Skip to content

Latest commit

 

History

History
68 lines (55 loc) · 2.51 KB

model_summary.md

File metadata and controls

68 lines (55 loc) · 2.51 KB

Memory Network Architecture

Input:

  1. a document (article body) segmented into paragraphs (potential pieces of evidence)
  2. a textual statement containing a claim (article headline)

Output:

  1. the stance of a document with respect to the corresponding claim (agree, disagree, discuss, unrelated)

Inference Outputs:

  1. k most similar paragraphs with their similarity scores
  2. k most similar snippets with their similarity scores

1. Input Encoding / Vectorization

Dense Representation: word embeddings pre-trained on Twitter data (GloVe)

dense body  (n_samples, n_paragraphs=9, max_paragraph_len=15, embedding_dim=100)
dense claim (n_samples, max_claim_len=15, embedding_dim=100)

Sparse Representation: term frequency–inverse document frequency

sparse body  (n_samples, n_paragraphs=9, vocab_size)
sparse claim (n_samples, vocab_size)

2. Memory Representation

dense body ---> TimeDistributed (LSTM, 100 units) -----------> lstm body (n_samples, 9, 100)
dense body ---> TimeDistributed (CNN, 100 filters, size 5) --> cnn body  (n_samples, 9, 11, 100)
cnn body -----> MaxOut --------------------------------------> cnn body  (n_samples, 9, 11)

dense claim --> LSTM (100 units) -----------> lstm claim (n_samples, 100)
dense claim --> CNN (100 filters, size 5) --> cnn claim  (n_samples, 11, 100)
cnn claim ----> MaxOut --------------------------------------> cnn claim  (n_samples, 11)

3. Inference and Generalization

sparse body x sparse claim ---> p tfidf (n_samples, 9)  # similarity matrix
lstm body * p tfidf ----------> lstm body               # memory update
lstm body x lstm claim -------> p lstm (n_samples, 9)   # similarity matrix
cnn body * p lstm ------------> cnn body                # memory update
cnn body x cnn claim ---------> p cnn (n_samples, 9)    # similarity matrix

4. Output Memory Representation

concatenate [ mean(cnn body),
	      max(p cnn), mean(p cnn),
	      max(p lstm), mean(p lstm),
	      max(p tfidf), mean(p tfidf) ] --> output

5. Final Response (Class Prediction)

concatenate [ output, lstm claim, cnn claim ] --> response
response ---> MLP (300 units, relu) ------------> response
response ---> DropOut (0.5) --------------------> response
response ---> MLP (4 units, softmax) -----------> prediction

6. Inference Outputs

  • a set of evidences (paragraphs) with similarity scores
  • a set of snippets from the most similar paragraph with similarity scores