-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformers.py
198 lines (161 loc) · 6.04 KB
/
transformers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator
import numpy as np
import spacy
import random
from torch.utils.tensorboard import SummaryWriter
from save_load_trf import save_checkpoint, load_checkpoint, translate_sentence, bleu
spacy_ger = spacy.load('de')
spacy_eng = spacy.load('en')
def tokenizer_ger(text):
return [tok.text for tok in spacy_ger.tokenizer(text)]
def tokenizer_eng(text):
return [tok.text for tok in spacy_eng.tokenizer(text)]
german = Field(tokenize=tokenizer_ger, lower=True,
init_token='<sos>', eos_token='<eos>')
english = Field(tokenize=tokenizer_eng, lower=True,
init_token='<sos>', eos_token='<eos>')
train_data, validation_data, test_data = Multi30k.splits(exts=('.de','.en'),
fields=(german, english))
german.build_vocab(train_data, max_size=10000, min_freq=2)
english.build_vocab(train_data, max_size=10000, min_freq=2)
class Transformer(nn.Module):
def __init__(self,
embedding_size,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout,
max_len,
device
):
super(Transformer,self).__init__()
self.src_word_embedding = nn.Embedding(src_vocab_size,embedding_size)
self.src_positional_embedding = nn.Embedding(max_len,embedding_size)
self.trg_word_embedding = nn.Embedding(trg_vocab_size,embedding_size)
self.trg_positional_embedding = nn.Embedding(max_len, embedding_size)
self.device = device
self.transformer = nn.Transformer(
embedding_size,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout
)
self.fc_out = nn.Linear(embedding_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)
self.src_pad_idx = src_pad_idx
def make_src_masks(self,src):
# src : (src_len, bs)
src_mask = src.transpose(0,1) == self.src_pad_idx
# (bs, src_len)
return src_mask
def forward(self, src, trg):
src_seq_len , N = src.shape
trg_seq_len , N = trg.shape
src_positions =(
torch.arange(0, src_seq_len).unsqueeze(1).expand(src_seq_len, N).to(self.device)
)
trg_positions = (
torch.arange(0, trg_seq_len).unsqueeze(1).expand(trg_seq_len, N).to(self.device)
)
embed_src = self.dropout(
(self.src_word_embedding(src) + self.src_positional_embedding(src_positions))
)
embed_trg = self.dropout(
(self.trg_word_embedding(trg) + self.trg_positional_embedding(trg_positions))
)
src_padding_mask = self.make_src_masks(src)
trg_mask = self.transformer.generate_square_subsequent_mask(trg_seq_len).to(self.device)
out = self.transformer(embed_src, embed_trg, src_key_padding_mask=src_padding_mask,tgt_mask=trg_mask)
out = self.fc_out(out)
return out
#
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
load_model =True
save_model = False
#training hyperparameters
num_epochs = 5
learning_rate = 3e-4
batch_size= 32
#model hyperparameters
src_vocab_size = len(german.vocab)
trg_vocab_size = len(english.vocab)
embedding_size = 512
num_heads = 8
num_encoder_layers = 3
num_decoder_layers = 3
dropout = 0.1
max_len = 100
forward_expansion = 4
src_pad_idx = english.vocab.stoi['<pad>']
writer = SummaryWriter("runs/loss_plot")
step = 0
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, validation_data, test_data),
batch_size = batch_size,
sort_within_batch=True,
sort_key = lambda x: len(x.src),
device = device)
model = Transformer(embedding_size,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout,
max_len,
device).to(device)
optimizer = optim.Adam(model.parameters(),lr = learning_rate)
pad_idx = english.vocab.stoi["<pad>"]
criterion = nn.CrossEntropyLoss(ignore_index=pad_idx)
if load_model:
load_checkpoint(torch.load('my_checkpoint.pth.tar',map_location=torch.device('cpu')), model, optimizer)
print("Loaded")
train = False
if train:
for epoch in range(num_epochs):
print(f'[Epoch{epoch+1}/{num_epochs}]')
if save_model:
checkpoint= {
"state_dict" : model.state_dict(),
"optimizer" : optimizer.state_dict(),
}
save_checkpoint(checkpoint)
for batch_idx,batch in enumerate(train_iterator):
inp_data = batch.src.to(device)
target = batch.trg.to(device)
#forward prop
output = model(inp_data, target[:-1])
output = output.reshape(-1,output.shape[2])
target = target[1:].reshape(-1)
optimizer.zero_grad()
loss = criterion(output, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),max_norm =1)
optimizer.step()
writer.add_scalar("Training loss", loss, global_step=step)
step+=1
sen1 = "Die Person ging ins Einkaufszentrum."
sen2 = "Wie geht es dir heute?"
sen3 = "Ich sah einen Mann mit geschlossenen Augen in der Nähe des Teiches fischen."
y = translate_sentence(model, sen1, german,english, device, max_length=30)
z = translate_sentence(model, sen2, german,english, device, max_length=30)
w = translate_sentence(model, sen3, german,english, device, max_length=30)
print(y)
print(z)
print(w)
import sys
sys.exit()
score = bleu(test_data[1:100],model,german,english,device)
print(score)