Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

keras_lstm.py as .ipynb file incl. fix of gfile approach #24

Open
lorenzznerol opened this issue May 8, 2020 · 0 comments
Open

keras_lstm.py as .ipynb file incl. fix of gfile approach #24

lorenzznerol opened this issue May 8, 2020 · 0 comments

Comments

@lorenzznerol
Copy link

lorenzznerol commented May 8, 2020

""" This is the jupyter notebook version of the tutorial with some small fixes.
    Instead of running it in command line like "python keras_lstm.py 1" with 
    runopt parameter here = 1, you need to assign run_opt parameter in the code!

    To run this code, you'll need to first download and extract the text dataset
    from here: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz. Change the
    data_path variable below to your local extraction path and assign run_opt
    """

data_path = "C:\\Users\\Andy\\Documents\\simple-examples\\data\\"

# 'An integer: 1 to train, 2 to test'
run_opt = 1

####

# all from https://adventuresinmachinelearning.com/keras-lstm-tutorial/
# and originally full code from https://github.com/adventuresinML/adventures-in-ml-code/blob/master/keras_lstm.py
# issue of running it as jupyter nb: https://github.com/adventuresinML/adventures-in-ml-code/issues/12
# (solved here)

from __future__ import print_function
import collections
import os
import tensorflow as tf
from keras.models import Sequential, load_model
from keras.layers import Dense, Activation, Embedding, Dropout, TimeDistributed
from keras.layers import LSTM
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras.callbacks import ModelCheckpoint
import numpy as np
import pandas as pd

####

def build_vocab(filename):
    data = pd.read_csv(filename, encoding='utf-8', header = None)
    data = ''.join([str(x) for x in data[0]]).split()

    counter = collections.Counter(data)
    count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

    words, _ = list(zip(*count_pairs))
    word_to_id = dict(zip(words, range(len(words))))

    return word_to_id

def file_to_word_ids(filename, word_to_id):
    data = pd.read_csv(filename, encoding='utf-8', header = None)
    data = ''.join([str(x) for x in data[0]]).split()

    return [word_to_id[word] for word in data if word in word_to_id]


def load_data():
    # get the data paths
    train_path = os.path.join(data_path, "ptb.train.txt")
    valid_path = os.path.join(data_path, "ptb.valid.txt")
    test_path = os.path.join(data_path, "ptb.test.txt")

    # build the complete vocabulary, then convert text data to list of integers
    word_to_id = build_vocab(train_path)

    train_data = file_to_word_ids(train_path, word_to_id)

    valid_data = file_to_word_ids(valid_path, word_to_id)
    test_data = file_to_word_ids(test_path, word_to_id)
    vocabulary = len(word_to_id)
    reversed_dictionary = dict(zip(word_to_id.values(), word_to_id.keys()))

    print(train_data[:5])
    print(list(word_to_id.items())[:10])
    print(vocabulary)
    print(" ".join([reversed_dictionary[x] for x in train_data[:10]]))
    return train_data, valid_data, test_data, vocabulary, reversed_dictionary

####

train_data, valid_data, test_data, vocabulary, reversed_dictionary = load_data()

####

class KerasBatchGenerator(object):

    def __init__(self, data, num_steps, batch_size, vocabulary, skip_step=5):
        self.data = data
        self.num_steps = num_steps
        self.batch_size = batch_size
        self.vocabulary = vocabulary
        # this will track the progress of the batches sequentially through the
        # data set - once the data reaches the end of the data set it will reset
        # back to zero
        self.current_idx = 0
        # skip_step is the number of words which will be skipped before the next
        # batch is skimmed from the data set
        self.skip_step = skip_step

    def generate(self):
        x = np.zeros((self.batch_size, self.num_steps))
        y = np.zeros((self.batch_size, self.num_steps, self.vocabulary))
        while True:
            for i in range(self.batch_size):
                if self.current_idx + self.num_steps >= len(self.data):
                    # reset the index back to the start of the data set
                    self.current_idx = 0
                x[i, :] = self.data[self.current_idx:self.current_idx + self.num_steps]
                temp_y = self.data[self.current_idx + 1:self.current_idx + self.num_steps + 1]
                # convert all of temp_y into a one hot representation
                y[i, :, :] = to_categorical(temp_y, num_classes=self.vocabulary)
                self.current_idx += self.skip_step
            yield x, y

####

num_steps = 30
batch_size = 20
train_data_generator = KerasBatchGenerator(train_data, num_steps, batch_size, vocabulary,
                                           skip_step=num_steps)
valid_data_generator = KerasBatchGenerator(valid_data, num_steps, batch_size, vocabulary,
                                           skip_step=num_steps)

####

hidden_size = 500
use_dropout=True
model = Sequential()
model.add(Embedding(vocabulary, hidden_size, input_length=num_steps))
model.add(LSTM(hidden_size, return_sequences=True))
model.add(LSTM(hidden_size, return_sequences=True))
if use_dropout:
    model.add(Dropout(0.5))
model.add(TimeDistributed(Dense(vocabulary)))
model.add(Activation('softmax'))

####

optimizer = Adam()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy'])

print(model.summary())

####

checkpointer = ModelCheckpoint(filepath=data_path + '/model-{epoch:02d}.hdf5', verbose=1)
num_epochs = 1 #50
if run_opt == 1:
    model.fit_generator(train_data_generator.generate(), len(train_data)//(batch_size*num_steps), num_epochs,
                        validation_data=valid_data_generator.generate(),
                        validation_steps=len(valid_data)//(batch_size*num_steps), callbacks=[checkpointer])
    # model.fit_generator(train_data_generator.generate(), 2000, num_epochs,
    #                     validation_data=valid_data_generator.generate(),
    #                     validation_steps=10)
    model.save(data_path + "final_model.hdf5")
elif run_opt == 2:
    model = load_model(data_path + "\model-40.hdf5")
    dummy_iters = 40
    example_training_generator = KerasBatchGenerator(train_data, num_steps, 1, vocabulary,
                                                     skip_step=1)
    print("Training data:")
    for i in range(dummy_iters):
        dummy = next(example_training_generator.generate())
    num_predict = 10
    true_print_out = "Actual words: "
    pred_print_out = "Predicted words: "
    for i in range(num_predict):
        data = next(example_training_generator.generate())
        prediction = model.predict(data[0])
        predict_word = np.argmax(prediction[:, num_steps-1, :])
        true_print_out += reversed_dictionary[train_data[num_steps + dummy_iters + i]] + " "
        pred_print_out += reversed_dictionary[predict_word] + " "
    print(true_print_out)
    print(pred_print_out)
    # test data set
    dummy_iters = 40
    example_test_generator = KerasBatchGenerator(test_data, num_steps, 1, vocabulary,
                                                     skip_step=1)
    print("Test data:")
    for i in range(dummy_iters):
        dummy = next(example_test_generator.generate())
    num_predict = 10
    true_print_out = "Actual words: "
    pred_print_out = "Predicted words: "
    for i in range(num_predict):
        data = next(example_test_generator.generate())
        prediction = model.predict(data[0])
        predict_word = np.argmax(prediction[:, num_steps - 1, :])
        true_print_out += reversed_dictionary[test_data[num_steps + dummy_iters + i]] + " "
        pred_print_out += reversed_dictionary[predict_word] + " "
    print(true_print_out)
    print(pred_print_out)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant