-
Notifications
You must be signed in to change notification settings - Fork 0
/
save_load_trf.py
66 lines (48 loc) · 2.05 KB
/
save_load_trf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
from torchtext.data.metrics import bleu_score
import spacy
def save_checkpoint(state, filename='my_checkpoint.pth.tar'):
print('=> Saving checkpoint...')
torch.save(state, filename)
def load_checkpoint(checkpoint,model,optimizer):
print("=> Loading checkpoint...")
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
def translate_sentence(model, sentence, german, english, device, max_length=50):
# Load german tokenizer
spacy_ger = spacy.load("de")
# Create tokens using spacy and everything in lower case (which is what our vocab is)
if type(sentence) == str:
tokens = [token.text.lower() for token in spacy_ger(sentence)]
else:
tokens = [token.lower() for token in sentence]
# Add <SOS> and <EOS> in beginning and end respectively
tokens.insert(0, german.init_token)
tokens.append(german.eos_token)
# Go through each german token and convert to an index
text_to_indices = [german.vocab.stoi[token] for token in tokens]
# Convert to Tensor
sentence_tensor = torch.LongTensor(text_to_indices).unsqueeze(1).to(device)
outputs = [english.vocab.stoi["<sos>"]]
for i in range(max_length):
trg_tensor = torch.LongTensor(outputs).unsqueeze(1).to(device)
with torch.no_grad():
output = model(sentence_tensor, trg_tensor)
best_guess = output.argmax(2)[-1, :].item()
outputs.append(best_guess)
if best_guess == english.vocab.stoi["<eos>"]:
break
translated_sentence = [english.vocab.itos[idx] for idx in outputs]
# remove start token
return translated_sentence[1:]
def bleu(data, model, german, english, device):
targets= []
outputs= []
for eg in data:
src = vars(eg)['src']
trg = vars(eg)['trg']
prediction = translate_sentence(model, src, german, english, device)
prediction = prediction[:-1] # eos removed
targets.append([trg])
outputs.append(prediction)
return bleu_score(outputs, targets)