-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
272 lines (208 loc) · 9.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
'''
pytorch implementation Adrien Bitton
link: https://github.com/adrienchaton/PerceptualAudio_pytorch
paper codes Pranay Manocha
link: https://github.com/pranaymanocha/PerceptualAudio
'''
import torch
import numpy as np
import argparse
import os
import timeit
from models import JNDnet
from utils import print_time,import_data,loss_plot,acc_plot,eval_scores
np.random.seed(12345)
try:
torch.backends.cudnn.benchmark = True
except:
print('cudnn.benchmark not available')
###############################################################################
### PARSE SETTINGS ; sr = 22050Hz is fixed and data is preprocessed accordingly
parser = argparse.ArgumentParser()
parser.add_argument('--GPU_id',type=int,default=0)
parser.add_argument('--mname',type=str,default='scratchJNDdefault')
parser.add_argument('--epochs',type=int,default=2000)
parser.add_argument('--bs',type=int,default=16)
parser.add_argument('--lr',type=float,default=0.0001)
parser.add_argument('--wdec',type=float,default=0.) # weight decay for optimizer
parser.add_argument('--nconv',type=int,default=14) # lossnet convolution depth
parser.add_argument('--nchan',type=int,default=32) # first channel dimension, to be doubled every 5 layers
parser.add_argument('--dist_dp',type=float,default=0.05) # droupout ratio in lossnet
parser.add_argument('--dist_act',type=str,default='no') # 'no' or 'sig' or 'tanh' or 'tshrink' or 'exp'
parser.add_argument('--ndim0',type=int,default=16) # first hidden size of the classifier
parser.add_argument('--ndim1',type=int,default=6) # second hidden size of the classifier
parser.add_argument('--classif_dp',type=float,default=0.05) # droupout ratio in classifnet
parser.add_argument('--classif_BN',type=int,default=2) # 1 if classifnet with batch-norm on 1st layer / 2 if on both hidden layers
parser.add_argument('--classif_act',type=str,default='no') # 'no' or 'sig' or 'tanh'
parser.add_argument('--Lsize',type=int,default=40000) # input signal size of lossnet
parser.add_argument('--shift',type=int,default=1) # 1 if randomly shifting signals to encourage shift invariance
parser.add_argument('--randgain',type=int,default=0) # 1 if randomly applying gain on training data to encourage amplitude invariance
parser.add_argument('--sub',type=int,default=-1) # -1 or an index to select a single perturbation subset to train on
parser.add_argument('--sub2',type=int,default=-1) # -1 or an additional index to select a single perturbation subset to train on
parser.add_argument('--minit',type=int,default=0) # 0 is using default pytorch setting, 1 is using random normal init
parser.add_argument('--opt',type=str,default='adam') # 'adam' or 'rmsp'
args = parser.parse_args()
GPU_id = args.GPU_id
mname = args.mname
device = torch.device("cuda:{}".format(GPU_id) if torch.cuda.is_available() else "cpu")
print(device)
epochs = args.epochs
batch_size = args.bs
lr = args.lr
wdec = args.wdec
lr_step = 50
lr_decay = 0.98
print('optimizer with batch_size,lr,wdec,lr_step,lr_decay = ',batch_size,lr,wdec,lr_step,lr_decay)
print('\nTRAINING '+mname+' for epochs,batch_size,lr')
print(epochs,batch_size,lr)
###############################################################################
### DATA SETTINGS AND IMPORT
data_path = './data/'
# it should contain numpy dictionaries named as 'subset'_data.npy ; e.g. dataset_combined_data.npy
# each dictionary entry is [first signal, second signal, human label]
output_path = './outputs/'
mpath = output_path+mname+'/'
if args.sub==-1:
subsets = ['dataset_combined','dataset_eq','dataset_linear','dataset_reverb']
else: # select single subset 0,1,2,3
subsets = [['dataset_combined','dataset_eq','dataset_linear','dataset_reverb'][args.sub]]
if args.sub2!=-1:
subsets.append(['dataset_combined','dataset_eq','dataset_linear','dataset_reverb'][args.sub2])
Lsize = args.Lsize
print('audio input size at training == ',Lsize)
# shorter segments are discarded ; longer segments are chunked in multiples of Lsize
shift = args.shift
n_shift = 4000
if shift==1:
print('at training, xref or xper can be randomly shifted by '+str(n_shift)+' samples ~ ',n_shift/22050)
randgain = args.randgain
if randgain==1:
gainmin = 0.1
gainmax = 0.8 # scaling the input range ~ [-1.25,1.25] in [-1,1]
print('at training, for every forward, apply random gain to [xref,xper] between ',gainmin,gainmax)
print('test data is loaded with random gains, kept fixed throughout the training')
rgains = [gainmin,gainmax]
else:
rgains = False
train_loader,test_loader,train_refloader,test_refloader = import_data(data_path,subsets,Lsize,batch_size,train_ratio=0.8,rgains=rgains)
###############################################################################
### BUILD MODEL
nconv = args.nconv
nchan = args.nchan
dist_dp = args.dist_dp
dist_act = args.dist_act
ndim = [args.ndim0,args.ndim1]
classif_dp = args.classif_dp
classif_BN = args.classif_BN
classif_act = args.classif_act
minit = args.minit
print('\nBUILDING with settings nconv,nchan,dist_dp,dist_act,ndim,classif_dp,classif_BN,classif_act,minit')
print(nconv,nchan,dist_dp,dist_act,ndim,classif_dp,classif_BN,classif_act,minit)
model = JNDnet(nconv=nconv,nchan=nchan,dist_dp=dist_dp,dist_act=dist_act,ndim=ndim,classif_dp=classif_dp,classif_BN=classif_BN,classif_act=classif_act,dev=device,minit=minit)
model.to(device)
model.train()
if args.opt=='rmsp':
print('optimizer == RMSprop')
optimizer = torch.optim.RMSprop(model.parameters(),lr=lr,weight_decay=wdec)
if args.opt=='adam':
print('optimizer == ADAM')
optimizer = torch.optim.Adam(model.parameters(),lr=lr,weight_decay=wdec)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,lr_step,gamma=lr_decay)
###############################################################################
### PRE-CHECKS
for _, minibatch in enumerate(train_loader):
break
model.grad_check(minibatch,optimizer)
model.eval()
train_acc,test_acc,train_loss,test_loss = eval_scores(model,train_refloader,test_refloader,device)
epoch_log = [0]
train_acc_log = [train_acc]
test_acc_log = [test_acc]
###############################################################################
### TRAINING
model.train()
os.makedirs(mpath)
loss_log = np.zeros((epochs,2)) # train/test losses
itr = 0
start_time = timeit.default_timer()
for epoch in range(epochs):
#### training step
model.train()
n_mb = 0
ep_loss = torch.tensor([0.]).to(device,non_blocking=True)
for _, minibatch in enumerate(train_loader):
xref = minibatch[0].to(device,non_blocking=True)
xper = minibatch[1].to(device,non_blocking=True)
if shift==1 and np.random.rand()>0.75:
if np.random.rand()>0.5:
xref = torch.cat((torch.zeros(batch_size,n_shift).to(device,non_blocking=True),xref),dim=1)[:,:-n_shift]
else:
xref = torch.cat((xref,torch.zeros(batch_size,n_shift).to(device,non_blocking=True)),dim=1)[:,n_shift:]
if shift==1 and np.random.rand()>0.75:
if np.random.rand()>0.5:
xper = torch.cat((torch.zeros(batch_size,n_shift).to(device,non_blocking=True),xper),dim=1)[:,:-n_shift]
else:
xper = torch.cat((xper,torch.zeros(batch_size,n_shift).to(device,non_blocking=True)),dim=1)[:,n_shift:]
if randgain==1:
g = torch.zeros(batch_size).to(device,non_blocking=True)
torch.nn.init.uniform_(g,gainmin,gainmax)
xref = xref*g.unsqueeze(1)
xper = xper*g.unsqueeze(1)
labels = minibatch[2].to(device,non_blocking=True)
loss,dist,class_pred,class_prob = model.forward(xref,xper,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
ep_loss+=loss
n_mb+=1
itr+=1
loss_log[epoch,0] = ep_loss.item()/n_mb
#### testing step
model.eval()
n_mb = 0
ep_loss = torch.tensor([0.]).to(device,non_blocking=True)
with torch.no_grad():
for _,minibatch in enumerate(test_loader):
xref = minibatch[0].to(device,non_blocking=True)
xper = minibatch[1].to(device,non_blocking=True)
labels = minibatch[2].to(device,non_blocking=True)
loss,dist,class_pred,class_prob = model.forward(xref,xper,labels)
ep_loss+=loss
n_mb+=1
loss_log[epoch,1] = ep_loss.item()/n_mb
if (epoch+1)%3==0:
print('\n*** '+mname+' - EPOCH #'+str(epoch+1)+' out of '+str(epochs)+' current itr=',itr)
print('averaged training loss',loss_log[epoch,0])
print('averaged test loss',loss_log[epoch,1])
train_acc,test_acc,train_loss,test_loss = eval_scores(model,train_refloader,test_refloader,device,report=False)
train_acc_log.append(train_acc)
test_acc_log.append(test_acc)
epoch_log.append(epoch+1)
plot_name = mpath+'loss_plot'
loss_plot(plot_name,loss_log)
plot_name = mpath+'acc_plot'
acc_plot(plot_name,epoch_log,train_acc_log,test_acc_log)
print_time(timeit.default_timer()-start_time)
scheduler.step()
###############################################################################
#### POST-TRAINING save and export
print('\nTRAINING FINISHED for model '+mname+'\n')
for g in optimizer.param_groups:
lr_end = g['lr']
print('\nlr_end == ',lr_end)
print_time(timeit.default_timer()-start_time)
print('#iter = ',itr)
plot_name = mpath+'loss_plot'
loss_plot(plot_name,loss_log)
model.eval()
print('\n\nREPORT for model '+mname)
train_acc,test_acc,train_loss,test_loss = eval_scores(model,train_refloader,test_refloader,device)
train_acc_log.append(train_acc)
test_acc_log.append(test_acc)
epoch_log.append(epochs)
plot_name = mpath+'acc_plot'
acc_plot(plot_name,epoch_log,train_acc_log,test_acc_log)
states = {'epochs':epochs,'state':model.state_dict(),'optim':optimizer.state_dict(),'itr':itr,\
'train_acc':train_acc,'test_acc':test_acc,'train_loss':train_loss,'test_loss':test_loss}
torch.save(states,mpath+mname+'.pth')
np.save(mpath+'losses.npy',loss_log)