You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
""" This is the jupyter notebook version of the tutorial with some small fixes.
Instead of running it in command line like "python keras_lstm.py 1" with
runopt parameter here = 1, you need to assign run_opt parameter in the code!
To run this code, you'll need to first download and extract the text dataset
from here: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz. Change the
data_path variable below to your local extraction path and assign run_opt
"""
data_path = "C:\\Users\\Andy\\Documents\\simple-examples\\data\\"
# 'An integer: 1 to train, 2 to test'
run_opt = 1
####
# all from https://adventuresinmachinelearning.com/keras-lstm-tutorial/
# and originally full code from https://github.com/adventuresinML/adventures-in-ml-code/blob/master/keras_lstm.py
# issue of running it as jupyter nb: https://github.com/adventuresinML/adventures-in-ml-code/issues/12
# (solved here)
from __future__ import print_function
import collections
import os
import tensorflow as tf
from keras.models import Sequential, load_model
from keras.layers import Dense, Activation, Embedding, Dropout, TimeDistributed
from keras.layers import LSTM
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras.callbacks import ModelCheckpoint
import numpy as np
import pandas as pd
####
def build_vocab(filename):
data = pd.read_csv(filename, encoding='utf-8', header = None)
data = ''.join([str(x) for x in data[0]]).split()
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
return word_to_id
def file_to_word_ids(filename, word_to_id):
data = pd.read_csv(filename, encoding='utf-8', header = None)
data = ''.join([str(x) for x in data[0]]).split()
return [word_to_id[word] for word in data if word in word_to_id]
def load_data():
# get the data paths
train_path = os.path.join(data_path, "ptb.train.txt")
valid_path = os.path.join(data_path, "ptb.valid.txt")
test_path = os.path.join(data_path, "ptb.test.txt")
# build the complete vocabulary, then convert text data to list of integers
word_to_id = build_vocab(train_path)
train_data = file_to_word_ids(train_path, word_to_id)
valid_data = file_to_word_ids(valid_path, word_to_id)
test_data = file_to_word_ids(test_path, word_to_id)
vocabulary = len(word_to_id)
reversed_dictionary = dict(zip(word_to_id.values(), word_to_id.keys()))
print(train_data[:5])
print(list(word_to_id.items())[:10])
print(vocabulary)
print(" ".join([reversed_dictionary[x] for x in train_data[:10]]))
return train_data, valid_data, test_data, vocabulary, reversed_dictionary
####
train_data, valid_data, test_data, vocabulary, reversed_dictionary = load_data()
####
class KerasBatchGenerator(object):
def __init__(self, data, num_steps, batch_size, vocabulary, skip_step=5):
self.data = data
self.num_steps = num_steps
self.batch_size = batch_size
self.vocabulary = vocabulary
# this will track the progress of the batches sequentially through the
# data set - once the data reaches the end of the data set it will reset
# back to zero
self.current_idx = 0
# skip_step is the number of words which will be skipped before the next
# batch is skimmed from the data set
self.skip_step = skip_step
def generate(self):
x = np.zeros((self.batch_size, self.num_steps))
y = np.zeros((self.batch_size, self.num_steps, self.vocabulary))
while True:
for i in range(self.batch_size):
if self.current_idx + self.num_steps >= len(self.data):
# reset the index back to the start of the data set
self.current_idx = 0
x[i, :] = self.data[self.current_idx:self.current_idx + self.num_steps]
temp_y = self.data[self.current_idx + 1:self.current_idx + self.num_steps + 1]
# convert all of temp_y into a one hot representation
y[i, :, :] = to_categorical(temp_y, num_classes=self.vocabulary)
self.current_idx += self.skip_step
yield x, y
####
num_steps = 30
batch_size = 20
train_data_generator = KerasBatchGenerator(train_data, num_steps, batch_size, vocabulary,
skip_step=num_steps)
valid_data_generator = KerasBatchGenerator(valid_data, num_steps, batch_size, vocabulary,
skip_step=num_steps)
####
hidden_size = 500
use_dropout=True
model = Sequential()
model.add(Embedding(vocabulary, hidden_size, input_length=num_steps))
model.add(LSTM(hidden_size, return_sequences=True))
model.add(LSTM(hidden_size, return_sequences=True))
if use_dropout:
model.add(Dropout(0.5))
model.add(TimeDistributed(Dense(vocabulary)))
model.add(Activation('softmax'))
####
optimizer = Adam()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy'])
print(model.summary())
####
checkpointer = ModelCheckpoint(filepath=data_path + '/model-{epoch:02d}.hdf5', verbose=1)
num_epochs = 1 #50
if run_opt == 1:
model.fit_generator(train_data_generator.generate(), len(train_data)//(batch_size*num_steps), num_epochs,
validation_data=valid_data_generator.generate(),
validation_steps=len(valid_data)//(batch_size*num_steps), callbacks=[checkpointer])
# model.fit_generator(train_data_generator.generate(), 2000, num_epochs,
# validation_data=valid_data_generator.generate(),
# validation_steps=10)
model.save(data_path + "final_model.hdf5")
elif run_opt == 2:
model = load_model(data_path + "\model-40.hdf5")
dummy_iters = 40
example_training_generator = KerasBatchGenerator(train_data, num_steps, 1, vocabulary,
skip_step=1)
print("Training data:")
for i in range(dummy_iters):
dummy = next(example_training_generator.generate())
num_predict = 10
true_print_out = "Actual words: "
pred_print_out = "Predicted words: "
for i in range(num_predict):
data = next(example_training_generator.generate())
prediction = model.predict(data[0])
predict_word = np.argmax(prediction[:, num_steps-1, :])
true_print_out += reversed_dictionary[train_data[num_steps + dummy_iters + i]] + " "
pred_print_out += reversed_dictionary[predict_word] + " "
print(true_print_out)
print(pred_print_out)
# test data set
dummy_iters = 40
example_test_generator = KerasBatchGenerator(test_data, num_steps, 1, vocabulary,
skip_step=1)
print("Test data:")
for i in range(dummy_iters):
dummy = next(example_test_generator.generate())
num_predict = 10
true_print_out = "Actual words: "
pred_print_out = "Predicted words: "
for i in range(num_predict):
data = next(example_test_generator.generate())
prediction = model.predict(data[0])
predict_word = np.argmax(prediction[:, num_steps - 1, :])
true_print_out += reversed_dictionary[test_data[num_steps + dummy_iters + i]] + " "
pred_print_out += reversed_dictionary[predict_word] + " "
print(true_print_out)
print(pred_print_out)
The text was updated successfully, but these errors were encountered:
The text was updated successfully, but these errors were encountered: