") as original:
data = original.read()
with open("./benchmarks/release_work_precision_sets.md", "w") as modified:
modified.write(f"{content}\n{data}")
diff --git a/benchmarks/work_precision_sets/time_vs_mesh_size.py b/benchmarks/work_precision_sets/time_vs_mesh_size.py
index f0f13f706b..cbab18d16c 100644
--- a/benchmarks/work_precision_sets/time_vs_mesh_size.py
+++ b/benchmarks/work_precision_sets/time_vs_mesh_size.py
@@ -80,7 +80,7 @@
content = f"## Solve Time vs Mesh size\n\n"
-with open("./benchmarks/release_work_precision_sets.md", "r") as original:
+with open("./benchmarks/release_work_precision_sets.md") as original:
data = original.read()
with open("./benchmarks/release_work_precision_sets.md", "w") as modified:
modified.write(f"{content}\n{data}")
diff --git a/benchmarks/work_precision_sets/time_vs_no_of_states.py b/benchmarks/work_precision_sets/time_vs_no_of_states.py
index eb27aba322..febc69f0a1 100644
--- a/benchmarks/work_precision_sets/time_vs_no_of_states.py
+++ b/benchmarks/work_precision_sets/time_vs_no_of_states.py
@@ -84,7 +84,7 @@
content = f"## Solve Time vs Number of states\n\n"
-with open("./benchmarks/release_work_precision_sets.md", "r") as original:
+with open("./benchmarks/release_work_precision_sets.md") as original:
data = original.read()
with open("./benchmarks/release_work_precision_sets.md", "w") as modified:
modified.write(f"{content}\n{data}")
diff --git a/benchmarks/work_precision_sets/time_vs_reltols.py b/benchmarks/work_precision_sets/time_vs_reltols.py
index 93964910a8..42e9a1bab1 100644
--- a/benchmarks/work_precision_sets/time_vs_reltols.py
+++ b/benchmarks/work_precision_sets/time_vs_reltols.py
@@ -104,7 +104,7 @@
content = f"## Solve Time vs Reltols\n\n"
-with open("./benchmarks/release_work_precision_sets.md", "r") as original:
+with open("./benchmarks/release_work_precision_sets.md") as original:
data = original.read()
with open("./benchmarks/release_work_precision_sets.md", "w") as modified:
modified.write(f"{content}\n{data}")
diff --git a/docs/conf.py b/docs/conf.py
index 55692309dc..35edadb249 100644
--- a/docs/conf.py
+++ b/docs/conf.py
@@ -1,4 +1,3 @@
-# -*- coding: utf-8 -*-
#
# Configuration file for the Sphinx documentation builder.
#
@@ -168,7 +167,7 @@
],
}
-html_title = "%s v%s Manual" % (project, version)
+html_title = f"{project} v{version} Manual"
html_last_updated_fmt = "%Y-%m-%d"
html_css_files = ["pybamm.css"]
html_context = {"default_mode": "light"}
diff --git a/docs/source/examples/notebooks/creating_models/3-negative-particle-problem.ipynb b/docs/source/examples/notebooks/creating_models/3-negative-particle-problem.ipynb
index 2c338149e7..b04616c5f9 100644
--- a/docs/source/examples/notebooks/creating_models/3-negative-particle-problem.ipynb
+++ b/docs/source/examples/notebooks/creating_models/3-negative-particle-problem.ipynb
@@ -307,7 +307,7 @@
"\n",
"r = mesh[\"negative particle\"].nodes # radial position\n",
"time = 1000 # time in seconds\n",
- "ax2.plot(r * 1e6, c(t=time, r=r), label=\"t={}[s]\".format(time))\n",
+ "ax2.plot(r * 1e6, c(t=time, r=r), label=f\"t={time}[s]\")\n",
"ax2.set_xlabel(\"Particle radius [microns]\")\n",
"ax2.set_ylabel(\"Concentration [mol.m-3]\")\n",
"ax2.legend()\n",
diff --git a/docs/source/examples/notebooks/getting_started/tutorial-8-solver-options.ipynb b/docs/source/examples/notebooks/getting_started/tutorial-8-solver-options.ipynb
index 46a7b24346..2e55321659 100644
--- a/docs/source/examples/notebooks/getting_started/tutorial-8-solver-options.ipynb
+++ b/docs/source/examples/notebooks/getting_started/tutorial-8-solver-options.ipynb
@@ -98,9 +98,9 @@
"\n",
"# solve\n",
"safe_sim.solve([0, 3600])\n",
- "print(\"Safe mode solve time: {}\".format(safe_sim.solution.solve_time))\n",
+ "print(f\"Safe mode solve time: {safe_sim.solution.solve_time}\")\n",
"fast_sim.solve([0, 3600])\n",
- "print(\"Fast mode solve time: {}\".format(fast_sim.solution.solve_time))\n",
+ "print(f\"Fast mode solve time: {fast_sim.solution.solve_time}\")\n",
"\n",
"# plot solutions\n",
"pybamm.dynamic_plot([safe_sim, fast_sim])"
diff --git a/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb b/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb
index 90611a91a0..462f03827b 100644
--- a/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb
+++ b/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb
@@ -167,7 +167,7 @@
"\n",
" # load the comsol results\n",
" comsol_results_path = pybamm.get_parameters_filepath(\n",
- " \"input/comsol_results/comsol_{}C.pickle\".format(key),\n",
+ " f\"input/comsol_results/comsol_{key}C.pickle\",\n",
" )\n",
" comsol_variables = pickle.load(open(comsol_results_path, 'rb'))\n",
" comsol_time = comsol_variables[\"time\"]\n",
@@ -203,7 +203,7 @@
" voltage_sol,\n",
" color=color,\n",
" linestyle=\"-\",\n",
- " label=\"{} C\".format(C_rate),\n",
+ " label=f\"{C_rate} C\",\n",
" )\n",
" voltage_difference_plot.plot(\n",
" discharge_capacity_sol[0:end_index], voltage_difference, color=color\n",
diff --git a/docs/source/examples/notebooks/models/compare-lithium-ion.ipynb b/docs/source/examples/notebooks/models/compare-lithium-ion.ipynb
index f194a62d02..74157628f8 100644
--- a/docs/source/examples/notebooks/models/compare-lithium-ion.ipynb
+++ b/docs/source/examples/notebooks/models/compare-lithium-ion.ipynb
@@ -272,7 +272,7 @@
" solver = pybamm.CasadiSolver()\n",
" timer.reset()\n",
" solution = solver.solve(model, t_eval, inputs={\"Current function [A]\": 1})\n",
- " print(\"Solved the {} in {}\".format(model.name, timer.time()))\n",
+ " print(f\"Solved the {model.name} in {timer.time()}\")\n",
" solutions[model_name] = solution"
]
},
diff --git a/docs/source/examples/notebooks/models/compare-particle-diffusion-models.ipynb b/docs/source/examples/notebooks/models/compare-particle-diffusion-models.ipynb
index 6bd9f4cf63..da6f05870e 100644
--- a/docs/source/examples/notebooks/models/compare-particle-diffusion-models.ipynb
+++ b/docs/source/examples/notebooks/models/compare-particle-diffusion-models.ipynb
@@ -124,8 +124,8 @@
"for sim in simulations:\n",
" sim.solve(t_eval, inputs={\"Current function [A]\": 0.68})\n",
" solutions_1C.append(sim.solution)\n",
- " print(\"Particle model: {}\".format(sim.model.name))\n",
- " print(\"Solve time: {}s\".format(sim.solution.solve_time))"
+ " print(f\"Particle model: {sim.model.name}\")\n",
+ " print(f\"Solve time: {sim.solution.solve_time}s\")"
]
},
{
diff --git a/docs/source/examples/notebooks/models/lead-acid.ipynb b/docs/source/examples/notebooks/models/lead-acid.ipynb
index f550540182..0dd20126a6 100644
--- a/docs/source/examples/notebooks/models/lead-acid.ipynb
+++ b/docs/source/examples/notebooks/models/lead-acid.ipynb
@@ -228,7 +228,7 @@
" solver = pybamm.CasadiSolver()\n",
" timer.reset()\n",
" solution = solver.solve(model, t_eval, inputs={\"Current function [A]\": 1})\n",
- " print(\"Solved the {} in {}\".format(model.name, timer.time()))\n",
+ " print(f\"Solved the {model.name} in {timer.time()}\")\n",
" solutions[model] = solution"
]
},
diff --git a/docs/source/examples/notebooks/models/pouch-cell-model.ipynb b/docs/source/examples/notebooks/models/pouch-cell-model.ipynb
index a9431211af..2c58b1861f 100644
--- a/docs/source/examples/notebooks/models/pouch-cell-model.ipynb
+++ b/docs/source/examples/notebooks/models/pouch-cell-model.ipynb
@@ -1,879 +1,879 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Pouch cell model"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "In this notebook we compare the solutions of two reduced-order models of a lithium-ion pouch cell with the full solution obtained using COMSOL. This example is based on the results in [[6]](#References). The code used to produce the results in [[6]](#References) can be found [here](https://github.com/rtimms/asymptotic-pouch-cell).\n",
- "\n",
- "The full model is based on the Doyle-Fuller-Newman model [[2]](#References) and, in the interest of simplicity, considers a one-dimensional current collector (i.e. variation in one of the current collector dimensions is ignored), resulting in a 2D macroscopic model.\n",
- "\n",
- "The first of the reduced order models, which is applicable in the limit of large conductivity in the current collectors, solves a one-dimensional problem in the current collectors coupled to a one-dimensional DFN model describing the through-cell electrochemistry at each point. We refer to this as a 1+1D model, though since the DFN is already a pseudo-two-dimensional model, perhaps it is more properly a 1+1+1D model.\n",
- "\n",
- "The second reduced order model, which is applicable in the limit of very large conductivity in the current collectors, solves a single (averaged) one-dimensional DFN model for the through-cell behaviour and an uncoupled problem for the distribution of potential in the current collectors (from which the resistance and heat source can be calculated). We refer to this model as the DFNCC, where the \"CC\" indicates the additional (uncoupled) current collector problem.\n",
- "\n",
- "All of the model equations, and derivations of the reduced-order models, can be found in [[6]](#References)."
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Solving the reduced-order pouch cell models in PyBaMM"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We begin by importing PyBaMM along with the other packages required in this notebook"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[33mWARNING: pybamm 23.5 does not provide the extra 'cite'\u001b[0m\u001b[33m\n",
- "\u001b[0m\u001b[33mWARNING: pybamm 23.5 does not provide the extra 'plot'\u001b[0m\u001b[33m\n",
- "\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.2.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
- }
- ],
- "source": [
- "%pip install \"pybamm[plot,cite]\" -q # install PyBaMM if it is not installed\n",
- "import pybamm\n",
- "import pickle\n",
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import scipy.interpolate as interp"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We then need to load up the appropriate models. For the DFNCC we require a 1D model of the current collectors and an average 1D DFN model for the through-cell electrochemistry. The 1+1D pouch cell model is built directly into PyBaMM and are accessed by passing the model option \"dimensionality\" which can be 1 or 2, corresponding to 1D or 2D current collectors. This option can be passed to any existing electrochemical model (e.g. [SPM](./SPM.ipynb), [SPMe](./SPMe.ipynb), [DFN](./DFN.ipynb)). Here we choose the DFN model. \n",
- "\n",
- "For both electrochemical models we choose an \"x-lumped\" thermal model, meaning we assume that the temperature is uniform in the through-cell direction $x$, but account for the variation in temperature in the transverse direction $z$."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/robertwtimms/Documents/PyBaMM/pybamm/models/full_battery_models/base_battery_model.py:910: OptionWarning: The 'lumped' thermal option with 'dimensionality' 0 now uses the parameters 'Cell cooling surface area [m2]', 'Cell volume [m3]' and 'Total heat transfer coefficient [W.m-2.K-1]' to compute the cell cooling term, regardless of the value of the the 'cell geometry' option. Please update your parameters accordingly.\n",
- " options = BatteryModelOptions(extra_options)\n"
- ]
- }
- ],
- "source": [
- "cc_model = pybamm.current_collector.EffectiveResistance({\"dimensionality\": 1})\n",
- "dfn_av = pybamm.lithium_ion.DFN({\"thermal\": \"lumped\"}, name=\"Average DFN\")\n",
- "dfn = pybamm.lithium_ion.DFN(\n",
- " {\"current collector\": \"potential pair\", \"dimensionality\": 1, \"thermal\": \"x-lumped\"},\n",
- " name=\"1+1D DFN\",\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We then add the models to a dictionary for easy access later"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "models = {\"Current collector\": cc_model, \"Average DFN\": dfn_av, \"1+1D DFN\": dfn}"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Next we update the parameters to match those used in the COMSOL simulation. In particular, we set the current to correspond to a 3C discharge and assume uniform Newton cooling on all boundaries."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "param = dfn.default_parameter_values\n",
- "I_1C = param[\"Nominal cell capacity [A.h]\"] # 1C current is cell capacity multipled by 1 hour\n",
- "param.update(\n",
- " {\n",
- " \"Current function [A]\": I_1C * 3, \n",
- " \"Negative electrode diffusivity [m2.s-1]\": 3.9 * 10 ** (-14),\n",
- " \"Positive electrode diffusivity [m2.s-1]\": 10 ** (-13),\n",
- " \"Negative current collector surface heat transfer coefficient [W.m-2.K-1]\": 10,\n",
- " \"Positive current collector surface heat transfer coefficient [W.m-2.K-1]\": 10,\n",
- " \"Negative tab heat transfer coefficient [W.m-2.K-1]\": 10,\n",
- " \"Positive tab heat transfer coefficient [W.m-2.K-1]\": 10,\n",
- " \"Edge heat transfer coefficient [W.m-2.K-1]\": 10,\n",
- " \"Total heat transfer coefficient [W.m-2.K-1]\": 10,\n",
- " }\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "In this example we choose to discretise in space using 16 nodes per domain."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "npts = 16\n",
- "var_pts = {\n",
- " \"x_n\": npts,\n",
- " \"x_s\": npts,\n",
- " \"x_p\": npts,\n",
- " \"r_n\": npts,\n",
- " \"r_p\": npts,\n",
- " \"z\": npts,\n",
- "}"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Before solving the models we load the COMSOL data so that we can request the output at the times in the COMSOL solution"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "comsol_results_path = pybamm.get_parameters_filepath(\n",
- " \"input/comsol_results/comsol_1plus1D_3C.pickle\"\n",
- ")\n",
- "comsol_variables = pickle.load(open(comsol_results_path, \"rb\"))"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Next we loop over the models, creating and solving a simulation for each."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "simulations = {}\n",
- "solutions = {} # store solutions in a separate dict for easy access later\n",
- "for name, model in models.items():\n",
- " sim = pybamm.Simulation(model, parameter_values=param, var_pts=var_pts)\n",
- " simulations[name] = sim # store simulation for later\n",
- " if name == \"Current collector\":\n",
- " # model is independent of time, so just solve arbitrarily at t=0 using \n",
- " # the default algebraic solver\n",
- " t_eval = np.array([0])\n",
- " solutions[name] = sim.solve(t_eval=t_eval) \n",
- " else:\n",
- " # solve at COMSOL times using Casadi solver in \"fast\" mode\n",
- " t_eval = comsol_variables[\"time\"] \n",
- " solutions[name] = sim.solve(solver=pybamm.CasadiSolver(mode=\"fast\"), t_eval=t_eval)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Creating the COMSOL model"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "In this section we show how to create a PyBaMM \"model\" from the COMSOL solution. If you are just interested in seeing the comparison the skip ahead to the section \"Comparing the full and reduced-order models\".\n"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "To create a PyBaMM model from the COMSOL data we must create a `pybamm.Function` object for each variable. We do this by interpolating in space to match the PyBaMM mesh and then creating a function to interpolate in time. The following cell defines the function that handles the creation of the `pybamm.Function` object."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "# set up times\n",
- "comsol_t = comsol_variables[\"time\"]\n",
- "pybamm_t = comsol_t\n",
- "# set up space\n",
- "mesh = simulations[\"1+1D DFN\"].mesh\n",
- "L_z = param.evaluate(dfn.param.L_z)\n",
- "pybamm_z = mesh[\"current collector\"].nodes\n",
- "z_interp = pybamm_z\n",
- "\n",
- "\n",
- "def get_interp_fun_curr_coll(variable_name):\n",
- " \"\"\"\n",
- " Create a :class:`pybamm.Function` object using the variable (interpolate in space \n",
- " to match nodes, and then create function to interpolate in time)\n",
- " \"\"\"\n",
- "\n",
- " comsol_z = comsol_variables[variable_name + \"_z\"]\n",
- " variable = comsol_variables[variable_name]\n",
- " variable = interp.interp1d(comsol_z, variable, axis=0, kind=\"linear\")(z_interp)\n",
- "\n",
- " # Make sure to use dimensional time\n",
- " fun = pybamm.Interpolant(\n",
- " comsol_t,\n",
- " variable.T,\n",
- " pybamm.t,\n",
- " name=variable_name + \"_comsol\"\n",
- " )\n",
- " fun.domains = {\"primary\": \"current collector\"}\n",
- " fun.mesh = mesh.combine_submeshes(\"current collector\")\n",
- " fun.secondary_mesh = None\n",
- "\n",
- " return fun"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We then pass the variables of interest to the interpolating function"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "comsol_voltage = pybamm.Interpolant(\n",
- " comsol_t, \n",
- " comsol_variables[\"voltage\"],\n",
- " pybamm.t,\n",
- " name=\"voltage_comsol\",\n",
- ")\n",
- "comsol_voltage.mesh = None\n",
- "comsol_voltage.secondary_mesh = None\n",
- "comsol_phi_s_cn = get_interp_fun_curr_coll(\"phi_s_cn\")\n",
- "comsol_phi_s_cp = get_interp_fun_curr_coll(\"phi_s_cp\")\n",
- "comsol_current = get_interp_fun_curr_coll(\"current\")\n",
- "comsol_temperature = get_interp_fun_curr_coll(\"temperature\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "and add them to a `pybamm.BaseModel` object"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [],
- "source": [
- "comsol_model = pybamm.BaseModel()\n",
- "comsol_model._geometry = pybamm.battery_geometry(options={\"dimensionality\": 1})\n",
- "comsol_model.variables = {\n",
- " \"Voltage [V]\": comsol_voltage,\n",
- " \"Negative current collector potential [V]\": comsol_phi_s_cn,\n",
- " \"Positive current collector potential [V]\": comsol_phi_s_cp,\n",
- " \"Current collector current density [A.m-2]\": comsol_current,\n",
- " \"X-averaged cell temperature [K]\": comsol_temperature,\n",
- " # Add spatial variables to match pybamm model\n",
- " \"z [m]\": simulations[\"1+1D DFN\"].built_model.variables[\"z [m]\"], \n",
- "}"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We then add the solution object from the 1+1D model. This is just so that PyBaMM uses the same times behind the scenes when dealing with COMSOL model and the reduced-order models: the variables in `comsol_model.variables` are functions of time only that return the (interpolated in space) COMSOL solution."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [],
- "source": [
- "comsol_solution = pybamm.Solution(solutions[\"1+1D DFN\"].t, solutions[\"1+1D DFN\"].y, comsol_model, {})"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Comparing the full and reduced-order models"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The DFNCC requires some post-processing to extract the solution variables. In particular, we need to pass the current and voltage from the average DFN model to the current collector model in order to compute the distribution of the potential in the current collectors and to account for the effect of the current collector resistance in the voltage. \n",
- "\n",
- "This process is automated by the method `post_process` which accepts the current collector solution object, the parameters and the voltage and current from the average DFN model. The results are stored in the dictionary `dfncc_vars`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "V_av = solutions[\"Average DFN\"][\"Voltage [V]\"]\n",
- "I_av = solutions[\"Average DFN\"][\"Total current density [A.m-2]\"]\n",
- "\n",
- "dfncc_vars = cc_model.post_process(\n",
- " solutions[\"Current collector\"], param, V_av, I_av\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Next we create a function to create some custom plots. For a given variable the plots will show: (a) the COMSOL results as a function of position in the current collector $z$ and time $t$; (b) a comparison of the full and reduced-order models and a sequence of times; (c) the time-averaged error between the full and reduced-order models as a function of space; and (d) the space-averaged error between the full and reduced-order models as a function of time."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "def plot(\n",
- " t_plot,\n",
- " z_plot,\n",
- " t_slices,\n",
- " var_name,\n",
- " units,\n",
- " comsol_var_fun,\n",
- " dfn_var_fun,\n",
- " dfncc_var_fun,\n",
- " param,\n",
- " cmap=\"viridis\",\n",
- "):\n",
- "\n",
- " fig, ax = plt.subplots(2, 2, figsize=(13, 7))\n",
- " fig.subplots_adjust(\n",
- " left=0.15, bottom=0.1, right=0.95, top=0.95, wspace=0.4, hspace=0.8\n",
- " )\n",
- " # plot comsol var\n",
- " comsol_var = comsol_var_fun(t=t_plot, z=z_plot)\n",
- " comsol_var_plot = ax[0, 0].pcolormesh(\n",
- " z_plot * 1e3, t_plot, np.transpose(comsol_var), shading=\"gouraud\", cmap=cmap\n",
- " )\n",
- " if \"cn\" in var_name:\n",
- " format = \"%.0e\"\n",
- " elif \"cp\" in var_name:\n",
- " format = \"%.0e\"\n",
- " else:\n",
- " format = None\n",
- " fig.colorbar(\n",
- " comsol_var_plot,\n",
- " ax=ax,\n",
- " format=format,\n",
- " location=\"top\",\n",
- " shrink=0.42,\n",
- " aspect=20,\n",
- " anchor=(0.0, 0.0),\n",
- " )\n",
- "\n",
- " # plot slices\n",
- " ccmap = plt.get_cmap(\"inferno\")\n",
- " for ind, t in enumerate(t_slices):\n",
- " color = ccmap(float(ind) / len(t_slices))\n",
- " comsol_var_slice = comsol_var_fun(t=t, z=z_plot)\n",
- " dfn_var_slice = dfn_var_fun(t=t, z=z_plot)\n",
- " dfncc_var_slice = dfncc_var_fun(t=np.array([t]), z=z_plot)\n",
- " ax[0, 1].plot(\n",
- " z_plot * 1e3, comsol_var_slice, \"o\", fillstyle=\"none\", color=color\n",
- " )\n",
- " ax[0, 1].plot(\n",
- " z_plot * 1e3,\n",
- " dfn_var_slice,\n",
- " \"-\",\n",
- " color=color,\n",
- " label=\"{:.0f} s\".format(t_slices[ind]),\n",
- " )\n",
- " ax[0, 1].plot(z_plot * 1e3, dfncc_var_slice, \":\", color=color)\n",
- " # add dummy points for legend of styles\n",
- " comsol_p, = ax[0, 1].plot(np.nan, np.nan, \"ko\", fillstyle=\"none\")\n",
- " pybamm_p, = ax[0, 1].plot(np.nan, np.nan, \"k-\", fillstyle=\"none\")\n",
- " dfncc_p, = ax[0, 1].plot(np.nan, np.nan, \"k:\", fillstyle=\"none\")\n",
- "\n",
- " # compute errors\n",
- " dfn_var = dfn_var_fun(t=t_plot, z=z_plot)\n",
- " dfncc_var = dfncc_var_fun(t=t_plot, z=z_plot)\n",
- " error = np.abs(comsol_var - dfn_var)\n",
- " error_bar = np.abs(comsol_var - dfncc_var)\n",
- "\n",
- " # plot time averaged error\n",
- " ax[1, 0].plot(z_plot * 1e3, np.nanmean(error, axis=1), \"k-\", label=r\"$1+1$D\")\n",
- " ax[1, 0].plot(z_plot * 1e3, np.nanmean(error_bar, axis=1), \"k:\", label=\"DFNCC\")\n",
- "\n",
- " # plot z averaged error\n",
- " ax[1, 1].plot(t_plot, np.nanmean(error, axis=0), \"k-\", label=r\"$1+1$D\")\n",
- " ax[1, 1].plot(t_plot, np.nanmean(error_bar, axis=0), \"k:\", label=\"DFNCC\")\n",
- "\n",
- " # set ticks\n",
- " ax[0, 0].tick_params(which=\"both\")\n",
- " ax[0, 1].tick_params(which=\"both\")\n",
- " ax[1, 0].tick_params(which=\"both\")\n",
- " if var_name in [\"$\\mathcal{I}^*$\"]:\n",
- " ax[1, 0].set_yscale(\"log\")\n",
- " ax[1, 0].set_yticks = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e-2, 1e-1, 1]\n",
- " else:\n",
- " ax[1, 0].ticklabel_format(style=\"sci\", scilimits=(-2, 2), axis=\"y\")\n",
- " ax[1, 1].tick_params(which=\"both\")\n",
- " if var_name in [\"$\\phi^*_{\\mathrm{s,cn}}$\", \"$\\phi^*_{\\mathrm{s,cp}} - V^*$\"]:\n",
- " ax[1, 0].ticklabel_format(style=\"sci\", scilimits=(-2, 2), axis=\"y\")\n",
- " else:\n",
- " ax[1, 1].set_yscale(\"log\")\n",
- " ax[1, 1].set_yticks = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e-2, 1e-1, 1]\n",
- "\n",
- " # set labels\n",
- " ax[0, 0].set_xlabel(r\"$z^*$ [mm]\")\n",
- " ax[0, 0].set_ylabel(r\"$t^*$ [s]\")\n",
- " ax[0, 0].set_title(r\"{} {}\".format(var_name, units), y=1.5)\n",
- " ax[0, 1].set_xlabel(r\"$z^*$ [mm]\")\n",
- " ax[0, 1].set_ylabel(r\"{}\".format(var_name))\n",
- " ax[1, 0].set_xlabel(r\"$z^*$ [mm]\")\n",
- " ax[1, 0].set_ylabel(\"Time-averaged\" + \"\\n\" + r\"absolute error {}\".format(units))\n",
- " ax[1, 1].set_xlabel(r\"$t^*$ [s]\")\n",
- " ax[1, 1].set_ylabel(\"Space-averaged\" + \"\\n\" + r\"absolute error {}\".format(units))\n",
- "\n",
- " ax[0, 0].text(-0.1, 1.6, \"(a)\", transform=ax[0, 0].transAxes)\n",
- " ax[0, 1].text(-0.1, 1.6, \"(b)\", transform=ax[0, 1].transAxes)\n",
- " ax[1, 0].text(-0.1, 1.2, \"(c)\", transform=ax[1, 0].transAxes)\n",
- " ax[1, 1].text(-0.1, 1.2, \"(d)\", transform=ax[1, 1].transAxes)\n",
- "\n",
- " leg1 = ax[0, 1].legend(\n",
- " bbox_to_anchor=(0, 1.1, 1.0, 0.102),\n",
- " loc=\"lower left\",\n",
- " borderaxespad=0.0,\n",
- " ncol=3,\n",
- " mode=\"expand\",\n",
- " )\n",
- "\n",
- " ax[0, 1].legend(\n",
- " [comsol_p, pybamm_p, dfncc_p],\n",
- " [\"COMSOL\", r\"$1+1$D\", \"DFNCC\"],\n",
- " bbox_to_anchor=(0, 1.5, 1.0, 0.102),\n",
- " loc=\"lower left\",\n",
- " borderaxespad=0.0,\n",
- " ncol=3,\n",
- " mode=\"expand\",\n",
- " )\n",
- " ax[0, 1].add_artist(leg1)\n",
- "\n",
- " ax[1, 0].legend(\n",
- " bbox_to_anchor=(0.0, 1.1, 1.0, 0.102),\n",
- " loc=\"lower right\",\n",
- " borderaxespad=0.0,\n",
- " ncol=3,\n",
- " )\n",
- " ax[1, 1].legend(\n",
- " bbox_to_anchor=(0.0, 1.1, 1.0, 0.102),\n",
- " loc=\"lower right\",\n",
- " borderaxespad=0.0,\n",
- " ncol=3,\n",
- " )"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We then set up the times and points in space to use in the plots "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [],
- "source": [
- "t_plot = comsol_t\n",
- "z_plot = z_interp\n",
- "t_slices = np.array([600, 1200, 1800, 2400, 3000]) / 3"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "and plot the negative current collector potential"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABHoAAAKSCAYAAACtCLygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeWAURfr+n+rJyRFiuEKUIyrKISpE5BBcXRFQRFFcRVHRZcUDVMQD8WA9FllxVxHXY/2uyvpb0NVVWEVlRRRBiYAoKqeoXAoBNUIIR47p+v3R3dVV1dUzk5Cb96NNZrqr633f6urJ1JO3qxjnnIMgCIIgCIIgCIIgCIKo91i17QBBEARBEARBEARBEARRNZDQQxAEQRAEQRAEQRAE0UAgoYcgCIIgCIIgCIIgCKKBQEIPQRAEQRAEQRAEQRBEA4GEHoIgCIIgCIIgCIIgiAYCCT0EQRAEQRAEQRAEQRANBBJ6CIIgCIIgCIIgCIIgGggk9BAEQRAEQRAEQRAEQTQQSOghCIIgCIIgCIIgCIJoINRpoeeXX35Bq1atsHnz5oTK33XXXbjpppuq1ymCIAiCIIgGivzda9GiRWCMYffu3aHl58+fj5NPPhm2bdeckwRBEARBxKROCz1TpkzBBRdcgA4dOiRU/vbbb8c///lPfP/999XrGEEQBEEQRAOkot+9Bg8ejOTkZMyaNat6HSMIgiAIImGSatuBMPbv34/nn38e//vf/xI+p0WLFhg0aBCeeeYZPProo9XoHUEQBEEQRMOiMt+9AODqq6/GjBkzcOWVV1aTZ2ai0SjKyspq1CZBEARBVJaUlBRYVs3k2tRZoeedd95BamoqevfuDcD5ZT5mzBh88MEHKCgoQLt27XDjjTfilltuUc4bOnQo7rnnHhJ6CIIgCIIgKoD+3cvjk08+waRJk/DNN9/g5JNPxj/+8Q+ccMIJ4vjQoUMxbtw4fPfddzjmmGOq3U/OOQoKCmI+UkYQBEEQdQ3LspCbm4uUlJRqt1VnhZ4lS5YgLy9PvLdtG0cddRRee+01NG/eHEuXLsWYMWPQpk0bXHLJJaLcqaeeih9++AGbN29OOO2YIIjqYebMmejQoQPOOOOM2naFIAiCiIP+3cvjjjvuwBNPPIHs7GzcfffdGDp0KL755hskJycDANq1a4fWrVtjyZIlNSL0eCJPq1at0KhRIzDGqt0mQRAEQRwKtm1j+/bt2LFjB9q1a1ftv7vqrNCzZcsW5OTkiPfJycl44IEHxPvc3Fzk5+fj1VdfVYQe75wtW7aQ0EMQtcTs2bMRiUQAOH95ffLJJ9GlSxecddZZtewZQRAEEYb+3cvjj3/8I84++2wAwD//+U8cddRRmDNnTuD715YtW6rdx2g0KkSe5s2bV7s9giAIgqgqWrZsie3bt6O8vFz8saS6qLOTMR84cABpaWnKvqeeegp5eXlo2bIlmjRpgueeew5bt25VyqSnpwNwnjMnCKJ6yMvLw4UXXhh6/NJLL0VBQQGmT5+Ou+++G5mZmdUu8lx99dVgjIExpjxSUFGmT58u6mGM4eeff65CLwmCIOoupu9eANCnTx/xOisrC8cffzzWrVunlElPT6+R717enDyNGjWqdlsEQRAEUZV4j2xFo9Fqt1VnhZ4WLVrg119/Fe9feeUV3H777Rg9ejTee+89rFq1Ctdccw1KS0uV8woLCwE4ahlBEFUP5xzr169Hly5dYpbz0hEZYyK7p7pp0aIF/t//+3/485//LPadf/75aNSoEfbu3Rt63siRI5GSkoJffvkFgwcPxv/7f/8vppBFEATRENG/e1WEwsLCGv3uRY9rEQRBEPWNmvzdVWeFnu7du2Pt2rXi/SeffIK+ffvixhtvRPfu3XHsscfiu+++C5y3evVqJCcno2vXrjXpLkEcNmzevBn79++PKfT8+9//RqtWrTB+/HhMmTIFP//8MxYuXFjtvjVu3BhXXHEFzjvvPLFv5MiROHDgAObMmWM8Z//+/fjvf/+LwYMHo3nz5ujUqROuuOIKnHjiidXuL0EQRF1C/+7l8emnn4rXv/76K7755ht07txZ7Dt48CC+++47dO/evUb8JAiCIAgiNnVW6Bk0aBDWrFkj/rLUsWNHfPbZZ/jf//6Hb775Bvfddx9WrFgROG/JkiXo37+/eISLIIiqxRsExBJ6Lr/8cowYMQKAo1zffPPNtTY/z/nnn4+mTZti9uzZxuP//e9/sW/fPowcObKGPSMIgqhb6N+9PB588EEsXLgQq1evxtVXX40WLVpg2LBh4vinn36K1NRU5RGvuk40GsWiRYvw8ssvY9GiRTWSRg84E0nfdNNNOProo5Gamoq2bdti6NChyh9Dli5dinPPPRdHHHEE0tLS0K1bNzz22GMBH71HjGUhDgBKSkrQvHlzMMawaNEisf+jjz7Cb3/7W2RlZaFRo0bo2LEjRo0apWTHR6NRPP744+jWrRvS0tJwxBFH4JxzzsEnn3yi2Jg5cyYyMzOrrmGIOsvixYsxdOhQ5OTkgDGGuXPn1ooN+RH95ORktG7dGmeffTZeeOEF2LZd5T4RdYNEr3uHDh2UqRcYYzjqqKMCx/XPy/HjxwcWjSkqKsI999yDTp06IS0tDdnZ2RgwYADeeOMNcM5FuW+//RbXXHMNjjrqKKSmpiI3NxeXXXYZPvvss+ppjApSZ4Webt26oUePHnj11VcBANdddx0uuugiXHrppejVqxd++eUX3HjjjYHzXnnlFVx77bU17S5BNHjmzJmjzM3Tv39/jBw5Env27Ak95+qrr671FbfS09Nx0UUXYeHChdi1a1fg+OzZs9G0aVOcf/75teAdQRBE3UH/7uXx5z//Gbfccgvy8vJQUFCAt956S1ka9uWXX8bIkSPrzbw5b7zxBo499liceeaZuPzyy3HmmWfi2GOPxRtvvFGtdjdv3oy8vDx88MEHePTRR/H1119j/vz5OPPMMzF27FgAzu/a3/zmNzjqqKPw4YcfYv369bjlllvwpz/9CSNGjFAGGQDQtm1bvPjii8q+OXPmoEmTJsq+tWvXYvDgwTjllFOwePFifP3113jyySeRkpIiBCTOOUaMGIEHH3wQt9xyC9atW4dFixahbdu2OOOMM6plgE/Uffbt24eTTjoJTz31VIXPPeOMMzBz5swqszF48GDs2LEDmzdvxrvvvoszzzwTt9xyC8477zyUl5dX2D+ifpDodX/wwQexY8cOsX3xxRdKPWlpaZg4cWJMW7t370bfvn3x0ksvYdKkSfj888+xePFiXHrppbjzzjvFuOezzz5DXl4evvnmG/z973/H2rVrMWfOHHTq1Am33XZb1TdCZeB1mHnz5vHOnTvzaDSaUPl33nmHd+7cmZeVlVWzZwRxeDFt2jQOgF922WW8W7duvH379vy6664T++oCo0aN4u3btzcee++99zgA/uSTTyr7f/nlF56cnMyvuuqqwDl//OMfOQD+008/VYe7BEEQdZKKfvf66aefeFZWFv/++++r2TOHAwcO8LVr1/IDBw5U6vzXX3+dM8b40KFDeX5+Pt+7dy/Pz8/nQ4cO5Ywx/vrrr1exxz7nnHMOP/LII3lxcXHg2K+//sqLi4t58+bN+UUXXRQ4/uabb3IA/JVXXhH7APB7772XZ2Rk8P3794v9Z599Nr/vvvs4AP7hhx9yzjl//PHHeYcOHWL698orr3AA/M033wwcu+iii3jz5s2F7y+++CJv1qxZImETDQgAfM6cOQmX/81vfsNffPHFKrExatQofsEFFwT2L1y4kAPg//d//1chO0T9INHr3r59e/7444+H1tO+fXt+880385SUFP7222+L/bfccgv/zW9+I97fcMMNvHHjxvzHH38M1LF3715eVlbGbdvmXbt25Xl5ecbflb/++muoH4f6O6wi1NmMHgAYMmQIxowZgx9//DGh8vv27cOLL76IpKQ6u2o8QdQ7VqxYgYkTJ+L222/H7NmzUVJSgr59++LZZ5/F2Wefjddee63Or3L329/+Fm3atAk8vvXaa6+hrKyMHtsiCIJwqeh3r82bN+Ppp59Gbm5uNXt26ESjUdx2220477zzMHfuXPTu3RtNmjRB7969MXfuXJx33nm4/fbbq+UxrsLCQsyfPx9jx45F48aNA8czMzPx3nvv4ZdffsHtt98eOD506FAcd9xxePnll5X9eXl56NChA15//XUAwNatW7F48WJceeWVSrns7Gzs2LEDixcvDvVx9uzZOO644zB06NDAsdtuuw2//PILFixYkFC8RHw459i3b1+Nb1zLCqvv/Pa3v8VJJ51U7Rl5DRVTvygtLcW+fftQUlJiLCs/MlVWVoZ9+/bh4MGDCZWtKipz3XNzc3H99ddj0qRJxsf9bNvGK6+8gpEjRyInJydwvEmTJkhKSsKqVauwZs0a3HbbbbCsoJxSVx5rrdNCD+A8N9e2bduEyl588cXo1atXNXtEEIcXjzzyCFq2bIkHH3wQBw4cwLfffouTTjoJAHDaaaehvLzc+EhUXSISiWDEiBHIz8/H5s2bxf7Zs2ejdevWtTZ/EEEQRF2kIt+9TjnlFFx66aXV7FHVsGTJEmzevBl333134Mu5ZVmYNGkSNm3ahCVLllS57W+//Racc3Tq1Cm0zDfffAMAykTXMp06dRJlZH7/+9/jhRdeAODMnXPuuecGVkD73e9+h8suuwy/+c1v0KZNG1x44YX429/+hqKiIsV+mG1vv8k+UTn279+PJk2a1PhW1/84Vxk6deqkfL8jEsfrFz///LPY9+ijj6JJkyYYN26cUrZVq1Zo0qQJtm7dKvY99dRTaNKkCUaPHq2U7dChA5o0aYJ169aJfYk8xlcR9Os+ceJEpa/PmDEjcM69996LTZs2YdasWYFjP//8M3799deYn9MAsHHjRmG/LlPnhR6CIGqP8vJyzJ8/H+eccw7S09OxevVq2LYtVqTat28fAOCII46oTTcTwsva8bJ6fvjhByxZsgQjRoyoseXfCYIgiNpjx44dAIATTjjBeNzb75WrSiqSRVHRjIsrrrgC+fn5+P777zFz5kz8/ve/D5SJRCJ48cUX8cMPP2DatGk48sgj8fDDD6Nr165KvA0t24OoWR5++GFloL1kyRJcf/31yj5ZJKgqOOc1umw1UTfQr/sdd9yBVatWie2qq64KnNOyZUvcfvvtmDx5sjIRvVdfonbrA/SME0EQoXz77bfYt28funXrBgD46quvAEBk9KxatQrt27dHs2bNas3HRMnLy0OnTp3w8ssv4+6778bLL78Mzjk9tkUQBHGY0KZNGwDA6tWr0bt378Dx1atXK+Wqko4dO4IxhvXr14eWOe644wAA69atQ9++fQPH161bZ1zxsnnz5jjvvPMwevRoHDx4EOeccw727t1rtHHkkUfiyiuvxJVXXomHHnoIxx13HJ599lk88MADOO6445S/vuu2ZR+JQ6dRo0YoLi6uFbvVxfXXX49LLrlEvB85ciSGDx+Oiy66SOwzPRJzqKxbt65ePD5aF/H6oNwv7rjjDowfPz4wHYqXwS+vbj127Fhce+21gT+aepk2ctmrr766Kl0PXPcWLVrg2GOPjXvehAkT8PTTT+Ppp59W9rds2RKZmZkxP6cB/3Nw/fr16N69eyU8rxkoo4cgiFC8JXa9+QS+/PJLtGjRAjk5Ofj555/x0Ucf4YILLqhNFyvEyJEjsXr1anz11VeYPXs2OnbsiJ49e9a2WwRBEEQN0L9/f3To0AEPP/xwYH4G27YxdepU5Obmon///lVuOysrC4MGDcJTTz0lsmFldu/ejYEDByIrKwt//etfA8fffPNNbNy4EZdddpmx/t///vdYtGgRrrrqqoSzVI844gi0adNG+DNixAhs3LgRb731VqDsX//6VzRv3hxnn312QnUT8WGMoXHjxjW+VWfmS1ZWFo499lixpaeno1WrVsq+qp5L9YMPPsDXX3+N4cOHV2m9hwumfpGSkoLGjRsjNTXVWFZ+9DU5ORmNGzdGWlpaQmWrikO57k2aNMF9992HKVOmKKK4ZVkYMWIEZs2ahe3btwfOKy4uRnl5OU4++WR06dIFf/3rX41z/ezevbvCPlUHJPQQBBHKkUceCQDIz88H4GT0eNk8t956KyzLwvjx42vLvQrjZe9MnjwZq1atomwegiCIw4hIJIK//vWvmDdvHoYNG4b8/Hzs3bsX+fn5GDZsGObNm4e//OUv1fY471NPPYVoNIpTTz0Vr7/+OjZu3Ih169ZhxowZ6NOnDxo3boy///3v+O9//4sxY8bgq6++wubNm/H888/j6quvxsUXX6xkS8gMHjwYP/30Ex588EHj8b///e+44YYb8N577+G7777DmjVrMHHiRKxZs0ZMvjxixAhceOGFGDVqFJ5//nls3rwZX331Fa677jq8+eab+Mc//qFMJB2NRpXHJFatWhWaEUTUX4qLi8X1BYBNmzZh1apVVfoIVqI2SkpKUFBQgB9//BGff/45Hn74YVxwwQU477zzjI/pEA2D6rjuY8aMQbNmzQILtUyZMgVt27ZFr1698NJLL2Ht2rXYuHEjXnjhBXTv3h3FxcVgjOHFF1/EN998g/79++Odd97B999/j6+++gpTpkypO38Er/Z1vQiCqNecccYZnDHG77jjDp6Zmcn79evHzzvvPB6JRPi//vUvzjnn0WiU33TTTbx58+a8WbNm/JRTTom7LPn333/Pzz33XJ6VlcWzs7P5E088IY4B4E8//TTv0KEDb968OX/44Yfj+hlreXWZvn37cgAcAN+4cWNoOVpenSAIou5RFUvTvv7667xDhw7idwEAnpubW61Lq3ts376djx07lrdv356npKTwI488kp9//vliGXTOOV+8eDEfNGgQz8jI4CkpKbxr1678L3/5Cy8vL1fqQoylrn/99VdlefXPP/+cX3HFFTw3N5enpqby5s2b89NPPz2wlHpZWRl/9NFHedeuXXlKSgrPyMjggwYN4h9//LFS7sUXX1Taz9uOOeaYQ24jom7x4YcfGq/1qFGj4p6b6PLqidgYNWqU2J+UlMRbtmzJBwwYwF944QXjEtdEwyDR657I8ur68dmzZ3MAyvLqnHO+e/duftddd/GOHTvylJQU3rp1az5gwAA+Z84cbtu2KLdhwwZ+1VVX8ZycHJ6SksLbt2/PL7vsMv7555+H+lGTy6szzuvJbEIEQdQKBQUFuPbaa/H+++/j4MGDSElJQc+ePfHggw/it7/9LQBg/vz5uPfee/HBBx+gcePG+PLLL3HcccehSZMmxjrLy8tx4okn4pJLLsFdd92F0tJSbNy4EXl5eQCcdOaLL74YL774IjZv3oxTTjkFa9aswTHHHBPq59VXX41FixbFXXXh6aefxtixY3Hqqadi2bJloeXuv/9+PPDAA/jpp5/QokWLOK1EEARB1AQHDx7Epk2bkJubG3hUoCJEo1EsWbIEO3bsQJs2bdC/f3+amJ8gCIKoVqrqd1gi0GTMBEHEJDs7G2+99RbmzZuHoUOHYtmyZTj55JOVMsnJydi7dy/Wr1+Pnj17okePHjHrXLZsGfbu3YvJkyfDsiykpaUJkcfjrrvuQpMmTXDCCSfgxBNPxNdffx1T6AGcORZ+/vlnJCUlITMz01jmxhtvxI033hhax8GDB1FcXNwglx8lCIIgHCKRCM4444zadoMgCIIgqgWao4cgiIRYv349GGM4/vjjA8fOOussXH/99RgzZgzatGmD22+/HWVlZaF1/fDDD2jfvr0yQZtO69atxetEV6bYtm0bWrZsiX79+sUtG8azzz6Lli1b4tFHH610HQRBEARBEARBELUFZfQQBJEQ69evR7t27ZRlEmVuvfVW3Hrrrdi2bRvOPfdcnHDCCaHLKLZt2xZbtmwB57zKVn+48847ccUVVwBA6CNjiTB8+HCccMIJ4n19WDqeIAiCIAiCIAjCg4QegiASYv369ejUqZPx2GeffQbOObp3746mTZsiOTlZmevAE3xmzpwJADj11FPRtGlTPPTQQ7jzzjsDc/RUhi5duqBLly6VPt+jbdu2aNu27SHXQxAEQRAEQRAEURvQo1sEQSTExx9/jPnz5xuP7dmzB7///e+RmZmJ448/Hqeddhouv/xycfyHH37AaaedJt4nJSVh3rx5WLp0Kdq0aYPjjz9eLOFOEARBEARBEARBVB5adYsgiGrFW2Hryy+/RHJycm27QxAEQdRjvBVLOnToEPooMUEQBEHURQ4cOIDNmzfXyKpblNFDEES1kpSUhLVr15LIQxAEQRwy3u8SWhmRIAiCqG+UlpYCgDLFRXVBc/QQBEEQBEEQ9YJIJILMzEzs2rULgLMqY1VN6k8QBEEQ1YVt2/jpp5/QqFEjJCVVvwxDQg9BEARBEARRb8jOzgYAIfYQBEEQRH3Asiy0a9euRv5AQXP0EARBEARBEPWOaDSKsrKy2naDIAiCIBIiJSUFllUzs+eQ0EMQBEEQBEEQBEEQBNFAoMmYCYIgCIIgCIIgCIIgGggk9BAEQRAEQRAEQRAEQTQQSOghCIIgCIIgCIIgCIJoIJDQQxAEQRAEQRAEQRAE0UAgoYcgCIIgCIIgCIIgCKKBQEIPQRAEQRAEQRAEQRBEA4GEHoIgCIIgCIIgCIIgiAYCCT0EQRAEQRAEQRAEQRANBBJ64nD99deDMYbp06dXSX1PPfUUOnTogLS0NPTq1QvLly83luOc45xzzgFjDHPnzq0S2/U9lvvvvx+dOnVC48aNccQRR2DAgAFYtmxZpeuToVjmVtpeQ4mlrKwMEydORLdu3dC4cWPk5OTgqquuwvbt2w8hAp+avi4NLZ433ngDAwcORPPmzcEYw6pVqypdl85rr72GTp06IS0tDd26dcM777wTWrYqPkevvvpqMMaUbfDgwZWuTybedTnjjDMCtq+//voqsU0QBEEQBEHUDUjoicGcOXPw6aefIicnp0rq+/e//40JEybgj3/8Iz7//HOcdNJJGDRoEHbt2hUoO336dDDGqsQu0DBiOe644/C3v/0NX3/9NT7++GN06NABAwcOxE8//XRI9VIsh0ZDiWX//v34/PPPcd999+Hzzz/HG2+8gQ0bNuD8888/pHqB2rkuDS2effv2oV+/fnjkkUcOuS6ZpUuX4rLLLsPo0aPxxRdfYNiwYRg2bBhWr14dKFuVn6ODBw/Gjh07xPbyyy8fcp2JXpdrr71WsT1t2rRDtk0QBEEQBEHUIThh5IcffuBHHnkkX716NW/fvj1//PHHleNbt27lv/vd73izZs34EUccwc8//3y+adOmmHWeeuqpfOzYseJ9NBrlOTk5fOrUqUq5L774gh955JF8x44dHACfM2cOxWJgz549HAB///33KRaKpVpiWb58OQfAt2zZUu9j4bxhxLNp0yYOgH/xxReBY7/++isfPXo0b9GiBW/atCk/88wz+apVq2LWd8kll/AhQ4Yo+3r16sWvu+46ZV+8z9GKMGrUKH7BBRfELFNd1+U3v/kNv+WWWyrtO0EQBEEQBFH3oYweA7Zt48orr8Qdd9yBrl27Bo6XlZVh0KBBaNq0KZYsWYJPPvkETZo0weDBg1FaWmqss7S0FCtXrsSAAQPEPsuyMGDAAOTn54t9+/fvx+WXX46nnnoK2dnZFEsIpaWleO6559CsWTOcdNJJFAvFUuWxAMCePXvAGENmZma9j6UhxqPzu9/9Drt27cK7776LlStXokePHjjrrLNQWFgYek5+fr4SCwAMGjRIiSXe52hlWLRoEVq1aoXjjz8eN9xwA3755RdxrDqvCwDMmjULLVq0wAknnIBJkyZh//79VRITQRAEQRAEUTdIqm0H6iKPPPIIkpKScPPNNxuP//vf/4Zt2/jHP/4hHkl48cUXkZmZiUWLFmHgwIGBc37++WdEo1G0bt1a2d+6dWusX79evL/11lvRt29fXHDBBRSLgXnz5mHEiBHYv38/2rRpgwULFqBFixYUC8VSZbF4HDx4EBMnTsRll12GjIyMeh1LQ4xH5+OPP8by5cuxa9cupKamAgD+8pe/YO7cufjPf/6DMWPGGM8rKCgwxlJQUCDex/scrSiDBw/GRRddhNzcXHz33Xe4++67cc455yA/Px+RSKRar8vll1+O9u3bIycnB1999RUmTpyIDRs24I033qiS2AiCIAiCIIja57DP6Jk1axaaNGkito8++ghPPPEEZs6cGTqvxJdffolvv/0WTZs2FedlZWXh4MGD+O6777BkyRKlzlmzZiXky5tvvokPPvig0pN8NuRYlixZAgA488wzsWrVKixduhSDBw/GJZdcIuafoFgolqqIBXAyKi655BJwzvHMM8+I/XU1loYWT6xYwvjyyy9RXFyM5s2bK+du2rQJ3333HbZu3arsf/jhhxPyZeXKlXE/Rysay4gRI3D++eejW7duGDZsGObNm4cVK1Zg0aJFIpbquC4AMGbMGAwaNAjdunXDyJEj8dJLL2HOnDn47rvvKhwbQRAEQRAEUTc57DN6zj//fPTq1Uu8f+2117Br1y60a9dO7ItGo7jtttswffp0bN68GcXFxcjLyzN+uW7ZsiVSUlKUFWFat26N1NRURCIR7Ny5Uym/c+dO8VjDBx98gO+++048VuExfPhw9O/fXwwCDsdYjjzySABA48aNceyxx+LYY49F79690bFjRzz//POYNGkSxUKxVEksniiyZcsWfPDBByL7BUCdjaWhxRMWSyyKi4vRpk0bY92ZmZnIzMxUYsnKygIAZGdnx4xlyZIlcT9HDzWWo48+Gi1atMC3336Ls846q9quiwnPt2+//RbHHHNMzFgIgiAIgiCIekJtTxJU1/j555/5119/rWw5OTl84sSJfP369Zxzzp977jl+xBFH8D179lSo7lNPPZWPGzdOvI9Go/zII48UE2Xu2LEjYBsAf+KJJ/j3339/WMcSxtFHH83/+Mc/UiwUS5XEUlpayocNG8a7du3Kd+3aFThen2JpiPFwHj4Z83vvvccjkUjcCYt1LrnkEn7eeecp+/r06SMmY07kc/RQ2bZtG2eM8f/+97+c8+q7LiY+/vhjDoB/+eWXlXOeIAiCIAiCqHOQ0JMA+gor+/bt4x07duRnnHEGX7x4Mf/+++/5hx9+yG+66Sa+bdu20HpeeeUVnpqaymfOnMnXrl3Lx4wZwzMzM3lBQUHoOajilXfqayzFxcV80qRJPD8/n2/evJl/9tln/JprruGpqal89erVFAvFcsixlJaW8vPPP58fddRRfNWqVXzHjh1iKykpqVexNMR4fvnlF/7FF1/wt99+mwPgr7zyCv/iiy/4jh07OOec27bN+/Xrx0866ST+v//9j2/atIl/8skn/O677+YrVqwIrfeTTz7hSUlJ/C9/+Qtft24d/+Mf/8iTk5P5119/HXrOoay6tXfvXn777bfz/Px8vmnTJv7+++/zHj168I4dO/KDBw9yzqvvunz77bf8wQcf5J999hnftGkT/+9//8uPPvpofvrpp1cqFoIgCIIgCKJuQkJPApi+1O/YsYNfddVVvEWLFjw1NZUfffTR/Nprr437F9gnn3ySt2vXjqekpPBTTz2Vf/rppzHLV7fQw3n9iOXAgQP8wgsv5Dk5OTwlJYW3adOGn3/++Xz58uUUC8VSJbF4mSKm7cMPP6xXsTTEeF588UVjLF7mGOecFxUV8Ztuuonn5OTw5ORk3rZtWz5y5Ei+devWmHW/+uqr/LjjjuMpKSm8a9eu/O23345Z/lCEnv379/OBAwfyli1b8uTkZN6+fXt+7bXXBkSy6rguW7du5aeffjrPysriqamp/Nhjj+V33HFHhTOHCIIgCIIgiLoN45zzansujCAIgiAIgiCqgWg0irKystp2gyAIgiASIiUlBZZVM+thHfaTMRMEQRAEQRD1B845CgoKsHv37tp2hSAIgiASxrIs5ObmIiUlpdptUUYPQRAEQRAEUW/YsWMHdu/ejVatWqFRo0ZgjNW2SwRBEAQRE9u2sX37diQnJ6Ndu3bV/ruLMnoIgiAIgiCIekE0GhUiT/PmzWvbHYIgCIJImJYtW2L79u0oLy9HcnJytdqqmQfECIIgCIIgCOIQ8ebkadSoUS17QhAEQRAVw3tkKxqNVrstEnoIgiAIgiCIegU9rkUQBEHUN2rydxcJPQRBEARBEARBEARBEA0EEnqqmJKSEtx///0oKSmpbVeqhIYUD8VSN6FY6iYUS92kIcVCEIcTU6dORc+ePdG0aVO0atUKw4YNw4YNG5QyBw8exNixY9G8eXM0adIEw4cPx86dO5UyW7duxZAhQ9CoUSO0atUKd9xxB8rLy2syFKIB8+OPP+KKK65A8+bNkZ6ejm7duuGzzz4TxznnmDx5Mtq0aYP09HQMGDAAGzduVOooLCzEyJEjkZGRgczMTIwePRrFxcU1HQrRwFi8eDGGDh2KnJwcMMYwd+7cQJmq6p9fffUV+vfvj7S0NLRt2xbTpk2rztCqDRJ6qpiSkhI88MADDeZLeEOKh2Kpm1AsdROKpW7SkGIhiMOJjz76CGPHjsWnn36KBQsWoKysDAMHDsS+fftEmVtvvRVvvfUWXnvtNXz00UfYvn07LrroInE8Go1iyJAhKC0txdKlS/HPf/4TM2fOxOTJk2sjJKKB8euvv+K0005DcnIy3n33XaxduxZ//etfccQRR4gy06ZNw4wZM/Dss89i2bJlaNy4MQYNGoSDBw+KMiNHjsSaNWuwYMECzJs3D4sXL8aYMWNqIySiAbFv3z6cdNJJeOqpp0LLVEX/LCoqwsCBA9G+fXusXLkSjz76KO6//34899xz1RpftcCJKmXPnj0cAN+zZ09tu1IlNKR4KJa6CcVSN6FY6iYNKRaCqAwHDhzga9eu5QcOHKhtVw6JXbt2cQD8o48+4pxzvnv3bp6cnMxfe+01UWbdunUcAM/Pz+ecc/7OO+9wy7J4QUGBKPPMM8/wjIwMXlJSYrRTUlLCx44dy7Ozs3lqaipv164df/jhh6sxMqK+MnHiRN6vX7/Q47Zt8+zsbP7oo4+Kfbt37+apqan85Zdf5pxzvnbtWg6Ar1ixQpR59913OWOM//jjj6H1/vGPf+Rt27blKSkpvE2bNvymm26qoqiIhggAPmfOHGVfVfXPp59+mh9xxBHKZ+rEiRP58ccfH+pPYWEhv/zyy3mLFi14WloaP/bYY/kLL7xgLFuTv8NoeXWCIAiCIAii3sI5x/79+2vcbqNGjSo9seaePXsAAFlZWQCAlStXoqysDAMGDBBlOnXqhHbt2iE/Px+9e/dGfn4+unXrhtatW4sygwYNwg033IA1a9age/fuATszZszAm2++iVdffRXt2rXDtm3bsG3btkr5TFQOzjnKD5TWiu2k9JSE++ibb76JQYMG4Xe/+x0++ugjHHnkkbjxxhtx7bXXAgA2bdqEgoICpY82a9YMvXr1Qn5+PkaMGIH8/HxkZmbilFNOEWUGDBgAy7KwbNkyXHjhhQG7r7/+Oh5//HG88sor6Nq1KwoKCvDll18eYuREonDOgWjNf34CACKV/wzVqar+mZ+fj9NPP12sjgU4n7OPPPIIfv31VyXDzeO+++7D2rVr8e6776JFixb49ttvceDAgSqJ61AgoecQOXjwIEpL/Q/voqIi5Wd9pyHFQ7HUTSiWugnFUjep7lhSUlKQlpZWLXUTRHWxf/9+NGmSWeN2i4t3o3HjxhU+z7ZtjB8/HqeddhpOOOEEAEBBQQFSUlKQmZmplG3dujUKCgpEGVnk8Y57x0xs3boVHTt2RL9+/cAYQ/v27SvsL3FolB8oxd+731Irtq/74gkkN0pNqOz333+PZ555BhMmTMDdd9+NFStW4Oabb0ZKSgpGjRol+pipD8p9tFWrVsrxpKQkZGVlxeyj2dnZGDBgAJKTk9GuXTuceuqpFQ2VqCzR/bBfbRW/XDVgXbILSKr4Z6iJquqfBQUFyM3NDdThHTMJPVu3bkX37t2FgNShQ4dDD6gKIKHnEDh48CDSm2QC0eBcCW3btq15h6qRhhQPxVI3oVjqJhRL3aS6YsnOzsamTZtI7CGIamTs2LFYvXo1Pv7442q3dfXVV+Pss8/G8ccfj8GDB+O8887DwIEDq90uUf+wbRunnHIKHn74YQBA9+7dsXr1ajz77LMYNWpUtdn93e9+h+nTp+Poo4/G4MGDce6552Lo0KFISqJhKlE/uOGGGzB8+HB8/vnnGDhwIIYNG4a+ffvWtlsk9BwKpaWljsjT7mwgkuzsZBb8Oa6ZtM/9KdLTvH3MPx5zn/xTKid+eq897/z3Se7LCDgA531E7POr8C065Sy3jMWk16I8F/uYVIeoy3As0X1e/aZ6mV5eKmMsn+C+sGOIVT50H4tfL+Ty8euF4Zj3oiJ+AFq5WHVIx/TzABa7fMz6Zb/MPjLGYl476DHJbSzVGegvzOlbSr3KMQSOmfqJHicUH3mgfHi/5XFsGuqCegzGOA31ijKmY4b7TfocMPmBWHHq/htj4cZysY75Mbu+KfUmUD/jhusjHWPqZ5/z0arVDx64BuY6gvuM5WGH1uH7aAfPdc+zGAdjeh222GcZj4kA/J8WQ9HeKNr1+AKlpaUk9BD1ikaNGqG4eHet2K0o48aNExOAHnXUUWJ/dnY2SktLsXv3biWrZ+fOncjOzhZlli9frtTnrcrlldHp0aMHNm3ahHfffRfvv/8+LrnkEgwYMAD/+c9/Kuw7UTmS0lNw3RdP1JrtRGnTpg26dOmi7OvcuTNef/11AH4f27lzJ9q0aSPK7Ny5EyeffLIos2vXLqWO8vJyFBYWhvbRtm3bYsOGDXj//fexYMEC3HjjjXj00Ufx0UcfITk5OWH/iUoSaeRk1tSS7aqiqvpndnZ2YLXDeJ+z55xzDrZs2YJ33nkHCxYswFlnnYWxY8fiL3/5S5XEVllI6KkKrCTAkoQeVhGhRy5fWaHHkmx5TpkGu9ywz7XCZDGnckKPpY4ZAjYPVeixQgbuIqZD2Fep8qH7WNw6TMKNX4dJRAmW915UxA9AK5eo0JOQj6bypvplv8w+VlToUdvY1PelclUo9ASuJ1P7fKx6nfeHLvSY46yE0GMoB4QLPSbBpFqFHsWPmhJ6DCINzPUG66ic0GMZyxuEHlZRocf76d+7ygWzaBFOov7CGKvUI1Q1CeccN910E+bMmYNFixYFHg3Iy8tDcnIyFi5ciOHDhwMANmzYgK1bt6JPnz4AgD59+mDKlCnYtWuXePxgwYIFyMjICAzQZTIyMnDppZfi0ksvxcUXX4zBgwejsLBQzA9EVC+MsYQfn6pNTjvtNGzYsEHZ980334jH/XJzc5GdnY2FCxeKgXNRURGWLVuGG264AYDTR3fv3o2VK1ciLy8PAPDBBx/Atm306tUr1HZ6ejqGDh2KoUOHYuzYsejUqRO+/vpr9OjRoxoiJWQYY1X2+FRtUlX9s0+fPrjnnntQVlYmhMYFCxbg+OOPNz625dGyZUuMGjUKo0aNQv/+/XHHHXeQ0EMQBEEQBEEQDZmxY8di9uzZ+O9//4umTZuK+SCaNWuG9PR0NGvWDKNHj8aECROQlZWFjIwM3HTTTejTpw969+4NABg4cCC6dOmCK6+8EtOmTUNBQQHuvfdejB07FqmpZiHhscceQ5s2bdC9e3dYloXXXnsN2dnZgbmACOLWW29F37598fDDD+OSSy7B8uXL8dxzz4llpRljGD9+PP70pz+hY8eOyM3NxX333YecnBwMGzYMgJMBNHjwYFx77bV49tlnUVZWhnHjxmHEiBHIyckx2p05cyai0Sh69eqFRo0a4V//+hfS09NpPilCobi4GN9++614v2nTJqxatQpZWVlo165dlfXPyy+/HA888ABGjx6NiRMnYvXq1XjiiSfw+OOPh/o2efJk5OXloWvXrigpKcG8efPQuXPnam2PRCChhyAIgiAIgiCqkWeeeQYAcMYZZyj7X3zxRVx99dUAgMcffxyWZWH48OEoKSnBoEGD8PTTT4uykUgE8+bNww033IA+ffqgcePGGDVqFB588MFQu02bNsW0adOwceNGRCIR9OzZE++88w4syuIjNHr27Ik5c+Zg0qRJePDBB5Gbm4vp06dj5MiRosydd96Jffv2YcyYMdi9ezf69euH+fPnK4/7zpo1C+PGjcNZZ50l+vOMGTNC7WZmZuLPf/4zJkyYgGg0im7duuGtt95C8+bNqzVeon7x2Wef4cwzzxTvJ0yYAAAYNWoUZs6cCaBq+mezZs3w3nvvYezYscjLy0OLFi0wefJkjBkzJtS3lJQUTJo0CZs3b0Z6ejr69++PV155pYpboOIwzjmvbSfqK0VFRWjWrBnQ4Rwg4j4DWwcf3Upkjh56dKsS5UP3sbh10KNb3nuzj/Toln88PE56dIse3arMo1thc/RYKNpbjsyOn2HPnj3IyMgAQdRFDh48iE2bNiE3N5fmkiIIgiDqFTX5O4zkfIIgCIIgCIIgCIIgiAYCCT0EQRAEQRAEQRAEQRANBBJ6CIIgCIIgCIIgCIIgGggk9BAEQRAEQRAEQRAEQTQQSOghCIIgCIIgCIIgCIJoIJDQQxAEQRAEQRAEQRAE0UAgoYcgCIIgCIIgCIIgCKKBQEIPQRAEQRAEQRAEQRBEA4GEHoIgCIIgCIIgCIIgiAYCCT0EQRAEQRAEQRAEQRANBBJ6CIIgCIIgCKKG+POf/wzGGMaPH6/sP3jwIMaOHYvmzZujSZMmGD58OHbu3KmU2bp1K4YMGYJGjRqhVatWuOOOO1BeXl6D3hMNlWg0ivvuuw+5ublIT0/HMcccg4ceegicc1GGc47JkyejTZs2SE9Px4ABA7Bx40alnsLCQowcORIZGRnIzMzE6NGjUVxcXNPhEMRhDwk9BEEQBEEQBFEDrFixAn//+99x4oknBo7deuuteOutt/Daa6/ho48+wvbt23HRRReJ49FoFEOGDEFpaSmWLl2Kf/7zn5g5cyYmT55ckyEQDZRHHnkEzzzzDP72t79h3bp1eOSRRzBt2jQ8+eSTosy0adMwY8YMPPvss1i2bBkaN26MQYMG4eDBg6LMyJEjsWbNGixYsADz5s3D4sWLMWbMmNoIiSAOa0joIQiCIAiCIIhqpri4GCNHjsT//d//4YgjjlCO7dmzB88//zwee+wx/Pa3v0VeXh5efPFFLF26FJ9++ikA4L333sPatWvxr3/9CyeffDLOOeccPPTQQ3jqqadQWlpqtFlaWopx48ahTZs2SEtLQ/v27TF16tRqj5WofyxduhQXXHABhgwZgg4dOuDiiy/GwIEDsXz5cgBONs/06dNx77334oILLsCJJ56Il156Cdu3b8fcuXMBAOvWrcP8+fPxj3/8A7169UK/fv3w5JNP4pVXXsH27duNdjnnuP/++9GuXTukpqYiJycHN998c02FTRANFhJ6CIIgCIIgiHoL5xwH9pXU+CY/0pIIY8eOxZAhQzBgwIDAsZUrV6KsrEw51qlTJ7Rr1w75+fkAgPz8fHTr1g2tW7cWZQYNGoSioiKsWbPGaHPGjBl488038eqrr2LDhg2YNWsWOnToUCG/iUODcw774IFa2SrSR/v27YuFCxfim2++AQB8+eWX+Pjjj3HOOecAADZt2oSCggKljzZr1gy9evVS+mhmZiZOOeUUUWbAgAGwLAvLli0z2n399dfx+OOP4+9//zs2btyIuXPnolu3bhVuZ4IgVJJq2wGCIAiCIAiCqCwH95fivFbja9zuvF3Tkd44NaGyr7zyCj7//HOsWLHCeLygoAApKSnIzMxU9rdu3RoFBQWijCzyeMe9Yya2bt2Kjh07ol+/fmCMoX379gn5S1QdvOQgNl8eFPdqgg6z3wdLS0+o7F133YWioiJ06tQJkUgE0WgUU6ZMwciRIwH4fczUB+U+2qpVK+V4UlISsrKyYvbR7OxsDBgwAMnJyWjXrh1OPfXUCsVJEEQQEnqqArscYMx5zSz4iVLyPvenV84rw5h/POY++adUTvz0XntOOS84czYA4OCGfW4I4jxpr7dPql7UznjAJJfc4dqxiuzz6tf32Uw6juB5wToS3xd2DLHKh+5j8euFXD5+vTAc815UxA9AKxerDumYfh7AYpePWb/sl9lHxljMawc9JrmNpToD/YW5fRdhxxA4ZuonepxQfOSB8uH9lsexaagL6jEY4zTUK8qYjgXvNy8Oy9RmDECsOHX/jbFwY7lYx/yYXd+UehOon3HD9ZGOMT9mUUavHzxwDcx1BPcZy8MOrcP30Q6e655nMQ7G9Dpssc8yHhMB+D8tG0V7oyAIourZtm0bbrnlFixYsABpaWk1avvqq6/G2WefjeOPPx6DBw/Geeedh4EDB9aoD0T94NVXX8WsWbMwe/ZsdO3aFatWrcL48eORk5ODUaNGVZvd3/3ud5g+fTqOPvpoDB48GOeeey6GDh2KpCQaphLEoUB30CGQkpKC7OxsFGxdUNuuxKRc+1lSW44QBEEQdZrs7GykpKTUthsEUSHSGqVg3q7ptWI3EVauXIldu3ahR48eYl80GsXixYvxt7/9DSUlJcjOzkZpaSl2796tZPXs3LkT2dnZAJz705svRT7uHTPRo0cPbNq0Ce+++y7ef/99XHLJJRgwYAD+85//VCRU4hBgqWnoMPv9WrOdKHfccQfuuusujBgxAgDQrVs3bNmyBVOnTsWoUaNEH9u5cyfatGkjztu5cydOPvlkAE4/3LVrl1JveXk5CgsLQ/to27ZtsWHDBrz//vtYsGABbrzxRjz66KP46KOPkJycXJFwCYKQIKHnEEhLS8OmTZtCJ8AjCIIgiPpESkpKjWccEMShwhhL+BGq2uCss87C119/rey75ppr0KlTJ0ycOBGRSAR5eXlITk7GwoULMXz4cADAhg0bsHXrVvTp0wcA0KdPH0yZMgW7du0Sj8csWLAAGRkZ6NKlS6j9jIwMXHrppbj00ktx8cUXY/DgwSgsLERWVlY1RUzIMMYSfnyqNtm/fz8sS52+NRKJwLadzNDc3FxkZ2dj4cKFQtgpKirCsmXLcMMNNwBw+uju3buxcuVK5OXlAQA++OAD2LaNXr16hdpOT0/H0KFDMXToUIwdOxadOnXC119/rYijBEFUDBJ6DpG0tDT6UkwQBEEQBEEYadq0KU444QRlX+PGjdG8eXOxv1mzZhg9ejQmTJiArKwsZGRk4KabbkKfPn3Qu3dvAMDAgQPRpUsXXHnllZg2bRoKCgpw7733YuzYsUhNNQtdjz32GNq0aYPu3bvDsiy89tpryM7ODswFRBBDhw7FlClT0K5dO3Tt2hVffPEFHnvsMfz+978H4AhW48ePx5/+9Cd07NgRubm5uO+++5CTk4Nhw4YBADp37ozBgwfj2muvxbPPPouysjKMGzcOI0aMQE5OjtHuzJkzEY1G0atXLzRq1Aj/+te/kJ6eTvNJEcQhQkIPQRAEQRAEQdQyjz/+OCzLwvDhw1FSUoJBgwbh6aefFscjkQjmzZuHG264AX369EHjxo0xatQoPPjgg6F1Nm3aFNOmTcPGjRsRiUTQs2dPvPPOO4HMDYJ48skncd999+HGG2/Erl27kJOTg+uuuw6TJ08WZe68807s27cPY8aMwe7du9GvXz/Mnz9f+aP3rFmzMG7cOJx11lmiP8+YMSPUbmZmJv785z9jwoQJiEaj6NatG9566y00b968WuMliIYO4xVdG5IgCIIgCIIgaoGDBw9i06ZNyM3NpYxqgiAIol5Rk7/DSM4nCIIgCIIgCIIgCIJoIJDQQxAEQRAEQRAEQRAE0UAgoYcgCIIgCIIgCIIgCKKBQEIPQRAEQRAEQRAEQRBEA4GEHoIgCIIgCIIgCIIgiAYCCT0EQRAEQRBEvYIWjSUIgiDqGzX5u4uEHoIgCIIgCKJekJycDADYv39/LXtCEARBEBWjtLQUABCJRKrdVlK1WyAIgiAIgiCIKiASiSAzMxO7du0CADRq1AiMsVr2iiAIgiBiY9s2fvrpJzRq1AhJSdUvw5DQQxAEQRAEQdQbsrOzAUCIPQRBEARRH7AsC+3atauRP1AwTg85EwRBEARBEPWMaDSKsrKy2naDIAiCIBIiJSUFllUzs+eQ0EMQBEEQBEEQBEEQBNFAoMmYCYIgCIIgCIIgCIIgGggk9BAEQRAEQRAEQRAEQTQQSOghCIIgCIIgCIIgCIJoIJDQQxAEQRAEQRAEQRAE0UAgoYcgCIIgCIIgCIIgCKKBQEIPQRAEQRAEQRAEQRBEA4GEHoIgCIIgCIIgCIIgiAYCCT0EQRAEQRAEQRAEQRANBBJ6CIIgCIIgCIIgCIIgGgh1UuhZvHgxhg4dipycHDDGMHfuXHGsrKwMEydORLdu3dC4cWPk5OTgqquuwvbt25U6CgsLMXLkSGRkZCAzMxOjR49GcXGxUuarr75C//79kZaWhrZt22LatGk1ER5BEARBEARBEARBEES1UCeFnn379uGkk07CU089FTi2f/9+fP7557jvvvvw+eef44033sCGDRtw/vnnK+VGjhyJNWvWYMGCBZg3bx4WL16MMWPGiONFRUUYOHAg2rdvj5UrV+LRRx/F/fffj+eee67a4yMIgiAIgiAIgiAIgqgOGOec17YTsWCMYc6cORg2bFhomRUrVuDUU0/Fli1b0K5dO6xbtw5dunTBihUrcMoppwAA5s+fj3PPPRc//PADcnJy8Mwzz+Cee+5BQUEBUlJSAAB33XUX5s6di/Xr19dEaARBEARBEARBEARBEFVKnczoqSh79uwBYwyZmZkAgPz8fGRmZgqRBwAGDBgAy7KwbNkyUeb0008XIg8ADBo0CBs2bMCvv/5ao/4TBEEQBEEQBEEQBEFUBUm17cChcvDgQUycOBGXXXYZMjIyAAAFBQVo1aqVUi4pKQlZWVkoKCgQZXJzc5UyrVu3FseOOOKIgK2SkhKUlJSI97Zto7CwEM2bNwdjrErjIgiCIIjqhnOOvXv3IicnB5bVIP72QzRwbNvG9u3b0bRpU/ruRRAEQdQravJ7V70WesrKynDJJZeAc45nnnmm2u1NnToVDzzwQLXbIQiCIIiaZNu2bTjqqKNq2w2CiMv27dvRtm3b2naDIAiCICpNTXzvqrdCjyfybNmyBR988IHI5gGA7Oxs7Nq1SylfXl6OwsJCZGdnizI7d+5UynjvvTI6kyZNwoQJE8T7PXv2oF27dti2bZtinyAIgiDqA0VFRWjbti2aNm1a264QREJ4fZW+exEEQRD1jZr83lUvhR5P5Nm4cSM+/PBDNG/eXDnep08f7N69GytXrkReXh4A4IMPPoBt2+jVq5coc88996CsrAzJyckAgAULFuD44483PrYFAKmpqUhNTQ3sz8jIoC8bBEEQRL2FHoEh6gteX6XvXgRBEER9pSa+d9XJB/KLi4uxatUqrFq1CgCwadMmrFq1Clu3bkVZWRkuvvhifPbZZ5g1axai0SgKCgpQUFCA0tJSAEDnzp0xePBgXHvttVi+fDk++eQTjBs3DiNGjEBOTg4A4PLLL0dKSgpGjx6NNWvW4N///jeeeOIJJWOHIAiCIAiCIAiCIIjDjwPFe7HontH4ePxgLLpnNA4U761tlxKmTi6vvmjRIpx55pmB/aNGjcL9998fmETZ48MPP8QZZ5wBACgsLMS4cePw1ltvwbIsDB8+HDNmzECTJk1E+a+++gpjx47FihUr0KJFC9x0002YOHFiwn4WFRWhWbNm2LNnD/1ViSAIgqh30O8xor5BfZYgCIKoCRZPOB89Oy1BSpNSsa+0OAUr1vfH6Y+9Wak6a/J3WJ0UeuoL9GWDIAiCqM/Q7zGivkF9liAIgqhuFk84H33zFqJwWxbWlV6IjsOvxcbX/w+dU+Ygq20hlq48q1JiT03+DquXc/TUNe586GkkpaSCcQ4bzrJp4DY4AO79GwVscIA7m80BuI/mMTCAMTC4z+sx9xCz4Lxl4BaDBQbbtmFzIDUl2anKtsGYsx/g4Jz7dm04r71jcN7Dq9v1wVnajYPBch/mY7AYA+eAxSyU21FYkSQkRyLgHE4MDLC5DdgcHBycAzbnbhtwwH0P5hZnzKnXcut1l5NjAGBZInYOBgaG0vJypKSkIjkSQdS2wdw4PFterDZ3bDlxO/sYY7C5/+yj16YWc9uZM8Bizn7utTdDWbmNRmnJYJYFbkfBuN9+XLQth8UB2+YA47BtzxcbkYgFeLFxDljutYV/HYU/cPyJ2lE0Tk12W8IGtx07AMC5Ldpb2PeOuX3JskStYFIf4p4Np+XAWASWcxBRHkWj1GRRh3PtbDDuX0t4bQsObnv+ONeXeW3HGPzHS5nbvlL/YY4vjDHwqI301GS3zWyAM3DYIh6be75w4ZfNAWY7fUi5hgCYJcfnvGdgYj+DBSCKlJRkcG4L/+HGp9yjthcrhA/MgmhPDguMyW1tiePgbp8GwJiFCLORlJzs1M3da+gE6Nwz7r0o+g240xbcdutx7wD33vc+DCy3Hb3Nv5c4IhaQnJyk9g/btcu574P72eC0v/cxwN0+Y7n18oAN/z2HZUUQjUaRmsyQlBQR9734XHPtALZzj3Dvk8dG1AYs5hi2vOtkWU6fijD3msG36doHgKhdjvRUC5YVAedRcLfNAPezVPRT7u5nIm5u24hYcO5BLxbmfNRZliU+b5n3OWR5n39RpKU6x717wIb7mcf19vXa3b2miCJJ1M3A4MXotScX15gxxx6zAIYypKQ69xW3Ie4Rp+va/n3i3SPu5xC4DcaisFzfATj2uNvWzu3q9iMOMAuW5dw/dqQ1CIIgCIIgCIcDxXvRs9MSFG7LQuroz5Dx8BAU7xyK30yegdIDf0bhE8ej5/Ef40DxXqQ3qbuLWZDQUwX8fdbbgJUESUaRMOzj3j/6MRbjLfN3WBH3dUjdTH4j2fMGs8rkT/pEUNox762V6r7WbHp1izr9AbPqk3dc+sm4+l7/GUnV3ONS2+lOSO3BuRBw/POVN+przzcWgRWRbwkeeM0AMB7cn8TLkaSHINlgsh3pfZIVQZLlCyZ+gh3XrgyX3HH6ThLKIbSVwHX0xTUhKLo/k5OSEJGbQ4hHUmyiOcUQFgBgoRyWFJ8eqi+uyZUwpCQn+UIJ51LLGvoLpOOcI8KiUhgsGKksjnqDasaQkpIs2kfEwNXXehv41zkqrpEfi2ySaccd0tOSwZjlCo5qrIHkyYBNW7pNLDDvvnLFS2YxyWdf1GuUnuIVg1AnJUHUawBPVPI7kg0Ltit8cKVOr1n9C+sKEo5raJSeLHURyYb0Wr62Xpsz2E7binvOs+mbsuALE15bRyJAk0ZJalzitW+XiWZ1BTsAjJWDodxrNunawRV8fHt+/AypqTYapVmiTYXo6huRRBco7cxYCSxERXxgTIhcimDJ/A0MaNLIRlqKG5v3L9dj4uJay/Eztg+Wxf12s7w292x4Io8n+nhdyQZBEARBEAThsGzqePTvWoq1G07BSf/vZJzYswi/LL8G5f03ISW9EdaVDEO/pi9gydTxOGPK87Xtbigk9FQFqU0BK7mKKw0O3JVDrLLzaEcqZRJIqsTU3Z7QYIVXHssmS9ZEqURPtABLshkzLu28SFKYHCTem6qLAGCRYFn9tX5uBBwp2l0Yz11vkJrEOKwEroleX4rFkWToBsLHGA4kKZczKDQGRRjPJhCJmCsOO0f4G+dTynw+R1oyC8SiXJMYcSYnsZgXIuxQWqqfWRU4J1Z9DEiOWFLFhsIhu9JSGSzmn6v0tRi3HWNAUpLZV7mgqc83SoPa9wzNZbouEYsjKcb1lH2X24tZUTRKt1VfpDcmH0WMVhSRCFwxK6S822dkm0kRG43SSn3hRAvKF4v8ep0m4UhJtmFZtmpLti+JPkwSkVOSy5CeVuLHxdR7zPHFVt57ZVJTk8GYZFM0ple/wSbjKN5XBoIgCIIgCMIhad+PAIC+JyxEJDUKu8zCxoLOOM1dqfvYC0cDq18Q5eoqJPTUSRJWJiqBkvJTAZMh5x0KCSkapiwpeX8CPiVUlImCSqKHdqrJG/EXc62JEhGMOLxhmz/Yi+WudzyhpgvZb3NzHMJuSJAMfqJU+HUxV+o84mP2L2a8MRoktA24H6eug8leMzkRTSKWeBYm2Hk7nKwdZnRZJEsZ6rcClfo1xBNsRMaMIdkukEgHvw9ZFsL7qHSeKWYOwH1CSnfX6KS4lZm5WEBE0e8jzuEmo2j7/fOUa8tcH91G8AQQ1b5/zymCkecvcx6j0z8QlPJcvRtFmzMuBBhZYPFtaKKTe44NuB1Euv7KDek+Yiu956IfM0mUUhvLyXLz94ksIjA5f44gCIIgCOKw5ufNm9Gj03IAQCQ1iv2/NMba1Htw2vRbRJlv5zyP7I5AeeMja8vNhCChp05SARGj0vWz4K6YJg/Fl5BzY9pk2ki1kr5UKB4rcCSWWCPDDU2qHFcsqHUGrca2Jwb3ceyFCScxM0ti2BV1B5SH2ANF8XiKqW4Wx16MquN1HyskVs/9MLuxpqcXh0z1MrjzrZjPjdXuWt5G8FiIKMVclUAXj0RbxxCIeAU/Zrw+JZKHTEJRjPYWlSDYP2WhyhinxUR/94QT7tarZNxAe60EavQMeut7T34mea0oCy1M6nfMezDKF4yEgMSdd8x3QvVL+kDwH2tjiHgKlRQMlx63cw77r+Wfqg0GzzvTBfAeQ2NBhZEgCIIgCOKwZNlzT6BLyRSkNi8BAJSXRHDgnKXodeyxokzpgf3onDoXpXtT0WvS9FryNDFI6DnsqOyX+opm9OjDuIra9f76HJZ7kqAAxMMOm+qNQn+0TR4Lm8bFSpVxQpTrkOu3peNyiXhRmupj2k8dd07gmHlSpoQWc32x5AmpFI9hlxsEoMAANpyYNm1zdo4nKpgEmXhCmLBpaEBvkmc7xCuRQaQd9udZUjyUrYX6ZLsDdm6YZoUDATFGsWkQX3yLBj+94u5czsxGUGx0O63p7temjDJWHhBCPGHFtgOZZiLby/M/rF3lQLWUrli+uGqIekj5QJCFFL2A/tN57d/TXNGQfJO2Kixpj5P54pFbtUgjFK2s2FTseWbF/cWktCeCIAiCIIjDl49v/i165a2A1cRGtMTCrm1ZyD7mZ+A/Z+KjkmE49sLR+HbO8+icOtdfdasOT8QMkNBTx6nuzJ6KmKyEUBNTUohn0/vLdiy7h6AEKAXCC8USTuJVbcpaYFAtMujCCjO8ko9KgzgePm2SSSTyyopJWI1WY8fFuTS2DOZkGPx1/vFsGgWdUGMV73Vyd7GsYPdhIWUVsxUZ92rCEHMnZw7tL6YDXgKIsV3DhRr5jSwgxYtR0TG0nTHbWxLgGGDMIjJV4O33BDajOMmlMpLvvihhgTM5f0YTQJg5bkfH4MF7kTmSiciOkQowqRIuCStc7pBSsPJ8N747ygWVjUrBci/xR4lTSl2SJp72dnGnHaRrobQal28aV+LhXJlAPZARFJaCRhAEQRAE0cBZ/fYcHL1tNPr0drJ4igoysK3DYzjxmsuweML56NlpCfo1eQFY/QKyOwKle1MrvbR6TUNCT52nqr+EJyAeGQ9VJCsnjmyQUDWxMnpMPoWN2uPZ5IFC8cb5YVVxbbAYWk6yYcHJ6GGBEuHGRcQGlSemSBOjelPmEhDMeglmvAQrC/jA1ZiVU03dowJdPjCAl4yYMnrk8v7cJrpwUgGb3LfJgMAcPUqVWuOqApFWqeSIN9aXy+s2ZT1A1ou8Pin6jCSmKNfWJKppWoVYUIv7m4x+LRS9QVY59TJhYpwsCnHbWRxKur+UxyW1+1z+VPCWhvcPBnOuuNYWjgFbqZspxrjxXEUUUlQrO/S+YXJWkrtsu5jfR0tj4mDuImDS+bJbihE/Tr+vc78veavt2dqFJAiCIAiCOAz4+NF7kJf5FFIyysA5sGXtkciZtBInupk6pz/2Jg4U78WSqeORtO9HlDc+Er0mTa/zmTweJPTUeepKVk9l7TN/i1uFXiDkuZO451XepqmmRCyKJpMHxiHny+NdBlNWTsiqTfLg0ZAwEMumskASU+2HEea7mmFgPkcXayz4wkKibRp2IGGbWkZPeDxIKPHMaFsTL7yMnlh+mhyxbUhPDRr6pC4KKT74GT2hepVJjDAINYFbRhPClBh0USUR0c4kDsW4UZRMF3k2ZvmxK1NssijmCjPCDGdCTAl84sjxujYV9zRn/YmWvTwjOU4uTV7OFGFR9lfJxnILcC5Pwi03mjqpslNWDZ6LbCcmaT9+IbFSl7fEO2X0EARBEARxGFFeVoYv7vgNeuV9BSvCES218OUXXdHziU8DZdObNK3TS6jHgoSeekFVfxFPoL5AkUQzenQJoSJ/LdbKVljkqUw7KX92N2TXJFazN6dpIq3k/QHf02pMNjl4IDIxVIuh0oTZlucBkvMRdE0vVNsLscm1IoGsIbe8zYI9wtRTEsmsSdimltFjvDYMQTEixgXUffemcfHf+1YCeqkUqEmUClrx3jHlHFmgYVAzeuQ+4gk3AJQVxuSMHrlNApqC17jMtyn6rZyFImIPEXukF8ZH6Qx9yvLikbJrlKwlLokkUnaT0Ia9fQyKbOqLIEFhhslxcsCCLSaXku8ZZ0Ur5/60oYmokh/qB4IqNikrXXl9iAG2lCrF4WTb6I8G2pwrq7SJLDvlBvLvcJGJJSpxOwp3RCPK6CEIgiAI4nDh078/gZPY/ehxaikA4JetWSjq80/0vPq3texZ1UNCT70g5nC8ZkwmbFOWMIDwWWTCUP4Un4BZuVBls5/88qZVscJL+ygJGSHeSX+4V+ox7w9KP8x/mXCIer1hNo2YmlYMJsOzeizDAYvHtynGwwlohGFxKTaZN9CPQyXHuaY5YuLO0aP56BEro0e2FXjcC/5AP9Z8RPIbWaSSy4iml8uGrKwVy5+ASfmWNt0o0jUX4o1cpyvWCN9ckcUkEnnVKTZdVYqpJRRkoU3Ua1mA5Z/nL1nOxHvnrV+fJwg5cap25KXaRZxSX/FWbQNjol4mCTf+cu1qHN4k4EpsQuhi8LKQmJTp42X0MDDK6CEIgiAI4rBg0eTrcdqx/4KV5PwhbNVnJ+LkaYvRKjm5tl2rFkjoqTNU5Mt2BUb6VWEuIZthQ9uKjqK1dIWYJCrDJGozPKPHw4IaUSLCiS59QXuvt5AqV/kDzYCMZbgk+i5T3Rb3B6RASCuGNK2/349Ar0dkD0nOeBk9lbFpQq5HiUW2yf1Yw6oyrcqVaBeS58nxsmn0OXpMYkt8P4IX1suWkbN5lDlzJH90O7p4ItxhqiWlX7k7vBW25PJepg1nqlgkz5njZQsB6jVhuqCi4cXB9J2MQ9cy9Eq8NmTiHF98g+uvIxIF7xBvOh45RsB2sl0CDeO/ZnIHg9/OlpJmo1hyEmoYD8ThCDa2L9p4N6t3PncEGqYpqcxrYH1ZMvixePqUyCRyM4c4AJsyegiCIAiCaMAcKN6LjX88Hf16fONkUEcZPl3ZF/2nv1fbrlUrJPTUGSryZbuiWTISpvWdEzov0flyoNWvqAMVOzeunmUaTmsnJayJOYViZfQEBsSa1ZDxpyICGQf5IeeZPYyPF7JeXskciFdfSNOqj+cEhbywehlPoNeGXc4YxGxXZl5C3WizAogYDcINYyzUJtMLSySS0RN2PmO+gGLqr2GEZvS4J+tZO3JZpW1N7RDihJzRo1xuT6tgent6P70sFL8dwtpDzuhxhDAujDBFnZNsMC12ALAsWEJocQUipVywLq8Nbe7Y0tvBq0NuO7VdLVhSB/IeM1M+QpUPGg7OuSsCMrEymX9v6it0MfU1Ayyj2kkQBEEQBFH/+WjqXejR5Hl0zdsPANi+sTXs815G/yt71bJn1Q8JPXWKig7lq8BGwtXos1FUqpKKFY9ZLs6QtsLN47RpvIyeME9MS5bLNZuuGJOOw/DaUkoZ7Br+gq/bNWHzGD4ZBu0VtamXYHCyKULnPzoEdStWkoftOhPTZiVuI669kNuRcw4bIZNpxxhPxxtr+3PVaHW6x7jbuHo7WDEUvdCMHkBkKAnb3nG3kC1faO24nM0Drl5f45Lsmk2lPb0YYYHzqFJWVKAJegHxyoJQtbgk1oi6ORfT1ngxONXbTrYLA+R11LzMHMsgcnov5InAA/FwWXzyjjvvbW6LDBtlLiFXzFEmbvYLifK+HVfwkSaeVmwKEYqD2zYIgiAIgiAaGstuPg2n9VrlZPGUMaz4ohf6Tl9Y227VGCT01CkSTS84lL/AGjJeEiHmaNw0tK9A8VjljFXpOw32OQvsil8PYGn7YukB8j4bPFCGofJz/iRSJt7kt2G+y6JU4HRdvNAKcG7KWPHbP0x+UxZMCj89WCCYNBEgZpxxuoG+8hQQp6vrNvX6Y8zRE+sZMjtskqeEbBoEANlMyH1kc/cXgCQ4eMhPB7EQm3o/CPQXg019jh5FaJIcD9TtLU+uiByqMCOLKbJ5bkP6TcdFIo4FTXgK1G/BsvxpzJX4PNFIljbFdWewbV94kQUgJzFSenyMKbWDIQLL8gUtX+xxZRnvWSz4Yo4nvnLurvLF4c7N48bL3E2Tz4SoSxk9BEEQBEE0IPbs3IGd03+LU3pvBQDY5Qwfrx2GM6f/q5Y9q1lI6KlzJDLsP5SMnkqYq3QFzHw8UZsJijOhFVYiNj3rhCN8Xh4tqcBoVv9bualFTLpXzKGXNqDXkRMtGIIDX3lKDiWuWPVKx7xhZjyUTKUQbTERm4lZC5axeWA+XDe7IWg/zG48W4Elym0OZrGALzGfmDQIG4naZO57Ll1o77rHy1oSq26ZsoR0u3JmlFtAn9olVlabODVGATkuW+u0FpiUhSL5HXKjKPcjA4QCAuY/XsXk2J2UHnmxLG5xV7BRbxhn1XXbt+P1YeGzM4my8FW+d2zxCl6jOplV3l0VlSZW9iL1xDyu2WRaX3YmXIZXH5eupYjfq89f94syegiCIAiCaCh8eN+NyGv5Go7p5jyqtXVdG7ALXsGZV51Sy57VPCT01DliDWmrSNxJ1FxCJk0V6FJIJW0a9axEhvwJjDhDCMvAiVUdhzpI9V56dYWJQHGSHwI2lDfM3Dym97qdsMF2YBlmuUIpqKCMEURvt7AnvhKxmcilNLVlrDgPBVOfkOeS0Y85RmP0XA7weEkVBkFMWXXLVFxX+nxzANyMHu3EWO2oiHIGcSqRW9XY9lps5swdrnTminwscUXN8juVkrWkBc7gCDqWtI65L7BwcCUViIPBXzodnDmTKnvVeSa9ac7keXSU1wC4BW8eHycbx78ZuFCMOCDm5fF959wWkzyLa2TBU7qkKLx6XaGJMnoIgiAIgqhHHCjei2VTxyNp348ob3wkek2ajvQmTfHt3cejf9cfwBgQLYng09UDcPpf36htd2sNEnrqLNUg6hySSdPBig7BK3F6QicY9sd4TCYWekaPSbIyiimGQW88PYHDf4pFrz8sZyueOJSITWU+Eq+uCgygeWhaRnCFMPlnZW0mogsGcyAcISNscl/lZO1lIv4EbHrZNNwZRIvuZ6g/vsJnuPpu1o58xLepZkzJc8OYNE85TtOEzOKY8sL/6dmSM3osFt5nA0Z1TEKUe+242OE4omQzScd9Ecb3Uby1/PrEXq7G58ctPZBlOytSqVkzXJzvX89gSpSf0cOFb97qaOr9LTUw50DEFtk4cjaPeC0bUVsM8hL0jjDGpXmqODi4UpeInTJ6CIIgCIKoJyyecD56dlqC/l1Lxb7S2a/jl6JGyD1hDwAgWhrBmvQncfpfR9WWm3WCOvmnvMWLF2Po0KHIyckBYwxz585VjnPOMXnyZLRp0wbp6ekYMGAANm7cqJQpLCzEyJEjkZGRgczMTIwePRrFxcVKma+++gr9+/dHWloa2rZti2nTplV3aBWAx9iqou4KmAw9JxH/YgwiKhxirBMMJ1dCK7PgJw6Ypu8I1QniXBavPrlu+ZGwsPp1YjUTC9nCjin1OkkCzkTN8qbbY9753LCZ/ZHjrpTNGLHFtGkQObhmSzYk/EE4RpsMYs4aWbwSY2qvfu+l7IMNBLNcDL2AqbY9cdGzqbSHN7h3N71BhW2vfdwTmbRBr5epcepxh3jtI7WB3naeEW7wQ8Ro+aIHM/imG1filiaq5nLDMLffMg7L3ZQ2sADLYnBWUmPufD6+k9wtyOQr414A2xVW9PvUKclE/cKeBTCLwcvoETblBpLq8sUnv3YvPs49Qcy15tbD3M7CmKW1XyU+KAmCIAiCIGqYxRPOR9+8hdhb2AQffzsaO0/6FEs/PRVJqVFk5uwB58BPm7Ow96yv0X3E4S3yAHVU6Nm3bx9OOukkPPXUU8bj06ZNw4wZM/Dss89i2bJlaNy4MQYNGoSDBw+KMiNHjsSaNWuwYMECzJs3D4sXL8aYMWPE8aKiIgwcOBDt27fHypUr8eijj+L+++/Hc889V+3xhRNrOJuoFJConQqY1M+Je7KMoYtVKsRE2yaRUWc4NsxCimmfYkKzx7Xd3nhTHnva2vF4xGumWNKXEpckOugDeSEc6INpzx6HMoCNJTyFlamwzTixhdmUhQVdPAgIGrKwEOMaGG3qgpVXRgtEiduStkT6qkEAC4hkmk2uN6QeL/fbSRGATKKb9N7L5BFimdQ2AQxtoLddqBBlSzHaLGBTvs66fS7F7z2l5LjD/IOcOUuScwbb3ZzXrg03o4dzDltXBqVGEncD844yWHAFG1cGEj4y916U4uOcOa9tDjDbF2uUTwq1dZV2F7FBiER+zL7/ng1HCGLS9Uzk04cgCIIgCKL2OFC8Fz07LUHhtixk3rIBvW7/M/DGUPTptRxWsg07ylB+MAnNbl6L5m3b17a7dYI6+ejWOeecg3POOcd4jHOO6dOn495778UFF1wAAHjppZfQunVrzJ07FyNGjMC6deswf/58rFixAqec4ky89OSTT+Lcc8/FX/7yF+Tk5GDWrFkoLS3FCy+8gJSUFHTt2hWrVq3CY489pghCNUdFlInKij0GeSDR7/jMG6IncrJczrAse8I2K3OSe2KoIhObyi4gr0+QG1ZHmI7FQl4rNgzvvbKxbOqv5UwXUac2WGb6Scp75r40X5Ow+CptM07dofvlOEO6j6QBCCrU0wztI4tiSr26auU5AN1/071muBTM/8kCjav5IJ0sdllqnabHD70Xpn4mPyLGYGgLzR/9rdSVAqKpcp8wv68x3Rdj+wHa/MnSSZpDmi1lAms3y4aJWljoeb4J5+JyHjVk3zjH1bmBuNS+rlEw6b0qaSrXGvDn2vEtax+bTuWWcNabsNkvZ1FGD0EQBEEQdZxlU8ejf9dSrCu4EC0+WIhWq69H62N2AwD2FzbCZ1t+i9O7z8OSqeNxxpTna9fZOkKdzOiJxaZNm1BQUIABAwaIfc2aNUOvXr2Qn58PAMjPz0dmZqYQeQBgwIABsCwLy5YtE2VOP/10pKSkiDKDBg3Chg0b8Ouvvxptl5SUoKioSNkOCSVvnyW+wTunops+LJH+5J2IzWAAIZtMjGVx4m2VOilstJoYYY/tqMOt8EE3tHJKloG72dIWZkupO2QL8y9sE1k9XBqce5t7mS2mZdho5bhk0WQjni+VsRkvztD9XBrkV+D2qsi415QFA8mmcptpccuxBpQOky1tE5knngxi6iTeM4KG2120T0gsNnf7qLaPS40eeqvCt6W3gRKPof38TBd5Y8p5pvZQYmGuxuHZ9ERFN2tHFLAZuO1m9MDJ5hGbbTlZNrDdFpY27mXGuJk3zH9UCwAYi/hBi/QixzFRG4eTRWTDz+jx7lJmgyl5eMFr5PsgtwpTRU3XrJPRw8Ft28lSsr22oIwegiAIgiDqPkn7fgQAWD+vw7E7r0BW293gtvOoVvLvt+C4Kycp5Yh6KPQUFBQAAFq3bq3sb926tThWUFCAVq1aKceTkpKQlZWllDHVIdvQmTp1Kpo1aya2tm3bHnpAAMxDlepGspeISmD0LbSwRIicEe80USgRezEqqmCzqmKGul8e1MYUMAzlIb2Wx99hbioDegQfKeMwCxKJSGDeebLg5A3g5YFu2Hw5siV5hpJEbMeyGWuOnorEqIsnPCw2k22eeHcxCjcshoBhsGO+vcyRm0Qy5qoYTO4obmcRookknMiijS68mGKxJKMmIUxur8BjWHZwn65BMBge3fM0aVkMk1aTku8jeR4iJjeb+96L1a/H27g4mXkbnGwbizmTpFuW7WS7cG8GKn8T894w9w5wxRwmFCZb1MslW2JeINcXC+4EyRZ35wCy3CwdC1yNVDySpd913jw+XlxOH1Qb3psXyLKYM++QK/4xiwVWTyMIgiAIgqhrRKPOmLJv76VISivHgcJGWPbTnci+exvSGjXCt3OcLJ7yxkfWppt1inon9NQmkyZNwp49e8S2bdu2KqxdlwVqAhZ8G2/UnNAJMnG6WNhpJv/iOhlSUcLNykKLy2NIk8VEpCf5p5zRo3suv7dgTMoAkys0+CmLRCaBSK/bm7zYYlqGTUyb6oSzsTajTabaTCSjxxRj2BYQEDRblmWwzRLvLsKWIigwo11j8p4cY8Bo0AslPlmw8RQbt2HFIN6zJ9mUBRtdeDEJVCKDR9vnCRWivaT6ZT/iZvTAIMC54pRsk4MBluYvgzIXj+km8vzjnGnx+SdzsfkCZJTDFXhsmGa05tL8PJz5mxB0uBXMHpLtub7YcOfKcTOLnHtMagDdJgBnqmdbuvP8OXx8Qc9tADeTSNizvTmPIGURJfwBSdQTElmMQufgwYMYO3YsmjdvjiZNmmD48OHYuXOnUmbr1q0YMmQIGjVqhFatWuGOO+5AeXm5UmbRokXo0aMHUlNTceyxx2LmzJnK8XiLbRAEQRCEzod3XoG+PZcCcL7PbFjVHtHffYnTbv0jAKD0wH50Tp2L0r2p6DVpei16Wreod0JPdnY2AAS+gOzcuVMcy87Oxq5du5Tj5eXlKCwsVMqY6pBt6KSmpiIjI0PZqg5ZEqgpNJsxlQqTb7FkDblMAi6YTjWOP8IkFEVWMJ8SF28gJQ2uNCkj7D/P3UQlKG88DHiij1+XP4zzX8v7xH8h47N4PohJWPVNH3BzQ8sKtSfYoBW2yePbjDcGjWUzkKmj2bONjwh5MVbQpisqOBPfmjOFhE0Y2jVgxW/juH3KfXzHH7zDXRocgYwePU69T+rxmAQikbUk1yvb0fyQs4k8g3oMsvDnCVSyWAPOA6uIMQ4wSYdRH2vy2xyMuRk7ekxOJSKjx9PLGBBxj4tsHc8ZN2vHy6hxqmBiE+IO5Hpt31HFnp/dYzEOZrmfJIpC5s7Zw7zMHYDBEhsg22RSfBx+g8GxY7kbc7KHrAjALCY+v4iGQ7zFKEzceuuteOutt/Daa6/ho48+wvbt23HRRReJ49FoFEOGDEFpaSmWLl2Kf/7zn5g5cyYmT54symzatAlDhgzBmWeeiVWrVmH8+PH4wx/+gP/973+iTLzFNgiCIAjC48e1a/DdPcfj9JPnwEri4FFnf4usvVj17FT8+NUqfPTATdj9xPHIaluIFRv6Ib1J09p1ug5RJydjjkVubi6ys7OxcOFCnHzyyQCcFbSWLVuGG264AQDQp08f7N69GytXrkReXh4A4IMPPoBt2+jVq5coc88996CsrAzJyckAgAULFuD444/HEUccUfOBAajZv6zGUAkqdCCezwkcNxZhISNgU2F9n2HgklA9lnuEGUuFt0D8gZIXSiyriXjo7w+3KR9R6mDSID6k/ngiB+emyVu5qN90yQLZKwafwg2KYmbCujFTlzsPnBLDbrwpS8IEKMdeyKMwceJUTTLjsdDrxbylv9UavDhNuNpJeMUxEJM4W+rpYfaU9nZt6v2Eu//odYi6LSaETa//e9eBMbWs8loJ1OiZ7IF4xQEkuTIMkydwZtL1YHBlGlWQ8yeuVydVVppG+kCQL4PlqWjajetl8/iPZfnn+H3c90Ox6f3DPd88McwXt4iGQyKLUejs2bMHzz//PGbPno3f/va3AIAXX3wRnTt3xqefforevXvjvffew9q1a/H++++jdevWOPnkk/HQQw9h4sSJuP/++5GSkoJnn30Wubm5+Otf/woA6Ny5Mz7++GM8/vjjGDRoEIDYi20QBEEQhMenN/dH95O+QlJXJ3N089ojkX7Z6/j2+XvQs9MS9GvyArD6BWR3BEr3pmLpyrNw+mNv1rLXdYs6mdFTXFyMVatWYdWqVQCcvxKtWrUKW7duBWMM48ePx5/+9Ce8+eab+Prrr3HVVVchJycHw4YNA+B8uRg8eDCuvfZaLF++HJ988gnGjRuHESNGiC85l19+OVJSUjB69GisWbMG//73v/HEE09gwoQJtRBx2LC7OlHyJnw3YpaPV49cnxdTnFFz4LEIqV6jP6ZsEn2f4cSAGya/9PmE1Iwe04NKYjUgk6sxvJc3f1oV9b9ABo9nX185yIDco0RpKctBtmuaN0fPrpGzK3zf1RYRrmmX03skxmiTx7cZ1m487IBnMySTJVY2DxBf7BKChbY5dfJAppJnT9jU3Q0MtoP3Q5hPtjtglzNoIGX0JBRnaOOa4W5WkncRlbpN8/LoHwsw3C+eYKN1WlGNbYNpnYQBytxEgRi9drXCPl+9+zcYrHON/ftb7Hf7uDjOufrp7cUn7lG/fu+e0RuHudlKzltbu7+lbCPRdsrC7ZrXXiHJprhR/B+OQORUGk/YJOoXiSxGobNy5UqUlZUpi1x06tQJ7dq1Uxa56NatmzK34aBBg1BUVIQ1a9aIMnIdXhmvDoIgCIKIx+4ft2PzfcfglF6fIym9HOUHI/j464twzJ++QU7Xbo6Yc/lWLFkzAvnL+2PJmhHAyC0k8hiokxk9n332Gc4880zx3hNfRo0ahZkzZ+LOO+/Evn37MGbMGOzevRv9+vXD/PnzkZaWJs6ZNWsWxo0bh7POOguWZWH48OGYMWOGON6sWTO89957GDt2LPLy8tCiRQtMnjy5ckur6zOUJn5i5cpUiSYUQwwx1h+SphCKV1kcLdE80oX/F+jK+FHRkUtYHP5QKjxSLv0bPKLnDDAowzHnr/ghfoRGyrmvoSXQF/QYLGaQFsMG4LLznmlpwKkX4FBvBS+ZQJ5jqCI2jVkaejFmKMecOXj021IpF1KhJ8YkdJuJgb33k4VmSTCpvGoQ2mN4id3g/vw4TBVJ5JcGX4SWwtWd8WL2rq3I0DJkEYV+XDFJmIN6v3jCmdIGng3Rrha4WBLc0NdMfcAraXNwy7cDeH3Gf2zJ2M+Ym9Ej21TsMbfNVGEGgHh8S6lZOOzud+9jb3UwL06/Q7u1SxdKJPwYxV5JmFLqkHHsy23HKvW7i6irJLIYhemclJQUZGZmKvv1RS7iLWARVqaoqAgHDhxAenp6pWIqKSlBSUmJeH/IK54SBEEQdZLF0yajR6Nn0LbzfgBOps7aptPwm6l/UMqlN2lKS6gnQJ0Ues444wzly60OYwwPPvggHnzwwdAyWVlZmD17dkw7J554IpYsWVJpP6uemvzCHVPVCSmfqKCiryelETAZGPYhMMqPazOGJBA3RJ7wO7m6WK0REDW0crIMZgfKxhCq5AFtghqgXpuSNaMVCsQmDUJ1A7rExdQDzkt3XGszX5sy2dR1Ds9mcAitYhrLCpu2I/YYTDq+cDW2MNFAR7kTJAHM+Rkc+gs/tQYw2g546devj8fFdeRcEVEUo1wVwjyhAID6iFlY4xrUSj0zSK7CLJhIB023pmmfLghxG8y9UWQ7/nHVqKenMACcaYEwO/Te9fqF88KWDuqNxUWN4pEySXxh4NoHgh1yjQFLuhk5tzXxSPs04s6jZGHZZ85x30ejTQ5YFpfeUkpPfeCuu+7CI488ErPMunXrasibmmXq1Kl44IEHatsNgiAIopr4efMmRGefjr5tC8EiQHlJBMu/6o/+j7+NvNp2rh5TJ4Wew5dYX7irWgSKUZ9RAzKVjyVlxChjDJMpP0S5WKpGqA1u3p3Aufop8iwb6n6zHBTqvmZDFlSCOU/BhzKETXmAZzCQkE2m2pdfxNLW/CQDg7ijvdcHoBYOwWaIjbg2tYweY12JKGOxbGviRdyMHkMlQlwIsaKLIYEsJSmjJyC0hImBLCjUAKooZLIp6mQmPwy2dIdM4lCMTqtkuliySiZl4pj6EZPrV4UZuKte6VkxXl1+jBbAbO1jSFVYxKObWl1C+BPtaUmPk2lSldSHvOwazt18IaY3Ghe2gteXuXF6mU/+Y1l+XcE2ooye+sFtt92Gq6++OmaZo48+OqHFKHSys7NRWlqK3bt3K1k9+iIXy5cvV87TF7AIW+QiIyOj0tk8gLPiqfxYfVFREdq2bVvp+giCIIi6Q/7fpyMvZTIiHZyZln/ekoXdp/wd/a85t5Y9q/+Q0FPnqKkv3XHEmMCuRDN6AsN5M8b6tQMhfwGPX5k8yovthl5vMLsmWCbWID4Rk1wqx0Ns+oM1v37RQsyQZBDDN5NNPV/A9CQI0y4lR3CsqPeisAwLL6OnMjZ1ErapZfSE6glhylEM2yIWtzH998GMnoBwoo25ObTsGu1srp0jCzQMakZPoI9IWHKbcqdt5DYRQp6OJAoJYcaU0WPQEkS93mvLsN/QpywvHim7RrGnpOCoxixpnzdZtThNe/xLqc89j4vDHLCldlcMOvXYcOzJ7igmfXVJsSk/Mib6EANs7tcNIJDZyhiDbXPHJvPP87N4PPVGv8Pl68OlyZi5u8Q6Uddp2bIlWrZsGbdcIotR6OTl5SE5ORkLFy7E8OHDAQAbNmzA1q1b0adPH1HvlClTsGvXLvFo2IIFC5CRkYEuXbqIMu+8845S94IFC0QdlSU1NRWpqamHVAdBEARRtyg9cACrJg7AKXlfwUp2vudt29AGbe9bh9buQknEoVEnJ2M+vOExtqqESVsMN5TyiSAPMGL4nEiYoaczbQupJGHNzK/LQrB2ZnhnCseEPuDXt7D9Fhj0SVfFORXoCmqd/g0vvzfOnyPbkZqVGxQm/VxRH5Ns8/g2ldjidPuEbLoDYEvaAsuG67YqcKsp9VhwV8Vm4TYlH3VsZR7w4L3pZ7Zom+W/tix/Ez7AX7pcr92b6smD6wXc17I9y7UJgz+WZSirhcJt1Z4vqmim3RfMa1fLvRMYE/ssSz7uXgNXdOGuEOLoGZ544k96rMMkX7121S+gH5t/V1oAZMWSw59kXO5Q3icHk5Zqt5i/bLq8+cFD2u88bsUYD4iCzsTj3Fd+XNPCpnRjCP+Z26bMooyeBkYii1H8+OOP6NSpk8jQadasGUaPHo0JEybgww8/xMqVK3HNNdegT58+6N27NwBg4MCB6NKlC6688kp8+eWX+N///od7770XY8eOFSLM9ddfj++//x533nkn1q9fj6effhqvvvoqbr31VuFfrMU2CIIgiMODD+6/Bfv/3gF5vVfBSraxZ0cGPt15O3If/BZJJPJUGZTRU6eowS/cFTYVlg8Rq8KQ8onaDi2n51WEFIzncqC+sIwev5wFdZwoexB2npQsEMd68Bzlr/uaTVN8+i69bg5HdJHHu8YrF3I5/f1+RHo93lhefiRHn6OnIjZNJGST+7GGVaXP4RPLZsAHWU/02lTL6FGqYoZ9sfzQbDEWzKLxxDcu+aPb0cUlLu3jWjlRwNvBPdHCLy9sMlUs4lJlllSWSZUbM3rUcMQL0V84AGleGuMNCL8NmTjHi9NxxtFY/MealMq41MZit+1kuwQaRnptKTqPJMh5NwvXznTFJjkecYQ7c/SIRobyuJo3P486Cba3/DuDnsXjZ0O5PZK5/ZO5B91MMJuW3WpwxFuMoqysDBs2bMD+/fvFvscff1yULSkpwaBBg/D000+L45FIBPPmzcMNN9yAPn36oHHjxhg1apQyV2Jubi7efvtt3HrrrXjiiSdw1FFH4R//+IdYWh2Iv9gGQRAE0XApLyvD+rt64PQe3zuZzOXAl1+ciBMfXoh+6Y1q270GB+OxZj0mYlJUVIRmzZoBuecCVmXUx8oIO97opbLJWHJOR+ImgUgF8r+Y+ppFErclj1JZcoib8Xy3VJsJ1eG8j0SS4pTixuqSGBAJGcTKIpB+bgQcaUlq2SA8eIw5NsMEApPw5L1PsjiSIvFbUR6geyRZetfjSvmAXeaflxSJbZEFXjgkh8jRoSKbO9JPSWJxBZSwrpGcxGI2kCWdLBdLSXEyNUJtxagzJTn83hTz/rDg/pRkwLIigTNN10F+ybw4TcUkUY/pcTIgNVnt72AhtjV/I4wjSfuo1G0q9QgfytEoFb5QY2gPU7wWgIgVRVKSK3ZI2X5yOyj+u68jlo30tKgquIpybqYO44EYGTiSk6KIRGy/b8ptyACLBf0AgJTkUqSllUnxc+mn9zkgK0ueH0BKSikiljfpMxfHvTa0JEWKSfb3FpeiTbdPsWfPHmRkZIAg6jredy/qswRBEPWHtf97B0esuAGtjv4ZAGCXW/h44yU486HDa/WsmvwdRhk9dYrKCD+VRfozfcLlw8pW0O9Ei4eW030xFIxrw5z7Eiujx/njuGEQjnAByKs5lseGPAGpXr908ArE1mjDjtrc7JOwG0PjMC/rrNo0JVxwJmXdhNg0G4xti8WwaavjerNN44Fwm7JtKRnEj5Nz2MpVk6qNITpZRvHMr0HOztAd4RzOI1Es2A5WWIxAeEaPV69s2zvOfJu21nF9EUPLzJHFGNOS7JpNpT0hXWP5bxJaE1khIiv3bHoZPa6yopThTpaNsCv8dzJ6nAmVuVInwB3hRNZcpBdigmxTPFzKrPH2ufeVzW3nMSxAEWy82C15VnNAeexKnUvILSYmnrZVm9xfit2mOXoIgiAIgqgCDhTvxbKp45G070eUNz4SvSZNR3qTplhxcy+ceNJ6JB1dDm4D369ui+Y3zseZV3WobZcbNCT01CkS/cJdFYKQNio4JJN6JXH8S9RmqLak7zTYr6BLHvpY3DQIDgzgDQfk88Lq9Ox5c25UVHNgiK3TaQkX/n5mjkugDXqVQ5xpc4S4J2j1BdqIx7dpdDaGUBPPppgjJqRqAIHHZyqqQYatgBUzRsNB2wYgktDMXoTbVEWrQHuE3Ec2d7LCdPcAqe8wvx8o9wDTJ5A29BeDTa7EqQlNWgyKQGSKUfJNF1Nk89wGkOQ/1sSkApbJX1Gv5SxD7tbOtDJckxk5vPqYM0G22+eVzwfmiDpMCUTUDoYILCuqxK1fQFnw4py7PsqPZbkCkHsuc7N69NnFmPtomRUv7Y0gCIIgCCIOiyecj56dlqB/11Kxr3T2f3DQAnr0LgcAHNydji/2X4d+f55SW24eVpDQU6eoCgGnps3GlSIqby8hkSdGhZWIy5TnEyYr6WNE0zLRHH4mSzyXwrSOULxxZkhhOTtJqduQGAH4A+t4zc4DKlqQQOJJiKCQuM346GVsDkR4sIwuIMSyG89WYJ4Vm4NZLOBLaPaQay8oniVmk7nvtXl4AQDiSbmQui2GwITMok7drlzOLaAngsgCojhRF4NiaAre6lN+1on/2nLFE7k/M47Qx0l1UcpJy3Eq9PoABxAVcTnqpvdIHgfALSe7hmk3DLMA5s4qLYs/vibDnYmWpbrk41xcLMeg884Ti6LaSlt+do//GJccG9Nec9cmF9eMC+tcHGfSXczVmcAJgiAIgiAqxOIJ56Nv3kIUbsvCuoIL0XH4tdj27HXo0fMrWEnOH7/27mwKdsln6HfUUbXt7mEDCT11iprM6Kmg2VCTppNN8kIF7XnlAnYTdLaSTWQa9Jr26R5xqGIG4K8EZTrPKMAY/IkVLY8x0PXqM9kMExW4MjA0O8qs+E1rTJII6woJ2NTrTNhmjDgPBZN+okzCC3O3DTXLAR4vqUITxALZLqbi3v1jELsAN6PH6KzZliLKGcQpYzUBIQxKRo98omJPjskVJuQOLQssRmRtRqhC/gHl3mBSe0r1M8ub40m6pm7DckWxslXNlTPY3BbXgIn6vDqkCaH1yaG5s96en43j3wyc+6+dY1CWtOfcBme+wOOvysaEjyJkxkSbUEYPQRAEQRCV5UDxXvTstASF27KQecsGtFq6BAdmX4S83tvFhMt2eQRpYzYivUnT2nb3sIK+4dVJWJytNkya7CbiXwx/KxxmvBOkE/0nKioE1zZTVfp7YZWrXuh1mTZ5HG5yOVaUFgwnaH7aUr22txlEh8Cy3d6m2XQECxayBdvQ1nyolM04bRhmM5E4ZUNiWfDwJhW2AjbdDBcvG0PxTxIuxADc2wKTW4cbla+nZ8+xabbnLTGuN6jcztzQuFz6yQFvgSZw29m8BBDZB7kaI7Hua5Ndrtt1TpT3Q/IvICjpcYt70/mPc3dzX9vuxm3JB9uZv8Z5DIu719YvwIQjwVgZs+Atwe59fHrzGsk/9Q3MhrP6Fnf3qRdHXc9NbVCx7Ls3PxBz6rFtLsUCKR7XF8roIQiCIAiikiybOh4pTUqxrvRCfH7nAHTcPhwdujoiz7b1Ofh43XAkpUWxbOr42nb1sIMyeuoksRSKahJ64pr0ZIlETpLL2QgdOlc4zESVGxajjoTOFK/D5K0wuKFMLPlLbtWwMXAsW7F80X0QvjDDlZQG68oxg+MsrmcGm4aqQjNrDEEleikTjdNUrxBwYhgzXkepuxkfRfPalqnvxWvmnxfLcKCfsJA4udlX7bB4bCjsdlHsyfaZ/9PUx2IZNQlvOoEMIvH5o7av3A6BOgxt7ElwSjaU+w/TAmEAYAGWm7bERKW+A947/1RfAuQ8ahaD4YhN/uphzBdvGCBn9DhZTGpwHFzpZ3KLOo/w+eqmJTWWU6c/TThjvrjDKKOHIAiCIIhKkrTvRwBAbvRtHNmnAIDzneTTz/qj3+PzkfzVKmD166IcUXOQ0FOnqCYRp0pMVlTy8DAMIioVZqKSxqHYSEx7ChVYQgbM3t/jdVFBSjYI2Ah7HzgYo4BhrAsOwJIyXUQVCWpj8ebnMQkn3uvK2tTrimdTtCmHu2JSDCHF4ENFhDwu7RTZJZpQEag3lrIXw7AnFAkTcsaNW59skxt8UMy75zHJ/9DCUuBCFHTPt3S/TOeb3xrnCOLyC+aVca6qWAGMSS5JQo5wV76uzK+LgSmBcu0nk9+5WTCeLQs82B5wxBXPjitHgbEIGLx5fLh//Zjf5r6/roOcAxEno8f5n7ttG7wy6iNbsgDmi0SesOXVxbyfcqMwyughCIIgCKJyHDxwAC1TNwEAjjzeEXl+/bEZfmg3Ff0eHwUA+HbO88juCJQ3PrLW/DxcIaGnTlHBjJUaNVmFGT2VCjPRk9wTY6knCZgMG4vHzVoIKaD+RT+2Tb3KmPbi2DS+Z+oxXazQy6p1MOl1uHcm25W1GWd3+DEpzrDsIcO4PW5PC2tHeZ9pfB7I6FETROKmaAXaVBKUmCGQsDpFe1vhsSinSMeUMprAYxTT9DbQbTDtvWRPfe9n9LB45wPBOaFYyAHNljJXjwUwy+vxWnYNU35Iu52b0obtCEPQ24WrK5oxOcPINerdZd7kyp593Uf3HHmyaC/jR5ziFrakIJ1r5Z9jhaqgBEEQBEEQZhY9cj/6tHgcx57krKhll1nI//5ynP7A39HCLVN6YD86p85F6d5U9Jo0vdZ8PVwhoafOkciX7ir+Yp5QdaZCiZyYwLI4CVHhYX6l7CgZISHHE5nDJZYkJr+OxKnzUK60HoOeCaLYDBm4BuoU411zbo9JOJHf6wJCIjb1Okw2jce8jJ4YdiozxtXbUTkmVA+zn+GOhOzX7Jp3MHlMH2LUsIuHxyJVrWSAKea5OiGznFninRtLKJXFPvkamq+nv9d0jzJpP6Bm9DBvB/MnNNbbQEyGzSVRybbA7XJXEOOaAemHJNZ4GT0WLIgJkLmoGABzV8PzMm0YmFhNzMnoccpKgo3WGiKrSWoPQJ7UWWpU95jNvWXluegr3ipd9qHOTk4QBEEQxGHD/j17sPrewTjtlK9hJTvZ1sU/NUGTlsXolP4OPnrgJhx74Wh8O+d5dE6di6y2hVi68iycThMx1zgk9NQ5Yg2f5TKHKvZIw6pEvudXZUZP2KmBkAwjq4SQR59hdYefGWtwaiIssSbeeF5vpSrVvmIdZr5NATcPnsODkgfMPHjYcBqHVn8FM3rCDseLk2t25HNiCVDxMPkrHilK6J6SXirlzZ024Bbz258FGlfzQxI+jBk9MF9vQxKL8tMTtpQsEuk1Z2qVpmsQEKiYwZa3mpTuj57BJByTrjGHn8Ei2sHcZy25jGW72S5OnozSVrp4qFRvg3Nb2BSfDd7y6N7G/H2+sGO5Aowr3kmfDJ7A6j3G5jWUnIXk2+TalELMzR5iSsMxxkJX4SMIgiAIgpD5YPxFyOvwMfL67AMA7C9MxxdbfoPTH30diyecj56dlqBfkxeA1S8guyNQujfVEXkee7OWPT88IaGnzlIT3771UV0FysY/wSXO+t8xSdRmjIoq2IymJz5iaUXKoFcb/IVJY7INbwn2WAJJTGdjNG9oVhI32NQHrrEqlUa3icpvh2TT4EIiWPIgWDXpvD7EW4wHXsQeOBuFM5Nj5h0xM3rkxlVEEoM9WZwISKmaETlBiev7NJVIv7bxmlfUF0xAcd4z2SYDLK7ci9wQs2zf++EIUgyQJiqGJNz4IXPYUqDMZuDasuSiJJd98AUcUTtjwbhke8ybb8idjNn78LAAZ+kv70TJO+61iTSRsh6BsMn8i8a4uLYBYY5x2DYpPQRBEARBhLPz2++Q/N9+OL1nkbNkepmFVV+ehJOm/A+npzcGAJz+2Js4ULwXS6aOR9K+H1He+Ej0mjSdMnlqERJ66iwmyaG6bDCzScV8ZTN6YlQaL6vHGHIsKcZDUj9MKQQxkAdOYa5oSQtiQB3Ldf2YvDnijznDIKbIVEl9yxtAm5JIAjHoQok2+NRthuoYlbQZT4yJZdPmQR0skFFkECTiLUJktOndQlyVBoy+GcSnYN9Rr3zMx7K0lCVuKiMJH97xiCmjx3stnWcUOuDqEbpaElRPlDrCHqMLCHJyH3ArZFKWDlzdRlaq9Ftd9DcmrTKl2Jfuc2+/pJkxy82e0dQwpbw8+7bug770lyw+ScfEe98w1AaV5/HhYEqv5tL8U0xdjUtpQ+5UKzJ5vDZmYFai0ilBEARBEIcbC++8Gr1z30Jam4MAgNJ9KdiU8w/0fGx4oGx6k6Y4Y8rzNe0iEUK9XFc1Go3ivvvuQ25uLtLT03HMMcfgoYceApfmGuCcY/LkyWjTpg3S09MxYMAAbNy4UamnsLAQI0eOREZGBjIzMzF69GgUFxfXdDgxkOWAGqpbVyFEkdAhvKmwdjyOD4zJIw//mHH8YbJlkk7iuWHyy5KGfgw8pDGC/8GgYgQtyR7Lxb1aLXeT/zPt82zyGDZjSXDeZpk25m/KoNfdvBWQZD+ULmK4PHI9FbUpi0Gh3TLEpqjPsFmWuxmOxZuyhMNJwFA21xcvo8fS7FuWM35nluaH1O1992WHEHorMHjnOwN8ZgU3OU49Vq52QGWTu5bezcTTP5bmqn4re7e3FJJRjILji7fpMQIAsxg4czavwby2N32MMEh+aGKMXDuTO43rGIf3KKX7GcCUU5TrzRkL3stCFFfvEuWO4b7TTh3Oe0tOY5KMym3Dpf/E9ZBuFs+a74/7j1Qv5wC3nUrVh9IIgiAIgiCA/Gdn4McHOuCMk19DWrODKD8QwfovjkbaHwrRZUhQ5CHqHvUyo+eRRx7BM888g3/+85/o2rUrPvvsM1xzzTVo1qwZbr75ZgDAtGnTMGPGDPzzn/9Ebm4u7rvvPgwaNAhr165FWloaAGDkyJHYsWMHFixYgLKyMlxzzTUYM2YMZs+eXZvhuVT3l29DqktMk2GDpVhpOSzkuHRuoEoW45huj4XsM5wYcN8Ujw1nemSTrfC9LPDCjCk7Rx1QqzWHVafYCykUdi4HxLLYxiunN7sknHjvJTk1cK7JEc79wXGlbIacF8+mKaNH1MdhfMQqoDeaqzc65LStn9GjXGdPsDIsQCcvTy5eCYGL+WKJIQbuvuAmnzwxx3Cy8libSRfVztFj4QC8JBll2XfPb/3acTf2kFgCNl2/hWu2bVowS/Gfh8Tp/GPqKOGfTc415tBXlhM+uFUy7XPKb25ZJpNfcfW4lMjjmLS1Ts0N10JvKNlrzzHuH+We+OQ76Gg/3sWgjB6CIAiCIBzKy8uxfmIP9OzxHViGs2/r+hykDH8ZXUefUrvOERWiXgo9S5cuxQUXXIAhQ4YAADp06ICXX34Zy5cvB+AMtqZPn457770XF1xwAQDgpZdeQuvWrTF37lyMGDEC69atw/z587FixQqccorTaZ988kmce+65+Mtf/oKcnJzaCU5gkgWqkhAxJNRkDFUhpo+xzpNtyuKQd8wynJpge1RoAhZpgJSALXUvV19qg3YGc7PK0fotFLRn9iAkLSIOXl0WM1yVeFqfPG4VZYMDTn3yXeb+o8aZuE1TmwWKhdis7Bw9FVqESBOljHP0yP7F8se0VxZR5LJybG5Gj+G0mPa4phHINnT5QOSoMCmeBCZzhnyeW3HYXSav2uVdU6FFMAucqSIJl+vVX0sxcZv7HyWSKMTgr1tljMPNtFFsSjcuc89UJnYOXddddthTsZwOLpJ7wMGYJXVop5ycqeol5gTteHEoAcLc2vJcR2ECPkEQBEEQhxvLZz6PDjvuR+e8QgCAHWX49OuB6D/tjVr2jKgM9fLRrb59+2LhwoX45ptvAABffvklPv74Y5xzzjkAgE2bNqGgoAADBgwQ5zRr1gy9evVCfn4+ACA/Px+ZmZlC5AGAAQMGwLIsLFu2rAajqS14yFbR8hxOJoydQB0uzLCZ7BjHHxX1O1G4cE3dG/6f98CF6TxvnzFEyWO9BZ0t3KYSq0mb0urX93m2Aja5uolHabRA9EwN9SESBC4Lh1OPzSpnkwfsBa86C7NpQ3kkiGu29ONKu8aA6284wG1341yNxT0mbNlyWakuJocgB2Ny0Pffdm3qdQfsBasIZtAYGjdQhPv1wdC+irtSPcp11ZH6l96PvGvGbRvMbVi5br2dlTi50zeYIiJ7kiqXNhW/flvUE3xWjzsCDJfuSll88e5NcdAGmA2m3H3OQca5E5vNwbnttoH8CSH7xsTPoCDJ3OOqXKfM2+PeIMwVlpz/AxURBEEQBHEY8cuPP2D9nZ3RnY1H8/aF4Dbww4Zs7DxpCYk89Zh6mdFz1113oaioCJ06dUIkEkE0GsWUKVMwcuRIAEBBQQEAoHXr1sp5rVu3FscKCgrQqlUr5XhSUhKysrJEGZ2SkhKUlJSI90VFRVUWUzhiOFvF9caoz2jSJFckUqdhHw85pqdYcNPpNdcO3pDQnHXhD5AY3Dk9WLA2k36g1xfcb8ztUGpjcAekBqk23lUwik8s/Fx50K8sVW0oL2eSyMcsXnmbOmHXI2DTMmR56HWZdsYY9xrrkK5BIKPHFKPJJx5+1fW4lKwa16ac0RPXlmdSj5Npt5z0XunbruCnP4YWc8JoYdRQxnif6+1qOZ1I7PDvvVhxO+KUL58JCcRbhUs7RdWELIDZWpt4HdMXjDSTDjYDkmSblhSq4ol07ZgQpTh3M4VM7WKIXYYL8cqry7UpXSAmTa7PjBeOIAiCIIjDgQV3jcEZnV9G5snOH7iKf2qCjY1uxykP3FHLnhGHSr0Uel599VXMmjULs2fPRteuXbFq1SqMHz8eOTk5GDVqVLXZnTp1Kh544IFqq9+hpr50x0lhCOxK9K++iYzsvGK6D3rKgelEU32H0mbqKJMbj/DAPl1fCdMLTPv1xYpMf7vX5wbRbXCEDKylevTy8muu7QsZUyoCgslm2BUUK1m75W0WvMKmp0/0J/jCdIHAee4BxaatrqAVdj0C7RijOxnbVlrQiXN/mB1wVrro+iNKnqginyQG61xtey/jRPQbbY4erw0CYeiij64nhd3iTMrIccuZMoTkR68MJoVAFDhm6FPyKuNOw9qqPflCaG0sT8njiDfS/a09/qXUx5zsIfHRxLiTiKP0Ra9ypx7vXmaWL+o4bctVH730I1GXVBuHWAHOE6V8QUp1kzGnXzN4jQRp0mn4zoqLKfUqcX04uO2JPdyZlJkgCIIgiAbLgeK9WKYte77nxwIUPncRzuz+PZjlfE/Yur4N2t23GqekpNW2y0QVUC+FnjvuuAN33XUXRowYAQDo1q0btmzZgqlTp2LUqFHIzs4GAOzcuRNt2rQR5+3cuRMnn3wyACA7Oxu7du1S6i0vL0dhYaE4X2fSpEmYMGGCeF9UVIS2bdtWZWiILahUpQgUp67AiDasfDxhJ+TpwLCsHnmEGjYyD68s0RNCyzPjaz2rhwcseuPCMPOSXhL3p/zOLEFJu+K0kUnDMPkS81zJtGNOHV3rdViGA8aMHpM9L544Y89QbUa26a1wFbuqxDVMzYS+SJwQFQw2dWFFb1vOARYJHFXq1m368wKpgpwxXs0n0dYSoivpcZkEImao0yTy6CKONN+5LByFiVDy3Ee+bX89PENTKWIf4Iknzn0bliApr9Yl7HrLoolTuGJUPPYlZRoJEVVW3sT5TLlfLa0NhU0RPJdEKlcACvQt97E9+Xk19wfzfGX+TeXtc5Zzd9cBM81KThAEQRBEg2DxhPPRs9MS9O9aKvaVv/oaMm2GlnnlAIBff2yG9RiFfg9NrS03iWqgXgo9+/fvh2WpAkIkEoFtO38Czs3NRXZ2NhYuXCiEnaKiIixbtgw33HADAKBPnz7YvXs3Vq5ciby8PADABx98ANu20atXL6Pd1NRUpKamVlNUQNUKOVVtKkxRkAczJlHHlLZhOs609yHmwiuqJOEZPaayseSuWJpLWGaKJR0Lni9ndlQO3S6HMy4Nt+mQ0GM4mg3vsEjEkCrXM3oSshkj8IRsuhk9sWxapi4bp8HFsFnKGvE0BM716XkN1bOgNMkscx+R61aWRJfs+6tvue8Ngo/JpkkkEQF6O+TMHebbkedTEneu9IZJ5yvCjfw4liFeYZ5rep83N4/sn1aJdy1lwVCIb5y7S7PLjzWpCqbsP+eABdvJdpEbhssG3HjkjyxJmOJgyrLn3r/MVYUDGVGAM0ePaGSoj6t5Yo3SZ5n/GBZzssmYezeIeDjE417cyyqS5heyKaOHIAiCIBokiyecj755C1G4LQvrCi5Eem53nLDvNqRmOFORREsjWLHuLPT98xvoR49yNzjqpdAzdOhQTJkyBe3atUPXrl3xxRdf4LHHHsPvf/97AM6X7PHjx+NPf/oTOnbsKJZXz8nJwbBhwwAAnTt3xuDBg3Httdfi2WefRVlZGcaNG4cRI0bU4opbiXzhrqKbsCLf7U2jQvVgjEoNI+lAMcMIP55yEmrv0NqHaT/V/drgMI4nYfWa6jZ7ra74E7PiChzysgISatrQy2tui7B6GU9g5vcYmp+JWG0KOBkTcZMVQmzE63qKeCHv9+bLiVFe2efZczNdjDZ18USxB2W+nHjhGjVW6S3TCpqWm/f26XMRaW+Nb4wZPZJxJatG8cObh4iL/WEfS3JGj6NpcLe8pFpJ5+lzHonXlgVm+Y96qUvdS6qTHJ9s05BB5N3RlhSkHILFLFhWVJzgC0derhDU68acSaEdLYvBYjZExp0Xs9tQljIvj2/coowegiAIgmhwHCjei56dlqBwWxaa3LgamHQpTjryJSRllAEAomUWoiUWetz3Es3X10Cpl0LPk08+ifvuuw833ngjdu3ahZycHFx33XWYPHmyKHPnnXdi3759GDNmDHbv3o1+/fph/vz5SEvznzmcNWsWxo0bh7POOguWZWH48OGYMWNGbYTkUpM3GYc5bSNGeaN/8v6w4xqBYnrdwcFYApVUCfL8OWaLYZJMeLYPIA0AQ46FZtbEsKlmGJjrNWHzODZZoq0bjIhre4Rmw6SsmxCboSZCkNvUZNOWDoTaDGn0hPQhadwt4tTn6NHtheAJNXLuh6jVS8IwdCB5xSkwQ6ZQXLUq5K0bFDc0rryCGZPKewKLZfBDjzPEBSVLSEssUpYZ15vIChG6uGeTe5lOLHB9OediSh2viFO9k9HDPcFEM23J8/DItpkq+Cn9w4tHajwOiIwbm9siw0bJBuJSnIpIxaTXfu/xThX5S8z2s3m8mL0oKaOHIAiCIBocy6aOR/+upfhhTQsc80JH9DttHwCgpCgFq77pgbJmXdCv4wtYMnU8zpjyfC17S1QHjHM9gZxIlKKiIjRr1gzIPRewkitRQyXFCtOSNwnjnVdB2ywSkpIRrx4L0uQjFTiPOW1a4SZyR++WyWascxwikSTjEWYs7b9PYhyRiLrPKxdr4uYIOFKTzPWG7fNIYjxmmLJdxSbjSIrEr58ZCiRFTEIQV8+RT3NfJFlAJBJbttLP8UiO0T7hNjlSklhcYcFYFwOSk2KrPeIu0sqkpDBYBnVFb0tT1cnJlnssWFDuT0GbgMWCF1TpsyZRx4vTcJ7sr8n31BQgYmpbw40S6HvaR6USlxyvImiUo1EqD/gU8FOq1HufZEWRlORn4Mj2TCukeedGmI1G6VGIx7SUMt4+VQnz6ktOKkckYivXzes0FpOkQM335KQypKf7z9ArmTyiTWz4cFju410pKSWIuK/9fs9FGf2e9YSkvfvK0aZbPvbs2YOMjAwQRF3H++5FfZYgCCKcpTedjl59VorFGHgU2LD6WLS/7X9o0iobP361CtmrT0P+8v7oN31+bbt72FCTv8PqZUZPw6WSwk+NmI37HFWiFfl/bo55Lo9RXVx5otKE5BbF3WcBgUllvXLysMzkXVi2z6H2Bh7yWs5eCNg0DZoDDvHAebFsMzjZFCabMe1pBypq0+ZARM+AkWxCe22yGc+WLJMzOJka3PAoTExdlql+KC4bUmNMq1158/IoGSaScGG6e5mhUyvVeF8MtHo58zN6tDBU4cRgNFY7iOwhOU73tQXmZqFIVXOAW/EFUuZ1QPcG9foABxAVHzNOVo8n5nAA3HKya7xMGTkmy72rA0KT65gQQ5nfdF413EvNMq2MhahrE4FjnqCj9l+mvXaC8Cegdn0Q6WBcctS1YMufUARBEARB1Gf279mDL+4eip6nrALgfG8oO5CEz/eMR99HHhDlvp3zPLI7AuWNj6wlT4nqhoSeOkWiyVVVLAglYjb0GZB4JxvO4zGOKeV4iN1K2EyQwGA4ZJ+OjaCr3lMWsQai8li4MpHGw5SwYLEYLcSVHwGFi7HYj6jJpyi2Q3Q7MTdsmNM8uCthmyEnHWoOo25LH3iHxRmK1wnCsqxY8KUuVhn7aJia5+0yCDGm/igLRvI+Xc9K5FaV5+iRi+iZNcH5f7hyM3kCRiIfS9xTheQDXLoP5ICl+hlj7iNhTLEJcHBFsfKFEucwUybI9qplniglTwjN3Ll/RJwRWCwq7MirbnFFzfPm5fHbgHMb3FVxHf9dm4wBsLV7g4k20Rc2IAiCIAiifrJ0XD/0OGk1ep/mzMPDbWB/YTrSrt2KvumNRLnSA/vROXUuSvemotek6bXkLVHdkNBTJ6liIadaTMb7O3oiVRjSFaraRgUxZdXoGTymjB5vYG3KzDCV1+s32Qk7J5Fjnl154C5nFuhj/LiZNR42Aw8dF3IlDj2jqNI2EbwuMmE2bR4UQWKt7BVLcNN9UWwqooK7upNmM0yQMLVBIFZPDJP7liZkcKkSL1tFETFMto3GtPi0xpWvoZzRYzE/A8doMkbjMikeUbdcVHIkkEElV6vde7JA5d+bfiGRCSUFzLyJjd3danaNVwdX202PmXmCn1OpZ1affyjQFBzgkaiTL8f9nfJcPWr0SgMp8wJ5whh3VytzW89Yl00ZPQRBEARRr1n5ysvI+XYiTu3zCxgD7HKG1V93xd6y5ujb8yMUPnE81pUMw7EXjsa3c55H59S5yGpbiKUrz8LpTZrWtvtENUF/yquT8BhbXTEZ64QE/eVwRlqchZxmOv8Q7CUAi7HpZUzoXnhl5eweedMzKPR640YbI2S5PsUPw2BcnmCXy5tuj3l1ccNmth+W2cR1W2E2Q9ou7LokEqe3yYZEG4Q3qdmmK+RYYoCv+ccBbofYtP2YQ+N0X7BQm36sYhyfwMaZapRJG7Q6ZXti4mPvPVOqMePZ1NvTELCw69m0ACY9tqRsch3adVHiFR8xHE56mbMxcFjM3+TYYTkrUjHmzLvkZ9eoTgRzuLiTXeNYE/c4g5dFxKTTmZ95YwHglnucif6k3kVSu2mfNk7/4kLccTz1fWduLIxZ6rWljJ4GR2FhIUaOHImMjAxkZmZi9OjRKC4ujnnOwYMHMXbsWDRv3hxNmjTB8OHDsXPnTqXM1q1bMWTIEDRq1AitWrXCHXfcgfLycqXMokWL0KNHD6SmpuLYY4/FzJkzleNTp05Fz5490bRpU7Rq1QrDhg3Dhg0bqiRugiCIw42fNm/Dypt6otvB69DqaEfkKSlKxcrie9H90WU4ffo7WLryLDTNKka/ji8ge/Vp6NfxBTQ9Yp8j8jz2Zm2HQFQjlcroefPNineKs88+G+np6ZUxdxgROkyqYybDTkqwMqUYN+2sWH1V2G66SGP6O7rxr/HSYFM+xqWf+n7vFI7wemNGFnNkHS6TWTwoMJl8N9cZW0wzxe69rqxNva4wm3oZL2ND2IzRxXTxJp4fik3uv5YzekyPPCmmpZ1hMXg7GXxhhgP+fC+QhCJmiDFGMIanmZTTvDqVgwx+hohr15L9ChiJ7Y60EJS/T34h7DkeCQHD3e85qsfN5esq3VzMU3wkE3rcYo/tZ/Q4cWonCltS1o5biyU9wsc8vyXTaladFwwHIo5A5PzP3bYN9grnkS2/TXzhi7lxctdNr828lcXUDCUwyuhpiIwcORI7duzAggULUFZWhmuuuQZjxozB7NmzQ8+59dZb8fbbb+O1115Ds2bNMG7cOFx00UX45JNPAADRaBRDhgxBdnY2li5dih07duCqq65CcnIyHn74YQDApk2bMGTIEFx//fWYNWsWFi5ciD/84Q9o06YNBg0aBAD46KOPMHbsWPTs2RPl5eW4++67MXDgQKxduxaNGzeu/sYhCIJoAJSXl2PN7aegS49vkdXH+Z2/75fGWHPwSvS546/oLZU9/bE3caB4L5ZMHY+kfT+ivPGR6DVpOmXyHAZUatWtij7TzxjDxo0bcfTRR1fUVJ3m8Fp1ywpOyhEsZLZnXHUrgXOt5JDRebx62CGvusUCR8zvvX1JjDurEGmDer0eXZuJt+pWLJIZDyy3HMtX732EcSTHaR4WeOGQEvH3McMANOz8ZGnVrQrbTLB91PM5kpMY4pgM7V4pySHqjGZHL5KaDFhh96apSq8tGZCSFHJv6qKFVipVXnXLVEOIoGZFgKSIfzBM7DI9XpaaGlzSPPTxNMUm91dRCxOBmHSfCNvlSE+TJjn2DlmG87XXSUlRJEW8jCCuljHZcn9aVhSN0qJC/NEFEt+8SJ+BtwqXs+qWs1//2BSCEXP8ketNipQhPa3M902suuX77U3KLFxx60tJOQjLstVMNs9PMUmWI0rJq3ntLS5DmxM/pRWMGgjr1q1Dly5dsGLFCpxyyikAgPnz5+Pcc8/FDz/8gJycnMA5e/bsQcuWLTF79mxcfPHFAID169ejc+fOyM/PR+/evfHuu+/ivPPOw/bt29G6dWsAwLPPPouJEyfip59+QkpKCiZOnIi3334bq1evFnWPGDECu3fvxvz55hVdfvrpJ7Rq1QofffQRTj/99IRipFW3CII4nFk843Ecv/cxtMgtBOA8pvX5172RN+VtJKWk1rJ3RDxq8ndYpXO2CwoKYNt2QlujRo3iV0i4sAS22jCpSxWJblVhsyLOHxrxnngJ+9u3bDksk8b7aUtbPA6lF5h89zJQ5IwiZ+AH5VEc/XEgYVNKtzC1T5htOROmwjZj1BnLphenV1HgsZ9Y++O0q/ci7NEz4bzlbM6kuK49S9qkmEP7HfdjifW4m9xoXLYvxapsWuPJj5Ypj9G5r+XH+oBgNk7gTwYGu3p5k03FvnjkjfnnSNdB7gNKOFIbMG8HnHq4eFyUOXNO2Qw2GGzubrYbq205q6jJTkF1kHP3AS1XOHH+dR6PAtzHurxHU902sT05iMO1x5w4bf8u5Y5HWoRqu/k+wFmRLPQzk8Pm3InF5rBtDtv22gKwD3V2cqJOkZ+fj8zMTCHyAMCAAQNgWRaWLVtmPGflypUoKyvDgAEDxL5OnTqhXbt2yM/PF/V269ZNiDwAMGjQIBQVFWHNmjWijFyHV8arw8SePXsAAFlZWaFlSkpKUFRUpGwEQRCHG1/MfQOrJ3RFn8z70CK3ENwG9v3SCBsy/4Fej75PIg8RoFKPbo0aNapCj2FdccUV9FeXhDF96a4GcUd+0CKR7/li7fCKDgpCfE8oTG7aGaeiQ2urMBElVq08pExYPUw7XulhVpxQQw+7B5Rl373Bu14sNCgm/cuDhw2n6UNW3aZWdSiJtLN8gIfFlqiBWMVCnBFjZy7dNdKxwLmKCKL1e6a5pR0SCyhpAXpiFwDlETaBJvMbM2wM58n9NzABsy4e6eKOqR6DAf0eYe6zTpaewcO194b6nbbnUpur80nJ9qVFtsAsG5Zo3GDjKJ8VXLZpO0KN28HF2e57WfsS+0SmkTNHD5i7DLw0LbWSWSX5pE4W7dnUYgRzs4eY2gbu/ENEw6GgoACtWrVS9iUlJSErKwsFBQWh56SkpCAzM1PZ37p1a3FOQUGBIvJ4x71jscoUFRXhwIEDge+Ntm1j/PjxOO2003DCCSeExjR16lQ88MADoccJgiAaMqUHDmDL/d3Rrds2MFfD37MjA1uy7kD3myYg/NOTONyplNDz4osvVqj8M888UxkzhzE18cXbNKqLVz5WoUr4nJDNQ6qgwoTJRmFijlJGG5CbZCp9PB5rCfYwe0plMXLyQgUkbrCpiwmxKpVGt4mKVN5plbJpqCsRvCwhg0nn9SF2H1lI8etksYWLEJsxJVRPLApVBlnoI0wmoUauV3mriSZypoxJRNEfZUrYrmZeX3FLiCZMdpEBFlfuQy51qIAt5t8ejq7BxNLjQiCR7bvihy0FzmzmCiaGKyNXJQk4fj+3wLlt9M0Tnrz+4whm7pw+EQCw/YqktClvLh4usou8a+D757WlKt64WUfeacxfHY8xZx4iovr45JNPsHnzZkSjUbHvqquuqnA9d911Fx555JGYZdatW1fhemuTsWPHYvXq1fj4449jlps0aRImTJgg3hcVFaFt27bV7R5BEESt8/79d6FHk5dw9El7AAB2lGHF+kHo86f/IIv+UEPE4ZCXVz9w4AA45+LxrC1btmDOnDno0qULBg4ceMgOHp7URFaP6c//MWDxCoRl38TwO26Y8TJ6wiqofFvpmQRGt0xeaAPbeJKYvHnij+mcWAJTLCMxW4AZHgjRB9vea60iJ0PD3BfiCVaVtRmLWDZtHtTBAhlFBkEi3u9No00xGNdzKVSj8kpXsfuYeuVjTSStLxXG5ePc3D8BBKb5MrZDiGDDIQk0kh1ZrBERSBWY5vvRywTOkSpU9sf4SFI1MQbGbOUAU45K+5l0b1pciEQI+AO/bYxZRTaY4iBXbDM3AF8A9I/7F4Yrfnn7/HXdPOO+OuWV0ydd9jJ6HJ8dxz3/Kj3dGxGXyy67DAUFBejevTsiEWceLVbJL+a33XYbrr766phljj76aGRnZ2PXrl3K/vLychQWFiI7O9t4XnZ2NkpLS7F7924lq2fnzp3inOzsbCxfvlw5z1uVSy6jr9S1c+dOZGRkBLJ5xo0bh3nz5mHx4sU46qijYsaVmpqK1FR6JIEgiIbHgeK9WKZNkpzepCkWT38U7X9+Fmd0KgCzADsK7CnIxP6zXkffK3vHr5ggUAVCzwUXXICLLroI119/PXbv3o1evXohOTkZP//8Mx577DHccMMNVeHnYUp1KrUhdYeaDBtSV8ZHfVRXEXuJ2KzsX6iZNmxKLDrmjWpD1BqTeOQV9+Y2rniksW3GkshkkSlwLIGmZUyPxK84ltwXJpAk1sYVOyAvPW48JUG7JqSkkIBNY0aPZDOs6zN9r0ErMglDzPsnpO5Y15PH6eRh94J4+scUS7yOzNW6A75oPvvaB9P6F/cz6OLePHokfgH/VN8xb0qdJDBHVtEUJSWryGSOeblEdlDEVGphvvDn7rK8NCamtjqXMnjkPDpZsFL3ef9yzbCfSSSygqr198zhzZdffom1a9dWSV0tW7ZEy5Yt45br06cPdu/ejZUrVyIvLw8A8MEHH8C2bfTq1ct4Tl5eHpKTk7Fw4UIMHz4cALBhwwZs3boVffr0EfVOmTIFu3btEo+GLViwABkZGejSpYso88477yh1L1iwQNQBOH35pptuwpw5c7Bo0SLk5uZWsCUIgiAaBosnnI+enZagf9dSsa909uv4qbAx+rbdDeY+hbtrc3PsOWkaOl05opY8Jeorh/y3vM8//xz9+/cHAPznP/9B69atsWXLFrz00kuYMWPGITt4+FLdX765tCVikods3rTCpmMJ1BWYXEQqE+pPmC+H+giC9hf4kE3/D9CyAuJ47cGgtyJXNi79VO1JqTAV1esAMaGtbdq4OumusCYpNWorSGXky6kFq/eWUHsmmzBfiVgH9MmD5c3mcCejDW5AbHFEuGSw602Ka4opnk21SncCYGnmYZNLXr1iQl5b21ybnj+yX0qchlj0rqWLMhwQF1GJx7Wtt4u4nc2alPBH8UmuxrbBtE7CvP5my+2vbkwJNNCC0qb54gaqZ695Nr0+wDgP5NfIr+T7lSvv/cZhnIs6ObcBLRPIW5nLz4by/wt67RWSrHk3p16SMTCLgRviJ6qGU089FRs2bKhRm507d8bgwYNx7bXXYvny5fjkk08wbtw4jBgxQqy49eOPP6JTp04iQ6dZs2YYPXo0JkyYgA8//BArV67ENddcgz59+qB3b+cvxwMHDkSXLl1w5ZVX4ssvv8T//vc/3HvvvRg7dqzItrn++uvx/fff484778T69evx9NNP49VXX8Wtt94q/Bs7diz+9a9/Yfbs2WjatCkKCgpQUFCAAwcO1Gg7EQRB1CaLJ5yPvnkLsbewCT7+djR2nvQpln3cHZEUG1ntdjuPVkcZPl17HtrcvRWdhpDIQ1ScQ87o2b9/P5o2bQoAeO+993DRRRfBsiz07t0bW7ZsOWQHD1+8L9/VJfiEpIGEmqxc3knc8kab0ujelAJSLYT+fd5Y0odL/0J5LQ/+9MwN+affskGbZi+48iNRvLqssMF2rCwXLv1kpiwAtx20OvTBvekyx7IZnhEhFQuxWdk5emItQqR0STnzRGSXsMBy2kq7xvJHf6XdJnrbCTuMhT+GZYhR9Eutu8s2ZCFNnivHYlI8lrndjfakivXmVfxx65avqWPTAhdzy6hzzHiVmHxxRCKAi8ew5FiZuHvl+ZaFv8zN6JFaRH/0jkv/ApCyf7z9aoMw+XOGA7AgRE0G7qzWJYJ3nOLShfKvBQ/0Xy4LU1IdagIeg5gfCK7NavtMJVatWoWTTjoJxx9/PFJTU93V0VjgEaiqZtasWRg3bhzOOussWJaF4cOHK394Kysrw4YNG7B//36x7/HHHxdlS0pKMGjQIDz99NPieCQSwbx583DDDTegT58+aNy4MUaNGoUHH3xQlMnNzcXbb7+NW2+9FU888QSOOuoo/OMf/8CgQYNEGW/OxjPOOEPx+cUXX4z7aBpBEERD4EDxXvTstASF27KQecsGlDx0F9LeGYhe/ZwVBbkN2OUWfumbj9OupKmWicrDOI81rInPiSeeiD/84Q+48MILccIJJ2D+/Pno06cPVq5ciSFDhoSu8tAQKCoqQrNmzYDccwEruRI1JPIFO2TkVOmJFeKdFzbatxAcwcoOhe1jAIvENWmsw0qJfV6oDwyw4tgMOTcS0bVPbqrdcU/al8yAiKUWNIop2r4kcKQE5FYut174uZY/8DYRdrWSGEdSSPMEeocmliRrMcrDdqPPzPc1EjF7FNdmjEsZJlgBHMkRpqzSpBQxdHNfrAGSImH3gWTCQGoKwJhlvu4GZ8VTVwxIivjOms83W01NAayQe8wkAHnVRAzXRL92pseoACAtxdz35FtZuWdcPyKRYN8LPUfZX4bGaYZyun/ue0sql5RkIxLx7in3fmY8EKteR5IVRXpaudqvxRse2OfXyZGSHEXEUm3Cku9rP1VLrj85uRRpaWVSXzRkG4l9XqaP8z41tQQWs/0JmhWhR47X3ef6W7S3FDknLcOePXtodcwqJuyPXe3bt69hTxoW3ncv6rMEQdRHFt0zGv27voIPV16EDsnL0aHbD+L3/rZv2mDLwVPQ78S3sGTNCJwx5fnadZaocmryd9ghP7o1efJk3H777ejQoQN69eolnsV+77330L1790N2kDA/WnDosJAtzGRYeX1oZtoXx743KYZerzHseD5UlPBznZqZu+AxC7yWm4kD6nwb8JtRb06T95aysdD/5Dr81YJMfpv3hdpkfgaMskmBMA43u8Df9CsgD8DlqWOsQ7AZFl9goK7btNR6LWkT/krHPWJJ38a2taTNzegR9br7hS9Q/RF1cTku7Uoxpog8jDn1WaJeFrBlWcH448bp3oqmW5DpMck/me+TvE+4L/+WifNRptwncv2WpXYWtxPJcZtsc+b3WfkRJc6Z8f6Ur5GoSO+c0kVUdimBMKk93XO5BR64E5h4hAoWczJ6Yn6ueY9yqY9zqSXUTxse+ABioq/Cs01UC0899RSaNWuG9u3bo3379sjIyKBVSP8/e2ceJ0Vx/v9P9czsxbK7LALLqXgCioCAgIoSIR4x3pqYECXG6FcDCpIY5Jt4JRE0RqMmXj/jmYgm+UaN0WiCoIAKiCARRRAjCiILKMceHLs7Xb8/uqu6qrq6Z3bZe5+3r3anu6vqeaq6e+j6zFNVBEEQHZxExacAgLED/4H+R3sij1vrYMmqU3HQzR/j0O9eDwBIVm9qQS+J9sB+Cz0XXHABNmzYgHfeeQevvPKKPD5+/Hj89re/3d/iOyC2LnlTvIhHz08h3YhMH7fZ8tnK58ZmsWGtdjY26wMP7YktmGok+E/MmcMUkQOo3xWyzWhkzl0TnplHr6s2bMVSI7NVbK1mzpVjm9dGVk7ttEaUC+UvRBnCFtsPmzF1kTa5xaYxf4x1PiDb7RNzMa1tK+alcT1RwTZnDXf1Y6qvwmZQL+N6G37KuXdcUUd9jh4xL4+tnkZ/X6+2ENYsj5fWfhFzDdnmINIea0vbMssxeV21NnP9evqb2qbG3ESqTcZ9QUOqTuIjtxrVr5GrtYN3jsm5mODPx+QJrsZMN45yI4aeOPFN4n9WHgKu3Rw81J4A89rZDfzVK2H+m6F8Zwhf/Pbz3OLgtLx6kzF37lxtFasuXbrg3//+d8s5RBAEQbQYO8vL8fH1R2D0yKUAgGRBLWqqcrD83WORvnAzjp/9LADg4+e8KJ66Tr1bzFeifbDfc/QA3pKa5rKdxx57bGMU3QGJe+luTMEnQ1mhjllUevO46X+Elqj2cM2y1D5KVlXWuq/ZZIhMb/EGADOOm7+Z+67G+KsKQqY4ZBeLmHHMcl+I/qPFpr0e4W5gXGvJcyHTTDtoK8PswDs8s009IiLGMUsZtttURLTE2czGVpRtZjSsp4Mx+TmUxyZyKAJDMPoqnNBmU50XSB0WZq2r4RNDWOSSt5JZL6btajeRljTyRlBw4S01Z9o0kqvD6Ly/TLGti6ww/OPGsWDCdG75XgvqpA7n89rT8W5cmY5rDSTEXjWNKlIhwQ07TFZYtSPtB4alY0Gbeg97eMghD64jZ4BYRl7WmckvJrGmoBzuxbyjFNHTdLiui8rKSjmPYUVFBWpra1vYK4IgCKI5qaurw6tTL8Zxh89D/6OrAXjvYHt35gHfeg/HdgsEnZo9uzEw93nUVOZi1My7W8hjor3QoIie9957D67rZk7o88EHH6Curq4hpiLZtGkTvve976Fr167Iz8/H4MGD8c4778jznHPceOON6NmzJ/Lz8zFhwgSsW7dOK2P79u2YOHEiioqKUFJSgssuuwxVVVWN6mf9YBm2ZjQVMhnVG1Z/+rcVYMmnJRE/uyuf5c/xDalIfeGhPfX3d/24PvzDFEzi9AKu/DXLD//eb9qr/y/u3Pis2tCiXkI2lY5ypJoStmXaC9lhhg/Z2Iy5pKZNJUAhsKNEhEStwMUy3vd220BQhqgUd0Wkh92WGUGk1oE5EW3iJ5QROUo5kRE9lvrCVq5NeDIdE+Uq7Sja1aynGdEj/FXLU4dxyaa2tEm4fP9p8KNRXBehiB7xlRH6WvEFFg4WDE1TKs9t9XQBuC64G0QRucIPLqL7/GdYrR/8AVkMMOQo+UyLJxtQI5Q4XD+iR9bX5XClfYBzP5pHc5/JYXqeDf2bSLal/OZS29GF67pwKaKnyZg6dSpOOOEEzJo1C7NmzcLYsWO1FagIgiCI9s3cK8/Czt8chK8f/wI6dauGmwZ2bi7C28tGIq9kL3Y/MhoLbrkam95biQW3XI2d9xyB0r7bsWztCcgv7NzS7hNtnAZNxpxIJFBeXo5u3bpllb6oqAgrV67EwQcfXG8HbezYsQPDhg3D1772NVx11VXo1q0b1q1bh0MOOQSHHHIIAOD222/H7Nmz8cQTT6B///644YYbsGrVKqxevRp5eXkAgNNPPx2bN2/GQw89hNraWlx66aUYOXIk5syZk5UfzTMZsyWP+LW5QYh89bDNACARIQtmKieRha8WRYEBYKkGNJHfudrPyZijNQ5uPZdkQCIRnU/9q6ZJgCM3GV1N5tu0kcxQTbPVhY0E47ETHGvpDceSCTPKQC87pJP4O0nHn+A4kz2LzVRE3GG8TY6cZPRkzBGm5MFUMhQ6oeEYmcXHnBwGxxLaYmtLM1UqJSZxtie0BV4wBuSkAEe5EaLqpJ5jft5kktmSBekjVtbKTfmTjysnQuksOwnGkTS+KlWbWlSN6gerQ0EuAMb1KC3LNVB3HAAJJ41kEgiWSueav3IqHqMuCcdFfl5aPoOaP75My+SwU9U0RyqZRiLhBvem1v48uC+NdsvxJ2MWfuqTMnNZfmCMy3Q5OTVIOK5fJg/55yiqmnq8sqoGPQcvoYltm4j3338fr732GgDg5JNPxpFHHtnCHrV9aDJmgiBaO/+e9UuMPeAupDrVeD/+uMBnH/VBzpkPoe/IcQC8JdZHDliEnMIama+mMhfL1p6AE+96oYU8J5qa5vw3rEFCj+M4uOKKK1BQUJBV+vvvvx+rV69uNKHn+uuvx5tvvolFixZZz3PO0atXL/z4xz/GT37yEwDArl270KNHDzz++OO46KKL8OGHH2LQoEFYtmwZRowYAQB45ZVX8I1vfAOff/45evXqldGPxhd6slQ1GkXoAexjLWLyZVx1y3aeIbTqVlxPVDMZt+pWnO8NF3pYImkN6lCP2c6lGA+tumWmteVP+kJPlFdxd0iScTCLzai8ggTjUjyJuGIRO/5KX9qtF//1IbInE0DCscoY3rEoXYVlXnXLVhagr7oVaTOiAVL1XHUrEHoAx/Jsis5+1CpWzNFX3TItCGHGhlx1y3LvyTw2occQ30LFM8txfycvxx8aZ8ljfk2oficTHImElty6Y4ouYLXolKvsI2hTAOHrrJSVSrhIOH6Ij1JmkIRby0w6dcjLC4QTXVjicJgp/ohCOHJTLpxE2lpPryyuOSFWzkola5CXW+cfC45Lm45+TK6wBSA3dy8cOSRLFYNEHlcTaYUPFZW16E2rbhFtCBJ6CIJorSyd8wxKV96CgwZvhJPw/i3evT0fm/rdhQFnXRJKv6eqEktnT0OyehPqOvXGqJl3UyRPO6c5/w1r0Bw9J554ItauXZt1+jFjxiA/P78hpqy88MILOPXUU3HhhRdiwYIF6N27N370ox/h8ssvBwCsX78e5eXlmDBhgsxTXFyMUaNGYfHixbjooouwePFilJSUSJEHACZMmADHcbB06VKce+65jeZv9mSrudVHoIkpoz4SX6QopB63FWjJZ5th15aP27NH24qwVw+iomAywaFXS+1IZiozm5aN9CNGj4jKn0lA0uBGglCzM0RF9mipePS5ULkRt1SmeprnxSJNcflNmTvb6y1thkQNZn1UdJEgbIcrc9cwS0L1moVthgUdm42QTePaqrshAcO8t22CThZG1XoKmzaRxRS2vHblIZ/EX1GO7TbiXBF5wIN70ayDKrwAAHPgOCKShoXrx8RsXWJQlCiPweVcTt0jszgyW3CN5R/m/03AcRSBSBFyRA31ibm576M3tMtbGg9KxYKIH2ZcDG+Sag4nU9gbQRAEQRCxLP3jEzi0fCaGdatEYqgX9VuxpRAfbjkWx932DwyIyJdf2JmWUCeajAYJPa+//noju1E/PvnkEzzwwAOYPn06/vd//xfLli3DNddcg5ycHEyaNAnl5eUAgB49emj5evToIc+Vl5eje/fu2vlkMonS0lKZxmTfvn3Yt2+f3K+oqGjMaqFxBJymMhurutSnIFjXzA53Q+PVjf31IQIXujAjPDWP2fqz5mTMIq9rpDPJRrIK2bTYMU/rsQDhczY9JcqG2GWxHmtTu+j2ojrjen83TIZ62myLbC7XJ4GWddQEhHibmWypnW4GeHO6WCLfYgPwDEFKq6dFuQhNoswVkVH1J1ZZU85bxDQxbw1jwWdpj0HO12NUIzroT6SJaQc5n49aT/+zAwbOueYf8+sdKaypNmVZTJvjJqiDLwApohd3vPlrtKga/6PjuMFXFFPs+Y45oiGYct9xUS//KTCidbz/p32bhkFACjr60LWgpur1FoG6UghT6glNPIK/0hdRHxYtWoSxY8fizTffxPHHH591vs2bN6O0tBS5ublN6B1BEATRXGz+6BN8dtf3MPz49+D09iN4duTjw8oLMHLGAziuXqMnCKJxaZRVt5ob13UxYsQIzJo1CwAwbNgwvP/++3jwwQcxadKkJrM7e/Zs3HLLLU1WfvNG9NTTbOQXVabMlnw85pyWjkfYbYDNLLFF32SKjBAemYFKzC8vk5aQTcuaAon3q318/ig7tjrZbJoOcEBbYSiTTc12hG4nluDWSrUoUNlKjEbARaTNxkDa1IQjM24iC5tChLDM8aQZirQZcY/alDXFpE2xDEXYqLaYfixuiJZuSNk1InpEEjOyxtwPDXUS9rK4kbkL5V86Lv+YEV+i/KCOYugfk6dFw3JNsXJlu3mnGVzX9Uasqm6LeokhX2DGZ3gRPSwt7TBFjeOGmsf94WRSnOIuuB/Ro7aPJzq5xrPBpNBkG2pIxPPyyy8jmUzipZdeqpfQc/HFF+O///0vzj//fPzmN79pQg8JgiCIpmT7F5ux8qbvYfSwlRh54l4A3vvGf1cfiEN/8R8ca05ISBAtQJt8w+vZsycGDRqkHRs4cCA2bNgAAHKp9y1btmhptmzZIs+VlZVh69at2vm6ujps3749tFS8YObMmdi1a5fcNm7c2Cj1CcMybC1hMipuZD98lUvj8IjsURJJ07WPWUsec8w2TMT0wgWQRrC6lbnSllmeWWZUsyj9tFB+tVx1hSt1hS2TTLYceBvnmdvctBdpk0VsxrmoOtraULNpMRppU2zKkuyZkDa5utIVD/vnZLDnb5H19D/wSJuWPMblMVcXk21rMaiteOXbF6tbiZW+wC0+cItgZ7NpXhPVhr8JO3KVL1e/EYQ/1gfHqL+sp+GUC4Y0Z3DF5gI8DbmKl2dDWRnL3wAOxt1gg/EEMA7mOGAIRD8R0eZyry5yhTJ1pTKXgyMNuSqWfz+JCjLmbxBtqVrmYEzY9B4iT8zzV+5ymVy5S67qJduaInrqwy233IK6ujqcfPLJSKfT+MUvfpF13ldffRXr16/HD3/4wyb0kCAIgtgf9lRV4vWfXYY3pp2G1392GfZUVcpzdbW1WHH1cHR+9XCc9LUlyC3Zi7p9Caz8z1BUjXsfR8xajQSJPEQroU1G9Bx//PGhOYI++ugjHHjggQCA/v37o6ysDPPmzcPQoUMBeMOsli5diquuugqAN2/Qzp07sXz5cgwfPhwAMH/+fLiui1GjRlnt5ubmNlPIta1bLGgioSejSZvduExa5hibEedF7y/UM9xPm/XMaVNCI1uCQ0b1iDRR0+sG3bMMZfrnuOWEy4AEj8isHDbt1utKCjGJKXk5YB9+F7YdazOqiFCFs7uiIZuWTBmjeWLa0+aHeDRkW9sieowlsbXqiQ9x0VnGPRW2aclnCh9G2VxNo5yw1U99/KUtFrabjQ8u1wN6QvMNKcf0v1wzol1fm3ik2OZa5YNhUfLZNAUoca87AFNCi5gsmIGrQ6YsShN3XXB/EkZN71J8Zn7l5MTJjAHc8YUaLs9LK0L0ke2u2mRBRI/vprdiGgvaz7hnZE6ao6de3HTTTXj44Yfxy1/+EiUlJbGizdy5czFmzBgUFhbi/vvvx8qVK/HjH/8YAwZEzdZAEARBtCRiJayxRyorYc15FgvXjEVV4iAc2/U5DBmzHYD3frH2/UPRZ/LfMPzSQ1vKZYKIpE2+4V177bVYsmQJZs2ahY8//hhz5szB//t//w+TJ08G4HW2pk2bhl/96ld44YUXsGrVKlxyySXo1asXzjnnHABeBNBpp52Gyy+/HG+//TbefPNNTJkyBRdddFFWK241PSxiayxs4Q7ZmoxK2AB/oyJ6pJ1sMDM2vJ2iIkXMYzYPxEmzQ23bRDACM9KZZdoEE3UTkQJRfqq25Gcj8iLu6jnKpva3M11vW11DNlnEZikxqh3VMkNtbNbTYksYUY/FfSlabXJ7RI/aiMyx2FSiefR6GlFB/gfzGlqjaerxaKr3rBYpo+4rPsioHv8eN+fpsWpopk3j0eRaRXUf1OgeEdEj/UNQZ5t4xxlkVI+cowee8CFOcmUTUT1BxItfV1eN5FHuZMVBrtTcE3qZFl0jnhtRgnr9tCgblwPM9SN6AFc2TjgujisXO6i/b0+ZEJyDwxXRSLI++j1DET31p66uDj/5yU+QTqdj0/3kJz9BYWEhlixZgqeeegoTJkzAD37wg2bykiAIgqgPC6efheOGz0Pl9kK88fFl2DJkCd74+DLsrc7BccPn4ZShj6BLv+3gLlD9VQHeS8/GkbP/g+I+JPIQrZM2GdEzcuRIPPfcc5g5cyZ+8YtfoH///rj77rsxceJEmeanP/0pqqurccUVV2Dnzp044YQT8MorryAvL0+meeqppzBlyhSMHz8ejuPg/PPPx7333tsSVbJg7Tb5NIbgYykj1qQpS+yHnQbZzLYQlqHQeEypyLQe5Q3PkCCTDGU7xo1zZq044kWJKN/NSIy41jJ90PWc6Jw22yGbXPls2siizIw2zXpa3LW1baa7RxPfDKOaTUVxE/3ykD/KTRGcMws1jrKwD7aJleV+RMNxI9zMFBW1z5Z7pkFz9MSkN+vHlIMi6iU0kXbUvaIKUOocPWYkms2WKNOP6GHCvmbc8FmW5YkzLnfhWHwGh7cEukjP1ImXfVUQTFklK3xn2u65IIV3s8nhav5Jta2YPOyV59BEkfVGRAb/z//8T1bpn3/+eVx55ZX41re+hdmzZzelawRBEEQD2FNViZEDFmH7xlKUTF2Lk/ILsPjJp3BU3v+hc/cq+W/tlk8PQNWQW3H4976HY1rWZYLICOPc1v0hsqGiogLFxcVA/28ATkPGY2bb5bckafAEmiJfuNMST8LPGpc4oj4sYT2cMS/LycK3CJuOxWYWZTiJpHbEVrptwuYU497ErUYHMKrzLEiBIzdpP58pb5Jxa9NGpRfHEuBIpYJjUU1sdmI9mwBL1P8rI+UAiQTT7dk6y7a8GeRo263EwJFKeJPpRk3KHKS12YzLFH0qNwU4jhMaVhQnDonzyaTl2VSPRAgjuTmAwxIh4UMXSsI4DEgmI2wpOzbRJy8XmSdktjRhwuFIWq6nrX104SeNgnxXntfuIWXfdm+lEmkkHEiRx/psa0PnvJClBOMoyKvxhTQefQ00scYjN5WG46jz93DtYQuGawnTnkCUStUgP68OAPcnbhbn1PbhQZkI0uTl7dPm8VHPAXqeYLQWR0XVPvQe8jZ27dqFoqIiEI3H6aefjgMOOAALFy7EypUrUVBQgJEjR+K9995radfaNOLdi+5ZgiAai9d/dhnGHvkM3vj4MuQfPg4FS27G4UM/RSLHi9xM1zhI5LhY9MFFtBw6sV80579h9VYLFi1aBAB48803G90ZAggPQGkqHc4Yc5FpU8MT6rXFmM+YNJu6N25bBb+phzu4UaKIsGymiRJb1OFQtnLM/ahNTMis2jXtW48pjqkDQ8y5bc19OVoktjXs/oiU2kAUHgxhMYcgxV3RqPJDXvkfVBuanajNWqsIH1h4EzblhMHq5L5cDEUK2wz853p9FDFDtQnVbqhxA/shW9yIJhJ1UspVyw59Vtog1F7GxTOHZnElb1QbwlY/fzUpx7DP4Os3PPgb8gFeoqAtubYxh4OBwwGHwzyBxWEAc1xlGJRxhzExRMofnMWDjXEvoof55XP5kArBhQffA4wDju+DA3gLyXtDv7gmyhv2lIYTx71ryP3LoD9BYq4ex2FwEkxrW1p1q+n4v//7P5x77rl49dVX0aVLF2zfvp1W2yIIgmiFJKs3AQCGFT+DYTWXYOCx/0UiJ43dO/LxznvHY9uwhVo6gmgL1HvoVkOXFSXqg70D3aQ2MpqM7thnWUADsmRK0Pjt5MI+gTI39k0vGKAtr84QdN5VTPEiEVGmaivqPOeIlGqF/ah8ZpmZ9oPMkTuxR1UhwzRS36uYtZzHEQp8U23tz4gVHvoQFBoqVxUnImzq18tIxI37i5t5mHYfmG2c3bWENrQt7v6RabTGrIdds2xuPCuifgyBxswYOOPac8iVGypkSzkuRDAuK6VPmC1EL7FcufCBwZsAmZnDvRSfAwFH9yHBHHDuWn0TwpOom6dh+T4lADl7t1DSmOKnn1fsaBNVK2n04Vj+PEJS4OPB9xNjNEdPI/Hee+9h0aJFyMnJwXHHHYcjjzwSnTp1wnnnnSfT9OzZEz179mxBLwmCIAiThQ/9AYd2WQMA6NStGgCwZ1cuPtxyMobf8AxGJZJYcMvVKDsMqOvUuyVdJYh6US+hR11W9JprrsEvfvEL3HjjjU3lWwcmKo6hqWywLHp1mRLYZA0gNmgsYzWjysxUQMPbKmrwTCYvMq5AZJxTt2xa1upTTGc61r7lcht3Q2TLe6tv2T3OVGdT5FKXh9fyZ3H5smprposXqi1p39KGmQQg6x0mO+OaXBAyKsUam127l3afTKVC6atz9bwiSISKiBLBVPEk5h4TbSvmgzHFGnldVQHUEENVO+qJ8PXloXaP+0rSNTEWiDWyboasJo4z5dl0/OFTXHdIbSdDZwnsMjeYi0d4YopPyhArxrjSIE44j9KwcgAkU58crqXj4EZbM2lDRASJNnHM8XdEvbnnnntw7bXXoqioCIlEAjt27MDgwYPxxBNPyJU/CYIgiNbFy9dehiEl8zDmoK/gHOa9SHEXWPv+ITj8lqUYmZsPAKjZsxsDc59HTWUuRs28uwU9Joj6Ua+Y7ZtuugmHHXYYfvnLX+Kwww4jkafJUeWAZirbVCGCXknMpq7LlI2MoZw3l1oKpcnke8jRCJvZEHT/TFEiPpcyRCXivM1DN+J8XM3U9HGza8W2OrOX7xib1QcOJZRCvz5xbWazIXyRQ2VYtG/WtvB3uPWkUaayOcybo8Rx7GkyIQfFMGXz/RFDfaybusqW5RHQWstojKjr6agX1GhclqGecvhWRPtFPQtSYDTSa8fM8uRNG9GeXLmfLcIJ8yugyj3Sr0wPi22cmp+QWSotnk1v4XMWyirtcuVeMIvmQfkM4c8iIWf+Bm/FL0cLYwr8FCtzAcyPz+HK8683qrAm/69VUeTl4K63hduGyIZHH30UK1aswL59+3Drrbfitttuw44dO/DVV1/hk08+wemnn46xY8firbfeamlXCYIgCIW5t9+BrbP74OsjnkGPw7bBSbmo/qoTPlrVH2BAt5IdeOu2n2LTeyux4JarsfOeI1DadzuWrT0B+YWdW9p9gsiaeg/dEsuKPvTQQ03hDyFp6pfv0JiTDCbjZI+ozkJUgdlELPEYf+J82Z924xGf463bupBx+dS+ryr4iKgFNX1UWaJTrfZhzf5tlP2oeWj0rqXdZtBpDJcQ1/LWDrF/Qm0PsyBb9JE8pwdphBxxuV3JFv3oqEAGJ0b+1rJYooU453D9VOa1BIc9ioaZxXH99mcsXEdFZAAPhgGZhVvn4oEiLkWJk5Y80rSI3nERK0Iprmr3jrXZzePcKNt1oQa9SB+5Ja1SpjftTVRFeew3F+fefDraceMhZsY4SK88rlzT4Jnm/v+ZWhBXnjfmLYUOIxKIGQ1jDDzzRnepN5JSvrzvjPAn73owv90aKox3bH7zm99g3bp1ALwl6pctW4Z77rkHw4YNw9ChQ3Hbbbehb9+++MlPfkJiD0EQRCvgpZ/fgKP4M/jagM1yYZF0jYN315+CY2/+PwxkDAunn4WRAxbhhMJHgfcfRdlhQE1lLt5aPh4n3vVCC9eAIOoHrbq1HzTNqltZpGEI9xizJnplnziT3qpbsbJD9LnQ0lARdTJ3WCq6Fx8Lq+eqW4DXLhxOImkVTKJFFK/jlmJAwjCZTTlJBKtumUS3tvfIJjNU0xrDwLzVhJIxC6FFdcQBIGG1ydUk4WzMax8nYREsMuiLDJCrNEWmY5a2Zhw5Sct8OUo5cdE7catuRQlSAJCbYuHlqpk9j+YLgJS56laM2AIWPI45KeZNqMssaWPqr626FXMd1OoIm3k53ldQuN0j7PnlO8aqW5H3A9P9BEsjP09MT6wMu2JGPosvKSeNZFIPE7I9w+px5gAJx0V+bp2cB0ern3aJjCFY4MhJuUgmjLlvmJre90f5GncYR06yDnm5NX5CLm0H9Q3CnuTqZP6x3Ny9SDiKTaMMTWASNh2Oyspa9Dx6Ca1g1AD27t2LVatWYezYsTj77LPx2WefYdWqVdi7dy8OPPBAHHzwwVi0aBGeffZZHHnkkTjooINa2uV2Aa26RRBEfXj5fy7EuGPmIdVpn+w+7drSGet2noBjb/6rXNBAsKeqEktnT0OyehPqOvXGqJl3UyQP0Wg0579h9Y7oIZqTbESNhhLxO3ykyfrqgXG+G2WFeohRoRpxfuxPWzFEiRVxv3YzZZOuGX30cHnBMRGMEJ4KNfDFJtbIrh6Lbw3znPx1H/ZIDx6RL2qOFdVXNb/NpsvsZcMWdcMCO5lirBhCfVc56a7r2qNzuKiHeRsy/W8Usp5KfiGXi4geZmSQNi0VELe/3pJ6vcyXEHAvYknYNCN6ZOBJTASRMV9v+Pox49pDrSfAXGgTkHPhs/EMyEOWG1o7p55WImdcDjDuavaYkcwWLsdEpAtjSt24dNSsq/rZG4rJg/QmsrKQ104XnbhuU/c2+MyV+nOAcxf6LE+6cc7FfENiomizEua3i+m3Z0iuPsa9+4doGHl5eRg5ciSOP/54DBkyBH/+85/hui7WrFmDlStXYuHChZg/fz4uueQS7NixA4WFhaioqGhptwmCINo96XQaL8/4KYZ1eg5fH7tFEXgKsaHghxgy7VcYFfHCl1/YmZZQJ9oF+y30HHfccXjllVfoV5Umwey9NCYRZUaatMkO2ZQZlcfoIQLhnrB1XEVjt0V8eWJWDXsOrnXh1Dlb44azmJEH4ZZllk+BzUxeZ7oK0g8ePhinrXldRK7txzmgnrctWZ+tTUuW7GyKuXBi8tr+jVeXO48wox3QhTCmB77Z6mg7po0ACjut+cP04Dq5BHiMLdtuqH/PwvUW+2adxJxDobItjaaJdhk0BfXrRy2fOQ7gGKIi06NsNBcVm9wXbDSRlTOYCiFT8gU7TLkGXD/vn2DymQzEG849tcj7ThAFMGUy8+CbQrt2zNG+ccJijr4KWOgr0x9KJjyDNrQryMScwAdGkzHvN3feeSfGjRuHTz75BFdeeSWGDBmCvn37YsWKFejVqxc+//xzfP7553j//fdb2lWCIIh2TTqdxqKrxmPYwDU4bWilfJfYuysX7288DqNmvYjSlnWRIJqN/RZ6lixZgr1794aEnoqKCtx66624/fbb99dEB6O5Xrotvfys08dhlhWRL7RkDgunjVMAMifMEr1ra/c2fNQMFKnPQDoXajcv/Nu7HgVgHo/yKHwuKr3Npoz0MfKpndBAYuJWH2R+rqT381ojerK2aa9HRptGRE+cbBq7VLjFPlMOyNWnIKJrWDiDmklTMwLNIBTRA+ghM0p+VynXjOiJ0k3NuoVGmEU2rm5PrO5tW9HMNKlNjxNS+qLFIQDg6oOSdsPLvwuDhh+OExzz9BrTqH05cQ4/ekh1QCubKXc+10wzRxeSmHpDsnB0jTZ3D4eMhJIRPUqbafVmDK7recIcGCIOR/BNxGEuxSbEMXCvamJIF3eNBiTqzdChQ7F8+XJceeWVGD16tIySSiaTePTRRwEAffr0QZ8+fVrSTYIgiDZN3JCquro6/POaK3HiIS9h7LggcnLbxlJs73sNBl11HUa1lOME0UI0WOi54IILMGLECDDGsHXrVnTv3l07X11djd/85jck9NSbuJfuxhSBMpQV6tFGpc8k7ERIIDKZ0cNWD0WFVUQXlm2GyPRmbvHLuO4lD1l0ASRi/NUCBSzHojyJlaBE/9EWRRHxOcoHG1r/MXSGh9OZeZUTDs9s0whciMWsn+02VSN6MtazHn1dq1DCAlEhcl4gm8gh9AAOZSqrcEKbzWCoWUxEj6UMkcYq1FhullBUFAs2td2j7Gq4AJQ5nkIin/jLzL9Msc0jr7m8M1WtjZsRN0xTtVSbmn3mRREJHz37SiSMEGuMSCNATATONSej6snMA/JCckWk8sUl5tdDeTiD1cqYImLxwKa8L/xjzBd8/JMU0dM4HHLIIZg7dy62bNmCJUuWoKamBmPGjCFxhyAIohEQkySPPbJGHquZ8ywWvD8au3fnYMTBK3DGCduDc9U5WLXrezh2xu9Q1hIOE0QroMFCT79+/fDiiy+Cc44hQ4aga9euGDJkCIYMGYKhQ4di7dq16NmzZ2P62gFoxhfuepuKUjHU3mLkGkcxtlVFKZuIntjCGkB8RE/QzbJ0DOvhhS34QPz+zpV9vax4MSUbe3op/j6Ps+nv2xWv2DtA75JqfWIZ0WP6lo1NG+ZdI8tUbSoRPVE2rStsZWhseS2VqBERMRGK6LEVz8J1YI5da1LLlkuiCz+kSGRE9Fiulbl6WSbhSR4QkTuqz+KYch+pPmo2da1DH46l5IXRJmq0lzgg68iV2BUlkWhHtSBP1PAc4YwhmJsnyCjuVa2eHHDgyhCf4B4TBQcCkNR5WCAIOUy3EbQd968Ft4ttfhSRGCLJmTp0i8l2cJRjjhP45KVR1/HzbcIfRsa4PCYa1KWInkalR48eOPvss1vaDYIgiHbDwuln4bjh87B9Yyk+LD8Xh51/Odb++UEM7/oXHD9qofbusXl9d+w8eBqOunwqjm05lwmiVdDQpZtw11134Y033kAymcSSJUvw8MMP4/jjj8fHH3+Mm266CX/605/w61//ujF97QDwLLbGMsWzMydNRnVelZ/3rZkt+ULJWHhf9K4yV8TmbIORHTXoDweT/4Uti8+ZBAJm2cRxR9mC82Gb1kLraVNEEdhtKh1+U5USnWGLYVtdtDJ5zLkMNjNVPapMh3l1dVjw2dwa+phpZYjPDmR0Tdym+i/FL1f13RKxElGWiFpiTrDZ6muzadZT2/UTyXLVtnQsvjj6cUcRPVSjXB9NpAk7Iqn9WvnPgm/fcfQ6i037ShFfK/7YKAZ/SBQPX2SRX9ykzIFviMlr6gg/GAueHXFjs6AaLsRQN65VUjzTYk+UJeuGYPU05jC/TRX7Dpd+BOV6Qo3rcm9eIEM1YxBzAOnfKIwx34YDhyJ62h3bt2/HxIkTUVRUhJKSElx22WWoqqqKzbN3715MnjwZXbt2RWFhIc4//3xs2bJFS7NhwwacccYZKCgoQPfu3XHdddehrq5OS/P666/jmGOOQW5uLg499FA8/vjj2vkHHngARx99NIqKilBUVIQxY8bg5ZdfbpR6EwTR/thTVYmRAxZh+8ZSlExdi5HTZmHlXbdgSOHz6NRtt/xRadvGLtjQ/RH0+dl6HPWdqS3tNkG0CvZ7jp7q6mqkUt7S4vQr1v7SzC/c9TIXIdrocQkx5+PsmmXziHSxhTQKqnBjWoizKMSMqESiCxZlMyprJpuZsNl0eQabLLrsiAUKZFlmF1oKGSyzTbvBiONKWeaMKyKLy71oi1ib9W10YdvWsBwZI3rUeqp+RUX0ANDnH7L4wbkioDD9iYyzabqp7foJVWFGlu3bFIEgTBzzd5hRmLYSly2ixzArooBUXzm4EsEUroMo136dPce5OlxJsxjUU/juHXW9+WssyhiHMf8Q9HozTUnUc3vtodQH4hpxuNwFOFeii5T83I9AU9tWubi2Z4j7lfEEHzf4fuMczG9Iiuhpf0ycOBGbN2/G3LlzUVtbi0svvRRXXHEF5syZE5nn2muvxUsvvYS//vWvKC4uxpQpU3DeeefhzTffBOBNcHrGGWegrKwMb731FjZv3oxLLrkEqVQKs2bNAgCsX78eZ5xxBq688ko89dRTmDdvHn74wx+iZ8+eOPXUUwF4cxXddtttOOyww8A5xxNPPIGzzz4b7777Lo488simbxyCINoUS2dPw9gja7Dyw7E45Jah6H3IVpw6vhaA92931Ved0LlbNdZUnIpxEy5qYW8JonXBOK2t2mAqKipQXFwM9P8G4KQaUEIDxQrbkjdZI/LV0zZLRMR/ZSrHgTL5SD1sM69N691Efu/dMW1myuORSCQjzigdZ0vuJONIJPRjIp3ZbGr+BDhyk/Zyo44JkozHVlOPSFJsMo5kInP5ZocdAJIiekIe4eE8ajYW5EskWKzNKAEilWX76Pk5cpIso7BgLY8BqWS02qXpQ0aynBwGx9LjDokflnJTKcc/F06o2jSLz8kBHJYIpTcdCLVVRD0ZdH9DcxkDyM0BEtmsumUUn2AcyVQoSWBHra8maNShIJfr9TM+a6aV/aSTRjIZSLhq/UIrpCllJpiLgvw0xD2u149LcUZ9BkR5qWQdkglXq594IB11aXfjeuWkapGXW6O0vV6+uQ9wOXQrJ2cfEv7noC25TKNfmmBIWGV1LXoOXoxdu3bR6pntgA8//BCDBg3CsmXLMGLECADAK6+8gm984xv4/PPP0atXr1CeXbt2oVu3bpgzZw4uuOACAMCaNWswcOBALF68GKNHj8bLL7+Mb37zm/jiiy/Qo0cPAMCDDz6IGTNmYNu2bcjJycGMGTPw0ksvaauLXXTRRdi5cydeeeWVSJ9LS0txxx134LLLLsuqjuLdi+5Zgmj/vPmjEzD6hHdRU51CTqdA4NnwcR/kn/F7uLndUPb+8Vj89liccHf09wxBtBaa89+wBg/dIpoCluXWEiaz0QOz9JVxy2Zm5TFVbbr2MaNDbFEotpaweSDyuspmGyHEjfRZjh7KWFO1LNUHEdFjtelXwBrtIo578RX+f+EyrHVmmW1aL5+yH2UnyqbrR56IBFzZZPFM37K5fTQf/MgWYYu7XLNjW53KhipImeXLTamXa9o10mtBGlGPoXmj+o+ibCu/Ibmrby7X661u9amnibAp6+CqdWShaykvdJRQpdrkwVkOBs68vy4Xm1/ftFeu54frD4kKb8xPxLgnoMihntz7n4y0YZDDyKTvLvPLV8t0PXs8DTdkD9rqWvowuuDB0WzCyyvq7bWfX575n2tfhYxomyxevBglJSVS5AGACRMmwHEcLF261Jpn+fLlqK2txYQJE+SxAQMGoF+/fli8eLEsd/DgwVLkAYBTTz0VFRUV+OCDD2QatQyRRpRhkk6n8cwzz6C6uhpjxoyJrNO+fftQUVGhbQRBtF/S6TT+9cMzsW1WXxw76j8AgJxOtXDTDLs2F+Gjgntx8M1r0XPk1/Hxc48AAOo69W5JlwmiVbLfQ7eIxiSb7j3QqGJP1iajbGYqwJKPx5zT0vEIu5lsNly/tEXfxGgPmkemVwzaAkPWMtR+an1qKvqNme4EM2ABCOZPscK1P1pCMeQkW5ua7TjdLoPNbO52q82YesaKL1k+XtKm6i+zzKnEZP8/Gn81KqtpFv5oTnpszSduEItdrp63ZLHaYvoxc2qXbB5Vbqy6JZKYkTXmvlxpKtAyFOHRUgfFLneh/EsX3GyOmV+InLI+zJ+sm2k2AQ6uKVaubDfvNPOXSQ/8EHlF9I00y7TSwZCAw9LSjrrqFpeqKBdHPJvCJ+56kzcLm0zYZABcMCUv8yemBgDHOiM50VYpLy8PrYKaTCZRWlqK8vLyyDw5OTkoKSnRjvfo0UPmKS8v10QecV6ci0tTUVGBPXv2ID8/HwCwatUqjBkzBnv37kVhYSGee+45DBo0KLJOs2fPxi233JKh5gRBtHV2fbkDi2b8D44fuAgTTg4EXe4Ce3blw/n2uyg9oC9K/eM1e3ZjYO7zqKnMxaiZd7eIzwTRmqE3vFaJGeIQF/LQXCZtvdRMmTL4GhvRg4ieYzY2s1Wvwpg5bQIOtxyPqnkaMkhAbmoZag2jxKKG3gHc2NSIHpPIyYOhXArmRwbAtgW+h+xZ6lUvm5a6mNfAarM+9RSbsiR7tu2rR9eEo5yQyZ6Y/DeqjiISJNKmpU2MG4ZZ9uUUMhGbLFd8dv0oG/+CRkUWBY0d4Yd5TVQb/ibsuP5n7jKtgbSIHssDyU2bmorobS4Y0lyJ6vEjemT0EocfoaVvAAfjbrDBeCYZB2OOJuaIiDbXZUFEj4zsERsHR1pG44hjonKM+RvE9dMtezZFpcW18ydqdplfHgtsybamiJ62wPXXX69P4G3Z1qxZ09JuZsURRxyBlStXYunSpbjqqqswadIkrF69OjL9zJkzsWvXLrlt3LixGb0lCKKpWTLnr3j3R8PA/jQAp49/CUW9PJGnbm8SK9Z9HW+tOBn5JXtQ/YfjsOCWq7HpvZVYcMvV2HnPESjtux3L1p6A/MLOLVwLgmh9UERPqyROqGgioSejSZvdbASVGH95zHnR+wv1DPfTZj1zZrv6tuyQMz1N1IxIYt8Ui2zlRsHF/2Ka0Cw3Sj+LjHAxHPW6kZmvQcimJU22Ns3yMtmUf+tTT5kg3pj1OjLVpiWix9VvdU13EB+cGLPGPRW2acnLw7umqCjTKCds9VMff2mLhe1m8gHwhJtQlJtZP2b7y0NpVSElVKQq+miVD8qRz7YpQAmx0QGYElrEZMHe0K/geFiiFRE9IosUMJWLyPyGlNFKYAD3xRoROadkkKKPbHf920NE9Eibjle6bD/jnpF+UERPm+DHP/4xvv/978emOfjgg1FWVoatW7dqx+vq6rB9+3aUlZVZ85WVlaGmpgY7d+7Uonq2bNki85SVleHtt9/W8olVudQ05kpdW7ZsQVFRkYzmAYCcnBwceuihAIDhw4dj2bJluOeee/DQQw9Z/cvNzUVubm5s3QmCaHu8es//w6Fbf40RgzaDneAd42mGz9f3xN6BV2PAd6/BSD/twulnYeSARTih8FHg/UdRdhhQU5mLt5aPx4l3vdBidSCI1ky7eMO77bbbwBjDtGnT5LHGWiq05bD8HN6oIo8t3KE+JqMS19PfqIgeaSNbGqd9oiJFbMdM6+Kk2aGOCj4Q/U+1XJO4ls308Npsu/4JU2DKGF0j6sgREdEjFgXXbUcEXNTPZkx5aplmfV2znhZbwoh6LK5drTZ5dESPuFDqEuXSpro0uFYnIypIRLEYx6IierJ9NDXtQ9jggT3Npoz+8GwyxQd19SgrRjtHNSo3fFBtiogebtiT7WMWyaBF9Xg7vvAB7yRXNhHVo9l2oc3RY20oOedNYBfQl0wPnhtxT/KgXootb4UvNzgvbYbj4oJhXEzWP1iCnsl25uDBnD+yPmb7UkRPW6Bbt24YMGBA7JaTk4MxY8Zg586dWL58ucw7f/58uK6LUaNGWcsePnw4UqkU5s2bJ4+tXbsWGzZskHPnjBkzBqtWrdJEpLlz56KoqEgOuxozZoxWhkgTN/8O4N2D+/btq1+DEATRJqmtqcHzV3wfn/3vYTip5Mfoe+RmMOb9e7Ru9cHYc9JSHHTjOgy48Bot34l3vQB8dwMWfXARFr89Fos+uAiY+BmJPAQRQ5uP6Fm2bBkeeughHH300drxxlgqtGWJ7DahcQQfSxmxJoUskU3iDHZCNiPSxK1Xbi+oHukjTBqfzdJiS4+qRsRfIBB7orLHtbILIBHjUKTvzHIllc4zs2bS91kG72zZGmwz/nC0TbOeFndVIQmWzxntGDZC0TWKYBJqd/WW1c4ZNWHGUSWtFMxMm+rnqIZTVySzmww+qzaZV6xj+BV5fbj1Y7RNReyTdReRKsxIH/fVoRqVE9cYV9dqyz/nR/QE55XGNK+JLE5IdUpET1w9ZeSO/z/urZ/uXVMh/6kyoFlesHoW5/AiejiC4Wr+SXP1OTVKyrZKHNF2GThwIE477TRcfvnlePDBB1FbW4spU6bgoosukitubdq0CePHj8eTTz6JY489FsXFxbjsssswffp0lJaWoqioCFdffTXGjBmD0aNHAwBOOeUUDBo0CBdffDF+/etfo7y8HD//+c8xefJkGW1z5ZVX4ve//z1++tOf4gc/+AHmz5+Pv/zlL3jppZekfzNnzsTpp5+Ofv36obKyEnPmzMHrr7+Of/3rX83fWARBNAp7qnfjpevvQM3mcuT0LMMZt12H/E4FWpotn3yOz24/F0NHr8U3T0rLf7t278jH+i/6o/+1z2PAxPgJlfMLO2PcrY80VTUIot3RpoWeqqoqTJw4EQ8//DB+9atfyeO7du3CI488gjlz5uDkk08GADz22GMYOHAglixZgtGjR+Pf//43Vq9ejVdffRU9evTA0KFD8ctf/hIzZszAzTffjJycnBaqVQu8dGdlMmN3LtuCLEmjeqPZlNe47aX2vW0dfo7sImniJDF1XywIFFWL/WntSMGCB+fU4SvZlCk6zVFl24QTvZvaAJuWMrOxCS4DOUITB6sJ63sHadeL63a5YlOdQsUmQhluxF4vhqBcYVO2q9iPUSatdVQFGOWz5otpkykRNVxv12wEuyjhTbWp2ZcV9Y6qozm5cl6VRADlGkCIHsy7b7kxtM6vF/cfRAZ40TsMYCLKBgAcruvOikgJRazxpRgw/8kO9BQuFSVvWmTu22b+al1+VE3C9evJlXtEvzN89+Rx8X8mbJtiFrx5ekQeDkAdreVmsywc0aZ46qmnMGXKFIwfPx6O4+D888/HvffeK8/X1tZi7dq12L17tzz229/+Vqbdt28fTj31VNx///3yfCKRwIsvvoirrroKY8aMQadOnTBp0iT84he/kGn69++Pl156Cddeey3uuece9OnTB3/4wx9w6qmnyjRbt27FJZdcgs2bN6O4uBhHH300/vWvf+HrX/96E7cKQRBNwdPfnYojK1ZiTO8dSPSuQ3pvEuu+PR8fFA3Fd+bcg3f+/i/U/ONmHD3kYww/KfjO+WpTMb7s9kMM/NEtOJp+cCCIJoFx3nbf8iZNmoTS0lL89re/xbhx4zB06FDcfffdmD9/PsaPH48dO3Zo480PPPBATJs2Dddeey1uvPFGvPDCC1i5cqU8v379ehx88MFYsWIFhg0bFrK3b98+Lby4oqICffv2Bfp/A3BSDahBtl9sll5h3DrFsaj56iPMODG95bjyHIBFrT2lZrX1ClP24xl9YICThU0tj0cikQxHM1g+m6QYR8KYyNfW5zb74glw5CSjy4+zmeNwe+c+Ji8DkGAcyUR2ac0TOQn9mG2+HltnP+UAjhF+FKFJhG0mI9LF2uRIJZn1lrX5Zx7LScYrQFL2NNLkpgBmPJu2epltyxiQk4x4Nk0fjVO5OYBjznxjfmVY6pJIAEnlmlgjTyztwwDk5ipfB0pTZWpbJ8GRSobT2faZtl+H/DyuXc8o/8y6JJNpJBNq5AzX8jClDHXuGsdJoyA3HUQTaZlUH/XyABepVB0SCa6VDaUcacsftirKSSbqUJBXG9SL6cOqvOF/tugejtzcvWDMldE6Wvsw71kNvi8C4aeyqhY9j16CXbt2oaioCATR2qmoqEBxcTHdswTRwjz93akYV/oqigZvRl7noH+0tzIX1f8tRX7vCuQW70Eix/u3zK1j2LWtMzYUXY5jLv9FVLEE0a5pzn/D2mxEzzPPPIMVK1Zg2bJloXONtVSoSfMt8dkCynZGkzGKQnYFNNDmfhVQb1xER+yIH/SjBByRRhyzReqokS2ANzFtXMvG1TDTwLaoiKQEt9iM6DCH8nO9c2naEPW22Q21a5Y2bWVlYxMcIT1UEywa4fYJyeTK/CiqwShhSE1Wn4gePQ8LNa4ukkSXq+1mE2Gj2ogTk+J1Mr08btzLtpA4xqDOhSN9CuthXhZ/xxHHRaSVn0lL69vzgn7UUB0HnNdZImQCnyHEGgVPxHEAuEr0jelbsFw6U8fwJQA5ezcDzAK4DGPS4shkpJX4qw/HEnMMBfkDwYehDf/WQxAEQbQQe6p3Y3TRa+g25lOg52lwjp6BPcmD8PYvLsPII95A6ZDN8r2gdncS6zYOxqFX/wkHHHAQDmhRzwmi49AmhZ6NGzdi6tSpmDt3LvLy8prN7syZMzF9+nS5LyN6Gh1rt6oJ7bCYXqZIkilBlOwQE3mUsZoNkTIyCVLxZFolK8oLOdFuFulVG6LvmammkcQIB3F5zK4iU/u3ahnWhgh3bDPZZQiWlo+yqYoTmcjGJlhYiAnV2SJIZBKArHeYf8CbjFntmRv2WZA+/h7TWyXkk6lUGI1rDvOy2osRh+SfGMEmmAQ42FfFGlkD9bmwPCOh+4zZri8PtbvlVgzya/eWMpxJ1o2ryeVxR7HPHNeLIOK6QyERjdvOuYZAxMNlqPPzMOWukRcmyKOKq8ES6iKqx/sWUb+DOLjR1n4bMF/m8h03v7cIgiAIIhteuv52nDl8I7ZUHo5NqYtR+uuL0aPPdowdEQzP4i7wyft90f+mZRicT8ufE0Rz0yaFnuXLl2Pr1q045phj5LF0Oo2FCxfi97//Pf71r381ylKhJs27xGdTv31bys+kDsR246PIoObE9dJjy81ksyHSCdPmPlGtZJScYkwy4y9X/u5PRE9cNeP8ZYiwGdOpVwtmRrSAmj/K7n7ZjChTiisR552ITmwmASMTssa2ss2IHsNm1P3BzCNGOlsdA2GAWcvOSqjJohFCQpxSts2eFfPmN8tXRSPFL/nsOMy4v/RoskixgsESdhWUHGTjmnscQFJ8H1iuBeDpLFw5p7UP9yJ6VEv6MEevJnIuIV8Yc2Rojl5qEInDwIWqJ6PrbMKr+L8ZUsRlezMlqoggCIIg6kNxzUokO9Wg9oNKDM25BImhaQDev1dbNnRD9QHjcUinZ/DZzoE4nEQegmgR2uTy6uPHj8eqVauwcuVKuY0YMQITJ06UnxtjqdD2DTe2+qZXt6jFw+tTliVNViqHrZxMIlFcmcFnppSrfjb/M+epMS2rnUczYkZtQRfcutn+k8MvIsgkSgU2lY0bS3Zzo2V94URvBaVO3A8ysFxWvZ71swmjSHmOx9vUylQ2l/vLhLv289lE9FidAsA5t9bJ5fCX0NZt2drIW15bTWS5nkpbgXNlie7wJpZEV30CFFHFskWKSoqv4rG3taFaFlfLtGtS8t7SDSjFuByMe5uouB8II69/yA9hJ3Iiq9AdrAlMnPNwO/j2pADF9Ugj7idSFlyXm/p/1WmvXp7w4obGenFvZS7GpaijL9weLK8eSGCQ5XOI683VQr2cjHkCmvX7lyAIgiDCzP/9g/j0Z4fiuKGLAAB9j9yMRF4anAMVWzqj/OCn0Xvmp1j7yUEAgM5lLbW4DUEQbTKip3PnzjjqqKO0Y506dULXrl3l8cZYKrRlES/fTfVra0QYSKTJBsedxKe32owL1cjGVn07LhxhzZPZzVuPceteNnn1SJdwDnttPQucI3JO7jjfnbjOtr04WagQQoxZToJPRhlm576+NtXRL5GRKaZNf6ehET1ZT1miRnMIgYBFTAAtlYHIIpTPLHQydD2ZOhkys2oZURE2UpSIuVG58kGIe4CxpLpjv9ZWe4oSws1z6nEWLsfxVAnlOnP5f3PZcNOmEMI05YiZOQy1TdSNMYiBUtKmcc25L9cql0KWbfsGkUumK3aEdw4TET2iol5+dQ4dzybXbOnDusTHoAwmG1R5Tv1mcVjYR4IgCIJQqdxRgbk//QmGlCzE2MGb4JQG48X37sjHuj2n4cgf/Q5dCrqgC4CavXvR69N/AoOBoZf+sOUcJ4gOTpsUerKhMZYKbXma8gXc1puN63XXVzyJ890oK9RD5Mrx+vjR0PYKOkF6CdHLiAvEZK9mFSL69VrXzwykCI7a84aON6C6HF5Uh1jW3TwZ0gvMzqSiwVmjBIxCxQS4LjO7moFN2yTN2hLaCH+Oten/dV19GWn1vFUEC3WcM6DqA0JH4NxfPttIyiPKZfr9oH7SRC7L+CFXsWkJ2ggJIUFZ+l+rBiJ8M+5pda5i5urCh1kIMw9ZxCiOsA34dkQelwOMu5o9mU6dm8gQxhxRNlMlFxHqY3veg3K4r4SIZdBtyNmYFCFMDpViXLep/VU+K/X0hFTXuKENEZkHQwOFAKSKS+FvF4s9+Sxz3yZF9BAEQRBh/nnzzRjKHkdh8R6c/bUqeZy7wI7yYuSW1IDtSWHnK1vx0raHMeKSc/HOk8+hZPmrGH7ap6iq7oyivie3YA0IomPTppdXb2nE8mhtc3n1DLZDpxMZllePkSWsy6tn+ukf8JZXz9aOimPv4UcSlJlIJENnTIvBftBZTDrwllePTBt8Vj1LwltePaOoY9iEb9NWzQg9Qf4Vy6tbBZ0IPwKbXN56kXYsZYnl1etrkwFIJvX97Gxy5KSYVUTQ8kYYT0Usr267HdUyclNMX/HIVkfLMQYglbQ8m7aPTH8Uc1IMDnNibdl2HQYkk5l9Fc+AKvblpcL3nvn4yuPKsYTDtetp1kv9qE4UzJw0CnJ14cIxGlDbVXZSibS31LmlXqqobNYzkXCRn1unR8yoD5JILyNsAkEnJ5lGIhke+uXZUSde1idEzknWIi+3RqmMa9yjHI6jR/iIOuTm7oPD0oaP3jnHCI1Ty6isqkHPwbS8OtF2oOXVCaLp2LaxHG/8/Mc4pvcy9B60Sb7zcQ58uakUXxWfi8MnzUIqrxB849+RXvhdVG4qQfVH3VBbkYdU0V50OnwbOvfeicSJc8D6nt2yFSKIVgYtr96hyVb82V+sAyiyTB913iaLRBBaxUv9JTrOrai4jkxpssOeM3zUrGnGRckUXOi1NX9798q328yGILogfExEOoRschlUEO4wM2PfKFP1TwmWkENxgIiInixsmjbqZdOI6LG1i61ecQ0dKoMHUS4MIromopHMW9yvpxBI1IieoHyL0qNE80DaDMqVxUeoYizivPWR5IFvsp5+nW0rmpkmtSlgLF8PkUPr/AKlibTrRe8oAourRqeoXxtKuBpT/h9EFpnrvxlFiITcNW448VR6T49WNceoPwv8Z3ISKdUW1+oprx33ZuViSptpy94zBtf1xSLHiBTzQ7iCsoN6BvMy+VE8biAScde4kARBEESH4+9X/whjev4D+Z324qxTlZWz0gzlG7qiZOLzKDtoGNTlaljfs5E4cQ46L78eRX3WBXkKDkRi+P0k8hBEC0NCT6sj7qW7MUWgDGWFem1R6TOJLDGTyITyGj/L23qO0YVF+JMJFrMXdBTDOkAwrEsTGyLMqz+yM8uxKE/0Y5aedYTNON2CQfcjCq0jKj5yZanqiPLlMeWEwzPbNAIXskun7JuigeMExzLarUdf12rPv3UzrroVYZdzKIFv4YQ2m+q8QKo4Zq2r8WgxRAg1tkfSLNe4gUTdouxquPCWmhM2ucUm1LqJv45cHtzb59Y2leWqWpusKA9OKvew2rZaXZgDOMEQLO9Y8MDJyBwnKFsTi8C1RrM9k6rNoMJitS+uDNkLoob0lbS4MdeSWlemlS0GsHkRRFwaZrGRmgRBEERbZE9VJZbOnoZk9SbUdeqNUTPvRn6hvvrVp6s+wqrbZ2D4wStxxuitwdBgF9iysTsq+34PR0y8GX0cW2S+B+t7NhK9vwlsexN8TzlYfhnQ7XiwmDwEQTQPJPS0SprjxTsqoiYuvS2NWo5N1InrsZsCjZE2q2bY37bS6xUdZ2TpGCrpRBBBlDcySMD4rM6VE444CdvMFtUXW1SMGWNgFWssPdOoiV3VMkKREbBH9GRr0yTyrjEcUSN6oqJ5rAsyZWhsef3USAsuol6MiB4L5vxDDJARIfoZ0XcPlvlWbarzAmkRPRbBR51QWZ6LEZ7kARG5w/R2Nuc3DqJXDJu61mGfPNl4cFSNJLDp6nXk/reNag9KBJeMYPGEMKEocSEQKaXLcpUH03s2/eXKmHpaFBzkdZSQLqmBac6pdricUDl0D8EXpXyHOIfnr3GdONShe0xbkSv8bHK/Lbk/PzOXfoB7gg9F9BAEQbQvFk4/CyMHLMLYI2vksZo5z2LhmrE4/o7n8NL/TMSYg99E9+Ld+MY39so0bh3Dhk96o8+Ul9H7gIOztsecBNDjxGbpvRAEkT0k9LRK4l68G+trNItytN5xVHr1uM3vmLlyZHKbooAsI3rqK1jFYxNxvP2wbKI2jwsgkcF0dNlRXusr/sQWWo/TDHE2FSxqURCBoXcoRbKoq511RE+cQmVLH2eTKRETmWzWk9CwJ/9/9Y7o8eEuYiN6bDbFMRYloNj8VneMemuPm7AZsbKWOq+MOBGp0akijhLRYxPfGIJy1TZjTESncE1QMYUe21cK5xwQAg8HbOMsHbP9hGrkCGFIRBAJmSiIsDFFKg5PZGQJfQiWFJj8h0iIjGr9Hf+G9SJ59IgeEUmn3bPMF4Q4B+cM2rA07pejRiGp95JfUYroIQiCaD8snH4Wjhs+D9s3luLD8nNx2PmXY93fHsbA1N9w3PB5qL63J77xtWr574GbZti0oSfcI3+E/mdPxSENngOUIIjWBgk9rYrmfOHmsPYc49Jb/dPiEmLOK4SSRfTuM7rX+O2lRteES4+O1chGxIjSE9RggnC+/fu13Zbb5RlsRokjMZUUZZmzn4jkakRPlE0rMY2a0Sb3BKZYm1FKWAasU9iLDndMAeYcR1L8C0X0BAm1+YcsfnCOYPUpFhZQomzGCU8iobmqlYze4cE8QUJ44EohqnagDmmMFKSUqCERBaS3gjJESW0IFvyNum+ZH87E1eFKmuGgngyQK8UBrhftwvS0irtWEUzYFGKNmdvLF9SHQ1wjDpe7AOcyikrLz31BSm1bFrSUOaRS5ubeUu+MucH3G+dgfkO7FNFDEATRLthTVYmRAxZh+8ZSlExdi5FpYOGUC3DMYavQuXQPGAM69agGAKRrHXz88aE4fMYrOKiwRwt7ThBEU0BCT6si2xfuxhA4WPbmgCx74llG9GRll2UR0WMraP/aJr7vH102hz5nj80j828mm/bUutW4XFE5HZbBpiqOmJc3pBSEo3rMz4DX2Y/9jcjWeTePW4iz6bAMC8VlUX6UTbUJNB+yjOgxk4hIl6j7LDSXi3kui4geq75q2TUFItvKZcxsW6UdNDuG0diIHg4tgkgfBqYOUVLOm+Xru/7QSC7VMmaOlTLLYcof5virU4lIGmacd7U8an28CBuu3Sfij1dHFjoOeKunMUWxEgKQFkWnVIErkT6cG0PT/EmgZdSX0VgiWsip1wqFBEEQRGtl6expGHtkDVYsHowuV38NAwZ9hq+fUinPu3UMTpJjxftjMOLWuRhUrx98CYJoa5DQ06pogS/crE1mVF0izmcT0RNhLzJd07WTC7sgYWoP2Yo13PicZQuFbNaXOP3C5TE29f5nyCEWU7q5mpiSDZzp52027Q7FnMtg0/X76LE2G9DI3NgJdfAjCo2MrEEg1EReN5HBkkBG9BiCgylyhe6/KEFKKdd0SkTtqBE94gSDF3FiumirZxRiihom7DNRbaZMqqxXyCwz9KyyIK2UQZhhxxBlOADuuHBdbo2UAePaCDCzXYOhZnq7e4FCDDIOTfruR9dwF67qi4g44jwYXqaJTUFKNaIpWLlLXyksyBhcXO7aVyEjCIIg2gbpdBovTJ2Krx38IgBgwskLwRLBP1J1+xJY8+kwHHD2LJStOQX7dieVocEEQbRXSOhpVTRnRE99TWZjM8sIGx5zzkxnTRLn9P61jdkPtQk4UWINN/xl0BYYspahZmmQ5xn0N1vZDouxqQ4nMRNwyBlwwybDkT1aB59nthkqQDmXrcSo2WTh29YsxzYEK9t3H2lTveZxET1xfiiRLqHsFvHNjGzJJFyF7Mn/6SdDQ5KY/ln8CUX0mDYi/ODGqlvCphkdFCpbRPNoIof9WpmPBHeh/EsX3OCOmV9pQ6+ODhwnUNCC54EDTK65BcDV240zOUG2Od+846/QZUb0iGeKIQHHSUtf1Rdx/V71YgiZ3zbeea4sKMakQyIqSZ9nLKgTo4gegiCINkc6nca/7vwDOn3wFAYd/im+OWo7HF/cYQmO3TvzsWH7IJSdcwO6HvV1DAGw4JarUXYYUNepd8s6TxBEs0BCT6ukBVT2jCaj4ljqVYiRPGq8Tlxx2XT5G95+oU6ixarNa9H5NUkb6QB9pa1M5WYkJqEZTSSzmBEa4rhFUDDtBIEldrGNKWVG2Zd1j7NnnMgk7VltcoQzhgSE+PNxSJtqe7oc3FApMs5raAgOobr6IpmY5yhkkyNYTlwIY1kIP8bK3abJyINCJDKndnHU6xkhQEaJYKbglhbCoJ/e4UyJUkEgotiUWcM805bECxxw/YTyCOdeHbiI6OHGHD1+eofLIWAhMRSeYzKixz8vque6QtLhSlpRNAdH2ohc8u0o6YLl1VVR0RNy1FXBuF8naVNdUl5ZNYwiegiCINoOr94/B33W3Yr+R32Or5el4fQJvtvdOu8fhYqtndD5R5/gyIJO8lzNnt0YmPs8aipzMWrm3c3tNkEQLQAJPa2SpotYabhJm91swoEyKRExAk+wxFM9bTYc01qmYVyCqIgeY7RFqIxM4k5cbWVURoYoDjNoISpiRZ0EN8pRT0bLfA1CNiPsxWbOMprHzCb/2qI9MrmeIULK9EdGlkiblmgnV7/VQ22sCBZxIptWP6bXM5SPh3dDoqKlrrb7VH381bmCTLuZfAA8cSgU5WbWj9n+8lDaODFLEzNtET1MeTbNG9SvF3OgrUjFZMEMnOmtyYwnmfNg4mPhixZBJNuRacINuKOJMkzJwIVy6d9AzF9xS8zfw+FKAZZxyLmAmIwiUjxU/aCIHoIgiFbNy7fdDee9FzH4kPU4sf+XSIysk+dqqnOwYfPB6PqNn6Hr8HOx6Mdne6tu3TsAH+47B4eeexk+fu4RDMx9HqV9t+Ot5eNxYmHnFqwNQRDNBQk9rZYmEnQkWfTyYrElboDP6vrD+1Ve47SXKbzYAkJsHkf1OdVIk6gacuOveT6KTN0zm22O8EpUWkc+Q5ngMDq5+kmbgCX2G2ozkzZj2hR2XK6LEVa3LT5k449mk6vRPVxrH9sS2to5ax2MO0H07Q2lRo0oUs9ZhyPZ7AcG1WJ1f4zGVbVXdT4ddc4buyGLb6ZR+64vQHpPiBDqGFOEVYsezNXr6jceU5f/Eu0nypGuBjvchT9Hj+q7GtYkMil5/GvtSMGPSx+EGMwYl/al2+JGSvhijb/PbBdJ8dZrHzHhcjAvEPOfOO7Xg/nxQqF7g1NED0EQRHOyp6oSS2dPQ7J6E+o69caomXcj3yK8LHt+Prb8+S58bexifL3vXrB+wbnavQnsqcjHpzgLQ6c+hCOU0OET73oBC6efhZEDFuGEwkeB9x9F2WFATWWuJ/Lc9UJzVJMgiFYACT2tlqaO6rGUEWvSGhPQMDshmxFpQjYzFlSP9BEmjc/ZCi9qp9s2L0xU3zskfkSUa8MFkMjUkbftM8uVVPqvzJpJ32cydfa2G2wz/nC0TbOeFndtwlS2wpLYMSMltPO+wsUtabl6y2rn7AKs7foJkSVkU/0c1XCqUmjWw/xsEczMoXeR14dbP2pl6AeV+0XYlREuFh8tZbBQG/hz5hgTK2t1MOoFB3D8iJ7AB73SumkhdHKkeRDlY/qs2grq5/9PRvQE4pZUZCzlBWKQEPx4IHz5qlMwhxOTPqoCEk3ISRAE0TwIAWbskTXyWM2cZ7FwzViceNcLWDzneSRf/xW6danE4EO24pgzg3RummHjZ/2QO/JH6PX1K5HnJNElws6Jd72APVWVWGQIShTJQxAdCxJ6Wh0t8NKdlcmM3blsC7Iki4t3qXdhGcqMR+172zr8HBmGc7GwZTOaRS03YdiMLDfqXEw1IwULJRpE1sXacbVkFUNG4nwybOvd1PrblLaztCnLUyJdIpdZN0WSLP3QbKjnFJuhyYNVsxYtJ+56iX67alO2q9g31TSbYbMiEfUI5Tdswrertqv1VrRrVkEeHhyPevY8ncY7qkUUGeVqz5jS7tqqW1wfWifsc38eH9+Kl1dE9ABgZhicKlKyoBJ+TjjMAeAGz6hfOGee1KIu887BvLAbAEik/YgeNfpGvzJiiKV5VkhSppgVLPXOZXp1tJabcTwjQRAEsb8snH6WN6RqYyk+LD8Xh51/Odb97WEMTD2L44bPw7ZZfTDywB1g44I86VoH274oxda6ozD4uj/j4LzCrO3lF3bGuFsfaexqEATRhiChp9UR+s27Ce1YekxRyF+z69spsPhvK8JazWzEmqj2ali7mX3lqM9RHmSyauuL28rJigzGIoUj5YQYtKFOchuVFlAjA8T/w15nEqyibDJb4izKjjyu1pNHnmqgJOiXY20fv1xf3ZJPjSI+mPM56YKTcdIUi4x9GdFjKIpq1JQYWqVhLktuE2VMW8Z5dQn0wKiaQC8z6lprppnxnDBIkcIJN4ts45Dvqk2m1ic6qkefuwZgjjeHjrpmldVHQIkicuHChSPEHS0d1/Ixfzm6IHonAcAFY8zPF/bVHo3DjbqpSpRXvjdnT+CssOlQRA9BEESTsqeqEiMHLML2jaUomboWZe+uwfq7LsegQzahU9FeMAaUHrQDgPfv6o7yIlT0uhQHT/w5eicLQGtkEQTREEjoaZU0x4t3hp/arenjEjXA56xsNvR8w7rvLqLnvhElWjuVhmYWJ+aYET1xLbs/TRQVkeSvvqnX09bhtuXnQUczSq+LshuqZ5Y2zXKytQmO0IpXWse8ER4zMxiCcz1awibK2IiVUC0RPaHcUfVkMe1r8d3mj/pZRg4hXBfb3EBRAow0pesRlp3AKFfuOVM8M23JSC5xXERa+Zm0tCLahyGItOFebu7WedE8Jlyxbw4HA+DAi+jhXI1g85zgiiDDuRrdw4CEayiEuorFpXqnxzzpUUuKACSfVR5MCi7S+19cnCJ6CIIgmpQlt16DEwfX4LNlPVB1wzHod8hWHDp+nzzPXe995aMPD8bBP5mLbsVl6NaC/hIE0T4goadVknXISyPYMBSKKFimBFHCSj2VCGYmyCTm2ArIJEpFk2mVrDgvrPOHZLAh+mf7E1USRWR5/gl1CtbsI3riI3jiBCuze9qQiJ762BSdXhVNKDCjUcS5DPajBCurTdO+GjFiKdfuqcUnU6kw5tM1h3lZBR+b1mvewzFCkToxstjXxBrowpByOHz9jAPh68tD7a7oJaGKhO4tpd29P1xNLo87in3muP5y6+FG0NrGEMg8XG0J82BlLTV/MFGz/AzHX+nLf2JCopqIxAkqyViQVl2qXf8+Ynr0kO84Y2gUwZMgCILQ2bZxC+b98k4c2+V5HD9wMwDgmK99KM9zDtTuSeHjL8eidMJ0lH30TXxV2RsDi8taymWCINoZJPS0Wpr67dtSfqzJOPGkvr5mo4hkEmsySS8NkU6YzGV2SG2lhTSpCJNGH1OLjtiviJ4GVjNSCovp1AcmmRE8Inr7wV6U3NdQm5kEqyib2nLWZrYs7EYh+/W2shmLtRl1fzDziJEu9v4TY7eYcdxeVEQhEYhIGCMpg008iSnWSMONz+oQM/WkNOF4FZGnxDxRtjorRcjyQjBLPi7rygEkxfeBpY207wmrD15Ej2pJH4blyz/M/9bh3llPWOKhCgWimreMuihCHcbFtUdR/N9SFiCjiHhoDCFBEATRUOY/8ASKVt6Lovy96HngV7jgxEotsjhd66D8izLU9DwNB547A/nFfTAYwIJbrkbZYUBdJxqkRRBE45FpheZWyezZszFy5Eh07twZ3bt3xznnnIO1a9dqafbu3YvJkyeja9euKCwsxPnnn48tW7ZoaTZs2IAzzjgDBQUF6N69O6677jrU1dU1Z1VaEG5s9U2vbm7E8fqUZUmTlcphKyeTSBRXZvCZKeWqn8V/rr+JaAOBrdOpeqx6qLagq5Spbrb/MrVPrAzGVZvKxoON8yCd9FvpBBueyEQs4rLq9ayfzcgrncGmVqayuRxwXW+znc8mokerlGKXc26tk8sB7vqbctzWRhze5LlBIsv1VNoK3JukWJQv66buGz4Bighi2QIRyaiz6qvwwbXXzawniylP+qMaUF1yORj3NhHBxDjAXG+DxR7XCrZfVB66gIF/3gTGho/+/Sb0Fc+n4B4MD61Sr6piT8kgymPw7h3zBhRRN0LUYcp/gHo9WVAFpljTbjZvYwxyDiLtJiQIguig7Knejf+7+hbMueAq/N/Vt2BP9e6MeaorqvGXH8/G/InjsOnnh+LEwskYdtIaHHLspyjo4Yk8u3fl4atNJajdm8DOzcUom/YfHPr93yFV3AcAULNnNwbmPo+aylyMmnl3E9eSIIiORJsUehYsWIDJkydjyZIlmDt3Lmpra3HKKaegurpaprn22mvxj3/8A3/961+xYMECfPHFFzjvvPPk+XQ6jTPOOAM1NTV466238MQTT+Dxxx/HjTfe2BJVsmD0AhsdZmyZTJrp1c2JOJ5FWdyWVpyrrx9qjEB92o5bfGbgETbM/0QJ2TSjFsUAvQUdMOtmt6i4HVGjKPt+cIRvU9lYsMnOpdoySsWs/kC5nEpzquXU16Y6Uizq7oqyqZWpbA7z5tFxHPv5TFOWBAKCvnn5mbVOjiM61mF74eL8VlUSmC6JMr1RPkzpuEdsSt3VoVbWhmWKJGAILuo1AgvXRbpstIt549ueESlcGRfYYQBzGDjzNu2rQ9xIEX5w01ro2loeIC7KU78D/FO+XeEnZ3qcDlM+MeX/wZV1Aue556TLmLc+F2PexMiaBj2A1gAAzqNJREFUj0wRsERtfIk1tOS84q3yvcq0i+IhxM7YLxGizbJ9+3ZMnDgRRUVFKCkpwWWXXYaqqqrYPI3149jrr7+OY445Brm5uTj00EPx+OOPR9q87bbbwBjDtGnTGlpVgmgUnv7uVKz79ukYU/M3nNx7AcbU/A3rvn06nv7u1FDaNW/9B89edB523NELyf/rhXOH3IqTzliGskGbwRLeDy/V2wuw7qtvgp/yDjpf9RW6X7cJb78/DqV9d2DnPUdgwS1XY9N7K7Hglqux854jUNp3O5atPQH5tPw5QRCNCOPtYCbGbdu2oXv37liwYAFOPPFE7Nq1C926dcOcOXNwwQUXAADWrFmDgQMHYvHixRg9ejRefvllfPOb38QXX3yBHj16AAAefPBBzJgxA9u2bUNOTk5GuxUVFSguLgb6fwNwUg3wPNMLdsR5BoRmmc2auHwsxiXRq4xyKOoYA1gi3iUm/2eYzHwNIm06GWxa8wGJhDqakVtS6J+FxJVkQCIRThPXMgCQBEeONoBStxmXP+kYE/9G2DBJgiMZMWgzZFMRToTNqGWfrf4q+RIJu1c2m6oAkoq5lNE2OVIJFtk+QPh2VicZTiain4W4ts3NAZj/bJrpbIElqrCVTOrOavdcTJhRbg7gRDxjtq8JUe+E5ZrEXQf1XF5uMJ9N6Lyl6aTQlOD268m0P1pZ3p9adMoLp9PsG0aFqJVMuEiKGcghxBEjUkotV96zaRTkBZ3Y0NeUOseOtOkJMLnJNJyEiAjienoAYkiV2WapZA3y82uVOoX/eQ6GY3nnvHucIzd3HxzHDWxqQlDgSzDkzjtWUVmDXkOWYteuXSgqKgrZI9oep59+OjZv3oyHHnoItbW1uPTSSzFy5EjMmTMnMs9VV12Fl156CY8//jiKi4sxZcoUOI6DN998E4D349jQoUNRVlaGO+64A5s3b8Yll1yCyy+/HLNmzQIArF+/HkcddRSuvPJK/PCHP8S8efMwbdo0vPTSSzj11FM1e8uWLcO3vvUtFBUV4Wtf+xruvvvurOsn3r3oniUag6e/OxXjSl9F0eDNyOscTJC8tzIXFat64rUvT0ZOWWeU7ZyP3t12oseBXyK3dI9WRs3uFL7Y0hfs0LPQ78yfIFnQxWpr4fSzMHLAIuQU1gR5K3OxbO0JOPGuF5qmggRBtCqa89+wdjFHz65duwAApaWlAIDly5ejtrYWEyZMkGkGDBiAfv36SaFn8eLFGDx4sBR5AODUU0/FVVddhQ8++ADDhg1r3kpYUX9ybwoifs22noqSHWLKyta2ZtM4HqUcZKRhv1TruZi11kxJrXXDlMw29dQmFjHjs2ktXIOgZDkawxQPMtlmps3gQ2SLqf1kmdZMrYx7McpyUE+b3H4u0j+bTU2UiijP9gjESN+221ETQ/yInki/IoST8L6eUbvMzLiGYl4gW3vG2AvVM+LrILCjJ7WuaGYpgyl10IZUqfl8Q9zIJ8U3xwF3AqGEg4fa2bzHRbGcc7945dmBWFzcEHzUz35Ej3WCY6WyolymzADNwRDMtSMKUObk8c+LwBtRF8YcqJM/c86Ne9QTcFRRUms1bX4fv4ZcvXZM1kOIhyxSwCfaIh9++CFeeeUVLFu2DCNGjAAA/O53v8M3vvEN/OY3v0GvXr1CeXbt2oVHHnkEc+bMwcknnwwAeOyxxzBw4EAsWbIEo0ePxr///W+sXr0ar776Knr06IGhQ4fil7/8JWbMmIGbb74ZOTk5ePDBB9G/f3/ceeedAICBAwfijTfewG9/+1tN6KmqqsLEiRPx8MMP41e/+lUztApB2NlTvRuji15DtzGfAj1Pg3P0DKB4EL784DXsfu2n6D3mU5xb8Sekimr0hQU4UFOdwpdbuyAx+gb0Gn8pDsliZvsT73oBe6oqsWj2NCSrN6GuU2+Mmnk3TqRIHoIgmoA2L/S4rotp06bh+OOPx1FHHQUAKC8vR05ODkpKSrS0PXr0QHl5uUyjijzivDhnY9++fdi3L1D7KyoqGqsaCs350h0hhsT1vLMqK0MdzM6JloeHD2XlR9aSQEZCQ0oQnqsD0GOjGBBanCfKA2585qHjdnvmMbk4T0T5zHIs0iYX3UJLh1kTMlQvw/5xQF/xyM/rMssVjrKpNGz4WtTDphuOeIqS/1g2Fw6WtuWBYMIgRAUWzqA6K3CUskyRQw41sig1YiiP2PWFDHN0kjmxMYcexRQSwSIb19t1FQ1BmT5IYmvbkOhk2oz7+lFFobTrLQ+uiFmuGGIljCsFqN9EYlUqIe54k/qEfQ9VhLvGCXFVvCdIu5yGyCZX3JJajwv9tlCie5QHknNvVi55LZjezowxX+DlcmiaHmHnKGUr9eQiram0cXA303c70ZZYvHgxSkpKpMgDABMmTIDjOFi6dCnOPffcUJ7G+nFs8eLFWhkijTk0a/LkyTjjjDMwYcIEEnqIFuWl62/HmcM3onzXYVi+4RT0euZHOOLIDShIuOjSbQ8YA3KKvegb7gJfbOyJugPPxEHnXY+C/B7o1wCb+YWdMe7WRxq3IgRBEBbavNAzefJkvP/++3jjjTea3Nbs2bNxyy23NLGVbIWM/aU+vdm49Lbjlt6s9bSlW2iqE1lXu6HRTyxmL/jNPnycaxZdAEnDX5v0xTIc062GbWrw7K5KyJ4aQRCR37QTRBgwOI79Ho3TShxu7efb82fod0aJCaGhO0pET0a79ejrhoQw/6AQFSLFixhhhXMoIxzNhGGbZhRRZERPVBmwCzVmOlmmepwpm2LPWm/zmAtvqTlhk8fnC/46YIwr/oSHTam7qj4WVFQRz5TGV/0XZXp/HcDh8vb3jgUPg5jBxzsZSECA1yFAQo+uUbJabQYVDlb7MiN2vHqr5XLlOopvosDPoGwuvfbKDaKNKKKnfVFeXo7u3btrx5LJJEpLSyN/xGqsH8ei0lRUVGDPnj3Iz8/HM888gxUrVmDZsmVZ16l5fmQjOhKVOyrw8vU3YEzXF5HsVIOiLeU4vew6JA5Ma+n2VuUir3AfPnj3MAy+fRn6NWiaBoIgiJahTU7GLJgyZQpefPFFvPbaa+jTp488XlZWhpqaGuzcuVNLv2XLFpSVlck05kSDYl+kMZk5cyZ27dolt40bNzZibVSYZWtsuLFlkz5TOTa/Y8qWS9gIFcDwKatq72878dCerVXUFa/kUA3FohMqyW5FLdu1HNM3fW0r25UKrVJlqZVqzzXyyGMxddew9a4z1sOL6FHtRdo01QiLKdNHuc+NuimrQIVW9uJK/7+ej5vWtqIcueoUj1x5yoyCUevAnOjrDjMfD1bWclWbYpUtS11t7WYTSZiZSLigtKFoV/Uc5witYiZ8VctTo7WimlpcS7Vs7vrrz3FvU1cVExtc5RIqXyvBrMxMmaOYhezJVcP8dpXLlQmbPLAvro4rShD1QzB3UWgiZ8CfUFl5ppUyIf96DnGXw3XN+4lBD8BhcmJuyO/goL2DFdzEIR60o78UHEX0tA2uv/56X9SN3tasWdPSbsayceNGTJ06FU899RTy8vKyzjd79mwUFxfLrW/fvk3oJdEe2V7+FeZMvgEvXng61lwzGOk/DMB5J/4BvY7yRMpOPSqRyE3DTTPUVKewbt1hwOkrMH/9tQCA3Z2OACORhyCINkabjOjhnOPqq6/Gc889h9dffx39+/fXzg8fPhypVArz5s3D+eefDwBYu3YtNmzYgDFjxgAAxowZg1tvvRVbt26Vv37NnTsXRUVFGDRokNVubm4ucnNzm7BmgrgX78YSfbIoR+0IZxU7YvM7Rku09jiV0AGOLNw0be5f+5g6Q/A5XE+1eVwAEXMNh8ozk0V1eJnWEBF5s7Rp2oryJSPaNQtf76i6ZB3Ro17zDP1PVWSzIVe9ysZmPbHO/cPgr3Bkb/eo6BPAExfiInpsNsUxc1GljPWVRjMnYo7lmWAIRdxE1tkojysRPfJSK9ecIapsEZ3CpS2zTbU7UrUJT/UJbIUr7hgClKfYeBE9gRtcOhXMy2PaCoQjpghAQfswiDAmkVdtJ0fcP/5ws2ASbq5PIC3LFUIQB+cMcPThWt79GDSw1rZ+RSmip23w4x//GN///vdj0xx88MEoKyvD1q1bteN1dXXYvn175I9Y6o9jalSP+ePY22+/reUzfxyL+gGtqKgI+fn5WL58ObZu3YpjjjlGnk+n01i4cCF+//vfY9++fUgkwrO1z5w5E9OnT5f7FRUVJPZ0IPZUVWKpMadNptWpNn+yCfPv+gNKt76JY45ai9KDvsK3xvDQ3HIiqnTLmu4ovOh36HzEKUglcjAAQM3evej16T+BwcDQS3/YdBUkCIJoItqk0DN58mTMmTMHf//739G5c2cZNlxcXIz8/HwUFxfjsssuw/Tp01FaWoqioiJcffXVGDNmDEaPHg0AOOWUUzBo0CBcfPHF+PWvf43y8nL8/Oc/x+TJk5tJzLHRnC/cQacl6/SRv78D0d14S28ylCyid5/RvcZvr/g+v33uHOFJpg52VNkNtRmXN0orES3Njf2o/OqO2gmP80fTB33EHD22c4grN8ae8F2dcUWzyT2BKbKO0QpbRrhxm3LfIc69mWAir4shCkgRwVGvle6xNv+QxQ85X4+fzWzjKJuR9VQK4EbjBvWEt0K4iJoRPvhlOqofqpBjCiqGY4FIEryAC3HGHIGlVxK6qKeJR56jajRPYNufa8cNiuPygvrRLlqhevHqlVaFJ8eiMOrflEF9OEQ9OVzuBlE9gHcDi/x+e2htqEzEJOffMa43uHdHMuYGzz3nYL4DLkX0tAm6deuGbt26ZUw3ZswY7Ny5E8uXL8fw4cMBAPPnz4fruhg1apQ1T2P9ODZmzBj885//1MqeO3euLGP8+PFYtWqVdv7SSy/FgAEDMGPGDKvIAzTnj2xEa0OsUjX2SGWVqjnPYuGasdoqVZ+tXo9Fv30Yo4qeRa+Dv0TnNMO3jt0LJ6nPyVZXk8CXWw9AdcExOGDs91By5OmofLwfOhftxfJr7sXO4asx4pJz8c6Tz6Fk+asYftqnqKrujKK+JzdbnQmCIBqLNrm8etRSw4899pj8xWvv3r348Y9/jKeffhr79u3Dqaeeivvvv1/7Reuzzz7DVVddhddffx2dOnXCpEmTcNtttyEZtfa0QdMvrx6VzXjbrxciXz1ts0RE6ESmchJZ+srCn51UA5qIwVsKvj7tExhJJJIZ+/4hkQJA0uFIOPa0Sl80dD4BjryYpc7j9pMOD0Vc2OyaJBhHKlnPpmXCptm09mijsK/+kuWZTYQyp2IeR+vd7CsPOcn45dVtfoqDqWS4o67mUTv1arKcHOZ18m12mLFvkEo5QdSHmZ+FyxDk5gCOk4gsV5wI3ZcMSCYjfEXw2NqWWM/LUe4Dox1sIqEgwTiSxlel5pdjlCPKZnUoyOUIRRBFtan4CgGQcNJIJkU0jHK/MuWvWge/7ARzUZCfhrjH9WvOAeZarwkDRyqZRiLhWu8Vr45cr4dPTqoGebm1Sr0D6TRYJl1VGYNIn5ycGm95dVmmH8kkRTC17oH9yqpa9By8mJaqbkecfvrp2LJlCx588EG5vPqIESPk8uqbNm3C+PHj8eSTT+LYY48F4C2v/s9//hOPP/64/HEMAN566y0AwfLqvXr1kj+OXXzxxfjhD38YWl598uTJ+MEPfoD58+fjmmuusS6vLhg3bhyGDh1Ky6sTIRZOPwvHDZ+H7RtL8WHNuTjs/Mux7m8PY2DOcyjtux2rlxyM/Jw6pByOA3rvQF7XarCE3qWp3ZvEtm1dsXdvATqNvx49j/sOmKMLinzj35Fe+F1UbipB9UfdUFuRh1TRXnQ6fBs6996JxIlzwPqe3ZxVJwiiHUPLq2cgG20qLy8P9913H+67777INAceeGDo16eWpYHCT7OYjIvosXbxlPP1tRl0QuxkKqDh2qULu56lWjRbQowGyVT7TDFRcTatxER6ZMqWlc1IZ+25zbqqxXDmta1VlIqraIZGEGWaHjH4qzJFXBcWd8tmgBsf1EiN0KpbNpsI3wtCVIm8lmYolnqK+xEpLNzucTZtbmr3tSWCRkTtuOpNpDyutigpWz2jEMEsalW9z0z/3ldOWpd5V5IxMYEWC+Lj5IpVgIygUYVGDoA7Llw3EFJ0I1wbAWY2pcOCiZDVdvcDhYIKOOI899vVhcvVOyhoZPOeZaIi4jBT7YihavpKYSKBXLadc3A3vAoZ0bZ56qmnMGXKFIwfPx6O4+D888/HvffeK8/X1tZi7dq12L17tzz229/+VqZVfxwTJBIJvPjii7jqqqswZswY+ePYL37xC5mmf//+eOmll3DttdfinnvuQZ8+ffCHP/whUuQhiCj2VFVi5IBF2L6xFMXXrEHev5bg9VvuQO/Ueuztmw+3zMGRYz4J5avbl0DN7hxs3H4YjrjqIeR2PQp9M/zDw/qejcSJc9B5+fUo6rNOHucFByIx/H4SeQiCaLO0yYie1gJF9GRTjgNl8pF65APg5DSgifyepmMPAY/O45FIJK1nzGgIM02S+RE9RnRDlBfB+ewiemzNkGRcNq1VzIDdf8eP6ImyFedM0tq03JZUKzPpAAk/oifKFgt98MgUfRRqJz/yIWWJ6MnmdmIsPqIH0B8FVUzZ34ge75w9YbRNwLHcCCwivXosqp7SFtOvi/icmwMZwabZs9y06iFbRA+gL/sOZuwDMqJHFzl0m1H1TSoRPWp0jpjDSfNXKcuL6Kmz10/Ol6NE3CinU6k6GdGj+etH89judQYglaxFfn4wRCEQmdRonGAad7mCFoCcnH1w/DmFAsFNpHEVU2o0EUdldR1F9BBtCoroab+k02m89ZdXsPulOzDhG8uwcWVvlPbahYJuVQDC/5a5aYbyL7rD7fdN9D39R2DFR0RG/WeCu2lg25vge8rB8suAbseHon8IgiD2F4ro6bA0UPhpFrO2eJRM+3H2bDEY2RSXycb+taE1WseSxrQkO1cGaUt+c4Uum9IaWwvLSVtrxkXY2PLHNbfWYRUhTBHYplKJ9MXSSbc5mq0ardmxhC7J+VAM+1F2s7YjPrsc3FApIucCUuyZkTfmDkMwz1HIJkewnLgIFLGpbbrJwCYPn7O2N9ejmcypXUzhx2o34jE3f25IC03HT+9w5kWpKFFUjCOrdSO9yBUGbbIgBIE18gjnyopZAHe4MUePn94J5rexCk2MBxE9SnmBURYYFpE1EOtwpY2IVd8O4/qz4v9Pv5eD2aE4gigl77Oof1CeKJ0iegiCqC8NmSDZpK62Fguffhmf/+tVdK/5EP26bcUhx3yKMfl1wGlemr5DN+l2K/OwbUcvpLsdi/75z2Dp8uNxwt3/apQ6MScB9Dixpd7ECYIgGh0SeloV2XRnm+CfoDiztp+es8oYk49nOK/2ZkM9w6ZtI5sok03pHH5n1fiFXovCsHy2iUYwzkWeiBNJlONRf7OyJzrWauYYkSeT7VDxsjNqycz13XrbjMi4vzGMoevIVJss7C/X6xeqryJYZC22Mb2eoackrE+E9m3qnk26NYUxYT+0WJPViI7LLVFuZv18YUz96mHGzRAlrNpsc02YDMrRopaMi8oAL/pGqaRXb3+gFdMrynyhhvkpXa5E8yjiW/RqZf4H7oCByUxMSSiWZpc6kT9BtUjCuQsu8nHI+Y68OvDAjjEMjNVrPjOCIDo62U6QrLJvz14sePJFbJ4/Dz35Wgw87DP0OHQbxjoc7Btu+Pvc39+1rTO+3H0gahLdcPD370Bh94EoBLDglqvR/zCgrlOfpqkkQRBEO4CEnlZLU/+mkEUvLxZb4gb4LDtg+1tepl5ndph907hIGZtwU19ZyhR84sqyHlOjOSL85Ma+uRJVplbSurQcYNyiLEhL+if1b8hmBqEqXGq8f2Z9Xa6LIJmid7JtD7UeQjCRtjnXRIBQx141bbEdxFkoJ0Xf3hBRApv6udBwpAhYYFAtVvfHVKUUW2pEj1hlK06oCvlmGlV3Q43sORIS6aToYZRhCkLcX5VKFMq1YpV6K/ewC3+OHtV/JaRIHlTyCJFICn5c3utCDBYCjXdYaWDOgYQro3HM6JswvgUuhmcF8wKJIWXcr4cnRPHwvcEpoocgiOzRJkgu1ydIPm74PCycfhaOufEpvPbI89j51uvolfovho9ci4KuVTgp4SBxVp3134Ga3Sns2FGK3TX5qCkcjN7n/AQ5/5qAuj0pHDTtNeTkFwRp9+zGwNznUVOZi1Ez726+yhMEQbQxSOhptWQVZrMfWMqINZnFz/XZ2gnZjEgTspmxICV9w9rI7AfVV36yBSHZyjHFiaj+b5xwpASCWImyqUVLIPOV1AQaWZn4XDbbIZtKn5mZibMoM6NNs54Wl23tYBPOIu0YNkLRNUofPtTu6sXXztkFWNv1E0KGzab8HFEfHrFqlulFIB74+4Z4lfGJ49aPWhmmYXm/CLsywiWwFTehtqqNiIgeIaLZhu4x+T+lXAdw/IiewIdwYwUfRdQMh8s5HOg+S78NW8E+UyJ6fBFI2hRSqdlmQX08wY8HwpevOgU2mPRRDBfzDjfGvycEQbR31AmSS6auxUn5Bdhe/hW+Ykfi30u+wtmd/oUxw+bDfbY3vt45gdT5NXoBOZ6ovLcqFzt2liBdw7DngK/h0O/eiPyifsg37C1cc6InKt1zBD7cdw4OPfcyfPzcIxiY+zxK+27HW8vH48R6DhcjCILoSJDQ0+po5pfurM1lI6BkWVgoWVRvNFvnspVJMqP2veN/R48+aZPEomSyhLIfKcxE2HQQLUrE+S9WNhJlRGFtVQ4t6iEKW2RUyGaEwJBtmUYx4agoJfokNMxISVjfu0S7Vly3q0bXhJbtVs1atJzIVjUjegzhRK5UZappNsPqKSPsymw/TYPlQb3VSCK1Xa1PnF2zCvLw4HjUs+fpNN5RfagStPbVgoBMQUieZHr7ibr7E2f5Vry8IqIH8OaUV8fD2SJ6ZNEMCeYAcBVN1MvLmSe1iDl+PLGWeWE3AJBI+xE9PCToqD7bvkuYJg4FZ737g+s2lQffpfUYCKLd0Bhz55jU7KvB4udew56X7sLXT6/BFysOQN3sI9Gl907k1iVwRs86JL9VK9M7iTS8GQqB3RV52F2Vj+q9nYDDzkP/s69Fp7zu6JSF3RPvekEOEzuh8FHg/UdRdhhQU5nriTwRw8QIgiAIDxJ6Wh2h37yb0A4Lm4tC+2W5Plj8txVhrWa2Yk2oi59lvmg3bKVElShFjBjRQC0vrhw1baaWdhG9qpdajnlM7UCagzasHUj1PItKldmuadMcBcNsibMoO/K4Wk8eeaqBkqAemSGPqcKHf2OYogkT59T82r1jeGSKRca+jNgwFEU1akosJ65hrpoVJcowzU3tfChSyaoWBURda800M54TFoiLzOaLIXyY5WnPZqC8WO3pc9cAzAmGYJnXxHyWmWxwjjR3kRTijpaOa/kY48a1T8ATiJifT7+o3hCtoA5MqlhBRE/gb5DVURqO+c6KYWO2VeIIgmh7NGTuHEG6rg7/mb8Ma5+Zg9TOz9CJ7UWPkh3o2nUXeg7ajONTLvgpXtrBJ35kLWP3rnwUFO/B9k3FSIy9FV2OOQedc7pgf2SmE+96AXuqKrHIEK8okocgCCIzJPS0SprjxTuqVxeXPi5RA3zOyuZ+FVBvXIRXxRKI7patUyn6XmokgS2vGtkCBEJNnDgSJ27ERbnYJEMRAZKp/MiW5aEP0UksxzRtIaKt4ojSCK3eCBEixs7+9HFVIUUe43q0hK2OkStPmZkUQwz2iB6Z3rgxY4UUpVzT95A/zBMw1OAfVWDSvDBVIIvdUBV0PcKyE/JIjyyy1RlBWzniuHg2/Uxa8f45b2EqpRFcB9ytA3MsdxdX7PviiipiCfGEczWCzTPEFaGGcxHd43uUcL1zpmAjzCpiktoigQDkR/wYN73LXUVY5Ur0l5jkmSCIpmRP9W68dP0dqNlcjpyeZTjjtuuQ36kgc8YsyWbunLF3/h3/fXctVvzt3+j88Qs4qKwcVRX5KC3ZjeLSKgwq24UhE2ojbTD/hWXf7hSqq/LB6xzs2NcHh1wyC4mykVgx62c4ofhRfLDzdIwbfWmj1S2/sDPG3fpIo5VHEATRUSChp1WSdchLI9hg+m4UGVdaioqLiPE7Y/BSpliLqHZqeFsZ05bY3bJ4oXa0MuVTbUT13dWOoy2yBsJmjF+RApFxyW3xUFE2M90HcaIUYEQQcYQ6yLGFRJyOTK50fIHoelo1hQywqB2mCya2C2tdTE4rJtz6USuSSDHAUBBNUcg6f7YZ0aOblPuRYo0SLST2NbHGYjc6Skw3YIqQYkLi0HMZo/xp95ZRoDr8UK23WF6dAWCO6w1NszSe1jaGQOZ94NoS5rY6MBZM1BwIO44v0vjLyas2fWNMfHNoK3NxJY0i5ki/mO+T+OyXZfneIgiicXn6u1NxZMVKjOm9A4nedUjvTWLdt+fjg6Kh+M6ce/a7fHXunM6TP0DvdZux7MW38NVqBzzRD6MPqMSYIfOx7ZaD0aN4N87uvw/JI6MFHQDYtzsHVZWFqK7rhtp9HO4BQ9FjwiTkzT8HVds7o2TqWuTkF6C7n54mSCYIgmh9kNDTamnqt+/YnmZE+kzd+MZxI7uT9RWAskOLFrB8jvSCIzSMJUqmUsWORESaKHvqcZdHz7Gj+m0ejxKIzM61DdHNVI9E7xl2bWVnEKvsPmSHupy16Quwfx1cHrHDGIu2GfEIicORET3ChqGYKN17rWxThIqsphnRoxxT/THv/2BlqWg7VpvGsyHtmkKJ8hzJU8wTKmQzMD2iJ/JZ8Qvh5oPt59DbncNVDiQ5CwkmQUolLzOvHAe4A+7Pu2Nedk8Y5uB+dA/zJ3bigPeLubdMlpLa/+QLhFx8g0ihTU/j2VRVHr/dFD0wmK8nk5hOEO2bppjTRuXp707FuNJXUXTSZuR13iePl1TmotuqL/H0d6dmJfbsrd6DtctW49Ol76HivXfQi3+AgtReVO/Jw8H9ynHgMTXojCok/tYHZZU56FOSRvKbNWDKS0LXw7dqZXIXqNpZgF17ypDufBg69R+K3N7DUXzEiShIdYYt3mjh/TRBMkEQRFuBhJ4Oi9HLy9jrjeteZyWF1OtU5vOZJIX9hUd2XM2ADUf5a6a15Vc95FCFHx7uEFrKEcf1SWZ1O7FiDbe3nnoVM1/JcAmZpDcj6ESeCPms1ieL2ycqSZQQJusZEVnjxM1QHWVPRFJwLqbg1dKKjrbZuPISaoUa0SvMFNfMwrkm0mhPoyGIqB+ZLaInMCkP2mxzeJ2EkHLDgt1QecpB230de905B+NGmYZdM2JLRjUxFoghmn2lndXjos5iHhvVb0MBZkZNhYjjRcuY19FLwWQaD0c5510rffBoaJUt9a5m6gTVgchoLsnOhD/+eUfeh0xYJYgOx/7MaZMNe6p3Y3TRa+g25lOg52lwjp4BFA8Cdq1G7nu3o1vhKxi96DUseOZf2Pz2ciQ2LkcnVKCmNgcleZUoLtyNQ4/aiFSnfdi3Kx+HpNI4oqQOidNq4CTCz21OoVeP/K575LF0LQN3HSRz09j8WXcUjLocJYPGgZUcDuR2RQljKKlHnWiCZIIgiLYDCT2tljjxpDEwyjV7Sdb0kb+bN8x2ZBUjeotZ26pvx0WVaQI7Ub91h4/pnchsZC+1z++EzkbnD457ao3ZWVc9snWmxVCNON+yu5ph6SuyvVhQV9vljLOn9lejbktrXVmGiJ4Yu5mmLFGjSkybjDHrCl+xS4GHToXVkJBwopXJrCtu2XxUD4UmhFbg6gflvKO65liEl0ztbROjxL4REafZZEyZ/0q531TNw7Qp66BcUK0+pkql7DpAMEQqSKOucudF13iKj3kNvZzhxhATIEuTjif0ekIM8+b2MXwM5uURNoPP6l9NKOaB3/oE6l5elwOMc7/9murfGIJovWQzp002osWe6t0oX1+OLzduxbb1G1BVvg01u6pQu7MCxV+swBkXfYqdWztj0V9qkJv8GYrydmPg4M+QX7QHLJVCn+M+Qfet30PqqH1IjEhH2kl1Cg+14i6wuzIfbp2Dzl2r8eUXxaja2wXJ/ieiz0nnwykdBCe/Jxb+4hqccNij+LjqZIw7+X/3q90AmiCZIAiircA4zcTYYCoqKlBcXAz0/wbgpBpQQqYX7IjzDNE9/IzY8jHrx1C+uDWqI48xyBn8oojqITo58fnibDoZbFrzAYmEqn2GO3AmojVTDEgoJiM7ncZ+Ehw5SfW4+Ut8tM2kE74NshFrEowjFSPxWu8Qv8CEo0a8ZPZVkHSARMLW8bXkNTqwqZhLGSUeARypBIuNzjFvZ7XjnExEK0Fx9czNAZh/UWzik1Uc8g8nk7qzTP1/jNG8HIDZnrEIoctRrmXsNTH8VVPm5aqRKEYaS9MJgdFJcPv1NLQtU4thqEWnfIt/NscRCGHetXSRlL9+C5HEFm2jfxUlnTQK8uv0MrX0XEsflMuRm0rDSRgTKis2mR/KZtYllaxBfn6tVl547i+lLiyoS27uPjiOG9hkgSCk5jEFoorKfeg1ZCl27dqFoqIiEERrR7x7NfSe3VNVCczph8rthfjk0D/goxdeRqfdnwLpNKprO+PMca8hv2Q3Pv+wJwo67cPW8hIw10FuTh2Ku1WgpNcupGsT2Lu9AIlUGolUGvndqsCSLtJ7kt6KfUkXTtJc1zI7avclsW9PLvbszYfD61Bbl8Tu3IHoM/Yc5PYcAFbYG8gvA0t1DtVHzJ0jqNmzGzvvOQKdu1QDEz9r1GFpBEEQRP3Z33/D6gNF9LRqmjKqJ6LM2CibOD/q66OS3hxroh639+KbDN2k2tW2eWDMcKHsGCM8QuWoHVpb995m1zsWiCvaij4GtqaTQ8tsHfEM+1rB1pAWu14sUojVj6yCToytrP2ylOU4YTFAuwZRj0CM9G27HbVJb20RPWp7x/ljO6PcT2oZ2jU0InpsbWzbDdXTuC/M+1af3Bd2kdHSptrk35Zhg0ycZEZgodK2zHHk0uEinid2jiDFJufiOVWeHYjYGl8MsQ0rY8xbFUuWZY4zFN8Pungkyg9mpxYFMKOy3IsQUuvJHKhL94V/h/EEnHA0jzitPjR+DbVIqWCoVtC2TfudShCtjaWzp2HskTX4sPxc5Cz4Fb4z/l04qfAXf//hGwEAPQZsDZ0DgPzS3aFjyYK60DHOgXRtAnW1SdTsywFDGm5dAjt2FOOgIz7HfzcOQf/vzUay+CAgvwfyEnnIA1CcZX3yCztj4ZqxNHcOQRAEoUFCT6uiOV+4Y0QkqxuZAr/UrmiGesjOjs1oprE6UX40XttxYy9qSJK5ira5OE+UR9z47IbSRosmWiubHeMIewLx26K6XLZp0bwKDKaQYVFfIspQj7lMF73ESbNOgC4gRPkp04r86pAgvzDXDc+3o9pSV7+yLQ1uI1RHDmUCXCEqsOhM6u3t6JqZfi1tyoduU8ZoRM3RY2lcFvEZQHhBNSO/y/W2MzUI23MSEp1swlOUGKXep2kXcDUNBK4qYBgXRv0mYmZDMDfkpzokSyblrnHDBYPGNNHIEMAARfSRfrlae6t3CeNBOs7dQJQK9KCgbP+h55zL518duqU3pqu3JQvKZcqXAHczfbcTRPsiWb0JAHDY+Zfj8z9eFxJ53DSDk+Bw6xjctIPqynzsqytAnZsHnk4jN7Ebe2vywXqORE5Jd3Q6oCe2b/wcPL8U3QaNRkH3PkCqEPvKlyP19iT858XBGPzY6+iUl4dOvo2avXux/tKvAUd8jn4X3YJU75P2q040dw5BEARhQkJPqyLuhbuxRaD69Gbj0tuOq/WwxJzI05Zuoa3DlRU2qSKbzCxmDxDzbISPc82iC28FLdMjs2/LjGMMthay24QpIURrLlbBSRWIstQ1PDNqpBJnWic3k02Bw639fHv+DP3OKDHBFC7UiJ6MdrMQLay2jUplXHVLPabY5BzKCMew8qG1LTMFm5iInqgyYBdqzHSyTPW4cRNHtb/1mK2dYxpbjXRRRUa5NDn0vPLpV0UVrigp/kmOQIyxPRdeezqAw/Xn2HBWPgvGUurcBZDgivjLtJtKlCCDaWS9mF+OP0NQ6ObUJ1X26qfWniNYKUw1xqUfUvwUpymih+hg1HXqDQBY97eHceItc4C9W4BkIZAqBJKFeOOX03HCYY/izbXfxrhbH0FuFmXaYmVyD+6Hitcn4/Dhn+Gtb56FncMnYMQl5+KdJ59DyfJXMfy0T1FV3RlFfU9ulHrR3DkEQRCECs3Rsx803Rw9GV68RSekQcQtyB13KG6OHjWDTbyJmGQlk5CU1Rw9ET3EBs7R4yR07TNoLR46plpOMT96JEZEMQUXIJijx14LrnwOl5Nk/m1g6eian1Vsc/RkFDX8naScoyf+a8MsL5kAEsb9YxNsbJE1meboCX32O7a2OXpsQo1trpdUzBw91nL8vzk5gGN5Nk2hxzYMKpmIl/yihprl5gCO+YxZBBs1vyNtqqKF1bh1+FtujjfHTyiLmdYQiJIJLueysgk1qn+aD6hFQX7YD1s7mqJYMuEi4SuNwfCqUNxVSABNOnXIz3OhX7dA2AnEmiDkxvsG5MhJpcEcc4UtLu2on5mSN5msQX5unTwPY44e77Or3ddiHp+cnL3+xNV+xJFqBzaRzBONKipraY4eok3RmHP0NPWcNnzj35Fe+F1UbipB9UfdUFuRh1TRXnQ6fBs6996JxIlzwPqevV82CIIgiLZDc87R01C1oF1x33334aCDDkJeXh5GjRqFt99+u4U94jFbY8GMLcYNmT5TOWomscX0ljm8n945U7Io5WVV3cZtH7U2+tCs4D/Tsvgc6lzHlK22mO0402zq6bQyWfxVNMt0jM+OcSzDHZER04a0xbO0qQcvxF5StV1keUp7iFW3HGVj5qbaqedtpJYD5osMfqEhO8Ym/JZPjWu77qJgRJYpopaYsO8Lcba6mjZt0TVmIuYY9lhwzGwDx5bWKI+7FnuKH+K6aXV2AOb4LcKUOjpBnZm4qWD5WuEcUvzglopDif5SbIqG9CKmmN+m/mfhq1k/eNF93jA3/WbSrim8FbZEeV7dWHD/yGspjgOO4wkzDoNSD28OHtfl4JxBDxODbDNROe+aiHZkXqQURfQQHYz8ws5YtmYsSvtux857jsCCW67GpvdWYsEtV2PnPUegtO92LFt7QqNMXMz6no3EiXPQ+fAi9Dx5Hfqdswo9T16HzocXk8hDEARBNCkdfujWn//8Z0yfPh0PPvggRo0ahbvvvhunnnoq1q5di+7duzezN835ws2D3lq26a3+qQOY4s4rMNt5ZuxHFBddUKMQ38cPRwGonsR5I/tm+2HTNqLOljfuvLiKahfU5jez7LBQirD1qHLNOXpMm5G3YkyjWuui3KYu9wSmWJsZKx9jPwjkkPuce4Nuoq6pPk9LkFfM1xM+A5jTvZg+yPl6/GxmfaNsmvUMCUBMF2Zk2cImgzb3rzrEz2H2axK1HLrquzafsDzHgyFKakMoCUWUCzMqysS8Ngy+4KM/IQxBPRn8dBwAXG/+GosyJopX57rxbCk25dxAem7GPcGGG/XwrqXrCVPinKPk54oIpVSeqQ1sfE1718u7IxlzFXHNu4gcnkhEEB2N5pzThvU9G4ne3wS2vQm+pxwsvwzodjxYvSKPCYIgCKJ+dPihW6NGjcLIkSPx+9//HgDgui769u2Lq6++Gtdff31s3qZfXj0qm2U5oaxJNMwuS9Yj/ovpnzMtrx6V10k1wFW/974fy6tn0hxCggGAJLMMSTHy2PInwJEXIbfa7KgkGQdLRGsVUfUQQ7fq1bRM2DSblptJrOUmjWFCMSZCBWSzFHxYmOLIScYvrx5hDmBAKskiG0i2rUUAy8nxIjWsNpixb5BKOaLrHs7PwmUIcnMAx78okS1sVIf5ZSaTEb4iEBRsQ7fychCe68XIb3MowTiSxlelet21eXLUslkdCnKVYUyW9rDZdQAknDSSScATdbieX9SPGX4ASDAXBflpiHtcv+YcclLnUPtwpJJpJBKu/V5h4eFegpxUDfJya5V6BzKmGPKlyYgMAFx/6NY+P+pHZPcjmWS7Ks+qYr+yqhY9By+moVtEm6Exw973VFViqTGnDS1BThAEQTQVtLx6M1FTU4Ply5dj5syZ8pjjOJgwYQIWL17cAh5l2/WOiq5pgI2si3FRr/l96uFCw9I1tP7xiBWw4kQWs/Xlr/uW8tSokygioz9iPc2cPy59VjYtDqhLSEf5YaZg8KIkwquLiTLjBYo44my6fkWjbKp/64M55Ei9H6yrbhk2zTxAIKpEtm7MjcS5H5HCwsEuatRS6FvDdn2NckNO+TZc9SZSIptsUVK2elrhwb2pVtX77IDzdFAHI5DQnKtHKdKz6YcJcV9ZEeUz+FFYXGkf0Y6O60W7GCKJVy4Prbqn1ZkxrSx5fwCeLSVsifv/ZwxwuQvXj+jRJ2JWxB5DNBIHPJuiNP8u5MER9WEQv+8wcHBXDdsiiI5FfmFnjLv1kZZ2gyAIgiAanQ4t9Hz55ZdIp9Po0aOHdrxHjx5Ys2ZNKP2+ffuwb98+ub9r1y7vg1vbQA8aKFaYM/DWi6judiabCehrEGedEQ2P6InopWfMzwDeMJsMaQD24T56x1PP7TKuD1Hxz9m8UPO64EYXUj2n2zDTuf7BqCaK6oi6jMPs2mVsZkUYCV/OcFRP6HMagB/RE2WLhT74u/WIPgr6vRyMZ56M2VqGd0FjEztqWiNvQyN63JTjn7MnjJNZ5WTMETaiVsSKilxSr4XquzjOeHgyZrOOZh7Ai+hJWIIfHSOfWVfG6uAo4oiwZfNN1E2QdFwkE4AQO+SzaYpShojiMBccdfb6sUAoUSN+xOl9NXUyokfz19HTmb6nki7SacWmuva6PCaeXhGtw32btcoE0DDSqEvK6xFCVbu98jp4cC/RhhD3akVFRQt7QhAEQRD1Q/zb1RzvXR1a6Kkvs2fPxi233BI+8dnc5neGaBIa+tt2TaN6QRAE0bxUVlZ6Q5EJopVTWVkJAOjbt28Le0IQBEEQDaM53rs6tNBzwAEHIJFIYMuWLdrxLVu2oKysLJR+5syZmD59utx3XRfbt29H165dvck32wEVFRXo27cvNm7cSPM1gNpDhdpCh9ojgNpCpy21B+cclZWV6NWrV0u7QhBZ0atXL2zcuBGdO3cOvXu1pWevsaA6d4w6Ax2z3lTnjlFnoOPUuznfuzq00JOTk4Phw4dj3rx5OOeccwB44s28efMwZcqUUPrc3Fzk5uZqx0pKSprB0+anqKioXT9k9YXaI4DaQofaI4DaQqettAdF8hBtCcdx0KdPn9g0beXZa0yozh2HjlhvqnPHoSPUu7neuzq00AMA06dPx6RJkzBixAgce+yxuPvuu1FdXY1LL720pV0jCIIgCIIgCIIgCIKoFx1e6Pn2t7+Nbdu24cYbb0R5eTmGDh2KV155JTRBM0EQBEEQBEEQBEEQRGunwws9ADBlyhTrUK2OSG5uLm666abQELWOCrVHALWFDrVHALWFDrUHQbQMHfHZozp3HDpivanOHYeOWu+mhHFaU5UgCIIgCIIgCIIgCKJd4LS0AwRBEARBEARBEARBEETjQEIPQRAEQRAEQRAEQRBEO4GEHoIgCIIgCIIgCIIgiHYCCT0EQRAEQRAEQRAEQRDtBBJ6OiizZ8/GyJEj0blzZ3Tv3h3nnHMO1q5dq6XZu3cvJk+ejK5du6KwsBDnn38+tmzZ0kIeNx+33XYbGGOYNm2aPNaR2mLTpk343ve+h65duyI/Px+DBw/GO++8I89zznHjjTeiZ8+eyM/Px4QJE7Bu3boW9LjpSKfTuOGGG9C/f3/k5+fjkEMOwS9/+Uuoc9i35/ZYuHAhzjzzTPTq1QuMMTz//PPa+Wzqvn37dkycOBFFRUUoKSnBZZddhqqqqmasReMQ1xa1tbWYMWMGBg8ejE6dOqFXr1645JJL8MUXX2hltJe2IIjWyH333YeDDjoIeXl5GDVqFN5+++2WdqnRoHe2jvVu1tHewzrKu1ZHfKeid6eWhYSeDsqCBQswefJkLFmyBHPnzkVtbS1OOeUUVFdXyzTXXnst/vGPf+Cvf/0rFixYgC+++ALnnXdeC3rd9CxbtgwPPfQQjj76aO14R2mLHTt24Pjjj0cqlcLLL7+M1atX484770SXLl1kml//+te499578eCDD2Lp0qXo1KkTTj31VOzdu7cFPW8abr/9djzwwAP4/e9/jw8//BC33347fv3rX+N3v/udTNOe26O6uhpDhgzBfffdZz2fTd0nTpyIDz74AHPnzsWLL76IhQsX4oorrmiuKjQacW2xe/durFixAjfccANWrFiBZ599FmvXrsVZZ52lpWsvbUEQrY0///nPmD59Om666SasWLECQ4YMwamnnoqtW7e2tGuNQkd/Z+tI72Yd8T2so7xrdcR3Knp3amE4QXDOt27dygHwBQsWcM4537lzJ0+lUvyvf/2rTPPhhx9yAHzx4sUt5WaTUllZyQ877DA+d+5cftJJJ/GpU6dyzjtWW8yYMYOfcMIJkedd1+VlZWX8jjvukMd27tzJc3Nz+dNPP90cLjYrZ5xxBv/BD36gHTvvvPP4xIkTOecdqz0A8Oeee07uZ1P31atXcwB82bJlMs3LL7/MGWN806ZNzeZ7Y2O2hY23336bA+CfffYZ57z9tgVBtAaOPfZYPnnyZLmfTqd5r169+OzZs1vQq6ajI72zdbR3s474HtYR37U64jsVvTs1PxTRQwAAdu3aBQAoLS0FACxfvhy1tbWYMGGCTDNgwAD069cPixcvbhEfm5rJkyfjjDPO0OoMdKy2eOGFFzBixAhceOGF6N69O4YNG4aHH35Ynl+/fj3Ky8u1tiguLsaoUaPaXVsAwHHHHYd58+bho48+AgD85z//wRtvvIHTTz8dQMdrD5Vs6r548WKUlJRgxIgRMs2ECRPgOA6WLl3a7D43J7t27QJjDCUlJQA6dlsQRFNSU1OD5cuXa99FjuNgwoQJ7fZ7uCO9s3W0d7OO+B5G71r0TiWgd6fGJdnSDhAtj+u6mDZtGo4//ngcddRRAIDy8nLk5OTIB03Qo0cPlJeXt4CXTcszzzyDFStWYNmyZaFzHaktPvnkEzzwwAOYPn06/vd//xfLli3DNddcg5ycHEyaNEnWt0ePHlq+9tgWAHD99dejoqICAwYMQCKRQDqdxq233oqJEycCQIdrD5Vs6l5eXo7u3btr55PJJEpLS9t1++zduxczZszAd77zHRQVFQHouG1BEE3Nl19+iXQ6bf0uWrNmTQt51XR0pHe2jvhu1hHfw+hdi96pAHp3agpI6CEwefJkvP/++3jjjTda2pUWYePGjZg6dSrmzp2LvLy8lnanRXFdFyNGjMCsWbMAAMOGDcP777+PBx98EJMmTWph75qfv/zlL3jqqacwZ84cHHnkkVi5ciWmTZuGXr16dcj2IDJTW1uLb33rW+Cc44EHHmhpdwiCaGd0lHe2jvpu1hHfw+hdi6B3p6aBhm51cKZMmYIXX3wRr732Gvr06SOPl5WVoaamBjt37tTSb9myBWVlZc3sZdOyfPlybN26FccccwySySSSySQWLFiAe++9F8lkEj169OgwbdGzZ08MGjRIOzZw4EBs2LABAGR9zVUt2mNbAMB1112H66+/HhdddBEGDx6Miy++GNdeey1mz54NoOO1h0o2dS8rKwtNhlpXV4ft27e3y/YRLyqfffYZ5s6dK3+RAjpeWxBEc3HAAQcgkUh0iO/hjvTO1lHfzTriexi9a3Xsdyp6d2o6SOjpoHDOMWXKFDz33HOYP38++vfvr50fPnw4UqkU5s2bJ4+tXbsWGzZswJgxY5rb3SZl/PjxWLVqFVauXCm3ESNGYOLEifJzR2mL448/PrRk60cffYQDDzwQANC/f3+UlZVpbVFRUYGlS5e2u7YAvBUBHEf/mkwkEnBdF0DHaw+VbOo+ZswY7Ny5E8uXL5dp5s+fD9d1MWrUqGb3uSkRLyrr1q3Dq6++iq5du2rnO1JbEERzkpOTg+HDh2vfRa7rYt68ee3me7gjvrN11HezjvgeRu9aHfedit6dmpiWnQuaaCmuuuoqXlxczF9//XW+efNmue3evVumufLKK3m/fv34/Pnz+TvvvMPHjBnDx4wZ04JeNx/qyg6cd5y2ePvtt3kymeS33norX7duHX/qqad4QUEB/9Of/iTT3HbbbbykpIT//e9/5++99x4/++yzef/+/fmePXta0POmYdKkSbx37978xRdf5OvXr+fPPvssP+CAA/hPf/pTmaY9t0dlZSV/9913+bvvvssB8Lvuuou/++67cjWEbOp+2mmn8WHDhvGlS5fyN954gx922GH8O9/5TktVqcHEtUVNTQ0/66yzeJ8+ffjKlSu179R9+/bJMtpLWxBEa+OZZ57hubm5/PHHH+erV6/mV1xxBS8pKeHl5eUt7VqjQO9sHh3h3awjvod1lHetjvhORe9OLQsJPR0UANbtsccek2n27NnDf/SjH/EuXbrwgoICfu655/LNmze3nNPNiPky0ZHa4h//+Ac/6qijeG5uLh8wYAD/f//v/2nnXdflN9xwA+/RowfPzc3l48eP52vXrm0hb5uWiooKPnXqVN6vXz+el5fHDz74YP6zn/1M+weoPbfHa6+9Zv2emDRpEuc8u7p/9dVX/Dvf+Q4vLCzkRUVF/NJLL+WVlZUtUJv9I64t1q9fH/md+tprr8ky2ktbEERr5He/+x3v168fz8nJ4cceeyxfsmRJS7vUaNA7m0dHeTfraO9hHeVdqyO+U9G7U8vCOOe88eOECIIgCIIgCIIgCIIgiOaG5ughCIIgCIIgCIIgCIJoJ5DQQxAEQRAEQRAEQRAE0U4goYcgCIIgCIIgCIIgCKKdQEIPQRAEQRAEQRAEQRBEO4GEHoIgCIIgCIIgCIIgiHYCCT0EQRAEQRAEQRAEQRDtBBJ6CIIgCIIgCIIgCIIg2gkk9BAEQRAEQRAEQRAEQbQTSOghCIIgCIIgCIIgCIJoJ5DQQxBEo8I5BwDcfPPN2j5BEARBEATR+NC7F0EQJozTNwFBEI3I/fffj2QyiXXr1iGRSOD000/HSSed1NJuEQRBEARBtEvo3YsgCBOK6CEIolH50Y9+hF27duHee+/FmWeemdWLxrhx48AYA2MMK1eubHonDb7//e9L+88//3yz2ycIgiAIgmgo9O5FEIQJCT0EQTQqDz74IIqLi3HNNdfgH//4BxYtWpRVvssvvxybN2/GUUcd1cQehrnnnnuwefPmZrdLEARBEASxv9C7F0EQJsmWdoAgiPbF//zP/4Axhptvvhk333xz1uPECwoKUFZW1sTe2SkuLkZxcXGL2CYIgiAIgtgf6N2LIAgTiughCKJezJo1S4baqtvdd98NAGCMAQgmBBT79WXcuHG4+uqrMW3aNHTp0gU9evTAww8/jOrqalx66aXo3LkzDj30ULz88suNko8gCIIgCKI1Qu9eBEHUFxJ6CIKoF1dffTU2b94st8svvxwHHnggLrjggka39cQTT+CAAw7A22+/jauvvhpXXXUVLrzwQhx33HFYsWIFTjnlFFx88cXYvXt3o+QjCIIgCIJobdC7F0EQ9YVW3SIIosHccMMN+OMf/4jXX38dBx10UIPLGTduHIYOHSp/mRLH0um0HGeeTqdRXFyM8847D08++SQAoLy8HD179sTixYsxevTo/coHeL+APffcczjnnHMaXBeCIAiCIIimgt69CILIBoroIQiiQdx4442N8qIRx9FHHy0/JxIJdO3aFYMHD5bHevToAQDYunVro+QjCIIgCIJordC7F0EQ2UJCD0EQ9eamm27Ck08+2aQvGgCQSqW0fcaYdkyMQXddt1HyEQRBEARBtEbo3YsgiPpAQg9BEPXipptuwhNPPNHkLxoEQRAEQRAEvXsRBFF/aHl1giCy5le/+hUeeOABvPDCC8jLy0N5eTkAoEuXLsjNzW1h7wiCIAiCINoX9O5FEERDIKGHIIis4JzjjjvuQEVFBcaMGaOde/vttzFy5MgW8owgCIIgCKL9Qe9eBEE0FBJ6CILICsYYdu3a1Wz2Xn/99dCxTz/9NHTMXDiwofkIgiAIgiBaE/TuRRBEQ6E5egiCaBXcf//9KCwsxKpVq5rd9pVXXonCwsJmt0sQBEEQBNFS0LsXQbRfGCdplSCIFmbTpk3Ys2cPAKBfv37IyclpVvtbt25FRUUFAKBnz57o1KlTs9onCIIgCIJoTujdiyDaNyT0EARBEARBEARBEARBtBNo6BZBEARBEARBEARBEEQ7gYQegiAIgiAIgiAIgiCIdgIJPQRBEARBEARBEARBEO0EEnoIgiAIgiAIgiAIgiDaCST0EARBEARBEARBEARBtBNI6CEIgiAIgiAIgiAIgmgnkNBDEARBEARBEARBEATRTiChhyAIgiAIgiAIgiAIop1AQg9BEARBEARBEARBEEQ7gYQegiAIgiAIgiAIgiCIdgIJPQRBEARBEARBEARBEO0EEnoIgiAIgiAIgiAIgiDaCST0EARBEARBEARBEARBtBNI6CEIgiAIgiAIgiAIgmgnkNBDEARBEARBEARBEATRTiChhyAIgiAIgiAIgiAIop1AQg9BEARBEARBEARBEEQ7gYQegiAIgiAIgiAIgiCIdgIJPQRBEARBEARBEARBEO0EEnoIgiAIgiAIgiAIgiDaCST0EARBEARBEARBEARBtBNI6CEIgiAIgiAIgiAIgmgnkNBDEARBEARBEARBEATRTiChhyAIgiAIgiAIgiAIop1AQg9BEARBEARBEARBEEQ7gYQegiAIgiAIgiAIgiCIdgIJPQRBEARBEARBEARBEO0EEnoIgiAIgiAIgiAIgiDaCST0EARBEARBEARBEARBtBNI6CEIgiAIgiAIgiAIgmgnkNBDEARBEARBEARBEATRTiChhyAIgiAIgiAIgiAIop1AQg9BEARBEARBEARBEEQ7gYQegiAIgiAIgiAIgiCIdgIJPQRBEARBEARBEARBEO0EEnoIgiAIgiAIgiAIgiDaCST0EARBEARBEARBEARBtBNI6CEIgiAIgiAIgiAIgmgnkNBDEARBEARBEARBEATRTiChhyAIgiAIgiAIgiAIop1AQg9BEARBEARBEARBEEQ7gYQegiAIgiAIgiAIgiCIdgIJPQRBEARBEARBEARBEO2EVi30fPXVV+jevTs+/fTTjGmvv/56XH311U3vFEEQBEEQRDsl07vX66+/DsYYdu7cCQB45ZVXMHToULiu23xOEgRBEAQRS6sWem699VacffbZOOiggzKm/clPfoInnngCn3zySdM7RhAEQRAE0Q6pz7sXAJx22mlIpVJ46qmnmtYxgiAIgiCyJtnSDkSxe/duPPLII/jXv/6VVfoDDjgAp556Kh544AHccccdTewdQRCtgXQ6jdra2pZ2gyDaJKlUColEoqXdIFoR9X33Enz/+9/Hvffei4svvriJPCMIojVA710EsX/k5OTAcZon1qbVCj3//Oc/kZubi9GjR8tjH3zwAWbMmIGFCxeCc46hQ4fi8ccfxyGHHAIAOPPMM/Gzn/2MhB6CaOdwzlFeXi6HDhAE0TBKSkpQVlYGxlhLu0K0AmzvXv/85z8xbdo0bNy4EaNHj8akSZNC+c4880xMmTIF//3vf+U7GUEQ7Qd67yKIxsFxHPTv3x85OTlNbqvVCj2LFi3C8OHD5f6mTZtw4oknYty4cZg/fz6Kiorw5ptvoq6uTqY59thj8fnnn+PTTz/NOuSYIIi2h3jZ6N69OwoKCqiTShD1hHOO3bt3Y+vWrQCAnj17trBHRGvAfPfauHEjzjvvPEyePBlXXHEF3nnnHfz4xz8O5evXrx969OiBRYsWkdBDEO0Qeu8iiP3HdV188cUX2Lx5M/r169fkz1GrFXo+++wz9OrVS+7fd999KC4uxjPPPINUKgUAOPzww7U8Iv1nn31GQg9BtFPS6bR82ejatWtLu0MQbZb8/HwAwNatW9G9e3caxkWE3r0eeOABHHLIIbjzzjsBAEcccQRWrVqF22+/PZS3V69e+Oyzz5rNV4Igmgd67yKIxqNbt2744osvUFdXJzWNpqLVTsa8Z88e5OXlyf2VK1di7NixsQ0iXlp3797d5P4RBNEyiLHhBQUFLewJQbR9xHNEcy4QQPjd68MPP8SoUaO0NGPGjLHmzc/Pp/cvgmiH0HsXQTQeYshWOp1uclutVug54IADsGPHDrkvRJw4tm/fDsBTygiCaN9Q2DBB7D/0HBEq5rtXfdi+fTu9fxFEO4b+vSCI/ac5n6NWK/QMGzYMq1evlvtHH300Fi1aFPur4/vvv49UKoUjjzyyOVwkCIIgCIJoN5jvXgMHDsTbb7+tpVmyZEko3969e/Hf//4Xw4YNa3IfCYIgCILITKsVek499VR88MEH8pelKVOmoKKiAhdddBHeeecdrFu3Dn/84x+xdu1amWfRokUYO3ZsVtE/BEEQzc3ChQtx5plnolevXmCM4fnnn28RG9///vfBGANjDKlUCj169MDXv/51PProo3Bdt9F9ak9k23YHHXSQTCe2Pn36hM6bneZp06Zh3Lhx2rGKigr87Gc/w4ABA5CXl4eysjJMmDABzz77LDjnMt3HH3+MSy+9FH369EFubi769++P73znO3jnnXeapjGIdof57nXllVdi3bp1uO6667B27VrMmTMHjz/+eCjfkiVLkJubGzmsiyAIoqWgd6+2Db13NZxWK/QMHjwYxxxzDP7yl78AALp27Yr58+ejqqoKJ510EoYPH46HH35Ym7PnmWeeweWXX95SLhMEQcRSXV2NIUOG4L777qt33nHjxlk7WA21cdppp2Hz5s349NNP8fLLL+NrX/sapk6dim9+85vaaoZEmGzb7he/+AU2b94st3fffVcrJy8vDzNmzIi1tXPnThx33HF48sknMXPmTKxYsQILFy7Et7/9bfz0pz/Frl27AADvvPMOhg8fjo8++ggPPfQQVq9ejeeeew4DBgywrpJEEDbMd69+/frhb3/7G55//nkMGTIEDz74IGbNmhXK9/TTT2PixIk0hwdBEK0Oevdq+9B7VwPhrZgXX3yRDxw4kKfT6Yxp//nPf/KBAwfy2traZvCMIIiWYs+ePXz16tV8z549Le3KfgGAP/fcc1mnP+mkk/hjjz3WKDYmTZrEzz777NDxefPmcQD84YcfrpedjkS2bXfggQfy3/72t5HlHHjggfyaa67hOTk5/KWXXpLHp06dyk866SS5f9VVV/FOnTrxTZs2hcqorKzktbW13HVdfuSRR/Lhw4db/73csWNHpB/t5XkiGo/6vHtxzvm2bdt4aWkp/+STT5rYM4IgWoL29O8EvXu1Pei9q+G02uXVAeCMM87AunXrsGnTJvTt2zc2bXV1NR577DEkk626SgRBNDKc8xZb6aWgoKBdTU548sknY8iQIXj22Wfxwx/+sEV8qK6uBqC3bU1NDWpra5FMJpGbmxtKm5+fD8fxAlRra2tRU1ODRCKhrR5kS9uYNKTt+vfvjyuvvBIzZ87EaaedFvLLdV0888wzmDhxorbktaCwsBAA8O677+KDDz7AnDlzrHUrKSmpf4WIDkt93r0A4NNPP8X999+P/v37N4N3BEG0Bujdq/Fo6Xev5nzvqq2tbbQlxem9KzOtduiWYNq0aVm9aFxwwQWhJUAJgmj/7N69G4WFhS2ytcelhAcMGIBPP/20xeyLtv3yyy/lsTvuuAOFhYWYMmWKlrZ79+4oLCzEhg0b5LH77rsPhYWFuOyyy7S0Bx10EAoLC/Hhhx82me9m282YMUO7X+69995Qnp///OdYv349nnrqqdC5L7/8Ejt27MCAAQNi7a5bt07aJ4jGINt3LwAYMWIEvv3tbzexRwRBtCbo3atxacl3r+Z878pmGFx9oPeueFq90EMQBNERmTVrlvaP1aJFi3DllVdqx9R/aBsLznm7+qWsOTHb7rrrrsPKlSvldskll4TydOvWDT/5yU9w4403oqamJlRetnYJgiAIgtg/6N2rbUHvXfHQOCeCINo0BQUFqKqqajHbTcWVV16Jb33rW3J/4sSJOP/883HeeefJY7aw0v3lww8/bNEhGOJaqm173XXXYdq0aaGhuVu3bgUAbaXFyZMn4/LLL0cikdDSil98mnJVRrPtDjjgABx66KEZ802fPh33338/7r//fu14t27dUFJSgjVr1sTmP/zwwwEAa9asoeWtCYIgiCaH3r0al5Z892rO967vf//7jek6vXdlgIQegiDaNIwxdOrUqaXdaHRKS0tRWloq9/Pz89G9e/es/gFrKPPnz8eqVatw7bXXNpmNTNiuZU5ODnJycrJKm0qlrOO/m/oe2Z+2KywsxA033ICbb74ZZ511ljzuOA4uuugi/PGPf8RNN90UermsqqpCXl4ehg4dikGDBuHOO+/Et7/97dB48Z07d7aa8eIEQRBE24fevRqPln73as73rsaanweg965soKFbBEEQzURVVZUMJwWA9evXY+XKlY0aBpytjX379qG8vBybNm3CihUrMGvWLJx99tn45je/aQ11JQKaou2uuOIKFBcXY86cOdrxW2+9FX379sWoUaPw5JNPYvXq1Vi3bh0effRRDBs2DFVVVWCM4bHHHsNHH32EsWPH4p///Cc++eQTvPfee7j11ltx9tlnN0a1CYIgCKLNQe9ebR9672oYFNFDEATRTLzzzjv42te+JvenT58OAJg0aVKjTVCXrY1XXnkFPXv2RDKZRJcuXTBkyBDce++9mDRpUpOsStWeaIq2S6VS+OUvf4nvfve72vHS0lIsWbIEt912G371q1/hs88+Q5cuXTB48GDccccdKC4uBgAce+yxeOedd3Drrbfi8ssvx5dffomePXviuOOOw913372/VSYIgiCINgm9e7V96L2rYTDeVmYTIgiCALB3716sX78e/fv315ZxJAii/tDzRBAEQcRB/04QROPRnM8TSYcEQRAEQRAEQRAEQRDtBBJ6CIIgCIIgCIIgCIIg2gkk9BAEQRAEQRAEQRAEQbQTSOghCIIgCIIgCIIgCIJoJ5DQQxAEQRAEQRAEQRAE0U4goYcgiDYJLRhIEPsPPUcEQRBENtC/FwSx/zTnc0RCD0EQbYpUKgUA2L17dwt7QhBtH/EcieeKIAiCIFTovYsgGo+amhoAQCKRaHJbySa3QBAE0YgkEgmUlJRg69atAICCggIwxlrYK4JoW3DOsXv3bmzduhUlJSXN8sJBEARBtD3ovYsgGgfXdbFt2zYUFBQgmWx6GYaEHoIg2hxlZWUAIF86CIJoGCUlJfJ5IgiCIAgb9N5FEI2D4zjo169fs4iljNOAS4Ig2ijpdBq1tbUt7QZBtElSqRRF8hAEQRBZQ+9dBLF/5OTkwHGaZ/YcEnoIgiAIgiAIgiAIgiDaCTQZcyOxcOFCnHnmmejVqxcYY3j++eeb1N5BBx0Exlhomzx5cpPaJQiCIAiCaA0097sXAGzatAnf+9730LVrV+Tn52Pw4MF45513mtwuQRAEQdQHEnoaierqagwZMgT33Xdfs9hbtmwZNm/eLLe5c+cCAC688MJmsU8QBEEQBNGSNPe7144dO3D88ccjlUrh5ZdfxurVq3HnnXeiS5cuzWKfIAiCILKFhm41AYwxPPfcczjnnHPksX379uFnP/sZnn76aezcuRNHHXUUbr/9dowbN65RbE6bNg0vvvgi1q1bRzPhEwRBEATRoWiOd6/rr78eb775JhYtWtQ4ThMEQRBEE0ERPc3ElClTsHjxYjzzzDN47733cOGFF+K0007DunXr9rvsmpoa/OlPf8IPfvADEnkIgiAIgiDQ+O9eL7zwAkaMGIELL7wQ3bt3x7Bhw/Dwww83stcEQRAEsf9QRE8TYP6qtGHDBhx88MHYsGEDevXqJdNNmDABxx57LGbNmrVf9v7yl7/gu9/9bqh8giAIgiCIjkBzvHvl5eUBAKZPn44LL7wQy5Ytw9SpU/Hggw9i0qRJjVIPgiAIgmgMKKKnGVi1ahXS6TQOP/xwFBYWym3BggX473//CwBYs2aNdXJldbv++uut5T/yyCM4/fTTSeQhCIIgCIJA07x7ua6LY445BrNmzcKwYcNwxRVX4PLLL8eDDz7YUtUkCIIgCCvJlnagI1BVVYVEIoHly5cjkUho5woLCwEABx98MD788MPYcrp27Ro69tlnn+HVV1/Fs88+23gOEwRBEARBtGGa4t2rZ8+eGDRokHZ+4MCB+Nvf/tZIXhMEQRBE40BCTzMwbNgwpNNpbN26FWPHjrWmycnJwYABA+pd9mOPPYbu3bvjjDPO2F83CYIgCIIg2gVN8e51/PHHY+3atdqxjz76CAceeOB++UoQBEEQjQ0JPY1EVVUVPv74Y7m/fv16rFy5EqWlpTj88MMxceJEXHLJJbjzzjsxbNgwbNu2DfP+f3v3HRbF9b4N/F46CNKbiIANGyB2NGqMRmMv+dq7xthiw55YY9doTOwxsaVo1Ng1RiX2bgREo6CAiAgIKr3vzvuHL/NzA1KXHXa5P9e1F7tn58w+s67Mw7NnzvHzg6enZ4mLNAqFAjt37sTw4cOhp8d/SiIiIqo41J17TZs2DS1btsTy5cvRr18/3Lp1Cz/88AN++OEHVR4WERFRqXEyZhW5cOEC2rVrl6d9+PDh2LVrF7Kzs7F06VLs2bMHUVFRsLGxQYsWLbB48WJ4eHiU6DXPnDmDTp06ITg4GLVr1y7tIRARERFpDClyrxMnTmDu3Ll4/Pgx3Nzc4OvrizFjxpT2UIiIiFSKhR4iIiIiIiIiIi3BVbeIiIiIiIiIiLQECz1ERERERERERFqiQs/gK5fLsWjRIvzyyy+IiYlBlSpVMGLECMybNw8ymazQ/gqFAi9evICZmVmRticiIipPBEFAcnIyqlSpAh0dfvdD5R9zLyIi0lTqzLsqdKFn1apV2LJlC3bv3o369evjzp07GDlyJMzNzTF58uRC+7948QLOzs5qiJSIiKjsREZGomrVqlKHQVQo5l5ERKTp1JF3VehCz7Vr19CzZ09xiU1XV1fs3bsXt27dKlJ/MzMzAG//oSpXrlxmcRIREZWFpKQkODs7i+czovKOuRcREWkqdeZdFbrQ07JlS/zwww8ICQlB7dq1ERgYiCtXrmDdunX5bp+ZmYnMzEzxcXJyMgCgcuXKTDaIiEhj8RIY0hS5n1XmXkREpKnUkXdV6Avy58yZgwEDBqBOnTrQ19eHt7c3pk6disGDB+e7/YoVK2Bubi7eOHSYiIiIKqpLly6he/fuqFKlCmQyGY4cOVJonwsXLqBRo0YwNDREzZo1sWvXrjKPk4iIqKKp0IWe/fv349dff8Vvv/2Gu3fvYvfu3fjmm2+we/fufLefO3cuEhMTxVtkZKSaIyYiIiIqH1JTU+Hl5YVNmzYVafvw8HB07doV7dq1Q0BAAKZOnYrPPvsMf/31VxlHSkREVLFU6Eu3Zs6cKY7qAQAPDw9ERERgxYoVGD58eJ7tDQ0NYWhoqO4wiYiIiMqdzp07o3PnzkXefuvWrXBzc8PatWsBAHXr1sWVK1fw7bffolOnTmUVJhERUYVToUf0pKWl5VnWTFdXFwqFQqKIgAMHDuDOnTvIzs6WLAYiIiIiVbt+/To6dOig1NapUydcv379vX0yMzORlJSkdCMiIqKCVegRPd27d8eyZctQrVo11K9fH/7+/li3bh1GjRolSTwZGRkYOHAg5HI5nj17Js4BdP/+fcTHx8Pb2xvm5uaSxEZERERUGjExMbC3t1dqs7e3R1JSEtLT02FsbJynz4oVK7B48eIyiSc0NBR//vknrK2tMXDgwDJ5DSIiIilU6BE9GzZswP/+9z9MmDABdevWxYwZMzB27FgsWbJEknhev36Njz76CHXq1EHVqlXF9i1btqBdu3ZYunSp2KZQKHDy5ElERUVBEAQpwiUiIiIqU2U5P2JgYCAmTZqEjRs3qmyfRERE5UGFHtFjZmaG9evXY/369VKHAgCoUqUKzpw5k6fdwsICrq6uaNSokdj25MkTdOvWDUZGRkhOToae3tt/yqCgIHEli/9elkZEREQkFQcHB8TGxiq1xcbGonLlyvmO5gHKdn7EmjVr4tNPP0WDBg3KZP9ERERSYSVAAyxbtgzh4eHipNEA8ObNG9SvXx+NGjUSizzA2wmm3d3dsX37drEtOTkZd+/eRWZmplrjJiIiIsrl4+MDPz8/pbazZ8/Cx8dHkng8PT1x8OBBLFq0SJLXJyIiKiss9GgQmUwm3m/evDnu37+PS5cuKW2jp6cHIyMjNGzYUGy7dOkSGjdujGbNmiltK5fLyzReIiIi0l4pKSkICAhAQEAAgLfLpwcEBODZs2cA3l52NWzYMHH7cePGISwsDLNmzcKjR4+wefNm7N+/H9OmTZMifCIiIq3FQo+G09XVVXp84sQJJCcno0mTJmLb69evYWlpCQ8PD6VtW7VqhT59+iAsLEwtsRIREZH2uHPnDry9veHt7Q0A8PX1hbe3NxYsWAAAiI6OFos+AODm5oaTJ0/i7Nmz8PLywtq1a/Hjjz9KvrS6IAic75CIiLSKTOCZrcSSkpJgbm6OxMREVK5cWepwCiQIAtLS0lCpUiUAQHBwMOrUqQN9fX28ePECNjY2AN4uY1pW18ITEVH5oknnMSJA9Z/ZFi1aIDAwEFeuXEHjxo1VECEREVH+1Jl3cURPBSGTycQiDwC4u7sjKCgI27dvF4s8ADB8+HA0a9YMly9fliJMIiIiIrXJyspCRkYGXr58KXUoREREKlOhV92q6Bo0aKC00kR6ejpOnTqF5ORkpaJQamoqjIyM8lwmRkRERKTJ9u7dC0NDQ1SpUkXqUIiIiFSGI3pIZGxsjNDQUOzYsUO83h4AVq1aBRcXF+zZs0fC6IiIiIhUy93dHa6urjAwMJA6FCIiIpVhoYeU2NraYuTIkUorfJ04cQJRUVFKc/dkZGQgKSlJihCJiIiIiIiI6D1Y6KFCXb9+HQcPHkTPnj3FtgMHDsDBwQFz586VMDIiIiKiksvIyMC2bdswadIkKBQKqcMhIiJSCRZ6qFCGhob49NNPYWRkJLadP38e6enpMDExEdsEQUBERIQUIRIREREVm56eHqZPn46NGzfi/v37UodDRESkEpyMmUrkp59+wtixY+Hi4iK23bx5Ez4+PujSpQtOnDihdPkXERERUXmjp6eHsWPHwsjICObm5lKHQ0REpBIs9FCJyGQyNG/eXKntxo0bkMlksLKyUirynDlzBk2bNoWlpaW6wyQiIiIq0Nq1a6UOgYiISKVY6CGVmTp1Kj799FNkZ2eLbbGxsejUqRN0dXXx6tUr8dsyQRA44oeIiIiIiIhIxThHD6mUs7MzqlevLj5+/vw56tSpAw8PD6Uh0Z999hnatm2L8+fPSxEmERERkUihUMDf3x/Pnz+XOhQiIqJSY6GHylTjxo3x8OFDXL16VWwTBAGnTp3CpUuXlLYNDg7G2rVrERQUpO4wiYiIqAIbOXIkGjVqhG3btkkdChERUalpxKVbvr6+xe4zb948WFlZlUE0VBLvrs4FAJcuXYKfnx98fHzEtmPHjmHWrFno1q0bjh8/LrZHRUWhSpUqvNSLiIioBJhHFa5Tp074448/kJWVJXUoREREpSYTBEGQOojC6OjowMfHBwYGBkXa/sqVKwgODla6hKgsJCUlwdzcHImJiahcuXKZvlZFcPjwYWzfvh09e/bE2LFjAQBpaWmwtLSEvb097t69CxsbG4mjJCLSHjyPVQzlNY8qibL6zGZmZkIul+f5YoqIiEhV1Jl3acSIHuBtEcDOzq5I25qZmZVxNFQWevfujd69eyu13b9/H7m1SGtra7F99erViIiIwGeffQZvb2+1xklERKRpmEcVzNDQUOoQiIiIVEYj5ujZuXOn0kS+hdm2bRvs7e3LMCJSl2bNmiEhIQF//vmn0qVbe/bswebNmxEaGiq2paamIiwsTIowiYiIyi3mUcUTGRmJnJwcqcMgIiIqMY0o9AwfPhx6ekUffDRo0CBUqlSpDCMidTIxMUH9+vXFx4IgYOnSpZg4cSLatWsnth88eBA1atTA8OHDpQiTiIioXGIeVXRjxoyBq6srTp48KXUoREREJaYRhR4AcHJywpw5cxASEiJ1KCQxmUyGXr16YePGjUqXcz169AgymQy1atUS23JX+OLkikREVJExjyoaS0tLKBQKXLt2TepQiIiISkxjCj0TJ07EwYMHUbduXbRu3Rq7du1CWlqa1GFRObJixQpERkZi3LhxYtv169fRtWtX1K5dG3K5XMLoiIiIpMM8qmimTp2KBw8eYNWqVVKHQkREVGIaU+iZP38+njx5Aj8/P1SvXh1ffPEFHB0dMWbMGNy8eVPq8KiccHJyUlqZKyYmBo6Ojmjbti10dXXF9l9++YXz+RARkUawtLSElZVVkW7vwzyqaKpUqYJ69epJHQYREVGpaMTy6vlJSUnBvn37sGvXLly7dg1169bF6NGj4evrq7YYuCytZpDL5UhMTBQT4JiYGDg5OUGhUODZs2dwdnaWOEIiImnwPKYZdu/eLd5/9eoVli5dik6dOsHHxwfA29Grf/31F+bPn49p06YVaZ/lIY8qCXV+ZpOTk5GRkQFbW9syfR0iIqoY1HkOU0uhpzhJw7p164q9/5MnT2LYsGFISEhQ6+U5TJA107///oupU6ciLS0NV65cEdt37doFS0tLdO7cGQYGBhJGSESkHjyPaZ5PP/0U7dq1wxdffKHUvnHjRpw7dw5Hjhwp9j6lyqNKQl2f2f3792P8+PHo3LkzfvnllzJ7HSIiqjjUmXcVfQmGUvD391d6fPfuXeTk5MDd3R0AEBISAl1dXTRu3LjI+0xLS8P+/fuxc+dOXLlyBTVq1MDMmTNVGjdpp3r16uHMmTNKEzRnZ2dj1qxZiIuLw8mTJ9GlSxcJIyQiIsrfX3/9le/8MZ988gnmzJlT5P0wjypYjRo18ObNG9y7dw9paWkwMTGROiQiIqIiU0uh5/z58+L9devWwczMDLt374alpSUA4M2bNxg5ciRat25d6L6uXbuGHTt24MCBA8jJycH//vc/LFmyBG3atCmz+Ek7vTtqJy0tDcOGDYOfnx86duwotv/+++8IDg7GsGHD4OrqKkGURERE/8fa2hpHjx7F9OnTldqPHj2qtBLl+zCPKprGjRvj3LlzaNOmTbGWpiciIioP1D5Hj5OTE86cOYP69esrtd+/fx8dO3bEixcv8u23evVq7Ny5EyEhIWjSpAlGjx6NgQMHwszMTB1h54tD3rVfixYtcPPmTXz77beYOnWq1OEQEakUz2OaZ9euXfjss8/QuXNnNG/eHABw8+ZNnD59Gtu3b8eIESPy7Vce86iS4GeWiIg0ldZduvWupKQkxMXF5WmPi4tDcnLye/utWbMGQ4YMwYEDB9CgQYOyDJEIACAIAiZOnAhzc3MMHDhQbA8ICMCBAwcwffr0Alc4ISIiUrURI0agbt26+P7773Ho0CEAQN26dXHlyhWx8JMf5lElJwgCfvzxR3h7e6NJkyZSh0NERFQotY/oGTZsGC5fvoy1a9eiWbNmAN5+EzVz5ky0bt1aaWWJd2VnZ0NfX1+doRaK3ypVTD169MDx48cxYsQI7Ny5U+pwiIhKjOexiqM85lElIcVnduXKlZg7dy6cnZ0RFBQEc3NztbwuERFpF3Wew3TKdO/52Lp1Kzp37oxBgwbBxcUFLi4uGDRoED755BNs3rw53z7ff/99sVaB2Lp1a4Gjg4hKY9SoUfD29sbs2bPFtuTkZH7miIhILUJDQzFv3jwMGjQIL1++BAD8+eefePDgQb7bM48qnfHjx6N+/fqYMWMGC6JERKQR1F7oMTExwebNm/Hq1Sv4+/vD398fr1+/xubNm1GpUqV8+0ybNq1YCUfu6klEZaFXr174559/UKdOHbFt1apVcHNzw88//yxhZEREpO0uXrwIDw8P3Lx5E3/88QdSUlIAAIGBgVi4cGG+fcoyj9q0aRNcXV1hZGSE5s2b49atWwVuv379eri7u8PY2BjOzs6YNm0aMjIyihybFMzNzXH37l1MnjwZMplM6nCIiIgKJdkyAtHR0YiOjkabNm1gbGwMQRDee/IUBAHt27cv8qoH6enpqgyVKI93P6sKhQKnT5/Gq1evYGpqKmFURESk7ebMmYOlS5fC19dXaSLljz76CBs3bsy3T1nlUb///jt8fX2xdetWNG/eHOvXr0enTp0QHBwMOzu7PNv/9ttvmDNnDnbs2IGWLVsiJCQEI0aMgEwmw7p164r0mlJ5d6XO9PR0fPXVV5g/f764giwREVF5ovZCz6tXr9CvXz+cP38eMpkMjx8/RvXq1TF69GhYWlpi7dq1efq87xuq9+nZsycnySW10dHRwY0bN3D8+HH06tVLbD9x4gSePn2KMWPGwNDQULoAiYhIawQFBeG3337L025nZ4f4+Ph8+5RVHrVu3TqMGTMGI0eOBPD2kq+TJ09ix44dmDNnTp7tr127hlatWmHQoEEAAFdXVwwcOBA3b94sVnxSmzRpEn766Sdcv34d165d4ygfIiIqd9Re6Jk2bRr09fXx7Nkz1K1bV2zv378/fH19VVLoKSpXV1dERETkaZ8wYQI2bdpUJq9J2klPTw+9e/cWH8vlcsyaNQsPHz5Eeno6Zs6cKWF0RESkLSwsLBAdHQ03Nzeldn9/fzg5OeXbpyzyqKysLPzzzz+YO3eu2Kajo4MOHTrg+vXr+fZp2bIlfvnlF9y6dQvNmjVDWFgYTp06haFDh6o8vrI0efJkXLhwAcuXL2eRh4iIyiW1F3rOnDmDv/76C1WrVlVqr1WrVr5Fl7J0+/ZtpckJ79+/j48//hh9+/ZVaxykfQRBwOTJk7FlyxaMHTtWbH/16hUqV66sFSufEBGR+g0YMACzZ8/GgQMHIJPJoFAocPXqVcyYMQPDhg1TWxzx8fGQy+Wwt7dXare3t8ejR4/y7TNo0CDEx8fjgw8+gCAIyMnJwbhx4/Dll1++93UyMzORmZkpPk5KSlLNAZSCp6cnHj58qHQuv3DhApycnFCrVi0JIyMiInpL7ZMxp6amwsTEJE/769ev1X55i62tLRwcHMTbiRMnUKNGDbRt21atcZD20dPTw7hx4xAQEKC0QsfYsWNRt25dXLx4UcLoiIhIUy1fvhx16tSBs7MzUlJSUK9ePbRp0wYtW7bEvHnzpA6vQLmjYDZv3oy7d+/i0KFDOHnyJJYsWfLePitWrIC5ubl4c3Z2VmPE7/dukSc1NRVDhgxB/fr1ce3aNQmjIiIiekvthZ7WrVtjz5494uPcb6NWr16Ndu3aqTscUVZWFn755ReMGjXqvcNwMzMzkZSUpHQjKsi7n6WEhARcvnwZYWFhsLGxkTAqIiLSVAYGBti+fTtCQ0Nx4sQJ/PLLL3j06BF+/vln6Orqqi0OGxsb6OrqIjY2Vqk9NjYWDg4O+faZP38+hg4dis8++wweHh7o3bs3li9fjhUrVkChUOTbZ+7cuUhMTBRvkZGRKj+W0kpKSoKnpyfs7e3RuHFjsf3dkUhERETqpPZLt1avXo327dvjzp07yMrKwqxZs/DgwQO8fv0aV69eVXc4oiNHjiAhIQEjRox47zYrVqzA4sWL1RcUaRULCwuEhobCz88P9evXF9t//PFHWFhYoE+fPtDRUXvtlYiINFC1atVQrVo1yV7fwMAAjRs3hp+fn7gQgUKhgJ+fH7744ot8+6SlpeU5z+UWpwRByLePoaFhuV/QwNHREadOncKLFy+UYv3www9hbm6O7777Du7u7hJGSERE73r+/DkcHBygp6eHly9f4osvvsDIkSPRuXNnqUNTGZnwvjNrGUpMTMTGjRsRGBiIlJQUNGrUCBMnToSjo2OB/bKzs1GnTh2cOHFCaSJnVejUqRMMDAxw/Pjx926T33Xizs7OSExMVLo8h6io3rx5Azc3NyQmJuL48ePo1q2b1CERUQWSlJQEc3Nznsc0iK+vb77tMpkMRkZGqFmz5ntXzVJ1HvX7779j+PDh2LZtG5o1a4b169dj//79ePToEezt7TFs2DA4OTlhxYoVAIBFixZh3bp1+OGHH9C8eXM8efIE48ePR+PGjfH7778X6TU15TP75MkT1KpVC/r6+nj+/Lm43HxWVpbSUu1ERKR+H3zwARISErBv3z789ttvWLFiBdzd3fHvv/+W6Rfv6jyHqX1EDwCYm5vjq6++KnY/fX19ZGRkqDyeiIgInDt3DocOHSpwO034Vok0i56eHqZOnYpz586hS5cuYntcXBxsbGy4mgcRESnx9/fH3bt3IZfLxVEiISEh0NXVRZ06dbB582ZMnz4dV65cQb169ZT6qjqP6t+/P+Li4rBgwQLExMSgYcOGOH36tDhB87Nnz5QS5nnz5kEmk2HevHmIioqCra0tunfvjmXLlqkspvKiZs2aePLkCW7cuCEWeQBgxIgRCA8Px5o1a/DBBx9IGCERUcUUFxeHu3fvIjMzE9bW1pg7dy5CQ0MxadIkrbq6Qu0jeu7du5d/IP//m6hq1aoVWExZvnw5QkJC8OOPP0JPTzV1qkWLFmHbtm2IjIws1j415VslKv8EQRCLOgqFAg0bNoSpqSl27tzJ4d5EVGZ4HtM869evx+XLl7Fz507x3ywxMRGfffYZPvjgA4wZMwaDBg1Ceno6/vrrrzz9yyKPUidN/symp6fDzs4OKSkpuH37Npo0aQLg7SVtRkZGWvUHBhFReZaYmIhr166p/VItdZ7D1F7o0dHREf+gzX3pd0ct6Ovro3///ti2bRuMjIzy9O/duzf8/PxgamoKDw8PVKpUSen5wkbl/JdCoYCbmxsGDhyIlStXFquvJicbVH4FBQWhefPmMDQ0xMOHD987qSURUWnxPKZ5nJyccPbs2TyjdR48eICOHTsiKioKd+/eRceOHREfH5+nv6rzKHXT9M9sTEwMjh8/js8++0zMfxctWoQdO3Zg2bJlGDp0qMQREhFRWdHqS7cOHz6M2bNnY+bMmWjWrBkA4NatW1i7di0WLlyInJwczJkzB/PmzcM333yTp7+FhQU+/fRTlcVz7tw5PHv2DKNGjVLZPolKw8PDA6GhoXmKPE+ePEHNmjUljIyIiKSWmJiIly9f5in0xMXFiauBWlhYICsrK9/+qs6jqHgcHBwwZswYpbZjx44hMjJSadW0nJwcyOVyThlARKQmsbGx2LdvH1xdXdGzZ0+pwyk1tRd6li1bhu+++w6dOnUS2zw8PFC1alXMnz8ft27dQqVKlTB9+vR8Cz07d+5UaTwdO3Z870oPRFJxdHRUmpzc398fTZs2xYABA7Bz507o6+tLGB0REUmlZ8+eGDVqFNauXYumTZsCAG7fvo0ZM2aIq1/dunULtWvXzre/qvMoKr1r167h6NGj6NGjh9h28OBBTJkyBXPnzsXUqVOlC46ISItcvnwZGzduRLdu3fKMoPz5558xc+ZMtGnThoWekggKCoKLi0uedhcXFwQFBQEAGjZsiOjo6AL3ExcXh+DgYACAu7s7bG1tVR8sUTlx5coVCIKAnJwcFnmIiCqwbdu2Ydq0aRgwYABycnIAvJ3Yf/jw4fj2228BAHXq1MGPP/5Y4H6YR5UfRkZG6N+/v1Lb/v378fLlSyQkJEgTFBGRFvLz88P+/fthYGCQp9DTt29fnDp1Ct27d5coOtVS+xw93t7e8PLywg8//CAuL5mdnY0xY8YgMDAQ/v7+uHr1KoYMGYLw8PA8/VNTUzFp0iTs2bMHCoUCAKCrq4thw4Zhw4YNMDExUduxaPp14qRZbt++DWdnZ/FyrtTUVMTExKBGjRoSR0ZEmornMc2VkpKCsLAwAED16tVhampapH7lKY8qiYrymc3Ozsbhw4fRpk0b8bx/9+5dfP755/D19cWgQYMkjpCISPP4+/vj1KlTaNiwIbp27ar211fnOUzt0/tv2rQJJ06cQNWqVdGhQwd06NABVatWxYkTJ7BlyxYAQFhYGCZMmJBvf19fX1y8eBHHjx9HQkICEhIScPToUVy8eBHTp09X56EQqVXTpk2V5uxZtGgRGjRogB9++EHCqIiISAqmpqbw9PSEp6dnkYs8APMoTaGvr49+/fopnfc3bdqEf/75BydOnJAwMiIizeXt7Y2vvvpKkiKPuql9RA8AJCcn49dff0VISAiAt0OGBw0aBDMzs0L72tjY4ODBg/jwww+V2s+fP49+/fohLi6uLELOV0X5VonKH7lcjm7duuH06dM4ceJEhfhlRUSqx/OYZrpz5w7279+PZ8+e5Zl0ubBVs8pTHlUSFfkzGx8fj+3bt+Pjjz8Wl2aPj4/HuHHjMGjQIPTp00fiCKk8UygUeP36NWxsbMS2S5cuITIyEk2aNIG7u7uE0RGVH1lZWbh27Rratm2rtDq4Kmj1qlsAYGZmhnHjxpWob1paGuzt7fO029nZIS0trbShEWkEXV1dnDp1ChcvXlRK1h88eAAXF5difbtLRESaY9++fRg2bBg6deqEM2fOoGPHjggJCUFsbCx69+5daH/mUZrLxsYGc+fOVWr78ccf8ccffyA6Olqp0CMIgsr/QCHNdfnyZXTt2hV2dnZ48uSJ2L5lyxbs27cP69evFws90dHRaNq0KTw9PXH06FHODUlaIyIiAtHR0fDw8EClSpXy3UYul6NatWqIjY3FvXv34OHhoeYoVUftl27l+vfff3H69GkcO3ZM6VYYHx8fLFy4EBkZGWJbeno6Fi9eDB8fn7IMmahckclkSkWe1NRUdOvWDfXr1xcnNiciIu2yfPlyfPvttzh+/DgMDAzw3Xff4dGjR+jXrx+qVatWaH/mUdqlZ8+emD17Nr744guxLSsrC66urhgwYAAnc66g7ty5g7t374qP69Wrh5SUFERFRSmNAmzQoAE6dOgAV1dXsS0qKgpRUVEICgpSKvIsW7YM48ePR0BAgDoOgUjlfv31V/j4+ODzzz9/7za6urrw9PSEnZ0dnj9/rsboVE/tI3rCwsLQu3dvBAUFQSaTiUub537rIJfLC+y/fv16fPLJJ6hatSq8vLwAAIGBgTAyMsJff/1VtsETlWMRERHifTc3NwkjISKishIaGipermtgYIDU1FTIZDJMmzYNH330ERYvXlxgf+ZR2qVu3bpYuXKlUtulS5fEy/revTTg5MmT0NPTwwcffPDeb7NJ861duxYzZsxAnz598McffwAArK2t8eDBA9SsWVOpePPVV1/hq6++UurfoEEDXLlyJU+R8Ndff8XDhw/x0UcfoWHDhgDeFokBwNjYuOwOiEiFqlSpgvr16xe4zf79+2Fubq7xoyLVPqJnypQpcHNzw8uXL2FiYoIHDx7g0qVLaNKkCS5cuFBofw8PDzx+/BgrVqxAw4YN0bBhQ6xcuRKPHz8u9B+NSJvVq1cP9+/fx8mTJ5Uu3bpw4QIkmIqLiIjKgKWlJZKTkwEATk5OuH//PgAgISGhSJdeMY/Sfu3atcO1a9ewceNG6Oj8X6o/f/58fPLJJzh69KjYlpCQgLCwMOYJWqRLly7Q19eHhYWF0r9r3bp1i3QZlpGREVq1aqU0/6MgCFi9ejXGjx+Pzp07i+179+6FnZ1dnmIRUXn05ZdfIioqKs8lsP9lYWGh8UUeQIIRPdevX8fff/8NGxsb6OjoQEdHBx988AFWrFiByZMnw9/f/719s7OzUadOHZw4cQJjxoxRY9REmqFSpUpo0KCB+Pivv/7CJ598gvbt2+P06dPQ05NkWi4iIlKRNm3a4OzZs/Dw8EDfvn0xZcoU/P333zh79izat29fYF/mURWDrq5unsvwFAoFGjVqhFevXqFdu3Zi+5EjRzBy5Eh07dpVaTWv8PBwVK1alfOzaIAjR44gJiZGnP+0bt26iIyMzHcurpKSyWTo1q0bunXrptR+8eJFpKSkwMjISGyTy+XYu3cvOnXqBFtbW5XFQKQq2lDEKQq1/9Unl8vF1bVsbGzw4sULuLu7w8XFBcHBwQX21dfXV7qmnIgK9uLFCxgbG6NBgwYs8hARaYGNGzeKudBXX30FfX19XLt2DZ9++inmzZtXYF/mURWXjo4OfvzxxzztMTEx0NfXR506dcQ2hUIBDw8PZGdn499//0WNGjUAAE+fPkVycjJq1KgBExMTtcVO73f27Fn07t0blSpVQrdu3VC1alUAUGmRpyC7du3CxIkT4eTkJLbdvHkTQ4cOhbW1NWJjY6Grq6uWWIhUafPmzdi5cye++OILDB8+XOpwSkTtl241aNAAgYGBAIDmzZtj9erVuHr1Kr7++mtUr1690P4TJ07EqlWrkJOTU9ahEmm8kSNH4sGDB1i6dKnYFhcXhxs3bkgYFRERlUROTg5OnDgh/uGko6ODOXPm4NixY1i7di0sLS0L3QfzKHrXnDlzkJSUpHTpTUxMjPiNt4uLi9i+detWeHp6Yvbs2WKbXC7HokWL8OOPPyIzM1N9gRMAoH379vj4448xceJESUbPyGQyNGvWTKnQk5qaCm9vb3Tq1EmpyDN06FD4+voiMjJS7XES3bp1Cy1atMCsWbOKtP3z589x586dIk0tU16p/Sv+efPmITU1FQDw9ddfo1u3bmjdujWsra3x+++/F9r/9u3b8PPzw5kzZ/JdGu3QoUNlEjeRpvrvxMy+vr749ddfsWbNGkyfPl2iqIiIqLj09PQwbtw4PHz4sMT7YB5F/2VkZKR06U2VKlWQmJiI6OjoPKOBLS0tUbNmTfHxy5cvsXjxYujo6GDEiBFi+8KFC3HgwAFMnjxZvKQoOzsbu3fvhq2tLbp168aRHiWQlpaGLVu2YOrUqdDV1YWOjg7+/PPPcvVefvzxx/j444+RnZ0ttsXHx+O3336DQqHAlClTxPYXL17AxMQEFhYWEkRKFUlQUBBu3rwJc3PzIm0/aNAgeHh4oE2bNmUcWdlRe6GnU6dO4v2aNWvi0aNHeP36NSwtLYt0vZyFhQU+/fTTsgyRSGvl5ORAR0cHMplMo39xERFVVM2aNUNAQIDSSIviYB5FRaGjo6M0SgMAVq5ciZUrV+ZZIffzzz9HWlqaUlEoJCQEDx8+FFdlAt4WhcaMGQNdXV2lJb6nTZuGPXv24MsvvxS/gEpLS8OECRNgYWGBb775Rtz3zZs38fjxY3h6esLT0xPA20vNAgICYGRkhDp16ogTUGdkZEAQBBgaGipNSq2pFAoF2rZtizt37kAul4sjE8pTkedd787vZGpqigMHDuDu3btKv7sWL16MHTt2YMWKFZgxY4YUYVIF8cknn+DAgQPiFDKFadCggdK8p5pIrYWe7OxsGBsbIyAgQOmNs7KyKlL/nJwctGvXDh07doSDg0NZhUmktfT09LB7927MmzcPtWrVEtvv3r2L2rVrK63WRURE5c+ECRPEyx8aN26cZ0RO7h+/+WEeRarwbmHB0dER27Zty7PNypUr8dlnn4nz+wBvCxVdunSBXC5XKrzEx8fj9evXSitEvX79Grt374auri6+/fZbsX3Pnj3YvHkz5s+fL37WU1JS0LhxYwBvizuGhoYAgAULFoijl7/55hsAb/8PVK1aFQYGBrh37544kmTnzp3YvXs3evfurTTi5IsvvoC1tTUmT54Ma2trAG9XoJJiMlcdHR2MHz8eCxYsEJc31xRGRkbo06cP+vTpo9QeGhqKnJwceHl5iW0xMTH4+++/0aNHD+alpDJOTk743//+J3UYaqXWQo++vj6qVauW55uAolLFkGUiglKRJyoqCp06dYKVlRVOnz6d51IvIiIqPwYMGAAAmDx5stgmk8nEPz4LyrGYR5G6uLi45Bl15uzsjJMnT+bZ9ttvv8XcuXNhY2MjtlWqVAkrV65EZmamUlHF3d0dH3/8MWrXri22ZWdnw8nJCRkZGTAwMBDbc0cN/bctNjYWAJRGIIWGhuLixYtKhVJBELB582YIgiBefga8naR1zZo1GDVqFBYsWFD0N6UE/P39YWhoiHr16gF4O/di3759izwqobw7d+4cnjx5AldXV7Ft79698PX1xUcffQQ/Pz/pgqMKLyYmBn5+fjA2Ns5TpNQEar9066uvvsKXX36Jn3/+ucgjed7VrFkz+Pv7l3jIMhEpi42NhZGREUxMTODo6Ch1OEREVIDw8PBS9WceReWNjY2NUpEHeDsX0LuTPueaPHmyUpETAKytrfH8+fM8265ZswZLlixRGoFkaGiIwMBAZGVlKa0cNnDgQHh5eSmNQBIEAQsXLkR0dDTs7OzE9gcPHiAiIkLpsjS5XI5OnTqhQ4cO+OKLL1QyEmXv3r0YMmQIvLy8cOPGDRgYGEAmk2lNkSfXu3M+AYCZmRlq1qyp9Id1VlYWpkyZgt69e6N9+/bl9nI1Kp8EQcAff/wBFxcXNGrUqMifn3PnzmHo0KHw8fHRyEKPTHh3nKQaeHt748mTJ8jOzoaLi0ueIcd3794tsP/+/fsxd+5cTJs2rdhDllUtKSkJ5ubmSExMROXKldX2ukSq9urVKyQnJyt9o5Kamprn/xcRaReexyqe8pRHlQQ/syS1169f48GDB7C3txdHFvn7+6NRo0aoXLky4uLixFFE8fHxsLKyKtEcQS9fvkTt2rXRqVMn/PDDD0WeRFYbCIIAuVwujro6deoUunbtCnt7e0RFRbHQQ8USExMDR0dH6OjoICMjQ2n+qIKEhoZiyJAhaNu2LVauXKmSWNR5DlP7iJ5evXqVqn9phiwTUf6sra3Fa88BYPfu3Vi4cCH27t0LHx8fCSMjIqL/+vnnn7F161aEh4fj+vXrcHFxwfr16+Hm5oaePXsW2Jd5FFHpWFlZoXXr1kptrq6u2LZtGxISEpQuFevXrx9CQkKwZ88efPTRR+/dZ2RkJL7//ntkZmbi+++/BwDY2dnh4cOHFXK0tUwmU7q0ztXVFePHj4etra1SkefLL79EmzZt0KlTJ0nmTSLNkJqaipYtWyI7O7vIRR4AqFGjBq5fv16GkZUttY/oKa2IiIgCn1fnUGR+q0TaSC6Xo1GjRrh37x6WLFmCefPmSR0SEZURnsc0z5YtW7BgwQJMnToVy5Ytw/3791G9enXs2rULu3fvxvnz5wvsX57yqJLgZ5Y0RVpaGqpWrYo3b94gLCxMnANxx44d2LFjB8aMGYPhw4cDAB4/fozatWtDR0cHjx8/RvXq1aUMXSMEBQXB09MTOjo6ePLkCeeYJI2g1SN6ACAhIQEHDx5EaGgoZs6cCSsrK9y9exf29vZ5lnL8r/KegBBpOl1dXVy+fBmbNm0Sl+4kIqLyYcOGDdi+fTt69eqlNJS8SZMmRVqemHkUkXqYmJjgxYsXuHHjhlIRIiQkBFevXoWXl5dY6KlVqxZmzZqFFi1aoFq1alKFrFEsLS0xdepUpKenK72/Dx48QN26dUt0uRyRNlH7/4B79+6hdu3aWLVqFb755hskJCQAAA4dOoS5c+cWaR8///wzWrVqhSpVqojfTK1fvx5Hjx4tq7CJKpTKlStj7ty54vBYhUKBESNG4O+//5Y4MiKiii08PBze3t552g0NDZGamlqkfTCPIlIPIyMjfPjhh0ptw4cPx4EDB9C/f3+l9lWrVqF3795KlyzR+1WtWhXffvsttm7dKrbFx8ejefPmaNGihbi6GlFFpfZCj6+vL0aMGIHHjx/DyMhIbO/SpQsuXbpUaP8tW7bA19cXXbp0QUJCgngtuYWFBdavX19WYRNVaNu3b8fu3bvRo0cPvHr1SupwiIgqLDc3NwQEBORpP336NOrWrVtof+ZRRNKqW7cu/ve//6FNmzZSh6J1AgICxLnGbG1tpQ6HyomRI0eiZcuWFe4La7UXem7fvo2xY8fmaXdyckJMTEyh/XOHLH/11VdKk3E1adIEQUFBKo2ViN4aMmQIRo8ejfXr1ytN2kxEROrl6+uLiRMn4vfff4cgCLh16xaWLVuGuXPnFulyW+ZRRKStOnTogCdPnmDPnj3ipVsKhQLffvstkpKSJI6OpHL79m1cv34dOTk5UoeiVmofG2hoaJjvf7SQkJAiVV5VMWSZiIqnUqVK+PHHH5XaQkND8ejRI3Tt2lWiqIiIKp7PPvsMxsbGmDdvHtLS0jBo0CBUqVIF3333nbiiVkGYRxGRNrO3t4e9vb34eMeOHfD19cW2bdtw//59XhpXAe3ZswehoaFo1KiR1KGoldpH9PTo0QNff/01srOzAbxdPu/Zs2eYPXs2Pv3000L7l3bIMhGVXlZWFgYMGIBu3bopXRtNRERlb/DgwXj8+DFSUlIQExOD58+fY/To0UXqyzyKiCoSNzc31KhRA59//jmLPBVUo0aN0LdvX9jY2EgdilqpvdCzdu1apKSkwM7ODunp6Wjbti1q1qwJMzMzLFu2rND+pR2yTESlJwgCWrZsCSsrK47oISJSo6VLlyI8PBzA21V97OzsitVf1XnUpk2b4OrqCiMjIzRv3hy3bt0qcPuEhARMnDgRjo6OMDQ0RO3atXHq1Klivy4RUVG0b98eQUFBmDx5stgWGhqKHTt2QBAECSMjKlsyQaJP+JUrV3Dv3j2kpKSgUaNG6NChQ5H7/vrrr1i0aBFCQ0MBAFWqVMHixYuL/G2WqiQlJcHc3ByJiYmoXLmyWl+bqDyIi4tTuuQyLCwM1atXlzAiIioOnsc0j5eXF+7fv4/mzZtjyJAh6NevX7G/pVRVHvX7779j2LBh2Lp1K5o3b47169fjwIEDCA4OzrcAlZWVhVatWsHOzg5ffvklnJycEBERAQsLC3h5eRXpNfmZJaLSyMnJQZs2bXD9+nUsWLAAixcvljokKkMhISEIDAxE/fr1Ua9ePanDUes5TO2FnsjISDg7O6tkX2lpaeLoICkw2SD6P3fv3oWPjw9GjBiBDRs2wMDAQOqQiKgQPI9ppgcPHuDXX3/Fvn378Pz5c3z88ccYPHgwevXqBRMTkyLvp7R5VPPmzdG0aVNs3LgRwNtJT52dnTFp0iTMmTMnz/Zbt27FmjVr8OjRI+jr65foNfmZJaLSkMvlWLduHVavXo07d+7AxcVF6pCoDK1btw7Tp09Hv3798Pvvv0sdjlrPYWq/dMvV1RVt27bF9u3b8ebNm1LtqyRDlomobFy5cgXZ2dl4+fJliRN4IiIqXP369bF8+XKEhYXh/PnzcHV1xdSpU+Hg4FCs/ZQmj8rKysI///yjNCJbR0cHHTp0wPXr1/Ptc+zYMfj4+GDixImwt7dHgwYNsHz5cnGJdyKisqarq4uZM2ciPDxcqcgTEBAAhUIhYWRUFmxsbNCyZct8FyHQdmov9Ny5cwfNmjXD119/DUdHR/Tq1QsHDx5EZmamukMhIhWaPHkyzp49i59++gkymQzA2293ef0zEVHZqVSpEoyNjWFgYCAudKEO8fHxkMvlSqvbAG9XvImJicm3T1hYGA4ePAi5XI5Tp05h/vz5WLt2LZYuXfre18nMzERSUpLSjYiotExNTcX7/v7+aNGiBbp3747k5GQJoyJVGzZsGK5evZrvKFNtp/ZCj7e3N9asWYNnz57hzz//hK2tLT7//HPY29tj1KhR6g6HiFSoffv2sLKyEh/Pnz8fQ4cO5UmTiEiFwsPDsWzZMtSvXx9NmjSBv78/Fi9e/N4CS3mhUChgZ2eHH374AY0bN0b//v3x1VdfFbh644oVK2Bubi7eVHX5PxFRridPnohfUhbn8lei8kzthZ5cMpkM7dq1w/bt23Hu3Dm4ublh9+7dUoVDRCr27NkzrFmzBr/++iv+/vtvqcMhItIKLVq0QM2aNXHw4EGMHDkSERER8PPzw+jRo2Fubq62OGxsbKCrq4vY2Fil9tjY2PdeQubo6IjatWtDV1dXbKtbty5iYmKQlZWVb5+5c+ciMTFRvEVGRqruIIiIAPTt2xc3b97E3r17lX4/EWkyyQo9z58/x+rVq9GwYUM0a9YMpqam2LRpU7H2kZGRUUbREVFpVatWDefPn8f8+fPRs2dPqcMhItIKuUsF+/v7Y8aMGXBycirxvkqTRxkYGKBx48bw8/MT2xQKBfz8/ODj45Nvn1atWuHJkydK82CEhITA0dHxvRP4GxoaonLlyko3IiJV8/T0VPr9smrVKnz33XecgkCDJSYmomrVqmjVqtV7v0zQZmov9Gzbtg1t27aFq6sr9uzZg/79+yM0NBSXL1/GuHHjCu2vUCiwZMkSODk5wdTUFGFhYQDeXiLy008/lXX4RFQMrVq1wtdffy0+Tk5ORvfu3XHz5k0JoyIi0lzLli0r1RKxqsyjfH19sX37duzevRsPHz7E+PHjkZqaipEjRwJ4OzfC3Llzxe3Hjx+P169fY8qUKQgJCcHJkyexfPlyTJw4scTHQ0Skav/88w/mzJmDqVOn4tKlS1KHQyUUERGBqKgoBAcHV8jVgPXU/YJLly7FwIED8f3338PLy6tE/Xfv3o3Vq1djzJgxYnuDBg2wfv16jB49ulj7i4qKwuzZs/Hnn38iLS0NNWvWxM6dO9GkSZNix0ZEBVuxYgVOnDiBR48e4eHDh9DTU/uvICIijff8+XMcO3YMz549y/Mt5bp16wrsq8o8qn///oiLi8OCBQsQExODhg0b4vTp0+IEzc+ePYOOzv99p+js7Iy//voL06ZNg6enJ5ycnDBlyhTMnj27yK9JRFTWGjVqhLVr1+LZs2do27at1OFQCdWqVQu3bt1CQkKC1KFIQiaoeTyaIAjiZFclUbNmTWzbtg3t27eHmZkZAgMDUb16dTx69Ag+Pj7FWrL9zZs38Pb2Rrt27TB+/HjY2tri8ePHqFGjBmrUqFFo/6SkJJibmyMxMZFDiYmK4OXLl5g5cyYGDBiAzp07i+2l/b1ARCXD85jm8fPzQ48ePcTcp0GDBnj69CkEQUCjRo0KnRNNlXmUFPiZJSIpZGVlITY2lhPCU6mo8xym9q/Tc/+YS0tLy/ebKE9PzwL7R0VFoWbNmnnaFQpFsZcVXbVqFZydnbFz506xzc3NrVj7IKKis7OzyzPp+vHjx/Htt99i8+bNqFOnjkSRERFphrlz52LGjBlYvHgxzMzM8Mcff8DOzg6DBw/GJ598Umh/VeZRREQVgSAIGDNmDE6fPo2TJ0/yyg/SCGqfoycuLg5du3aFmZkZ6tevD29vb6VbYerVq4fLly/naT948GCR+r/r2LFjaNKkCfr27Qs7Ozt4e3tj+/bt790+MzMTSUlJSjciKjlBEDB79mycP39eqeBKRET5e/jwIYYNGwYA0NPTQ3p6OkxNTfH1119j1apVhfZXZR5FRFQRJCYmIjAwEK9evUJcXJzU4VARHTt2DAcPHkRMTIzUoUhC7SN6pk6disTERNy8eRMffvghDh8+jNjYWCxduhRr164ttP+CBQswfPhwREVFQaFQ4NChQwgODsaePXtw4sSJYsUSFhaGLVu2wNfXF19++SVu376NyZMnw8DAAMOHD8+z/YoVK7B48eJivQYRvZ9MJsPJkyexbNkyLFiwQGzPysqqkJOmEREVplKlSuJoaEdHR4SGhqJ+/foAgPj4+EL7qzKPIiKqCCwsLHDp0iVcvnxZaeoBKt+WLFmCO3fu4OjRo+jRo4fU4aid2ufocXR0xNGjR9GsWTNUrlwZd+7cQe3atXHs2DGsXr0aV65cKXQfly9fxtdff43AwECkpKSgUaNGWLBgATp27FisWAwMDNCkSRNcu3ZNbJs8eTJu376N69ev59k+MzMTmZmZ4uOkpCQ4OzvzOnEiFevXrx8UCgXWr1+PqlWrSh0OkdbifCeap1evXujatSvGjBmDGTNm4OjRoxgxYgQOHToES0tLnDt3rtB9qCqPkgI/s0RUHrx69Qo7duzA9OnTlSadp/JjwoQJCAgIwI8//liq1SpVSavn6ElNTYWdnR0AwNLSEnFxcahduzY8PDxw9+7dIu2jdevWOHv2bKljcXR0zPOPXrduXfzxxx/5bm9oaAhDQ8NSvy4Rvd/jx49x6NAhCIKAefPmsdBDRPSOdevWISUlBQCwePFipKSk4Pfff0etWrUKXXErl6ryKCKiikihUKB37964fPkyoqKisH79eqlDonxs3rxZ6hAkpfbyo7u7O4KDgwEAXl5e2LZtG6KiorB161Y4OjoW2r969ep49epVnvaEhARUr169WLG0atVKjCVXSEgIXFxcirUfIlKdWrVq4e7du9iwYQMaNmwotr9+/Vq6oIiIyonq1auLC1dUqlQJW7duxb179/DHH38UKX9RZR5FRFQR6ejo4PPPP4ednR3GjBkjdThE+VJ7oWfKlCmIjo4GACxcuBB//vknqlWrhu+//x7Lly8vtP/Tp08hl8vztGdmZiIqKqpYsUybNg03btzA8uXL8eTJE/z222/44YcfMHHixGLth4hUy9PTExMmTBAfx8TEoGbNmvj888+RmpoqYWREROXHhAkTijQvz7tUmUcREVVUQ4YMUZojDXg70oeovFD7pVtDhgwR7zdu3BgRERF49OgRqlWrBhsbm/f2O3bsmHj/r7/+grm5ufhYLpfDz88Prq6uxYqladOmOHz4MObOnYuvv/4abm5uWL9+PQYPHlys/RBR2Tpx4gTevHmDu3fvwsjISOpwiIjKhV9++QUzZswoMH/KVRZ5FBFRRWZqairef/ToEfr27Ys9e/ZwBcNyYNu2bViyZAmGDh2KFStWSB2OJNRe6HnX1atX0aRJEzRq1KjQbXv16gXg7So9/10RS19fH66urkVateu/unXrhm7duhW7HxGpz2effQZ3d3eYmZlBV1cXwNtvTcLCwlCzZk2JoyMikkZx1tMoqzyKiIiAWbNm4f79+5g1axbnQCsHnjx5gqioKKSnp0sdimQknSK8c+fORR4mrFAooFAoUK1aNbx8+VJ8rFAokJmZieDgYBZsiLRY69atlebs2bFjB+rWrYulS5dKFxQRkYZgHkVEVHZ+/vlnjBo1Cr/99pvUoRCAL7/8Ejdv3lSaCqKikXRET0lWdg8PDy+DSIhI01y9ehU5OTkwMTGROhQiIkkkJycXuw/zKCIi1TM3N8dPP/2k1BYYGAhPT0/IZDKJoqq4LC0t0axZM6nDkJSkhZ6S+Prrrwt8fsGCBWqKhIiktHPnTgwcOBAfffSR2BYaGgp9fX1Uq1ZNwsiIiMpWaGgodu7cibCwMKxfvx52dnbi4hbvTgyaH+ZRRERl7+zZs+jSpQuGDx+OrVu3Qk9P4/7sJg0n6Sdu27ZtsLe3L1afw4cPKz3Ozs5GeHg49PT0UKNGDSYoRBVIx44dxfuCIGD06NG4c+cOfv31V/Ts2VPCyIiIysbFixfRuXNntGrVCpcuXcLSpUthZ2eHwMBA/PTTTzh48GCB/ZlHERGVvYiICCgUCqSlpUFHR9LZUiqc5ORkbNu2DdWrV0fv3r0r7IgqyQo9T548gbW1tfjBFwShSP8I/v7+edqSkpIwYsQI9O7dW+VxEpFmSEhIgFwuhyAISnP5FPV3CxGRJpgzZw6WLl0KX19fmJmZie0fffQRNm7cWGh/5lFERGXvs88+Q61atdCiRQsWetTs8ePHmDlzJuzs7NCnTx+pw5GM2j91r169QocOHVC7dm106dIF0dHRAIDRo0dj+vTpJdpn5cqVsXjxYsyfP1+VoRKRBrG0tMTFixdx48YNuLi4iO2TJk3CyJEj8eTJEwmjIyJSjaCgoHwLMnZ2doiPjy/RPplHERGpXtu2bWFoaCg+XrZsGQICAqQLqIIwNDTEwIED0b17d6lDkZTaCz3Tpk2Dnp4enj17pjSJav/+/XH69OkS7zcxMRGJiYmqCJGINJSOjg48PDzEx69evcKPP/6IXbt2ISYmRsLIiIhUw8LCQvyS7F3+/v5wcnIq8X6ZRxERlZ19+/Zh3rx5+OCDD5iTlrH69evjt99+w48//ih1KJJS+6VbZ86cwV9//YWqVasqtdeqVQsRERGF9v/++++VHguCgOjoaPz888/o3LmzSmMlIs1mbW2NCxcu4NixY2jVqpXYvm/fPgiCgL59+3JyPCLSKAMGDMDs2bNx4MAByGQyKBQKXL16FTNmzMCwYcMK7c88iohI/Tp16oROnTrBx8cHDg4OUodDFYDa/8JJTU3Ndznk169fKw1te59vv/1W6bGOjg5sbW0xfPhwzJ07V2VxEpF2aNGiBVq0aCE+zs7OxqxZsxAZGYns7Owi/WFERFReLF++HBMnToSzszPkcjnq1asHuVyOQYMGYd68eYX2Zx5FRKR+lpaWOHnypNK8kUlJSVAoFLCwsJAuMC2UnZ0NfX39PO0Vbd5OmSAIgjpfsEuXLmjcuDGWLFkCMzMz3Lt3Dy4uLhgwYAAUCkWhq0WUJ0lJSTA3N0diYiIqV64sdThEVARpaWn45ptvcPDgQdy6dQtGRkYAgH///ReWlpZwdHSUOEIi9eF5THNFRkYiKCgIKSkp8Pb2Rq1ataQOSS34mSUibaBQKNCzZ0+EhITgyJEjqFu3rtQhabz09HRER0ejdevWyMjIwIABA5CRkYGnT58iIiICkZGRcHJyQseOHdG9e3d8/PHHMDAwUGuM6jyHqb3Qc//+fbRv3x6NGjXC33//jR49euDBgwd4/fo1rl69iho1aqgznFJhskGkuf5b1W/Xrh2uXbuGPXv2oH///hJGRqQ+PI+RpuFnloi0QWRkJFq2bIm4uDhcv34d3t7eUoekUoIgICsrC+np6UhLS0N6errS/bS0NGRkZCArKwuZmZnIzMws8f34+Hi8ePGi2PPM2djYYObMmZg4cSIqVapURu+EMq0u9ABvJ/zbuHEjAgMDkZKSgkaNGmHixInv/Sa9OMuiHTp0SFVhForJBpF2SE1NRadOnXDz5k2EhYXB2dkZAJCRkQFDQ8MKNcyTKhaexzTPp59+imbNmmH27NlK7atXr8bt27dx4MCBPH3Kax5VEmXxmf1v4T89PR2RkZGIj49HfHw8Xr16hfT0dPGPi9xbTk4OBEHI95a739z7MplM6aajo1Pkx4Ig5Hntd//YUSgUSq/57s/82or7Mz//PS+++/h9z2n6z6Ie53/vKxQKpX+vwm652wqCAENDw3xvBgYG+bZXqlQJVlZWsLa2hpWVldJ9S0tLWFhYwNTUVCk+QRCQlJSEly9f4uXLl4iJiUF0dDSio6MRExOD+Ph45OTkQKFQQC6Xi5/Pd2+6urp52nJv7/6/yP2svu//TFG8++8ik8mgp6cHfX39994Kel5PTw9yuRw5OTniLTs7W7yflZWFjIyMIt+ysrKKfBwAIJfLkZGRke+0Ju/++5TkuaI8X5CCct/3PSeXy8WCTnp6OhQKRYlfv6QMDQ3h6OgIa2treHp6ws3NDS4uLnB1dUXVqlXx77//4vTp0zh48CBiY2MBvF21cu7cuRg7diyMjY3LND6tL/QU18iRI4u87c6dO8swEmVMkIm0S2hoqNKowvHjx+POnTtYu3Yt2rRpI2FkRGWD5zHNY2tri7///ltphUHg7bLrHTp0EBPXd5XXPKokVPmZvXv3LhYsWIB+/fqhcuXKOHjwIG7cuIGwsLBS/YFEVJ7p6enBzMxMnMw9t4hJVFZ0dHRgYmICY2Nj8WfuLbdo+W7xsjj3DQwMYGVlBUdHRzg6OsLCwqJIX9Dm5OTgt99+w+LFixEWFgbg7TxKw4cPx+eff446deqUyRe9Wl/oycjIwL179/Dy5cs8lb4ePXqoO5wSY4JMpL0yMjLg5OSE169f48KFC2jbtq3UIRGpHM9jmsfY2BgBAQFwd3dXan/06BG8vb2Rnp4uUWTqocrP7MqVK987AbWpqSns7OxgY2MDKysrmJiY5Bk9oaenl2ekzrs34P9GHRQ0oqGwNplMVuBoDl1dXTHu4oxKKc42/5Xfnw8FtWn6z4LuF/YcgPeOzCloxI5MJivWCKDMzEwkJyfjzZs3ePXqFV6/fo3Xr1+L99+8eYPs7Ow8seUyNTWFra0tHBwcxD+aHR0dYWtrC319fXHUDgBxdI9CoVC6/bft3RFABY1ge/f/zPv8d7Rcbhy5o3BKcpPL5dDT0xNvuaN8cm+GhoYwMjIq8k1fX79ExYHcPtOmTcP169fRvHlzfPfdd+/drjj7VIWilgtkMplSISf3fknfF3XIzs7G7t27sWzZMjx9+lRst7KywkcffYTmzZujatWqqFu3Lry8vEr9elpd6Dl9+jSGDRuG+Pj4vMHIZJDL5UXaT1xcHIKDgwEA7u7usLW1VWmcRcEEmUi7xcXF4eDBgxg3bpx4gvrpp58QFhaGSZMmcXlM0ng8j2meZs2aoVu3bliwYIFS+6JFi3D8+HH8888/RdpPecijSkKVn9mUlBS4uLjg9evXkMlkmDp1Krp27QoPDw/Y2tqW2z9MiEpCEASkpaXhzZs3SEpKEgsuRkZGsLW1LfDyIVKPyMhIjBs3Dps3b4aLi4vU4WikPXv2IC4uDt27d0ft2rWL3E8ul+PMmTPYunUrTp48macm0b9/f+zbt6/U8Wl1oadWrVro2LEjFixYAHt7+2L3T01NxaRJk7Bnzx5xNJCuri6GDRuGDRs2qPWXFBNkooolJycHNWvWREREBLZu3YqxY8dKHRJRqfA8pnmOHz+OPn36YNCgQfjoo48AAH5+fti7dy8OHDiAXr16Fdi/POVRJaHqz+yZM2ewY8cOLFy4kKveEFG5c/ToUXh7e6NatWpSh6IRPvjgA1y9ehX79u0r8eIq6enpuHfvHo4dO4aIiAg8f/4cnTt3zjM3XklodaGncuXK8Pf3L/HqWmPHjsW5c+ewceNGtGrVCgBw5coVTJ48GR9//DG2bNmiynALxASZqGJRKBQ4evQoduzYgf3794sTtt27dw8ymSzPnBlE5R3PY5rp5MmTWL58OQICAmBsbAxPT08sXLiwSJeYlqc8qiT4mSWiiiIwMBDNmzeHiYkJbt26hZo1a0odUrn3zTff4Pbt21i0aFG5LN5rdaFn1KhRaNWqFUaPHl2i/jY2Njh48CA+/PBDpfbz58+jX79+iIuLU0GURcNkg4gAoH379vj777+xbds2fP7551KHQ1RkPI9VPOUpjyoJfmaJqKIIDw9H//79YWdnh2PHjolzJJHmUuc5TK9M956PjRs3om/fvrh8+TI8PDygr6+v9PzkyZML7J+WlpbvJV92dnZIS0tTaaxERIXJyMiAtbU1DA0N8cknn4jt2dnZeX6/ERFJjXkUEZFmcHNzw5UrV5Ceni4WeeRyOWJiYuDk5CRxdFTeqb0suHfvXpw5cwZ//PEHNmzYgG+//Va8rV+/vtD+Pj4+WLhwITIyMsS29PR0LF68GD4+PmUYORFRXkZGRti/fz+ePXumdP309OnT8eGHH+LWrVsSRkdE2kYul+Obb75Bs2bN4ODgACsrK6VbYVSdR23atAmurq4wMjJC8+bNi/w7b9++fZDJZIXOKUREVJEZGBjA3NxcfLxkyRI0aNAAx48flzCq8un169dK57aKTu2Fnq+++gqLFy9GYmIinj59ivDwcPGWu4Z9Qb777jtcvXoVVatWRfv27dG+fXs4Ozvj2rVr+S5DR0SkDnZ2duL91NRU7NmzBxcvXkRKSoqEURGRtlm8eDHWrVuH/v37IzExEb6+vujTpw90dHSwaNGiQvurMo/6/fff4evri4ULF+Lu3bvw8vJCp06d8PLlywL7PX36FDNmzEDr1q2L9XpERBVZTk4Ozpw5g4SEBCQmJkodTrmzcOFCVKpUCatWrZI6lHJB7XP0WFlZ4fbt2yWejBl4O+z4119/xaNHjwAAdevWxeDBg8WJUdWF14kT0fs8f/5c/CMod4neQ4cOIScnB59++il0dXUljpCI5zFNVKNGDXz//ffo2rUrzMzMEBAQILbduHEDv/32W6H7UFUe1bx5czRt2hQbN24E8HbCemdnZ0yaNAlz5szJt49cLkebNm0watQoXL58GQkJCThy5EiRX5OfWSKqyLKysnD48GGlFaUEQRBzzYqse/fuOHHiBHbv3o1hw4ZJHU6+tHoy5mnTpsHW1hZffvmlOl+2TDDZIKKiys7ORu3atfH06VP89NNPGDVqlNQhEfE8poEqVaqEhw8folq1anB0dMTJkyfRqFEjhIWFwdvbW23f8mZlZcHExAQHDx5Uuvxq+PDhSEhIwNGjR/Ptt3DhQty7dw+HDx/GiBEjCi30ZGZmIjMzU3yclJQEZ2dnfmaJiPD20tvOnTtjypQp6N27t9ThSEoQBMTExKBSpUrl9vygzrxL7ZduyeVyrF69Gm3btsWkSZPg6+urdCvM7t27cfLkSfHxrFmzYGFhgZYtWyIiIqIsQyciKrHs7GyMGDECderUwcCBA8X2qKgopT9iiIgKUrVqVURHRwN4O7rnzJkzAIDbt2/D0NCw0P6qyqPi4+Mhl8vzTOxsb2+PmJiYfPtcuXIFP/30E7Zv317k11mxYgXMzc3Fm7Ozc5H7EhFpuw0bNuDixYsYN24ckpOTpQ5HUjKZDI6OjuW2yKNuai/0BAUFwdvbGzo6Orh//z78/f3FW0BAQKH9ly9fLg4tvn79OjZu3IjVq1fDxsYG06ZNK+PoiYhKxsTEBAsXLsSDBw+ULo8YOXIkatSoAT8/PwmjIyJN0bt3b/H3xaRJkzB//nzUqlULw4YNK9JIQanyqOTkZAwdOhTbt2+HjY1NkfvNnTsXiYmJ4i0yMrLMYiQi0jTTpk3DjBkz8Msvv8DMzEzqcKgcUfvy6ufPny9V/8jISNSsWRMAcOTIEfzvf//D559/jlatWuHDDz9UQYRERGUnd3lM4O3qAA8fPkRMTAyqV68uYVREpClWrlwp3u/fvz+qVauG69evo1atWujevXuh/VWVR9nY2EBXVxexsbFK7bGxsXBwcMizfWhoKJ4+faoUo0KhAADo6ekhODg43/kbDQ0NizRSiYioItLX18eaNWuU2m7cuIHnz5/jf//7n0RRqd/Bgwfh5+eHHj16oHPnzlKHUy6ofURPaZmamuLVq1cAgDNnzuDjjz8G8HaJ4/T0dClDIyIqFisrKzx58gRnz56Fm5ub2L5w4UIsWLBA/F1HRPQ+Pj4+8PX1LVKRB1BdHmVgYIDGjRsrjUZUKBTw8/PLd5n2OnXqICgoCAEBAeKtR48eaNeuHQICAnhJFhGRCrx58wb9+/dH3759sXv3bqnDUZtjx45h69atuH37ttShlBtqGdHTp08f7Nq1C5UrV0afPn0K3PbQoUMFPv/xxx/js88+g7e3N0JCQtClSxcAwIMHD+Dq6qqqkImI1MLQ0BDt2rUTH8fFxWHNmjVIT0/HBx98gI4dO0oYHRGVR8HBwdiwYQMePnwI4O2qWZMmTYK7u3uhfVWZR/n6+mL48OFo0qQJmjVrhvXr1yM1NRUjR44EAAwbNgxOTk5YsWIFjIyM0KBBA6X+FhYWAJCnnYiISsbU1BQDBgzA4cOHK9TkzEOGDIGjoyPz5neoZUSPubm5uOTbuxPq5XcrzKZNm+Dj44O4uDj88ccfsLa2BgD8888/ShOcEhFpIisrK+zZswcjRowQv2kHgEuXLiEsLEzCyIioPPjjjz/QoEED/PPPP/Dy8oKXlxfu3r2LBg0a4I8//ii0vyrzqP79++Obb77BggUL0LBhQwQEBOD06dPiBM3Pnj0TJ44mIqKyp6+vj1WrVsHf319pUuJ79+5JGFXZ69ixI1atWoUWLVpIHUq5obbl1b/++mvMmDEDJiYm6ng5teCytESkDjk5OahduzYiIiJw4sQJXntMKsPzmOapUaMGBg8ejK+//lqpfeHChfjll18QGhoqUWTqwc8sEVHxHDt2DD179sT06dOxevVqpfkiSb3UeQ5T22TMixcvxrhx41RS6Hnz5g1++uknpSHLo0aNgpWVVan3TURU3rx+/Rq1a9dGcnIy2rZtK7bnniRyR0wSkfaLjo7GsGHD8rQPGTIkz4Sc78M8ioio4njw4AEAID09XStzxtxzWe3ataGrqytxNOWH2sp5qho4dOnSJbi6uuL777/Hmzdv8ObNG2zYsAFubm64dOmSSl6DiKg8sbOzw+nTp/Ho0SOlYnn//v3RpEkT3LlzR8LoiEidPvzwQ1y+fDlP+5UrV9C6detC+zOPIiKqWObOnYtz587hu+++08pCz5IlS1CvXj2sXr1a6lDKFbUur66KD9bEiRPRv39/bNmyRazYyeVyTJgwARMnTkRQUFCpX4OIqDzKnUsDAGJiYnD58mVkZGTwW3iiCqRHjx6YPXs2/vnnH3Eughs3buDAgQNYvHgxjh07prTtfzGPIiKqeNq3by/eFwQB8+bNw4ABA+Dh4SFhVKphZGQEY2NjNG7cWOpQyhW1zdGjo6OjNCnz+7x+/brA542NjREQEJBnZYng4GA0bNhQrUus8zpxIpJSfHw8zp8/j759+4ptS5YsgUwmw4QJE1gAokLxPKZ5ijq3gkwmg1wuz9NenvKokuBnloiodLZt24Zx48bBysoKT548gaWlpdQhlVpmZiZ0dHSgr68vdSgF0so5eoC38/QUZWWtgjRq1AgPHz7Mk6A8fPgQXl5exdrXokWLsHjxYqU2d3d3PHr0qFQxEhGpg42NjVKR59WrV1i5ciXS0tLQrFkzLjFJpIUUCkWp+qsyjyIiIs3Tr18/7NmzB4MHD9aKIg8AGBoaSh1CuaPWQs+AAQNgZ2dX7H7vLgc3efJkTJkyBU+ePFEasrxp0yasXLmy2PuuX78+zp07Jz7W01PrW0JEpDKVK1fG9u3bcfLkSaWl2c+fPw87OzvUr19fwuiIqDSuX7+OV69eoVu3bmLbnj17sHDhQqSmpqJXr17YsGFDvsluWeZRRESkWSwtLXHx4kWt+LtXLpdzAub3UNulW7q6uoiOji5RoUdHRwcymazQCZ3fN0z5fRYtWoQjR44gICCg2DEBHD5MROWfXC6Hu7s7QkNDcfjwYfTq1UvqkKgc4XlMc3Tu3BkffvghZs+eDQAICgpCo0aNMGLECNStWxdr1qzB2LFjsWjRojx9yyqPkgI/s0REqpWRkYHhw4djwoQJSqu7lndyuRzVqlWDp6cndu3aBXt7e6lDKpRWXrpVmnpSeHi4CiNR9vjxY1SpUgVGRkbw8fHBihUrUK1atXy3zczMRGZmpvg4KSmpzOIiIlKFxMRENGzYEImJiUqjfF69egVLS8siz/dBRNIKCAjAkiVLxMf79u1D8+bNsX37dgCAs7MzFi5cmG+hpyzzKCIi0mwrV67E/v37ceHCBYSFhaFSpUpSh1Qkd+7cwYsXL5Cenq60YAm9pbZCT2muKXdxcVFhJP+nefPm2LVrF9zd3REdHY3FixejdevWuH//PszMzPJsv2LFijxz+hARlWdWVlY4ePAgkpKSlE7cw4YNQ1hYGH788Ue0atVKwgiJqCjevHmj9G3lxYsX0blzZ/Fx06ZNERkZmW/fssqjiIhI882ZMweBgYGYOnWqxhR5AKBZs2Z48OABQkNDteIyNFVT26Vbqvbvv//i2bNnyMrKUmrPbynRokpISICLiwvWrVuH0aNH53k+vxE9zs7OHD5MRBolPj4etWrVQlJSEoKDg1GzZk2pQyKJ8DIYzeHi4oKff/4Zbdq0QVZWFiwsLHD8+HFxydygoCC0bdu20NVLc5VFHqUO/MwSEZGm0spLt1QlLCwMvXv3RlBQkNL15rnLtpfm2nILCwvUrl0bT548yfd5Q0NDzuhNRBrPxsYGEREROH/+vFKRZ/HixXj16hW++OIL1K5dW8IIiei/unTpgjlz5mDVqlU4cuQITExM0Lp1a/H5e/fuoUaNGoXupyzzKCIi0nzR0dFYtmwZ1q5dy799NZjGTc4wZcoUuLm54eXLlzAxMcGDBw9w6dIlNGnSBBcuXCjVvlNSUhAaGgpHR0fVBEtEVE5VrlwZPXv2FB8nJCTgm2++wYYNGxAbGyu2JyUlISMjQ4oQiegdS5YsgZ6eHtq2bYvt27dj+/btMDAwEJ/fsWMHOnbsWOh+yjKPIiIizaZQKNCpUyds2rQJU6dOlTqc99q6dSt8fX3x4MEDqUMptzSu0HP9+nV8/fXXsLGxgY6ODnR0dPDBBx9gxYoVmDx5crH2NWPGDFy8eBFPnz7FtWvX0Lt3b+jq6mLgwIFlFD0RUflUuXJl/P777xg/fjxatmwptm/cuBG2trZcdplIYjY2Nrh06RLevHmDN2/eoHfv3krPHzhwAAsXLix0P6rMo4iISLvo6Ohg7dq18Pb2LteFns2bN+Pbb7/FzZs3pQ6l3NK4Qo9cLhcnSraxscGLFy8AvL12PTg4uFj7ev78OQYOHAh3d3f069cP1tbWuHHjBmxtbVUeNxFReaajo4MuXbpg8+bN0NXVFduvX7+OlJQUpdUMUlNT8cMPPyiN/CEi9TA3N1f6P5rLyspKaYTP+6gyjyIiIu3z8ccf486dO3B3d5c6lHwJgoClS5di0KBBeb70oP+jcXP0NGjQAIGBgXBzc0Pz5s2xevVqGBgY4IcffkD16tWLta99+/aVUZRERNrh2LFjuHPnjtLcH3/99RfGjh2L1atX4/Hjx+LcHkRU/qkyjyIiIu2ko/N/40FCQkJQpUoVmJqaShjR/5HJZOjRo0e5XzxAaho3omfevHniUu1ff/01wsPD0bp1a5w6dQrff/+9xNEREWkXmUyGpk2bwsrKSmzT19dH06ZN0bNnT6UiT58+fbBo0aIir/pDROrHPIqIiIrq0KFDaNSoESZNmiR1KFRMGru8+rtev34NS0tLtX+rzCU+iagiUygU4jc+Dx8+RL169WBgYIC4uDjxd+KrV69gaWmp9M0QlR88jxEgXR5VEvzMEhGpz+XLl9G2bVu0atUKZ86cgbGxsaTx/PnnnwgNDcWQIUNgYWEhaSwlweXVi+ndb5qJiEg93i3eODk5YefOnYiMjFQ6cY0ePRo3btzADz/8wCG2ROUU8ygiIspP69atceHCBbRq1Srf+eHUKScnBzNmzMC///6LhIQEzJs3T9J4yjutKPQQEZG0KleujBEjRii15eTk4NatW4iNjUW1atXE9pCQEAQEBKBTp04wNzdXc6REREREVFRt2rSROgQAb79gnDVrFr799lt88cUXUodT7nEsPRERlQk9PT08ffoUfn5+8PLyEtt37tyJ/v37Y8KECRJGR0RERERFpVAo8N133+H48eOSvL6Ojg6GDx8Of39/jbxsS91Y6CEiojJjYGCAjz76SGnuD3t7e9SpUwddunQR2+Lj41G7dm1MmTIFcrlcilCJiIiI6D22bduGqVOnYsKECUhOTlbra+fk5Ij3NWE+ufKAhR4iIlKrqVOn4uHDhxg0aJDYdvr0aTx+/BgXLlxQugb80qVLiIqKkiJMIiIiIvr/hg8fjkaNGuGrr75CpUqV1Pa6J06cgJeXF27cuKG219QGnKOHiIgk8e43Mr169cKRI0fw7kKQgiBgwIABiI6OxuXLl/HBBx9IESYRERFRhWdiYoLbt2+rdSVVhUKBBQsW4N9//8X+/fvRokULtb22pmOhp5yQy+Xw8PCAnZ0d7O3t4eDgAAcHB/F+7k87Ozvo6+tLHW6FlJ2djaioKLx58wYZGRnIyMhAZmZmmf0UBAHm5uawsLDI92Zpafne58zMzDissZzLzs5GYmJikW7JycnQ19eHkZERjI2NS/wz976RkVG5W+7c1NQUPXv2VGqLj4+Hi4sLUlJS0LRpU7H9p59+woULFzB69Gh8+OGHao5UWoIgIDk5mctKExERkdq9mz8qFAoIglCmq3Hp6Ojg3LlzWLVqFZYsWVJmr6ONWOgpJ+Lj4/Hw4UM8fPiw0G2tra3zLQL9t83W1lbyZfA0SVpaGp49e4aIiIh8b1FRUVAoFGqN6c2bNyXqp6OjA3Nz8wKLQbk3Kysr1KhRA9WrV4eBgYGKj0B7ZWVl4fnz50hISMi3OPO+9txbenq6pPEbGBjkWwyys7ODq6trnpu9vb3ai4e2tra4fv06UlJSYGhoKLbv3bsXfn5+aNSokVjoyczMxJMnT1CvXr0yj1OhUCA6OhoJCQlKr3f79m3cvn0b9evXR9u2bcXtZ8+ejczMTCxZsgRmZmYAgMOHD2PPnj1o164dJk6ciPj4eMTGxmLgwIFITEzEyJEjkZWVhdjYWNy+fRuPHj2CoaEhcnJyYG5ujri4uDI9RiIiIqL3CQwMxNixYzF48GBMmjSpTF/LysoKq1atKtPX0EYy4d1x8lQsSUlJMDc3R2JiYqm/Xc3IyMCNGzcQExOD2NhYpZ+592NjY4s1SamOjg5sbW3zFITs7e1RtWpVeHp6olatWtDTqxj1voSEBLFo8/Tp0zyFnKL84WRgYAAbGxsYGxvD0NAQhoaGMDIyKtLP4m4rk8mQlJSEhIQEvHnzBgkJCe+95T7/5s0bZGdnl+j90dXVRY0aNVCnTh24u7ujTp064n1ra+sS7VPTCYKAFy9eICQkBMHBweLP4OBghIeHq6TwV6lSJZibmxd4MzMzg1wuR3p6OjIyMpCenq50/30//9v27kR2xWVkZAQXFxe4ubnlWwiys7NTWyHoypUrOHbsGMaOHYsaNWoAAP766y988sknaNmyJa5evVpg/5ycHCQkJEBPT09ctSEjIwN79uxBQkICZs6cKR7Lli1bsHv3bgwYMABTp04FAKSnp8PExATA2/NAbvFm0aJFWLx4MSZMmIB169bh5cuXiI2NhY+PD3JycjBnzhxkZGSIxZsnT57A0NAQWVlZKM6pWCaTISsrSyW/u1V5HiNSB35miYikt2XLFkyYMAFOTk4ICwtT6ZfFKSkpmDBhAvr27Yvu3burbL/lgTrPYSz0lIK6kw2FQoHXr18rFX/yKwjFxMQgLi6uSH84GBkZoUGDBvDy8lK6mZubl/nxqJIgCIiNjX3vaJyIiAgkJSUVuh8zMzO4uLi892Zvb1/uLnl5lyAIyMjIeG8hKL9bXFwcHj9+jNTU1Pfu18bGJt8CkJubm1YUCpOTk/MUc0JCQhASEoKUlJT39jM2NoalpWWhhZr/3iwsLGBubo7KlSur9f3LyckpsFCUnp6OmJgYPH36FOHh4Xj69CmePn2K58+fF/r7xNjYON8CUO7N1ta2TAtBW7ZswbRp0zB06FBs375dbB81ahTCwsJw/vx58fUnT56MDRs24Msvv8SyZcsAvB3Rlzux4LvFmwULFmDJkiUYP348Nm/eDODt/zNTU1MYGRnhm2++wfPnz/HgwQMEBgbi+fPnYlGuOGQyGWxsbFCpUiVYWlqiZs2acHJygr29PczMzMRCm7u7O+zs7JRGOJUG/2gmTcPPLBGR9BQKBebPny8We1Rp06ZN+OKLL2BsbIzQ0FA4OjqqdP9SYqFHQ5TnZCMnJwfx8fHvLQiFh4cjKCjovX/cu7q6ikWfhg0bwsvLC66urpIWOZKTkxEeHo7w8HCEhYWJt9y2jIyMQvdhY2OjVLhxdXVVemxhYVEh57bJHbny6NEjPHr0CMHBweL9yMjI9/bT19dHrVq18hSA3N3dxZES5UVOTg7Cw8OVRuXk3o+Ojn5vP11dXbi5uYnHVbt2bfGno6Njhfi85F6mllv4+e+tKIUgExOTPMWfGjVqiJcN5hZWSiM1NRXJyclwcHAAADx//hzOzs4A8i/eTJkyBevXrwfw9v/A//73P5iZmWH9+vXi5/fff/9FUFAQFAoFkpKScO/ePQQGBuLevXuFLi2qr68vzruW+zP39t/H1tbWkhRNy/N5jCg//MwSEWk3uVyOoUOHYvz48WjdurXU4agUCz0aQtOTDYVCgdDQUAQGBiIgIACBgYEIDAx87x/2ZmZm8PT0VCr+NGjQQLyEobTkcjmeP3+uVMTJLeSEhYUVemmVTCaDk5PTe0fjVKtWTa1LAWqL1NRUhISE5CkAhYSEFDhqwcHBIU8ByNLSEsD/rbb07s/82kr63KtXr/KMzgkNDS3wsjY7OzulQk7ufc5dVLisrCxERka+txAUFRVVaCHI1tZWLPzkFn9y7zs4OJSooPby5UucPHkSpqam6NGjhzgKJiMjA3p6enkKKwqFAuHh4UrFnHv37iE0NDTf/evr66NevXrw9PSEp6cnqlWrplTIsbS0LPeFQE0/j5H0Nm3ahDVr1iAmJgZeXl7YsGEDmjVrlu+227dvx549e3D//n0AQOPGjbF8+fL3bp8ffmaJiMqfBw8ewM3Nrdh/FyoUChw9ehR79+7Fvn37yvWVE6rAQo+G0NZk4/Xr1+IfOrkFoAcPHiArKyvPtjo6OqhVq5ZS8cfLywtVqlTJ9w+cN2/e5FvECQsLQ0RERKFziFhZWaF69erizc3NTfxZrVo1rkimRgqFApGRkXkKQMHBwXjx4oXU4eXL2NgYtWvXVhqVk/uzvI1A0ibvFoJyR+A9ffoUoaGhCA0NRXx8fIH9jY2NlQo/7xaCXF1dS1SIyx2d8+4tKCjovZfqOTo6wsvLSyzqeHp6ok6dOhr/O0dbz2OkHr///juGDRuGrVu3onnz5li/fj0OHDiA4OBg2NnZ5dl+8ODBaNWqFVq2bAkjIyOsWrUKhw8fxoMHD4o89J+fWSKi8mXt2rWYM2cOpkyZgm+++aZYfXNycuDk5ISXL19i9+7dGDZsWBlFWT6w0KMhKlKykZ2djeDg4Dyjf16+fJnv9tbW1vDy8oK7uztevnwpFnMSExMLfB0DAwO4urq+t5ijaXMHVVRJSUni5VHvjgBKTU0VR3a8+zO/ttI8Z2pqmu+lVlWrVtX6bwo0UVJSEkJDQxEWFiYWf3IfR0REFDjptY6ODqpWrfre0UBmZmYIDQ3NM0rn6dOn+e7P0NAQ9evXF4s5Xl5e8PDwgK2tbRkdvbQq0nmMVK958+Zo2rQpNm7cCODtFwDOzs6YNGkS5syZU2h/uVwOS0tLbNy4scjJPT+zRETly/Hjx9GjRw+sXbsW06ZNg0wmQ2JiInJycmBlZSV++Z+UlIQ1a9YgIiICe/bsEfsvWLAAOTk5+PLLL2FqairVYagFCz0agskGEBMTk6f4ExwcXODqYA4ODvkWcqpXr44qVarwD3EiEmVnZyMiIkKp+PNuMSgtLa3A/np6eu8dKZi7+mBuQcfT0xO1a9fWignGi4rnMSqprKwsmJiY4ODBg+jVq5fYPnz4cCQkJODo0aOF7iM5ORl2dnY4cOAAunXrlu82mZmZyMzMFB8nJSXB2dmZn1kionLkp59+Qv/+/cVCzXfffYepU6di4MCB+O233wC8XbW0UqVKEAQBwcHBqF27tpQhS0KdeVfFyWapTDg4OMDBwQGdOnUS2zIyMsQVaJ48eaJU2HF1dVXZnD5EpP309fVRs2ZN1KxZM89zgiDg5cuXeUYB5d6PjY1FTk6OuLrguwUdDw8PWFtbS3BERNohPj4ecrkc9vb2Su329vZ49OhRkfYxe/ZsVKlSBR06dHjvNitWrMDixYtLFSsREZWt0aNHKz1+/fo1ACitmGVsbIzp06fD3d1dXDiDyg5H9JQCvwklIiq/UlJSEB8fD2dnZ+jq6kodTrnE8xiV1IsXL+Dk5IRr167Bx8dHbJ81axYuXryImzdvFth/5cqVWL16NS5cuABPT8/3bscRPUREmikzMxNZWVkqWVlVW3BEDxERUSmZmppq/bXeRFKxsbGBrq4uYmNjldpjY2ML/ab2m2++wcqVK3Hu3LkCizzA23mzclfMIyIizcHf39LiZChEREREVCwGBgZo3Lgx/Pz8xDaFQgE/Pz+lET7/tXr1aixZsgSnT59GkyZN1BEqERFRhcMRPURERERUbL6+vhg+fDiaNGmCZs2aYf369UhNTcXIkSMBAMOGDYOTkxNWrFgBAFi1ahUWLFiA3377Da6uroiJiQHA0XdERESqxkIPERERERVb//79ERcXhwULFiAmJgYNGzbE6dOnxQmanz17prSS5pYtW5CVlYX//e9/SvtZuHAhFi1apM7QiYiItBonYy4FTmJJRESajOcx0jT8zBIRkabiZMwaIrdGlpSUJHEkRERExZd7/uJ3PqQpmHsREZGmUmfexUJPKSQnJwMAnJ2dJY6EiIio5JKTk2Fubi51GESFYu5FRESaTh15Fy/dKgWFQoEXL17AzMwMMplM6bmkpCQ4OzsjMjKywgwtrojHDFTM4+YxV4xjBirmcVekYxYEAcnJyahSpYrSXCpE5VVBuVdJVKT/70XB9yMvvid58T1RxvcjL74nynLfj2fPnkEmk6kl7+KInlLQ0dFB1apVC9ymcuXKFe7DXRGPGaiYx81jrjgq4nFXlGPmSB7SJEXJvUqiovx/Lyq+H3nxPcmL74kyvh958T1RZm5urrb3g1/fERERERERERFpCRZ6iIiIiIiIiIi0BAs9ZcTQ0BALFy6EoaGh1KGoTUU8ZqBiHjePueKoiMddEY+ZqKLi/3dlfD/y4nuSF98TZXw/8uJ7okyK94OTMRMRERERERERaQmO6CEiIiIiIiIi0hIs9BARERERERERaQkWeoiIiIiIiIiItAQLPUREREREREREWoKFnjKwadMmuLq6wsjICM2bN8etW7ekDkllVqxYgaZNm8LMzAx2dnbo1asXgoODlbbJyMjAxIkTYW1tDVNTU3z66aeIjY2VKGLVW7lyJWQyGaZOnSq2aesxR0VFYciQIbC2toaxsTE8PDxw584d8XlBELBgwQI4OjrC2NgYHTp0wOPHjyWMuHTkcjnmz58PNzc3GBsbo0aNGliyZAnenbNeG4750qVL6N69O6pUqQKZTIYjR44oPV+UY3z9+jUGDx6MypUrw8LCAqNHj0ZKSooaj6J4Cjrm7OxszJ49Gx4eHqhUqRKqVKmCYcOG4cWLF0r70LRjJqKCaXO+9i5V5W7Pnj1D165dYWJiAjs7O8ycORM5OTnqPJQyUdK8TtveD1XkfNp0nlRVTqjJ74m68sV79+6hdevWMDIygrOzM1avXl3Wh1Yi6solVfZ+CKRS+/btEwwMDIQdO3YIDx48EMaMGSNYWFgIsbGxUoemEp06dRJ27twp3L9/XwgICBC6dOkiVKtWTUhJSRG3GTdunODs7Cz4+fkJd+7cEVq0aCG0bNlSwqhV59atW4Krq6vg6ekpTJkyRWzXxmN+/fq14OLiIowYMUK4efOmEBYWJvz111/CkydPxG1WrlwpmJubC0eOHBECAwOFHj16CG5ubkJ6erqEkZfcsmXLBGtra+HEiRNCeHi4cODAAcHU1FT47rvvxG204ZhPnTolfPXVV8KhQ4cEAMLhw4eVni/KMX7yySeCl5eXcOPGDeHy5ctCzZo1hYEDB6r5SIquoGNOSEgQOnToIPz+++/Co0ePhOvXrwvNmjUTGjdurLQPTTtmIno/bc/X3qWK3C0nJ0do0KCB0KFDB8Hf3184deqUYGNjI8ydO1eKQ1KZkuZ12vZ+qCrn06bzpKpyQk1+T9SRLyYmJgr29vbC4MGDhfv37wt79+4VjI2NhW3btqnrMItMHbmkKt8PFnpUrFmzZsLEiRPFx3K5XKhSpYqwYsUKCaMqOy9fvhQACBcvXhQE4e2HXF9fXzhw4IC4zcOHDwUAwvXr16UKUyWSk5OFWrVqCWfPnhXatm0rJgTaesyzZ88WPvjgg/c+r1AoBAcHB2HNmjViW0JCgmBoaCjs3btXHSGqXNeuXYVRo0YptfXp00cYPHiwIAjaecz/PVEV5Rj//fdfAYBw+/ZtcZs///xTkMlkQlRUlNpiL6n8kpX/unXrlgBAiIiIEARB84+ZiJRVtHztXSXJ3U6dOiXo6OgIMTEx4jZbtmwRKleuLGRmZqr3AFSkNHmdtr0fqsj5tO08qYqcUJvek7LKFzdv3ixYWloq/b+ZPXu24O7uXsZHVDpllUuq8v3gpVsqlJWVhX/++QcdOnQQ23R0dNChQwdcv35dwsjKTmJiIgDAysoKAPDPP/8gOztb6T2oU6cOqlWrpvHvwcSJE9G1a1elYwO095iPHTuGJk2aoG/fvrCzs4O3tze2b98uPh8eHo6YmBil4zY3N0fz5s019rhbtmwJPz8/hISEAAACAwNx5coVdO7cGYB2HvN/FeUYr1+/DgsLCzRp0kTcpkOHDtDR0cHNmzfVHnNZSExMhEwmg4WFBYCKccxEFUVFzNfeVZLc7fr16/Dw8IC9vb24TadOnZCUlIQHDx6oMXrVKU1ep23vhypyPm07T6oiJ9S29+Rdqjr+69evo02bNjAwMBC36dSpE4KDg/HmzRs1HU3ZKEkuqcr3Q6/0h0C54uPjIZfLlX7pA4C9vT0ePXokUVRlR6FQYOrUqWjVqhUaNGgAAIiJiYGBgYH4gc5lb2+PmJgYCaJUjX379uHu3bu4fft2nue09ZjDwsKwZcsW+Pr64ssvv8Tt27cxefJkGBgYYPjw4eKx5fd519TjnjNnDpKSklCnTh3o6upCLpdj2bJlGDx4MABo5TH/V1GOMSYmBnZ2dkrP6+npwcrKSiveh4yMDMyePRsDBw5E5cqVAWj/MRNVJBUtX3tXSXO3mJiYfN+v3Oc0TWnzOm17P1SR82nbeVIVOaG2vSfvUtXxx8TEwM3NLc8+cp+ztLQsk/jLWklzSVW+Hyz0UIlNnDgR9+/fx5UrV6QOpUxFRkZiypQpOHv2LIyMjKQOR20UCgWaNGmC5cuXAwC8vb1x//59bN26FcOHD5c4urKxf/9+/Prrr/jtt99Qv359BAQEYOrUqahSpYrWHjMpy87ORr9+/SAIArZs2SJ1OEREKlVRcreCVNS8riAVMecrDHNCKqnykkvy0i0VsrGxga6ubp5Z+WNjY+Hg4CBRVGXjiy++wIkTJ3D+/HlUrVpVbHdwcEBWVhYSEhKUttfk9+Cff/7By5cv0ahRI+jp6UFPTw8XL17E999/Dz09Pdjb22vdMQOAo6Mj6tWrp9RWt25dPHv2DADEY9Omz/vMmTMxZ84cDBgwAB4eHhg6dCimTZuGFStWANDOY/6vohyjg4MDXr58qfR8Tk4OXr9+rdHvQ+6JOSIiAmfPnhW/gQG095iJKqKKlK+9qzS5m4ODQ77vV+5zmkQVeZ02vR+AanI+bTtPqiIn1Lb35F2qOn5t+79U2lxSle8HCz0qZGBggMaNG8PPz09sUygU8PPzg4+Pj4SRqY4gCPjiiy9w+PBh/P3333mGljVu3Bj6+vpK70FwcDCePXumse9B+/btERQUhICAAPHWpEkTDB48WLyvbccMAK1atcqz/GpISAhcXFwAAG5ubnBwcFA67qSkJNy8eVNjjzstLQ06Osq/FnV1daFQKABo5zH/V1GO0cfHBwkJCfjnn3/Ebf7++28oFAo0b95c7TGrQu6J+fHjxzh37hysra2VntfGYyaqqCpCvvYuVeRuPj4+CAoKUvojJfePmP8WCMo7VeR12vR+AKrJ+bTtPKmKnFDb3pN3qer4fXx8cOnSJWRnZ4vbnD17Fu7u7hp32ZYqckmVvh/Fnr6ZCrRv3z7B0NBQ2LVrl/Dvv/8Kn3/+uWBhYaE0K78mGz9+vGBubi5cuHBBiI6OFm9paWniNuPGjROqVasm/P3338KdO3cEHx8fwcfHR8KoVe/d1RkEQTuP+datW4Kenp6wbNky4fHjx8Kvv/4qmJiYCL/88ou4zcqVKwULCwvh6NGjwr1794SePXtq3FLj7xo+fLjg5OQkLqV56NAhwcbGRpg1a5a4jTYcc3JysuDv7y/4+/sLAIR169YJ/v7+4qoARTnGTz75RPD29hZu3rwpXLlyRahVq1a5Xi60oGPOysoSevToIVStWlUICAhQ+t327qoHmnbMRPR+2p6vvUsVuVvucuIdO3YUAgIChNOnTwu2trYau5z4fxU3r9O290NVOZ82nSdVlRNq8nuijnwxISFBsLe3F4YOHSrcv39f2Ldvn2BiYlIul1dXRy6pyveDhZ4ysGHDBqFatWqCgYGB0KxZM+HGjRtSh6QyAPK97dy5U9wmPT1dmDBhgmBpaSmYmJgIvXv3FqKjo6ULugz8NyHQ1mM+fvy40KBBA8HQ0FCoU6eO8MMPPyg9r1AohPnz5wv29vaCoaGh0L59eyE4OFiiaEsvKSlJmDJlilCtWjXByMhIqF69uvDVV18p/YLWhmM+f/58vv+Phw8fLghC0Y7x1atXwsCBAwVTU1OhcuXKwsiRI4Xk5GQJjqZoCjrm8PDw9/5uO3/+vLgPTTtmIiqYNudr71JV7vb06VOhc+fOgrGxsWBjYyNMnz5dyM7OVvPRlI2S5HXa9n6oIufTpvOkqnJCTX5P1JUvBgYGCh988IFgaGgoODk5CStXrlTXIRaLunJJVb0fMkEQhOKNASIiIiIiIiIiovKIc/QQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4iIiIiIiIiIi3BQg8RERERERERkZZgoYeIiIiIiIiISEuw0ENEREREREREpCVY6CEiIiIiIiIi0hIs9BARERERERERaQkWeohIpQRBAAAsWrRI6TERERERSYP5GVHFIhP4v5yIVGjz5s3Q09PD48ePoauri86dO6Nt27ZSh0VERERUYTE/I6pYOKKHiFRqwoQJSExMxPfff4/u3bsXKYn48MMPIZPJIJPJEBAQUPZB/seIESPE1z9y5IjaX5+IiIioLBU3PytJbsZ8iqj8YKGHiFRq69atMDc3x+TJk3H8+HFcvny5SP3GjBmD6OhoNGjQoIwjzOu7775DdHS02l+XiIiISJWmTZuGPn365GkvSX5W3NyM+RRR+aEndQBEpF3Gjh0LmUyGRYsWYdGiRUW+BtzExAQODg5lHF3+zM3NYW5uLslrExEREanKrVu30LVr1zztJcnPipubMZ8iKj84ooeIimX58uXisNx3b+vXrwcAyGQyAP832V/u4+L68MMPMWnSJEydOhWWlpawt7fH9u3bkZqaipEjR8LMzAw1a9bEn3/+qZJ+RERERJoqKysL+vr6uHbtGr766ivIZDK0aNFCfF5V+dnBgwfh4eEBY2NjWFtbo0OHDkhNTS11/ESkWiz0EFGxTJo0CdHR0eJtzJgxcHFxwf/+9z+Vv9bu3bthY2ODW7duYdKkSRg/fjz69u2Lli1b4u7du+jYsSOGDh2KtLQ0lfQjIiIi0kR6enq4evUqACAgIADR0dE4ffq0Sl8jOjoaAwcOxKhRo/Dw4UNcuHABffr04QpeROUQCz1EVCxmZmZwcHCAg4MDNm3ahDNnzuDChQuoWrWqyl/Ly8sL8+bNQ61atTB37lwYGRnBxsYGY8aMQa1atbBgwQK8evUK9+7dU0k/IiIiIk2ko6ODFy9ewNraGl5eXnBwcICFhYVKXyM6Oho5OTno06cPXF1d4eHhgQkTJsDU1FSlr0NEpcdCDxGVyIIFC/Dzzz/jwoULcHV1LZPX8PT0FO/r6urC2toaHh4eYpu9vT0A4OXLlyrpR0RERKSp/P394eXlVWb79/LyQvv27eHh4YG+ffti+/btePPmTZm9HhGVHAs9RFRsCxcuxJ49e8q0yAMA+vr6So9lMplSW+715QqFQiX9iIiIiDRVQEBAmRZ6dHV1cfbsWfz555+oV68eNmzYAHd3d4SHh5fZaxJRybDQQ0TFsnDhQuzevbvMizxEREREVHRBQUFo2LBhmb6GTCZDq1atsHjxYvj7+8PAwACHDx8u09ckouLj8upEVGRLly7Fli1bcOzYMRgZGSEmJgYAYGlpCUNDQ4mjIyIiIqq4FAoFgoOD8eLFC1SqVEnlS53fvHkTfn5+6NixI+zs7HDz5k3ExcWhbt26Kn0dIio9jughoiIRBAFr1qxBXFwcfHx84OjoKN44qTERERGRtJYuXYpdu3bByckJS5cuVfn+K1eujEuXLqFLly6oXbs25s2bh7Vr16Jz584qfy0iKh2O6CGiIpHJZEhMTFTb6124cCFP29OnT/O0/XdJz5L2IyIiItJkQ4YMwZAhQ8ps/3Xr1lX5ku1EVDY4ooeIyoXNmzfD1NQUQUFBan/tcePGcWlQIiIioncUNzdjPkVUfsgEfq1NRBKLiopCeno6AKBatWowMDBQ6+u/fPkSSUlJAABHR0dUqlRJra9PREREVJ6UJDdjPkVUfrDQQ0RERERERESkJXjpFhERERERERGRlmChh4iIiIiIiIhIS7DQQ0RERERERESkJVjoISIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQl/h8Qx5ib38lrnwAAAABJRU5ErkJggg==",
- "text/plain": [
- "